L]
United States Patent (9 [11] 4,449,182
Rubinson et al BEST AVAILABLE COPY s May 15, 1984
[54] INTERFACE BETWEEN A PAIR OF 4,318,174 371982 Suzukietal. ... 364/200
PROCESSORS, SUCH AS HOST AND 4,334,305 6/1982 Girardiccovecmrrrreerrrvanreen. 3647200
PERIPHERAL-CONTROLLING Primary Examiner—Joseph F. Ruggi
ry Examiner—Joseph F. Ruggiero
PROCESSORS IN DATA PROCESSING Assistant Examiner—Gary V. Harkcom
SYSTEMS Attorney, Agent, or Firm—Cesari and McKenna
[75] Inventors: Barry L. Ru'bi.nson; Edward A._ [57] ABSTRACT
Gardner; William A. Grace; Richard . .
F. Lary; Dale R, Keck, all of An interface mechanism (10) between two processors,
Colorado Springs, Colo. such as a host processor (70) and a processor (31) in an
! intelligent controller (30) for mass storage devices (40),
[73) Assignee: Digital Equipment Corporation, and utilizing a set of data structures employing a dedi-
Maynard, Mass. cated communications region (80A) in host memory
[21] Appl. No.: 308,826 (80). Interprocessor commands and responses are com-
_ municated as packets over an 1/0 bus (60) of the host
[22] Filed: Oct. 5, 1981 (70), to and from the communication region (80A),
[51] Imt. CL3cconeviiciincns GO6F 9/46; GO6F 15/16 through a pair of ring-type queues (80D) and (80E). The
[32] US. CL .o 364/200 entry of each ring location (e.g., 132, 134, 136, 138)
[58] Field of Search ... 364/200 MS File, 900 MS File; points to another location in the communications region
371721 where a command or response is placed. The filling and
. emptying of ring entries (132-138) is controlled through
[56] References Cited the use of an ‘ownership’ byte or bit (278) associated
U.S. PATENT DOCUMENTS with each entry. The ownership bit (278) is placed in a
3,940,601 2/1976 Henry et al. .o, 235,153 ACc first state when the message source (70 or 31) has filled
4,145,739 3/1979 Dunning et al.cocovvunn. 364,200 the entry and in a second state when the entry has been
4,153,934 5/1979 Sato ..o 364/200 emptied. Each processor keeps track of the rings’ status,
4,181,937 1/1980 Hattori et al. oo 364/200 to prevent the sending of more messages than the rings
:v;givggi g; :ggg gaf 'c'le" e;dal. 33; g% can hold. These rings permit each processor to operate
,204, rudevold : e
4,212,057 7/1980 Devlin et al. ... 364/200 a‘b't.s o Spee“’j’ t‘."'r‘h;a‘;;c’eanf‘gt race fond“;)‘i’l'i‘ts a“g
4214305 7/1980 Tokita et al. ... 3647200 OPViate the need fo ware Interlock capabrity O
4,237,534 12/1980 Felix .ooroeer 364/200 the 1/0 bus (60).
4,268,907 5/1981 Porter et al. 364/200
4,282,572 8/1981 Moore et al.ccccerveenrrene 364/200 21 Claims, 19 Drawing Figures
I |
! (| 32
= — — — — — — 808]
80 | HOST COMMAND RING PTR - —+
| | _CIMAND NTERRUPT 80C l HOST RESPONSE RING PTR ‘:34 l
| RESPONSE INTERRUPT | 1
' B[M I l |
-------- 80D ¢ !
| soa RESPONSE RING | / 30
| X T 7 T Y [wmawsimon | BUFFER 1o l l R
70 || b e e] INDICATOR |] | |36)
VS | ET] |\ T el pRocessiR
l ~80E !
________ BUFFER 37, A
|| cPU CONMAND RING || TRANSITION l o]
T TR I) S INDICATOR | u !
B sl B { Sttt R z
N
! t | : SA)
s ') »
<l SYSTEM BUS >
' 110 |
I [ous AwPTER |
. B 60
y f N
< 1/0 BUS >
~ 7

4,449,182

Sheet 1 of 14

U.S. Patent May 15, 1984

oz
N\
7/ N
“
b1 3AINQ 30v4 H3LNdWOD
¢ ol wsia [T) "] YFTI0ULNOD BT g 1SOH _
0S 09 |
oe“ N\ o_\ L
r
6 WSINVHO3N SNOILLVIINNWWOD -
3 130d 14¥0d 4+—8
01— Nh

Y 1 I S 1
| | | |
_ Y3AN3S L __odoioud 1 Y3AY3S _
| 1y¥0d |~ SNOILVJINANNGS | 1¥0d [
| T I | |
} 014 | S A_-2 . bV—— m# |
[N " " € [
| vi |

Y3AY3S ¥3AINQ
| | -oooi08d o1 fel L _1030L0ud _ 1 SSV 12 _
| 13AT-HOH | 0/1 13A371-HOIH | o/l I
_ | [g
o e e e . | S

d3T1041NOD 1SOH

4,449,182

Sheet 2 of 14

U.S. Patent May 15, 1984

q\ 3
s o/
~ [h llllllll I“I IIIIII \v
ve D14 09 3 , m
_ ou ¥3LdVOY SN |
£ : 9% N\
6g { Sng WILSAS | >
\ Y N ! A
a N i—— F-—=——-4 |
! 1| | dovoion | - — — — — ——- !
HIT —* y24i “ NOLLISNVAL | | _ NIM_ONYARODD | ndo | |
. / _
¥0SS304d e — o PN | s] ~— |
e p oci | Ll wowvaom | T~ —————7 \ oL |
—n — _ — zmmw:m _ zc—._.—wz<¢._. -\..l llllll r<om
| o¢ |] oom\ | Wb 3oNOdSH |
|| | vi8 LN¥Y3LNI 3SNOASTY |
_ L] 14 9N 35NOGSIY LSO | 9084 | T |
e LAONHILNI ONVAIND) _
— =1 Uld SNIY ONYANOD LSOH 'l 8 goefL— — — — — -
1 _ T "
_

Sheet 3 of 14 4,449,182

May 15, 1984

U.S. Patent

a¢ b4
Walis
bel
M o€l
o)
ALdW3 ALdW3
SEImE_2:0 b 5
ecl
n_;\
2¢l 4
t.n__zum ALdW3
0
dy ol 8¢l
eel

ge bi4

vel
o¢|

(ALdW3)
[e+ey]

(ALdW3)
[1+8y
2:=0

Gel

(ALdW3)

[c+8y] bl
r4al

U.S. Patent May 15, 1984 Sheet 4 of 14 4,449,182

CONTROLLER

(mowr)

PORT

IS RESPONSE RING
ENTRY AVAILABLE
TO CONTROLLER?

204
\

S§§ n8n & "F" '
BITS

206

PR~

NOT EMPTY

Fig. 44

U.S. Patent May 15, 1984 Sheet 5 of 14

HOST

ENTRY. = HOST? 87

212

R vIC
RESPONSE

SERVICE
INTERRUPT & PROCESS

!

216
[

UPDATE HOST'S
RING POINTER

4,449,182

U.S. Patent May 15, 1984 Sheet 6 of 14 4,449,182

HOST

218 /220 1222

IF 1ST TIME,

START TIMER [Toor —-JCONTROLLER

RINCanﬁN%BLE
?0 HO%H? TIME-OUT

ISTOP

226
NO

228\ s

SET FLAG

m\l‘_

SET "0" -
/

WRITE TO IP

Y

AFTER COMMAND SENT, .
UPDATE RING Fig. 5

TO FIG. &

U.S. Patent May 15, 1984 Sheet 7 of 14 4,449,182

FROM FIG. 5

CONTROLLER DETECTS |~ 234

236

238

“ORNER B¢
CONTROLLER 2

240\\

READ INTO BUFFER

Y

242~] SET FLAG BIT:
CHANGE OWNERSHIP

244

COMMPNELREEG
NOT FULL

Tes /248

INTERRUPT
. i

Fig. 6 INCREMENT |-250
POINTER

U.S. Patent May 15, 1984 Sheet 8 of 14
15 87 4}
-4 RESERVED
2547
- ADP CH RSVD
"\
2% - CMD INT
258 —
-1 RSP INT
252 —~
RINGBASE +0
— RSP DSC 0 -
+1
- RSP DSC -
RINGBASE+2N-1
RINGBASE+2N
— CMD DSC O -
— CMD DSC M —

RINGBASE+2M+2N-2

Fig. 7

J
3

4,449,182

> 80B

]

I\,

J 80C

> 80D

410 3

U.S. Patent May 15, 1984 Sheet 9 of 14 4,449,182
15 1]
260~ o 262

264
~lolr RESERVED alalololulu
] 7173
218 280 Fig. 8 276 [272 | 268
274’ 270 266
15 87 4 3)
) | 282
2 MSG LENGTH 290
ZBGN;. 4 4’288
-1 CONNECTION ID MSGTYP | CREDITS
TEXT+0 MB1 MBQ B,
+1 MB3 ‘MB2
/> MBa-q MBp-2
284m
Fig. 9
15 0
292
298~ ADAPTER CHANNEL rsv [alafaelolulu
—77 7)
) 304 294
Fig. 10 306 302 296

4,449,182

U.S. Patent May 15, 1984 Sheet 10 of 14
15 11 10 [
3B-JE[s]s]s s
-~ Rl4]3]2]1 INT‘ERRUPT VARIES
Y[][] J
318 /314 [310 320
36 312
Fig. 17
34 0
4420
— ZEROES —
422~ 422A
\, Po0012 (8) 0004Pe (8) T
/
422A '
— CONTROLLER IDENTIFIER —
| 424
ERROR CODE CHVRSN csvRsn |26
426Aj 4aeaj 426C/

Fig. 13

U.S. Patent May 15, 1984 Sheet 11 of 14 4,449,182

HOST PORT/CONTROLLER
HARD INIT.
OF
CONTROLLER
j 324
322 \\\\\ SENSE INIT.: RUN
MINTMUM INTEGRITY
DIAGNOSTICS
INITIALIZATION
STEP 1: 1 /3%
WRITE SA REGISTER:
1098 7
nlolo
334\ olololo Jolg| RESERVED
J
SENSE S1 310 (323
SET; 332 330
READ SA REGISTER

336
\

WRITE SA REGISTER
1514 13 1110 87 6 ¢

1|WJC RNG|R RNG|I
aloine | ine L INT VECTOR

X 350
(3:;340) 344\ (346 (348 [

342 READ SA REGISTER;
RUN INTEGRITY CHECK
DIAGNOSTICS:
CONDITIONALLY
INTERRUPT HOST

Fig. 124
f A
TIME

U.S. Patent May 15, 1984 Sheet 12 of 14 4,449,182

HOST. CONTROLLER
INITIALIZATION 152
STEP 2: 7
WRITE SA REGISTER
151713121119 8765 32
PORT| [wlc RNGJR RNG
364-\ [0]of1]@] TYPE | 1]R| LNG | LNG
4 1§
READ SA REGISTER 362’ J (356 354
35
& VALIDATE ECHO 360" 358
366 l;,
\
WRITE SA
15 REGISTER 1 ¢
RINGBASE P
LO ADDRESS 1 7o
368J 370]7 /
READ SA
REGISTER
INITIALIZATION
STEP 3; /374
15 13 11 WRITE SA REGISTER
14 71210 876
1| INITIATE
378 olo|t|o|e|rsvD|E| vECTOR
READ SA REGISTER (
& VALIDATE 376
380 {Ag
1
WRITE SA
51y REGISTER: ¢
P RINGBASE
P HI ADDRESS
{ 1 ;
382 384
1 \
TIME

Fig. 128

U.S. Patent May 15, 1984 Sheet 13 of 14 4,449,182

HOST CONTROLLER
B
\r /386
READ SA
388
REGISTER
A |_—"1 & WRITE ZERGES
DETECT WRITING [, —
OF SA
S WRITE T0 SA [~ | /390
T~ VERIFY
3Q$ - HOST WROTE
TO SA
READ IP REGISTER |,—]
&
DISREGARD [~~~ /394
T VERIFY
HOST
— | READ IP

396 GO TG

NO sTEP 302
AND TRY
AGAIN

INIT. STEP 4; 398

WRITE SA REGISTER:
15 1087 0
Elt{o]®|0] RSVD [CTRLR LCODE VERS
(400
Y
TIME

Fig. 12C

U.S. Patent

May 15, 1984

Sheet 14 of 14 4,449,182

HOST NTROLLER
P e
READ SA REGTSTER
VALIDATE MCODE
VERSION
404, I
WRITE SA REGISTER
5 87 210
RESERVED BursT [E[$
406 408’ |
410
405

READ SA REGISTER;
INIT. COMPLETE;
START OPERATIONAL
pCODE

TIME

Fig. 120

4,449,182

1

INTERFACE BETWEEN A PAIR OF PROCESSORS,
SUCH AS HOST AND
PERTPHERAL-CONTROLLING PROCESSORS IN
DATA PROCESSING SYSTEMS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application relates to a data processing system,
other aspects of which are described in the following
commonly assigned applications filed on even date
herewith, the disclosures of which are incorporated by
reference herein to clarify the environment, intended
use and explanation of the present invention:

Ser. No. 308,771, titled Disk Format for Secondary
Storage System and Ser. No. 308,593, titled Secondary
Storage Facility Employing Serial Communication Be-
tween Drive and Controller.

FIELD OF THE INVENTION

This invention relates to the field of data processing
systems and, in particular to an interface between a host
processor and a controlling processor for a storage
facility or other peripheral device or subsystem in such
systems.

BACKGROUND OF THE INVENTION

In data processing systems utilizing secondary stor-
age facilities, communication between the host proces-
sor, or main frame, and secondary storage facilities has
a considerable impact on system performance. Second-
ary storage facilities comprise elements which are not
an integral part of a central processing unit and its ran-
dom access memory element (i.e., together termed the
host), but which are directly connected to and con-
trolled by the central processing unit or other elements
in the system. These facilities are also known as “mass
storage” elements or subsystems and include, among
other possibilities, disk-type or tape-type memory units
(also called drives).

In modern data processing systems, a secondary stor-
age facility includes a controller and one or more drives
connected thereto. The controller operates in response
to signals from the host, usually on an input/output bus
which connects together various elements in the system
including the central processing unit. A drive contains
the recording medium {(e.g., a rotating magnetic disk),
the mechanism for moving the medium, and electronic
circuitry to read data from or store data on the medium
and also to convert the data transferred between the
medium and the controller to and from the proper for-
mat.

The controller appears to the rest of the system as
simply an element on the input/output bus. It receives
commands over the bus; these commands include infor-
mation about the operation to be performed, the drive
to be used, the size of the transfer and perhaps the start-
ing address on the drive for the transfer and the starting
address on some other system element, such as the ran-
dom access memory unit of the host. The controller
converts all this command information into the neces-
sary signals to effect the transfer between the appropri-
ate drive and other system elements. During the transfer
itself, the controller routes the data to or from the ap-
propriate drive and to or from the input/output bus or
a memory bus.

Controllers have been constructed with varying lev-
els of intelligence. Basically, the more intelligent the

20

25

30

35

40

45

50

53

60

65

2

controller, the less detailed the commands which the
central processing unit must issue to it and the less de-
pendent the controller is on the host CPU for step-by-
step instructions. Typically, controllers communicate
with a host CPU at least partially by means of an inter-
rupt mechanism. That is, when one of a predetermined
number of significant events occurs, the controller gen-
erates an interrupt request signal which the host sees a
short time later; in response, the host stops what it is
doing and conducts some dialogue with the controller
to service the controller’s operation. Every interrupt
request signal generated by the controller gives rise to a
delay in the operation of the central processor. It is an
object of the present invention to reduce that delay by
reducing the frequency and number of interrupt re-
quests.

When an intelligent controller is employed, a further
problem is to interlock or synchronize the operation of
the processor in the controller with the operation of the
processor in the host, so that in sending commands and
responses back and forth, the proper sequence of opera-
tion is maintained, race conditions are avoided, etc.
Normally this is accomplished by using a communica-
tions mechanism (i.e., bus) which is provided with a
hardware interlock capability, so that each processor
can prevent the other from transmitting out of turn or at
the wrong time.

Modern controllers for secondary storage facilities
are usually so-called “intelligent” devices, containing
one or more processors of their own, allowing them to
perform sophisticated tasks with some degree of inde-
pendence. Sometimes, a processor and a controller will
share a rescurce with another processor, such as the
host’s central processor unit. One resource which may
be shared is a memory unit.

It is well known that when two independent proces-
sors share a common resource (such as a memory
through which the processors and the processes they
execute may communicate with each other), the opera-
tion of the two processors (i.e., the execution of pro-
cesses or tasks by them) must be “interlocked” or *syn-
chronized,” so that in accessing the shared resource, a
defined sequence of operations is maintained and so-
called “race” conditions are avoided. That is, once a
first processor starts using the shared resource, no other
processor may be allowed to access that resource until
the first processor has finished operating upon it. Opera-
tions which otherwise might have occurred concur-
rently must be constrained to take place seriatim, in
sequence. Otherwise, information may be lost, a proces-
sor may act upon erroneous information, and system
operation will be unreliable. To prevent this from hap-
pening, the communications mechanism (i.e., bus)
which links together the processors and a shared re-
source typically is provided with a hardware “inter-
lock” or synchronization capability, by means of which
each processor is prevented from operating on the
shared resource in other than a predefined sequence.

In the prior art, three interlock mechanisms are
widely known for synchronizing processors within an
operating system, to avoid race conditions. One author
calls these mechanisms (1) the test-and-set instruction
mechanism, (2) the wait and signal mechanism and (3)
the P and V operations mechanism. S. Madnick and J.
Donovan, Operating Systems, 4-52 at 251-55
(McGraw Hill, Inc., 1974). That text is hereby incorpo-
rated by reference for a description and discussion of

4,449,182

3

those mechanisms. Another author refers to three tech-
niques for insuring correct synchronization when multi-
ple processors communicate through a shared memory
as (1) process synchronization by semaphores, (2) pro-
cess synchronization by monitors and (3) process syn-
chronization by monitors without mutual exclusion. C.
Weitzman, Distributed Micro/Mini Computer Systems:
Structure, Implementation and Application, 3.2 at
103-14 (Prentice Hall, Inc., 1980). That text is hereby
incorporated by reference for a description and discus-
sion of those techniques. When applied to multiple pro-
cessors which communicate with a shared resource by a
bus, such mechanisms impose limitations on bus charac-
teristics; they require, for example, that certain com-
pound bus operations be indivisible, such as an opera-
tion which can both test and set a so-called “‘sema-
phore™ or monitor without being interrupted while
doing so. These become part of the bus description and
specifications.

If the testing of a semaphore were done during one
bus cycle and the setting during a different bus cycle,
two or more processors which want to use a shared
resource might test its semaphore at nearly the same
time. If the semaphore is not set, the processors all will
see the shared resource as available. They will then try
to access it; but only one can succeed in setting the
semaphore and getting access; each of the other proces-
sors, though, having already tested and found the re-
source available, would go through the motions of set-
ting the semaphore and reading or writing data without
knowing it had not succeeded in setting the semaphore
and accessing the resource. The data thus read will be
erroneous and the data thus written could be lost.

Not all buses, though, are designed to allow imple-
mentation of such indivisible operations, since some
buses were not designed with the idea of connecting
multiple processors via shared resources. Consequently,
such buses are not or have not been provided with
hardware interlock mechanisms.

When a bus does not have such a capability, resort
frequently has been made to use of processor interrupts
to control the secondary storage facility, or some com-
bination of semaphores and interrupts (as in the Carne-
gie-Mellon University C.mpp multi-minicomputer sys-
tem described at pages 27-29 and 110-111 of the above-
identified book by Weitzman), but those approaches
have their drawbacks. If multiple processors on such a
bus operate at different rates and have different opera-
tions to perform, at least one processor frequently may
have to wait for the other. This aggrevates the slow-
down in processing already inherent in the use of inter-
rupt control with a single processor.

A further characteristic of prior secondary storage
facilities is that when a host initially connects to a con-
troller, it usually assumes, but cannot verify, that the
controller is operating correctly.

Therefore, it is an object of this invention to improve
the operation of a secondary storage facility including a
controller and a drive.

A further object of this invention is to provide such a
facility with an improved method for handling host-
controller communications over a bus lacking a hard-
ware interlock capability, whereby the processor in the
host and controller can operate at different rates with
minimal interrupts and avoidance of race conditions.

Another object of this invention is to provide a com-
munications mechanism for operation between control-

20

30

35

40

45

50

35

60

65

4

ler and host which permits the host to verify correct
operation of the controller at the time of initialization.

Still another object of the invention is to provide a
communications mechanism which minimizes the gen-
eration of host interrupts by the controller during peak
input/output loads.

Still another object of this invention is to provide an
interface between host and controller which allows for
parallel operation of multiple devices attached to an
individual controller, with full duplexing of operation
initiation and completion signals.

SUMMARY OF THE INVENTION

In accordance with this invention, the host-controller
interconnection is accomplished through an interface
which includes a set of data structures employing a
dedicated communications region in host memory. This
communications region is operated on by both the host
and the peripheral controller in accordance with a set of
rules discussed below. Basically, this interface has two
layers: (1) a transport mechanism, which is the physical
machinery for the bi-directional transmission of words
and control signals between the host and the controlier
and (2) a port, which is both hardware for accomplish-
ing exchanges via the transport mechanism and a pro-
cess implementing a set of rules and procedures govern-
ing those exchanges. This port “resides” partly in the
host and partly in the controller and has the purposes of
facilitating the exchange of control messages (i.e., com-
mands and responses) and verifying the correct opera-
tion of the transport mechanism.

Commands and responses are transmitted between
the host and a peripheral controller as packets, over an
input/output bus of the host, via transfers which do not
require processor interruption. These transfers occur to
and from the dedicated communication region in the
host memory. The port polls this region for commands
and the host polls it for responses. A portion of this
communication region comprises a command (i.e.,
transmission) list and another portion comprises a re-
sponse (i.e., receiving) list. An input/output operation
begins when the host deposits a command in the com-
mand list. The operation is seen as complete when the
corresponding response packet is removed by the host
from the response list.

More specifically, the communications region of host
memory consists of two sections: (1) a header section
and (2) a variable-length section. The header section
contains interrupt identification words. The variable-
length section contains the response and command lists,
organized into “rings”. A “ring” is a group of memory
locations which is addressable in rotational (i.e., mod-
ulo) sequence, such that when an incrementing counter
(modulo-buffer-size) is used for addressing the buffer,
the address of the last location is the sequence is fol-
lowed next by the address of the first location. Each
buffer entry, termed a descriptor, includes (1) an ad-
dress where a command may be found for transmission
or where a response is written, as appropriate, and (2) a
so-called “ownership” byte (which in its most elemen-
tary form reduces to a sigle ownership bit) which is
used by the processors to controll access to the entry.

Because of properties which will be outlined below,
the port may be considered to be effectively integral
with the controller; all necessary connections between
the host and peripheral can be established by the port-
/controlier when it is initialized.

4,449,182

5

The port can itself generate processor interrupts; this
happens at the option of the host only when the com-
mand ring makes a transition from a full to a not-full
condition or when the response ring makes the converse
transition from empty to non-empty. Thus, the rings
buffer the asynchronous occurrence of command and
response packets, so that under favorable conditions
long strings of commands, responses and exchanges can
be passed without having to interrupt the host proces-
sor.

An input/output operation begins when the host
deposits a command into the command list. The opera-
tion is seen as complete when the corresponding re-
sponse is removed by the host from the response list.
Only the host writes into the command ring (i.e., list)
and only the controller writes into the response ring.
The “ownership” bit for each ring entry is set to a first
state by the processor which writes the ring entry and is
cleared from that state by the other processor only after
the command has been sent or the response read. In
addition, after writing an entry, the same processor
cannot alter it until the other processor has cleared that
entry’s ownership bit.

By organizing the command and response lists into
rings and controlling their operation through a rigid
sequential protocol which includes an ownership byte
(or bit) for each ring entry and rules for setting and
clearing the ownership byte, the host and controller
processors are allowed to operate at their own rates and
the need for a hardware bus interlock in avoided. This
allows the system to utilize, for example, the UNIBUS
communication interconnection of Digital Equipment
Corp., Maynard, Mass., which is an exemplary bus
lacking a hardware interlock feature.

These and other features, advantages and objects of
the present invention will become more readily appar-
ent from the following detailed description, which
should be read in conjunction with the accompanying
drawings.

BRIEF DESCRIPTION OF THE DRAWING

FIG. 1 is a conceptual block diagram of a system
employing an architecture in which the present inven-
tion sees utility;

FIG. 2 is a basic block diagram of a data processing
system in which the present invention may be em-
ployed;

FIG. 3A is a system block diagram of an illustrative
embodiment of a data processing system utilizing the
interface of the present invention;

FIGS. 3B and 3C are diagrammatic illustrations of a
ring 80D or 80E of FIG. 3A.

FIGS. 4A and 4B are elementary flow diagrams illus-
trating the sequence of events when the controller
wishes to send a response to the host;

FIG. 5 is an elementary flow diagram showing the
sequence of events when the host issues a command to
the controller;

FIG. 6 is a similar flow diagram showing the control-
ler’s action in response to the host’s issuance of a com-
mand;

FIG. T is a diagrammatic illustration of the communi-
cations area of host memory, including the command
and response rings;

FIG. 8 is a diagrammatic illustration of the formatted
command and response descriptors which comprise the
ring entries;

10

—

5

20

25

30

35

45

60

65

6

FIG. 9 is a diagrammatic illustration of the command
and response message envelopes;

FIG. 10 is a diagrammatic illustration of a buffer
description according to the present invention;

FIG. 11 is a diagrammatic illustration of the status
and address (SA) register 38 of FIG. 3A;

FIGS. 12A-12D are flow charts of the port/con-
troller initialization sequence according to this inven-
tion; and

FIG. 13 is a diagrammatic illustration of the “last fail”
response packet of this invention.

DETAILED DESCRIPTION OF AN
ILLUSTRATIVE EMBODIMENT

The present invention sees particular utility in a data
processing system having an architectural configuration
designed to enhance development of future mass stor-
age systems, at reduced cost. Such a system is shown in
FIG. 1. In this system, a high level protocol (indicated
at 1A) is employed for communications between a host
computer 1 and intelligent mass storage controller to.
Such a high level protocol is intended to free the host
from having to deal with peripheral device-dependent
requirements (such as disk geometry and error recovery
strategies). This is accomplished in part through the use
of a communications hierachy in which the host com-
municates with only one or two peripheral device
“class” drivers, such as a driver 4 instead of a different
1/0 driver for each model of peripheral device. For
example, there may be one driver for all disk class de-
vices and another for all tape class devices.

Each class driver, in turn, communicates with a de-
vice controller (e.g., 2) through an interface mechanism
10. Much of the interface mechanism 10 is bus-specific.
Therfore, when it is desired to connect a new mass
storage device to the system, there is no need to change
the host’s input/output processes or operating system,
which are costly (in time, as well as money) to develop.
Only the controller need be modified to any substantial
degree, which is far less expensive. And much of that
cost can be averted if the controller and host are made
self-adaptive to certain of the storage device’s charac-
teristics, as explained in the above-identified commonly
assigned applications.

Device classes are determined by their storage and
transfer characteristics. For example a so-called “disk
class” is characterized by a fixed block length, individ-
ual block update capability, and random access. Simi-
larly a so-called “tape class” is characterized by a vari-
able block length, lack of block update capability, and
sequential access. Thus, the terms “disk” and “tape” as
used herein refer to devices with such characteristics,
rather than to the physical form of the storage medium.

Within the framework of this discussion, a system
comprises a plurality of subsystems interconnected by a
communications mechanism (i.e. a bus and associated
hardware). Each subsystem contains a port driver, (4 or
5) which interfaces the subsystem to the communica-
tions mechanism. The communications mechanism con-
tains a port (8 or 9) for each subsystem; the port is sim-
ply that portion of the communications mechanism to
which a port driver interfaces directly.

FIG. 1 illustrates an exemplary system comprising a
host 1 and an intelligent mass storage controller 2. Host
1 includes a peripheral class driver 3 and a port driver 4.
Controller 2, in turn, includes a counterpart port driver
5 and an associated high-level protocol server 2. A
communications mechanism 7 connects the host to the

4,449,182

7

controller, and vice-versa. The communications mecha-
nism includes a port (i.e., interface mechanism) (8,9) for
each port driver.

The port drivers 4 and 5 provide a standard set of
communications services to the processes within their
subsystems; port drivers cooperate with each other and
with the communications mechanism to provide these
services. In addition, the port drivers shield the physical
characteristics of the communications mechanism from
processes that use the communications services.

Class driver 3 is a process which executes within host
1. Typically, a host class 1/O driver 3 communicates
with a counterpart in the controller 2, called a high-
level protocol server, 6.

The high-level protocol server 6 processes host com-
mands, passes commands to device-specific modules
within the controller, and sends responses to host com-
mands back to the issuing class driver.

In actual implementation, it is also possible for the
functions of the controller-side port driver 5§ and port 9
to be performed physically at the host side of the com-
munications mechanism 7. This is shown in the example
described below. Nevertheless, the diagram of FIG. 1
still explains the architectural concepts involved.

Note also that for purposes of the further explanation
which follows, it is generally unnecessary to distinguish
between the port and its port driver. Therefore, unless
the context indicates otherwise, when the word “port”
is used below, it presumes and refers to the inclusion of
a port driver, also.

Referring now to FIG. 2, there is shown a system
level block diagram of a data processing system utiliz-
ing the present invention. A host computer 1 (including
an interface mechanism 10) employs a secondary stor-
age subsystemn 20 comprising a controller 30, a disk
drive 40 and a controller-drive interconnection cable
50. The host 1 communicates with the secondary stor-
age subsystem 20 over an input/output bus 60.

FIG. 3A expands the system definition to further
explain the structure of the host 1, controller 30 and
their interface. As illustrated there, the host 1 comprises
four primary subunits: a central processor unit (CPU)
70, 2 main memory 80, a system bus 90 and a bus adapter
110.

A portion 80A of memory 80 is dedicated to service
as a communications region for accessing the remainder
of memory 80. As shown in FIG. 3A, communications
area B0A comprises four sub-regions, or areas. Areas
80B and 80C together form the above-indicated header
section of the communications area. Area 80B is used
for implementing the bus adapter purge function and
area 80C holds the ring transition interrupt indicators
used by the port. The variable-length section of the
communications region comprises the response list area
80D and the command list area 80E. The lists in areas
80D and 8OE are organized into rings. Each entry, in
each ring, in turn, contains a descriptor (see FIG. 10)
pointing to a memory area of sufficient size to accom-
modate a command or response message packet of pre-
determined maximum length, in bytes.

Host 1 may, for example, be a Model VAX-11/780 or
PDP 11 computer system, marketed by Digital Equip-
ment Corporation of Maynard, Mass.

System bus 90 is a bi-directional information path and
communications protocol for data exchange between
the CPU 70, memory 80 and other host elements which
are not shown (so as not to detract from the clarity of
this explanation). The system bus provides checked

8

parallel information exchanges synchronous with a
common system clock. A bus adapter 110 translates and

- transfers signals between the system bus 90 and the

5

20

30

35

40

45

65

host’s input/output (1/0) bus 60. For example, the I/0
bus 60 may be the UNIBUS 1/0 connection, the system
bus may be the syncronous backlane interconnection
(SBI) of the VAX-11/780 computer, and the bus
adapter 110 may be the Model DW780 UNIBUS
Adapter, all Digital Equipment Corporation products.

Controller 30 includes several elements which are
used specifically for communicating with the host 1.
There are pointers 32 and 34, a command buffer 36 and
a pair of registers, 37 and 38. Pointers 32 and 34 keep
track of the current host command ring entry and the
host response ring entry, respectively. Command buff-
ers 36 provide temporary storage for commands await-
ing processing by the controller and a pair of registers
37 and 38. Register 37, termed the “IP” register, is used
for initialization and polling. Register 38, termed the
“SA” register, is used for storing status and address
information.

A processor 31 is the “heart” of the controller 30; it
executes commands from buffer 36 and does all the
housekeeping to keep communications flowing between
the host 1 and the drive 40.

The physical realization of the transport mechanism
includes the UNIBUS interconnection (or a suitable
counterpart) 60, system bus 90 and any association host
and/or controller-based logic for adapting to same,
including memory-bus interface 82, bus adapter 110,
and bus-controller interface 120.

The operation of the rings may be better understood
by referring to FIGS. 3B and 3C, where an exemplary
four entry ring 130 is depicted. This ring may be either
a command ring or a response ring, since only their
application differs. Assume the ring 130 has been oper-
ating for some time and we have started to observe it at
an arbitrarily selected moment, indicated in FIG. 3B.
There are four ring entry positions 132-138, with con-
secutive addresses RB, RB+1, RB+4, respectively.
Each ring entry has associated with it an ownership bit
(133, 135, 137, 139) which is used to indicate its status.
A write pointer (WP), 142, points to the most recent
write entry; correspondingly, a read pointer (RP), 144,
points to the most recent read entry. In, FIG. 3B, it will
be seen that entry 138 has been read, as indicated by the
position of RP 144 and the state of ownership bit 139.
By convention, the ownership bit is set to 1 when a
location has been filled (i.e., written) and to 0 when it
has been emptied (i.e., read). The next entry to be read
is 132. Its ownership bit 133 is set to 1, indicating that it
already has been written. Once entry 132 is read, its
ownership bit is cleared, to 0, as indicated in FIG. 3C.
This completely empties the ring 130. The next entry
134 cannot be read until it is written and the state of
ownership bit 135 is changed. Nor can entry 132 be
re-read accidentally, since its ownership bit has been
cleared, indicating that it already has been read.

Having thus provided a block diagram explanation of
the invention, further understanding of this interface
will require a brief digression to explain packet commu-
nications over the system.

The port is a communications mechanism in which
communications take place between pairs of processes
resident in separate subsystems. (As used herein, the
term “subsystems” include the host computers and de-
vice controllers; the corresponding processes are host-

4,449,182

9

resident class drivers and controller-resident protocol
servers.)

Communications between the pair of processes take
place over a “connection” which is a soft communica-
tions path through the port; a single port typically will
implement several connections concurrently. Once a
connection has been established, the following three
services are available across that connection: (1) se-
quential message; (2) datagram; and (3) block data trans-
fer.

When a connection is terminated, all outstanding
communications on that connection are discarded; that
is, the receiver “throws away” all unacknowledge mes-
sages and the sender “forgets” that such messages have
been sent.

The implementation of this communications scheme
on the UNIBUS interconnection 60 has the following
characteristics: (1) communications are always point-to-
point between exactly two subsystems, one of which is
always the host; (2) the port need not be aware of map-
ping or memory management, since buffers are identi-
fied with a UNIBUS address and are contiguous within
the virtual buss address space; and (3) the host need
never directly initiate a block data transfer.

The port effectively is integral with the controller,
even though not full localized there. This result happens
by virtue of the point-to-point property and the fact that
the device controller knows the class of device (e.g.,
disk drive) which it controls; all necessary connections,
therefore, can be established by the port/controller
when it is initialized.

The Sequential Message service guarantees that all
messages sent over a given connection are transmitted
sequentially in the order originated, duplicate-free, and
that they are delivered. That is, messages are received
by the receiving process in the exact order in which the
sending process queued them for transmission. If these
guarantees cease to be met, or if a message cannot be
delivered for any reason, the port enters the so-called
“fatal error” state (described below) and all port con-
nections are terminated.

The Datagram service does not quarantee reception,
sequential reception of duplicate-free reception of data-
grams, though the probability of failure may be required

15

20

25

30

35

40

to be very low. The port itself can never be the cause of 45

such failures; thus, if the using processes do make such
guarantees for datagrams, then the datagram service
over the port becomes equivalent to the Sequential
Message service.

The Block Data Transfer service is used to move data
between named buffers in host memory and a peripheral
device controller. In order to allow the port to be un-
aware of mapping or memory management, the
“Name” of a buffer is merely the bus address of the first
byte of the buffer. Since the host never directly initiates
a block data transfer, there is no need for the host to be
aware of controller buffering.

Since the communicating processes are asynchro-
nous, flow control is needed if a sending process is to be
prevented from producing congestion or deadlock in a
receiving process (i.e., by sending messages more
quickly than the receiver can capture them). Flow con-
trol simply guarantees that the receiving process has
buffers in which to place incoming messages; if all such
buffers are full, the sending process is forced to defer
transmission until the condition changes. Datagram
service does not use flow control. Consequently, if the
receiving process does not have an available buffer, the

50

55

60

10

datagram is either processed immediately or discarded,
which possibility explicitly is permitted by the rules of
that service. By contrast, the Sequential Message ser-
vice does use flow control. Each potential receiving
process reserves, or pre-allocates, some number of buff-
ers into which messages may be received over its con-
nection. This number is therefore the maximum number
of messages which the sender may have outstanding and
unprocessed at the receiver, and it is communicated to
the sender by the receiver in the form of a “credit” for
the connection. When a sender has used up its available
credit, it must wait for the receiver to empty and make
available one of its buffers. The message credits machin-
ery for the port of the present invention is described in
detail below.

The host-resident driver and the controller provides
transport mechanism control facilities for dealing with:
(1) transmission of commands and responses; (2) sequen-
tial delivery of commands; (3) asynchronous commica-
tion; (4) unsolicited responses; (5) full duplex communi-
cation; and (6) port failure recovery. That is, com-
mands, their responses and unsolicited *‘responses™ (i.e.,
controller-to-host messages) which are not responsive
to a command may occur at any time; full duplex com-
munication is necessary to handle the bi-directional
flow without introducing the delays and further buffer-
ing needs which would be associated with simplex com-
munications. It is axiomatic that the host issues com-
mands in some sequence. They must be fetched by the
controller in the order in which they were queued to
the transport mechanism, even if not executed in that
sequence. Responses, however, do not necessarily
occur in the same order as the initiating commands; and
unsolicited messages can occur at any time. Therefore,
asynchronous communications are used in order to
allow a response or controller-to-host message to be
sent whenever it is ready. Finally, as to port failure
recovery, the host’s port driver places a timer on the
port, and reinitializes the port in the event the port times
out.

This machinery must allow repeated access to the
same host memory location, whether for reads, writes,
or any mixture of the two.

The SA and IP registers (37 and 38) are in the 1/0
page of the host address space, but in controller hard-
ware. They are used for controlling a number of facets
of port operation. These registers are always read as
words. The register pair begins on a longword bound-
ary. Both have predefined addresses. The IP register
has two functions: first, when written with any value, it
causes a “hard” initialization of the port and the device
controller; second, when read while the port is operat-
ing, it causes the controller to initiate polling of the
command ring, as discussed below. The SA register 38
has four functions: first, when read by the host during
initialization, it communicates data and error informa-
tion relating to the initialization process; second, when
written by the host during initialization, it communi-
cates certain host-specific parameters to the port; third,
when read by the host during normal operation, it com-
municates status information including port- and con-
troller-detected fatal errors; and fourth, when zeroed by
the host during initialization and normal operation, it
signals the port that the host has successfully completed
a bus adapter purge in response to a port-initiated purge
request.

The port driver in the host’s operating system exam-
ines the SA register regularly to verify normal port-

4,449,182

11
“controller operation. A self-detected port/controller
fatal error is reported in the SA register as discussed
below.

Transmission of Commands and Responses-Overview

When the controller desires to send a response to the
host, a several step operational sequence takes place.
This sequence is illustrated in FIGS. 4A and 4B. Ini-
tially, the controller looks at the current entry in the
response ring indicated by the response ring pointer 34
and determines whether that entry is available to it (by
using the “ownership” bit). (Step 202.) If not, the con-
troller continues to monitor the status of the current
entry until it becomes available. Once the controller has
access to the current ring entry, it writes the response
mto a response buffer in host memory, pointed to by
that ring entry, and indicates that the host now “owns”
that ring entry by clearing and “Ownership™ bit; it also
sets a “FLAG" bit, the function of which is discussed
below. (Step 204.)

Next, the port determines whether the ring has gone
from an empty to a non-empty transition (step 206); if
so, a potentially interruptable condition has occurred.
Before an interrupt request is generated, however, the
port checks to ensure that the “FLAG” bit is a | (step
208); an interrupt request is signalled only on an affirma-
tive indication (Step 210).

Upon receipt of the interrupt request, the host, when
it is able to service the interrupt, looks at the current
entry in the response ring and determines whether it is
*owned” by the host or controller (i.e., whether it has
yet been read by that host). (Step 212.) If it is owned by
the controller, the interrupt request is dismissed as spu-
rious. Otherwise, the interrupt request is treated as
valid, so the host processes the response (Step 214) and
then updates its ring pointer (Step 216).

Similar actions take place when the host wants to
send a command, as indicated in FIG. 5. To start the
sequence, the host looks at the current command ring
entry and determines whether that ring entry is owned
by the host or controller. (Step 218.) If it is owned by
the controller, the host starts a timer (Step 220.) (pro-
vided that is the first time it is looking at that ring en-
try), if the timer is not stopped (by the command ring
entry becoming available to the host) and is allowed to
time out, a failure is indicated; the port is the reinitial-
ized. (Step 222.) If the host owns the ring entry, how-
ever, it puts the packet address of the command in the
current ring entry. (Step 224.) If a command ring trans-
fer interrupt is desired (step 226), the FLAG bit is
set=1 to so indicate (step 228). The host then sets the
“ownership” bit=1 the ring entry to indicate that there
is a command in that ring entry to be acted upon. (Step
230.) The port is then told to “poll” the ring (i.e., the
host reads the IP register, which action is interpreted by
the port as a notification that the ring contains one or
more commands awaiting transmission; in response, the
port steps through the ring entries one by one until all
entries awaiting transmission have been sent. (Step 232.)

The host next determines whether it has additional
commands to send. (Step 233.) If so, the process is re-
peated; otherwise, it is terminated.

In responding to the issuance of a command (see FIG.
6), the port first detects the instruction to poll (i.e, the
read operation to the IP register). (Step 234.) Upon
detecting that signal, the port must determine whether
there is a buffer available to receive a command. (Step
236.) It waits until the buffer is available and then reads

20

25

30

35

40

45

50

55

65

12

the current ring entry to determine whether that ring
entry is owned by the port or host. (Step 238.) If owned

* by the port, the command packet is read into a buffer.

(Step 240.) The FLAG bit is then set and the “owner-
ship” bit in the ring entry is changed to indicate host
ownership. (Step 242.) If not owned by the port, polling
terminates.

A test is then performed for interrupt generation.
First the port determines whether the command ring
has undergone a full to not-full transition. (Step 244.) If
so, the port next determines whether the host had the
FLAG bit set. (Step 246.) If the FLAG bit was set, an
interrupt request is generated. (Step 248.) The ring
pointer is then incremented. (Step 250.)

Response packets continue to be removed after the
one causing an interrupt and, likewise, command pack-
ets continue to be removed by the port after a poll.

The Communications Area

The communications area is aligned on a 16-bit word
boundary whose layout is shown in FIG. 7. Addresses
for the words of the rings are identified relative to a
“ringbase™ address 252. The words in regions 80B, 80C
whose addresses are ringbase-3, ringbase-2 and ring-
base-1 (hereinafter designated by the shorthand [ring-
base-3], etc., where the brackets should be read as the
location “whose address is”) are used as indicators
which are set to zero by the host and which are set
non-zero by the port when the port interrupts the host,
to indicate the reason for the interrupt. Word {ringbase-
3] indicates whether the port is requesting a bus adapter
purge; the non-zero value is the adapter channel number
contained in the high-order byte 254 and derived from
the triggering command. (The host responds by per-
forming the purge. Purge completion is signalled by
writing zeros to the SA register).

Word 256 [ringbase-2] signals that the command
queue has transitioned from full to not-fuil. Its non-zero
value is predetermined, such as one. Similarly, word
258 [ringbase-19 indicates that the response queue has
transitioned from empty to not-empty. Its non-zero
value also is predetermined (e.g., one).

Each of the command and response lists is organized
into a ring whose entries are 32-bit descriptors. There-
fore, for each list, after the last location in the list has
been addressed, the next location in sequence to be
addressed is the first location in the list. That is, each list
may be addressed by a modulo-N counter, where N is
the number of entries in the ring. The length of each
ring is determined by the relative speeds with which the
host and the port/controller generate and process mes-
sages; it is unrelated to the controller command limit.
At initialization time, the host sets the ring lenghts.

Each ring entry, or formatted descriptor, has the
layout indicated in FIG. 8. In the low-order 16-bit (260),
the least significant bit, 262, is zero; that is, the envelope
address [text+0] is word-aligned. The remaining low-
order bits are unspecified and vary with the data. In the
high-order portion 264 of the descriptor, the letter “U”
in bits 266 and 268 represent a bit in the high-order
portion of an 18-bit UNIBUS (or other bus) address.
Bits 270-276, labelled Q”, are available for extending
the high-order bus address; they are zero for UNIBUS
systems. The most significant bit, 278, contains the
“ownership” bit (“0") referred to above; it indicates
whether the descriptor is owned by the host (0=1), and
acts as an interlock protecting the descriptor against
premature access by either the host or the port. The

4,449,182

13

next lower bit, 280, is a “FLAG"” bit (labelled “F”)
whose meaning varies depending on the state of the
descriptor. When the port returns a descriptor to the
host, it sets F=1, indicating that the descriptor is full
and points to response. On the other hand, when the
controller acquires a descriptor from the host, F=1
indicates that the host wants a ring transition interrupt
due to this slot. It assumes that transition interrupts
were enabled during initialization and that this particu-
lar slot triggers the ring transition. F=0 means that the
host does not want a transition host interrupt, even if
interrupts were enabled during initialization. The port
always sets F=1 when returning a descriptor to the
host; therefore, a host desiring to override ring transi-
tion interrupts must always clear the FLAG bit when
passing ownership of a descriptor to the port.

Message Envelopes

As stated above, messages are sent as packets, with an
envelope address pointing to word [text4-0] of a 16-bit,
word-aligned message envelope formatted as shown in
FIG. 9.

The MSG LENGTH field 282 indicates the length of
the message text, in bytes. For commands, the length
equals the size of the command, starting with [text +0].
For responses, the host sets the length equal to the size
of the response buffer, in bytes, starting with [text+0].
By design, the minimum acceptable size is 60 bytes of
message text (i.e., 64 bytes overall).

The message length field 282 is read by the port be-
fore the actual transmission of a response. The port may
wish to send a response longer than the host can accept,
as indicated by the message length field. In that event, it
will have to break up the message into a plurality of
packets of acceptable size. Therefore, having read the
message length field, the controller then sends a re-
sponse whose length is either the host-specified message
length or the length of the controller’s response, if
smaller. The resulting value is set into the message
length field and sent to the host with the message
packet. Therefore, the host must re-initialize the value
of that field for each proposed response.

The message text is contained in bytes 284a-284m,
labelled MBj. The “connection id” field 286 identifies
the connection serving as source of, or destination for,
the message in question. The “credits” field 288 gives
the credit value associated with the message, which is
discussed more fully below. The “msgtyp” field 290
indicates the message type. For example, a zero may be
used to indicate a sequential message, wherein the cred-
its and message length fields are valid. A one may indi-
cate a datagram, wherein the credits field must be zero,
but message length is valid. Similarly, a two may indi-
cate a credit notification, with the credits field valid and
the message length field zero.

Message Credits

A credit-based message limit mechanism is employed
for command and response flow control. The credits
field 288 of the message envelope supports credit-
accounting algorithm. The controller 30 has a buffer 36
for holding up to M commands awaiting execution. In
its first response, the controller will return in the credits
field the number, M, of commands its buffer can hold.
This number is one more than the controller’s accep-
tance limit for non-immediate commands; the “extra”
slot is provided to allow the host always to be able to
issue an immediate-class command. If the credit account

20

35

40

45

55

60

65

14

has a value of one, then the class driver may issue only
an immediate-type command. If the account balance is
zero, the class driver may not issue any commands at
all.

The class driver remembers the number M in its
“credit account”. Each time the class driver queues a
command, it decrements the credit account balance by
one. Conversely, each time the class driver receives a
response, it increments the credit account balance by
the value contained in the credits field of that response.
For unsolicited responses, this value will be zero, since
no command was executed to evoke the response; for
solicited responses, it normally will be one, since one
command generally gives one to one response.

For a controller having M greater than 15, responses
beyond the first will have credits greater than one,
allowing the controller to “walk” the class driver’s
credit balance up to the correct value. For a well-
behaved class driver, enlarging the command ring be-
yond the value M + 1 provides no performance benefits;
in this situation command ring transition interrupts will
not occur since the class driver will never fill the com-
mand ring.

The Ownership Bit

The ownership bit 278 in each ring entry is like the
flag on an old-fashioned mailbox. The postman raised
the flag to indicate that a letter had been put in the box.
When the box was emptied, the owner would lower the
flag. Similarly, the ownership bit indicates that a mes-
sage has been deposited in a ring entry, and whether or
not the ring entry (i.e., mailbox) has been emptied. Once
a message is written to a ring entry, that message must
be emptied before a second message can be written over
the first.

For a command descriptor, the ownership bit “0” is
changed from zero to one when the host has filled the
descriptor and is releasing it to the port. Conversely,
once the port has emptied the command descriptor and
is returning the empty slot to the host, the ownership bit
is changed from one to zero. That is, to send a command
the host sets the ownership bit to one; the port clears it
when the command has been received, and returns the
empty slot to the host.

To guarantee that the port/controller sees each com-
mand in a timely fashion, whenever the host inserts a
command in the command ring, it must read the IP
register. This forces the port to poll if it was not already
polling.

For a response descriptor, when the ownership bit 0
undergoes a transition from one to zero, that means that
the port has filled the descriptor and is releasing it to the
host. The reverse transition means that the host has
emptied the response descriptor and is returning the
empty slot to the port. Thus, to send a response the port
clears the ownership bit, while and the host sets it when
the response has been received, and returns the empty
slot to the port.

Just as the port must poll for commands, the host
must poll for responses, particularly because of the
possibility of unsolicited responses.

Interrupts

The transmission of a message will result in a host
interrupt if and only if interrupts were armed (i.e., en-
abled) suitably during initialization and one of the fol-
lowing three conditions has been met: (1) the message
was a command with flag 280 equal to one (i.e, F=1),

4,449,182

15

and the fetching of the command by the port caused the
command ring to undergo a transition from full to not-
full; (2) if the message was a response with F=1 and the
depositing of the message by the port caused the re-
sponse ring to make a transition from empty to not-
empty; or {3) the port is interfaced to the host via a bus
adapter and a command required the port/controller to
re-access a given location during data transfer. (The
latter interrupt means that the port/controller is re-
questing the host to purge the indicated channel of the
bus adapter.)

Port Polling

The reading of the IP register by the host causes the
port/controller to poll for commands. The port/con-
troller begins reading commands out of host memory; if
the controller has an internal command buffering capa-
bility, it will write commands into the buffer if they
can’t be executed immediately. The port continues to
poll for full command slots until the command ring is
found to be empty, at which time it will cease polling.
The port will resume polling either when the controller
delivers a response to the host, or when the host reads
the IP register.

Correspondingly, response polling for empty slots
continues until all commands buffered within the con-
troller have been completed and the associated re-
sponses have been sent to the host.

Host Polling

Since unsolicited responses are possible, the host
cannot cease polling for responses when all outstanding
commands have been acknowledged, though. If it did,
an accumulation of unsolicited messages would first
saturate the response ring and then any controller inter-
nal message buffers, blocking the controller and pre-
venting it from processing additional commands. Thus,
the host must at least occassionally scan the response
ring, even when not expecting a response. One way to
accomplish this is by using the ring transition interrupt
facility described above; the host also should remove in
sequence from the response ring as many responses as it
finds there.

Data Transmission

Data transmission details are controller-dependent.
There are certain generic characteristics, however.

Data transfer commands are assumed to contain
buffer descriptors and byte or word counts. The buffers
serve as sources or sinks for the actual data transfers,
which are effected by the port as non-processor (NPR
or DMA) transfers under command-derived count con-
trol to or from the specified buffers. A buffer descriptor
begins at the first word allocated for this purpose in the
formats of higher-level commands. When used with the
UNIBUS interconnection, the port employs a two-
word buffer descriptor format as illustrated in FIG. 10.
As shown wherein, the bits in the low-order buffer
address 292 are message-dependent. The bits labelled
“U” (294, 296) in the high-order portion 298 of the
buffer descriptor are the high-order bits of an 18-bit
UNIBUS address. The bits 300-306, labelled “Q", are
usable as an extension to the high-order UNIBUS ad-
dress, and are zero for UNIBUS systems.

Repeated access to host memory locations must be
allowed for both read and write operations, in random
sequence, if the interfaces are to support higher-level
protocol functions such as transfer restarts, compares,

16
and so forth. In systems with buffered bus adapters,
which require a rigid sequencing this necessitates purg-

+ ing of the relevant adapter channel prior to changing

g

—

5

20

30

40

45

50

60

65

from read to write, or vice versa, and prior to breaking
an addressing sequence. Active cooperation of the host
CPU is required for this action. The port signals its
desire for an adapter channel purge, as indicated above
under the heading *“The Communications Area”. The
host performs the purge and writes zeroes to the SA
register 38 to signal completion.

Transmission Errors

Four classes of transmission errors have been consid-
ered in the design of this interface: (1) failure to become
bus master; (2) failure to become interrupt master; (3)
bus data timeout error; and (4) bus parity error.

When the port (controller) attempts to access host
memory, it must first become the “master” of bus 60. To
deal cleanly with the possibility of this exercise failing,
the port sets up a corresponding “last fail” response
packet (see below) before actually requesting bus ac-
cess. Bus access is then requested and if the port timer
expires, the host will reinitialize the port/controller.
The port will then report the error via the “last fail”
response packet (assuming such packets were eneable
during the reinitialization).

A failure to become interrupt master occurs when-
ever the port attempts to interrupt the host and an ac-
knowledgement is not forthcoming. It is treated and
reported the same as a failure to become bus master,
although the contents of its last fail response will, of
course, be different.

Bus data timeout errors involve failure to complete
the transfer of control or data messages. If the control-
ler retires a transfer after it has failed once, and a second
try also fails, then action is taken responsive to the de-
tection of a persistent error. If the unsuccessful opera-
tion was a control transfer, the port writes a failure code
into the SA register and then terminates the connection
with the host. Naturally, the controller will have to be
reinitialized. On the other hand, if the unsuccessful
operation was a data transfer, the port/controller stays
online to the host and the failure is reported to the host
in the response packet for the involved operation. Bus
parity errors are handled the same as bus data timeout
errors.

Fatal Errors

Various fatal errors may be self-detected by the port
or controller. Some of these may also arise while the
controller is operating its attached peripheral device(s).
In the event of a fatal error, the port sets in the SA
register a one in its most significant bit, to indicate the
existence of a fatal error, and a fatal error code in bits
10-0.

Interrupt Generation Rate

Under steady state conditions, at most one ring inter-
rupt will be generated for each operation (i.e,, com-
mand or response transmission). Under conditions of
low I/0 rate, this will be due to response ring transi-
tions from empty to not-empty; with high 1/0 rate, it
will be due to command ring transitions from full to
not-full. If the operation rate fluctuates considerably,
the ratio of interrupts to operations can be caused to
decline from one-to-one. For example, an initially low
but rising operation rate will eventually cause both the
command and response rings to be partially occupied, at

4,449,182

17

which point interrupts will cease and will not resume
until the command ring fills and begins to make full to
not-full transitions. This point can be staved off by in-
creasing the permissible depth of the command ring.
Generally, the permissible depth of the response ring
will have to be increased also, since saturation of the
response ring will eventually cause the controller to be
unwilling to fetch additional commands. At that point,
the command queue will saturate and each fetch will
generate an interrupt.

Moreover, a full condition in either ring implies that
the source of that ring’s entries is temporarily choked
off. Consequently, ring sizes should be large enough to
keep the incidence of full rings small. For the command
ring, the optimal size depends on the latency in the
polling of the ring by the controller. For the response
ring, the optimal size is a function of the latency in the
ring-emptying software.

Initialization

A special Initialization procedure serves to (1) iden-
tify the parameters of the host-resident communications
region to the port; (2) provide a confidence check on
port/controller integrity; and (3) bring the port/con-
troller online to the host.

The initialization process starts with a “hard” initial-
ization during which the port/controller runs some
preliminary diagnostics. Upon successful completion of
those diagnostics, there is a four step procedure which
takes place. First, the host tells the controller the
lengths of the rings, whether initialization interrupts are
to be armed (i.e., enabled) and the address(es) of the
interrupt vector(s). The port/controller then runs a
complete internal integrity check and signals either
success or failure. Second, the controller echos the ring
lengths, and the host sends the low-order portion of the
ringbase address and indicates whether the host is one
which requires purge interrupts. Third, the controller
sends an echo of the interrupt vector address(es) and the
initialization interrupt arming signal. The host then
replies with the high-order portion of the ringbase ad-
dress, along with a signal which conditionally triggers
an immediate test of the polling and adapter purge func-
tions of the port. Fourth, the port tests the ability of the
input/output bus to perform nonprocessor (NPR) trans-
fers. If successful, the port zeroes the entire communica-
tions area and signals the host that initialization is com-
plete. The port then awaits a signal from the host that
the controller should begin normal operation.

At each step, the port informs the host of either suc-
cess or failure. Success leads to the next initialization
step and failure causes a restart of the initialization se-
quence. The echoing of information to the host is used
to check all bit positions in the transport mechanism and
the IP and SA registers.

The SA register is heavily used during initialization.
The detailed format and meaning of its contents depend
on the initialization step involved and whether informa-
tion is being read from or written into the register.
When being read, certain aspects of the SA format are
constant and apply to all steps. This constant SA read
format is indicated in FIG. 11. As seen there, the mean-
ing of bits 15-11 of SA register 38 is constant but the
interpretation of bits 10-0 varies. The S4-S1 bits,
316-310, are set separately by the port to indicate the
initialization step number which the port is ready to
perform or is performing. The S1 bit 310 is set for ini-
tialization step 1; the S2 bit 312, for initialization step 2,

20

25

30

35

40

45

55

60

65

18

etc. If the host detects more than one of the §1-S4 bits
316-310 set at any time, it restarts the initialization of the
port/controller; the second time this happens, the port-
/controller is presumed to be malfunctioning. The SA
register’s most significant bit 318, labelled ER, normally
is zero; if it takes on the value of 1, then either a port-
/controllerbased diagnostic test has failed, or there has
been a fatal error. In the event of such a failure or error,
bits 10-0 comprise a field 320 into which an error code
is written; the error code may be either port-generic or
controller-dependent. Consequently, the host can deter-
mine not only the nature of an error but also the step of
the initialization during which it occurred. If no step bit
is set but ER =1, a fatal error was detected during hard
initialization, prior to the start of initialization step 1.

The occurrence of an initialization error causes the
port driver to retry the initialization sequence at least
once.

Reference will now be made to FIGS. 12A-12D,
wherein the details of the initialization process are illus-
trated.

The host begins the initialization sequence either by
performing a hard initialization of the controller (this is
done either by issuing a bus initialization (INIT) com-
mand (Step 322) or by writing zeroes to the IP register.
The port guarantees that the host reads zeroes in the SA
register on the next bus cycle. The controller, upon
sensing the initialization order, runs a predetermined set
of diagnostic routines intended to ensure the minimum
integrity necessary to rely on the rest of the sequence.
(Step 324.) Initialization then sequences through the
four above-listed steps.

At the beginning of each initialization step n, the port
clears bit S,.1 before setting bit Sp; thus, the host will
never see bits S,.1 and S, set simultaneously. From the
viewpoint of the host, step n begins when reading the
SA register results in the transition of bit S, from O to 1.
Each step ends when the next step begins, and an inter-
rupt may accompany the step change if interrupts are
enabled.

Each of initialization steps 1-3 is timed and if any of
those steps fails to complete within the alloted time, that
situation is treated as a host-detected fatal error. By
contrast, there is no explicit signal for the completion of
initialization step 4; rather, the host observes either that
controller operation has begun or that a higher-level
protocol-dependent timer has expired.

The controller starts initialization step 1 by writing to
the SA register 38 the pattern indicated in FIG. 12A.
(Step 326.) Bits 338-332 are controller-dependent. The
“NV” bit, 332, indicates whether the port supports a
host-settable interrupt vector address; a bit value of 1
provides a negative answer. The “QB” bit, 330, indi-
cates whether the port supports a 22-bit host bus ad-
dress; a 1 indicates an affirmative answer. The “DI", bit
328, indicates whether the port implements enhanced
diagnostics, such as wrap-around, purge and poll test;
an affirmative answer is indicated by a bit value of 1.

The host senses the setting of bit 310, the S1 bit, and
reads the SA register. (Step 334.) It then responds by
writing into the SA register the pattern shown in step
336. The most significant bit 338 in the SA register 38 is
set to a 1, to guarantee that the port does not interpret
the pattern as a host *‘adapter purge ccomplete” re-
sponse (after a spontaneous reinitialization). The WR
bit, 340, indicates whether the port should enter a diag-
nostic wrap mode wherein it will echo messages sent to
it; a bit value of 1 will cause the port to enter that mode.

4,449,182

19

The port will ignore the WR bit if DI=0 at the begin-
ning of initialization step 1. Field 342, commprising bits
13-11 and labelled “C RNG LNG,” indicates the num-
ber of entries or slots in the command ring, expressed as
a power of 2. Similarily, field 344, comprising bits 10-8
and labelled “R RNG LNG", represents the number of
response ring slots, also expressed as a power of 2. Bit
346, the number 7 bit in the register, labelled “IE”,
indicates whether the host is arming interrupts at the
completion of each of steps 1-3. An affirmative answer
is indicated by a 1. Finally, field 348, comprising regis-
ter bits 6-0, labelled *INT Vector”, contains the address
of the vector to which all interrupts will be directed,
divided by 4. If this address is 0, then port interrupts
will not be generated under any circumstances. If this
field is non-zero the controller will generate initializa-
tion interrupts (if IE is set) and purge interrupts (if PI is
set), and ring transition interrupts depending on the
FILAG bit setting of the ring entry causing the transi-
tion.

The port/controller reads the SA register after it has
been written by the host and then begins to run its full
integrity check diagnostics; when finished, it condition-
ally interrupts the host as described above. (Step 350.)

This completes step 1 of the initalization process.
Next, the controller writes a pattern to the SA register
as indicated in FI1G. 12B. (Step 352.) As shown there,
bits 7-0 of the SA register echo bits 15-8 in step 336. The
response and command ring lengths are echoed in fields
354 and 356, respectively; bit 358 echoes the host’s WR
bit and bit 360 echoes the host’s bit 15. The port type is
indicated in field 362, register bits 10-8, and bit 12 is set
to a 1 to indicate the beginning of step 2.

The host reads the SA register and validates the echo
when it sees bit S2 change state. (Step 364.) If every-
thing matches up, the host then responds by writing into
the SA register the pattern indicated in step 366. Field
368, comprising SA register bits 15-1, labelled “‘ringbase
lo addres™, represents the low-order portion of the ad-
dress of the word [ringbase +0] in the communications
area. While this is a 16-bit byte address, its lowest order
bit is 0, implicitly. The lowest order bit of the SA regis-
ter, 370, indicated as *'PI”, when set equal to 1, means
that the host is requesting adapter purge interrupts.

The controlier reads the low ringbase address (Step
372) and then writes into the SA register the pattern
indicated in step 374, which starts initialization step 3 by
causing bit 376, the S3 bit, to undergo a transition from
0 to 1. The interrupt vector field 348 and interrupt en-
abling bit 346 from step 336 are echoed in SA register
bits 7-0.

Next, the host reads the SA register and validates the
echo; if the echo did not operate properly, an error is
signalled. (Step 378). Assuming the echo was valid, the
host then writes to the SA register the pattern indicated
in step 380. Bit 382, the most significant bit, labelled
“PP", is written with an indication of whether the host
is requesting execution of “purge” and “poll” tests (de-
scribed elsewhere); an affirmative answer is signaled by
a 1. The port will ignore the PP bit if the DI bit 328 was
zero at the beginning of step 1. The “ringbase hi ad-
dress” field 384, comprising SA register bits 14-0, is the
high-order portion of the address [ringbase +0].

The port then reads the SA register; if the PP bit has
been set, the port writes zeroes into the SA register, to
signal its readiness for the test. (Step 386.) The host
detects that action and itself writes zeroes (or anything
else) to the SA register, to simulate a “purge com-

20
pleted” host action. (Step 388.) After the port verifies
that the host has written to the SA register (Step 390.),

* the host reads, and then disregards, the IP register.

S

20

25

30

35

40

45

50

55

60

65

(Step 392.) This simulates a “start polling” command
from the host to the port. The port verifies that the IP
register was read, step 394, before the sequence contin-
ues. The host is given a predetermined time from the
time the SA register was first written during initializa-
tion step 3 within which to complete these actions.
(Step 396) If it fails to do so, initialization stops. The
host may then restart the initialization sequence from
the beginning.

Upon successful completion of intialization step 3, the
transition to intialization step 4 is effectuated when the
controller writes to the SA register the pattern indi-
cated in step 398. Field 400, comprising bits 7-8 of the
SA register, contains the version number of the port-
/controller microcode. In a microprogrammed control-
ler, the functionality of the controller can be altered by
changing the programming. It is therefore important
that the functionality of the host and controller be com-
patible. The system designer can equip the host with the
ability to recognize which versions of the controller
microcode are compatible with the host and which are
not. Therefore, the host checks the controller micro-
code version in field 400 and confirms that the level of
functionality is appropriate to that particular host. (Step
402.) The host responds by writing into the SA register
the pattern indicated in step 404. It is read by the con-
troller in step 405 and 406 and the operational micro-
code is then started.

The “burst” field in bits 7-2 of the SA register is one
less than the inaximum number of longwords the host is
willing to allow per NPR (nonprocessor involved)
transfer. The port uses a default burst count if this field
is zero. The values of both the default and the maximum
the port will accept are controller-dependent. If the
“LF" bit 408 is set equal to 1, that indicates that the host
wants a “'last fail” response packet when initialization is
completed. The state of the LF bit 408 does not have
any effect on the enabling/disabling of unsolicited re-
sponses. The meaning of “last fail” is explained below.
The “GO™ bit 410 indicates whether the controller
should enter its functional microcode as soon as initial-
ization completes. If GO =0, when initialization com-
pletes, the port will continue to read the SA register
until the host forces bit 0 of that register to make the
transition from O to 1.

At the end of initialization step 4, there is no explicit
interrupt request. Instead, if interrupts were enabled,
the next interrupt will be due to a ring transition or to an
adapter purge request.

Diagnostic Wrap Mode

Diagnostic Wrap Mode (DWM) provides host-based
diagnostics with the means for the lowest levels of host-
controller communication via the port. In DWM, the
port attempts to echo in the SA register 38 any data
written to that register by the host. DWM is a special
path through initialization step 1; initialization steps 2-4
are suppressed and the port/controller is left discon-
nected from the host. A hard initialization terminates
DWM and, if the results of DWM are satisfactory, it is
then bypassed on the next initialization sequence.

Last Fail

“Last fail” is the name given to a unique response
packet which is sent if the port/controller detected an

4,449,182

21

error during a previous “run” and the LF bit 405 was
set in step 404 of the current initialization sequence. It is
sent when initialization completes. The format of this
packet is indicated in FIG. 3. The packet starts with 64
bits of zeros in a pair of 32 bit words 420. Next there is
a 32 bit word 422 consisting of a lower-order byte 422A
and a higher-order byte 422B, each of which has a
unique numerical contents. Word 422 is followed by a
double word 424 which contains a controller identifier.
The packet is concluded by a single word 426. The
higher-order byte 426A of word 426 contains an error
code. The lower half of word 426 is broken into a pair
of B8 bit fields 426B and 426C. Field 426B contains the
controller’s hardware revision number. Field 426C con-
tains the controller’s software, firmware or microcode
revision number.

Submitted as Appendix A hereto is a listing of a disk
class and port driver which runs under the VMS operat-
ing system of Digital Equipment Corp. on a VAX-
11/780 computer system, and which is compatible with
a secondary storage subsystem according to the present
invention.

Recap

It should be apparent from the foregoing description
that the present invention provides a versatile and pow-
erful interface between host computers and peripheral
devices, particularly secondary mass storage subsys-
tems. This interface supports asynchronous packet type
command and response exchanges, while obviating the
need for a hardware-interlocked bus and greatly reduc-
ing the interrupt load on the host processor. The effi-
ciency of both input/output and processor operation
are thereby enhanced.

A pair of registers in the controller are used to trans-
fer certain status, command and parametric information

0

20

25

30

35

22

between the peripheral controller and host. These regis-
ters are exercised heavily during a four step initializa-
tion process. The meanings of the bits of these registers
change according to the step involved. By the comple-
tion of the initialization sequence, every bit of the two
registers has been checked and its proper operation
confirmed. Also, necessary parametric information has
been exchanged (such as ring lenths) to allow the host
and controller to communicate commands and re-
sponses.

Although the host-peripheral communications inter-
face of the invention comprises a port which, effec-
tively, is controller-based, it nevertheless is largely lo-
calized at the host. Host-side port elements include: the
command and response rings; the ring transition indica-
tors; and, if emg]oyed bus adapter purge control. At the
controller, the' port elements include: command and
response buffers, host command and response ring
pointers, and the SA and IP registers.

Having thus described the present invention, it will
now be apparent that various alterations, modifications
and improvements will readily occur to those skilled in
the art. This disclosure is intended to embrace such
obvious alterations, modifications and improvements; it
is exemplary, and not limiting. This invention is limited
only as required by the claims which follow the Appen-
dix.

APPENDIX
Notes:

1. The mass storage controllers is referred to in this
Appendix as “UDA”; thus, the IP register will
appear as UDAIP, for example.

2. The term “MSCP” in this Appendix refers to the
high-level I/O communication protocol.

.5R1TL External ana Local Symhol Pefinitions

ePAGE
1 ++
5 Define System Symools
P -

SCEuDeF : Cnannel Renuest Rlock Nifsets

SDDENEF 7 NDevice Lata Rlock Dffsets

SOPINLF ; Driver Proloa Table Nifsets

$1DpDLF ; Interupt Data Rlock QOffsets

SIRENEF 3 1/0 Reaguest Packet Uffsets

SLUCEDEF ¢ Unit Control Block Oftsets

SvECDEF 3 Interupt Vector BRlock Otfsets

SIPLDEF ¢ Haraware I¥L Lefinftions

$10DEF v I/0 Function (Codes

§SSLEF H $¥stem Statys Codes

SVADFY $ Virtual AdAdress field definitions
D +e
! The foliowino sympois are blaceu here for auick reference, These VAjiles
i are tre determinina facter for numerous Sympol values defined below,
P -
MSCESA-EXPOWENT = 3 ! Rase 2 expenential operator defining niwper

2 of rina and pacxet entraes

MSCPSKLKTWGSTLE = 14<MSCPSK_EXPUNENT> ¢ Lumper of Rinuy a pPacket entries
7ot :
: Local Sympolic uftsets
7 --
;7 Define vLevice I/0 Paae Reylsters

SLEFINT tDA
SDEF UUAIP olaW 1 Initialization and Pollinjy kegister
SDEE} Upassa HLKW 1 ? Status, Addaress, & vAx pPurqge ACKk register

SVEFEAD UpA

$ Define unit specific fields and sizes

" w
cocc
MM

x
wn
[}

ey e v mv o mvewem
w
-
1
<

mm "mMm T mm

won ;i w X
T CcCTeC © Oc

MSCrSh,.F
? Define

SuFk
RESPSA.S
CMDEShLD

; Detine

0O wanrnn
T TcCcCccco
x mmmnn
r ~TmerT T

SK.d

CPKEShAL

! Define oftsets 1n system buffer used

mm
uiy

" Jmam nenmae an

O OOoC ToCcC TU

™M mmmem term™
MY, trver ey

-

$DEF
S$DEF
$DEF
S$DEF

SDEE
TUFSKLS

23

SDEFTINT UCR

4,449,182
24

for UCHs

Fn:CNloz
h.S1Z2¢=, ! Saz C UCR
BERs S ¢ S17e of Clone UC
L=, ! Size of gargjen variety uisk 1CR
$DEFEND UCR ’ y ¢
Generic/Transfer MSCpP Command Packet otfsets with internal headger
aller buffers
SUEFINT PAT
CPKESL.PQEL <BLKL 1 3 MSCP Pkt queue forward link
CPKESL.POBL «BLKL 1 : MSCP Pkt queue packward link
CPKESwL PKT L LFN ,BLKW 1 ¢ Packet Lengtn descriotor
CPKESa.VCID BIiNa 1 ! Virtual Circuit I,D.
KlaHDK =,=CPKESL.POFL 7 Define s{ze ot packet header
FOCFSLLCMURFE (BLKL 1 ¢ Comuand Reference Numper
MSCPS v UM <BLKW 1 ¢ Unit nunher
BLKw 1 ¢+ Reservez wora
MSCP$SBLUPCODE BLAR 1 : Op Cnue
Lk 1 : Keserve g pvte
MSCPSwn _MODTFTE 2Bl KW 1 : Commnand “odlfiers
MSCRSLo YIF‘CNT oBLRL) : Trapster byte Count
MSCPSLCBIFFLP JBLEK? 1 $ Bufter Descrintor (14 bats 1np ui.)
WBLAL 2 t Un=used portion ot purfer descriiv-:
VolkSLoLRN sl L 1 : Lonical lock Nurper
MoECPSLSFiLals .BLhL 1 ! Software anrds
. BT, 3 ¢ Gemerlc Packet pararteters rrenq
KISIZE =,="sCpSho CMu-nbt : Lefine size ot nenerlc »S. P Paswey
LUriver Deoenrdent Packet iraller uftsets
CPReSLLrTuiY «bI AL 1 ¢ Polnter to associaters ring entr,
1LF =, + NDefine size 0t {nternal resuonse (acvet
1¢F =, : he¢ine slze ot internal co™mand LaCwry
SLUEPrE D PAT
Cenvang packet List prtry Uftsets
SUFF1nl Pal
CPRESLLCHLianFE W« LKL] P Comrand packel keéterencCe w'jTrev
CrErsSw_mApPrn AN 1 s NuTner Qof 1st Hipd Map Penl1Ster
CrKESon_hLilrReC AN 1 7 YuTuel 0t M4rn realsters allucaten
CrFesSnoUATAPALH ,BLK3 1 y iIrd Natabatny wilnker
CrKesLauSevrEEF »LAL 1 : User supctlien reternce nunher
obBLKR CHSCPEIK_PRTLHTILF = 4> 3 remalnaer of M&Cy pre
JLF = r Comnand Last entry size
SLFrer PKL

IST_LEN = 14

SVEF InT CC
RESUSLLFLIN
RESGSLLBLINK

PESKSL.TOP
CMDKSL.TOP
RESFSLLTOP
CMDPSL.TOP

UCRs._CLUNE
ACTSL.CMDLIST
12F =,

SUFFEND CC

: Current static Commang

Lapina o
FEFAFFEIX

* o 0 e 0 a0 e

CEEIFrITITT
b f o &l el ol o o

.B[JI\'Q

t Define Local Lata Structure

NB/BRARBL N
croccoccco
e e T e S e

SUEFIN] DL
UDASL.BUFIOP
UDASL.CLONFUCHE
VRASLUCBLZERD
UDASLLINTPQUF
UDASL _ C4D_LIS|
ULASw INTI_EFK
UDAsw _STFFLERR
UUASW_MAPKRE
DDASR_NUMKESL

-

~- -—
FEFRRRXRFFFX

o

DX & CCUC

Lirit List Si17e pv entries

py driver anc UDA

Response ri{na/pxt aue listheaa

~,

Ruffer descriptor
Command ring/pkt que listneqd

~e e

Internal packet walt que listheard

Unuseua, snayla pe zero
UpA Cnannel for purge
Command Interupt Flaa
Response Interugpt Flag
Top of rResconse Riny atructures
MoCPSha RTuGaIZE
oo of Commani xing Structures

MoCPSKoRENGSTLE

: Too ot Response packets
CHESPSK. SLZL'MSCPsh RINGSIZE>

Tt et g P B e e B e
~

EIRYR TR YR

Top o0f Command packets

CCMDPSK_ szz;tnstsx KINGS1ZE>

$ Clane UCR
HCRSK_ CLN.SIZE

s Acrive Comrann pacxket list
KCPRESK_S1ZE®CPAFSK_LiS1LFw>

s Total huffer sfze in opytes

offsets

1 : Top aadress ot system bufter
1 : Address of clone uCs
1 : Address ot UCb 0
1 : Agdress ot internal queue listhea:
1 :+ Address of Active Commard Packet tis”
1 ¢+ InitL error reason flaas
1 s Init stepr error word
1 i Mapping reaister of SYSLPN vot fer
1 ¢+ Number of marping realsters
1 :+ Datarath = ¢

4,449,182
25 26

page

$DE¢F UDAsW_HuF¢t sBLKW 1 : Systen puffer hyte otfset fron
SDFFE UDASW_REF_NU¥ eBLKY 1 : lnternaj reternce numper value
S$LEF UDASw _FLAGS +BLKW 1 : Internal control tlaas
SVILLD UpA,0,<= ; Internal flao definjitions
CUNLINF,,v>,= ¢ UdA 1s On I.ine
<INTEARET, U>,= ; Interupt from Uud s expected
<€S?2£XPCr,,V>,= ! Controller Init Step & interupt exnecten
<S3ILXPCI,,V>,- : Controller Init teu 3 interupt exrecten
<SAEXPCI, ,V¥>,= ¢ Controller lrit Step 4 interupt expecte.
<BUEFALNDC, ,V>,=- ¢ System puffer is allocated
<BUFMAPL, ,V>,= ¢ System putfer is mapped in UBA
<POUFL 03,= ; Pacxket(s) availlable to be gueuea Lo !luA
<CLINKED,,U>,- i Clone UCA Is linked fnto UCH list
5 <TIMEQUT,,V>,= ¢ Timeout processing is in prodress
UDASK.SI1ZE = , ¢t Size of data structures reauiren
SDEFEND Du

H *% NUTE *%
! Feainninag Nftset Values
s parenthesizend are {n bytes aecimal

3 Aport and Get Command Status Commanc Packet specific Nftset

SDEFINT FF .
W EMSCPEW MOLTIFIEF42 : Nffset (12)
U F MSCPSLLIITRFF (BLKL 1 ? Dutstandina Reference Numner

SLEFEND Fi
! Online and Set Unit Characteristics Command Pacxet srecifi¢c Ntfsets

SLEF INT Gu
«SMSCPSWMOLTIFIER+4

r Nffset (14)
«BLAW 1 s Unit Flaas
+BLKL 1 ? Host ldentifier
i LKL 2 ! Yeserved
SLEF MS5CPSLabkRRLGLFL JBLKL 1 t Error lLoo Flays
«BLKW 1 ! Snadow Unit
S$LEF MOCPSwaCORY.SPD JRTKW 1 ¢+ Cory opeed

SDEFEND GG

¢! Replace Cominand Packet specitic offset

SLE¢ INT Hn
«SMSCESW_MILIFIERS? ? Offset lld)
SULEF MSCPSL kYN +BLKL 1 : Peniacerent RBlnck NgwTuer

SUEFEND Hp
3 Set Controlier Cheracteristics (Commana packet Specific Lffsets

SDEPINT TI

SMECPSn MOLTFIEF+? : Dtfser (12)

SUEE MOSCPSWuVERSION LJBLAW 1 t MSCy version

SDEF MSCPSw.CMT_FLGS ,HLHLW 1 ¢+ Controller Flaas

SDEF MSCPSw..HSI_TVMC LW 1 s Host Time Out

SDEF MSCPSW_USELFRAC bl «w 1 + U!ses Fractior

SUEF MSCPSuW.TINF +BLAL 2 : Quaaworn tire and date
SUEFEND 11

3 Define Resnonse packet (UftSets = wull lahel Arnuments Aare same
t a5 those agetined in tne Generic/Transfer (Command Packet Apnve

SOEFTINT KK

BLKL 2 : Packet linkane long woraos
«BLKL 1 1 Packet lendt» & Virtual Circult
«BI AL 1 ¢ Comnand Reference Nuymper
HLKA 1 ¢ Unit wusher
SsBLANX 1 ! Heserve! flelda
L BLKR 1 : Np (Cnde (alsn called enacode?
SDEF MSCPSnaFLAGH oA 1 y Flaygs field
SDEL MSCPSw STATUS oMLK 1 : Status
«BLAL 1 ; Bytes transfered count
«BLKL 3 t Peserven 3 lonc words
SLE} MSCPSLoFROTLBAT JBLAL] ; First Ead Klocx
! Software nordis
SLEFEIND Ki
¢t Get Comrmand packet kna Packet (Offsets
SUEFIwI LL
sMSCPSLL UV REF+4 s Otfset (in)
DEF MSCES#_CMULSETS L bLKW 1 3 Comnand Status
SUFPFERD Ju
s Get Unit Status End packet Speciflic Dffsers
SPEFTnT MM
«ENSCPSN MODIFIER+2 : Dtfset (12)
SDEF MSCPSW.MINLT_UNT ,BLKW 1 t Mylti=iinit codge
SUEF MECESw UNTLFLGS BLKW 1 y Unit Flaos
SDEF MSCPSLLHOSTLID BLKL 1 ¢ Host ;dentittef
SDEF POCPSWLUNIT.TL ,bLAL 2 : Unit identitier
§DEF MSCESL.MEDIALID oLkl 1 1 Media tyoe identitier
§DEL MSCPSw . SHUW_UNT ,BLKW] ! Snadows Unit

I

4,449,182

27 28

S$DEF ¥SCPSwLSHUW,S1S ,HBLKw i ! 5nadow Status

sDE} MSCPSw_TRACK oL kW 1 : Track Size

SDFF MSCPSaGRUVP eHLKEA 1 y Groupn Size

S$OEF MSCPréwCYLTHPER ,BLKA 1 : Cylinaer Size

) +BLKW 1 !} Reserveco

SVEE MSCHS kT TaSI2ZF LBLAW 1 3 RCT Table Size

SUFt MSCrSnanhBLS Jol.hb | : Kplis / lrarnr

SLEF MSCPS3ukCTILCPIS ,BIAR 1 ;7 RCT Conies

SUFPENT MM

t Online & Set Unit Cnaracreristics FnA

Pacxkat specific otfsats

SUFFInT Ny
«EVSCESrLBHUR_S 1547 ; Ntfset (30)
SDEF MSCOS|, UMTL.SIZF ,BLKL 1 y Unit Size
SULEF ¥W5CPSLevDLaSFH GBLAL 1 : Voluyme Serial Numper

SLEFFF D

Mt

-

Set Cprtroller Characteristics Ema pacxer Specitfc ufrsets
SLFFTLT Do

eSMSCPEWCNILELGS+2 : NDtfset (1b)

SDFF BSCrew CNTLIMY ,plew 1 : Controller timeout

§DEEL MSCPSmaCNTLCMUL ,BLxs b : Controller Commang Limit
SLEF ¥5CPSLWLCITLLD . BLKL 2 : Controller 1,0,

SOFFEND DU

T 44

: Local sympnl detinttions

,--

DEVICELLIPL = 21 : Device JPL

FUPKRGLIPL = R : Forxk IPL

LUOF.LIMIY = “XA<FAp> ; Steo 1 inaximun wait time fOr IESDONSE
INThaVEC = *0<C27u> : Primarv interurt vector

: Defime Initialization Sequence UNASA bil tlans

INITaM-OTEPY = ~A4000 ¢+ Step 4 1naicator mask

INYTMaSTER3 = *X2900 : Ster 3 i1naglcator mAs¥

INIT.M.STEP2 = "“XiuQu ¢t Step 2 indicator masx

INIT-MLSTEPL = "X8yn : Step 1 inolcator rasw

INITLH-INTI = Kby : Tnicialization seauence interunt enanle
INITWaMLiNTF = 4 : Fnavle tAatal error jinterupt flasc
INIlaMaLFALL = 2 ? Reouest previous tailure loy messale pACKe!
INITaMoPURGE =1 * Fnaple purade tlana

INITaMLGO = 1 r Go tlaq

INTToV.ERKOK = *xF ¢ Initialization Error

INI1oVoSTEPAY = “kE ; Step 4 indicator bit

INJToVLSTLEPS s KN : Step 3 indicator rit

INITVaSTEP2 =z *xC : Step z indicator bit

INITAV.STEP) = “xR : Step 1 i{ndicator poit

; Initialization Sejuence Step word formats

STFPol.wRITE = (1315)!(MSCPSK_EXPUNENI011>!<MaCPSK-LXinFhT@R>!INXT_M_INTIl<T.T
STEF w2-kEAD = INII-H-STEPZl<1@7>!<MSFPSK_EXPiwENT@l)!Mscbsk-FxDuNLhI
STEP&e3-nEAD = INIT-M-STLDJZLNLT_”-INTl!<]NTn_VEC/4>

: Command and Message Ring Control Flags

UDAM_Owh = 1R : Own f1ag mnask

UDA_M_FLAG = 1R3D : Ruyffer control tlal masx

HOA_V UaN = "“X1F r Nan flag vector

UDRVLFLB, = *X1F : Kyfter control rled vectnr

: Direcl MSCP Packet I/0 Function Codes

TOS_MSCP.PK] = LOs_nDp

: Control Packet Upgcoa”s

: Command DOpecode oits 3 tnru 5 jndicate tne comuwAand Classy

H 00uv [mpeniate Comnmanis

H 001 Seguential Cormands

H 01t nonesequential commands that Ao nnt 1nclude a ouffer descrintnr

H 011 Maimtenance Commands

i 10y Nnne=sequential cormands that fnciude a puffer aescrivtor

; End packet Upcodes (also called Endcodes) are formea DY agdianiy the ena pACe
s £lag (20u octsl) to 1tne corresconding commana packets JpCcouae, Ar unkr
: command EnAd pdcket contains just the tlan in the vacket’s Dprode tiela.
MSCPSKoUPLABDRT = 1 ¢ *~unl1, ~a01 ARNKT Command

MSCPBER_UPLACCES = 1o s 0209, “X1u ACCELSS Commana

MSCPSh.UPLAVALL = 8 : Uy, “x08 AVAILARLE Command]
MSCPSK_LUP.CWMPCD = {7 s ~021, “A11 CuMpAKF CUNTROLuLE~ UAIA Command
MSCPSh.UP.CLMP = 32 P A0du, “A2U CUMpPARF HUSY DRTA Command
MSCPShoOP.FRASF = 1o s ~J?2, “K1Y FrASE CommnanA

MSCPSh_OP_FLISHY = 19 ¢ ~U23, “X13 FLUSH Caommand

MSCPSKUPLGICKD = 2 s ~u02, *“aN:2 GeT CuMMAwWD STATUS Commany
MSCPSR_UP_GIUNT = 13 : ~0N3, *XN3 e T "NTIT STATUS Commannd
MSCPSK_UP.ONLIN = @ r ~011, “40Y OnLINE (ommana

4,449,182

29 30
MSCPSRLUF_READ = 3) P *D4a1, ~x21 ReEAD Commano
USCPSKLUPLREPLC = 2u ! 024, *X14 RePLACF Command
MSCPSALUPLSTCON = 4 P *UN4G, *X04 SET CUNTROLLER CHARACIFRISTICS Comman:
MSCP8RLUPLSTUNT = 10U P 012, “ADA SET Un1) CHARACIFKISTICH Commanag
MSCPSRLOPWRITF = 3} H ‘046 “%22 WRITE Command
MSCPSRoUP_END = 128 3 ~0200, “Xx¥0 END PACRE(rLAG
MSCPSKLUP_SEREX = 7 : ~07 ~x7 SERLINLUS EXCEPTIUMN EwD PaCrb)
MSCPBKLUPLAVAIN = 64 H ‘0160, ~X40 AVALLABLE Attention VeSsage
MSCPSKLUFLDUPUN = 6% s *0101, ~X41 NUPLICATE UNIT nliMmRe® Attention “YessAac
MSCPSAhLOPLACPIH = 1 3 "“Ciu2, *x42 ACCLSS PAIN Attention Messaje
NSEPSM-UP-E«D = *A8Y 7 End Packet dask
MSCPSVLUPLERD =7 ? Fnd Packet nit Flaa
MSCPSMLUPLAITN = *a40 3 Attertion Messange Command Mask
MECPSVLUPLAITHN = 6 ; Atrtention Yessage Command FAit
MSCPSVLUP_REAL = 0 t Read command nit flan
MSCPSVLUPLXFFR = S Ngta Transfer type ASCP Opcode bit
t End Packet Flaas (mask values)
MSCPSMaEFLBRBLKR = ~X80 ¢ Bad biock Rerortec
MSCPSMLEF_RALKY = ~X4§ : Bad Rlock linrepnrteqg
MSCPSMLEF_FRLOG = “4£724 ? Error Lo nenerated
MSCPSMuEF.SEREX = *X10 ! Serjous exceotion
3} End Packet Flags (vector values) ’
MSCPSVLEF.RBLKP Rad Rlock Reporten
MSCPBVaLF L BBLRD Rad Rlock inreporten

MOCHS vt FLERIUG
MSCPSVLEFL_SEREX

Error Lon aenerate-
Serioys excevtion

(LTI]
PR BN
- e e we

§ (mask values)

q

= X819 t Enaple Avallavle Attention Messaaes

= "X40 ?$ Fnaple miscellaneous krror Log ¥eéssSades
= “A2u ! Enaple otner nost’s Error Loa MessA;es
= *£10 t Enable this host’s trror Log Messanes

= 2 ? Shasowina

=1 t 576 Ryte Sectors

Flaas (rasxk values)

Enaple Avallaple Atientlon messdnes
Enaple miscellaneous krror Loy Messasdes
Enable otner nost s Error Lon Messauns
Enapvle thi1s host’s Erier Log vessanes
Shagowing

76 Hyte Smctors

wHurhun
DB
=9 =6 vo YO Ve Ve

Status / Lvent code MaSKk
Status / tvent conde (sta
Status / bvent cooe (tie

“K1F

e up =

w2

Sub=code nmultiplifer
Success
Invalid Command
Command Aporter
Unit Uft=Line
lin{t Avallaple
“e ia Format tLrror
te Protecterd
Compara Frror
Data kErrnr
Host buffer access errer
rontroller Error
Drive Error
Message from ar internal didanestic

A20

snudnunnnanEnIen

PP PODNT T RWNIO P
W8 %E S8 %g U8 Y4 Ve Ve ve We e ve e Ve

ine WTL Parameters (AP) offsets

First QID Parameter
Secona WIL Parareter
Tnird 010 Parameter
Foyrth 4lu Parameter
Fifth Ql0 Parameter
Sixth O0I0 Parameter

e Su wp vy ve W

Tables

t Controljler fla
MSCPSMLCFLAVATH
MSCPSMLCF_¥1SC
MSCPSMaCEFLNIHER
MSCPSMLCF_THTS
MSCPSMaCF L SHALW
USCPSMLCFL.57A
? Controller
MSCPSVLCFLAVATN
MSCPSV.CF_™]SC
MSCPSVLCFL.OTHER
MSCPSV.CF.THTS
MSCPBVLCF_SHADW
MSCPSVLCFL576
7 Status ana event Coages
MSCPEMSTL.MASK
MSCPEY_SToMASK
MSCPSoaS5TL¥ASK
MSCPSKLST..SBCuD
MSCPSh.5T.SUCC
MSCPSKh.STLICML
MSCPSA.STLAHRTD
MSCPENLSTLOFFLY
MSCPSALSTLAVLETL
MSCPSMSTLMFMTF
MSCPSK.STLWRTPR
MSCPSRLOT. CUMp
MSCPERLSTLDATA
MSCPSKLSTLHSTBF
MSCPSKLSTLCNTKL
MSCPSASTLOKIVF
MSCPSR.ST.DIAG
: NDef
Pl = 0
P2 = 4
P = &
P4 = 12
PS = 16
Pb = 20
«SRTTL
« PAGE
P 44+
t Driver Prolonque Tahle
’-.

DPTAB

DET.S10xE TI491T

Define Driver Prolny Tacle
¥nd ot Oriver

Unipus Adapter 1lype

to bgstew PaGe required
HCH Size

Nnriver udnlead routine
Driver nane

Control Rlock Init values

FuDsUDALFND, -
ADAPTERSUBA, =
FLALS=0,=
ucasxcs-ucas«_512L,o
UNLOADZUDAUNGOAD, =
NAME=DIDR[VEP

= % Ve Te Ve Ve na e

PPT.STOKF DUl ,NDDASLLACPL,L,<*ANFI1N> 3 NDefault ACP Ngme

4,449,182

31

PET_SINKE DYR,DDASL_ACPD+s, s
DPYI_SICRE UCH UCRSR_FIPL,o

32

ACP Class

3
5F6RK-IPL : Fork iPL

DPT_SINRF UCR,UCRSL_BEVCHAR,L,= 7 Device Characteristics
CDFVSH_FQOD=- ¢t Filles Griented
DFYSH_LTR=- s+ UDirectory Structured
JUFVSM L AVL- ¢ Avaflaple
JUFVSM_S54H~- ! Sharable
YUFvSu_ 1Dy~ ; Input bvevice
UFVSKLUDY - ¢ Uutpuyt Pevice
PUFVSM_RYDDY ? Random Access
DeT_SINKE UCR,UCRSB_SECTNRS,R,31 3 RABU Sectors pfr trdrs
CPT_STNnE UCR,UCASRITRACKS,0,{4 : RARG Tracws per cylinoar
DPT_SIOKE UCR,UCREW_CYLIN0ERS,w,547 { RABU user area cyliinders
CEToSTOKE UCBIUCBSA_DLVCLASS 6,0Cs.DISK ¢ Device Class
PPT_SIDRF UCB,"CBSU-DEVHUFSIi,V 812 ¢ NDefault Rufter Size
D T_STNKE UCR,UCHSR_DIPL,H,UHJYéE-TPL : Device 1PL
DPT.S10ORE UCR,UCBSY_STS,w, HCARSM_DuLINE ; Set units online
DT STORE UCB ,ICBSW_ NFVSTS, w, -
CYCRSNNNCNVRT~- s No LB~ to onysical adar conversinn
LUCBSH_DIAGHUF> s Diagnostic putfer specitied
nyT_sInkgsggg,UCRSL-"AX%LUCh.u.- KRAEO Max Lsvo
1
NFT.STNRE PETNIT : Control Rlock Re=]nit Values
pPPT_SIOKE PUB,NURSL.DDT,H,Dusubl briver Dispatcn Taple Adar
DPT.STNKE CRB,CRESI._InT(i#¢3d,0,- ; Address of jinterupt service routine
UDALINTERUPT
PPT.STORF Enl
7 4+
? Driver Cispatch Tatble
P --
DLTAR -
DJ, - Device Namne
YoR_STARTIO,= Start 1/0 routine

N, -
361-Fu~cruauﬁ,-

r

O,=
:écvsx-9k151za+12,-

¢ Internal aata structures
HDASL_INTELRNAL: BLKP UDASK_SIZE

g me Ne e V4 Ve “8 v

Ko Secondary Level Interupt
Functionn ULecision Table
Canrcel 1/u

Frror Loayging Routine

Niay bButr byte lenatn

Size of error hufter

.SRITL UDAR Function Leclsion Tahle

e PAGE

7 +e
t Driver Function Decision Table
' -

UDA_FUlCTARLE :

FUN(CTAR ,-
CnDp =
injdiaLize, -
SEEK, =
SEASLORAR, -
SEWSEMUNE, =
SETMUDE-'
SFICHAR, -
HEADLELK , <
HEADPRLK , =
RFADVALK ,«
wWEITELBLK ,=
wRITEPBL.K, =
WRITEVDHLK, =
ACCESS, -
ACPCO%TRaOL, -
CREATF , -
GFACCESS, -
LELFTE, =
MODIFY, -
MDJNT , =
kEADHFAD, =
aRTTECHEEK , =
oFITENEADD
FUhRCTAR ,=
€OV SECHAK , =
SFwWSLYJODE, -
SEIMGDE, =
SFICHAH, =
ACCVHSS, =
ACPCUMiRUL, -

MOUNT>
FUNCTAR UDALFDT.INIT,<INTITALLIZE
FUNCTAR UDA_FOT_TESTONL,~
<HOP, =
NLAbLHL‘K P d

LTETRE

6 ve Be W/ NG TE NS NE S e TN VEVETE A NS 23 WE WP S4 N Ve N4 V4 T4 W W6 V6 TETE I8 TG W Ne Ve Ne

l.eaal Functlnn 4asvs

frect ¥SCF Packet Function
uUpA ard units Initialazstinp cnmvan
Seex

Sense Cnaracterjstics

Sense %“ode

Set HoAde

Set Characteristics

Reag Lnyfcal block

Reau Fhysical Blocxk

Re»d Vvirtual vlock

write Locical BRjinck

write Pnvsical dlock

write Virtual Block

Access tile and/sor directory ertry
ACP Control Function

Create tile and/or directory
Neaccess tije

Delete tile andsor directory
Modi1fy tile attrioutes

Yount Volume

RPeaa head

write Cneck

#rite Head

Hufterey 1/U Functions

Sense Characteristics

Sensr Mo4de

Set Mode

Set Cnaracteristics

Access tile andsor alrectory entry
ACP Control Function

Create ¢1le andsnr directory
NDeaccess file ‘

Delete rile and/or alrectory
Modify file attributes

Mount Volume

3 UDA Initialization

Test UDA tor online

NDirect MSCP Packet Functlonr
Peaa Lo3ical Block

¢+
Functional Description:

4,449,182

33 34
READPBLK , ~ 3 Read Physical Block
RPADVHLK ? Read virtual nlock
SFek, ! Seek
nPJTbIBLh. t wWrite Locical Blocyr
RITEPHLK, = t Write Pnysicayi block
RlTthLh.- $ write Virtuel Block
ACCESS, = t Access file and/or directory entry
ACPCUNTRUL, = : ACP Control Function
CREAIE, = ¢t Create tile and/or directory
LEACCESS, - ? Deaccess file
DELETE, - : Delete file and/or directory
MOLIFY,= } Modify file attrioutes
MOUNT , = ? Mpount Volume
KEADAEAD, = ¢! Reaas neaq
wRITgCﬁEéK,- ; Wwrite Check
wRITEHEAD> ! Write Heau
FUNCTAR UDA_FDT_MSCP,<NUP> 3 NDirect MSCP Packet
FUNCTAR UDA_FLT. R{TL&HT, 3 Fven byte count reaafrea tunctions
CRFADLRLK , = ; Reau Lojical bnlocx
KEADPRLK, = : Read rhysical Block
RPADVRuK,- ; Reaa virtual nlorx
wRITELYLA, = ; write Locical Bleock
wRITEPSLK, = : Write Pnysical vlock
wRITEVHLEKD + Write Virtual Blnck
FUNKCTaAR UDAFLT_PHYSIU, = s Pnvsical (/0 rejuest tunctions
<RFADPRLK = : Read pPhysical Rlacgk
ARITEPBLA> ! write onysical plocx
FUNCTAR UDA_FLDT_N)P, = s Np oreratiosn tor current version
KREADAFAD, ~ ! Read Head
SEEK,= ? Seex
ARITEHEAD , = » Write Heaa
AR LTECAECK> $ write Check
FUNCTAB +ACPSREADSLK,= + ACP Read fFunctions
CREADLBLK , = t Reaa Loylical vlocl
READPRLK , « t Read Physical Rleack
KREADVRLK> ¢ Reaa virtual olock
FUNCTAS +ACPSaRITEHLK, = ! ACP Write Functieons
<wRITELBLK, =~ 7 Arite Lonical Rlock
WRITEPALK, = ! write Pnvsical nlock
WRITEVBLRD 2 write Virtual 8Block
FUNCTAR +ACPSACCESS, = $ ACP Access or create tlle/sdirectorv
CACCFSS,CREATE>
FUNCTAR +ACPSODFACCFRSS,<DEACCESS>
FUNCTAR «ACPSADDIFY,=
CACPCONIROL, -
DFUFTE , =
MOuUIFY>
FUNCTAR +ACPSHMOUNT ,<MUUNT>
FUNCTAR +EXESSFENScMUDE, =
COFEISECHAR , = ¢ Sense Cnaracteristics
SFASEMLDED> ! Sense Mode
FUNCTAR +bEXeESSFICHAR,=
<SEIMONE , - ! Set Mpnre
SETCHAR> } Se*t Cnaracteristics
«SBITL Ful Rontines
.bN&“ LsR

Refer to specific FLT routines.

H
7
?
i
; Inputs: (common to all FDT routines)
H R3 = Address of IkP ([/0 kegquest packet)
H R4 = Address of PCR (Process Contrn] block)
' k5 = Adrress of HCR (unit Control Block)
H Re = Address ot CCR (Channel Coantrol Hlock)
! R7 = dit Number ot the 1/U Function Code .
H R = Address of the FUT Tahle entrv for tne specitic FN[koutine
3 AP = Address of tne first function ependent (10 Parameter
’ -
UDAFDT_TESTONL
MOVAR UDASLLINTERNAL K2 ¢t et aadress ot internal structures
BLRS UuAsw_FuAGS(R25 1us r Controller is presumeable online
MOVL UpASW_INIT-ERR(R2),R1 : Losa init error flags
55 MOVZw|, #5Ss.SSFALL,RO ? Set suyb-system tajilure status
BRR 1105 : Finisn 1/u
108 MUVvL UCBSL.CRR(RS5),RU : Get address nt CRn
MOVL CKRSL-INTD+VEéSu-IDd(RO).RO : Get address of IDi
MOVL {RO) RO $ Get address ot (SR
MOVZWL UpASA(RO)Y,R1 : Test 1f UDA Adied since last I1/0
REQL 158 ¢ No
BbSC FUDASVUNLIWE, = ¢t Reset controller online and ¥Finisn
NpAsW_FLACS(R2),5s : 170 .
1563 BICw2 *UCHSHU_KESY,UCuSn _bTb(RS) ?} Clear unit bhusy tn aveid a woft
208: R>8 7 Return to EX¥EsosuD
» PAGE
7 o4e
? ULALFUTLBYTECAT
L4

4,449,182

35
ULALF LT FYTECHT
ko, C t0,P?2(APY,20U8 H
1o5s: MUVEAL RSSSoLVGHFT LN, Ry I
110s: JuP G EXFSFINLISHTIU :
S PAGE
D 4
P OULAFLT MsCe
UDA_FuT_MuCh?
Movy P1(AP) H
MOV L 'MSCPS‘-PhToleoll K1 2
DoBINL $1PLS_S{NCH H
B5ia UuA_ALONOGPAGED :
FaPINT H
R R FU,2158 H
MUV R2,IFRPSL.MFDIA(KR]Y) :
MOVL Pl(aP),rN H
CLRy Ri :
2005 MOVy (6N) Iy} ,12(P2)(R) H
AGHLSS #uSCPs¥ _PKTSTLFe=4,KY,200
RpS UINSCPSV_ NP_AFELR,=
MSCPShLUPCONF(R2),205s H
204s: Jup G*FXFSULDDRVERT H
2058 ¢ MOYL MuCPSLBIIFFER(R2) ,PL(AP)
MUV MSCPSL.BYTE_CHT(R2),P2(AFP
BRg L 204s H
% EMSCPsVNpPrELD, =
MSCPSHLUPCODE(RZ)Y, 2108
209s: Jw P G*EXFSwRIF H
210s: Jwp GREAFgMUDIF b
215s! Jwnp GFAFSRZORTIN H
e PAGE
7 +e
: ULA_FUT_NUGP
UpDA_FLT. ~bv-
MUYy S*45550NMAL, R H
JMP GAEaAVSFINISHIUC H

A_FuT.PAYSTO

Sk adaress in pargmeter 3

ocx nPymper, recoanizaple ny tne Upa,
LeN =

+ sectror

Vo %a va g ne T Wy we ws e ve

ULDALFLT.PRYSTU:

++
up

This routine {s cdlled when a pnvsical 1/0 request wAs recejved,
di of the paramegers
el

the algorithm tor conversisn

36

Rgt Jrn
Set oad
Finisn

it ktyte count 1s eyen
lgyte count statuys
9]

Get adAress of user’s “sCr pkt

l.oAr1 lenath of an “50¢ Lkl ¢+ neasaer
Synch Access to system data hase
Allocate o svstem bufter

Return to previous [PL

Insufficient resources, avort T/0
Load Y“SCP Packet ouffer al1dress Iin |
Get aadress of yser’s MsCr pot
Clear {index

Cony MS(P oacket into holu putiter

s

Process transfer l/u tunctions
Queue packet to driver

; Load xfer address in T/nN
Load xter bvte count
DA seek command

ndraveter
)i,
ILt°s «a

Nuceode 1s a reag class cornmancd
Process direct 1/0 wsrite
Process direct I/0 read

Apnrt 1I/0

Set normal return status
Finisn 1/0

ihe physical
cnnverteQ to A loaical
st

lJist §s

fcyiinder % (sectors per trdrns * Lracks ber cylinuer))
+ (track #* sectors per track)

MUVZRL UCkSPR_ScCTOKS(RS),RU ! Develop LsNs/cylinder value

MyvzZRL, UCRSB_TRACKS(KS),nrl

MLULL? RO, k1 t Rl = LRws/cylinder, RO = oectors/iracs

FATZV $16,016,PI(AP) K2 : fet pnysical cviinder value

MULL? P2,r1 : Mult1g ¥linder by LANS/cCylinaer

ATV sk,8F,PI(AP),R2 ¢ Get phvsial track numper

MuLL? Ry,R2 7 Myuleiply by sectors/tracx

AuNL? R2,Rr1 ! Add sector/tracx to apove

FXTZV $0,4R ,P3(aP),R2 7 Get pnvsical sector numper

ALLL? Rz, Rt ? result 3is the =3ulvalent LBnL

MUVL Ry IPVSu-WFUIA(Rl) r Stuft in Lnd area of IKkP

C¥PZV #1RPSy_FCODE #1RPSSLFCODE,= 3 1s this a read ?
TROSwoFUNC (LS, SIS oREADBALA _

REQL 2103 $ Yes, ygotn EXFESMIUDIFY

BrP 209s 3 Goto EXcSaRITe

e PAGE

++
HOA_FUT_INIT
Functiopal bescription:

This routine is cdlled when a hard init
basicallvy mimmics tne tunctions of

appropriate reajsters with the. values t
aadition it disahles all 4interupt
inftialization routine, uban return to
is restoreg, interupts are enavled b
terninatenq.

T TE U UG Nw Tw s ve Ve e N8 wa e

ialize ot the UuA s requ sted, 1
the SYSGeN process Y loading tr
nat S5YSGeN woula normaily Jloas, 1
s Aand calls tne primar level U
rnis FDT routine, original ¥D1 conte~

ack to around 0, and tne I/ request

4,449,182

37 38
UDALFRTSINTT
DSRINT ! Disable all interuots
PUSHR B MCR 3 RY, RS, Hb ,Hd> ! Save DT Context
MOVL N IITIN N : et adiress ot CRp
MUVL UCRSL_NUR(RY) ,Ro Load wh with addr of LOhR
»OVL CRRSLoINTUC VRS LINBCHA) K5 1 Get sddress ot 1Dk
MQVL (RS), R4 ! Load CSr address in P4
B3Ra vph fNtrTaLLZE 3 Go ana init the LA
PUPR $°MCRI,RE4,R5,RH,RE> 1 Restore FULUT context
FNBINT ! Enaple interuots
RxA ULALFDTNUP 1 Finisn the [/0
«DISABLE LSu
.g?{;b DOALSTARTIO = UDA Start I/0 routine
. G*
3 4
3 UUALSTAKTIO = UDA driver starc 1/J routine
! Inputs?
H R3 =z Address of]/0 Request packetl
! RS s Adaress of specified Unit Controi nlock
3 Pegister assignments:
’ PO = Address of MsCp Packet
3 R1 = Adgress of internal Jdata structwures
H R2 = AAdress of Active MSCP Packet list entrv) .
: P3 = Address of IkP or Internal Packet oeinrq services
H R4 = General «0rx Reajster
H PS5 = Address of {noyt agueue and forx bplorx {(clone) UTu
? Pe = General work Reajster
H
] R? = Scraten
; RY = Secratch
CENRRLF LGSR
UDALSIARTID
”UVAH HOASL INTERNAL, K : Get aadress ot jnternal nyfter
MOVL UDASLLCLOGFEUCH(KT), n2 H Get address ot 10p gueue Cn
M(VRR UCRSLLTILGWFL(R2),R2 } Get Jadress of queue¢ listnread
PUSHL R1 ? Sdve Ainterrnals putfer address
JSk RREXESTNSEWTTRP ! Insert 1RP in invat ayeue
PGPL R1 ? Rerrieve Internals ouffer aunress
UDA_INTERNALLLIDS t Reterence Larel for internal M<C'
1 rackel jyueuelna to JULA & terk 177
PUSHR #-MCRE , KT ,RE> 1 Save rejisters:
MUVL UDASLoELOSFUCH (K1), RS 1 Get aadfess of clone ufo
553 JSR GETCAP_BACKET 3 Get next empty Command packet
RES SVASYV ﬂySTEM RO, ks ? Got one
Bhw 858 3 Rings are full, close out
6s: MUVL . UDAsT. INTPOUF(Pl) R3 ! Get adAdress nt internal oueus listr
REMYUE @(FJ), 1 Get next internal nacket tor ulm
RVS As t None there, try onutsige I/N retuest
CLRL Po ‘ 3} Cleagr {ndex
7s: YoV 12(x4)149) ,MSCPSL CAN_REF({ROY(Ra) ¢ Copy packet to ring tufter
AGRLSS #MSCPEK _PafSTZEes3, kAT TS
MUVL MSCPSLCMD_KFF(KN) ,= 3 Copy command rerence nuiber into
CPKESLLCYUGKEEF (R2) 1 Active packet list entry
B1Sw2 #UDASALPOUEL,UDASH.FLAGSIR]I) ; Set a packet waS cueyes tla?
JSB ﬂkSP)f ! Queue packetr to UDA
MOV R4, RO $ Get audress nt temporary ontfer
BSHa uui_nLnNanAgsn ! De=allocate System outfer]
INCL UCRSLLOPCHT(RS) t Acecount for queued 1/u in Clone UCH
RuB 5% 1 Start again
8§ MUVAR UCRSLLTIOAFL(RYS) ,R4 ? Get andress ot 1Rp ?ueue listhedn
CnPL, (kd),r4 t Is the quene empty
BEQL s ! Yes, exit
MOVL (Kk4),R3 : Get address ot JkpP to process
MOV, IRPSL-HCB&RJ;,Rb ! Get anress ot o$soCiated !CH
TSTw IKPsW _FUNC(R3) : Is this a 44rect «SC¥ pacxet }/u
BnEy i15s s Mo
YOV IRPSLMEDIA(R3) ,F7 ? Get audress nt pacuxels tewp storaief
CLRL RY 2 Clear inde
108: MOV 12(H7)FRRJ,MSCPSL-CMh-REF{RU)LP 8l 3 Cony packet to rina pufrer
MOV 12(RT)IIRB),CPKFSILISFKROEF({R2)[Ro) 3 and into active pxt list
ADRLSS #MSCPSK_PaTSIZFE@=3,R8,108
BiS5 $MSUPSVLOPXFER, =
HbCPSn-&PCnuF(Hﬁ),lls 1 Process data transfer MsCr pkt
Sﬁgw SHECK-ABDRT : 3 ckecx tor abort of aet cmd sts¢g
1 U
118: TSTL MSCPSL_BYTE.CNT(RU) + Is this a seex packet byte couynt = U
BinEy 258 ? No
ARRV 408 : Yes, Jueuye packet as (s
15s: MOVE #MSCPSK_OP_READ,R?7 : Assume a reqat function
CMPLV 21PPSV_FCODE, s TRPSSLFCOPE,= ¢ Is {t really 9 reac ?
JRPSW_FUNC(RY), s TUSLREADBEIK S
BLQL 208 : Yes
MOV UMSCPSK_OP_wRITE,N7 ¢! load & write or coid»
208 MOVR R7,4SCPSR_NPCYNE (D) !} Loaus op code In comrmand paCxel
MOVL IkbsLoMENTA(RY) , - ! Load Lnh
MSCPSL.LAN(RO)
MOV e UCESW _IINIT(R6),~ ! Loag uUnit Numoer of associates ulh
MSCPSW.UNIT(RYS

258:

w i
U =0
" wn

408

458
508:

553:..

6083

658

MGVZWL
REAL

MOVZAL

w
e
T

ANMDICD @aF

cwuwnunwnnl] © I
» T |

XM € [FmeXx O

DOPpre =2

- "
h.:_"

=1

® AT TIT A a4
TRCC<SXMSUNT

GUCANCTIUVXAWWEXTEITTIO »MWE 2 IC IC I ST
o

CTTTOVT
MO~ XX

DO IATMMWNTIws B
TVINBNT TN 0 o)

NP+ 4~V TT

E CCCH-Nr - O

® OTOAIZVLOACLBOADL “AQWlWC®MA THw
(o]
~
x
s
-

» 0
lﬂ
o 2893

GED
53}

— e I EwevOarTEaccun + %0
WwTOIF C LuunizlEZsxxC

Ao 920
2 S 2
amu»
-~z
The

MOT=PVBYW »~ DPORDIT A TUE=s = = TYENAIT
sBax]

SNAPCES THLHBDIODTTONMMMN

$°UCRO,R7,Rb>

SUDASVLCLINKED,~

»
L]
. 2
1
-
»
I""\
n
Ll
k-
-
e

z
A,
<M

[.1

<Y e X l"t‘!
!ﬂ
.0
ﬂ
ﬁ-
"
w.o

1
ZUCHﬁ
‘ .
De

CeGANIsCCoC e
i)

AECTXTOACTCTNATC
TEEPADEAT DN D PT
UL IST Y Y- T 1)

Tud TNl 'Gl.'

1) ~®}

BUDASH
oa_T1%z0uT, 830’

Lo Lobe oo S B of VR 20N L s o

Y~ 1 ol
~—XOTX

4,449,182

LUTHSLLS

TROPP
T
>
[T
e ™e 2a e pm TRy g e ve Ve e [I ve v X u ve Ve Ve VA TE TE Ve TR NE B0 e Ve

O C
—w— >0

-U
<

UDAS K FLAGS

"
o
»

-sfstu4)

.

SONP VP APUENETE W™y gty

.NO pyLe count,
APTE(RDY

~d4

o~

z
CZ2OPm TDAZEDFC N T X~

40

Load transfer byte count

seek only

Save reyisters trom destruction

Load xfer parameters 1inrn D(H
Rejuest a pbufferes gata nath

None avatllaole

AllocAate UBa mappiny reaisters

Gooa return

Release buftered data patn

Restore reagisters

Clear return address to aqueuye cmd rat

Clean up angd leave

Load UBA mapping registers

Restores registers

Fef address of CRp

$ Save URA Mapping context

ctive packet List Entry

qe uo xfer adaress tor UDA

Q Pa ; Load map reaister pur
¢+ Load pata Path

§CP command packet

address as reference numner

Packet ana List Entry

cket to DA

a nalrect MSCp 1/0

ess ot tempordry ouffer
ate system ovuffer
L a packet was aueuea tlao

o

moa -0 vx».c-

»
2
1 P
C

d
nis
dar’
loc
s

1[4
counht for oueuea [/u in Clone UCH
move [Ry trom input queye
ne left, prebare to leAave
rocess next 1wy

Pestore reajisters

Disable 81l !nterunts

Link clone in witn UCe Jist It
tnis is tne tirst 1/0

Alert UvA of queued MSCP packets
it gue flaa is set
Are tnere anv unfinisneo 1/0° t
Yes, allos for possible UuA timeoyt
Set host timer ana return to caller
Get 8ddress ot Host Tiwmer _UCe0
Clear timeout hit
t aodress ot uUbalp 170 page
reaxster avoiding indirect
renc
late uDA Polling

kSY exit 1t Clone is already
ayeue,
t IPL to fark level
Return to taller —_

[
n
2
4
o
n
ue
d
°
e
e
)
c
e
o]

e
]
ef
ni
8k
n
es

INTEXPCT,UUASaFLAGS(R]1) 5 Set interurt expectesd

3 Create & £OIK Prncess

$ Reference label

> Se W B9

for unsoliciated interupts

Copy address of internsl bLutfers
Clear fork afspatch address in UC»p
Save rejisters

Clnse out end packers

Try to queue nes packets detore exit

MDAFINISATO = Close out 1/0 routine

End pacxet befing processed
assog atea Commana Packet List Entry

lnd 170 Status araument register
Scratecn and 1/0 sup status srqument register

¢t Inputs?

?. R] = Adiress of internal data structures

? P3 = Address of YDA

] RS = Adoress of CLone UCH

? Register assignments:

? RO = Address of

] R¢ = Address of

F ﬂ% s Address of associated]IRP

s R7 = Scraten

| RE =

’.-

UDALFINISHIOSZ i ‘
SBa GETEnND_PACRETY
TSTL Ry
BAEW 105s

1058 ggg SVASV _ SISTEA

: 5- il -
neCes o ERbEREr (RoY, 1098

RLAC UDAsu_rLucs§n1;,1uﬁs
BSPd UDA_PROCLINTRNL

e te SeTeas s

Get next end packet

pDid we get one ?

Yes

Return to caller

Process IKkP

Sxip internal oxt 1t UDA 1is otflinr
Process interna) packet

10053

10958

1255

130g:

UDAPHROCLINTKWL S

;
:
:

-t we

158

4,449,182

41 42

DECL UCRSLLCPCuT (RYS) 3 Accouvnt for I/0 $n Clone uChH

BSR« UDRRESETLRINGS } Reset rings to proper osn state

BkR UDA_FINLSHIO ! Go a3ain

MOVL USCPSLLCMDLREF(RO),R3 ? Get address ot PP

;Egk ?iggta-nkPﬂscckz) ; ggre UBA resources acquired ?

PUSHR g*MCRO,R1,R2,R3> t Save current context

MOVL ucasb-éaatnsé R3 t Get address of CRb

MOVL CPKES#. MAPPE énz) },Load UBA mapping context into Cwh
CRBSL. . TWTD+VECSwo AAPREG(R])

JSR G=TUCSPURGNATAP H Purge eugtereﬁ data patn

JSR G*JOCSRELLATAP 7 Release Bufteres pata Patn

JSB G*TOCSRELMAVPPLG 3 Releadse UbA Maoping Reajsters

["0 ; Liear 1naex

MOV MSCPSLLCY¥DLREFI{KO)[kb),(Re)[Re) ; Copy ena packet into

RUBLSS #MSCPSK._PKTSIZE#=3,Rk, 1155 ; dlaanestic nuffer fnr user

MUV L CPKESLLUSERREF(K?),(R8) ; Kestore user’s reference nuther

INSY ??EPEYZSE%TUS(QU"- ! LoAag knd Pkt Status fnr 1N3% wor: |

4 [N
CHPLV AMSCPSVLSTLMASK, - : was tne I/N successtul ¢
BAF :gggPSS-ST-MASK,vaCPSJ-STATUS(Ru),IMSCPSK-ST-&UCC
G + No

MUV 855 _NOHMAL ,R? + Load Success Status for I.Se» wnrd o

MOVL MSCPSL.BYTE.CNT(RO),R4 ¢ Loao svte Count Field for JYuSe Ly)

BSRw UDA_IUPDST ' CLose out the I/0

BSRA UDA_RESLT.RINGS ! Reset control flays in rinas

BrWw UDAFINISKIU t Process next end packet

MUV s HSSSOEVREQERR,R? : Set faiiure Status

CuPZV PMSCPSVLSTLMASK = t NDid tne unit go otfilne ?
UMSCPSS_STLMASY ,~
MSCPSw . STATUS(ROY, $MSCPSK ST UFFLN

RNEQ 125s t No, return device reguest @rror stAat

MOV w 155 DEVOFFLINE ,RT t Loag device ottline status

TSTa MSCPSALUNIT(RO) 3 Is this Unit 0

REGL 1255 ! Yes, leave 1t alone

MOV IRPSLLUCR(R3) ,Rp : Get aadress ot UCH

BlCw2 BUCHSHoUNLTIGE, = : Clear Online Flag in uCh aha close
[ICRgW_STS(R8) ? our the 1/

BkA 1255

«LISABLE LSH

Inputs:

MOVL
CPP*
EQL
L
"]

mCrEE GO
O<IVU PN«

TEDY WPETD
jant o 1 ol o

Wi

t Process internal packet

ress ot Fngd packet neimy processen

ress of internal data structures

ress of assocjated Command Packet List Entry

"aFPSb JPCADE(RY) ,R7 é Get ¥YoCP racket end code

g L 4<MBCesK _0P_ONLINIMSC sK BpoEND> §o1s 4t an ORLINE end code
$ Yes

R}, #<HSCPSK_OP_GTUNTNSCPSKoAPEND> 7 Is 1t & get unit status?
358 ¢ No, 1lgnor {t then

Get address of UCH corresponding to Unit humber {n mSCP End packet

UDASLLUCBLZERO(KL ; Get agdress of JCo v
gg:sw-uwlr(n3) Mscﬁsw Ui I#NO) ; Arte unit numoers tne sanme
es
UCRSL.LINK(K3),R3 ¢ net aadress of next [iCR
10 : f Try this one, 0 = last uCer
’

Not & normal unit numper, fgnor it

SK.NP.EY“L> ;3 Is it 3 get unit status?
Yes, process 1t down stalrs

Get unit numner

Tt’s uUnit zero, do not mark nttline

§$§Q<MSCPSK_DP-GTUNT!MSC
MSCPSw_UNIT(RO) ,R?
208

- Seve Y

! Set other than unit zero oft=iine until receicrr 0t a sdccess obFl CHIT SLALY.
} end packet

2us8;

258

VAP TTTPPTVT TD T
wCFCcOCcCtrvc Gz =

o
—
i
F ¥
NN

PRI CHBO <M N
TCr=gsnNaa g

R

—N
[3

RANCTR DO Z "W I

SWLSIS(R3)
R, = s I's retarn statns success 7

¥U 3
[21]
»xr
-y -
TNCAh T

Mg d E Y Y

L]

No

Loag max LB~ vajue tor system use
into uCs

Save context

Make g get unit status comMmano pkt
Ailocation tailure

Loaa JUnit Numper in packetl
'WCulPL(k?2) ; Load get unit status
Get {nternal pkt yueue listnecd
Address the bacx link

Insert in rear of queue

Peftore original context

exit

At s TN).
X 2~ ~n T

L ITIUOT LU L T
TR R = 0 2 BIMANDDY

ALV OIINT AW TAS
s » TOUONBNADTCN DTGB

CRAT) wCowmc)

—
o vu Ve Ve na j--.w. N ™

: Process the GET UuTI STARTUS YsCP knd packet

30s:

BICw

anFy
BiSw

2

2

#2CEMSCPEM ST MASAD>, ~ : Is return status success ?
;brPSn-S7ATUS(°U) .
5% : o
SUCHSHoONLINK ,UCRSH_STS(R3) ¢ Set unit”’s UCp status to online

$ NUTE: Tne cur
? tne ¥sC
H maV Qo
H in the
MUVw
MOV
MUVB
3I5s: Rs3R
CHECKF LAnOKT:
CMPL
BeQL
CMPB
X RivFy
5s: NUVL
CLRL
108 _BBC
CMPL
RNnEW
MOVL
RiR
158: ADDL?2
BORLSS
208 RoB
«ORTTL
PAGE

Inputs

1

T sevens

DAHUST.TIMERS
MOV
MUV
WEINPCH
BLBC
vVoVvL
T5TL
RuF ,
JH8
RoHBw
BLAC
¥Vb

MOVL
vOVL
BoRe
VOV
RsHu

108

208:

WORILITL
«FAGE

4,449,182

43 44

ent disk yeometry of sectors/trdcxs/cylinders is eaua n

trarxlqrouo/cv1¥nder Aefinitions, ruture devices tgnﬁwk
o tne four dimensional hvper=cuuve arcpitecture detine:
fsk MsCP spec, whicn 4i1ll invalidate the tollowing cone,
Mol pPSwnCYLINDER({RU), - LoA ! 3
ﬂgégg-fgkgﬁ“E“gs""' t Loaa Cvlinders value in II(k

a5 P{RrRO),~ s L
HEFSE-T¥§CESEQQJ' 0ad tracks valur in uChb
MSCPSwWLTRACK(KU),= HA Jd s \
UCPSB-S&CIHRS(BJS Load sectors value in UCK
;s Return

5 routine agded S5/1%/d1 to handle ref ce
: aport and get command status Lrst? erelts numeers tor
MECPS L UPCOLF (KDY, - r 1 n <]
SNSEPSRoNG_ARURT ’ s this an ARGR]1 command
:§CPSH QPCRLE(RO) ; ¥es

] - - : b s
;MiCPSK-OP-GTéWU ’ : Is this a aet cmd status

0 s No, return
HDASLLCMDLLLIST(K)), R? : et amodress ot commana list
Re] ¢ Clear lonp counter
Eg:zzcsagés:#é:;;,lss : gntegngl packet or none at all

- U A o= : Are M3Cp
:gSPSL-OUL-RRF(RO)' H reterence numbhers ecqual
: No

;SZ).MSCPSL-UUT-REF(PU) H Eogd internally assianed rei nunm
? H eturn
S*¢CPKESK_S(Zr,K7 : Point to next c14 list entr
$12,F8,10 ! Lonp Lhrouan list Y
HUALHISTLIMFR = 1NST to uDA Timeout handler

—

~—
~
N

-
™
x

x

TONCEC— 0
CCLInIcT ICOHTCCT
T 0T
jadak & Fui 3
1)l
= I TMD
1o Tre O
T VYOI =T NIJpr P
jol £ X0 |
~“T —HTMAh N
—~C e~
nNw T
&TH O
o~
Xw
o8
~
-
e s
N

j

*OY e BTG DDA

wOT ZT

tCcm TF
4 pmer x

LY]

SH
RY
TroCNY{n2)

~ ;o7 m
- U ZE M
TzZUnl X

w ol

-

ATONIe R
T~

- EVONT >
[Pt g1w]

+4

HDATIMEOUT

e
UUA_TIMEOLT = Upa Cormand Timeout Yanrdl

: Inpyts:
H P4 = Address of UUALP
H RS = address of Clnne UCH
’ -
UDDALTLIMEOUT S
CLR» HDALP(F4)
MV AR UDASTL _INTERWAL, K]
RISw? lUﬁASM_TIMFUHT‘UDASn-FLA
BlCw? sCUUASHM_ONLINE UNASMINT
tpbsw FLAGS(®1)
wWOVL UpASTLICA_ZRRUCKL) RO
PiCw?2 8*CCUCRSM_ONLINE>,=
UCBSW.SIS(RO)
J§R G*EXFSFURK
CLkw WCRSW_STS(R>)
MOVAR UDRAST._TNTERNAL, K1
PUSHR g§~MCRp,R7,Rd>
BSFw upA_FINISATO
3 Flush Internal Packet Gueue
MOVL UDASL_INTPQUF(R1),R2
4s: REMuUE R(R2),RU
PyS Ss
RSRW UpnA_DEAWONPAGED

. wn Be S0 B Ve e Sw Ve e Ve e

.
¥

~o ne o e

Uuh timeour

o

X

oo v e e wE v va se T])ee ve

“e va ~e ue

+s
BB _HUSI_1T4FK = HOST to UDA Timeout nandler

Adaress of Internal bLata Structures

G
1
Yes, leave

-

Make a L/0 tork for Syncronizatinn

Get an internal packet
None arouni, too nba3
“agke o wo=0p LFLUoH) UDA
Unit 0 :
Load a bosus byte count
Save current uCo 4dgress

conmmanu

LoAad an 1ue packet Lo UuvA

Restore {input UCH

Return to forx

hanaler

er

the UDA
adress ot internals
) : Set timeont flag
>, 1 Kesel

A Online

et
a

Res
Get
(K1
PCT
and flans

C
dispatcher

interupt expectrea

Getr address ot n0ST timenut UCH

Clear all status pits in
with the exception of Ok
Synch driver at forx IPL
clear al) status pits in
et aadress of internals
Save work reaisters

Clnse cut end packets if

UCts
LINE

Clone UCn

v

any

Get andress ot internal packet que

Get next internal
Cueuer Is empty
Hetyrn ouffer to svstem

walt packet

4,449,182

45 46
RpB 4s + Loop until queue 185 endlv
LT CL~L R2 : Inittalize loor counter
MOVZIWL #5SS.LTIMFODUT,R? 1+ loaa primary 1/u error status.
: Rundown all I/N’s tnat were already queued to tne VLA but were never
$ terminateag via an Fnd Packetg (i.e tnosa M3CP Packets in tne active .
t 118t hot cilosed out by the FINTSHIA routine), Internal packets are .lanorec.
MOVL UUAGL.CHMD_LIST(RY) k3 ; fet address of active cn list
10s: Al PVAGV_ SYSTIEY, = ? Saip empt¥ of i{nternal pacrers
CPKEsToCMD rFF(RA), 198 ¢ Cancel only unfinisneag lPrs
:Egt gE:ESu-AlPPLG(RQJ,Pu ? :ere URA resources acquiret ?
Rt H [+]
PUSHR MRy kD> t+ Save current costext
MOVL UCRSLLERR(RS), RS } Get aciress of CRy
MULVL) CRBSL_INTDeVELCSW.MAPKEG(RI) ¢ Load mapning context in Crls
JSR G~ {0CcsPURGNATAP { Purge bufferes uata path
Jse G*I1uCSRELDATAR : Release Rufierea LatLa Pafn
JSP G*10CSWeLVYAPRLR : Release Uph “avping Pedisters
PyPn BAMCN2, R8> t Gegstore previous context
118 MOVL CPKESLuC”DuKEF (RA) ,RY : Get . aodress ot lHRe
MOVL R4,R0 ? Copy MSCP pacxet address :or 1ocan
SuRL2 S*44,kD : Fanate WSCP okt ottsets tc c~n 1list
BSEB vpa_fucan : Close out the InrP
158: ADPL2 S*4CPKFSK_ S1ZE , K4 :+ Get agdress ot next pdacxet
AGHLSo SCPRFsSk_LIST.LFh,n2,1us 3 Cneck aill command pdacCxets
3 Rungown all IRPs that ars still 1n thre UCw LIRP LiSt, [hese were never
t {nitiated at all.
MUVAR UCRSLLJOQAFL{RY)Y,R2 1 Get audress of i1nputl lkP gueue
208 Rervghie 0692).R3 t Remove next IwP frem queue
By 308 t Queue §is empty
MUVL IKPSL . MeDIA(R]),Pu t et Pacxup sncket it any
RSRBE NpATUCAYN ? Cancel the l/u
RpC sYASV _SYSTEM, KN, 2VU8 :t Close out next IRF
RSB UDALDEANONPAEED : Return putfer to syster
[208 1+ Continue for ali ocutstandina J¥rs
308 CLRL UCRBS1..O0PCHT(RY) : Clear 1/n count field in Clone olu
Po:u #*¥<Ro,K?,Ro> : Restore work rejisters
5
+PAGE
] ¢+
r UDA_LUCAN = 1I/0 canceller routine callea pv the Timeout Hanuler for
H internal 1/u rundown of InPs ano MSCP End LackeLs,
) InPutst . address of untini nscP P
| 5 of untinisnea cxet
¥ Rg-s Address of IR .
’ R7 B SSS.TIAEQVUT stetus
' o
VLALTIOCANS
| 11 SIRPSVLDIAGBUF =] Suég n::t 4f tnis was not & Airect
!ﬁPs'-ng£R31.‘0l $ 93¢P packet 1/0 -
B1S82 SMSCPEYLOPENL,= 3 Set end code tle2 in péckst
RSCPSH ovcﬁoe;iu)
NOVa eMSCPSK ST CNTRL, = s Set contro)ler error return status
vscvs--!ra?us(nu;
¥OVL S1APSLDIAGBUF(RI) (k8 § Get address of putfer’s date area
EBRy Ro ‘ gxec :ngez
Ss1 v nSCPsL-CMD. a;r(uoyxuax (Rg)iRe) 3 Copy end g:c!cg into
OBLSS ONSCPSK.PRESIZER=3,k8,85 3 seturn putfer for user
ag.. 15¢ 3 Clese out tne o]
1083 'f 1L f0 [} ge: no syster bufter flaa
158: RL L) t Clear secondarv 1USp LORT Nord value
L L UOATUPOST ? Close out tne &P and return to ceallr
mgaltb UDAINITIALIZE = uDa Inmitialization
 ee oPRE
: UDALINITSALIZE = Primary Level UDA Inttielization Routine
; ;g:gtlonal Description:
? IPL Level = Powertai) 1IPL
$ Inputs?
! R4 = Address of the C3u (ubhalP)
$ RS = Address of Bun (interupt Data slocx}
] Ro = Address of DDR (bDevice Data 310c¢{
: R§ = Address of CrR (Channel Reguest slock)
¢t Internsl registers:
kS = addiress of & UCB
! B] = hAdress of internsl dsta structures
s R9 = gaved address of tne JDR
} o= .
UDALIMITIALIZE?S i
332 R ﬁ:iﬁi‘“ﬁ$ R9> 3 Save rejisters
N
BOVAR UDASLoATERNAL (RY) Get adAress ot irternal struciuzes
BiCa2 SCUDASMLONLINZ LUDASH.TINEUVEY,= {,Ciesr tineour and
HOASW _FLAGS(RT) ¢ Controller on line tlacs

4,449,182

47 48
auc ‘#UDASV.OBUEALOC = 3 Acquire systerm peol 1t not already
) Uulsu_FLlGS(R?i.Ss 3 allocated ana magged to tne Upd
Brw . - 158 - . : $§ keain ULA initfalizaetion
8% MOVZBa S°0),UNASW_ INIT_ERR(RT) 3 Load cutfer oliocc fallure fla3
MOVZWL otnu*sk-512h R1 ¢t Loag butfer size
RSAa NDA_ALONDNPASED 7 Cet a system butfer
BLEY Ru,108
BRW 358 $ Allocation faflur
108 BiSe? SUDASM.BUFALOC, - t Flag butter allocdated
Dudsw FLAGS(R?)
MUVAR INTPSL-FLl”A(H7; - ! Save address of internal »SIV
UDAST._INTPRUE (R $; Pacxet Juele listnead
MUVAR ACTSLCHMD_LiST(KR?),= ! Save address of Active MS8CP
UDASL_CMD_LIST(RY) ! Command packet List
MOV RS, H9 ? Save address of IL®
MOVL IVRSL_UICBLST(RS),= : Save adaress of CH O
HOASL_UCR_ZERU(RT)
MOVAR . UCBS_.CLUNE(RK2),RS 7 Loaa clone UCp address in Kb
MUVL RS,1DPBSL.OWNER(RY) t Set clone to owner UCou in 108
MUVL RS, UDASLL.CLONENCR(R?) ¢t Save adiress in local date structure”
MOV » sUCosk STZE,UCRSW_SiZe(RS) ; Create & bare pones LCh
MOVE #DY JECUCH,UCHBSH_TYPE(RS) ¢ Loasc data structure sjze dna tvpe
MgV S~sFORK_To{ ,UCRSB_FIPLIRS) ; Load fork LPL
MoV, Ry, UCBSL.CRB(KS) - © 3 Loag ¢daress of CnF
MoVE Ro,JCBSLLLDB(KS) : Load address of Dub
MOVER UCASLoTGAFLCRS) I ICRSLTUAFLCRS) F Tnit1alize 10 aueus listhea-
MOVER UCRSL.TUNFL(RS),ICRSL_Tulc L(H:
MV S*29,UCBSw UNIT(RS) ; Set unit pumber to Y
MV S“sDEVICE_IFL,UCRSB_DIPL(KS) : Load device [PL
CLRL UCRSL_OBCNT(RS) { flear 1/0 count field
YUV s R1,JUCuSwaluT(R5) : Loag pyte count
RICa3 o°ECVASM_BYTE>,R2,~ ! Loac bvte otfsst from paae
UCBSW _BUOFE(RD)
MUV NCRSW_ROFF(KS),UPASALBNEFF(R7) ¢ Save tor driver
VL RZ,uDASL_BUrTOB(RT) ! Save buffer aadress for internal use
: Eliminate Clone UCR apd Active 4SCP Pacxket (ist from mapriny
SuRa? PCCUCBSKallilgSTZF O+ CPKESRLSILRESCPFESRQLISTLLENDD,
UCRSWRCNT(iG)
Joh G*MMGSSVAPTECHK 1 Ger SYAPTL for buffer’s virtual acd:
MOV RI UCHSLL.SVAPIFE(RS) : lLoaa pufter system virtual a-daress
INC & UoRsw_TnTT_ERR(RT) : Set maopina failure flagy
JSR G*TUCSALOURAMAP ¢+ Allocate JBA Mapnring reatsters
BLAC RU,40s ¢ Alloca*tion Failure
BlSw?2 iUﬁASM-bHFMAPu - : Flag putfer mapieq
UpAsw FLAGS (R7)
MOV CRRSLLINTDSVECS W MAPREG(Fo), =
NDASA_MAPKEG(RT) } Save UBRAa mapping cohtext
JSR G*"TOCSLOADUBAMAP ;- Load UBA mapming reglsters tnr uha
‘158 »OVL UDASL_CLNARYCBIK?), kS ; Get address or clcocne UCH
MOVAR CONTINIC_14IT,UCRsC_FPC(R5) ; Init fork ®(asdaress in lCR
MOUVZRa S*93,UDASALINIT FRR(K?7) ? Set sterp 1 tailure tlaaq
CLRw UpaIf (R 1) ; BReqgin ULA {nftfalization seguence
CLRL Rl ! Clear index reaister
258 MUVZWL UUASA(R4) ,Ri) ; Read UDASA
MOV w PO‘UPASN-éTEP-EkRgRl) ! Loa1 ster word in error bufter
BpS - s$IHNET_V_ERRUR ,RU, 353 ; Step 1 error, end init sequence
PpS #INIT_ V_STEP] PO,308 ! Step one completion flag sect
AORLSS sLOUPLLIMIT,RI, 28¢5 ? Loap
PRrb 3Iss ! Step one .completion error
308: INCw UDASW _IRITLERR(KY) ;} Set potential interuot tailure
BISw? SCUDASH_S2FXPCTLUDASM _INTEXPCI>, =
UDASWLFLAGS(RT) .7 8et step two interupt expectey
MOV W SSTEP..}_wRITE,UDA3A(R4) ; wrive step one word to UDA
358; :ggk n‘"<Ps,R7,PQ> i ! Restore reajsters
40s: PUPR goMCRS H93 ; Restore registers
ARw ULAL Uwﬂ 5 3 Releass resources and return

«oBITL CuMITwle_IMIT = libA Controller Initialization Cortinnation

+ ¢
CUMIINUELINIT = Controller initialfzatior senuence continuation
Functional Lescription

/EBS/

IrL Level = Fork IPL

Inputs:
LR
Ky
Ry

Pointer to 1JOA registers

Adaress of internal aata structures
Adaress of clone UCR

+ENARLF Lok

COMTINURLINIT:
JSP

WS wY TIwe vy e e We p e Ve

GFAFSFURK ; Credte a forkx process
YOVAR CUNIIn"L-l“lT,UCHSL-7PC(ﬁ5) ! Load 1nterupct continuatinn adar
MUV L (k)) K3 7 Get luRLP agdress
MOV ¢+ Copy Intermals curfer agdress
IhNCw nnﬁsh INT1ENR(RL) : Flaj possinle Step resnonse error

: Process controlier step 1nitidllzat10n

MuvZewl, ULASA(K3)

Get step word from UDa
MGVw © RZ,UDASwo {Tep. FRR(F1)

L.oau step response for possirie err

e ~e

4,449,182

49 50
BpSC PUDASVSALXPCT, = : Process expecteag step 4
UDASW.FLAGS(R1Y, 30s
BuSC BUDASVLSIELXPCT, - ; Process expectea step 3
UDAsw_FLAGS(R1},5s
BICa?2 WUDAS4oo2EXPCT, UDPASW_FLAGS(R1) ; Clear step 2 exrectea tlaa
CHPw *5TRP.I_READ, RS : 1s the resoonse correct ?
BuwEG 108 t No terminate
MOVZWL UDASW_BUFF(R1) KO t Loau pyte offset
InSV EEASK'VAPREG(R{)"Q'- t Set maoping reajster pits 0 = A
ADDL?2 tRﬁ&PsL-TUP,RU ¢+ Set address to top of rings
MUVL PO,Q2(R1) 1 Save address tor step
RISw2 BINITLMLPURGE ,RU 1 Set purge enaple fldg
" BlSw2 O(UUASN-SjﬁxpéT£UUASV-INTEXPCI>,- 1 Set step 3 and interunt
UDASW_FLAGS(R1) t mxnertey
MOV W RQ,uUDASA(KY) : drite step word 2
BRKB 208 ¢ Return to fork dispatcher
$s: CoPw $STEPLILREAD,R2 2 1s the step 3 response correct ?
BeOL 15§ ? Yes
108 - CLPw UDARLIP(R3) t Reset UDA on detected error
RSB : Return to fork disratcher
15s: BISw?2 l<HUlsM-S4EXPCTlUUASM-INfLXPCT>,- ! Set step 4 and interupt
ULASW_FLAGS(RY) : expecteq
EXTZV %16,82,4(K1},RN 3 write step 3 word
MOV RU UDA§A(R3£
20s: gggn BOASW_INIT_ERRCK!) : Flag possiple interuot tailures
30s: BpS #INIT_V_ERROR,R2,10§ t Terminate inft seq or fatal error
BBC $INIT_V_.STEP4,R2,10s : Terminate {t ster sequence error
BlSw? 5 UDASAFRB) t Set GU and quad wora ourst
; R1Sw2 #IKIT_M_GU,UDASA(K3I) : write Go flaa to UDA
CLRL UCRSLLFEC(P5) : ClLear fork pc in clone uCo
CLRL UpASW_INITLERR(RY) t Clear init error flads
$ Map data pase for UDA/Driver and initiallze aueye listheaas
MOVZwl UDASWLRUFF(R1),K] : Develop UpA acdress pdase for LDA
INSV UDASW_MAPKEG(H1),#9,29 k13
ADDL? a<RESPsL_1ap+mSChokIPKE_HLR> K3
MOV DDASLRUFIOP (K1), RO : Gef audress to top of systen vusfer
MV, RO,R2 3 Cony
MOV R2,KY : Again
BOPL? #RFSPSL_TUP,R} : Create addr tn top of ReS fackets
MOVaAL “ESUSL-PLI“R(R?).(PU)* : Initialize wkesponse ayeue listhesy
MOVl RESUSLFLINK(K2),(ROY+
TSTL (RO)+ s Skiy butfer descriptor)
MUVAL CMPuUSL_FLINN(K?2),(RUY+ ¢ Tnitialze Command naueue listhead
MOVAL CMDUSL.FLINKN{R2),(RU)+
MUVAL INTPSL_FLINK(K2),(RGY+ : Initialize internal racket w31t
MUVAL INTPSL.FLINK(R2),(R0Y+ 3 queye listhead
CLRG (RO)+ ;1 Clear purge and JInterurt wnrds
MOV SRESPSLLTAP,R4 : Init i{ndex from too ot resnonse Okl:
CLRL RS ¢ Clear loop index
15§ ; MUVL R3,(RO) : Link packet to messadge rina entry
MOVZRL 5~848,CPKESw_PKI_LEN(K1) ; Loa+ Pkt Len an” clr Vir Car Tu
MOVL FO,CPRESL.PIKGP(R1)
RISL2 RCUDAMDWN LUDAMUFLAGY, (KO)+ 2 Set antrY to UDA Dwn
InSUUE CPKESLLPOFL(RZ)[R4Y,~ s Insert packet In pacx ot respons® gu-
ARFSOSL.BLINK(R2)
ADDL? PRESPSK_S[2E,R3 : NDevelor UbA address ot next RtS nxt
ADDL2Z BRESPS$SXKL.SIZL, k1Y ; Rump index register to next PtS pxt
ADDL2 SRESPSKLSIZE K1 X H
AURLSS UMSCPsK_ﬂlncélzs RS ,358 ! Loop thru all RES ring/pkt entries
40s: MOVL PU,CPRESL.RINGP(F1)
MOVZBL S%#4R,CPKESw.PKI_LEN(KR1) ; Load Pkt Len and cir var Car Iu
MOVL R3,(RO)+ : 1,1nKk packet to commano rinag entry
INSCUL CPKEEL_POFL(R2)[R4),= ¢ Insert packet in pback of command quel
RCHMDQSLRLINK(R2)
ACDL?2 #CMUPSKSIZE,R3 ;3 Develop U8R aadress to next cr? pxt
ALDL? SCMPDPSK_S1Zk, R4 : Rump index register to next cmd pkt
ADDPL2 #CMUPSK 517 ,R]
SORGTK R5,40s s Loop thru all cmd ring/pxt entries
¢ Clear Command Reference Kumper and URA Hesource Values Fiela in each
entry cf the Active MSCP Commana packet List
ALDL?2 $ACISL.CMDLLIST,RZ t Point to top of command list
458 CLRO (K2)
ADDL?2 $CPKFSK.S1ZE,Kr2 1 Point to next entry
AUBLSS #CPKFSK_LIST.LLENn,x5,45s ¢ Loop throuah list
: Send UDA eight online packets for units 0 thru 7
MUVAR UDASL.INTEPHAL,R] ;1 Reload addr of internal structnres
MOVL UuAsL-INTPOUE(ﬁl),RJ : tGet aadress of internal pxt lisnead
AuDL2 S*44,R3 1 Get backlink address
CLRL k¢ 3 Clear R4
508 B5Bw ULDALGETLINTPKT ; Get an internal M3CP packet pufter
RLEC RO,55s ?} Allocation Failure
YUVE tHECPSK NEONLTN - ? Load online command in MSUP packet
¥3Cpsn UPCOLE (P2} '
MUV w Rg,MSCPSW.UNIT(R2) 3 Load unit numoer
MOVw R4 ,MSCPSW_SuDwauklT(xk2) .3 Loaa shadow unit numoer
INSUUE (Kk2Z2),@(K3) :+ Insert packet In rear anr4 ot queur
AQDBLSS> #B,R4,S08 ¢ Lonp tor v unline Packets

4,449,182
51 52

for unsnlicited Attention Yessaes

1 Senag uNa the §et Controller Cnaracteristics Command Packet to enaole
! Attention Messages and a of second hest timeout value,
RSB UUALGETLINTPKT } Get an internal Yoy pdacket hyfter
BRLR(C POéQSS ! Allocation Fallure
MUVo UMSCPSKNP STCOii, = 1t Load Set Controller Cnaracteristics
MSCPSRIPCOLE(P2S : op code
RiSa2 $MSCPSM _CEAVATN,MSCPso _CnT_FLAL(KZ) ;1 Set controller fla<s
YV 260, M5CPSManST,. Thu(r?) : Set host timeont tn 60 seconds
RISw?2 auDASM_ONLINE,ToASW_FLAGS (R1) ; Set coniroller on line tlas
LOADLINIRP _PxT: ¢ Reference lahel for internal packet loadinn
MOV, ULASLL.IWTRAUE(R]1),RS : Get address ot internal bxt lisneat
ALPL2 544,13 ? Get racx)ink adaress
INSulie (K2),0(K3) ;7 Thnsert packet {n rear eni ot gueue
Rrw Uub-fNTLRuAL-1D ! Npe packet to YpA
558 RSE ¢ Error retorn
+LDISARLE LSu
oSBITL UDA Interunrt Servire kouytine
«PAGF
! o+
E ULALINTERUPL = Interunt Service routine
»
$ Functicnal vescription:
: /IBS/
]
! Inputs:
H 0(SP) = Pointer to IDW
H RS = jAdress of Clone UCH
[Ry = R4 = Scratch
! Dutputs for routine callei:
H R3 = pointer to UDAILP
’ R4 = aAddress of Internal vAata Strurtures
g . RS = AAdaress of Clone 1DCB
UDALINTERUPT S :
MOVL B(SP)+,HK3 ! Get avdress o1t LDs
MOVAR UDBsL_tWTERNAL, K4 ! Get address ot internal structures
B4S $UDPASVLTIMEQUT = : Igmor interunt {f timeout {s set.,ul .
UDASW_FLAGS (P45, 20s : is incoherent at this noint aryveay
MUV, TIVRSL_OwWNER(R3),P> : Load owner UCo tor EXeSFOUORY
BuC SUDNASVLONLINE, = $ Sxip purrce check 1f UDBA is oftline
UDASW_FLAGS (R4} ,1uS
MUVL NLASLIRUFTNP (K4S, 12 ! Get aadress ot system bufter
T5Thb CmESR_PURGF(RYZ) : Is 4 cata path purae reguestea ?
REQL 10s . ;s Ho, test for normal interupt
MGV L JCHSL_CRR(RS) ,R1 ! Gef audress ot CRo
MUuVe CH“SL-IuTnovEéSh_nAThP&IN1P1),-(ﬁP) 3} Save current DP In CRo
MOVE CMDSE_PURPGLF(R2),~ » Lpag uata patn number to tbe purge
CRBSLLINTOSVE S UATRAPATH(R)LY 3 Into (CRo .
PJSnR R~MRY ,R2,RI> 3 Save registers trom sys routine
Jok G*TUCSPURGNATAP ! Purje tne data path
PUPR A KR} H?,R3> ! Westnre nreyious context
MUVe (SP)O,EPFSL-I¢TU*VELSU LATAPATH(P]) ; Restore orevieons L0
CLRb CMDSB_PUNGF({R2) : Clear DPate Path {n interupt scra
MOV L (h3),R? ! Get address ot UDAIP
CLPw opashcray : Let Uuk know we’re gone
VR ALCC sUNAS Y IN[FAPCT, - + Dispatcn interupt 1f expecten
HURsSw _FLAGS(R4),15s : or process possihle attention pxt
JSi AUCHSLLFPC(KR) : Go to apnropriate routines
Brk 20s ! Restore reqgisters and ret fro: int
158 BLRC UpDASw FLAGS(RP4), 208 : Tgnor unsolicaited interunt if tne
$ UpA is off ilne
RusS #VASV_SYSTEH, = : Tt clone isn’t already in forx gueue
UCRSI LFPC(RS), 208 : put iU there to qet messaje racret
FoRR 3ys ;s Create a toOrK Process
20s: MuVy (5Py+ ,Fu ? Restnre regjisters
MUV (5P)s ,R2
LN (LP)+,RY
Fel
30s: JSR GAFAFSFURK ¢ Gracetully go to fork TPl
Biw ULA_FORK_PRUC : !lge tne standaru tork processor
’

S“lTL BB MnLOAD = UDA driver unloas routine

AGF
X
; ULA_UnLUAD = Uriver unluag routine.
; Functional Descriotion:
t /TBRS/
?
: Inpyts? Unknnan {¢ here from SY355VsGe®
’--
UDALUNLUAL
USHPR $°M¢R] ,R?,R3,R4,R5,R6> ; Save registers
uuvak opast_fateenhr, ke : Get ag-4ress ot internal structures
BoC *UDASV_HUFALDC, = s Exft if no system bufter allocate:d
UDASW_FLAGS(R5),158
REC SUDASV_CLINKED = ¢ Skip clone unlinking 1t never linke:
BUAsw.FLAGS(R6),55

4,449,182
53 54
MUVE UDASL.CLOWEUCH(RA) ,RY 1 oet address of Clone UCw
L LT UEBSL-DEVDEPBND(RbS.Rb ! Get aovdress of oAck linked UCe
CLRL ODCRSL_LINK(RS) 3 Set this uCik teo last
5§ RaC $UDASVLBUFMAPD = t Exit if bufter not mapoed to uRA
NpAsw FLAGS (Ref, 1us ‘
"oV UDASL-CLDNEUCBsusj.Rb § et Aaddress of Clone UCw
MOVL UCASL.CRR(RS),PFq ? Get 3cdress nt CRp
MOVL UDASW VAPRFEG(RE), = & Loau UR& context in CxH
CHASL_INTD4VECSaHAPREG(RY)
JSB G*“JUCSRELMAPREG ! Release mapping reqgiscer
108 vOVL UDASL_BUFTOP(R6) RN ! et aaAdAress ot system hyfger
BSBw DUALDEANORPAGED ? Deallocqate svstem huffer
158 MUVL S*9SS§LNORMAL,PO ¢ Set normal for caller 1t keloading
CuRw UunsH-Fblcssno) ; Reser all flays for internal init
- PGPR BAMCR] ,R2,FRI,HE R, 6> ; Restore registers
RSP ¢ Return to caller
.S:IEL Driver suprort Koutines
+PAG

+¢
UVALRESETLRINGS = Routine to set tne WKesnonse Tinu’S owh £lad to via uv.,

Ry
R2

H
H
2
H
! Inputs:
?
;
H
u

LDA_RESETLRINGS:
R15L?

and clear tnhe first nuadwors {n the active conmamn)is*
entry nmointed to oy RZ2,

Adgress of respnanse packet
Adaress of command pacxet jist entry

St ! Set resconse rind to (fA U«

CLRy t Clear MSCP Commana meperence siv-er
: t An4 !!vd Resources fiejlrds in List erL-
Rob
R
! GETJENP_PACKFI = Routine to get tne next dvallaole resnronse packet tro™ Lo
[
! Functional Uescription:
3 /TBS/
]
! Inbuts?
! Rl = Address of internal dgata structure,
14
: Outputs:
H RO = aduress of End packet o* N {f next packet pelonged to ula
1) orf no command packet match was fouud, ‘
! R2 = Adgress of Active Conmandg Packer «#itn same reference nuTcer, or
; undetinea {f no matcn was foyna
GETENDLPACKNFT:
»OVQ Ri,=(s5P) s Save k) and kg
»OvL VohSL_RUFTOP(RY), K4 ! aet address or svstem hyutter
55 MOV ReSSLFLINK(KE), RO : Get 3oAdress of next response pac<e’
RES BUDAL VU ¥, BCPKESLLNTNGP (D) ,208 ; Packer belongs to uNA4
BpS thCPSV-OP-E;u - s Prncess End Packel 1€ tlagued
MSCBSBLIPCALE(RUY, 108
BSApB AITENSTUN_MSG ! Proncess attention messaue
BrR 5s ¢t Trv §t acaln
108 REMUUE AKFSOSLLFLINK(RS),RY 1 Remove packet frnom tront of auege
INSWUE (RO),9RESJSLLBLINAR(ME) 7 Insert in back ot queye
CLRL R3 . 3 Cledr loop index
MOVAR lCTsL_CHD_LlsrtRG},RZ ! Cet address of tirst commang packet
1583 CuPL CPKESLLCMDREF(R2),~ ¢ Compare reference Rumpers hetaseen
MSCPBLLCMORFF (KRD) ! resynnse and cgmwann packets
BeOL 258 t Fount the matgc
ALDL?2 OCPKESK-SIZ%.ﬁZ ¢ Point to next entry
AURLSS SCPKFSK_LISTLLEN,R3,15% ? ‘Loap througn all commang packets
RISL2 #UDALM.DOWH,RCPKLSL.ET GR(¥O) ; Set rina entry to UMk osn
208 CLRL RO] 3 Set no response® bgcunt avatlaole
25s; MOVy (5P)+,R3 ! Pestore reqjsters
RSA : Retyrn to caller
44 .
ATTENTION_MSG = Attention “essaje Processing koutine
;unctxnnax Descriptien:

Inputs?
RO
Rl

TN VG WY W wa ey Wg W We o V8

ATTENTIUNLMSG:
BLRBC

CMPH
BRNE 4
MCVy
BSRw
RLRC

£ the messane recejved i{s an Availaeble Attention Messaue, tnen &1 Un=-Line
internal »SCP pacxet is generated for tne unit declared. tn
attention messages are currently lanorea,)

e otner torT™s ot

Aduress of Messane Pacxet
Adgress of Internal pData Structures

BpAsw _FLAGS(R1), 208 ! Iynor message §t uN4 went otfline
CMSCPSK.OP_AVATN,MSCPIRA _MPCUNE(KN) ,

2us t Igmor non=availarle attn Tessoge
RO,=(SP) ! Save input contexty

UDR_GET_INTPKT ! Ger A Bystem putfer for internap put
RO,15%s s Bllocatlon tatlure, fgnor reanuest

“y D WE TE 5 WS NS e T8 TE V0 VeV Ve ve

4,449,182

55 56
MOV, (SP)e ,FO ! Restore {nbDut context
MUV a - MSCPSw UNLT(RD),~ ; Loaa Jnit Numper
MSCP:--UNIT%PZ) 2. From attention messadte packet
MOV a4 MSCPSw. . UNIT(RO),= s L,0ad Shadow Uni{t number
MSCPSw SHUWITHT (R 2)
MOV EMSCPSK_DP.ONLT v, = ? Load online comrand
) MSCP§8.OPCODE (PZS
108 MovVL DPASL_THTPAUE(PL),P s Get internal packet queue listneas
ADDL2 S%%4,r3 ; Get back link
INSYUE - {(R2),3(RI) : Insert packet in rear of gieue
RikR 208 ¢ Clean up and recuarn
1582 Myve (5P)+,Ry ? Restore inout context
2us: REMUUE @BRFOOSL.FLINK{R4),Ru : Pemaove packet froap tront of ayeue
InSulle (KO),BRESUSLBLIYINIR]T) ; Insert inm back of queye
gégLZ SUDAML NN, aCPRESL_HTAGP(KD) : Set ring entry to 'ILA Dan
o PAGE
$ +9
; GETLCMO_PACRKREL = Houtine tn aet the next commani packet for caller
¢ Functional uescription:
3 /TBS/
H
? Inout:
H R1 = Address of internal aata Sstructures
} Outputs:
H Ry = Success = Address of emply command vacket,
! RO = Fallure = 0 if:
H 1) Uwn bit set indicatina lOR osns pacret
! 2) Jwn oit reset put flav bit set indicating
] packet 1s still dctive,
2 R2 = Address of empty Active 4SCP Command packet entry
’ -
GET.CMD. PACsEl
USHL R1 ! Save nt
HuvL UDASL_CUN_LIST(R!) R2 ; Get audress ot commanag list
MQVL UpAst_, FuFfDP(Rl).H! ¢ Get aadress ot system bufter
MOV CMDUSL.FLINKC(R1),KO ! Get aadress of next packet
BbS BUDAVLOWN ,@CPKES LT WGP (KD) 205 ; kacket belongs tu LMA
CLPL R1 : Tnit leor index
55t TSTL (R2) t 15 tnls entry sapty ?
BLOL 1us s Yes, use jt
ADPL? S*#CPKESK_SIZE,K? : Bump painter
AGHLSS #CPRESKLLISI.LFi,k1,% : Lon
RRRA 20s 5 Active list {s tull
10s; CLRL R1 ¢ Init loop index .
158 CLRu MSCPSLCMU_KEF(KN)I[R1} ¢ Clear MSCr Packet for calier
BUBLSS $MSCPSK_PRTSTZFA=3,K1,158
POPL R1 ¢t Restore R]
JSR A(SP)I+ ! Execute co=routine cajl to caller
7 Return nere {f commana packet can he queued to the UDa
PUSHL Rl : Save R}
VYuvi HDASL BUF(OP(R]1), K] 3 Get auAress ot system buyfrer
REMUUE QCMUQSTL_FLINK(RY),Pu * Potate packet from tront of ayeues to
INSUYE (RD),eCHANGSLLBLIMKNIR]L) 1 back 0f qu=ye
BlCL2 BUDA M. FLAG, = 2 Clear flag pit 1n ring entry
aCrkEsT_rinbp(noy
PISL? BUPA_ M UWN, = .t Set pacxkel to DA oen
aCPKEsToRrINiGP (RU)
20s:; CLPRL Ry ;3 Set fallure flay if here trom above
PUPL Rl : Restore R}
RSP : Return to caller
«PAGF . ,
*+ .
UDALGETL.INTPK] = Allncate a systeam buffer for an internal M>CP packet
Functional Description:
Calls ULA_ALOwWONPAGED for the bufter., Clears the 4R pytes ot packet
to zeroes for caller, and loads next hiygher interna)l MS(P Pacxket
comrand reference numper,
Inputs: none
Outputs:
RO = duccess or failure as received from EXbLSALUNUNPAGFY
R1 = Address of inter nals it allocation Succeeded else trash
R2 = address of huffe
UDA_GET.INTPKT:
MOVL $<MSCPSK_PKTSIZE+12>,K) 7 Nefine size or system bufter needed
RSRE UDA_ALONDIWPAGED ? Get syStem pbutfer
BLRC RU,15s : Allocatinn failure, iynor request
CLRL R1 _ 3 Init loop 1index
Ss:2 CLRy MSCPSL.CYL_REF(R2)[R1) ? Clear Packet
AURLSS #MSCPSK_PRTS51ZEe~3,k1,5s
MOVAB ODDASL_INTEPNAL, K1Y ; Get internal’s address
108: INCw UDASH-RtF_Nuﬂtﬁl) : Make a news commana reference numper
BEQIL 108 ¢ Rut not a zero
MOV W DDASW_REF_NUM(RY) , - ! loan packet’s comwmnand reference no
MSCPSL_C¥D_REF (R2)
158 RSB

! +¢
2 UpA_ALONNNPAGED = Allocate & buffer from system space for caller

-

~4 %e Ve va T4 Ve Ta Ve W8 w9 VB

UDALALONONWPAGEN:
PuShR

4,449,182

57 58

Functional Description:
Calls FAFSALONOWPAGED and {nserts huffer size an+d tyre in plock it
Saves K3 for caller, R3 usuallv contains the address of an 1lRpP,
Inputs:

Rl = 5ize of pblock
Outputs:

RO = Jow bit clear tnaicates fajlure

PO = low bit set indicates success

Rl = S5ize of buffer

Rz = Adaress of pufter

8MCP | L K> ! Save K3 and renuesten hufte
Jbn G'EAE;LLUHQNPAGLD ! Renyest a systenm puffer
PCGPH A°MCRL,HI> -2 Restore reaisters
RLRAC Ry,5¢ : None aveilarle, return
MOV w R1,IRPSW.SIZF(K2) } Load size descrictor in bhuf
5s :EXZRn SDYNSCbUrIU, [RESBLTYPF(Ry) ¢ Llefine tyre

"o 0 e N6 e % Ve Ve ™a Ve Ve

LR LT TR P S TR

U

1

. we ve y SENS wo vy ve

L

5

1

u

‘e
UDA_DEANONPAGED = Deallocate a puffer fron system space tor caller.,

Functional Description:
Calls FAE3DEANONPAGED and saves Ri=x3 for calier

Inputs: .
RO = Adoress of bufter to be Jeallocated
Outguts: None

#*MCRY, R?,P4> ; Save registers
Jshk Goexrsheakoipacen s Ne~allocate systen puffer
guzﬁ #2MLPLL,R2,R> ¢ Restore registers
S
+PAGE

++

UDA_IUPDST = 1/0 post processing rouytine
Functional Description:

/TBS/

SHCCeSh,

r stze

ter

R3 = Adaress of IKP to post process
Ry = Adgress of tne ubiguitons Clone ulh
R7 = 1/0 Status long word i
Rp = [/0 status lonyg word 2
Outputss None
DA_TIQPOST:
MOVL Ru,=(sP) : Save RO)
MUV RY,IRPSL.MFDTIA(RY) ;} Loaa tinal status in IRP
DeCL NCBSL_NPCHNT(RS) : Account for I/0 in Clo;e 1O
MOY L InPSLLUCB(RI), KU : Get address of real !IC .
INCL UCRSL.OPCHLT(RU) :+ Account for I/0 in real 1(C- e
MUVAR G*JUCSGL_PSKEL,RI *r et agdress of jocost oueus }15L €A
InSull, (K3},8(KN) : Insert IRP 1n poSt process gueue
BNFUY 108 : Brancn if not first entrv
SUFTIRT #IPLS_TOPUS] ¢+ Initiate Sottsare Interurt
0s: MOVL (5P)+ R0y ; Pestore Ru
RS® .
+ 4
LINK_CLONE = Routine te link the Clome uCh at tne ent ot the LTe oist
tor access by the timeout handler,
Inputs?
R5 = Address of clane IICH
Registers Usea: RY,KR?
NR_CLUMNE ¢
! ¢ MOVL UCRSI LCKRB(FH), R ; Get aadress of (Ko
MOVL CRASLCTRTO+VFESLoINe (RN}, RO ¢ Get aadress or iDu
MOVL TORSL_UCRLST(KN),nD : Qet aodress ot tirst uln .
§t MOVL UCBSLILINK(kG) k3 ¢ Get link to next UFB from tnis Le
BeQL 108 ' Tnis one was the iast
MOVEL R2,n0 ¢t Loag address of next uCh
BrA 5s s Continue search for last 1n list
0s; MOVL RS, UCoSLalInk (RU) ¢ Lirk tormer last UCd tc clone
MOV, RO, UCbSL.LDEVDEPENI(KS) § Loau back pointer in Clone
CLRL JCASE_LINK (RS) ! Set clone to last
CLRL UCRSLLFPC(KS) : Clear forx PC field
RSB : Feturn to caller
DA_FND: : All aood thinus must coge to an end

'bNU

4,449,182

59

What is claimed is:

1. In a data processing system which includes first
and second processors (70 and 31), a memory (80) to
which information can be written by each of said pro-
cessors and from which information can be read by each
of said processors, such memory having a plurality of
locations for storing said information, and bus means
(60) for interconnecting the first and second processors
and said memory, to enable communications therebe-
tween, said bus means being of the type which has no
hardware interlock capability which is usable by the
other of said processors to selectively prevent the other
of said processors from accessing said memory loca-
tions, the improvement comprising:

. communications control means for controlling com-
munications between said processors and permit-
ting the first processor to send a plurality of com-
mands in sequence to the second processor via the
bus means, and for permitting the second processor
to send responses to those commands to the first
processor via the bus means;

the communications control means including a plural-
ity of locations in said memory, termed interface
memory locations, adapted to serve as a communi-
cations interface between the first and second pro-
cessors, all commands and responses being trans-
mitted through such interface memory locations;

the interface memory locations comprising a pair of
ring buffers;

a first one of said ring buffers being adapted to buffer
the transmission of messages issued by the first
processor and a second one of said ring buffers
being adapted to buffer the reception of messages
transmitted by the second processor;

each of said ring buffers including a plurality of mem-
ory locations adapted to receive from an associated
one of said processors a descriptor signifying an-
other location in said memory;

for said first ring buffer, the location signified by such
descriptor being a location containing a message
for transmission to the second processor;

for said second ring buffer, the location signified by
such descriptor being a location for holding a mes-
sage from the second processor; and

the communications control means permitting each
of said processors to operate at its own rate, inde-
pendent of the other of said processors, and to
access a ring buffer for writing thereto only when
the buffer does not contain information previously
written to such buffer but not yet read from it and
for reading to such buffer only when the buffer
contains information written to it but not yet read
therefrom, thus preventing race conditions from
developing across said bus means in relation to
accessing the interface memory locations.

2. The apparatus of claim 1 wherein there is associ-
ated with each ring buffer entry a bit whose state indi-
cates the status of that entry;

for each entry of the first ring buffer, the first proces-

sor being adapted to place such entry's ownership
bit in a predetermined first state when a descriptor
is written into said entry, and the second processor
being adapted to cause the state of the ownership
bit to change when such descriptor is read from
said entry;

for each entry of the second ring buffer, the second

processor being adapted to place such entry’s own-
ership bit in a predetermined first state when a
descriptor is written into said entry, and the first

10

20

25

30

35

45

50

55

65

60

processor being adapted to cause the state of the
ownership bit to change when such descriptor is
read from said entry;

the first and second processors being adapted to read
ring buffer entries in sequence and to read each
ring buffer entry only when the ownership bit of
said entry is in said predetermined first state,
whereby an entry may not be read twice and an
entry may not be read before a descriptor is written
thereto.

3. The data processing system of claim 1 wherein the
communications control means is further adapted to
provide such communications while each of the proces-
sors is permitted to operate at its own rate, independent
of the other processor, and while avoiding processor
interruption for a multiplicity of read and write opera-
tions.

4. In a data processing system which includes first
and second processors (70 and 31), a memory (80)
adapted to be used by said processors for containing
information to be shared by the processors, and bus
means (60) for interconnecting the first and second
processors and the memory, the bus means (60) being of
the type which has no hardware interlock capability
which is usable by each of said processors to selectively
prevent the other of said processors from accessing at
least a portion of said memory, the improvement com-
prising:

the first and second processors (70 and 31) being
adapted to employ a portion (80A) of said memory
as a communications region accessible by both of
said processors, so that all commands and re-
sponses can be transmitted from one of said proces-
sors to the other of said processors through such
portion of memory;

the communications region of memory including a
pair of ring buffers (80D and 80E); -

a first one of said ring buffers (80D) buffering the
transmission of messages issued by the first proces-
sor (70) and a second one of said ring buffers (80E)
buffering the reception of messages transmitted by
the second processor (31});

each of said ring buffers including a plurality of mem-
ory locations (e.g., 132, 134, 136 and 138) adapted
to receive from the associated transmitting one of
said processors a descriptor signifying another
location in said memory;

for said first ring buffer, the location signified by such
descriptor being a location containing a message
for transmission to the second processor;

for said second ring buffer, the location signified by
such descriptor being a location for storing, at least
temporarily, a message from the second processor;
and

the first and second processors (70 and 31) further
being adapted to control access to said communica-
tions region (80A) such that information written
therein by one of said processors may not be read
twice by the other processor and a location where
information is to be written by one of the proces-
sors may not be read by the other processor before
said information has been written,

so that race conditions are prevented from develop-
ing across said bus means in the course of inter-
processor communications, and messages are trans-
mitted from said ring buffers in the same sequence
as that in which they are issued by the processors,
while each of the processors is permitted to operate
at its own rate, with substantial independence from
the other processor.

4,449,182

61

5. The apparatus of claim 4 wherein said ring buffers
are adapted to permit the first processor to send a plu-
rality of commands in sequence to the second processor
via the bus means, and to permit the second processor to
send responses to those commands to the first processor
via the bus means.

6. The apparatus of claim 5 wherein the first proces-
sor (70) is a host computer’s (1) central processor, the
second processor (31) is a processor in a controller (2,
30) for a secondary storage device (40), and the bus
means includes an input/output bus (60) for intercon-
necting said host computer with said secondary storage
device. '

7. The apparatus of claim § wherein there is associ-
ated with each ring buffer entry a byte of at least one
bit, termed the ownership byte (FIG. 3B-133, 135, 137,
139; FIG. 8-278), whose state indicates the status of that
entry;

for each entry of the first ring buffer (80D), the first

processor (70) being adapted to place such entry’s
ownership byte in a predetermined first state when

a descriptor is written into said entry, and the sec--

ond processor (31) being adapted to cause the state
of the ownership byte to change when such de-
scriptor is read from said entry;

for each entry of the second ring buffer (80E), the

second processor (31) being adapted to a place such
entry’s ownership byte in a predetermined first
state when a descriptor is written into said entry,
and the first processor (70) being adapted to cause
the state of the ownership byte to change when
such descriptor is read from said entry;

the first and second processors being adapted to read

ring buffer entries in sequence and to read each
ring buffer entry only when the ownership byte of
said entry is in said predetermined first state,
whereby an entry may not be read twice and an
entry may not be read before a descriptor is written
thereto.

8. The apparatus of claim 7 wherein said ownership
byte (278) is the most significant bit in each descriptor
(260, 264).

9. The apparatus of claim § wherein the controller (2,
30) further includes pointer means (32, 34) for keeping
track of the current first and second ring buffer entries.

10. The apparatus of claim 5 further including means
for limiting the generation of processor interrupt re-
quests to the first processor in connection with the
sending of commands and receipt of responses by said

processor, such that interrupt requests to said processdr -

are generated substantially only when an empty ring
buffer becomes not-empty and when a full ring buffer
becomes not-full.
11. The apparatus of claim 10 wherein the size of each
ring buffer is communicated by said first processor to
the second processor at the time of initializing 2 com-
munications path betweem them.
12. The apparatus of claim 11 wherein the processors
(70, 31) communicate by sending message packets to
each other, and further including:
the first ring buffer (80D) being adapted to hold up to
M commands to be executed;

an input/output device class driver (3) associated
with the first processor (70) for sending commands
to and receiving responses from an input/output
device (40);

the second processor (31) being adapted to provide to
the class driver (3) in its first response packet the
number M of commands of a predetermined length
which said buffer can hold;

10

20

25

35

45

55

65

62

the class driver being adapted to maintain a credit
account having a credit account balance indicative
of the number of commands the buffer can accept
at any instant;

the credit account balance initially being set to equal
M and being decremented by one each time the
class driver issues a command and being incre-
mented by the value;

the second processor further being adapted to pro-
vide to the class driver, with each response packet,
a credit value (FIG. 9, 288) representing the num-
ber of commands executed to evoke the response;

the class driver incrementing the credit account bal-
ance by said credit value; and

the first processor and class driver being adapted so
as not to issue any commands when the credit ac-
count balance is zero and further being adapted to

. issue only commands which are immediately exe-
cuted when the credit account balance is one.

13. In a data processing system which includes first
and second processors, (70 and 31) a memory (80)
adapted to be used by said processors, and bus means
(60, 110, 90) for interconnecting the first and second
processors and memory to enable communications
therebetween, said bus means being of the type which
has no hardware interlock capability which is usable by
each of said processors to selectively prevent the other
of said processors from accessing at least a portion of
said memory, the improvement comprising:

at least a portion (80A) of said memory (80) being
adapted to serve as a communications region acces-
sible by both of said processors all commands and
responses being transmitted from one processor to
the other through such portion of memory;

means (278) for controlling access to information in
said communications region whereby information
written therein by one of said processors may not
be read twice by the other processor and wherein a
location where information is to be written by one
of the processors may not be read by the other
processor before said information has been written;

the communications region of memory including a
pair of ring buffers (80D, 80E);

a first one of said ring buffers (80D) being adapted to
buffer the transmission of messages issued by the
first processor and a second one of said ring buffers
(80E) being adapted to buffer the reception of mes-
sages transmitted by the second processor;

each of said ring buffers including a plurality of mem-
ory locations (e.g., FIG. 3B-132, 134, 136, 138)
adapted to receive from an associated one of said
processors a descriptor (260, 264) signifying an-
other location in said memory;

for said first ring buffer, the location signified by such
descriptor being a location containing a message
for transmission to the second processor; and

for said second ring buffer, the location signified by
such descriptor being a location for holding a mes-
sage from the second processor,

so that race conditions are prevented from develop-
ing across said bus means and messages are trans-
mitted from said ring buffers in the same sequence
as that in which they are issued by the processors,
while each of the processors is permitted to operate
at its own rate, independent of the other processor.

14. The apparatus of claim 13 wherein said ring buff-
ers are adapted to permit the first processor to send a
plurality of commands in sequence to the second pro-
cessor via the bus means, and to permit the second

4,449,182

63

processor to send responses to those commands to the
first processor via the bus means.

15. The apparatus of claim 14 wherein the first pro-
cessor is a host computer’s (1) central processor (70),
the second processor is a processor (31) in a controller
(2, 30) for a secondary storage device (40), and the bus
means includes an input/output bus (60) for intercon-
necting said host computer with said secondary storage
device.

16. The apparatus of claim 15 wherein there is associ-
ated with each ring buffer entry a byte of at least one
bit, termed the ownership byte (F1G. 3B-133, 135, 137,
139; FIG. 8, 278), whose state indicates the status of that
entry;

for each entry of the first ring buffer (80D), the first

processor (70) being adapted to place such entry's
ownership byte in a predetermined first state when
a descriptor (260, 264) is written into said entry,
and the second processor (31) being adapted to
cause the state of the ownership byte to change
when such descriptor is read from said entry;

for each entry of the second ring buffer (80E), the

second processor (31) being adapted to place such
entry’s ownership byte in a predetermined first
state when a descriptor is written into said entry,
and the first processor (70) being adapted to cause
the state of the ownership byte to change when
such descriptor is read from said entry;

the first and second processors being adapted to read

ring buffer entries in sequence and to read each
ring buffer entry only when the ownership byte of
said entry is in said predetermined first state,
whereby an entry may not be read twice and an
entry may not be read before a descriptor is written
thereto.

17. The apparatus of claim 15 wherein the controller
further includes pointer means (32, 34) for keeping track
of the current first and second ring buffer entries.

18. The apparatus of claim 15 further including means
for reducing the generation of processor interrupt re-
quests to the first processor in the sending of commands
thereby and responses thereto, such that interrupt re-

5

10

20

25

30

35

45

S0

55

65

64

quests to said processor are generated substantially only
when an empty ring buffer becomes non-empty and
when a full ring buffer becomes not full.

19. The apparatus of claim 18 wherein the size of each
ring buffer is communicated by said first processor to
the other of said processors at the time of initializing the
communications path between them.

20. The apparatus of claim 19 wherein the processors
communicate by sending message packets to each other,
and further including:

a buffer associated with the second processor for

holding up to M commands to be executed;
an input/output device class driver associated with
the first processor for sending commands to and
receiving responses from an input/output device;

the second processor being adapted to provide to the
class driver in its first response packet the number
M of commands of a predetermined length which
said buffer can hold;

the class driver being adapted to maintain a credit

account having a credit account balance indicative
of the number of commands the buffer can accept
at any instant;

the credit account balance initially being set to equal

M and being decremented by one each time the
class driver issues 2 command and being incre-
mented by the value;

the second processor further being adapted to pro-

vide to the class driver, with each response packet,
a credit value representing the number of com-
mands executed to evoke the response;

the class driver incrementing the credit account bal-

ance by said credit value; and

the first processor and class driver being adapted so

as not to issue any commands when the credit ac-
count balance is zero and further being adapted to
issue only commands which are immediately exe-
cuted when the credit account balance is one.

21. The apparatus of claim 16 wherein said ownership
byte is the most significant bit in each descriptor.

