“THE HEAP” o

MAY 1985 ISSUE

LANGUAGES AND TOOLS SIG

TABLE OF CONTENTS

Editor's Notes 2

Get Ready For New Orleans!! 3
Kathy Hornbach

TeX: Typesetting For Almost Everybody
Samual B. Whidden

(821

An AI Project Case Study - The First
Six Months 31
Don Rosenthal

A Bibliography on Knowledge-Based

Expert Systems 42
Status of Work Towards Revision of
Progremming Language Fortran 55
DEC and IBM Response to FIB-1 107
X3J3 Response to Comments by

DEC and 1IBM 111
An Editorial 112

EDITOR’'S NOTES

It is my hope thst this issue of "THE HEAP" will reach you
prior to the New Orleans Symposium, but I expect that it probably
will not. If not, please accept my apologies, the delay was en-
tirely my fault, due to other, work related, pressures.

This issue has three major contributions, all of which are
of great interest. First is an article on TeX, the increasingly
popular text formatting tool. for those of you who are not fami-
lar with TeX, this will serve as a great introduction. TeX it-
self is public domain software, and runs on a wide variety of
machines, 1including most DEC CPU's. It has an active and en-
thusiastic user's group, and after the article there is the in-
formation and forms necessary to contact that user's group.

The second submission is by Don Rosenthal, and consists of
the slides from his Artificiazl Intelligence presentation from
Anzheim, along with a very extensive A.I. bibliography. If
you're interested in A.I., the bibliography alone is probably
worth the cost of your subscription to "THE HEAPY.

Tne final major contribution is of extreme importance to
FCRTRAN users. You meay be aware that there is currently work
underway to design a new Fortran standard. This submission is
the Fortran Information Bulletin which describes the features
proposed for that new standard. When the publication of the FIB
was proposed, both PEC and IBM voted ageinst publication. Fol-
lowing the FIB I have included DEC and 1IBM's explanations for
their negazitive votes, and following that is X3J3's response to
DEC and IBM. I am endebted to Jay Wiley, our standards coordina-
tor, for getting this information to me. I had to transcribe the
responses, so I will apologize in advance for any typos or ommis-
sions.

One final submission may be of interest. You may or may not
be aware that DECUS is considering combining the SIG newsletters
into a single publication. This is an issue I feel strongly
about, and I believe it will significantly impact how we are able
to relate to you, the generzal membership. While I don't really
believe in editorializing, I feel this is important enough to
make an exception. I have summerized my feelings, and what I be-
lieve to be the current state of affairs. If you wish to com-
ment, please do. My address, again, is:

_ Alan L. Folsom, Jr.
Dept 431, Fischer & Porter Co.
County Line Road
Warminster, Pa. 18974

Finally, if you have not yet responded to the Wishlist from
the 1last 1issue, please do so. I will continue to collate
responses as long as I can, and will eventually forward the final
tally to both DEC and the SIG leadership.

Get Ready for New Orleans!!
- Kathy Hornbach, L&T Chair

The New Orleans DECUS Symposium is just around the corner, end it is one
you certainly will not wont to miss. Besides the delicious Creole cuisine
eround the corner from the convention center, the Symposium committee
has put together an excellent slate of sessions -- close to, if not THE,
most sessions ever scheduled for a DECUS Symposium. This article will
i1l you in on some of the things planned.

The theme for the Languages & Tools SIG this symposium is Software
Documentation Tools.. . . .hardly a glamorous subject, yet a very
important one. No one likes to do it, yet everyone wants it to be done. We
have lined up some indepth technical talks behind this theme, and a number
of users have submitted papers covering their experiences. Some of the
highlights include & paper by DEC, describing the software tools they used
to produce the top quality YMS V4 documentation. There are two talks on
TeX, the public domein typesetting package written by Donald Knuth of
Stenford, and e talk on WEB, an automated programming documentation eid
that grew out of the work with TeX. We plan to hold a number of
birds-of-a-feather sessions on experiences in documentation techniques,
so bring your wer stories and success stories.

As usual, DEC has sponsored a full slate of sessions giving the latest
details on C, Pascal, Fortran, PL/1, CMS, MMS, DEC/Test
Manager, DEC/Shell, and the rest. This will be an excellent time to
consolidate the experience gained over the last few months on the new
versions of these tools. We also expect to hear more details on some of
the new products thet were announced at Fall DECUS, including the
Language Sensitive Editor, the new TPU editor, the Performance
Coverage Analyzer, and Ada.

We have invited members of the Fortran 8x standards committee to
give presentations on the current status of the proposed standard. This
will be followed by a panel session where the audience will be able to ask
questions of both the stendards committee and DEC’s Fortran developers.

The SIG is sponsoring three sessions where you will have a chance to meet
the members of the Steering Committee and DEC developers in the
Lenguages and Tools area. These include the roadmap, first thing Monday
morning when we fill you in on any last minute changes; and the wrapup,
late Friday, afternoon when we assess the happenings for the week and ask
for input from the audience on how to do our job better. The third session,
and one you will definitely want to see, is the Wishlist, DEC Feedback,
and Question & Answer session Friday afternoon. DEC will respond to
the top ten vote getters in the recent Wishlist distributed through the
newsletter; then they will open the floor to feedback on their current

tools and suggestions for what they should work on next.

You may still have time to sign up for one of the four PreSymposium
seminars being offered by Languages and Tools. The only difficulty is in
deciding which one to go to. (I'm teaching one, and I'm STILL having & hard
time deciding!)! The seminars being offered include:

Software Project Development Using CMS/MMS -- everyone has
heard what CMS and MMS can do, but how does a project REALLY use them
to control software throughout the lifecycle? How do you convince
management thet you need these tools? Bob Gable, who recently
completed a stint using CMS/MMS to control source code on a project with
over S0 developers and hundreds of thousands of lines of source code, will
fill you in on the do’s and don'ts of effective source code control.

Developing Medium Scale Ada Applications Using VAX Ada -- how
do you teke meximum advantage of the features of the Ada language --
things like the Ada Compilation system, the debugger interface, etc? What
is the best way to structure Ada packages to make full use of the power of
Ada? How does DEC Ada fit in with the rest of the YAX Common Language
Environment? Bevin Brett, the instructor for this class, should be the one
to know. One of the developers of DEC's Ade compiler, he will put Ada into
the systems perspective and show how it and the YMS environment can be
used to develop software more effectively.

implementing a Software Development Environment —- To increase
productivity on during software development, automeated tools are
becoming more and more prevelant. Tools are now available to support the
upfront requirements and design phases, as well as coding. This seminar
examines automated tools for software production, from an overall
integrated viewpoint. It is not intended to teach how to use details of
specific tools; rather it is a guide to what is possible to do with software
tools, what tools are available on the marketplace, how to convince
management to buy the tools and how to convince programmers to use
them. Tools covered support requirements, design, code, test and
documentation . This will by taught by Kathy Hormbach {yours truly) and
drows many examples from actual case histories.

Artificial Intelligence —- A.l is o subject thet seems to be as much
at home in Business Week as in some of the more traditional computer
journals. This seminar will present an overview of what A.l is all about,
for people already familiar with computers. It will talk about how A.l
programs are implemented and what is and is not possible with today's
technology. The instructor, Greg Parkinson, is an Al developer for
Cognitive Sciences, and works on natural language systems.

4

L

TeX: TYPESETTING FOR ALMOST EVERYBODY

Samuel B. Whidden
Director, Computer Services
American Mathematical Society
Providence, Rhode Island

Abstract

This is an introduction to TgX, a typesetting program in the public
domain. TgX, and METAFONT, a companion program for font
creation, were developed at Stanford by Donald Knuth. Together they
form the basis of a powerful, customizable system for the typesetting
of any text, especially text with complex mathematical formulations.
TEX (pronounced “techh”) runs on the 10, the 20, and the VAX. TgX’s
output files are independent of any typesetting device; output driver
programs have been written for several typesetting machines. A macro
facility allows TgX to be tailored for fairly easy use by non-specialists;
several customized macro packages have been written. “Style files” of
macro expansions can be included at run time, permitting a macro
call to have different expansions at, for example, preprint time and
publication time, a feature that may permit TEX to serve as a generic
typesetting language as it becomes more and more widely used.

The origins of TEX and METAFONT

1

The Name of
the Game

FOIL 1 — Title page of Chapter One of The TgXbook
by Donald Knuth, showing the TEX logo. Illustration
by Duane Bibby.*

TEX is a computer typesetting language created by Donald
Knuth of Stanford University. This talk will be a survey
of the current status of TgX and its companion program,
METAFONT. TI'll tell you something of the reasons for
their existence, something of what these programs can do,
and a little of how they do it. T'll give you a beginning
understanding of how to use TEX and I'll tell you how to
obtain it, install it, get all the additional details you need,
and how to get help with it from other users.

The Greek letters Tau Epsilon Chi, pronounced
‘techhh’, form, to quote Michael Spivak in The Joy of
TrX, “the beginning of the Greek word that means art, a
word that is also the root of English terms like technology.
This name emphasizes two basic features of TEX: it is a
computer system for typesetting technical text...and it is a
system for producing beautiful text.”

This foil reproduces the title page of Chapter One of
The TgXbook, by Donald Knuth. The TgXbook is the
principal document describing TgX. It’s a book you'll need
if you intend to use TEX. I'll tell you how to get it at the
end of my talk.

The TEX logo you see in this foil is normally typeset
this way, with the lowered “E", by TEX itself. It’s a small
display of the power of TEX. Trademark restrictions on the
name “TEX” (rhymes with hex) make it necessary to spell
TEX with a variety of lower and upper case letters—TeXx—
when the logo itself can’t be used. Later in my talk I'll show
you the commands that TEX uses to generate this logo.

* Reproductions from The TEXbook, © 1984, American
Mathematical Society; co-published by the American Math-
ematical Society, Providence, RI, and Addison-Wesley Pub-
lishing Company, Reading, MA; reprinted with permission.
The TEX logo is a trademark of the AMS.

9 QY QY
Y ME
D NAA

D ¢

FOIL 2 — METAFONT.

TEX is designed as an output-device-independent system for
composition. Each device that is actually used to produce
TEX output must have character fonts to use for typesetting.
“METAFONT is a system for the design of alphabets
suited to raster-based devices that print or display text.”
(Donald Knuth in the METAFON Tbook)

Knuth placed TEX and METAFONT in the public
domain and anyone may use them without payment to him
or to Stanford. But he was concerned that TgX not be
fragmented by various users into many incompatible versions
and that a TgX standard of typesetting be maintained. As
a result, the TEX logo is a trademark of the American
Mathematical Society, controlled so as to assure that
systems called TEX do what TgX claims to do.

Why is TEX a typesetting system for ‘almost every-
body'? TEX is a powerful typesetting tool. Because of its
power, in applications beyond simple text it requires skill to
use. It’s very much like a programming language, and can
get complicated. In most installations, a TgX wizard takes
on the job of designing ways to handle complex material.
Also, TEX’s power is focused on scientific typesetting. It
has language elements to handle tables and mathematics
directly, but has no facility for graphics or for allowing
text to flow around displays. So it is not the system
of choice for newspapers, for example, or for CAD/CAM
applications. But TgX is ideal for the individual writer
wishing to compose his document to best advantage.

Cl. [Compute g, r tables.] Set stacks U', V, C, and W empty. Set

ke—1, go +— ¢, +— 16, ro¢ 1 +— 4, Q 4, R«~2
Now if ge_y + g« < n, set
k—k+1, Q<Q+R R—|VQ] q—20 n<2%

and repeat this operation until g« + g« > n. (Nofe: The calculation
of R — [\/Q] does not require a square root to be taken, since we may
simply set R— R+1 if (R+1)2 £Q and leave R unchanged if
(R + 1)? > Q; see exercise 2. In this step we build the sequence

k=0 1 2 3 4 5 6 e

Q=2 2¢ 26 28 210 13 gl

=27 22 22 22 2% 23 ¢
The multiplication of 70000-bit numbers would cause this step to terminate
with k = 6, since 70000 < 2'3 4 2'¢)

FOIL 8 — An example of pre-TEX mathematical
typesetting, from Vol. 2 of Knuth’s series of books on
The Art of Computer Programming.!

In 1977, Knuth was faced with creating a revised edition of
Volume 2 of his widely-read series, The Art of Computer
Programming. The original edition, represented in this
foil, was typeset by Monotype, a method involving skilled
typositors using machines that produced metal type. The
result was considered beautiful.

1 [ACP], Vol. 2, p. 263.

(1) Wj(j,q,lo) where 15§55 and !o ln-comglexnuﬂ

Im fo>0 and 05 Re lo<l. Further, neither lo4q mor f-q
S-[lo*n:n an integer]. Wj(u.q,fo)/oa takes the form (j) f
(1) (b).

For each of these representations . there is a basis for V
£0), tes such that

PAD <)

Tbhe algebra P is nearly simple if and only if the following hold:

() N is spanned by a,---, a"~ %=1, LD b, where ab = bz <
i j=l,.-., k.
(b) Estber n— k = char F with k even or n—k=mchar F for o
(2) Proof. By Theorem 5.5, there are clements a, b,,- - - N b‘ with N
av--0a™ =1 b ... b,. Furthermore, ab, = 0, b% =aga"t 1 b 1
for all i, j where each a,..A" is in F. From this, it is clear that M
space of the space spanned by a"~4=1!, LITEEER b

Assume P is nearly simple. Then there is a ¢ with P(g) simple
show that each L is in M. To do this, it is necessary and sufficient

Eitly mention all other topologies. We will also use the symbol Hk (Q)
ull of the kernel of Q, ie.

D) = {s € my: x(s)= 0 for every x €A for which x(Q) = 0}.

(3) norm topology for m, is equivalent to the one induced by the
hyperbolic™ metric:

p(z. w) = Sup {ix(2): x€ 4, IxI<1 and x(w) = 0).

will use D to represent the open unit disk in the complex plane, C,
for the open unit polydisk in n-dimensional complex space C". T"
to the essential boundary of D", ie.

FOIL 4 — Some examples of typesetting that Knuth
considered unpleasing: T{pewriter, Varityper, and
Selectric Composer output.

To a mathematician, the appearance of mathematics on
the page is very important, but economics were forcing
publishers to turn to composition methods which could be
undertaken by less skilled, and therefore less expensive,
personnel—for example, the Varityper and Selectric Com-
poser methods. These examples are taken from Knuth's
paper, “Mathematical Typography”, which he presented as
the Gibbs Lecture at the annual meeting of the American
Mathematical Society in 1978, and which can be found
in Knuth’s book “TIgX and METAFONT, New Direc-
tions in Typesetting”, published jointly by the American
Mathematical Society and Digital Press.

In this foil, example (1) is typewritten, example (2) is
Varityper machine copy, and example (8) was prepared on
an IBM Selectric Composer.

% (1) Memoirs Amer. Math. Soc. No. 50 (1964), p. $2.
(2) Trans. Amer. Math. Soc. 169 (1972), p. 282.
(8) Trans. Amer. Math. Soc. 199 (1974), p. 370.

Some computer systems existed (TROFF is one ex-
ample) which either produced results which Knuth felt
were less than satisfactory or which employed abstruse or
highly-coded input. As a computer scientist, he felt he
ought to be able to employ the computer in the service of
mathematical typography.

(a) (b)

Consorvuchon delu leeorr S

fe
() (d)

sl

FIGURE 11. The letter S as defined by (a) Pacioli
{42); (b) Torniello (48); (¢) Palatino [43]; (d)
French commission under Jaugeon [24].

FOIL 5 — Examples of geometric constructs.>

Designers have attempted for centuries to use mathematical
techniques to design letters, but with results which made up
in rigidity what they lacked in art.

SSSSSSS

FIGURE 12. Different S’s obtained by varying
the slope in the middle. (This shows 4, §, 1, 1,4, 1,
and 2 times the “correct” slope.)

FOIL 6 — A METAFONT-produced family of “S”es.4

As Knuth says, this letter S is brought to you by a program.
Knuth found that, besides using typesetting in the service
of mathematics, he could use mathematics in the service of
typesetting. Cubic spline curves (equations containing some
third-order terms) yielded pleasing characters whose forms
could be manipulated by modern-day computers powerful
enough to perform the necessary calculations. He designed
the METAFONT program to allow alterations in the
parameters describing a letter so it could be varied until it
met an acceptable standard of style, and so that needed
font family variations—upright, bold, slanted—could be
generated with relative ease.

3 |T&M), Mathematical Typography, p. 0.
4 Ibid., p. 81.

II. The Role of the American Mathematical Soclety

FOIL 7 — A manuscript, in marked-up and typeset
versions.

Richard Palais, an AMS trustee, was in the audience when
Knuth gave his Gibbs lecture on mathematical typography.
Palais was impressed enough with Knuth's design of
TEX and METAFONT to investigate their possibilities
for typesetting AMS books and journals. The costs of
scientific publishing had risen alarmingly. Palais discovered
that nearly half of the publishing costs of a scientific
journal arise from the process of copy-editing and retyping
authors’ manuscripts, and proofreading and correcting the
typeset output. If an author had access to TEX at his
university, he could compose his article himself as part of
his authorship effort. Palais’ hope was that, if use of TEX
became sufficiently widespread in the scientific community,
the AMS might begin receiving some of its manuscripts
already correctly composed in TgX, ready to be output
to a typesetting device and published with little further
investment. TEX’s ‘device independence’ could make that
possible.

FOIL 8 — A page from Mathematical Reviews.

As far as I'm aware, the first large-scale continuous
production use of TEX anywhere is the typesetting of
Mathematical Reviews, the standard reviewing journal in
mathematics, and its companion alerting journal, Current
Mathematical Publications, both produced by the AMS in
Ann Arbor, Michigan. These journals publish review text
and bibliographic data on 3000 to 4000 mathematical papers
per month, covering the world’s mathematical literature.
Proof copy is set on a low-resolution laser printer, and
final copy on a very high resolution Alphatype CRS
phototypesetter. Since identical fonts are used in both
cases, the output of both machines is formatted identically,
making it possible to perform all proofreading and correcting
operations on the inexpensive device.

Other organizations, including Digital, are also be-
ginning to use TEX, so far mostly for one-time, though
sometimes large, documentation jobs.

FOIL 9 — The Combined Membership list, the
AMS Catalog of Publications, and the Mathematical
Sciences Professional Directory are examples of TgXed
AMS publications.

TEX is still new, and the AMS does not yet typeset the bulk
of its primary journals in TgX. That may come about over
the next couple of years. As experience has been gained in
the use of TEX, production costs have dropped at least to
the level of previous typesetting systems used by the AMS.
Some AMS books and journal papers are already being
TgXed, as are nearly all of the Society’s administrative
publications, most of which are too complicated to be set
easily by other methods.

This foil displays samples from three of the Society’s
administrative publications—its catalogue and two of its
directories—which are set completely by TgX, without
separate page make-up or cut-and-paste. Results so far
seem to show that the more complex the typesetting
requirements, the more cost-effective is TgX. And TgX is
becoming available on a growing range of hardware, making
it a contender to become a universal composition language.

\ ¥393 gl

2)31123 }Um@

1
ON EXISTENCE OF OSCILLATORY SOLUTIONS/FOR)
.- e T T —— e -

\;A SECOND ORDER SUBLINEAR DIFFERENTIAL EQUATION

j JAMES S.W. WONG

/ ¥ — Tn Nemory ¥ Zecev
o / v
4' y‘ c/, E"t’
AN ABSTRACT) CONp STey,
i P OQD Cp
L = € SOF Og,
T Ug, . CI,
LI LL
- 4 J4 £
°rb RAC /n A,MESS 4&1
(1) ;o “Ubling, A rey, Moy, o Wong
- A result on the exi . O Hjng D00ty ‘zfr.,,m‘?ﬂ the oy, Y Neg,
rdg
solutions for the secgondI 17y © Cong O the Colm,,:: ‘vuag,-o,‘f e o,
conle ’ i PN 7]
differential equation y" | "der ¢ e "“;""n 2y oy
- Wity %) ong s
0< ¥<l, where a(t) is p the ere . !

is given. This suppler
of Hinton for the supe

r——

q-\’ |QZ’,D> ﬁ’ﬁd‘hﬂ‘ 172

FOIL 7 — A manuscript, in marked-up and typeset
versions.

85a:49008

Lagrange equation and the Newton- R.spluon method need be cal-
culated by hand. Anm example is given with numerical results.
The aut, tic sol of the simplest problem in the calculus of

CALCULUS OF VARIATIONS AND OPTIMAL CONTROL; OPTIMIZATION 162

Anthou summary: “In this note we consider a class of optimal
probl with ints on the state. We associate a

vlriuxou in this paper is considered to be the lnt nep in the
lution of more g |

tic

P P

49A Existence theory for optimal solutions

See also 46017, 47052, 490086, 58011, 60066,
73070, 76067, 90246, 92006, 93079, 93093.

Marcellin}, Paolo (I-NAPL-E);
Sbordone, Carlo (I-NAPL)
On the existence of minima of multiple integrals of the
ealculus of variations.
J. Math. Puree Appl (9) 63 (1083), no. 1, 1-9.
Let 01 be a bounded open set in R® and I(:,o,() s Carathéodory
fenction on 0 x RY x R*M such that |£]* < f(2,0,€) < ay(z) +
q].l’ + ag|€]” with o, €Ly (n), a> 1, p>1, ag,a3 > 0. The
T d to be in the sense of C. B.
Mortey Jr. [Punﬂc J. Math. 3 (1952) 25-53; MR 14, 992]. The
the

P) inf {/n I(ml,DI)d!:;E uo+(ﬂé"(ﬂ))”} \

where u is & fixed function of (H'?(2))N. They prove the fol
lowing theorem: There exist a number ¢ > p and a sequence min-
imizing the problem g’) that is uhuvzly compac‘ in the weak
topology of (H1()) the integral under considerati

is lower semicontinuous in the weak topology of (H, '-'(n))" for
every ¢ > p, the authors obtain as a llary that the p

(P) bas a minimum. Their proof makes use of, among other things,
a variational principle of I. Ekeland {Bull. Amer. Math. Soc. (N.S.)

85a:49008

L gian to the trol probk and prove the existence of
hrruge multipliers in a space of mwum Finally, we study
some properties of these mul

Ekeland, L.; Lasry, J.-M.
Duality In nonconvex variational problems.
(Prench summary)
Advences in Hamiltonian syotems (Rome, 1981), 73-108, Ann.

CEREMADE, BirkAisser, Boston, Mess., 1083.

The authors develop a duality method for obtaining critical points
of functionals which split into a quadratic term and a convex term.
The main abstract theorem is the following: Let V be a reflexive
Banach space, A:V — V* linear, i and selfadjoint, and
let F:V — RU {400} be convex lower semicontinuous, with
dom F ¢ §. Let 7 and J be functionals on V defined by:

I(w) = (Au,) + F(u), J(v) = 4 (Av,v) + F* (- Av),
where F* :V* — RU{+00} is the Fenchel conjugate of F. Then
any critical point of I is also a critical point of J. Moreover, if
0 € Int(domF™ + R(A)) and 0 is & critical point of J, then there
is some © € KerA such that € + @ is a critical point of .

In the case where F(u) = G(Ku), with G : X — RU {+)}
convex and K : V — X continuous linear, one can replace the
bypothesis on domF* + R(A) by easier conditions; this leads to
the pt of a pseudocritical point. When K is compact and
G is subquadratic at infinity or superquadratic at the origin, a
study of the dual functional J reveals the existence of critical or
peeudocritical points. In the second balf of the paper the abstract
mulu are used to prove the exutence of periodic solutions of a

85a:49011

1 (1979), no. 8, 443—474; MR 80b:49007) and an t con-
cerning regularity in (B"'(ﬂ))” (for any ¢ > p) in the sense of
N. G. Meyers [Ann. Scuola Norm. Sup. Pisa 17 (1963), 189-206;
MR 38 #2328] that was introduced in the context of minimum
problems by M. Giaquinta and E. Giusti [Acta Math. 148 (1982),
31-46; MR 84b:58034]. Vanne Zanelli (Modena)

Barbu, Viorel (R-IASI) 85a:49009
Optimal feedback controls for semilinear parabolic
equations.

Mathematical theorier of optimization (Genove, 1981), 43-70,
Lecture Notes in Math., 979, Synmr, Berlin-New York, 1983,
The author iders the problem of of an optimal feed-
back control for the mtem w+Ay+8(y) = Bu ((2,t) € x(0,1)),
¥(2,0) = wo(z) (€ 0), y(z,¢) =0 ((2,¢) € £ =T x (0,¢)) with the

cost functional

/ T (#(010)) + (1) dt + #(5(T)).

Here (1 is an open bounded subset in n-di jonal Euclid
space with sufficiently smooth boundary I' and A is & wniformly
elliptic sefadjoint partial differential operator,

wave a utnng. and also
to prove exi of solutions to the foll ', dary value
problem for a damped Hamiltonian system:
i=V,H(t,z2,p), 2(0) = 2(T),
p=-V H(t,z,p)-ap, p(0)=exp(aT)p(T).

{For the entire collection see MR 84j:58001.)
A. Venderbsuwhede (Ghent)

85&49012
and Lf-sp L
J. Approz. Thor' 39 (1983), no. 38, 228-235.

Let X, Y be a pair of separated locally convex spaces, T: X =Y
a continuous operator, f: Y — R U{+0co} a lower semicontinuous
proper convex function, and C a closed monempty subset of X.
The following problem (P,) is idered: Given an el ty€eyY,
minimive f over T(C)—y. The author presents various conditions
vludwtlunhe blem (P,) has a sol foreach y€Y.
icular, he ded the exist of lled L f-splines in

C ie. solutions of the problem (Po) when T is & bounded linear
operator. W. W. Breckner (Cluj-Napoca)
B.rln, Guy 852:49013

Pal, D. V. (6IT)
On

&t 11,

quas! vari lles du p 1!
ordre et équations de Hamllton-Jacobl.

= y 5 . English summary Quu!v-rlnlonn lnoqu.tlon- of

4 ZEDJ(M"‘)D)+ aol2) (lnt order and H) !"

The operator B is linear and bounded fro— a real Hilbert space C. R. Acsd. Sci. Peris Str. I Motk 396 (1983), no. 15, 703-705.
U to L*(N) and the functions @, ¥, 8, and A satisfy various as- Autbor's “We prove and

sumptions that we will not detail here. There are also resultsona results of -olntwn of first order quasivariational i lities in

control problem with infinite time b -~rizon and on the time optimal
control problem as a limit of & sequence of problems of the type
described above.
{For the entire collection see MR 84¢:49003.)
H. O. Fattorini (Los Angeles, Calif.)

Casas, Eduardo (E-ZRGZ) 852:49010
Quelques problimes de contrdle avec contraintes sur
P'état. (English y) {Optimal control probl
with constraints on the state]

C. R. Aced. Sci. Paris Sér. I Math. 308 (1983), no. 12, 509-512.

R™. These results rely on the notion of a viscosity solution of the
Hamilton-Jacobi equati properly ded to this A

Hoffman, K. H. (I-ROME); Niesgodgka, M. 85a:49014
(I-ROME)
Oontrol of parabolic systems involving free boundaries.
Fres boundary problems: theory and spplications, Vol I,
II (Montacatini, 1081), 431462, Res. Notes in Motk 78,
Pitman, Boston, Mass.- London, 1983.
The paper offers a very interesting survey oa receat advances in
the methods of solving vari 1 problems by the study of

FOIL 8 — A page from Mathematical Reviews.

3.00
g O R 3
" g™ o o
foegiPRC g ‘.:-:‘ aet ‘,.v‘; "«‘Ao-“
. P

and government is discuseed,
and applying for a position. So
are listed. The Mathematical Sci
by the American Mathematical S8od
and the Society for Industrial and

The TEXbook

This is a guide to computer typ
TEX represents state-of-the-art in comp
‘where the article, document, or book to b
mﬁonwhcn'.hewinwgmodwim

the American Matbematical Society and
spiral bound (LC 83-830; ISBN 0-201-13448-
The Joy of TEX

The Joy of TEX is the user's guide for AMS.Z
Mumwwm-

15.00 15.00 15.00

o
“TEX78'), and & b PN o
with the current w! v b ‘G v, o

3 . RS

LA I e U ¢ "«‘“)

o Vo 5 A) ‘

o Toedor aTAKNTE T S S D, T T
d“\‘g\ "; \G“\. o . ¥ peComg 3 “?‘.ﬁ‘ »Ted

AMS-TEX macros are .,39‘: ot L o g‘&g\:w:.wd o S, ﬁ:“'i‘w‘t“"t AR -

Sunnywvale, CA 94087, \»* ‘.‘,*‘s m"‘“_i&.ﬁ‘, st s ¥ ’*..“_4. Y o

EAIITE R AR A Rhar - i) <L

10.00 10.00 10.00

Jobn von Neumann, . " W o woy e
-
This is Bulletin, Volume
John von Neumann edited - oy © A ' < s - =\ o o co0
H . Y " i~ . . 22 16.
1981; 130 pp. (ISBN 08218 S N el s TR -

tions. 1966, reprinted WD, W 1600 1200

FOIL 9 — The Combined Membership list, the
AMS Catalog of Publications, and the Mathematical
Sciences Professional Directory are examples of TgXed
AMS publications.

10

III. Structure of the TEX and METAFONT System

Knuth wrote TEX & METAFONT originally in SAIL, the
Stanford Artificial Intelligence Laboratory’s programming
language. The programs have gone through several
generalizations, and the current versions are written in
‘WEB’, a documentation/programming language invented
by Knuth to make TEX and METAFONT universally
distributable. Naturally, anything written in WEB must be
processed by TANGLE and WEAVE.

The WEB System

VEB source
N
TANGLE WEAVE

4
Pascal TeX
source mput
Pascal
compiler TeX
P. l al l
asc Documentation
program
* installation Change files

FOIL 10 — The WEB system.

From the same WEB source code, TANGLE generates
Pascal source code and WEAVE generates a TeX-input
documentation file. Of course, many more programs than
just TEX and METAFONT have been written in WEB—
including TANGLE and WEAVE. If you obtain TgX, you'll
receive on the same tapes a copy of Knuth’s paper entitled
Literate Programming, which provides more information on
the WEB system. Knuth asserts that the work of the author
of a program should be as literate (as opposed to illiterate)
as that of any other author. He sees literate programming as
the successor to structured programming. Computer science
may be seeing much more of WEB.

Generic TEX distribution tape — Selected files

=READ-.ME Overall documentation and
instructions

TANGLE.VEB
TANGLE.PAS Use this file to bootstrap and test
TANGLE

Changes used to create TARGLE .PAS

from TANGLE.V¥EB

TANGLE . CHANGES

WEAVE.¥WEB

DVITYPE.VEB Prints out DVI files

TEX .WEB

TEX82.BUG Explains all changes made to TgX
since version 0

PLAIN.TEX The basic macro package for TgX

11

HYPHEN . TEX Hyphenation patterns, used by
PLAIN.TEX

SANPLE . TEX Small TEX job to show font layout

TRIP.* Test suite for TgX

TRIPMAN. TEX TEX source of the TRIP manual

AN* TFN Font metrics for Computer Modern
fonts

Macro packages and documenation: LATEX, AMS-TEX,
HP-TgX

The TgXbook

System-specific files: TOPS-20, VAX/VMS, IBM
VYM/CMS, IBM MVS

NF .WEB Preliminary version, new
METAFONT

PLAIN.NF Plain METAFONT macros

SYNTAX.TEX What there is of a user manual

FOIL 11 — Major files on the TEX/METAFONT
installation tapes

You can obtain the TEX and METAFONT programs from
a tape distribution service bureau in Sunnyvale, California.
An order form giving details is attached as Appendix A.
This foil lists a few of the files on the tapes you'll receive.
One file tells you what to do with all the other files. You
start by compiling the Pascal source of a bootstrap version
of TANGLE. (If you have an off-beat Pascal compiler, I'm
told you may have to make changes in tangle.pas.)

This compile gives you a preliminary version of
tangle.exe. You use this to TANGLE a tangle.web source
file from the tape, which gives you a new tangle.pas, which
you compile into a new tangle.exe. Knuth intends that
we not make any changes in the .WEB sources which
these tapes supply. Therefore, in this step, along with
the tangle.web source, TANGLE reads a tangle.change file
(which you can change and of which there is a model on
the tape), which specializes the resulting tangle.exe for your
installation.

Next, you feed the tex.web source on the tape to your
new TANGLE and get a tex.pas, which you compile to get
a tex.exe. Now you TEX the TRIP files on the tape and
see whether the resulting output is the same as the TRIP
output file on the tape. If so, you have a good TEX. If not,
the documentation tells you what to do. You generate the
METAFONT program in a similar manner.

Once you have a good TEX, you can TANGLE the
weave.web on the tape, then WEAVE the tex.web file,
generating a tex.tex file, which you then TgX to generate
TEX's own program documentation. See how simple it is?

Some utility programs (called TgXware) also come on
the tape. DVItype, which converts .DVI files into readable
output, is one.

There are a few versions of TEX already specialized for
particular hardware systems which can be ordered in place
of the generic one. Such special versions exist for VAX/VMS
and for TOPS-20, among others.

Some manuals can be ordered along with the tapes,
notably manuals for WEB, TRIP, and TgXware. TgX source
for The TgXbook itself is also on the tape, although it
can't be reproduced, because not all the necessary fonts
are present (and it should not be reproduced because it is
copyrighted). This source file is very useful, however, as a
nearly endless source of examples for doing things in TEX.

Generating TEX by the procedure I've described
creates a version of TEX called INITEX. INITEX then
allows loading of a hyphenation pattern file (see The
TEXbook, Appendix H), .TFM files, style, or header, files
(which usually includes plain.tex; AMS-TEX and IATEX
are others. I'll return to these style files later), and any
other files of macros desired. The resulting version of
TEX, with these additions preloaded, is saved for production
use. Several different production versions, preloaded with
different fonts and style files, can be generated if necessary.

The TEX/METAFONT System

METAFONT

character 1;1121(t
descriptions
} |
METAFONT ——> T;:" TEX
4
PXL file .DVI file
//1 \
/'I Device
¥ o driver
Non-raster ,/
translators L’
i d ’ Output
Device-specific .~ device
character ~
image files J
Typeset
output

FOIL 12 — The TEX/METAFONT system.

Once you have a working version of TEX (and of META-
FONT, if you're going to install that, too), you’re ready to
use them. METAFONT reads character descriptions in its
own input language, creating two kinds of output: TEX Font
Metrics (.TFM) files, and raster-image (.PXL) files.

The font metrics files contain character dimensions and
reference points, plus kerning, ligature, and possible piecing
information (for very large characters). The .TFM file is
the same for all raster sizes and is used directly by TeX to
calculate the size and position of each character on the line.

The .PXL file contains the actual bit maps of the
characters in a given point size for a given output resolution
(for example, 240 dots per inch or 300 dots per inch, which
are common laser printer resolutions at present). (These
files are very large; for some very high resolution output
devices, another program might be used to compact the very
large bit maps into a shorthand recognized by the machine.)

TEX reads the .TEX input file, along with whatever
.TFM files are called for by the text, and produces a
device-independent .DVI output file. The .DVI file is

12

read by device-specific programs which translate it into
commands recognized by a specific output device, merging
raster patterns from the necessary .PXL files, and transfer
the results to the device a line or a page at a time for
outputting. Drivers exist for a number of both low- and
high-resolution devices.

Since the distribution tapes already contain .TFM and
PXL files for standard text fonts in several point sizes and
resolutions, it is usually not necessary to install META-
FONT unless you need to generate special fonts (in fact,
for greater efficiency, the common .TFM files can actually
be pre-loaded as tables in your production version of TgX
by INITEX). Fonts can also be obtained from other TEX
users. A bit more about METAFONT later.

Proof-Quality Output Devices Sepported en DEC C.

DEC 10 DEC 20 VAX (Unix) VAX (VMS)
Facit 4542 INFN/CNAF
Florida Data OSP Math. Reviews
Imagen 8/300 Math. Reviews
w10 | gt | | wowe | e
QMS Lasergrafix Talaris Tataris Talaris I:;;
Symbolics LGP-1 U of Washi U of Washingt Calma
Varian AMS Apsu:::l(;ns
o A | v o wogn |l
Xerox Dover (< 1V) Stanford
Xerox 9700 U of Delaware

* Graphics supported

FOIL 18 — Proof-quality output devices for DE
computers. :

This and the next foil are examples of fairly simple tables
set by TpX. These are some of the low-resolution, proof
quality output devices that have been interfaced to TEX on
Digital machines. I’ll tell you shortly how to obtain this
information from the source.

Ty» Supported on DEC C
DEC 20 VAX (Unix) VAX (VMS)
| Atphatz: (RS AMS
-A_nink‘gx APS-5. Micro-5 Textset Intergraph *
:.;mum 8400 Reerman
Harris 7500 (Ams:::am)
Mergenthaler Linotron 202 Adapt. Inc.

* Graphics supported

FOIL 14 — Repro-quality output devices for DEC
computers.

These are the camera-quality output devices that currently
can provide TgX output from Digital machines.

IV. Something of How TEX Works

FOIL 16 — Boxes; Title page of Chapter Eleven of
The TEgXbook.

Knuth designed into TEX the interesting concepts of “boxes”
and “glue”. TEX puts each output token it encounters into
a box. Each letter is a box. So are interword spaces,
discretionary breaks, and so on. Several such boxes together
form a larger box to make a line. Once a box is built, it is
fixed; TEX manipulates it as a single token.

12

Glue

FOIL 16 — Glue; Title page of Chapter Twelve of
The TEXbook.

Boxes are held together by glue. Glue comes in standard,
but variable, amounts. Glue can stretch an allowed amount,
when it needs to, and can shrink as well. Both the
stretchability and the shrinkability have limits, which may
be different and which you can specify. TEX will complain
when you ask it to stretch or shrink glue beyond the limits
you've given it. These limits, as well as a great many
other things, are specified to TgX in terms of units and
dimensions, such as inches or points or picas or ems, which
TEX understands.

One of a typesetting system’s chief duties is to take
a long sequence of words and to break it up into
individual lines of the appropriate size.

One of a typesetting system’s chief duties is to take a
long sequence of words and to break it up into
individual lines of the appropriate size.

One of a typesetting system'’s chief duties is to take a
long sequence of words and to break it up into individual
lines of the appropriate size.

One of a typesetting system’s chief duties is to take a
long sequence of words and to break it up into individual
lines of the appropriate size.

FOIL 17 — Boxes & Glue; Stretching & Shrinking.

This foil shows a sentence set with four different specifica-
tions for glue setting. The first example is loosely set, with
interword glue stretched, but not beyond its limits (there is
no glue between letters).

The second example shows neither stretching mnor
shrinking of the glue.

In the third, the glue is shrunk nearly to its limit.
Normally, glue can stretch a lot more than it can shrink. If
the words in this example were much closer than this, the
line would probably be unacceptable.

In the last example, the glue is permitted so little
flexibility that TEX cannot fit the material into the space
allowed. So it shrinks the glue as much as permitted, lets
the line stick out beyond the right margin, and puts a black
mark here to tell you where the trouble is. It also writes a
nasty message to your screen when it does this.

In Vol. 14, No. 4 (Oct. 29, 1984), The Seybold Report
on Publishing Systems reviewed TgX in connection with
a TgX-based microcomputer typesetting system developed
by Tyxset Corporation. One of the few complaints raised
against TEX by the reviewer is that TEX puts out these
overfull boxes, rather than simply moving the offending
word down a line, with a suitable warning to the user. A
very loosely set line, while unattractive, is much more likely
to be printable than an overset one. But TgX would rather
have you change the wording a little or add a discretionary
hyphen to make the output acceptable. After all, TEX has
its own reputation to maintain.

TEX uses a hyphenation algorithm developed by Knuth
and one of his associates, Frank Liang. TgX has been taught
to avoid hyphenation errors as much as possible by avoiding
hyphenation as much as possible. Nevertheless, TgX knows
how to hyphenate most words and has a hyphenation
dictionary which you can add to if necessary. You can tell
TEX how to hyphenate specific words as part of your input
file, and you can insert discretionary hyphens anywhere you
want.

13

14

How TgX Breaks
Paragraphs into Lines

FOIL 18 — Linebreaking; Title page of Chapter 14 of
The TEXbook.

TEX breaks lines into paragraphs only after it has read
the whole paragraph. Then it considers all possible break
points, assigning penalties to breaks which give undesirable
results, such as very loosely or tightly set lines, or multiple
hyphenated lines in a row. TEX selects the set of linebreaks
which minimize the total “badness”—the sum of all such
penalties—for the paragraph. Knuth has devised algorithms
which reduce the number of tests required, making this
process relatively fast and efficient. There are simple ways to
override these automatic linebreaks by tying words together
8o no break occurs between them, or by forcing a break
where one would not otherwise occur.

V. Using TEX

A Simple Input Example
The input
This is an easy example of input.

\bye

yields
This is an easy example of input.
FOIL 19 — A simple sample of TgX input and output.

Now we’ll look at a few examples of how TgX is used. This
foil shows the easiest possible TgX input. I typed this line
and submitted the file to TEX. Because the production TEX
at my installation is preloaded with standard fonts and the
plain.tex style file, the line came out neatly typeset in the
default roman font of our laser printer.

14

Control Sequences

A control word is composed of a backslash and one or
more letters. It must be terminated by a non-letter.

\AE sop Esop (Latin and Scandinavian ligature E)

\P2 92 (paragraph sign)
\eject (force page break)
\year (get the year of today’s date)

A control symbol is composed of a backslash and a
single non-letter.

\& & (ampersand)
\- (discretionary hyphen)
\"o 6 (umlaut accent)

FOIL 20 — Control sequences: Control words and
control symbols.

For the most part, TgX’s input consists of a mixture of text
and commands. Commands, which are always introduced by
a backslash, are called “control sequences”, which are either
control words or control symbols. A control word must be
delimited by a non-letter; a control symbol is always just a
single character following a backslash.

Typical Symbols and Accents
Most symbols must be keyed in “math mode”.

\§ A.1 §A.1 (section sign)
$\alphat a (Greek letter alpha)
\gg » (much greater than)
\in € (membership symbol)

Accents may be set above or below letters or symbols.

\'o 6 (acute accent)
\vs i (h4tek or “check”)
\c ¢ [(cedilla accent)
$\vec\kappa$ & (“vector”)

FOIL 21 — Symbols and Accents.

TEX knows about a wide selection of special symbols and
diacritical marks in many fonts. You set them by means
of control sequences like these. TgX only knows about
many of the symbols when it’s in “math mode”, since it
considers such things as operators and greek letters to be
mathematical symbols rather than characters in ordinary
text fonts. You put “$” signs around the portion of your
input you want TgX to process in math mode.

An Example Using Math Mode

Suppose $3=0§. Then $H_s~+$§ is the space of
functions in $L_2({\bf R}"n)$ that vanish
for $x_n<0$.

Suppose s = 0. Then H;' is the space of functions in
L2 (R") that vanish for z, < 0.

FOIL 22 — A simple example of math mode.

In math mode, TEX takes over the positioning of characters
and the spacing between them. Mathematicians are fussy
about style, and TEX doesn’t leave such important matters
to chance. Of course, you can override most of TEX's
decisions if you wish. Ordinary math mode results in
mathematical material set in line with non-mathematical
text.

Primitives and Macros
Primitives are control sequences that are built into TgX.

\read (read in a file)
\uppercase{abc} ABC (uppercase the string)
\underline{xyz} zyz (underline the string)

Macros are control sequences that are abbreviations
for longer strings of control sequences or text.

\centerline{...} (center string on a line)
\ninepoint (use 9-point fonts)

FOIL 28 — Primitives and Macros.

Some control sequences are “primitives”, built right into
TEX; others are “macros”, the result of definitions made by
users. The file plain.tex is a collection of macros defined
by Knuth himself to make it easier to get TEX to do common
and useful things. plain.tex is normally preloaded into a
production TgX by INITEX.

Defining and Using Macros

\def\line{\hbox to\hsize}
\def\centerline#i{\line{\hss#1\hss}}

\centerline{In the Niddle}

yields
In the Middle

FOIL 24 — Defining and using macros.

Here we see some examples of macro definitions. Macro
definitions always consist of the control sequence \def
followed by a control sequence which will become the name
of the macro, followed by the string, enclosed in grouping
symbols, which the macro name will stand for.

First we \def the macro \line, which consists only
of a horizontal box (\hbox) the width of our page
\hsize. If we were to use the macro \line directly by
typing \line{followed by some words inside grouping
symbols}, TEX would set those words in a line of width
hsize, stretching or shrinking the interword glue to make the
best fit it could.

But now we \def the macro \centerline which we’ll
use to put something into the horizontal box called \line.
The string defined by \centerline consists of the macro
\line with the expansion {\hss#1\hss}. The #1 in the
name of the macro stands for an argument, and the same
symbol in the macro definition shows where the argument
goes when the macro is expanded. \hss is a TEX primitive
standing for essentially infinitely stretchable horizontal glue.
When \centerline is called with an argument like “In The
Middle”, the argument is set between two pieces of glue with
great stretchability, so the result is centered on the line.

November 1983 Report No. STAN-CS-83-985
Stanford Department of Computer Science (Version 1)

First Grade TgX
A Beginner’s TgEX Manual

by
Arthur L. Samuel

This manual is based on the publications of Donald E. Knuth who originated the TEX
system and on the recent work of Professor Knuth and his many students and collaborators
who have helped bring the TEX82 system to its present advanced state of development. The
TEX logo that is used in this manual is a trademark of The American Mathematical Society.
The preparation of this report was supported in part by National Sci Foundation grant
IST-820/926 and by the System Development Foundation.

FOIL 25 — First Grade TEX; Title page output

Anyone who is serious about using TgX will begin by
studying a short manual called First Grade TgX by Stanford
Professor Arthur Samuel.

This is the cover page of First Grade TgX. The next
three foils will show the input that created this page. Note
the material at the top of the page, the title and author’s
name in the middle, the Stanford Seal in the bottom half of
the page, and the final paragraph of text.

\font\ninerm=amr9 \font\eightrm-amrs
\font\sixrm=amr6 \font\csc=amcsc10
\font\seal=stan70 % To produce the Stanford seal
\def\TeX{T\kern-.1667em}
\lower.5ex\hbox{E}\kern-.126em X}

\magnification=1200 1 This magnifies everything by 1.

\parskip 10pt plus 1pt
% This puts some empty space between paragraphs
\parindent Opt X Paragraphs are not to be indented

\nopagenumbers % The title page is not to be numbered
\null\vskip-46pt % Put first line higher than normal

FOIL 26 — First Grade TgX; Title page input -1

The first part of the input names some .TFM files that TEX
will need in later input that were not preloaded, including

15

a file named stan70.tfm, which will be needed when a font
pamed “SEAL” is called for. The “%” denotes a comment;
TEX iguores everything on the line after it.

Next the TEX logo is defined as a macro called \ TeX.
The first token in the definition string is an uppercase
T. Next is a negative kern, which is a mechanism for
backspacing so as to bring two characters closer together
than the .TFM metrics would place them. The kern is in
units of “em”s, where an em represents the width of an M
in the current font. Next, an uppercase E is put into a
horizontal box and lowered slightly, then an X is set and
kerned back. Everywhere you see the TgX logo in these
foils, this macro produced it.

“Magnification 1200” means use fonts of the 10-point
design which have been enlarged to 12 points (actual 12-
point fonts would have a slightly different shape). The
proper .PXL raster files must be available to the output
driver for this to work.

\parskip and \parindent are TEX primitives whose
default values are being reset here. There will be 10 points
of vertical glue between paragraphs, with 1 point’s worth
of stretchability and no shrinkability. There will be no
indentation at the beginnings of paragraphs (note that the
amount has to be specified even where it is zero). This page
won’t be numbered (the default would center a number at
the bottom of the page), and the page will be set higher
than normal on the paper (glue at the beginning of a box,
such as a page or a line, disappears, so a null box is set
before the \vskip on the page).

\hbox to 6.5truein {November 1983 \hfil
Report No. STAN-C5-83-986}
% A convenient way to make a box of specific size.
\vskip .1in % Skip down 0.1 inch
\line {Stanford Department of Computer Science\hfil
(Version 1)}
\vfi1l % This and similar commands later,
] will divide the space evenly.
\centerline{\bf First Grade \TeX}
\centerline{\bf A Beginner's \TeX\ Manual}
\vskip .261n
\centerline{by}
\centerline{Arthur L. Samuel}
\vtil1
\centerline{\seal 5}
\vfill

FOIL 27 — First Grade TgX; Title page input — 2

Nc:gt we enclose material in a couple of boxes with
!lon_zontal spacing to cause material to be right and left
Justified. Several \vflll vertical spacing commands will
divide up the unfilled space on the page. Some lines
are centered horizontally, and then the character “S” in
the “SEAL” font—that is, the character which occupies
?he normal “ASCII grid” position of the letter “S” in
in the Stan70.tfm font file (produced by somebody using

METAFONT), is set. That produces the Stanford seal in
the center of the page.

16

This manual is based on the publications of

Donald E. Knuth who originated the \TeI\ system and
on the recent vork of Professor Knuth and his many
students and collaborators who have helped bring the
\TeX82 system to its present advanced state of
development. The \TeX\ logo that is used in this
manual is a trademark of The American Mathematical
Society. The preparation of this report was supported
in part by National Science Foundation grant
18T-820/926 and by the System Development Foundation.
\eject % \end would follow 1f this were the last page.

FOIL 28 — First Grade TgX; Title page input — 8
Last, the paragraph of text is set at the bottom of the page.

TEX’s Help Facility

*\Bey
! Undefined control sequence.
<*> \Bey

L 2 4

Type <retura> to proceed,

8 to scroll future error messages,

R to run without stopping, Q to run quietly,

I to insert something,

1or ... or 9 to ignore the next 1 to 9 tokens of input,

H for help, X to quit.

?h
The control sequence at the end of the top line
of your error message was never \def'ed. If you have

misspelled it (e.g., ‘\hobx’'), type ‘I’ and the

correct spelling (e.g.. ‘I\hbox’).
Otherwise just continue, and I'1l forget about
whatever was undefined.

? 1\bye
[1]

FOIL 29 — TEX gives some help with errors.

When TgX finds an error, it usually tells you about it and
will offer what help it can. This foil shows an encounter
with a control sequence that hasn’t been defined (actually,
in this case, a misspelling). A menu of actions is available.
The user can insert a temporary fix, delete some tokens, tell
TEX to ignore the error, or ask for more information, as
here. If TEX is reading an input file at the time, in most
installations it will also offer to return you to your editor at
the point of the error in the file. Here, the correct spelling
was inserted and TgX completed the page.

16

ping
Math Formulas

f." P
= PN 1 p -
d AT

FOIL 80 — Display Math Mode; Title page of
Chapter Sixteen of The TgXbook.

One of TEX's original purposes was to provide high quality
mathematical typesetting.

Samples of Display Math Input
Plain AMS-TEX

¢ $${a\atop 1+D}$% $$\stack a{1+b}$$

1+b

k

a+
+

(n+1) $${n+i\choose k}$$ $$\binom {n+1}k$$

o

$${a+b\over c+d}$¢ $$\frac {a+b}{c+a}4$

o
S

FOIL 81 — Display mode; macro packages.

Recall that material to be set in math mode was enclosed
in $ signs. Such material simply appears in line with
surrounding text. Material enclosed by double $ signs is set
in display math mode, separated from the adjacent text. In
mathematical articles, this is usually done with important
results and equations. TEX can number such equations for
you automatically if you wish.

Three display-math expressions appear in this foil. The
displayed output is shown in the left column, while the
rightmost two columns show the input as typed in two
different dialects of TEX. The center column shows the
input as it is typed in plain.tex, the vanilla-flavored TgX.
plain.tex is actually a file containing Knuth's working
macro definitions, normally preloaded by INITEX. It is
documented completely in an appendix of The TgXbook.

The righthand column repeats the input under the
circumstance that the macro package called AMS-TEX has
also been loaded (either dynamically or in the preload).
AMS-TEX is a macro package designed by Michael Spivak
at the request of AMS to make it easy for authors and

editors to create material that TEX will typeset in the
AMS publishing style. AMS-TEX is an extensive system of
macro commands which builds on plain.tex and which is
well-documented in the publication The Joy of TgX, also by
Spivak (of which a new edition will be available in a few
weeks). As AMS-TEX becomes available at universities and
other hotbeds of mathematical authorship, AMS hopes to
receive an increasing number of manuscripts on tape in the
form of already-tested and composed TgX input.

Another complaint against TgX noted in the Seybold
review is that TEX's vocabulary is mathematical. Notice
in the plain.tex input that terms are employed that a
mathematician would use naturally but which are alien to
a typist. That is, the typist must know how to read the
expression in mathematical terms in order to type it. Yet, if
mathematics is to be typed by a non-mathematician typist,
then the typist must learn some language in which to express
it. Most typists seem to come to terms fairly easily with
TeX’s language. And of course, mathematicians who turn
to TEX to compose their own work need no introduction to
the language’at all.

And finally, as the third column shows, the vocabulary
can be redefined as you like it. Spivak has done so in
these cases, as anyone may for his own purposes. If you do
redefine commands like this, or if you define any macros at
all for your own use, then, if you send me your input file to
be TgXed on my system, the only requirement is that you
must also send me all your macro definitions. But if you use
only plain.tex, or only plain.tex and AMS-TEX, or only
plain.tex and some other macro package which we both
share, you need send me only your text input.

Fences

$$\1left\{\vbox to 27pt{}\1lert\{\vbox to 24pt{}
\left\{\vbox to 21pt{}\Biggl\{\biggl\{\Bigl\{
\bigl\{\{{\scriptstyle\{{
\scriptscriptstyle\{\hskip3pt\}}\}}\}\bigr\}
\Bigr\}\biggr\}\Biggr\ \right\}\right\}\right\}4$

{{{{{{n}}}}}}

FOIL 82 — Fences

produces

Another example of what TgX can provide in display mode is
this expandable character. The input shows some versions of
the brace which are large enough to require piecing—straight
segments are inserted between end and center parts—as well
as some called as characters from a font. \Biggl{ is a
bigger left brace than \biggl{, \Bigl{ is next smaller and so
on. \scriptstyle and \scriptscriptstyle invoke fonts that
TEX would use automatically if it were setting subscripts
of sub-subscripts. TgX will do the same thing with other
fences, like “(” and “|”.

17

Other Extendable Symbols

$$\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+
\sqrt{1+\sqrt{1+\sqrt{1+x3}}}}}}4¢

produces

1+ 1+Jl+\/l+ 1+V1++vV1l+z

FOIL 88 — And other extendable symbols

The largest two of these radical signs are made up of
extendable pieces.

Other Mathematical Expressions

ao +

typed as

$82_0+{a\over\displaystyle a_1i+
{\strut 1\over\displaystyle a_2+
{\strut i\over\displaystyle a_3+
{\strut i\over\displaystyle a_4}}}}$$

looks better than

which is what you get without \strut and
\displaystyle.

FOIL 84 — And mathematical expressions

Left alone, TEX would set the expression at the bottom
of this foil, thinking that the denominator fractions should
decrease in size to stay more or less in line with the
expression which starts the demominator. This would be
correct if there were only two levels of fraction involved.
Here, however, esthetics call for maintaining one size
throughout the expression. @ The \strut produces an
empty box the proper height to make TgX leave enough
vertical space to set a full-sized fraction, and the command
\displaystyle forces TgX to use full-sized characters when
it would automatically drop into \scriptstyle or smaller.

18

A Table

The table
\rn \sl \it \tt \b?
Roman Slanted [Italic Typewriter Boldface

is the result of the following input (the control sequence
\\ for backslash is assumed to be defined already)

$$\vbox {\tt \halign {\hfil #\hr1il &k
\quad \hfil # \hfil \cr
\\rmt \\sl& \\it& \\tt& \\bf\cr
\rm Romank \sl Slantedk \it Italick \tt Typewriterd
\bf Boldface\cr
1388

FOIL 86 — And tables.

Here’s a fairly simple, two-line example of a table set by
TEX. The table itself shows the control sequence names
which call for various typefaces within a font family. \bf,
for example, causes TEX to shift to the boldface style of
the current font.

A table is set within a vertical box in display math,
using the \halign macro for table construction. The
\halign looks first for a template on which to base the table
structure. Here, the template begins with \hfil #\hfil,
showing that the first column of the table will have an
element, represented in the template by #, surrounded
by expandable horizontal space—that is, centered in the
column. The next element in the template is an &, marking
the end of the format for that column. The second &
immediately following the first tells tex that the format for
the next column is to be repeated as many times as the table
requires. These are all just like the first column, except that
they begin with a \quad of space (equal to one em). The
\cr signals the end of the template.

The next line of input is the first row of the table. It
puts the text “\rm” in the first column. The & following
marks the end of input for that column. The row continues
until the \er. The second row enters the words “Roman”,
“Slanted”, etc., in the appropriate columns, each in the
appropriate typeface (overriding the \tt command at the
beginning of the input, which caused all the entries in the
first row of the table to appear in typewriter font).

The table input ends with grouping symbols which
close the \halign macro, the \vbox macro, and the display
mode.

This table was easy, and the concept is quite straight-
forward. But people can think up devilishly complicated
table formats, with subdivided columns containing an as-
sortment of text, multi-column headers, and so on. All these
are possible to generate in TgX, but the input can require a
good deal of thought. It will be very useful to TEX users
everywhere when someone writes a macro package which
uses these features of TEX to simplify the construction of
complex tables.

V1. Document Formatting

Document Formatting with IATEX

1. An enumerated list, like this one, is created with the
enumerate environment.

2. Enumerations can be:
(a) Nested within one another, up to four levels deep.
(b) Nested within other paragraph-making environ-

ments.

8. Each item of an enumerated list begins with an \1tem

command.

is produced by

\begin{enumerate}
\item An enumerated list, like ...
\item Enumerations can be:
\begin{enumerate}
\item Nested within one another ...
\item Nested within other ...
\end{enumerate}
\item Each itemof an ...
\end{enumerate}

FOIL 86 — IATEX; A sample.

The AMS-TEX macro package provides extra-powerful com-
mands for typesetting a wide variety of mathematical
constructions. It does not include document formatting
commands of the sort provided by Scribe or Runoff or
Script. Leslie Lamport, at SRI, has written a macro package
called IATEX which does provide such commands. Like
all other TEX macro packages, LATEX need only be called
dynamically or preloaded with TEX to make its commands
available to you.

This foil shows one example of the sort of command
available with IATEX. This is a Scribe-like command called
“\enumerate” which produces a nicely formatted list.
IATEX adds many powerful document processing commands
to TEX, greatly simplifying the formatting of business
documents such as letters, reports, and manuals. The
IATEX manual will be published shortly by Addison-Wesley.

The authors of AMS-TEX and IATEX have collaborated,
and they may eventually combine these two packages into
one, perhaps called LAMS-TEX. Then again, that task may
be left to some other ambitious TEX user.

Another significant task awaiting the touch of an
experienced TEX user (that is, some TgXpert) is the
creation of BookTEX, a macro package which will give
professional book designers the pointed tools they need
to create beautiful books. The designing of books takes
very different skills from those needed for the creation of
beautiful mathematics. Richard Southall is an eminent book
designer at the Department of Typography and Graphic
Communication at the University of Reading, in England,
who has worked with Knuth. Southall asserts that no
one has yet made a beautiful book with TEX because its
commands, and those of most TgX macro writers so far,
reflect the computer scientist’s need for generalization rather
than the graphic designer’s understanding of beauty. So
who will write the BookTEX macro package? The world
awaits.

19

Output Routines

=8 e

’ 2
= ;%';‘;,
yoo
*]
ﬁ A~ L

FOIL 87 — Output routines; Title page, Chapter 23

of The TgXbook.

One final aspect of TEX should be mentioned. plain.tex
produces actual output in the form of pages, with numbers

centered at the bottom and no running heads.

Often, a

different or more elaborate output format is needed.

The problem of document design
for computer-based systems

In the past, the design of
documents was done a posteriori.
Books were written before they
were designed: the conceptual
structure of the author’s thoughts
was already in place, embodied in
some graphic form or other, and
the designer’s task was to render
or re-render that embodiment
in a semantically effective and
technically practicable way.

In the design of documents
for computer-based document
production systems, the problem
is the other way round. The
document has to be designed
a priorsi, before the author’s
thoughts are present at all
The document designer's task
is to devise efficient graphic
embodiments for conceptual

structures that are suitable to
fit any thoughts that any author
using the system might have.

The document designer
cannot tell (let alone dictate)
what content an author will
put into each of the conceptual
structures that the document
design provides for, or in what
order the structures will be
used. It is not too hard to
provide a graphic embodiment
for each structure, that will
behave reasonably if it is not
used in what its designer would
consider to be an unreasonable
way, but what is unreasonable to
a document designer may not be
at all so to a mathematician or a
philosopher.

Richard Southall

FOIL 88 — The results of one output routine.

This foil shows material formatted by an output routine
that divides the material into two, right-justified columns.

The problem of document design for computer-based systems

In the past, the design of documents was done a posteriors.
Books were written before they were designed: the conceptual
structure of the author’s thoughts was already in place, embod-
ied in some graphic form or other, and the designer’s task was to
render or re-render that embodiment in a semantically effective
and technically practicable way.

In the design of documents for computer-based document
production systems, the problem is the other way round. The
document has to be designed a priors, before the author’s
thoughts are present at all. The document designer’s task is to
devise efficient graphic embodiments for conceptual structures
that are suitable to fit any thoughts that any author using the
system might have.

The document designer cannot tell (let alone dictate) what
content an author will put into each of the conceptual struc-
tures that the document design provides for, or in what order
the structures will be used. It is not too hard to provide a
graphic embodiment for each structure, that will behave rea-
sonably if it is not used in what its designer would consider to
be an unreasonable way; but what is unreasonable to a docu-
ment designer may not be at all so to a mathematician or a
philosopher.

Richard Southall

FOIL 89 — The results of a different output routine.

Here is the same material with a change in the output routine
definition. Macro packages such as plain.tex and AMS-TEX
and IATEX provide only fairly simple and standardized
output routines. AMS-TEX offers only a “preprint” output
format, suitable for typesetting mathematical papers in a
generalized form. The AMS, however, when it publishes
a paper created by AMS-TEX, will include special output
routines for the specific target journal. TgXperts at
installations where TEX is in use will ordinarily create
output routines specialized to local needs.

20

VII. A little more about METAFONT

FOIL 40 — Fonts; Title page of Chapter Four of The
TEXbook.

Fonts are an important part of TEX usage. One manu-
facturer, Autologic, has decided to place all the fonts that
come with the TgX distribution tapes into its machines’
font memories. In effect, Autologic used the .PXL files
to create new Autologic fonts that can be ordered with
their machines. That means you needn’t have those .PXL
files on your system. The programs that translate .DVI
files into Autologic commands simply identify a character
in the purchased fonts, rather than transmit a .PXL raster
pattern. I understand that Autologic has also created .TFM
files for its own proprietary fonts, so that TEX can also
use existing Autologic fonts. There are those who think
some of Autologic's fonts are nicer than TgX's Computer
Modern Roman, so this is a useful advance, as well as
a simplification. Other manufacturers may follow suit,
especially if use of TEX becomes widespread.

Character Box as Interpreted by TgX
he]ght v
Baseline [‘

! -

Reference point
depth

—— width —

FOIL 41 — TgX’s character.

Here is TEX'’s idea of a character. It is surrounded by a
box, although it can sometimes stick out of the box. The
box has a width and it has a reference point which sits on
the baseline. It has a height extending above the baseline
and a depth descending below it. The .TFM files contain

just these box dimensions, plus some kerning information,
the amount of extra spacing to be left if the character sits
next to one from a slanted font, and, in the case of math
symbols, some other positioning and spacing information.
These font metric files don’t have any information about the
shape of the character itself at all—that is to be found in
the raster patterns of the .PXL files. METAFONT creates
both kinds of file—the .TFM and the .PXL.

METAFONT Proof Output — The Letter U

LT e

I ryel
| P i S a
I !

|

;
i
|

FOIL 42 — METAFONT proof output for the
character “U”.

Here is an example of METAFONT input and output for
the character “U”. Relatively few points are required. Here
the font designer has picked 7 positions along the letter,
with three points—one on the left edge, one in the center,
and one on the right edge—to be entered for each position.
To generate this proof copy, METAFONT creates a .DVI
file using a font called “the gray font”, simply a collection
of pixels at various resolutions, two of which are shown
here. The points selected by the METAFONT user on the
designer’s original drawing are shown with the output.

METAFONT Input — The Letter U

vardef char.U=

setwidth .76em;

posi(1.1thickwidth,10); % pen starts slightly thick
pos2(thickwidth,10);

pos3(thickwidth,40);

posd (.6[thickwidth,thinwidth],75);
pos6(.9[thickwidth,thinwidth],130);
pos6(thinwidth,180); % now it’'s "thin®, turned over
pos7(1.1thinwidth,190);

xil=.iem; x71=w-.1em; % there are sidebars of .iem
yi=y7=capheight; % have now fully specified 1 and7
x2=x1; y2=.3capheight; dz2=(0,-1);

x8=.76[x4,x2]; y3=.76[y2,y4]; ¥ see below!
x4r=.6[x2r ,x6r]; ydl=-.05capheight; dzd=(1,0);
xB=.71[x4,x6) ; y6=.T1[y6,y4]: ¥ see below!

x6=x7; y8=1/3capheight; dx6=(0,1); % going up at 8
stroke(1,2,.2,.05,.05); % make a very slight taper
curve(2,3,4); curve(4,6,6); % curve the bottom
stroke(6,7,.8,.06,.06); % £inish somevhat as at left
labelpos(1,2,3,4.5,6,7); % list all positions
endde?;

FOIL 48 — The METAFONT input for “U”.

METAFONT is given pen size and shape instructions for
each position, along with a few other instructions on some
details of the character’s shape. From these, METAFONT
creates the raster image and the metric data for the
character. METAFONT is designed so that the same input
with only minor changes will create the same character in
different sizes and typefaces, thereby generating whole font
families from the same original design almost automatically.

=]

IFrJJl‘-v‘ﬂlF’éJLﬁ]ﬂ@@@@@@ﬁ@@%

METAFONT

ﬁ'

el
L

Tﬂ

iﬁ@@a@

@@@@@@ﬁ@@@ﬁ@ﬁ@é@

FOIL 44 — A METAFONT border.®

Last Spring at Stanford, Knuth offered a course in designing
fonts with METAFONT. As one exercise, he asked each
student to create a font of eight characters: four characters
which could serve as the extensible edges of a large border
and four others which would connect the edges to make the
corners of the border. Here the resulting effect is something
akin to the Greek Key.

21

William Burley

® Borders are reproduced from [TUB], Vol. 5, No. 2,
November 1984, pp. 105-118.

N

METAFONT

Arthur Samuel

FOIL 45 — A Second METAFONT Border example.

Arthur Samuel, author of First Grade TEX, was one of the
students. He provided a neat, conservative example.

FOIL 46 — A third METAFONT Border.

This border enclosed the student’s name instead of the
METAFONT logo (Joey Tuttle is vice president of TEX
Users Group). These are pretty fancy characters.

FOIL 47 — A fourth METAFONT border.

As are these.

22

New Wave Dave

FOIL 48 — A final METAFONT border.

There were no limits.

At the end of the course, the METAFONT class went
out to an appropriate corner and had its picture taken.
They first took a nice picture they could all treasure.

FOIL 49 — The METAFONT Class Picture.®

And then they made an italic font and took a picture of
that.

® Photo by Jill Knuth; reprinted from [TUB|, Vol. 5,
No. 2, November 1984, p. 109.

23

A Sample of Fonts Included in PLAIN. TEX
AMR10, ANRD, ..., ANRE Roman: ABCDefgh

AMMI10, ANNI9, ..., AMMIE “Math italic”:
ABCDefgh rex

ANSY10, ANSY®, ..., ANSYE Symbols: Aé N U()oo -1

AMEX10 Oversized and pieced
symbols: { ./

AMBX10, AMBX9, ..., ANBXE Boldface: ABCDefgh

AMTT10, AMTITO, ANTTS “Typewriter”: ABCDafgh

ANSL10, AMSL9, AMSL8 Slanted: ABCDefgh

ANTI10, AMTIO, ..., ANTI7 Text italicc ABCDefgh

AMSS10 Sans serif: ABCDefgh

ANSSBIX10 Bold sans serif:
ABCDefgh

FOIL 50 — Some of the fonts included on the
standard distribution.

Knuth’s original fonts were called Computer Modern Roman,
or CMR. He is enlisting the help of some of the world’s most
noted font designers to improve these fonts’ appearance.
He expects to perfect the fonts in three stages, the first
improved version being the AMR fonts. Next will come the
BMR fonts, and finally, next year, we'll have CMR fonts
again. This foil gives examples some of the current standard
fonts.

Additional Fonts Created at AMS

Fraktur:
B+ B+ N = P(X)

Script:
B+ G+ N =P(X)

Cyrillic:
MemaHcKHUA YHHBEPCHUTET, HAXOASIOMUACK Ha ITYTH
x HecxyuHoMy, npasgHOBaJ Ha AHAX CBOR
natunecaTuaeTHUR 0b6nuent. Koro posuau B TUTh!
HMJI¥ FOPOACKYIO 6ONBHUIY, TOT, KOHEYHO, IIOMHHUT
SOOPOBeHHeALIMMA, TPEXPTAXKHBIRA NOMHUIIE II0
NnpaByIo PYKY ¢ BeiBeckoit «BoragensHas mu
Memanckue yURIMIIA®» ¥ TOMY HaBepHOE
BCTpPeYaNuch Ha NNYTH BePEHMIb! YUeHWWeCKHUX Map,
COJIMHO TNPOTy/IMBaeMbIX Haf3SUpPaTeIAMH.

FOIL 51 — Samples of Euler and Cyrillic.

At the request of the AMS, Herman Zapf, a pre-eminent
font designer, undertook the design of a family of special
mathematical fonts which he named Euler in honor
of Leonhard Euler, a famous Eighteenth Century Swiss
mathematician. These are some of the designs included in
the Euler family. The fraktur and script fonts shown here
are examples of Zapf’s work.

VIII. The TEX Users’ Group

Joining the
TeX Community

FOIL 52 — The TgX community; Title page of
Appendix J of The TgXbook.

Richard Palais was instrumental in bringing to life the
organization known as TUG, the TgX Users Group. TUG’s
purpose is to provide a forum for the exchange of information
among TEX users by means of meetings and courses and
a newsletter and other publications. TUG commissions
expert TEX users to create useful macro packages, reference
documents, and teaching materials. TUG provides TEXperts
to teach courses in TEX usage at various companies and
academic institutions. TUG expects soon to provide hotline
asgistance to people who need help installing and using TgX.

24

s
L b

'l

7

/ . i # -
~ 5 v »III/I///”%?’/} ////'/’7/ 4 "h
» . -

T

FOIL 58 — Cover of TUGboat, Vol. 1, No. 1

TUG'’s newsletter is, of course, called TUGboat. TUGboat
is published two (and we hope, starting next year, three)
times a year and contains useful articles by both the
developers and the users of TEX and METAFONT. Knuth
contributed to the most recent issue the interesting article
on the METAFONT course from which my earlier foils
were taken. New macro packages are published there, along
with information about versions of TEX ported to new
systems and the use of new output devices. TUGboat is
edited by Barbara Beeton, the senior TEXpert at the AMS,
who helped with many of the details of this presentation.
She has now published in TUGboat many articles received
from authors as TEX input on tape, bringing Palais’ original
hope closer to reality.

MacKAY, Pierre A.
Dept of Computer Science
Univ of Washington
FR-35
Seattle, WA 98195
206-545-2386
Arpanet: MacKay@Washington
Adjunct Professor of Computer Science
Computer: VAX 11/780, 11/750 (UNIX):
DEC 2060; CDC Cyber 170-750
Output device(s): Versatec: Alphatype CRS;
1l VideoComp:; Symbolics LGP-10
Applications: Arabic and similar character sets

FOIL 64 — A sample directory entry

Along with each issue of TUGboat come a list of all the
corrections found to date to The TgXbook and a current
membership list containing the names, addresses, phone
numbers, and hardware of every member of TUG. This
entry is that of the TEX Users Group president Pierre
MacKay of the University of Washington, but all entries
are as complete. TUG’s $20 annual individual dues include
a subscription to TUGboat. There are now about 1100
individual, and about 75 institutional, members of TUG.

TeX Users Group Membership List
CONTENTS

Site Coordinators, Steering Committee and
members of other TUG Committees

Institutional Members

Addresses of TUG Members

Member names listed by institution

Member names listed by computer

Member names listed by output device

TEX consulting and production services for sale

FOIL 88 — Structure of Membership list

Site coordinators are experts in versions of TgX on specific
hardware systems. They will give you free advice on
installation, bugs, changes, problems in that version. They
are sources of information on output devices and drivers.
They may be suppliers of tapes for that version, as well
(i.e., MacKay supplies the VAX /Unix version of TgX) at a
nominal cost. Kellerman & Smith (listed in the directory)
supply a VAX/VMS version with several output drivers not
available on vanilla tapes.

TUG’s committees are charged with improving the TgX
environment by, e.g., soliciting manuscripts for improved
documentation, new macro packages, user aids, etc.

Members are listed by institution, by hardware system,
and by output device.

TUGboat carries notices of available TEX services, as
well. Some service bureaus now exist solely to provide
TEX services. Tyxset, in Reston, VA., is one mentioned
in the Seybold Report. Textset, in Ann Arbor, Michigan,
is another which markets TEX on both Apollo and Sun
workstations with programs that allow the user to view to
composed output on the screen. Others are running TEX
on various PC’s. Anyone can contact these service bureaus
directly to inquire about particular services and costs.

TEX Users Group meetings are held annually, at
Stanford at least through 1985. At these meetings, Knuth
and his TEX associates describe the latest and projected
TEX developments and hear suggestions and questions from
the user community. Very many of TgX'’s present features
have resulted from the dialog at meetings. Beginning and
advanced TEX courses are given at the meetings as well as
regionally.

25

TEX Users Group 1985 Membership/Order Form
Request Information © Send completed form with remittance
for {(checks. money orders. UNESCO coupons) to
mml}mcmpw'-am-nd :W(ol:-&mv

Providence. Rhode lsland 02901. US. A

© For foreign bank transfers
direct payment to the TEX Uisers Group.

Mu&mmw-mmm
u.-phnlowhmnnalkdm mduboulm-
applications for which TEX would be used
Ploase answer the questions below. in particu-
hnin-mdmuhowud'lr)(mdthecm
nw(l)/op«nu. system(s) on which it runs or is
being instalied (Especially for IBM and VAX. the
relevant than the model.)

Providence. Rhode laland 02903-2449. U'S A

operating system is more

© General correspondence
1f it bas not yet been done for your site. please about TUG should be addressed 10:

also anewer the questions about output devices on %'{;‘:gv
the othe ? side of thi form s information Providence. Rhode laland 12940-9506. 1 § A

been wwudtd by u-gum TUG member. please in- Name
Bu Address

vulhrnwued 1if you need more space than 15
provided here. feel free 10 use add: paper

1f your current listing is correct, mmduu
answer these g agun. Your is
appreciated
QTY. ITEM AMOUNT:

1“5 TUGboat Suhmptwn /TUG Membership (Jan -Dex.) - North Americs
New (first-time) 1$20.00 eac!
Renewal |)mnu { 182000 - reduced rate if renewed before January 31. 1985

1985 TU'Gboat Subecn
New (ﬁm ume‘ls

lon'TlGMeubtulup(Jln -Dec.) - Outside North America *
{ msoo reduced rate if renewed before January 31. 1985

Tleo.! back wsues, snsoo mo(v 1 lﬂl(v 2) lm(v Sl wsa(\ 4) 1984 (v.5) #1. #2
per issue. circle issue(s) (after 12/31/84)

First Grade TEX: AB@M!MWMARM!L Sunuel S(llmh

LUser's Guide to the HP TEX Macros by Susan Daniels - $6.00 each

;TEX and Metafont" Errata and Changes (final edition. September 1983) $4.00 each

The TEXbook. Errata and Changes (included with TUGboat) - additional copies $3.00 each
‘TEX Lectures on Tape (Prices reduced - see cover 3. Vol 5. No 2)

* A maul postage 18 included in the rates for all subscriptions
outside North Amerxa

and ips TOTAL ENCLOSED
*° Dwcount $ 7 copees. 10%. 8 or more. 15%

(Prepayment in U.S dollars required)
“ v e

Membership List Inf
Institution (if not part of address) Date

Status of TEX' | | Under coasideration
Titie { ' Bemng installed
Phone !] Up and running since
Specific applications or reason for interest in TEX Approximate number of users:

Version of TEX: | | SAIL
My installation can offer the following software or Pascal. | | TEXS2 | | TEX80

technical support to TUG i | Other (describe)

From whom obtained

Piease list high-level TEX users at your site who would not mind

being contacted for information, give name. address. and tele- Computer(s) and operating system(s)
phone.

FOIL 56 — The TUG Order Form, a table set by
TeX.

This is an example of a much more complex table, set by
TEX. The TUG order form lists most TgX publications, as
well as details of membership.

TeX has, in fact, set new directions in computer
typesetting. It really can provide a typesetting facility for
almost everybody: a full ability to generate top quality
typeset output is now in the hands of everyday people for
everyday use. When one understands something of TEX's
power, it is tempting to agree with Gordon Bell, then a
Digital vice president, when he said, in his introduction
to Knuth’s book, TgX and METAFONT, New Directions
in Typesetting, “Don Knuth’s Tau Epsilon Chi (TgX) is
potentially the most significant invention in typesetting in
this century. It introduces a standard language for computer
typography and in terms of importance could rank near the
introduction of the Gutenberg press.”

For more information regarding TgX or the TEX Users
Group, write or call Ray Goucher, Business Manager,
TEX Users Group, P.O. Box 9506, Providence, RI 02940,
401-272-9500, ext. 232.

References

|ACP] Knuth, Donald E., The Art of Computer
Programming, Addison-Wesley, Vol. 2, 1969 and
1981 editions.

[MT] Knuth, Donald E., “Mathematical Typography”,
Bulletin (New Series) of the American Mathematical
Society 1 (1979), 337-872.

[T&M] Knuth, Donald E., TEX and METAFONT,
New Directions In Typesetting, Digital Press and the
American Mathematical Society, 1979.

[CM] Knuth, Donald E., The Computer Modern Family of
Typefaces, Stanford Computer Science Report
STAN-CS-80-780 (January, 1980).

[LP] Knuth, Donald E., Literate Programming, Stanford
Computer Science Report STAN-CS-82-981.

[TB] Knuth, Donald E., The TgXbook, Addison-Wesley
and the American Mathematical Society, 1984.

[MB] Knuth, Donald E., The METAFONT book,
Addison-Wesley, 1985 (in preparation).

|LaTeX] Lamport, Leslie, The LATEX Document
Preparation System, Addison-Wesley, 1985
(in preparation).

|FG] Samuel, Arthur, First Grade TgX, TgX Users Group,
1984.

|RS] Southall, Richard, “First principles of typographic
design for document preparation”, TUGboat, Vol. 5
(1984), No. 2, pp. 79-90.

[Joy] Spivak, Michael, The Joy of TEX, the American
Mathematical Society, 1980, new edition in
preparation, 1985.

[Sey] TgX On A Microcomputer, The Seybold Report on
Publishing Systems, Vol. 14, No. 4, (Oct 29, 1984),
Seybold Publications, Inc.

[TUB] TUGboat, the Newsletter of the TgX Users Group,
TEX Users Group, ¢/o American Mathematical
Society, P. O. Box 9506, Providence, RI, 02904.

26

TUGDboat, Volume 5, No. 1

NS

W
N2
0
0
O
O
Y
WV

Y

TEX82 ORDER FORM

The latest official versions of TEX software and documents are avail-
able from Maria Code by special arrangement with the Computer Science
Department of Stanford University.

Nine different tapes are available. The generic distribution tape con-
tains the source of TEX82 and WEB, the test program, a few “change” files,
the collection of fonts in TFM format, and other miscellaneous materials; a
PascAL compiler will be required to install programs from a generic tape.
The AMS-TEX macro package is included on the TEX distribution tapes; other
macro packages, including I#TEX and HP TEX, will be added as they become
available. The special distribution tapes are for the indicated systems only,
and should be ordered for these systems instead of a generic tape. Two tapes
are PXL font collections covering various magnifications at 200/240 dots/inch
and 300 dots/inch respectively. The METAFONT tape contains the SAIL
source for the METAFONT program and includes the .MF source files.

Each tape will be a separate 1200 foot reel which you may send in advance
or purchase (for the tape media) at $10.00 each. Should you send a tape, you
will receive back a different tape. Tapes may be ordered in ASCII or EBCDIC
characters. You may request densities of 6250, 1600 or 800 (800 is discouraged
since it i8 more trouble to make).

The tape price of $82.00 for the first tape and $62.00 for each additional
tape (ordered at the same time) covers the cost of duplication, order process-
ing, domestic postage and some of the costs at Stanford University. Extra
postage is required for first class or export.

Manuals are available at the approximate cost of duplication and mailing.
Prices for manuals are subject to change as revisions and additions are made.
It is assumed that one set of manuals will suffice you. If you require more
than two sets, please write for prices since we must ask for more money for
postage and handling.

Please send a check or money order (payable on a US bank) along with
your order if possible. Your purchase order will be accepted, as long as you
are able to make payment within 30 days of shipment. Please check this out
before sending a purchase order since many large firms seem to be unable to
make prompt payment (or don’t worry about it). .

The order form contains a place to record the name and address of the
person who will actually use the TEX tapes. This should not be someone in
the purchasing department.

Your order will be filled with the most recent versions of software and
manuals available from Stanford at the time your order is received. If you
are waiting for some future release, please indicate this. Orders are normally
filled within a few days. There may be periods (like short vacations) when it
will take longer. You will be notified of any serious delays. If you want to
inquire about your order you may call Maria Code at (408) 735-8006 between
9:30 a.m. and 2:30 p.m. West Coast time.

If you have questions regarding the implementation of TEX or the like,
you must take these to Stanford University or some other friendly TEX user.

Now, please complete the order form on the reverse side.

27

TUGDboat, Volume 5, No. 1

TEX82 ORDER FORM

*+ TAPES *+ density (6250, 1600 or 800) =
TEX generic distribution tapes (PASCAL compiler required):
ASCII format — EBCDIC format
TEX distribution tapes in special formats:
VAX/VMS Backup format — IBM VM/CMS format
DEC 20/Tops-20 Dumper format ______ *IBM MVS format
* Not yet available; call before ordering

Font tapes:
Font library (200/240 dots/inch) _____ Font library (300 dots/inch)
METAFONT (SAIL compiler required)
Total number of tapes.
Tape costs: $82.00 for first tape; $62.00 for each additional.

]
@

Tape cost

Media costs: $10.00 for each tape required.

I
©»

Media cost
*x MANUALS *x
TEXS2 - $20.00 — Test Manual - $8.00
WEB - $10.00 — TgXware - $8.00
TEXbook - 82000 _____ IBTEX (preliminary edition) — $8.00
Manuals cost = $
California orders only: add sales tax = §

Domestic book rate: no charge.

Domestic first class: $2.50 for each tape and each manual.
Export surface mail: $2.50 for each tape and each manual.
Export air mail to North America: $4.00 each.

Export air mail to Europe: $7.00 each.

Export air mail to other areas: $10.00 each.

Postage cost =
(make checks payable to Maria Code) Total order =
Name and address for shipment: Person to contact (if different):
Telephone

Send to: Maria Code, DP Services, 1371 Sydney Dr., Sunnyvale, CA 94087

5/84

28

TEX Users Group

1985

Membership/Order Form

Request for Information

The TEX Users Group maintains a database and
publishes a membership list containing information
about the equipment on which members’ organiza-
tions plan to or have installed TEX, and about the
applications for which TEX would be used.

Please answer the questions below, in particu-
lar those regarding the status of TEX and the com-
puter(s)/operating system(s) on which it runs or is
being installed. (Especially for IBM and VAX, the
operating system is more relevant than the model.)

If it has not yet been done for your site, please
also answer the questions about output devices on
the other side of this form, obtaining information
from the most knowledgeable person at your instal-
lation if necessary. If this information has already
been provided by another TUG member, please in-
dicate that member’s name, and the information
will be repeated. If you need more space than is
provided here, feel free to use additional paper.

If your current listing is correct, you need not
answer these questions again. Your cooperation is
appreciated.

e Send completed form with remittance
(checks, money orders, UNESCO coupons) to:
TEX Users Group
P.O. Box 594
Providence, Rhode Island 02901, U.S.A.

e For foreign bank transfers
direct payment to the TEX Users Group,
account #002-610871, at:
Rhode Island Hospital Trust National Bank
One Hospital Trust Plaza
Providence, Rhode Island 02903-2449, U.S.A.

e General correspondence
about TUG should be addressed to:
TEX Users Group
P.O. Box 9506
Providence, Rhode Island 02940-9506, U.S.A.

Name:
Home [
Bus.

{ i Address:

QTY] ITEM

AMOUNT

New (ﬁrst-time&:]$20.00 each
Renewal: []3$30.00;

1985 TUGDboat Subscription/TUG Membership (Jan.-Dec.)
[1%$20.00 - reduced rate if renewed before January 31,1985

- North America

New (first-time $25.00 each

Renewal: |]$3500

1985 TUGboat Subscrlrtlon/TUG Membership (Jan.-Dec.)
]$25.00 - reduced rate if renewed before January 31, 1985

- Outside North America *

TUGboat back issues, $15. 00** 1980 (v.
per issue, circle 1ssue(s) desired: #1

1) 1981(v.2) 1982 (v.
#1,#2,#3 #1, #2

3) 1983 (v.4) 1984 (v.5) #1,#2
#1, #2 (after 12/31/84)

First Grade TEX: A Beginner’s TEX Manual by Arthur L. Samuel - $6.00 each

User’s Guide to the HP TEX Macros by Susan Daniels — $6.00 each

TEX and Metafont: Errata and Changes (final edition, September 1983) -

$4.00 each

The TEXbook: Errata and Changes (included with TUGboat) -

additional copies $3.00 each

TEX Lectures on Tape (Prices reduced - see cover 3, Vol. 5, No. 2)

* Air mail postage is included in the rates for all subscriptions

and memberships outside North America.
** Discount: 5-7 copies, 10%; 8 or more, 15%
*

* *

TOTAL ENCLOSED:
(Prepayment in U.S. dollars required)
*

Membership List Information

Institution (if not part of address):

Title:
Phone:
Specific applications or reason for interest in TEX:

My installation can offer the following software or
technical support to TUG:

Date:

Status of TEX: [] Under consideration
[| Being installed
[] Up and running since
Approximate number of users:

Version of TEX: [| SAIL

Pascal: [] TgX82 [] TEX80
[] Other (describe)

From whom obtained:

Please list high-level TEX users at your site who would not mind

being contacted for information; give name, address, and tele-

phone.

29

Computer(s) and operating system(s):

Revised 9/84

TEX Users Group

1985 Membership Form

Please answer the following questions regarding output devices used with TEX
unless this form has already been filled out by someone else at your installation.

Use a separate form for each output device.

Name

A. Output device information
Device name

Model
1. Knowledgeable contact at your site
Name
Telephone
2. Device resolution (dots/inch)

3. Print speed (average feet/minute in graphics
mode)
4. Physical size of device (height, width, depth)

5. Purchase price

6. Device type
[] photographic [] electrostatic
[] impact [] other (describe)

7. Paper feed [| tractor feed
[] friction, continuous form
[] friction, sheet feed [| other (describe)

8. Paper characteristics
a. Paper type required by device
[] plain [] electrostatic
[] photographic [] other (describe)

b. Special forms that can be used | | none
[| preprinted one-part [| multi-part
[] card stock [| other (describe)

c. Paper dimensions (width, length)
maximum
usable
9. Print mode
[] Character: () Ascii () Other
[] Graphics [] Both char/graphics
10. Reliability of device

[] Good [| Fair [] Poor

11. Maintenance required
|] Heavy [] Medium [] Light

12. Recommended usage level %
[] Heavy [] Medium [] Light

13. Manufacturer information
a. Manufacturer name
Contact person

Address

Telephone
b. Delivery time
c. Service [| Reliable [] Unreliable

B. Computer to which this device is interfaced
1. Computer name
2. Model
3. Type of architecture *
4. Operating system

* If your computer is “software compatible” with another
type (e.g. Amdahl with IBM 370), indicate the type here

Institution

C. Output device driver software
[] Obtained from Stanford
[] Written in-house
[] Other (explain)

D. Separate interface hardware (if any) between host
computer and output device (e.g. Z80)
1. Separate interface hardware not needed because:
[] Output device is run off-line
[] O/D contains user-programmable micro
[] Decided to drive O/D direct from host
2. Name of interface device (if more than one,
specify for each)

3. Manufacturer information
a. Manufacturer name
Contact person
Address

Telephone
b. Delivery time
c. Purchase price
4. Modifications
[] Specified by Stanford
|] Designed/built in-house
[] Other (explain)

5. Software for interface device
[] Obtained from Stanford
[] Written in-house
[] Other (explain)

E. Fonts being used
[] Computer Modern
[] Fonts supplied by manufacturer
[] Other (explain)

1. From whom were fonts obtained?

2. Are you using Metafont? [] Yes [] No
F. What are the strong points of your output device?

G. What are its drawbacks and how have you dealt
with them?

H. Comments - overview of output device

30 Revised 9/84

An Al Project Case Study — The First Six Months

Don Rosenthal

The following pages are handouts from a talk given at DECUS in Anaheim. Specifically,
you’ll find copies of the viewgraphs, and the bibliography of knowledge based systems
(which we ran out of at the session—apologies).

An earlier draft of the bibliography was published in the July, 1984 ACM SIGART
newsletter by D. Sriram of the Carnegie-Mellon University Design Research Center. It
is distributed with the permission of the author.

Note that a follow up to the R1 paper by J. McDermott (see page 9 of the bibiography)
entitled “R1 Revisited: Four years in the Trenches” was published in the Fall 1984 issue

of “The AI Magazine”.

*

31

An Al Project Case Study-The First Six Months Overview

Don Rosenthal « Report on first 6 months of a real-world Al project
Space Telescope Science Institute + "Real World™: not a research project. we're producing working sys-
Homewood Campus tems g S

Baltimore. MD « Presentation will cover

- evaluation of need for Al

- choice of tools to meet the need
- training to use the tools

- early prototyping

A Al Projecs Case Study - The Fires Sus Moathe Den Reseatnal Decomber | 1984 A Al Project Case Study - The Fires Six Mosths Deon Rosenthal Decomoer | 1984
Intent of Presentation Context of Project
« To help calibrate what's involved in starting from scatch. « Ground support subsystems for Space Telescope
« For anyone considering Al solutions for the first time « Specifically in planning and scheduling use of telescope.
« This Work reported has been accomplished since last DECUS (June « Planning and scheduling includes everything from receipt of proposals
84) from astronomers to generation of spacecraft commands.

« One person full time

8 Al Prejert Case Study - The First Sux Moashs Den Resentnai Docomeor 1, 1984 A8 Al Projoct Case Study - The Pirms 312 Moaths Dea Rosenthal Docomoor 1. 1984

32

Space Telescope Problems in Planning and Scheduling

+ Orbiting telescope « Proposals arrive describing scientific objectives.

« Five Instruments on board designed to do astronomy + Schedules must be prepared that direct S,C computers to perform
« In addition. guidance system can be used for positional astronomy. observations.

« Sets of instruments can be used simultaneously. « How can a large set of proposals be transformed into an acceptably

~good” schedule of S/C functions ?
« What is an acceptably good schedule 7?7

An AL Project Case Siudy - The Firet Six Montne Deon Rossnthai Docember | 1084

A Al Projecs Case Siuay - The First Sis Mesths Don Resenthei Derembor i 1884

Constraints. Complications. and Interacting Subsystems

« Proposed observing time to available observing time ratio - 15:1

« Instruments have many modes of operation

« It takes time to slew to targets

« Targets are routinely occulted by sun. moon. Earth

« Observing any given target at different times may alter the observa-
tion (length and S/N)

« Instruments must be warmed up before use

« All instruments cannot be warm simultaneously (limited power)

« ST orbits under stationary relay satellites (limited communications)

« ST must avoid pointing at bright objects (limited sky coverage)

« ST must keep solar panels pointed at the Sun

A% ALPreject Coss S1udy - The Fures Six Monite Don Roswathal Decomoer | 1984

Still More Problems & Constraints...

« Combinatoric explosion of the solution space
« Can't generate an optimal solution
« Can't easily generate a metric for “good™ solution

« Even subproblems are hard: Proposal Entry Processing is analogous
to a PC board construction system whose input is a schematic...

Af Projoct Case Siudy - The Firet Sux Moathe Doa Rocsnthai Decomver 1 1944

Planning in AI'!

« "Preparing a program of actions to be carried out to achieve goals.”
« A planner is required to construct a plan that achieves goals without
consuming excessive resources or violating constraints.”
« “key problems:...
- must be able to act tentatively {non-deterministic|
- if details are overwhelming. the planner must be able to focus on
the most important considerations

- a planner must operate in the face of an uncertain planning con-
text

- a planner must attend to interacting subgoals”

An Al Progect Cose Siudy - Tho Pirss Siv Months Do Roventna: Decomber 1. 1984
{Buitding Capert Sysiems. Nayes-Roth. Wosormas, Loset ode

34

Problem Definition

« Looked to Al for techniques to bound search of solution space
« Thought it roughly analogous to ~pruning” in game playing
« Found that Planning was an established subfield in Al

AR Al Project Case Study - The Firss $1x Menshe Doa Resentha: Decomber 1 1984

On the Right Track

« Reassured that my ideas were consistent w/ Al literature
« Found that there was relevant work reported in the literature
« “Planning and Meta-Planning™ by Mark Stefik (MOLGEN)

« “Planning in Time: Windows and Durations for Activities and Goals™
by Steven Vere (DEVISER)

AR AT Project Case 3tudy - The Fires $ix Months Dea Resontnal Desemeer | 1984

MOLGEN: Stefik

« Design of experiments in molecular genetics
« Developed a hierarchy of abstraction for design tasks
- Strategy space
- Design space
- Laboratory space
« Dual control. one context for as long as possible. then the other. etc

« As design is closely related to planning. MOLGEN can serve as a
model. a good starting point

An Al Project Cose Siudy - The Firse Sis Months Don Roccathsi Decomper | 1984

Approach

« Decided on two areas of application of Al:
« Proposal Transformation
« Actual schedule construction

A8 Al Project Cose Study - The Furot Six Moaths Doa Resontnal Deocomber 1. 1084

35

DEVISER: Vere

« Paper from JPL on scheduling planetary encounters for Voyagers

« Generates parallel plans to achieve goals with imposed time con-
straints

« Starts with traditional blocks world planning

» Adds timing with window construct

+ Refines model for “space world” to include some physical and timing
constraints

« Enough in common with ST to be relevant

Aa AL Project Case Study - The Furet Sun Mosths Dea Ressstnai Decomoer i 1984

Proposal Transformation

« Appears to be appropriate problem for expert system technology
» More bounded problem than scheduling
« There are resident experts

A8 Al Projoct Cose Siudy - Tho Firns Ba Moathe Dos Recsorhei Dosomber i, 1984

Scheduling
« Cant build an expert system w/o an expert

« Need to understand the problem before attempting to solve it
« “exploratory” programming: Use Al to probe problem

& Al Project Case Siudy - The Furst $ix Mosshe Don Resensthe: Docomver i 1984

Tools

« What language ?

« As the traditional Al language. LISP was first to be considered...

« Ran up against “LISPophobia”

18 AL Projecs Case S1udy - The Firee Six Months Dos Resentnal Decomber 1. 1984

Scheduling continued

« Hybrid approach for exploring problem:
« Scheduling primitives (mechanics) in C
« Existing FORTRAN library for numerical problems
« Can build different drivers on top of primitives:
- manual (graphical)
- C (algorithmic)
- AI (rule-based)

An Al Project Cone Siudy - The Firer Six Mosths Don Resonthel Decomber i, 1884

So, How ARE you PLANNING TO
Surd WS system?

36

. 1M Gortia LRNET
N LISP.

LISP continued...

« Did not discount LISP

A _ ‘
2 J= —— 7 . / « We have several versions available at STScl
—_— c. _', -~ « Some staff members have been introduced through EMACS
«] hl / @ « Felt that I should continue looking. to be sure...
~
.‘ '/

AR Al Project Case Study - The Firet Sux Monthe Don Resonthai Decomber | 1084

Prolog Rule Based Languages

« In exploring available languages. I came upon OPS5 and Rosie.
« Learned that DEC was to offer OPS5
« Transformation problem seemed oriented to a production system so-

« Read Clocksin & Mellish text (Programming in Prolog)
« Was intrigued. but...

« Seemed too low level for my particular uses (it's real good for express- A
ing relationships. for example...) lution
« Also. did not find vendors for a VMS Prolog (summer ‘84) « Parts of scheduling system also (constraints and restrictions)

a Al Projecs Case Siudy - The Fires Sua Moatas Doa Rossnchel Docomber I 1984

>

Aa Al Preject Cass Siudy - The Fires Sua Mosthe Des Rosenihai Docomver | 1984

37

LISP versus OPS3 Programmatic Considerations

« Both vendor supported « OPS5 is CHEAP !
« LISP « DEC Proven (R1 papers)

- more flexible. more powerful. more general. but « Vendor support seems assured

- would have to build the “inference engine™ myself « Good guess that support environment will be developed by DEC
« OPS5 they need it themselves.

- much more limited. but « Technical: appropriate tool

- alot that I specifically needed is built in » Managerial: low risk
- call-in. call-out. seemed well supported

A8 Al Project Case Siedy - The Firss Sx Moathe Den Roseatdsi Docombor 1 1984 An Al Projecs Case Study - The Firss Sox Monthe Don Rosentdal December i 1884

Tools (continued...) OPS3 Support Environment
« Ordered OPS5 soon after Cincinnati DECUS « Has an interpretive trace facility built in
« Intent was to use C for lower level mechanical operations « As goals are essentially states. one builds a monolithic state machine
+« FORTRAN tools existed for numerical calculations (no new FOR- « Will DEC Provide support tools??
TRAN to be written) - consistency checker
+« MMS for updating segmented rule base (“modular compilation™) - rule editors
« 77?7 Test Manager for regression testing of state machine. Does DEC - Meta Rules: presently cannot operate explicitly on Conflict Set..
use it 7?7
As Al Projsst Case S1udy - The Fwst Sin Months Don Resonnai Decomber 1. 1804 As Al Prosees Case Siudy - The Purss Sus Moaihe Don Ressnthe! Decomoer 1. 1904

38

Training The First Prototypes

« My background—no formal Al but have done hardware and software « Within week of receipt was writing small OPS5 programs
for 15 years and once built a LISP interpreter gr

« Found reading knowledge of LISP essential-took a refresher course

« Many good reference texts available now. with substantial bibliogra-
phies.

« Read like crazy - excellent way to become fluent in the relevant con-
cepts.

« Handout: an Al bibligraphy from SIGART

« Took a few weeks to sit down and program

» Towers of Hanoi
« Scientific Instrument Adviser
+ Blocks world planner

As Al Projees Coss Study - The Furee Sua Moathe Doa Resonthal Decomber | 1084

An Al Project Cane Siudy - The Firet Sun Monthe Don Reseninal Decomber | 1984
Towers of Hanoi SI Chooser
« Good first OPS35 problem « By second week had written this program
« Only two rules. iterative solution « Excellent testbed for information transfer
« Most of program was data structures and initialization « Explored three areas
« No goal (context) switching - control structures within OPS3

- call out to other languages
- modular compilation

@ AT Projwct Case $1uéy - The Fuet Sus Moaths Dos Resonthal Docomber | 1084 An Al Projecs Case S4uy - The Puss Sux Mosths Deo Roseatbal December | 1984

39

SI-Chooser. continued

« Wrote first version in one sitting (4 hours) after playing 20 questions
with an expert

« Many stubs, but first version could do as much as I could (ie all my
derived knowledge had been coded into it.

« Was trivially expandable (an astronomer watching me run it sug-
gested four new rules-immediately implemented)

« Incorporated simple-minded explanation facility
« Recognized “impossible™ observations

« Knew when it was stumped due to incomplete rule set

1 Al Project Cose Study - The Fires Sux Menthe Don Rosentnai Decomver | 1984

Blocks World Planner

« Needed to prove applicability to planning
« Block stacker is planning archetype. even reported in JPL Voyager
planner (in LISP)

« Using description from that paper. implemented OPS3 version in an
afternoon

« Incorporates simplication from LISP version
« Uses only 9 rules

8 AI Projocs Case Study - The Fires Biz Moathe Don Reseathal Decomber §. 1980

SI Chooser. continued

« Rewrote about five different ways. exploring different control con-
structs

+ Added C I/0 routines for asking questions of users and validating
answers.

« Incorporated MMS makefile to recompile either C or OPS35 (“modular
compilation™)

A® AL Projoct Case Study - The Fires Sis Monthe Den Recenthal Decomber | 1984

Acceptance of OPS3

« Not only was I encouraged. but many non-computer types saw use-
fulness of OPS5 for their work

« Operations Astronomers familiar with constraints, restrictions. and
good practices

« Researchers interested in automating recognition of opportunities to
do parallel science

A8 Al Prajecs Case S1udy - The Fues Sun Moaths Do Rossetngl Decomber 1. 1986

40

Non-Al prototypes

« Scheduling primitives prototyped in C

« Three man-months (conversion from Pascal. plus enhancements)
o Essential. because of the many things OPS3 is not suited for.

« One-half of the preparation period.

AR AL Project Case S4udy - The Fires Sux Monthe Dos Resentnai Decomper ! 1986

Results

« In 6 months we were able to:
- identify need for Al techniques

- learn enough through the literature to be able to plan the next
steps

- find. evaluate. acquire. and test tools

- build necessary conventional system functions

- learn OPS5 and solve several short problems of differing types
- develop a design model for the Al system parts

- generate a strategy for system design and implementation which
includes proving technical feasibility AND reasonable fallback

® A1 Prosocs Case Siudy - The Funt Sz Moaths Des Rossathal Decomber |. 1984

4

The Next Six Months

« Intensive OPS5 prototyping

« Prove feasibility for transformation
« Expand transformation capabilities
« I/F OPS5 code with database

« Prototype scheduler driver in OPS5 using MOLGEN control hierar-
chy

- C lowest (-laboratory™) level

- OPSS design level

- OPS5 strategy level

- Clean work-around for absence of meta-rules

A Al Project Cass Siudy - The Fires Sin Moaibs Don Reccaihal Docomber | 1884

A Bibliography on Knowledge-Based Expert Systems
in Engineering’

D. Sriram
Design Research Center &
Civil Engineering and Construction Robotics Laboratories
Carnegie-Mellon University
Pittsburgh, PA 15213

Introduction

The number of papers published in the applications of knowledge-based expert systems (KBES) to
engineering problems in the last decade reflects the interest being shown in the engineering
community. The intent of this report is to provide an annotated bibliography of the applications of
KBES in engineering. The first four sections deal with applications in Civil (including Architecture and
Geology), Chemical, Electrical and Computer Engineering, Mechanical. Sorme papers which are
common to engineering design, in general, are outlined in Section 5. A number of domain
independent tools are discussed in Section 6. Section 7 contains a list of books for general reading.
A list of relevant conferences and journals is provided in Section 8.

The bibiiography is by no means complete and the author would appreciate pointers to other
literature in the area for inclusicon in a future update. Some of tnese references are taken from NTIS
citations frcm the INSPEC data base; these references contain the word [NTIS].

1 Architecture, Civil Engineering, and Geology

Bernnett, J., Creary, L., Engelmore, R. and Melosh, R.
SACON: A Knowledge-based Consultant for Structural Analysis
Technica! Report STAN-CS-78-699, Stanford University, September 1978.

Bennett, J. and EngelmoreR.
SACON: A Knowledge-based Ccnsultant for Structural Analysis
In Proceedings Sixth IJCAI, pages 47-49, 1979,

SACON is an expert program that advises a structural engineer in the use of modeling
options fer MARC, a non-linear structural analysis program. It is implemented in EMYCIN.
It does not have any interface with the aralysis program.

Bonnet, A., and Dahan, C.
Oil-Well Data Interpretation Using Expert System and Pattern Recognition
Techniques
In Proceedings Eighth IJCA!, pages 185 - 189, 1983.

1i—‘ormcoming DRC technical report. A number of additions have heen mnade to the bibliography first published in SIGART
newsietter, July 84,

42

LITHO, a program for interpreting oil well data is described. The output from the
program is a litholog, a description of rocks encountered in a well. LITHO is being
developed at Schlumberger, France. The knowledge-base contains about 500 rules.

Cobb, J. E.
A Microcomputer Approach to Contract Management Using Al
Unpublished Master's Thesis, University of Colorado, Boulder, CO, 1984.

The knowledge-base and logic for the development of DSCAS, which is intended to
provide legal advice for construction claims, is developed. Currently DSCAS is designed
for "Differing Site Conditions" clause of the U.S. Government standard general
conditions to a construction contract.

Cuena, J.
The Use of Simulation Models and Human Advice to Build an Expert System for
the Defense and Control of River Floods
In Proceedings Eigth IJCAI, pages 246-249, 1983.

A conceptual framework for an expert system to aid in the operation of flood control
and plan civil defense in flood prone areas is provided. The rules are described based on
a set of mathematical models. System currently pursued by Spanish Ministry of Public
Works.

David, H.
An Analysis of Expert Thinking
International Journal Man-Machine Studies, Vol. 18, pages 1-47, 1883.

Deals with how human experts acquire, understand and use knowledge in the domain
of geology, in particular petroleum geology.

Davis, R. et al
The Diprneter Advisor: Interpretation of Geologic Signals
In Proceedings Seventh IJCAI, pages 846-849, 1981,

Paper presents a leasihility study on the use of expert systems for well log analysis. The
paper published in the eighth IJCAI describes a more recent implementation.

Duda, R. G., Gaschnig, J. and Hart, P. E.
Model Design in the Prospector System for Mineral Exploration
In Michie, D. (editor), Expert Systems in the Micro Electronic Age, pages 153-167,
University of Edinburgh, Scotland, 1979.

PROSPECTOR aids the geologist to select mineral deposits. Currently it has more than
1000 rules in its knowledge-base.

Eastman, C. M,
Automated Space Planning
Artiticial Intelligence Vol. 4, No. 1, Spring 1973.
One of the first papers that addresses the application of heuristics to space planning.

Fjellheim, R. and Syversen, P.
An Expert System for SESAM-69 Program Selection
Computas Report 83-6010, January 1983. (A. S. Computas, P. O. Box, 310, 1322
HOVIK, Norway)

Describes an expert system front end for a large finite element program SESAM-69,
developed by A. S. Computas. Patterned after SACON. Implemented in EMYCIN.

Gaschnig, J., Reboh, R. and Reiter, J.
Development of a Knowledge-Based Expert System for Water Resource Problems
Technical Report SRI Project 1619, SRI International, August 1981.

Describes an intelligent intedace (HYDRO) for selecting numerical values of
parameters that are input to a simuiation program (HSPF).

Gero, J. S. and Coyne, R.
The Place of Expert Systems in Architecture
In Proceedings CADD-84, U. K., 1984,

An introduction to expert systems, along with some prototype applications.
Implications to synthesis are explored.

Hammond, P. and Howarth, R.
A Rule-Based Approach to Geological Knowledge
Research Report, Imperial College of Science and Technology, U. K., 1984,

Consists of two knowledge-bases. The first one was directly transferred from
PROSPECTOR, while second was written by an expert for determining the suitability of
sites for dam construction. Implemented in PROLOG.

Hollander, C. R., Iwasaki, Y., Courteille, J-M., Fabre, M.
The Drilling Advisor
In Proceedings of Trends and Applications on Automating Intelligent Behavior:
Applications and Frontiers, pages 21-27, May 1983.

Provides diagnosis and therapy for problems encountered by the drilling mechanism
while drilling. Currently the system has around 250 rules tor diagnoasing possible problems
associated with the drill being stuck in the bore hole. It is implemented in KS300, a
copyrighted version of EMYCIN,

Ishizuka, M., Fu, K. S. and Yao, J. T.P.
Inexact Inference for Rule-based Damage Assessment of Existing Structures
Technical Report CE.STR-81-5, Purdue University, February 1981 (also see
Seventh IJCAI proceedings).

Ishizuka, M., Fu, K. S. and Yao, J. T. P.
Rule-based Damage Assessment System for Existing Structures
SM Archives Vol. 8, pages 99-118, Martinus Nijhoff Publishers, The Hague, 1983.

The above two papers describe SPERIL-I, a rule-based expert system. SPERIL-|
addresses the issue of damage assessment of structures after earthquakes and other
possible hazardous events.

Kruppenbacher, T. A.
A Microcomputer Approach to Contract Management Using Al
Unpublished Master’s Thesis, University of Colorado, Boulder, CO, 1883.

Describes the implementation details of DSCAS. which is implemented in ROSIE. See
reference by Cobb.

Lansdown, J.
Expert Systems: Their Impact on the Construction Industry
RIBA Conference Fund, U. K., 1982,
Presents a number of potential applications for KBES in the construction industry.

44

Lopez, L. A., Elam, S. L., and Christopherson, T.

MacCallum, K. J.

MacCallum, K. J.

Manheim, M. L.

Markusz, Z.

SICAD: A Prototype Implementation System for CAD
In Proceedings of the ASCE Third Conference on Computing in Civil Engineering,
San Diego, California, pages 84-93, April 1984.
Describes a framework for the development of a KBES for providing an interface
between standards governing engineering design and CAD programs.

Creative Ship Design by Computer

In Rogers, D.F., Nehrling, B. C. and Kuo, C. (editors), Computer Applications in
the Automation of Shipyard Operation and Shipyard Design 1V, IFIP82, North-
Holland Publishing Company, 1982.

A Knowledge-base for Engineering Design Relationships
In Expert Systems 82, Technical Conference of the BCS SGES, U. K., 1982,

Deals with the development of a KBES for ship design. Also attempts to incorporate an
element of learning in the system.

HIERARCHICAL STRUCTURE: A Model of Design and Planning Processes
MIT Press, Cambridge, Mass., 1966.

The concept of hierarchical design was first implemented by Manheim for determining
highway locations. A classical work in the area.

Design in Logic

Computer Aided Design, Vol. 14, No. 6, Pages 335-343, November 1982,

(other references to this work can be found in Logic Programming Clark, K. L. and
Tarnlund, S. A. (editors), Academic Press, 1982.)

Describes the use of logic in architectural design. Implementation language is
PROLOG. '

Melosh, R. J., Marcal, P. V. and Berke, L.

Ohsuga, S.

Rehak, D.

Structural Analysis Consultation using Artificial Intelligence
In Research in Computerized Structural Analysis and Synthesis, NASA,
Washington, D. C., October 1978.

lliustrates an application of SACON.

A New Method of Model Description - Use of Knowledge Base and Inference
In Bo, K. and Lillehagen, F. M. (editors), CAD Systems Framework, IFIP83, North-
Holland Publishing Company, 1983.

A methodology to represent the mode! building process in building design is proposed.
Knowledge is represented in terms of expanded predicate logic and interfaced with a
relational database.

Expert Systems in Water Resource Management
In James, W. and Torno, H. (editors), Proceedings ASCE Conference on Emerging

45

Techniques in Storm Water Flood Management, Niagara on the Lake, Ontario,
Canada, October 31 - November 4, 1983.
Current systems in water resource management are described.

Rehak, D. and Lopez, L. A.

‘ Computer-Aided Engineering : Problems and Prospects
Civil Engineering System Laboratory Research Series 8, University of lllinios, July
1981.

Potential use of KBES for the development of an integrated structural design system is
addressed.

Rivlin, J. M., Hsu, M. B. and Marcal, P. V.
Knowledge-based Consultant for Finite Element Analysis
Technical Report AFWAL-TR-80-3069, Flight Dynamics Laboratory (FIBRA),
Wright-Patterson Airforce, May 1980.
A KBES implemented in FORTRAN and interfaced to the MARC non-linear analysis
program.

Radford, A. D., Hung, P. and Gero, J. S.
New Rules of Thumb from Computer-Aided Structural Design: Acquiring
Knowledge for Expert Systems
In Proceedings CADD-84, U. K., 1984.

Pareto’s optimization technique is proposed as an aid to the knowledge-acquisition
process and illustrated using the floor system design as a paradigm.

Smith, R. G., and Baker, J.D.
The Dipmeter Advisor System: A Case Study in Commercial Expert System
Development
In Proceedings Eigth IJCAI, pages 122-129, 1983.

The development of Dipmeter Advisor, a KBES for oil-well interpretation, is described.
Dipmeter Advisor is being developed by Schiumberger-Doli research, Connecticut, U.S.A.

Sriram, D., Maher, M. L., Bielak, J. and Fenves, S. J.
Expert Systems for Civil Engineering - A Survey
Technical Report R-82-137, Department of Civil Engineering, Carnegie-Mellon
University, June 1982.

Written as an introduction to KBES for civil engineers. A number of current expert
systems, KBES building tools and potential applications in structural and geotechnical
engineering are described.

Sriram, D., Maher, M. and Fenves, S
Applications of Expert Systems in Structural Engineering
In Proceedings Conference on Artificial Intelligence, pages 379-394, Oakland
University, Rochestor, M, April 1983,
Applications of KBES to various phases of structural design are discussed.

Stanford, G.
Potential Applications of Expert Systems in Geotechnical Engineering
Master's Thesis, Department of Civil Engineering, Carnegie-Mellon University,
April, 1983.

46

Potential applications in geotechnical engineering, specifically in the domain of
Landslide engineering, are addressed. The author also relates his experience —of
knowledge acquisition from a domain expert and from literature.

Weiss, S. M. and Kulikowski, C. A.
Building Expert Programs for Controlling Complex Programs
In Proceedings 2nd NCAI, pages 322-326, 1982.
A KBES for well log analysis is described.

2 Chemical Engineering and Material Sciences

Banares, R.
Development of a Consultant for Physical Property Predictions
Master's Thesis, Department of Chemical Engineering, Carnegie-Mellion
University, May 1982.

A KBES for selecting appropriate analytic program that is used to evaluate the physical
properties of certain chemical substances is described.

Basden, A. and Kelly, B. A.
An Application of Expert Systems Techniques in Materials Engineering
In Proceedings Collogium on Application of Knowledge-Based Systems, London,
U. K., 1982 (See also International JI. of Man-Machine Studies).
Describes a prototye KBES to predict the risk of stress corrosion cracking.

Chester, D. L., Lamb, D. E. and Dhurijati, P.
An Expert System Approach to On-line Alarm Analysis in Power and Process
Plants
In Proceedings Computers in Engineering, A.S. M. E., pages 345-351, August
1984, Las Vegas, Nevada.

FALCON, currently under development, is a KBES for diagnosing faults in a process
plant. it compines both the causal model and the (surtace) production rule &pproach.
Implementation language is Franz LISP.

Grimes, L. E., Rychener, M. and Westerberg, A. W.
The Synthesis and Evolution of Networks of Heat Exchange that Feature the
Minimum Number of Units
Chemical Engineering communications, Vol. 14, 1982.

HEATEX aids in the construction of networks that minimize cnergy requirements by
allowing the exchange of heat among various process streams.

Peate, J.
Building Human Judgement into Computer Programs
Process Engineering, January 1984,
A general discussion on the potential applications of KBES in chemical engineering.
Powers, G. J.

Non-numerical Problem Sclving Mettrods in Computer-Aided Design
In IFIPS Conference on Computer-Aided Design, Eindhoven, The .Netherlands.
1972,

47

Outlines applications of Al techniques to design.

3 Electrical and Computer Engineering

Bellon, C., Robach, C., and Saucuer, G.
An Intelligent Assistant for Test Program Generation: The SUPERCAT system
In Proceedings IEEE International Conference on Computer-Aided Design, pages
32-33, September 1983.

A conceptual framework for a KBES to assist in generating test programs for complex
VLSI circuits.

Basden, A. and Kelly, B. A.
DART: An Expert System for Computer Fault Analysis
In Proceedings Seventh IJCAI, pages 843-845, 1981.

DART is designed to provide advice to IBM filed personnel on diagnosis in computer
installations. Implemented in EMYCIN.

Bowen, J. A.
Automated Configuration of Backplane-based Microcomputers
In Proceedings CADD-84, U. K., 1984,

A program that automates the design of hardware for a dedicated microprocessor is
described.

Brodsky, S. and Tyle, N.
Knowledge-based Expert Systems for Power Engineering
In Proceedings of the 15th Pittsburgh Modeling and Simulation Conference,
Pittsburgh, April 1984,

Paper presents a Yrief review of the development and application of expert systems in
areas related to electric power engineering. Tha specific examples discussed include
nuclear power plant monitoring, power system restoratior and hydro-electric plant
design. In addilion, several problems are examined as candidates for future expert
systems.

Brown, H., Tong, C., and Foyster, G.
Palladio: An Exploratory Environment for Circuit Design
Computer, Vol. 16, No. 12, pages 41-58, December 1983.

A number of interesting concepts in design are presented. Palladio is an attempt to
provide an integrated design environment for circuit design.

Birmingham, W. P,
MICON: A Knowledge Based Single Board Computer Designer
Research Report No. CMUCAD-83-21, SRC-CMU Center for Computer-Aided
Design, December 1983.

MICON designs a single board computer from hardware requirements. implemented in
OPSS.

Cantone, R. R., Pipitone, F. J., Lander, B., and Marrone, M. P.
Model-based Probabilistic Reasoning for Electronic Troubleshooting
In Proceedings Eigth IJCAI, pages 207-211, 1983.
IN-ATE is a KBES for guiding the novice technician through electronic trouble-

48

shooting. It is being developed at the Naval Center for Applied Research, U.S. A. The
paper discusses a technique to automatically produce a binary decision tree of test points
to be checked by the technician.

Chen, S.
On Intelligent CAD Systems for VLSI Design
In Proceedings IEEE International Conference on Computer Design: VLSI! in
Computers, pages 405-407, New York, 1983.
Issues in the applications of KBES to VLSI design are discussed. Distributed KBES are
proposed for VLS| design.
[Chip]
Expert System
CHIP (Germany), No. 8, pp. 52-4, August 1984 [NTIS].
Describes a prototype KBES, being developed on a 16 bit microprocessor, currently
under development at NIXDORF, a German computer manufacturer.
Davis, R.
Diagnosis Via Causal Reasoning: Paths of Interaction and the Locality Principle
In Proceedings 3rd NCAI, pages 88-94, Washington, D. C., 1983. (See also IEEE
Computer, October 1983, Int. Journal of Man-Machine Studies, November, 1983
and Proceedings of 4th NCAI)
Implementation of a KBES exploiting the causality in electrical circuits is described.
The concept of locality is used to explain the reason for the difficulty of diagnosing bridge
taults and for the need for multiple representations.
de Kleer, J.
Causal and Teleogical Reasoning in Circuit Recognition
Phd Thesis, M. I. T., Al Laboratory , 1979 (also Al MEMO TR - 529).
Dinbas, M.

A Knowledge-based Expert System for Automatic Analysis and Synthesis in CAD
In Proceedings IFIPS Congress, pages 705-710, 1980.
PEACE, a KBES for analysis and synthesis of electronic circvits, is described.

Freeman, M., Hirschman, L., McKay, D., Miller, F., and Sidhu, D.
Logic Programming Applied to Knowledge-based Modeling and Simulation
In Proceedings Conference on Atrtificial Intelligence, pages 177-193, Oakland
University, Rochestor, Ml, April 1983,

Prolog is used to develop an automated configurer for Burroughs main frame
computers.

Fujita, T. and Goto, S.
A Rule-based Routing System
In Proceedings IEEE International Conference on Computer Design: VLSI in
Computers, pages 451-454, New York, 1983.

An interactive routing system is described. The designer's knowledge is represented in
clause form of first order predicate logic.

Fusaoka, A., Seki, H. and Takahashi, K.
Description and Reasoning of VLSI Circuit in Temporal Logic

49

Hartely, R. T.

Horstmann, P. W,

Genesereth, M. R.

Grinberg, M. R.

New Generation Computing, Vol. 2, pages 79-80, 1984.

A method for describing and reasoning about the behavior of VLSI circuits withinthe
framework of extended temporal logic is described.

CRIB: Computer Fault-Finding Through Knowledge Engineering
Computer, pages 76-83, March 1984.
Describes the development of a system for computer fault diagnosis.

Expert Systems and Logic Programming for CAD
VLSI Design, pages 37-46, November 1983.
(see also the paper in 21st Design Automation Conference, pages 144-151)

Logic programming is applied to solve VLSI design problems in the areas of design for
testability, functional simulation, fault diagnosis, and automatic test generation. PROLOG
was used to implement a prototype system for design for testability.

Diagnosis using Hierarchical Design Models
In Proceedings 2nd NCAI, pages 278-283, Pittsburgh, 1982,

The hierarchy inherent in most computer systems is used to develop a KBES. The use
of this hierarchy he!ps to reduce the search space.

A Knowledge-based Design System for Digital Electronics
In Proceedings 1st NCA!, pages 283-285, Stanford, 1980 (also University of
Maryland, Phd thesis).

Semi-Automatic Digital Designer (SADD) uses the idea of structured modular circuit

design using an interactive user interface. The design is divided into three phases: 1)
specification acquisition; 2) circuit design; and 3) circuit simulation.

Kim, J. and McDermott, J.

King, J. J.

King, J. J.

TALIB: An IC Layout Design Assistant
In Proceedings 3rd NCAI, pages 197-201, Washington, D. C., 1983.

TALIB performs automatic circuit layout and interconnections by generating plan steps
at different levels of abstraction spaces and opportunistically refining each plan at one
level to more specific steps at the lower level.

Artiticial Intelligence Techniques for Device Trouble Shooting
Technical Report CSL-82-9 (CRC-TR-82-004), Hewlett-Packard Company, August
1982.

This report addresses the current state of art of Al in electronic device troubleshooting
with a comparison with conventional fault analysis.

An Investigation of Expert Systems Technology for Automated Troubleshooting of
Scientiiic Instrumentation

Technical Report CSL-82-12 (CRC-TR-82-007), Hewlett-Packard Company,
August 1982.

50

KBES methodology is applied to troubleshoot a gas chromatograph/mass
spectrometer, concentrating on a failure mode called radio frequency overdrive.

Knapp, D., Granacki, J. and Parker, A.
An Expert Synthesis System
In Proceedings IEEE International Conference on Computer-Aided Design, pages
32-33, September 1983.

Describes the architecture of a KBES for synthesis of VLSI designs. The system has
four modules: a knowledge-base of design techniques, a data structure representing the
hardware being designed, a history of the design process, and a man-machine interface.

Kowalski, T. and Thomas, D.
The VLSI Design Automation Assistant : Prototype System
In Proceedings 20th Design Automation Conference, pages 479-483 IEEE-ACM,
Maiami, 1983. '

The VLS| DAA uses temporarily ordered subtasks to allocate VLS| subsystems. The
input to the system is an algorithmic dataflow description of a VLS| system and the output
is a list of technology-independent registers, operators, data paths and control signals.

Krueger, M. W., Cullingford, R. E. and Bellavance, D. A.
Control Issues in a Multiprocess Computer-Aided Design System Containing
Expert Knowledge
In Proceedings of the IEEE International Conference on Cybernetics and Society,
pages 139-143, Atlanta - Georgia, 1981 [NTIS].

Describes CADHELP, a KBES for the design of digital logic circuits. Scripts are used to
generate explanation of text and graphic demonstrations.

Lenat, D. B., Sutherland, W. L., and Gibbons, J.
Heuristic Search for New Microcircuit Structures: An Application of Artificial
Intelligence
The Al Magazine, pages 17-33, Summer 1982,

The knowledge-acquisition bottleneck in expert system development can be removed if
the system learns to augment its knowledge-base. EURISKO, a system that learns by
discovery, is applied to the synihesis of semiconductor devices.

Maclean, C. and Wilde, P.
Knowledge-based Electronic Circuit Diagnosis
In Proceedings Expert Systems 83, Technical Conference of the BCS SGES,
Cambridge, U. K., December 1983.

McClelland, E. C., Van Horne, P. R.
Fast Voltage Prediction Using a Knowledge Based Approach
IEEE Transactions on Power Apparatus and Systems, Vol. PAS:102, No 2,
February 1983.

The system is being implemented in prototype form on the New York Pool real-time
computer system.

McDermott, J.
R1: A Rule-based Configurer of Computer Systems
Artificial Intelligence, Vol. 19, No. 1, pages 39-88, September 1982,

R1 configures Vax computer systems. Implemented in OPS, and one of the few KBES
that is used in industry.

51

Mitchell, T., Steinberg, L., Kedar-cabelli, S., Kelly, V., Shulman, J., and Weinrich, T.
An Intelligent Aid for Circuit Redesign
In Proceedings 3rd NCAI, Pages 274-278, Washington, D. C., 1983.

REDESIGN assists the user in redesigning eiectrical circuits by focusing on an
appropriate portion of the circuit, generating and ranking possible changes within the
circuit.

Pao, Y. and Ou, S.
Rule-based Approach to Electrical Power Systems Security Assessment
In Proceedings of IEEE Conference on Pattern and Image Processing, pages
340-342, 1981.

Shirley, M. and Davis, R.
Generating Distinguishing Tests Based on Hierarchical Models and Symptom
Information
In Proceedings IEEE International Conference on Computer Design: VLSI in
Computers, New York, 1983.

A methodology is developed to diagnose faulty components in digital hardware when a
list of candidates that are likely to fail is given. A three step process is described.

Shubin, H. and Ulrich, J. W.
IDT: An Intelligent Diagnostic Tool
In Proceedings 2nd NCAI, pages 290-295, Pittsburgh, August 1982,

IDT was developed to identify faults in PDP 11/03 computers. It helps the technician to
identify the field replaceable unit to fix the fault.

Spaanenburg, L.
Digital IC Design at Twente University
In LSIM-83 Proceedings, 1983 University/Government/Industry Microelectronics
Symposium, pp. 47-51, Twente Univ. of TEchnology, Enschede, Netherlands,
1983 [NTIS].
Experiences and tuture enhancements towards a VLS| design assistant are described.

Smith, M. F., and Bowen, J. A.
Knowledge and Experience-Based Systems for Analysis and Design of
Microprocessor Applications Hardware
Microprocessors and Microsystems, Vol. 16, No. 10., pages 515-519, December
1982 (see also JI. Microcomputer Appl., Vol. 6, No. 2, pp 155-161,1983).

Describes the potentials for KBES for the analysis and design of micrcprocessor
applications. Also discusses MAPLE, a prototype system.

Stallman, R. and Sussman, G. J.
Forward Reasoning and Dependency-directed Backtracking in a System for
Computer-Aided Circuit Analysis
Artificial Intelligence, Vol. 9, pages 195-196, 1977.

ARS, a rule-based language, is used to implement a system for computer-aided circuit
analysis. Antecedent reasoning is used to deduce facts. The deduced facts have
associated justifications, which are used by the system in the analysis of failures and to
reduce the search space.

52

Steinberg, L. and Kelly, V. E.
The CRITTER System: Analyzing Digital Circuits by Propagating Behaviors and
Specifications
In Proceedings 2nd NCAI, pages 284-289, Pittsburgh, August 1982,
(see also 21st Design Automation Conference, pages 419-425).

CRITTER can reason about digital hardware designs through the use of declarative
representation of the components at different levels of abstraction. it can evaluate the
correctness and robustness of digital designs.

Steingberg, L. and Mitchell, T.
A Knowledge-Based Approach to VLSI CAD: The Redesign System
In Proceedings ACM IEEE 21st Design Automation Conference, pages 412-418,
New Mexico, 1984.
Summarizes the Rutgers Al/VLS! group's work on REDESIGN, an interactive aid for
functional design of digital circuits.

Stefik, M., Bobrow, D., Bell, B., Brown, H., Conway, L., and Tong, C.
The Partitioning of Concerns in Digiial System Design
Technical Report VLSI-81-3, XEROX PARC, CA 94304, 1981.

Discussion on the abstraction hierarchies in digital design.

Stefik, M. and Conway, L.
Towards the Principled Engineering of Knowledge
The Al Magazine, pages 4-16, Summer 1982.
VLSI domain is used as a paradigm for explaining the structuring of design knowledge.

Stefik, M. and de Kleer, J.
Prospects for Expert Systems in CAD
Computer Design, Vol. 22, No. 5, pages 65-76, April 1983 [NTIS].
The importance of KBES for CAD is emphasized through the paradigm of digital design.

Sumner, G. C.
Knowledge-based Systems Maintenance Applications (ATE)
In Proceedings of IEEE International Automatic Testing Conference, pages
472-473, Fortworth - Texas, 1982 [NTIS].
Describes the usefulness of KBES for electronic maintenance problems.

Sussman, G. J.
Electrical Design: A Problem for Artificial Intelligence Research
In Proceedings Fifth IJCAI, pages 894-800, 1977.
Intelligent recovery in a problem solver for electrical design is described. The
engineering design process is recast in terms of Problem Solving by Debugging Almost-
Right Plans. Failures are used to reduce search.

Sussman, G. J.
SLICES: At the Boundary between Analysis and Design
Al Memo 433, M. I. T., (&7
SLICES combines"tiie nonon of equivalence, used by electrical engineers to reduce the
complexity in a circuit, with identification of parameters. The system uses "appropriate
SLICES along with analysis by propagation of constraints to assign component values to
a circuit.

53

Sussman, G. J. and Steele Jr., G. L.
CONSTRAINTS - A Language for Expressing Almost-Hierarchical Descriptions
Artiticial Intelligence, Vol. 14, pages 1-39, 1980.
Constraint propagation is used to synthesize and analyze electrical networks.

Sussman, G. J., Holloway, J. and Knight, T. E.
Design Aids for Digital Integrated Systems - An Artificial Intelligence Approach
In Proceedings IEEE International Conference on Circuits and Computers,
October 1980.

Taylor, G. S. and Ousterhout, J. K.
Magics's Incremental Design-Rule Checker
In (Proceedings ACM IEEE 21st Design Automation Conference), pages 160-1685,
New Mexico, 1984.

Although, not strictly an expert system the approach presented here would be useful in
the development of KBES for design.

Taylor, J. H., Frederick, D. K., and James, J. R.
An Expert System Scenario for Computer-Aided Control Engineering
In Proceedings of the American Control Conference, San Diego, AC, 1984.
A framework for a KBES in control system design is provided.

Tong, C.
A Framework for Circuit Design
In Proceecings COMPCON84, New York, February 1984,

Discusses a framework for circuit design that contains design descriptions such as
components, plans. goals, and trudeoffs. Aiso addresses the issue of conirol knowledge
in design. The concepts presented are also relevant in other areas of design.

Tsukiyania, M. arnd Fukuda, T.
An Application of Knowledge Base to Control Systems
In Proceedings of the IEEE International Conference on Cybernetics and Society,
pages 342-346, Atlanta - Georgia, 1981 [NTIS].

KBES structure is developed as a network organization of modules. These modules
contain both production rules and calculation tools.

Vesonder, G. T., Salvatore, J. S., Zielinski, J. E., Miller, F. D., and Copp, D. H.
ACE: An Expert System for Telephone Cable Maintenance
In Proceedings Eigth IJCA/, pages 116-121, 1983.
ACE was develoged 10 aid in automated cable maintenance. It takes input from CRAS

(Cable Repair Administration System) to analyze a large number (in hundreds) of
telephone cable maintenance reports. It is written in OPS4,

Williams, T. L., Orgren, P. J., and Smith, C. L.
Diagnosis of Multiple Faults in a Nationwide Communications Network
In Proceedings Eigth IJCAI, pages 179-181, 1983,

NDS (Network Diagnostic System) is a KBES for identifying faults in a nationwide
communications network (COMNET).

Zippel, R.
An Expert System for VLSI Design

54

In Proceedings of the IEEE Symposium on Circuits and Systems, pages 191-193,
Newport Beach, CA, 1983 [NTIS].

Discusses the motivation for the development of a KBES for VLSI design. Also provides
some guidelines for the development of this system.

4 Mechanical and Industrial Engineering

Bocquet, J. C. and Tichkiewitch. S.
An "expert system" for Identification of Mechanical Drawings
in Ellis, T.M. R., and Semenkov, O.l. (editors), Advances in CAD/CAM,
PROLAMAT82, Leningrad USSR, May 1982, Published by North-Holland
Publishing Company, 1983.

Describes an automatic methodology to transform a given Mechanical drawing into a
3-D data base. The production rule approach is used.

Bonissone, P. P.
DELTA: An Expert System to Troubleshoot Diesel Electrical Locomotives
In Proceedings ACM, New York City, pages 44-45, October 24-26, 1883.

DELTA is a prototype KBES, implemented in FORTH, developed at General Electric
Corporate R & D to troubleshoot diesel electric locomotives. It contains about 530 rules.

Bonissone, P. P.
Outline of the Design and Implementation of a Diesel Electrical Engine
Troubleshooting Aid
In Expert Systems 82, Technical Conference of the BCS SGES, Brune! Univeisity,
U. K, 14-16 September, 1982.

Brown, D. C. and Chadrasekaran, B.
An Approach to Expert Systems for Mechanical Design
In Proceedings of Trends and Applications on Automating Intelligent Behavior:
Applications and Frontiers, pages 173-180, Sponscred by IEEE and NBS, 1983.

Three categories of design are identified. The first two categories require innovation
from the designer, while the third category deals with well-estatlished design alternatives.
A hierarchy of conceptual specialists is used to solve the problem in a distributed manner.
An example in the area of mechanical design is presented. It is equally applicable to other
areas of design.

de Kleer, J. and Bobrow, D. G.
Qualitative Reasoning With Higher-order Derivatives
In Proceedings 4th NCAl, pages 86-91, Austin, Texas.

Six fundamental laws which govern the time behavior of a physical system or device are
identified. An application to a pressure regulator is discussed.

Descotte, Y. and Latombe, J. C.
GARI: An Expert System for Process Planning
In Boyse, J. W. and Pickett, M. S. (editors), Solid Modeling by Computers: From
Theory to Applications, Plenum Press, New York, 1984,

GARI generates machine planning of mechanical parts. It uses a planner that develops
a plan by iteratively constraining a loosely specified initial plan. The constraints are drawn
from a knowledge-base provided by experts.

55

Dixon, J. R. and Simmons, M. K.
Expert Systems for Engineering Design: Standard V-Belt Drive Design as an
Example of the Design-Evaluate-Redesign Architecture
In Proceedings Computers in Engineering, A.S. M. E., pages 332-337, August
1984, Las Vegas, Nevada.

Describes a framework for experts systems for engineering design. Uses a Blackboard-
type architecture. The system, called VEXPERT, is exemplified through the design of
v-belt drives. Implemented in OPSS5 and Franz LISP.

Dixon, J. R. and Simmons, M. K.
Computers that Design Expert Systems for Mechanical Engineers
C. . M. E., pages 10-17, November 1983,

An overview of potential applications in some areas of mechanical engineering is
presented.

Fox, M. S.
The Intelligent Management System : An Overview
Technical Report CMU-RI-TR-81-4, Robotics Institute, Carnegie-Mellon University,
August 1981.

The Intelligent Management System (IMS) project at C-MU is described. The purpose
of IMS is to provide managers and planners assistance in day to day tasks. The report
agescribes a number of features, such as modelling of organizations, user interfaces, etc.,
of the IMS.

Fox, M., Lowenfield, S. and Kleinosky, P.
Techniques for Sensor-Based Diagnosis
In Proceedings Eighth IJCAI, pages 158-163, August 1983.

PDS, a torward chaining ruled-based system for implementing KBES for real-time
diagnosis of machine faults, is described. PDS is implemented over SRL.

Freed, D. and Wright, D.
FAXS: An Expert System for the Analysis of Mechanical Failures
In Proceedings Computers in Engineering, A.S. M. E., pages 338-342, August
1984, Las Vegas, Nevada.

FAXS is being developed to aid the engineering student or other people in failure
analysis and prevention. It uses a MYCIN-type probabilistic scheme to deal with inexact
inferences. On going research is focused on merging FAXS with CAD and stress analysis
programs. implemented in Fortran 77.

Gini, G., Gini, M. and Morpurgo, R.
A Knowledge-Based Consultation System for Automatic Maintenance and Repair
In Ellis, T.M. R., and Semenkov, O.l. (editors), Advances in CAD/CAM,
PROLAMAT82, Leningrad USSR, May 1982, Published by North-Holland
Publishing Company, 1983.
The potentials of KBES for diagnosis and repair of mechanical systems are explored.

Mamdani, E. H.
Rule-based Methods for Designing Industrial Process Controllers
In Proceedings Collogium on Application of Knowledge-Based Systems, London,
U. K., 1982.

Fuzzy techniques are used in the development of a KBES for process control
applications. Method is currently used commercially for the contiol of cement kilns.

56

Motoda H., Yamada, N. and Yoshida, K.
A Knowledge Based System for Plant Diagnosis
In Proceedings of the International Conference on Fifth Generation Computer
Systems, Japan, November 7-9, 1984.

McKibbin, M, L.
Will Al Clash with MIS in the Factory
Infosystems, Vol. 30, No. 8, pp 99, August, 1983 [NTIS].

Potentials for expert systems for planning, scheduling, and other areas of
manufacturing are discussed.

Nau, D. S. and Chang, T.
Prospects for Process Selection Using Artificial Intelligence
Computers in Industry, Vol. 4, pages 253-263, 1983.
Discusses potential uses of KBES in process planning for manufacturing tasks.

Nelson, W. R.
REACTOR: An Expert System for Diagnosis and Treatment of Nuclear Reactor
Accidents
In Proceedings 2nd NCAI, pages 296-301, Pittsburgh, August 1982.

REACTOR is being developed at EG & G, Idaho, for assisting operators in the diagnosis
and treatment of nuclear reactor accidents.

Phillips, R. H., Zhou, X-D., Mouleeswaran, C. B.
An Artificial Intelligence Approach to Integrating CAD and CAM Through
Generative Process Planning
In Proceedings Computers in Engineering, A.S. M. E., pages 332-337, August
1984, Las Vegas, Nevada.

The PROLPLAN system, a KBES for process planning, and its interface with a CAD
systems are described. Sample studies from are carried out on a small sample of
rotational machined parts. A rulc-based approach is used.

Rajagopalan, R.
Qualitative Modeling in the Trubojet Engine Domain
In Proceedings 4th NCAI, pages 86-91, Austin, Texas.

Presents a causal model of a turbojet engine based on the relationship between engine
parameters. This is used to implement an engine simulation.

Reddy, Y. V.and Fox, M. S.
KBS: An Artificial Intelligence Approach to Flexible Simulation
Technical Report CMU-RI-TR-82-1, Robotics Institute, Carnegie-Mellon University,
February 1982.

KBS (Knowledge-Based Simulation) system is a knowledge representation system for
simulating complex organizations. Features include interactive model creation and
glteration, simulation monitoring and control, graphics display, and selective
instrumentation.

Underwood, W. E.

A CSA Model-based Nuclear Power Plant Consultant
In Proceedings 2nd NCAI, pages 302-305, Pittsburgh, August 1982,

- 57

The Common Sense Algorithm representation is used to model the physical system.
Diagnostic rules are also represented in this formalism.

5 General Engineering Applications

Apte, C.

Barbuceanu, M.

Basden, A.

Bataii, J.

Bundy, A.

Expert Knowledge Management for Multi-level Modelling with an Application to
Well-Log Analysis
Technical Report, LCSR, Rutgers University, 1982.

Deals with the implementation of a KBES incorporating heuristic knowledge and
algorithmic tools.

Object-Centered Representation and Reasoning: An Application to Computer-
Aided Design
SIGART Newsletter, Vol. 87, pages 33-39, January 1984.

Discusses the usefuiness of using an object-oriented approach to CAD problems. This
approach provides a powerful framework for building KBES in the areas of design and
planning.

On Application of Expert Systems
International Journal of Man-Machine Studies, Vol. 19, pages 461-477, 1983.

A number of issues on building KBES are addressed. Specific reference is made to
SCCES, Stress Corrosion-Cracking Expert System.

Dependency Maintenance in the Design Process
In Proceedings IEEE International Conference on Computer Design: VLS in
Computers, pages 405-407, New York, 1983.

A case for the maintenance of dependency structures in design is presented, with
examples from VLS| domain. The concepts presented are equally applicable for other
domains.

Intelligent Front Ends
D. A. I. Research Paper No. 227, Department of Artificial Intelligence, University of
Edinburgh, England, July 1984,

Describes the techniques used for developing intelligent front ends for existing
software, such as finite element analysis programs.

De Swaan Arons, H.

Expert Systems in the Simulation Domain
Mathematics and Computer Simulation (Netherlands), Vol. 25, No. 1, pages 10-16,
February 1983 [NTIS].

Explores the possibilities of the application of KBES to simulation problems.

Dixon, J. R., Simmons, M. K., and Cohen, P. R.

An Architecture for Application of Artificial Intelligence to Design
In Proceedings ACM IEEE 21st Design Automation Conference, pages 634-640.
(for similar views see papers by Rehak, et. al. in Gero (eds))

58

The Blackboard model for engineering design is presented.

Gero, J.(editor)
Knowledge Engineering in Computer-Aided Design
IFIP WG-5.2, September 1984, Budapest, Hungary, Published by North-Holland
Publishing Company.
Contains a number of recent papers on the application of KBES in engineering. Papers
encompass Civil, Architecture, Mechanical and Electrical engineering applications.

Lafue, G. M and Mitchell, T. M.
Data-base Management Systems and Expert Systems for CAD
Technical Report No LCSR-TR-28, Rutgers University, 1982,

The use of database management systems and KBES is discussed with reference to the
REDESIGN system.

Latombe, J-C. (editor)
Artificial Intelligence and Pattern Recognition in Computer Aided Design
North-Holland Publishing Company, New York, 1978.

Contains 8 number of good papers on the application of Al to engineering design
problems.

Lewrance, J. D. and Garvey, T.D.
Evidential Reasoning: An Implementation for Multisensor Integration
SRI International, Technical Note 307, December 1983.

The Dempster-Shafer theory of evidence is used to deveiop a system for integrating
information from multiple sources.

Maher, M.. L., Sriram, D. and Fenves, S. J.
Tools and Technniques for Knowledge-based Expert Systems for Engincering
Design
Advances in Engineering Software, October 1984.
Describes the application of OPSS, SRL and PROLOG to engineering design problems.

McDermott, J.
Domain Knowledge and the Design Process
Design Studies Vol. 3, No. 1, pages 31-36, 1982 (also appeared in Proceedings
18th Design Automation Conference, Nashville, TN, 1981).
R1 and XSEL are used to illustrate the importance of domain knowledge in the design
process.
Preiss, K.

Data Frame Model for Engineering Design Process
Design Studies Vol. 1, No. 4, pages 231-243, 1980.

The frame based approach to engineering design is discused. Has many interesting
concepts.

Reddy, D. Sriram, Maher, M. L. Tyle, N., Banarss, 2., Rychener, M. and Fenves, S.J.
Knowledge-based Exjsert Systems for Engineering Applications
In Proceedings IEEE Conference on Systems, Man and Cyberhetics, India,
1983-1984,

59

A number of KBES currently under development at C-MU in the areas of Civil, Chemical
and Electrical Engineering are described.

Rychener, M. D.
Expert Systems for Engineering Design: Experiments with Basic Techniques
In Proceedings of Trends and Applications on Automating Intelligent Behavior:
Applications and Frontiers, pages 21-27, 1983 (Sponsored by IEEE and NBS).

The author's experience with the development of expert systems for engineering
design is discussed.

Simon, H. A.
The Sciences of the Artificial
MIT Press, Cambridge, MA, USA, 1969.
The chapter on design describes the design process in detail.

Sleeman, D. and Brown, J. S. (editors)
Intelligent Tutoring Systems
Academic Press, London, U. K., 1882,

Contains a number of articles on expert system approaches to intelligent computer-
aided instruction.

Swift, K. and Mathews, A,
Expert Computers in Engineering Design
Engineering (UK), Vol. 223, No. 9, pp 673-8, 1983 [NTIS].

The DACON system for assembly automation and POLYCOAT systems for designing
coatings are discussed.

Tokorc, M., Ishikawa, Y., Maruichi, T. and Kawamura, M.
An Object Oriented Approach to Kncwledge Systems
In Proceedings of the international Conference on Fifth Generation Computer
Systems, Japan, November 7-9, 1984,

Wade, J. and Shubin, H.
A Generalized Approach to Diagnostic Problems
In Expert Systems 82, BCS SGES, England, 1982.
A general discussion of approaches to building diagnostic expert systems, with an
emphasis on the advantage of keeping knowledge-base and the inference-mechanism
separate.

6 Domain independent Tools

The tools described here are available at a modest charge from the developer. A more complete
description of various tools can be found in the paper by Maher, et. al., described in Section 5.

Balzer, R., Erman, L., London, P. and Williams, C.
Hearsay-lll: A Domain Independent Framework for Expert Systems
In Proceedings 1st NCAI, Stanford, 1880.

Hearsay-lll is a domain independent version of the Hearsay-ll speech understanding
system. It is written in AP3, a relational database language embedded in Interlisp. It is
useful in situations that demand multiple sources of knowledge. Contact Steven Fickas,
(Fickas@USC-IS!1) Oregan State University.

60

Bobrow, D. and Stefik, M.
The Loops Manual
Xerox Corporation, 1983 (See Al magazine Vol. 4, No 3., 1983 for a description of
LOOPS).

LOOPS is an integration of procedure-oriented, object oriented, access-oriented and
rule-oriented programming paradigms. It offers a powertul framework for building expert
systems. Currently it is available only on the XEROX machines that run Interlisp-D.
Contact Mark Stefik, Xerox PARC, 3333 Coyote Hill Road, Palo Alto, CA 94304
(Stefik@XEROX.PARC).

Clocksin, W. F. and Mellish, C. S.
Programming in Prolog
Springer-Verlag, 1981.

Prolog is a logic-based programming language that is widely used in Europe for
building KBES. According to the authors,"Prolog is a -practical and efficient
implementation of many aspects of ‘intelligent’ program execution, such as non-
determinism, parallelism, and pattern-directed procedure call”. The fifth generation
computer project started in Japan will use Prolog as the implementation language. For a
Dec- 10 version write to D. Warren at SR International (Warren@ SRI-Al).

Forgy, C. L.
OPSS Users Manual
Technical Report No: CMU-CS-81-135, Carnegie-Mellon University, August 1981.
OPSS is a production system language for rule-based programming. A number of

versions of this language exist. The latest version, OPS83, will incorporate a number of
important features that were not implemented in the earlier version. OPS83 is written in
the C language. Currently maintzined by Charles Forgy, Department cf Computer
Science, Carnegie-Melion University, Pittsburgh PA 15213 (Forgy@ CMU-CS-A).

Reboh, Rene’
Knowledge Engineering Techniques and Tools in the Prospector Environment
Technical Report 8172, SRl International, June 1981.
The Knowledge-Acquisition System (KAS) is a combination of powerfu! inference
techniques and a system of representing the meaning of concepts that it deals with.
Knowledge is represented in terms of spaces (a type of {rame) and semantic networks.
Bayesian reasoning is used in the inference mechanism. & is useful for diagnostic type of
problems and is implemented in Interlisp. This system was extended (called HYDRO) to
incorporate numerical calculations. Contact Rene Reboh (currently with Syntelligence),
SR International, Palo Alto, Stanford (Reboh@ SRI-Al).

van Melle, W.
A Domain Independent Production-Rule System for Consultation Programs
In Proceedings Sixth IJCAI, pages 923-925, August 1979 (see also the EMYCIN
manual, available from Stanford University Computer Science Department).

EMYCIN is a domain independent version of MYCIN. It is useful for building diagnosis
based expert systems. Knowledge is represented in object-attribute tuples. For more
information write to Department of Computer Science, Stanford University, Stanford, CA
84305.

Weiss, S. M. and Kulikowski, C. A.
EXPERT: A System for Developing Consulation Models
‘In Proceedings Sixth IJCAI, pages 942-947, 1979.
It is probably the only KBES tool developed in FORTRAN. It is useful for classification

61

and diagnostic type of problems. It can be interfaced with other existing FORTRAN
software. Hence, it seems to be a good tool for engineers who wish to interface expert
systems with engineering software, written in FORTRAN. Contact Shalom Weiss or
Casimir Kulikowski, Department of Computer Science, Rutgers University, N.J.
(Weiss@Rutgers).

Wright, J. M. and Fox, M.
SRL: Schema Representation Language
Robotics Institute Technical Report, Carnegie-Mellon University, 1983.

A frame-based language implemented in Franzlisp. This language is being extented to
include rule-based programming (PSRL). SRL is maintained by the Intelligent Systems
Laboratory, Robotics Institute, Carnegie-Mellon University, Pittsburgh, PA 15213
(Fox@CMU-RI-ISL1).

Fain, J., Gorlin, D., Hayes-Roth, F., Rosenschein, S. J., Sowizral, H., and Waterman, D.
The ROSIE Language reference manual
Technical Report N-1647-ARPA, Rand Corporation, Santa Monica, California
90406, 1981.

ROSIE is a general purpose programming language, implemented in Interlisp, that
supports stylized English input to create assertional descriptions. Knowledge is
represented in the form of facts and rule sets. ROSIE also provides the user a wide range
of options to express n-ary relations. ROSIE has been successfully used to build a number
of expert systems, specially for diagnostic and interpretation type of problems. Contact
Henry Sowizral.

7 General Reading

Barr, A. and Feigenbaum, E. (editors) The Handbook of Artificial Intelligence, Vol-1 to Vol-lI
William Kaufmann Inc., Los Altes, California, 1981-1982.

These volumes will be useful for anyone interested in Al. Volume 1 covers the basic
topics in Al. Volume Il focuses on applications of Al (mostly expert systems), programming
languages and automatic programming. The final Volume in this serics (Volume Ill) is
edited by Cohen and Feigenbaum and contains articles on learning, theorem proving,
models of cognition and theorem proving.

Dym,C. L.
Expert Systems: New Approaches to Computer-Aided Engineering
In Proceedings Twenty-Fifth AIAA-ASME-ASCE-AHS Structures, Structural
Dynamics and Materials Conference, California, May 15, 1984,
Presents a good overview of expert systems for the engineer.

Konopasek, M. and Jayaraman, J.
Expert Systems for Personal Computers - The TK!Solver Approach
BYTE, pages 137-156, May 1984.
Presents a case for using the TK!Solver program as an expert system framework.

Hayes-Roth, F., Waterman, D. and Lenat, D. (editors)
Building Expert Systems.
Addison-Wesley Pub.:= iy wompany, 1983.
It gives a good overview of expert systems. However, it is collection of papers and one

can see a lot of repetition in the chapters. Further, the book does not have any description
of logic-based expert systems.

62

Michie, D.
Expert Systems
Computer Journal (UK), Vol. 23, No. 4, pages 369-376, November 1980.

A general review of expert systems is provided, with emphasis on applications.

Nau, D.S.
Expert Computer Systems
Computer, Vol. 16, Pages 63-85, February 1983.
Gives a good overview of expert systems.
Rich, E.

Artificial Intelligence
McGraw-Hill, 1983.

Weiss, S. M. and Kulikowski, C.
A Practical Guide to Designing Expert Systems
Rowman & Allanheld, pp 194, March 1984

Addresses a number of practical issues in the building of expert systems. Only
classification-type problems are covered.

Winston, P.
Artificial Intelligence
Addison-Wesley Publishing Company, 1984.
Books by Rich and Winston are highly recommended for the novice.

8 Relevant Journals and Conferences

Al Journal - Artificial Intelligence Jounal
Mostly papers on basic research. Quarterly Jounal.

The Al Magazine -
Papers are fairly general. Provides interesting reports on research in various
institutions. Published quarterly.

Advances in Engineering Software -
Forthcoming issues may have some articles in the area. Published quarterly from UK.

BCS SGES - British Computer Society Specialist Group in Expert Systems
BCS SGES holds a conference every year on applications of expert systems.

CAD - Computer Aided Design, Published in U. K.
Papers in this journal deal mostly with work in European countries

C. . M. E. - Computers in Mechanical Engineering
Papers relevant to engineering design are published. Published quarterly.

Computers and Structures
Forthcoming issues may have some interesting papers in the area. Published monthly.

EXPERT SYTEMS : The International Journal for Knowledge Engineering
New journal. A number of application articles are scheduled to appear in the coming
year. Published quarterly

IEEE - Institute of Electrical and Electronics Engineers
IEEE holds a number of conferences in this area. The IEEE-ACM DA conferences have
many interesting papers in the area.

IFIP - international Federation for Information Processing
Lots of conferences in the area are held by IFIP. For example, see the call for papers on
page 11, SIGART, October 1983.

IJCAI - International Conference of Artificial Intelligence
Held once every two years. Many papers in applied Al are presented.

NCAI - National Conference on Artificial Intelligence
A yearly conference on Al.

SIGART - ACM Special Interest Group in Artificial Intelligence
A quarterly newsletter which deals with a wide variety of topics in Al.

9 Acknowledgments

Professor Fenves made a number of useful comments on various drafts of this paper. His
encouragement for the compilation of this bibliography is greatly appreciated. Mike Rychener made
many useful comments on a preliminary version of the paper.

Status of Work Toward Revision of Programming Language Fortran

by
Jerrold L. Wagener
Amoco Production Company
Tulsa, Oklahoma

May 1984

Please direct comments or questions concerning the technical content of
this report to: Jerrold L. Wagener; Amoco Research Center; PO Box 591;
Tulsa OK 74012; (918) 660-3978

Xk & % * * * % * * &k & * * * * &« * & * * * * * * *k Kk

The Chairman of Fortran Standards Committee X3J3, Jeanne Adams, would like to
call your attention to a series of Fortran Forum meetings to be held in the
summer and fall 1983. The first two of these one day informational meetings
have been scheduled for Wednesday, August 8, at E G and G, Idaho Falls; and
for Monday, August 13, at Colorado State University, Fort Collins. More
detailed announcements of these Forums appear on pages 43 and 45. Additiomnal
information can also be obtained by calling Jeanne Adams at (303) 491-7596.
Jeanne would also like to hear from other organizations that would be interes-
ted in acting as host for a Fortran Forum.

Observers are welcome to attend regular meetings of X3J3. Future meetings of
the committee are scheduled for 6 to 11 Aug 1984 in Jackson WY; 12 to 16 Nov
1984 in Fort Lauderdale FL; February 1985 in northern California; and May 1985
in Champaign-Urbana IL. Because of limitations on meeting space, anyone who
would like to attend an X3J3 meeting should request further information in
advance from the X3J3 Vice Chairman, Martin Greenfield, at (617) 671-2912.
International meetings are also planned for 1 to 5 July 1985 in Germany; and

8 to 12 July 1985 in England.

*k % % * % &k * * * % * & & * * * & * * * * * * * * k¥

PLEASE COMPLETE THE SURVEY on pages 2, 3, and 4.

65

PR UE IS GED EmES S SEy

FORTRAN 8x SURVEY
FPORTRAN STANDARDS COMMITTEE X3J3
Jeanne Adams, Chair, X333

This questionnaire has been developed to survey the opinions of
the user community on the new features and the architecture
proposed by X3J3 for 4inclusion in the next draft PORTRAN
standard. The results of this and other surveys and question-
naires will be used by the X3J3 committee in assessing the
strength of each new facility for inclusion in a draft standard.
Information about the new features is contained in “PORTRAN
Information Bulletin®", Number 1. Return your questionnaire to:

Andrew Johnson

MS 10C17-3

Prime Computer Inc.

500 01d Connecticut Path
Framingham, Ma 01701

RESPONDENT PROFILE
Check those that apply.

Type of Organization: Arc you employed as:
Scientific Professional Programmer
Engineering Problem Solver (Occasional)
Commercial Compiler Writer/Implementor
Government Home Computer User
Vendor (Computer) Manager of Software
University Other

Other (state)

Was FORTRAN your first computer language? Yes No,

What is your “language of choice?"

Name the vendor and operating system currently used.

Do you now use: FORTRAN 66 _ ____ FORTRAN 77____ 77 Subset___
Do you subscribe to: FORTEC SIGPLAN SIGNUM
Have you seen the FORTRAN Information Bulletin summarizing the
proposals currently under consideration for FORTRAN 8x? Yes No
List two features for FORTRAN 8X that--

You want in FORTRAN: You do not want in FORTRAN:

1. 1.
2. 2.

R S R T e R E E S E E e S E e E e e e E S e E E R e e R E S S E S SRR EEE SRS EES
Name Address

Tel. No.

66

CHECKLIST ON FORTRAN 8x FEATURES

Array Processing Features_|

WHERE Construct

IStrongly |

IApprove
|

|Approve
|

IDo not [Strongly |IDc¢
|Approve :Disapprove:Cax
|

Data Structures

New Source Porm(free)

Significant Blanks

Recursion

Precision Specification

Environmental Intrinsics__

Loop Constructs

Enhanced CALL

CASE Construct

Internal Procedures

IMPLICIT NONE

Entity Oriented Decl.

Derived Data Type

MODULES

Event Handling

Varying CHARACTER Length___

(Note it has been removed)

Bit Data Type (Note that
it has been removed)

Macros (Note that it
has been removed)

Archiﬁecture with deprecated

Features (next page)

—m == —_——= s 13
R R R R E R E E E R R S S R S R s S e E E E R EE E E EE E S E E S E S SRS EE S SRS EEES

General Impression
of FORTRAN 8x

67

DEPRECATED PEATURES

Which of these features would you make a candidate for deletion
in the 199X FORTRAN standard, note FORTRAN 9x. All of these
features will be retained in 198x. Do you want these removed
from 199x, retained in 199x or are you undecided? Check one.

Removed |Retained! Unde-

from |

199x
FORTRAN 77 Fixed Position Source Prom |

in
199x

| cided
|

Alternate RETURN |

Assumed Size Dummy Arrays |

Passing Scalar to Dummy Array |

Specific Names (not Generic) for Intrinsics |

Statement Functions |

BLOCK DATA Program Unit |

Arithmetic IF Statement |

ASSIGN and Assigned GO TO Statements l

COMMON Statement |

Computed GO TO Statement |

DATA Statement |

DIMENSION Statement |

DOUBLE PRECISION Data Type |

ENTRY Statement |

EQUIVALENCE Statement |

FORTRAN 77 DO Statement l

PAUSE Statement |

68

Please include any comments you wish to make concerning FORTRAN
8x features and features marked as candidates for deletion from
FORTRAN 9x on the reverse side of this page.

Status of Work Toward Revision of Programming Language Fortran

by
Jerrold L. Wagener
Amoco Production Company
Tulsa, Oklahoma

May 1984

TABLE OF CONTENTS
1. Introduction 6

1.1 Array Operations

1.2 Numerical Computation
1.3 Derived Data Types
1.4 Modular Definitions
1.5 Deprecated Features

2. Language Summary 9

2.1 Full Language Overview
2.2 Array Processing

2.3 Numeric Data Type
2.4 Derived Data Types
2.5 Modules

2.6 Procedures

2.7 Program Source Form
2.8 Control Constructs
2.9 Input/Output

2.1
2.1

1 Other Features

3. Language Architecture 33
3.1 The Core
3.2 Modules

3.3 Deprecated Features
3.3.1 Summary of Deprecated Features
3.3.2 Storage Association
3.3.3 Redundant Functionality
3.3.4 Other Deprecated Features

69

This report describes the current status of the technical work of X3J3 since
the adoption of X3.9-1978 (Fortran 77). This work, informally referred to as
"Fortran 8x", is incomplete and tentative, and is subject (and likely) to
change prior to issuing a draft proposed standard (expected to occur no ear-
lier than 1985). The purpose of this report is to summarize the status of
current work by X3J3 relative to a future revision of the current Fortran
standard. A list of criteria for this revision is summarized in section 3.1
of this document. Comments on any and all aspects of the features described
in this report are welcomed.

1. INTRODUCTION

Among the additioms to Fortran 77 contemplated for the next Fortran standard,
five stand out as the major omes: °

array operations

improved facilities for numerical computation
programmer defined data types

facilities for modular data and procedure definitions
the concept of "deprecated" features

A number of other additions are also included in Fortran 8x, such as improved
source form facilities, more control constructs, recursion, dynamically allo-
catable arrays of any size, and event handling.

No Fortran 77 features will be removed; it remains X3J3“s intent that any
standard-conforming Fortran 77 program will be a standard-conforming Fortran
8x program, and that, with any exceptions clearly listed in the document, new
Fortran 8x features can be compatibly incorporated into such programs.

1.1 Array Operations

Computation involving large arrays is an extremely important part of engi-
neering and scientific uses of computing. Arrays may be used as atomic enti-
ties in Fortran 8x, and operations for processing whole arrays and sub-arrays
(array sections) are included in the language for two principal reasoms: (1)
these features provide a more consise and higher level language that will
allow programmers to more quickly and reliably develop and maintain
scientific/engineering applications; (2) these features can significantly
facilitate optimization of array operations on all computer architectures.

The Fortran 77 arithmetic, logical, and character operations and intrimsic
functions are extended to operate on array-valued operands. These include

70

whole, partial, and masked array assignment, array-valued constants and
expressions, facilities to define user-supplied array-valued functions, and
new intrinsic functions to manipulate arrays, extract general sections, and to

support extended computational capabilities involving arrays (e.g., array
reduction).

1.2 Numerical Computation

Scientific computation is one of the principal application domains of Fortran,
and the guiding objective for all of the technical work is to strengthen For-
tran as & vehicle for implementing scientific software. Though nonnumeric
computations are increasing dramatically in scientific applications (and &
number of the tentative additions to Fortran reflect that trend), numeric com-
putation remains the workhorse. Accordingly, proposed additions include por-
table control over numeric precision specification, inquiry as to the charac-
teristics of numeric information representation, and improved control of the
performance of numerical programs.

1.3 Derived Data Types

"Derived data type" is the term given to that set of features in Fortran 8x
that allows the programmer and package writer to define arbitrary data struc-
tures and operations on them. Data structures are user-defined aggregations of
intrinsic and derived data type fields. Intrinsic operations on structured
objects include comparison, assignment, input/output, and use as procedure
arguments. The derived data type facilities may be used, without further oper-
ation definition, as a simple data structuring mechanism. With additional
operation definitions, derived data types provide an effective implementation
mechanism for data sbstractionms.

Procedure definitions in Fortran 8x may appear internally in a program unit,
and as such may be used to define operations on derived data types. Internal
procedures take essentially the same form as external procedures, with addi-
tional provisions for their use as infix operators. New operator symbols may
be defined, and the intrinsic operator symbols may be overloaded for use with
new data types. Internal procedures may be used simply as & mechanism for
defining procedure packages (whether or not new data types are involved), and
may be used for new operations on objects of intrinsic data types.

4

1.4 Modular Definitions

There is no way in Fortran 77 to define a global data srea in one place and
have all the program units in an application use that definition. In addi-
tion, the ENTRY statement is awkward and restrictive for implementing @
related set of procedures, possibly involving common data objects. And
finally there is no weans in Fortran by which procedure definitions, espe-
cially interface information, may be made known locally to a program unit.
All of these deficiencies, and more, are remedied by a new type of program
unit that may contain any combination of data element declarations, derived
data type definitions, procedure definitions, and procedure interface informa-
tion. This program unit, called a MODULE, may be considered to be a generali-
2ation of and replacement for the BLOCK DATA program unit. A module may be
referenced by any program unit, thereby making the module contents available
to that program unit. This provides vastly improved facilities for defining
global data areas and procedure packages. It also provides a convenient
mechanism for encapsulating derived data type definitions (including opera-
tions defined on them), i.e., for encapsulating data abstractions.

1.5 Deprecated Features

With the advent of superior facilities, the use of certain older features of
Fortran should be discouraged, and some of these features should possibly
eventually be phased out of the language. For example, the numeric facilities
alluded to above provide the functionality of DOUBLE PRECISION; with the new
array facilities non-conformable argument association (such as passing an
array element to a dummy array) is unnecessary (and in fact is not useful as
an array operation); BLOCK DATA units are obviously redundant and inferior to
modules. It is the current intent to identify such "superseded” facilities as
deprecated (according to Webster: "mild or regretful disapproval; lower esti-
mated value') features. Deprecated features will remain part of Fortran 8x;
it is the intent that complete upward compatibility be maintained between For-
tran 77 and Fortran 8x. Deprecated features may, however, be candidates for
removal from the version of the Fortran standard following Fortran 8x. It is
the intent that in this way official notice is given many years prior to
removing & feature from the standard language. In Section 3.3 below, the pro-
posed deprecated features are identified, together with possible functional
replacements.

72

2. LANGUAGE SUMMARY

In this section a summary of proposed Fortran 8x features is given, with
emphasis upon new features. The description uses a form of BNF slightly modi-
fied from that used in the Fortran 77 standard (X3.9-1978). Metasymbols are
italicized, and comprise

is introduces a syntactic class definition
or introduces s syntactic class alternative
{] encloses an optional item

[1]... encloses an optionally repeated item

The principal difference between this form of BNF and that in X3.9-1978 is
that each definition starts with the nsme of the syntactic class that is being
defined; the actual definition follows the metasymbol is or or. In X3.9-1978,
only the right-hand side appeared, with informal text introducing the class
being defined. Lower-case words, including hyphenated words, are syntactic
class names. Upper-case is used for words that actually appear in the Fortran
code (terminal symbols), even though lower-case is also allowed in the new
source form. Terminal symbols that may have imbedded blanks (e.g., ENDIF and
END IF) are shown in only one form. There is no attempt to be completely com-
prehensive in this summary, especially with Fortran 77 features. The syntax
should be considered illustrative and incomplete; in the interest of brevity,
some syntactic items (e.g., integer-expr) are not defined, and hopefully are
adequately clear from context. Both syntax and semantics are subject to
change prior to issuing a draft standard.

Each of the following sub-sections has the three part form of (1) a general
discussion of the particular topic of the sub-section, (2) the BNF descrip-
tions of the features under discussion, and (3) a set of notes and examples
that provide specific.points of information. Where new intrinsic functions are
listed in the syntax only the function names are given (not the argument
lists); following the names are brief descriptions of the functionalities.

2.1 Full Language Overview

The following highly condensed summary of the full language is provided so
that one can see at a glance the major components of proposed Fortran 8x. So
that it is clear which are the proposed new features, these are italicized
(along with the metasymbols) and placed first (or occasionally last) in a list
of syntactic class alternatives. Unitalicized items are essentially unchanged
from Fortran 77, and are not further described in this informstion §ulletin.
The new features are all described in greater detail in the succeeding sec-
tions. The deprecated Fortran 77 features are last in any list of syntactic
class alternatives. So that it is clear in this section which features are the
deprecated ones, ob is used in place of Or in these cases. (The italicizing

73

of new features, and the use of ob, occurs only in this section on full
language overview.)

program-unit /s unit-heading
[use-statement]...
[local-specification }...
[executable-construct]...
[internal-procedure |...
END [unit-type [unit-name]]

unit-heading is MODULE module-name
or HANDLER handler-nome
or [PROGRAM program-name]
or function-heading
or subroutine-heading
ob BLOCK DATA identifier

local- is type-definition
specification or procedure-interface
or declore-statement
or REFER refer-name (ottribute [,ottribute]...)
or type-declaration
or IMPLICIT implicit-list
or PARAMETER (constant-definition-list)
or SAVE [save-list]
or INTRINSIC procedure-name-list
or EXTERNAL procedure-name-list
or FORMAT (format-specification)
ob COMMON [/common-block-name/] common-1list
ob DATA initial-value-list
ob DIMENSION dimension-list
ob EQUIVALENCE equivalence-list
ob statement-function

declare- is identifier [,identifier]... : attribute [,attribute]...
statement
attribute is non-char-type

or intent-attribute

or optional/-attribute

or REFER (refer-name)

or CHARACTER [(length)]

or DIMENSION (dimensions)
or INITIAL (constant-expr)
or CONSTANT (constant-expr)
or SAVE

74

or INTRINSIC
or EXNTERNAL

]

type- is CHARACTER(*len] var-decl[*len] [,var-decl[*len]]...
declaration or non-char-type var-decl [.,var-decl]...

non-char-type is floating-point-data-type
or TYPE (type-name)
or EVENTMARK
or INTEGER
or LOGICAL
ob DOUBLE PRECISION

var-decl is identifier [(dimensions)])

executable- /s block-case
construct or block-do
or block-if
or basic-statement
ob fortran?7-do-loop

basic- is array-aossignment
statement or identify-statement
or event-handling-statement
or EXIT [construct-name]
or CYCLE [construct-name]
or assignable-object = expr
or io-stmt
or GO TO lsbel
or CALL subroutine-name[([3ctual-argument-list])]
or CONTINUE
or RETURN [return-code)
or STOP [stop-code]
or 1IF (scalar-logical-expr) basic-statement
ob IF (arithmetic-expr) branch-list
ob ASSIGN label TO integer-variable
ob GO TO integer-variable [[,] (label-list)]
ob GO TO (label-1ist), integer-variable
ob PAUSE [pause-code]

assignable- /s [derived-data-type-object %]... object
object

object is array-object
or scalar-object

expr /s [unary-operator] basic-expr

75

basic-expr is value

Notes

or constant-name

or assignable-object

or function-name ([actual-arg-list])

or basic-expr binary-operator basic-expr
or (expr)

Statement labels are not indicated in this summary;
any statement may be labelled.

The declare-statement allows "entity-oriented" declarations,
where the entity name is given first, followed by a list of
its attributes. This style of declaration complements the
"attribute-oriented” declaration style of Fortran 77.

The ENTRY statement is deprecated and not listed here.

It is used to partition the local-specifications and
executable-constructs in a program unit: internal-procedures
provide equivalent functionality.

The MODULE program-unit may not contain a block of
executable-constructs (except as internal-procedure bodies)
(see Section 2.5 below).

BLOCK DATA program-units may contain only local-specifications.

Note the END statement extensions, even though they are not
italicized.

Procedure-headings have minor extensions, even though they
are not italicized (see Section 2.6 below).

Note that, because an assignable-object may be an array or

array section, expressions and assignments are considerably
extended, even though they are not italicized (see Section

2.2 following).

Restrictions on ordering of local-specifications are not
shown here.

The EXIT and CYCLE statements may only appear within block-do

constructs; the RETURN statement may only appear within (internal
and external) function and subroutine subprograms.

76

= The REFER statement associates a refer-name with a collection of
attributes. The REFER (refer-name) attribute may be used in
subsequent attribute lists to represent the collection.

2.2 Array Processing

The proposed array facilities view whole arrays and array sections as atomic
computational objects from which expressions can be composed and to which
assignment can be made. That is, a basic aim of array processing is to
operate where possible directly on the arrays themselves rather than on their
elements individually. All scalar operations are extended to conformable
arrays, operating on them in an element-by-element fashion. Both user-written
and intrinsic functions may return array values. Operations on whole arrays
are thus made available in functional foim.

The ability to manage and control storage of arrays has been significantly
enhanced by addition of the following features: (1) automatic arrays (local
arrays with variable dimensions) are created on entry to a procedure and des-
troyed on return; (2) allocatable arrays are created by execution of an
ALLOCATE statement, and are destroyed by execution of a FREE statement or by
return from the procedure in which they are created; (3) assumed shape arrays
(dummy arrays) have implicit dimension information passed during a call,
somewhat analogously to the passing of length information to Fortran 77
CHARACTER*(*) dummy arguments.

array-object is array-name
or array-section [(substring-range)]

array-section is array-name (subscript-range[,subscript°rtn;c)...)
subscript-range /s integer-expr
or [integer-expr]:[integer-expr][: integer-expr]
or one-dim-integer-array-expr
substring-range /s [integer-expr]:[integer-expr]
array- Is [constructor-value [,constructor-value]...]

constructor
(note: outer brackets part of- constructor)

constructor- is scalar-expr
value or integer-expr : integer-expr [: integer-expr)
or repeat-factor array-constructor

repeat-factor is integer-expr

77

array-assignment /s array-object = array-expr
or WHERE (array-logical-expr) array-object = array-expr
or WHERE (array-logical-expr)
[array-object = array-expr]...
[OTHERWISE
[array-object = array-expr]...]
END WHERE

or FOR ALL (index-range -[,index-range]... [,logical-expr])
assignment-statement

index-range is integer-variable = integer-expr:integer-expr/[:integer-expr]
identify- is IDENTIFY (range» virtual-array = parent-array

statement

range is [lower-bound:] upper bound [,[lower-bound:]upper-bound]...
virtual-array is array-name (integer-variable [,integer-variable]...)
parent-array is array-name (linear-mapping [,linear-mapping/...)

array-intrinsic- /s arithmetic-logical-reduction-function
function or inquiry-function

or construction-function

or mwmanipulation-function

or geometric-location-function

or MATMUL matrix multiplication
arithmetic- is SUM sum all elements of an array
logical- or PRODUCT product of all elements
reduction- or MAXVAL maximum value in an array
function or MINVAL minimum value in an array
or COUNT number of true values in an array
or ANY true if any value in array is true
or ALL true if all values are true

or DOTPRODUCT dot product of two arrays

inquiry- is RANK rank of argument array
function or EXTENT size of array in each dimension
or SIZE total number of elements in array
or LBOUND lover bound in each dimension
or UBOUND upper bound in each dimension
construction- is SPREAD replicates array by increasing rank
function or REPLICATE replicates by increasing extent
or MERGE merges two arrays, using e mask

78

or DIAGONAL creates a diagonal array

or PACK packs array into a vector, with mask

or UNPACK inverse of PACK

or SHAPE changes the shape of a given array
manipulation- is CSHIFT circular shift of argument array
function or EOSHIFT end-off shift of argument array

or TRANSPOSE matrix transpose of argument array
geometric- is FIRSTLOC locate first true element
location- or LASTLOC locate last true element
function or PROJECT select masked values from array

Notes and Examples -
- Arrays of zero size are permitted.

- Two arrays are conformable if they are the same shape (same
rank and same extent in each dimension).

- In executing array assignment statements the entire right hand
side is evaluated before any assignment is made to the target
array. This is significant when the same array (or sections of
the same array) appears on both sides of the assignment operator.

- Element-by-element computation means that the operation takes
place many times (all logically in parallel), once for each pair
of corresponding elements of the operands, and the result is an
array conformable with the operands. For example,

real A(100), B(100)
A=A+ B*3 .0 + sin(B)

performs A(I) = A(I) + B(I)*3.0 + SIN(B(I)) for all I between 1
and 100. Arithmetic, logical, and character operators, and scalar
intrinsic functions operate in this manner.

- Whole array operations may be masked by FORALL and WHERE
statements (and WHERE blocks), avoiding computation on certain
elements and leaving portions of the target array unchanged:

real A(100,100), B(100,100), THRESHOLD

where (B.ne.0) A = A/B | avoid zero-divide
where (A.gt.THRESHOLD) A = THRESHOLD | flatten peaks
forall (I=1:100,J=1:100,I.ne.J) A(I,J) = 0.0 ! keep diag

79

- Array-valued functions are analogous to scalar-valued functions:

real function CONCAT(A,B)
real A(:), B(:), CONCAT(size(A)+size(B))
CONCAT(1:size(A)) = A
CONCAT(size(A)+1:) = B

end function CONCAT

- An array-constructor forms a one-dimensional array from scalar
values (note that 4rray construction employs square brackets as
delimiter symbols). This may be "shaped” into multi-dimensional
arrays with the SHAPE intrinsic function. One use of
constructors is to create array constants:

integer A(10) .
A=1[1,2,3,4,5,0,0,0,0,0] '!or A= [1:5,5{0]]

- Generally wherever & whole array may be used an array section may
be used. Examples of array sections of REAL A(8,8), B(10) are:

B(5:1:-2) ! elements B(S5), B(3), B(1l)
AC1:7:2,2:8:2) ! one color

A(2:8:2,1:7:2) ! on a checkerboard
A(1:4,:) ! upper half of A

- Sub-arrays and general sections may be selected and given new
"virtual array" names by using the IDENTIFY statement:

real C(1:100,1:100), D(1000)
identify «<1:100> DIAG(I) = C(I,I)

Since IDENTIFY is an executable statement, the virtual array
definition can be changed dynamically during execution:

identify £1:1000» DIAG(I) = D(1001-1)
- Example of the use of assumed-shape arrays:

function XYZ (A,B)
real A(:,:), B(-1:,5:)

In Fortran 77 this would have to be accomplished with something
like:

FUNCTION XYZ (A,B,I1,J,K,L)

REAL A(I,J), B(-1:K,5:L)

= The concepts of reduction, construction, sanipulation, and

80

geometric-location correctly suggest that the array intrinsic
functions provide general operations on sultidimensional arrays.
Only the functions MATMUL, TRANSPOSE, and DOTPRODUCT are
specialized to matrix/vector operations. Following are sowme
examples using array intrinsic functions, assuming the
declarations:

real X(N), Y(M), T(M,N), E(M,N)

complex C(N,N)

Note that some operations may he masked (mask=), dim=1 specifies
operations on columns, and dim=2 specifies operations on rows.

Zx.' = sum(X,mask=X.gt.0.1)

L SR LV

‘Z cx;-x)t = sum((X-sum(X)/N)**2)

c.‘. .
~erx {;’ ‘,x‘} = maxval(matoul(abs(C),X)/X)

1248 X

radii x;= 5‘_’63)‘] of Gershgorin's circles, i=1,N

X = sum(abs(C),mask=.not.diagonal(.true.,N), din=2)

3 (‘ \
chi-squared statisticX‘ Z__‘J'_c‘),) where t.-,-:(%{;\)c(%é;i)/(z *u)
L. €45 (9
X = sum(T,dim=1) °*) ! column sums
Y = sun(T,dim=2) ! row sums
E = spread(Y,2,N)*spread(X,1,4)/sum(T) ! outer product
CHI_SQ = sum((T-E)**2/E)

- Examples of queries without loops or conditional code on:

real T(M,N) { test scores, M students with N tests

top score for each student: maxval(T,dim=2)
no. scores above average: count (T.gt.sum(T)/size(T))
lowest score above average: minval (T,mask=T.gt.sum(T)/size(T))

any student all above average? any(all(T.gt.sum(T)/size(T),dim=2))

81

2.3 Numeric Data Tvpe

These facilities give the programmer portable control over the specificzation
of real and complex data objects; they extend the REAL and COMPLEX type state-
ments. The environmental-intrinsic-functions provide information that models
the processor-supplied numeric system. They provide a portable means for
adapting numeric algorithms to various arithmetic environments.

floating-point- is REAL [(float-point-attr[,float-point-attr])]
data-type or COMPLEX [(float-point-attr[,float-point-attr])]

float-point-attr /s [PRECISION10=] attribute-value
or [EXP_RANGE=] attribute-value

attribute-vaiue is integer-constant-expr
or *

real-constant-char /s REAL_CHAR [(float-point-attr[,float-point-attr])] letter

floating-point- is ACTUAL_PREC (floating-point-argument)
inquiry-function or ACTUAL_EXP_RANGE (floating-point-argument)

environmental- is RADIX model base for numbers
intrinsic-function or PRECISION number of significant digits
or MINEXNP smallest exponent value
or MAXEXP largest exponent value
or HUGE largest number of argument type
or TINY smallest positive number
or EPSILON positive number small relative to 1.0
or EXNPONENT exponent value of argument
or SCALE scale argument by power of base
or NEAREST different value nearest to argumeat
or FRACTION fractional part of argument
or SETEXPONENT specify exponent part of argument
or ABSSPACE absolute spacing of numbers near argument
or RECSPACE reciprocal of relative spacing

Notes and Examples -

= The floating point attributes provide specifications for
minimum numeric properties of the processor-supplied floating
point system used to implement the relevant data objects.

- The integer constant expressions in the floating point attributes
may reference the functions ACTUAL_PREC and ACTUAL_EXP_RANGE,
which return the actual precision and actual exponent range
for the given datum.

82

= In any given floating-point-data-type definition each
float-point-attr alternative may appear at most once; if
the float-point-attr keywords are not used, these attributes
must appear in the order listed in the above definition of
float-point-attr.

= A type specification with an attribute of, for example, REAL(10),
for an entity X is a requirement that X be represented by a
processor data type that has at least 10 decimal digits of
precision. The uses of X in expressions, say, determ:ines the
precision of the arithmetic operations. Such a specification
provides a portable method of indicating that <he algorithm
requires at least 10 decimal digits of precision.

- The function value ABSSPACE(X) for example can be used to
terminate an iteration in a portable way by requiring that the
absolute relative difference between two iterates, X and Y, 1is
less than ABSSPACE(X) - that is, terminates the iteration when
abs (X-Y).le.absspace(X):

do; if (abs(X-Y).le.absspace(X)) exit
repeat

- A common difficulty with transporting numerical software from
machine to machine is the difficulty with changes of precision,
say from single precision on one machine to double precision
on another. This problem particularly arises for the conversion
of constants, which are typically spread throughout & program
and cannot be easily converted when the precision of the data
types is changed. For instance, consider the constant 1.1 which
cannot be represented exactly on a binary (or hexadecimal)
machine. When changing from single precision to double precision
the constant 1.1 must be rewritten in the program as 1.1D0 in
order to obtain the double precision value of this datum. Using
the REAL_CHAR specification to specify an exponent character,
the precision of all constants that use this exponent character
can be readily changed.

- Another common problem in writing portable software is the safe
and accurate range conversion of floating point variables to
specified forms. For example, to determine the square root of a
number X, the usual Newton's iteration converges too slowly to be
a viable algorithm if the initial iterate is too far from the
square root. Using the intrinsic functions FRACTION and EXPONENT,
the interval over which the iterates can range can be drastically
reduced, from which the square root can be efficiently computed.

83

From this result and EXPONENT(X) the square root of X can be
formed using the SETEXPONENT intrinsic function. Thus, the
program would look like:

! Perform the range reduction on X, assuming X is positive.

IEXP = exponent (X)
F = fraction(X)
if (wod(IEXP,2).eq.1) then; IEXP=IEXP+1; F=F/radix(X); endif

! Now X = Frradix(X)**IEXP, IEXP is even, and the square root

! of F is in the interval [1/radix(X)**2,1). Now find SF, the
! square root of F, and reconstruct the answer from SF and IEXP:

ANSWER = setexponent (SF,IEXP/2)

2.4 Derived Data Types

The structure of a derived data type is a programmer-defined aggregation of

fields,

each field being a data element of primitive type (or another derived

data type). The aggregation pattern may be fixed or variant (that is, par-
tially dependent on one of the prior fields). A derived data type is defined
with a TYPE construct; variables of this type may be declared in the normal

manner.

Intrinsic operations on derived data objects are assignment, equality

comparison, input/output, and use as procedure arguments. These intrinsic
operations may be augmented with additional programmer-defined operations.
The structure qualification symbol (for referencing a component of a struc-
tured object) is the percent sign (%).

type-definition is TYPE type-name

[field-declaration]...
[variant-case-block]
END TYPE [type-name]

variant-case-block is SELECT CASE (tag-field-name)

[CASE case-selector
[field-declaration]...]...
[variant-case-block)
END SELECT

field-declaration is type-declaration

or declare-statement

component-selection /s structured-object-name % field-name

84

type-constructor Is type-name (expr[,expr]...)

type-constant is type-name (constant-expr[,constant-expr]...)

Notes and Examples -
- Functions may return derived data type values.

- The following definition of PLOT_OBJECT defines a data structure
made up of two fields of type real (the location in two-space),
one field indicating the nature of the object, and finally the
object data itself. In this case the object may be either a point
symbol or a line segment.

type PLOT_OBJECT
X0,Y0: real ! object location
CODE: integer ! type of object
select case (CODE)
case (1); SYMBOL: character ! point symbol
case (2); X1,Yl: real ! line segment
end select
end type PLOT_OBJECT

Let P,Q: type (PLOT_OBJECT) declare two variables P and Q.
Then the following expressions are examples of valid operations:

(PRXO + Q°%X0) / 2 ! mid-point of P and Q along X
if (P%CODE.eq.Q.CODE) then ! compare P and Q CODE fields
P = PLOT_OBJECT(0.,0.,1,"+") ! give P an initial value
read *, Q ! input value of Q

2.5 Modules

Modules are proposed program units for the packaging of data type definitions,
data object declarations, procedure definitions, and procedure interfaces.
Modules are not themselves executable. A module that contains only data type
definitions and data object declarations serves as a global data module. One
that contains only procedure definitions and interfaces serves as 8 procedure
library. One that contains data structure definitions and ope:lt%ons
(internal procedures) on them serves as a data sbstraction sechanism. A
module may serve as a language extension mechanism by containing new operation
definitions on intrinsic data types.

85

The use-statement "attaches" the specified module to the using program unit,
thereby making the public definitions and declarations in the module available
to the program unit. The use-statement without the module-name is for
internal procedures specifying access to its host's definitions (note that in
the absence of & use-statement specifying otherwise, all host definitions are
sutomatically available to an internal procedure).

Through options on the use-statement, a using program may limit its access to
definitions in the module and may rename the entities it uses. On the other
hand, the writer of a module has complete control over which module entities
are public (visible to using programs) and which are private; in the absence
of explicit specification to the contrary, the default is public. (The syntax
for specifying public and private is not shown, nor is the statement for spe-
cifying that the default visibility is private instead of public.)

use-statement fs USE[/module-name/] ONLY (access[,access]...)
or USE[/module-name/] [ALL[(rename[,rename]...)] ‘
[EXCEPT(identifier[,identifier]...)]]

access is identifier
or rename

rename is identifier = identifier

Notes and Examples -

- An example of the use of modules for defining global data
pools may be found in Section 3.3.2.4 below.

- A scheme for using modules to encapsulate procedure libraries
may be found in Section 3.3.2.5 below.

- The following is an example of the use of modules as a
mechanism for encapsulating data abstractions; in this case
the abstract data type is PLOT_OBJECT, defined above, with
two defined operations CONNECT and BISECT:
module PLOT_MODULE
! insert definition of type PLOT_OBJECT from previous section
! define an operation to connect two plot_objects with a
! line segment; CONNECT returns a PLOT_OBJECT value that is
! a line segment (CODE=2) connecting two given plot_objects

internal type(PLOT_OBJECT) function CONNECT(P,Q) operator(//)

86

P,Q: type(PLOT_OBJECT)

CONNECTY.CODE = 2

CONNECTWN0 = PX0
CONNECTYO = P°YO
CONNECTAX1 = QX0

CONNECTRY1 = Q%YO
! finished if P is a point symbol,
! otherwise use tail (X1,Yl) of P

! as the head (X0,Y0) of CONNECT
if (P'CODE .eq.2) then

CONNECT%X0 = P%X\1
CONNECTRYO = P%Y1
end if
end internal function CONNECT

! note that two plot_objects, A and B, can be connected
! using the infix operator notation A // B

! define an operation to bisect a line segment, with an "x";
! BISECT returns a point symbol PLOT_OBJECT value

internal type(PLOT_OBJECT) function BISECT(P)
P: type(PLOT_OBJECT)
BISECT = P ! return P itself if P is not a line segment
if (P.CODE.eq.2) then
BISECTRCODE =1
BISECT.SYMBOL = “x"
BISECT..\O = (PWX0+P%X1)/2
BISECTS,YO = (PLYO+P%Y1)/2
end if
end internal function BISECT

end module PLOT_MODULE
Any program unit may employ these definitions if it contains

the statement:
use /PLOT_MODULE/

2.6 Procedures

Procedures are allowed to be called with keyword actual arguments, called with
optional arguments, defined with argument intent (e.g., input only), and
called recursively. A keyword actual-argument is of the foyn KEYWORD=
actual-argument, where KEYWORD is a dummy-argument-name. This has three advan-

87

tages: (1) if dummy-argument name is wisely chosen, then keywording
effectively increases readability of the actual-argument-list, (2) keyworded
actual-arguments may be placed in any order, which eliminates order errors
(such as transposing two adjacent arguments) in actual-argument-lists, and (3)
arguments not needed on & particular call may be omitted.

Procedure interface information may be provided for any external or dummy
procedure, including procedures defined by non-Fortran means. This festure
gives dummy-argument information to calling programs (and for called func-
tions, function type information), which is needed for using keyword and
optional arguments. It also makes possible validation of actual argument
types and number. Procedure interfaces, via the INTERFACE block, may appear
directly in the specifications of calling programs. However, more often inter-
face information will be packaged in modules, which are then USEd by the
calling program.

In Fortran 8x, it is proposed that procedure definitions may be made within
any program unit. Such a procedure is called an "internal procedure” and is
known only locally within the program unit in which it is defined. The form
of internal procedures is identical to that of external procedures except for
the INTERNAL on the heading and END statements. Also, internal procedures
automatically inherit all host data and procedure definitions, unless such
inheritance is explicitly suppressed with the use of the USE statement (e.g.,
USE ONLY () suppresses all inheritance from the host). Internal functions
provide the same functionality as statement functions, but are more flexible
and not so restricted. A common use of internal subroutines will be as "remote
code blocks". Internal procedures are called in exactly the same way as
external procedures.

An important use of internal functions is to provide operations on derived
data types. Since infix operators are so common in scientific notation, an
option is provided with internal functions to allow them to be used as infix
operators. Similarly an option with internal subroutines allows the assignment
operator (=) to be used with programmer-defined data conversions. Thus, the
various features of internal procedures, together with derived data type defi-
nition and module encapsulation facilities, gives Fortran 8x a powerful and
flexible data abstraction mechanism.

function-heading is [RECURSIVE] [data-type] FUNCTION function-name
([dummy-argument-1ist]) [RESULT(identifier)]

subroutine-heading /s [RECURSIVE] SUBROUTINE subroutine-name
[([dummy-argument-1ist])]

procedure-reference /s function-name ([actual-argument-list])
or CALL subroutine-name [([actual-argument-list])]

88

sctual-argument-list is positional-argument-list [, keyword-argument list]
or keyword-argument-list

positional-argument- /s expr [, expr]...
list

keyword-argument- is dummy-argument-name= expr [,dummy-argument-name= expr]..
list

optional-attribute /s OPTIONAL
intent-attribute is 1IN

or OUT

or 1IN OUT

present-intrinsic- /s PRESENT (dummy-argument-name)
function

procedure-interface /s INTERFACE
[interface-description]...

END INTERFACE
interface- is function-heading
description [local-specification]...

or subroutine-heading
[local-specification]...

internal-procedure /s internal-procedure-heading
[use-statement]...
[local-specification]...
[executable-construct]...
[internal-procedure]...
END INTERNAL [unit-type[unit-name]])

internal- /s INTERNAL function-heading [OPERATOR (operator-symbol)]
procedure-heading or INTERNAL subroutine-heading [ASSIGNMENT)

operator-symbol is . identifier .
or intrinsic-operator-symbol
Notes and Examples -
= Arguments are optional, as specified by the OPTIONAL attribute;

the PRESENT function may be used to determine if a given optional
argument was actually supplied in the call.

89

No positional arguments may appear after the first keyword
argument.

OPERATOR functions have one or two arguments (the operands of
the operation); such functions may be called using either the
functional form or the infix operation form. The intrimsic
operator symbols (+, -, *, / #* // _AND., .OR., etc.) may
be overloaded. Alternatively any .name. form may be defined
as an operator symbol.

ASSIGNMENT subroutines have two arguments, the first one
being the left-hand-side of the assignment (the entity being
defined), and the second being the value to be assigned. The
usual assignment syntax (with the = sign) may be used in
assignment procedure calls.

In the case of both operator and assignment definitions,
the procedure body defines in detail the intended operations.

Note that internal procedures may be nested.

The RESULT identifier may be used with recursive functions to
remove ambiguity between recursive calls and function value
assignment (RESULT may also be used with non-recursive
functions, including OPERATOR definitions).

The attributes of procedure headings (INTERNAL, RECURSIVE,
etc.) may appear in any order.

See the preceding section for examples of internal procedures.

The following two examples illustrate recursion and the use
of the PRESENT function:

recursive integer function ACKERMANN(M,N) result (ACK)
M,N: integer
if (M.eq.0) then; ACK = N+1
elseif (N.eq.0) then; ACK = ACKERMANN(M-1,1)
else ; ACK = ACKERMANN(M-1,ACKERMANN(M,N-1))
end if
end function ACKERMANN

real function READNUM (UNIT,FMT)
UNIT: integer, in, optional
FMT: character(*), in, optional
LUN,IOS: integer
LUN = S; if (present(UNIT)) LUN = UNIT ! establish unit no.

90

if (present(FMT)) then
read (LUN,FMT,iostat=I0S) READNUM
if (I0S.ne.0) READNUM = 0

else
read (LUN,*) READNUM
end if
end function READNUM
! X = READNUM () reads from unit S, list-directed format
! X = READNUM (10) reads from unit 10, list-directed format
! X = READNUM (FMT= '(F10.2)') reads unit 5, format F10.2

- The above two examples are external procedures and, as such, the
routines calling them do not normally have any interface
information about them. In Fortran 8x, the use of an interface
block, which provides calling routines with interface information,
allows the compiler to check for correctly formed procedure calls.
The following example is an interface block that contains
interface information pertaining to the above procedures READNU}
and ACKERMANN. This interface block may be placed in either the

calling routine itself, or a module being used by the calling
routine.

interface
recursive integer function ACKERMANN(M,N)
M,N: integer
real function READNUM(UNIT,FMT)
UNIT: integer, in, optional

FMT: character(*), in, optional
end interface

2.7 Program Source Form

The Fortran 8x source form is completely column-independent, and
source lines (records) may be any length (a limit of 1320 characters
per source statement is, however, still the rule). Statements may be
separated on a line with the ";", "1" (not in & character context)
initiates a comment (either on a line by itself or following a
statement), and "S§" at the end of a line signifies continuation.
Blanks are significant characters, and identifiers may not contain.
embedded blanks; conversely, blanks must separate adjacent identifiers
and keywords. Identifier names may be up to 31 characters long and
may contain the "_" (underscore) character. Upper and lower case

may be used interchangeably (except in CHARACTER constants). Either
apostrophes or quotation marks may be used as character

constant delimiters.

91

The following is o more forma! description of much of the new source

form.

source

is |[statement ;]... [statement-start] [comment] eol
or [statement-continuation] [comment] eol

statement-start /S statement [;]

or statement-fragment &

statement- is [&] statement-fragment [; [source]]
continuation or [&] statement-fragment &

comment is ! [character]...

character- is ' [character]... '

constant or " [character]... "

Notes

A statement-fragment is & contiguous portion of a statement
(and may be null). A statement-fragment may end in the midst of
a (continued) character constant or H, apostrophe or quotation
mark edit descriptor only if there is no trailing comment.

If a statement-fragment (in a statement-continuation) is preceded
by a "&", any blanks preceding that "&" are insignificant.

The eol stands for the end of a8 source line of text.

If the underscore is used in an identifier it must not be the
first character of the identifier;
the underscore is a significant character.

1f the character used to delimit a character-constant (' or ") is
to appear within the constant itself, it msust appear exactly
twice in succession (i.e., " "" " is the same as ' " ' and

'''" ' is the same as " ' ").
Many of the examples in this document illustrate aspects of
the Fortran 8x program source form.

92

2.8 Control Constructs

Two control constructs are added, one for loop control and one for case selec-
tion:

block-do is DO [(loop-control)]

[executable-construct]...
REPEAT

loop-control is integer-variable = integer-expr, integer-expr [,integer-expr]

or integer-expr TIMES

block-case is SELECT CASE (enumerable-expr)

{CASE case-selector
[executable-construct]... ...
END SELECT

case-selector is (value-range [,value-range]...)

or DEFAULT

value-range /S constant-expr

or [constant-expr]:[constant-expr]

Notes -

Branches into block constructs are not allowed.

The block-do specifies repetitive execution of its block of loop-statements
until the loop-control (if any) is satisfied, or until an EXIT statement is
executed.

An EXIT statement is allowed only within a block-do (it may be in a block-if
or block-case that is one of the loop-statements); its execution terminates
execution of the innermost block-do containing the EXIT statement.

Execution of the CYCLE statement causes the next iteration of the loop to
commence.

The indexed form of loop-control is semantically identical to the Fortran 77
DO statement with an index of type integer.

Enumerable-expr is an expression of type integer, character, or logical;
constant-expr is a constant expression of the same type as enumerable-expr.

The case-selectors sust be disjoint in any given block-case.

93

CASE DEFAULT is optional and may not appear more than once in any given

block-case; if present, it may appear in any position among the sequence of
CASE clauses.

The block-case causes execution of the block corresponding to the case-
selector that contains the value of the enumerable-expr; if there is no such
case-selector then the CASE DEFAULT block is executed; if there is no
matching case-selector and there is no DEFAULT block, an error exists.

Block constructs (if, do, case) may be named by placing an alphanumeric name
to the right of each of the control statements (e.g., do, repeat, else if,
etc.). EXIT and CYCLE statements may contain the name of the block-do con-
struct to be exited or cycled.

2.9 Input/Output

Input/Output additions include several new OPEN statement specifiers, name-

directed I/0, and new edit descriptors.

position-specifier /s POSITION= position-expr

action-specifier is ACTION= action-expr

delimiter-specifier /s DELIM= delim-expr

name-directed- is [FMT=] w*

format-specifier

name-directed-input s variable-name = data-value [, data-value]...

slash-edit Is [repeat-count] /
engineering-edit is [repeat-count] EN width . digits [E exponent]
Notes -

= The position-specifier specifies the position of the file upon open;
position-expr must evaluate to one of the character values
‘REVIND', 'APPEND', or 'ASIS'.

- The action-specifier specifies read-only, write-only, etc;
action-expr must evaluate to one of the character values
'READ', 'WRITE', or 'BOTH'.

94

- The delimiter-specifier is used in conjunction with name-directed 1/0;
delim-expr must evaluate to one of the character values
'NONE', "QUOTE', or 'APOSTROPHE'.

- The engineering-edit descriptor causes 1-3 digits to be displayed
to the left of the decimal point such that the exponent is a
multiple of three.

2.10 Event Handling

The event handling mechanism provides a means to transfer control on the occu-
rence of an event to a specified program unit called an event handler. Events
must be declared, and their monitoring can be selectively switched on and off
to accommodate the desired level of optimization.

An eventmark is a data object that registers the occurence of an "event". The
declaration of an eventmark contains the condition for which the event will
occur. The value of the eventmark is either .ON. or .OFF. (the constants of
the data-type EVENTMARK). The scoping and definition rules for eventmarks are
the same as for any other data type.

Event handlers are similar to subroutines, except that they do not have argu-
ments and cannot be called. When an event occurs, the connected handler is
automatically invoked. Upon completion of a handler, execution may either
RESUME with the statement following the one in which the event occurred, or
RETURNUP (return from the procedure in which the handler was invoked).

event-handling- is ACTIVATE (event-name-list)
statement or DEACTIVATE (evente-name-list)
or CONNECT (event-name, handler-name)
or DISCONNECT (event-name)
or DISCONNECT (handler-name)

Notes -

- The intrinsic operations on eventmarks are assignment end
test for equality.

- An optional part of the eventmark declaration (not shown) allows

the specification of the condition(s) under vhich the eventmark
is automatically set on.

95

2.11

Other Features

Other added features include IMPLICIT NONE for turning off implicit typing and
several new CHARACTER intrinsic functions. In addition, restrictions hawve been
removed on: assignment from overlapping character positions, zero-length char-
acter strings, concatenation of CHARACTER dummy arguments, and specifyimg

character constants.

character- is
intrinsic-function or
or
or
or
or
or
or

implicit-list is
or

implicit-type Is

IACHAR same as ICHAR, but based on ASCII

ACHAR same as CHAR, but based on ASCII

TRIM remove trailing blanks from string
VERIFY check for unwanted characters

ADJUSTL circular shift left thru leading blanks
ADJUSTR circular shift right thru trailing blemks
REPEAT - renlicate a string of characters

ISCAN first position of any character from set

implicit-type [, implicit-type]...
NONE

type (letter-range [, letter-range]...)

96

3. LANGUAGE ARCHITECTURE

The proposed Fortran 8x language contains all of the features of Fortran 77,
some of which are identified as "deprecated," and additional new features as
described in Section 2 above. The "core" is that set of language features

that are not identified as deprecated. "Modules" are nonexecutable program

units which contain prepackaged definitions to be used by executable program
units.

3.1 The Core

The core is a complete and consistent language comprising a set of language
features sufficiently rich for the implementation of most applications. The
core will have at least the same functional capabilities as Fortran 77. In
addition, the core should

(a) be especially suitable for scientific applications,

(b) be portable,

(c) be safe to use, and effective for the development of relisble soft-
ware,

(d) be widely efficiently implementable,

(e) be concise,

(f) comprise generally accepted contemporary language technology,
(g) minimize non-automatable conversion from Fortran 77.

A core-conforming program contains only core features (i.s., does not contain
any deprecated features).

3.2 Modules

Modules provide a mechanism for defining program facilities for subsequent use
in application programs. Such facilities include global data pools, procedure
libraries, procedure interface definitions, data abstractions, and language
extensions in the form of new operators. Modules take the form of MODULE pro-
gram units, and contain data type definitions, data object declarations,
procedure definitions, and procedure interface definitions. The USE statement
provides the mechanism for using the public contents of a module in an appli-
cation program.

97

Modules are useful, for example, where the same definitions are needed in a
number of different program units, because they allow such definitions to be
made only once in a "central" place. This should contribute substantially to
software reliability and reusability. The use of modules can also contribute
to execution efficiency through in-line expansion of procedures. Procedure
libraries may be configured as internal procedures in a module and thereby
made available for in-line expansion in the using program units.

Modules may be individually standardized, so that standard facility defini-
tions are available to implementors for efficient implementation (e.g., to
take advantage of specialized hardware). An example might be a module for bit
data type, which defines the structure of and operations on bit data; stand-
ardizing such definitions allows implementors to efficiently implement a
standard bit data facility if they so choose.

Since & module contains "ready to use” definitions, a standard module provides
standardized facilities without an added cost burden to a standard-conforming
Fortran implementation. Therefore, such facilities are part of any Fortran
implementation, regardless of whether or not the implementor chooses to opti-
mize implementation of them. For this reason, module standardization is an
extremely powerful and cost-effective mechanism for extending the function-
ality of standard Fortrau.

A standard modulc must be core-conforming. Operators defined in the module
must not have the potential to alter the meaning of any core-intrinsic opera-
tion. The module must contain, in the form of appropriate commentary, func-
tional descriptions of all module operations; such functional descriptions
take precedence over any accompanying procedural implementations of function-
ality. A functional description may be a (set of) mathematical statement(s),
or take any other form appropriate for comprehensive specification of the
functionality. In addition, the module must contain a succinct and lucid
description of the use of the module facilities.

Initial possibilities for standard modules include

bit data type
maximum accuracy arithmetic
varying-length character (string data type)

Standard procedure libraries, such as the ISA process control library, the
Industrial Real Time Fortran (IRTF) library, and the Graphical Kernel System
(GKS) library are candidates for standard sodules.

Standard modules asre separate standards, and are not part of the Fortran

standard itself. There is a close relationship between standard Fortran and
standard modules, of course, which gives rise to the concept of a "Fortran

98

family of standards". Any group, including X3J3, may propose standard modules.
In addition X3J3 may choose to include certain standard modules in a part of
the standard Fortran document.

3.3 Deprecated Features

As described in Section 1.5, certain features of the proposed Fortran 8x lan-
guage are identified as deprecated and as such are identified as candidates
for removal from subsequent versions of the Fortran standard. In this sec-
tion, the deprecated features are summarized, together with a discussion of
possible replacements for needed functionality.

3.3.1 Summary of Deprecated Features

Fortran 77 source form (e.g., restricted use of columns 1-6)
alternate RETURN

assumed size dummy arrays

. passing a scalar (e.g., array element or substring) to a dummy array
specific names for intrinsic functions

. statement functions

. BLOCK DATA program unit

. arithmetic-if statement

. ASSIGN statement

10. assigned-goto statement

11. COMMON statement

12. computed-goto statement

13. DATA statement

14. DIMENSION statement

15. DOUBLE PRECISION data type

16. ENTRY statement

17. EQUIVALENCE statement

18. Fortran 77 DO statement

19. PAUSE statement

Vo NOWMELWLN -

3.3.2 Storage Association

Storage association is the association of data objects through physical
storage sequences, rather than by object identification. Storage association
allows the user to configure regions of physical storage, and to conserve the
use of storage by dynamically redefining the nature of these storage regions.
Though the considerable dangers of programmer access to physical storage
sequences have been well known for a long time, not until Fortran 8x has For-
tran had adequate replacement facilities for certain important functionality
provided by storage associstion. Six items in the above list (items 3, &, 7,
11, 16, and 17) are due to the identification of storage association as depre-
cated.

99

3.3.2.1 Assumed Size Dummy Arrays

These are dummy arrays with asterisk as the size of the last dimension. In
Fortran 8x dummy arrays may also be assumed shape, in which case the extent in
each dimension is that of the actual argument. Assumed-shape arrays provide
all of the functionality of assumed-size ones, and more. Assumed-size arrays
assume that a contiguous block of storage is being passed, whereas with
assumed-shape arrays an array section not having contiguous physical storage
(such as a row of a matrix) may be passed also.

3.3.2.2 Passing a scalar (e.g., Array Element or Substring) to a Dummy Array

This functionality is now achieved, and much more safely, by passing the
desired array section. For example if a one-dimensional array XX is to be
passed starting with the sixth element, then instead of passing XX(6) to the
dummy array one would pass the array section XX(6:). If the eleventh through
forty-fifth elements are to be passed, the actual argument should be the array
section XXN(11:45).

3.3.2.3 BLOCK DATA Program Unit

The principal use of BLOCK DATA subprograms is to initialize COMMON blocks.
The global data functionality of COMMON is alternatively provided by MODULE
program units; global data in modules may be initialized at the point of dec-
laration, and thus modules provide a complete replacement option for BLOCK
DATA subprograms.

3.3.2.4 COMMON Statement

The important functionality of the COMMON statement has been its use in pro-
viding global data pools. In Fortran 8x, global data pools may also be pro-
vided, and more safely and conveniently, with MODULE program units and USE
statements. Suppose that it is desired to have a global data pool consisting
of the following:

INTEGER X(1000)
REAL Y(100,100)
COMMON /POOL1/ X,Y

Each program unit using this global data would need to contain these specifi-
cstions. Alternatively, one can define the global data pool in a MODULE pro-
gram unit:

MODULE POOL1
INTEGER X(1000)
REAL Y(100,100)

END MODULE

100

Then each program unit using this global data would contain the statement
USE /POOL1/

This is safer than using COMMON, because the structure of the global data pool
appears in only one place. In addition the USE statement is very short end
easy to use. Facilities are provided in the USE statement (but not shown
here) to rename module objects if different names are desired in the program
unit using the module objects.

Modules have another advantage: they do not involve storage association, and
therefore a module can contain any desired mix of character, non-character,
and structured objects. Since COMMON involves storage association, & given
COMMON block cannot contain both character and non-character data objects.

3.3.2.5 ENTRY Statement

The ENTRY statement is typically used in situations where there are several
operations involving the same set of data objects:

procedure-heading
local-specifications
entryl

RETURN
entry2
RETURN
entryn
RETURN
END
The MODULE program unit provides the same functionality:

MODULE wmodule-name
local-specifications

INTERNAL procedurel
END INTERNAL

INTERNAL procedure2
END INTERNAL

INTERNAL proceduren

101

END INTERNAL
END MODULE

A program unit using this module may call each internal procedure inm it,
exactly as if they were entry points. An advantage is that some of the
internal procedures in a module may be functions and some may be subroutines,
whereas all of the entry points in a function procedure must be functiomns and
in a subroutine must be subroutines.

3.3.2.6 EQUIVALENCE Statement

The primary purpose of the EQUIVALENCE statement is to allow the programmer to
associate, within a program unit, two or more data types with the same storage
region. There is currently no direct alternative for this functionality in
the Fortran 8x proposals.

There were two principal reasons for the EQUIVALENCE statement in early ver-
sions of Fortran. The first is that memory address spaces were typically
quite small, and equivalencing was needed to reuse the available space for
different purposes. The second reason is that early versions of Fortram did
not have a rich set of data types and structures and transfer functions
between tvpes, so that equivalencing was useful in simulating certain data
types al. stmictures. Both of these reasons have now largely disappeared.

Much of the same practical effect of reusing physical storage can, in fact, be
achieved with the proposed facilities without using the EQUIVALENCE statement.
Dynamic local arrays may be of any size, controlled by procedure arguments.
Since dynamic arrays "disappear” upon return from the procedure, other proce-
dures may use this space for other dynamic arrays of different shapes, sizes,
and types. Similarly, allocatable arrays disappear when they are freed expli-
citly and on return from the procedures in which they were allocated. The
IDENTIFY statement allows part of an array to be referred to as a completely
different object (but of the same type).

3.3.3 Redundant Functionality

A number of features are identified as deprecated simply because they are now
completely redundant, having been superseded by superior language features.
These redundant features are items 1, S, 6, 8, 12, 13, 14, 15, and 18 in the
list above.

Fortran 77 source form == replaced by the new source form
(Section 2.7 above)

specific names for intrinsic functions -- use generic names

statement functions -- replaced by internal functions

102

(see 3.3.3.1. below)
arithmetic-if statement -- replaced by logical-if and block-if

computed-goto statement -- replaced by block-case construct
(see 3.3.3.2 below)

DATA statement -- replaced by INITIAL attribute
(Section 2.1), and by assignment
of array constants (Section 2.2)

DIMENSION statement -- use type declarations instead

DOUBLE PRECISION statement -- use precision control attributes
(Section 2.3)

Fortran 77 DO statement -- replaced by block-do construct
(Section 2.8)

3.3.3.1 Use of Internal Functions for Statement Functions

The statement function definition
function-name (dummy-argument-list) = expr
may be completely replaced by the internal function definition:
INTERNAL FUNCTION function-name(dummy-srgument-list)
type-specification-of-dummy-arguments
function-name = expr

END INTERNAL

The use of the internal function in the executable code is the same as the use
of the statement function.

3.3.3.2 Example Replacement of the computed-goto Statement

The code sequence controlled by the computed-goto:

103

GOTO (labell, label2, ..., labeln), integer-variable

GOTO lasbelz
labell CONTINUE

GOTO labelz
label2 CONTINUE

ééio labelz
i;geln CONTINUE
GOTO labelz
labelz CONTINUE
may be replaced by the block-case construct:

SELECT CASE (integer-variable)
CASE DEFAULT

CASE (1)

CASE (2)

éAéE (n)
END SELECT

3.3.4 Other Deprecated Features

The remaining obsolete features (items 2, 9, 10, and 19) in the above list are
neither related to storage association nor directly replaced by superior fea-
tures. They are all in some sense "bad practice” in terms of generally
accepted software principles, however, and their effects may be achieved in
ways that are generally now considered better software practice.

3.3.4.1 Alternate RETURN

Alternate returns introduce control (branch point) information into argument
lists, and then one (the called) program unit can directly control execution
sequence in another (the calling) program unit. This tends to complicate the
readability and maintainability of software using this feature. Better prac-
tice, in terms of readability and maintainability, is to use a data slement in
the argument list to contain s "return code", which can then be used in the

104

calling program to explicitly control the cxecution sequence in the calling
program. For example, consider the following use of alternate returns:

CALL subr-name(X,Y,2,%100,%200,%*300,...)
GO TO 999
100 CONTINUE

GOTO 999
200 CONTINUE

GOTO 999
999 CONTINUE
where labels 100, 200, 300, etc., are the beginnings of the code blocks to be
selected from upon return. In many cases, the effect can be more safely
achieved with a return code and a block-case structure:

CALL subr-name(X,Y,Z,RETURN_CODE)

SELECT CASE (RETURN_CODE)
CASE ('conditionl')

CASE ('condition2')

END SELECT

Alternatively, RETURN_CODE could be used to explicitly control direct branches
(GOTOs) to the desired branch points. Maintainability is enhanced with the
use of RETURN_CODE because & new selection case can be added in & convenient,
straightforward manner, without modifying the actual and dummy argument lists.

3.3.4.2 ASSIGN and assigned-goto

The ASSIGN statement allows & label to be dynamically assigned to an integer
variable, and the assigned-goto statement allows "indirect branching” through
this variable. The dangers of such dynamic indirection, especially when mixed
with integer arithmetic operations, have long been recognized, and & compre-
hensive alternative to this functionality is not provided. An important prac-
tical use of such indirect branching, however, is to return froo s&nulct:d
internal subroutines. Consider the following example code, which "calls™ one
of several "internal subroutines" in the progras unit:

ASSIGN 120 TO RETURN | set up return point "
GOTO 740 ! branch to "subroutine
120 CONTINUE

105

740 CONTINUE
cen | "subroutine" body
GOTO RETURN

This functionality is provided in s much better way, through the use of
internal subroutines:

CALL subroutine-name
INTERNAL SUBROUTINE subroutine-namc

. ! subroutine body
END INTERNAL

This illustrates the use of internal subroutines to conveniently provide
"remote code block” functionality.

3.3.4.3 PAUSE Statement

Execution of a PAUSE statement requires operator/system-specific intervention
to resume execution. In most (if not all) cases, the same functionality can be
achieved as effectively and in a more portable way with the use of appropriate
READ statements.

end of Fortran Information Bulletin

106

L0}

DIGITAL RESPONSE TO FIB-1

Although Digital Equipment is in favor of the publication of For-
tran Information Bulletin 1, we believe that certain changes must
be made before it is published, we, therefore, vote NO until the
following issues are resolved.

1. We are very concerned about compatibility with existing For-
tran programs. Although the coverletter says "Programs currently
stand;rd-c:nforning will not become non-standard-conforming.", we
are orce to wonder what this means in the light of statement

in the FIB itself such as: 8 :

"minimize non-automatic conversion from Fortran 77" section
3.1, page 29

'Elanys are significant characters, and identifiers may not
contain embedded blanks", section 2.7, page 23

Can a Fortran-77 program be modified so that some of its state-
ments use new features, such as the new source format or the new
declarations? What restrictions are there, if any, on the use of
newly defined features, such as array arithmetic, on variables
that appear in COMMCN or EQUIVALENCE statements?

Digital would like to see an explicit compatibility statement
somewhere near the beginning of the FIB.

2. While we believe that there is a definite requirement for the
array and data structure language extensions, we are not certain
thag many of the other features are worth the performance degra-
d;txon and delay 1in appearance of the next standard that they
will cause, we would like to see the sentence "The committee wel-
comes comments", in the preamble, expanded to solicit comments on
the need for the various features described.

Sincerely,

Lois C. Frampton
X3 Principal

Digital Comments on the Progress of X3J3

In her cover letter to the Fortran Information Bulletin, Jeanne
Adams, Chair of X3J3, solicited comments from X3 on the committee
process.

Although DEC voted against publishing the current FORTRAN Infor-
mation Bulletin, we are strongly in favor of publishing a modi-
fied version of the FIB which clarifies the issues we spelled out
in our NO ballot. The reason we favor publication of such a do-
cument is that we believe that the FORTRAN standardization effort
is seriously off-course and needs to be subjected to considerable
scrutiny by the general FORTRAN user community. The following
comments outline DEC's concerns about the contents of the FIB, as
opposed to its publishability. They are not by any means exhaus-
tive inasmuch as the FIB 1{itself 1is not a complete language
description, but they point out several general areas of concern.

1 THE FIB DESCRIBES A NEW LANGUAGE, FORTRAN IN NAME ONLY

The FIB describes a totally new language, completely unlike any
existing FORTRAN implementation, even those which have numerous
extensions to the FORTRAN 77 standard. The 1language shows the
symptoms of design by committee. It randomly incorporates
features from a variety of other languages, arbitrarily defines
"modern" 1language features to replace "obsolete" features, and
almost as an afterthought tacks on FORTRAN 77, the existing stan-
dard. The result is a language that is large, complex, hard-to-
implement, hard-to-understand, inconsistent, and not demonstrably
compatible with the current standerd.

2 STANDARCIZATION OF IMPORTANT FEATURES IS BEING DELAYED

One immediate problem with this sort of language design is that
it significantly delays the standardization process. Features
for which there is a crying need are not being standardized
quickly enough because of the attempt to convert FORTRAN to a
modern programming language.

Two areas where standardization is needed immediately are array
features and data structures. There already exist a variety of
FCRTRANs with array extensions, FORTRAN preprocessors for array
features, and new FORTRAN-based languages with array features.
The more standardization is delayed, the more non-portable solu-
tions appear.

Heterogenous data structures are always high on the 1list of
features which FORTRAN users would like to see in the language,
and, as with array features, there are numerous non-portsble ex-
tensions.

Alone, these two features are hard enough to standardize. In
combination with hundreds of other new features and redesign of
existing features, they have been and will be delayed for years.

801

3 THE LANGUAGE IN THE FIB IS NOT WHAT FORTRAN USERS HAVE ASKED
FOR

The language described in the FIB contains some features that in-
corporate advances in programming language design in the decades
since FORTRAN first appeared, but which are not heavily requested
by actual FORTRAN users, at least not by DEC FORTRAN users or
FORTRAN users in published surveys. Features such as entity-
oriented declarations (section 2.1 p 6-8), looping constructs to
replace the DO loop (section 2.8, p. 24-25), new source form
(section 2.7, p. 23-24), and significant blanks (section 2.7, p.
23) may be desirable in a language designed from scratch, but
they will not supplant existing usage. They simply clutter up
the language and make it harder to describe.

Other features may be desirable in the long run, but are still
much too experimental to be standardized in a language as old as
FORTRAN. An example is the whole data abstraction facility with
derived data types (section 2.4, p. 15-17), user defined opera-
tors (section 2.6, p. 20-21), and information hiding 1in modules
(section 2.5, p. 17-18). We do not even know yet that such
features will work well in a language such as Ada(TM) where they
are a fundamental part of the language design, much less in FOR-
TRAN where they are being jammed into an existing language.

4 ATTEMPTS TO MODERNIZE FORTRAN ARE MISGUIDED AND LIKELY TO FAIL

The FIB attempts to modernize FORTRAN by declaring certain
features obsolete, by defining replacements for the obsolete
features, and by adding a host of altogether new 1language con-
structs. The hope is that programs will cease using the obsolgte
features and that the features can be dropped from succee@lng
FORTRAN standards. In theory, this staged approach to moderniza-
tion is appealing, and might even be feasible for a few features
(the assigned GOTO comes to mind), However, any implementor knows
that it is virtually impossible to drop any feature from an im-
plementation, no matter how obscure, as long as there are any ex-
isting programs which depend on it.

The FIB proposes that a large number of long-established FORTRAN
features be deprecated (section 3.3), including some of its most
characteristic constructs such as COMMON, EQUIVALENCE, the exist-
ing syntax for DO loops, and FORTRAN 77 source form. It is in-
conceivable that these features could ever be dropped from the
FORTRAN 1language, so that it is really a hollow effort to depre-
cate them. It is not the purpose of a language standard to be a
guide to programming style.

5 THE NEW LANGUAGE IS NOT WELL-INTEGRATED WITH FORTRAN 77

Many of the new features described in the FIB, while not strictly
incompatible with FORTRAN-77, are not well integrated with it.
The FIB does not discuss semantics in any detail, but there are a
number of obvious problems. What are the rules for mixing old
and new source form? What are the rules for mixing new storage
independant features such as general precision and data struc-

tures with old storage dependant features such as COMMCN and
EQUIVALENCE? What are the rules for mixing attribute and entity
oriented declarations? What are the rules for mixing features
which {imply static storage such as SAVE and DATA with features
which imply automatic storage such as recursion and automatic ar-
rays? The FIB concentrates on the advantages of the new features
and pays lip service to compatibility, but for the most part ig-
nores the mechanics of this difficult issue.

6 THE NEW LANGUAGE WILL BE DIFFICULT TO IMPLEMENT

The FIB describes a language which is considerably more difficult
to implement than FORTRAN 77. Recursion (section 2.6), automatic
arrays (section 2.2), and arrays that can be allocated and freed
(section 2.2) assume the availability of non-static storage. As
described in the previous paragraph, there are many new features
which interact in curious ways with existing features and make
parsing difficult. User defined operators (section 2.6) and
overloaded functions (section 2.6) greatly increase the complexi-
ty of expression parsing. Modules (section 2.5) imply a compila-
tion library or equivalent compilation mechanism.

The consequence of the increased difficulty of implementation is
that it will be even longer between the appearance of a new stan-
dard and the appearance of compilers than it was for FORTRAN 77,
the compilers will be slower and larger, the compilers will be
less reliable and harder to validate, and there will be more con-
flicting interpretations.

7 THE NEW LANGUAGE IS INEFFICIENT TO IMPLEMENT

The FIB also contains many features that are very difficult to
compile into efficient code. Since FORTRAN has a long tradition
of high quality optimizing compilers, and FORTRAN users expect
FORTRAN programs to run efficiently, this is a matter of serious
concern. It seems that gozls such as language elegance and ex-
presiveness have taken precedence over implementation efficiency.
The new features require much more interpretive code than FORTRAN
77 and in some cases require less efficient code to be generated
for existing language features.

Array features (section 2.2) are a primary example of the effi-
ciency problem. Since there is no storage association defined
for arrays in the language and no language features which would
allow a compiler to distinguish between old arrays with storage
assoclation and new arrays without it, a compiler is forced to
generate interpretive code for all dummy arrays. The compiler
has to pass array addressing information in the calling program,
extract it in the called program, and cannot take advantage of
optimizations which depend on storage association. The important
point is that this applies to all array arguments, not just those
which actually use new features.

The current level of performance on existing programs could be
obtained by dependent compilation or by parallel architectures
where storage association is 1less 1important, but performsnce

601

would suffer on most current architectures with most current com-
pilation techniques.

Related to the above problem is the fact that the new array
features will force many implementations to use new calling
mechanisms to pass array arguments. As a result, existing 1li-
braries may not be able to be called by progrems compiled with a
new compiler unless the libraries themselves are recompiled. The
problem 1is similar to the problem that occurred with FORTRAN 77
in passing character constants as arguments to existing 1li-
braries, except that it will be much more pervasive.

Another implementation problem area is the numeric data type
(section 2.3). The numeric data type allows the programmer to
define the minimum range and precision for a floating point data
type; a compiler can map the data type to an appropriate hardware
type. The languzge described in the FIB allows a dummy argument
to assume the numeric attributes of the actual argument passed to
it. This may require a compiler to generate either multiple code
sequences or interpretive code to handle all possible combina-
tions of data types and arguments.

8 THE NEW LANGUAGE ENCOURAGES PARTIAL IMPLEMENTATIONS

The primary purpose of language standardization 1is to make it
possible to write programs which are portable from one machine to
another. The size and complexity of the 1language described in
the FIB will encourage just the opposite. There are likely to be
numerous subset implementations which simply extend FORTRAN 77
with just those features which FORTRAN users have been demanding
apd simplify or ignore the remaining features. We would expect a
situation similar to X3.53-1976, PL/I. There are no known full
implementations of that standard.

IBM COMMENTS

re
Approval for Public Release
FORTRAN Information Bulletin (FIB-1)

We wish to thank the X3J3 committee for its extended and en-
thusiastic work thus far. Many useful proposals have been made
for the FORTRAN language.

To the question: "Do you agree that the document attached to
X3/84-113, should be released as FORTRAN Information Bul-
letin-1?", the IBM vote is "NO".

Significant characteristics of the FORTRAN 1language and X3.9
standard, as described in the April 1978 SD-3 "Proposal for Con-
tinuation of the X3 Standards Project on FORTRAN" are (SD-3 sec-
tion numbers are shown):

3.2 Intercharge

"The standard provides for a degree of portability of both
programs and programmers between different computers..."

3.3 Educational

"The standard provides a language definition that can be
used by both authors... and teachers... textbooks, reference

manuals, and other documents will become more consistent...
"

3.4 Economics

"Interchangeability of programs and programmers has proven
to be of major economic advantage within the industry. The
continued maintenance and revision of the standards protects
the investment in already existing FORTRAN programs and FOR-
TRAN language processors"

4.1 State of the ART
"During development of a new revision to X3.9, it is 1likely
that augmentations will mainly be drawn from functionality
that exists in advanced implementations of existing proces-
sors".

5.2 User Operational Considerations
"Once a language standard is in force and there are conform-
ing programs, incompatible change, even 8 small change, im-
pacts the user community."

5.3 Cost Considerations

"One of FORTRAN's most important characteristics is that ef-
ficient processors can be implemented at reasonable cost ."

Okt

-2 -

This "NO" vote is based on the following observations:

1. That the current direction of the X3J3 committee, 1in
redesigning FORTRAN by a combination of new featurs and
deprecations, does not preserve the portability, consisten-
cy, and interchangeability characteristics described in the
SD-3. The redesign described in the document has a signifi-
cant negative impact on all existing programs, texts, and
users.

Should such a redesign (or new language) be desirable, it should
be initiated by a new SD-3, either for X3J3 or some other X3 com-
mittee.

2. That the large amount of new 1language design proposed
for FCRTRAN 1is not, by the criteria in the SD-3, "State of
the ART". By expecting the augmentations would be taken for
existing implementations, SD-3 sought to assure that
FCRTRAN's eficiency and reasonable implementation costs
would not be changed in unexpected ways.

Thus major extensions to FORTRAN 8x should be limited to
areas:

A. Where there is existing FORTRAN implementation experi-
ence with those or similar extensions, so that, prior to
standardization, it can be determined that efficient proces-
sors are possible at reasonable cost - this may necessitate
optionzl features or subsets. The proposals for array
operations, for example, are in this category.

B. That relate to portability between implementations. The
proposals for environmental-intrinsic-functions, for exam-
ple, are in this category.

The direction of the committee in making significant changes to
the FORTRAN language is controversial. We believe that the time
has certainly come for dissemination of information regarding the
work of X3J3, so that other interested parties may be aware of,
and have an opportunity to comment on, this direction before a
proposed standard is submitted for a vote.

However, we are concerned that an affirmative vote on this bal-
lot, or publication of the document as an information bulletin,
may be construed by some as a favorable comment on the technical
direction of X3J3, rather than merely as approving publication of
the current status. Accordingly, we will change our vote to
"YES®" provided that all comments submitted to X3, imcluding
these, be published with the document. This will provide readers
;;33 contrasting views and encourage submission of comments to

We wish to make clear that our support for publication of this"

document does not 1imply approval of its contents. We believe
FORTRAN's combination of "efficiency" and "reasonable implementa-
tion cost", together with the large investment in existing FOR-

-3 -

TRAN programs (and programmers) has resulted in FORTRAN being the
most widely available high level language and that, as stated
SD-3, the 3.9 standard protects these investments. We strongly
believe that the time has come for interested parties outside of
X343 to become aware of the committee's direction so that they
may make their own assessments. We encourage 2l1 those interest-
ed in FORTRAN to study the issues inherent in this document and
to communicate their views to X3J3.

L

RESPONSE TO IBM AND DEC COMMENTS
Jeanne Adams, Chair, X3J3
May 15, 1984

We wish to thank IBM and DEC for their careful study of the
FORTRAN Information Bulletin Number 1. From your comments, we
note that you approve of our efforts to solicit comments before
the draft standard is released from X3J3. X3J3 wishes to incor-
porate the two requests from Digital Equipment in the reponses.
First, the 1last sentence of the first paragraph should be
expanded to "The committee welcomes comments on any and all
aspects of the features described in this Information Bulletin."
Second, the last sentence of the second paragraph should be
expanded to "No FORTRAN 77 features will be removed; it remains
X3J3's intent that any standard-conforming FORTRAN 77 program
will be a standard-conforming FORTRAN 8x program, and that, with
any exceptions clearly listed in the document, new FORTRAN 8x
features can be compatibly incorporated into such programs.”

The FPIB is intended to be a reasonably comprehensive summary of
current proposed features for PORTRAN 8x, especially of the
proposed features that are not in FORTRAN 77. A vote approving
the PIB for publication, either by X3 or X3J3, does not imply
approval of the technical content.

During the coming year we plan to have at least four FORTRAN
Porums throughout the country explaining the facilities that we
have proposed.

Two surveys have been conducted, one by ECMA and one by CERN, to
solicit the opinion of users internationally. A questionnaire
has been developed for distribution at the Forums and with the
publication of the bulletin to make the comments more concrete
than would otherwise occur. Our plan is to publish the FIB in
both SIGNUM and FORTEC of the ACM with CBEMA's permission and the
X3 vote of approval to publish.

X3J3 does not support the publication of any comments with the
FIB, and would prefer to withdraw the FIB if it cannot be pub-
lished without commentary. It would be much better to generate
survey results from the user community on the new features and
present those along with a larger comment base than just the two
from IBM and DEC. I also feel that publishing comments without
the X3J3 response to that comment gives X3J3 too 1little oppor-
tunity to explain the feature and its desirability.

In closing, we appreciate 1IBM's comments on the useful and
enthusiastic work of X3J3. Our goal 1is to produce the best
possible standard for users of FORTRAN. The technical work of

the committee has produced a large collection of highly profes-
sional proposals for FORTRAN, only some of which have been
accepted for incorporation.

AN EDITORIAL

If you have been reading other newsletters, you may realize
by now that the question of combining the SIG newsletters into
one composite journal has been circuleting through the vearious
DECUS committees. This is an 1issue that I, as an editor and
DECUS member, feel very strongly about, and have participated in
some of the discussions and proposals relasting to it. I would
like to take the opportunity to present my feelings on the
matter, and ask that you make your feelings known to the ap-
propriate people. Please note that what follows is strictly my
personal opinion, and is not necessarily endorsed by DECUS, the
operating committees, or even the LTSIG steering committee.

Early this year the SIG publications committee met in Merlboro to
address this issue. What follows is the text of a message I sent
to interested parties prior to that meeting, expressing my feel-
ings.

The current discussion concerning combining the SI1G
newsletters 1into one 1lerge journal has raised a lot of issues,
both substantial and emotional. To cut through the confusion, it
would be helpful to enumerate the problems which are faced by the
newsletters, and whether this mode of attack on those problems
solves them, alleviates them, or contributes to them. Only then
can we go on to approve the idea, or propose alternatives.

As T understand the issue, DECUS members have been charged
for newsletters, and are not getting a fair return for their mo-
ney from the SIG's which have not been publishing. This has 1led
to angry calls to DECUS from those members, and concern among the
DECUS staff for the Society's legzl responsibility. While the
general membership may not be aware of the exact numbers, each
SIG committed to publish a certain number of newsletters per
year, and the subscription rates were based partly on that infor-
mation. It is important to realize, that while the immediate
concern 1is issue count, that 1is not the rezl problem. Each
member hes paid for information, and is upset that he or she 1s
not getting that information. If we are truly to address the
root problem, we have to seek ways which will maximize the flow
of information to the member.

The current question is whether the various SIG newsletters
will be combined into a composite journal. The arguments in
favor of this are that it will reduce the cost of printing
newsletters, so that subscription prices will go down; sub-
scribers will always get something each month, so they cannot
complain about unfulfilled subscriptions; and the SIG's can pub-
lish short timely articles, even if they do not have enough for =a
full newsletter. I cannot address the first issue, since I don't
have the information available to me to make an analysis. Suf-
fice it to say that on one hand the cost will decrease due to 2
single large production run as opposed to several small ones, but
this will be partially offset by the cost of distributing 211 the

112

information to every subscriber, rather than printing and ship-
ping Jjust what each subscriber wants.

If we examine the other arguments in terms of maximizing the
flow of information, the results are questionable. Even though a
subscriber may get something each month, it is not necessarily
what he wants. A large portion of each monthly journal would be
made up of the VAX SIG, RSX, and other large newsletter's deta.
To the subscriber who is interested in RSTS, for example, this is
just wasted paper. What we will have done is turn a number of
special purpose publications into 2 large generic one, which mey
or may not have what people want. The only possible answer to
this is the third argument quoted above, that smzller portions of
information can be published, which might otherwise not be suffi-
cient for a newsletter unto themselves. This indeed may be true,
but it implies that newsletter editors frequently find themselves
with one or two items to publish, sitting around waiting for
more. Is this necessarily true, or do they frequently find them-
selves waiting for anything to publish, and when they have it
generate enough filler to go around it? The real issue is how to
get more information to the editors, not how to spread out what
little they have further. Actually, I suspect that if the
newletters are combined into a single journal, there will be less
information published, since there will be less pressure on the
newsletter editors to get something out. A likely attitude for
the smaller SIG's which have problems getting material together
will be to let it slide, hoping for more input, and knowing that
something will be published, whether they contribute or not.
Similarly, contributions from wusers, which are at the heart of
the newsletters, will probably go down. It is difficult enough
now to convince someone to <contribute an article for a small
newsletter. They will be all that much more intimidated and un-
likely to submit their hints or questions if they are to be pub-
lished in a2 seversl hundred page magazine. Once again, it 1is a
question of a perceived value to the contribution. In a small
newsletter every effort and contribution is important; if the
newsletters are combined, there will be less incentive for every-
one, both editors and contributors alike.

What are the disadvantages to the combined journal? Besides
the serious argument above that it might actually reduce the con-
tributions from some SIG's, there are several. Unfortunately
they are mostly intangible possibilities. First and foremost,
though, it only covers up the situation, and does not address the
root problem, which is maximizing the flow of useful information
to the subscriber. Unless we do something to help (and train)
newsletter editors, this problem will remain, regardless of the
physical formast of the newsletters or journal. There are also
the vague, uneasy concerns which have been frequently voiced.
Will page counts be imposed? will there be some sort of oversee-
ing editor affecting what the SIG's publish? Will SIG's be prior-
itized, such that, for example, IAS or APL articles are postponed
if VAX has a major contribution? It is easy to deny these prob-
lems, but the simple truth is that they will at some time have to
be faced. If we take the decision now to combine the
newsletters, avowing that the problems above will not be allowed

113

to occur, it will be all too easy, in a year or so, to start im-
posing 1limits &nd what not, and all too difficult to revert to
separate newsletters. It will be 2 logistical mess to combine
the newsletters. If we do combine them, there will be great
pressure in the future to make the system work, even if it turns
out to have been a poor decision. Any promises of a SIG's auton-
omy, or right to publish what it wants when it wants, will be
meaningless then.

What are the alternatives to combining the newsletters? Un-
fortunately there is no other bold stroke, which will, in one
fell swoop, solve all our problems. The problems faced by the
SIG newsletters are not that simple. The only real alternative
is to take the current system, of paid, individual newsletters,
and try in many little ways to make it work better. Recently the
DECUS office distributed to the newsletter editors the audio
tapes of the sessions their SIG sponsored in Anzheim. While not
as dramatic as combining the newsletters, this is a positive step
towards helping the editors. There are many steps of this sort
which could be taken: providing training for editors, helping
them contact possible sources of information within DEC, coordi-
nating with the library service to locate users of specific 1li-
brary programs, and probably many more. These types of actions
will make the newsletter content better, and thereby better serve
the subscriber. Combining the newsletters only serves to cover
up the real problemn.

In summary, I feel that combining the newsletters into one
journal, while an honest attempt to address the problems faced by
DECUS and the SIG's, 1is misguided for =& number of reasons.
First, it does not address the true issue, which is getting more,
and more useful, information to the user community. Secondly, it
will ©probably 1lead to =&a decrease in the contributions to the
newsletters. Finelly, it will inevitably alter the nature of the
newsletters for the worse, leading them away from a user based
interchange of information, and towards & more public, superfi-
cial, magazine. DECUS has attempted to address the issue of
newsletters several times over the past few years. Subscription
rates were imposed, every year new combinations of newsletters
were announced, and so forth. In spite of all this, subscrip-
tions have gone down, and fewer newsletters have been published.
I talked to several people in Ansheim who did not know 1if tney
were supposed to be receiving newsletters, Since they hadn't been
able to keep track of the changes in the subscription services.
I believe it 1is time to stop trying to make changes to the
current system, and not only give it a chance to work, but help
it to work. This is a more difficult challenge than proposing
patches and changes, but is the only one which really serves the
DECUS community. As any member of ACM or other societies knows,
late issues and lack of contributions are a chronic problem for
special interest newsletters. If we help the newsletters over-
come those problems, however, they provide a service and inter-
change of information which can't come from any large periodical.
A combined journal will lose that special nature, and will do
nothing but save face in return.

114

At the meeting in Marlboro, we discussed several issues re-
lating to combining the newsletters, including printing costs.
In the course of the discussions, which included conversations
with the printers, it came out that printing costs would most
probably rise with a2 combined newsletter. The committee 2zt that
point was unanimous in recommending that the newsletters not be
combined, and instead recommended a variety of steps designed to
improve the current quality of the single SIG publications.

Since that time the Communications Committee has spent a
great amount of time defending that recommendastion. Recently,
the DECUS Management Council has put forth a new proposal for =&
combined newsletter which, in my own opinion, ignores both the
recommendations and concerns of the Communications Committee.
For example, it explicitly puts page limitations on the various
SIGs, and spells out what type of material will and will not be
allowed to be published. The various handouts which I reprinted
in the last issue would most probably not be =allowed wunder the
proposed rules. The Management Council has also offered to sub-
sidize the combined newsletter format, but has not made a similar
offer regarding the individual newsletters. Unless there is
widespread opinion expressed to the <contrary, the Management
Council will most likely overrule the Communications Committee,
and mandate this new format.

How do you feel about this issue? If you support my
viewpoint, it is imperative that we make our feelings known en
masse to the Management Council. Please take the time to write
to them and express your feelings. Their names are listed in
every issue of DECUScope. You may also send your comments to me,
and I will try to distribute them to the appropriate people.

2l ZE_

115

Printed in the U.S.A.

“The Following are trademarks of Digital Equipment Corporation”

ALL-IN-1 Digital logo RSTS

DEC EduSystem RSX

DECnet IAS RT

DECmate MASSBUS UNIBUS
DECsystem-10 PDP VAX
DECSYSTEM-20 PDT VMS

DECUS P/0S vT

DECwriter Professional Work Processor
DIBOL Rainbow

Copyright ° DECUS and Digital Equipment Corporation 1985
All Rights Reserved

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation or DECUS. Digital Equipment Corporation and DECUS assume
no responsibility for any errors that may appear in this document.

POLICY NOTICE TO ALL ATTENDEES OR CONTRIBUTORS “DECUS
PRESENTATIONS, PUBLICATIONS, PROGRAMS, OR ANY OTHER
PRODUCT WILL NOT CONTAIN TECHNICAL DATA/INFORMATION
THAT IS PROPRIETARY, CLASSIFIED UNDER U.S. GOVERNED BY
THE U.S. DEPARTMENT OF STATE'S INTERNATIONAL TRAFFIC IN
ARMS REGULATIONS (ITAR).”

DECUS and Digital Equipment Corporation make no representation that
in the interconnection of products in the manner described herein will
not infringe on any existing or future patent rights nor do the de-
scriptions contained herein imply the granting of licenses to utilize any
software so described or to make, use or sell equipment constructed in
accordance with these descriptions.

It is assumed that all articles submitted to the editor of this newsletter
are with the authors’ permission to publish in any DECUS publication.
The articles are the responsiblity of the authors and, therefore, DECUS,
Digital Equipment Corporation, and the editor assume no responsibility
of liability for articles or information appearing in the document. The
views herein expressed are those of the authors and do not necessarily
express the views of DECUS or Digital Equipment Corporation.

r\ ; Bulk Rate ;
‘ U.S. Postage

BE Permit No. 18
inster, MA
DECUS SUBSCRIPTION SERVICE Leom(;:\i:;

DIGITAL EQUIPMENT COMPUTER SOCIETY

249 NORTHBORO ROAD, (BP02)
MARLBORO, MA 01752

STATUS CHANGE

Please notify us immediately to guarantee continuing
receipt of DECUS literature. Allow up to six weeks for
change to take effect.

() Change of Address
() Please Delete My Membership Record
(I Do Not Wish To Remain A Member)

DECUS Membership No:

Name:

Company:

Address:

State/Country:
Zip/Postal Code:

Mail to: DECUS - ATTN: Subscription Service
249 Northboro Road, BP02
Marlboro, Massachusetts 01752 USA

Affix mailing label
here. If label is not
available, print old
address here. Include
name of installation,
company, university,
etc.

