
OECUSNO.

TITLE

AUTHOR

COMPANY

DATE

SOURCE LANGUAGE

us
t,IBF-lARV

8-213

AK ALGOL

·University of Grenoble

Submitted -By: Charles Conley

Digital ;Equipment Corporation
Maynard, Massachusetts

April 11, 1969

ALGOL

AI though this program has been tested by the contributor, no warranty, express or implied, is made by the contributor,
Digital Equipment Camputer Users Society or Digital Equipment Corporation as to the accuracy or functioning of the
program or related program material, and no responsibility is assumed by these parties in connection therewith.

!.DENTI FI CATION

Product COde.

Product Name.

Date Created.

DEC-OB-KAYA-D

ALGOL-B

March 31,1969

PREFACE

This manual has been written for ALGOL users with a 4K

or larger PDP-8.

Th~ subset of ALGOL compiled by the system is SUBSET ALGOL

60 (IFIP)* with additional restrictions which are described in

Appendix B.

The manual is essentially a user's handbook and is not

intended as a ALGOL Primer. Chapter 1 is included as a general

introduction to ALGOL-8. The reader who wishes to learn the

ALGOL language in greater depth should refer to one of the

several texts on the subject,' such as "A Guide to ALGOL programming"

by Daniel D. McCracken (published by John Wiley and Sons, New

york) •

This compiler was written by J. C. Boussard, D. Clauzel,

and X. Nguyen Dinh of IMAG (Institute of Applied Mathematics,

University of Grenoble).

This manual is preliminary and subject to change without

notice.

*Comrnunications of the ACM volume 7, No. 10, October 1964
pp 626-628 "Report on Subset Algol 60 (IFIP).
COIrl1llunications of the ACM volume 6, No.1, January 1963,
pp 1-17 "Revised Report on the Algorithmic Language, ALGOL 60."

i i

1.1

1.2

1.3

1.3.1

1.3.2

1.3.3

2.1

2.2

2.3

2.3.1

203.2

2.4

2.5

2.6

2.7

2.8

2.9

CONTENTS

CHAPTER 1

INTRODUCTION

ALGOL-8 Program Fonn

ALGOL-8 Input/Output

Sample Programs

Arithmetic Operators

Compound Statements

Blocks

CHAPTER 2

REPRESENTATION OF ELEMENTS .

Integers

Real Numbers

Basic Symbols

Long Basic Symbols

Short Basic Symbols

Identifiers

Constants

Variables

Subscripted Variables and Arrays·

Statements

Labels

iii

1-1

1-3

1-3

1-3

1-7

1-10

2·1

2-1

2-2

2-2

2-2

2-3

2-3

2-3

2-4

2-4

2-4

CHAPTER 3

EXPRESSIONS

3.1 A1:'itlunetic Expressions 3-1

3.1.1 Constants 3-1

3.1.'2 Variables 3-1

3.1.3 operators 3-2

3.1.4 Mixed Mode Expressions 3-3

3.1.5 Standard Functions 3-4

3.2 Boolean Expressions 3-4

3.2.1 Forms 3-6

3.2.2 Limitations 3-7

CHAPTER 4

DECLARATIONS

4.1 variables 4-1

4.2 Arrays 4-1

4.3 Switches 4-2

4.4 Procedures 4-3

CHAPTER 5

STATEMENTS

5.1 Assigned Statements 5-1

5.2 GOTO Statements 5-2

5.3 FOR Statements 5-2

5.4 COnditional Statements 5-4

5.5 Dummy Statements 5-5

5.6 Comments 5-5

5.7 Sample Program 5-7

iv

6.1

6.2

6.3

6.4

6.5

7.1

7.2

8.1

8 0 1.1

8.1.2

8.2

8.2.1

8.2.2

8.2.3

8.3

8.3.1

8.302

CHAPTER 6

INPUT/OUTPUT STATEMENTS

I/o Statement Form

Output Format

Input Format

Text OUtput

New Line

CHAPTER 7

DIAGNOSTICS

Compile Time Diagnostics

Execution Time Diagnostics

CHAPTER 8

OPERATING INSTRUCTIONS

Compiler

Operation

Memory Usage

Operating System

Operation - No Functions Required

Operation - Functions Required

Memory Usage

Paper Tape Input Format

Compiler Input

Ope,ra ting Sys~em Input

v

6-1

6-2

6-2

6-2

6-3

7-1

7-6

8-1

8-1

8-4

8-4

8-4

8-5

8-5

8-6

8-6

8-6

APPENDIX A

ALGOL-8 BASIC SYMBOLS

APPENDIX B
RESTRICTIONS

APPENDIX C

T ABLE OF ERRORS

APPENDIX 0
ALGOL-8 SUMMARY OF COMMANDS

APPENDIX E

NOTES ON ALGOL

vi

chapter 1

INTRODUCTION

An ALGOL-S program includes elements (numbers and symbols),

expressions (arithmetic and Boolean), statements, and declarations.

precise definitions of these parts of an ALGOL-8 program are con­

tained in later chapters. Those elements which are needed to

write simple ALGOL-8 programs are introduced in the following

discussion.

l.'!~"~. ~W.9~,,:,~" fr9gr8!!l-.~g,!!l1~.

ALGOL-8 programs start with a • BEGIN , statement and conclude

with an 'END' statement followed by a $ as shown below.

Body of ALGOL-8 Program

The body of the ALGOL-8 program specifies the action to be

perfonaed. For example, the body of the program could contain

statements to accept the input of data, perform some calculation,

and output the results.

The type of. data (integer or real numbers) must be. specified

before it may be used in an ALGOL-8 program. The declarations

'INTEGER' and 'REAL' are used to specify the type of number which

is represented by a sy.mbol, as seen below.

1-1

'BEGXN'
'REAL' A,B,CJ

. 'XNTEGER' X,J,KJ
•
•
•

'END'
$

The 'XNTEGER' and 'REAL' statements, as well as all other ALGOL-8

statements are terminated by a semicolon.

Once the variables are declared they may be used in ALGOL-8

program calculations. For example the following ALGOL-8 program

adds three numbers.

'BEGXN'
'XNTEGER' A,B,C,SUMJ

AI=5J
BI=27J
Ca=15J
SUM.=A+B+CJ
'END'
$

Notice in the above program the difference between the variables

A, Band C and the variable SUM. A, Band C are integer constants

given an explicit value by an assignment statement, such as AI=5J.

(The colon must be used with the equal sign in an assignment

statement.) SUM is an integer variable whose value is determined

by running the program.

The constants of the previous program need not be aSSigned

the identifiers A, Band C. The same result could be achieved

through the following program where only SUM is declared as a

variable.

'BEGXN'
'XNTEGER' SUM a
SUMa= 5+27+l5J
'END'
$

1-2

The preceding programs do not provide for the output of

results or for the substitution of input by the user. This may

be accomplished in ALGOL-8 through the READ and WRITE procedure

statements.

1,· 2~_.~mQ.l;c~.J:E.p!!~1 Ql1~~l!l:! 1:.

ALGOL-8 programs may use either the Teletype console or

the high-speed reader/punch as the input/output device for READ

or WRITE statements. The device to be used and the inforrration

to be read or written is specified within parentheses after the

input/output procedure statement. The integer 1 specifies the

ASR 33 Teletype, 2 specifies the high-speed paper tape unit, as

seen in the following examples.

READ (1,1) The ALGOL-8 program will accept a value
for the variable I from· the Teletype key­
board or paper tape reader.

WRITE (2,A,B,C) The ALGOL-8 program will punch the values
for the variables A, Band C on the
high-speed paper tape punch.

The variables must be declared before they are used in a READ or

WRITE Procedure Statenlent.

h~~ ~~pl~_J>~~rCl!tl~.

The following sample programs are provided to illustrate

some of the features of ALGOL-8, and to acquaint the reader with

the language in general.

1,,}-.~--- _~.r~ ~~~!:~9- .. O!?,e.r!l..t?!:.~.

ALGOL-8 programs may contain the arithmetic operators for

addition (+), subtraction (-), multiplication (*), division (/),

and exponentiation (f). The following program combines the READ

1-3

'BEGIN' 'COMMENT' ARITHMETIC DEMOJ
'REAL' AIBIRSUMIRDIFIRPRDIRQUOJ
'INTEGER' IIJIISUMIIDIFIIPRDIIQUOJ
WRITE <11 "TYPE TWO REAL NUMBERS")JSKIPJ
READ (11 AIB)JSKIPJ
RSUM:=A+BJ WRITE <1IAI" PLUS "IBI"="IRSUM)JSKIPJ
RDIF:=A-BJ WRITE <1IAI" MINUS "IBI"="IRDIF>;SKIPJ
RPRD:=A*BJ WRITE <1IAI" TIMES "IBI"="IRPRD>;SKIPJ
RQUO:=A/BJ WRITE <1IAI" DIVIDED BY"IBI"="IRQUO)JSKIPJ
WRITE ClI "TYPE TWO INTEGERS">;SKIPJ
READ (11 IIJ)JSKIPJ
ISUM:=I+JJ WRITE (1111" PLUS "IJI"="IISUM)JSKIPJ
IDIF:=I-JJ WRITE <1111" MINUS "IJI"="IIDIF)JSKIPJ
IPRD:=I*JJ WRITE (1111" TIMES "IJI"="IIPRD)JSKIPJ
IQUO:=I/JJ WRITE <1111" DIVIDED BY"IJI"="IIQUO)JSKIPJ

'END'
$

Example A

TYPE TWO REAL NUMBERS
213

13.21313131313 $+131 PLUS
13.21313131313$+131 MINUS
13 .21313131313 $+131 TIMES
13 .21313131313 $+13 1 DIVIDED

TYPE TWO INTEGERS
213

2 PLUS 3=
2 MINUS 3=
2 TIMES 3=
2 DIVIDED BY 3=

Example B

TYPE TWO REAL NUMBERS
891765

13.889999$+132 PLUS
13.889999$+132 MINUS
13 .889999 $+13 2 TIMES

13.31313131313 $+131 =
13 • 31313131313 $+131 =
13.31313131313 $+131 =

BY 13.31313131313$+131=

5
-1.

6
1

13.765131313$+133=
13.765131313$+133=
13.765131313$+133=

13.889999$+132 DIVIDED BY 13.765131313$+133=
TYPE TWO INTEGERS
891765

89 PLUS 765= 854
89 MINUS 765= -676
89 TIMES 765= -1547
89 DIVIDED BY 765= 13

Jr1.qure 1-1 AI . .GOL-S Arithmetic Program

1-4

13 .51313131313 $+131
-13 .11313131313 $+131

13 • 61313131313 $+131
13 • 666666$+1313

13 .853999$+133
-13 .675999$+133

13.6813849$+135
13 .116339$+130

and WRITE statements with arithmetic operators. TwO exa~ples of

program output are also included. Following the listing the pro­

gram is described line by line.

Line 1 The 'BEGIN' statement must be the first element

of the ALGOL-8 program. The • COMMENT , statement

may be used to include comments to identify the

program in the source listing. comments are not

typed during the running of the program.

Line 2

Line 3

Line 4

Line 5

All of the real number variables which are used

within the ALGOL-8 program are declared with the

'REAL' statement.

The integer variables are declared with the

statement 'INTEGER'o

The WRITE procedure statement is used to req~est

user input. Any text included within double

quotes is typed during the r~nning of the program.

The SKIP procedure statement is used to generate a

new line for typed output. (It is equivalent to

a carriage return and line feed on the Teletype

console.)

The READ procedure statement accepts the user

input to the ALGOL-8 program. The program will

not continue until the user types two real

numbers on the Teletype keyboard. Real number

input may be tenllina ted by typing any keyboard

character other than a number, plus or minus

Sign, period, or dollar sign.

1-5

Lines 6,7,8,9

Line 10

Line 11

Lines 12,13,
14,15

Line 16

Line 17

Once the input of two numbers is received,

the ALGOL-8 program computes the various

arithmetic combinations and types the results.

The output of results is formatted by combining

output of text (included within double quotes)

and variables. Variables and text are separated

within the WRITE statement by commas. Each line

is tenainated with a SKIP to allow the next

output to start on a new line.

The WRITE procedure statement on line 10 requests

the user to input two integers. The SKIP

generates a new line on which the input may be

typed.

The READ procedure statement accepts the user

input of two integers. The integers may be

tenninated with any character other than a number.

The arithmetic comb.inations of the integers are

computed and typed in a stmilar manner to that

for the real numbers above.

The 'END' statement concludes the ALGOL-8 pro-

gram statements.

The ALGOL-8 program must be followed by a dollar

sign as the first character on a line.

The running of the program produces the output shown in

examples A and B of figure 1-1. The examples illustrate the

differences in ALGOL-8 representation of real numbers and integers.

1-6

The input of values was in all cases terminated by a carriage

return.

Real numbers are output in an exponential notation with the

number separated by a dollar sign ($) from the exponential power

(base 10) by which it is multiplied.

Examples I

-j. 2jjjj~$ ~l

j. 2~jjj~$-~5

equals

equals

-~.2~~~~~Xl~1

,. 2~'J6J6J6Xlr5

equals -2.J6j~'J6

equals j.~j~~j2

Integers are output as whole numbers, with up to four digits,

and a minus sign if the number is negative.

Eq~ivalent results for integer or real number input are ob­

tained for the operations of addition and subtraction. Integer

multiplication does not check for overflow, and as evident in

example B, can yield incorrect results (e.g. 89 x 765 = -1547).

Integer division differs from real division in that, since the

result is not always an integer, the answer is always rounded off

to the nearest integer.

As evident in example B, real number representations in

ALGOL-8 are not always exact. For example, the number 89 is

approximated as a real number in ALGOL-8 by the number 88.9999.

1.~..!.,~ __ ... C~!ld~~e]lt~.

The example of figure 1-2 uses the multiplication operator

to generate the first ten powers of a number. The program

employs a FOR statement to allow repeated execution of a

grouping of ALGOL-8 statements. FOR statements have the forma

1-7

'FOR' E 'STEP' I • UNTIL' F 'oo's

where E is an assignment statement (e.g. VI=l)

I is an increment (e.g. 1)

F is a final value (e.g. 10)

S is a statement, compound statement, or block.

The expression after 'FOR' assigns an initial value to the

variable. The statement following 'DO' is then executed for this

assigned value. Once the statement is executed the variable is

incremented by the value following 'STEP' and the statement follow­

ing '00' is executed for the new value of the variable. The vari­

able is repeatedly incremented and the statement is repeatedly

executed for all values up to, and including, the value following

'UNTIL' 0

In the program of figure 1-2, the '00' is followed by a

compound statement. A compound statement is simply two or more

ALGOL-8 statements enclosed in s~A.t,.~~!!.-~_~,e:r~~~e~s ('BEGIN' and

'END'). This group of statements is executed as if it were one

statement following the 'DO' There must be an equal number of

• BEGIN' symbols and 'END' symbols in every ALGOL-8 program.

The program simply requests a real number input and then

repeatedly executes the compound statement which computes the

powers of A. The statement XI=A*X computes the next power of A

because X always equals the last power computed. Notice that X

had to be set equal to 1 before the compound statament was executed.

1-8

'BEGIN' 'COMMENT' COMPUTE POWERS OF AJ
'INTEGER'VJ 'REAL' AIXJ
WRITEClI"FOR WHAT NUMBER WOULD YOU LIKE THE FIRST TEN POWERS?")J

'END'
$

X:=lJ
READ <IIA)J SKIPJ
'FOR' V:=I 'STEP' 1 'UNTIL'10 'DO'
'BEGIN'

X:=A*XJ
WRITE <IIAI" TO THE"I VI" EQUALS"IX)J
SKIPJ

'END'
SKIPJSKIPJ

FOR WHAT NUMBER

0.449999 $+02
0.449999 $+0 2
0.449999 $+02
0.449999$+02
0.449999$+02
0.449999 $+02
0.449999 $+02
0.449999$+02
0.449999$+02
0.449999$+02

FOR WHAT NUMBER

0.986999$+03
0.986999$+03
0.986999 $+0 3
0.986999$+03
0.986999$+03
0.986999$+03
0.986999$+03
0.986999$+03
0.986999$+03
0.986999$+03

WOULD YOU

TO THE
TO THE
TO THE
TO THE
TO THE
TO THE
TO THE
TO THE
TO THE
TO THE

WOULD yOU

TO THE
TO THE
TO THE
TO THE
TO THE
TO THE
TO THE
TO THE
TO THE
TO THE

LIKE THE FIRST TEN POWERS?

1 EQUALS 0.449999 $+02
2 EQUALS 0.202500$+04
3 EQUALS o .91 1249 $+0 5
4 EQUALS 0.410062$+07
5 EQUALS 0.184528$+09
6 EQUALS 0.830376$+10
7 EQUALS 0.373669$+12
8 EQUALS o • 1 68 1 51 $+ 1 4
9 EQUALS 0.756680$+15

10 EQUALS 0.340505$+17

LIKE THE FIRST TEN POWERS?

1 EQUALS 0.986999$+03
2 EQUALS o .9741 69 $+0 6
3 EQUALS 0.961504$+09
4 EQUALS 0.949005$+12
5 EQUALS 0.936668$+15
6 EQUALS 0.924491$+18
7 EQUALS 0.912472$+21
8 EQUALS o .90061~$+24
9 EQUALS 0.888902$+27

10 EQUALS 0.877347$+30

45.

987.

Figure 1-2 Program to ,Compute First Ten Powers

1-9

1.!..3_~~ __ ~_1<?g~!l.

The following sample program plots linear equations using a

El_~ to perfona the actual plotting. An ALGOL-8 block is simply

a compound statement which contains declarations.

•
•
•

'BEGIN'
'INTEGER' I,J,KJ
'REAL' A,B,CJ
'BOOLEMt' N,MJ
•
•
•

Statement
Statement

•
•
•

'END'
•
•
•

The declarations made within a block are not applicable

outside the block. Thus local variables may be assigned which

have a value while the program is executing a given block but which

are not defined in an outer block. The use of the b~ock is

illustrated in the program example of figure 1-3.

The first part of the program requests and accepts the real

coefficient and the real constant ternl of the linear equation

using WRITE and READ procedure statements. The horizontal axis

for the values of the eqaation is established with four WRITE

statements. The FOR statement is then used to plot the equation

using values of X from -10 to 10.

The block begins by declaring the variables which are used

exclusively within the block. The use of local variables in large

1-10

pr~rams allows the ALGOL-8 programmer to efficiently use the

finite number of variables allowed in ALGOL-8, by freeing them

upon exit from the bloCk.

Boolean variables are used to test for points which are

outside the range of the values.

Since the solution of the equation is a real number and the

number of spaces must be an integer (the upper bound of a FOR

statement must be an integer), the function ENTlER is used. ENTlER

converts a real number, N, to the greatest integer, I (positive

or negative), such that I is less than or equal to N ~.g. ENTlER

(+5.9) =5J ENTlER (+6.~) =6, ENTlER (-4.32) = -5). The reader

should note that ENTlER is neither truncation nor rounding off,

although in some cases they will produce the same results.

A FOR statement within the block is used to plot the number

of spaces up to the point. In this case, the upper limit of the

FOR statement is an integer variable, rather than a specific

integer, allowing different spacing for each pOint plotted.

The program loops to its beginning with a GOTO statement which

penuits the program to plot a series of equations without being

restarted.

A sample running of the program is also shown in figure 1-3.

Notice that although the equation is linear, in this case the.

graph only approximates linearity because "partial spaces" can­

not be plotted.

'BEGIN' 'COMMENT' LINEAR PLOT PROGRAMJ
'INTEGER' XJ
'REAL' Al~BJ

LIN: WRITE C1~ "I'LL PLOT YOUR LINEAR EQUATION FOR YOU!")JSKIPJ
WRITE(I~"WHAT IS THE COEFFICIENT OF X?")JSKIPJ
READ (l~Al)JSKIPJ
WRITE C1~"WHAT IS THE CONSTANT TERM?")JSKIP;
READ (l~B)J

SKIPJSKIP;SKIPJ
WRITE C1~" -30 -20 -10 0");
WRI TE (1 ~" 10 20 30"); SKIP;
WRITE (1~" t t t");

WRITE C1~" t t t">JSKIP;
'FOR'X:=-10 'STEP'l 'UNTIL'10 'DO'
'BEGIN' 'COMMENT' PLOT BLOCK;

'I NTEGER' V~PLOT;.

'REAL' CONST;
'BOOLEAN' Bl~82;

WRITE C1~X);

CONST:=X*Al+8+34;
PLOT:=ENTIER (CONST);
Bl:=PLOT<2; 82:=PLOT>65;
'IF' 81 'THEN' 'GOTO' POINT'ELSE'
'IF' 82 'THEN'PLOT:=66;
'FOR'V:=1 'STEP'1 'UNTIL'PLOT 'OO'WRITE C1~" ")J

POINT:WRITE (1,"*");SKIP;

'END'
$

'END'
SKIP; SKIP; SKIP; 'GOTO 'LI N

I'LL PLOT YOUR LINEAR EQUATION FOR YOU!
WHAT IS THE COEFFICIENT OF X?
0.66667

WHAT IS THE CONSTANT TERM?
2

-10
-9
-8
-7
-6
-5
-4
-3
-2
-1
o
1
2
3
4
5
6
7
8
9

10

-30 -20
t

-10

*
*

*
*
*

*

I'LL PLOT YOUR LINEAR EQUATION FOR YOU!
WHAT IS THE COEFFICIENT OF X?

0
t

*
*

*
*

*
*

*
*
*

*
*
*
*
*
*

10
t

F;!qure 1-3 Linear P1 ot Program

1-12

20 30
t

2 •. L I~teg:~r!

Chapter 2

REPRESENTATION OF ELEMENTS

Integers are signed numbers (the positive sign is not always

expressed). written without a dectmal point. in the range % 2040.

Division between integers produces a real result. In ALGOL-8.

division between integers yields the closest integer. For ey.amplc,

if J=8 and K=3. the division of J by K gives 2.6666 and the result

in ALGOL-8 is 3.

Integers are represented with one 12-bit word. The first bit

(bit ¢) is the sign bit and bits 1 through 11 contain the integer

magnitude.

Bit¢ = Sign

~L.B~~!~~1.?!.;-~~

Real numbers are signed numbers (the positive sign is not

always expressed) of the decimal exponent form in the range

± 0.32$617 to ± 0.31$-616 ($ indicates the multiplication by a

power of 10).

The forms represented by the following examples are allowed

in ALGOL-8 programs.

-0.1234 .5

5.0 -2.3

1.2$-2

-0.1$10

2-1

(=.012)

(=-1,000,000,000)

Real numbers are represented by three l2-bit words. The

first word represents the exponent and its sign. The second

word represents the higher order bits of the mantissa, and

the sign of the mantissa. The third word represents the lower

order bits of the mantissa.

[~f~~F~·~ Exponent =~~~-=~-~~_-J~-'~ Bit fA = Sign

fA 1 ••• 11

I'-i~_' -~igh-O~d~; Ma~ti~~~~~~l Bit fA = _-t.~j - ~ .. ~- .. _ --...-"._-- Sign

fA 1 ••• 11

~ .. -~~~-~~~'; o~de;~~~-~i~-S-~··=;=-~t L_J~t __ ,,_.. _.._ __..1 ____ ,
fA 1 ••• 11

~ .• .'!}_. __)3.ctsi_c_ EYF'1l:>91e;.

Basic sx~~ols are the predefined elements of an ALGOL-8

program. Long basic symbols are typed enclosed in single quotes,

while short baSic symbols stand alone. Appendix A contains all

the penaitted Basic synlbols and their representation in ~OL-8.

h3_~l~_ .I.er,tg .J~e!lJ·~_.SY!!lbQ1.-_s.

Some symbols and logical operators are represented by a

string of two or more letters enclosed in single quotes. They

are identified by their first two letters only, e.g., 'BEl and

'BEGIN' are equivalent.

Examples. 'BEGIN' 'INTEGER' 'SWITCH'

'£'~!~? .. _.§})C)E!:P_~_~ _~g.§)'!l}~.l.~

other baSic syrrtbols are represented by a single character

or, exceptionally, by two successive characters (a character

followed by an equals sign).

2-2

EXamples I * multiplication

i exponentiation

<. :.: less than or equal to

2. 4._h~entifiers

An identifier is a name given to a variable in an ALGOL-S

program. An identifier must begin with a letter and may contain

only letters and numerals. The. length of an identifier is not

limited but only the first four alphanumeric characters are

significant. For example, CARlS, CARlS and CARl are interpreted·

as the same identifier. For this reason it is good practice to

limit identifiers to four characters.

~.!1".~ gon_s~~~ll.ts

Integer constants (and the whole number· part of real constants),

must have an absolute valae less than. or equal to 2040, when their

value is given explicitly in an ALGOL-S program.

Examples I

~§~_~.!Ja.l:)!~~.

I~_!:e.9:.~E~
27

-2035
5

Real Numbers -T.O.
235.0$50
-2.48

ALGOL-8 variables are quantities which are referred to by

name (by its identifier) and are able to take on different values.

Variables may be Boolean, integer or real type. Boolean variables

may not be subscripted. The possible values of a Boolean variable

are true and false.

Integer or real variables may be subscripted. (A subscripted

variable is .& real or integer one-dimensional array., as described

in paragraph 2.7.)

2-3

Simple variables (not subscripted) have identifiers as

described in paragraph 2.4 (e.go A, SUM, INT5).

2. 7 ~ ~"!.P.!!. crJ.E.~!9Yi3:.:r i~~~=~!}~~~.~F-:r;_~'y_f!

Subscripted variables permit the representation of many

quantities with one identifier. A subscripted variable is one

dimensional array (the only type of array allowed in ALGOL-8). It

may be an array of integers or real numbers.

Subscripted variables have identifiers folllwed by brackets

enclosing the subscript (e.g. SUM [IJ, X[J]). The subscript is an

integer and its lowest value must be either ¢ or 1.

NOTE. The brackets [= shift/K
and

] = shift/M
on the ASR 33 Teletype Keyboard o

Statements are commands to the computer to carry out

operations. ALGOL-8 statements must be tenainated with a semicolon.

Examples a

'GOTO' START;

'IF' A=B 'THl~a~' XI=l 'EV;;E' Xa=¢;

compound statements are several statements grouped together and

enclosed between the statement brackets 'BEGIN' and 'END'.

b2~ .. ~.Ie~l:!I.
A label is used in an ALGOL-8 program to reference or identify

statements in a program. It must be an identifier and must be

followed by a colon.

Example,

START a RE~n (1, I)J

2-4

Chapter 3

EXPRESSIONS

~~~~it~~tic~~ssion~ 

Arithmetic expressions may include constants, variables, 

operators and functions. For example, the arithmetic expression. 

may be written as an ALGOL-8 arithmetic expression 

(-B + SQRT (B t 2-4*A*C»/(2*A) 

where 2 and 4 are constantsJ A, B, and Care variablesJ *, + , 
-, and + are operators, and SQRT is a function • 

. ~ .. !,kJ·_"" .. ,C~~J;a~.1::f3. 
Constants used in arithmetic expressions may be either 

integer or real. 

Integers may be of the following forms (i. e. I ~ 2040) • 

5 -7 2018 

Real numPers of the following form may be used in arithmetic 

expressions. 

± a.b$±c 

where a = whole number part (~2040) 

b = fractional part (6 digits or less) 

c = exponent, base 10 (-616 ~ c 6617) 

.!~..!!~?~"",.~Y~~l~~!~~, 

A variable used in an arithmetic expression is one or more 

alphanumeric characters which obey the following rules. 

3-1 



a) The first character must be a letter. 

b) Spaces are ignored. 

3) Only the first four characters are significant, and 

therefore must be unique. 

~ 1 •. 3~ .. __ ~~~or!. 

The operators in arithmetic expressions are symbols repre­

senting the common arithmetic operations, plus left and right 

parentheses which serve as delimiters. 

Arithmetic expressions in ALGOL-8 are evaluated from left 

to right with an an additional priority rule for operators. 

prAQF.~ty. ~bo~~ 

1 ( , ) 

2 + 
3 *, / 

4 +, -
Thus exponentiation ( t ) is perfOrTIled before either multiplication 

or division, which are performed before addition or subtraction. 

parentheses have the highest priority and may be used to give 

priority to lower operators. 

Operations of the same level are perfonaed left to right. 

Examples A *B + C/D - E*F + G 

= (A*B) + (C/D) - (E* (F of' G» 

Two arithmetic operators must not be written side by side. Thus 

A/-B is not a legal ALGOL-8 arithmetic expression while AI (-B) is 

legal. All signed exponents must be enclosed in parentheses to 

3-2 



·separate the exponentiation sign ( t ) from the sign of the 

. exponent (+ or -). 

Division (I) and exponentiation ( + ) are considered real 

operators. For small powers of a variable such as X t 2, or X t 3, 

it is preferable to use X*X, or X*X*X, so that the functions 

need not be loaded (see paragraph 8.2). The exponentiation operator 

( f ) in ALGOL-9 is undefined when the variable is zero or a fra~tion. 

The programmer must therefore specially treat such cases. The 

following examples demonstrate the importance of correctly 

writing the arithmetic expression. Different placements of 

parentheses can yield very different results. 

ALGOL EXPRESSION 

A+B*X-c/x12 = 

(A + B) * X -(C/X)'" 2 = 

(A + B) * ex - C) Ix" 2 = 

A + (B* X-C) I X + 2 = 

~.1_.~. "~i~~~E .. lt<?.d~_.~~_;-~~"!p.!!! 

ALGEBRAIC EQUIVALENT 

A + BX - C 
xi 

AX + BX - c2 
X2" 

~ :-Ag~-=~C 
X2 

A+.!L. _C 
X i2' 

Variables of real and integer type may be mixed in an 

expression. Integers are converted to reals before calculations. 

The form of the expression may affect the result. 

Exqrnplea (A is real, I and J are integers) 

a) A+I+J 
I is converted to real and added to A, then J 
is converted to real and added to the sum. 

b) A+(I+J) 
I and J are added as integers converted to real 
and added to A. 

3-3 



3.1.5 Standard Functions 

The following standard functions are provided in ALGOL-S. 

The argument must be a non-dimensioned real - variable except 

the argument of REAL. Constants are ~~~. allowed as arguments 

(e.g.: YI=SIN (.5); is illegal, but PHI=.5; Y:=SIN (PHI); is 

legal) • 

SQRT (x) 
SIN (x) 
COS (x) 
ARCT (x) 
EXP (x) 
LN (x) 
ENTlER (x) 
REAL (I) 

SIGN (x) 

ABS (x) 

Square Root of x 
Sine of x in radians 
Cosine of x in radians 
Arctangen t of x 
Exponential of x 
Logaritrud (natural) of x 
Largest integer not greater than x 
Converts integer I to a real number 

[
1 for positive x 

Integer 0 for zero x 
-1 for negative x 

Absolute value, or modulus of x 

The program of figure 3-1 illustrates one use of functions 

in ALGOL-S, to generate a listing of values. A later example 

(paragraph 5.3) uses functions to generate a table of values. 

AI,GOL-S functions may be used within expressions and calculations 

as well, as long as the argument of the function is a real variable 

and not a constant. 

2 .. ~c?'~~a..!L-~X£:~e~J.l,!.o~,s, 
ALGOL-S programs may use the following Boolean operators to 

form Boolean expressions. 

'TRUE' used to assign a logical value to a Boolean variable. 

'FALSE' used to assign a logical value to a Boolean variable. 

'NOT' used to negate a Boolean variable 

'AND' used to combine Boolean variables 

'OR' used to combine Boolean variables 

'IMP' implies - used to combine Boolean variables 

'EQU' equivalence - used to combine Boolean variables. 

3-4 



'BEGIN' 'COMMENT' FUNCTION COMPUTERJ 
'REAL' A .. BJ 'I NTEGER' I) 
SKIP) 
START: READ Cl .. A»)SKIPJ 
WRITE Cl .. "FOR A VALUE OF'" .. A)JSKIP; 
WRITE <1 .. II SINE COSINE ARCTANGE:NT"») SKIP; 
B:= SINCA)J WRITE Cl .. B>J 
B:= COSCA») WRITE Cl .. B») 
B:= ARCTCA)J WRITE Cl .. B)JSKIP) 
WRITE 0 .. II NAT LOG EXPONENTIAL SQR ROOT")JSKIP'; 
B:=LNCA); WRITE Cl .. B); 
B:=EXP CA») WRITE: Cl .. B),; 
B:= SQRT CA)'; WRITE <1 .. B)JSKIP; 
WRITE <1 .. " INTEGER PART REAL PART SIGN")J 
WRITE (1 .. " ABSOLUTE VALUE");SKIPJ 
I:=ENTIER (A); WRITE (1 .. 1); 
B:=REAL (I)J WRITE (1 .. " " " .. B),; 
B:=SIGN (A)J WRITE <1 .. B>J 
B:=ABS (A); WRITE (I .. B);SKIP;SKIP; 
'GOTO' START 

'END' 
.$ 

F'OR A VALUE OF' 
SINE 

0.999982$-02 
NAT LOG 

-0.460516$+01 
INTEGER PART 

o 

-12.5731 

F"OR A VALUE OF" 
SINE 

-0.672908$'-02 
NAT LOG 

0.253155$+01 
INTEGER PART 
-13 

1.0$-610 

F"OR A VALUE OF" 
SINE 

0.309548 $- 563 
NAT LOG 

-0.140457$+04 
I NTEGE:R PA"RT 

o 

3.141592 

F"OR A VALUE OF" 
SINE 

0.000000$+00 
NAT LOG 

0.114472$+01 
INTEGER PART 

3 

0.100000 $-01 
COSINE 

0.999949$+00 
EXPONENTI AL 

0.101004$+01 
REAL PART 

0.000000$+00 

-0.125731$+02 
COSINE 

0.999977$+00 
EXPONENTI AL 

0.346395$-05 
RE:AL PART 

-0.129999$+02 

0.999961$-610 
COSINE 

0.999999$+00 
EXPONENTI AL 

0.400000$+612 
REAL PART 

0.000000$+00 

0.314159$+01 
COSINE 

-0.999999 $+00 
EXPONENTI AL 

0.231406$+02 
REAL PART 

0.300000$+01 

ARCTANGENT 
0.999965$-02 

SQR ROOT 
0.999999$-01 

SI GN 
0. 100000 $+01 

ARCTANGENT 
-0.149142$+01 

SQR ROOT 
0.354585$+01 

SIGN 
-0.100000 $+01 

ARCTANGENT 
0.238813$-610 

SQR ROOT 
0.999980 $- 30 5 

SIGN 
0.100000 $+01 

ARCTANGENT 
0.126262$+01 

SQR ROOT 
0.177245$+01 

SIGN 
0.100000$+01 

ABSOLUTE VALUE 
0.100000$-01 

ABSOLUTE VALUE 
0.125731$+02 

ABSOLUTE VALUE 
0.999961$-610 

ABSOLUTE VALUE 
0.314159$+01 

Figure 3-1 Function computerProqram 

3-5 



For all combinations of values for Boolean variables Bl 

and B2, the following table gives the values of the above 

combinations. 

Bl B2 ['NOT 'Bll Bl' AND'B2 Bl' OR 'B2 Bl'IMP'B2 
.=::::-=::::::::=- ~::::~:::~~,::-.:;;;::::. -:,;:. :=~:-~_:::::::- ':.=:L':':::~: :::~, ::- ,:::-.:,::::-':"- ~ :'-; -:::'-'--;:, -:_: .: -~",:- .::::::::::.:::,:::::;:':-::--.::_=-.:: 

Bl'EQU'B2 

true true false true trlle true true 

true false false false true false false 

false true false true true false 

false false true false false true true 

b..?_~ ___ fo~~~~. 

Boolean expressions may be of the following formsl 

a) A single Boolean variable optionally preceded by 

the basic symbol 'NOT'. 

'NOT'Bl where Bl is declared Boolean 

b) TWO Boolean variables connected by one of the four 

logical operators ('AND', 'OR', 'IMP', or 'BQU'). 

B3.=Bl 'AND' B2; 

B4.=Bl 'OR' B3; 

B5.=Bl 'DiP' B2; 

B61=B4 'EQU' B21 

where Bl, B2, B3, B4, as, and B6 are declared Booleans. 

c) A relation comprising two simple integer arithmetic 

expressions connected by one of the six relational 

operators =, #, -,..=, .£ =, >, or It.. • 

x+y+z>= S 

A:H:B where A,B,X,y, and Z are integers. 

3-6 



d) A relation compriS.ing two simple real arithmetic 

expressions connected by one of the two relational 

opera tors L or::> • 

X+y+Z> 5 

A~5+1 where A,B,X,Y, and Z may be integers 
or real numbers. 

A Boolean expression can be used directly in a conditional 

statement or can be used to assign a logical value to a Boolean 

variable as seen in the two following examples. 

'IF' I-J>K 'THEN' 'GOTO' STARTJ 

BII=I-J~ 5*KJ 'IF' BI 'THEN' 'GOTO' STARTJ 

In the second example above, BI is true when I-J £ 5*KJ. BI is 

false otherwise o The GOTO statement is performed when BI is true. 

l.!~;!~ .Lim!mJ.on~_c~ 

a) There are no Boolean arrays in ALGOL-B. 

b) The multiple assignment of a Boolean expresston value 

to a number of Boolean variables is not'allowed. For 

example, "Bl.=I>JJ B2.=I>JJ" is acceptable while 

.. Bl. =B2 1=1> J J II is not acceptable. 

c) The logical values 'TRUE' and 'FALSE' can be used only 

to assign logical values to Boolean variables. 

51. = • TRUE' J is penni tted, while 

I-J> K.= 'FALSE' is not penllitted. 

3-7 



Chapter 4 

DECLARATIONS 

Declarations are used to specify the properties of quantities 

used in an ALGOL-8 program and to associate these quantities with 

identifiers. Declarations must appear at the beginning of a 

block (i.e. before any statements which cause operations to be 

performed by the block). 

hl~sV~A~}?.1~~. 

Variables may be real numbers, integers or Boolean. Multiple 

variables of the same type may be declared in one statement by 

separating the variables by commas and terminating the statement 

by a semicolon. 

Example. 

'BEGIN' 

'END' 
$ 

'INTEGER' NJ 
'REAL' A,B,CJ 
'BOOLEAN' Bl,B2; 

• 

• 

ALGOL-8 arrays may be either real arrays or integer arrays. 

(The type of array, integer or real, must be declared also.) The 

lower bound of the array must be either ¢ or 1. The upper bound 

must be an unsigned integer or a simple integer variable, as seen 

in the example below. The bounds of the array are enclosed in 

square brackets and separated by a colon. 

4-1 



Example a 

'BEGIN' 
'INTEGER' NJ 
'REAL' 'ARRAY' AX[l,lOl, AY~112] J 

• 
• 
• 

'BEI:;IN' 
, INTEGER' 'ARRAY' INTX [11 N] J 

• 
• 
• 

'END' 
'END' 
$ 

As illustrated in the preceding example, if the upper bound of 

an array is an integer variable it must be declared and assigned 

a value in a preceding block prior to its use as an array bound. 

4·1 .... ..E.!!itches 

Switches may be used in an ALGOL-8 program to conditionally 

transfer control to other areas of the program. The switch is 

established by the declaration 'SWITCH'. The switch is used to 

conditionally transfer control with a GOTO statement·. 

EXample. 

'BEGIN' 

'END • $ 

'INTEGER' IJ 
'SWITCH' CHANGEa=BPOS,BNEG,BZERO; 

• 
• 
• 

• GOTO ' CHANGE [I] J 
BPOSlstatement pI, 

Statement p2; 
• 
• 
• 

BNEGlstatement Nl; 
Statement N2, 

• 
• 
• 

BZEROaStatement ZlJ 
statement Z2J 

• 
• 
• 

4-2 



The statements identified by the labels included in the switch 

declaration are executed depending upon the value of I. If 1=1, 

the statements beginning with pl (labeled SPOS) are executed. 

If 1=2, the statements beginning with Nl (labeled SNEG) are 

executed. If 1=3, the statements beginning with Z1 (labeled 

BZERO) are executed. 

The statements to which control is transferred may be simple 

statements, compound statements or blocks. 

If 1;/1,2, or 3, the statement 'GOTO' CHANGE Cr.]; is undefiilecl. 

There are no usel" procedures in ALGOL-8. 

4-3 



Chapter 5 

STATEMENTS 

The units of operation within the language are called 

statements. 

Statements may be of the following typesl 

1) Assignment statements 

2) GOTO statements 

3) Conditional statements 

4) FOR statements 

5) DUmmy statements 

~~~iqnrnent statemen~ 

An assignment statement relates a variable V to an arith­

metic expression E by means of the symbol.=, as in the following

example.

VI= EJ

The al)ove statement means that the value of expression E replaces

the value of variable V.

Multiple assignment statements can be done when more than

one variable is to be given the value of the same expression.

You may write.

Vl.= V2.= V3.= E;

If the type of the variable (i.e. integer or real) is not the

same as the expression, the result of this expression will be

converted into the type of the variable.

5-1

~_2.., __ Q.OTO..-.!.t:.~ t;ements

A GOTO statement may be of the following forms.

a) 'GOTO' IABELJ

b) 'OOTO' SWITCH [INDEX] J

where LABEL is used to reference a point in the ALGOL program

either within the block of the GOTO statement or in an outer

block, SWITCH is a declared switch designator, and INDEX must

be a simple integer variable or an unsigned integer.

Example I
, BEG IN ' , Cm.1r-1ENT' BLOCK l.

'INTEGER' I.
START I READ (1,1);

'BEGIN' 'COMMENT' BLOCK 2.
'SWITCH' POINT 1= LOOP, EXIT;
'GOTO' POINT [11.

LOOPIWRITE (l,"LOOPII)JSKIP;
'GOTO' START

'END' BLOCK 2;
EXITIWRITE (l,"EXIT");SKIP;
'END' BLOCK 1
$

In this example, 'GOTO' START leads from the inner block (2)

into the outer block (1) 'GOTO' POINT [I] is equivalent to

'GOTO' LOOP for 1=1, or 'GOTO' EXIT for 1=2. If the value of

I is less than 1 or greater than 2, the 'GOTO' POINT [I]

statement is undefined.

hl-_ F01L!!1~t:~~~Ete!!t~.
The FOR statement is in the following fornll

'FOR' VI= A 'STEP' B 'UNTIL' C '00' S

where the controlled variable V~ust be a simple integer

variable, the elements A, B, and C can be in the following

forms I

5-2

a) a signed (minus only) or unsigned integer

b) a simple integer variable

and S is a statement

The FOR statement can be self-imbedded since the statement

S may itself be a FOR statement.

NOTE I The 'WHILE' basic symbol of the ALGOL
language is not permitted in ALGOL-8.
Thus ALGOL-8 programs may not use
'WHILE t to terminate FOR statements.

'BEGIN' 'INTEGER' I,; 'REAL' F,R,C,S,;

'END'
$

WRITE (1," DEG SIN
SKIP';SKIP';
F:=3.14159/180,;
'FOR' 1:=0 'STEP' 1121 'UNTIL' 9121 '~O'
'BEGIN' R:=I*F,;

C:=COS(R)';
S:=SIN(R)';

'END'

DEG SIN

121 0.12100000$+0121
10 121.173648$+1210
2121 121 .342(i)19$+00
30 0.499999$+00
40 0.642787$+121121 .
5121 o .766043$+(10
6121 121.86612124$+1210
70 0.939692$+0121
80 0.98481217$+121121
90 0.999999$+00

COS

0.999999$+121121
o .9848121 7$ +00
0.939692$+0121
121.86612125$+00
121 .76612144$+00
0.642787$+121121
0.5121000121$+121121
0.342020$+121121
0.173648$+1210
0.953673$-06

Figure 5-1 A FOR statement used in a Progr~m

5-3

COS"),;

5.4._"_condition~.!:~e~~

A conditional statement may be of the following formsl

a) 'IF' B1 'THEN' Sl

b) 'IF' B1 'THEN I Sl 'EISEl S

c) 'IFI B1 'THEN' S2

where B1 is a Boolean expression of one of the forms given in

chapter 3.

Sl is an unconditional statement, S2 is a FOR statement,

S is a statement.

The conditional statement can be self-embedded since the

statement s may itself be a conditional statement.

The embedding levels of FOR statements and conditional

statements are interdependent (controlled by the same stack).

The total number of conditional and FOR statements that can be

accommodated at one time is 18.

'BEGIN' 'COMMENT' CONDITIONAL DEMO;
'INTEGER'I,J;

START:READ (l,I,J);

'END'
$

'IF'I>J 'THEN'WRITE (l,"FIRST NUMBER IS GREATER.");
'IF'I<J 'THEN' l-JRITE <l,"SECOND NUMBER IS GREATER.") 'ELSE'
WRITE <l,"THEY ARE EQUAL.");
'GOTO' START;

Figure 5-2 A Conditional Statement used in a Program

5-4

~._.Dummy statements

A dummy statement produces no executable code. It may

be used to place a label.

The dummy statement is allowed just before the baSic symbol

lEND' to label it or to end the last statement of a compound

statement or a block, by a semicolon.

Example.

'BEGIN'

lEND'

'REALI A,B,
'INTEGER' I,J.
READ (l,A,I)J

•
I BEGIN ,

lIP' I=J 'THEN I 'GOTO I EXIT;
•
•
•

B.=A*A*A;

~~~~: ~-------.------~oummy statements 

In this example, there are dummy statements before each baSic 

symbol 'END'. The semicolon after "B.=A*A*A" is unnecessary 

and is considered a dummy statement. The last baSic symbol 

'END' is labeled by the dummy statement EXIT • 

.2..-Ji",~...£Qmmen>~~ 

Comments are added to ALGOL-8 programs for the userls 

convenience. They may be used to identify the function of 

statements, blocks, etc., w:tthin anALGOL-8 program. They pro-

duce no executab~e code. 

There are two fonas of comments. 

5-5 



a) Comments may be introduced between declarations 

or statements by using the basic symbol 'COMMENT'. 

These comments may have any length and may contain 

all characters except the semicolon, which necessarily stops 

the comment. 

b) Comments may be introduced after the basic symbol 

'END' without using the symbol 'COHMENT'. 

These comments are ended by one of the following 

three basic symbolsl 

J , 'END' or I ELSE , 

or the dollar sign at the end of t.he program. 

The comment length is also unlimited but, in addition to 

the semicolon, the single quote is not an allowed charac~er. 

(it serves to form the basic symbol 'END I or IELSEI which 

stops the comment). 

Example. 

'BEGIN' 'COMMENT' TEST DYNAMIC ARRAY; 
'INTEGER'I,J,K; 
READ (l,I,J); 
'COMMENT' C~LCULATION OF SIZE; 
K:I+J; 

'END' TEST; 
$ 

'BEGI N' 'COMMENT' K I S USED t\,S THE; 
'COMMENT' UPPER BOUND OF THE ARRAY; 

'ARRAY' TABLE [0:K]; 
'FOR' J:=O! 'STEP' 1 'UNTIL' K '00' 

'END' BLOCK 2 

The semicolon which stops the cownent following the last 

basic symbol 'ENDI of the program is optional. 

5-6 



5 • ~_. sample program 

The following sample program illustrates all of the 

statements introduced in this chapter. The program is designed 

to plot linear, quadratic, and cubic equations. A switch is 

used to handle the three different cases. 

A conditional statement with Boolean variables is used to 

determine that the equation can be plotted by the program, i.e. 

it is linear, quadratic, or cubic. A FOR statement controls 

the number of executions of the block which plots the equation. 

I vJILL PLOT YOlJk [£QIJATION FROM X=-10 TO X=10. 
WHAT IS THE HIGHEST POWER OF Xl 
3 
I'LL PLOT YOUR CUBIC EQUATION! 
vJHAT IS THE COEFFICIENT OF X CURED ? 

f?) • I 
hlHAT IS THE COEFF'I C lENT OF X SQUARED ? 
01.5 
WHAT IS THE COEFFICIENT OF X? 
-5. 
WHAT IS THE CONSTANT TERM? 
-2. 

-30 -20 -I~ ~ 
f f f f 

-10 * -9 
-8 
-7 
-6 
-5 
-4 
-3 
-2 
- I 

* 0 * I * 2 * 3 * 4 * 5 * 6 
7 
8 
9 

10 

Figure 5-3 Sample Program OUtput 

5-7 

I~ 21il 
f f 

* 
* 

* 
* 

* 
* 

* 
* 

* 
* 

301 
f 

* 
* 
* 



'BEGIN' 'COMMENT' PLOt PROGRAMJ 
'INTEGER' XHIGH~ XJ 
'REAL'Al~A2~A3~BJ 
'BOOLEAN'HIGH~LOWJ 
'SWITCH'CONTROL:=LIN~QUAD~CUBIC;SKIP; 
WRITE <1~"I WILL PLOT YOUR EQUATION fROM X=-10 TO X=10.")J SKIP; 

ASK: WRITE <1~"WHAT IS THE HIGHEST POWER Of X?")JSKIPJ 
READ (I~XHIGH)JSKIPJ 
HIGH:=XHIGH>3J LOW:=XHIGH<I; 
'If'HIGH 'OR' LOW 'THEN' 
'8EqIN' 

'END' 

WRITE (1~"I 'M SORRY~ I'M NOT SMART ENOUGH TO ")JSKIP; 
WRITE <1~"?LOT"~ XHIGH~"TH DEGREE EQUATIONS!")JSKIPJ 
WRITE C1~"WOULD YOU LIKE TO TRY AGAIN?")JSKIPJ 
'GOTO' ASKJ 

'ELSE' 'GOTO'CONTROL [XHIGHJ; 
LIN: WRITE (1~ "I'LL PLOT YOUR LINEAR EQUATION fOR YOU!")JSKIP; 

A2:=A3:=0.0J 
'GOTO' ONE; 

QUAD: WRITE <1~"1 'LL PLOT YOUR QUADRATIC EQUATION fOR YOU")JSKIPJ 
A3:=0.0J 
, GOTO' TWO; 

CUBIC:WRITE (1~ "I'LL PLOT YOUR CUBIC EQUATION!")JSKIP; 
WRITE (1,,"WHAT IS THE COEffICIENT Of X CUBED ?");SKIPJ 
READ (1" A3);SKIPJ . 

TWO: WRITE (1" "WHAT IS THE COEffICIENT Of X SQUARED ?")JSKIPJ 
READ (1" A2);SKIP; 

ONE: WRITE<1,,"WHAT IS THE COEffICIENT Of X?");SKIP; 
READ (I"Al);SKIPJ 
WRITE (1,,"WHAT IS THE CONSTANT TERM?");SKIP; 
READ (1" B); 

GRAPH: SKIPJSKIPJSKIPJ 

'END' 
$ 

WRITE (1,," -30 -20 -10 0"); 
WRITE <1,," 10 20 30");SKJPJ 
WRITE (1,," t t t t")J 
WRITE (1,," t t t");SKIPJ 
'fOR'X:=-l0 'STEP'l 'UNTIL'l0 'DO' 
'BEGIN"COMMENT' PLOT BLOCK (NO. SPACES TO ORIGIN=34); 

'INTEGER' V"PLOT; 
'REAL' CONST; 
'BOOLEAN' 81,,82; 
WRI TE (1 ~ X) J 
CONST:=X*X*X*A3+X*X*A2+X*Al+8+34; 
PLOT:=ENTIER (CONST); 
Bl:=PLOT<2J B2:=PLOT>65J 
'If' 81 'THEN' 'GOTO' POINT'ELSE' 
'If' 82 'THEN'PLOT:=66; 
'fOR'V:=1 'STEP'} 'UNTIL'PLOT 'DO'WRITE (l,," ")J 

POINT:WRITE (1,,"*");SKIPJ 
'END' 
SKIPJSKIP;SKIP; 'GOTO'ASK 

Figure 5-4 sample ALGOL-8 Program 

5-8 



Chapter 6 

INPUT/OUTPUT STATEMENTS 

ALGOL-B programs may use ei"ther the ASR-33 Teletype or a 

high speed paper tape reader/punch as an input/output device. 

~._l I/O statement Form 

where 

Input/output statements in ALGOL-8 are of the form. 

Function (Unit, Variable List) 

Function = READ or WRITE 

unit = 1 (ASR-33 Teletype) or 2 (high speed 
reader/punch) • 

variable List = One or more simple or subscripted 
variables, separated by commas. 

Example. 

'BEGIN' 
, INTEGER' S J ' INTEGER I I ARRAY I A [11 1$!1] J 

• 
• 
• 

'FOR' Sa=l ISTEpll IUNTIL' 10 100' 
READ (2, A[S]) J 

• 
• 
• 

'END I 

The above READ statement means that the 10 values of the 

integer array A will be read from paper tape on the high speed 

reader. The ALGOL-8 program which executes this statement will 

advance the paper tape and accept the values of these 10 

variables in the USA-SCIl code. 

6-1 



h.L-2U~'!t Form~ 

There are no ALGOL-8 fo~at statements. The output formats 

for integers and real numbers are as follows. 

Integers - space, sign and up to 4 digits. 

e.g. -1234 

Real numbers - 2 spaces, sign (if negative), _,decimal 

point, 6 digits, $, sign, 2 or 3 digits 

e.g. -~.123456$+_7 

§"d._~*npJ!!:.L~at: 

The input fonnat for ALGOL-8 programs is free form (a number. 

may be typed in any form as long as it does not exceed the range 

of the variable type). Input to the operating system may be in 

parity or non-parity USASCII format (paper tape or keyboard 

initiated). Blank tape, rubout and line-feed characters are 

ignored. Spaces are also ignored except in text strings (see 6.4 

Text output). 

Input of data to the operating system in response to a 

READ procedure statement may be terminated by any character which 

is not a numbe~ sign, decimal point or dollar sign (indicating 

the exponent). A ...... (SHIFT/O) typed ~_~~E~., a tenninator deletes 

':.he item being input. 

Alphanumeric characters included within double quotes may 

be elements of the variable list of a WRITE statement. The 

WRITE statement will type all characters which are included in 

the double quotes. Thus the·WRITE statement may output text 

6-2 



or format data by supplying spaces within quotes. 

Example. 

WRITE (1, "X= ", X, II XPRIME= .. , XP) J 

&,!2_. New Line 

The output of text and data may be formatted on separate 

lines by the SKIP statement, which causes the Teletype carriage 

to be returned and a new line of output supplied. The following 

example prints the values of X, y, and Z under their respective 

headings. 

Example. 

WRITE (1, II X Y 
SKIP; 
WRITE (1 , X, y, 8)J 

6-3 



Chapter 7 

DIAGNOSTICS 

.I.!.!..._,~2!!l.Eile ,.!.ime 9-J:~9:!l0illcS 

Whenever an error is detected during the compilation of an 

ALGOL-8 program, the compiler prints an error message. 

After this detection, no recovery is possible. The user 

must correct the error, reinitialize the compiler, and restart. 

An error message is printed as follows. 

xx yy zz 

xx is the diagnostics code, yy is the line number where the error 

has been detected and zz is the character number in this line. 

Generally, line numbers and character numbers will quickly 

detenuine the origin of an error. But it happens that the 

di§gQy~a of an error may occur after the latter. For example, in 

the following linea 

'BEGIN' 'INTEGER I, J, K,; 'REAL' A, B, CJ 

A quote is missing after INTEGER but it would not be found before 

the detection of a second quote after REAL. Thus the character 

number would indicate an error after REAL, rather than the actual 

ey-ror after INTEGER. 

The following is a list of the error codes typed by ALGOL 

during compilation. 

¢ Lon~~~Cts !_9 __ §iT:~9.!_~r;-.9!: 

*The first single quote of a long basic symbol is not found. 

*The long basic symbol is not found. 

7-1 



1 Identif~~~Q~ 

*An identifier is not declared in a statement. 

*An identifier does not begin with a letter. 

*A left bracket is omitted in a subscript variable of a 

statement. 

2 Dec~2:!,~~!.qt:l.J~!:ror 

*A declaration is not ended by a semicolon. 

*The long basic symbol 'REALI or I INTEGER I is followed by 

a long basic symbol other than 'ARRAyl. 

*The program contains a Boolean array declaration which 

is not allowed in ALGOL-8. 

*A left bracket or a right bracket is omitted in an array 

declaration. 

*The colon separating the lower and upper bounds is 

omitted. 

*The upper bound is an integer variable which is declared 

in the same block of the array identifier. 

*The lower bound is neither ¢ nor 1. 

*The same identifier is declared more than once in the 

same block. 

4 ~~!:Cl<!:~!!:l~nt_ ~X~9£ 

*The long basic symbol beginning a statement is not one 

of these following long basic symbols. 

I BEGIN I, 

IIF.'t 
IFOR I 
I GOTO I 
IENDI 

(compound statement or block) 
(conditional statement 
(for statement) 
(go to statement) 
(dummy statement) 

7-2 



*The input-output procedure statement READ, WRITE, or 

SKIP is not found. 

*A conditional statement is found just after the long basic 

symbol 'THEN'. 

*The statement following the long basic symbol 'ELSE' does 

not correspond with the unconditional statement following 

the long basic syrrmol 'THEN'. 

5 Statel!!~!-~_.~EE9!: 

*A statement is not ended by one of the following basic 

symbols 1 

Either J or 'END' or'ELSE' 

6 C9.!.Q~ . .e,l?·~(~t.~~l.~ __ ~ i.SL~ .. ~f.J:S?X 

*The colon and equals sign representing the basic symbol 1= 

are omitted in the following casesl 

*In a switch declaration, after the switch identifier. 

*In a FOR statement, after the controlled variable. 

7 !!lde'!..~f.;-2..;. 

*In an array declaration, the upper bound is neither an 

integer variable nor an unsigned integer a 

*In a statement, a subscript .Ls n€!ither an integer variable 

nor an unsigned integer. 

*In a GOTO statement with a switch designator, the subscript 

is neither an integer variable nor an unsigned integer. 

*A right br~"'.cket is omitted after the subscript. 

*In a FOR statement, the controlled variable is not an 

integer variable. 

7-3 



*In a FOR statement, the initial value, the step value or 

the final value is neither an integer variable nor a signed 

(minus only) or unsigned integer. 

8 Consta~_9.ut,~.!-<1~_R~nSL~. 

*The value of an unsigned integer is grea.ter than 2040 

when used explicitly as an ALGOL-8 program constant. 

*The integer part of a real number is greater than 2040 

when used explicitly as an ALGOL-8 program constant. 

9 ~iml?~ogl~~~!LJL~E.!'~.ssion Error 

*One of the simple arithmetic expressions of a relation 

is not an integer type. 

*In a Boolean aSSignment statement, the long basic symbol 

beginning the Boolean expreSSion is not one of the 

following. 

'TRUE', 'FALSE', or 'NOT' 

*The variable following a logical operator ('NOT', 'AND', 

'ORI, lIMP', 'EQU') is not a Boolean variable. 

*In a relation, a relational operator is omitted. 

10 GOTQ....~.~~ill~}·~!:_ E:';-.~£;:. 

*The identifier following the long baSic symbol I GOTO I 

is neither a label nor a switch identifier. 

*Labels referenced by the program remain undefined at the 

end of the program. 

11 BEG1!L~,:, ~~NJ:).J~!!,!9";:. 

*There are too many long basic symbols lEND'. Each 

I BEGIN I must be paired with an IENDI. 

12 ~~c::J.-tt 9"y'~!.Q~L.~.:r;E2£ 

*One of the limitations described in Appendix B is exceeded. 

7-4 



*More than 18 conditional and FOR statements were in use 

at one time in the user program. 

*The arithmetic expression being compiled is too complex 

for ALGOL-8 (stack overflow). 

13 ASS~l'!!!!.~!lt St~,t~m~l!t~_.~;-F2r. 

*The assignment operator (1=) is found in the middle of 

an arithmetic expression. 

*The equals sign is not found after a colon in a multiple 

assignment statement. 

14 Be~~1?§r.._E~f.t;pr. 

*The exponent of a real number is not properly written. 

15 Rea.~L.2F~~J:"i ~~ ..... E~.!,.of. 

*The procedure statement with parameters is neither READ 

nor WRITE. 

*The first parameter of READ or WRITE is neither 1 nor 2. 

*A comma which separates parameters is omitted. 

*One of the READ parameters is not an identifier. 

*One of the WRITE parameters is neither an identifier nor 

a character string enclosed between double quotes. 

*The identifier parameter of a READ or WRITE procedure 

statement is neither real nor integer. 

*A left bracket is omitted in a subscripted variable. 

*The right parenthesis which ends the READ or WRITE procedure 

statement is omitted. 

*An operator is missing between two operands. 

*Two operands are found consecutively. 

*The number of left parentheses 1s not equal to the number 

7-5 



of right parentheses in an arithmetic expression. 

18 standard FUnc~ion A~tivation ~r!£E 

*The parameter of the standard function is not a simple 

variable. 

*The left or right parenthesis is missing. 

*The parameter is not a real number except for the 

function REAL. 

7 • ~,,_. Execu.t i £p._...1'.~~_.Di a.sLI1.os tic s. 

Errors detected at the time of program execution in ALGOL-8 

cause the following error message on the Teletype printer. 

OPS n 

The error codes (n) are given below. When an error condition is 

encountered at execution time, the ALGOL-8 program will halt. 

If recoveJ:Y is possible (as noted below), the user may press the· 

CONT switch of the computer console and the program will resume 

execution. 

7-6. .. 



Error 
Code 

1 

2 

3 

4 

5 

6 

7 

8 

Condition 

user array size exceeds the avail­
able space. 

Division by zero has been attempted 
in the user program 

Integer input outside acceptable 
range 

Attempt to convert a real number 
to an integer which is outside the 
acceptable integer range. 

Attempt to take square root of a 
negative n~~b~r. 

Attempt to take logarithm of a 
negative number. 

Switch index in users program is 
undefined. 

Users program demands functions 
which have not been loaded. 

7-7 

Recovery 

No recovery 
possible. 

Division is 
performed •. 

Input ignored. 

The real number 
is converted to 
zero 

square root is 
taken of the 
modulus. 

Logarithm is 
taken of the 
modulus. 

Index is taken 
as 1. 

No recovery 
possible. 



8 !.J-_, C0n:t.£! .. t~F 

Chapter 8 

OPERATING INSTRUCTIONS 

The compiler consists of 2 paper tapes -

ALGOL Compiler DEC-08-KALA-PB 

ALGOL Compiler Reinitialization DEC-08-KA2A-PB 

The compiler will only run in Field %, since it uses the 

program interrupt facility. The compiler must be reini t1?lized 

with the second tape, after each compilation, before another 

compilation is attempted. 

,§.!_~,.J_.~._9E~r,CI:~ i o~ 

The operation of the compiler is given in the following 

steps which are summarized in the accompanying flow chart 

(figure 8-1). 

a. load compiler with binary loader 

b. load address 400 and start 

c. the program types OPT -

The options are, 

R - Input/OUtput on high speed reader/punch 

T - Input/OUtput on low speed reader/punch 

d. place the source program in the appropriate reader, 

turn on the appropriate punch and type R or T. 

e. start Low Speed Teletype reader (if T has been typed) 

f. the program halts at loc. 262 after compilation is 

complete 

g. error messages are typed on the Teletype console and 

the program halts at loc. 3142. 

h. re-initialize the compiler if a further compilation 

8-1 



·~.~ G .. Load-""-.=----~:J_· . ii th~'BI;~ay 
STO.P .,._, ALGOL-8 Compil er ' - _. - Loader - Loa _.-, ·---"1"'"·· .. ·-««·-- i~~~!.~d ~ 

0-'-"~1D~;-r-e-s-'s-s~-~-,}----[s~_~-~to_~~~] 

[~~~:='::L;A;-~~~'-j 

G:rn:~:-~~~::l 
[D~p~e~s_~:~~~] 

High-Speed Reader Low-Speed Reader 

[;u~-;ou:S:;~;~~:~=I----- -. ..- <-[~p~~~;~~~~-;~~e-~~L~;l 
-~~p~es~I~::~~ ~;::I-- -'[;~:r~--'~'-r -------.. 

r -=~~.,.,,~-.,~ , .. "'_"_"-' 

_..____ .... _. __ L~:~:~J_S:-~~Tl 
. .. -,--~--,--.... - ... - ""-'-"-'-"" ---- '1 

Figure 8-1 Compiling an ALGOL-8 
program 

8-2 

No 



~~:-d' c~~~~~e~ _____ J With Binary j 
ALGOL-8 Program ~ Loader 

-.".------~- -.".<.~-,. -.,-,,---.... ~---....... 

High-Speed 
Reader 

.. _._ ... _ .. _ ... ~. ""'1 
Set SR=3400 

____ ~,~-_ -_~._~_'L."_ ,~~"""", 

0_ NO 

Yes 

No 

! Yes 

['T~a'pe ~'s top s 

[. . II Load FUnction J 
"oadereerlay 

Hi9h-Spr_d_~~ ... _ ..... C ... h - Low=St'~~d .!'.~~I 

C Dep;ess nSFi Coep-re:: ~s;~;1 

NOTE: The function loader and functions 
must be used \'lhenever an ALGOL-8 
program uses the povler (t) oper­
ator or any of the standard fun­
ctions, SIN, COS, ARCT, LN, EXP, 
and SQRT. 

-. -- ---[s"et -~·~=0400.r.- -__ . ________ .e __ 

[DepreSS;;~~-~DD· J 

[DeEr~.ss~~~-TARi] 
[ ou.·.t.p~.t .... i .. ·;;- Resu .. 1. ~ .'.1 of ALGOLr_;.Q.9l:~1'.!L_ 

1 
~/ . "-.... Yes 

~~-. 
Figure 8-2 Running an ALGOL-8 Program. 

8-3 



is re~~ired, by loading the second tape with the 

Binary Loader • 

. ~.!.!!}_,J:1~1!Q!,Y~ q!c:q~ 

The compiler uses all memory locations from ~-7577. The 

double input buffer is at loc. 4~~ and the single output buffer 

is at 74~~. 

8.2 Operating System 
---'-""~""~---"--'-<:-~"""-'--""'->"",-.- ..,. ..... ~-

There are 3 tapes which makeup the ALGOL-8 operating system 

ALGOL OPERATING SYSTItM 

ALGOL OPERATING SYSTEM, FUNCTION LOADER 
AND FUNCTIONS 

ALGOL FUNCTION LOADER OVERLAY 

DEC-08-KA3A-PB 

DEC-08-KA4A-PB 

DEC-08-KASA-PB 

The system is based on the fleating point package (DEC-8-S-S). 

It will run in any memory field, but will not use more than one 

field. 

The standard functions (SIN, COS, ARCT, LN, EXP, and SQRT) 

are loaded only if they are required by the compiled program. 

They must be loaded if the program calls them explicitly or if 

the exponentiation (+ ) operator is used. 

There are two alternative operating proceduresl 

.§~,~~~!",~Qp~ra,tion,= N~_, F'uncJ:~(),n_?_~~~A:t:'~_g. 

a. Load compiler output with Binary Loader. 

b. Load Operating System (KA3A-PB) with Binary Loader. 

c. Input data must be in the appropriate reader if 

required and, if punched output is reqUired, the 

appropriate punch must be on. 

8-4 



d. Load address 400 and start. 

e. The program may be restarted at location 400. 

!!.!_2 •. 2_._.QE~z:atio!1 - Functi()p':sR~gul~,ec; 

a. Load compiler output with Binary Loader. 

b. Load Operating System, Function Loader and FunctiQns 

(KA4A-PB) with Binary Loader. 

c. The Binary Loader loads the operating system and the 

Function Loader. The tape will stop before the 

functions are loaded. 

d. TO load the functions, load address 7400, set bit ~ 

for appropriate reader (as in the Binary Loader) and 

start. 

e. The necessary functions will be loaded and the reader 

will halt at location 7424. (A checksum error will 

cause the loader to halt at location 7511 with the 

checksum difference in the AC.) The reader will load 

only the needed functions and, in general, the reader 

will halt with the function tape only partly read. 

f. Load the Function Loader overlay (KA5A-PB) with the 

Binary Loader. 

g. Go to stop c of paragraph 8.2.1. 

8 ,.?,!.~ ,!1.9!ll0.ry. usage, 

The Operating System uses locations 0-377 and 4600-7577. 

FUnctions are loaded by page, downwards (towards G) from 

location 4600. 

The compiled program is loaded from 400 upwards. The pages 

between the compiled program and the functions (or location 4600, 

if no functions are required) are'used for array storage. 

8-5 



8 !.?._>Y~!,,~,!~J)~~,.!!lPY:.!:~ .. fprm~ 'to 

Input to the compiler and data input to the operating system 

may be in parity or nun-parity ASCII fonaat paper tape. Blank 

tape, rubout and line-feed characters are ignored. Spaces are 

ignored except in text strings. 

8 !l..!1>~ ... Co~_~.!;_.!P'P~~. 

A source program must be terminated by a $, which must be 

the first character of a line, followed by a carriage return. 

8 •. c~,!..2_'7 .. QE~r~t.:f,!lE __ §y~!:-eI1l.Inpu 1:, 

Input of a data item to the operating system i.e. by a RMD 

procedure statement is terminated by any character which is not 

a number, sign, decimal pOint or $ (indicating the exponent). 

8-6 



APPENDIX A 

ALGOL-8 BASIC SYMBOLS 

-------.------,.------~---

Long 

Basic Symbols 

begi~_ 

end 

real 

i~t:~c;f.e_r 

boolean -----.- "~ .. ~ --

arE~X 

switch --..... -- .... ~>-

if 

then 

else 

for 

st.~.E. 

until --.. -~ .. 

do 

go.!~. 

comment 
-~--"'.--.~.- ---~.-

true 

false ---.. ---- -
.•.•.. _--- .. _--_., ... -

Corresponding 
ALGOL-8 

Representation 

'BEGIN' 

'END' 

'REJ!oL' 

'INTEGER' 

'BOOLEAN' 

'ARRAY' 

'Sl'7ITCH' 

'IF' 

'THEN' 

'ELSE' 

'FOR' 

'STEP' 

'UNTIL' 

'DO' 

'GOTO' 

'COMMENT' 

'TRUE' 

'FALSE' 

A-I 

r----------r----.----_.--. 
Short 

Basic Symbols 

+ 

x 

/ 

t 

:!: 

:/ 

< 

> 

~ 

~ 

; 

:= 

Power of 10 

( 

- ""'~ .. -.............. -~ .. ---.. -

Corresponding 
ALGOL-8 

Representation 

+ 

* 
/ 

t 

= 
# 

< 

> 

< = 
> = 

, 

:= 

$ 

( 

_._0 



Long 

Basic Symbols 

1\ 

V 
~ 

-----

APPENDIX A (cont'd) 

ALGOL-8 BASIC SYMBOLS 

Corresponding 
ALGOL-8 

Representation 

'NOT' 

'AND' 

'OR' 

'IMP' 

'EQU' 

*NOTE 

A-2 

Short 

Basic Symbols 

Shift K= C 

Shift M=J 

) 

[ 

J , 

Correspondinq 
ALGOL-8 

Representation 

) 

[ 
] 
It 

It 



APPENDIX B 

RESTRICTIONS 

Limitations of the Lan~~age 

1. There are no user procedures. 

2. There are no Boolean arrays. 

3. An integer or real array must be one dimensional. 

The lower bound must be either the digit ~ or the 

digit 1. 

The upper bound must be a simple integer variable 

or an unsigned integer. 

4. The subscript of an array variable or of a switch 

designator must be a simple integer variable or' an 

unsigned integer. 

5. Variable identifiers are differentiated by the first 

four alphanum~ric characters only. 

6. A switch list must be a label list, the labels of which 

must be declared in the same block in which the switch 

declaration appears, or in an outer block. 

7. The ~hile. long basic symbol is not recognized. 

Limitations of Program Size and Form 

1. 50 identifiers simultaneously valid. Identifiers are 

defined as simple variables, subscripted variables, 

switch designators and declared labels. 

2. 10 arrays (real or integer). 

3. 7 nested blocks a 

4. 18 undeclared labels. Undeclared labels are those labels 

whose declaration occurs in the same block after their usc, 

or in an outer block. Hence, labels of a switch list ar~ 

undeclared labels. 

a-I 



o 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

APPENDDC C 

TABLE OF ERRORS 

Long basic symbol error 

Identifier Error 

Declaration Error 

11U1tip1e Declaration error 

Statement error 

statement end error 

Colon and equals sign error 

Index error 

Constant outside range 

Simple Boolean expression error 

G·OTO statement error 

Begin-End error 

capacity overflow error 

Assignment statement error 

Real number error 

Read or write error 

Arithmetic expression error 

parenthesis number error 

Standard function error 

C-l 



'BEGn~1 

'END' 

'REAL' A,B,C; 

'INTEGER' I, J , K; 

'BOOLEAN' BI, B2; 

APPENDIX D 

SUlIl1ARY OF COMHANDS 

Opening statement parenthesis -

used to start a program, compound 

statement or block. 

closing statement parenthesis -

llSec1 to terr:-.inate a prot;;raj'l, 

compound stab~~ent or block. 

Real number variable declaraticn -

used to identify the real nl.llilber 

variables used within a program 

or block; in this case A, Band C 

ar~ real variables. 

Integ~r variable declaration -

used to identify the integer variables 

used within a program or block; in 

this case I, J and K are integer 

variables. 

Boolean variable declaration -

used to identify the Boolean variables 

used within a program or block. In 

this case Bl and B2 are Boolean 

variables. 

'ARRAY' A [1110] I B (.~IN] ; Array declaration -

used to specify the arrays used 

within a program or block. This 

D-1 



'SWITCH' SI=Ll, S2,STOPJ 

'GOTO' LJ 

'COMMENT' TEXT. 

symbol should be prececled by 

'INTEGER' or 'REAL' to identify 

the t-ype of array. In ALGOL-S, the 

lower limit must be , or 1, and the 

upper limit must be an unsigned 

integer (e.g. 10, above) or a 

simple integer variable (e.g. N, 

above) 0 Only one-dimensional 

arrays are allowed in ALGOL-8. 

switch declaration -

used with 'GOTO' S [I) to branch 

an ALGOL-S program, based on the 

value of an integer index, I. The 

index I may be an expresSion but its 

values must range from 1 upward. In 

the example given, the possible 

values for I must be 1, 2 and 3. 

GCTO statement -

specifies that the statement to 

be executed next is the one identified 

by the label L. (L is an identifier 

which is separated from the statement 

which it precedes by a colono) 

Comment statement 

provides a means of including 

comments in a program to identify 

D -2 



parts and to clarify procedures. 

All characters typed after the 

'COMMENT' and before the semicolon 

are included in the program listing. 

They are not typed during the running 

of a program. 

IF statement -

R is a relation, such as X~ y+5, 

S is a statement, such as IGOTO' BIG,. 

If the relation R is true, the state­

ment S will be executed. If the 

relation R is false, S is Skipped and 

the next statement in sequence is 

executed. . S may be a compound state­

ment, bracketed by 'BEGIN' and 'END'. 

'IF' R tTHEN' Sl 'EISE' S2 J Conditional statement -

if relation R is true, statement Sl 

is executed and S2 is Skipped; if 

R is false statement Sl is Skipped 

and S2 is executed. S1 must not be 

a conditional statement, however, S2 

may be conditional, thus establishing 

nested conditional statementso 

tFOR' VIa= AI, A2, A3 '00 1 Sl, FOR statement-

D -3 

statement S1 is executed repeatedly 

with the controlled variable VI 

taking on each of the values of AI, 

A2, and A3. For example, Sl could 

be a block to compute the sine of an 



'FOR'Vll=Xl 'STEP'X2 'UNrIL'X3 'DO'Sl; 

D-4 

angle VI, where AI, A2, 

and A3 are the desired 

values of VI. 

Step-until statement -

statement Sl is executed 

repeatedly with the control 

variable VI taking on 

values of Xl initially, and 

increasing to X3 by adding 

on the increment X2. For 

example, if 81 computes the 

sine of an angle, Xl 

(initial) could be ¢ degrees, 

X2· (increment) could be 10 

degrees, X3 (final) could 

be 90 degrees. 



APPENDIX E 

NOTES ON ALGOL 

COMPILER 

EXIT: 

$ 

The ALGOL-8 compiler is analyzed with emphasis on the implementation, performance, 
and error diagnosis. 

(1) The ALGOL-8 compiler will halt with every syntex error and does not continue to scan 
the rest of the source. This is typical of many ALGOL compilers. 

(2) After each compilation load the first part of RE-INIT to type out the symbol table and 
load the second part of "RE-INIT to reinitialize the compiler. This is only necessary if 
the identifier printout is desired. 

(3) Error diagnosis performed by the compiler is fairly good with the exception that the 
message typed out may sometimes appear vague and as a result becomes unclear, each error 
code covers many different messages. This results from the complexity of the programming 
language and the obi I ity of the program to be contained in 4K. 

The fol lowing observations were made during compilation time. 

(1) Boolean expressions must be written as specified in section 3.2.1 of the manual 

(2) I/O of Boolean identifiers and mixed mode constructions with Boolean mode identifiers 
are not allowed .. 

(3) All "END" statements .!!l.tJ..sL be terminated by (;). 

(4) The following refers to dummy statements. 
'BEGIN ' 

'BEGIN ' 
IIF' 1= J'THEN ' 'GOTO' EXIT; 

'END' 

'END' 

The above situation will always cause BAD IGOTO I error message, because 'EXIT' is 
outside the block where 'GOTO' statement tries to link. 

E-1 



The correct form is as fotlows: 

'BEGIN ' 
'IF' I=J 'TH,EN "GOTO' EXIT; 

EXIT: 
'END' 

(5) With regards to "GOTO" statement by referencing' ALGOL-8 Manual page 5-2, 
Section 5.2 GOTO examples have shown different result. 
GOTO example 1 O. K~ 
GOTO example 2 error 10 during compilation 
refer to the attached sheet. 

OPERATING SYSTEM 

(1) DOT (.)- is not allowed for integer input. It does not give any error message but simply 
treats it as a nu II data. 

(2) WRITE (1, "I NPUT-.J wu u u U LJ COSINE"); SKIP; will occasionally print out as: 
INPUTCOSINE. The seven spaces between the two words are not printed out. 

(3) In the statement 'FOR ' V: = 1 I •••• IUNTILI N 1001 
if N has value a of 0 or a negative number, all the statements within the range of 1001 will be 
ignored, but no error message will appear. 

(4) "VARIABLE ARRAY" program is attached for reference, because the "WRITE" 
statement under the control of "FOR II yie Ids on Iy 1 line resu It so that most of them will 
not be readable. The resu It is also attached. 

ALGOL Functions including both Basic and Standard. 

(1) "E~IIER" function testresult~ ore attached at the end of this section. 

(2) Boolean operator ~~!>I does not function properly at all times for example: 
T = true 
F = false 
T IANDI T .... T Correct 
T 'AND' F-+T Wrong, should be F 
F IAND' F ... .r Wrong, should be F 

, Refer to results of Boole 1 A & 2A. 

E-2 



(3) SINE function: 
let x;arg~men-t-' 
.001 < x < .05 

Then error E for all the arguments in the range above is .0000001 < E < .00001 
3/50 yields 5-digit accuracy. 
47/50 yields 6-digit accuracy. 

The range for argument x where .001 < x < .025 almost half have 6-digit accuracy and the 
other hal f have 5-digit accuracy with--. 000001 as error. -

For other arguments of other ranges, the perctage which guarantees 6-digit accuracy improves 
and the error is seldom greater than .000001 • 

The range for argument x where .001 < x < .025 few had an error of -.000001 and 
guarantee of 6-digit accuracy is given. -

(~) Exponential function: 
The range for the argument x where 0 < x < 14 produced excellent results with the 
following exceptions: - -
ef9. yields 8103.07 instead of 8103.08 The error is -.01. 

e1'11. yields 59873.9 instead of 59874.1 with error 1.2. 

et13 yields 442412. instead of 442413. with error -1.0. 

(7) ASS function operates accurate Iy. 

(8) ~Cltural log function; 

The range of the argument x where 1. < x < 1.030. One sixth yield 6-digit -accuracy, 
whereas most of them yield only 5-digTt aZcuracy and one tenth yield approximately 4-digit 
accuracy. 

The range of argument where 1 • .::: x,::: 40. All results have a 6-digit accuracy. 

E=3 



USERS ' MANUAL CHANGES 

(1) Page 1-2. 'INTEGER ' SUM: (colon should be changed to semicolon after sum). 

(2) Page 1-8. 'FOR ' E 'STEP' I 'UNTlL' F IDOls. It would be much better and less 
confusing if A semicolon (;) is inserted after S. 

(3) Page 3-3. Division (I) is considered as Real Operator. (Integer division is 
allowed. ) 

(4) Page 4-1. Chapter 4. All declarat.ion statements should be listed before their 
explanation, because all declaration statements must appear at the beginning of 
a block. 

(5) Page 5-2. Section 5.3 

Treat 'FOR ' V: = A .... as 2. 

(6) Page 5-4. The total number of conditional and FOR statements that can be 
accommodated at one time is eighteen. 

This parti cu lar combination is not tested. 

However, its equivalent: 
'IF' ... 'THEN' .•.. 'ELSE ' was tested and it can accommodate at one time 9. 

(7) Page 5-5. Section 5.5 

B: = A*A*A; is a dummy statement. 

(8) Page 5-6. In the example: 

K: I + J; shou Id be K: = I + J; 

(9) Appendix B: At no time can a single" ALGOL program contain more than 1.0 (TEN) different 
dimensioned variables. 

Ex: A (1 :N), B(l :N) ..•. 

E-4 



VARIABLE ARRAY 

$ 

'BEGIN' 
'COMMENT' ARRARY STATEMENT TEST; 
'INTEGER' N, V; 
'REAL' 'ARRAY' AXel :N!BXC1 :NJ; 
WRITE (1, "TEST FOR ARRAY STATEMENT") iSKIP; 
WRITE (1, "TYPE A NUMBER IN, MAX=1,fJ") ;SKIPi 
READ (1, N) iSKIPi 
'FOR' V:=l 'STEP' 1 'UNTIL' N '~O' 
'BEGIN' 
READ (2,AXCV1);SKIPi 
BXCVJ:= 1/ AXMiS K I Pi 
'END'; 
'FOR'V:=l 'STEP' 1 'UNTIL' N '~O' 
WRITE (1 ,A~a. BXIYl) iSKIPi 
'FOR' V:=l 'STEP' 1 'UNTIL' N '~O' 
WRITE (2,A'Xf.V1, BxrvJ iSKIP; 
'END' 

E-5 



'BEGIN ' 
'INTEGER' 1, J; 

GOTO, EXAMPLE 1 

WRITE (1, "GOTO TEST");SKIP; 
READ (1, I~.J);SKIP; 
'BEGIN' 
'IF' I=J 'THEN' 'GOTO' OK; 
WRITE (1, "NOT TOO GOOD") ;SKIP; 
'GOTO' EXIT; 

OK: WRITE (1, "0. K. ") ;SKIPi 
'END'; 

EXIT: WRITE (1, "EXIT") ;SKIP; 
'END' 

$ 

*L 

OK: 

EXIT: 

$ 

* 

GOTO, EXAMPLE 2 

'BEGIN' 
'INTEGER' I,J;. 
WRITE (1, "GOTO TEST ") ;SKIP; 
READ (1, I, J) ;SKIP; 
'BEGIN ' 
'IF' 1= J 'THEN' 'GOTO' . OK; 
WRITE (1, "NOT TOO GOOD") jSKIPj 
'GOTO' EXIT; 
WRITE (1 "0. K. ") ·SKlp· 
tt~j' " 

WRITE (1, "EXIT") ;SKIP; 
'END' 

E-6 



$ 

* 

'BEGIN' 
'REAL' A,Bj 
'INTEGER'I,Jj 
WRITE (1, "DUMMY TEST ") jSKIPjSKIPj 
READ (1, A, I, J. jSKIPj 
WRITE (1, "A, B, I, J ARE NOT DECLARED IN THE NEXT BLOCK") jSKIPj 
WRITE (1, "NEXT IS A NEW BLOCK") jSKIPj 
'BEGIN ' 
'IF' 1= J 'THEN' 'GOTO' EXITj 
WRITE (1, "WRITE 5 SKIPS") jSKIPjSKIPjSKIPj 
SKIPjSKIPj 
B: =A*A*Aj 
EXIT: 
'END' 
'END' 

E-7 



EXIT: 

$ 

* 

'BEGIN ' 
'REAL' A B· ~ I. 

'INTEGERI I, Ji 
WRITE (1, "DUMMY TEST") ;SKIPiSKIPi 
READ (1, A, I); 
WRITE (1, "A, B, I, J ARE NOT DECLARED IN THE NEXT BLOCK") ;SKIP; 
WRITE (1, "NEXT IS A NEW BLOCK") ;SKIP; 
'BEGIN I 
'IF' 1= J 'THENI IGOTOI EXIT; 
WRITE (1, "WRITE 5 SKIPS") ;SKIP;SKIP;SKIP; 
SKIP;SKIP; 
B: =A*A*A; 
'ENDI 

IENDI 

E-8 


	000
	001
	002
	003
	004
	005
	006
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	2-01
	2-02
	2-03
	2-04
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	4-01
	4-02
	4-03
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	6-01
	6-02
	6-03
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	A-01
	A-02
	B-01
	C-01
	D-01
	D-02
	D-03
	D-04
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08

