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INTRODUCTION

The documents in this collection have been gathered together

and reprinted in order to provide information pertaining to
BLISS-10 not found in the BLISS-10 Reference Manual (DECUS 10-
118, PDM 001-326-002-01). These documents serve three primary
purposes. They provide a general description of the language and
explain some of the basic, rather unique features of BLISS-10.
They provide the background for a number of critical design
choices in the language. Finally, they include examples and
descriptions of some of the support software written for BLISS-10
as an aid to using the language.

The material presented in this document is for information
purposes only. Digital Equipment Corporation makes no
commitment to support any of the software as described herein.

Our thanks go to Professor William A. Wulf, Professor
D. Russell, and Professor A. N. Habermann; also C. Geschke,
J. Apperson, D. Wile and others at Carnegie-Mellon University

through whose efforts the BLISS language was specified and
implemented.
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ABSTRACTS

Wulf, W. A. et. al., "BLISS - A Language for Systems Programming"

This paper discusses the design considerations in
constructing a language especially suited for use in
writing production software systems, e.g., compilers,
loaders, and operating systems, BLISS, a language
implemented at Carnegie-Mellon Unlver51ty for use in
implementing software for the PDP-10, is described to
illustrate the result of these con51derations. Some
comments are made on early experiences using BLISS for
implementing various types of systems.

Geschke, C. et. al., "BLISS Examples"”

This section contains a set of examples which illustrate
the use of Bliss. Each example is intended to be fairly
complete and self contained, and to illustrate one or
more features of the language.

Wulf, W. A., "Programming Without the GOTO"

It has been proposed by Dijkstra and others that the

use of the GOTO statement is a major contributing factor
in programs which are difficult to understand and debug.
This suggestion has met with considerable skepticism

in some circles since GOTO is a control primitive from
which a programmer may synthesize other, more complex,
control structures which may not be available in a given
language. This paper analyzes the nature of control
structures which cannot be easily synthesized from simple
conditional and loop constructs. This analysis is then
used as the basis for the control structures of a’
particular language, BLISS, which does not have a GOTO

statement, The results of two years of experience programming

in BLISS, and hence without GOTO's , are summarized.

Wulf, W. A,, "Why the DOT?"

An explanation of the pointer and contents concepts in
BLISS justifying the semantic meaning of the dot operator .
The current meaning is compared to possible alternative
interpretations.



Wile, D. A. and C. M. Geschke, "Efficient Data Accessing in
the Programming Language BLISS"

The specification of data structure in higher-level
languages is isolated from the related specifications of
data allocation and data type. Structure specification

is claimed to be the definition of the accessing (addressing)
function for items having the structure. Conventional
techniques for data structure isolation in higher-level
languages are examined and are found to suffer from

a lack of clarity and efficiency.

The means by which data structure accessors may be defined
in BLISS, the specification of their association with
named allocated storage, and their automatic invocation

by reference to the named storage only, are discussed.

An example is presented which illustrates their efficient
implementation and their utility for separating the
activities of data structure programming and algorithmic
programming.

Wulf, W. A., "HELP.DOC"

DDT may be used to debug programs written in BLISS;
however, the use of DDT alone requires a fairly detailed
knowledge of the run-time stack and other run-time
characteristics of BLISS programs and is not especially
convenient. In particular, DDT cannot exploit any special
information about the structure of the object program.

A module called "HELP" has been written to augment the
facilities of DDT. This module may be loaded (along with
DDT) with any BLISS program -- although recompilation of
HELP is necessary if the user is not using the standard
BLISS system registers. HELP is written in BL.1SS and
therefore the facilities described below may be called
directly from the user's source program even though

they are primarily intended for use from DDT.

Wulf, W. A., "HELP.BLI"

This is the BLISS-10 source listing for the debugging aid
described in HELP.DOC.

Newcomer, J. M., "TIMER.DOC"

This is the reference document and user manual for a package
written in BLISS-10 which gathers a number of timing
statistics for programs written in BLISS-10.
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BLISS
A LANGUAGE FOR SYSTEMS PROGRAMMING

W. A. Wulf, D. B. Russell, A. N. Habermann
Carnegie-Mellon University™
Pittsburgh, Pa.

ABSTRACT

This paper discusses the design considerations in constructing
a language especially suited for use in writing production soft-~
ware systems, e.g., compilers, loaders, operating systems, etc.
Bliss, a language implemented at Carnegie-Mellon University for
use in implementing software for the PDP-10, is described to

illustrate the result of these considerations.

Some comments

are made on early experiences using Bliss for implementing

various types of systems.

INTRODUCTION

In the fall of 1969 Carnegie-Mellon University
acquired a PDP-10 from Digital Equipment Corporation
to support a research project on computer networks.
This research will involve the production of a sub-
stantial number of large systems programs of the
type which have usually been written in assembly
language. At an early stage of this design effort
it was decided not to use assembly language, but
rather some higher level language. This decision
immediately leads to another question: which lan-
guage! In turn this leads to a consideration of the
characteristics, if any, which are unique to, or at
least exaggerated in, the production and maintenance
of systems programs. The product of these delibera-
tions was a new language which we call Bliss,

We refer to Bliss as an "implementation lan-
guage', IL, although we admit that the term is some-
what ambiguous since, presumably all computer lan-
guages are used to implement something. To us the
phrase connotes a general-purpose, higher-level lan-
guage in which the primary emphasis has been placed
upon a specific application, namely the writing of
large, production software systems for a specific
machine. Special purpose languages, such as compil-~
er-compilers, do not fall into this catagorization,
nor do we necessarily assume that these languages
need be machine-independent. We stress the word
'implementation' in our definition and have not used
words such as 'design' and 'documentation’'. We do
not necessarily expect that an implementation lan-
guage will be an appropriate vehicle for expressing
the design of a large system nor for the exclusive
documentation of that system. Concepts such as
machine-independence, expressing the design and
implementation in the same notation, self-documenta-
tion, and others, are clearly desirable goals and
are criteria by which
However, they are not implicit in our definition of
the term "implementation language'. There are a few
extant examples of languages which fit our defini-
tion: EPL (a PL/I derivative used on MULTICS'),
B5500 Extended AlEol (Burroughs Corporationz),
PL/3603, and BCPL*,

“This work was supported by the Advanced Research
Projects Agency of the Office of the Secretary of
Defense (F-44620-67-C-0058) and is monitored by the
Air Force Office of Scientific Research.

we evaluated various languages.

The various arguments for and against the use
of higher level languages to write systems software
have been discussed at length. We do not intend to
reproduce them here in detail except to note that
the skeptics argue primarily on two grounds: effi-
ciency, and an assertion that the systems programmer
must not allow anything to get between himself and
the machine. The advocates argue on the grounds of
production speed (and cost), maintainability, re-
design and modification, understandability and cor-
rectness., The report of the NATO Conference on
Software Engineering held in Garmish (October, 1968)
contains several discussions on these points, and
the reader 1s urged to read that report.
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It is our opinion that program efficiency,
except possibly for a very small number of very
small code segments, is determined by overall pro-
gram design and not by locally tricky, "bit-picking"
coding practices.

Many, if not all, systems have experienced sub-
stantial performance improvements from redesign or
restructuring resulting from understanding or in-
sight after the system has been running for some
time., This redesign is frequently done by someone
other than the program's original author. This
argues for good documentation - but also for under-
standability of the code itself. Understandability
is a function of many things, not all of which are
inherent in the language in which a program is writ-
ten - a programmer's individual style for example.
Nevertheless, the length of a program text and the
structure imposed upon that text are important fac-
tors and argue strongly for the use of a higher lev-
el language.

Presuming the decision to use an implementation
language, which one should one choose? An argument
might be made for choosing one of the -existing lan-
guages, say Fortran, PL/I, or APL, and possibly ex-
tending it in some way rather than adding to the
tower of Babel by defining yet another new one. We
have chosen to do the latter and some justification
is required. The only valid rationale for creating
a new language is that the existing ones are inap-
propriate to the task. What then are the special
characteristics of systems programs which existing
languages are inappropriate to express? (Later we
shall discuss how these manifest themselves in
Bliss.) The two special characteristics most




frequently mentioned are efficiency and access to
all hardware features of the machine. We add sev-
eral things to these; the resulting list forms the
design objectives of Bliss.

Requirements of Systems Programs
- space/time economy
- access to all relevant hardware features
- object code should not depend upon elab-
orate run-time support

Characteristics of Systems Programming Practice

- control over the representation of data
structures

- flexible range of control structures (no-
tably including recursion, co-routines,
and asynchronous processes)

- modularization of a system into separately
compilable sub-modules

- parameterization, especially conditional
compilation

Overall Good Language Design

- encourage program structuring for under-
standability

- encourage program structuring for debugging

- economy of concepts (involution), general-
ity, flexibility,...

- utility as a design tool

- machine independence

Not all of the goals mentioned above are com-
patible in practice, nor is the order in the above
list accidental. Those found early in the list we
consider to be absolute requirements while those
occurring later in the list may be thought of as
criteria by which alternative designs are judged
once the more demanding requirements are satisfied.

For example, efficiency, access to machine fea-
tures and machine independence are conflicting
goals. In fact the design of Bliss is not machine
independent, although the underlying philosophy and
much of the specific design are. The machine for
which the language was being designed, the PDP-10,
was ever present in the minds of the designers. The
code to be generated for each proposed construct, or
form of a construct, was considered before that con-
struct was included in, or excluded from, the lan-
guage. Thus the characteristics of the target
machine pervade the language in both overt and sub-
tle ways. This is not to say that Bliss could not
be implemented for another machine, it could. It
does say that Bliss is particularly well suited to
implementation on the PDP-10 and that it could
probably not be as efficiently implemented on
another machine. We think of Bliss as a member (the
only one at present) of a class of languages similar
in philosophy and mirroring a similar concern for
the important aspects of systems programming, but
each suited to its own host machine,

As another example of the incompatibility of
these goals, consider the requirement for minimal
run-time support and the use of the implementation
language as a design tool. In some sense a design
tool should be at a higher level than the object
being designed - that is, the tool should relieve
the designer from concern whichever details the
designer deems appropriate only for later considera-
tion. Any language relieves its user from concern
over certain details, even assembly language frees
the coder from the need to make specific address

assigmments. Assembly language is not a good design
tool precisely because the class of such facilities
is finite and narrow, a higher level language is
better because the class is larger and broader.
There is a point, however, beyond which broadening
the class of details which are handled automatically
introduces substantial costs in run-time efficiency
and requisite run-time support. The design of Bliss
walks a very fine line between generality, effici-
ency, and minimal run-time support. At the time of
this writing Bliss programs require run-time support
to the extent of one subroutine consisting of ten
instructions.

DESCRIPTION OF BLISS

Bliss may be characterized as an Algol-PL/I
derivative in the sense that it has a similar expres-
sion format and operator hierarchy, a block struc-
ture with lexically and dynamically local variables,
similar conditional and looping constructs, and
(potentially) recursive procedures. As may be seen
from the two simple examples shown below the general
format of Bliss code is quite Algol-like; however,
the similarity stops shortly beyond this glib com-
parison.

function factorial (n) =
if .n leq 1 then 0 else .n*factorial (.n-1);

function QQsearch (K) =

begin register R,Q,A,E;
E« R« .K7.n; Q+« .Kmod .n; A« .const;
do if .ST[.R] eql .K

then return .R

else (R« .,R+ .A; A« A+ .Q)
until .R eql .E
end;

The first of these examples is the familiar recur-
sive definition of factorial. The second example is
the '"'quadratic quotient" hash search described by

J. Bell in the February, 1970 CACM.

We will now describe the major features of Bliss
in terms of its major aspects: (l) the underlying
storage, (2) control, (3) data structures, and final-
ly mention some other miscellaneous features.

1. Storage

A Bliss program operates with and on a number
of storage "segments'. A storage segment consists
of a fixed and finite number of '"words', each of
which is composed of a fixed and finite number of
"bits'" (36 for the PDP-10). Any contiguous set of
bits within a word is called a "field". Any field
may be 'mamed', the value of a name is called a
"pointer" to that field. In particular, an entire
word is a field and may be named.

In practice a segment generally contains either
program or data, and if the latter, it is generally
integer numbers, floating point numbers, characters,
or pointers to other data. To a Bliss program, how-
ever, a field merely contains a pattern of bits.
Various operations may be applied to fields and bit
patterns such as fetching a bit pattern (value) from
a field, storing a bit pattern into a field, integer
arithmetic, comparison, boolean operations, and so
on. The interpretation placed upon a particular bit
pattern and consequent transformation performed by
an operator is an intrinsic property of that operator
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and not of its operands. That is to say, there is
no 'type' differentation as in Algol.

Segments are introduced into a Bliss program by
declarations, for example:

global g;

own x,y [5], z;

local p [100];

register rl, r2 [3];
function f(a,b) = .at.b;

Each of these declarations introduces one or more
segments and binds the identifiers mentioned (e.g.,
g8, X, y, etc.) to the name of the first word of the
associated segment. (The function declaration also
initializes the segment named 'f' to the appropriate
machine code.)

The segments introduced by these declaratioms
contain one or more words, where the size may be
specified (as in "local p[l00]"), defaulted to one
as in 'global g;'"), or defaulted to whatever length
is necessary for initialization (as in the function
declaration). Explicit size declaration (as in
"local p[l00]") are restricted to expressions whose
value can be determined at compile time so that rum-
time storage management is not required. The iden-
tifiers introduced by a declaration are lexically
local to the block in which the declaration is made
(that is, they obey the usual Algol scope rules)
with one exception - namely, ''global' identifiers
are made available to other, separately compiled
modules. Segments created by own, global, and
function declarations are created only once and are
preserved for the duration of the execution of a
program., Segments created by local and register
declarations are created at the time of block entry
and are preserved only for the duration of the exe-
cution of that block. Register segments differ from
local segments only in that they are allocated from
the machine's array of 16 general purpose (fast)
registers. Re-entry of a block before it is exited
(by recursive function calls, for example) behaves
as in Algol, that is, local and register segments
are dynamically local to each incarnation of the
block.

It is important to notice from the discussion
above that identifiers are bound to names by these
declarations, and that the value of a name is a
pointer. Thus the value of an instance of an iden-
‘tifier, say x, is not the value of the field named
by x, but rather is a pointer to x. This interpre-
tation requires a "contents of'" operator for which
the symbol ".'" has been chosen. (Which explains the
occurrence of this character in the earlier examples.
This will be discussed in much greater detail under
the subject of data structures.) There are two ad-
ditional declarations whose effect is to bind iden-
tifiers to names, but which do not create segments;
examples are:

external s;
bind y2 = y+2, pa = p+.a;

An external declaration binds one or more iden-
tifiers to the names represented by the same name
declared global in another, separately compiled
module. The bind declaration binds one or more
identifiers to the value of an expression at block
entry time. This will be discussed in greater
detail in the section on data structures.

2. Control

Bliss is an "expression language", that is,
every executable construct, including those which
manifest control, is an expression and computes a
value. There are no statements in the sense of
Algol or PL/I. Expressions may be concatenated with
a ";" to form compound expressions, where the value
of a compound expression is that of its last compo-
nent expression. Thus ";" may be thought of as a
dyadic operator whose value is simply that of its
righthand operand. The grouping symbols "begin' and
"end" or "(" and ")" may be used to embrace such a
compound expression and convert it into a simple
expression. A block is merely a special case of
either of these constructions which happens to con-
tain declarations, thus the value of a block is
defined to be the value of its constituent compound
expression.

The assigmment operator, '"«'", is a dyadic oper-
ator whose left operand is interpreted as a pointer
and whose right operand is an uninterpreted bit pat-
tern. The right operand is stored into the field
named by the left operand, the value of the expres-
sion is that of its right operand. Recalling the
interpretation of identifiers and the ".'" operator,
the expression

xe=.x+1

causes the value of the field named by X to be in-
cremented by one. The value of the entire assign-
ment expression is that of the incremented value.
The compound expression

(y = x; 2« ..y+l)

causes a pointer to x to be stored into y, then
computes the value of the field named by x (accessed
indirectly through y) plus one and stores this value
in z; this value is also that of the compound expres-
slon.

There is the usual complement of arithmetic,
logical, and relational operators. Logical opera-
tors operate on all bits of a word; relational oper-
ators yield a value 1 if the relation is satisfied
and a value of 0 otherwise.

We will describe six forms of control expres-
sions: conditional, looping, case-select, function
call, co-routine call, and escape. For this discus-
sion it will be convenient to use the symbol €&, pos-
sibly subscripted, to represent an arbitrary expres-
sion.

The conditional expression is of the form
if € then €, else &
and is defined to have

that the rightmost bit
value of €, otherwise.

the value just in the case
of ‘€, is a 1 and has the
The abbreviated form "if 61

then €. " i8 considered to be identical to "if El
then gg else 0",

There are four basic forms of looping expres-
sions:

while € do ¢
do € while €,



incr <name> from €, to by 63 do €
decr <name> from € to € by € do €

Each form of looping expression implies repeated
execution (possibly zero times) of the expression
denoted € until a specific condition is satisfied.
In the first form the expression (while...do) € is
repeated so long as the rightmost bit of €. remains
1. The second form is similar to the first except
that € is evaluated before €, thus guaranteeing at
least one execution of €. 1e last two forms are
similar to the familiar "step...,until" construct of
Algol, except (l) the control variable is local to
€, (2) 61, » and €, are computed only once (before
entry to the loop), and (3) the direction of the
step is explicitly indicated (increment or decre-
ment). Except for the p0351b111ty of an escape ex-
pression within € (see below) the value of a loop
expression is uniformly taken to be -1.

We shall treat somewhat simplified versions of
the case and select expressions here, these forms

case e of set €5 61, oo} En 15 En tes
select e of n e € € &35 enus €2n € 1 Lesn

The value of a case expression is €_, that is, the
expression e is evaluated and this value is used to
select one of the expressions € (0 < i < n) whose
value, in turn, becomes the value of the entire case
expression. The select expression is somewhat sim-
ilar to the case expression with the distinction
that the value of e is not restricted to the range

0 < e < n. Execution of the select proceeds as fol-
lows: (1) the value of e is computed, (2) the value
of the expressions (0 £ i < n) are evaluated,
(3) for each i such at e = E% the expression

€ i is evaluated. Thus, in fie event that more
thisn one value of i exists such that e = ., each
of these expressions is evaluated; in this“Case the
final value of the select expression is undefined.

A function call expression has the form
6(61’62’...611)

This expression causes activation of the segment
named by € as a subprogram with an initialization of
the formal parameters named in the declaration of the
function to the values of the actual parameters

6 seee,€ o Only call-by-value parameters are allowed;
however, call-by-reference is available since names,
pointer values, may be passed. The value of a
function call is that resulting from execution of

the body of the function. Thus, for example, the
value of the following block is 3628800,

begin
function factorial(n) =
if .n leq 1 then 1 else .n*factorial(.n-1);
factorial(10)
end

Note that a function call need not explicitly name a
function by its associated identifier; all that is
required is that € evaluate to the name of a segment.
Thus expressions such as the following are valid and
useful.

(case.x of set P1;P2;P3 tes)(.z)

Also note that the occurrence of a parameter list

enclosed in brackets triggers a function call., An
identifier by itself merely denotes a pointer to the
named segment; thus in the example above Pl, P2, and
P3 are the names of functions and thus the value of
the case statement is the name of one of these
functions (not the result of executing it). Function
calls with no parameters are written "€( )",

The body of any function may be activated as a
co-routine and/or asynchronous process. An arbitrary
number of distinct incarnation of a single body are
allowed. In order to permit any of several realiza-
tions of co-routine mechanisms only two primitive
operations are provided.

create G(E € ,...,6 ) at 62 length 63 then 64
exch]( )

The effect of the create expression is to create an
independent context (that is, a stack) for the
function named by € with parameters €*,...,€6%. The
stack is set up beginning at the word named by

and is of size €, words (to provide overflow profec-
tion). The actiVation record for the newly created
co-routine is set to the head of the function named
by €. The value of the create expression is a "pro-
cess name" for the new co-routine. Control then
passes on to the expression following the 'create' -
in particular the expression €, is not executed at
this time and the body of € is not activated. When
two or more such contexts have been established,
control may be passed from the currently executing
one to any other by executing an exchange jump,
exchj, expression. An expression "exchj (€ ,66)"
will cause control to pass to the co-routihe named
by €. (the value of an earlier create expression).
The Value €, becomes the value of the exchj opera-
tion which ?ast cause control to pass out of the
co-routine named by ES.

The familiar “goto...label" form of control has
not been included in Bliss. There are two reasons
for this: (1) unrestricted goto's require consider-
able run-time support due to the possibility of
jumping out of functions and/or blocks, and (2) the
authors feel strongly that the general goto, because
of the implied violation of program structure, is a
major contributor to making programs difficult to
understand, modify and debug. There are '"good" and
"bad'" ways to use a goto and there are restrictions
which could be imposed which eliminate the need for
run-time support. Consideration of the nature of
"good'" ways and the restrictions necessary to elim-
inate run-time overhead led us to eliminate the goto
altogether, and to the inclusion of conditional,
looping, and case-select expressions. These alone,
however, are not sufficiently general, or convenient,
and consequently the 'escape' expressions were intro-

duced. There are six forms of escape expressions:
EXITBLOCK € EXITCOND S
EXITCOMPOUND € EXIT €
EXITLOOP € RETURN €

Each form of escape expression causes control to
exit from a specified control enviromment (a block,
a loop, or a conditional expression, for example)
and defines a value (€) for that control expression

(EXIT exits from any form of control expression,
RETURN exits from a function).

Consider a linked list of two word cells, the
first of which contains a link (pointer) to the next
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cell (the last cell has link=0) and -the second of
which contains data. The following expression has a
value which is the pointer to the first negative data
item, or a value of -1 if no such item is found. The
address of the head of the list is contained in a
field called 'head'.

(register t; t « head; while (t «~ .t) neq 0 do if
L(.t4]) 1lss 0 then break .t);

Note that the initialization of t, i.e., 't « head’,
sets the value of 't' to a pointer to 'head', not
the contents of 'head'.

3., Data Structures

One of the outstanding characteristics of sys-
tems programs is their concern with the wide variety
of data structures and schemes for representing
these structures. Observation of what systems pro-
grammers do reveals that a very large fraction (near-
ly 50% in our experience) of their design effort is
spent in designing representations for efficiently
encoding the information they will process, It is
frequently the case that the most difficult task in
making a modification to an existing program is that
of representing the additional new information re-
quired (e.g., the infamous "find another bit" prob-
lem). Consequently the issue of representation was
one of the central design considerations in Bliss.

Two principles were followed in the design of
the data structure facility of Bliss:

- the user must be able to specify the accessing
algorithm for elements of a structure,

- the representational specification and the
specification of algorithms which operate on
the represented information must be separated
in such a way that either can be modified
without affecting the other.

The first principle follows simply from the
fact that non-algorithmic specifications are inade-
quate to express certain important representational
schemes. By a non-algorithmic specification we mean
one which statically specifies the layout of a
structure in terms of primitive structures (words,
fields, etc.), other defined structures, and (pos-
sibly) pointers. By an algorithmic specification we
mean one which, given a set of parameters (indices)
computes a pointer to the appropriate structure ele-
ment. Algorithmic specifications have the advantage
of generality, but some disadvantage of verbosity
for simple structures. This latter type of specifi-
cation will be amply illustrated below.

In order to achieve a language in terms of
which it is possible to write large systems that may
be easily modified, it is imperative that the speci-
fications of the representation of a data structure
be separated from the specification of algorithms
which manipulate data in that structure. This prin-
ciple is severely violated in assembly languages
where, typically, the code to access an element of a
structure, for example, simply a contiguous field of
bits within a word, is coded "in line" at the point
where the element is needed. A comparatively triv-
ial change which alters the size or position of the
field and may require locating and modifying all
references to the field. This simple problem could
be solved by following good coding practice and,
perhaps, by the use of macros; not all changes are

1=5

of such a trivial nature, however.

The concept of a "pointer" to a field (of bits
within a word) was mentioned earlier.: Actually in
Bliss a pointer is a five~tuple consisting of:

(1) a word address, (2) a field position, (3) a
field size, (4) an (index) register name, and (5) an
"indirect address" bit, These five quantities are
encoded in a single word and as such are a manipu-
latable item in the language (a prerequisite of
algorithmic representational specification). For
simplicity we shall discuss only the first three of
these quantities; the reader is referred to the
Bliss reference manual® for more detail, The "word
address', wa, field of a pointer designates the
physical machine address of the word; the 'posi-
tion', p, and 'size', s, designate a field within a
word in terms of the number of bits to the right of
and within the field.

(] ' {
k]

word
"'wa-1"

word
"Wa"

word
Mwa+2"

word
Ywa+1"

The notation used in Bliss to specify a pointer
(taking only the simple wa,p,s case) is "wa<p,s>".

Assume that the declaration
own x[100]

has been made. The identifier x is bound by this
declaration to a pointer to the 36 bit field which
is the first word of this 100 word segment. That
is, the word address of the pointer "x" is that of
the location allocated to the segment and the posi-
tion and size fields have values of zero and thirty-
six respectively. If we denote the address of the
segment by ¢ , then an occurrence of "x" in a Bliss
program is identical to an occurrence of "g <0,36>",
If Eo - €2 are expressions, then the syntactic form

€d<€1’€2>
is by definition a pointer whose word address is the
value of €, (modulo 218) and whose position and size
specifications are the values of € and (modulo
2°) respectively. Thus "X<3,4>" i§ a poifiter to a
four bit field three bits from the right end of a
word named X, The word address, position, and size
information are encoded within a pggnter in such a
way that adding small integers (<2°°) to a pointer
increments the word address only. Thus "X+1" is a
pointer to the word following X.

The definition of a class of structures, that
is, of an accessing algorithm to be associated with
certain specific data structures, is made by a dec-
laration of the form:

structure <name>[<formal parameter list>] = €

Particular names may then be associated with an
accessing algorithm by another declaration

map <name>:<name list>



Consider the following example:

begin
structure ary2[i,j] = (.ary2+(.i-1)*10+(.j-1));
own x[100],y[100],z[100];
map ary2: X,y,z;
x[.a,.b] « .y[.b,.a];

.
.

end;

In this example we introduce a very simple structure,
ary2, for two dimensional (10x10) arrays, declare
three segments with names 'x', 'y', and 'z' bound to
them, and associate the structure class ary2 with
these names. The syntactic forms "x[€ ,€,]" and
"y[€3,€ ]" are valid within this block and denote
evaluation of the accessing algorithm defined by the
structure declaration (with an appropriate substitu-
tion of actual for formal parameters). Within the
expression defining a structure class, the name of
the structure class, ary2 in this case, denotes the
name of the "zeroth" formal parameter - and is re-
placed by the name preceding the "[" at the call
site. Thus, ".ary2" denotes the value of the name
of the particular segment being referenced. In the
example 'x[.a,.b]' is equivalent to:

(x+(.a-1)*10+(.b-1))

The value of this expression is a pointer to the
designated element of the segment.

In the following example the structure facility
and bind declaration have been used to efficiently
encode a matrix product

10
5,57 2 ik
In the inner block the names 'xr' and 'yc' are
bound to pointers to the base of a specified row of
x and column of y respectively. These identifiers
are then associated with structure classes which
allow one-dimensional access.

).

begin

structure ary2[i,j] = (.ary2+(.i-1)*10+(.j-1)),
row[i] = (.row+.i-1),
col[j] = (.col+(.j-1)*10);
x[100],y[100],2[100];
ary2: x,y,z;

CEE

incr i from 1 to 10 do
begin bind xmex[.i,l],zr=z[.i,l];map row:xr,zr;
incr j from 1 to 10 do

begin
register t; bind yc=y[l,.j];map col:yc;
t « 0;
incr k from 1 to do t « .t+.xr[.k]*.yc[.k];
z[.j] « .t;
end;
end;

end

Suppose now that one wishes to alter the repre-
sentation of the structure 'ary2', and access to the
array is to be made through an Ilife vector (or,
"dope'" vector) to define the relative base of each
row. The major change required is to replace the

current structure declaration for "ary2" by

own i1[10]; map row: il;
structure ary2[i,j] = (.ary2+.il[.i-1]+.j-1);

With this representation, the use of a special ac-
cessing algorithm (structure) for accessing columns
becomes

structure col{j] = (.col + .il[.j-1]);
As can be seen, these fairly simple changes to the
program completely changes its representation of the
data. No changes to the processing algorithm are

required.

4, Miscellaneous Features

Finally, we shall now describe two features of
the language which are important to the goal of
parameterization of programs. The first is simply
that constant expressions are evaluated at compile
time. This is a common feature of compilers and not
particularly exciting by itself. Note, however,
that since the value 'l' is interpreted as true, and
'0' as false, expressions such as

if 1 and 1 or O then ... else ... ;

are constant in that only the then part will be
executed, The compiler notes this and does not
emit the code for testing the condition or evaluat-
ing the else part. Similarly, only the third ex-
pression of the following case expression will be
evaluated at execution time, and consequently the
compiler only generates code for that expression.

case -1+2+1 of set €5 SE 62; ... tes;

The second feature is a fairly elementary
string replacement macro capability. A macro name
and its associated text are introduced by a declara-
tion of the form:

ntapes = 3§,
ndrums = 58,
loop(i,n) = imer i from 1 to n do $;

macro

This particular declaration defines three macro
names ('ntapes', 'ndrums', and 'loop') and defines
a text string which is to replace the macro name
(and its parameters, if any) where it (they) is
(are) mentioned in the scope of the declaration.
The end of a text string is delimited by '$', and
may mention formal parameter names - these are re-
placed by actual parameter strings used at the call
site,

One may combine these two features to para-
meterize a system. Consider the following skeletal

code:

begin
macro ntapes = 38§,
ndrums = 58,

descsize = 28§,
cloop(i,n) = if n gtr O then incr i
from 1 to n do $;
own devicedesc [ntapes*ndrums*descsize];

structure devary [i,j] = (.devary + (.i-1)*desec-
size + .j);
map devary: devicedesc;

D

D



The declarations above define a table of device
descriptions for magnetic tapes and drums. The num-
ber of entries for tapes and drums, and the number
of words per description entry are controlled by the
macro definitions 'ntapes', 'ndrums', and 'descsize'.
Suppose the number and size of fields within the
device description for tapes and drums are differ-
ent. The following structure and bind declarations
allow one to access these fields conveniently:

structure tapeary
case (.j-1) of
set
(.tapeary +
(.tapeary +
(.tapeary +
Les;

[i,5]1 =

(.i-1)*descsize)<0,36>;
(.i-1)*descsize)<18,18>;
(.i-1)*descsize)<18,18>;

structure drumary (i,j] =
case (.j-1) of

set
(.drumary + (.i-1)*descsize)<0,36>;
(.drumary + (.i-1l)*descsize+1)<18,18>;
(.drumary + (.i-1)*descsize+1)<17,1>;
(.drumary + (.i-1)*descsize+1)<16,1>;
(.drumary + (.i-1l)*descsize+1)<0,16>;
tes;

bind _—_fapedesc = devicedesc [0,0],

drumdesc = devicedesc [ntapes,0];

map tapeary: tapedesc, drumary: drumdesc;

These declarations make it feasible for the
programmer to refer to 'tapedesc [.i,2]', for
example, as the second field of the description of
the ith tape without regard to the size or location
of that field. The following code uses the constant
expression evaluation feature to selectively include
only relevant code.

global function initialize
begin
cloop(i,ntapes)
begin
% code to initialize tape description goes
hered,
end;
cloop(i,ndrums)
begin
% code to initialize drum descriptions goes
here %
end;
% other initialization code goes here %
end;
if ntapes gtr 0 then
begin :
global function tapehandler

begin
% code for body of tape device handler %
end;
global function tapeopen
begin
% code for special file-open actioms on
magnetic tape %
end;
4 other specialized tape functions declared
here %

end

Since the body of an "if €, then €," expression is
not compiled in the case that the is a constant,
and false, the global functions 'tapehandler', etc.,
are not compiled unless 'ntapes' is greater than
zero. One can imagine more complex expressions,
such as 'if (ndrums gtr 0) or (ndisks gtr 0) then’,

controlling the inclusion of, for example, file-
directory handling code.

EVALUATION AND CONCLUSIONS

As of this writing the Bliss compiler is in its
final stages of completion, and consequently experi-
ence using the language is somewhat limited. To
date only one major project has been undertaken in
Bliss, namely the compiler itself. The language
has evolved as a consequence of this experience, and
we expect it will evolve further as it is used.

In spite of the relative lack of experience in
using the language, it would be very nice to have
some objective measures of the language - measures
of such things as efficiency, appropriateness (to
the systems programming problem), readability, con-
sistency, etc. Such measures are, of course, very
difficult to define objectively. However, we have
attempted to supply some data from which the user
may draw his own conclusions. One of these data
points indicates the quality of code produced by the
Bliss compiler - and is therefore an indirect mea-
sure of the suitability of the language for one
system's programming problem. The second bit of
data is an annoted table comparing features of some
implementation languages.

The measure chosen for code quality of the
Bliss compiler is simply that of code size. Three
sections of the compiler were chosen as a basis for
comparison in an attempt to factor out those things
which (1) are intrinsic to the structure of the
language, (2) are a function of the current optimiza-
tion strategies of the compiler (which can always be
improved), and (3) are a function of a particular
programmer's ''style'". The sections are named IO,
LEXAN, and SYNTAX and are respectively the i/o
interface, lexical analyzer (symbol table routines,
etc.), and syntax analyzer., Of these, IO was orig-
inally written in '"clever" assembly code and later
translated into Bliss, while LEXAN and SYNTAX were
originally written in Bliss and then translated by
hand into assembly code. The translation of LEXAN
was done in such a way as to mirror the functional
structure of the original Bliss code at the sub-
routine level but internally was coded for maximal
efficiency. SYNTAX, on the other hand, was trans-
lated with the aid of a number of general purpose
macros and mirrors exactly the structure of the
original Bliss text. The results are as follows:

approximate [relative size of

size ompiled version
10 50 409 larger
LEXAN 1300 7% larger
SYNTAX 2300 20% smaller

From this small sample one can draw some tentative
conclusions:

1. 1I0 is something like a worst case. It is
small (which tends to exaggerate the over-
head for recursion, etc.) and it was orig-
inally written in assembly code. The pen-
ality in such a case appears to be on the
order of 50%.

Since the hand coding of LEXAN obeys the
subroutine calling conventions of compiled
Bliss programs, but is otherwise coded



fairly tightly - the penality for the current
optimization techniques appears to be on the
order of 10%.

3. The compiler does considerably better than
macro extension of assembly code.

Table I and its associated notes compare certain
features of implementation languages as described by
the most recent documentation available to these
authors, and speaks for itself. Neither the list of
features nor the list of languages is exhaustive;
both reflect the prejudcies of the authors. Numbers
in the lower right corner of entries refer to the
notes following the table.

The comparisons of code size and language fea-
tures given above hopefully provide some insight
into the use of Bliss as an implementation tool;
unfortunately, they do not give absolute measures of
its utility. In particular there seems to be no way
at present to measure the benefits of maintainability
and modifyability - and these are, in the opinion of
the authors, its major advantage.

NOTES ON TABLE I

1. 0f course no language is explicitly designed to
produce large, slow programs. The entries in
this row reflect the extent to which efficiency
was a prime goal and the extent to which con-
cessions were made.

2. Bliss and Espol have limited macro facilities
when compared to most macro assemblers, namely,
simple string replacement (with parameters).
PL/I has extensive macro facilities, but these
are not described as part of EPL,

3. All of the languages listed either have the
ability to embed assembly code or to call machine
language subroutines. The entry relater princi-
pally to the former facility.

4, The entries are coded as follows:

M machine data types
C conceptual data types
op type interpretation is derived from
operator .
V type interpretation is derived from
variables
D type interpretation is derived from data

5, 'na' denotes 'not applicable'.

6. Fortran, Espol and EPL provide no control over
the representation of data structures. Macro,
BCPL, SAL, and PL/360 provide such control; how-
ever the access to elements of structures must
be programmed "in-line".

7. Macro, SAL, and PL/360 permit recursions in the
sense that the programmer may choose to explic-
itly code a recursive calling sequence.

8. The following code are used to denote various
parameter passing options.

V call-by-value
N call-by-name
R call-by-reference

9.

The following codes are used to denote various
control statement forms:

I0 Fortran if-statement

I1 Algol-like "if-then-else"

D Do-statement

F  Algol-like for-statement

C case statement

SF simple-for (corresponds to Algol step-

until case)
while-statement
goto
0 BCPL "switchon', similar to Bliss
"select"

no=x
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/
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SECTION VI

BLISS EXAMPLES

This section contains a set of examples which illustrate the use
of Bliss. Fach example is intended to be fairly complete and self con-
tained, and to illustrate one or more features of the language,

The authors would like to invite others to contribute further ex-
amples for inclusion in this section. New examples will be included
if they clearly illustrate features and/or uses* of the language which

are not already adequately illustrated.
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EXAMPLE 1:

Contributors:

A TT-CALL I/0 PACKAGE

C. Geschke and W, Wulf

The following set of déclarations defines a set of teletype input/

output routines using the PDP-10 monitor TT-call mechanism. The set of

functions is not complete, but adequate to illustrate thc approach.

The declarations below provide the following functions:

INC
ouTC
OUTSA
OUTS
OUT™
CR

LF
NULL
CRLF
TAB
OUTN
OUTD
OUTO
OUTIDR

- OUTOR

Input one character - wait for EOL before returning

Qutput
OQutput
Output
Output
Output
Output
Output
Output
Output
Output
Qutput
Output

Output

one character

ASCIZ-type string beginning at specified address
ASClZ-type string specified as the parameter
multiple copies of a specified character

carriage return

line fe=d

null character

carriage return and line-feed followed by 2 nulls
tab

number in specified base and minimum number of digits
decimal number with at least one digit

octal number with at least one digit

decimal number with at least specified number of digits

Same as OUTDR except octal



MODULE TTIOCSTACK)=BEGIN
—_ MACHOP TTCALL=#51;

MACRO INC= (REGISTER Q3 TTCALL(4,Q)3 .Q)S$,
OUTC(Z)= (REGISTER Q3 Q-~(Z)5 TTCALLC1,Q))%,
OUTSA(Z)= TTCALL(3,2)%,
OUTS(Z)>= OUTSACPLIT ASCIZ 2)$,
OUTM(C,N)= DECR I FROM (N>=1 TO O DO OUTC(C)>S.,
CR= OUTC(#1S5)$, LF= OUTC(#12)%$, NULL= OUTCCO)S,
CRLi= QUTS('?M?2J2020°)8%,
TAB= QUTC(#11)>%3

ROUTINE OUTN(NUM,BASE,REQD)=
BEGIN OWN N»BsRD»T3
ROUTINE XN=

BEGIN LOCAL R3
IF «N EQL O THEN RETURN QUTM("™0'",«RD=-.T)3
ReelN MOD B3 N=eN/eB3 TeeT+15 XNC)3
OUTCC(.R+'"0")

END3

IF «NUM LSS O THEN OUTC("=-'");
B-+BASE; RD~.REQD; T+03 N-ABSC(.NUM)3 XN()

END;
C MACRO OUTD(Z)= OUTNCZ»10,1)S»
OUTO(Z)= OUTNCZs 85138,
OUTDRCZsN)>= OUTNCZ,10,N)$»
OUTORCZ,N)>= OUTN(Z,8,N)$3
' THE PROGRAM BELOW PRINTS A TABLE OF INTEGERSs, THEIR SQUARESs AND

! THEIR CUBES:

OWN N,C3

CRLF; OUTS(C*INPUT AN INTEGER PLEASE e¢¢¢*')3
N~0O3 WHILE (C~INC) GTR "O0' AND «C LSS "9'" DO N=«N*10+(.C-"0");

CRLF3 OUTS('A TABLE OF‘THE SQUARES AND CUBES OF 1-=°)3 OUTD(eN)3
CRLF3 INCR I FROM 1| TO 3 DO (TAB3 OUTSC®* Xt')3 OUTD(.I1))3
CRLF; INCR I FROM 1 TO 3 DO (TAB3 OUTM(*=-",5));
INCR I FROM 1 TO N DO

BEGIN OWN X3

X~+.13 CRLF3

VR DECR J FROM 2 TO O DO (TAB> OUTD(eX); Xe~oeX%kel)
h/) END

END ELUDOM
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Although the example is quite simple, there are several things about

it which should be noted:

1.

The use of a MACHOP declaration and embedded assembly code.

The use of macros to add a level of '"syntactic sugar" and

general cleanliness to the code.

The use of the escape character "?" in the CRLF macro to
obtain control characters (e.g., carriage-return) in strings.
Parenthesization of macro parameters, as in OUTM, to insure
proper hierarchy relations in the expaﬁ;ion.

The use of "DECR-TO-ZERO" in OUTM because it produces better
code than "INCR-TO-EXPRESSION",

The use of own variables and the parameterless procedure XN

in OUTN in order to avoid passing redundant parameters through
the recursive levels of XN,

The fact that the local variable "R" is local to each recursive

level of XN and hence its value is preserved at each level,
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EXAMPLE 2: QUEUE MANAGEMENT MODEL

Contributors: C. Geschke and W, Wulf

This module contains routines to insert and delete items on doubly-
linked queues. In addition it contains space management routines imple-

menting the "Buddy System" (cf: Knuth: Vol., 1),

Buddy System

This is not intended to be a detailed description of the buddy system
model of space management. We will simply give a brief description of
this implementation of the scheme. The vector of allocatable space is
called MEM, Space is allocated and deallocated from MEM by the routines
GET and RELEASE, respectively. The basic unit of allocatable space is an
item, Items are of size 2%*ITEMSIZE where 0 < ITEMSIZE < LOG2MEMSIZE.

The first two words of an item are formatted:’

Y

ITEMSIZE RLINK

<NOT-USED> LLINK

Available items of size N are elements of a doubly linked list whose
header is the two word cell SPACE[N]. The'routines LINK and DELINK are
called to enter and remove items from lists. The routine COLLAPSE is
useéd to compactify two adjacent available items of size 2%#N into an item
of size 2%*(N+1). The COLLAPSE routine i;erateé this process until no

more compactification can take place.
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Queue Model
In this model a queue is defined to be a doubly-linked list suspended

from a header whose first three words are formatted as follows:

HEADERSIZE RLINK
<NOT-USED> LLINK
REMOVE ENTER

The fields REMOVE and ENTER contain the addresses of the routines to
be invoked when removing and entering items on the queue., To enter item X
on queue Q, one simﬁly makes the call ENQ(X,Q). ENQ then invokes the
enter routine in Q's header which returns the address of the item in Q
after which X is to be inserted, In a similar manner one removes the
"next'" item from queue Q bv the call DEQ(Q). DEQ then invokes the remove

.

routine in Q's header to return the‘address of the "next'" item. The ad-
vantage of this scheme is that the queueing discipline is queue specific,
and the same primitives (ENQ and DEQ) may be used independent of the
&iscipline used for that queue. Examples of the enter and remove routines
~ for LIFO, FIFO, and PRIORITY type queues appear at the end of this example

module,




MODULE QMSC(STACK)=

! BUDDY SYSTEM

BEGIN

BIND MEMSIZE=1t123

GLOBAL VECTOR MEM(MEMSIZE];

BIND LOG2MEMSIZE=35-FIRSTONECMEMSIZE)}

STRUCTURE ITEMC1,JsPsSl=
CASE .1 OF

SET
CcITEMY€oPyeS>3
(0. ITEM+4J)<ePse S>3
(00:. ITEM+e J)<CeProeS>3
C@COITEM+1)4eJ)<ePreS>

TESS

STRUCTURE VECTOR2(1I]=
[2%11Ce VECTOR2+2%1)<0,36>3

MACRO BASE=0,05,0,18%,
RLINK=1,0,0,18%,
LLINK=1,1,0,188%,
ITEMSIZE=1,0,18,18%,
NXTRLINK=2,0,0,18%,
NXTLLINK=2,1,0,18%,»
PRVRLINK=3,0,0,18$%,
PRVLLINK=3,1,0,18%3

GLOBAL VECTOR2 SPACECLOG2MEMSIZE+11;

BIND VECTOR SIZE =
PLITCI1t0,101,1t2,1t3,1t4,1t5,116,11t7,1t8,199,11t10,

1t11,1t12)3

MACRO PARTNER(B1,B2,S)= ((((B1)~MEM<0,0>) XOR ((B2)-MEM<0,0>))
EQL .SIZE(S1)S,

REPEAT= WHILE 1 DOS,
BASEADDR(B,»S)= MEML((B)>~MEM<0,0>) AND NOT SIZE(S]1<0,0>%,

ERRMSG(S)= ERROR(PLIT ASCIZ S)>$3
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! SPACE-MANAGEMENT-ROUTINES

'c------o--------------------

FORWARD EMPTY:ERROR:LINK:DELINK:COLLAPSE3

GLOBAL ROUTINE GET(N)=
YRETURNS THE ADDRESS OF AN ITEM OF SIZE 2%*N

BEGIN REGISTER ITEM Rs
IF «.N LEQ O OR «N GTR LOGESMEMSIZE
THEN ERRMSG('INVALID SPACE REQ');3
IF NOT EMPTY(SPACE[L.N1<0,0>)
THEN RCBASEJ}-~DELINK(.SPACE[L.NJ)
ELSE
BEGIN
RCBASE]~GET(.N+1)3
COLLAPSEC(«R[BASE)++«SIZEL«N1s+N)
END3
RCITEMSIZE]~.N3
+R[BASE]
END3

FOUTINE COLLAPSE(A,LN)=

ICALLED BY RELEASE AND GET TO ATTEMPT TO COMPACTIFY SPACE
1I1F ADJACENT ITEMS ARE FREE

BEGIN MAP ITEM A3 REGISTER ITEM L3

REPEAT
BEGIN .
LCBASE]~SPACE(C«N1<0,0>;
WHILE «LERLINK] NEQ SPACE(.N1<0,0> DO
IF PARTNERC.LLRLINK])» ¢ ALBASE)»«N)

THEN

BEGIN
ALBASE)~BASEADDR(DELINK(.LCRLINK1)»+N)3

N=eN+13
EXITCOMPOUND(2]
END o
ELSE LCBASE)~.LCRLINK]3
RETURN CACITEMSIZE)-=.N3 LINK(<A{BASEl,.L[BASEl))
END;
END3

GLOBAL ROUTINE RELEASECA)=
1CALLED TO RELEASE ITEM A

BEGIN
MAP ITEM Aj
COLLAPSEC.A[BASEl,»+ALITEMSIZE])

END3;
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| ! SIMPLE-LIST-ROUTINES

ROUTINE DELINKCA)=
!REMOVES ITEM A FROM THE LIST TO WHICH IT IS APPENDED

BEGIN MAP ITEM Aj :
. ACPRVRLINK]~«ACRLINK); ACNXTLLINK]-~«.ACLLINK]3

ACRLINK]-ACLLINK])»«ACBASE] :
END3

ROUTINE LINK(A,TO0)=
! INSERTS ITEM A INTO A LIST IMMEDIATELY AFTER THE ITEM TOQ

BEGIN
MAP ITEM A:TO0O3
ACLLINK]=«TOOCBASE]3 ACRLINKl*~.TOOCRLINKI;

TOO CNXTLLINKI=TOOCRLINK]*~+A[BASE]
END;3

FOUTINE RELINKCA,T0O)=
}
<:; ! REMOVES ITEM FROM ITS PRESENT LIST AND INSERTS IT AFTER T00

LINKCDELINKCeA)Y> «TOO)3

FOUTINE EMPTY(L)=

IPREDICATE INDICATING EMPTY LIST
BEGIN MAP ITEM L3

+LCBASE] EQL <LI[RLINK]
END;
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! QUEUE-HANDLING-ROUTINES

'--- ------- LA X X R R X X N X Y

MACRO QHDR=ITEMS;

MACRO ENTER=1,2,0,18%,»
REMOVE=1,2,18,18%3

GLOBAL ROUTINE ENQC(A,Q)=

! ENTERS ITEM A ON QUEUE Q ACCORDING TO THE INSERTION DISCIPLINE
! EVOKED BY @'S ENTER ROUTINE

BEGIN
MAP QHDR Qj;
RELINK(C«A> (. QCENTER])(.QCBASE]»+A))

END;

GLOBAL ROUTINE DEQ(Q)>=

! REMOVES AN ITEM FROM QUEUE Q@ ACCORDING TO THE REMOVAL DISCIPLINE
! EVOKED BY Q'S REMOVE ROUTINE

BEGIN
MAP QHDR 63
DELINK((+«QLREMOVE])>(.QLBASE]))

END;

! MISC SERVICE ROUTINES

PO

ROUTINE ERROR(A)=
BEGIN MACHOP TTCALL=#0513
TTCALL(35.4A)
END;

 FOUTINE INITIALIZEs
1INITIALIZES THE SPACE MANAGEMENT DATA

BEGIN REGISTER ITEM X3
XCBASE1-MEM<0, 0>
XCRLINKI~XCLLINK]-SPACE[LO G2MEMSIZE] <0, 0>3
XCITEMSIZE]I~LOG2MEMSIZES
DECR I FROM LOG2MEMSIZE-1 TO O DO
SPACEC[+13% (SPACE[+13)41)<0,36>-SPACE(«11<0,0>3}
SPACEELOGQMEMSIZE]*(SPACE[LOGQMEMSIZEJ+1)<0:36>~MEM<0;0>.

END3
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!t EXAMPLES OF VARIOUS QUEUE MODELS

!---------------w------------------

t LIFO QUEUE

’------------

FOUTINE LIFOREMOVE(Q)=
BEGIN
MAP QHDR Q3
IF EMPTY(«QLBASE)) THEN
ERRMSG( 'INVALID DEQ REQUEST');
« QCRLINK)
END3

ROUTINE LIFOENTER(Q,A)=
BEGIN
MAP QHDR @3
« QCBASE]
END;

! FIFO QUEUE

ROUTINE FIFOREMOVE(Q)=
BEGIN :
MAP QHDR @3
IF EMPTY(.QCBASE]) THEN
ERRMSG( *INVALID DEQ REQUEST®)3
« QCRLINK]
END;

ROUTINE FIFOENTERC(Q,A)=
BEGIN . ‘
MAP QHDR Q3 .7

« QCLLINK]
END;
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¢ PRIORITY QUEUE

MACRO PRIORITY=1,1,18,18%;

ROUTINE PRIREMOVE(Q)=
BEGIN
'~ MAP QHDR Q3
IF EMPTY(«QCBASE]) THEN
ERRMSG( 'INVALID DEQ REQUEST')3
« QCRLINK)
END3

ROUTINE PRIENTER(Q,A)=

BEGIN
~ MAP QHDR Q3 MAP ITEM A REGISTER ITEM L3

IF EMPTY(.QUBASE]l) THEN RETURN «Q[BASE];

L{BASE]~«QLLLINK]3
UNTIL LCPRIORITYY GEQ .A[{PRIORITY]l DO

L{BASE]~.LCLLINK]}
+L{BASE]
END;

END ELUDOM
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— Comments on the Use of Bliss in the Implementation

/
-
(1) The structure ITEM is particularly interesting and perhaps at
first a bit obscure.
To illustrate, consider a variable X structured by item:
Assuming that the right half of X contains o:
X: o
and that:
?‘Y: (o o K O'H B ———-}B: 6 by @
il Y o
R
(\v o :
Then:
X[BASE] = ¢ X[NXTRLINK] = &
X[RLINK] = B JXINXTLLINK] = o
X[LLINK] = vy .X[PRVRLINK] = o
JX[PRVLLINK] = T
The structure ITEM uses the '"constant case'" expression to distinguish
between the pointer, the pointee, and the pointee's predecessor and successor.
(2) The structure VECTOR2 has a size expression [2*I] which is used
in the allocating declaration:
.
o
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GLOBAL VECTORZ2 SPACE[LOG2MEMSIZE+1];

(3) Since the addresses of the 'remove' and 'enter' routines are

stored in the queue header, the expression
(.Q[REMOVE]) (.Q[BASE])

is a call of the routine whose address is .Q[REMOVE] and passes it to

the base address of the queue or its parameter.

(4) The macro 'REPEAT = WHILE 1 DO' defines an infinite loop -

its only exit is defined by the RETURN expression in its body.

(5) Notice the 'BIND VECTOR SIZE = PLIT(lTO,l?l,ltZ,...' in the

space allocator, The value of SIZE is a pointer to this sequence of

N
values, and in particular the value of '.SIZE[.N]' is 2,

‘
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EXAMPLE 3: DISCRIMINATION NET

Contributor: D. Wile‘

A discrimination net is a mechanism used to associate "information"
with "names", The net is actually a tree, each node of which consists
of a name and the information associated with that name, as well as a
set of pointers to other nodes. To look up a name in the net we start
at the root node and see if the name in the node matches our target name.
If it does, we return the associated information.

Otherwise, we use a "discrimination function'" which determines
which subnode to examine next (usually as a function of the target name
and the name of the current node). If there is no corresponding subnode,
a new node must be created,

For example, a binary net (two subnodes/node) with a discrimination

function which chooses the left branch if the target name is alphabetically

smaller than the name in the node, is illustrated below:

Name: j, 9, 1, a, b, r, p, n, s, k

Inf: 4, 7,9, 8, 5, 20,3, 9, 7, 12




In the implementation which follows, there are three globally defined

routines:

1,

DSCINIT (String address) -- returns a pointer to the in-
formation field of the node associated with the string,
This must be called first to initialize the net. (The

information field will be zeroed when the node is new.)

DSCLKP (String address) -- the "lookup" routine. Value

<

returned as above,

DSCPNAME (Information field address) -- returns a pointer
to the print name associated with the particular informa-

tion field,

The implementation is designed to allow the user to creaizs a module some-

what "tailored" to his needs. The module is created by passing:

5'

the estimated number of entries to be inserted into the table;
the average number of words each name will occupy;

the number of words in the "information field";

fhe number of subnodes of each node (e.g., binary example
above, 2);

a string which executes an error routine

in that order, to a macro "DSCRIMINET". Two macros must be defined

previous to the DSCRIMINET expansion:



DSCIMINATE (Target string address, current node string
address) must have a value of -1 if the strings match.
Otherwise, its value must be between 0 and 1 less than

the number of subnodes,

DSCCOPY (To address, From address) copies the string from
the "from address'" to the "to address', returning the

number of words occupied by the copy.
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MODULE NET(STACK=GLOBAL(STABK, #400))=
BEGIN
MACRO

DSCRIMINET(MAXNUMENT, AUNAMESIZE, INFSIZE,NOSUBNODES, ERROR) =

BEGIN

ZNeBs.: ALL VECTOR ACCESSES ARE INDIRECT THROUGH THE BASEZ%
STRUCTURE VECTORCI1=(@.VECTOR+.1)<0,36>3

% NET SPACE ALLOCATION, STRUCTURE DEFINITION AND
INITIALIZATION DEFINITIONS % '

BIND TABLELEN=MAXNUMENT*((NOSUBNODES+1)/2+INFSIZE+AUNAMESIZE);

OWN BASENODELTABLELEN]3

BIND MAXADD=BASENODE+TABLELENS

BIND SUBNODE=0, INF=1, PNAME=2,
INFOFFSET=(NOSUBNODES+13)/2,
PNAMEQFFSET=INFOFFSET+INFSIZE3}

STRUCTURE NODECSUBFIELD, INDEX)=CASE «SUBFIELD OF
SET «NODE(« INDEXt(~1)]<IF «INDEX THEN 18,18>;
+NODEC INFOFFSET]3
+NODELPNAMEOFFSET) TES3

GLOBAL ROUTINE DSCPNAME(INFFOS)=
(e INFPOS+INFSIZE)<0,36>3

OWN NODE NEXTCELL3

ROUTINE INITNODEC(CELL,STRING)=
BEGIN :
~ DECR ! FROM PNAMEOFFSET-1 TO O DO CELLC.I]~0j
IF MAXADD LEQ (NEXTCELLe* +«NEXTCELL+PNAMEOFFSET+
(MAP NODE CELL3 DSCCOPY(CELLCPNAME]»«STRING?Y))

THEN ERROR ELSE «CELL
END;

© GLOBAL ROUTINE DSCINIT(STRING)=
BEGIN
LOCAL NODE RETVAL3
NEXTCELL+~BASENODE:
RETVAL~- INITNODE(BASENODE, « STRING) 3
RETVALCINF]
END;

ROUTINE NEWCELLC(STRING)=INITNODE(C.NEXTCELL,+. STRING)3

% THE LOOKUP ROUTINE ITSELF %
GLOBAL ROUTINE DSCLKP(STRING)=
BEGIN
LOCAL DISCIND, NODE CURRENTSNEXTS
NEXT+~BASENODE3
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bo
BEGIN
CURRENT=- «NEXT3
IF (DISCIND-DSCIMINATE(«STRING, CURRENTCPNAME1)) LSS O
THEN RETURN CURRENTCINF)3

NEXTe+ CURRENT(SUBNODE, « DISCIND]
END

"UNTIL oNEXT EQL 03

NEXT~CURRENTLSUBNODE,s« DISCINDI=NEWCE’ L.¢« STRING) 3
NEXTCINF]
END;
END3 $3

ROUTINE DSCIMINATE(L,R)=
BEGIN
STRUCTURE VECTORLI1=(@.VECTOR+.1)<0,36>3
INCR I FROM O
DO BEGIN
BIND LEFT=eLl{«I]» RIGHT=¢R(.113

IF LEFT NEQ RIGHT THEN EXITLOOP (LEFT LSS RIGHT);
IF (LEFT AND #376) EQL O THEN EXITLOOP ~1
END
END3

ROUTINE DSCCOPY(INTO»FRO)=
BEGIN
STRUCTURE VECTORCI1=(@+VECTOR+.1)<0,36>;
INCR I FROM O DO
" IF CCINTOC«1)~«FROL«I1) AND #376) EQL O
THEN EXITLOOP oI+l
END3

EXTERNAL ERROR3 ,
DSCRIMINET(500,3,1,2,ERRORC(PLIT °'LOOKUP TAELE QOVERFLOW®))

BEGIN

BIND NAMES=PLIT(
PLIT ASCIZ 'FIRSTNAME®,
PLIT ASCIZ ‘'SECOND’,
PLIT ASCIZ °SS°*,» :
PLIT ASCIZ ‘A LONGISH NAME',
PLIT ASCIZ 'L°‘,
PLIT ASCIZ '77788()34°');3

EXTERNAL DSCLKP, DSCINIT3

DSCINITC(PLIT °*ZEROTH NAME®)~-3;

INCR I FROM O TO +NAMES[-1]=1 DO DSCLKPC(+NAMESC+I1)=eI3

INCR I FROM O TO +NAMESC=1]-1 BY 2 DO DSCLKP(+NAMESLeI))-eI+#1t35;
END;
END ELUDOMS
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Notes on the Implementation

The Bliss module above implements the example described at the be-

ginning of this section., The test program portion of the module simply

initializes the table, inserts the six strings in the plit into the

table (associating as information, the index in the plit), and runs

through the evenly indexed items in the plit, turning on the sign bit in

the information word.

Of interest:

1, The vector structure (which defaults as the structure

for all unmapped variables and expressions) is redefined
"indirectly"; this is fairly dangerous in any program,

and represents an after-the-fact programming decision.

The physical str .rture of the table is kept independent
o o
of the logical structure as used by the lookup routine;

no reference is made from the lookup routine to the struc-

-ture other than through the structured nodes.

The binds, structures, own declarations and even the

initialization function - requiring knowledge of the

physical structure are kept grouped and séparate. Note,

for example, that INITNODE uses both a vector mapping on

contiguous fields of CELL and the NODE structure.

The physical structure of the tree is kept isolated from

the user of the routines to the extent that only knowledge
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that the mechanism is associative is of importance --
the particular lookup algorithm and storage management

are independent of the functional use of the module.
.Bliss programming "tricks':

a, Use of the constant case expression for sub-
fields of structures (NODE in.this case);

b. Default use of 0 for the omitted else in the
structure case defining the,SUﬁNODE field;

c. CELL remapped in the INITNODE routine to take
advantage of knowledge of the physical layout
of the NODE's storage.

d. "Dynamic" binds of LEFT and RIGHT inside the
loop in the test version discriminatio:. function;

e. The bind to a plit (of NAMES) in the test por-
tion, to prevent duplicate storage allocation
for the twice-used plit;

f. Stores into routine cells in the test program loops;

g. Use of the plit length wqrd preceding the plit

(NAMES[-11).
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ABSTRACT

It has been proposed, by Dijkstra and others, that the use of the
goto statement is a major contributing factor in programs which are
difficult to understand and debug. This suggestion has met with con-
siderable skepticism in some circles since goto is a control primitive
from which a programmer may synthesize other, more complex, control
structures which may not be available in a given language. This paper
analyzes the nature of control structures which cannot be easily syn-
thesized from simple conditional and loop: constructs. This analysis ‘ :> ;
is then used as the basis for the control structures of a particular
language, Bliss, which does not have a gggé statement. The results of
two years of experience programming in Bliss, and hence without goto's,

are summarized.

3=2



INTRODUCTION

In 1968 E. W. Dijkstra suggested, in a letter to the editor of the

Communications of the ACM [1], that use of the goto comstruct of Algol

was undesirable, and in fact was bad programming practice. The rationale
behind this suggestion was simply that it is possible to use the goto

in ways which obscure the logical structure of a program, thus making it
.difficﬁlt to understand, debug, and, ultimately, to prove its correctness.
Of course, not all uses of the goto are obscure, but the conjecture is

that these situations are adequately handled by existing conditional (e.g.,
the if-then-else) and looping (for-do) constructs.

This paper presents an analysis which lead to the design of the
control features of Bliss [5], an implementation language designed at
Carnegie-Mellon University. This analysis reveals that the Algoi condi-~
tional and looping constructs are, while adequate, not convenient when
the goto is eliminated. The control features of Bliss are described and
some comments are made concerning our experiences using a goto-less,
Algol-like language.

| Before proceeding it is worth noting an additional benefit of removing
the goto - a benefit which the author did not fully appreciate until the
Bliss compiler was designed - that of code optimization. It is clear that
the presence of goto in a block-structured language with dynamic storage
allocation forces a certain amount of run-time support (and overhead)
associated with the possibility of jumping out of blocks and procedure
bodies. Eliminating the goto obviously remaves this overhead. Far more

important, however, is the fact that the scope of a control enviromment
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is statically defined in a program without goto's. The Fortran-H compiler
[2], for example, does considerable analysis and achieves a less perfect
picture of the overall control structure of a program than that implicit
in the text of a Bliss program. Since analysis of control flow is pre-
requisite to any form of global optimization, this benefit of eliminating
the goto must not be underestimated.

It is not surprising that a language can bé devised which does not
use the goto construct since: (1) several of the formal systems of
computability theory, e.g., recursive functions éhd the A-calculus, do
not contain the concept; (2) LISP does not use it; and (3) Van Wijgaarden
[3], in attempting to define the semantics of Algol, eliminated labels
and goto's by systematic substitution of procedure bodies and calls.

Thus, the question ‘is not whether it is Réssible to remove the gggg,

only whether it is desirable. 1In particular there is considerable suspi-
cion among programmers that the advantages described by Dijkstra are out-
weighed by inconvenience, and possibly by inefficiency (duplicate code, etc.).

The goto may be viewed as a control primitive with which a programmer
s&nthesizes more complex control structures. In this context Dijkstra's
arguments can be phrased in terms of this primitive having "unwanted
generality". The principle concern of this paper is to investigate alter~
native primitives which are equally convenient for the things which pro-

grammers actually do.



ANALYSIS

In order to determine the nature of the coatrol primitives to sub-
stitute for the goto, we shall first consider the nature of progyams
which use the goto and which cannot be easily built from simple condi-
tional and looping constructs. To do this we will use a flow chart rep-
resentation of progrems, Flow charts are convenient for this because of
the explicit way in which control is manifest in them. We assume two
basic blocks from which our flow charts are to be built - process blocks

and n-way conditjonals.

l N

process box n-way conditional

These boxes are connected by directed line segments in the usual way. We
shall further be interested in two special ''goto-less' constructions built

from these components - simple loop and n-way 'case' constructs.

DI

Y | Y

simple loop: case



We consider these two forms '"goto-less'" since they contain a single entry

point and a single exit point and hence could have reasonable corresponding

%
syntactic constructs in some higher-level language (and indecd do). Now,

consider three transformations:

1. any linear sequence of process boxes may be transformed

into (or replaced by) a single process box

—— a hee ~$*:%}a» -

2. any simple loop may be replaced by a process box

b
—
L

3. any n-way case construct may be replaced by & process box

*
R i TR
P
Al

The simple loop considered here clearly does not correspond to all possible
varients of initialization, test before or after the loop body, etc. These

varients would not change the arguments to follow in any essential way and
hence have been omitted.

¢




Any graph which may be derived from a given graph by'a sequence of
these transformations we shall call a "reduced" form of the original
graph. A graph which has a reduced form consisting of a single process
box we shall call a simple "goto-less" graph. The sequence of trans-
formations .is said to define a set of nested "control enviromments".

Not all graphs are of this type; these are of special interest to
us since they typify the class of control structﬁres which cannot be
realized by simple conditional and looping constructs. In looking at such
graphs we are principally interested in their ?m{himal irreducible form";
that is, a reduced form to which no more transformations of the type
described can be applied. Examination of these graphs will both reveal
techniques for deriving simple gogo—less graphs from them, and also pro-
vide insight leading to the control primitives to be described later.

Before proceeding it is perhaps instructive to remark briefly on
Dijkstra's objections to the goto in terms of this characterization of
programs. By definition, a goto-less program (flow chart) is susceptible
to a sequence of simple transformations which reduces it to a single pro-
céss box. This sequence can serve as guide to understanding and/or
proving the correctness of fhe program., Imagine a sequence of graphs,
derived from the original, in which each is like its predecessor except:
(1) the correctness of the replaced construct has been verified, and
(2) the new process box contains a more macroscopic description of what
the replaced portion does (rather than the details of how it is done).
This sequence forms both & proof of the validity of the entire original

program as well as documentation of what it does (at many levels of detail).



This is not to say that programs that use goto cannot be understood or
proved correct [6], only that programs with this structure permit a
specific methodical approach to understanding and proof,

Now, returning to an analysis of programs which use gggg, consider
two cases - those with loops and those without. Programs without loops
ha?e, at most, a lattice-like structure. For example, consider the follow-
ing irreducible form (in this example, and the remainder of the paper, we
shall use circles to represent sub-graphs whose fine-structure we choose

to ignore):

Brief consideration of such graphs reveals that it is always possible
to construct a new graph using only the goto-less primitives which are

similar to the original graph except for a finite number of '"node splittings"
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(i.e., creation of duplicates of existing nodes in separate control paths).
(\, This follows from the observation that, since there are no loops, there

are at most a finite number of paths through the graph and each node occurs
on only finitely many of them. Hence at most a finite number of replica-

tions of each node will guarantee that each node will occur on only one path.

For example, the graph above becomes:

C

And this graph can now be transformed by collapsing <2,5'>, <3,5,6>, and

<4,6'> into:




This is one of the primitive forms and may itself be collapsed - and hence
is a goto-less program.

Node splitting is something which we would like to avoid since it
involves duplicating code. Nevertheless, node splitting is one technique
by which an existing program utilizing the goto may be converted into one
which does not. A second technique, which also might have been used above,
will be discussed in conjunction with loops beléw.

The second major case to be considered is that of irreducible graphs
invelving a loop. Of these we can note that spcﬁ loops must involve more
than one entry or exit point. Otherwise the loop would be reducible.*

Floyd and Knuth [4] have proven (using flow charts as specifications
for regular expressions) that node splitting is not an adequate technique
for deriving goto-less graphs from irreducible ones in the presénce of
multiple entry/exit loops.

That node splitting is inadequate becomes clear by simply observing
that the number of paths leading from the "second" exit point is unbounded.
Therefore no finite number of replications of this node is sufficient, and
wé must search for another technique. Consider the following irreducible

program:

* .
We reiterate our earlier footnote - we have only considered one form of

simple loop - introducing varients on the initialization or relation of
the test to the loop body would not affect these arguments in any essential
way. -
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Notice that there are two exit paths from the (i)—(:) loop - that leading
from @ to @ to @ and that leading from @ to @ directly. This
is a simple example of a program where node splitting will not work. .

P
However, one can introduce a new variable, call it ¢, and obtain the

following graph:

3ell



In this graph the node (i) is like node (E) except that the exit
condition of the loop has been augmented with "or o = 0" and node (:)
is like node (:) except that the exit to node (:) has Been replaced by
the operation "o « 0", Node (3) is the null operation. Conceptually
what we have done is to introduce a variable which behaves as a "program
counter" and which, when the loop terminates, specifies whether or not
it is necessary to execute (:) .
That the technique illustrated above is completely general may be
seen easily. Consider any graph with nodes labeled (:) ’ (:) s eeey (E) .
Now construct a new graph as follows:
1, if (:) is a process box construct (:)‘by adding to (:)
"y « k" where (:) is the successor of (:) .
2, if <:) is a decision box, then replace it by a process‘
"box of the form "y « €', where € is an expression which
dynamically evaluates to the appropriate successor label.
3. consider all exit points as labeled by (:)

4, construct the following graph
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As with node splitting, this technique is odious because of the
implied inefficiency. But also, it is a technique which may be applied
to convert any existing programs with gotos into ones without them. And,
in particular, the technidues may be applied locally to irreducible sub-

graphs,
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The Bliss Control Structure

The previous section points out the nature of programs which may be :>
constructed with only conditional and looping constructs - and those which
cannot be constructed without duplicating some nodes or adding dummy
variables, etc. The present section addresses itself to the question of
whether the class of constructs in a practical language (which will not
contain an explicit goto) should be extended beyond simple conditional
and looping facilities. And, if the decision is to extend the class, then
what should the extensions be? The answer to the first of these questions
depends in part on a judgment as to the frequency with which multiple exits
from loops, etc., are used, and in part on the answer to the second question.
Whether to add constructs or not depends upon whether it can be done in
such a way>as to preserve the structural advantages which prompted us to
consider a goto-less language in the first place. Hence we must answer :>

P
the question of a sPecific language proposal, Part of this section will
be devoted to a description of the facilities in Bliss to give some back-
ground for discussing this question.,

Note that we are principally interested in programs which are initially
written in such a goto-less notation rather thanvin translating existing
programs into the notation. Consequently, we are willing to accept some
restrictions on what can be written - so long as the "common" things are
expressed conveniently. Even the goto is not completely general in most
languages - one may not jump into the scope of a DO statement nor out of
a subroutine in FORTRAN, and jumping into the middle of a block from out-

side it is prohibited in Algol. Neither of these restrictions is a serious

one in practice.

K_)
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The three '"problem areas" discussed in the first section were:

(1) lattice-like decision structures, (2) multiple entry points to a loop,
and (3) multiple exits from a loop. Without any hard evidence at our
disposal we are left with only our intuition and experience to weight the
importance of these constructs. 1In particular, the author believes that
(1) and (3) are both quite important, and only one subcase of (2) is
important - namely, that case involving selection of one of several initi-
alization sequences. One might make a different evaluation and arrive at
a different set of facilities than those to be. described below.

The first aspect of the Bliss control structure is simply the fact
that it is a block-structured "expression language'". That is, every
executable construct, including those which manifest control, is an expres-
sion and computes a value. There are no statements in the sense of Algol
or PL/I. Expressions may be concatenated with semicolons to form expres-
sion sequences., The value of an expression sequence is that of its last
(rightmost) component expression and is evaluated in strictly left-to-right
order, Thus ";" may be thought of as a dyadic, left associative operator
whose value is simply that of its righthand operand. A pair of symbols
begin and end, or left and right parentheses, may be used to embrace such
an expression sequence and convert it into a simple expression. A block
is merely a special case of this construction which happens to contain
deciarations, thus the value of a block is define@ to be the value of its
constituent expression sequence.

The fact that Bliss is an expression language is relevant to the goto

issue in the following way: the most general method described in the first
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section for translating programs into goto-less form was that involving

a dummy variable which expliﬁitly indicates the successor. The value of
an expression (a block, for example) forms a natural implicit node of
expressing this idea., This will be illustrated after some of the explicit
control expressions have been discussed.

There are six explicit control expressions in Bliss: conditional,
loop, case-select, function, co-routine, and escépe. We have avoided
consideration of subroutines in the previous material and so shall omit

N

functions and co-routines from this discussion,

The conditional expression

if 61 then 62 else 63

is defined to have the value of the expression 62 just in the case that
El evaluates to the Bliss representation of true and has the value of
63 otherwise, The abbreviated form "if El then 62" is considered to be

identical to "if €, then €, else 0".

The conditional expression provides two-way branching, the case and

select expression provide more general n-way branching:

case €)@ s eesey of set EO; €15 oo En tes
select eo,el,...,ek of set EO:EI; 62263; cee 3 €2n:€2n+1 tesn

The case expression is executed as follows: (1) all of the ekpres-
sions €pae e a8y are evaluated, (2) the value of each e (0 £1i <Kk) is,
in turn from left to right, used as an index to choose one of the Eﬁ's

(0 £ j <n) to be executed. Obviously, each of the ei's is constrained
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to lie in the range 0 < e, =n if one of the €'s is to be exccuted. In

the current implementation if e, = -1 none of the €'s will be executed and
execution is undefined for all other values of ei. The valuec of the entire
case expression is Ee - The special case where k=1 is of speccial interest

k
and has appeared in several other languages, ALGOL-W and KULER

>
for example.

The select expression is similar to the case expression except that
the ei's are not used as indices, Rather, the e's are used in conjunction

with the ézj's to choose among the 62 Execution proceeds as follows:

4L S
(1) all of the ei's are evaluated, (2) 60 is evaluated, (3) if the value
of 60 is identical to the value‘of one (or more) of the e's then 61 is
executed, (4) 62 is evaluated, (5) if the value of 62 is identical to the
value of one (or more) of the e's then 63 is executed, etc. The value of
the entire select expression is simplz that of the last 62j+1 to bc executed -
or -1 if none of them is executed.

The utility of the fact that Bliss is an expression language may be

illustrated using the case expression in an earlier example, namely the

flow chart:

3=17



This graph may be thought of as actually of the form
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Which means that one might write in (pseudo) Bliss:

case case (1) of set ((2);0);((3); ov1);(B);1) tes of
set®; (6) tes;
@

This provides a neat, conceptually simple, and efficient alternative

to node splitting.

Returning now to the discussion of Bliss control forms, the loop

expressions imply repeated execution (possibly. zero times) of an expression

- until a specific condition is satisfied, There are several forms, some of

which are:
while Gl do €
do € while €

incr <id> from €; to €, by €; do €

In the first form the expression € is repeated so long as 61 satisfies the
Bliss definition of true. The second form is similar except that € is
evaluated before El thus guaranteeing at least one execution of €, The

last form is similar to the familiar "step...until" construct of Algol,

except (1) the control variable, <id>, is local to €, and (2) 61,62 and 63
are computed only once (before the first evaluation of the loop body, €).
Except for the possibility of an escape expression within € (see below)

the value of a loop expression is uniformly taken to be -1. The particular
choice of -1 as the value of a loop expression is not important except that:
(1) it is uniform, and (2) there are some small advantages to this choice
in connection with Ehe definition of the case expression and zero origin

data structures.
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The control mechanisms described above are either similar to, or
only slight generalizations of, the conditional and loop constructs of
many other languages. Of themselves they do not solve the problems
discussed in the first section. Another mechanism is needed - that mech-
anism is called the escape expression. An escape expression provides a
highly structured form of forward branch. The branch is constrained to
terminate coincidentally with the terminus of some control enviromment
in which the escape expression is nested. The general form of an escape

expression is

<escapetype> <levels> <expression>

where <escapetype> is one of the (reserved) words listed below and <levels>
is either an integer enclosed in square brackets, e.g., "[3]", or else is

empty (which implies [1]).

exitblock exitcase
exitcompound exitselect
~exitloop exit
exitconditional return

An escape expression causes control to immediately exit from a specified
’control environment (a block, a compound, or a loop, for example) skipping
any subsequent expressions in that enviromment. The <levels> construct
pemits exit from several nested loops, for example, with a single exitloop
expression. The <expression> value in an escape expression defines the

value of the environment from which control passes.
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The use of the escape expression is illustrated by a typical problem

involving multiple exits points from a loop. Suppose a vector, X, is to

be searched for a value, x. If an element of X is equal to x, then the

variable, k, is to be set to the index of this element. If no element

of X is equal to x, then the value of x is to be inserted after the last

element of X and k set to this index. Supposing there are N elements

K3

currently in X. The following Bliss program" will perform this task.

if (k < incr i from 1 to N by 1 do if X[i] = x then exitloop i) < 0

—_—

then X[k « N « N41] « x;

We can now return to the original questions raised in this section.

We know that the mechanisms are "adequate", but are they sufficiently

convenient and do they preserve the desirable properties of goto-less-ness.

The answer to the first of these questions lies principally in the experi-

ence of those who have used the language. These experiences are summarized

in the next section and essentially answered in the affirmative.

Some

confidence that this is the case may be gained by simply viewing the escape

mechanism as a specific device for handling multiple exit point loops, and

viewing the decision to make Bliss an expression language as a specific

tool for implementing the dummy variable technique. In fact, of course,

both ideas are more general than this,

- The second question, whether the Bliss structures retain the
properties of simpler goto-less notations, requirés a little more
ation. TFirst, it is only the escape mechanism which violates the
eriteria. Returning to the flow chart notations, we now think of

chart primitives as:

o -
Actually the given program is not Bliss, but the differences are
essential to the discussion of control.

3=21

desirable
consider-
goto-less

our flow

not



where the dotted lines represent a potentially infinite set of flow lines
one of which may be followed if the escape mecﬁanism is invoked. Dotted
flow lines are constrained to connect directly to the terminus of a
control enviromment in which the initial point of the line is totally
nested,

The previous set of transformations is still applicable if the dotted,
"escape", flow lines are ignored and we are guaranteed that the escape
lines will be totally enclosed at some stage in the reduction process.

In this sense the desirable properties of goto-less graphs are retained.
The simple technique for understanding a flow chart and proving its cor-
rectness is no longer possible, However, because control is no longer
constrained to exit through a single path. Nevertheless, a similar tech-
nique is easily constructed., It simply must operate in more global contexts.
_ One can clearly apply the former style of reasoning to subgraphs from
which no dotted lines emanate, After this has been done on all possible
subgraphs atténtion must shift to as small a subgraph as possible which
wholly contains its escape lines, and understanding be gained and verifica-

tion done on this sdbgraph as a whole, and reduced as a whole. This may
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or may not lead to the simpler form of graph, but in either case the

process can be iterated.

Some Experiences

Bliss has been in active use for nearly two yeérs and we have there-
fore gainéd considerable experience in programming without the goto - both
in writing new progréms and in translating previously existing ones. This
experience includes several compilers, parts of an operating system, i/o
support routines, aé well as numerous applications programs. As one might
expect, writing new programs presents no diffiéulty. Just as one adapts
to the lack of recursion in Fortran or the inability to jump into the
middle of an Algol block, one also adapts to the Bliss cohtrol structure.
But it is not that one merely survives in this mode; quite the contrary.
One develops a mode of thinking whihc is réughly the inversebof the reduc-
tion transformatioﬁ sequence discussed in the first séction. That is, one
thinks, and writes from the more macroscopic to the ist detailed levels.
We have not conducted‘controlléd experiﬁents, but I aﬁ convinced that
pfogrammer productivity has sighificantly improved du; to this enforced
style 6f programming.

In some sense our experiences in translating existing programs are
even more interesting than those in writing new ones; These latter experi-
ences fall in two sharply definéd categories - the times when it was easy
and;the times when it was hard. Most of the time it was easy, because most
of the time programmers apparently use goto's in non-essential ways; that

is, ways which mirror one or more of the constructs already in Bliss. On
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‘the other hand, when the translation was difficult the real problem was
understanding what the origiﬁal programmer had intended the control
structure to be. Once that was done, in every case (to my knowledge)
there was a natural mode of expression in Bliss., There were surprisiﬁgly
few cases where node splitting, or any of the other devices mentioned,
were necessary. I1f we assume that the programs we have translated are
representative, and I do not know that they are,'then we must conclude
that programmers do not use the generality of the goto.

We have found two aspects to the Bliss st;uczure which are inconveni-
- ent and should be changed. One is a trivial syntactic change and is easily
accomplished; the other is more fundamental. The '<levels>" construct in
escape expressions embodies an important semantic notion, but the syntax
should be changed. As a program is modified the mmber of levels through
which an escape should execute may be changed - by the introduction of an
additional block level, for éxample. One would like to indicate the target
of the escape symbolically., Which is to say labels should be reintroduced
as names of entire control enviromments. The other construct I should like
to have is, intuitively, one which allows exit through several levels, of
subroutine call - either to a specific place or until a specified condition
is met.

Whether or not a language includes the goto construct is immaterial.
There are certain types of control flow which occur in real programs and
if constructs are not explicitly provided for these then the goto must be
provided so that the programmer may synthesize them for himself. The

danger in permitting the goto is that the programmer will synthesize them
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in weird and obscure ways. The advantages\in eliminating the goto are
that these same control structures will appear in regular and well-defined
ways and consequently both the human reader and the compiler will do a

better job of interpreting them.
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WHY THE DOT?

The interpretation of the occurrence of identifiers in Bliss is
different from that in most programming languages - and this difference
has given rise to questions and suggestions from almost everyone who is
first introduced to the language. The purpose of this memo is to, or
at least attempt to, explain the reason fbr the chosen interpretation.
The chosen interpretation is quite fundamental to the intent and structure
of the langﬁage and was decided upon only after extensive, heated debate
and is not merely a whim of the designers; to change it would do substan-
tial violence to the language and could only be accomplished through
the introduction of a large number of ad hoc rules if the other inten-
tions of the language were to be preserved.

- First let me review the interpretation, although I'm assuming some
acquaintence with the language. An identifier is introduced into a Bliss
program by a declaration; for example

own X;

There are scope rules as in Algol '60, but let's ignore them and assume

that x is not re-declared at an inner block level. Now, anywhere in the

scope of this declaration, independent of the context in which it occurs,
an occurrence of the identifier is‘interpreted to mean a reference* to

the memory cell allocated by the declaration. Thus the value of the
expression "x+1" is one larger than the address of x rather than the value

contained in the memory cell x. Thus, one may think of the occurrence

*A reference, or pointer, in Bliss is a fairly complex object, but for
this discussion it 1s adequate to think of it merely as the address of a
memory cell. The remainder of the discussion presumes this simple
interpretation.
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of an indentifier, x, as the occurrence of a literal (the address of x)
where the value of the literal is bound at load (or possibly execution)
time. :)
Clearly one wants to obtain the value stored in a memory cell as
well as its address. For this purpose the unary dot, ".", operator is
introduced, The value of the dot operator applied to an expression,
€, is that of the memory cell whose address is €. Thus, ".x" is the
value contained in the memory cell x, ".(x+1l)" is the value of the memory
cell whose address is one greater than that of x, "..x" is the value
of the memory cell whose address is stored in the memory cell whose
address is x (i.e., indirect addressing), etc.
Closely associated with the interpretation of identifiers and the
dot operator is that of the store operator "«", which is also different
from that usually given in the description of conventional languages
(though not different from its implementation). The store operator is a
dyadic, infix operator whose operands may be arbitrary expressions, :>

say €; and €,-
€€

The value of lefthand operand él is interpreted as a pointer (address)
which names a cell into which the value of the righthand operand, 62,
is to be stored.*

Before turning to the issue of "why" the interpretation is as it is,
I'd like to make three comments. First, the only people who have ob-

jected to the interpretation are those who first encounter it; to my

*The value of the store operator is 62, but that's not relevant to this
discussion.



knowledge no one who is using the language objects. That only proves
that it's possible to learn to live with it. Second, while the inter-
pretation may be unique among higher level languages, it is precisely
the interpretation adopted in assembly languages. Third, the interpre-
tation is entirely consistent, the interpretation of an identifier is
exactly the same independent of the context in which it occurs. (May-
be we could coin a phrase: "context-free semantics".)

Now, let me finally turn to why the interpretation is as it is. One
of the fundamental design objectives of Bliss was to permit the user to
define arbitrary representations of data structures by permitting him
to define the accessing algorithm (expression) for elements of the
structure. This implies not only that the user must be able to mani-
ﬁulate pointers as flexibly as values, but also that the value of an
arbitrary expression must be able to stand as a name. This implies,

for example, that the assignment operator must permit arbitrary expres-

sions €. and €. in the context € «€_.
1 2 1 72
An alternative to the Bliss interpretation of identifiers and dot
operator is to assume that identifiers always represent the value of a
variable and introduce another operator, say &, which means "the address
of". One would still need the dot for several levels of indirection,

but simple expressions such as (in current Bliss)
X4 . X+1

would be written

AxexX+1
Since, presumably, thre are fewer instances of addresses than values,
there should be considerably fewer &«'s to write with this scheme than

dots in current Bliss programs. Carrying this reasoning further, why



not presume a's on the left of assignments (or, almost, equivalently

dots on the right)? Then one could write

Xe= X+1 D

which is more familiar. Under this scheme one could, of course, write

K's or (extra) dots to override the standard interpretation. Thus
cXe=1

would store indirectly through x, and
XXy

would store the address of y in xX. Or would it? Let's examine some
of the difficulties that arise from such an interpretation. None of
these difficulties is insurmountable; however, they lead to a large col-
lection of ad hoc interpretat on rules.

Above I suggested that xewy would store the address of y into x. :)
One may think of ®« as either an operator, or merely as a compile time
notation which overrides the suggested "value of" interpretation. If
one chooses the first of these interpretations, then Ry ought to mean
the address of the value of y (i.e., «(.¥))- which is not unique
(there may be many locations whose current value is the same as that
of y). Moreover, the expression &&(where € is an arbitrary expression)
seems to have no useful interpretation unless one is willing to store €,
create a reference to this location, and support the garbage-collection
that that implies. The "compile-time override" interpretation of ® has
its own set of problems; it makes '&Yy' do something reasonable, but R E
is nonsense and an arbitrary rule would have to be introduced to pro-

hibit it. (What does &(1+2) mean?) On the other hand,x€is exactly what

U



you want in an expression such as

Xe Xy [1]
in which you wish to store the address of a structure element into x,
so you must allow this case, too. It gets worse, as you'll see
below.

Suppoée, for the moment, that you've contrived some interpretation
rules which handled the problems mentioned above, and that you move on
to the impliedcx's (or dots). You are now faced with the problem of
deciding what's on the left and what's on the right of an assignment

operator. There's no problem with x«y, but what about
(x+i) &= 5

Given the initial assumption that accessing is specified by an arbitrary
algorithm, this is hardly an implausible thing to write. But what does
it mean? It must be one of (in Bliss)

(a) (x+i) «=5

(b) (x+.i) « 5

(¢) (.x+i) e« 5

(d) (.x+.i) -5
Relying on accumulated experience with respect to the usual way of
storing vectors one might like for the interpretation to be (b), but
I can find no rational reason for adopting this one; (a) or (d) seems
more plausible, and (a) the most plausible. O0.K., suppose you try to
be consistent, and so you adopt (a) and then you write

(x+.1) e= 5

to explicitly indicate that, even though i appears on the left of an
assignment, you want its value, not its address. You're now in trouble

with another design objective of Bliss; namely, that the same accessing
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function be usable everywhere. If you write

Ve (x+.1)
which means (in Bliss)
Yy« (.x+..1)

you do not get what was intended at all.

Again, you can gin-up a rule to cover this case. However, suppose
that an accessing algorithm is specified by a function, £, and the body
of f contains the expression "return x". Should this expression re-
turn the value or the address of x? 1In the expression
f()e £()+1

both are needed. Of course f could return both, but then consider
g() = g()+1

where the body of the routine g contains

return £ ()

Must g now return (1) the address of the address of x, (2) the address
of the value of x, (3) the value of the address of x, and (4) the value
of the value. WOW!

Having examined the consequences of some of the alternative pro-
posals, let's now consider the reasons behind them. There are two: you
are forced to write a lot of dots, and it deviates from the "standard",
or "conventional". The first of these arguments has merit, and in fact
was the rationale for choosing an inconspicuous, easily written and typed
graphic for the "contents of" operator. In practice, however, users
of the language have found little difficulty in either reading or writing
the dot. The second argument is simply absurd. There is no standard
since there are no other languages.which deal with the same issues,

except possibly assembly language, and Bliss uses the same convention as
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assembly languages.

As for the virtues of the convention, it is simple and completely
consistent, it permits accessing algorithms to be written and used
in all contexts, and it covers all the cases. The distinction between
name and value is a fundamental one, and in my opinion it is far more
important to treat it explicitly and consistently than to provide

minor convenience to the uninitiated.
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ABSTRACT

!
The specification of data structure in higher-level languages is isolat-
ed from the related specifications of data allocation and data type. Structure
specification is claimed to be the definition of the accessing (addressing)
function for items having the structure. Conventional techniques for data
structure isolation in higher-level languages are examined and are found to
suffer from a lack of clarity and efficiency. -
The means by which data structure accessors may be defined in Bliss, j)
the specification of their association with named, allocated storage, and their b
automatic invocation by reference to the named storage only, are discussed. An
example is presented which illustrates their efficient implementation and their
utility for separating the activities of data structure programming and algorith-
mic programming., :

INTRODUCTION

Since the management and representation of data are of prime interest
in programming, we wish to present the view of data structures that has been
adopted in the implementation language Bliss. Bliss [1] is a higher-level
language designed for writing large software systems for the PDP-10 [2] and
is currently being implemented at Carnegie-Mellon University. Our paper is
divided into two parts. First we discuss the issues which arise in defining
and implementing data structures in higher-level languages. Then we present
the facilities in Bliss which are designed to handle the representation of
data,
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HIGHER-LEVEL LANGUAGE DATA STRUCTURE SPECIFICATION

THREE ASPECTS OF DATA SPECT':'¢ATION

We begin by considering three aspects of data structures which are not
separable in most higher-level languages, but which can be separated in Bliss
to allow greater flexibility in data specification:

1. Type specification - the name of a piece of data specifies its
internal format and the class of operators for which it is a
valid operand. :

2. Allocation - the presence of a named data item requires that
we be able to associate this name with its value; presumably,
that value will require space in the underlying 1og1cal machine.
The format (and perhaps the size) of the allocated space depends
on the data type specified for the name. The scope rules of a
language define the domain of valid access to a value via its
name. The logical machine manages the allocation of space for
storing the value and is free to overlay non-contemporaneous
allocations,

3. Structure - the ability to structure regions of storage allows
us to generate in a simple way a large collection of names and
to retain the logical clarity of a generic name. Indeed we
want the ability to compute a name (e.g., array subscript compu-
tation) and to sequence through a collection of names.

Taking Algol [3] as an example, the text

procedure P(A,B); real array B[1:100]; ...

provides a structure for B and types the elements of the structure (named:
B{1], B[2], ..., B[100]). Furthermore, in addition to structuring and typing,

begin real array B[1:100]; ...
also allocates space. We emphasize: two different Algol implementations may.
physically structure the same logical structure differently (e.g., dope vector
vs, by column or row). :

IMPLEMENTING A FOREIGN DATA STRUCTURE '

We consider in some detail how we build a data structure in a higher-
level language whose inherent data structures may be quite different from those
to be implemented. In particular consider a partial implementation of Lisp [4]
in Algol. Atoms will be stored in an array with negative indices for non-null
atoms and the zero index will indicate NIL. Cells will be stored in a two
dimensional integer array with positive indices.

Now we examine two ways of implementing the Lisp accessing functions
CAR and CDR.




(1) integer array ATOMSPACE [-1000:0];
integer array CELLSPACE [1:10000,1:27;
integer procedure CAR(I); integer I;

CAR := CELLSPACE[I,1];
integer procedure CDR(I); integer I;
CDR := CELLSPACE[I,2];

(2) integer array ATOMSPACE [-1000:07;
integer array CAR [1:10000], CDR[1:10000];

Note that in both implementations the Algol array bounds checking will handle
the error resulting from attempting to access the CAR or CDR of an atom.

Several things are to be noted about these two implementations. Both
(1) and (2) implement the same logical structure. The accessing structure is
logically independent of the allocation since the declarations could appear in
any Algol block at any level. The foreign types atom and pointer had to be in-
corporated into the structure of the implementing language. Implementation (1)
has an advantage over (2) in that it can be modified more easily. We can change
the body of the accessing functions CAR and CDR without changing the program's
reference to them. On the other hand (2) is clearly more efficient than (1)

. since it employs the built-in accessing mechanisms of the Algol machine whereas

(1) requires execution of the expensive procedure calling mechanisms of Algol
procedures. Of course, neither implementation is as efficient as a direct
machine language implementation of Lisp. Hence we can isolate a major difficulty
that arises from specifying a data structure in a higher level language. In
general we pay. a high price in lost efficiency by implementing a data structure
in a higher-level language unless, of course, that language is designed to make
such implementations efficient. For example, if pointer or address were an
Algol type, we could probably improve the above implementation to a point where
the cost would be tolerable.

ISOLATING DATA ACCESS

We examine the motivation for isolating access to data. Consider the

bfollowing Algol statement:

X := (Y[I] mod 2 t (WORDLENGTH - 14) + (21(WORDLENGTH - 22)); .

The code extracts bits 14 through 22 of Y[I] and stores it into X (where

"WORDLENGTH" is the number of bits in a machine word and bits are numbered

from the left). It seems evident that we would not want to write this rather
cumbersome piece of code for each access of this subfield Y[I]. A major con-

 gideration in having structured identifiers in a language is to improve the

clarity and readability of the program. It is also true that most programs
are subject to fairly substantial modification as they are being built. Quite
obviously the decision to change the format of the variable Y[I] so that the
subfield of interest was no longer bits 14 through 22 but 7 through 15 would
mean a laborious change of all the code that accessed that information.

At present most higher-level languages allow at best two ways of isolat-
ing accesses to data items whose structures are not built into the language--
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macros and procedures. We can define one procedure as an accessor for a whole
class of data items by passing information via parameters., Alternatively we
can define a procedure as an accessor for a particular data item by allocating
space for the data as an own variable of the procedure.

For example, assume that a linear array is being used to represent the
elements of a symmetric matrix. The symmetry of the array. allows the overlay
of elements off the main diagonal. We define the following procedures for

" reading from and writing into arrays of this form:

real procedure LOADSYMMETRIC(A,I,J); real array A[1:100];
integer I,J; ‘
LOADSYMMETRIC := if I > J
then A[I*(I-1)%2+J] -
else A[J*(J-1)+2+1];
procedure STORESYMMETRIC(A,I,J,V); real array A[1:100];
real V; integer I,J;
ifr>yag
then A[T*(I-1)+2+J] :
else A[J*(J-1)+2+1]

i

v
Vs

The intention is for these accessing procedures to serve for several such arrays.
If we wish to apply this structure to only one symmetric array, then the formal
parameter A can be omitted (and A declared an own variable within the procedure).
We can avoid the expense of the function call mechanism by using string
replacement macros.
macro LOADSYMMETRIC(A,I,J) =
if1>7J :
then A[I*(I-1)+2+J]
else A[J*(J-1)+2+1];
macro STORESYMMETRIC (A,I,J,V)
ifr>7J :
then A[I*(I-1)+2+J] :
else A[J*(J-1)+2+1] :

v
v;

Both these solutions have drawbacks:
(a) As mentioned previously, function calls are unattractive
because of their inefficiency.
(b) The presence of two accessing functions for one logical

structure is required because of the left/right distinction
in assigmment statements.

(c) 1If a macro or procedure is defined for a whole class of data
items and we decide to change the logical structure of one
of the data items, then we must search the entire program
for calls on the macro or procedure to change its structure.

(d) Macros have their own problems. Consider:

macro A(B,C) = if GLOBALBOOLEAN then B[C+3] else B[C-3]; .
if "GLOBALBOOLEAN is redeclared in an inner block, subsequent use
of the macro will have the possibly undesirable effect of testing

the new variable. Another unpleasant feature of the macro is the
handling of actual parameters. Consider the macro call:

:= LOADSYMMETRIC (X,F(I),G(J)); .

o
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The expansion of this call produces inefficient and potentially
side-effect-producing results because of the multiple calls on
the functions F and G.

Having pointed out some of the issues that arise when considering how
to implement data structures and having considered several of the problems
associated with implementing data structures in higher-level languages, we
next discuss how Bliss enables the programmer to specify his data structures
and still maintain efficiency. :

BLISS DATA STRUCTURE SPECIFICATION

. NOTES ON BLISS

Bliss is primarily an Algol-like expression language with additional
control expressions to circumvent problems encountered removing the '"go to",:
and with declarations (for allocation) to facilitate independently compiled
modules and special machine features (e.g., registers). The only anomaly
which is relevant to this discussion is that names stand for machine addresses.

+ If we want the contents of a named location, we must use a contents operator

(the ".1"); e.g.,

y « x+1; adds 1 to the address of x and deposits it in the
word addressed by y :
(x+1)y; deposits the contents of y into the word 1 past the

address of x.

The PDP-10 has three types of data: instructions, addresses, and 36~
bit words upon which machine operations may act. These types are determined
dynamically by the interpreting hardware, and type checking is of a negative
nature (e.g., ''this is not a valid address'"). The necessary inclusion of
address manipulation facilities in any system implementation language would
entail dynamic type checking if the logical type '"address" were included.

Visions of inefficiency thus lead to the inclusion of a single data type in

Bliss: the 36-bit word. All operations are valid on this single data type.
Data allocation is by words in the machine; although fields within a
word are addressable, there is no effective way of allocating a part of a
word, Again, for efficiency reasons, Bliss allocates storage to programs in
contiguous words. Allocation is done via explicit allocation declarations; a
specified form of allocation is made, and the declared name is bound to the
machine address of the beginning of the allocated storage. For example,

own A [200] ;

reserves 200 words of core (static) and binds the name "A" to the address of
the allocation. The other static allocation declaration is for global stor-
age. The effect of the allocation is the same as for owns, but the name
becomes available to independently compiled modules which reference the vari-
able via an external declaration.

Local variables are local to the block in which they are declared.
They are allocated dynamically from the normal Algol implementation run-time-~
stack. The local variable name is dynamically bound to an address;




begin local q, R‘[BO] 3 « + o end

allocates one word for Q, 30 for R and binds the names Q and R dynamically

to their respective stack addresses. Recursive entry to a block causes recur-
sive local allocation, unlike the own form. (This is simply the default form
of allocation for Algol declarations; e.g. integer A, ...) The register
allocation declaration requires compile time binding of addresses, but causes
a recursive saving mechanism to be invoked; e.g.

begin register R1; . . . end

causes the contents of the compile-time bound register named "R1'" tq be saved

in the stack (and thereafter upon recursive entry to the block) and restored
upon exit,

BLISS STRUCTURES

There are no structures "built-in" to Bliss as the array structure in
Algol or the cell in Lisp. However, address arithmetic allows the use of any
of the standard structures. For example, we can store the contents of cl.i, .j]
into y (where C is 'a 7 x 9 array) by writing:

Y CH.i%9+.3) 5

(where we have presumed zero-origin indexing in both arguments and contiguous
row storage allocation). :

STRUCTURE DECLARATION--SIMPLE CASE

Naturally, expressions of the above form are quite common and their programming
would become quite tedious without the structure declaration. Its form is
easiest illustrated by example of a 7x9 array:

own C[63];
structure rowof9array[i,j] = .rowof9array+.i*9+.j;
map rowof9array C;

The first declaration allocates 7 * 9 = 63 words of core and binds the address
of the allocation to the name "C'". The structure declaration defines an "access-
ing template' for those names onto which it is mapped; its format is similar to
that of a routine (procedure, function) declaration in which the body may refer-
ence the name of the structure as a formal parameter., The map declaration
associates the structure "rowof%array" with the name "C'". Thereafter, whenever
the name "C" is used followed by a bracketed list of expressions, the effect is
as if the structure were called as a routine with "C'" as the actual correspond-
ing to the routine name (which is used as a formal in the body) and the expres-
sions as the actuals corresponding to the formals of the structure, Consider
the routine declaration below:

routine rrowof9array(rowof9array,i,j) = .rowof9array+.i*9+.j;




The effect of the use of C [3,5] in a program would then be the same as if we
had (declared and) called rrowof9array(C,3,5). A Bliss routine is analagous
to a valued procedure in Algol; however, the value of the routine is the value
of the expression which is the body of the routine. A routine returns a 36-bit
word, and hence, the returned value of a routine may be stored into.

rrowof9array(C,3,5)« &4

assigns the value 4 to array element C[3,5]. Remembering that C (without the
dot) is an address, it should be clear that the above effect is the desired
one.

Note that the Bliss contents operator removes the left/right-side dis-
tinction between structure accessing for storing and accessing for retrieval
(drawback (b) above). Also, macro side-effects are not introduced (drawback
(d)), for the structure is effectively equivalent to a routine, i.e., actual
parameters are evaluated only once and identifiers in the structure body remain
in the context of the structure declaration site.

However, we have introduced some additional drawbacks (soon to be
removed) :

(e) Although we have allowed the flexibility of choosing the accessing

method, we must now write a different structure definition for

' each length row we have; e.g., rowofl2array, or rowof7array.

(f) To allocate storage for the array C, the own above simply alle-

cates the number in brackets of contiguous words--we must in
some sense know how the structure works. Hence, in- the above
we had to know to allocate 7*9=63 words.

STRUCTURES AND MAPP ING DECLARATIONS

Both (e) and (f) are solved in Algol by the array declaration:

"integer array C[1:7,1:9];".

Via the above, an Algol compiler knows to substitute 9 for the row length in
the accessing expression and to allocate 7*%9 words of core for the array.

Bliss extends the structure mechanism to facilitate this by the use
of "incarnation formals'". Use of the incarnation formals to a structure is
indicated by not '"dotting" the formal to a structure; e.g., in

structure array2[i,j] = .array2+.i*j+.j;

- the first occurrence of j in the body refers to the incarnation formal. It

is bound to the corresponding "incarnation actual' when the variable is
mapped: e.g., map array?2 C[7,9]; (in this case, 9).
Hence, the structure and routine correspondence:

structure array2[i,j] = .array2+.i*j+.j;
routine rarray2(incformali,incformalj,array2,i,j) =
.array2+.i*.incformalj+.j;

applies, with the accessing expression for C[3,5] (in this case) having the
effect of the routine call rarray2(7,9,C,3,5). .
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The structure writer knows best the allocation size required for vari-
ables onto which his structure will be mapped; hence, the "size expression"
and "mapping declarations" were introduced into Bliss. The size expression
is specified along with the structure declaration (preceding it, enclosed in
brackets) as a function of the incarnation formals for the structure and of
compile-time constants. All allocating declarations allow the mapping of a
structure along with its declaration;

e.g., structure array2[i,j] = [i*j] .array2+.i*j+.j;
‘ own array2 C[7,9];

The structure declaration defines a size expression, " [i*j] ", and accessing
template, ".array2+.i*j+.j". The own declaration:
1. Maps "array2" onto "C";
2. Binds incarnation actual 7 to the incarnation formal i, and 9 to j;
3. Evaluates the size expression associated with the mapped structure
with the incarnation actuals substituted; i.e. 7 * 9;
4, Allocates the number of words returned as the value of the size
expression; i.e. 63;
5. Binds the name ''C" to the address returned by the own allocation
mechanism,

AN EXAMPLE

The utility of the Bliss data structure mechanism is illustrated by
considering a solution to the following problem:
We wish to solve systems of linear equations with normalized upper-
triangular coefficient matrices; i.e.,
n

D) Xy + j=§+1 cij xj = bi for i = 1,2,...,n

We must read the coefficient matrix and then solve the system for several
sets of constraints. We also know we will be using a paged machine and that
the coefficient matrices may be large.

Noting:
(a) xn = bn )
n-1 def
M x, + I c,. X, =b, =¢c, b = b,' for i=1,...,n-1
i =141 iy 73 i in n i -

(b) is a problem with the same specifications as (1) in one less variable.
Thus, a solution technique is to iteratively subtract the product of the last
found with the column vector (c K ces € ) from the (modified)
constant vector (bI bg o § } %ﬁis then %écomes b' for the next step;
t | I ]
i e., new b' = k' -'k 2 bk. c2k e oo k-] bk ck_-l ’k)o
The algorithm portion (exluding 1/0 and declarations) in Algol might
be:
for k := n step -1 until 2 do
for 1 := k-1 step -1 until 1 do
B[i] := B[1i] - Cc[i,k] * B[k];

The solution is left in the original constant vector, B.




A Bliss implementation (with data structures and storage allocation
specified) which mirrors the Algol program above is:

begin
structure vector{i] = .vector+.i = 1;
structure array2[i,j] = [i*j] .array2+(.i-1)*j+(.j=1);

own vector B[n],
array2 C{n,n];

INPUT
decr k from n to 2 do
decr i from .k-1 to 1 do
B[o‘i] «— -B[-i] - oC[oi, -k]* oB[.k];

OUTPUT & LOOP

end;

Now, note that the above solution:
(a) wastes space for the known zero and unity elements of the co-
efficient matrix;
(b) thrashes considerably (if n is large) in a paged machine, for
the coefficient matrix is accessed by columns in decreasing index
order, but is stored by row in increasing index order.
It can be seen that replacing the array2 structure with:-

structure upperdiag[i,j] = [i*(i-1)/2].upperdiag + (.j=1)*(.j=2)/2 + .i-1;

and changing the mapping of 'C" from "array2" to "upperdiag'", modifies the
program in such a way that it wastes no space for the known constant elements
of "C" and eliminates thrashing by accessing elements in the same column of
the coefficient matrix contiguously. The logical storage map of figure 1 may
help to see this:

1,20 1,30 2,3 1,4| 2,4 3,4 n-2,n |n-1,n

Figure ] .

The above change preserved the "algorithm portion'" of the program=--it
continues to appear much the same as the Algol algorithm--however, the increase
in overall efficiency is significant (presuming, for the moment, that the
structure mechanism is efficient). The simplicity with which the change was
accomplished indicates that 'drawback (c)" has been removed.

5
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SUBSTRUCTURES

Continuing to postpone the efficiency drawback, note that we would like
to use a substructure on the columns of the coefficient matrix. We know that
within the inner loop, each of the elements is taken from the same column, and
thus the same multiplication ((.j-1ﬁ(.j-2)/2) is repeated for each element in
the column. We can indicate this substructure in Bliss via the bind declara-
tion. This declaration is dynamic in the sense that the expression bound to is

evaluated at execution time, upon entry of the block in which the bind occurs.
For example; in

bind X=,Y;

wherever x occurs in the block in which it is declared, the value of the
contents of y will be considered its address.

The bind declaration allows its symbol to be mapped in a manner similar
to the allocating declarations. Hence, we may write:

bind array2 X [7,9] = .y+3;

This indicates to the compiler that the name "X" stands for the address which
is the contents of y plus 3. If "X" is used as a structure access in the block
in which the bind occurs, this address is to be considered the base of a 2=~
dimensional array with at most 7 rows and 9 columns (the semantics of the
"array2" structure defined above).

Binding the name 'COLUMNK" to the base of the kth column of "C" in the
outer loop in the above program, we produce the more efficient and slightly .
more intuitive program:

begin v
% structure declarations for B and C %

structure vector[i]= .vector+.i-1;
structure upperdiag[i,jl=[i*(i-1)/2]
.upperdiag+(.3=2)*(.j-1) /2+.1-1;

global vector B[n],
upperdiag C[n,n];

% Here we would begin the outer loop .to read the
coefficient matrix, "C".

Here we would begin the inner loop to read .the
constant vector, "B".'%

decr k from n to 2 do
begin :
bind vector COLUMNK=C[1,.k];
decr i from .k-1 to 1 do
B[.i]< .B[.1]-.COLUMNK[.1i]*.B[.k];
end

% Here we would output or save the solutions which have
been left in "B", Then we would continue the inner
and outer loops. )

1]
=)
a

E
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EFFICIENCY

Clearly, the efficiency of structure accessing mechanisms highly affects
their utility in a language which is designed for efficient implementation, A
brief note about the compiler is necessary. The compiler first breaks program
text into 'lexemes"--atomic symbols for operators, reserved words, and identi-
fiers. The lexeme for an identifier is unique within its scope; hence,

begin own b; begin own b; ... end; end;

causes the creation of two different lexemes for '"b".

A structure access may best be understood as a lexeme-stream macro
substitution mechanism,* where the structure body defines the lexeme=-stream
(with dots preceding formals removed). At a structure access, the actual
parameters are evaluated (code is produced for their evaluation) and the incar-

nation actuals are retrieved. The compiler inmput is then taken from the struc=
ture lexeme-stream with actuals substituted.
Thus, under the array2 structure above,

c[2,1] « .C[3,5] + 8

will compile as if we had written
(CH+2%9+1) « . (C+3*9+5) + 8

'vhich, because of compiler optimization will compile as if we ﬁad written
(C+19) « .(C+32) + 8

which will generate three machine instructions! The code compiled for our
example is included as an appendix. '

CONCLUSION

Bliss factors the separate issues of allocating storage, binding names
to addresses and structuring the storage referenced by a name. Although all
allocating declarations also bind names to the referenced store, names may be
bound to addresses dynamically via the bind declaration which presumes the

- storage has been allocated for the contents of the named storage. A name may
be structured using the map declaration independent of its allocation and
binding. Because relationships often do exist between these three aspects of
data stfucturing-~allocating, binding and mapping--communication is allowed
via "incarnation actuals', "size expressions'" and "incarnation formals",

Use of the mapping, allocating declarations in Bliss permits the ease
of use of other higher~-level language declarations; the factoring of the
issues of allocation, binding and structuring helps to separate the activities
of data structure programming and algorithmic programming, while maintaining or,
in fact, improving program efficiency.

*Structures are sometimes more efficiently accessed as routines. The current
(unsatisfactory) solution is to compile those structures with declarations
(other than their formal parameters) as routines.

5=12
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APPENDIX

0001 BEGIN

0002

0003 $ MUST BIND AN UPPER BOUND FOR MATRIX DIMENSION %

0004

0005 BIND N=150;

0006 :

0007 % STRUCTURE DECLARATIONS FOR B AND C %

0010

0011 STRUCTURE VECTOR[I]= .VECTOR+.I-1;

0012 STRUCTURE UPPERDIAG(I,J]=[I*(I-1)/2]

0813 .UPPERDIAGH(+J-1)* (-J=2) /2+/1I-1;
001

0015 GLOBRAL THISN, '

0016 VECTOR BI[N],

0017 UPPERDIAG C[N,N];

0020
, 0021 % HERE WE WOULD BEGIN THE OUTER LOOP TO READ "THISN" (THE
0022 SIZE OF THIS ARRAY) AND THE COEFFICIENT MATRIX, "C".
0023 ,

0024 HERE WE WOULD BEGIN THE INNER ILOCP TO READ THE CONSTANT
0025 VECTOR, "B". %

0026 :

0027 DECR K FROM -THISN TO 2 DO

0030 BEGIN

0031 BIND VECTOR COLUMNK=C[1,.K];

0032 DECR I FROM -K-1 TO 1 DO

0033 B(.I)«.B[.I]-.COLUMNK[.I]*.B[.K];

0034 END;

0035

0036 % HERE WE WOULD OUTPUT OR SAVE THE SOLUTIONS WHICH HAVE
.0037 BEEN LEFT IN "B". THEN WE WOULD CONTINUE THE INNER AND
0040 OUTER LOOPS. %

0041

0042 END;
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LINE OFFSET  LABEL

0000

0030 0001 1453:

- 0002

0031 0003
0032 0004
0005

0006

0007

0010

0011

0012

0013

0014

0015

0033 0016 1630:

0017
0034 0020
0021
0022
0023
0024
0025
0026

0027 L503:

0035 0030

0031 1460:

MODULE LENGTH =26+1

COMPILATION COMPLETE

OPCODE-

CAIGE
JRST
SUBI
SUBL
ASH
HRRZI

SUBI
CAIGE
JRST

ADD

SUB

SQJA
SUB

SETZ

REGISTER,ADDRESS (INDEX REG)

13,THISN
13,2

$S,L460

$S, [000001, ,000001]
04,13

04,2

05,13

05,1

04,5

04,-1
06,C-1(4)
06,1 (SF)
14,13

14,1

14,1

$S,L503
07,14

07,1 ($F)
10,B-1(13)
10,-1(07)
10,B-1(14)
10,B-1(14)
14,1630 M4
$s, [000001,,000001]
13,1453 44
$V,0
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BLISS DEBUGGING SUPPORT
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YTy} VERS!ION TWO T TITYY
WMy Ay WULF
APRIL 23, 1971

MODIFIED 2 SEP 71 MG MANUG!AN

INTRODUCTION

.n-.-’------

ODT MAY BE USED 70 DEBWG PROGRAMS WRITYEN IN BLI1SS, HOWEVER,
THE USE OF DDT ALQONE REQUJRES 'A FAIRLY ODETAILED KNOWLEDGE OF THE
RUN=TIME REPRESENTATION OF BL}SS PROGRAMS (STRUCTURE OF
THE STACK, ETC.) AND IS NOT ESPECIALLY CONVENIENT, IN
PARTICULAR, DDT CANNOT EXPLOIT ANY SPECIAL INFORMATION ABOUT
THE STRUCTURE OF THE 0BJECT PROGRAM, THE SER!OUS BLISS PROGRAMMER
1S WELL ADVISED TQ LEARN THE BLISS RUN=TIME STRUCTURE e«
NEVERTHELESS, THERE ARE STILL A NUMBER OF DEBUGGING AIDS
WHICH DDT DOES NOT PROVIDE, IN ORDER TO IMPROVE THE SITUATION,

A MODULE CALLED "HMELP"™ HAS BEEN WRITTEN TQ AUGMENT THE FACILITIES
OF DDT. THIS MODULE MAY BE LOADED (ALONG WITH DDT) WITW ANY

BLISS PROGRAM ==~ ALTHOUGH RECOMPILATION OF HELP 1S NECESSARY

IF THE USER IS NOT USING TWE STANDARD BL1SS SYSTEM REGISTERS,
"HELP" IS WRITTEN IN BLISS AND TWEREFORE ?HWE FACILITIESRIBED BELO
BELOW MAY BE CALLED DJRECTLY FROM THE USERS SOURCE PROGRAM EVEN
THOUGH THEY ARE PRIMARILY INTENDED FOR USE FROM DOT,

HMOW TO USE HELP

--- - - - e e LA B X J

1. THE ROUTINE(S) TO BE LOADED W]TH HELP MUST CONTAIN THE
TIMER SWITCH IN THE MODULE HEAD AND BE COMPILED WITH THE /T SWITCH,
WITHOUT /T THE TIMER SWITCH 1S INGNORED OURING COMPILATION AND,
THEREFORE, MAY BE A PERMANENT PARY OF A MODULE HEAD WITH NO HARM,

2. THE HELP MODULE MUST NOT BE COMPILED WiTW /7,

3. THE MODULES TO BE DEBUGGED MUST BE LOADED WITH DDT AND MWELP

SUCH THAT DOT IS LOADED JUST ABOVE JOBDATY IN THE LOW SEGMENT, FOR EXAMPLEI
.DEB FOO,HELP

WORKS JUST FINE.,

4. NOTE THAT THE FIRST FOUR WORDS OF EVERY ROUTINE ARE DEBUGGING
OVERHEAD AND THAT ACTUAL CODE POR THE ROUTINE [TSELF STARTS AT THE
FIFTH WORD, TO TRACE A CALL Y0 A PARTICULAR ROUTINE, A BREAKPOINT MuS?
BE INSERTED AFTER WORD 4 OTHERWISE THE NECCESSARY MOUSEKEEPING DONE

BY THE FIRST FOUR WORDS OF TWE ROUTINE WILL NOY WAVE BEEN COMPLETED

AND THE STACK WILL NOT BE SET UP FOR PROPER TRACING,

LIKEWISE THE (LASTeSIX)TH WORD TO THE (LAST=ONE)TH WORD OF EACH ROUTINE
ARE DEBUGGING OVERMEAD AND BREAKPONTS INSERTED IN THIS AREA

WILL GIVE UNPREDICTABLE RESULTS, NOTE THAT THERE ARE NO RESTRICTIONS

U=l



IN PLACING BREAKPQINTS IN ACtUAL CODE nurstns OF THE DEBUGGING
PROLOG AND EPILOG,

5, THE ‘ROUTINE BPN IN HELP MUST BE MODIFIED FOR EACH NEW
VERSION OF ODT SINCE IT LOOKS AT THE DDT OBJECY CODE TO DETERMINE
. THE NUMBER OF THE LAST BREAKPOINT, 1T IS CURRENTLY COMPATIBLE WITH
\pOT (VERSION 32, EDIT 23),
THE OMLY SET OF DEBUGGING ROUTINES
WHICH REQUIRE BPN IS THE XAREA{X) SET, THE OTHERS FUNCTION

{NDEPENTLY OF BPN,
TO MODIFY BPN APPROPRIATELY, DO THE FOLLOWING!
A, DETERMINE THE VALUE OF THE SYMBOLS

BCOM3
BLADR

IN UDDT BY LOADING DDT.REL FROM SYS AND TYPING
THEIR VALUES!

+LOA XS SYSiDDT

LOADING
LOADER NK CORE
EXIT
.00
BCOM3®NNNN BLADREMMMM
B, INSERT THWE TWO VALUES JUST TYPED INTO THE
APPROPRIATE BINDS IN BPN IN THE SOURCE OF HELP,BLI’
c. RECOMPILE WELP,BL!

OF COURSE, YOU MAY ALSO PATCH THE STANDARD VERSION OF HELP
WITH DDT AFTER LOADING DDT, WELP, AND THE MODULE(S) TO BE DEBUGGED
CONSULT AN EXPANDED(/M) LISTING OF HELP TO DETERMINE WHICH LOCATIONS
IN CORE TO MODIFY,

FACILITIES

FE A R X K X AN ]

THE FEATURES CURRENTLY IMPLEMENTED ALLOW DISPLAY OF THE
USER’S STACK, TRACING OF CALLS ON SPECIFIC ROUTINES,
DISPLAY OF VARIABLES AND REGIONS, AND AN EXTENSION OF THE
ALT=MODE=X ($X) FEATURE OF DDY, THESE FEATURES ARE PROVIDED
BY A SET OF GLOBAL ROUTINES {N THE HELP MODULEJ THESE ROUTINES
ARE DESCRIBED IN DETAIL BELOW,

~ THERE ARE THREE WAYS IN WHIGH ONE OF THE ROUTINES IN HELP MAY
BE ENTERED: A DIRECT CALL PROM THE USERS PROGRAM, FROM A DDT
CONDITIONAL BREAKePQOINT, OR BY EXECUTING A "PUSHJ" WITH THE

ODT ALT=MODE=X FEATURE, THE READER 1S PRESUMED TO BE FAMILIAR

WITH THESE FEATURES OF DAY, - g
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CONSJDER AN EXAMPLE: "XSTAK" 1S ONE OF THE ROUTINES
PROVIDED == ITS EFFECT IS TO PRINT A DISPLAY OF THE
USERS STACK, SHOWING THE RQUTINES CALLED, WHERE THEY WERE
CALLED FROM, THEIR ACTUAL PARAMETERS, AND THEIR LOCAL VARIABLES,
THE FORMAT OF THIS DISPLAY WilLL BE DESCRIBED BELOW, NOW,
SUPPOSE YOU HAVE A ROUTINE NAMED "THUD" AND YOU SET A 0DT

" BREAKPQINT BY TYPING:

THUD+28B

AT SOME LATER TIME, WHEN YOUR PROGRAM IS RUNNING A CALL WILL

. BE MADE ON THyD, THE BREAKPOINT WILL OCCuR, AND DDT WILL

TYPE:
ENB>>THUD®2

AT THIS PQINT YOU MAY DISPLAY THE CURRENT STACK BY USING
"XSTAK"™ AND ENTERING T VIA THE $X FEATURE »e 1E, TYPEe

PUSHJ SREG,XSTAKSX

(BE SURE TO USE THE PROPER VALUE FOR "SREG" == NORMALLY
1T/S 2.) AFTER THE DISPLAY 1S FINISHED YOU/LL BE BACK
IN DOT AND MAY PRQCEED VIA AN $P, OR DO WHMATEVER ELSE
SUITS YOUR FANCY,

AN ALTERNATIVE TO THE EXAMPLE ABOVE IS f0 USE THE
CONDITIONAL BREAKPOINT FEATURE OF DDT, FOR EXAMPLE, SUPPOSE
YOU SET BREAKPOINT #1 AT THUD BY TYPING

THUD+2%1B

AND SET THE CONDITIONAL BREAKPOINT INSTRUCTION AT $1Bei
T0 THE SAME OLD PUSHJ:

$18+1/ XXXX PUSHWJ SREG,XSTAK

NOW, AS SOON AS THE CALL ON THUD IS MADE THE STACK WILL
AUTOMATICALLY GET THE STACK DISPLAY w»= THEN THE BREAKPOINT WILL
OCCUR, THIS MODE OF USING HELP 1S MORE USEFUL WITH SOME

OF THE OTHER HELP ROUTINES TO BE DESCRIBED BELOW,

ALL OF THE GLOBAL ROUTINES IN MELP HAVE NAMES OF THE
FORM: '

X2ZZ2
OR Xg222C
OR XE2228
OR XE2ZZ2EP

THAT 1S, THEY ALL START WItW THE LETTER "X" FOLLOWED

BY A FQUR CHARACTER NEMONIG, FOLLOWED BY A BLANK, A "C"“,

A "B", OR A "P", ROUTINES WITH A COMMON :

wZZEZ" ALL PERFORM THE SAME PUNCTIONj THE SUFFIX DETERMINES
WHAT HAPPENS AFTER THE FUNCTION 1S COMPLEYTE, IN PARTICULAR
THE FOLLOWING TABLE SUMMERIZES THE MEANING OF ¥HE VARIOUS
SUFFIX LETTERS:

Cea



SUFFIX ~ MEANING:

bl Rl ol '.Q-p.'-.Q.Qﬂ.-Qﬂ-Q-q-.QW'”..--.q..-.Q.-q

BLANK «!F CALLED FROM A USER PROGRAM, SIMPLY
RETURN AND PROCEED AS USUAL,
P CALLED BY $X, RETURN T0 DOT
t0 PERMIT USER TO DO WIS THING,
«]F CALLED FROM COND, BREAKPOINT, TREAT
AS A "B"™ SUFFIX (SEE BELOW),

c «FOR CONDITIONAL BREAKPOINT ONLY,
AFTER COMPLETING FUNCTION CAUSE
DOT 70 DECREASE 11S PROCEED
COUNT AND POSSIBLY BREAK,

B FOR CONDITIONAL BREAKPOINT ONLY,
AFTER COMPLETING PUNCTION FORCE
A BREAK,

P FOR CONDITIONAL BREAKPOINT ONLY,

AFTER COMPLETINF FUNCTION FORBE
PROGRAM TO PROCEED (LIKE AN $P),

THE GLOBAL ROUTINES PROVIDED IN THIS RELEASE , AND THEIR
FUNCTIONS, ARE SUMMER]JZED IN THWE FOLLOWING TABLE!

ROUTINE FUNCTION
FAL XL L KR ] -.p---v-.'.n.pq.-.'.--."'”----nqﬂﬂtﬂﬂ..-.'..QQ.
XSTAK DISPLAY THE USERS STACK IN THE FORMi
XSTAKC
XSTAKB A (e Bel3) 110,.0 212,,1356
XSTAKP 112,.,13 2117082, X»1

B (= C#25)

C (e D*d4) 114,.1

ETC,

THE NAMES IN TWE LEFT COLUMN ARE THOSE OF THWE
VARIOUS ROUTINES CALLED, ON THE SAME LINE IN THE
LOCATION FROM WHICH THE ROUTINE WAS CALLED,
EG, "(+ C®25)", AND THE ACTUAL PARAMETERS
DISPLAYED !N MALFeWORD OCTAL FORMAT, ON THE
LINES BELOW tHE CALL ARE THE VALUES OF THE
LOCAL VARJABLES OF THE ROUTINE, NOTE THAT

THE ACTUALS AND LOCALS ARE IND{CATED BY
POSITION = NOYT NAME, ALSO, BE CAREFUL = SOME
LOCALS ARE AUTOMATICALLY GENERATED BY THE
COMPILER se SO THE POSITION MAY NOT EXACTLY
CORRESPOND WITW 17S DECLARATION POSIT]ON,

THE LOCAL POS!¥IONS DO CORRESPOND WITH

THOSE SHOWN {N THE "/M" LI1STING GENERATED

BY THE COMPILER, THE INITIAL ROUTINE EXECUTED
MAS A NULL CALLER)

T

U




XCALL

XCALLC
XCALLB
XCALLP

XAREA
XAREAC
XAREAB
XAREAB
XARE AP

XALTX

THESE ROUTINES DISPLAY, IN A FORMAT LIKE THAT
ABOVE THE MOST RECENT ROUTINE CALL, ONE USEFUL "
APPLICATION OF THESE ROUTINES 1S THAT

OF TRACING THE EXECUT]ON OF ONE

PARTICULAR ROUTINE, BY PLACING A CONDITIONAL
BREAKPOINT AT THE HEAD OF THE ROUTINE TO BE
TRACED AND A "PUSHJ SREG,XCALLP" IN THE
APPROPRIATE CONDwBP LOCATION A TRACE OF THE
ROUTINE WITH 1TS ACTUALS WILL BE OBTAINED,

THESE ROUTINES DISPLAY A NUMBER (CURRENTLY 8)
OF CONTIGUOUS AREAS OF MEMQRY iN HALF WORD
OCTAL FORMAT

THE AREAS Y0 BE DISPLAYED ARE DEFINED

BY NINE TABLES CALLED XAREAZ, XAREAL;,,,:
XAREAB., EACH OF THESE TABLES 1S EJGHT WORDS
LONG = THE FORMAT OF EACH WORD IN THESE
TABLES IS1

LY F PR Y EEYY Y LT YRy Y ¥ X

'
S{ZE ! BASE
!

L T LI LY L e Y T L LY X

- ®® om o= »
- ow ow o= =™

IF ONE OF THESE ROUTINES IS ENTERED FROM .
CONDITIONAL BREAKPQINT #N, THEN THEY WILL
PRINT THE REGIONS DESCRIBED BY THE TABLE
"XAREAN",

IF, FOR EXAMPLE, YOU WANT T0Q D]SPLAY
A FIVE-WORD REGION WHOSE BASE ADDRESS 1S
"GLOP" EVERY TIME THE ROUTINE "THUD" IS
CALLED YOU MIGHT TYPE!

THUD#2818B
$iB+ei/ XXXX  PUSHJ SREG,XAREAP
XAREAL/7 XXXX  5,,GLOP

THEN SIT BACK AND WATCH,
THI1S ROUTINE 1S A GENERALIZATION OF

THE "$X" FPEATURE OF DDT IN THE SENSE THAT

1T PROVIDES AN INTERFACE BETWEEN ODT AND ANY
ROUTINE WRITTEN IN BLISS, IT WORRIES ABOQUT

ALL THE MESSY DETAILS OF SAVING REGISTERS,
ETC., NECESSARY T0 GET FROM DDT INTO A

BLISS ROUTINE AND BACK AGAIN WITHOUT DESTROYING
THINGS ALONG THE WAY, THE ADDRESS OF THE

BLISS ROUTINE T0 BE CALLED 1S SPECIFIED BY

THE CONTENTS OP ONE OF THE WOROS) XALTX@,
XALTX4s .%o XALYX8, IF XALTX IS CALLED FROM
CONDITIONAL BREAKPOINT #N (Ns@ IF DIRECY

OR EXPLICIT "§X" CALL) THEN THE

CONTENTS OF XALTXN WILL BE USED TO SPECIFY

THE ROUTINE t0 BE CALLED,

THE ROUTINE CALLED INDIRECTLY THROUGH
XALTX 1S EXPECTED TO RETURN A VALUE OF 2,1, OR 2
e THESE VALUES ARE INTERPRETED LIKE THE
C,B,AND P BUFFIXS RESPECTIVELY,
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CONCLUSION -

F A L K X X LN J

THE FACILITIES DESCRIBED ABOVE ARE A PRELIMINARY SET
 WHICH WILL BE EXPANDED IN THE FUTURE, 1 HOPE, NAY EXPECT,

“USERS OF MWELP TO SUGGEST ADDITIONAL AND/OR REVISED
FEATURES,

v
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MONULE HELP=

BEGIN
l ' HELPER
| andan VERSTION T WO sedas

! TWIS MODULE CONTAINS SEVERAL ROUTINES WHICH MAY BE LOADED WITH
! A NORMAL BL!SS MODULE T0 PROVIDE DEBUGGING SUPPORT =« IT

! PRESUMES THAT 'CDT' 1S ALSO LOADED}

| .

EXTERNAL DDTEND,DDT,JOBSYM, JOBREL ) JOBHRL}

3I\D BUFFLENGTH=15)

OWrn BUFFCBUFFLENGTKDS
AWN PBUFF} ! POINTER INTO THE QUTPUT BLUFF

MACRO EBUFF= (BUFF+BUFFLENGTH)S,
BRUFF= BUFF<36,7>%,
SAVREGS® REGISTER 1j)1e«15;00 PUSH(SREG,@,1) WHILE(le,le1) GTR 218,
RESREGS® 1ee15)D0 POP(SREG,#22,1)WHILE(!*,1+1)1SS 21%,
SUBRET(L,V)® IF ,(L)<2,18>LSS(DDTEND AND#777777) THEN
(LYo, (L)e(V)IE,
ENTER= SAVREGS}) S, |
LEAVE(LL,VV)S RESREGS}) SUBRET(LL VV)) ,VREG $}

MACKHOP PUSHs#261, POP=#262;
BIMD  AREASZ=28, NUMAREASa8)

STRUGTURE SATC!,J]) = [l1e d¢,SAT+.1#AREASZ,J)<0,36>;

GLoBal XAREADIXAREALIXAREA2IXAREAZ!
XAREA4$XAREASIXAREASIXAREAT
XAREABCARFASZ])

BIND SAT XAREAS = XAREAQS

GLOBAL XALTXO» XALTXL,XALTX2,XALTX3,
XALTX4)XALTXS, XALTX6,XALTX7,
XALTX8}

FORWARD FIXF}

GLABAL ROUTINE TIMER= ,
(FIXF(#142,,J0BRELCZ,18>) 1 FIXF(#400010,,J0BHRLCZ)1E>) 1)}

1FIX UP THE STACK THE WAY HELP. EXPECTS 1T YO BE,

11.E., INSURE THAT THE FRES 1S PROPERLY PUSHED ONTO THE
1STACK AT THE BEGINING AND POPPED OFF AT THWE END OF EVERY
IRAUTINE AS IT WAS IN THE G0Op OLD DAYS,

ROUTINE FIXF(START,FINISH)®
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\\\

ENDJ

BEGIN
BIND FaFREGK?,0)>, SzSREGCD,2>)
MACRO MACHWORD(OP,AC,AD)= OP*27+¢AC*23+ADS,

PUSHSF=MACHNORD(#261133F)Sn
PUSHS12sMACHWORD(#264,2,#12)8,
POPSFaMACHWORD(#262,8,F)%,
HRREFSIMACHNORD(#SSQ.F.S’S.
JRSTHPL23MACHWWORD (#254,0,,1¢2)8,
JRSTHPLA4ZMACHWORD (#2%4,0,,144)%,
JRSTHPLB2MACHWORD (#254,0,,1+4)%,
JRSTHPLO=MACHWORD (#254,0,,1¢5)8)

MACHOP CALLI=#247, JRST=z#254)
REGISTER R}
BIND SETUWP=#36;

Rel}) !TURN OFF WIGH SEG WRITE PROTECT
CALL! (RsSETUWP)}
JRST (4,0)) 'HALT ON SETUWP ERRQR

INCR I FROM ,START T0 ,FINISW « 11 DO
IF ,(@1)<18,18> EQL #551+94#12+5 AND @(01+1) EQL PUSHS12
THEN IF (®144)C27:9> FQL %265 XJSPX
THWEN

BEGIN
(01)<8,36>¢ JRSTHPL 4}
UNTIL ,(®1)¢18,18> EQL #561¢94#12+5 D0 [*,1+1;
Ir 0(0101) EQL PUSHS12

THEN (®1w1)<ps36>*JRSTHPLG}
ENC
ELSE

BEGIN
(@1)€2,36>e JRSTHPL 2]
(0162)¢D,36>%PUSHSF)
(0143)¢P13I6>*HRREFS)
UNTIL L\ (®1)<18,18) EOL #564¢94#12¢5 DO l*,1+1;
IF e(erel) EOL PUSHWS1L2

THEN
BEGIN
(01e1)€@, 36>« JRSTHP B}
(01+4)€0,36>=POPSF]
END
ENC

ROLUTINE FSOTH(X)®

tF
1F
1F
1F
tF

X EQL @ THEN @ ELSE
X LEG #12 THEN ,X+#17 ELSE
X LEQ #44 THEN ,Xe#26 ELSE
X EQL #45 THEN #16 ELSE

X EQL W48 THEN #04 ELSE #0251
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ROUTINE B5BT&(X)n
REGIN REGISTER R}
Xe X AND #37777777777) Reg)
DECR | FROM 5 T0 @ Do
. (R*,R4(=6)) R<30,6>F50T6(,X MOD #50)3 Xe,X DIV #50);
ENDJ

ROUTINE BPN=
! THIS ROUTINE MUST BE CWANGED FOR EACH VERSION OF DDT »-
! OR, BETTER YET, DDT SWOULD BE CHANGED TO MAKE TWE MOST
! RECENT BREAK POINT NUMBER AVAILABLE,
REGIN BIND BCOM3=#1536, BLADRR#3627)
(((@BCOM3=1) AND #777777)=(B1ADR=3))/3
END

ROUTINE SDDTST(x)=
BEGIN REGISTER R,NI OWN ZN:22} ZZeZNed}
Re ,JOBSYMel; NegZ}
WHMILE (Re,R+#2200022) LSS 2 DO
IF (®0R=-,X) LEQ 2 THEN
_ IF (®@R-G@N) GEQ @ THEN N*,Rj
. N"'i
END}

ROTINE DyMps
REGIN MACHOP CALLI®#47) REGISTER R}
ReBUFF) CALLIC(R,#3); ReBUFFLENGTHS
D0 BUFFCL,R1«0 WHILE (Re,Rel) GEQ 0)
PBUFF«BBUFF
END}

ROUTINE INITHELP® (BUFFegs DUMP()))

ROUTINE PUT(X)=
IF X NEQ@ 2 THEN
BEGIN )
IF PBUFF EQL @ THEN INITHELP() ELSE
IF ,RPBUFF GEQ EBUFF THEN DUMP()}
REPLACEI(PBUFF,  X)
END}

ROUTINE PUTS(X)=
WHILE X NEQ B DO (PUT(,X<28,7>)) X« ,X¢7)}

ROUTINE CRLF® (PUT(#15)) PUT(#12)) DUMP()))
ROUTINE TAB® PUT(#11))

ROUTINE PRINTO(X)=
BEGIN LOCAL L}
MECR I FROM 5 T0 2 Do ‘
(Le X<32,46>) Xe,x*6) 1F L NEQ @ THEN PUT(,L*#42)))

END;
ROUTINE PRINTS@(X)s PRINTS(BSBTA(,X)))

ROUTINE PMOC(X)=
BEGIN LOCAL T) T2}
RECR ! FROM 11 70 1 no
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IF X<3#,1,3> NEQ % THEN EXITLOOP (Te,1);
NECR I FROM T TO 2 nO PUT("a"e ,X<38,1,3>)}
END}

ROUTINE PDISP(X,T)=
IF .X<@,18> | SS (DDTEND AND #777777) THEN PMOC(,X<2,18>) ELSF
QEGIN LOCAL L
LeSDDTST(,X<2,18>)1 PRINTSO(QEL)}
TF T AND (Leo®(@L*1)+,X<2+18>) GTR # THEN
(PUT("em) ) PMOC(.L))}
FND3

ROUTINF SPN(N)= INCR 1 FROM 1 Tp ,N DO PUT(™ ")

ROITINFE P2C= (PUT(",")} PUT(","))}

ROUTINE SP3=z SPN(3)}

ROUTINE PWD(X)=z (PMOC(+X<18,182>); P2C(); PDISP(.X<2,18>,1))1
ROUTINE PWD2UX)=IF X GEM 2 THEN PuDC4X) ELSE (PUT( =) PMOC(=,X))}
ROUTINE PWO(X)= (PMOC(.X<18,18>); P2C()) PMOC(,.X<@,18>))}

ROUTINE PRG(BASE,F,T)=
INGR 1 FROM ,F TO T DO
BEGIN
PMOC(, 1)1 PUTS(": ")) PWN2(@(,BASE+,!=1))3 SPN(4)}
IF NOT .1 THEN (CRLFC()} TAR())
END3;

ROJUTINE PRC(F,CALLED)S=

REGIN LOCAL NP,LP,CALLER}

CALLER®,(,F=-1)<7,18><1}

NPe IF L(®(,F=1))<27,9> \NEC #274 THEN 2 ELSE
IF (@(,F=1)-2)<27,9> NgQ #261 THEN 2 ELSE
(PR F=1)0<2,48>;

LPe ,F=1=,NP}

PDISP(CALLED 2)3 TAR()3 PUTS("(«")} IF ,CALLER NG «1

THEN PDISP(,CALLER LY} PUTEM™M)M)

TAR()} PRGC(,LPs1, NP}

LCALLERK®Z,18>+,NP¢18

END

ROUTINE PSTK=

REGIN LOCAL F,CALLED,VAL,LL,NL}

VAL*,VREG} Fw@®8@FREG) NL*@FREG= ,F=2} L, ,F¢l}

CALLED® . (®(,Fe1)=10<2,18>) CRLF()}

UNTIL «CALLEDKZ,18> £QL #777777 DO
BEGIN LLe,Fel) CRLF()}
CALLED®PRC(,F,CALLEDC2,18>)1 CRLF()) TAB()3 PRG( LL, 1, ,NL}}
NL*@F=-2@F=,CALLENC18,18>-21
FeraF}
END3

VAL

ENDS

ROUTINE PFRC=(LOCAL F) CRLF()} Fe®®®FREG; PRC(.,F,,(®( ,F=1)s1)<3,18>)1)1

ROUTINE PAREA=
7-4

»,




&

REGIN LOCAL J,K,N,BNy BN«BPN()SCRLF ()}
INCR | FROM © TO AREASZ~1 DO 4
BEGIN BIND AREA=,XARFAS[C.BN,.l1J<2,18>}

CRLF ()

J“uXAREAS[lB“nII]<18;18>3N”0|

IF AREA NEG 2 THEN

DOCCRLF()IPDISP(AREAL NI, 1) 3PUT("/™)TAB() )

END;

ENDS

SLoBAL
GLABAL
GLIBAL
GLABAL

GLaBAL
GLABAL
GLoBAL
GL2BAL

GLOBAL

GLOBAL
GLoBAL
GLOBAL

GLoBaL

ROUTINE
ROUTINE
ROUTINE
ROUTINE

ROYTINE
ROUTINE
ROUTINE
ROUTINE

ROUTINE
ROUTINE
ROUTINE
ROUTINE

ROUTINE

WHILE (Ne ,N#1} Je,J=1) GTR 01

XSTAK(X)=(ENTEZR!
XSTAKC(X)=(ENTER; PSTK()} LEAVE(X+1,2))]
XSTAKB(X)=(ENTER; PSTK()) LEAVE(X+1,1)))
XSTAKP(X)a(ENTER) PSTK()} LEAVE(X+1,2))3

PSTK()3 LEAVE(X+1,1))}

XCALL(X)=(ENTER)

XCALLC(X)=(ENTER;
XCALLB(X)=(ENTER;
XCALLP(X)=(ENTER}

PFRC(}
PFRC() 3
PFRC()Y;
PFRC()

LEAVE(X+1,1))
LEAVE(X+1,2))}
LEAVE(X+1,1))i
LEAVE(X+1,2)))

XAREA(X)=(ENTER) PAREAC)Y} LEAVE(X+1,1))1
XAREAC(X)a(ENTER; PAREA()3 LFAVE(X+1,7));
XAREARB(X)=(ENTER; PAREA(); LEAVE(X+1,1))3

XAREAP(X)=(ENTER; PAREA()) LEAVE(X+1,2));

XALTX(X)=(¢LOCAL L3 ENTER; Le(®XALTXZLBPN()I1) ()}

LEAVE(X#1,,L))}

EN™

ELUDNM

PWO2(®AREAL ,ND1))
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pe10e
00202
gP300
eo4ee
60520
PB6R0
20700
'TLLY:
82500
01022
01172
01207
1320
p1422
01500
16202
81722
81820
21590
p2R80
p210a
p22832
2300
82400
82520
2603
82700
82807
g29es
83000
83100
03200
83320
83400
23500
36002

-==-=BL!SS TIMER MODULE=<aa

THE BLISS TIMER MODULE CONSISTS OF A SET OF ROUTINES
WHICH ENABLE THE USER TO GATHER TIMING STATISTICS ON BLISS
PROGRAMS DURING EXECUTION, THE TIMING SYSTEM CONSISTS OF
THE BLISS MODULE "TIMER"™ AND THE MACRO=10 MODULE "TIMINT®

IN ORDER FOR THE TIMING ROUTINES tO FUNCTION, THE TIMER
ROUTINES AND THE SYSTEM TO BE MONITORED MUST BE LOADED WITH
00T (THE /D SWITCH TO THE LOADER, XD SWITCH TO CCL, OR THE
OEBUG COMMAND ALL ACCOMPLISH THIS), ASSUMING THE USER
WISHES TO MODIFY AND RECOMPILE HIS MAIN PROGRAM (A WAY 0
AVO1D THIS S DISCUSSED BELOW), HE MUStT ADDM

EXTERNAL TIMSET,TIMEND;
TO HIS DECLARATIONS, AND THE CALLS IN THIS MANNERI

< BEGINNING OF MAIN PROGRAM >

TIMSET() |

< MAIN BOOY OF MAIN PROGRAM >

TIMEND ()

< END OF MAIN PROGRAM >

THE <BEGINNING> MAY INCLUDE STACK INJTIALIZATION IF NOT

OONE IMPLICITLY BY THE STACK DECLARATION IN THE MODULE HEAD,
PLUS ANY PROCESSING TME USER WISHES TO DO BEFORE TIMING
BEGINS., ALL CODE EXECUTED BETWEEN TIMSET() AND TIMEND()
WILL B8E MONITORED' THE <ENDD> MAY CONTAIN ANY OTHER

PROCESSING, IN PARTICULAR, THE CEND> MAY CONTAIN CALLS ON
THE OUTPUT ROUTINES DISCUSSED BELOW,
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021002
22020
Ba32Y
go4p2
02520
00620
22722

po8aB

gesen
gi1oed
pi1ce
P1206
g13ee
pl4e2
p15¢2
plLeoe
gi72e
pL800
91902
pRoRL
g21e2
p2202
pe3ge
2400
2520

g2620

g270@
Q2802
29029
p3oew
g3100
93200
03322
23420
2350¢
p36Do
23729
p38@0o
p3920
g4oe0

gé4102 -

4222
P4300
24409
P45¢72
04622
p4a72p
p48an
g49g2
p5027
p5120
@5200
25300
g5429
@552
p5600
@570¢
g58¢02
g59p0
poaeod

--------TIMING 0UT~PUT~-------

THE COLLECTED STATISTICS ARE SQRTED BY THE REPORTING
RQUTINES AND OUTPUT IN THE FOLLOWING FORMAT:

LOST TIME #sasboons 3 AneX
METERED TIME #ssnsane n saaX
TOTAL TIME swwseass = 100%
OVERHEAD RATIO #eee¥%

DEPTH OF CALLS wennos

STACK LEFT sewunsne

TAOTAL RTMNS ssunoase

TOTAL CALLS nessnonns

NAME =-=CALLSwe= ==«ROUTINEw== «CUMULATIVEs RTN AVG

AAAAAA  noasnuusn S08Y GEKSBERE BREY  ARDBRLE BERY  ARBABANE SRNBERNNN

"LOST TIME"™ 1S THE PERCENTAGE OF TOTAL EXECUTION TIME
THAT WAS SPENT ACCUMULATING STATISTICS, THIS IS PROVIDED
FOR INFORMATION ONLYs 1T DOES NOT INDICATE THAT THE ACTUAL
FIGURES HAVE AN ERROR INTRODUCED BY THE FACT THE ROUTINES
HAVE BEEN TIMED,

"METERED TIME" IS THE ACTUAL TIME SPENT IN EXECUTING THE
USER’S CODE,

"TOTAL TIME"™ 18 THE SUM OF THE TWO ABOVE TIMES AND IS
THE TOTAL EXECUTION TIME QF THE PRQGRAM BEING MEASURED, FROM
THE RETURN FROM TIMSET({) TO THE CALL ON TIMEND(),

"OVERHEAD RATIO" 1S THE PERCENTAGE BY WHICH EXECUTION
TIME INCREASED AS A RESULT OF THE SYSTEM BEING TIMED, THIS
IS THE COST OF MAKING THE MEASUREMENTS

"DEPTH OF CALLS" 1S THE MAXIMUM DEPTH TO WHMICH CALLS
WERE DYNAMICALLY NESTED,

"STACK  LEFT" 1S THE  MINIMUM NUMBER OF WORDS
(APPROXIMATELY) LEFT AT THE TOP OF THWE STACK AT THE DEEPEST
CALL, TO COMPUTE THE MAXIMUM DEPTH QF THE STACK, SUBTRAET
THIS VALUE FROM YOUR STACK SIZE,

"TOTAL CALLS"™ IS TWE TOTAL NUMBER OF ROUTINE ENTRIES
PERFORMED,

THE REMAINING FiGURES COME OUT TABULATED IN COLUMNS, AS
FOLLOWS:

THE "NAME" COLUMN CONTAINS THE NAME OF THE BL!SS ROUTINE
OR FUNCTION, : g=2
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pé1ad
g62¢®
p6324a

- g640:

ges5e¢
geene
67048

goesed

6500
p792¢
@710¢
27200
87300
27400
g7520
g760¢
g77¢0
p’782¢
g7902
PeACR
g810¢
282002
P83y
28400
@8509
p86eRez
p872p
g88sgo
P592d
gopoa
go1an
p9220
9322
P420
g950a¢
go622
9722
p9800
p9900
12000
12109
12209
12308
12400
12509
106920
127080
12800
12908
11000
11100
11200
11392
114022

115092

11600
11720
11800
11902
120082

THE "CALLS" COLUMN CONTAINS TWO FIGUREST THE NUMBER OF
TIMES THE ROUTINE WAS CALLED, AND THE PERCENTAGE OF THE
TAOTAL CALLS WHICH THIS CONSTITUTED,

THE "ROUTINE"™ COLUMN CONTAINS TWO FIGUREST THE TOTAL
AMOUNT OF TIME SPENT IN THE ROUTINE, EXCLUSIVE OF ITS
SUBROUTINES AND THE PERCENTAGE OF THE TOTAL METERED TYIME
WHICH THIS CONSTITUTED, :

THE "CUMULATIVE" COLUMN CONTAINS TWO FIGURESH THE TOTAL
AMOUNT OF TIME SPENT IN THE ROUTINE, INCLUDING ALL 17S
SUBROUTINES (WHICH MAY INCLUDE ITSELF), AND THE PERCENTAGE
OF TOTAL METERED TIME WHICH THIS CONSTITUTED,

- THE "RTN AVG™ TIME IS THE ROUTINE TIME DIVIDED BY THWE
NUMBER OF CALLS} THE "CUM AVG" TIME IS THE CUMULATIVE TIME
DIVIDED BY THE NUMBER OF CALLS.

ALL TIMES GIVEN ARE IN "TICKS", WHERE A TICK IS 1o
MICROSECONDS.,

THE OUTPUT MAY BE SORTED IN ANY OF THE AVAILABLE FIGURES
STORED BY THE TIMESORT() ROUTINE; HOWEVER, SEVERAL SORTS ARE
:RE-SPECIFIED AND INCLUDE OUTPUTTING OF THE SORTED DATA,

HESE ARE:

TIMSTL SORTED BY NAMES, ASCENDING,

TIMST2 SORTED BY TOTAL CALLS, DESCENDING,

TIMST3 SORTED BY ROUTINE TIMES, DESCENDING,

TIMST4 SORTED BY CUMULATIVE TIMES, DESCENDING,
TIMST5 SORTED BY AVERAGE ROUTINE TIME, DESCENDING,

TIMST6 SORTED  BY AVERAGE CUMULATIVE TIMES,
DESCENDING,

TIMST7 SQRTED BY ADDRESSES, ASCENDING,

ALTHOUGH TIMST? DOES NOT APPEAR OBV]OUSLY USEFUL.,
CONSIDER THE PROBLEM OF FINDING OUT WHICH MEMORY AREAS ARE
MOST HIGHLY ACCESSED IN A SYSTEM RUNNING ON A PAGED MACHINE,

THESE ROUTINES MAY BE CALLED FROM THE USER’S MAIN
PROGRAM BY DECLARING THEM "“EXTERNAL", OR FROM DDT (SEE
BELOW). .

THE COLUMN ON WHICHW THE OUTPUT 1S SORTED IS INDICATED BY
AN ASTERISK ABOVE THE COLUMN. NOTE THAY THE NUMBER OF THE
SORT (1-6) CORRESPONDS TO THE COLUMN POSITION OF THE DATA
SORTED.

IN ADDITION TO TWESE REPORTING ROUTINES, A ROUTINE
"TIMALL()" 1S AVAILABLE WHICH CALLS ALL THE TIMING REPORTS
(TIMST1=TIMST7) AS WELL AS THE LOCALIZATION REPORTS
(TIMST8=TIMST9 [SEE BELOW)),
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gRign

@220y
g23pa
pR4ae
gas50e
P26

gazge-

g8
gBoaz
gLogd
giiew

pLa2og.

1380
2140232
pi524d
pL6@27
RL700
L1802
21929
2022
22102
222072
02300

-==-wLINE PRINTER®®=«-=

OUTPUT MAY BE DIRECTED TO THE LINE PRINTER BY CALLING
THE ROUTINE "TIMLPT()", ALL FURTHER OUTPUT WILL BE CIRECTED
TO THE LINE PRINTER (LPT) UNTIL REDIRECTED TO THE TTY BY A
CALL TC "TIMTTY()", TIMLPT() SHCULD NOT BE CALLED UNTIL

AFTER  TIMEND() 1S CALLED, THESE TWO ROUTINES MAY ALSO BE
CALLED FROM DDT,

ALL 170 IN THE USER/’S PROGRAM SHOULD BE CORRECTLY
TERMINATED, SINCE A "CALL CSIXBIT /RESET/I" UUD IS EXECUTED
PRIOR TG EACH PRINTING, NOTE THIS ALSO RESETS JOBFF TO
»JOBSAC18,18> AND SETS THE WRITEwPRQTECT BIT IN THE HIGH
SEGMENT, IF ANY OF THESE HAVE AN ADVERSE EFFECT ON TWE
PROGRAM OR LATA BASE, THEN PRINTER CUTRUT MAY NOT BE USED,

IF SPOOLING !S IN OPERATION, EACH SET OF STATISTICS 1S A
SEPARATE LISTING

THE CHANNEL USED FOR LPT QUTPUT IS SPECIFIED BY A MACRO

IN THE BEGINNING OF THE PROGRAM, IT MAY BE CHANGED BY THE
USER (SEE: STANDARD MODIFICATIONS),
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g2iez
g2292
ga3ege
go4Ro
0502
p260U
go7ap

pesep.

po9en
1220
giies
glaeo
g13€0
pl4049
gis5ee
gleeo
21728
gleoee
p19¢2
2000
21022
2202
23012
2400
22502
g26pd
g27eu
p2820
292

- @30dY

e31gd
3200
@33020
23420
03502
p360292
23700
@3800
23922

g4oRe

- ==STANDARD MODIFLCATIONS »®ea

THE TIMER MODULE CURRENTLY CONTAINS I1TS OWN DATA AREAS
AS "OWN" STRUCTURES, THE SIZES COMPILED INTO IT AT THE
MOMENT MAY NOT BE SUITABLE FOR ALL SYSTEMS; THEY MAY BE 100
SMALL (OR EVEN TO0 LARGE!), IF AN ERROR OCCURS WHILE
RUNNING BECAUSE THESE AREAS ARE TOO SMALL: A MESSAGE WILL BE
OUTPUT INDICATING WHICH TABLE OVERFLOWED, THE TWO PARAMETERS
ARE MACROS IN TWE FIRST FEW LINES OF SOURCE PROGRAM;
"MAXRTN" 1S THE NUMBER OF ROUTINES WHICH CAN BE TIMED (E,G',
IT CURRENTLY IS SET TO "2@8"), IF MORE THAN "MAXRTN"
ROUTINES ARE IN THE SYSTEM TO BE TIMED, A MESSAGE WILL BE
PRINTED INDICATING HOW MANY ARE REQUIRED, THE VALUE OF
"MAXRTN"™ MUST BE CHANGED, AND THE TIMER MODULE RECOMPILED,
THE OTHER PARAMETER, "MAXDEEP", INDICATES THE DEPTH TO WHICH
ROUTINES MAY BE DYNAMICALLY NESTED, A STACK IS USED TO KEEP

TRACK OF NESTING, AND "“MAXDEEP"™ DECLARES THE S!ZE OF THIS
STACK,

IFr DECLARED REGISTERS OR RESERVED REGISTERS ARE USED BY
THE SYSTEM BEING TIMED, THEN THE MODULE HEAD OF THE TIMER
MODULE MUST BE ALTERED AND THE MODULE RECOMPILED,

I[F THE SYSTEM BEING TESTED IS SEING LOADED WITH A HIGH
SEGMENT ADDRESS OTWER THAN #400207, THE MACRO "HISEGAD"™ MUST
BE CHANGED TO REFLECT THIS, :

IF THE LOCALIZATION MEASURES ARE DESIRED FOR BLOCKS OF
MEMORY QTHER THAN 1024 WORDS IN SIZE (NO LESS THAN THIS,
HOWEVER), THE MACRQ "COREBLOCK" MUST BE CHANGED TO REFLEET
THIS, THE VALUE OF COREBLOCK IS N FOR A BLOCK OF SIZE 2waN
(£.G,,» 1224= 2e#10, SO COREBLOCK=12),

THE CHANNEL NUMBER USED FOR LPT QUTPUY IS #16, THIS IS
TO PREVENT CONFLICTS WITH THE DDT PATCH FILE 1/0 WHICH USES
CHANNEL NUMBER #17, IF IT IS DESIRED TO CHANGE THIS
ASSIGNMENT, CHANGE THE MACRO "LPTCHNL" IN THE BEGINNING OF
THE MODULE AND RECOMPILE,

8-5




gaiec
pr2ed
g7302
p24022
p253¢
g2é6ad
22700

p080o8

peo2e
91002

=~ =~NONSTANDARD MODIFICATIONS «w

IF THE DEFAULT VALUES OF FREG, SREG, AND VREG ARE NOT
USED, THEN THE MODULE HEAD OF THE TIMER MODULE MUST BE
CHANGED TO REFLECT THIS, AND THE TIMEP MODULE RECOMPILED.
IN ADDITION, THWE DECLARATIONS 1IN THE MACRQ~-12 MODULE

"TIMINT" MUST BE CWANGED TO REFLECT THE NEW VALUES, AND THIS
MODULE REASSEMBLED
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P0100
eC200
Po320
00400
P520
pe600
P2720
22808
ee900
01000
21100
p1220
¢130¢
01400
21520
pL607
g1780
21800
21920
@2020
22100
02200
22300
22430
22500
g260¢
02700

g28oe

22900
p3e0e
93102
p3200
g330¢2
Pp3400
p3500
36002
3700
p38Q2
P390
p4pgoo

4100

g4200
p4303
24400
p4sSga
P4600
p470o
p48P0
p4SQ0
250002
g5102
p5200
85320
p54@0
@5509
p5600
g5700
g5820

- "= aRESTRICTIONS =nrme2mn=a=x:

THE PROGRAM MAY NOT BE RESTARTED AFTER TIMSET() {S
CALLED. “THIS WILL BE FIXED WHENEVER THE LOADER BUG WMIEH
ACCIDENTLY OVERLAYS "“OWN" DATA (INSTEAD OF LEAVING 1T
ZEROED) IS FIXED,

ANY ROUTINE WITH A NAME SIX (OR MORE) CHARACTERS 1IN
LENGTH WHOSE FIRST THREE CHARACTERS ARE "TIM® WILL NOT BE
TIMED EXPLICITLY, THIS TEST IS USED TO DIFFERENTIATE
ROUTINES® QF THE TIMING PACKAGE FROM THWOSE OF THE USER’
SHOULD THE USER WAVE ANY ROUTINES OF THIS NATURE, THE TIME
SPENT IN THEM WILL BE CHARGED TO THE!R CALLER,

IF DOT IS WUSED TO START THE TIMING OFF (SEE BELOW),
BREAKPOINTS MUST NQT BE PLACED AT ANY ROUTINE ENTRY POQOIN?'S
BEFORE TIMSET() 1S CALLED, IF ONE IS PLACED IN SUCH A
PGSITION, THE ROUTINE WILL NOT BE TIMED EXPLICITLY, BUT
RATHER ~ AS  DESCRIBED  ABOVE  (FOR "TIMXXX" ROUTINES),
ESPECIALLY ONE SHOULD NOT PLACE A BREAKPOINT AT THE POPy
WHICH LEAVES THE ROUTINE, THME SIDE EFFECTS THIS COULD HAVE
ARE TOO HORRIFYING TO CONTEMPLATE,

THE HIGH SEGMENT USED MUSY BE PRIVATE, SINCE THE
TIMINIT() ROUTINE (CALLED BY TIMSET()) EXERCISES WRITYE
PRIVILEGES IN THE HIGH SEGMENT,.

THE ROUTINES MUST NOT CONTAIN SPURIOUS POPJ INSTRUCTIONS
(WHICH CAN BE GENERATED BY USE OF THE MACHQP FEATURE IN
BLISS)., ONE, AND ONLY ONE, POPJ IS PERMITTED IN A ROUTINE,

IF A MACRO-1g¢ SUBPROGRAM IS USED, 1T MUST ADHERE T0 THE
BLISS LINKAGE DISCIPLINES IF IT IS TO BE EXPLICITLY TIMED,
IN PARTICULAR, IT MAY CONTAIN ONLY ONE "PUSH SREG,FREG"
INSTRUCTION WITH A LABEL, EITHER INTERNAL, OR EXTERNAL,
(NOTE THAT SUCH INSTRUCTIONS WITWOUT [ABELS ATTATCHED ARE
VALID). IT MUST ALSO CONTAIN ONE AND ONLY ONE POPJ
INSTRUCTION (SEE ABOVE RESTRICTION), VIOLATION OF THIS RULE
WILL RESULT IN ABSOLUTELY UNPREDICTABLE BUT CERTAINLY
INCORRECT BEHAVIOR OF THE PROGRAM BEING TIMED,

THE LOCATION OF THWE MIGH SEGMENT MUST NOT BE CHANGED AT
RUN TIME WITH A CORE OR REMAP UUD IF ANY ROUTINES BEING
TIMED ARE IN THME HIGM SEGMENT, THE CHANGE WILL NoOY BE
DETECTED BY THE TIMING PACKAGE AND CONFUSION AND CATASTROPKE
WILL ENSUE, THE SIZE OF EITHER THE LOW OR HIGH SEGMENT MaY
BE CHANGED, AS LONG AS THIS DOES NOT RESULT IN CHANGING THE
ORIGIN OF THE HIGM SEGMENT,

IF OUTPUT 1S T0 BE DIRECTED TO THE LINE PRINTER, ALL 170
IN THE USER’S PROGRAM MUST BE CORRECTLY TERMINATED, SINCE A
"CALL [SIXBIT /RESET/7I" UUO 1S EXECUTED PRIOR T0 EACH
PRINTING, NOTE TWIS ALSQO RESETS JOBFF TO ,J0BSAC48,18> AND
SETS THE WRITE<-PROTEC? BIT IN THE HIGHW SEGMENT, IF ANY OF
THESE HAVE AN ADVERSE EFFECT ON THE PROGRAM OR DATA BASE,
THEN PRINTER OUTPUT MAY NOT BE USED.
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07100
02200
@e300
g0400
82582
02600
00720
22823
22900
01000
21120
g1220
21320
21400
01500
21630
21700
g1822
21900
22020
02100
82200
22300
02400
025282
82600
22709
02820
22920
23007
23100
23200
2332¢
03400
03522
236802
23702
23800
23900
24002

04120

gazae
p4a3a2
24400
@45809
ga6ae
Q47802
p48022
249002
p5200
95100
g52082
@5300
g5400
p5520
25600
go7u8
p58¢02
25920
p6202

- =~ = = = =« anlUSE FROM DD T @@ » w =« 0o w » o

THE TIMING PACKAGE MAY BE CALLED FROM DDT (RATHER THAN
HAVING TQ RE-ASSEMBLE THE MAIN FROGRAM MODULE) BY PLACING A
BREAKPOINT IN THE MAIN PROGRAM. THIS BREAKPOINT MUST BE SET
SOMEPLACE AFTER THE STACK HAS BEEN INITIALIZED, BUT BEFORE
THE FIRST CALL ON A ROUTINE TO BE TIMED, THE CALL TO TIMSET
FROM OODT MUST BE MADE FROM THE CONTEXT OF THE MAIN PROGRAM,
A BREAKPOINT MUSY ALSO BE PLACED SOMEWHERE IN THE MAIN
PROGRAM WHERE TIMING IS TO CEASE, A GOOD PLACE, FOR
EXAMPLE, 1S THE "UUO 12" AT THE END OF THE CODE,

WHEN THE FIRST BREAKPOINT 1S REACHED, TYPE "PUSHJ
TIMSETSX", THIS WILL CALL THE TIMSET() ROUTINE, WHEN
CONTROL RETURNS, TYPE "$P"™ TQ PROCEED, WHEN THE SECOND

BREAKPOINT IS REACHED, TYPE "PUSHJ TIMENDSX"™ TO TERMINATE

TIMING, THIS WILL MARGINALLY INFLUENCE THE TIMINGS OF THE
MAIN PROGRAM, SINCE THE TIME SPENT IN DOT AFTER THE RETURN
FROM TIMSET AND BEFQRE THE CALL CF TIMEND ARE CHARGED T0 TKE
MAIN PROGRAM,

AFTER CONTROL RETURNS FROM THE SECOND PUSHJ, TYPE "PUSHJ
TIMST#$X" (WHERE # 1S ONE OF THE NUMBERS 1«9) TO OBTAIN
OUTPUT OF THE STATISTICS,  ALTERNATIVELY, ONE MIGHT TYPE
"PUSHJ TIMALLSX" T0Q OBTAIN OUTPUT OF ALL TWE STATISTICS,

TO DIRECT OQUTPUT TO THE LINE PRINTER, TYPE "PUSHJ
TIMUPTSX", ALL OUTPUT WILL BE UIRECTED TO THE LINE PRINTER
UNTIL REDIRECTED TQ THE TTY BY "PUSHWJ TIMTTYSX", THESE
CALLS SHOULD NOT BE GIVEN UNTIL TIMEND() HAS BEEN CALLED,

TO AID IN SETTING UP A PROGRAM TQO BE TIMED, A "PATCH
FILE" ™MAY BE USED, THIS CONTAINS ALL THWE DOT COMMANDS
NECESSARY TO SET UP TIMING, GENERALLY THESE CONSIST ONLY OF
SETTING UP BREAKPOINTS AND EXECUTING THE INITIALIZATION
COMMANDS, BUT MORE COMPLEX OPERATIONS MAY BE NECESSARY, THE
PROTOCOL BELOW SHOWS HWOW TO SET UP AND USE A PATCH FILE)

«MAKE PATL,DDT

@1\ DRIV,F+488 DRIV ,F#588 $G PUSHJ TIMSETSX $P\S$$
*EX$S

EXIT

+C

+GET DSK TIMING

JOB SETUP

*C

,DDT

§" ,PATL1.3Y DRIV, F#4SB DRIV,.F+5%B $G
$1B>>DRIV,F+4 PUSHJ TIMSETSX

$P

NOTE THAT AFTER TYPING $",PAT1,8Y THE COMMANDS IN THE
FILE ARE TYPED OUT AS IF THEY HAD BEEN TYPED FROM THE TTY,
B=8

L
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61020

pe2eo

ps320
pe4eo
péseo
p660e
p6e7Qe

p68oy

THE $Y ("YANK") COMMAND 1S MORE FULLY DOCUMENTED IN THE CeMy
DDT MODIFICAT]IONS WRITEUP, IT IS RECOMMENDED THAT THE - LAST
COMMAND "IN THE FILE BE $SP, AND THAT THE CALLS TO "TIMEND"
AND THE REPORTING ROUTINES BE PERFORMED FROM THE TTY, THE
MAIN REASON FOR THIS IS THAT IF DDT IS REENTERED AT ANY
POINT BEFORE THE DESIRED BREAKPOINT OCEURS, THME REMAINDER OF
THE FILE WILL BE READ WITH UNDESIRABLE SIDE EFFECTS,

| 8=9



g12@
272203
22327
22422
225@w
2602
ga7e2
2A8QY
paoga
pigde
Piied
1220
21332
1420
gLsaa
plL622
21702
21809
@192¢
P00
92109
22200
22322
22490
p2522
p2600
p2783
R2870
22922
R3RAd
231079
23222
23303
p3423
g352d
pl36ga
237937
23800
g39¢a
gag2e

84100

4210
P4a30p
24402
24522
pa62o
4700
pagea
g4a920
g5p20
5100
§5200
53002
5408
pS552¢
p5600
25722
g580209
25900
gs5RR2

= --METHOD OF IMPLEMENTATIONG® s

THE TIMER S READ BY USE OF A CALL AC,CSIXBIT /RUNTIM/]
VU0, MODIFIED ACCORDING TO THE MEMO CIRCULATED DESCRIBING
THE HIGH=-RESOLUTION TIMER IMPLEMENTATION AT C=MU, IN ORDER
TO OPERATE CORRECTLY ON SYSTEMS WHICH DO NOT HAVE THE
HARDWARE ~ AND SOFTWARE MODIFICATIONS FOR THIS, THE "TIMINT®
PROGRAM WILL HAVE TO BE CHANGED TQ THEIR SPECIFICATIONS, AS
A WARNING, THE "JIFFY TIMER"™ OF THE STANDARD DEC SOFTWARE
HAS TOO COARSE A RESOLUTION (1/62 OR 1/5¢0 OF A SECOND) To
MAKE TIMING SHORT ROUTINES POSSIBLE, AND ALSO SUFFERS FROM
THE FACT THAT INTERRUPTS FROM DEVICES GET CHARGED TO THE

RUNNING JOB, REGARDLESS OF WHETHER THAT JOB GENERATED THE
REQUEST OR NOT.

ALL TIMING FIGURES GIVEN ARE IN "TICKS", WHICH ARE 1{g
MICROSECONDS EACH, HENCE THE 35=8B!T INTEGER WHICH
REPRESENTS TIME CAN COUNT 34,359,738,368 TICKS, OR 343,597
SzCONDS, MORE THAN ADEQUATE FOR ANY TIMINGS DONE,

THE TIMINIT() ROUTINE IS CALLED FROM TIMSET() AND
PERFORMS  THE FOLLOWING ACTIONS:t 1) IT TURNS OFF  THE
WRITE-PROTECT BIT IN THE HIGH SEGMENTS 2) IT INITIALIZES
CERTAIN CQUNTERS AND CREATES AN ENTRY IN THE TIME VECTOR FOR
THE MAIN PROGRAM) 3) SCANS THE DDT SYMBOL TABLE SEARCHING
FOR ROUTINE NAMES (A NAME WHICH SATISFI{ES CERTAIN CRITERIA,
BEST DISCOVERED BY EXAMINING THE CODE)J 4) CREATING AN ENTRY
IN THE TIME VECTOR FOR EACH ROUTINE FOUND) 5) REPLACING THE
"PUSH SREG,FREG"™ INSTRUCTION AT THE BEGINNING OF EACH
ROUTINE BY A "PUSMJ SREG,TIMENT" INSTRUCTION AND EVERY "POPJ
SREG," INSTRUCTION AT THE END BY A "JRST TIMEX?"
INSTRUCTION: AND FINALLY 6) IT RESTORES THE HIGH=SEGMENT
WRITE~PROTECT BIT TO ITS PREVIOUS STATUS,

THE TIMING UPQN ROUTINE ENTRY 1S CALCULATED AS FOLLOWSI

GRAB TIMER (DONE IN TIMENT)

COMPUTE LOST TIME

ADD TIME INCREMENT TO ALL ACTIVE ROUTINES/ TOTAL
TIME

ADD TIME INCREMENT TO CURRENT ROUTINE TIME

PUSH THE NEWLY<ENTERED ROUTINE TIME VECTOR ONTO THE
TIME STACK |

ADD 1 TO THE NUMBER OF CALLS

GRAB TIMER (AGAIN DONE IN TIMENT)

THE TIMING UPON ROUTINE EXIT IS CALCULATED AS FOLLOWS}

GRAB TIMER (DONE IN TIMEXT)

COMPUTE LOST TIME (

ADD TIME INCREMENT TO ALL ACTIVE ROUTINES/ TOTAL
TIME

ADD TIME INCREMENT -TO CURRENT ROUTINE’S ROUTINE TIME

POP THE TIME VECTOR OF THE CURRENT ROUTINE

GRAB TIMER (DONE IN TIMEXT)

LOST TIME IS THE TIME BETWEEN THE "GRAB TIMER" BEGINNING
A TIMING ROUTINE AND THAT AT ITS END, ‘
: ' 8-10



26100
p6220
6300
640D
6500

THE TIME VECTOR iS THE TABLE CONTAINING THE NAMES OF ALL
ROUTINES IN THE SYSTEM, AND AREAS TO ACCUMULATE STATISTIES

FOR THEM, IT IS CURRENTLY 6
NUMBER OF ENTRIES (MAXRTN) IN SIZE,

8-11
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2140

02209
02302
o740e
"VELY.
20602
27727
22807
g292¢
giees
21120
21200
21320
21420
21592
21600
01702
21802
P190¢
02020
32100
02229
82332
22420
¢2520
22630
227432
22802
0292¢
63000
23108

= ==L3CALI]IZATI!ION MEASURES ==

LOCALIZATION MEASURES PROVIDE INFORMATION ABOUT THE
DYNAMIC BEHAVIOR QF A PROGRAM WITH REGARDS TO ITS EXECUTION
WITHIN CERTAIN REGIONS OF MEMORY AND 1TS DATA ACCESSES, THE
TIMER PACKAGE CANNOT OBTAIN STATISTICS ABOUT ITS BEMAVIOR
WITH REGARD TO DATA ACCESSES, BUT IT CAN MONITOR THE
INSTRUCTION LOCALIZATION, THESE MEASURES ARE USEFUL FOR
DETERMING THE PROPER GROUPING OF ROUTINES OR MODULES FOR
PAGING OR OVERLAYING'

THE LOCALIZATION  STATISTICS OBTAINED ARE SOMEWHAT
APPROXIMATE, SINCE THE ROUTINE IS AWARE ONLY OF THE BLOCK OF
MEMORY WHICH CONTAINS THE ROUTINE ENTRY POINT, IF TWE
ROUTINE CROSSES A BLOCK BOUNDARY, THIS SHOULD COUNT AS &
BLOCK CROSSING, BUT DOES NOT, 1T WOULD BE HOPED THAT A
BLISS VERSION FOR A PAGED PDP=1P WOULD HAVE A FACILITY Y0

FORCE ROUTINES TO THE NEXT PAGE SOUNDARY, RATHER THAN SPLIT
THEM,

THE LOCALIZATION MONITOR RECORDS 1) TWE NUMBER OF TIMES
A BLOCK WAS ENTERED (A ROUTINE WITHIN THE BLOCK WAS CALLED)
FROM A DIFFERENT BLOCK AND 2) THE NUMBER OF TIMES A ROUTINE
WITHIN THE BLOCK CALLED A ROUTINE IN A DIFFERENT BLOCK, FROM
THE REMAINDER OF THE TIMING INFORMATION, THE TOTAL NUMBER OF
CALLS WHICH WERE MADE TO ROUTINES WITHIN THE MEMORY BLOCK
AND THE TIME SPENT IN THESE ROUTINES IS OBTAINED, A SUPPORT
ROUTINE PRINTS OUT A MEMORY MAP LISTING THE ROUTINES WITH{IN
EACH BLOCK, MORE SOPMISTICATED ANALYSIS IS POSSIBLE BY
EITHER PROGRAM OR HWUMAN,

8-12




2100
gA200
gA32¢
ge4ago
o500
p2ean
ge79e
poeoe
g2902
01200
glige
L2020
@1322
214020
gi522
PLéERY
pL7ad
plegy
21922
02000
pe1ee
2200
2302
2400
2529
02680
27C0
p2802
g29e2o
p3000
3120
3220
3320
34092
g3509
3600
3700

- p38089

23900
4020

4102

04200
4300
04400

« == ==L 0CALIZATION OUTPUT ==~ «o.

THE LOCALIZATION QUTPUT CONSISTS OF TWO ROUTINES, TIMSTS
AND TIMST9, WHICH MAy BE CALLED FROM THWE USER/S MAIN PROGRAM
OR VIA '0DT IN THE SAME MANNER THAT THE OTHER REPORTING
ROUTINES ARE CALLED (SEE "“USE FRCM DDT" ABOVE),

TIMSTB() QUTPUT:

BLOCK IN cuY CALLS TIME

LX- 2 2 X L2 2 X ] LR X 3L SRHNED SEPpEBE

"BLOCK" 1S THE MEMORY ADDRESS OF TWE MEMORY BLOCK, 1F
NO TRANSFERS IN QR OUT WERE MADE, THEN THIS IS THE ONLY
INFORMATION ON THE LINE,

"IN" IS THE NUMBER OF CALLS MADE TO ROUTINES IN THE
BLLOCK FROM ROUTINES QUTSIDE THE BLOCK,

"OUT" 1S THE NUMBER OF CALLS MADE TO ROUTINES OUTSIDE
THE BLOCK FROM ROUTINES WITHIN THE BLOCK,

"CALLS" IS THE TOTAL NUMBER OF CALLS MADE TO ALL
ROUTINES WITHIN THE BLOCK, FROM ALL OTHER ROUTINES
("CALLS"="IN" GIVES SOME MEASURE oF THE INTRA=BLOCK
ACTIVITY), -

"TIME" IS THE TOTAL TIME SPENT EXECUTING ALL ROUTINES
WITHIN THE BLOCK, THIS 1S THE SUM OF ALL "ROUTINE"™ TIMES
FOR THE RQUTINES WITHIN THE BLOCK,

TIMST9() QUTPUT:

BLOCK RTNS

BHBARE  HBREBE BENOAR  SEBARD  ARAGRE ORBEND  ERNBNE
snanen awsess [ETC,

"BLOCK" IS THE MEMORY ADDRESS OF THE MEMORY BLOCK,

"RTNS"™ 1S THE NAMES OF ALL ROUTINES CONTAINED IN TWAT
BLOCK.
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gaiop
pe2ev
ga3azp
pr4go
2asoc
LAY L]
pazege
0283¢
paogp
109
glLiado9
gi2ee
21322
@140
@L5d0
L1622
21720
P18y
P1928
p2aeae
p212?
p223¢
0233
224320
22520
@gzé6cu
2720
@28o2¢e
02920
g3nzn
3120
p3222
R335E
g3422
p3500
p36202
p3720
P38y
P390«
pagee
g4100
@4azo¢
24322
g4420
g4508
@4600
Q4720
24800
p4920
R5009
@5109
05220
253082
@5400C
@s550¢
5620
gs72e
25800
259092
psoae

INTERNAL DOCUMENTATIONG =44

DATA GATHERING ROUTINES!

TIMENT:

TIMEXT:

TIMEOUT:

TIMACC:

TIMLOC:

TIMTRX:

ALL ROUTINES LINK TO THIS ROUTINE UPON ROUTINE
ENTRY, THE CLOCK 1S READ AND ITS VALUE IS PASSED To
TIMEINGO, ON RETURN TO TIMENT THE CLOCK 1S READ
AGAIN TO PREVENT THE TIME SPENT IN THE TIMING
ROUTINES FROM BEING COUNTED IN THE ROUTINE TIMES,
THIS VALUE IS STORED IN THE GLOBAL  VARIABLE
“TIMPRE™,  TIMENT IS CONTAINED IN TIMINT,MAC AND
USES 14 WORDS,

ALL ROUTINES LINK TO THIS ROUTINE UPON ROUTINE EXIT,
THE CLOCK 1S READ AND ITS VALUE IS PASSED TO
TIMEOUT(), ON RETURN TO TIMEXT THE CLOCK IS READ
AGAIN TO PREVENT THE TIME SPENT IN THE TIMING
ROUTINES FROM BEING COUNTED IN THE ROUTINE TIMES,
THIS  VALUE IS STORED IN THE GLOBAL VARIABLE
"TIMPRE", TIMEXT IS CONTAINED IN TIMINT,MAC AND
USES 11 WORDS,

¢ THIS ROUTINE IS CALLED FROM TIMENT AND 1S PASSED THE

ROUTINE ADDRESS (PLUS ONE) AND THE CURRENT TIME,
THE INCREMENT OF TIME SINCE THME LAST READING OF THE
CLOCK 1S COMPUTED AND TIMACC() !S CALLED TO ADD 1T
TO ALL THE CUMULATIVE TIMES OF ALL OUTSTANDING
ROUTINES, THE INCREMENT IS ALSO ADDED TO TWE
ROUTINE TIME OF THE CALLING ROUTINE, A TIME VECTOR
POINTER TQ THE TIME VECTOR OF THE CALLED ROUTINE 1s
PUSHED ONTO THE TIME STACK AND THE NUMBER OF CALLS
IS INCREMENTED, ASSORTED STATISTICS ABOUT STACK
DEPTH, NESTING DEPTH, AND BOUNDARY CROSSINGS ARE
OBTAINED, USES 71 WORDS, CALLS TIMACC, TIMTRYX,
TIMERR, TIMLoOC|

THIS ROUTINE IS CALLED FROM TIMEXT AND 1S
PASSED THE CURRENT TIME, THE INCREMENT OF TIME
SINCE THE LAST READING OF THE CLOCK IS COMPUTED AND
TIMACC() ]S CALLED TO ADD IT TOQ THE CUMULATIVE TIMES
OF ALL OUTSTANDING ROUTINES, THE INCREMENT 1S ALSO
ADDED TO THE ROUTINE TIME OF THE CURRENT ROUTINE,
THE TIME VECTOR POINTER OF THE CURRENT ROUTINE 1S
POPPED FROM THWE TIME STACK, USES 23 WORDS, cCALLS
TIMACC.

THIS ROUTINE IS CALLED FROM TIMEIN AND TIMEOUT AND
IS PASSED THE TIME INCREMENT TO BE ADBED, THIS
INCREMENT IS ADDED TO THE CUMULATIVE TIME OF ALL
ROUTINES POINTED TO BY POINTERS IN THE TIME STACK,
TAKING CARE NOT TO ADD THE VALUE TWICE TO ROUTINES
CALLED RECURSIVELY, USES 2& WORDS,

THIS ROUTINE 18 CALLED T0 LOCATE THE TIME VECTOR oF
THE ROUTINE BEING CALLED, 1t RETURNS AS ITS VALUE
THE INDEX OF THIS ROUTINE IN THE  TIMEVECTOR
STRUCTURE, USES BINARY SEARCH TECCNIQUE, USES 25
WORDS .,

THIS ROUTINE IS CALLED FROM TIMEIN TOQ RECORD
Tgeld




6120
6220
6320
g64pp
pesae
p6600
6702
g6820
pe920
. B702¢
7100
@722¢
87320
7400
87520
R762¢
p770¢
27829
7900
p3022
3102
QR220
p83g4
28400
28500
p86ag
28720
g8sgo
289¢2
porRe
9101
ge2eo
p9300
29400
gos5ape
p9600
p9702
p980¢
poond
10000

12100

122002
1032¢
104202
10500
10600
10702
10800
12990
11000
111080
11200
11320
11400
11500
11600
11700
11820
11900
120¢2

BOUNDARY CROSSINGS, TAKES TWO PARAMETERS, THE
ADDRESS OF THE CALLED ROUTINE AND THE ADDRESS OF THE

"CALLING ROUTINE, IF THEY ARE IN DIFFERENT BLOCKS, A

TRANSITION OUT OF THE CALLERS BLOCK AND ONE INTO THWE
CALLED BLOCK ARE RECORDED, USES 17 WORDS,

INITIALIZATION ROUTINES!

TIMSET:

TIMINIT:

TIMFIX:

TIMMAK:

TIMSRC:

TIMS@X:

TIM5Q6:

CALLS TIMINIT(), ON RETURN {T READS THE CLOCK AND

STORES THE VALUE IN THE GLOBAL VARIABLE "TIMPRE"'

Igéss ROUTINE IS CONTAINED IN TIMINT,MAC AND USES 8
RDS .

THIS ROUTINE 1S CALLED BY TIMSET() AND
INITIALIZES TME SYSTEM BEING TIMED, IT OBTAINS
WRITE PRIVILEGES IN THE WIGH SEGMENT, PREPARATORY TO
PLACING TRAPS IN THE ROUTINES, IT THEN CREATES A
DUMMY ENTRY FOR THE MAIN PROGRAM (FROM WHICH 1IT
ASSUMES [T WAS CALLED) SO THE MAIN PROGRAM LOOKS
LIKE A CALLING ROUTINE, SEVERAL COUNTERS AND
SWITCHES ARE INITIALIZED, THE DDT SYMBOL TABLE 1S
SCANNED, AND EACH SYMBOL REFERRING TO A LOCATION 1IN
THE ADDRESS SPACE IS EXAMINED, IF THE SYMBOL AND
THE WORD 1T POINTS TO SATISFY CERTAIN CRITERIA, THE
SYMBOL 1S CONSIDERED A ROUTINE NAME, TIMFIX i5§
CALLED TO PLACE ROUTINE ENTRY/ZEXIT TRAPS, AND AN
ENTRY IN THE TIMEVECTOR STRUCTURE 1S CREATED,
FINALLY, THE OLD VALUE OF THE  HIGH=SEGMENT
WRITE=PROTECT BIT IS RESET, USES 179 WORDS, CALLS
TIMFIX, TIMMAK, TIMSRC, TIMS58X| «

THIS ROUTINE 1S CALLED FROM TIMINIT TO SET TIMING
TRAPS IN  TWE  ROUTINE, IT 1S PASSED THREE
PARAMETERSI THE ADDRESS OF THE ROUTINE, THE NAME oF
THE  ENTRY«TRAP  ROUTINE, AND THE NAME OF TKE
EXIT=TRAP ROUTINE, THE FIRST INSTRUCTION IN THE
ROUTINE I8 REPLACED BY A "PUSHJ <ENTRY ROUTINES"
INSTRUCTION; THE POPJ TERMINATING THE ROUTINE 1S
REPLACED BY A "JRST <EXIT ROUTINED" INSTRUCTION,
USES 29 WORDS,

THIS ROUTINE 18 CALLED TO CREATE A NEW ENTRY IN THE
TIMEVECTOR STRUCTURE, 1T 1S PASSED THE ADDRESS OF
THE ROUTINE AND ITS SIXBIT NAME, ‘IF  ADDING THIS
ROUTINE WOULD CAUSE THE TIMEVECTOR STRUCTURE TO BE
EXCEEDED, AN ERROR FLAG 1S SET AND NO ENTRY 1§
CREATED., USES 33 WORDS,

THIS ROUTINE 18 CALLED BY TIMINIT TO OBTAIN THE NAME
OF THE MAIN PROGRAM, IT SEAREMES THE DBOT SYMBOL
TABLE FOR EXACT EQUALITY OF 1%S PARAMETER, USES 2%
WORDS,

TAKES A RADIXS8 SYMBOL (E,G, A DDT SYMBOL) AND
RETURNS  AS  ITS VALUE THE SIXBIT NAME, RIGH?
JUSTIFIED, USES 25 WORDS,

TAKES A RADIX32 CHARACTER AND CONVERTS T To &
SIXBIT CHARAETER, USES 27 WORDS,
. .8-15
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12100
12200
12300
12402
12520
12600
12700
12889
12900
13009
131292
13280
13300
13422
13500
13600
137029
138@2
12920
14000
14109
14200
14308
14422
14500
14620
147002
14800
149002
15000
15106
15200
15300
15400
15580
15602
15729
158402
15900
160020

16100

16204
16320
16408
16500
16620
16702
168820
16920
17000
17100
17200
17320
174020
175248
17600
177280
17820
179080
18000

TERMINATION ROUTINES!

TIMEND: READS THE CLOCK AND CALLS TIMEOUT() TO FINISH THE
TIMING OF THE MAIN ROUTINE, THEN CALLS TIMTOT() *0
FINISH COMPUTATION OF CERTAIN VALUES, USES 7
WORDS, THIS ROUTINE IS CONTAINED 1IN THE MODULE
TIMINT,MAC,

TIMTOT: CALLED BY TI{MEND TO COMPUTE AVERAGE TIMES FOR EACH
ROUTINE. ALSO COMPUTES TOTAL EXECUTION TIME AND
TOTAL NUMBER OF CALLS, USES 57 WORDS,

REPORTING ROUTINESI

TIMLPT: SETS THE LPT SWITCH TQ DIRECT OUTPUT TO THE LINE
PRINTER,

TIMTTY: RESETS THE LPT SWITCH TO DIRECT OUTPUT TO THE TTY,

TIMWLPT: CALLED BY TIMPUT TO WRITE A CHARACTER ON THE
LPT. TWO PARAMETERS ARE PASSED! A FUNCTION CODE AND
A CHARACTER, THE FUNCTION CODES ARE! @/ OPEN THE (PT
AND  WRITE ~ THE CHARACTER GIVEN, 1/ WRITE THE
CHARACTER GIVEN, 2/ CLOSE THE LPT  (CHARACTER
IGNORED), USES 62 WORDS,

TIMPUT: WRITES THE SINGLE CHARACTER PASSED TO IT ON THE LPT
OR THE TTY, AS DIRECTED BY THE LPT SWITCH, USES 14
WORDS,

TIMSPUT: WRITES THE STRING PASSED TO0 T (AS
5«CHARACTER GROUPS) ON THE LPT OR TTY, VIA TIMPUTY,
USES 37 WORDS,

TIMCRLF ! WRITES A CARRIAGE-RETURN/LINE«FEED PAIR ON
THE OUTPUT DEVICE, WUSES 12 WORDS,

TIMTAB: WRITES A TAB ON THE OUTPUT DEVICE, USES 7 WORDS,

TIMPR6: WRITES THWE LEFYeJUSTIFIED SIXBIT CHARACTER STRING
GIVEN ON THE OUTPUT DEVICE, USES 21 WORDS, CALLS
TIMPUT,

TIMDE2: THIS ROUTINE IS CALLED TC DO NUMERIC OUTPUT, IT s
PASSED 3 PARAMETERS, THE NUMBER TO OUTPUT, THE WIDTH
TO OQUTPUT 1T, AND THE BASE TO CONVERT IT BY (2¢=
BASE <= 418), CALLS TIMDE2 AND TIMPUT, USES 31
WORDS,

TIMDEC: THIS ROUTINE IS CALLED TO DQ DECIMAL OUTPUT, [T IS
PASSED TWQ PARAMETERS, THE VALUE AND THE WIDTH,
CALLS TIMDE2 AND TIMPUT, USES 4@ WORDS,

TIMOCT: THIS ROUTJNE I8 CALLED TQ DO OCTAL OUTPUT, IT IS
PASSED TWO PARAMETERS, THE VALUE AND THE WIDTH,
CALLS TIMDE2 AND TIMPUT, USES 42 WQRDS,
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O

15120
18200
18300
18427
18500
18600
187Q0

18808

18931
190049
191482
19200
19309
194p8
19522
19629
19708
198@0
19900
2000292
20122
202020
20300
20400
22520
22608
20702
22800
20920
21000
21129
212¢0
21300
21400
21582
216022
21720
21800
219292
220082
22120
22209
22300
22400
22500
226212
227272
22800
22920
23020
23100
232292
23340
234092
23508
23609
23729
238292
239272
24002

TIMREZ2:

TIMST1:

TIMST2:

TIMST3:

TIMST4:

TIMSTS:

TIMST6:

TIMST7:

TIMSTS:

TIMST9:

TIMALL:

TIMSCN:

TIMTRP:

TIMPRT:

PUTS QUT THE STATISTICAL INFORMATION ABOUT TOTAL
PERFORMANCE  AND INDIVIDUAL ROUTINE PERFORMANCE,
USES TIMPUT, TIMSPUT, TIMDEC, TIMPR6,  TIMCRLF,
TIMTAB, TIMWLPYT, USES 284 WORDS,

SORTS DATA BY NAME AND CALLS TIMRE2, USES TIMESORT
AND TIMRE2, USES 12 WORDS,

SORTS DATA BY CALLS AND CALLS TIMREZ. USES TIMESORT
AND TIMRER, USES 12 WORDS.

SORTS DATA BY ROUTINE TIME AND CALLS TIMRE2, USES
TIMESORT AND TIMRE2, USES 12 WORDS,

SORTS DATA BY CUMULATIVE TIME AND CALLS TIMRE2,
USES TIMESORT AND TIMREZ, USES 12 WORDS,

SQRTS DATA BY AVERAGE ROUTINE TIME AND CALLS TIMRE?2,
USES TIMESORT AND TIMRE2, USES 12 WORDS,

SORTS DATA BY AVERAGE CUMULATIVE TIME AND CALLS
TIMRE2., UJSES TIMESORT AND TIMRE2, USES 12 WORDS,

SQORTS DATA BY ADDRESS AND CALLS TIMREZ2, USES
TIMESQRT AND TIMRE2, USES 12 WORDS,

CALLS TIMSCN, SPECIFYING TIMTRP AS THE PROCESSING
ROUTINE. USES 8 WORDS,

CALLS TIMSCN, SPECIFYING TIMPRT AS THE PROCESSING
ROUTINE, USES 8 WORDS,

CALLS TIMST1 TWRU TIMST9, USES 14 WORDS,

CALLS TIMESORT 70 SORT DATA BY ADDRESSES, SEQUENCES
THRU THE ADDRESS SPACE IN BLOCKS oF
2##COREBLOCK, CALLING THE REQUESTED  ROUTINES
(PASSED BY 17S CALLER),  USES TIMSPUT, TIMCRLF,
TIMWLPT, USES 68 WORDS.

FOR EACH CORE BLOCK FOR WHICH THERE 1S A TRANSITION
IN OR QUY, PRINT THE NUMBER OF EACH KIND, THE TOTAL
TIME SPENT IN THE BLOCK, AND THE TOTAL NUMBER OF
CALLS TO ROUYTINES IN THE BLOCK, CALLS TiMSPU?,
TIMDEC, TIMOCT, TIMCRLF, USES 79 WORDS,

FOR EACH BLOCK, PRINTS QUT THE NAMES OF THE ROUTINES
IN THAY BLOCK, USES TIMOCT, TIMTAB, TIMPRs,
TIMCRLF. USES 5@ WORDS,

MISCELLANEOUS ROUTINESI

TIMESORT: SORTS PHE TIMEVECTOR DATA BY CREATING A

SORTED INDEX VECTOR INTO THE TIMEVECTOR, THE SORT
FIELD 1S SPECIFIED BY THE PARAMETERS, THE 5
PARAMETERS REQUIRED AREs 1) NUMBER OF ENTRIES To BE
SORTED: 2) WHIGH WORD OF THE TIMEVECTOR TO SORT ONj
3,4) THE POSITION (3) AND SIZE (4) FIELD
SPECIFICATIONS OF THE BYTE OF THE WORD TO SORT ONj
5) THE DO!RECTION TO sgav; THE ALGORITHM 1S A
8-1



24120
24200
24300
24422
24502¢
246090
247022

24827

24902
250222
e51g0
25203
2537%¢
254123
25520
25604
25702
258232
259082

GENERALIZATION OF FLOYD!S TREESCRT 3 (ALGORITHM 2483,

CACM DEC, 1964), IT COMTAINS FOR ITS EXCLUSIVE USE

THE ROUTINES TIMSIFT(58 WORDS) , TIMCMP (32 WORDS),
TIMXFR (14 WORDS), TIMEXCH (19 WORDS), TIMESORT
ITSELF IS 53 WORDS LONG,

TIMSIFT: SEE TIMESORT,

TIMCMP: SEE TIMESORT,

TIMXFR: SEE TIMESORT,

TIMEXCH:® SEE TIMESORT,

TIMERR: A GENERAL ERROR=CATCHER, ANY ERROR DETECTED CALLS
TIMERR, PASSING IT AN ERROR CODE, THE CODE IS USED

IN A SELECT EXPRESSION TO CHOOSE THE APPROPRIATE
ACTION. USES 48 WORDS.
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