
I \ DECUS
\ I PROGRAM LIBRARY ---.

D ECU 5 NO. 82

TITLE

AUTHOR

COM PANY

DATE

FORMAT

FORTRAN FOR THE PDP-1
VERSION 3

November 1965

FORTRAN

Although this program has been tested by the contributor, no warranty, express or implied, is made by the contributor,
Digi tal Equipment Computer Users Society or Digital Equipment Corporation as to the accuracy or functioning of the
program or related program material, and no responsibility is assumed by these parties in connection therewith.

FORTRAN for the PoP-1 - VERSION 3 .
Version 003 is for machines with mul div hardware so be sure that
the mUI/mus switch is set to mul and the diV/dis switch is set to dive

This version is to replace version 002. One of the more important changes is that
there is a check for mixed mode arithmetic or "if" statements (mixed mode means that
fixed point and floating point variables have been mixed in one statement). Also, a
couple of bugs that were found in versions 001 and 002 have been fixed. One of the bugs
that was found in the earlier versions was caused by the "log10f" function appearing
as the first symbol (other than special characters) in an arithmetic or "if" statement.
In the previous versions the statement was compiled as though it was in fixed point
mode which was incorrect.
Another bug was in the "format" statement. In the previous versions if there were
blanks following a format specification they were incorrectly used as zeros. For
example the format statement "23 format (f10.3,a3 ,f4.1)" has a blank after the
"a3" specification so the blank caused the specification to be "a30".

This version includes the FORTRAN II print" statement and is for
use with a DEC type 64 line printer. For systems that do not
have a printer the following change must be made •••
The tape labeled "subroutine package" has a clear print buffer
instruction (730445) in location 4527. This must be changed to
a nop instruction (760000).

The FORTRAN compiler for the PDP-1 is not intended to be
a replacement language for the other compiler and assembly
languages already in use on the PDP-1, however it is useful

-1-

for short programs which may easily be coded in FORTRAN.

A statement number is only required if the statement is refered
to elsewhere in the program.
Tabs and spaces may be used freely.
Redundant carriage returns may be used freely.
Backspace causes the entire line to be ignored.

CONSTANTS
Integer constants magnitude ~ 131071-
Floating point constants may be up to 10 digits to the left of
the decimal point and/or up to 10 digits to the right of the
decimal point. Floating point constants may be followed by the
letter e and an exponent. There may be a minus sign between the e and the exponent.

A floating point number may never exceed 1 x 10 to the +38th power.

Floating point values are in a 2 word format with an 8 bit
exponent and a 28 bit mantissa.

Statement numbers may be up to 6 decimal digits.

Names of variables may be up to 6 characters.

All alphabetic characters are lower case.

A fortran comment is a line beginning with a letter c followed
by a tab.

Maximum statement length varies however up to 156 characters
should be okay for any type of statement.

If sense switch 5 is up the input to the compiler is from the
typewriter, if sense switch 5 is down the input is a FlO-DEC
paper tape.

Parentheses or brackets may be used interchangeably.

-2-

ARITHMETIC STATEMENTS follow the general rules of the FORTRAN
language.

Examples of arithmetic statements •••

abc = sinf(x(3)-(abc x any(n,5)-(cosf(a/b») + 45.6
n(4,j,3) = i x [k/45+(match-4)] / iabsf(k-4)
a= -b + c + (-d)

The following functions are provided for use in arithmetic expressions.
sinf - floating point sine (argument in radians)
cosf - floating point cosine (argument in radians)
acosf - floating point arc cosine (argument is a cosine, returns

with radians)
asinf - floatin~ point arc sine (argument is a sine, returns with

radians)
atanf - floating point arc tangent (argument is a tangent, returns

with radians)
expf - floating point exponential
sqrtf - floating point square root
logf - floating point log
log10f - floating point log (base 10)
absf - floating point absolute value
iabsf - integer absolute value

Names of integer variables begin with letters i,j,k,l,m,or n
Names of floating point variables begin with anK letter except i,j,k,l,m, or n
Names of variables may not end with the letter 'f".

Mixed mode is not allowed.

a= a-b/j
i= j+k-b/3

is illegal as "j" is an integer variable.
is illegal as "b" is a floating point variable.

a= i-5+k is allowed. "i-5+k" is calculated in integer mode,
the result converted to floating point, and stored
in variable "a".

i= a-b/7.3 is allowed. "a-b/7.3" is calculated in floating

-3-

point mode, the result converted to 1nteger mode (with
any fractional part dropped), and the result stored
In integer variable "1".

A modified version of the DECAL subscript interpreter is used so
up to 32 subscripts on a single variable should be okay.

Subscripts begin with 1, not 0 as in DECAL.
Recursive subscripts are not allowed.
Subscript arithmetic is allowed in integer
it is not allowed in floating pOint.

calculations however

Examples -

GO TO STA TEMENTS

go to 100

k= i(3/k+n,j) okay
b= a(3/k+n,j) is illegal aathe subscript arithmetic

will be performed 1n floating po1nt mode
resulting in an incorrect subscript.

program transfers to statement 100

go to (45,600,3,888),k causes transfer to the 1st, 2nd, 3rd, etc.,
statement on the list depending upon whether
k is 1, 2, 3, etc.

assign 400 to i saves location of statement 400 in i

go to 1,(34,500,400) transfers to statement specified br. "i" which
has been set by a previous "assign' statement.

The list of statement numbers in the parentheses 1s optional.
go to i is a legal assigned go to.

-4-

SENSE LIGHTS AND SENSE SWITCHES
•

if (sense switch 3) 12,34 transfers to statement 12 if the console~

sense light 0

Sense swi tch 3 1s on (up), transfers ·to statement
34 if the switch is off (down). Switches 1 thru 6
may be used. If sense switch 7 is used it will
cause a transfer if any switch is on.

turns off sense lights 1 thru 6

sense light 5 turns on sense light 5. Sense lights 1 thru 6
are normally used, however sense lights 7 thru 99
may a180 be used but the sense light 0 statement
will not turn off lights 7 thru 99.

if (sense light 4) 34,2 transfers to statement 34 1f sense light 4 1s on·
Transfers to statement 2 if sense light 4 1s off
If (senae light) statements always turn off the
sens'e light tha t 1s being tes ted.

Note: The FORTRAN sense lights are not the same as the program flags on the
console, however at a "pause" or "stop" statement sense lights 1 through 6 are
displayed 1n the program flags.

It IF" STA TEMENTS

if (a) 12,34,56 "a" may be any arithmetic expression. Mixed mode
is not allowed.

if (a(3)-(b!x+56.7» 300,4,5032 the arithmetic calculations are performed
and the program transfers to statement 300 if the
result is negat1ve, statement4if zero, or statement
5032 if positive.

-5-

npAUSE" AND nSTOP" STATEMENTS

pause 45

stop 6667

The line "pause4S" is typed out and the program halts.
Pushing continue, on the console, causes the program
to resume.

The line "stop6667" is typed out and the program halts.

This is a terminal halt and pushing continue has no effect.

After the "pause" or nstop" any decimal nwnber is legal or you may type a special
message by using a series of words separated by - [dash].

Examples:

pause 987654399
stop--this--the-end-of-the-program

The entire "pause" or "stop" line is typed out. Don't use commas or periods as part lof the line.

liDO" STATEMENTS

Examples •••

do 500 j=1,300 the following statements through statement 500
are executed. The first time through the loop tlj"
will be 1, "j" is incremented by 1 each time until
the final time through the loop it is 300, then the
statement following statement 500 is executed.

The increment may also be specified

do 67 k=l,45,3 the increment is 3

The values used for the lido" may also be unsubscripted integer variables.
The values may have a minus sign.

-6-

do 689 kr=100,-n,-2 the increment is a negative 2 so "kr" will be 100
the first time through the loop and will
be 98 the second time, etc.

lido" loops may end on the same statement number.
do 400 k3= 1,300
do 400 k4= 5,m,7

After a DO loop is completed and the program transfers out of the loop
the integer variable used for the index will contain the same value as
the last time through the loop.

The second and/or third parameters of a "do" statement may not be the
same variable name as the index variable.

Examples: do 50 k=1,k
do 50 k=1,4,k

The above rule is not checked by the compiler.

is not allowed.
is not allowed.

The "continue" statement may be used for terminatinf a "do" loop
where the final statement would otherwise be an "if, "go to", or another "do".

Example:
do 500 J= 1,34
if (a(j)-value) 600,600,500

500 continue
The "continue" statement may also be used freely in the program howevelj
if it is not the final statement of a "do" loop a "nop" instruction 1s executed
wasting one word.

"END" STA TEMENT
All programs must end with an "end" statement. If the "end" statement 1s
in the flow of statements being executed it must either have a statement
number or have characters following the "end" in the same manner as a "pause" or "stop".
If the "end" statement is not in the flow of statev being executed, and
is only a program terminator, it may appear by itself on a line.

-7-

"DIMENSION" STA TEMENT

The "dimension" statement is the same as in other FORTRAN systems except
in this system it must be in the executed flow of the program. It is
executed once and then bypassed if the program flow repeats through the
same path of the program.
A subscripted variable mU8t appear in a dimension statement before it appears
in any other statement.

Examples of the "dimension" statement •••
dimension i(4S)
dimension J(4,S),abc(S5),k(5),x(2,2,2,2)

INPUT/OUTPUT

type 45,a,i,x(4),y(i)

punch flex ~S,a,i,x(4}

print 683,a,i,x(3,J}

NOTE ••• The printer provided for

accept 74,i,a(34),k(j)

read flex 8S,i,j,xx(j)

The variables on the list will be typed
according to format 45.
The variables on the list will be punched
in FlO-DEC code according to format 45.
The variables on the list will be printed
according to format 683.

in this version is a DEC type 64 with FlO-DEC

The variables on the list will be accepted
from the typewriter according to format 74.
The variables on the list will be read
from FlO-DEC coded paper tape according to
format 85. If a stop code (oct 13) is read
the program enters a one word loop in the
subroutine package. The program may provide
for stop codes being read by using a DECAL
insert (see SPECIAL FEATURES).

"do" type indexing within input/output statements of the following form is
not allowed.

-8-

character set.

type 66, (a(k),k=1,34)

feed flex, n

end flex

FOO~T

is not allowed

This is a non-standard statement and causes
n blank lines of paper tape to be punched. The
argument, n, may be an unsubscripted integer
variable or integer constant.

This is a non-standard statement and causes
a stop code to be punched.

This statement specifies how data is to be transmitted between input/output
devices and the computer.

Example of a format:

35 format (a5,i6,f13.6,3x,i2)

"i" specification

The format specification il0 may be used to output a number which exists in
the computer as an integer quantity. 10 out7sitions are used for the
number. It is typed in this 10 digit field right-justified (that is, the
units position is at the extreme right). Positions in the field to the left
of the most significant digit are blank.

If the format speci1'ication il0 1s used for input 10 characters may be
typed in or read from paper tape and the resulting integer value will be
stored in the variable specified by the input statement. The largest
integer value that should be used as input is 131071

-9-

"f" specification

If the format specification f10.3 is used to type a number which exists
in the computer 10 type positions are reserved for the number and there
will be 3 positions to the right of the decimal point.

If the format specification f12.5 is used for input 12 characters will be
read from the input device. If there is no decimal point in the string of
input characters one will be assumed to be in the value and the rightmost 5
digits are the decimal fraction. If a decimal point i. one of the input
characters its position in the field over-rides the specification.

"x" specifica tion

Blank characters may be provided in an output record, or characters of an
input record may be skipped, by means of the "x" specification.
3x in a format would cause 3 characters to be skipped.

"h" specification

The "h" specification is used for input/output of alphanumerical information
that will not be manipulated by the program.

5habcde in a format used for output would cause 5h characters "abcde" to be
output.

3habc in an input format would cause j characters from the input device to
replace the .5 characters in the "h" f'ield.

All PDP-1 typewriter characters are usable in "h tl fields, however the specification
must include upper and lower shift as characters.

-10-

"a" specification

If the format specification a3 is used for output the word from the
output list will be output as alphanumeric characters (FlO-DEC code)
If the format specification a4 is used for input the characters are
stored in FlO-DEC code. Only 3 "a" characters will fit in a word so for
input the last 3 of the field, if it exceeds 3, will be stored.

"a" fields may only be stored in integer variables.

"c" specification

The lie" specification is used for control of the printer paper advance.
The "c" is followed by a number which indicates which track of the carriage
control tape is to be used to stop the paper advance. If the standard
carriage control tape is used paper advance will be as follows
cO = track 1 1 line spacing
c1 = II 2 2 line spacing
c2 = " j 3 line spacing
c3 = " 4 6 line spacing
c4 = " 5 11 line spacing
c5 = " 6 22 line spacing
c6 = " 7 33 !,ine spa~it).g (half page)
c7 = " 8 66 line spacing (full page)
c~ or greater = no paper spaCing (overprint)

The paper advance control is reset to 1 11ne spacing after every print operation.
If no "C" specification is given the printer will give 1 11ne spacing.

The "c" specification controls the paper advance after the current line 1s printed
so if the format "j4 format tc7,f'10.3,i7)" was used the "f" field and the
"i" field would be printed on one line and the "c" specification would cause the
paper to eject to the top of the next page.

A slash \ /) in a format indicates end of a line.

NOTE: There 1s some problem with input/output of large "1" and "1'''

-11-

format specifications. For this version try to limit the field width
to about 20 characters.

For "i" or "f" output try to allow extra character positions in the
field width so there will be room for a minus sign.

For "f" specifications where the output field is only to be decimal
fractions, with no integers, allow an extra position so a leading
zero may be output. Example: consider the floating point value
0.0345 which is to be typed. If the field is f5.4 there will be
no room for the leading zero so a field overflow occurs. If the
field is f7.4 it will type correctly.

If there is a field overflow (too many digits to fit in the field),
during output, the field will be output as dashes (-)
Example: consider the value 500.678 which is to be output under
specification f6.3. There are too many digits so it will be output
as 6 dashes. ------

The input/output routine scans the input/output statement list and for each
variable gets the corresponding format specification. If the format has no
more specifications it starts again with the first specification.
EEample: consider the variables a,b,c which are to be output aa f10.3 fields

type 30,a,b,c
30 format (f10.3)

The variables will all be typed as f10.3 fields, however whenever the format
routine has to restart scanning the format it types a carriage return so
each variable will be on a separate line.

When the format has more specifications than the input/output list requires
the extra specifications are ignored.

When the input/output list requires the format to be re-scanned and the
input/output list finishes before the format is used up and there are "h"
fields in the format the routine requires the entire line to be input
or output however the "i", "a", and "f" fields are treated as "XU fiel.ds.

Another feature of the format statements is the ability to repeat a specification
by preceeding the specification with a number.
Example:
10 format (a4,5f7.3,3x,f10.4) will work in the same manner as
10 format (a4,f7.3,f7.3,f7.3,f7.3,f7.3,3x,f10.4)

-12-

Only one pair of parentheses is allowed in a format.

There is no fixed line length for input/output so you are not limited to 120 characters
per line as in most FORTRAN systems. The exception to this is the print statement.
Characters after the 120th are lost and will not be printed.

There are two special escape characters usable with the input routines.
During input under an a, i, x, or f specification if either a tab or
carriage return is input, the input variable being input is stored and
the routine scans ahead for the next input variable on the list.
The tab and carriage return escape characters may be replaced by using
DECAL inserts. See SPECIAL FEATURES.

OPERATION OF THE FORTRAN SYSTEM ,

The FORTRAN system consists of 7 paper tapes for compiling, loading, and
executing FORTRAN programs.

tape 1 - FORTRAN compiler
tape 2 - DECAL compiler (modified)
tape 3 - HI LINKING LOADER
tape 4 - "1ss" tape of symbols for linking the subroutine package to a FORTRAN program.
tape 5 - Libetape of subroutines required by some programs.
tape 6 - Subroutine package - input/output routines, subscript interpreter, and

other routines required by FORTRAN programs.
tape 7 - Punch off routine

To compile, load, and execute a FORTRAN program:

1. Make a FORTRAN symbolic FlO-DEC paper tape of your FORTRAN program.
You may skip this step by typing the program directly into the
FORTRAN compiler, however if you have program errors you will then
usually have to retype the entire program.

2. Load the FORTRAN compiler. The compiler 1s in a self loading condensed

-13-

Page missing from original document

time your program is started the location of the array storage area
is typed out. Be sure that the lowest address of the array area does
not overlap the highest address of your program.

The punch off routine "pofmem" punches off a loader and all non-zero
words from 4000 through 7777 and 0000 through 3537. The resulting
tape, when loaded, is not self starting.
The punch off routine occupies 3540 through 3777.
When your program is loaded, using the output tape of "pofmemll

, 11'
the Memory Buffer is a normal hlt (760400) you may start your program,
however if the Memory Buffer is octal 141414 then there was a check-sum
error indicating either a punch or reader error.

ERRORS

The FORTRAN compiler checks most of the common errors made in
FORTRAN programs.

If an error is found the following is typed out •••
erN lineJ
where N is the error type and J is the line number.

After an error has been found the rest of the program is scanned for
further errors, but the normal output tape is not punched.

FORTRAN errors detected
number

1
2
3
4
5
6
7
8
9

10
11
12

by the compiler •••
error
Statement too long.
Illegal character.
Unmatched parentheses or brackets.
Statement number too long (over 6 digits)
Unrecognized statement or statement written incorrectly.
Comma. missing after variable name in assigned go to
"do" loop terminated by a "dO", "if", "stop", or "go to"
go to N statement number N is over 6 digits.
Not fixed point variable in assigned go to.
No comma after right parentheses of computed go to.
can't find letters "to" of assign statement.
Too many floating point constants.

-15-

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

30
31
32
33
34
35
36
37
38
39
40
41
42

43
44
45
46

"if" statement has illegal path.
Illegal sense switch number> 7
Non-specific error in statement.
Some unterminated "do" loops.
Nothing to right of equals sign in arithmetic statement.
"do" terminated previously.
Too many "do" loops.
Index variables name in "do" statement is not an integer variable.
Variable name over 6 characters.
Only one parameter for a "do" 100W (do 123 k= 2)
Comma. after third parameter of a do" loop (do 123 k=l,2,3,Lt)
Variable name used for "do" loop parameter begins with a digit.
Variable name used for "do" loop parameter is not an integer name.
"do" has been terminated previously.
"format" has no statement number.
Error in "format" statement.
No carriage return after) in "format" [12 format (a4,(f5.6) not
allowed]
No decimal point in "f" field specification of "format".
Field specification too large (Max.=63)
No format number in input/output statement.
Variable name over 6 characters.
Too many undimensioned variables.
"dimension" has a statement number.
Variable name ends with letter "f".
Undimensioned variable has a subscript.
Dimensioned variable has no subscript.
Subscripted variable has not been dimensioned.
Too many dimensioned variables.
Error in "sense light l1 statement (light> 99)
Over 10 digits to right or left of decimal point in floating pOint
constant.
Exponent overflow in floating constant routine.
arithmetic or "if" statement is mixed mode.
illegal subscript in arithmetic or "if" statement.
variable name begins with digit.

The only time when a variable name is cheCked to see if it is too long,
ends with letter "f", etc. is when it is being defined. Fortran variables
are defined by being on the left side of an equals symbol, in a "dimension",
in an input list, or in an "assign" statement.

-16-

Error type 26 and error type 18 above appear to be the same however they
indicate different errors.
Error 18 example:

200
c

Error 26 example:

100
c

100

do 200 k=1,300
do 200 j:=1, 34
continue
do loop 200 has been satisfied.

do 200 k=1,50

do 100 k=1,100
continue
do loop 100 has been terminated

Error 18 - a do loop that is being
defined by a "do"statement has al­
ready been terminated.

a=b-c Error 26 - Terminating statement number of a "do" loop
has been found previously.

Errors 37 and 39 appear to be the same however they indicate different errors.
Examples of errors 37, 38, and 39

dimension a(100)
b= 57.29578
b(2} = Error 37 - "btl has a subscript, has not been dimensioned, but

has been defined as an unsubscripted variable.
a= Error 38 - "a" has no subscript, has been dimensioned.
c(3)= Error 39 - tIc" has a subscript, has not been dimensioned, and

has not been defi.ned as an unsubscripted
variable.

"dda" type errors (found by DECAL) may indicate one of the following
1. Duplicate statement number.
2. Variables name begins "st" followed by digits the same as a statement number.
3. Variables name begins with "c" followed by digits. The floating point constants

generated by the compiler are named "c1" through "c50"

-17-

Other errors or program halts
hlt instruction (760400) = divide halt - probably will never occur.
Unused instruction 140000 is used to indicate various
other troubles. The ri~htmost octal digits indicate the type of trouble.
140001 = stop code (13) - no "end" statement.
140002 = overflow set at entry to floating constant routine.
140003 = overflow set during processing of previous statement.
140004 = floating divide by zero. Probably will never occur.
140005 = mul div switches not on (up)
140006 = negative number being floated (floating constants routine) = compiler error

If a parity error in the input FlO-DEC tape is found the letters "fpe" are
typed out and the compiler stops. Pushing continue will have no effect.

Not all errors are detected during the pass through the FORTRAN
compiler however they will usually be detected during the pass
through the DECAL compiler. A common error detected by the
DECAL compiler is a name typed out on the DECAL MAP as an "aps".
This indicates an undefined or improperly defined FORTRAN variable
name. The only exceptions to this are:
1. The name may have been used legally in a DECAL insert.
2. A sense light number > 6 may have been used. Sense light numbered up to 99

may be used. These will appear as fNf on the DECAL map where N is the light
number. - -

Consult the DECAL manual for other errors.

Note: The names of dimensioned variables are typed out on the
DECAL MAP as being only one word. That word is not the location
of the array but is a word where the address of the array will
be stored.

-18-

ERRORS detected during execution of your program.

hIt instruction (760400) indicates a divide halt.
Unused instruction 140000 is used for other error halts. The rightmost
digits indicate the type of error. To continue after a 140000 instruction
the CONTINUE button on the console must be pushed twice.

140001
140002

140003
140004
140005

140006
140007
140010

140011
140012

140013
140014

140015
140016
140017
140020
140021
140022

mul div switches not on [up]
FlO-DEC paper tape parity error, the character is in the 10. Put the
correct character in the Test Word switches and push CONTINUE twice.
Illegal format. No recovery.
No carriage return at end of line or format error (paper tape input).
Non digit character in "i" or "f" field. Resume and char. is used any­
way.
Divide halt during "f" format processing. Should never happen.
Overflow - "i" input
printer error status bit is on - push continue twice and status is
rechecked
Index of a "do" loop 2. 131071. Resume and invalid index is used anyway.
Floating number too large to convert to integer variable. Resume and
trash is used for the integer value.
Not enough room in array storage area. Indicates compiler error.
Too many subscripts or out of range. Resume and invalid subsc. used
anyway.
Out of bounds of array. Resume and invalid subsc. used anyw'ay.
Recursive subscript. Not allowed.
Exponent underflow - no recovery.
Exponent overflow - no recovery.
"sqrtf" has a negative argument. Resume and argument is made positive.
"logf" or "log10f" argument s.. zero. No recovery.

The overflow indicator is not checked during execution of FORTRAN programs and
is cleared and used by some of the routines in the FORTRAN subroutine package.

-19-

SPECIAL FEATURES

A clear print buffer instruction is executed at the start of the FORTRAN
program execution so if the start button on the printer is not on the program
will hang up until the button is on.

During execution of a FORTRAN program address 7777 is used for various
special switches.
If bit 0 is on an overbar is typed at the start of every format field.
If bit 1 is on output field overflow is allowed.

Address 7776 and address 7775 are used for escape characters during input
and if the input character matches either word the format routine stores
the input variable and goes to the next field.
7776 normally contains octal 77 (carriage return)
7775 normally contains octal 36 (tab)

The input/output routines use the status bits to
try and keep up a reasonable speed so if you are going to use DECAL inserts
to type or punch use the following subroutines.

Subroutine typl will type the character in the right 6 bits of the 10
Entrance to typ is a jsp typ

Subroutine pcf' will punch the right 6 bits of the AC with no parity change.
Entrance to pcf is a jda pef

Subroutine wrp' will punch the right 6 bits of the 10 with correct parity.

If a stop code is read there is a one word loop at system
symbol eof'. If you wish to provide for stop codes, in your program,
deposit an address in eof.
Example:
~ law st100; dap eof
If a stop code is read the program transfers to statement 100.

~20-

DECAL INSERTS

Some of the features of DECAL have been expunged, however they may be
put back in for use with DECAL inserts. They were expunged merely to give
more room on the symbol table.

A DECAL insert begins with a right arrow ~
A line beginning with ~ is copied directly into the output.

The program is always in fixed point mode at the start of a DECAL insert
and if the insert uses "efm 2" be sure and give an nlfm" before resuming
with FORTRAN statements.

The FORTRAN compiler uses block symbols for some "do" and "format" symbols
and they are expunged whenever possible so DECAL inserts should not use
block symbols.

The program flags are all used by the various subroutines so if a program
flag is used in a decal insert its setting will probably not be the same
after any fortran statement.

To reference a fortran statement in a decal insert precede the number
by the letters "st"e

jmp st555 • • • will cause a transfer to statement
555

FORTRAN or DECAL symbols (variable names) should not be any of the following:
1. May not be the same as any symbol on the DECAL symbol table.
2. May not be t~e same as any of the FOR'IRAN statement types; such as "iffl,"end",etc.
3. May not be 01 the form "stN" where N is a decimal number.
4. May not be of the form "CNlr where N-is a decimal number.

-21-

The following is a listing of the tape used to modify DECAL for the
FORmAN system.

••• . . .
xsy

fortranize decal
18 May 65

- dig

xsy abs
absf dig

iabsf esy absf

xsy / x
x dig

/ dig

sinf dig

cosf
sqrtf
atanf
acosf
asinf
log!'
log10r
expf

xsy nop
nop

beg Iv7 opl rsl
fde 1st; cma end

beg Iv7 opl rsl
fde; spa
fde 1st; ems.

beg Iv6 op2 rsl cmt
jda fsy; bcl.imp.
lac 21st
beg Iv6 op2 rs1
jda fsy; bci.idv.
lac 2
fde 1st; hIt

beg Iv7 op1 rs1
jsp ths 1st
esy sinf
esy sini'
esy sinf
esy sini'
esy sinf
esy sinf
esy sinf
esy slnf

ewd 760000

end

end

end

end

-22-

xsy op1 op2 op3 rs1 emt etr ths fsy 1st mns nac
xsy nle IvO Iv1 Iv2 Iv3 IvLi- Iv5 Iv6 Iv7
xsy dip iot opr skp usk cal lap mus dis
xsy fde fct dpy rrb srb rcb cnv esm Ism
xsy cbs msm rowc mrc mcb rck cac cks eem lem
xsy mcs chn mee
xsy isd Iso asd aso asc dsc Isb bac bpc bl0 bjrn dal
xsy Iss (= =>j
xsy goto = J J (~ > 2 ~
xsy sln cos atn sqrt In log exp exp10 r
xsy if then else clear set for stepu stepd untl1 whlle
xsy do lar ina arrase array realarray
xsy V A xor
xsy procedure tmp ppa rpa tyl tyo dlg •

fix fin.

DECAL symbol table (modified version for FORTRAN system)
add 400000; and 020000; dae 240000; dap 260000; dio 320000
idx 440000; ior 040000; isp 460000; jmp 600000; jsp 620000
lac 200000; law 700000; lio 220000; sad 500000; sas 520000
sub 420000; sma. 640400; spa 6~0200; spi 642000; sza 640100
szf 640000; szo 641000; cIa 760200; clf 760000; cli 764000
cma. 761000; hIt 760400; lat 762200; xct 100000; dzm 340000
jda 170000; clo 651600; mul 540000; div 560000; nop 760000
• • 000000; loc 000000; stf 760010; ppb 720006; rpb 720002
mpy 540000; dvd 560000

action operators:
fin stp dao fix • • ewd esy • • • • • •

dss ral rar rcl rer ril rir sal
sar scI scr s11 sir szs oct dec pol
nol ndi pd1 AC (bc1 str org efm
lfm xsy blk lYe xss odv oda opt [

instruction generators:
• beg end => = + x ,

-23-

L adr
I

X /
log10r expf

I
iabsf

)
sinf

tpo
cosf

,
sqrtf atanf acosf

absf
logf

None of the above symbols may be used for variable names.
The instruction generators and action operators that have been expunged
may be put back in if needed; however aome of them take quite a bit
of atorage in DECAL ao there will not Le room for many atatement numbers
or variable names in the DECAL symbol table during compilation of FORTRAN
programs.

c
c
c
c

c
1
2

3

10
c

20

50
100

110
115
140

sample program
type in up to 100 numbers
put numbers in ascending
type out ordered numbers
dimension a(100)

clear array a
do 2 j=1,100
a(j)= 0.0

type 3
format (//5hinput)

do 20 j=1,100
accept lo,a(jl
format (fl0.5

or descending order (according to sw.2)

parentheses and brackets may be used interchangeably
if [a(j) J 20,50,20
continue

do 150 m= 1,j
do 150 k= m,j
if (sense switch 3) 115,110
if ~a[mJ-a[k]) 150,150,140
if (a(k)-a(m») 150,150,140
t~m~ = a(m)
Rt~': ~~lft~

-24-

150

160

200
c

go to 100
continue

type 160'j
format (1hj,i4/8h ordered)
do 200 k=1,J
type 10,a(k)
spaces and tabs may be used freely
got 0 1
end

Listing of the output tape (DS tape which is read by DECAL)

dss rdf wrf tif tof xf ff dff cff dof f1f f2f f3f f4f f5f f6f fdf eff arf i1f i2f
malnprog' lac laf

jda arf

• •• c
• • •
• • •
• • • · . .
a: .

c
c
c
dimensiona(100)

••• c
••• 1do2j=1,100
at1: •
st2n1s:

st2n1:
••• 2a(j)=0.0
s t2:.

sample program
type in up to 100 numbers
put nu~bers in ascending or descehding order (according to sw.2)
type out ordered numbers

jsp i2f
lac a[100J

clear array a

pdi 1
dac j
jrnp -++3
dec 100
.• 1

efm 2

-25-

blk

••• type3

••• 3format (//Shinput)
st3: •

st3a:
blk

••• do20j=1,100

st20nls:

st20nl:
••• acceptl0,a(j)

••• 10format (fl0.S)
stl0: •

stl0a:
• •• c
••• ifla(j»20,50,20

cl=)a [j]
law st2n1
jda dof
lac st2n1s

law st3+1
jda tof
nop

jmp st3a
..210000
•• 210000
•• 70000S
•• 714S47
•• 242376
nop

pdi1
dac j
jmp -++3
dec 100
•• 1

law st10+1
jda tif
dac a[j]
nop

jmp stl0a
•• 66120S
nop
parentheses and brackets may be used interchangeably

efm 2
a[j]=)strf
lfm
lac strf
~~~ st20 

-26-



sza I 

••• 20continue 
s t20: • 

blk 

••• 50do150m=1,j 
s t50: • 
st150n1s: 

st150n1: 
••• 100do150k=m,j 
s t100: • 
s t150n2s: 

jmp st50 

law st20n1 
jda dof 
lac st20n1s 

pd1 1 
dac m 
lac j 
dac st150n1-1 
jmp -++3 
· . 
• .1 

lac m 
dac k 
lac j 
dac st150n2-1 
jmp -++3 
· . 

st150n2: •• 1 
••• If(senseswltch3)115,110 

szs 3 
jmp st115 

••• 1101f(a(m)-a(k))150,150,140 
st1l0:. efm 2 

a[m]-a[k)=)strf 
lfm 
lac strf 
spa 
jmp st150 
sza' 
jmp st150 

l151f(a(k)-a(m))150,150,140 ••• 

st115: • 
jmp st140 
efm 2 
a[k]-a[m]=)strf 
lfm 
lac strf 

-27-



••• 140temp=a(m) 
s t140: • 

· . . a(m)=a(k) 

• • • a(k)=temp 

• • • goto100 

••• 150cont1nue 
s t150: • 

blk 

• • • type160,j 

••• 160format (1hj,14/8h 
st160: • 

st160a: 
blk 
••• do200k=1,j 

spa 
jmp st150 
sza' 
jmp st150 

efm 2 
a[mJ=)temp 

a[kJ=)a[mJ 

temp=)a[k] 

lfm 
jrnp stl00 

law st150n2 
jda dof 
lac st150n2s 
law st150nl 
jda dof 
lac st150n1s 

law st160+1 
jda tof 
lac j 
nop 

ordered) 
jmp st160a 
•• 700001 
• .417676 
•• 710400 
• .210000 
•• 700010 
• .004651 
•• 646551 
•• 656476 
nop 

pdl 1 

-28-



st200n1s: dac k 
lac J 
dac st200n1-1 
Jmp -++3 
· . 

st200n1: • .1 
• • • 200type10,a(k) 
s t200: • law st10+1 

jda tof 
lac a[k] 
nop 
law st200n1 
Jda dof 
lac st200n1s 

blk 
• •• c spaces and tabs may be used freely 
• • • goto1 

jmp st1 
• •• end 
strf:.laf:. dec 201 • , . . 
blk 
j:. • • 
m: • · . 
k: • 
temp: • • · . , . . 
c1: • oct 0; oct 0 
fin. 

Normally the DS tape need not be listed; however if you have errors and 
can't find them by examining the FORTRAN coding it may be useful to have 
a listing of the DS tape. 

-29-



Following is the Decal Map produced by DECAL after compilation: 

Decal Map 

Bsd 

ma1nprog 

ps 

a 
Btl 
st2 
st3 
stl0 
st20 
Bt50 
stl00 
stl10 
st115 
st140 
st150 
st160 
st200 
strf 
laf 
j 
m 
k 
temp 
cl 

fin 

0000 

0003 
0004 
0011 
0022 
0042 
0056 
0061 
0070 
0101 
0114 
0126 
0137 
0151 
0172 
0202 
0202 
0204 
0205 
0206 
0207 
0211 

0277 

(a pointer to the array "a") 
(locat1on of statement number 1) 

(temporary storage used by "if" statements) 
(contains size of array area) 

(floating point constant) 

-30-



PROGRAM ERRORS NOT DETECTED BY THE COMPILER 
\ 

The following errors have been found in programs being debugged by 
users of the FORTRAN system. 

(1) a fortran statement 
relg(8)= expf~y(2) x 2.308) 

The variable "y(2)" was intended to be 'y21f however there was a variable "y" in 
the program so "yn was not typed out on the list of aps during the pass through 
DECAL. Undimensioned variables that appear with a subscript are only detected 
if they are being defined as fortran variables. Variables are defined only by 
being to the left of' an e~uals symbol, in an input list, in an "assign" statement, 
or appear in a "dimension' statement. 

COMPILING and LOADING the FORTRAN SYSTEM 

The compiler is in 3 segments. Segment "A" consIsts of ::3 DS (DECAL symbolic) tapes whlch 
are compiled by the standard DECAL compiler into 1 DL (DECAL Load) tape which should 
be labeled "segment A, DL". Segments "B" and IIC" are each 1 DS tape and they should loe 
compiled by the standard DECAL compiler and the DL tapes labeled "segment B, DL" and 
IIsegment C, DL". 

To load the DL tapes 
1. Read in high linking loader 
2. Load "segment A,DL" which has an org 0000 
3. Load the constants (sw.4 up, continue) 
4. Punch off an "lssll tape of the symbols (see page 62 of the DECAL manual for 

a writeup on linking programs that overlap the linking loader) 
5. Read in low linking loader. 
6. Load the "lss" tape punched off at step 4 above. 
7. Load IIsegment B,DL" with the org following the constants of segment "All 
8. Load "segment C,DL" 
9. Load the constants ~sw.6 up, continue) 
10.Punch off an "IS8 11 tape of the symbols 
li.Punch off segments liB" and IIC" using any punch off routine that does not 

extend below 7000 

-31-



12.Read in high linking loader 
13.Load the "Iss" tape produced by step 10 above 
14.Load sepent fIA". The system symbols "bad", "jpsll, and "start here" are typed out 

as "dda type errors, this may be ignored as long as the address typeouts match 
each other. 

15.Load the constants (sw.6 up, continue) 
16.Load the punch off tape produced by step 11 above 
17.Punch off the entire linked program using any punch off routine that 

does not extend below 7000 

To compile and load the Bubroutine package: 

The subroutine package consists of several tapes. Compile the tapes 
labeled "s-l" and "s-2" (DS tapes) into 1 DL tape which should be 
labeled "s". Compile the tape labeled "s-3" and label it "imp, idv, 
tpo for subr. package". 

1. Read in low linking loader. 
2. Set the org in the Test Word switches to 4437 and set sw.2 up. 

(the org may be changed if there are changes made to the subr. 
package, however the final address type out must be "nxt 7775" 
when the subroutine package is loaded.) 

3. Load the tape labeled "Sll 
4. Put sw.2 down and load the tape labeled II imp, idv, tpo for subr. package" 
5. Load the "flip" libetape (aw.5 up while loading the libetape) 
6. Store the constants (sw.6 up, continue) 
7. Punch a "lss1l tape of the symbols and label it nlss tape of symbols 

for linking subroutine package" 
8. Punch off the subroutine package (4437-7777) 

NOTE ••• For systems that do not have a type 64 printer the followin~ change 
must be made to the subroutine package before compiling tapes IIs_1 and IIs-2". 
On the DS tape "s-1 11 there is a clear print buffer instruction (730445) located 
2 words before the system symbol "arf'l. This must be changed to a nop instruction (760000). 

To create a new FORTRAN system libetape: 
1. Read in "libetape maker" (standard DECAL system tape) 

-32-



2. Load the following DL tapes (see page 53-54 of the DECAL manual for instructions 
for operating the "libetape makerll. 

atanf 
logf log10f 
sinf cosf 
asinf acosf' 
expf 
sqrtf 
errsqt 
errlgf 
eff 
fdf 
cff 
prf 
wrf 
rdf 
paf 

-33-


	00
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33

