
/ \/ \/ \/ \/ \
\ 1\ /\ /\ /\ /
/ \/ \/ \/ \/ \
\ /\ /\ /\ /\ /
/ \/ \/ \/ \/ \
\ /\ /\ /\ /\ /
/ \/ \/ \/ \/ \
\ /\ /\ /\ /\ /
DEeus PROCEEDINGS

FALL 1966
PAPERS AND PRESENTATIONS

of

The Digital EquipIllent COIllputer Users'Society

Maynard, Massachusetts

I
~,"~-~~~--. .-.-""-- ... -.- •...... ---,---.-".~.----~----.----~---~.-~--.--~-------.--.-.--.-... -.-.. -. -

FALL

1966

PAPERS AND PRESENTATIONS

of

The Digital Equipment Computer Users Society

FALL SYMPOSIUM

November 4,5,1966

Lawrence Radiation Laboratory

Berkeley, California

CONTENTS

PAGE

PREFACE

WELCOME ADDRESS
Winston R. Hindle

ESI -- CONVERSATIONAL-MODE COMPUTERS
ON THE PDP-sis

v

David J. Waks ..••..•••••••••••••••• 3

THE BBN ON-LINE PROGRAMMING SYSTEM
Nancy E. Lambert ••.••.•••••.•.••••• 11

JOSS: INTRODUCTION TO THE SYSTEM
IMPLEMENTATION

G. E. Bryan •.•••••.•••..•.••••••••• 15

PDP-10 SYSTEM PHI LOSOPHY - NEW PRODUCT
ANNOUNCEMENT

David Plumer ••.•••••••.•••••••••••• 35

PDP-6 SYSTEM AT LRL, LIVERMORE
John G. F I etcher ••.•••••.••.••••••• 37

A COMMON MEMORY SYSTEM FOR A TIME­
SHARED PDP-6

E. Brazea I, S. Sharpe ••••••••••••••• 43

ON-L1 NE REAL-TIME TIME-SHARI NG OPERA­
TION OF A PDP-7

Lloyd Robinson, John Meng • • • • • • • • • • 53

* Abstracts On Iy

iii

PAGE

PDP-S AS A DATA COLLECTOR IN A TIME­
SHARED SYSTEM*

Robert Abbott • 57

A PDP-5 PROGRAMME FOR USE IN NUCLEAR
COUNTING

D. R. Thompson, E. E. Wuschke,
A. Petkau •••••••••••••••••••••••••• 59

FLYI NG-SPOT SCANNER*
Ray Kenyon ••••••••••••••••••••••••• 69

THE PDP-6 I s ROLE IN ANALYZING PHOTO­
GRAPHS OF BACTERIAL COLONIES*

Fraser Bonne II • 71

APPLICATION OF THE PDP-5 TO DATA
HANDLING FOR MESON-PRODUCED X-RAYS

Robert W. Lafore •••••••••••••••••••• 73

APPENDIX 1
DECUS Fall Symposium Program

APPENDIX 2
Author and Speaker Index

APPENDIX 3
Attendance

79

S1

S3

PREFACE

The Fall 1966 Proceedings brings to the reader the papers presented at the Fall Symposium of Digital Equipment
Computer Users Society. The meeting was hosted by Lawrence Radiation Laboratory of Berkeley, California, and
was held on November 4 and 5, 1966.

This meeting brought to fourteen the number of seminars held by the users group in its five-year history. DECUS
meetings are a forum for users to discuss their applications and air problems and ideas informally as well as
through forma I papers.

Papers publ ished in this volume have been printed as received from authors with no editorial changes. In that
way, publication of the Proceedings is hastened considerably. In some cases, papers were not received in time
for publ ication and abstracts of these papers have been substituted. If the omitted papers are at some time sub­
mitted to the users group, they will be published in the newsletter, DECUSCOPE. Reprints of papers presented
here are available from the DECUS office, Maynard, Massachusetts 01754.

This Proceedings also contains a I ist of meeting attendees, the program, and an author/speaker index.

Our special thanks to all participants and to LRL for providing excellent meeting accommodations. Special
thanks to Anthony Schaeffer and Lee Davenport of LRL for all their help in coordinating arrangements.

Angela J. Cossette {Mrs.}
DECUS Executive Secretary

v

WELCOME ADDRESS

Winston R. Hindle, Jr.
Digital Equipment Corporation

Maynard, Massachusetts

I am delighted to bring greetings to this DECUS
symposium from all of my colleagues at Digital.
It has been a rea I th ri II for us to see the growth
of th is organization during its five-year history.
The ca I iber of the papers to be presented during
these two days is testimony enough to the techni­
cal level that has been attained.

The relationship between a computer manufacturer
and the society of its users is a difficult one, and
few users groups have really prospered. There are
so many barriers to good communications that both
sides are slightly off balance all the time. DECUS,
I think, has solved a number of the usual problems
by having a status quite independent of the company
and by having a group of interested and capable
officers and committee chairmen who have been
wi II ing to spend time making it work. Within DEC,
we have encouraged this through support of a ca­
pable Executive Secretary and her staff, through
DEC USC OPE and through the program reproduction
faci I ities. But it has been the energy of the users
that has really succeeded in building a healthy
organization.

Most of the communications during the next two
days wi II be between users, so I thought it would
be productive for a few minutes to talk about some
internal functions at DEC which affect you, the
users, most directly. Some relative Iy recent organ­
ization moves that DEC has made have served to re­
generate our responsiveness to outside influences,
be these outside inputs ideas for new mach ines,
suggestions for new appl ications, specific software
or hardware complaints or even an occasional word
of praise. First, the key organizational tenet that
we have followed is to divide the firm's resources
on a product-by-product basis. Thus, each product
group has a known set of resources and can set its
plans accordingly. In return for these resources,
each group accepts fu II responsibi I ity for the prod­
uct in every regard - from profits to production
rates to customer satisfaction. This II product I ine"
type of organization has been in effect for 18
months and has proved invaluable internally.

Performance can be closely gauged and problems
easi Iy pin-pointed.

An annual plan is developed by each product group.
The centralized resources of the company {produc­
tion, drafting, personnel, etc.} are budgeted
through agreements between the managers of each
central function and the product managers. The
task is then to match performance against the plan
and make any ad justments that are needed as the
year progresses. Where this process most closely
affects those of you here is the programming func­
tion-which is now one of the centralized profes­
sional groups within DEC. The Programming Depart­
ment, which had previously been fragmented, was
combined as a unified group six months ago. It is
directed by Larry Portner, DEC's Programming
Manager. The Department performs four major
tasks: systems programming, diagnostic programming,
software qual ity control, and program distribution.
Each of these four divisions performs its work for all
products according to the yearly plan.

The qua I ity control function in software develop­
ment is relatively new for DEC. The concept here
is that before a program is added to the DEC library,
the program and programming documentati9n are
checked by someone not involved in their develop­
ment. This procedure has now been in effect for
several months, so the resu Its of this carefu I screen­
i ng have not been seen in the fi e Id as yet, with the
exception of a few recent PDP-6 programs. How­
ever, the concept is sound and the outcome will
i nevitab Iy increase user satisfaction. In fact I the
entire reorganization of the programming develop­
ment group is quite specifically a DEC response to
customer inputs on software.

We feel that the product-oriented organization and
the new Programming Department are both develop­
ments that allow DEC to expand gracefully in the
near future. Organizations, however I cannot be
fixed and forgotten. So we will undoubtedly con­
tinue to make alterations from time to time.

The output of our product-oriented structure con
be partly judged by the new DEC products that
have been introduced in the last few months -
PDP-sis in July, PDP-9 in August and PDP-10 in
November. Another measure is sales and profits -
for the fiscal year 1966 sales increased 52% and
profits 163%. The results of this first quarter of the
current fiscal year show continued increases.

Of course, the ultimate test of DEC or any other
company is the reaction of its users over a period
of years, and that brings us back fu II eirc Ie to my
opening point. We need and want your input,
your criticism, and hopefu Ily your commendation
and continued support. The vigor of DECUS is
good indication of your needs and interests and we
wi II, of course, do our part in its support. Let us
make even greater use of this forum and this organ­
ization for the exchange of information and helpful
advice.

2

ESI -- CONVERSATIONAL-MODE COMPUTING
ON THE PDP-Sis

David J. Waks
Applied Data Research, Inc.

Princeton, N. J.

Abstract

An important problem in the computer business is that
of "bringing the computer to the user." This paper dis­
cusses the problems involved in the usual solution to this
problem -- time-sharing -- and presents, as an alternative
solution, a system called ESI, which provides conversa­
tional-mode programming on a minimum PDP-Sis.

Introduction

Many people have computational
problems which could most econom­
ically be solved with digital com­
puters, yet which are still solved
by pencil-and-paper or desk­
calculator techniques, at a high
cost in time and convenience.

Three major barriers exist to
putting these problems on computers:
(1) The time required to bring them
to the computer, wait for them to be
run, and bring back the results is
intolerable; (2) The problems are of
a scale for which the time spent in
explaining them to a programmer is
large compared to the time required
to solve them by hand; ~nd (3) The
man with the problem, who should,
therefore, write the program him­
self, is not a programmer and
doesn't want to have to become one
to solve his problems. This problem
is referred to as being that of
"bringing the computer to the user,"
and is one of the most important
problems in the computer business
today.

Any solution to this problem
requires two prongs: Hardware to
physically place a computing
facility at the user's disposal; and

3

Software to make the computing
system approachable by providing an
interface with the hardware.

Time-Sharing as a Solution

It is widely believed that the
best solution is to share a large
computer among many users, in order
to reduce the cost per user of the
hardware and the software. This
requires the construction of an
elaborate hardware system, and,
typically, an even more elaborate
software system largely devoted to
solving the problems imposed by the
complex hardware. Such systems
physically bring the computer to the
user by giving him a console as
close as he wants it.

The software, on the other
hand, leaves him as far from the
computer as ever before. This is
because most such software systems
are "open" in the sense that the
entire computer system is available
to the user -- in fact, much of the
hardware/software design effort is
devoted to maintaining this illusion
for the user. The trouble is that
only an experienced programmer can
really use these "open" systems.
The last thing the true user, as
opposed to programmer, wants or

needs is to have to learn about a
complex hardware system and an even
more complex software system (in
most systems he must read three or
four manuals just to be able to
write a FORTRAN program and get it
running). The inexperienced user
desperately needs to be isolated
from the hardware and software. He
must have an environment expressly
created for his use in solving his
problems.

The first time-shared system
specifically directed toward the
totally inexperienced user was the
Rand Corporation's JOHNNIAC Open­
Shop System (JOSS*). The major
goals in the development of JOSS
were: (1) it should be easily
approachable by somebody completely
inexperienced in computer program­
ming; (2) it should be largely self­
teaching; i.e., once a user has some
basic knowledge, the use of the
system should teach him the rest;
(3) the user must be completely
isolated from the computer; i.e.,
he neither knows nor cares about
what's going on inside; (4) the user
must be protected against his own
errors, so that, for example, there
is no way for him to inadvertently
destroy his program or the system;
(5) there should be a minimum number
of arbitrary conventions which the
user must learn. JOSS was imple­
mented on the JOHNNIAC computer, and
provided its facilities Lo up to
eight users simultaneously.

An Alternate Solution

A completely different solution
to the physical problem, suggested by
the availability of computers in the
PDP-8 class, is to give the user an
entire computer for his own use.
This is quite attractive if the
computer is priced low enough, since
the cost of a console in a time­
shared system, including communi­
cations and hardware on the large

* TM, The Rand Corporation

4

computer, is comparatively high
(about $13 an hour or so). The
lease price of a small computer,
available 24 hours a day, might well
be less than the price for two­
hours-a-day use of a console in a
time-shared system. The problem,
however, is whether a user-oriented
software system can be built for a
small computer.

When the author first learned
of DEC's plans for the PDP-B/S, he
became interested in the feasibility
of implementing a JOSS-like system
which would operate on a minimum
PDP-8/S. The result of the feasi­
bility study is a program, the
Engineering and Scientific Inter­
preter (ESI) , which provides most of
the facilities of JOSS to a single
user on a minimum PDP-5, PDP-8, or
PDP-8/S.

ESI is designed as a self­
contained system which greatly sim­
plifies the programming and de­
bugging of modest-scale programs.
The system is highly interactive
with the user, making the transi­
tions from design to coding to
debugging to operation of programs
very smooth and continuous. The
user can try something out immedi­
ately, see if it works, then discard
it and try something else if it
doesn't, or build on it if it does.
The system is very easy to learn to
use, taking less than an hour in
most cases. The rules for con­
struction of programs are very con­
cise, and are summarized on one page.

A Description of ESI

As in JOSS, ESI statements
have the form of English imperative
sentences. Every ESI statement
contains a main clause which starts
with an imperative verb (such as
TYPE, DELETE, SET, GO) and ends with
a period. Frequently there are
parameters between the verb and the
period -- such as TYPE X. Any
clause which does not involve the

transfer of control can be preceded
by one or more iterative clauses
which begin with the word FOR and
end with a comma. Any statement,
including one which contains one or
more FOR clauses, may be preceded
by a conditional clause which begins
with the word IF and ends with a
comma. Thus, the following is a
perfectly legal statement:

IF X = Y, FOR I = l(l)N,
FOR J = l(l)N, TYPE A[I,JJ.

The following pages constitute
the User's Manual for ESI. Two
pages of "conversations" with ESI,
plus explanatory notes on those
conversations, constitute an intro­
ductory primer; the last page,
Permissible Forms in ESI-B, is a
concise summary which should be the
only manual necessary after starting
to use ESI.

In reading the "conversations"
with ESI, the reader should look at
the notes only if he doesn't under­
stand the statements in the "conver­
sation. .. Much more can be learned
by trying to figure out what's
happening than by always referring
to the notes.

5

SAMPLE CONVERSATIONS WITH THE ENGINEERING AND SCIENTIFIC INTERPRETER
DAVID J. WAKS, APPLIED DATA RESEARCH, PRINCETON, N.J.

I. SAMPLES OF DIRECT STATEMENTS:

.. 0 EL E TEAL L • (1) (2)

"TYPE 2+2. (3)
2+2 = L!

"SET X == 5.
"TYPE X.

x = 5
"TYPE Xt3, XI?, SGN(X).

Xt3 = 125
XI? = .71Ll2R57 (4)

SGN(X) = 1 (5)

"TYPE X*Y.
ERROR ABOVE: UNDEFINED (6)
.. SET Y = -7
ERROR ABOVE: EH? (7)
"SET Y = -7.
"TYPE Xl'.
ERROR ABOVE: EH? (8)
"TYPE X*Y.

X*y = -35
"SET A = 3J':-LlYl. (9)
"SET 8 = At2.
ERROR ABO VE: EXPONENT (10)

"SET C ::: (i!.

"TYPE PIC.
ERROR AROVE: 0 DI VI SOR (ll)
"FOR I = ~cn 5, TYPE I, I t3. (12)

I = ?
It 3 = 8
1=5

It3 = 125
"SET A[l) = 3.
ERROR PROVE: SUBSCRIPT (13)
"DELETE A. (14)

"SFT ACI) = 3.
"FOR R==Ll(2) lli', SET A(R/2) = Rt2. (15)
"TYPE ALL VALUES. (16)

A[1] = 3
A[2] = 16
A(3) = 36
A(iI] = 64
A(5] = 100

C = 0
I = 8
R = 12 (17)

X = 5
Y = -7

"IF X = 5, TYPE "YES".
YES
"IF It2 < U?:*R, TYPE "THAT'S RIGHT".
THAT'S RIGHT
"DELETE ALL.

6

II. USE OF INDIRECT STPTEMENTS TO CO~PUTE THE AREP AND CIRCUMFERENCE
OF A CIRCLE, GIVEN ITS RADIUS.

"DELETE ALL •
..] • 1 DEMAND R. (18)
"DO STEP 1. 1. (19)
R = .,;~ (20)

"1.9 SET A = P*Rt?
"1.3 SET C = 2*P*R.
"1.LI TYPF "IF RPOIUS IS·'W·, THEN AREP ISU~tf, AND CIRCUMFERENCE IStfe. (21)
"DO PART 1. (22)

R = "2
ERROR IN STEP 1.2: UNDEFINED (23)
"P=3.1L115927 (24)

"DO PART 1.
R = "9
IF RADIUS IS 2, THEN AREA IS 12.56637, AND CIRCUMFERENCE IS 12.56637
"1.5 TO STEP 1.1. (25)

"DO PART 1.
R = "3
IF RADIUS IS 3, THEN PREA IS 28.97434, AND CI Rcur4FERENCE IS 18.84956
R = "4
IF RADIUS IS ij, THF.N AREA IS 50.26549, AND CIRCUMrERENCE IS 25·13274
R = "17
IF RADIUS IS 17, THEN AREA IS 907.9204, AND CIRCUMFERENCE IS 106.8142
INTERRUPTED IN STEP 1.4 (26)
"TYPE R, C.

"GO. (27)

R =
C =

R = .. lIP (28)

17
106.8142

fF RADIUS IS .3183099, THEN AREA IS .31831, AND CIRCUMFERENCE IS 2
INTERRUPTED IN STEP l~LI

"CANCEL. (29)

CANCELLED
"DELETE STEP 1.1. (30)

"?1 FOR R = 10(5)20, DO PART 1.
"DO PART 2.
IF RADIUS IS 10, THEN AREA IS 314.1593, AND CIRCUMFERENCE IS 62.83186
ERROR I N STEP 1.5: STEP If (31)

~OELETE STEP 1.5.
"DO PART 2.
IF RADIUS IS
IF RADIUS IS
IF RADIUS IS
"TYPE ALL.

l~, THEN AREA IS 314-1593, AND CIRCUMFERENCE IS 62.83186
IS, THEN ~RE~ IS 706.8584, AND CIRCUMFERENCE IS 94.24779
20, THEN AREA IS 1256.637, AND CIRCUMFERENCE IS IP.5.6637
(32)

1.2 SET A = P*Rtp.
1.3 SET C = 2*P*R.
1.4 TYPE ~'IF RADIUS IS"R", THEN AREA IS"A", AND CIRCUMFERENCE Isne.

2. 1 FOR R = HH 5)20, DO PART 1 •

A = 1256.637
C = 1?5.6637
P = 3. 141593
R = 25

.. DELEKE TE ALL • (33) ..

7

Notes on the Conversations

(1) A back arrow (~) is typed
whenev.er ESI wants the user to "sayll
something. Thus any line beginning
with a back arrow was typed by the
user; any without the back arrow, by
the computer.

(2) IIDELETE ALLII commands ESI
to clear user storage of everything
associated with the preceding user
program.

(3) II TYPE II commands the evalu­
ation and typing out of one or more
arithmetic expressions.

(4) All results are stored and
presented as decimal numbers with
exactly seven decimal digits of pre­
cision.

(5) The SGN function is the
II s ign ll or II s ignum ll function of
mathematics.

(6) A variable, such as lIy"
here, which has not been set to any
value is considered to be "unde­
fined ll and any use of it in an
arithmetic expression is flagged as
an error.

(7) Every statement in ESI is
an English sentence, and must end
in a period.

(8) This cornmand is meaning­
less, since IIxy" is not a valid name
for a variable (the only valid names
are the single letters A through z),
and the multiplication sign is miss­
ing if the intention was to evaluate
the product of IIX" and lIylI.

(9) The single letter IIEII means
IItimes ten to the. II Thus 3E-40 is
ESI's notation for 3 x 10-40 .

(10) All numbers stor~g3by ESI
mU~j be in the range of 10 to
10 The number IIA1'2 II is out of
this range.

(11) ESI treats any attempt to

8

divide by zero, including ~/0, as an
error.

(12) In this iterative state­
ment, IIIII will take on values begin­
ning with 2, in increments of 3,
until 5; i.e., 2 and 5.

(13) IIAII has already been
assigned a value as an unsubscripted
variable. It cannot Simultaneously
be subscripted and unsubscripted.

(14) II DELETE II commands ESI to
make the variable lIundefined. 1I It
can now be used with a subscript.
Note that no declaration (such as
DIMENSION) is required before using
a variable with subscripts.

(15) A more complicated example
of subscripting; the subscript
expression is R/2.

(16) II TYPE ALL VALUES II commands
ESI to type out the values of all
defined variables.

(17) Note that the values of "I"
and "R", after the completion of
iterative statements involving them,
are not the terminal values specified
by the FOR statement.

(18) If a number is typed pre­
ceding a statement, the statement is
not executed immediately, but is
stored away associated with that
number, called its "step number."

(19) "DO STEp lI commands the
execution of a previously stored
step.

(20) "DEMAND" (here being exe­
cuted by step 1.1) requests from the
user a value for the indicated vari­
able (in this case "R"). Note that
the back arrow (r) again indicates
that ESI has given control of the
Teletype to the user.

(21) Previous "TYPE" statements
illustrated the typing of evaluated
arithmetic expressions (TYPE X*Y.)
and character strings (TYPE "THATIS

RIGHT".). This example illustrates
how a single TYPE statement may mix
these two forms. Character strings
in quotes alternate with arithmetic
expressions (in this case , note that
R, A, and C are very trivial arith­
metic expressions).

(22) The digit preceding the
decimal point in a step number is
called the part number, and must be
in the range of 1 to 9. All steps
with the same part number are con­
sidered to be a part of a program.
The "DO PART" command causes.each
step of the part to be executed in
step number order. At the end of
execution of the last step (the one
with the highest numerical step
number), control returns to the step
following the "DO PART" if it was
executed from an indirect (stored)
statement or to the user if it was
executed as a direct statement
(from the Te letype) .

(23) We forgot to give a defi­
nition for P. Note that the error
was not detected until the state­
ment was executed.

(24) This illustrates an
abbreviated form of the "SET"
statement which can only be used as
a direct statement (executed immedi­
ately rather than being stored
away). P is, of course, n.

(25) "TO STEP" causes the
designated step to be executed next,
rather than the next step in step
number order. Note that step 1.5
is inserted following step 1.4,
causing the entire program to be a
five-step loop.

(26) At any time during the
execution of a program, the "ALT
MODE" key on the Teletype can be
typed. At the end of execution of
the current step, the execution of
the program is interrupted and an
appropriate message is typed. When
execution is suspended, the only
legitimate statements are GO,
CANCEL, and TYPE.

9

(27) "GO" commands that the
interrupted program be continued
where it left off.

(28) The user may type any
arithmetic expression in response to
a "DEMAND" but must make sure that
only defined variables are used in
the expression.

(29) "CANCEL" commands that the
execution of the program be can­
celled. It cannot now be continued
with GO.

(30) At this point, we have
decided to evaluate the area and
circumference for a given range of
values of the radius. We therefore
delete the DEMAND statement and
insert an iterative statement as
part 2.

(31) We forgot to delete step
1.5, which now refers to a non­
existent step number.

(32) "TYPE ALL" commands the
typing of everything currently
stored by ESI -- that is, all steps
and all values.

(33) The user can type "RUBOUT"
to delete a typing error. Each
"RUBOUT" deletes one character and
types a back arrow to indicate this.
Any number of characters can be
deleted this way; if "RUBOUT" is
typed with the input line completely
empty (all characters rubbed out),
the bell is rung.

PERMISSABLE FORMS IN ESI-B:

DIRECT OR INDIRECT:

SET C = A*B+C*D.
SET C[IIJl = A[I-1,Jf2]-ClI+l,J/2J
SET Y = IP(X/I).
FOR I = l(l)N, SET A(I] = B[Il*ClIJ.

DO PART 3.
FOR R = 0(0.1)1.5, DO PART 2.
DO STEP 3.1.
FOR J = N(-l)l, DO STEP 7.352.

TYPE 2+ 3+ S.
TYPE X.
TYPE X, IP(X), SGN(X), ABS(X).
FOR I = l(l)N, TYPE A[l].
TYPE uTHI SIS A STRING·'.
TYPE ·~THE SQUARE OF" X uI5" Xf2.
TYPE STEP 2.3.
TYPE PART 6.
TYPE ALL PPRTS.
TYPE ALL VALUES.
TYPE ALL.

DELETE X.
DELETE A£1,3], B[I,J], C, D.
DELETE ALL VALUES.
FOR I = l(l)N, DELETE All].

LINE.

CONDITIONAL CLAUSES:

I F A = B,
IF ABS(CN-O)/N) < 1E-6,
IF IPex) GE IPCY),
IF SGN(X) NE 1,
IF eA-B)/C LE D-Xf2,

FUNCTIONS:

I P(X)
FP(X)
SGN(X)
ABS(X)

INTEGER PART
FRACTION PART
51 GN PART
ABSOLUTE VALUE

NUMBERS:

?
3. 141593
.003
0.PJl
-3.7£5
4·36E-7
-3.273E+17

DIRECT ONLY:

DELETE STEP 1.t.
DELETE PART 2.
DELETE ALL PARTS.
DELETE ALL.

x = 3*ARSC A-B)
Y=Z+R
Z = 14
A[]]=1.3E-6
A[-431 = 1-414E+32
A (2) = 3 1 7 5* I

INDIRECT ONLY:

l-t TO STEP 1.7.
1.7 TO PART .tI.

4. 1 STOP.

6. 1 DE-MAND X.
7.35 DEMAND A[I,J].
8.1 DEMA~D A[45].

OPERATIONS:

+ * Ie)

RELATlON!:):

< > = GE LE NE

INTERRUPTED OR STOPPED:

ANY "TYPE" STATEMENT.
GO.
CANCEL.

~ IS TYPED AND THE BELL RINGS WHENEVER A USER TYPE-IN IS REQUESTED.
(AND] ARE USED TO DENOTE SUBSCRIPTS.
? TYPED AT THE END OF ANY LINE CAUSES IT TO BE DISREGARDED.
"RUBOUT" DELETES THE PRECEDING CHARACTER AND TYPES ~ TO SO INDICATE.
STEP NUMRERS ARE IN THE RANGE 1 TO 9.999999.
VARIABLES ARE THE SINGLE LETTERS A THROUGH Z •
• tALT MODEu INTERRUPTS EXECUTION OF A PRUGRPM AT THE COMPLETION OF THE

CURRENT STEP; ON A "'DEMAND", '"ALT MODF." CANCELS F.XECUTION.

iO

f

THE BBN ON-LINE PROGRAMMING SYSTEM

Nancy E. Lambert
Bolt Beranek and Newman, Inc.

Cambridge, Massachusetts

Since BBN has had running time
sharing systems in daily operation
since mid 1962, I thought it worth
while passing on some conclusions of
the practical aspect of that experi­
ence. In particular I want to dis­
cuss our experiences with putting
programming aids into the time shar­
ing system: the Midas assembler, a
symbolic Editor, and DDT. But first
let me give you some background
about our project.

In the fall of 1962 BBN had a
three-user time-sharing system run­
ning on a PDP-I-b. BBN then receiv­
ed funding from the National Instit­
ute of Health and the American
Hospital Association to develop a
time-sharing system for medical
applications, working together with
Massachusetts General Hospital. A
time-sharing system we called "Little
Hospital", built to determine the
feasibility of such a system, was
running on a PDP-l-b by mid 1963. It
was not possible to do any further
research on that system because of
the lack of bulk storage and core.
Since that PDP-l-b was also needed
for other work at BBN the Hospital
Computer Group at BBN wor~ed to­
gether with DEC to develop the PDP­
I-d, making additions to facilitate
time-sharing. The additions includ­
ed allowing each 4k bank of memory to
operate independently from the
others, a set of character handling
instructions, and the ability to
trap all lOT and illegal instruc­
ions. The corner stone of the system
is the DEC swapping drum which
allows complete swapping of 4k of
core in 33 milliseconds. The PDP­
I-d has 24k of core, a Univac Fast­
rand drum with a capacity of 50
million characters and two Univac
magnetic tape drives. The system
currently allows 64 Teletypes,

11

handled by a 630 scanner.

The initial aims of the project
were to develop a time-sharing sys­
tem for hospital applications which
would handle the data in the
hospital connected with the patient
care and the patient record. We did
not and do not intend to handle
diagnosis or real time monitoring or
directly connect the patient to the
computer in any way.

Programs running under the time­
sharing system perform such jobs as
receiving all the data of an admis­
sion and keeping track of where all
the patients are, their transfer and
discharges. Laboratory tests can be
entered and reports generated. The
system keeps track of medications as
they are ordered and types out a
list of drugs to be administered at
the proper care unit one half hour
before they are due. Each Teletype
has access to programs that operate
on the data base and doctors and
other authorized persons may run
programs which allow them to ask
questions about the data base and
modify it. There are twelve termin­
als for experimental use in the care
units in the hospital as well as
twenty terminals in other areas such
as the admissions office, laboratory
and central record office. Members
of the Hospital's Laboratory of
Computer Science use these terminals
regularly and work with BBN in test­
ing programs and methods.

The original goals of the
project were focused on a system to
handle hospital data. There was no
provision for program preparation
on-line nor for background or batch
processing. It was of course
always possible to debug programs

under the Hospital time-sharing
Executive but program preparation
such as assembly and editing were
done off line at regularly scheduled
times using standard PDP-I software
on the non-time-shared machine. We
put the Editor and Assembler into the
system when we felt we could no
longer justify running the machine
v.Jithout time sharing it. The factor
in putting them on-line was more
necessity than desirability.

Our Executive system consists
of a Scheduler, I/O routines, and
many system subroutines. The Execu­
tive occupies a 16k bank of memory.
In addition there are two 4k user
banks that operate independently.

There are two DDT's on our
system. One is an Executive DDT
which may examine and change the
Executive system at any time as well
as access any of the running user
prOgrams. Its language is very much
like that of a standard DDT. It is
operated only from a Teletype in the
computer room by authorized persons
and is used to examine the state of
the system and correct failures.

The second DDT is used to debug
any program that will run under the
system and is called Invisible DDT.
It is called Invisible because it
does not take up any space in the
core of the program being debugged.

When DDT is being used to debug
a user program it performs many of
the functions that the Executive
might perform in other time-sharing
systems. It loads programs and
allows the user to save and get
images of partially debugged pro­
grams, handles illegal instruction
traps, provides additional core on
request, and processes input from
the Teletype character by character.
DDT allows the user to have 7
independent images of core storage.
He may address each 4k image at will.
In reality only one core is avail­
able for Invisible DDT and these
other seven programs, because a user

12

program is allowed only 4k of
storage. Each core that has been
loaded into DDT is in actuality
written on the drum. When the user
examines one of his programs DDT
reads the pertinent part of the
program into its core and responds
to the user just as standard DDT
would. However, when the user
wishes to run one of his programs
DDT changes places with the program
and allows it to run. Should the
program encounter a breakpoint,
execute an illegal instruction, or
be interrupted from the keyboard by
the break key the Executive program
will return control to its DDT.
Notice that because DDT is not
actually resident in the same core
as the user program the user program
cannot destroy it.

Invisible DDT is in fact a 2nd
Executive program running under the
time-sharing Executive. The pro­
grammer uses DDT to control and run
all programs that are not debugged
and in addition, to run all other
programs of the Programming system
to facilitate communication among
them. For instance a programmer
might have a Midas program in one
of his cores, an Editor in another
and the program he is currently
debugging in a third. The time to
switch from one of these cores to
another is well under one second.

The paper tape page editing
program of the non-time shared
machine, Expensive Typewriter
has been replaced by a drum file
editing program. Symbolic programs
are typed into the Editor and are
stored on the drum until expunged
by specific command. The Editor
was designed with the control
language of DDT in mind. Lines
may be examined by typing the sym­
bolic address followed by a /; the
contents may be modified by typing
a new string on the same line.
There are commands to insert,delete,
and change lines. The Editor can
handle files of very large size and
all its data is stored on the drum.

The Midas Assembly program is a
derivative of the non-time sharing
Midas Assembly program, an assembler
with extended macro capability that
was originally designed to work in
16k of memory. Compressing Midas
into the 4k allowed user programs
required using drum storage for the
symbol table and segmenting it onto
the drum. It can assemble the same
files that the non-time-shared Midas
could with the exception that the
source file must be on the drum.
Midas is controlled in the same
manner in a time-sharing environ­
ment except that the controls are
typed instead of entered in the
toggle switches. There are commands
to initiate a pass, continue a pass,
put a jump block on the binary,
pseudo-punch the binary and symbol
table on the drum etc. The binary
and symbol table output files are
stored permanently on the drum until
they are expunged by explicit com­
mand.

It was inefficient to put ex­
tended file handling capabilities
into all the programs of the pro­
gramming system so a new programming
aid called Handle was added to the
programming system. It creates the
system of indexes necessary for a
set of programmers files, it allows
the user to delete files, store them
on magnetic tape, punch them on
paper tape, and copy them from other
programmers files.

We learned as predicted that a
time-sharing system was not the
ideal environment for a programming
system. Some of the disadvantages
of a time-shared system could have
been alleviated on a regular non­
time-shared machine with a large
backing drum store if the expense
of such a drum could have been
justified for the non-time shared
machine. Let me review each of the
first three programs I mentioned
again and talk about what happened
to them under time-sharing.

13

DDT is obviously the ideal sort
of program to be placed in a time­
sharing environment. It was the
impetus for time-sharing at BEN as
developed by McCarthy and for small
computer time sharing at M.I.T.
under Jack Dennis. In fact as every­
one had predicted DDT is the sort of
program that only benefits from a
time-sharing environment to the
extent that a lot of users can
debug simultaneously without being
aware that they are time-sharing.
When transferred to a time-sharing
environment DDT retained all its
good features: its response time
seemed to be as good as that of a
standard DDT except in the extreme
case. In addition it allowed the
user 7 cores of quickly accessible
memory storage and almost inexhaust­
ible drum storage whose access time
was in the order of a couple of
seconds, and it was always available
immediately.

Editor also adapted well to the
time-sharing environment. It
gained the added advantages of al­
ways being available and having
readily addressable drum storage.
It, however, put more of a load on
the system and suffered more from a
busy system than DDT because of the
structure of its data storage. To
get a file ready for editing or to
store it afterwards required a
lengthy drum to drum transfer for
files of any size. This transfer
took a few minutes for a good­
sized file but the main work of
Editor - accepting corrections -
always proceed~d at top speed.

It seems that Midas was not a
program that adapted well to being
time shared. To process a symbolic
of any size required very little
Teletype I/O but a good deal of pro­
cessor time and in the order of
thousands of drum reads because of
its drum symbol table and segments.
To assemble a symbolic of 10 pages
or more or one that contained
macros seemed to take many times

what it would take with standard
Midas even with only a few users on
the system. In addition if four or
more people were assembling at the
same time the rest of the programs
on the system slowed intolerably.
We have found some ways to ease the
situation. Our computer operators
perform assemblies for us at low use
times. We have been considering a
program which will perform a series
of assemblies that will run by it­
self. But these things do not help
us time share the assembler; they
help us avoid to a certain extent
the fact that we have to time-share
it. But the assembler does gain the
same advantages as Editor from time­
sharing, it handles permanent drum
files not paper tape. Programs may
be assembled at any time. In the
case of smaller programs without
macros the assembly completes
quickly without much effect on the
response time for other users.

The results can be applied to
determining the success of time­
sharing other programs. A time­
sharing system has many different
resources it can offer. When any
program utilizes one of these re­
sources too heavily trouble
develops. Not only is the system
slowed but the utilization of the
other resources is neglected,
the time-sharing system loses
efficiency quickly.

___ ...:I

a.!lU

14

* JOSS: INTRODUCTION TO THE SYSTEM IMPLEMENTATION

G. E. Bryan
The RAND Corporation

Santa Monica, California

Abstract

JOSS is a time-shared computer system that pro­
vides for the solution of numerical problems via an
easily learned language at remote typewriter consoles.
The PDP-6 hardware used to implement JOSS consists of
32,000 words of l.75~sec core memory, a l-million-word
4~sec drum, a 6-million-word discfile, and various
peripheral devices. A special data relocation mode
for memory references has been added to facilitate in­
terpretation of JOSS programs. The JOSS consoles,
built around a Selectric I/O typewriter, were specially
manufactured to RAND specifications. Features include
full duplex signaling, line parity checking, a page
eject mechanism, and several buttons and lights to con­
trol and report console status. The stand-alone JOSS
software consists of the JOSS language interpreter and
its arithmetic subroutines, a monitor for user sched­
uling and resource allocation, and I/O routines for
the disc, drum, consoles, and other peripheral devices.
JOSS service is currently available to nearly 500 users
through 34 consoles, six of which are remote to RAND
operating over both private and dataphone lines.

The JOSS System

JOSS is a computer system that
allows a user** direct interaction
with a powerful computer through a
familiar device (typewriter) and in

signed for the casual user and appli­
cations programmer rather than for
the systems programmer.

In order to make such a service
available to many people at an eco­
nomic price, the system is tDme
shared; that is, sDmultaneous and
noninterfering service is supplied

a familiar language (arithmetic or
algebra). The machine that houses
JOSS is dedicated exclusively to that
task 24 hours a day, 7 days a week.
No background tasks are performed.
In contrast with project MAC, SDC,
and other "general purpose" time­
sharing systems, JOSS has been de-

* . JOSS 1S the trademark and ser-
vice mark of The RAND Corporation for
its computer program and services
using that program.

** Usually scientists and engi-
neers, but also secretaries and kids.

15

to a number of users at their indi­
vidual typewriter consoles. The pri­
mary advantage of JOSS is its ability
to provide fast solutions to rea­
sonably complex problems with a mini­
mum of administrative delay. The
user must specify all data relevant
to describing his problem and the
algorithm for its solution, but need
only provide a minimum of detail re­
garding how his problem is to be
solved on the available hardware.
The JOSS user has at his command
a machine of about the power of a

4K 704, with the additional bonus of
a language interpreter.

JOSS is a problem-solving tool
that the user can apply to small- and
medium-size problems with a m~n~mum
investment on his part in learning
its use.

History

Work was first started on JOSS
in 1960. The system was implemented
on th~ JOHNNIAC computer (now retired)
by J. C. Shaw, to whom goes the bulk
of the credit for both design and
construction. The system was par­
tially operational in early 1963 and
fully operational with eight consoles
in January 1964--no small accomplish­
ment considering the 4000 word memory
and doddering years of JOHNNIAC.

However, JOSS was Dnpressive
enough on the few days JOHNNIAC felt
well to substantiate the acquisition

16

of a new computer and the creation of
a well-supported project to build a
second JOSS.* As one user quipped,
"It's better than beer--we're hooked."

Introduction of the new JOSS in
formal operation took place in mid­
February 1966, although selected
users had been contributing to system
debugging since its first coherent
words in early November 1965. Imple­
mentation on a large modern computer
gave the new JOSS about an order-of­
magnitude more capability than its
predecessor--30 tUnes as fast, 5 tUnes
the storage per user, 4 tDnes as many

*The name JOSS still stands for
JOHNNIAC Open Shop System in spite of
the fact that JOHNNIAC now resides in
the Los Angeles County Museum. It has
been suggested that JOSS should now be
interpreted as lOSS Qpen ~hop ~stem.

consoles, 50 percent faster consoles,
room for several powerful new language
features, and, in addition, spare ca­
pacity. We believe that well over
100 consoles can be handled within the
present configuration without service
degradation.

Scope and Intent

JOSS is commonly characterized
as a tool for the solution of small
numerical problems--and so it is. But
the word "small" would be better ren­
dered as "not large." To say that
JOSS is a good desk calculator is a
substantial understatement, although
it is often used effectively for that
purpose. A list of the limitations of
JOSS is perhaps more instructive than
one of its capabilities. As a data
retrieval system, it is poor; no pro­
vision exists for handling large files
of information; it can't tackle very
large problems (by today's standards);
the 40-page FORTRAN code is unfeasible;
and the compact but long-running pro­
gram, say, 2 hours on a 7094, although
possible, would be extremely tedious-­
perhaps as much as 60 hours.

Together with other so-called
time-sharing systems, JOSS enjoys the
substantial advantages of the inter­
active environment. The user is able
to approach his console with perhaps
only a partially formed idea of his
problem and to come away in a few min­
utes or hours with the answer. This
method is estimated to be about ten
times faster than the usual problem­
inception-to-problem-solution approach
to a computer. It is successful enough
that many problems that weren't worth
the effort before are now being solved.

JOSS differs from the general­
purpose interactive time-shared systems
in that its operation is simple and its
goals are limited. What little infor­
mation the casual user does have to re­
member about the system's operation can
usually be brought back to mind by ex­
perimenting at the console without re­
course to a manual of operation or to
the help of a system "expert." For
this ease of use, JOSS gives up many

17

general-pur.pose features, but retains
a large complement of casual users.
As Willis Ware has said, "For a cer­
tain class of problems, at least, the
programmer as the middleman between
the problem and the machine is no
longer needed."

Hardware

The essential hardware components
of the PDP-6 computer system used for
JOSS are outlined in Fig. 1.

The arithmetic processor, a word­
organized multiaccumulator-index reg­
ister machine, is provided with 32,000
words of high-speed core memory in two
independently accessible l6,000-word
boxes. JOSS uses one of the boxes,
the low-addressed one, for the JOSS
software, and the other to hold the
user programs and data.

The processor contains a reloca­
tion register whose contents are added
to memory references if certain con­
ditions are met. The RAND PDP-6 has
been modified so that the appearance
of bit 20 in the address satisfies the
requirement. The contents of the re­
location register are set to the base
address of the locations in memory
that contain the user's program. All
user references, as signaled by bit 20,
are modified by the hardware to refer
to the correct current user location.
The contents of the relocation reg­
ister represent, therefore, the con­
text that determines the user of the
moment. Since bit 20 corresponds to
a real address of 32,768, both the
size of the JOSS system code and the
size of individual users are limited
to a maximum of 32,767 locations. In
effect, the RAND relocation mode pro­
vides a second level of indexing.

Because the capacity of core mem­
ory is not sufficient to hold data for
all possible users simultaneously, the
magnetic drum is used to store data
for some of the users during those
times when interpretation of their
data is not required. Drum transfers
are controlled by the input/output
processor through independent ports to
the memories. Thus, transfers of user

MEMORY BUS
:. ... o_ , H H IHU _ H

i i MEMORY BUS I
: " JI HH u.............. :
5 5 5 5 i 5 5

CORE MEMORY

16,384 WORDS
36 BITS/WORD
I .8 I'SEC CYCLE

163

30 JOSS CONSOLES
IN

VARIOUS RAND LOCATIONS

CORE MEMORY

16,3804 WORDS
36 BITS/WORD
I .8 I'SEC CYCLE

300
LINES

163

ACCUMULATOR/
INDEX

MEMORY
16 WORDS

36 BITS/WORD
-400 n SEC CYCLE

162

AR ITHMET IC

PROCESSOR fT. --­
SINGLE ADDRESS

WORD ORGANIZED •
ASYNCHRONOUS •

15 INDEX REGISTERS l __ _
16 ACCUMULATORS r
363 INSTRUCTIONS

-'hSEC/lNSTRUCTlON I
166 •

CONTROL

CONSOlE
TELEPRI NTER

(MOD 35 TTY)

• INPUT.; OUTPUT
__ ~ BUS

PAPER TAPE
PUNCH

63.3 CHAR/SEC

626· • • .. ---
~---t

761 • • • •

236

137

PAPER TAPE
READER ~---­ ----..

.616 -400 CHAR/SEC
~--~

7(1) • • • ,
• • ---1
I

• I

MAGNETIC
DRUM

1,048,576 WORDS
230K WORDS/SEC
17 ms AVG ACCESS

DATA PRODUCTS
DISCflLE

5.76 M WORDS
9.5-16K WORDS/SEC

100-250 nil AVG
ACCESS

237

5022

L-1~~ldO-"'---"'CJIoI

Fig.I-JOSS PDP-6 system

18

DECTAPE 555
2500 WORDS/SEC,375 BPI

FIXED 128 WORD BLOCKING
74K WORDS/REEL

data between the drum and core are
accomplished indepandently of the
arithmetic processor. The attention
of the arithmetic processor is needed
only to initialize the I/O processor
for the transfer and to take action
after its completion. Memory cycles
are taken by the I/O processor as
needed to service the drum. These
cycles interleave with those taken by
the arithmetic processor in the inter­
pretation of JOSS users' programs.

Logging of information descrip­
tive of the gross system operation is
done on the console teleprinter. The
information is printed each minute
and includes the number of present
users, the number of users computing,
the amount of computing accomplished,
the total lines transmitted to and
received from users, and various
errors.

The data communications multi­
plexer scans lines connected to the
JOSS consoles and reports via a ma­
chine interrupt to the arithmetic pro­
cessor when a character has been re­
ceived or the transmission of an out­
put character has been completed.
All communication with the consoles
passes through the multiplexer and
down the I/O bus to the arithmetic
processor.

In addition to the local JOSS
console lines, the mUltiplexer has
timing and other special gear neces­
sary to interface with dataphones con­
nected to remote JOSS terminals as
well as with local TTY's and TTY's on
the TWX network.

The data control handles the
transfer of information to both the
discfile and the magnetic tape. Be­
cause it cannot transfer data to more
than one device at a time, usage must
be shared.

The discfile provides long-term
storage for users' programs and data.
Its capacity of 200 million bits is
sufficient for many thousands of user
programs. Access time to individual
records on the disc is generally about
200 ms, but long programs, queued use
of the disc by several users, and
computing commitments may extend an
individual file or recall action to

19

several minutes. Normally, however,
a disc action takes about a second.

The IBM-compatible tape unit is
used to collect accounting records
and statistical information, which
are processed in the general RAND
accounting system on another computer.
The discfile is periodially dumped
onto tape for backup purposes, using
an off-line program not contained in
the regular JOSS software.

The JOSS system includes four
Dectape drives that are used in sys­
tem support. Operating binaries for
the DEC-supplied time-sharing system
and its subprocessors (assembler,
editor, file manipulator) used in JOSS
development are contained on Dectapes,
as well as symbolic, relocatable, and
absolute copies of the JOSS software.
The IBM-compatible tape is used for
assembly listings during DEC time­
sharing system operation.

Paper tape reader and paper tape
punch are used for loader and main­
tenance program input and for paper
tape copying.

The line concentrator is built
around Strowger line-finder stepping
switches in much the same way as an
ordinary PBX or CDO. It serves to
concentrate 300 lines from user offices
to 40 multiplexer inputs. The pre­
sence of a JOSS console at the plug
in the user's office is detected by
the concentrator and it establishes
a connection to the computer. It is
through this device that "plug in"
computer power is provided in the
individual user's office.

In addition to the JOSS console
described below, up to eight input
lines may be devoted to teletype oper­
ation. Currently, two model 33 TTY's
are in use at RAND and two lines are
available on the TWX's network.

The JOSS console was specially
built to RAND specifications by the
Digital Equipment Corporation. The
IBM Selectric I/O writer includes a
pin-feed platen, a two-color computer
controllable ribbon shift, a special
character set adapted to algebraic
languages, and a specially built form­
feed mechanism for moving the paper
to page top.

The cabinetry that holds the
typewriter and, in its base, all the
associated electronics is mounted on
casters for mobility and includes a
four-way detachable side table that
provides a convenient work surface on
the left or right side of the console
at the user's option.

A console control box at the
right side of the typewriter contains
two control keys and three white sta­
tus lights. The power ON/OFF key in
addition to applying or removing power
at the console sends a unique signal
to the computer reporting logical ON
and OFF for the console. An inter­
rupt button provides a signal to
request return of control of the con­
sole to the user during those times
when the computer has control.

The status lights report that
(1) the JOSS system is on, (2) the
console has power on, (3) the type­
writer is ready to print, (4) the
computer controls the typewriter
(red light), and (5) the user con-

20

trols the typewriter (green light).
During times wh~n the computer is in
control (red light on), the keyboard
is locked and the ribbon color is
shifted to black. When control of
the typewriter is returned to the
user, a beep tone sounds, the green
light turns on, the keyboard unlocks,
and the ribbon color shifts to green.

The console electronics con­
tained in the base of the cabinetry
control the console operation and
send and receive signals to the com­
puter over a full duplex line in an
8-bit, ll-unit start-stop code. The
67-ms signaling time per character is
designed to keep the typewriter oper­
ating at its full capacity of 15 char­
acters per second. Six bits are sent
for each character (including up and
down shift characters), one bit is
used to indicate control information
(request console status or console
status report), and one bit is used
for a parity check.

The JOSS Language

The language provided for JOSS
users is simple and easy to learn
with relatively few rules governing
correct use. In many ways it is
similar to other algebraic languages
in wide use on every variety of com­
puting machine. The language has
been specially adapted to convenient,
direct use by an active user at a
typewriter console.

Most familiar statement types
exist: Replacement (assignment),
transfer of control, input, output,
and formatting are executed by the
verbs: Set, To, Demand, ~, and
Form. The conditional if clause may
be appended to any JOSS-Statement.
The JOSS Do statement acts more like
a subroutine call than the similarly
named FORTRAN statement.

Significantly, some statement
types do not appear. Declarations
such as DIMENSION are unnecessary,
because of the linked-list memory
assignment in the user's block, and
modes (e.g., REAL, INTEGER) are
handled implicitly.

Whether a statement is to be
interpreted immediately or stored for
future execution is indicated implic­
itly by prefixing statements to be
stored with a "step label," which

gives the proper location of the new
statement relative to others already
stored. Thus, a step labeled 1.25
will be inserted after step 1.2 and
before 1.28; it will replace any pre­
vious step labeled 1.25. Statements
without step labels are interpreted
irmnediately.

A collection of steps with step
numbers having the same integer part
is called a "part." rhus, all steps
labeled one-point-something consti­
tute part 1. A Do statement causes
interpretation o~a part as if it
were a subroutine. Example 1 illus­
trates the use of six cormnon JOSS
verbs, the conditional if clause,
direct and indirect program state­
ments, and the ordering of statements
by step number.

Certain of the JOSS language
facilities deserve special mention
because they are less frequently
found in the cormnon algebraic lan­
guages. The verb Let defines a
formula or rule for-computation. It
may have up to ten parameters. The
functions ~ and prod allow direct
expression of the mathematical oper­
ations for summation and product over
a specified range of values. Use of
these and similar functions (max and
min) eliminates many program loops
and aids in the compact expression
of the desired computation.

Example l--Sample JOSS Program

1.1 Demand xCi).
1.2 Set s=s+x(i).
1.3 Type i,x(i),s in form 1.
1. 35 Set i=i+1.
1.4 To step 1.1 if i<4.

Form 1:
i = xCi) = • sum = .

Set s=O.
St:t i=::'.
Do IJart 1.

x(l)
i = 1 xCi)

x(2)
i = 2 xCi)

x(3)
i = 3 xCi)

=
=

=
=

=
=

--- --

:~~ 7 • y.~:

97.45 SUP1 = 97.45
-67.92

-67.98 sum = 29.47
.3 ... ~
33.47 sum = 62.94

21

22

Conditional expressions, which
may be used wherever expressions are
valid and which use colons and semi­
colons to denote the if •.. then ...
if ..• then ... if ... then ... otherwise ...
notation, again contribute to compact
notation of complex choices and dis­
continuous functions. For example,
see p(x) in Example 3 below.

The first function allows the
user to find the first value of an
index that satisfied a given propo­
sition.

The compact expression achieved
by these features is shown in Exam­
ples 2-4, which give formulas for
polynomial- root finding, prime number
determination, and two-point Gaussian
integration.

As shown in Example 2, roots of
the polynomial p(x) are found by
Newton's method expressed in formula
i(x), where q(x) is the approximate
derivative of p(x). The formula r(x)
recursively improves the root until
it is sufficiently close to zero. The
program at step I prints the three
roots as found by setting approximate
starting values through the for clause
of the controlling Do statement.

The formula P(x) given in Example
3 has value true or false depending on
whether x is prime or not. The first
part, P(x), filters out certain special
cases (e.g., negative numbers). The
second formula tests for primeness by
finding the first exact divisor (frac­
tional part = 0) of x and reporting

Example 2--Root Finding

1 Type r(x),p(r(x» in form 1.

Form 1:
x = 0 ---

i(x) :
p(x):
q(x) :
rex) :

d =
Do step 1 for
x = -1.24670
x = .76528
~ = 10.48142

p(x) = . ---
x-p(x)/q(x)
x*3-10 o x*2-6·x+l0
[p(x+d)-p(x)]/d
[Ip(x)I<10*(-6): X; r(i(x»]

x=-5,1,lO.
p(x) = .00000
p(x) = .00000
p(x) = .00000

Example 3--Prime Number Determination

1 Type x if P(x).

P(x) :
p(x):

[x~O:false; x~3:true; p(x)]
first[i=2,l(2)ip[sqrt(x)],x: fp(x/i)=O and i~l]

Do s-re;; "1 =cr x=O(1)12~10CO~1(2):CC:Ol.
x = 1
x = 2
x = 3
x = 5
x = 7
x = 11
x = 100003
x = 100019
x = 100043
x = 100049
x = 100057
x = 100069

23

= x

"true" if that divisor is x itself.
Only divisors up to the integer part
of the square root-of x are tested.
The typing program at step 1 and the
controlling Do statement test the

formulas and give some output.
The function I in Example 4 inte­

grates the function f over the range
a,b in n intervals.

Example 4--Gaussian Integration

I(f) :
h:

x(i,j):

h/2-sum(i=1(1)n: sum[j=l(l)m: f(x(i,j»])
(b-a)!n
a+h/2-[t(j)+2-i-l]

a=O

m =
n =

b=l
t(1)=-1/sqrt(3).
t(2)=-t(l)
Type I(exp) .expO }-1.

2
30

I(exp) = 1.71828184
exp(l)-l = 1.71828183

Lpt R(x)=(1+x*2)/(1+x*4),

I(R) =
sqrt(2)·arg(1.1) =

1.11072073
1.11072073

JOSS arithmetic is carried out
by an interpretive package of routines
that operates on numbers carried in
scientific notation--an integer magni­
tude and a decimal exponent_ Primary
advantages of this notation are exact
r/o number conversion and the restric­
tion of repeating fractions to those
familiar in the decimal system.

Users may save programs, data,
forms, and formulas on the discfile
and retrieve them from the file using
the verbs File, Discard, and Recall.
Items stored on the disc are in sym­
bolic form. The file operation be­
haves as if the user were typing on
the disc and the recall operation acts
as if the disc were typing on the
user's program space. This means that
the user's current core contents are
only changed as implied by the con­
tents of the disc. Statements replace
current statements of the same number,
and new values are assigned if vari­
ables defined on the disc were previ­
ously defined in core. The user may
reference the files with his program
to accomplish a limited form of chain­
ing.

24

There are a number of features
normally included in computing sys­
tems that JOSS does not have:
(1) There is no way for a user to
handle high-volume I/O, which pre­
cludes the use of large tape files.
(2) The interpretive mode of JOSS
operation (even down to the arithme­
tic) limits the speed of operation.
Thus, very long, detailed calcula­
tions are impractical. (3) The maxi­
mum amount of core available to
individual use is limited to 4K,
making very large programs or programs
with large data bases infeasible.
Finally, (4) JOSS operates only on
numbers, which rules out generalized
symbol manipulation programs. All of
these limitations were imposed be­
cause their inclusion was considered
incompatible with a high-speed, highly
interactive computing service for a
large number of casual users.

JOSS Software

The JOSS operating software is
divided into five principal parts:
the interpreter, its arithmetic and

function" subroutines, the monitor
(which also contains the drum, tape,
and TTY console I/O routines), the
distributor (JOSS con~ole and TTY
I/O), and the disc routines. All of
this code is permanently resident in
lower memory. Its total size is
about 16,000 memory locations, and
includes all I/O buffers for the con­
soles and several thousand words
devoted to the gathering of perform­
ance statistics.

The interpreter, along with the
arithmetic subroutines, is the part
of JOSS that examines users' com­
mands and computes answers in res­
ponse to ,them. User s' programs' are
analyzed character by character by
the interpreter, as the name implies,
to produce the indicated results.
No compilation of user programs is
done. User commands and data are
carried in linked l:LStS within vari­
able-size ~ser blocks. The entire
user block must be in core during
interpretation, and the RANDreloca­
tion hardware requires that this '
block must always occupy a contiguous
area of memory. User blocks have a
minimum size of 1000 words and in­
crease in increments of 1000 to a
system-imposed limit of 4000 words.

The distributor and disc routines
are trap time I/O packages that con­
trol transmission of data to and from
the user consoles and the discfile.
Both communicate with the monitor
about the I/O activity that they con­
trol through signals, which are soft­
ware analogs of machine interrupts.
These signals are referred to as
logical traps or logical interrupts.

The monitor acts as a scheduling,
resource-allocating, and synchronizing
device, deciding when, and ensuring
that, all data and hardware necessary
for a particular action are simulta­
neously available. To carry out this
process, the monitor maintains a se­
ries of queues of users in various
activity states and of data for hard­
ware devices. Signals from the other
software components and a time-inter­
rupt signal control both the changing
of users from state to state and
through these states the monitor's

25

scheduling of the tasks of the system.
Also included in the monitor code

are trap time routines to handle tape,
drum, TTY console I/O, real-time clock
interrupts; routines to gather and
display performance statistics about
overall JOSS operation; routines to
provide accounting information to be
input to the RAND computer time-charging
mechanism; and routines that act as
processors on the level of the inter­
preter to supply the log-on procedures
of receiving initials, project number,
department name, and the final log-off
process.

Figure 2 shows the interrelations
of the JOSS software, including the
data buffers that interface certain
of the components. Control and data
paths are shown, although it is some­
times difficult to classify a partic­
ular path as control or data.

The disc routines and the dis­
tributor, as well as the portions of
the monitor that deal with the drum,
tape, and TTY console I/O, are trap
time routines; that is, they operate
only in response to hardware inter­
rupts from the r/o devices that they
control. Brief exceptions to this
rule occur when the routines are
entered to initialize an I/O action.
These trap time routines generally
signal completion of activity through
logical traps that are interpreted by
the monitor in its main processing
loop.

Top-level control of the machine
is shared between the monitor and the
interpreter, with the bulk of time
spent in the interpreter when users
are requesting computation. The moni­
tor regains control at least every
200 ms through the trap time setting
of the signal COMEBACK, the logical
interrupt signal for the interpreter.
During its control periods, the moni­
tor adjusts user states according to
the current logical signals, initial­
izes I/O actions as may be appropriate,
and determines, from the user states,
which user should receive the atten­
tion of the interpreter next.

The logical control signals that
pass between the various software
components of JOSS are summarized in

(,
I
I
I
I
I
I
I
I
~

/'

"

Arithmetic
Routines

CPU

Interpreter

CPU

I
)

Users
Doto Blocks

" " '---

line
Buffers

I ' _-----. ... -I

Distributor

IOU

Disc
Routines

IOU

I Disc
Buffer r

Figure 2 Interrelations of JOSS software

26

Moster
Console

JOSS

Doto paths

- - - - Control paths

Fig. 3. Most of the signals are
indicated by the setting of certain
communication cells. Some signals,
however, particularly the ones that
start I/O action, are routine calls.

User State Transitions

During JOSS operation, users are
sequenced through the monitor states in
response to signals from the consoles,
signals from the interpreter (in re­
sponse to the executing program), and a
tDne signal generated by the hardware.

A diagram of the transitions
between states is presented in Fig. 4.
Although the figure gives an excellent
Dnpression of the overall operation of
the monitor, it is by no means complete.
Reference to the actual code must be
made if the exact details of state
transitions are required.

Several subcycles are identifiable
in the figure. At the top left of the
diagram are the states that relate to
console turn on and turn off; at the
top center, the states applying to pro­
gram input and short computations; at
the lower left, the typewriter output
IDnited sequence; at the lower center,
the compute IDnited sequence; at the
lower right, the disc activity sequence;
and at the upper right, the drum trans­
fer sequence, used in certain cases when
more core blocks are needed by a user.

The states are broadly divided into
two priority groups: a high-priority
group, shown with heavy shading, and a
low-priority group. Users whose states
are in the high group require inter­
preter service, while those in the low
group do not. Signals from the con­
soles or from the user's program cause
changes from one state to another.

The ON and OFF sequence provides
mechanisms for calling the separate
software processors that provide the
user's initial core block and that
handle the initial salutation, includ­
ing receipt and checking of the user's
initials, project number, and depart­
ment, and the writing of the accounting
record at turn-off time. At turn on,
the user is placed in QM state if the
system limit on the number of users
has been reached. Under most operating

27

conditions, this limit is set higher
than the number of consoles so that
the IDnit is never reached. Before
the installation of the drum, the
limit was lowered to a value that would
keep all active users in high-speed
core. When the user turns his con­
sole off, his state is changed to TOF,
except when a disc action is in pro­
gress. In the latter case, the OFF
signal is flagged in the user's status
word, and his state remains unchanged
through completion of the disc action.
At that time, the change to TOF state,
production of final accounting records,
and the reenabling of the console
occurs.

During periods when a user is
typing program steps and doing short
computations via direct commands, he
cycles through the states in the In­
put and Short Computation Sequence.
During typing the console is green
and the user's state is GR. As soon
as the carrier return is pressed, his
state changes to RC and subsequently
to CD for interpretation of the line
just typed. If the line is accepted
without comment, the state returns
directly to GR while error messages or
response lines return to GR via DSU
during the time that the typewriter is
printing the output line. Attachment
of a buffer to each green user is
required for receiving his input. In
the event that none are free, the
user's state is changed to ABG until
a buffer becomes available.

The Output Limited Sequence con­
trols those users whose programs pro­
duce output faster than can be printed
at the console. One of the system
parameters is called the choke number.
When the number of lines of output
ready for printing at the console equals
this number, the user's state is
changed to CK and further computation
ceases. When the number of output lines
is reduced to the value of the unchoke
number, the user's state is changed
to UC and computation is resumed. If,
during this sequence, the user presses
the interrupt button, his state is
changed to RIB and computation is re­
sumed for response to the interrupt
request.

Disc I/O
IOU

Tape and J COMEBACK l Drum I/O
I

IOU

I Start action

• Continue

~
• Buffer location

• Action complete • No more core
• Compact request • Interrupt signal

H Start action ~
Monitor • Request buffer

~ Action complete t---- SU • Transmit buffer
• Switch console

green
• Output page head

• Console on
• COMEB.ACK response
• More core request

-Initialize • Console off • Disc request
• Switch console • Interrupt • Continue disc action

green • Output line • Finished with disc
• Transmit line complete • Finished with user
• Enable station • Input line • Release core

complete

.L ,
, I

Distributor ~-------... --tl COMEBACK
IOU.

Figure 3 Summary of logical control signals

28

Clock
Interrupt

IOU

COMEBACK I
~

If

Interpreter
-4' CPU

,--ON ~-: SEQ::c~-7

I I
I I
I
I
I
I
I
I

all states (delayed I I during disc actions)
L _________ --'

r------I
\ MORE CORE SEQUENCE I
\ I
\ I
\ I
\ I
\ I
\ I
\ ____ J

,..,-,..,-1
~ /"" ~:tbCT--;_>;-, I

~c busy I
I
I
I
I

Disc interrupt I

I \ \ DISC SEQUENCE I
L.:~~L~~EQUENCE ~ L ______________ ~

Figure 4 JOSS user state transitions

29

In the Compute Limited Sequence,
those users in the ~OM queue share the
computer in 200-ms time slices or
"quanta," as controlled by the setting
of the signal COMEBACK through the
hardware clock interrupt. During these
sequences, the user's state is changed
to RI if he presses the interrupt but-
ton.

The purpose of the Disc Sequence
is to queue users for access to the
disc, allowing only one user on at a
time, and to synchronize the use of
the data control device, which is also
used for transfer of information to
tape. The major cycle is CU-DIP-COM
with actual disc activity occurring
only during DIP. During COM the disking
user waits his turn for the attention
of the interpreter, and in CU the disc
buffer is either filled or emptied
depending on the command in process.
Other users requesting disc service
during this time wait in DQ, while the
disc routines wait in DCT if the tape
unit is using the data control.

The More Core Sequence is employed
when a user requests an additional
block of core storage (implicitly through
the interpreter) and no idle blocks
are available in core. In this case,
the user is transferred to the drum
and his state is changed to QC, a high­
priority state that forces the swap
algorithm to make core space available
and restore the user to the main core.
If the drum is busy when the request
is made, the user's state is changed
to QDN where he waits for transfer to
the drum.

Main Processing Loop

The JOSS monitor main processing
loop provides for action on a number
of possible asynchronous events.
These events or signals are either
such that no machine interrupt is
available to flag the event or are
such that processing at the time of
occurrence would be impossible, impro­
per, or inconvenient. The deferral of
these actions to the main processing
loop ensures that certain routines need
not be trap-protected or coded as pure
procedures.

30

Figure 5 outlines the flow of
control for the major functions acted
on in the main processing loop. There
are two main paths, JOSS active (pro­
cessing a user's request) and JOSS
idle. The idle path has a minor branch
not shown on the figure that distin­
guishes idle passes when the drum is
busy. This indicates that a user
currently on the drum has requested
service and no other activity could
be performed in overlap with the drum
transfer. Usually this happens when
there are many users but a very light
computing load.

The interpreter releases control
to the monitor whenever any of the
monitor-provided facilities are de­
sired and also when the signal COME­
BACK is set. COMEBACK is set by the
occurrence of monitor-distributor
signals and every 200 ms by a real­
time clock interrupt. Thus, when the
interpreter is processing long com­
putations, the monitor regains control
in order to service signals from other
consoles and to time-share the use of
the machine among compute-bound pro­
grams.

Console signals are produced for
the monitor by the distributor. These
signals are translated into state
changes, which will later control the
selection of system tasks.

The disc interrupt signal is set
by the on-line disc routines when a
disc buffer is either filled during
an input action or emptied during the
filing of user information on the disc.
The state of the user with disc action
in progress is changed to compute
(COM) so that the interpreter can pro­
ceed with the filling or draining of
the next buffer load of information.
This ensures that the user's block
will be in-core during the necessary
points in the disc transfer without
requiring it during the entire trans­
fer.

A final mode of processing is
provided by a monitor flag that indi­
cates the monthly production of disc
accounting records. This disc-to-tape
operation is synchronized thro~gh
logical traps from the disc and tape
routines.

JOSS
idle

None

Process disc and console signals
into state changes

Act on other signals-switches,
states, and time­
of-day-counters

Select an appropriate user for
transfer from drum to core
and initiate the transfer

I

Select a user for JOSS
i nterpretati on

Enter interpreter I
Process signals from the interpreter

into state changes

I
Figure 5 JOSS moni~or main processing loop

31

JOSS
active

The miscellaneous functions per­
formed in the main processing loop can
be divided into four broad categories:
switch examination, dormant queue ser­
vice, core compaction, and periodic
functions.

Two special switches are monitored:
one to enable the system shutdown pro­
cedure and the other to forcefully shut
down the system.

Certain user states are entered
to await the occurrence of particular
events. The main processing loop
examines the queues corresponding to
these states and, if a user is waiting,
checks further to determine if the
appropriate condition has been obtained.
If it has, action is taken. Queues
serviced in this way and the resulting
actions are as follows:

DCT Disc user waiting for use of the
data control. When the data
control becomes idle" the user
state is changed to DIP and the
disc routines are entered.

ABG Us~rs awaiting a buffer for
switch to green.

QDM Users waiting for the drum to
idle in order to be transferred
there.

QM Users in the JOSS service queue.
Users in this queue are given
service whenever the number of
active users falls below the
allowable filliUber.

During some kinds of drum swaps,
more than one small-size user may be
transferred to the drum in order to
make room for one large user. The
users to be transferred are selected
on the basis of their priority. Thus,
there is no guarantee that the core
space freed is contiguous, which it
must be to read in the large user.
Compaction of core is performed at the
main processing loop level to bring
all available core blocks adjacent to
one another at a time when they are
not in use by the interpreter. The
waiting transfer from the drum to core
is then initiated.

32

Major time interval incrementing-­
the counting of minutes, hours, days,
months, and years--is accomplished
from the main processing loop. Func­
tions performed in this part of the
MPL include initiating log reports
each minute, accumulating statistics
on the minute and hour, and initiating
accounting for the disc each month.

Next in line in the MPL is the
selection of an appropriate user to
be transferred from the drum to core.
This action is only performed if a
transfer is not already in progress.
Of course, only the high-priority
users are candidates for transfer into
core.

Finally, an in-core user is se­
lected and the interpreter entered.
The main processing loop is completed
when the interpreter returns to the
monitor.

JOSS Usage

The statistics given below are
intended to describe briefly the ex­
tent to which JOSS is typically used,
as of the fall of 1966. It should be
noted that usage patterns are still
changing fairly rapidly. Improvements
that have had a substantial impact on
usage include that from JOHNNIAC to
the PDP-6, which increased computa­
tional speed by a factor of thirty,
and the later additions of the drum
and discfile, which gave ,users five
times more core space and the ability
to file programs and data. Interme­
diate system changes of smaller mag­
nitude, as well as the natural growth
of user interest, will, no doubt, keep
the usage patterns changing on the
positive side, as is usual throughout
the computing industry.

With the exception of six hours
per week of scheduled maintenance and
occasional (or possibly frequent) un­
scheduled down time, JOSS operates
24 hours per day, 7 days per week.

Usage

o About 500 users, some casual,
some addicted.

o About 300 different users
each month.

o Computation is divided into
150 sessions each day or about
3000 each month.

o The users are served by 34 con­
soles, of which 2 are on the
TWX's network and 5 are in re­
mote locations (3 on the East
Coast). The remainder are
located in RAND.

o Usage is highest during mid­
morning and mid-afternoon,
normally peaking at 25 con­
current users. The average
number of simultaneous users
for a 24-hour period is 6;
average in prime shift is about
13.

Computing

o Actual computing--as contrasted
to idling when waiting for
work--is 130 hours per month,
which is 18 percent of total
time or 74 percent of prime
shift.

o Approximately 3,000,000 JOSS
statements are processed every
24 hours in an average time of
5.5 ms per statement.

Sessions

o A typical console session lasts
45 minutes; 10 percent are less
than 2 minutes; and 10 percent
greater than 2 hours.

o Computing time during a session
averages 2 minutes or about 5
percent of session time, but
60 percent use less than 10
seconds and 1 percent compute
more than 1 hour.

o On the average during each se.s­
sion two items are retrieved
from the files, one is dis­
carded, and one placed in the
file.

33

o Users input 2 lines per minute
on the average and output 6,
which totals 90 input lines
and 270 output lines during
the typical session.

o Mean interaction (that is,
time for an individual user
between carrier returns) is
30 seconds and is distributed
approximately exponentially
with 40 percent less than 6
seconds and 1 percent greater
than 5 minutes.

o Average character rates per
user are 1 per second input
and 3 per second output.

o User programs average 320 JOSS
cells or 1000 machine words.
Twenty percent use less than
10 JOSS cells and 7 percent
more than 1000.

o The session time distribution
of size is as follows:

<lK words 58%

lK-2K 30%

2K-3K 5%

3K-4K 7%

The early usage of JOSS as implemented
on the PDP-6 confirmed it to be an
effective computational tool. The
average computation per session of
20,000 statements indicates that com­
plex problems are being solved, but
the hardware and implementation are
such that considerable computational
capacity remains. This additional
capacity appears sufficient to support
between 100 and 200 consoles at cur­
rent usage rates.

PDP-l0 SYSTEM PHI LOSOPHY
NEW PRODUCT ANNOUNCEMENT

David Plumer
Digital Equipment Corporation

Maynard, Massachusetts

Abstract

An analysis of the system design philosophy behind Digitalis newly announced
PDP-10 Computer series. A discussion of the sa I ient features of hardware and soft­
ware which combine to make the PDP-10 a true family of totally modular machines.
Topics to be considered include: 1) device and memory independent software; 2) batch
processing within conversational -time sharing; and 3) true upward compatibi I ity with­
in four PDP-10 software systems.

Introduction

The PDP-la, a new, expandable computer
system avai lable in five configurations and offer­
ing optimum power and versatility in the medium
price range, was introduced by Digital Equipment
Corporation at the opening session of the 1966
Fall Joint Computer Conference in San Francisco,
and at the DECUS Fall Symposium, Lawrence
Radiation Laboratory, Berkeley, California.

The PDP-10 is designed for on-line and
real-time scientific, engineering and process con­
tro"1 appl ications with prices starting at $110, 000.
The PDP-l0 features a 1 microsecond cycle time,
a 2. 1 microsecond add time, I/o bus transfer rates

up to 7,200,000 bits per second and a modular,
proven software package that expands to take fu II
advantage of all hardware configurations. Memory
can be expanded in 8, 192 word increments to the
maximum directly addressable 262,144 words.

The Five Configurations

The basic configuration, PDP-1 0/1 0, in-
c ludes an extreme Iy powerfu I programmed processor
with 15 index registers, 16 accumulators and 8, 192
words of 36-bit core memory, a 300-character-per­
second paper tape reader, a 50-character-per­
second paper tape punch, a console teleprinter, and
a two-level priority interrupt subsystem. Source
and object programs reside on paper tape.

PDP-10/20 adds two DECtapes, Digitalis unique

35

fixed-address magnetic tape system which allows
compact fi Ie structured storage. A single tape
may contain multiple files of various types; any
single file may be deleted, changed, or expanded
without effecting other files on the tape. Source
and object programs reside on DECtape providing
maximum flexibility and programmer convenience.

Another configuration, the PDP-10/30,
offers the user sti II more versati I ity. It inc ludes,
along with the standard processor features, 16,384
words of memory, and additional I/o devices.
This system is designed to facilitate stand-alone
computing capabilities incorporating specially de­
signed customer hardware and software.

Time Sharing

The fourth configuration, PDP-10/40, in­
corporates 16,383 words of memory, extended order
code and the memory protection and relocation
feature. The PDP-l 0/40 mu Itiprogramming/time­
sharing software has been in successfu I operation
for the last two years. It includes facilities for
real-time and batch processing.

The final configuration, the PDP-la/50, permits
swapping between 32,768 words or more of core
memory and fast access disk fi Ie via the mu Iti­
plexer/setector channel. This system includes com­
plete mu Itiprogramm ing time-sharing software.

Software

PDP-10 uti I izes five distinct levels of soft­
ware keyed to a variety of processor and/or core
memory opt ions. A II software systems have been
designed to expand PDP-10 performance easi Iy to
include any standard option without requiring costly
special reprogramming.

All software systems assure upward compati­
bi I ity from the standard 8,192 words of memory
through the multiprogramming and swapping systems
at both the symbolic and relocatable binary level.
(For example, a FORTRAN IV program compiled on
the basic PDP-10 system can be link-loaded and ex­
ecuted under time sharing without the need to re­
compile.)

The software package includes real-time
FORTRAN IV, a control monitor, a MACRO as­
sembler, a context editor, a symbol ic debugging
program, an I/o controller, a peripheral inter­
change program, a desk ca leu lator, and library
programs. All attainable via the DEC conversa­
tional mode.

In addition to software compatibility
throughout all configurations, the system1s programs
are device independent. They obtain their I/o
services through calls to the same I/o package used
by the FORTRAN object programs and accessible to
any user1s program. Also, designed into each of the
software systems is the ability to incorporate service
routines for real-time applications and/or non­
standard I/o dev ices.

The PDP-l0 system is expected to find wide
acceptance in applications such as physics and bio­
medical research, as a departmental computation
faci I ity, in simulation and aerospace, process con­
trol, chemical instrumentation, display processing,
and as a science teaching aid.

36

PDP-6 SYSTEM AT LRL, LIVE&~ORE

John G. Fletcher
Lawrence Radiation Laboratory

Livermore, California

Abstract

An information-handling system, built around a pair of
PDP-6 processors and their 256K memory, is being implemented
at the Lawrence Radiation Laboratory, Livermore. These pro­
cessors are being modified to use segmented and paged address­
ing. This system will control communication between teletype­
writers, display and printing devices, and six computers as
large or larger than an IBM 7094; it will maintain files using
disc, data cell, and photo-digital storage devices, the latter
having a capacity of 1012 bits; and it will engage in time­
shared program execution, supplementing an existing system
operating on CDC 6600's.

At the Lawrence Radiation Laboratory in
Livermore, we are currently attempting to in­
volve most of our computer complex in a
single system, centered around the pair of
PDP-6 central processors and their 256K-word
memory. The functions of this system may be
divided into three areas: communication,
file maintenance, and time-shared processing.
Each of these will now be considered in turn.

The communication system is called
Octopus. The PDP-6' s will interface with a
large number of computing and communication
devices available at the Laboratory. These
devices include six large computers: two
CDC 6600's, an IBM 7030 (or Stretch), a CDC
3600, and two IBM 7094's. These' computers
are used chiefly for production computation
of large numerical problems. There are also
two small computers: an IBM 1401 and a CDC
l60-A. These are used chiefly for small 1/0-
related computations. And finally there is a
PDP-B, which will be used to control a large
on-line data collecting network. In addition
to the computation devices, there are input­
output devices, such as teletypewriters (per­
haps as many as 1,023), a high speed printer
capable of printing 500 lines per second,
various plotting and display devices such as
a DD-BO and Cal-Comp plotters, tape drives,
and card reading and punching devices.

The PDP-6's will behave as a giant
switch or dispatcher routing messages be­
tween these various devices. For example,
teletypewriter messages may be used to inter­
act with the time-sharing mode of operation
available on the 6600's, or teletypewriter
messages may be used to insert jobs into the
batch monitor inputs of the other computers,

37

or the output from various computer opera­
tions may be routed to the high-speed
printer. The communications system itself
will not have to depend upon the proper
functioning of any of these various devices
other than the PDP-6's. The computer com­
plex maintains a modular, and therefore
flexible, arrangement. Any failure in one
device does not interfere with the communi­
cation activities of the other devices, un­
less of course both PDP-6's fail.

The control language that will be used
to direct Octopus operations from the tele­
typewriters will be a compilable language.
Subroutines written in this language may be
called by running computations. Thus it
will be very easy for computations them­
selves to simulate teletypewriter inputs and
thereby run one another in a very complicated
way. It might be, in fact, possible for the
user to reduce all the things that he nor­
mally does at the teletypewriter to a few
routines which he will define himself in
terms of existing routines. When he sits
down at the teletypewriter, he must only
type a few lines, and every.thing else will
automatically occur for him.

The file maintenance system is called
Elephant. The file storage devices which
will be available in the system include, in
addition to the core of the PDP-6's, a high
speed disc, capable of transferring at the
rate of 20 megabits per second and having a
capacity of .B billion bits. This disc does
not have,moving heads, but only electronic
switching between them. Therefore the only
delays of significant magnitude in accessing
the disc have to do with the rotational de-

lay. Average random access time is 35 milli­
seconds, but overlap scheduling will permit
essentially continuous·operation.There is al­
so an IBM Data Cell, perhaps in the future
several such Data Cells. Each Data Cell unit
has a capacity of about 3.2 billion bits. Ran­
dom access time, however, is of the order of
half a second and overlapping is extremely
difficult. Finally, there is an IBM Photo­
Digital Mass Storage Device. This device has
a capacity of over 1 trillion bits! This de­
vice stores information on film chips, which
are kept in small boxes that move pneumati­
cally from their storage locations to reading
heads. It is a write-once device, in that
after a film chip is written, it must be de­
veloped and thereafter can only be read. Ran­
dom access time is very high, approximately 5
seconds on the average. However, extensive
overlapping is possible and the average read­
ing rate is approximately 1.5 megabits per
second. So as long as there is provision for
keeping the computers busy with other jobs
during the 5 second delay in accessing a sin­
gle file, this random access time causes no
difficulty whatsoever.

The various computer outputs of the com­
puters in the Octopus network, or various
messages originated by users at teletype­
writers, can be stored in this vast filing
system. It is hoped that extensive use of
this facili~y will drastically reduce the
consumption of magnetic tape, printer paper,
and punched cards at the Laboratory. An in­
teresting statistic in this regard is that
the printer paper consumption at the Labora­
tory can be measured in the hundreds of
miles per month.
-----The manipulations within the filing sys­
tem will be largely user-invisible. Users
will know their file by name; the exact lo­
cation of their file in storage at any moment
will not be of any interest to them, but they
can if they wish find out where it is. Since
with a large computer complex such as ours,
there is considerable liklihood of duplica­
tion in file names, in order to implement
this name-oriented filing system, we have de­
cided to introduce a directory system some­
what similar to what is proposed for the
MULTICS project. Each user will have a file
associated with him called his root direc­
tory. This directory will contain a list of
the names of various files to which he has
access. Some of these files may in turn
themselves be directories, which in turn may
list further directories and so on, there
being a tree-like structure leading from the
root directory to the various files that are
to be actually used in computations. A user
has no way to access a file not listed in
this "tree". To reference a file, the user
gives what is called a chain name. That is,
he gives the name 'of a directory as it is

38

listed in the root directory, then the name
of a directory as listed in that directory,
and so on until he gives the name of the file
itself. Of course there will be ample pro­
vision in the control language for changing
from the root directory to one of the sub­
directories, so as not to have to continually
repeat the beginning portion of a chain name.
Users can share sets of files by sharing a
directory listing them, and names need only
be unique within each directory.

An entry in a directory contains a num­
ber called the file pointer. This number
will not, however, necessarily directly de­
scribe the location of the file in the filing
system, since the file may move from device
to device. A file that is little used may
remain on the mass storage device, but when
it is referenced it will be moved up to the
disc, so as to be available for use. With
each filing device will be associated an
index, a list of the files currently resident
in that device together with their locations.
When a file is requested, the proper direc­
tory entry will be used to obtain the desired
pointer. This will then be checked, first of
all against the disc index, then against the
data cell index, and then against the index
of the mass photo-storage. If it is found in
none of these, it is presumed that the file
has had to be moved to the shelf, it being
possible to actually remove the film chips
from the photo-storage. In this case, the
file pointer does actually describe the lo­
cation of the file on the shelf.

Each file will have a lifetime, which
may be declared by the user. Typical life­
times might be, say, four hours, two weeks,
or essentially forever. Whenever a file is
not referenced for longer than its lifetime,
it is destroyed. By having this feature of
automatic destruction, we preven~ the waste­
ful accumulation of unneeded files. For ex­
ample, such things as diagnostic files from
Fortran runs, which users often forget about,
unnecessarily clog the present storage system
of the 6600 time-sharing system. Since the
user may never make reference to such files,
he will then of course never have any occa­
sion to dec are them to have a lifetime longer
than the minimum (e.g., four hours). There­
fore, they will automatically be destroyed,
it being a reasonable assumption that if he
doesn't refer to a Fortran diagnostic within
4 hours of production, he probably has no
use for it. If he does have use, of course,
he can specifically request that the file be
kept longer.

We envision that several users will want
to make access to the same file. Obvious ex­
amples are the public files, containing the
standard arithmetic routines, file manipula­
ting routines, and what-have-you. It is
very undesirable to have users capable of

randomly modifying such files. Therefore
all files will be distinguished by having
what are called access bits. A file can be
marked so that it may not be written, but
only read. In fact, we have even provided
for files which may not even be read, but
merely have the coding in them executed.
Such a feature would, perhaps, be very de­
sirable in a commercial environment, where
persons may wish to sell programs that they
have written but are somewhat reluctant to
allow other people to see how they are
written. Of course these access bits depend
upon the user. The system programmer who
originally writes a particular utility rou­
tine should retain the ability to rewrite it
in the event that a "bug" is discovered or
an improvement is devised.

The time sharing system of the PDP-6's
is called Alligator. This time sharing sys­
tem, at least initially, will be independent
of, and supplemental to, the time sharing
system already running on the 6600's. There
are several reasons why we would like to re­
move some of the time sharing load from the
6600's, one of which is that time-sharing
seems to be a poor use of the great speed of
these computers. Time-sharing is to some ex­
tent interfering with the execution of the
very long and large numerical calculations
which must be necessarily done on these
large machines. We intend that such things
as file manipulation and, hopefully, short
arithmetic or desk-calculator type computa­
tions will be done on the PDP-6's.

Our time-sharing system uses many new
and modern features which are supposed to be
desirable in a time-sharing system and which
we are going to try in order to find out how
desirable they really are. In order to im­
plement some of these modern features, we
have had to make modifications in the PDP-6
in regard to its relocation mechanism in
user mode. It might, therefore, be wondered
why we chose a PDP-6 as the central computer
of our system. One answer is that the com­
puters with the various relocation features
which are to be described were not avail­
able when we were making our decisions. But
even beyond that we find the PDP-6 has a
variety of very useful instructions for a
communication-type computer. Such things as
the byte manipulation, half-word, and test
instructions are very valuable indeed. Also
in the mUlti-processing environment we have
with two processors operating in the same mem­
ory, we have found that instructions like
add-one-and-skip (AOS) and subtract-one-and
skip (SOS) , which read a word, modify it,
and test it all at once, are almost essen­
tial to efficient programming. Another de­
sirable feature of the PDP-6 is its general
interrupt facility and its ability to inter-

39

face with a large variety of asynchronously
operating I/O devices. The interrupt facil­
ity relieves the PDP-6's from the necessity
of having to perform continuous or periodic
interrogations of various data channels.

Various features of our time-sharing
system, which will in many cases serve the
communication and file maintenance systems
previously described, are as follows: First
of all, we have a paged core; that is, the
core is divided into blocks, and hardware
modifications permit a single computation to
be located in non-contiguous blocks without
the programmer having to be aware of it and
without any actual change in the words
stored. The hardware performs automatic re­
locations, selecting the proper area of mem­
ory to which an address refers. What is
hoped to be gained by pagination is that it
will be possible to more efficiently utilize
the core of the PDP-6's. Present experience
in the 6600, which offers a feature of auto­
matic relocation almost identical to the
standard relocation features of the PDP-6,
is that at anyone time there may be suffi­
cient core for one, or perhaps several, jobs
in addition to the ones that are currently
running in the time-shared mode. However,
this core may not consist of one contiguous
block of core, but of several pieces of un­
used core separated by the core being used
by the jobs that are already running. The
only alternatives that one has under these
circumstances are, either, that the new jobs
are denied the use of the computer until one
or more of the other jobs has left the core,
or else, that activity must stop for awhile
and the core be repacked so as to bring the
vacant areas into one contiguous block.

Paging not only makes it possible for a
job which appears to the user to consist of
a contiguous piece of core to, in fact, be
spread around the memory of the computer,
but it also makes it possible that the entire
job not be in core at the time at which the
job is running. If during the course of the
execution, the running program makes refer­
ence to a portion of the code which is not
in fact in core, an automatic interrupt
occurs. The executive system is called; it
retrieves the missing page, presumably from
the disc, and then returns control to the
program that required the page.

In addition to being paged, our machine
provides for segments or two-dimensional ad­
dressing. The address of a word in a compu­
tation consists of a segment number and then
a word ntlmber within the segment. This word
number, of course, is actually broken into a
page number and a line number by the paging
mechanism, but, as previously remarked, this
is user-invisible. Segmentation offers fur­
ther capabilities in the area of better core

utilization. An interesting example of the
situation now occurs, say, with the Fortran
compiler. It may be that several of the jobs
running in the 6600 at one time are, in fact,
compiling Fortran. For each one of these
jobs, a distinct copy of the Fortran compiler
must be brought into core. Moreover, a job
of higher priority may arrive, necessitating
removal of one of the jobs currently occupy­
ing core. If the job which is removed, and
the job for which it is removed, are both in­
tending to compile Fortran, the situation ob­
tains that the Fortran compiler is removed
from core in order to make room for the For­
tran compiler. By having two-dimensional ad­
dressing, we make it very easy for users to
share coding. Two users may use the same
block of coding in core but refer to it by
different segment numbers. Therefore, the
same coding is useful to both programmers
even though they do not think of it as having
the same address. Such programs as Fortran
compilers, assemblers, and various utility
routines, such as ones which manipulate files,
can be shared by all users who desire them
at one time, and considerable savings in core
should result. Of course, the segment number
plus the word number must exceed the 18 bits
available in the address space of the PDP-6.
Therefore we have made some modifications in
the PDP-6 addressing scheme, but discussion
of this detail does not seem appropriate
here.

Another feature we have is dynamic link­
ing. The segments of a computation performed
by a user are not all initially loaded; only
a few segments are loaded. Then, whenever a
reference is made to a segment which is not
currently loaded, a trap occurs and the seg­
ment is retrieved from the files. This is a
further step in attempting to reduce burdens
on the core and on the filing system. That
is, a segment that is never used need never
even be retrieved from the files. An example
might be error routines, which need only be
loaded if the error actually occurs. There
is of course a further hardware modification
that makes this automatic trap for the dynam­
ic linking possible.

A side effect of having segments is the
ability to have expandable arrays. An array
can begin in a certain segment and then may
grow to the full possible length of the seg­
ment (which is 32K words, incidentally),
without having to worry about initially set­
ting aside the entire space. In fact, a
growing array is initially a segment having
no length whatsoever. As entries are made
into it, pages are created for them, and the
segment gradually grows a page at a time to
the maximum possible size.

Mention has already been made of the
fact that we will have parallel processing

40

available in our system. We really have
more than one central processor working in
the same memory. We envision that they will
actually run simultaneously. In fact it
will be possible for one user to start two
parallel processes of his computation and
perhaps, if the traffic load is low, to get
them actually running in parallel, one be­
side the other, rather than, as is the case
in most time-sharing systems, alternating
with each other in a single processor. We,
of course, will have the latter capability
also.

The fact that users will be able to
share segments means of course that consider­
able attention must be paid as to how pro­
cedures are written. A procedure should not
modify itself as it runs, because then if
two users are simultaneously computing with
it, it will get a bit confusing as to which
one of the users is actually permitted to
make the changes in the procedure. In fact,
what we are really talking about here is
pure or reentrant procedures, procedures
which do not modify themselves as they exe­
cute. We are also providing for procedures
being recursive, capable of calling them­
selves either directly or indirectly in ways
that are probably familiar to list-processing
programmers, but perhaps are not so familiar
to persons accustomed to Fortran.

Of course, it is one thing to say that
a procedure is pure and therefore will not
write into itself, but it is another thing to
say that a user will not accidentally or per­
haps maliciously write into the procedure by
treating it as a data segment. It is at this
point that the access bits discussed earlier
in connection with files have further impor­
tance. The hardware mechanism permits each
page to have associated with it three bits
which indicate respectively whether one may
write into the addresses in the page, whether
one may read from them as data~ or whether one
may read from them for instruction fetch.
These bits are called respectively, the write,
read, and execute bits. Clearly, pure pro:-­
cedures will be marked as execute, or perhaps
execute and read, but not as write; thus it
will be impossible for a person sharing this
pure procedure to modify it and thereby dis­
turb other users. It is through the use of
these access bits and the various protections
offered by the hardware mechanism which mani­
pulates segments that we prevent users from
interfering with one another even while they
are actually sharing coding with one another.

We propose to solve our accounting prob­
lem by instituting the very American notion
of capitalism. Each user is given a bank
account of some arbitrary credit units which
he may spend as he sees fit for the various
system resources, each one of which has a

price. That is, he will be charged so much
for use of storage space, for use of proces­
sor time, for use of I/O devices. The prices
of these devices will be set automatically by
the system on the basis of use and will be
revised periodically, say weekly or monthly.
As the device proves more and more popular,
its price will gradually rise; this will dis­
courage people from using it and encourage
them to use less used devices, the price of
which may gradually lower. A user who de­
sires extra service, that is, who wishes to
be served more rapidly than the system would
normally serve him, may voluntarily raise
the price he pays for a device; that is, he
may spend his capital more rapidly than nor­
mal in exchange for this increased service.
By having one medium of exchange, the number
of the decisions burdening the supervisory
staff is cut down considerably. They do
not have to decide how much of this, or how
much of that, each user is entitled to; they
merely decide what his overall worth is, and
he then allocates his resources as best
suits his needs. The supervisory staff also
has the problem of deciding, when the price
of a particular device has risen extremely
high, whether it should be raised further
or whether perhaps an additional device
should be bought. Conversely, when the
price of a device drops to zero, one might
consider whether or not it would be reason­
able to dispose of it.

The system described here is in process
of being implemented now and should begin op­
erating in a fairly complete fashion about a
year from now. Much of this delay is in
waiting for the delivery of some of the
hardware devices, particularly the mass
storage device. Needless to say, there are
a great number of people, both hardware
and software experts, involved in the design
and implementation of this system. Not all
of these people work at the Laboratory,
since we have taken the liberty of using
what we consider to be the best ideas avail­
able in the published literature.

41

A COMMON MEMORY SYSTEM FOR A TIME-SHARED PDP-6

E. Brazeal, S. Sharpe
United Aircraft Research Laboratories

East Hartford, Connecticut

Abstract

A multiprocessor capability has been added to United Aircraft
Research Laboratory's time-shared PDP-6 computer. A flexible
interface was designed to realize this capability. The hardware,
"MEMTIE," controlled from the I/O Bus of the PDP-6, allows the
existing PDP-l computer to share a type 164 memory module with
the PDP-6. This common memory system provides the communication
potential for various multiprocessing applications.

This paper describes the combined computer facility, the
design requirements for the interface, some details of the inter­
face, and certain planned applications for the system.

Introduction

The past several years have seen an
expansion of digital computation capabil­
ities within the Simulation Section of
United Aircraft Corporation's Research
Laboratories. The first digital machine
ac~ired by the Simulation Section was a
PDP-I. This machine soon saw heavy use in
hybrid computation and scope display work
utilizing its interfaces to a Beckman 2133
analog computer and a BEC type 340 scope.

The aquisition of a PDP-6 time-sharing
system has expanded the Laboratory's capaci­
ty to do hybrid computation (through a hy­
brid linkage interface to four analog com­
puters) and includes multiuser teletype
service offering a multitude of system
programs (editors, compilers, "desk" calcu­
lators, debugging programs, etc.), and a
multiprocessing interface to the PDP-l
through a common memory system.

This paper will discuss the justifica­
tion, design, and application of this
multiprocessor interface.

43

It was considered desirable to include
a scope display I/O device, such as the
existing type 340, in the PDP-6 system.
However, the nature of the problems encoun­
tered implied a great demand in processor
time required to service the display. If
the scope were connected directly to the
166 processor, a prohibitive load would be
put on the time-sharing programming system
(especially considering the real time re­
sponse demanded by hybrid simulation). For
this reason and because much usable display
software already existed for the PDP-l,
another scheme utilizing the PDP-l as a
display processor was decided upon as the
best approach.

MEMTIE was designed as a hardware
interface to realize the goal of developing
a high-speed, highly efficient scope dis­
play for the PDP-6 system. As illustrated
in Figure 1, MEMTIE appears as a second
processor to the PDP-6 system with connec­
tion to the 166 processor, the I/O Bus, the
PDP-l and 164 memory module III.

PDP-6
MEMORY ARITHMETIC SYSTEM

BUS PROCESSOR - I/O BUS

(166) T T I T T
[(760) I I CONSOLE] [DECTAPE I (630) I REAL TIMEI

(164) '~ TAPE TTY (l36) DATA COMM CLOCK
0 MEMORY READER (KSR 35) (551) SYSTEM

16K T I ANALOG

1 6 11 8 1
LINKAGE

(164) t L-- (555) TTY'S SYSTEM

I MEMORY TRANSPORTS (KSR 35)
16K

4 I
1

ANALOG
(I64) COMPUTERS

:rr MEMORY H
16K

r--- --- -----..,
{l64} }- : I MULTIPROCESSOR r+- (340) I PDP-I I

]II MEMORY I 1 INTERFACE II (ROCESSOR'I
SCOPE DISPLAY

16K I (MEMTIE) I 4K MEMORY
WITH OWN

2K MEMORY
I I

L __ ~o,~,,~ ___ --1

OTHER I/O

PERIPHERALS

Figure 1 System Block Diagram

44

Although the major goal of MEMTIE was
to implement a scope display system, many
other applications have been envisioned.
Some of these include hybrid computation
with calculation loops running concurrently
in both machines (to enhance real time sim­
ulations), utilization of the I/O facilities
(other than the scope) of the PDP-l from
the PDP-6 (or vice versa), and extended
memory operation of the PDP-l alone.

PDP-6 System Considerations

A multiprocessor type of operation
within the PDP-6 time-sharing system can
generate some difficult problems in the
areas of protection, relocation, and -gen­
eral control of the common memory area. It
was decided that the PDP-6 should have con­
trol over MEMTIE. Design of this control
included some hardware modifications to the
166 processor and some software modifica­
tions to the Time-Sharing Monitorl program.

It was determined that MEMTIE should
be as flexibl~ as possible. This require­
ment was derived from the design of pre­
vious devices that were interfaced to the
PDP-6 (such as the Analog Linkage System2),
and from the variety of potential multi­
processor applications. To achieve this
flexibility, several design requirements
were established for MEMTIE:

1. It must be a program controlled
device, accessible by a PDP-6 system user
through interpretive command instructions
executed by the Time-Sharing Monitor.

2. The amount of "shared" memory
between the two processors must be vari­
able and controlled by the Monitor. This
"shared" memory must be protected by hard­
ware and software from transfers initiated
by non-multiprocessing PDP-6 users.

3. Use of the normal and extended
modes of operation on the PDP-l should
simulate that of the DEC type 15 Memory
Extension Control.

4. Error detection circuitry should
be included.

45

The PDP-6 time-sharing system has been
set up to fully utilize the relocation and
protection hardware available within the
machine. This logic is under the control of
the Monitor.

As each new user enters the system, his
core request is processed in accordance with
what is available within the system. If his
request is granted, the Monitor will reserve
an integer number of consecutive lK blocks
for the user. Also, a "job data area" will
be established in the first 1408 locations
of the user1s core for system bookkeeping.
The user's n-block core assignment is relo­
catable; that is, the relative addresses
used by the user's programs do not neces­
sarily equal the absolute addresses within
the machine. Relocation of a user's ad­
dresses is accomplished by a "relocation
register." The state of this register is
under control of the Monitor. In time.
sharing, each user's program is run for
some relatively small amount of time after
which the Monitor switches control to
another user's program. Before switching
control, the Monitor changes the relocation
register to the proper quantity needed for
the next user's program. If one of these
users (the "multiprocessor user") is to
have access to the core common to the PDP-l,
significant problems arise in connection
with addressing. One obvious solution is
to furnish the relocation constant to the
interface so that the PDP-l will absolutely
address the same core area that has been
assigned by the Monitor to the multiproc­
essor user. Unfortunately, this scheme
requires a relatively large amount of hard­
ware and Monitor modifications to implement.

A simpler scheme was devised in which
a fixed area of core was chosen for multi­
processor use. This core area was defined
physically by the highest possible addresses
in the PDP-6 memory system, i.e., the "top
of core." Memory "shuffling" of jobs by
the Monitor is such that unused core is
always at the top. Since the addresses of
this special area are always the same, the
addressing logic for the PDP-l is much
simpler.

Connection between the multiprocessor

user's job and the MEMTIE core must be
maintained even though his job may be
absolutely located elsewhere in core. This
is accomplished through the use of logic
circuitry that enables conditional suspen­
sion of relocation and protection. The
scheme is implemented by defining the top
of core with two sets of addresses. The
first set contains the regular sequential
addresses in the system, but the contents
of the second set correspond to the highest
possible locations the PDP-6 can address.
When the suspension circuitry is enabled,
the multiprocessor user's program can access
this special core area using the high ad­
dress set without violating protection or
relocation bounds.

The PDP-l, an 18-bit machine, can
directly address 4K of memory. The Extend­
ed Memory option allows indirect addressing
of 32K. In a 32K PDP-l, the memory is
divided into 8 modules, numbered 0 to 7.
Module 0 is defined to be the 4K memory
within the PDP-l. Taking module 0 into
account, it can be seen that the maximum
amount of core that can be addressed by the
PDP-l (in terms of 36-bit PDP-6 words) is
14K.

In MEMTIE, a 3-bit register, known as
the "mode" register, is used to control
core assignment and address bounds of the
common memory area. A total of four "modes"
exist and are summarized in Figure 2. Note
that as the mode is increased, the core
gained by the PDP-l is twice that used with­
i..."'1 the PDP-6 system., This is due to the
fact that two 18-bit PDP-l words are packed
into one 36-bit memory location.

Of major concern were the addressing
requirements of the PDP-l under this flexi­
ble core arrangement. The PDP-l user would
like to see additional memory modules added
to his present system as the mode is changed
to a higher value. Accordingly, addressing
to the 164 memory from the PDP-l is coded
by MEMTIE in the following way:

1. PDP-l MA Extended bits, 3-5, are
exclusively or'd with the one's complement
of the mode register to become MA bits
22-24 to the 164 memory.

46

2. PDP-l MA bits 6-16 become MA bits
25-35 to the 164.

3. PDP-l MA bit 17 becomes the "left­
right" bit, that is, the half of the 36-bit
word in the 164 that contains the 18-bit
PDP-l data is selected by bit 17.

4. For system consistency, MA bits
0-3 to the 164 are permanently set to logi­
cal one.

To illustrate these ideas, Figure 3 has
been prepared. The core maps show the
arrangement of PDP-l core as a function of
the mode. The numbers to the left of each
map indicate the two possible octal ad­
dresses that define the core locations.
Note that in all modes, the lowest location
in PDP-l core is just above the highest
location in the PDP-6 system.

Control of MEMTIE by the PDP-6 is ac­
complished with two executive mode I/O
instructions; that is, instructions that
are executed only by the Monitor. The
first of these instructions can load the
"mode" register and enable or disable the
suspension of relocation circuitry. The
second instruction can read the status of
MEMTIE into the Monitor, i.e., what mode
the system is presently in, etc.

The Monitor has been modified to exe­
cute the above instructions at the begin­
ning of each job. For the multiprocessor
user job, the Monitor enables the suspen­
sion of relocation circuitry: but for all
other jobs, it disables this Circuitry.
During the initialization of the multi­
processor user's job, the Monitor loads
the mode register in MEMTIE in accordance
with the user's request and "sets aside"
this special core area rendering it una­
vailable to the rest of the system.

PDP-l Modifications

The PDP-l is controlled by a timing
chain of sequentially connected delay units
rather than a fixed rate clock. The chain
is composed of eleven timing pulses des­
ignated TPO to TPIO (actually twelve pulses

MODE CORE CORE
REGISTER USED GAINED

MODE STATES 164 PDP-I
¢ (/>, 2,4,5,6 (/) (/)

I 2K 4K

2 3 6K 12K

3 7 14K 28K

Figure 2 Mode-Core Relationship in MEMTIE

177 777 (777 777) PDP-I MODULE 177 777 (777 777) PDP-I MODULE 177 777 (777 777) PDP-I MODULE
174 000 (774 000) 1

MODEl
CORE MAP

3 7

164 000 (764 000)

2

MODE 2
CORE MAP

Figure 3 MEMTIE Core Maps

47

144 000 (744 000)

6

5

4

3

2

MODE 3
CORE MAP

if TP9a is included). R~quests for memory
cycles are generated by TP2. The PDP-l
memory responds to this request with a
'strobe" pulse that generates TP4, TP5, and
TP6. TP2 generates TP7 (through TP3) after
TP6 has occurred, thus insuring continuity
of the chain. Due to the connection of TP3
to TP7, the timing of TP6 is constrained.
If the memory should be "late" with its
'strobe" pulse, TP6 may occur after TP7.
This possibility is highly probable in a
memory that is shared by two or more proc­
essors. The PDP-l timing chain was modi­
fied to prevent this possible error from
occurring. The existing connection between
TP3 and TP7 was broken and a new connection
between TP6 and TP7 was made. The delay
between TP6 and TP7 was set a 0.4 micro­
seconds to satisfy the 5 microsecond re­
quirement on PDP-l cycle time. Figure 4
illustrates the timing chain modifications.

Logic to detect error conditions in the
interface to MEMTIE was incorporated into
the PDP-l. Error conditions can occur dur­
ing a request for a memory cycle. If an
error condition does occur, the memory re­
quest is not made. Instead, the following
sequence of events occurs:

1. An error flip-flop is set.

2. The Run flip-flop is cleared.

3. TP4 is generated to finish the
cycle.

There are two PQssib~c error condi-
tions:

1. Illegal Cycle - MEMTIE has a mode
assignment other than 1, 2, or 3 when a
memory request to other than module 0 is
being made. Or, a memory request to a mem­
ory module that is not defined by the
existing mode is being made.

2. Memory Fail - lack of a "read
restart" pulse from memory within a time
lapse of 300 microseconds will produce this
error condition.

As we have seen, the hardware design
for implementing the multiprocessor capa-

48

bility on the PDP-6 system included modifi­
cations to the PDP-6 type 166 processor and
its time-sharing programming system, modifi­
cations to the PDP-l control logic, and the
actual device (MEMTIE) that ties the two
processors together.

Scope Display Application

It is now appropriate to discuss an
application of the multiprocessor system.
Our goals for a scope display system were
defined as follows:

1. Manipulation of display data should
have a minimum effect on the PDP-6 processo~
which is doing the calculation, since many
of our problems require real time response
from the computation.

2. Efficient display maintenance is
required. A good system would display the
maximum number of raster points without
flicker. Also, when new information is
available for display, the picture would be
refreshed and restored quickly.

3. Storage of display data should be
efficient, requiring as few peripheral words
as possible to specify and identify the
scope formatted data. Easy manipulation of
data in terms of entities being displayed
is required as well as convenient identifi­
cation of entities sensed by the light pen.
A minimum amount of processing should be
needed to output data to the scope as the
picture is being displayed.

4. The display should communicate with
a user's program on the highest possible
level. That is, to use the display, a pro­
gram would specify only the name and in
general terms the characteristics of each
entity to be displayed. The display would
do the detailed work of setting up the data
in proper scope format and seeing that the
specified entities are displayed. If then,
for example, the operator should touch an
entity with the light pen, the display sys­
tem would note this fact and provide the
name of the specified entity to the user's
program..

RUN (I) RUN (I)

P

02 0.2

<@ ~
0.3 0.3

~R+-(ll ~R~(1)V
0.55 055 RQ+-{l)

@
~STROBE ~STROBE V

p RD RS V

0.2 0.2 ILL eye V

1.4 ~ ~ MEM FAIL

0.2 0.2

<@ ~
0.4

P1 ~
02 0.2

~ ~
02 0.2

~WRITE ~WRITEV
WR RS

1.0 1.0

@JA> ~~
07 0.7

{pl~ <f6~
0.2 0.2

ORIGINAL TIMING MEMTIE TIMING

Figure 4 PDP-l Timing Modifications

49

The PDP-I processor,. connected to the
PDP-6 system through MEMTIE, provides an
excellent method of doing the display gener­
ation and maintenance activities. As such,
the PDP-I processes inputs (things to be
displayed, operations on things that are be­
ing displayed, etc.) and outputs (informa­
tion on light pen identification, pentrack­
ing, and other PDP-I interrupts) for a
calculation running in the PDP-6. The PDP-I
also organizes and updates all data in scope
format and controls the transfer of data to
the scope as required. This operation of
the display would be quite independent of
the calculation, which need only organize
the items for display and decide what opera­
tions it wishes to perform.

In order to enhance the rate at which
data can be transferred to the scope, a
high-speed data channel (HSDC) has been
added to the PDP-I. Control of this device
is accomplished in such a way as to provide
good display rates and still account for
efficient storage of display data in terms
of entities being displayed on the scope.

Figure 5 illustrates this data layout
and display control. The scope data is
organized in terms of entities or "things"
which are to be displayed. Each thing re­
quires three words in addition to those
needed for raw scope data. These are:

1. An entry in a list of thing
addresses which contains a pointer to the
data in scope format. This table of
pointers becomes a list of all the things
which are currently being displayed.

2. A control word which signals the
hardware to go on and display the next thing
in the list of thing addresses.

3. A name which provides identifica­
tion of a thing in case of a light pen
interrupt.

With this information two hardware reg­
isters control the output of data to the
scope. As data is requested by the scope,
scope data is transferred from the contents
of the location specified by the ~
address register to the scope. Then the reg-

50

ister is incremented by one in traditional
HSDC fashion. First, however, the current
scope data is tested. If it is the special
control word, then the contents of the
address specified by the HSDC "thing" coun­
ter are transferred to the HSDC address
register before the HSDC can honor any more
requests for scope data. Then the HSDC
thing counter is incremented by one. In
this way the hardware can step through a
list of things to be displayed while requir­
ing no PDP-I processor time. Then only a
few instructions are required to restart
the HSDC for another cycle through the dis­
play. Since the HSDC thing counter can be
read using a PDP-I I/O instruction, the
identity of the thing currently being dis­
played is quickly established in the event
of a light pen interrupt.

Thus, data is transferred to the scope
rapidly, scope data is stored efficiently
in terms of displayed entities, and things
are easily identified upon light pen con­
tact. A minimum amount of PDP-I processor
time is required to refresh the display,
leaving the computer free to process new
information flowing to and from the calcula­
tion in the PDP-6 and to perform other tasks
such as interrupt handling, pentracking, and
garbage collection.

The software for the scope display
application consists mainly of a PDP-I dis­
play monitor program called Scope-6. This
monitor provides a high-level software
interface between a PDP-6 program and the
PDP-l scope displa~- S~i5teill. Tile llltel"fa(;8
is lIoperationalll in nature; that is, Scope-6
accepts output from the PDP-6 in terms of
operations. The operations include taking
data (in forms used by the PDP-6 calcula­
tion) representing things to be displayed,
processing the data to form identifiable
scope formatted data for the things, and
maintaining the display of the things which
exist. Different kinds of things may be
used. A list of points which are to be
connected by straight lines, or a string of
alphanumeric characters are two examples.
Once things have been formulated, further
operations are possible. For example, scale
or intensity may be changed, a thing may be
moved on the screen by changing its initial

TABLE OF DISPLAY
DATA IN SCOPE FORMAT

ADl NAME 7
SCOPE
DATA

CONTROL WORD
AD2 NAME 2

SCOPE
DATA

CONTROL WORD
AD3 NAME 1

SCOPE
DATA

CONTROL WORD
ADS NAME S

SCOPE
ADS+m NEXT WORD

FOR SCOPE
DATA

CONTROL WORD
ADn NAME N

SCOPE
DATA

CONTROL WORD
ADe NAME END

STOP
INTERRUPT

LIST OF
THING ADDRESSES

TBl AD3+1
AD1+l

HSDC "THING"
COUNTER

TBl+n

HSDC ADDRESS
REGISTER

ADS+m

CONTROL OF
HIGH SPEED DATA CHANNEL

START HSDC
[A SCOPE"MODE"]

lOAD HSDC ADDRESS
REGISTER INDIRECTLY
WITH CONTENTS OF
HSDC "THING COUNTER

[
C(TBL+n)~ HSDC]

ADDRESS REGISTER

STEP HSDC
"THING" COUNTER

[(TBl +n)+1= (TBl + n+ 1)]

LOAD HSDC "THING"
COUNTER (AN I/O

INSTRUCTION)

READ HSDC "THING"
COUNTER (AN 1/1)0

INSTRUCTION

TRANSFER NEXT
WORD TO SCOPE

[C(ADS+m)-+SCOPE]

P H DC
ADDRESS REGISTER

(ADS+m)+l=(ADS+m+l)

Figure 5 Scope Data Layout and Display Control

51

position, it may be deleted from the dis­
play but not from the data structure, or it
may be deleted entirely. These operations
provide the opportunity for the PDP-6 to set
up and manipulate things on the display.

Besides operations on things, the PDP-l
handles certain other tasks. Interrupts
having to do with the display console are
processed. When an operator touches a
thing with the light pen, certain data is
recorded in the common memory area. This
includes the name of the thing tOUChed, the
raster point where it was touched, and the
status of a software flag. Scope-6 also
provides for setting and checking the status
of a push-button control panel, located near
the scope, allowing convenient selection of
various options in the user's program. Pen­
tracking is available with full knowledge of
the location of the light pen within the
PDP-6 program.

Thus, including a multiprocessing
capability within the time-sharing system
has allowed development of a convenient
means trough which a PDP-6 program can
collect and manipUlate graphical information
on the scope display, and provide for real
time operator interaction with the display
while remaining capable of highly efficient
display maintenance.

Acknowledgements

The authors wish to acknowledge the
\·rork of Ronald Gocht under whose direction
the MEMTIE project was carried out, Gabriel
Rosica who supervised the detailed engineer­
ing of the hardware, and Stephen Jackson who
has made the necessary Monitor modifications.

References

1. PDP-6 Multiprogramming System Manual,
Digital Equipment Corporation, Maynard,
Massachusetts, 1965.

2. R. Belluardo, R. Gocht, and G. Paquette,
"A Time-Shared Hybrid Simulation Facil­
ity," Proceedings, 1966 Spring Joint
Computer Conference.

52

3. Programmed Data Processor-l Maintenance
Manual, Technical Bulletin F-17, Digital
Equipment Corporation, Maynard, Massa­
chusetts, 1962.

ON-LINE REAL-TIME TIME-SHARING
OPERATION OF A PDP-7

Lloyd Robinson
John Meng

Lawrence Radiation Laboratory
Berkeley, California

Abstract

Both hardware and software developments which permit the simultaneous
use of a single PDP-7 for the taking and analyzing of data by up to
eight experimenters are described. Hardware includes a memory protect
system which guarantees the sanctity of switch-selected areas of
memory and a unique set of remote consoles. Some programs to be used
with the system are still under development, but presently operating
routines include ones for storing data on IBM-compatable tape and DEC
tape, routines for displaying data and operating the remote consoles,
and routines for approximating curves with third-order polynomials.
Routines are also in use which produce Cal-Comp point plots or histo­
grams.

Introduct ion

The object of the system described
here is the replacement of up to eight
pulse-height analysers with a single
PDP-7. A body of commonly-used programs
is available to all users on a time­
sharing basis. They are called using
specially-designed remote consoles via
an executive monitor routine, and in­
clude simple arithmetic operations,
timing operations, display manipUla­
tions and plotting operations. Also
available are data storage on DEC tape
and/or IBM-compatible tape. The data­
taking areas of memory are protected
from other data-areas by a hardware­
implemented memory-protection scheme.
Protection of data areas from programs
is provided by the executive program
which monitors trapped commands. Trapped
commands are those which have addresses
in illegal areas of memory, and input­
output commands. Two identical systems
have been constructed for use in two
different experimental areas.

Hardware

The PDP-7 system which was pur­
chased for this purpose included 8K of
core storage, extended arithmetic, a
dual DEC tape unit, a real-time clock
and display logic. Additional hardware
which has been built at LRL includes a
calcamp plotter interface, an IBM­
compatible tape drive interface,

53

a data-break multiplexer and memory­
protection circuit. The data-break mul­
tiplexer accepts inputs from the IBM­
canpatable tape unit as well as from a
separate multiplexer for up to eight
ADCts. The remote-console units are
interfaced to the accumulator.

Memory Protection

The function of the ADC is to pro­
duce an address (12 bits) corresponding
to the voltage of an input pulse. The
multiplexer for the ADCts then generates
a signal requesting a data break from the
data-break multiplexer. This then re­
sults in the incrementing of the contents
of some memory location in the computer
that corresponds to the code generated
by the ADC. There is no program inter­
vention in this chain of events, and
consequently protection of one data area
from another has to be under hardware
control. Protection of data areas from
programs is a different matter, however,
and is placed under t.he control of an
executive program. This is achieved by
hardware monitoring of instruction
addresses, and forcing the computer into
the trap mode if an illegal instruction
address appears. Trapped instructions
switch control to the executive program.

Illegal addresses are determined in
the same fashion in both cases, and in

fact the hardware is itself common to
both. This consists of a box with
ten groups of five switches on it.
The switches determine the boundries
of areas to be protected, and repre­
sent the five most significant bits
of the addresses of such areas. The
hardware allows the 8K memory to be
divided into as many as 9 independent
fields, in 256 word segments. Pro­
tection of data storage from other
data storage is accomplished by adding
the l2-bit ADC output code to the
lower boundry of the data region. The
result is compared with the upper
boundry, and the "increment memory"
is inhibited if the result is too
large.

The comparator used is in-
teresting in that is uses analog
techniques. The digital address sig­
nals are changed to currents and the
results thereby compared. The
hardware required, consisting basic­
ally of nothing more than precision
resistors and an amplifier, is con­
siderably less than what would be
required if digital circuitry were
used throughout.

Remote Consoles

The remote console is another
very interesting piece of hardware~
One individual experimenter may be
located just across the hall from the
computer, but another one might be
located three floors up and down at
the end of the hall. In the latter
case, the remote console becomes very
important. The experimenter must be
able to converse with the computer
easily and reliably while adjusting
his other equipment. The hardware
provided is a CRT display plus a
panel with numerous switches on it.
The panel also contains lamps which
are controlled by the computer. The
lamps can easily be used to indicate
the status of devices under program
control.

The consoles require very little
hardware, being entirely under program
control. The console to be inter­
rogated is enabled by a level provided
by a corresponding bit (Bit #1-8) of
the accumulator, and the console status
is read into bits 9-17 of the accumu­
lator, using only a single information
collector interface for all 8 consoles.

54

Bit 0 of the accumulator selects one of
two switch banks in the console, so that
an 18-bit code can be read. The console
itself consists only of switches and a
diode coding matrix. Development of a
complete and efficient set of programs
for an on-line use of the computer is a
sizeable job. Efficiency in use of memory
is of the utmost importance since each ADC
is capable of generating 4096 channels of
data, and there are only 8192 channels of
storage in the machine. Of course, not
every experiment will utilize the full 4096-
channel capability of the ADC, but even
so the system will undoubtedly be memory­
limited as use increases. Additionally,
this memory limitation forces the use of
machine language programs in the operating
system. The use of Fortran will have to
be restricted to times when no experiments
are being run on the machine. With these
things in mind, let us look at the operating­
system programs which exist and those which
are planned.

Programs

Existing Routines

The routines presently operating may
be classified as executive, utility and
user programs. The executive monitors
traps and the remote consoles, performs
the necessary initializations at the very
beginning of operating, and controls the
execution of utility and user programs.
More specifically, it reads the boundries
of the data-storage areas at startup and
prints them out, setting program pointers
at the same time. It allows the display
routine to operate during idle periods
and reads the remote console switches
periodically making the necessary alter­
ations to display parameters. If the
experimenter is demanding some peripheral
operation, the executive services the
demand (or returns a busy signal if the
peripheral is in use.) A preset time
delay is also available to the experimenter
via the executive program.

Utility routines include the display
routine, calcomp plot routines, a DEC
tape storage routine, and IBM-compatable
tape dump routine, a program for fitting
a 3rd order polynomial to four points and
subtracting the fitted curve from a marked
data peak, and a typewriter routine for
typing .,out data channels and values.

Probably the best method of ex-

plaining the operation of the above
routines is by an example. Assume an
experimenter has set up an experiment
at one of the remote terminals where he
wishes to take data for preset time
intervals, compute the background curve
under a peak and type out the sum under
the peak and the difference between the
sum under the background and the sum
under the peak. Then he may wish to
store each spectrum for future analysis.
His operating sequence is as follows:

At the computer console, (assuming
the program is already operating) he
types the number of tenths of a second
he wishes for his time interval followed
by a T. (If he wanted to count events
for eighty seconds, he would type 800 T.)
Having done this, he can return to his
remote station for the remainder of the
experiment. At the remote station,
the READY lamp is winking periodically
indicating that all is well back at
the computer. He clears his data-area
by turning the appropriate rotary switch
to ERASE and pressing the COMMAND push
button. The display in front of him
obediently becomes a straight horizontal
line at the bottom of the screen. He
turns the rotary switch to START COUNT
and presses the COMMAND push button.
The ADC-ON light begins glowing and the
display screen starts to fill with a
spectrum. After precisely 80 seconds,
the ADC-ON light goes off. The ex­
perimenter then positions his display
so that the peak he is interested in is
centered on the screen. To do this,
he merely turns the display-origin
switch to the correct group of 128
channels, and expands the display until
there are only 64 points on the screen.
Each tenth point is intensified so he
does not lose his place in the spectrum.
Next, he turns the NORMAL-PUSHBUTTON
switch to PUSHBUTTON. The appropriate
push buttons allow fine adjustments to
be made in display origin and allows a
constant vertical bias to be applied
to the display. At any time, he may
restore his display by simply re­
turning the NORMAL-PUSHBUTTON switch to
NORMAL.

A Y-axis full-scale adjustment is
also available to the experimenter. He
may select a power of ten (full scale)
via one rotary switch and a multiplier
(1, 2, or 5) via another one.

55

Having positioned his display, he
must now mark the channels he wants to
use for his background and peak cal­
culations. This is accomplished with
four pushbuttons. The first one to be
pressed is the REMOVE pushbutton. This
removes all markers except one;
positioned at the left end of the dis­
play screen. This marker may be moved,
either rapidly or slowly, across the
screen, (and beyond if desired). A
CREATE pushbutton is the next to be
used, and generates another marker at
the left end of the screen. This last­
generated marker is the one which can
be moved now. This process is repeated
for six markers. Unfortunately at this
point the program currently in use
(October 1966) deserts the remote
console. A trip to the teletype is re­
quired to complete the desired operation.
Q must be hit in order to order the
markers, and a number must be hit to in­
dicate the number of channels to be
averaged around each marker.

Returning to the remote station,
the rotary switch is turned to DISPLAY
and the COMMAND button pressed. The
computer computes a 3rd order approx­
imation to the four outer marked data
points on the display and returns
displaying both the approximation and
the data. The two inner markers mark
the limits of the peak.

A carriage return on the type­
writer now sends the computer off to
do summing under both curves between the
peak markers, and types out the two
sums and the difference. Hitting other
keys on the typewriter allows data
storage on both DEC tape and IBM­
compatable tape, complete with one line
of comments and identification. Also,
point plots and histograms may be made
on the calcomp plotter.

At this point, the direction of
future program planning should be ob­
vious. It is desired to eliminate the
experimenter's dependence on the type­
writer and his trips back to the com­
puter.

Fut ure Programs

To fully realize the ability of
the system to operate entirely from a
remote console it is necessary simply

to have the stop-count signal initiate
a user-routine. The user-routine will
consist of selected utility subroutines
(including those already developed) plus
any special routines the experimenter
may want to use. These will be called
from DEC tape into a working area of
memory. The busy light on the remote
console will signal when the area is
being used by someone else. A very
simple programming language will be
needed to allow a relatively inexper­
ienced experimenter to tie together the
basic utility routines to produce a
working user-routine.

This is what is still required on
a basic level to really put time­
sharing into operation the PDP-To

Core Us~e

At the present time, about 2000
words of core (out of 8196 available) are
used for the programs described above.
However, all of the programs used are
permanently in core while operating. By
following through with our user-routine
scheme above, it should be practical to
substantially reduce the amount of core
required for programs. Plans are also
under way to increase available storage
with either a disc or another core
stack, allowing use of the machine to
closely approach its maximum capability.

PDP-8 AS A DATA COLLECTOR
I N A TIME-SHARED SYSTEM *

Robert Abbott
Institute of Medical Sciences

San Francisco, California

Abstract

The Institute of Medical Sciences at Presbyterian Medical Center is designing
an automated retrieval system for uti lization review and hospital admissions. The
system wi II be used to schedu Ie maximum uti! ization of the basic hospital faci! ities,
(i. e. beds, operating theater, etc.)

The use of computers in this restricted area of hospital uti! ization and
scheduling is not new. The intent of the funding agency, U. S. Public Health
Service, is to provide a minimum service at reasonable costs to hospitals which do not,
at present I have any automated features.

In the pilot study the methods to be employed will involve remote teletypes
throughout a hospital {or hospitals}; a PDP-8 serving as a data collector; and telephone
I ines to a large time-shared computer service. This paper wi II describe the role of the
PDP-8 in this system.

*This paper was not received for publication

57

A PDP-5 PROGRAMME FOR USE
IN NUCLEAR COUNTING

by
D.R. Thompson, E.E. Wuschke, A. Petkau

Whiteshell Nuclear Research Establishment
PINAWA, Manitoba, CANADA

Abstract

A programme designed to process data from three independent
nuclear counting systems is discussed. Programme operations per­
formed on data from two 512 channel gamma spectrometers are print,
normalize and subtract background, erase, spectrum strip, integrate,
and spectrum data tape read in. A third system, an auto-recycling
alpha-beta ionization detector, has routines to initialize for the
number of samples and runs, read and store data, calculate counts
per minute, and print out data.

A discussion of the programming objectives, ease of use, bre­
vity, and revision flexibility, is followed by a description of all
programmed operations and their use.

Introduction

The Medical Biophysics Section at the
Whiteshell Nuclear Research Establishment
has three independent nuclear counting sys­
tems interfaced with a PDP-5. The three
systems are shown as a block diagram in
Figure 1 and consist of:

(1) A bioassay gamma spectrometer con­
sisting of a lead castle, a 2" x 2" NaI (Tl)
crystal with a single photomultiplier tube,
a 512 channel pulse height encoder, an os­
cilloscope display, a control panel, and a
standard ASR 33 teletype.

(2) A Whole Body Counter consisting
of a large steel room, a 11~" x 4" NaI(Tl)
crystal with seven photomultiplier tubes, a
512 channel pulse height encoder, an oscil­
loscope display, a control panel, and a stan­
dard ASR 33 teletype.

(3) A two channel, auto-recycling,
alpha-beta ionization detector with pre-set
count and time of count. The detector uses
the same teletype as the bioassay gamma spec­
trometer.

A general discussion of the Analyzer
Programme will be followed by a description
of the programmed operations and their use.

General Discussion

To interface the three nuclear counting
systems with the PDP-5 digital computer,
some additional hardware was added to the
system. Figure 2 is a block diagram of this
hardware.

59

The two encoders and the oscilloscope
display system gain access to the computer
memory via the DATA BREAK MULTIPLEXER. The
DATA BREAK MULTIPLEXER has been modified so
that when an encoder break request occurs,
the memory location specified by the enco­
der address is automatically incremented by
one. Thus the memory locations simply count
the number of pulses of each size.

To provide sufficient capacity two mem­
ory words are used for each encoder ,channel.
The 9 bits from the encoders control bits
2 to 10 of the memory address. Bit 11 is
normally set to 1 by the CONTROL LOGIC. If
an overflow is detected when a memory incre­
ment occurs bit 11 is set to 0, and the
memory is again incremented. In this way
a double word is used for each encoder chan­
nel. Bits 0 and 1 of the address are per­
manently wired to select separate sections
of memory for each encoder.

The display system also uses the DATA
BREAK facility. The two memory locations
corresponding to an encoder channel are
read into an 18 bit register connected to
a digital to analogue converter. The CON­
TROL LOGIC automatically selects encoder
channels sequentially until all locations
have been displayed. The two oscilloscopes
time share the digital to analogue converter.
Intensity modulation is used to display only
the channels associated with each oscillos­
cope.

All other functions use the PROGRAMME
INTERRUPT. With this feature the operator­
to-computer communications via the teletypes

were minimized. This was an impo~: : ~on-
sideration since a number of people. - Jt
necessarily fami liar with the sy J Lei.) 'light
wish to use it periodically.

Switches were installed which) with an
augmented instruction list, are used to call
up the various routines that perform the pro­
grammed operations. When a switch is pres­
sed, a flag is set and a programme interrupt
occurs. Computer control is then transfer­
red to a search routine which checks all
flags and calls up that routine whose flag
has been set. Only one routine can be
called up at a time but it does not inter­
fere with the operation of the DATA BREAK
facility. When not servicing a programme
interrupt, the computer "idles" in a wait
loop of NaP's.

The routines that can be called by
switches are: (1) Binary Loader, (2) Ini­
tialize a-S Detector, (3) Erase, (4) Back­
ground Subtract, (5) Spectrum Strip, (6)
Integrate, and (7) Print.

The flag for the SCALER READY routine
is set by anyone of three circuits associa­
ted with the alpha-beta detector, namely
Scalar A, Scalar B, and the Timer. The
routines are discussed more fully later.

An additional ASR-33 teletype with se­
parate lOT commands was also installed.
This permits printing of data from the two
encoders on different teletypes. The two
teletypes are on different floors in the
building.

In writing the programme routines two
somewhat conflicting factors were considered
important. They were brevity and revision
flexibility. Since over one half of the
memory is used for data storage, it was es­
sential that the programme routines be as
short as possible. This can be accomplished
by interlocking the various routines so that
they are dependent of one another. At the
same time, it was important that the pro­
grammed operation routines could be altered
without forcing major changes in others. A
delicate balance of inter-dependence was
required and aimed for.

This has been achieved by indirectly ad­
dressing all routines through fixed page zero
locations. All arithmetic operations and
assembling is done on page zero so that the
results are immediately available. If the
status of the (AC) and (L), and various lo­
cations on page zero remain unchanged upon
entry and exit, most routines can be altered
without changing any other.

60

Part I - The Alpha-Beta
Ionization Detector

Samples to be counted are placed in me­
tal trays and stacked on the right of the
detector. The samples move from the bottom
of this stack into the ionization chamber
where they are counted, and then are col­
lected in a stack on the left. When all
samples have been counted a "run" is com­
pleted. If the sample changer is started
after a run is finished, the samples will
be res tacked on the right and counted
again.

The count in the two channels and the
time of count are each registered in 18
bit counters displayed on the control panel
(see Figure 2). These three counters are
external and are not part of the PDP-5 me­
mory (see Figure 3). Three switches below
these counters enable the operator to pre­
set the count and time of count in powers
of 2 from 7 to 17. Counting is terminated
when any counter exceeds the value set on
its switch.

Since each counter is 18 bits, two 12
bit words are needed to store them in me­
mory. Therefore, 6 words of memory are
required to store the data from each sample.
With a maximum of 50 samples, 300 10 or 454 8
words of memory are used.

Communication between the alpha-beta
ionization detector system and the compu­
ter is accomplished through the programme
interrupt facility.

When a count is terminated by the pre­
set count or timer, a "Scalar Ready" flag
is set and a programme interrupt occurs.
Control is transferred to a search routine
which, as mentioned before, checks all flags
and calls up the appropriate routine. In
this case, the routine called sequentially
stores into memory the data from the two
counting registers and the timer. Note
that the data is loaded into memory under
programme control and not through the data
break facility.

The routine then checks to see if all
samples have been counted. If not, it
starts the counting of the next sample and
exits. When all samples have been counted,
the routine retrieves the data, calculates
the counts per minute to one decimal place
for each cpunt register, and prints out the
sample number, the counts per minute for
each channel and the time of counting for
each sample. If all runs have been comple­
ted, the routine is exited without starting

the sample changer. Otherwise, the count
is re-ini tialized andz the changer started.

The count is initialized by pressing
the "Initial" switch on the control panel,
This sets up the starting address of the
data storage and types out the message,
"No of Samples", As many as 50 samples
may be counted. After the number of
samples has been typed in, the message,
"No of runs" is printed out. Up to 4095
runs may be made, In both cases~ the num­
ber typed in will be an unsigned decimal
integer which is delimited by a period (.).
Errors can be corrected by typing a ques­
tion mark (?), followed by the corrected
number. See Figure 4 for a typical initial­
ization and data print out.

Part II - The Gamma Spectrometers

The bioassay gamma spectrometer and
the Whole Body Counter are essentially the
same except for the different detectors.
Therefore, from a programming point of view
only slightly different initialization pro­
cedures were required.

The 512 channels of the encoder are
broken into four groups of 128 channels.
The "Channel Select" encoder switch enables
the operator to select these groups indi­
vidually, or the first and the second toge­
ther, or the third and the fourth together,
or all taken together. Any grouping that
can be selected on the encoder switch is
referred to as a "data field". Each chan­
nel is allocated two words in memory. Thus,
2048 words are required as data storage for
the two gamma spectrometers. This is one­
half of the total memory.

Before discussing the programmed oper­
ations for the gamma spectrometers, a des­
cription of the counting procedure will be
given.

Counting

To begin counting, the "channel se­
lect" encoder switch is set to the desired
data field, that area in memory is erased,
and the "count" switch on the control panel
is pressed. The data is loaded directly in­
to memory through the data break facility.
There is a "Data Break" switch on the con­
trol panel to enable or disable this facil­
ity. This switch must be "On" in order to
count.

The first three channels of the selec­
ted field are used to count:

61

(1) The overflow, (OF). Any gamma ray
detected with an energy outside of the cali­
brated limits is counted in this channel.

(2) The live time, (LT). This channel
counts in laths of a second the time that
the encoder is free to accept inputs - that
is, the total time less the time used in the
digitizing process.

(3) The dead time, (DT). This channel
counts in laths of a second the time that
the encoder is busy processing signals.

The live time plus the dead time is the
total time. Since the gamma events occur
at random intervals, the dead time divided
by the total time indicates the fraction of
events lost while the encoder was busy. A
meter above the oscilloscope indicates the
percent loss while the sample is being coun­
ted. The counting is stopped by pressing
the "Stop" switch on the control panel.

The oscilloscope display shows the
counts (y-axis) versus the channel number
(x-axis). An x - y plotter will be added
shortly to make permanent graphs of these
spectra.

Some radionuclides emit gamma rays of
characteristic energies. Peaks in the spec­
trum will occur in those channels that cor­
respond to the energies of the gamma rays
being detected. Thus, the operator, by
determining the energy at any peak, can
readily identify the nuclide. Figure 5
shows a typical energy spectrum. In this
example, with a calibration of 7.5 KeV
increment per channel, the peaks at chan­
nel numbers 156 and 177 indicate that two
gamma rays of 1.17 MeV and 1.33 MeV, res­
pectively, are being detected. This iden­
tifies the sample as C06 o.

Programmed Operations

(A) Erase

This routine will clear the area in
memory occupied by the data field selected
on the encoder switch. This routine is
short and sweet; less than one second short,
178 lines sweet.

(B) Background Subtract

There is always background radiation
present and it must be subtracted from the
gross sample spectrum in order to get the
net spectrum, or the spectrum due to the
sample alone. Background counts are taken

regularly and vary from one hour to two days.

This routine will normalize and subtract
a background (spectrum) from a (sample) spec­
trum. The spectrum must be placed in the
lower half of the selected field and the
background in the upper half.

The normalizing factor, (NF) , is calcu­
lated to three decimal places by dividing
the spectrum live time, (LT)) by the back­
ground (LT) , This is not a straight for­
ward operation since the divide routine is
in fixed point, However, a degree of float­
ing point can be achieved by using the multi­
ply routine since multiplying by a fraction
code will give an answer in fraction code.
It is up to the programmer to keep track of
the decimal point, to decide which part of
the answer is in integer code and which part
is in fraction code.

Consider the following example:

0013 8

x 40008

000540008

This can be interpreted in many ways.
one assumes

0013 8 is 1.38

and 4000 8 is .48

then 00054000 8 is . 54 8 . 6875 10

Or, if one assumes

0013 8 is 13'8 11. 10

40008 lS .48

00054000 is 5.48

If

Thus the (NF) is calculated in the
following manner, First the spectrum (LT)
is multiplied by 10)00010 and then divided
by the background (LT) , Four assumed deci­
mal places are in the answer but are in in­
teger code, The fraction code is obtained
by multiplying by .000110 to give a (NF)
accurate to three decimal places.

The background is then multiplied by
the (NF) and subtracted from the spectrum.
The result is left in the lower half of the
selected field. The first three channels,
(OF)) (LT), and (DT), are not changed.

By storing a background spectrum in the

62

upper half and counting samples in the lower
half of a selected field, the operator can
easily get the net spectrum as soon as the
count is finished. For a selected field of
512 channels this routine takes less than
6 seconds.

(C) Print

This routine will print out in signed
decimal the data in the field selected on
the encoder switch (see Figure 6 for ex­
ample format). Twelve inches of tape with
leader/trailer, (200), code are typed out
at the beginning and end of the print out.

The code "G" or "W" is printed at the
start to indicate the bioassay gamma spect­
rometer or the whole body counter, respec­
tively. The first three channelS, (OF),
(LT) , and (DT) , are printed out individ­
ually. The spectrum data follows in six
columns. The first column gives the number
of the first channel on each line. The
next five columns are the channel counts.

The routine is exi te.d automatically
once all channels in the selected field
have been printed. However, the routine
also checks the "Print" flag before print­
ing each line of data. If the flag is set,
the line will be printed. If the flag is
not set, the routine will be exited. Hence,
the print out can be stopped manually after
the first three channels or any line by
clearing the "Print" flag with the "Stop"
switch on the control panel. This routine
takes less than 6 minutes to print out 256
channels.

(D) Spectrum Strip

This routine is used when dealing with
______ ~.~ ___ ~~_~ T_ ~~~~ _~~_ ~+ ~~ J_
~Ull1l-'U;:'J..I-C:; ;:'l-'C:;~I-.I.a.. .1.11 1-11.1..;:' ~a.;:,c:; ..LI- ..L;:I UC:;-

sirable to subtract a reference spectrum of
one element from the composite spectra, thus
eliminating one component from the composite
spectra.

Since different counting times and sam­
ple strengths are involved, it is necessary
to multiply the reference spectrum by a
normalizing factor (NF) which may be greater
or less than one. The results of the sub­
traction are observed on the display, and
the process is repeated with different (NF)
until the component of interest is complete­
ly removed. Since it is possible to sub­
tract tbo Yarge an amount the routine also
permits addition of the reference spectrum.
At the completion of these operations the
net (NF) is printed on the teletype.

In a composite spectrum with many com­
ponents more than one re~erence spectrum is
used. A read in routine is provided to read
the reference spectra from paper tape into
memory.

The routine is entered by pressing the
"Spectrum Strip" switch. It then waits for
one of four codes to be entered on the tele­
type. Typing an (R) will cause the routine
to read a spectrum data tape into the upper
half of the selected data field. The rou­
tine then exits.

The stripping operation is performed by
pressing the switch and entering (+) or (-)
and the (NF). The normalizing factor con­
sists of an integer less than 4096 and a
fraction with not more than three digits.
The integer is delimited by a period; the
fraction by a space. Errors in either part
can be corrected by entering a question mark
(?) and retyping the correct value.

The routine then performs the arithmetic
operations and waits for another code. The
operator may enter further (+) or (-) codes
and (NF) 's until the results are satisfact­
ory. A (P) code is then entered and the
routine calculates and prints the net (NF)
and exits, (see Figure 7 for format).

(E) Integrate

This routine will integrate between
limits which are typed in by the operator.
The limits will be unsigned, decimal inte­
gers not greater than 4095, delimited by a
period (.). Errors can be corrected by
typing a question mark (?), followed by the
correction (see Figure 8).

Since the channels are discrete the
routine only has to add up the counts in the
channels specified. Both limits-are inclu­
sive. Negative counts are ignored. If the
total count exceeds the double word length
capacity of the conversion routine, an er­
ror message, "Overflow", is printed out.
This error can be overcome by splitting up
the integration into smaller parts.

Conclusion

The Analyzer Programme occupies 128
pages, leaving 3~ pages available for other
uses. The Analyzer is self-contained, no
additional routines are needed. Because of
the revision flexibility feature, programmes
can be easily altered or added to fit future
needs.

63

ALPHA-BETA
rONIZATION

ASR 33 TELETYPE DETECTOR ASR 33 TELETYPE
2 CHANNELS NO.1 NO.2

l' J '" ~ w
GAMMA
SPECTROMETER DIGITAL COMPUTER OSCILLOSCOPE
&12 CHANNELS ,

PO P- 5 01 SPLAY
(BIOASSAY) .- ,

4K MEMORY

GAMMA T I SPECTROMETER X-Y
512 CHANNELS

(WHOLE BODY -"" PLOTTER ,.
COUNTER)

Figure 1 Blo.ck Diagram of Integrated Counting System Using a Small
On-line Digital Computer

CLOCK

000 CDO CDO CfX) CfX) (XX) CfX) (XX)

O
SCALAR
COUNT

SCALAR o INTERRUPT
REQUEST

O BREAK
REQUEST W

TIMER

SCALAR A

SCALAR B

O BREAK
REQUEST G CDO CfX) CfX) CDO CDO CXX)

O PROGRA E
INTERRUPT

(p)
INITIAL

2
1°821

.

1

~12 .. 213140' . • .2 • •

29. 02~. •

8' 0216 • •
2 7- • • 17 '.'

2 OFF 2 OFF

TIME COUNTS

A

LEGEND

o LIGHT ®SWITCH

@ BUTTON

G

G)
w

OFF

COUNTS RANGE

B

1--------1 o 0 I<ICKSORTER G

I I
I 0 ® ® 0 ®I
I COUNT PRINT STOP BACKGRND ERASE\

SUBTRACT

L ________ J
I 0 0 I< ICI<SORTER W I
I I
I @ G) @ 0 01
I COUNT PRINT STOP BACI<GRND E~

L
SUBTRACT

\ ---r---l
I \ ON I
I 0 0 0 I ~ ®I
I SPECTRUM INTEGRATE BIN I DATA RESET I

STRIP LOADER' BREAk CLOCI<

L _____ l __ ---1

Figure 2 Control Panel for Additional Circuits Used to Interface
an Alpha-beta Detector and Two Encoders with a PDP-5

65

.---~ACCUMULATOR

lOT'S TO READ AND/OR PRINT OAT

USED UNDER PROGRAMME CONTROL.I4-------------I

CLEAR SCALARS

I--_~ TIMER, START

SAMPLE eHANGER

FLAGS SET
BY SWITCHES

ON CONTROL
PANEL

pROGRAMMED
DATA
PROCESSOR
I
5

Figure 3 Block Diagram of Additional Circuits Used to Interface an
Alpha-beta Detector and Two Encoders with a PDP-5

66

NO 01<" S4MPLES 4?5. } INITIALIZATION

NO OF' RUNS 3.

1 149 4 257
2 22446 22279 219
3 128 2 257
4 34405 34191 143
5 25643 25446 192

1 172 21 257
2 21660 21496 227

DATA 3 168 1 1 257 PRINT

4 35400 35145 139
5 25715 25550 192

1 161 18 257
2 21985 21841 224
3 165 7 257
4 34745 34478 142
5 25307 25126 195

Figure 4 Format of Data Print Out for Alpha-beta Detector

~l u

CHANNEL NUMBER "'56 .If 177

ENERGY: 7.5 KeV INCREMENT PER CHANNEL

Figure 5 Co60 Spectrum

67

G OF' 52
LT 56
DT 63

1
6

1 1
16
21
26
31
36
41
46
51
56
61
66
11
16
81
86
91
96

1 (.) 1
106
111
116
121

Figure 6

0 4 31 141 244
403 531 661 810 915

1158 1122 1152 1233 1148
1141 1216 1152 1 180 1186
1186 1191 1310 1350 1409
1392 1456 1414 1446 1393
1314 1381 1348 1389 1331
1291 1221 1288 1230 1232
1202 1128 1128 981 880

816 613 661 586 551
491 489 445 455 446
505 531 638 757 1001

1383 1960 2660 3396 4362
4919 5199 5041 4709 4025
3201 2365 1121 1225 843

576 413 385 350 316
318 282 254 298 291
303 279 259 300 264
268 275 270 252 271
284 218 299 231 211
231 253 252 271 258
269 276 244 279 273
290 272 210 253 248
250 279 212 278 273
263 241 263 290 301

Format of Data Print Out for Gamma Spectrometer

+ t .134
-1.358
p-

Figure 7 Format Used to Obtain the Net Normalizing Factor (NF)

HIGK LIMIT 58/?58.
LOW LIMIT t.
INTEG~~TED COUNTS

HIGJ.f LIMIT 0.
LO'-" LIMIT 1.
INTEG~~TED COUNTS

54896

OJ ERF'LO',ol

Figure 8 Format for Integrate Routine

68

FLYING-SPOT SCANNER*

Ray Kenyon
Lawrence Radiation Laboratory

Berkeley, California

Abstract

A description of the Flying-Spot Scanner used with the PDP-6, and associated
hardware, at the MB Virus Laboratory, University of Cal ifornia.

*This paper was not received for publication

69

THE PDP-6 I S ROLE IN ANALYZING
PHOTOGRAPHS OF BACTERIAL COLONIES*

Fraser Bonne II
University of California, MB Virus Laboratory

Berkeley, Cal ifornia

Abstract

A PDP-6 and a Flying-Spot Scanner will be used to analyze photographs of
bacterial colonies. This analysis involves finding, sizing, and counting colonies;
as well as using "optical density profiles" and colony morphology to identify vari­
ous organisms.

This project is being carried out in the Molecular Biology Department at the
University of Cal ifornia.

*This paper was not received for publication

71

APPLICATION OF THE PDP-5 TO ,'.
DATA HANDLING FOR MESON-PRODUCED X RAYS'"

Robert W. Lafore

Lawrence Radiation Laboratory
University of California

Berkeley, California

Abstract

This paper describes a series of programs written to proc­
ess, on a PDP-5 computer, data from an experiment measuring
pi-mesic -produced x-rays at the Lawrence Radiation Laboratory's
184-Inch Cyclotron. The programs display data from an AID con­
verter on an oscilloscope, record it on magnetic tape, and provide
feedback to the gain and bias settings of the data amplifier for sta­
bilization of the system transfer function. One program accepts
2048 incoming channels, the other accepts 4096. A third program
permits analysis of data previously stored on tape, the area and
centroid of a given peak being calculated using a light pen to set the
peak boundaries and background line.

1. 2048 Channel Program

Memory Locations

Figure 1 shows the physical arrange­
ment of the system. The 2048-channel pro­
gram uses only half the full capacity of the
Nuclear Data analogue -to -digital converter.
Half of the 4096 -word computer memory is
reserved for the program, leaving the second
half free to pulse -height sort the incoming
data, each channel correspondjng to one word.
The maximum count of 4096 counts per chan­
nel available with the 12 - bit word was found to
provide adequate vertical resolution.

Oscilloscope Display

In operation, the fairly low count rate
of 500 per second requires a time of at the
least several minutes to produce a satisfac­
tory spectrum. During the growth of the spec­
trum the horizontal scale and origin as well
as the vertical scale may be varied, using
commands inputted to the teletype. Eight
horizontal scales and three vertical scales are
provided so that the overall spectrum may first
be viewed, then a particular peak selected for
closer examination. The display continues
while data is being stored. In order to min­
imize the deadtime between incoming data, the
display is executed one point at a time. After
each point, the program returns to check if a

... i ..

new data word is ready to be processed; only
if not does it return to display another point.

Tape Transfer

Once the spectrum growth has reached
the size required for statistically accurate
data, it may be transferred to magnetic tape,
using a teletype option. Alternatively, the
program may be asked to write out the mem­
ory on tape every time the highest peak
grows off scale. An identification section is
included in each data record placed on tape;
this can also be altered using the teletype.

Stabilization

During data processing and display,
the program is also stabilizing the transfer
function of the system (see Fig. 2). This is
accomplished by having in effect two separate
input spectra. The first spectra consists of
the actual mesic -produced x rays that the ex­
perimenter wishes to measure; the secondis
produced by two radioactive sources. The
peaks produced by the sources have an abso­
lutely constant energy, and may thus be used
as a reference. If an incoming datum is
flagged by the scintillator circuitry as soci­
ated with the sources (as opposed to a mesic­
produced x-ray), the program compares the
data with a value previously inserted in the
program by the operator. If the incoming

"'This work was done .under the auspices of the U. S. Atomic Energy Commission.

73

value is taa high, the camputer .outputs a
pulse ta a 512-caunt scaler (see Fig. 3).
The reading .of this scaler is in turn trans­
farmed inta an analdgue signal which can­
trals the gain (.or bias) setting .of the data
amplifier. The calibratian values .of the
peaks and windaw width (a range abaut each
peak within which data must fall ta be used
far calibratian) are typed in by the aperatar.

II. 4096 -Channel Pragram

Starage

Since the memary .of the PDP-5 cannat
cantain a separate ward far each .of 4096 in­
caming channels, the simple pulse -height
sarting .of the previaus example cannat be
used. Instead, incaming data is simply
stared sequentially, .one datum per ward, in
a 1536 -ward buffer. When full, this buffer
is autamatically dumped an tape.

The abviaus disadvantage .of this system
is the much increased amaunt .of tape neces­
sary and the langer time ta pracess it. The
CDC -6600 is used ta trans farm tape recards
.of this type inta .ones similar ta thase .ob­
tained with the 2048 -channel pragram abave.

This disadvantage is partly campen­
sated far by the fact that it is passible in ef­
fect ta stare twa camplete spectra at the
same time; in this case the incaming spec­
trum campased .of the stabilizatian peaks can
be separated fram the spectrum .of the mesic­
praduced x rays. This is dane by marking
each datum fram the stabilizatian spectrum
with a preceding 7777. Thus, whenever the
analysis pragram encaunters a 7777 datum,_
it ignares it and assumes the fallawing datum
is part .of the stabilizatian spectrum.

Anather disadvantage is the impassi­
bility .of making an ascillascape display aut
.of the sequentially stared buffer. This prab­
lem was salved by using a separate 512-ward
buffer far the ascillascape, and pulse-height
sarting incaming data inta it at the same
time the data were being stared in the sequen­
tial buffer. This presented anather difficulty,
hawever, since i-channel resalutian .of the
spectrum an the ascillascape was necessary,
which was clearly impassible if the entire
spectrum were viewed at ance(since .only 512
.of the tatal 4096 channels wauld be displayed).
Three separate starage mades far the ascil­
lascape memary were therefare used, the
first stared every eighth channel and shawed
the entire spectrum, the secand stared each
channel, but .only cavered .one -eighth .of the

74

spectrum, while the third shawed each chan­
nel .of .one sixty-faurth .of the spectrum, .or
sixty-faur channels tatal (see Fig. 4).

In aperatian, it is necessary therefare
ta erase the ascillascape buffer when chang­
ing fram .one scale ta anather, and let the
new picture "graw" again. The data rate
was, hawever, sufficiently fast that this was
nat taa incanvenient. The teletype cauld alsa
be used ta decrease the vertical scale by a
factar .of 2, sa that during a lang run the os­
cillascape display wauld nat graw .off-scale.

Pragramming Camparisans

The penalty paid far having separate
memarie s far the tape buffer and ascilla­
scape buffer is quite severe in terms .of pro­
gram space and camplexity. Tw.a rautines
are required far starage, clearing, updating,
etc., where .only .one was required in the
2048-channel versian. Many nanessential
but canvenient rautines far which there was
space in the 2048-channel pragram can nat
be accammadated in the 4096 -channel pra­
gram .

III. Analysis Pragram

Originally it was intended that the tapes
generated wauld be analyzed an the CDC-6600.
Hawever, it was faund that the PDP- 5 itself,
by permitting an-line examinatian .of the
spectra fram the tapes, could give satisfac­
tary results. Previausly written tape re­
cards can be read inta memary (in the 2048-
channel farmat), and any part .of the result­
ing spectrum examined in detail.

The centraid and area .of specific spec­
trum peaks are the desired results, but the
subtractian .of a fuzzy backgraund fram the
peak m.ust be done before the calculations
are made. Ta simplify the definitian .of the
backgraund, a light pen is used ta draw in
vertical line s baunding the peak, and a line
cannecting them far the backgraund (see
Fig. 5). Arithmetic rautines then perfarm
the area and centraid calculatians, printing
aut results in decimal natatian.

IV. Summary

The pragrams have pravided a great
measure .of flexibility far the experiment
and facilitated making the changes necessary
ta meet the experiment's evalving require­
ments. The use .of the PDP-5 far 4096-
channel analysis shaws that it is nat neces­
sary (althaugh certainly it is preferable) ta
be able ta reserve .one memary ward far
each incaming channel.

Scintillator

Timing
preamp.

T

'\ Detector

Y-rays

Q)

c:
c:
o
~

U

inputs..
Coinc.

circuits
-..

~ Preamp.

Linear- gate
trigger

.....
Variable- 198 lin. amp. a 4096-channel

~ gain amp. ~ lin. gate
H analog-to-digital ~ ~

converter
I' I' /10...-

Zero / I
adj. ,;(I

/ Interfacel
I

~ 1
1

Fig. 1. System block diagram.

Initial transfer
function

Desi red
transfer
functi on

o~~~--~--------------~--~ o
v. ex: E

In

Fig. 2. Stabilization process.

75

M U B -13722

Mag.
tape

output

i

PDP-5
computer

Scope
display

MU 8-13721

~
Z
ILl

Q
u..
u..
ILl
o
U

z
Q

U
z
i=
x
w
a:
<t

100

90

80

70

60

50

-
log out to Ana

var
a
iable-gain
mp. or

pedestal bias
ad j.

40

c5 30
::;;

20

10

1 ~
.-
"'
" I Reversible

O/A I sca ler
10 bits

I
1024 I

I capacity ...

Fig. 3. Feedback block diagram.

o

r-
OO

0'
I'
I I,
I "

--~--"",'' '----,---

+ Pulse input
- From PDP-5

MU 8-13723

...L

I
I
I
I
I

" I
I

I

II
II

"
"
" I I
I I
I I
I I
I I
I I
I I , '
I

I
I

o
I
I

300

290

, r

, I'
, I I

'-, '''\ ..

oL-__ ~ __ -L ____ L-__ ~ __ ~~~b-~~ __ ~ ____ ~ __ ~~~=-__ ~ __ ~ __ ~
350 400 450 500 550 600 650 700 750 800 850 900 950 1000 1050

WAVELENGTH,Mp.

M U-I0959

Fig. 4. Oscilloscope scales, 4096 -channel program.

76

I
• •

Horizontal
boundary

lines

• I

". ~I Spectrum
I • peak

• I . .,
I .. I
I

.' • : .'. ./Unwanted
Background I Area I.:'" peak

" I noise,,' r
~. '1 I

I I' • ____ •••••••••• 1 II
• I
I I
I I

• • • • • •
I •

1 ... 111'" 1 '11 1
• I • ,,'

Background Fi duc i a I
line marks

M U B -13724

Fig. 5. Oscilloscope display of spectrum peak. analysis
program.

77

APPENDI X 1

DECUS FALL SYMPOSIUM PROGRAM

Building 50 Auditorium
Lawrence Radiation Laboratory

Un iversity of Cal iforn ia
Berkeley, California

November 4 and 5, 1966

Friday, November 4, 1966

8:30-9:55 Registration 2:45

10:00

10: 15

10:30

11 :00

Opening
Professor Donald A. Molony, Chairman

Welcome Address
Winston R. Hindle,
Digital Equi pment Corporation

ESI-Conversational Mode Computing
for the PDP-8/S-David Waks,
Appl ied Data Research, Inc.

The BBN On-Line Programming System
Nancy E. Lambert,
Bol t Beranek and Newman, Inc.

3:15

3:30

4:00

A Common Memory System for a
Time-Shared PDP-6-Earl Brazeal and
Stuart Sharpe, United Aircraft
Research Laboratories

Coffee

An Operating System for the PDP-8
Jacob L. Meiry, Massachusetts
Institute of Technology *

PDP-6 Discussion Session

General Discussions (Meeting Room)

11 :30 JOSS: Introduction to the System
Implementation-G. Edward Bryan,
The Rand Corporation

6:00-7:30 Cocktails

12:00

1 :30

Lunch

PDP-10 System Phi losophy New
Product Announcement-David Plumer,
Digital Equipment Corporation

2: 15 PDP-6 System at LRL, Livermore
John G. Fletcher, Lawrence Radiation
Laboratory

* Th is paper was not presented.

7:30

79

Hotel Durant - Regents Room

Banquet
Hotel Durant - Main Dining Room
Guest Speaker,
Dr. Willard H. Wattenburg,
Berkeley Scientific Laboratory

Saturday, November 5, 1966

9:00-9:30 Registration

9:30 Opening of Second Day's Session

9:45 On-Line Real-Time Time-Sharing
Operation of a PDP-7-Lloyd Robinson
and John fYleng, Lawrence Radiation
Laboratory

10: 15 Control of High Energy Particle
Acce I era tors-Robert Be I ske, Lawrence
Rad i at i on Laboratory

10:45 Coffee

11 :00 PDP-8 as a Data Collector in a
Time-Shared System-Robert Abbott,
Institute of Medical Sciences

11 :30 A PDP-5 Program for use in Nuclear
Counting-D. R. Thompson,
E. E. Wuschke, A. Petkau, Whiteshell
Nuclear Research Establishment

12:00

1 :30

2:00

2: 15

2:45

3:15

3:30

80

Lunch

Business Meeting

F lying-Spot Scanner-Ray Kenyon,
Lawrence Radiation Laboratory

The PDP-6's Role in Analyzing
Photographs of Bacterial Colon ies­
Fraser Bonnell, University of
California, MB Virus Laboratory

Appl ication of the PDP-5 to Data
Handling for Meson Produced X-Rays­
Robert Lafore, University of California
Lawrence Radiation Laboratory

Coffee

Workshops

APPENDIX 2

AUTHOR AN D SPEAKER IN DEX

PAGE PAGE

Abbott, Robert PDP-8 as a Data Collector Petkau, A., A PDP-5 Program for use
in a Time-Shared System .. 57 Thompson, D. R. in Nuclear Counting 59

& Wuschke, E. E.
Bonnell, Fraser The PDP-6 I s Role in

Analyzing Photographs of Plumer, David PDP-10 System Phi losophy
Bacterial Colon ies 71 New Product Announce-

ment 35
Brazeal, Earl & A Common Memory System
Sharpe, Stuart for a Time-S hared PDP-6 .. 43 Rob i nson, LI oyd , On-Line Real-Time Time-

& Meng, John Sharing Operation of a
Bryan, G. E. JOSS: Introduction to the PDP-7 53

System Implementation 15

Fletcher, John PDP-6 System at LRL, Sharpe, Stuart & A Common Memory

Livermore 37 Brazeal, Earl System for a Time-
Shared PDP-6 43

Kenyon, Ray Flying-Spot Scanner 69
Thompson, D. R. , A PDP-5 Program for use

Lafore, Robert Application of the PDP-5 Petkau, A., & in Nuclear Counting 59

to Data Handling for Meson Wuschke, E. E.

Prod uced X -Rays. 73
Waks, David ESI-Conversational Mode

Lambert, Nancy The BBN On-Line Computing for the PDP-8/S 3

Programm i ng System 11
Wuschke, E. E. , A PDP-5 Program for use

Meng, John & On-Line Real-Time Time- Thompson, D. R. , in Nuclear Counting 59

Robinson, Lloyd Sharing Operation of a & Petkau, A.

PDP-7 53

81

Abbott, Robert P.
The Institute of Medical Sciences
San Francisco, California

Anderson, Albert
Stanford University
Physics Department
Stanford, California

Anderson, Roger E.
Lawrence Radiation Laboratory
Livermore, California

Bahnsen, Robert M.
Un iversity of Oregon
Eugene, Oregon

Bailey, Carolyn
Lawrence Radiation Laboratory
Livermore, California

Barker, D.
Digital Equipment Corporation
Pa 10 Alto, Ca I ifornia

Beal, AI
Digital Equipment Corporation
Pa 10 AI to, Ca I iforn ia

Belshe, Robert A.
Lawrence Radiation Laboratory
Berkeley, Ca1ifornia

Benham, Monte
Battelle Northwest
Richland, Washington

Bevington, Philip R.
Stanford University
Physics Department
Stanford, Ca I ifornia

Blackmore, Ewart W.
University of British Columbia
Phys i cs Department
Vancouver 8, B. C.

Borgerson, Barry R.
Lawrence Radiation Laboratory
Berkeley, California

Brandon, Gordon
Lawrence Rad iat ion Laboratory
Berkeley, California

APPENDIX 3

ATTENDANCE

83

Brazea I, Ear i
United Aircraft Research Labs.
East Hartford, Connecticut

Brown, J. Royce
M.1. T. Lincoln Laboratory
Lex i ngton, Massac husetts

Bryan, G. E.
The Rand Corporation
Computer Sciences Department
Santa Monica, California

Cichon, Clarence
Digital Equipment Corporation
Palo Alto, California

Collom, Penny
Lawrence Radiation Laboratory
Berkeley, Ca I ifornia

Cossette, Angela J.
Digita I Equipment Corporation
Maynard, Massachusetts

Crossman, E. R. F. D.
Human Factors in Technology
Dept. of Electrical Engineering
University of California
Berkeley, Ca I iforn ia

Cunningham, Warren
Lawrence Radiation Laboratory
Livermore, California

Curtis, Kent
Lawrence Radiation Laboratory
LIvermore, California

De lorey, James
San Francisco Bay Naval Shipyards
Vallejo, California

Donahoe, C. G
San Francisco Bay Naval Shipyards
Vallejo, California

Duncan, Richard E.
Lawrence Radiation Laboratory
Livermore, California

Ekonomi, Engin
Lawrence Radiation Laboratory
Berkeley, Cal iforn ia

Elliott, G. R.
Sandia Corporation
Sandia Base
New Mexico

Fanshier, Donald R.
Lawrence Rad iation Laboratory
Berke ley, Cal ifornia

Fensch, Frederick C.
University of Michigan
Ann Arbor, Michigan

Fisk, Irving
Investment Statistics
San Francisco, California

Fleck, P.
M.1. T. Lincoln Laboratory
Lex i ngton, Massachusetts

Fletcher, John G.
Lawrence Radiation Laboratory
Livermore, California

Fox, Tom
Sandia Corporation
Albuquerque, New Mexico

Frazer, Donald L.
Lawrence Radiation Laboratory
Livermore, California

Frazer, Jack W.
Lawrence Radiation Laboratory
Livermore, Cal iforn ia

Frensch, Theo
Hewlett Packard Company
Palo Alto, California

Friesen, Dave
M .1. T. Laboratory of Nuclear Science
Cambridge, Massachusetts

Goldstein, Robert
Lawrence Radiation Laboratory
Berkeley, Cal ifornia

Gray, Patrick H.
Lawrence Radiation Laboratory
Livermore, California

Gruen, Richard
Digital Equipment Corporation
Palo Alto, California

Hantman, Leonard M.
C. W. Adams Assoc iates, Inc.
Cambridge, Massachusetts

84

Harvill, James R.
Lawrence Radiation Laboratory
Berkeley, Ca I iforn ia

Henry, Robert
University of California
MB-Virus Laboratory
Berkeley, California

Hindle, Winston R., Jr.
Digital Equipment Corporation
Maynard, Massachusetts

Horovitz, Mark
Lawrence Radiation Laboratory
Berkeley, Ca I iforn ia

Jewell, W. S.
University of California
Berkeley, Ca I iforn ia

Jones, Richard C.
Applied Data Research Inc.
Princeton, New Jersey

Kent, Douglas A.
Lawrence Radiation Laboratory
Livermore, California

Kerns, Cordon
Lawrence Radiation Laboratory
Berkeley, California

Kirsten, Frederick A.
Lawrence Radiation Laboratory
Berkeley, California

Klezmer, Stan ley
Lawrence Radiation Laboratory
Berkeley, California

Lafore, Robert
Lawrence Radiation Laboratory
Berkeley, Ca I iforn ia

Lambert, Nancy
Bolt Beranek and Newman Inc.
Cambridge, Massachusetts

Landrum, Jerry H.
Lawrence Radiation Laboratory
Livermore, California

Larsen, Ken
Digital Equipment Corporation
Palo Alto, California

Li ndsay I Jane M .
University of Michigan
Menta I Hea Ith Research Institute
Ann Arbor, Michigan

Lund, Paul
Lawrence Radiation Laboratory
Livermore, California

MacGinitie, Gordon
Granger Assoc iates
Palo Alto, Ca I ifornia

Meng, John D.
Lawrence Radiation Laboratory
Berkeley, California

Miedaner, Terrell L.
University of Wisconsin
Space Astronomy Laboratory
Madison, Wisconsin

Moloney, Donald A.
Rutgers University
New Brunswick, New Jersey

Marston, Glen P.
University of British Columbia
Dept. of Electrical Engineering
Vancouver 8, B. D., Canada

McClure, Eldon Ray
Lawrence Radiation Laboratory
Livermore, Cal ifornia

McClure, John W.
Lawrence Radiation Laboratory
Livermore, California

Mcinturff, Robert
Digital Equipment Corporation
Palo Alto, California

McQuillin, Richard J.
Infronics Inc.
Cambridge;' Massachusetts

Metcalfe, Robert M.
M.1. T. Laboratory of Nuclear Science
Cambridge, Massachusetts

Morgon, Gary B.
Lawrence Radiation Laboratory
Livermore, California

Mortensen, Keith W.
Lawrence Radiation Laboratory
Livermore, California

85

Mougel, Jean F.
French Atomic Energy Commission
Paris, France

Myers, Myron
Lawrence Radiation Laboratory
Berkeley, Cal iforn ia

Plumer, David M.
Digital Equipment Corporation
Maynard, Massachusetts

Ragsdale, Ronald
Un iversity of Toronto
Toronto 5, Ontario, Canada

Robinson, Lloyd
Lawrence Radiation Laboratory
Berkeley, California

Rosenberger, T.
University of California
Human Factors in Technology
Dept. of Industrial Energy
Berkeley, California

Ross, W. A.
Hewlett Packard Co.
Palo Alto, California

Rudden, Robert J.
Lawrence Radiation Laboratory
Berkeley, California

Russe II, Stephen
Stanford University
Stanford, California

Sarbin, T. R.
University of California
Human Factors Laboratory
Berkeley I Cal iforn ia

Schaeffer I Tony
Lawrence Rad iation Laboratory
Berkeley, California

de Saussure, Raymond
Lawrence Radiation Laboratory
Livermore l California

Shelor, Ted R.
GD/Convair
San Diego, California

Sifnas, Martha

Digital Equipment Corporation
Maynard, Massachusetts

Stedman, Jon D.
Lawrence Radiation Laboratory
Berkeley, California

Stevenson, Charles W.
Information Systems Design, Inc.
Oakland, California

Storch, David
Lawrence Radiation Laboratory
Livermore, Cal ifornia

Strollo, Theodore R.
Bolt Beranek & Newman Inc.
Cambridge, Massachusetts

Strople, Joseph E.
Lawrence Radiation Laboratory
Berkeley, Cal ifornia

Suffert, Martin
Stanford University
Stanford, Cal ifornia

Sullivan, Mervyn
Northern Electric Company
Ottawa, Ontario, Canada

Sweeney, John
University of California
Donner Laboratory
Berkeley, California

Thomas, R. A.
Lawrence Radiation Laboratory
Livermore, California

Thompson, David R.
University of Manitoba
Winnipeg, 15, Manitoba, Canada

Thompson, Lee
University of Wisconsin
Space Astronomy Laboratory
Madison, Wisconsin

Upham, Frank T.
Lawrence Radiation Laboratory
Berkeley, California

86

Vangerov, Martin
Associated Aerosciences Laboratories
Pasadena, California

Woks, David J.
Applied Data Research, Inc.
Princeton, New Jersey

Walter, Edward
Information Control Systems
Ann Arbor, Michigan

Wells, Donald O.
University of Oregon
Eugene, Oregon

Williger, Phil
Digital Equipment Corporation
Los Angeles, California

Windsor, Alfred A.
Lawrence Radiation Laboratory
Berkeley, California

Wing, P.
University of California
Human Factors in Technology
Dept. of Industrial Engineering
Berkeley, California

Wolverton, Michael J.
Lawrence Radiation Laboratory
Berkeley, California

Wylie, William R.
University of Oregon
Eugene, Oregon

Zeligman, Mark M.
Lawrence Radiation Laboratory
Livermore, California

Zurl inden, Don
Lawrence Radiation Laboratory
Berkeley, California

PRINTED IN U.S.A. 15-1/67

	001
	002
	003
	004
	005
	006
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80
	81
	82
	83
	84
	85
	86
	xBack

