
SHAC

- SINGLE HOST ADAPTER CHIP -

ENGINEERING SPECIFICATION

-- VERSION 4.0 --

This document specifies all of the externalities of the SHAC chip. It is intended to serve as a guide to
those who must interface drivers or devices which interact with the SHAC.

Part number DC-542



COPYRIGHT NOTICE

This document and the specifications contained herein are confidential and proprietary. They are the
property of Digital Equipment Corporation and shall not be reproduced or copied or used in whole
or in part as the basis for the manufacture or sale of items without written permission. This is an
unpublished work protected under federal copyright laws.

Copyright ©September, 1989

All Rights Reserved.
Printed in U.S.A.

revision date description

1.0 16 Oct 86 Initial version.

1.1 3 Dec 86 Changes to reflect initial comments.

2.0 12 June 87 Change from UQ to CI Port.

3.0 10 August 88 First silicon updates.

4.0 6 September 89 Third silicon updates.

This document was prepared using VAX DOCUMENT, Version 1 .0



Contents

PREFACE vii

CHAPTER 1 OVERVIEW i-i

1.1 INTRODUCTION 1-1

1.2 CI-DSSI OVERVIEW 1-4

1.3 DOCUMENT SCOPE 1-5

CHAPTER 2 ORIGINS OF THE SHAC SPECIFICATION 2-i

3.1 PINOUT SIGNAL DESCRIPTIONS
3.1 .1 CP_Bus Signal Descriptions
3.L2 DSSI Signal Descriptions
3.1 .3 Power Signal Descriptions
3.1 .4 Testing Signal Description

HOST-ADDRESSABLE DEVICE REGISTERS 4-i

REGISTERS

Port Queue Block Base Register (PQBBR)
Port Status Register (PSR)
Port Error Status Register (PESR)
Port Failing Address Register (PFAR)
Port Parameter Register (PPR)
Port Control Registers
4.16.1 Port Command Queue 0 Control Register (PCQOCR) • 4—6
4.1.6.2 Port Command Queue 1 Control Register (PCQ1CR) • 4—6
4.1.6.3 Port Command Queue 2 Control Register (PCQ2CR) • 4—7
4.1.6.4 Port Command Queue 3 Control Register (PCQ3CR) • 4—7
4.1 .6.5 Port Datagram Free Queue Control Register

(PDFQCR) • 4-7
4.1.6.6 Port Message Free Queue Control Register

(PMFQCR) • 4-7
Port Status Release Control Register (PSRCR) • 4—7
Port Enable Control Register (PECR) • 4—7
Port Disable Control Register (PDCR) • 4—7
Port Initialize Control Register (PICR) • 4—7
Port Maintenance Timer Control Register (PMTCR) • 4—7
Port Maintenance Timer Expiration Control Register

(PMTECR) • 4-8
4.1 .7 Port Maintenance Control And Status Register (PMCSR)

CHAPTER 3 PINOUT

CHAPTER 4

3—i

3—5
3—5

3—8
3—10

3—10

4.1 Cl PORT
4.1 .1

4.1 .2
4.1 .3
4.1 .4
4.1 .5
4.1 .6

4.1 .6.7
4.1.6.8
4.1.6.9
4.1 .6.10
4.1 .6.1 1
4.1.6.12

4-1

4-1

4-2
4-4

4-5
4-5
4-6

4-8

4-9
4-9

4—10

4.2 SHAC
4.2.1

4.2.2

SPECIFIC REGISTERS
SHAC Software Chip Reset (SSWCR)
SHAC Shared Host Memory Address (SSHMA)

4.3 SHAC DEVICE REGISTER MAP 4-10

III



Contents

CHAPTER 5 DETAILS OF HOST-SHAC COMMUNICATION 5-1

5.1 CI PORT FUNCTIONALITY 5-1
5.1.1 Port States 5-1
5.1 .2 Chip Initialization 5—1

5.1.2.1 Chip Reset • 5—2
5.1 .2.2 MIN-Bit Reset • 5—3
5.1 .2.3 Common Initialization • 5—3

5.1 .3 Subnode and Full Sequence Number Support 5-4
5.13.1 SETCKT Command • 5-4

5.1.4 Supported Opcodes 5-4
5.15 Unsupported Opcodes 5-5
5.1 .6 Maintenance/Sanity Timer 5—5
5.L7 ID Packet Configuration Information 5—6
5.1 .8 Data Packet Base Size 5—6
5.1.9 Path Select 5—6
51.1O Self-Directed Commands 5-7
5.1.11 Loopback Commands 5-7
5.1.12 Sequentiality and Prioritization 5—7
51.13 Caching of Host Queue Entries 5-7
5.1.14 Power Failure 5—8
51.15 Memory Management Mode 5-8
5.1.16 Event/Performance Counters 5-8
5.1.17 SHAC Operation with Interrupts Disabled 5—8
5.1.18 Last Packet Implicit Buffer Invalidation 5—9

5.2 DSSI SEQUENCE COMPLETION STATUS 5-9

5.3 DSSI RETRIES 5-9
5.3.1 Immediate Retries 5—10
5.3.2 Delayed Retries 5—10

CHAPTER 6 HOST BUS OPERATION 6-1

6.1 DESCRIPTION OF THE BUS CYCLES 6-1

6.1 .1 Longword DMA Read Cycle 6-2
6.1 .2 Longword DMA Write Cycle 6—3
6.1 .3 Octaword DMA Read Cycle 6-4

6.1 .4 Octaword DMA Write Cycle 6—5
6.1 5 Longword DMA read_lock/write_unlock Cycle 6—6

6.2 CPU CYCLES (SHAC SLAVE) 6-8
6.2.1 CPU Read Cycle 6-8
6.2.2 CPU Write Cycle 6—8

6.2.3 Interrupt Acknowledge Cycle 6—9

63 BUS ARBITRATION CYCLE 6-9

6.4 BUS OPERATING MODES 6-9

6.4.1 Synchronous Mode 6-9

6.4.2 Asynchronous Mode 6—10

6.4.3 Burst Limit 6—10

iv



Contents

CHAPTER 7 DSSI BUS OPERATION

7.1 BASIC OPERATION

7.2 0551-BUS PHASE TRANSITIONS
7.2.1 Formats of 0551 Data Exchanges

7.21.1 DSSI Command-Out Phase • 7—4
7.2.1.2 DSSI Data-Out Phase • 7—5
72.1 .3 DSSI Status-In Phase • 7—6

7_3 DETAILED DSSI BUS OPERATION
73.1 DSSI Bus Signals
7.3.2 DSSI Bus Phases
7.3.3 Bus-Free Phase
7.3.4 Arbitration Phase
7.3.5 Selection Phase
7.3.6 Information Transfer Phases

7.3.6.1 Asynchronous Information Transfer • 7—8
7.3.6.2 Synchronous Data Transfer • 7—8

7.3.7 Command-Out Phase
7.3.8 Data-Out Phase
7.3.9 Status-In Phase
7.3.10 Signal Restrictions Between Phases

7.4 USE OF AND REACTION TO RESET

7.5 DSSI TIMEOUTS

7-i

7—1

7—1

7—3

7—6
7—6

7—6
7—6

7—7

7—7
7—8

7—9
7—9
7—9

7—9

7—10

7—10

A-i

B-i

B-i

APPENDIX A RELATED DOCUMENTS

APPENDIX B DSSI FAIR-ARBITRATION SCHEME

B.1 BASIC OPERATION

B.2 BEHAVIOR OF AN ENABLED SHAC B-2

B.3 BEHAVIOR OF A DISABLED SHAC B-2

B.4 SHAC MANIPULATION OF ITS ENABLED/DISABLED FLAG B-3

APPENDIX C SHAC SHARED HOST MEMORY C-i

C.1 OVERVIEW C-i

C.2 SHARED HOST MEMORY HEADER AREA C-2

C3 SHARED HOST MEMORY PARAMETER AREA C-2

C.4 SHARED HOST MEMORY PATCH AREA C-5

C.5 SHARED HOST MEMORY EXTERNAL CODE SEGMENT AREA C-7

C6 DEFAULT VALUES FOR SHARED HOST MEMORY C-7

C.7 BOOT DEVICE ON DSSI BUS C-8

C.8 LOADING SHARED HOST MEMORY FROM A FILE C-8

V



Contents

APPENDIX D SHAC TESTING D-i

0.1 OVERVIEW 0-1

0.2 SHAC TESTING MODES 0-1

0.3 VECTOR ORIENTED TESTING 0-2

DA TRISTATE AND CONTINUITY TRANSISTOR FEATURES 0-3
0.4.1 Rigel Tristate and “Continuity Transistor” Specification 0—4

D.4.1 .1 Overview • D—4
D.41.2 Tristate • D—4
D.4.1.2.1 Purpose • D—5
D.4.1 .2.2 Specification • D—5
D.4.1.2.3 Test Plan For Usage During Module Test • D—5
D.4.1 .2.4 Considerations During Module Design • D—5
D.4.1 .3 Continuity Transistor Structure • D—5
DA.1 .3.1 Purpose • D—6
D.4.1 .3.2 Specification • D—6
D.4.1.3.3 Test Plan for Usage During Module Test • D—6
D4.13.4 Considerations During Module Design • D—7

0.5 HOST ACCESS FEATURE 0-7
0.5.1 Purpose 0-7
Drn5.2 Description 0-8
D.53 Using the Host Access Feature After a MIN Bit Reset 0—8

APPENDIX E ERROR CODES E-i

E.1 DATA STRUCTURE ERRORS E-1

E.2 MISCELLANEOUS ERRORS E-1

E3 MAINTENANCE ERRORS E-2
E.3.1 Shared Host Memory Error E—2
E.3.2 Slave Mode Parity Error E—2

E.3.3 Illegal Segment Number E—2

E.3.4 Diagnostic Error E—3
E.3.5 QUIP-Detected Error E—3
E.3.6 Illegal Interrupt E—4

FIGURES

1—1 Sample Physical Layout 1—2

1-2 Relationship of 0551 to SCA and CI 1—3

3-1 SHAC Pinout 3—2

5-1 SHAC Port State Diagram 5—2

7-1 0551 Phase Sequence 7—2

7-2 0551 Command-Out Format 7—4

7-3 0551 Data-Out Format 7—5

C-i Code Segment Table Entry C—7

vi



Contents

TABLES

3-1 SHAC Pins 3-3

6-1 Longword DMA Read Cycle 6-2

6-2 Longword DMA Write Cycle 6-3

6-3 Octaword DMA Read Cycle 6-4

6-4 Octaword DMA Write Cycle 6-5

6-5 Longword DMA Read_lock/Write_unlock Cycle 6—6

C—i Parameter Area Field Descriptions C—4

VII



Preface

Intended Audience

This engineering specification is directed to all potential users of DSSI as well as those working
on other embodiments of the same architectural definition. Comments and suggestions are
solicited. Send them to:

Michael Ben-Nun
Mail Stop: ISV

Digital Technical Center
37 Pierre Roenig Street

Jerusalem, ISRAEL

JEREMY: :MICHAEL

tel:
country code: 972
area code: 2
local number: 782 551

The group responsible for the preparation of this document comprises:

Michel Assayag
Michael Ben-Nun, Project Leader
Moshe De-Leon
James Feldman
Maurene Fritz
Eric Goldstein
Udi Kra
Pinchas Lozowick
Eyal Yatzkan
Eitan Zmora

SHAC is being designed at the Digital Technical Center in Jerusalem.

vii



Preface

Changes Incorporated in This Version

All changes made since version 3.0 are marked with change bars.

Chapter Important Changes

2 Updated document revisions.

3 Add VDD/VSSCLEAN. Correct the error in pins 44,45

4 Host writes to PSR allowed as described

5 Minor changes and clarifications

6 Details on interlock operations and Burst limit

7 New behavior during the selection phase and modifications due to changes in the
DSSI spec

A Updated document revisions.

B

C

U

F New appendix.

VIII



Chapter 1

OVERVIEW

1.1 Introduction

SHAC (Single Host Adapter Chip) is a single-chip, VLSI version of an SCA port that uses
a DSSI bus as the physical interconnect. Another SCA realization, CI, has defined a port-
driver/port interface which has been used to connect VAXs in clusters. DSSI has adopted the
same interface, so the same VMS port driver will be able to drive either a Cl-port or SHAC.
SHAC can be used to connect a host to any other device that can communicate through the
CI-DSSI protocol. In particular, it provides a solution to:

1. The problem of interfacing a group of mass-storage device controllers (MSDCs) to a VAX.

2. The problem of interfacing several VAXs to a common group of MSI)Cs and, if higher level
protocols support this option, to one another.

Where two or more VAXs connect to a group of MSDCs (or to one another) through DSSI,
each has a SHAC (or another DSSI port) at the DSSI bus to serve as a port. Where a group
of MSDCs connect to the DSSI bus, the controllers provide both the bus interface and the
intelligent control required to respond to the CI commands received over the DSSI.

Figure i—i on the next page is the physical model of a system in which the SHAC will sit.
I3oth the MSDCs and the several VAXs will communicate over a high-speed, 1-byte wide
bus (DSSI) with a 4 to 5 MB/s burst transfer rate. The SHAC will handle the problem of
providing effective, efficient and reliable interfacing between this DSSI bus and the host
VAX, having direct host memory access (DMA) over the host’s 32-bit wide, 16 MB/s bus. All
communications between those connected to the DSSI will follow the CI protocol with the
DSSI protocols providing handshaking in the transactions.

Structural parameters limit the number of possible combinations that can be realized with DSSI
and SHAC.

1. A single DSSI bus has room for 8 nodes which may be partitioned among host adapters
(e.g. , SHACs) and MSDCs.

2. Since there must be a host, there can be up to 7 MSDCs on a single DSSI.

The SHAC provides a small amount of buffering on chip to improve bus utilization on both
sides, but SHAC is designed to pass data through from one bus to the other as rapidly as the
two busses permit. DMA services to and from the host reside in the SHAC, which responds to
requests for transfers between the host and the remote nodes.

OVERVIEW 1-1



Figure i—i: Sample Physical Layout

— console —

— terninal —

* HOST-A

I ethernet
! controller !
!!!!!!!!t!!!!!

$$$$$$$$$$
$ $

==$ nenory $
$ $

% 6 0551
=% SHAC %

host

! 0551 !
I device

!controller!@@@@@@@@@@
!t!!!!!!!!!! @diskA2@

— console —

— terminal —

B
tJ

$$$$$$$$$$ S

$ $
=$ memory $

$ $
$$$$$$$$$$

6 %OSSI
% SHAC %

%

, , , , , , , ,

1 0551 !
—! device !———$ tape $
Icontroller! $$$$$$$$
, , I

I I ! ! I I

! 0551 !
—! device !___@ disk B @

!controlier! @@@@@@@@@@

The SHAC is operated by an on-chip RISC processor that obtains its code and internal data
from on-chip RAM and ROM. Part of the RAM may be loaded from host memory both dur
ing initialization and as circumstances require during normal run time. With this capability,
it can read in new code and data from the host and thus adapt its behavior to new circum
stances. This will permit inexpensive upgrades of SHACs after they are installed in the field.
Furthermore, it will allow the SHAC to store infrequently accessed code in host memory,
providing more capability than could be included in on-chip ROM.

The overall communication architecture under which SHAC works is Digital’s SCA (Systems
Communications Architecture). In this general architecture, four layers are defined, as shown
in Figure 1—2. The architecture can be realized in a variety of ways. Two particularizations of
the lowest two levels in the diagram are CI (Computer Interconnect) and DSSI (Digital Small System
Interconnect). They share the same lowest host layer (CI Port driver) but have distinctly different
physical interconnects. The layers between the Port Driver and the DSSI bus itself can be
realized at both board and chip level and products at both levels are in design within Digital.
The SHAC is a chip-level product which connects the host-bus to the DSSI bus, controlled
by the host through a CI port driver and accepting and delivering Cl-defined packets over the
DSSI bus. Layers above the port driver are invisible to SHAC.

bus

* HOST - 3 *==_I

host
bus

, I t ! I

1-2 OVERVIEW



Figure 1-2: Relationship of DSSI to SCA and Cl

SCA

I - I/O Applications I
I (SYSAP) I

+ +

I 2. System Communications I
I (SCS) I CI DSSI
+ +

I 1. Port/Port Driver I 11• CI Port Driver I
I (PPD) + +================+==> 5

I I la. CI Port I la. DSSi Port I H
+ + + + A

0. Physical Interconnect I Oh. CI Data Link I Oh. DSSI Data Link I C
(P1 ) +

I Oa. CI bus I Oa. 0551 bus I
+ + +

The port driver maintains a set of 7 queues in its system space. Four of these contain com
mands for SHAC to execute. The priority of the command is determined by the queue it is on;
order is determined by the position in the queue. Another queue contains all of the responses
for the host (from SHAC or the remote nodes). Finally, there are two queues of “empty en-
velopes” for the host and the SHAC to use to fill with commands and responses and then to
queue them on the other queues.

These “envelopes” are simply standard-sized “queuable” blocks of host memory. All com
mands and responses are copied into one of these standard-sized blocks. Included in the
header on each block are a pair of queue pointers (for a doubly linked queue) and various
standard identifiers which specify what is contained in the block and how much of the block
represents the actual command or response. To be visible, a block must be on a queue, where
pointers from other elements or the queue header show its presence. Once a block is removed
from a queue, it is visible only to the entity which removed it.

SHAC’s principal task is in accepting and delivering “mail” to other nodes. Externally (i.e., on
DSSI) SHAC deals only in standard CI formats. Internally, SHAC deals with the envelopes
just described and with blocks of data. Since DSSI deals with bytes and the host bus generally
deals in longwords, SHAC must frequently do byte alignment tasks during transcription.

SHAC deals with the port driver in the virtual-address mode, unloading from the host the
obligation to do virtual-to-physical address translation and to be aware of page crossings in
virtually-contiguous blocks of information. SHAC supports full virtual address translation
including the use of global I/O pages (to a depth of 1).

The rest of this overview chapter describes a typical set of steps that SHAC goes through in
serving its role as the CI Port, with “mail” in both directions. Then it concludes with a brief
description of what is in the other chapters.

OVERVIEW 1-3



1.2 CI-DSSI Overview

At start-up, the host provides the SHAC with a number of pointers to internal host structures,
one of which, the Port Queue Block (PQB), contains pointers and data on all of the queues that
the host maintains for CI. The SHAC uses this data to carry on its normal business in the
following way.

If traffic is not coming in on the DSSI bus, SHAC goes to the highest command queue which
has something enqueued. Choices are CMDQO. . CMDQ3, with 3 being most urgent. It de
queues an element from the queue and examines its header to see what it must do with the
queue entry. It could be a command for the SHAC or an item to be delivered to one of the
nodes on the DSSI. A command might be an order to deliver a block of data to a remote node.
An item to be delivered would be either a datagram or a message.

A datagram is a “one-sided” communication—that is, one which will be sent without any
assurance of either receipt or reply. An obvious application for such a communication is a
request for the party at the other node to identify itself. If the host does not know if anything at
all is out there, it must transmit its request without expectation. For this or any similar purpose,
it employs a datagram. Datagrams are all of lengths guaranteed to fit in a datagram envelope.

A message is a “two-sided” communication used when a virtual circuit (an established formal
relationship) between members of the bus exist. Once such a virtual circuit is established, the
host(s) understand how to make requests of the other side. Such a request could be an order
for a data transfer in either direction. The message itself (move data) is contained in a command

(deliver this message to . . .). Messages are all of lengths guaranteed to fit in a message envelope.
Messages are always delivered sequentially to a given node—that is, in the order in which
they were enqueued on a particular queue. While the SHAC supports retries if a message
fails to get through, once the retry limit is reached without successful delivery, SHAC returns
the command to the host, marking it as undeliverable, and then breaks the virtual circuit to that
node.

A full transaction might go something like this:

1. The host queues a message for node 3 (say, a disk controller) to copy a block of 16 KB
from host memory, starting at location X and to be stored in location Y on disk. The
queues are doubly-linked, so at the top of every envelope there is a forward link FIJNK
and a backward link BLINK. Enqueuing involves putting link values into the new element’s
FUNK and BLINK and making the previous last-element’s FLINK and the queue header’s
BLINK point to the new element.

2. When this message gets to the head of the queue, the SHAC dequeues it , reads the
header and finds that it should “dial up” node 3. To do this, SHAC goes through the DSSI
protocols, contending for the DSSI bus and then, if successful in getting bus, specifying
node 3 as the target. These steps are called arbitration and selection.

3. Node 3 responds by asking for the DSSI-command (command-out phase). In this phase, the
SHAC tells node 3 how many bytes are coming and repeats the identification information
to confirm a proper selection. Node 3 then tells the SHAC to switch to the data-out phase.
SHAC sends a pair of CI header bytes to identify what type of message this is, and then
proceeds to transmit the actual message read from the message block in host memory.
The step-by-step details of the transfer are handled by hardware in the SHAC which
permits simultaneous, buffered reading and writing on the two busses to which SHAC is

1 Note that SHAC ends up holding the oniy pointer to the dequeued block of memory that constitutes the queue element.
The port driver no longer “knows” where it is.

1 -4 OVERVIEW



connected. Upon proper completion of the transmission, node 3 responds with a 1-byte
acknowledgement of success (parity and check-sum proper and no other errors).

4. The SHAC is still holding the only pointer to the message block in host memory. It returns
this to the host in one of two ways. If the host has requested a “return receipt”, the SHAC
puts the block on the Response Queue (RSPQ) to indicate proper delivery. This is where
the port-driver software in the host will look for responses.

Alternatively, the SHAC simply puts it back on the MFREEQ which holds the standard
envelopes for messages. At this point the single message has been delivered and the
message envelope is back in circulation.

5. After whatever delay node 3 needed to process the message, it contends for the bus and
upon winning it, selects the SHAC as its target. It then sends a standard CI message as
above telling SHAC to transmit the required data. In general, SHAC does not do this
immediately, since it is obliged to handle traffic according to position in the queue and
according to queue priority. Instead, it takes an empty envelope from MFREEQ, writes into
it the message it is receiving and puts it on the proper CMDQ as specified in the message
it just received.

6. When that message gets to the head of its queue, SHAC dequeues it once more, carries
out its command (in transmissions of 4 KB whenever possible—a 4 KB transmission takes
about 1 msec on the DSSI), possibly interleaving other transmissions of higher priority
to this node or any priority to other nodes, until the last byte is sent. Once SHAC has
completed this operation, it returns the message block to the MFREEQ.

7. Node 3 has put its data on the disk and must report to the host the successful completion
of the transaction. Again it contends for the bus and upon winning specifies the SHAC
as its target. Then it sends a message to the port-driver through SHAC confirming the
successful transaction. SHAC dequeues another free envelope and writes this message into
that block. Then it queues it on the host’s RSPQ. Except for higher level responses in the
host, that concludes a whole transaction.

The enqueue/dequeue operations represent a considerable fraction of the effort in delivering a
message or datagram. To minimize this effort, SHAC caches a small number of the envelopes
(that is, it keeps the pointers to the memory blocks) as they become free in its normal activity.
It only fetches an envelope from the free queues when its own supply has disappeared, and it
only returns them to the free queues when it has a full supply (4 of a type). By this and other
attention to effort reduction and traffic conservation SHAC attempts to optimize its rate of
doing useful work.

1.3 Document Scope

The remainder of this document concerns itself with the hardware, logical and software inter-
faces which support the sorts of activities described above. At the time of the writing of this
document, some details are still in negotiation. These are marked TBD (to be decided) and will
be specified in later versions of this specification.

The remaining chapters comprise:

. Chapter 2 provides a list of those documents from which SHAC has been specified and
refined.

. Chapter 3 provides a description of the external connections to SHAC, including both
electrical and physical data.

OVERVIEW 1-5



. Chapter 4 and Chapter 5 together specify all of the SHAC’s host-addressable registers as
well as the behavior of SHAC with respect to these registers. Details of initialization are
included therein.

. Chapter 6 describes SHAC’s use of and interactions with the host bus.

. Chapter 7 describes SHAC’s use of and interactions with the DSSI bus.

. Appendix A provides an extensive list of related documents.

. Appendix B describes the “fair” aribitration scheme implemented in SHAC.

. Appendix C describes the SHAC shared host memory area.

. Appendix D describes the SHAC testing features and modes.

. Appendix F describes the errors which SHAC may report to the host.

1-6 OVERVIEW



Chapter 2

ORIGINS OF THE SHAC SPECIFICATION

This current SHAC specification is tightly coupled to the following documents:

. CVAX CPU chip engineering specification rev 4.0.

. CMCTL - CVAX memory controller engineering specification rev 1.1.

. VAX CI Port Architecture Rev 5.0 and subsequent FCC’s Y87M11-2, Y87M11-1, Y87M08-1,
and Y87M9-1.

I DEC STD 161-0, Rev A, Computer Interconnect Specification and subsequent ECO #2.
. DSSI, Digital’s Small Storage Interconnect, An Addendum to DEC STD 161, Version X1.3.

The SHAC is specified and designed according to these documents. In order to prevent the
overhead and conflicts between these documents and this specification, this specification does
not repeat the content of these documents. A reader who needs details or better understanding
should refer to these documents. Any discrepancy between these documents and the operation
of the SHAC should be considered as a bug, unless otherwise explicitly stated.

This specification describes the implementation-specific details and the functions that are
different in the SHAC from the definition in the above documents.

Chapter 1 is provided just for background information and does not replace either the DSSI or
the other documents.

Note the revision numbers of the above documents. They are not necessarily the most recent
ones.

ORIGINS OF THE SHAC SPECIFICATION 2-1



Chapter 3

PINOUT

The chip is packaged in a 164-pin surface mount package. Signals that are active low are suffixed
with “_L”. Following are a pinout diagram of the chip, name, number and purpose of each pin
and pinout signal descriptions. The sequence starts with the first CP_bus pin (#159) and continues
clockwise. Pin location is subject to change.

PINOUT 3-1



877777777776666666
098765432109876543

Figure 3-1: SHAC Pinout

1 4 0 — 144
139
138

1 3 5 — 137
1 3 1 — 134

130
129
128
127
126
125
124
123
122
1% 1
120
119
118
117
116
I 15
114
113
112
111
110
109
108
107
106
105
104

11111111111111111111
44444555555555566666 111111111122
56789012345678901234123456789012345678901

. —+—+—+—+—+—+—+—+—+—+—+—+—+—+-+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+-+—+—+—+—+—+—+—+—+-.

VVQQQQQVVQQQVVDDDVVDDDVVDDVVDDDDDVVDDDDDV

I SDAAAAASDAAADSAAADSAAADSAADSAAAAA0SA AD

I S D D 0 D 0 D S D D D I) D S L I L D S L L L D S I L D S L L L L L D S L I 0

1XX89111XX111 332XX222 22XX22221XX1 lxi
01299345 10911876 541132109118 411

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

QAD<3-7>
VDDX9
vSSx9
QAD<0-2>
QINT<3-0>
VDDX9
vSSx9
QINT<4>
QINT<5>
QINT<6>
QINT<7>
QINT<8>
VDDX9
VSSX9
VDD
vss
QINT<9>
QHLD/ SCAN CUT H
QWRL/TRI STATEL
vSS
VDD
QTN<2>
QTM<l>
VS S CLEAN

yOU CLEAN
Sx
DUNES
IC L
VSSX8
REQL
CDL
VSSX8

AAA
LLL
111
765

VSSX1 +

DAL<8-13> +

vDDxl +

VSSX1 +

DAL<3-7> +

VDDX1 +

VSSX1 +

DAL<2> +

DAL<l> +

DAL<0> +

VSS +

RESETL +

CLK3 +

VDD +

VSS +

CLEA +

VSS +

VDD +

CS/DPL<0>+

CS/DPL<l>+
VSSX2 +

VDD2 +

CS/UP
CS/UP L<3>+
DPEL +

0141<0> +

BML<l> +

VSSX3 +

VDDx3 +

BML<2> +

HML<3> +

EEL +

ADVVNI RDVI CVVDI EPC 51
SSSDSADNSRCDSMARWSEE I
: : SDHKYRSQTDSGKRR: LL I
LLxxAE::x:L IE:FL1OI

55COLL4L: : ILL

:: L L: :
LL L L

22
2 8—23

29
30
35—3 1
36
37
38
39
40
41
42
43

44
45
46
47
48
49
50

51

52
53
54

55

56
57
58

59
60
61
62

I SRVABDVD

I ESSC 5USD

I LTSKYPS7

I : : X : : X

I LL8LLL7L

VV DV U DV U DV U DV
DSBSB3S3BS3BS
US 6543210S

: : : x : : X : : X

L L L 7 L L 7 I L 6

1111
00009999999999888888888
32109876543210987654321

3-2 PINOUT



All outputs are open drain and

DBL<7:O> IC

DBP_L IC

BSYL IC

ACKL IC

RSTI. IC

SELL IC

CDI. IC

REQL IC

DSSI data bus lines

Parity line

Busy

Acknowledge

Reset

Select

Command (low) I data (high)

Request

Table 3—1: SHAC Pins

pin in/out no purpose

CP_Bus Interface Pins

DAL<31:O> IC 32 CPbus data/address lines

RESETT. I 1 RESET SHAC

CTKB,A I 2 CPU clock input

CS/DPL<O:3> IC 4 Cycle status and data parity

UPEL IC 1 Data parity enable

BML<3:O> C 4 Byte mask

WRL IC 1 Write

SELO,1 I 2 Select address space

CSL I 1 Chip select

PWRFL L I 1 Power failure

ERRL. I 1 Bus error

IAKEIL I 1 Interrupt acknowledge enable input

DMGI L I 1 DMA grant input

CCTLL C 1 Cache control (open drain)

IRQL C 1 Interrupt request (open drain)

DMRL C 1 DMA request (open drain)

RDY L IC 1 Ready (open drain)

IAKEOL C 1 Interrupt acknowledge enable output

NSHACJ C 1 Not SHAC cycle

DSL IC 1 Data strobe

AS L IC 1 Address strobe

Total CP_bus Pins 60

DSSI Pins (Signals and Clocks)

active low

8

1

1

1

1

1

1

1

PINOUT 3-3



Table 3—1 (Contj: SHAC Pins

pin in/out no purpose

DSSI Pins (Signals and Clocks)

Ioj IC 1 Input (low) I output (high)

DBRES 0 1 DSSI bias resistor

sx I 1 DSSI clock input

Total DSSI Pins 18

POWER Supply Pins

VDD I 8 +5v power

VX<1-3,5,9> I 14 +5v buffer’s power supply

V1)J)CLEAN I 1 +5v Quiet power for DSSI pads

V55 I 10 Ground

V55X< 1-9 > I 22 Buffer’s ground

V55CLPAN I 1 Quiet ground for DSSI pads

Total Power Pins 56

Testing Pins

These pins are for testing purposes only

QTM<1:2> I 2 QUIP test

QWRL/TRISTATEL 10 1 QUIP write / Tristate SHAC pins

QHLD/SCANOUTH 10 1 QUIP hold? Scan SHAC pins

QINT<9:O> IC 10 QUIP interrupt lines

QAD<15:O> 10 16 QUIP addresses and data

Total Testing Pins 30

3-4 PINOUT



3.1 Pinout Signal Descriptions

The SHAC signals are divided into 4 main groups: the CP_bus signals, the DSSI bus signals,
the power signals and the testing signals.

3.1.1 CP_Bus Signal Descriptions

The timing for the SHAC’s CP_bus signals is derived from the CLKA and CLKB pins.

1. DAL - Data/Address Lines

The Data/Address bus (DAL) is a 32-bit multiplexed bus used to transfer all data and
address information between the SHAC, CPU and host memory. The strobe signals ASL
and DS_L determine whether the bus is transferring address or data information. Whoever
is bus-master at a particular time controls the strobes and the address driver. Data may
flow in either direction as specified by the bus-master on WR_L.

2. RESET_L - Reset

Resets the SHAC to its initial state. Interrupts are disabled and all registers are reset to
their default states. RESET_L should be asserted for at least six system clock cycles.

3. CLKB,CLKA - CVAX Clock Inputs

These signals are used as clocks internally and are used as a reference for timing bus
operations on the CP_bus. CLKA and CLKB should be connected to the CVAX Clock Chip
pins to ensure that the timing of the bus signals when the SHAC is bus master matches the
CVAX timing.

4. CS/DP_L< 0:3 > - Cycle Status and Data Parity

a. The cycle status lines determine the type of cycle occurring on the CPU bus. When the
SHAC is bus master it may assert Demand_D_streamRead, Read_lock, Write_unlock or
Write_No_Unlock on the CS lines. Current software always combines the lock/unlock
pair as a single bus access. CS/DP_L<3> is used by the bus master to flag whether
the current bus cycle is synchronous (low) or asynchronous (high). Following are the
CS/DP_L< 2:0 > line values supported by the SHAC:

WR_L CS/DP_L<2:O> description

1 011 Interrupt acknowledge (slave only)

1 iii DemandDstream read

0 111 Write no unlock

1 101 Readlock (master only)

0 101 Writeunlock (master only)

b. During a write cycle the SHAC drives the parity of the data on these lines. During
read, if DPE_L is asserted, the SHAC will read the parity from these lines.

PINOUT 3-5



5. DPFL - Data Parity Enable

The SHAC asserts this pin on write to signify parity is generated. When this pin is asserted
during read, the SHAC will check parity.

6. BM_L<3:O> - Byte Mask

The byte mask signals specify which data bytes of the current transfer contain valid infor
mation during the data phase of the bus cycle. During a write cycle they indicate which
of the data bytes in memory should and should not be altered, and for a read cycle they
indicate which data bytes should be supplied by the external device (the SHAC always
reads longwords). The BM signals are valid at the time that AS_L is asserted.

7. WR_L - Write

The Write signal is used to specify the direction of the current bus transfer. If WRJ is
asserted, the current bus master (either the SHAC or the CPU) will drive the DAL lines at
data time. When WR_L is not asserted some external device is expected to supply data.
WR_L can be used to control the direction of DAL transceivers. It is valid at the time ASL
is asserted.

8. SELO,1 - Select SHAC Address Space

Using the SELO,1 Pins, three pages can be assigned in the host address space in order to
address up to three SHACs. The select lines assign a page to each of the SHACs. It is also
possible to address any number of SHACs, this is done with SELO,1 pulled up. In this case
each SHAC can be addressed with the assertion of the appropriate CSL pin.

9. CS_L - Chip Select

When SELO and SELl are set the SHAC checks the CS_L line. When asserted, the SHAC
ignores address lines < 9:31 > and the SHAC is selected.

it). PWRFLL - Power Fail

Power Fail input is monitored by the SHAC to recognize a power fail condition. Power Fail
handling is described in Chapter 5.

ii. ERR_L - Bus Error

This signal is used by external logic to signal a hardware error condition on the CP_bus to
the current bus master. Typically this is due to non-existent memory being accessed, but
it may be asserted for other reasons. When the SHAC is the bus master it monitors the
ERR_L line to see if the cycle it is performing is in error. Chapter 6 describes the SHAC
response to an error.

i2. IAKEI_L - Interrupt AcKnowledge Enable Input

The CPU initiates an interrupt acknowledge cycle by asserting IAKEO_L, driving the IPL on
DAL< 6:2 > with WR_L deasserted and writing Oh on the CS/DP_L< 2:0 > pins.

The SHAC responds to an interrupt acknowledge cycle if the following conditions are met:

. The SHAC has requested an interrupt (= IRQ_L asserted)

3-6 PINOUT



. IAKEI_L is asserted

. The IPL driven on DAL< 6:2 > matches the SHAC programmed IPL

The SHAC then drives DAL< 15:0 > with the appropriate interrupt vector, and asserts
RDY_L to indicate to the CPU that a valid vector is present on the DAL bus.

The CPU reads the interrupt vector, and resumes the cycle as for a CPU read cycle. The
SHAC deasserts IRQL, RDYL and tn-states (releases) the DAL bus.

Where IAKEI_L is asserted with one or more of the other conditions not met, the SHAC
asserts IAKEO_L to pass the interrupt acknowledge to the next device in the interrupt-
acknowledge daisy chain.

13. DMGI_L - DMA Grant Input

DMGI_L is the grant-in of the SHAC. When the SHAC is asserting DMRL and DMGIL is
then asserted, the SHAC becomes the bus master. DMGI_L for each device comes from a
central arbiter.

14. CCTLL - Cache Control

CCTLL is asserted during SHAC DMA write cycles, to invalidate corresponding CVAX
cache entries whenever a hit occurs. As one quadword is invalidated at a time by the
CVAX, CCTL_L is asserted twice during a SHAC I)MA octaword write access.

15. IRQL - Interrupt Request

This line is used to signal interrupts from the SHAC to the CPU. The priority and vector for
the requests is written into the SHAC by the host software. Since several peripheral chips
may be connected to one CPU, the Interrupt Acknowledge (JACK) cycle must be decoded
by each chip and used with a daisy-chain of grants to arbitrate among the peripherals. This
process is described for the IAKEx signals.

16. DMRL - DMA Request

Used to request DMA cycles on the CPU bus. The SHAC waits for the DMGIJ. to be de
asserted before it asserts the DMR_L. The SHAC owns the bus when DMGIL is asserted.
When the SHAC is done with the bus it releases the bus and then deasserts DMR_L.

17. RDYL - Ready

RDY_L is used to synchronize data transfers between CPU and memory or peripherals that
operate at different speeds. During the data phase of the bus cycle the master must wait
for RDY_L to be asserted by the external device (memory or 10 device) before terminating
the current cycle and latching (or removing) data from the bus.

RDY is used by the SHAC in several situations:

a. When the host accesses internal registers of the SHAC during a bus cycle, the SHAC
performs its required actions and then asserts RDY_L to terminate the bus cycle.

PINOUT 3-7



b. When the SHAC is the master of the CP_bus, it must wait for an external device
(usually memory) to assert RDYL before terminating the transfer.

18. IAKFOL - Interrupt AcKnowledge Enable Output

IAKEO_L is used to daisy-chain interrupting devices. It is connected to IAKEI_L of the
next device in the chain. If the SHAC is not selected to acknowledge the interrupt, then if
IAKEI_L is asserted, SHAC asserts IAKEOL. This will permit subsequent devices in the
chain to acknowledge the interrupt.

19. NSHACJ - Not SHAC

NSHAC_L is asserted by the SHAC while it is not master, and ASL assertion has latched
into the SHAC an address which is not in its address space. NSHAC_L is deasserted by
ASL deassertion.

20. DSL - Data Strobe

1)5_I. provides timing information for the data transfer portion of the cycle. During a read
cycle the asserting edge of DSJ indicates that the DAL lines are free to receive data, and
the deasserting edge indicates that it has been latched by the SHAC and can be removed.
In a write cycle the asserting edge indicates that data is present on the DAL lines, and the
deasserting edge indicates that the data will be removed.

21. ASE - Address Strobe

The bus-master asserts AS_L when the DAL lines contain valid address information. The
bus-slaves latch the DAL information on the asserting edge. The ASL remains asserted
until the end of the bus cycle, but the address is removed on or before DS_L assertion.

3.1.2 DSSI Signal Descriptions

The timing for the SHAC’s DSSI signals is derived from the SXI pin. All the DSSI-bus signals are
open-drain and active-low.

1. DB_L<7:O> - Data Bus

Eight data-bit signals. DBL< 7 > is the most significant bit and has the highest priority
during the Arbitration phase. Bit number, significance and priority decrease downward to
DBL< 0 > . A data bit is defined as one when the signal value is low and is defined as zero
when the signal value is high.

2. DBPL - DATA BUS PARITY

Data parity DBP_L is odd (i.e. number of ‘0’s (negative logic) in the data byte including
DBPL is odd). The use of parity is mandatory in DSSI. Parity is not valid during the
Arbitration phase.

3-8 PINOUT



3. BSY_L - BUSY

An “OR-tied” signal indicating the bus is being used.

4. ACKL - ACKNOWLEDGE

A signal driven by an initiator to indicate an acknowledgment for a REQ/ACK data transfer
handshake.

5. RST_L - RESET

An “OR-tied” signal that indicates the Reset condition.

6. SELL - SELECT

A signal used by an initiator to select a target.

7. CID_L - Command/Data

A signal driven by a target that indicates whether Control or Data information is on the
DATA BUS. Asserted (low) indicates Control.

8. REQL - REQUEST

A signal driven by a target to indicate a request for a REQ/ACK data transfer handshake.

9. IO_L - Input/Output

A signal driven by a target that controls the direction of data movement on the DATA BUS
with respect to an initiator. Asserted (low) indicates input.

10. DBRES - DSSI Bias Resistor

A 5.62K12 ± 1% resistor should be connected from this pin to ground. This Pin is used for
the reference voltage for the DSSI input buffers. It is suggested that the ground of this
resistor be connected as close as possible to the Vss_CLEAN pin.

Ii. SX - DSSI clock input.

This is a TTL level input. The frequency should be 4 times the required DSSI throughput;
16 Mhz for 4 Mbyte per second.

PINOUT 3-9



3.1 .3 Power Signal Descriptions

1. VDD 1 VDDX I VDD_CLEAN -
Power

475V - 525V. These pins are used to distribute the transient current demands for the chip.

2. V I VsX/ Vss_CLEAN -
Ground

Ground.

3.1.4 Testing Signal Description

It is out of the scope of this document to describe the function of the testing pins. Output
testing pins should not be connected, and input pins should be grounded (except for
QWR_IJTRISTATE_L which should be pulled up). For information about the function of
the testing pins refer to Appendix D.

1. QTM< 1:2 > - QUIP test

Input signals for testing purposes only. Should be grounded in the normal use of the
SHAC.

2. QWRL/TRISTATEL - QUIP write I Tristate SHAC Pins

When this pin is asserted during normal use of the SHAC (QTM < 1 :2 > grounded,) it
tristates all SHAC pins. After using this pin the operation of the SHAC is unpredictable. A
reset sequence is expected.

3. QHLD/SCANOUT_H - QUIP hold I Scan SHAC Pins

When set, during normal use of the SHAC (QTM< 1:2 > grounded,) this pin enables pin
continuity check. TRISTATEL should be asserted for this test. Note that the following pins
do not have continuity devices : QTM < 1:2 > , QWR_L/TRISTATE_L, QHLD/SCAN_OUTH
and DBRES.

4. QINT<9:O>; QAD< 15:0> - QUIP Interrupt Lines; QUIP Addresses and Data

Input/Output signals for testing purposes only. May remain disconnected during normal
use of the SHAC.

3-10 PINOUT



Chapter 4

HOST-ADDRESSABLE DEVICE REGISTERS

The host processor communicates directly with a SHAC through a set of device registers in
the SHAC. These registers occupy a one-page (512-byte) region in the host I/O address-space,
aligned on a page boundary. Each register has a fixed offset within the region; the base address
of the region is as described in Chapter 6.

All of the registers are longword registers. They may be accessed only through longword
operations.

In addition to the access restrictions listed for specific registers, no register other than SHAC
Software Chip Reset (SSWCR) may be read or written while certain chip initialization functions
are being executed. The results of such an access during the lOt) milliseconds following chip
reset (power-up or a write to SSWCR), or during the 50 microseconds following a MIN-bit
reset, are UNPREDICTABLE.

The registers can be divided into two categories:

. the CI Port registers defined in the CI Port Architecture specification;

. the SHAC specific registers.

4.1 CI Port Registers

4.1.1 Port Queue Block Base Register (PQBBR)

3 22
1 10

This register contains the uppermost bits of the physical address of the base of the Port Queue
Block. The PQB must be page-aligned, so the remaining bits of the address are assumed to be
0. PQBBR<31:21> MBZ.

PQBBR is read/write by the port driver and writable only when the port is in the disabled or
disabled/maintenance state. (See Figure 5—1 for state diagram.)

HOST-ADDRESSABLE DEVICE REGISTERS 4-1



Following chip reset, PQBBR contains the following configuration information:

3 22 11
1 43 65 87 0

+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+

I HW Ver. FW Ver. SHY Ver. Maint ID
+—+—+—+—+——+—+——+—+—+—+—+—+—+—+—+—--—+—+—+—--—+—+—+—-l-—-i-—+—+—+—+—+

bits name description

31:24 HW Ver. Hardware Version. Always greater than 0.

23:16 FW Ver. Firmware Version. Always greater than 0.

15:8 SHM Ver. Shared Host Memory Version. (0 until the Shared
Host Memory Data Area has been read in.)

7:0 Maint ID CI Port Maintenance ID. Always 22 (hex).

This information remains in PQBBR until the host overwrites it with the address of the Port Queue
Block.

4.1 .2 Port Status Register (PSR)

33 22211111
10 21098765 876543210

+-+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+-+—+—+—+—+—+—+—+—+—+

IMI I1IQIDI1ISISI IMIMIMIDIPIPIMIRI
TI 0 ITIDIEISIMIHI 0 I1IEISISI1IDIFIQI
El I II INIPIMI II IEIEICICIQIAI
II II1IEIEI ICIIIIIIEII

This register contains status information for the port driver. If interrupts are enabled
(PMCSR<IE> is set), the port interrupts the host each time that it writes to this register.
Once an interrupt is requested by the port, the value of PSR is fixed and is not changed until
the port driver releases the register by writing the Port Status Release Control Register (PSRCR).

PSR may be read by the port driver at any time, except during chip initialization as noted
above. Although CI Port does not permit it, the host may write to PSR after SHAC has loaded
a non-zero value into it, but before writing to PSRCR. This makes it easier for the host to run
the SHAC with interrupts disabled, as described in Section 5.1.17.

4-2 HOST-ADDRESSABLE DEVICE REGISTERS



bit name description of status when the bit is set

31 MTE Maintenance Error. The port has detected an im
plementation specific error (or hardware status
condition). The source of the error may be more
accurately determined from other bits in the upper
half of this register and from the contents of other
registers, as specified by Appendix B. The port is in
the uninitialized state (port is non-functional).

Maintenance Errors normally indicate a severe SHAC
hardware or software failure. If the host believes that
the SHAC is usable, despite this error, it can proceed
with a MIN-Bit Reset.

21 II Illegal Interrupt. This bit indicates a SHAC internal
error, detected when the SHAC’s internal micropro
cessor received an interrupt from an invalid source.
This causes a Maintenance Error, so the MTE bit also
will be set and the port about to enter the uninitialized
state.

20 QDE QUIP-Detected Error. This bit indicates a SHAC
internal error, detected when the SHAC’s internal
microprocessor was given an invalid instruction. This
causes a Maintenance Error, so the MTE bit also will
be set and the port about to enter the uninitialized
state.

19 DE Diagnostic Error. An error was detected while
running the SHAC’s internal self-test. This causes a
Maintenance Error, so the MTE bit also will be set
and the port about to enter the uninitialized state.

As described in Appendix C, diagnostics may be run
when Shared Host Memory is loaded, optionally con-
tinuing if certain ones fail. When such a diagnostic
fails, but the SHAC has been told to continue, I)E
will be set; however, MTE will be clear.

18 ISN Illegal Segment Number. This bit indicates a SHAC
internal error, in which it attempts to load a non-
existent External Segment from the SHAC Shared
Host Memory. This causes a Maintenance Error, so
the MTE bit also will be set and the port about to
enter the uninitialized state.

17 SMPE Slave Mode Parity Error. This bit is set by the
occurrance of a parity error on a host access of a
SHAC device register. This causes a Maintenance
Error, so the MTE bit also will be set and the port
about to enter the uninitialized state.

16 SHME Shared Host Memory Error. This bit is set by the
occurrance of an error involving the SHAC Shared
Host Memory. This causes a Maintenance Error, so
the MTE bit also will be set and the port about to
enter the uninitialized state.

HOST-ADDRESSABLE DEVICE REGISTERS 4-3



bit name description of status when the bit is set

7 MISC Miscellaneous Error Detected. Indicates that the
port microcode has detected one of the miscella
neous errors and the port is about to enter the
disabled/maintenance state. The actual error code is
stored in the Port Error Status Register.

6 ME Maintenance Timer Expiration. The maintenance
timer has expired. The port is in the uninitial
ized/maintenance state.

5 MSE Memory System Error. Port has encountered an
uncorrectable data or non-existent memory error
in referencing memory. Port is in the disabled or
disabled/maintenance state. See PFAR for further
information.

4 DSE Data Structure Error. The port has encountered
an error in a port data structure (i.e., queue entry,
PQB, BDT or page table). Port is in the disabled or
disabled/maintenance state. See the Port Error Status
Register (PESR) and the Port Failing Address Register
(PFAR) for further information. Note that errors in
queue structures leave the queues locked.

3 PlC Port Initialization Complete. The port has completed
internal initialization. The port is in the disabled or
disabled/maintenance state.

2 PDC Port Disable Complete. The port is in the disabled or
disabled/maintenance state.

1 MFQE Message Free Queue Empty. The port attempted to
remove an entry from the MFREEQ and found it
empty.

0 RQA Response Queue Available. Indicates port has inserted
an entry on an empty Response Queue.

4.1 .3 Port Error Status Register (PESR)

3 ii
1 65 0

+-+—+-+—+-+—+-+-+—+-+—+-+—+-+—+—+—+—+—+-+-+—+—+—+—+-+—+—+—+-+—+—+

NEC DEC I
+—+—+—+—+—+—+—-1-—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+

This register indicates the type of error which resulted in a DSE or an MISC (PSR bit) error.

PESR is read only by the port driver and valid only after either a DSE or MISC error, or after
certain MTE and DE errors (as noted in Appendix E). Its value at any other time, or following a
write to it, is UNPREDICTABLE.

4-4 HOST-ADDRESSABLE DEVICE REGISTERS



bits name description

31:16 MEC Miscellaneous Error Code. This code comprises two
fields: bits <31:24> define the the module within
the SHAC code where the error occurred, and bits
< 23:16 > contain the specific error that occurred.
These codes are implementation specific; those
defined for SHAC are in Appendix E.

15:0 DEC Data Structure Error Code. Appendix D of the Cl
Port Architecture specification describes the errors
that are indicated by the contents of this field.

4.1.4 Port Failing Address Register (PEAR)

3
1 0

+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—±—+—+—+—+—+—+—+

I Failing Address
+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+

After an DSE, MSE, MTF, or DE error, or after a response with Buffer Memory System Error
status, the PFAR contains the memory address at which the failure occurred. The address may
be the exact failing address, an address in the same page as the exact failing address, or, in
the case of DSE, an address in some part of the data structure. For DSE, PFAR contains a
virtual address or offset, while for MSE and Buffer Memory System Errors, the PFAR contains
a physical address. For MTE and DE, the interpretation of the address is error-dependent; see
Appendix E for details.

Since the port continues command execution and packet processing after Buffer Memory
System Errors, the PFAR is overwritten if subsequent errors occur. For DSE, MSE, and MTE
errors the PFAR is effectively fixed since the port enters the disabled, disabled/maintenance, or
uninitialized state.

PFAR is read only by the port driver and readable after a DSE, MSE, MTE, or DE error, or after
a response with Buffer Memory System Error status. Its value at any other time, or following a
write to it, is UNPREDICTABLE.

4.1.5 Port Parameter Register (PPR)

3 22 111

1 98 654 87 0
t—+—+—+—±—+—+—t—t—t—t—t—t—t—-t—±—±—t—t—t—t—t—t—t—t—t—t—t—t—t—t—t—t

I csz IBUFLEN 0 ISDI PORT_NO
+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+-+—+—+—+—+—+—+—+-+—+—+—+

This register contains port implementation parameters and the port number. The value of the
PPR is set by the port during initialization and is valid when PSR< PlC > is set.

HOST-ADDRESSABLE DEVICE REGISTERS 4-5



PPR is read oniy by the port driver. Its value at any other time, or following a write to it, is
UNPREDICTABLE.

bits name description

31:29 CSZ Cluster Size. For SHAC, the value always is 0,
indicating a maximum of 16 ports on the DSSI bus.
(Note that the DSSI architecture only allows up to 8
ports on the bus, but 16 is the smallest size defined
for the CSZ field.)

28:16 IBUFIEN Internal Buffer length. Indicates size of internal
buffers available for message and data transfers.
Maximum data packet IBUFJEN - 16 bytes.
Maximum message or datagram length = IBUFLEN.
For SHAC, the value is 4112 (1010 hexadecimal).

14:8 ISDI Implementation Specific Diagnostic Information. The
bits in this field contain information about the local
adapter’s link layer configuration. for SHAC, the
definitions of these bits are TBD.

7:0 PORTNO Port number. This is the same as the SHAC’s DSSI
ID.

4.1.6 Port Control Registers

3
1 10

±— +— +— -F— +— +— +—+—+—+ —+— +— +—t—t— — t— ±— +— t—t— -t-— -t-— +— t— t—t— t— t— t— t— t— t

I IN!
I NBZ RI
I Ill
+—-—#—+——-1-—4-—--—#—#—-l-—4-—+—#—+—+—+—+—+—+—+—-1-—+—+—+—+—+—+—+—+—+—+—+

The port control registers are 32-bit registers which are write-only by the port driver. To invoke
the function provided by any of the control registers, the port driver writes a “1” to the register.

The result of writing any other value to any of these registers is UNPREDICTABLE. The value
read from any of them is also UNPREDICTABLE.

4.1.6.1 Port Command Queue 0 Control Register (PCQOCR)

When the port driver inserts an entry in an empty CMDQO, the port driver writes PCQOCR to
initiate port execution of the Command Queue. PCQOCR can be written only when the port is
in the enabled or enabled/maintenance state. Writing to PCQOCR when the port is in any other
state has no effect.

4.1.6.2 Port Command Queue 1 Control Register (PCQ1CR)

Same as PCQOCR except refers to CMDQ1.

4-6 HOST-ADDRESSABLE DEVICE REGISTERS



4.1.6.3 Port Command Queue 2 Control Register (PCQ2CR)

Same as PCQOCR except refers to CMDQ2.

4.1.6.4 Port Command Queue 3 Control Register (PCQ3CR)

Same as PCQOCR except refers to CMDQ3.

4.1.6.5 Port Datagram Free Queue Control Register (PDFQCR)

When the port driver inserts an entry on the DFREEQ and the latter was previously empty, the
port driver writes PDFQCR to indicate the availability of DFREEQ entries. PDFQCR can be
written only if the port is in the enabled or enabled/maintenance State. Writing to PDFQCR when
the port is in any other state has no effect.

4.1.6.6 Port Message Free Queue Control Register (PMFQCR)

Same as PDFQCR except refers to MFREEQ.

4.1.6.7 Port Status Release Control Register (PSRCR)

After the port driver has received an interrupt and read the PSR, it returns the PSR to the port
by writing PSRCR.

4.1.6.8 Port Enable Control Register (PECR)

The port driver enables the port by writing PECR. PECR is ignored if the port is in the uninitial
ized , uninitialized/rnaintenance , enabled , or enabled/maintenance state.

41.6.9 Port Disable Control Register (PDCR)

The port driver disables the port by writing PDCR. When the port is disabled, the port sets
PSR<PDC> and (if interrupts are enabled) requests an interrupt. PDCR is ignored if the port
is in the uninitialized , uninitialized/maintenance , disabled, or disabled/maintenance state.

4.16.10 Port Initialize Control Register (PICR)

The port driver initializes the port by writing PICR. When the initialization is complete, the
port sets PSR<PIC> and (if interrupts are enabled) requests an interrupt. As part of the
initialization, the maintenance timer is set to expire in 100 seconds.

4.1.6.11 Port Maintenance Timer Control Register (PMTCR)

The port driver forces the maintenance timer to reset its expiration time by writing the PMTCR.
If the PMTCR is not written again before the expiration time, the port will enter the ;tnini
tialized/maintenance state, setting PSR < ME > and (if interrupts are enabled) requesting an
interrupt. PMTCR is ignored if the maintenance timer is not running.

HOST-ADDRESSABLE DEVICE REGISTERS 4-7



4.1.6.12 Port Maintenance Timer Expiration Control Register (PMTECR)

The port driver forces a Maintenance-Timer-Expiration Interrupt by writing the PMTECR. This
register may be written only when the port is in the enabled , enabled/maintenance, disabled, and
disabled/maintenance states and only while the Maintenance Timer is not disabled.

4.1 .7 Port Maintenance Control And Status Register (PMCSR)

3
1 543210

+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+

HISIIIMIMI
I R B S E R V E 0 AIIFITII
I CM DIN
I I II I I I

This register is used for maintenance level control and status reporting. The CI Port specifi
cation defines all but the 2 least significant bits as implementation-specific. The bits can be
divided into the following catagories:

. Status bits are set by the port to report various conditions. They are cleared by mainte
nance initialization or clearing the condition in another register. SHAC’s PMCSR does not
include any status bits at this time.

. Function control bits are read/write by the port driver only, and read only by the port. They
are cleared by chip reset. These bits are of two classes:

1. mit: this type of bit invokes a function (e.g. initialization) by setting it. It always reads
as zero, except while the function is active.

2. Enable/disable: this type of bit causes an activity or state to exist while the bit is set.
Clearing the bit stops the activity or changes the state. The bit always reads the most
recently written value. The bit is never changed by the port.

4-8 HOST-ADDRESSABLE DEVICE REGISTERS



bit name description

4 HAC Host Access feature. MBZ, except for diagnostic purposes. Its use is
described in Appendix D. This is an enable/disable class control bit.

3 SIMP Simple SHAC mode. MBZ, except for diagnostic purposes. This is an
enable/disable class control bit.

2 lB Interrupt Enable. When set, interrupts from the port to the host
are enabled. Power-up state is clear (interrupts disabled). This is an
enable/disable class control bit.

1 MTD Maintenance Timer Disable. Read/write by driver. If set, the main-
tenance timer is turned off. Timer is set to the initial value and
suspended. If clear, timer functions normally. Power-up state is clear
(timer enabled). This is an enable/disable class control bit.

0 MIN Maintenance mit. Writing a “1” to this bit resets the port. Upon
completion, the port is in the uninitialized state and MIN is clear.
Writing a “0” to this bit has no effect. It always reads as zero, except
while the reset function is active.

Although Maintenance mit resets the port, it is not equivalent to a
write to the SHAC Software Chip Reset register. See Chapter 5 for
further information.

4.2 SHAC Specific Registers

These registers, which are not defined in the CI Port Architecture, are used for additional
maintenance level control.

4.2.1 SHAC Software Chip Reset (SSWCR)

3
1 0

I YR1 I

When the port driver writes FFFF FFFF (all bits set) to this register, a chip reset is performed.
The result is equivalent to that of the reset that occurs following system power-up. On corn-
pletion, all device registers are reset to their power-up state, and the port is in the uninitialized
state.

SSWCR is write only by the port driver and may be written to at any time. Its value when read
is UNPREDICTABLE. The results if other values are written to it are also UNPREDICTABLE.

HOST-ADDRESSABLE DEVICE REGISTERS 4-9



4.2.2 SHAC Shared Host Memory Address (SSHMA)

332

109 43 0
+-+—+—+-+-+-+-+-+—+-+-+—+—+—+-+-+—+-+-+-+—+—+—+-+—+—+—+—+-+—+—+—+

MBZI SSHMA<29:4> I MBZ
+-+—+—+—+—+—+—+—+—+—+—+—+—+—+-+-+—+—+-+—+—+—+—+—+—+—+—+—+—+—+—+—+

Following chip reset, the host writes into this register the physical address of the Shared Host
Memory Header that is described in Chapter 5. This header must be octaword aligned and
contiguous in physical memory.

SSHMA is read/write by the port driver, but may be written only when the port is in the
uninitialized state. Writing when the port is in any other state can produce unpredictable
results.

4.3 SHAC Device Register Map

This diagram shows the layout of the entire set of SHAC registers as they appear in the host
bus address space. The offsets shown are from the base of the 512-byte SHAC register region.
(Chapter 6 describes the region base addresses.)

OFFSET OFFSET

(HEX) (HEX)

0 I RESERVED /
/ /

+ +

I PCQOCR I
+ +

I PCQ1CR I
+ +

I PCQ2CR I
+ +

I PCQ3CR

+ +

I PDFQCR I
+ +

I PMFQCR

+ +

I PSRCR

+ +

/ /
/ RESERVED /
/ /

+ +

I SSWCR

+ +

/ /
/ RESERVED /
/ /

+ +

I SSHNA I
+ +

I PQHBR I
+ +

I PSR I
+ +

I PESR I
+ +

I PFAR

+ +

I PPR I
+ +

I PMCSR

+ +

/ /
/ RESERVED /
/ /

2C

30

34

40

44

48

4C

50

54

58

Sc

60

80

84

88

8c

90

94

98

9c

A0

A4

A8

Ac

+ +

I PECR I
+ +

I PDR I
+ +

I PicR

+ +

I PMTCR I
+ +

I PMTECR I

/
/
/

RESERVED

I HO

/
/
/

I lFc

4-10 HOST-ADDRESSABLE DEVICE REGISTERS



Chapter 5

DETAILS OF HOST-SHAC COMMUNICATION

5.1 CI Port Functionality

This section describes various aspects of SHAC implementation of the CI Port Architecture.

5.1.1 Port States

SHAC implements all 6 of the CI Port states, as shown in Figure 5—1. In addition to the state
changes listed in the architecture, a port driver write to the SSWCR at any time causes a chip
reset, following which the port is in the uninitialized state.

5.1.2 Chip Initialization

Following power-up, a port driver write to SSWCR, or a port driver write of 1 to PMCSR<MIN>
(a MIN-bit reset), the SHAC and port driver perform certain initialization functions. This Chip
Initialization is done in the uninitialized state, and concludes with CI Port initialization, which is
triggered by a host write to PICR.

This section describes the sequence of Chip Initialization, which starts with either Chip Reset
or MIN-Bit Reset.

DETAILS OF HOST-SHAC COMMUNICATION 5-1



Figure 5—1: SHAC Port State Diagram

Power-up-> * UNINIT *

MTE, YIN, *

sswcR *

* *<___+ T
************* I I

I I MI
I I + + B I
CI PMTCR RI
RI I

V I
************* I
* * +

* DISABLED *

+___>* *

PDCR I
PICR I
MSE I
DSE I

*

************* I
I I I
F I + +

CI PMTCR/

RI PICR

UNINIT? *

MAINT *

+ >* *<

+ >*

I I T

I I II
I II IN
I CI IE
I RI IR
I I 1<-->

I V I

I DISABLED! *____+

I MAINT *

I
I -———> * I

I I
+ + F I

PMTCR/ CI
PICR RI

5.1.2.1 Chip Reset

TIMER = maintenance timer expiration = PMTECR

Chip Reset occurs upon power-up, and also when the host writes FFFF FFFF to SSWCR.
The results of these 2 events are identical; in fact, the SHAC internal code has no way of
distinguishing between them.

Following Chip Reset, the SHAC performs various self-test functions. These may take up to
100 milliseconds, during which time the host may not read or write any SHAC register, except
SSWCR.

After waiting for at least 100 milliseconds following Chip Reset, the host can determine whether
or not the SHAC passed its self-test by examining the Port Status Register. If it passed,
PSR<MTE> will be clear, and the host can proceed as described in Section 5.1.2.3 below.
If an error was detected, PSR<MTE> and PSR<DE> will be set, with further information
supplied in other registers as specified by Appendix E.

T IMER * * * * * * * * * * * * *

* >* *

PDCR

PICR

MSE

DSE

+———— *

V I

* * TIMER I
* ENABLED * +

************* I

+ +

V

* ENABLED/ *____+

* PlAINT *

PMTCR PMTCR I
+ +

5-2 DETAILS OF HOST-SHAC COMMUNICATION



Following the occurrance of a Diagnostic Error, the SHAC is in the uninitialized state. Such
an error normally indicates a SHAC hardware failure. If the host believes that the SHAC is
usable, despite this error, it can proceed with a MIN-Bit Reset.

5.1.2.2 MIN-Bit Reset

This is triggered by the host writing 1 to the MIN bit in PMCSR. The initialization that follows
that may take up to 50 microseconds, during which time the host may not read or write any
SHAC register, except SSWCR.

After waiting for at least 50 microseconds following MIN-Bit Reset, the host can proceed as
described in Section 5.1.2.3 below.

5.1.2.3 Common Initialization

This section describes the initialization done following that for Chip Reset or MIN-Bit Reset.
Throughout this initialization, the port is in the uninitialized state.

The port driver must write to the SSHMA register the physical address of the Shared Host
Memory Header Area. Shared Host Memory is described in detail in Appendix C. A value of
3FFF FFFF may be written if there is no Shared Host Memory, as discussed there.

NOTE

Shared Host Memory must be present for full normal operation. If 3FFF FFFF is
written to SSHMA, an attempt to read in an External Segment will cause SHAC to
report an Illegal Segment Number Maintenance Error, as described in Appendix E.
All of the following involve External Segments:

. generating an ID packet;

. responding to a host write to PDCR;
I processing a RDCNT command;
. processing a SETCKT command;
. processing any self-directed command.

Following the write to SSHMA, the port driver can request initialization of the port (as distin
guished from Chip Initialization) by writing 1 to PICR. Port initialization, if successful, results
in a change to the disabled state.

Following the writes to SSHMA and PICR, the port should poil PSR until the operations have
completed or an error occurs. The maximum amount of time for this will be no more than
100 milliseconds; the actual time will be far less, however, unless the Shared Host Memory
includes time-consuming External Code Segments that are executed at this time.

PSR should be polled until one of the following occurs:

1. If PSR<MTE> is set, a Maintenance Error has occurred. Further information about the
error can be found as described in Chapter 4. This normally indicates a SHAC hardware
or software failure. If the host believes that the SHAC is usable, despite this error, it can
proceed with a MIN-Bit Reset.

DETAILS OF HOST-SHAC COMMUNICATION 5-3



2. If PSR<PIC> is set, the Shared Host Memory has been read and the port initialized. The
port is now in the disabled state, and the port driver should proceed as follows.

At this point, the port driver may enable interrupts from the port to the host, by setting
PMCSR<IE>. It then should check PSR, making sure that no bits other than FTC were set in it
before the interrupts were enabled.

Since the port is in the disabled state, the port driver should now write PQB < 29:9 > to PQBBR,
and then 1 to PECR to enable the port. Once this is done, normal operation begins.

5.1 .3 Subnode and Full Sequence Number Support

These functions are quite independent of each other, but both are defined in ECO #2 to DEC
Standard 161 and ECO Y87M9-1 to CI Port.

As permitted by the two ECO’s, SHAC does not support subnode addressing, but does support
Full (3-bit) Sequence Numbers.

5.1.3.1 SETCKT Command

Y87M9-1 specifies how a node supporting Full Sequence Numbers should implement Virtual
Circuit Descriptors and the SETCKT command. It does not, however, specify how a port
should respond if the host attempts, via a SETCKT command, to put an illegal value in the
VCD.

For SHAC, an illegal value is one in which

I VCI)< 14:13 > would be non-zero;
. VCD< 11 > would be non-zero; and/or
I VCD<FSN> would be zero.

SHAC responds to such a situation by returning an UNRCMD response.

5.1.4 Supported Opcodes

The following CI Port command and CI packet opcodes are supported:

. send DC/receive DC

. send MSC/receive MSC

. send SNTDAT/receive CNF

. receive SNTDAT/send CNF

. send DATREQ{O,1,2}/receive RETDAT
I receive DATREQ{O, 1,2}/send RETDAT
. send IDREQ/receive ID
. receive IDREQ/send ID

5-4 DETAILS OF HOST-SHAC COMMUNICATION



. send RST

. send STRT
I send/receive LB
a INVTC
I SETCKT
. RDCNT

5.1.5 Unsupported Opcodes

CI Port ECO Y87M11-2 specifies that the following CI Port command and CI packet opcodes
are optional; SHAC treats commands and packets with these opcodes as unrecognized.

. receive RST-STRT

. send SNTMDAT/receive MCNF

. receive SNTMDAT/send MCNF
I send MDATREQ/receive RFTMDAT
. receive MDATREQ/send RETMDAT

CI Port ECO Y87M9-i and DEC Standard 161 FCC #2 specify that the following CI Port
command and CI packet opcodes are optional; SHAC treats commands and packets with these
opcodes as unrecognized.

I send PSREQ/receive PSRFT
. receive PSREQ/send PSRET

5.1 .6 Maintenance/Sanity Timer

The Maintenance/Sanity Timer is implemented as specified in CI Port, with one modification.
When the port enters the uninitialized state, the Timer is not started until after Shared Host
Memory has been read (or the host has written 3FFF FFFF to SSHMA). Thus, a timer expiration
and transition to the uninitialized/maintenance state cannot occur until after that.

DETAILS OF HOST-SHAC COMMUNICATION 5-5



5.1.7 ID Packet Configuration Information

The values for some of the fields of an ID packet are implementation-dependent; the following
are placed in ID packets generated by SHAC:

5.1.8 Data Packet Base Size

CI Port ECO Y87M11-1 specifies that support for the 576-byte Base Size is optional; SHAC
does not support it. A command with P = 1 in the flags byte will be treated as an Unrecognized
Command; a packet with P = 1 will be treated as Unrecognized Packet.

5.1.9 Path Select

SHAC supports only a single path, path 0. In processing commands, the Path Select field is
ignored, as specified by section 6.1 of the CI Port Architecture. The portion of section 2.4
dealing with single path ports, which contradicts 6.1, is not followed.

name bits value (hex) description

MAINTJD 31 0 indicates single path interface

30:0 22 SHAC’s maintenance ID

CODEREV 31:0 SHAC version information. This is the same as
that displayed in PQBBR following chip reset,
except that the SHM Version will never be 0 (since
an ID packet cannot be generated unless Shared
Host Memory is present).

PORTFCN 31:0 FFFF ODOO port functionality supported by SIHEAC

PORTFCNEXT 31:29 0 Cluster Size. This is the same as that displayed in
(1st longword) PPR< 31:29 > following port initialization.

28:16 1012 Maximum Body Length. This is 2 more than the
IBUFLEN displayed in PPR< 28:16 > following port
initialization.

13:11 0 CI configuration information not applicable to
SHAC.

7:0 0 Subnode Member which last reset the port; not
applicable to SHAC.

PORTFCNEXT 15 0 Subnode Addressing is not supported.
(2nd longword)

14 1 Full Sequence Number is supported.

13 0 Subnode Map is not valid.

7:0 0 Number of Polling Group Members implemented
on this node; not applicable to SHAC.

5-6 DETAILS OF HOST-SHAC COMMUNICATION



5.1.10 Self-Directed Commands

SHAC fully supports self-directed commands. Such a command causes SHAC to transfer the
command or data from the host memory source, first to SHAC internal RAM, and then to the
host memory destination.

Because there is no hardware support for self-directed commands, they will generally take
longer to execute than commands directed to a remote node. Processing of self-directed
commands, as with non-self-directed ones, may be interrupted by reception of packets on the
DSSI bus.

5.1.11 Loopback Commands

Neither the SHAC nor the DSSI hardware includes a specific loopback mechanism. Therefore,
SHAC implements self-directed SNDLB commands in a way similar to that of other self-
directed commands, transferring the loopback text from the host memory source to SHAC
internal RAM, and from there to the host memory destination.

5.1.12 Sequentiality and Prioritization

SHAC follows the rules for sequentiality and prioritization specified by DEC Standard 161 and
the CI Port architecture, including FCC Y87M11-1 to the latter.

5.1.13 Caching of Host Queue Entries

To minimize the time spent in queuing and dequeuing of host queue elements, SHAC will avail
itself of the CI privilege of caching both empty and “in process” elements.

At any given moment, a SHAC may hold up to 31 queue entries that have been removed from
host command and free queues, including up to 16 each of the datagram (unsequenced) and
message (sequenced) types.

There may be up to 4 empty entries of each type, containing commands which have completed
successfully, that could be placed on the DFREEQ or MFREEQ. SHAC pre-fetches free queue
entries when it is otherwise idle, in addition to saving “used” entries.

DETAILS OF HOST-SHAC COMMUNICATION 5-7



5.1.14 Power Failure

SHAC detects assertion of the Power Fail line on the host bus. Its response depends on what
state it is in at the time.

. If the port is in the enabled or enabled/maintenance state, SHAC writes the addresses of all
internally held datagram and message queue entries to the corresponding logout areas of
the Port Queue Block. It then enters the uninitialized state.

. If the port is in the disabled, disabled/maintenance, uninitialized, or uninitialized/maintenance
state, it is not permitted to access host data structures. Therefore, it could not have been
holding any such entries, so simply enters (or remains in) the uninitialized state.

5.1.15 Memory Management Mode

CI Port FCC Y87M08-1 defines different modes of host bus addressing, any or all of which may
be supported by a given port. SHAC supports only the 30-bit VAX addressing mode.

When the SHAC reads the contents of the Port Queue Block, following a host write to the
Port Fnable Control Register, it checks the value of the FUNCTION_MASK field defined
in Y87M08-1. If the MMM field is not zero, an Unsupported Memory Mapping Mode Data
Structure Frror is reported, and the port is disabled.

5.1.16 Event/Performance Counters

SHAC maintains all of the counters defined in section 4.9.1 of the DSSI specification.
However, only those counters listed in the CI Port spec are returned in the CNTRD response to
a RDCNT command. The remaining counters are accessible only via the Host Access Feature.

5.1.17 SHAC Operation with Interrupts Disabled

It is assumed that under normal cirumstances, interrupts from the SHAC will be enabled
during initialization, as described in Section 5.1.2.3. However, it is possible to run SHAC with
interrupts disabled, instead.

To do this, the host periodically polls PSR to see if any bits are set, instead of waiting for an
interrupt. When it detects one or more PSR bits set, it then reads any other SHAC registers
that may contain information regarding the event that caused the bit(s) to be set. Then, before
writing 1 to PSRCR, the host writes 0 to PSR; this will allow it to detect the next time that
SHAC sets a bit in that register.

5-8 DETAILS OF HOST-SHAC COMMUNICATION



5.1.18 Last Packet Implicit Butler Invalidation

Section 3.3.1 of CI Port states that after processing a (sent or received) data packet with the Last
Packet flag set, any cached address translations for that buffer are invalidated.

SHAC clears the translations only for the transaction associated with that particular data packet.
If there are other transactions using that same buffer, address translations for them are not
invalidated. This should not cause any problems.

5.2 DSSI Sequence Completion Status

In a CI Port response, the STATUS field sometimes includes the “result of last use of path”,
which may be ACK, NAK, NO_RSP, or ARBTIMEOUT. In addition, both CI Port and DSSI
specify counters for occurrances of ACK, NAK, and NO_RSP status. However, the DSSI spec
does not define in detail the difference between NAK and NO_RSP.

The following pseudo-code describes how SHAC (as initiator) defines a sequence’s completion
status, based on the information reported by the SHAC hardware.

IF (the sequence does not reach Status In)
THEN the status i.s NORSP

ELSE
IF (SHAC receives a Status In byte) AND (the bus is released) AND

(there are no errors on the bus)
TEEN

IF (the target received all Data Out bytes before going

to Status In)
THEN

IF the Status In byte is 61 hex
THEN the status is ACE
ELSE the status is NAK

ELSE the status is NAK
ELSE

IF (a parity error occurs) AND (the bus is released) AND
(there are no other errors on the bus)

THEN the status is NAK
ELSE the status is NORSP

5.3 DSSI Retries

When an error occurs in sending a packet on the DSSI bus, SHAC will retry the transmission.
The retry algorithm conforms to the requirements agreed upon in the DSSI conference in June,
1989.

The algorithm includes a number of parameters, which are read in from Shared Host Memory
at initialization time. (Appendix C includes a list of these and other parameters stored in
Shared Host Memory.) This will allow system designers to tune SHAC’s retry algorithm
without modifying the SHAC itself.

While a packet is awaiting retry, no other packet will be transmitted to the same node.
Additional commands to send packets to that node will not be processed during that time,
regardless of their priority with respect to that of the packet awaiting retry.

DETAILS OF HOST-SHAC COMMUNICATION 5-9



While a packet is awaiting retry, packets will be transmitted to other nodes. Commands to
send packets to those nodes will be processed during that time, regardless of their priority with
respect to that of the packet awaiting retry.

5.3.1 Immediate Retries

The first “Number of Immediate DSSI Retries” times that the packet fails with a NAK status,
it will be requeued for Immediate Retry. The term Immediate Retry means that the minimum
delay between retries of a packet is on the order of 100 microseconds, though packets may be
sent to other nodes between those retries. This minimum can be increased by means of the
Idle Counter for Immediate Retries parameter in Shared Host Memory.

If a packet fails with a NO_RSP status during the first “Number of Immediate DSSI Retries”
times, no further immediate retries are done. Instead, the packet is requeued for Delayed
Retry.

The parameter “Idle Counter for Immediate Retries “ may be set to a nonzero value, which will
force a minimum delay between these retries. The precise correlation between this parameter
and the delay time depends on the SHAC’s internal code and the hardware environment
around the chip.

5.3.2 Delayed Retries

If the final Immediate Retry fails, the packet will be requeued for Delayed Retry up to “Number
of Delayed DSSI Retries” times. Each Delayed Retry will be done as follows:

1. The packet will be held for a period of up to 10 milliseconds. During this time, packets
may be sent to other nodes.

2. A “coin-flip” decision be made, determining whether or not the packet should be retried.
If the decision is “no”, and the number of consecutive “no’s” for this packet does not
exceed the “Maximum Number of Coin-Flips “ parameter, the packet is held for another 10
milliseconds.

3. If the decision is “yes”, or if the number of consecutive “no’s” for the packet does exceed
the limit, the packet is retried.

5-10 DETAILS OF HOST-SHAC COMMUNICATION



Chapter 6

HOST BUS OPERATION

This chapter discusses the logical interactions between SHAC and the host bus.

6.1 Description of the Bus Cycles

Note that there is a differentiation between logical cycles and physical cycles. In this chapter
logical cycles will always be prefixed with the cycle type (such as Bus Cycle, Read Cycle etc.).
A physical cycle (which is nominally a lOOnsec period which consists of four internal phases)
will be reffered to simply as a cycle.

The SHAC is directly compatible with the CP_bus, and supports the following bus cycles:

. longzvord DMA read and write

. octaword DMA read and write

. longword DMA read_lock/writeunlock

. CPU read and write of SHAC registers

. interrupt acknowledge

. DMA grant

The SHAC will support a burst mode wherein the SHAC may transfer (bursLsize) longwords
before releasing the bus. The burst size may be written into the SHAC by the host during
initialization of the SHAC.

HOST BUS OPERATION 6-1



6.1.1 Longword DMA Read Cycle

In a longword DMA read cycle, the SHAC reads one longword from host memory. A longword
DMA read cycle requires a minimum of three cycles.

The steps in the longword DMA read-cycle are laid out in Table 6.1.

Table 6-1: Longword DMA Read Cycle

Typical

Cycle Phase Changes on the bus

3 The SHAC drives the address onto DAL<29:02>. DAL<31:30> are driven1to 01 to
indicate longword transfer. WRJ is deasserted.CS/DPL<2:O> are driven to 111
(demand D stream read), CS/DPL< 3 > is driven to one if synchronous mode and to
zero otherwise.

4 BML<3:O> are all asserted.

1 The SHAC asserts ASL, indicating that the address is valid.

2 The SHAC deasserts DAT<31:O>.

2 3 The SHAC asserts DSL, indicating that the DAL bus is free to receive incoming
data.

3. . . 1 The SHAC then tests for cycle complete (RDYL or ERRJ asserted) once every cycle.
In a normal, error-free transfer, data is driven onto DAL<31:O>. RDY.L is asserted
with ERR L deasserted and SHAC reads the data from the DAL bus , data parity
from the CS/DP_L and samples DPE L. If DPBL is asserted,the SHAC checks for a
parity error. Should a bus error occur (e.g. , timeout), external logic will respond

by asserting ERRL with RDYJ deasserted2 . The SHAC shall ignore the data on
DAL<31:O>.

2 Without regard to how a longword DMA read cycle is terminated, the SHAC
finishes the cycle by deasserting ASL and DS L.

1 The terms driven, assertion and deassertion will be extensively used in this chapter . Assertion is used to indicate
that a signal is TRUE, independent of its polarity. Deassertion is used to indicate that a signal is inactive. Driven is
used to indicate that a particular set of hit values are put on the set of lines.

2This will be reported by SHAC as an error.

6-2 HOST BUS OPERATION



6.1 .2 Longword DMA Write Cycle

In a longword DMA write cycle, the SHAC writes a single longword of information to host
memory. A longword write cycle requires a minimum of three cycles.

The steps in the longword DMA write cycle are laid out in Table 6.2.

Table 6-2: Longword DMA Write Cycle

Typical

Cycle Phase Changes on the bus

1 3 The SHAC drives the address onto DAL<29:02>. DAL<31:30> are driven to 01
to indicate longword transfer. CCTLL and WRJ are asserted.CS/DPL<2:0> are
driven to 111 (write no unlock), CS/DP L< 3 > is driven to one if synchronous mode
and to zero otherwise.

4 BML<3:0> are asserted as required.

1 The SHAC asserts AS L, indicating that the address is valid.

2 3 The SHAC drives DAL< 31:0 > with valid data, CS/LW L< 3:0 > with valid parity
and asserts DS_L and DPEL.

3. . . 1 The SHAC then tests for cycle complete (RDYJ. or ERRI asserted) once every cycle.
RDYL is asserted with ERR L deasserted. Should an error occur (e.g., timeout),
external logic will respond by asserting ERR L with RDYJ. deasserted.

2 Without regard to how a longword DMA write cycle is terminated, the SHAC
finishes the cycle by deasserting ASL and DSL.

HOST BUS OPERATION 6-3



6.1.3 Octaword DMA Read Cycle

In an octaword DMA read cycle, the SHAC reads four consecutive longwords but specifies the
address only for the first data transfer. This mode will be used by SHAC only if bursts of 4
longwords or more are allowed and if the OE bit in the HCR register is set.

An octaword DMA read cycle requires a minimum of nine cycles.

The steps in the octaword DMA read-cycle without error are laid out in Table 6.3. In case of
an error response (ERR_L asserted with RDYL deasserted) in either of the four longwords
transfers, the SHAC will complete only the current transfer and release the bus.

Table 6-3: Octaword DMA Read Cycle

Typical

Cycle Phase Changes on the bus

1 3 The SHAC drives the address of the first longword onto DAL< 29:02 > . This
address will always be octaword aligned. DAL< 31:30 > are driven to 11 to indicate
octaword transfer. WRL is deasserted.CS/DPL<2:O> are driven to 111 (demand
D stream read), CS/DPL< 3 > is driven to one if synchronous mode and to zero
otherwise.

4 BML<3:O> are all asserted.

1 The SHAC asserts AS L, indicating that the address is valid.

2 The SHAC deasserts DAL<31:O>.

2 3 The SHAC asserts DS L, indicating that the DAL bus is free to receive incoming
data.

3. . . 1 The SHAC then tests for transfer complete (RDY..I or ERRJ asserted) once every
cycle. In a normal, error-free transfer, data is driven onto DAL<31:O>. RDYj is
asserted with ERR L deasserted and SHAC reads the data from the DAL bus, data
parity from the CS/DPL and samples DPEJ. If DPE. L is asserted,the SHAC checks
for a parity error.

2 The SI1AC finishes this transfer by deasserting DSL.

5,7,9 The SHAC tests again for next transfer complete (RDY L or BRRJ asserted) once every
cycle and reads the next three longwords from the DAL bus as it did for the first,
finishing each transfer by deasserting DS.L.

9 2 The SHAC finishes the octaword transfer by deasserting ASL.

6-4 HOST BUS OPERATION



6.1 .4 Octaword DMA Write Cycle

In an octaword DMA write cycle, the SHAC writes four consecutive longwords but specifies
the address only for the first data transfer. This mode will be used by SHAC only if bursts of 4
longwords or more are allowed and if the QE bit in the HCR register is set.

An octaword DMA write cycle requires a minimum of nine cycles.

The steps in the octaword DMA write cycle without error are laid out in Table 6.4. In case
of an error response (ERR_L asserted with RDYJ deasserted) in either of the four longwords
transfers, the SHAC will complete the whole octaword DMA write cycle, and only then release
the bus.

Table 6—4: Octaword DMA Write Cycle

Typical

Cycle Phase Changes on the bus

1 3 The SHAC drives the address of the first longword onto DAL< 29:02 > . This
address will always be octaword aligned. DAL< 31:30 > are driven to 11 to indicate
octaword transfer. CCTL L and WRL are asserted,CS/DPL< 2:0 > are driven to
111 (write no unlock). CS/DPL<3> is driven to one if synchronous mode and to
zero otherwise.

4 BML<3:O> are asserted as required.

1 The SHAC asserts ASL, indicating that the address is valid.

2 3 The SHAC drives DAL< 31:0 > with valid data, and asserts DSL and DPEL.

3. . . 1 The SHAC then tests for transfer complete (RDYi or ERR I asserted) once every
cycle. In a normal, error-free transfer, data is driven onto DAL<31:O> and parity
data is driven onto CSIDPL<3:O>.. JJJ is asserted with ERRJ deasserted and
SHAC reads the data from the DAL bus.

2 The SHAC finishes this transfer by deasserting DS. L.

5,7,9 The SHAC tests again for next transfer complete (RDY.L or ERR 1. asserted) once every
cycle and writes the next three longwords from the DAL bus as it did for the first,
finishing each transfer by deasserting DSL. CCTLL is asserted again when DSI is
asserted for the 3rd longword.

9 2 The SHAC finishes the octaword write cycle by deasserting AS I.

HOST BUS OPERATION 6-5



6.1.5 Longword DMA read_lock/write_unlock Cycle

The longword DMA read_lock/write_unlock cycle, is used by the SHAC for semaphore opera-
tions. In the read_lock part of the cycle, the SHAC attempts to read one longword from host
memory. The system will either accept the read_lock attempt by asserting ready, or refuse
it, due to memory already locked, or for any other reason, by asserting RDY_L with ERR_L
asserted (retry response),

In case of a successful read_lock, the SHAC will continue to assert DMR_L, thus holding the
bus while it processes the read data. After a maximum of 20 cycles, the SHAC performs a
write_unlock cycle and releases the bus.

In case of retry response, the SHAC finishes the read_lock cycle and releases the bus. After a
maximum of 20 cycles, the SHAC will retry the read_lock/write_unlock cycle.

The steps in the longword DMA read_lock/write_unlock cycle without error are laid out in
Table 6.5.

Table 6-5: Longword DMA Read_lock/Write_unlock Cycle

Typical

Cycle Phase Changes on the bus

1 3 The SHAC drives the address onto DAL.<29:02>. DAL<31:30> are driven to 01
to indicate longword transfer. WRL is deasserted.CS/DPL<2:0> are driven to
101 (readlock). CSIDP L< 3 > is driven to one if synchronous mode and to zero
otherwise

4 BML<3:0> are all asserted.

1 The SHAC asserts ASL, indicating that the address is valid.

2 The SHAC deasserts DAL<31:0>..

2 3 The SHAC asserts DSL, indicating that the DAL bus is free to receive incoming
data.

3. . . 1 The SHAC then tests for cycle complete (RDYL and/or ERRJ asserted) once every
cycle. In a normal, error-free transfer, data is driven onto DAL<31:0>. RDYL is
asserted with ERRL deasserted and SHAC reads the data from the DAL bus, data
parity from the CS/DPL and samples DPEJ. If DPEL is asserted,the SHAC checks
for parity error.

2 The SHAC finishes the cycle by deasserting AS. L and DSJ.

The SHAC takes at most 20 cycles (2.0 tsec typical) to process the input data and
prepare it to return to the host memory. During that interval it holds the host bus.
As soon as it finishes, it performs a write_unlock cycle.

3 The SHAC drives the address onto DAL< 29:02 > . DAL< 31:30 > are driven to 01
to indicate longword transfer. CCTL_L and WR_L are asserted. CS/DP_L<2:0> are
driven to 101 (write unlock). CS/DP_L< 3 > is driven to one if synchronous mode and
to zero otherwise.

4 BML<3:0> are asserted as required.

1 The SHAC asserts ASL, indicating that the address is valid.

2 3 The SHAC drives DAL< 31:0 > with valid data, and asserts DS_L and DPE_L.

6-6 HOST BUS OPERATION



Table 6—5 (Cant.): Langward DMA Read_lack/Write_unlack Cycle

Typical

Cycle Phase Changes on the bus

3. . . 1 The SHAC then tests for cycle complete (RDYJ or ERRL asserted) once every cycle.
RDYL is asserted with ERRL deasserted.

2 The SHAC finishes the cycle by deasserting ASJ and DSL.

HOST BUS OPERATION 6-7



6.2 cpu cycles (SHAC slave)

The CPU may access any of the device registers described in Chapter 4,using either one of the
three pre-allocated SHAC base addresses, or the Chip Select pin.

To define the slave addressing mode, the user should tie pins SELO and SELl as follows

SELl SELO slave addressing mode/base address

0 0 2000 4000

0 1 2000 4200

1 0 2000 4400

1 1 Chip Select mode

Each SHAC is allocated one page in the host address space. The specific device register to be
accessed is identified by the value of DAL< 6:2 > during the address phase, in both the SHAC
address mode and the chip-select mode.

6.2.1 cu Read cycle

The CPU initiates a read cycle by asserting ASL with WRL deasserted, and driving the
DAL bus with the address of the device register to be read. The SHAC latches the address,
CS/DP_L< 2:0 > and WR_L with the asserting edge of ASL . The SHAC keeps the NSHACL
pin deasserted, and drives DAL< 31:0 > with the required data, CS/DPL< 3:0 > with the data
parity and asserts DPEL to signify valid data parity. The SHAC then asserts RDYJ to inform
the CPU that valid data is driven on the DAL bus. The CPU completes the cycle and deasserts
the control lines. The SHAC deasserts RDYL.

A CPU read cycle may last from five to six cycles.

6.2.2 cu Write cycle

The CPU initiates a write cycle by asserting AS_L, asserting WRL, and driving the DAL
bus with the address of the device register to be written. The SHA(1 latches the address,
CS/DPL< 2:0 > and WR_L with the asserting edge of ASL . The SHAC keeps the NSHACJ
pin deasserted, and after DS_L has been asserted, latches the data on DAL<31:0>,data parity
on CS/DP_L< 3:0 > and DPEL and asserts RDY_L to inform the CPU that the data has been
sampled. If DPE_L was asserted, the SHAC checks for parity error. The CPU completes the
cycle and deasserts the control lines. The SHAC deasserts RDYJ.

A CPU write cycle may last from five to six clock cycles.

6-8 HOST BUS OPERATION



6.2.3 Interrupt Acknowledge Cycle

An interrupt acknowledge cycle has the same structure as a CPU Read cycle.

The CPU initiates an interrupt acknowledge cycle by asserting IAKEO_L, driving the IPL on
DAL< 6:2 > with WRL deasserted and writing Oil on the CS/DPL< 2:0 > pins.

The SHAC responds to an interrupt acknowledge cycle if the following conditions are met.

. The SHAC has requested an interrupt (= IRQ_L asserted)
I IAKEI_L is asserted
. The IPL driven on DAL< 6:2 > matches the SHAC programmed IPL

The SHAC then drives DAL< 15:0 > with the appropriate interrupt vector, and asserts RDY_L
to indicate to the CPU that a valid vector is present on DAL bus.

The CPU reads the interrupt vector, and resumes the cycle as for a CPU read cycle. The SHAC
deasserts IRQ_L, RDY_L and tn-states (releases) the DAL bus.

Where IAKEI_L is asserted with one or more of the other conditions not met, the SHAC asserts
IAKEOL to pass the interrupt acknowledge to the next device in the interrupt-acknowledge
daisy chain.

6.3 Bus Arbitration Cycle

After checking that DMGIJ is not asserted, the SHAC requests the host-bus mastership by
asserting DMR_L. SHAC starts the first bus cycle two to three cycles after DMGIL has been
asserted. The SHAC releases the bus by deasserting DMR_L.

6.4 Bus Operating Modes

While master the SHAC can operate in either synchronous or asynchronous mode. Selection
of the bus operating mode is made by setting the SYN bit in HCR register (see Chapter 4).
While slave ,the SHAC always synchronizes input signals but responds synchronously with the
clocks and thus can be accessed either synchronously or asynchronously.

64.1 Synchronous Mode

When the SHAC is master of the host bus in synchronous mode, CS/DPL< 3 > is asserted
during the first part of the bus cycle. The signals RDY_L, ERR_L, DMGI_L are not synchro
nized.

HOST BUS OPERATION 6-9



6.4.2 Asynchronous Mode

When the SHAC is master of the host bus in the asynchronous mode, CS/DP_L< 3>
is deasserted in the first part of the bus cycle. The signals RDY_L, ERRL, DMGI_L are
synchronized.

6.4.3 Burst Limit

The SHAC may be programmed during initialization to a burst limit. The burst limit is de
fined as the maximum number of longwords transfers the SHAC will perform within one bus
arbitration. The burst limit must be a power of two, but less or equal to 64 longwords.

A special burst mode, is when burst limit is set to 1, and the octal access mode is enabled.
In this mode, the SHAC will perform one bus access per arbitration (i.e. AS_L is asserted
only once), but this access may be a single access (one longword) or an octaword access (four
longwords).

6-10 HOST BUS OPERATION



Chapter 7

DssI BUS OPERATION

7.1 Basic Operation

While eight devices can share a common DSSI bus, during information-transfer phases, the
bus may be used only by a pair of them. When two DSSI devices communicate on the bus,
one device acts as initiator and the other device acts as target. Devices can assume either role.
Each device is assigned a unique address or ID on the bus. Each ID is represented by a single
bit in an 8-bit byte. This byte is used both when an initiator contends for the bus and when it
selects a target.

Certain functions are assigned to the initiator and others are assigned to the target. An initiator
arbitrates for the bus and selects a particular target. Once selected the target requests the
transfer of Command, Data or Status. In DSSI the target requests must be given in a specific
order.

During the three data-transfer phases, information bytes (+parity) are sent on the 9 data
lines DB_L<7:O,P> with handshaking. For Command-Out and Status-In, these trans
fers are asynchronous in the sense that each byte is surrounded by a conventional re
quest(REQ)/acknowledge(ACK) handshake-pair. In the Data-Out phase, the transmission is
termed synchronous in the sense that data is asserted in synchronism with the ACK signal (and
held for a period determined only by the sender) rather than being held for periods determined
by the handshakes. The target may send a number of REQs (up to the REQ/ACK offset) which
are then followed by initiator data bytes and ACKs.

7.2 DSSI-Bus Phase Transitions

The DSSI goes through 5 phases for each transfer of information between any two nodes on
the bus. The normal sequence of phases and exceptions are defined in Figure 7—1.

The sequence in Figure 7—1 always begins from the Bus-Free state. Several nodes may contend
for the bus during the Arbitration phase, but only one (the node with the highest ID) will
win the bus. The others must wait until the next Bus-Free phase to try again. In the normal,
downward path in Figure 7—1, the node that wins the bus during Arbitration selects a target
during the Selection phase, and then the pair exchanges three pieces of information during the
next three phases. The target signals Command-Out and the initiator issues a command. The

DSSI BUS OPERATION 7-1



Figure 7—i: DSSI Phase Sequence

aus FreaI< -

v• I

lArbitrationl I
‘ + , I

won ‘— lost ———‘

V I

I Selection I I
‘ : 2 )

f)I V I
I • - I 1)

I Icmdout I I
I ‘ ‘

(5)

HI V I

I I Data OutI I
I I ‘ ‘ ( 7 ) I
I I I ( 6 ) ‘

V V V I

! Status In !

command contains both identity information and the length of the coming data. The target
then signals Data-Out and then data are transferred from the initiator to the target. Finally, the
target asserts Statusjn and returns the status (ACK or NAK—not to be confused with the ACK
of REQ/ACK) to the initiator.

The exception paths in the DSSI transfer sequence are as follows:

1. A third party can always assert RSTL and cause a return to Bus-Free. The
most likely reason for this to occur is that the third party has “timed out”.
Each party has a clock which it uses when it wants to use the bus and which
it starts at the end of Bus-Free. If the bus is not released before that clock
runs out, the third party will then attempt to reset the bus.

2. If a target fails to respond to selection (selection timeout) SHAC as mi-
tiator will do a smooth release of the bus without asserting RST_L (see
Section 73.5). If the target responds with an illegal information phase (an
information phase other than Command-Out or Status-In) the SHAC will
respond by asserting RST_L on the bus, thereby forcing the bus to the
Bus-Free phase.

3. Target does not have a buffer ready to receive the communication and
returns a NAK.

7-2 DSSI BUS OPERATION



4. The target issues a Status-In instead of Data-Out because it detects a corn-
mand parity error or sorne other cornrnand validation error (length, oper
ation code, illegal REQ/ACK offset, or source or destination port errors).

5. If a target fails to respond with the expected phase (a phase other than
Data-Out or Status-In) or the Initiator-tirneout occurs or there is a REQ/ACK
offset error the SHAC as initiator shall respond by asserting RST_L on the
bus, thus forcing the bus to the Bus-Free phase.

SHAC as target will release the bus if a target-tirneout occurs or there is a
REQ/ACK offset error. The release of the bus puts the DSSI in the Bus-Free
phase. The initiator shall stop its transrnission and release the bus as well.

6. Target detects parity or checksum error. SHAC as target will wait until
ACKs are received for all outstanding REQs and will switch phases to
Status-In sending a NAK. This path is also the normal one, in which case
the status returned is ACK.

7. SHAC as initiator will assert RST_L if an Initiator-timeout occured or the
target responded with an unexpected phase (a phase other than Status-In)
or there was a REQ/ACK offset error.

SHAC as target will release the bus to enter the Bus-Free phase when
target-timeout occurs or when there is a REQ/ACK offset error.

If the target enters the Bus-Free phase prematurely, SHAC will assume that the information
frame was not delivered and will retransmit it.

The initiator may receive the Status-In byte with a parity error. The initiator treats this condition
as if a NAK Status-In byte was received correctly. As a rule, a sender of information should
treat all Status-In values other than an ACK status as a NAK status.

In borderline situations, SHAC behavior will be optimistic as target and pessimistic as initiator.
An example of such a situation is when a reset occurs after the final release of ACK for the
Status-In byte but before the bus is freed. In this case, SHAC as target will assume that the
transfer was successful. SHAC as Initiator would assume that the transfer failed and will
retransmit it.

The reasoning behind this behavior is as follows. There are delays on the DSSI bus which in
such borderline cases may cause different devices to reach different conclusions as to what
actually happened. It seems that the better choice is to have one too many packets (which
should be discovered by the sequence number) than one packet missing (which will result in
breaking a virtual circuit).

7.2.1 Formats of DSSI Data Exchanges

The information phases represent data exchanges that are set up and/or received by the intel-
ligent controllers at the nodes. Each phase has its own rigid format for information exchange.
These formats are presented below.

DSSI BUS OPERATION 7-3



Figure 7—2: DSSI Command-Out Format

7 6 5 4 3 2 1 0
+ + + + + + + + +

I Data Link Operation Code (EOH) I command text+0
+ + + +

I REQ/ACK Offset Protocol Identifier command text+1
+ + + +

I Reserved I Dest. Node ID command text+2
+ + +

Reserved I Source Node ID command text+3
+ + +

I Data Niock Length<7:0> I command text+4
+ + +

I Reserved Data Block Length<12:8> command text+5
+ + +

I Checksum I command text+6
+ +

72.Y.i DSSI Command-Out Phase

The DSSI Command-Out phase utilizes the format illustrated in Figure 7—2.

The fields of this command are as follows:

. Data Link Operation Code is set to EO (16).

. Protocol Identifier identifies a protocol layer, serviced by the Data Link, to receive the
data block. A value of 0 specifies delivery to the CI port layer. Any other value should be
treated as a reserved field which is not zero (see below).

I REQ/ACK Offset contains the maximum REQIACK offset to be used for this communica
tion. This value is exactly the sender’s maximum REQ/ACK offset. Proper values are 3,
7 or 15. The actual offset for the communication will be the smaller of the sender’s offset
and the target’s offset. SHAC will always send 7 and use 7 or 3 as target. A number other
than 3, 7 or 15 will be a validation error.

. Destination Node ID is the DSSI ID of the node receiving the information (i.e., the target).
The destination port number serves as a double check of the DSSI selection sequence and
must be checked at the target node as part of frame transmission command validation. The
destination port ID is between 0.7.

. Source Node ID is the DSSI ID of the node transmitting the information (i.e., the initiator).
The source port number serves as a double check of the DSSI selection sequence and
must be checked at the target node as part of frame-transmission-command validation. The
source port ID is between 0.7.

. Data Block Length is the number of bytes of data that will follow in the Data-Out phase
excluding the checksum byte (the LS byte of the frame length word is delivered first).
Frame length values less than 2, or more than 4114 are considered a length mismatch error.

7-4 DSSI BUS OPERATION



. Checksum is the 8 bit XOR of the first six bytes of the command. This is generated by the
initiator and checked by the target. This is simply the vertical parity.

The treatment of Reserved fields is as follows. If the target detects a non-zero value in one of
these fields, it shall ACK the packet if the packet is otherwise correct. However the target shall
discard the packet, whether it was ACK’d or NAK’d. Note that the protocol identifier is treated
as a reserved field.

Higher layers in the initiator or target are not notified when such a packet is discarded. A
discarded packet is handled through provisions in higher layer protocols for detecting lost
packets.

7.2.1.2 DSSI Data-Out Phase

The DSSI Data-Out phase utilizes the CI format illustrated in Figure 7—3.

Figure 7—3: DSSI Data-Out Format

7 6 5 4 3 2 1 0

+ + + + + + + + +

I Operation Code I
+ + + +

Flags Byte I 1
+ +

I information byte 0 I 2
+

I information byte 1 I
+ +

+ +

I information byte n-i I (1+n)
+ +

I information byte n I (2+n)
+ +

I Checksum I (3+n)
+ +

The fields of the Data-Out phase are defined in the CI protocol. The invariant fields are:

. Operation Code defines the type of data that follows in the information bytes.

. Flags Byte is a qualifier on the operation code.
I Checksum is the XOR of the first n+2 bytes. This is simply the vertical parity. This byte is

generated by the initiator and checked by the target.

DSSI BUS OPERATION 7-5



7.21.3 DSSI Status-In Phase

The DSSI Status-In phase consists of one byte only which reports the success (ACK, 61 (16))
or failure (NAK, iF (16)) of reception. The Status-In byte tells only if the data was received
successfully or not and does not go into any more detail.

7.3 Detailed DSSI Bus Operation

7.3.1 DSSI Bus Signals

All the signals on the DSSI bus use negative logic. The following descriptions will assume
negative logic. There are a total of 16 signals. 7 are used for control and 9 are used for data
(including parity). See Chapter 3 for details.

7.3.2 DSSI Bus Phases

DSSI defines six bus phases:

. Bus-Free

. Arbitration

. Selection

. Command-Out

. Data-Out

. Status-In

The DSSI bus can never be in more than one phase at any given time. Unless otherwise noted
in the following descriptions, signals that are not mentioned shall not be asserted.

The Command-Out, Data-Out, and Status-In phases are collectively termed the information
transfer phases.

7.3.3 Bus-Free Phase

The Bus-Free phase is used to indicate that no device is actively using the bus and that it is
available for subsequent users.

DSSI devices shall detect the Bus-Free phase after SEL_L and BSY_L have both been FALSE
for at least 400 ns. All devices must be able to clear the bus within 400 ns after detecting a
Bus-Free condition.

7-6 DSSI BUS OPERATION



7.3.4 Arbitration Phase

The Arbitration phase allows all devices to contend for bus control. One device will gain
control of the bus, becoming the initiator.

SHAC supports the fair arbitration scheme. In this scheme the procedure for a device to obtain
control of the bus is a modified priority scheme. The basic concept is that DSSI nodes can be
enabled or disabled. An enabled node may participate in Arbitration if it has a message to
send, a disabled node may not. The normal sequence of events starts with all nodes enabled.
Each node in turn wins arbitration, sends a message, and disables itself. Eventually all nodes
are disabled, resulting in the DSSI bus becoming idle. All the nodes recognize that the bus
is idle (BSY_L and SELL both false for a long enough time) and re-enable themselves (see
Appendix B).

This modified priority scheme assures a fair distribution of bus privilege among the parties on
the single DSSI bus.

7.3.5 Selection Phase

During the Selection phase the initiator will select a target for the purpose of sending it infor
mation.

The device that won arbitration (now the initiator) has both BSYL and SELL asserted and
has delayed at least l200ns from the assertion of SELL to enable all other contenders to retire
from the bus.

The initiator shall set DB_L< 7:0 > to a value which is the OR of its DSSI ID bit and the target’s
DSSI ID bit. Parity must be correct. The initiator shall then wait at least 90 ns and then release
BSYL. This starts the Selection phase. The initiator waits 400ns and then starts looking for the
target’s response. The target responds by asserting the BSYL line.

SHAC implements the following selection timeout scheme. SHAC will wait a minimum of
2Ousec. If within this time the SHAC has received no response from the target, it shall release
the data and parity lines. If within an additional 25usec, SHAC has still not received a response
from the target, it will release SEL_L thus causing the bus to return to the Bus-Free state. Note
that as long as SEL_L is asserted, if the target responds to selection, SHAC will consider the
selection to have completed correctly.

Note that as initiator SHAC may wait much longer than the minimum 2Ousec (up to a few
hundred usec) to check for a response from the target.

SHAC as target shall determine that it is selected when SELL and its DSSI ID bit are TRUE,
and BSY_L is FALSE for at least 400 ns. SHAC will examine DB_L< 7:0 > both to determine
the DSSI ID of the selecting initiator and to be sure that the selection is in order. If all is well,
SHAC will respond to the selection within lusec of the release of BSY_L by the initiator.

SHAC shall not respond to a selection if

. bad parity is detected, or
a more or less than two DSSI ID bits are on DBL<7:O>.

No less than 90 ns after the initiator detects BSYL is TRUE, it shall release SEL_L and may
change DB_L< 7:0 > . This concludes the Selection phase. Control of the next phases transfers
to the target.

DSSI BUS OPERATION 7-7



7.3.6 Information Transfer Phases

The C/D_L and 1/OL signals are used to distinguish between the different information transfer
phases. Once a target has been selected by an initiator it drives these two signals along with
BSY_L and therefore controls all changes from one phase to another.

The target can cause the Bus-free phase by releasing CID_L, I/O_L and BSY_L. The initiator (or
any other device on the bus) can cause the Bus-Free phase by asserting RST_L on the bus.

The information transfer phases use REQ/ACK handshakes to control the information transfer.
Each REQ/ACK handshake allows the transfer of one byte of information.

During the information transfer phases, BSY_L shall remain TRUE and SEL_L shall remain
FALSE. In addition the target shall maintain the control signals (C/D_L and I/O_L) valid for
400 ns before the assertion of REQ_L of the first handshake and they shall remain valid until
the deassertion of ACKL at the end of the last handshake.

The data transfer in Command-Out and Status-In is asynchronous. In Data-Out the data
transfer is synchronous.

7.3.6.1 Asynchronous Information Transfer

If 1/OL is FALSE (transfer to the target), the target shall request information by asserting REQ
L. The initiator shall drive DB_L< 7:O,P > to their desired values, delay at least 55 ns and then
assert ACK_L. The initiator shall continue to drive DB_L<7:O,P> until REQ_L is FALSE.

When ACK_L becomes TRUE at the target, the target shall read DB_L<7:O,P>, then deassert
REQ_L. When REQL becomes FALSE at the initiator, the initiator may change or release
DBL<7:O,P> and shall deassert ACKL. The target may continue the transfer by once again
asserting REQ_L, as described above.

If I/OL is TRUE (transfer to the initiator), the target shall first drive DB_L<7:O,P> to their
desired values, delay at least 55 ns then assert REQ_L. DB_L< 7:O,P > shall remain valid until
ACKL is TRUE at the target.

The initiator shall read DB_L<7:O,P> after REQL is TRUE, then signal its acceptance of the
data by asserting ACK_L. When ACK_L becomes TRUE at the target, the target may change or
release DB_L< 7:O,P > and shall deassert REQL. After REQ_L is FALSE, the initiator shall then
deassert ACKL. After ACKL is FALSE, the target may release the bus (since this was the last
step in Status-In).

7.3.6.2 Synchronous Data Transfer

Synchronous data transfers are used to send data to the target during the Data-Out phase.

The REQ/ACK offset specifies the maximum number of REQL pulses that can be sent by the
target in advance of the number of ACKJ pulses received from the initiator.

If the number of REQL pulses exceeds the number of ACK_L pulses by the REQ/ACK offset,
the target shall not assert REQL until the next ACK_L pulse is received. A requirement for
successful completion of the DataOut phase is that the number of ACK_L and REQ_L pulses
be equal.

The target shall assert the REQ_L signal for a minimum of 9Ons The initiator shall send one
pulse on the ACK_L signal for each REQ_L pulse received. The initiator shall assert the ACK_L
signal for a minimum of 90 ns.

7-8 DSSI BUS OPERATION



During Data-Out the initiator shall transfer one byte for each RFQJ pulse received. After
receiving a REQ_L pulse, the initiator shall first drive DB_L<7:O,P> to their desired values,
delay at least 55 ns and then assert ACK_L.

The initiator shall hold DBL< 7:O,P > valid for at least 100 ns after the assertion of ACKL. The
initiator shall assert ACK_L for a minimum of 90 ns. The initiator may then deassert ACK_L
and may change or release DB_L<7:O,P>.

The target shall read the value of DB_L< 7:O,P > within 45ns of the transition of ACK_L to
TRUE.

7.3.7 Command-Out Phase

The Command-Out phase is always the first information transfer phase in the information
transfer sequence.

The target shall assert the C/D_L signal and deassert the I/O_L signal during the seven
REQ/ACK handshakes of this phase.

7.3.8 Data-Out Phase

The Data-Out phase comes after the Command-Out phase. This phase is used to send data
from the initiator to the target.

The target shall deassert the CID_L and I/O_L signals during this phase.

7.3.9 Status-In Phase

The Status-In phase is the final phase of the information transfer sequence. In this phase the
target sends status information about the previous phases to the initiator.

The target shall assert C/DL and IIO_L during the REQ/ACK handshake of this phase.

7.3.10 Signal Restrictions Between Phases

When the DSSI bus is between two information transfer phases, the following restrictions shall
apply to the bus signals. If these are violated, the results are UNPREDICTABLE (with the
exception of the release of BSYL, which will result in a switch to Bus-Free).

1. The BSYL, SEL_L, REQ_L and ACK_L signals shall not change.

2. The C/D_L, I/O_L and DBL< 7:O,P > signals may change.

When switching the direction of DB_L< 7:O,P > from out to in (target to
initiator), the target shall delay driving DBJ< 7:O,P > by at least 800 ns after
asserting the 1/OL signal. The initiator shall release DB_L< 7:O,P > no later
than 400 ns after the transition of the I/O_L signal to TRUE.

3. The RST_L signal may change as defined in Section 7.4.

DSSI BUS OPERATION 7-9



7.4 Use of and Reaction to Reset

The Reset condition is used to immediately clear all DSSI devices from the bus. This condition
shall take precedence over all other phases and conditions.

Any DSSI device may create the Reset condition by asserting RSTL for a minimum of 25 psec.
During the Reset condition, the state of all DSSI bus signals other than RSLL is not defined.

All DSSI devices shall release all DSSI bus signals (except RST_L) within 800 ns of the transi
tion of RST_L to TRUE. The Bus-Free phase always follows the Reset condition.

SHAC will assert the DSSI bus RSTL signal only as initiator or when it is attempting to be
initiator and when it detects one of the following conditions:

. SHAC as initiator detects an unexpected information phase on the bus.

. SHAC as initiator or potential initiator times out a target with the initiator
timeout.

I SHAC as initiator detects a REQ/ACK offset error.

Note that the release of the bus by a target has the same end effect as a RST_L in that the bus
returns to Bus-Free.

A reset on the bus detected by the SHAC does not cause the SHAC any loss of context.

7.5 DSSI Timeouts

Three timeouts are used to insure that the bus does not lock up, one as initiator, one as target,
and one during selection when attempting to select a nonexistant device.

As inititator SHAC will reset it’s initiator timeout clock whenever it detects a Reset or Bus-Free.
When the bus leaves the Bus-Free state the timer will be started. If 2800 psec have elapsed and
a Bus-free has not been once again detected, SHAC may decide to reset the bus.

SHAC always monitors the bus for initiator timeouts but it will only actually reset the bus if it
is actively attempting to become initiator or if it is presently initiator.

SHAC as target will start it’s target timeout clock whenever it is selected. If SHAC does not
detect a Bus-Free within 2400 psec from when it is selected it will release the bus thereby
entering the Bus-Free phase.

Note that the Bus-Free phases will occur at intervals less than or equal to an initiator-timeout.

When SHAC starts selecting a target it starts timing the selection. The SHAC will wait a
minimum of 2Ousec. If the target has not responded by this time the SHAC will begin its
smooth release of the DSSI bus (see Section 7.3.5).

7-10 DSSI BUS OPERATION



Appendix A

Related Documents

The SHAC specification is related to the following documents:

The documents listed below originate with the Jerusalem Technical Center. Copies may be
obtained through Michael Ben-Nun. See the cover sheet for communication details.

. SHAC chip timing specification.

. SHAC design methodology.

. SHAC design specification.

. SGEC chip engineering specification.

. QUIP (QUickly Integrated Processor) engineering specification.

The documents listed below are maintained by other groups throughout DEC. Consult the
appropriate group for copies.

. CVAX CPU chip engineering specification rev 4.0.

. CVAX clock chip engineering specification.

. CMCTL - CVAX memory controller engineering specification rev 1.1.

. VAX CI Port Architecture Rev 5.0 and subsequent ECO’s Y87M11-2,
Y87M11-1, Y87M08-i, and Y87M9-l

. DEC STD 161-0, Rev A, Computer Interconnect Specification and subse
quent FCC #2.

. DSSI, Digital’s Small Storage Interconnect, An Addendum to DEC STD
161, Version Xi.3.

Related Documents A—i



Appendix B

DssI FAIR-ARBITRATION SCHEME

B.1 Basic Operation

This appendix describes the fair arbitration scheme which is implemented in SHAC.

The scheme assumes that each DSSI node will disable itself upon completion of a turn on the
bus and reenable itself only after the DSSI-bus remains free for a DSSI Idle Delay. An enabled
node may participate in arbitration; a disabled node may not. The normal sequence of events
starts with all nodes enabled. Each contending node wins arbitration in its turn, uses the bus,
and then disables itself. Eventually all contending nodes are disabled, resulting in the DSSI
bus becoming idle. All the nodes recognize that the bus is idle (BSY_L and SEL_L both false
for a long enough time) and re-enable themselves.

The following timing parameters are to be used:

a DSSI Arbitration Skew Delay [600nsJ. The maximum allowable skew for a
DSSI node to assert BSY_L and its DSSI ID during arbitration.

. DSSI Idle Delay [2200ns]. The minimum time a DSSI node must wait
before concluding that no enabled nodes are arbitrating for the bus.

All timing measurements shall be calculated from the signal conditions existing at each DSSI
node’s own DSSI connection (that is, the 1)551 bus side of drivers and receivers).

SHAC implements an internal flag indicating whether it is enabled or disabled. This arbitration
algorithm specification is divided into three sections:

1. Behavior of an enabled SHAC. When SHAC is enabled and wishes to send
a message it will participate in arbitration. Upon winning arbitration SHAC
will disable itself and attempt to send the message.

2. Behavior of a disabled SHAC. When SHAC is disabled it does not partic
ipate in arbitration but it monitors the DSSI bus and enables itself upon
detecting that the bus has become idle.

3. SHAC manipulation of it’s enabled/disabled flag.

DSSI FAIR-ARBITRATION SCHEME B-i



B.2 Behavior of an Enabled SHAC

When SHAC is enabled and it has a message to send it shall arbitrate for the DSSI bus as follows:

1. Wait for the Bus-Free phase to occur. The Bus-Free phase is detected
whenever both BSYL and SELL are simultaneously and continuously false
for a minimum of 400ns.

2. Wait an additional minimum of 800ns after detection of the Bus-Free phase
(i.e. after BSYL and SEL_L are both false for 400ns) before driving any
signal.

3. Following the 800ns delay in step 2, the SHAC shall assert both BSY_L and
its own DSSI ID within a DSSI arbitration-skew delay [600ns]. SHAC will
not arbitrate (i.e. assert BSY_L and its DSSI ID) if more than l400ns have
passed since the Bus-Free phase was last observed.

4. After waiting at least an arbitration delay [2200ns] (measured from its
assertion of BSYL) SHAC shall examine DB_L< 7:0 > . If a higher priority
DSSI ID bit is asserted on DB_L<7:O>. (DB_L<7> is the highest), then
SHAC has lost the arbitration and will release its signals and return to
step 1. If no higher priority DSSI ID bit is asserted then SHAC concludes
that it has won the arbitration and asserts SELL. Any other DSSI node that
is participating in the Arbitration phase has lost the arbitration and must
release BSYL and its DSSI ID bit within 800ns after the assertion of SEL_L.

5. SHAC will wait l200ns after asserting SELL before changing any signals.

6. SHAC will disable itself prior to releasing both BSYL and SELL regardless
of the outcome of the subsequent Selection phase or message transmission
attempt.

B.3 Behavior of a Disabled SHAC

When SHAC is disabled it shall monitor the DSSI bus for an idle condition regardless of
whether or not it has a message to send.
A DSSI bus idle condition occurs whenever BSYL and SEL_L are simultaneously and
continuously false for a minimum of a DSSI Idle Delay [2200ns1. SHAC will enable itself
upon detecting a DSSI bus idle condition.

SHAC shall detect a DSSI bus idle condition within a DSSI Arbitration Skew Delay [600ns]
of its occurence.
If SHAC begins to monitor the bus and finds it in the Bus-Free state it will consider this
time as though BSY_L and SEL_L were just released and continue the timing as defined
above (i.e. it shall detect a DSSI bus idle condition no sooner than a DSSI IDle Delay
[2200ns] and no later than a DSSI Idle Delay [2200ns] plus a DSSI Arbitration Skew Delay
[600nsj after starting to monitor the bus).
If SHAC has a message to send, once it has detected the idle condition it will continue with
step 2 from Section B.2.

B-2 DSSI FAIR-ARBITRATION SCHEME



8.4 SHAC Manipulation of its Enabled/Disabled Flag

This section states the rules the SHAC uses in manipulating the enabled/disabled flag, repeating the
rules stated in the previous two sections. The rules are:

1. When SHAC is newly initialized or has otherwise lost track of the DSSI bus context it shall
initially be disabled.

2. A disabled SHAC will only become enabled after detecting the idle condition.

3. SHAC will disable itself after winning arbitration, prior to releasing BSY_L or SEL_L.

DSSI FAIR-ARBITRATION SCHEME B-3



Appendix C

SHAC Shared Host Memory

c.1 Overview

Some of SHAC’s read-only data and code are stored in a dedicated block of host memory.
Because SHAC treats it as read-only, multiple SHACs on the host bus can share portions of the
same area; hence the name.

SHAC shared host memory contains four areas:

. a header area, containing pointers to the other areas

. a parameter area

. a patch area used to load code patches into the SHAC as part of initialization

I an “external code segments” area containing code loaded into the SHAC when it is needed.

The SSHMA host-addressable register, when set by the host, points to the start of the header
area. Each pointer in the Shared Host Memory data structures is a signed byte offset from the
start of its area. (This allows Shared Host Memory to be inserted at different places in VAX
address space, either in ROM or RAM.) Each area need not be physically contiguous with the
other areas.

Each of the areas contains one or more “table” sections. The patch area and the External
Code Segment area also contain code segments. Each area, table section, and code segment is
octaword aligned.

Some portions of Shared Host Memory have checksums. Each checksum is the 32-bit sum of
all 16-bit words in the section of memory being checked.

The total size of Shared Host Memory depends on the sizes of the Patch and External Code
Areas. These, in turn, depend largely on the requirement of the system module containing the
SHAC. The number of pages required for all of Shared Host Memory could be as small as 1;
unless the system requirements are highly unusual, it would not be greater than 8.

SHAC Shared Host Memory C-i



C.2 Shared Host Memory Header Area

This is the “root” area of the Shared Host Memory. It contains pointers to the other areas in
Shared Host Memory. Note that the offsets to the other areas are offsets in Physical memory,
NOT virtual memory. Note also that the checksum does NOT include the values in the
reserved area. (It is recommended that the reserved area be zero.) This portion of the Shared
Host Memory is specific to the particular SHAC, and cannot be common to multiple SHACs
on the host bus.

3 1
1 6 0
+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+-+—+—+—+—+—+—+—+—+—+—+—+

I Reserved (8 Longwords) I

I Byte offset of Parameter Area I

I M B Z Number of Patch Code Segments I

I Byte offset of Patch Area I

I M B Z INumber of Ext.Code Segments I

I Byte offset of External Code Segment Area I

Checksum I

C.3 Shared Host Memory Parameter Area

This area contains data required to initialize the SHAC . It has a checksum at the end. All
fields are binary numbers. This portion of the Shared Host Memory is specific to the particular
SHAC, and cannot be common to multiple SHACs on the host bus. The format of this area is:

C-2 SHAC Shared Host Memory



3 2 1

I Max No. of Coin—Flips I Idle Ctr for Immediate Retries
+—+-+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+-+—+—+—+—+—+—+—+

DSSI Retry Initial Seed I
+-+-+—+—+-+—+—+—+—+-+—+—+—+—+—+—+—+-+—+-+—+—+—+—+-+—+--+-+-+—+—+—+

I SHAC Diagnostics ON/OFF Switches I
+-+—+-+—+-+—+—+—+—+—+—+—+—+—+—+—+—+—+-+—+—+—+—+-+—+—+—+—+—+—+—+—+

I Checksum I

There are default values for all the parameters in this area. If the host writes 3FFFFFFF (hex) to
SSHMA, the SHAC uses the default values instead of loading Shared Host Memory.

1 4 6 8 0
+-+-+-+-+-+-+-+—+—+—+-+-+-+—+-+-+—+-+-+-+-+-+—+-+-+-+-+-+-+_+—+_+

I Eng Test rev I FW rev I SHN rev I
+—+—+—+—+—+—+—-1-— -+—+—+—+—+—+—+——+—+—+—+—+—+—#—-1-—-1-—--—4—4_-4-—-4-—-4-_-1-

IlsI 0 I I
I II MBZ I Burst I Host Interrupt Vector I
IINI I I I
+-+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+-+—+—+-+—+—+—+—+—+—+—+—+

I I I sI NI I
I M3Z I IPL I MBZ IxI I Node I
I I I 121 zI I
I I I I°I I I

+-+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+-+—+—+—+—+—+—+—+—+—+—+—+—+—+

I MBZ I ossi Init TO I MBZ I RTC Timeout I
+-+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+-+—+—+—+—+-+—+—+-+—+-+-+—+—+

I MBZ I ossi Sel TO I MBZ I 0551 Trgt TO I
+-+-+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+-+—+—+—+-+—+—+—+-+

I No. of Immediate 0551 Retries I No. of Delayed 0551 Retries I

SHAC Shared Host Memory C-3



Revision number of the Shared Host Memory,
used as 8 bits of the CODEREV field in ID
packets

Revision number of the Firmware with which
this Shared Host Memory may be used

reserved for additional revision information, for
engineering test purposes only

Used by the HIS in host interrupts (<1:0> MBZ)

Maximum burst size in longwords for host bus
transfers (1,2,4,8,16,32,64)

Octaword Enable bit (bit 24)

Synchronous operation (bit 30)

Interrupt Priority Level, used to set the HIS IPL
register (0-iF)

DSSI node number (0-7)

Sx clock speed (0=i6mh, 1=2Omh); setting must
be consistent with the SX pin; (bit 10)

Real-time clock timeout period; it is the actual
number that the SHAC puts in the internal RTC
register. (It is based on the SX clock.)

DSSI initiator timeout period; it is the actual
number that the SHAC puts in the internal TOC
register

DSSI target timeout period; it is the actual
number that the SHAC puts in the internal TOC
register

DSSI selection timeout period; this is the initial
value of the counter for a software loop that
checks for the timeout.

Parameter for the DSSI retry algorithm, the
maximum number of retries to be done before
invoking the “delayed retry” portion of the
algorithm.

Parameter for the DSSI retry algorithm, maxi
mum number of delayed retries to be done before
failing a command.

Parameter for the DSSI retry algorithm, the
maximum number of negative coin-flip decisions
that can be made before automatically retrying a
command.

Table C—i: Parameter Area Field Descriptions

Field Default(hex) Description

SHM rev FF

FW rev NA

Eng test rev NA

Host Interrupt Vector 400

Burst 1

CE 0

SYN 0

IPL 14

Node 0

5X20 0

RTC TO 9E

DSSI mit TO 2D

DSSI Trgt TO 27

DSSI Sd TO 5

No. of Immediate DSSI Retries 8

No. of Delayed DSSI Retries 100

Max No. of Coin-Flips A

C-4 SHAC Shared Host Memory



Table C—i (Cont.): Parameter Area Field Descriptions

Field Default(hex) Description

Idle Ctr for Immediate Retries 0 Parameter for the DSSI retry algorithm, counter
for an idle loop in the “immediate” retry al
gorithm. Initially set to zero, it is included in
case that the minimum time between immediate
retries needs tuning.

DSSI Retry Initial Seed A7524B79 Initial seed for the random number generator for
coin-flip decisions in the DSSI retry algorithm

SHAC Diagnostics ON/OFF 15 There are 2 bits for each of the diagnostics ROM
Switches check, Device Register Check, and CAM check.

See note below for details. The default is not
to perform diagnostics. The purpose is to allow
chip testing even if one part of the SHAC fails its
diagnostic.

NOTE 1

OF, BURST, and SYN are in the format of the HIS Control Register.

NOTE 2

Some of the SHAC self-test diagnostics may be performed optionally after the load
of the Shared Host Memory Parameter Area and before the load of the Shared
Host Memory Patches. These diagnostics are: ROM check, CAM check and Device
Register check. There are 2-bit switches to control the performance of diagnostics
during the load of Shared Host Memory. These bits are as follows:

. bit 0 : skip ROM check

. bit 1 : continue after ROM check failure

. bit 2 : skip CAM check

. bit 3 : continue after CAM check failure

. bit 4 : skip Device Register check

. bit 5 : continue after Device Register check failure

The purpose of these switches is to allow a diagnostic driver to detect a failure but
to allow the SHAC to continue operation. It is expected that in normal operation no
diagnostics will be performed during the load of Shared Host Memory.

C.4 Shared Host Memory Patch Area

The patch area contains two table sections and a variable number of patch code segments.
Note that each table and each code segment is octaword aligned.

Patching is done following chip reset or MIN bit reset, while the SHAC is still in the uninitialized
state. Multiple SHACs on the host bus may share a common Patch Area.

SHAC Shared Host Memory C-5



The area’s format is:

3 1
1 6 0
+-+-+-+-+—+-+-+-+—+—+—+-+—+—+-+-+-+-+-+-+-+—+—+—+—+—+-+—+—+-+-+-+

I Fixed—length table section I

F -+—+—+—+—+—+—+-+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—-f—+—+—+—+—+—+—+—+—+

I Patch Code Seqment Table I
I (variable ienqth) I

I Patch Code Segments I

+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+-+—+-+—+—+—+—+—+—+—+—+—+—+—+

The Fixed Length Table section contains data which is used to load the CAM and BPT dispatch
table. Note that the first and last ROM locations cannot be patched. The format of this area is:

3 1
1 6 0

-+—+—+—+—+—+—+—+—+—+—+—+—+-+—+-+—+—+—+—+—+—+—+—+—+—+—+—+—+—-f—+

CAM Image (16 longwords)

-+—+—+—+-+—+-+—+—+—+—+—+—+—+—+—+—+-+—+—+-+—+-+—+—+—+—+—+—+—+—+—+

I Roy Checksums with CAM loaded I
I (8 lonqwords) I

+—+—+--+—+—+—+-+—+—+—+—+—+—+—+—+—+—+-+—+-+—+—+—+—+—+—+—+—+—+—+—+—+

I OPT dIspatch table (4 longwords) I
I (BPT is a processor breakpoInt Instruction) I
+-+-+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+-+—+—+—+—+—+—+-+

The Patch Code Segment Table contains one code segment entry for each patch code segment.
The format of the entry is shown in Figure C-i.

C-6 SHAC Shared Host Memory



Figure C-i: Code Segment Table Entry

3 1
1 6 0
+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+

I Byte oHset (from start of area) of patch code
+—+—+—+—+—+—+—+—+—+—+-+—+—+—+—+—+-+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+

I Patch Len in words SHAC RAM bc of patch
+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+—+

C.5 Shared Host Memory External Code Segment Area

This area contains modules that the SHACs on the host bus may load and execute at infrequent
intervals. Multiple SHACs on the host bus may share a common External Code Area.

This area contains a variable number of External Code Segments. Each of these segments is
self-contained, but may contain more than one routine. There is a table at the beginning of the
area, with a fixed-length entry for each code segment. Each entry has the same format as that
of a patch code segment (see Figure C—i). Note that each code segment is octaword aligned.

It is expected that External Code Segments will be used only for infrequently executed routines,
where performance is not a critical issue. No data from this area is read by the SHAC until it
is needed for execution.

The format of the area is:

3 1
1 6 0

External Code Segment Table I
I (variable length) I

I External Code Segments I

C.6 Default Values for Shared Host Memory

If the host writes 3FFFFFFF (hex) to SSHMA, the SHAC does not load Shared Host Memory.
Instead, it uses default values for the parameters in the Data Area, and it assumes there are no
patches and no external segments. The default values for Shared Host Memory parameters are
described above.

SHAC Shared Host Memory C-7



C.7 Boot Device on DSSI Bus

If the system boot device is on a given SHAC’s DSSI bus, that SHAC will need Shared Host
Memory parameter values before beginning to load the system. If the default parameters are
appropriate (especially IPL and IVR) the host could tell SHAC to use the default parameters.
Otherwise, a system will probably have a complete Shared Host Memory, or the code to set it
up, in some kind of ROM.

C.8 Loading Shared Host Memory from a File

It may be desirable to update the Shared Host Memory in a system, in order to implement
protocol changes or bug fixes in the SHAC. Such a system could be booted as described
in the previous paragraph, with some or all of an updated Shared Host Memory then being
loaded from a file into a dedicated area of host RAM. The port driver then would set the MIN
bit in the PMCSR to force the port into the uninitialized state, and write the address of a new
Shared Host Memory Header into the SSHMA register. Since the Shared Host Memory is read
following each such write to SSHMA, this effectively would replace the previous Shared Host
Memory.

C-8 SHAC Shared Host Memory



Appendix 0

SHAC TESTING

D.1 Overview

This appendix highlights some of the SHAC testing features and suggests a way of using
them. This information is applicable for system level debug (hardware and software) and for
supporting the following testing environments:

. Wafer testing.

. Packaged parts.

. Module testing.

. System level testing.

The following topics are discussed:

. SHAC testing modes.
I Vector oriented testing.
. Tristate and continuity transistor features.
. Host access feature.

D.2 SHAC Testing Modes

The testing port is the third port of the SHAC. This port is added to increase the observability
and controllability of the SHAC. It should be used for testing purposes only.

Most of the SHAC logic and hardware control are done using an internal processor called
QUIP. The QUIP has two main busses: the address bus (14 bits) and the data bus (16 bits).
These busses are multiplexed and channeled to the 10 pins called QAD(O:15). All the control
lines of the QUIP are also accessible through additional pins in the testing port.

The testing port operates in four modes. The testing mode is selected by two pins - QTM1,2.
following are the four modes of operation:

. QTM1 = 0 ; QTM2 = 0 - Normal mode. Testing port is tristated.

. QTM1 = 1 ; QTM2 = 1 - Trace mode. The QUIP’s address, data and control lines are driven
out. The SHAC operates normally.

SHAC TESTING 0-1



. QTM1 = 0 ; QTM2 = 1 - QUIP mode. The QUIP is the only functional block in the SHAC,
all other blocks are disabled. In this mode the SHAC is the master of the testing port. The
address is driven out through the QAD lines. Data is driven in/out depending on the value
of QWR_L; low=write, high=read.

. QTM1 = 1 ; QTM2 = 0 - External QUIP. All blocks function normally except for the QUIP.
The QUIP is disabled. The SHAC testing port is slave. The SHAC memories and registers
can be read/write through the testing port.

Note that:

1. A SHAC in QUIP mode connected to a SHAC in external QUIP mode will operate exactly
(phase by phase) as one SHAC.

2. The normal mode is the only mode in which the SHAC can run at its full speed. In all
other modes the SHAC will run at about 25% of its maximum speed.

D.3 Vector Oriented Testing

The following notes should be considered when doing any vector oriented testing (i.e.
TAKEDA):

1. When the SHAC operates in the normal mode (QTM1 and QTM2 zero) the host interface
clock (pins CLKA, CLKB) and the DSSI clock (pin SX) are not guaranteed to be synchro
nized. The synchronization can be done only if SHAC is in non-normal mode and when
the RESETL is deasserted. After the synchronization occurs (one CLKA cycle after the
deassertion of RESETL) it is possible to change the SHAC mode to the normal mode and
the clocks will remain synchronized.

2. Production testing can achieve a very high coverage with a minimal vector count, when
done in an ‘external QUIP’ mode (QTM1 is 1, QTM2 is 0). In this mode all SHAC storage
nodes accessible by the QUIP are accessible from the testing port. These tests shall be
done with a maximum frequency of 5Mhz (frequency measured on CLKA).

In this mode the SHAC ROM, RAMs and registers can be tested. All the ROM transistors
are checked simply by reading all ROM addresses. The registers and RAMs are checked
by writing 5s to all even rows and As to all odd rows, and reading these locations. Then
doing the same but with As to even rows and 5s to odd rows. The following pseudo code
implements the chase board pattern:

RAMs fQRAM and ARAM) testing pseudo code
(radix16 for all values)

D-2 SHAC TESTING



x=o 000
Y=FFFF
i2000 ; QRAM test.
WHILE i<2550 DO

BEGIN
M(i)=X ;Odd line
M(i+l)=Y
M(i+2)X
M( i+3 ) =Y
M(i+4)=X
Mt i+5 ) =Y
M(i+6)=X
M( i+7 )
M(i+8)Y ;Even line
M(i+9 )X
M(i+A)Y
M(i+B)X
N(i+C)Y
N(i+D)=X
M(i+E)Y
Mt i+F)-X
i=i+lO

END

i=2800 ; ARAB test.
WHILE i<2A80 DO

BEGIN
M(i )X ;ODD LINE
M(i+l)=X
M(i+2 )Y
Mf i+3 )
M(i+4)=Y
M(i+5)=Y
M(i+6 )=X
M(i+7 )=X
i=i+8

END

; Then read above locations and check the data.

3. The testing port (signals Q*) should be ignored when operating with clocks above 5Mhz
(frequency measured on pin CLKA).

4. When measuring the chip power consumption (power supply current) the SHAC must be in
normal mode. In any other mode the testing port consumes a significant amount of power.

D.4 Tristate and Continuity Transistor Features

The SHAC has two features to aid in testing the SHAC, embedded in an external environment.:

1. The tristate feature allows SHAC to effectively be removed from testing.

2. The continuity transistor feature (together with the tristate) allows testing for open and short
connections between SHAC and the surrounding environment.

These features can help in the following testing phases:

1. During die test on a wafer, checks that all TO lines are connected properly. This is a basic
‘opens’ and ‘shorts’ test.

2. After chip packaging, to test that the package pins are connected properly to the chip pads.

SHAC TESTING 0-3



3. After module assembly, to test that the board wires are connected properly to the chip
pads.

4. During module test, all SHAC drivers can be tristated, so that the SHAC does not interfere
while testing other functions on the board.

These features are based on the pins QWRJJTRISTATE_L and QHLD/SCAN_OUT_H.These
pins operate as follows:

1. Pins QTM1 and QTM2 should be Grounded (normal mode). In this mode the pin
QWR_L/TRISTATE_L functions as a TRISTATE_L and the pin QHLD/SCAN_OUTJ-I
functions as SCAN OUT H.

2. When TRISTATE_L is asserted (low) and SCAN_OUTH is deasserted, ALL pins are
tristated. This function does not depend on the presence of the clock signals or on the
internal state of the chip.

3. When TRISTATE_L is asserted (low) and SCAN_OUT_H is asserted (high), all pins are
connected to ground via a pull down resistor (open drain transistor)

The following memo is the Rigel Tristate and “Continuity Transistor” Specification and Usage
During Loaded Module Test Process V2.O. Although this memo describes the use of the feature
during the module test, this feature can be used also in the phases listed above.

D.4.1 Rigel Tristate and “Continuity Transistor” Specification

I I I I I I I
I d I i I g I i I t I a I I I N I E R C F F I C B N F N 0 RAN D U M

I ___ I ___ I ___ I ___ I ___ I ___ I ___ I
To: Distribution Date: 20 October 1986 14:38:39

From: John Sweeney
Dept: Advanced Test Technology
DTN : 289—1783
L/MS: APO—2/C15

ENet: HAZEL: :SWEENEY

Subject: Rigel Tristate and ‘ContInuIty Translator” specificatIon and usage
during loaded module test process V2.O

0.4.1.1 Overview

This memo will present the specifications and test plans for the tristate control pin and the
continuity test transistor structure.

D.4.i.2 Tristate

We have requested a pin on each chip which will, when asserted, cause ALL signal outputs of
that particular chip to be put in the high impedance (tristate) state.

D-4 SHAC TESTING



D.4.1.2.i Purpose

During many phases of the test process, it is desirable to test a subset (either a single chip, or
a group of chips) of the module functionality. Unfortunately, when testing one subset of the
module, other functions may interfere with this testing if active. Additionally, the tester may
damage parts if it has to overdrive them to achieve the required logic levels.

The best method to de-activate the portions of the module which are NOT currently being
tested is to cause all outputs of all the chips not being tested to cease driving. This can be
accomplished by each chip having one pin which, when asserted causes all of that individual
chip’s outputs to become tristated.

D.4.i.2.2 Specification

Each chip shall have one pin which when asserted will tristate ALL of that chip’s outputs. This
pin should be active low so that it can be asserted during the power-up of the module and
internally pulled up through a 6:2 n-channel transistor to VDD_INT. This pin will be called
TRISTATEL.

The tristate function must not depend on presence of any clocking or the state of any other
pins or internal states, ie. when that pin is asserted, the outputs must be tristated even if the
clocks on the module (into the chips) are not operating, or the chip is not initialized.

D.4.Y.2.3 Test Plan For Usage During Module Test

The tristate feature will be used during both Assembly Verification Testing (AVT) and Product
Performance Test (PPT). In both cases the module will be fixtured such that the tester has
electrical access to internal module signals.

First all tristate pins will be grounded (asserted), then the module will be powered up. Next,
one chip at a time or in groups of chips, the tristate control pin(s) will be deasserted, and
the chip(s) will be initialized, and then tested for functionality. These test, because of the
additional loading from the tester contact, will be run at less than full clock rate.

The source of the test vectors for initialization and functional testing will be either from a
simulation of chip DVT’s or a capture of a module DVT or self-test.

D.4.1 .2.4 Considerations During Module Design

The tristate control pin of each chip should, once the module is assembled, be connected
to separate signal networks and accessible to the tester SC) that each chip can selectively be
tristated under tester control. The reason for this is so that while one chip is being tested (not
tristated) the other chips which would normally drive the chip under test could be tristated.

D.4.1 .3 Continuity Transistor Structure

We have requested a transistor structure be designed into each chip to aid testing for opens
between the module and the chips.

SHAC TESTING 0-5



D.4.Y.3.i Purpose

Because the devices will be surface mounted to the module, open faults between the module
and the chips are expected to be a large percentage of the manufacturing defects. Typically
these open faults are difficult to detect and diagnose, usually requiring the development of a
set of test vectors which will be applied to the chip. To simplify the test for opens, a Continuity
Transistor structure should be designed into each chip.

D.4.i.3.2 Specification

A continuity transistor structure should be designed into each chip to facilitate testing for
opens. This structure (shown below) will allow testing for opens by using simple instruments
such as voltage sources and current meters.

OPIN1 OPINN

CONTH ——-i 6:2 n-channel . . . CONTH --—j 6:2 n-channel

+ . . . — +

VSS EXT

The internal node CONT_H can only be asserted when the chip is tristated by asserting
TRISTATEL, otherwise it is pulled down. When TRISTATEL is asserted, SCANOULH is
enabled as an input and controls CONTH through an input buffer.

Here PIN 1. . PIN N represents ALL signal pins on the chip with the ONLY exceptions being:

. SCAN_OUT_H because this pin is already the common connection to the test structure.

. PHI_12, PHI_23, PHI_34, and PHI_41, because these pins will be driven as the system starts
operation in phase 2 due to SYS_RESET_L being asserted and can’t be overdriven.

. TRISTATE_L as this pin deactivates all output drivers and it’s assertion would invalidate
the continuity test.

The transistors should be sized such that as each pin is forced to 5.0 volts, the current into that
pin will vary between 100 uA and 500 uA, depending on the process parameters. This will be
accomplished by using 6:2 n-channel devices. The complete structure will be implemented in
the external region of the chip.

This design does not require any dedicated pins as the test pin will be SCAN_OUT_H.

D.4.i.3.3 Test Plan for Usage During Module Test

The continuity structure will be used during Assembly Verification Testing (AVT) . The module
will be fixtured such that the tester has electrical access to at least one point on each internal
module signal network.

The test pin of each device (SCAN_OUT_H) will be fixtured such that the digital drivers can
be connected to those pins. . All other pins will be fixtured such that the voltage source and
current meter of the tester can be connected to that signal network as well as the digital drivers.

1. Check for any shorts on the module using the standard resistance test. If any are found,
record them and check that they won’t cause damage or impair further testing.

0-6 SHAC TESTING



2. Force all pins to 0 volts, including VDD_INT, VDD_EXT, SYS_RESET_L, all TRISTATE_L
signals and all SCAN_OUT_H signals. SYS_RESET_L is an input to the clock chip and will
cause the clocks to be in the phase two state.

3. Next, power will be applied to the module using the normal (VDD_INT followed by VDD_
EXT) power-up sequence. Because all the tristate and reset pins are active low and currently
at 0.0 volts, all chip outputs will be tristated.

4. Now, for each chip to be tested:

A. SCAN_OUTJ4 is currently low which will bring internal node CONTH low, turning off
all of the continuity transistors.

B. For each pin on the chip under test:

0 Program the voltage source and current meter to connect to that pin of that device.
Source a voltage of + 5.0 volts, allow time for the current to settle, then measure the
current. The current should be below 10 uA.

0 Drive SCAN_OUT_H to 5.0 volts, which brings internal node CONLH high, turning on
all of the continuity transistors.

0 Allow time for the current into the pin being tested to settle, then measure the current
again. The current should now be above 300 uA.

0 Drive SCAN_OUT_H to 0.0 volts, which brings internal node CONT_H low, turning off
all of the continuity transistors.

0 Remove the voltage source and current meter from the test pin of that device and attach
a digital driver to that pin, driving 0.0 volts.

5. Opens testing is complete, either power down the module, or go on to more exhaustive
testing.

D.4.1 .3.4 Considerations During Module Design

The continuity test pin of each chip should, once the module is assembled, be connected to
separate signal networks and accessible to the tester so that this continuity test can be properly
performed.

D.5 Host Access Feature

D.5.1 Purpose

This feature enables access to all the QUIP address space from the host bus. This feature can be
used for debug and diagnostics. Some possible uses are:

1. The host can activate the SHAC DMAs and perform data transfers over the CP bus and/or
the DSSI bus. Such testing sequences can help to check the connections of the SHAC to
the board and the connections of the DSSI wires and connectors.

2. The host can modify the SHAC code (by writing to the CAM and the RAM).

3. Perform an internal check of the ROM, RAM and device registers to check if the chip is
functional.

SHAC TESTING 0-7



D.5.2 Description

This feature may be invoked at the same time as a MIN bit reset, or during normal SHAC
operation.

To invoke this feature, the host must first set Bit 4 in the PMCSR (this bit only needs to be set
once). After that, host accesses are allowed until there is a chip reset or a MIN bit reset.

The host should then set SSHMA (host address XX44) as follows:

SSHMA OPI Quip Address Data

Bits <31:30> = OP

IF host requests an operation (bits <31:30> ={1OI11}) then

Normal SHAC work is stopped until the host
writes 01 to the two high-order bits of SSHMA.

IF OP=11 THEN operationREAD; SSHMA<16:29>QUIP address.

QUIP will write to SSHMA<O:l5> the data.
And then writes OPOO.

IF OP=40 THPN operation=WRITE; SSHMA<l6:29>=QUIP address,
REC<O:15> data to write.
Quip will write the data to the Quip address
and then write OPOO.

IF OP=Ol THEN return to normal work

(Note that if the host writes OP = 00, the SHAC will
also return to normal work. However, the host

will not know when the SHAC wrote hits <31:30>.

After the QUIP finishes with the operation it writes
OPOO, to signal the host that it is done with the

previous operation. The host is not allowed to initiate

an operation before OPOO.

D.5.3 Using the Host Access Feature Alter a MIN Bit Reset

Normally, the Host Access Feature operates from an interrupt service routine. If, for any
reason, this becomes impossible, the host may reset the Quip and enter the Host Access
Feature immediately by setting both the MIN bit and the Host Access Feature bit in PMCSR.
The Quip stores an image of the Quip registers in a special area of RAM, and then processes
host commands. This feature can be useful for debugging if the SHAC “hangs”.

D-8 SHAC TESTING



Appendix E

Error Codes

SHAC generates various types of error codes, which are reported via the host-addressable
registers. In general, SHAC reports all errors as specified by CI Port; this appendix discusses
those errors for which SHAC reporting differs from that spec.

El Data Structure Errors

SHAC checks for and reports all Data Structure Errors as specified by Appendix D of CI Port,
except as noted in this section.

I Q_INTL_FAIL—SHAC always attempts a queue interlock operation until it succeeds.
Therefore, this error never is reported.

. ILLPQBFRM—CI Port specifies that the check for this error is optional. SHAC performs
the check and reports the error if detected.

. REGPROT_VIOL—This error is reported only when the port driver writes to PECR without
having first written to PQBBR.

E.2 Miscellaneous Errors

Miscellaneous Errors should occur only as a result of a SHAC internal bug (almost certainly
software). The error code is reported in the MISC field of PESR as specified by Chapter 8 of
CI Port.

The SHAC-specific error codes are not listed here, since understanding them requires a level
of familiarity with the SHAC internal software that is beyond the scope of this document.

Error Codes E-1



E.3 Maintenance Errors

A Maintenance Error is reported when a very serious internal SHAC error occurs. In addition
to setting PSR<MTE>, as required by CI Port, SHAC provides further information on the error
in the host-addressable registers.

In addition to MTE, one other bit in PSR (as listed in Chapter 4) should be set, indicating
the type of error. The following sections list these errors, and describe which other registers
contains what additional information.

E.3.1 Shared Host Memory Error

This indicates the occurrance of an error in the contents or processing of Shared Host Memory.
The specific error is indicated by a bit in PESR<31:16>:

PESR lift error name description

16 Channel Status A host bus error occurred while reading from Shared Host
Memory into the SHAC. PFAR contains the approximate host
address at which the error occurred.

17 Header Checksum The checksum for the SHM Header Area is incorrect. PFAR
contains the approximate host address of the checksum.

18 Parameter Checksum The checksum for the SHM Parameter Area is incorrect. PFAR
contains the approximate host address of the checksum.

19 ROM Checksum One of the ROM checksums in the SHM Patch Area is
incorrect. The contents of other registers are as described in
Section E.3.4.

Refer to Appendix C for information about the format of Shared Host Memory.

E.3.2 Slave Mode Parity Error

This indicates that a host bus parity error occurred on a host access of one of the SHAC
registers. PFAR contains the register’s byte offset within the set of SHAC registers, as listed in
Section 4.3.

E.3.3 Illegal Segment Number

The SHAC software attempted to read an External Segment that is not present in the Shared
Host Memory. PFAR< 15:0 > contains the number of the segment. PFAR< 31:16 > contains the
QUIP address of the SHAC code that attempted to read in the segment.

This error also will occur if the SHAC software attempts to read any External Segment after the
host has written 3FFF FFFF into SSHMA, as described in Section 5.1.2.3.

E-2 Error Codes



E.3.4 Diagnostic Error

An error was detected while running a SHAC internal self-test. The failing test is indicated by
a bit in PESR< 31:16 > and additional information can be found in other registers, as shown:

PESR bit test name

16 RAM diagnostic

17

18

19

ROM diagnostic

CAM diagnostic

device register test

register

PFAR< 15:0>

PFAR< 31:16>

PESR< 15:0>

PFAR

PFAR<15:O>

PFAR< 31:16>

PESR< 15:0>

PFAR<15:O>

PFAR<31:16>

PESR<15:O>

contents of register

QUIP address at which the error occurred

pattern written to that address

pattern read from that address after the
write

a bit vector; each PFAR<7:O> set indicates
that the checksum for the nth KVV of ROM
is incorrect

QUIP address of ROM location that test
was attempting to patch

QUIP address of CAM entry that was being
used

patch value that test was attempting to use

QUIP address of device register

value written to that register

value read from that register after the
write

All of these diagnostics are run following power-up,
then.

so any of these errors may be reported

Some or all of these tests (except for the RAM diagnostic) may be run following the read of
Shared Host Memory, as described in Appendix C. If the SHM specified that tests should con-
tinue even after a failure, PSR<DE> will be set but PSR<MTE> will not, and no Maintenance
Error interrupt will occur. If more than one test fails in this situation, more than one of the bits
in PESR<31:16> will be set.

E.3.5 QUIP-Detected Error

This indicates that a SHAC internal software error was detected by the QUIP hardware. The
following information can be found in other registers, though interpreting it requires a level of
familiarity with the SHAC internal software that is beyond the scope of this document:

register

PFAR<15:O>

PFAR<31:16>

PESR< 15:0>

PESR< 31:16>

contents

QUIP address that triggered the error

may be the SHAC code location at which the error occurred

the value in the QUIP internal FRR register

the value in the QUIP internal SP register

Error Codes E-3



Additional information can be found in the SHAC internal RAM, at a location that is dependent
on the Firmware Version.

E3.6 Illegal Interrupt

The QUIP received an interrupt that it shouldn’t have. The following information can be found
in other registers:

register contents

PFAR<15:O> the most significant bit set indicates the level of the interrupt

PFAR < 31 : 16 > the SHAC code location at which the interrupt occurred

E—4 Error Codes


