DIGITAL EQUIPMENT COMPUTER USERS SOCIETY

D E c U s MAYNARD, MASSACHUSETTS /TEL. 897-8821/TWX 710 347-0212

November 18, 1965

Mr. G. A. Michael
Lawr ence Radi ation Laboratory
L-63

Livermore, Cal ifornia

Dear Mr. Michael:

Enclosed are the programs which you requested from the DECUS Program Library.

In order to increase the usefulness of the DECUS Program Library, we request that
you review each of these programs for accuracy, ease of use, clarity of documenta-

tion, etc., and return your comments to DECUS for the benefit of future users.

If you have any major problems with the program, or programs, please let us know
and we will try to assist you in any way possible.

Please send all comments to: DECUS Executive Secretary, Digital Equipment
Computer Users Society, Maynard, Massachusetts 01754.

Thank you for your interest.
Sincerely,

Angela J. Cossette { Mrs.)
Enclosures: ' DECUS Executive Secretary/Editor

DECUS No. 82 ~ tapes and wri te~up



DIGITAL EQUIPMENT COMPUTER USERS SOCIETY
Maynard, Massachusetts

DECUS Library - Program Writeup DECUS No. 82
TITLE: FORTRAN FOR THE PDP-1
AUTHOR: Developed by the Air Force Technical Applications

Center (AFTAC) and The Geotechnical Corporation.*
DATE: Received by DECUS:  July 1965

HARDWARE REQUIRED: Standard PDP-1, typewriter, paper tape reader and
punch.

*Programs by The Geotechnical Corporation were developed under contract to AFTAC.
Any questions regarding specific details of the Program should be directed to: HQ.,
USAF (AFTAC) TD-1A, Attn: SSgt. John Davidson, Washington, D. C. 20333.



Vi.
VII.
VIIL.

X1,
XII.
X1,
XIV.
XV.
XVI.
XVII.

Constants

Arithmetic Statements

Functions Available

Go To Statements

Sense Light and Sense Switches
"If" Statements

"Pause" and "Stop" Statements
"do" Statements

"End" Statement

"Dimension" Statement
Input/Qutput Statements
"Format" Statements

Operation of the FORTRAN System
Errors Found During Compilation
Special Features

DECAL Inserts

Sample Program

)

Q
«Q

o

W O~ v L O A A W W WN — —

— —r
w w

17 -20



THILED FORTRAN FOR OHE PDP-1

cerning compil:ing anc |

The DS tapes for the FLIP 8/28
bhe comp: e« n h £ as )

s Ty ok s Y el B RN | i
May D€ 1iiijed wi

The FLIV 8/28 floating point package may also be used for non-
FORTRAN programs. A complete writeup of the package i1s being
prepared by the author of the FLIP routines.

A1l of the included routines are for machines with mul div hard-
ware, however, they may be converted for use with mus dis by mak-
ing 1g's for muli, mpy., div, and dvd which zimulate the mul div
instyuctions by subroutines.

Compiling the FURTRAN compiler -

The tapes Ldbuied Al, AZ. and A3 should be compiled 1nto & sinmia

Ty P e 4 - - X . ;
L LR S eaa D 0w LAt aisWwEls RISy S [ T O W Y A g Ll

labeied B should be compiled intg DL tape. The tape labeled C
should be compiied intec DI, tape. The DL tapes produced by tapes
B and C are the upper memory segment of the system.

To load and link the upper and lower memory segments. follow the
instructions given on page 62 of the DECAL Mapual {(DECUS 39,
September 26, 1963}).

If additiong or changes are made Lo the compiler, be sure that the
main program does not tend over address 6771 as in the cuwwrent
versions {(versions 1 and 2}. The area extending from 7000 through
7777 is used for var:ous tables and for the input buifer area.
Compiliog and linking the subroucine package:

The tapes labeled 81 and 82 she comprled in siagle DL tape.

[N

The tape labelad $23 should be compslsed alo a SLL
iow laink.ng loader, load the DL tape produced from tapes 8
then load the tape produced by tape $3. After these are load
sense switch 6 up to wee which of the flnating won aE e
equired and load the necessarvy onesg. The subroutine packag
5 s i, 7

¢

el

5 o
ko Lo PUTSAVER

77 are used ao mdaLeer whara



FORTRAN FOR THE PDP-1 - VERSION 1 and 2

‘The FORTRAN compiler for the PDP-1 is not intended to be a replacement language

for the other compiler and assembly languages already in use on the PDP-1, however,
|f lc U<eFll| for clv\nrl- prr\nrcme V’L‘IC!" r""'y acc’!\l be deu in FORTRAIK‘I

The first version of the FORTRAN system for the PDP~1 uses mus and dis instructions;
and mpy and dvd subroutines.

Version 2 is for machines wn‘h mul div har dw are. Be sure that the mul/mus switch is
nH

affonnull nnr‘i'lv\arl ,/d PN &%

Ser 1€ GQiv/Gis swiTcn is set qiv

A statement number is required only if the statement is referred to elsewhere in the
program.

Tabs, spaces, and redundant carriage returns may be used freely.

Backspace causes the entire line to be ignored.

CONSTANTS

Integer constants magnitude < 131071,

Floating point constants may be up to 10 digits to the left of the decimal point and/or
up to 10 digits to the right of the decimal point. Floating point constants may be fol-
lowed by the letter e and an exponent.

The exponent of a floating point value must never exceed + 38.

Floating point values are in a 2-word format with an 8-bit exponent and a 28-bit man-
tissa.

Statement numbers may be up to 6 decimal digits.

Variable names may be up to é characters.

All alphabetic characters are lower case.

A fortran comment is a line beginning with a letter ¢ followed by a tab.

Maximum statement length varies, however, up to 156 characters are allowed for any
type of statement.

If sense switch 5 is up, the input to the compiler is from the typewriter; if sense switch
5 is down, the input is a FIO-DEC paper tape.

If sense switch é is down, the output is a DECAL symbolic tape; and if sense switch 6
is up, the output is typed. This is sometimes useful for seeing how a particular state-

ment compiles.

Parentheses or brackets may be used interchangeably.

ARITHMETIC STATEMENTS follow the general rules of the FORTRAN language.




Examples of arithmetic statements:

abc = sinf(x(3)-(abc x any(n, 5)-(cosf(a/b))) + 45.6
n(4,i,3) =i x [ k/45 + (match-4)] / iabsf(k-4)
a=-b + ¢ + (-d)

FUNCTIONS AVAILABLE:

oating point sine {argument in radians)

cosf - floating point cosine {(argument in radians)

acosf - floating point arc cosine (argument is a cosine, returns with radians)
asinf - floating point arc sine (argument is a sine, returns with radians)
atanf - floating point arc tangent (argument is a tangent, returns with radians)
expf - floating point exponential

sqrtf - floating point square root

logf - floating point log

log10f- floating point log (base 10)

absf - floating point absolute value

iabsf - integer absolute value

Names of integer variables begin with letters i, i, k, I, m, orn.

Names of floating point variables begin with any letter except i, i, k, |, m, or n.

Variable names may not end with the letter f.
Mixed mode is not allowed and is not checked by the compiler.

a= a-b/’j is illegal as j is an integer variabie.
i= j+k-b/3 is illegal as b is a floating point variable.

= i-5+k is allowed; i-5+k is calculated in integer mode, the result converted
to floating point, and stored in variable a.

i= a-b/7.3 is allowed; a-b/7.3 is calculated in floating point mode, the result
converted to integer mode (with any fractional part dropped), and
the result stored in integer variable i.

The DECAL subscript interpreter is used, so up to 32 subscripts on a single variable
should be okay.

Subscripts begin with 1, not 0 as in DECAL.
Recursive subscripts are not allowed.
Subscript arithmetic is allowed in integer calculations, however, it is not allowed in

floating point.

Examples:
k= i(3/k+n, {) okay
b= a(3/k+n, ) is illegal as the subscript arithmetic will be
performed in floating point mode resulting in
an incorrect subscript.

(2)



IV. GO TO STATEMENTS

go to 100 program transfers to statement 100.

go to (45,600, 3,888), k causes transfer to the 1st, 2nd, 3rd, etc.,
statement on the list depending upon

whether k is 1, 2, 3, etc.

~ao ) 4['\ PO ] o - e .

assign 400 to i saves locafion of statement 400 in i.

go to i, (34,500,400) transfers to statement specified by i which
has been set by a previous "assign" state-
ment.

The list of statement numbers in the parentheses is optional.

go to i is a legal assigned go to.

V. SENSE LIGHTS AND SENSE SWITCHES

if (sense switch 3) 12, 34 transfers to statement 12 if the console sense
switch 3 is on (up), transfers to statement 34
if the switch is off (down). Switches 1 thru 6
may be used. If sense switch 7 is tested it will
cause a transfer if any switch is on.

sense light O turns off sense lights 1 thru 6.

sense light 5 turns on sense light 5. Sense lights 1 thru 6
are normally used, however, sense lights 7
thru 99 may also be used but the sense light
0 statement will not turn off lights 7 thru 99.

if (sense light 4) 34,2 transfers to statement 34 if sense light 4 is on,
transfers to statement 2 if sense light 4 is off.
If (sense light) statements always turn off the
sense light that is being tested.

Note: The FORTRAN sense lights are not the same as the program flags on the console;

however, at a "pause” or "stop" statement sense lights 1 through 6 are displayed in the
program flags.

VI. IF STATEMENTS

if (@) 12,34,56 "a" may be any arithmetic expression. Mixed
mode is not allowed.

if (a(3)-(b/x+56.7)) 300,4,5032 the arithmetic calculations are performed and
the program transfers to statement 300 if the re-
sult is negative, statement 4 if zero, or state-
ment 5032 if positive.



VII.

VIIL.

PAUSE AND STOP STATEMENTS

pause 45 The line "pause45" is typed out and the pro-
gram halts. Pushing continue, on the console,
causes the program to resume.

stop 6667 The line "stop6667" is typed out and the program

halts. This is a terminal halt and pushing con-
tinve has no effect.

After the "pause" or "stop" any decimal number is ieagal or you may type a speciai message
by using a series of words separated by - [dash] .

Examples:
pause 987654399
stop--this=is-the-end-of-the-program

The entire "pause" or "stop" line is typed out. Don't use commas or periods as part of the
line.

DO STATEMENTS

Examples:
do 500 =1, 300 The following statements through statement 500
are executed. The first time through the loop j
will be 1; | is incremented by 1 each time until
the final time through the loop it is 300, then
the statement following statement 500 is ex-
ecuted.

The increment may also be specified

do 67 k=1,45,3 the increment is 3

The values used for the "do" may also be unsubscripted integer variables.

The values may have a minus sign.

do 689 kr =100, -n,-2 the increment is a negative 2 so kr will be 100
the first time through the loop and will be 98 the
second time, etc.

"do" loops may end on the same statement number.

do 400 k3= 1,300
do 400 kd= 5,m,7

After a "do" loop is completed and the program transfers out of the loop, the integer vari-
able used for the index will contain the same value as the last time through the loop.

The second and/or third parameters of a "do" statement may not be the same variable
name as the index variable.

Examples: do 50 k=1,k is not allowed.
do 50 k=1,4,k is not allowed.

The above rule is not checked by the compiler.

(4)



Xl

The "continue" statement may be used for terminating a "do" loop where the final
statement would otherwise be an "if", "go to", or another "do".

Example:
do 500 j=1,34
if (a(j)-value) 600,600, 500

500 continue

The "continue" statement may aiso be used freeiy in the program; however, if it is
not the final statement of a “do" loop, a "nop" instruction is executed wasting one
word,

. END STATEMENT

All programs must end with an "end" statement. [f the "end" statement is in the
flow of statements being executed, it must either have a statement number or have
characters following the "end" in the same manner as a "pause” or "stop". If the
"end" statement is not to be executed, it may be by itself on a line.

. DIMENSION STATEMENT

The "dimension" statement is the same as in other FORTRAN systems except in this
system it must be in the executed flow of the program. [t is executed once and then
bypassed if the program flow repeats through the same path of the program.

A subscripted variable must be dimensioned before it occurs in any other statement.

Examples of the "dimension" statement:

dimension i (45)
dimension j (4,5), abc (55), k(5), x(2,2,2,2)

INPUT/OUTPUT

The standard PDP-1 consists of a typewriter and paper tape input/output, thus only
those devices will be provided for in version 1 of the FORTRAN system.

type 45,a,i,x(4),y(i) the variables on the list will be typed
according to format 45.

punch flex 45,qa,i,x(4) the variables on the list will be punched
in FIO-DEC code according to format 45.

accept 74,i,a(34),k(j) the variables on the list will be accepted
I P
from the typewriter according to format 74.

read flex 85,1, i, xx(j) the variables on the list will be read from
FIO-DEC coded paper tape according to
format 85. If a stop code (oct 13) is read,
the program enters a one-word loop in the
subroutine package. The program may pro-
vide for stop codes being read by using a
DECAL insert (see SPECIAL FEATURES).

()



Xil.

"Do" type indexing within input/output statements of the following form is not
allowed. Examples:

type 66, (atk), k=1, 34) is not ailowed

feed flex, n This is a non-standard statement and causes
n blank lines of paper tape to be punched.
The argument, n, may be an unsubscripted
integer variable or integer constant.

end flex This is a non-standard statement and causes

a stop code to be punched.

FORMAT

This statement specifies how data is to be transmitted between input/output devices
and the computer.

Example of a format:
35 format (a5,i6,f13.6,3x,i2)

i" specification

The format specification i10 may be used to type a number which exists in the computer
as an integer quantity. Ten type positions ore reserved for the number. [t is typed in
this 10-digit field right-justified (thatis, the units position is at the extreme right).
Positions in the field to the left of the most significant digit are blank.

If the format specification i10 is used for input, 10 characters may be typed in or
read from paper tape and the resulting integer value will be stored in the variable
specified by the input statement. The largest integer value that should be used as
input is 131071. There is no check for exceeding 131071 magnitude. Non-digit
characters (except minus sign) will cause an error halt.

"f" specification

If the format specification f10.3 is used to type a number which exists in the computer,
10 type positions are reserved for the number and there will be 3 positions to the right
of the decimal point.

If the format specification f12.5 is used for input, 12 characters will be read from the
input device. If there is no decimal point in the string of input characters,one willbe
assumed to be in the value and the rightmost 5 digits are the decimal fraction. If a
decimal point is one of the input characters its position in the field over-rides the
specification,

"x" specification

Blank characters may be provided in an output record, or characters of an input record
n_n

may be skipped by means of the "x" specification.
3x in a format would cause 3 characters to be skipped.

(6)



- "h" specification

The "h" specification is used for input/output of alphanumerical information that will
not be manipulated by the program.

S5habcde in a format used for output would cause 5h characters "abcde" to be output.

3habc in an input format would cause 3 characters from the input device to replace
the 3 characters in the "h" field.

All PDP-1 typewriter characters are usable in "h" fields, however, the specification
must include upper and lower shift as characters.

"a" specification

If the format specification a3 is used for output, the word from the output list will be
outputted as alphanumeric characters (FIO-DEC code). If the format specification a4
is used for input, the characters are stored in FIO-DEC code. Only 3 "a" characters
will fit in a word,so for input, the last 3 of the field, if it exceeds 3, will be stored.

"a" fields may only be stored in integer variables.
Aslash ( /) in a format indicates end of a line.

NOTE: There is some problem with input/output of large "i" and "f" format specifications.
For this version try to limit the field width to about 20 characters.

For "i" or "f" output, try to allow extra character positions in the field width so there

will be room for a minus sign.

For "f" specifications where the output field is only to be decimal fractions with no in-
tegers, allow an extra position so a leading zero may be output. Example: Consider
the floating point value 0.0345 which is to be typed. If the field is 5.4, there will
be no room for the leading zero so a field overflow occurs. If the field is 7.4, it will
type correctly.

If there is a field overflow (too many digits to fit in the field) during output, the field
will be output as dashes (-).

Example: Consider the value 500.678 which is to be output under specification 6.3.
There are too many digits so it will be output as 6 dashes (=--=--~ ).

The input/output routine scans the input/output statement list, and for each variable
gets the corresponding format specification. If the format has no more specifications,
it starts again with the first specification.

Example: Consider the variables a,b,c which are to be output as f10.3 fields type 30,
a,b,c.

30 format (f10.3)

The variables will all be typed as f10.3 fields, however, whenever the format routine
has to restart scanning the format, it types a carriage return so each variable will be
on a separate line.



X1,

When the format has more specifications than the input/output list requires, the extra
specifications are ignored.

When the input/output list requires the format to be restarted and the input/output list
finishes before the format is used up and there are "h" fields in the format, the routine
requires the entire line to be input or output. However, the "i", "a", and "f" fields

are treated as "x" fields,

Ancther feature of the format statements is the ability to repeat a specificationby pre-
ceeding the specification with a number

Example:

10 format (a4,5f7.3,3x,f10.4) will work in the same manner as

10 format (a4,f7.3,¢7.3,f7.3,17.3,17.3,3x,f10.4)

Only one pair of parentheses is allowed in a format.

There is no fixed line length for input/output so you are not limited to 120 characters
per line as in most FORTRAN systems.

There are two special escape characters usable with the input routines.

During input under an a, i, x, or f specification if either a tab or carriage return is
input, the input variable being input is stored and the routine scans ahead for the next
input variable on the list.

The tab and carriage return escape characters may be replaced by using DECAL insert:.

(See SPECIAL FEATURES.)

OPERATION OF THE FORTRAN SYSTEM

The FORTRAN system consists of 7 paper tapes for compiling, loading, and executing
FORTRAN programs.

Tape 1 = FORTRAN compiler

Tape 2 - DECAL compiler (modified)

Tape 3 - HI LINKING LOADER

Tape 4 - Symbols for linking the subroutine package to your FORTRAN program.

Tape 5 - Libetape of subroutines required by some programs.

Tape 6 - Subroutine package - input/output routines, subscript interpreter, and other
routines required by most FORTRAN programs.

Tape 7 = Punch off routine
To compile, load, and execute a FORTRAN program:

1. Make a FORTRAN symbolic FIO-DEC paper tape of your FORTRAN program. You
may skip this step by typing the program directly into the FORTRAN compiler, how-
ever, if you have program errors you will then usually have to retype the entire
program.

2. Load the FORTRAN compiler. The compiler is in a self-loading, condensed tape

form. Place in reader, turn on, push READ-IN on the console.

(8)



XIV.

- 3. Ready your program tape in the reader (unless you are going to type your program

in, then have sense switch 5 up). START at 0000. If sense switch 3 is up during
compilation, the input statement is not included in the output as a comment, re-
sulting in a slightly shorter output tape.

4. If your program compiled without any errors load the DECAL compiler.

Ready the FORTRAN compiler output tape, which is a DECAL symbolic tape, in

the reader and depress the space bar on the typewriter.

w

6. If your program compiled without any errors load the HI LINKING LOADER.

7. Ready the DECAL output tape (DL tape) in the reader. If you don't want to type
out system symbols while loading set sw.1 up. [f you want to origin your program
at 0000 to use all available memory,set sw.2 up and clear the Test Word Switches
(all down) START at 6000. After starting put sw.2 down.

8. Ready the symbol tape in the reader for linking the subroutine package. Push CON-
TINUE on the console.

9. Put sw.6 up and push CONTINUE to store integer constants. If the letters rq are
typed in red then your program probably requires some of the libetape subroutines.

9a. To read the libetape - Ready tape in reader, put sw.5 up, and push CON-
TINUE. After the libetape is read in then go to step 9 above. If the letters
rq are again typed out, your program must require some subroutine that is not
provided with the system.

10. After your program has been loaded (and the highest address does not overlap the
subroutine package) then the subroutine package must be loaded. Ready the tape
in the reader and push READ-IN on the console.

Your program is now ready to execute or be punched off. The first time your program
is started the location of the array storage area is typed out. Be sure that the lowest
address of the array area does not overlap the highest address of your program.

The punch off routine "pofmem" punches off a loader and all non-zero words from 4000
through 7777 and 0000 through 3537. The resulting tape, when loaded, is not self
starting.

The punch-off routine occupies 3540 through 3777.

When your program is loaded using the output tape of "pofmem", if the Memory Buffer
is a normal hlt (760400), you may start your program. However, if the Memory Buffer
is octal 141414, then there was a check-sum error indicating either a punch or reader
error.

ERRORS

The FORTRAN compiler checks most of the common errors made in FORTRAN programs.

If an error is found the following is typed out:

erN lined
where N is the error type and J is the line number in your program.

(©)



After an error has been found the rest of the program is scanned for further errors,
but the normal output tape is not punched.

. FORTRAN errors detected by the compiler:

Number

— O N0 0O N O~ v AW N~

—_— et e
N

P e I I
O 0O NN O W

W W N NN NN DN DN NN
— O VvV 00 N O 0 bW NN — O

Error

Statement too long.

Iliegal character.

Unmatched parentheses or brackets.

Statement number too long (over 6 digits).

Unrecognized statement.

Comma missing after variable name in assigned go to.

"do" loop terminated by a "do", "if", "stop", or "go to".

go to N statement number N is over 6 digits.

Not fixed point variable is assigned go to.

No comma after right parentheses of computed go to.

Can't find letters "to" of assign statement.

Too many floating point constants.

"if" statement has illegal path.

[llegal sense switch number > 7.

Bad "if (sense light)" statement.

Some unterminated "do" loops.

Nothing to right of equals sign in arithmetic statement.

"do" terminated previously.

Too many "do" loops.

Index variables name in "do" statement is not an integer variable.
Variable name over é characters.

Only one parameter for a "do" loop (do 123 k=2).

Comma after third parameter of a "do" loop (do 123 k=1, 2, 3, 4).
Variable name used for "do" loop parameter begins with a digit.
Variable name used for "do" loop parameter is not an integer name.
"do" has been terminated previously.

"format" has no statement number.

Error in "format" statement

No carriage return after ) in "format" [12 format (a4, (f5.6)) not allowed] .
No decimal point in "f" field specification of "format".

Field specification too large (Max. = 63).

(10)



32 No format number in input/oufput statement.

33 Variable name over 6 characters.

34 Too many undimensioned variables.

35 "dimension" has o statement number,

36 Variable name ends with letter "f".

37 Undimensioned variable has a subscript.

38 Dimensioned variable has no subscript.

39 Subscripted variable has not been dimensioned.
40 Too many dimensioned variables.

41 Parity error in FIO-DEC input paper tape.

42 Over 10 digits to right or left of decimal point in floating point constant.
43 Exponent overflow in floating constant routine.

The only time a variable name is checked to see if it is too long, (ends with letter "f", etc.),
is when it is being defined. Fortran variables are defined by being on the left side of an
equals symbol, in a "dimension", in an input list, or in an "assign" statement.

Error type 26 and error type 18 above appear to be the same, however, they indicate different
errors.

Error 18 Example:
do 200 k=1, 300

do 200 j=1, 34
200 continue
c do loop 200 has been satisfied.
do 200 k=1, 50 Error 18 - a do loop that is being defined by a "do"

statement has already been terminated.

Error 26 Example:
do 100 k=1, 100

100 continue
c do loop 100 has been terminated.
100 a=b-c Error 26 = Terminating statement number of a "dc"

loop has been found previously.
Errors 37 and 39 appear to be the same, however, they indicate different errors.

Example of errors 37, 38, and 39:
dimension a(100)

b= 57.29578

b(2) = Error 37 - "b" has a subscript, has not been dimen-
sioned, but has been defined as an unsubscripted
variable.

a= Error 38 ~ "a" has no subscript, has been dimensioned.

c(3)= Error 39 -~ "c" has a subscript, has not been dimen-

sioned, and has not been defined as an unsubscripted
variable.

(1)



.Duplicate statement numbers are detected during the pass through DECAL.

Other errors or program halts:

hit instruction (760400) = divide halt - probably will never occur.

Unused instruction 140000 is used to indicate various other troubles. The rightmost octal
digits indicate the type of trouble.

140001 = stop code (13) - no "end" statement.

140002 = overflow set at entry to floating constant routine.

140003 = overflow set during processing of previous statement.

140004 = floating divide by zero. Probably will never occur.

Not all errors are detected during the pass through the FORTRAN compiler, however, they
will usually be detected during the pass through the DECAL compiler. A common error de-
tected by the DECAL compiler is a name typed out on the DECAL MAP as an "aps". This

indicates an undefined or improperly defined FORTRAN variable name. The only exception
to this is the name may have been used in a DECAL insert

Consult the DECAL manual for other errors.
Note: The names of dimensioned variables are typed out on the DECAL MAP as being only

one word. That word is not the location of the array, but is a word where the address of the

e 2 I I PR |
aivay wnnbc stored.

Errors Detected During Execution Of Your Program.

hlt instruction (760400) indicates a divide halt.

Unused instruction 140000 is used for other error halts. The rightmost digits indicate the
type of error. To continue after a 140000 instruction the CONTINUE button on the con-
sole must be pushed twice.

140002 FIO-DEC paper tape parity error, the character is in the |O. Put the
correct character in the Test Word switches and push CONTINUE twice.

140003 Illegal format. No recovery.

140004 No carriage return at end of line or format error (paper tape input).

140005 Non-digit character in "i" or "f" field. Resume and char. is used anyway.

140006 Divide halt during "f" format processing. Should never happen.

140011 Index of a "do" loop Z131071. Resume and invalid index is used anyway.

140012 Floating number too large to convert to integer variable. Resume and
trash is used for the integer value.

140013 Not enough room in array storage area. Indicates compiler error.

140014 Too many subscripts or out of range. Resume and invalid subsc. used
anyway.

140015 Out of bounds of array. Resume and invalid subsc. used anyway.

(12)



XV.

XVI.

140016 Recursive subscript. Not allowed.

140017 Exponent underflow - no recovery.

140020 Exponent overflow - no recovery.

140021 “sqrtf" has a negative argument. Resume and argument is made positive.
140022 "logf" or "log10f" argument < zero. No recovery.

The overflow indicator is not checked during execution of FORTRAN programs and is
cleared and used by the floating point interpreter and "do" loop subroutine.

SPECIAL FEATURES

During execution of a FORTRAN program address 7777 is used for various special switches.

If bit O is on, an overbar is typed at the start of every format field.
If bit 1 is on, output field overflow is allowed.
If bit 17 is on, "type'" statements are punched instead of typed.

Address 7776 and address 7775 are used for escape characters during input and if the input
character matches either word, the format routine stores the input variable and goes to the
next field.

7776 normally contains octal 77 (carriage return).

7775 normally contains octal 36 (tab).

The output routines for the typewriter and punch use the status bits to try and keep up a
reasonable speed; so if you are going to use DECAL inserts to type or punch, use the fol-
lowing subroutines.

Subroutine typ' will type the character in the right 6 bits of the 10.
Entrance to typ is a sp typ.

Subroutine pef' will punch the right 6 bits of the AC with correct parity.
Entrance to pcf is a jda pcf.

The paper tape input, using "read flex", is buffered. Up to 30 characters are read at a
time unless a carriage return or stop code is read.

If stop code is read, the subroutine goes into a one~word loop at system symbol eof'. If
you wish to provide for stop codes in you program, deposit an address in eof.

Example:

i law st100; dap eof
If a stop code is read, the program transfers to statement 100. If you are going to use
system symbol eof; at the start of your program -dss eof.

DECAL INSERTS

Some of the features of DECAL have been expunged, however, they may be put back in

for use with DECAL inserts. They were expunged merely to give more room on the symbol
table.

(13)



A DECAL insert begins with a right arrow — .
A line beginning with — is copied directly into the output.

The program is always in fixed-point mode at the start of DECAL insert and if the insert
uses "efm 2", be sure and give an "lfm" before resuming with FORTRAN statements.

The FORTRAN compiler uses block symbols for some "do" and "format" symbols and they
are expunged whenever possibie so DECAL inserts shouid not use block symbols.

FORTRAN or DECAL symbols (variable names) should not be any of the following:

May not be the same as any symbol on the DECAL symbol table.
May not be the same as any of the FORTRAN statement types; such as "if", "end", etc.

May not be of the form "stN' where N is a decimal number.

AW N -

May not be of the form "cN" where N is a decimal number.

(14)



The following i1s a listing of the tape used to modify DECAL for the

FORTRAN system.

... fortranlze decal
... 18 May 65

xsy ~
~ dig beg 1v7 opl rsl
fde 1lst; cma en
Xsy abs
absf dig beg 1v7 opl rsi
fdes spa
fde 1lst; cma end
labsf esy absf
x8y / x
x dig beg 1v6 op2 rsi cmt
Jda fsy; beil.imp.
lac 2 1st end
/ dig beg 1v6 op2 rsi
Jda fsy; bei.lidv.
lac 2
fde 1lst; hlt end
xsy mpy dvd
mpy dig beg 1v7 opl rsi nlc
Jda ths
lac 1 1st end
dvd esy mpy
sinf dig beg 1v7 opl rsi
Jsp ths 1lst end
cosf esy sinf
sqrtf esy sinf
atanf esy sinf
acosf esy 8inf
asinf esy sinf
logf esy sinf
loglof esy sinf
expf esy sinf
X8y nop

nop ewd 760000

(15)



xsy opl op2 op3 rsl cmt ctr ths fsy 1lst mns nac
xsy nlc 1vO 1vi 1v2 1v3 1v4 1v5 1lv6 1v7

xsy dip 1ot opr skp usk cal lap mus dis

xsy fde fct dpy rrb srb rcb cnv esm 1lsm

X8y cbs msm mwc mrc mcb rck cac Cks eem lem

Xsy mcs chn mec

xsy 1sd iso asd aso asc dsc 1sb bac bpc blo bjm dal
x8y lss <= =)>]|

xsy goto =D D<K <> > #*

xsv sin cos atn sqrt Wq log exp eynlo 1

xsy 1f then else clear set for stepu stepd until while
xsy do lar 1lna arrase array realarray

Xsy V A Xor

xs8y procedure tmp ppa rpa tyl tyo dig °*

fix fin.

DECAL permanent symbol table (modified version)

add 4000003 and 020000% dac 2400003 dap 2600003 dio 320000
1dx 440000: ior 0400003 isp 4600003 Jmp 600000% Jjsp 620000
lac 20000035 law 7000003 lio 2200003 sad 50000035 sas 520000
sub 4200003 sma 6404003 spa 6402003 spl 642000% sza 640100
szf 640000; szo 6410003 cla 760200' clf 7600003 cli 764000
cma 761630, hlt 7604003 lat 7622003 xct 1000003 dzm 340000
Jda 1700003 clo £5160035 mul 540000 div 56000Q‘ ncp 760000
.. O00ULO: loc 0000003 stf 7600103 ppb 7200063 rpb 720002

action operators:

fin stp dao fix e I : ewd esy

! dss ral rar rcl rcr ril rir sal
sar scl scr sil sir sZ8 oct dec pol
noi ndi pdi AC ( bei str org efm

1fm XSy blk lve Xss odv oda opt [

instruction generators:

s beg end => -> = + - X
L adr | ) tpo ] ~ absf  iabsf
X mpy dvd sinf cosf sgqrtf atanf acosf asinf

logf loglOf expf

None of the above symbols may be used for varlable names.

The instructlion generators and action operators that have been expunged
may be put back in if needed; however some of them take quite a bit

of storage 1n DECAL so there will not be room for many statement numbers
or varilable names in the DECAL symbol table during compilation of FORTRAN
programs.

c sample program

c type in up to 100 numbers

c put numbers in ascending or descending order
(according to sw.2)

c type out ordered numbers

dimension a(100)

(16)



c clear array a
1 do 2 J=1,100
2 a(J)=
type 3 ,
3 format (//Shinput)
do 20 3=1.100
accept 10,a(d
10 format (f10. 5S
c parentheses and brackets may be used interchangeably
1f [a(J)] 20,50,20
20 contlnue
5C do 150 m= 1,
100 do 150 k= m, J
1f (sense switch 3) 115,110
110 if a[mg—a[klg 150,150,140
115 if (a(k)-a(m)) 150,150,140
140 temp = a(m)
a§m$= a(k)
alk)= temp
go to 100
150 continue
type 160, J
160 format (1hJ 14/8h ordered)
do 200 k=1, g
200 type 10,a(k
c spaces and tabs may be used freely
go to 1
end

Listing of the output tape (DS tape which is read by DECAL)

dss rdf wrf L1f tof xf ff Aff cff dof fAf f2f f£3f fUf £5f £6F
fadf eff arf ii1f 12f

mainprog! lac laf
Jda arf
ees C sample program
ees C type 1n up to 100 numbers
ees C ut numbers in ascending or descending order
w”Faccording to sw.2)
ces C type out ordered numbers
... dimensiona(100)
Jsp 12f
as. lac a[100]
oo clear array a
cee 1d023 1,100
stis. pdil 1

st2nis? dac J
(17)



Jmp »+3

dec 100

st2nl: o1

... 2a(J3)=0.0

st2:. efm 2
ci=>a[J]
law st2ni
Jjda dof
lac st2nis

blk

... type3
law st3+1
Jda tof
no

... 3format (//5h1nput§

st3:. Jmp st3a
« « 210000
. » 210000
« « 700005
.. 714547
..242376

stl3a: nop

}-\,1 Y-

pdi 1
st20nls: dac ]
Jmp >+3
dec 100
st20ni: .ol
... accept10,a(J)
law st10+1
Jda tif
dac alJ]
nop
... 10format (£10.5)
st10:. Jmp st10a
..661205
stl0a: nop
eee C parentheses and brackets may be used interchangeably
... 1r(a(yJ))20,50,20
efm 2
al j]l=>strf
1fm
lac strf
spa
Jmp st20
sza!
Jmp st50

(18)



... 20continue
st20:. law st20nl
Jda dof
lac st20nis
b"l

'd
ke N

e e 50d0150m=i, J

st50:. pdi 1
st150nls: dac m
lac J
dac sti150nli-1
Jmp »+3
st150ni: ool
«s. 100d0150k=m, J
st100:. lac m
st150n2s: dac k
lac J
dac stl150n2-1
Jmp >+3
stl150n2: o1
... if(senseswitch3)115,110
szs 3

Jmp stlis

veo 1i0ir(a{mj-a(k))150,150,140
st110:. efm 2
a[m]-alk]=>strf
1fm
lac strf
spa
Jmp st150
sza!
Jmp st150
... 115if(a(k)-a(m))150,150,140
Jmp stl140
st115:. efm 2
alk]-a[m]=>strf
1fm
lac strf
spa
Jmp st150
szal
Jmp stl150
ve. 140temp=a(m)
st140:. efm]2
a(mj=>temp
ee. a(m)=a(k)
alk]=>a[m]
... a(k)=temp
temp=>alk]
«ees gotol0O
1fm
Jmp st100

(19)



eee 150continue
st150:.

law st150n2
Jda dof '
lac sti50n2s
law st150ni
Jda dof

lac st150nis

law st160+1
Jda tof
lac J

no
«e. 160format (1hJ,14/8h ordered)

5t160:.

stl60a:
blk
SAM -

A 2
oo uOhuvnzl,d

st200nis:

st200ni:
... 200typel0,a(k)
st200:.

blk
. @0 C
«es gOtol

«ee end
strf:.
laf:.
blk

me.
ke.
temp:.

cl:.
f£in.

Jmp s8t160a
L 700001
. 417676
.. 710400
. .210000
e 700010
..004651
..646551
. .656476

nop

pdi 1

dac k

lac J

dac st200nli-1
Jmp >+3

001

law st10+1
Jda tof

lac alk]

nop

law st200ni
Jjda dof

lac st200nis

spaces and tabs may be used freely
Jmp stl

déc’Zéi

oct 03 oct O
(20)



Normally the DS tape need not be listed; however if you have errors and
can't find them by examining the FORTRAN coding it may be useful to have
a listing of the DS tape.

Following is the Decal Map produced by DECAL after compilation

Decal Map

ssd

mainprog 0000

ps

a 0003 2a pointer to the array "a")
stl 0004 location of statement number 1)
st2 0011

st3 0022

s8t10 o042

st20 0056

st50 0061

st100 0070

sti110 0101

st115 0114

5t140 o126

st150 0137

st160 0151

s£200 0172

strf 0202 temporary storage used by "if" statements)
laf 0204 contains size of array area)
J 0205

m 0206

k 0207

temp 0210

cl 0212 (floating poilnt constant)

fin 0300



	001
	002
	003
	004
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21

