

DECUS PROGRAM LIBRARY

DECUS NO.

8-178

TITLE

Reverse Assembler

AUTHOR

Henry G. Dupont

COMPANY

St. George's School Newport, Rhode Island

DATE

November 25, 1968

SOURCE LANGUAGE

PAL III

REVERSE ASSEMBLER

DECUS Program Library Write-up

DECUS No. 8-178

ABSTRACT

The Reverse Assembler accepts a paper tape in binary format and produces either a printed listing or a paper tape that is acceptable to the PAL Assembler as a symbolic tape. It produces the mnemonics for almost all input-output devices as well as PAL III and Floating Point instructions.

REQUIREMENTS

Storage

The program is loaded into locations 0-5400. The character output tables extend from 1200-5400.

Equipment

Basic PDP-8, 8/S, or 8/I. Input is on either the high speed reader or ASR-33. Output is on either the high speed punch or ASR-33. Input and Output devices are selected by switch settings. The type 182 EAE is not used.

USAGE

Loading

The Reverse Assembler is supplied as a binary tape and is loaded with the BIN loader.

Switch Settings

BIT 0

During initialization the switch register is read to specify the mode of operation and the input-output devices.

BIT 0 specified the output mode of the program

BIT 1 specifies the input device

BIT 2 specifies the output device

BIT 1

BIT 3 specifies the presence of Floating Point instructions

BIT 2

BIT 3

			 -	
ON	Output Mode 1	High Speed Reader Input	High Speed Punch Output	Presence of Floating Point Instructions
OFF	Output Mode 2	ASR-33 Input	ASR-33 Output	Absence of Floating Point Instructions

Mode l gives leader, a symbolic tape acceptable to the PAL III Assembler, a "PAUSE", and trailer.
Mode 2 gives a printed listing.

Start

- 1. Load program with binary loader.
- 2. Set 0200 in the switch register, press LOAD ADDRESS.
- 3. Set desired modes of operation and input-output devices in Bits 0-3 of switch register.
- 4. Put binary program tape in appropriate reader.
- 5. Press "START"

 Program will read the binary tape and produce a listing or a symbolic tape until checksum is reached. At this point, either "PAUSE" or the checksum is typed depending on the output mode.
- 6. Restart program at 0200.

Error Messages

If the program is started in the middle of a binary tape, or the reader misses a character, the program will be out of phase with the tape and the first 6 bits of an instruction will be interpreted as the last 6 bits and vice versa. When the presence of a character with channel 7 or 8 appears in the second half of an instruction, "READER ERROR" is typed, and the computer halts.

Recovery

To recover from reader error, restart the program.

DESCRIPTION

Discussion

The Reverse Assembler is a utility program designed to accept a tape in binary format and produce an output in either of two modes. Mode I gives leader, punches a symbolic tape, punches "PAUSE" when the checksum is encountered, and punches trailer. The symbolic tape is acceptable to the PAL III Assembler. Mode 2 produces a listing that is easily read and differs from Mode 1 in the format of output. The "PAUSE" is replaced by an octal number followed by "(CHECKSUM)". If an address is encountered on the tape, it is punched out in the form *XXXXX where X is an octal digit.

Applications

The Reverse Assembler is used when only the binary tape of a program is available. It makes a listing (Mode 2) and/or a symbolic tape (Mode 1). This is especially useful when modifying a binary

tape that would be difficult to modify with a patch. (i.e. when changing ASR-33 input to high speed reader input because a typical high speed reader subroutine needs one more instruction.) This is done by making a symbolic tape (using Mode 1), making the desired modifications with the symbolic tape editor, and using the PAL III Assembler to produce a new modified binary tape. The Reverse Assembler may also be used to produce a revised copy of a program that has been modified by the DDT, ODT, or any other debugging program.

An example follows:

```
/PAL III ASSEMBLER PASS 3 LISTING
              IREVERSE ASSEMBLER LEST PROGRAM
0200
      6046
              SIAKIS
                       TLS
                       JMS I INPUL
9291
      4496
                       JMS I 7
3732
      4407
                       FRUI SAVE
       6193
9293
                       FEAT
      0.000
3204
                       JMS I INPUT
      4436
3235
                       JMS 1 7
9596
      4411
                       FSIN
0207
      1003
                       FINTY SAVE
3210
      3100
                       FRUT SAVES
a211
      6193
0212
      નેછાંમા
                       FEAT
9213
       1103
                       TAU SAVE+3
                       KIL.
      70000
9214
                       TAD MUNIC
3815
      1107
3215
       7004
                       KAL
      3193
                       DOA SAVE+3
0217
      11.16
                       TAU NUFT
9223
                       DCA COUNT
      3110
0221
      2103
                       15% 5AVE+3
이물물문
                       15z COUNT
33333
     -211\omega
                       Jim . - 2
9224
     5222
                       JM5 1 7
      4417
9225
                       FORT SAVE
      5102
0226
      13.00
                       FRAI
3227
                       365 1 091PUT
9233
       4400
9231
       7492
                       hil. I
              ZVARIABLES AND GUNSTANIS FULLUM:
              第四
              UJ1241. 7200
9305
       7200
0006
       7430
              100 110
                       72000
0007
       56000
                       36.79
              *130
       41.22.9
0100
              34VF. .
0101
      ()-9(1))
5132
      10000
3133
     Mishipsi
              SAVERS
      ن مرين
-104
0105
      \phi(G,G)
                       ð
      એ છે છે છે
3106
             NJM1.
                       63
1107
       6424
             18 1911/2
                       6424
             COUNT,
9110
      021112
COSMI
         0114
Lisrial
         3.306
AUNI
         0196
         0107
NUME
CORPUL
         و زونون
         1100
SAVE
SAVEZ
         1105
        47251
STAKE
```

This is an output from the Reverse Assembler in MODE 1. In MODE 1, the Reverse Assembler punches leader, the text, and trailer. The Text is acceptable to the PAL III Assembler.

```
*3239
6046 /000 -1732 ILS
                                /Addresses are in standard format
4406 /001 -3372 JNS I 0 006
                                /IOT instruction
4407 /002 -3371 JMS I 0 007
                                /This is a JMS indirectly to page ∅
6100 /003 -1700 FPUI
                       0 100
ODDO 7604 +6666 FEXT
                                /Floating Point instructions are
4406 /005 -3372 JMS I 0 006
                                /triggered by a JMS I 7
4407 /006 -3371 JNS 1 0 007
0303 7007 +0003 FSIN
3100 /010 +3100 FMPY
                       0 100
                                /Floating Point Package D instructions
6103 /011 -1675 FPUT
                     0 193
                                /are assumed
0000 7012 +0000 FEXT
1103 /313 +1103 TAD
                      0 103
7006 /014 -0772 RIL
1107 7015 +1107 TAD
                     Ø 107
7004 /016 -0774 KAL
3103 7017 +3163 DCA
                    0 103
1106 /020 +1106 TAD
                    0 1d6
3110 7021 +3110 DCA
                      Ø 110
2103 7022 +2103 154
                      0 103
2110 7023 +8110 154
                      9) 110
5222 /W24 -2556 JMP
                        1122
4407 /025 -3371 JAS 1 0 007
5100 /026 -2700 FGEL
                     0 100
9000 1027 +00000 FEAT
4495 /030 -3373 JNS 1 0 005
7402 /031 -0376 HLT
* 3005
1200 /305 -0600 CLA
7400 /006 -0400
5600 /007 -2200 JMP 1
                        000
                                /This is data but is assigned
                                /a CLA because of the octal code
*0100
GAA BOOD+ DOIL ROOD
                      N WWW
MNNN+ 1811 WNNN
$6666+ S$17 $660
                                /Because it is impracticable to
MANN 1193 +4900
                                /have two or more AND instructions
9090 /104 +db00
                                /in a sequence, the program assumes
9300 /105 +0000
                                /that the second and following
0000 /106 +0000
                                /AND instructions are data
6424 /107 -1354 ITXUN
9000 /110 +0000 AND
                      0000
PAUSE
                                /This is data, but the octal
                                /code is the same for the Data
                                /Communications Systems Type 680
```

This is an output from the Reverse Assembler in MODE2. It is slightly faster than mode 1 and is easire to read because there is no slash and the output order is different.

```
*9299
000 6046 -1732 TLS
001 4406 -3372 JMS 1 0 006
902 4407 -3371 JMS 1 0 007
003 6100 -1700 FPUT 0 100
004 0000 +0000 FEXT
005 4406 -3372 JMS 1 0 006
006 4407 -3371 JMS I 0 007
907 0093 +0903 FSIN
010 3100 +3100 FMPY 0 100
011 6103 -1675 FPUT W 103
DIZ DUDD +0000 FEXT
013 1103 +1103 TAD 0 103
014 7006 -0772 RTL
015 1107 +1107 TAD 8 107
016 7004 -0774 RAL
917 3103 +3103 DCA 9 103

    Ø2Ø
    11Ø6
    +11Ø6
    fAØ
    Ø
    1Ø6

    Ø21
    311Ø
    +311Ø
    DCA
    Ø
    11Ø

022 2103 +2103 ISZ 0 103
023 2110 +2110 ISZ 0 110
024 5222 -2556 JMP
                         955
025 4407 -3371 JMS I 0 007
326 5100 -2700 FGET 0 100
727 0000 +0000 FEXT
030 4405 -3373 JMS I 0 005
031 7402 -0376 HLT
*00005
005 7200 -0600 CLA
006 7400 -0400
007 5600 -2200 JMF 1 000
*0100
100 0000 +0000 AND 3 000
101 0000 +0000
102 0000 +0000
103 0000 +0000
104 0000 +0600
105 0000 +0000
106 0000 +0000
107 6424 -1354 TTXON
110 0000 +0000 AND 0 000
2474 (CHECK SUM)
                                   /MODE 2 gives Checksum
```

METHODS

Discussion

The program initializes by checking the switch register for the input-output devices and the operating mode. It then reads a binary tape. If channel 7 is punched (indicating an address) the program punches *XXXX where XXXX is an octal number. The current page address and the octal instruction are punched next followed by the signed equivalent of the octal instruction. not an address, the first three bits of the octal instruction are examined to find the operation code. A JMS I 0007 raises a flag which assumes that Floating Point instructions are used unless Bit 3 in the switch register is raised. This disables the Floating Point instruction subroutine and prevents the Reverse Assembler from interpreting instructions as being Floating Point after a JMS I 0007. Operation codes 0-5 are treated as memory reference instructions and are always typed out. If the instrution has an operation code of 6 or 7, the Reverse Assembler compares the word to a table on pages 5-8. If the word is found in the table, the mnemonic code is typed out and the next character on the paper tape is read. If the word is not found on the tables, it is assumed the word is not an instruction, but data, and the computer reads the next character having typed only the address and the octal code. The IOT list contains every IOT instruction except the ones for the Serial Magnetic Drum System Type 251 and Type RM08 as well as the instructions for the Garded Scanning Digital Voltmeter Type AF04A. This is because the same octal codes are used by two or more different inputoutput devices. The program checks for the checksum and punches either "PAUSE" (in Mode 1) or "XXXX (CHECKSUM)" (in Mode 2). The Reverse Assembler punches leader-trailer in Mode 1.

FORMAT

Input Data

On input, the program accepts a paper tape in binary format. A tape in RIM format may be read, however, an address will be typed on every other line.

Output Data

The output depends on the preselected output mode. In mode 2, the computer types a 3-digit word which indicates the address of the instruction on the current page. Next comes a four-digit octal code indicating the code as read off the paper tape. This is followed by a signed 4-digit number which is the equivalent of the octal number. (i.e. 7773 is equivalent to -5.) If the octal number represents a memory reference instruction, the mnemonic code is typed. If it is an indirect reference, an "I" is typed. If it is a reference to page 0, a "0" is typed. If a 0 is not typed, the reference is to the current page.

EXECUTION TIME

The speed of the Reverse Assembler is input-output limited. The ASR-33 types a line in approximately 2.5 seconds. The high speed punch punches a line in approximately 0.5 seconds.

PROGRAM

Core Map

0-1200 : executable program

1200-1400 : Reference table for operation code 7

1400-2000: Reference table for operation code 6 (IOT) 2000-5400: ASCII table of all mnemonic codes.