DECUS

PROGRAM LIBRARY

DECUS NO.
8-93
TITLE CHEW - Convert Any BCD to Binary, Double Precision
AUTHOR Louis O. Cropp
COMPANY Sandia Corporation
Albuquerque, New Mexico
DATE September 14, 1967
FORMAT

Although this program has been tested by the contributor, no warranty, express or implied, is made by the contributor,
Digital Equipment Computer Users Society or Digital Equipment Corporation as to the accuracy or functioning of the
program or related program material, and no responsibility is assumed by these parties in connection therewith.

CHEW - CONVERT ANY BCD TO BINARY-
DOUBLE PRECISION

DECUS Program Library Write-up DECUS No. 8-93

ABSTRACT

This subroutine converts a double precision (6 digit) unsigned-integral-binary coded decimal
(BCD) number with bit values of 4, 2, 2, and 1 to its integral-positive=binary equivalent in
two computer words. It is possible to change the bit values to any desired values and thereby
convert any BCD number to binary.

REQUIREMENTS

A. Standard PDP-8 or PDP-8/S

B. Core storage - 01097

C. Locations 3 and 4 on page zero must be temporarily available for use by this subroutine
D

Location 164 must contain a -4, Location 166 must contain a 6.

SUBROUTINES USED

None

RESTRICTIONS

None

USAGE

Enter this subroutine with a JMS CHEW. The first location following the JMS must contain the
address of the most significant part of the BCD number to be converted. Return to the main
program will be at JMS+ 2 with the accumulator and link clear. The results are temporarily
stored as follows:

C (Location 3) # most significant portion of answer

C (Location 4) # least significant portion of answer
COMMENTS

This subroutine assumes that the number to be converted to binary is a binary coded decimal
(BCD) number occupying two 12-bit words. The subroutine then searches by continually rotating
the words left starting with the most significant half of the BCD number. When a bit is found,
its bit value is multiplied by 12 (octal) the proper number of times. The basis for the conversion
routine is that

100,000 (decimal) equals 12 (octal) exponent 5
10,000 (decimal) equals 12 (octal) exponent 4
1,000 (decimal) equals 12 (octal) exponent 3
100 (decimal) equals 12 (octal) exponent 2
10 (decimal) equals 12 (octal) exponent 1

1 (decimal) equals 1 (octal)

Therefore, if we have a BCD number with the bit values equal to 4, 2, 2, and 1, and the
following bit construction in two words

1000 0000 0000 # most significant half
0000 0000 0000 # least significant half

This subroutine multiplies 4 by 12 (octal) five times since the bit is in the hundred thousands
place, and adds the resultant binary number by double precision addition to the binary values
of any other bits that may be present in the two-word BCD number.

The bit values used by this subroutine can be changed by placing the desired bit values (in
octal) in the four locations called store in the program listing, starting with the leftmost bit
value in a 4-bit group and proceeding to the right to that the rightmost bit value is contained
in store+ 3 in this manney, any form of BCD number can be converted to binary.

The program expects to find two words full of BCD coded bits as follows.

HT TT TH
Location A~ /,,,/,+./ .,/ -most significant half
Location B~ /,,,/s+4/+,,/ -least significant half
H T U

Where HT, TT, TH, H, T, and U represent BCD digits in the hundred thousands, ten thousands,
thousands, hundreds, tens, and units places respectively.

Locations A and B must be sequential. If only a 12-bit BCD number (i.e., one word) were

to be converted to binary, location A would have to be filled with zeros with the data in

the following location. In other words, BCD words ranging in length from 1 to 6 digits can be
converted to binary if they are right justified in a double precision word upon entry to this

subroutine.,

The biggest double precision BCD number (i.e., 999,999) is equal to 3641077 (octal) which
does not fill the sign bit in a double precision word. This means that any positive~double
precision number in BCD can be translated to a positive-double precision number in binary.

The maximum execution time for this subroutine is approximately 5.31 milliseconds.

The program listing follows.

gmmmmmm . =

COMPUTER PROGRAM PAL 00CC21 A PAGE 3
... .. _ [/CHEW-CCNVERT ANY BCD TD BINARY-
/DOUBLE PRECISICA PAL 00021 A
e CKEMs O
CLA CLL
TAD NEG24 . S
DCA CHK1 /SET COUNTER I#-30 CCTAL
... IAD 164 /=& IN ACC.
CCA CHK2 / SET J#-4
B o TAD 166 /-6 IN ACC.
DCA CHK3 / SET L#-6
e DCA CHK4._ /7 SET M#cC
TAD T CHEW / GET CCATENTS OF LGC AFTER JMS CHEW INS
T .
CCA ADRS / STORE {CC OF MCST SIG OF BCD#
— _ TAD I ADRS / GET MGST SIG GF RCD# IN ACC
DCA HOLD /STORE MOST SIG. OF BCD NO.
_ ’ __ISIZ ADRS _ _ /GET TO ADDRS OF LEAST SIG.BCD NOC.
TAD 1 ADRS
o ~ _CCA HOLD+1 /STORE LEAST SIG.BCD NO.
CCA 3 / NOW CLEAR THESF Tw0O LOCATIONS FOR
o i DCA 4 /SUMMATICN COF ANSWER
TAD HOLD /MOST SIG. OF BCC NO. IN ACC
— _ MIC, ____ CCA TEMPY _ /VALUE IN ACC.TC CCMMON STORAGE
DO, CLA CLL / STGRE IT + GET IT BACK
. ___TAD TEMPY
RAL
e DCA TEMPY /STCRE RCTATED #
SNL /1S THERE A BIT
S JMP INCJ ~/ ND INCREMENT CCUNTERS
TAD I TABLE /YES ADD CNE OF TRE BIT VALUES
S CCA CUM+] / PUT IT IN LEAST SIG OF MULTIPLICATIONS
AGN, ISZ CHK4 / MEMe1
oo _TADCHK& __ / GET M
TAD CHK3 J Me(-1)
__SIA ____ .1 1S M#L
JMP MLTPY / NO GC MULTIPLY
S . CLL ckA .
TAD CUM+1 / YES GET LEAST SIG RESULT OF MULTIPLY
. 'TAD 4 /ADD IT TO LEAST SIG.DF BINARY NO.
DCA 4 /STORE RESULT IN BINARY NO.LOCATICN
VD RAL . _/_ADD
TAD CUM / MGST <IG
] TAD 3 /HALVES
CCA 3 /STORE FCR POSSIBLE EXIT
. _DCA CUM /CLEAR FCR RESULT OF NEXT MULTIPLY
DCA CHK4& / SET M#C
JMP INCJ / GO INCREMENT CCUNTERS
MLTPY, JMS MULT /GO TC MULTIPLY BY 12 SUBROUTINE
2 e e e e -

_CCMPUYER PROGRAM = PAL COCC21 A PAGE
- o _ JMP AGN
INCJ, 1SZ TABLE / STCRE#STDRE+]
- ISZ . CHK2. / J#J+13%0
JMP INCI / NO INCREMENT I
. PAGEBRK | , .
TAD 164 /-4 IN ACC
I i} DCA CHK?2 ../ RESETYT J TG -4
TAD RESET
. DCA TABLE / PUT STCRE BACK TO INITIAL VALUE
IAC /+1 IN ACC
— I ... JAD CHK3 = 7/ L+l
DCA CHK? / L#L+]
_ _INCI, CISZ CHKY . . /7 I1#1+14C
JMP . +4 /NC.GO SEE IF [EQUALS -14 OCTAL.
.. 1SIL CHEW _____ [/ INCREMENT RETLRN LCC TO MAIN PROG
CcLL /CLEAR FOR EXIT
e ~ __JMP I CHEW ~/ JUMPS BACK TC MAIN PROG PAST %LOC
TAD CHK1 / ADD 1 TO ACC
- e oo _TAD FRTN _ _ /ADD +14 OCTAL TO ACC
SZA CLA / DOES 1#-12
e _JMP DG/ NO,.GO BACK ANC LCCK FOR ANCTHER BIT
TAD HOLD+1 JYES.GET LEAST SIG.BCD NO. IN ACC
“ - JMP_MID _ __/ PUT LEAST SIG CF BCDH#IN TEMPY
MULT, 0 /SUBROUTINE TGO MULTIPLY THE VALUE
. CLACLL . /IN CUM BY 12 OCTAL,
TAC NEG11 /SET COUNTER Tn---
P e e DCA_COUNT _____ /NIMUS 1] CCTAL. .
TAC CUM+1 /RESTORE STARTING VALUE SO IT CAN---
— __ DCA NOW+l _ ___/BE ADDED TQ ITSELF 12 TIMES{OCTAL--
TAD CUM /AND STILL RETAIN THE RUNNING TOTAL--
R e __.._DCA NOW _ . _/IN_CUM AND CUM+1,
REPEAT, cLL
______________________________ TAD CUM+L _______/ADD LEAST---
TAC NOW+1 /SIG.PARTS,
CCA CuM+l o
RAL /ADD ANY OVERFLCW IN LINK-——-
e e TAD CUM . /TI0_THE SUM OF TKE MOST SIGS.
TAD NOW
. I ..pcacum .
1S2 COUNT /1F IZERO,NO.HAS REEN ADDED TO ITSELF-—-
JMP REPEAT /12 OCTAL TIMES.
cLL
_______________________________ JMP I MULT ____ /EXIY _ TG MAIN PROGRAM
NEG24+y -30 /0CTAL NQ.
- ... CHK1l, 0O ~/ COUNTER I-SEF FLOWCHART
CHK 2, 0 / COUNTER J
CHK3, .0 .. .4 COUNTER L
CHK4, 0 / COUNTER M

COMPUTER PROGRAM
JEMPY, 0
ACRS, 0
CUM, . 0
0
e TABLE, STORE
—ee. ._._ .RESET, . STORE
FRTN, 14
B . STORE, 4
2
e L2
1
oo HCLDy . 0
0
___ _NCW, 0
0
cee NEGL1, 77617
COUNT, 0
PAGEBRK
PALSE
B} N T
2 —_ ————— — -

3 e e e e e

__PAL 060021 A PAGE 5

/ LOCATICN C¥ BCC#
/ HOLDS RESULTYS CF MULTIPLY(X,12Y)
/ WHERE X#492,2,0R1 Y#1THRUS

./ MEANS TO GET STORE#STORE+1 + TC RESET

IT
/MEANS TC RESET START ADDRS OF BITS.
/OCTAL NC.
/OCTAL BIT VALUFS OF THE 4-BIT GROUPS---
/MAKING ULP AN INDIVIDUAL BCD DIGIT---
JSTARTING WITH THE LEFTMOST BIT-——-
JVALUE AND PROCEFDING RIGHT.

	0
	1
	2
	3
	4
	5

