DECUS

PROGRAM LIBRARY

DECUS NO. 82

TITLE FORTRAN FOR THE PDP-1

VERSION 3
AUTHOR
COMPANY
DATE November 1965
FORMAT FORTRAN

Although this program has been tested by the contributor, no warranty, express or implied, is made by the contributor,
Digital Equipment Computer Users Society or Digital Equipment Corporation as to the accuracy or functioning of the
program or related program material, and no responsibility is assumed by these parties in connection therewith.

FORTRAN for the Ppp-1 - VERSION 3

Version 003 is for machines with mul div hardware so be sure that
the mul/mus switch is set to mul and the div/dis switch 1s set to div.

This version 1s to replace version 002. One of the more important changes is that
there 18 a check for mixed mode arithmetic or "if" statements (mixed mode means that
fixed point and floating point variables have been mixed in one statement). Also, a
couple of bugs that were found in versions 001 and 002 have been fixed. OCne of the bugs
that was found in the earlier versions was caused by the "loglOf" function appearing
as the first symbol (other than special characters) in an arithmetic or "if" statement.
In the previous versions the statement was compiled as though it was in fixed point
mode which was incorrect.

Another bug was in the "format" statement. In the previous versions if there were
blanks following a format specification they were incorrectly used as zeros. For
example the format statement "23 format (f10.3,a3 ,f4.1)" has a blank after the

"a3" specification so the blank caused the specification to be "a30".

This version includes the FORTRAN "print" statement and is for
use with a DEC type 64 line printer. For systems that do not
have a printer the following change must be made...

The tape labeled "subroutine package" has a clear print buffer
instruction (730445) in location 4527. This must be changed to
a nop instruction (760000).

The FORTRAN compiler for the PDP-1 is not intended to be
a replacement language for the other compller and assembly
languages already in use on the PDP-1, however 1t 1s useful

for short programs which may easily be coded in FORTRAN.

A statement number is only required if the statement 1is refered
to elsewhere in the program.

Tabs and spaces may be used freely.

Redundant carriage returns may be used freely.

Backspace causes the entire line to be ignored.

CONSTANTS

Integer constants magnitude ¢ 131071-

Floating polint constants may be up to 10 digits to the left of

the decimal point and/or up to 10 digits to the right of the

decimal point. Floating point constants may be followed by the

letter e and an exponent. There may be a minus sign between the e and the exponent.
A floating point number may never exceed 1 X 10 to the +38th power.

Floating point values are in a 2 word format with an 8 bit
exponent and a 28 bit mantissa.

Statement numbers may be up to 6 decimal digits.
Names of variables may be up to 6 characters.
All alphabetic characters are lower case.

A fortran comment is a lline beginning with a letter ¢ followed
by a tab.

Maximum statement length varies however up to 156 characters
should be okay for any type of statement.

If sense swltch 5 1s up the input to the compller 1s from the
typewriter, if sense switch 5 18 down the input 1s a FIO-~-DEC
paper tape.

Parentheses or brackets may be used interchangeably.

-2

ARITHMETIC STATEMENTS follow the general rules of the FORTRAN
language.

Examples of arithmetlic statements...

abec = sinf(x(3)-(abc X any(n,S;-(cosf(a/b))) + 45,6
n(4,3,3) = i(x E k/45+(match-4)] / iabsf(k-4)
= ~b + c + (-d

The following functions are provided for use in arithmetic expressions.
sinf - floating point sine (argument in radians)
cosf floating point cosine (argument in radians)
acosf - floating point arc cosine (argument is a cosine, returns
with radians)

asinf - floating point arc sine (argument is a sine, returns with
radians
atanf - floating point arc tangent (argument i1s a tangent, returns

with radians)
expf - floating point exponential
sqrtf - floating point square root
logf - floating point log
loglOf - floating point log (base 10)
absf - floating point absolute value
iabsf - integer absolute value

Names of Iinteger variables begin with letters 1,J,k,l1,m,or n
Names of floating polint variables begin with any letter except i,J,k,1,m, or n
Names of variables may not end with the letter "f".

Mixed mode is not allowed.

a= a-b/} is 1llegal as "J" 1s an integer variable.
i= J+k-b/3 is 1llegal as "b" 1s a floating point variable.
a= i-5+k is allowed. "i-5+k" is calculated in integer mode,

the result converted to floating point, and stored
in variable "a".

i= a-b/7.3 is allowed. "a-b/7.3" is calculated in floating

point mode, the result converted to integer mode (with
any fractional part dropped), and the result stored
in integer variable "i",

A modified version of the DECAL subscript interpreter is used so
up to 32 subscripts on a s8ingle variable should be okay.

Subscripts begin with 1, not O as in DECAL.
Recursive subscripts are not allowed.
Subscript arithmetic 18 allowed 1n integer calculations however

it 1s not allowed in floating point.

Examples -
k= i(3/k+n,J; okay
b= a(3/k+n,J is illegal as the subscript arithmetic
will be performed in floating polnt mode
resulting in an lincorrect subscript.

GO TO STATEMENTS

go to 100 program transfers to statement 100

go to (45,600,3,888),k causes transfer to the 1st, 2nd, 3rd, etc.,
statement on the 1list depending upon whether

k 1s 1, 2, 3, etc.

assign 400 to 1 saves location of statement 400 in 1

go to i, (34,500,400) transfers to statement specified oy "i" which
has been set by a previous "assign" statement.
The list of statement numbers 1in the parentheses 1s optional.
go to 1 is a legal assigned go to.

SENSE LIGHTS AND SENSE SWITCHES

if (sense switch 3) 12,34 transfers to statement 12 if the console.
Sense switch 3 is on (up), transfers to statement
34 if the switch 1s off (down). Switches 1 thru 6
may be used. If sense switch 7 18 used it will
cause a transfer if any switch is on.

sense light O turns off sense lights 1 thru 6

sense light 5 turns on sense light 5. Sense lights 1 thru 6
are normally used, however sense lights 7 thru 99
may also be used but the sense light O statement
will not turn off lights 7 thru 99.
if (sense light 4) 34,2 transfers to statement 34 if sense light 4 1is on.
Transfers to statement 2 if sense light 4 1s off
If (sense light) statements always turn off the
sense light that 1s being tested.
Note: The FORTRAN sense lights are not the same as the program flags on the
console, however at a "pause" or "stop" statement sense lights 1 through 6 are
displayed in the program flags.

"IF" STATEMENTS

if (a) 12,34,56 "a" may be any arithmetic expression., Mixed mode
is not allowed.

if (a(3)-(b/x+56.7)) 300,4,5032 the arithmetic calculations are performed
and the program transfers to statement 300 if the
result 18 negative, statement4if zero, or statement
5032 if positive.

"PAUSE" AND "STOP" STATEMENTS

pause 45 The line "pausel45" is typed out and the program halts.
Pushing continue, on the console, causes the program
to resume.
stop 6667 The line "8top6667" is typed out and the program halts.
This i8 a terminal halt and pushing continue has no effect.

After the "pause" or "stop" any decimal number is legal or you may type a special
message by using a series of words separated by - [dash].

Examples:

pause 987654399
stop~-this~-the-end-of-the-program

The entire "pause" or "stop" line 18 typed out. Don't use commas or periods as part of the line.

"DO" STATEMENTS

Examples...

10 500 Jj=1,300 the following statements through statement 500
are executed. The first time through the loop " j"
will be 1, "J" is incremented by 1 each time until
the final time through the loop it is 300, then the
statement following statement 500 1s executed.

The 1ncrement may also be specified
do 67 k=1,45,3 the increment is 3

The values used for the "do" may also be unsubscripted integer variables.
The values may have a minus sign.

do 689 kr=100,-n,-2 the increment 1s a negative 2 so "kr" will be 100
the first time through the loop and will
be 98 the second time, etc.

"do" loops may end on the same statement number.
do 400 k3= 1,300
do 400 k4= 5,m,7T

After a DO loop is completed and the program transfers out of the loop
the integer variable used for the index will contain the same value as
the last time through the loop.

The second and/or third parameters of a "do" statement may not be the
same variable name as the index variable.

Examples: do 50 k=1,k is not allowed.
do 50 k=1,4,k is not allowed.

The above rule is not checked by the compiler.

The "continue" statement may be used for terminating a "do" loop
where the final statement would otherwise be an "if", "go to", or another "do".

Example:
do 500 9= 1,34
if (a(Jj)-value) 600,600,500

500 continue

The "continue" statement may also be used freely in the program however,

if it is not the final statement of a "do" loop a "nop" instruction is executed
wasting one word.

"END" STATEMENT

All programs must end with an "end" statement. If the "end" statement is

in the flow of statements being executed it must elther have a statement

number or have characters following the "end" in the same manner as a "pause" or "stop".
If the "end" statement is not in the flow of statev being executed, and

is only a program terminator, it may appear by itself on a line.

"DIMENSION" STATEMENT

The "dimension" statement is the same as in other FORTRAN systems except

in this system it must be in the executed flow of the program. It 1s
executed once and then bypassed i1f the program flow repeats through the

same path of the program.

A subscripted variable must appear in a dimension statement before it appears
in any other statement.

Examples of the "dimension" statement...
dimension i§45)
dimension j(4,5),abc(55),k(5),x(2,2,2,2)

INPUT/OUTPUT
type 45,a,1,x(4),y(1) The variables on the list will be typed
according to format 45.
punch flex 45,a,1i,x(4) The variables on the list will be punched
in FIO-DEC code according to format 45.
print 683,a,1,x(3,J) The variables on the list will be printed

according to format 683.
NOTE ... The printer provided for in this version is a DEC type 64 with FIO-DEC character set.

accept T4,1,a(34),k(J) The variables on the list will be accepted
from the typewriliter according to format Ti.
read flex 85,1, J,xx(J) The variables on the list will be read

from FIO-DEC coded paper tape according to
format 85. If a stop code (oct 13) 18 read
the program enters a one word loop in the
subroutine package. The program may provide
for stop codes being read by using a DECAL
insert (see SPECIAL FEATURES).

"do" type indexing within input/output statements of the following form is
not allowed.

-8~

type 66, (a(k),k=1,34) is not allowed

feed flex, n This 1is a non-standard statement and causes
n blank lines of paper tape to be punched. The
argument, n, may be an unsubscripted integer
variable or integer constant.

end flex This i8 a non-standard statement and causes
a stop code to be punched.

FORMAT

This statement specifies how data is to be transmitted between input/output
devices and the computer.

Example of a format:

35 format (a5,16,f13.6,3x,12)

"1" specification

The format specification 110 may be used to output a number which exists in
the computer as an integer quantity. 10 out7sitions are used for the

number., It is typed in this 10 digit fleld right-justified (that is, the
units position is at the extreme right). Positions in the field to the left

of the most significant digit are blank.

If the format speclification 110 is used for input 10 characters may be
typed 1n or read from paper tape and the resulting integer value will be
stored in the variable specified by the input statement. The largest
integer value that should be used as input 1s 131071

-9~

"f£" specification

If the format specification f10.3 1s used to type a number which exists
in the computer 10 type positions are reserved for the number and there
will be 3 positions to the right of the decimal point.

If the format specification f12.5 1is used for input 12 characters will be
read from the input device. If there is no decimal point in the string of
input characters one will be assumed to be in the value and the rightmost 5
digits are the decimal fraction. If a decimal point is one of the input
characters its position in the field over-rides the specification.

"x" specification

Blank characters may be provided in an output record, or characters of an
input record may be skipped, by means of the "x" specification.

3x in a format would cause 3 characters to be skipped.

"h" specification

The "h" specification is used for input/output of alphanumerical information
that will not be manipulated by the program.

5habcde in a format used for output would cause 5h characters "abcde" to be
output.

3habc 1n an 1nput format would cause 3 characters from the input device to
replace the 3 characters in the "h" fileld.

All PDP-1 typewriter characters are usable in "h" fields, however the specification
must include upper and lower shift as characters.

-10-

"a" specification

If the format specification a3 is used for output the word from tpe

output list will be output as alphanumeric characters (FIO-DEC code)

If the format specification a#4 1s used for input the characters are
stored in FIO-DEC code. Only 3 "a" characters will fit in a word so for
input the last 3 of the field, if it exceeds 3, will be stored.

"a" fields may only be stored in integer variables.

"e" specification

The "c" specification is used for control of the printer paper advance.

The "c" is followed by a number which indicates which track of the carriage
control tape 1s to be used to stop the paper advance. If the standard
carriage control tape 1s used paper advance will be as follows

cO = track 1 1 line spacing

ck = " 2 2 line spacing

ce= " 3 3 line spacing

e3 = " 4 6 line spacing

c4 = " 5 11 line spacing

cH5 = " 6 22 line spacing

c6= " 7 _ 33 line spacing (half page;
c7T = " 8 66 line spacing (full page
c8 or greater = no paper spacing (overprint)

The paper advance control is reset to 1 line spacing after every print operation.
If no "c¢" specification is given the printer will give 1 line spacing.

The "c¢" specification controls the paper advance after the current line is printed
so if the format "54 format (c7,f10.3,17)" was used the "f" field and the

"i" field would be printed on one line and the "c¢" specification would cause the
paper to eject to the top of the next page.

A slash (,) in a format indicates end of a line.

NOTE: There 1s some problem with input/output of large "i" and "r"

-11-

format specifications. For this version try to limit the field width
to about 20 characters.

For "1" or "f" output try to allow extra character positions in the
fileld width so there will be room for a minus sign.

For "f" specifications where the output field is only to be decimal
fractions, with no integers, allow an extra position so a leading
zero may be output. Example: conslider the floating polnt value
0.0345 which 18 to be typed. If the field is f5.4 there will be

no room for the leading zero so a field overflow occurs. If the
fleld is f7.4 1t will type correctly.

If there is a field overflow (too many digits to fit in the fileld),
during output, the field will be output as dashes { -)

Example: consider the value 500.678 which 18 to be output under
specification f6.3. There are too many digits so it will be output
as 6 dashes., =—=~——e

The input/output routine scans the input/output statement list and for each

variable gets the corresponding format specification. If the format has no

more specifications it starts again with the first specification.

Example: conslder the variables a,b,c which are to be output as f10.3 fields
type 30,a,b,c

30 format (£10.3)

The variables will all be typed as f10.3 fields, however whenever the format
routine has to restart scanning the format 1t types a carriage return so
each variable will be on a separate line.

When the format has more specifications than the input/output list requires
the extra specifications are ignored.

When the input/output 1list requires the format to be re-scanned and the
input/output 1list finishes before the format 1s used up and there are "h"
fields in the format the routine requires the entire line to be input

or output however the "i", "a", and "f" flelds are treated as "x" fieuids.

Another feature of the format statements is the abllity to repeat a specification
by preceeding the specification with a number.

Example:

10 format (a4,5f7.3,3x,710.4) will work in the same manner as

10 format (a4,f7.3,f7.3,f7.3,£7.3,f7.3,3%x,f10.4)

-12-

Only one pair of parentheses is allowed in a format.

There i8 no fixed line length for input/output 8o you are not limited to 120 characters
per line as in most FORTRAN systems. The exception to this 1s the print statement.
Characters after the 120th are lost and will not be printed.

There are two special escape characters usable with the input routines.
During input under an a, i, x, or f specification if either a tab or
carriage return is input, the input variable being input is stored and
the routine scans ahead for the next input variable on the list,

The tab and carrlage return escape characters may be replaced by using
DECAL inserts. See SPECIAL FEATURES.

OPERATION OF THE FORTRAN SYSTEM

The FORTRAN system consists of 7 paper tapes for compiling, loading, and
executing FORTRAN programs.

tape 1 - FORTRAN compiler

tape 2 - DECAL compiler (modified)

tape 3 - HI LINKING LOADER

tape 4 - "1ss" tape of symbols for linking the subroutine package to a FORTRAN program.
tape 5 - Libetape of subroutines required by some programs.

tape 6 - Subroutine package - input/output routines, subscript interpreter, and

other routines required by FORTRAN programs.
tape 7 - Punch off routine

To complle, load, and execute a FORTRAN program:

1. Make a FORTRAN symbolic FIO-DEC paper tape of your FORTRAN program.
You may skip this step by typing the program directly 1into the
FORTRAN compiler, however if you nave program errors you will then
usually have to retype the entire program.

2. Load the FORTRAN compller. The compller is in a sell loading condensed

-13-

Page missing from original document

time your program is started the location of the array storage area
1s typed out. Be sure that the lowest address of the array area does
not overlap the highest address of your program.

The punch off routine "pofmem" punches off a loader and all non-zero
words from 4000 through 7777 and 0000 through 3537. The resulting

tape, when loaded, is not self starting.

The punch off routine occupies 3540 through 3777.

When your program is loaded, using the output tape of "pofmem", it

the Memory Buffer is a normal hlt (760400) you may start your program,
however if the Memory Buffer is octal 141414 then there was a check-sum
error indicating either a punch or reader error.

ERRORS

The FORTRAN compller checks most of the common errors made in
FORTRAN programs.

If an error is found the following is typed out...
erN lineJ
where N 1s the error type and J 1s the line number.

After an error has been found the rest of the program is scanned for
further errors, but the normal output tape 1s not punched.

FORTRAN errors detected by the compiler...

~umber error
1 Statement too long.
2 Illegal character.
3 Unmatched parentheses or brackets.
L Statement number too long (over 6 digits)
5 Unrecognized statement or statement written incorrectly.
5 Comma missing after variable name in assigned go to
7 "do" loop terminated by a "do", "if", "stop", or "go to"
8 go to N statement number N 1s over 6 digits.
9 Not fixed polint variable 1n assigned go to.
10 No comma after right parentheses of computed go to.
11 Can't find letters "to" of assign statement.
12 Too many floating point constants.

-15-

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

30
31
32
33
34
35
36
37
38
39
40
41
42

43
44
45
46

"ir" statement has illegal path.

Illegal sense switch number > 7

Non-speciflic error 1n statement.

Some unterminated "do" loops.

Nothing to right of equals sign in arithmetic statement.

"do" terminated previously.

Too many "do" loops.

Index variables name in "do" statement is not an integer variable.
Variable name over 6 characters.

Only one parameter for a "do" loog (do 123 k= 2)

Comma after third parameter of a "do" loop (do 123 k=1,2,3,4)
Variable name used for "do" loop parameter begins with a digit.
Variable name used for "do" loop parameter is not an integer name.
"do" has been terminated previously.

"format" has no statement number.

Error in "format" statement.

No carriage return after) in "format" [12 format (a4, (f5.6)) not
allowed]

No decimal point in "f" field specification of "format".

Fleld specification too large (Max.=63)

No format number in input/output statement.

Variable name over © characters.

Too many undimensioned variables.

"dimension" has a statement number.

Variable name ends with letter "f",

Undimensioned variable has a subscript.

Dimensioned variable has no subscript.

Subscripted variable has not been dimensioned.

Too many dimensioned variables.

Error in "sense light" statement (light > 99)

Over 10 digits to right or left of decimal point in floating point
constant.

Exponent overflow in floating constant routine.

arithmetic or "ir" statement i1s mixed mode.

illegal subscript 1n arithmetic or "if" statement.

variable name beglns with digilt.

The only time when a variable name 1s checked to see if it 1s too long,

ends with letter "f", etc. is when it is being defined. Fortran variables
are defined by being on the left side of an equals symbol, in a "dimension",
in an input 1list, or in an "assign" statement.

-16-

Error type 26 and error type 18 above appear to be the same however they
indlicate different errors.
Error 18 example:

do 200 k=1, 300

do 200 J=1,34

200 continue
c do loop 200 has been satisfied.
do 200 k=1,50 Error 18 - a do loop that is being

defined by a "do"statement has al-
ready been terminated.

Error 26 example?
do 100 k=1,100

100 continue
c do loop 100 has been terminated
100 a=b-c Error 26 - Terminating statement number of a "do" loop

has been found previously.

Errors 37 and 39 appear to be the same however they indicate different errors.
Examples of errors 37, 38, and 39
dimension a(100)
b= 57.29578
b(2) = Error 37 - "b" has a subscript, has not been dimensioned, but

has been dsf%ned as an unsubscripted variable.

a= Error 38 - "a" has no subscript, has been dimensioned.

c(3)= Error 39 - "c¢" has a subscript, has not been dimensioned, and
has not been defined as an unsubscripted
variable.

"dda" type errors (found by DECAL) may indicate one of the following
1. Duplicate statement number.
2. Variables name begins "st" {o%lowed by digits the same as a statement number.

3. Variables name begins with "¢ followed by digits. The floating polnt constants
generated by the compiler are named "ci1" through "e50"

-17-

Other errors or program halts

hlt instruction (760400) = divide halt - probably will never occur.
Unused instruction 140000 is used to indicate various

other troubles. The rightmost octal digits indicate the type of trouble.
120001 stop code (13% - no "end" statement.

140002

]

overflow set at entry to floating constant routine.

140003 = overflow set during processing of previous statement.

140004 = floating divide by zero. Probably will never occur.

140005 = mul div switches not on (up)

140006 = negative number being floated (floating constants routine) = compller error

If a parity error in the input FIO-DEC tape is found the letters "fpe" are
typed out and the compller stops. Pushing continue will have no effect.

Not all errors are detected during the pass through the FORTRAN

compiler however they will usually be detected during the pass

through the DECAL compller. A common error detected by the

DECAL compiler is a name typed out on the DECAL MAP as an "aps".

This indicates an undefined or improperly defined FORTRAN varilable

name. The only exceptions to this are:

1. The name may have been used legally in a DECAL insert.

2. A sense light number > 6 may have been used. Sense light numbered up to 99
may be used. These will appear as fNf on the DECAL map where N 1s the light
number,

Consult the DECAL manual for other errors.
Note: The names of dimensloned variables are typed out on the
DECAL MAP as beilng only one word. That word is not the location

of the array but 1s a word where the address of the array will
be stored.

-18-

ERRORS detected during execution of your program.

hlt instruction (760400) indicates a divide halt.

Unused instruction 140000 is used for other error halts. The rightmost
digits indicate the type of error. To continue after a 140000 instruction
the CONTINUE button on the console must be pushed twice.

140001
140002

140003
140004
140005

140006
140007
140010

140011
140012

140013
140014

140015
140016
140017
140020
140021
140022

mul div switches not on [up]

FIO-DEC paper tape parity error, the character is in the I10. Put the
correct character 1n the Test Word switches and push CONTINUE twice.
Illegal format. No recovery.

No carriage return at end of line or format error (paper tape input).
Non digit character in "i" or "f" field. Resume and char. 1s used any-
way’

Divide halt during "f" format processing. Should never happen.
Ooverflow - "1i" input

printer error status blt is on - push continue twice and status 1s
rechecked

Index of a "do" loop > 131071. Resume and invalid index is used anyway.
Floating number too large to convert to integer variable. Resume and
trash 1s used for the integer value.

Not enough room in array storage area. Indicates compiler error.

Too many subscripts or out of range. Resume and invalld subsc. used
anyway.

Out of bounds of array. Resume and invalid subsc. used anyway.
Recursive subscript. Not allowed.

Exponent underflow - no recovery.

Exponent overflow - no recovery.

"sqrtf" has a negative argument. Resume and argument is made positive.
"logf" or "loglOf" argument ¢ zero. No recovery.

The overflow indlcator i1s not checked during execution of FORTRAN programs and
is cleared and used by some of the routines in the FORTRAN subroutine package.

-19-

SPECIAL FEATURES

A clear print buffer instruction is executed at the start of the FORTRAN
program execution so if the start button on the printer 1s not on the program
will hang up until the button is on.

During execution of a FORTRAN program address 7777 i1s used for various
special switches.

If blt O is on an overbar is typed at the start of every format field.
If bit 1 1s on output field overflow 18 allowed.

Address 7776 and address 7775 are used for escape characters during input
and if the input character matches either word the format routine stores
the input varlable and goes to the next fleld.

7776 normally contains octal 77 écarriage return)

7775 normally contains octal 36 (tab)

The input/output routines use the status bits to
try and keep up a reasonable speed so if you are going to use DECAL inserts
to type or punch use the following subroutines.

Subroutine typ' will type the character in the right 6 bits of the 10
Entrance to typ is a Jsp typ

Subroutine pef!' will punch the right 6 bits of the AC with no parity change.
Entrance to pef 1s a Jjda pef

Subroutine wrp' will punch the right 6 bits of the IO with correct parity.

If a stop code 18 read there is a one word loop at system

symbol eof!'. If you wish to provide for stop codes, in your program,
deposit an address in eof.

Example:

> law st100; dap eof

If a stop code 18 read the program transfers to statement 100,

-20-

DECAL INSERTS

Some of the features of DECAL have been expunged, however they may be
put back 1n for use with DECAL inserts. They were expunged merely to give
more room on the symbol table.

A DECAL insert begins with a right arrow -
A line beginning with -+ is copied directly into the output.

The program is always in fixed point mode at the start of a DECAL insert
and 1f the insert uses "efm 2" be sure and give an "1fm" before resuming
with FORTRAN statements.

The FORTRAN compiler uses block symbols for some "do" and "format" symbols
and they are expunged whenever possible so DECAL inserts should not use
block symbols.

The program flags are all used by the various subroutines so if a program
flag 18 used in a decal insert its setting will probably not be the same
after any fortran statement.

To reference a fortran statement 1n a decal insert precede the number

by the letters "st".

> Jmp st555 eos Wlll cause a transfer to statement
555

FORTRAN or DECAL symbols (variable names) should not be any of the following:

1. May not be the same as any symbol on the DECAL symbol table.

2. May not be the same as any of the FORTRAN statement types; such as "if","end",etc.
3. May not be of the form "stN" where N 18 a decimal number.

4. May not be of the form "cN" where N 1s a decimal number.

-21-

The following 1s a listing of the tape used to modify DECAL for the
FORTRAN system.

eee fortranize decal
ee. 18 May 65

xs8y ~
~ dig beg 1v7 opl rsi
fde 1lst; cma end
xsy abs
absf dig beg 1lv7 opl rsi
fde; spa
fde 1lst; cma end
iabsf esy absf
xs8y / X
x dig beg 1v6 op2 rsli cmt
jda fsy; bci.imp.
lac 2 1st end
/ dig beg 1lv6 op2 rsi
Jda fsy; bci.idv.
lac 2
fde 1st; hlt end
sinf dig beg 1v7 opl rsi
jsp ths 1st end
cosf esy sinf
sqrtf esy sinf
atanf esy sinf
acosf esy sinf
asinf esy sinf
logt esy sinf
loglOf esy sinf
expf esy sint
X8y nop
nop ewd 760000

-22-

X8y opl op?2
X8y nlc 1vO
x8y dip lot
xs8y tde fct
X8y cbs msm
X8y mecs chn
x8y 1sd 1so
X8y lss &= =

op3 rs8l cmt ctr ths fsy lst mns nac

1vl 1v2 1v3 1lv4 1v5 1ve 1v7

opr skp usk cal lap mus dis

dpy rrb srb rcb cnv esm lsm

mwc mrc mcb rck cac cks eem lem

mec

asd aso asc dsc isb bac bpc bio bjm dal

>

X8y goto =D D < > 2> =%

X8y s8in cos
x8y 1f then
x8y do lar 1
X8y V A xor

atn sqrt 1ln log exp explO 7
else clear set for stepu stepd until while
na arrase array realarray

X8y procedure tmp ppa rpa tyi tyo dig -

fix fin.

DECAL symbol
add 4000003
idx 440000;
lac 200000;
sub 420000;
szf 640000;
cma 7610003
Jda 170000;
.o 000000;
mpy 540000;

action opera
fin stp
' dss
sar scl
noi ndi
1fm X8y
instruction
5 beg

table (modified version for FORTRAN system)
and 020000; dac 240000; dap 260000; dio
ior 040000; isp 460000; Jmp 6000003 Jsp
law 700000; lio 220000; sad 500000; sas
sma 6404003 spa ©40200; spi ©642000; sza
szo 641000; cla 760200; clf T760000; cli
hlt 7604003 lat 762200; xct 100000; dzm
clo 651600; mul 540000; div 5600003 nop
loc 000000; stf 7600103 ppb 7200063 rpb
dvd 560000

tors:
dao fix cee - o ewd
ral rar rcl rer ril rir
scr sil sir 828 oct dec
pdi AC (becl str org
blk 1lve XSs odv oda opt
generators:
end => > = + -

-23-

320000
620000
520000
640100
764000
340000
760000
720002

esy
sal
pol
efm

X

L adr |) tpo p] ~ absf
X / 1iabsf sinf cosf sgqrtf atanf acosf logf
loglOf expf

None of the above symbols may be used for variable names.

The instruction generators and action operators that have been expunged
may be put back 1in if needed; howéver some of them take quite a bit

of storage in DECAL so there will not Ve room for many statement numbers
or variable names in the DECAL symbol table during compllation of FORTRAN
programs.

c sample program
c type 1n up to 100 numbers
c put numbers in ascending or descending order (according to sw.2)
c type out ordered numbers
dimension a(100)
c clear array a
1 do 2 J=1,100
2 a(J)= 0.0
type 3
3 format (//5hinput)
do 20 J=1,100
accept 10,a(3g
10 format (f10.5
c parentheses and brackets may be used interchangeably
ir [a(J)] 20,50,20
20 continue
50 do 150 m= 1,
100 do 150 k= m, J
if (sense switch 3) 115,110
110 if (a[m]-af{k]) 150,150,140
115 if (a(k)-a(m)) 150,150,140
140 temp = a(m)
g{py= alk)

-24~

go to 100

150 continue
type 160’,j

160 format (1hJ,14/8h ordered)
do 200 k=1,9

200 type 10,a(k

c spaces and tabs may be used freely
go to 1
end

Listing of the output tape (DS tape which is read by DECAL)

dss rdf wrf tif tof xf ff 4dff eff dof fif f2f f3f fUf £5f f6f fdf eff arf ilf 12f
mainprog! lac laf

jda arf
eee C sample program
e C type in up to 100 numbers '
ese C put numbers in ascending or descending order (according to sw.2)
eee C type out ordered numbers
... dimensiona(100)
Jsp 1i2f
as. lac a[100]
eee C clear array a
eee 1do2J=1,100
stl:. pdi 1
st2nis: dac J
Jmp 43
dec 100
st2ni: .ol
LIS 2&(J)=0.0
ste:. efm 2

-25-

blk

LI) type3

ees 3format (//5hinput)

st3:.

st3a:
blk

L) d020J=1,1OO
8t20nls:

st20ni:
... acceptlO,a(J)

«.. 10format (f10.5)
sti10:.

8tl0a:

[
ees 1f{a{g))20,50,20

cl=>a(j]
law st2nil
Jda dof
lac st2nils

law st3+1
jda tof
nop

Jmp st3a
. « 210000
.« 210000
« « 700005
e o 74547
.. 242376
nop

pdi 1
dac J
Jmp »+3
dec 100
'.1

law st10+1
Jda tif
dac alJ]
nop

Jmp sti10a

.. 661205

nop

parentheses and brackets may be used interchangeably

efm 2

al jl=D>strf
1fm

lac strf

IR sto0

-26-

sza!

Jmp 8t50
eee 20continue
ste0:. law st20ni
Jda dof
lac st20nis
blk
eee 50d0150m=1, J
st50:. pdi 1
st150nis: dac m
lac J
dac st150ni-1
Jmp >+3
sti50nl: .01
e es 100d0150k=m, j
st100:. lac m
8t150n2s: dac k
lac J
dac sti50n2-1
Jmp ->+3
8t150n2¢ ol
«o. 1f(senseswitch3)115,110
8z8 3
Jmp sti115
ee. 1101if(a(m)-a(k))150,150,140
stil0:. efm 2
a[m]-al[k]=>astrf
1fm
lac strf
spa
Jmp sti150
sza!'
Jmp st150
e.. 1151if(a(k)-a(m))150,150,140
Jmp sti40
sti1l5:. efm 2
alk]l-alm]=>strf
1fm

lac strf

«e. 140temp=a(m)
st140:.

... a(m)=a(k)
ee. a(k)=temp
ees £0t01l00

ess 150continue
st150:.

blk
ees typel60,]

spa
Jmp s8t150
sza!
Jmp stl150

efm 2
a[m]=>temp

alk]=>a[m]
temp=>alk]

1fm
Jmp st100

law sti50n2
jda dof
lac 8t150n2s
law sti50nl1
Jda dof
lac 8t150nis

law st160+1
jda tof
lac J

] _ nop
ee. 160format (1hj,i4/8h ordered)

8t160:.

8t160a:
blk
s 00 d0200k=1, J

Jmp sti160a
.« 700001

. « 710400

. + 210000

. . 700010
.. 004651
..646551

. 656476
nop

pdi 1

-28-

8t200nis: dac k

lac J
dac s8t200ni-1
Jmp >+3
st200n1i: ool
e.o 200typel0O,a(k)
8t200:., law st10+1
jda tof
lac alk]
nop
law 8t200n1
Jda dof
lac st200nis
blk
eee C spaces and tabs may be used freely
eee. gotol
Jmp stl
eee end
strfs:.laf:. dec 201 5 ..
blk
m:. LN}
k:. LN]
temp:. ce 3 oo
cl:. oct 03 oct O
fin.

Normally the DS tape need not be listed; however if you have errors and
can't find them by examining the FORTRAN coding it may be useful to have
a listing of the DS tape.

Following is the Decal Map produced by DECAL after compilation:

Decal Map
s8sd
mainprog

ps

a
stl
st2
s8t3
st10
s8t20
s8t50
8t100
st110
sti115
st140
8t150
8t160
8t200
strf
laf

temp
cl

fin

0000

0003
0004
0011
0022
0042
0056
0061
0070
0101
0114
0126
0137
0151
0172
0202
0202
0204
0205
0206
0207
0211

0277

(a pointer to the array "a")
(location of statement number 1)

(temporary storage used by "if" statements)
(contains size of array area)

(floating point constant)

-30-

PROGRAM ERRORS NOT DETECTED BY THE COMPILER

The following errors have been found in programs being debugged by
users of the FORTRAN system.

(1) a fortran statement ,

relg(8)= expfgy(Q) x 2.308)
The variable "y(2)" was intended to be "y2" however there was a variable "y" in
the program so "y" was not typed out on the list of aps during the pass through
DECAL. Undimensioned variables that appear with a subscript are only detected
if they are being defined as fortran variables. Variables are defined oniy by
being to the left of an equals symbol, in an input list, in an "assign" statement,
or appear in a "dimension" statement.

COMPILING and LOADING the FORTRAN SYSTEM

The compiler is in 3 segments. Segment "A" conslsts of 3 DS (DECAL symbolic) tapes which
are compiled by the standard DECAL compiler into 1 DL (DECAL Load) tape which should

be labeled "segment A, DL". Segments "B" and "C" are each 1 DS tape and they should be
compiled by the standard DECAL compller and the DL tapes labeled "segment B, DL" and
"segment C, DL".

To load the DL tapes

1. Read in high linking loader

2. Load "segment A,DL" which has an org 0000

3. Load the constants (sw.4 up, continue)

4, Punch off an "lss" tape of the symbols (see page 62 of the DECAL manual for
a writeup on linking programs that overlap the linking loader)

5. Read 1in low linking loader.

6. Load the "1ss" tape punched off at step 4 above.

7. Load "segment B,DL" with the org following the constants of segment "A"

8. Load "segment C,DL"

9. Load the constants (sw.6 up, continue)

10.Punch off an "1lss" tape of the symbols

11.Punch off segments "B" and "C" using any punch off routine that does not
extend below 7000

-31-

12.Read in high linking loader

13.Load the "1ss" tape produced by step 10 above

14,.Load segment "A". The system symbols "bad", "jps", and "start here" are typed out
as "dda" type errors, this may be ignored as long as the address typeouts match
each other.

15.Load the constants (sw.6 up, continue)

16.Load the punch off tape produced by step 11 above

17.Punch off the entire linked program using any punch off routine that
does not extend below 7000

To complile and load the subroutine package.:

The subroutine package consists of several tapes. Complle the tapes
labeled "s-1" and "s-2" (DS tapes) into 1 DL tape which should be
labeled "s". Compile the tape labeled "s-3" and label it "imp, idv,
tpo for subr. package".

1. Read in low linking loader.

2. Set the org in the Test Word switches to 4437 and set sw.2 up.
(the org may be changed if there are changes made to the subr.
package, however the final address type out must be "nxt 7775"
when the subroutine package 1is loaded.)

. Load the tape labeled "s"

. Put sw.2 down and load the tape labeled "imp, idv, tpo for subr. package"

. Load the "flip" libetape (sw.5 up while loading the libetape)

. Store the constants (sw.% up, continue)

. Punch a "1ss" tape of the symbols and label it "lss tape of symbols
for linking subroutine package"

8. Punch off the subroutine package (4437=-T7777)

~NOu FWw

NOTE...For systems that do not have a type 64 printer the followin% change

must be made to the subroutine package before compiling tapes "s-1" and "s-2".

On the DS tape "s-1" there is a clear print buffer instruction (730445) located

2 words before the system symbol "arf". This must be changed to a nop instruction (760000).

To create a new FORTRAN system libetape:
1. Read in "libetape maker" (standard DECAL system tape)

-32-

2. Load the following DL tapes (see page 53-54 of the DECAL manual for instructions
for operating the "libetape maker".

atanf

logf loglOf (1 DL tape
sinf cosf (1 DL tape
asini’ acosf (1 DL tape
expf

sqrtf

errsqt

errlgf

eff

far

cff

prf

wrf

rdf

paf

-33-

	00
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33

