
AMP

PROGRAMMING MANUAL

Theodore strollo
Air Force Cambridge Research Laboratories (CREI)

L. G. Hanscom Field
Bedf'ord, Mass.

ACKNOWLEDGEMENT

I wish to thank Mr. Richard Bayles for his listing of BtU Fap.

Many of the ideas fronl which "AMP" developed are those of the peopLe at

Bell Laboratories who produced Bell Macro-Fap. My sincere appreciation

is ,.t'xtended to Mr. Charles Garnlan who patiently guided the deveLopnlent

of "AMP" and nlade nlany suggestions about its fornlat r and to Mr.

Charlton M. Walter of the Air Force Cambridge Research Laboratories

for making available tinle on the Experinlental Dynamic Processor (DX-l)

for the realization of AMP.

Ted Strollo

FOREWORD

In March of 1963 work wa~; initiated at AFCRL on a new program~
1

ming systeITl for the DX-l (Experimental DynaITlic Processor). The
2

system is named "ASYS" and consists of

1 .

2,

3.

A control monitor and relocating linking loader
2

An assembler ("AMP")

A compiler (IIAIDEXII2)

The system I s basic purpos e is to provide flexible, easii y us ed programming

languages with good error diagnostic communication bttween the languages

and users. Many of the features available in these languages represent the

latest state of the art in assembler and cOITlpiler technology. This manuat

will describe the usage of the assembler "AMP".

1. A hardware configuration consisting of:
~ PDP~lls

6 Magnetic Tape Units with 2 Type "5:2" controls
2 Extra Core MeITlories

Color, precisi.on, and fl.icker-free black and white scopes
magnetic drum storage
A -D converter

2, The names originate from the compiler name
Aidex - Algori.thm Interpreter for the Dynamic EXperimentaL

- Processor Group -
Amp - Aidex Machine-language Programming
Asys - Aidex SYStem -

CONTENTS

I. Source Program Forrr.at

II. Relocation and Linkage

III. Pseudo~Ops and Macros

IV. Assembly Listings and Error Diagnostics

V. Using AMP on the DX-l Installation

VI. Appendices

I. SOURCE PROGRAM FORMAT

A typical tine of AMP coding consists of two fields:

1. The location field which contains a tag (symbol) by which

other instructions may refer to this instruction.

2. The variable field which contains a symbolic expression

to be decoded and ultimately loaded into core.

The Location Field

The location field begins at the left margin and is terminated by either:

1. An initial tab (which makes the location field nUll)

2. A string of symbol building characters followed by any

symbol delimiter (which places a tag in the location field)

A tag is defined by its appearance in the location field. Some examples

of tag definition follow.

"symbol lac number "

II bet mul = 12 tI

The tag "symbol" is defined as the reference name for the location con­

taining "lac number".

The tag "bet" is defined as the reference name for the Location containing

"mul = 12". Note that initial spaces do not delimit the location field in

the tine defining "bet".

Defined Symbols in Location Field

If a defined opcode, a macro-call, or a pseudo-op name appear in the

location field, AMP will consider the tine to have ~ tag, and the variable

field scan will begin at the left margin. This means that defined opcodes,
1

pseudo-ops, and macro-calls may not be used as tags.

The appearanc e of the same tag in the Location fieLds of multipLe lines

will be considered a multipLe definition 'error. The tag is not redefined;

the definition from the tag's first appearance is retained.

Location Field Format Restrictions.

A tag may not be defined after the first tab on a tine is typed; more

I-A compLete List of these symboLs is presented in Appendices B, C, and D.

than one tag tnay not be defined on the satne line.

e.g.
" -t I sytnbol lac nutnber "

The location field is tertninated by the initial tab, and the string "sytnbol"

will be considered part of the variable field.

II sytnboll sytnbol2 lac nutnber II

'Isytnboli ll will be defined as a tag here but not IIs ytnbol2 11 since

the location field is also terminated by the first sytnbol of the line. The

string Ifsymbol2" will be considered part of the variable field. Of course

tnultiple tags tnay be defined to the satne core location using "equ fl , "set",

or "bs s 0". 1

The location field tnay not be preceded by any sytnbol delitniting

character except II!J. ". The location field is often tnade intentionally blank

by typing an initial tab at the left tnargin.

The Variable Field

The variable field begins after the termination of the location field and

tnay contain expressions using operation codes, sytnbols, tertns with break

characters, nutnbers, literals, qualifiers, and/or comtnents. The variable

field is tertninated by the carriage return. If the location field is present

but the variable field is absent or null, the location field tag is normally

defined and a zero word is assetnbled in the referenced location (one word

of storage is allocated for zero word)

e.g. If

"

sytnbol

symbol

loc II will assetnble the satne as

II

Operation Codes

An operation code is a three letter tnnetnonic code for a tnachine

operation which is tabulated in a dictionary with its binary definition. AMP

recognizes all the opcodes and input-output cotntnands useful on the DX-l
Z.

systetn. Since the PDP-l allows the building of sotne instructions with

tnicro-progratntning, AMP will interpret tnore than one opcode in the vari­

able field. If the opcodes build in such a tnanner as to change the first

I-See the section on AMP's pseudo-ops.
2 -See Appendix B

2

five instruction bits, the line will be considered to have an operation code

error.

e.g.
" lac dac b " is an error.

A line need not have an opcode if none is applicable.

e.g. "

"

loc

loc

3 " will assemble the same as II

buffer II will assemble the same as II

Symbols

3 "
buffer

A symbol is a string of alpha-numeric characters, the first of which

is non-numeric, delimited by a break character. Case shifts may occur

before, within, or after a symbol and will, unless redundant or meaning­

less, appear in the symbol table. As a rule of thumb, symbols which

visually appear identical will be considered identical by AMP regardless of

cas e shifts.

"

A symboL may be of any length. Practical limitations mandate some

concern on maximum length. Long symbols are difficult to type, take up

more room in the symbol tabLe, take more time to evaLuate, etc. On the

other hand, long symboLs are generally more descriptive, more readabLe,

etc. Each programmer must develop his own tradeoff feelings about symbol

length. Three-letter symbols are not recommended for use as tags. They

may conflict with defined opcodes and always dictate a search of the opcode

table. Non-three letter symbols escape the opcode table search and often

ta~e less time to evaluate.

Undefined SymboLs in the Variable FieLd

If a symbol appear s in the variable fie ld which is never defined by an

appearance in the location field of a line, the symbol (unless it is declared
1

an external system symbol) is automatically defined to reference the next

available location at the end of the progr'am. This ~ocation is assembled as

a zero word and the program length is inc reased by a count of one.

I-See the Section on Linkage

3

Terms of the Variable Field

A term is the string of characters between a carriage return, spac e,

or tab and the next carriage return, space, or tab. Terms are evaluated

from left to right. Term results are inclusive orld by the evaluation

routine. Spaces and tabs are therefore inclusive-or operators.

n.b.
" lac a "will assemble the same as

" lac I:n~ ~ 6"

" lac
af1

" will assemble differently from

" lac
a +1

"
In the last example, fIatt and " +1" are in separate terms whose

values will be inclusive or'd, not summed.

Break Characters

Break characters are used to denote mathematical operations to be

performed by the evaluation routine on symbols and numbers in each term

of the variable field. A list of break characters and their meanings follows.

Break Character

" 6 " or " I" or ,,~ "

" 1\"

" + "

" "
" x "

" / "

Meaning

Boolean inc lusive - or left and right terms

Boolean and left with right term

Add left and right terms

Subtract right from left term

Multiply left and right terms

Divide left by right term

Special Break Characters

" " (Single quote)

" "

Has a value 10000. (The indirect address

bit), If this character is used in conjunction

with a non-indirectly addressable instruction,

the line is considered to have an indirect

address error,

Has the value of the current instruction
location counter.

4

" = " Initiates a literal.

" " (underscore) Initiates a qualifier.

" " (overbar) References an external system symbol.

Numbers

A number is a string of numeric characters delimited by any non­

numeric character. All numbers are normally interpreted as octal. 1

Special checks are made for minus zero; a minus zero will go into core

when it is specified.

Literals

It is often necessary to reference a core-location which contains a

constant value. One could set aside this location and name it with a tag,

but the more convenient technique is to let the assembler set aside the

location as a literaL Literals are referenced by the appearance of the

= I sign in the variable field. The expression to the right of the equals

sign is the value of the literal. This expression must not contain:

1. Any pseudo-op except bci, oct, rl'ec

2. Any macro names

3. Any external symbols

4. Another = sign

Typical literals are shown below

" lac = 7 " which assembles the same as " lac oct 7"

" ti~ :: bc i. f rr

" sas = dzm first loc + 31 "
Note that c>peration codes and relocatable addresses are allowed in literals.

I-This also applies to numbers used with pseudo-ops. See the modal
pseudo-ops, ".octal" and II decimal"-. Numbers following a rotate
or shift instruction (0-9) are interpreted as decimal and are auto­
matically converted to the proper bit configuration.

5

Qualifiers

A qualifier is a symbol which tells the assembler to qualify the present

mode of assembly. For example, AMP uses qualifiers to change the inter­

pretation of numbers from octal to decimal or vice-versa. The qualifier's

range extends only to the next carriage return or until the next qualifier is

encountered. At the carriage return, the mode of assembly is reset to the

mode before the first qualifier in the line was encountered. Qualifiers are

initiated by the " " (underscore character).

In the pres ent version of AMP only two-types of qualifiers ar e available:

the number qualifiers and the "iff" created symbol qualifier (see the section

on the "iff" pseudo-op).

Number Qualifiers

" D "in the variable field tells AMP to interpret all numbers in the

range of the qualifier as decimal numbers regardless of the mode of number

interpr etati on.

" 0 If in the variable field tells AMP to interpret all numbers in the

range of the qualifier as oc~al numbers regardless of the mode of number

interpretation.

" bss D 100 "
II jmp -t + D9 "

Comments

A comment is initiated by the sequence fl ••• " in either field. Comments

may be used anywhere in an AMP source program. A line which contains

nothing but either spaces and/or tabs and/or a comment is treated as a null

Line by the as sembler. All characters in a comment are completely ignored.

The carriage return terminates the comment.

II. RELOCATION AND LINKAGE

All AM.P programs are nominally given a load origin of memory cell 0

(unless "org" is used. 1) Obviously all of the subprograms loaded by the

·1- See "org" pseudo-op

6

1
ASYS loader in a given job could not be loaded starting in cell zero ; they

would overlap each other. Therefore, the programs are relocated such that

the next program loaded begins where the last loaded program ends. Nor­

mally instructions referencing tags must have their address bits relocated

since the referenced location has been relocated. Therefore, the assembler

must transmit relocation information to the loader. This relocation infor-

mation is called the relocation value.

Determining Relocation Value

AMP considers only two values of relocation correct; these values are

relocation 0 and relocation + 1. The relocation value of a tag is + 1. The

relocation value of a number or opc ode is O. To compute the relocation

value of a line, replace all the tags by the value + 1 and all the numbers and

opc odes by 0 then perform the operations indicated by the break character s.

e. g.
"a" and "b" are tags

" lac a + 1

o 1 + 0

o 1

1 relocation value

" law a - b "

o 1 - 1

o 0

o relocation value

The Boolean-and, inclusive-or, multiplication, or division of two re­

locatable elements is considered a relocation error.

Linkage

Programming systems are generally a collection of smaller programs

called by a main program. These smaller programs are separately

assembled and debugged. It must be possible for all of these programs to

communicate with one another even though they have not been assembled

l-Normally the loader performs an initial relocation to cell 100

7

together. Therefore, the loader must be capable of linking programs as

it loads them into core.

ASYS links programs by permitting the assignment of any memory cell

as a communication cell. A cell is assigned a communication cell by tagging

it with a system symbol.

e.g.
In program 1

"table' oct 5005 "

"system 1 lac + 2 It

The tags IIsystem" and "table" are assigned as internal. system symbols

(tlentry" IS) by the appearance of the" I " (single quote) delimiter. 1 The

locations represented by the tags may now be referenced by external pro~

grams. The external program must indicate to the loader that it needs

linkage to these communication cells by declaring the communication cel.l

tags as external system symbols ("externsl' IS).

e.g.
In program 2

" law table II

" jmp system II

The symbols "table" and "system" are dec~ared external to program Z

by the appearanc e of the "
2

II anywhere in the syn1bol. The overbar

itself will not appear in the symbol table. It is only necessary to declare a

particular name external once per program. All uses of that name wilt then

be considered references to the external name.

Linkage Restrictions

It is considered an error to declare the same name both an external

and internal system symbol in the same program. The first declaration of

the symbol name is retained.

AMP will not permit the us e of addr ess arithmetic on an external.

I-See also the "entry" pseudo-op
2-See also the "extern" pseudo-op

8

system symbol

II jmp symbol + 3"

The address arithmetic is considered an error and will be stripped from

the assembled word.

III. PSEUDO-OPS

A number of pseudo-operations (assembler as opposed to machine

operations) have been provided to control the assembly process. They are
\

c las sified as:

1. The linkage pseudo-ops "entry, extern"

2. The storage allocating and assignment pseudo-ops "bss, org"

3. The data generating pseudo-ops "oct, dec, bci, str"

4. The number interpretation modal pseudo ... ops "octal, decimal"

5. The assembly control pseudo-ops "dup, end"

6. The defining pseudo-ops "equ, set, xsy, macro, xmacro"

7. The macro control pseudo-ops "iff, irpll'

8. The assembly listing pseudo-ops (discussed in Section IV)

A pseudo-op must be used in either the location field or as the first

syrnbol in the variable field to be properly recognized. Only one pseudo­

op per line is allowed.

Argument Lists

Many of the pseudo-ops expect a list of parameters or arguments. The

format of such a list is:

1. The list begins after the pseudo-opls break character and ends at

the next carriage return. The initiation of a comment (by If ••• If)

terminates the list.

2. Argument names are separated by any break characters; multiple

break characters (such as multiple spaces) are ignored.

3. The list may have any number of arguments.

1. The linkage pseudo-ops

" entry"

9

The "entry" pseudo-op inserts each name from the argument list into

the symbol table, and when each name is subsequently encountered in the

location field, the name is defined as an internal system symbol - a program

entry. The lIentryti pseudo-op is useful because one can tell from a glance

at the entry list which internal system symbols are defined by the program.

Symbols defined by "entry" would be identically defined by using the II "
(single quote) delimiter on the name at its appearance in the location field.

Symbols appearing in the "entry" list, but not subsequently in the

location field are not defined as entries. The "entry" pseudo-op may be

used anywhere in the program. A typical technique is to put the entry list

very near the beginning of the program before any instruction lines will be

encountered.

e.g.
" amp floating

entry

"extern't

point

fadd"

add

The 'exterrl'pseudo-op inserts each name from the argument list into

the symbol table, and when each name is encountered in the variable field

of an instruction, the name is defined as an external system symbol. The

"extern" pseudo-op is also useful because one can tell from a gtance at the

extern list which external system symbols are defined by the program.

Symbols defined by "extern" would be identically defined by using the II

(overbar) anywhere in the symbol at its appearance in the variable field.

"

Symbols appearing in the "extern" list which never appear in the vari­

able field of any instruction lines are not defined as externs. If the same

symbol appears twice or more in an extern list, only the first appearance

is entered in the symbol table. The "extern" pseudo-op may be used any­

where in the program. A typical technique is to put the "extern" list near

the beginning of the program.

10

e.g. II amp subroutine

entry tradeoff

extern order J

tradeoff

crlmat

matpos, matptr "

2. The storage allocating and assignment pseudo-ops

"bss"

It is often necessary to reserve a block of storage for an array or in­

put-output buffer. The pseudo-op bss will set aside a block of storage by

advancing the loader's program origin and the assembler's instruction

location counter by the amount expressed in the field to the right of the

"OOS". The storage area is merely reserved and not zeroed.

A symbol used in the location field of the "bss" pseudo-op is defined

before the assembler's instruction location counter is advanced. ("bss" is

an acronym for E,lock ~tarted by !ymbol)

e. g. "buffer A bss 100"

The tag "buffer A" is defined to referenc e the first location of the

storage area.

The "bss" pseudo-op may be used with a zero count.

"A bss 0

be bss 0

done 1 II

The statement, "bs sIt 0", is useful for equating the definition of

tags. Tags tlA", "bell, and "done" will all reference the location containing

the 1.

The expression following "bss" must have relocation value 0 (an abso­

lute expression). Tags may be referenced in the bss pseudo-op as long as

the net relocation values is O. No external system symbols, macro-calls,

or other pseudo-ops may appear in the expression following "bss". Tags

used in the variable field must be previously defined or AMP will consider

the use of the tag a phase error.

11

e.g.

The following "bss" has a phase error

"q loc

symboltable bss b - q + 1

bloc II

The following "bss" is properly used

If q loc

bloc

symboltable bss b - q + 1 ••

When AMP finds a phase error or a relocation error in a "bss ll , the

"bss" is assembled as a IIbss 011 (i. e., no storage is allocated) but the tag

(if present) in the location field is defined in the normal manner.

"org"

Since the sequence break channels of the PDP-l use locations 0-77,

the ASYS loader will normally load the first assembled program starting at

location 100, and subsequent programs will be loaded sequentially. At

times it is important to put a particular program in specific area of core.

The "orgll pseudo-op allows the programmer to set the origin of his program

absolutely. It may be used anywhere in the program. Typically "org" is

used near the beginning of the program.

The "orgll pseudo-op may be used only once in a program. The ex­

pression following the "org" must have relocation value 0, and must not

contain: previously undefined tags, externs, macro-calls, or pseudo-ops.

3. The data generating pseudo-ops

"oct" and IIdec"

The "oct" and "dec ll pseudo-ops assemble each number in the para­

:meter List in a sequential core location. The numbers may contain sign

12

information (II + " or II - II) and must be separated by commas. If a tag

is used in the location field, it is defined to reference the first number of

the list. After "oct" numbers are considered octal to the carriage return;

after "dec" numbers are considered decimal to the carriage return.

e. g.
"na me oc t 1, 2 J - 0 I 7 J + 6 J 1 7 "

..
"

oct

dec

77 fI

-10, 3, -4, 91

bci and str

fI

1
"bci" and "str" pack the BCD character s following the break character I

three to a word left justified until the next normal" • " (this termi­

nating period is not packed) appears in the string. As soon as one word is

filled, packing resumes using the next sequential word. The ", " (comma)

has a special meaning with these pseudo-ops. The comma means pack the

next character regardless of what it is; then resume normal packing. The

comma can be used to put the BCD code for

typing

" " . in the packed word by

", ." for each period desired in the packing

The comma will appear in the packing only by typing

", , " for each comma desired in the packing

Carriage returns may be used in the string and will be packed.

When the normal delimiting period is encountered, "bci" fills the

remaining partially packed word with octal "76's" unless the last word is

full then it does no more packing. On the delimiting period, flstr" fills the

remaining word with octal "13 I s ll , and, if the last word is full, it will

generate a new word with three 13's (packed).

If a tag is used in the location field, it is defined to reference the first

packed word generated by the string. The characters between the termi­

nating period and the carriage return are ignored.

" bcL error gon
tJ

"string s tr. N ow is the time, ••• "
1 - A " . " will delimit "bc i" and "str" as well as normal AMP break

characters.
13

4. The number interpretation modal pseudo-ops

II octa l II

The "octal"pseudo-op sets the mode of assembly to octal. All numbers

will then be interpreted as octal unless the numbers are qualified by .E. '
appear in the "dec" p seudo-op field, follow a rotate or shift instruction,

or appear in the argument field of a IIdup" pseudo-opt The normal mode of

assembly is octal.

decimal

The "decimal" pseudo-op sets the mode of assembly to decimal. All

numbers wilt then be interpreted as decimal numbers unless the numbers

are qualified by 9. or appear in the "oct" pseudo-op field.

The "decimal" and "octal" pseudo-ops may be used at any time in an

assembly. They may be used multiple times to switch the mode back and

forth from octal to decimal.

5. The assembly control pseudo-ops

dup ;MN

The "dup'l pseudo-op tells the assembler to consider the next block of

"Mil lines as though it appeared in the source program "N" times. M and

N must be absolute expressions (numbers are interpreted as decimal).

e. g.
"

buffer

dup

oct

1, 39

202020 tf

This will set up a table with 39 (decimal) locations each containing

202020 (octal). The tag will be defined during the first iteration of the dup

and will not be multiply defined during the subsequent iterations. The tag

will reference the first location in the table.

If M or ~ are negative or if M is zero the IIdup" is meaningless and

will be considered an error. A "dup" with N equal to zero is acceptable

and very useful inside macro-expansions (see the sections on "macro",

"iff"). When N equals zero, the dup means ignore the next M lines.

A "dup" may not be used within the range of .another IIdup" unless the

14

iteration count of the inner "dup" is zero.

end

The last statement of the program must be the "end" pseudo-op which

signals pass 1 to call pass 2 and pass 2 to return to the ASYS monitor. If

the "end" statement contains a variable field with a relocatable (relocation

value 1) expression, the ASYS loader will consider the program to be the

main program and will assemble an execution jump
1

to the address speci­

fied by the variable field.

e.g.
" amp adaptive filter design

entry adapt

adapt clf 7

end adapt "
6. The defining pseudo-ops

"eq utI and" set"

The AMP language provides the "equ ll and Iisetft pseudo-ops to enable

the programmer to:

1. expand the opcode dictionary

2. reference a parameter symbolically which is used very

often in the program and may be subject to change.

3. equate the definition of two program tags.

The "equ" and "setft pseudo-ops must have a symbol in the location

field. The expression following equ is the definition of the symbol. This

expression may have relocation values 0 or 1 defining the symbol as abso­

lute or relocatable, respectively.

e.g.
" cad equ iot 1600 ... define Convert A to D II

"datatape equ 1 "

Every time "datatape" is referenced, the octal value 1 replaces the symbol.

It a lac = D 75

b equ a II

-I-The execution jump is described in the ASYS Monitor Manual.

15

The definition of symbol "btl will be the same as the definition of tag

"a", and both will reference the location containing the "lac = D 75 "
If the " " (right arrow) break character is us ed in the variable field

of the "equ· I pseudo-op, the tt " will have the value of the next location

to be as signed by "amp".

e.g.
" a dio input

b equ -1 II

"b" is again equated to "a" in definition.

The pseudo-op tlset" is essentially the sam~ as Itequ" with the impor­

tant exception that symbols defined by "set" may ~e redefined by subsequently

using "s et".

e. g.
"n set zo

n set 31 "

This feature is particularly useful for generating tables in conjunction

with the "dup" pseudo-opo

e. g.
"n set 1

dup 2, 18

n

n set nx2 "
This sequence will generate a table of powers of two from zO to zIt.

The variable field of the "set tt and Hequ" pseudo-ops must contain no

previollsly undefined symbols (phase errors), external system symbols,

macro-calls, pseudo-ops, or literals. The location field of the "equ"

ps eudo - op mu st c ontain an und efined s ymbo l. The location field of the" set"
•

pseudo-op must contain either an undefined symbol or a symbol previously

defined by "s et" •

tlxsy"

The ps eudo-op "xsy" is provided to expunge the definition of a list of

names from the symbol table and allow these names to be redefined. If an

16

undefined name is us ed in the "xsy" list, the name is ignored.

e.g.
" xsy

xsy

fadd,

gon ..
"macro and xmacro"

fmpy, fdvd, float, ifix

Often it is necessary to use the same sequence of instructions at many

places in program. The "macro and xmacro" pseudo-ops are provided to

give a name to this sequence of instructions (called the prototype) and to

allow the sequence to be generated by the appearance of this name (the

macro call) in the program.

e. g. the sequence

"rcl 9

rc l 9"

which exchanges the contents of the accumulator- and input-output register

can be given the name "swap"

"swap macro

rcl 9

rcl 9

end "
So that the subsequent appearance of the name "swap" in the program

will cause the sequence

"rcl 9

rcl 9 " to be generated.

The recurring instruction sequence need not always be identical in

each appearance, but parts of the sequence can be modified by various

parameters. These parameters can be provided by giving the macm-call

an argument list.

e. g. The macro-call

" select 2 "
can generate the seq uenc e

17

law 2

muf

jmp -t _ 1 II

while the macro-call

II select 3

can generate the sequence

" law

muf

jmp

3

By defining the nan1.e "se lect"

-t _ 1

"

"

liS elect macro tapeunit

" law tapeunit

muf

jmp -t -'I

end "
Defining Macros

"

The macro name must appear in the location field of a line whose vari­

able field contains the word "macro" followed by a list of names (which may

be blank) separated by any break characters. The total number of names

in this list is the expected argument count. These names are called the

"dummy arguments" of the macro definition. They are used in the proto­

type wherever the sequence is to be modified by a parameter in the macro­

call. The carriage return or initiation of a comment (by ". ~. ") terminates

the "dummy argument" list. A maximum of 40 (decimal) IIdummy arguments"

is allowed. All of the next lines are considered part of the prototype until

the line containing the "end" statement is encountered. This "end" state­

ment terminates the prototype (not the as sembly).

All of the characters in the line containing "end" are ignored in AMP,

(except, of course, for the word Ilend"). This means arbitrary comments

ma.y·~be put anywhere in the macro "end" statement. Typically, the macro

18

name is repeated in the location field to show at a glance the beginning and

end of each macro .definition.

e. g. "zero macro beginning, amount

law beginning

dap + 1

dzm ..
idx 1

sas = dzm beginning + amount

jmp 3

zero end "
subsequent use of "zero buffer, 100 II

produces

II law buffer

dap + 1

dzm ••
idx - 1

sas = dzm buffer + 100

jmp - 3 II

Any programming code Legal in AMP can be used in the macro proto­

type with the exception of the pseudo-op "macro" and the pseudo-op "end".

Macro-calls can be used in the macro prototype to any leveL of nesting

(until push-down storage is exceeded).

Macro Calls

The macro-call is the subsequent use of the macro by the appearance

of its name and an argument list, arguments may contain expressions and

must be separated by commas. A tag may be defined in the Location field

of macro-call; the tag will reference the first location generated by the call.

Created Symbols in Macro Calls

In Long macro definitions it is some times useful to use reference tags

in some location fields of the prototype lines. However, these tag names

19

must be supplied as parameters for the macro-call so that they may be

unique for each macro-call (otherwise the tag would be multiply defined on

multiple calls of the macro name)

e. g. zero could be defined

"zero

c

zero

macro

law

dap

dzm

idx

sas =
jmp

end "

and then zero would be us ed as

a, b, c

a

c

..
c

dzm

c

a + b

"zero

"zero

buffloc, 237, namel "

buffloc 2 . , 100, name2 "

The necessity of creating unique names can become cumbersome for

the programmer; so, if terminal arguments are left off the macro-call,

unique names will be created by AMP's macro-compiler to fill out the

argument list until the expected argument count is reached. The structure

of the created symbols is a". II followed by numeric characters. The

first created symbol is

" .0 "

the next

II 1 II

later

11.127 "

etc.

It is not recommended that programmers use symbols having the form at

". NNN" where the Nls are numbers because these symbols may conflict

with the created symbols generated by AMP.

20

Now zero (as defined on page 20) could be used as

zero first, amount

leaving off the third argument and would assemble as

" law first

dap .210

.210 dzm

idx .210

sas = dzm fir st + amount

jmp .210 "

External system symbols in macros

A macro may reference an external system symbol by putting an " - "

over the symbol in the prototype or using anext,ern list in the prototype.

In some macros, the prototype references, as an external system symbol,

the name of the macro itself. These macros are handled by "xmacro"

e.g.

The macro "gdn" (an acronym for .s.et decimal :r.:..umber input from the

typewriter) calls the external routine IIgdn" and is defined, in its simplest

form, as

IIgdn xmacro

jsp gdn

gdn end "
The rules for defining "xmacro" are the same as those for defining

"mac ro" IS.

If a name has bee:Q, defined as an "xmacro", and that name appears in

the variable field of a line, but is not the first symbol of the variable field:

1. t'he appearance will not be considered a macro-call

2. the name will automatically be considered a reference to an

external system symbol.

Therefore, the appearance of a "jsp gdn "in any line of a pro-

,gram where "gdn" is defined
1

as an "xmacro tl will cause "gdn" to be con-
"
sidered an external system symbol.

1-tlgdn" is a system macro pre-defined in AMP. See Appendix D.

21

Nesting macro-caLLs

A macro ... caLL may generate (from the prototype) another macro-call.

This next macro-call may generate (from its prototype) stiLL more macro­

caLLs. AMP will handle these nestings.

e.g.

A macro "flac" useful for floating point operations might be defined:

"flac

flac

macro

lac

lio

end "

address

address

address + 1

"flac" is used to perform a floating point loading of the accumulator and

input-output register.

A macro "flop" might be defined to call the floating point typewriter

output routine and could use "flac" to load the floating point number to be

typed out.

"flop

flop

xmacro

flac

jda

format

end II

number,

number

flop

format

Note that the IIflop" prototype contains a call to the "flac" macro.

The macro-call

"flop sum, = 5005 'I
would then generate

'I lac sum

lio

jda

= 5005 "

sum + 1

flop

"flop" would be considered an external system symbol (note that the "xmacro"

pseudo-op defines "flop") and "5005" is the code which "flop" will use to

establish the typing format.

22

7. The macro control pseudo-ops

"iff"

AMP provides the capability for conditional assembly of portions of

the macro prototype. Sect ions of the prototype will be assembled or not,

conditioned on the argument list of the individual macro-call.

e.g.

Using the "flop" macro as it was defined in the previous section, some

redundant machine code would some times be generated. Suppose the

number to be typed out were already Loaded into the accumulator and in-out

register. Then it would be us eful if "flop" could c onditionaLl y as semble the

call to the "flac" mac r o.

e.g.
"

"

flop = 5005

should as semble as

jda

=

flop

5005 "

"

The first argument of the "flop" macro-call has been omitted. Note

that this is not a terminal argument of the call and symbols are not created

to fill the omission. However, the missing argument is a null string.
1

In

order to detect this null string the "flop" macro may be defined.

"ft op xmacro number, format

iff 0, number

ftac number

jda flop

format

"flop end "
The "iff" line means: assemble the next line if, and onLy if, it is false that

the argument "number" is a null string.

Specifically if the string is null, the "ftac" call will not be assembled.

If the string is non-null, the "flac" call will be assembled.

I-A string which contains either no characters or just "space" and "tab"
characters.

23

The complete format of "i ff"

"iff truth value, argument, bed string "

The "iff" pseudo-op expects three fields (the third field may be blank).

The truth value is any absolute expression.

A truth value of zero means "false"

A non-zero truth value m:eans "true"

The argument is any of the names appearing in the macro definition dummy

argument list. The bcdstring is any string of characters.

The full meaning of "iff" is: as semble the next line if, and only if, it is
1

true (fals e) that the argument is the sam e character by character as the

bc:dst:r,ir..rg.·,;: .'

e. g. A macro to display a point on any sc~pe might be defined.

"display macro x, y, scope

lac x

tio y

iff 1, scope, bw

dpyl

iff 1, scope, precision

dpp'

iff 1, scope, color

lotI 710

display end "
"display x, y, bw "

would assemble as

" lac x

lio y

dpyl II

"display x, y, color II

would assemble as

" lac x
lio y
lotI 710 II

1 -D epending on the truth value.

24

Third field blank in "iff"

When "iff" is .us ed without the third field, AMP will do conditiona'l

assembly based on whether or not the argument specified is null.

"iff truthvalue, argument" has the meaning:

Assemble the next line if, and only if, it is true (false) that the

argument is null.

The "C" qualifier is useful with "iff" when the third field is absent.

This qualifier tells AMP to determine whether or not the argument was a

created symbol and conditionally assemble on this basis.

The ~ qualifier must appear immediately before the argument name

in the second field of the "iff".

Iliff truthvalue, C argument" means

Assemble the next line if, and only if, it is true (false) that the argu­

ment is a created symbol.

e.g.
"divide macro arg, option

div arg

iff 1, C option

hlt

iff 0, C option

option

divide end "
The divide macro could be used in one of three ways:

1. "divide number"

would a'ssemble as

" div number

hlt "

2. IIdivide number, nop "
would assemble as

I. div number

nop "

25

3. "divide number, jda diverr II

would assemble

div number

jda diverr "
IIdupSll and " m acro· tl s

A macro .. call may appear within the range of a "duptl, and a "dup" may

appear within a macro prototype. A "dup" with a zero iteration count is

very useful in conjunction with conditional assembly in macros.

e. g. A macro to conditionally type an error diagnostic then halt

can be defined.

"error rnacro ac, io, option

iff 1, option, notype

dup 2, 0

li 0 = bc i .. err.

jsp type3chars

Lac ac

Lio io

hlt

error end II

"irp"

It is possible for a macro to iterate a set of instructions within the

prototype an indefinite number of times by using the "irp" (indefinite repeat)

pseudo-ope The number of iterations is determined by the number of sub­

arguments supplied to the macro-call. Sub-arguments are separated by

commas with the entire list of sub-arguments placed between parentheses.

e. g.
" clear macro register

irp register

dzm register

irp

clear end "

26

The "clear" macro will store zero in each register referenced by the

sub-arguments.

clear (a, b, c, d)

wilt as semble:

II dzm a

dzm b

dzm c

dzm d "
both

II clear (a) "
and

" c lear a "

witl as semble:

II dzm a II

The fir st "irp" statement marks the beginning of the repeat range. The

argument name in the variable field of the first "irp" statement determines

which argument conditions the repeat. The second "irp" statement marks

the end of the repeat range and initiates a repeat of the range using a new

sub-argument until all of the sub-arguments are exhausted. If no paren­

theses enclose the repeat conditioning argument, the range witt not be

repeated, and the first argument will be used.

A macro-call nested within the range of an "irp" may itself open a new

Ilirpll range. The macro-compiler strips the outermost pair of parentheses

from the macro argument at each new level of macro-nesting. To transmit

sub-arguments to deeper level macro's, it is. necessary to enclose them in

multiple matching pairs of parentheses. (one additional matching pair/

nesting).

e. g.

A macro named SUBSQ2 to compute
2 2 2 2 2 22 2 2 22 2

(a + b + c + •••) + (d + e + f + •••) + (g + h + i + •••) + •••

27

would be called by:

II SUMSQ2 ((a, b, c) (d, e, f) (g, h, i)) II

and would be defined:

" SUMSQ2 macro arglist2

dzm sum2

irp arglist2

SUMSQl arglist2

dac temp

mul temp

scl 9

scl 8

add sum2

dac sum2

irp

SUMSQ2 end

SUMSQ! macro arglistl '

dzm sum!

irp arglistl

lac arglistl

mul arglistl

scl 9

scl 8

add sum!

dac sum!

irp

SUMSQl end II

An "irp" ps eudo -instruction cannot occ ur explicitly within the range of

an "irpll. The first nested appearance of the "irp" is used to terminate the

range and cannot initiate a new range, The only way to nest "irp" ranges

'with AMP is through nested macro-calls. The "irp" pseudo-op is not

28

defined outside the range of a macro-call.

IV. THE ASSEMBL Y LISTING AND
ERROR DIAGNOSTICS

The optional printed output of the AMP language is called the assen1.bly

listing. It consists of a print out of the input program together with the

octal representation of the binary words produced by AMP and error diag­

nostic s.

Page 3

a

R

A portion of a typical assembly listing appears here;

Initialization and Main Loop Pass - 2

0157 20 0000 115 lac dac a

0160 60 0240 116 jmp xp5

0161 70 0005 117 xp12 law symtab

0162 60 0210 118 jmp extension

119 bss symtab

The left most portion of the page contains th-e error diagnostics in the form

of single, upper case letters which are defined in the error flags discussion.

The next column is the octal value of the assembler's instruction location

counter. The i lc for printouts is started at 0 unless the lIorg" pseudo-op

is used in which case the Hc for printouts is started at the specified origin.

The following column is the octal representation of the assembled word.

Next appears the decimal line count specifying the line number in the source

program. The remainder of the line is the,repeat of the original text asso­

ciated with this line number in the source program.

Generated Lines

Lines which are internally generated by the assembler print with

special formats. A line generated by iterations of a IIdup" pseudo-op

(after the first iteration) will neither index nor print the decimal line count.

A line generated by a n1.acro will neither index nor print the decin1.al line

nUn1.ber but will, in place of the line count, print a decimal number (in the

forn1.at ". aNti where N is a decimal nUn1.ber) which indicates the nesting

level of the macro-call, the nest count begins at ".01 ", lines generated by

a macro-call within a macro-call index the nest count to ".02". Lines

29

generated by a macro-caLL within a macro-caLL which is itself within a macro­

call index the nest count to ".03".

The decimal line count will, because of the special printout rules for

assembLer generated Lines, aLways be the correct line number to associate

with that line of the source program. This feature is very usefuL for editing

tapes with Expensive Typewriter.

Pseudo-ops which Print with Special Formats

Non-Output Pseudo-ops

Entry, extern, org, octal, decimal, macro, xmacro, dup, iff, xsy,

irp, ttl, rem, and eject all print with no listing of the i. l. c. or as sembLed

. word since these pseudo-ops generate no binary output. In addition, all of

the lines of a macro definition, all lines which are null strings, as well as

the line of a macro-call wilL print without the i.L. c. or asselnbled word

again because no binary output is generated in these cases.

Data Generating Pseudo-ops

The data generating pseudo-ops (bci, str, oct, dec) are capable of

generating more than one output word. When this is the case each word and

the new i. l. c. appear on a different line. These additional lines do not

affect the decimal linec ount.

Storage Allocating Pseudo-ops

The "bss" pseudo-op prints the value of the i. l. c. before the bss is

evaluated but does not print an assembled word. In the position of the i. l. c.

column the "end" pseudo-op prints the program length (in octal).

Symbol Defining Pseudo-ops

The n:equ" and "set" pseudo-ops do not print the i.L. c. but in the

assembled word column print the location field symbol definition.

The Assembly Listing Pseudo-ops

"ttl"

Listings are always page numbered, and, if the "ttl" pseudo-op is used

30

a title will appear on the sa:me Line as the page nu:mber. More than one

"ttl" line :may be used in a progra:m. Each new "ttl" line wipes out the old

title and ejects the paper to the top of a new page.

The title itself follows the word "ttl" and its break character then c on­

tinues until the carriage return.

tI ej ectlt

The "eject" pseudo-op causes the asse:mbler to begin printing the re­

m.ainder of the Listing at the top of a new page. As :many "ejects" as desired

:may be used in a program..

re:m

The "re:m" pseudo-op initiates a re:mark, but, unlike, the It ••• fI which

initiates co:m:ments, the word "re:m" will not. appear in the asse:mbly listing.

This pseudo-op is provided to createnffit asse:mbly listings.

ERROR FLAGS

AMP will in al:most all cases atte:mpt to continue the asse:mbly when it

finds syntactical errors. However, when a paper tape parity error is de­

tected or when a table is exceeded. the error is considered fatal. So:me

special checks in AMP have been inserted to detect fatal errors in the

language itself or :machi.ne errors. Fatal errors of any type are very rare,

but when a fatal error occurs, one of three characters is typed on-line, then

the co:mputer co:mes to an irrecoverable halt.

"p" - paper ta.pe parity error

"t" - table size exceeded

"e" - machine error or error in AMP.

When either a "til or an "e" error occurs, record the status of the accu:mu­

lator (which represents the program counter contents where the error was

found) and refer to the asse:mbly listings of AMP itself.

On non-fatals errors AMP will unconditionally type (on-line) the line of

the asse:mbly in question. This line will contain all of the elements of the

assem.bly listing (It is a segm.ent of the assem.bly listing). The one-Letter

31

diagnostics or error flags are described in detail here. They are tabulated

and described briefly in Appendix E.

"K"
"K" means kill the assembly of this line and treat it as a null string.

This flag is always followed by another flag which tells the type of serious

error which caused this line to be killed.

" F"

Field or format error. The format of the line receiving this flag con­

flicts with the basic input format required by the assembler; for example,

the presence of a number (not part of a s.ymbol) in the location field is a

field error. A use of the pseudo-op lIequ" without a preceding symbol in

the location is a format error. The attempt to use two pseudo-ops on the

same line is another format error.

This line contains an extern-intern linkage error. The attempt to de­

clare a name both externaL and internal to the same program is flagged by

"X". The attempt to declare a defined opcode, pseudo-op, or macro-call

as either an extern or entry will be flagged "X".

liP"

The use of the pseudo-ops "equ", "set", 'bss If, or "org" with a pre­

viously undefined name in the variable field will be flagged with "P" meaning

phase error.

An expression whose relocation value differs from 0 or + 1 will be

flagged as a relocation (IIRB) error. In addition, pseudo-ops such as "org"

requiring an absolute expression in the variable field will flag as "R" errors

any value of relocation except O.

An attempt to redefine a previously defined symbol (except the redefini­

tion of a "set symbol" by the "set tl pseudo-op) will be flagged tiM" - multiply

defined symbol.

32

tlLtI

Lines with errors in literals are flagged "L". Such an error would be

the use of a data generating pseudo-op in a literal which threatens to gene­

rate more than one word or the use of a macro-call in a literal.

"Nil

A number which is being interpreted as octal and contains an "8" or "9"

or numbers which would not fit in a PDP-l word size of 18 bits are flagged

with the "Nil flag - number error.

flD"

When attempts are made to nest IIduptt 's, to give the IIdup" a 0 or nega­

tive line count, or to give the "dup" a negative iteration count, the "dup" is

flagged with a liD" or dup-error flag.

"0 If

An illegal qualifier or the illegal use of a qualifier is flagged with a "0".

"A"
.A.ttempts to perform address arithmetic on external system symbols

are flagged with the "A" flag.

When several machine operation codes are included on the line (for

micro-programming), the assembLer performs a compatibility check. If

the operations are not compatible, the assembler presents the "0" flag.

In addition, a rotate or shift command which specifies more than 9 shifts is

flagged as an operation code error.

"I"
An indirect address" • II specified with a non-indirectly addressable

operation code is flagged with an tlpl.

33

FOREWORD TO SECTION V

Section V of the Manual discusses the use of AMP on the DX-l installa­

tion. First, a brief description of the use of the monitor and loader is

presented. This discussion appears in considerably more detailed form in

the write-up on the ASYS-l monitor. The section does, however, refer to

the monitor only in connection with AMP and may clear up some points on

monitoring AMP assemblies. The next section discusses the sense switch

options of AMP which control the symbol table dump and assembLy listing

features.

34

V. USING AMP ON THE
DX-l INSTALLATION

AMP is used on the DX-l in conjunction with the ASYS-l monitor. The

monitor is the fir st r ec ord of the ASYS -1 magnetic s ysterr ... tape. Once the

monitor is read into core 1*, it handles all of the control necessary to

initiate and complete AMP assemblies.

Required Magnetic Tapes

AMP and the AIDEX System require a total of three magnetic tapes.

Two of these tapes are scratch tapes and are available for user scratch

immediately after the assembly and loading operations are completed. The

ASYS-I system tape must be mounted on a transport defined as Unit 1. Two

additional tapes must be mounted and defined as Units 2 and 3. Tape Unit 2

wilL contain the relocatable binary output of AMP. Tape Unit 3 is the inter­

mediate tape for AMP and the monitor 'save l and 'restore' tape. (The

monitor control options are explained in the write-up on the ASYS-l monitor).

Selecting the AMP Language for Assemblies

AMP is most conveniently s elected by placing the line:

... amp (arbitrary text for identification) II II

at the beginning af the s.ource program .. By starting the computer at 12000

(octal) with an AMP progratr in the reader, the monitor will read this first

line and recognize that an AMP program follows. The monitor then reads

in and initiates Pass 1 of AMP from the magnetic system tape. At the com­

pletion of Pass 1 the monitor automatically reads in and initiates Pass 2 of

AMP from the magnetic system tape. At the end of Pa~s 2, AMP returns

control to the monitor which will look for more control statements.

Multiple Assemblies

Additional assemblies are made by repeating the process just described.

A new program is placed in the reader, and the computer is started at

12000 (octal). If more than one program is to be presented on the same

paper tape

*-By using the read in monitor paper tape which is always near the console,
the paper tape must be read into Core O.

35

I, Each program. m.ust be term.inated with a flO-DEC stop code.

2, Sense switch 3 m.ust be up so that AMP (which norm.aLly ejects

paper tape) will stop reading paper tape on flO-DEC stop codes.

Loading the Binary Output Tape

When all the assem.blies have been cOInpleted, the user Inay type ILoad'

on the on-line typewriter. The asseInbled prograIns will be loaded into

core 0 in the order by which they wer·e asseInbled. Constants are auto­

Inatically defined and linked during the loading process. Finally, after the

loading operation is cOInpleted, the user Inust type 'tra address' where

'address' is either an octal nUInber or a systeIn sYInbol referencing the

start of the program.. The Inonitor wili now search the library file (part of

the systeIn tape), if necessary, and then transfer control to the specified

'addres s I,

Sense Switch Control of AMP Printouts

NorInal operation of AMP involves all the sens e switches and all of the

test word switches being off (down). * This procedure will yield:

1. An on-line type-out of the first line of the program. used to select

AMP.

2. No asseInbly listing except for the unconditional asseInbly listing of

error lines on the on- Line typewriter.

3. An on-line typeout of the sYInbol tab Le dUInp.

Assem.bly Listings

The AMP language encourages the use of its asseInbly listing feature

by offering this listing using a variety of input-output Inedia; the listing is

available on:

1. The on-line punch if SS 4 is up for subsequent flexowriter listing.

2. The on-line typewriter if SS 5 is up.

3. A Inagnetic tape for off-line (1401) Listing if SS 6 is up. This 1401

listing feature aSSUInes the availability of yet another Inagnetic tape trans­

port (Unit 4).
*-The use of sense switch 3 is di'scussed under Section V - Multiple AsseInblies

36

All of the Il'ledia Il'lay be used siIl'lultaneously; AMP uses the sequence break

system in its 1-0 routines. However, the listing will be made only as fast

as the top speed of the slowest input-output device being selected. Of course,

the typewriter is slowest, the punch is next, and the "rrag -tape is the fastest.

Indeed, magnetic tape listings add very little time to the overall assembly

time with no listing.

Symbol Table Dumps

When the time required to get an assembly listing is not available, AMP

offers a symbol table dump. This dump consists of a heading for the type

of symbol followed by a tabulation of each symbol of this type and its octal

definition. The headings are:

1. lund' - undefined symbols

2. 'reP - relocatable symbols (relocation value 1)

3. labs 1 - abs olute sYIl'lbols (relocation value 0)

4. 'ent' - entry symbols (internal system symbols)

5. 'ext' - extern symbols (external system symbols)

It is possible to selectively dump only symbols of certain types (1 - 5)

by putting up test word switches.

Bit 1 7 up means dump type 1

Bit 16 up means dump type 2

Bit 15 up Il'leans dump type 3

Bit 14 up means dump type 4

Bit 13 up means duIl'lp type 5

If bits 11 - 17 are all down, all of the symbol types are dumped.

On-line typewriter sYIl'lhol table duIl'lps may be terminated at any time

by putting up SS 1. This results in a return of c9ntrol to the monitor.

When assembly listings are being made on the punch or 1401 mag-tape,

the symbol table dump is automatically printed on these media.

Sense switch 2 is presently unused by AMP.

37

SECTION VI

AMP Programm.ing Manual Appendices

Appendix A

Appendix B

Appendix C

Appendix D

Appendix E

A Brief Description of the Assem.bly Process

A Table of AMP Operation Codes

A Table of AMP Pseudo-Ops

A Table and Description of the AMP System Macros

A Table of AMP Error Flags

38

APPENDIX A

A Brief Description of the Assembly Process

Pass 1

During Pass 1 AMP reads the program from the source paper tape

copying it with auxiliary operational and error diagnostic information on

to the collation or intermediate magnetic tape. Location fiel.d tags are

defined while storage is allocated by Pass 1. Macro definitions are entered

into the symbol table, and macro-calls are expanded. Iterations of dup's

and irp's are completed. Pas s 1 is terminated by the end statement which

rewinds the collation tape and instructs the monitor to read in Pass 2.

Pass 2

During Pass 2 AMP reads the symbolic prograrn frorn the collation

tape, converts syrnbolic to binary, writes the assernbled core words with

relocation inforrnation on the relocatable binary magnetic tape (the punch

tape), and creates the assembly listing (if requested).

Undefined symbols and relocatable constants are assigned to storage

locations at the end of the program. Symbolic and absolute constant linkage

information is written on the punch tape. Pass 2 is terrninated by the end

statement which writes the end of file on the punch tape, back spaces the

punch tape one record (in case additional assernblies or cornpilations follow),

then returns control to the ASYS Monitor.

39

APPENDIX B

Table of AMP Operation Codes

Operations with an * are
unique to the DX-l Installation.

mnemonic code mnemonic code

add 400000 lac 200000
and 020000 lat 762200
asc 72xx51 lap 760300

* bks 720375 law 700000
cac 720053 lem 720074
cal 160000 lio 220000
cbs 720056 loc 000000
eks 720033 lsm 720054
cta 760200 met 720036
clf 760000 mes 720035
eli 764000 mic '720075
eto 651600 mri 720066
cma 761000 mrf 720067
dac 240000 mut 540000
dap 260000 muf 720076
dio 320000 nop 760000
dip 300000 opr 760000
div 560000 ppa 720005
dpp 720407 ppb 720006
dpy 720007 ral 661000
dsc 72xx50 rar 671000
dzm 340000 rel 663000
eem 724074 rcr 673000

* emn 724074 * rew 7?0175

* emf 720074 rit 662000
esm 720055 rir 672000

* fws 721175 rpa 720001

* gwe 721266 rpb 720002

* gwo 721366 rrb 720030
hlt 760400 * rte 721675
idx 440000 * rto 721775
ior 040000 sad 500000
iot 720000 sat 665000
isb 72xx52 sar 675000
isp 460000 sas 520000
jda 170000 set 667000
jrnp 600000 ser 677000
jsp 620000 sft 660000

40

mnemonic code m.nemonic code

sil 666000 sza 640100
sir 676000 szf 640000
skp 640000 szo 641000
sma 640400 tyi 720004
spa 640200 tyo 720003
spi 642000 usk 640600

* sre 721666 * wte 721275

* sro 721766 * wto 721375
stf 760010 xct 100000
sub 420000 xor 060000

41

mnemonic

bci

dec

decimal

end

entry

extern

iff

macro

xmacro

oct

APPENDIX C

Table of AMP Pseudo-ops

brief description

packs bcd character strings into core locations.
Fills the last location with octal 76 1s.

reserves a block of storage locations.

converts decimal numbers to binary words for
core locations.

sets the number interpretation mode to decimal.

repeats the assembly of the next specified number
of lines a specified number of times.

modifies the assembly listing by ejecting the listing
to the top of a new page.

marks the termination of the source input.

defines symbol s as internal system symbols.

makes symbol definitions equal to arbitrary
expressions.

defines symbols as external system symbols.

uses Boolean expressions to condition the assembly
or non-assembly of the next line.

enables the iteration of a group of instructions in
the macro prototype with the number of iterations
dependent on the argument list of the macro-call.

defines a macro name to represent a macro
prototype

same as macro but used where the macro name is
itself the name of an external subroutine called by
the pr ototype.

converts octal numbers to binary words for core
locations.

42

octal

rem

set

str

ttl

sets the number interpretation mode to octal.

sets the origin of a program to an absolute value.

treats the entire line as a null line. The "rem" and
its break character will not appear in the as sembly
listing.

same as equ but allows symbols to be redefined by
subsequent use of set.

same as bci but fills with octal 13' s and will generate
an entire word of 13's (131313) if the last packed word
needs no filler.

titles each page of the assembly listing.

expunges symbol names from the symbol table allowing
the name to be redefined.

43

APPENDIX D

AMP System Macros

The AMP System Macros have been pre-defined and retained in the

AMP symbol table. These macros are available for any AMP assembly

and must be expunged (with the "xsytl pseudo-op) to be redefined. All

operations with an * apply only to the 28 bit mantissa 7 bit exponent

floating point package. 1 Other floating point macros apply to both FPT_18
2

and FPT-28.

Macro Name

*~ '£'abs

(floating absolute)

fi'add

(floating add)

)!c :f'com

(floating complement)

:fco.

J'dac

(floating deposit)

Us e and Description

takes the absolute value of the floating-point
AC-IO leaving this result in the AC-IO. If
fabs is given an argument, this argument will
be the addres s of a floating point number which
wiLL be loaded into the AC -10 at the beginning
of fabs.

caLLs a subroutine which performs a floating
point addition of the AC -10 to the floati.ng
point number whose address is the argument
of fadd.

takes the complement of the floating-point
AC -10 leaving the res ult in the AC -10. If
.fcom is given an argument, this argument
will be the address of a floating point number
which wiLL be loaded into the AC~IO at the
beginning of fabs.

is used by fabs and fcom

performs a deposit of the AC into the address
specified by the argument and a deposit of the
10 into the specified address + 1. This is use­
ful to floating-point deposit the AC-IO.

I-FPT-28 is a floating point package developed by Lt. R. D. SmalLwood 7/63
2-FPT-l'S is the original AFCRL 18 bit mantissa 18 bit exponent floating

point package.

44

,fdvd

(floating divide)

f'lac

(floating load)

i'lip

(floating input)

.f'l oa t

f'loc
(floating location)

,'flop

(floating output)

'fmpy

(fl oating multi pl y)

(floating subtract)

calls a subroutine which performs a floating
point division of the AC-IO by the floating point
number whose address is the argument of fdvd.

performs a loading of the AC from the address
specified by the argument and a loading of the
10 from the specified address + 1. This is use­
ful to floating-point load the AC-IO.

calls a subroutine which converts a typed in
decimal number to a 36 bit (2 word) floating
point number returned in the AC -10. If Clip
is given an argument, there will be a floating
point deposit of the AC-IO into the address
specified by the argument at the end of J'lip •

calls a subroutine which converts the number
in the AC to a floating point number in the AC-
10. If float is given an argument, the accumu­
lator. is lQaded with the conttents pf the address
specll1ed by tFie argument a the begInnIng ot
float.

leaves 2 zeroed-locations in core for floating
point number storage.

calls a subroutine which types out the floating
point number in the AC-IO according to a for­
mat statement whose address is given in the
second argument of the flop macro. If the first
argument of the flop mac ro is non-null, the AC-
10 is loaded with the floating point number whose
address is given by the first argument at the
beginning of flop.

calls a subroutine which performs a floating
point multiplication of the AC-IO by the floating
point number whose address is the argument of
,'f'mpy.

calls a subroutine which performs a floating
point subtraction of the floating point number,
whose addres s is the argument of :f'sub t from
the AC-IO.

45

gdn

(get decimal number)

g~n

(get octal number)

i.fix

(integ er fix)

t{: ..

liwap

;szs

(skip on zero switch)

tdn

(type decimal number)

ton
(type octal number)

tpo

tst

calls a subroutine which converts a typed in
decimal number to binary. If gdn is given an
argument, the contents of the AC at the end of
gdn are stored in the address specified by the
argument.

(same as gdn but for octal numbers)

calls a subroutine which converts the floating
point number in the AC -10 to a fixed point
result in the AC. If ifix is given an argument,
this argument will be the address of a floating
point number which will be loaded into the AC-
10 at the beginning of i:fix.

is used for conditional assembly by fl'abs, fcom,
flip, float, gdn, gon, tdn, ton

exchanges the contents of the AC and 10.

assembles the proper skip command for the
specified switch. The indirect bit may be
specified for the flskip not" command.

calls a subroutine which types the contents of
the AC in decimal.. If tdn is given an argument,
the AC is loaded with the contents of the
address specified by the argument at the
beginning of tdn.

(same as tdn but for octal numbers)

calls a subroutine which types character strings
to the 13 character. The string must immedi­
ately follow the call to tpo.

(same as tpo but the string is remote and its
address must be specified in the argument of
tst) .

46

fabs

address
fabs

fadd

fadd

fcom

address
fcom

fco.

fco.

fdac

fdac

fdvd

fdvd

£lac

£lac

SYSTEM MACRO DEFINITIONS

macro mantissa, address
if. £lac mantis sa
sma
jmp addres s
fco.
bss 0
end

xmacro number
jda fadd
number
end

macro mantissa, address
if. £lac mantis sa
sza l

jmp address
fco.
bss 0
end

macro
cma
swap
xor =0777400
swap
end

macro mantissa
dac mantissa
dio mantis sa+ 1
end

xmacro number
jda fdvd
number
end

mac r 0 manti s sa
Lac mantis sa
Lio mantis sa+l
end

47

flip

flip

float

float

floc

floc

flop

flop

fmpy

fmpy

fsub

fsub

gdn

gdn

gon

gon

ifix

ifix

xmacro m.antissa
jsp flip
if. fdac mantis sa
end

xmacro number
if. lac number
jda float
end

macro
oct 0, 0
end

xmacro mantissa, format
iff 0, mantissa
flac mantissa
jda flop
format
end

xmacro number
jda fmpy
number
end

xmacro number
jda fsub
number
end

xmacro a
jsp gdn
if. dac a
end

xmacro a
jsp gon
if. dac a
end

xmacro mantissa
if. flac mantis sa
jda ifix
end

48

if. macro a
iff 0, Ca
a

if. end

swap macro
rcr 9
rcr 9

swap end

szs macro switch
skp switchxOl01\70 switchl\} 0000

szs end

tdn xmacro number
if. lac number
jda tdn

tdn end

ton xmacro number
if. lac number
jda ton

ton end

tpo xmacro
jsp tpo

tpo end

tst xmacro string
jsp tst
string

tst end

49

Flag

A

D

F

I

K

L

M

N

o
P

Q

R

X

APPENDIX E

Table of AMP Error Flags

Meaning

address arithmetic error

dup or irp error

source program format error

indirect address specification non-normal

the assembly of this line was killed

literal error

multiple definition of the same tag attempted

number error

operation code error

phase error

quaL ifier er ror

relocation error

extern-intern error

50

	001
	002
	003
	004
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50

