
DIGITAL EQUIPMENT COMPUTER USERS SOCIETY

CECUS MAYNARD, MASSACHUSETTS / TEL. 897-8821 / TV'IX 710 347-0212

t"-iovem ber i 8, i 965

Mr. G. A. Mi chael
Lawr ence Radi ati on Labor ator y
L-63
Livermor e, Cal if orni a

Dear Mr. Michael:

Enclosed are the programs which you requested from the DECUS Program Library.

In order to increase the usefulness of the DECUS Program Library, we 'request that
you review each of these programs for accuracy, ease of use, clarity of documenta­
tion, etc., and return your comments to DEC US for the benefit of future users.

If you have any major problems with the program, or programs, please let us know
and we will try to assist you in any way possible.

Please send all comments to: DECUS Executive Secretary, Digital Equipment
Computer Users Society, Maynard, Massachusetts 01754.

Thank you for your interest.

Sincerely,

~;~~
Angela J. Cossette (M rs.)

Enclosures: DECUS Executive Secretary/Editor

DECU S No. 82 - tapes and wri te-up

DIGITAL EQUIPMENT COMPUTER USERS SOCIETY

Maynard, Massachusetts

DECUS Library - Proaram Writeup DECUS No. 82 (V I

TITLE:

AUTHOR:

DATE:

HARDWARE REQUIRED:

FORTRAN FOR THE PDP-l

Developed by the Air Force Technical Applications

Center (AFT AC) and The Geotechnical Corporation. *

Received by DECUS: July 1965

Standard PD P-1, typewriter, paper tape reader and

punch.

*Programs by The Geotechnical Corporation were developed under contract to AFTAC.

Any questions regarding specific details of the Program should be directed to: HQ.,

USAF (AFTAC) TD-1A, Attn: SSgt. John Davidson, Washington, D. C. 20333.

..... ,r"\r'"v
I I "fLJt:/\

Page

i. Constants

II. Arithmetic Statements

III. Functions Avai lable 2

IV. Go To Statements 3

V. Sense Light and Sense Switches 3

VI. II 1f" Statements 3

VII. II Pause" and II Stop" Statements 4

VIII. II do" Statements 4

IX. II End" Statement 5

X. II Dimension" Statement 5

XI. Input/Output Statements 5

XII. "Format" Statements 6

XIII. Operation of the FORTRAN System 8

XIV. Errors Found During Compi lation 9

XV. Special Features 13

XVI. DECAL Inserts 13

XVII. Sample Program 17 -20

r~Q!'~3,~~S~)D,f'c~!_~i!,n9._. come!J~~X.l9 -_.~!!S,~._,lQ,§,cJ:~:~~:·L,_il}2, ~t91~It~!::~._ (:_:-:~i.rrL} '-l.!: _'~12S1,
:'l&::' eA," 'I ;'> 'C. r.ri I' I~~ ~ .-, ..

~~.:"::~~':-:~-~~' >~ :-:~ :-~-,~-~.-=-=-:'~!::.!!"

be compl1~ct and the DL tapes labeled sO that the necessary ones
may be l~nkE;d with ~:H:;;9met1ts of. the Fl)R'l'AAN 3yst.em ..

The FLIP 8/28 floating poin.t package may also be used for: 0011-

PORTHAN progr ams.. 1\ complete VIr i.teup of the packd;~e is bel.ng
prepared by the author of t,hc FLIP routines u

p"ll of the included routiues d.t~e foe mach.1nes v.ll.lh rm..tl dlV hard,~

ware~ however i: they may be conver.'ted for use ~N'-th mus dis by mak~"
lng 19¥s for mu1" mpYr eliv" and dvd '-'Jhlch sImulate the !nul dJ.\!
~nstruct10ns by subrout1nes .

¥",'y k ... ~

- .-. - '-~ j-''-'
.

~ <>'", /c..;,J ~,) ',.i.l. __ ..Llj\f~t.; ... ;:)C':jL(.t.-o'f~t-" "-".-~~ ~_ ~iC:,~ \ ... \-'irt1:--Jl_L~J_ r

labeled B should be compiled into D1. t.ape ,_ '"the t~ape labeled C
should be compiled l.nto UL tape. The DL tapes produced by tapes
.B and Care t.he upper memory seg-ment of the system"

To load and link the uppex' and lower memory segments < follow the
instruct,ions given on page 62 of the DECAL r·'1dnual iDECUS 39.,
September 261' 1963) ,:

If addi~·.ion8 or changes ar'e made to the co!npi let:'. be sure that, t h~;
maIn program does not extend over address 677

4

j as in the current
versionn (versions 1 and 2). The area extending frot:1 7000 through
7777 is used for var~ous tables and for the input buffer area,

The t.at)e~j lE!beled Sl and S2 ~;hould be G~mp:tled ~lTLo .::l s.u,lyle DL tape ~
ri~he i-?pe labeled S:3 ~houJ.dhc c.:o:n,tJi.l..:.-;d :;,~iLu .;;. 'JL tape.. Us in:J the
1 U"d L~Iikj.ng J.oader. r load the Db t.apc pr:)di.1ced :Cx:orl.1tape';::;; 81 and 52.
then load the tap€' pl"oduced by t:ap(~ 83," After th8se a.r"t? loaded p:1i­

sense nw:i.tch 6 up to ',!oo:E~e Wh1r>h nf t} .. \,~, fJO·~1.:j :n1 ·~t·:~,e::' c::";?':

l'cqui;:ec and load the necessary ones," :Phe slJbrout i ne pcC':~:._ag·~ fltc3y

act.ual1y be Jocat.ed an~}her~~ ,La merrK>?~y. hO="\iev':!::~i .:·id(L:i:'~S,:,i-:!::;. 7T7':;,

After punch ins the:
t <j-r ::nD':'

p~c!~

/~'" (~.-

FORTRAN FOR THE PDP-l - VERSION 1 and 2

'The FORTRAN compiler for the PDP-l is not intended to be a replacement language
for the other compi ler and assemb Iy languages a I ready in use on the PD P- 1, however,
it is useful for short programs \vhich may easily be coded in FORTRAN.

The first version of the FORTRAN system for the PDP-l uses mus and dis instructions;
and mpy and dvd subroutines.

Version 2 is for machines with mul div hardware. Be sure that the mul/mus switch is
coa+ +" 1 "' ri +1..0. ri:,,/,.J: ,:,,_l.. :~ ~~" "4: .. -.I""" I\J IIIV', ,..11"'" 11',-, '-"I VI UI~ ~VVII\"II I;» ';)CI IV \,A_V.

A statement number is required only if the statement is referred to elsewhere in the
program.

Tabs, spaces, and redundant carriage returns may be used freely.

Backspace causes the entire line to be ignored.

I. C ONST ANTS

Integer constants magnitude ~ 131071 0

Floating point constants may be up to 10 digits to the left of the decimal point and/or
up to 10 digits to the right of the decimal point. Floating point constants may be fol­
lowed by the letter e and an exponent.

The exponent of a floating point value must never exceed ± 38.

Floating point values are in a 2-word format with an 8-bit exponent and a 28-bit man­
tissa.

Statement numbers may be up to 6 decimal digits.

Variable names may be up to 6 characters.

All alphabetic characters are lower case.

A fortran comment is a line beginning with a letter c followed by a tab.

Maximum statement length varies, however, up to 156 characters are allowed for any
type of statement.

If sense switch 5 is up, the input to the compiler is from the typewriter; if sense switch
5 is down, the input is a FlO-DEC paper tape.

If sense switch 6 is down, the output is a DECAL symbolic tape; and if sense sw,itch 6
is up, the output is typed. This is sometimes useful for seeing how a particular state­
ment campi les.

Parentheses or brackets may be used interchangeably.

II. ARITHMETIC STATEMENTS follow the general rules of the FORTRAN language.

(1)

Examples of arithmetic statements:

abc = sinf{x(3)-{abc x any(n,5)-(cosf(a/b))) + 45.6
n{4, j,3) = i x [k/45 + (match-4)] / iabsf{k-4)
a= -b + c + (-d)

iii. FUNCTiONS AVAi LABLE:

sinf - floating point sine (oigument in iodions)
___ eel _L· ! - J, _. I • • I· \

(';U!)I - 11001 i ng pOI rn COSI ne \argumenr In raa lans)
acosf - floating point arc cosine {argument is a cosine! returns with radians}
asinf - floating point arc sine (argument is a sine, returns with radians)
atanf - floating point arc tangent (argument is a tangent, returns with radians)
expf - floating point exponential
sqrtf - floating point square root
logf - floating point log
loglOf- floating point log (base 10)
absf - floating point absolute value
iabsf - integer absolute value

Names of integer variables begin with letters i, i, k, I, m, or n.

Names of floating point variables begin with any letter except i, I, k, I, m, or n.

Variable names may not end with the letter f.

Mixed mode is not allowed and is not checked by the compiler.

b I· a= a- '/ i
i= i+k-b/3

a= i-5+k

i= a-b/7.3

is illegal as i is an integer variable.
is illegal as b is a floating point variable.

is allowed; i-5+k is calculated in integer mode, the result converted
to floating point, and stored in variable a.

is allowed; a-b/7.3 is calculated in floating point mode, the result
converted to integer mode (with any fractiona I part dropped), and
the resu I t stored in integer variab Ie i.

The DECAL subscript interpreter is used, so up to 32 subscripts on a single variable
shou Id be okay.

Subscripts begin with 1, not 0 as in DECAL.

Recursive subscripts are not allowed.

Subscript arithmetic is allowed in integer calculations, however, it is not allowed in
floating point.

Examples:
k= i (3/k+n, j)
b= a (3/k+n, j)

okay
is illegal as the subscript arithmetic will be
performed in floating point mode resulting in
an incorrect subscript.

(2)

IV. GO TO STATEMENTS

go to 100

go to (45, 600, 3, 888) , k

assign 400 to i

I • /1"') A ,..n" 4 ",,' go TO I, \,,)4, .::>UU, 4UU)

program transfers to statement 100.

causes transfer to the 1 st, 2nd, 3rd, etc.,
statement on the list deoendina voon
whpthpr It- i c; 1 ? ~ t:>~,... v . I -

._--'" ... _- .~ " ~, ""I \""

saves location of statement 400 in i.

transfers to statement specified by i which
h b- 6 . II • - " as een set_ y a prevIous assIgn state-
ment.

The I ist of statement numbers in the parentheses is optional.

go to i

V. SENSE LIGHTS AND SENSE SWITCHES

if (sense switch 3) 12, 34

sense light 0

sense light 5

if (sense light 4) 34,2

is a legal assigned go to.

transfers to statement 12 if the console sense
switch 3 is on (up), transfers to statement 34
if the switch is off (down). Switches 1 thru 6
may be used. If sense switch 7 is tested it wi II
cause a transfer if any switch is on.

turns off sense lights 1 thrv 6.

turns on sense light 5. Sense lights 1 thru 6
are normally used, however, sense lights 7
thru 99 may also be used but the sense light
o statement wi II not turn off lights 7 thru 99.

transfers to statement 34 if sense light 4 is on;
transfers to statement 2 if sense light 4 is off.
If (sense light) statements always turn off the
sense light that is being tested.

Note: The FORTRAN sense lights are not the same as the program flags on the console;
however, at a "pause" or "stop" statement sense lights 1 through 6 are displayed in the
program fl ags .

VI. IF STATEMENTS

if (a) 12,34,56 "a" may be any arithmetic expression. Mixed
mode is not allowed.

if (a(3)-(b/x+56.7)) 300,4,5032 the arithmetic calculations are performed and
the program transfers to statement 300 if the re­
su It is negative, statement 4 if zero, or state­
ment 5032 if positive.

(3)

VII. PAUSE AND STOP STATEMENTS

pause 45

stop 6667

The i i ne ii pause45 11 is typed out and the pro­
gram halts. Pushing continue, on the console,
causes the program to resume.

The line II stnof,AA 7" i ~ tvnpn {"u It nnrl thp nrr)nrnrYl
-~-I----' -- -/r-~ --- ---- ---- r-'-~'-'"

halts. This is a terminal halt and pushing con-
t i flue has no effect.

After the IIpause" or "stop" any decimal number is leagal or you may type a speciai message
by usi ng a series of words separated by - [dash] .

Examples:
pause 987654399
stop--th i s- is-the-end-of-the-program

The entire "pause" or IIstop" line is typed out. Donlt use commas or periods as part of the
line.

VIII. DO STATEMENTS

Examples:
do 500 j= 1,300

The increment may also be specified
d067k=l,45,3

The following statements through statement 500
are executed. The first time through the loop j
wi II be 1; i is incremented by 1 each time until
the fi na I ti me through the loop it is 300, then
the statement following statement 500 is ex­
ecuted.

the increment is 3

The values used for the IIdo" may also be unsubscripted integer variables.

The values may have a minus sign.

do 689 kr = 100, -n,-2 the increment is a negative 2 so kr wi II be 100
the fi rst ti me through the loop and wi II be 98 the
second time, etc.

II do" loops may end on the same statement number.

do 400 k3= 1, 300
do 400 k4= 5, m, 7

After a IIdo ll loop is completed and the program transfers out of the loop, the integer vari­
able used for the index will contain the same value as the last time through the loop.

The second and/or third parameters of a "do" statement may not be the same variable
name as the index variable.

Examples: do 50 k= 1, k
do 50 k= 1, 4, k

is not allowed.
is not allowed.

The above rule is not checked by the compiler.

(4)

The "continue" statement may be used for terminating a "do" loop where the final
statement wou Id otherwise be an II ifll, "go to", or another" do" .

Example:
do 500 i=l .34
if (a(j)-~a(ue) 600,600,500

500 cont i nue

The "continue" statement may also be used freeiy in the program; however, if it is
not the final statement of a iido ii loop: a il nop" instruction is executed wasting one
word.

IX. END STATEMENT

All programs must end with an "end" statement. If the "end" statement is in the
flow of statements being executed, it must either have a statement number or have
characters following the II end" in the same manner as a "pause" or "stop". If the
"end" statement is not to be executed, it may be by itself on a line.

X. DIMENSION STATEMENT

The "dimension" statement is the same as in other FORTRAN systems except in this
system it must be in the executed fiovi of the program. It is executed once and then
bypassed if the program flow repeats through the same path of the program.

A subscripted variable must be dimensioned before it occurs in any other statement.

Examples of the "dimension" statement:

dimension i (45)
dimension j (4,5), abc (55), k(5), x{2,2,2,2)

XI. INPUT/OUTPUT

The standard PDP-1 consists of a typewriter and paper tape input/output, thus only
those devices wi II be provided for in version 1 of the FORTRAN system.

type 45,a, i,x(4),y(i) the variables on the list will be typed
according to format 45.

punch flex 45,a, i,x(4)

accept 74, i,a(34),k{j)

read flex 85, i, j,xx(j)

the variables on the I ist wi II be punched
in FlO-DEC code according to format 45.

the variables on the I ist wi" be accepted
from the typewriter according to format 74.

the variables on the list wi II be read from
FlO-DEC coded paper tape according to
format 85. If a stop code (oct 13) is read,
the program enters a one-word loop in the
subrouti ne package. The program may pro­
vide for stop codes being read by using a
DECAL insert (see SPECIAL FEATURES).

(5)

"Do" type indexing within input/output statements of the following form is not
allowed. Examples:

r. I rl reea flex, n

end flex

XII. FORMAT

• ,. I I

IS nor a! lowed

This is a non-standard statement and causes
n blank I ines of oaoer tace to be ,..nunched.

I I I

The argument; n, may be an unsubscdpted
integei variable or integer constant.

This is a non-standard statement and causes
a stop code to be punched.

This statement specifies how data is to be transmitted between input/output devices
and the computer.

Example of a format:

35 format (a5,i6,f13.6,3x,i2)

"i" specification

The format specification ilO may be used to type a number which exists in the computer
as an integer quantity. Ten type positions ore reserved for the number. It is typed in
this la-digit field right-iustified (that is, the units position is at the extreme right).
Positions in the field to the left of the most significant digit are blank.

If the format specification ilO is used for input, 10 characters may be typed in or
read from paper tape and the resulting integer value will be stored in the variable
specified by the input statement. The largest integer value that sh9lJld be used as
input is 131071. There is no check for exceeding 131071 magnitude. Non-digit
characters (except minus sign) will cause an error halt.

"f" specification

If the format specification flO.3 is used to type a number which exists in the computer,
10 type positions are reserved for the number and there wi II be 3 positions to the right
of the decimal point.

If the format specification fl2.5 is used for input, 12 characters will be read from the
input device. If there is no dec imal point in the string of input characters) one wi 1\ be
assumed to be in the value and the rightmost 5 digits are the decimal fraction. If a
decimal point is one of the input characters its position in the field over-rides the
spec ification.

"x" specification

Blank characters may be provided in an output record, or characters of an input record
may be skipped by means of the "x" specification.
3x in a format would cause 3 characters to be skipped.

(6)

"h ll specification

The "h" specification is used for input/output of alphanumerical information that will
not be manipulated by the program.

5habcde in a format used for output would cause 5h characters "abcde" to be output.

3habc in an input format would cause 3 characters from the input device to repiace
the 3 characters in the n h!! fi e id .

All PDP-l typewriter characters are usable in "h" fields, however, the specification
must inc lude upper and lower shift as characters.

"a" spec ification

If the format specification a3 is used for output, the word from the output I ist wi II be
outputted as alphanumeric characters (FlO-DEC code). If the format specification a4
is used for input, the characters are stored in FlO-DEC code. Only 3 II a" characters
will fit in a word) so for input, the last 3 of the field, if it exceeds 3, will be stored.

"a" fields may only be stored in integer variables.

A slash (/) in a format indicates end of a line.

NOTE: There is some problem with input/output of large "i" and "f" format specifications.
For this version try to limit the field width to about 20 characters.

For "i" or "f" output, try to allow extra character positions in the field width so there
wi II be room for a minus sign.

For "f" specifications where the output field is only to be decimal fractions with no in­
tegers, allow an extra position so a leading zero may be output. Example: Consider
the floating point value 0.0345 which is to be typed. If the field is f5.4, there will
be no room for the leading zero so a field overflow occurs. If the field is f7.4, it will
type correctly.

If there is a field overflow (too many digits to fit in the field) during output, the field
will be output as dashes (-).

Example: Consider the value 500.678 which is to be output under specification f6.3.
There are too many digits so it wi II be output as 6 dashes (------).

The i nput/ output rout ine scans the i nput/ output statement list, and for each variab Ie
gets the corresponding format specification. If the format has no more specifications,
it starts again with the first specification.

Example: Consider the variables a,b,c which are to be output as flO.3 fields type 30,
a,b,c.

30 format (flO.3)

The variables will all be typed as flO.3 fields, however, whenever the format routine
has to restart scanning the format, it types a carriage return so each variable wi II be
on a separate line.

(7)

'vVhen the format has more specifications than the input/output list requires, the extra
specifications are ignored.

vVhen the i nput/ output list requ i res the format to be restarted and the i nput/ output list
finishes before the format is used up and there are iihii fields in the format. the routine
requires the entire line to be input'or output. However, the iiill, iiall, an'd llfi fieids
..... ro f.ro f.orl riC: II v" f;." I,.,.,.
\..oIl"""' •• """' '-""" """.." " •• """-''"'.

Another feature of the format statements is the ability to repeat a specification by pre-
Ie • I • r· I. .. I f ceealng rne speCifiCaTIOn wlTn a numoer.

Example:
10 format (a4,5f7.3,3x,flO.4) will work in the same manner as
10 format (04, f7. 3, f7. 3, f7. 3, f7. 3, f7 .3, 3x, fl 0.4)

Only one pair of parentheses is allowed in a format.

There is no fixed line length for input/output so you are not limited to 120 characters
per line as in most FORTRAN systems.

There are two special escape characters usable with the input routines.
During input under an a, i, x, or f specification if either a tab or carriage return is
input, the input variable being input is stored and the routine scans ahead for the next
input variab Ie on the list.
The tab and carriage return escape characters may be replaced by using DEC A,L inserts.
(See SPECIAL FEATURES.)

XIII. OPERATION OF THE FORTRAN SYSTEM

The FORTRAN system consists of 7 paper tapes for compi I ing, loading, and executing
FORTRAN programs.

Tape 1 - F ORTRA N compi ler

Tape 2 - DECAL compi ler (modified)

Tape 3 - HI LINKING LOADER

Tape 4 - Symbols for linking the subroutine package to your FORTRAN program.

Tape 5 - Libetape of subroutines required by some programs.

Tape 6 - Subrouti ne package - i nput/ output routi nes, subscri pt interpreter, and other
routines required by most FORTRAN programs.

Tape 7 - Punch off routine

To compile, load, and execute a FORTRAN program:

1. Make a FORTRAN symbolic FlO-DEC paper tape of your FORTRAN program. You
may skip this step by typing the program directly into the FORTRAN compiler, how­
ever, if you have program errors you will then usually have to retype the entire
program.

2. Load the FORTRAN compiler. The compiler is in a self-loading, condensed tape
form. Place in reader, turn on, push READ-I N on the console.

(8)

·3. Ready your program tape in the reader (unless you are going to type your program
in, then have sense switch 5 up). START at 0000. If sense switch 3 is up during
compilation, the input statement is not included in the output as a comment, re­
sulting in a slightly shorter output tape.

4. If your program compiled without any errors load the DECAL compiler.

5. Ready the FORTRAI'-~ compiler output tape, which is a DECAL symbolic tape, In
.. I I I .. I .r. •. rne reaoer ana aepress Tne space oar on Tne Typewriter.

6. If your program compiled without any errors load the HI LINKING LOADER.

7. Ready the DECAL output tape (DL tape) in the reader. If you don't want to type
out system symbols while loading set sw.l up. If you want to origin your program
at 0000 to use all avai lab Ie memory, set sw. 2 up and c lear the Test Word Switches
(all down) START at 6000. After starting put sw.2 down.

8. Ready the symbol tape in the reader for linking the subroutine package. Push CON­
TI NUE on the console.

9. Put sw. 6 up and push C ONT I NUE to store integer constants. If the I etters rq are
typed in red then your program probably requires some of the libetape subroutines.

9a. To read the libetape - Ready tape in reader, put sw.5 up, and push CON­
TI NUE. After the I ibetape is read in then go to step 9 above. If the letters
rq are again typed out, your program must require some subroutine that is not
provided vvith the ::.ystem.

10. After your program has been loaded (and the highest address does not overlap the
subroutine package) then the subroutine package must be loaded. Ready the tape
in the reader and push READ-IN on the console.

Your program is now ready to execute or be punched off. The first time your program
is started the location of the array storage area is typed out. Be sure that the lowest
address of the array area does not overlap the highest address of your program.

The punch off routine" pofmem" punches off a loader and all non-zero words from 4000
through 7777 and 0000 through 3537. The resulting tape, when loaded, is not self
starting.

The punch-off routine occupies 3540 through 3777.

When your program is loaded usjng the output tape of "pofmem", if the Memory Buffer
is a normal hit (760400), you may start your program. However, if the Memory Buffer
is octal 141414, then there was a check-sum error indicating either a punch or reader
error.

XIV. ERRORS

The FORTRAN compi ler checks most of the common errors made in FORTRAN programs.

If an error is found the following is typed out:

erN lineJ
where N is the error type and J is the line number in your program.

(9)

After an error has been found the rest of the program is scanned for further errors,
but the normal output tape is not punched.

A. FORTRAN errors detected by the compiler:

t'~umber

,..,
L

3

4

5

6

7

8

9

10

1 1

12
, '"'
iJ

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Statement too long.
I I I _ _ I _ L _______ L __ _

111~gal cnuracl~l.

Unmatched parentheses or brackets.

Statement number too long (over 6 digits).

Unrecognized statement.

Comma missing after variable name in assigned go to.

"doll loop terminated by a Ildo", II if II , Iistopll, or II go toll .

go to N statement number N is over 6 digits.

Not fixed point variable is assigned go to.

No comma after right parentheses of computed go to.

Canlt find letters "toll of assign statement.

Too many fioating point constants.

"if" statement has i I legal path.

Illegal sense switch number) 7.

Bad II if (sense light)1I statement.

Some unterminated "do ll loops.

Nothing to right of equals sign in arithmetic statement.

"doll terminated previously.

Too many "do" loops.

Index variables name in "do" statement is not an integer variable.

Variable name over 6 characters.

Only one parameter for a "do ll loop (do 123 k=2).

Comma after third parameter of a "do" loop (do 123 k= 1,2,3,4).

Variable name used for "do" loop parameter begins with a digit.

Variable name used for "doll loop parameter is not an integer name.

"do" has been terminated previously.

II format ll has no statement number.

Error in II format ll statement

No carriage return after) in "format" [12 format (a4, (f5.6)) not allowed].

No decimal point in "f" field specification of "format".

Field specification too large (Max. = 63).

(10)

32

33

34

36

37
')0 vU

39

40

41

42

43

No format number i n input/output statement.

Variable name over 6 characters.

Too many undimensioned variables.

"dirnension" has a statement number.

Variable name ends 'vvith letter "f".

Undimensioned variable has a subscript.

Dimensioned variable has no subscript.

Subscripted variable has not been dimensioned.

Too many dimensioned variables.

Parity error in FlO-DEC input paper tape.

Over 10 digits to right or left of decimal point in floating point constant.

Exponent overflow in floating constant routine.

The only time a variable name is checked to see if it is too long, (ends with letter "f", etc.),
is when it is being defined. Fortran variables are defined by being on the left side of an
equals symbol, in a "dimension", in an input list, or in an "assign" statement.

Error type 26 and error type 18 above appear to be the same, however, they indicate different
errors.

Error 18 Examp Ie:

200

do 200 k=l, 300
do 200 j= 1,34
continue

c do loop 200 has been satisfied.

Error 26 Example:

100

do 200 k= 1 ,50

do 1 00 k= 1, 1 00
continue

Error 18 - a do loop that is being defined by a 'Ido"
statement has already been terminated.

c do loop 100 has been terminated.

100 a=b-c Error 26 - Terminating statement number of a Ildc'·
loop has been found previously.

Errors 37 and 39 appear to be the same, however, they i nd icate di fferent errors.

Example of errors 37, 38, and 39:

dimension 0(100)
b= 57.29578
b(2) =

a=

c(3)=

Error 37 - "b" has a subscript, has not been dimen­
sioned, but has been defined as an unsubscripted
variable.

Error 38 - "a" has no subscript, has been dimensioned.

Error 39 - "c" has a subscript, has not been dimen­
sioned, and has not been defined as an unsubscripted
variable.

(11)

· Duplicate statement numbers are detected during the pass through DECAL.

Other errors or program ha Its:

hit instruction (760400) = divide hait - probably wi II never occur.

Unused instruction 140000 is used to indicate vaiious other troubles. The rightmost octal
digits indicate the type of trouble.

140001 = stop code (13) - no "end" statement.

140002 = overflow set at entry to floati ng constant routine.

140003 = overflow set during processing of previous statement.

140004 = floating divide by zero. Probably will never occur.

Not a II errors are detected during the pass through the FORTRAN compi ler, however, they
wi II usually be detected during the pass through the DECAL compi ler. A common error de­
tected by the DECAL compiler is a name typed out on the DECAL MAP as an lIaps". This
indicates an undefined or improperly defined FORTRAN variable name. The only exception
to this is the name may have been used in a DECAL insert

Consult the DECAL manual for other errors.

Note: The names of dimensioned variables are typed out on the DECAL f'/\AP as being only
one word. That word is not the location of the array I but is a word where the address of the
array v"v i l! be stUI cd.

B. Errors Detected During Execution Of Your Program.

hit instruction (760400) indicates a divide halt.

Unused instruction 140000 is used for other error halts. The rightmost digits indicate the
type of error. To continue after a 140000 instruction the CONTINUE button on the con­
sole must be pushed twice.

140002

140003

140004

140005

140006

140011

140012

140013

140014

140015

FlO-DEC paper tape parity error, the character is in the 10. Put the
correct character in the Test Word switches and push CONTINUE twice.

Illega I format. No recovery.

No carriage return at end of line or format error (paper tape input).

Non-digit character in "i" or "f" field. Resume and char. is used anyway.

Divide halt during "fll format processing. Should never happen.

Index of a "do" loop Z 131 071. Resume and inval id index is used anyvv'ay.

Floating number too large to convert to integer variable. Resume and
trash is used for the integer value.

Not enough room in array storage area. Indicates compi ler error.

Too many subscri pts or out of range. Resume and i nva lid subsc. used
anyway.

Out of bounds of array. Resume and inva I id subsc. used anyway.

(12)

140016

140017

140020

140021

140022

Recursive subscript. Not allowed.

Exponent underflow - no recovery.

Exponent overflow - no recovery.

iisqrtfii has a negative argument. Resume and argument is made positive.

II logf!! or II log 1 Of!! argument.s. zero. No recovery.

The overflow indicator is not checked during execution of FORTRAN programs and is
cleared and used by the floating point interpreter and lido" loop subroutine.

XV. SPEC IAL FEATURES

During execution of a FORTRAN program address 7777 is used for various special switches.

If bit 0 is on, an overbar is typed at the start of every format field.
If bit 1 is on, output field overflow is allowed.
If bit 17 is on, II type" statements are punched instead of typed.

Address 7776 and address 7775 are used for escape characters during input and if the input
character matches either word, the format routine stores the input variable and goes to the
next fie Id.

7776 normally contains octal 77 (carriage return).

7775 normally contains octal 36 (tab).

The output routines for the typewriter and punch use the status bits to try and keep up a
reasonable speed; so if you are going to use DECAL inserts to type or punch, use the fol­
lowing subroutines.

Subroutine typ' will type the character in the right 6 bits of the 10.
Entrance to typ is a isp typ.
Subroutine pcf' wi II punch the right 6 bits of the AC with correct parity.
Entrance to pcf is a ida pcf.

The paper tape input, using II read flex", is buffered. Up to 30 characters are read at a
time unless a carriage return or stop code is read.

If stop code is read, the subroutine goes into a one-word loop at system symbol eof'. If
you wish to provide for stop codes in you program, deposit an address in eof.

Example:
~ law st 100; dap eof

If a stop code is read, the program transfers to statement 100. If you are going to use
system symbol eof; at the start of your program -KIss eof.

XVI. DECAL INSERTS

Some of the features of DECAL have been expunged, however, they may be put back in
for use with DECAL inserts. They were expunged merely to give more room on the symbol
table.

(13)

A DECAL insert begins with a right arrow -+ .
A line beginning with -t is copied directly into the output.

The proaram is alwavs in fixed-ooint mode at the start of DECAL insert and if the insert
uses 'llef~ 2 11

, be su(e and give ~n ii Ifmii before resuming with FORTRAN statements.

The FORTRAN compiler uses block symbols for some "do" and "format" symbols and they
are expunged whenever possibie so DECAL inserts should not use block symbols.

FORTRAN or DECAL symbols (variable names) should not be any of the following:

I. May not be the same as any symbol on the DECAL symbol table.

2. May not be the same as any of the FORTRAN statement types; such as II if", II end", etc.

3. May not be of the form "stN' where N is a decimal number.

4. May not be of the form IcN" where N is a decimal number.

(14)

The following is a listing of the tape used to modify DECAL for the

FORTRAN sys tern.

.
xsy

fortranize decal
18 l\'1a.y 65

- dig

xsy abs
absf dig

iabsf esy absf

xsy / x
x dig

/ dig

xsy mpj:~ dvd
mpy dig

dvd esy mpy

sinf dig

cosf
sqrtf
atanf
acosf
asinf
logf
logi0r
expf

xsy nop
nap

h~D' 1,,7 ryn1 ",,",co 1
--0 ""~,

fde 1st; cma en

beg Iv7 op1 rs1
fde; spa
fde 1st; cma

beg Iv6 op2 rsi cmt
jda fsy; bci.imp.

end

lac 21st end
beg Iv6 op2 rsi
jda fsy; bci.idv.
lac 2
fde 1st; hIt

beg Iv7 opi rsi nlc
jda ths

end

lac 1 1st end

beg Iv7 op1 rs1
jsp ths 1st end
esy sinf
esy sinf
esy s1nf
esy sinf
esy s1nf
esy s1nf
esy s1nf
esy sinf

ewd 760000

(15)

xsy op1 op2 op3 rs1 cmt ctr ths fsy 1st mns MC
xsy nlc IvO Iv1 Iv2 Iv3 Iv4 Iv5 Iv6 Iv7
xsy dip iot opr skp usk cal lap mus dis
xsy fde fct dpy rrb srb reb env e8m Ism
v rJ .. r n'het msm rowe YYO ,.. ,.... r-ek cae cks eern lem -IJ,J "".., ... uu.·"" lU""U

xsy mcs chn mec
xsy isd iso asd aso asc dsc isb bac bpc bio bjm dal
xsy Iss <= =>1
xsy goto = ~ ~ < < > > +
y~V sin cos atn sqrt In 1,....0- OVT\ OVT\"'I"" '" ---oJ c --"''''' ,tJ -- ... "",tJ I

xsy if then else clear set for stepu stepd until while
xsy do lar ina arrase array realarray
xsy V 1\ xor
xsy procedure tmp ppa rpa tyi tyo dig •

fix fin.

DECAL permanent symbol table (modified version)
add 400000; and 020000; dac 240000; dap 260000; dio 320000
idx 440000; ior 040000; isp 460000; jmp 600000; jsp 620000
lac 200000; law 700000; lio 220000; sad 500000; sas 520000
sub 420000; sma 640400; spa 640200; spi 642000; sza 640100
szf 640000; szo 641000; cIa 7c0200; clf 760000; cli 764000
CIT'a 761000;, 1 .f- 7 t: n :, "r .• , - +- 762200; xct 100000; dzm 340000 l.l.J... IJ (UV""tVV, .La. v

jda 170nOO; cIa 651600; mul 540000; div 560000; nop 760000
000000; lac 000000; stf 7b0010; ppb 720006; rpb 720002

action operators:
fin stp dao fix • • ewd esy . . .

dss ral rar rcl rcr ril rir sal
sar scI scr sil sir szs oct dec poi
noi ndi pdi AC (bci str org efm
lfm xsy blk lYe xss odv oda opt [

instruction generators:
• beg end =':> ~ = + x
L adr I

) , tpo ,] absf iabsf
x / mpy dvd sinf cosf sqrtf atanf acosf asinf
loC f log10f expf

None of the above symbols may be used for variable names.
The instruction generators and action operators that have been expunged
may be put back in if needed; however some of them take quite a bit
of storage in DECAL so there will not be room for many statement numbers
or variable names in the DECAL symbol table during compilation of FORTRAN
programs.

c
c
c

c

sample program
type in up to 100 numbers
put numbers in ascending or descending order
(according to sw.2)
type out ordered numbers
dimension a(100)

(16)

c
1
2

3

10
c

20

50
100

110
115
140

150

160

200
c

Listing of the

clear array a
do 2 j=1,100
a(j)= 0.0

type 3
format (//5hinput)

do 20 j=1,100
_____ .L. ""'" _1 .. \
GLI,;I,;t::1Jv .LU,GL\J<

format (f10.5)
parentheses and brackets may be used interchangeably
if [a(j)] 20,50,20
continue

do 150 m= 1,j
do 150 k= m,j
if ~sense switch 3) 115,110
if a[m]-a[k]) 150,150,140
if a(k)-a(m}} 150,150,140
temr = a(m}
a(m = a(k)
a(k = temp
go to 100
continue

type 160,j
format (1hj,i4/8h ordered)
do 200 k=1,J
type 10,a(k)
spaces and tabs may be used freely
got 0 1
end

output tape (ns tape which is read by DECAL)

dss rdf wrf tif tof xf ff dff eff dof f1f f2f f3f r4r f5f f6f
fdf eff arf ilf i2f

mainprog 1 lac laf
jda arf

c sample program
• •• c type in up to 100 numbers

put numbers in ascending or descending order
~-(accord1ng to sW.2)

c

••• c type out ordered numbers
••• dimensiona(100)
jsp i2f
a: .

• •• c
••• 1do2j=1,100
st1: •
st2n1s:

lac a[100J

clear array a

pdi 1
dac j

(17)

st2n1:
• •• 2a (j) =0.0
st2: :

blk

••• type3

jrnp -++3
dec 100
• .1

efm 2
c1=)a[jJ
law st2n1
Jaa dof
lac st2n1s

law st3+1
jda tof
nop

••• 3format (//Shinput)
st3:. jrnp st3a

• .210000
• .210000
• .700005
• .714s47
• .242376

st3a: nap
blk

~~---.! -~ :1-,--
••• QUC:VJ=J..,J..UU

st20n1s:

st20n1:
••• accept10,a(j)

••• 10farmat (f10.S)

pdi 1
dac j
jrnp -++3
dec 100
• .1

law st10+1
jda tif
dac a[jJ
nop

st10:. jrnp st10a
•• 66120S

st10a: nop
••• c parentheses and brackets may be used interchangeably

if(a(j))20,50,20
efrn 2
a[jJ=)strf
Ifrn
lac strf
spa
jrnp st20
sza I
jrnp st50

(18)

••• 20contlnue
s t20: •

'h l1r .., ,,"-

· . . 50do150m=i,j
s t50: •
st150n1s:

st150nl:
••• 100do150k=m,j
st100: •
st150n2s:

law st20nl
jda dof
lac st20nis

pdi i
dac m
lac j
dac st150nl-1
jmp -++3

.. 1

lac m
dac k
lac j
dac st150n2-l
jmp -++3 . .

st150n2: •• 1
if(senseswltch3)115,110

szs 3
Jmp st115

••• 11oif(a(m)-a(k))150,150,1.40
stll0:. efm 2

a[m]-a[k]=)strf
lfm
lac strf
spa
jmp st150
sza'
jmp st150

115if(a(k)-a(m))150,150,140 · . .
s tl15: •

••. l4otemp=a(m)
s t14o: .

· . .
· ..
· ..

a(m)=a(k)

a(k)=temp

goto100

jmp st140
efm 2
a[k]-a[m]=)strf
lfm
lac strf
spa
jmp st150
sza I
jmp st150

efm 2
a[m]=)temp

a[k]=)a[m]

temp=)a[k]

Ifm
jmp stl00

(19)

••• 150contlnue
st150: •

blk

· . . type160,j

law st150n2
jda dor .
lac st150n2s
law st150n1
jda dof
lac st150n1s

law st160+1
jda tor
lac j
no!>

••• 160format (1hj,i4/8h ordered)
st160:. jmp st160a

•• 700001
• .417676
•• 710400
•• 210000
•• 700010
• .004651
• .646551
• .656476

s t160a: nop
blk
••• do200k=1,j

st200n1s:

st200n1:
••• 200type10,a(k)
s t200: •

blk
· .. · ..
· . .

c
gato1

end
s trf: •
laf: •
blk
j:.
m: •
k: •
temp: •

c1: •
fin.

pdi 1
dac k
lac j
dac st200n1-1
jmp -++3
· .
• .1

law st10+1
jda tof
lac ark J
nap
law st200n1
jda dar
lac st200n1s

spaces and tabs may be used freely

jmp st1

• .. , ..
dec 201

• • · .
• •

• .. , ..
oct 0; oct 0

(20)

Normally the DS tape need not be listed; however if you have errors and
can't find them by examining the FORTRAN coding it may be useful to have
a listing of the DS tape.

Following is the Decal Map produced by DECAL after compilat1on

Decal Map

ssd

ma.inprog

ps

a
sti
st2
st3
st10
st20
st50
stiOO
stl1C
stl15
st14c
st150
st160
st200
strf
laf
j
m
k
temp
cl

fin

0000

0003
0004
0011
0022
0042
0056
0061
0070
0101
0114
0126
0137
0151
0172
0202
0204
0205
0206
0207
0210
0212

0300

(a pointer to the array "a")
(location of statement number 1)

(temporary storage used by "if" statements)
(contains size of array area)

(floating point constant)

(21)

	001
	002
	003
	004
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21

