Digital Technical Journal

Digital Equipment Corporation

Cover Design

The theme of this issue is storage technology. On our cover, the
concept of electromagnetism, basic to this technology, is conveyed
by the pattern of iron filings traced on the lines of magnetic force.
In the background is the mirror surface of the RA90) magnetic disk,
a storage product which represents significant advances in mag-
netic storage technology.

The cover was designed by Peter Gronsik and Gloria Lee of the
Graphic Design Department.

Editor
Jane C. Blake

Managing Editor
Richard W. Beane

Production Staff

Production Editor — Helen L. Patterson
Typographer — Rebecca A. Bombach
[llustrator — Deborah Keeley

Advisory Board

Samuel H. Fuller, Chairman
Robert M. Glorioso

John W. McCredie
Mahendra R. Patel

F. Grant Saviers

William D. Strecker

Victor A. Vyssotsky

The Digital Technical Journal is published by Digital
CEquipment Corporation, 146 Main Street, Maynard,
Massachusetts 01754.

Changes of address should be sent to Digital Equipment
Corporation, attention: List Maintenance, 10 Forbes Road,
Northboro, MA 01532. Please include the address label
with changes marked.

Comments on the content of any paper are welcomed.
Write to the editor at Mail Stop MLO1-3/BG8 at the
published-by address. Comments can also be sent

on the ENET to RDVAX::BLAKE or on the ARPANET to
BLAKE%RDVAX.DEC(@DECWRL

Copyright © 1989 Digital Equipment Corporation.
Copying without fee is permitted provided that such
copies are made for use in educational institutions by
faculty members and are not distributed for commercial
advantage. Abstracting with credit of Digital Equipment
Corporation’s authorship is permitted. Requests for other
copies for a fee may be made to Digital Press of Digital
Equipment Corporation. All rights reserved.

The information in this journal is subject to change with-
out notice and should not be construed as a commitment
by Digital Cquipment Corporation. Digital Equipment
Corporation assumes no responsibility for any errors that
may appear in this document.

1SSN 0898-901X
Documentation Number EY-C16GE-DP

The following are trademarks of Digital Equipment
Corporation: Cl, DEC, DECnet, DECsystem-10, DECSYSTLEM-20,
Digital, HSC, HSC50, HSC70, MASSBUS, MicrovAX, MSCP,
RA81, RAB2, RA90, RC25, Rdb/VMS, SDI, VAX, VAX-11/750,
VAXcluster, VAX DBMS, VAX LISP, VAXsim, VAXsimPLUS,
VAXstation, VAX/VMS, VMS.

ANSYS is a registered trademark of Swanson Analysis
Systems, Inc.

C and Pascal are registered trademarks of Microsoft
Corporation.

Intel is a trademark of Intel Corporation.

MATRIXx/WS is a registered trademark of Integrated
Systems Inc.

RS/Explore and RS/} are trademarks of BBN Software
Products Corporation

Texas Instruments is a trademark of Texas Instruments, Inc.

Book production was done by Digital’s Educational Services
Media Communications Group in Bedford, MA.

Contents

6 Foreword
Alan Kotok
Storage Technology
8 The Hierarchical Storage Controller, A Tightly Coupled

Multiprocessor as Storage Server
Richard F. Lary and Robert G. Bean

25 Performance Aspects of the HSC Controller
Kenneth H. Bates

38 VAXsimPLUS, A Fault Manager Implementation
Larry W. Emlich and Herman D. Polich

46 Disk Drive Technology Improvements in the RA90
Barbara A. Cranc

61 Control Systems Technology in Digital’s Disk Drives
Michael D. Sidman

74 Magnetic Domain Observations in Thin-film Heads
Using Kerr Microscopy
Alan B. Smith

81 Margin Analysis on Magnetic Disk Recording Channels
Reinhard Kretschmer and Siegbert Sadowski

88 High Availability Mechanisms of VAX DBMS Software
T.K. Rengarajan, Peter M. Spiro, and William A. Wright

99 A Relational Database Management System

Jor Production Applications
Ashok M. Joshi and Karen E. Rodwell

Editor’s Introduction

™

<

L 1}

o
- '// g

Jane C. Blake
Editor

The papers in this issue of the Digital Technical
Journal describe the engineering technologies used
in the design, manufacture, and maintenance of
Digital’s storage and information management prod-
ucts. In his Foreword, Alan Kotok, Corporate Con-
sulting Engineer, sets the order of this issue’s papers
by discussing them from a systems-level viewpoint.
He notes that products at each level of the storage
system are planned and designed to be integrated as
a whole. This viewpoint is characteristic of the
unique approach taken by Digital’s engineers in the
design of all our products. The systems-level
approach provides the framework for our entirc
design and development process. It ensurcs that
each Digital product will integrate successtully
with other units into a complete system.

Both the systems-level view Alan refers to and the
content of the papers in this issue are representative
of the kinds of information the Digital Technical
Journal was established to provide. Our goal is to
demonstrate Digital’s systems-level approach by dis-
cussing design projects that result in real products.
Begun in 1985. the journal offers explanation of the
technological foundations of those products. The
journal’s first issue, for example, contained papers
on the innovations made in the design of the VAX
8600 processor; 2nother issue described the evolu-
tion of the Digital Network Architecture and prod-
ucts that incorporate this architecture; in our last
issue, topics included the architectural definition
process for the VAX 6200 multiprocessor, the com-
plexities of the bus interface. and the CVAX chip set
on which the system is based. Journal papers such as

these give readers insights into the common ways in
which Digital designs and develops its products.

The papcers are written by the project engineers
who designed and developed these products. These
individuals arc best qualified to offer the in-depth
cxplanations of the technologies and processes
reflecting Digital’s approach to designing and inte-
grating systems. Moreover, they can discuss the
important decisions made and the difficulties
cncountered during the development process.
These discussions will interest engineers faced with
similar issues. professors needing examples of real
problems, and students confronting parallel ones in
the classroom.

Journal issues focus on current products, often
those recently announced. To date, each issue has a
single. unifying theme about the new system or
technology in which advances have been made. This
issue’s theme, Storage Technology, includes papers
on a new disk drive, the RA90, some newly devel-
oped technologies supporting that drive, and
cnhancements to Rdb and VAX DBMS software prod-
ucts; past issue themes in addition to those noted
above include vAXclusters. the VAX 8800 Family,
and Software Productivity Tools. The next issue in
1989 will feature Distributed Systems.

Our Advisory Board, chaired by Sam Fuller. vice
president of Corporate Research and Architecture.
selects the themes for future issues. The board com-
prises four Digital vice presidents and three senior
cngineering managers. Once the board has selected
future product themes, the editors work with the
apposite organizations to bring together papers that
relate to these products and their development.

Currently published twice each year. the Digital
Technical Journal is distributed at no cost to Digital’s
own engineers and educators in the fields of com-
puter science and engineering, approximately
15.000 readers in all. Copies of individual issues are
also sold to interested parties by the Digital Press of
Digital Cquipment Corporation.

I thank Donna Charette and Peter Van Roekens of
the Storage and Information Management Group for
their help in preparing this issue.

WW

Biograpbhies

Kenneth H. Bates Ken Bates is a consulting software engineer with the 1/0
Performance Group in Storage Systems Engineering. As a project leader, he mod-
els the characteristics of mass storage products to improve their performance.
Ken developed both the MSCP disk server in the HSC controller and the specifica-
tion for disk shadowing. In addition to his 13 years of work at Digital, Ken has
served as vice president at Real Time Systems, Inc. and vice president of Techni-
cal Services at MLPL Business Systems, Inc.

Robert G. Bean In 1970, Bob Bean joined Digital after receiving his B.S.
degree in life sciences from M.I.T. He first wrote software for PDP-8 and PDP-11
systems, then managed the group that developed the RT-11 product. Joining the
Storage Systems Engineering Group in Colorado Springs in 1978, Bob helped to
define the Digital Storage Architecture, then contributed to the design and imple-
mentation of the HSCS0 storage controller. He is currently a senior consultant
software engineer working on the development of new storage subsystems.

Barbara A. Crane Barbara Crane came to Digital in 1977 as part of the
Advanced Development Group which developed thin-film disks at Digital. Now
in Colorado, she is responsible for resolving the RA90 head and media technical
specifications with the design engineering group, as well as coordinating quality,
delivery and volume commitments for the product. She has also conducted fail-
ure analysis of RA90 disk drive prototypes. Barbara received an S.B. in materials
science and metallurgy from M.I.T. She is a member of the American Society of
Metallurgists.

Larry W. Emlich A consultant to the Advanced Service and Delivery Systems
Development Group, Larry Emlich is currently working on enhancements to
VAXsimPLUS software. He is a coinventor of the technology developed for this
product and has applied jointly for its patent. Prior to his work on VAXsimPLUS,
Larry led a project that produced the first release of SPEAR, a software package for
error analysis and reporting. He is the recipient of Digital’s Challenge of Excel-
lence Award, 1988. Larry came to Digital in 1971 from the Univac Corporation
(now UNISYS).

Ashok M. Joshi Ashok Joshi is a software engineer interested in object-
oriented database systems. The project on which he is now working is the KODA
subsystem, which provides record storage for Rdb/VMS and DBMS software. For
the Rdb/VMS project, he developed hash indexing and record placement features,
and worked on optimizing the lock protocols. Ashok recently came to Digital
after receiving a bachelor’s degree in electrical engineering from the Indian Insti-
tute of Technology, Bombay, and a master’s degree in computer science from the
University of Wisconsin, Madison.

Biograpbhies

Reinhard Kretschmer Reinhard Kretschmer earned his diploma in physics
from the University Marburg, West Germany, in 1983. Immediately thereafter he
joined Digital to work on component engineering for magnetic media. Reinhard
is currently the supervisor of Product/Process Reliability Engineering in the
LEuropean Storage Systems Group. He and his team in Kaufbeuren, West Germany,
have performed fundamcntal phase margin application engineering work, which
isone of the key techniques for assurance and advancement of disk drive reliability.

Richard F. Lary Richie lary, a senior consulting engineer in Storage Systems
[ngineering, is currently working on the next generation of storage controller
products. He helped design the HSCS0 and UDAS O control lers, and the RA80 disk
drive, as well as the Digital Storage Architecture. Richie was a member of the
original VAX architecture team and developed microcode for the 11/60 and
11/780 systems. He has implemented several languages and operatingsystems on
the PDP-8 system. Richie joined Digital after receiving his B.S. degree in mathe-
matics (1969) trom the Polytechnic Institute of Brooklyn. He holds 11 patents
relating to computer architectures and implementations.

Herman D. Polich Currently a member of the Computer Systems Service Engi-
neering Group in Colorado, Herman Polich is working with a team that is defining
the service requirements for the next generation of high-end storage products.
Prior to this project, Herman was the technical leader of the VAXsimPLUS develop-
ment team software and is listed as a coinventor on a patent application pending
for the technology used in the VAXsimPLUS product. Herman is a systems main-
tainability engineer and has been with Digital since 197 3.

T.K. Rengarajan T.K. Rengarajan joined Digital in 1987 after receivingan M.S.
in computer science from the University of Wisconsin. He also holds an M S. in
computer-aided design by analysis from the University of Kentucky and a B.LE. in
mechanical engineering from the Regional Engineering College in Tiruchirapalli,
India. Rengarajan has worked in the areas of boundary element methods, image
databases, secure process connections, and database concurrency control. His
current interests lie in the fields of object-oriented CAD database systems and
high-performance database system architectures.

Karen E. Rodwell A scnior software engineer in the Database Systems Group,
Karen Rodwell is responsible for ANSI SQL compatibility support within the Rdb
engine. Karen came to Digital in 1984 as a co-op student and then joined the com-
pany as a developer working on the Rdb/VMS project. She holds a B.S. in com-
puter science and a B.S. in mathematics with a minor in design (1985) from
Rivier College. Currently, Karen is pursuing an M.S. in computer science at
Boston University.

Siegbert Sadowski Siegbert Sadowski is a supervisor in the Distributed Design
Engineering Group, Curopean Storage Systems. As the leader of the phase distri-
bution analyzer project, he provided the conceptual framework for the test sys-
tem and guided the design and implementation work. For this work. he was
awarded a patent in 1988. Siegbert joined Digital in 1983 after nine vears with
Dietz Computersysteme, where he developed processors, mass storage con-
trollers, and software for timesharing systems. He holds a Diplom Ingenieur (FH)
degree (1974) from Fachhochschule Bochum, West Germany.

Michael D. Sidman A consultant engineer in the Storage Systems Advanced
Development Group, Mike Sidman manages a team which he formed to develop
new, practical servomechanical systems and strategies for Digital disk products.
He currently holds three patents and has several patents pending for his work on
continuous-plus-embedded position control systems. As Digital’s Graduate Engi-
neering Education Program Scholar, Mike received a Ph.D. (1986) from Stanford
University. He has published articles about his work in the area of control systems
for disk drives and robotics. Mike is a member of Phi Kappa Phi, Tau Beta Pi, and
Lta Kappa Nu.

Alan B. Smith Alan Smith, a consultant engineer, came to Digital in 1983 from
Sperry Research Center. Alan holds five patents and has published numerous
papers about his work in such areas as bubble-domain and magneto-optic materials.
For the RA90 product, he designed electronic lapping guides and is now working
onadvanced head designs for future disk drive products. Alan received a Ph.D. in
applied physics from Harvard University, an M.EE. from Rensselaer Polytechnic
Institute, and a BSEL. from Swarthmore College. He is a member of Sigma Xi,
IEEE (senior member), and the American Physical Society.

Peter M. Spiro Peter Spiro is currently the project leader for KODA, the data-
base kernel for both Rdb/VMS and VAX BBMS software. A senior software enginecr,
Peter has worked on KODA recovery and journaling, on-line backup, access meth-
ods, and buffer management. Prior to joining Digital in 1985, Peter was a charcoal-
maker in Mali, West Africa, for the Peace Corps and a farmer with the University
of Wisconsin Agriculture Department. He holds M.S. degrees in forest sciences
and in computer sciences from the University of Wisconsin.

William A. Wright A principal software engineer, Bill Wright hasbeen in the
Database Systems Group since joining Digital in 1981. He is presently involved in
development efforts for future enhancements to Digital’s current database prod-
ucts. Bill has worked on VAX DBMS, Rdb/VMS, and KODA software, and served as
the project leader for the development of VAX DBMS version 3.0. His main areas of
interest are access methods (B-trees), performance, and product quality. Bill
received a B.A. in computer science from Dartmouth College in 1981.

Foreword

Alan Kotok
Corporate Consulting Engineer
and Storage Architect

This issue of the Digital Technical Journal presents
papers on some of the technologies employed in
the products developed by Digital's Storage and
Information Management Group (SIMG). The name
Storage and Information Management was chosen by
the group in the summer of 1988, replacing the
name Storage Systems, since the charter of the group
has expanded to encompass not only storage devices
but the total management of our customers’ infor-
mation. Since 19806, SIMG has had responsibility for
all database software produced within Digital. Now
SIMG is expanding its role to include other aspects
of data management as well.

The “Storage” sections of SIMG have responsibility
for information storage hardware ranging from primary
storage with CPU' memories, through secondary stor-
age, such as solid-state storage units and magnetic
and optical disk systems, to tertiary storage, such as
magnetic tape systems. All secondary and tertiary
storage systems developed within SIMG conform to
a comprehensive set of architectural specifications
known collectively as the Digital Storage Architec-
ture (DSA). The purposes of the DSA are to preserve
customer investment in storage devices across genera-
tions and to allow multiple groups — both hardware
and software — to develop interworking products.
To that end, DSA includes specifications for the inter-
faces between host computer systems and storage
controllers, between controllers and storage drives,
and the required functions at each level.

The first paper following this Foreword is “The
Hierarchical Storage Controller, A Tightly Coupled
Multiprocessor as Storage Server” by Richie Lary and
Bob Bean. The HSC implements the controller func-
tionality of the DSA in a multihost, multidrive environ-

ment. [cis the prime storage controller employed in
vaXcluster systems. The paper describes the hard-
ware and software structure of the HSC used to
achieve high performance in this environment. The
sccond paper, “Performance Aspects of the HSC
Controller” by Ken Bates, explores the effects of
contention between the multiple processes operat-
ing in the HSC on its overall performance.

DSA also prescribes how faults detected in storage
clements are to be reported. In the past. these faults
were logged for later human analysis to determine
what service might be needed or to help diagnose
system failure after the fact. A new technique,
described by Larry Emlich and Herman Polich in
their paper “VAXsimPLUS, A Fault Manager Imple-
mcntation,” allows real-time software analysis of
faults and triggers evasive actions to prevent system
failures through use of spare components.

The next set of four papers deals with magnetic
disk drive technology. The DSA prescribes an inter-
face known as the Standard Disk Interface (SDI)
between storage controllers such as the HSC and
disk drives. The family of disks that interface in this
manner is known as the RA scries of drives. The first
such drive was the RA8O, introduced in 1981. Since
then. several generations of drives have been intro-
duced. with increasing capacity and performance,
lcading to the recently introduced RA90 disk drive.
The paper “Disk Drive Technology Improvements in
the RA90" by Barbara Crane describes the many
arcas of technology that were addressed in bringing
forth this latest member of the RA series.

There follow three more articles dealing with
specific areas of technology used in modern disk
drives. The first of this sct is on “Control Systems
Technology in Digital’s Disk Drives.” Mike Sidman
discusses the problems associated with causing the
actuators that move the recording hcads to follow
tracks on the disk surface at densities of beyond
1500 tracks per inch. The paper describes the ser-
vomcchanism system used to counter the many
sourcces of positioning errors.

The RA90 drive, as described in Barbara Crane’s
paper. employs read-write rccording heads fabri-
cated using thin-film technology. The paper “Mag-
netic Domain Observations in Thin-film Heads
Using Kerr Microscopy” by Al Smith describes the
development of a methodology for observing the
magnetic fields generated by these heads. Such
observations aid the development and manufactur-
ing process of the thin-film heads.

The third paper in this subgrouping, “Margin
Analysis on Magnetic Disk Recording Channels,”
describes a technique for characterizing the perfor-
mance parameters of the recording channel. This
technique, called Phase Margin Analysis, is imple-
mented by a test system called the Phase Distribu-
tion Analyzer. The tester, as described by Reinhard
Kretschmer and Siegbert Sadowski, is designed to be
used in both design and production environments
to enhance both reliability and data integrity of disk
drives.

In 1986 the (then) Storage Systems Group was
given the responsibility for development of Digital’s
database systems. Two cornerstones of our database
systems are VAX DBMS, a CODASYL database, and
Rdb/VMS. arelational database. These are the under-
lying database management systems which sup port
various database query and transaction processing
environments. Both systems have undergone contin-
ual enhancement over the past several years. Two
papers are included herein which deal with aspects
of these systems.

The first article, “High Availability Mechanisms of
VAX DBMS Software” by TK. Rengarajan, Peter Spiro.

and Bill Wright, addresses mechanisms employed to
allow DBMS to take full advantage of the parallelism
inherent in VAXcluster systems, while maintaining
service in this distributed processing environment
despite the failure of individual cluster members.
The paper explains the use of the VMS lock manager
to coordinate the activities proceeding on the vari-
ous members of the cluster. It also describes how
“failover” is accomplished when a cluster member
ceases to communicate.

The second paper, “A Relational Database Man-
agement System for Production Applications,”
describes how Rdb/VMS software, which was origi-
nally developed for ad-hoc query applications, was
improved to handle large, production applications.
Seven different areas of the system were enhanced
to produce the current package, as described by
Ashok Joshi and Karen Rodwell.

This selection of nine papers addresses only a few
points in the broad field of storage and information
management technology. Many of the technologies
employed within SIMG were not even mentioned.
We hope to touch on these in a future issue of the
Digital Technical Journal .

Richard F. Lary
Robert G. Bean

The Hierarchical Storage
Comntroller;, A Tightly Coupled
Multiprocessor as Storage Server

The many hosts in a VAX cluster system simultaneously access a common subsys-
tem of storage devices, which must provide much more comprebensive services
than a traditional disk controller. Moreover, the functional sophbistication of
VAXcluster controllers goes far beyond simple data transfers. This subsystem, the
Hierarchical Storage Controller, employs a tightly coupled multiprocessing archi-
tecture that permits an [/0 control processor to control many data channels with-
out participating in the data flow itself. This paper describes this architecture,
emphasizing the mechanisms that govern control and data flow.

The Hierarchical Storage Controller (HSC) product
was initially conceived as a high-performance disk
controller for a single-host computer. Shortly after
the HSC project commenced, however, Digital ini-
tiated the VAXcluster program. Since the HSC goals
closely matched those needed for a cluster storage
server, the HSC project was redirected to produce
such a device.

Digital’s disk controllers have traditionally per-
formed 1/0 for a single computer with one to eight
disk drives. VAXcluster systems, on the other hand.
can have up to 16 nodes on the CI bus, and the
aggregate performance of this set of computers is
quite large. Therefore, the HSC controller had to be
designed to handle significantly more disk drives —
the HSC70 model can attach to up to 32 — and
deliver more performance than a traditional disk
controller.

The performance of disk drives is governed by the
laws of mechanics and economics. The energy
needed to rotate a disk varies as the inverse third
power of the rotation period. The energy needed to
move a head assembly varies as the inverse fourth
power of the average seek time. Because of these physi-
cal limitations, disk performance has improved
more slowly than other parameters of computer sys-
tems, such as logic speed and memory size.

There is nothing that a disk controller can do to
increase performance by increasing the rotational
speeds of disks. The apparent performance of a set
of disk drives can be improved, however, by adding
intelligence to the disk controller to optimize the
handling of multiple simultaneous requests to those
drives. Some of these optimization techniques

merely offset the natural performance decrease that
occurs when many devices are accessed simulta-
neously through a single control point. Others actu-
ally improve the performance of individual devices.
A number of optimization techniques are used in
the HSC design:

8 Overlapped Seeks — The controller can seek data
on one disk drive while transferring data on
another. The first drive will thus seek as if it had
a dedicated controller.

® Optimized Seeks — When multiple requests are
outstanding to one drive, the controller can mod-
ify the order in which they are serviced to mini-
mize the drive’s total head movement.

s Multiple Simultaneous Transfers — The HSC design
can simultaneously transfer data from several
disk drives, making each drive perform as if it
had a dedicated controller. The amount of hard-
ware required to perform multiple simultaneous
transfers grows linearly with the number of
simultaneous transfers allowed. Therefore, the
few controllers (like the HSC) that implement
this technique allow only a small fixed number
of simultaneous transfers.

® Interdrive Rotational Optimization — Since simul-
taneous transfers are limited, the controller
allows the drive that first reaches its desired sec-
tor(s) to transfer before other drives that are also
“on cylinder.” This technique reduces the num-
ber of missed revolutions due to missed transfer
opportunities.

No. 8 February 1989 Digital Technical Journal

The Hierarchical Storage Controller

= Intradrive Rotational Optimization — When sev-
eral requests want the same cylinder on a drive,
the HSC design services them in the order in
which they come under the disk head. That
reduces the number of missed revolutions on
thatdrive.

= Intrarequest Rotational Optimization — When a
single request spans several sectors, the con-
troller can service them in the order in which
they come under the disk head. That also reduces
the number of missed revolutions on that drive.

Many Digital systems have implemented the first
three techniques with a mixture of controller
hardware and host software. DLCsystem-10 and
DECSYSTEM-20 systems implement the fourth tech-
nique in software, at the expense of some host over-
head. The HSC design is the only Digital product
that incorporates the last two techniques.

Performing these optimizations requires consid-
erable processor power; handling the System Com-
munication Architecture (SCA) protocol on the CI
busat high speed requires even more. The hardware
and software structures that deliver that power are
described in this paper.

Processing Elements in the Hardware

The HSC design is organized internally as a heteroge-
neous multiprocessor that uses a combination of
processor-private and shared-global memories to
reduce memory contention. Figure 1 is a block dia-
gram of the HSC hardware.

There are two types of processors executing
within an HSC controller. Most of the intelligence
resides in the policy microprocessor, called the
P.io. The two current HSC models use difterent hard-
ware for the P.io. The HSC50 device uses a Pioc
incorporating an 11/23 microprocessor that exe-
cutes 250,000 instructions per second. The HSC70
device uses a P.ioj incorporating an 11/73 micro-
processor that executes 500,000 instructions per
second. The architecture of the HSC hardware can
accommodate up to four P.io processors in one
device. Except for special debugging versions in the
laboratory, however, each current HSC controller
contains a single P.io processor.

Most of the work in an HSC device is done by fast
but relatively inflexible RISC machines, called K's
within Digital. All K's have at their cores the same
processing element (a 16-bit, 16-register datapath
built from commodity 2901 chips), and they exe-
cute the same basic instruction set. The K’s can be
divided into three groups, based on their comple-
ment of microperipherals and the microcode they
execute:

s K.ci. which schedules and performs message
transmission and reception on the CI bus

s K.sdi, which schedules and performs read, write,
and format operations. seek operations, and
status inquiries to a set of four disk drives

s K.sti, which schedules and performs read and
write operations, tape movement operations, and
status inquiries to a set of four tape formatters

CONTROL CONTROL BUS (6.6 MB/SEC)
MEMORY -
DISK INTERFACE
(K.SDI)
HOST INTERFACE 1/0 CONTROL IE)%C%E oR
(K.C) PROCESSOR TAPE INTERFACE
Cl (P.10) (K.STI)
BUS (UPTO 8 TOTAL)
TERMINAL ||
ROM RAM ROM
1 spioR sTI
(4 PER INTERFACE)
DATA
Y
Ll3aloL) DATA BUS (13.3 MB/SEC)

Figure 1 Block Diagram of the HSC Hardware

Digital Tecbnical Journal No. 8 February 1989

Storage Technology

Cach K in an HSC device executes 6.67 million
instructions per second (MIPs) and must perform
time-critical operations in real time on its associated
device. Cach K must also simultaneously perform
scheduling and bookkeeping functions based on
shared-memory communication with other K’s and
the Pio. To aid in these tasks, each K is multipro-
grammed in hardware into two virtual machines: a
control processor, and a data processor. These two
processors alternate instruction cycles in the K’s
datapath and appear to be two 3.33 MIP processors
sharing the same set of 16 registers.

Memories and Buses

The design of the memory system is crucial to the
performance of a shared-memory multiprocessor
system. A central memory and its access bus are
shared resources. They must be able to handle the
combined demands of all the processors in the sys-
tem. Because the HSC design was intended for a
specific application, we reduced the load signiti-
cantly on the memory system by functionally parti-
tioning it into the following three pieces:

s Each processor uses a private memory bus to
access local, private memory in which processor
instructions and data are stored. The private
memory bus for the P.io is a modified version of
the QQ-bus system. used in many of Digital’s low-
end systems. In the HSC implementation, this
asynchronous bus can perform a 16-bit (word)
memory operation in approximately 650 nano-
seconds (ns) The P io private memory consists of
dynamic RAM located on a common memory
board called the M.std board. Cach K in the HSC
design fetches instructions from a private PROM
memory and uses fast static RAM for local data
storage.

= The darta structures used for interprocessor com-
munication and control are located in control
memory and accessed by means of the control
bus. The control bus is an unpended bus (i.e..
operations proceed to completion once they
start) with a 300-ns cycle time. This bus per-
forms both byte and word reads and writes to the
128-Kword control memory in one bus cycle.
The bus also implements an interlock operation,
which consists of reading a memory location and
then writing the constant 8000 (hex) back into
that memory location in two consecutive bus
cycles. The P.io and each K’s control processor
connect to the control bus.

The control memory is located on the M.std
board. This memory was implemented with static
RAM on early HSC versions, but to save cost, was

recimplemented in fast dynamic RAM when it
became available.

= Dara moving between the ClI interface and the
disk drives is stored in data memory and accessed
by means of the data bus. The data bus is an
unpended bus with a 150-ns cycle time; it per-
forms word reads and writes to the 128-Kword
data memory in one bus cycle. No interlock or
byte operations are supported. The data memory
is implemented with fast static RAM located on
the M.std card. The P.io and each K’s data proces-
sors connect to the data bus.

Interprocessor Communication and
Control Flow Mechanisms

At the center of the HSC architecture and design are
the mechanisms used by the many processors in the
storage subsystem to exchange control information
and data. We now describe those mechanisms and
provide an example of how they are used to perform
a disk read.

At the start. the design team chose some basic
strategies to govern the details of the design. These
strategies included the following:

= A common set of basic, general-purpose mecha-
nisms should be applicd wherever possible.
Rather than defining custom interfaces for each
clement of the subsystem, the design team
defined a relatively small number of general
mcchanisms. These mechanisms could then be
adapted as necessary to individual interfaces.

= ‘The P.io should have minimal overhead. The tim-
ited processing power of the P.io was viewed as a
key limiting factor in subsystem performance
Therefore, the interface design minimizes the
number of interrupts processed by the P.io and.
most important, removces the P.io from the data-
path of error-tree operations

= A common interprocessor and interprocess inter-
face was needed. The K’s and the P.io software
processes all communicate with common mecha-
nisms. That commonality provides significant
tlexibility when deciding whether to implement
agiven function in software or hardware.

= Since the K’s are significantly harder to program
than the P.io and their programs are kept in unal-
terible PROM memory, the complexity of these
programs had to be minimized to ensure that
they would be bug-free when the first HSC con-
troller shipped. On the other hand, the K's are by
far the most powerful com putational elements in
the controller, so they have to perform as much
of the work as possible to unburden the P.io.

No. 8 February 1989 Digital Technical Journal

The Hierarchical Storage Controller

TRANSMISSION QUEUE

SERVICE QUEUE PTR OR
LINK OR INTERRUPT MASK

FLAGS FIRST RESOURCE LAST RESOURCE
> ﬂ > LINK(=0)
— RESOURCE QUEUE —
FIRST WAITER LAST WAITER
LINK LINK({ 0)
— WAITER QUEUE =~ — ﬂ

SIMPLE QUEUE

FIRST RESOURCE

LAST RESOURCE

7 LINK (=0)

Figure 2 Transmission Queues

-
— RESOURCE QUEUE —
¥ J‘:'/
COUNTER
SERVICE QUEUE PTR OR
LINK
ITEM COUNT
A A
T T
Mutual Exclusion

As mentioned earlier, the control bus provides an
interlock operation consisting of a read of the target
control-memory address followed immediately by
a substitution of the constant 8000(hex) into
that location. Each data structure described below
contains a single location that is accessed via the
interlock operation as part of accessing the data
structure. The data structures are all organized so
that the value 8000(hex) cannot be a valid value
in that lockable location. Therefore, an interlock
operation to that location that returns the value
8000(hex) implies that the data structure is cur-
rently locked. A simple write of a value other than
8000(hex) to that location will unlock the data
structure. This mechanism permits each processor
to hold locks on elements within its own interface
without depriving other processors of lock access to
their private data structures. Lock contention is lim-
ited in most cases either to pairs of processors con-

tending for a mutually shared data structure or to
the few structures, called common resource pools,
sharedby all processors.

Data Structures and Primitive Operations

The interprocessor data structures consist of trans-
mission queues. simple queues, counters, and a spe-
cialized queue called the interrupt queue. The flow
of information between these data structures is gov-
erned by other data structures called routes. These
data structures and the operations performed on
them are described below.

Transmission Queues Transmission queues pair
resources with processes waiting for those resources.
As shown in Figure 2, transmission queues have two
physical queue heads, one each for resources and
waiters, and linkage information used by the
interrupt queue mechanism, described later. The
“resource” associated with each queue can be any

Digital Technical Journal No.8 February 1989

11

Storage Technology

physical or informational entity of interest to more
than one process or processor in the system. Trans-
mission queues are used for K operation-completion
queues, free-buffer lists, free-control-memory lists.
and P.io message queues.

The name “transmission queue” has its roots in a
research project that was a precursor to the HSC
project; unfortunately, the name implies a list of
messages awaiting transmission, which is not the
function of these queues. Transmission queues pri-
marily serve a process scheduling function.

Simple Quenes Simple queues are subsets of trans-
mission queues used for queuing resources for
which a P io software process can never wait. Unlike
transmission queues, in which unsatisfied receivers
can block waiting for an item, simple queues are
usually polled by unsatisfied receivers. As Figure 2
shows, a simple queue is nothing more than a queue
head for the resource queue.

Counters 'To meet the goal of separating the P.io
from the control data tlow, a mechanism that will
account for completed operations is required. For
example, a single Mass Storage Control Protocol
(MSCP) command to read many sectors is decom-
posed into several independent transfers. which
will complete in an indeterminate sequence due to
the effects of optimizations and error-recovery
strategies within the controller. This mechanism
will have to signal when the last of these transfers
completes so that the response indicating an MSCP
completion can be sent to the host. The data
structure usced for this purpose, called the counter
in Figure 2. consists of a count field and linkage
information.

Interrupt Queue The interrupt queue is a special-
ized form of the transmission queue. In this case,
however, the linkage information is replaced by
information used to generate an interrupt to the
P.io. The resources on the resource queue for the
interrupt queue are transmission queues that
require scheduling action. This mechanism is
explained later in the discussion of the send
algorithm.

Routes Routes are arrays of elements (called route
vectors) that control the individual steps (called
stations) of a data-transfer operation. MSCP com-
mands are decomposed into individual transfer-
work descriptors that describe a manageable
fraction of the overall transfer. The K’s and the soft-
ware processes operate upon these transfer descrip-
tors, as described later. The descriptors move from

work queue to work queue, traveling through the
subsystem. Each station of the route guides a pro-
cessing element in determining which operation to
perform on the transfer, and what to do with the
completed result.

For example. a simple disk-read operation is a
two-station route: the first station is the Ksdi to
source the sector data into the HSC data buftfers; the
second station is the K.ci to transmit data to the
host. In contrast, a disk write-compare operation is a
four-station route:

1. The first station, the K.ci, fetches data from host
memory.

2. The second station, the K.sdi, writes data to
the disk.

3. The third station, the K.sdiagain, reads data from
the disk.

4. The fourth station, the K.ci again, fetches the
original data again from host memory and com-
pares it with the data read from the disk.

As shown in Figure 3, route vectors contain four
itemsof information:

1. An opcode to dictate the operation to be per-
formed at this station

2. A destination indicator to determine where the
completed operation should be sent if it succeeds

CONTROL

OPCODE FLAGS

SUCCESS DESTINATION ADDRESS
ROUTE { FIRST

VECTOR STATION
CLASS A ERROR DESTINATION ADDRESS

CLASS B ERROR DESTINATION ADDRESS

CONTROL

OPCODE FLAGS

UCCESS DESTINATION ADDRE
S SS DES SS SECOND

STATION

CLASS A ERROR DESTINATION ADDRESS

CLASS B ERROR DESTINATION ADDRESS

CONTROL

OPCODE FLAGS

SUCCESS DESTINATION ADDRESS
THIRD

STATION

CLASS A ERROR DESTINATION ADDRESS

CLASS B ERROR DESTINATION ADDRESS

Figure 3 Route Vectors

No. 8 February 1989 Digital Technical Journal

The Hierarchical Storage Controller

head to unlock.
ELSE

ELSE
/*Receive failed.

Lock resource queue head and obtain value.
IF resource queue head NOT 0 and NOT 1:

/*Resource available on queue.*/

Remove item from head of resource list.
Write link from removed item into resource queue

/*No resource available on queue.*/

IF target queue is a transmission queue AND
receiver is a software process:

/*Indicate software process waiting for resource.*/

Link process control block on waiter queue.
Write *"1" into resource queue head to unlock.

Write "0" into resource queue head to unlock.

item available.*/

Figure 4 Algorithm for Receive Primitive

3. Additional destination indicators to define where
the completed operation should be sent if it fails

4. Control flags to govern resource allocation and
route termination

Receive and Send Standardized receive and send
primitives act on both the transmission queues and
simplc queues.

By convention, a resource queue head in a simple
queue or a transmission queue will be zero if the
queue is empty and there are no waiters in the
queue. The queue head will be one if the queue is
empty and one or more software processes are wait-
ing for a resource. And it will be greater than one if
resources exist on the queue. By definition, queue
heads for simple queues cannot contain a value of
one since there can be no waiters onsimple queues.

Figure 4 shows the algorithm for the receive
primitive. If a software process executes this primi-
tive and finds no resource, the process control block
will be queued on the waiter queue and the value of
the queue head changed to one.

The send algorithm, shown in Figure 5, is much
more interesting than the receive algorithm. The
same algorithm can be used to send to both simple
queues and transmission queues without knowing
the type of destination queue beforehand. The
algorithm is driven by the queue head contents to
the correct final result. After the lock is obrained,
the resource queue is checked for a non-empty con-
dition If the resource queue is not empty, the new
resource will be added to the queue, and the opera-
tion is finished. If the resource queue is empty, the
queue head valuc will be checked to determine if

any P.o software processes are waiting on the
queue If the queue head value is zero (no pro-
cesses waiting), the new resource will be added to
the queue, and again, the operation is completed.

If the queue head is one, however, (indicating
that a software process is waiting for the queue),
the queue is by definition a transmission queue. In
this case, the sender uses the linkage information to
turn the transmission queue head itself into a
resource that is sent to the “service queue” indi-
cated in the linkage fields of the transmission
queue. This algorithm is recursive and continues
until a flag in the service queue indicates that the
target queue is the interrupt queue. Once that hap-
pens, the linkage information in the interrupt
qucue head will cause an interrupt to the P.io.

The interrupt queue thus becomes a queue of
queues as shown in Figure 6. The resources in the
resource queue of the interrupt queue are transmis-
sion queue heads. each in turn describing sets of
resources and processes waiting for those resources.

Upon taking an interrupt from the interrupt
queue, the P.io processes each transmission queue
linked on the interrupt queue. That action gives
resources to each waiting process (until one or the
other list has been exhausted) and schedules any
unblocked processes for execution.

This algorithm dictates that only send operations
providing aresource to a waiting process will result
in entries on the interrupt queue. Moreover, only
the transition of the interrupt queue from empty to
non empty will result in a hardware interrupt. Thus
the P.io is interrupted only when a send has occurred
that is of interest to the P.io’s process scheduler.

Digital Technical Journal No. 8 February 1989

Storage Technology

Clear link in item to be sent.
Lock resource queue head and obtain value.
IF resource queue head NOT 0 and NOT 1:

/*Resource queue not empty. Add new item

to resource list.*/

Link new item at end of

Write original
ELSE

/*Resource queue empty.
to resource list.*/

Link new

operation finished.*/

Write new item address in

ELSE

target is

queue.*/

IF flag indicates

Fla
Wri

?E

new

ELSE

Generate

Use

generate hardware

resource list.
resource queue head back to unlock.

Add new

/*No software processes waiting on queue.

/*Software process(es) waiting on queue,
interrupt queue.

[F flag indicates NOT "interrupt queue':

/*Send transmission queue to its service

transmission queue not already
linked on service queue:

transmission queue as on service queue.
item address
SEND transmission queue to service queue.

/*Target queue is "interrupt queue®.
interrupt
[F flag indicates

Flag interrupt as generated.
interrupt mask from queue head to

item

item at end of resource list.
IF resource queue head originally 0:

resource queue head to unlock.

or
Determine which.*/

in resource queue head to unlock.

if appropriate.*/

interrupt not already generated:

interrupt.

Figure 5

Furthermore, multiple transmission queues can be
linked on the interrupt queue, and all can be ser-
viced at once. That capability allows multiple
process-scheduling events from a single hardware
interrupt. As the system gets busier, interrupt pro-
cessing tends to consolidate due to this batching
effect, and executive overhead decreases as a per-
centage of total cycles consumed. As the system gets
busier, it actually becomes more efficient at pro-
cessing scheduling cvents.

We noted earlier that this send algorithm is recur-
sive. A resource can be sent to a transmission queue,
which in turn can be sent to its service queue,
which in turn can be sent to its service queue, and
so forth, until the interrupt qucue is reached. In
practice, however, the current HSC implementations
use only three levels (a queue of queues of queues
of resources). The reason for that limitation is to
curtail computation in certain critical sections of
K microcode.

Send Algorithm

Downcount Figure 7 shows the algorithm for
downcount operations on counters. When a down-
count operation turns the value of the counter to
zero. the counter will be sent to its service queue.
Usually embedded inside other data structures, a
counter represents a count of events that must occur
before the operation in which the counter is embed-
ded can commence. As each event occurs, the value
of the counter is reduced with a downcount opera-
tion. When the counter value bccomes zero, the
counter (and therefore implicitly the structure in
which it is embedded) are sent to the counter's ser-
vice queue. This queue is usually a work queue for
the processing of the larger structure

For example, when an MSCP transfer command is
processed, a data structure is generated describing
the completion message to be sent to the host. This
data structure includes a counter containing the
number of component operations that must be fin-
ished before the completion message can be sent.

No. 8 February 1989 Digital Technical Journal

The Hierarchical Storage Controller

INTERRUPT QUEUE

INTERRUPT MASK

FLAGS

FIRST INTERRUPT
QUEUE RESOURCE
(TRANSMISSION QUEUE)

— RESOURCE QUEUE

LINK

— FLAGS

FIRST T.Q. RESOURCE

LAST T.Q. RESOURCE

— UNUSED

— RESOURCE QUEUE =

LINK

LINK(=0)

FIRST WAITER PCB

LAST WAITER PCB

— WAITER QUEUE —

LINK

LINK(=0)

SECOND INTERRUPT
QUEUE RESOURCE
(TRANSMISSION QUEUE)

- LINK(=0)

FLAGS

FIRST T.Q. RESOURCE

LAST T.Q. RESOURCE

— RESOURCE QUEUE —

LINK

LINK(=0)

FIRST WAITER PCB

LAST WAITER PCB

— WAITER QUEUE =

LINK

LINK(=0)

Figure 6 Interrupt Queue

Lock count word and obtain value.

Decrement value.
Write decremented value

/*Count transitioned to 0.*/

SEND counter

to service queue.

into count word to unlock.
IF decremented value = 0:

Figure 7 Algorithm for Downcount Operations

Digital Technical Journal

No.8 February 1989

15

Storage Technology

The service queue for this counter is the K.ci work
queue for message transmission. As each component
operation completes, a downcount operation is per-
formed. When the counter value reaches zero, the
counter (and the completion-message structure in
which it is ecmbedded) is sent to the K.ci message-
transmission queue, and the completion message is
transmitted to the host.

Work Queues and Work Descriptors

Cach K has an interface to the rest of the system
through its work queues and through the operations
performed on standardized work descriptors. This
section describes some of the unique aspects of
each K interface.

K Control Areas The activities of each K are con-
trolled through a master data structure in control
memory called the K control area. These control
areas contain the queue heads for the K work queues,
resource queue heads for resources devoted to the
K, and constants used as parameters for K opera-
tions. In all cases the queues in the K control areas
are simple queues.

The K.ci control area contains work queues for
message and data transmissions, and a pointer to the
SCA open-connection database.

The K.sti control area contains work queues for
data transfer and formatter communication opera-
tions, as well as information necessary to detect and
report formatter state changes.

The K.sdi control area is similar to that of the
K.sti. It contains work queues for data transfer and
drive communication operations also, as well as
drive state information. Unlike the transfer descrip-
tors in the K.ci and the K.sti, however, those in the
K.sdi are not queued directly on its work queues.
Rather, transfer work is provided to the K.sdi by
means of a special data structure, the disk rotational
access table (DRAT)

As shown in Figure 8, DRATs consist of two types
of elements: arrays of simple queue heads, one
queue for each unique sector position in a single
disk rotation; and a counter containing the total
number of transfers linked on the various queue
heads. For example, an RA81 disk drive has S1 sec-
tors per track; therefore, a DRAT for this drive con-
tains S1 transfer queue heads.

A transfer descriptor is queued to the transfer
queue corresponding to the physical sector position
at which the transfer is to start. Figure 8 shows two
transfer descriptors, each describing the transfer of
four contiguous sectors, and illustrates how they are
linked in the DRAT. The K.sdi interrogates these
transfer queues as the disk rotates. Each time a new

sector pulse arrives from the disk, the K.sdi changes
the queue polled for transfer work to the next trans-
fer queue head in the array. Each index pulse from
the disk resets K.sdi to the start of the array. In this
fashion, the scanning mechanism for K.sdi transfer
work is coupled in lockstep with the disk rotation.
That coupling provides the basis for the rotational
optimization algorithms used in the subsystem.

A unique DRAT is created for each set of transfers
on a given track on a given disk. These transfers can
be either individual pieces of a single, larger MSCP
transfer or independent smaller MSCP transfers that
fortuitously reference sectors on the same track.
These smaller transfers can therefore be serviced
during the same rotation. DRATS, interspersed with
disk-head motion commands, are queued to the
K.sdi to cause the transfer operations to occur. The
typical work sequence of the K.sdi is as follows:

® [nitiate head-motion operation
= Performall transfers described in the next DRAT
= [nitiate head-motion operation

s Perform all transters in the next DRAT, and
so forth

DRATs also provide a synchronization mechanism
for fetching host data during a write operation to a
disk. During a write, data must be fetched from the
host into data butfers inside the subsystem before
the actual disk transfers can occur. Because of lim-
ited buffering capacity, data cannot be prefetched
for writes until reasonably close to the time when
it will acrually be needed. Figure 8 also shows
retrieval queues, which are queues of transfer
descriptors for data that must originate elsewhere
before the disk portion of the transfer can occur.

As the first step of DRAT processing after initiating
the head-motion operation, the K.sdi sends all work
on the retrieval queue to the K that will provide the
data (typically K.ci). The route vectors for these
transfers are arranged so that, when the data-fetch
operation completes, the transfer descriptor will be
sent to the DRAT transfer queue for the scctor at
which the disk portion of the operation is to take
place. In this fashion, data-fetch latencies for write
operations overlap with disk-head positioning and
rotation time. The DRAT transfer queues start out
empty when the head motion is initiated, but they
fill with work as the K’s which source the data com-
plete their portions of the data-transfer operations
and forward the transfer descriptors to the DRAT
transfer queues.

The DRAT contains a counter describing all the
transfers that must take place before this DRAT can
be completed. As each transfer completes, the K.sdi

No. 8 February 1989 Digital Technical Journal

The Hierarchical Storage Controller
DRAT

TRANSFER QUEUE
FOR SECTOR 0

FRAGMENT REQUEST BLOCK
_| FRAGMENT REQUEST LINK
TRANSFER QUEUE BLOCK
FOR SECTOR 1 TRANSFER OF
—| SECTORS 1. 2. 3 AND 4

TRANSFER QUEUE
FOR SECTOR 2

TRANSFER QUEUE

\
\\ POINTER TO COUNTER IN
\
\
FOR SECTOR 3

"PARENT" MSCP COMMAND

CURRENT ROUTE POINTER
TRANSFER QUEUE

1
\
CURRENT SECTOR \
\
FOR SECTOR 4 l ROTATION DIRECTION DATA
\ | TRANSFER BUFFER __ BUFFERS T
FRAGMENT REQUEST \ QUEUE
TRANSFER QUEUE BLOCK 1‘
HelAERU TRANSFER OF \
SECTORS 5.6, 7 AND 8 |
|
TRANSFER QUEUE
FOR SECTOR 6

TRANSFER QUEUE
FOR SECTOR 7

TRANSFER QUEUE
FOR SECTOR 8

TRANSFER QUEUE
FOR SECTOR N

FRAGMENT REQUEST
BLOCK
TRANSFERS WHERE
: DATA ORIGINATES
: ELSEWHERE DRAT COMPLETION WORK QUEUE
(TRANSMISSION QUEUE)
| RETRIEVAL |
S FRAGMENT REQUEST LINK
BLOCK
; TRANSFERS WHERE FLAGS
DATA ORIGINATES
COUNTER SERVICE ELSEWHERE
QUEUE POINTER N
COUNT OF OPERATIONS
OUTSTANDING IN DRAT

RESOURCE QUEUE

DRAT COMPLETION
WAITER QUEUE

_ PROCESS

PROCESS CONTROL
BLOCK

Figure 8 Disk Rotational Access Table

Digital Technical Journal No.8 February 1989

17

Storage Technology

performs a downcount operation on the DRAT coun-
ter. When that counter becomes zero, the DRAT will
be sent to a completion queue to be processed by
the P.io software; the K.sdi then begins the head
motion tor the next track. Thus a non-zero DRAT
counter indicates that additional transter work must
still be performed on the current track; the K.sdi
cannot move the disk heads until all that work has
been accomplished.

Fragment Request Blocks Thus far, we have
referred to transfer descriptors in a generic sense. In
actuality, all transter operations within the subsys-
tem are described by a standardized data structure
called the fragment request block (FRB), shown in
Figure 8. FRBs follow routes from work queue to
work queue and cause the data-transfer operations
to occur.

In addition to various constants needed at dif-
ferent steps of the transfer, FRBs contain three
fields that are central to the subsystem data-flow
algorithm. The first field is a route pointer, which
points to the current route station in this FRB’s route
vector. The route pointer is advanced each time the
FRB is forwarded to the next station on its route. The
second field is a buffer queue head that links the
data buffers used to hold the data during the opera-
tion. The third field is a pointer to a counter on
which a downcount operation is performed when
the FRB completes its route. As explained later, this
counter usually resides in an MSCP control struc-
ture. The counter is the means by which the subsys-
tem recognizes when all the individual components
of MSCP transfers have completed.

Read Operation Control
and Data Flow

The mechanisms and data structures described here-
tofore control data transfers more by using data
structures than by using explicit algorithmic deci-
sions by the various processors. 1In this section, we
will follow a typical disk-read operation through the
HSC design, demonstrating how the various data
structures and operations interrelate. For simplicity,
we assume that the sectors being read are contained
on a single track, and that the HSC controller is idle
when the read command arrives.

MSCP Command Arrival

The firstevent for our read operation is the arrival of
the MSCP command message in a K.ci reception
buffer. The sequence of events is shown in Figure 9.
The Kci first detects this arrival, inspects the
specific C1 protocol fields enveloping the MSCP
packet, and determines it the message is valid over

an open connection. The K.ci then adjusts the con-
nection database as necessary to reflect any SCA
credits passed with the command. Finally, the K.sci
copies the message to a control-memory data struc-
ture called a host message block (HMB).

The HMB is sent to the reception queue for the
connection over which the HMB was received. The
reception queue is a transmission queue on which
the P.io MSCP server is blocked waiting for work.
The send algorithm sends this transmission queue to
the interrupt queue and triggers an interrupt. The
P.io process scheduler takes this interrupt and acti-
vates the MSCP server.

MSCP Server Processing

The MSCP server first parses the command and
chooses it for transfer, since the disk is idle. The
sequence of events is shown in Figure 10. (If the
disk were busy, the request would be placed on the
optimization queues.) Next, the server converts the
HMB holding the MSCP command into an HMB con-
taining the MSCP completion message that will be
sent if the operation completes successfully. The
server also initializes a counter in this HMB to a
value of one. The server then designates the work
queue for the K.ci message transmission as the one
to which the counter (and thus the HMB) will be
sent upon becoming zero. Finally. the server allo-
cates a DRAT, builds a seek command for the drive,
and begins to generate the individual FRBs for the
transfer.

Each FRB except the last one describes four sec-
tors of the transfer; the last FRB can describe up to
eight sectors. This distinction is made because, if
the transfer is small, the overhead of generating FRBs
is large compared to the transfer time. Therefore,
little of the potential rotation optimization will
result, and it will be more advantageous to describe
the entire operation with a single FRB. Note that as a
transter that does not cross a track boundary grows
larger, however. the probability increases that rota-
tional optimization can rerurn a significant gain. In
that case the FRB generation overhead is justified.

As each FRB is generated, it is initialized with the
parameters ncceded to govern both the disk and the
host sides of the transfers. In addition, the FRB's
route pointer is initialized to point to the route vec-
tor for the first station on the disk-read route. If
more than one FRB is generated from the seek com-
mand, the operation counter in the HMB will be
incremented for each additional FRB. Lach com-
pleted FRB is then queued to the DRAT transfer
queue corresponding to the sector position at
which the transfer starts. Finally, a counter within
the DRAT is incremented to reflect the newly added

No. 8 February 1989 Digital Technical Journal

The Hierarchical Storage Controller

K.Cl K.Cl CONTROL AREA
L FREE HMB _| HmB Ll
LisT
Cl RECEIVED
MESSAGE
BUS QESE’ECONNECT'ON CONNECTION BLOCK
FOR DISK MSCP
CONNECTION CONNECTION
TABLE PTR
HOST MESSAGE BLOCK (HMB) CONNECTION
RECEPTION
QUEUE
LINK ADDRESS

PPD/SCA INFO
FROM MESSAGE

MSCP COMMAND

(T

DISK MSCP SERVER
CONNECTION WORK QUEUE

INTERRUPT QUEUE

INTERRUPT MASK

FLAGS

RANSMISSION QUEUE)
— RESOURCE QUEUE —

M
ESSAGE SERVICE QUEUE
POINTER
FLAGS
L— — UNUSED —
-~ RESOURCE QUEUE —
P.IO MSCP
SERVER
LAERE HEES sy PROCESS CONTROL
BLOCK
Figure 9 MSCP Command Arrival

operation. This DRAT counter contains the number of
FRBs on the track, and its service queue is the work
queue for the MSCP server to recognize DRAT comple-
tion. The MSCP server performs all these operations
without blocking; thus no context switches are
needed. When all these data structures have been
generated, the seek command and the DRAT will be
sent to the K.sdi's work queues. The MSCP server
then returns to wait for more input commands.

The Disk Portion of the Transfer

Upon receiving the first DRAT, the K.sdi issues a seek
command to the drive, then waits for the heads to
settle and the drive to indicate its readiness to trans-
fer. This sequence of events is shown in Figure 11.
When the drive is ready, the K.sdi polls the various
transfer queues, as described earlier. In turn, it
encounters the first FRB to come under the heads.
The K.sdi first uses the FRB’s route pointer to find its

Digital Technical Journal No.8 February 1989

Storage Technology

DISK DRAT
COMPLETION WORK QUEUE
(TRANSMISSION QUEUE)

K.CI CONTROL AREA DISK READ ROUTE LINK
—]
.| READ FROM DiSK eacs
K.Cl MESSAGE
TRANSMIT e SUCCESS DESTINATION -~
WORK QUEUE =K.Cl DATA TRANSMIT | RESOURCE
WORK QUEUE QUEUE
K.Cl DATA WRITE TO HOST —
TRANSMIT MEMORY — WAITER QUEUE —
WORK QUEUE
SUCCESS DESTINATION
= FREE POOLS
DRAT COMPLETION
HOST MESSAGE BLOCK (HMB) FRB FOR SECTORS 1.2.3.4 L, | PROCESS
PROCESS CONTROL
COUNTER SERVICE BLOCK
QUEUE POINTER
B PARENT
FRB COUNTER(=2) i A
DRAT
SECTOR 0 XFER Q.
SECTOR 1 XFER Q.
ROUTE POINTER f——
PPD/SCA INFO
FOR MESSAGE
— BUFFER QUEUE —
SECTOR N XFER Q.
MSCP COMPLETION DRAT COUNTER
MESSAGE
FRB FOR SECTORS 5.6.7.8 SERVICE QUEUE —
FRB COUNT(=2)
PARENT
COUNTER PTR
K.SDI CONTROL AREA
ROUTE POINTER
DRIVE DRAT
WORK QUEUE
— BUFFER QUEUE —|
DRIVE SEEK
WORK QUEUE
SEEK
COMMAND

Figure 10 MSCP Server Processing

20 No. 8 February 1989 Digital Technical Journal

The Hierarchical Storage Controller

DISK DRAT
COMPLETION WORK QUEUE
(TRANSMISSION QUEUE)

K.Cl CONTROL AREA DISK READ ROUTE LINK

READ FROM DISK FLAGS

K

TRCA&ﬁiAGE SUCCESS DESTINATION

WORK QUEUE —K.Cl DATA TRANSMIT | RESOURCE
WORK QUEUE QUEUE

K.Cl DATA — WRITE TO HOST —]

TRANSMIT ™| MEMORY — WAITER QUEUE —

WORK QUEUE
SUCCESS DESTINATION
= FREE POOLS

DRAT COMPLETION

FRB FOR SECTORS 1.2,3.4 |_,|PROCESS
PROCESS CONTROL
BLOCK
PARENT
COUNTER PTR
DRAT
SECTOR 0 XFER Q.
SECTOR 1 XFER Q.
4 ROUTE POINTER
DATA
BUFFERS
— BUFFER QUEUE —|
SECTOR N XFER Q.
DRAT COUNTER
SERVICE QUEUE
FRB COUNT(=0)
FRB FOR SECTORS 5.6,7.8
PARENT
COUNTER PTR
K.SDI CONTROL AREA
— ROUTE POINTER
- DRIVE DRAT
DATA WORK QUEUE
BUFFERS
— BUFFER QUEUE —
DRIVE SEEK
WORK QUEUE
SEEK
COMMAND

Figure 11 Disk Portion of Transfer

Digital Technical Journal No.8 February 1989 21

Storage Technology

route vector and then determines that the operation
is a read, meaning that buffers must be allocated.
The K.sdi allocates the necessary data buffers and
then reads the sectors. [f no errors occur, the K.sdi
advances the route pointer in the FRB, removes it
from the transfer queue, and sends it to the success
destination in the route. In this case, this destination
is the darta-transmission work queue for the K.ci.
Finally. the K.sdi performs a downcount operation
on the DRAT counter to reflect the completion of
processing for an FRB.

This sequence repeats for each FRB in the DRAT
until the last FRB completes. At that point, the DRAT
counter will be zero, causing the DRAT to be sent to
the counter’s service queue, The K.sdi then waits
for a new DRAT to appear in its work queues.

The service queue for the DRAT counter is a trans-
mission queue that contains the completion process
for the MSCP server. The send algorithm causes an
interrupt-queue interrupt and the activation of the
process. This completion process first checks the
seek-optimization queue for this drive and, since in
this case it finds nothing else to do, puts the DRAT in
the DRAT free list.

The Host Portion of the Transfer

Upon receiving the first FRB from the K.sdi, the K.ci
examines the route vector by means of the FRB route
pointer. The K.ci then determines that the operation
is a transfer of data to host memory. In turn, the nec-
essary Cl packets are generated from the data in the
buffers attached to the FRB and transmitted to the
host. As Figure 12 shows, after the last buffer has
been transmitted and successfully acknowledged,
the K.ci will advance the FRB route pointer and
forward the FRB to the next station on its route.
Because the K.ci is the last station for a disk read,
the next-station destination is the free FRB queue.
The send command then returns the FRB to the
free list.

Flags in the K.ci route vector also instruct the K.ci
to return the buffers attached to the FRB to the free-
buffer list prior to routing the FRB. These flags also
cause a downcount operation on the HMB counter.
Thus the routing operation for this laststation in the
route involves automatic resource deallocation and
completion accounting. Having completed and
routed the FRB, the K.ci then returns to its work
queues and repeats the cycle for the next FRB that
arrives.

This process continues until the last FRB in the
transfer has been processed by the K.ci. Here, the
downcount operation on the HMB counter will
decrease it to zero, and the K.ci will send the coun-
ter (and thus the HMB) to its own message-transmis-

sion work queue. After routing the FRB, the K.ci will
find the HMB on its message-transmission work
queue and transmit the MSCP completion message to
the host.

Errors

The aforementioned routing and downcount opera-
tions occur as outlined only if no errors are encoun-
tered. If an error occurs, however, the transferring K
routes the FRB to its error destination, avoiding the
downcount operation. In the K.sdi case, this action
prevents the DRAT from completing (which ensures
that the disk heads will not move) until the error-
recovery routines have tried to recover all the DRA'T’s
FRBs. In the K.ci case, this process keeps the HMB
from being sent to the message-transmission queue
until all FRBs have been recovered. If the data can be
recovered without having to resubmit the FRB toa K
(e.g., purely mathematical corrections, such as LCC
errors), the error-recovery routine will perform the
routing and downcount operations.

Benefits

The control scheme for a read operation, described
above, has many elements that seem quite compli-
cated when viewed individually. Moreover, many of
them do not return significant benefits for serial
operations on a single, isolated command. The real
power of this parallel design comes into play when
large request rates are realized. In a busy system,
the P.io executes two basic loops: processing new
MSCP commands into suboperations on seek queues,
and processing completed DRATs into DRATs that
describe the next transfer in the sequence. At most,
only one interrupt per MSCP command and one
interrupt per track visited by a command are neces-
sary. Sometimes. fewer interrupts are required.

In parallel with the DRAT-stuffing activity of the
P.io, each K.sdi processes transfers that are synchro-
nized with the head movement and rotation activity
of its drives. The P.io maintains a queue of two
DRATs per drive to the K.sdi. Upon completing the
transfer on a track, the K.sdi can start the next seek
on that drive immediately. Upon finishing an FRB
transfer, each K.sdi will forward the data to the K.ci,
which transmits data in parallel over the CI bus. As
each error-free transfer completes, the K.ci auto-
matically accounts for that completion. When all
completions have finished, the MSCP completion
message will be automatically transmitted.

Summary and Lessons for the Future

The HSC architecture and implementations have met
or exceeded most of our original expectations.
The architecture currently supports two hardware

22

No. 8 February 1989 Digital Technical Journal

The Hierarchical Storage Controller

K.CI CONTROL AREA

K.Cl MESSAGE
TRANSMIT
WORK QUEUE

K.Cl DATA
TRANSMIT
WORK QUEUE

DISK READ ROUTE

FRB FOR SECTORS 1.2.3.4
READ FROM DISK

HOST MESSAGE BLOCK (HMB) SUCCESS DESTINATION

= K.Cl DATA TRANSMIT

COUNTER SERVICE WORK QUEUE
QUEUE POINTER PARENT COUNTER PTR
FRB COUNTER(=0) WRITE TO HOST
MEMORY
SUCCESS DESTINATION
ROUTE POINTER = FREE POOLS
PPD/SCA INFO
FOR MESSAGE
— BUFFER QUEUE = DATA
BUFFERS
MSCP COMPLETION
MESSAGE
FRB FOR SECTORS 5,6.7.8
PARENT COUNTER PTR
FREE BUFFER QUEUE
ROUTE POINTER
FREE FRB QUEUE
— BUFFER QUEUE — DATA
BUFFERS

Figure 12 Host Portion of Transfer

Digital Technical Journal No.8 February 1989 23

Storage Technology

implementations (the HSC50 and HSC70 devices),
and four major software revisions have been made
since the architecture was originally conceived in
1978 (based on advanced development work begun
in 1976). All these changes were achieved with no
substantive alterations to the basic machine design
or the K microcode.

With a single policy microprocessor, the HSC70
design can process over 1000 requests per second
and move approximately four megabytes of data per
second on behalf of VAXcluster hosts. At the same
time, the design can perform significant storage
management functions, such as disk shadowing and
device error recovery.

Based on almost a decade of hindsight, some of
our initial design decisions were more restrictive
than we realized.

s When we created the HSC design, we chose the
11/23 as the policy microprocessor for the
HSC50 device. Although the 11/23 was reliable,
inexpensive, and fast enough for our needs, its
16-bit address space significantly complicated
our hardware and software design.

In the software implementation, we placed much
emphasis on maximizing performance by maxi-
mizing parallelism wherever possible. This
emphasis extended to error recovery, the man-
agement of the CI communication state, and other
infrequently executed algorithms. Although
clearly warranted for the critical path, the use of
highly parallel algorithms for the less frequently
executed procedures added significantly to their
complexity with no commensurate performance
return. In retrospect, limiting infrequently exe-
cuted code paths to straightforward, serial algo-
rithms would have saved a lot of implementation
and debugging time.

With the exception of some of the device utility
programs, the HSC P.io software is implemented
entirely in machine language. At the time, perfor-
mance considerations warranted such a decision
for the critical-path routines. It is now clear, how-
ever, that the same infrequently executed code
sections that would benefit from algorithmic sim-
plification would also benefit from implementa-
tion in a suitable high-level language.

24

No. 8 February 1989 Digital Technical Journal

Kenneth H. Bates

Performance Aspects of

the HSC Controller

The HSC controller tries to maximize its request and data rates while minimizing
its request response time. Delays, which reduce performance, are caused by
resource contention in the processor, the buses, and the 1/0 processes, as well as in
the functions of the server, the processor, and the disk drives. Algorithms to mini-
mize these delays and to take advantage of any idle time are incorporated in the
design. However, the gains from one algorithm may come at the expense of
another. Therefore, many techniques are used to solve this problem, including
dynamic bandwidth adjustment, fragmentation, request merging, and seek

reordering.

One feature that sets an HSC intelligent controller
apart from its more traditional counterparts is its
ability to enhance the performance of the I/0 sub-
system. Although the controller may not modify the
functions of the I/O stream, it can improve the over-
all performance dramatically by influencing a num-
ber of areas that are amenable to optimization.
Before investigating the means whereby these optimi-
zations may be implemented, however, it is worth-
while to explore the areas contributing to the time
taken by an 1/0 request.

Performance Equations

Although 1/0 operations are extremely complex, it
is possible to ignore effects such as parallel process-
ing in order to obtain a simplistic view of the divi-
sion of time spent in the processing of an 1/0
request. Two equations may be constructed to rep-
resent the overall time taken by an 1/0 operation.
The first equation treats the total time required for
an 1/0 as being composed of several distinct time
components:

Lo = bpost t+ Leont + b + tace + l.\;fr
in which

tio = The total time required for the 1/0 operation.
This time span begins when the user program
issues the 1/0 directive (e.g., read, write, QIO) and
ends when that directive ends. This time is also
referred to as the response time ofan [/O request.

trs = The time spent by the host to perform 1/0
initiation and completion processing. This compo-
nent includes the processing time required for the

user-level statement (read, write, etc.), as well as
the time spent by the various drivers invoked during
the life of the 1/0 operation. In the simplistic model
portrayed here, this component also includes any
time spent in the adapter.

t.ow = The time that 1/0 processing is suspended
due to contention for various required resources.
Note that this delay is not necessarily confined to
any one component but may exist at one or more
points in the 1/0 path.

tan = The time spent by the controller during the
processing of the 1/0 request.

ta«e = The time required by the drive heads to move
from their current position to the position required
to transfer the requested data. This time includes
both the physical movement of the heads and the
time required for the media to rotate into the cor-
rect position.

ty» = The time required to transfer the specified
amount of data. This component includes both the
drive transfer time and the transit time of the various
buses in the 1/0 path.

Since these components are additive, a reduction
in any term on the right side of the equation will
result in a comparable reduction of the total 1/O
time. Of these terms, only #ys and those portions of
ty and tom that happen outside the controller are
considered fixed and invariant. Therefore, they can-
not be optimized or reduced by the controller. This
equation is of interest when it is desired to allocate
the time spent by an I/O request to the discrete
components along the path of the request.

Digital Technical Journal No. 8 February 1989

25

Storage Technology

The second 1/0 equation is recursive, treating an
1/0 operation as being composed of discrete opera-
tions at multiple levels, with each operation con-
tributing an amount to the overall response time:

ri= tg + by + i
in which
r; = The response time of the 1/0 operation at level /.

t, = The time required for servicing at level 7 (i.e..
the time that level / performs useful work on the 1/0
operation).

t,i = The time that the 1/0 operation waits at level /.
During this period, no useful work is being done on
the operation, although it is still at level 7. This time
reflects the delay contributed to the response by
level i.

ri—1 = The response time at the next level below i
This time reflects the period during which level ¢
passes work to a lower level for further processing.
Note that 7, -, represents the response time of the
next lower level; therefore, it implicitly includes
the response times of all lower levels.

In other words, the response time of any compo-
nent in the system is the sum of the service time and
the delay contributed by that component, plus the
response time of all lower levels in the system.

Although this statement may seem obvious, the
view of what is meant by useful work can vary from
one component to another. For example, the con-
troller would certainly view the movement of the
disk arm (a seek) at level /as a delay; the disk drive
(atlevel 7 — 1), however, would clearly see a seek as
useful work.

Performance Metrics

The performance of a controller is generally mea-
sured using three metrics: the request rate, the
request response time, and the data rate. The
request rate is the rate at which the controller ser-
vices 1/0O requests and is usually expressed in
requests per second. Being highly dependent on the
values for tq..c and ¢, caused by variations of the
input workload, this rate must be defined together
with a description of the characteristics of the 1/0
stream used to obtain the rate. The request rate is
usually specified as the point at which the con-
troller saturates and cannot process any additional
requests.

The second metric, the request response time,
refers to the total amount of time required for an 1/0
operation, or ¢,,. This response time is also specified
as a function of a given 1/0 workload, characterizing
the response times associated with a particular 170

stream. Note that the request response time is not
simply the reciprocal of the request rate, as is often
thought, but may vary from one request to another.
This metric should therefore be stated as a distribu-
tion function, either graphically or as a mean with a
standard deviation.

The third performance metric is the data rarte,
which refers to the volume of data processed by
the controller per unit of time. As might be expected,
this metric is inversely proportional to the t,. and
t\»components of the equation The data rate is usu-
ally specified at the point at which the controller is
incapable of sustaining an increase in the data rate,
even though the request-processing rate of the con-
troller may not be saturated.

The twin performance goals of a high-perfor-
mance controller are to minimize the request
response time and to maximize both the request and
data rates. To meet these goals, not only must all ser-
vice times and delays associated with an 1/0 request
be minimized, but the waiting times and delays
associated with lower levels must be utilized to per-
form any possible additional work through the
mechanism of parallel processing. Unfortunately.
the algorithms invoked to increase the request rate
often increase the response time of some requests,
while the algorithms which minimize the request
response time may decrease the request and data
rates. Therefore, these goals are often at odds with
each other. How the HSC intelligent controller
balances these conflicting goals is the subject of
this paper.

Contention

Contention arises whenever more than one entity
requires simultaneous access to a single resource.
Although this problem may be overcome by adding
more resources, there may be certain physical or
economical restrictions on the number of these
resources available. Since contention may delay the
completion of an /O request. the HSC controller
faces the task of how to resolve situations in which
these resource contentions exist.

Processor Contention

One of the most important resources within the HSC
controller is the inherent intelligence represented
by the 1/0 processor. This entity first receives,
decodes, and validates the Mass Storage Controller
Protocol (MSCP) command trom the host. The pro-
cessor then performs a series of actions:

1. Transforms the host command into a format suit-
able for transmission to the drive over the stan-
dard disk interconnect (SD!) bus

26

No. 8 February 1989 Digital Technical Journal

Performance Aspects of the HSC Controller

2500

2000

1500

1000

DATA RATE (KB/SEC)

500

0 & L
40

80 100 120 140

REQUEST SIZE (SECTORS)

KEY:

® 4 DISK - 4 K.SDI
O 2 DISK - 2 K.SDI
® 4 DISK - 1 KSDI
0 2 DISK - 1 K.SDI
A 1DISK - 1 K.SDI

Figure | Effect of Processor Contention on Data Rate

2. Issues the command to the drive at the most pro-
pitious moment

3. Monitors the progress of the command while the
drive executes it

. Transfers databetween the host and the drive

RSN

5. Verifies the successful completion of the com-
mand and attempts to correct any errors that
were detected

0. Notifies the host when the command has
completed

Not only must the processor accomplish all these
actions quickly, but it must do so for many com-
mands issued in rapid succession by different hosts
and addressed to multiple drives. This process leads
to contention.

To eliminate a large amount of this contention,
the HSC controller divides the work among multiple
processors. This division is based on the fact thatall
work in the controller canbe divided into two major
categories: policy determination, and policy imple-
mentation. Since policy determination includes
algorithms and decisions that may change from one
implementation to the next, a RAM-based processor
called the P.io is entrusted with this task.! On the
other hand, policy implementation, such as the SDI
protocol, is relatively invariant and may safely be

encoded in a ROM-based machine called the K.sdi.
The relative speed difference between some func-
tions also requires this division of labor. Incoming
requests from the host arrive with a separation time
of many milliseconds, whereas the timings on the
SDI and CI buses are measured in fractions of micro-
seconds. This difference is reflected in the power
and speed of the processor chosen as the ROM-
based 1/0 engine for the K.sdi, the 2901 bit-slice
microprocessor.

Even with the speed advantage of these micropro-
cessors, however, the relative speed of the SDI and
Cl buses would cause severe contention problems if
only one microprocessor were dedicated to policy
implementation. For this reason (as well as allowing
expansion capability), a single microprocessor called
the K.ci has been dedicated to Cl-bus processing,
while a single K.sdi has been dedicated to servicing
a maximum of four disks, with additional K.sdi
microprocessors being utilized for additional disks.
With this arrangement, the software in each individual
microprocessor can be optimized for one generic
type of operation. If MSCP requests are directed to
disks on multiple K.sdi processors, relatively fast
disk operations can proceed in parallel with the
processing of other requests by the slower P.io.

Processor contention can be demonstrated by the
difference between multiple disks on one K.sdi and
each disk on separate K.sdi’s. Figure 1 was obtained

Digital Technical Journal No.8 February 1989

27

Storage Technology

by running several tests with varying numbers of
disks and K.sdi processors. Lach test consisted of
the same 1/0O work pattern: a read request was issued
at the first sector on the disk, the number of sectors
read was varied from 1 to 127, and three requests
were always outstanding to the HSC controller to
ensure that transfers were always taking place.

As shown, the difference in data rates between the
two configurations becomes quite significant both
as the number of disks connected to a single K.sdi
increases and as the amount of data requested per
transfer increases. Note that the data rate sustain-
able by a single disk at a request size of 20 sectors
does not double when two disks are connected to
the same K.sdi. Instead, the data rate increases only
from over 500 kilobytes (KB) per second to around
750KB per second. When a second disk is connected
to a separate K.sdi, however, the data rate for both
disks is almost exactly double that for one disk,
attaining well over 1100KB per second.

These differences are attributable to the con-
tention caused by the requirement for simultaneous
transfers from the different disks to the single K.sdi.
Since one K.sdi cannot transfer data on two separate
disks at the same instant in time, the data rate can
increase only when the second (and subsequent)
disks transfer data during the /.. of the first disk
(since the K.sdi will perform overlapped secks, as
explained later). In this context, the K.sdi may be
viewed as asource of contention.

One of the tasks faced by controller designers is
how to handle this source of contention. Within
each K.sdi, contention arises whenever a disk is
ready to transfer data while the K.sdi is already busy
transferring data on another disk. Although the K.sdi
cannot transfer data from two disks simultaneously,
it can minimize the effects of this contention. This
minimization is done by code that senses the cur-
rent rotational position of each drive and initiates
the transfer as soon as the data passes under the
heads. This action is taken irrespective of the arrival
order of the requests for data on the different disks,
thus reducing the potential waiting time.

The K.sdi also utilizes the concept of a current
drive for cases in which two or more drives are
ready to transfer at the same time. Here, the K.sdi
will first choose the current drive to initiate the
transfer, then increment the current drive to imple-
ment a round-robin scheduling scheme among the
competing drives. Once initiated, the transfer will
continue uninterrupted as long as data remains to
be transferred, which may be up to one full group
on the disk.

The uppermost curve in Figure 1 illustrates a sec-
ond form of contention: bus bandwidth limitations.

The anticipated data rate for four disks, each trans-
ferring data on a separate K.sdi, is in excess of
4000KB per second with a 40-sector request size.
The bandwidth of the C1780 adapter used in this
test is slightly over 2000KB per second, however, so
the actual data rate will be the lower of the two
values. Since this decrease is caused by contention
outside itself, the HSC controller can do nothing to
obviate it.

Bus Contention

Other sources of contention are the various buses
within the HSC controller itself. The data bus, the
main route for data passing through the controller,
cansustain a rate of 13.3 megabytes (MB) per second.
This rate has traditionally been viewed as only 50
percent effective however, since most data must
pass over the bus twice. On disk reads, for example,
data must pass over the bus from the disk to the buffer
memory in the HSC controller, and again when the
same data is read from the buffer memory and trans-
ferred to the host over the CI bus. For this reason,
the effective transfer rate of the data bus is generally
thought to be limited to 6.6MB per second.

In fact, however, this figure is considerably
higher than 6.6MB per second since the data transfer
to and from the multiple hosts occurs by means of
the K.ci, which has a maximum data rate of approxi-
mately 4.3MB per second. Subtracting this value,
there is 9MB per second of bandwidth available
for use.

Thus six RA82 disk drives, each with a sustained
transfer rate of 1.4MB per second, will approach sat-
uration on the data bus. Severe problems would
result if a seventh drive began transferring data at
high speed, thus exceeding the limitation of 9MB
per second. The HSC controller deals with this prob-
lem in a manner that not only addresses this issue
but also compensates for the varying transfer rates
of different SDI devices. The controller utilizes a
mechanism called the data-bus bandwidth sema-
phore, which functions as a throttle on the data
transfer rate.

This semaphore is initialized to a value represent-
ing the maximum transfer rate the data bus can
sustain. When a drive comes on line to the HSC con-
troller, the disk-server software will interrogate the
drive over the SDI bus. Among other items, the soft-
ware determines the relative transfer rate of the
drive, expressed in increments of 100Kbits per
second. When a transfer to that drive is requested,
the K.sdi will examine the drive’s speed parameter
to determine if it is less than the value remaining
in the bandwidth semaphore. If so, the drive’s trans-
fer-speed parameter will be subtracted from the

28

Ne. 8 February 1989 Digital Technical Journal

Performance As pects of the HSC Controller

DATA RATE - MEGABYTES
o
T

=)
3
T

I L 1

3 4 5

NUMBER OF DISKS

Figure 2 Effect of Bandwidth Semaphore on Data Rate

semaphore value and the transfer initiated. Upon
completion of the transfer, the value of the transfer-
speed parameter is added back to the value of the
semaphore.

As multiple drives begin to transfer at the same
time, this additive effect eventually causes the trans-
fer-speed parameter to exceed the value remaining
in the semaphore. When this condition occurs, the
K.sdi will delay the next requested transfer until a
disk completion increments the bandwidth sema-
phore to a value large enough to allow the new trans-
fer request to proceed. In this manner, disks with
differing transfer rates may be intermixed on the
HSC controller without bus contention, and overly
restrictive 1/@ initiation policies are not needed.

Figure 2 demonstrates the effect of this sema-
phore when a tull disk read was initiated to a vary-
ing number of disks. These reads were initiated by
the MSCP ACCESS command, which reads the data but
doesnotreturn it over the CI bus, thereby eliminat-
ing the CI bandwidth restrictions discussed earlier.
Lach ACCESS command was directed to an RA82
drive on a single K.sdi.

As shown, the data rate for one drive is about
1.5MB per second and increases in a very linear man-
ner as the second and third drives are added. The
data-bus bandwidth semaphore is initialized to a
value of 661, or 66.1Mbits per second. (This value
is considerably less than half the maximum data-bus
bandwidth of 9MB, or 72Mbits per second, for reasons
explained later.) Since the transfer-speed parameter
of the RA82 drive is 192 (peak rate of 19.2Mbits per
second), the addition of a fourth drive exceeds the
semaphore value by 107. Thus the transfer is post-
poned slightly, causing the nonlinearity in the
curve. As the fifth drive is added, the increase in the
data rate becomes miniscule, with the semaphore

allowing additional transfers only when one drive is
occupied performing a seek operation.

Since the K.ci is the lowest priority requester on
the data bus, it is not included in the data bus band-
width calculations. In essence, it will always trans-
mit and receive on the CI bus, using whatever bus
cyclesremainafterany bus use by the K.sdi’s.

Process Contention

The HSC software is a highly complex real-time mul-
titasking operating system, consisting of more than
50 separate processes. Therefore, some form of pro-
cess contention is bound to arise. An exam ple of this
contention is the process that is responsible for cor-
recting errors detected by the 170-bit error correct-
ing code (ECC). This software is totally compute
bound and can take nearly 100 milliseconds of con-
tinuous compute time in severe cases. Since this
compute time prohibits other work from being done
on the system, the ECC process has a very low prior-
ity relative to other tasks, allowing it to work in back-
ground mode. In this manner, high-priority requests
forwork from the K.sdi and the K.ci will be serviced
with minimum waiting; the time for the already
lengthy ECC process will be increased by only a
small percentage.

This contention is quite important when consid-
ering the division of work for a typical I/O request.
As mentioned earlier, the P.io merely provides the
policy determination of which request to transfer
next; the K.sdi and the K.ci do the actual work.
This work must be directed from the P.io, however,
and no new /@ requests will be issued if the processor
is blocked awaiting the completion of ECC process-
ing. Now, t. typically contributes only a fraction
of the ¢, time, and ¢.. and f; are idle times to the
P.io. Therefore, it is worthwhile to interrupt the

Digital Technical Journal No.8 February 1989

29

Storage Technology

compute-bound ECC process for the small time
required to initiate new work. After sending a new
1/0 request to the drive for action, the P.io will
return control to the ECC process, which will con-
tinue its compute-bound activity during the drive’s
Lucc and Ly time.

Resource Contention

As might be expected, some of the resources subject
to contention are the bufters utilized by the C1780
port in the VAX CPU to receive the data sent by the
HSC controller as a result of a disk read operation
Surprisingly, the K.ci is not only aware of this possi-
ble contention in the VAX host, but has been
designed to reduce the amount of contention for
these external buffers whenever possible.

The contention arises because the CI780 port
maintains two buffers to receive the incoming data.
The K.ci can send data at a rate in excess of the
port’s capability to empty and recycle the buffers.
Therefore, if more than two buffers are sent in rapid
succession, the C1780 port will be forced to reject
(NAK) the incoming data, thus necessitating a
retransmission by the K.ci.

Toreduce the CI bandwidth wasted on retransmis-
sions, the K.ci hasbeen designed with the reception
capability of the host-buffer in mind. The K.ci sends
darta to the host one buffer at a time. After sending a
bufter. the K.ci checks to see if more data is waiting
to be transmitted to another host. If so. the K.ci will
send to the next host, proceeding in a round-robin
fashion among all hosts. In this manner, a sequence
of buffers to be sent to one host will be sent not in
one burst but gradually, over a period of time. Since
the K.ci effectively introduces a pause between the
transmission of butters to a host, the receiving CI780
port can empty one buffer before receiving another,
thus eliminating the need for the K.ci to transmit
the same buffer more than once.

Although this scheme will be effective only when
there is data to be sent to more than one host, it is
precisely at this time that a retransmission would
have the greatest impact on performance. Without
this scheme, the second host would have to wait for
one (or more) retransmissions to the first host, effec-
tively doubling the potential delay the second host
would see. If data exists to be sent to only one host,
then although a retransmission will undoubtedly be
required (if more than two buffers are sent), other
hosts will not be affected by this delay.

In a similar fashion, the contention for data buftt-
ers within the HSC controller also exists for the K.ci
when the host issues a disk write command. In this
instance, the K.ci must supply buffers to receive the
data sent by the host to be written to disk. On one

hand, the K.ci must not always allocate all the
required buffers since this allocation could poten-
tially remove buffers from service for a lengthy
period of time, thus preventing their use elsewhere.
On the other hand, a last-minute allocation of buft-
ers is a risky business since if they are not available
when the data comes in, the K.ci must NAK the data
from the host and request retransmission, which
causes delays. The K.ci addresses this problem with
both an internal hardware solution and a software
solution, while allowing full control of the policy to
reside in the P.io.

Within the K.ci, there are two hardware buftfers
dedicated to the reception of data received from the
Cl bus. Once received into these buffers, data must
be copied into a data buffer that the K.ci has allo-
cated before more data arrives over the CI bus, or
clse the data will be lost. To control the number of
data butters to preallocate, the P.io will inform the
K.ci of the maximum number of buffers to preallo-
cate. The K.ci will maintain two internal variables.
one keeping the maximum number of buffers to
allocate less the number currently allocated (called
SPMMA), the other keeping track of the number of
buffers needed less the number currently allocated
(called SPNMA).

Upon determining that data is required from the
host. a K.ci will add the required number of bufters
to S.NMA and then check both variables. If both are
greater than zero (implying that buffers are needed
and the allocation limit has not been reached). the
K.ci will allocate a data bufter, decrement both vari-
ables. and repeat the check. If either variable is less
than or equal to zero (implying either sufficient
butters have been allocated or the K.ci is at the allo-
cation limirt), then the K.ci will transmit a request
to the host for the data. SPMMA will be incremented
after the data is received from the host and transferred
from the reception buffer into the data bufter.

By following this algorithm, the K.ci will allocate
some portion of the required buffers prior to request-
ing data from the host but will limit this allocation
in order not to severely deplete the pool of free
buffers. Since the values for SPMMA and SP.NMA are
determined from information obtained from the
P.io, this policy is fully controlled by the P.io.

If data arrives from the host and there is no data
buffer available (possibly as a result of this algo-
rithm), the K.ci will not retain the data in the ClI
reception buffer because the K.ci would then have
to send a NAK, thus wasting CI bandwidth. Instead,
the K.ci receives the data and simply discards it,
rcquesting it again at a later time. By doing that, the
reception buffer will be free to receive more data.
thereby minimizing the impact caused by the K.ci’s

30

No. 8 February 1989 Digital Technical Journal

Performance Aspects of the HSC Controller

asking for more data than it could momentarily
receive. The number of retransmissions of the
requested data will be the same or less than the NAK
case, thereby conserving valuable Cl1 bandwidth.

Latency

As mentioned earlier, the ¢ component of response
time represents the waiting time, or request latency,
associated with a particular request at level /.
Latency is also included in r,-,, which represents
the response time for the work done at 1/0 levels
below /. From the viewpoint of the user who has
issued the high-level 1/0 request, however, the total
time between the beginning and ending of the
request is considered to be request latency, even
though lower levels are performing useful work.
These latencies may be subdivided into several dis-
tinct areas within the HSC controller.

MSCP Processing Overbead

The first task undertaken by the MSCP server is the
verification and accounting associated with all incom-
ing MSCP requests. Although certainly required, the
various checks and val idations consume a significant
amount of time, which contributes to the latency of
the request. Therefore, the only possible reductions
in request latency come from using highly opti-
mized software coding and faster processors, like
the ones in the HSC70 controller.

The software in the HSC controller is not only
optimized (e.g.. the register autoincrement mode
when traversing sequentially through structures)
but also takes advantage of certain presumed 1/0
characteristics of the VMS system. For example, it
has been observed that significantly more VMS 1/0
requests are reads than writes.? Because of this char-
acteristic, the default code paths within the HSC
software are set to aread case, allowing the majority
of the 1/0 handling to proceed slightly faster.
Although a small amount of code must clearly exist
to handle the other cases, this code is invoked less
frequently. Small optimizations such as this one
contribute to the latency reduction.

Following its verification, the request must be
decomposedc into fragments suitable for sending to
the K.sdi for the actual work. In addition to the pro-
cessing delays, contention may also be encountered
here because additional resources may be required
to contain these fragments.

The final portion of overhead contributed by the
MSCP processor is, ironically enough, the delays
inherent in the code designed to reduce request
latency. This code, which includes features such as
fragmentation and seek ordering policy, will con-
tribute a small delay by its very presence. On a sys-

Digital Technical Journal Ne.8 [February 1989

tem with a small load of 1/0O requests, this overhead
may contribute a noticeable amount to the request
latency since the optimizations within the HSC con-
troller do not begin to take effect until the load
increases. The HSC code attempts tO minimize the
impact of these intrusions by not invoking optimiza-
tion algorithms when the workload is small. Some
small amount of code must remain, however, con-
tributing a small but measurable amount to the
latency of the request.

K.sdi Processing

Although the K.sdi processors are extremely fast,
some delays due to internal processing are inevita-
ble. Each K.sdi consists of two 2901 microprocessors,
one to process data transfers, the other to process
SDI control messages. These processors share a
common 150-nanosecond (ns) time-sliced clock,
resulting in an effective cycle time of one 150-ns
instruction every 300 ns for each microprocessor.
The data received from the drive is not buftered
within the K.sdi. Therefore, that data must be
removed from the internal holding register and
placed on the data bus before the next data word
arrives, or else a data-late condition will occur. (The
data-late condition requires an error-recovery
procedure, necessitating a reread of the failing sec-
tor at the expense of another complete revolution
of the disk.)

To prevent the data-late condition from occur-
ring, the bandwidth semaphore previously men-
tioned is utilized as a latency semaphore. That
action effectively moves the semaphore from the
frequency domain into the time domain, although it
retains its representation of the peak transfer rate in
increments of 100Kbits per second. To derive the
actual value chosen for this semaphore, let us con-
sider two hypothetical drives, each chosen for a
transfer rate that corresponds to an integral number
of K.sdi clock cycles. If the first drive can transfer
data at a peak rate of 21.33Mbits per second and the
second at 26.67Mbits per second, the first will
transfer one complete 16-bit word every 750 ns, and
the second will transter the same word in 600 ns.

Since the current limit of the SDI bus is 22.5Mbits
per second, the fastest drive that can be supported
lies somewhere between the limits set by these two
drives. Between four and five K.sdi clock cycles are
therefore required to transfer a complete word. To
eliminate any possibility of a data-late condition,
the shorter of these two transfer times must be used,
requiring every fourth clock cycle to be available on
the data bus. Now, the data-bus interface in the
K.sdi cannot begin a new data-bus request in the
same cycle in which the previous request was

31

Storage Technology

granted. Therefore, the number of available cycles
must be reduced by one to account for this possibil-
ity, which changes the requirement for the fastest
drive to every third clock cycle being available for
data to be moved to and from the data bus. Since
drives that can transfer at least 21.33Mbits per sec-
ond will require every third bus cycle, the bus will
be 100 percent utilized (from a latency standpoint)
when three drives are transferring. The rates of
three of these drives total 64Mbits per second,
which translates into a bandwidth semaphore value
of 640. In essence, if drives faster than 21.33Mbits
per second are utilized, the bandwidth semaphore
must be less than 640.

Following this same line of reasoning, drives capa-
ble of transferring between 17.78 and 21.32Mbits
per second require 900 ns for every 16-bit word, or
every fourth bus cycle when all previously men-
tioned effects have been considered. Using four
drives at 17.78Mbits per second yields a peak rate of
71.1Mbits per second, or a bandwidth semaphore of
711 or less if drives faster than 17.78Mbits per
secondareallowed.

The current value of 661 (66.1Mbits per second)
will support drives with peak transfer rates greater
than 17.78Mbits per second and less than 21.33Mbits
per second, with a slight safety margin.

Disk Overbead

Although somewhat paradoxical, the actual transfer
of data by the disk drive is viewed as latency by
higher 1/O levels. Therefore, data transfer must be
considered as a source of delay. Once the request
has been issued to the drive, several sources of
latency become evident.

The first source is the seek time, or the time
required to position the disk head to the required
area on the disk. Although the movement itself is
unavoidable, the P.io attempts to ameliorate this
delay by reordering multiple requests to minimize
the sum of their delays. The K.sdi will also issue the
SDI command to initiate the seek and then look for
work to perform on another drive while waiting for
the seek to complete. In this manner, one K.sdi can
have up to four seek requests outstanding simulta-
neously on four different drives.

Once the disk head reaches the desired cylinder,
a second source of latency is introduced while the
disk surface rotates to bring the sector containing
the desired data under the head. With a rotational
speed of 3,600 RPM, this motion can take a signifi-
cant amount of time, potentially exceeding the time
required to move the heads across several cylinders.

The final source of latency introduced by the disk
is the actual transfer of data from the disk to the con-

troller. A finite amount of time is required for this
action, which could become significant for large
transfers.

Latency Optimizations

Since the sources of latency were known, the HSC
controller was designed to reduce the effects of
each. As mentioned earlier, including algorithms to
reduce the latency and increase the data rate may
also introduce an additional delay into the chain.
Therefore, the HSC design bypasses these optimiza-
tions if they contribute to the delay rather than
reduce it.

Dynamic Bandwidth Adjustment

Within the HSC controller, the K.sdi processors are
prioritized according to their requester numbers —
the lower the number, the lower the priority. The
priority arbitration will be invoked only when more
than one K.sdi attempts to access the bus simulta-
neously; control of the bus is awarded to the K.sdi
with the highest priority. If a situation arises in
which a number of low-speed drives are on high-
priority requesters, these drives may be selected,
thus delaying the transfer initiation on the high-
speed drives.

To prevent that situation, the P.io implements a
dynamic bandwidth-adjustment algorithm. This algo-
rithim, invoked whenever a new disk drive becomes
available to or disappears from the HSC controller,
loads the SDI transfer-speed parameter for each
drive. Obtained from the drive and made known to
K.sdi, this parameter is compared with the band-
width semaphore when a transfer is to be initiated,
as explained earlier. Upon executing, this algorithm
scans every disk on every K.sdi on the HSC device,
sequencing from the K.sdi with the lowest priority
to that with the highest. Within each K.sdi, the algo-
rithm compares the speed parameter for the drive in
question with the highest speed seen to date on any
previous K.sdi. The algorithm then assigns the higher
of these two values to the drive.

This algorithm promotes slower drives on a
higher priority requester when a faster drive has
been seen on a lower priority requester. By doing
that, the relatively slow drive on the higher priority
K.sdi has its SDI speed rating increased to that of the
fastest drive seen on any previous K. Thus, although
it may still initiate the transfer in preference to the
higher speed drive, the slower speed drive will
decrement the bandwidth semaphore as if it were
capable of transferring data at the same rate as the
fast drive. When multiple drives begin transferring
or they compete for the bandwidth semaphore to

32

No. 8 February 1989 Digital Technical Journal

Performance Aspects of the HSC Controller

initiate a transfer, this algorithm increases the weight
given to relatively slow drives on a higher priority
K.sdi. The lower priority drives then have a greater
chance to transfer.

Routing

As noted earlier, the P.ioc performs policy determi-
nation, and the individual K.sdi and K.ci processors
actually implement the policy. In keeping with this
philosophy, the concept of routing is an integral
part of the HSC design. With this concept, the indi-
vidual fragments containing the transfer informa-
tion also contain pointers to a memory structure
known as a route. This structure consists of several
items, among them the operation code and the loca-
tion of the next station on the route. Each K processor
is aware of these routing structures and can cause a
data fragment to flow from one station on the route
to the next without intervention by the P.io.

An example of this routing occurs when an MSCP
read request is received by the HSC controller. The
P.io will set up a fragment describing the transfer,
including a pointer to the route associated with a
read request, and send this fragment to the K.sdi for
processing. The K.sdi will note that a data buffer is
needed, allocate that data buffer, read the data on
the disk pointed to by the fragment into that buffer,
and then forward the fragment to the next station on
the route. For a read command, the next station will
be the K.ci; the opcode of that station will instruct
the K.ci to send the data contained in the attached
buffer to the host. Once the data has been sent, the
station code will instruct the K.ci to return the data
buffer to the pool of free data buffers and send an
end message to the hostto complete the transfer.

The important aspect of this scenario is that once
the initial MSCP verification and fragment set-up
have been completed by the P.io, all work will be
handled by the individual K processors without P.io
intervention. The P.io is now free to process other
requests since the set-up by the P.io occupies only a
small fraction of the total time required for the
transfer. This feature allows the HSC design to attain
high data and requestrates.

Rotational Position Sensing

The work request that the P.io sends to the K.sdi for
processing is contained in a disk rotational access
table (DRAT). A DRAT is restricted to a single group
on the disk surface and may contain multiple dis-
contiguous transfer fragments. To reduce the time
spent waiting for disk rotation, the K.sdi does not
look in a DRAT for a fragment and then wait for the
disk surface to rotate to that position. Instead, the
K.sdi monitors the current position of the disk sur-

BLOCK 9

BLOCK 8 READ SECOND

<—— READ FIRST
<——READ

THIRD
‘ -«+— READ LAST BLOCK 1
ROTATION
DISK
HEAD BLOCK 2

Figure 3 Request Fragmentation

face relative to the disk head, then looks into the
DRAT to see if any corresponding work requests
exist. If the DRAT contains more than one transfer
fragment, this technique will allow the transfer to
begin as soon as any data is accessible.

Fragmentation

More than one fragment must be contained in a DRAT
to fully realize the benefits of fragmentation.
Although the HSC controller clearly cannot manu-
facture 1/0 requests to fill a void, it can decompose
one contiguous host request spanning multiple
sectors into several distinct fragments. Since this
decomposition takes a certain amount of time (con-
tributing to ¢.), the HSC controller will not decom-
pose a request less than eight sectors long. If the
request exceeds eight sectors, the P.io will create a
fragment four sectors long, reduce the original
request by four sectors, and then check this remain-
der. If the remainder is greater than eight sectors,
this decomposition will continue until the remain-
ing transfer fragment has been reduced to eight or
fewer sectors. At this point, all fragments will be
placed in a DRAT and issued to the K.sdi for transfer.
Since the K.sdi can begin the transfer whenever
the disk head passes over a transfer fragment, trans-
fers could begin earlier than would otherwise be
possible. Figure 3 shows the request fragmentation.

As an example of this decomposition, consider a
transfer request for 57 blocks. On an RA82 disk
(having 58 sectors and 57 logical blocks per track),
the rotational position of the head when the request
is received is probabilistic. That is, the odds are
only I in 58 that the head is positioned at the begin-
ning of the transfer. With fragmentation, however,
the original request will be subdivided into 14 indi-
vidual fragments: 13 with four sectors, and one with
five. With this arrangement, there are now 14 possi-
ble places for the transfer to begin, increasing the

Digital Technical Journal No.8 February 1989

33

Storage Technology

odds to 14 in 58. Of greater importancc is the actual
latency reduction obtained by this method.

In the nonfragmented case, thc average time to
the beginning of the one and only fragment is onc-
halt the rotation time, or 8.3 milliseconds. With
fragmentation, the average time will be slightly
more than one-halt the smallest fragment (due to
the presence ot the five-sector fragment), or 0.585
milliseconds. In both cases the transfer time will be
the time to send 57 sectors, or about 16.3 millisec-
onds. The total time to complete the request will
thercfore be 24.6 milliseconds without fragmenta-
tion. but only 16.9 milliseconds with fragmentation,
a reduction of over 30 percent.

Request Merging

‘The benetfits of fragmentation increase in direct pro-
portion to the number of fragments contained in a
DRAT. The DRAT structure contains no host-specific
information but is concerned only with transferring
data from disk to buffers within the HSC controller
‘he MSCP server can combine into one DRAT the
transfer requests from different hosts for the same
group on the disk. Increasing the number of frag-
ments will allow the previously mentioned optimi-
zations to come into play. As the individual fragment
requests complete and as the butters are sent to the
K.ci by the K.sdi, the K.ci will obtain the host infor-
mation associated with each specific fragment and
send the data to the correct host.

Of course, there is no guarantee that a specific
application running on a host will send multiple 1/0
rcquests to the same disk area simultaneously.
‘Therc is a high probability, however, that more than
one outstanding request to the same area on an indi-
vidual disk will exist.” A typical vAXcluster system
contains many hosts, each of which runs numerous
applications and system programs. Therefore, the
probability is high that requests can be merged into
one DRAT

Work Queue Depth

As explained earlier. the K.sdi begins work only
when a DRAT appears on its input work queue and
places the DRAT back on an input queuc of the MSCP
server only when processing cnds. The issue of when
to queue a DRAT to the work queue of the K.sdi for
processing constitutes yet another optimization
opportunity for the HSC controller. At first glance, it
appears best to construct a DRAT, fill it with frag-
ments, and send it to the K.sdi whenever work
requests arrive from the host. Further examination
reveals that this procedure is not always optimum.
When the first host request arrives for an idle
disk. the MSCP server within the P.io will construct
the DRAT and send it to the K.sdi for action. The

34

K.sdi will then notity the server of transter comple-
tion by returning the DRAT. The time for the actual
transfer consists of .. and ty;. Although that time
will vary depending on the specific transfer parame-
ters, it will typically be many milliseconds. If a sec-
ond host request arrives for the same disk while the
K.sdi is still processing the first DRAT, a second
DRAT will be constructed and sent to the K.sdi. If a
third request arrives while there are still two DRATS
outstanding, however, it will be deferred by placing
it in an internal list within the HSC controller. By
deferring host requests when more than one DRAT is
outstanding, the MSCP server may have the opportu-
nity to merge multiple host requests into one DRAT.
That action increases the benefits obtained through
fragmentation.

When work has completed on the first DRAT, no
delays will be introduced due to the K.sdi waiting
for work since a second DRAT is immediately avail-
able for the K sdi to process. The K.sdi will send the
first DRAT to the P.io, signaling process complction.
The MSCP scrver in the P.io will now construct a
third DRAT from the requests placed in the deferred
list and send this DRAT to the work queue of the
K.sdi for action. Since the K.sdi is currently busy
processing the second DRAT. the third DRAT will
arrive in time to prevent the K.sdi from waiting for
work, causing the cycle to repeat. In this case. how-
ever. there is a possibility that more than one host
request has arrived for the same disk area. 1f these
requests were placed in the same DRAT, the previ-
ously mentioned latency reductions will occur. If
only one host request has arrived, no penalty will be
incurred, although no benefits will be obtained by
multiple host requests either.

Seek Ordering

Since the f.. portion of a transfer usually exceeds
the other time coniponents by a considerable amount.
the HSC design contains two algorithms that mini-
mize the time spent moving the disk heads The
algorithms rcorder the input request stream into a
sequence that reduces the distance the heads must
travel over the disk surtace. Because more than one
request must be outstanding (from one or more
hosts) for this reordering to occur, the internal list
of deferred requests is used to determine which one
to service next.

As cach DRAT is constructed and sent to the K.sdi
for processing, the P.io will update an internal vari-
able associated with cach disk that indicates the
current head position. (This variable shows the
head position upon completion of the last DRAT,
which docs not necessarily correspond to the cur-
rent hcad position.) When new host requests arrive
and deferral is necessary. these requests are placed

No. 8 February 1989 Digital Technical Journal

Performance Aspects of the HSC Controller

in the internal holding list, which is maintained in
ascending cylinder sequence.

When a DRAT completes, the first algorithm in the
P.io will search the internal holding list for the
request with the next higher cylinder number than
that indicated by the current head-position variable.
That search causes the disk head to move from low
to high cylinder numbers. If the deferred list has no
requests with higher numbers, the direction will be
set to scan downwards and the next lower cylinder
number will be used. Once the list has been
exhausted in the downwards direction, the direc-
tion will be set to up and the process repeated.

This algorithm sequence is analogous to an eleva-
tor moving from the lowest floor where a button has
been pushed to the highest floor where a button has
been pushed, then back to the lowest floor, stop-
ping at each floor where a button has been pushed.
Each disk cylinder is guaranteed to be serviced by
proceeding in this fashion. Moreover, requests con-
tinually arriving for a specific cylinder will not lock
out other, more distant cylinders, since the scan
immediately moves on to the next cylinder once one
has been serviced.

As the number of outstanding requests mounts,
this algorithm may add latency to some requests.
Returning to the elevator analogy, consider a
request for service made on the second floor of a
ten-story building when the elevator is at the fifth
floor and rising. It is reasonable to expect the eleva-
tor to stop at the sixth through tenth floors on the
way up. If it also stops for requests on the ninth
through third floors on the way down, however, the
second-floor request will wait an extremely long
time. Translating this elevator analogy to the actual
disk case, the latency of an individual request (sec-
ond floor) has been sacrificed to ensure a high
request rate (ninth through third floors). Although
clearly a goal of any high-performance controller,
an increased request rate is of questionable value if
latency is traded off to attain it.

For this reason, the HSC design invokes a second
algorithm when the number of outstanding requests
exceeds seven. In that case, the upward scan pro-
ceeds as before but will go directly to the lowest
cylinder when there are no more higher cylinders.
Using our analogy. the elevator would proceed
directly to the lowest floor once the highest floor
had been reached. Although this algorithm reduces
the overall request rate somewhat, it reduces the
maximum latency figures even more. Thus a reason-
able balance is achieved berween request rate and
latency.

More specifically, a request arriving while the
first algorithm is in effect may have to wait for 2¢
cylinders of time, in which c is the total number of

ELEVATOR
12 ¢C

SCAN

12 C

Figure 4 Seek Reordering Algorithms

cylinders. With the second algorithm in effect, how-
ever, the maximum waiting time decreases to c, a
potential reduction of 50 percent in individual
request latency. This second algorithm is known as
the scan algorithm because it effectively scans the
disk surface from low to high cylinders, then drops
back to low again and repeats the scan.

These two algorithms are illustrated in Figure 4.
The elevator algorithm smoothly transitions from
low to high cylinder numbers, then smoothly transi-
tions from high back to low. The scan algorithm, on
the other hand, smoothly transitions from low to
high, then abruptly moves to the lowest cylinder
and begins its upwards scan again.

The increases in the throughput rate for requests
are depicted in Figure 5. This curve was generated
by a host program that made single-block requests
distributed randomly over the entire disk surface.
The vertical axis represents the number of requests
per second being processed, which is limited by the
mechanical time to physically move the disk heads.
The horizontal axis represents the number of requests
that the host has outstanding at any one time.

As shown, an increase in request rate occurs when
the number of requests outstanding from the host
increases from one to two. This improvement is due
to the fact that the MSCP server will place the second
request on the K.sdi work queue, allowing the K.sdi
to begin work immediately on the second request
after the first request completes. No improvement is
seen for three requests, but one is seen when four
requests are outstanding. When three requests are
outstanding, one request (the first DRAT) is being
serviced by the K.sdi, one (the second DRAT) is-wait-
ing for service, and only one is maintained in the
internal holding list. When a fourth request arrives,
it is placed in the internal holding area with the
third request, and the P.io may choose which of
these two internally held requests-to issue next,
allowing optimization to occur.

The request rate drops slightly when between
nine and ten requests are outstanding. At nine, one
request is being serviced by the K.sdi, one is in the

Digital Technical Journal No.8 February [989

35

Storage Technology

REQUESTS PER SECOND

60

50

40

30 ¢

20

10

1 1 Il 1 1 Il 1 1 1 | 1 1 1 1 1 1 1 1 |

0

T S W R
1.2 3 4 5 6

7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25
NUMBER OF OUTSTANDING REQUESTS

Figure 5 Effect of Seek Reordering on Request Rate

K.sdi work queue, and seven remain in the internal
holding list. When ten requests are outstanding, the
number of requests in the internal holding list
exceeds seven. In that case, the MSCP server will
switch from the first algorithm to the second (from
the elevator algorithm to the scan algorithm). As
shown, a slight drop in the overall request rate
occurs and the remainder of the curve shows a
slower rise since request latency is now given pref-
erence over request throughput.

Shadowing

Although primarily designed for high data reliability
and availability, shadowing also offers an additional
means to enhance I/O performance. Very little can
be done to reduce latency for write requests to a
shadow set since the data must be written to all
members. The HSC design does attempt to minimize
this delay by writing the data in parallel to all mem-
bers rather than writing it to each member sequen-
tially. Here, the time required for writing to a
shadow set is only slightly longer than writing to an
individual volume. Moreover, that time is far less
than the amount required if the individual members
of a shadow set were written serially.

Since a shadow set replicates data across multiple
spindles, the real potential for performance improve-
ment comes when read requests are directed to the
shadow set. Many different techniques may be uti-
lized to access data in a parallel fashion; however,
the t.. component tends to dominate the disk-
latency portion of the transfer. Using the same reason-
ing that advocates seek reordering, we can conclude
that any mechanism that reduces disk access time
will have an impact on disk performance.

The shadowing process in an HSC controller takes
advantage of the data replication by sending an

incoming read request to what is thought to be the
least busy drive. Several decision-making steps are
required that function as follows:

1. If any drive is currently idle, send the request to
that drive.

2. If there is only one drive with only one request
outstanding to the K.sdi work queue, send the
request to that drive.

3. If one drive has a shorter deferred-request list
than the other drive(s), send the request to that
drive.

4. If one drive is closer to the target cylinder, send
the request to that drive.

5. If none of the above conditions exist, make a ran-
dom choice of which drive to send the request to.

Following these steps, incoming requests will tend
to be sent to the drive with the shortest amount of
work pending. Since f,. usually dominates the time
required for each work request, distributing the
work across multiple drives will reduce the latency
of the individual requests by a large amount.

Summary

The design of a high-performance controller involves
many complex issues, a large number of which
impact the various performance metrics. The design-
ers must address these issues when the system
design is initiated since the largest performance
improvements are seen with architectural and
algorithmic approaches. It is extremely difficult to
change either approach once the product design
has solidified.

36

No. 8 February 1989 Digital Tecbhnical Journal

Performance Aspects of the HSC Controller

The HSC controller utilizes both approaches to References
improve performance, as well as the more tradi-
tional approach of simply reducing the amount of
code that exists in the critical path. In addition to
designing the HSC product to achieve high request
and data rates, the reduction of request latency has
always been a major portion of the design. The result 2. K Bates, ‘‘I/O Workload Characterization,” Digital
of this design, begun over a decade ago, remains the Internal Publication TR-8741 (June 1987).
highest performing 1/O engine in Digital’s current
product offering, and probably in the industry.

1. R. lLary and R. Bean, “The Hierarchical Storage
Controller, A Tightly Coupled Microprocessor
as Storage Server,” Digital Technical jJournal
(February 1989, this issue): 8-24.

Digital Tecbnical Journal No. 8 February 1989 37

Larry W. Emlich
Herman D. Polich

VAXsimPLUS, A Fault
Manager Implementation

The VAXsimPLUS service tool is a fault manager developed for Digital Storage
Architecture (DSA) fixed media disk drives. The VAXsimPLUS tool uses four func-
tions — detect, diagnose, recover, and report — to manage system faults effec-
tively. As part of its recovery capability, VAXsimPLUS provides Autocopy — the
dynamic disk substitution of a drive in the DSA disk system. The VAXsimPLUS
Sfault manager was built from four proven entities: the VAXsim monitoring tool,
the SPEAR error log analysis tool, volume shadowing, and the VAX /VMS mail util-
ity. The implementation of the VAXsimPLUS fault manager bas resulted in the
increased availability of a major system component.

The VAXsimPLUS service tool was developed to mon-
itor and collect fault and event information on a
Digital VAXcluster system, a VAX system, or a DECnet
nerwork (the detect function). Through an on-board
knowledge-based system, the VAXsimPLUS tool uses
fault and event information to predict a system or
device fault (the diagnose function) and to initiate
repair operations (the recover function). After the
diagnosis of the fault, VAXsimPLUS informs desig-
nated individuals of the actions to be taken (the
report function).

For the Digital Storage Architecture (DSA) disk
system, VAXsimPLUS software provides not only
monitoring and analysis, but dynamic substirution
of a disk drive (Autocopy). The predictive capabil-
ity of VAXsimPLUS allows time for Autocopy to take
place before data availability is lost or downtime
occurs. The Autocopy process takes place on-line
and is transparent to the system manager of the sus-
pectdrive.

For the initial release, the knowledge-based sys-
tem would be designed for use with only DSA fixed-
media disk drives. We would thus first address the
requirements for a major system component and a
popular and widely used device. Once the tool is
established, VAXsimPLUS designers will broaden the
product so that it can be used with other system
components.

Fault Management

The VAXsimPLUS tool acts as an automatic fault
manager. It ensures that the fault does not impact
the manager of the system and that the fault is
efficiently removed. A prerequisite of fault man-
agement is fault tolerance. For if a system cannot

tolerate a fault, then downtime occurs immediately
and there is nothing to manage. Digital’s DSA disk
subsystems provide a level of fault tolerance and
reporting that supports the implementation of fault
management.

The efficient removal of a fault requires diagnosis
to find the failing replaceable (or adjustable) com-
ponent. Then, an impact evaluation is necessary to
determine when to make the repair. Finally, a notifi-
cation mechanism is needed to control how and
when an external repair agent becomes involved.

This procedure comprises the following four
functions:

1. Detect. A fault is detected by noticing a ditfer-
ence between expected and actual behavior. When
dealing with noise-prone media, this means
detecting an above-normal error rate.

2. Diagnose. The symptoms and related information
are examined to locate the fault.

3. Recover. Based on the diagnosis, the system is
recovered from the fault. Recovery may be auto-
matic or manual. It may be temporary (a work-
around) or permanent (repair).

4. Report. When manual recovery is required, all
the necessary information is included in an
English-language message and the appropriate
people are notified.

When we started the project, we had access to the
following sofrware entities:

L. VAXsim Service Tool. This product monitors a
VAXcluster system. It classifies error events and
applies thresholds against each class. If a thresh-

38

No. 8 February 1989 Digital Technical Journal

VAXSimPLUS, A Fault Manager Implementation

old is exceeded, a notice is sent by electronic
mail to the system manager.

The VAXsim tool also presents system managers
with a pictorial display of their systems. Summary
fault information is included to assist the system
manager in making decisions concerning system
integrity and storage management.

2. SPEAR Service Tool. This product analyzes error
logs. It extends beyond the simple VAXsim classi-
fication to correlate multiple events and identity
failing components.

3. Controller-based Shadowing. This feature of a
hierarchical storage controller (HSC) enables the
system manager to keep multiple copies of a disk
structure. A disk write operation, for example,
would be sent to each drive in the appropriate
shadow set. A disk read would receive data from
one of the drives in the set. 1f a drive fails, there is
no data loss or loss of availability

4. VAX/VMS Mail Utility. The mail facility of the VMS
operating system allows the system manager to
send electronic mail to any person on the network.

After some preliminary investigation, we decided
to build our fault manager from these four entities,
rather than start from scratch. We could use the
VAXsim tool for our detect function, components of
SPLAR for the diagnose function, shadowing for
recover, and mail for report. The use of these prod-
ucts would greatly reduce the amount of work nec-
essary to produce an automatic fault manager and
would make the tool available much sooner.

We were not able to use the SPEAR product as it
existed, but did utilize some of the generalized
code. Prior to the development of the VAXsimPLUS
product, SPEAR was incapable of analyzing error cor-
rection code (ECC) and standard disk interconnect
(SDI) events. Thus, we wrote the analysis code so
that it could be incorporated into both the SPEAR
and VAXsimPLUS tools.

In the balance of this paper, we describe how we
implemented the detect, diagnose, recover, and
report functions in the first release of VAXsimPLUS
software.

Detect Function

The VAXsimPLUS monitor accumulates new error
and event data and records that information into the
VAXsimPLUS monitor database. In a cluster environ-
ment, this database is shared by all host nodes.

The VAXsimPLUS monitor accumulates this infor-
mation by auaching itself to the VAX/VMSERRFMT
process using a “mailbox” interface. A mailbox is a
software data structure that is treated as a record-

oriented device for general interprocess communi-
cation. (Communication using a mailbox is similar
to other forms of device-independent 1/0. Senders
write to a mailbox; receivers read from that mail-
box.) The monitor processes the error log data as it
passes through ERRFMT. It immediately updates its
database with information that includes the device
type, device name, error code, and the time when
the error occurred. The monitor also examines the
contents of the ERROR FIAGS field of the error packet
to determine if the error was recovered or not. That
information is used to classity the error.

Classification of Errors

The VAXsimPLUS monitor classifies each error
according to the device and error type with similar
error types grouped together. The four error classes,
media, soft, hard, and informational, are described
as follows.

s The media error class is used to hold head-disk
assembly (HDA) related errors. Examples of
errors in this class are ECC errors, positioner
errors, and drive-detected servo errors.

= The soft error class holds non-HDA-related errors
that are recoverable through retries. Examples of
errors in this class include SDI Command Time-
out, Lost Receiver Ready, and drive-detected
communication errors.

® The hard error class holds the same errors as the
soft error class except that recovery was indi-
cated as unsuccessful by the ERROR FIAGS field of
the error log packet.

= The informational error class holds informational
events. An example of an event in this error class
is MSCP COMMANDABORTLED.

In VAXsim software, only ECC errors are included
in the media error class. In VAXsimPLUS software, we
group all HDA-related errors into the media error
class. Some HDA-related errors can also result from a
logic failure, and we can therefore classify them
either as soft or hard. For example, an RA81 Write-
and-Off-Track servo error could be caused by either
bad embedded servo data on the media or a servo
module failure to which the servo data is fed. By
grouping all HDA-related errors into the same error
class, we allow all media errors to be counted
together Thus media failures can be predicted earlier
because the fault manager is triggered sooner than if
different media errors were counted separately

Error Rate Thresholding

Lach time an error is added to the VAXsimPLUS moni-
tor database, the error rate is recalculated to deter-
mine if the fault manager process should be

Digital Technical Journal No. 8 February 1989

39

Storage Technology

activated. To describe how this works, we must first
define the following terminology.

The bistorical average error rate is the average
number of errors for a device over the previous
25 days. This average is calculated separately for
each error class. Abnormally high bursts of errors
caused by either a transient error occurrence or an
earlier failure, which was subsequently repaired,
are filtered from this number through a process
called clipping.

The current evaluation period is the count of
errors during the previous 24 hours.

The margin is a number assigned to each device
type per error class to allow for normal fluctuations
in the error count. The historical error rate and the
margin are added to determine the threshold.

Triggering the Fault Manager

The fault manager is initiated when an error class
enters into one of the two error states: warning or
alarm. As shown below, by adjusting the margin
value, the VAXsimPLUS monitor is more sensitive to
errors in the hard error class, whereas it is less sensi-
tive to errors in the information error class.

The following conditions cause an error class to
enter a warning or alarm error state.

s Warning error state, mediaand soft error classes —
The count of errors in the current evaluation
period equals the historical average error rate
plus the margin.

s Warning error state, hard error class — The count
of errors in the current evaluation period equals
the historical average error rate plus one half the
margin.

s Warning error state, informational error class —
The count of errors for the current evaluation
period equals the historical average error rate
plus twice the margin.

= Alarm error state, hard error class — The count of
errors for the current evaluation period equals
the historical average errorrate plus the margin.

When a device is in an error state, triggering of
the fault manager can reoccur if the number of
errors exceeds twice the error count at the previous
trigger. For example, if the number of errors in the
soft error class for a device is 8 when the warning
error state is entered, triggering will next occur
whenthe count reaches 17 or greater.

The default margin used in VAXsim software for
all devices was 15. For VAXsimPLUS, we lowered this
margin for the DSA fixed media disk drives to allow
faster triggering of the fault manager. Some of the
thresholds used by the fault manager for recogniz-

ing a failure mode are lower than 15; therefore, hav-
ing a lower threshold was also necessary to ensure
that triggering occurs before the errors become fre-
quent enough to warrant initiating recovery and
repair actions.

Diagnose Function

Collect

The diagnose function needs access to all available
symptoms for effective fault isolation. At the begin-
ning of the project, we were not certain of the best
way to obtain this information.

The VMS operating system logs all errors that hap-
pen anywhere in the system. Logging involves send-
ing each event message to a system error log file and
also to a mailbox, which is opened by the VAXsimPLUS
monitor process. (Mailbox is explained earlier in
this paper inthe section Detect Function.)

In a VAXcluster system, every cluster node has its
own VAXsimPLUS monitor mailbox and its own sepa-
rate error log. This method works well for internal
errors; but for shared controllers (HSC50 and HSC70),
it means that error reports for a shared device are
kept in multiple files, complicating the event corre-
lation piece of fault isolation.

Errors that happen during a system-manager-
invoked operation are reported to the node which
initiated the operation. Other errors — those detec-
ted by self-test — are broadcast to all cluster nodes.
In the former case, only one error log contains the
symptoms. In the latter case, all error logs receive a
copy of the report. VAXsimPLUS software is then
faced with the problem of trying to merge this data
without keeping duplicate information.

Originally, VAXsim kept all essential data in a sin-
gle cluster-wide database. This data was sufficient
for a gross “alert” (tell someone that something may
be wrong) but not enough fora complete diagnosis.

For the new diagnose function, we needed a com-
mon database; but we also required the additional
information that VAXsim had discarded. Further-
more, we needed to be able to recognize and elimi-
nate duplicate records from HSC controllers.

One alternative was to make the VAXsimPLUS mon-
itor process create a merged, complete error log.
This process takes more time at high priority and
uses more of the system’s disk space to hold the
additional (and redundant) file.

Another alternative was to make the VAXsimPLUS
monitor process retain more information in its data-
base so that a complete diagnosis could be per-
formed. This approach seemed optimal, but it
demanded major changes to the code and might
have weakened system performance.

40

No. 8 February 1989 Digital Technical Journal

VAXsimPLUS, A Fault Manager Implementation

We chose to make the diagnose function use sys-
tem error log files for input. We could then sched-
ule the process to run as a low-priority, background
job. Neither the VAXsimPLUS monitor nor the diag-
nose code would be drastically changed. The only
problem was that we needed to merge the error logs
to get all the information about shared disk drives.

To isolate this task, we wrote a separate program
to allow the system manager to specify a list of
input files and a single output file. The program
opened all the selected input files, merged them
chronologically, and wrote nonduplicate records to
the selected output file, which then became the
input file to the major diagnose process. To keep
irrelevant data out of the diagnosis, this process lim-
ited collection to the most recent seven days or the
time span since the last repair, whichever was more
current. We chose seven because we needed some-
thing greater than one for multiple event correla-
tion, but we also did not want obsolete or irrelevant
data. The thought was that if we were unable to
diagnose a problem with seven days worth of data,
then more data would be of no help.

Since duplicates could only be caused by an HSC
controller that sent messages for errors detected
outside the context of a command, we could identify
potential duplicates through the absence of a com-
mand reference number. Now thata potential dupli-
cate was identified, we needed a way to determine
whether or not we already knew about the event.

We decided on the following procedure. The first
record identified as a potential duplicate would
mark the logging node as the “master” for that disk
drive, based on our theory that this node would con-
tinue to receive these records. Any potential dupli-
cate that came from another node would be ignored.
Note that comparing all the record fields is time-
consuming and not necessarily accurate.

We needed one modification to the strategy. The
selected master for a disk drive might become
unavailable for a period of time and would therefore
not receive error messages from the controller. To
offset this, we added a timer. Instead of simply
rejecting any record from another node, the time
elapsed between the new record and the previous
record from that device was determined. If the time
was more than five minutes, the new reporting node
became the master for the disk drive in question.

Many tests have confirmed the validity of our
strategy. The first node to report an error is usually
the fastest or least busy and continues to be the first
node to report until it becomes unavailable. Since
the error report is broadcast to all nodes, there
should be no great difference in the time of the
report. Even if the node times are badly skewed, the

risk of losing information is low. The difference
between counting 30 errors rather than 29 errors
does not usually change a diagnosis.

We used a similar strategy to prevent the
VAXsimPLUS monitor from counting duplicates in its
database.

We changed the monitor code to use the VAXcluster
lock manager in the following way. Whenever a
potential duplicate appeared, the monitor process
would attempt to get the “token” for the drive. If
this token was available, the monitor logged the
event in the cluster-wide database and kept the
token, becoming the master for that drive. If the
token was unavailable, then the monitor would
know that another monitor held the token and
would simply ignore the event.

If the master for a drive became unavailable, it
would release the token. The next time any monitor
process asked for the token, it would be granted;
and the associated drive would receive a new master
logger.

Of course, a cluster-wide error logging system
would solve all these duplication problems; but the
cost of such a solution is often prohibitive. It is best
to keep high-priority jobs as simple as possible and
leave any complexity to background tasks.

Analyze

We examined the rules that had been developed for
Digital’s MASSBUS drives and decided to revise them
for use with the RaA-series drives. Since these rules
were written for removable media drives, we made
extensive changes to make them effective with the
DSA RA-series drives. The RA drives analyzed in
VAXsimPLUS V1.0 are primarily HDA-based and require
a troubleshooting approach different from the one
for removable media drives. RA drives are connected
by a serial interface versus a parallel interface for
MASSBUS drives. They also contain a great many more
internally detected error codes and diagnostics than
their MASSBUS predecessors.

Rules After listing all possible failure modes, we
began writing the rules. The items we considered
most important were the following:

s Which errors can be symptoms of each of the fail-
ure modes?

s In what pattern must these errors occur to indi-
cate a failure mode, i.e., should the errors be ran-
dom or occur all on the same head?

® Can multiple errors be indicated as a result of
one failure? For example, a drive-detected Write-
and-Off-Track error might also result in a con-
troller-detected Lost-Read/Write-Ready error.

Digital Technical Journal No.8 February 1989

41

Storage Technology

= What is the minimum number of errors needed to
have confidence that the correct failure mode is
being indicated?

We designed the teststoisolate a failure to the bad
field replaceable unit (FRU). We further designed
the tests to indicate what is wrong with that FRU by
assigning a theory number to each failure. The Digital
Customer Support Centers use the theory number to
rccommend the proper troubleshooting and repair
actions. The repair centers also use the theory num-
ber to assist them in determining the failing compo-
nents for intermittent failures.

‘I'ne development team recognized that some-
times devices fail too quickly for analysis to com-
plete recovery actions before the device fails solid
or data loss occurs. We also realized that for some
errors the partitioning is not adequate to provide
isolation to a single FRU. However, we felt these
problems could be overcome a majority of the time
Field test showed our goals in both cases were met
or exceeded.

We developed tests to check for the following
failure modes.

= SDI Path Failure — This test checks first for hard-

are- and then firmware-detected errors over the

SDI communications path from the controller to
the drive.

s Drive-Detected Lrror Test — This test analyzes all
non-media-related drive-detected errors.

s Head Matrix Failures — This test checks for a bad
head matrix chip within the preamp modulc.
Lach head matrix chip is associated with either
three or fourread/write heads

® Bad Surface — This test checks for most errors
occurring on heads associated with one media
surface.

8 Bad Heads — This test searches for head failures

s Scratches — This test inspects for radial and cir-
cumterential scratches on both the data and
servo surfaces.

= Servo Logic/Head Failure — This test searches for
random servo-related failures.

m Bad Read Path — This test checks for failures in
the read path external to the HDA.

s Forced Error — In this test the error pattern is
such that a failure mode cannot be detected, but
at least one disk data block was revectored to a
replacement block with the forced error flag
The torced error tlag indicates that data loss may
have occurred.

Order of Failure Modes The analysis control pro-
cess runs through the tests until a test fails, and then
analysis ceases. The order in which the analysis tests
are run is important since multiple tests can fail on
the same error pattern. For example. the head
matrix test checks for errors on heads associated
with each head matrix circuit. If this test fails, the
failing head matrix circuit is indicated. One of the
later tests checks for bad heads. If the bad head test
was run prior to the head matrix test, multiple
heads might be identitied as bad and the incorrect
FRUI replaced Theretore the tests are run in a
sequence that prevents the reporting of erroneous
device failures.

Thresholds — Lach failure mode uses a threshold to
dctermine when to notify a system manager, Field
Scrvice, and Autocopy that a device is beginning to
tail "V'his threshold is not necessarily the same as the
number of errors needed to have confidence in the
accuracy of the failure mode. Our two main con-
cerns in selecting these thresholds were as follows:

1. It the threshold is too high, notification may not
occur early enough, resulting in lost data and
downtime.

2. If the threshold is too low, a transient error situa-
tion might result in unnecessary service cails

lailure modes that can result in data loss were
given two thresholds for notification: a higher thresh-
old was assigned when all errors are recoverable,
and a lower threshold was specified when at least
onc of the errors results in possible data loss. In this
way we prevented notification from occurring too
soon for transient error situations that may be cor-
rccted by automatic error recovery mechanisms
suchasBad Block Replacement

Recover Function

VAXsimPLUS software does not do error rccovery.
Howcver, the software can often provide a tempo-
rary repair (work-around) by automatically insert-
ing a spare disk drive when diagnosis determines
that another drive may be failing.

This recovery method uses the VMS/HSC shadow-
ing mechanism, the original intent of which was to
allow the system manager to maintain the same data
on multiple drives. If one drive failed, the data
could be found on another drive in the set.

All drives assigned to the same data set are
grouped together into a “shadow set.” Instead of
referring to a drive name. the operating system
refers to a shadow set name.

The system manager may mount a new drive into
an existing shadow set at any time. When this is

No. 8 February 1989 Digital Technical Journal

VAXsimPLUS, A Fault Manager Implementation

done, all data from the shadow set is copied onto the
new drive.

When data is written to the shadow set, it is sent
to all drives in the set. When data is read from the
shadow set, one drive is chosen (the one with heads
closest to the target block).

If an error is detected during the read, the good
data can be retrieved from another drive in the
shadow set. If the block in error is “replaced,” this
good data is moved to the replacement block as well.

Shadowing requires at least twice the storage
space to ensure redundancy. The VAXsimPLUS recov-
ery mechanism (Autocopy) offers a low-cost alter-
native by allocating one spare drive for many system
drives. Shadowing is started only when the diagnose
function of VAXsimPLUS determines that the drive is
about to fail.

When we considered the management of spares,
our first approach was to create a pool of spare
drives that would stay idle until needed. We would
make them members of a special shadow set so they
could not be used for anything else. When we
needed a spare, we would simply remove it from the
spare pool by dismounting it from the special
shadow set.

We found rwo problems with this approach:

1. If the spare drive remains idle for along period of
time, it may develop problems of its own. We
would need to periodically test the drives.

2. The spare drives would be idle and nonproduc-
tive unless and until another drive failed.

These problems led us to another solution: instead
of keeping spares in a separate pool, we would add
them to “default” shadow sets. This solution allows
the spares to be used for host /O while waiting for
a failure.

Following is the system set-up for VAXsimPLUS
recovery:

1. All candidates for recovery are mounted as single-
drive shadow sets. In other words, the drive is in
a shadow set all by itself. There will be no pro-
tection until a spare drive is mounted into the
same shadow set.

2. Spare drives are mounted into the shadow set of
one of the candidates for recovery.

After set-up, each disk drive is in one of the fol-
lowing categories:

1. Unprotected. The drive is not in a shadow set at
all. Some volumes contain read-only data and
programs that can be easily restored from backup
tapes or other media.

2. Potentially protected. The drive is in a single-
member shadow set. If VAXsimPLUS diagnosis
detects an impending failure, it attempts to
mount a spare drive into the shadow set. If the
failure is sudden or there are no available spare
drives, this drive would be unprotected. Option-
ally, a drive can be designated potentially pro-
tected if the data on it is frequently backed up or
seldom modified.

3. Potentially unprotected. The drive is one mem-
ber of a two-member shadow set, but the other
member is also a spare drive which may be
moved to a failing drive at any time (unless this
drive fails first) A drive that is read often for per-
formance reasons or one that merits extra protec-
tion from sudden catastrophic failure can be
placed in this category.

BN

. Fully protected. The drive is one member of a
permanent multiple-member shadow set. This
set-up is recommended for maximum protection
of data but at the cost of using redundant drives.

5. Spare. This drive is always a member of a two-
member shadow set. When there are no failing
drives, the spare is attached to a potentially
unprotected drive. If the VAXsimPLUS recovery
process chooses this drive to support a failing
drive, it is dismounted and remounted into the
failing drive’s shadow set if the failing drive is in
the potentially protected category. The spare
remains in this shadow set until the failing drive
is repaired. It then returns to its default position as
a member of a potentially unprotected shadow set.

The location of spare drives must be known to
facilitate system reloads. The VAXsimPLUS database
keeps track of spares and candidates for recovery,
and a new command has replaced the VMS MOUNT
command for spare drives. The ASSIGN DRIVES
option of the VAXsimPLUS command is executed
within the system’s startup file so that spares are
mounted into the proper shadow sets on a system
reboot.

When the diagnose function of VAXsimPLUS deter-
mines that a drive is beginning to have problems, it
tells the recover function to locate a spare (if the
failure mode calls for this kind of recovery).

The recover function looks in its database for a
spare drive of the same type that is not supporting
another faulty drive. The spare drive must be physi-
cally attached to the same HSC controller as the fail-
ingdrive because the shadowing feature is provided
by the controller.

If a free spare is found, it is taken out of the
default shadow set and mounted into the failing

Digital Technical Journal No. 8 February 1989

43

Storage Technology

drive’s shadow set. This action invokes an automatic
copy operation of the data from the failing drive to
the spare. The spare then continues to shadow the
failing disk.

Now we were faced with the question of what to
do with the failing drive after the spare has become a
member of the shadow set. Should it be dismounted
and left down until the fault is removed? We
decided to allow the system manager to resolve this
problem. The report function (explained in the next
section) would tell the system manager about the
fault and about the use of the spare. If the system
manager so desires, he or she may dismount the fail-
ing drive with another VAXsimPLUS command. This
special dismount marks the drive in the database so
that it does not remount during a system startup.

We could have provided an automatic dismount of
the failing drive, but we could not be sure this
would always be the best solution.

In a cluster, nodes may be coming up and going
down all the time. All nodes must therefore know
where each spare should be mounted and which
drives have been dismounted because of failures (so
they are not remounted). Each node must also know
which drives are candidates for recovery.

All of this information is kept in a database which
is accessible from all nodes in the cluster. The VAX-
cluster lock manager prevents nodes from accessing
the database before an operation is complete.
Assigning a spare, for example, may take several
commands. Another node, which may be restarting,
must not make initial assignments until this spare
assignment operation is complete. For this reason,
every node must acquire the single recover resource
before it assigns candidates or spares.

When a failing drive has been repaired, the sys-
tem manager mounts it and observes its behavior for
a period of time before releasing the spare. If the
repair seems sound, the system manager manually
removes the spare with another VAXsimPLUS com-
mand, allowing it toreturn to its default position.

Whenever a spare is placed into the shadow set of
a failing drive or back to its default drive, it must
receive a copy of the other drive’s data. This opera-
tion may take several minutes. While it is copying
data, the spare cannot be made to do anything else.
If another drive begins to fail while the spare is
returning to its default position, the recovery must
wait (if this is the only available spare) until the
copy is finished.

This recovery mechanism is not without draw-
backs. It simply fills in the gap between complete
redundancy and manual backup procedures. The
mechanism cannot be used for all failures. It will
not help when the failure does not give sufficient

warning. And it demands that drives are fixed
quickly enough to ensure that a spare is always
available.

We believe, however, that the mechanism is espe-
cially useful in unattended environments where the
criticaliry of data permits something less than total
redundancy.

Report Function

After the diagnose function has determined that a
drive is failing and the recover function has
attempted to use a spare (when applicable), the
report function notifies the system manager. The sys-
tem manager can then schedule a permanent repair.

It is important to avoid “over-reporting.” Once a
drive begins to fail, it may trigger the monitor
threshold several times. While automatic rediagno-
sis is recommended occasionally, it is not always
necessary to repeat notification. In fact, if the diag-
nosis does not change, there will be no further
reports until 24 hours after the initial report. The
reasoning here is that Field Service is probably on
the way to fix the problem. If the thresholds are still
being exceeded after a full day, a reminder may
need to be sent.

If a spare drive has not been assigned to the fail-
ing drive, there are other cases when a secondary
notification may be sent.

If a new diagnosis shows that a previously recov-
erable fault is now causing data loss, another report
is sent, regardless of when the initial report was
sent. The worsening condition warrants a reminder.

Also, a new notification is sent if a new diagnosis
results from a change of information from the fail-
ure mode. For example, an initial diagnosis might
indicate a bad head. As the disk continues to be
used, it becomes apparent that the bad head was
really head-to-disk interference and the HDA has
become contaminated resulting in a different fail-
ure syndrome.

These secondary notifications are not sent if the
recover function has assigned a spare to the failing
drive. If the drive is enjoying temporary redun-
dancy, the chances are better of surviving until the
Field Service engineer arrives to make a permanent
repair. Reminders should only be necessary when
there is no redundancy.

All notices are sent by the mail facility of VMS to
one of three mailing lists:

1. Customer list. These notices alert the system
manager to the fault and state whether or not
automatic recovery was started. They also
include information to use when calling Field
Service.

44

No. 8 February 1989 Digital Tecbnical Jowrnal

VAXsimPLUS, A Fault Manager Implementation

2. Field Service list. These notices give Field Service
personnel detailed information about the fault.

3. Monitor list. These notices concern devices that
are not fully supported by VAXsimPLUS software.

When calling Field Service, the system manager
must report the event code that is part of the mailed
message. Field Service personnel can then feed this
code into an information base and retrieve a com-
plete repair plan for the fault. This plan includes
the suspect parts and any other information the
repair agent may need.

The repair agent may also read the VAXsimPLUS
mail message sent to the Field Service mailing list to
obtain the facts about the event code.

We established a monitor list to send alerts for
devices that were not yet fully supported by
VAXsimPLUS. In other words, we needed to carry on
VAXsim support without the “PLUS” for all devices.

A message is sent to the monitor list when a
nondisk device reports a large number of errors. In
these cases, there is little or no diagnosis. The mes-
sage is just a warning that some unexpected activity
is taking place. When VAXsimPLUS software is able
to diagnose everything on the system, this mailing
list may be eliminated.

Members of a mailing list may be anywhere in the
network. For this reason, VAXsimPLUS makes several
attempts to send the mail (in case the addressee’s
node is temporarily unavailable).

The report function is the last stage of automatic
fault management before a person is involved. Once
the fault has been placed in human hands,
VAXsimPLUS must wait for the service engineer to
make the repair, log it, and release the spare (if one
was in use).

If the repair attempt fails to solve the problem,
VAXsimPLUS software may not give the same diagno-
sis because no information prior to the last repair
canbe factored into subsequent diagnoses.

Previous data (prior to the repair attempt) is not
used in analysis because its inclusion would mix
data from two unrelated faults in the analysis. The
problem with this approach occurs when a repair
attempt is unsuccessful and data that is related to the
fault is rejected. However, we chose this approach
because we were faced with the following choices:

1. Disregard repairs. This proposal could result in
bad multiple-event correlation if a new fault
were inserted or developed after a good repair.

2. Factor the repair into subsequent diagnoses. This
solution is ideal, but we were unable to develop
such a mechanism in a reasonable time-frame.

3. Assume the repair was successful and count noth-
ing prior to it in any diagnosis. This method is
easy and reduces the chance of bad diagnosis
from multiple faults.

In a future release, we hope to move to option 2.
Until then, we risk seeing incomplete diagnoses
when an incorrect repair is made.

Summary

The VAXsimPLUS software tool was developed as a
system fault manager to provide predictive capabili-
ties for all system elements and an increase in system
availability. Such an approach requires cooperation
from the device level, through the subsystem level
and the system level in fault coverage, error detec-
tion, diagnosis, and recovery. These layers then feed
into the fault management system to allow fault iso-
lation and repair. The outcome of this approach
is the ability to recover from faults at the lowest
level possible.

Acknowledgments

The people who contributed their expertise to the
success of the VAXsimPLUS software are too numer-
ous to list here. However, the authors would like to
thank the following individuals for their develop-
ment work on the VAXsimPLUS product: Debbie
Hoeppner, Carl Grundstrom, Roger Sulzbach, Gary
Lengyel, Robert Winant, Jim Nicholson, and Bruce
Kelsey. We would like to particularly acknowledge
the pioneering work done by Bruce Moore on the
monitoring and display features. Additional thanks
to Keith Norman and Dick Stevenson for their sup-
port in the writing of this paper.

Digital Tecbnical Journal No.8 February 1989

45

Barbara A. Crane

Disk Drive Tecbhnology
Improvements in the RA90

The RA90 product represents significant advances in the technology used in
Digital’s disk drives. To ensure high storage capacity, engineers balanced the
interdependent factors of size and number of disks and beads, rotational
speed, and bit and areal data densities. As a result, RA90 formatted capacity is
1,216 megabytes. Improvements in drive speed were made by reducing seek time
to an average 18.5 milliseconds. To increase reliability, engineers established
performance criteria for key subassemblies. They then designed components to
meet these standards by reducing the effects of beat, contamination, and wear.
The RA90 disk drive is also designed to be easily installed and to operate in inter-
national environments. An appendix to this paper presents some fundamental
concepts of magnetic recording technology.

An industry-leadership product, the RA90 disk drive
stores 1.216 gigabytes (GB) in its formatted space
and occupies one-half of a 10Y2-inch by 19-inch rack
slot. Access times average about 18 milliseconds (ms),
and reliability of the drive is among the highest in
the industry

Requirements for a Storage Device

As computer systems become ever more widely used
and applications more sophisticated and interre-
lated, the need for data storage devices increases.
The ideal storage device would be inexpensive, fast.
space-efficient, easy to use and install, gracefully
integrated into the host system environment, and
reliable relative to the current state-of-the-art. Of
the three types of technology available today for
storing data, none satisfies all of these goals to the
same degree.

Se miconductor memory technology is our fastest
storage and retrieval technology, but also the most
expensive. Because of its speed, semiconductor
memory is central to the operation of the CPU; we
therefore think of it as “primary” storage. Tape and
optical technologies are very cost-effective for large
volumes of information, but relatively slow; they are
usually considered “tertiary” storage.

Magnetic disk products are intermediate in speed
and cost, and are available in relatively large capac-
ity units; this technology constitutes “secondary”
storage. Magnetic recording devices have been used
for information storage in computer systems since

the 1940s and are anticipated to continue in use for
many years. The basic operating principles of these
devices have remained constant over the years,
although with tremendous improvements in imple-
mentation.

The RA90 team set out to make significant
improvements in Digital’s disk drives relative to the
criteria forsecondary storage products:

= High speed

= large capacity

= Reliability and data integrity

= Simple system interface and integration
= Competitive cost

To accomplish these improvements, we went
beyond the traditional product development method
of design first, purchase parts second, and finally
manufacture. We integrated the design process, sup-
plier capabilities and expertise, and manufactur-
ing requirements and processes to achieve a higher
performance, better quality product. The engineer-
ing and manufacturing teams worked closely together
to design the product both for performance and for
manufacturability.

We frame the following discussions around four of
the criteria for secondary storage listed above —
capacity, speed, reliability, and interface and inte-
gration. In each section, we describe aspects of the
development process and the design decisions made

46

No.8 February 1989 Digital Technical Journal

by the RA90 team to meet the stated criteria. An
appendix at the end of this paper presents an
overview of the basic considerations in the technol-
ogy and design of a magnetic disk drive

Capacity

For any storage product, it is desirable to store as
much information as possible in the smallest space.
This section looks at the interdependent factors that
determine effective space utilization and storage
capacity. In general, the key product decisions are
made relative to the size and number of the disks
and heads, and the bit and data density.

Among the several factors that influence the
selection of disk size and number is the space allot-
ted for the drive itself. Digital’s disk drives are built
to fit into a standard rack slot 10%2-inches high by
19-inches wide by 30-inches deep. One or more
disk drives should use this space as efficiently as
possible. If 14-inch diameter disks were selected,
then a full slot would be used, as with the RA81 and
RA82 drives. If an 8-inch or 9-inch diameter disk
were selected, one-half of a slot would be used. 1fa
St-inch disk were selected, up to eight standard-
format drives would fit into a full slot. Cost also has
a bearing on this decision. As the number of drives
increases, so does cost per MB, because positioner
hardware and electrical systems must be duplicated
for each drive.

Rotational speed and bit density also ultimately
influence the choice of disk size. Together these fac-
tors affect transfer rate and consequently the disk
capacity. The rotational speed of disks determines
the rotational latency component of access time.
Many drives today rotate in the range of 3600 rpm,
resulting in an 8.33 ms average rotational latency
(time required for one-half revolution). The transfer
rate is determined by the velocity at which the disk
moves past the head and by bit density along a track.
For a given rotational speed and bit density, large
diameter disks have a higher transfer rate than small
diameter disks. The second factor, higher bit den-
sity, also results in faster transfer rates. Faster trans-
fer rates are desirable, up to the limit for standard
interconnects to the controller and CPU, such as
Digital’s Standard Disk Interconnect, or SDI.

To provide larger capacity and more cost-effective
storage, we increased bit density. Moreover, we
wanted to keep the rotational speed high to mini-
mize rotational latency time. However, the combi-
nation of high rotational speed and increased bit
density can increase the transfer rate beyond inter-
connect capabilities. By changing to smaller diame-
ter disks, we ensured the drive transfer rate
remained within the capabilities of existing inter-

Disk Drive Technology Improvements in the RA90

connects and retained a relatively low rotational
latency time of 8.33 ms. Later in this section we dis-
cuss the details of our decisions on areal density.

The RA90 drive was conceived as a half-rack-size
disk drive in which two RA90 drives fit side by side
in a standard rack. This decision determined the
physical parameters. Within the confines of the half-
rack space, we needed to house the head-disk
assembly (HDA), electronic control module, power
supply, cooling unit, and operator control panel.

We built cardboard prototypes to evaluate differ-
ent configurations. Working within the half-rack
size constraints, we considered disk size variations of
approximately 8 or 9 inches (200 or 230 millime-
ters [mm]) outside diameter and 2%2 or 4 inches
(635 or 100 mm) inner diameter.' Disk sizes were
evaluated to assess the available physical space; the
size would allow for clamping at the inner edge and
for surface irregularities and chamfer at the outer
edge. The ratio of inner to outer recording radii
helped to determine the variation of pulse width,
amplitude level, and overwrite level which the
head, disk, and electronics must tolerate. Arm and
positioner configurations were sketched and modeled
toassess seek distance and power requirements.

Based on the information these investigations
provided, we chose disks with approximately
9.055 inches (230 mm) outer diameter and approx-
imately 3.937 inches (100 mm) inner diameter,
and arms mounted to a rotary positioner. Of the
2.5 inches of radial distance available, we use
approximately 1.5-inches distance for recording
data; the remaining 1.0 inch is used for clamping,
landing zones, and flexure and wire routing. Inside
the HDA we could fit seven disks and eight head-
arms. See Figure 1.

As shown in Figure 2, the outer head-arms have
only one recording head; the middle head-arms have
two heads, which record and read on adjacent disks.

The HDA is mounted to a carrier. The HDA and its
carrierare oriented so that disks are vertical in oper-
ation. The modules are mounted vertically, on a car-
rier, next to the HDA; a copper-plated divider
between the HDA and modules minimizes extrane-
ous signal transmission. The blower, power supply,
and operator control panel are then mounted on the
exterior of the chassis, asshown in Figure 3.

Given the size and number of components that
can be shoehorned into a cabinet, the other variable
affecting capacity is areal data density on the disks.
Areal data density is the product of circumferential
bit density and radial track density. We originally
targeted the RA90 drive to provide at least 900MB of
formatted capacity. However, because of antici-
pated competition from other companies, we raised

Digital Technical Journal No. 8 February 1989

47

Storage Technology

Figure 1 Exploded View of RA90 HDA Showing
Orientation of Key Components

the capacity to 1,200MB, or 1.2GB. Because the
physical rack size was unchanged, this change
meant an increase in areal density from approxi-
mately 30 megabits (Mb) per square inch to about
40Mb per square inch.

Our advanced development group, using various
combinations of bit and track density, had demon-
strated areal densities up to and beyond 40Mb per
square inch. We had to choose specific track and

bit densities that would result in the desired net
areal density.
Radial track density is limited by several factors:

= Repetitive and nonrepetitive runout of the spin-
dle bearing

s Mode-frequency structural responses of the me-
chanical subsystem

= Signal level required by the read/write channel
s Control of the recording head tolerances

Based on demonstrations and prototypes, evaluation
of signal amplitudes of prototype thin-film record-
ing heads and disks, and assessment of position
error, we believed we could achieve 1,750 tracks
perinch in the drive.

Circumferential bit density is limited by

= Signal level and signal-to-noise ratio

= Precision of pulse location within the bit-cell
timing window and intersymbol interference

s Transfer rate capabilities of the drive-controller-
CPU interconnect

The signal level is determined primarily by the head
design, disk and head materials, and flying height.
The read/write channel electronics manipulate the
signal pulses to improve bit-cell precision. Basedon
these constraints, we selected a data density of
22,839 bits per inch, for an overall recording den-
sity of approximately 40Mb per square inch.

Given this density, the number of disks, and Digital’s
standard disk format, the RA90 provides 1,216MB of
formartted capacity. (Digital’s disk format assures very
high data integrity by using some of the raw capac-
ity for multiple copies of headers, error-correction
coding, etc.) In addition, Digital Storage Architecture
(DSA) requires spare and diagnostic capacity. Unfor-
matted capacity, for reference only, is 1,607MB.
Achievement of these densities was dependent on
thin-film head and disk technologies developed by
teams in Massac husetts, Colorado, and Arizona.

Thin-film heads are manufactured by processes
similar to those used to manufacture semiconductor
chips; recording elements are masked and
deposited on a thick wafer, or puck. The puck is
then diced into individual units, each of which
becomes a recording head. Thin-film head struc-
tures provide accuracy of track dimensions neces-
sary for 1,750 tracks per inch, gap dimensions
required for clear pulses at almost 23,000 bits per
inch, and efficient coil and pole structures for signal
amplitude. (See Figure 4.)

48

No. 8 February 1989 Digital Tecbnical Journal

Disk Drive Technology Improvements in the RA90

Figure 2 HDA Showing One Head on Each Outer Arm, Two Heads on Inner Arms Facing Opposing Disks

OCP (OPERATOR CONTROL PANEL)

BLOWER

POWER SUPPLY

CHASSIS

MODULE SET

Figure 3 Expanded View of RA90 Drive, Shouing Major Components

Thin-film disks are manufacrured by plating or
sputtering sublayers, a recording layer, and a protec-
tive layer on an aluminum substrate. These pro-
cesses produce a wear-resistant disk which can be
written and read back with good signal-to-noise
ratios at this density. The disks have relatively few
defects that require revectoring during initial for-
mat at the factory.

Digital Technical Journal No. 8 [February 1989

Speed

Based on our mode!l of data request and response
times in systems environments, we knew that a key
parameter to improving system performance was
access time of disk drives. Access time is composed of
seek/settling time and rotational latency time. Rota-
tional latency time, 8.33 ms, was determined by
transfer rate, disk diameter, bit density and rotational

49

Storage Technology

(ol alalalolalald o dal o1t ol gl
latalal latalalalalulalalal
(aldalal el ol ol alalalatal J
(ol alal T alal Y alalagladaldsl
lalalalalal Talalal olalald,l
TYFPSATISFGIUSATESFE TY FR T TS
FPSSFTTITITITITE A TETE TR U
talalal lal R N Lol ¥ % ol,}
(e dalalalalal oYl ol o0 o X ot .]

PUCK (WAFER)

P

THICKNESS
OF PUCK
DEVICES

L C_
T C
SLIDER “—ﬁé&@j_— @

Figure 4 Summary of Thin-film Head Manufacturing Process Steps

velocity requirements, as described earlier in the
section Capacity. Our target for average seek/set-
tling time was about 18 ms.

Seek/settling time is the time required to move
head-arm assemblies across disks and lock in the
servo system to verify the on-track positioning. Aver-
age seek time is defined as the average of the times
required for all possible track-to-track seek combi-
nations. The average time is approximately equal to
the time required for a seek across one-third of the
total surface. Settling time is the time required to
fine-tune and verify the head position prior to read-
ing or writing. The actuator motor drives the
positioner assembly at high acceleration and decel-
eration rates up to 22 gravitational units to achieve
desired seek times.

To reduce seek time without impairing relia-
bility, we must evaluate the design choices:
increased power from actuators, reduced mass in
the positioner, increased or decreased disk diam-
eter, and multiple heads per arm or multiple
positioners.

Increased power from actuators can generate
higher acceleration rates, but also can generate
more heat and structural vibrations. Reduced mass
in the positioner and head-arm assemblies lowers
the power requirements dramatically: power is pro-
portional to mass raised to the fourth power.

Power = K X Mass X Mass X Mass X Mass

However, low mass positioners and head-arms may
be less stiff and have lower frequency resonances
which interfere with servo system settling.

Disk diameter affects seek time, because the
diameter determines the maximum distance over
which heads must travel and the arm length
required to cover the disk. The smaller the diameter
of the disk, the less distance the head must travel;
accordingly, the arm length and inertial mass of
head-arms can be reduced.

Multiple heads per arm or multiple positioners
covering different zones on the disk are other
approaches to this problem. However, both
approaches significantly increase the cost of com-
ponents required and the complexity of assembly
without corresponding increases in capacity. In
addition, multiple heads per arm increase the mass
and cost of the arm. For these reasons, the optimal
choice for the RA90 drive was one positioner per
drive, one head per surface.

As noted above, the servo system is the second
part of the total seek/settling time. The RA90 uses a
combination of a dedicated servo surface and embed-
ded servo information on each darta surtace to achieve
accurate positioning at 1,750 tracks per inch. (This
measurement is equivalent to 571 microinches, or
14.27 microns, from track centerline to centerline.)

S0

No. 8 February 1989 Digital Technical Journal

Disk Drive Technology Improvements in the RA90

A dedicated servo surface provides continuous
feedback of the cylinder number to the servo head,
allowing rapid seeking. Embedded servo data
provides detail on exact track position relative to
data heads, which may vary as a result of tempera-
ture, physical shifts, or vibration. For each record-
ing head, embedded servo data determines offsets
and positioner bias force over time for optimal
performance.’

In summary, the RA90 achieves a 18.5 ms average
seek time and 4.0 ms single-track seek time by using
an efficient positioner structure, high-energy
neodymium-iron-boron (Nd-Fe-B) actuator mag-
nets, and the dedicated plus embedded servo strat-
egy described here. Coupled with an average
transfer rate of 2.8MB per second and optimizations
provided by controllers in the DSA, the RA90 deliv-
ers both high throughput and responsiveness in a
system environment.

Reliability

To achieve the reliability goals for the RA90
product, we relied on our experience with previous
products, reliability modeling tools such as PREDIC
(a Digital program based on MIL-Std-217-E), and test
data for proposed components. With these, we por-
tioned reliability “budgets” for each key subassem-
bly, or field-replaceable unit (FRU). Continuing to
lower level assemblies, we estimated a required
reliability for every critical part or assembly.

By working through each assembly level, we
developed a reliability budget for each component.
Some components, such as gate arrays, heads, and
disks, were required to perform for mean times of
10 million hours or more between failures (MTBFs).
Once requirements were identified, we could work
on controlling the parameters that influence reli-
ability:

® Reduced early life failures
s Heat and wear resistance

s Cleanliness

® [nterconnects

® Incoming quality

In addition to these parameters, we also briefly
describe in this section the heads and media reli-
ability test we performed prior to production.

Early Life Failures

Electronic components tend to fail very early in
their useful life, or to fail at a very low rate there-
after. To remove this early failure mode from our
product in the field, we implemented several forms
of testing. Most electrical components in the RA90

disk drive are subjected to power, resistive load, or
thermal cycling by the vendor that produces the
parts. At the end of our manufacturing process, we
run an “extended test” in which drives are operated
in a system-like environment for many hours. The
number of hours (currently 96) is set to ensure that
drives function reliably and is based on current
ongoingreliability test (ORT) data.

A limited number of drives are cycled through
ORT testing. The ORT test cycle is a much more
extensive test cycle than extended test, usually last-
ing longer than one month. This testing verifies the
reliability of the product produced by our process
and makes apparent any problems that might occur
in the field.

Heat and Wear Resistance

Before placing a drive in service, it is critical to
reduce any factors that could shorten the inherent
design life of the drive’s components. Designers
must, therefore, anticipate the effects of heat, con-
tamination, mechanical wear, and environmental
degradation. The heart of the HDA, heads and disks,
underwent particularly stringent design evaluation
and testing to ensure adequate life.

Localized heating shortens the life of electrical
and mechanical components. Heat provides activa-
tion energy for ion migration, oxidation reactions,
and breakdown of lubrication layers. To address this
problem, we took several approaches. First, we ther-
mally stressed the components to reduce early life
failures that might result from manufacturing pro-
cess problems. Second, we did extended reliability
testing to study thermal effects. Third, we revised
the design to reduce thermal stress.

We selected and are continuing to change to
lower power dissipation components on our modules:
bipolar to field effect transistors (FET), bipolar and
emitter coupled logic (ECL) to complementary metal-
oxide-semiconductor (CMOS) logic. We have also
improved module layout to spread out heat-generat-
ing power components, thus minimizing hot spots.

The actuator motor is composed of a high-power
Nd-Fe-B magnet structure and is located outside the
HDA. (See Figure 5.) By locating the motor outside,
we had to deal with possible torsion of the posi-
tioner shaft during seek and settling on track. On
the other hand, the location allows cooling air from
the blower to circulate more directly on the actuator
and prevents dissipation of heat during positioning
inside the HDA. Furthermore, the design removes
the possibility of data erasure caused by small parti-
cles of Nd-Fe-B dislodging during assembly or han-
dling (e.g., kitting).

The interior of the HDA is about 25 degrees
Fahrenheit warmer than the ambient environment

Digital Technical Journal No. 8 February 1989

51

Storage Technology

ACTUATOR ——»
MOTOR

POSITIONER
SHAFT

SPINDLE
BRAKE

Figure 5 HDA Exterior with Actuator Motor and Spindle Brake Shown

in which it operates. This temperature difference is
primarily due to frictional heating of the air circu-
lated by spinning disks and to the spindle motor
which rotates the disks. The spindle motor is
located inside the hub on which the disks are
mounted. When the spindle motors start and stop,
wear can occur, both at the head-disk interface and
in the motor bearings.

To attentuate disk wear, we use a licensed disk
lubricant that improves wear characteristics during

takeoff and landing of heads in the landing zones.
Disks were tested for frictional characteristics in ser-
vice with the recording heads, and for loss and migra-
tion of lubricant at temperatures above operating
range specifications and at speeds of 1.5 to 2 times
normal rotational velocities. Results were evaluated
both by comparison with minimum and maximum
acceptable lubricant thickness, and by comparison
with existing products known to function accept-
ably in the field.

52

No. 8 February 1989 Digital Technical Journal

Disk Drive Technology Improvements in the RA90

GOLD CONTACT
PAD

A A AR AR A

HEAD-ARM
FLEX-CIRCUITS

COMPRESSIVE
LAYER WHICH
SECURES
FLEX-CIRCUIT
CONTACTS

I

AMPLIFIER
FLEX-CIRCUIT

Figure 6 Flex-circuit Gold Pad Interconnect

Cleanliness

RA90 recording heads fly approximately 10 micro-
inches (0.25 microns) away from the disks. To
ensure that particles of smoke, dirt, dust, oil, and so
forth will not be scraped and squeezed between the
head and disk, disk drives must be ultraclean. The
average oftice environment typically contains
500,000 to 1,000,000 particles per cubic foot of
sizes that could interfere with head flying height
behavior. The HDA environment is controlled during
manufacture to ensure that it is many orders of mag-
nitude cleaner than the ambient office or computer
room environment.

Achieving this cleanliness means providing a
clean environment: designing parts so that they can
be readily cleaned and fastened together with a min-
imum of mechanical work; working with vendors to
receive parts as clean as possible; and developing a

manufacturing process that builds assemblies with-
our excessive particulate generation, thus maintain-
ing cleanliness.

We considered several techniques to electrically
interconnect head-arms to the amplifier flex-circuit.
Soldering has low contact resistance and can be very
reliable; burt it generates contaminants due to fluxes
and is inconvenient to rework. Pin and socket
connectors have had reliability problems in some
applications.

To solve this problem, our flex-circuit vendor
developed a method that has high reliability, very
low contact resistance, is clean, and permits easy
rework. This electrical interconnect, shown in
Figure 6. uses gold-plated pads on the tlex-circuits.
Location holes are punched in both head-arm and
amplifier flex-circuits. A strip of plastic posts is
mounted on the positioner assembly. The amplifier
and head-arm flex-circuits are located by pressing

Digital Technical Journal No. 8 Februay 1989

53

Storage Technology

the location holes over the posts. A compressive,
gas-tight layer and screws fasten the assembly and
allow disassembly for rework. This connection
method has additional advantages of low mass and
compactness.

Nongalling material combinations such as silicon
bronze fasteners in aluminum castings were
selected to minimize contamination during the
assembly process. The spindle-brake/ground-brush
assembly is located outside the HDA to prevent parti-
cles generated by grounding from contaminating
the HDA. The location also allows more effective
heat dissipation during braking.

In the disk stack assembly, we originally designed
the disk-hub tolerances at a minimal spacing. We
wanted to minimize weight imbalance created by
disks off-center relative to the hub, and we hoped to
remove balancing as a process step. However, mis-
alignments and small imperfections in circularity
caused disks and hubs to scratch or gall during
assembly, thus generating particles. We opened up
the tolerance and corrected the imbalance by
adding balance weights to finished assemblies.

Finally, we considered the environmental resis-
tance of critical HDA components. The HDA is not
hermetically sealed. We install a breather filter on
the HDA enclosure to permit the HDA to equilibrate
with air pressure differences. This attention to air
pressure is critical because assemblies are built in
Colorado Springs at anambientair pressure of about
24 inches of mercury, and the assembly may operate
at locations ranging from sea level to an altitude of
8,000 feet.

The breather filter may also allow undesirable
environmental agents to enter the HDA. So we also
place a chemical filter in line with the breather filter
to trap many common corrosive agents, such as Cly,
H:S, SO, and NO.. Earlier in the assembly process,
balance weights for the bottom plane of the spindle
are inserted through a tapped hole in the baseplate.
The breather/chemical filter is threaded into this
hole, closing the HDA opening.

Interconnects

We set out to improve drive reliability by minimiz-
ing the number of physical interconnects between
electrical components and assemblies, and by con-
trolling their type. Gate arrays of up to 6,000 gates
per chip increase reliability, reduce footprint, and
minimize assembly and rework. Testability was
improved by minimization of cable interconnects
between subassemblies.

HDA-to-power-supply and HDA-to-module electri-
cal connectors are self-guided blind interconnects.

The HDA in its carrier and module set are slid along
“ways,” and guides position the electrical connec-
tors to the power supply. The interconnects are
gold-plated to provide low contact resistance and
are designed for multiple insertions.

Incoming Quality

We worked with our suppliers to receive extremely
high quality components, as we believe that such
components function more reliably, and because
any testing we might do to sort good from bad is
likely to inflict damage. For example, if recording
heads are already at 98 or 99 percent quality, test-
ing typically causes rejection of several percent
good parts, may miss some bad parts, and inflicts
several percent handling damage. The result is
increased cost without improved quality; quality
cannot be tested into the product. Components are
tested at the source sites as an integral part of their
manufacturing process. We do not re-test heads or
other components at the Colorado site prior to use
in the drive.

Preproduction Testing for Head and
Media Reliability

Thin-film heads and disks used in the RA90 drive
underwent extensive reliability testing prior to the
start of production. They continue to be tested in a
manufacturing audit mode. Since the design of both
the heads and the disks were new technologies for
Digital, we needed to convince ourselves as well as
our customers that reliability was proven.

Recording heads and disks were tested in HDA and
test-bed configurations. A key test mode was start/
stop testing, where disks are started and stopped
with heads taking off and landing. In this test, disks
are spun up from zero to 3600 rpm at a slow accel-
eration rate (similar to power brownout conditions)
and spun down under similar deceleration rates.
Heads contact disks for relatively long periods
under these conditions. The number of cycles was
3 to 20 times the maximum number expected in
various service environments.

Following start/stop testing, disk and head elec-
trical signals were evaluated to assess two possi-
bilities: (1) the decrease in signal integrity due to
media wear or head structure deterioration, and
(2) increases in defects. Visual examinations were
made to evaluate wear. For these tests, we used
interference microscopy, which is helpful in identi-
fying microtextures and imperfections on mirror-
like surfaces. The results indicated excellent
durability of the surfaces at the interface and undi-
minished data integrity.

No. 8 February 1989 Digital Tecbhnical Journal

Disk Drive Technology Improvements in the RA90

Data Integrity

We have outlined some of the hardware designs that
ensure data integrity, such as placing the actuator
motor with its magnet structure outside the HDA to
reduce risk of magnetic contaminants. To further
ensure data integrity, we rely on DSA and VAXsimPLUS
software. DSA provides powerful error correction for
data — up to 8 bursts of 10 bits each in one block,
or sector — and replaces blocks that appear to be
deteriorating based on corrections performed.
VAXsimPLUS software provides assessment of the
overall data integrity of a drive based on multievent
correlations of errors. This assessment permits the
repair of a failing unit before application interrup-
tion or data loss.*

System Interface and Integration

A variety of factors affect system interface and inte-
gration of the disk drive. These include

s Case of installation and repair of the drive

s Compatibility with existing hardware and soft-
ware systems

= On-board diagnostics
= Differing power requirements

= Appropriate acoustic levels

Ease of Installation and Repair

The RA90 drive meets all the communication proto-
col and physical interconnect standards of DSA. An
RA90 drive may simply be “plugged in” to an exist-
ing system, turned on, and used. New cables and
new controllers are not required.

The blower is mounted on the front of the cabinet
with quarter-turn fasteners. The power supply is
similarly mounted on the rear of each drive chassis.
The operator control panel snaps onto the front of
the blower unit. Two flexible circuits, one ribbon
cable, four self-guiding blind connectors, and one
snap-in connector provide all power and signal
interconnects betweenthese FRUs.

On-board Diagnostics

The RA90 drive has on-line diagnostics which evalu-
ate its status and report to the controller at startup
and periodically during operation. Many problems
can be resolved by the drive itself or by the drive
and controller working together. Status is also eval-
uated by VAXsimPLUS software, which assesses data
integrity issues and prevents application interrup-
tion for the system.

International Requirements for Power
and Acoustics

Our design requirements called for the RA90 disk
drive to be functional in an international environ-
ment as well as in the United States. Power, label-
ing, and acoustic requirements are areas that are
often critical in integrating a product into system
environments worldwide.

Power The RA90 drive has a universal power sup-
ply designed to function at 43 to 63 Hertz, and 86 to
132 or 174 to 264 volts. The “country kit” supplied
with each unit provides the appropriate cables for a
given outlet and the snap-in operator control panel
(OCP) with labels in the appropriate language.

Acoustics Many countries have limits on the acous-
tic noise produced by electronic equipment, par-
ticularly when used in an office environment. The
RA90 drive must meet acoustic environment
standards for each and every country in which it is
marketed.

The RA90 drive makes its biggest contribution to
noise when it moves cooling air to HDA, modules,
and power supply. Ambient operating temperatures
for disk drives range from 10 to 40 degrees C. Cooling
required to keep components at an acceptable tem-
perature is greater at higher ambient temperatures
within this range. A blower that provides adequate
cooling at the upper end of the operating environ-
ment has excess capacity in more typical computer
room environments and is noisier than desired.

The RA90 drive has a variable-speed blower for
cooling and includes a sensor that adjusts blower
speed as the ambient temperature varies. When
needed, large volumes of air are pumped over the
HDA, modules, and power supply. When thermal
environments are more favorable, blower speed is
reduced; and acoustic noise generation is lowered
from 6.4 belsto 5.8 bels.

Damping material installed in the chassis pro-
vides additional reduction of acoustic noise. The
variable-speed blower and damping material result
in a disk drive that is comparable to the ambient
noise level of a typical business office or conversa-
tional speech.

Summanry

Innovative design and close cooperation between
engineering, manufacturing, field, and marketing
teams allowed the RA90 team to develop a disk drive
with a capacity of 1.216GB, a seek time of 18.5 ms,
competitive reliability, and an easy-to-use system
interface. Moreover, we met internal design cost goals.

Digital Technical Journal No.8 February 1989

55

Storage Technology

Tremendous efforts in technology advancements and
implementation were made by key vendors and Digital
groups in Shrewsbury, MA; Tempe, AZ, Forge Road,
Colorado Springs, CO; Marlboro, MA; Kautbeuren,
West Germany; and San German, Puerto Rico. In
addition these groups maintained open communica-
tions to ensure product information flowed smoothly
between them. We learned as we went, keeping
previous expericnce in mind. For many of us, the
RA90 disk drive is significant in its performance
specifications and in the teamwork leading to steady
progress on this project.

Acknowledgments

The number of people on the RA90 team is quite
large and the names too numerous to list here. None-
theless, I would especially like to thank those who
supplied information and photographs for this article,
and those whose careful reviews improved the con-
tent, accuracy, and style of this article: Bill Brown,
Xuan Bui, Tom Fava, Don Jones, Ahmad Kassak, Mark
Lewis, Keith Norman, Gary Rauch, John Read, Mike
Riggle, Rob Stubblefield, Barbara Wilson, Pat Witt,
Sam Yun. | would also like to thank my manager,
Chris Wehrli, for support and encouragement
throughout the RA90 project, including the writing
of this article.

Appendix: Magnetic Recording
Technology

Recording Process

Storage and retrieval of data, or recording and read-
back, is done by heads and disks. The basic opera-
tion is identical in theory to audio and video tape
recorders, and tlexible media drives. However, the
specific implementation details, such as size and
shape of the components and materials, differ
somewhat

In disk drives, data is organized in circular tracks
around rthe disk surfaces, which rotate at high
speed. As shown in Figure A the recording heads
are mounted to an arm/positioner assembly, which
can move heads across disks. The heads stop over
any track to read the circumferential data path.

The recording transducer is mounted at the rear
edge of the slider, a structure which controls the
aerodynamic behavior of the recording head. Fig-
ure B shows these structures. A transducer has two
poles, with a small gap in between. Lach pole is a
soft magnetic material which is easily magnetized
buc retains little or no magnetization on its own

A coil is wrapped around one pole of the trans-
ducer. Applying a changing electrical current into
the coil induces a magnetic field in the head trans-
ducer material. The magnetic field travels around

the easily magnetized path of the poles. Since mag-
netic fields do not require a “conductor,” the field
jumps the gap as well. Near the gap, the field also
“leaks out™ into the surrounding space.

The disk is coated with a hard magnetic material.
The material requires a strong magnetic field to
become magnetized in a particular direction and
remains magnetized afier such a field is applied.
This coating is deposited on top of various substrate
preparation layers, which smooth the surface and
ensure that the magnetic layer will deposit uni-
formly. The magnetic layer is then overcoated with
a very thin layer designed to assure that the disk will
resistany possible environmental effects.

If the leakage field created by the head is strong
enough inside the disk’s magnetic layer, then the
disk’s magnetic domains will be oriented parallel to
the applied field. This write process is illustrated in
Figure B. Data is encoded by controlling the timing
of polarity reversal of the applied electrical current
relative to a fixed clock rate. As the electrical cur-
rent applied to the coil alternates in polarity, the
induced field in the head also alternates direction,
thus writing bits of data.

Readback Process

‘The readback process operates in a complementary
fashion to the recording process. (See Figure C.) After
recording, the disk surface has data bits written as
scparate magnetized areas. Lach of the magnetized
areas, or bits, behaves like a small permanent mag-
net, with a magnetic field emanating from it. The
head senses this field, which diminishes as the spac-
ing berween the gap and data bits increases.

As the disk moves past the head, the field emanat-
ing from each of these magnetized areas induces a
field in the recording head poles. This alternating
magnetic field, traveling the easily magnetized path
around the poles, induces an alternating electrical
current in the coil, which in turn creates a time-
varying readback voltage The voltage changes are
compared to a fixed clock rate and decoded into the
Is and @s of the data.

Flying Height

One surface of the recording head is ground to a
precision shape, contour, and size; it will become the
air bearing surface. The disk rotates rapidly beneath
the recording head. This rotation of the disk creates
an air layer which pushes the recording head, with
its aerodynamic slider, away from the disk. The
recording head is mounted on a suspension, or flex-
ure, which provides a counterbalancing force by
pushing the head toward the disk. The balance of
the lifting force created by the disk rotation and the

56

No. 8 February 1989 Digital Technical Journal

Disk Drive Technology Improvements in the RA90

ARC OF HE
TRAVEL

RECORDING HEADS

Figure A Example Disk Drive

— ——
CORE

(j

<« [N
WRITE

~—

o > — > - - — — —P — — _-— o -

|
SLIDER ’

- - o - - — — — — - - -

MEDIA

DISK MOTION —»

Figure B Side View of Recording Head Showing Magnetic Write Process

Digital Technical Journal No. 8 February 1989

57

Storage Technology

-
l

SLIDER |

N

l READ

NSRS N\ TR

—_— — - - .

MEDIA

—_— e —— e - o —P — —P - - -

—_— P — - - -

DISK MOTION —s

Figure C The Magnetic Read Process

suspension force determine the spacing between
head and disk, the flying height of the head.

The flying height of the recording head is not con-
stant across the disk surface. Two factors control the
flying height: air velocity and yaw angle. As the
recording head moves from inner to outer diameters,
air velocity due to disk rotation increases, and tends
to push the head further away. As the disk drive is
stopped, the air layer diminishes, and the heads land
in the disk landing zone. When the drive is started,
the air layer builds up and the heads take off.

The RA90 disk drive uses a rotary positioner by
which the heads-arms are pivoted around a fixed
point to move the recording heads across the disk.
The head has a variable yaw angle as it is positioned
from inner to outer diameters. In general, the larger
the yaw angle (positive or negative), the lower the
head flies. The combination of air velocity and yaw
angle result in a flying height which is at its lowest
at both inner and outer diameters, and peaks near
the middle diameter.

The flying height must be controlled so that it is
always sufficiently low to read and write data accu-
rately but large enough to prevent unintended
touchdowns, or damage to the media. The RA90
recording head flies 10 to 13 millionths of an inch
(0.25 to 0.325 microns) from the disk, depending
on the radius. Working with these variables in flying
height is one of the challenges in developing a reli-
able mechanics set.

Thin-film Disks
The recording disk used in the RA90 drive is also a

thin-film structure, but there are no mask and align-
ment structures; the entire surface is used. The disk

substrate is aluminum, which has been polished to
a smooth, flat finish. Various sublayers deposited on
the disk provide a surface that has more chemical
and physical uniformity than the aluminum sub-
strate al loy. Moreover, this surface is appropriate for
the magnetic recording layer.

The magnetic recording layer is exceedingly thin,
about 3 millionths of an inch (0.075 microns) and
must be uniform, with few if any flaws over the entire
disk surface. A recorded data bit in the RA90 disk
drive is about 0.000044 inch by 0.000400 inch
(approximately 1.1 microns by 10 microns); so even
“small” defects in this mirrorlike surface could
cause significant data dropouts.

The magnetic layer is then coated with a thin
layer to provide mechanical protection in the land-
ing zone during stop and start of the disk drive.

Mechanical Integrity

For the heads and disks to function reliably, we need
to control anything that might interfere with the tly-
ing height or positioning relative to the track. The
flying height can be affected by waviness of the disk
surface, by contaminants which may interfere or
collect on the head or disk, or by vibration. The
positioning can be affected by temperature varia-
tions and by vibration or movement of the recording
head relative to the disk.

Disk Waviness and Flying Height

The waviness of a disk is a measure of the surface
contour over which the head must fly while main-
taining its spacing relative to the disk. The contour
is usually measured as runout and acceleration.
Runout is the amount of vertical displacement of the

58

No. 8 February 1989 Digital Technical Journal

Disk Drive Technology Improvements in the RA90

disk surface during a revolution. Acceleration is the
second derivative of vertical displacement with
respect to time.

For a given head-disk combination, we must
accommodate factors such as

= Mass of the head
s Spring force of the suspension
s Nominal flying height

s Variation in nominal flying height that can be tol-
erated during a read or write operation

s Relative positions of heads and disks given stack-
ing tolerances

m Surface characteristics that can be achieved on
the disk

Modeling of the air bearing and flying height
response to disk surface waviness, and correlation to
actual flying height measurements, determined our
maximum total indicated runout (TIR) of 0.002 inch
and maximum acceleration of 1800 inches per sec-
ond. The outer recording radius is 4.084 inches, or
a circumference of 25.66 inches. The flying height
is approximately 10 microinches.

For comparison, one can scale up the runout, cir-
cumference, and flying height dimensions to those
of an airplane flying from San Francisco to Denver,
over the Sierra Nevada and Rocky Mountains. The
runout of this path is approximately 4,000 feet, or
2.6 miles (about 8.4 times 10’ times 0.002 inch).
The circumference of the disk scales up to 34,000
miles, or almost 17 round trips. The flying altitude
of this theoretical airplane would be only 70 feet
above the ground at all times.

The acceleration is a measure of the sharpness or
abruptness of the peaks and valleys of the surface.
Another way to think of this is to imagine a bump
over which a car must travel. The bump may be only
a few inches high; but if it is abrupt, it will cause
the automobile to bounce up and down, possibly
even scraping the road surface. Traveling at 10 miles
per hour over a very smooth, rounded speed bump
is about equivalent to the maximum acceleration
permitted in the RA90 disk drive, that is, 1800 inches
per second per second.

The design of the head’s suspension, or flexure, is
intended to produce a head which can fly consis-
tently over the disk surface undulations, without
excessive bouncing up and down.

Track Positioning and Mechanical Stability

In discussing disk waviness earlier and the head’s
response, we addressed one axis of head motion. In

addition to the spacing between the head and disk,
we must also maintain the head’s relationship to the
data track on the disk along the track circumference
and across its width.

Variations of the head position with respect to the
track circumference will lead to variations in the
timing of the data bits read and written. Normally
this variation is small and slow relative to the data
rate and so can be compensated for; but the variation
must be factored into the design tolerances on bit
density and the data window in the electronics set.

Variations of head position with respect to track
width can be very serious. Spacing between actual
written track location and attempted read location
is offset. Offset is caused by vibration sources, tem-
perature changes, and electronics error.

There are many sources of vibration that can
affect the disk drive: inside the HDA, outside the HDA
but part of the drive, and the outside environment.

Inside the drive, bearings in the spindle which
supports the disks and bearings in the positioner
assembly may have small variations in ball size and
finish which lead to vibration. The rapid accelera-
tion and deceleration of the head-arm assemblies as
they are positioned across the disk surface cause
vibrations or resonances which are sufficient to
affect positioning.

The air flow inside the HDA is turbulent and
affects the flight of the read-write heads. To mini-
mize this turbulence, there is a baffle next to the
disks in the region where head-arms contact the
disks. This baffle has been designed to effectively
extend the disk surface by moving the turbulent
region out beyond the recording surface. The baffle
has also been designed to function as a support
structure for the clean air filter, which slides
between the baffle and the rear of the HDA.

The air cooling system or blower of the disk drive
can cause vibration of the HDA assembly. Even
though the HDA is a large, heavily ribbed casting,
the blower caused sufficient vibration that we found
it necessary to attenuate the blower vibration by
design changes and to modify the damping charac-
teristics of the blower mounts.

Finally, the outside environment may contribute
vibration which leads to offsets; for example,
forklifts running on concrete floors cause vibration.
All of these vibration sources must be tolerated by
the complete system.

In addition to vibration, temperature differences
can cause offsets. If a disk is at one temperature
when data is written, and then warms only two
degrees Fahrenheit, the readback signal will be suf-
ficiently offset to create problems unless some com-
pensation is employed.

Digital Tecbnical Journal No.8 February 1989

59

Storage Technology

Servo Systems

Servo systems control the track over which the heads
are positioned and compensate for all sources of
misposition: repetitive and nonrepetitive runout,
temperature variation, acceleration, deceleration,
and vibration *

References

. In this paper, 1 have followed conventions cur-
rently in use in the disk drive industry. Both
English and metric units are used, depending on

the quantity being measured and the conve-
nience of a particular set of units. Equivalent
quantities are given in parentheses. Numbers
given are exact. unless described as approximate
in the text.

. M. Sidman, “Control Systems Technology in

Digital’s Disk Drives,” Digital Technical Journal
(February 1989, this issue): 61-73.

. L. Emlich and H. Polich, “VAXsimPLUS, A Fault

Manager [mplementation,” Digital Technical
Journal (February 1989, this issue): 38-45.

60

Ne. 8 February 1989 Digital Technical Journal

Michael D. Sidman |

Control Systems Technology
in Digital’s Disk Drives

Advanced technologies developed by Storage Systems Engineering have resulted
in bigher track densities and improved performance in Digital’s disk products.
The adaptive runout correction system improves tracking accuracy. By anticipating
runout, the system reduces the effect of this disturbance in a closed-loop servo sys-
tem. This is the first known use of digital signal processing in a disk drive servo
system. Augmented embedded servo technology provides sampled-data bead posi-
tion-error information from the data beads to the servomechanism and improves
positioning accuracies. Digital’s disk drives also use an automatic bias force
correction system which employs digital signal processing. Finally, digital signal
processors are used to control the bead-positioning system. The digital control
this technology provides is repeatable and versatile. Modern control software

tools are employed in disk servo control design and analysis.

The use of sampled-data, digital, and adaptive con-
trol techniques in disk drive head-positioning servo
systems has enabled increased track densities and
improved access time performance in Digital’s disk
products These servo methods correct for inherent
limitations in drive mechanics such as disk runout,
thermal arm shift, and actuator bias forces at track
densities well beyond 1500 tracks per inch (TPI).
This paper highlights several technical develop-
ments used extensively in Digital’s rigid disk prod-
ucts. These technologies include embedded servo
systems, adaptive runout correction, automatic bias
force correction, and digital signal processors for
real-time control. Also discussed is rapid servome-
chanical system design using modern control tools.

Embedded Servo Systems

Embedded servo technology has in part enabled
higher track densities in Digital disk products. This
technology is featured on all current Digital-
designed and manufactured 14-inch, 9-inch, and
St4-inch rigid disk products. In this method, posi-
tion information is embedded on each data surface
at sector boundaries on every track. The information
gives the head-positioning servomechanism feed-
back about the relative position of the selected data
head to the data track it is following.

This method provides sampled-data position-error
information from the actual point on the actuating
structure that needs to be accurately positioned.
Further, it is more accurate at the instant of sam-

pling than other sensing locations, such as a dedi-
cated servo head or a carriage-mounted tachometer.
These alternate sensors are often prejudiced at dc
and very low frequencies by nonuniform thermal
growth and compliance in the structure.

Figure 1 shows the placement of burst-encoded
servo data fields. These fields precede customer data
fields on a typical disk data surface used in Digital
disk products. Data track centerlines are shown as
dotted circular lines, t—2, ¢t—1, ¢, and ¢+1. A
bipolar position-error estimate is derived by pro-
cessing the relative detected amplitudes of the two
bursts, A and B. These bursts are composed of many

Figure 1 Embedded Burst Servo Encoding
on Data Disk Platter

Digital Technical Journal No. 8 February 1989

61

Storage Technology

Ye(l)

SAMPLER/
ZERO-ORDER
HOLD

Y (nkT)

nT

SAMPLER/
ZERO-ORDER

HOLD

Yq (nkT) +
+ Ye (KT)

Yo (t) nT
7 o Ky —

HOLD

SAMPLER/
—| ZERO-ORDER

Yo (KT)

Figure 2 Model of Digital Composite Position-error Estimation

equally spaced transitions. When the data head sits
directly over a data track centerline, it equally strad-
dles the two bursts; the result is a zero value for the
position-error signal. As the data head moves radially
in one direction, the amplitude of one burst linearly
increases while the amplitude of the other linearly
decreases. Constant-frequency bursts are a useful
encoding scheme in part because signal energy is
concentrated in a narrow band of frequency. After
bandpass filtering and detection, this servo encod-
ing results in a very high signal-to-noise (S/N) esti-
mate of the relative position of the data head to the
data track.

The sample rate, and therefore the quality of this
position reference, is governed in partby the sector
rate. Sector rate is the product of the number of sec-
tors and the rotational rate of the disk. The RA90
disk drive, for example, has a sector rate of 4.2 kilo-
hertz (KHz). Because the sampling is mechanical,
embedded servo systems are among the few sampled-
data control systems in which a priori anti-aliasing
filtering is not possible. Therefore, care must be
taken to prevent the excitation of actuator modes
whose frequencies exceed the Nyquist rate of the
system, or half the sector rate.

Augmented Embedded Servo Systems

Sampling at low rates, i.e., less than ten times
desired servo bandwidth, introduces substantial
phase-loss to the servo loop. The net effect is a limi-
tation in a design’s dynamic closed-loop stiffness,
runout tracking gains, and vibration disturbance
rejection. Consequently, designers are motivated to
use augmented embedded servo systems which
restore phase and improve servo performance.

An augmented embedded servo system typically
utilizes an auxiliary velocity or position sensor on
the carriage. If a dedicated servo surface is avail-
able, high-frequency components of position-error
are sensed nearly continuously between a dedicated
surface track and servo head mounted to the car-
riage. These high-passed components may be
blended with the sampled-data embedded position-
error signal from the selected data head. Blending
restores the phase lost by low-frequency sampling
and thus can improve servo tracking accuracy and
settling. The resulting composite signal provides a
form of interpolation in time between embedded
samples. If the crossover frequency between the
embedded and high-passed dedicated position-error
signals is significantly greater than overall servo
loop bandwidth, disturbances appearing only in the
auxiliary sensor will have minimal effect on the
servo system, as desired.

If a dedicated servo surface is notavailable, a car-
riage velocity transducer may be used as the auxil-
iary sensor. A carriage tachometer used for this
purpose is usually implemented by sensing back-
EMF on a carriage-mounted coil cutting a field gen-
erated by a magnet mounted to the disk drive
baseplate. A composite position-error signal may be
produced by first passing the velocity estimate sig-
nal through a resettable integrator; the integrator is
reset to zero at sector boundaries. A composite posi-
tion-error signal results when the integrated veloc-
ity signal is added to the zero-order-held embedded
position-error signal.

Interestingly, the dynamic response of embedded
servo systems of comparable bandwidth may be
quite dissimilar depending on the auxiliary sensor
and specific blending method selected.

62

No. 8 February 1989 Digital Technical Journal

Control Systems Technology in Digital’s Disk Drives

1
Ye 1
Ya
Yo 01
100 1000
(a)
as(y.)
(b)
00
-30°
deg(Y.)
-60°
-90°
100
(c)

Figure 3 Frequency Response of Digital Composite Position-error Estimators

Digital Com posite Position-error
Estimation

Embedded and continuous dedicated position-error
information may be blended in discrete-time. Figure 2
shows how continuous, dedicated position-error,
Ya(t), may be thought of as being sampled both at
the embedded sector rate, 1/n7, and at an integral
multiple, 7, of that rate, 1/7."

The resulting sampled-data composite digital
position-error estimate, Y.(RT), is determined at
each sector sample-instant solely by the embedded
servo position-error estimate, Y, (nRT). At interme-
diate sample instants, the composite digital posi-
tion-error estimate is determined by embedded
position-error plus an estimate of how much the
dedicated-servo position-error signal has changed
since the last embedded sample. In this way, dc and
low-frequency errors between the dedicated and

embedded position-error sensors are ignored, and
sampling phase-loss is largely restored. In practice,
the ratio of the dedicated to embedded sample rates
is three or greater. Phase improves as this ratio
increases.

Phase may be partially restored by using a frac-
tion, Kaa, Of the available dedicated position-error
signal. This partial restoration may be necessary in
systems where the mid-frequency estimates of posi-
tion-error from the dedicated servo head do not
correlate well with the embedded position-error
estimates. Partial restoration allows the designer to
trade off phase improvement against disturbance
introduction.

Figure 3a shows the transfer functions from dedi-
cated and embedded position-error (assumed equal)
to composite position-error for full and 50 percent
digital blending. The dedicated position-error com-
ponent is effectively high-passed by this processand

Digital Tecbnical Journal No.8 February 1989

63

Storage Technology

F(b) X,
GAIN X l
POWER 7 n ()
STABILIZING o
FILTERS AMPLIFIER Ms?
TRACK
INTEGRATOR POSITION
DETECTOR
+ LFaESET
T LEAD) Xe
COMPENSATOR _/
Yo (b) T
n(b)
BIAS
CONTROL
D/A CORRECTION A/D X, ()
TABLE PROCESSOR °

L,

Figure 4 Automatic Bias I'orce Correction System Block Diagram

samplcd in this example at three times (12 KHz) the
rate of the ecmbedded position-error contribution.
‘I'he gain magnitude and phase of the composite
blended signal are shown in Figures 3b and 3c. As
Kuea increases from 0 to 0.5 to 1.0, some of the high-
frcquency sampling nulls in the magnitude
responsc are eliminated. Consequently, phase-loss
duc to sampling decreases.

Automatic Bias Force Correction

Digital's disk drive products utilize an automatic
bias force correction system that nullifies the effect of
exogenous carriage forces on the closed-loop track-
following servo system.? This correction system
greatly improves track capture and shortens settling
times. The system uses digital signal processing to
build a smoothed table of optimal correcting levels
as a function of coarse actuator position.

Bias forces are usually principally due to wind-
age, cable forces, gravity, and magnetic motor biases
in head-positioning actuators. The net force or
torquc (in the case of rotary actuators) presents an
unwanted but repeatable dc disturbance 1o the
position control system. The result is a small posi-
tion-crror offset that is a nonlinear function of
coarse actuator or head position. Clectronic circuit
offsets from sources other than the embedded posi-
tion sensor may also be grouped with the mechani-
cal sources of error. Stochastic forces, however,

principally originating from actuator bearing fric-
tion and stiction add to the closed-loop error in disk
drives, but generally not predictably

In the past. proportional-integral-derivative (PID)
compensators alone coped with the problems cre-
ated by bias forces on the head-positioning actuator.
But the time taken by the compensator integrator or
lag-filter to substantially reject the dc disturbance
increases settling time. In recent disk drive designs,
access-time performance has become more important
and track densities have increased, resulting in the
need for both improved positioning accuracies and
track capture. Integral control alone, therefore, has
become a less attractive or even infeasible solution.

The automatic bias force correction system solves
the bulk of the problem. The correction system
gives the servo system the information it needs to
nullity the repeatable disturbance component
before it is encountered. The servo system can nul-
lity the disturbance as the servo switches from seek
to track-follow mode some distance from destina-
tion track. Thus, correction occurs throughout and
following the entire head-settle mode. The compen-
sator integrator is then only responsible for reject-
ing the effect of unpredictable, stochastic errors.

Figure 4 shows a simplified block diagram of the
automatic bias force correction system connected to
an analog position control system. Position-error
information, X,, the scaled difference between head

644

Ne. 8 February 1989 Digital Technical Journal

Control Systems Technology in Digital’s Disk Drives

position, X, and track position, X;, is digitized by
an analog-to-digital (A/D) converter and condi-
tioned by the servo control processor.

A lookup table of optimal correcting levels,
Y,(b), is generated as a function of coarse head posi-
tion or radial band number, b. After the calibration
interval completes and when the heads are
instructed to seek to a given track, the correspond-
ing correction level, Y,(b), for the band in which
that track resides is accessed from the table and
introduced to the servo system.

The optimal correcting signal level exactly
matches the level of position-error signal offset,
X,(b), due to repeatable biases in the system.
Knowledge of servo bandwidth, actuator inertia, or
gain parameters of the power amplifier, motor,
compensator, or track-position detector for a given
drive design is not required to make offset correc-
tion accurate.

Signal Processing Technique

To determine the offset correction at a given track,
the repeatable dc component of the corresponding
position-error must be determined. This may be
done in part by averaging the measured closed-loop
position-error samples while using a proportional-
plus-derivative (PD) or lead compensator over one
or more integral revolutions of the disk. Averaging
reduces the effect of runout on the offset estimate.
Since offset is a function of gross head position, the
disk is divided into a number of bands, each consist-
ing of the same number of tracks. Position-error off-
set is measured at tracks in the center of each band
and stored for subsequent processing.

An added complication is that the offset may be
affected by the direction from which the track
is accessed. Figure 5a shows the measurement of
position-error offset while using a lead or PD com-
pensator over the range of actuator travel; 22 bands
denoted by band number, b, are used in this exam-
ple. Notice that there is a difference berween the
offset curve for tracks approached in the forward
direction (represented by circles) and the curve for
tracks approached from the reverse direction (rep-
resented by triangles). This difference is generally
attributed to the side force required by the balls in
the actuator bearing to squeeze the grease out from
under themselves after arriving at a new track. Noisy
data results from a number of sources, including
actuator friction and limited A/D converter resolution.

Let the forward and reverse measured position-
error values be given by X, ,,(b) and X, . (b), where
1 =b=B. Bisthe number of bands on the disk.

lt is important to substantially eliminate the
effects of stochastic disturbances on the bias esti-

mate. Otherwise these effects may be exaggerated
when correction is applied to the control system.
Elimination of these effects is the role of subsequent
digital signal processing.

The first step is to compute the average of the for-
ward and reverse sets of data, X, (b) as shown in
Figure S5b. The next step is to compute an average
forward offset value, X,z,,, and reverse offset value,
Xoj..., to be added to the bias correction when a

nt

track is first accessed from the given direction.
KXo (B) = 5 [Xopu (b) + Xo,,.()]

8
X'/ffuu = = Xeof,, = iln :>l: [X!ﬁm (b) — X.n-:-(b)]

The averaged bias table, X, (b), is still quite
noisy and requires digital filtering for smoothing.
A three-point symmetrical finite-impulse-response
(FIR) filter with unit pulse response, bh(b), shown
in Figure 6, is convolved with sequence X, one or
more times to produce the smoothed correction
table, Xy (b), shown in Figure Sc. The discrete lin-

ear convolution filtering operation is given by’
For 2 < b < B — 1, and Dim (bh) = 3:
i
X (b) = X b(i)Xe,, (b= i)
i 1

When filtered bias correction, Xz, (b), and aver-
age forward or reverse offset value Xog, , or Xof,, are
added to the servo, the position-error is reduced to
the amount shown in Figure Sd. This represents the
amount prior to the use of a lag or integrating filter.
For this example, roughly over 85 percent of the
bias error is eliminated before integrating control is
initiated. Settling is dramatically improved.

Adaptive Runout Correction System

This section describes the adaptive runout correc-
tion system (ARCS). ARCS adaptively nullifies the
effect of repetitive disk runout in a disk drive head-
positioning servo system. Digital signal processing
in the form of circular convolution compensates for
closed-loop servo dynamics and ensures rapid, accu-
rate convergence to an optimal feedforward correct-
ing signal. Convergence on a signal occurs even in
the presence of significant high-frequency distur-
bances, measurement noise, and nonrepetitive run-
out. Correction of individually selected runout
frequency components is permitted and imposes no
additional on-line computation; computation is
extremely minimal in any case. Results in disk servo
systems typically indicate better than 95 percent
correction of repetitive runout errors after just two
iterations.

Digital Technical Journal No.8 February 1989

65

Storage Technology

' ' i ' H i
1 ' \
SN S | . |- O T | Y - L i
1 ! o N B J_ o~ ' u 2
i . .
o o O
' . ' ! ' '
4 1
S T Jo S IF-N RS I - I .
. - — ~— '
o P P
! : ' ' ' i
' [) H ' 1
Lo [: :
S " - -~ e U U TP W SR N -
- = = V
: 1 1 ! '
: ' N { ! |
i oo A I
s b e M wa] O cend 0 R SO & I 0 S S S -4
v | — —) i — i t
| K h i " N
' 1 ' H
I I ' H
H) i ') |
P ey £ R - [Se] e) S g = Sk CE Y R -
s — - | — i v
1 ! H ') H
: 1 1 H
' (5 ! . 3
' [1 “)
H
SO \i e o I NI JUPPISS CRR [g S O S s
1 N 1 —] !
: « { 1 |
h
i , i i | 1
LD e P |
el pi== pesa = -l Eaahidnh SREE TEEE) B - -
: i | i 1
' h i
4 | O P
B ‘ ; ; . !
R D v U (I Lo lo_J
0 ﬁ = R ot T |~ e Rt T
L4 ! 1 f !
; i P
1 ! 4 I
: ' ' H '
p—— s TR 7o) RN P M, A.|_.||; —-d P st mtl
[' ' | '
| ! 1 H V
! I H , !
i i i))
i | ! ' . |
B S maan ICCHIN CEEEE EEECER SRR o Eabt DECTEREE EEEE I R EE B .
1 1 ! g .
! . ' I
. 1 ! '
i H] J
: ~ _ : _ =i
o o = o = - m o - o - m N - O -
[} ’ !
s :
-~ -~ -~
L g Qo S 5 L m
3 > > >~ Q ©
<
: 3 $ N g 2 3
S o S IS S <
X X N x N x ~ T X
N < © o i
~— — ~ O

15 17 19 21

13

(d)

BAND NUMBER - b

KEY:

(0]

FORWARD
REVERSE

Py

Figure 5 Automatic Bias Force Correction System Signal Processing

iy e S 9

A

E LRt L SR R LRy L e L e L L L

4

[.

h(b)

0
-5

Figure 6 Unit Pulse Response of Bias Force Smoothing Filter

No. 8 February 198Y Digital Technical Journal

66

Control Systems Technology in Digital’s Disk Drives

Adaptive Disturbance-rejection Systems

Adaptive disturbance-rejection techniques such as
ARCS inject a feedforward signal that anticipates a
disturbance. The intent is to reduce the effect of the
disturbance at some point in the control loop. This
technique may be particularly helpful if closed-
loop system gain is not adequate to deal with the
disturbance. The additive correcting signal used
does not modifty the loop dynamics. Therefore, this
adaptive technique will not destabilize a system
given that adaprtation itself is slow relative to loop
bandwidth.

It may be more appropriate to classity such a sys-
tem as an adaptive signal processing system aug-
menting a control system than as an adaptive control
system that modifies plant compensation or control
law dynamics to achieve its goals. Adaptation occurs
in the process of estimating and iterating to an opti-
mal correcting signal that nullifies the etfect of the
disturbance at a specific point in the closed-loop
system. Prerequisites for employing such a system
include a parametric model of the disturbances and
a crude model of the inverse closed-loop trequency
response of the transter function from the signal
injection point to the point of desired nullification.
This model need only be accurate over the spectrum
of desired correction.

Runout and Disk Servo System Operation

The goal of a tracking embedded disk servo system
is to minimize the radial displacement of a selected
data head relative 1o the darta track it is following
This position-error information is measured directly
on a sampled-data basis in the sector boundary
regions on each data track on each disk where servo
position fields are written. The radial position of the
data track sector may be considered to be a dynamic
reterence command for head position and is directly
affected by mechanical runout. The position error
that results from this command or disturbance is
attenuated by the action of the servo system How-
ever, runout rejection is practically limited by con-
trol loop bandwidth.

Repetitive runout may be due to mechanical non-
concentricity of disks or to the embedded data
tracks in which position information is servo writ-
ten onto the disk. Runout disturbance may be due to
other sources, such as deformation or tilting of disks
away from the axial direction. Repetitive runout dis-
turbances may be ditferent for each data head in the
drive or may be similar for data heads accessing
opposite sides of the same disk in the stack. Stochas-
tic or nonrepetitive runout usually originates princi-
pally from ball bearings that support the spindle.

This component of runout may be much smaller
than or commensurate with the magnitude of repet-
itive runout dependent on drive and spindle design.
Air-bearing spindles, for example, can reduce non-
repetitive runout to negligible values.

Repetitive disk drive runout disturbances are
periodic and present themselves as sinusoidal com-
ponents synchronized to disk rotation. The frequency
components of repetitive runout errors typically
include fundamental frequency runout and several
higher harmonics. For a disk spinning at 3600 rpm,
this translates to runout frequencies ot 60, 120. and
180 hertz (Hz). Measured position-error signals
contain some high-frequency components resulting
from local media anomalies that affect the quality of
the signal. Thus, there are differences in closed-
loop tracking on adjacent tracks even with the same
head. However, low-frequency errors, usually up to
180 Hz, generally are similar over the range of
radial displacement for a given head

Servo bandwidths are typically about 500 Hz for
many commercial products Such bandwidths offer
limited runout attenuation of about 10 to 20 at 60 Hz,
decreasing with frequency.

Role of Adaptive Runout Correction System

An adaptive runout correction system can be used to
nullity the repetitive residual tracking error due to
runout. Since repetitive runout is predictable or
very slowly time-varying for a given data head. mea-
surements of runout disturbances can be infrequently
scheduled by the servo control system. These mea-
surements can then be used to give the control sys-
tem information about the disturbances it is about
to experience. Stochastic, nonrepetitive disturbances,
which by definition are not predictable, are best
ignored in such a system by employing an averaging
technique.

The net result is improved tracking accuracy and
response to such predictable disturbances with other-
wise unattainable runout rejection.

Adaptive Runout Correction
System Operation

Figure 7 illustrates the components of an adaptive
runout correction system in an embedded or sector-
ized servo disk drive >

Relative radial displacement information between
a selected data bead and its respective data track is
provided by a sampled-data position-error signal.
This is accomplished by demodulating the readback
signal from the head while the head is passing over
servo data fields at sector boundaries. The position-
error signal corrects the position of the head and is

Digital Technical Journal No. 8 February 1989

67

Storage Technology

HEAD SELECT READ/WRITE STORAGE DATA TO DATA
AND ECIEY PROCESSING
PREAMPLIFIER SYSTEM
HEAD
SELECT
SERVO _[SERVO SIGNAL
DATA DEMODULATOR
DRIVE
ERROR RATE
SECTOR R LGIE SENSOR
e SENSOR
POWER-UP OR
NEW PACK } I
=
ADAPTATION OFF-TRACK
SEQUENCER SENSOR
= :
HEAD SELECT
SECTOR
NUMBER { ;
STORED MISPOSITION x(n)
MISPOSITION COMPUTATION AD |
CORRECTION PROCESSOR
DATA
h(n)
ly(n)
POWER D/A
AMPLIFIER POSITION-ERROR
‘ MISPOSITION CORRECTION SIGNAL SIGNAL
SERVO B POSITION FEEDBACK SUMMER
CONTROL VELOCITY FEEDBACK
CIRCUIT
VELOCITY
N CIEEER ESTIMATOR OR
AND COUNT |<— TRACK NUMBER TRANSDUCER
CIRCUITRY

Figure 7 Adaptive Runout Correction System in a Disk Drive Servo

fed back through a summer to the servo compensa-
tor or control circuit. This circuit provides com-
mands to the power amplifier responsible for
driving current into the carriage actuating motor.

The position-error signal, x(n), where n is an
index corresponding to sector number, is also fed
i11t0 a runout or Misposi tion computation processor
with unit pulse response, b (n). This digital signal
processor performs digital circular convolution dis-
cussed below.

The runout or misposition correction signal,
»(n), acts to nullify the effect of runout for the
selected data head and is generated by the proces-
sor. The signal is stored for immediate lookup in a

small random-access memory (RAM) table that con-
tains the stored runout or misposition correction
data. This signal is ideally summed back into the
servo loop through the summer just before the servo
compensator.

The adaptation sequencer provides a trigger to
the runout processor and servo system to enable
runout adaptation for the disk drive as necessary.

Signal Processing Technique

The basic algorithm involves initially two steps:
(1) measuring an integral number of revolutions of
sampled position-error signal, x(n), and (2) averag-

68

No. 8 rFebruary 1989 Digital Technical Journal

Control Systems Technology in Digital’s Disk Drives

ing values obtained across similar sectors on differ-
ent revolutions to extract the repetitive runout com-
ponent only. After these steps, high-frequency
components in the measurements will still exist
corresponding to local media defects or track
anomalies.

These high-frequency components may be elimi-
nated completely by performing digital circular
convolution with a cosine-based sequence. This
approach leaves only the low-frequency sinusoidal
components of the position-error signal. For example,
the first Fourier or fundamental frequency compo-
nent of the position-error signal can be extracted by
convolving it with a cosine waveform of frequency
corresponding to the rotational frequency, 60 Hz.

To nullify the fundamental frequency component
at the point of measurement, the processed position-
error signal is injected back into the servo system.
However, there may be phase lag and attenuation
between the point of correction signal injection and
the point in the control loop where nullification is
desired — the position-error signal. Generally, this
phase lag and attenuation are reasonably well
known, given that servo bandwidth and mechanical
resonances in the structure are much higher in fre-
quency than the repetitive runout components.
Therefore, it is reasonable to expect that a corre-
sponding amount of phase lead and gain could be
applied to the first Fourier component of position-
error signal to produce a suitable correction signal.
The process of individual Fourier component extrac-
tion, phase and gain adjustment, and rejection of
other Fourier components can be easily accomplished
simultaneously. The position-error sequence can be
circularly convolved with a phase-shifted and scaled
cosine wave sequence of appropriate frequency.

1f several frequency components of runout need
1o be corrected, the unit pulse response of the filter
would be the superposition of several correspond-
ing cosines. Each cosine is at the desired frequency
of correction and is individually phase-shifted and
scaled appropriately to compensate for the lag and
attenuation of the closed-loop control system at each
corresponding frequency. Thus, one filter operation
can perform all of the above in one step, indepen-
dent of the number of frequencies to be corrected.

However, the quality of nullification or amount of
correction is limited at this point by the accuracy of
the a priori estimate of closed-loop control system
gain and phase. This limitation is the motivation for
subsequent iteration or adaptation.

By injecting the most recently computed correct-
ing signal and simultaneously measuring the
remaining repetitive runout components in the
resulting position-error signal, a second correcting

signal can be computed using the above method.
When summed with the original, this second signal
will improve the runout correction still further. It is
desirable to be able to iterate indefinitely using this
technique. The system can thus achieve the desired
amount of correction or keep up with very slowly
varying repetitive runout without having to start
fresh at each calibration or adaptation interval.

To ensure convergence to an optimal correcting
signal after an arbitrary number of iterations, it is
important to process the measured position-error
signal in such a way as to reject high-frequency
components. If these components were allowed to
be introduced back into the servo system, they
would tend to build up and cause divergence after
several iterations. This is another problem that this
signal processing method overcomes.

Digital Filtering Formulae

Assume that measured, sampled-data position-error
signal, x(n), for a given tracking data head and data
track is repetitive and is given by:

NJ2)
x(n)=DC + Y Agsin [0 4 g]
fo=]
where
x(n) =x(n+ kN), nand kare integers and 1 <n<N.

N=number of samples/revolution or data sectors/
revolution.

Let the unit pulse response, b(n), of a periodic
digital filter operating on x () be given by:

bmy = 4 4 P g [T

2 Asua dmi(n—1) _]
oo [#1ED gy] 4

2 Ay, Omi(n — 1
2254 o5 ["_(N) —¢.w]

where
Agac is the desired gain of the filter at DC.

Afuna, Qruna are the desired gain and phase lead of the
filter at the fundamental frequency of rotation.

A2na,$2nq are desired gain and phase lead of the filter
at twice the fundamental rotational frequency.

Azra, d3rqare desired gainand phase lead of the filter
at thrice the fundamental rotational frequency.

The above parameters anticipate closed-loop con-
trol system and optional anti-aliasing filter gain and
phase lag. They then individually correct for gain
and lag at each frequency where forced sinusoidal
correction is applied to nullify disturbance errors.

Digital Tecbnical Journal No.8 February 1989

69

Storage Technology

x(n) . ; et
1 1 ¥ L1
Xiyrer (1) : ! !
S
1 L 1 §
(a) 37 41 45 49
L [T ' : : ; : : ' : ; :
1 | ? H ' ! !] ! 4 ' !
. H ' 3) ' / : ! ' ' .
h(n)N ! ! ' ; . ' ! ! ; : Wgy
0 } T 4 T
2 ' ;) ! ! :] i ! ' :
1 i] i ') ! ' 4 | H
! ! ' : ! ; : : . : :
Y IS S T N S R b -¥ YO S
(b) 1 5 9 13 17 21 25 29 33 37 41 45 49
1 :] : ! |
I L
y(n) 0 . - S —
: i I i !
SR |
1 ' 1 1
_, [Soeda od : : :
(c) 1 5 9 13 45 49
2 7 ; 7 ; T y 3 7 r ; ;
A
| H ' ! ' H ! ' ' ! . '
CORRECTED ER e S e S S S S R A
x(n) g0l 28 .
T a3 T 1
| : : '
!] ! H
(d) 3

SECTOR NUMBER - n

Figure 8 Digital Signal Processing Example

The desired correction signal, y (n), is determined
by digital circular convolution:’

2z

g

t

=73 h@iyx[(i+n—2)m0D N+ 1]
=1

[]

s Gt @+ (j)f,md)] +

Y1) = AaDC + Ajnady sin [70

4r(n

= Doy 2+ 'ﬁzm)]+

ArnaA2 Sin [

A»;mAj sin L) + ((,b’) + (bﬁrd)]

6m(n —
5
The resulting periodic correction signal, y(n),
lacks frequency components other than at the fre-
quencies where correction is desired. This is essen-
tial to ensure convergence with iteration.

Example

Figure 8 illustrates the operation of such a filter on
noisy, dc-biased position-error signal, x (n), derived
from a hypothetical 50-sector disk. For clarity, the
first Fourier component, Xz (1), is plotted along
x(n)inFigure 8a.

70

For the case where only fundamental frequency
runout rejection is desired, Az« is nonzero, but Adc,
Arua and Ay, are zero in formulating A(n). This
results in a simple sine wave correction signal, y (n):

Y (1) = Apnad sin [2"('?\,' D@+ ¢ﬁmd)]

‘The filter gain, Apna, is setto unity, and ¢p.q is set
to 45 degrees lead. This can be seen in scaled b (n)
in Figure 8b.

The runout correction signal, y(7n), in Figure 8c
can be seen to contain fundamental frequency
runout information only and lacks the dc bias and
high-frequency components of x(n). Further, it is
phase shifted by 45 degrees to the left compared to
Xfna (1), indicating the proper amount of phase
lead. Figure 8d shows x(n) with y(n) injected into
the servo system. As desired, the fundamental fre-
quency runout is eliminated. The remaining position-
error conuains dc and high-frequency components
only in this example.

No. 8 February 1989 Digital Technical Journal

Control Systems Technology in Digital’s Disk Drives

Microprocessor Implementation Issues

Computational roundoff would seem to be a prob-
lem when adding an arbitrary number of sequences.
However, the long-term effect of roundoff is not
generally serious for applications where word
length is significantly larger than the resolution of
the data converters. If this is not the case, the prob-
lem can be easily solved by occasionally passing the
last-computed correction signal through a Fourier
component extracting filter. The filter passes only
the desired correcting frequencies unattenuared
and without phase shift. Eight-bit A/D and D/A conver-
ters and 16-bit fixed-point arithmetic have proven
to offer acceptable performance for all laboratory
implementations, though more resolution might be
desirable

‘This runout correction method generatesa runout
correction table whose size is the number of sectors
times the number of heads or platters. For example,
a drive with 50 sectors and 15 data heads would
require a maximum of only 750 bytes, or words, of
table lookup.

The amount of on-line computation is limited to
table lookup. The computation involves adding one
number to the D/A converter per sector, independent
of the number of runout frequency components
being corrected. Digital filtering may be done in a
quasi off-line manner. In fact the first laboratory
implementation used an Intel 8085 microproces-
sor, which did not even have multiplication in its
instruction set. This indicates the low computa-
tional intensity and practical nature of this real-time
system.

Adaptation may be triggered by a time scheduler
in the drive microprocessor or by changes in drive
temperature, growth in off-track position error,
error-rate indicators, etc. An adaptation at power-up
is usually a wise choice.

Results in Disk Products

ARCS has been proved both effective in reducing
repetitive runout and essential to the success of
Digital's RC25 and RF30 disk drives and others still
in deve lopment at this writing.

Experimental results using this method of runout
correction indicate that two iterations take out
about 95 percent of the remaining repetitive runout
in the drive. Fundamental and first harmonic runout
correction generally suffice to adequately remove
the repetitive components.

Figure 9 shows how the runout correction system
attenuates the fundamental frequency component
and dc term of the position-error signal in a disk
drive with large runout. In Figure 9a, y (n) is inac-

+1 TRACK
_——
\ ,/ AN
\ y(n) P \\
o\ ,/ AN
/ \
x(n)
V
4
—1 TRACK
(a) No Runout Correction
+1 TRACK
y(n)
pa RN
0 \ o e I\
x(n)
-1 TRACK

(b) With Runout Correction

NOTE:
2 mS PER DIVISION

Figure 9 Adaptive Runout Correction
in a Disk Drive

tive, and the position-error signal is seen to have
substantial runout and high-frequency terms. The
nonrepeatable component of runout can be clearly
seen in this multirevolution time exposure. Figure 9b
shows the position-error signal, x(7), and active
correcting signal, y(n), compensating for both dc
and fundamental runout.

ARCS Summary

A method for adaptive correction of repetitive
runout in disk drives using digital signal processing
techniques has been presented. The method has
found practical application in commercial products

Digital Technical Journal No.8 February 1989

71

Storage Technology

power amplifier

pd controller

auml

actuator

Tae]

0.01

82

sum2
37

Figure 10

and is characterized by its fast convergence, accu-
racy, and very low computational intensity.

Unlike other runout correction schemes proposed
in recent control systems literature, this system
does not require careful selection of tuning parame-
ters.% Because only selected runout frequencies are
corrected, other side effects such as excitation of
actuator resonances and response to nonrepeatable
runout are eliminated.

Digital Signal Processors for Real-time
Disk Servo Control

Digital's RA70 and RA90 disk drives utilize digital
signal processors (DSPs) to control the head-posi-
tioning system. The value of digital control lies pri-
marily in its repeatability and versatility. Case of
unit test and savings in printed circuit board space,
especially critical for smaller drives, have also con-
tributed to the proliferation of this technology in
Digital’s disk products.

The motivation for using digital signal processing
in Digital’s disk drives after adaptive runout correc-
tion and automatic bias force correction was to elim-
inate multistage analog notch filters. Such filters have
been used in disk products to gain-stabilize lightly
damped resonances that appear in the actuator
plant transfer function.

In practice, the use of these devices has grown
considerably beyond even these functions. The use
of DSPs in disk servo control is probably best
exploited in the RA90 drive. In this drive, a Texas
Instruments TMS32020 DSP is additionally responsi-
ble for velocity estimation, quadrature track splic-
ing, position interpolation, calibration of embedded
channel gain and relative head offsets, velocity seek

72

MATRIXx/WS Block Diagram Display

control, dedicated-embedded blending, servo fault
detection, and more.

The hidden benefits of a real-time control proces-
sor for the design engineer include the ability to
rapidly modify control parameters and control
algorithms and immediately test the effects of the
change in the laboratory. This flexibility is particu-
larly important as the drive mechanics are modified
during the product development cycle.

The future appears quite promising for this tech-
nology The use of C compilers for commercially
available DSPs is expected to substantially further
reduce servo design cycle times for products under
development. The performance of single-chip DSPs
is increasing rapidly, and floating-point arithmetic
will greatly decrease execution time, reduce design
time, eliminate tedious scaling procedures, and
make possible sophisticated control algorithms not
easily coded into fixed-point processors.

Practical Servomechanical System
Design Using Modern Control Tools

Advanced developers and product developers in
Digital’s Storage Systems Lngineering groups are
making extensive use of modern control design,
simulation and analysis tools. MATRIXx/WS and DOE-
MACSYMA have been introduced and enhanced by
the Storage Systems Servo-Mechanical Advanced
Development Group for Storage Systems’ needs. An
important part of drive technology advancement
derives from the development of new computer
design tools, and this is an important part of the
advanced development focus.

DOE-MACSYMA is a symbolic math package origi-
nally developed at M.1.T. and now ported to VAX LISP
by Paradigm Associates, Inc. It has found application

No. 8 February 1989 Digital Technical Journal

Control Systems Technology in Digital’s Disk Drives

in control design, circuit analysis, and mechanical
and magnetic design throughout Storage Systems
Engineering. The package provides symbolic mathe-
matical and graphical solutions to many engineering
problems and is being used to form parametric
state-space models from linear differential equa-
tions of physical plants.

MATRIXx/WS is a sophisticated control and signal
processing package derived from Cleve Moler’s
MATIAB and licensed by Integrated Systems, Inc. The
VAXstation version not only has facilities for state-
space control design, but also for the simulation of
dynamic systems which may be concurrently con-
tinuous, discrete-time, nonlinear, and time-varying.
Figure 10 illustrates a very simple disk drive model
as it is displayed on a workstation.

For rapid servomechanical control system design
of plants containing resonant dynamics, it is vitally
important to develop accurate models of the actuat-
ing system to be controlled. In this way, design can
move from the laboratory to the workstation and
proceed at a rapid pace. To facilitate this capability,
intertaces between VAXstation-based MATRIXx and
laboratory equipment such as Hewlett-Packard and
Schlumberger frequency response analyzers’ as
well as other computer-aided engineering packages
such as ANSYS have been developed at Digital.

References

1. M. Sidman, “Digital Servo Design for Rigid Disk
Drives,” Short course presented at Digital Equip-
ment Corporation, 1987, 1988. Course notes.

2. M. Sidman, “Adaptive Misposition Correcting
Method and Apparatus for Magnetic Disk Servo
System,” U.S. Patent Number 4,536,809 (August
20, 1985).

3. G. Franklin and J. Powell, Digital Control of
Dynamic Systems (Reading: Addison-Wesley,
1980): 39

4. M. Sidman, “Adaptive Runout Correction System
for Disk Drives,” Proceedings of the Second ASME
International Symposium on Robotics and Man-
ufacturing Research (1988).

5. A. Oppenheim and R. Schafer, Digital Signal Pro-
cessing (Englewood Cliffs: Prentice-Hall, 1975):
105-109.

6. M. Tomizuka etal., “Discrete-Time Domain Anal-
ysis and Synthesis of Repetitive Controllers,”
Proceedings of the American Control Conference
(1988).

7. F. DeAngelis, “‘ldentification of Electromechanical
Plants from Frequency Response Measurements,”
Master’s thesis, M.I.T., 1988.

Digital Technical Journal No.8 February 1989

73

Alan B. Smith

Magnetic Domain Observations
in Thin-film Heads
Using Kerr Microscopy

In any thin-film recording head, the pole structure must be an effective conduc-
tor of magnetic flux. To achieve this goal, the magnetic domain configuration in
the pole is critical. Engineers developing new bead designs must determine how
these domains are aff ectedby changes in structure, materials, and processing. A
technique, called Kerr microscopy, can be used to actually make these domains
visible. The technique makes use of the rotation of polarized light which occurs
upon reflection from the suvface of a magnetized material. The rotation is very
small, approximately 0.0l degrees, bul can produce a contrast that makes
domains visible if the pro per equipment is used. In addition to a very high quality
polarizing microscope, a sopbhisticated video image-enhancement system is
essential. Digital’'s Magnetic Recording Head Development Group has construc-
ted such a Kerr microscope setup and bhas found it to be a great aid in developing
thin-film beads.

In many applications of magnetic materials, it is
extremely important to know the detailed magncti-
zation distribution on a microscopic basis. One
would actually like to make visible any in the direc-
tion of magnetization Until recendy, the only prac-
tical way to achicve this goal was to coat the samplc¢
with “ferrofluid,” a liquid containing small magnetic
particles. This technique has various disadvantages.
the most important of which is that the surface of
the samplc is contaminated by the liquid. Recently,
another technique, Kerr microscopy, has becn pro-
posed which avoids all the major disadvantages of
using ferrofluid '? We describe here the Kerr micro-
scope constructed by the Magnetic Recording Head
Development Group. As will be explained, the data
that can be obtained with this equipment is
extremely useful in the design and fabrication of
heads for disk drives.

Thin-film Heads

In the RA90 disk drive, data is recorded and rcad
using a thin-film recording head. These hcads are
fabricated using techniques similar to those used in
the semiconductor industry. The result is a head
having the small dimensions necessary to achicve
the high data densities of the RA90 disk drive. For a
further description of this head, sce reference 3. For

74

our purposes here, it is sufficient to consider only
the main features of the head as shown in Figure 1.
As the figure shows, the head consists of magnetic
“poles” that surround a coil. The disk (notshown in
this drawing) is adjacent to the pole tips. During
read, the flux emanating from the recorded data on

Figure 1 Basic Structure of a Thin-film flead

No. 8 February 1989 Digital Technical Journal

Magnetic Domain Observations in Thin-film Heads Using Kerr Microscopy

MAGNETIC MATERIAL UNIFORM MAGNETIZATION

(a) (b)

ISOTROPIC

ANISOTROPIC

K4

Iigure 2 Examples of Domain Configurations
in Thin, Rectangular Bars of Magnetic
Material

the disk is picked up by the pole tips. This flux is
conducted to the coil, producing an output voltage.
For this read process to have the required efficiency.
the whole magnetic structure must be a good con-
ductor of magnetic flux. To achieve this goal, we
require a detailed knowledge of the magnetic state
of the poles. Our Kerr microscope provides the
means for obtaining this data.

Domain Theory

To discuss the state of magnetization in a thin-film
head, it is first necessary to talk about magnetization
processes in general. Let us first consider a thin
rectangular piece of magnetic material (Figure 2a).
If this is a “soft” (i.e.. easily magnetized) material,
what will be its magnetized state in the absence of an
applied field? The answer to this question is not as
simple as it might first appear. The material will not
be uniformly magnetized as indicated in Figure 2b.
If it were, the material would behave like a small
permancnt magnet with a north pole on one end and
asouth pole on the other. Magnetic flux would leave
the north pole and travel to the south pole. filling
the surrounding space with magnetic lines of force.
A large amount of stored energy would be repre-
sented by such a configuration. Therefore. the mate-
rial will not be uniformly magnetized in this fashion.
Instead it will spontaneously break up into areas
with different magnetization directions.

If the matcrial is isotropic, i.e., if there is no pre-
ferred direction of magnetization, it will take on the

configuration shown in Figure 2c. Note that the
magnetization goes head-to-tail around the outside
edges, north pole to south pole. Hence very little
flux exists outside, and the stored energy is low.

Often the material itself has a preferred direction
of magnetization. (We shall later see why this might
be a desirable situation.) In these cases, the magne-
tization pattern is distorted to favor that direction.
An example of such an anisotropic material is
shown in Figure 2d

The ditferently directed magnctized regions in
Figures 2c and 2d are called magnetic domains. The
boundaries between these regions are called domain
walls. (For further information on domain theory,
the reader isreferred to reference 4.)

In a disk drive, the head must respond to rapid
changes in the flux received from the disk. These
flux changes must be transmitted through the poles
to the coil. To transmit these changes, the compo-
ncnt of magnetization in the direction of the pole
axis must change. Because the domain walls cannot
move very rapidly, the required magnetization change
cannot come from wall motion The change must
come. therefore. from rotation of the magnetization.
Hence domains with magnetization already fully
aligned along the axis are not of any use for this pur-
pose Only domains with magnetization transverse
to the axis can contribute to flux conduction

Bearing in mind this need for transversely
directed magnetization, let us look at the domains in
the pole tips of a thin-film head Using the results
from the previous figure, we have sketched thesc
domains in Figure 3 'The first part of this figure
shows the configuration of a magnetically isotropic
material; 3b shows the anisotropic case The config-
uration of Figure 3b is seen to be much more desir-
able than 3a Under the influence of the tlux from
the disk, the magnetization in Figure 3b can rotate
as shown in Figure 3¢

It is thus very important to ensure that the head
has a magnetic anisotropy that makes it resemble
Figure 3b rather than 3a. The Kerr microscope can
provide this vital information. Two examples of
Kerr microscope pictures are shown in Figure 4.
These examples are discussed further in the section
Results; they are presented here to illustrate the
pole tip domains. Figure 4a corresponds to 3a. and
4bto 3b.

The Kerr Effect

Figure 5 shows the basic effect upon which the Kerr
microscope is based. In this figure a beam of polar-
ized light is incident on a magnetic material. The
magnetization direction is indicated by the vector M,
and the polarization direction by the vector L. The

Digital Technical Journal No. 8 February 1989

Storage Technology

(a) (b)

(et)

(h)

Figure 4 Kerr Micrographs of Thin-film Pole Tip Domain Structures (a) Conducts Flux Efficiently

(b) Does Not Conduct Flux Efficiently

reflected beam has substantially the same polariza-
tion as the incident beam. However, there is also a
small component (marked “Kerr”) perpendicular to
the main direction of polarization. This small com-
ponent only exists with magnetic materials, and its
direction depends on the direction of magnetiza-
tion. The presence of this component is the “Kerr
cffect” discovered by John Kerr in 1888. Actually,
there are several different manifestations of the Kerr
effect, differing in the relative directions of the inci-
dent light and the magnetization.” We have shown in
Figure 5 the “longitudinal” Kerr effect, which is the
one most often used for Kerr microscopy.

We can now see how the Kerr effect makes possi-
ble the visualization of magnetic domains. The net
polarization direction of the reflected beam in
Figure S is the resultant of the main and Kerr polar-
izations. The direction is thus very slightly rotated

(about 0.01 degree) from the incident polarization
direction. If the magnetization direction is reversed,
the direction of the rotation is reversed. Therefore,
by placing a polarizer in the reflected beam, we can
obtain different intensities depending on the direc-
tion of the magnetization. Thus the Kerr effect pro-
vides the basis for producing images in which
differently magnetized domains have ditferent inten-
sities. The resultant contrast between the domains
makes them visible (as in Figure 4, for example).
To produce pictures such as those in Figure 4 we
need a setup such as the one in Figure 6. This figure
shows the basic parts of a polarizing microscope. In
one important respect, however, this microscope is
used differently from the way a polarizing micro-
scope is normally used. For Kerr observations, the
incident light must hit the objective off center. This
arrangement ensures that the light reaches the sam-

76

No. 8 February 1989 Digital Technical Journal

Magnetic Domain Observations in Thin-film Heads Using Kerr Microscopy

/ KERR

M—»

Figure 5 The Basic Kerr Effect

VIDEO
CAMERA

ANALYZER

PRISM OR
MIRROR

POLARIZER \

OBJECTIVE —/

LENS

ARC LAMP

SAMPLE

I'igure 6 Basic Elements of Kerr Microscope

ple at an angle, as in Figure S (Therc is no Kerr
cffect if the incident beam mects the sample at a
right angle)

Note that Figure 6 shows a video camera where
one would normally expect an eyepiece. The camera
is used to view the Kerr-induced contrast between
domains. Because the Kerr effect is so small. this
contrast is very slight. In most cases the contrast
cannot even be detected by the human eye. Sophisti-
cated image processing is necessary to make the
domains visible.

Image Processing

As stated above, the Kerr-induced contrast between
domains is very weak. In fact, the contrast is much
weaker than the normal sample features, such as
surface graininess. The method by which this
domain contrast is made visible is described in this
section by reference to Figure 7.

Figure 7a depicts the picture on the video camera.
In this illustration, we assume that a domain wall
runs down the middle of the picture; i.e , the left
side of the figure is magnetized up, and the right side

Digital Technical Journal No.8 February 1984

is magnetized down. Because of the Kerr-induced
contrast. the left side of the picture is darker than
the right. (For the purposes of illustration, we have
made the contrast much greater than it would nor-
mally be As described above, the contrast would
normally be so weak as to be undetectable by the
cye.) In Figure 7a we have also included some little
lines and spots to indicate the minor surtace imper-
fections that are always present. The first step in
enhancing the contrast is to increase the video gain
as much as possible. i.e., do the equivalent of turn-
ing up the contrast on a television set. The amount
of contrast enhancement that can be achieved in this
mannec is limited however. If too much gain is
used. the relatively high-contrast surface features
will overload the video amplifiers, obscuring the
domain contrast. Hence we must turn to sophisti-
cated digital processing techniques to achieve most
of the required contrast enhancement.

The first step in processing is to digitize the
image. The imagc is broken up into picture ele-
ments. or pixels. In oursystem, there are 640 pixels
horizontally by 483 vertically. making a total of
309.120 pixels. Cach pixel is assigned a number to
indicate how light or dark that particular location is
in the picture. Thus any shade from darkest black to
lightest white can be represented by a number. This
“gray scale” is divided into 256 levels, as indicated
in Figure 7b.

Before the contrast can be enhanced digitally,
another important digital processing step must be
performed. We must remove the previously men-
tioned surface features from the picture. Until this
is done. we have no hopc of seeing the weak contrast
between the domains. The surface features can be
removed by the following subtraction process. First
the picture in Figure 7a is digitized and stored in

200

100

(h)

(d) (e)

Figure 7 Television Image at Various Stages
of Enbancement Process

77

Storage Technology

memory. Then a magnetic field is applied to the
sample. causing it to become uniformly magnetized
The resultant picture (Figure 7c¢) is also stored in
memory. Next the corresponding pixels in Figure 7c¢
are subtracted from those in 7a (and 100 is added to
each resultant pixel to bring the result to the center
of the gray scale). This operation produces the pic-
ture shown in Figure 7d. Note that the surface fea-
tures are now absent. Because they were common to
both of the original pictures, they were eliminated
by the subtraction process. Figure 7d is therefore
free of any contrast other than the desired domain
contrast. Thus the image is now ready for digital
contrast enhancement.

Figure 7d contains only shades of medium gray.
Typically. every pixel in the picture has gray-scale
values lying between 95 and 105. To enhance the
contrast. we must expand this range of 10 propor-
tionally until it fills the entire range from 0 to 255.
So 95 becomes 0, 96 becomes 26, 97 becomes 51,
and so on until 105 becomes 255. The result is the
high-contrast image shown in Figure 7e. Here the
domain configuration can readily be seen because all
the area magnetized up appears black, whereas that
magnetized in the opposite direction is white. The
boundary between these areas is the domain wall.

A slightly different method of doing the subtrac-
tion leads to a somewhat different display. In Figure
7c¢ the sample is completely saturated by a relatively
large applied field. Suppose instead that we applied
a small field that only moved the wall a little. The
subtraction and enhancement process would then
yield the result shown at the right of Figure 8a. We
now have a white stripe on a black background, the
stripe indicating the approximate position of the
domain wall. If the polarity of the applied field is
reversed, the domain wall moves in the opposite
direction, as shown in Figure 8b. The resultant image
is the negative of 8a. We will see examples of dis-
plays such as Figures 8a and 8b in the next section.

An important step in the image processing has not
yet been mentioned. Because of the low light levels
and the high video gains we use, some noise is intro-
duced in the images we obtain. This noise looks like
the “snow” seen on a television screen when the sig-
nal is weak. We can reduce this noise substantially by
digitally averaging successive images before doing
any of the other processing. In other words, we do
not use a single video frame for Figures 7a or 7c. We
take from 4 to 128 frames and digitally average them
to produce each image. Since 30 frames are gener-
ated every second, this averaging process does not
appreciably slow down the acquisition of data.

To accomplish the image processing described
above, we utilize a Hamamatsu C1966 image pro-

78

(a)

(b)

Figure 8 Image Obtained with an Applied
Field Less than that Required
to Saturate Sample

cessor under the control of a MicrovAX system. The
MicroVAX system is programmed to initiate all the
image processing functions as well as to switch the
applied magnetic field at the appropriate time. Hav-
ing everything control led by the MicrovAX system is
more than a convenience: it is essential because of
the image subtraction process described above. For
this process to be effective, the images in Figures 7a
and 7c¢ must be absolutely identical (except, of
course, for the domains). Unavoidable mechanical
drift in the microscope will cause the images to dif-
fer unless one is acquired very soon after the other.
A delay of only a few seconds can cause problems.
By using the MicrovAX computer rather than manual
control, we ensure that the minimum time elapses
and good images are obtained.

Results

We have already shown two Kerr images (Figure 4)
as examples of domains in the pole tips of thin-film
heads. We can now look at these pictures again in
light of our discussion of image processing. They
illustrate the two modes of presenting the data, i.e.,
Figure 7e versus Figure 8. The pole tip region in
both Figures 4b and 4a are in the mode of Figure 7e.
However the situation in the wide part of the pole is
different in Figure 4a. The applied field is not suffi-
cient to saturate in this case. The result is that we
see the domain walls highlighted as in Figure 8. In
Figure 4a a higher ficld was used, and we see a dis-
play like that of Figure 7e. Both methods of display
show us the domain configuration, and both can
provide the vital domain information needed in the
design and manufacture of thin-film heads.

As indicated by the arrows in Figure 4, white and
black indicate magnetization transverse to the pole

No. 8 February 1989 Digital Technical Journal

Magnetic Domain Observations in Thin-film Heads Using Kerr Microscopy

(a)

(b)

Figure 9 Kerr Micrograph Illustrating “Flux-beaming " Effect

(i.e., vertical in the figure). Gray indicates magne-
tization along the pole axis. If the sample is rotated
90 degrees with respect to the incident light, this
situation is reversed. Then axial magnetization
shows up as white or black. This situation makes it
easy to see axial components of magnetization and
reveals some very interesting behavior where the
pole tip joins the wider part of the pole. It turns out
that the flux being conducted from the tip does not
spread out immediately to fill the wide part of the
pole. Instead the flux travels in a “beam” at an angle
to the axis. This effect may be clearly seen in Fig-
ure 9a. Reversing the field direction (Figure 9b)
causes the beam to switch to the other side of the
axis. This flux beaming effect has important conse-
quences for the design of thin-film heads and is the
subject of a recent paper .

One final example of Kerr microscopy is pro-
vided by Figure 10. As in Figure 9, the setup is such
that magnetization along the pole axis produces
white and black contrast. The area of interest in this
picture is circled. The line represents a domain
wall. The fact that it changes from white to black
contrast means that the magnetization direction
changes. In domain theory the wall is said to have a
“Bloch point.” The presence of a Bloch point is of
scientific interest and may have some effect on how
the walls behave with high frequency excitation’

Conclusions

Kerr microscopy provides data that is extremely
useful in the design and manufacture of thin-film

heads. This new technique is much more conve-
nient to use and gives better images than the alterna-
tive method (using ferrofluid).

Acknowledgments

We would like to acknowledge Alex Hubert of the
University of Erlangen-Nurnberg for useful discus-
sions on Kerr microscopy. We would like to thank

_' _———--——.‘ ’

Figure 10 Kerr Micrograph Showing Domain
Wall Containing a Bloch Point

Digital Tecbnical Journal No. 8 February 1989

79

Storage Technology

Wa

rren Goller for expert technical assistance in set-

ting up and operating the Kerr microscope and tak-
ing the pictures presented in this paper. We are also
grateful to the Digital Technical Systems Group and
Paul Tesini for skillful programming of the MicrovaX
system that controls the image processor.

References

1.

F. Schmidt, W. Rave, and A. Hubert, “Enhance-
ment of Magneto-optical Domain Observation by
Digital lmage Processing,” (EEE Transactions
MAG-21 (1985): 1596-1598.

. B. Argyle et al., “Optical Imaging of Magnetic

Domains in Motion,” Journal of Applied Physics
61 (1987): 4303-4300.

S. A. Hubert,

3. B. Crane, “Disk Drive Technology Improvements

in the RA90,” Digital Technical Journal (Febru-
ary 1989, this issue): 46-60.

. B. Cullity, Introduction to Magnetic Materials

(Reading: Addison-Wesley, 1972).

Magnetic Domains
Springer-Verlag, forthcoming).

(Heidelberg:

. M. Mallary and A. Smith, “Conduction of Flux at

High Frequencies by a Charge-Free Magnetization
Distribution,” 1988 joint Intermag-3M Conference,
to be published in /EEE Transactions MAG-24.

. B. Argyle, B. Petek, M. Re, F. Suits, and D. Herman,

“Bloch Line Influence on Wall Motion Response
in Thin-film Heads,” Journal of Applied Physics
03 (1988): 4033-4035.

80

No. 8 February 1989 Digital Technical Journal

Reinbard Kretschmer
Siegbert Sadowski

Margin Analysis on Magnetic
Disk Recording Channels

The recording channel of every magnetic disk drive comprises the beads, media,
and the read /write electronics. Digital data is encoded into phase information
on the media and is therefore subject to phase shift, an effect that significantly
limits bigh-density recording. To reduce the raw error rate that results from
phase shift and thereby increase disk drive reliability, Digital’s engineers at
Kaufbeuren, West Germany, developed a margin analysis system operating at
channel level. This system provides direct information about actual disk drive
performance. The efficient phase distribution analysis system was designed to be
fast, comprebensive, and nondestructive to existing disk data. Statistical meth-

ods are applied to analyze the results.

Phase shift, also referred to as bit shift or peak shift,
is the unwanted phenomenon of a shift of the read-
back phase from its ideal position. Errors due to
phase shift are common to all disk drives. Solving
the problem requires that we address the difficult
problem of identifying which part of the drive system
is responsible when error rates exceed acceptable
limits. As part of the solution, Digital’s engineers in
Kautbeuren, West Germany, developed the Phase
Distribution Analyzer (PDA). The PDA is a fast and
time-saving system for production that detects and
analyzes potential failures in the magnetic record-
ing channel long before problems occur.

This paper discusses the PDA and the margin anal-
ysis techniques used in the design and manufacture
of Digital's disk drives. These analysis techniques
serve to enhance drive reliability and data integrity.

Technical Background

In a disk drive there are several sources of phase
shift, such as the heads/media, the read/write chan-
nel, and mechanical positioning system. Especially
dominant are noise sources introduced by the mag-
netic media, the read/write head, and the preampli-
fier. (See Figure 1.) First, media noise is caused
both by the finite volume density of magnetic parti-
cles in one bit cell and, more significantly, by the
particles’ nonuniform dispersion. Second, head
impedance noise is in principle a kind of thermal
noisc. Finally, the decrease in the signal-to-noise
(S/N) ratio caused by the preamplifier can be
attributed to thermal and shot noise.'

HEAD
IMPEDANCE
NOISE

MEDIUM
PARTICLE NOISE

\ PREAMPLIFIER NOISE

SPECTRAL NOISE DENSITY

™

FREQUENCY

Figure 1 Neise Spectrum

Another major source of phase shift is the interfer-
ence of the readback pulses through a combination
of various effects. The electromagnetic interference
of the bit cells distorts signals in phase and ampli-
tude, as illustrated in Figure 2. The solid lines in
this figure represent two pulses as if they were iso-
lated; the dotted line shows the result of their super-
position. Although sophisticated modulation coding
is used to avoid this interference, the trade-off
between desired bit density and tolerated interfer-
ence still leaves us with pattern-dependent phase
shifts. By expanding the bit patterns into Fourier
series, we can understand their phase shift depen-
dence as group delay distortions.

The signal conditioning process in the read channel
is another contributor to phase shift. The analog filter
and amplifier stages that compensate for the read-
back signal deviations may produce imperfections,

Digital Technical Journal No. 8 February 1989

81

Storage Technology

SHIFT

TIME

AMPLITUDE

KEY:

ISOLATED PULSES
——— SUPERPOSITION

Figure 2 Phase Shift Diagram

such as improper pulse slimming or group delay
distortion. In the qualifier that digitizes the pulses,
the exact timing and thus the phase of a detected
peak is influenced by its amplitude. The dynamics
of the synchronizing phase-locked loop (PLL) are
also critical aspects, for example, the PLL’s tendency
to lose lock towards decreasing S/N ratios. Imper-
fect overwrite, adjacent track pickup, and off-track
error are additional sources for phase shift.

Phase margin analysis identifies the net result of
all these influences and their impact on drive per-
formance. To perform this analysis, we measure the
proximity of the individual bit to the error limit and
thus determine the error margin of the drive. This
limit is represented by the boundaries of the data
window which in turn is generated out of the data
by the PLIL. As long as a particular bit is in the proper
data window, the bit can be synchronized to the
clock, and no error is noted. When the data event
crosses the boundary into the next window, the read
decoder decodes false data. A read error immedi-
ately results. As a result of the fixed pass/fail crite-
rion, the system as a whole appears to operate
properly, although its performance is deteriorating.
When a small variation starts moving bits out of the
window, the error rate suddenly avalanches. Phase
margin analysis takes into account the fluctuations
of the bit position. As part of the analysis, we take
several measurements of the individual location of
each bit relative to the fixed time window. The
result is a statistical distribution showing the mea-
sured system’s safety margin, or phase margin,
against the error limit.

Figure 3 shows schematically two different exam-
ples of such distributions. The shaded areas beyond
the window limit represent the different actual error
rates. Comparing now the two distributions at the
same error rate (i.e., equal areas) yields different
phase shift values. Phase margin is then defined as the
difference between the window width and the phase
shift at a specified and fixed error rate. This quan-
tity is generally accepted as a measure of reliability.

An efficient and economical phase margin test sys-
tem has to fulfill several requirements. The system
must be able to

s Take high-speed measurements, evaluating every
individual drive in a short time

= Analyze all flux changes in a given record/track,
as wellasevery existing data pattern

s Perform all operations without destroying disk
data or format

s Take measurements from the data separator’s
point of view

= Enable the user to analyze any physical location
on the disk (cylinder, track, sector)

The development of the PDA system relative to these
requirements is described in the following sections.

WINDOW LIMIT

.

WINDOW MARGIN

A

}

LOG (NORMALIZED EVENT COUNT)

| L !
0 25 50 75|80

DATA SEPARATOR WINDOW
(PERCENT)

KEY:

[F1XeD ERROR RATE CONDITION
[[__] ACTUAL ERROR RATE

Figure 3 Phase Distribution Curve

82

No. 8 February 1989 Digital Technical Journal

Margin Analysis on Magnetic Disk Recording Channels

Phase Distribution
Measurement System

Phase margin analysis can be effected with a variety
of architectures, some of which are commercially
available.? However, these architectures did not
meet several of our requirements. Notably, the com-
mercially available equipment lacked sufficient
measurement speed or destroyed disk data. There-
fore, we decided to develop our own PDA.

The PDA is a high-precision, time-interval ana-
lyzer that measures the positions of individual bits
relative to the beginning of the data window. As
shown in Figure 4, the system consists of high-speed
data acquisition hardware which connects by means
of an IEEE interface with a customized set of com-
mands to a MicroVAX system. The host controls the
drive under test, for example, positioning the drive
to the user-specified physical location. The host
also controls the data acquisition hardware and pro-
cesses the data. Test results can be sent over the
host’s local area network (LAN) interface, DECnet
software, to larger VAX computers for more detailed
statistical analysis.

When the data separator in a disk drive classifies
readback pulses into data windows, it synchronizes
data to the drive system clock. The phase margin at
this point is most relevant to the performance of the
magnetic recording channel. To address all poten-
tial error sources in the magnetic recording chan-
nel, the PDA measures the bit distribution in a
normal production disk drive at this point of syn-
chronization (i.e., phase shift from the data separa-
tor’s view). The positions of the individual bits
relative to the beginning of the data window are
proportional to the phase angle of clock to data. The
PDA divides the data window into 64 bit positions
(bins) and categorizes every data event (flux
change) into one of these positions. The resolution
of every bin is approximately 600 picoseconds.
Every bit position has a counter assigned that counts
the number of bits detected at that position. Figure S
illustrates the resolurion and categorization of the
data event. The capacity of each counter is 2'8 data
events. From the measurement of a large number of
bits and the accumulation of their bit positions, a
phase distribution function, or histogram, is pro-
duced. The analysis of these measurements is dis-
cussed in greater detail in the section Methodology
for Data Evaluation.

To achieve accurate results, the PDA must analyze
a high number of bits. Moreover, to measure every
bit and keep test time within acceptable limits, the
analyzer must absolutely take measurements at a
very high speed. A short test time ensures that the
margin analysis system is cost effective in the manu-

CLOCK
DATA
(SECTORPULSE | o
__ INDEX PULSE UNDER
Aol TEST
BYTE CLOCK
READ GATE
__________ A
|EEE CONTROLLER
|EEE BUS
IEEE CONTROLLER
Ioisk SDI CONNECTION
|CONTROLLER
MicroVAX Il | o —]
SYSTEM | \eTwoRk DECnet TO VAXcluster
| ADAPTER SYSTEM

Figure 4 Phase Distribution
Measurement System

~«——DATA CLOCK PERIOD——
DATA CLOCK —T ~—— 1
|

et <777 - 7
R REARARAR.

totalal-p«t-1-1 1 + & | 163l

PDA COUNTER
NUMBER

Figure 5 Data Window

facturing environment. With the maximum mea-
surement rate of 35 megasamples per second and
the high bin-counter capacity, the PDA system is
able to measure the phase histogram of all bits in a
track within one disk revolution. All RA-family disk
drives. for example, can be analyzed with the PDA.
In addition, the histograms of multiple measure-
ment cycles can be averaged. In this mode, the PDA
also calculates maximum and minimum event count
histograms. Thus even a single bit out of millions
falling out of the data window will be recognized,
which allows the analysis of intermittent failures in
the magnetic recording channel. Unlike other phase
margin analyzers, the PDA does not need to write
test patterns to the drive under test. Therefore the
user can analyze any existing data pattern on the
disk. This ability is especially suitable for the analy-
sis of time-dependent parameter changes. Such

Digital Technical Journal No. 8 February 1989

83

Storage Technology

changes may occur over a longer period of product
run-time as a result of degradation of the heads/
media interface.

Methodology for Data Evaluation

As described above, phase distribution measurements
determine the location of every single bit relative to
a fixed time window. The time scale is partitioned
into k bins, and the PDA system just counts the bits
that fall into each time-bin.

Let x,, x2,..., X denote the midpoints of the
time-bins, and N, NV, ..., Nrthe corresponding bit
counts. Graphically represented, this is a histogram
showing the frequency distribution of the bits in the
time window.

The next step is to extract the relevant informa-
tion about the performance of magnetic recording
systems. Two important performance measures are

= The error rate, which is the probability that a bit
will be found outside the proper window

= The phase margin, which is the safe distance
between the window width and the phase distri-
bution curve at a given error rate

Due to the very low error rate, these figures are not
directly available from the measured distribution. A
suitable model is therefore used to extrapolate the
measurements. Assume the bit positions are gener-
ated randomly according to a probability density
function f(x). The shape of this function is influ-
enced by the pattern written on the disk and by sev-
eral components, as discussed in the section
Technical Background. Noise is also present, which
can be modeled as a Gaussian distribution.* Assum-
ing that several effects superimpose each other,
J(x) is expanded into several Gaussian densities
gi(x).
Let a; be the contribution of g,;(x) to f(x) thus

S(x) =2 a;gi(x)

with

0<a;<land2a,-= 1.
{

The estimation of the model parameters and hence
the determination of that function f(x) which best
fits the (standardized) histogram data are achieved
with a minimization program: Find Gaussian density
parameters and contributions a; such that

R
> (Ni/N = f(x7))*/AN; = minimal
i=1
where AN; specifies the measured standard error of
N_fand

k
N=YN,.
J

This method is known in physics under the nota-
tion Chi-square-fit and is equivalent to the usual
weighted least squares regression. The method is
also asymptotically equivalent to the well-known
statistical method of maximizing the likelihood
function.

The simple model described before is adequate
for the general description of the system perfor-
mance (e.g., error rate). Special care is taken to
appropriately represent the tails of the distribution;
these extreme values are often caused by spurious
eftects and determine the system margin, and ulti-
mately, the reliability.

With the knowledge of f(x), the performance
measures are easily determined: The actual error
rate of the drive is given by

[ee]
actual error rate = f J(x).

windor lirnit

Since the error margin is the save distance
between the window width and the phase distribu-
tion curve (compare with Figure 3), it is deter-
mined according to
windou: linut

S(x) + f J(x) = error rate (spec.).

error margin windou timit

The statistical estimation procedure also gives the
relative errors of all parameters involved. Hence
with error propagation formulae or a Monte Carlo
simulation, it is possible to obtain confidence limits
for the estimated performance measures.

The mathematical methodology described above
reduces the many single measurements into a few
significant parameters that give the relevant infor-
mation. With this kind of extrapolation, we can
accurately estimate the margin and the magnetic
recording channel drive error rates.

System Integration

As described in the section Phase Distribution Mea-
surement System, the PDA hardware system was
designed to handle large amounts of data. For exam-
ple, it measures about 10’ data events per measure-
ment cycle. The complete characterization of a
typical disk drive requires about 10” such cycles. To
be a valuable tool, the system must subsequently
process the large data samples and perform the
sophisticated statistical analysis quickly.

To meet the manufacturing process needs for
high-volume throughput and automated testing, the
PDA hardware system and the mathematical treat-
ment of the data were integrated into one homoge-
neous and complete data measurement and analysis
system. A menu-driven software package developed

84

No. 8 February 1989 Digital Technical Journal

Margin Analysis on Magnetic Disk Recording Channels

DRIVE
UNDER
TEST

PDA

MicroVAX |l
SYSTEM

DECnet

l

NEW
DATA
AREA

* vaxciuster
SYSTEM MANUAL
ANALYSIS

SYSTEM

AUTOMATIC
ANALYSIS o
SYSTEM AREA

b

PRINTER /° f—= \‘{
— e

/
|

— - o o.g

- —’

RESULTS

GRAPHICS
TERMINAL

BAD
DATA
AREA

(USING
RS/1)

(USING
RS/1)

RESULT
DATA
AREA

Figure 6 The Automatic and Manual PDA Data Analysis System AMPAS

for this purpose controls the entire data chain from
data collection and reduction up to statistical analy-
sis and interpretation. The process is illustrated in
Figure 6.

The PDA MicroVAX system creates files in ASCl
format. These files are then transferred to a large
VAXcluster system where they are converted into
RS/1 tablesand processed through various RS/Explore
procedures. (RS/Explore and RS/1 are designed
for data management, analysis, and statistical inter-
pretation.)

The procedures are written in Digital Command
Language (DCL), PASCAL, and RPL (a programming
language implemented in RS/Explore). RPL was
chosen because it provides full access to the statisti-
cal and graphical subroutines of RS/Explore. A set of
RPL programs performs the curve fitting proce-
dures, limit checking, and error calculations, and
generates summary tables.

The benefits of the system to users are as follows:

s The menu-driven design allows automated mea-
surement and data analysis routines to be created
for the manufacturing environment.

s The design gives engineers the flexibility to cre-
ate special engineering tests and to make individ-
ual investigations.

s Several users can use the system at the same time.

= The summary tables are stored in a database. The
margin history of every individual HDA (head-
disk assembly) and magnetic recording channel
is maintained for the whole product lifetime.

Range of Application
The useful application of the PDA can be success-
fully demonstrated in several areas:

s Processimprovement, control, and reliability
s Design and component qualification
s Long-term product behavior

This new test tool was integrated in Digital’s Kauf-
beuren manufacturing process and is now being
used as a process control instrument and failure
analysis tool. It is also used for specific engineering
tasks at engineering sites in Colorado Springs and
Kaufbeuren.

Manufacturing in particular derives great benefit
from the PDA system. In the manufacture of high-
technology products, two of the most important
requirements are process stability and total quality
control. Although strict tolerances for the assembly

Digital Technical Journal No. 8 February 1989

85

Storage Technology

10

. NORMAL

F 08 CONDITIONS

wd

o

S o6 \

g 1 ; IMPROVED

2%

. 136. o CONDITIONS

> | ;

< : 3

3 | 1

302 ; !

S | 1

2 { |

o 0.0] L i —
0 50 100 150

MARGIN IMPROVEMENT (PERCENT)

Figure 7 Result of Process
Optimization

-
o
1

>
E
—
F | HEAD SAMPLE 1
<
[as)
Q
& HEAD SAMPLE 2
a
5 0.5
pd
=
<
.
2
s
3
! I |
00 0 50 100 150

MARGIN IMPROVEMENT (PERCENT)

Figure 8 Comparison of Different
Head Samples

process are required, the interaction of complex
system parameters may induce problems that result
in lower product quality and poor long-term manu-
facturing efficiency. Such problems can occur even
if fluctuations are minimal. Therefore knowledge of
the impact of critical process steps on product per-
formancc is the key to successful process design and
control

A graph showing the PDA contribution to process
reliability and improvement is given in Figure 7.
The process used in this comparison is servo writ-
ing, which is the critical process step in disk drive
manufacture. In this process, specific patterns are
written on the media; these patterns accurately
regulate the positioning and seeking of the read/
write heads. Figure 7 compares measurements made
before and after tests to improve this critical pro-
cess step by adjusting write curcents and mechani-
cal properties of the servo write tool. The system
performance shows significant margin improve-
ment of about 36 percent.

As shown in the Figure 7 example, the PDA can
measure and quantify the effect of the servo writing
process on system performance. Moreover the PDA
provides reliable engineering data within minutes
abourt the success of the optimization. Measuring
those effects with traditional test methods is
impractical in terms of time and the number of
drives needed to accumulate the necessary run-time
to check drive error rate differences. The rapid
determination of drive performance and error rate is
the key to the PDA success. Lnsuring an error rate of
less than 107", for example, would take several days
with traditional methods. This compares to a few
minutes with PDA margin testing. As a consequence
of its speed, this methodology allows certification of
every individual disk drive at a relatively low cost

Another example of the use of the PDA for design
and component qualification is the investigation of
different read/write heads. To determine the most
efficient head for a given disk drive design, different
head technologies can be compared, as shown in
Figure 8. The data provided by the PDA enables
engineers to quantify the differences very quickly
andto attribute system performance to the responsi-
ble components and their parameters.

Another application for the PDA system is the
investigation of performance stability. For this pur-
pose, margin measurements of drives with different
loads and run-times are compared for changes over
time. Adequate statistical and physical models that
simulate the dependencies are then used to extrapo-
late measurements and predict the reliability per-
formance over time. To ensure that a disk drive is
not subject to heads, media, and mechanical degra-
dation, application of the margin methodology is
prerequisite, because even very small effects, if
they occur, must be detected and quantified. The
alternative to this approach is to measure the raw
error rate — an experiment that can take several
weeks and requires the use of many drives. In con-
clusion, margin measurements help us to provide
sufficient product and process margin over the
whole productlifetime.

Summary

Margin analysis at channel level is an efficient
method to determine performance and reliability of
high-density magnetic recording systems. The high-
speed Phase Distribution Analyzer has been extended
into a comprehensive test and analysis system for
useful application in Digital’'s manufacturing environ-
ment. The margin analysis system — data collection,
analysis software, and a sophisticated methodology
— makes a significant contribution to data integrity
in Digital’s disk drives.

86

No. 8 February 1989 Digital Technical Journal

Margin Analysis on Magnetic Disk Recording Channels

Acknowledgment References

The Phase Distribution Analysis System is the result 1. Y. Tahara, Y. Miura, and Y. lkeda, “Peak Shift
of work supported by many individuals in several Caused by Gaussian Noise in Digital Magnetic
engineering groups at Digital Cquipment Interna- Recording,” Electronics and Communications in
tional, Kautbeuren. The authors wish to thank Japan, vol. 59-C (10) (1976): 77-806.

everyone who contributed to the project, in particular

Stephan Bolz, Hermann Eiting, Margit Eschbaumer,

Dr. Wolfgang Fehse, Hans Grapenthin, Manfred

Haug, Dr. Matthias Heiden, Heinz Herbrik, Dr. Hans-

Dieter Klein, and Franz Kuess. 3 L. Katz and T. Campbell, “Lffect of Bit Shift on
Error Rate in Magnetic Recording,” /EEE Transac-
tions on Magnetics, vol. Mag-15, no. 3 (1979):
1050-1053

2. N. Mackintosh, “A Margin Analyzer for Disk and
Tape Drives,” JEEE Transactions on ¥agnelics,
vol. Mag-17,no. 6 (1981): 3349-3351.

Digital Technical Journal No. 8 February 1989 87

T'K Rengarajan
Peter M. Spiro
William A. Wright

High Availability Mechanisms
of VAX DBMS Software

VAX DBMS software manages large, complex databases and ensures bigh system
availability. In a VAXcluster environment, DBMS allows concurrent, multiple-
node database access. Cooperating nodes and user processes communicate
through VMS lock value blocks. DBMS simulates cluster-wide shared memory by
using node global sections, shared disks, and the VMS lock manager. Recovery
Sfrom system failures is coordinated by database monitor processes executing on
different nodes. A sopbisticated lock protocol enables failed transactions to be
recovered on surviving nodes. Long-term database availability is achieved by
afterimage journaling (Al]), which enables recovery from media errors. In
addition, an on-line backup facility allows concurrent database access during

database backup.

VAXcluster systems offer a more available and exten-
sible computer configuration than standalone com-
puters. Because individual computers can join and
leave a VAXcluster system without stopping other
cluster members, the system provides high com-
puter availability. Moreover, the computing power
of these closely coupled, distributed systems can be
easily extended by the addition of standard Digital
computers.' This combination of high availability and
increased CPU power along with the benefits of shared,
inter-node access to a set of disks makes VAXcluster
systems an excellent computing environment.

VAX DBMS Environment

VAX DBMS software is Digital’'s CODASYL database
management system. It provides complete database
services in the centralized VAXcluster environment
in a seamless and transparent manner.” This envi-
ronment, illustrated in Figure 1, consists of three
basic entities:

= The database itself — A DBMS database consists of
a root file and multiple data files, the number
and size of which depend on the database design.
The root file contains database metadata and
transaction control information. Actual user data
is stored in the data files. All these files contain
specific DBMS formats and are accessed by means
of the $Q10 system service (which queues an 1/0
request to a device).>* For the database to be
accessible from all nodes in the VAXcluster sys-
tem, all the database files must reside on cluster-
wide disks.

= The database users — A VAX DBMS user isany VMS
process executing an application that accesses a
DBMS database. The application’s executable
image includes calls to the VAX DBMS run-time
system. As a result, DBMS coordinates the database
page buffers and database locks of these individ-
ual users in order to maintain data integrity.

= The DBMS monitor processes — On each node, a
process, called the DBMS monitor, is started at
system startup time. The monitor’s major respon-
sibility is detecting failures and initiating the
necessary recovery processes on behalf of failed,
incomplete transactions.

The Challenges of VAXcluster Systems

The distributed character of VAXcluster systems
complicates the implementation of full database
management capabilities. Nevertheless, VAX DBMS,
facilitated by the VMS lock manager, overcomes
these difficulties. For example, DBMS transparently
recovers a failed node’s outstanding database activity
on one of the remaining nodes. Complete data con-
sistency and integrity are assured.

This paper is divided into three major sections.
Each describes the mechanisms used by the VAX
DBMS software to solve a difficult database manage-
ment challenge posed by the vaXcluster system.’
These are

= Sharing data between processes across nodes, a
mechanism that is a prerequisite to resolving the
following two items

88

No. 8 February 1989 Digital Technical Journal

High Availability Mechanisms of VAX DBMS Software

NODE X

USER 1

DBQ.EXE

USER 2

APPL.EXE

DBMS
MONITOR

NODE Y

USER 3

APPL2.EXE

USER 4

DBQ.EXE

DBMS
MONITOR

DB_AREA1.DBS DB.ROO DB.AREA3 DB.RUJ DBAW
DB_AREA2DBS (ROOT)
Figure 1 VAX DBMS Environment

= Transparent cluster failover and database recov-
ery, which allow high database availability and
data integrity

= After-image journaling (AIJ) and database backup,
which ensure high availability in the presence of
database media errors

Fulfillment of these requirements is necessary in a
fully functional database management system. The
mechanisms are implemented in the KODA subsys-
tem of the VAX DBMS product.

Data Sharing in a VAXcluster System

Before VAXcluster systems were introduced, VAXDBMS
software used VMS global sections extensively for
sharing data. VAX DBMS users shared the contents of
the database root file by mapping the file to a global
section. Updates to this global section were syn-
chronized by the VMS operating system. Once an
update was made, all users immediately saw the
updated information.3

In a VAXcluster system, however, there is no
shared memory between nodes. Therefore global
sections alone cannot be used to share data among
users on multiple nodes. Instead, DBMS relies on two
methods for sharing data between nodes: shared disks
and lock value blocks provided by the VMS lock
manager. Where possible, DBMS uses lock value
blocks.*¥ However, for large packets of data, shared

disk access is used. In the next two sections, we
describe each method.

Sharing Disks Using Cluster-wide
Global Sections

Without cluster-wide global sections, a simple solu-
tion for sharing data would be to always access
shared disks. However, this is inefficient in a trans-
action processing environment. What is needed is a
way to optimize the accessing of shared data on
disk. The VAX DBMS engineering group devised a
technique of caching shared information on each
node. This technique utilizes global sections per
node, cluster-wide disks, and the VMS lock manager.
Figure 2 illustrates this technique.

When the first user on a node attaches to a data-
base, DBMS copies the database root file information
to a VMS page-file global section, called the TROOT
(temporary ROOT). All users of the same database
on one node share the same TROOT global section.
Since each node in the cluster can have its own
TROOT global section, the problem lies in keeping
all these TROOT copies consistent. This is the classic
cache coherency problem. Figures 3 and 4 illustrate
how DBMS solves this problem.

The coordination is accomplished by the DBMS
object manager. The root file is broken up by data
structure into objects. Each object has & VMS lock

Digital Techmnical Journal No. 8 February 1989

89

Storage Technology

NODE X

MONITOR

NODE Y

MONITOR

ROOT FILE

Figure 2 Cluster-wide Global Sections

associated with it. The object manager uses this
lock to synchronize the readingand writing of a root
file object. The object manager ensures that the lat-
est copy of each object exists in the root file on disk.
As a result, the other nodes are always able to access
the latest copy of the object from the root file when
their copies need to be refreshed. To read an object,
the object manager acquires the object’s lock in pro-
tected read (PR) mode. Its lock value block con-
tains the object’s current version number. This
version number corresponds to the latest copy of the
object in the root file. The TROOT contains a copy of
the object and a version number corresponding to
that copy. If the versions are the same, then the
TROOT object is up to date. If not, the object man-
ager reads the object from the root file into the
TROOT. Then, it updates the TROOT object’s version
number to the version number that is in the lock
value block. This indicates the TROOT object is up
to date. DBMS demotes the object’s lock at this point.
Figure 4 illustrates the case of a node refreshing its
version of an object from the root file because an
update on that object took place.

To update an object, the object manager requests
the object’s lock in protected write (PW) mode.

Once granted, the object manager checks to make
sure the TROOT copy on this node is up to date. If
not, it reads the new object in from the root file.
Then, DBMS makes the changes to its copy of the
object in the TROOT and writes these modifications
out to the root file on disk. Finally, the object man-
ager increments the object’s version number in both
the TROOT and the object’s lock value block. The
lock is then demoted. The updated version number
in the lock value block renders the TROOT copies of
this object on the other nodes obsolete. Figure 3
illustrates this update operation.

Sharing Data in Lock Value Block

To share small data in a VAXcluster system, VAX DBMS
software uses the VMS lock manager and lock value
blocks. A 16-byte value block associated with each
resource functions as a small piece of global mem-
ory that is atomically updated.> However, lock value
blocks are volatile; for example, their contents can
be lost (become invalid) when a process holding
this lock in either PW or exclusive (EX) mode termi-
nates abnormally.* When problems such as this
occur, DBMS must be able to reestablish the values
from other sources — usually from data on disk. In

90

No. 8 February 1989 Digital Technical Journal

High Availability Mechanisms of VAX DBMS Software

NODE X LOCK B NODE Y
_8
\JEP\S\ON
USER 1 1 2
TROOT
3
N - -
/¢
O/v§9 B L8 COUPLER
4
L L]
DBMS DBMS
MONITOR MONITOR

ROOT FILE

Y

Acquire object B's lock in PW mode. Read lock value block.

Write object back to root file

@OEOOO ;

Increment tock value block and release.

Compare lock's version to TROOT's object version. The same.

Make changes to TROOT object. Also increment its version number

Figure 3 Updating the Cluster-wide Global Section

fact, recovering from the loss of value blocks is an
integral part of making these algorithms robust.

A primary example of DBMS’s use of lock value
blocks is the way in which it distributes time as a
monotonically increasing number. VMS time and date
stamps are not synchronized across the VAXcluster
nodes. Therefore, the VAX DBMS development group
devised a cluster-wide, monotonically increasing
clock mechanism called the transaction sequence
number (TSN). TSNs identify database transactions
and are used extensively throughout DBMS. For
example, each record in the after-image journal file
(discussed later) is marked with the TSN of the
transaction in which the update occurred.

The next TSN to be allocated to an update transac-
tion resides in the database root file. To avoid the
obvious bottleneck of reading and updating the root
file every time a TSN is needed, VAX DBMS software
acquires a block of TSNs, currently eight TSNs, each
time it accesses the root file’s TSN object. This is

done by incrementing the root file’s TSN object by
eight instead of by one.

A DBMS lock, called the RWROOT lock, is used to
synchronize the distribution of this block of TSNs.
The lock value block holds the next TSN to be given
out. If the lock value block is lost, no damage
occurs; only the remainder of the current group of
TSNs is wasted. DBMS simply reads the next group of
TSNs from the root file and refreshes the TSN value
in the lock value block with thisnew TSN.

When a new update transaction begins, DBMS
acquires the RWROOT lock in PW mode. This makes
the distribution of TSNs single-threaded. The cur-
rent TSN in the lock value block is assigned to this
transaction. DBMS increments the TSN in the lock
value block. If this value is still within the current
group of TSNs, DBMS demotes the lock so another
user can acquire a TSN. Otherwise, the current
group of TSNs is exhausted. DBMS reads the next
group of TSNs from the root file and refreshes the

Digital Technical Journal No. 8 February 1989

91

Storage Technology

NODE X

DBMS
MONITOR

Acquire object B's lock in PR mode. Read lock value block

Compare lock’s version to TROOT's objectversion. Different.

Update TROOT object’s version number.

OICHOACION

Release the lock. The read is complete

NODE Y

DBMS
MONITOR

Read newer version of object from the root file on disk in TROOT's object. This is the data to use.

Figure 4 Reading the Cluster-wide Global Section

current TSN in the lock value block before demoting
the RWROOT lock.

Database Recovery

In the previous sections, we described two general
mechanisms for communication used by VAX DBMS
software in a VAXcluster environment. Both these
mechanisms are used in the VAX DBMS recovery strat-
egy to provide the properties of atomicity, con-
currency, isolation, and durability for database
transactions. These properties are referred to as
ACID properties in the literature on this topic.

[nclusion of these properties means that no trans-
action sees uncommitted updates made by other
transactions. All updates to the database performed
by committed transactions are guaranteed to be in
the database. The various software and hardware
components of the system may fail at any point in
time, in which case the uncommitted transactions
are rolled back.

Following is a simple scenario of how failures can
compromise transaction properties in a database

system. If two users on two nodes want to update
the same record in the database, the first user is
granted the lock on the record, and the second user
waits for the same lock. Suppose the first node fails
atthistime. The VMS lock manager releasesthe lock
held by the first user and grants the released lock to
the second user. The second user may now see
uncommitted updates to the database made by the
first user. This is a violation of the ACID properties of
transactions.

VAX DBMS prevents such inconsistencies. Database
recovery in a VAXcluster consists of four distinct steps.

1. Failure is detected

2. All user locking activity on the database is
stopped.

3 The updates made by failed transactions are
undone

4. All users continue after recovery is complete.

In the sections that follow, we describe the steps
in the VAX DBMS recovery strategy’.

92

No. 8 February 1989 Digital Technical Journal

High Availability Mechanisms of VAX DBMS Software

Step 1: Failure Detection

VAX DBMS maintains the integrity of the database in
the event of several types of failures possible in a
VAXcluster system. First, such failures must be
detected; they cannot be predicted. There are three
basic types of failures.

s Abnormal termination of a user image. For exam-
ple, the user maytype control-Y atany time to stop
the execution of the application program. Or the
VMS process may halt for a variety of reasons.

s Node crash. A VAXcluster node may crash as a
result of hardware failure.

s Cluster crash. The whole vAXc luster system may
crash as a result of hardware or power failure.

We describe in the next three sections how these
three kinds of failures are detected.

Detecting Abnormal User-image Termination
User-image termination is detected by using the VMS
lock manager and the DBMS termination lock. When
a user process attaches to a database, it acquires its
termination lock in PW mode. The DBMS monitor
process on the same node also enqueues a request
for the same lock in PW mode, which is not granted
since it is incompatible.

Normally during a user-image rundown, the VAX
DBMS software releases all DBMS locks owned by the
user. However, in the event of an abnormal image
termination, the transaction must be recovered
before the release of the database locks. Therefore,
at image rundown, a kernel mode routine is invoked;
the termination lock is demoted to null (NL) mode,
and a request is queued for promotion to PW mode
again. As soon as the lock is demoted to NL mode,
the monitor is granted the PW mode lock that was
pending. Thus the monitor detects the failure of the
user process. Since the monitor now has the PW
mode lock and the user process has enqueued a
request for the same lock in PW mode, the user pro-
cess is temporarily stalled. While the user process is
still stalled, the monitor proceeds with the rest of
recovery. We refer to this monitor that coordinates
the recovery as the recovery monitor.

Note that recovery of abnormal user-process ter-
mination is handled in the same way as abnormal
user-image termination, since VMS performs image
rundown before process deletion.

Detecting Node Crash in a VAXcluster System

The method described above to detect process fail-
ures cannot be used to detect node failures. In a
VAXcluster system, no mechanism can stall the

release of locks held by the processes on the failed
node. When a vaXcluster node fails, all locks held
by the processes on the failed node are released in an
uncontrolled manner by the VMS lock manager. This
characteristic may compromise database integrity.
Hence, node failures must be detected by all user
processes of the database. Note that the crash of a
monitor process on any node is considered to be the
same as the failure of that node for recovery purposes.

The DBMS deadman lock enables all user pro-
cesses and other monitor processes to detect the
failure of a monitor process. A special option of the
VMS lock manager is used to make sure that the
deadman lock is released earlier than the other data-
base locks.

There is a deadman lock for every monitor pro-
cess attached to the database. A unique monitor
identifier (MONID) is assigned to the monitor when
it attaches to the database. The MONID is recorded in
the MEMBIT bitmap in the database root file.

The name of the deadman lock comprises
a prefix which denotes the lock as being a dead-
man lock and the MONID of the monitor that is
attached to the database. This is represented as
<DEADMAN,MONID>. Each monitor seizes an EX
mode lock on its deadman lock when it attaches to a
database. To detect failure of a monitor with
MONID=M1, all user processes and other monitor
processes attached to the same database request a PR
mode lock on the lock <DEADMAN,M1 >. This lock
is not granted until the monitor with MONID=M1
fails and releases the EX mode lock. But as soon as
monitor M1 fails, all user processes and monitors
are granted the PR lock, since a PR lock is compatible
with another PR lock. Therefore, when a user pro-
cess is granted the < DEADMAN,MI > Jock in PR
mode, the process assumes the monitor M1 has failed.

The selection of the recovery monitor is decided
with the help of a DBMS lock called the membership
lock. There is only one membership lock for a data-
base. Holding this lock in PR mode means that the
monitor knows the current contents of the MEMBIT
bitmap. During normal operation, all monitors have
a PR mode lock on this lock. Whenever a monitor
attaches to or detaches from a database, the monitor
must obtain this lock in PW mode to include its
MONID in the MEMBIT bitmap.

Upon detection of a node failure, all the monitors
that detect the failure demote their membership
lock for the database to NL mode. They then try to
obtain a PW mode lock on the same lock. Only one
of them can obtain the lock, and that monitor
becomes the recovery monitor. The recovery moni-
tor identifies all other monitors attached to the same
database by checking the MEMBIT bitmap. It then

Digital Technical Journal No.8 February 1989

93

Storage Technology

determines whether each of the monitors attached to
the same database is active by checking the deadman
lock for each monitor. The recovery monitor checks
the list of all active database users in the root file for
the failed monitors and starts a database recovery
(DBR) process to recover each of these users.

Detecting VAXcluster Crash A crash of the whole
cluster cannot be detected until the VAXcluster sys-
tem is rebooted. The detection of the VAXcluster
failure comes only after user lock activity has been
stopped implicitly by the crash. When the first user
tries to use the database, the user process sends a
mail request to the monitor on its node to attach to
the database.

The VAXcluster crash is detected only when the
first monitor attaches to the database. The recovery
monitor is the first monitor that attaches to the data-
base after the VAXcluster reboot.

As in the case of a failed node, the recovery moni-
tor determines all failed monitors from the MEMBIT
bitmap. In this case, all the monitors that were
attached to the database prior to cluster failure must
have failed. It then creates DBR processes one by one
for all failed users.

Step 2: Database Freeze

After failure is detected, the recovery monitor starts
a DBR process for each failed user transaction. The
DBR process uses the DBMS freeze lock to begin a
database freeze. We define a database freeze as the
state when no more locking activity is allowed on
the database. There is one freeze lock per database.
Database freeze is understood to be in effect if a
user process cannot obtain a PR mode lock on the
freeze lock.

Whenever a DBR process starts execution, it tries to
freceze the database by enqueueing a request for a PW
mode lock on the database freeze lock. (A database
freeze is always requested by a DBR process except
in the case of a VAXcluster crash. When a cluster
crashes, the recovery monitor process prevents all
user lock activity simply by not granting any request
to attach to the database until recovery is complete.)
All active database user processes are given a block-
ing asynchronous system trap (AST) by VMS; user
processes then demote their freeze lock to NL mode
and thus cooperate in ensuring the freeze. The data-
base freeze is in effect after that request is granted.

A database freeze can happen at any time. There-
fore, every user process checks to see if it still has
the freeze lock in PR mode after obtaining each
database record lock. If a database freeze is in
effect, the user process releases the record lock and
stalls until the unfreeze.

Step 3: Undo of Uncommitted Updates

After the database freeze has been established, the
DBR process performs the recovery of transactions.
The recovery procedure is exactly the same as exe-
cuting the ROLLBACK command to voluntarily abort
a transaction. VAX DBMS uses the “undo/no-redo”
recovery strategy to ensure the integrity of the data-
base.¢ Key to this strategy is the recovery unit jour-
nal (RU)) file. One RUJ file exists for every database
attach. The RUJ file must be available to recovery
processes on any node and therefore must be on a
disk accessible from all VAXcluster nodes.

During normal operation, the RU]J file is updated
by a user process in the following manner. Before an
update takes place, a process locks the record in the
database to be updated. The process then writes the
current value of the record to the RUJ file and
updates the record in memory; only then can the
updated record be flushed to the database. The log-
ging of before-images of records to the RUJ file is
optimized such that only one 1/0 is needed for typical
OLTP (on-line transaction processing) transactions.

The DBR process reverses the transaction updates
to the database by looking through the RU) file and
installing the before-images of updated records. The
operation of installing the before-images of records
is idempotent; that is, the operation can be exe-
cuted any number of times and provides the same
result as executing the operation once. Therefore, if
a failure occurs during such a recovery operation,
the recovery process can safely start again.

Step 4: Database Unfreeze

After the DBR process has recovered the failed trans-
action, the unfreeze is triggered. The DBR process
demotes the freeze lock for the database to PR
mode. After this demotion, all the user processes of
the database are granted their outstanding requests
for PR mode locks on the freeze lock. The unfreeze
is then complete and the user processes can now
proceed with database activiry.

After-image Journaling
We have described how DBMS utilizes an RUJ log to
recover from abnormal process termination and sys-
tem failure. However the recovery mechanisms only
back out uncommitted transactions, they do not
allow the system to recover from media errors.
Atany pointintime, the collection of data files on
disk constitutes the state of a DBMS database. That is,
the disk files reflect all committed updates made to
the database. If one of the database disks becomes
corrupt, the database system must ensure that all
committed data is once again reflected in the files
on that disk.

No. 8 February 1989 Digital Technical Journal

High Availability Mechanisms of VAX DBMS Software

As a simple example of the problem, consider an
automatic teller machine (ATM) system which serves
a large city. Assume the database is backed up each
morning at 3:00 AM., when no one is accessing the
system. This backup is an exact copy of all commit-
ted data in the database at that moment in time.
Throughout the course of the day, people use the
ATMs to perform a variety of transactions (debit,
credit, transfer, etc.). If there is a disk crash at
11:45 AM., all the updates committed between
3:00and 11:45 could be lost.

DBMS recovers from this scenario by keeping a log
(Al file) of all committed database updates. After a
media failure, it is possible to reconstruct the data-
base by first restoring the database backup and then
reapplying all the committed transactions stored in
the Al) log. The reapplication of transactions from
the Alj file is called roll-forward.

In DBMS, there is one Al) file per database. Before
a wransaction can commit, all its updates must be
retlected in AlJ records which are stored in the Al)
file. In addition, DBMS flushes a commit record for
the transaction to the AlJ file. Consequently, the Al)
file will always contain the necessary information to
redoany completed transaction.

To simplify the roll-forward operation, the Al]
mechanism utilizes one log for all database users.

Considerations for Journaling in
the VAXcluster

All database updates are Jogged to one AlJ file. The
etficient coordination of a single file among many
users presents a number of difficulties. We outline
the concerns here and describe below the DBMS
implementation that addresses these.

First, the record management services (RMS) of the
VMS operating system do not support shared sequen-
tial files efficiently enough to allow high through-
put for the database system. That is, since each
update transaction must write AlJ records, the 1/0s
needed for flushing Alj records must be minimized.
(In fact, at the time DBMS implemented VAXcluster
support, RMS did not even allow this capability.)

Second, it is desirable to have a design in which
each process attached to the database shares the
responsibility of flushing data to the Al file. This
design eliminates a single point of failure. For
cxample, if there is one “journaling process,” the
database system is dependent on that process being
available and could be forced to shut down in the
event of a node failure.

At high transaction rates, DBMS can generate an
enormous amount of AlJ log data. Consequently, it is
desirable to store the AlJ log on tape for long-term
storage. The problem posed by vaXcluster systems

is that tape devices cannot be mounted cluster-
wide. As a result, DBMS cannot flush directly to tape.
Hence it is necessary to have a method for transfer-
ring the Al information from disk to magnetic tape.

We describe the solutions to these problems in
the following sections.

Shared Sequential Log Files

VAX DBMS implemented its own version of shared
sequential files using global sections on a per node
basis, $QI10s, and the VMS lock manager. This mech-
anism uses one global Al) lock and onc local Al lock
per node.

The global Al lock is used to single-thread access
to the AlJ file. DBMS uses the lock value block to
maintain the file context (current block and end of
file [EOF]). There is one global Al) lock per database.
A process must acquire the global Al) lock in PW
mode before it can flush AlJ records to the Alj file.

The local AlJ lock is used to single-thread access
to a local AlJ cache, which is located in the TROOT.
A process must acquire the local Al lock in PW
mode before accessing the Al) cache. The Al) cache
is used as a temporary repository for formatting AlJ
records before flushing to the Al file. DBMS does not
maintain any data in the lock value block of the
local AlJ lock; it is simply a mutual exclusion mech-
anism. There is one local A]) lock and one Al) cache
pernode in the database.

Because lock value blocks can be lost, DBMS
needs to be able to reconstruct the lock value block
of the global Alj lock. DBMS deals with this problem
by initializing the Al file with set bits whenever it is
created or extended. This initialization allows DBMS
to rebuild the lock value block by searching back-
wards through the AlJ file until an uninitialized
block is encountered. The uninitialized block indi-
cates that the block contains data. Thus DBMS can
reset the current block and EOF in the value block of
the global A1) lock.

Group AlJ Flush

When a transaction commits, DBMS ensures that all
the Al) records associated with the transaction are
flushed to the Al file. However, by using the AlJ
cache and a queue (also located in the TROOT),
DBMS allows one process to format and flush Al
records for other processes on that node, thereby
amortizing the 1/0 among many different transac-
tions. This mechanism is called group flush.

This feature prevents the AlJ file from becoming a
database hot spot, which could restrict throughput.
Forexample, if each transaction required one 1/0 to
flush to the AlJ file and the Al) disk could perform
25 1/0s per second, the Al] file and disk would limit

Digital Technical Journal Ne.8 February 1989

95

Storage Technology

AlJ FILE
40

HEEEEER

GLOBAL
AlJ LOck | 40

®

PW

mizizisio

LOCAL
AlJ LOCK
PW
2 ®
ARB
COUNT 1 @
USER 2
PENDING

KEY:

User 1. user 2, and user 3copy data into ARBs
and place the ARBs onto the pending queue.
Note the respective ARB counts.

@ User 2 begins commit processing.
User 2 acquires the local AlJ tock in PW mode.
This ensures exclusive access to AlJ cache
@ User 2 formats the ARBs into the AlJ cache.
Assume the formatted ARBs comprise three
blocks

@ User 2 acquires the global AlJ lock in PW
mode

@ User 4 places an ARB onto the pending queue.

AlJ CACHE

ARB
1 COUNT

aueve V! ve u4
©) ® ® ®

2 2
USER 1\ USER 3
ARB COUNT

Figure 5 The After-image Journaling Sequence (Part A)

the database system to 25 transactions per second.
This throughput is not acceptable for OLTP applica-
tions, hence the group flush optimization.

As a process modifies data in the database. it
copies the record after-images to a process-private
bufter. When the private butfer fills up, the process
allocates an AlJ request block (ARB) and then copies
the data to the ARB. The process then increments its
ARB count (ARB_CNT) by using the VAX/VMS inter-
locked add instruction, and the process places the
ARB onto a pending queue using the VAX/VMS inter-
locked queue instruction.

The ARBs, the pending queue, and the ARB_CNT of
each process are all located in the TROOT. Theretore
these data structures are accessible to all user pro-
cesses attached to the database from the same node.

At commit time, a process first checks its ARB_CNT,
which maintains the count of ARBs that the process
currently has residing on the pending queue. If
ARB_CNT is zero, another process has cooperatively
flushed all the AlJ records created by this transac-
tion, and the process simply returns. If the ARB_CNT
is not zero, the process enqueues a PW lock request
for the local Al lock. Once it acquires the local Alj
lock, the process again checks its ARB_CNT. While
the process was waiting on the lock request, another
user may have flushed some or all of the ARBs on the
queue. It this process still has ARBs on the ARB
gueue, it is forced to flush its Alj records to disk.

If forced to flush, the process formats as many
ARBs as possible from the queue into the Al) cache,
which is 64 blocks long. Because of the VAX inter-

96

No. 8 February 1989 Digital Technical Journal

High Availability Mechanisms of VAX DBMS Software

AlJ FILE

I

GLOBAL
Al LOCK | 43

P
@&

KEY:

@ User 2 updates the EOF pointer in the global
AlJ lock to 43.

@ User 2 demotes the global AlJ lock to CR mode
thereby allowing users on another node to flush
to the AlJ file.

User 2 removes the formatted ARBs from the

pending queue. Note the respective ARB counts

are decremented, and the ARB from

user 4 remains on the pending queue.

@ User 2 flushes the AlJ cache to the three

blocks “reserved” in the AlJ file.

User 2 releases boththe global AlJ lock
and the loca! AlJ lock.

rd N\
[[) [[

LOCAL
AlJ LOCK

PW

0
USER 2

PENDING
QUECE

USER 4

Figure 5 The After-image Journaling Sequence

locked queue instructions, other processes can add
new ARBs to the queue while one process is format-
ting data. Once the AlJ cache is full, or the queue is
empty, the process enqueues a PW request for the
global AlJ lock.

The process increments the current pointer in the
lock value block by the number of blocks it format-
ted in the AlJ cache, thereby reserving this space in
the Alj file. Then the process demotes the global AlJ
lock to concurccent retrieval (CR) which allows a pro-
cess on another node to continue its flush sequence.
The lock demotion allows a degree of concurrency
since the global AlJ lock is held only for a short
period of time to reserve space in the AJj file.

Since all the ARB data has been formatted into the
AlJ cache, the flushing process removes the ARBs
from the pending queue. During removal, the pro-
cess decrements the ARB_CNT of each process for

(Part B)

which ari ARB has been formatted. Thus the flushing
process indicates to other processes that their data
hasbeen flushed. The process then issues a $QIO to
flush the cache to the “reserved” virtual block in
the file. Finally, the process releases both the global
AlJ lock and the local AlJ lock. This sequence is illus-
trated in Figure 5.

Note that the ARBs are freed up after formatting
into the Al cache, but before the $QIO is issued. If
the process performing the flush aborts, the DBR pro-
cess flushes the AlJ cache to disk. The DBR process
must complete an aborted flush since there can be
records from different transactions in the Alj cache.

The group flush sequence, described above, per-
forms quite well. In benchmark tests that process
about 50 transactions per second, DBMS requires
only 0.2 1/Os to flush the AlJ information for each
transaction.

Digital Technical Journal No. 8 February 1989

97

Storage Technology

AlJ to Tape

Cven though processes can cooperatively flush to an
All file on a cluster-wide disk, the problem of storing
the AlJ data on tape remains. To solve this problem,
DBMS uses a separate despooling process that trans-
fers data from the AlJ file on disk to a tape device.
This occurs while normal database activity continues.

When activating the despooling process, a user
can specify the amount of Alj data to be transferred
and the frequency at which the data is to be copied.
Once initiated, the process transfers blocks from
the AJJ file on disk to the Alj file on tape. After the
data has been copied, the despooling process
acquires the global AlJ lock in EX mode for a brief
period in order to truncate the Al) file and update
the file context.

The despooler can be started or stopped on any
node in a VAXcluster system. Failure of the despooler
process simply stops the archiving activity to tape.
DBMS continues writing AlJ data to disk.

On-line Backup Facility

In the previous section, we described the mecha-
nism for recovering from media errors. This recov-
ery depends on the existence of a complete database
backup as the starting point before all commirtted
transactions in the AlJ file are reapplied.

Since a database may be accessed continuously.
there is no time to perform normal database back-
ups. As a result, DBMS provides a way of backing up a
database while users are still accessing it. This facil-
ity, called the on-line backup facility, allows high
database availability. The on-line backup facility
uses the snapshot capability of DBMS to achieve a
consistent picture of the database even when update
transactions are active.”

The snapshot mechanism allows the on-line
backup to access only records that have been com-
mitted by the time its read-only transaction starts. In
this context, DBMS uses TSNs to mark the “age” of
records. Update transactions date modified records
using their TSNs and then copy old versions of the
records to a snapshot file which maintains a chain of
record versions. Read-only transactions then use the
TSNs to decide which record version in the snapshot
chain is visible to them. As a result, all database
activity continues normally while the on-line
backup process produces a consistent archived
copy of the database.

Summary

VAX DBMS software incorporates novel mechanisms
to operate a centralized database in the VAXcluster
environment. In general, these mechanisms solve

the problem of efficient sharing of data in a cluster.
DBMS solves this problem by making use of lock
value blocks provided by the vVMS lock manager,
global sections, and shared disks. The DBMS recov-
ery mechanisms successfully avoid single points of
failure. In particular, DBMS immediately recovers
from abnormal termination of users and node fail-
ures as long as one node remains active. After a cluster
failure, DBMS recovers all uncommitted transactions
before allowing normal access to the database. The
on-line backup and AlJ facilities combine to ensure
efficient recovery from media failures.

The transaction recovery and media recovery
mechanisms supported by DBMS preserve the high
availability of the VAXcluster environment.

Acknowledgments

Many engineers participated in the design, imple-
mentation, and optimization of the VAX DBMS software
described here. We wish to thank all of them. In
particular, we would like to thank Steve Klein, con-
sulting software engineer, who is principally respon-
sible for the techniques described in this paper.

References

1. N. Kronenberg et al., *“The VAXcluster Concept:
An Overview of a Distributed System,” Digital
Technical Journal (September 1987): 7-21.

2. VAX DBMS Maintenance and Performance Guide
(Maynard: Digital Equipment Corporation, Order
No. AA-Y313D-TL, 1988).

3. VAX/VMS Introduction to System Services Manual
(Maynard: Digital Equipment Corporation, Order
No. AA-LAGBA-TE, 1988).

4. vAX/VMS System Services Reference Manual
(Maynard: Digital Equipment Corporation, Order
No. AA-LAGYA-TE, 1988).

S. W. Snaman etal., “The VAX/VMS Distributed Lock
Manager,” Digital Technical Journal (September
1987): 29-44.

6. P. Bernstein, V. Hadzilacos, and N. Goodman,
Concurrency Control and Recovery in Database
Systems (Reading: Addison-Wesley, 1987).

7. VAX DBMS Database Design Guide (Maynard:
Digital Equipment Corporation, Order No.
AA-Y311C-TE, 1988).

98

No. 8 February 1989 Digital Technical Journal

Ashok M. Joshi
Karen E. Rodwell

A Relational Database
Management System for
Production Applications

VAX Rdb/VMS software, Digital’s relation database management system for
VAX /VMS systems, was designed primarily for use in ad-hoc query-intensive appli-
cations. For its third major release, VAX Rdb/VMS bas been enbanced to support
the requirements of large, complex production applications as well as the require-
ments of end-user data access. These improvements include an additional access
method, specifically, bash indices; new database structuring capabilities to signif-
icantly reduce [/0 bottlenecks; record placement control; a query optimizer
which exploits the new placement and index methods; an on-line, bigh-perfor-
mance backup utility; and several utility enbancements. This paper describes
these features and presents examples to demonstrate their utility.

Digital began a serious effort to enter the on-line
transaction processing (OLTP) market in the fall of
1986. We recognized that in order to meet the per-
formance requirements of the OLTP market, we
would have to minimize the 1/0 bottleneck. Based on
our experiences in the development of the VAX DBMS
software, we decided to incorporate the physical struc-
turing capabilities of CODASYL systems into Rdb/VMS
software. These structuring capabilities allow a
database administrator (DBA) to spread 1/0O over mul-
tiple disks thus eliminatingany1/0 bottlenecks. We
also decided to implement hash indexing which is
superior to the B-tree indexing in terms of 1/0 and
locking requirements. The structuring and place-
ment capabilities as well as details of the hash index
implementation are discussed later in this paper.

Another major goal was to implement a high-
performance, high-data-integrity, on-line, backup
facility. This facility, described at the end of this
paper, is available in version 3.0 as are a verify util-
ity, statistics enhancements, and physical restructur-
ing support.

Version 3.0 is completely compatible with earlier
versions. The physical structuring attributes of the
database are only visible by means of the utility
interfaces. To exploit the new features, DBA inter-
vention and careful schema design are required.
However, old application programs can work with-
out any changes. Users who are satisfied with the
performance of earlier versions can continue to use
the product with the same level of expertise and

time investment as before. They need only increase
that investment when and if they use some of the
newer features. Migration from older versions is easy
because of the availability of excellent conversion
utilities.

In the following sections, we present several
examples to illustrate the utility of these new fea-
tures. Our discussion begins with an explanation of
the Rdb/vVMS architecture.

Rdb/VMS System Architecture

The Rdb/VMS system is designed in a layered, modu-
lar fashion. The software is layered on the VMS oper-
ating system and makes extensive use of VMS system
services and file management facilities. The two
major layers of the Rdb/VMS architecture are the
rclational data manager and the record storage sys-
tem. Shown in Figure 1, this architecture is unique
in that the record storage system is common to both
the Rdb/VMS system and Digital’s CODASYL database
management system. The result is a highly maintain-
able system. Further, both products can exploit
enhancements made to the lower layers. We are very
pleased with the benetfits of this architecture.

Relational Data Manager

The relational data manager is made up of several
components. Collectively, they provide an interac-
tive user interface, a callable interface for integra-
tion into application programs, a catalog manager, a
query parser, a semantic analyzer, an optimizer, and

Digital Technical Journal No.8 February 1989

99

Storage Technology

LANGUAGE PREPROCESSORS
C. PASCAL . ..

CALLABLE AND
INTERACTIVE
INTERFACE

OPTIMIZER

CATALOG MANAGER, PARSER, SEMANTIC ANALYZER,

RELATIONAL OPERATORS (JOIN, SELECT, PROJECT)

JOURNAL
AND
RECOVERY

LOCK
MANAGEMENT

PS!

PHYSICAL STORAGE INTERFACE
INDEXING/SCAN

DIO

DATA 1/O
RECORD MANAGEMENT

PIO

PHYSICAL 1/O
BUFFER MANAGEMENT

VMS OPERATING SYSTEM

Figure 1 Overview of Rdb/VMS System Architecture

a query executor. In addition, Rdb/VMS language
preprocessors generate procedure calls according
to the Digital standard relational interface (DSRI).
Rdb,/VvMS utilities also backup and restore the data-
base. monitor system performance, and restructure
the database

A request or query is processed in several stages,
namely, compilation, access path selection, code
generation, and execution. The database query lan-
guage is translated into BLR (binary language repre-
sentation, the internal representation defined in
DSRI) BLR describes the interaction between the
user application and the query processing compo-
nent of the Rdb/VMS product, which provides a
complete set of relational operators (such as join,
restriction, and projection). Based on each BLR
request, the compilation stage builds data struc-
tures for use during query execution. A query or
request can be compiled once and executed several
times within a session.

Database Monitor

The database monitor is a watch-dog process that
keeps records of user sessions on the database, coor-
dinates recovery, and handles abnormal termination
of user processes. The monitor also detects cluster
transitions and initiates recovery on behalf of users
on the failed node.

Record Storage System

The record storage system (RSS) provides the com-
ponents used in common by Rdb,/VMS and VAX DBMS
software. (VAX DBMS is Digital’s CODASYL databasc
management system.) In a cluster, RSS allows users
equal access to the database from any node. In addi-
tion, if a node in the cluster fails, only users on that
node are atfected. Using intricate protocols, RSS can
recover from a cluster transition with minimal
penalty to users on healthy nodes.

The following sections explain some of the RSS
subsystems in greater detail. For a detailed discus-
sion on failure recovery in a cluster, see reference 1.

Modules and Subsystems

As shown in Figure 1, RSS is made up of several sub-
systems, each performing a set of logically related
functions. Three of these subsystems are imple-
mented in a layered fashion

The lowermost subsystem. the physical 1/0 (P10),
is laycred on the VMS system. This subsystem. or
layer, fetches pages into the database system buffers
and flushes them to disk. It manages the bufter pool
on a least-recently-used basis. The PIO layer also
manages the physical files that contain database
pages. At this level, a page 1s a set of contiguous disk
blocks (512 bytes on the VMS system). RSS supports
variable page sizes in multiples of 512 bytes

100

No.8 tebruary 1989 Digital Technical journal

A Relational Database Management System

The data 1/0 (DIO) subsystem is primarily con-
cerned with fetching, storing, modifying, and eras-
ing logical records. A record is a sequence of bytes
with a type identifier. A record is identified by a
database-wide unique identifier called a DBKEY. The
internal structure of the record is invisible at the
DIO level. A record may be fragmented over several
pages if it does not fit on a page. This layer’s respon-
sibility is to reassemble the fragmented record in
virtual memory (if necessary) before making it visi-
ble to its client. DO holds and releases record locks
to enforce consistency. In addition, DIO uses the
services of the journaling and recovery subsystems
to log changes to data records.

The next layer above the DIO is the physical storage
interface (PSI). This subsystem implements access
methods such as B-tree and hash indexing. PSI also
maintains retrieval and update scans on sets of
records. Using the services of the DIO layer, PSI man-
ages B-tree nodes and hash index buckets. PSI allows
single-attribute as well as multiattribute indexing.

In addition to the three layers described above,
RSS contains modules that enforce lock protocols,
perform redo and undo logging and recovery, and
utilities for maintaining the database.

The lock subsystem implements two-phase lock-
ing using the services of the VMS lock manager.® Two-
phase locking protocols guarantee consistency of
the database by ensuring that concurrent users only
see correct and committed changes to the database.
The subsystem also maintains lock hierarchies to
reduce contlicts.”

For logging changes to the database, the journal-
ing subsystem implements the write-ahead-log
protocol It performs both redo and undo journaling.

The undo journaling subsystem, called RUJ, writes
before-images to disk on behalf of a user performing
updates. These before-images are written to a jour-
nal file using efficient algorithms to minimize the
number of 1/0 operations. The RUJ also ensures that
before-images are flushed to disk before dirty and
uncommitted data is written to disk .’

RSS also provides a redo-journaling facility, called
AlJ for after-image journaling, to recover from media
failures. AlJ maintains a single log of all the updates
to the database. Alj log writes use group-commit
protocols to reduce the [/0 activity and contention
at transaction commit time. The cost of using the
group-commit technique is a small addition to the
response time of a transaction.

Finally, RSS utilities perform several miscella-
neous functions:

= Create and modify the database
= Dump information about the database

= Verify and reformat the database

In addition, RSS has a very powerful statistics and
monitoring package that can be used to monitor the
performance and behavior of various subsystems.

Hash Indices

Rdb/VMS version 3.0 provides hash indexing as an
alternate access method. Hashing is a better retrieval
method for exact-match queries than B-tree index
scans or sequential retrievals. In a majority of cases,
this method accesses data records in two 1/O opera-
tions, regardless of the number of records in the
relation. In special cases, such as clustered indices,
the data records can be accessed in only one 1/0 oper-
ation. (An example is given in the section Clustered
Indices.) This represents a significant improvement
over B-tree index access, which requires three to
four I/0 operations to fetch data records. (The exact
number of 1/0 operations performed in B-tree index
access is a function of the logarithm of the number
of records in the relation.)

Hash indices also perform better than B-tree
indices with respect to locking contention during
updates due to the randomizing nature of the hash
function. In addition, fewer locks are necessary to
manage update operations on hash indices.

The randomizing behavior of the hash function
also affects the utilization of the database buffers.
There is almost no locality of reference for hash
index buckets, even if there is locality in the index
key space. Thus, hash indices exhibit poor caching
characteristics. Consequently, an index access leads
to an 1/O operation in a majority of the cases. B-tree
indices, on the other hand, exhibit much better
caching characteristics.

The Hash Index

Hash indices are an extension of main memory hash-
ing techniques to secondary storage. A hash index
can be defined over a field (or set of fields) of a rela-
tion. This field (or set of fields) is called the hash
index key (or simply index key). A hash index uses a
hash function to maintain a map between index key
values and the DBKEYs of records that contain these
values. This mappingis stored ina file on disk.

A hashing function maps the index key space into
a set of hash buckets. Typically this is a many-to-one
function; that is, the function maps more than one
key value to the same bucket. The mapping does not
maintain the key sequence of the hash index keys. A
good choice of the hashing function ensures with a
high probability that the key space will be uni-
formly distributed over the number of available
buckets.’

A hash bucket is a data structure that contains a
list of hash elements. A hash element maintains

Digital Technical Journal Ne. 8 February 1989

101

Storage Technology

HASH HASH HASH
ELEMENT ELEMENT ELEMENT
HEADER SMITH JONES McDONALD

Figure 2 Structure of a Hash Bucket

information about one hash index key and the
DBKEY of record containing that key value, denoted
as < hash index key, DBKEY of record >. The number
of hash buckets is equal to the number of pages in
the file that contains the hash index. This number is
typically much smaller than the number of values of
the hash index key. Therefore, more than one hash
index key will map to a bucket — a situation referred
to as a collision. By choosing the number of pages in
the hash index file appropriately, it is possible to
reduce the number of collisions and consequently
the size of the hash bucket. A good hashing function
will result in roughly equal-sized buckets, with the
number of hash elements per bucket being rela-
tively constant. Figure 2 illustrates the structure of a
hash bucket. In this example, keys Smith, Jones, and
McDonald hash to the same bucket.

Algorithms

We now look at how a hash index can be used to
retrieve records with a minimal number of accesses
to disk. Assume that a hash index is defined on the
EMP_ID field in the Employees relation of Figure 3.
Also assume we are storing a new employee record
in the database with the following values.

{10101, James Smith,
10 Tara Blvd Nashua NH,
Senior Engineer, 432}

The record is assigned a DBKEY of 5S. The hash
element for this record should be the pair
< 10101, 55 >. To make an entry in the hash index,
the key value 10101 is hashed. Assume that this
results in the selection of bucket number 69
The index insertion algorithm stores the pair
<10101, 55> in the bucket on page 69 of the hash
index file.

To retrieve the data record containing the key
value 10101, the hash index search algorithm works
as follows. The key value 10101 is hashed, resulting
in page number 69. This page is now read in. (This
is the first 1/0 operation in the retrieval.) The bucket
on that page is searched for the hash element that
contains the key value 10101. (Due to collisions,
many other values may also be in this bucket.) The
fetch algorithm uses this DBKEY (55) to retrieve the
record. (This is the second 1/O operation of the
retrieval.) Thus, the index can be used to retrieve
records in two I/O operations, independent of the
number of records in the relation.

Unsuccesstul searches require only one 1/0 oper-
ation to the hash index file. Assume that the
Employees relation does not contain the record
with key value 769. It a query is made to determine
whether the key value 769 exists in the database,
the hash incdex can be used as follows. As betore, the
key value is hashed to generate a bucket number,
e.g., 498. The index search fetches page 498 and
searches the bucket for a hash element containing
the value 769. The hash element is not found, and
the search is terminated.

So far our discussion has assumed there is only
one data record with a given key value. To maintain
hash indices on relations where there is more than
one record containing a given key value, a hash ele-
ment is allowed to contain a set of DBKEYs of records
that contain the key value. This set of DBKEYS is
stored in a duplicates node instead of in the hash

EMPLOYEES:

EMP_ID EMP_NAME EMP_ADDRESS EMP_TITLE DEPT_ID
DEPARTMENTS:

DEPT_ID | DEPT_NAME | DEPT_LOCATION | DEPT_MANAGER |
DEPENDENTS:

EMP_.ID | DEP_NAME | DEP_AGE I CLASSIFICATION |

Figure 3 Sample Schema

102

No. 8 February 1989 Digital Technical Journal

A Relational Database Management System

HASH BUCKET

68 69 70 7
<10101.55>, ...
BEFORE BUCKET OVERFLOW
OVERFLOW BUCKET
68 69 70 /N
<10101.58% ... <7389.82>.. ..
—

AFTER BUCKET OVERFLOW

Figure 4 Hash Bucket Overflow

element. The decision to use duplicates nodes results
in considerable simplification of the algorithms that
maintain index scans. By placing the duplicates
nodes on the same data page as the associated hash
element, it is possible to avoid extra I/O operations
to fetch them. However, if the number of duplicates
for some key value is very large, duplicates nodes
may “spill over” to overflow pages. In this case,
more than one 1/O operation may be required.

A bucket could grow beyond the size of a database
page. This undesirable condition can occur for a
variety of reasons, such as large numbers of dupli-
cates, skewed key values, or poor choice of hash
function. Hash index performance can degrade
rapidly as the number of overflows increases. The
hash index algorithms handle overflows by splitting
the overflowing bucket into two or more buckets
that are linked together and placed on pages close
to the original page. (See Figure 4.) Of course, the
head of this list of buckets must remain on the same
page as before. Database monitoring utilities can be
used to measure the number of overflows in hash
indices. If the number is high, it is possible to
restructure the index by using the backup and
restructuring utilities

Design Trade-offs

During the design phase, we had to choose between
static and dynamic hash indexing. In static hashing,
an explicit reorganization of the index is necessary
when there is substantial performance degradation

(due to overflows). This reorganization is usually
performed off-line. In contrast, dynamic hashing
schemes are self-reorganizing. For version 3.0, we
chose to implement a static hash indexing scheme
based on design and implementation simplicity.
Our experience so far indicates that with careful
physical design of the index storage area, the index
need not be reorganized for substantial periods of
time. Further, static hashing may result in disk
space savings as compared with some dynamic hash-
ing schemes such as extendible hashing.®

Structuring and Partitioning
Capabilities

In earlier versions, an Rdb/VMS database was con-
strained to a single VMS file. The bound volume set
capability of the VMS system allowed the file to be
striped across several disks. However, data striping
was not enough to distribute the 1/0 operations over
a large number of disks. The result was performance
bottlenecks (called the 1/O bottleneck), since the
database system performance was limited by the I/O
transfer rate of a single disk.

As noted earlier, one of the goals of the Rdb/VMS
project was to give the DBA complete control over
the placement of data files on disks. With this new
version, a DBA can exploit the structuring capabili-
ties to eliminate the 1/O bottleneck. This feature
does, however, require careful physical design and
file placement at database designtime.

Digital Technical Journal No.8 February 1989

103

Storage Technology

CORPORATE DATABASE

EMPLOYEES
(EMP_ID <
10000) EMP_ID-
50000)

EMPLOYEES
(EMP_ID
10000 AND

EMPLOYEES
(EMP_ID -
50000)

DEPARTMENTS

Figure 5 Partitioning « Relatien

A database can consist of several VMS files, called
storage areas. Cach storage area can be indepen-
dently assigned to a single disk. Storage areas can be
mapped to disks (or bound volume sets) at the phys-
ical design stage. This mapping is referred to as the
multifile database capability.

A storage area can contain database relations or
indices or both. It is possible to store more than one
relation per storage area. For this reason, the Rdb/VM$
software maintains space-management data struc-
tures, called SPAM pages, which can be used to
accelerate sequential scans on relations. SPAM pagcs
maintain information about free space in the storagc
arca. In addition, SPAM pages can be used to deter-
mine whether a certain page contains records
belonging to a specified relation. The proper design
of SPAM pages and associated algorithms is critical to
ensure that these pages do not become a hot spot
during periods of high update activity.

To further alleviate the 1/0 bottleneck, Rdb/vms
software also allows partitioning of relations and
indices over several storage areas as explained below.

There are rwo options for partitioning a relation.
Rdb/VMS software can uniformly spread the records
of the rclation over several storage areas by using a
randomizing function. This type of partitioning is
usctul when user transactions access single records
in the relation. However, Rdb/VMS does not allow an
index to be partitioned in this manner.

The second way to partition the relation is by
specifying a partitioning predicate. For example.

consider the Employees relation in Figure 3. Assumc
there are three storage areas over which we wish
to sprcad the Employees relation. As illustrated in
Figure 5, we can specify a partitioning predicate to
indicate that employee records with values of
EMP_ID less than 10000 are placed in the first stor-
age area; records with values between 10001 and
50000 are placed in the second storage area: and
records with values greater than 50000 are placed
in the third storage area. The partitioning predicate
must specify disjoint partitions of data so that every
data record is allowed to exist in at most onc parti-
tion. This type of partitioning is particularly usctul
in cases where users’ access to the data records
reflects the partitioning criteria. This technique can
also be used to partition indices. The multifile and
partitioning capabilities of Rdb/VMS software guar-
antee that no single disk can become an 1/0 bottle-
neck during database activity.

The partitioning of relations over several storage
areas also introduces an additional level of locking
granularity. If a transaction locks only onc partition
of the relation, concurrent access to other partitions
is possible. The optimizer uses this property to
allow a higher level of concurrency for transactions
that access ditferent partitions.

The structuring and partitioning of the rclations
require careful attention during the physical data-
base design phase. Proper design can result in an
order of magnitude improvement in execution per-
formance for a majority of queries. It is also impor-

No. 8 February 1989 Digital Technical Journal

A Relational Database Management System

tant to note that the multifile and partitioning fea-
tures are optional; users who are satisfied with the
performance of the earlier versions can continue to
use the new version of Rdb/VMS software without
any performance degradation or DBA effort.

Record Placement and Clustering

Most transactions involve operations on more than
one record. In a large percentage of the cases, the
records that are accessed or updated belong to more
than one relation but are related to each other. For
example, a transaction may access a specific depart-
ment record and all its related employee records.
The operation of accessing a record as well as its
related records is referred to as a join. The fields (of
the related relations) that are used to relate the
records to each other are called the join keys. For
example, the DEPT_ID field in the Employees rela-
tion relates the Cmployees records to the corre-
sponding Department record. Hence, the DEPT_ID
field is the join key.

In almost all commercial relational database sys-
tems, a database page can only contain records from
asingle relation. Most systems are even more restric-
tive; they allow only one relation per storage area
(or file). To perform the join operation, therefore,
data pages from more than one file have to be
accessed. This process almost always involves more
than one 1/O operation. (If the data is buffered, it
may be possible to save an 1/0.)

To avoid the penalty of performing extra 1/0 oper-
ations, Rdb/VMS version 3.0 allows records from
more than one relation or index to be stored on the
same page. A user can specify that a record and all
its related records be placed onthe same page, orif
there is an overflow, on nearby pages. This tech-
nique of placing related records physically close
together is referred to as interrelation clustering.
During retrievals, the join operation can be speeded
up considerably because of the reduction in 1/0.

Behavior of Interrelation Clustering

Referring again to our example in Figure 3, consider
the Departments and Employees relations whose
records are related to each other. On average, we
will assume there are 10 employees in each depart-
ment. To place related records together, we will
have to store groups of 11 records — 1 department
record and 10 related employee records. Assume
that the page size and record sizes allow one such
group to fit on a database page. A page therefore
contains only 1 department record and about 10
employee records. A query that requires the names
of employees in a specified department need only
perform one /0 operation. If interrelation cluster-

ing were not used, at least two 1/O operations would
be required. Hence, the number of 1/0 operations is
reduced by 50 percent in the above example.

Now consider a query that prints the addresses of
the various departments in the organization. This
query needs to access only the department records.
Such a query is referred to as a sequential scan. In
this case, almost every retrieval of a department
record will result in an 1/O operation since a page
only contains one department record. This example
illustrates an important point: interrelation cluster-
ing will not improve the performance of all queries.
In fact, some queries may suffer performance degra-
dation. The choice of whether to use interrelation
clustering or not is highly dependent on which
queries the DBA wants to optimize. When a DBA
chooses to cluster related records together, the
retrieval performance is optimized for join accesses
at the cost of sequential scan access.

An additional consideration in interrelation clus-
tering is deciding which records to cluster together.
Interrelation clustering works best when only one
join key is used to cluster relations. Consider the case
where the Dependents records are related to the
Employees records by the EMP_.ID fields (Figure 3).
It is impossible to cluster Departments with the
associated Employees and at the same time cluster
Employees and related Dependents since the join
key is different for the two relationships. The prob-
lem can be easily solved by including the DEPT_ID
field in the Dependents relation (during the logical
design phase). To simplify the rest of this discus-
sion, let us restrict the number of related relations
to two.

Placing Related Records Together

For records in rwo relations to be placed together,
Rdb/VMS software requires an index on each relation
on the join key field. For example, to store employee
records close to the department record, an index
must appear on the DEPT_ID field of the Employees
relation as well as the DEPT—ID field of the Depart-
ments relation. The index can be either a hash index
or a B-tree index. The relative position of the index
entry within the index storage area guides the
placement of the data record in its storage area. We
explain this placement further in the following
sections.

The placement capabilities and the multifile and
partitioning capabilities provide the DBA a very
powerful set of tools for physical schema design. To
fully exploit these capabilities, the DBA must under-
stand the access patterns of typical transactions. Using
this information, the DBA can choose the best physi-
cal schema. In the following sections, we illustrate
the complexity of physical schema design process.

Digital Technical Journal No.8 February 1989

105

Storage Technology

Clustered Indices

In this example, we show how a relation’s records
can be placed on the same page as the index nodes
or buckets. Assume there is a hash index on the
EMP_ID field of the Employees relation. In addition,
the Employees relation and the hash index are
stored in the same file. As discussed earlier, the
hashing algorithm chooses the bucket (and the
page) into which the index entry is to be placed.
The same page is used to store the data record. This
placement algorithm ensures that the hash bucket
and the associated record are placed on the same
page (with high probability). Consequently when a
user accesses an Employee record by means of the
index, only one I/O operation need be performed.

Placement by means of a B-tree index can be
specified in an analogous manner. However, due to
the hierarchical structure of the B-tree, data records
cannot be stored close to the corresponding leaf-
level nodes of the B-tree. Thus, placement by means
of a B-tree index is, at best, marginally useful when
the relation and the B-tree index are in the same file.
Instead, a related technique, called shadow cluster-
ing, can be used to store datarecords in the approx-
imate sorted order of the join key.

To perform shadow clustering, the relation is
stored in a file different from its associated index.
The records in the relation are placed in the file
based on the relative order of the entries in the leaf
levels of the B-tree. Since the entries in the leaf-level
nodes of the B-tree are maintained in sorted order,
the records in the relation will also be stored in the
sorted order of the index key. Note that it is not fea-
sible to maintain the sorted order of the relation
during random insertions, since this presumes dis-
placement of a large number of records. Hence,
shadow clustering works best when the records of
the relation are sorted externally before being bulk-
loaded into the relation. The “almost” sorted order
of the data records results in considerable perfor-
mance benefits when the user performs range
retrievals based on the index key.

To place related records together, a combination
of placement by means of hash index and shadow
clustering can be used. For example, if we wish to
place the Employee records on the same page as the
Departmentrecord, we can elect to do the following:

m Define a hash index HE on the DEPT_ID field of
Cmployees, as well as a hash index HD on the
DEPT_ID field of the Departments relation.

m Store the two hash indices and the relations in the
same file.

= Specify that the Employee records be placed near
the corresponding hash bucket entries of hash
index HE and that Department records be placed
near the corresponding hash bucket entries of HD.

Since the hash indices HE and HD use the same hash
function, we are assured that the same page will be
chosen for identical values of DEPT_ID of Employee
records as well as Department records. Figure 6
shows a page containing related Employee records,
Department records, and the corresponding hash
index entries.

Query Optimization

The query optimizer enhancements exploit the place-
ment techniques and index methods to choose the
best retrieval path for the user-specified query. The
optimizer’s decision is contingent on (1) whether
the index is a hash index or a B-tree index, and
(2) whether the data records and index nodes (or
buckets) are placed on the same page.

The optimizer has also been improved in other
ways. Toreduce I/0 operations, multiattribute selec-
tion attempts to perform DBKEY list intersection
before fetching data pages. Improved join tech-
niques reduce the complexity of the code as well as
better utilize the database buffers. In the following
list, we describe some of these features.

= Record placement. The optimizer attempts to
choose an index that is defined on the same field
as the field that is used to define record place-
ment. The approach requires fewer /O operations
to do indexed retrievals because data records and
index information are stored together.

s Hash index retrieval support. In version 3.0, the
optimizer recognizes the new index type. Hash
indexing is the most effective method for exact
match queries. When a query can be answered
simply by examining the entries in the index,
the hash index is the best choice for answering
the query.

m Multiattribute retrieval. An extension of the
existing index retrieval technique, multiattribute
retrieval reduces I/O operations by examining
multiple indices, eliminating records that do not
match all of the selection criteria, and finally
retrieving the records that do match. When sev-
eral indices are defined on the fields of a relation,
the optimizer has several choices of index for a
query that has a multiattribute selection predi-
cate. In operation, the multiattribute retrieval
algorithm generates lists of DBKEYs of records by

106

No. 8 February 1989 Digital Technical Journal

A Relational Database Management System

PAGE 49

DEPT RECORD

3491 HASHES

TO PAGE 49 3491

TOYS

HD BUCKET

- <3491 \ >

HE BUCKET

\

DUPLICATES
NODE

EMPLOYEE RECORD

3491

EMPLOYEE RECORD

3491

Figure 6 Example of Interrelation Record Clustering

using each relevant index. These lists are then
intersected to generate the set of DBKEYs of
records that must be retrieved. The intersection
is performed in an optimized manner that guar-
antees that the most restrictive clause is used
first. Rdb/vMS now retrieves the data records
using this list of DBKEYs and applies any selection
clauses that did not involve indices. This reduces
the number of comparison operations that have
to be performed.

Index cardinality for nonunique indices. The
optimizer maintains a count of the number of
unique key values in an index on a relation. The
optimizer can then choose indices based on car-
dinality information. Preference is given to indices
with greater record selectivity. Cardinality infor-
mation is maintained in an efficient manner so
that it does not become a hot spot during periods
of high update activity.

= Join optimization strategy. When the system per-
forms an indexed equijoin, time can be wasted
searching the entire inner index for a match for
each key of the outer relation.” In Rdb/VMS ver-

sion 3.0, the optimizer maintains context infor-
mation that indicates the current position of the
search in the inner relation's index. Thus the soft-
ware saves the step of initiating a full search on
the inner index for every key of the outer rela-
tion. The savings are more pronounced when the
indices do not fit into the database buffers.

Fast Backup Utility

The performance of the backup and restore utility
determines the maximum practical size of a data-
base. The Rdb/vMS backup and restore utility can
backup a 50 gigabyte database in less than 8 hours.
We achieve this level of performance by applying a
parallel processing paradigm to this traditionally
sequential application.

The backup and restore operations are multi-
threaded. There are two kinds of threads: a reader
and a writer. Reader and writer threads perform /0
operations on the database or the backup medium
by using asynchronous overlapped 1/0 requests. The
only synchronization points between the reader and
a writer are the operations they have performed on
the shared data buftfers.

Digital Technical Journal No.8 February 1989

107

Storage Technology

The backup utility starts one reader thread per
storage arca. There is one writcr thread per backup
medium (either a disk or, more often. a tape). This
mode of opcration is analogous to the well-known
producer-consumer paradigm. Readers fetch pages
from the database area using overlapped. asyn-
chronous 1/0. At any point in time, a large number
of read requests are outstanding. As the 1/0 opera-
tions complete, the pages read in are queued in the
appropriate order for the writer thread. The backup
utility uscs synchronized data structures to share
buffers between readers and writers.

The backup operation can also be performed on-
line. The snapshot capability of Rdb/VMS makes this
operation possible. Snapshots ensure that read-only
transactions can see a consistent view of the data
while update transactions modify records. ‘I'his
Rdb/VvMs implementation is one of the few rcla-
tional database systems with this capability. The
additional overhead of maintaining snapshots is
nominal

The on-line backup utility starts a read-only trans-
action on the databasc to ensure that it sees the data
records as they were at the time the transaction was
startecl. On-line backup is a feature critical in mak-
ing Rdb/vMS a highly available svstem.

Arestore utility is required to re-creatc a databasc
from a backup. This utility is often used after a
media failure when one or more of the databasc files
is corrupted. After the database has been restored.
the redo journal can be rcapplied to restore the
databasc to the latest consistent state. In a manner
similar to the backup utility, the restore utility usces
multiple reader threads to read the backup and mul-
tiple writer threads to write database pages to the
database. The restore utility also needs to rebuild
SPAM pages and related data structures that manage
free space in the database files. To rebuild ctti-
ciently, the utility builds the SPAM pages in memory
while the data pages are being written to the data-
basc This approach saves an additional pass on the
databasc to build the SPAM pages. An auxiliary pass
reads some SPAM pages to rcconstruct data struc-
tures that are used to simplify sequential scans on
relations. Note that the auxiliary pass only reads the
SPAM pages. Since the number of SPAM pages is typi-
cally less than one percent of the database size, this
overhcad is not very high.

Otber Rdb/VMS Features

Rdb/vMs version 3.0 also includes “group-by”
enhancements and statistics and analysis utilities.

A grou p-by expression in the SQI. language divides
a record strcam into sections to allow for computa-

108

tion from cach section. For ¢xample, a group-by
aggregate might divide cmployees into subscts
by department number and return the average.
total, maximum, and minimum salaries for cach
department.

Earlicr versions of Rdb/vMs have provided group-
by functionality by performing multiple passcs over
the same stream. Version 3.0 supports group-by
with asingle pass over the relevant data.

The statistics utility gathers on-line statistics about

= /O operations

= Lock usage

= Rccord fragmentation

= Indexfetches and overtlows
= Transaction durations

= System throughput

These statistics can be studied on-line or analyzed
later to tunc the databasc.

The analyzc utility can be used to generate static
statistics on data placement and storage utilization.
This utility is usctul for analyzing hash index behav-
ior, filc utilization and related aspects.

Summary

We have discussed several features that contribute
to making Rdb/vMS a high-performance database
system. We have discussed the multifile, partition-
ing. and record placement capabilities that play a
fundamcental role in eliminating the 1/0 bottlencck.
Good databasc design and carcful analysis arc nec-
essary to cxploit these features. In the discussion,
we have also highlighted trade-offs that a databasc
designer is required to make.

Hash indexing and optimizer enhancements have
a dircct impact on the performance of querics at
execution time. Hash indexing reduces the number
of 170 operations as well as the locking activity in
the system. The optimizer generates improved
query plans that result in path length reduction.
better usce of system resources (such as buffers). and
fewer 1/O operations.

Finallv, we presented some dctails of the fast
backup and restore utility. We believe that the mul-
tithreaded design and implementation is a novel
feature

Developing Rdb/vMS into an industry [eadership
product is an ongoing process. We are extremely
happy with the performance improvements of the
current version. We will continue to design and
implement new features that satisty the needs of our
customers.

No. 8 February 1989 Digital Technical Journal

A Relational Database Management System

Acknowledgments

As with any major product, Rdb/vMS version 3.0 is
the result of the efforts of numerous engineers over
the past few vears. It is impossible to mention them
all. We would like to thank Lou Dimino for his help
with the section on the backup utility Susan Hillson
reviewed earlicr drafts of this paper and made sev-
eral suggestions for improving the presentation. Any
errors and omissions in this article are entirely the
responsibility of the authors.

References

L.’I' Rengarajan, . Spiro, and W. Wright, “High
Availability Mechanisms of VAX DBMS Software.”
Digital Technical Journal (February 1989, this
issue): 88-98.

3]

6.

. C. Date, An Introduction to Database Systems,
Vol. | (Reading: Addison-Wesley. 1985).

. W. Snaman and D. Thiel, “The VAX/VMS Distrib-

uted Lock Manager.” Digital Technical Journal
(September 1987): 29-44.

. J. Gray, “Notes on Database Operating Systems,”
Computer Science Research Report RJ2188 (San
Jose: 1BM Research Laboratory, February 1978).

. J. Carter and M. Wegman, “Universal Classes of
Hash Functions,” Journal of Computer and System
Sciences. vol. 18. no. 2 (April 1979): 143-154.

R. Fagin et al., “Ixtendible Hashing — A Fast
Access Method for Dynamic Files,” ACM Trans-
actions on Database Systems, vol. 4, no. 3
(September 1979): 315-344.

Digital Technical Journal No. 8 February 1989

109

dlilaliltlall I8

ISSN 0898-901X

Printed in USA EY-CIGGE-DP Copyripht February 1989 Digital Equipnicnc Corporation

por———— = - ~ e I——

	Front cover
	Contents
	Editor's Introduction
	Biographies
	Foreword
	The Hierarchical Storage Controller; A Tightly Coupled Multiprocessor as Storage Server
	Performance Aspects of the HSC Controller
	VAXsimPLUS, A Fault Manager Implementation
	Disk Drive Technology Improvements in the RA90
	Control Systems Technology in Digital's Disk Drives
	Magnetic Domain Observations in Thin-film Heads Using Kerr Microscopy
	Margin Analysis on Magnetic Disk Recording Channels
	High Availability Mechanisms of VAX DBMS Software
	A Relational Database Management System for Production Applications
	Back cover

