United States Patent o [11] 4,449,182
Rubinson et al. {4s] May 15, 1984
[54] INTERFACE BETWEEN A PAIR OF 4,318,174 3/1982 Suzukietal ... 364/200
PROCESSORS, SUCH AS HOST AND 4,334,305 6/1982 Girardi ...coocvveverireririrerennnes 364/200
§E‘§,‘C"E*§§§‘;§’f£ mgli}izlggmsmc j""f‘f’”,Eg‘“’""’."’"’gsepth-J}“ﬁgﬁem
ssistant Examiner—Gary V. Harkcom
SYSTEMS Attorney, A rm— i
2y, Agent, or Firm—Cesari and McKenna
[75] Inventors: Barry L. Rubinson; Edward A. (57 ABSTRACT
Gardner; William A. Grace; Richard . .
F. Lary; Dale R. Keck, all of An interface mechanism (10) between two processors,
Colorado Springs, Colo. ’Suc}lll asa host prc;;:esics)(r))(?) and a process(ci)r (_31) |E1 43;1
. . . . intelligent controller or mass storage devices s
[73] Assignee: Digital Equipment Corporation, and utilizing a set of data structures employing a dedi-
Maynard, Mass. cated communications region (80A) in host memory
[21] Appl. No.: 308,826 (80). Interprocessor commands and responses are com-
. municated as packets over an I/O bus (60) of the host
[22] Filed: Oct. 5, 1981 (70), to and from the communication region (80A),
[51] Int.CL3 .....cooevernnn, GO6F 9/46; GO6F 15/16 through a pair of ring-type queues (80D) and (80E). The
52] US.Cl et 364/200 entry of each ring location (e.g., 132, 134, 136, 138)
[52]
[58] Field of Search ... 364/200 MS File, 900 MS File; points to another location in the communications region
371721 where a cox;lmand or resaonse ;s placed. Tl;cl: g"i[?g ang
. emptying of ring entries (132-138) is controlled throug
[56] References Cited the use of an ‘ownership’ byte or bit (278) associated
U.S. PATENT DOCUMENTS with each entry. The ownership bit (278) is placed in a
3,940,601 2/1976 Henry et al. .............. 235/153 AC  first state when the message source (70 or 31) has filled
4,145,739 3/1979 Dunning et al 364/200 the entry and in a second state when the entry has been
4,153,934 5/1979 Sato ...ccerveeenns 364/200 emptied. Each processor keeps track of the rings’ status,
4,181,937 1/1980 Hattori et al. 364/200 to prevent the sending of more messages than the rings
4,195,351 3/ ’920 Bafgef etal ... gz; g% can hold. These rings permit each processor to operate
:,%0;,221 ;/ 388 BDm I?VO'd . Jeara0 2t its own speed, without creating race conditions and
4‘2i 4’(3)0; 751980 Tgl‘clitl::::l' ’ 364/200 obviate the need for hardware interlock capability on
4,237,534 12/1980 Felix ........... 3647200  the 1/O bus (60).
4,268,907 5/1981 Porter et al. .. e 3647200
4,282,572 8/1981 Mooreet al. ....................... 3647200 21 Claims, 19 Drawing Figures
: ( | 32
I T T T T T 808 ! AND RING PTR —
| 8Q | HOST COMMAND RING oy 1
GOMMAND  INTERRUPT | s |
r— = . — —1 ¢80C HOST RESPONSE RING PTR e
: RESPONSE INTERRUPT 81A | 1
——————— 1 /800 | Ly, .
| soa RESPONSE RING | / 30
, % BV Y [wwsmon | | ! R l 1;3'
70 I INDICATOR | 36\ 8!
I N I I P . | . —
| = -e0e I < : e — >4 PROCESSOR
——————— . BUFFER 37, *
1] cru COMMAND RING TRANSITION | o]
| By LA ] INDICATOR J R ] I*P
I (R |
! 5 u
[
X ) b 3g
<1 SYSTEM BUS D>
T e0” 4
10
; G :
| . N _ 60
z | N
4 1/0 BUS >
AN 7



_ HOsST _ CONTROLLER_
r————<=—-—=7"—"7 === n
| | l |
| 170 | ) | HIGH-LEVEL |
| CLASS ool 7 7 woPRotocoL | |
: DRIVER : 1A : SERVER |
| 3/ | I \6 4
S —=1 27T 5 I Fig. 1
I | !
l PORT | communicaTIONS 1 PORT l
| SERVER I~ PROTOCOL . SERVER |
| | I I
e 1 e _ S _
71 10
8—} PORT PORT 4~
COMMUNICATIONS MECHANISM 9
|
i o] 2 40
( s / [
| HOST | wter- | P DISK
. COMPUTER | FACE CONTROLLER DRVE | F79.2
; 1
s
N
20

v861 ‘ST AeW  JudIed ‘SN

p1 JO T 199YS

8r'6vv'y



. — — — T —— — — — — — — — — — — — —— — — —

| |
L F=====- 808 | y %2
80 | HOST COMMAND RING PTR s —
| | comiw WERP _{ Veoc ! WsT vEsPonsE e PR ey |
: RESPONSE INTERRUPT S1A | 1| |
——————— 8op [ I |/ ||
| RESPONSE RiNG | 30
70 || be e — — ] INDICATOR |36 3
: N I () SR oor AN D ke ——»{ PROCESSOR
] |
———————— BUFFER )
| | cru COMMAND RING TRANSITION I o] 37
| Bl L INDICATOR | N !
e el 1 ittt N T
! I | | [ | ! A
1 i i
X $ N ! \s
< SYSTEM BUS D
T ! 110 1
! BUS_ADAPTER | .
L _%_ ________ B 60 Fig. 34
yd I L }
< 1/0 BUS >

¥861 ‘S fen Juded "S°N

¥1 3O T 199YS

s1'6vv'y



130
133
o Pt 138
R 0 132
144 [Re+3) 14| [RE) EMPTY
138 (EMPTY) (FULL)
W 139
139 0-0 RY =
o 142 — |
e 570 35 142
[RB+2) [RB+4] EMPTY
(EMPTY) (EMPTY)
136 136 ,
134 ol 134
137 137
Fig. 38 Fig. 3¢C

Judted ‘S'n

$1 JO € 199YyS #861 ‘ST A_]N

sr'6tvv'y



U.S. Patent May 15, 1984

CONTROLLER

( R )

Sheet 4 of 14

202

IS RESPONSE RING
ENTRY AVAILABLE
TO CONTROLLER?

204\ YES

S§§ I!8 LJ 8‘ " F L ;
BITS

Fig. 44

NO

210

4,449,182

PORT

206

R -

NOT EMPTY




U.S. Patent May 15, 1984 Sheet 5 of 14

VICE

SE
RUP
RESPONS

INTER

R
T& ﬁ?OCESS

216
[

UPDATE HOST’S
RING POINTER

4,449,182



U.S. Patent May 15, 1984 Sheet 6 of 14 4,449,182

HOST

218 /220 ]222

IF 1ST TIME, o .
START TIMER CONTROLLER

RIN C%M\%\ANDABLE
?O H(J%lf? TIME-OUT
ISTOP

YES
SET FLAG

20y 1“—

SET "0" -
! [

228 \

WRITE TO IP

Y

AFTER COMMAND SENT, .
DATE RING Fig. 5

COMMI?N%S T0
SEND?

TO FIG. 6



U.S. Patent May 15, 1984 Sheet 7 of 14 4,449,182

Fig. 6

FROM FIG. 5

CONTROLLER DETECTS L~234

244

COMM@UELRENQ
NOT FULL

INTERRUPT

1

INCREMENT }~250

POINTER




U.S. Patent May 15, 1984 Sheet 8 of 14 4,449,182

{5 87 0
-y RESERVED
254 ™~ > 808
-3 | ADP CH wsw ||
‘\ }
25673 CMD INT
-1 RSP INT
252 — 3
RINGBASE+0
L~ RSP DSC O —
o1
> 80D
— RSP DSC N -
RINGBASE +2N- 1
RINGBASE +2N )
L CMDDSC O —
}305
L~ CMDDSC M —
RINGBASE +2M+2N-2

Fig. 7



U.S. Patent May 15, 1984 Sheet 9 of 14 4,449,182

15 ]
264
~lolr RESERVED alalalalulu
T~ 7 11
2718 280 Fig. 8 276 | 272 | 268
274’ 270 266
15 87 Y 3 0
| 282
-2 MSG LENGTH /250
286-\, 4 -\’288
-1 CONNECTION ID MSGTYP CREDITS
TEXT+0 MB1 Mg [2B4a
“1 MB3 'MB2
/ MBa-4 MBn-2
284m
Fig. 9
15 0
292, ;
298~ ADAPTER CHANNEL Rsv [alafa]o]uju

Fig. 10 306 302 296



U.S. Patent May 15, 1984 Sheet 10 of 14 4,449,182
15 11 10 )
38‘% HEHHE INTERRUPT VARIES
J )
38 314’ |30 320
36 312
Fig. 11
31 0
1420
- ZEROES —
422~ 422A
‘/ 000012 (8) 09000 (8) b
422A ‘
- CONTROLLER IDENTIFIER -
1424
ERROR CODE CHVRSN | csvesy A28
azen avee’ azec’

Fig. 13



U.S. Patent May 15, 1984 Sheet 11 of 14 4,449,182

HOST PORT/CONTROLLER
HARD INIT.
OF
CONTROLLER
] 324
322 \\‘\\~ SENSE INIT.: RUN
MINIMUM INTEGRITY
DIAGNOSTICS
INITIALIZATION
STEP 1: l yi 326
WRITE SA REGISTER:
10987
NlQ|D
RESERVED
334'\ 20[0|@ 1 \./ B I
TV
SENSE S1 310 328
SET; 332 330
READ SA REGISTER
336\
WRITE SA REGISTER
1514 13 1110 87 6 )
1 |W|C RNG|R RNG|I \
WIC RNG (R RNG| L INT VECTOR
N i + + 4 ¥ 350
340
338 } 344\ (346 (348 /
342 READ SA REGISTER:
RUN INTEGRITY CHECK
DIAGNOSTICS:
CONDITIONALLY
INTERRUPT HOST
Fig. 124

TIME



U.S. Patent May 15, 1984 Sheet 12 of 14 4,449,182

HOST CONTROLLER
INITIALIZATION 150
STEP 2:
WRITE SA REGISTER
(51913121119 8765 32
PORT| [wlc ~NGIR RNG
3641 piojoj1|o TTYPE ‘1F37LLNG TLNG
READ SA REGISTER 362 J ( 356 354
& VALIDATE ECHO 360 358
366 l,
1
WRITE SA
5 REGISTER 1 ¢
RINGBASE P
}p ADDRESS 2
368 370
READ SA
REGISTER
INITIALIZATION
STEP 3. /374
15 13 11 WRITE SA REGISTER
14712 10 876
1] INITIATE
°™) ’/// ole]1[e]o|rsvp|e| vecTor
READ SA REGISTER {
& VALIDATE 376
380 ‘{
1
WRITE SA
454y  REGISTER: ¢
P RINGBASE
P HI ADDRESS
382 [384 ‘ B
TIME

Fig. 128



U.S. Patent May 15, 1984 Sheet 13 of 14 4,449,182

HOST ONTROLLER
/386
READ SA
388 - REGISTER
& WRITE ZEROES
DETECT WRITING |,_—
OF SA
& WRITE TO SA P~ | /3%
T~ VERIFY
33% ] HOST WROTE
TO SA
READ IP REGISTER |, —
&
DISREGARD [~~~ /394
T~ VERIFY
HOST
— | READ IP
396 0 0 TO
it
AGAIN
INIT. STEP 17} />
WRITE SA REGISTER:
15 1087 0
E|t]0|@|0| RSVD [CTRLR LCODE VERS
(400
c
y
TIME

Fig. 12C



U.S. Patent May 15, 1984

Sheet 14 of 14 4,449,182

HOST NTROLLER
W
READ SA REGISTER
VALIDATE WCODE
VERSION
404
l
WRITE SA REGISTER
15 87 10
RESERVED BURST  [F[S
406’ 408’ |
40
405
READ_SA REGISTER:
INIT. COMPLETE,
START" OPERATIONAL
uCODE
'
TIME

Fig. 120



4,449,182

1

INTERFACE BETWEEN A PAIR OF PROCESSORS,
SUCH AS HOST AND
PERIPHERAL-CONTROLLING PROCESSORS IN
DATA PROCESSING SYSTEMS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application relates to a data processing system,
other aspects of which are described in the following
commonly assigned applications filed on even date
herewith, the disclosures of which are incorporated by
reference herein to clarify the environment, intended
use and explanation of the present invention:

Ser. No. 308,771, titled Disk Format for Secondary
Storage System and Ser. No. 308,593, titled Secondary
Storage Facility Employing Serial Communication Be-
tween Drive and Controller.

FIELD OF THE INVENTION

This invention relates to the field of data processing
systems and, in particular to an interface between a host
processor and a controlling processor for a storage
facility or other peripheral device or subsystem in such
systems.

BACKGROUND OF THE INVENTION

In data processing systems utilizing secondary stor-
age facilities, communication between the host proces-
sor, or main frame, and secondary storage facilities has
a considerable impact on system performance. Second-
ary storage facilities comprise elements which are not
an integral part of a central processing unit and its ran-
dom access memory element (i.e., together termed the
host), but which are directly connected to and con-
trolled by the central processing unit or other elements
in the system. These facilities are also known as “mass
storage” elements or subsystems and include, among
other possibilities, disk-type or tape-type memory units
(also called drives).

In modern data processing systems, a secondary stor-
age facility includes a controller and one or more drives
connected thereto. The controller operates in response
to signals from the host, usually on an input/output bus
which connects together various elements in the system
including the central processing unit. A drive contains
the recording medium (e.g., a rotating magnetic disk),
the mechanism for moving the medium, and electronic
circuitry to read data from or store data on the medium
and also to convert the data transferred between the
medium and the controller to and from the proper for-
mat.

The controller appears to the rest of the system as
simply an element on the input/output bus. It receives
commands over the bus; these commands include infor-
mation about the operation to be performed, the drive
to be used, the size of the transfer and perhaps the start-
ing address on the drive for the transfer and the starting
address on some other system element, such as the ran-
dom access memory unit of the host. The controller
converts all this command information into the neces-
sary signals to effect the transfer between the appropri-
ate drive and other system elements. During the transfer
itself, the controller routes the data to or from the ap-
propriate drive and to or from the input/output bus or
a memory bus.

Controllers have been constructed with varying lev-
els of intelligence. Basically, the more intelligent the

20

25

30

35

45

50

55

60

65

2

controller, the less detailed the commands which the
central processing unit must issue to it and the less de-
pendent the controller is on the host CPU for step-by-
step instructions. Typically, controllers communicate
with a host CPU at least partially by means of an inter-
rupt mechanism. That is, when one of a predetermined
number of significant events occurs, the controller gen-
erates an interrupt request signal which the host sees a
short time later; in response, the host stops what it is
doing and conducts some dialogue with the controller
to service the controller’s operation. Every interrupt
request signal generated by the controller gives rise to a
delay in the operation of the central processor. It is an
object of the present invention to reduce that delay by
reducing the frequency and number of interrupt re-
quests.

When an intelligent controller is employed, a further
problem is to interlock or synchronize the operation of
the processor in the controller with the operation of the
processor in the host, so that in sending commands and
responses back and forth, the proper sequence of opera-
tion is maintained, race conditions are avoided, etc.
Normally this is accomplished by using a communica-
tions mechanism (i.e., bus) which is provided with a
hardware interlock capability, so that each processor
can prevent the other from transmitting out of turn or at
the wrong time.

Modern controllers for secondary storage facilities
are usually so-called “intelligent” devices, containing
one or more processors of their own, allowing them to
perform sophisticated tasks with some degree of inde-
pendence. Sometimes, a processor and a controller will
share a resource with another processor, such as the
host’s central processor unit. One resource which may
be shared is a memory unit.

It is well known that when two independent proces-
sors share a common resource (such as a memory
through which the processors and the processes they
execute may communicate with each other), the opera-
tion of the two processors (i.e., the execution of pro-
cesses or tasks by them) must be “interlocked” or “syn-
chronized,” so that in accessing the shared resource, a
defined sequence of operations is maintained and so-
called “race” conditions are avoided. That is, once a
first processor starts using the shared resource, no other
processor may be allowed to access that resource until
the first processor has finished operating upon it. Opera-
tions which otherwise might have occurred concur-
rently must be constrained to take place seriatim, in
sequence. Otherwise, information may be lost, a proces-
sor may act upon erroneous information, and system
operation will be unreliable. To prevent this from hap-
pening, the communications mechanism (i.e., bus)
which links together the processors and a shared re-
source typically is provided with a hardware “inter-
lock” or synchronization capability, by means of which
each processor is prevented from operating on the
shared resource in other than a predefined sequence.

In the prior art, three interlock mechanisms are
widely known for synchronizing processors within an
operating system, to avoid race conditions. One author
calls these mechanisms (1) the test-and-set instruction
mechanism, (2) the wait and signal mechanism and (3)
the P and V operations mechanism. S. Madnick and J.
Donovan, Operating Systems, 4-5.2 at 251-55
(McGraw Hill, Inc., 1974). That text is hereby incorpo-
rated by reference for a description and discussion of



4,449,182

3

those mechanisms. Another author refers to three tech-
niques for insuring correct synchronization when multi-
ple processors communicate through a shared memory
as (1) process synchronization by semaphores, (2) pro-
cess synchronization by monitors and (3) process syn-
chronization by monitors without mutual exclusion. C.
Weitzman, Distributed Micro/Mini Computer Systems:
Structure, Implementation and Application, 3.2 at
103-14 (Prentice Hall, Inc., 1980). That text is hereby
incorporated by reference for a description and discus-
sion of those techniques. When applied to multiple pro-
cessors which communicate with a shared resource by a
bus, such mechanisms impose limitations on bus charac-
teristics; they require, for example, that certain com-
pound bus operations be indivisible, such as an opera-
tion which can both test and set a so-called “sema-
phore” or monitor without being interrupted while
doing so. These become part of the bus description and
specifications.

If the testing of a semaphore were done during one
bus cycle and the setting during a different bus cycle,
two or more processors which want to use a shared
resource might test its semaphore at nearly the same
time. If the semaphore is not set, the processors all will
see the shared resource as available. They will then try
to access it; but only one can succeed in setting the
semaphore and getting access; each of the other proces-
sors, though, having already tested and found the re-
source available, would go through the motions of set-
ting the semaphore and reading or writing data without
knowing it had not succeeded in setting the semaphore
and accessing the resource. The data thus read will be
erroneous and the data thus written could be lost.

Not all buses, though, are designed to aliow imple-
mentation of such indivisible operations, since some
buses were not designed with the idea of connecting
multiple processors via shared resources. Consequently,
such buses are not or have not been provided with
hardware interlock mechanisms.

When a bus does not have such a capability, resort
frequently has been made to use of processor interrupts
to control the secondary storage facility, or some com-
bination of semaphores and interrupts (as in the Carne-
gie-Mellon University C.mpp multi-minicomputer sys-
tem described at pages 27-29 and 110-111 of the above-
identified book by Weitzman), but those approaches
have their drawbacks. If multiple processors on such a
bus operate at different rates and have different opera-
tions to perform, at least one processor frequently may
have to wait for the other. This aggrevates the slow-
down in processing already inherent in the use of inter-
rupt control with a single processor.

A further characteristic of prior secondary storage
facilities is that when a host initially connects to a con-
troller, it usually assumes, but cannot verify, that the
controller is operating correctly.

Therefore, it is an object of this invention to improve
the operation of a secondary storage facility including a
controller and a drive.

A further object of this invention is to provide such a
facility with an improved method for handling host-
controller communications over a bus lacking a hard-
ware interlock capability, whereby the processor in the
host and controller can operate at different rates with
minimal interrupts and avoidance of race conditions.

Another object of this invention is to provide a com-
munications mechanism for operation between control-

20

30

35

45

50

55

60

65

4

ler and host which permits the host to verify correct
operation of the controller at the time of initialization.

Still another object of the invention is to provide a
communications mechanism which minimizes the gen-
eration of host interrupts by the controller during peak
input/output loads.

Stiil another object of this invention is to provide an
interface between host and controller which allows for
parallel operation of multiple devices attached to an
individual controller, with full duplexing of operation
initiation and completion signals.

SUMMARY OF THE INVENTION

In accordance with this invention, the host-controller
interconnection is accomplished through an interface
which includes a set of data structures employing a
dedicated communications region in host memory. This
communications region is operated on by both the host
and the peripheral controller in accordance with a set of
rules discussed below. Basically, this interface has two
layers: (1) a transport mechanism, which is the physical
machinery for the bi-directional transmission of words
and control signals between the host and the controller
and (2) a port, which is both hardware for accomplish-
ing exchanges via the transport mechanism and a pro-
cess implementing a set of rules and procedures govern-
ing those exchanges. This port “resides” partly in the
host and partly in the controller and has the purposes of
facilitating the exchange of control messages (i.e., com-
mands and responses) and verifying the correct opera-
tion of the transport mechanism.

Commands and responses are transmitted between
the host and a peripheral controller as packets, over an
input/output bus of the host, via transfers which do not
require processor interruption. These transfers occur to
and from the dedicated communication region in the
host memory. The port polls this region for commands
and the host polls it for responses. A portion of this
communication region comprises a command (i.e.,
transmission) list and another portion comprises a re-
sponse (i.e., receiving) list. An input/output operation
begins when the host deposits a command in the com-
mand list. The operation is seen as complete when the
corresponding response packet is removed by the host
from the response list.

More specifically, the communications region of host
memory consists of two sections: (1) a header section
and (2) a variable-length section. The header section
contains interrupt identification words. The variable-
length section contains the response and command lists,
organized into “rings”. A “ring” is a group of memory
locations which is addressable in rotational (i.e., mod-
ulo) sequence, such that when an incrementing counter
(modulo-buffer-size) is used for addressing the buffer,
the address of the last location is the sequence is fol-
lowed next by the address of the first location. Each
buffer entry, termed a descriptor, includes (1) an ad-
dress where a command may be found for transmission
or where a response is written, as appropriate, and (2) a
so-called “ownership” byte (which in its most elemen-
tary form reduces to a sigle ownership bit) which is
used by the processors to controll access to the entry.

Because of properties which will be outlined below,
the port may be considered to be effectively integral
with the controlier; all necessary connections between
the host and peripheral can be established by the port-
/controller when it is initialized.



1,449,182

5

The port can itself generate processor interrupts; this
happens at the option of the host only when the com-
mand ring makes a transition from a full to a not-full
condition or when the response ring makes the converse
transition from empty to non-empty. Thus, the rings
buffer the asynchronous occurrence of command and
response packets, so that under favorable conditions
long strings of commands, responses and exchanges can
be passed without having to interrupt the host proces-
SO,

An input/output operation begins when the host
deposits a command into the command list. The opera-
tion is seen as complete when the corresponding re-
sponse is removed by the host from the response list.
Only the host writes into the command ring (i.e., list)
and only the controller writes into the response ring.
The *“ownership” bit for each ring entry is set to a first
state by the processor which writes the ring entry and is
cleared from that state by the other processor only after
the command has been sent or the response read. In
addition, after writing an entry, the same processor
cannot alter it until the other processor has cleared that
entry’s ownership bit.

By organizing the command and response lists into
rings and controlling their operation through a rigid
sequential protocol which includes an ownership byte
(or bit) for each ring entry and rules for setting and
clearing the ownership byte, the host and controller
processors are allowed to operate at their own rates and
the need for a hardware bus interlock in avoided. This
allows the system to utilize, for example, the UNIBUS
communication interconnection of Digital Equipment
Corp., Maynard, Mass., which is an exemplary bus
lacking a hardware interlock feature.

These and other features, advantages and objects of
the present invention will become more readily appar-
ent from the following detailed description, which
should be read in conjunction with the accompanying
drawings.

BRIEF DESCRIPTION OF THE DRAWING

FIG. 1 is a conceptual block diagram of a system
employing an architecture in which the present inven-
tion sees utility;

FIG. 2 is a basic block diagram of a data processing
system in which the present invention may be em-
ployed;

FIG. 3A is a system block diagram of an illustrative
embodiment of a data processing system utilizing the
interface of the present invention;

FIGS. 3B and 3C are diagrammatic illustrations of a
ring 80D or 80E of FIG. 3A.

FIGS. 4A and 4B are elementary flow diagrams illus-
trating the sequence of events when the controller
wishes to send a response to the host;

FIG. 5 is an elementary flow diagram showing the
sequence of events when the host issues 2 command to
the controller;

FIG. 6 is a similar flow diagram showing the control-
ler’s action in response to the host’s issuance of a com-
mand;

FIG. 7 is a diagrammatic illustration of the communi-
cations area of host memory, including the command
and response rings;

FIG. 8 is a diagrammatic illustration of the formatted
command and response descriptors which comprise the
ring entries;

10

20

30

35

45

60

65

6

FIG. 9 is a diagrammatic illustration of the command
and response message envelopes;

FIG. 10 is a diagrammatic illustration of a buffer
description according to the present invention;

FIG. 11 is a diagrammatic illustration of the status
and address (SA) register 38 of FIG. 3A,;

FIGS. 12A-12D are flow charts of the port/con-
troller initialization sequence according to this inven-
tion; and

FIG. 13 is a diagrammatic illustration of the *“last fail”
response packet of this invention.

DETAILED DESCRIPTION OF AN
ILLUSTRATIVE EMBODIMENT

The present invention sees particular utility in a data
processing system having an architectural configuration
designed to enhance development of future mass stor-
age systems, at reduced cost. Such a system is shown in
FIG. 1. In this system, a high level protocol (indicated
at 1A) is employed for communications between a host
computer 1 and intelligent mass storage controller to.
Such a high level protocol is intended to free the host
from having to deal with peripheral device-dependent
requirements (such as disk geometry and error recovery
strategies). This is accomplished in part through the use
of a communications hierachy in which the host com-
municates with only one or two peripheral device
“class” drivers, such as a driver 4 instead of a different
1/0 driver for each model of peripheral device. For
example, there may be one driver for all disk class de-
vices and another for all tape class devices.

Each class driver, in turn, communicates with a de-
vice controller (e.g., 2) through an interface mechanism
10. Much of the interface mechanism 10 is bus-specific.
Therfore, when it is desired to connect a new mass
storage device to the system, there is no need to change
the host’s input/output processes or operating system,
which are costly (in time, as well as money) to develop.
Only the controller need be modified to any substantial
degree, which is far less expensive. And much of that
cost can be averted if the controller and host are made
self-adaptive to certain of the storage device’s charac-
teristics, as explained in the above-identified commonly
assigned applications.

Device classes are determined by their storage and
transfer characteristics. For example a so-called *“disk
class” is characterized by a fixed block length, individ-
ual block update capability, and random access. Simi-
larly a so-called “tape class™ is characterized by a vari-
able block length, lack of block update capability, and
sequential access. Thus, the terms “disk” and “tape” as
used herein refer to devices with such characteristics,
rather than to the physical form of the storage medium.

Within the framework of this discussion, a system
comprises a plurality of subsystems interconnected by a
communications mechanism (i.e. a bus and associated
hardware). Each subsystem contains a port driver, (4 or
5) which interfaces the subsystem to the communica-
tions mechanism. The communications mechanism con-
tains a port (8 or 9) for each subsystem; the port is sim-
ply that portion of the communications mechanism to
which a port driver interfaces directly.

FIG. 1 illustrates an exemplary system comprising a
host 1 and an intelligent mass storage controller 2. Host
1includes a peripheral class driver 3 and a port driver 4.
Controller 2, in turn, includes a counterpart port driver
5 and an associated high-level protocol server 2. A
communications mechanism 7 connects the host to the



4,449,182

.

controller, and vice-versa. The communications mecha-
nism includes a port (i.e., interface mechanism) (8,9) for
each port driver.

The port drivers 4 and § provide a standard set of
communications services to the processes within their
subsystems; port drivers cooperate with each other and
with the communications mechanism to provide these
services. In addition, the port drivers shield the physical
characteristics of the communications mechanism from
processes that use the communications services.

Class driver 3 is a process which executes within host
1. Typically, a host class 1/O driver 3 communicates
with a counterpart in the controller 2, called a high-
level protocol server, 6.

The high-level protocol server 6 processes host com-
mands, passes commands to device-specific modules
within the controller, and sends responses to host com-
mands back to the issuing class driver.

In actual implementation, it is also possible for the
functions of the controller-side port driver § and port 9
to be performed physically at the host side of the com-
munications mechanism 7. This is shown in the example
described below. Nevertheless, the diagram of FIG. 1
still explains the architectural concepts involved.

Note also that for purposes of the further explanation
which follows, it is generally unnecessary to distinguish
between the port and its port driver. Therefore, unless
the context indicates otherwise, when the word “port”
is used below, it presumes and refers to the inclusion of
a port driver, also.

Referring now to FIG. 2, there is shown a system
level block diagram of a data processing system utiliz-
ing the present invention. A host computer 1 (including
an interface mechanism 10) employs a secondary stor-
age subsystem 20 comprising a controller 30, a disk
drive 40 and a controller-drive interconnection cable
50. The host 1 communicates with the secondary stor-
age subsystem 20 over an input/output bus 60.

FIG. 3A expands the system definition to further
explain the structure of the host 1, controller 30 and
their interface. As illustrated there, the host 1 comprises
four primary subunits: a central processor unit (CPU)
70, a main memory 80, a system bus 90 and a bus adapter
110.

A portion 80A of memory 80 is dedicated to service
as a communications region for accessing the remainder
of memory 80. As shown in FIG. 3A, communications
area 80A comprises four sub-regions, or areas. Areas
80B and 80C together form the above-indicated header
section of the communications area. Area 80B is used
for implementing the bus adapter purge function and
area 80C holds the ring transition interrupt indicators
used by the port. The variable-length section of the
communications region comprises the response list area
80D and the command list area 80E. The lists in areas
80D and 80E are organized into rings. Each entry, in
each ring, in turn, contains a descriptor (see FIG. 10)
pointing to a memory area of sufficient size to accom-
modate a command or response message packet of pre-
determined maximum length, in bytes.

Host 1 may, for example, be a Model VAX-11/780 or
PDP 11 computer system, marketed by Digital Equip-
ment Corporation of Maynard, Mass.

System bus 90 is a bi-directional information path and
communications protocol for data exchange between
the CPU 70, memory 80 and other host elements which
are not shown {50 as not to detract from the clarity of
this explanation). The system bus provides checked

8

parallel information exchanges synchronous with a
common system clock. A bus adapter 110 translates and

* transfers signals between the system bus 90 and the

5

20

25

35

40

45

host’s input/output (1/0) bus 60. For example, the 1/0
bus 60 may be the UNIBUS 1/0 connection, the system
bus may be the syncronous backlane interconnection
(SBI) of the VAX-11/780 computer, and the bus
adapter 110 may be the Model DW780 UNIBUS
Adapter, all Digital Equipment Corporation products.

Controller 30 includes several elements which are
used specifically for communicating with the host 1.
There are pointers 32 and 34, a command buffer 36 and
a pair of registers, 37 and 38. Pointers 32 and 34 keep
track of the current host command ring entry and the
host response ring entry, respectively. Command buff-
ers 36 provide temporary storage for commands await-
ing processing by the controller and a pair of registers
37 and 38. Register 37, termed the “IP” register, is used
for initialization and polling. Register 38, termed the
“SA” register, is used for storing status and address
information.

A processor 31 is the “heart” of the controller 30; it
executes commands from buffer 36 and does all the
housekeeping to keep communications flowing between
the host 1 and the drive 40.

The physical realization of the transport mechanism
includes the UNIBUS interconnection {or a suitable
counterpart) 60, system bus 90 and any association host
and/or controller-based logic for adapting to same,
including memory-bus interface 82, bus adapter 110,
and bus-controller interface 120.

The operation of the rings may be better understood
by referring to FIGS. 3B and 3C, where an exemplary
four entry ring 130 is depicted. This ring may be either
a command ring or a response ring, since only their
application differs. Assume the ring 130 has been oper-
ating for some time and we have started to observe it at
an arbitrarily selected moment, indicated in FIG. 3B.
There are four ring entry positions 132-138, with con-
secutive addresses RB, RB+1, RB+4, respectively.
Each ring entry has associated with it an ownership bit
(133, 135, 137, 139) which is used to indicate its status.
A write pointer (WP), 142, points to the most recent
write entry; correspondingly, a read pointer (RP), 144,
points to the most recent read entry. In, FIG. 3B, it will
be seen that entry 138 has been read, as indicated by the
position of RP 144 and the state of ownership bit 139.
By convention, the ownership bit is set to 1 when a
location has been filled (i.e., written) and to 0 when it
has been emptied (i.e., read). The next entry to be read
is 132. Its ownership bit 133 is set to 1, indicating that it
already has been written. Once entry 132 is read, its
ownership bit is cleared, to 0, as indicated in FIG. 3C.
This completely empties the ring 130. The next entry
134 cannot be read until it is written and the state of
ownership bit 135 is changed. Nor can entry 132 be
re-read accidentally, since its ownership bit has been
cleared, indicating that it already has been read.

Having thus provided a block diagram explanation of
the invention, further understanding of this interface
will require a brief digression to explain packet commu-
nications over the system.

The port is a communications mechanism in which
communications take place between pairs of processes
resident in separate subsystems. {As used herein, the
term “subsystems” include the host computers and de-
vice controllers; the corresponding processes are host-



4,449,182

9

resident class drivers and controller-resident protocol
servers.)

Communications between the pair of processes take
place over a “connection” which is a soft communica-
tions path through the port; a single port typically will
implement several connections concurrently. Once a
connection has been established, the following three
services are available across that connection: (1) se-
quential message; (2) datagram; and (3) block data trans-
fer.

When a connection is terminated, all outstanding
communications on that connection are discarded; that
is, the receiver “throws away” all unacknowledge mes-
sages and the sender “forgets” that such messages have
been sent.

The implementation of this communications scheme
on the UNIBUS interconnection 60 has the following
characteristics: (1) communications are always point-to-
point between exactly two subsystems, one of which is
always the host; (2) the port need not be aware of map-
ping or memory management, since buffers are identi-
fied with a UNIBUS address and are contiguous within
the virtual buss address space; and (3) the host need
never directly initiate a block data transfer.

The port effectively is integral with the controller,
even though not full localized there. This result happens
by virtue of the point-to-point property and the fact that
the device controller knows the class of device (e.g.,
disk drive) which it controls; all necessary connections,
therefore, can be established by the port/controller
when it is initialized.

The Sequential Message service guarantees that all
messages sent over a given connection are transmitted
sequentially in the order originated, duplicate-free, and
that they are delivered. That is, messages are received
by the receiving process in the exact order in which the
sending process queued them for transmission. If these
guarantees cease to be met, or if a message cannot be
delivered for any reason, the port enters the so-called
“fatal error” state (described below) and all port con-
nections are terminated.

The Datagram service does not quarantee reception,
sequential reception of duplicate-free reception of data-
grams, though the probability of failure may be required

10

15

20

25

30

40

to be very low. The port itself can never be the cause of 45

such failures; thus, if the using processes do make such
guarantees for datagrams, then the datagram service
over the port becomes equivalent to the Sequential
Message service.

The Block Data Transfer service is used to move data
between named buffers in host memory and a peripheral
device controller. In order to allow the port to be un-
aware of mapping or memory management, the
“Name” of a buffer is merely the bus address of the first
byte of the buffer. Since the host never directly initiates
a block data transfer, there is no need for the host to be
aware of controller buffering.

Since the communicating processes are asynchro-
nous, flow control is needed if a sending process is to be
prevented from producing congestion or deadlock in a
receiving process (i.e., by sending messages more
quickly than the receiver can capture them). Flow con-
trol simply guarantees that the receiving process has
buffers in which to place incoming messages; if all such
buffers are full, the sending process is forced to defer
transmission until the condition changes. Datagram
service does not use flow control. Consequently, if the
receiving process does not have an available buffer, the

50

55

60

10

datagram is either processed immediately or discarded,
which possibility explicitly is permitted by the rules of
that service. By contrast, the Sequential Message ser-
vice does use flow control. Each potential receiving
process reserves, or pre-allocates, some number of buff-
ers into which messages may be received over its con-
nection. This number is therefore the maximum number
of messages which the sender may have outstanding and
unprocessed at the receiver, and it is communicated to
the sender by the receiver in the form of a *credit™ for
the connection. When a sender has used up its available
credit, it must wait for the receiver to empty and make
available one of its buffers. The message credits machin-
ery for the port of the present invention is described in
detail below.

The host-resident driver and the controller provides
transport mechanism control facilities for dealing with:
(1) transmission of commands and responses; (2) sequen-
tial delivery of commands; (3) asynchronous commica-
tion; (4) unsolicited responses; (5) full duplex communi-
cation; and (6) port failure recovery. That is, com-
mands, their responses and unsolicited *‘responses” (i.e.,
controller-to-host messages) which are not responsive
to a command may occur at any time; full duplex com-
munication is necessary to handle the bi-directional
flow without introducing the delays and further buffer-
ing needs which would be associated with simplex com-
munications. It is axiomatic that the host issues com-
mands in some sequence. They must be fetched by the
controller in the order in which they were queued to
the transport mechanism, even if not executed in that
sequence. Responses, however, do not necessarily
occur in the same order as the initiating commands; and
unsolicited messages can occur at any time. Therefore,
asynchronous communications are used in order to
allow a response or controller-to-host message to be
sent whenever it is ready. Finally, as to port failure
recovery, the host’s port driver places a timer on the
port, and reinitializes the port in the event the port times
out.

This machinery must allow repeated access to the
same host memory location, whether for reads, writes,
or any mixture of the two.

The SA and IP registers (37 and 38) are in the 1/O
page of the host address space, but in controller hard-
ware. They are used for controlling a number of facets
of port operation. These registers are always read as
words. The register pair begins on a longword bound-
ary. Both have predefined addresses. The IP register
has two functions: first, when written with any value, it
causes a “hard” initialization of the port and the device
controller; second, when read while the port is operat-
ing, it causes the controller to initiate polling of the
command ring, as discussed below. The SA register 38
has four functions: first, when read by the host during
initialization, it communicates data and error informa-
tion relating to the initialization process; second, when
written by the host during initialization, it communi-
cates certain host-specific parameters to the port; third,
when read by the host during normal operation, it com-
municates status information including port- and con-
troller-detected fatal errors; and fourth, when zeroed by
the host during initialization and normal operation, it
signals the port that the host has successfully completed
a bus adapter purge in response to a port-initiated purge
request.

The port driver in the host’s operating system exam-
ines the SA register regularly to verify normal port-



4,449,182

11

/controller operation. A self-detected port/controller
fatal error is reported in the SA register as discussed
below.

Transmission of Commands and Responses-Overview

When the controller desires to send a response to the
host, a several step operational sequence takes place.
This sequence is illustrated in FIGS. 4A and 4B. Ini-
tially, the controller looks at the current entry in the
response ring indicated by the response ring pointer 34
and determines whether that entry is available to it (by
using the “ownership” bit). (Step 202.) If not, the con-
troller continues to monitor the status of the current
entry until it becomes available. Once the controller has
access to the current ring entry, it writes the response
into a response buffer in host memory, pointed to by
that ring entry, and indicates that the host now *“owns”
that ring entry by clearing and “Ownership” bit; it also
sets a “FLAG?"” bit, the function of which is discussed
below. (Step 204.)

Next, the port determines whether the ring has gone
from an empty to a non-empty transition (step 206), if
so, a potentially interruptable condition has occurred.
Before an interrupt request is generated, however, the
port checks to ensure that the “FLAG” bit is a 1 (step
208); an interrupt request is signalled only on an affirma-
tive indication (Step 210).

Upon receipt of the interrupt request, the host, when
it is able to service the interrupt, looks at the current
entry in the response ring and determines whether it is
“owned” by the host or controller (i.e., whether it has
yet been read by that host). (Step 212.) If it is owned by
the controller, the interrupt request is dismissed as spu-
rious. Otherwise, the interrupt request is treated as
valid, so the host processes the response (Step 214) and
then updates its ring pointer (Step 216).

Similar actions take place when the host wants to
send a command, as indicated in FIG. 5. To start the
sequence, the host looks at the current command ring
entry and determines whether that ring entry is owned
by the host or controller. (Step 218.) If it is owned by
the controller, the host starts a timer (Step 220.) (pro-
vided that is the first time it is looking at that ring en-
try), if the timer is not stopped (by the command ring
entry becoming available to the host) and is allowed to
time out, a failure is indicated; the port is the reinitial-
ized. (Step 222.) If the host owns the ring entry, how-
ever, it puts the packet address of the command in the
current ring entry. (Step 224.) If a command ring trans-
fer interrupt is desired (step 226), the FLAG bit is
set=1 to so indicate (step 228). The host then sets the
“ownership” bit=1 the ring entry to indicate that there
is a command in that ring entry to be acted upon. (Step
230.) The port is then told to “poll” the ring (i.e., the
host reads the IP register, which action is interpreted by
the port as a notification that the ring contains one or
more commands awaiting transmission; in response, the
port steps through the ring entries one by one until all
entries awaiting transmission have been sent. (Step 232.)

The host next determines whether it has additional
commands to send. (Step 233.) If so, the process is re-
peated; otherwise, it is terminated.

In responding to the issuance of a command (see F1G.
6), the port first detects the instruction to poll (i.e., the
read operation to the IP register). (Step 234.) Upon
detecting that signal, the port must determine whether
there is a buffer available to receive a command. (Step
236.) It waits until the buffer is available and then reads

20

35

45

50

55

60

65

12

the current ring entry to determine whether that ring
entry is owned by the port or host. (Step 238.) If owned

" by the port, the command packet is read into a buffer,

(Step 240.) The FLAG bit is then set and the “owner-
ship” bit in the ring entry is changed to indicate host
ownership. (Step 242.) If not owned by the port, polling
terminates.

A test is then performed for interrupt generation.
First the port determines whether the command ring
has undergone a full to not-full transition. (Step 244.) If
s0, the port next determines whether the host had the
FLAG bit set. (Step 246.) If the FLLAG bit was set, an
interrupt request is generated. (Step 248.) The ring
pointer is then incremented. (Step 250.)

Response packets continue to be removed after the
one causing an interrupt and, likewise, command pack-
ets continue to be removed by the port after a poll.

The Communications Area

The communications area is aligned on a 16-bit word
boundary whose layout is shown in FIG. 7. Addresses
for the words of the rings are identified relative to a
“ringbase” address 252. The words in regions 80B, 80C
whose addresses are ringbase-3, ringbase-2 and ring-
base-1 (hereinafter designated by the shorthand [ring-
base-3], etc., where the brackets should be read as the
location “whose address is™) are used as indicators
which are set to zero by the host and which are set
non-zero by the port when the port interrupts the host,
to indicate the reason for the interrupt. Word [ringbase-
3] indicates whether the port is requesting a bus adapter
purge; the non-zero value is the adapter channel number
contained in the high-order byte 254 and derived from
the triggering command. (The host responds by per-
forming the purge. Purge completion is signalled by
writing zeros to the SA register).

Word 256 [ringbase-2] signals that the command
queue has transitioned from full to not-full. Its non-zero
value is predetermined, such as one. Similarly, word
258 [ringbase-19 indicates that the response queue has
transitioned from empty to not-empty. Its non-zero
value also is predetermined (e.g., one).

Each of the command and response lists is organized
into a ring whose entries are 32-bit descriptors. There-
fore, for each list, after the last location in the list has
been addressed, the next location in sequence to be
addressed is the first location in the list. That is, each list
may be addressed by a modulo-N counter, where N is
the number of entries in the ring. The length of each
ring is determined by the relative speeds with which the
host and the port/controller generate and process mes-
sages; it is unrelated to the controller command limit.
At initialization time, the host sets the ring lenghts.

Each ring entry, or formatted descriptor, has the
layout indicated in FIG. 8. In the low-order 16-bit (260),
the least significant bit, 262, is zero; that is, the envelope
address [text+0] is word-aligned. The remaining low-
order bits are unspecified and vary with the data. In the
high-order portion 264 of the descriptor, the letter “U”
in bits 266 and 268 represent a bit in the high-order
portion of an 18-bit UNIBUS (or other bus) address.
Bits 270-276, labelled “Q”, are available for extending
the high-order bus address; they are zero for UNIBUS
systems. The most significant bit, 278, contains the
“ownership” bit (“0”) referred to above; it indicates
whether the descriptor is owned by the host (0=1), and
acts as an interlock protecting the descriptor against
premature access by either the host or the port. The



4,449,182

13

next lower bit, 280, is a “FLAG” bit (labelled “F”)
whose meaning varies depending on the state of the
descriptor. When the port returns a descriptor to the
host, it sets F=1, indicating that the descriptor is full
and points to response. On the other hand, when the
controller acquires a descriptor from the host, F=1
indicates that the host wants a ring transition interrupt
due to this slot. It assumes that transition interrupts
were enabled during initialization and that this particu-
lar slot triggers the ring transition. F=0 means that the
host does not want a transition host interrupt, even if
interrupts were enabled during initialization. The port
always sets F=1 when returning a descriptor to the
host; therefore, a host desiring to override ring transi-
tion interrupts must always clear the FLAG bit when
passing ownership of a descriptor to the port.

Message Envelopes

As stated above, messages are sent as packets, with an
envelope address pointing to word {text+0] of a 16-bit,
word-aligned message envelope formatted as shown in
FIG. 9.

The MSG LENGTH field 282 indicates the length of
the message text, in bytes. For commands, the length
equals the size of the command, starting with [text +0].
For responses, the host sets the length equal to the size
of the response buffer, in bytes, starting with [text+0].
By design, the minimum acceptable size is 60 bytes of
message text (i.e., 64 bytes overall).

The message length field 282 is read by the port be-
fore the actual transmission of a response. The port may
wish to send a response longer than the host can accept,
as indicated by the message length field. In that event, it
will have to break up the message into a plurality of
packets of acceptable size. Therefore, having read the
message length field, the controller then sends a re-
sponse whose length is either the host-specified message
length or the length of the controller’s response, if
smaller. The resulting value is set into the message
length field and sent to the host with the message
packet. Therefore, the host must re-initialize the value
of that field for each proposed response.

The message text is contained in bytes 284q-284m,
labelled MBj. The “connection id” field 286 identifies
the connection serving as source of, or destination for,
the message in question. The *‘credits” field 288 gives
the credit value associated with the message, which is
discussed more fully below. The “msgtyp” field 290
indicates the message type. For example, a zero may be
used to indicate a sequential message, wherein the cred-
its and message length fields are valid. A one may indi-
cate a datagram, wherein the credits field must be zero,
but message length is valid. Similarly, a two may indi-
cate a credit notification, with the credits field valid and
the message length field zero.

Message Credits

A credit-based message limit mechanism is employed
for command and response flow control. The credits
field 288 of the message envelope supports credit-
accounting algorithm. The controller 30 has a buffer 36
for holding up to M commands awaiting execution. In
its first response, the controller will return in the credits
field the number, M, of commands its buffer can hold.
This number is one more than the controller’s accep-
tance limit for non-immediate commands; the “extra”
slot is provided to allow the host always to be able to
issue an immediate-class command. If the credit account

10

20

25

30

35

40

45

50

55

60

65

14

has a value of one, then the class driver may issue only
an immediate-type command. If the account balance is
zero, the class driver may not issue any commands at
all.

The class driver remembers the number M in its
*“credit account”. Each time the class driver queues a
command, it decrements the credit account balance by
one. Conversely, each time the class driver receives a
response, it increments the credit account balance by
the value contained in the credits field of that response.
For unsolicited responses, this value will be zero, since
no command was executed to evoke the response; for
solicited responses, it normally will be one, since one
command generally gives one to one response.

For a controller having M greater than 15, responses
beyond the first will have credits greater than one,
allowing the controller to “walk™ the class driver’s
credit balance up to the correct value. For a well-
behaved class driver, enlarging the command ring be-
yond the value M + 1 provides no performance benefits;
in this situation command ring transition interrupts will
not occur since the class driver will never fill the com-
mand ring.

The Ownership Bit

The ownership bit 278 in each ring entry is like the
flag on an old-fashioned mailbox. The postman raised
the flag to indicate that a letter had been put in the box.
When the box was emptied, the owner would lower the
flag. Similarly, the ownership bit indicates that a mes-
sage has been deposited in a ring entry, and whether or
not the ring entry (i.e., mailbox) has been emptied. Once
a message is written to a ring entry, that message must
be emptied before a second message can be written over
the first.

For a command descriptor, the ownership bit “0” is
changed from zero to one when the host has filled the
descriptor and is releasing it to the port. Conversely,
once the port has emptied the command descriptor and
is returning the empty slot to the host, the ownership bit
is changed from one to zero. That is, to send a command
the host sets the ownership bit to one; the port clears it
when the command has been received, and returns the
empty slot to the host.

To guarantee that the port/controller sees each com-
mand in a timely fashion, whenever the host inserts a
command in the command ring, it must read the IP
register. This forces the port to poll if it was not already
polling.

For a response descriptor, when the ownership bit 0
undergoes a transition from one to zero, that means that
the port has filled the descriptor and is releasing it to the
host. The reverse transition means that the host has
emptied the response descriptor and is returning the
empty slot to the port. Thus, to send a response the port
clears the ownership bit, while and the host sets it when
the response has been received, and returns the empty
slot to the port.

Just as the port must poll for commands, the host
must poll for responses, particularly because of the
possibility of unsolicited responses.

Interrupts

The transmission of a message will result in a host
interrupt if and only if interrupts were armed (i.e., en-
abled) suitably during initialization and one of the fol-
lowing three conditions has been met: (1) the message
was a command with flag 280 equal to one (i.e,, F=1),



4,449,182

15

and the fetching of the command by the port caused the
command ring to undergo a transition from full to not-
full; (2) if the message was a response with F=1and the
depositing of the message by the port caused the re-
sponse ring to make a transition from empty to not-
empty; or (3) the port is interfaced to the host via a bus
adapter and a command required the port/controller to
re-access a given location during data transfer. (The
latter interrupt means that the port/controller is re-
questing the host to purge the indicated channel of the
bus adapter.)

Port Polling

The reading of the IP register by the host causes the
port/controller to poll for commands. The port/con-
troller begins reading commands out of host memorys; if
the controller has an internal command buffering capa-
bility, it will write commands into the buffer if they
can’t be executed immediately. The port continues to
poll for full command slots until the command ring is
found to be empty, at which time it will cease polling.
The port will resume polling either when the controller
delivers a response to the host, or when the host reads
the IP register.

Correspondingly, response polling for empty slots
continues until all commands buffered within the con-
troller have been completed and the associated re-
sponses have been sent to the host.

Host Polling

Since unsolicited responses are possible, the host
cannot cease polling for responses when all outstanding
commands have been acknowledged, though. If it did,
an accumulation of unsolicited messages would first
saturate the response ring and then any controller inter-
nal message buffers, blocking the controller and pre-
venting it from processing additional commands. Thus,
the host must at least occassionally scan the response
ring, even when not expecting a response. One way to
accomplish this is by using the ring transition interrupt
facility described above; the host also should remove in
sequence from the response ring as many responses as it
finds there.

Data Transmission

Data transmission details are controller-dependent.
There are certain generic characteristics, however.

Data transfer commands are assumed to contain
buffer descriptors and byte or word counts. The buffers
serve as sources or sinks for the actual data transfers,
which are effected by the port as non-processor (NPR
or DMA) transfers under command-derived count con-
trol to or from the specified buffers. A buffer descriptor
begins at the first word allocated for this purpose in the
formats of higher-level commands. When used with the
UNIBUS interconnection, the port employs a two-
word buffer descriptor format as illustrated in FIG. 10.
As shown wherein, the bits in the low-order buffer
address 292 are message-dependent. The bits labelled
“U" (294, 296) in the high-order portion 298 of the
buffer descriptor are the high-order bits of an 18-bit
UNIBUS address. The bits 300-306, labelled “Q”, are
usable as an extension to the high-order UNIBUS ad-
dress, and are zero for UNIBUS systems.

Repeated access to host memory locations must be
allowed for both read and write operations, in random
sequence, if the interfaces are to support higher-level
protocol functions such as transfer restarts, compares,

16
and so forth. In systems with buffered bus adapters,
which require a rigid sequencing this necessitates purg-

- ing of the relevant adapter channel prior to changing

20

25

30

40

45

50

65

from read to write, or vice versa, and prior to breaking
an addressing sequence. Active cooperation of the host
CPU is required for this action. The port signals its
desire for an adapter channel purge, as indicated above
under the heading “The Communications Area”. The
host performs the purge and writes zeroes to the SA
register 38 to signal completion.

Transmission Errors

Four classes of transmission errors have been consid-
ered in the design of this interface: (1) failure to become
bus master; (2) failure to become interrupt master; (3)
bus data timeout error; and (4) bus parity error.

When the port (controller) attempts to access host
memory, it must first become the “master” of bus 60. To
deal cleanly with the possibility of this exercise failing,
the port sets up a corresponding “last fail” response
packet (see below) before actually requesting bus ac-
cess. Bus access is then requested and if the port timer
expires, the host will reinitialize the port/controller.
The port will then report the error via the “last fail”
response packet (assuming such packets were eneable
during the reinitialization).

A failure to become interrupt master occurs when-
ever the port attempts to interrupt the host and an ac-
knowledgement is not forthcoming. It is treated and
reported the same as a failure to become bus master,
although the contents of its last fail response will, of
course, be different.

Bus data timeout errors involve failure to complete
the transfer of control or data messages. If the control-
ler retires a transfer after it has failed once, and a second
try also fails, then action is taken responsive to the de-
tection of a persistent error. If the unsuccessful opera-
tion was a control transfer, the port writes a failure code
into the SA register and then terminates the connection
with the host. Naturally, the controller will have to be
reinitialized. On the other hand, if the unsuccessful
operation was a data transfer, the port/controller stays
online to the host and the failure is reported to the host
in the response packet for the involved operation. Bus
parity errors are handled the same as bus data timeout
€rrors.

Fatal Errors

Various fatal errors may be self-detected by the port
or controller. Some of these may also arise while the
controller is operating its attached peripheral device(s).
In the event of a fatal error, the port sets in the SA
register a one in its most significant bit, to indicate the
existence of a fatal error, and a fatal error code in bits
10-0.

Interrupt Generation Rate

Under steady state conditions, at most one ring inter-
rupt will be generated for each operation (i.e., com-
mand or response transmission). Under conditions of
low 1/0 rate, this will be due to response ring transi-
tions from empty to not-empty; with high 1/0 rate, it
will be due to command ring transitions from full to
not-full. If the operation rate fluctuates considerably,
the ratio of interrupts to operations can be caused to
decline from one-to-one. For example, an initially low
but rising operation rate will eventually cause both the
command and response rings to be partially occupied, at



4,449,182

17

which point interrupts will cease and will not resume
until the command ring fills and begins to make full to
not-full transitions. This point can be staved off by in-
creasing the permissible depth of the command ring.
Generally, the permissible depth of the response ring
will have to be increased also, since saturation of the
response ring will eventually cause the controller to be
unwilling to fetch additional commands. At that point,
the command queue will saturate and each fetch will
generate an interrupt.

Moreover, a full condition in either ring implies that
the source of that ring’s entries is temporarily choked
off. Consequently, ring sizes should be large enough to
keep the incidence of full rings small. For the command
ring, the optimal size depends on the latency in the
polling of the ring by the controller. For the response
ring, the optimal size is a function of the latency in the
ring-emptying software.

Initialization

A special initialization procedure serves to (1) iden-
tify the parameters of the host-resident communications
region to the port; (2) provide a confidence check on
port/controller integrity; and (3) bring the port/con-
troller online to the host.

The initialization process starts with a *‘hard” initial-
ization during which the port/controller runs some
preliminary diagnostics. Upon successful completion of
those diagnostics, there is a four step procedure which
takes place. First, the host tells the controller the
lengths of the rings, whether initialization interrupts are
to be armed (i.e., enabled) and the address(es) of the
interrupt vector(s). The port/controller then runs a
complete internal integrity check and signals either
success or failure. Second, the controller echos the ring
lengths, and the host sends the low-order portion of the
ringbase address and indicates whether the host is one
which requires purge interrupts. Third, the controller
sends an echo of the interrupt vector address(es) and the
initialization interrupt arming signal. The host then
replies with the high-order portion of the ringbase ad-
dress, along with a signal which conditionally triggers
an immediate test of the polling and adapter purge func-
tions of the port. Fourth, the port tests the ability of the
input/output bus to perform nonprocessor (NPR) trans-
fers. If successful, the port zeroes the entire communica-
tions area and signals the host that initialization is com-
plete. The port then awaits a signal from the host that
the controller should begin normal operation.

At each step, the port informs the host of either suc-
cess or failure. Success leads to the next initialization
step and failure causes a restart of the initialization se-
quence. The echoing of information to the host is used
to check all bit positions in the transport mechanism and
the IP and SA registers.

The SA register is heavily used during initialization.
The detailed format and meaning of its contents depend
on the initialization step involved and whether informa-
tion is being read from or written into the register.
When being read, certain aspects of the SA format are
constant and apply to all steps. This constant SA read
format is indicated in FIG. 11. As seen there, the mean-
ing of bits 15-11 of SA register 38 is constant but the
interpretation of bits 10-0 varies. The S$4-S1 bits,
316-310, are set separately by the port to indicate the
initialization step number which the port is ready to
perform or is performing. The S1 bit 310 is set for ini-
tialization step 1; the S2 bit 312, for initialization step 2,

10

20

25

30

35

as

50

55

60

65

18

etc. If the host detects more than one of the S1-S4 bits
316-310 set at any time, it restarts the initialization of the
port/controller; the second time this happens, the port-
/controller is presumed to be malfunctioning. The SA
register’s most significant bit 318, labelled ER, normally
is zero; if it takes on the value of 1, then either a port-
/controllerbased diagnostic test has failed, or there has
been a fatal error. In the event of such a failure or error,
bits 10-0 comprise a field 320 into which an error code
is written; the error code may be either port-generic or
controller-dependent. Consequently, the host can deter-
mine not only the nature of an error but also the step of
the initialization during which it occurred. If no step bit
is set but ER =1, a fatal error was detected during hard
initialization, prior to the start of initialization step 1.

The occurrence of an initialization error causes the
port driver to retry the initialization sequence at least
once.

Reference will now be made to FIGS. 12A-12D,
wherein the details of the initialization process are illus-
trated.

The host begins the initialization sequence either by
performing a hard initialization of the controller (this is
done either by issuing a bus initialization (INIT) com-
mand (Step 322) or by writing zeroes to the IP register.
The port guarantees that the host reads zeroes in the SA
register on the next bus cycle. The controller, upon
sensing the initialization order, runs a predetermined set
of diagnostic routines intended to ensure the minimum
integrity necessary to rely on the rest of the sequence.
(Step 324.) Initialization then sequences through the
four above-listed steps.

At the beginning of each initialization step n, the port
clears bit S,.| before setting bit Sy,; thus, the host will
never see bits S,.; and S, set simultaneously. From the
viewpoint of the host, step n begins when reading the
SA register results in the transition of bit S, from O to 1.
Each step ends when the next step begins, and an inter-
rupt may accompany the step change if interrupts are
enabled.

Each of initialization steps 1-3 is timed and if any of
those steps fails to complete within the alloted time, that
situation is treated as a host-detected fatal error. By
contrast, there is no explicit signal for the completion of
initialization step 4; rather, the host observes either that
controller operation has begun or that a higher-level
protocol-dependent timer has expired.

The controller starts initialization step 1 by writing to
the SA register 38 the pattern indicated in FIG. 12A.
(Step 326.) Bits 338-332 are controller-dependent. The
“NV” bit, 332, indicates whether the port supports a
host-settable interrupt vector address; a bit value of 1
provides a negative answer. The “QB” bit, 330, indi-
cates whether the port supports a 22-bit host bus ad-
dress; a 1 indicates an affirmative answer. The “DI”, bit
328, indicates whether the port implements enhanced
diagnostics, such as wrap-around, purge and poll test;
an affirmative answer is indicated by a bit value of 1.

The host senses the setting of bit 310, the S1 bit, and
reads the SA register. (Step 334.) It then responds by
writing into the SA register the pattern shown in step
336. The most significant bit 338 in the SA register 38 is
set to a 1, to guarantee that the port does not interpret
the pattern as a host “adapter purge ccomplete” re-
sponse (after a spontaneous reinitialization). The WR
bit, 340, indicates whether the port should enter a diag-
nostic wrap mode wherein it will echo messages sent to
it; a bit value of 1 will cause the port to enter that mode.



4,449,182

19

The port will ignore the WR bit if DI=0 at the begin-
ning of initialization step 1. Field 342, commprising bits
13-11 and labelled “C RNG LNG,” indicates the num-
ber of entries or slots in the command ring, expressed as
a power of 2. Similarily, field 344, comprising bits 10-8
and labelled “R RNG LNG”, represents the number of
response ring slots, also expressed as a power of 2. Bit
346, the number 7 bit in the register, labelled “IE”,
indicates whether the host is arming interrupts at the
completion of each of steps 1-3. An affirmative answer
is indicated by a 1. Finally, field 348, comprising regis-
ter bits 6-0, labelled “INT Vector”, contains the address
of the vector to which all interrupts will be directed,
divided by 4. If this address is 0, then port interrupts
will not be generated under any circumstances. If this
field is non-zero the controller will generate initializa-
tion interrupts (if IE is set) and purge interrupts (if Pl is
set), and ring transition interrupts depending on the
FLAG bit setting of the ring entry causing the transi-
tion,

The port/controller reads the SA register after it has
been written by the host and then begins to run its full
integrity check diagnostics; when finished, it condition-
ally interrupts the host as described above. (Step 350.)

This completes step 1 of the initalization process.
Next, the controller writes a pattern to the SA register
as indicated in FIG. 12B. (Step 352.) As shown there,
bits 7-0 of the SA register echo bits 15-8 in step 336. The
response and command ring lengths are echoed in fields
354 and 356, respectively; bit 358 echoes the host's WR
bit and bit 360 echoes the host’s bit 15. The port type is
indicated in field 362, register bits 10-8, and bit 12 is set
to a 1 to indicate the beginning of step 2.

The host reads the SA register and validates the echo
when it sees bit S2 change state. (Step 364.) If every-
thing matches up, the host then responds by writing into
the SA register the pattern indicated in step 366. Field
368, comprising SA register bits 15-1, labelled “ringbase
lo addres”, represents the low-order portion of the ad-
dress of the word [ringbase+0] in the communications
area. While this is a 16-bit byte address, its lowest order
bit is 0, implicitly. The lowest order bit of the SA regis-
ter, 370, indicated as “PI”, when set equal to 1, means
that the host is requesting adapter purge interrupts.

The controller reads the low ringbase address (Step
372) and then writes into the SA register the pattern
indicated in step 374, which starts initialization step 3 by
causing bit 376, the S3 bit, to undergo a transition from
0 to 1. The interrupt vector field 348 and interrupt en-
abling bit 346 from step 336 are echoed in SA register
bits 7-0.

Next, the host reads the SA register and validates the
echo; if the echo did not operate properly, an error is
signalled. (Step 378). Assuming the echo was valid, the
host then writes to the SA register the pattern indicated
in step 380. Bit 382, the most significant bit, labelled
“PP”, is written with an indication of whether the host
is requesting execution of “purge” and “poll” tests (de-
scribed elsewhere); an affirmative answer is signaled by
a 1. The port will ignore the PP bit if the DI bit 328 was
zero at the beginning of step 1. The “ringbase hi ad-
dress” field 384, comprising SA register bits 14-0, is the
high-order portion of the address [ringbase +0].

The port then reads the SA register; if the PP bit has
been set, the port writes zeroes into the SA register, to
signal its readiness for the test. (Step 386.) The host
detects that action and itself writes zeroes (or anything
else) to the SA register, to simulate a “purge com-

20

pleted” host action. (Step 388.) After the port verifies
that the host has written to the SA register (Step 390.),

- the host reads, and then disregards, the IP register.

5

—_—

5

20

25

30

40

45

50

60

65

(Step 392)) This simulates a “start polling” command
from the host to the port. The port verifies that the IP
register was read, step 394, before the sequence contin-
ues. The host is given a predetermined time from the
time the SA register was first written during initializa-
tion step 3 within which to complete these actions.
(Step 396) If it fails to do so, initialization stops. The
host may then restart the initialization sequence from
the beginning.

Upon successful completion of intialization step 3, the
transition to intialization step 4 is effectuated when the
controller writes to the SA register the pattern indi-
cated in step 398. Field 400, comprising bits 7-0 of the
SA register, contains the version number of the port-
/controller microcode. In a microprogrammed control-
ler, the functionality of the controller can be altered by
changing the programming. It is therefore important
that the functionality of the host and controller be com-
patible. The system designer can equip the host with the
ability to recognize which versions of the controller
microcode are compatible with the host and which are
not. Therefore, the host checks the controller micro-
code version in field 400 and confirms that the level of
functionality is appropriate to that particular host. (Step
402.) The host responds by writing into the SA register
the pattern indicated in step 404. 1t is read by the con-
troller in step 405 and 406 and the operational micro-
code is then started.

The “burst” field in bits 7-2 of the SA register is one
less than the maximum number of longwords the host is
willing to allow per NPR (nonprocessor involved)
transfer. The port uses a default burst count if this field
is zero. The values of both the default and the maximum
the port will accept are controller-dependent. If the
“LF” bit 408 is set equal to I, that indicates that the host
wants a “last fail” response packet when initialization is
completed. The state of the LF bit 408 does not have
any effect on the enabling/disabling of unsolicited re-
sponses. The meaning of “last fail” is explained below.
The “GO” bit 410 indicates whether the controller
should enter its functional microcode as soon as initial-
ization completes. If GO=0, when initialization com-
pletes, the port will continue to read the SA register
until the host forces bit 0 of that register to make the
transition from O to 1.

At the end of initialization step 4, there is no explicit
interrupt request. Instead, if interrupts were enabled,
the next interrupt will be due to a ring transition or to an
adapter purge request.

Diagnostic Wrap Mode

Diagnostic Wrap Mode (DWM) provides host-based
diagnostics with the means for the lowest levels of host-
controller communication via the port. In DWM, the
port attempts to echo in the SA register 38 any data
written to that register by the host. DWM is a special
path through initialization step 1; initialization steps 2-4
are suppressed and the port/controller is left discon-
nected from the host. A hard initialization terminates
DWM and, if the results of DWM are satisfactory, it is
then bypassed on the next initialization sequence.

Last Fail

“Last fail” is the name given to a unique response
packet which is sent if the port/controller detected an



4,449,182

21

error during a previous “run” and the LF bit 405 was
set in step 404 of the current initialization sequence. It is
sent when initialization completes. The format of this
packet is indicated in FIG. 3. The packet starts with 64
bits of zeros in a pair of 32 bit words 420. Next there is
a 32 bit word 422 consisting of a lower-order byte 422A
and a higher-order byte 422B, each of which has a
unique numerical contents. Word 422 is followed by a
double word 424 which contains a controller identifier.
The packet is concluded by a single word 426. The
higher-order byte 426A of word 426 contains an error
code. The lower half of word 426 is broken into a pair
of 8 bit fields 426B and 426C. Field 426B contains the
controller’s hardware revision number. Field 426C con-
tains the controller’s software, firmware or microcode
revision number.

Submitted as Appendix A hereto is a listing of a disk
class and port driver which runs under the VMS operat-
ing system of Digital Equipment Corp. on a VAX-
11/780 computer system, and which is compatible with
a secondary storage subsystem according to the present
invention.

Recap

It should be apparent from the foregoing description
that the present invention provides a versatile and pow-
erful interface between host computers and peripheral
devices, particularly secondary mass storage subsys-
tems. This interface supports asynchronous packet type
command and response exchanges, while obviating the
need for a hardware-interlocked bus and greatly reduc-
ing the interrupt load on the host processor. The effi-
ciency of both input/output and processor operation
are thereby enhanced.

A pair of registers in the controller are used to trans-
fer certain status, command and parametric information

10

20

25

30

35

22

between the peripheral controller and host. These regis-
ters are exercised heavily during a four step initializa-
tion process. The meanings of the bits of these registers
change according to the step involved. By the comple-
tion of the initialization sequence, every bit of the two
registers has been checked and its proper operation
confirmed. Also, necessary parametric information has
been exchanged (such as ring lenths) to allow the host
and controller to communicate commands and re-
sponses.

Although the host-peripheral communications inter-
face of the invention comprises a port which, effec-
tively, is controller-based, it nevertheless is largely lo-
calized at the host. Host-side port elements include: the
command and response rings; the ring transition indica-
tors; and, if emg;loyed bus adapter purge control. At the
controller, the' port elements include: command and
response buffers, host command and response ring
pointers, and the SA and IP registers.

Having thus described the present invention, it will
now be apparent that various alterations, modifications
and improvements will readily occur to those skilled in
the art. This disclosure is intended to embrace such
obvious alterations, modifications and improvements; it
is exemplary, and not limiting. This invention is limited
only as required by the claims which follow the Appen-
dix.

APPENDIX
Notes:

1. The mass storage controllers is referred to in this
Appendix as “UDA"; thus, the IP register will
appear as UDAIP, for example.

2. The term “MSCP” in this Appendix refers to the
high-level I/O communication protocol.

.5R1TL External ana Local Svymhol Detinitions

«PRGF
HEE X
5 Define System Symools
P e

SCEBDEF ¢ Cnannel Reauest Block Otfsetrs

SDDENEF ; Device bata Rlock QOffsets

SOPIDEF ¢ Driver Proloa Table Ottsets

SIDBNLF : Interupt Data Block Dffsets

SIRPDEF 3 1/D0 Resuest Packet Uffsets

SUCEDEF ¢ Unit Control Block UOffsets

SVECDEF 3 Interupt Vector Rlock Dtfsels

S$1PLDLF : Haraware IPL Definitions

$i0DEV r 1/0 Function Codes

$SSPEF H S{stem Status Codes

SVADFY y Virtval AdAdress field nefinitions
t 4
? Tne followina sympois are olaceu nere for aulck reference, The values
: are the determi inq factnr for numerous symool values definerd h low,
; -
MSCPSRLEXPOWENT = 3 ! Rase 2 exponential operator defining nauber

t of rina anAd packet entries

MSCPERL.HINGSTLE = 14<MSCPsK_EXPUNENT> ! Numper of Rinu & Packet entries

+4 :
Local Symbolic uUftsets

“ va v

~e

Define Device JI/0 Pane Reglisters
1517].

SDEF Ik
SDE} ULALP oBlNNW 1 ! In
SDE} UDASA JBLKW 1 7 St
SUEFEND Upa

[y

alization ang Polliny keylister
s, Address, & vAax Purage ACKk kegister



23

? Define unit specific flelds and sizes

SDE?INI uce

sK_SlZL

4,449,182
24

for UCHs

? S17e of Clone UCR

; S1ze of garden varlety aisk

ncA

! Define Generic/Transtfer M5CP Command Packet otfsets with internal header
) and trajler butffers
SDEF gggzgﬁIPgrE BLKI 1 c i
A3 - . ) § MSCP Pkt queue torward link
SDEF CPKESL.POBL «BLKL 1 ¢ MSCP Pkt queue backward link
§DEE CPKESwoPKTLLFN ,BLKW 1 ! Packet Lennatn descriotor
SLEF CPKESA.VCID oblNW 1 ?t Virtual Circuit I,D,
MSCPSAh_PKI_HMNK =,=CPKESL.POFL ;7 Detine size ot packet header
SLEF MOCHSLLCMU_RFE  ,BLARL 1 : Comuand Reference humbet
S$DEP MSCPS v UNM] o BILKW 1 s Unit wumnher
3 JBLKw 1 ] Reservez wora
SOFEE MSCPSB_UPCNDE BlLRK 1 : Np Coue
LBLAR 1 } Peserve: tvte
SDEF MSCPSw  MODTETER  iliw 1 y Command “odifiers
SLEF MSCPSL.oYIF_CwT ,BLRL 1 ¢t Trarnster byte Count
SDFF MSCPSL.BIFFER eBLK] 1 ! Bufter Descrintor (1R bits 1o1 U .
BRI 2 ¢ Un=used portion ot putfer descriic~:
SUE} MoCkSL_LR «bBIEL | ¢+ Loaical) Blecwe Huyroper
SUEF HoCPsu SFlaxls .BLAL 1 7 Software sords
Lat, 3 : Gereric Packel raramweLers fren
MSCPShoPKISIZE =,=",CPSkho CMu_n‘k : lefine size ot aeneric »¥S.¥ Panwey
: Define Uriver bhepergent Packet iraller uftsets
SUFE CPRLSLarTY Gy olnl 1 ; Poluter to agsscciatert ring enLr,
RESPSh.OTLF = r NDefine size 0f internal resunnse ,acret
CMDESRLOILE = 1 lefine size ot internil CcoT™TANY LaCery
SUFrFuD PaT
; Define Ceonmana packer List Ertry Ufrsets
SUFFINT Pal.
SLF} CPheSLCMunFi yoLKL 1 P Comrand DACKRL kKeterence wiTper
S$DFE CrFESw_aApPrn soliaw 1 7 Nurper of 1st lp2 Man Realster
SDE} CPKESBLIMNRLE wt3LRH ) 3 o Numoel ot Mgt reaisters alloucaten
SUE} Cr¥eSn_UALAPALH SR 1 ! aInd PataePatly wilbsrer
SUFE CPKESLLUSEFREF »LAL 1 t User supclied reternce nusher
BLKR KFSLPSK_PRTHTILF = 4> ; remalnaer of 450y pvt
CPKESKRLLTLY = ¢y Command List entry size
SUFFRWD PKL
CPKESKRLIST Libd = 1¢ s Current static Commanu Lirit List Si7e pv entries
; Define offsets 1n system buffer usea oy driver anc UDA
SDEF Int CC
SLEF RESUSLLFLINK «BLKL 1 ; Response rina/pxt naue listheaa
SDEY RESUSLabLINK SBIAL 1
. - oBLAL 1 : Buffer descriptor
SDEF CmNusSLLFLINK »BLKL 1 : Comumand ring/pkt gque listneqd
SDEF CMDUSLLBLINK +BLKL 1
SDEF INTPSLLFLINK +BLRKL 1 3 Internal packet walt gue listhean
SLE} INTPSLLBLINK «BLRL 1
«BLAB 3 ¢ Unuseyg, snhoula pe zero
SVEY CMDSB_ PURGE «BLKR 1 ¢t Ush Cnannel for purge
SDEF CMDSW_INTKR JBLKK 1 ! Command Interupt Flaa
8DE} RESSW_INTR LKW i H Response Interupt Flaj
! Top 0f Response Kiny btructures
SDE} RESKSL.TOP +BLKL “bCPSk-RTthIZE
Top of Commani King Structures
$DEF CMDKSL._TOP BLEL  M>CPSK_ RinCoILE
oD 0t Response packetls
$DEF RESKFSL.TOK +BLRB <RESPSK. SlZL‘MSCPsh RINGSLIZED>
Top 0f Command packets
$DEF CMDPSL.TOP +BLKB CCMDP 3K _ SIZ;'MSLPsK KINGS1ZED>
¢t Clone UCR
S$UVEL UCRS.CLUNe .BLKB UCRSK CLN.SIZL
;} Active Commdannt packet 1ist
ACTSL.CMDLLIST ,BlLaw CCPRESK_SLZEL*CPRFRSK_LIiSTI_LFWD
TBUFSh Sler =, : Total buffer size in bytes

SUFFEND CC

¢ Define Loca]l Lata Structure

-2 2 1 .3 2 27 4 3
cocococcco
mer MMM
- T T T e e

LDEFIN] DL
SLLBUFT
LaCLONKE

[+ 3

=
L
=
c
®
i

cooow
<

coco
VOATMON
LA -

jmimi viwelvivivlel
P PEIPP D
nurnnibnnn

TE XS
Ml | CONTYO

=
XTXT—{ T
cCmMm-CcmaeT

—
FERFRARE XXX
PEF 2 IFCCC

nffsets

e N8Ve Ve ve We Ve Ve ne e

.l B vl el e o B e

Top aadress ot system bufter

Address ot clone uCu

Address of UCB O

AgAress of internal queue listhess
Address of Active Comrand Packet Lis
Init errol reason £lags

Init step error word

Mapping reaister of systen vutfer

Kumber of marpinn realsters
Databatn = v



4,449,182
25 26

page

S$DEr UDASw_RyUFe ebBlLRW 1 ; Sysien puffer byte otfset from
SDEF UDASW_REF_NU™ «BLKA 1 : Internaj reternce numuer value
SUEF UDASW_ FLALS +BLEKW 1 : Internal control tlaos
SVILLD Upr,0,<= : Internal flao definitions
CONLINE, ,v>,~ : Jopa Is On l.ine
<INFEXPET, U>,= ; Interupt from Uud is expected
<S?e£XPCr,,v»,=- ! Controller Init Step 4 iInterupt exnecten
<S3IXFCl, ,v>,= ¢ Controller Init Ster 3 interupt expectes
<54EXpPCr,,V>,« ¢ Controller lrnit Step 4 interupt expectes
<BUFALOC, ,V>,- : System puffer {s allocated
<BUKMAPD, ,V>,= ¢ System putfer is mapped in UBA
<POUFL ,6> - : Packe2t(s) avallanle to be aueuea Lo !lpA
<CUINKED, U>,- ¢ Clone UCR is linked fnto UCw list
5 <TIMEQUT,,V>,= ¢ Timenut processing {5 in proaress
UDASK.SIZe = , ? Size of data structures reaulren
SDEFEND Du

H % NGTE #%
¢t Feainnping Nftset Values
! parenthesized are {n bytes aecimal

t Aport arnd et Command Status Commanu Packet specitic Uftset
SDEFINT FF R
«=MSCPSW.MOUTIFICER ¢ t Nffset (12)
SUFEF MSCPSLLOUTLRFEF  JBLKL 1 ! Outstandina Reference Numner
SLEFEND FF
? Online and Set Unit Cnharacteristics Command Packet snecific Otfsets
INT Go
«EMSCPSW.MODIFIER+4 ¢ NDffset (14
oBLKRW 1 ; Unit Flans
»BLKL 1 ! MHost ldentifier
oHLKL 2 } Reserved
SDEF MSCPSLeERHLGLFL (BLRKL 1 $ Error lLoa Flags
«BLKW 1 t Snadow Unit
SLEF MoCPSw COPYSPD (KT.KW 1 7 Cory opeed

SVELEND GG

! Replace Comnand Packet specific oftset
SLEFINT Hn

EMSCESWwLMOLIFIRRS2 ? Offset (12)
SLEF MSCPSLKHN +BLKL 1 ; Penjacevent Block NyrTper
SLEEFEND Hp
3 Set Controller Characteristics Command packet Specific uffsets
SDEFINT TI
«SMSCPSw MOLIFIEF+?2 § Difset (12)
S$LEE MSCPSwaVERSION ,BLAW 1 $ M5Cp vVersion
SDEF MSCPSw.CMTLFLGS ,HLHW 1 H Controller Flans
SDEF MSCPSW.HST.T¥C bhnW 1 t Host Time Out
SVEF MSCPSwLUSELFRAC sl ww 1 t+ Use Fractior
SVEF MSCPSULTINF o BLAL 2 ¢ Quagworn tire and date
SDEFERD 11
t Define Resmonse packet Uftsets = Hull lahel Arngments are sanme
: as those oetined {n tne Generic/Transter Commana Packet Apove
SDEFInNT KK
»BLKEL 2 : Packet linkane long woras
+BLKL 1 : Packet lenat™ & Virtual Carcuat
+BI AL 1 : Comnani Reference Nuymper
JHLKA 1 * Unit tynber
BLAR 1 ;} Reserve! fiela
LBLKR 1 t Np Cnde (alsn called enccorde)
SOEF MSCPSh.FLAGa e bBLR® { y ¥Vlags field
SDFE MSCPSw_STATUS BLRw 1 : Status
«BLAL 1 : BRytes transfered count
«BLKL 3 7y Peservea 3 1nno words
SUFE MSCPSLFROTLBAI BLAL 1 s First £a4 Blncx

Sofrware nor-qs
SLEFEiD Kn

1 Get Command packet kEna pPacket Dffsetrs

SLEFInI LL
WEMSCPSLLOULREF+4 t Dtfset (1e)
SDEF MSCESwCMDLSTS bl KW 1 t Comnand Status

SUEFERD 1p
: Get Unit Status End packet specific Nffsets

SUEFTn] MM

«EMSCHSNMODIFIER+2 : Difset (12)

S$DFEF MSCPSwoMITLTUNT (BLKW 1 2 Myulti-Unit code

SVEF MSCPSw L UNTLFLGS ,pLevw 1 s Unit Flaos

SDEF MSCPSL_HOSTLID  JBLKL 1 : Host ;dentitier

SLEF MOCPSUUNLITLTL oBLRL 2 ; Unitc identitier

SDEF MSCPSL.MEDIALID BLAL 1 : Media tﬂoe identitier
SDEF MSCPSW_SRLUW_UNT HBLKWw b] s Snadow nit

Ti



4,449,182

SUFFEND

M

27

S$DEF MSCPSWLSHUWL SIS ,BLKw i
s DEE MbCPSw-TPAC Ny 1
$DFF MSCPS4.GRQUP oHLEW i
SDEF MSCPSWLCYLTINPER BLKA 1

+BLKW 1
SVEF MSCHSwakCTLSIZF ,BLAW 1
SUFE MSPprsnaonkins Jolah 1
SLEE MSCPSuhCILCPIS ,Bl AR i

! Online & Set Unit Characteristics FnA

SUFFTInT N,y
EVOCESHSHUKR_SIS+?
SDEF MSCPS L UMTLSIZF BLKL
SUEF MSCPSLaVOLLSFK eBLAL
SLFFFubD MNp

1

28

Shaaos Status
Track Size

Croup

Size

Cylinuer Size
Regservea

RCT Table Size
KB'ls 4 ITack

~a e we vy vm wm Ve Ve

RCT Conies

Packet speclfic otfsats

~e re e

Ntfset {3o0)
Unit size
Volume Serfal Nuymuer

? Set (portroller Characteristics Ena pacxet Specitic ufisets

SUFFTWI DO
WyEMSCPSWLCNTLF LGS +2 } Dtfset (1b)
SDFF MECPSw.CNTL My ,Blew i ! Controller iireonut
$DEF MSCPSwuCNT.C¥OL ,SLKW ] : Controller Commana Limit
S$LEF MSCPSWLCHTLID + LKL 2 1 Controller 1.u.
SODEFEND NV
P 44
} Local sympnl definitions
,--
DEVICELL1PL = 21 ! Device PuL
FUPRGIPL = } Forx IPL
LUOOFLLIMIYL = ‘x<rnd> y Step 1 iraxinun wait time tOr resvonse
INTRLVEC = ~0<C27u> ? Primarv interunt vector
: Defirme Injtialization Sequence UNASA bit tlanas
INTTaM.OTEPY = L4000 ? Step 4 inaficator mask
INIToMLSTEP3 = *X2u00Q ? Steq 3 1ngicator mAasw
INITaMLSTEP2 = “K1u00Q ! Step 2 indicsaior mask
INIT.M_STEPY = ~KRyn ! Step | inoicAtor rasv
INITLMLINT] = * A&y ! Ini{tializarion seauence interynt enabnle
INITOM_IN]F s 4 ; Fnavle tata]l error interupt flac
INI oM LFATL = 2 { Reouest previous tallure loy meéssale packet
INITMoPUKGE = 1 ? Fnable purnae flan
INITLNMLGO = 1 7 Go tlag
INTToVLERKNK = *xF + Initlalization Error
INITaVoSTEPAG = ~AE ¢ Step 4 indicator pit
IN]JTaVuSTEP S = XD 7 Step 3 indicator rit
INITuVv.STEP2 = "“AC ! Step z indicator pit
INIToV.STEP] = *XR ! Step 1| inaicator bpit
! Initjalization Seguence Step word formats
STEPL1awRITE = <1@15> <MSCPSK_EXPONENTIR11>!IKMSCPSR_EXPOUELTSRO IINIT M _INTI!<T T
STEF wl2erEADN = INIIodnSTEPZ!IC1@7> IKMSMPSK _EXPONENTEI>IMSCPSK FXPUNENT
STEPL3I_nFEAD = INIT.M bTL°3!1NlT_”_INT1!<]NTu-VFL/4>
+ Command and Message Ring Control Flags
UDALM_ Oah = 1031 t NDwn flag mask
UDA_M_FLAG = [R3D ¢ Buffer control tlad masw
DALV _OwN = “X\F ;P Nan €lag yesctor
UDR_V_ FLb, = *X1F } Hufter control rlsa vectnr
t Direct MS5CP Packet 1/0 rFunction Codes
TOS_MSOPLPKT = 1INg_HOp
: Contro)l Packet Upcgoass
; Command Dpecode pits 3 tnru 9 indicate tne comwand classg
: 00U lmneaniate Coimanis
H QN1 Seqguential Commands
H 01U non=sequential commands that do 1oL 1nclude a puffer descririnr
[} 01} MPaintenance Commanags
H 10u Nnnesequential cormmands that include a tuffer aescriotor
: End packet Upcodes (also called Endcodes) are formeg py aadlni the ena  Dars
r flag (20u octal) to tne correspondiny commana packets Jdpcouse, Ar unkr
1t comman? End pacxet contains Just the tlan in the packet’s 0prode tleln,
MSCHSKaUPLABDRT = § s "ubl, *x01 AHNKT Caommand
MSCPEK_UP_ACCLS = 1o : 0209, "Xt ACCESH Commann
MSCPSh.OP_AJAIL = R 7 “01u, *X08 AVALLARLE Command
MSCPSKR.UPLCMPCD = 17 o202y, T«li CuMpAkF CUNTROLLER DATA Commnand
MSCPSR.OP.CUMP = 32 y *04u, A2 CuMvAw¥ HUSY DATA Command
MSCPSRLOPLFKASF = ¢ P OtU22, "R FxASE ComnpanA
MSCPSh.UPLFLUSHY = 19 t *0?23, X113 FLUSH Comnarnd
NSCPSK_UPLGTCHD = 2 ? ~ulz2, “x0u GET CuMHAND STATUS Commanu
MSCPSR_UPLGIUNT = 3 Tocun3, X033 CeT U'nTE STATYUS Command
MSCY¥SK.UP_OKNLIN = @ s *U11. 409 CKLINE Cnmmang



30

4,449,182

29

{on Yessar

e

nISTICS Comman
CrEL
- LS
tent
§5A}

C[F
TICs Commang
A
5
t
e

2 )

WIlMRe P A

%3

1
TunM EsD P
ttention ™

ntion “Yes

n
[
A
A
T
e

r

AL ETZA>>TO
NV o

C CeiN
P PLXMND PP
NeCC X XXX
M LCE XE 4 ¢
48 qa¢d <

. asa
A R R~ =X
- PTFTNNG OO
@ ONC GO et
23230200200
LN SN O S BN BN BN BN AN

e 50 S0 G Sa, Sa 54 Ba Sa Sa

o
~m 3 DeEN P*TNO
AN v e OO O

UZFh 22
C. A0 2+ sl
QLT O a0
ailadie 23> 20
OXWVY, SLlNgCa
U O U U
oaoannoaonan
D3ID030020300
1Tt b
FA" ¥ XA E L
VHRBBNBLBNG
e D e e e B 2 Q0 e
vuuLLLLOUG
NNAH AN NNV
IFEFFTXLAETITX

Hasek

Aask
ntion Messaye Command K3t

Packet st Flaa
ntion Message Command

Pacxet

@
~
« ~¢

>
[aTag o] o
2P b
[P
113
[ Y-Y:%:Y
2005
[ L}
E>E>
v MV
O O D e
LU
NN NN
EXEXXEX

MSCP Dpcode pit

¢ Read command pit flan
Transfer type

3 Data

1 End Pacxket Flaas (rmask values)

4 Rlock tlinreporteg
rror Loa generated

dad Block Reported
a
Serious exceotion

B
R
E

:
!
!
H

DODTO
L Ao )
ettt
3K X N |

Bad Rlock Heporten
7 Raad Rlock Unreporten
t Error Lo" cenerated
exceotion

1 Serious

.
R

3 End Packet Flags (vector values)

MSCPSVLEF_RBLKP

MSCPSVLELF BBLRY
? Controller klans (mask values)

MOCHSy kP ERTLUC
MSCPSVLEF_SEREX

LOg vessar‘tes
Lod MessAa,es

httention Messaaes
eous krror
st’s Error
t*s krror Log Messanes

[ ) =

a

1

n
Sectors

ass0
[+-A- X ot el
> e
e ¢ € ¢ (N

L z
UMD
LT =T
E el B ob o ol
L = 7T
160000
Lol b la s

: Controller Flaas (rask values)

messases
Vessau®s
s

Enatle this host’s Erier woy Messane
76 Byte Sectors

Enaple Availaple Attention Messanes
Enavle miscellanegus trror Loy
Shagowing

S

Enable otner host’s Error Lon

:

4 ®n Ou 0n S

~OonNT—C
WU

2 x 3

= AAD

)X - O
> it T~
S X Chvn
ras e
e b da S bl
oLV
st
it
wBanve v

tvent code
tvent code
tvent coae

Coges

Status anag cvent

.
14

v

-

*

]

(<]

=4

o]

o

-t

a

[ ~t

[ L

e c

L e

o Q

L 2 »

¥ ~ v [

-t © w -
-4 o] TR

G TT =T ve «©

- e waae Usx~ D
o TPl P D

- EmMCAWwLOo a E

2 EC~SKOL = nC

E DO =Tl U0Obe

U § = Ol C U %

] OO bevbed by

TETTH>L 0 LD

ON~-“CIOS wiaoc o

Ve~ LX) g Qo

TUODEFLOPRALCOVLUE>N

LBUODEwWHNTHEMNLLC-N

IICOCCOHOTVO0OMGL

Vw0 30000

a Sa fa G Gu Su Bu Bu Bu Bu G BA 54 by

o e

~ LN\

¢ ¢ >

§ SN Orxoe ¢ ¢t
sunuuRuHENINN

[ Cooha ([N %

JUIEH ILEARLLDL >
O XX T3 et
DOV D> adX I LN Z X
LIV - Sol @ § Bl al f SYaVa)
AR EREEE RN
Lol sl ol ol ad o 31 23 Lol Sl o)
NDAVANANANANNDANANAND
Misttrtriratg
LLLL L LS L LAL L L
VBN ABNBLILVNBRN
fs Mo 0o Wps W« W W We Wa TR W W WY W W
vLuulLvLLLLLLU
BN N NANNNNAANVIV
SXXTIXIFIIXXIEFZ

rst QID Parameter

Nefine wiL Farameters (AP) offsets

]
’

GTu _paraneter

th QRID Parameter
th QIO Pararmeter

cona WIL Parameter
rth

{rd Q10 Parareter

Fi
Se
™n
Fouy
Fif
Six

;
!
:
:
;

oNEC
O F D e

—_NP N O
A.0.0.0.0.0

Narme

4 routine

ster Page reguired
: Default ACP

HCR g!za
atrol Rlock Init values

End nt DOriver
t Unipus Adapter 1ype
{ver nare

driver Jnlad

Mo S
n
D
c
\

: Define Driver Prolog Tacle
r
o
>

¥
H
?
!
H
1

FT.S810K
'PT.STORE DuPR ,DDRSLLACPL,L,<*ANF11l

L4
-

S1Zt
0aAn,

UsA,=
UCHsK,

14
s

UsLuAp=uUnALUNL
HNAMESDIDRIVEP

Tables
FaD=UDA_FND , =
ADAPTER
FLARGS=D
UCRSIZE
E INIT

-5

WSRITL

PAGE
t Driver Proloque Tahle

!

DPTAB

.
D

P ote
-



4,449,182
K} 32

NETLUSIOKE DUR,DDASLACPD+ 4,1 ! ACP Class
DPT_SICKE UCk,UCRSA_FIPL, o shxn IPL : Fork iPL
DPT_SINRF UCR, ugggb-nLvLuaﬁ Nevice Characteristxcs

bevsq ! Files Griepted
IDFVeu_pIr- ? birectory Structured
tLFVSM_AVL~- : Avallaple
UFEVSM_SUR~ 2 Sharable
SUEYSEM_IDy- ¢ 1lnput vevice
IUFVSK _JDVe- 7 dJutout Device

R LUFVEM_RYD> ! FRapdom Access

DT _SIOKFE UCF ICRSB_SECTNHS,R 31 RABU Sectors per trarc

BPT_STINKE NCRIUCRSR_TRACKS, b
DPTLSINKE UCR, ThEH ~CiLIvoEnRS, " 547
CPT_STNKE UCB.UCBSR_DEVCLASS, b, 6cs sD1S¥
DPT_SIORF UCR,NCRSWoDEVARIFSEE, " Pefault Rufter size
DETIZSIOE UCR,UCRSRIDIPL, u.uharér T s beviee 16,

DPTL.S1ORE UCR,UCBSW_STS, 4 lCHs“ OQuLlMNE ; Set units online
DPT_STORE UCPR,UCBsw_PrvSTS, w,

RAR(C Tracas per cylinger
RABU JUser area cvilnders
DPevice Class

S¥ne ve ma ve v

Frror Loagina Routine
Diay Butr byte lenotn
S5i{ze of error nufter

CUCESK_NNCNTRT~ ¢ Wo LPe Lo pnysical ador conversion
JUCHSHM_DIAGBUF> ; biagnostic pbutfer specitied
npT_ S[nkgsgggéULﬂsL <MAXHBLUCK,L,= ; KAED Max Luiy
DFT. srnks RETNIT ? Control Rlock Re=Init Values
PPT_STORY PDB,DURSL_DLT,P,DusVL]l ; uriver Dispatch Taple Adar
DPTLSTNKE ChB,CRESI._InT(+4,0,- ; Address ot interupt service routine
DA_INTERUPT
PrT_STOKE Eul
3 44
: Driver Dispatch Table
: ew
DLTAR -
NJ,=- 3 Device Nane
2ul-srnarxn,- ! Start 1/0 routine
- ! No Secondary Level Interupt
BhA_FUNCTARLE, = i Functinn Detision Tane ¥
0,=- ! Cancel 1/u
;
H

0 =
;chsx-pkrsxzaonz,

¢t Internal aata structures
UDASL_INTLRNAL: ,BLKR HDASK_ S1Z¢

+S581TL UDAR Function Lecision Tahle
sPAGE

3 4+
? Driver Function DPecision Table

UDA _FubCTARLE :

FUNCTAR ,- I.eaal Functilen 4asks

Pirect MSCP Packet bunction

xnxfxnulzr, UhA and units {nitializstinn cnmvan
SEEK Seex

oFaﬂzrnAp, Sense Cnaracteristics

SEuSEMUDE , = Sense Mode

SETMLDE, - Set HMode

SEFICHAR, - Set Characteristics

KEADLBLY, - Reaa Lngical vlock

REaADPRLE Reag Fhysical Bleock

HFADJ“LK. Read virtual Blocx

wR [TeLole, -
wRITEPBLK , =
d‘ITLVsLK,

write Locical Binck
write Pnvsical 8locx
Write Virtuaal Rlock

ACCES Agccess tile and/or directory ertry
ACPCU'TRJL, ACP Control Function

CREATF, - Create tile and/or directory
DFACCFSS,- Neaccess tile

DELETE,~ Delete tile andsor directory
MPPIFY, = Modify tile attricutes

MOUNT ¥ount Vvolume

kEAanAD - Feaa head

WRITECHEEN , -
nFlTLHLlu)

<S5EWSECHAK, -
SEwSEYODE, =

»rite Cneck

write Head

Hufterey 17U Functlons
Sense Cnaracteristics
Sensr Mode

FUMCTAR

SETMQDe , - Set More

SF ICHAR, - Set Cnaracteristics

ACCHSS, = Access tile andsor airectory entry
ACPCUMIRULL, - ACP Control Function

CRLAIF,= Create file andsnr directory
DFAfciaﬁ - NDeaccess fille

LELETF, = Nelete rile and/or afrectory
MOUTFY,= Modify file attributes

Mount Volume

3 UDA Tnitialization

Test LDA tor online

Pirect MSCP Packet Functlior
Pean Lojical dlock

MOUNT>
FUNCTAB UDA_FDT_INIT,<IuTiTALLZE
FUNCTAR ULAZFUTC TESTONI,, =

<n0p

READLRLK, =

Ba TE 5o W G5 TE NS BE NP VO AL VA VE WG NP %e 46 V6 VA V8 W VY Ne U4 VH V6 TE WG VB NP WP G5 Vh V8 Ve " g vy W6 OO



FUNC
FUNC

33
P
D

FUNCTAR

FUNCTAR

FUNCTAR
FuUNCTaB

FUNCTAR

FUNCTAR
FUNCTAH

FUNCTAR
FUuNCTAR

FUNCTAR
«SBITL
PAGE

BLE
++

33

READPRLK,
RFADVBLK
SFek,
wﬂlThlBLK.
WRITEPBLK, =
anTthLh'
CCESS, =
AFPCUNIRUL,
CREATE

-

<
o
x

]

T CEMIem ™0

[k
v
i
-

CTEEXTXITCT

0O

[ Nl 2~ o
-

OO 2~

ACT
111 ANV =)

nPlThL&Lhr
wRITEPSUK , =
wRITEVBLK>
UDAFDT. . PHYST1U, =
<KFADPRLK

AV ITEPALA>

UDA_FDT_NOP , =
<RFADHFAP,
SELK , =
WRITEHEAD , =
ARLTECAECK>
+ACPSREADSLK, -
SREANLBLK ,=
READPRLK , =
KREADVRLK>
+ACPSEARLITERLK, =
CwRITELBLK, =
WR[TePALK, =
wRITEVALAD
+ACPSACCESS, -
CACCF3S,CREATE
+ACPSDFACCFESS,
+ACPSHODIFY, =
CACPCUNTROL, =
DFLFTE, =
MOUTFY>
+ACPSMOUNT , <MUUNT>
+EXESSERSEMONE , =
CHENSECHAR, =
SFASEMDED>
+EXe§SF [CHAKR, -
<SEIMINE , =
SFETCHARD>
FuTl Routines
LuR

Functional bDescriptinn:

Refer to specliftic FLT routines.

4,449,182

>
<CUFACCESS>

WP ME TE %G Ve NE Ve e Ve VA TG W6 LI NG WS VETE TS VE TG VE V4 NC %y U V6 VA V4 W4 W TP wg WG WY VS Ve T4 V6 4 W S

e e

o re

34
Read Physical BRlock
Read virtual mlock
Seek
write Locica) Blocw
Write Pnysicai hlock
write Virtuel Block
Access file ands/or directory entry
ACP Control Function
Create tile and/or directory
Deaccess file
Delete file and/or dlrectory
Modify ftlle attrioutes
Mount Volume
Reaa heaqd

write Cneck

krite Heau

Nirect MSCP Packet

Fven bytes count requirea tfunctions
Reaon Lonjical olock

Read rhysical Block

Reag virtual mloecx

Write Locical Bleock

write Pnysical blocxk

srite Virtual BRlnck

Pnvsical i/0 rejuest tupctions
Read Fhysical Block

write onysical plock

Np omeratinn tor current version
Read read

Seex

wWrite Heaa

write Cneck

ACP Read Functions

Reau Logical plocl

Read Physical Rlack

Reag virtual clock

ACP wWrite Functions

drite Lonical Rlock

{te Pnvsical nlocx

ét’ Virtual Block

wr
wr
ACP Access or credate tilesdirectnrv

Sense Cnaracteristics
Sense Mode

Set Monde
Ser Cnaracteristics

H
H
?
;
! Inputs: (common to all FDT routines)
:
] R3 = address of INP (I/0 Keguest packet)
H R4 = Address of PCR (Process Contrel block)
: #S = apdrress of HC® (unit Control Block)
: Ro = Address of CCR (Channel Contrnl Block)
s 87 = Bit Number ot the 1/0 Function Code
] Ry = aAddress of the FDT Table entrv for tne specitic FPI[ koutine
! 4p = address of tne first function ependent Qi Parameter
’ - -
UDALFDT.TESTANL
MOVAR UDASLL.INTERNAL, K2 ? et aandress ot internal structures
BLRS UDASU-FLAGS(st 1us t Controller is presumeable online
MOVL UDASW_INIT.ERR(R2),R1 ¢ Loaa init error flags
Ss: MUVZWwlL, #SSS_SSFAILL,RC ? Set sub-systenr tailure statuys
BKR 1105 7 Finisn 1/uU
108¢ MOVL UCBSL.CRA(RS),RU ! Get adAress ot CRu
MOV CKRsL-INTU+VEé$' IPBC(RO),KD ¢ Get adAress of IDB
MUV, (rO) RO ! Get address ot CSH
:Egﬁwu ?gAsi(poa,u1 : zesL 1f UDA Aied since last 1/0
2 5 S :
BbSC BUNDASVLUNLTIWE , = ¢ Reset controller online and Finisn
NpAsW_FLACS(R2),55 : 1/n
156: RICwW2 BUCBSH_BSY,UCBEw.STS(RS) ;7 Clear unmit busy to avoit a woit
20s: R58 ? Return to EX¥s0iD
+PAGE
Pove
?} ULA_FUT.BYTECAT



LA FLUTBYTECNT:
LYt #

4,449,182
36

s U,P2(APY,2uS8 ; Return if byte count is even
105s: MuVIWL 8585 IValFT e, Py $ Set oai nytg count stérus
110s JuP S EAFSFINISRTU r Fanisn 1/u
e PAGE
LI
P ULA_FLTMsCP
UDA_FuT_MoCh:
MUV P1(AP), RO 7 Get adAress of user’s MuCP pit
MV IMSCPSG_PhTaTZFoil.Hl : LoAaa lennath ot an Y5Cp Lkt ¢+ nedgner
DSBINL  #1PLS_S(NCH : Synch Access to system dAata hase
BSha UDuALALDWD4PAGED ; Allocate o svstem bufter
FauPRINT ; Return to nrevious [PyL
RyBC RU,2158 } Insufficient resources, avort 170
MUV R2,IRPSLLMFDIA(R]Y) ! Load MSCP Packet puifer aadress in |-
M3V Pl(aP),KkN : ! Get aadress of user’s MsCp pxt
CLRL Ri s Clear index
2005 MOV (kD) Int),12(R2Y[RLT t Copy mS(P pacxket into hold bufter
BUHLSS  #MSCPSK _PRKTSTZFe=4,K1,200s
AnS AMSCPSV NP XFER, =
MSCPShaJPCONF(RZ2),208s8 ¢ Process transter 1/J tunctions
204s: Jup GRFXFSULINDRVERT ! Queue packet to driver
20582 MUV L MOCPSLLBUFFER(R2),PL(AP) : Load xfer address In T1/0 pardaveter 1
MUV L MSCPSLLBYTECHT(RZ),P2(AP) ; Load xter pvte count
BEDL 204s » Tt’s a UDL seek cormand
Fp3 EMSCPSV . Np_nEAD, -
MECPSH_UPCODE(RS) 2108  Opcode is a reaa class cormand
209s: Jmp G EXFSwRIF : Process direct 170 «rite
2108 Jxe G EAFsMUD]F ¢ ¢t Prncess direct 1/0 read
215s: Jmp G FAFSAQDORTIN ! Apart 1I/0
FPAGE )
7 +e
: ULAFUT_NGP
UDA_FUTNCP:
MUV S #5885 HORMAL,RD : Set normal return status
JeP GAEAFSFINISHTIOC + Finish 1l/U

oCx numper,
LopN =

.8 %E N e W e WH Ue Ve Ve Ve

ULA_FLTLPRYSTIU:

MOUVZR)L
VYV ZRA],
MULL?
FATZV
MULL?2
ExT2V
MULL?
ApDL 2
BEATZYV
ALLL?
MUVL
CHPZV

AEOL
BKR
«PAGE

++
DOA_FLTLINTf

A_FuT.PAYSTO

‘e
up
This routine 15
disk adaress in parameter 3
bl

called when A pnvsical 1/0 reguest wAs recelved, lhe physical
of the parameters list is convertea to A lonical

recoanizaple nv tne DA, ihe algorithm tor conversion te:

fcylinder # (sectors per trans & {Fracks per cylinuer))

+ (track * sectors per track)
+ sector

¢t Develop L®Ns/cylinder value
RO =

[N ]

e B ) ]
xer

-~ n =N
b =]

[T <)

X e

1\

SeCctors/irace

X.wnw

W W08 D w= T
Q0 ~n

X ~ T~

= LHNS/cylinder,
: fet pnysical cylinder value

Kly cylinder by LAnS/Cylinder

p

e

-

wm o~
~ P x

> e M

N

vsial track numper

ly by sectonrs/track

ctor/tracx to apove

Get pnvsical sector namper

result 1s the =j3uivalent LB
: Stuft in Lni area of IRrP

SLFCADF,= 7 Is this a reaa ?

=REBDPLLA

es, goto EXFSMIDIFY

oto EXc$aR1TL

("9}

~
-

ti
D
tl
S
P

—~
x
hel
Nt
-~
=
N
- XX
o v e T WSS e e e va e RIRE S L
[
<

&

NN U0®% 00O TaLTT
O Lot FONC TR C O

EDVTy s v ==~ O TT
VOB TUEInXXa X~

Functional bescription:

basicallv
agdition

fnitfalization routine,

Tnis routine is called when a hard injitialize ot tne UuA 1Is reqguested, 1
mimmies tne tunctions of the ObYSGeN process bY loasing tn:
appropriate reniscters with the values tnat SYSGEN woulo norna ly load. 1
ir disables all {nterupts and calls tne pr1Mar¥ level !
yron return to tnis ¥DT routine, original N1 contev:

is restoreq,
terninaven,

e B TR E e Ny e YU e Ve W Ve B¢

interupts are enabled hack to around 0, and tne I/0 reques® »



4,449,182
37 38

: Nisahle a}l {nterupts
LJRa> ! Save DT Context
d : et adidress ot (CRon
o Load b with addr of LDp
e Inutuﬂ).ns ! Get adAress ot 1Dk
Load C5+ address in P4
Go ana init tne DA
Pestore FUT context
Enaple lnteruots
Finisn the 1/u

UDALFLTS

X Zee
-t

"o
zCcu:Ccococue
DVLECS S <N~
X CCIr—
=

-

L3 =
- vt e

=
x
»

UUA_FDTNUP

+DISABLE LS9

.52[;& DUA_STARTIO « UDA Start I/0 routine
G

T 4e
$ UDALSTAKTIO = UDA driver start I/J routine
¢ Inputss
H R3 = Address of 1/0 Renuest nacket
: RS = Adaress ot specitied Unit Control nlock
[
s Peqgister assignments:
H F(0 = Address of MSCy packet
! R1 = Adoress of {nternal data structure
7 R2 = Adgdress of Active MSCP Packet list entrv ) .
’ 3 = Address of IKP or lnternal Packet oeirg serviced
3 R4 = Genera] aorkx Reajster
H Fb = Address of {nput queye and forx blor« (clone) UTs
; Fb = general work Reagister
? R?7 = §craten
; Rg = Seratch
+ENARLF LGSR
UDARLSTARTLO:
MOV AR HDASL TNTERNAL, 1 : Get Aqdress ot internal) nufter
MLy UDASLLCLOWFUCKH(KT) , 12 ! Get audress ot ]@P gueue ¢ Cwm
M VRR UCRSL.TUGFL(R2Y,R2 ¢ et aadress 0f queue listread
FUSHL .0 U ‘ $ Save internals putter address
JSk CAEXESTNSEKTITRP : Insert 19F §in {innut ayeye
PGPL R1 ?t Retrieve Internals ouffer audress
UDALINTERNALLLIOS ! Reference lLarel for Internal wmSC:
t rackel yueuelna to UDA e tork T1P7
PUSHR $~¥<Kko , K7 ,RE> $ Save rejisters
MOVL UDAsL-éLDuFICH(Hl).HS ! Get andress ot clone ufo
552 JSR GeTCAN_PACKFET ;: Get next empgty Command packet
RS SVASV.SYSTEM,RN,bsS ! Got onpe
BRw 558 s Rinys are full, close out
68 MOVL - UDAST._INTPAUF(R1) , RS ;! Get aurress ot internal auejs listr,
REMJUE ®(F3),R4 : Get next internal nacket tor ulw
Ay 8 RS ¢t Nonme there, trv outsiace 1/N reluest
CLRL Ri 3} Clear index
s LN tztud)r%ﬂ] MSCPsL-Cmu REF(ROY[Rs) ¢ Copy packet to rina bufter
AGRLSS #MSCPSF PhISTZEe<d, KA} 75
MLVL MbCPsL-CHD-k?F(Hﬂ).- ! Cony command reténce nuiber into
CPKESLLCYULKEE (R2) $ Active packet 1ist entry
BISw2  #UNASM-POUEL, UDASW_FLAGS(R1) ; Set a pAcket waS gueued tlaq
Jsh ﬂzSP)o $ Queue packet to UDA
MOVL R4, RO ! Get audress nt temporary cutfer
BSRw UpACDEANNNPAGED : De~allocate system butfer i
INCL UCRSL.OPCANT(RH) ; Account for queyed J/u in Clone UCH
RAxB Ss 3 Start again
85 MOVAR UCRSL.IOAFL(RYS),R4 ! Get aadress ot 1Rp 3ueue listnead
CMPL (K4),r4 ! Is the queuye empty
BLOL 31s ¢ Yes, ex{t ]
MOVL {nd),N3 - ; Get agdress of Ky to process
MOV, INPSL-“C&&RJ;,ﬂo ! Get asiress ot asSsaclated lCHR
TSTa IkPsW_FUNCC(K]) t Is this a 4irect nSCF parcxet 1/4
RnEy 158 t No
MOVL INPSLLMEDIA(RI),RY : Get auJriress of pacxets tewp sioraie
CLRL Ry ; Clear index
108: MV 12(&7)[Rﬂj,MSCPsL-CMD-RgFERu)lPaJ H Cony packet to rina pufiery
MOVG 12(R7)TRA) ,CPKFSL_USFHRLF(R2) ko) {nto active pxt list
ADRLSS #MSCPSK_PATSIZE@=3,RrH,108
BeS IMSCPSVLOPLXFER, =
MbCPSu-UPCnuF(RGJ.lls 1 Process data transter MSCp pkt
gggw SﬁECK-ABnRT ! %4 cxecCx tor abort of aet cm4 Stst
3 v
118 TSTL MSCPSL.BYTELCHNT(RW) ¢ Is this a seex packet byte count = U
BiEy 25§ ? No
RRR 409 ! Yes, Jueue packet as s
15s: MOVh SMSCPSK_OP_READ,R7 ;7 Assume a read function
CMPLV RIRPSVLFCODE, s TRPSSLFCNDE,= ¢ 1s {t really o9 reac ?
JRPsW_FUNC(RY), s TuS_READBBIK S
BReQL 208 : Yes
MUVD BMSCPSKaOPL®RITL,R? ;7 Load & srite or cords
20s: MOVE R7,ASCPSR NPCUNLE (D) 7 Loag op code {n command pacuset
MOVL IkPslomenTA(R3), - ! LoAs Lk
MSCPSLuLBi(RO) ‘
MOV UCBSW ITNIT(RG), - ¢ Loao Unit Numper of associateg uCh
¥SCPSW.UNIT (RS



4,449,182

? Reference label

39 40
MOVZWL IRPSW_RCNTI(K3), = ¢ Load transfer byte count
MSCPSL.BYTE_Ciuf(rRL)
REAL 408 : .No pvie count, seek only
258: PUSHKHR #~MCRQ : Save re;istera trom destruction_
MOVe qusL-évnﬁTL(«3).u SSL_SVAPIR(R5) ; Load xfer parameters im (CE
JSB G*IUCSREQDATAPNW ; Rejuyest a pufferei gata nath
RLRC PU,3035 : None avaflaple
Jsh G6~fOcsaL0uRAMAP ? 2llocate URa mapping reaisters
BLBS R0, 35s ?} Gooa return
JSR G*TOCSRELUDATAP 3 Release buyftered data patn
30s: PUPF B MCRO,RY,R2,K4> ; Restore reajisters
315: TSTu (SP)+ ¢ Clear return address to queue cmd Pat
RKR 55§ 7 Clean up and leave
358 JSK G*TUCSLUADIBAMAY s Load JBA mapping registers
PQPK #*MCRO,R1 ,R2,RE> ! Restore rejisters
wovL CRsL_Ern RSy RY ! Get address of CRr
MGVL CRRSL_TnTO+VFLSn_“APREG(RT),~ : Save URA ¥appiny context
CPKESW.HAPREG(R2) : In active pacxet List Entry
MOVZAL IRPSW_ROFF(R3),R% s Kludae uo xfer adqress tor (DA
INSYV CRRSL.INTD+VECSA-MAPREG(RT),#9,39,Ry ; Load map reqgister nur
i INSV CRRSLoTWTD+VECSBoDATAPATH(RY)  §24,98,48 : Load phata Patn
MOVL Ry, MSCPSL_BUFFER(RN) : Stutf in nécv command packet
408; MUV R3,MSCPSL_CMD_RLF(RQ) t Load IRP address as reference numnerr
MOVL R3,CPKESL_CMN_REF(R2) ¢ in MSCP Pacxket ana List Kntry
JSB D(QP)+ : Queue packet to UDA
TSTa IRPSW_FUNC(R3) 3 Was tnis a alrect MsCp 1/0
BNEw 458 1 No
MOVL IKPSL.MEDIA(RY), ! Get address ot temnorgary buffer
RSAW HOA_DEANONPAGED : De~allocate system puffer
458 BlSw2 BUDASAPRUEN ,UDASA_FLAGS(®1) ; Set a packet was aueuea flaa
INCL UCRSL._BPCAT(RD) ; Accouht for dueusa I[/u in Clone fiCH
508: REMQU: A(R3),RI t Remove I[RpP trom input aqueuye
REQL 558 ;s None left, prebare to leave
: BRW 58 ! Process next IRy
5582 PUPR =~ 8°U<Ho,R7,Rb> 7 Pestore reajsters
. **  n§uINY t Disavle all interupts
guSa SUDABVY.CLINKED,= ? Link clone {in witn (Co Jist 1t
. ash ggash EBQES(R1). 11/ ! tals is tne tirst 1/0
» -
Ses: BpSC SUDLASY POUEY,= $ Alert ULA of queued MSCP packets
upasw FLAGS(R1),608 1 1¢ gue tlaa 15 set
ISTL UCRSLLNPCAT(RS) 3 Are tnere any unf:ntnneo 170°
BNEY 628 1 Yes, alles for possible UvA !n-oat'
. BRW UDA_MOSTLTINEK $ Set host timer anas return to caller
6083 uyvy UDLASLUCBLZERU(R 1 Get 8ddress 0t nost Timer UCED
8iCa2  SUCBSA TIH&DCus.-s*S(uQ) Clear timeout hit
oV, NCESL.CRB(RS), R4 $ Get agdress ot UDAIP 1/0 page
MOVL  CRREL_INTLeVECSL.IDs(N4),nd redister avoldina {nairact
WMOVL (nd4),R4 3 refevence
TSTe  UDAIP(R4) 3 Initiate qu POl1lgn
. BiC IVASY_SISTFEM,~ 3 Take kS exd lt Clone 15 already
: UCRSL.FPC(R>),858 2 in the fork a
6283 ENBINT 3} Reset IPL to tork level
RSB i Return to caller -
6583 RiSa2 SUDASHM I“IFXPCT UvAga_FLAUS(R]1) 3 Set interuprt expected
wFIRPCH UDA. 115;941 3 P
10FOPK t Create a foIk pProcess

for unsoliciated interupts

MoVL R4, R} ¢t Copy eddress of internal Lutfers
CLRL UCRSL_FPC(RY) 3 Clear fork oispatch address in UCp
PUSHR §*P<Rp,R7,RE> 3 Save rejisters
ASBY UDAFINISHIU 3 Clnse out end packets
BhiW Ss t Try to gueue nes packets pefore exit
+SARTITL UDA_FINISATU -« Close ount 1/U routine
«PAGF

7 %o

; ULDA_FINISHTIOD = UDA driver 1/n closeput rocrtine

? !nbuts:

’ . R1 = Address of internal data structures

? P} 5 Address of ITOR

H RS = Adaress of CLone UCB

$ Reqister assignmentst

[ RO = Address of End pacxel being processed

s RZ2 = Address of assocjatea Comrana Packet List Entry

s P% & Address of asgsoclated 1IRP

] R7 = Scraten and 170 szatus arasument register

g RS s Scratch and 170 sub status argument register

UDA_FINISHIOS: _
BRSBa GETLENDPACKET 3 Get next end packet
TSTL Ry } Did we get one ?
BAEQ 105s $ Yes

105 =5§ YASY_SYSTE ?: Return to caller

t 14 [} SVASV, X P
MSCPSL.C¥D_REF(R0),1098 7 Process JKP

BLRC UDASW_FLAGS nx),luﬁs ;3 Sxip internal oxt {t UDA is otflinr
BSAu UDA_PROC.INIRNL ¢ Process internal packet



10032

1095

1255

130¢

UDAPROCLLINIKHLS

;
:
;

onm

158

}

208:

258

PET Clele ERUDATPOO
cor Bt COCrmLOXT M
<3 WEYDY SQCAQ-I<T NN
CCXcCTT ar

[y ¢

x
=y
<
| o
A
[72

Inputs

TEPIY WVIETD

24
-
al
*

~

¥

CE =

DO Te< DB <™ M)
—y¥snMnsa <

R ~

=N

28
AN DOV TTw TR

VWP ETTITPTIPT TT P
<o

rnCZ2COCCCUVC

4,449,182

&
ok

42

Adcecount tor 1/0 in Clone uClh
geset ;anl t0 proper own state
0 ada

Get address ot 1Pp

Hefe UBA resources acquired ?

Save current contrut

Getdaggiess ui cR text into Ck®
oa mappin con ] o

pn:ct&s) PPANg

e Purge buftered data patn
Release Bufteres pata Patn
ease UbA Macping Reajiscers
ar 1a%ex

o) : Copy ena packet into
dfaanostic hytfer for user
t
d

Wres
TNV X
-
-
-
k-]
()
0% M te v Ve v

|

» P ILVM =T TN
TPA T D T
,.,‘

ADOAVANNATRTINNAPEEIADNNDRIMNRNTD NI RXDEORIFBPD
P IJSTRT i w0

AN D KD
Wp=-1MCs M =%
CUBM~ T o~ S

(1]
~x
or>:
X -
by
——
ane (1 Mive Vo Ve

e .

ore user’s reterence niuTher
nd Pkt Status for 105% wory |

YVenn V0

Rk
TEZ CHULXT THPCAUN HOCEH~
xm D r= T~

(=3 % 4

N0

-~

1
e
R
5
a
s
3

11~ uc)

QCPSJ STA

-

]

<SP

ezl OOONNCemMNLCCE

2~ R AN

¢

r ITuSe wnr4d 0
for YuSce L+ 1
r

own 0
L N =

T(R)),RP4

—

Cuose out th
Reset control
Process next _en
Set tailure Statu
Nid tne unit go o

JFEF LN
return Jdevice reqgijest errcr stat
a device ottline status
this Unit 0
, leave it ajlone
t aadress ot ucCq
:ar Online Flag 1n ulh ana close
r the

n<MTN Ol
x
«
o
~4
cemene e ne vene ne

n
x
~
[}

NI~ SHNIPMRAT XTODCAw WCX) 2
173
4

Ny T NV P N

@NoUol TID=n]
T T IO =

(b61,tnscps

=T
tm o
[ =

]

n

~

wi
l'zu
g

nw Y~ 1

Wrdes Tt Tww RCCT
NOCTNNTNVMIZNTCCC U WXX=-NOUIXIC0

2P 20 Hnhoh-—aAa<XTE a1k

EX Sl

31\
HeA c< i
Vet =N A § O=T T
gZta —~C CETI2MCr
Tt T4

-~
e wa va ve v ne ne X

GHTONOETRNOTOONI 1§ TOeCO~ TmOT CCCulmnAnmNOl | »

N
]
1]
I~ T

«UISABTL.E LSB

: Process internal packet

Address of Fnd pacxket peing processen
Address of {nternal data structures
Address of assocjated Command Packet List Entry

MSCPSBLIPCRDE(RU)Y ,R7Y ; ¥SCP packet eni code

K7, , #<MSCOEK_0PLONLINIMSC sK o Bins  1Ie it an SR INE end code
$

R7,-<nscpsk-0p-61uwr2mscésk-np-t~u> 3 Is it a get unit status?
158 ¢ No, fygnor 1t then

Get aadress of UCd corresponding to Unfit humber in mSCP End pacxet

UUAs,-UCB ZERU(KY) et agAdress of UCn U
Ucksu CUNTT(R3), halsta_ UNII§K0) ; Are unit numpers tne sare

S es
UCRSLLLINK(K3),R] t get aodress of next !lCR
108 : : Try this one, 0 = last uCr

¢+ Not a normal unit numper, fgnor it

R7,8<MSCPSK_OP_GTUNT!MSCPSK_NPLENDU> ¢ Is {t 3 get unit status?
308 ¢+ Yes, prncess {t down stairs
MSCPSwW.UNIT(RO),R7 y Get unit numerer
2us t 1t’s uUnit zero, do not mark ottline

Set orher thAn unit zern oft=-line until receipt ot & sJccess oF1 vUlT SlAal.
end packet

NCR3w, 9[<(Pj)

UCoSMLUNLINF,
ACKMSCPSH ST MASK>, = 1 s retarn status success 7
SCPSw_STATLS(PU)
b8 4 No
SCPSLLUNT.SIZF(RUY, - * Loay mAax LAn value tor svstem use
CRSL.MAYBLUCK(KI) ¢+ into uC»n
“MCRy,R1,R2> t Save context
DA-GEf-TNTPKT 3 Make & get unit status comMmana pkt
0,255 ? Allocation tajilure
7,MSCPSW_UIWIT(K?) :r Loag unit Numper in packetl
MSCPsK_NP_GTUNT, ASCPSBNFCUNPL(k?2) ; Load get unjt ststus
uAsL-IhTPJUF(R15.91 : Get internal pkt ygueue listnead
~“#4,R1 * Address the hacxk linwv
K2),8(R1) : Insert in rear of queue
‘”<5u.R1,PZ> H Reitore original context

: exit

: Process the GET UuTI STATUS ¥sCrP knd packer

30s;

swTw
[asf V o /o]
1 Pnl

“C("bCPSM-ST_“A5h>,° : Is return status success 7
"PS$aaSTATUS(RY) :

0
"HSMLONLINF ,UCRSW_ ﬁtS(Pi) : Set unit’s UCe status to online



35s:
CHECYF LAnONT:

CMPB

5s:
108

158
P
208 RaB

- n na

4,449,182

43 4
ent disk geometry of sec tors/trdcxs/c linders 1 a o
trarxlqrouo/cv1¥nﬂer definitions, (ure devic:se?gnﬁqz
o tne four dimensional IVper cuus arcnitﬂcture detine.:
isk MSCP spec, whicn will invalidate the tollowinmg cone,
MSCPSw CYLINWDER(HU) , = ¢ Loaa Cy d Hek
ﬂgggg‘cékéﬁ“ERgéu”' yiinders value {n t(t
o P{r - s L
3&?32-7¥32E53933' 083 tracks value in uCh
MSCPSw., K{kt) ,= ! 4 8 P
UCPsB-StC[nRS(DJS Loat sectors value in UCH
! Return

t routine agded 5/15/g1 to handie refererce

¢ aport and get co"mand status tvst. rehcs nambers tor
MSCPSp UPCOLF(RU), - h iR
!MSCPs?-”P_Akénr)' : Is this an AROR]1 command
:§CPSn OPCOUE(RO) ; }es

b - - ; s h vl
5M§CPSK-0P-GTé“U ’ H thls a aet cmd stagus
0 ;7 No, return
gghsL-CnD-LIST(k)J.R7 i Eié ao?ross ot commang list
ear lonp counter
E;;szbsgzggsﬁé?; 5155 H gn'egngl racket or naone at all
[ - H re M5Cv¢ re e [}
Tg:vsb-OUL-RFr(RO)' reterence numbers equal
! No

;SZ),MSCPsL_nUT-HﬁF(Pu) 3 gogd internally assianed re: num
4 H eturn
5% #CPRESK_SIZE K7 : Point to next cad4 list entr
®12,F4,10% ’ ! Lonp throuan 1ist Y
UVALROSTLIIMFR = HNST to ULNA Timeput nandler

‘e
DDA_HUS 1 TAFR = HDST to UDA Timeout handier

Save address of internals

Get aadress ot LCws U tar nost ti~er
llsa IUCH«FIKPCH far eventUAal Lives
Exit 1f VuA is tlajgea of

Get aadress ot Clone UCH

1s STaARTIL gqueveina pacxe

Yes, leave

Make a L/0 fork for Syncronizastlon
Get an internal pacxet

None arouni, toc

fline

ts ?

“ake o ho=Np tFuUaﬁ) UDA cormann

Unit 0

Load a bonus byte count
Save current uCo address
Load an 1Iue packet Ln Upa
Restore {nput UCHR
Return to fork dispatcher

e

hancler

er

t tne UDA

aadress ot fnternals
) : Set trimeout flay

>,= 2

and fina"oniine flaas

Get Address ot n0OST timen
Clear all status pits in

witn the exception of O&

Synch driver at forx IPL

Ciear all status pbits in

Get aadress ot internals

Save work reaisters

Clnse out end packets 1f

oxen

Get audress ot internal packet

Get next internal walr pa

Cueue is empty

t Inputs?
: K} = AAagress of Internal Lata Structures
: -
UDA_RUST.TIMER?
MoV R1,Rr4 H
MUV, NMUASLLUCRLZERO(KT) K5 !
AFEInPCH 10S,#37 H
10s8; BLBC UDASWLFLAGS(P4),2us :
MUVL HOASLCLONEUCK(KSE) 14 H
ToTL UCRSL.OPCNT (R4 H
RuF 4 208 ;
JH8 G FAESTIIFORAN ;
RSBw VLA _CETLINTPKT H
BLR(C RO, 205 H
MOVE #vECPSK NP FLUSH, = :
MSCPSuB_UPCDULF(RZ H
MUVL 584, MSCPSLRYTELCNY (K2)
wuvL Py, =CsP) :
BSBw LURULINIP_PKT :
L (5P )+, ,RS H
208 RsH H
CSRITL VDALTIMEOULT = UuA timeour
+FAGE
HEE R
s DUA_TIMEOLT = Upa Cormand Timeout Hardl
t Inputs:
H P4 = Address of lIUALP
H RS = address of Clone HCH
’ -
UBDA_TIMEOUT:
CLRe UDALP(F4Q) H
MyVAR UDASL _InTERWAL, w1 H
RISw? lUPASM-TIMFUHT'UDASa_FLAG
BICn?2 SCULASM ONLINEIUDASHM INTF
Hpdsw FLAGS(RYL) H
MOV HUASLLUCR_ZrRu(Kl) , RO H
RiCw2 s2CCUCRSM DL INEY> , = H
UCBswW_SIS(ROD) ;
JSR G *FAXFsFORK H
CLRw HCREW_STS(R>) H
MUVAR UDAST TNTERNAL , k1 H
PUSHR #°MCRo, KT ,RED> H
BSBw pa_FINISATIO :
¢ Flush Internal Packet Oueue
MUVL UDASL.INTPQUF(R]),R2 H
4s: gt:uUn A(R2),RV !
v :

RoBa

5§
DPADEANDNPAGHED

Keturn bvffer to svstem

ut
UCt v
LINE

Clone

any

cket

keaset lnterupt exbected
yew

LCes

que

L



4,449,182
45 46

AxP 4s t Loop until queue 18 eaptv
Ss¢ CLWL R2 1 Initialize loor counter
MOVZWL #SSSs.TIMFOUT,HT s Loaa primary l/u error status
? Rundown 381l I/0°s tnat were al{eddv aueyed to tne DA hut were nav't'
! terminatea via an Fnd Packet tnose M5SCP Packets in tne active -
3 list not closesd out by the FIu!aHlﬁ routi{ne), Internal [Ackets are .jsnorec.
MOVL UpAslo CND-IIST(RI).RS : Get address of active cn4 lixt
108 RpC SVASV_ SYSTEM : Saip eMpt¥ or internal pacrets
CPKESLoCMD. v*btu4).xss i Cantei orly untinisnea JPrs
:Egt gg:LSN «MAPPLG(R4),RU ] Were URA resources acgquired ?
: $ No
PUSHR BAMCRY WD t Save current context
MOVL uchsLoCRR(PS)Y, RS { Get aairess of CRp
MuvL RO, CRESLLINTDSVECSW MAPKFG(R3) ;3 Load mapning context in Cnis
JSF G*§3CSPURGDATAP { Purge bufterej gata path
Jse G*1UCSRELDATAF ! Release HBuftereg vata Patn
Jsh G*IQCSNLLMAPRLE 7 Release Upnk VYavping Peaisters
PUPK B2NCR 2 ,RE> t Qegtore previous context
118 MOVL CPRESLLCYI'QKFF(RA )} ,RY : Get avAress ot 1Ry
LM R4, RO t Copy MSCP packet address i1or 10CAL.
SURL2 S°44,K0 : Fauate WSCP DXt nttsers tc c=n Iist
BSES upafucan : Clese out tne InP
158 ADPL2 S‘!CPKFSK-.IZL ! Get agdress of next packel
AUBLS> SCPhF5P_1IS l-LPw,d? 1us ¢ Cneck ail commani pdacCxets
{ Rundown all IRPs that are still in the UCw IRP LiSt, [hese dere never
! inftiated ar all,
MUVAR UCRSLLIOAFL(RYY, R s Get audress of 1nput JkP jueue
208: Revylig °6P1).R3 1 Remove next lnP from queue
py& 3os ! lyeye {5 empty
MUVL IRPSLMEDIA(RI) , Ry 1 Get macxup Yﬂc*et it any
RSBp NpA_TuCan ! Cancel the
RuC BYAGV_SYSTEM, KN, 2us t Clos® out next 1RP
RSEw UDA_DEAsONPAREN’ } Return putfer to system
RRE 208 ¢t Continue tor ali outstandinid JHrs
308 CLRL NCRST.OPCHT(RY) : Clear I/N0 count field in Clone uCwu
:0$x 4*V¥<Ro,R7,Re> ;3 kRestore work rejisters
S
+PAGE
] +9+
! DDA_TUCAN < I/0 canceiler routine callea pv the Timeonut Hanaler for
H internal 1/0 rundow#n of IrPs and NSCP End cacketrs,
; xn’““‘u s Address of ing nsce ¢
A of untinisnea acxet
] R) = Address of !Rs
] RY 8 §5$.TIAEQNT status
,..
VLALTIOCANS
BoC SIRPSVLOIAGBUF, ] &B n::t !t thxl vas not & firect
1:Psw. E18(R3),fos L
81882 ONSCPSYLOPENU,~ 3 8¢t ond eoac cxoa in plckc!
NSCPSH ovcﬁoziiu)
uoVa sMSCPSK ST CNIR| = 3 Set contro)ier errof return status
vsCPsw.STaTusS(RY g
lozt :;RPQL-DIAGBHF(R ) ok ] g:t .daresl ot putfer’s date ares
)
Sst ESVQ MSCPBLLCMD R rtno)tnﬁj (‘olxlof y end ctog into
ohL88 onSCPsK.PAFSTZER-3,K5,4s ! to urn, bu oF ushr
“Si 15¢ gy Close out
1083 'L RO g Set no lVltew buttor flé
156: LRL Re ¢ Clear secondarv 1USp Lonﬂ woras vajlue
LI UDATUPOST ¢ Close nut tne JkP and return to Cell-
\ggg;b UDALINITTIALIZE = uDA Ingtialization
*
§ e
; UDALINITIALLIZE = Primary Level UDA Initielization Routine
g3 Functional Vescription:
s /IRS/
; }gkuteve! s Povertai) 1PL
? R4 = Address of tne C3R (UDAIP)
] RS & Address of IDR (interupt Data sloex)
] Ro = AAddress of DOR (Device Pata blocx
; Q9 = Aduress of CHR (Channel Reguest block)
! Internal registers:
] kY = address of » UCR
I3 RF7 = Address of internal data structures
[} R9 = gaved address of tne INR
; oo .
UDALINITIALIZe
Jsh G'lu!snnh
PusSHR A°MCRY | Save rejisters
MOVAR  UDASLL iariauuu' et adAress ot irterns) structuzes
BiCea? sCUDASM nnLINn.uDusn-tlnﬁuvn). Clcar timeout and
UOASW.FLAGS(RT) Controller on line tlacs



4,449,182

47 48
aBc ¢UDAS V. BUFALOC, = 3 Acquire system pcol]l It not already
UDASW_FLAGS(RT),58 } allocated ana mapped to tne Urd
BaW. - 88 - . : 3 keajn UDA InitislizZation
Ss¢ MOVZB& S*¢),UDASw#_ INITLENR(R7) § Load cutfer 8lloc falliure f1s3
MOVZIWL eTRUFGK.SIZE,R1 3 Loao suifer size
BSRa ~  UDA_ALONNPASED } Get a syster butter
BLRy RU,108
BhRW kLY s Allocation tailure
108 BiSw? YUDASM.BUFALOC, - 3 Flag butter alloceted
Uuasw FLAGS(R?)
MUVAH INTPSL-FLI”A(H?; - ;s Save address of internal ~S{F
ULASTTWTPQUE (RS ! packet juene listnea
MUVAR ACTSL_CMDLLIST(R?),~ ! Save arfddress of Active MS(P
UDASLLCMD_LIST(R?Y) ¢ Command pacxket [ist
MOVL R5,K9- ) ¢! Save andress of ILR
MGVL IDRSLLUCALST(RS), = : Save adaress of UCH 0
iJDASL_UCR_ZERU(RT) -
¥GvaR  UCRS_ CLUNE(R2),KS : Loaa clone UCp address in HS
MUVL RY,IDBSLLUWNER(RY) 7 Set clone to owner UCe in I0®
MUV RS, UDASLLCLONEUCR(R7) t Save adiress {n local date structuare-
MOV e 'UéuSK-SIZE,UCHSW-Stln(RSJ ; Create a bare pcnes ylp
Move #DY.i8CoUCH,UCBSBLTYPE(RS) ¢ Loac data Structure size ang tvpe
MOV S*~9FORK_TP[ ,UCRSR_FIPL(RS) ; Load fork IPL
MOV Ry, UCBSLaCRB(F3)- ? Lcaa edaress of Cw«F
MOVL Rp , UCBSLaUDB(KS) } Load address of Dub
MOV LR uCésL-IUOFL(Rb),HCBSL-IUOFL(RSJ s Tnftialize 10 cueuyr listhea-
MUVAR UCRSLLIVAFL(RS),"ICRSL_TuheL(R5)
VuVm S*ey, uCoSw  UNIT(RY) ; Set unit pumher to Y
MV S*#PEVICE_IPL,UCRSR_DIPL(KS) : Load device |[PL
CLRL UCRSL_OPCRT(RS) ! Clear 1/0 count field
MUV Rl1,UC8SwabCNT(RDH) : Load pvte count
RICAY  #5CQVASM_BYTES,R2,= : Load byte offset from paae
UCRsw _BUFF(RS)
MV NCRSKR _ROFF(KS),UNPASA_sNFF(R7) 7 Save tor driver
LITAW Rz.uDASL-HUrTD§(P7 ! Save puffer aadress for internal use
} Eliminate Clone UCR an+d Active 4SCP Pacxety Lis5t from mapring
SuURa4?2 FCCUCHSR aCLiN Gy STZF D +CCPKESASILE#CPKESRaLISTLLEND>, =
UHCRsw RCNT (KE)
Jsh G MMGSSvAPTECHK y Ger SvApPTE for puffer’s virtual agd:
POV L R3 UCRSLLSVAPIE(RS) ! Loan puffer Systenm virtual adaress
INCa UDRswo INTI_ERRERT) ! Set maooing fallure f£lag
JSR GATurSALOURAMAP : Allocate URA Mapring reaisters
BLRC Ry,40s ¢ Allocation Faillure
RiSa2  sUDASM_BIFMAPY,= : Flag putfer mappea
UDAsw_FLAGS(R7S
MOVL CHRRSL_INTD4VECSw.MAPREG(Fu),~
HDASS _MAPREG(RT) ) ! Save UBA mapoing context ’
JSR G*TUCSLOADUBAMAP : load UBA mapoing registers ftoar uhs
‘1583 POVL UDASL _CLONEJCBIKY ) k5 ; Get address or clcne UCH
MOVaR fUNTINUt-INlT,HCRsL-FPC(R:) s Init tork PC adaress {in lCRH
MUVZRa S*#83,UDASA_INIT_FERR(KTI) ; Set step 1 tajlure flagq
CLRw UDAIF(R1) : Reqin UDA {nftifalization sequence
CLRL R} ¢ Clesr index reajister
258 MVZWL UUASA(R4),RU. : Nead UDASA
MUV w Po,unas~-§759-£nnga7) ! Load ster word in error bufter
BpS $INET _VL.ERRUF ,RU, 3535 : Step 1 error, end init sequence
RpS $INIT_V_STSP1, PO, 308 : Step one completion flag sct
AORLSS sLOUPCLIMIT,R{, 283 ! Loop |
PRb 358 i Step one completion error
308 INCw HDASW-INIT-ERR¥R7J ? Set potential interunt tailure
BlSw2 SCUVASH L S2EXPCTLUDASH INTEXPCTI>, -
‘UDASW_FLAGS(RT) ? Set step two interupt expectey
MOV w OSTEP_r-uRIIE,UUth(§4) } Write step one «ord to uLDA
3586 Sggk #EMCRS, KT, R y Restore reajsters
408 POPR BeMCRS n9¥ © } Restore registers
BRW UDAL UNLUA6 } Releass resources and return
.ﬁ?IIL CurMIliuleaIN1T = LDA Controller Imitialization Cortinnation
» 'e N -
+¢

CUNTINUELINET = Controller initializatior seasence continuation

Funrctional vescription
/IBS/
IrL Level = Fork IPL

Inputs:
k3 = Pointer to JUA reqisters
Kq = Adgoress of internal oata structures
R5 = Adaress of clone UCR

e Ve Ye U up G e wE e e S

+ENARLF Lob
CONTINULLINIT:
JSP

GFAFSFURK ; Credate a fork process
MUVAPR Cu'lInWL INIT,UChsLLFPC(RY] : Lead ainteruct continuatinn atdur
MUV (k3) K3 ¢t Get livAlP agdress
MOV r Copy lnternals rurfer agdress
TNCw nuish_lwtl_ﬁkﬁ(kl) r Flaj possinle sitep resronse ervor

: Process controller step 1n1tlullzation

MUVZwl, ~ ULASA(KI)

Get step word fram UDa
MGVa +  RZ,UDASwo LTEP_FRR(R1)

lLloau steo respornse for possicle err

~ e



553
108:
158:

20s:
30s:

} Map date pase

358

40s:

458 :

s Send UNDA eight o

S08:

NOTETIOV~ITT JPOOHTATPTE DPED =B

BpSC

T @
- O
mn<I ;M<mU 0
FRCLD <NOFER O
NN ¥ ~N
[

=y E
< N

TEFN E

Cr==~ITNZOX =t 2XC ==-CT ZCZ X
NN

TWINONANADAC- D DVODVO<

[l ot Y

T AN
174

NI
Cor e3 GUTrC orUNNrrrorrr

NN TR HANINR

r c

oS x

LSS

AGBLSS

2
>

4,449,182

49 50
FUDASY_SALXPCT, - t Process expectea sten d
UpasW_FLAGS (R1), 3us
$UDASV.SIELXPCT, - 7 Process expecteo step 3
UDAsw_FLAGS(R1),Ss
RUDASHAO2LXPCT UDPASKLFLAGS{R]L) ; Clear step 2 exrectea tlaa
#5TEP.I_READ, RS ! Is the resoonse correct ?
108 ? No terminate
UDARSW_BUFF (K1), KD ¢ Loau ovte offset
gghag-VAPREG(Ri).-Q.- ! Set marping reaister pits U = &
ikEbRsL-TUP,Ru ¢ Set address to top of rings
PU,R(R1) ! Save address tor step 3
$INIT.M_PURGE ,RU ¢ Set purge enaple fldag
$<UDASM_S3FAPETIULASY_ INTEXPCI>, =" Set step 3 and interunt
UDASW_FLAGS(RY) 3 mxnertey
RU,UDASA(K]Y) : drite step word 2
208 ! Return to fork dispatcher
;g:EP-i-READ,RZ : %s the step 3 response correct ?
; Yes
UDALIP(R3) } Peset UDA on detected error
: Return to fork dispatcher

u<HDhsM-SAEXPCT2UUASM_INfLXPCT>.- ! Set step 4 and interupt
UbLAsw_FLAGS(R1) } expecteg
#16,82,9(K1),RN : write step 3 word
RU,UPASACR3)
HLASW_TNIToERR (K1) : Flag possihle interuot tailures
$INJT_VLERRUR,R2,10s : Terminate init seq or fatal error
#INIT_V_STEP4,R2,10s8 :t Terminate {f stepr seauence error
5 UDASAéR!) : Set GU and quad word purst
$ILIT_¥_GO,UDASA(K3) ? write Go flaa to UDA
UCRSLLFFC(P5) ? Cilear forx pc in clone UCo
UDASW_INITLERR(R]) 3 Clear init error flaas
for UDA/Driver and initialize aqueye listheaas
UDASWLRUFF(K1),RY : Develop !!nA aodress pase for ul&
UDASW_MAPREG(K1),#9,89 k)3
ACRESPSL_TOP+uSCHsk IPRT_ROR> K3 N
UDASL_RUFTOP (KL, RO : Gef avdress to top ot systen burfer
FO,R? ; Cony
R2,KY : Again
#RESPSL_TUP, R} : Create addr to top of RES packets
RESUSLFLINA(R2),(Ru)e ¢ Initialijze response aueur listneas
RESOSLFLINK(K2),(RUY+
(RO)+ ¢+ Skip butfer descriptor )
CMDUSLLFLINN(K?),(RUY+ ! Tnitlalze Command aueue listhead
CMDUSLLFLINKR(R2),(RU)+
INTPSLeFLINK(K2),(RU)e ¢ Initialize internal Facketl wait
INTPSL.FLINK(KR2),(R0)Y+ : queye listhedd
(RD)+ t Clear purge and interurt wnrds
#RESPSL.TJUP,P4 : Init Iindex from top ot resnorse Dwxl:
RS t Clear loop index
RI, (RO} ¢+ Link packet to messadge rina entry
S%448,CPKESA_PKT_L¥n(K1) ; Load Pkt Len anA clr Vir Cir Tu
RO,CPRESL_PIKGP(R1)
SCUDA ML DWNLUDALM_FLAGY, (KD )+ ¢ Set entr¥ to UuDAa Uwn
CPRKESLPOFL{R2)(R3Y,~ s Tnsert packet in pacx ot response gur
ARFSOSL.BLINK(RZ) )
SRFSPSK_SIZ2E,KI : Develon UbA Aaddress of npext ReS px!
BRESPSK_SIZL,HE s Bump indgex regyfster to next FES oKt
*RESPSK_SIZE , K1 H )
eNSCPSKoRINGEIZE,kS,358 ¢ Loop thru all RES ring/pkt entries
PO, CPKESL.RINGP(P1)
S*n4R,CPKESw PKILEN(RT) ; Load Pxt Len and clr vir Car Iuv
R3,(RO)+ : Link packet to commana rina entry
CPRLEL.POFL(R2)[R4),~ ¢ Insert packet in back of commana gue.
ACHMDPOSTL.RLINK(R2)
#CMUPSK_ SIZE,R3 : Nevelop UgA aadress to next crd bkt
SCMUPSK_S1Zk,R4 ¢ Bymp ingex register to next cmd pet
#CMUPSKL512E,R)
R5,40s 1t Loop thru all cmd ring/gxt entries
Reference humper and URA Kesource Values Flela in eacn
ctive MSCP Commana packet List
:AgrSL-C“D-LIsT,Rz t Point to top of command list

K
OCPiFsK-SIZE.H2 ¢ Point to next entry
sCPKFS$K LIST.LEN,r5,458 ¢ Loop throuanh list

nline packets for units 2 thru 7
UDASL.INTEPGLAL,RY ;s Reload addr of internal structares
uBngL-tmrvouz(§1),Rs { Get aadress of internal pxt lisneat
S*%3,R3Y ! Get backlink address
K4 2 Clear Rg
UDAGETLINTPKT : Get an internal M3CP pAacket hufter
RO,55s ¢ Allocation Failure .
sndCPSK_NE_ONLTH, - ¢ Load online command {n MSCP packet
VSCPeR_OPCOLF (R2) '
R4, MSCPSW_ UNIT(R2) 3 Load unit numoer
R4, MSCPsW_SHDw_ukl(r2) .: Loaa shadow unit number
(k2),0(R3) + Insert packet In rear en” ot queie
s8,K4,508 + Lonp tor w unline Packets



4,449,182
51 52
i Seng uLlA the Set Controller Cnaracteristics Command Packet to enanle
? Attention Messages and a o2 second nost timeout value,
RSB« UURCETLINTRKT $ Get an internal “s@y packet hyufter
RLRC FO,595s ! Allocation Failure )
MuVe 'M5CPSK NPL.STCOI ! Load Set Controller Cnaracteristics
MSCPSBoIPCOLE(P2S : op code
RiSa?2 TMSCPSM_ CE-AVATN MSCPS*-CvT-FLPo(Rz) 1 Set controller flans
YuVe 160 ,%5C nST-TBUCF?) i Set host timeont ta 60 seconds
RISw?2 -uDAsM-u~LYwF ”UASd-PLAuSLR1) : Set controller on line tlan
LUADLINIP_PrRT: : Reference label for {nternal packet loadina
MOV, ULASLUINTROUR(R]L)Y, R : Get auvdress ot internal pPxt lisnead
ALDL2 S~44,13 ! Get bacx)ink adaress
INSylUe (KR?2),8(KR1Y) ! Insert packet in rear end ot gueue
RKW VDAL ENTERNA L. 4D : nue packet to Uud
558 RSR ¢ Error return
DISABLE LSu
+SAITL UDA Interunt Servire koutine
«PAGF
1 e
; VLALTINTERUPT = TInterunt Service routine
3 Functicnal vescription:
; /TRS/
t Inputs?
’ n(sSp) Pointer to 1DHK
[ R5 = AAdress of Clone UCH
’ Ry = R4 = Scratch
? Outputs for rontine callei:
H R} = pPointer to URALP
I3 R4 = Address of Intern al pvAta Structures
; . R5 = Adgress of Clone UCH
UDALINTERUPT::
MOV @(SP)+, K] 3 Get audress ot 1Do
MOVAR UDAsL_fuTERHAL.k4 ! Get address ot internal structures
BYS BUDASVLTIMEQHT = r Ianor interuvt if timeout 1is set,ul .
UDASW._FLAGS (R4}, 208 : Is incoherent at this point arnyway
MUV, TIVRSL_OwWNER(R3),P> ¢ Load owner UCob tor EXeSHURY
BsC BUDASVLONLINF, = ? Sxip purce check 1f UDA is otfttline
DDASWFLAGS (R4),1uS
MOVL UDASL-FUFTﬂP(kdf,RZ ;7 Get acdress ot system bufter
T5Th CMLSR_PURGF(R2) : Is 4 cata patnh puUrae reguesten ?
ReOL 108 ; Ho, test for normal interupt
MUVL UCPSLLCRB(RS) R} : Get adiress ot CRp
MUV CRRSLoINTo+VRESE_OATAPATH(P1),=(SP) 3 Save current DP in CHn
MOVH CMDSE _PURPGF(R2), = s LoAao dAata patn number to be purge:
CRRSL.INTD+VECSOUATAPATH(P1)Y } Into (CRo
PUSuR 4°MCRY ,R2,R3> t Save registers trom sys routine
Jok G*TUCSPURGDATAP 3 Purje tne datas path
POPR RAMCRL K2 ,R4> ; Restnre nrevious context
MOVp (SP)o,fPRsL_I¢Tu‘vLLsu- A[APATH(P]) ; Restore orevions L©®
CLRb CMDSB_PURGF(R2) : Clear Natas Path in interupt scra
MoV (h3),R? * Get adiress ot UDAI
CLP» nuasheray : Let Uuk know we’re gone
1us: RuCC VUNABY_JNIFAPCT, - H Dispatcn interupt if exiecten
. DDAsw FLAGS(R4),158 : rocess possihle attentior pxt
JSi AUCHSLFPC(KS) : o go apnropriate routines
Bk 208 } Restore reqgisters and ret fre: int
158 BLRC UDASW _FLAGS(R4),2uS * Tgnor unsolicited {nterunt {f tne
7 UuA {s off iine
RS eVASV_SYSTFE, : Tt clone isn’t already in forx gueue
HCRsl _FPCI(NS),2us s put 1t there to Aet messade nacret
BsRn 3us ! Create a tork process
208 MUV (SPy+, R : Restnre registers
ALY (5P)+ ,R2
MOV 3 (LP)+, %3
Fel
30¢:; JSR G*FxFsFRK t Gracetully 9o to fork TPl
Blw UUA_FURK_PKUC : 'lse tne standarc tork processor
; for unsnlicited Attentlion VYessaqges
SRITL  UDA_NNLOAD « UDA driver unloas routine
«FAGF
HIR Y ]
t ULA_UnLUAD = uriver unluvas routine,
»
¢ Functional Lescription:
! /TBS/
'
! Inputst Unknoaan (¢ here from SY55SY3Ge"
UDALUNLUALS
PUSHR #°M<R1,RK?,R3,R4,R5, 6> ; Save registers
wovaR  UpAst.iaTeonhi, ke : Get ag-dress of internal structures
BoC SUDASV_HUEALNC, - t Exit if no system bufter aliocated
. UDASK_FLAGS(RE),158
RBC SUDASVL.CLINKFD ,= : Skip clone unlinking it never linxe:
UDAswW_FLAGS(R6},55



>
B
»
—
oo
N

53 54
MUVL UDASULCLONEUCH(RA) JRY ? aet address of Clone UCe
®OVL UEBsL-DtVDEPEND(QbS.Rb ! Get agdress of pAck linked UCs
CLRL UCRSL LINK(RS) 3 Set this UCis Lo last °
Ss: RRC $UDAS VL, BUFMAPD, = t Exit if bufter not mapved to uRaA
HphsW FLAGS (Ra},1us -
»OVy UDASL.CLONEUCB(RG) , RS t get adrdress of Clone uCp
MOVL UCRSL.CHR(RS),R4 $ Get aodress ot CRp
MOVL UDASW . YAPREG(RE) , = 5 Loay URA context in Ckx®
CRPASL.INTD4VECSaHAPREG(RY)
JSB G*JUCSRELMAPREG ! Release mapping reqister?
108 MOVL UDASL.BUFIOP(R6),RO i} Get agqdress of svystem buyfter
RSRw BUADEANOWPAGED ;7 Deallocdte svstem huffer
1582 MuvL S*USSS_NORMAL,PO ! Set normal for caller 1t kelnading
CLRw UDAsN-FblGSSPo) ; Resetr all flays for internal 1init
* PGPR #~AMCR1,R2,P3,HA,RY,R6> § Restores reaistrrs
RSP ! Return to caller
«SEITL Driver supbort Koutines
. WPAGLF

UUA_RESETLRINLS = Routine to gL tne ResNONs® Tinu’s owh £143 tO via U<,
and clear tne first quadworz in tne active comnmena ltis*
entry nointed to oy RZ,

Inputs:
RU
R

Y Adgress of response packet

Adares; of command packet jist entry

LTI TR 7Y PE TR VLR var ey

ULR RESET_RINGS:
BISL? PUDA MW, = '
ACPKFSLRINGP(ROY
CLRy {(k2) 1 Clear “5Cr (ommgna wetereénce nirer
t And !lpd Resgources fields in List emtr

!t Set response rini tao ULA Uw.

Rab
2 4
; GET_FWD_PACKFT = Roytine to get tne nme¥t dvallaole resronse pacxet tro™ lua
? Functional Description:
: /TBS/
?
¢ Inbputs:?
s R]1 = Address of internal data structures
L4
¢ Outputs:
] RU = Aduress of End packet o? & {t next nacxket pelonaed to ula
H O0r no command packet matc™ was found, )
H R2 = Address of Active Conmanmd Packer #1tn same reference nuTocer, or
g undetinea 1{f no matecn was fnuna
GETLEMD._PACKET:
MOV B3, =(5P) 3 Save k3 and ks
vOVL UOEST_BUFTOP(RY ), K4 5 aet address or svstem bufter
Ss§: MUV ReSUSLFLINK(KY),n0 ! Get aurdress of next response pac<e’
AKS SUDA VWi , BCPKESLL.KINGPI(RD),2NS : Packer Pelongs to un4
BuS SUSCPSV OPbNU, = ? Process End Pacxket 1¢ tlagaer
MSCESB.IPCALE (Ru), 108
BSRB AITENLTUNMSG : Process attention messaue
BxR Ss ! Trv §t acain
ius: REMUUE AnFSOSLLFLINK(R4),BY ¢ Revove packet fror tront of ageye
INSWOE  (RO),eRLSJSL.BLINK(N4) .2 Insert 1rm bacxk of aueus
CLRL R3 $ Clear loop {niex
MOVASR ACTsL-CMD_Llsr(R4;,k2 ! Get address of tirst conmmana packet
158 CMPL CPKESLLCMDLREF(R2),= ! Compare reference nuTuers hetasmen
MSCPSLuaCYIRFF(RD) H Fqsponse and comrana packets
BReOL 258 ¢t Foun? the matgh
ALDL? SCPKESK_S1Z¢,#2 ¢ Point to next entry )
AQOPLSS CPKFSK_LIST.LEN,RI,158 ¢ ‘Loop ;hrou?n sl]l commang packets
R1SL2  $UDA.M.OWH,RCPKESL.AI4GR(¥0) ; Set rino entry to uDi osn
2082 CLRL RO t Set no response pogcknt availaole
25$: ¥OVyY (SP)+,R3 } Pestore reqisters
RSA ¢ Retyrn to caller
+4
ATTENTIUONLMSG = Attention “Message Processing wkoutine
Functional vescription:
1t the messane recejved is an Available Attention Messaye, tnen a1 UheLine
{internal »SCP pacxet is aenerated for tne unit declared, fne otrer forrs ot

attention messages are currently iqnored.

InpPuts:
RG = zgqress of Messaje Pacxet

%0 %a e TeNe Ve Ve ugwE vy Vo

Rl dress of Internal Data Structures

ATTENTIUN_MSG: .
BLRC HUASW L FLAGS(RL)Y,2us 1 Ignor message §t uNa went otfline
CMPH IMSCPSK_NPLAVATN,MSCPIRNMICONK(RN)
RNEy 2us ¢t Ignor non=availarle attn messgae
MCVy RO,=(5P) : Save input context
BSHRw UDALGETLINTPKT : Get A systen putfer for internal pvt
RLRC RO, 19s : 3llocation fallure, fgnor reau=sr



4,449,182

55 56
MV (SP)+ Ry ¢ Restore {inout context
MUY a - MSCPSw_ UNLIT(RY),=~ ¢ Loaa Jnit Numper
MSCPSw_UNIT(R2Z) ‘2. From attention messdne packet
¥OVa MSCPSw.UNIT(RU),~- ¢ L,oad Shadow linit wumber
MACPSw_ 3HUW _INT(PL)
MgVb "BMSCPSKX_DP_ONLIN, = ? Load online comrand
MSCPSY.UPCODE (P2}
108 ¥OVL DUASL.TNTPAUR(PL),R3 ¢ Get internpal packet queue listnedn
ADDL2 ~ S*%e4,K) : Get bacxk Linv
INSUUE - (KR2),dCR3) ; lansert packet iIn rear nf gueue
BikR 2us $ Clman up and recuarn
158: MOVQ (SP)+,RO ; Restore inout contrxt
20s8: REMUUE ARFLOSLFLINK(F4) Ky : Pemove packet from tront of aueue
TaSulle  (KO),BRESYSLBLLYUNIRE) ; Insert {n bacxk of Aueuye
Eégbz BUDAMLUWN, SCPKESLLRTAGP(KD) . ¢ Set ring entry to 'IuA Oan
+PAGE
;] +¢
; GETL.CMN_PACAEL =~ Houtine tn get the next commany packet for caller
3 Functional bescription:
s TR/
?
¢ Input:
H R1 = Address ot internal aata structures
} Outguts:
3 RQ = Success = Address of emply command oacket.
' RO = Failure = O {€:
3 1) Uwn bit set indicatinag VR owns packet
$ 2) Jwn pit reset put f£137 bit set indicating
? packet is still active,
; R2 = Address of empty Active YSCP Command packel entry
GLT.CMD PACKE]:
PUSHL R1 : Save 1
Myvy UDASL.CHN_LIST(R1), K2 : Get acvdress ot commana list
NOVL UvASL_RyFTNP (K ), ki } Get aadress ot system bufter
»OVL CHDUSLFLINKC(R1),KO ¢! Get agdress of next packetl
BbS SUDAL VoUW, BCPKESLRTUGP(KD) 205 ; Fkackel belongs tu LMA
CLRL R} : Lt loop {index
S5s: ISTL (R2) 2 Is5 tnis entry empty ?
BEOL 1us ¢! Yes, use it
ADR2 S*ICPKESK_S ¢ Bump pninter
AGKLSS  #CPRESK_LTS th.xl 5 & Loog
RRR 208 7 Active list 1s tull
108; CLRL R1 ¢ Init loop index .
158 CLRy MSCPBL.CML_KEF(®N)IR1)}  Clear MSCpy Packet for celier
AUBLSS #MSCPSK_PRTSTZER=3,R1,158
POPL Ry : Restore R}
JoR 8(SPI+ 5 Execute co-routine ca11 to caller

3 Return nere {f commana packet can he queued to the UDA

PUSHL R1 :
vuvL UDASL PUFTOP(RL),R1 H
REMWUE AQCMUOSL.FLINK(RL],Pu :
INSUYE (RO),sCANGSL_dL.IMACRTL) H
Bi1CuL?2 SUNA M. FLAG, = H
aCPKEST_RINEP(RO)
PISL? BUPA_N_UWN, = H
acpKEsTor1fiGP(RU) '
20s: CLPRL Ry :
PUPL Rl :
RSP H
«PAGF
T e .
$ UDA_GET.INTPKT = Allncate
H
! Functional Description:
3 Calls UDA_ALOwWOWPAGED for the bufter,
} to zeroes for caller, and
! command reference numper,
H
; Inputs: none
¢ Dutputs:
? RO =
] Ry =
-2 R2 = Address of huffer
: -
UDA_GET_INTPKI: 2
MOVL $<SCPSHPKTSIZE+12>,K1 3
RSRi HDA_ALONDWPAGED ?
BLRC Ru,15s H
CLRL R} . R
Ss: CLRG MSCPSLLCYL_REF(R2)[RY)
AUBLSS #MSCPSK_PRT5IZEs=-3,Kk1,5s
MOVAR UDASL.TNTEPNAL, RY H
108: INCw UDASW_REF _NUM (1) :
BEQIL ’ s ?
MGV UDASW_REF_NUM(RL),~ :
MSCPSL.CHD.REF (k2§
58: RSB
«PAGF

Clears the 4R hx
loads next niyher internal

Save R1

Get aagAress ot system bufrer

Potate packet from tront of ayeue to
back of fgueuye

Clear f13ag pit 1n ring entry

Set parcxket to DA 0en
Set fajlure fley {f nere trom™ apove

Restore R}
Return to caller

a systew puffer for an internal Ms5CP packet

tes ot packet
\SCP Packet

Success or fallure as recejved from EXESALUNUNPAGF
Address of internals 1if allocatfion succeeded else trasrn

Nefine size or system bufter neede-d
Get system putfer
Allocatinn failure,
Init loop index
Clear Packet

{gnor request

Get fnternal’s adaress

Make a hes commanag reference numoer
Rut not & zero

l.oan packet’s comnand reference no



4,449,182
57 58

Functional Description:

¢ Calls FAFSALONOWPAGED and inserts hufgter size and type in plock it succes
; Saves K3 for caller. R3 usuallv contajns the address of an 1lkp,
¢ Inputs:
H Rl = Si1ze of plock
? Outputs:
H RO = lew bit clear inaoicates tajlure
' PO = ]low bit set ingicates success
H Rl = S{ze of byfter
i RZ = Adaress of bufter
: =-
UDALALONDWPAGED )
PLUSHR 8 MCPL L, HI> ! Save K3 and renuestes bufter stze
Jo8 G‘EAEsﬂLOHHNPAG;n ! Renuyest a system pufter
PLPK 1oMCRY,RID> : Restore reaqisters
RLRC Ru,5% ; None availaple, return
MOV a R1,IRPSW.STIZF(K2) ; Loag s{ze descrictor in bufter
ss: g;nga SLYNSCapUrJU, [IRESBLTYPF(RZ) } Define tyrne

UDA_DEANDNPAGED = Deallocate a puffer from system space for caller,

Functional Description:
Calls FXESDEANONPAGED and saves Rli=r3 for caller

€ wevswv e Nanemenpe s

Inputs:
R0 = Adoress of bufter to be Jdeallocated
OQutputs: None
UVALDEANCLPAGED:
PUSHP 22MCR] ,R2,R3> ¢t Save regjsters
JSR G-ExEsbeAkOLPAGED : De-aliocate system ouffer
gugﬁ #2¥CPL ,R2,RA> ! Restore reqgisters
S
«PAGE
; ++
? UDA_IUPQSI = 1/0 post processing roytine
]
¢ Functional Description:
¢t /TRS/
¢t Inputs:
: R3 = Address of IKkP to post proces
: Ry = Adaress of the ubfguitous Clore uCh
H R7 = 1/0 status long word 1
H Rb = [/0 status lony word 2
} Outputs: None
VLALIDPUST S
¥OVL Ryu,=(5P) ; Save RO
MUV R7,IRPSL_MFUTA(KY) : Loaa tinal status in 1%P
DPeCL UCF;! OPChT(Rb) t Account for I/0 in Clone uCy
YL IAPSL_UCA(R3I), KO : Get acddress of real fICR
InCL UCRSL_OPCHT(RO) 3 Account for I/0 1in real U= .
MUVAR G*TUCSGL_PSEL,Ry : Get agdress ot incost oueus listhean.
INSulle (K3),8(KD) : Insert IRP in DusSt process (eue
PAFU 108 : Brancn 1f not first entrv
SUFTINT #]1PLS.TUPULSI : Tnitiate Sotteare Interurt
10s8: :UXL (sP)Y+,RU : Pestore RO
5 .

+¢
LINKL.CLUNE = Koutire te link the Clone uCh at tne erd ot the LTe uist
tor access by the timeout nandler,

Inputs:
RS = Address of clone ICH

Registers Usea: RuU,k?

e %8 ve e Sewe wE Ny s

LINKCLUNE S

MOVL HCRSI .CHB(RS) ,RG ; Get aadress of (Ro

MOV CKRSL_INTD+VFﬁsL-1Dd(NO),h” : Get Aaadress or iDY

MUVL TORSLUCRLST(KD) ,r0 : Get acdress ot tirst uCpe -
55¢ MOVL UCHSLoLINK(KD) ,w? ? et link to mext UCG trom tnis U r

BeOL 1us ! Tnis one was the iast

MOVL R2,kh ¢+ Load address of next LCRH

BrA 5s s Continue search for last in l1st
108 MOVL Ry, uCpsSLLINK(RU) $ Link tormer last UCd te clnne

MOV RO,UChbSLDFVDEPEND(RS) ¢ Loan pack pointer in Clone

CLRL UCASL_LINK(RS) : Set clone to last

CLRu UCBSL_FPC(RS) ¢ Clear forx PC field

RSB ; Ferurn to caller
UDRLFND: ¢ All aood thinus myst cnpe te an end



4,449,182

59

What is claimed is:

1. In a data processing system which includes first
and second processors (70 and 31), a memory (80) to
which information can be written by each of said pro-
cessors and from which information can be read by each
of said processors, such memory having a plurality of
locations for storing said information, and bus means
(60) for interconnecting the first and second processors
and said memory, to enable communications therebe-
tween, said bus means being of the type which has no
hardware interlock capability which is usable by the
other of said processors to selectively prevent the other
of said processors from accessing said memory loca-
tions, the improvement comprising:

< communications control means for controlling com-
munications between said processors and permit-
ting the first processor to send a plurality of com-
mands in sequence to the second processor via the
bus means, and for permitting the second processor
to send responses to those commands to the first
processor via the bus means;

the communications control means including a plural-
ity of locations in said memory, termed interface
memory locations, adapted to serve as a communi-
cations interface between the first and second pro-
cessors, all commands and responses being trans-
mitted through such interface memory locations;

the interface memory locations comprising a pair of
ring buffers;

a first one of said ring buffers being adapted to buffer
the transmission of messages issued by the first
processor and a second one of said ring buffers
being adapted to buffer the reception of messages
transmitted by the second processor;

each of said ring buffers including a plurality of mem-
ory locations adapted to receive from an associated
one of said processors a descriptor signifying an-
other location in said memory;

for said first ring buffer, the location signified by such
descriptor being a location containing a message
for transmission to the second processor;

for said second ring buffer, the location signified by
such descriptor being a location for holding a mes-
sage from the second processor; and

the communications control means permitting each
of said processors to operate at its own rate, inde-
pendent of the other of said processors, and to
access a ring buffer for writing thereto only when
the buffer does not contain information previously
written to such buffer but not yet read from it and
for reading to such buffer only when the buffer
contains information written to it but not yet read
therefrom, thus preventing race conditions from
developing across said bus means in relation to
accessing the interface memory locations.

2. The apparatus of claim 1 wherein there is associ-
ated with each ring buffer entry a bit whose state indi-
cates the status of that entry;

for each entry of the first ring buffer, the first proces-

sor being adapted to place such entry’s ownership
bit in a predetermined first state when a descriptor
is written into said entry, and the second processor
being adapted to cause the state of the ownership
bit to change when such descriptor is read from
said entry;

for each entry of the second ring buffer, the second

processor being adapted to place such entry’s own-
ership bit in a predetermined first state when a
descriptor is written into said entry, and the first

10

20

25

30

35

45

50

55

65

60

processor being adapted to cause the state of the
ownership bit to change when such descriptor is
read from said entry;

the first and second processors being adapted to read
ring buffer entries in sequence and to read each
ring buffer entry only when the ownership bit of
said entry is in said predetermined first state,
whereby an entry may not be read twice and an
entry may not be read before a descriptor is written
thereto.

3. The data processing system of claim 1 wherein the
communications control means is further adapted to
provide such communications while each of the proces-
sors is permitted to operate at its own rate, independent
of the other processor, and while avoiding processor
interruption for a multiplicity of read and write opera-
tions.

4. In a data processing system which includes first
and second processors (70 and 31), a memory (80)
adapted to be used by said processors for containing
information to be shared by the processors, and bus
means (60) for interconnecting the first and second
processors and the memory, the bus means (60) being of
the type which has no hardware interlock capability
which is usable by each of said processors to selectively
prevent the other of said processors from accessing at
least a portion of said memory, the improvement com-
prising:

the first and second processors (70 and 31) being
adapted to employ a portion (80A) of said memory
as a communications region accessible by both of
said processors, so that all commands and re-
sponses can be transmitted from one of said proces-
sors to the other of said processors through such
portion of memory;

the communications region of memory including a
pair of ring buffers (80D and 80E};

a first one of said ring buffers (80D) buffering the
transmission of messages issued by the first proces-
sor (70) and a second one of said ring buffers (80E)
buffering the reception of messages transmitted by
the second processor (31);

each of said ring buffers including a plurality of mem-
ory locations (e.g., 132, 134, 136 and 138) adapted
to receive from the associated transmitting one of
said processors a descriptor signifying another
location in said memory;

for said first ring buffer, the location signified by such
descriptor being a location containing a message
for transmission to the second processor;

for said second ring buffer, the location signified by
such descriptor being a location for storing, at least
temporarily, a message from the second processor;
and

the first and second processors (70 and 31) further
being adapted to control access to said communica-
tions region (80A) such that information written
therein by one of said processors may not be read
twice by the other processor and a location where
information is to be written by one of the proces-
sors may not be read by the other processor before
said information has been written,

so that race conditions are prevented from develop-
ing across said bus means in the course of inter-
processor communications, and messages are trans-
mitted from said ring buffers in the same sequence
as that in which they are issued by the processors,
while each of the processors is permitted to operate
at its own rate, with substantial independence from
the other processor.



4,449,182

61

5. The apparatus of claim 4 wherein said ring buffers
are adapted to permit the first processor to send a plu-
rality of commands in sequence to the second processor
via the bus means, and to permit the second processor to
send responses to those commands to the first processor
via the bus means.
6. The apparatus of claim § wherein the first proces-
sor (70) is a host computer’s (1) central processor, the
second processor (31) is a processor in a controller (2,
30) for a secondary storage device (40), and the bus
means includes an input/output bus (60) for intercon-
necting said host computer with said secondary storage
device. ‘
7. The apparatus of claim 5§ wherein there is associ-
ated with each ring buffer entry a byte of at least one
bit, termed the ownership byte (FIG. 3B-133, 135, 137,
139; FIG. 8-278), whose state indicates the status of that
entry;
for each entry of the first ring buffer (80D), the first
processor (70) being adapted to place such entry’s
ownership byte in a predetermined first state when
a descriptor is written into said entry, and the sec-
ond processor (31) being adapted to cause the state
of the ownership byte to change when such de-
scriptor is read from said entry;
for each entry of the second ring buffer (80E), the
second processor (31) being adapted to a place such
entry’s ownership byte in a predetermined first
state when a descriptor is written into said entry,
and the first processor (70) being adapted to cause
the state of the ownership byte to change when
such descriptor is read from said entry;
the first and second processors being adapted to read
ring buffer entries in sequence and to read each
ring buffer entry only when the ownership byte of
said entry is in said predetermined first state,
whereby an entry may not be read twice and an
entry may not be read before a descriptor is written
thereto.
8. The apparatus of claim 7 wherein said ownership
byte (278) is the most significant bit in each descriptor
(260, 264).
9. The apparatus of claim 5§ wherein the controller (2,
30) further includes pointer means (32, 34) for keeping
track of the current first and second ring buffer entries.
10. The apparatus of claim § further including means
for limiting the generation of processor interrupt re-
quests to the first processor in connection with the
sending of commands and receipt of responses by said
processor, such that interrupt requests to said processdr
are generated substantially only when an empty ring
buffer becomes not-empty and when a full ring buffer
becomes not-full.
11. The apparatus of claim 10 wherein the size of each
ring buffer is communicated by said first processor to
the second processor at the time of initializing a com-
munications path betweem them.
12. The apparatus of claim 11 wherein the processors
(70, 31) communicate by sending message packets to
each other, and further including:
the first ring buffer (80D) being adapted to hold up to
M commands to be executed;

an input/output device class driver (3) associated
with the first processor (70) for sending commands
to and receiving responses from an input/output
device (40);

the second processor (31) being adapted to provide to
the class driver (3} in its first response packet the
number M of commands of a predetermined length
which said buffer can hold;

10

20

25

0

35

45

50

55

65

62

the class driver being adapted to maintain a credit
account having a credit account balance indicative
of the number of commands the buffer can accept
at any instant;

the credit account balance initially being set to equal
M and being decremented by one each time the
class driver issues a command and being incre-
mented by the value;

the second processor further being adapted to pro-
vide to the class driver, with each response packet,
a credit value (FIG. 9, 288) representing the num-
ber of commands executed to evoke the response;

the class driver incrementing the credit account bal-
ance by said credit value; and

the first processor and class driver being adapted so
as not to issue any commands when the credit ac-
count balance is zero and further being adapted to

. issue only commands which are immediately exe-
cuted when the credit account balance is one.

13. In a data processing system which includes first
and second processors, (70 and 31) a memory (80)
adapted to be used by said processors, and bus means
{60, 110, 90) for interconnecting the first and second
processors and memory to enable communications
therebetween, said bus means being of the type which
has no hardware interlock capability which is usable by
each of said processors to selectively prevent the other
of said processors from accessing at least a portion of
said memory, the improvement comprising:

at least a portion (80A) of said memory (80) being
adapted to serve as a communications region acces-
sible by both of said processors all commands and
responses being transmitted from one processor to
the other through such portion of memory;

means (278) for controlling access to information in
said communications region whereby information
written therein by one of said processors may not
be read twice by the other processor and wherein a
location where information is to be written by one
of the processors may not be read by the other
processor before said information has been written;

the communications region of memory including a
pair of ring buffers (80D, 80E);

a first one of said ring buffers (80D) being adapted to
buffer the transmission of messages issued by the
first processor and a second one of said ring buffers
(80E) being adapted to buffer the reception of mes-
sages transmitted by the second processor;

each of said ring buffers including a plurality of mem-
ory locations {(e.g., FIG. 3B-132, 134, 136, 138)
adapted to receive from an associated one of said
processors a descriptor (260, 264) signifying an-
ather location in said memory;

for said first ring buffer, the location signified by such
descriptor being a location containing a message
for transmission to the second processor; and

for said second ring buffer, the location signified by
such descriptor being a location for holding a mes-
sage from the second processor,

so that race conditions are prevented from develop-
ing across said bus means and messages are trans-
mitted from said ring buffers in the same sequence
as that in which they are issued by the processors,
while each of the processors is permitted to operate
at its own rate, independent of the other processor.

14. The apparatus of claim 13 wherein said ring buff-
ers are adapted to permit the first processor to send a
plurality of commands in sequence to the second pro-
cessor via the bus means, and to permit the second



4,449,182

63

processor to send responses to those commands to the
first processor via the bus means.

15. The apparatus of claim 14 wherein the first pro-
cessor is a host computer’s (1) central processor (70),
the second processor is a processor (31) in a controller
(2, 30) for a secondary storage device (40), and the bus
means includes an input/output bus (60) for intercon-
necting said host computer with said secondary storage
device.

16. The apparatus of claim 18 wherein there is associ-
ated with each ring buffer entry a byte of at least one
bit, termed the ownership byte (FIG. 3B-133, 135, 137,
139; FIG. 8, 278), whose state indicates the status of that
entry;

for each entry of the first ring buffer (80D), the first

processor (70) being adapted to place such entry’s
ownership byte in a predetermined first state when
a descriptor (260, 264) is written into said entry,
and the second processor (31) being adapted to
cause the state of the ownership byte to change
when such descriptor is read from said entry;

for each entry of the second ring buffer (80E), the

second processor (31) being adapted to place such
entry’s ownership byte in a predetermined first
state when a descriptor is written into said entry,
and the first processor (70) being adapted to cause
the state of the ownership byte to change when
such descriptor is read from said entry;

the first and second processors being adapted to read

ring buffer entries in sequence and to read each
ring buffer entry only when the ownership byte of
said entry is in said predetermined first state,
whereby an entry may not be read twice and an
entry may not be read before a descriptor is written
thereto.

17. The apparatus of claim 15 wherein the controller
further includes pointer means (32, 34) for keeping track
of the current first and second ring buffer entries.

18. The apparatus of claim 15 further including means
for reducing the generation of processor interrupt re-
quests to the first processor in the sending of commands
thereby and responses thereto, such that interrupt re-

64

quests to said processor are generated substantially only
when an empty ring buffer becomes non-empty and

" when a full ring buffer becomes not full.

b

10

20

25

30

35

as

50

35

65

19. The apparatus of claim 18 wherein the size of each
ring buffer is communicated by said first processor to
the other of said processors at the time of initializing the
communications path between them.

20. The apparatus of claim 19 wherein the processors

communicate by sending message packets to each other,

and further including:

a buffer associated with the second processor for
holding up to M commands to be executed;

an input/output device class driver associated with
the first processor for sending commands to and
receiving responses from an input/output device;

the second processor being adapted to provide to the
class driver in its first response packet the number
M of commands of a predetermined length which
said buffer can hold;

the class driver being adapted to maintain a credit
account having a credit account balance indicative
of the number of commands the buffer can accept
at any instant;

the credit account balance initially being set to equal
M and being decremented by one each time the
class driver issues a command and being incre-
mented by the value;

the second processor further being adapted to pro-
vide to the class driver, with each response packet,
a credit value representing the number of com-
mands executed to evoke the response;

the class driver incrementing the credit account bal-
ance by said credit value; and

the first processor and class driver being adapted so
as not to issue any commands when the credit ac-
count balance is zero and further being adapted to
issue only commands which are immediately exe-
cuted when the credit account balance is one.

21. The apparatus of claim 16 wherein said ownership

byte is the most significant bit in each descriptor.





