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(57] ABSTRACT 

An interface mechanism (10) between two processors, 
such as a host processor (70) and a processor (31) in an 
intelligent controller (30) for mass storage devices (40), 
and utilizing a set of data structures employing a dedi­
cated communications region (80A) in host memory 
(80). Interprocessor commands and responses are com­
municated as packets over an 1/0 bus (60) of the host 
(70), · to and from the communication region (80A), 
through a pair of ring-type queues (800) and (SOE). The 
entry of each ring location (e.g., 132, 134, 136, 138) 
points to another location in the communications region 
where a command or response is placed. The filling and 
emptying of ring entries (132-138) is controlled through 
the use of an 'ownership' byte or bit (278) associated 
with each entry. The ownership bit (278) is placed in a 
first state when the message source (70 or 31) has filled 
the entry and in a second state when the entry has been 
emptied. Each processor keeps track of the rings' status, 
to prevent the sending of more messages than the rings 
can hold. These rings permit each processor to operate 
at its own speed, without creating race conditions and 
obviate the need for hardware interlock capability on 
the I/0 bus (60). 

21 Claims, 19 Drawing Figures 
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2 
controller, the less detailed the commands which the 
central processing unit must issue to it and the less de­
pendent the controller is on the host CPU for step-by­
step instructions. Typically, controllers communicate 

INTERFACE BETWEEN A PAIR OF PROCESSORS, 
SUCH AS HOST AND 

PERIPHERAL-CONTROLLING PROCESSORS IN 
DATA PROCESSING SYSTEMS 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

This application relates to a data processing system, 
other aspects of which are described in the following 
commonly assigned applications filed on even date 
herewith, the disclosures of which are incorporated by 
reference herein to clarify the environment, intended 
use and explanation of the present invention: 

5 with a host CPU at least partially by means of an inter­
rupt mechanism. That is, when one of a predetermined 
number of significant events occurs, the controller gen­
erates an interrupt request signal which the host sees a 
short time later; in response, the host stops what it is 

10 doing and conducts some dialogue with the controller 
to service the controller's operation. Every interrupt 
request signal generated by the controller gives rise to a 
delay in the operation of the central processor. It is an 
object of the present invention to reduce that delay by 

Ser. No. 308,771, titled Disk Format for Secondary 
Storage System and Ser. No. 308,593, titled Secondary 
Storage Facility Employing Serial Communication Be­
tween Drive and Controller. 

15 reducing the frequency and number of interrupt re­
quests. 

FIELD OF THE INVENTION 20 

When an intelligent controller is employed, a further 
problem is to interlock or synchronize the operation of 
the processor in the controller with the operation of the 
processor in the host, so that in sending commands and 
responses back and forth, the proper sequence of opera­
tion is maintained, race conditions are avoided, etc. 
Normally this is accomplished by using a communica-

This invention relates to the field of data processing 
systems and, in particular to an interface between a host 
processor and a controlling processor for a storage 
facility or other peripheral device or subsystem in such 
systems. 

BACKGROUND OF THE INVENTION 

25 tions mechanism (i.e., bus) which is provided with a 
hardware interlock capability, so that each processor 
can prevent the other from transmitting out of turn or at 
the wrong time. 

In data processing systems utilizing secondary stor­
age facilities, communication between the host proces­
sor, or main frame, and secondary storage facilities has 30 
a considerable impact on system performance. Second­
ary storage facilities comprise elements which are not 
an integral part of a central processing unit and its ran­
dom access memory element (i.e., together termed the 
host), but which are directly connected to and con- 35 
trolled by the central processing unit or other elements 
in the system. These facilities are also known as "mass 
storage" elements or subsystems and include, among 
other possibilities, disk-type or tape-type memory units 
(also called drives). 40 

In modem data processing systems, a secondary stor­
age facility includes a controller and one or more drives 
connected thereto. The controller operates in response 
to signals from the host, usually on an input/output bus 
which connects together various elements in the system 45 
including the central processing unit. A drive contains 
the recording medium (e.g., a rotating magnetic disk), 
the mechanism for moving the medium, and electronic 
circuitry to read data from or store data on the medium 
and also to convert the data transferred between the 50 
medium and the controller to and from the proper for­
mat. 

The controller appears to the rest of the system as 
simply an element on the input/output bus. It receives 
commands over the bus; these commands include infor- 55 
mation about the operation to be performed, the drive 
to be used, the size of the transfer and perhaps the start­
ing address on the drive for the transfer and the starting 
address on some other system element, such as the ran­
dom access memory unit of the host. The controller 60 
converts all this command information into the neces­
sary signals to effect the transfer between the appropri­
ate drive and other system elements. During the transfer 
itself, the controller routes the data to or from the ap­
propriate drive and to or from the input/output bus or 65 

a memory bus. 
Controllers have been constructed with varying lev­

els of intelligence. Basically, the more intelligent the 

Modern controllers for secondary storage facilities 
are usually so-called "intelligent" devices, containing 
one or more processors of their own, allowing them to 
perform sophisticated tasks with some degree of inde­
pendence. Sometimes, a processor and a controller will 
share a resource with another processor, such as the 
host's central processor unit. One resource which may 
be shared is a memory unit. 

It is well known that when two independent proces-
sors share a common resource (such as a memory 
through which the processors and the processes they 
execute may communicate with each other), the opera­
tion of the two processors (i.e., the execution of pro-
cesses or tasks by them) must be "interlocked" or "syn­
chronized," so that in accessing the shared resource, a 
defined sequence of operations is maintained and so­
called "race" conditions are avoided. That is, once a 
first processor starts using the shared resource, no other 
processor may be allowed to access that resource until 
the first processor has finished operating upon it. Opera­
tions which otherwise might have occurred concur­
rently must be constrained to take place seriatim, in 
sequence. Otherwise, information may be lost, a proces-
sor may act upon erroneous information, and system 
operation will be unreliable. To prevent this from hap­
pening, the communications mechanism (i.e., bus) 
which links together the processors and a shared re­
source typically is provided with a hardware "inter-
lock" or synchronization capability, by means of which 
each processor is prevented from operating on the 
shared resource in other than a predefined sequence. 

In the prior art, three interlock mechanisms are 
widely known for synchronizing processors within an 
operating system, to avoid race conditions. One author 
calls these mechanisms (1) the test-and-set instruction 
mechanism, (2) the wait and signal mechanism and (3) 
the P and V operations mechanism. S. Madnick and J. 
Donovan, Operating Systems, 4-5.2 at 251-55 
(McGraw Hill, Inc., 1974). That text is hereby incorpo­
rated by reference for a description and discussion of 
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those mechanisms. Another author refers to three tech­
niques for insuring correct synchronization when multi­
ple processors communicate through a shared memory 
as (!) process synchronization by semaphores, (2) pro­
cess synchronization by monitors and (3) process syn- 5 
chronization by monitors without mutual exclusion. C. 
Weitzman, Distributed Micro/Mini Computer Systems: 
Structure, Implementation and Application, 3.2 at 
103-14 (Prentice Hall, Inc., 1980). That text is hereby 
incorporated by reference for a description and discus- 10 
sion of those techniques. When applied to multiple pro­
cessors which communicate with a shared resource by a 
bus, such mechanisms impose limitations on bus charac­
teristics; they require, for example, that certain com­
pound bus operations be indivisible, such as an opera- 15 

tion which can both test and set a so-called "sema­
phore" or monitor without being interrupted while 
doing so. These become part of the bus description and 
specifications. 

If the testing of a semaphore were done during one 20 

bus cycle and the setting during a different bus cycle, 
two or more processors which want to use a shared 
resource might test its semaphore at nearly the same 
time. If the semaphore is not set, the processors all will 

25 see the shared resource as available. They will then try 
to access it; but only one can succeed in setting the 
semaphore and getting access; each of the other proces­
sors, though, having already tested and found the re­
source available, would go through the motions of set- 30 
ting the semaphore and reading or writing data without 
knowing it had not succeeded in setting the semaphore 
and accessing the resource. The data thus read will be 
erroneous and the data thus written could be lost. 

4 
!er and host which permits the host to verify correct 
operation of the controller at the time of initialization. 

Still another object of the invention is to provide a 
communications mechanism which minimizes the gen­
eration of host interrupts by the controller during peak 
input/output loads. 

Still another object of this invention is to provide an 
interface between host and controller which allows for 
parallel operation of multiple devices attached to an 
individual controller, with full duplexing of operation 
initiation and completion signals. 

SUMMARY OF THE INVENTION 

In accordance with this invention, the host-controller 
interconnection is accomplished through an interface 
which includes a set of data structures employing a 
dedicated communications region in host memory. This 
communications region is operated on by both the host 
and the peripheral controller in accordance with a set of 
rules discussed below. Basically, this interface has two 
layers: (I) a transport mechanism, which is the physical 
machinery for the bi-directional transmission of words 
and control signals between the host and the controller 
and (2) a port, which is both hardware for accomplish­
ing exchanges via the transport mechanism and a pro-
cess implementing a set of rules and procedures govern­
ing those exchanges. This port "resides" partly in the 
host and partly in the controller and has the purposes of 
facilitating the exchange of control messages (i.e., com­
mands and responses) and verifying the correct opera-
tion of the transport mechanism. 

Commands and responses are transmitted between 
the host and a peripheral controller as packets, over an 
input/output bus of the host, via transfers which do not 
require processor interruption. These transfers occur to 
and from the dedicated communication region in the 
host memory. The port polls this region for commands 
and the host polls it for responses. A portion of this 

Not all buses, though, are designed to allow imple- 35 
mentation of such indivisible operations, since some 
buses were not designed with the idea of connecting 
multiple processors via shared resources. Consequently, 
such buses are not or have not been provided with 
hardware interlock mechanisms. 40 communication region comprises a command (i.e., 

transmission) list and another portion comprises a re­
sponse (i.e., receiving) list. An input/output operation 
begins when the host deposits a command in the com-

When a bus does not have such a capability, resort 
frequently has been made to use of processor interrupts 
to control the secondary storage facility, or some com­
bination of semaphores and interrupts (as in the Carne­
gie-Mellon University C.mpp multi-minicomputer sys- 45 
tern described at pages 27-29 and 110-111 of the above­
identified book by Weitzman), but those approaches 
have their drawbacks. If multiple processors on such a 
bus operate at different rates and have different opera­
tions to perform, at least one processor frequently may so 
have to wait for the other. This aggrevates the slow­
down in processing already inherent in the use of inter­
rupt control with a single processor. 

A further characteristic of prior secondary storage 
facilities is that when a host initially connects to a con- 55 
troller, it usually assumes, but cannot verify, that the 
controller is operating correctly. 

Therefore, it is an object of this invention to improve 
the operation of a secondary storage facility including a 
controller and a drive. 60 

A further object of this invention is to provide such a 
facility with an improved method for handling host­
controller communications over a bus lacking a hard­
ware interlock capability, whereby the processor in the 
host and controller can operate at different rates with 65 
minimal interrupts and avoidance of race conditions. 

Another object of this invention is to provide a com­
munications mechanism for operation between control-

mand list. The operation is seen as complete when the 
corresponding response packet is removed by the host 
from the response list. 

More specifically, the communications region of host 
memory consists of two sections: (I) a header section 
and (2) a variable-length section. The header section 
contains interrupt identification words. The variable­
length section contains the response and command lists, 
organized into "rings". A "ring" is a group of memory 
locations which is addressable in rotational (i.e., mod­
ulo) sequence, such that when an incrementing counter 
(modulo-buffer-size) is used for addressing the buffer, 
the address of the last location is the sequence is fol-
lowed next by the address of the first location. Each 
buffer entry, termed a descriptor, includes (1) an ad­
dress where a command may be found for transmission 
or where a response is written, as appropriate, and (2) a 
so-called "ownership" byte (which in its most elemen-
tary form reduces to a sigle ownership bit) which is 
used by the processors to contrail access to the entry. 

Because of properties which will be outlined below, 
the port may be considered to be effectively integral 
with the controller; all necessary connections between 
the host and peripheral can be established by the port­
/controller when it is initialized. 
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The port can itself generate processor interrupts; this 
happens at the option of the host only when the com­
mand ring makes a transition from a full to a not-full 
condition or when the response ring makes the converse 
transition from empty to non-empty. Thus, the rings 5 
buffer the asynchronous occurrence of command and 
response packets, so that under favorable conditions 
long strings of commands, responses and exchanges can 
be passed without having to interrupt the host proces­
sor. 10 

An input/output operation begins when the host 
deposits a command into the command list. The opera­
tion is seen as complete when the corresponding re­
sponse is removed by the host from the response list. 
Only the host writes into the command ring (i.e., list) 15 
and only the controller writes into the response ring. 
The "ownership" bit for each ring entry is set to a first 
state by the processor which writes the ring entry and is 
cleared from that state by the other processor only after 
the command has been sent or the response read. In 20 

addition, after writing an entry, the same processor 
cannot alter it until the other processor has cleared that 
entry's ownership bit. 

By organizing the command and response lists into 
25 

rings and controlling their operation through a rigid 
sequential protocol which includes an ownership byte 
(or bit) for each ring entry and rules for setting and 
clearing the ownership byte, the host and controller 
processors are allowed to operate at their own rates and 30 
the need for a hardware bus interlock in avoided. This 
allows the system to utilize, for example, the UNIBUS 
communication interconnection of Digital Equipment 
Corp., Maynard, Mass., which is an exemplary bus 
lacking a hardware interlock feature. 35 

6 
FIG. 9 is a diagrammatic illustration of the command 

and response message envelopes; 
FIG. 10 is a diagrammatic illustration of a buffer 

description according to the present invention; 
FIG. 11 is a diagrammatic illustration of the status 

and address (SA) register 3B of FIG. 3A; 
FIGS. 12A-12D are flow charts of the port/con­

troller initialization sequence according to this inven­
tion; and 

FIG. 13 is a diagrammatic illustration of the "last fail" 
response packet of this invention. 

DETAILED DESCRIPTION OF AN 
ILLUSTRATIVE EMBODIMENT 

The present invention sees particular utility in a data 
processing system having an architectural configuration 
designed to enhance development of future mass stor­
age systems, at reduced cost. Such a system is shown in 
FIG. 1. In this system, a high level protocol (indicated 
at lA) is employed for communications between a host 
computer 1 and intelligent mass storage controller to. 
Such a high level protocol is intended to free the host 
from having to deal with peripheral device-dependent 
requirements (such as disk geometry and error recovery 
strategies). This is accomplished in part through the use 
of a communications hierachy in which the host com-
municates with only one or two peripheral device 
"class" drivers, such as a driver 4 instead of a different 
1/0 driver for each model of peripheral device. For 
example, there may be one driver for all disk class de­
vices and another for all tape class devices. 

Each class driver, in turn, communicates with a de-
vice controller (e.g., 2) through an interface mechanism 
10. Much of the interface mechanism 10 is bus-specific. 
Therfore, when it is desired to connect a new mass 
storage device to the system, there is no need to change 
the host's input/output processes or operating system, 
which are costly (in time, as well as money) to develop. 
Only the controller need be modified to any substantial 

These and other features, advantages and objects of 
the present invention will become more readily appar­
ent from the following detailed description, which 
should be read in conjunction with the accompanying 
drawings. 

BRIEF DESCRIPTION OF THE DRAWING 

FIG. 1 is a conceptual block diagram of a system 
employing an architecture in which the present inven­
tion sees utility; 

40 degree, which is far less expensive. And much of that 
cost can be averted if the controller and host are made 
self-adaptive to certain of the storage device's charac­
teristics, as explained in the above-identified commonly 

FIG. 2 is a basic block diagram of a data processing 
system in which the present invention may be em­
ployed; 

FIG. 3A is a system block diagram of an illustrative 
embodiment of a data processing system utilizing the 
interface of the present invention; 

FIGS. 38 and 3C are diagrammatic illustrations of a 
ring BOD or BOE of FIG. 3A. 

FIGS. 4A and 48 are elementary flow diagrams illus­
trating the sequence of events when the controller 
wishes to send a response to the host; 

FIG. 5 is an elementary flow diagram showing the 
sequence of events when the host issues a command to 
the controller; 

FIG. 6 is a similar flow diagram showing the control­
ler's action in response to the host's issuance of a com­
mand; 

FIG. 7 is a diagrammatic illustration of the communi­
cations area of host memory, including the command 
and response rings; 

FIG. B is a diagrammatic illustration of the formatted 
command and response descriptors which comprise the 
ring entries; 

45 
assigned applications. 

Device classes are determined by their storage and 
transfer characteristics. For example a so-called "disk 
class" is characterized by a fixed block length, individ­
ual block update capability, and random access. Simi­
larly a so-called "tape class" is characterized by a vari-

50 able block length, lack of block update capability, and 
sequential access. Thus, the terms "disk" and "tape" as 
used herein refer to devices with such characteristics, 
rather than to the physical form of the storage medium. 

Within the framework of this discussion, a system 
55 comprises a plurality of subsystems interconnected by a 

communications mechanism (i.e. a bus and associated 
hardware). Each subsystem contains a port driver, (4 or 
5) which interfaces the subsystem to the communica­
tions mechanism. The communications mechanism con-

60 tains a port (B or 9) for each subsystem; the port is sim­
ply that portion of the communications mechanism to 
which a port driver interfaces directly. 

FIG. 1 illustrates an exemplary system comprising a 
host 1 and an intelligent mass storage controller 2. Host 

65 1 includes a peripheral class driver 3 and a port driver 4. 
Controller 2, in turn, includes a counterpart port driver 
5 and an associated high-level protocol server 2. A 
communications mechanism 7 connects the host to the 
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8 
parallel information exchanges synchronous with a 
common system clock. A bus adapter 110 translates and 

controller, and vice-versa. The communications mecha­
nism includes a port (i.e., interface mechanism) (8,9) for 
each port driver. 

The port drivers 4 and 5 provide a standard set of 
communications services to the processes within their 5 
subsystems; port drivers cooperate with each other and 
with the communications mechanism to provide these 
services. In addition, the port drivers shield the physical 
characteristics of the communications mechanism from 
processes that use the communications services. 

· transfers signals between the system bus 90 and the 
host's input/output (1/0) bus 60. For example, the 1/0 
bus 60 may be the UNIBUS 1/0 connection, the system 
bus may be the syncronous backlane interconnection 
(SDI) of the VAX-11/780 computer, and the bus 
adapter 110 may be the Model DW780 UNIBUS 
Adapter, all Digital Equipment Corporation products. 

10 Controller 30 includes several elements which are 
Class driver 3 is a process which executes within host 

1. Typically, a host class 1/0 driver 3 communicates 
with a counterpart in the controller 2, called a high­
level protocol server, C'i. 

The high-level protocol server C'i processes host com- 15 
mands, passes commands to device-specific modules 
within the controller, and sends responses to host com­
mands back to the issuing class driver. 

In actual implementation, it is also possible for the 
functions of the controller-side port driver 5 and port 9 20 
to be performed physically at the host side of the com­
munications mechanism 7. This is shown in the example 
described below. Nevertheless, the diagram of FIG. 1 
still explains the architectural concepts involved. 

Note also that for purposes of the further explanation 25 
which follows, it is generally unnecessary to distinguish 
between the port and its port driver. Therefore, unless 
the context indicates otherwise, when the word "port" 
is used below, it presumes and refers to the inclusion of 
a port driver, also. JO 

Referring now to FIG. 2, there is shown a system 
level block diagram of a data processing system utiliz­
ing the present invention. A host computer 1 (including 
an interface mechanism 10) employs a secondary stor­
age subsystem 20 comprising a controller 30, a disk 35 
drive 40 and a controller-drive interconnection cable 
50. The host 1 communicates with the secondary stor­
age subsystem 20 over an input/output bus 60. 

FIG. 3A expands the system definition to further 
explain the structure of the host 1, controller 30 and 40 
their interface. As illustrated there, the host 1 comprises 
four primary subunits: a central processor unit (CPU) 
70, a main memory SO, a system bus 90 and a bus adapter 
110. 

A portion SOA of memory SO is dedicated to service 45 
as a communications region for accessing the remainder 
of memory 80. As shown in FIG. 3A, communications 
area 80A comprises four sub-regions, or areas. Areas 
808 and 80C together form the above-indicated header 
section of the communications area. Area SOB is used 50 
for implementing the bus adapter purge function and 
area 80C holds the ring transition interrupt indicators 
used by the port. The variable-length section of the 
communications region comprises the response list area 
SOD and the command list area SOE. The lists in areas 55 
SOD and SOE are organized into rings. Each entry, in 
each ring, in tum, contains a descriptor (see FIG. 10) 
pointing to a memory area of sufficient size to accom­
modate a command or response message packet of pre-
determined maximum length, in bytes. 60 

Host 1 may, for example, be a Model VAX-111780 or 
PDP 11 computer system, marketed by Digital Equip­
ment Corporation of Maynard, Mass. 

System bus 90 is a bi-directional information path and 
communications protocol for data exchange between 65 
the CPU 70, memory SO and other host elements which 
are not shown (so as not to detract from the clarity of 
this explanation). The system bus provides checked 

used specifically for communicating with the host 1. 
There are pointers 32 and 34, a command buffer 36 and 
a pair of registers, 37 and 38. Pointers 32 and 34 keep 
track of the current host command ring entry and the 
host response ring entry, respectively. Command buff­
ers 36 provide temporary storage for commands await­
ing processing by the controller and a pair of registers 
37 and 38. Register 37, termed the "IP" register, is used 
for initialization and polling. Register 38, termed the 
"SA" register, is used for storing status and address 
information. 

A processor 31 is the "heart" of the controller 30; it 
executes commands from buffer 36 and does all the 
housekeeping to keep communications flowing between 
the host 1 and the drive 40. 

The physical realization of the transport mechanism 
includes the UNIBUS interconnection (or a suitable 
counterpart) 60, system bus 90 and any association host 
and/or controller-based logic for adapting to same, 
including memory-bus interface 82, bus adapter 110, 
and bus-controller interface 120. 

The operation of the rings may be better understood 
by referring to FIGS. JD and 3C, where an exemplary 
four entry ring 130 is depicted. This ring may be either 
a command ring or a response ring, since only their 
application differs. Assume the ring 130 has been oper­
ating for some time and we have started to observe it at 
an arbitrarily selected moment, indicated in FIG. 38. 
There are four ring entry positions 132-138, with con­
secutive addresses RB, RB+ I, RB+4, respectively. 
Each ring entry has associated with it an ownership bit 
(133, 135, 137, 139) which is used to indicate its status. 
A write pointer (WP), 142, points to the most recent 
write entry; correspondingly, a read pointer (RP), 144, 
points to the most recent read entry. In, FIG. 3B, it will 
be seen that entry 138 has been read, as indicated by the 
position of RP 144 and the state of ownership bit 139. 
By convention, the ownership bit is set to 1 when a 
location has been filled (i.e., written) and to 0 when it 
has been emptied (i.e., read). The next entry to be read 
is 132. Its ownership bit 133 is set to 1, indicating that it 
already has been written. Once entry 132 is read, its 
ownership bit is cleared, to 0, as indicated in FIG. 3C. 
This completely empties the ring 130. The next entry 
134 cannot be read until it is written and the state of 
ownership bit 135 is changed. Nor can entry 132 be 
re-read accidentally, since its ownership bit has been 
cleared, indicating that it already has been read. 

Having thus provided a block diagram explanation of 
the invention, further understanding of this interface 
will require a brief digression to explain packet commu­
nications over the system. 

The port is a communications mechanism in which 
communications take place between pairs of processes 
resident in separate subsystems. (As used herein, the 
term "subsystems" include the host computers and de­
vice controllers; the corresponding processes are host-
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resident class drivers and controller-resident protocol 
servers.) 

10 
datagram is either processed immediately or discarded, 
which possibility explicitly is permitted by the rules of 
that service. By contrast, the Sequential Message ser-
vice does use flow control. Each potential receiving 
process reserves, or pre-allocates, some number of buff­
ers into which messages may be received over its con-
nection. This number is therefore the maximum number 
of messages which the sender may have outstanding and 
unprocessed at the receiver, and it is communicated to 

Communications between the pair of processes take 
place over a "connection" which is a soft communica­
tions path through the port; a single port typically will 5 
implement several connections concurrently. Once a 
connection has been established, the following three 
services are available across that connection: (1) se­
quential message; (2) datagram; and (3) block data trans­
fer. 10 the sender by the receiver in the form of a "credit" for 

the connection. When a sender has used up its available 
credit, it must wait for the receiver to empty and make 
available one of its buffers. The message credits machin­
ery for the port of the present invention is described in 

When a connection is terminated, all outstanding 
communications on that connection are discarded; that 
is, the receiver "throws away" all unacknowledge mes­
sages and the sender "forgets" that such messages have 
been sent. 15 detail below. 

The implementation of this communications scheme 
on the UNIBUS interconnection 60 has the following 
characteristics: (1) communications are always point-to­
point between exactly two subsystems, one of which is 
always the host; (2) the port need not be aware of map- 20 
ping or memory management, since buffers are identi­
fied with a UNIBUS address and are contiguous within 
the virtual buss address space; and (3) the host need 
never directly initiate a block data transfer. 

The port effectively is integral with the controller, 25 
even though not full localized there. This result happens 
by virtue of the point-to-point property and the fact that 
the device controller knows the class of device (e.g., 
disk drive) which it controls; all necessary connections, 
therefore, can be established by the port/controller 30 
when it is initialized. 

The Sequential Message service guarantees that all 
messages sent over a given connection are transmitted 
sequentially in the order originated, duplicate-free, and 
that they are delivered. That is, messages are received 35 
by the receiving process in the exact order in which the 
sending process queued them for transmission. If these 
guarantees cease to be met, or if a message cannot be 
delivered for any reason, the port enters the so-called 
"fatal error" state (described below) and all port con- 40 
nections are terminated. 

The Datagram service does not quarantee reception, 
sequential reception of duplicate-free reception of data­
grams, though the probability of failure may be required 
to be very low. The port itself can never be the cause of 45 
such failures; thus, if the using processes do make such 
guarantees for datagrams, then the datagram service 
over the port becomes equivalent to the Sequential 
Message service. 

The Block Data Transfer service is used to move data 50 
between named buffers in host memory and a peripheral 
device controller. In order to allow the port to be un­
aware of mapping or memory management, the 
"Name" of a buffer is merely the bus address of the first 
byte of the buffer. Since the host never directly initiates 55 
a block data transfer, there is no need for the host to be 
aware of controller buffering. 

Since the communicating processes are asynchro­
nous, flow control is needed if a sending process is to be 
prevented from producing congestion or deadlock in a 60 
receiving process (i.e., by sending messages more 
quickly than the receiver can capture them). Flow con­
trol simply guarantees that the receiving process has 
buffers in which to place incoming messages; if all such 
buffers are full, the sending process is forced to defer 65 
transmission until the condition changes. Datagram 
service does not use flow control. Consequently, if the 
receiving process does not have an available buffer, the 

The host-resident driver and the controller provides 
transport mechanism control facilities for dealing with: 
(I) transmission of commands and responses; (2) sequen­
tial delivery of commands; (3) asynchronous commica­
tion; (4) unsolicited responses; (5) full duplex communi­
cation; and (6) port failure recovery. That is, com-
mands, their responses and unsolicited "responses" (i.e., 
controller-to-host messages) which are not responsive 
to a command may occur at any time; full duplex com­
munication is necessary to handle the bi-directional 
flow without introducing the delays and further buffer-
ing needs which would be associated with simplex com­
munications. It is axiomatic that the host issues com­
mands in some sequence. They must be fetched by the 
controller in the order in which they were queued to 
the transport mechanism, even if not executed in that 
sequence. Responses, however, do not necessarily 
occur in the same order as the initiating commands; and 
unsolicited messages can occur at any time. Therefore, 
asynchronous communications are used in order to 
allow a response or controller-to-host message to be 
sent whenever it is ready. Finally, as to port failure 
recovery, the host's port driver places a timer on the 
port, and reinitializes the port in the event the port times 
out. 

This machinery must allow repeated access to the 
same host memory location, whether for reads, writes, 
or any mixture of the two. 

The SA and IP registers (37 and 38) are in the I/O 
page of the host address space, but in controller hard­
ware. They are used for controlling a number of facets 
of port operation. These registers are always read as 
words. The register pair begins on a longword bound­
ary. Both have predefined addresses. The IP register 
has two functions: first, when written with any value, it 
causes a "hard" initialization of the port and the device 
controller; second, when read while the port is operat­
ing, it causes the controller to initiate polling of the 
command ring, as discussed below. The SA register 38 
has four functions: first, when read by the host during 
initialization, it communicates data and error informa-
tion relating to the initialization process; second, when 
written by the host during initialization, it communi­
cates certain host-specific parameters to the port; third, 
when read by the host during normal operation, it com­
municates status information including port- and con-
troller-detected fatal errors; and fourth, when zeroed by 
the host during initialization and normal operation, it 
signals the port that the host has successfully completed 
a bus adapter purge in response to a port-initiated purge 
request. 

The port driver in the host's operating system exam­
ines the SA register regularly to verify normal port-
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/controller operation. A self-detected port/controller 
fatal error is reported in the SA register as discussed 
below. 

Transmission of Commands and Responses-Overview 5 
When the controller desires to send a response to the 

host, a several step operational sequence takes place. 
This sequence is illustrated in FIGS. 4A and 4B. Ini­
tially, the controller looks at the current entry in the 
response ring indicated by the response ring pointer 34 lo 
and determines whether that entry is available to it (by 
using the "ownership" bit). (Step 202.) If not, the con­
troller continues to monitor the status of the current 
entry until it becomes available. Once the controller has 
access to the current ring entry, it writes the response 15 
into a response buffer in host memory, pointed to by 
that ring entry, and indicates that the host now "owns" 
that ring entry by clearing and "Ownership" bit; it also 
sets a "FLAG" bit, the function of which is discussed 
below. (Step 204.) 20 

Next, the port determines whether the ring has gone 
from an empty to a non-empty transition (step 206); if 
so, a potentially interruptable condition has occurred. 
Before an interrupt request is generated, however, the 
port checks to ensure that the "FLAG" bit is a 1 (step 25 
208); an interrupt request is signalled only on an affirma­
tive indication (Step 210). 

Upon receipt of the interrupt request, the host, when 
it is able to service the interrupt, looks at the current 
entry in the response ring and determines whether it is 30 
"owned" by the host or controller (i.e., whether it has 
yet been read by that host). (Step 212.) If it is owned by 
the controller, the interrupt request is dismissed as spu­
rious. Otherwise, the interrupt request is treated as 
valid, so the host processes the response (Step 214) and 35 
then updates its ring pointer (Step 216). 

Similar actions take place when the host wants to 
send a command, as indicated in FIG. 5. To start the 
sequence, the host looks at the current command ring 
entry and determines whether that ring entry is owned 40 
by the host or controller. (Step 218.) If it is owned by 
the controller, the host starts a timer (Step 220.) {pro­
vided that is the first time it is looking at that ring en­
try), if the timer is not stopped {by the command ring 
entry becoming available to the host) and is allowed to 45 
time out, a failure is indicated; the port is the reinitial­
ized. (Step 222.) If the host owns the ring entry, how­
ever, it puts the packet address of the command in the 
current ring entry. (Step 224.) If a command ring trans-
fer interrupt is desired (step 226), the FLAG bit is 50 
set= 1 to so indicate (step 228). The host then sets the 
"ownership" bit= 1 the ring entry to indicate that there 
is a command in that ring entry to be acted upon. (Step 
230.) The port is then told to "poll" the ring (i.e., the 
host reads the IP register, which action is interpreted by 55 
the port as a notification that the ring contains one or 
more commands awaiting transmission; in response, the 
port steps through the ring entries one by one until all 
entries awaiting transmission have been sent. (Step 232.) 

The host next determines whether it has additional 60 
commands to send. (Step 233.) If so, the process is re­
peated; otherwise, it is terminated. 

In responding to the issuance of a command (see FIG. 
6), the port first detects the instruction to poll (i.e., the 
read operation to the IP register). (Step 234.) Upon 65 
detecting that signal, the port must determine whether 
there is a buffer available to receive a command. (Step 
236.) It waits until the buffer is available and then reads 
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the current ring entry to determine whether that ring 
entry is owned by the port or host. (Step 238.) If owned 
by the port, the command packet is read into a buffer. 
(Step 240.) The FLAG bit is then set and the "owner­
ship" bit in the ring entry is changed to indicate host 
ownership. (Step 242.) If not owned by the port, polling 
terminates. 

A test is then performed for interrupt generation. 
First the port determines whether the command ring 
has undergone a full to not-full transition. (Step 244.) If 
so, the port next determines whether the host had the 
FLAG bit set. (Step 246.) If the FLAG bit was set, an 
interrupt request is generated. (Step 248.) The ring 
pointer is then incremented. (Step 250.) 

Response packets continue to be removed after the 
one causing an interrupt and, likewise, command pack­
ets continue to be removed by the port after a poll. 

The Communications Area 

The communications area is aligned on a 16-bit word 
boundary whose layout is shown in FIG. 7. Addresses 
for the words of the rings are identified relative to a 
"ringbase" address 252. The words in regions SOB, SOC 
whose addresses are ringbase-3, ringbase-2 and ring­
base-1 (hereinafter designated by the shorthand [ring­
base-3), etc., where the brackets should be read as the 
location "whose address is") are used as indicators 
which are set to zero by the host and which are set 
non-zero by the port when the port interrupts the host, 
to indicate the reason for the interrupt. Word [ringbase-
3) indicates whether the port is requesting a bus adapter 
purge; the non-zero value is the adapter channel number 
contained in the high-order byte 254 and derived from 
the triggering command. (The host responds by per­
forming the purge. Purge completion is signalled by 
writing zeros to the SA register). 

Word 256 [ringbase-2] signals that the command 
queue has transitioned from full to not-full. Its non-zero 
value is predetermined, such as one. Similarly, word 
258 [ ringbase-19 indicates that the response queue has 
transitioned from empty to not-empty. Its non-zero 
value also is predetermined (e.g., one). 

Each of the command and response lists is organized 
into a ring whose entries are 32-bit descriptors. There­
fore, for each list, after the last location in the list has 
been addressed, the next location in sequence to be 
addressed is the first location in the list. That is, each list 
may be addressed by a modulo-N counter, where N is 
the number of entries in the ring. The length of each 
ring is determined by the relative speeds with which the 
host and the port/controller generate and process mes­
sages; it is unrelated to the controller command limit. 
At initialization time, the host sets the ring lenghts. 

Each ring entry, or formatted descriptor, has the 
layout indicated in FIG. 8. In the low-order 16-bit (260), 
the least significant bit, 262, is zero; that is, the envelope 
address [text+O} is word-aligned. The remaining low­
order bits are unspecified and vary with the data. In the 
high-order portion 264 of the descriptor, the letter "U" 
in bits 266 and 268 represent a bit in the high-order 
portion of an 18-bit UNIBUS (or other bus) address. 
Bits 270-276, labelled "Q", are available for extending 
the high-order bus address; they are zero for UNIBUS 
systems. The most significant bit, 278, contains the 
"ownership" bit ("O") referred to above; it indicates 
whether the descriptor is owned by the host (0= I), and 
acts as an interlock protecting the descriptor against 
premature access by either the host or the port. The 
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next lower bit, 280, is a "FLAG" bit (labelled "F") 
whose meaning varies depending on the state of the 
descriptor. When the port returns a descriptor to the 
host, it sets F= 1, indicating that the descriptor is full 
and points to response. On the other hand, when the 5 
controller acquires a descriptor from the host, F = 1 
indicates that the host wants a ring transition interrupt 
due to this slot. It assumes that transition interrupts 
were enabled during initialization and that this particu-
lar slot triggers the ring transition. F=O means that the 10 
host does not want a transition host interrupt, even if 
interrupts were enabled during initialization. The port 
always sets F= 1 when returning a descriptor to the 
host; therefore, a host desiring to override ring transi­
tion interrupts must always clear the FLAG bit when 15 
passing ownership of a descriptor to the port. 

Message Envelopes 

As stated above, messages are sent as packets, with an 
envelope address pointing to word [text+ O] of a 16-bit, 20 
word-aligned message envelope formatted as shown in 
FIG. 9. 

The MSG LENGTH field 282 indicates the length of 
the message text, in bytes. For commands, the length 
equals the size of the command, starting with [text +O]. 25 
For responses, the host sets the length equal to the size 
of the response buffer, in bytes, starting with [text+O]. 
By design, the minimum acceptable size is 60 bytes of 
message text (i.e., 64 bytes overall). 

The message length field 282 is read by the port be- 30 
fore the actual transmission of a response. The port may 
wish to send a response longer than the host can accept, 
as indicated by the message length field. In that event, it 
will have to break up the message into a plurality of 
packets of acceptable size. Therefore, having read the 35 
message length field, the controller then sends a re­
sponse whose length is either the host-specified message 
length or the length of the controller's response, if 
smaller. The resulting value is set into the message 
length field and sent to the host with the message 40 
packet. Therefore, the host must re-initialize the value 
of that field for each proposed response. 
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has a value of one, then the class driver may issue only 
an immediate-type command. If the account balance is 
zero, the class driver may not issue any commands at 
all. 

The class driver remembers the number M in its 
"credit account". Each time the class driver queues a 
command, it decrements the credit account balance by 
one. Conversely, each time the class driver receives a 
response, it increments the credit account balance by 
the value contained in the credits field of that response. 
For unsolicited responses, this value will be zero, since 
no command was executed to evoke the response; for 
solicited responses, it normally will be one, since one 
command generally gives one to one response. 

For a controller having M greater than 15, responses 
beyond the first will have credits greater than one, 
allowing the controller to "walk" the class driver's 
credit balance up to the correct value. For a well­
behaved class driver, enlarging the command ring be­
yond the value M + l provides no performance benefits; 
in this situation command ring transition interrupts will 
not occur since the class driver will never fill the com­
mand ring. 

The Ownership Bit 

The ownership bit 278 in each ring entry is like the 
flag on an old-fashioned mailbox. The postman raised 
the flag to indicate that a letter had been put in the box. 
When the box was emptied, the owner would lower the 
flag. Similarly, the ownership bit indicates that a mes­
sage has been deposited in a ring entry, and whether or 
not the ring entry (i.e., mailbox) has been emptied. Once 
a message is written to a ring entry, that message must 
be emptied before a second message can be written over 
the first. 

For a command descriptor, the ownership bit "O" is 
changed from zero to one when the host has filled the 
descriptor and is releasing it to the port. Conversely, 
once the port has emptied the command descriptor and 
is returning the empty slot to the host, the ownership bit 
is changed from one to zero. That is, to send a command 
the host sets the ownership bit to one; the port clears it 
when the command has been received, and returns the 
empty slot to the host. 

To guarantee that the port/controller sees each com­
mand in a timely fashion, whenever the host inserts a 
command in the command ring, it must read the IP 
register. This forces the port to poll if it was not already 
polling. 

For a response descriptor, when the ownership bit 0 
undergoes a transition from one to zero, that means that 
the port has filled the descriptor and is releasing it to the 
host. The reverse transition means that the host has 
emptied the response descriptor and is returning the 

The message text is contained in bytes 284a-284m, 
labelled MBj. The "connection id" field 286 identifies 
the connection serving as source of, or destination for, 45 
the message in question. The "credits" field 288 gives 
the credit value associated with the message, which is 
discussed more fully below. The "msgtyp" field 290 
indicates the message type. For example, a zero may be 
used to indicate a sequential message, wherein the cred- 50 
its and message length fields are valid. A one may indi­
cate a datagram, wherein the credits field must be zero, 
but message length is valid. Similarly, a two may indi­
cate a credit notification, with the credits field valid and 
the message length field zero. 55 empty slot to the port. Thus, to send a response the port 

clears the ownership bit, while and the host sets it when 
the response has been received, and returns the empty 
slot to the port. 

Message Credits 

A credit-based message limit mechanism is employed 
for command and response flow control. The credits 
field 288 of the message envelope supports credit- 60 
accounting algorithm. The controller 30 has a buffer 36 
for holding up to M commands awaiting execution. In 
its first response, the controller will return in the credits 
field the number, M, of commands its buffer can hold. 
This number is one more than the controller's accep- 65 
tance limit for non-immediate commands; the "extra" 
slot is provided to allow the host always to be able to 
issue an immediate-class command. If the credit account 

Just as the port must poll for commands, the host 
must poll for responses, particularly because of the 
possibility of unsolicited responses. 

Interrupts 

The transmission of a message will result in a host 
interrupt if and only if interrupts were armed (i.e., en­
abled) suitably during initialization and one of the fol­
lowing three conditions has been met: (1) the message 
was a command with flag 280 equal to one (i.e., F= 1), 
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and the fetching of the command by the port caused the 
command ring to undergo a transition from full to not­
full; (2) if the message was a response with F = 1 and the 
depositing of the message by the port caused the re­
sponse ring to make a transition from empty to not- 5 
empty; or (3) the port is interfaced to the host via a bus 
adapter and a command required the port/controller to 
re-access a given location during data transfer. (The 
latter interrupt means that the port/controller is re­
questing the host to purge the indicated channel of the IO 
bus adapter.) 

Port Polling 

The reading of the IP register by the host causes the 
port/controller to poll for commands. The port/con- 15 
troll er begins reading commands out of host memory; if 
the controller has an internal command buffering capa­
bility, it will write commands into the buffer if they 
can't be executed immediately. The port continues to 
poll for full command slots until the command ring is 20 
found to be empty, at which time it will cease polling. 
The port will resume polling either when the controller 
delivers a response to the host, or when the host reads 
the IP register. 
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and so forth. In systems with buffered bus adapters, 
which require a rigid sequencing this necessitates purg­
ing of the relevant adapter channel prior to changing 
from read to write, or vice versa, and prior to breaking 
an addressing sequence. Active cooperation of the host 
CPU is required for this action. The port signals its 
desire for an adapter channel purge, as indicated above 
under the heading "The Communications Area". The 
host performs the purge and writes zeroes to the SA 
register 38 to signal completion. 

Transmission Errors 

Four classes of transmission errors have been consid­
ered in the design of this interface: (1) failure to become 
bus master; (2) failure to become interrupt master; (3) 
bus data timeout error; and (4) bus parity error. 

When the port (controller) attempts to access host 
memory, it must first become the "master" of bus 60. To 
deal cleanly with the possibility of this exercise failing, 
the port sets up a corresponding "last fail" response 
packet (see below) before actually requesting bus ac-
cess. Bus access is then requested and if the port timer 
expires, the host will reinitialize the port/controller. 
The port will then report the error via the "last fail" 
response packet (assuming such packets were eneable 
during the reinitialization). 

Correspondingly, response polling for empty slots 25 
continues until all commands buffered within the con­
troller have been completed and the associated re­
sponses have been sent to the host. 

A failure to become interrupt master occurs when­
ever the port attempts to interrupt the host and an ac­
knowledgement is not forthcoming. It is treated and 

30 reported the same as a failure to become bus master, 
although the contents of its last fail response will, of 
course, be different. 

Host Polling 

Since unsolicited responses are possible, the host 
cannot cease polling for responses when all outstanding 
commands have been acknowledged, though. If it did, 
an accumulation of unsolicited messages would first 
saturate the response ring and then any controller inter­
nal message buffers, blocking the controller and pre­
venting it from processing additional commands. Thus, 
the host must at least occassionally scan the response 
ring, even when not expecting a response. One way to 
accomplish this is by using the ring transition interrupt 
facility described above; the host also should remove in 
sequence from the response ring as many responses as it 
finds there. 

Bus data timeout errors involve failure to complete 
the transfer of control or data messages. If the control-

35 ler retires a transfer after it has failed once, and a second 
try also fails, then action is taken responsive to the de­
tection of a persistent error. If the unsuccessful opera­
tion was a control transfer, the port writes a failure code 
into the SA register and then terminates the connection 

Data Transmission 

40 with the host. Naturally, the controller will have to be 
reinitialized. On the other hand, if the unsuccessful 
operation was a data transfer, the port/controller stays 
online to the host and the failure is reported to the host 
in the response packet for the involved operation. Bus 

45 parity errors are handled the same as bus data timeout 
Data transmission details are controller-dependent. 

There are certain generic characteristics, however. 
Data transfer commands are assumed to contain 

buffer descriptors and byte or word counts. The buffers 
serve as sources or sinks for the actual data transfers, 50 

which are effected by the port as non-processor (NPR 
or OMA) transfers under command-derived count con­
trol to or from the specified buffers. A buffer descriptor 
begins at the first word allocated for this purpose in the 
formats of higher-level commands. When used with the 55 
UNIBUS interconnection, the port employs a two­
word buffer descriptor format as illustrated in FIG. 10. 
As shown wherein, the bits in the low-order buffer 
address 292 are message-dependent. The bits labelled 
"U" (294, 296) in the high-order portion 298 of the 60 
buffer descriptor are the high-order bits of an 18-bit 
UNIBUS address. The bits 300-306, labelled "Q", are 
usable as an extension to the high-order UNIBUS ad­
dress, and are zero for UNIBUS systems. 

Repeated access to host memory locations must be 65 
allowed for both read and write operations, in random 
sequence, if the interfaces are to support higher-level 
protocol functions such as transfer restarts, compares, 

errors. 

Fatal Errors 

Various fatal errors may be self-detected by the port 
or controller. Some of these may also arise while the 
controller is operating its attached peripheral device(s). 
In the event of a fatal error, the port sets in the SA 
register a one in its most significant bit, to indicate the 
existence of a fatal error, and a fatal error code in bits 
10-0. 

Interrupt Generation Rate 

Under steady state conditions, at most one ring inter­
rupt will be generated for each operation (i.e., com­
mand or response transmission). Under conditions of 
low 1/0 rate, this will be due to response ring transi­
tions from empty to not-empty; with high 1/0 rate, it 
will be due to command ring transitions from full to 
not-full. If the operation rate fluctuates considerably, 
the ratio of interrupts to operations can be caused to 
decline from one-to-one. For example, an initially low 
but rising operation rate will eventually cause both the 
command and response rings to be partially occupied, at 
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etc. If the host detects more than one of the Sl-S4 bits 
316-310 set at any time, it restarts the initialization of the 
port/controller; the second time this happens, the port-
/controller is presumed to be malfunctioning. The SA 
register's most significant bit 318, labelled ER, normally 
is zero; if it takes on the value of 1, then either a port-
/controllerbased diagnostic test has failed, or there has 
been a fatal error. In the event of such a failure or error, 
bits 10-0 comprise a field 320 into which an error code 

which point interrupts will cease and will not resume 
until the command ring fills and begins to make full to 
not-full transitions. This point can be staved off by in­
crea~ing the permissible depth of the command ring. 
Generally, the permissible depth of the response ring 5 
will have to be increased also, since saturation of the 
response ring will eventually cause the controller to be 
unwilling to fetch additional commands. At that point, 
the command queue will saturate and each fetch will 
generate an interrupt. 10 is written; the error code may be either port-generic or 

controller-dependent. Consequently, the host can deter­
mine not only the nature of an error but also the step of 
the initialization during which it occurred. If no step bit 

Moreover, a full condition in either ring implies that 
the source of that ring's entries is temporarily choked 
off. Consequently, ring sizes should be large enough to 
keep the incidence of full rings small. For the command 
ring, the optimal size depends on the latency in the 15 
polling of the ring by the controller. For the response 
ring, the optimal size is a function of the latency in the 
ring-emptying software. 

is set but ER= I, a fatal error was detected during hard 
initialization, prior to the start of initialization step 1. 

The occurrence of an initialization error causes the 
port driver to retry the initialization sequence at least 
once. 

Initialization 

A special initialization procedure serves to (1) iden­
tify the parameters of the host-resident communications 
region to the port; (2) provide a confidence check on 
port/controller integrity; and (3) bring the port/con­
troller online to the host. 

The initialization process starts with a "hard" initial­
ization during which the port/controller runs some 
preliminary diagnostics. Upon successful completion of 
those diagnostics, there is a four step procedure which 
takes place. First, the host tells the controller the 
lengths of the rings, whether initialization interrupts are 
to be armed (i.e., enabled) and the address(es) of the 
interrupt vector(s). The port/controller then runs a 
complete internal integrity check and signals either 
success or failure. Second, the controller echos the ring 
lengths, and the host sends the low-order portion of the 
ringbase address and indicates whether the host is one 
which requires purge interrupts. Third, the controller 
sends an echo of the interrupt vector address(es) and the 
initialization interrupt arming signal. The host then 
replies with the high-order portion of the ringbase ad­
dress, along with a signal which conditionally triggers 
an immediate test of the polling and adapter purge func­
tions of the port. Fourth, the port tests the ability of the 
input/output bus to perform nonprocessor (NPR) trans­
fers. If successful, the port zeroes the entire communica­
tions area and signals the host that initialization is com­
plete. The port then awaits a signal from the host that 
the controller should begin normal operation. 

At each step, the port informs the host of either suc­
cess or failure. Success leads to the next initialization 
step and failure causes a restart of the initialization se­
quence. The echoing of information to the host is used 
to check all bit positions in the transport mechanism and 
the IP and SA registers. 

The SA register is heavily used during initialization. 
The detailed format and meaning of its contents depend 
on the initialization step involved and whether informa­
tion is being read from or written into the register. 
When being read, certain aspects of the SA format are 
constant and apply to all steps. This constant SA read 
format is indicated in FIG. 11. As seen there, the mean­
ing of bits lS-11 of SA register 38 is constant but the 
interpretation of bits 10-0 varies. The S4-Sl bits, 
316-310, are set separately by the port to indicate the 
initialization step number which the port is ready to 
perform or is performing. The Sl bit 310 is set for ini­
tialization step 1; the S2 bit 312, for initialization step 2, 

Reference will now be made to FIGS. 12A-12D, 
20 wherein the details of the initialization process are illus­

trated. 
The host begins the initialization sequence either by 

performing a hard initialization of the controller (this is 
done either by issuing a bus initialization (INIT) com-

25 mand (Step 322) or by writing zeroes to the IP register. 
The port guarantees that the host reads zeroes in the SA 
register on the next bus cycle. The controller, upon 
sensing the initialization order, runs a predetermined set 
of diagnostic routines intended to ensure the minimum 

30 integrity necessary to rely on the rest of the sequence. 
(Step 324.) Initialization then sequences through the 
four above-listed steps. 

At the beginning of each initialization step n, the port 
clears bit Sn-I before setting bit Sn; thus, the host will 

35 never see bits Sn-I and Sn set simultaneously. From the 
viewpoint of the host, step n begins when reading the 
SA register results in the transition of bit Sn from 0 to 1. 
Each step ends when the next step begins, and an inter­
rupt may accompany the step change if interrupts are 

40 enabled. 
Each of initialization steps 1-3 is timed and if any of 

those steps fails to complete within the alloted time, that 
situation is treated as a host-detected fatal error. By 
contrast, there is no explicit signal for the completion of 

45 initialization step 4; rather, the host observes either that 
controller operation has begun or that a higher-level 
protocol-dependent timer has expired. 

The controller starts initialization step 1 by writing to 
the SA register 38 the pattern indicated in FIG. 12A. 

50 (Step 326.) Bits 338-332 are controller-dependent. The 
"NV" bit, 332, indicates whether the port supports a 
host-settable interrupt vector address; a bit value of I 
provides a negative answer. The "QB" bit, 330, indi­
cates whether the port supports a 22-bit host bus ad-

55 dress; a I indicates an affirmative answer. The "DI", bit 
328, indicates whether the port implements enhanced 
diagnostics, such as wrap-around, purge and poll test; 
an affirmative answer is indicated by a bit value of 1. 

The host senses the setting of bit 310, the Sl bit, and 
60 reads the SA register. (Step 334.) It then responds by 

writing into the SA register the pattern shown in step 
336. The most significant bit 338 in the SA register 38 is 
set to a I, to guarantee that the port does not interpret 
the pattern as a host "adapter purge ccomplete" re-

65 sponse (after a spontaneous reinitialization). The WR 
bit, 340, indicates whether the port should enter a diag­
nostic wrap mode wherein it will echo messages sent to 
it; a bit value of 1 will cause the port to enter that mode. 
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The port will ignore the WR bit if DI= 0 at the begin­
ning of initialization step 1. Field 342, commprising bits 
13-11 and labelled "C RNG LNG," indicates the num­
ber of entries or slots in the command ring, expressed as 
a power of 2. Similarily, field 344, comprising bits 10-8 5 
and labelled "R RNG LNG", represents the number of 
response ring slots, also expressed as a power of 2. Bit 
346, the number 7 bit in the register, labelled "IE", 
indicates whether the host is arming interrupts at the 
completion of each of steps 1-3. An affirmative answer 10 
is indicated by a I. Finally, field 348, comprising regis-
ter bits 6-0, labelled "INT Vector", contains the address 

20 
pleted" host action. (Step 388.) After the port verifies 
that the host has written to the SA register (Step 390.), 
the host reads, and then disregards, the IP register. 
(Step 392.) This simulates a "start polling" command 
from the host to the port. The port verifies that the IP 
register was read, step 394, before the sequence contin-
ues. The host is given a predetermined time from the 
time the SA register was first written during initializa­
tion step 3 within which to complete these actions. 
(Step 396) If it fails to do so, initialization stops. The 
host may then restart the initialization sequence from 
the beginning. 

Upon successful completion of intialization step 3, the 
transition to intialization step 4 is effectuated when the 
controller writes to the SA register the pattern indi­
cated in step 398. Field 400, comprising bits 7-0 of the 
SA register, contains the version number of the port­
/controller microcode. In a microprogrammed control­
ler, the functionality of the controller can be altered by 

of the vector to which all interrupts will be directed, 
divided by 4. If this address is 0, then port interrupts 
will not be generated under any circumstances. If this 15 
field is non-zero the controller will generate initializa­
tion interrupts (if IE is set) and purge interrupts (if Pl is 
set), and ring transition interrupts depending on the 
FLAG bit setting of the ring entry causing the transi­
tion. 20 changing the programming. It is therefore important 

that the functionality of the host and controller be com­
patible. The system designer can equip the host with the 
ability to recognize which versions of the controller 

The port/controller reads the SA register after it has 
been written by the host and then begins to run its full 
integrity check diagnostics; when finished, it condition­
ally interrupts the host as described above. (Step 350.) 

This completes step 1 of the initalization process. 25 
Next, the controller writes a pattern to the SA register 
as indicated in FIG. 12B. (Step 352.) As shown there, 
bits 7-0 of the SA register echo bits 15-8 in step 336. The 
response and command ring lengths are echoed in fields 
354 and 356, respectively; bit 358 echoes the host's WR 30 
bit and bit 360 echoes the host's bit 15. The port type is 
indicated in field 362, register bits 10-8, and bit 12 is set 
to a 1 to indicate the beginning of step 2. 

The host reads the SA register and validates the echo 
when it sees bit S2 change state. (Step 364.) If every- 35 
thing matches up, the host then responds by writing into 
the SA register the pattern indicated in step 366. Field 
368, comprising SA register bits 15-1, labelled "ringbase 
lo addres", represents the low-order portion of the ad­
dress of the word [ringbase+O] in the communications 40 
area. While this is a 16-bit byte address, its lowest order 
bit is 0, implicitly. The lowest order bit of the SA regis­
ter, 370, indicated as "Pl", when set equal to 1, means 
that the host is requesting adapter purge interrupts. 

The controller reads the low ringbase address (Step 45 
372) and then writes into the SA register the pattern 
indicated in step 374, which starts initialization step 3 by 
causing bit 376, the S3 bit, to undergo a transition from 
0 to 1. The interrupt vector field 348 and interrupt en­
abling bit 346 from step 336 are echoed in SA register 50 
bits 7-0. 

Next, the host reads the SA register and validates the 
echo; if the echo did not operate properly, an error is 
signalled. (Step 378). Assuming the echo was valid, the 
host then writes to the SA register the pattern indicated 55 
in step 380. Bit 382, the most significant bit, labelled 
"PP'', is written with an indication of whether the host 
is requesting execution of "purge" and "poll" tests (de­
scribed elsewhere); an affirmative answer is signaled by 
a 1. The port will ignore the PP bit if the DI bit 328 was 60 
zero at the beginning of step 1. The "ringbase hi ad­
dress" field 384, comprising SA register bits 14-0, is the 
high-order portion of the address [ringbase+O]. 

The port then reads the SA register; if the PP bit has 
been set, the port writes zeroes into the SA register, to 65 
signal its readiness for the test. (Step 386.) The host 
detects that action and itself writes zeroes (or anything 
else) to the SA register, to simulate a "purge com-

microcode are compatible with the host and which are 
not. Therefore, the host checks the controller micro­
code version in field 400 and confirms that the level of 
functionality is appropriate to that particular host. (Step 
402.) The host responds by writing into the SA register 
the pattern indicated in step 404. It is read by the con­
troller in step 405 and 406 and the operational micro­
code is then started. 

The "burst" field in bits 7-2 of the SA register is one 
less than the maximum number of longwords the host is 
willing to allow per NPR (nonprocessor involved) 
transfer. The port uses a default burst count if this field 
is zero. The values of both the default and the maximum 
the port will accept are controller-dependent. If the 
"LF" bit 408 is set equal to I, that indicates that the host 
wants a "last fail" response packet when initialization is 
completed. The state of the LF bit 408 does not have 
any effect on the enabling/disabling of unsolicited re-
sponses. The meaning of "last fail" is explained below. 
The "GO" bit 410 indicates whether the controller 
should enter its functional microcode as soon as initial­
ization completes. If GO=O, when initialization com­
pletes, the port will continue to read the SA register 
until the host forces bit 0 of that register to make the 
transition from 0 to I. 

At the end of initialization step 4, there is no explicit 
interrupt request. Instead, if interrupts were enabled, 
the next interrupt will be due to a ring transition or to an 
adapter purge request. 

Diagnostic Wrap Mode 

Diagnostic Wrap Mode (DWM) provides host-based 
diagnostics with the means for the lowest levels of host­
controller communication via the port. In DWM, the 
port attempts to echo in the SA register 38 any data 
written to that register by the host. DWM is a special 
path through initialization step 1; initialization steps 2-4 
are suppressed and the port/controller is left discon­
nected from the host. A hard initialization terminates 
DWM and, if the results of DWM are satisfactory, it is 
then bypassed on the next initialization sequence. 

Last Fail 

"Last fail" is the name given to a unique response 
packet which is sent if the port/controller detected an 
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error during a previous "run" and the LF bit 405 was 
set in step 404 of the current initialization sequence. It is 
sent when initialization completes. The format of this 
packet is indicated in FIG. 3. The packet starts with 64 
bits of zeros in a pair of 32 bit words 420. Next there is 5 
a 32 bit word 422 consisting of a lower-order byte 422A 
and a higher-order byte 4228, each of which has a 
unique numerical contents. Word 422 is followed by a 
double word 424 which contains a controller identifier. 
The packet is concluded by a single word 426. The IO 
higher-order byte 426A of word 426 contains an error 
code. The lower half of word 426 is broken into a pair 
of 8 bit fields 4268 and 426C. Field 4268 contains the 
controller's hardware revision number. Field 426C con-

15 tains the controller's software, firmware or microcode 
revision number. 

Submitted as Appendix A hereto is a listing of a disk 
class and port driver which runs under the VMS operat­
ing system of Digital Equipment Corp. on a VAX- 20 
l l/780 computer system, and which is compatible with 
a secondary storage subsystem according to the present 
invention. 
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between the peripheral controller and host. These regis­
ters are exercised heavily during a four step initializa­
tion process. The meanings of the bits of these registers 
change according to the step involved. By the comple­
tion of the initialization sequence, every bit of the two 
registers has been checked and its proper operation 
confirmed. Also, necessary parametric information has 
been exchanged (such as ring lenths) to allow the host 
and controller to communicate commands and re­
sponses. 

Although the host-peripheral communications inter­
face of the invention comprises a port which, effec­
tively, is controller-based, it nevertheless is largely lo­
calized at the host. Host-side port elements include: the 
command and response rings; the ring transition indica­
tors; and, if employed, bus adapter purge control. At the 
controller, the port elements include: command and 
response buffers, host command and response ring 
pointers, and the SA and IP registers. 

Having thus described the present invention, it will 
now be apparent that various alterations, modifications 
and improvements will readily occur to those skilled in 
the art. This disclosure is intended to embrace such 

Recap 
25 obvious alterations, modifications and improvements; it 

is exemplary, and not limiting. This invention is limited 
only as required by the claims which follow the Appen­
dix. 

It should be apparent from the foregoing description 
that the present invention provides a versatile and pow­
erful interface between host computers and peripheral 
devices, particularly secondary mass storage subsys­
tems. This interface supports asynchronous packet type 30 
command and response exchanges, while obviating the 
need for a hardware-interlocked bus and greatly reduc­
ing the interrupt load on the host processor. The effi­
ciency of both input/output and processor operation 
are thereby enhanced. 35 

APPENDIX 

Notes: 

1. The mass storage controllers is referred to in this 
Appendix as "UDA"; thus, the IP register will 
appear as UDAIP, for example. 

A pair of registers in the controller are used to trans­
fer certain status, command and parametric information 

2. The term "MSCP" in this Appendix refers to the 
high-level 1/0 communication protocol. 
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: nefine oftsets in syste~ buffer used ov drl~er anc UUA 

sun 11~1 cc 
SLE~ R1:.S 1JSi..-~·t1 NK 
SUf:.t· RES\.iSL-bLlNK 

SLlH c ,.nrJ s L-~·1.1 ~: K 
SLlEt CMDvSL-f1Ll"lt\ 
SDEf J"4TPSL-f"Lllllr. 
S!JEt l11TPS1..-l:lL1'JK 

S L>E~ Ci'10$B_PUR~E 
SC>Ef CMDSW-tt.Tt< 
90Ef R1:.S5:.:_H'l1'k 

SOE~ Pt.Sr< SL-TOP 

SOEf CMl'H<SL-TOI' 

SDEt" Rl:.Si'SL-'!Ot' 

SOEt" CMDPSL-TOP 

s [I E.t UCB S-Cl,UN t.. 

SDn ACTSL-CMfl-LlSf 
TbUF"Sl<.-::.I t'.F -. 

S lJFi· E l•fl cc 

• 1:)1,1\L 
• t.<J-1\L 
• ti l· I'> L . ~'-"'· .bLr<L 
• hLI'. !.. 
.i;L~L 
• BLl<.A 
0 bLKR 
.~LKw 
.bLKw 

.BLKL 

• kLl<.L 

0 1:!LP.B 

0 t!LKB 

0 t!LKB 

• i:!L!'>H 

l 
l 
1 
1 
t 
1 
1 
~ 
1 
I 
1 

Response rinq/pKt que listheno 

Rutter uescr!ptor 
Comwan1 rin~/pkt que listned1 

Interr1al pacKet Oldit q11e l1stried1 

Unuse~, snaula oe zero 
U1:1A Cn11nnel for !'ur~e 
Co~man-1 InteruPt Flaa 
qes~~nse lnteru~t f lil~ 

, Top ot ~esoonse ~in~ Structures 
1,11>Cl'H-1Ut1G::. lZE 

i• Too of Co~~anJ t<inq Struct~rPs 
"l;:,r.PSK-11 l'lGtillE 

: Too ot ~P.sponse pac~ets 
<HESPSK-SlZJ:.•MSCPS~-RlN~SlZ~> 

: Too ot Coffimrtnd pac~ets 
<C~OPSK_SlZt.•MSCPSK-~JN~SlZI:.> 

: ClonP. llC~ 
llCR S K_CLN-S l Zt. 

; Ac.:'" i ve Co~·'l'dn1 µ;ico:et 1 ls t 
< C P" I':!:> K - S l 7. t; * C P" >SI< - L l S 1- LI'""> 

: Totnl nuffPr sfZI' in t>Yt"::, 

r Define LOCi'll Liata Str1Jct11re offset~ 

son 
SLlft 
S LlEf 
SDEf 
SDH 
SDU 
son 
SlJEt 
SD Et 

rnn1r..1 ri1; 
IJOAsL-RUF'IOP 
UDA s L_r Lfll'I ~-uc rl 
UL)A s t._ucB_Zt::Pu 
UDASL-INTl'OUF" 
llDAsr,_c-in_LJSt 
U1.;As .. _I1d l-r:Fr; 
UDAsw_s ffF--i:;F<ri 
UuAs.i_ .. APt<h .. 
IJDAs~_Nu~l<E~ 

I 
1 
1 
1 
t 
1 , 
1 
1 
\ 

Top aa1reiS ot 5yste~ ruft~r 
Addre&~ ot clone UC~ 
Ad1f PSS of UC~ 0 
Ao1rP.ss ot 1nternal oueuP l1stn~~: 
Ad<'!rP&~ ot Active Co~~an1 PdCKet LI~· 
Jnil trro1 red~ol'I fl11<is 
Inlt s!eP error word 
~dpp1n? reoister of syslP~ 1.;11tft-r 
~u~~Pr of ~anpln~ reo stPr~ 
Ddtdr>atn = o 



SDEr 
son s [lf.f 

> 
ULJA$K_S!Zt : • 

SDn ENO Du 

1 
1 
1 
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Syste~ outfer hyte otfset fro~ µ~~" 
l nterna1 reternce numtJer val 1ie 
Internal control tlaas 

: Intern~l flda def1n1t1~ns 
lli.>11. 1s On 1.1ne 
Jnterupt tro"' U1!A is expecterl 
Controller ln1t Step J. 1nterupt e"nectf'1 
Controller 1n1t Ste~ 3 interupt exnecte1 
rontroller ln1t Stf'P 4 interuµt PXnectf'~ 
System outfer is allocated 
Systf'm cutter is mapped in LIB~ 
Pac1<:et(s) avitlldr>lE' to be aueuE'a to 11uA 
Clone UCR is lfn~erl into UC~ list 
T1me~ut prncessing 1s in proares~ 

r Size of datd structures reauire~ 

•• Nun. • • 
Feainnina nttset V~lues 
rarenthes!Zerl are in byte~ oecimal 

J Abort and ~et Co1T1m1tnrl St~tus Commana ~acket s~ecitic Uttset 

SllfrTNI H 
0 :MSCPSw-~0DlfI~W+2 
SLJE'f' MSCPSL-0111-Hn· 0 BLliL 

SIJF:ff.fj[) ~f 

nttset (12) 
Outstdradino ReferencE' Numr,.,r 

J Online and set Unit Cnaracter1st1cs Comman1 Pac1<:et snec1f1c llttsets 

SLiE~ hi G1,, 
.:MSC~Sw-MOLJifl~R+4 

SUH 

s lJF.f 

MSC!' SL-1:.RHLl>-~·L 

M::OCP S w_COl-'Y-SPD 
sun r.1.n Ge; 

0 RL1>W 
• t:l J," J, 
• t:I [. t<." 
• bLt<.I, 
• I:\ Lt<.~~ 
• f'T,KW 

1 
1 
2 
1 
1 
t 

; ReplacP Commanrl P~cKet sper1t1c otfsPt 

Otfsl'l (14) 
Unit ~lal"Js 
Host ldent if ier 
l:lpservt-d 
Error Loa Flays 
Snaao" unit 
Cory &Peed 

s1..n TNT HN 
·="SCP6w-"0LlfI~R•2 OtfsP.t ll..:) 
SlJEf 'SCPSL-k"~ ; Pen.i.acP11er.t BlorK Nu'Y't·er 

SLiH pm H11 

I Set Controller Chdracter1st1cs command pi!cKet Spec1tic uftsets 

SUEHNI Tl 
.=Msrps,._~OLJJf I~~+2 
IUEt MSCPSw-VE~SlOh 
IDEF Msrps~-C~I-FLG~ 
ID Et "SrPs~_HS1-I'O 
llJEf 'SCPS~-USl:.-FR~C 
SDEf MSCPS~-I!MF 

SLJEff1~n II 

0 bLl\W 
• H L~. W 
• bl,!\ w 
• bl .... 
.bLl\L 

; Otfsf!t 
1 
1 
t 
t 
2 

C LI) 
MSCt> version 
ControllE'r fldl"JS 
Host 11me O..it 
llsf! F'ri!ctior 
Quaaworn tirf! anrl date 

Define Hesnonse PdCl<f't uttsets - trnll T.dhel Arriu.,,ents :ir,. So"'i' 
as those aetined in the Gener1c/Tri!nster commdnj PacKet ~o~ve 

sun 

SDEF l 1n KK 
• t:IL ~ J, 
• b],j<. t. 
• Bl P\L 
• ti 1.t<" 
• t:l LI\~ 
• t'ILKB 

"scps,.,_fLAG., .bL~ t, 
MSCPS,._STATlJS 0 HLI<.~ 

• bLI\ [, 
.bLKL 

MSrPSL-fR~T-HAr .t:ILl\L 

sun fi'.1,n 1<" 

? 
\ 
1 
1 
1 
1 
I 
\ 
t 
l 
I 

: Get Co~~anrl oacKet ~n~ Pac~et lltfsets 

SvEfhl LL 
•="'S~PSL-OV1-~Ef+4 
SLJE.f lo!SCF-S~-CMU-ST.> .h[.1<.w 

SUEH:NP J.i, 

Pac~Pl 11nKdoe lnn~ woros 
Pac"et ienrit" & Virtudl C'"1rcuit I1 
Com~an1 Reference ~umoer 
!lni t t•u,~.!"ler 
~ e s e r v P J t ' e l <l 
nµ (nde Calsn callPrl enacorlE'l 
Fla;Js field 
Stat t1b 
Bytes transtered count 
PeservPri 3 innn words 
First i3arl F\lncK 
Software nnr1s 

Otfset (I") 
Co'lln anrl Stat•is 

: Get Unit Status Enrl nacKet bPecif1c ntfsPts 

• BJ.liw 
• tlLI'. w 
• bLl<.L 
.bLl\L 
•ti LI'. t, 
0 

tjLK;.; 

1 
l 
1 
2 
1 
1 

Offset (1.l) 
"4ult1•1ln1t ct'ldt' 
Unit t'ldClS 
llost 1rlent1ti~r 
1Jn1t ioentit1er 
Me1ia tyoe i1ent1t1er 
Sr1ado~ Unit 



$ [)Ef 
SLlE~ 
SD""f 
$D£F 

27 
1"SCPSw-S%w_s·1 s 
M:>Ct>Sw-TPACI\ 
MSCPS,,_C>ROllP 
"'SC I'S w_cy Lt 1·1N:1< 

MSCl-S..-kr.1-S Ilf' 
",:,r-1" s ''-t< kr.~ 
"'.SCf'S~-kCf-CPil' 
s v • r F. ·• r· " ,, 

•~LI'" 
• bL!<. l·J 
• l'IL~ 111 
• bl.K ..i 
• ~LKw 
• bLl\W 
• DI·"'' 
• 81.~ ~ 

3 
1 
1 
1 
1 
1 
I 
1 

4,449,182 

: Snaao~ St11t us 
; Tr;i1c1<: Si:ze 
: C:rouo .5ize 
: · r y 11 n ll E' r s i z P 
: ReservE'a 

RCT Tdble Size 
I< l:l 'Is / 1 r ar '· 
RCT ConiE'S 

28 

I Online & SPt Unlt rn~r11cteri~tic~ •n~ PdCKPt specif1c otfs~t~ 
S1.Jffl1.I I~,, 

.=v:;c~s~-s~v~_sis+' 
son· "'SCl.lSL-U''I-SlZF' .~r I((. 
SUEF "'SCt>SL-~OL-SFk .bL~L 

ntfset l lt>) 
Unft S1Z!' 

SL ff r~ 1d' 'Ir·• 
Volume SPr!al ~umuer 

I Set (o~tfollPT ChdTdCter1st1cs ~n~ Pdc~rt ~pec1t!c Uf1s~t~ 

nttset (1b) 
• l:l I. r."" 
, l.\LK .• 
, I" LKL. 

1 
l 
'-

Controller '11rreo•Jt 
Controller co~~anu Limit 
Cont,.olll'r l ,l.J, 

: + ... 
: Locdl symonl det1n1t1ons 
J--

= 21 = P. 
: •x<FAd> 
: '"D<2iU> 

l'evice lPL 
~·ori< IPL 
S t e n 1 1r. a x 11» ,, : " "' "' i t t l m e t o r r e s t 1 o " i. " 
Pr1~arv Interunt vectvr 

: Define ln1tiali~at1on SequP.nce unAS~ blt tlans 

INI1-M-&H.P-t = 
INIT-~1-&Tt:.P) = IhII-M-STE:P .l = 
INIT-~~-STt::Pl = 
JNlT_ri._lNll = 
lt.11-M-1~'1F = 
Ihll-M-L~AlL = 
I l'iI1-i'l-PUt< G ~- = 
TNIT-~·-G0 = 

IN1I-V-l::Rk0k = 
lf><I1-v-STi:.P4 = 
It>.JT_\_STC.PJ = 
H1IT-~-STEP2 = 
INIT-'v-ST!:.Pl = 
; In1thli7.at1l'ln 

• .\400() 
•.Ol.ll10 
•,u UOI) 
• .( "un 
• 1. .. •) 
4 
2 
I 
l 

• ,( F' .,,,E 
... X r~ . ;( (' 
• x Fl 

sequence ~u·p 

Steµ 4 inaicator ~asl( 
St'"!· J inaic;,tor 1r.l'lsl'. 
Steµ 2 indlcdtor ma~~ 
Ste~ 1 inoicator ~as~ 
lnitiali:Zdt1011 seouencP interunt enanle 
Fnaule tatal errnr 1~tPruµt fl~c 
~enuest previo11s ta1l1Jre lo;.i meSS<i1E' µ;ic~Pt 
F'naole pur~e flan 
r.o t laq 

In1t1aliZJtion trror 
Step 4 inJicator bit 
Step J injicator ~it 
Step 2 indtcator oit 
Steµ 1 1na1cator oit 

•Ord for1~11ts 

s l E P-1- .. R l TI:: = < 1 ii 1 5 > ! <Ms cps K _ F.' x p lJ" t:: N r Ill l 1 > ! <.., .:> c i-' s "-f::X p n" F: 1, T ~ R > ! l N l T - \A - I r; TI ! < T • ' 
STE~-2-k[An = INll-~-STt::Pi!<l~i>!<Msr~s~_tX~ONENTil>!MSCP&K-f)iPUNt~T 
STEP-3-kF:AO : lNlJ_M_.:>Tt:.PJ!lN!T_M_INTl!<lNTk_VfC/;> 

: Comnian1 antl Message Ping Control naqs 
ll[)A_"4_o,..,.. = pa31 
UUA_"4_FLAb : lQJO 
t11..1A_v_c1,,'J "' ·x 1• 
UUA.V_VLA~ : •x1F 

n l'i n f 1 a g "' a s 1< 
Ruffer control tla1 mas~ 
n.,n f laq v .. ct ur 
~utter control tlo~ vectnr 

; n1recl ~SCP PaCK~t l/U ~unction Cortes 

tos_M&rp_p~r = 1ns-~n~ 
Control PacKet Upcoa~s 

Commanrt np~orte ~its J tnru ~ indicate tne CO"l~anrt class; 
ODu 1m~eoiate Commanjs 
on1 Seq~entlal Commands 
010 hOn-sequentidl commanrts that rto ,,ryt i~clude a ouffcr descr1rtnr 
011 ~aintenance Com"l~nds 
iou Nnn•sPquential co,,.man1i. thdt inc111c1r a r-ufter <lP.i.crlutor 

End pacKet upcodes (also callert En1codl's) are formea oy aad1nJ the enJ n~r. · 
flay C20u octal) to tne corresponrtinJ comman~ oackets Upcn~e. Ar U"~r 
commanrt Enrt odci<et contdins 1ust the tla~ in the ~acket•s no~orte tieln, 

l 
1o 
R 
1'l 
Ji 
1 0 
19 
2 
~ 
Q 

•001 I •.-.01 
·021i, ·xtu 
·u1u, •xos 
·021, ·x11 
•0411, ·,;2u 
·u22, ·Ai:.: 
•wi' j p A A 1 j 
•uo:t, '"AOL 
·uo 3, '"XIJJ 
*011.'"1.0\I 

AfH1kT Co~man1 
ACCt:.S!> Co~"larv:i 
'\/All.i.Ri..E Co1trr,anrt 
('uMI" 'k F CU ~11 ROL L,E" U A I A Com ;n a w1 
CO~~AkV HUSl DAfA C'om~and 
f'" !I.SE C'olT':nan1 
f' t..IJ,:,>t rom~,a r"1 
G~T CU~MA~O SlATUS Commdn~ 
r.t:.T llr.Jf STATuS Command 
or.Lrtll:. <...,m,,,ana 



MSCPH-UP.R ~.Ari • li!SCPSl'.UP.R E:P LC • Jiii.SCP S l\.uP.S TC'O"< • ,,.SCl-11'-.uP.lq l110T = ,,.SCPSll..OP.1111; Hf: = 
fllSl:i'Sll..UP-Er;r> = 
MSCPO.uP.St::Rt:.X = ai!SCl>SK-UP-A ~Al N = MSCPSll._UP .DIJPU ~' = 
MS('!JSll.-OP.ACP'I~ = 
Msp>$f'l.UP.Er.o = MS PSY.UP.F••D = M.SCPSiol.u-P.Al TN = 
.. .SCPSV.L•P.A'CT•; = 
MSCPSV .UP.Rt: Al.J = MSCPSv.uP.Xfft< = 

29 
)J 
7v 
4 
t v 
] ~ 
LI! R ., 
6-. 
6~ 
F.b 

• ,([' l) 

7 
...... u 
6 

0 
'5 

•041 ~ •x21 
•1.12-t, •xt4 
•uo4, •..;o-. 
•u12, •xnA 
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'"04J '"l(?.2 •u2oh •uo 
'"07 ''"X7 
'"0100, "X40 
•0101 •x41 
'"01u': "X4:? 
End Pac1<~t .~ask'. 
~n1 DackPt ~it fldn 
Attention ~essaqP Command Mds~ 
At~ention Mes~~qP Co~mand ~lt 

React command c!t fldn 
~dtd Transfer ty~e ~SCP Opcode Dit 

30 

r End PaeK~t Flaos (mas1< v~lues> 

: Bdd ~lock RePortea 
J l!la'1 llloel( !lnreonrtea 
I Error Lon ~e~erdte~ 
1 ~er1nus exeeotion 

r End Packet Flaa~ (vector Vftlues) 

MSCPSV-lf'.-llBLKP = 7 
M.SCPS¥-t:.i:"_l.4~J,ti..ll : n 
M.SCi-'S._t:.f.l::kT.ur: = '\ 
MSC'P$V.t::f.Sl::R~X : 4 

Barl Alock Meport~~ 
Barl ~lock UnrePortei 
E'rror I.on oenerdtei 
Serious eiceotion 

J Controller ~Ian~ (masK values) 

MSCPU1.CF .Av A I'l = "XA•) 
MSCPSM.CF'.M!~C = • ,\4 l) 
MSC PS .... CF .nIHU~ = "A7U 
li!SCl>O.CF'.TiiJS = ",(lr) 
MSCPSfot.CF' _SHf<Lr..i = 2 
1otSCPSM.CF.i;7"' = l 

, Controller flaQS c~a~K 

MSCPSV-Cf.A~AT~ : 7 
MSCPSv_CF'.MlSC : 6 
MSCPSv.CF.OIHl~ : 5 
MSCPSv.Cf.TrlTS : 4 
MSCPSv_cr.~HAU~ = t 
MSCPSv.CF.576 : 0 

: Status anu t:.vent Codes 

ll!SCPH.sr.stjcun 
aitSCP H.ST .SIJC"C 
MSCPH-ST.lC~li 
MSCk>S....ST _AdRTO 
MSCPSl\.ST-OfF'L'J 
MSCPSl\.ST.AVl.bL 
MSCPSll.-ST ... f "4Tf 
MSCl-'SK_ST .IOIHPll 
MSCP SI< • .ST -<'u"' P 
Msr.ps,.._s.,. _nATA 
lolSCl'SK.ST .!o!ST~r 
MSCE-511.-ST.C'NTkL 
MSCPH.i>T.Dkl~F" 
MSCPSl'--ST-DIAl> 

= .,(1f = n = ., 

= '",\'0 
= 0 
= 1 
= ' = 3 
= 4 
= .. 
= 6 
= 7 
: A 
= q 
= .. JI' 
= ".(Fl 
= •x1F 

; Oefine l.ITl.1 l.larametPrs 

Pl 
P2 
Pl 
P4 
P5 
Pb 

= = = = = 
= 

++ 

0 
4 
b 
12 
16 
20 

.sRtTL.. Tables 
•PAC..~: 

Priver Proloque Td~le 

v~lues) 

En4ole Ava11aole Attention Messane~ 
•naole m1seell"lnt>ous l:.rror L..oQ "PSSa'lt:~ 
Enaole otner nostrs Error Loa "'es~~~P~ 
Enable th!~ host•s 1:.rror L..og MPss~,,e~ 
snaJc•dnn 
571'1 Ayte 5"ctors 

F.naole ~vatlaole Attent1nn ~essa,,es 
: F.naole miscellaneous t:.rror Lo~ Mes~ane~ 
: Enftole otner nnst•s Error Lon vessa~·~ 
: F.na~le tn1g host•s 1:.r1nr ~o~ ~essanes 

Sh111aowin'l 
'!>76 Hyte s~ctors 

Statu~ I 1:.vent enae mas~ 
Stat•1s I t;vent end" Cstdrt of fi~i..,l 
St~tus I lve~t c~d~ Cttel~ s!zPJ 

S~b·eode mult1Pl1er 
SUCCf'S5 
tnvalio:l Comrro~n<"l 
ro111111,..nr! Aoorte"' 
lint t Uft-L! M 
llnit Ava1laule 
~e~1a i:-or~ftt lrror 
1orttP ?rotecter! 
Co111parP •rror 
nata t;rrrir 
Ho5t butfer access error 
rontroller ~rror 
OrSve Error 
~essaq~ from ~r. internal dia~nor.tic 

CAPJ oft5etr. 
First Qln Para111eter 
Secono UI~ ~ara~etf'r 
Tnird QIO Pdrameter 
Fourth ~Tu paranif'ter 
Fifth QlO P~ralllP.ter 
Siwt~ 010 Parameter 

Oi'TAB • Defin~ Uriver Prolo~ racle 
~ND=U~A-F"flon,- ~nd nt Dri~er 
AOAPT~~=UtjA,- Un1ous Adapter 1ype 
FLA~S=n,- No ~yste~ PdQ~ re4u1r~~ 
llCASii:'.r:l.JCH$1<.!HZl:..,- ''C~ Siu 
UhLUAu=unA-U~LOAn,- Driver ~nlearl routi~e 
••A~ t.=OllLJR l VlP , nr 1 v l' r flo811•e 

nfT-~JOKE 1~11 : C"o~trol ~loc~ Intt values 
T'PT-STC't(F ou.-,Ol}r:\$1·-ACPLi,L,<•A\fll\> I netault ACP IJe1t«t' 
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32 
nrr_s1nhl". 11.Jf4,llURsl._ACPLHJ,l'LJ : AU' Class 
OPT_SlCkE UC~,UCRSR-FIPL,n f~kK_IPL ; Fork lPL 
o.,r_srnRF UCR,uceis1._n~:vcMAP,L,• :. nev1ce Chdracter1st1cs 

<UFvs~_rou- files Oriel"ltP.d 
!DF~S~-Uf"1- ; Oirrctory structure-I 
!uF~SM-4VL· Avail~ble 
!orvs~-S~H- Shardble 
!uFvs~-lD~- ln~ut ~PV1CP 
!uFVSM-OOV- O~tPut !lev1c~ 
!uFVSM-R~O> k~n~o~ Access 

Oi-T_srnkr. UCfl,llCBSB-St:CJOkS,A, 31 Rt.Bo Sectors ~f>r trdr"t( 
r:pT_SJl'Ji..F: llCfl,llCRS&.\-T1<ACK~,i:> 14 Rt.A() Trdc .. s Per c-ylll"lo~r 
DPT_s1r.1-11" llCR,llC~&W-CJLll:i.>F:"s, .. 547 PASO user arf'o cylin-lers 
DPT _5tflk~: U,8' l?C8$H_01:. llCl.ASS1 b' 6cs-DIS" (lev ice c 1 ass 
!lPT_sroRF: 'JCP.,11cP.sw_ni::v~ 11rs1z,11· c;1'J nefdult flutter &izP 
o~T_sr"k~ UCfl,UCRsR_DIPL,H,O~Jlf€_TpL ; nevice IPL 
OPT_s1rikE uc~,l1CHs~~-srs,.,,11cRs"-011LPJt: ; Sf't units onlinf" 
OPT_STOkE UCfl,PC~S~-O~VbTS,•,· 

<UC~SM-~nc~VPT• : ~o LB~ to onvsical addr col"lvers1on 
!llCbSfol-LlIAr.t'll~·> : lliacinostic outfer Sl'.'ecitieti 

Ot'T_SJOkE Ul:P,UCRSL-"AlCHL{ICl\,L,- ; kAtiO ... ax (.~.J~ 
2.)7 jqll 

OrT_StOkE Pt::TNil ; Control PlncK Rt•lnit Valut>~ 
M>T_SIOk~: OuB,OUPsL-DllT ,n,ous1i1J1 ; uriver 111spatcti f;tole Actor 
OPT-~tnkE Ck8,C"Pes1._1~Tn+t,u,- : Adrtress ~t interu~t servic~ ro~tinr 

UOl-hTlPUPT 

f'l'T_sro1<". r1~r. 

Driver D1sPatch Table 

OJ -
11ol_srAH11n,-,, -
IJLJ a_Fl.INCT ARLF:, • 
o,-
o,-
14bC~SK-Pl\ISlZE+l2,-
0 

r Internal data str~ctures 

1 ++ 
: Orivf'r Function nec1s1on IaDle , 
llOA_Ful•(T ;.R1,,f_: 

FU"'CTAf< ,-
<Nfh't• 
!NI llL.IZF:,. 
&Et::K,­
SF.:.•St.t"hloi' ,­
sE;,si:;1i1unE,. 
SET14uOt::, • 
St ICHld~, • 
kEAOL.BLIC,• 
llE"C\t>i4Lll, • 
kf All.lALI< , • 
,.i: .L Tt::L~f .. f., • 
•Fe 1 TEP~l,t<., • 
#ll l Tl::Vt>LK, • 
At"CE::>l',• 
AC"PClJ'•Tll.:JL, • 
CRt:AJf,­
()fAC,F.S.S,• 
LlfLF:TE,-
"lf'IUl fY, • 
MOJNT • 
kfAr11fAo -
•JI Jit:CllF:{:it,. 
•Fl Tt.Hl:.Ai;> 

flih(TAf\ I -

<SruSt:CriA!-<,• 
Sf1,St."JDr:,• 
SE fl40!'lt., -
:.F IC"HAH, • 
ACc•·ss,­
ACi>Co~1 t P CJL, • 
CPt;;AIF,-
L>F" Al"C~:ss, • 
l>E' L.t··rr, -
flllOIJTfY ,• 
MOUN'I> 

FliNL TAB IH.lA-FOT-INU ,<Irtl 1'IAl.1Zl 
F"UNCTAR noA_FuT_TESTONL,-

<i.Op -
HEA6Li4i.I<,• 

Oev1ce Namf" 
Start Jin routinf" 
No secon1dry L~VPl Interupt 
Functinn Oec1s1on Td~l~ 
Car.eel 1/u 
frror Loq~!nQ Pouttnt> 
Oiay Sutr hyte lenotn 
Size of error huf ter 

Lead1 funct1"n ~ds~s 
Direct xscP PacKf'l function 
llhlt •tr.rt units 1nit1c1l1:zc.t1nl"I c..,~."'-i" 
See11. 
5e!"lse Cnaracter1st1cs 
Senst• 1t1ode 
Set "'orte 
set Characteristics 
Re'lo Ln~1ca1 ~loc-K 
PeAu YhYSlCdl BlOCK 
Re•d Virtual HlOCK 
•ritP LociCdl ~1ncK 
lortte llnvi>lcal i:HoCK 
~rite ~lrtual RlncK 
Jccess tile dnd/or directort e"try 
ACP Control F"unction 
Create tile dl\d/or d1rPctory 
ne,.ccess t1lf' 
Delete tilP and/or oir~c•or~ 
Mortify tile attrtoutes 
"ount: VolU""f' 
Peaa llf>ar! 
"r1tP C'n~cl( 
•ritf" Head 
~uttrrf'J l/U runctlons 
Sense Cnaracteristlcs 
Se"ls,. Jo1101e 
Set Mo-le 
Set CnBracter1st1cs 
Aceess tile and/or oir@ctory entry 
ACP Control fu~ct1on 
Crrdte tile anr!/nr dir@ctory 
Deacr'ess fill' 
ne1ete tile anrt/or directory 
Jollor!ify tilf' attributes 
Mount Vo1u111e 
J llDA Tn1t1a11zat1on 
Test l>UA tor onltne 
Oireet M~CP PaCKfOt fUnr't1on 
Pean Lo~lc~l H}OCK 



++ . 

ruNcT/I~ 
Fu)JCTAA 

fuNCTAA 

F"U~CTAH 

F' 1.JNCTA Fl 

F"UNCTAA 
F"uNCTAH 

fUf\ICTAl'I 
fU~lCTAi4 
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Read Physical Block 
Head ~1rtua1 nlocK 
seeK 
~rite Loc1cal Rlocv 
WritP Pnystca! nloc~ 
arite Virtudl Rlock 
Access file and/or dirPctory entry 
ACP Control function 
CrPdte tile an1/or directory 
Deaccess fill' 
Delete file and/nr directort 
~o1ify tilP attrioutes 
~ount Volume 
Reita nead 
Write CJ\eCK 
llir t ti" Heall 
n1rect ~SCP PdCKPt 
Fvf!n bYtP count re<l•Jirea t11nct tons 
Reau Ln11ca1 nlorK 
Read ~nysical RlncK 
~eao virtual MlorK 
wrtte Locical Bl~ck 
Write Pnysici'll blocK 
~r1tP Virtual Alnck 
Pnvstc~l 1/U rP~uest tuncLlon• 
Mei'ld P~ysical ~lOCK 
Write onysical nlocK 
No oner1tion tnr current vers1n~ 
Re,.ct t1ear1 
Sef!K 
Write Heao 
•rtte CllecK 
ACP Read functions 
Reau Lo~ical ~loc1 
Re~d Physical Rlnck 
Reaa virtual olOCK 
ACP •rite funct1~~s 
~rite Lonical Alack 
wrtte Pnvsical nloc< 
~ritfl' Virtudl Bloc~ 
ACP Access or cr~ate t11P/<i1rectnrv 

~e~se Cnaracter1stics 
Sens" ~o1e 

set Morie 
Se.._ Cr1aracter ist 1 cs 

Functional DPscrtption: 

Refer to soecitic FUT routines. 

InPuts: Ccornmon to all fDT routines) 

RJ = A"dresi; ot 
R4 = Addresi; ot 
fl5 = Adrress of 
Pb = Arldress of 
~7 = ~it Number 
Ri:j = t..rlcJress of 
AP = Address of 

IMP (1/0 ke~uest µacKet) 
PC~ (Process Control bloCK) 
llC~ C Unit Control "loci<) 
CCR (Channel Contrnl ~loCK) 
ot the 11u function Corle 
tne FUT Tahle ~ntrv for tne 
tnP first fJnction ependent 

suPcitlc rnr koutine 
tllfl Pc!Tdl!leter 

UDA-F'DT-HSil1NL; 

5s: 
10S: 

15S: 
20S: 

++ 

MOVA~ UDASL-1NTERNALrN2 ~et a~drPSS at lnterndl structures 
BLAS UUA;w_F~AGS(R2J lOS Controll~r is nresumedblP onl1ne 
MOVL Ui.JA$W_I~IT-ERRCA2),Rl Lo~o init error t1aqs 
MUVZ~L •SSs_S~fAIL,RO Set suh-sy5te~ tailure stdtJS 
RkA 11~5 : Finisn l/U 
~UVL UCBSL-CRR(R5) RU : Get adrlress Ot CPrl 
~OVL CNASL-JNTU+~EtSL-lDd(ROJ,HD : Get i'ld1ress Of l~tl 
MUVL (MO) RO , Get adrlress ot CRN 
MOVZWL lJi.JASl(PO),Rl : Test lf llllA ciifl'd since li'ISl J/[) 
P.~QL 15S ; ~o 
s,,sc ILinAS\1-U"lLJ•j~:,1.• : Reset controller onl1ne a111 Finisn 

llUASW-fLAGR(R,1,5S : Tin 
•UCtlS~-HSi,UC~SN-STS(~5) : Clear unit ~u~y tn avoi1 ~ Wdit 

: Return to EXESO.Lil 

uuA_ruT _B ~ rr.:c.n 
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IJL ~-f"L:T _!' tTtC:<T: 

1<1;( t0,l',(At'),2llS 
1 O"lS: "..iVl-IL #l:>~S-l Vdllfl.!:..1•J, Pd 

Return if ~yte count is evPn 
set oal nyte count statu~ 

11os: J~P G·~xfsFINlSrilU fl n i S 11 } / u 

• t' AC.~· 
++ 
Ul:A_r.,·1 _·A:,r.t> 

UDA-ful _,..,n,: 
lluVL 
111.iv L 
D::>"-ll'U 
FS!l" 
Fr-. Pl 'Jr 
P.1,,<IC 
MuV L 
''Cl'vL 
CLR.., 

200i; I M;JV"' 
•0•q,s:, 
fl tis 

2o4s: 
7.05S: 

209s: 
21 ll s: 
215s: 

J"\P 
II,,-; L 
MUVL. 
At.')L 
Pto3 

J/\\P 
J~.P 
J~r> 
• t' A(,~; 

++ 
lllJA-FiJT_"IL)P 

UDA_F'ur_i,e;P: 
M 1.;'I/ L 
J ... ,p 

++ 
UVA_FuT-PnYSlO 

Get ad1rPss of user's ~~c~ pKt 
LoA~ lennth ot an ~:,r~ ~kt • ~p~~~r 
Synch Access to system dAtn hasP 
Allocdte o svste~ butter 
Return to nrevto11s lPL 

FIU,'i.l~S Insufficient r1>so·.irc~s. at:Jort 111, 
P'}.,lflPSL.MFDIA(HJ) LoaJ MSCP PaCKPt ootfer ~~drPS~ In i· 
Pl(~P),Hn Get aadress of user's Ml:>CP ~Kt 
Pl ; r1ear 1n1ex 
CknJ [Kl J .12(1!.ll LRl 1 i Col'ly l'ISC.P oac1<et into "lol:i Putter 
tMSCPSk.P~TSJlF--J,Hl,2UOS 
•~scPsv_np_xr~M,-
'-'~Cl'Sb • .JPCOl>F'(~~), 2o5s : Proce:;s transter l/u tunct1C'"'\5 
G·FXFSUi0DPVP~T : OuPU .. PdCKet to driver 
._.;;, C P s L-tl 11 ~-Fi:: R ( R 2 ) , r 1 C AP ) : i. o a 1 1C f Pr a 1 rJ res s in T In r> a r c1.,. et er 
MSCPSL.dYT~-C~T(R2),P~CAPJ ; (;C'dd ~ter ovte coont 
2D4s : lt"s c1 uo~ seeK co~~and 
IMSCPsV-"P-M[~n,­
~sr~Sti-UPcnuE(42) ,210S 
G•F:,ffSioHl IF 
C:•J'..(F'S"LlDIFt 
G•f .(fSAdOi<T Fl 

Opcode 1~ a reaa class cnrr~a"'\~ 
Process rl1rect l/J ~rite 
Prncess direct I/Ll rPurl 
At:i'lrt 1 /Q 

Set normal return status 
F1n1sn l/LJ 

This routine 1~ Cdlled ~hen ~ onvstca1 l/J request ~as rPce1ved, Jhe physicd\ 
disK c1daress in oarameter J of th~ parametPrs J1st 1s cnnvertea to~ lo~ic:d) 
t>lOCIC l'lumo,.r, rec:oonl~~ble n'I tn!! l)(JA. lh~ nlqor1thri> t"r cn~Vt!rsio" 1~: 

++ 

Lo~ : <cv11nrler • (sectors per tra~~ • trac~s oer cyl1naerlJ 
+ rtrarK • sectors per trac1<) 

llUVZRL 
llUVll>iL 
IOULL? 
F'ATZV 
"ULL2 
!='.~ Tl.V 
"'ULL..2 
Aun1.2 
~-AT Z V 
AUf1L? 
"1UVL 
C'IPZV 

F\l:.11 L 
Bkf\ 
,t'A~F 

• sector 

: Develoo L~Ns/cy11nder value uc1-sR_:-c.c1n1<<;(R~), Qu 
uc~s~_TH~C~S(~S),Kl 
RO,ril r Al = L~Ns/cyl1nder, Ru ; ~ector5/trac~ 
116,•lf.,PJCAP),1<2 : r.et PllYSical c:vlinrler valuE> 
f> 2 , K 1 ; Mu l t I p 1 y c y 11 n 1 er h y L ~ r. s Icy l in o Pr 
•b,.~,PJ(APJ,H2 ~et ohvsldl track no~oer 
Pu,H2 ~ult1PlY oy sectors/tr~ck 
R2,H1 Add sectorltrdc~ to ~cove 
•O,•A,PJC~P),R2 r.et pnvsical SPctor numoer 
R :i , H 1 ; res u 1 t ls t t) P ~ ~ u l v d lent 1, H; • 
RA lRPSL-~fUIA(~l) f stuft in Lh~ area of IMP 
11 ~f's ~ _ F !' 1 rn ~~ 1 n HP s S. F' I.: n D F:, - : 1 s th i s a re",, i 
J kP S w _F U"lC (I.. .l), I I 1JS _Rr~ 0.UPol,r, 
21ns ; Ye~. ~otn ~AFS~JnIFK 
709s Goto EXc.S~RlT~ 

IJL)O._FUT _ Tr>i l I 

F:unction~l Uescription: 

Tn1s routine is Cdllect when a "ldrd il'litialize ot tne U0A is requestP1, 
bc1s1callv m1~m1c:s tne tunctio"s ot tnP l:>YS~~~ process by loacilnq t~· 
apprnpr1atP reoisters w1tn the v~lues tnat SYS~~N wnc1lo nor~~lly lo.,1. 1 
aadition it disahlt>s all interupts an~ cAlls tne primary level u' 
1n1t1al1zat1nn routine. Ul'lon retuTn to tnis ~nr rnut1ne, orfqin~l ~n1 cnnt~Y 
is re5tor,.a, interupts are enable1 bacK to around a, and tne I/~ re1ue&t ' 
t e r n, 1 n in e r1 , 
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•DISABLE L.c;d 

.SArT1,., llL>A-SIARTJO - Ul)A Start 11'0 routtM! 

.PAGt:' 

•• llL>A.1'TAkTIO • Ul.IA driver st;srt Il.J rnut1ne 
InPut1.: 

RJ = A~dress of IID Re~ue5t DdC'KPl 
R~ : Adoress of sµecttied Unit cnntro~ ~locK 

ass1qnments: 
: Address of 1o1sc~ packet 

; Peq1ster 
I PO 
1 P1 : Ad~ress of internal dat4 str~ctttre~ 
7 R .l = A~oress of Active ~SCD Poe~et list entrv 
, p 3 
' p 4 

: Address of l~P or lntern~l DdcKr.t oe1nQ ~Prv1r~1 = GPnPra! •Ork Re~ister 
; "'~ 7 Pb , = Address of tnout ~ueue •nd for< 010~~ lrlnne> J~~ 

: Gen~r~l .or~ Pe~ister , , , P7 = Scr"ltcn 
Rli = Seratrh 

0 i::NAl"1,.,F" (,:,R 

UL>A.Sl Al-.T 1C1: 

SS: 

6s: 

7s: 

851 

lOS: 

11 s: 

15S: 

205: 

Ml.JVAl-4 
lolli V L 
111(.;VA~ 
FuSHl, 
JS!< 
POPL 

MOV!.­
CMPZV 

Bl::QL 
MUVo 
ll<OVt' 
MlJVL 

p.iuV"' 

: r.et ~a~ress ot 1nterndJ nutter 
J Gr.t •tJdrPss nt JPI' q•.arne i•C'"' 
: r.et eadr~ss ot queuv 11st.rPa1 
: Save 1nternals outter address 
: Insert 1~~ in tnn~t ~u~u-
: Retrieve Internal~ ouffer &J~re&~ 

Pr~cPS5 data traniter usrr pkt *• ckee~ tor dbort or oet cm~ stst 

J~ t~1s a see~ µac~et ~ytP 
~o 
Yes, ~ueue packet ~s is 

a ''dd funct1Cln 
it really d rP.ad ? 

<i o1r1te or. co'io!' 

C:OU'"lt : (J 

o~ eo~e in eo~~an~ roe~Pt 
1,.,til• 

Lo~a Un1t ~umoer of assoeiatPa uc~ 



25$: 

lOS: 
11 s: 

40S: 

4~$: 

sos: 

HIS 

sua 

IOU 

6211 

.. 

MGVZll1.. 

RE.Ill 
PUSl-tR 
"1UV~ 
JSA 
~L,RC 
JS~ 
i'L!:l.-:. 
JSR 
PIJPl-
TS Ti... 
Pt<P 
•'5~ 
Pl)Pf.' 
""1.:VL 
MOVL 

MOVZ:.IL 
lNSV 
JNSV 
lilOVL 
MUVL 
lilUVL 
JSB 
TST,, 
IH.iF:'.1; 
MOVL 
~Sflw 
R1Sw2 
H1CL 
R1:."4QUc. 
~l::<lL 
8kW 
PU Ph 
ns~1-.1 
HS.\> 
' 
f'SR• 
ID~C 

TSTL 
1_.E~ 
PRW 
MIJVL 
B1C•2 
ICOV~ 
lllJY&. 
MOYL 
TSh 
Rite 
Frt!lNf 
llSB 
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6S11 PlS..2 ·~~ASMpl~tF.XPCT,Uv•s•-'&.l~$(~l) I Set lnteru~t exp~Ctf~ 
lh>1. T1"'IC:OJT,1l0 "FbPCIC 

IOFOllK J r.reate • fork Pr~cess 
1 Referenc• l•hel for unsol1C1At•J 1nterupt~ 

r Copy •ddress of internal ~utfers 
r Clear fort ol1D1tc~ Address in UCD 
1 Save re~tstera 
I Cl~s• out end packets 
I Trv to queue n•• pac~ets Detore exit 

.SRTTa. QOl.rJNlS~TU - Close out 11~ rout!~• ... , .. 
' ... ' UU1.FJN1S~ta • UD4 driver J/n e101eont roct1ne 
.J 

• Ad~re11 of Internal data structures 
• A~dre11 of JOA 
• Address of Cl.one UCB 
a.11 t Qn111ent11 
• A~dress of En~ paeKet Detnq processed 
• Address of a11oc1atea Co~~a~o Packet List l::ntry 
• Address of assoc ~t~a IR~ 
• seraten and 110 Status •r~u•ent r•Qister 
• 6eratcn and 110 suD status arou•ent reQ1ster 

J Get next e"d pae~et 
I Did we vet one ? 
I Yes 
1 Return to caller 

:1~i:t~~!i:='-r<R0> 6 109s r Process J~P 
UDAS~-FLAGS(Rl),lU s s SKlP internal ~ct lt UDA ts otfllnr UDl.PROC.INTRUL t Process Internal pac~et 



tOllU 

109&1 

1<:!0 s: 

12 5:.: 

DEC&. 
BSRt1 
8k" 
flOV&. 
TST&. 
Bt,;DL 
PUS HR 
MDVI. 
lllOVL 

JS!' 
JMI 
J.SS 
\..LP""' 
... (j v 1, 

Aufii.S.:> 
MUVL 
Ir.1' \I 

C"Pt.V 

Pllif'i; 
"°UV"' 
lo\OVL 
FIS!'l,. 
PSEIA 
Eli<lo 
M(!V., 
CMPZ.V 

Ar. F:•.J 
loll.JV., 
TST .. 
Elt.QL 
Ml'VL 
111c .. 2 

Bid~ 

4,449,182 
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.DlSAbT,f:. LSd 

: Process internal packet 

lnPUt5: 
1 RO = Address of ~nd PdCKet nein~ process~n 
; Rl = Address ot int~rnal d!ta 5t~uct~res 
; P2 = Address of assoc1at~ct Command Pac~et List f:.ntrt 

MQVl.BL 
c-.Pd 
Bl::.OL 
('~Pt! 
Bf'. F:'" 

; Get aarirt~ss 

5$: MOVL 
10s: C",..P .. 

l~S: 

P.E.QL 
MUVL 
ANF.:~ 
RSR 

C'MPb 
Be,C)L 
l-IOVZlllL. 
Bl::OL 

lo\.:)(PSb-JPCODE(RU) R7 , Get ~~c? r~cKet eni cone 
R1,#<MSCCsK_op_u~lIN!MSCP$K_np_£~U> , Is it an JNLlhF en1 co1e 
5$ • Yes 
RJ,1<~SCPsK_OP-GTU~f!MSC~sK_np_f;.NU> 1 Is it ~ get unit st~tus? 
3~s : ~o, 19nor it then 

of UCd corresponding to Unit ~umber in MSCP End pac~et 

UUA$L-UCB_Z~RU(kt) ri1 ; ~et aa~rPSS ot uCn ~ 
uc~sw_u~1rCNJ),~SC~6~-UNllC1<0J ; Are unit numoers tne Sd~e 
1~S ; Yes 
llCF!SL-t1NK(k3l ,tH : 'let aortress of next ttCP 
105 Try this one, O = last uCr 

Not a norm~l unit numoPr, !~nor it 

R7,#<M1'CPsK_OP-GTUNI!~SCPsK_ap_£~~> : Is 1t ~ get unit s'atus? 
3US : Yes, µroee~s it do•n stoirs 
MSC~S•-UNIT(ROJ,R7 : ~et unit numner 
2US r lt's Unit zero, do not mark nttlln~ 

Si!t other th.:tn unit zero oft-ltne •intil reC'eii.;r ot d SJCC'l!SS ... n l;'ilT S!l<l''. 
f"nd pae1<et 

2uS: 

2~s: 

1'1 l(" .. ' 
A1C'"2 

ANrv 
~OVL 

PUSnR 
Fl~~,, 
ALRC 
"'u v .. 
i"OVt:. 
MQVI. 
A1.1rL2 
I t'.Sl.il't. 
Pu Pt; 
FISR 

: Procei.s the r;c:.r LLd 1 STATUI' "'::>Cr> l:.n<J tiaci<et. 

l 0 s: 



NUH.: 

35s: 

5s: 

I 0 S: 

l !:IS: 

205: 

++ 

CM Pb 

Rc.QL 
Ct-!PB 

11>1.F:v 
~l)VL 
C'LR L 
Pi:IC' 

·cMPL 

B"'Ei.I 
"'OVL 
BrcR 
AL>nL2 
,D.l)R LS.) 
R,:,tl 
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: routtne acded S/1~/~1 to n~n11~ retere~ce nu~uPrs tor 
: aoort and i;iet co"im11nd status tPst. hrs 

rs th1s an ARU~l com~dnd 

Yes 
ls this a aet cmd status 

No, return 
~et 11c'1ress ot com'llan~ list 
Cledr loop counter 
Jntern111 racket or nonP at all 
Are ~::.r~ reterence numhers equ111 

Nu 
Lo11J 1ntPrnallY assiqned re1 num 
Returr1 
Point to neMt c~1 list entry 
Loop t~rou'ln li:;t 

• .5RTTL lluA_Hosr_n~rK - Hf"1::,T to ur)J. 11tr.POUt hiH1'11er 
• PAt;V. 

lll1A_Hl1S1_JJ,~Ft< - rif1::>T to UL1A linieout handler 

Ir.Put~: 
~1 : A~aress of Internal Ul!ta Structures 

UDA-HUSJ-Il "IEr!: 
... L! v ... R1,H4 save address of internals 

llUASL-IJCR,_ZEROCH1),k'i Get aCJdrt•ss ot uCu u tnr nost ti-er "'UVL.i 
illFJ,.,PCH tos,13ri 11s.,. Iuci..-FlK"C"' fnr ev•nt~ill tt~p-, 

lOS: BLBC UOAs111-F'LAGSlP4),2US Exit if l'vA ls tla1~ea oftl1ne 
IJDllSL-C:..nNEUC'hCK.i) .~.i Get ao1ress ot Clone urr. 

20s: 

"'wVL 
'J :>TL> 
R1<F' ~ 
J:>~ 
~::,B., 

BL.RC 
"OV b 

r.:u V L 
"UVL 
E<::.~~ 
WIJVL 
?::."' 

UC~SL-flPCNT(R4) ls .:)TAFl1'TG queuein~ o~ccet~ ? 
20S Yes, 1Pr1ve 
GA f 1. Es I J F' o ~" Mo 1< e a 110 tori.: for sync r on l z"' t l 0 :; 
111.111._r.ET-lt.TPl<I r.et an 1nter11c11 pac1<et 
RU ins None aroun1, too oa1 
l"i5(PSK-f11-'-fLU~r-tr· ·~al<e d t-c1-np lF'Lll.:>i') Uflk C0""'o~;l 
MSCPS~-OPCOuF(R2J Unit u 
~A·~,MSCPSL-RtT~-~NJIK2) ; Loarl a bo~us byte count 
P~ -\~Pl Save current uCo 4ddress 
LuAu_[NiP_PKT LOild a"I "l\Jf' pc1ci.;et tn llt•A 
c~PJ+,fl~ Re~tore inrut UC~ 

Return to faro< dispatcl'\er 

IJU.6-1 i"t:OuT - l'.;A t1"'eo .. ~ hdnaler 

++ 
lJl,f..Tl"'t.nl:T - IJlJb C'o,..manrl T1menut Yd"dler 

lnt'uti.: 
F14 = Address of llLJAlP 
R!) : Address of Clnne llC!-1 

UUA_TlMt:.nuT: 

4$: 

C LR•· 
MuV A It 
PIS"? 
IHC"? 

M(J\' L 
PiC•2 

JSR 
CL~,. 
""OVAR 
PU1'11"1 
fl~!' .. 

Internal Packet Queue 

MUVL UDP.SL-TNTPQUF'(Rl),112 
fl!'.M\JUt. lllR:l),RO 
PvS SS 
11::.P.• lll•P.-Dl::A1Wr.PAG~.D 

~eset tne ULJA 
Get aorlrPss ot 1nternc1ls 

~1~1J : Set timeout t1a9 
XPCT>,- 1 ~~set intPrupt exDectf'o 

"ln1 llllA flnl1ne fldQS 
Get. 11ddress ot 11DST ti"'e'lut lltY 
r1ear all status oits in UC~ u 
with t~e exc~pt1on of Oh Ll~E 
Sync~ driver at for~ IPL 
r,edr all status olts in Clone uro 
r.et aarlr~ss ot interndlS 
Sc1ve ~ork reo1sters 
r1ns~ out en~ PdCKets if dny 

Get ao~ress at internal oa~K~t que 
Get next internal wait pacwet 
Oue.i~ is e~pty 
Weturn outfer to svste~ 
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~~P 4s Lonr unt11 queue is •~~tv 
CL~L R2 lnitta11ze loor counter 
fllOVZWL •sss-1I"IF"OllT,k7 1.0110 pr1111ary Ilu err_or &tot...1s, 

55: 

; Rundo"'n all 11n•s t1111t •er• already aue11e.1 to tn• ll~A t-ut were ~'~11•r 
, terminat~o via an rn~ Pac~Pt (1.ell tn~s~ 1o1~c~ P•c~et$ 1n tn• ~ct1ve" 
J list not close~ out ~Y the FINt~~ 11 routine). Intern~l ~itcKets ar• .,onor•c. 

fllUVL 11UASL-CMO_t.ISTC~1),k4 : ~et ad1ress nt active c~1 li~t 
q~c •~AiV-SKSl~~L- : R,tp e~pty or internal PHC~ets 

Ct'l<t:;SL.Clli:>.llF:.-Ck4).1~S : Caf"lcel OP'llV •H1f1n11nPa Jl't'!; 
fl'UVL CPl<~sw.~APPi:.GlR4l,PU 1 Were uRA resource& acqu1re1? 
R~CL 115 : No 
PUSrlR 1•11<P~ k4> r Save current context 
MUVL UCRSL.tHRlP~),Rj , Get aa1res1 ot CRo 
MUVL GR~f~~-dsP'~~d~TATl'•A~i:.Csw.lolAPt<F:G(k)) , Load mapntn:;i context 1''' Ctdl 
J~~ ~L u"w'' , : rur:;ie ~uftereJ uata Ddth 
JS~ G•tuCsqELUATAP , ReleasP Rufterea Uitta Patn 
JSP G•1or.s~r;L~At>R!:.I': RP.!lH1i;11i 11~11 wac-pin'l Peo1HPrs 
P~PK 1•M<1<~,H4> Qe1tore rr~viou~ c"ntext 
YQVL CPK~SL-C~U-~FFCH4J,H1 Get fto1ress ot lR~ 
MUVi.. R,.,Hn r.opy MSCP peeo;Pt artoress tl"r 1n.:A•, 
SuPL.2 s•14 k~ ~u~ate ~SCP oo;t nttsets tc c~~ ll~t 
sse~ uuA.iuCAM Close o~t the Jr<P 
lD~L2 s•1crKrsK_s1z~.k4 Get aadress of n•xt PdCKel 
Au'4L.~o:> •CPr...Fi•.1,is1_1..~::.,t<2, tvs Cnl!'c~ a.1.l COflllf,an1 PdCrtf'tS 

10s: 

t 11: 

15&: 

, Rundo~n all lkPs that ar• still in t~e UC~ !RP i..1st. l~ese ~ere n~ver 
, initiatert at all. 

20s: 

301: 

t 

J· 
' , .. 

MuVAR 
p c;111jlJ c: 
en: 
IAUV L. 
R5At­
Rb(' 
Fii;)!'" 
~j.,I' 

C' L,.R L. 
Pl)Pt< 
R;; fol 

.PA~E 

UuA.IOCANI 
IDC 
IJSB2 
•ov • 
.. ova. 

SU E~~~ 

i"RL.11 

sou uu f It 
LAL. 

11(111 

r , , 
' , 
' , , , 
' , , 
r 

runetlon•l Ueserlptlon1 
nr-s1 
IPL LeveJ • Po•erl•ll 1PL 
InPYtU 

114 
p~ 

ftt> 

"' 
s Ad4re1s of 
• Addresit of 
• Altdress of 
• Ad1tres1 of 

re;hteru 

I.et ari1ress of inPUl !1<1-' :i11eue 
Pe111ove next lkP freim que11e 
fl\l!~Uf! ! S el!lpty 
Get ~dCKUP ~ftctet it dl'lY 
C'dncel t.,e llu 
Clos~ out ne~t lNP 
Return cutfer to svste~ 
C'ontinue tor al1 outlltand~"''l l"t'S 
r1ear 11n count f1•l1 1n ClD~l ur~ 
Restore worK rP~isters 

' , 
' , 

: address of a UCB 
• A~dre11 of internal d•t• structures 
s saved eddress ol tne JOR 

' .. UL>A.tr.UULUt.: 
JSlt 
PUSttR 
.. OVA5' 
UC•2 



511 

IOI I 

·1 5 s: 

255: 

10s: 

358: 

40S: 

•• 

l'~C 

Sli!if' 
•OVZBi111 
MOV'iWL 
RSfh 
ai;ti,,. 
llJ<w 
BJS..? 

MuVAH 

llUVAP 

i'IUV L 
lolOVL 

lolOVAR 
lilLVL 
lolUVL 
"'UV,. 
"'OV~ 
Mt.JVI:' 
MQVL 
M(iV L 
'"OVi<FI 
Ml.JVt.B 
"o.JV ~ 
lo! LIV!'< 
('L,RL 
"'uV" 
Pl(',. 1 

liluV,. 
"I IJ V L 

SuP,.2 

JS!' 
"OVL 
I NC" 
JSR 
8LRC 
P.lS•2 

MOV L 

JSP 
ll'uVl 
fllOV11R 
MUVZR"' 
C"Llh 
CLRL 
"'UV:.!.WL 
MUVw 
Elt1S 
PbS 
AUfll.iSS 
PHb 
INC,. 
A lSw:;> 

fllOVw 
PO Pk 
RSP 
POPI< 
PHW 
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J llloeotion failure 
1 Fla~ butter •lloe•ted 

Save arldress of intern~l •SCP 
~dCKPt ~ueue list~~arl 
Sdve ~rldress of Active ~~er 
Co~manrl PdCKPt L!St 
Sdve a~dre~s of I~µ 
Save ad.1ress of IJCf, 0 

Restore reqisters 
Releas~ resources an1 return 

• .;HITL Cu"fli<lit._ltJl1 - l.il!t. Controller ln1t11111zat1on Co,.·t1n 11cit1or, 
.!:'~(,· 

CUNJI~Ut-INJT - rontrqllPr in1tial1za~lon se,~~nce continuation 

runct1~n111 UP~crtµtinn 
/JHS/ 

I~L Level = •orK IPL 
Inouts: 

J. J = Pointer tn IJJA req1 sti-rs 
~.,. = Adores:. of internal o<lta structures 
P~ = A~aress of clone ~C~ 

.1:.r;ARLF' Lsb 

C CJ •J T I I• Uc.. -1 ~ J T : 
JS!' 
llUVAf' 
Ml.JV L 
~LlVL 
Tto.ir .. 

G•FAr~FUP~ ; Credte d tor~ Prnci-s~ 
Cu•:Jli.'IL-11•JT,U~k.SL-~PC(R5); Loi.'lj l!'lterui;t COl"ll1nllc.t1nn d1.JT 
Ck3J Kl ; Get l.lL)AH' aa<:!ress 
R4 Hf ; t"op1· lntt'rl"\ills r-11xfer aortrt"i.s 
1lti!si._rrvt1_t:~t<(kl J ; •H•·:i µossiblP St'!'P resr-onsi> Pr,..or 

Process control.l'!'r step 1n1t1dl1zation 

Get step ~or1 frnM unA 
(.pa-u steo respor,se tor ~(')SSlt'lf' err 



ss: 
tos: 
t5S: 

20s: 

30S: 

3:>S: 

405: 

BbSC 

Bt:lSC 

IHCt<7 
CMP11 
R1~ i::i; 
MOVZIOL 
hSV 

AlH'L7 
MUVL. 
F'1S"'2 
E.\1S11t2 

ti1ov .. 
ElkB 
CllP" 
Bc.OL 
CLP,. 
RSB 
B!Sw2 

F.:XTZV 
MQV\o 
I NC" 
RSP. 
8115 
AbC 
81511? 
P1s ... 2 
CLRL 
CLPL 

llluVl1111L 
INS~ 
ADnL? 
Mu VI,, 
MUVi.. 
fllOVL 
t.Ul"ll,,2 
MOVAl 
MDV i.L 
TSTL 
JollJVAL 
Ml!VAL 
MlJVAL 
lill!VAL 
CL.Pi. 
llOVL 
CLRL 
lluVl 
lf,lJVZl<L 
11ov1,, 
flJ SL.? 
Jf'<SvtJi,: 

AOPL7 
AIH'L7 
Al.l['IL2 
AlJl:lLS.'.i 
MiJVL 
MUVZBL. 
llQVL 
I NSC,illl:. 

A[)()L2 
Al.iflL? 
AUl'IL 2 
SIJRGTI< 
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Proc~ss P.xpectPo steP ~ 

Process exoectea steP 3 

Flay voss1~le 1nteruot tailures 

Terminate ln1t se~ a~ fatdl Prror 
'!'ern1111dtP it ster seo:iuP.nce error 
SP.t r.u dn<i 4ual'l 1oord o•irst 
wrtte Go flao to UDA 
C!P.rlr tor~ pc in clone urn 
Clear lnit error fldas 

IJ LI II s \..' -"' u FF C 111 ' , fo' 3 : Dev e 1 op 11 o ~ a a <1 res s o d s e t n r Ld' t. 
UDAS~-lllAPl<f.G(l<lJ 1Q,•9 k1 
t <P 1'.:l'i>S L-"fOP+ r~SCP,;. I' _PK f _H l•Q >, k J 
UDASL-RJF10P(k1J,1<0 : Get ao1ress to toµ ot syst~• ~utter 
PO,I<? : Cony 
~i l<l ; AQajn 
#l<FSPst._TuP R! r.r~ate a:ldr tn t"P of Pt.S r:dt""-PtS 
R~5~SL-tLl~lCN?),(RU)• Initialize Hesoonbe ~UPUP listne~J 
R~~~~L-fL1~K(k2),(P01+ 
Cl<OJ+ SKi~ tutfer rle~cr1ptor 
CMnvsi..-fLINhC~?),lRU1+ rnit1alie Co~~an~ ouPUP list~ead 
CMOYSL-rL!NhCH2>,CRu>+ 
INTPSL-rLlH~(H,),(RO)• In1t1al1ze internal PdCKPt •dlt 
JNTPSL-fLINK(k2),(RU1+ OUPUe 11SthedO 
(HO)+ Clear purge Anl'l iriterurt ~nr'1s 
•H~SPSL-T~P,P~ In1t 1naex tro~ too ot resno~~e r~t~ 
R~ ; ClPar loop index 
PJ (Pol : t1nK packet to ~essaae rin~ entry 
s•,48,CP~~S•-P~l-L~~(f'lJ ; Loa'1 PKt Len an~ clr V1r Cir Tu 
PO,CPKESL-PI~GP(Pl1 
•<UDA_M_o~~!UDA_ .. _fLAG>,(kO)+ ; Set entry to uni. uwn 
CPK~SL-PQfL(Rll[R4l,• ~ Tnsert packet n oacK ot resoons~ a~~ 
8Nf~PSL-RLlNKlH2} 
•HF:;:;PslC_SlZt::,k3 nevelot' llbA aa'1ress ot n"lit Rtf. PKt 
#HF:~PSK-~IZt,I<~ Rump indP.X re4fster to next P~S oKt 
•kF:SP51<_5sz~: 1\1 
•~SCPSK-AlNG~lZt::Ll<S,3~$ Looµ thru all Pt::S r1ny/pkt entrlP.S 
PO,CPKF.SL-Pl~~P(~l) 
s·•~R,CPK~s~-PKI-~!~(H1) ; LOdl'l PKt Len an1 cir V1r Cir 10 
R3 (RO)+ L1nK pac~et to co~mano rlno entry 
CP~t.&L-Pa~·LCR2l [~<tl ,- Insert pacKet in oacl< of co'Tlmdnci q'Jt>'-
iac111l>C')S1.-~L l NI<( ( R 2) 
•C~UPSIC-SlZt::,MJ neveloP UdA aadress to next C1l"1 c~t 
t(MUPSK-51Z~,M4 Pu~p index reytster to next c~d p~r 
tCMuPs~-SlZt::,Rl 
P~,40S Loop thru aJ.l crr·1 rin~/i;Kt entr1P::. 

Clear Com~and Reference ~umoer and UPA Mesource Values ftelo in Pacn 
entry ~f the Active ~srp Com~ana packet List 

4!) s: 
IACfSL-CMD-LIST,Pi f Point to top of command list 
(I< 2 J 
1cP~~s~-s1zi,:,K2 Point to ne~t Pntrv 
•CPK~sK-LlRT-LE~,K5,45S Lon~ tnrouan list 

Send uDA eight onl1ne PaCKPts for units 

llUVAR UUASL-INT~P~AL Ml 
M0VL UDASL-lNTPQUE(~l),RJ 

o tnru 7 

Reload addr of internal struct1ires 
Get aaiiress of 1ntPrndl PKt 11sned1 
Get backllnK a1dre!';s 

sos: 

.luDL2 s·•-1,H.1" 
Cl..RL '14 

BSB1111 
~Lee 
"'UVb 

Muv .. 
"'l) v .. 
I r.s...iui:: 
AuP.L~:> 

ClP.ar ~4 

Get an interndl ~SfP p~cl<Pt nufter 
Allocation failure 
l.oad online comll",anii in ~SO' pac,c:et 

l.oad unit nurr.ue r 
. • Lo.=io s"oatloA' 11ni t nurr.:-ier 
: Jn!;ert o.,cl(et in re;ir Pr,_. nt que1;.­

Loop tn~ ~ unlinP Pac~ots 
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Seno u~A t~e s~t Controller Cnaracter1stics co~~and PacKPt tn enanle 
Attention Messages and a oD second nost timeout Vdlu~. 

FIS!-!" 
flL.PC 
!"lJVb 

~ls .. 2 
"uv .. 
l'llSw2 

U~•-~~T-I~TP~T ~et an internal ~b~~ ~acket h~ff Pr 
P0 1 ~5S Alloc1tinn f~llure 
IMSCPS~-"~-STCO~ - Load Set Controller Cnaracteristlc~ 
MSCPSt;-1)PCnllF:c11;,d : or COill' 
•MSCPSM-Cf-AVATN "SCPs~-r~T.rL~~(H2) : Set contr~ller f lo,S 
tbO,MSCPS~y"ST_T,uC~7l : Set host t1~eo~t tn 6U seco~~~ 
•uDASM-U"lL :~r, 1111As,..n,Ac.;s lll l > : Set cont rel.I.er on l 1'1r t ld'1 

LOALl-l~'Ill-Pfl.T: : Reference label for Internal p~cket lo~dlnn 

"UVL 
AUl'lL2 
l ~S1..1llt. 

r.et aorlress nt internal n~t 11sr1Pd 1 
Get ~acKJ1nK a~oress 
Tnsert P!!Ckl't tn r~csr en1 nt q 1ie1H: 
nue PdCKl't to UuA 

S!>S: 
flt< W 
RSI'< Error ret0rn 

, , , , , , 
1 , 
J , , 
: , 
1 

.lHSAbLl:. LSu 

.sqrTL UUA Interunt service kou!ine 

.PAGf 
++ 
LJvA.TNTE.l<UPI • Interunt service ~outine 

functional u~scr1ption: 
/TflS/ 

lnPuts: 
O{SP> : Pointer to Ink 
R~ = A~dress of ~lone LICH 
PO • R4 = Scratch 

Outputs for routin~ catleJ: 
Rj = ~01nter t~ UuAIP 
R4 : A~dress of Internal u11ta 
R~ = A'1c:iress of Clone IJCH 

: --
UOl.hTt.RUP'f:: 

1 o s: 

1 !) s: 

20S: 

Jo~: 

MUVL. 
"1uVAR 
8!;~ 

"UV L 
PbC 

MUVL 
T.STb 
Pt:QL 
MuVL 
MUVb 
MQVl:! 

PuS11R 
J~~ 
POP., 
tilUVo 
C"LRb 
""uV L. 
Ct,P .. 
Ab CC 

JSH 
!:ltd• 
PL.MC 

P.r.1S 

f';,,P" 
llluVv 
fll (J v:.: 
"'U'JJ 
"t. J 

J;)P 
!<t-illl 

fll(S~)+ 10 G~t aor!ress ot lDo 
Get address ot 1nterndl str~ctQrP5 
I~nor 1nteru~t if timeout is s•t.0: 
is 1ncoh~rent at this oo1nt <1nv-~1 
Lo~n owner UC~ tnr ~Xi:.SFO~r 
SKip purne cheer- if Llll~ is ottlin" 

llUllSL.f :<Ti::RIJAL, k4 
IUl"AS ~-TTMEulll • 
UDASW.F't.AGS(P4i,20S 
IUPSL.O~N~R(Pj),P~ 
•uf"IASV.or,;LI '""' .­
UDAsw.f1..Ali~ (H~), 1 us 
fllJASL.l'lllF'Tnpci.c4J,1<2 Get audress ot svste"' bufter 
C"Mr·il'l-PURliF"(R<!) ; Is d 0<1t11 oatn µurrie req•iest"n 
10S ; ~o, test !or normal lnterunt 
flCPSL.CH~(R5) Rl ; Get a~1rf'SS nt CRb 
CHRSJ,.IrlTP+~P.CSh.l>flTA!'•'PHPl) ,•PH') J Save c11rrent !JP in 0''' 
CMDS!!-PUP~F'(Rl),- r l.Oi'IO lllltll patn l"Ull'ber to t•e nurt;", 
C"l<MSL-INTD+W~CSo.uATll~A1~(~11 : Into (Ro 
••''<Rl,H2,RJ> f save registers trorn sys routine 
r,•1ursP1J1Clint.TAP : Pur ie tne rldtd >-at'"' 
t•M<~l,~?,R;> ; ~estnre '"'rev1ous context 
(5P) + ,lRFlS!..J .• Tu+ \/~:CSd.LiA!APll fl-I ( 111) : Restl'.lre r>rPViCl!Jb [,D 
Cl'4llSB.PU&.1liF'(R2) : Cledr fldtd Path in lntPrlll-'t •vr;; 
(hl) ~? : Get ad1ress nt UDAl~ 
lll.111.:>& (?.n Let Uu~ kno .... e•re oone 
1unAS--J~IFXPCT,- Dispatcn interupt it ex~ecte, 
llUllsi..F'i..lh.iSC'<n, 1 ~s or process poss1n1e attenU "'"' n"t 
~uc~si..-fPCCK~l Go to aonropri11te routines 
70S Restoro reqisters an1 ret frl"· int 
UUAS~-FL.AGS(?~),1JS Tqnur unsolicited interunt if tne 

G • F' .~ F' S f IJ R I< 
UuA_F'ullr;.PkU( 

UL)il 1s oft line 
Tt clone isn't al re.trty in tor"' ::;11e.1<: 
nut 1t there to ~et .,,essa9e oac~rt 
Create a torK Process 
Restor~ reqisters 

: Gracetulty yo to tor~ TP1 
: 'li.,. tn" standdrll tnr~ Processor 
; for unsnl!c1tert Attention vessa~Pb 

• s Fl f TL. 11lJ~_111, r. ,1 Au - u f'I A j r 1 v er u n lo a, r o J t 1 "It' 
.FAt;F 

++ 
ULiA_tl,..LUAlJ - ur1ver unloao routine. 

run ct 1one11 l1escr i>Jt ion: 
/TRS/ 

InPuts: Unknn•n it here trnm SY~sSY~~~~ 

ULlA-Ut;LOAu: 
PUSriP 
M()VAH 
Boe 

~bC 

Save rP:Jisters 
Get <Hl-lress ot intt'rnat struct11reb 
Ex!t if '10 syste"' bufter c3llcicat<>'1 

SK1p clo"e unlink!n~ it never lin~e·1 
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ss: 

tos: 
15$: 

++ 

"4UVL 
f'JVL 
CL.l<L 
Pl~(' 

l'!JV Li 
Jll!UVL 
ll'UVL. 

JSB 
Jll!OVL 
l'ISA"' 
"4uVL 
Ci..Rw 
POPR 
~SP 
.Sl"ITL 
.PAuF 

54 

Uu•.Rt.Sl:.T.R11;1.1s • Ro1Jtine to set t"le ~ei.nonsf' r1n<.1•5 0•11 tls:J tci 1"•.:. ..,.: .. , 
and c1ear tn" first ~uaJwor~ in tne ~ctive c:o~~d~~ llst 
entry l"lolnteil to ov ~'J. 

InPuti;: 
Ru = Ar1o~es5 of resp"nse packet 
R2 = Adores~ of com~and PdC~ft 1tst entry 

UL!&.Rt.SI:. T .R l t.IGS: 
BlSL' •UOA."4.J~N,• 

•c~KFst.RlU~P(RU} 
C'LR..,. Ck2j 

R.:iB 

++ 

Set Tl'SPOnSI! rln·1 · t~ 111·.:. u ... 

Clear "4SCI' (;nm111on::i ,.ettorence :><'l' !-~r 
An 1 !l D a Res o 'Jf c es t 1 el" s 11'1 1, i st t',.. ~ ~ 

' Gl:.T .r1~f1.PAC'KF r • Ho1.1t ir'I'! tn cat tne r'll!Yt dvc11J.a->1\? resr-on5e pacio;.f't tr-..'" i:llA , 
1 runctional uescript1on: 
1 1'11!.V , 
: JnPuts: 
s Rl = Ar1dres5 of tnternaJ. aat~ structnre~ 

Outputs: 
RO = Ar1aress of End PdCKet or " ft Of'Xl OICKf't Df'lOnQe1 to ~n~ 

or no c:om"'a"d packet n1atc"' 111cts fo•wti. 
R2 = A11ress of Ac:t1ve co~111a~1 Pdcket •1tn sa~ .. r•t~renc~ l'lu~P~r. or 

undetineu 1f no maten ••s fo~no 

Gt:T .fr.O.PACl<.F:I: 
"'(J ii(~ 
loOQVL 

5S: "4Ui11.. 
~~s 
B~S 

RS Rd 
Bi<~ 

10S: Ri:.MYUt: 

l5S: 

20s: 
25S: 

++ 

JJ'.i!;wrJi:: 
Cl.PL 

MOY.AR 
CMPL 

: ~rncess ettention message 
r Trv ll •oaln 
: Re~ove pac~et trn~ trol'lt of 

.: Insert in bac~ of qu«u" 
1 C4ear loop 1n1ex 

AITi:.NCI~"'-~SG •.Attention M~ssa~~ Proc•sstn~ knut1ne 

runct1n,.,a1 U@scr1Pt1nn: 
It the m@ssaoe rf'ceived is an Ava1ldblf' At.tent.ion Me&i~wef tnel"I ~1. un-L1ne 

.: internal l'SCP oaC'~et is 'lenerate'1 for tn• unit decl•red. he otr.f'r tor.,.s ot 
attention messa9e5 are c:urrentlV 1qnor@~. 
lnput.s: 

Pu = Ad~ress of Messa7e Pae~et 
Ii l :: Ad<:lre5a of Inter114l Oat"' Struct11res 

ATTEt.llIU~J-loOSG: 
91.il\C 
CM Ph 
P.-"'~"' 
MGV1.r 
BSA" 
RLHC 



.. uv,; 
"'uv .. 
llll.)V ~ 
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RestorP incut context 

: Lo~o unit Numoer 
·:. Fron. attentio:'I rr.f'i;Sd'le l""Cl<et 

f,OOJO Sha'1ow lint t "4U'llher 

Lo~d online co~~anrl 

lOS: 

Ill.) Vb 

11'.:JVL 
Aoni.2 
TNS1.o1Ut:: 

(SP)+~Po 
~SCPS•-UNlT(RO),• 
'1.SCPh-UllilT(P;.i) 
lllSC~s-.o~1T(RU),­
"'~CPS ,._.;1-l ij;,, .UN T ( P J) 
IM SCP S l(_'JP-'lN L 1 ·~ s · 
._SC~S~.UP~OOE(PJ 
UUASL.l~TP~U~{P11,PJ Get internal µ~c~et QUf'UP l!st~e~o 
5•1~,H] C.et bac~ linv 
·CH2J,~(H3) tn~ert packet in rPdr ~1 q~e~e 

l~S: 
20s: 

FHcR 
"'UVI) 
PE .. 1.11JF. 
1111Svt1i:: 

2os Cl~dn up and ret~r~ 
(,,PJ+iRO Qestore !neut co~tPxt 
iHF~QsL.FL.lr.K(~~J,R~ : Pemove µ9cket fro~ tront of o~Pur 

IHSL2 
RSR 
.PlGi;: 

CMOJ,~REs .... sL.bLl~~r.~tJ : Insert in bac~ ot '1UPue 
luD'1i.M.l)iOl'lt,.!ICP~t;SL.fH;1r;P(kOJ Set r1ng entry to 'li.JA n.n 

, ++ 
: GtT.CMO.PAC~E1 - Houtine to oet tnP nevt com~an~ ~acket tor Cdller , , , 
: 
1 

'unctiona1 vf'scription: 
/TH.)/ 

Incut: 
: Pl : Address of internal aata structure~ 

success = A~dress of emPtY ~ommand oacKet. 
Failure = 0 1f: 

1 Outpits: 
1 H(J : 
I Pu : 
1 , , , , 

1) own Dit set 1nd1cat1n'l ll1H o~ns µacic'et 

"2 = 
2) ~wn oit reset out tl~~ bit set ind1cat1nQ 

packet ts still dCt1ve. 
Address of e~nty Active ~SCP Comman'1 PdC~et entry 

Rl Save Ml 
llOAst._C11l'l.LlSTCK1)IM' Get ao1rt'ss ot com.,.dna list 
UiJlSl-PuF'fOPCk1J,k r.et aa.'1ress ot svste'll t>uft!'r 
CM0ySL.fL1NKCR1),kO Get aodress Of next DaC~Pt 
•UOA-i.O~N.~~PKt.SL.kT~GP(KnJ,20j : ~ac~et helon~s tu G~~ 
Pl : Tn1t 1noo 1n~ex 
CH2J lb t~15 Pntrv ~~oty ? 
tos Yes, use it 
s••cPKEs~_s1z~Lk7 su~p µ~inter 
•CP~rs~.LlSl-L~~.Ml,~~ Loo~ 
20S lctive list ts tUll 
Rl Init 1001> index 
llSC'PSL.CMU.kff(Hn)[RtJ r Clear MSCP ~acket for Cdli!'r 
IMSCPsK_P~T~JZfa->,w1,1~S 
R1 : Re5tnre.R1 
~(SP)+ r Execute co•rout1ne ca11 to call~r 

Return nere 1f co~man~ pac~et c~n ~e queue'1 to the UDA 

PIJStiL 
lluVL 
Rt;l'lylJE 
1 fllSY'lt. 
k i r &..2 

Save Rl 
Get a~~ress nt ~v~te~ huftPr 
Potate pac~et from tront of ~u~u" tu 
baCK Of 1111•uP 
ClPar flay oit in r1n~ entry 

Set Pat.:1Cet to 11!>11. n .. n 

205: 

Pl SL? 

CLPL 
Pu PL 
RSI' 
.PAGF' 

Set failur~ tia~ if nere tro~ aonvP 
Qest'.ore 111 
Return to cdller 

, ++ 
1 UL>A.Gt.T .l ~TPI< f • ~llocatf' a syste•u buffer for an .intt•rna 1 ~,:,cp pacl<:'et 
I 
I , 
: 
; 
J , , , 
1 , . , 
; 

Functional Description: 
Calls UvA.ALONOhPAG~n tor the bufter. C"ledr£ the 4~ bytes ot p~cket 
to zeroes for caller, and loads ne~t ntyner internal ~SCP Pa~~f't 
commAnd reference numoer. 

lnPuts: none 

Outputs: 
PO : 
R 1 : 
R2 : 

++ 

~uccess or fallurf' ai; receive'1 frnm 1:.Xt.SAl.LINUfllPA•.iF:.i 
A~dress of internals it allocation succee'1erl else trds~ 
A~dress of hufff'r 

netine size ot 5yste~ huftf'r neerle1 
Get system outf er 
Allocatinn failure, i~nor re1ue5t 
In1t 1000 index 
l'.:lear Paclc:et 

Get tnterna1-s address 
Make d ne• commana reterence num~er 
Rut not a zero 
f.oao P"Cket-s com.nand ref,.renc,. no 

: Uvl.ALOhONPAG~O - Allocate d butter from sy~te~ space for caller 
: 
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functionnl nescrtµt1on: 
Calls •·>.f$AL1Jr,01,pAGC:f> anr:i inserts riuf ter st;:.e ;in1 tyrit> in oloc~ it s•1ccesr,, 
Sdves ~J for c~ller. ~l usuallv co~t~ins trie arljress of an iv~. 

Inputs: 
Rl = nuti:-uts: 

Size (')f DlOC"K 

RO = lO• bit clear inaicatios f"lilure 
PO = lo~ Di t set indicates s 11ccess 
Pl = s 1 z.e Of but.fer 
R:.i = 1\'11ress of DuftPr 

++ 
UUA.D~ANONPAG~n • Deallocate a D~ffer frn~ svste~ sp"lce tor caller. 

function ... l D~scr1ption: 
Calls fAE~nt.ANONPAGED and Saves R1-~l for Cdller 

tnputs: 
RO = A'1oress of bUfter to he Jt>dlJ.ocate~ 

1 Duti-uts: lllor'le 
r , __ 

u LJ A. D t. A,... c r. p A\, c: n : 
PU~HP a·~<Rl ~? PJ> 
JSF. G•r.xrs6t::A~o •• P.<C:f n 

1=ave registers 
ne-allocate syste~ ootter 
Restore req1sters PUP~ ··ucP1,~2,R3> 

RS~ 
.PAGE 

++ 
UUA.IUPOSI • l/O post processinq routine 

functional Description: 
/ll:\S/ 
InPuts: 

Rl 
R~ 
R7 
Rb 

outputs: 

= Address of = At1aress of 
: 1/0 StdtUS 
: !IO StdtUS 
None 

IHP to post proce~s 
tne Ub!qnito•1s Clone uCr­
long word 1 
lol"ly worrt 2 

111.JA.lUPUSJ: 
ttoVL, 
MUVJ 
l'tCL 
"''J'I L 
T f'j C".l, 
"l(JVAA 
J f'j5vll 1:. 
P~fv 
l'ufilNT 

tos: 14uVL 
RSI\ 

Ru,-(SPJ 
Al,1RP$L.~FUIA(M1J 
llCB:>l·_rwc1.T ( R~) 
IKPSL.llC~(RJl,1<0 
UCP s L.Ot'Ct•T {Au) 
G•JuCsGL.PS~L,RU 
(klJ.~(kl)) 
105 
#lPi..S.ll.lPUS! 
(::,P)+,RU 

Save Kl) 
Lc~n tinal stdt~s !n l~P 
Account tor J/n in Clont: 1.r.· 
Ge~ adr'lrPss of redl !fCP. 
Account tor l/rJ 1n rt>c1l Ill",.. 
r.et aadress nt incnst cuPJ• li~t~e~, 
I11sert !RP in Post oroc-t>s .. q·1r•JP 
Rr~ncn it not first entr~ 
Intttate ::.ott~are I11ter1;rL 
!'estore Ru 

++ 
LlN~.CLUN~ • Hnutine to linK the Clone uC~ at tnr t>~1 ot the Lrr ~ist 

tor accPss hy t"ie tlmeo'lt nan1ler. 

Inouts: 
R~ = Arldress of clone 11<.:F< 

Reoislers Usea: RJ,k' 
:--
LIN~.CLLJNt:: 

h!iJVL 
lllOVI.. 
llUVL 

5s: llOVL 
B~OL 
lllOVL 
Eli<~ 

tos: MOVL 
Iii UV L 
CLRL 
Ci..Ri.. 
ASEi 

llCRsI .CkA(P~') R(, ; r.et aarlress Of lAtl 
CkRSt-I~TO+~FfsL.l~~(i<nJ,h" : Get ~arlrPSS Ot !~H 
Iul'st.!JCt-\L~l (H0l.tkl'l : •~tot. aoirt>ss ot t! rst urf" 
lJ c Rs L· _ L l N r; Od'l ) , k / : 1; et 1 in K to l'I e lt t u r rl tr o !'I' t rd s u rt· 
tus Tnis one was t~e ~ast 
Pl,K~ L03d ajdress of next urH 
5s ro"tlnue sedrch for ldst in l15t 
R~ 1 0CDSt.i-Llhk(NUl LinK tnrmer last UCd to cln~e 
'I01l.iCb$t.i-LlF\/Dt.Pl:.Nl1(kSJ LO/l(J oack Pointer in Cl0"1E' 
UC~Sl.ll~K(N5) Set Clon• to last 
UCRSL.F~C{~~) Cledr tor~ pr f iel~ 

11erurn to caller 

All aooj thin~~ must cnrre tD ~~ P~ I 
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What is claimed is: 

I. In a data processing system which includes first 
and second processors (70 and 31), a memory (80) to 
which information can be written by each of said pro­
cessors and from which information can be read by each 

5 

of said processors, such memory having a plurality of 
locations for storing said information, and bus means 
(60) for interconnecting the first and second processors 
and said memory, to enable communications therebe- IO 
tween, said bus means being of the type which has no 
hardware interlock capability which is usable by the 
other of said processors to selectively prevent the other 

60 
processor being adapted to cause the state of the 
ownership bit to change when such descriptor is 
read from said entry; 

the first and second processors being adapted to read 
ring buffer entries in sequence and to read each 
ring buffer entry only when the ownership bit of 
said entry is in said predetermined first state, 
whereby an entry may not be read twice and an 
entry may not be read before a descriptor is written 
thereto. 

3. The data processing system of claim 1 wherein the 
communications control means is further adapted to 
provide such communications while each of the proces­
sors is permitted to operate at its own rate, independent of said processors from accessing said memory loca­

tions, the improvement comprising: 
. communications control means for controlling com­

munications between said processors and permit­
ting the first processor to send a plurality of com­
mands in sequence to the second processor via the 

15 of the other processor, and while avoiding processor 
interruption for a multiplicity of read and write opera­
tions. 

4. In a data processing system which includes first 
and second processors (70 and 31), a memory (SO) 

bus means, and for permitting the second processor 
to send responses to those commands to the first 
processor via the bus means; 

the communications control means including a plural-
ity of locations in said memory, termed interfac~ 
memory locations, adapted to serve as a commum­
cations interface between the first and second pro­
cessors, all commands and responses being trans­
mitted through such interface memory locations; 

20 adapted to be used by said processors for containing 
information to be shared by the processors, and bus 
means (60) for interconnecting the first and second 
processors and the memory, the bus means (60) being of 
the type which has no hardware interlock capability 

the interface memory locations comprising a pair of 

25 which is usable by each of said processors to selectively 
prevent the other of said processors from accessing at 
least a portion of said memory, the improvement com­
prising: 

ring buffers; 30 
a first one of said ring buffers being adapted to buffer 

the transmission of messages issued by the first 
processor and a second one of said ring buffers 
being adapted to buffer the reception of messages 
transmitted by the second processor; 

each of said ring buffers including a plurality of mem­
ory locations adapted to receive from an associated 
one of said processors a descriptor signifying an­
other location in said memory; 

35 

for said first ring buffer, the location signified by such 40 
descriptor being a location containing a message 
for transmission to the second processor; 

for said second ring buffer, the location signified by 
such descriptor being a location for holding a mes-
sage from the second processor; and 45 

the communications control means permitting each 
of said processors to operate at its own rate, inde­
pendent of the other of said processors, and to 
access a ring buffer for writing thereto only when 
the buffer does not contain information previously 50 
written to such buffer but not yet read from it and 
for reading to such buffer only when the buffer 
contains information written to it but not yet read 
therefrom, thus preventing race conditions from 
developing across said bus means i? relation to 55 
accessing the interface memory locatmns. 

2. The apparatus of claim 1 wherein there is associ­
ated with each ring buffer entry a bit whose state indi­
cates the status of that entry; 

for each entry of the first ring buffer, the first proces- 60 
sor being adapted to place such entry's ownership 
bit in a predetermined first state when a descriptor 
is written into said entry, and the second processor 
being adapted to cause the state of the ownership 
bit to change when such descriptor is read from 65 
said entry; 

for each entry of the second ring buffer, the second 
processor being adapted to place such entry's own­
ership bit in a predetermined first state when a 
descriptor is written into said entry, and the first 

the first and second processors (70 and 31) being 
adapted to employ a portion (SOA) of said memory 
as a communications region accessible by both of 
said processors, so that all commands and re­
sponses can be transmitted from one of said proces­
sors to the other of said processors through such 
portion of memory; . . 

the communications region of memory mcludmg a 
pair of ring buffers (SOO and SOE); . 

a first one of said ring buffers (800) buffenng the 
transmission of messages issued by the first proces­
sor (70) and a second one of said ring buffers (SOE) 
buffering the reception of messages transmitted by 
the second processor (31); 

each of said ring buffers including a plurality of mem­
ory locations (e.g., 132, 134, 136 and 13S) adapted 
to receive from the associated transmitting one of 
said processors a descriptor signifying another 
location in said memory; 

for said first ring buffer, the location signified by such 
descriptor being a location containing a message 
for transmission to the second processor; 

for said second ring buffer, the location signified by 
such descriptor being a location for storing, at least 
temporarily, a message from the second processor; 
and 

the first and second processors (70 and 31) further 
being adapted to control access to said communica­
tions region (SOA) such that information written 
therein by one of said processors may not be read 
twice by the other processor and a location where 
information is to be written by one of the proces­
sors may not be read by the other processor before 
said information has been written, 

so that race conditions are prevented from develop­
ing across said bus means in the course of inter­
processor communications, and messages are trans­
mitted from sai'1 ring buffers in the same sequence 
as that in which they are issued by the processors, 
while each of the processors is permitted to operate 
at its own rate, with substantial independence from 
the other processor. 
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S. The apparatus of claim 4 wherein said ring buffers 
are adapted to permit the first processor to send a plu­
rality of commands in sequence to the second processor 
via the bus means, and to permit the second processor to 
send responses to those commands to the first processor 5 
via the bus means. 

6. The apparatus of claim 5 wherein the first proces­
sor (70) is a host computer's (1) central processor, the 
second processor (31) is a processor in a controller (2, 
30) for a secondary storage device ( 40), and the bus 10 
means includes an input/output bus (60) for intercon­
necting said host computer with said secondary storage 
device. 

7. The apparatus of claim S wherein there is associ­
ated with each ring buffer entry a byte of at least one 15 
bit, termed the ownership byte (FIG. 3B-133, 135, 137, 
139; FIG. 8-278), whose state indicates the status of that 
entry; 

for each entry of the first ring buffer (800), the first 
processor (70) being adapted to place such entry's 20 
ownership byte in a predetermined first state when 
a descriptor is written into said entry, and the sec­
ond processor (31) being adapted to cause the state 

62 
the class driver being adapted to maintain a credit 

account having a credit account balance indicative 
of the number of commands the buffer can accept 
at any instant; 

the credit account balance initially being set to equal 
M and being decremented by one each time the 
class driver issues a command and being incre­
mented by the value; 

the second processor further being adapted to pro­
vide to the class driver, with each response packet, 
a credit value (FIG. 9, 288) representing the num­
ber of commands executed to evoke the response; 

the class driver incrementing the credit account bal­
ance by said credit value; and 

the first processor and class driver being adapted so 
as not to issue any commands when the credit ac­
count balance is zero and further being adapted to 

. issue only commands which are immediately exe­
cuted when the credit account balance is one. 

13. In a data processing system which includes first 
and second processors, (70 and 31) a memory (80) 
adapted to be used by said processors, and bus means 
(60, 110, 90) for interconnecting the first and second of the ownership byte to change when such de· 

scriptor is read from said entry; 25 processors and memory to enable communications 
therebetween, said bus means being of the type which 
has no hardware interlock capability which is usable by 
each of said processors to selectively prevent the other 

for each entry of the second ring buffer (SOE), the 
second processor (31) being adapted to a place such 
entry's ownership byte in a predetermined first 
state when a descriptor is written into said entry, 
and the first processor (70) being adapted to cause 30 
the state of the ownership byte to change when 
such descriptor is read from said entry; 

the first and second processors being adapted to read 
ring buffer entries in sequence and to read each 
ring buffer entry only when the ownership byte of 35 
said entry is in said predetermined first state, 
whereby an entry may not be read twice and an 
entry may not be read before a descriptor is written 
thereto. 

8. The apparatus of claim 7 wherein said Qwnership 40 
byte (278) is the most significant bit in each descriptor 
(260, 264). 

9. The apparatus of claim 5 wherein the controller (2, 
30) further includes pointer means (32, 34) for keeping 
track of the current first and second ring buffer entries. 45 

10. The apparatus of claim S further including means 
for limiting the generation of processor interrupt re­
quests to the first processor in connection with the 
sending of commands and receipt of responses by said 
processor, such that interrupt requests to said processdr 50 
are generated substantially only when an empty ring 
buffer becomes not-empty and when a full ring buffer 
becomes not-full. 

11. The apparatus of claim 10 wherein the size of each 
ring buffer is communicated by said first processor to 55 
the second processor at the time of initializing a com­
munications path betweem them. 

12. The apparatus of claim 11 wherein the processors 
(70, 31) communicate by sending message packets to 
each other, and further including: 

the first ring buffer (800) being adapted to hold up to 
M commands to be executed; 

an input/output device class driver (3) associated 
with the first processor (70) for sending commands 

60 

to and receiving responses from an input/output 65 
device (40); 

the second processor (31) being adapted to provide to 
the class driver (3) in its first response packet the 
number M of commands of a predetermined length 
which said buffer can hold; 

of said processors from accessing at least a portion of 
said memory, the improvement comprising: 

at least a portion (BOA) of said memory (80) being 
adapted to serve as a communications region acces­
sible by both of said processors all commands and 
responses being transmitted from one processor to 
the other through such portion of memory; 

means (278) for controlli11g access to information in 
said communications region whereby information 
written therein by one of said processors may not 
be read twice by the other processor and wherein a 
location where information is to be written by one 
of the processors may not be read by the other 
processor before said information has been written; 

the communications region of memory including a 
pair of ring buffers (800, SOE); 

a first one of said ring buffers (800) being adapted to 
buffer the transmission of messages issued by the 
first processor and a second one of said ring buffers 
(SOE) being adapted to buffer the reception of mes­
sages transmitted by the second processor; 

each of said ring buffers including a plurality of mem­
ory locations (e.g., FIG. ~B-132, 134, 136, 138) 
adapted to receive from an associated one of said 
processors a descriptor (260, 264) signifying an­
other location in said memory; 

for said first ring buffer, the location signified by such 
descriptor being a location containing a message 
for transmission to the second processor; and 

for said second ring buffer, the location signified by 
such descriptor being a location for holding a mes­
sage from the second processor, 

so that race conditions are prevented from develop­
ing across said bui; means and messages are trans­
mitted from said ring buffers in the same sequence 
as that in which they are issued by the processors, 
while each of the processors is permitted to operate 
at its own rate, independent of the other processor. 

14. The apparatus of claim 13 wherein said ring buff­
ers are adapted to permit the first processor to send a 
plurality of commands in sequence to the second pro­
cessor via the bus means, and to permit the second 
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processor to send responses to those commands to the 
first processor via the bus means. 

64 
quests to said processor are generated sUbstantially only 
when an empty ring buffer becomes non-empty and 
when a full ring buffer becomes not full. 

19. The apparatus of claim 18 wherein the size of each 
ring buffer is communicated by said first processor to 
the other of said processors at the time of initializing the 
communications path between them. 

15. The apparatus of claim 14 wherein the first pro­
cessor is a host computer's (1) central processor (70), 
the second processor is a processor (31) in a controller S 
(2, 30) for a secondary storage device (40), and the bus 
means includes an input/output bus (60) for intercon­
necting said host computer with said secondary storage 
device. 

20. The apparatus of claim 19 wherein the processors 
communicate by sending message packets to each other, 

10 and further including: 16. The apparatus of claim 15 wherein there is associ­
ated with each ring buffer entry a byte of at least one 
bit, termed the ownership byte (FIG. 3B-133, 135, 137, 
139; FIG. 8, 278), whose state indicates the status of that 
entry; 

for each entry of the first ring buffer (SOD), the first 15 

processor (70) being adapted to place such entry's 
ownership byte in a predetermined first state when 
a descriptor (260, 264) is written into said entry, 
and the second processor (31) being adapted to 20 
cause the state of the ownership byte to change 
when such descriptor is read from said entry; 

for each entry of the second ring buffer (SOE), the 
second processor (31) being adapted to place such 
entry's ownership byte in a predetermined first 25 
state when a descriptor is written into said entry, 
and the first processor (70) being adapted to cause 
the state of the ownership byte to change when 
such descriptor is read from said entry; 

the first and second processors being adapted to read 30 
ring buffer entries in sequence and to read each 
ring buffer entry only when the ownership byte of 
said entry is in said predetermined first state, 
whereby an entry may not be read twice and an 
entry may not be read before a descriptor is written 35 
thereto. 

a buffer associated with the second processor for 
holding up to M commands to be executed; 

an input/output device class driver associated with 
the first processor for sending commands to and 
receiving responses from an input/output device; 

the second processor being adapted to provide to the 
class driver in its first response packet the number 
M of commands of a predetermined length which 
said buffer can hold; 

the class driver being adapted to maintain a credit 
account having a credit account balance indicative 
of the number of commands the buffer can accept 
at any instant; 

the credit account balance initially being set to equal 
M and being decremented by one each time the 
class driver issues a command and being incre­
mented by the value; 

the second processor further being adapted to pro­
vide to the class driver, with each response packet, 
a credit value representing the number of com­
mands executed to evoke the response; 

the class driver incrementing the credit account bal­
ance by said credit value; and 

the first processor and class driver being adapted so 
as not to issue any commands when the credit ac­
count balance is zero and further being adapted to 
issue only commands which are immediately exe­
cuted when the credit account balance is one. 

17. The apparatus of claim 15 wherein the controller 
further includes pointer means (32, 34) for keeping track 
of the current first and second ring buffer entries. 

18. The apparatus of claim 15 further including means 
for reducing the generation of processor interrupt re­
quests to the first processor in the sending of commands 
thereby and responses thereto, such that interrupt re-

21. The apparatus of claim 16 wherein said ownership 
40 byte is the most significant bit in each descriptor. 

• • • • • 
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