
United States Patent 1191

Rubinson et al.

[54) INTERFACE BETWEEN A PAIR OF
PROCESSORS, SUCH AS HOST AND
PERIPHERAL-CONTROLLING
PROCESSORS IN DATA PROCESSING
SYSTEMS

[75] Inventors: Barry L. Rubinson; Edward A.
Gardner; William A. Grace; Richard
F. Lary; Dale R. Keck, all of
Colorado Springs, Colo.

[73] Assignee: Digital F.quipment Corporation,
Maynard, Mass.

[21] Appl. No.: 308,826

[22] Filed: Oct. 5, 1981

(51] Int. CJ.3 G06F 9/46; G06F 15/16
(52] U.S. Cl ... 364/200
[58] Field of Search ... 364/200 MS File, 900 MS File;

371/21

[56] References Cited

U.S. PATENT DOCUMENTS

3,940,601 2/1976 Henry et al. 235/153 AC
4,145,739 3/1979 Dunning et al. 364/200
4,153,934 5/1979 Sato 364/200
4, 181,937 1/1980 Hattori et al. 364/200
4,195,351 3/1980 Barner et al. 364/900
4,204,251 5/1980 Brudevold 364/200
4,212,057 7/1980 Devlin et al. 364/200
4,214,305 7/1980 Tokita et al. 364/200
4,237,534 12/1980 Felix 364/200
4,268,907 5/1981 Porter et al. 364/200
4,282,572 8/1981 Moore et al. 364/200

[11]

[45]

4,449,182
May 15, 1984

4,318,174 3/1982 Suzuki et al. 364/200
4,334,305 6/1982 Girardi 364/200

Primary Examiner-Joseph F. Ruggiero
Assistant Examiner-Gary V. Harkcom
Attorney, Agent, or Firm-Cesari and McKenna

(57] ABSTRACT

An interface mechanism (10) between two processors,
such as a host processor (70) and a processor (31) in an
intelligent controller (30) for mass storage devices (40),
and utilizing a set of data structures employing a dedi­
cated communications region (80A) in host memory
(80). Interprocessor commands and responses are com­
municated as packets over an 1/0 bus (60) of the host
(70), · to and from the communication region (80A),
through a pair of ring-type queues (800) and (SOE). The
entry of each ring location (e.g., 132, 134, 136, 138)
points to another location in the communications region
where a command or response is placed. The filling and
emptying of ring entries (132-138) is controlled through
the use of an 'ownership' byte or bit (278) associated
with each entry. The ownership bit (278) is placed in a
first state when the message source (70 or 31) has filled
the entry and in a second state when the entry has been
emptied. Each processor keeps track of the rings' status,
to prevent the sending of more messages than the rings
can hold. These rings permit each processor to operate
at its own speed, without creating race conditions and
obviate the need for hardware interlock capability on
the I/0 bus (60).

21 Claims, 19 Drawing Figures

----- -- ----- ----------1
l ----- I

COMMAND INTERRUPT --- - --
RESPONSE INTERRUPT

BOA

70

CPU

SYSTEM BUS

BUS kDAPTER
L ___ -- -

~ I

81A

TRANSITION
INDICATOR

TRANSITION
INDICATOR

110

1/0 BUS

I
I

I
I
136

I
I
I
I
I
I

32.
HOST COMMAND RING PTR 1-- -1

34 I
HOST RESPONSE RING PlR 14-1 I

60

BUFFER
e
• • •

BUFFER
M

30 l I
- I 131

-~ ~~jl
37

IP

SA

38

HOST CONTROLLER r---------, r---------,
I I I I
I 1/0 I HIGH-LEVEL 1/0 I HIGH-LEVEL I
I CLASS ~, - PROTOCOL- - 7 1 • 1/0 PROTOCOL I
I DRIVER I 1 A I SERVER I

r:I __
1 _3~-+------I ---~·--h

41 11 · 2-r- 5l ! 1Fig. f
I I I

I I PORT 1--!_ SOMMUNICATIONS_ J. • PORT 11
I SERVER I PROTOCOL 1 SERVER I

I t ____ _: ____ J ~----- ____ JI
I 71 l'o
I

a-1- PORT J ·l PORT -n I
' COMMUNICATIONS MECHANISM 9

L___ _ ________ _J

HOST
COMPUTER

10 2

60 50
INTER- .. l -.I CONTROLLER ... I .,.

FACE

40

DISK
DRIVE Fig.2

c .
V) .
~
(t)

a

f -Vl .. -\0
00
~

en
:r
~
~ -0
"°') -~
~ ,.
~
~

"° ,.
' / io-6 --v 00

20 t-.)

,----------- -1 ----------

' - I I - - - - - ~aoe I
I ~MMAND ~ERRllPT ~ I

1

RESPONSE 1NTERRilPT eoc I

- - - 81A I
I 80A RESPONSERING - 800 I
I -----10 - - - TRANSITION I

CPU

90

- - - - - - INDICATOR j 36
------ I

COMMAND RING TRANSITION
INDICATOR

I
I
I

I I
"k' II I I I

SYSTEM BUS

110
I
I
I ________ __J

I
I L I BUS ADAPTER

--- --- --
I/O BUS

HOST COMMAND RING PTR

HOST RESPONSE RING PTR

32 -,
34 I
1 I

BUFFER
I

• • •

60

BUFFER
N

~
I I
I I 31

PROCESSOR

37

IP

SA

38

Fig. 3A

c
•
Vl .
~ a
(t>

= """'"

a:
~ -V\
~ -'° 00
~

c.n
:r
(1)
(1)
N

Si -~
~ ..
~
~
\0 ..
........
00
N

Fig. 38

~B+~
(EMPTY)

135

139

135

Fig. 3C

~
en .
~
f""t"
O>
=:s
f""t"

~
~ -Vt
~ -\0
00
~

Cl.>
:r
('!)

~
VJ

~ -~
~

"' ~
~
\0
"' 1--l
00
N

U.S. Patent May 15, 1984 Sheet 4 of 14

CONTROLLER

ENTER

I

I
NO I

I
204 I

I

WRITE RESPONSE I
TO REsPgNsE RING; I SET II " & "F"

BITS I

Fig. 4A

NO

210

4,449,182

PORT

YES

GENERATE
INTERRUPT

REQUEST

TO FIG. 48

U.S. Patent May 15, 1984

NO

Sheet 5 of 14

YES 214

SERVICE
INTERRUPT & PROCESS

RESPONSE

UPDATE HOST'S
RING POINTER

TO FIG. 4C

Fig. 48

216

4,449,182

U.S. Patent May 15, 1984

YES
224

PUT COMMAND
ADDRESS IN

C. RING ENTRY

SET FLAG

230

SET 11 011

WRITE TO IP

AFTER COMMAND SENT.
UPDATE RING

TO FIG. 6

Sheet 6 of 14 4,449,182

220 222

IF 1ST TIME. REI NIT.
START TIMER TIME-OUT CONTROLLER

STOP

Fig. 5

U.S. Patent May 1s, 1984

242

Fig. 6

Sheet 7 of 14

FROM FIG. 5

CONTROLLER DETECTS 234
HOST WRITE TO

IP

READ INTO BUFFER

SET FLAG BIT;
CHANGE OWNERSHIP

BIT

INTERRUPT

INCREMENT 250
POINTER

4,449,182

U.S. Patent May 15, 1984 Sheet 8 of 14

254

256

258

252
RINGBAS

RINGBASE•2

RINGBASE•2

RINGBASE•2M•2

-4

~
-3

-=2
---1

~
+1

N-1

N

N-2

15 8 7

RESERVED

ADP CH RSVD

GMO INT

RSP INT

f- RSP DSC 0

I- RSP DSC tJ

I- CMD DSC 0

I- CMD DSC M

Fig. 7

0

~

-

-

-

}~
}~

800

SOE

4,449,182

U.S. Patent May 1s, 1984

15
260'-.,

0 F

J 1
27 8 280

15

RESERVED

Fig. 8

Sheet 9 of 14 4,449,182

0

0 ~ 262

Q Q Q Q u u . ~

276T) 2J 7 2J J
274 270 266

8 7 4 3 IJ

-2

286
-1

MSG LENGTH ,2so
~ 282

-~
,

~:
CONNECTION ID MSGTYP CREDITS

288

TEXT•0 MB1 MB0 .p

+1 MB3 MB2

284m J
MB•-1 MBn-2

Fig. 9

0

298,
ADAPTER CHANNEL RSV Q Q Q Q u u

. ~ ~

. ~ol:{ 300'Ti941
Fig. 10 306 3(2 296

U.S. Patent May 15, 1984 Sheet 10 of 14 4,449,182

15 11 10 0
38._ E s s s s INTERRUPT VARIES R 4 3 2 1

318 314 310 320
316 312

Fig. II

31 0

-1-· 420
I- ZEROES -

422 4 ~

/
000012 (8) 000400 (8) .. ~ 22A

422A

~ CONTROLLER IDENTIFIER -
- 424 t-

ERROR CODE CHVRSN CSVRSN 426 v
..L

7 426A J 4268 .I 426C

Fig. I~

U.S. Patent May 1s, 1984

l:il1S.1

336

1514 13

322

334

HARD INIT.
OF

CONTROLLER

SENSE S1
SET;

READ SA REGISTER

WRITE SA REGISTER
1110 8 7 6 0

Sheet 11 of 14 4,449,182

PORT /CONTROLLER

324

SENSE INIT.s RUN
MINIMUM INTEGRITY

DIAGNOSTICS

INITIALIZATION
STEP 1: 326

WRITE SA REGISTER:

10 9 8 7

N Q D
0 0 ¢ 0 1 V B I RESERVED

328
330

1 W C RNG R RNG I INT VECTOR
R LNG LNG E ·

340
338 344 346 348

342

Fig. 12A

TIME

350

READ SA REGISTER,
RUN INTEGRITY CHECK

DIAGNOSTICSs
CONDITIONALLY
INTERRUPT HOST

U.S. Patent May 1s, 1984

364

366

15

READ SA REGISTER
& VALIDATE ECHO

WRITE SA
REG'rSTER 1 ©
RINGBASE P

LO ADDRESS I

368 370

378

READ SA REGISTER
& VALIDATE

380

WRITE SA
15 14 REGISTER:

p RINGBASE
P HI ADDRESS

382 384

Sheet 12 of 14 4,449,182

CONTROLLER

INITIALIZATION
STEP 2:

352

WRITE SA REGISTER
151 413121110 8765 32

PORT W C RNG R RNG
(J 0 0 1 0 TYPE 1 R LNG LNG

362 356 354
360 358

READ SA
REGISTER

INITIALIZATION
STEP 3:

372

374

15 13 11 WRITE SA REGISTER
14 12 10 8 7 6

I INITIATE
0 0 1 0 0 RSV D E VECTOR

376

TIME
Fig. 128

U.S. Patent May 15, 1984

388

DETECT WRITING
OF SA

& WRITE TO SA

392

READ IP REGISTER
&

DISREGARD

GO TC
NO STEP 322

AND TRY
AGAIN

Sheet 13 of 14 4,449,182

386

READ SA
REGISTER

& WRITE ZEROES

390

VERIFY
HOST WROTE

TO SA

394

VERIFY
HOST

READ IP

INIT. STEP 4: 398

WRITE SA REGISTER:
15 10 8 7 0

~ 1 0 © 0 RSVD CTRLR µCODE VERS

400

TIME

Fig. /2C

U.S. Patent May 15, 1984

402

READ SA REGISTER
&

VALIDATE ~CODE
VERSION

404

15
WRITE SA REGISTER

8 7

RESERVED BURST

Sheet 14 of 14 4,449,182

2 1 0
L G
F 0

TIME

Fig. 12D

405

READ SA REGISTER;
!NIT. COMPLETE,

START OPERATIONAL
µCODE

1
4,449,182

2
controller, the less detailed the commands which the
central processing unit must issue to it and the less de­
pendent the controller is on the host CPU for step-by­
step instructions. Typically, controllers communicate

INTERFACE BETWEEN A PAIR OF PROCESSORS,
SUCH AS HOST AND

PERIPHERAL-CONTROLLING PROCESSORS IN
DATA PROCESSING SYSTEMS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application relates to a data processing system,
other aspects of which are described in the following
commonly assigned applications filed on even date
herewith, the disclosures of which are incorporated by
reference herein to clarify the environment, intended
use and explanation of the present invention:

5 with a host CPU at least partially by means of an inter­
rupt mechanism. That is, when one of a predetermined
number of significant events occurs, the controller gen­
erates an interrupt request signal which the host sees a
short time later; in response, the host stops what it is

10 doing and conducts some dialogue with the controller
to service the controller's operation. Every interrupt
request signal generated by the controller gives rise to a
delay in the operation of the central processor. It is an
object of the present invention to reduce that delay by

Ser. No. 308,771, titled Disk Format for Secondary
Storage System and Ser. No. 308,593, titled Secondary
Storage Facility Employing Serial Communication Be­
tween Drive and Controller.

15 reducing the frequency and number of interrupt re­
quests.

FIELD OF THE INVENTION 20

When an intelligent controller is employed, a further
problem is to interlock or synchronize the operation of
the processor in the controller with the operation of the
processor in the host, so that in sending commands and
responses back and forth, the proper sequence of opera­
tion is maintained, race conditions are avoided, etc.
Normally this is accomplished by using a communica-

This invention relates to the field of data processing
systems and, in particular to an interface between a host
processor and a controlling processor for a storage
facility or other peripheral device or subsystem in such
systems.

BACKGROUND OF THE INVENTION

25 tions mechanism (i.e., bus) which is provided with a
hardware interlock capability, so that each processor
can prevent the other from transmitting out of turn or at
the wrong time.

In data processing systems utilizing secondary stor­
age facilities, communication between the host proces­
sor, or main frame, and secondary storage facilities has 30
a considerable impact on system performance. Second­
ary storage facilities comprise elements which are not
an integral part of a central processing unit and its ran­
dom access memory element (i.e., together termed the
host), but which are directly connected to and con- 35
trolled by the central processing unit or other elements
in the system. These facilities are also known as "mass
storage" elements or subsystems and include, among
other possibilities, disk-type or tape-type memory units
(also called drives). 40

In modem data processing systems, a secondary stor­
age facility includes a controller and one or more drives
connected thereto. The controller operates in response
to signals from the host, usually on an input/output bus
which connects together various elements in the system 45
including the central processing unit. A drive contains
the recording medium (e.g., a rotating magnetic disk),
the mechanism for moving the medium, and electronic
circuitry to read data from or store data on the medium
and also to convert the data transferred between the 50
medium and the controller to and from the proper for­
mat.

The controller appears to the rest of the system as
simply an element on the input/output bus. It receives
commands over the bus; these commands include infor- 55
mation about the operation to be performed, the drive
to be used, the size of the transfer and perhaps the start­
ing address on the drive for the transfer and the starting
address on some other system element, such as the ran­
dom access memory unit of the host. The controller 60
converts all this command information into the neces­
sary signals to effect the transfer between the appropri­
ate drive and other system elements. During the transfer
itself, the controller routes the data to or from the ap­
propriate drive and to or from the input/output bus or 65

a memory bus.
Controllers have been constructed with varying lev­

els of intelligence. Basically, the more intelligent the

Modern controllers for secondary storage facilities
are usually so-called "intelligent" devices, containing
one or more processors of their own, allowing them to
perform sophisticated tasks with some degree of inde­
pendence. Sometimes, a processor and a controller will
share a resource with another processor, such as the
host's central processor unit. One resource which may
be shared is a memory unit.

It is well known that when two independent proces-
sors share a common resource (such as a memory
through which the processors and the processes they
execute may communicate with each other), the opera­
tion of the two processors (i.e., the execution of pro-
cesses or tasks by them) must be "interlocked" or "syn­
chronized," so that in accessing the shared resource, a
defined sequence of operations is maintained and so­
called "race" conditions are avoided. That is, once a
first processor starts using the shared resource, no other
processor may be allowed to access that resource until
the first processor has finished operating upon it. Opera­
tions which otherwise might have occurred concur­
rently must be constrained to take place seriatim, in
sequence. Otherwise, information may be lost, a proces-
sor may act upon erroneous information, and system
operation will be unreliable. To prevent this from hap­
pening, the communications mechanism (i.e., bus)
which links together the processors and a shared re­
source typically is provided with a hardware "inter-
lock" or synchronization capability, by means of which
each processor is prevented from operating on the
shared resource in other than a predefined sequence.

In the prior art, three interlock mechanisms are
widely known for synchronizing processors within an
operating system, to avoid race conditions. One author
calls these mechanisms (1) the test-and-set instruction
mechanism, (2) the wait and signal mechanism and (3)
the P and V operations mechanism. S. Madnick and J.
Donovan, Operating Systems, 4-5.2 at 251-55
(McGraw Hill, Inc., 1974). That text is hereby incorpo­
rated by reference for a description and discussion of

3
4,449,182

those mechanisms. Another author refers to three tech­
niques for insuring correct synchronization when multi­
ple processors communicate through a shared memory
as (!) process synchronization by semaphores, (2) pro­
cess synchronization by monitors and (3) process syn- 5
chronization by monitors without mutual exclusion. C.
Weitzman, Distributed Micro/Mini Computer Systems:
Structure, Implementation and Application, 3.2 at
103-14 (Prentice Hall, Inc., 1980). That text is hereby
incorporated by reference for a description and discus- 10
sion of those techniques. When applied to multiple pro­
cessors which communicate with a shared resource by a
bus, such mechanisms impose limitations on bus charac­
teristics; they require, for example, that certain com­
pound bus operations be indivisible, such as an opera- 15

tion which can both test and set a so-called "sema­
phore" or monitor without being interrupted while
doing so. These become part of the bus description and
specifications.

If the testing of a semaphore were done during one 20

bus cycle and the setting during a different bus cycle,
two or more processors which want to use a shared
resource might test its semaphore at nearly the same
time. If the semaphore is not set, the processors all will

25 see the shared resource as available. They will then try
to access it; but only one can succeed in setting the
semaphore and getting access; each of the other proces­
sors, though, having already tested and found the re­
source available, would go through the motions of set- 30
ting the semaphore and reading or writing data without
knowing it had not succeeded in setting the semaphore
and accessing the resource. The data thus read will be
erroneous and the data thus written could be lost.

4
!er and host which permits the host to verify correct
operation of the controller at the time of initialization.

Still another object of the invention is to provide a
communications mechanism which minimizes the gen­
eration of host interrupts by the controller during peak
input/output loads.

Still another object of this invention is to provide an
interface between host and controller which allows for
parallel operation of multiple devices attached to an
individual controller, with full duplexing of operation
initiation and completion signals.

SUMMARY OF THE INVENTION

In accordance with this invention, the host-controller
interconnection is accomplished through an interface
which includes a set of data structures employing a
dedicated communications region in host memory. This
communications region is operated on by both the host
and the peripheral controller in accordance with a set of
rules discussed below. Basically, this interface has two
layers: (I) a transport mechanism, which is the physical
machinery for the bi-directional transmission of words
and control signals between the host and the controller
and (2) a port, which is both hardware for accomplish­
ing exchanges via the transport mechanism and a pro-
cess implementing a set of rules and procedures govern­
ing those exchanges. This port "resides" partly in the
host and partly in the controller and has the purposes of
facilitating the exchange of control messages (i.e., com­
mands and responses) and verifying the correct opera-
tion of the transport mechanism.

Commands and responses are transmitted between
the host and a peripheral controller as packets, over an
input/output bus of the host, via transfers which do not
require processor interruption. These transfers occur to
and from the dedicated communication region in the
host memory. The port polls this region for commands
and the host polls it for responses. A portion of this

Not all buses, though, are designed to allow imple- 35
mentation of such indivisible operations, since some
buses were not designed with the idea of connecting
multiple processors via shared resources. Consequently,
such buses are not or have not been provided with
hardware interlock mechanisms. 40 communication region comprises a command (i.e.,

transmission) list and another portion comprises a re­
sponse (i.e., receiving) list. An input/output operation
begins when the host deposits a command in the com-

When a bus does not have such a capability, resort
frequently has been made to use of processor interrupts
to control the secondary storage facility, or some com­
bination of semaphores and interrupts (as in the Carne­
gie-Mellon University C.mpp multi-minicomputer sys- 45
tern described at pages 27-29 and 110-111 of the above­
identified book by Weitzman), but those approaches
have their drawbacks. If multiple processors on such a
bus operate at different rates and have different opera­
tions to perform, at least one processor frequently may so
have to wait for the other. This aggrevates the slow­
down in processing already inherent in the use of inter­
rupt control with a single processor.

A further characteristic of prior secondary storage
facilities is that when a host initially connects to a con- 55
troller, it usually assumes, but cannot verify, that the
controller is operating correctly.

Therefore, it is an object of this invention to improve
the operation of a secondary storage facility including a
controller and a drive. 60

A further object of this invention is to provide such a
facility with an improved method for handling host­
controller communications over a bus lacking a hard­
ware interlock capability, whereby the processor in the
host and controller can operate at different rates with 65
minimal interrupts and avoidance of race conditions.

Another object of this invention is to provide a com­
munications mechanism for operation between control-

mand list. The operation is seen as complete when the
corresponding response packet is removed by the host
from the response list.

More specifically, the communications region of host
memory consists of two sections: (I) a header section
and (2) a variable-length section. The header section
contains interrupt identification words. The variable­
length section contains the response and command lists,
organized into "rings". A "ring" is a group of memory
locations which is addressable in rotational (i.e., mod­
ulo) sequence, such that when an incrementing counter
(modulo-buffer-size) is used for addressing the buffer,
the address of the last location is the sequence is fol-
lowed next by the address of the first location. Each
buffer entry, termed a descriptor, includes (1) an ad­
dress where a command may be found for transmission
or where a response is written, as appropriate, and (2) a
so-called "ownership" byte (which in its most elemen-
tary form reduces to a sigle ownership bit) which is
used by the processors to contrail access to the entry.

Because of properties which will be outlined below,
the port may be considered to be effectively integral
with the controller; all necessary connections between
the host and peripheral can be established by the port­
/controller when it is initialized.

l,449.182
5

The port can itself generate processor interrupts; this
happens at the option of the host only when the com­
mand ring makes a transition from a full to a not-full
condition or when the response ring makes the converse
transition from empty to non-empty. Thus, the rings 5
buffer the asynchronous occurrence of command and
response packets, so that under favorable conditions
long strings of commands, responses and exchanges can
be passed without having to interrupt the host proces­
sor. 10

An input/output operation begins when the host
deposits a command into the command list. The opera­
tion is seen as complete when the corresponding re­
sponse is removed by the host from the response list.
Only the host writes into the command ring (i.e., list) 15
and only the controller writes into the response ring.
The "ownership" bit for each ring entry is set to a first
state by the processor which writes the ring entry and is
cleared from that state by the other processor only after
the command has been sent or the response read. In 20

addition, after writing an entry, the same processor
cannot alter it until the other processor has cleared that
entry's ownership bit.

By organizing the command and response lists into
25

rings and controlling their operation through a rigid
sequential protocol which includes an ownership byte
(or bit) for each ring entry and rules for setting and
clearing the ownership byte, the host and controller
processors are allowed to operate at their own rates and 30
the need for a hardware bus interlock in avoided. This
allows the system to utilize, for example, the UNIBUS
communication interconnection of Digital Equipment
Corp., Maynard, Mass., which is an exemplary bus
lacking a hardware interlock feature. 35

6
FIG. 9 is a diagrammatic illustration of the command

and response message envelopes;
FIG. 10 is a diagrammatic illustration of a buffer

description according to the present invention;
FIG. 11 is a diagrammatic illustration of the status

and address (SA) register 3B of FIG. 3A;
FIGS. 12A-12D are flow charts of the port/con­

troller initialization sequence according to this inven­
tion; and

FIG. 13 is a diagrammatic illustration of the "last fail"
response packet of this invention.

DETAILED DESCRIPTION OF AN
ILLUSTRATIVE EMBODIMENT

The present invention sees particular utility in a data
processing system having an architectural configuration
designed to enhance development of future mass stor­
age systems, at reduced cost. Such a system is shown in
FIG. 1. In this system, a high level protocol (indicated
at lA) is employed for communications between a host
computer 1 and intelligent mass storage controller to.
Such a high level protocol is intended to free the host
from having to deal with peripheral device-dependent
requirements (such as disk geometry and error recovery
strategies). This is accomplished in part through the use
of a communications hierachy in which the host com-
municates with only one or two peripheral device
"class" drivers, such as a driver 4 instead of a different
1/0 driver for each model of peripheral device. For
example, there may be one driver for all disk class de­
vices and another for all tape class devices.

Each class driver, in turn, communicates with a de-
vice controller (e.g., 2) through an interface mechanism
10. Much of the interface mechanism 10 is bus-specific.
Therfore, when it is desired to connect a new mass
storage device to the system, there is no need to change
the host's input/output processes or operating system,
which are costly (in time, as well as money) to develop.
Only the controller need be modified to any substantial

These and other features, advantages and objects of
the present invention will become more readily appar­
ent from the following detailed description, which
should be read in conjunction with the accompanying
drawings.

BRIEF DESCRIPTION OF THE DRAWING

FIG. 1 is a conceptual block diagram of a system
employing an architecture in which the present inven­
tion sees utility;

40 degree, which is far less expensive. And much of that
cost can be averted if the controller and host are made
self-adaptive to certain of the storage device's charac­
teristics, as explained in the above-identified commonly

FIG. 2 is a basic block diagram of a data processing
system in which the present invention may be em­
ployed;

FIG. 3A is a system block diagram of an illustrative
embodiment of a data processing system utilizing the
interface of the present invention;

FIGS. 38 and 3C are diagrammatic illustrations of a
ring BOD or BOE of FIG. 3A.

FIGS. 4A and 48 are elementary flow diagrams illus­
trating the sequence of events when the controller
wishes to send a response to the host;

FIG. 5 is an elementary flow diagram showing the
sequence of events when the host issues a command to
the controller;

FIG. 6 is a similar flow diagram showing the control­
ler's action in response to the host's issuance of a com­
mand;

FIG. 7 is a diagrammatic illustration of the communi­
cations area of host memory, including the command
and response rings;

FIG. B is a diagrammatic illustration of the formatted
command and response descriptors which comprise the
ring entries;

45
assigned applications.

Device classes are determined by their storage and
transfer characteristics. For example a so-called "disk
class" is characterized by a fixed block length, individ­
ual block update capability, and random access. Simi­
larly a so-called "tape class" is characterized by a vari-

50 able block length, lack of block update capability, and
sequential access. Thus, the terms "disk" and "tape" as
used herein refer to devices with such characteristics,
rather than to the physical form of the storage medium.

Within the framework of this discussion, a system
55 comprises a plurality of subsystems interconnected by a

communications mechanism (i.e. a bus and associated
hardware). Each subsystem contains a port driver, (4 or
5) which interfaces the subsystem to the communica­
tions mechanism. The communications mechanism con-

60 tains a port (B or 9) for each subsystem; the port is sim­
ply that portion of the communications mechanism to
which a port driver interfaces directly.

FIG. 1 illustrates an exemplary system comprising a
host 1 and an intelligent mass storage controller 2. Host

65 1 includes a peripheral class driver 3 and a port driver 4.
Controller 2, in turn, includes a counterpart port driver
5 and an associated high-level protocol server 2. A
communications mechanism 7 connects the host to the

7
4,449, 182

8
parallel information exchanges synchronous with a
common system clock. A bus adapter 110 translates and

controller, and vice-versa. The communications mecha­
nism includes a port (i.e., interface mechanism) (8,9) for
each port driver.

The port drivers 4 and 5 provide a standard set of
communications services to the processes within their 5
subsystems; port drivers cooperate with each other and
with the communications mechanism to provide these
services. In addition, the port drivers shield the physical
characteristics of the communications mechanism from
processes that use the communications services.

· transfers signals between the system bus 90 and the
host's input/output (1/0) bus 60. For example, the 1/0
bus 60 may be the UNIBUS 1/0 connection, the system
bus may be the syncronous backlane interconnection
(SDI) of the VAX-11/780 computer, and the bus
adapter 110 may be the Model DW780 UNIBUS
Adapter, all Digital Equipment Corporation products.

10 Controller 30 includes several elements which are
Class driver 3 is a process which executes within host

1. Typically, a host class 1/0 driver 3 communicates
with a counterpart in the controller 2, called a high­
level protocol server, C'i.

The high-level protocol server C'i processes host com- 15
mands, passes commands to device-specific modules
within the controller, and sends responses to host com­
mands back to the issuing class driver.

In actual implementation, it is also possible for the
functions of the controller-side port driver 5 and port 9 20
to be performed physically at the host side of the com­
munications mechanism 7. This is shown in the example
described below. Nevertheless, the diagram of FIG. 1
still explains the architectural concepts involved.

Note also that for purposes of the further explanation 25
which follows, it is generally unnecessary to distinguish
between the port and its port driver. Therefore, unless
the context indicates otherwise, when the word "port"
is used below, it presumes and refers to the inclusion of
a port driver, also. JO

Referring now to FIG. 2, there is shown a system
level block diagram of a data processing system utiliz­
ing the present invention. A host computer 1 (including
an interface mechanism 10) employs a secondary stor­
age subsystem 20 comprising a controller 30, a disk 35
drive 40 and a controller-drive interconnection cable
50. The host 1 communicates with the secondary stor­
age subsystem 20 over an input/output bus 60.

FIG. 3A expands the system definition to further
explain the structure of the host 1, controller 30 and 40
their interface. As illustrated there, the host 1 comprises
four primary subunits: a central processor unit (CPU)
70, a main memory SO, a system bus 90 and a bus adapter
110.

A portion SOA of memory SO is dedicated to service 45
as a communications region for accessing the remainder
of memory 80. As shown in FIG. 3A, communications
area 80A comprises four sub-regions, or areas. Areas
808 and 80C together form the above-indicated header
section of the communications area. Area SOB is used 50
for implementing the bus adapter purge function and
area 80C holds the ring transition interrupt indicators
used by the port. The variable-length section of the
communications region comprises the response list area
SOD and the command list area SOE. The lists in areas 55
SOD and SOE are organized into rings. Each entry, in
each ring, in tum, contains a descriptor (see FIG. 10)
pointing to a memory area of sufficient size to accom­
modate a command or response message packet of pre-
determined maximum length, in bytes. 60

Host 1 may, for example, be a Model VAX-111780 or
PDP 11 computer system, marketed by Digital Equip­
ment Corporation of Maynard, Mass.

System bus 90 is a bi-directional information path and
communications protocol for data exchange between 65
the CPU 70, memory SO and other host elements which
are not shown (so as not to detract from the clarity of
this explanation). The system bus provides checked

used specifically for communicating with the host 1.
There are pointers 32 and 34, a command buffer 36 and
a pair of registers, 37 and 38. Pointers 32 and 34 keep
track of the current host command ring entry and the
host response ring entry, respectively. Command buff­
ers 36 provide temporary storage for commands await­
ing processing by the controller and a pair of registers
37 and 38. Register 37, termed the "IP" register, is used
for initialization and polling. Register 38, termed the
"SA" register, is used for storing status and address
information.

A processor 31 is the "heart" of the controller 30; it
executes commands from buffer 36 and does all the
housekeeping to keep communications flowing between
the host 1 and the drive 40.

The physical realization of the transport mechanism
includes the UNIBUS interconnection (or a suitable
counterpart) 60, system bus 90 and any association host
and/or controller-based logic for adapting to same,
including memory-bus interface 82, bus adapter 110,
and bus-controller interface 120.

The operation of the rings may be better understood
by referring to FIGS. JD and 3C, where an exemplary
four entry ring 130 is depicted. This ring may be either
a command ring or a response ring, since only their
application differs. Assume the ring 130 has been oper­
ating for some time and we have started to observe it at
an arbitrarily selected moment, indicated in FIG. 38.
There are four ring entry positions 132-138, with con­
secutive addresses RB, RB+ I, RB+4, respectively.
Each ring entry has associated with it an ownership bit
(133, 135, 137, 139) which is used to indicate its status.
A write pointer (WP), 142, points to the most recent
write entry; correspondingly, a read pointer (RP), 144,
points to the most recent read entry. In, FIG. 3B, it will
be seen that entry 138 has been read, as indicated by the
position of RP 144 and the state of ownership bit 139.
By convention, the ownership bit is set to 1 when a
location has been filled (i.e., written) and to 0 when it
has been emptied (i.e., read). The next entry to be read
is 132. Its ownership bit 133 is set to 1, indicating that it
already has been written. Once entry 132 is read, its
ownership bit is cleared, to 0, as indicated in FIG. 3C.
This completely empties the ring 130. The next entry
134 cannot be read until it is written and the state of
ownership bit 135 is changed. Nor can entry 132 be
re-read accidentally, since its ownership bit has been
cleared, indicating that it already has been read.

Having thus provided a block diagram explanation of
the invention, further understanding of this interface
will require a brief digression to explain packet commu­
nications over the system.

The port is a communications mechanism in which
communications take place between pairs of processes
resident in separate subsystems. (As used herein, the
term "subsystems" include the host computers and de­
vice controllers; the corresponding processes are host-

9
4,449,182

resident class drivers and controller-resident protocol
servers.)

10
datagram is either processed immediately or discarded,
which possibility explicitly is permitted by the rules of
that service. By contrast, the Sequential Message ser-
vice does use flow control. Each potential receiving
process reserves, or pre-allocates, some number of buff­
ers into which messages may be received over its con-
nection. This number is therefore the maximum number
of messages which the sender may have outstanding and
unprocessed at the receiver, and it is communicated to

Communications between the pair of processes take
place over a "connection" which is a soft communica­
tions path through the port; a single port typically will 5
implement several connections concurrently. Once a
connection has been established, the following three
services are available across that connection: (1) se­
quential message; (2) datagram; and (3) block data trans­
fer. 10 the sender by the receiver in the form of a "credit" for

the connection. When a sender has used up its available
credit, it must wait for the receiver to empty and make
available one of its buffers. The message credits machin­
ery for the port of the present invention is described in

When a connection is terminated, all outstanding
communications on that connection are discarded; that
is, the receiver "throws away" all unacknowledge mes­
sages and the sender "forgets" that such messages have
been sent. 15 detail below.

The implementation of this communications scheme
on the UNIBUS interconnection 60 has the following
characteristics: (1) communications are always point-to­
point between exactly two subsystems, one of which is
always the host; (2) the port need not be aware of map- 20
ping or memory management, since buffers are identi­
fied with a UNIBUS address and are contiguous within
the virtual buss address space; and (3) the host need
never directly initiate a block data transfer.

The port effectively is integral with the controller, 25
even though not full localized there. This result happens
by virtue of the point-to-point property and the fact that
the device controller knows the class of device (e.g.,
disk drive) which it controls; all necessary connections,
therefore, can be established by the port/controller 30
when it is initialized.

The Sequential Message service guarantees that all
messages sent over a given connection are transmitted
sequentially in the order originated, duplicate-free, and
that they are delivered. That is, messages are received 35
by the receiving process in the exact order in which the
sending process queued them for transmission. If these
guarantees cease to be met, or if a message cannot be
delivered for any reason, the port enters the so-called
"fatal error" state (described below) and all port con- 40
nections are terminated.

The Datagram service does not quarantee reception,
sequential reception of duplicate-free reception of data­
grams, though the probability of failure may be required
to be very low. The port itself can never be the cause of 45
such failures; thus, if the using processes do make such
guarantees for datagrams, then the datagram service
over the port becomes equivalent to the Sequential
Message service.

The Block Data Transfer service is used to move data 50
between named buffers in host memory and a peripheral
device controller. In order to allow the port to be un­
aware of mapping or memory management, the
"Name" of a buffer is merely the bus address of the first
byte of the buffer. Since the host never directly initiates 55
a block data transfer, there is no need for the host to be
aware of controller buffering.

Since the communicating processes are asynchro­
nous, flow control is needed if a sending process is to be
prevented from producing congestion or deadlock in a 60
receiving process (i.e., by sending messages more
quickly than the receiver can capture them). Flow con­
trol simply guarantees that the receiving process has
buffers in which to place incoming messages; if all such
buffers are full, the sending process is forced to defer 65
transmission until the condition changes. Datagram
service does not use flow control. Consequently, if the
receiving process does not have an available buffer, the

The host-resident driver and the controller provides
transport mechanism control facilities for dealing with:
(I) transmission of commands and responses; (2) sequen­
tial delivery of commands; (3) asynchronous commica­
tion; (4) unsolicited responses; (5) full duplex communi­
cation; and (6) port failure recovery. That is, com-
mands, their responses and unsolicited "responses" (i.e.,
controller-to-host messages) which are not responsive
to a command may occur at any time; full duplex com­
munication is necessary to handle the bi-directional
flow without introducing the delays and further buffer-
ing needs which would be associated with simplex com­
munications. It is axiomatic that the host issues com­
mands in some sequence. They must be fetched by the
controller in the order in which they were queued to
the transport mechanism, even if not executed in that
sequence. Responses, however, do not necessarily
occur in the same order as the initiating commands; and
unsolicited messages can occur at any time. Therefore,
asynchronous communications are used in order to
allow a response or controller-to-host message to be
sent whenever it is ready. Finally, as to port failure
recovery, the host's port driver places a timer on the
port, and reinitializes the port in the event the port times
out.

This machinery must allow repeated access to the
same host memory location, whether for reads, writes,
or any mixture of the two.

The SA and IP registers (37 and 38) are in the I/O
page of the host address space, but in controller hard­
ware. They are used for controlling a number of facets
of port operation. These registers are always read as
words. The register pair begins on a longword bound­
ary. Both have predefined addresses. The IP register
has two functions: first, when written with any value, it
causes a "hard" initialization of the port and the device
controller; second, when read while the port is operat­
ing, it causes the controller to initiate polling of the
command ring, as discussed below. The SA register 38
has four functions: first, when read by the host during
initialization, it communicates data and error informa-
tion relating to the initialization process; second, when
written by the host during initialization, it communi­
cates certain host-specific parameters to the port; third,
when read by the host during normal operation, it com­
municates status information including port- and con-
troller-detected fatal errors; and fourth, when zeroed by
the host during initialization and normal operation, it
signals the port that the host has successfully completed
a bus adapter purge in response to a port-initiated purge
request.

The port driver in the host's operating system exam­
ines the SA register regularly to verify normal port-

11
4,449,182

/controller operation. A self-detected port/controller
fatal error is reported in the SA register as discussed
below.

Transmission of Commands and Responses-Overview 5
When the controller desires to send a response to the

host, a several step operational sequence takes place.
This sequence is illustrated in FIGS. 4A and 4B. Ini­
tially, the controller looks at the current entry in the
response ring indicated by the response ring pointer 34 lo
and determines whether that entry is available to it (by
using the "ownership" bit). (Step 202.) If not, the con­
troller continues to monitor the status of the current
entry until it becomes available. Once the controller has
access to the current ring entry, it writes the response 15
into a response buffer in host memory, pointed to by
that ring entry, and indicates that the host now "owns"
that ring entry by clearing and "Ownership" bit; it also
sets a "FLAG" bit, the function of which is discussed
below. (Step 204.) 20

Next, the port determines whether the ring has gone
from an empty to a non-empty transition (step 206); if
so, a potentially interruptable condition has occurred.
Before an interrupt request is generated, however, the
port checks to ensure that the "FLAG" bit is a 1 (step 25
208); an interrupt request is signalled only on an affirma­
tive indication (Step 210).

Upon receipt of the interrupt request, the host, when
it is able to service the interrupt, looks at the current
entry in the response ring and determines whether it is 30
"owned" by the host or controller (i.e., whether it has
yet been read by that host). (Step 212.) If it is owned by
the controller, the interrupt request is dismissed as spu­
rious. Otherwise, the interrupt request is treated as
valid, so the host processes the response (Step 214) and 35
then updates its ring pointer (Step 216).

Similar actions take place when the host wants to
send a command, as indicated in FIG. 5. To start the
sequence, the host looks at the current command ring
entry and determines whether that ring entry is owned 40
by the host or controller. (Step 218.) If it is owned by
the controller, the host starts a timer (Step 220.) {pro­
vided that is the first time it is looking at that ring en­
try), if the timer is not stopped {by the command ring
entry becoming available to the host) and is allowed to 45
time out, a failure is indicated; the port is the reinitial­
ized. (Step 222.) If the host owns the ring entry, how­
ever, it puts the packet address of the command in the
current ring entry. (Step 224.) If a command ring trans-
fer interrupt is desired (step 226), the FLAG bit is 50
set= 1 to so indicate (step 228). The host then sets the
"ownership" bit= 1 the ring entry to indicate that there
is a command in that ring entry to be acted upon. (Step
230.) The port is then told to "poll" the ring (i.e., the
host reads the IP register, which action is interpreted by 55
the port as a notification that the ring contains one or
more commands awaiting transmission; in response, the
port steps through the ring entries one by one until all
entries awaiting transmission have been sent. (Step 232.)

The host next determines whether it has additional 60
commands to send. (Step 233.) If so, the process is re­
peated; otherwise, it is terminated.

In responding to the issuance of a command (see FIG.
6), the port first detects the instruction to poll (i.e., the
read operation to the IP register). (Step 234.) Upon 65
detecting that signal, the port must determine whether
there is a buffer available to receive a command. (Step
236.) It waits until the buffer is available and then reads

12
the current ring entry to determine whether that ring
entry is owned by the port or host. (Step 238.) If owned
by the port, the command packet is read into a buffer.
(Step 240.) The FLAG bit is then set and the "owner­
ship" bit in the ring entry is changed to indicate host
ownership. (Step 242.) If not owned by the port, polling
terminates.

A test is then performed for interrupt generation.
First the port determines whether the command ring
has undergone a full to not-full transition. (Step 244.) If
so, the port next determines whether the host had the
FLAG bit set. (Step 246.) If the FLAG bit was set, an
interrupt request is generated. (Step 248.) The ring
pointer is then incremented. (Step 250.)

Response packets continue to be removed after the
one causing an interrupt and, likewise, command pack­
ets continue to be removed by the port after a poll.

The Communications Area

The communications area is aligned on a 16-bit word
boundary whose layout is shown in FIG. 7. Addresses
for the words of the rings are identified relative to a
"ringbase" address 252. The words in regions SOB, SOC
whose addresses are ringbase-3, ringbase-2 and ring­
base-1 (hereinafter designated by the shorthand [ring­
base-3), etc., where the brackets should be read as the
location "whose address is") are used as indicators
which are set to zero by the host and which are set
non-zero by the port when the port interrupts the host,
to indicate the reason for the interrupt. Word [ringbase-
3) indicates whether the port is requesting a bus adapter
purge; the non-zero value is the adapter channel number
contained in the high-order byte 254 and derived from
the triggering command. (The host responds by per­
forming the purge. Purge completion is signalled by
writing zeros to the SA register).

Word 256 [ringbase-2] signals that the command
queue has transitioned from full to not-full. Its non-zero
value is predetermined, such as one. Similarly, word
258 [ringbase-19 indicates that the response queue has
transitioned from empty to not-empty. Its non-zero
value also is predetermined (e.g., one).

Each of the command and response lists is organized
into a ring whose entries are 32-bit descriptors. There­
fore, for each list, after the last location in the list has
been addressed, the next location in sequence to be
addressed is the first location in the list. That is, each list
may be addressed by a modulo-N counter, where N is
the number of entries in the ring. The length of each
ring is determined by the relative speeds with which the
host and the port/controller generate and process mes­
sages; it is unrelated to the controller command limit.
At initialization time, the host sets the ring lenghts.

Each ring entry, or formatted descriptor, has the
layout indicated in FIG. 8. In the low-order 16-bit (260),
the least significant bit, 262, is zero; that is, the envelope
address [text+O} is word-aligned. The remaining low­
order bits are unspecified and vary with the data. In the
high-order portion 264 of the descriptor, the letter "U"
in bits 266 and 268 represent a bit in the high-order
portion of an 18-bit UNIBUS (or other bus) address.
Bits 270-276, labelled "Q", are available for extending
the high-order bus address; they are zero for UNIBUS
systems. The most significant bit, 278, contains the
"ownership" bit ("O") referred to above; it indicates
whether the descriptor is owned by the host (0= I), and
acts as an interlock protecting the descriptor against
premature access by either the host or the port. The

13
4.449, l 82

next lower bit, 280, is a "FLAG" bit (labelled "F")
whose meaning varies depending on the state of the
descriptor. When the port returns a descriptor to the
host, it sets F= 1, indicating that the descriptor is full
and points to response. On the other hand, when the 5
controller acquires a descriptor from the host, F = 1
indicates that the host wants a ring transition interrupt
due to this slot. It assumes that transition interrupts
were enabled during initialization and that this particu-
lar slot triggers the ring transition. F=O means that the 10
host does not want a transition host interrupt, even if
interrupts were enabled during initialization. The port
always sets F= 1 when returning a descriptor to the
host; therefore, a host desiring to override ring transi­
tion interrupts must always clear the FLAG bit when 15
passing ownership of a descriptor to the port.

Message Envelopes

As stated above, messages are sent as packets, with an
envelope address pointing to word [text+ O] of a 16-bit, 20
word-aligned message envelope formatted as shown in
FIG. 9.

The MSG LENGTH field 282 indicates the length of
the message text, in bytes. For commands, the length
equals the size of the command, starting with [text +O]. 25
For responses, the host sets the length equal to the size
of the response buffer, in bytes, starting with [text+O].
By design, the minimum acceptable size is 60 bytes of
message text (i.e., 64 bytes overall).

The message length field 282 is read by the port be- 30
fore the actual transmission of a response. The port may
wish to send a response longer than the host can accept,
as indicated by the message length field. In that event, it
will have to break up the message into a plurality of
packets of acceptable size. Therefore, having read the 35
message length field, the controller then sends a re­
sponse whose length is either the host-specified message
length or the length of the controller's response, if
smaller. The resulting value is set into the message
length field and sent to the host with the message 40
packet. Therefore, the host must re-initialize the value
of that field for each proposed response.

14
has a value of one, then the class driver may issue only
an immediate-type command. If the account balance is
zero, the class driver may not issue any commands at
all.

The class driver remembers the number M in its
"credit account". Each time the class driver queues a
command, it decrements the credit account balance by
one. Conversely, each time the class driver receives a
response, it increments the credit account balance by
the value contained in the credits field of that response.
For unsolicited responses, this value will be zero, since
no command was executed to evoke the response; for
solicited responses, it normally will be one, since one
command generally gives one to one response.

For a controller having M greater than 15, responses
beyond the first will have credits greater than one,
allowing the controller to "walk" the class driver's
credit balance up to the correct value. For a well­
behaved class driver, enlarging the command ring be­
yond the value M + l provides no performance benefits;
in this situation command ring transition interrupts will
not occur since the class driver will never fill the com­
mand ring.

The Ownership Bit

The ownership bit 278 in each ring entry is like the
flag on an old-fashioned mailbox. The postman raised
the flag to indicate that a letter had been put in the box.
When the box was emptied, the owner would lower the
flag. Similarly, the ownership bit indicates that a mes­
sage has been deposited in a ring entry, and whether or
not the ring entry (i.e., mailbox) has been emptied. Once
a message is written to a ring entry, that message must
be emptied before a second message can be written over
the first.

For a command descriptor, the ownership bit "O" is
changed from zero to one when the host has filled the
descriptor and is releasing it to the port. Conversely,
once the port has emptied the command descriptor and
is returning the empty slot to the host, the ownership bit
is changed from one to zero. That is, to send a command
the host sets the ownership bit to one; the port clears it
when the command has been received, and returns the
empty slot to the host.

To guarantee that the port/controller sees each com­
mand in a timely fashion, whenever the host inserts a
command in the command ring, it must read the IP
register. This forces the port to poll if it was not already
polling.

For a response descriptor, when the ownership bit 0
undergoes a transition from one to zero, that means that
the port has filled the descriptor and is releasing it to the
host. The reverse transition means that the host has
emptied the response descriptor and is returning the

The message text is contained in bytes 284a-284m,
labelled MBj. The "connection id" field 286 identifies
the connection serving as source of, or destination for, 45
the message in question. The "credits" field 288 gives
the credit value associated with the message, which is
discussed more fully below. The "msgtyp" field 290
indicates the message type. For example, a zero may be
used to indicate a sequential message, wherein the cred- 50
its and message length fields are valid. A one may indi­
cate a datagram, wherein the credits field must be zero,
but message length is valid. Similarly, a two may indi­
cate a credit notification, with the credits field valid and
the message length field zero. 55 empty slot to the port. Thus, to send a response the port

clears the ownership bit, while and the host sets it when
the response has been received, and returns the empty
slot to the port.

Message Credits

A credit-based message limit mechanism is employed
for command and response flow control. The credits
field 288 of the message envelope supports credit- 60
accounting algorithm. The controller 30 has a buffer 36
for holding up to M commands awaiting execution. In
its first response, the controller will return in the credits
field the number, M, of commands its buffer can hold.
This number is one more than the controller's accep- 65
tance limit for non-immediate commands; the "extra"
slot is provided to allow the host always to be able to
issue an immediate-class command. If the credit account

Just as the port must poll for commands, the host
must poll for responses, particularly because of the
possibility of unsolicited responses.

Interrupts

The transmission of a message will result in a host
interrupt if and only if interrupts were armed (i.e., en­
abled) suitably during initialization and one of the fol­
lowing three conditions has been met: (1) the message
was a command with flag 280 equal to one (i.e., F= 1),

15
4,449,182

and the fetching of the command by the port caused the
command ring to undergo a transition from full to not­
full; (2) if the message was a response with F = 1 and the
depositing of the message by the port caused the re­
sponse ring to make a transition from empty to not- 5
empty; or (3) the port is interfaced to the host via a bus
adapter and a command required the port/controller to
re-access a given location during data transfer. (The
latter interrupt means that the port/controller is re­
questing the host to purge the indicated channel of the IO
bus adapter.)

Port Polling

The reading of the IP register by the host causes the
port/controller to poll for commands. The port/con- 15
troll er begins reading commands out of host memory; if
the controller has an internal command buffering capa­
bility, it will write commands into the buffer if they
can't be executed immediately. The port continues to
poll for full command slots until the command ring is 20
found to be empty, at which time it will cease polling.
The port will resume polling either when the controller
delivers a response to the host, or when the host reads
the IP register.

16
and so forth. In systems with buffered bus adapters,
which require a rigid sequencing this necessitates purg­
ing of the relevant adapter channel prior to changing
from read to write, or vice versa, and prior to breaking
an addressing sequence. Active cooperation of the host
CPU is required for this action. The port signals its
desire for an adapter channel purge, as indicated above
under the heading "The Communications Area". The
host performs the purge and writes zeroes to the SA
register 38 to signal completion.

Transmission Errors

Four classes of transmission errors have been consid­
ered in the design of this interface: (1) failure to become
bus master; (2) failure to become interrupt master; (3)
bus data timeout error; and (4) bus parity error.

When the port (controller) attempts to access host
memory, it must first become the "master" of bus 60. To
deal cleanly with the possibility of this exercise failing,
the port sets up a corresponding "last fail" response
packet (see below) before actually requesting bus ac-
cess. Bus access is then requested and if the port timer
expires, the host will reinitialize the port/controller.
The port will then report the error via the "last fail"
response packet (assuming such packets were eneable
during the reinitialization).

Correspondingly, response polling for empty slots 25
continues until all commands buffered within the con­
troller have been completed and the associated re­
sponses have been sent to the host.

A failure to become interrupt master occurs when­
ever the port attempts to interrupt the host and an ac­
knowledgement is not forthcoming. It is treated and

30 reported the same as a failure to become bus master,
although the contents of its last fail response will, of
course, be different.

Host Polling

Since unsolicited responses are possible, the host
cannot cease polling for responses when all outstanding
commands have been acknowledged, though. If it did,
an accumulation of unsolicited messages would first
saturate the response ring and then any controller inter­
nal message buffers, blocking the controller and pre­
venting it from processing additional commands. Thus,
the host must at least occassionally scan the response
ring, even when not expecting a response. One way to
accomplish this is by using the ring transition interrupt
facility described above; the host also should remove in
sequence from the response ring as many responses as it
finds there.

Bus data timeout errors involve failure to complete
the transfer of control or data messages. If the control-

35 ler retires a transfer after it has failed once, and a second
try also fails, then action is taken responsive to the de­
tection of a persistent error. If the unsuccessful opera­
tion was a control transfer, the port writes a failure code
into the SA register and then terminates the connection

Data Transmission

40 with the host. Naturally, the controller will have to be
reinitialized. On the other hand, if the unsuccessful
operation was a data transfer, the port/controller stays
online to the host and the failure is reported to the host
in the response packet for the involved operation. Bus

45 parity errors are handled the same as bus data timeout
Data transmission details are controller-dependent.

There are certain generic characteristics, however.
Data transfer commands are assumed to contain

buffer descriptors and byte or word counts. The buffers
serve as sources or sinks for the actual data transfers, 50

which are effected by the port as non-processor (NPR
or OMA) transfers under command-derived count con­
trol to or from the specified buffers. A buffer descriptor
begins at the first word allocated for this purpose in the
formats of higher-level commands. When used with the 55
UNIBUS interconnection, the port employs a two­
word buffer descriptor format as illustrated in FIG. 10.
As shown wherein, the bits in the low-order buffer
address 292 are message-dependent. The bits labelled
"U" (294, 296) in the high-order portion 298 of the 60
buffer descriptor are the high-order bits of an 18-bit
UNIBUS address. The bits 300-306, labelled "Q", are
usable as an extension to the high-order UNIBUS ad­
dress, and are zero for UNIBUS systems.

Repeated access to host memory locations must be 65
allowed for both read and write operations, in random
sequence, if the interfaces are to support higher-level
protocol functions such as transfer restarts, compares,

errors.

Fatal Errors

Various fatal errors may be self-detected by the port
or controller. Some of these may also arise while the
controller is operating its attached peripheral device(s).
In the event of a fatal error, the port sets in the SA
register a one in its most significant bit, to indicate the
existence of a fatal error, and a fatal error code in bits
10-0.

Interrupt Generation Rate

Under steady state conditions, at most one ring inter­
rupt will be generated for each operation (i.e., com­
mand or response transmission). Under conditions of
low 1/0 rate, this will be due to response ring transi­
tions from empty to not-empty; with high 1/0 rate, it
will be due to command ring transitions from full to
not-full. If the operation rate fluctuates considerably,
the ratio of interrupts to operations can be caused to
decline from one-to-one. For example, an initially low
but rising operation rate will eventually cause both the
command and response rings to be partially occupied, at

17
4,449,182

18
etc. If the host detects more than one of the Sl-S4 bits
316-310 set at any time, it restarts the initialization of the
port/controller; the second time this happens, the port-
/controller is presumed to be malfunctioning. The SA
register's most significant bit 318, labelled ER, normally
is zero; if it takes on the value of 1, then either a port-
/controllerbased diagnostic test has failed, or there has
been a fatal error. In the event of such a failure or error,
bits 10-0 comprise a field 320 into which an error code

which point interrupts will cease and will not resume
until the command ring fills and begins to make full to
not-full transitions. This point can be staved off by in­
crea~ing the permissible depth of the command ring.
Generally, the permissible depth of the response ring 5
will have to be increased also, since saturation of the
response ring will eventually cause the controller to be
unwilling to fetch additional commands. At that point,
the command queue will saturate and each fetch will
generate an interrupt. 10 is written; the error code may be either port-generic or

controller-dependent. Consequently, the host can deter­
mine not only the nature of an error but also the step of
the initialization during which it occurred. If no step bit

Moreover, a full condition in either ring implies that
the source of that ring's entries is temporarily choked
off. Consequently, ring sizes should be large enough to
keep the incidence of full rings small. For the command
ring, the optimal size depends on the latency in the 15
polling of the ring by the controller. For the response
ring, the optimal size is a function of the latency in the
ring-emptying software.

is set but ER= I, a fatal error was detected during hard
initialization, prior to the start of initialization step 1.

The occurrence of an initialization error causes the
port driver to retry the initialization sequence at least
once.

Initialization

A special initialization procedure serves to (1) iden­
tify the parameters of the host-resident communications
region to the port; (2) provide a confidence check on
port/controller integrity; and (3) bring the port/con­
troller online to the host.

The initialization process starts with a "hard" initial­
ization during which the port/controller runs some
preliminary diagnostics. Upon successful completion of
those diagnostics, there is a four step procedure which
takes place. First, the host tells the controller the
lengths of the rings, whether initialization interrupts are
to be armed (i.e., enabled) and the address(es) of the
interrupt vector(s). The port/controller then runs a
complete internal integrity check and signals either
success or failure. Second, the controller echos the ring
lengths, and the host sends the low-order portion of the
ringbase address and indicates whether the host is one
which requires purge interrupts. Third, the controller
sends an echo of the interrupt vector address(es) and the
initialization interrupt arming signal. The host then
replies with the high-order portion of the ringbase ad­
dress, along with a signal which conditionally triggers
an immediate test of the polling and adapter purge func­
tions of the port. Fourth, the port tests the ability of the
input/output bus to perform nonprocessor (NPR) trans­
fers. If successful, the port zeroes the entire communica­
tions area and signals the host that initialization is com­
plete. The port then awaits a signal from the host that
the controller should begin normal operation.

At each step, the port informs the host of either suc­
cess or failure. Success leads to the next initialization
step and failure causes a restart of the initialization se­
quence. The echoing of information to the host is used
to check all bit positions in the transport mechanism and
the IP and SA registers.

The SA register is heavily used during initialization.
The detailed format and meaning of its contents depend
on the initialization step involved and whether informa­
tion is being read from or written into the register.
When being read, certain aspects of the SA format are
constant and apply to all steps. This constant SA read
format is indicated in FIG. 11. As seen there, the mean­
ing of bits lS-11 of SA register 38 is constant but the
interpretation of bits 10-0 varies. The S4-Sl bits,
316-310, are set separately by the port to indicate the
initialization step number which the port is ready to
perform or is performing. The Sl bit 310 is set for ini­
tialization step 1; the S2 bit 312, for initialization step 2,

Reference will now be made to FIGS. 12A-12D,
20 wherein the details of the initialization process are illus­

trated.
The host begins the initialization sequence either by

performing a hard initialization of the controller (this is
done either by issuing a bus initialization (INIT) com-

25 mand (Step 322) or by writing zeroes to the IP register.
The port guarantees that the host reads zeroes in the SA
register on the next bus cycle. The controller, upon
sensing the initialization order, runs a predetermined set
of diagnostic routines intended to ensure the minimum

30 integrity necessary to rely on the rest of the sequence.
(Step 324.) Initialization then sequences through the
four above-listed steps.

At the beginning of each initialization step n, the port
clears bit Sn-I before setting bit Sn; thus, the host will

35 never see bits Sn-I and Sn set simultaneously. From the
viewpoint of the host, step n begins when reading the
SA register results in the transition of bit Sn from 0 to 1.
Each step ends when the next step begins, and an inter­
rupt may accompany the step change if interrupts are

40 enabled.
Each of initialization steps 1-3 is timed and if any of

those steps fails to complete within the alloted time, that
situation is treated as a host-detected fatal error. By
contrast, there is no explicit signal for the completion of

45 initialization step 4; rather, the host observes either that
controller operation has begun or that a higher-level
protocol-dependent timer has expired.

The controller starts initialization step 1 by writing to
the SA register 38 the pattern indicated in FIG. 12A.

50 (Step 326.) Bits 338-332 are controller-dependent. The
"NV" bit, 332, indicates whether the port supports a
host-settable interrupt vector address; a bit value of I
provides a negative answer. The "QB" bit, 330, indi­
cates whether the port supports a 22-bit host bus ad-

55 dress; a I indicates an affirmative answer. The "DI", bit
328, indicates whether the port implements enhanced
diagnostics, such as wrap-around, purge and poll test;
an affirmative answer is indicated by a bit value of 1.

The host senses the setting of bit 310, the Sl bit, and
60 reads the SA register. (Step 334.) It then responds by

writing into the SA register the pattern shown in step
336. The most significant bit 338 in the SA register 38 is
set to a I, to guarantee that the port does not interpret
the pattern as a host "adapter purge ccomplete" re-

65 sponse (after a spontaneous reinitialization). The WR
bit, 340, indicates whether the port should enter a diag­
nostic wrap mode wherein it will echo messages sent to
it; a bit value of 1 will cause the port to enter that mode.

19
4,449,182

The port will ignore the WR bit if DI= 0 at the begin­
ning of initialization step 1. Field 342, commprising bits
13-11 and labelled "C RNG LNG," indicates the num­
ber of entries or slots in the command ring, expressed as
a power of 2. Similarily, field 344, comprising bits 10-8 5
and labelled "R RNG LNG", represents the number of
response ring slots, also expressed as a power of 2. Bit
346, the number 7 bit in the register, labelled "IE",
indicates whether the host is arming interrupts at the
completion of each of steps 1-3. An affirmative answer 10
is indicated by a I. Finally, field 348, comprising regis-
ter bits 6-0, labelled "INT Vector", contains the address

20
pleted" host action. (Step 388.) After the port verifies
that the host has written to the SA register (Step 390.),
the host reads, and then disregards, the IP register.
(Step 392.) This simulates a "start polling" command
from the host to the port. The port verifies that the IP
register was read, step 394, before the sequence contin-
ues. The host is given a predetermined time from the
time the SA register was first written during initializa­
tion step 3 within which to complete these actions.
(Step 396) If it fails to do so, initialization stops. The
host may then restart the initialization sequence from
the beginning.

Upon successful completion of intialization step 3, the
transition to intialization step 4 is effectuated when the
controller writes to the SA register the pattern indi­
cated in step 398. Field 400, comprising bits 7-0 of the
SA register, contains the version number of the port­
/controller microcode. In a microprogrammed control­
ler, the functionality of the controller can be altered by

of the vector to which all interrupts will be directed,
divided by 4. If this address is 0, then port interrupts
will not be generated under any circumstances. If this 15
field is non-zero the controller will generate initializa­
tion interrupts (if IE is set) and purge interrupts (if Pl is
set), and ring transition interrupts depending on the
FLAG bit setting of the ring entry causing the transi­
tion. 20 changing the programming. It is therefore important

that the functionality of the host and controller be com­
patible. The system designer can equip the host with the
ability to recognize which versions of the controller

The port/controller reads the SA register after it has
been written by the host and then begins to run its full
integrity check diagnostics; when finished, it condition­
ally interrupts the host as described above. (Step 350.)

This completes step 1 of the initalization process. 25
Next, the controller writes a pattern to the SA register
as indicated in FIG. 12B. (Step 352.) As shown there,
bits 7-0 of the SA register echo bits 15-8 in step 336. The
response and command ring lengths are echoed in fields
354 and 356, respectively; bit 358 echoes the host's WR 30
bit and bit 360 echoes the host's bit 15. The port type is
indicated in field 362, register bits 10-8, and bit 12 is set
to a 1 to indicate the beginning of step 2.

The host reads the SA register and validates the echo
when it sees bit S2 change state. (Step 364.) If every- 35
thing matches up, the host then responds by writing into
the SA register the pattern indicated in step 366. Field
368, comprising SA register bits 15-1, labelled "ringbase
lo addres", represents the low-order portion of the ad­
dress of the word [ringbase+O] in the communications 40
area. While this is a 16-bit byte address, its lowest order
bit is 0, implicitly. The lowest order bit of the SA regis­
ter, 370, indicated as "Pl", when set equal to 1, means
that the host is requesting adapter purge interrupts.

The controller reads the low ringbase address (Step 45
372) and then writes into the SA register the pattern
indicated in step 374, which starts initialization step 3 by
causing bit 376, the S3 bit, to undergo a transition from
0 to 1. The interrupt vector field 348 and interrupt en­
abling bit 346 from step 336 are echoed in SA register 50
bits 7-0.

Next, the host reads the SA register and validates the
echo; if the echo did not operate properly, an error is
signalled. (Step 378). Assuming the echo was valid, the
host then writes to the SA register the pattern indicated 55
in step 380. Bit 382, the most significant bit, labelled
"PP'', is written with an indication of whether the host
is requesting execution of "purge" and "poll" tests (de­
scribed elsewhere); an affirmative answer is signaled by
a 1. The port will ignore the PP bit if the DI bit 328 was 60
zero at the beginning of step 1. The "ringbase hi ad­
dress" field 384, comprising SA register bits 14-0, is the
high-order portion of the address [ringbase+O].

The port then reads the SA register; if the PP bit has
been set, the port writes zeroes into the SA register, to 65
signal its readiness for the test. (Step 386.) The host
detects that action and itself writes zeroes (or anything
else) to the SA register, to simulate a "purge com-

microcode are compatible with the host and which are
not. Therefore, the host checks the controller micro­
code version in field 400 and confirms that the level of
functionality is appropriate to that particular host. (Step
402.) The host responds by writing into the SA register
the pattern indicated in step 404. It is read by the con­
troller in step 405 and 406 and the operational micro­
code is then started.

The "burst" field in bits 7-2 of the SA register is one
less than the maximum number of longwords the host is
willing to allow per NPR (nonprocessor involved)
transfer. The port uses a default burst count if this field
is zero. The values of both the default and the maximum
the port will accept are controller-dependent. If the
"LF" bit 408 is set equal to I, that indicates that the host
wants a "last fail" response packet when initialization is
completed. The state of the LF bit 408 does not have
any effect on the enabling/disabling of unsolicited re-
sponses. The meaning of "last fail" is explained below.
The "GO" bit 410 indicates whether the controller
should enter its functional microcode as soon as initial­
ization completes. If GO=O, when initialization com­
pletes, the port will continue to read the SA register
until the host forces bit 0 of that register to make the
transition from 0 to I.

At the end of initialization step 4, there is no explicit
interrupt request. Instead, if interrupts were enabled,
the next interrupt will be due to a ring transition or to an
adapter purge request.

Diagnostic Wrap Mode

Diagnostic Wrap Mode (DWM) provides host-based
diagnostics with the means for the lowest levels of host­
controller communication via the port. In DWM, the
port attempts to echo in the SA register 38 any data
written to that register by the host. DWM is a special
path through initialization step 1; initialization steps 2-4
are suppressed and the port/controller is left discon­
nected from the host. A hard initialization terminates
DWM and, if the results of DWM are satisfactory, it is
then bypassed on the next initialization sequence.

Last Fail

"Last fail" is the name given to a unique response
packet which is sent if the port/controller detected an

4,449, 182
21

error during a previous "run" and the LF bit 405 was
set in step 404 of the current initialization sequence. It is
sent when initialization completes. The format of this
packet is indicated in FIG. 3. The packet starts with 64
bits of zeros in a pair of 32 bit words 420. Next there is 5
a 32 bit word 422 consisting of a lower-order byte 422A
and a higher-order byte 4228, each of which has a
unique numerical contents. Word 422 is followed by a
double word 424 which contains a controller identifier.
The packet is concluded by a single word 426. The IO
higher-order byte 426A of word 426 contains an error
code. The lower half of word 426 is broken into a pair
of 8 bit fields 4268 and 426C. Field 4268 contains the
controller's hardware revision number. Field 426C con-

15 tains the controller's software, firmware or microcode
revision number.

Submitted as Appendix A hereto is a listing of a disk
class and port driver which runs under the VMS operat­
ing system of Digital Equipment Corp. on a VAX- 20
l l/780 computer system, and which is compatible with
a secondary storage subsystem according to the present
invention.

22
between the peripheral controller and host. These regis­
ters are exercised heavily during a four step initializa­
tion process. The meanings of the bits of these registers
change according to the step involved. By the comple­
tion of the initialization sequence, every bit of the two
registers has been checked and its proper operation
confirmed. Also, necessary parametric information has
been exchanged (such as ring lenths) to allow the host
and controller to communicate commands and re­
sponses.

Although the host-peripheral communications inter­
face of the invention comprises a port which, effec­
tively, is controller-based, it nevertheless is largely lo­
calized at the host. Host-side port elements include: the
command and response rings; the ring transition indica­
tors; and, if employed, bus adapter purge control. At the
controller, the port elements include: command and
response buffers, host command and response ring
pointers, and the SA and IP registers.

Having thus described the present invention, it will
now be apparent that various alterations, modifications
and improvements will readily occur to those skilled in
the art. This disclosure is intended to embrace such

Recap
25 obvious alterations, modifications and improvements; it

is exemplary, and not limiting. This invention is limited
only as required by the claims which follow the Appen­
dix.

It should be apparent from the foregoing description
that the present invention provides a versatile and pow­
erful interface between host computers and peripheral
devices, particularly secondary mass storage subsys­
tems. This interface supports asynchronous packet type 30
command and response exchanges, while obviating the
need for a hardware-interlocked bus and greatly reduc­
ing the interrupt load on the host processor. The effi­
ciency of both input/output and processor operation
are thereby enhanced. 35

APPENDIX

Notes:

1. The mass storage controllers is referred to in this
Appendix as "UDA"; thus, the IP register will
appear as UDAIP, for example.

A pair of registers in the controller are used to trans­
fer certain status, command and parametric information

2. The term "MSCP" in this Appendix refers to the
high-level 1/0 communication protocol.

.~~lT~ External ana Local symnol neti~1tions

.PAC.!'
++
Define Syste~ Symoo1s

++

SC!<of>t:F"
SDDe!')~:F"
Si.>P i fH.F"
SlDtiN:.i:­
S l~Pr)t;f"
SlJCi:'flt.F"
SvECOH

SlPLDl:.F"
SlC'lDn
SSSl.)n
SVAL>l'"f

Cn~nnel Re~~~st Rlock Otfsets
nev1ce oat~ ~loc~ Off sets
nr1v~r Prolo~ Tanle nttsPts
Interunt Data Rlock Offsets
I/n Re~uest PacKet Uftsets
Unit Control BlocK Oft5ets
Interunt VPctor Rlock Dttsets

Hard~are IPL L>et1nit1ons
I/O runctinn Cndes
System Status Codes
Virtual Arl~rPss f1el1 ~ef1n1t1ons

Trie fol 10~1n., syrr.oo!s are 0111cetJ nere tor ou1ck refer~.,cP. l'he~e v11111es
are t~e ~etermin1no factnr tor numerous symuol values def 1ne1 nelo~.

MSCPSl'\-1:.Xf'Q,.F:r..T = 3 : !'lase 2 e1q,,.,11f'ntial ooerator :lefin1n..i r.·11.;ner
: ot rino ~n~ DdC<et entrlf'S

~SCPS~-kI~~~1'F: = t~<M~CPsk-~XPUNi::~T> : ~umoPr of Rinu ~ Packet entries

++
Local Symbnltc uftsets

Define uevic~ J/r Pdoe Registers

SL>Et
SlJEt

SUF:H 1'1 ll[JA
lll.JAIP .1:1J.l\W
IJDASl .l:lLr<.W
s L> n· r f'. n u u A

Tn1tial1zat1on and Poll1n~ ke4lster
Status, Address, ~ ~AA Purqe ACK ~Py1ster

4,449,182
23 24

, Define U"lit spectfic tields an<'! sizes for UCl'ii.

SOE~ J1H llC~
0 :UC~$ill_F.:1<RCN1+2 uces 1< _c 1'"'--S 17.1:.=.
.=UC8$ioi_PCR+2
UCR$1<_SlZE=.

SUEfF:ND UCP

517.e of Clone UCR

size of a~rjen v11riety oisl< llCfl

Oefine Gener1c/Trdnsfer MSCP Command Packet otfsets •1th internal he11der
and trailer buffers

$UE~ ~i:>\1-'SL-C"U-Hn
SDH M.SCPS~-UMlT

SvH MSCPSH-UPcnuf.

SDEf llSCPs .. _MDl)n·1~.R
SlJF.:t MtiCPSL_1:1Y IF _C1~T
SlJF'f 11:;rPSL-blJ~ l'"t::P

sun ¥~r1-$L,_1.;P1,
s IJEt 1oi~rPSL-.SI'" l-~1':>

.ULl(L
0 l;LKL
• Bl,f\ \Ii
• bl·P. ..

• l:lLl\L
•BJ.I\ I~
• dL11."
.1H.f.""
• l:l l."' !\
• t1LI\ ~
• Bl·h L
• 1:1Lr. I
• t)).~ J,
• til. ~. L
• t;Ll\L
• hr L

MSCl'H-f'll JS!Zr =.-~Jr~sL_c~~-KP~

sui::~ CP~ t..SL-t<l . .i;,,
Rt:SPH-~lLF = •
C'MDl-SP.-.:>lL~· : •

S1.1i;:rf ,I) Pl\T

• ol "L

1
1
l
1

1
t
1
1
1
1 ,
1
2
l
t
~

1o1,srp PKt queue forward 11nK
MSCP PKt queue oackward 11nK
Packet Len~tn descrtotor
Virtual Circuit I.D •

Define s!ZP ot pacl<et heilder

Com,1an'1 PeterericP r; U'T1 lJf' I
Unit 1.1i11~er
Reserve:: "'Of''
Op \l)(J!"

"1esf:'rve 1 t,Vt e
Command uoiHfiPfS
Tr1wstPr *'YtP Co11nt
Flufter Descrii>tor (1 '1 h1t~ 1 "r ',J' •.)

Un•us1:'1 ~ortior1 l)t 1:>11tfer '1f:'SC"l'"!OL-:
Lo'11cal l r,c i(IJ U"' [JP r
Softwdre ~or rts
(;er'\~T lC P;, CK!' t >~I'l"'':'lPIS r. r ""
l"•e fine l> j /.f' 01 ·p•rieric l"S,t-' p,.,-: ~ ~

; Poir;ter to dssncidte'1 r1n; !:""Lr,
Define siz~ at intF>rn<1l re~"l)r,!'-e •"''er
iief1ne Si/.P ot i'"1t"'FH1 C0""1·'1;,; [•rlC•Jt

; net1ne C~n~dna ~acket Ltst t:rtrf Jftse•s

CPKl:..Sr.-~J l~- = •
SLiFFS::1~ri PKL

CPKl:..Sf\-LlST_L~~ : lJ

• t>Ll\J,
t\r l\'X

: di'.tdl
• 1:11." ·\
• ~L" L.
• tiLK"

<"'.'o"Tlr ~rid o;;c-..et i-cetPrerice :>J'J~r--~.,..
t. u .,. l•,. r o t l ::. t 11 u a " a r, "e •1 l !; t r r
•1 u ~ ;; "1 o + "d r. re i1 l s t er s .; ! l u cat e .,
i1 I" ~ f'> at and t 11 11 11.~ r- c r

t : UsPr su~clle~ reternce n11~ner
<~SCPiK_U~T~J~I'" - 4> ; ~~~a1n~l'r of "Srr µ~t

: ro"'n,111ri1 List entry size

; Current st111tic co~,,·,,anu L1111t Llst S17.e ov er1trles

: nefine oftsets in syste~ buffer used ov drl~er anc UUA

sun 11~1 cc
SLE~ R1:.S 1JSi..-~·t1 NK
SUf:.t· RES\.iSL-bLlNK

SLlH c ,.nrJ s L-~·1.1 ~: K
SLlEt CMDvSL-f1Ll"lt\
SDEf J"4TPSL-f"Lllllr.
S!JEt l11TPS1..-l:lL1'JK

S L>E~ Ci'10$B_PUR~E
SC>Ef CMDSW-tt.Tt<
90Ef R1:.S5:.:_H'l1'k

SOE~ Pt.Sr< SL-TOP

SOEf CMl'H<SL-TOI'

SDEt" Rl:.Si'SL-'!Ot'

SOEt" CMDPSL-TOP

s [I E.t UCB S-Cl,UN t..

SDn ACTSL-CMfl-LlSf
TbUF"Sl<.-::.I t'.F -.

S lJFi· E l•fl cc

• 1:)1,1\L
• t.<J-1\L
• ti l· I'> L . ~'-"'· .bLr<L
• hLI'. !..
.i;L~L
• BLl<.A
0 bLKR
.~LKw
.bLKw

.BLKL

• kLl<.L

0 1:!LP.B

0 t!LKB

0 t!LKB

• i:!L!'>H

l
l
1
1
t
1
1
~
1
I
1

Response rinq/pKt que listheno

Rutter uescr!ptor
Comwan1 rin~/pkt que listned1

Interr1al pacKet Oldit q11e l1stried1

Unuse~, snaula oe zero
U1:1A Cn11nnel for !'ur~e
Co~man-1 InteruPt Flaa
qes~~nse lnteru~t f lil~

, Top ot ~esoonse ~in~ Structures
1,11>Cl'H-1Ut1G::. lZE

i• Too of Co~~anJ t<inq Struct~rPs
"l;:,r.PSK-11 l'lGtillE

: Too ot ~P.sponse pac~ets
<HESPSK-SlZJ:.•MSCPS~-RlN~SlZ~>

: Too ot Coffimrtnd pac~ets
<C~OPSK_SlZt.•MSCPSK-~JN~SlZI:.>

: ClonP. llC~
llCR S K_CLN-S l Zt.

; Ac.:'" i ve Co~·'l'dn1 µ;ico:et 1 ls t
< C P" I':!:> K - S l 7. t; * C P" >SI< - L l S 1- LI'"">

: Totnl nuffPr sfZI' in t>Yt"::,

r Define LOCi'll Liata Str1Jct11re offset~

son
SLlft
S LlEf
SDEf
SDH
SDU
son
SlJEt
SD Et

rnn1r..1 ri1;
IJOAsL-RUF'IOP
UDA s L_r Lfll'I ~-uc rl
UL)A s t._ucB_Zt::Pu
UDASL-INTl'OUF"
llDAsr,_c-in_LJSt
U1.;As .. _I1d l-r:Fr;
UDAsw_s ffF--i:;F<ri
UuAs.i_ .. APt<h ..
IJDAs~_Nu~l<E~

I
1
1
1
t
1 ,
1
1
\

Top aa1reiS ot 5yste~ ruft~r
Addre&~ ot clone UC~
Ad1f PSS of UC~ 0
Ao1rP.ss ot 1nternal oueuP l1stn~~:
Ad<'!rP&~ ot Active Co~~an1 PdCKet LI~·
Jnil trro1 red~ol'I fl11<is
Inlt s!eP error word
~dpp1n? reoister of syslP~ 1.;11tft-r
~u~~Pr of ~anpln~ reo stPr~
Ddtdr>atn = o

SDEr
son s [lf.f

>
ULJA$K_S!Zt : •

SDn ENO Du

1
1
1

4,449,182
26

Syste~ outfer hyte otfset fro~ µ~~"
l nterna1 reternce numtJer val 1ie
Internal control tlaas

: Intern~l flda def1n1t1~ns
lli.>11. 1s On 1.1ne
Jnterupt tro"' U1!A is expecterl
Controller ln1t Step J. 1nterupt e"nectf'1
Controller 1n1t Ste~ 3 interupt exnecte1
rontroller ln1t Stf'P 4 interuµt PXnectf'~
System outfer is allocated
Systf'm cutter is mapped in LIB~
Pac1<:et(s) avitlldr>lE' to be aueuE'a to 11uA
Clone UCR is lfn~erl into UC~ list
T1me~ut prncessing 1s in proares~

r Size of datd structures reauire~

•• Nun. • •
Feainnina nttset V~lues
rarenthes!Zerl are in byte~ oecimal

J Abort and ~et Co1T1m1tnrl St~tus Commana ~acket s~ecitic Uttset

SllfrTNI H
0 :MSCPSw-~0DlfI~W+2
SLJE'f' MSCPSL-0111-Hn· 0 BLliL

SIJF:ff.fj[) ~f

nttset (12)
Outstdradino ReferencE' Numr,.,r

J Online and set Unit Cnaracter1st1cs Comman1 Pac1<:et snec1f1c llttsets

SLiE~ hi G1,,
.:MSC~Sw-MOLJifl~R+4

SUH

s lJF.f

MSC!' SL-1:.RHLl>-~·L

M::OCP S w_COl-'Y-SPD
sun r.1.n Ge;

0 RL1>W
• t:l J," J,
• t:I [. t<."
• bLt<.I,
• I:\ Lt<.~~
• f'T,KW

1
1
2
1
1
t

; ReplacP Commanrl P~cKet sper1t1c otfsPt

Otfsl'l (14)
Unit ~lal"Js
Host ldent if ier
l:lpservt-d
Error Loa Flays
Snaao" unit
Cory &Peed

s1..n TNT HN
·="SCP6w-"0LlfI~R•2 OtfsP.t ll..:)
SlJEf 'SCPSL-k"~ ; Pen.i.acP11er.t BlorK Nu'Y't·er

SLiH pm H11

I Set Controller Chdracter1st1cs command pi!cKet Spec1tic uftsets

SUEHNI Tl
.=Msrps,._~OLJJf I~~+2
IUEt MSCPSw-VE~SlOh
IDEF Msrps~-C~I-FLG~
ID Et "SrPs~_HS1-I'O
llJEf 'SCPS~-USl:.-FR~C
SDEf MSCPS~-I!MF

SLJEff1~n II

0 bLl\W
• H L~. W
• bl,!\ w
• bl
.bLl\L

; Otfsf!t
1
1
t
t
2

C LI)
MSCt> version
ControllE'r fldl"JS
Host 11me O..it
llsf! F'ri!ctior
Quaaworn tirf! anrl date

Define Hesnonse PdCl<f't uttsets - trnll T.dhel Arriu.,,ents :ir,. So"'i'
as those aetined in the Gener1c/Tri!nster commdnj PacKet ~o~ve

sun

SDEF l 1n KK
• t:IL ~ J,
• b],j<. t.
• Bl P\L
• ti 1.t<"
• t:l LI\~
• t'ILKB

"scps,.,_fLAG., .bL~ t,
MSCPS,._STATlJS 0 HLI<.~

• bLI\ [,
.bLKL

MSrPSL-fR~T-HAr .t:ILl\L

sun fi'.1,n 1<"

?
\
1
1
1
1
I
\
t
l
I

: Get Co~~anrl oacKet ~n~ Pac~et lltfsets

SvEfhl LL
•="'S~PSL-OV1-~Ef+4
SLJE.f lo!SCF-S~-CMU-ST.> .h[.1<.w

SUEH:NP J.i,

Pac~Pl 11nKdoe lnn~ woros
Pac"et ienrit" & Virtudl C'"1rcuit I1
Com~an1 Reference ~umoer
!lni t t•u,~.!"ler
~ e s e r v P J t ' e l <l
nµ (nde Calsn callPrl enacorlE'l
Fla;Js field
Stat t1b
Bytes transtered count
PeservPri 3 innn words
First i3arl F\lncK
Software nnr1s

Otfset (I")
Co'lln anrl Stat•is

: Get Unit Status Enrl nacKet bPecif1c ntfsPts

• BJ.liw
• tlLI'. w
• bLl<.L
.bLl\L
•ti LI'. t,
0

tjLK;.;

1
l
1
2
1
1

Offset (1.l)
"4ult1•1ln1t ct'ldt'
Unit t'ldClS
llost 1rlent1ti~r
1Jn1t ioentit1er
Me1ia tyoe i1ent1t1er
Sr1ado~ Unit

$ [)Ef
SLlE~
SD""f
$D£F

27
1"SCPSw-S%w_s·1 s
M:>Ct>Sw-TPACI\
MSCPS,,_C>ROllP
"'SC I'S w_cy Lt 1·1N:1<

MSCl-S..-kr.1-S Ilf'
",:,r-1" s ''-t< kr.~
"'.SCf'S~-kCf-CPil'
s v • r F. ·• r· " ,,

•~LI'"
• bL!<. l·J
• l'IL~ 111
• bl.K ..i
• ~LKw
• bLl\W
• DI·"''
• 81.~ ~

3
1
1
1
1
1
I
1

4,449,182

: Snaao~ St11t us
; Tr;i1c1<: Si:ze
: C:rouo .5ize
: · r y 11 n ll E' r s i z P
: ReservE'a

RCT Tdble Size
I< l:l 'Is / 1 r ar '·
RCT ConiE'S

28

I Online & SPt Unlt rn~r11cteri~tic~ •n~ PdCKPt specif1c otfs~t~
S1.Jffl1.I I~,,

.=v:;c~s~-s~v~_sis+'
son· "'SCl.lSL-U''I-SlZF' .~r I((.
SUEF "'SCt>SL-~OL-SFk .bL~L

ntfset l lt>)
Unft S1Z!'

SL ff r~ 1d' 'Ir·•
Volume SPr!al ~umuer

I Set (o~tfollPT ChdTdCter1st1cs ~n~ Pdc~rt ~pec1t!c Uf1s~t~

nttset (1b)
• l:l I. r.""
, l.\LK .•
, I" LKL.

1
l
'-

Controller '11rreo•Jt
Controller co~~anu Limit
Cont,.olll'r l ,l.J,

: + ...
: Locdl symonl det1n1t1ons
J--

= 21 = P.
: •x<FAd>
: '"D<2iU>

l'evice lPL
~·ori< IPL
S t e n 1 1r. a x 11» ,, : " "' "' i t t l m e t o r r e s t 1 o " i. "
Pr1~arv Interunt vectvr

: Define ln1tiali~at1on SequP.nce unAS~ blt tlans

INI1-M-&H.P-t =
INIT-~1-&Tt:.P) = IhII-M-STE:P .l =
INIT-~~-STt::Pl =
JNlT_ri._lNll =
lt.11-M-1~'1F =
Ihll-M-L~AlL =
I l'iI1-i'l-PUt< G ~- =
TNIT-~·-G0 =

IN1I-V-l::Rk0k =
lf><I1-v-STi:.P4 =
It>.JT__STC.PJ =
H1IT-~-STEP2 =
INIT-'v-ST!:.Pl =
; In1thli7.at1l'ln

• .\400()
•.Ol.ll10
•,u UOI)
• .("un
• 1. .. •)
4
2
I
l

• ,(F' .,,,E
... X r~ . ;(('
• x Fl

sequence ~u·p

Steµ 4 inaicator ~asl(
St'"!· J inaic;,tor 1r.l'lsl'.
Steµ 2 indlcdtor ma~~
Ste~ 1 inoicator ~as~
lnitiali:Zdt1011 seouencP interunt enanle
Fnaule tatal errnr 1~tPruµt fl~c
~enuest previo11s ta1l1Jre lo;.i meSS<i1E' µ;ic~Pt
F'naole pur~e flan
r.o t laq

In1t1aliZJtion trror
Step 4 inJicator bit
Step J injicator ~it
Step 2 indtcator oit
Steµ 1 1na1cator oit

•Ord for1~11ts

s l E P-1- .. R l TI:: = < 1 ii 1 5 > ! <Ms cps K _ F.' x p lJ" t:: N r Ill l 1 > ! <.., .:> c i-' s "-f::X p n" F: 1, T ~ R > ! l N l T - \A - I r; TI ! < T • '
STE~-2-k[An = INll-~-STt::Pi!<l~i>!<Msr~s~_tX~ONENTil>!MSCP&K-f)iPUNt~T
STEP-3-kF:AO : lNlJ_M_.:>Tt:.PJ!lN!T_M_INTl!<lNTk_VfC/;>

: Comnian1 antl Message Ping Control naqs
ll[)A_"4_o,..,.. = pa31
UUA_"4_FLAb : lQJO
t11..1A_v_c1,,'J "' ·x 1•
UUA.V_VLA~ : •x1F

n l'i n f 1 a g "' a s 1<
Ruffer control tla1 mas~
n.,n f laq v .. ct ur
~utter control tlo~ vectnr

; n1recl ~SCP PaCK~t l/U ~unction Cortes

tos_M&rp_p~r = 1ns-~n~
Control PacKet Upcoa~s

Commanrt np~orte ~its J tnru ~ indicate tne CO"l~anrt class;
ODu 1m~eoiate Commanjs
on1 Seq~entlal Commands
010 hOn-sequentidl commanrts that rto ,,ryt i~clude a ouffcr descr1rtnr
011 ~aintenance Com"l~nds
iou Nnn•sPquential co,,.man1i. thdt inc111c1r a r-ufter <lP.i.crlutor

End pacKet upcodes (also callert En1codl's) are formea oy aad1nJ the enJ n~r. ·
flay C20u octal) to tne corresponrtinJ comman~ oackets Upcn~e. Ar U"~r
commanrt Enrt odci<et contdins 1ust the tla~ in the ~acket•s no~orte tieln,

l
1o
R
1'l
Ji
1 0
19
2
~
Q

•001 I •.-.01
·021i, ·xtu
·u1u, •xos
·021, ·x11
•0411, ·,;2u
·u22, ·Ai:.:
•wi' j p A A 1 j
•uo:t, '"AOL
·uo 3, '"XIJJ
*011.'"1.0\I

AfH1kT Co~man1
ACCt:.S!> Co~"larv:i
'\/All.i.Ri..E Co1trr,anrt
('uMI" 'k F CU ~11 ROL L,E" U A I A Com ;n a w1
CO~~AkV HUSl DAfA C'om~and
f'" !I.SE C'olT':nan1
f' t..IJ,:,>t rom~,a r"1
G~T CU~MA~O SlATUS Commdn~
r.t:.T llr.Jf STATuS Command
or.Lrtll:. <...,m,,,ana

MSCPH-UP.R ~.Ari • li!SCPSl'.UP.R E:P LC • Jiii.SCP S l\.uP.S TC'O"< • ,,.SCl-11'-.uP.lq l110T = ,,.SCPSll..OP.1111; Hf: =
fllSl:i'Sll..UP-Er;r> =
MSCPO.uP.St::Rt:.X = ai!SCl>SK-UP-A ~Al N = MSCPSll._UP .DIJPU ~' =
MS('!JSll.-OP.ACP'I~ =
Msp>$f'l.UP.Er.o = MS PSY.UP.F••D = M.SCPSiol.u-P.Al TN =
.. .SCPSV.L•P.A'CT•; =
MSCPSV .UP.Rt: Al.J = MSCPSv.uP.Xfft< =

29
)J
7v
4
t v
] ~
LI! R .,
6-.
6~
F.b

• ,([' l)

7
...... u
6

0
'5

•041 ~ •x21
•1.12-t, •xt4
•uo4, •..;o-.
•u12, •xnA

4,449, 182

'"04J '"l(?.2 •u2oh •uo
'"07 ''"X7
'"0100, "X40
•0101 •x41
'"01u': "X4:?
End Pac1<~t .~ask'.
~n1 DackPt ~it fldn
Attention ~essaqP Command Mds~
At~ention Mes~~qP Co~mand ~lt

React command c!t fldn
~dtd Transfer ty~e ~SCP Opcode Dit

30

r End PaeK~t Flaos (mas1< v~lues>

: Bdd ~lock RePortea
J l!la'1 llloel(!lnreonrtea
I Error Lon ~e~erdte~
1 ~er1nus exeeotion

r End Packet Flaa~ (vector Vftlues)

MSCPSV-lf'.-llBLKP = 7
M.SCPS¥-t:.i:"_l.4~J,ti..ll : n
M.SCi-'S._t:.f.l::kT.ur: = '\
MSC'P$V.t::f.Sl::R~X : 4

Barl Alock Meport~~
Barl ~lock UnrePortei
E'rror I.on oenerdtei
Serious eiceotion

J Controller ~Ian~ (masK values)

MSCPU1.CF .Av A I'l = "XA•)
MSCPSM.CF'.M!~C = • ,\4 l)
MSC PS CF .nIHU~ = "A7U
li!SCl>O.CF'.TiiJS = ",(lr)
MSCPSfot.CF' _SHf<Lr..i = 2
1otSCPSM.CF.i;7"' = l

, Controller flaQS c~a~K

MSCPSV-Cf.A~AT~ : 7
MSCPSv_CF'.MlSC : 6
MSCPSv.CF.OIHl~ : 5
MSCPSv.Cf.TrlTS : 4
MSCPSv_cr.~HAU~ = t
MSCPSv.CF.576 : 0

: Status anu t:.vent Codes

ll!SCPH.sr.stjcun
aitSCP H.ST .SIJC"C
MSCPH-ST.lC~li
MSCk>S....ST _AdRTO
MSCPSl\.ST-OfF'L'J
MSCPSl\.ST.AVl.bL
MSCPSll.-ST ... f "4Tf
MSCl-'SK_ST .IOIHPll
MSCP SI< • .ST -<'u"' P
Msr.ps,.._s.,. _nATA
lolSCl'SK.ST .!o!ST~r
MSCE-511.-ST.C'NTkL
MSCPH.i>T.Dkl~F"
MSCPSl'--ST-DIAl>

= .,(1f = n = .,

= '",\'0
= 0
= 1
= ' = 3
= 4
= ..
= 6
= 7
: A
= q
= .. JI'
= ".(Fl
= •x1F

; Oefine l.ITl.1 l.larametPrs

Pl
P2
Pl
P4
P5
Pb

= = = = =
=

++

0
4
b
12
16
20

.sRtTL.. Tables
•PAC..~:

Priver Proloque Td~le

v~lues)

En4ole Ava11aole Attention Messane~
•naole m1seell"lnt>ous l:.rror L..oQ "PSSa'lt:~
Enaole otner nostrs Error Loa "'es~~~P~
Enable th!~ host•s 1:.rror L..og MPss~,,e~
snaJc•dnn
571'1 Ayte 5"ctors

F.naole ~vatlaole Attent1nn ~essa,,es
: F.naole miscellaneous t:.rror Lo~ Mes~ane~
: Enftole otner nnst•s Error Lon vessa~·~
: F.na~le tn1g host•s 1:.r1nr ~o~ ~essanes

Sh111aowin'l
'!>76 Hyte s~ctors

Statu~ I 1:.vent enae mas~
Stat•1s I t;vent end" Cstdrt of fi~i..,l
St~tus I lve~t c~d~ Cttel~ s!zPJ

S~b·eode mult1Pl1er
SUCCf'S5
tnvalio:l Comrro~n<"l
ro111111,..nr! Aoorte"'
lint t Uft-L! M
llnit Ava1laule
~e~1a i:-or~ftt lrror
1orttP ?rotecter!
Co111parP •rror
nata t;rrrir
Ho5t butfer access error
rontroller ~rror
OrSve Error
~essaq~ from ~r. internal dia~nor.tic

CAPJ oft5etr.
First Qln Para111eter
Secono UI~ ~ara~etf'r
Tnird QIO Pdrameter
Fourth ~Tu paranif'ter
Fifth QlO P~ralllP.ter
Siwt~ 010 Parameter

Oi'TAB • Defin~ Uriver Prolo~ racle
~ND=U~A-F"flon,- ~nd nt Dri~er
AOAPT~~=UtjA,- Un1ous Adapter 1ype
FLA~S=n,- No ~yste~ PdQ~ re4u1r~~
llCASii:'.r:l.JCH$1<.!HZl:..,- ''C~ Siu
UhLUAu=unA-U~LOAn,- Driver ~nlearl routi~e
••A~ t.=OllLJR l VlP , nr 1 v l' r flo811•e

nfT-~JOKE 1~11 : C"o~trol ~loc~ Intt values
T'PT-STC't(F ou.-,Ol}r:\$1·-ACPLi,L,<•A\fll\> I netault ACP IJe1t«t'

++

31
4,449,182

32
nrr_s1nhl". 11.Jf4,llURsl._ACPLHJ,l'LJ : AU' Class
OPT_SlCkE UC~,UCRSR-FIPL,n f~kK_IPL ; Fork lPL
o.,r_srnRF UCR,uceis1._n~:vcMAP,L,• :. nev1ce Chdracter1st1cs

<UFvs~_rou- files Oriel"ltP.d
!DF~S~-Uf"1- ; Oirrctory structure-I
!uF~SM-4VL· Avail~ble
!orvs~-S~H- Shardble
!uFvs~-lD~- ln~ut ~PV1CP
!uFVSM-OOV- O~tPut !lev1c~
!uFVSM-R~O> k~n~o~ Access

Oi-T_srnkr. UCfl,llCBSB-St:CJOkS,A, 31 Rt.Bo Sectors ~f>r trdr"t(
r:pT_SJl'Ji..F: llCfl,llCRS&.\-T1<ACK~,i:> 14 Rt.A() Trdc .. s Per c-ylll"lo~r
DPT_s1r.1-11" llCR,llC~&W-CJLll:i.>F:"s, .. 547 PASO user arf'o cylin-lers
DPT _5tflk~: U,8' l?C8$H_01:. llCl.ASS1 b' 6cs-DIS" (lev ice c 1 ass
!lPT_sroRF: 'JCP.,11cP.sw_ni::v~ 11rs1z,11· c;1'J nefdult flutter &izP
o~T_sr"k~ UCfl,UCRsR_DIPL,H,O~Jlf€_TpL ; nevice IPL
OPT_s1rikE uc~,l1CHs~~-srs,.,,11cRs"-011LPJt: ; Sf't units onlinf"
OPT_STOkE UCfl,PC~S~-O~VbTS,•,·

<UC~SM-~nc~VPT• : ~o LB~ to onvsical addr col"lvers1on
!llCbSfol-LlIAr.t'll~·> : lliacinostic outfer Sl'.'ecitieti

Ot'T_SJOkE Ul:P,UCRSL-"AlCHL{ICl\,L,- ; kAtiO ... ax (.~.J~
2.)7 jqll

OrT_StOkE Pt::TNil ; Control PlncK Rt•lnit Valut>~
M>T_SIOk~: OuB,OUPsL-DllT ,n,ous1i1J1 ; uriver 111spatcti f;tole Actor
OPT-~tnkE Ck8,C"Pes1._1~Tn+t,u,- : Adrtress ~t interu~t servic~ ro~tinr

UOl-hTlPUPT

f'l'T_sro1<". r1~r.

Driver D1sPatch Table

OJ -
11ol_srAH11n,-,, -
IJLJ a_Fl.INCT ARLF:, •
o,-
o,-
14bC~SK-Pl\ISlZE+l2,-
0

r Internal data str~ctures

1 ++
: Orivf'r Function nec1s1on IaDle ,
llOA_Ful•(T ;.R1,,f_:

FU"'CTAf< ,-
<Nfh't•
!NI llL.IZF:,.
&Et::K,­
SF.:.•St.t"hloi' ,­
sE;,si:;1i1unE,.
SET14uOt::, •
St ICHld~, •
kEAOL.BLIC,•
llE"C\t>i4Lll, •
kf All.lALI< , •
,.i: .L Tt::L~f .. f., •
•Fe 1 TEP~l,t<., •
#ll l Tl::Vt>LK, •
At"CE::>l',•
AC"PClJ'•Tll.:JL, •
CRt:AJf,­
()fAC,F.S.S,•
LlfLF:TE,-
"lf'IUl fY, •
MOJNT •
kfAr11fAo -
•JI Jit:CllF:{:it,.
•Fl Tt.Hl:.Ai;>

flih(TAf\ I -

<SruSt:CriA!-<,•
Sf1,St."JDr:,•
SE fl40!'lt., -
:.F IC"HAH, •
ACc•·ss,­
ACi>Co~1 t P CJL, •
CPt;;AIF,-
L>F" Al"C~:ss, •
l>E' L.t··rr, -
flllOIJTfY ,•
MOUN'I>

FliNL TAB IH.lA-FOT-INU ,<Irtl 1'IAl.1Zl
F"UNCTAR noA_FuT_TESTONL,-

<i.Op -
HEA6Li4i.I<,•

Oev1ce Namf"
Start Jin routinf"
No secon1dry L~VPl Interupt
Functinn Oec1s1on Td~l~
Car.eel 1/u
frror Loq~!nQ Pouttnt>
Oiay Sutr hyte lenotn
Size of error huf ter

Lead1 funct1"n ~ds~s
Direct xscP PacKf'l function
llhlt •tr.rt units 1nit1c1l1:zc.t1nl"I c..,~."'-i"
See11.
5e!"lse Cnaracter1st1cs
Senst• 1t1ode
Set "'orte
set Characteristics
Re'lo Ln~1ca1 ~loc-K
PeAu YhYSlCdl BlOCK
Re•d Virtual HlOCK
•ritP LociCdl ~1ncK
lortte llnvi>lcal i:HoCK
~rite ~lrtual RlncK
Jccess tile dnd/or directort e"try
ACP Control F"unction
Create tile dl\d/or d1rPctory
ne,.ccess t1lf'
Delete tilP and/or oir~c•or~
Mortify tile attrtoutes
"ount: VolU""f'
Peaa llf>ar!
"r1tP C'n~cl(
•ritf" Head
~uttrrf'J l/U runctlons
Sense Cnaracteristlcs
Se"ls,. Jo1101e
Set Mo-le
Set CnBracter1st1cs
Aceess tile and/or oir@ctory entry
ACP Control fu~ct1on
Crrdte tile anr!/nr dir@ctory
Deacr'ess fill'
ne1ete tile anrt/or directory
Jollor!ify tilf' attributes
Mount Vo1u111e
J llDA Tn1t1a11zat1on
Test l>UA tor onltne
Oireet M~CP PaCKfOt fUnr't1on
Pean Lo~lc~l H}OCK

++ .

ruNcT/I~
Fu)JCTAA

fuNCTAA

F"U~CTAH

F' 1.JNCTA Fl

F"UNCTAA
F"uNCTAH

fUf\ICTAl'I
fU~lCTAi4

4,449,182
34

Read Physical Block
Head ~1rtua1 nlocK
seeK
~rite Loc1cal Rlocv
WritP Pnystca! nloc~
arite Virtudl Rlock
Access file and/or dirPctory entry
ACP Control function
CrPdte tile an1/or directory
Deaccess fill'
Delete file and/nr directort
~o1ify tilP attrioutes
~ount Volume
Reita nead
Write CJ\eCK
llir t ti" Heall
n1rect ~SCP PdCKPt
Fvf!n bYtP count re<l•Jirea t11nct tons
Reau Ln11ca1 nlorK
Read ~nysical RlncK
~eao virtual MlorK
wrtte Locical Bl~ck
Write Pnysici'll blocK
~r1tP Virtual Alnck
Pnvstc~l 1/U rP~uest tuncLlon•
Mei'ld P~ysical ~lOCK
Write onysical nlocK
No oner1tion tnr current vers1n~
Re,.ct t1ear1
Sef!K
Write Heao
•rtte CllecK
ACP Read functions
Reau Lo~ical ~loc1
Re~d Physical Rlnck
Reaa virtual olOCK
ACP •rite funct1~~s
~rite Lonical Alack
wrtte Pnvsical nloc<
~ritfl' Virtudl Bloc~
ACP Access or cr~ate t11P/<i1rectnrv

~e~se Cnaracter1stics
Sens" ~o1e

set Morie
Se.._ Cr1aracter ist 1 cs

Functional DPscrtption:

Refer to soecitic FUT routines.

InPuts: Ccornmon to all fDT routines)

RJ = A"dresi; ot
R4 = Addresi; ot
fl5 = Adrress of
Pb = Arldress of
~7 = ~it Number
Ri:j = t..rlcJress of
AP = Address of

IMP (1/0 ke~uest µacKet)
PC~ (Process Control bloCK)
llC~ C Unit Control "loci<)
CCR (Channel Contrnl ~loCK)
ot the 11u function Corle
tne FUT Tahle ~ntrv for tne
tnP first fJnction ependent

suPcitlc rnr koutine
tllfl Pc!Tdl!leter

UDA-F'DT-HSil1NL;

5s:
10S:

15S:
20S:

++

MOVA~ UDASL-1NTERNALrN2 ~et a~drPSS at lnterndl structures
BLAS UUA;w_F~AGS(R2J lOS Controll~r is nresumedblP onl1ne
MOVL Ui.JA$W_I~IT-ERRCA2),Rl Lo~o init error t1aqs
MUVZ~L •SSs_S~fAIL,RO Set suh-sy5te~ tailure stdtJS
RkA 11~5 : Finisn l/U
~UVL UCBSL-CRR(R5) RU : Get adrlress Ot CPrl
~OVL CNASL-JNTU+~EtSL-lDd(ROJ,HD : Get i'ld1ress Of l~tl
MUVL (MO) RO , Get adrlress ot CRN
MOVZWL lJi.JASl(PO),Rl : Test lf llllA ciifl'd since li'ISl J/[)
P.~QL 15S ; ~o
s,,sc ILinAS\1-U"lLJ•j~:,1.• : Reset controller onl1ne a111 Finisn

llUASW-fLAGR(R,1,5S : Tin
•UCtlS~-HSi,UC~SN-STS(~5) : Clear unit ~u~y tn avoi1 ~ Wdit

: Return to EXESO.Lil

uuA_ruT _B ~ rr.:c.n

35
4,449, 182

36
IJL ~-f"L:T _!' tTtC:<T:

1<1;(t0,l',(At'),2llS
1 O"lS: "..iVl-IL #l:>~S-l Vdllfl.!:..1•J, Pd

Return if ~yte count is evPn
set oal nyte count statu~

11os: J~P G·~xfsFINlSrilU fl n i S 11 } / u

• t' AC.~·
++
Ul:A_r.,·1 _·A:,r.t>

UDA-ful _,..,n,:
lluVL
111.iv L
D::>"-ll'U
FS!l"
Fr-. Pl 'Jr
P.1,,<IC
MuV L
''Cl'vL
CLR..,

200i; I M;JV"'
•0•q,s:,
fl tis

2o4s:
7.05S:

209s:
21 ll s:
215s:

J"\P
II,,-; L
MUVL.
At.')L
Pto3

J/\\P
J~.P
J~r>
• t' A(,~;

++
lllJA-FiJT_"IL)P

UDA_F'ur_i,e;P:
M 1.;'I/ L
J ... ,p

++
UVA_FuT-PnYSlO

Get ad1rPss of user's ~~c~ pKt
LoA~ lennth ot an ~:,r~ ~kt • ~p~~~r
Synch Access to system dAtn hasP
Allocdte o svste~ butter
Return to nrevto11s lPL

FIU,'i.l~S Insufficient r1>so·.irc~s. at:Jort 111,
P'}.,lflPSL.MFDIA(HJ) LoaJ MSCP PaCKPt ootfer ~~drPS~ In i·
Pl(~P),Hn Get aadress of user's Ml:>CP ~Kt
Pl ; r1ear 1n1ex
CknJ [Kl J .12(1!.ll LRl 1 i Col'ly l'ISC.P oac1<et into "lol:i Putter
tMSCPSk.P~TSJlF--J,Hl,2UOS
•~scPsv_np_xr~M,-
'-'~Cl'Sb • .JPCOl>F'(~~), 2o5s : Proce:;s transter l/u tunct1C'"'\5
G·FXFSUi0DPVP~T : OuPU .. PdCKet to driver
._.;;, C P s L-tl 11 ~-Fi:: R (R 2) , r 1 C AP) : i. o a 1 1C f Pr a 1 rJ res s in T In r> a r c1.,. et er
MSCPSL.dYT~-C~T(R2),P~CAPJ ; (;C'dd ~ter ovte coont
2D4s : lt"s c1 uo~ seeK co~~and
IMSCPsV-"P-M[~n,­
~sr~Sti-UPcnuE(42) ,210S
G•F:,ffSioHl IF
C:•J'..(F'S"LlDIFt
G•f .(fSAdOi<T Fl

Opcode 1~ a reaa class cnrr~a"'\~
Process rl1rect l/J ~rite
Prncess direct I/Ll rPurl
At:i'lrt 1 /Q

Set normal return status
F1n1sn l/LJ

This routine 1~ Cdlled ~hen ~ onvstca1 l/J request ~as rPce1ved, Jhe physicd\
disK c1daress in oarameter J of th~ parametPrs J1st 1s cnnvertea to~ lo~ic:d)
t>lOCIC l'lumo,.r, rec:oonl~~ble n'I tn!! l)(JA. lh~ nlqor1thri> t"r cn~Vt!rsio" 1~:

++

Lo~ : <cv11nrler • (sectors per tra~~ • trac~s oer cyl1naerlJ
+ rtrarK • sectors per trac1<)

llUVZRL
llUVll>iL
IOULL?
F'ATZV
"ULL2
!='.~ Tl.V
"'ULL..2
Aun1.2
~-AT Z V
AUf1L?
"1UVL
C'IPZV

F\l:.11 L
Bkf\
,t'A~F

• sector

: Develoo L~Ns/cy11nder value uc1-sR_:-c.c1n1<<;(R~), Qu
uc~s~_TH~C~S(~S),Kl
RO,ril r Al = L~Ns/cyl1nder, Ru ; ~ector5/trac~
116,•lf.,PJCAP),1<2 : r.et PllYSical c:vlinrler valuE>
f> 2 , K 1 ; Mu l t I p 1 y c y 11 n 1 er h y L ~ r. s Icy l in o Pr
•b,.~,PJ(APJ,H2 ~et ohvsldl track no~oer
Pu,H2 ~ult1PlY oy sectors/tr~ck
R2,H1 Add sectorltrdc~ to ~cove
•O,•A,PJC~P),R2 r.et pnvsical SPctor numoer
R :i , H 1 ; res u 1 t ls t t) P ~ ~ u l v d lent 1, H; •
RA lRPSL-~fUIA(~l) f stuft in Lh~ area of IMP
11 ~f's ~ _ F !' 1 rn ~~ 1 n HP s S. F' I.: n D F:, - : 1 s th i s a re",, i
J kP S w _F U"lC (I.. .l), I I 1JS _Rr~ 0.UPol,r,
21ns ; Ye~. ~otn ~AFS~JnIFK
709s Goto EXc.S~RlT~

IJL)O._FUT _ Tr>i l I

F:unction~l Uescription:

Tn1s routine is Cdllect when a "ldrd il'litialize ot tne U0A is requestP1,
bc1s1callv m1~m1c:s tne tunctio"s ot tnP l:>YS~~~ process by loacilnq t~·
apprnpr1atP reoisters w1tn the v~lues tnat SYS~~N wnc1lo nor~~lly lo.,1. 1
aadition it disahlt>s all interupts an~ cAlls tne primary level u'
1n1t1al1zat1nn routine. Ul'lon retuTn to tnis ~nr rnut1ne, orfqin~l ~n1 cnnt~Y
is re5tor,.a, interupts are enable1 bacK to around a, and tne I/~ re1ue&t '
t e r n, 1 n in e r1 ,

37
4,449,182

38

•DISABLE L.c;d

.SArT1,., llL>A-SIARTJO - Ul)A Start 11'0 routtM!

.PAGt:'

•• llL>A.1'TAkTIO • Ul.IA driver st;srt Il.J rnut1ne
InPut1.:

RJ = A~dress of IID Re~ue5t DdC'KPl
R~ : Adoress of sµecttied Unit cnntro~ ~locK

ass1qnments:
: Address of 1o1sc~ packet

; Peq1ster
I PO
1 P1 : Ad~ress of internal dat4 str~ctttre~
7 R .l = A~oress of Active ~SCD Poe~et list entrv
, p 3
' p 4

: Address of l~P or lntern~l DdcKr.t oe1nQ ~Prv1r~1 = GPnPra! •Ork Re~ister
; "'~ 7 Pb , = Address of tnout ~ueue •nd for< 010~~ lrlnne> J~~

: Gen~r~l .or~ Pe~ister , , , P7 = Scr"ltcn
Rli = Seratrh

0 i::NAl"1,.,F" (,:,R

UL>A.Sl Al-.T 1C1:

SS:

6s:

7s:

851

lOS:

11 s:

15S:

205:

Ml.JVAl-4
lolli V L
111(.;VA~
FuSHl,
JS!<
POPL

MOV!.­
CMPZV

Bl::QL
MUVo
ll<OVt'
MlJVL

p.iuV"'

: r.et ~a~ress ot 1nterndJ nutter
J Gr.t •tJdrPss nt JPI' q•.arne i•C'"'
: r.et eadr~ss ot queuv 11st.rPa1
: Save 1nternals outter address
: Insert 1~~ in tnn~t ~u~u-
: Retrieve Internal~ ouffer &J~re&~

Pr~cPS5 data traniter usrr pkt *• ckee~ tor dbort or oet cm~ stst

J~ t~1s a see~ µac~et ~ytP
~o
Yes, ~ueue packet ~s is

a ''dd funct1Cln
it really d rP.ad ?

<i o1r1te or. co'io!'

C:OU'"lt : (J

o~ eo~e in eo~~an~ roe~Pt
1,.,til•

Lo~a Un1t ~umoer of assoeiatPa uc~

25$:

lOS:
11 s:

40S:

4~$:

sos:

HIS

sua

IOU

6211

..

MGVZll1..

RE.Ill
PUSl-tR
"1UV~
JSA
~L,RC
JS~
i'L!:l.-:.
JSR
PIJPl-
TS Ti...
Pt<P
•'5~
Pl)Pf.'
""1.:VL
MOVL

MOVZ:.IL
lNSV
JNSV
lilOVL
MUVL
lilUVL
JSB
TST,,
IH.iF:'.1;
MOVL
~Sflw
R1Sw2
H1CL
R1:."4QUc.
~l::<lL
8kW
PU Ph
ns~1-.1
HS.\>
'
f'SR•
ID~C

TSTL
1_.E~
PRW
MIJVL
B1C•2
ICOV~
lllJY&.
MOYL
TSh
Rite
Frt!lNf
llSB

39
4,449,182

40

6S11 PlS..2 ·~~ASMpl~tF.XPCT,Uv•s•-'&.l~$(~l) I Set lnteru~t exp~Ctf~
lh>1. T1"'IC:OJT,1l0 "FbPCIC

IOFOllK J r.reate • fork Pr~cess
1 Referenc• l•hel for unsol1C1At•J 1nterupt~

r Copy •ddress of internal ~utfers
r Clear fort ol1D1tc~ Address in UCD
1 Save re~tstera
I Cl~s• out end packets
I Trv to queue n•• pac~ets Detore exit

.SRTTa. QOl.rJNlS~TU - Close out 11~ rout!~• ... , ..
' ... ' UU1.FJN1S~ta • UD4 driver J/n e101eont roct1ne
.J

• Ad~re11 of Internal data structures
• A~dre11 of JOA
• Address of Cl.one UCB
a.11 t Qn111ent11
• A~dress of En~ paeKet Detnq processed
• Address of a11oc1atea Co~~a~o Packet List l::ntry
• Address of assoc ~t~a IR~
• seraten and 110 Status •r~u•ent r•Qister
• 6eratcn and 110 suD status arou•ent reQ1ster

J Get next e"d pae~et
I Did we vet one ?
I Yes
1 Return to caller

:1~i:t~~!i:='-r<R0> 6 109s r Process J~P
UDAS~-FLAGS(Rl),lU s s SKlP internal ~ct lt UDA ts otfllnr UDl.PROC.INTRUL t Process Internal pac~et

tOllU

109&1

1<:!0 s:

12 5:.:

DEC&.
BSRt1
8k"
flOV&.
TST&.
Bt,;DL
PUS HR
MDVI.
lllOVL

JS!'
JMI
J.SS
\..LP""'
... (j v 1,

Aufii.S.:>
MUVL
Ir.1' \I

C"Pt.V

Pllif'i;
"°UV"'
lo\OVL
FIS!'l,.
PSEIA
Eli<lo
M(!V.,
CMPZ.V

Ar. F:•.J
loll.JV.,
TST ..
Elt.QL
Ml'VL
111c .. 2

Bid~

4,449,182
41 42

.DlSAbT,f:. LSd

: Process internal packet

lnPUt5:
1 RO = Address of ~nd PdCKet nein~ process~n
; Rl = Address ot int~rnal d!ta 5t~uct~res
; P2 = Address of assoc1at~ct Command Pac~et List f:.ntrt

MQVl.BL
c-.Pd
Bl::.OL
('~Pt!
Bf'. F:'"

; Get aarirt~ss

5$: MOVL
10s: C",..P ..

l~S:

P.E.QL
MUVL
ANF.:~
RSR

C'MPb
Be,C)L
l-IOVZlllL.
Bl::OL

lo\.:)(PSb-JPCODE(RU) R7 , Get ~~c? r~cKet eni cone
R1,#<MSCCsK_op_u~lIN!MSCP$K_np_£~U> , Is it an JNLlhF en1 co1e
5$ • Yes
RJ,1<~SCPsK_OP-GTU~f!MSC~sK_np_f;.NU> 1 Is it ~ get unit st~tus?
3~s : ~o, 19nor it then

of UCd corresponding to Unit ~umber in MSCP End pac~et

UUA$L-UCB_Z~RU(kt) ri1 ; ~et aa~rPSS ot uCn ~
uc~sw_u~1rCNJ),~SC~6~-UNllC1<0J ; Are unit numoers tne Sd~e
1~S ; Yes
llCF!SL-t1NK(k3l ,tH : 'let aortress of next ttCP
105 Try this one, O = last uCr

Not a norm~l unit numoPr, !~nor it

R7,#<M1'CPsK_OP-GTUNI!~SCPsK_ap_£~~> : Is 1t ~ get unit s'atus?
3US : Yes, µroee~s it do•n stoirs
MSC~S•-UNIT(ROJ,R7 : ~et unit numner
2US r lt's Unit zero, do not mark nttlln~

Si!t other th.:tn unit zero oft-ltne •intil reC'eii.;r ot d SJCC'l!SS ... n l;'ilT S!l<l''.
f"nd pae1<et

2uS:

2~s:

1'1 l(" .. '
A1C'"2

ANrv
~OVL

PUSnR
Fl~~,,
ALRC
"'u v ..
i"OVt:.
MQVI.
A1.1rL2
I t'.Sl.il't.
Pu Pt;
FISR

: Procei.s the r;c:.r LLd 1 STATUI' "'::>Cr> l:.n<J tiaci<et.

l 0 s:

NUH.:

35s:

5s:

I 0 S:

l !:IS:

205:

++

CM Pb

Rc.QL
Ct-!PB

11>1.F:v
~l)VL
C'LR L
Pi:IC'

·cMPL

B"'Ei.I
"'OVL
BrcR
AL>nL2
,D.l)R LS.)
R,:,tl

43
4,449,182

44

: routtne acded S/1~/~1 to n~n11~ retere~ce nu~uPrs tor
: aoort and i;iet co"im11nd status tPst. hrs

rs th1s an ARU~l com~dnd

Yes
ls this a aet cmd status

No, return
~et 11c'1ress ot com'llan~ list
Cledr loop counter
Jntern111 racket or nonP at all
Are ~::.r~ reterence numhers equ111

Nu
Lo11J 1ntPrnallY assiqned re1 num
Returr1
Point to neMt c~1 list entry
Loop t~rou'ln li:;t

• .5RTTL lluA_Hosr_n~rK - Hf"1::,T to ur)J. 11tr.POUt hiH1'11er
• PAt;V.

lll1A_Hl1S1_JJ,~Ft< - rif1::>T to UL1A linieout handler

Ir.Put~:
~1 : A~aress of Internal Ul!ta Structures

UDA-HUSJ-Il "IEr!:
... L! v ... R1,H4 save address of internals

llUASL-IJCR,_ZEROCH1),k'i Get aCJdrt•ss ot uCu u tnr nost ti-er "'UVL.i
illFJ,.,PCH tos,13ri 11s.,. Iuci..-FlK"C"' fnr ev•nt~ill tt~p-,

lOS: BLBC UOAs111-F'LAGSlP4),2US Exit if l'vA ls tla1~ea oftl1ne
IJDllSL-C:..nNEUC'hCK.i) .~.i Get ao1ress ot Clone urr.

20s:

"'wVL
'J :>TL>
R1<F' ~
J:>~
~::,B.,

BL.RC
"OV b

r.:u V L
"UVL
E<::.~~
WIJVL
?::."'

UC~SL-flPCNT(R4) ls .:)TAFl1'TG queuein~ o~ccet~ ?
20S Yes, 1Pr1ve
GA f 1. Es I J F' o ~" Mo 1< e a 110 tori.: for sync r on l z"' t l 0 :;
111.111._r.ET-lt.TPl<I r.et an 1nter11c11 pac1<et
RU ins None aroun1, too oa1
l"i5(PSK-f11-'-fLU~r-tr· ·~al<e d t-c1-np lF'Lll.:>i') Uflk C0""'o~;l
MSCPS~-OPCOuF(R2J Unit u
~A·~,MSCPSL-RtT~-~NJIK2) ; Loarl a bo~us byte count
P~ -\~Pl Save current uCo 4ddress
LuAu_[NiP_PKT LOild a"I "l\Jf' pc1ci.;et tn llt•A
c~PJ+,fl~ Re~tore inrut UC~

Return to faro< dispatcl'\er

IJU.6-1 i"t:OuT - l'.;A t1"'eo .. ~ hdnaler

++
lJl,f..Tl"'t.nl:T - IJlJb C'o,..manrl T1menut Yd"dler

lnt'uti.:
F14 = Address of llLJAlP
R!) : Address of Clnne llC!-1

UUA_TlMt:.nuT:

4$:

C LR•·
MuV A It
PIS"?
IHC"?

M(J\' L
PiC•2

JSR
CL~,.
""OVAR
PU1'11"1
fl~!' ..

Internal Packet Queue

MUVL UDP.SL-TNTPQUF'(Rl),112
fl!'.M\JUt. lllR:l),RO
PvS SS
11::.P.• lll•P.-Dl::A1Wr.PAG~.D

~eset tne ULJA
Get aorlrPss ot 1nternc1ls

~1~1J : Set timeout t1a9
XPCT>,- 1 ~~set intPrupt exDectf'o

"ln1 llllA flnl1ne fldQS
Get. 11ddress ot 11DST ti"'e'lut lltY
r1ear all status oits in UC~ u
with t~e exc~pt1on of Oh Ll~E
Sync~ driver at for~ IPL
r,edr all status olts in Clone uro
r.et aarlr~ss ot interndlS
Sc1ve ~ork reo1sters
r1ns~ out en~ PdCKets if dny

Get ao~ress at internal oa~K~t que
Get next internal wait pacwet
Oue.i~ is e~pty
Weturn outfer to svste~

45
4,449,182

46
~~P 4s Lonr unt11 queue is •~~tv
CL~L R2 lnitta11ze loor counter
fllOVZWL •sss-1I"IF"OllT,k7 1.0110 pr1111ary Ilu err_or &tot...1s,

55:

; Rundo"'n all 11n•s t1111t •er• already aue11e.1 to tn• ll~A t-ut were ~'~11•r
, terminat~o via an rn~ Pac~Pt (1.ell tn~s~ 1o1~c~ P•c~et$ 1n tn• ~ct1ve"
J list not close~ out ~Y the FINt~~ 11 routine). Intern~l ~itcKets ar• .,onor•c.

fllUVL 11UASL-CMO_t.ISTC~1),k4 : ~et ad1ress nt active c~1 li~t
q~c •~AiV-SKSl~~L- : R,tp e~pty or internal PHC~ets

Ct'l<t:;SL.Clli:>.llF:.-Ck4).1~S : Caf"lcel OP'llV •H1f1n11nPa Jl't'!;
fl'UVL CPl<~sw.~APPi:.GlR4l,PU 1 Were uRA resource& acqu1re1?
R~CL 115 : No
PUSrlR 1•11<P~ k4> r Save current context
MUVL UCRSL.tHRlP~),Rj , Get aa1res1 ot CRo
MUVL GR~f~~-dsP'~~d~TATl'•A~i:.Csw.lolAPt<F:G(k)) , Load mapntn:;i context 1''' Ctdl
J~~ ~L u"w'' , : rur:;ie ~uftereJ uata Ddth
JS~ G•tuCsqELUATAP , ReleasP Rufterea Uitta Patn
JSP G•1or.s~r;L~At>R!:.I': RP.!lH1i;11i 11~11 wac-pin'l Peo1HPrs
P~PK 1•M<1<~,H4> Qe1tore rr~viou~ c"ntext
YQVL CPK~SL-C~U-~FFCH4J,H1 Get fto1ress ot lR~
MUVi.. R,.,Hn r.opy MSCP peeo;Pt artoress tl"r 1n.:A•,
SuPL.2 s•14 k~ ~u~ate ~SCP oo;t nttsets tc c~~ ll~t
sse~ uuA.iuCAM Close o~t the Jr<P
lD~L2 s•1crKrsK_s1z~.k4 Get aadress of n•xt PdCKel
Au'4L.~o:> •CPr...Fi•.1,is1_1..~::.,t<2, tvs Cnl!'c~ a.1.l COflllf,an1 PdCrtf'tS

10s:

t 11:

15&:

, Rundo~n all lkPs that ar• still in t~e UC~ !RP i..1st. l~ese ~ere n~ver
, initiatert at all.

20s:

301:

t

J·
' , ..

MuVAR
p c;111jlJ c:
en:
IAUV L.
R5At­
Rb('
Fii;)!'"
~j.,I'

C' L,.R L.
Pl)Pt<
R;; fol

.PA~E

UuA.IOCANI
IDC
IJSB2
•ov •
.. ova.

SU E~~~

i"RL.11

sou uu f It
LAL.

11(111

r , ,
' ,
' , , ,
' , ,
r

runetlon•l Ueserlptlon1
nr-s1
IPL LeveJ • Po•erl•ll 1PL
InPYtU

114
p~

ftt>

"'
s Ad4re1s of
• Addresit of
• Altdress of
• Ad1tres1 of

re;hteru

I.et ari1ress of inPUl !1<1-' :i11eue
Pe111ove next lkP freim que11e
fl\l!~Uf! ! S el!lpty
Get ~dCKUP ~ftctet it dl'lY
C'dncel t.,e llu
Clos~ out ne~t lNP
Return cutfer to svste~
C'ontinue tor al1 outlltand~"''l l"t'S
r1ear 11n count f1•l1 1n ClD~l ur~
Restore worK rP~isters

' ,
' ,

: address of a UCB
• A~dre11 of internal d•t• structures
s saved eddress ol tne JOR

' .. UL>A.tr.UULUt.:
JSlt
PUSttR
.. OVA5'
UC•2

511

IOI I

·1 5 s:

255:

10s:

358:

40S:

••

l'~C

Sli!if'
•OVZBi111
MOV'iWL
RSfh
ai;ti,,.
llJ<w
BJS..?

MuVAH

llUVAP

i'IUV L
lolOVL

lolOVAR
lilLVL
lolUVL
"'UV,.
"'OV~
Mt.JVI:'
MQVL
M(iV L
'"OVi<FI
Ml.JVt.B
"o.JV ~
lo! LIV!'<
('L,RL
"'uV"
Pl(',. 1

liluV,.
"I IJ V L

SuP,.2

JS!'
"OVL
I NC"
JSR
8LRC
P.lS•2

MOV L

JSP
ll'uVl
fllOV11R
MUVZR"'
C"Llh
CLRL
"'UV:.!.WL
MUVw
Elt1S
PbS
AUfll.iSS
PHb
INC,.
A lSw:;>

fllOVw
PO Pk
RSP
POPI<
PHW

47
4,449, 182

48

J llloeotion failure
1 Fla~ butter •lloe•ted

Save arldress of intern~l •SCP
~dCKPt ~ueue list~~arl
Sdve ~rldress of Active ~~er
Co~manrl PdCKPt L!St
Sdve a~dre~s of I~µ
Save ad.1ress of IJCf, 0

Restore reqisters
Releas~ resources an1 return

• .;HITL Cu"fli<lit._ltJl1 - l.il!t. Controller ln1t11111zat1on Co,.·t1n 11cit1or,
.!:'~(,·

CUNJI~Ut-INJT - rontrqllPr in1tial1za~lon se,~~nce continuation

runct1~n111 UP~crtµtinn
/JHS/

I~L Level = •orK IPL
Inouts:

J. J = Pointer tn IJJA req1 sti-rs
~.,. = Adores:. of internal o<lta structures
P~ = A~aress of clone ~C~

.1:.r;ARLF' Lsb

C CJ •J T I I• Uc.. -1 ~ J T :
JS!'
llUVAf'
Ml.JV L
~LlVL
Tto.ir ..

G•FAr~FUP~ ; Credte d tor~ Prnci-s~
Cu•:Jli.'IL-11•JT,U~k.SL-~PC(R5); Loi.'lj l!'lterui;t COl"ll1nllc.t1nn d1.JT
Ck3J Kl ; Get l.lL)AH' aa<:!ress
R4 Hf ; t"op1· lntt'rl"\ills r-11xfer aortrt"i.s
1lti!si._rrvt1_t:~t<(kl J ; •H•·:i µossiblP St'!'P resr-onsi> Pr,..or

Process control.l'!'r step 1n1t1dl1zation

Get step ~or1 frnM unA
(.pa-u steo respor,se tor ~(')SSlt'lf' err

ss:
tos:
t5S:

20s:

30S:

3:>S:

405:

BbSC

Bt:lSC

IHCt<7
CMP11
R1~ i::i;
MOVZIOL
hSV

AlH'L7
MUVL.
F'1S"'2
E.\1S11t2

ti1ov ..
ElkB
CllP"
Bc.OL
CLP,.
RSB
B!Sw2

F.:XTZV
MQV\o
I NC"
RSP.
8115
AbC
81511?
P1s ... 2
CLRL
CLPL

llluVl1111L
INS~
ADnL?
Mu VI,,
MUVi..
fllOVL
t.Ul"ll,,2
MOVAl
MDV i.L
TSTL
JollJVAL
Ml!VAL
MlJVAL
lill!VAL
CL.Pi.
llOVL
CLRL
lluVl
lf,lJVZl<L
11ov1,,
flJ SL.?
Jf'<SvtJi,:

AOPL7
AIH'L7
Al.l['IL2
AlJl:lLS.'.i
MiJVL
MUVZBL.
llQVL
I NSC,illl:.

A[)()L2
Al.iflL?
AUl'IL 2
SIJRGTI<

49
4,449,182

50
Proc~ss P.xpectPo steP ~

Process exoectea steP 3

Flay voss1~le 1nteruot tailures

Terminate ln1t se~ a~ fatdl Prror
'!'ern1111dtP it ster seo:iuP.nce error
SP.t r.u dn<i 4ual'l 1oord o•irst
wrtte Go flao to UDA
C!P.rlr tor~ pc in clone urn
Clear lnit error fldas

IJ LI II s \..' -"' u FF C 111 ' , fo' 3 : Dev e 1 op 11 o ~ a a <1 res s o d s e t n r Ld' t.
UDAS~-lllAPl<f.G(l<lJ 1Q,•9 k1
t <P 1'.:l'i>S L-"fOP+ r~SCP,;. I' _PK f _H l•Q >, k J
UDASL-RJF10P(k1J,1<0 : Get ao1ress to toµ ot syst~• ~utter
PO,I<? : Cony
~i l<l ; AQajn
#l<FSPst._TuP R! r.r~ate a:ldr tn t"P of Pt.S r:dt""-PtS
R~5~SL-tLl~lCN?),(RU)• Initialize Hesoonbe ~UPUP listne~J
R~~~~L-fL1~K(k2),(P01+
Cl<OJ+ SKi~ tutfer rle~cr1ptor
CMnvsi..-fLINhC~?),lRU1+ rnit1alie Co~~an~ ouPUP list~ead
CMOYSL-rL!NhCH2>,CRu>+
INTPSL-rLlH~(H,),(RO)• In1t1al1ze internal PdCKPt •dlt
JNTPSL-fLINK(k2),(RU1+ OUPUe 11SthedO
(HO)+ Clear purge Anl'l iriterurt ~nr'1s
•H~SPSL-T~P,P~ In1t 1naex tro~ too ot resno~~e r~t~
R~ ; ClPar loop index
PJ (Pol : t1nK packet to ~essaae rin~ entry
s•,48,CP~~S•-P~l-L~~(f'lJ ; Loa'1 PKt Len an~ clr V1r Cir Tu
PO,CPKESL-PI~GP(Pl1
•<UDA_M_o~~!UDA_ .. _fLAG>,(kO)+ ; Set entry to uni. uwn
CPK~SL-PQfL(Rll[R4l,• ~ Tnsert packet n oacK ot resoons~ a~~
8Nf~PSL-RLlNKlH2}
•HF:;:;PslC_SlZt::,k3 nevelot' llbA aa'1ress ot n"lit Rtf. PKt
#HF:~PSK-~IZt,I<~ Rump indP.X re4fster to next P~S oKt
•kF:SP51<_5sz~: 1\1
•~SCPSK-AlNG~lZt::Ll<S,3~$ Looµ thru all Pt::S r1ny/pkt entrlP.S
PO,CPKF.SL-Pl~~P(~l)
s·•~R,CPK~s~-PKI-~!~(H1) ; LOdl'l PKt Len an1 cir V1r Cir 10
R3 (RO)+ L1nK pac~et to co~mano rlno entry
CP~t.&L-Pa~·LCR2l [~<tl ,- Insert pacKet in oacl< of co'Tlmdnci q'Jt>'-
iac111l>C')S1.-~L l NI<((R 2)
•C~UPSIC-SlZt::,MJ neveloP UdA aadress to next C1l"1 c~t
t(MUPSK-51Z~,M4 Pu~p index reytster to next c~d p~r
tCMuPs~-SlZt::,Rl
P~,40S Loop thru aJ.l crr·1 rin~/i;Kt entr1P::.

Clear Com~and Reference ~umoer and UPA Mesource Values ftelo in Pacn
entry ~f the Active ~srp Com~ana packet List

4!) s:
IACfSL-CMD-LIST,Pi f Point to top of command list
(I< 2 J
1cP~~s~-s1zi,:,K2 Point to ne~t Pntrv
•CPK~sK-LlRT-LE~,K5,45S Lon~ tnrouan list

Send uDA eight onl1ne PaCKPts for units

llUVAR UUASL-INT~P~AL Ml
M0VL UDASL-lNTPQUE(~l),RJ

o tnru 7

Reload addr of internal struct1ires
Get aaiiress of 1ntPrndl PKt 11sned1
Get backllnK a1dre!';s

sos:

.luDL2 s·•-1,H.1"
Cl..RL '14

BSB1111
~Lee
"'UVb

Muv ..
"'l) v ..
I r.s...iui::
AuP.L~:>

ClP.ar ~4

Get an interndl ~SfP p~cl<Pt nufter
Allocation failure
l.oad online comll",anii in ~SO' pac,c:et

l.oad unit nurr.ue r
. • Lo.=io s"oatloA' 11ni t nurr.:-ier
: Jn!;ert o.,cl(et in re;ir Pr,_. nt que1;.­

Loop tn~ ~ unlinP Pac~ots

51
4,449,182

52
Seno u~A t~e s~t Controller Cnaracter1stics co~~and PacKPt tn enanle
Attention Messages and a oD second nost timeout Vdlu~.

FIS!-!"
flL.PC
!"lJVb

~ls .. 2
"uv ..
l'llSw2

U~•-~~T-I~TP~T ~et an internal ~b~~ ~acket h~ff Pr
P0 1 ~5S Alloc1tinn f~llure
IMSCPS~-"~-STCO~ - Load Set Controller Cnaracteristlc~
MSCPSt;-1)PCnllF:c11;,d : or COill'
•MSCPSM-Cf-AVATN "SCPs~-r~T.rL~~(H2) : Set contr~ller f lo,S
tbO,MSCPS~y"ST_T,uC~7l : Set host t1~eo~t tn 6U seco~~~
•uDASM-U"lL :~r, 1111As,..n,Ac.;s lll l > : Set cont rel.I.er on l 1'1r t ld'1

LOALl-l~'Ill-Pfl.T: : Reference label for Internal p~cket lo~dlnn

"UVL
AUl'lL2
l ~S1..1llt.

r.et aorlress nt internal n~t 11sr1Pd 1
Get ~acKJ1nK a~oress
Tnsert P!!Ckl't tn r~csr en1 nt q 1ie1H:
nue PdCKl't to UuA

S!>S:
flt< W
RSI'< Error ret0rn

, , , , , ,
1 ,
J , ,
: ,
1

.lHSAbLl:. LSu

.sqrTL UUA Interunt service kou!ine

.PAGf
++
LJvA.TNTE.l<UPI • Interunt service ~outine

functional u~scr1ption:
/TflS/

lnPuts:
O{SP> : Pointer to Ink
R~ = A~dress of ~lone LICH
PO • R4 = Scratch

Outputs for routin~ catleJ:
Rj = ~01nter t~ UuAIP
R4 : A~dress of Internal u11ta
R~ = A'1c:iress of Clone IJCH

: --
UOl.hTt.RUP'f::

1 o s:

1 !) s:

20S:

Jo~:

MUVL.
"1uVAR
8!;~

"UV L
PbC

MUVL
T.STb
Pt:QL
MuVL
MUVb
MQVl:!

PuS11R
J~~
POP.,
tilUVo
C"LRb
""uV L.
Ct,P ..
Ab CC

JSH
!:ltd•
PL.MC

P.r.1S

f';,,P"
llluVv
fll (J v:.:
"'U'JJ
"t. J

J;)P
!<t-illl

fll(S~)+ 10 G~t aor!ress ot lDo
Get address ot 1nterndl str~ctQrP5
I~nor 1nteru~t if timeout is s•t.0:
is 1ncoh~rent at this oo1nt <1nv-~1
Lo~n owner UC~ tnr ~Xi:.SFO~r
SKip purne cheer- if Llll~ is ottlin"

llUllSL.f :<Ti::RIJAL, k4
IUl"AS ~-TTMEulll •
UDASW.F't.AGS(P4i,20S
IUPSL.O~N~R(Pj),P~
•uf"IASV.or,;LI '""' .­
UDAsw.f1..Ali~ (H~), 1 us
fllJASL.l'lllF'Tnpci.c4J,1<2 Get audress ot svste"' bufter
C"Mr·il'l-PURliF"(R<!) ; Is d 0<1t11 oatn µurrie req•iest"n
10S ; ~o, test !or normal lnterunt
flCPSL.CH~(R5) Rl ; Get a~1rf'SS nt CRb
CHRSJ,.IrlTP+~P.CSh.l>flTA!'•'PHPl) ,•PH') J Save c11rrent !JP in 0'''
CMDS!!-PUP~F'(Rl),- r l.Oi'IO lllltll patn l"Ull'ber to t•e nurt;",
C"l<MSL-INTD+W~CSo.uATll~A1~(~11 : Into (Ro
••''<Rl,H2,RJ> f save registers trorn sys routine
r,•1ursP1J1Clint.TAP : Pur ie tne rldtd >-at'"'
t•M<~l,~?,R;> ; ~estnre '"'rev1ous context
(5P) + ,lRFlS!..J .• Tu+ \/~:CSd.LiA!APll fl-I (111) : Restl'.lre r>rPViCl!Jb [,D
Cl'4llSB.PU&.1liF'(R2) : Cledr fldtd Path in lntPrlll-'t •vr;;
(hl) ~? : Get ad1ress nt UDAl~
lll.111.:>& (?.n Let Uu~ kno e•re oone
1unAS--J~IFXPCT,- Dispatcn interupt it ex~ecte,
llUllsi..F'i..lh.iSC'<n, 1 ~s or process poss1n1e attenU "'"' n"t
~uc~si..-fPCCK~l Go to aonropri11te routines
70S Restoro reqisters an1 ret frl"· int
UUAS~-FL.AGS(?~),1JS Tqnur unsolicited interunt if tne

G • F' .~ F' S f IJ R I<
UuA_F'ullr;.PkU(

UL)il 1s oft line
Tt clone isn't al re.trty in tor"' ::;11e.1<:
nut 1t there to ~et .,,essa9e oac~rt
Create a torK Process
Restor~ reqisters

: Gracetulty yo to tor~ TP1
: 'li.,. tn" standdrll tnr~ Processor
; for unsnl!c1tert Attention vessa~Pb

• s Fl f TL. 11lJ~_111, r. ,1 Au - u f'I A j r 1 v er u n lo a, r o J t 1 "It'
.FAt;F

++
ULiA_tl,..LUAlJ - ur1ver unloao routine.

run ct 1one11 l1escr i>Jt ion:
/TRS/

InPuts: Unknn•n it here trnm SY~sSY~~~~

ULlA-Ut;LOAu:
PUSriP
M()VAH
Boe

~bC

Save rP:Jisters
Get <Hl-lress ot intt'rnat struct11reb
Ex!t if '10 syste"' bufter c3llcicat<>'1

SK1p clo"e unlink!n~ it never lin~e·1

53
4,449,182

ss:

tos:
15$:

++

"4UVL
f'JVL
CL.l<L
Pl~('

l'!JV Li
Jll!UVL
ll'UVL.

JSB
Jll!OVL
l'ISA"'
"4uVL
Ci..Rw
POPR
~SP
.Sl"ITL
.PAuF

54

Uu•.Rt.Sl:.T.R11;1.1s • Ro1Jtine to set t"le ~ei.nonsf' r1n<.1•5 0•11 tls:J tci 1"•.:. ..,.: .. ,
and c1ear tn" first ~uaJwor~ in tne ~ctive c:o~~d~~ llst
entry l"lolnteil to ov ~'J.

InPuti;:
Ru = Ar1o~es5 of resp"nse packet
R2 = Adores~ of com~and PdC~ft 1tst entry

UL!&.Rt.SI:. T .R l t.IGS:
BlSL' •UOA."4.J~N,•

•c~KFst.RlU~P(RU}
C'LR..,. Ck2j

R.:iB

++

Set Tl'SPOnSI! rln·1 · t~ 111·.:. u ...

Clear "4SCI' (;nm111on::i ,.ettorence :><'l' !-~r
An 1 !l D a Res o 'Jf c es t 1 el" s 11'1 1, i st t',.. ~ ~

' Gl:.T .r1~f1.PAC'KF r • Ho1.1t ir'I'! tn cat tne r'll!Yt dvc11J.a->1\? resr-on5e pacio;.f't tr-..'" i:llA ,
1 runctional uescript1on:
1 1'11!.V ,
: JnPuts:
s Rl = Ar1dres5 of tnternaJ. aat~ structnre~

Outputs:
RO = Ar1aress of End PdCKet or " ft Of'Xl OICKf't Df'lOnQe1 to ~n~

or no c:om"'a"d packet n1atc"' 111cts fo•wti.
R2 = A11ress of Ac:t1ve co~111a~1 Pdcket •1tn sa~ .. r•t~renc~ l'lu~P~r. or

undetineu 1f no maten ••s fo~no

Gt:T .fr.O.PACl<.F:I:
"'(J ii(~
loOQVL

5S: "4Ui11..
~~s
B~S

RS Rd
Bi<~

10S: Ri:.MYUt:

l5S:

20s:
25S:

++

JJ'.i!;wrJi::
Cl.PL

MOY.AR
CMPL

: ~rncess ettention message
r Trv ll •oaln
: Re~ove pac~et trn~ trol'lt of

.: Insert in bac~ of qu«u"
1 C4ear loop 1n1ex

AITi:.NCI~"'-~SG •.Attention M~ssa~~ Proc•sstn~ knut1ne

runct1n,.,a1 U@scr1Pt1nn:
It the m@ssaoe rf'ceived is an Ava1ldblf' At.tent.ion Me&i~wef tnel"I ~1. un-L1ne

.: internal l'SCP oaC'~et is 'lenerate'1 for tn• unit decl•red. he otr.f'r tor.,.s ot
attention messa9e5 are c:urrentlV 1qnor@~.
lnput.s:

Pu = Ad~ress of Messa7e Pae~et
Ii l :: Ad<:lre5a of Inter114l Oat"' Struct11res

ATTEt.llIU~J-loOSG:
91.il\C
CM Ph
P.-"'~"'
MGV1.r
BSA"
RLHC

.. uv,;
"'uv ..
llll.)V ~

55
4,449,182

56
RestorP incut context

: Lo~o unit Numoer
·:. Fron. attentio:'I rr.f'i;Sd'le l""Cl<et

f,OOJO Sha'1ow lint t "4U'llher

Lo~d online co~~anrl

lOS:

Ill.) Vb

11'.:JVL
Aoni.2
TNS1.o1Ut::

(SP)+~Po
~SCPS•-UNlT(RO),•
'1.SCPh-UllilT(P;.i)
lllSC~s-.o~1T(RU),­
"'~CPS ,._.;1-l ij;,, .UN T (P J)
IM SCP S l(_'JP-'lN L 1 ·~ s ·
._SC~S~.UP~OOE(PJ
UUASL.l~TP~U~{P11,PJ Get internal µ~c~et QUf'UP l!st~e~o
5•1~,H] C.et bac~ linv
·CH2J,~(H3) tn~ert packet in rPdr ~1 q~e~e

l~S:
20s:

FHcR
"'UVI)
PE .. 1.11JF.
1111Svt1i::

2os Cl~dn up and ret~r~
(,,PJ+iRO Qestore !neut co~tPxt
iHF~QsL.FL.lr.K(~~J,R~ : Pemove µ9cket fro~ tront of o~Pur

IHSL2
RSR
.PlGi;:

CMOJ,~REs sL.bLl~~r.~tJ : Insert in bac~ ot '1UPue
luD'1i.M.l)iOl'lt,.!ICP~t;SL.fH;1r;P(kOJ Set r1ng entry to 'li.JA n.n

, ++
: GtT.CMO.PAC~E1 - Houtine to oet tnP nevt com~an~ ~acket tor Cdller , , ,
:
1

'unctiona1 vf'scription:
/TH.)/

Incut:
: Pl : Address of internal aata structure~

success = A~dress of emPtY ~ommand oacKet.
Failure = 0 1f:

1 Outpits:
1 H(J :
I Pu :
1 , , , ,

1) own Dit set 1nd1cat1n'l ll1H o~ns µacic'et

"2 =
2) ~wn oit reset out tl~~ bit set ind1cat1nQ

packet ts still dCt1ve.
Address of e~nty Active ~SCP Comman'1 PdC~et entry

Rl Save Ml
llOAst._C11l'l.LlSTCK1)IM' Get ao1rt'ss ot com.,.dna list
UiJlSl-PuF'fOPCk1J,k r.et aa.'1ress ot svste'll t>uft!'r
CM0ySL.fL1NKCR1),kO Get aodress Of next DaC~Pt
•UOA-i.O~N.~~PKt.SL.kT~GP(KnJ,20j : ~ac~et helon~s tu G~~
Pl : Tn1t 1noo 1n~ex
CH2J lb t~15 Pntrv ~~oty ?
tos Yes, use it
s••cPKEs~_s1z~Lk7 su~p µ~inter
•CP~rs~.LlSl-L~~.Ml,~~ Loo~
20S lctive list ts tUll
Rl Init 1001> index
llSC'PSL.CMU.kff(Hn)[RtJ r Clear MSCP ~acket for Cdli!'r
IMSCPsK_P~T~JZfa->,w1,1~S
R1 : Re5tnre.R1
~(SP)+ r Execute co•rout1ne ca11 to call~r

Return nere 1f co~man~ pac~et c~n ~e queue'1 to the UDA

PIJStiL
lluVL
Rt;l'lylJE
1 fllSY'lt.
k i r &..2

Save Rl
Get a~~ress nt ~v~te~ huftPr
Potate pac~et from tront of ~u~u" tu
baCK Of 1111•uP
ClPar flay oit in r1n~ entry

Set Pat.:1Cet to 11!>11. n .. n

205:

Pl SL?

CLPL
Pu PL
RSI'
.PAGF'

Set failur~ tia~ if nere tro~ aonvP
Qest'.ore 111
Return to cdller

, ++
1 UL>A.Gt.T .l ~TPI< f • ~llocatf' a syste•u buffer for an .intt•rna 1 ~,:,cp pacl<:'et
I
I ,
:
;
J , , ,
1 , . ,
;

Functional Description:
Calls UvA.ALONOhPAG~n tor the bufter. C"ledr£ the 4~ bytes ot p~cket
to zeroes for caller, and loads ne~t ntyner internal ~SCP Pa~~f't
commAnd reference numoer.

lnPuts: none

Outputs:
PO :
R 1 :
R2 :

++

~uccess or fallurf' ai; receive'1 frnm 1:.Xt.SAl.LINUfllPA•.iF:.i
A~dress of internals it allocation succee'1erl else trds~
A~dress of hufff'r

netine size ot 5yste~ huftf'r neerle1
Get system outf er
Allocatinn failure, i~nor re1ue5t
In1t 1000 index
l'.:lear Paclc:et

Get tnterna1-s address
Make d ne• commana reterence num~er
Rut not a zero
f.oao P"Cket-s com.nand ref,.renc,. no

: Uvl.ALOhONPAG~O - Allocate d butter from sy~te~ space for caller
:

57
4,449,182

58
functionnl nescrtµt1on:
Calls •·>.f$AL1Jr,01,pAGC:f> anr:i inserts riuf ter st;:.e ;in1 tyrit> in oloc~ it s•1ccesr,,
Sdves ~J for c~ller. ~l usuallv co~t~ins trie arljress of an iv~.

Inputs:
Rl = nuti:-uts:

Size (')f DlOC"K

RO = lO• bit clear inaicatios f"lilure
PO = lo~ Di t set indicates s 11ccess
Pl = s 1 z.e Of but.fer
R:.i = 1\'11ress of DuftPr

++
UUA.D~ANONPAG~n • Deallocate a D~ffer frn~ svste~ sp"lce tor caller.

function ... l D~scr1ption:
Calls fAE~nt.ANONPAGED and Saves R1-~l for Cdller

tnputs:
RO = A'1oress of bUfter to he Jt>dlJ.ocate~

1 Duti-uts: lllor'le
r , __

u LJ A. D t. A,... c r. p A\, c: n :
PU~HP a·~<Rl ~? PJ>
JSF. G•r.xrs6t::A~o •• P.<C:f n

1=ave registers
ne-allocate syste~ ootter
Restore req1sters PUP~ ··ucP1,~2,R3>

RS~
.PAGE

++
UUA.IUPOSI • l/O post processinq routine

functional Description:
/ll:\S/
InPuts:

Rl
R~
R7
Rb

outputs:

= Address of = At1aress of
: 1/0 StdtUS
: !IO StdtUS
None

IHP to post proce~s
tne Ub!qnito•1s Clone uCr­
long word 1
lol"ly worrt 2

111.JA.lUPUSJ:
ttoVL,
MUVJ
l'tCL
"''J'I L
T f'j C".l,
"l(JVAA
J f'j5vll 1:.
P~fv
l'ufilNT

tos: 14uVL
RSI\

Ru,-(SPJ
Al,1RP$L.~FUIA(M1J
llCB:>l·_rwc1.T (R~)
IKPSL.llC~(RJl,1<0
UCP s L.Ot'Ct•T {Au)
G•JuCsGL.PS~L,RU
(klJ.~(kl))
105
#lPi..S.ll.lPUS!
(::,P)+,RU

Save Kl)
Lc~n tinal stdt~s !n l~P
Account tor J/n in Clont: 1.r.·
Ge~ adr'lrPss of redl !fCP.
Account tor l/rJ 1n rt>c1l Ill",..
r.et aadress nt incnst cuPJ• li~t~e~,
I11sert !RP in Post oroc-t>s .. q·1r•JP
Rr~ncn it not first entr~
Intttate ::.ott~are I11ter1;rL
!'estore Ru

++
LlN~.CLUN~ • Hnutine to linK the Clone uC~ at tnr t>~1 ot the Lrr ~ist

tor accPss hy t"ie tlmeo'lt nan1ler.

Inouts:
R~ = Arldress of clone 11<.:F<

Reoislers Usea: RJ,k'
:--
LIN~.CLLJNt::

h!iJVL
lllOVI..
llUVL

5s: llOVL
B~OL
lllOVL
Eli<~

tos: MOVL
Iii UV L
CLRL
Ci..Ri..
ASEi

llCRsI .CkA(P~') R(, ; r.et aarlress Of lAtl
CkRSt-I~TO+~FfsL.l~~(i<nJ,h" : Get ~arlrPSS Ot !~H
Iul'st.!JCt-\L~l (H0l.tkl'l : •~tot. aoirt>ss ot t! rst urf"
lJ c Rs L· _ L l N r; Od'l) , k / : 1; et 1 in K to l'I e lt t u r rl tr o !'I' t rd s u rt·
tus Tnis one was t~e ~ast
Pl,K~ L03d ajdress of next urH
5s ro"tlnue sedrch for ldst in l15t
R~ 1 0CDSt.i-Llhk(NUl LinK tnrmer last UCd to cln~e
'I01l.iCb$t.i-LlF\/Dt.Pl:.Nl1(kSJ LO/l(J oack Pointer in Cl0"1E'
UC~Sl.ll~K(N5) Set Clon• to last
UCRSL.F~C{~~) Cledr tor~ pr f iel~

11erurn to caller

All aooj thin~~ must cnrre tD ~~ P~ I

59
4,449,182

What is claimed is:

I. In a data processing system which includes first
and second processors (70 and 31), a memory (80) to
which information can be written by each of said pro­
cessors and from which information can be read by each

5

of said processors, such memory having a plurality of
locations for storing said information, and bus means
(60) for interconnecting the first and second processors
and said memory, to enable communications therebe- IO
tween, said bus means being of the type which has no
hardware interlock capability which is usable by the
other of said processors to selectively prevent the other

60
processor being adapted to cause the state of the
ownership bit to change when such descriptor is
read from said entry;

the first and second processors being adapted to read
ring buffer entries in sequence and to read each
ring buffer entry only when the ownership bit of
said entry is in said predetermined first state,
whereby an entry may not be read twice and an
entry may not be read before a descriptor is written
thereto.

3. The data processing system of claim 1 wherein the
communications control means is further adapted to
provide such communications while each of the proces­
sors is permitted to operate at its own rate, independent of said processors from accessing said memory loca­

tions, the improvement comprising:
. communications control means for controlling com­

munications between said processors and permit­
ting the first processor to send a plurality of com­
mands in sequence to the second processor via the

15 of the other processor, and while avoiding processor
interruption for a multiplicity of read and write opera­
tions.

4. In a data processing system which includes first
and second processors (70 and 31), a memory (SO)

bus means, and for permitting the second processor
to send responses to those commands to the first
processor via the bus means;

the communications control means including a plural-
ity of locations in said memory, termed interfac~
memory locations, adapted to serve as a commum­
cations interface between the first and second pro­
cessors, all commands and responses being trans­
mitted through such interface memory locations;

20 adapted to be used by said processors for containing
information to be shared by the processors, and bus
means (60) for interconnecting the first and second
processors and the memory, the bus means (60) being of
the type which has no hardware interlock capability

the interface memory locations comprising a pair of

25 which is usable by each of said processors to selectively
prevent the other of said processors from accessing at
least a portion of said memory, the improvement com­
prising:

ring buffers; 30
a first one of said ring buffers being adapted to buffer

the transmission of messages issued by the first
processor and a second one of said ring buffers
being adapted to buffer the reception of messages
transmitted by the second processor;

each of said ring buffers including a plurality of mem­
ory locations adapted to receive from an associated
one of said processors a descriptor signifying an­
other location in said memory;

35

for said first ring buffer, the location signified by such 40
descriptor being a location containing a message
for transmission to the second processor;

for said second ring buffer, the location signified by
such descriptor being a location for holding a mes-
sage from the second processor; and 45

the communications control means permitting each
of said processors to operate at its own rate, inde­
pendent of the other of said processors, and to
access a ring buffer for writing thereto only when
the buffer does not contain information previously 50
written to such buffer but not yet read from it and
for reading to such buffer only when the buffer
contains information written to it but not yet read
therefrom, thus preventing race conditions from
developing across said bus means i? relation to 55
accessing the interface memory locatmns.

2. The apparatus of claim 1 wherein there is associ­
ated with each ring buffer entry a bit whose state indi­
cates the status of that entry;

for each entry of the first ring buffer, the first proces- 60
sor being adapted to place such entry's ownership
bit in a predetermined first state when a descriptor
is written into said entry, and the second processor
being adapted to cause the state of the ownership
bit to change when such descriptor is read from 65
said entry;

for each entry of the second ring buffer, the second
processor being adapted to place such entry's own­
ership bit in a predetermined first state when a
descriptor is written into said entry, and the first

the first and second processors (70 and 31) being
adapted to employ a portion (SOA) of said memory
as a communications region accessible by both of
said processors, so that all commands and re­
sponses can be transmitted from one of said proces­
sors to the other of said processors through such
portion of memory; . .

the communications region of memory mcludmg a
pair of ring buffers (SOO and SOE); .

a first one of said ring buffers (800) buffenng the
transmission of messages issued by the first proces­
sor (70) and a second one of said ring buffers (SOE)
buffering the reception of messages transmitted by
the second processor (31);

each of said ring buffers including a plurality of mem­
ory locations (e.g., 132, 134, 136 and 13S) adapted
to receive from the associated transmitting one of
said processors a descriptor signifying another
location in said memory;

for said first ring buffer, the location signified by such
descriptor being a location containing a message
for transmission to the second processor;

for said second ring buffer, the location signified by
such descriptor being a location for storing, at least
temporarily, a message from the second processor;
and

the first and second processors (70 and 31) further
being adapted to control access to said communica­
tions region (SOA) such that information written
therein by one of said processors may not be read
twice by the other processor and a location where
information is to be written by one of the proces­
sors may not be read by the other processor before
said information has been written,

so that race conditions are prevented from develop­
ing across said bus means in the course of inter­
processor communications, and messages are trans­
mitted from sai'1 ring buffers in the same sequence
as that in which they are issued by the processors,
while each of the processors is permitted to operate
at its own rate, with substantial independence from
the other processor.

61
4,449,182

S. The apparatus of claim 4 wherein said ring buffers
are adapted to permit the first processor to send a plu­
rality of commands in sequence to the second processor
via the bus means, and to permit the second processor to
send responses to those commands to the first processor 5
via the bus means.

6. The apparatus of claim 5 wherein the first proces­
sor (70) is a host computer's (1) central processor, the
second processor (31) is a processor in a controller (2,
30) for a secondary storage device (40), and the bus 10
means includes an input/output bus (60) for intercon­
necting said host computer with said secondary storage
device.

7. The apparatus of claim S wherein there is associ­
ated with each ring buffer entry a byte of at least one 15
bit, termed the ownership byte (FIG. 3B-133, 135, 137,
139; FIG. 8-278), whose state indicates the status of that
entry;

for each entry of the first ring buffer (800), the first
processor (70) being adapted to place such entry's 20
ownership byte in a predetermined first state when
a descriptor is written into said entry, and the sec­
ond processor (31) being adapted to cause the state

62
the class driver being adapted to maintain a credit

account having a credit account balance indicative
of the number of commands the buffer can accept
at any instant;

the credit account balance initially being set to equal
M and being decremented by one each time the
class driver issues a command and being incre­
mented by the value;

the second processor further being adapted to pro­
vide to the class driver, with each response packet,
a credit value (FIG. 9, 288) representing the num­
ber of commands executed to evoke the response;

the class driver incrementing the credit account bal­
ance by said credit value; and

the first processor and class driver being adapted so
as not to issue any commands when the credit ac­
count balance is zero and further being adapted to

. issue only commands which are immediately exe­
cuted when the credit account balance is one.

13. In a data processing system which includes first
and second processors, (70 and 31) a memory (80)
adapted to be used by said processors, and bus means
(60, 110, 90) for interconnecting the first and second of the ownership byte to change when such de·

scriptor is read from said entry; 25 processors and memory to enable communications
therebetween, said bus means being of the type which
has no hardware interlock capability which is usable by
each of said processors to selectively prevent the other

for each entry of the second ring buffer (SOE), the
second processor (31) being adapted to a place such
entry's ownership byte in a predetermined first
state when a descriptor is written into said entry,
and the first processor (70) being adapted to cause 30
the state of the ownership byte to change when
such descriptor is read from said entry;

the first and second processors being adapted to read
ring buffer entries in sequence and to read each
ring buffer entry only when the ownership byte of 35
said entry is in said predetermined first state,
whereby an entry may not be read twice and an
entry may not be read before a descriptor is written
thereto.

8. The apparatus of claim 7 wherein said Qwnership 40
byte (278) is the most significant bit in each descriptor
(260, 264).

9. The apparatus of claim 5 wherein the controller (2,
30) further includes pointer means (32, 34) for keeping
track of the current first and second ring buffer entries. 45

10. The apparatus of claim S further including means
for limiting the generation of processor interrupt re­
quests to the first processor in connection with the
sending of commands and receipt of responses by said
processor, such that interrupt requests to said processdr 50
are generated substantially only when an empty ring
buffer becomes not-empty and when a full ring buffer
becomes not-full.

11. The apparatus of claim 10 wherein the size of each
ring buffer is communicated by said first processor to 55
the second processor at the time of initializing a com­
munications path betweem them.

12. The apparatus of claim 11 wherein the processors
(70, 31) communicate by sending message packets to
each other, and further including:

the first ring buffer (800) being adapted to hold up to
M commands to be executed;

an input/output device class driver (3) associated
with the first processor (70) for sending commands

60

to and receiving responses from an input/output 65
device (40);

the second processor (31) being adapted to provide to
the class driver (3) in its first response packet the
number M of commands of a predetermined length
which said buffer can hold;

of said processors from accessing at least a portion of
said memory, the improvement comprising:

at least a portion (BOA) of said memory (80) being
adapted to serve as a communications region acces­
sible by both of said processors all commands and
responses being transmitted from one processor to
the other through such portion of memory;

means (278) for controlli11g access to information in
said communications region whereby information
written therein by one of said processors may not
be read twice by the other processor and wherein a
location where information is to be written by one
of the processors may not be read by the other
processor before said information has been written;

the communications region of memory including a
pair of ring buffers (800, SOE);

a first one of said ring buffers (800) being adapted to
buffer the transmission of messages issued by the
first processor and a second one of said ring buffers
(SOE) being adapted to buffer the reception of mes­
sages transmitted by the second processor;

each of said ring buffers including a plurality of mem­
ory locations (e.g., FIG. ~B-132, 134, 136, 138)
adapted to receive from an associated one of said
processors a descriptor (260, 264) signifying an­
other location in said memory;

for said first ring buffer, the location signified by such
descriptor being a location containing a message
for transmission to the second processor; and

for said second ring buffer, the location signified by
such descriptor being a location for holding a mes­
sage from the second processor,

so that race conditions are prevented from develop­
ing across said bui; means and messages are trans­
mitted from said ring buffers in the same sequence
as that in which they are issued by the processors,
while each of the processors is permitted to operate
at its own rate, independent of the other processor.

14. The apparatus of claim 13 wherein said ring buff­
ers are adapted to permit the first processor to send a
plurality of commands in sequence to the second pro­
cessor via the bus means, and to permit the second

63
4,449,182

processor to send responses to those commands to the
first processor via the bus means.

64
quests to said processor are generated sUbstantially only
when an empty ring buffer becomes non-empty and
when a full ring buffer becomes not full.

19. The apparatus of claim 18 wherein the size of each
ring buffer is communicated by said first processor to
the other of said processors at the time of initializing the
communications path between them.

15. The apparatus of claim 14 wherein the first pro­
cessor is a host computer's (1) central processor (70),
the second processor is a processor (31) in a controller S
(2, 30) for a secondary storage device (40), and the bus
means includes an input/output bus (60) for intercon­
necting said host computer with said secondary storage
device.

20. The apparatus of claim 19 wherein the processors
communicate by sending message packets to each other,

10 and further including: 16. The apparatus of claim 15 wherein there is associ­
ated with each ring buffer entry a byte of at least one
bit, termed the ownership byte (FIG. 3B-133, 135, 137,
139; FIG. 8, 278), whose state indicates the status of that
entry;

for each entry of the first ring buffer (SOD), the first 15

processor (70) being adapted to place such entry's
ownership byte in a predetermined first state when
a descriptor (260, 264) is written into said entry,
and the second processor (31) being adapted to 20
cause the state of the ownership byte to change
when such descriptor is read from said entry;

for each entry of the second ring buffer (SOE), the
second processor (31) being adapted to place such
entry's ownership byte in a predetermined first 25
state when a descriptor is written into said entry,
and the first processor (70) being adapted to cause
the state of the ownership byte to change when
such descriptor is read from said entry;

the first and second processors being adapted to read 30
ring buffer entries in sequence and to read each
ring buffer entry only when the ownership byte of
said entry is in said predetermined first state,
whereby an entry may not be read twice and an
entry may not be read before a descriptor is written 35
thereto.

a buffer associated with the second processor for
holding up to M commands to be executed;

an input/output device class driver associated with
the first processor for sending commands to and
receiving responses from an input/output device;

the second processor being adapted to provide to the
class driver in its first response packet the number
M of commands of a predetermined length which
said buffer can hold;

the class driver being adapted to maintain a credit
account having a credit account balance indicative
of the number of commands the buffer can accept
at any instant;

the credit account balance initially being set to equal
M and being decremented by one each time the
class driver issues a command and being incre­
mented by the value;

the second processor further being adapted to pro­
vide to the class driver, with each response packet,
a credit value representing the number of com­
mands executed to evoke the response;

the class driver incrementing the credit account bal­
ance by said credit value; and

the first processor and class driver being adapted so
as not to issue any commands when the credit ac­
count balance is zero and further being adapted to
issue only commands which are immediately exe­
cuted when the credit account balance is one.

17. The apparatus of claim 15 wherein the controller
further includes pointer means (32, 34) for keeping track
of the current first and second ring buffer entries.

18. The apparatus of claim 15 further including means
for reducing the generation of processor interrupt re­
quests to the first processor in the sending of commands
thereby and responses thereto, such that interrupt re-

21. The apparatus of claim 16 wherein said ownership
40 byte is the most significant bit in each descriptor.

• • • • •
45

50

55

60

65

