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ABSTRACT

The HS series of StorageWrks array controllers is a new famly
of Digital products that includes nodels for both open systens
and systens that use Digital's proprietary buses. The HS-series
controllers conbine perfornmance, availability, and reliability in
total storage subsystem solutions that use industry-standard
storage devices. The architecture and design of StorageWrks
array controllers represents a bal ance between the narket

requi renents and the avail abl e technol ogy. The engi neering
trade-offs led to an innovative design that incorporates product
features such as a dual -active controller configurations,
write-back caching, Parity RAID technol ogy, and SCSI-2 device
handl i ng.

| NTRODUCTI ON

The HS series of StorageWrks array controllers, a new addition
to Digital's storage subsystem fam |y, supports an open systens
envi ronnent by allowi ng the attachment of industry-standard Snal |
Comput er Systens Interface (SCSI-2) devices to the controller.[1]
Mor eover, these controller products yield high availability and
hi gh performance. This paper describes the architecture and the
desi gn of the HSJ30, HSJ40, HSD30, and HSZ40 St orageWorks array
controllers. These controllers interface to host conputers by
means of existing Digital interconnects, i.e., the Conputer
Interconnect (Cl) and the Digital Storage System | nterconnect
(DSSl), as well as a SCSI-2 host interconnect to VAX, Al pha, and
nost other conputers in the industry. The paper docunents the
desi gn and devel opnent trade-offs and describes the resulting
controllers and their features.

StorageWrks array controllers represent a significant change
fromDigital's original H erarchical Storage Controller (HSC)
subsystem the HSC50 controller, which was designed in the late
1970s, and also fromother Digital controllers such as the HSC60,
HSC70, HSC90, and KDMrO controllers. The StorageWrks controllers
di scussed in this paper were designed to neet the follow ng
product goal s:

1. Open systens capability. The goals for open systens
capability were to use industry-standard storage devices
attached to the controllers and to use an
i ndustry-standard host interconnect for one controller
nodel . Using industry-standard devi ces woul d provide
i nvestment protection for custonmers because they woul d



not have to change devices when a new controller was

i ntroduced or when they changed controller nodules to use
a different host interconnect. |Industry-standard devices
woul d al so reduce overall subsystem cost because of the
conpetitive nature of the storage device industry. The

| ong-term use of both Digital and non-Digital devices was
desired to provide a wide variety of device choices for
custoners. The use of an industry-standard host

i nterconnect would all ow StorageWrks controllers to be
used with Digital and non-Digital host conputers, further
expandi ng the open systens capability. The SCSI-2

i nterconnect was chosen as the device interface and the
host interface over other industry-standard interconnects
for cost and strategic reasons.

Hi gh availability. The goals for high availability
i ncluded both controller fault tol erance and storage
(di sk configuration) fault tolerance.

Controller fault tol erance was achi eved by devel opi ng a
dual -redundant controller configuration in conbination
wi th new St orageWrks encl osures that provide redundant
power supplies and cooling fans. The goal of the

dual - redundant configuration was to have the surviving
controller automatically assunme control of the failed
controller's devices and provide |/O service to them As
a side benefit, such a configuration would provide | oad
bal anci ng of controller resources across shared device
ports.

The storage fault-tol erance goal was to develop firmwvare
support for controller-based redundant array of

i nexpensive disks (RAID).[2] The initial Parity RAID

i mpl enmentation incorporated the best attributes of RAID
level s 3 and 5. The design provided the basis for |ater
i mpl enentati ons of other forns of RAID technol ogy,
notably mirroring. Parity RAID supports the goal of
storage fault tolerance by providing for continued 1/0O
service froman array of several disks in the event that
one disk fails. StorageWrks packagi ng that provides
redundant power supplies and cooling should be conbi ned
with the Parity RAID technology to extend storage fault
t ol erance.

Hi gh performance. The goals for high perfornmance were to
speci fy controller throughput (the nunber of 1/0
operations per unit of tinme), |atency (responsiveness),
and data transfer rate (controller bandw dth) for each of
the three controller platfornms: CI, DSSI, and SCSI. The

t hroughput was specified in the maxi mum nunber of read
and wite requests executed per second. The controllers
had to speed up the response tinme for host |/O operations
and thus deliver data with lower comrand | atency than the
HSC controllers. StorageWrks controllers had to achieve



t he hi ghest possible data transfer rate and were to do so
on a conmon platform

The platformspecific controller throughput goals were as
follows. The initial goal for the Cl-to-SCSI controller
was 1, 100 read requests per second; the |ong-term goa
was 1,500 to 1,700 read requests per second. The initia
goal for the DSSI-to-SCSI controller was 800 read
requests per second; the |long-term goal was 1,300 read
requests per second. The initial goal for the
SCSI-t0-SCSI controller was 1,400 read requests per
second; the long-term goal was 2,000 read requests per
second. The controller throughput for wite operations
was slightly | ower.

To reduce | atency, the controller hardware and firmare
i mpl emented controller 1/0 request caching. Designers
initially decided to include 16 to 32 negabytes (MB) of
cache nmenory on a separate optional cache nodul e. Read
cachi ng was the begi nning goal for the project; however,
write-back caching was added during product devel opnent
as a result of RAID technol ogy investigations.

Anot her approach to reduce |atency was to devel op
control |l er-based disk striping, i.e., inplenent the RAID
I evel 0 technology.[2] Specific goals were to achieve
parall el access to all RAID level 0 array nenbers for
read and wite operations and to streanline firmvare to

i ncrease RAID |l evel 0 perfornmance.

The Parity RAID performance goal was to overcone the
wel | - known weaknesses of RAID level 3 (i.e., poor
transaction throughput) and RAID | evel 5 (poor
smal |l -write perfornmance) and to approach RAID level O
striped array performance for both small and | arge read
and wite requests.[2] A conbination of hardware-assisted
parity conputations and wite-back cachi ng hel ped achi eve
this goal. Parity calculations in hardware reduced
firmvare overhead to conplete RAID level 5 wite
operations. Wite-back caching mnimzed the effects of
the RAID level 5 snmall-wite penalty.[3] To neet the
needs of custonmers who require high data transfer rates
with RAID, RAID | evel 3-style algorithns nmust be added
for the Parity RAID design.

A conmon control |l er processing core had to be architected
and designed to neet the performance needs of all the

pl anned StorageWrks controllers (based on host interface
capabilities). The platformhad to execute the sane base
firmvare, coupling new host interface firmvare to the
specific platforns. A conmon platformwas believed to
ease product devel opnent and to naxinize reuse of
firmvare for the same "l ook and feel" in all products.



OPEN SYSTEMS CAPABI LI TY

For StorageWrks controllers to enter the open systens narket,
product designers had to consider the follow ng aspects of open
systems in the controller definition: the use of

i ndustry-standard devi ce interconnects and industry-standard
devices attached to the controller, and the use of

i ndustry-standard and Di gital host interconnects.

SCSI -2 Device |Interconnect

The SCSI -2 interconnect was chosen for the device interconnect
because of its wi de acceptance in the conputer industry. During
the controller definition phase, the StorageWrks packagi ng group
was concurrently designing and buil ding storage device encl osures
call ed shelves that woul d house up to seven 3.5-inch devices or
two 5.25-inch devices. These shelves, connected to the
controller, would allow a wide variety of SCSI-2 devices to be

i ncorporated and would do so at a | ow cost because of the

wi despread use of SCSI-2 as a device interconnect.

St orageWbrks controllers were designed to support the follow ng
types of SCSI-2 devices:

o] Disk -- rotating spindle disk drives and solid-state
di sks
o] Tape -- individual tape drives, tape |oaders, and

j ukeboxes that contain robotic access to nmultiple drives
froma media library

o] CD- ROM

o] Optical -- individual disks and jukeboxes that contain
robotic access to multiple drives froma nmedia library

St orageWbrks Controllers in System Environments

The desire to produce a controller with an open system host

i nterconnect was coupled with a commitnent to protect the

i nvestments of existing Digital custonmers who currently use Cl
and DSSI host interconnects. The strategy was to produce Cl
DSSlI, and SCSI variants of the StorageWrks array controller, al
based on a common platform As in the selection of the device

i nterconnect, the SCSI-2 host interconnect variant was chosen
because of its wi despread use and | ow cost.

The controllers for the CI, DSSI, and SCSI interconnects were
nanmed the HSJ30/ HSJ40, the HSD30, and the HSZ40, respectively.
The designations of "30" and "40" represent a code for the nunber
of device ports attached to the controller. The HSJ30 and HSD30



controllers have three device ports each, whereas the HSJ40 and
HSZ40 have si x device ports each. The nunber of device ports

sel ected for each controller type was based on (1) the overal
capability of the host port interconnect to support the aggregate
capability of a nunber of device ports and (2) the desire to
anortize controller cost against as many attached devi ces as
possi bl e.

St orageWbrks control |l er configurations depend on the controller
host interface. Marked differences exist in the configurations
supported by Cl-based OpenVMs VAXcl uster confi gurati ons,
DSSI - based OpenVMS VAXcl uster configurations, and SCSI - based
configurations in OpenVMS, DEC OSF/ 1, and other industry system
environnents. The basic differences are the nunber of hosts
connected and whether or not other storage devices can be on the
same host interconnect as the controller and the other hosts.

The ClI configuration supports up to 32 nodes per bus. Each node
may be either a storage controller (i.e., an HSJ30, an HSJ40, or
an HSC device) or a host conputer (i.e., a VAX or an Al pha

system.

The DSSI configuration supports up to 8 nodes per bus. Each node
may be either a storage controller (i.e., an HSD30 or an HSDO5),
a storage elenment (e.g., an RF73 device), or a VAX or an Al pha
host conputer.

The SCSI configuration supports up to 8 targets per bus. The
HSZ40 controller, with its standard SCSI-2 host interface, nay be
connected to Digital Al pha conmputers (i.e., DEC 3000 and DEC
7000/ 10000 conmputers running the DEC OSF/ 1 operating systenm), Sun
M crosystens conputers, Hew ett-Packard conputers, and | BM
conmputers. Digital qualifies the HSZ40 controller for operation
wi th additional vendors' systens according to nmarket demand.

H GH AVAI LABI LI TY

To nmeet the goals of controller and storage fault tol erance, the
desi gners of StorageWrks controllers devel oped a nunber of
scenarios fromwhich the controller can be fault tolerant with
respect to failures in controller or attached storage conmponents.
The first aspect of fault tol erance considered is that of
controller fault tol erance; the second is configuration fault

t ol erance.

Controller Fault Tol erance

Desi gners achieved controller fault tolerance by investigating
the common faults that the controller could tolerate w thout
requiring extrene design neasures and incurring high costs. The
results of this investigation drove the design of what becane the
dual - redundant HS-series controller configuration. This



configuration incorporates several patented hardware and firmare
features (patent pending).

The following faults can exist within a StorageWrks controller
and the attached StorageWrks packagi ng and do not nake host data
unavai |l abl e:

o] Controller failure. |In a dual-redundant configuration,
if one controller fails, all attached storage devices
continue to be served. This is called failover. Failover
occurs because the controllers in a dual -redundant
configuration share SCSI-2 device ports and therefore
access to all attached storage devices. If failover is to
be achi eved, the surviving controller should not require
access to the failed controller.

o] Partial menory failure. |If portions of the controller
buffer and cache nmenories fail, the controller continues
normal operation. Hardware error correction in controller
menory, coupled with advanced di agnostic firmvare, all ows
the controller to survive dynam c and static nenory
failures. In fact, the controller will continue to
operate even if a cache nodule fails.

o] Power supply or fan failure. StorageWrks packagi ng
supports dual power supplies and dual fans. HS-series
controllers can therefore be configured to survive a
failure of either of these conponents.

o] SCSI -2 device port failure. A failure in a single SCSI-2

devi ce port does not cause a controller to fail. The
controller continues to operate on the renmnining device
ports.

The controller nust be able to sense the failures just listed in
order to notify the host of a fault-tolerant failure and then to
continue to operate normally until the fault is repaired. The
desi gners deened this feature vital to reducing the tinme during
which a controller configuration nust operate with a failure
present.

Anot her requirenent of fault-tolerant systens is the ability to
“hot swap" or "hot plug" conponents, i.e., to replace conponents
while the systemis still operating and thus to not cause the
systemto shut down during repairs. The designers made the
controller and its associated cache nodul e hot swappabl e. That
is, one controller in the dual configuration can be replaced

wi t hout shutting down the second controller, and the second
controller continues to service the requests of the attached
hosts. This feature, coupled with the hot-swap capability of

St orageWbr ks devi ces, creates highly avail abl e systens.

Dual -redundant Controller Configuration. Like all StorageWrks



conmponents, HS-series controllers are packaged in StorageWrks
shel ves. The StorageWrks controller shelf contains a backpl ane

t hat acconmodates one or two controllers and their associated
cache nodul es, as well as SCSI-2 device port connectors. The
packaging is conmon to all system environnments. HS-series
controllers mounted in a single shelf may be conbined in pairs to
form a dual -redundant controller configuration (shown in Figure
1) in which both controllers can access the sane set of devices.

[Figure 1 (StorageWrks Controllers: System Bl ock Diagram is not
available in ASCI| format.]

Figure 2 shows two HS-series controllers installed in a

St orageWorks controller shelf in a dual -redundant configuration.
Figure 3 shows two dual -redundant controller configurations
mounted in a StorageWrks cabinet with several device shel ves.
The controllers connect to storage devices with cabl es that
energe fromthe controller shelf and attach to the device

shel ves.

[Figure 2 (StorageWrks Controller Shelf) is a photograph and is
not avail abl e. ]

[Figure 3 (StorageWrks Cabinet) is a photograph and is not
avail abl e. ]

The designers had to decide how the dual -redundant controller
configuration could achieve high availability through fault

tol erance. To neet the high-availability goals, the team
addressed the concept of controller failover early in the design
process. One fault-tolerant option considered was to run with a
"hot - standby" controller that woul d become operational only if
the main controller were to fail. A second option was to design a
dual -active controller configuration in which two controllers
woul d operate simultaneously. They woul d share and concurrently
use device port buses (not devices), thus balancing the 1/0O | oad
from host conputers.

Both options allow for direct failover of devices w thout manua

i ntervention. The hot-standby controller option requires either
automatic configuration of the attached devi ces when the

hot - st andby control | er becones operational or nonvolatile (i.e.

i rmpervi ous to power |oss) shared nmenory to hold the configuration
i nformati on. The dual -active controller option requires that each
controll er have detail ed know edge about the other controller and
the device state; it does not require that the controllers share
a menory. The designers chose the second option because it

provi ded | oad bal ancing and therefore potentially greater
performance. However, they faced the challenge of designing a
backpl ane and an interface between the controllers that would
achi eve the dual -active configuration but would not require a
shared menory. The result of the design effort was the

St orageWbr ks controll er shel f.



StorageWrks Controller Shelf. The StorageWrks controller shelf
is an architected enclosure that allows a pair of StorageWrks
controllers and their respective cache nenory nodul es to be

pl aced into the dual -redundant configuration, as shown in Figure
4. A cache nodule is attached to each controller for performance
purposes. The controller shelf contains a backplane that includes
intercontroller comrunication, control |ines between the
controllers, and shared SCSI-2 device ports. Since the two
controllers share SCSI-2 device ports, the design enables
continued device availability if one controller fails.

[Figure 4 (StorageWrks Controller Backplane: Controllers in a
Dual -redundant Configuration) is not available in ASCIl fornmat.]

The backpl ane contains a direct communi cati on path between the
two controllers by nmeans of a serial conmunication universa
asynchronous receiver/transmtter (UART) on each controller. The
controllers use this conmunication link to inform one another
about

o] Controller initialization status. |In a dual-redundant
configuration, a controller that is initializing or
reinitializing sends information about the process to the
ot her controller.

Keep alive" comunication. Controllers send keep alive
nmessages to each other at tined intervals. The cessation
of conmuni cation by one controller causes a failover to
occur once the surviving controller has disabled the

ot her controller.

o] Configuration information. StorageWrks controllers in a
dual - redundant configurati on have the same configuration
information at all tinmes. Wen configuration information
is entered into one controller, that controller sends the
new i nforrmation to the other controller. Each controller
stores this information in a controller-resident
nonvol atile nmenory. |f one controller fails, the
surviving controller continues to serve the failed
controller's devices to host conputers, thus obviating
shared menory access. The controller resolves any
di screpanci es by using the newest information

o] Synchroni zed operations between controllers. Specific
firmvare conmponents within a controller can comunicate
with the other controller to synchronize special events
bet ween the hardware on both controllers. Some exanples
of these special events are SCSI bus resets, cache state
changes, and di agnostic tests.

The other signals on the backplane pertain to the current state
of the configuration within the controller shelf and to specific
control lines that determ ne the operation of the dual -redundant



controller configuration. The backpl ane state and control signals

i ncl ude

St at us about the presence of a controller's cache nodul e.
Each controller can sense the presence or absence of its
cache to set up for cache diagnostics and cache
operations.

St at us about the presence of a second controller, which

i ndi cates a dual -redundant configuration. Each controller
can sense the presence or absence of the other controller
in a dual -redundant configuration. This assists in
controller setup of dual-controller operation as well as
general controller initialization of the dual-redundant
configuration.

St at us about the presence of the second controller's
cache. Each controller can sense the presence or absence
of the other controller's cache for dual -controller setup
pur poses.

The "KILL" signal. 1In a dual-redundant configuration,
each controller has the capability to use the KILL
control signal to cause a hardware reset of the other
control |l er. However, once one controller asserts the KILL
signal, the other controller |oses the capability. The
KILL signal ensures that a failed or failing controller
will not create the possibility of data corruption to or
from attached storage devices.

The KILL signal denotes that failover to the surviving
control |l er should occur. A controller asserts the KILL
signal when the other controller sends a nessage that it
is failing or when normally schedul ed keep alive

conmuni cati on fromthe other controller ceases. The KILL
signal is also used when both controllers decide to reset
one another, e.g., when the conmunication path has
failed.

The designers had to ensure that only one controller
could succeed in the KILL operation, i.e., that no w ndow
exi sted where both controllers could use the KILL signal
After firmvare on a controller asserts the KILL signal to
its dual -redundant partner, the KILL recognition
circuitry within the controller that asserted the signa
is disabled. The probability of true sinmultaneous KILL
signal assertion was estimted at 10**-20, based on
hardware tim ng and the possibility of synchronous

dual -control |l er operation.

The cache LOCK signals. The cache LOCK signals contro
access to the cache nodul es. The dual -controller
architecture had to prevent one controller from gaining
access to a cache nodul e that was being used by the other



controller and had to allow the surviving controller to
access the failed controller's cache. The access contro
had to be inplenented in either firmvare or hardware

A firmvare solution would involve a software | ocking
mechani smthat the controllers would recogni ze and
cooperatively use to limt cache nodul e access to the
associ ated controller. This nethod had an inherent
problem firmvare al one may not prevent inadvertent cache
access by a failing controller. The designers therefore
had to i nmpl ement a hardware | ock nmechanismto prevent
such inadvertent access.

The hardware | ock nechani smwas inplenented with contro
signals fromeach controller. The signals are utilized by
har dware to prevent inadvertent access and by firmvare to
[imt cache nmodul e access to the associated controller
From each controller, the designers inplenmented two LOCK
signals that extend individually to each cache nodul e and
are visible to both controllers. The cache LOCK signal s
are illustrated in Figure 4.

The LOCK signhals allow a controller to achieve excl usive
access to a specific cache nodule to ensure data
integrity. LOCK signals froma controller that has been
"killed" by its dual -redundant partner are reset so that
the partner nmay fail over any unwitten cache data in the
write-back cache.

Failover. Controller failover is a feature of the dual -redundant
configuration for StorageWrks controllers. Failover of a
controller's devices and cache to the other controller occurs
when

o] A controller fails to send the keep alive nessage. This
situation can occur because of a controller failure in
the dual UART (DUART) or in any other non-fault-tolerant
portion of the controller nmodule. In this scenario, the
surviving controller uses the KILL signal to disable the
ot her controller, comrunicates to the failed controller's
devi ces, and then serves the failed controller's devices
to hosts.

The failover of a controller's cache occurs only if
write-back caching was in use before the controller
failure was detected. In this case, the surviving
controller uses the failed controller's cache to wite
any previously unwitten data to the failed controller's
di sks before serving these disks to hosts. \Wen the
surviving controller has witten the data to disks (i.e.
flushed the data), it releases the cache to await the
failed controller's return to the dual -redundant
configuration through reinitialization or replacenent.



o] A custoner desires to change the | oad bal ance of one or
nore devices attached to one controller to the other
controller. This specialized use of failover provides a
| oad- bal anci ng feature that the designers considered
val uable in a dual -active controller configuration. Load
bal ancing is static in the controller, i.e., devices are
allocated to one controller or to the other, not shared
dynami cally. To change allocation, the system manager
nmust change the preferred path of device access. This is
acconpl i shed by accessing either the maintenance port of
the controller or the configuration firmvare through the
host interface (e.g., the diagnostics and utilities
protocol for CI and DSSI systens).

o] The cache nodule battery is |low or has failed. This
speci al case of failover is used in conjunction with
Parity RAID operations for the reasons described in the
Parity RAID technol ogy portion of the follow ng section.
The main issue is to continue to provide as nmuch data
protection as possible for Parity RAID disk
configurations when the battery on the wite-back cache
is |ow or bad.

o] The controller is unable to conmunicate with the devices
to which it is currently allocated for host operations.
This situation can occur if a device port on a controller
fails.

Storage Fault Tol erance

Storage fault tolerance is achieved by ensuring that power or
environnental factors do not cause devices to be unavail able for
host access and by using firmvare to prevent a device failure
fromaffecting host accessibility.

Envi ronnental Factors. StorageWrks encl osures provide for
optional redundant power supplies and cooling fans to prevent
power or fan failures from maki ng devi ces unavail able. The SCSI -2
cabl es that connect device shelves to the controller shelf carry
extra signals to alert the controller to power supply or fan
failures so that these conditions nmay be reported to host
conputers. The encl osures nust contain light-emtting diodes
(LEDs) to allow a controller to identify failed devices.

In addition, a cache nodule can fail, and the controller wll
continue to operate.

RAI D Technol ogy. To prevent a device failure from affecting host
access to data, the designers introduced a conbined firmvare and
har dwar e i npl ementati on of RAID technol ogy.[2] The designers had
to decide which RAID | evel to choose and what type of hardware



(if any) was required for the inplenentation

The designers considered RAID levels 1 through 5 as options for
solving the problemof disk failures that affect data
availability. RAID level 1 (disk mrroring, which is depicted in
Figure 5a) was rejected because of its higher cost, i.e., the
cost of parts to inplenent the mrroring.[2] Each disk to be
protected inplies an inherent cost of one additional housed,
powered, and attached disk. RAID Ievel 1 was al so di scounted
because software-based solutions were available for many of the
hosts for which the HS-series controllers were initially

t arget ed.

[Figure 5 (Mapping for RAID Levels 1 through 5) is not avail able
in ASCII format.]

RAID |l evels 2 through 4, illustrated in Figures 5b through 5d,
were rejected because they do not provide good performance over
the entire range of 1/0 workl oads for which the controllers were
targeted.[4] In general, these RAID |l evels provide high,
single-streamdata transfer rates but relatively poor transaction
processi ng perfornmance.

RAID level 5 in its pure formwas rejected because of its poor
write performance, especially for small wite operations.[2] The
designers ultimately chose RAID | evel 5 data mapping (i.e., data
striping with interleaved parity, as illustrated in Figure 5e)
coupl ed with dynami c update algorithnms and wite-back caching to
overconme the small-wite penalty. This inplementation is called
Parity RAID.

An HS-series Parity RAID array appears to hosts as an econom cal
fault-tolerant virtual disk unit. A Parity RAID virtual disk unit
wWith a storage capacity equivalent to that of n disks requires

n + 1 physical disks to inplenment. Data and parity are
distributed (striped) across all disk menmbers in the array,
primarily to equalize the overhead associated with processing
concurrent small wite requests.[2]

If a disk in a Parity RAID array fails, its data can be recovered
by readi ng the correspondi ng bl ocks on the surviving di sk menbers
and performng a parity conparison (using exclusive-OR [ XOR]
operations on data from other nenbers). Figure 6 illustrates this
regeneration of data.[4]

[Figure 6 (Regenerating Data in a Parity RAID Array with a Failed
Menber Disk) in not available in ASCI| fornat.]

HS-series controll er devel opers overcane a nunmber of chall enges.
Forenmbst anmong them was the elimnation of the RAID level 5 wite
hole. Parity RAIDwith its RAID level 5 striping is susceptible
to the RAID level 5 wite hole. A wite hole is data corruption
that occurs when all the foll owi ng events take place.



A controller failure occurs with a host's wite request
out st andi ng.

Ei ther the updated data or the updated parity for the
host's wite request has been witten to disk but not
bot h.

A failure of a different disk occurs after the controller
failure has been repaired.

To elimnate this wite hole, designers had to develop a
nmet hod of preserving information about ongoing RAID wite
operations across power failures such that it could be conveyed
bet ween partner controllers in a dual -redundant configuration.

Desi gners decided to use nonvol atile caching of RAID wite
operations in progress.[5] Three alternatives were considered:

1

An uninterruptible power supply (UPS) for the controller
cache, and all attached disk devices. This choice was
deened to be a costly and unw el dy sol uti on because of
the range of possible requirenents. The indeterninate
anount of data in the cache to be witten and the power
consunption of a wide variety of devices would
necessitate a very |arge backup power source to ensure
enough tine for all cached wite data to be witten to
attached devi ces.

A battery in the controller and device enclosures (i.e.
shelves) to allow enough tine for the witing of cached
data in the event of a power failure. StorageWrks device
encl osures can accommodat e either redundant power
suppl i es or one power supply and one backup battery for
configurations that do not require redundancy. There is
no provision for both redundant power supplies and a
battery. This conflict between fault-tolerant

St orageWbr ks shel f configurations with dual power
supplies and the desire to add a battery for wite-back
cachi ng was unacceptable to the designers because of the
| oss of power redundancy to gain wite-back cache
integrity.

A controll er-based nonvol atile cache. The options for
control |l er-based nonvol atil e caching included (a) a
battery-protected cache for wite data, (b) an additiona
nonvol atil e random access nmenmory (NVRAM on the
controller to journal RAID wites, and (c) a
battery-protected cache for both read and wite data.

Wth a battery-protected wite cache, data nust be copied
if it is to be cached for subsequent read requests.

Desi gners deened the potential performance penalty
unaccept abl e.



Using controller NVRAM as a RAID wite journal not only
closes the RAID level 5 wite hole but also provides a
small wite cache for data. This approach al so requires
data copying and creates an NVRAM access problem for the
surviving controller to the failed controller NVRAMto
resolve any outstanding RAID wite requests.

The third controller-based nonvol atile cache option, to
battery-backup the entire cache, solved the copy issue of
option 3a and the failover issue of option 3b

The designers chose option 3c, the battery-protected read/wite
cache nmodule. A totally nonvolatile cache had the advant age of

not requiring wite-cache flushing, i.e., copying data between
the wite cache and the read cache after the wite data has been
written to devices. Segregated cache approaches (part

nonvol atile, part volatile) would have required either copying or
di scarding data after wite-cache flushing. Such approaches woul d
have resulted in a | oss of part of the value of using the caching
al gorithm by allowi ng only read caching of read data already
read. Another benefit of a nonvolatile read/wite cache is

fail over of the cache nodule in the event of a controller

failure. This further reduces the risk associated with a RAID
level 5 wite hole because unwitten wite operations to Parity
RAI D arrays can be conpleted by the surviving controller after
failover.

To achieve a total nonvolatile cache, the designers opted for the
battery solution, using two 3-by-5-by-0.125-inch | ead-acid
batteries that supply up to 100 hours of battery backup for a
32-MB cache nodul e. The batteries elinminated the need for a
speci al (and costly) nonvolatile nenory wite cache and al | owed
data hol d-up after power failure. The designers chose |ead-acid
batteri es over Ni CAD batteries because of their steady power
retenti on and output over tine. This option protects agai nst npst
maj or power outages (of five minutes to five days) and all ninor
power outages (of less than five mnutes). Mst power outages
(according to studies within Digital) last less than five m nutes
and are handled in the same nanner as mmj or outages, that is, by
flushing wite data i medi ately after power has been restored to
the controller configuration. Battery status is provided to
firmvare, which uses this information to nake policy decisions
about RAID arrays and other virtual disk units with wite-back
cachi ng enabl ed.

For an HS-series controller to support Parity RAID, its cache
nodul e must have batteries installed. The batteries nake the
cache nonvol atile and enable the algorithns that close the RAID
level 5 wite hole and permt the use of the wite-back cache as
a performance assist, both vital for proper Parity RAID
operation. If the controller firmvare detects a | ow or

bad- battery condition, wite-back caching is disabled. The
controller that detects the condition tries to fail over Parity
RAID units to the other controller in the dual -redundant



configuration to keep the units available to hosts. |If the other
controller cache nmodul e has a | ow or bad-battery condition, the
Parity RAID unit is made unavail able to hosts to protect agai nst
data | oss or data corruption should a power failure occur. Wen
the batteries are no longer low, Parity RAID units are again nmade
avail able to hosts. Any Parity RAID units that had been failed
over to the other controller would fail back, i.e., return, to
the controller that originally controlled them The nodul e

har dware and firmvare support read caching regardl ess of the
presence of a battery.

After solving the RAID |l evel 5 wite-hole problem the designers
decided to automate the Parity RAID recovery process wherever
possi bl e. This goal was adopted so that custonmers woul d not have
to understand the technol ogy details in order to use the
technology in the event of a failure. StorageWrks controller
firmvare devel opers, therefore, chose to add automatic Parity
RAI D managenent features rather than require manual intervention
after failures. Controller-based automatic array nanagenent is
superior to manual techni ques because the controller has the best
visibility into array problenms and can best nanage any situation
gi ven proper guidelines for operation.

An inportant feature of Parity RAIDis the ability to
automatically bring a predesignated disk into service to restore
data protection as quickly as possible when a failure occurs.

O her controllers in the industry mandate configurations with a
hot - standby disk, i.e., a spare disk, dedicated to each Parity
RAID unit. A hot-standby disk is powered and ready for firmware
use if an active nenber disk of its Parity RAID unit fails. This
concept is potentially wasteful since the probability that
multiple Parity RAID units will have sinmultaneous single-nenber
disk failures is | ow. The designers therefore had the options of
maki ng spare di sks available on a per-Parity RAID unit basis or
havi ng a pool of spares, i.e., a spare set, that any configured
Parity RAID unit could access. The designers chose the pool of
spares option because it was sinpler to inplenent and | ess costly
for the custonmer, and it offered the opportunity to add sel ection
criteria for spare set usage and thus maxim ze either performance
or capacity efficiency.

To allow nore flexibility in choosing spare set nenbers,

desi gners made two spare selection options avail able: best fit
and best performance. The best fit option allows for disk devices
of different sizes to conpose the pool of spares. \When a spare
disk is needed after a nmenber of a Parity RAID unit fails, the
device with the best fit, that is, whose size nost closely

mat ches that of the failed disk (typically of the sanme size but
possi bly of greater capacity), is chosen. The best perfornmance
option can reduce the need for physical reconfiguration after a
spare is utilized if a spare attached to the sanme device port as
the failed array nenber can be allocated. The best performance
option nmintains operational parallelismby spreading array
menbers across the controller device ports after a failure and



subsequent spare utilization.

These features allow automatic sparing of failed devices in
Parity RAID units and automatic reconstruction after a spare

devi ce has been added to the Parity RAID unit.[6] Furthernore,
any drive of at |least the size of the smallest nenber of a Parity
RAID unit is a candidate spare, which reduces the need for |ike
devices to be used as spares. (Typically, however, spare set
menbers are |ike nenbers.)

A Parity RAID unit with a failed nmenber will beconme unavail abl e
and | ose data if a second failure occurs. The HS-series automatic
sparing feature reduces the wi ndow of possible data loss to the
time it takes to reconstruct one Parity RAID unit. Mean tine
between data | oss (MIBDL) is a conmbination of the mean tine to
repair (MITR) and the failure rate of a second device in a Parity
RAID unit. The automatic sparing feature reduces the MITR and
thus increases the MIBDL. Data | oss can occur only in the highly
unlikely event that a failure occurs in another RAID set nenber
before the reconstruction conpletes on the chosen spare. During
Parity RAID reconstruction, the controller inmediately nmakes the
host read or wite request to the reconstructing nenber redundant
by updating parity and data on the spare after the host read or
write operation. Parity RAID firmwvare quickly reconstructs the
rest of the Parity RAID unit as a background task in the
controller. If the menber that is being reconstructed happens to
fail and other spare set nmenbers renmin, reconstruction on a new
spare begins inmediately, further reducing the probability of
data | oss.

Parity RAID nmenber disk failure declaration is key to the
efficient use of spares and to preventing unwarranted use of
spares. If a wite command to a RAID set nenber fails, RAID
firmvare assunmes that the SCSI-2 disk drive has exhausted al
internal nmethods to recover fromthe error. SCSI-2 disk drives
automatically perform bad bl ock replacenent on wite operations
as long as there is space available within the disk drive
revector area (the area where spare data bl ocks can be mapped to
a failed block). The designers chose this nmethod over nore
conplex retry algorithns that might encounter internmittent
failure scenarios. Enpirical information related to previous

st orage devi ces showed that |ocalized wite failures are rare and
that this strategy was sound for the ngjority of disk access
failures.

When read failures occur, data is regenerated fromthe renaining
array nmenbers, and a forced bad bl ock replacenent is perforned.
Met adata on the disk is used to performthis function atom cally,
that is, to performthe bad bl ock replacenent even if a power
failure occurs during the replacenent.[7] |If the disk cannot

repl ace the block, then the Parity RAID nenber disk is failed out
and an attenpt is nmade to choose a suitable spare fromthe spare
set. If no spare is available, the Parity RAID unit operates in
reduced node, regenerating data fromthe failed nenber when



requested by the hosts.[4]

Parity RAID firmvare uses the netadata to detect a | oss of data
due to catastrophic cache failure, inappropriate device renoval,
or cache replacenent without prior flush of wite data. The

desi gners considered it inportant that the controller firmvare be
able to detect these data | oss conditions and report themto the
host conputers.

The failure scenarios just described occur infrequently, and the
StorageWrks Parity RAID firmvare is able to recover after such
failures. During a typical normal operation, the main challenge
for Parity RAID firmvare is to achieve a high level of
performance during wite operations and a high |evel of
controll er performance in general

H GH PERFORMANCE

As discussed earlier, the performance goals for the StorageWrks
controllers were in the areas of throughput and |atency.
Bandwi dt h goal s were based on the architecture and technol ogy of
the controller platform The designers net the performance goals
by producing a controller that had a | ow cormand over head and
that processed requests with a high degree of parallelism The
firmvare design achieves | ow overhead by neans of the algorithns
runni ng on the controller, coupled with RAID and caching

technol ogy. The hardware design that allows for | ow command
overhead and high data transfer rates (bandwi dth) is discussed in
t he section Conmon Hardware Pl atform

Command Processi ng

The St orageWorks designers maxi m zed the nunber of requests the
controller can process per second by reduci ng the comand
processing |latency within the controller firmvare. The firmware
utilizes controller-based caching and al so stream i ned command
processing that allows multiple outstandi ng commands to be
present in the controller

To nmeet the varying needs of customer applications, the
controller supports both Parity RAID and RAID | evel 0. The

desi gners decided to include RAID I evel 0 as a controller feature
because of its inherent parallelism even though RAID level 0 is
not fault tolerant wthout external redundancy.

St orageWbrks controllers service all device types, but the
designers felt that disk device performance was the key netric
for determning how well a controller supports RAID technol ogy.
The controller firmvare was designed to efficiently contro

i ndi vi dual devices (comonly referred to as "just a bunch of
devices" [JBOD]) and Parity RAID, prioritizing requests to each
of the SCSI-2 device ports on the controller. StorageWrks



controllers conply with SCSI-2 protocols and perform advanced
SCSI -2 functions, such as tagged queuing to all attached SCSI -2
storage devices for greater performance.[1]

Di scussions of the RAID level 0 technology and of how the
designers used Parity RAID technology to overcone sone of the
performance bottl enecks foll ow.

Striping -- RAID Level O

Digital has used RAID |l evel 0 technology, that is, striping, in
systenms for at least five years, in its host conputers using
software as well as in its controllers. Striping allows a set of
di sks to be treated as one virtual unit. Device data bl ocks are
interleaved in strips, i.e., contiguous sets of blocks, across
al |l disks, which provides high-speed parallel data access. Figure
7 illustrates the mapping for a RAID level 0 array.[4] Since a
striped disk unit inherently lacks fault tolerance (i.e., if one
device in the set fails, data is lost), controller-based striping
is typically used in conjunction with host-based mrroring or in
cases where data can be easily reproduced. Stripe sets achieve
hi gh performance because of the potential for parallelism by
means of the device and data organi zation. The key difference
between RAID | evel 0 and RAID | evel s 3 and higher is that
striping results in the interdependence of data witten to

di fferent devices.

[Figure 7 (Mapping for a RAID Level 0 Array) is not available in
ASClI | format.]

Control | er Caching

Caching with StorageWrks controllers was originally read caching
only. When the designers decided to use a nonvolatile cache to
elimnate the RAID level 5 wite hole, wite-back caching on the
controll er became a viable option.

Controll er Read Caching. Read caching was intended to reduce
latency in the controller by mninizing the need to access

devi ces continuously for repeated host read requests to the sane
| ocati ons on attached devices. Read caching nust al so address the
i ssue of how to handle wite data for |ater use. The design could
have incorporated on-board controller nenory to hold wite data.
However, this would require copying the wite data to the read
cache after the wite data had been witten to the devices and
woul d result in inefficient use of the read cache. Therefore, the
desi gners deci ded to have the read cache serve as a wite-through
cache as well. Read caching would be disabl ed/ enabl ed per |ogica
unit presented to the host instead of having gl obal read caching,
where a logical unit is one or nore devices configured as one
virtual device. Thus, custoners can specify for which virtua



devi ces they want cachi ng enabl ed.

The read and wite-through caching firmvare receives requests
fromother parts of the controller firmvare (e.g., a host port, a
device port, and the Parity RAID firmvare) and proceeds as

foll ows.

For reads requests, the caching firmware provides

1. The data pointers to the cached request, i.e., the cache
hi t
2. The data pointers for part of the request, i.e., a

partial cache hit, which nmeans that the renmining data
nmust be retrieved fromthe device or devices being
request ed

3. A status response of cache m ss, which neans that storage
managenment nust retrieve the data fromthe device or
devi ces being requested

For write requests, the caching firmvare offers the cache manager
data fromthe request. The cache manager places the previous data
pointers into the read cache tables after the data is witten
through the cache to the devices. Firmvare tells the device port
har dware where to find wite data, and the port hardware
transfers the data.

Read caching in the first version of the controller firmware
allowed the controller to achieve the initial throughput goals
across the three controller platforms. The current software
version, version 2.0, was shipped in October 1994 and exhibits
even greater throughput performance. Table 1 shows the 1/0
performance for the three StorageWrks controller platforns with
read cachi ng enabl ed.

Table 1 StorageWrks Controller I/O Performance with Read Caching

Read Requests Wite Requests

Controller per Second per Second
HSJ30/ HSJ40 1, 550 1, 050
HSD30 1, 000 800
HSZ40 2,250 1, 500

Wite-back Caching -- Performance Aspects. As noted earlier

when the cache nodul e contains batteries, the nenory is

nonvol atile for up to 100 hours. The StorageWrks controller can
use the nonvolatile cache to increase controller perfornmance by
reducing latency for wite request Parity RAID performnce to a
level simlar to that of RAID |l evel O (sinple disk striping). The



controller can also utilize the wite-back cache to reduce the
| atency of JBOD and RAID I evel 0 disk configurations. As with
read caching, wite-back caching is disabled/ enabl ed per |ogica
unit.

The write-back caching firmvare controls the usage of both a
surviving controller's cache nodule and a failed controller's
cache nmodule. When it receives a wite request, the controller

pl aces the data in the cache, marks the request as conplete, and
writes the data based on internal controller firmvare policies
(write-back caching). To provide greater performance during
Parity RAID operations than sinple wite-back caching could

provi de, the wite-back cache firmvare is also tied to the Parity
RAI D firmnare.

In addition to dealing with the continual problem of controller

| atency on write conmands, designhers had to overconme the RAID
level 5 small-wite penalty with parity updates to RAID set
menbers. Wite-back caching was chosen over RAID | evel 3 hardware
assists as a Parity RAID strategy because RAID | evel 3 does not
provi de a wi de range of benefits for all customer workloads.
Wite-back caching provides |atency reductions for RAID and

non- RAI D configurations. Wite-back caching al so increases
write-request throughput. For exanple, the published performance
nunbers for wite throughput with wite-back caching enabled in
version 2.0 firmvare appear in Table 2.

Table 2 StorageWrks Controller Wite Request Throughput with
Wite-back Caching

Wite Requests

Controller per Second
HSJ30/ HSJ40 1, 350
HSD30 900
HSZ40 1, 850

The use of wite-back caching resulted in a 20 to 30 percent
increase in wite throughput for all platforns as conpared to
write-through caching. Before discussing the effect of wite-back
caching on latency for individual devices and for Parity RAID
arrays, the paper describes how the wite-back cache firmvare was
designed and tied directly to Parity RAID firnmnare.

The features chosen for wite-back caching were extensively
benchmar ked agai nst data integrity issues. The addition of
settable tinmers allows customers to flush wite data destined for
devices that are idle for a specific length of tine. To reduce
the nunber of read/nmodify/wites required to update parity on
small write operations, designers tied flush algorithnms to RAID.
Flush algorithnms for wite-back caching are vital to customer
data integrity and to | atency reduction. The flush al gorithns



actually allow Parity RAID to sinulate RAID |l evel 3 operations
because of the nonvolatile wite-back cache.

As nmentioned earlier, Parity RAID configurations suffer a penalty
on small write operations that includes a series of read and
write operations and XOR operations on blocks of data to update
RAID parity. The write-back cache firmvare was designed with
specific attributes to enhance Parity RAID wite operations in
general, and not just to enhance snall wite operations. The
designers intentionally chose to overcone both the small-wite
penalty and the inherent |ack of high bandwi dth that Parity RAID
del i vers.

The nonvol atile wite-back cache nodul e afforded the firnware
desi gners nore choices for Parity RAID wite request processing
and data flush algorithnms. The designers pursued techni ques to
speed up all wite operations by perfornming wite aggregations
(i.e., conbining data frommultiple wite requests and read cache
data) in three di nensions:

1. Contiguous aggregation, in which the firmvare | ooks for
consecutive block requests and ties themtogether into
one device request, thus elininating separate device
requests.

2. Vertical aggregation, in which the firmvare can detect
two wite operations to the same bl ock, thus elimnating
one wite operation

3. Horizontal aggregation (for Parity RAID operations only).
This type of aggregation occurs when all data bl ocks
within a Parity RAID strip are present in the wite-back
cache. In such cases, the firmvare can wite to all RAID
set nenbers at once, in conmbination with the FX chip
(discussed later in this section) on-the-fly hardware XOR
operations during the RAID set nenber wites. The
original request can cause horizontal aggregation to take
place if all blocks within a strip are part of the first
write request. The firmware can al so perform horizonta
aggregation after processing several wite requests. In
this way, the parity wite operation directly follows the
data write operations. Horizontal wite aggregation
potentially cuts physical device access in half when
conpared to normal RAID write operations that require
data nenbers to be read.[2,8] The result is pseudo-RAID
| evel 3 operation, because the wite-back cache is
combi ned with the horizontal aggregati on cache policy.

The performance gain for individual disks and for Parity RAID
arrays fromusing wite-back caching is dramatic, resulting in
hi gher wite throughput and |l ow | atency. The wite-back cache
actually snmoothes out differences in performance that are typica
of workl oads that have different read/wite ratios, whether or
not Parity RAID is utilized.



Figure 8 shows the relative latency for a controller with and
wi t hout write-back caching enabl ed. The configurations tested
conpri sed individual devices and Parity RAID units (in a
five-plus-one configuration). The performance nmeasurements were
taken froma version 2.0 HSJ40 array controller

[Figure 8 (HSJ40 Array Latency Conparisons) is not available in
ASClI | format.]

Workl oad 1 has a read/wite ratio of 70/30, i.e., 70 percent of
the requests were read requests and 30 percent were wite
requests. Workload 2 has a read/wite ratio of 84/16. Workload 3
has a ratio of 20/80. In all workloads, the latency for

i ndi vi dual devices and for Parity RAID units is | ower when
write-back caching is enabled than when only read caching is
enabled. In fact, when wite operations donminate the I1/0O m X,
latency for Parity RAID units is the same as for the workloads in
whi ch read operations are predoni nant!

RAI D/ Conpar e Har dwar e

St orageWbrks controllers contain a hardware Parity RAID and data
conpare accelerator called FX, a gate array that perforns
on-the-fly XOR operations on data buffers. Parity RAID and data
conpare firmvare use this gate array to accelerate Parity RAID
parity cal cul ati ons and host data conpare requests. The FX chip
is programmed to (1) observe the bus, (2) "snoop" the bus for
speci fic addresses, (3) performthe XOR operation to conpare the
associ ated data on-the-fly with data in a private nmenory called
XBUF nenory, and (4) wite the data back into the XBUF nenory.

XOR operations can take place as data is nmoving from buffer or
cache nmenory to device ports or vice versa. The FX can al so
perform di rect nenory access (DMA) operations to nove the
contents of buffer or cache nenory to or from XBUF nenory.

The designers determ ned that hardware accel erati on of XOR
operations for Parity RAID firmvare woul d speed up RAID parity
cal culations and thus further inprove Parity RAID | atency and

t hroughput. The firmnare al so supports FX conpare operations,
which elimnates the need for SCSI-2 devices that have

i mpl ement ed conpare commands and for speeding up conpare requests
from hosts.

Common Hardware Pl atform

To produce a high-performance controller in all three perfornmance
di mrensions -- l|atency, throughput, and data transfer rate -- the
desi gners of StorageWrks controllers faced the chall enge of
creating a new controller architecture and using new technol ogy.
In addition, they had to do so at a reasonabl e cost.



Al t hough each has its own specific host interface hardware, the
Cl, DSSI, and SCSI controller variants share a conmon hardware
core. Commonality was desired to control the devel opnent costs
and schedul es for such | arge engineering projects. To deliver
hi gh performance and conmonal ity, the designers investigated
several controller architecture alternatives. The first
architecture considered was sinmlar to Digital's HSC50-95
controller, incorporating simlar bus structures, processing

el enents, and nenories, but newer technol ogy. Figure 9 shows the
HSC architecture.[9]

[Figure 9 (Block Diagram of the HSC Architecture) is not
available in ASCI| format.]

The HSC architecture is a true nultiprocessor system It

contains a private nmenory for its policy processor, which manages
the work that is comng fromthe host port interface and queues
this work to the device interface nodules. Data then fl ows

bet ween the host port and device nmodules to and from hosts. The
nodul es have two interfaces (buses) for access to conmmand
processi ng and data novenent. These buses are called the contro
menory interface and the data nenory interface. The policy
processor queues work to the host port and devi ce nmodul es through
the control nenory interface, and then the nodul es process the
data over the data nmenory interface.

Using this architecture woul d have been too expensive. The
controller cost had to be conpetitive with other products in the
i ndustry, nost of which currently cost considerably |less than the
HSC controller. The HSC bus architecture required three different
menory interfaces, which would require three different,
potentially |large nmenories. The designers had to pursue other
options that nmet the cost goals but did not significantly reduce
performance. They considered single internal bus architectures,
but during sinulation, these options were unable to neet either
the initial or the long-term cost goals.

Figure 10 shows the controller architecture option that becane
the commn hardware base for StorageWrks controllers. This
architecture contains three buses and two nmenories. Athird small
menory is used for Parity RAID and data conpare operations but
does not drastically increase controller cost. The architectura
design allows the policy processor to access one nenory while a
devi ce or host port processor accesses the other nenory.

[Figure 10 (HSx40 Controller Architecture) is not available in
ASClI | format.]

The architecture achieves a | ower overall cost than the HSC
architecture yet achieves sinilar performance. The new
architecture, with fewer nmenories, does not significantly reduce
the performance, while the newer technol ogy chosen to inplenment
the control |l er enhances performance. The bus bandw dth of the new



controller is much higher than that of the HSC controller
Consequently, a nore cost-effective solution that uses a
| ess-costly architecture can attain simlar to better

per f or mance.

The extrenme integration of hardware to the very | arge-scale
integration (VLSI) level allowed for a much smaller enclosure
than that of the HSC controller, even with a dual -redundant
controller configuration (see Figure 3). A StorageWrks

dual -control l er configuration neasures 56.5 by 20.9 by 43.2
centineters (22 by 8 by 17 inches), which is approximtely
one-tenth the size of the HSC controller

Common Controller Platform The comron controller platform
consists of the controller without the associated host port. The
common core of hardware consists of the policy processor

har dware, the SCSI-2 device port hardware, and the cache nodul e.
The controll er-specific host port interface hardware includes
either the Cl, the DSSI, or the SCSI interface.

Policy Processor Hardware. The StorageWrks controller policy
processor is Intel's 25-MHz i 960CA mi croprocessor, which contains
an internal instruction cache and is augnented by a secondary
cache external to the processor. The secondary cache relieves the
potential bottleneck created by shared nenory between the policy
processor and host/device port processors.

The designers had to make trade-offs in two areas: the nmenory
speed/ cost and the nunber of buses. After sinmulation, the
external instruction and data cache showed a significant
performance i nprovenent, given the chosen shared-nmenory
architecture. The cache covers the first 2 MB of buffer nmenory,
where policy processor instructions and |ocal processor data
structures reside and where nost of the performance gain for the
policy processor would be achieved.

The policy processor uses the |IBUS exclusively to fetch
instructions and to access the program storage card, the NVRAM
t he DUART, and the tiners.

Program Storage. StorageWrks firmmvare is contai ned on a
renmovabl e program card for quick code upgrades and to elimnate
the need for a boot read-only menmory (ROM on the controller. The
programcard is a PCMCIA, 2-MB flash electrically erasabl e,
programmabl e, read-only nmenory (EEPROM) card that contains the
firmvare i mage. Designers chose the PCMCIA card to facilitate
code updates in the field, where host-based downline | oading of
firmvare was not supported. Although the PCMCI A card cost nore

t han EEPROM chi ps attached to the nodule, the designers felt that
the benefits of such a design outweighed the additional cost.



On each initialization, the controller reads the firmvare inmage
on the programcard and copies the inage to the shared nenory.
The firmvare executes fromthe shared buffer nmenory.

Dual UART (DUART). The DUART is used for two reasons:

1. Maintenance terminal connection. The maintenance
terminal is a neans of entering controller system
managenment conmmands (with the comrand |ine interpreter
which is the user interface for controller configuration
managenent) and is also a status and error reporting
i nterface. Designers nade extensive use of this interface
for debugging controller hardware and firmvare. Use of
t he mai ntenance term nal connection is optional. The
interface remains on the controller so that users can
direct controller mnagenent and status reporting, if
desired.

2. Failover conmmuni cation between two controllers in a
dual - redundant configuration. The conmuni cati on path is
used to share configuration and status infornmation
bet ween the controllers.

Shared Buffer and Cache Menory. The dynam c random access menory
(DRAM) buffer (or shared nmenory) has at its heart the dynam ¢ RAM
and arbitration (DRAB) chip. This chip supports the buffer and
cache nmenory accesses fromthe policy processor and fromthe host
and device ports. The data transfer rate supported by the shared
menory is approxi mately 35 megabytes per second (MB/s).

The DRAB chip contains error-correcting code (ECC) hardware to
correct single-bit menmory, to detect nmultibit errors, and to
check and generate bus parity. This feature allows the controller
to survive partial menory failures, which was a fault-tol erant
goal for the controller.

The decision to use DRAM chips in the nmenory design rather than
static random access nmenmory (SRAM) chips led to the use of ECC
DRAMs were chosen because of their cost and power savings over
equi val ent SRAM However, because the designers expected | arge
anounts of DRAM (as nuch as 40 MB) to be present on a controller
and its associ ated cache nodul e, the statistical error
probabilities were high enough to warrant the use of ECC on the
menory. The conbi nati on of DRAM and ECC was | ess costly than an
equi val ent amount of nmore reliable SRAM The use of parity on the
buses is a standard feature in all StorageWrks controllers. The
bus parity feature provides further error detection capability
outsi de the bounds of the nenory because it covers the path from
menory to or from external host or device interfaces.

The DRAB chip also controls access to the cache nodule in
conjunction with slave DRAB chi ps on the cache nodul e associ at ed



with the controller. These DRAB chi ps provide refresh signals for
t he DRAM buffer or cache nmenory that they control; whereas, the
mast er DRAB on the controller nodul e provides arbitration for
cache accesses that originate fromthe vari ous sources on the
controller nodule. Slave DRAB chips can al so be accessed by the
dual - redundant partner controller, depending on the two
controller LOCK signal states.

The controller firmvare uses 8 MB of shared buffer nmenory to
execute the programinmage, to hold the firmvare data structures,
and to read and wite-through cache data (if no cache nmodule is
present). The i 960CA policy processor and the host and device
data processing el ements on the NBUS can all access buffer
menory.

Cache Menory. Each cache nenory nodul e contains one slave DRAB
chip and 16 or 32 MB of DRAM and also two ports into the nodul e
(one fromeach controller) for use in failover. Each cache nodul e
optionally contains batteries to supply power to the DRAM chi ps
in the event of power failure for wite-back caching and Parity
RAI D use. The cache nodul es are interchangeabl e between
controller types.

Parity RAID XOR and Conpare Hardware. The Parity RAID XOR and
conpare hardware consists of the FX gate array and 256 kil obytes
(KB) of fast SRAM The FX allows concurrent access by SCSI-2

devi ce port hardware and the policy processor. The FX conpares
the XOR of a data buffer (512 bytes of data) that is entering or
exiting an attached device with the XOR buffers in the fast SRAM
The policy processor uses the FX to perform conpare operations at
the request of a host and perform DMA operations to nove data to
and fromnmenories. This hardware is common across all the
controller platforns for Parity RAID and conpare firmaare

SCSI -2 Device Port Hardware. The device ports (three or six,
depending on the controller nodel) are controlled by Synbios
Logic (the former NCR M croel ectronic Products Division of AT&T
G obal Information Sol utions Conpany) 53C710 SCSI-2 processor
chips. The SCSI-2 processor chips reside on the NBUS and access
the shared-nenory cache for data structure and data buffer
access. These processors receive their work fromdata structures
in buffer menory and perform commands on their specific SCSI-2
bus for read or wite operations.

The Synbi os Logic chip provided the npst processing power, when
conpared to the other chips avail able when the controllers were
desi gned. The designers felt that direct control of SCSI-2
interfaces by the policy processor or a separate processor was
too costly in ternms of processor utilization and capital expense.
The Synbios Logic chips do require sone policy processor
utilization, but the designers considered this acceptabl e because



hi gh- performance architectural features in the policy processor
har dwar e conpensated for the extra processor utilization.

The SCSI-2 device port supports the SCSI fast, single-ended,
8-bit interface.[1l] The data transfer rate supported by this
interface is 10 MB/s.

Host Port Hardware. The host port hardware is either a Cl, a
DSSI, or a SCSI interface inplemented with gate arrays or Synbi os
Logi ¢ 53C720 SCSI -2 processors. The host port hardware, the only
noncommon hardware on a StorageWrks controller, requires a
separate platformto support each host interface.

The Cl interface is nade up of a gate array and Cl interface
har dware that performs DMA wite or read operations from shared
menory or cache nmenory over the NBUS. The naxi num data transfer
rate supported by the CI hardware is approxinately 8 MB/s.

The DSSI interface utilizes a Symbios Logic 53C720 chip coupl ed
with a gate array and DSSI drivers to receive and transmt data
to or fromthe DSSI bus. The DSSI interface is 8 bits w de, and
the maxi mum data transfer rate supported by the DSSI hardware is
4.5 MB/s.

The SCSI interface also uses a Synbios Logic 53C720 chip coupl ed
with differential drivers to provide a SCSI-2, fast-wi de (i.e.
16-bit) differential interface to hosts. The maxi num data
transfer rate supported by the SCSI-2 interface is 20 MB/s for
fast-w de operations.

Tabl e 3 shows the current (version 2.0) maxi mum neasured (at the
host) data transfer rate performance nunbers for StorageWrks
controllers.

Table 3 SCSI -2 Host Interface Performance

Read Data Transfer Rate Wite Data Transfer Rate

Controller (Megabyt es per Second) (Megabyt es per Second)
HSJ30/ HSJ40* 6.7 4.4
HSD30 3.2 2.8
HSZ40* * 14 8.0

* In a nultihost environnment
** Measured for the HSZ40-B controller

SUMVARY

The StorageWrks HS-series array controllers were designed to
neet the storage subsystem needs of both Digital and non-Digita
systenms, thereby entering the world of open systenms. The



architecture for the HSJ30, HSJ40, HSD30, and HSZ40 controllers
has achieved the initial project goals and provides

1

Open systens capability. A SCSI-2 device interface

al lows many types of disk, tape, and optical devices to
be attached to the HSJ30, HSJ40, and HSD30 controllers.
The HSZ40 controller, which is currently a disk-only
controller, provides a SCSI-2 host interface that allows
the controller to be attached to Digital and non-Digita
comput er s.

Hi gh availability. Controller fault tol erance and RAID
firmvare yi el ded a highly avail abl e StorageWrks storage
subsyst em

The dual -redundant controller configuration allows each
of a pair of active controllers to operate independently
wi th host systens, while sharing device ports,
configuration information, and status. This design allows
both controllers to achi eve maxi mum perfornmance. The
dual -redundant configuration also provides fault
tolerance if one controller fails, because the surviving
controller serves the failed controller's devices to the
host conputers. The dual -controller configuration

combi ned with StorageWrks controller packaging, results
in a highly available controller configuration with
built-in fault tolerance, error recovery, and battery
backup features.

Parity RAID firmmvare, conmbined with StorageWrks device
packagi ng, allows for highly avail abl e disk
configurations that are less costly than mrrored
configurations. Furthernore, Parity RAID firmware
perfornms automatic Parity RAID managenent and error
recovery functions in the event of a failure and utilizes
spare device pools in conjunction with user-defined
Parity RAID configuration managenent policies. The
StorageWrks Parity RAID i npl enentati on exceeds the
requi renents of the RAID Advisory Board for RAID
availability features.

Hi gh performance. The HSJ30/HSJ40, HSD30, and HSZ40
controllers achieved the respective initial performance
goal s of 1,100, 800, and 1,400 |/ Cs per second. The
controllers nmet the | ow request | atency goals by
stream i ning firmvare where possi ble and by introducing
write-back caching. Wite-back caching firmnare
dramatically reduces latency on all wite requests, and
write-back cache hardware provides battery backup for
data integrity across power failures. Furthernore, the
write-back cache overconmes the RAID level 5 small-wite
penalty and high data transfer rate inefficiencies and
t hus provides high performance with Parity RAID disk
configurations. StorageWrks Parity RAID firmware



i mpl enents many of the RAID Advi sory Board optiona
performance features to produce a high-performnce RAID
sol ution.

A conmon control |l er processing core was successfully
devel oped for the HSJ30/HSJ40, HSD30, and HSZ40
controllers. More than 85 percent of the firmvare is
common to all three controller platfornms, which allows
for ease of mmintenance and for the sane | ook and fee

for custonmers. The architecture and the technol ogy used
resulted in a core controller design that supports a high
data transfer rate for all StorageWrks controller

pl at f orns.

These achi evenents represent the | arge engi neering investnent
that Digital has made to nmove into the open systens market with
new t echnol ogy for its storage solutions. These controller
platforns are the basis for future controller architectures and
platforns that utilize the knowl edge and experience acquired
during the devel opnent of the StorageWrks HS-series array
controllers.
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