PATHWORKS: PC Integration Software

Digital Technical Journal

Digital Equipment Corporation

Volume 4 Number 1
Winter 1992

Cover Design

The red and blue threads woven together in our cover design
represent the many PC clients and server systems that are inte-
grated in a network environment by the outstanding “thread”
of PATHWORKS software. PATHWORKS software for the integration
of PCs over LANs and WANs is the featured topic in this issue.

The cover was designed by Katbryn Cimis of the Corporate
Design Group.

Editorial

Jane C. Blake, Editor

Kathleen M. Stetson, Associate Editor
Helen L. Patterson, Associate Editor

Circulation
Catherine M. Phillips, Administrator
Sherry L. Gonzalez

Production

Mildred R. Rosenzweig, Production Editor
Margaret L. Burdine, Typographer

Peter R. Woodbury, Illustrator

Advisory Board

Samuel H. Fuller, Chairman

Robert M. Glorioso Richard J. Hollingsworth
John W. McCredie Alan G. Nemeth
Mahendra R. Patel F Grant Saviers
Victor A. Vyssotsky Gayn B. Winters

The Digital Technical Journal is published quarterly by Digital
Equipment Corporation, 146 Main Street MLO1-3/B68, Maynard,
Massachusetts 01754-2571. Subscriptions to the Journal are $40.00
for four issues and must be prepaid in U.S. funds. University and
college professors and Ph.D. students in the electrical engineering
and computer science fields receive complimentary subscriptions
upon request. Orders, inquiries, and address changes should be
sent to the Digital Technical Journal at the published-by address.
Inquiries can also be sent electronically to DTJ@CRL.DEC.COM.
Single copies and back issues are available for $16.00 each from
Digital Press of Digital Equipment Corporation, 1 Burlington
Woods Drive, Burlington, MA 01830-4597.

Digital employees may send subscription orders on the ENET to
RDVAX::JOURNAL or by interoffice mail to mailstop MLO 1-3/BG8.
Orders should include badge number, site location code, and
address. All employees must advise of changes of address.
Comments on the content of any paper are welcomed and may
be sent to the editor at the published-by or network address.
Copyright © 1992 Digital Equipment Corporation. Copying
without fee is permitted provided that such copies are made for
use in educational institutions by faculty members and are not
distributed for commercial advantage. Abstracting with credit

of Digital Equipment Corporation’s authorship is permitted.

All rights reserved.

The information in the Journal is subject to change without
notice and should not be construed as a commitment by Digital
Equipment Corporation. Digital Equipment Corporation assumes
no responsibility for any errors that may appear in the Journal.
ISSN 0898-901X Documentation Number EY-J825E-DP
The following are trademarks of Digital Equipment Corporation:
ALL-IN-1, DEC, DEC EtherWorks, DECnet, DECperformance,
DECquery, DECwindows, Digital, the Digital logo, DNA,
eXcursion, LAT, PATHWORKS, ULTRIX, VAX, VAX C,

VAX Performance Advisor, VAX 4000, VAX 6000, VAXcluster,
VAXstation, and VAX.

3Com is a registered trademark of 3Com Corporation.

Apple, AppleShare, AppleTalk, LocalTalk, and Macintosh are
registered trademarks and QuickStart is a trademark of Apple
Computer, Inc.

CodeView, Microsoft, MS, and MS-DOS are registered trademarks
and Windows is a trademark of Microsoft Corporation.

CRAY is aregistered trademark of Cray Research, Inc.
i380, 1486, and Intel are trademarks of Intel Corporation.

IBM, Micro Channel, and O$/2 are registered trademarks of
International Business Machines Corporation.

Motif is a registered trademark of Open Software Foundation, Inc.
Motorola and 68000 are registered trademarks of Motorola, Inc.
NetWare and Novell are registered trademarks of Novell, Inc.

Network General and Sniffer are registered trademarks of
Network General Corporation.

NFS and Sun are registered trademarks of Sun Microsystems, Inc.
UNIX is a registered trademark of UNIX System Laboratories, Inc.
X/Open is a trademark of X/Open Company Limited.

Book production was done by Digital's Database Publishing Group
in Northboro, MA.

Contents

6 Foreword
Joseph A. Carchidi

PATHWORKS: PC Integration Software

8 An Overview of the PATHWORKS Product Family
Alan Abrahams and David A. Low

15 PATHWORKS for VMS File Server
Edward W. Bresnahan and Siu Yin Cheng

24 Tbhe Development of an Optimized PATHWORKS
Transport Interface
Philip J. Wells

31 Design of the PATHWORKS for ULTRIX File Server
Anthony J. Rizzolo, Elizabeth A. Brewer, and Martha A. Chandler

40 DECnet Transport Architecture
Mitchell P Lichtenberg and Jeffrey R. Curless

47 Microsoft Windows Network Virtual Device Drivers
in PATHWORKS for DOS
Andrew W. Nourse

56 eXcursion for Windows:
Integrating Two Windowing Systems
Dennis G. Giokas and Andrew T. Leskowitz

68 Capacity Modeling of PATHWORKS
Client-Server Workloads
Christopher E. Methot

Editor’s Introduction

Jane C. Blake
Editor

The integration of personal computers in a net-
work environment is the subject of this issue of the
Digital Technical Journal. The software products
that bring about this integration are known collec-
tively as PATHWORKS and are derived from Digital’s
Personal Computing Systems Architecture. The
engineering challenge for developers was to inte-
grate a variety of client (PC) and server systems—
DOS, Windows, 0S/2, Macintosh, VMS, and ULTRIX—
and to ensure that the intricacies of the meshing
of these systems remained transparent to PC users.

In the opening paper, Alan Abrahams and David
Low provide background for the papers that follow
by describing the technical aspects of the various
hardware and software platforms, physical net-
works, and protocols that had to be addressed by
PATHWORKS developers. They also present an over-
view of the PATHWORKS components which allow
PC users to access network resources.

Among the capabilities PATHWORKS enables, PC
access to files on server systems is onc of the most
important for users. Two file servers, one for VMS
and another for ULTRIX, were developed for this
purpose. A paper on the development of the first of
these, written by Ed Bresnahan and Siu Yin Cheng,
contains an architectural overview of the VMS file
server. The authors also detail the mapping done to
bridge the differences between DOS, 0S/2, and VMS
operating systems. In a related paper, Phil Wells
describes performance improvements made in ver-
sion 4.0 of the file server which were achieved by
optimizing the transport interface and the data
buffering algorithm. He discusses the analysis of
server performance for various interface models,
the implementation of the algorithm in the VMS
server, and test results.

Like the VMS file server, the PATHWORKS software
for ULTRIX systems integrates PC clients with a

server system on a LAN. However, as Anthony
Rizzolo, Beth Brewer, and Martha Chandler ¢xplain
in their paper, a multiple process model was cho-
sen rather than the single process used in the VMS
file server. The authors give their reasons for this
different approach as part of a general discussion of
the server design and implementation.

The network is key to the exchange of data in the
PATHWORKS environment, and as is the case for
the server software, multivendor systems must be
addressed to ensure smooth integration. Mitch
Lichtenberg and Jeff Curless describe how Digital
has extended Microsoft’s LAN Manager across a LAN
or a WAN by using the DECnet transport protocol
as the transport layer. In addition, they present the
reasoning behind the design of the transport com-
ponent for DOS and 0S/2 products, and review
steps taken to reduce memory usage and improve
performance.

Further details on the integration of DECnet and
LAN environments are provided in the paper on two
network virtual device drivers for the Microsoft
Windows environment. As Andy Nourse explains,
these drivers manage DECnet and NetBIOS opera-
tions and enable the Windows operating system
to support peripheral devices, memory resources,
and software applications. Andy first gives readers
background on the Windows operating modes, and
then describes the development of the two virtual
device drivers.

A significant new application in the PATHWORKS
family, called eXcursion, brings together the capabil-
ities of X Windows, DECnet, and the Microsoft envi-
ronment, resulting in the display of both Windows
and X Windows on the same screen. Dennis Giokas
and Andy Leskowitz present the integration philos-
ophy behind the display server and the implemen-
tation of the server architecture. They also relate
how designers approached the mapping of the win-
dows in the X and Windows environments,

The issue concludes with a paper by Chris
Methot on capacity modeling of PATHWORKS
client-server workloads. Chris describes a queuing
analytical model used to understand resource con-
sumption on the server and the special modeling
process required in the client-server environment.
The paper works through a specific example of the
model’s identification of bottlenecks in the system.

The editors thank Star Dargin and Carnel Hoover
for their help in preparing this issue.

WW

Biograpbies

Alan Abrahams Alan Abrahamsis a consultant engineer in the Personal Com-
puting Systems Group Technical Office. He develops management and security
strategies for integrating PCs into enterprise-wide networks. Alan joined Digital
in 1982 and designed and implemented the PRO/Communications package. Since
1985, he has been the architect responsible for integrating Microsoft’s LAN
Manager into Digital’s PCSA and helped design Digital’s NetBIOS emulation and
remote boot of MS-DOS systems. Alan received B.S degrees in computational and
statistical science and in mathematics from the University of Liverpool.

Edward W. Bresnahan Seniorsoftware engineer Edward Bresnahanhasbeen
developing the PATHWORKS for VMS software since joining Digital’s PCSG Server
Engineering Group in 1988. He is currently responsible for the design and devel-
opment of a high-performance data cache to be used in future PATHWORKS
server products. Prior to this, he was a co-op student at General Electric
Company and at Charles Stark Draper Laboratory. Ed holds a B.S.CS. (1988, hon-
ors) from Northeastern University and is pursuing an M.SC.S. part-time.

Elizabeth A. Brewer Beth Brewer is a supervisor in the PCIE Server Develop-
ment Group—Open Systems. Beth served as project leader for the PATHWORKS
for ULTRIX version 1.0 product as well as the principal architect and implemen-
tor of the PATHWORKS for ULTRIX administration process. She also worked for
the PCIE Client Development Group—PC DECwindows. Beth joined Digital in
1987 after receiving a B.S. in mathematics with a minor in computer science
from the University of Massachusetts at Lowell.

Martha A. Chandler A senior software engineer in the PCIE Server Develop-
ment Group—Open Systems, Martha Chandler was project leader for the
PATHWORKS for ULTRIX version 1.1 product. She designed and implemented the
managementinterface for the PATHWORKS for ULTRIX server. Prior to this work,
Martha maintained MS-Windows terminal emulation for the PCIE Client Develop-
ment Group. Before joining Digital in 1988, she received a B.S. in mathematics
with a minor in computer science from the University of Massachusetts at
Lowell.

Biographbies

Siu Yin Cheng Since joining Digital in 1987, Siu Yin Cheng has worked on
server software in the Personal Computing Systems Group. As a senior software
engineer, she is responsible for the design and development of the server config-
uration utility for future PATHWORKS products. Siu Yin designed and developed
the server collector process to extract performance data from the file server;
she also worked on server development. Prior to this, she led the system testing
of PATHWORKS server V2.0-2.2. Siu Yin received a B.SC.S. (1987, honors) from
Brown University.

Jeffrey R. Curless As a principal software engineer in the Personal Com-
puting Systems Group, Jeff Curless worked on the OS/2 data link driver and on
the PATHWORKS token ring implementation. He is currently developing a new
configuration utility to support the future direction of the PATHWORKS product
set. Since joining Digital in 1986, he has contributed to the development of
PATHWORKS software under both the DOS and OS/2 operating systems. Jeff holds
a B.S. in computer science from the University of New Hampshire.

Dennis G. Giokas Dennis Giokas is the group technical lead for PCSG’s Net-
work ClientEngineering and the engineering manager for its New User Interface
Group. His primary responsibility is technical lead for the next generation of the
PATHWORKS client. Prior to this work, Dennis contributed to PC DECwindows
development. Before joining Digital in 1984, he was employed by Arco Oil & Gas
and The Foxboro Company. Dennis holds a B.M. (1974) from the University of
Massachusetts at Lowell, an M.M. (1976) from the New England Conservatory,
and an M.SCS. (1989) from Boston University. He has two patents pending.

Andrew T. Leskowitz A principal software engineer in the PCSG X Server
Development Group, Andy Leskowitz is the project leader for the eXcursion
display server. Since coming to Digital in 1987, he has contributed to various
X development projects and designed the PATHWORKS LANSESS component.
Andy’s prior experience includes engineering positions at Datatrol, The
Foxboro Company, and Raytheon Company. He has a B.S. (1976) in biology from
Swarthmore College. Andy has applied for a patent related to his X server devel-
opment work.

Mitchell P. Lichtenberg Mitch Lichtenberg is a principal software engineer
in the Personal Computing Systems Group. He is responsible for the design and
implementation of the PATHWORKS network client transport architecture and
for variousotheraspects of Digital’s PATHWORKS PC integration products. Before
joining Digital in 1986, he was employed by the Xerox Palo Alto Research Cen-
ter as a software engineer in the Xerox Artificial Intelligence Systems Division.
Mitch holds a B.S. (1986) from Worcester Polytechnic Institute.

David A. Low David Lew is a censultant engineer in the Persenal Cemputing
Systems Greup. Since jeining PCSG in 1988, David has werked in a variety ef
advanced develepment tasks invelving PC netwerking technelegy. He is cur-
rently cencerned with assessing appreaches fer pen-based cemputing and wire-
less PC netwerking. David has an A.B. in mathematics and an M.A.S. in cemputer
science frem Besten University. He is a member of A AAS, IELE. and ACM.

Christopher E. Methot Chris Methet has been analyzing client-server per-
fermance since jeining Digital in 1986. He has werked in perfermance charac-
terization of LAVC systems and has centributed te VAX Perfermance Summaries.
Currently, he supervises capacity/perfermance engineering in the Persenal
Cemputing Systems Greup. In additien te develeping the PATHWORKS client-
server medeling precess, his greup is develeping a standard perfermance test
fer Macintesh servers and has benchmarked many of Digital's hardware servers.
Chris helds a BS. (1967) in industrial design frem the University of Cincinnati.

Andrew W. Nourse Principal seftware engineer Andrew Neurse has werked
en netwerk seftware for the PATHWORKS and DECnet-DOS preducts fer the past
six years. He develeped Micreseft Windews and nen-Windews netwerking
applicatiens, libraries, and drivers. Prier te this, he wrete netwerk utilities fer
DECSYSTEM-20, DECsystem-10, and RSTS/E preducts. Andy received a B.S. in elec-
trical engineering and cemputer science frem the Massachusetts Institute of
Technelegy in 1974 and jeined Digital in 1976.

Anthony J. Rizzolo A principal seftware engineer in the PCIC Server Develep-
ment Greup—Open Systems, Antheny Rizzele designed and implemented the
PATHWORKS fer ULTRIX file server precess. He alse designed the data link and
pert driver layers fer the PATHWORKS fer DOS preduct. Prier te this werk, Teny
was a member of the Internal Seftware Suppert Greup and the TOPS-10 Engineer-
ing Greup, where he designed and implemented the data link layer fer the KLNI
Ethernet adapter. Teny jeined Digital in 1981. He received a B.S.E.E. frem Stevens
Institute of Technelegy.

Philip J. Wells Phil Wells is the PATHWORKS server architect and is respensi-
ble fer ceerdinating the design and implementatien ef the PATHWORKS server
preducts. In previeus pesitiens at Digital, Phil werked fer Cerperate Tele-
cemmunicatiens designing Digital’s internal netwerk, the EASYNET, and helped
suppert data centers and netwerks while in the Internal Seftware Services
Greup. Phil jeined Digital in 1976 as a cemputer eperater in the Cerperate Data
Center.

Foreword

Joseph A. Carchidi
Group Engineering Manager;
PC Integration

In the 1990s, a major shift is occurring in personal
computing, fromisolated, individual work on desk-
tops to work in groups whose members are located
throughout an enterprise. To support this impor-
tant change, Digital has developed a family of prod-
ucts, called PATHWORKS, that enables personal
computer users to make the shift from the stand-
alone machine to the network environment and the
resources of larger computer systems.

The roots of PATHWORKS were in place as early
as 1980. Digital’s engineering management recog-
nized that a significant part of the growth in the
computer industry would be redirected from
minicomputer to microcomputer products. As the
80s progressed, we learned from our experience
in personal computer hardware development and
from the direction takenby the growing and highly
competitive microcomputer market that industry
standard-based products were more important
than unique technologies; that is, open systems,
comprising standard devices and interconnects,
were what customers wanted, not more propri-
etary systems.

Digital’s VAXmate personal computer, intro-
duced in 1987 was built on the industry standard
model. Moreover, it offered something no other
PC offered at that time: the VAXmate had the net-
work built in. With foresight, engineering manage-
ment determined that our microcomputer business
would tie to our long-standing strength in building
networks. Our strategy thus changed from a focus
on hardware development to the development of
microcomputer software.

The critical question then asked—and the one
that lead to PATHWORKS development within Engi-
neering—was whether to provide customers with
an upgrade path similar to those of competitors
in the PC LAN business at that time, i.e., file and
print services, or a network environment that
embraced the primary technologies used by cus-
tomers, i.e., a complete set of networking appli-
cations that included file and print services, mail,
X servers, and terminal emulators. The strategy that
took hold was the latter; we would develop a broad
set of products that recognized customers’ invest-
ments in a range of personal computer and net-
work software. Unlike other single-product PC LAN
offerings, this set of products would be engineered
to couple large server systems based on CISC and
RISCtechnologies with the primary microcomputer
systems and would support operation over a local
or wide area network. Furthermore, the mapping

between the disparate systems would have to be
transparent to users, and without concessions on
performance.

This chosen strategy, of course, was not the eas-
ier of the two to implement. One of our initial tasks
was to select which operating systems to support
among the many microcomputer operating sys-
tems available in the market. We decided to define
the scope of our early development work by sup-
porting the most widely popular personal comput-
ers, which are those based on the DOS, OS/2, and
Macintosh operating systems. Another important
decision was the choice of a network transport that
would serve as the basis for the interconnection of
the systems selected. We selected Microsoft's LAN
Manager software as this transport. MS-NET, the
predecessor to LAN Manager, had the advantage of
being network transport independent, thus allow-
ing us to utilize the DECnet network to extend the
PC LAN software to a wide area network.

In the papers in this issue, you will read about
some of the extensive work that has been accom-
plished since we first embarked upon this software
effort. Engineers have designed and implemented
file servers and network transports that allow PCs
to access files, applications, storage, and print

services on the larger VMS and ULTRIX server
systems. Further, a PATHWORKS application, called
eXcursion, brings together the X Window System,
the Windows environment, and the DECnet net-
work. The effect is to link X—so important to users
of UNIX systems—with the PC DOS system environ-
ment. These combined efforts represent a hallmark
in Digital’s progress toward open, heterogeneous
computing.

Our achievement in the Personal Computing Sys-
tems Group has been our steady progress toward
providing customers the open computing environ-
ment they need. The breadth of our product offer-
ing has taken on clear definition within the last
year, and we will now begin the work of adding
depth to the PATHWORKS product set. The possibili-
ties for future developments are truly astounding.
Looking ahead five years from now, client work-
stations will have the power of supercomputers,
and the dramatic progress in parallel computing
will bring additional opportunities for data sharing
and application developments which are in embry-
onic stages today. Our challenge in software engi-
neering will be to make all these systems work
together in a well-integrated, easy-to-use, well-
deployed computing environment.

Alan Abrabams
David A. Low

An Overview of the PATHWORKS

Product Family

As the number of personal coinputers continues to grow, so does the demand for
networking products and services to allow these PCs to share networked resoutrces.
Digital's Personal Computing Systems Architecture enables the integration of
PCs inlo Digital's enterprise-wide nefwork systems. The software products devel-
oped using this architecture are referred to as the PATHWORKS product fumily.
PATHWORKS products support a variety of PC platforims and operating systems, and
acconnnodate different physical networks and transport and service protocols. This
Sflexibility allows PC users lo access resources oulside their PC environment, such as
remote files, printers, databases, and electronic mail.

When the IBM Cerperation introduced its first
persenal computer in 1981, few could have fore-
seen that by 1992 milliens of PCs weuld have been
sold werldwide, radically changing the cemputer
market in the process. The term PC usually implies
an Intel 80x86 family or a Motorola 68000 scries
proccessor, sized to fit under a desk or smaller
and commonly priced under $5000. The low price
has helped to fuel an explosive grewth in the
number of hardwarc products and software appli-
cations available for PC platforms. PCs are now
ubiquitous and represent the largest class of net-
worked computers.

Even before the introduction of the PC, small
computers were bcing networked togcther to
share data and hardware resources. In 1990, as
many as 40 percent of the installed PCs were net-
worked.! By 1994, an estimated 75 percent of the
increasing number of PCs will be linkcd tegcther
with products from many networking vcndors.
These vendors provide services that cemmonly
include transparent access to remote files, printers,
databases, and electronic mail.

Digital Equipment Corporation is a worldwide
leader in networking scrvices. Since 1986, we have
been developing the Personal Computing Systems
Architecture (PCSA) to meet the growing needs of
PC client-server applications in local and wide area
network systems. Many technical obstacles were
met and overcome in the design and development
of PC integration products. The PATHWORKS prod-
uct family, derived frem PCSA, reflects the diversity

of Digital's custemers’ needs and envirenments.
PATHWORKS software products support a variety of
PC platforms and operating systems, and accommo-
date different physical netwerks and transport and
scrvice protocols.

‘10 help the reader comprehend the scope of the
PATHWORKS offerings, we begin this paper with a
basic discussion ef PC hardware and software, fol-
lowed by information about the various protocols
used in PC networking. We then describe hew
Digital’s PATHWORKS product set allews integration
of PCsinto netwerk systems.

PC Hardware

This section describes the PATHWORKS Intel and
Macintosh client platforms and introduces related
PATHWORKS services.

Intel Platforms

The most pepular operating systems in the werld,
IBM’s PC-DOS, Microsoft’s Ms-DOS, and Micreseft
Windows, are designed to take advantage of the fea-
tures of the family of Intel chips that includes the
8080, 80280, 1386, and 1486 micreprecessors.

The 80x86 memory architectures have evolved
from 16-bit addressing with implicitly referenced
64-kilobyte scgments in the 8086 processor, to
32-bit addressing with a paged virtual memory in
the i386 or higher processors. Recent Intel pre-
cessors have features previously associated with
minicomputers. The i486 chip, for example, has

Vol. 4 No. 1 Winter 1992 Digital Technical Journal

An Overview of the PATHWORKS Prodict Fainily

an integrated floating-point processor. instruction
and data caches, and hardware support for multi-
tasking. This rangce ot processor capacity highlights
a major concern ot the designers of Digital’s
PATIIWORKS products, i.c.. how to eficiently accom-
modate the range of differing functionality found in
the installed Intel-bascd PCs.

Although this PC market has had little de jure
regulation, 1BM's market presence has shaped the
de facto interlace standards. The industry standard
architecture (JSA) svstem bus and the video graph-

ics array (VGA) display technologies arce examples of

such standards.

TThe most common system bus, the JSA bus, pro-
vides 16-bitdataaccess to a 24-bit(i.c.. 16-megabyte)
address space. Physical and electrical interface con-

ventions have been established and thousands of

interface boards arc available. 1IBM introduced the
I1SA bus and later developed the Micro Channel
Architecture (MCA) bus, which provides 32-bit data
access to a 32-bit (ie.. 4-gigabyte) address space,
automatic bus sizing, and accelerated data transfer
mcchanisms. The MCA bus is not compatible with
the 1SA bus. Consequently,a number of manufactur-
ers other than IBM joined forces and devised the
extended ISA (EISA) bus, with features analogous
to thosc of the MCA bus. Even though Digital's PCs
usc cither the ISA or EISA bus, we support our cus-
tomers” MCA bus machines through software and
peripheral device offerings.

Graphical user interfaces (GUIs) such as the one
provided by the Microsoft Windows software are
becoming the rule rather than the exception. IBM's
color graphics adapter (CGA) display was an early
standard at 320 columns by 200 rows and a range
of 4 colors. VGA is a morc recent standard, with
variants that can generate a screen up to 1024 by
768 in 256 colors. There is no widely accepted dis-
play standard bevond VGA, and it may be sufficient
for manufacturcrs of innovative display technolo-
gies to provide device drivers for transparent use
by Microsoft Windows applications. For example,
the PATIHIWORKS eXcursion for Windows display
scrver, which implements the X Window System
protocol and opcrates in the Microsoft Windows
environment, uses the display drivers supplicd
with the Windows software. The eXcursion server
thus leverages any new display technologies with
which Windows drivers are supplied. However, the
standalone DOS-bascd X Window System servers
supplicd with the PATHWORKS software must be
modificd to use a new display technology.

Network interface cards (NICs) provide access
to local arca network (LAN) svstems. NICs that
adhere to 1SA. MCA, and FISA standards are avail-
able from dozens of manufacturers for many net-
working topologics. Digital manufactures NICs
for thick, thin, and twisted-pair Ethernet connec-
tions. PATHWORKS products support the Network
Datalink Interface Specification (NDIS) and thus
accommodate Ethernet and token ring cards from
other vendors. NDIS also permits the use of parallel
transport stacks in the PATHWORKS for DOS and
PATHWORKS for O$/2 products. Digital also supplies
NetWare drivers for its DEC EtherWORKS cards for
usc on Novell networks.

Macintosh Platforms

The Apple Macintosh PC embodics an integrated
hardware and software systemarchitecture that has
not been cloned by competitors and thus has fewer
variants than the Intel-basced PCs. Macintosh PCs use
the Motorola 68000 series microprocessor. The
later versions of these microprocessors provide
32-bit operations on a 32-bit address bus, with
virtual paged memory. Application programmers
are largely shielded from the underlying hardware
by an extensive operating svstem application pro-
gramming interface (API).

All current Macintosh PCs are equipped with bit-
mapped graphics, sound-generating hardware, a
desktop bus for kevboard and mouse conncection,
and an AppleTalk network communications port.
Some Macintosh PCs have system buses that permit
peripheral card extensions. All Macintosh PCs allow
communication by means of the AppleTalk family
of protocols over the LocalTalk LAN.? Ethernet/
LocalTalk bridges and routers are available from
scveral vendors. Digital's PATHWORKS product fam-
ily includes VMS Applelalk transport stacks and an
AppleTalk/DECnet gateway.

PC Operating Systems

The PATHWORKS product sct supports scveral
client operating systems, namely Ms-DOS, Microsoft
Windows. Apple Macintosh, and Os/2, a joint effort
of IBM and Microsoft.

MS-DOS Operating System

Microsoft's MS-DOS (and IBM's PC-DOS) opcerating
system evolved as a collection of services for a
single-tasking, Intel-based PC. In addition to file
and print services, DOS provides a simple frame-
work for 170, memory management, and other

Digital Techuical Journal Vol 1 No. | Winder 1992

9

PATHWORKS: PC Integration Software

system services. A command line interpreter is used
to load an application, which may invoke DOS ser-
vices or take over various hardware functions on its
own. Although DOS is evolving in the direction of
providing a protected virtual machine environ-
ment, applications may bypass or subvert systems
services provided by current DOS versions. This
complicates the design of DOS client systems ser-
vices such as PATHWORKS networking software.

Microsoft Windows Environment

Microsoft Windows software operates over the
DOS operating system to provide a protected
multitasking (nonpreemptive scheduling) virtual
machine operating environment and a graphical
user interface. Unlike DOS, the Windows environ-
ment imposes severe constraints on application
structure and interface design, and on the design of
system support software such as PATHWORKS net-
work drivers. Although much of the success of
the Windows software is due to its ability to multi-
task traditional DOS applications, there is a rapidly
growing number of Windows-specific applications
that take advantage of the graphical environment,
such as the PATHWORKS eXcursion for Windows
server.

Macintosh Client Software

The first Macintosh client was an integrated multi-
tasking hardware and software system with a
well-defined application structure and interface
definition. Subsequent hardware and software
development has refined and extended operating
system services. The Macintosh Communications
Toolbox, for instance, defines an API that is used
by the PATHWORKS Macintosh client to enable
Macintosh PCs to participate in a DECnet network.

0S8/2 Operating System

0S/2 was conceived by Microsoft and IBM as a
protected-mode operating system. OS/2 software
features preemptive multitasking, process threads,
interprocess communication, and an extensive
GUI. 0S/2 provides only limited support for DOS
applications, partly because of the constraints of
the Intel 80286 microprocessor, and has yet to
achieve its anticipated popularity. However, OS/2
remains a powerful operating system and applica-
tions development environment, and IBM is address-
ing perceived inadequacies. Digital's PATHWORKS
family includes OS/2 LAN Manager server and client
offerings.

PC Networks

Even before IBM coined the term PC, microprocessor-
based machines were using networks to share
expensive hard disks. Sales of networks on which
PCs act as both servers and clients have under-
gone tremendous growth and have outpaced mini-
computer networks in the last several years. The
most common service offered by PC networks is
transparent access to remote files and printers,
which permits PC applications to share resources
provided by a network server.

The popularity of PC networks has also spawned
a variety of distributed applications such as data-
base, electronic mail, and group productivity prod-
ucts. Most PC client-server applications are simply
PC applications that simultaneously share files
stored on a remote file server. These applications
use a file server to achieve their distributed nature.

PC networks are implemented over more than
a dozen underlying physical layers; Digital’s
PATHWORKS products support Ethernet, token ring
networks, and asynchronous lines. All mini-
computer and mainframe vendors have products
that permit PCs to obtain services from their
enterprise-wide networks. Digital's PATHWORKS
for VMS and PATHWORKS for ULTRIX products pro-
vide transparent file and print services to DOS,
Windows, 0S/2, and Macintosh PC clients. PC files
stored on the VMS or ULTRIX operating system may
be accessed by other PCs or by users of the host
operating system. In addition, PATHWORKS prod-
ucts provide database access, X Window System
support, terminal emulation, electronic mail, and
many other services familiar to those in a Digital
environment.

As noted above, PC networks use many physi-
cal networking protocols. In the following sec-
tions, we describe PC transport protocols and the
application-level service protocols used to encode
the remote service primitives.

Transport Protocols
Commercial PC networks use a wide variety of
transport and service protocols. Although mini-
computer transports are available to meet some
needs, most vendors have introduced their own to
address concerns such as performance and size,
which are critical in competitive concerns such as
performance and code size.

The network basic 1/0 system (NetBIOS) soft-
ware, developed by IBM, defines an interface to a
connection-oriented transport, a connectionless

10

Vol. 4 No. 1 Winter 1992 Digital Technical Journal

An Overview of the PATHHWORKS Product Lamily

datagram service, and a name service APL? In addi-
tion to being the Microsoft LAN Manager transport
interface, NetBlOS has become a widely accepted
standard for PC applications communicating
directly with transports.

Figure 1 shows that NetBIOS can be implemented
by PC network vendors over a variety of underlying
transports. Digital's PATHIWORKS products have
NetBIOS interfaces to the DECnet protocol and the
transmission control protocol/internet protocol
(TCZIp). s Other popular commercial transports
incorporating NetBLOS interfaces are the internet
packet exchange (1PX). the Xerox Network System
(XNS), and the NetBIOS extended user interface
(NetBEUD. Many of these transports also have a
native transport API that allows the application to
make usc of features not available through the
NctBLOS interface.

The TCp/IP protocol family is beginning to
achieve some visibility in the PC network market.
At first largely associated with UNIX and UITRIX net-
works and Sun Microsystems’ Network File Service
(NFS) protocol, TCGYIP has been lately offered as
an underlying transport for NetBLOS in several ven-
dors’ products, including Digital’s PATHWORKS fam-
ily. In addition to transparent file and print services,
PC users of TC/IP require access to a variety of
tools and utilitics, such as mail and terminal cmula-
tion, which may resemble UNIX or ULTRIX tools and
utilities. Digital's PATHWORKS family has adopted
the approach of maintaining parallel TCI/P and
DECnct implementations, both of which have a
PC-centric rather than a host-centric orientation.

The PATHWORKS TCI/IP implementation operates
over either an Ethernet or a token ring network,

APPLICATION

NETBIOS APPLICATION
PROGRAM INTERFACE

NATIVE TRANSPORT
APPLICATION PROGRAM
INTERFACE. e.g., SOCKETS

:I_‘ ‘

TRANSPORTS

Ligure 1 Netl3108 and Native Application

Progreim literfaces

and provides a file transter protocol (FTP) utility, a
TELNET terminal emulator, and a Berkeley Software
Distribution (BsD)-like socket interface for applica-
tion developers.

Many of Digital's customers have extensive
DECnet networks. Digital's PATHWORKS product
family provides PC clients with full Phase vV end-
node functionality, including file access listener
(FAL), network file transfer (NF1), command termi-
nal (CTERM), and network utilitics. PATHWORKS
products also support a NetBlIOS implementation
that uses the DECnet protocol as a transport. The
PATIIWORKS DECnet implementation operates over
either an Ethernet or a token ring network and pro-
vides a BSD-like socket interface for application
developers.

NetWarce software from Novell Corporation is a
popular family of PC network services. The internct
packet exchange protocol is Novell's derivative of
the Xerox internet datagram protocol. 1PX is the
network transport that undcerlies SPX. a sequenced
reliable protocol. IPX is also used by the NetWare
core protocol, NCP. Novell also supplies an imple-
mentation of the NetBIOS interface over the IPX
protocol. Digital supports the IPX/SPX protocol on
DOS clients through the PATHWORKS for NetWare
coexistence product, and has announced plans to
integrate NetWarc protocols into PATHWORKS prod-
ucts in a4 way that parallels current use of LAN
Manager protocols.

The AppleTalk family of protocols employed by
Macintosh PCs accommodates three hardware lay-
crs: token ring, Ethernet, and Local'Talk. AppleTalk
includes a datagram delivery protocol. routing and
name binding protocols, and several session-level
and service protocols.

For efficiency, many PC network vendors have
invented their own protocols. For example, both
the IBM/Microsoft NetBEUL and the 3Com Corpora-
tion NBP transport protocols have been optimized
to work on LAN topojogies.® Digital's PATHWORKS
software provides the local arca transport (LAT)
andlocalarea system transport (LAST) protocols on
several of its client platforms: these protocols are
used to access terminal scrvices and InfoServer
disk services.

Service Protocols

Service protocols encode high-level service
requests at the application layer: these protocols
are often vendor-specific. Typically, an application
issues a standard /O request. such as “open file;” to

Digital Technical Journal Vol i No. | Winter 1992

L1

PATHWORKS: PC Integration Software

a systems interface to obtain transparent access te a
remote file or print service. The request may be
cither intercepted (e.g., in Novell's NetWare soft-
ware on DOS) or channeled through the operating
system (e.g., in the Microsoft LAN Manager or Apple
Macintosh software) to a redirector or shell soft-
ware module that encodes it into a service protocol
packet. The redirector then sends the service
request to the local transport. When the response
packet arrives from the service provider, the redi-
rectorinterprets the service protocol and provides
the application with the appropriately formatted
response. The redircctor may also provide an API
foraccess to nontransparent services such as peer-
to-peer cemmunication and management of a
remote server. Figure 2 illustrates the role eof ser-
vice protocols in fulfilling a client request.

The Microsoft LAN Manager redirector software
uses the scrver message block (SMB) protocol to
access remote file and print services.” This proto-
col may run over multiple transports, each trans-
portaccessed by means of a NetBIOS interface. The
redirector also provides a client API over the SMB
protocol for many nontransparent services such as
peer-to-peer communications via named pipes, a
messaging service, and remote server management.

Novell's NetWare software uses the NCP protocol
to access remote file and print services. This popu-
lar service protocol runs only on the IPX transport
stack. The NetWarce shell provides client APIS over
NCP for many nontransparent services such as trans-
action tracking, semaphores, and remote server
management.

Apple’s AppleShare software uses the Applelalk
suite of protocols. These protocols include the
Applelalk filing protocol (AFP) and printer access

APPLICATION
A
FILE 'O
Y
OPERATING
8‘ ™| SYSTEM
LOCAL 1
STORAGE A SERVICE
PROTOCOL
REDIRECTOR >| SERVER
[A
TRANSPORT '
CLIENT PROTOCOL [SERVER
TRANSPORT | TRANSPORT
Figure 2 Service Protocols
12

protocol (PAP), which permit transparent file and
printer redirection.

Sun’s NFS system has widespread multivendor
support in UNIX and ULTRIX environments. There
are a varicty of PC products that work over the
IP protocol family to provide file services from a
standard UNIX er ULTRIX NFS server.

PATHWORKS Product Family

Commensurate with Digital's role as a netwerk
integrator, the PATHWORKS product family is large
and diverse. In the following sectiens we character-
ize the PATHWORKS family by its client platforms,
server platforms and services, and physical net-
works and nctwork protocols. Table 1 shows the
history of the PATHHWORKS product family:

Since its introductien in 1986, the PATHWORKS
product family has continued to expand the list of
clicnt platforms, servers. and transperts it sup-
ports. The mest popular client platferms are Intel-
based and operate under DOS and/er Micreseft
Windows. These clients can be serviced by VMS,
ULTRIX, and OS/2 servers. The Macintesh clients
can be serviced by VMS servers.

The PATHWORKS product family effers transparent
file and print services through two technelegies:
the Microsoft LAN Manager is usced for DOS, 0S/2,
and Windows client platforms; AppleShare is used
for Macintosh platforms. In addition, on DOS and
Windows platforms a dual-service stack appreach
is uscd to allow these platforms te access native
NetWare scervices through the PATHWORKS for
NetWare Coexistence product. Table 2 shows hew
clients and servers can be connected by means ef dif-
ferent transports. The first column is a list of the sup-
ported servers; each cell shows the transperts that
can be used te connect the client and the server.

The Macintesh client also supports the DECnet
transport. However, tile and print services are enly
aviailible through the Applelalk stack. Clients alse
have access te a number of transport gateways,
including AppleTalk-DECnet, X.25, and the System
Netwerk Architecture (SNA), the latter two threugh
Digital network products.

The default PATHWORKS netwerk protocol is the
DECnet protocol. TCI/IP is available as an eptienal
add-on to the base platform. The DECnet protocol
allows the user to access the following services in
addition to the transparent file and print services:

= A full set of management tools (e.g., the DECnet
network centrol program fer managing the
transport).

Vol. 4 No. 1 Winter 1992 Digital Technical Journal

Table 1 Product History

A Qverview of the PATHWORKS Procdact Fani'ly

Area Supported 1986-89 1990 1991
File and Print Service LAN Manager LAN Manager LAN Manager
AppleShare AppleShare
Server VMS VMS VMS
ULTRIX ULTRIX
0S/2 0S/2
Transport DECnet DECnet DECnet
AppleTalk AppleTalk
TCP/IP TCP/IP
NetBEUI
Network Ethernet Ethernet Ethernet
LocalTalk LocalTalk
Token Ring
Clients DOS DOS DOS
0S/2 Macintosh
Macintosh 0S/2
Windows 3.0
NetWare Coexistence
Table 2 Client-Server Transports
[Client Platforms - - 1
Server Supported DOS Windows 0S/2 Macintosh
VMS DECnet DECnet DECnet AppleTalk
TCP/IP TCP/IP TCP/IP
LAST LAST
ULTRIX DECnet DECnet DECnet
TCP/IP TCP/IP TCP/IP
0S/2 DECnet DECnet DECnet
TCP/IP TCP/IP TCP/IP
NetBEUI NetBEUI NetBEUI

= The NI utility for transferring hles to systems
that do not have serversottware.

= Development tools in the form of programming
libraries for access to peer-to-pecr communicil-

. . tion with remote applications.
= A remote disk s opposced to remote file) mecha- Pl

nism over the LAST protocol. This mechanism The TCIP protocol alows the user access to the
allows access Lo Digital's IntoServer products
that support networked CD-ROMs, i.e.. read-only

optical disks.

following services in addition to those listed above:
= The FTP utility for file transfer

= The ability to use the basce terminal emulator to
allow operation over TELNET

= DOS and Windows terminal emulators operating
over the LAT or CTERNM protocols, as well as asyn-
chronous lincs. The LAT protocol may also be .

The ability to run the DOS-basced X Window
used to attach a local PC printer to o VMS print

System server over TCI/IP as well as over the

SRISE: DECnet protocol

= A DOS-basced X Window System server that allows
the PCoto act as a display device for Motif or
DECwiIndows applications.

Every Macintosh PC includes softwire to access
basic file and print services over the AFP. The
PATHWORKS Macintosh product family provides
those services on server plattorms. but also pro-
vides a set of transport protocols and utilitics on

= Alow-end electronic mail utility that provides a
PC front end to the VMS and UETRIX muail systems.

Digital Technical Journal Vol 1 No. [Winler 1992 13

PATHWORKS: PC Integration Software

the Macintesh client. In particular, PATHWORKS
products supply a DECnet stack with fil¢ transfer
and management utilities, a LAT implementation
and terminal emulater, and an X Window System
server implementatien that eperates over the
DECnet or an eptienal TCP/IP stack. The PATHWORKS
Macintesh client includes a programming teel fer
access to remete databases en Digital platforms.

The PATIHIWORKS OS/2 client prevides a LAN
Manager redirecter and SMB access te basic file
and print services ever the DECnet pretecel er an
eptional TCF/IP stack, and a cellection of tools and
utilities similar te thesc fer the PATTIWORKS DOS
client. Seme features, such as an X Window System
server, are lacking.

In additien to the applications included in the
base PATHWORKS preduct, the fellowing client
applicatiensare available as layered products:

= eXcursien fer Windews, a Microseft Windows/
X Window System server applicatien that allews
X Window client applicatiens te sharc the PC dis-
play device with native Windews applicatiens

= X400 mail, which prevides PC frent-end access
te Digital’s X.400 mail server preducts

= Cenferencing, which prevides a PC frent end te
VAX Netes

= Videetex, which prevides a PC frent end te
Digital’'s Videetex servers

= DECquery seftware, which prevides a PC frent
end te structural query language (SQL) services

Digital alse prevides development tools fer
building distributed applications en the
PATHWORKS base system. These develepment teels
include databasc access te a host-bascd SQI. scrver
by mcans ef the SQL scrvices and distributed trans-
actien precessing through the DECtp for ACMS
preduct.

Summary
The PATHWORKS preduct family prevides direct
access te the lecal and wide area enterprise envi-
renment frem dcsktep devices. Clients can access
multiple file and print servers, gatcways, database
servers, transactien preccssing systems, and elec-
tronic mail systems en a varicty of server platferms
in a consistent manner from multiple desktep
platferms.

The services previded by the PATHWORKS pred-
uct sct are the feundatien fer the integratien of

desktep applicatiens with hest system scrvices
such as thesc available with the vMS, ULTRIX, and
0S/2 systems. PATHWORKS netwerk software makes
it possible to devcelep frent-end processors fer
teday’s host-based applicatiens and te design new
distributed applicatiens. Hence, PATHWORKS procl-
ucts allew the existing cemputing infrastructure te
pregressively evelve tewards a distributed medel.

References

1. B. Baldwin, Local Area Communication Service,
Metric Nete LAN 40 (Stamferd, CT: Gartner
Greup, Inc., December 1991).

2.G. Sidhu et al., [Inside AppleTalk, 2nd ecl
(Reading, MA: Addisen-Wesley, 1990).

3. IBM NetBIOS Application Development Guide
(Armenk, NY: IBM Cerperatien, Decument Ne.
$68X-2270-00, 1987).

4. Protocol Stundard for NetBIOS Service on a TCP/
UDP Transport: Concepts and Methods, Internet
Engineering lask Force RFC 1001 (March 1987).

S. Protocol Standaurd for NetBIOS Service on a TCP/
UDP Transport. Detailed Specification, Internet
Engineering Task Ferce RFC 1002 (March 1987).

6. Local Area Network—Technical —Reference
(Armenk, NY: IBM Corperatien, Decument Ne.
SC30-3383-2, Nevember 1988).

7. X/Open Developer’s Specification—Protocols for
X/0Open PC Interworking: SMB (Reading, UK.
X/0Open Company Limited, Decument No.
XO/DEV/Y1/010, 1991).

Vel. 4 No. I Winter 1992 Digital Technical Journal

Edward W, Bresnaban
Siu Yin Cheng

PATHWORKS for VMS File Server

The PATHWORKS for VMS file server integrates industry-standaid personal com-
puters with VAX VMS systems over a communications network. 1t implements
Microsoft’s server messdage block (SMB) core protocol. which provides resource shei-
ing using a client-server model. The server provides transparent network access to
VAX VMS FILES-11 files from a PC's native operating systen. The architecture si-
ports multiple transports to ensure interoperability among all PCs connected on
an open network. Due to the performence constraints of mnany PC applications,
data caching and a variety of other algorithms and heuristics were employed to
decrease request response time. The file server also implements a security model to
provide VMS security mechanisims to PC users.

Coupled with the PATHWORKS for DOS or
PATHWORKS for Os/2 product, PATHWORKS for VMS
creates a distributed computing environment,
based on a client-server model. This environment
allows personal computer (PC) users to access VMS
system resources transparently. PC clients access
the system server from their native operating sys-
tems, typically MS-DOS, as if it were local to the
PC. The VAX VMS system resources to be shared, i.e.,
files or printers, are offered as services over the
network to PC clients. The computer systems
providing the shared resources are referred to as
servers: and the PCs requesting the resources as
clients. The SMB protocol from the Microsoft
Networks/OpenNET (MS-NET) Architecture was
chosen to provide file sharing from a VAX VMS sys-
tem to MS-DOS and 08/2 clients.! The SMB protocol
is a command/response application-layer protocol
designed to provide file sharing in a PC network.
Since SMB is an application-layer protocol, it is
transport independent and thus can be imple-
mented over heterogeneous networks.

Central to this environment is the file server, the
component that processes the SMB requests to pro-
vide file and print sharing along with management
functions. The file server maps SMB file requests to
the appropriate calls for the VAX VMS FILES-11 file
system interface and honors applicable security
mechanisms. MS-DOS and VAX VMS systems have dif-
ferent file systems and security models. To integrate
these different environments, mapping policies,
along with an architecture appropriate for the VMs
system, had to be developedand implemented.

Digital Technical Journal Vol -i No. | Winter 1992

This paper describes the design and implemen-
tation of a nondedicated personal computer file
server (PCFS) on a VAX VMS computer system. It
details the PATHWORKS for VMS file system and
discusses its transport layer interface and perfor-
mance considerations, including data caching
elfects and disk space allocation. The paper then
explains file sharing among server processes in a
cluster environment and concludes with a discus-
sion of the server configuration and management
interface.

File Server Architecture

The file server is implemented as a single, multi-
threaded, nonblocking detached process with an
associated permanent DECnet object. This user-
mode process is privileged and has a high priority.
Figure 1 shows the architecture of the server. Only
one tile server process exists on any one computer
to handle all client requests. An alternative choice
would be to have multiple processes service the
clients. T'he use of a single process reduces system
resource requirements and eliminates the latency
that is incurred from context switches among the
multiple server processes. Also eliminated is the
latency that results from process creation at the
time a client connects.

A threads package with multiple independent
threads of exccution within a single process sup-
ports multiple clients and periodic operations
within the file server. The file server creates a
thread for a client when it requests establishment
of a virtual circuit to the file server. The thread is

PATHWORKS: PC Integration Software

VMS LOCK VMS FILE
MANAGER SYSTEM
PCFS SERVICE }L\JSESORIZATION JOB MANAGEMENT
DATABASE Ele s T CONTROLLER INTERFACE
PERSONAL COMPUTER FILE SERVER
LAST TCPIP DECNET
ETHERNET @

Figure |

deleted when the client terminates its connections.
A client’s thread carries out the operation specified
in the request SMB without blocking the process.
With this scheme, processing SMB requests is sychro-
nous with respect to the client, yet asynchronous
with respect to the file server process.

Since a server process may be processing the
requests of hundreds of clients simultancously, the
server operates in real-time. The threads package
contributes to these goals by providing an envi-
ronment in which the process ncever enters a wait
state and a client thread is safe from CPU starvation.
Preventing the process from blocking is accom-
plished by performing all file 170 asynchronously
and by calling opcrating system routines asynchro-
nously when possible. Starvation is prevented by
scheduling clients using a4 nonpreemptive first-in,
first-out (FIFO) scheduling algorithm. With this pol-
icy, a thread executes until it voluntarily yields. usu-
ally due to an I/O operation or an operating system
call. Using a nonpreemptive scheduling algorithm
also climinates the latency that would result from a
thread switch in a preemptive environment.

PATHWORKS File System

A file server needs to provide transparent file access
to a VMS file system and cnsure file accessibility
between DOS and VMS uscers. Since these operating
systems have different file systems, PATHWORKS for
VMS must store the files in VAX VMS FILES-11 format
and provide a mapping algorithm to bridge the
two operating systems. Because the 0872 and DOS
systems use the same file system, the mappings per-

Server Architecture

formed to address the difference between the DOS
and VMS systems can be applicd to support trans-
parent file access from an OS/2 client.

File Name Mapping

DOS and VMS FILES-11 support different naming syn-
taxes. DOS supports 8.3 naming format; that is, the
file name is composed of a maximum of eight char-
acters with a maximum of three characters as the
extension. In contrast, the VMS FILES-11 file name
supports 39.39 format and includes a third compo-
nent, the file generation number. In addition, the
legal character sct for a file namc is larger in DOS
than it is in the VivIS system.

The PATHWORKS file server does not include a
mapping algorithm to convert a 39.39 vVMS file nam-
ing syntax to be accessible to DOS. Any VMS file that
DOS system users need to share must be created
with a file name that conforms to DOS 8.3 format.
Since the 8.3 naming format maps directly to the
39.39 format. no mapping algorithm is required to
guarantee a VMS system user access to files named
by a DOS system uscr.

To overcome the difference in character sets, a
comprehensive mapping algorithm was written to
cnsure shareability and transparency. Since neither
operating system is case scnsitive, the file server
changes the file name to uppercase before any oper-
ation is performed on the file. The legal character
scet for VIS FILES-11 file names includes uppercase
alphanumerics. dollar sign, hyphen, and under-
score. The character set in DOS includes all noncon-
trol characters with the exception of a few special

16

Vol - No. £ Winter 1992 Digital Technical Journal

signs. The PATHWORKS server maps the character
sets based on the following rules:

= All alphanumeceric characters are changed to
uppercasce letters: any character that is valid in
A VS file name is passed through unchanged.

= All other characters are changed to two under-
scores, followed by two hexadecimal digits that
represent the ASCH code of the character being
mapped.

VMS FILES-TT allows multiple versions of a file to
be generated and stored in a directory. These files
are identificd by the numeric component, which
represents the version number, of a file name.
Therc is no cquivalent concept in the DOS system.
The PATHWORKS server maps the highest version
(or most recent generation) to beaccessible to DOS.

Similarly, the scrver. when creating a file on behalf

of . DOS client, generates the file with a version
limit of L To preserve and honor the version limit
information for the VMS environment. the scrver
preserves the VAIS e attributes of previous ver-
sions of the file. Consequently, if the file is created
by VS uscer. and is Tater updated by a DOS user, i
new varsion of the file is generated, and the version
limit informationis preserved.

Directory Mapping

The VMS svstem requires a directory name to end
with “dir™ as an extension, but the DOS system does
not post any restriction in this area. PATHWORKS
maps directory names in DOS by including the
mext” characters as part ot a directory name. Sincce
the period is not a legal character for a DOS direc-
tory, it is mapped using the double underscore fol-
lowced by the hexadecimal digit rule. Any directory
name in DOS that conforms to the VNS directory
naming syntax is passed through untouched.

DOS File Attribiite Mapping

Both file systems associate asct of attributes to the
files, but the Ale attributes on a DOS file do not have
aone-to-one correspondence with those on i vMs
file. A DOS file hus tour types ot fle attributes:
archive, system, hidden. and read-only. The con-
cepts of archive, system. and hidden arc not recog-
nized n the VMS file system. PATHWORKS software
stores the DOS file atteibutes in an application
access control entry when creating a file on behalf
of a PC workstation. Furthermorc. the read-only
attribute of a DOS file is mapped to the read-only bit

Digital 1echuical fowrnal Vol 1 Noo | Winter 1992

PATHWORKS for VS File Server

of the record management scrvices (RMS) protec-
tion tield for system, owncr. and group.

File Organization

A DOS file is organized as a byte stream, but a V™S
file is organized as collections of records. Although
the VMS system supports a form of stream fle, most
VIS files are stored in record format. Furthermore,
L VMS file with a stream record format does not
map directly to a DOS stream tormat. This poses
an interesting problem in integrating VMs and DOS
file systems.

Since PATHWORKS software provides transparent
access to the VMS host system, a DOS client views all
files on fle scrvices as streams of bytes, just as it
these files were stored locally. When the server cre-
ates a file on behalf of a PC, it specifies the file orga-
nization as sequential with stream record format
Thus, the byte stream characteristic of the DOS sys-
tem is prescrvedd.

The more complex part of the problem is to
resolve the sharcability issucs between VMS and
DOS applications The PATHWORKS server is imple-
mented to provide the nccessary conversion
between VMS and DOS file organization on stream
files. The file server views a file as stream if it can
read and write the tile without regard to any record
boundaries. This includes any files with file organi-
zation as sequential and record format as stream,
stream_cr, stream_If, and undefined. as well as
fixed. If a sequential file has tixed record format, it
must conform to record size and attributes as fol-
lows: cven with no record attribute: 312 with no
block_span: and power of 2 with no block_span.
Thus, an RMS overhead in reading and writing these
files is avoided.

Any file that docs not meet the criteria of the
strcam category s said to be nonstream. The
PATHWORKS scrver provides read-only access to any
VMS nonstream file. This is achicved by using a VAX
C run-time library call that provides strcam file
semantics and a conversion algorithm to properly
map any carriage return and line feed information.
The file scerver cannot support writing to thesce files
because the SMB protocol does not preserve record
boundary information. Thus, the protocol makes
it impossible for the file server to guarantee data
integrity when updating a nonstream filce.

Byte Range Locking
The MSNET acchitecture allows for concurrent
access to server-based files by multiple clients. PC

|7

PATHWORKS: PC Integration Software

applications acquire this functionality through the
MS-DOS byte range locking calls. These calls allow
PC applications to lock and unlock ranges of bytes
in a file and to detect conflicts. Conflicts occur
when part or all of a range specified to be locked
has been locked from a previous call. In contrast,
the approach taken by RMS provides locking on a
record basis. RMS uses the VMS distributed lock
manager to implement this functionality. Unfortu-
nately, the lock manager is not well suited to imple-
menting byte range locks because the byte range is
represented in a form that allows the lock manager
to arbitrate access. Therefore, the file server imple-
ments its own lock database and arbitrates access
to shared files. Internally, the server process main-
tains a list of locks for each file the server has open
and arbitrates access based on these lock struc-
tures. Files opened by the file server cannot be
shared with other VMS processes because the file
server has an exclusive mode lock on each file it has
open through the VMS lock manager. The exclusive
mode lock guarantees protection from other VMS
processes.

Open Mode Mapping

The DOS file system defines open access modes to
allow applications to synchronize shared access to
a file. The open modes are deny_none, deny_read,
deny_write, deny_read_write, and compatibility.
Each provides a different level of file sharing capa-
bility. Although these modes do not map directly to
the VMS file system, no mapping is needed to han-
dle the differences.

The PATHWORKS server opens a file that is being
accessed by a client with exclusive access on the
VMS system. It assumes the responsibility to arbi-
trate shared access among multiple clients. The
server supports DOS open access modes by imple-
menting the shared access resolution algorithm
described in the SMB protocol specification.

PATHWORKS Transport Layer
Interface

The PATHWORKS for VMS product supports multiple
transports through a common transport layerinter-
face. These include the local area system transport
(LAST), the transmission control protocol/internet
protocol (TCF/IP), and the DECnet transport proto-
col over Ethernet and token ring networks. This
well-defined, uniform mechanism dynamically
adds support for network transports and protocols.

By conforming to this specification, transports can
be added to a server platform without upgrading or
changing the existing file server.

The performance goals of the file server had
an impact on the development of the transport
layerinterface. The file server utilizes an optimized
transport layer interface that reduces buffer copies
and eliminates some of the standard VMS 1/0 paths.
This optimized interface is used with the LAST trans-
portand is described in detail in “The Development
of an Optimized PATHWORKS Transport Interface”
paperin this issue.?

Performance Considerations

Achieving an acceptable level of performance from
a nondedicated file server layered on a general-
purpose operating system proved to be a challeng-
ing task. One of the performance goals for the file
server was that it perform tasks within 10 to 20 per-
cent of the speed of a dedicated PC file server run-
ning on a similarly sized CPU performing the same
tasks. This goal was achieved by employinga variety
of caches, algorithms, and heuristics. Many of these
heuristics were based on the analysis of the SMB
messages passed between the server and the client
for typical PC applications. As discussed in this sec-
tion, the response time of the server is improved if
the memory contains the information necessary to
satisfy arequest when it arrives.

Data Caching

An obvious approach to implementing the read and
write functions in the file server is to issue these
operations to the FILES-11 file system, wait for their
completion, and then send a response to the client.
This method is simple and persistent, but does not
perform well due to the bottleneck formed at the
FILES-11 interface and disk. The file server imple-
ments a software write-behind data cache to
reduce this bottleneck and to eliminate waiting
for disk writes to complete before returning a
response to the client. Caching is a technique used
to decrease access time to information by using a
faster intermediate medium to store the most com-
monly accessed pieces of information. The caching
algorithm implemented by the server is a logical
block cache. The cache is a region of memory that
is segmented into fixed-sized buffers. Each file
opened by the server has a dynamic set of buffers
that increase and decrease based on a least recently
used (LRU) algorithm.

18

Vol. 4 Ne. | Winter 1992 Digital Technical Journal

PATHWORKS for VIS File Sereer

Effects on Client Read Reguests Although this is
an optimal cnvironment for scrvicing read
requests, reserving data in memory to satisty all
read requests is not practical. A number of mecha-
nisms werc implemented to approach the ideal.
The data cache retains recently accessed data in
memory with the expectation that it will be reter-
enced again soon. This is based on the concept of
locality of reference, both spatial and temporal.
Once the server receives a read request, it deter-
mines if the buffers associated with the read
request are in the cache by using a hashing algo-
rithm for the lookup function. If the data to satisty
the read rcquest is in memory, it is immecdiately
rcturncd to the client, and the file system access is
climinated. 1f some of the data needed to satisfy the
requestis notinthe cache, then reads are started on
cach of the cache buffers necded to satisfy the
request. Once all datais read into cache memory, a
responsc is formed and rceturned to the client.

Lffects on Client Write Requests When the server
receives a client write request, three processes are
performed. The cache bufters nceded for the
specified write range are located, the client data is
copicd to the cache bufters, and a response is sent
to the clicnt. The data copied to the cache
is written to the disk at a later time. This write-
behind scheme allows write requests to be ser-
viced quickly because the response is returned to
the client before the write to disk completes. By not
synchronizing on-disk write complctions before
returning a responsc, the turnaround time of client
write requests is greatly reduced. The cacheis also
optimized when a client write request is received
and a disk read operation is in progress for the
range. In this case, the data being written to the
cache is copicd into an intermediate buffer and
merged with the data from disk after the read oper-
ation complcetes. These intermecdiate buffers are
known as ghost buffers, since they are not visible
from the buffer hash table.

Writing Ddalea to Disk Since the file server acknowl-
edges write requests before performing the write
opcration, a mechanism is needed to write the
cache buffers to disk and ensure data integrity.
The file server implements a permancent thread,
the tlush thread, dedicated to this task. The flush
thread starts disk write operations on buffers that
contain modified data. Flushing data to disk occurs
(1) periodically. based on a user-configurable

interval; (2) when a file is closed; (3) when the
ratio of dirty to free cache bufters reaches a
user-configurable threshold: and (4) when cache
buffers are not available to support the current
request.

On the VMS system, RVS also employs a write-
behind algorithm similar to the one used by the file
server. RVIS is not used by the file server for disk
rceads and disk writes for performance rcasons. The
crossing of the VMS architectural boundary that
occurs during RMS calls adds an unacceptable
amount of processing time to the read and write
paths. The file server uses the VMS queued 1/0
(QrOY/extended QIO processor (XQP) interface,
which is below the RMS layer, to read and write data
to disk.

Disk Space Allocation

Sufficient disk space must be available for any
write operation that is performed as a background
operation. To allow suthcient space, any disk allo-
cation must be completed when the write request
is received. This restriction slows down writc oper-
ations which, in turn, results in file expansion.
Performance testing in this area shows that such
expansion operations can reduce the servers
response time in the overall operating cnviron-
ment. To alleviate this problem. the PATHWORKS
server preallocates a fixed amount of disk space,
often much greater than required, to complete the
current write request, in anticipation of further
file expansion. This mechanism greatly reduces
the system overhead incurrcd in disk allocation:
thus it improves the overall response time to write
operations.

Read Abecacd

Another mechanism used by the file server to
improve the turnaround time of read requests is
read ahead. As with data caching. the goal is to
increasc the probability that data referenced in the
near future will be in the cache. Read ahead is the
process of prefetching previously unreferenced
data from the disk into the cache. Data is pre-
fetched into cache memory under several condi-
tions. When a file is opened, the first two cache
buffers of the data are rcad from the disk into the
cache. Data is also prefetched when the server
detects that the file is being accessed sequentially,
The sMB protocol also supports read ahead. The
protocol provides a field in the read request that

Digital Technical Journal Vol i No. | Winter 1992

PATHWORKS: PC Integration Software

specifies the ameunt of data that the client intends
te read in the future. This advisery ficld is used
by the server te initiate pretetches.

Directory Search-abead Cache

A DOS dircctory operatien can translate te multiple
cxchanges of request and respense operations
between the server and client. This behavier is
inherent to the SMB pretecel definitien. The filc
serverinitiates a scarch-ahead thread when the first
request is received. While the PC is precessing the
first response, the scarch-ahead thread accumu-
lates directory informatien in a circular buffer.
Thus, this infermatien is available in memery for
subscquent requests.

Open-file Cache

Operatiens, such as create, epen, and closc. impact
perfermance in the VMS system. Benchmark tests
shew that these operatiens beceme blecking fac-
ters for a fast perfermance server. This problem is
cempeunded by the inherent behavier of many PC
applicatiens because they eften use the result of
an epcn eperatien as a deterministic teel on fil¢
accessibility. Frequently, files arc epened and
closed and reepencd in censecutive requests. Te
minimize the overhead incurred fer these opera-
tiens, the PATHWORKS server implements a cache te
stere epened file infermation. This epen-file cache
maintains the file header infermation after the file
hasbceen clesed by the user feor a shert duration. If a
user requests to epen a file that is already cached,
ne request te@ VMS FILES-11 system is required. This
greatly reduces the respense time of the server on
the secend epen request.

Furthermere, many DOS database applicatiens
use index files to synchrenize data access. These
files are frequently accessed by many DOS uscrs
when werking in an netwerked effice ¢nviron-
ment. Open-file caching is beneficial te this ¢nvi-
ronment because it incurs a minimal amount ef
epen requests te the VMS file system.

Byte Range Locking Back-off Algorithm

The file server implements an algerithm to impreve
everall perfermance eof the scrver and netwerk
when PC applicatiens are sharing files and using
byte rangce lecking to arbitratce access. The analysis
of many networked PC database applicatiens
revealed that a client typically enterced a tight retry
leep when it detected a leck cenflict. This spinning
preduces an excessive ameunt ef leck-related

netwerk traffic, especially fer very fast clients. The
server also has te spend a significant ameunt of
time processing these numereus lock requests. The
server attempts te regulate this leck traffic and
reduce its leck precessing time by deferring the
return of the rcespense when a leck cenflict is
dctected. If a request te leck a range cenflicts
with a previeus leck. the server makes repeated
attempts te access the range using a pseuderandem
expenential back-eff algerithm te determine the
retry interval. If the leck cenflict is net reselved
after a user-cenfigurable time peried, the server
returns a respense indicating a leck cenflict. By
deferring this respense te the client, the server
cxcercises flew centrel ever clients spinning en
lecked regions of the file. The implementatien of
the pseuderandem expenential back-eff algerithm
prevents the server frem using an excessive
ameunt ef CPU time te determine if the lecked byte
range has been unlecked.

Security

The VMS eperating system effers a well-defined
security architecture, but DOS has ne cemparable
sccurity scheme. Since the PATHWORKS file server is
implemented as a privileged preccss, it is necessary
te centrel file access en the VMS hest system frem a
DOS client. There is ne ene-te-ene cerrespendence
betwceen a DOS user and a VMS user. That is, in the
PATHWORKS envirenment, each netwerk client,
much like a terminal in this respect, can be multi-
ple VMSs uscrs. The preblem is te ensure maximum
shareability ameng PC clients and maintain the
desired level of VMS security.

The PATHWORKS file server implements twe
types of sccurities: share and user. It makes use of
the PCISSSERVICE_DATABASE te centrel access to a
share arca; and the VMS user autherizatien file (UAF)
database te centrel access te directeries and files
bascd en a VMS user acceunt. A share, referred te
as file service, is a VMS directery that can be
accessed by PATHWORKS clients. PATHWORKS seft-
ware defines three types of file services: system/
application, cemmen, and persenal. Access te file
services is based en VMS user acceunt infermatien.
A privileged system manager must explicitly grant
uscr access te system/application and cemmen ser-
vices. The system manager must alse specify the
types of access: read, write, er create. This infor-
mation is stered in the PCFS$SERVICI_DATABASE.
Access te persenal service is implicit with the exis-
tence of a user acceunt.

20

Vol. @ No. | Winter 1992 Digital Technical Journal

To provide maximum sharcability among PC
clients, PATHWORKS software includes a default
uscraccount. Whenaccessing a file service that has
been granted to the default account, each PC
assumes the identity of the default account. Thus
the access. though it might beissued by different PC
uscrs, is vicwed as the same uscr. ‘This mechanism
provides a “share level™ of security,

A morc restrictive environment is achieved by
providing access to a share arca based on individual
uscr account. When a PC client establishes access
toascrvice. it presents a user account and its corre-
sponding password. This information is authenti-
cated based on information rceturned by the
sysSgetuai systemy service calll The PATHWORKS
scrver then verifies that this uscer has been granted
acceess to the service.

Access toa file service does not necessarily imply
access to any individual files. In order to preserve
the desired level of VMS sccurity, PATIIWORKS
honors access control entrics. The server ensures
access to a share area as defined in the databasc
by mapping the access types to two identifiers:
petssread and pefsSupdate. These identifiers are
added to the root directory of a share arca, and to
any files that are created. when appropriate. As the
server impersonates the user, the appropriate iden-
tificr is associated when access privilege to files and
dircctory is checked. This security implementation
is not applicable when servicing a personal area.
Access to files stored in a personal area is based on
RMS protections mask.

To casc system management tasks, PAITHWORKS
software implements “group™ support. A group is
a collection of users. A PATHWORKS group has
no dependency on user group identification code.
When a share is granted to a group, each member
of the group gains access. Note that authentication
is still performed based on an individual uscr
account.

Since a DOS client can gain access to the VS
cnvironment, it is impcerative that the file server
support the VVIS system'’s break-in evasion mecha-
nism. ‘I'he server honors the login-related system
paramcters. These paramceters are read at the file
server start-up, and the values are in ceffect for the
duration of the server process. ‘The server tallies
any failed or unsuccesstul login attempts. When the
file server receives a connection (login) request to
scrvice, the file server extracts the related counter
information from the UAF and adds it to its internal
counter to determine whether evasive action is to

FPATHWORKS for V.U File server

take place. When a break-in is detected, the server
takes the appropriate evasive action and signals the
condition in the server log filc.

Printing Support
The server process also implements the printing
functionality specificd in the SMB protocol. The file
server implements the print-related commands
by using SSNDJBC and SGETQUI system services to
communicate with the VMS job controller. Each
print service available to clients has a VMS print
queue associated with it

The VNS system has a much richer printing envi-
ronment than the one provided to the PC clients
through the SMB protocol. The PATIIWORKS scrver
provides VMS printing teatures to the clients by
extending the SMB protocol to accommodate
PATHWORKS ncceds. These protocol cextensions
are described in the scction Digital Protocol
Extensions.

File Sharing among Server Processes
Each nodce on a VAXcluster system can be a host for
the PATHWORKS scrver process. One of the morce
challenging problems in supporting VAXcluster
systems is the synchronization of file access by
multiple server processes. As stated carlier. the
PATHWORKS file server requires exclusive access to
files that are opened by PCs in order to support bytc
range locking in DOS. Furthermore, in a cluster,
cach server process needs the ability o provide
identical access to the same resources.

PATHWORKS softwarc implements its own lock
management algorithm to resolve file access
contlicts in a VAXcluster system. Although multiplc
server processes are allowed in the environment,
only one process can handle the requests to a file
that is accessed by PC clients. By using the VMS lock
manager, the server process that services the first
open request acquires an exclusive mode lock on
the file. Tt thus becomes the master of the file and is
responsible for synchronizing access requests to
the file. When a server process is requestced to ser-
vice a file that has another PATHIWORKS server as its
master, it makes a nctwork connection to the mas-
ter process and forwards the requests. T'his process
serves as the routing agent. It communicates both
requests and responsces between the master server
process and the PC client. The master releases own-
ership when no outstanding open file handles are
on the file. File mastering is established on a per
file basis.

Digital Technical Journal 3ol j No, [Winter 1992

PATHWORKS: PC Integration Software

The rerouting mechanism uses the DECnet trans-
port because its existence on the remote server
host is guaranteed in a cluster environment. To min-
imize the number of required DECnet sessions, the
routing agent funnels all forwarding SMBs through
an existing session. The forwarding packets include
information that the master process can use to dif-
ferentiate among the clients’ access requests.

PATHWORKS Server Configuration

The multithreaded PATHWORKS file server can be
considered a small operating system in which each
PC is a process (or a thread). In addition to the basic
resource requirement that the server be activated,
the server requires a set of process resources to
support each client thread. These resources can be
mapped to VMS process parameters which, in turn,
translate into system parameters.

The amount of VMS system resources which the
file server consumes is a function of the number of
clients and the workload generated by the individ-
ual PC. Mapping the PC resource requirement to the
appropriate VMS process and system parameters
proves to be a complex problem. Since the PC work-
load profile is unknown at the time of server initial-
ization, the amount of required system resources
for the server process can only be estimated.

PATHWORKS system managers include users with
little VMS system management experience. The
level of VMS system expertise required to configure
(or set up) a PATHWORKS server is minimized by
the addition of a “configurator.” This part of the
management functionality is implemented to gen-
erate information on required system and process
resources when the desired configuration is sup-
plied. During the server start-up phase, the
configurator checks for availability of necessary
resources and provides appropriate run-time
parameters for the launching of the server process.

Management Interface

To provide integration between different file sys-
tems, the file server utilizes PATHWORKS specific
databases (such as the service database), standard
VMS databases (such as the UAF and DECnet data-
bases), and VMS security mechanisms. These enti-
ties must work in harmony and be consistent with
each other to provide the desired integration. The
PCSA_MANAGER utility was designed to manage
this environment. It allows users to perform all
management tasks related to PATHWORKS software
through one utility from a menu-driven user

interface or a command line interface. The
PCSA_MANAGER utility allows system administra-
tors to manage the following objects: users, ser-
vices, print queues, logical user groups, the event
logger, and the server process. The file server uses
interfaces supported by VMS to manipulate VMS
specific databases, private interfaces to access
PATHWORKS specific databases, and SMB protocol
extensions to interact with a server process.

Digital Protocol Extensions
Management of a running server requires a method
to send and receive well-defined messages between
the server and other processes. The PCSA_MANAGER
utility sends a management request to the server;
the server processes it, and sends an appropriate
response back to the PCSA_MANAGER. The commu-
nication channel used for server management is a
DECnet logical link. The PCSA_MANAGER issues a
connection request to the DECnet object associated
with the file server process. The file server receives
this request and creates a virtual circuit with a cor-
responding thread to process requests for this man-
agement session. This is similar to a client session.
Since the SMB protocol does not provide com-
mands sufficient to manage a PATHWORKS server, a
Digital proprietary protocol was developed to pro-
vide this functionality. This protocol is merely an
extension of the SMB core protocol; that is, the mes-
sages developed for server management have valid
SMB headers with command codes that are mean-
ingful only to a PATHWORKS server. This implemen-
tation allows remote management of the file server.
To manage a server, a management utility only has
to establish a virtual circuit and exchange these
extended SMBs. Protocol extensions are also used to
integrate the VMS print system with PATHWORKS
clients, along with other PATHWORKS specific
utilities.

Event Logging

The PATHWORKS server includes an event logging
mechanism to provide an error and event reporting
facility to assist system management. Events are cat-
egorized based on server operations, including
errors, protocols, security, management, and file-
related functions (open/close, read/write). The
server uses an event code to determine whether a
given event is to be recorded. A Digital extended
SMB command toggles these event codes dynami-
cally. The event messages are logged to the file
server log file. The overhead is minimized by cach-

22

Vol. 4 No. | Winter 1992 Digital Technical Journal

ing the event messages in a data buffer, which is
periodically written out to the log file. A thread is
created at server start-up to handle the log file
update function. The scheduling of this thread
is bascd on a time interval, with a default value of
GO scconds

Summary

The PATHWORKS for VMS tile server integrates the
DOS, 0872, and VNS operating system environ-
ments on a network. The server architecture
achieves transparent integration of PCs connected
on an open network over multiple transports. Data
caching, algorithms, and heuristics were used to
increase performance. The PATHWORKS for VMS
file server provides PC users with access to the VMS
system’s resources and security environment.

Acknowledgments

We thank the people, past and present, who con-
tributed to the design and development of the

PATHWORKY for VA File Server

Digital Technical Journal Vol 5 No. | Winter 1992

PATHWORKS for V™S file server. We specifically
acknowledge Robert Praetorius for his contribu-
tion in the design and implementation of the cache
component, Phil Wells for his design and imple-
mentation of the network interface and transport
support, and Jon Campbell for his design and
implementation of the network interface. We also
acknowledge Frank Caccavale for his work on per-
formance analysis, Alan Abrahams for his direction
as architect, and Mark Olson for his leadership of
the PATHWORKS for VMS project.

References

1. X/0pen Developers Specification—Protocols
Jor X/0pen PC hnterweorking.: SME (Reading, UK.
X/Open Company Limited, Document No.
XO/DEV/91/010. 1991).

[N

P J. Wells, "The Devclopment of an Optimized
PATHWORKS — Transport Interface” Digital
Technical Journal, vol. 4, no. 1 (Winter 1992, this
issue): 24-30.

23

Philip J. Wells |

T'he Development of an
Optimized PATHWORKS

Transport Interface

Digital’s Personal Computing Systems Group developed an optimized transport
interface to improve the performance of the PATHWORKS for VMY version <0 server:
The development process involved selecting a transport protocol, designing appro-
priate interfuce test scenarios, and measuring server perforinaince for each trans-
port interface imodel. The engineering team then implemented the optimized design
in the server and performed benchimark testing for specified server workloads.
Using an optimized transporl interface improved server performance by decrecsing
the time required to complete the test while maintaining or decreasing the percent

CPU utilization.

The PATHWORKS family eof netwerk integratien seft-
ware preducts includes file servers that previde
file and print services te persenal cemputers in
lecal area netwerks (L.ANs). Develeped by the
Persenal Cemputing Systems Greup (PCSG), the
PATHWORKS fer VMS versien 4.0 scrver supperts the
Micreseft LAN Manager netwerk epcrating system.
This server allews PC clients transparent access
te remete VMS files. With each new relcase eof
the PATHWORKS fer V' ¥IS preduct, the PCSG engineer-
ing team impreved secver perfermance and thus
accemmedated an increasing number eof time-
critical PC applicatiens. In versien 2.0, we intre-
duced disk services as an alternative te file services
ferread-enly files. We included data caching in ver-
sien 3.0 ef eur fil¢ server.,

Fer versien 4.0, eur geal was te incrcasce file
server perfermance by eptimizing the transpert
interface and the data buffering algerithm. Te
achieve this geal, we evaluated several transpert
interface designs and measured server perfer-
mance fer varieus server werkleads. We started
with the premise that using the standard buffered
interface results in incrcased everhead fer each
transactien and thus decrcases everall CPU avail-
ability. Figure 1 illustrates this interface design.
The server cepies a user data buffer in preccss cen-
text acress the kernel scrvice interface te a system
buffer in system centext, befere transferring the
data te the netwerk layer.

SERVER
KERNEL USER PROCESS
SERVICE BUFFER CONTEXT
INTERFACE
DATA
y COPY
SYSTEM
SYSTEM CONTEXT
BUFFER
TRANSPORT
Figure I Data Copy with a Buffered 1/0

Interfuce

Prier analysis ef PATHWORKS server perfermance
ever the DECnet transpert pretocel revealed that
when the file server request sizes were large, i.c.,
4 te 8 kilebytes (KB), file server perfermance met
or exceeded the perfermance eof ether venders'
transperts. Hewever, when the transfer sizes were
small, i.e., less than 256 bytes, file server perfer-
mance degraded significantly. Alse with small
request sizes, eur server did net ramp well when
many clients were supperted in this envirenment.
As illustrated in Figure 2, incremental increases in
server werklead cause dramatic increases in CPU
utilizatien ence a certain werklead is reached, i.e.,
atthe knees ef the curves, deneted by peints A and
B. We wanted eur server perfermance to appreach
that represented by the curve centaining peint 8.

24

Vol. 4 No. [Winter 1992 Digital Technical Journal

The Developimwent of dit Optintized rALAWOKRS Transport nterjace

CPU UTILIZATION

SERVER WORKLOAD

Ligure 2 CPU Utilization as a F'unction
ofServer Workload

In this way, we could support more clients at the
samc or less CPU utilization.

Server Pevformance Analysis
We based our analysis of PATHWORKS scrver perfor-
mance on two initial hypotheses:

= The CPU overhcead associated with a buffered
interface significantly degrades the performance
of the server.

= The variable transaction response times inher-
cntin using the standard queued 170 (QI1O) inter-
face results in inefficient server performance.

Protocol Selection

To begin our performance analysis, we needed to
choosc a transport protocol. We considered the
DLECnet and the Jocal arca system transport (LAST)
protocols and sclected the LAST protocol for the
following reasons:

= An advanced development cffort on the DOS
client software showed that file and print ser-
vices over the LAST protocol decrease the client
memory usage by onc-third.

= The PATHWORKS engincering tecam maintains the
LAST protocol and thus, can make any required
modifications.

= Thce VMS opcrating system implementation of
the LAST transport protocol is called LASTDRIVER.
LASTDRIVER scrves our purpose because it pre-
sents a buffering modcel that permits the passing
of multiple noncontiguous data buffers as a sin-
gle, logically contiguous bufter. Figure 3 shows
two physical data buffers, of sizes Nand M. being

Digital Technical Journal Vol i No. | Winter 1992

BUFFER DESCRIPTORS

v '
0
N M
. > 1>
N *M

DATA BUFFERS

Figure 3 LASTDRIVER Buffering Model
passed to LASTDRIVER as a single message. The
second buffer descriptor contains a zero in the
next buffer descriptor pointer word. This value
indicates the end of the data stream.

lest Scenarios

After selecting the LAST transport protocol, we cre-
ated four test scenarios to measure server per-
formance. The first scenario. the kernel model,
required developing a VMS device driver that was
layvered on top of LASTDRIVER. In this model, when
the driver receives request data, the datais immedi-
ately transmitted back to the client. The driver does
not copy buffers and does not schedule a process.
This modcel represents the optimum in perfor-
mancc, because absolutely no work is performed in
relation to the request.

The second test scenario required that we
develop a user-mode test program. This model per-
forms similarly to the kernel model in that it loops
receive data directly back to the client without per-
forming any copy operations. This model difters
from the first model in that the driver schedules a
VMS process to loop the data back to the client. We
then developed the following variations on this test
scenario to accommodate three transport inter-
faces to the VMS process. The sccond and third sce-
narios represent optimized transport interfaces
with regards to two aspects of a request: the initial-
ization and the completion.

= A standard VMS QIO interface model. This model
uses the standard interface provided with the
VMS operating system.

= A model that incorporates the standard VIS QIO
interface with a process wakc-up completion
notification. This QIO/WAKE model uses the stan-
dard QIO interface to initiate a transport request.

PATHWORKS: PC Integration Software

However, the transport queues /0 completion
notification dircctly to the receiving process by
means of a shared queue and a process wake-up
request. The purpose of this optimization was to
avoid the standard postprocessing routines of
the VMS operating system.

= A model that includes kernel mode initializa-
tion and wake-up completion notification. This
CMKRNL/WAKE model uses the transport com-
pletion technique of the previously described
model. However, we created an entry point into
the driver for the test program to call, thereby
initiating transport requests. The test program
uses the change-modc-to-kerncl (CMKRNL) sys-
tem service to call the driver entry point. This
optimization was made to avoid the standard
QIO interfaces.

To support the optimized transport interfaccs,
the test program allocates a buffer in process con-
text and divides it into two sections: the first con-
tains shared queues for moving data between
process context and system context; the second
contains the test program’s shared data buffers. The
driver issucs a call to the system to double map
the shared buffer into system context. Figure 4
shows this double-mappced buffer. Since the buffer
is contiguous, the difference between the start of
the shared data region in process context and the
start of the shared region in system context is a con-
stant, and is used as an offset. The test program
accessces the shared region by using a process vir-
tual address (PVA); device drivers access the region
by adding the offset to the PVA to compute a system
virtual address (SVA), as shown in Figure S. To
accomplish completion notification, the driver
inserts the data into the shared queuc and issuces a
process wake-up request for the test program.

PROCESS
VIRTUAL
ADDRESS

OFFSET

SYSTEM -
VIRTUAL
ADDRESS

Figure 5 Virtual Address Space

Performance Measurements

Our hardware platform was a VAXstation 3100 work-
station. We measured server performance as the
diffcrence between the request arrival time and
the response departure time, as observed on the
Ethernet. Times were measured in milliseconds
using a Network General Sniffer. Table 1 presents
the test results.

As Table 1 shows, we decreased server response
time by using an optimized transport interface. The
kernel model yields the best possible performance
results. As we move from the standard VMS QIO
interface to more optimized interfaces, there is a
decrease in transaction response time which repre-
sents improved server performance.

Data collected during initial performance testing
supported our decision to optimize the transport
interface. Occasionally while testing the interfaces,
server throughput dropped dramatically, i.e., 30 to
S0 percent, for a short time interval, i.e., one to
two seconds, and then resumed at its prior rate.
Initially, we thought there was a problem with our
code. However, the anomaly persisted throughout
the development period, so we decided to investi-
gate the cause of the dip in performance.

The vaXstation 3100 system that we used to per-
form the testing had a graphics controller card

PROCESS SYSTEM
CONTEXT CONTEXT installed, but did not include the graphics monitor.
BUFFER BUFFER
g’a’éﬁEEg Table 1 Server Performance over
Various Interfaces
SHARED
DATA Server Performance
BUFFERS Interface (milliseconds)
Kernel Model 0.8
Standard VMS QIO Model 2.2
QIO/WAKE Model 1.7
CMKRNL/WAKE Model 1.6

Figure 4 Double-mapped Buffer

26

Vol. 4 No. 1 Winter 1992 Digital Technical Journal

The Development of an Optimized PATHWORKS Transport 1nterface

Since the system included a graphics card, the
DECwindows login process frequently tried to
display the initial DECwindows login screen. This
attempt failed because there was no monitor.
Thereforce, the process was deleted and restarted a
few minutes later. We concluded that the tempo-
rary drop in scrver performance we had observed
was the cffect of the DECwindows start-up process.

The significance of this observation became
apparent when we optimized the transport inter-
face, and the effect of this background process
activity decrcased to less than 10 percent. We con-
cluded that the optimized interface was less suscep-
tible to concurrent 170 than was the standard Q10
interfacc.

Implementation

Once the initial testing of prototypes was com-
plete, we decided to implement the double-mapped
buffering algorithm with shared queues. The VAX
architecture provides inherent queuing instruc-
tions that allow the sharing of data across dissimilar
address spaces. It accomplishes this by storing the
offset to the data, rather than the address of the
data, in the queue header. This technique permits
us to insert a system virtual address into a queue in
system context and fater remove the address in pro-
cess context as i process virtual address. A second
function that these instructions perform is to inter-
lock the queuc structure while modifying it. This
procedure precludes concurrent access by other
code and thus allows the intertace to support sym-
metrical multiprocessing,.

We modificd the file server to support this new
optimized transport interface. To ease the imple-
mentation, the QIO interface emulates the DECnet
interface in all aspects exceept one. Since the client-
server model is essentially a request/response
model, we developed a transmit/receive (trans-
ceive) operation that allows the server to issue
rcead buffer and write buffer requests at the same
time. T'his variation reduces the number of system
boundary crossings. When the server transmits
buffers, these buffers return to the scrver process
by way of a transmit complete queue. When the
SErver receives i new request message, the associ-
ated buffer is transtesred to the server process via a
rceceive complete queuc. o facilitate a transceive
opcration, we defined a work element data struc-
turc. As shown in Figure 6, a work element permits
the passing of two distinct data streams: one for
transmit and one for receive.

BUFFER
WORK DESCRIPTORS

ELEMENT {——_|

TRANSMIT

RECEIVE

o

|

DATABUFFERS

Worlk Element Data Structure
Jora Transceive Operation

Ligure 6

As development of the client and server software
modules continued, we encountered some inter-
esting problems. The following three sections
describe several of these problems and how we
addressed them.

Microsoft LAN Manager Redirector

1/0 Behavior

When the Microsoft LAN Manager redirector, i.c.,
the DOS client protocol equivalent of the VMS file
server, generates a read request, it first writes the
request for service to the network. The redirector
thenissues a read request and uses a short bufter to
receive only the protocol header of the response
message. After verifying that the response was suc-
cesstul, the redirector issues a second read request
to receive the data associated with the response
message.

This behavior requires lower protocol layers to
buffer the response data until the redirector issues
aread request to receive the data. In order to buffer
the respounsc data tor the client, the transport laver
needs to allocate an 8KB buffer. An alternative
approach to maintaining a dedicated transport
bufter is to use the inherent buftering capacity of
the Ethernet data link software and the Ethernet
controller card, which maintain a cache of receive
butfers. This technique requirces the transport layver
to retain data link reccive bufters while the redirec-
tor verifies the response message protocol header
and posts the actual receive buffer. Once the redi-
rector issues the second read request, the remain-
ing data is copied and the Ethernet buffers are
released.

Digital Technical Jowrnal Vol i No. [Winter 1992

PATHWORKS: PC Integration Software

One problem with this approach is that each ven-
dor’s Ethernet card has different buffering capaci-
ties. In some cascs, the capacity is less than the
siz¢ of the maximum recad request. To support
such inadequate buffering capability, we inserted a
buffecr management protocol (BMP) layer between
the file server and the redirector. The resulting pro-
cess is as follows:

The client module communicates its data link
buftering capacity to the server module in the ses-
sion connect message. When the application gener-
ates data requests, the DOS redirector packages a
server message block (SMB) protocol message and
passes it to the BMP layer. This layer adds a small
buffer management header to the message and pass
it to the transport layer to transmit to the server.

To complete the operation, the file server pro-
cesses the request, formats an SMB response mes-
sage, and passes it to the BMP layer. At this interface,
the size of the response message is indicated by
the transmit buffer descriptors, and a protocol
header that describes the response packet is cre-
ated. If the response message is larger than the
client’s data link buffering capacity, the driver soft-
ware segments the response packet into smaller
messages and passcs these messages to the server
transport to transmit to the client. The client mod-
ule copics the header to the redirector’s short
buffer and completes the redirector’s read request.
The BMP Jayer then waits for the second read to
copy the remaining data to the redirector’s buffer
and releases the data link buffers. At this point, the
client can request more data from the server.

Response Buffering
The LAST protocol docs not acknowledge the
receipt of messages because it relies on the
integrity of the underlying 1LAN to dcliver data-
grams without error. Conscquently, the BMP layer
must buffer all response data transmitted to the
client to protect against packets that are lost or
discarded. In such a case, the BMP layer transmits
the original response message back to the client
without sending the message to the server process.
For instance, consider the two cases shown in
Figures 7 and 8. In Figure 7, a client gencerates a read
request at time T1. The server processes the request
and generates a response at time T2, The response
is lost due to congestion, so the clicnt requests the
same data again. as indicated at time 13 'The server
rereads the file and gencrates a new response. Since
the read operation is naturally idempotent, i.c., it

28

CLIENT SERVER

1 READ BLOCK 1 .
SUCCESSFUL READ.
T2 UNSUCCESSFUL RESPONSE—
—— PACKET LOST

T3 READ BLOCK 1 >

T4 SUCCESSFUL READ,
SUCCESSFUL RESPONSE

Figure 7 Idempotent Request

CLIENT SERVER

T DELETEFILEY ——>

SUCCESSFUL DELETE,
T2 UNSUCCESSFUL RESPONSE—
—— PACKETLOST

i3 DELETE FILE1 — 77—

T4 <= UNSUCCESSFUL DELETE,
SUCCESSFUL RESPONSE
(EVEN THOUGH THE FILE
WAS DELETED)

Figure 8 Nonidempotent Request

can be repeated without changing the result, the
operation completes successfully.

In the case depicted in Figure 8, we changed the
operation from a disk read to a delete file. Here, the
client makes the delete request at time T1, and
the server successfully deletes the file at time T2.
The response message is again lost. When the client
reissues the delete file request at time T3, the server
fails in its attempt to perform the operation
because the file no longer exists. The delete opera-
tion is not idempotent; thus, repeating the opera-
tion yields a different outcome.

We cannotdetermine in advance the actual idem-
potency of any given request. Therefore, the BMP
layer must cache all response buffers. If a response
message is lost, the server transmits the original
response message instcad of retrying the entire
opcration. If, asin the second example, the server is
able, at time T4, to transmit the actual buffer used
at time T2 to store the response message, the oper-
ation can complete successfully.

To facilitate the buffering of response data, the
transport provides a transaction identifier for
request and responsce messages. This identifier is set
by the client BMP layer whenever a new request is
received from the redirector. The server stores this

Vol. 4 No. | Winter 1992 Digital Technical Journal

The Decelopment of an Optimized FATEHWORRKDS Transport inlerjace

identificr and verifies it against the identifier of the
next request. IF a reccived request has a duplicate
identiticr, the request must be a retransmission and
the server transmits the message in the cached
response buffer. It the identifier is unique, the
cached bufferis returned to the server by means of
the shared quceuces, and a new request is created.
The client's single-threaded nature ensures that
the transaction identitier method is successtul in
detecting a retransmission.

NetBIOS Imuudation

The PATHWORKS transport interface implementa-
tion relics on the request/response behavior of the
DOS redirector. However. the redirector usces the
standard DOS network basic /O system (NetB108)
intertitce to communicate with transports, and this
interfuce docs not exhibit request/response behay-
for. Thercfore, our implementation is not a truc
NetBlOS emulation and ¢ prevent common
NetBIoOs applications from operating correctly.

To resolve this problem, we developed a com-
mon NctBIOS intertace between the DECnet and
LAST rransports. After recciving i request, the client
first trics to connect over the LANT transport. It the
connection attempt fails, the request passes to the
DECnet transport. Thus, standard NetBIOS applica-
tion requests operate over the DECnet transport;
only redircctor requests are processed over the
LAST transport

Final Benchmarks

At the completion of the project, we performed
benchmark tests to measure server performance
for varied workloads and for a dircctory tree copy.
Table 2 shows the results for varied workloads. The
first column of the table describes the test per
formed. ALL /O represents a raw disk 170 test in
which the measured client issues read and write

requests of various bufter sizes ranging from
128 bytes to 16KB. TP represents i transaction pro-
cessing test that measures random read and write
requests of small units of data. This test emulates a
typical database application. The workload value
indicates the number of client svstems used in the
test to produce a background workload. As one
might expect, as the workloads increasce. the per-
formance of the measured client degrades.

The entries in each row of the tuble are the
clapsed time and percent CPU utilization for the
given test. We measured server performance over
the LAST protocol using our optimized intertace
and over the DECnet protocol using the standard
VMIS QIO interfacce. For the ALL 170 tests, the resul-
tant elapsed time is the actual time it took to com-
plete the test. Tor the TP tests, the performance
numbers are the average of all the PCs tested.
As Table 2 shows, we were able to decrease the
clapscd time for each benchmark while maintain-
ing the same or decreased CPU utilization.

The two graphs in Vigures 9 and 10 illustrate
these results. In the ALL 170 test. CPU utilization
using the optimized interface increases steadily as
the workload increases. Using the standard QIO
interface. CPU utilization increases at a faster rate
once a specified workload is reached. Although the
TP graph in Figure 10 contains only two data points,
it is evident that CPU utilization is proportionally
higher for tive workloads than it is for onc. We per-
formed multiple tests to verify that the results
could be reproduced consistently:,

The tinal henchmark test performed was a direc-
tory tree copy using the DOS XCOPY utility. In this
test, the utility copies the dircctory tree first from
the server to the client and then from the client to
the server. The bottleneck in this test is known to
be the file creation time on the server. Therefore,
we expected a more cfficient transport interface to

Table 2 Final Benchmark Test Results for Varied Workloads

- LAST Protocol -

Elapsed
Time

Test Description (seconds)
All I/0 0 Workloads 840
All1/O0 2 Workloads 943
All1/O 4 Workloads 1091
TP 1 Workload 59
TP 5 Workloads 163

DECnet Protocol

CPU Elapsed CPU
Utilization Time Utilization
(percent) (seconds) (percent)

4 961 4
69 1074 75
100 1434 100
39 79 50
83 212 93

Digital Technical Jowrnat Vol 1 No. [

Winter 1992

PATHWORKS: PC Integration Software

—

0 2 4

ELAPSED TIME (SECONDS)

NUMBER OF WORKLOADS
KEY:
4—4 LASTPROTOCOLWITHOPTIMIZED INTERFACE
B - - DECNET PROTOCOLWITH STANDARD QIO INTERFACE

Figure 9 ALLI1/O Test Results

& 400 | -

Q

b4

o]

[&]

w

125

w

2

=

[m]

w

%]

a

<

-

o 0 .
1)

NUMBER OF WORKLOADS
KEY:

4—a LAST PROTOCOL WITH OPTIMIZED INTERFACE
B - -8 DECNET PROTOCOL WITH STANDARD QIO INTERFACE

Figure 10 TP Test Results

Table 3 Final Benchmark Test Results for a Directory Tree Copy

LAST Protocol DECnet Protocol
Test Elapsed Time 1/0 Rate Elapsed Time 1/0 Rate
Description (seconds) (KB/sec) (seconds) (KB/sec)
XCOPY to Client 115 39 15 39
XCOPY to Server 119 38 121 37
have no effect on server performance. The test Acknowledgments

results in Table 3 support our theory. The I/O rate
and the elapsed time over both the DECnet protocol
(using the standard transport interface) and the
LAST protocol (using the optimized transport inter-
face) are nearly the same.

I wish to thank Jon Campbell for incorporating the
interface design modifications into the file server,
Alpo Kallio for developing the client software, and
Alan Abrahams for designing the combined DECnet/
LAST NetBIOS interface and for his encouragement
and support.

30

Vol. 4 No. I Winter 1992 Digital Technical Journal

Anthony J. Rizzolo
Elizabeth A. Brewer
Martha A. Chandler

Design of the PATHWORKS
Jor ULTRIX File Server

The PATHWORKS for UITRIX product integrates personal compitters with the ULTRIX
operating system on a local area network. The software supports both the TCE/IP
protocol and the DECnet transport stacks. The design and implementation of the
PATHWORKS for ULTRIX file server is based on a client-server model. The server pro-
vides file, print, mail. and time services to client PCs on the network. Netwoik file ser-
vice management is accessed through a eC-style menu interface. The file server’s
performance was optimized to allow parallelisn to occuwr when the client is gener-
ating data at the same tine the server is wiiting the data to disk.

The PATHWORKS for ULFRIX file server connects
industry-standard personal computers running
Microsoft's server message block (SVIB) protocol
to Digital computers running the ULTRIX operat-
ing system. The server provides a nctwork operat-
ing system tor PC integration among users of the
ULTRIX, DOS, and OS/2 operating systems.

The PATHWORKS for ULTRIX server provides file,
print, mail, and time services to client PCs on the
network. T'he softwarce is layverced on VAX systems
and on reduced instruction sct computer (RISC)
hardware. It supports both the transmission con-
trol protocol/internet protocol (TIC/IP) and the
DECnet transport stacks. The base product also
provides centralized server-based management
accessed through a PC-style menu interface.

In addition. th¢ PATHWORKS for ULTRIX server
implements a network basic 170 system (NCtBIOS)
naming scrvice that allows clients on the network
to obtain the DECnet node address of the server in
the DECnet environment or the TCIP address of
the server in the TCHIP environment. The DECnet
NetBIOS naming scrvice conforms to Digital's speci-
fication for a DECnet NetBIOS interface. The TOQYIP
NetBIOS implementation conforms to the requests
for comment specifications, RFC 1001 and RFC
100212

This paper discusses the considerations for
designing and implementing a PC local area network
(LAN) server in an ULTRINX system environment. It
describes the multiple process model and its com-
ponent processes that coordinate management
activitics and scrver requests. It then presents our

design of a management interface and our selection
of a network interface. Finally, the paper describes
the PATHWORKS file system, printing, performance
considerations, and the server configuration.

Process Model

The process model selected for the PATHWORKS
for ULTRIX server diftered substantially from the
process model chosen for the PATHWORKS for VMS
product. The PATHWORKS for VMS server uses i sin-
gle process model in which all client requests are
processed by a single process., the VMS scrver. T'he
PATHWORKS for ULTRIX server, in contrast, uses a
multiple process model, in which one client is ser-
viced by one server process.

Certain characteristics of the UETRIX operating
system environment dcetermined the choice of a
multiple server process model. First. the ULTRIX
operating system constrains i process to 64 simul-
tancously openfiles. Therefore, with multiple server
processes, each client connection is allowed access
to 64 open files. In asingle process modcel, a pool of
64 file descriptors is provided which limits access
to 64 open files, regardless of how many clients
connect. In addition, the multiple server process
model has the advantage of being able to run in a
multiprocessor environment.

Within the context ot the multiple process model,
we required a central administrative entity—the
administration process—that would coordinate
management activities and scrver requests. The
administration process communicates with both
the server and management processes through

Digital Techuical Jowrnal Vol i No. | Winter 1992

31

PATHWORKS: PC Integration Software

message queues. This process model is depicted in
Figure 1 and is described in the following sections.

Administration Process

The administration process is known as pcsaadmd.
As the central administrative entity, this process is
responsible for initialization and start-up of the
server, and for data management while the scrver is
running. Starting the PATHWORKS for ULIRIX server
is accomplished through execution of the adminis-
tration process from within the rc.local file when
the ULTRIX system is booted, or from the manage-
ment menu when the management interface is run.
Initialization of the server environment is neces-
sary before any server management or connections
can be establishedl.

[nitialization involves starting the NetBIOS pro-
cess (pcsanbud), parsing the configuration file
(lanman.ini), creating and initializing a shared
memory segment, creating semaphores and a mes-
sage queue, parsing the scrvices database, clearing
statistics, defining objccts on the DECncet objects,
and establishing signals. The main task of the
administration process is processing rcquests from
the management interface (pcsamgr) and file server
processes (pcsafs). The initialization procedure
occurs in the following scequence.

To simplify scrver start-up, the NetBIOS process
is started from the administration process. At start-
up, the NetBIOS process claims the server name and
responds to name queries from clients during
estublishment of a session connection. It also pro-

vides for sending datagram and broadcast messagces
on the LAN. These two tasks are initiated by the
uscr through the management interface by means
of the Send and Broadcast Message tunctions. All
management requests are processed through the
administration process. Request handling is dis-
cussed in more detail later in this section.

The administration process parses the lanman.ini
file to obtain server configuration parameters such
as maximum number of s¢ssions, connections, and
open files. The administration process uses these
parameters to establish the size of the shared mem-
ory segment it creates. The shared memory segment
includes a session database, a connection database, a
file databuasc, common variables, and a locking data-
basc. Once shared memory is created, the adminis-
tration process initializes it to a known state that
includes clearing and date stumping the server
statistics portion of the segment. The administration
process creates semaphores to attain data integrity
in the shared memory scgment, since multiple file
scrver processes read and write to memory.

The services database tracks file and print ser-
vice creation from one execution of the server to
another. This database is read at initialization, and
the directories offered by the file service defined,
as well as printer information, are verified.

The last step required at initialization is the cre-
ation of a message queue to process incoming
requests from the management interface and file
server processes. As said carlicr, request process-
ing is the main task of the administration process.

MANAGEMENT
INTERFACE
MESSAGE
QUEUES
MESSAGE ONE PROCESS
ADMINISTRATION | QUEUES | FILE | PERCLIENT _ | FILE
el SERVER SERVER
PROCESS PROCESS
ULTRIX MAPHORE lockf 1
SOCKET SE ORES ockf() system()
TCP/IP AND DECNET | LINE
NETBIOS il | (b PRINTER
IMPLEMENTATION DAEMON
DECNET
TCP/P

Figure 1

PATHWORKS for ULTRIX Process Model

32

Vol 4 No. | Winter 1992 Digital Technical Journal

Desigit of the PATHWORKKDS for ULLKIX Fiie Sereer

Message queues are used as the interprocess com-
munication mechanism. Early in the process devel-
opment, we investigated other options: named
pipces, sockets, and packet passing through shared
memory. Only message queucs offered administra-
tive control. Initially, we used onc response mes-
sage queuce for cach file scerver process and one
qucuc for the management interface. This was
unacceptable because the default number of mes-
sage queucs on the VETRIN system is 40 without
recontiguring the kerncl. Thercefore, we chose to
combinc the messages on one response queuce from
all the file server processes and retain a separate
response queuce for the management interfuce.
Since the number of requests from file server pro-
cesses is small this method was acceptable. The
administration process reads requests on one mes-
sage queuc and replies to a message queue defined
in the message. The request ueuc s established
with an ID known by all processes so they can
attach to the queuc at start-up. The administration
process handles requests for session establishment
and connection from file server processes as wellas
requests for system management/administration
from the managementinterface

File Server Process
The PATHWORKS for GLTRIX file server is started
through one of two mechanisms, depending on
which transport is uscd. The dnct_spawner process
starts the file server process in i DECnet environ-
ment, and the inct_spawner starts the server in a
TP environment. 'The server process is initially
started as @ root process, since it may need to run
on behalf of several users. When a client issucs a
connection request, a server process is initiated.
The server then sends amessage to the administra-
HON Process Message ueue requesting a session
connection. After the session connection is granted
by the administration process, the file server com-
pletes its inttialization by connecting to shared
memory and waiting for incoming clicnt requests.
During the design phasce of the multiple server
process model, it became clear that using a slow
interprocess communication mechanism has a
detrimental impact on the overall performance of
the server. For this reason, we decided to use shared
memory for all time-critical sharced data. Becausc
the amount of sharcd memory is somewhat limited,
all data that is not time critical is communicated
ACToss message queucs. As can be scen in Figure |,
the file scrver and administration processes usc

Digital Technical Jouvnal Vol 7 No J Winter 1992

shared memory as well as message queues for
communication.

Since multiple processes can simultancously
update and access shared memory, a method was
necded to guarantee data integrity. The methods
chosen varied among the databases. depending on
the type and speed of the access required to the
databasc. Obviously, the easiest and also the slow-
est way was single-process management of access
to shared memory. This worked well in the case of
allocating connection data blocks, since the admin-
istration process had o be notified of connections.
The open and read-write paths for the file and
locking database, however, would be significantly
affected by an incorrect decision. Tor this reason, we
decided to protect these databases with an UT7TRIX
semaphore. In effect we single threaded all the
paths through the open path as wcll as the locking
update path. Use of this semaphore causcd little or
no degradation in performance. With our system
processes and mechanisms established, we now had
to consider the needs of the system administrator.

Management Interface

Our primary goal in designing a management inter-
face for the PATHWORKS for ULTRIN server was to
provide an application that could run unaltered
on any type of terminal. ‘The management inter-
face also had to be consistent in presentation and
manipulation of screens; and most importantly, it
had to be casy to use when managing file and print
services, workstation registration, and ULTRIX sys-
tem uscrs and groups. Other design considerations
included performance, the ability to extend the
functionality provided, and the ability to port the
application to future platforms.

The management interface was designed to
incorporate X/Open Curses software, which is a set
of C library routines. X/Open Cursces is provided
by the ULLTRIN opceriting svstem and is used to opti-
mize screen management. X/Open Curses code
uses the terminfo databasc. a collection of terminal
definitions and characteristics that enables the
application writer to perform terminal-dependent
functions in a terminal-independent manner,
Through X/0pen Curscs software and its usc of
the terminfo database, the PATHWORKS for ULTRIX
management interface can support any type of
terminal.®

The next step was to design an casv-to-use appli-
cation that requires minimal knowledge of ULTRIN
system management. We chose a PC-stvle format

A3

PATHWORKS: PC Integration Software

that uses pulldown menus, input forms, scroll
regions for displaying information, and scrcen-
sensitive help. Default input information is dis-
played whenever possible to provide sample data
and to minimize the amount of input required.

The design of the management interface was
structured into three layers: screen manipulation,
data validation and presentation, and application
programming intcrface (APD).

Screen Manipulation

The first laver of the management interface is the
X/Open Curses softwarce. All screen manipula-
tion routines reside at this level. X/Open Curses
encompasscs the implementation of reverse video
attributes for highlighted text, cursor movement,
window updates, and the creation of menus, forms,
and scrolling regions. Any type of screen inter-
action is performed and managed by this laycr of
code. As a result, the screen manipulation layer is
portable to any environment in which X/Open
Curses is supported.

Data Validation and Presentation

At the data validation and presentation layer, data
obtained from the screen interface is validated. The
data is then packaged and processed by the API
layer. Information returncd by the API layer is
unpacked and formatted for screen presentation.

Application Programming Interface

The APL laycer is responsible for all communication
with the administration process. The management
interface does not store or manipulate server man-
agement data dircctly. Instead it makes requests of
the administration process in the form of APls
through message quceuces. Each request requires a
response and docs not complete until a response is
received.

Network Interface

When designing an application that must commu-
nicate on a network, one of the important deci-
sions is how to control access to the network. The
Berkeley Softwarce Development version 4.3 of the
UNIX kernel, upon which the ULTRIX operating sys-
tem is based, provides two network interfaces.

The first network interface is known as the socket
interface. It uses a socket structure to identify the
endpoint of an ULTRIX network connection. Under
the ULTRIX system, the sockcet interface is the pri-
mary interface to the nctwork.

The second network interface in the UL'I'RIX sys-
tem is the X/Open transport interface (X11). This
transport service interface is not restricted to
either the DECnet or the TCH/IP transport. A com-
mon interface to the network allows either trans-
port to be accessed transparently. With XTI the
communication endpoint is identified by a local file
descriptor. On the ULTRIX system, the X1 interface
is provided through a library that converts the XTI
calls into socket calls. Since performance was one
of our primary concerns, we decided to use the
socket interface because it connects directly to the
ULTRIX operating system.

Multiple Transport Support

In order to support both the TC/IP and the DECnet
transports, we needed to overcome the differences
between a message-based protocol (DECnet) and
a stream-based protocol (TC/1P). With a message-
based protocol, data received from the nctwork
arrives in compact packets. With a stream-based
protocol, message boundaries are not preserved,
the data flows in a stream. Since Microsoft’s SMB
protocol is a message-based protocol, the server
needs to re-create these message boundaries. As a
result, the server must identify the transport
provider. This information is provided by the
socket layer when the server process is started. The
server can re-create the message boundaries by
combining this information with message size
information provided in the TCP/1P NetBIOS header.
With the message boundary information, the server
can re-create the message. The C pseudocode frag-
ment in Figure 2 shows the instructions to re-create
message boundaries.

PATHWORKS File System

The PATHWORKS file system provides an application
layer that attempts to emulate the DOS file system.
Several trade-offs and restrictions were required in
order to implement this file system on the ULTRIX
file system. This section describes these trade-offs
and restrictions and explains our design choices.

File Name Mapping

The file name space in the ULTRIX system is not
restricted to the 8.3 naming format supported by
DOS. DOS limits file names to eight characters fol-
lowed by an optional period and an optional three-
character extension. This is referred to as DOS 8.3
tile name format. DOS file names are uppercase char-
acters and are case insensitive. Under the ULTRIX

34

Vol. 4 No. | Winter 1992 Digital Technical Journal

Design of the PATHWORKS for ULTRIX File Server

/* SMBptr - Pointer to SMB netbios header */
/* rdlen - Number bytes read from network */
/* BytesRcvd - Bytes already received &y

/* BytesLeft - Bytes left in

rdlen=read(network,SMBptr);
BytesRcvd=rdlen;

current message */

BytesLeft=sizeof(netbios header);
BytesLeft+=ntohs(EXT16(SMBptr->nb.length)-bytes_rcvd;

/* We will wait until we receive all the data in the msg */

/* before we terminate this

Loop. This loop will only be */

/* entered if we are running TCP/IP. */

while (BytesLeft!= 0) {

rdlen=read(network,&SMBptrfBytesRcvdl);

/* 1f we don't get any data

it means the client must have */

/* torn down the session so abort */
/* our session. Note AbortSession() must exit and*/

/* not return here.*/

if (rdlen<=0) AbortSession();

/* Update the counters to account for what we just read */

BytesRcvd+=rdlen;
BytesLeft-=rdlen;

/* 1f this is a SESSION_REQUEST message, then send the ACK*/

if (SMBptr->nb.type == SESSION_REQUEST) SendSessionAck();

/* 1f this is a SESSION_MESSAGE, then handle the SMB */

(SMBptr->nb.type == SESSION_MESSAGE) DispatchSMB();

Ligure 2

Receiving Stream Data Code Fragnmien!

svstem. the file name is a 32-character string in
which the period () is alegal character. The ULITRIX
file system is casc scnsitive and supports both upper-
case and lowercase characters in the file name.

To resolve this incompatibility between operat-
ing systems, we mapped the DOS file name space into
the ULTRIX file namce space. DOS, being case insensi-
tive, views the world of file names in uppercase,
but ULTRIX file names are typically lowercase char-
acters. We chosce to map all DOS file names to the
equivalent lowercase name. Any file on the host
ULURIX operating system that mects our criteria,
i.e.. lowercase names and 8.3 format is visible to the
DOS client.

‘This approach was suitable in all environments
except International Standards Organization (ISO)
9660 CD-ROM file systems. These file names con-
form to the DOS uppercase, 8.3 file naming format.
When the file server determines that one of the
services is on an 1ISO 9660 CH-ROM file system, the
file-namce mapping algorithoy is changed to allow

only uppercase file names that toflow the DOS 8.3
format.

DOS Attribute Mapping

The DOs file system provides file attributes that
do not necessarily map to ULTRIX file attributes.
‘The challenge was to preserve these DOS attributes
within the ULIRIX tile system without impacting
the host system user who might also be sharing the
file. The DOS attributes consist of read-only, hidden,
archive, and system.

The DOS read-only attribute maps directly to
the ULTRIX directory attributes mask. It the write
attributce is turned oft under the ULTRIX system, the
files change to read-only status.

The DOS hidden attribute specifies that a file
should not be displayed on a normal directory
search/lookup. We mapped this bit to the ULTRIX
sctuscr 1D bit.

The DOS archive attribute specifies that a file
has been changed since the last time the archive

Digital Technical Journal Vol .4 No. | Winter 1992

[N
J

PATHWORKS: PC Integration Software

attribute was set. It is generally used by the backup
program to determine which files have changed
since the last backup. We mapped the archive
attribute to the ULTRIX set group ID bit.

The DOS system attribute specifies a special sys-
tem file that is normally not displayed on a direc-
tory listing, and in some cases is not backed up. We
mapped the DOS system attribute to the Owner
eXecute bit. If this bit is sct, the server cannot
include thesce files on a normal directory scarch,
unless requested.

Byte Range Locking

The most noticeable difference in byte rangc lock-
ing between the ULTRIX operating system and the
DOS operating system is that byte ranges under the
ULTRIX system are purely advisory. Advisory lock-
ing works as a mechanism to signal that a byte rangce
is currently in usc. The ULTRIX system, however,
does not enforce the locks; therefore it is possible
to read/write a byte rangc that is locked simply by
ignoring the lock.

On the other hand, DOS has mandatory locking.
If a byte range is locked, the user can neither read
nor write a locked byte range. We needed to con-
vert the ULTRIX lock manager into a mandatory lock
manager from the DOS clients' point of view. To do
this, the UILTRIX lock manager has to check for a
lock on a byte range on every read or write from the
file server. If any portion of the byterange is locked,
the client reccives a lock failure message.

In the initial release of the server, we believed
that the standard ULTRIX lock manager would
provide enough performance and granularity to
allow DOS client software to function correctly and
quickly. We learned that this was not always the
case. For example, in a network file system (NFS)
environment, additional time for granting or deny-
ing the lock request was nceeded to resolve alock on
the network. In addition, the UETRIX lock manager
viewcd the byte range as a signed integer, but the
NOS lock manager viewed the byte range to be
locked as an unsigned integer. This disparity led to
problems with applications that used byte range
locks with the sign bit set to provide synchroniza-
tion for database updates. We found that the ULTRIX
lock manager was deficient in the DOS client envi-
ronments. For these reasons, we decided to write a
private lock manager for applications that could
not use the ULTRIX lock manager.

To resolve locking problems among these appli-
cations, we designed a private lock manager for the

PATHWORKS for ULTRIX scrver. We provided a high-
performance lock manager that could lock byte
ranges uscd by DOS applications. In other words,
the server lock manager would treat the lock range
as an unsigned number instead of a signed number.
We also provided the option of passing the lock
information to the ULTRINX lock manager for those
applications that necded this functionality.

Open File Mode Locking

‘The DOS client provides a mechanism for control-
ling access to opened files. It allows the client who
initially opens a file to control access to the file
by other clients. The DOS client allows files to be
opcened inone of four modes:

= DENY_NONE modec allows all types of files to be
opened by all users.

= DENY_READ mode allows other users to open
the file for writing but not reading.

= DENY_WRITE mode allows other users to open
the file forreading but not writing.

= DENY_READ_WRITE mode does not allow other
users to opcen the file.

The ULTRIX operating system, on the other hand,
has only two modes for a shareable file lock. The
first is SHARED _ACCESS mode, which allows multi-
ple readers and writers and is therefore equiva-
lent to the DENY_NONE modc. The other mode is
EXCLUSIVE_ACCESS mode, which does not allow
multiple accesses to the same file and therefore is
equivalent to DENY_READ_WRITE mode under DOS.

Becausc of these differences, we attempted to
map the two modes not covered by the ULTRIX file
lock manager, the DENY_READ and DENY_WRITE
modes. After some investigation, we decided map-
ping was not necessary. If a file was opened in
once of these two modes, we specified that the
ULTRIX server should open the file in ULTRIX
SHARLED_ACCESS mode. We reasoned that an ULTRIX
application that was cooperating with a DOS appli-
cation would not use these two modes to open the
file since they are not available under the ULTRIX
system. Obviously these two modes need to be sup-
ported among DOS-based PCs on the server. Each
time a user opens a file, the list of currently opened
files is scanned to enforce the open mode and to be
sure that the ULTRIX operating system conforms to
the DOS interpretations of these modes. Therefore,
only the half deny modes being passed through to
the operating system are not enforced. This design

30

Vol. 4 No. I Winter 1992 Digital Technical Journal

decision should posce no danger to applications
sharing data.

Directory Search Implementation

The DOS file scarch algorithm and the SMB3 mes-
sages that provide support for directory scarches
were difficult to implement on the UITRIN file
server. ‘The core SVIB protocol provides only two
states for a scarch context. begin new scarch and
continuc a previous search. However, the server
needs to be informed that the client has completed
adirectory scarch context. Then the server would
be able to free local data associated with the search
context. The implementation of this SMB posed two
challenges: how to control the amount of memory
required and how to map a search continuation
identificr.

To minimize the amount of memory required to
maintain scarch contexts, we designed a table of
scarch context structures that contains a local
timing valuc. If the table becomes full and a block
(structure and time value) necds to be reused, the
oldest block is deemed reusable. This approach effi-
ciently manages the unpredictable memory require-
ments of an SMB search,

The scarch continuation provides a directory
information structure which contains a four-byte
field that determines the point at which the search
is to continue. This four-byte field is well suited to
the UETRIX file system. The gnode field, a longword,
can be used for the four-byte field’s search continu-
ation 1. Given this 1D, the server has the ability to
parsc the contents of the directory until it finds a
file with a matching gnodc: it then continues the
scarch from that point.

PATHWORKS for ULTRIX Printing

In addition to file services for DOS and 0S/2 system-
bascd clients. PATHWORKS for ULTRIX provides print
services for these PC clients. Our design objective
wits to atlow the PC clients access o all the function-
ality on the native UCTRIX print queuc in a transpar-
ent manner. A sccond objective was to implement
the functionatity provided by NET PRINT, the client
utility for printing, on the native ULTRIX line printer
dacmon (1.PD).

Although the LPD provided all the basic printing
capabilitics, it did not provide timed scheduling of
print jobs. To cnablc timed scheduling, we added
the /AFTER switch to the server through a mecha-
nism within the ULTRIX operating system. When a
/AFTER switch is detected inone of the extended

Design of the PATHWORKS for ULTRIX ile Sereer

printing SMBs, a batch job is run at the time speci-
ficd in the print request.

The ULIRIX print spooler provides spooling for
all types of printers, e.g.. those attached locally
as well as network printers and reverse Local Arca
Transport (LAT) printers connected to PCs. Reverse
LAT printing is very important in our environment
because most PCs have printers attached and most
installations have a need to share those printers
among several PCs.

The ULTRIX print spooler provides print fAlters
which translate files to various printers. Print filters
conceptually sit between the LPD and the actual file
to be printed. During printing, the LPD reads a
“printcap” file to determine if a print filter is associ-
ated with this queue. The priat filter is started in a
forked process with its standard output device (stdl-
out) pointing to the printer and its standard input
device (stdin) pointing to the input file stream. The
print filter is responsible for converting the file
from the input stream (stdin) into a device-specific
output that is usable by the printer (stdout). This
feature allows the PATHWORKS for ULTRIN server to
support printing on a wide variety of third-party
printers.

The design of the ULTRIX printing subsystem
cenabled the PATHWORKS for ULTRIN server to pro-
vide an interface to many different printers and
printcer configurations casily and efficiently

Performance Considerations

As part of the design process, we obscrved the per-
formance of the file server during interactions with
the client. We nceeded to compare various contlict-
ing alternatives and their effects on the overall per-
formance of the server. Some of the alternatives we
studied were the advantages of using the ULTRIN sys-
tem cache versus implementing our own cache. We
also studied the issuc of persistent lock requests on
the network and the server. These alternatives are
discussed in this section.

File I/O
Since the ULTRIN operating system provides a
kernel-based, disk cache mechanism, we designed
the operating system's cachie manager to perform
all caching globally. The cache manager updates
the cache buffers, performs read ahead on data
streams. and flushes the cache buffers from data
written to disk.

The tile server performs disk writes as write
behinds. When a request to write data is reccived

Digital Techuical Journal Vol i No. | Winter 1992

37

PATHWORKS: PC Integration Software

from a client, the server responds by acknowledg-
ing successbefore the write is attempted (assuming
the client has proper write access to the file). This
optimization allows parallelism to occur between
the client and the server because the client is gener-
ating more data at the same time the serveris writ-
ing the data to disk. If the write fails, however, the
server notes that the last write failed and returns
the error on any subsequent access to the file.

Heuristics

We found that certain applications would continu-
ally flood the server with lock requests even
though the lock requests kept failing. These persis-
tent lock requests from applications used valuable
CPU time on the server system as well as network
bandwidth. For this reason, the ULTRIX server needs
to determine if a client is being persistent and
continually requesting locks which are failing.
When the server detects continuous lock requests,
it delays the lock request for a random period of
time and then checks if the lock has become avail-
able. The server then either grants access if the lock
is available, or returns the error at that time. This
procedure reduces lock request traffic, since most
locks are of short duration.

Security

Connection requests between client and server
require a security check. Since PATHWORKS for
ULTRIX was designed to be layered on the ULTRIX
operating system, we were able to take advantage
of its security features. When a client attempts to
connect to the server, a username and password
can be passed as part of the connect message. If
these are supplied, the user is validated through
system calls to obtain the password file entry for
that user. If the user is not found in the /etc/passwd
file or if the password is invalid, the user is denied
connection. If the ULTRIX system is running in
enhanced security mode, further checks are made
to ensure the account has not been disabled or the
password expired. In either of these cases, the con-
nection would be denied. If a username is not sup-
plied, a default guest account may be used to
establish privileges.

VAX versus RISC Considerations

During the development of the PATHWORKS for
ULTRIX file server, we did not anticipate that our
code would have to differentiate between VAX and

RISC architectures. We expected that code written
for an ULTRIX system in a RISC environment would
be recompiled on a VAX system. For the most part,
our assumptions were correct, except in the areas
of memory allocation.

On the VAX system, shared memory maps
directly after the data segment in memory. This
implementation prohibits the allocation of mem-
ory above a shared memory segment. In the RISC
implementation, shared memory is allocated at the
very top of the memory image; therefore a great
deal more memory can be allocated before the bot-
tom of the shared memory segment is reached. The
difference in shared memory allocation between
the RISC and VAX systems is shown in Figure 3.

To increase the data segment size in the VAX sys-
tem, we replaced all malloc()calls in the server
modules with the following pseudocode:

Disconnect from shared memory malloc()
Reconnect to shared memory

Since this code is required only in a VAX environ-
ment, itis compiled when the serveris built.

PATHWORKS Server Configuration

The PATHWORKS for ULTRIX file server allows the
system manager to configure the server environ-
ment to make the most efficient use of shared mem-
ory. The following parameters included in the
lanman.ini file are the determining factors that
enable shared memory to be scaled.

= maxsessions: The maximum number of PC work-
stations that can be simultaneously connected
to the PATHWORKS for ULTRIX server.

= maxconnections: The maximum number of con-
nections PC workstations can make to the ser-
vices offered.

— TOP OF
MEMORY SHARED MEMORY
SHARED MEMORY
TOP OF CODE
DATA, CODE, AND DATA DATA, CODE,
STACK STACK
(a) VAX System (b) RISC System

Figure 3 Image Memory Layout

38

Vol. 4 No. 1 Winter 1992 Digital Technical Journal

= maxopens: The maximum number of fes the
scrver can have open simultancously.

= uniqucopenfiles: The maximum number of
unique open files the server can have open
simultancously.

= maxscrverlocks: The maximum number of byte
rangce locks the scrver can lock simultaneously.

To help the uscer apply these parameters to a par-
ticular system, the “pesa memory”™ command acts
as a shared memory sizing calculator. Tt allows
the user to input the parameters and then either
indicates that the new parameters will fit in the
current system. or that the system shared memory
parameters necd to be changed to support the new
configuration

Information Logging
PATHWORKS for ULTRIX information logging was
designed for the ULTRIX system manager as well as
writer/uscrs of the LAN Manager application. It pro-
vides event and crror logging information in two
distinct formats. The first format uses the ULTRIX
svstem log file: syslog. This log file is typically mon-
itored by UILFRIX system managers. All processes
which comprise PATHWORKS [or ULTRIX submit con-
figuration information and error conditions to this
file. The file server process also logs information
regarding scrvice usage, sessions, and connections.
The second form of cvent logging is performed
entirely by the scerver process. The server pro-
cess logs crror and audit events to LAN Manager-
compatiblc log files: error log and audit log. These
log bBles are accessible through the management
intertace as well as through the LAN Manager APl
interface provided with DOS and 0$/2 JAN Manager
implementations. These files contain information
on session logon/iogoft, password errors, connec-
tions started/rejected. resource access granted/
denicd. and server status changes.

Summary

The PATHWORKS for ULTRIX file server, together
with the PATHWORKS for DOS and PATHWORKS for
0872 products, provides a distributed computing
cnvironment. The file server is based on a client-
server modcel that offers transparent access to
ULTRIX system resources from PC o clients. It pro-
vides the necessary tools to integrate these two
diverse computing environments in a4 manner that
is both ctficient and casy to manage.

Design of the PATHWORKS for ULTRIX Lile Server

Acknowledgments

Many people werce involved in the design and build-
ing of the PATHWORKS for ULTRIX file server from its
inception to its shipment. We wish to thank all
those people: Paul Messicr and Jim Flaherty. who
guided our efforts; Dan Smith, who designed and
implemented the NetBIOS laver: Ken Cardinale,
who wrotc the product documentation: Marlene
Steger, who ensurcd that the product shipped on
time; and the many individuals who successfully
brought this product to market.

References

1. Protocol Standard for NeH3108 Sercice on a 1CE/
UDP Tiansport: Concepts and Methods, Internet
Engineering Task Force (IETF) RFC 1001 (March
1987).

2. Protocol Standard for NetBLOS Service on a 1CF/
U Transport: Detailed Specification, Internet
Enginccering Task Force (JETEF) RFC 1002 (March
1987).

‘e

UILTRIX-32 Giutide to Curses Screen-Handling,
ULTRIX Document Set, Software Development,
vol. 2 (Maynard: Digital Equipment Corporation,
Order NoO. AA-MFO7A-TE, 1988).

Digital Technical Jowrnal Vol i No. | Winter 1992

39

Mitchell P Lichtenberg
Jeffrey R. Curless

DECnet Transport Architecture

The PATHWORKS family of software products includes an implementation of the
DECnet transport protocol to allow Intel-based personal computers access to net-
work resources. This impleientation, the DECnet Network Process (DNP) trans-
port component, provides basic file and print services, terminal emulation, and
application services. The new DNP component for the version 4.1 release of the
PATHWORKS for DOS client software is written in assembly language to improve
performance and reduce meinory usage. The DOS and 0S/2 versions of the com po-
nent contain the same base source code, thus decreasing the development and

mdintendnce costs.

Digital’s PATIIWORKS family of software products
provides the means te intcgrate personal com-
puters into the Digital network environment.
The PATHWORKS for DOS client seftware includes
device drivers, network transports, utility pro-
grams, and applications that allow PCs full access
to the resources available in local and wide area net-
works (LANs and WANs). Transparent file sharing,
electronic mail, and terminal emulation are exam-
ples of services supported by PATHWORKS client
software.

The DECnet protocol suite is implemented in
Digital's standard set of software for interconnect-
ing VAX and reduced instruction set computer
(RISC) systems. DECnet software, which is included
in the PATHWORKS client software, enables PC inte-
gration. The DECnet protocols allow PATHWORKS
products to use the infrastructure of existing
Digital networks and to provide common utility
programs and network management capabilities.

However, integrating PCs into a network sys-
tem presents many design challenges to software
developers. They must provide network access
without limiting the functionality of the PCs and
without compromising the compatibility of the
existing PC software and peripherals. Since the PC
architecture has limited memery resources and few
built-in features for networking, PC network soft-
ware architectures must be as transparent as pos-
sible, reducing memory usage and emulating local
peripherals and software interfaces.

To implement this transparent architecture, the
PATHWORKS products comply with PC-related
industry standards. Most such standards result from

popular vendor software applications or hardware.
For example, Microsoft’s LAN Manager software
product influenced the acceptance of the industry-
standard server message block (SMB) protocol. This
session layer protocol, implemented over a variety
of transports, is used in the LAN Manager redirector
for transparent file sharing and peripheral emula-
tion. Digital licenscs the LAN Manager software in
order to provide these scrvices as features of the
PATHWORKS product family. Digital extended the
LAN Manager across a LAN or a WAN system by using
the DECnet transport protocol as the transport layer
in its PATHWORKS products.

In this paper we first present our rationale
behind the design of the DECnet transport compo-
nent in PATHWORKS for DOS version 4.1, as well as in
PATHWORKS for OS/2 version 2.0. We then describe
the new component’s internal structure, follow a
typical network operation through the compo-
nent, and compare this version of the software
component with previous versions.

PATHWORKS Client Software and the
DNP Component

Since its initial release, the PATHWORKS product
family has implemented the DECnet transport pro-
tocol te provide access to basic file services and
printer sharing, terminal emulation, and applica-
tion services. This netwerk software implementa-
tion is called the DECnet Network Process (DNP)
transport component. Figure 1 illustrates the rela-
tionship between the DNP transport component
and the other memory-resident PATHWORKS client
software components.

Vol. 4 No. 1 Winter 1992 Digital Technical Journal

DECnet Tranusport Architectunre

DOS APPLICATIONS |
DECNET
QE;SEEHONS APPLICATIONS
(I0CB INTERFACE
APPLICATION
PROGRAMS o
SYSTEM
PROGRAMS

DOS OPERATING
SYSTEM

MICROSOFT LAN
MANAGER

‘L DECNET

NETWORK
PROCESS (DNP)

PC TIMER AND
INTERRUPT —
HARDWARE

SCHEDULER
(SCH)

|

DATA LINK
LAYER (DLL)

Ligure 1

Goals for PATHWORKS Client Software

PC network software products are judged primarily
on two criteria performance, usually measured
with popular benchmark programs, and resident
memory usage, a limited resource that may restrict
other applications. Increasing performance and
decrcasing memory usage are major goals for all
new releases of the PATHWORKS client software. In
the PATIHIWORKS version 4.1 client software, Digital
sought to double the performance of the DNP
transport component for small data transfers,
whilce decrcasing the size of the code by S0 percent.
Another goal was to significantly reduce mainte-
nance costs in order to free engineering resources
for future project development.

Betore describing how we went about achieving
these performance, memory, and development cost
oals in PATHIWORKS version .1, we review the func-
tionality of the DECncet DNP implementation. We
also discuss the component in relation to other
PATHWORKS client components to give the context
in which our design decisions were madec.

1he DNP Component Functionality

Application programs can use DNP transport scr-
vices through one of two software interfaces: the
nctwork basic 170 system (NetBIOS) intertface and
the 170 control block (10¢B) interface. The widely
accepted NetBIOs interface is used by applications

LAN HARDWARE

PATHWORKS Client Components

and drivers that comply with industry-stanclard
specifications to provide peer-to-peer transport
services on a LAN. The 10CB interface is specific to
Digital's DECnet transport implementation of the
DECnct protocols. 10CB provides a socket interface
similar to the one used by the ULTRIX operating
system. This [OCB interface is used by DECnet-
specific application programs.

To communicate with the nctwork, the DNP
transport component calls the data link layer (DLL)
software interfuce. The DLL component is used
by all PATHWORKS clicnt components to send and
receive packets on the LAN. This component
demultiplexes incoming packets based on their
protocol type (e.g., localarca transport [LAT], local
areasystem transport [LAST], or DECnet trunsport)
and delivers these packets to the corresponding
PATHWORKS client component. The DLL compo-
nent also transmits packets on the LAN, cither
directly or indirectly by calling standards-based
network drivers. To reduce memory consumption,
the DL componcent provides a global buffer pool
that the DNP and other transport components can
use for building network packets or for storing
unacknowledged data.

To provide timing and background process ser-
vices, the DNP component calls the PATIIWORKS
real-time Scheduler (SCH) component. The SCH
communicates directly with the DOS operating

Digital 1echuical Jowrnal Vol i No. | Winter 1992

PATHWORKS: PC Integration Software

system and the PC’s timer and interrupt hardware to
create a simple cooperative process environment.
This environment includes slecp and wake calls,
and periodic interval timers. The functions of the
SCH compone:nt are similar to those performed by
true multitasking operating systems, such as the
0s/2 system, which use preemptive scheduling.

Considerations for a New DNP
Component Design

In previous PATHWORKS client software, separate
teams implemented and maintained thc¢ DOS and
0S/2 versions of the DNP transport component. W¢
decided to use the same base source code for both
versions and thus reducc development and mainte-
nance costs. We then proceeded to consider our
design options.

Originally, the DNP component was written in
the C programming language. The internal architec-
ture remained basically unchanged during the five
years following its release. This stable code should
have becen easy to port betwceen operating systems.
Howevcr, the internal architecture of the O$/2 sys-
tem was ncver considered in the original design
because this system was not available until 1988.
Retrofitting the DOS version of the DNP component
for the OS/2 operating system was difficult, and we
were not able to maintain a common source code
base.

To achieve the performance, memory, and devel-
opment cost goals described earlier in this section,
we considered the following three approaches:

1. Rewrite the current DNP transport component
2. Write a new DNP transport componentinC

3. Write a new DNP transport component in assem-
bly languagc

Rewriting the current DNP component would
not have produced a desirable amount of code com-
mon to the DOS and 0$/2 versions. In addition, this
approach would have resulted in only minimally
improving the maintainability of the code. Writing
a new transport component in C would have
yielded a more portable code, but the performance
and memory usage would not have compared favor-
ably with other vendors’ transports. We decided to
write the new transport component in assembly
language to make optimal use of the limited mem-
ory available on today’s personal computers.

PATHWORKS Version 4.1 DNP
Transport Component Design

Internally, the DNP transport component com-
prises various modules that correspond approxi-
mately to the layers of the DECnet protocol suite,
as shown in Figure 2. Later in this section, we
describe the major DNP modules and how they
cooperate.

APPLICATIONS
USER REQUESTS

|

|

{

NETBIOS
INTERFACE

I0CB
INTERFACE

l

SCHEDULER | || EXECUTIVE

‘ NETWORK SERVICES PROTOCOL }7 NETWORK

TIMERTICKS || DISPATCHER

MANAGEMENT

‘ DECNET PHASE IV ROUTING ’7

|

4|

DATA LINK CONTROL

L,

A

DATA LINK LAYER
RECEIVED DATA

PACKETS

Figure 2

Internal Archilectitre of the DECnet Network Process Component for PATHWORKS Version 4. 1

42

Vol 4 No. | Winter 1992 Digital Technical Journal

Three types of events can cause the DNP compo-
nent to respond or to “wake upTouser requests.,
rceceived packets, and timer ticks. All of thesc events
are asynchronous, since they arce gencerated by hard-
wire interrupts or uscr actions that arc not man-
aged by the operating svstent. Fach time the DNP
COMPONCNt processes an event, variables and data
structures internal to the component change. In
designing the component. we had to ensure that
the events would not interrupt one another.

To protect the data structures in a generic way,
all versions of the PATTIWORKS DNP component use
a queuing svstem called the excecutive. Asynchro-
nous cvents arce queued to the excecutive module,
where a semaphore guards the dispatching and pro-
cessing routines. The queue and the semaphore
guarantee the following: the receipt of a new event
docs notinterrupt ongoing processing, and events
arce processedin the order in which they arrive,

Under the DOS operating svstenl, the main loop
of the excceutive module uses the PATHWORKS
SCHE component to “sleep,” process pending events,
and sleep again. Events that arrive while the main
loop is exccuting arc simply placed on the queue.
Opcrating under the DOS svstem, on which no
background processing services exist, the DNP
component uscs the PATIIWORKS SCH component.
Since the 0872 operiting system does provide a
background processing environment. the corre-
sponding version of the DNP component uses the
native background processing and scheduling func-
tions of the OS/2 operating system to perform the
same tasks.

Data Structures

The DNP transport component usces three primary
data structures to manage network links and to
transter data: the request (REQ) data structure, the

REQUEST QUEUE

R N—

DECnet 1rensport Architecture

link status block (1.8B) data structure, and the large
data buffer (LDB) data structure

To queuce events for processing. the REQ data
structure is allocated from a global pool. Pointers
to @ uscr request or to network data are stored in
the REQ structure and then placed on the executive
dispatcher queue. The REQ structurce is also used to
describe unacknowledged data and to store events
in the event log. tsing the same pool for different
purposes saved memory and decreased the overall
complexity of the component. Figure 3 itlustrates a
typical request queuc to the exceutive dispatcher.

The exccutive module reads cach event, i.c., col-
lection of messages or user requests, from the
request quceuc and dispatches the cvent to the
appropriate handier routine. according to cvent
type The routine then further dispatches the event
to specific subroutines to handle the individual
messages or requests. The lowest-level routines
keep network links active and transfer data to and
from the remote system.

In previous versions of the DNP component, the
REQ data structure consumed 48 bytes of memory,
We reduced its size to 22 bytes by creating variant
records that contained only those data ficlds neces-
sary to idceutiy the type of request.

The 1SB diata structure maintains the current sta-
tus of a logical link In addition to the network ser-
vices protocol (NsP) variables, the LSB structure
stores other data, including the queue of unac-
knowledged data and the queuc of outstanding
transmit and receive requests. Figure 4 illustrates
the contents of the 188 and associated data struc-
tures for an active logical link.

The uscr requests are attached to queuces on
the logical link Forstorage of unsent or unacknowl-
cedged data, the DNP component uses @ REQ data
structure to point to an LDB data structure: The 1LDB

VENT-HANDLER ROUTINES

DATA [—| DATA || YSER

REQUEST

L

NETWORK NETWORK NCB OR
PACKET PACKET 10CB

ligure 3

Digital Techuical Journal Vol § No. [Winter 1992

—»l ROCESS 1008 REQUESTS |

——>| PROCESS NETBIOS HEQUESTS |

EXECUTIVE
DISPATCHER —>| PHOCESS RECEIVED DATA PACKETS |

—>| PROCESS TIMER TICKS |

—>| PROCESS CONTROL MESSAGES |

DNP Executive Dispetcher Module and [nconiing Regquest Quetie

N
o

PATHWORKS: PC Integration Software

APPLICATION

MEMORY

SYSTEM

MEMORY LINK STATUS BLOCK (LSB)

TRANSMIT QUEUE
RECEIVE QUEUE

UNACKNOWLEDGED

REQUEST (REQ)

REQUEST (REQ)

DATA
RECEIVED DATA

DATA REQUEST
{REQ)

DATA REQUEST
(REQ)

Y

NETWORK SERVICES
PROTOCOL STATE
VARIABLES

LARGE DATA
BUFFER (LDB)

LARGE DATA
BUFFER (LDB)

USER DATA NCB USER USER DATA NCB USER
BUFFER REQUEST BUFFER REQUEST
Y 4 A A
__________ + -+ — —
TRANSMIT TRANSMIT

Figure 4 Link Status Block and Associated Data Structures

structures belong to the Ethernet or token ring data
link component and are shared by other protocols.
Before transmitting data, the DNP component allo-
cates firstan LDB data structure and then a REQ data
structure that points to the LDB. The REQ structure
is placed on the outgoing message queuc of the LSB
structure, and the NSP layer eventually transmits
the REQ data.

Internal DNP Modules

The DNP transport component consists of various
modules. We now describe the data link control
(DLC) module, the NSP module, and the NetBIOS
and [OCB modules.

The DLC module is responsible for communica-
tion with the Ethernet or token ring data link com-
ponent. Only the DLC module calls the data link,
and the differences between the DOS and 08/2 ver-
sions are hidden in the DLC module to present a
consistent software interface to the rest of the DNP
component.

To make the NSP and DECnet Phase IV routing
modules as operating-system independent as possi-
ble, we developed asimplified softwarc interface to
communicate with the Ethernet or token ring DLC
module. The DI.C module calls the data link that is
specitic to the operating system. Providing the soft-

warc interface allowed us to use common code for
all of the modules that do not directly access the
data link.

The NSP module manages the transport protocol,
including the buffering, flow control, and error
recovery mechanisms. In PATHWORKS version 4.1,
we changed the buffering and flow control algo-
rithms to match more closely the types of traffic
that PC network applications are likely to generate.

Most uscers of the NetBIOS interface post reccive
requests before transmitting a request for data from
a scerver. Some implementations of the NcetBIOS
interface do not bufter reccived or transmitted data
inside the transport component, so applications
must prepare to receive before requesting data
from the server. To best manage the incoming data,
the DNP component of PATHWORKS version 4.1 uses
XON/XOFF flow control for NetBIOS logical links
and segment flow control for logical links that use
the IOCB interface. The previous version used seg-
ment flow control for both the NetBIOS and 10CB
interfaces. XON/XOFF flow control causes fewer
messages to be transmitted on the wire, especially
in request/response session layer protocols, and is
most successful when the receiving node has a
bufter ready to accommodate the incoming data.
Segment flow control is more robust and allows

Vol 4 No. I Winter 1992 Digital Technical Journal

DrCiet fransport Arcpitecture

the DNP component to better regulate the rate of
incoming data. ‘This mcthod of tflow control can
be espccially usctul for non-request/response
protocols such as thosc uscd in the DECwindows
softwarc.

The NetBIOS and 10CB modues form the session
layers for the DNP component. In previous versions
of the DNP component, the NetBIOS module was
layered on top of the 10CB interface. However, as
we mentioned earlicr in the paper, most popular
nctwork applications use the NctBIOS interface. We
decided to increase the performance of thosce appli-
cations by designing the new DNP component in
such a way that the NetBros module directly calls
the NSP module

We recognized another clement of the DNP design
that could be improved Earlier DNP versions copied
the user’s NetBIOS request into a local data struc-
ture for casy access. The extra resources required
to store and copy the uscr requests diminished
the overall performance of the DNP componcent. ‘1o
improve performance, the DNP component now
stores a pointer to the original user’s request and
manipulates the request directly.

NetBIOS compatibility is onc problem that many
vendors face when writing network transport com-
poncents, The NetBIOS sotftware interface is defined
in scveral different specifications, and many appli-
cations depend on quirks and bugs in the design.
I'he PATHWORKS NetBIOS interface must emulate
these bugs completely for certain applications to
work properly. We paid carcful attention to the bug
reports from customers in previous versions of the
PATIIWORKS software when rewriting the NetBLOS
layer to provide complete compatibility.

A Typical Networlk Operation

To illustrate the sequence of events through the
DNP componcent for a typical nctwork operation,
consider the transmission ol 64 kilobytes (KB) of
data through the NetB1OS intertace. The application
that wishes to send the data constructs a NetBIOS
control block (NCB) data structure and submits it
to the NetBIOS software interface. The DNP com-
poncent receives control. creates a queue entry for
the NCB structure, and then wakes the SCH compo-
nent. Waking the SCH componcent causces the main
loop of the DNP component to begin execution.
The excecutive module checks the request type and
dispatches the entry to the NetBIOS module where
the transmit request is placed on the logical link's
transmit request queuc. The transmit request ini-

Digital Jechnical Journal Vol 1 No. f Winter 1992

tially points to the user's NCB and the beginning of
the user’s data buffer.

The NSP module copies data into the LDB data
structures and queucs these LbBs onto the unac-
knowledged data queue. The amount of data
copied depends on the size of the transmit pipe-
line, which is a network management parameter.
Each time data is copied into an LDB data structure,
the pointer advances in the transmit request queuc.
When all of the data is copicd into the LDBs, the
user’s transmit request is completed, allowing the
application to continue execution while the DNP
component transmits the queued data.

If the flow control mechanism permits scnding
data, the NSP module calls the routing layver to add
routing headers. The data link control module then
transmits the packcts on the LAN. The remote nct-
work system responds with acknowledgment mes-
sages, which are placed on the request queue and
processed when the DNP component returns to the
main loop. Anacknowledgment message causes the
LDBs to be returnced to the data link control module
and makes space available on the transmit pipeline.
The NSP module can then refill the transmit pipe-
line by copving more user data into the LDB data
structures and restart the transmit process.

Results

We achieved our project goals for the DNP transport
component in PATHWORKS version 4.1 client soft-
ware. The new design allowed us to reduce mem-
ory usage, improve performance, and reducc
maintenance cost.

Memory Usage

We reduced the resident size of the DNP compo-
nent from 53KB to 33KB. The reduction in the size
of the internal data structures freced up enough
memory resources to allow the DNP component
to handle over 200 concurrent ncetwork links.
Previously, the DNP component was limited to
64 links.

Performance
By coding in assembly language. and optimizing
the path forsending data messages to the network,
performance was ncarly doubled for small data
transfers. Small data transfers account for the
majority of transfers in databasc applications.

The graph shown in Figure 5 represents DECnet
performance, measured in messages transterred

PATHWORKS: PC Integration Software

per second, as a function of message size, ranging
from 64 to 65,500 bytes. We include data for ver-
sions 4.0 and 4.1 of the DNP component. As the mes-
sage size increases, the curves converge because
the Ethernet adapter’s performance becomes the
limiting factor for throughput. Smaller message
sizes are typical in many industry-standard PC
benchmark programs and applications.

The benchmark program used to calculate
DECnet performance transfers data from one PC
to another as fast as possible, using fixed message
sizes. The hardware used in these tests consisted
of 20-megahertz Intel 80386 microprocessors with
16-bit DEC EtherWORKS Turbo (DE200) adapters
running ona private Ethernet segment.

Maintenance Costs

Debugging the common source code base for the
DOS and OS/2 versions is much simpler than for the
previous version of the DNP component. Since the
0S/2 version uses the memory protection features
of the PC’s Intel microprocessor, invalid memory
references under the O$/2 version cause system
traps that would not have been detected under the
DOS version. Nearly 90 percent of the code is com-
mon to the DOS and OS/2 versions of the DNP com-
ponent. The number of source lines was reduced
from 73,000 (the DOS version only) in PATHWORKS
version 4.0 to 53,000 (the DOS and 0S$/2 versions
combined) in PATHWORKS version 4.1. Rewriting
the component also improved its compatibility
with third-party NetBIOS applications.

o
o
o

[a]

P4

Osoo} -

O

& 400}

U:]

w L—

@ 300} T

[@)]

V1)

< 200}

wn

]

= 100f

e L T~n m
028 T 512 | 2048 | 8192 | 32768 !
64 256 1,024 4,096 16,384 65,500
MESSAGE SIZE (BYTES)
KEY:

® DNP COMPONENT IN PATHWORKS VERSION 4.1
2 DNP COMPONENT IN PATHWORKS VERSION 4.0

Figure 5 DECnet Network Process Com ponent
Throughput

Debugging features were added to the DNP com-
ponent in PATHWORKS version 4.1 that allow cus-
tomers to adjust their DECnet configuration easily
and precisely. The DNP component now collects
statistics on the maximum number of REQ, LSB, and
LDB structures allocated, and on the size of each
pool. Using this feature, we found that the ver-
sion 4.0 DNP component allocated nearly twice as
many REQ data structures as it needed under
normal client workloads. As a result, we lowered
the default allocations to further reduce memory
consumption.

Conclusion

The DECnet transport component project for the
version 4.1 release of the PATHWORKS client soft-
ware was a success; we came very close to our orig-
inal goals for memory, performance, and software
development costs. In addition, many of the tech-
niques, algorithms, and data structures used for this
effort can be applied to future network transport
development.

General References

IBM NetBIOS Application Development Guide
(Armonk, NY: International Business Machines Cor-
poration, 1987).

Microsoft/3Com Network Driver Interface Specifi-
cation, version 2.0.1 (Redmond, WA: Microsoft Cor-
poration, 1990).

PATHWORKS Programmer’s Reference, version 4.1
(Maynard, MA: Digital Equipment Corporation,
1991).

DECnet Phase 1V General Description (Maynard,
MA: Digital Equipment Corporation, Order No.
AA-N149A-TC, 1983).

Microsoft MS-DOS Programmer’s Reference (Red-
mond, WA: Microsoft Corporation, 1990).

Microsoft OS/2 Device Driver Reference (Redmond,
WA: Microsoft Corporation, 1989).

46

Vol 4 No.J Winter 1992 Digital Technical Journal

Andreww W Nourse |

Microsoft Windows Network
Virtual Device Drivers in

PATHWORKS for DOS

Digital’s PAXTHWORKS for DOS version 4.1 personal computer integration softuare
includes teo netieorle vivtual device drivers Jor the Microsoft Windows environ-
ment. These drivers allow Windows applications operating in a protected processor
maode and standard DOS applications in a cirtial nachine to concurrently aceess
sereices designed to van inreal mode under the DOS operating systeni. The nelwork
vivtual device drivers. avaitable only in Microsoft Windows enbanced mode. nici-
age DECnel and NetBLOS operations and pevmit the full use of these interfaces.

Microsoft Windows virtual device drivers are load-
able soltsvare modules that oxtend the Windows
operating svstew and enable it to support peciph-
devices. software

cral memory and

applications. Some ol these modules allow applica-

resources.

tions that opcerate in diftferent processor modes
with corresponding ditferences in memory access
to comnunicate with one another in a network svs-
tem. Digital’s PATHIWORKS products make it possible
to integrate personal computers into local or wide
arca netw ork systems, The PATHTWORKS for DOS soft -
ware includes two network virtual device drivers,
which manage DECnet and network basic 170 sys-
tem (NCtBIOS) operations in the Microsolt Windows
anvironment for PCs.

This puaper begins with a discussion of the
for which the
PATHWORKS for DOSs product provides network
virtwal device drivers. The basic processor operat-

Microsoft Windows environment

ing modces and the Microsoft Windows operating
modes are described. preparatory to an explina-
tion of Microsoft Windows enhanced mode. ‘This
explanation s essentid because virtual device
drivers operate only in enhanced mode,

Next. the paper details the capabilitics of virtual
device drivers: such as providing the mans for
Windows and DOS applications to cormmunicate.
The focus then turns to the environment for devel-
oping Microsoft Windows virtual device drivers and
concludes with a description of the structuce and
functionality of the two network device drivers
included in the PATHWORKS for DOS sottwire

Digital Techuical Jowrnal Vol i No. | Winter 1992

Microsoft Windows Environment

The Microsoft Windows environment is a graphical,
multiapplication system for persoual computers
that use the Intel 80286 or higher microprocessor.
Yor 8028G-bascd systems. the Windows system
operites in its standard mode. using the veal and
protected processor modes. On the 80386 or higher
microprocessor, the Windows system can also oper-
ate inits enhanced mode, using both protected and
virtual processor modes. Enhanced mode atlows
the Windows system to fully utilize processor tea-
tures such as virtual memory and multiple virtual
machines. Virtual device drivers arc available only
in this cnbanced mode.

Basic Processor Operating Modes

All members of the 80x86 family. including the
803806 microprocessor. calculite add resses inmem-
ory by using a scgment register and an o offsct.
However, the method for calculating the physical
address varies, depending on the processor mode.
The basic processor operating modes are real mode,
protected mode, and virowal mode.

Real Mode This modc is used by the DOS operat-
ing system exclusively and by most DOS applica-
tions. The processor calculates physical addresses
by shifting the contents of i 10-bit scgment register
feft by 4 bits and adding a 16-bit offsct. Therclore,
only the first L megabyte (MB) plus 63,519 bytesof a
PCs physical memory are directly accessible in this
mode.

PATHWORKS: PC Integration Software

The basic layout of PC memory is shown in
Figure 1. The first megabyte of physical memory is
known as conventional memory. This arca may
include the PATHWORKS implementation of the
DLECnet transport protocol, namely the DECnet
Network Process component, as well as other mem-
ory-resident software. In addition, conventional
memory may contain the DOS opcrating system and
DOS applications. The next 65,519 bytes are called
the high memory area. Bank-switched memory,
known as expanded memory, may also be available.
In real mode, memory protection and virtual mem-
ory are not available, illegal instructions are gener-
ally ignored, and I/O instructions are always
allowed.

Protected Mode In this mode, a segment register
contains a selector. Part of the selector is an index
into a descriptor table maintained by the hardware.
A flag in the seclector indicates which of two
descriptor tables to use, the local descriptor table
or the global descriptor table. The processor adds

EXTENDED MEMORY

1088KB

HIGH MEMORY AREA

VIDEO MEMORY

EXPANDED MEMORY PAGE
FRAME

ADAPTER MEMORY

AVAILABLE

1024KB

640KB

CONVENTIONAL

DOS APPLICATION MEMORY

OTHER RESIDENT SOFTWARE

DECNET NETWORK PROCESS

DOS OPERATING SYSTEM

Figure 1 Basic PC Memory Layout

the offset to the linear address obtained from the
appropriate descriptor table. The 80386 implemen-
tation differs from that of the 80286 because the
803806 processor offers both 16- and 32-bit general
registers and offsets. whereas the 80286 processor
has 16-bit general registers and offscts.

In protected mode, if paging is disabled, the lin-
car address is the physical address. Iff paging is
cnabled, the lincar address is decoded into a page
directory entry, a page table entry, and an offset.
The page directory entry identifies a page table, and
the page table entry provides a physical address.

Protected mode is used by applications that use
DOS extenders to access memory beyond that
which is accessible from real mode. 80386 proces-
sors operating in protected mode may use virtual
memory. In this mode, an illegal instruction causes
a processor trap, and 1/0 instructions may be selec-
tively allowed or trapped.

Virtual Mode This mode implements a virtual
machine that emulates the behavior of an 8086
microprocessor. Address calculation in this mode
is similar to that in real mode, except that in vir-
tual mode the result of the shift-and-add opera-
tion is a linear address. The processor converts
this address to a physical address, as in protected
mode. Processors operating in virtual mode may
usc virtual memory. Also, each virtual machine can
have a separate page directory, an illegal instruc-
tion causcs a processor trap, and I/0 instructions
may be allowed or trapped.

Microsoft Windows Operating Modes
The Microsoft Windows environment supports sev-
eral operating modes.

Windows Real Mode Similar to previous versions
of the Windows system, Windows 3.0 can operate in
rcal modce, i.e., use conventional memory, expanded
memory, and the high memory area. This mode is
not supported in Windows 3.1.

Windows Standard Mode Windows 3.0 and 3.1 can
operate in standard mode on the 80286 or higher
microprocessor. This mode uses the protected
processor mode, but does not take advantage of
the 32-bit features of the 80386 processor. The
Windows system and Windows applications are
located outside conventional memory, except for
code necessary to provide the communication
links with DOS and other resident software.

48

Vol. 4 No. L Winter 1992 Digital Technical Journal

Microsoft Windows Network Virtual Device Drivers in PATHWORKS for DOS

Standard DOS applicatiens run in real mede and
eccupy the full screen, as if the Windews system
were net present. Switching between Windews
and nen-Windews applicatiens is accemplished by
perferming a sequence ef keystrekes in exactly the
same manner as under the MS-DOS versien 5.0 task
switcher. Virtual device drivers are net used in stan-
dard mede.

Windows Enhanced Mode In enhanced mede, the
Micreseft Windews system prevides each nen-
Windews applicatien a virtual machine in which te
eperate. These machines are preemptively multi-
tasked, se even cempute-beund, nen-Windews
applicatiens can run in the backgreund. The
Windews system and all Windews applicatiens
share a single virtual machine se they can cemmu-
nicate with each ether.

The Micreseft Windews system uses the pre-
tected and virtual medes of the 80386 precesser.
Paging is always enabled. The first 1MB plus 65,519
bytes ef the linear address space is mapped te the
first LMB plus 65,519 bytes of memery belenging te
the virtual machine currently executing. This map-
ping allews each DOS applicatien its ewn bleck ef
memery in which te run.

Seme data must be shared ameng the virtual
machines. Whenever all er mest of the data in a
page is shared, a glebal page is used. Mest resident
seftware that was leaded befere the Windews sys-
tem start-up is stered in glebal pages. Selected data
within these glebal pages may be maintained sepa-
ratcly fer each virtual machine. This practice is
called instancing and may be requested by the resi-
dent seftware.

Te suppert epcratiens requested by virtual
machines, virtual device drivers extend the
Micreseft Windews kernel. The drivers are leaded
at Windews initializatien and effectively beceme
part of the kernel.

The Micreseft Windews enhanced mede kernel
uses 32-bit registers and effscts. The segment regis-
ters are leaded with selecters that allew access te
all of memery when the kernel is eperating and
eliminate the need te break cede and data inte
6G4-kilebyte (KB) segments of memery. This mem-
ery medel is knewn as the flat medel.

Altheugh the Windews enhanced mede kernel is
written te use 32-bit registers and effsets, mest of
the remaining libraries supplied with the Windews
system and ncarly all applicatiens are written te
use 16-bit registers and eoffscts. The Windews appli-

catiens run in pretected mede, whereas virtual
mede prevides suppert fer the DOS applicatiens,
which need net even be aware that the Windews
envirenment exists.

Virtual Device Driver Capabilities

Virtual device drivers previde the means fer
Windews and DOS applicatiens te cemmunicate,
suppert asynchreneus eperatiens, virtualize hard-
ware perts and interrupts, and directly handle hard-
ware and seftware interrupts. These capabilities
are described in the fellewing sectien.

Communication between Protected-mode
and Real-mode Software Applications

A virtual device driver prevides a bridge betwceen
Windews applicatiens running in pretected mede
and DOS terminate and stay resident (I'SR) applica-
tiens written te run in real mede with ne knewl-
edge of pretected mede. A Windews applicatien
that calls an applicatien pregramming interface
(APD) passes it a valid pretected-mede address.
Witheut virtual device drivers, the real-medc seft-
ware weuld interpret this address as a real-mede
address, usually peinting te a lecatien within the
DOS epcrating system. A virtual device driver can
map the memery inte cenventienal memery and
change the addresscs se that the real-mede seft-
ware cerrectly accesses the caller's data. The vir-
tual device driver sheuld enter a critical sectien te
aveid task switching while calling real-mede seft-
ware that is net reentrant.

Communication between Transient DOS
Application Software and Global Resident
DOS Software

Mest DOS applicatien seftware and DOS TSR seft-
ware is net designed te run in the Micreseft
Windews envirenment. While executing, a DOS
applicatien is mapped inte cenventienal memery.
If the applicatien calls resident seftware, and a task
switch eccurs while an eperatien is in pregress,
data weuld be delivered te the wreng applicatien.

There are twe ways te handle this situatien. The
virtual device driver can enter a critical sectien te
disable task switching until the eperatien is cem-
plete. This appreach werks well fer synchreneus
epecratiens that never take a perceptibly leng time
te cemplete.

Hewever, the system dees net respend te mest
user input while the virtual device driver is in a

Digital Technical Journal Vol i No. | Winler 1992

PATHWORKS: PC Integration Software

critical section. Consequently, for long synchro-
nous operations, the end user of the application
may believe that the system is hung. If the real-
mode software supports asynchronous operations,
the virtual device driver can convert the operation
to an asynchronous call. Handling the situation in
this manner requires that a critical section be
entered only for the time it takes to queue the
call, and then only if the real-mode software is not
reentrant.

Support for Asynchbronous Operations
Asynchronous operations, whether in real or pro-
tected mode, require that the virtual device driver
be able to buffer data in a memory pool that is
mapped into every virtual machine. In addition, the
driver must set up a completion callback routine to
wake up the virtual machine that made the request,
deliver the data to that virtual machine, and trans-
fer control to a caller-specified callback routine, if
necessary.

Virtualization of Hardware Ports
and Interrupts

Another function of virtual device drivers is to vir-
tualize hardware ports and interrupts so that the
Windows system can successfully emulate several
8086-based machines at once. Each virtual machine
runs a DOS application that assumes it has sole use
of a machine. DOS is a minimal operating system
and does not provide much of the functionality
required by applications. Therefore, most DOS appli-
cations bypass the operating system except to
access the file system. It is common for an applica-
tion to set up its own interrupt handlers and to read
and write hardware ports. If several applications
in separate virtual machines were to attempt these
operations at the same time, the applications would
interfere with one other. A virtual device driver can
trap access to hardware 170 ports and regulate
access to the actual hardware.

Direct Handling of Hardware or Software
Interrupts

The virtual device driver can provide the function-
ality of real-mode software. If the user has no necd
to run this software outside the Windows environ-
ment, the software can be removed from memory.
Removing the real-mode software reduces the need
for context and mode switching, mapping, and copy-
ing, and thus offers a considerable performance

advantage. If the resident software is removed,
more memory is then available to DOS applications
running in the Windows environment.

Development Environment

The Microsoft Windows system includes virtual
device drivers. Microsoft also has a device driver
development kit specifically for developing virtual
device drivers.! This section describes the envi-
ronment for developing and debugging this driver
software.

Development Tools

Currently, virtual device drivers are written in
assembly language because higher-level language
compilers generally lack the ability to generate
code with 32-bit offsets and registers. A special
32-bit assembler and linker are provided with the
Microsoft Windows device driver development kit.

Debugging Tools

virtual device drivers are debugged using the
WDEB386 software module. This debug tool
requires that a terminal or equivalent be connected
to one of the communication ports on the PC; the
debugger performs its I/O to that communications
port. Symbols are available in the debugger, but
source-level debugging is not provided.

To take full advantage of the WDEB386 capabili-
ties, the debug version of the Microsoft Windows
WIN386.EXE module should be used. This version
contains many features essential for investigating
the behavior of the Windows system and, in par-
ticular, for debugging virtual device drivers. The
features include commands to display the registers,
the stack, and the control blocks for each virtual
machine. Many of the virtual device drivers
included with the Windows system, and the two
included in the PATHWORKS for DOS product, have a
debug entry point that may be invoked by entering
the period keyboard character, followed by the
name of the virtual device driver. Two particularly
useful debug entry points are .VMM and VEOMMGR,
which provide detailed information about memory
usage for each virtual machine, including the use of
expanded memory and the high memory area.
WDEB3806 can be used successfully in the Windows
environment to debug virtual device drivers and to
diagnose bugs in the read-only memory basic 1/0
system (ROM BIOS) and other resident real-mode
software.

Vol. 4 No. | Winter 1992 Digital Technical Journal

Microsoft Wirdotes NetteorR Virtaal Decice Diicers in PATIHIWORKS for DOY

The CodeView for Windows debug tool s
intended for debugging applications and dynamic
fink librarics, not for debugging virtual device
drivers. However, the CodeView and W DEBISGO tools
cun be used simultaneously o diagnosce problems
that occur when applications cause the Windows
svstem o fail.

The Network Virtual Device Drivers

The PATIIWORKS Tor DOS soltware provides two
AP for task-to-tisk network communications.
Onc isa DECHet socket-based interface. which usces
an argument block called an 170 control block
(o). The other is the industry-standard PC net-
working interfacce. NetBlOs, with some extensions
provided by Digital to supportwide area networks.
The NeBlos interface uses an argument block
called the NetB1os control block (NCB). Both inter-
faces are fully supported in Windows e¢nhanced
mode.

Digital s PATHWORKS for DOS version -kl includes
two virtual device drivers to support networking:
VDNET.A80, which handles DECncet socket calls.
and ANETBIOS A86. which handles NetBlos calls.
Although they support different APLs, these two vir-
tual device drivers are similar in structure. ‘The dis-
cussion in this scction applies to both drivers
unless otherwise noted These driversare included
with the current PATHWORKS version 11 prod-
uct and with Windows version A1 lo identily
Digital Equipment Corporation as the developer
ol the drivers, Microsoft cequested that the module
names VDNETAS6 and VNETBIOS. 386 be changed
to DECNETA86 and DECNB 3806, respectively, in
Windows version 310 In this paper. the nomencla-
ture VONET and VNETBIOS is usced to refer to these
two modules.

The drivers invoke the real-mode network soft-
wire in the virtual machine that requested the
operation. Creating a “network virtual machine”
to which the driver would route all network activ-
ity would have allowed most of the network soft-
wiare to be loaded into o single victual machine
andd thus frecd up conventional memory for non-
Windows applications. However, using this design
would have incurred the overhead of switching on
virtual machines for every network access, timer
tick. and network hardware interrupt. In addition,
creating a neowork virtual machine would have
required that the duta link laver and the DECnct
scheduler be capable of parforming the virtual
nuachine switch. Finally, this design would be prac-

Digital 1echuical fournal Vol 1 Noo I Winter 1992

tical only for thosc users who access the nct-
work exclusively while operating in o Microsoft
Windows environment,

Initialization

Virtual device drivers are called several times dur-
ing Windows initialization. While the Windows sys-
tem is still operating in rcal mode, the VONET and
VNETBIOS modules check to sce il the resident
network software is loaded. Wit is not. there is no
reason to load these drivers, A valuc is returned that
aborts the loading of the drivers but directs the
Windows svstem to continue loading.

After the Windows svstem enters protected
modle. the drivers are called again during each suc-
cessive phase of initialization. Euch virtual device
driver takes control ol the solftware interrupts uscd
forits respective APL rescrves space in the control
block of cach virtual machine. obtains pariimeters
from the SYSTEMLIND file. and allocates a pool of
global memory for communication with the real-
mode resident networking solfoware. Figure 2 illus-
trates qosvstem virtual machine and a virtaal
machine running a DOS applicition. The figure
shows the pool of conventional memory that the
virtual device driver allocates as global memory.

The drivers perform a “sanity check™ to verify
that the virtual device driver can distinguish global
memory from memory that is local to a single vir-
tual machine. Howcever, the Windows function to
perform this check can fail when running on some
common unsupported softwire configurations.
At this point. it the sanity check fails. the driver
displivs @ message 1o advise the user o exit the
Windows system

Virtualization of the Netiwoirk APls

When an application issuces asoftware interrupt for
A DECnet or NetBlos cally the appropriate virwal
device driver gains control If the application mak-
ing the caltisin protected mode, the virtual device
driver always maps the call in memory. Otherwise,
the driver software checks the control block ¢i.ce..
the 10CB or the NCB) and the buffer addresses to
determing if they are stored in global memory, i.c..
mapped identically in every virtual machine. If so.
the virtual device driver doces not map the call,
because it will exccute properly without mapping

AP Mapping 1t the control block wnd the buffer
addresses are not stored in global memory, map-
ping is necessary. The virtual device driver

g

PATHWORKS: PC Integration Softwarc

SYSTEM VIRTUAL MACHINE

|
|
I
I
l
|
|
l
|
|

VIRTUAL MACHINE
RUNNING A
DOS APPLICATION

| EXTENDED
WINDOWS APPLICATION MEMORY
VDNET.386 VIRTUAL DEVICE DRIVER
1088KB 1=
HIGH MEMORY AREA HIGH MEMORY AREA
1024KB
VIDEO MEMORY VIDEO MEMORY
EXPANDED MEMORY PAGE EXPANDED MEMORY PAGE
FRAME FRAME
ADAPTER MEMORY ADAPTER MEMORY
640KB
AVAILABLE AVAILABLE
DOS APPLICATION DOS APPLICATION
TOP OF CONVENTIONAL
GLOBAL L MEMORY
MEMORY u AVAILABLE HOOK
CONTROL BLOCKS
MAPPING AREA
OTHER RESIDENT SOFTWARE
DECNET NETWORK PROCESS
DOS OPERATING SYSTEM

Figure 2

allocates a hook control block to the operation.
This control block resides in global memory and
includes an 10CB or NCB, which the virtual device
driver passcs to the resident networking software.
The driver globally maps the caller's buffers in
the mapping-space pool allocated at initialization.
The TOCB or NCB embedded in the hook control
block contains addresses changed to point to the
remapped address in the mapping-space pool. The
callback (post) address is sct to the callback routine
in the virtual device driver, so the driver is called
when the operation is complete.

Optionally, if the operation is a blocking call that
takes a long time to complete, the virtual device
driver may convert the operation to an asynchro-
nous call. In this case, the driver sets an intcrnal
flag, HF_Suspend_Until_POST, and does not return
control to the calling application until the opera-

Microsoft Windows Initialization

tion is complete. All other virtual machines con-
tinue to run while the network 170 is in progress.
This design prevents the operation from monopo-
lizing the entire system.

Asynchronous Calls 1f the call is asynchronous or
has been converted to an asynchronous call, the vir-
tual device driver must establish a callback in order
to be notificd when the call completes. Because the
virtual device driver runs in protected mode and
the resident network runs in virtual mode, a spe-
cial type of callback is required. The virtual device
driver uses the Windows Allocate_v86_Callback
service to obtain a real-mode pointer to an instruc-
tion in global memory that causes a trap when exe-
cuted in virtual mode. The Windows system
handles this trap and transfers control to the virtual
devicedriverin protected mode.

52

Vol. 4 No. | Winter 1992 Digital Technical Journal

Microsoft Windotws NetworR Virtual Device Drieers in FATTIWOKRS for 105

lircoking the Nelwork Process The virtual device
driver is now preparcd to pass the call to the real-
modc ncetworking software. The driver enters @
critical section to avoid recentrance problems and
calls the Simulate_Reual-Mode_Interrupt service to
invoke the network process as il it were being
mvoked in real mode. The virtual device driver
leaves the eritical section when the simulated inter-
rupt rcturns. I the operation is not asynchronous,
the caller’s 10CB or NCB is updated. buffers are
unmappced. and the hook control block is freed.
Figure 3 shows a Microsoft Windows call to the
nctwork. intercepted by the virtual device driver
and passed 1o the network process.

Callback Routine "The device driver checks the

IE_Suspend_Until POST tlag to determine il the
call was a blocking call that the virtual device

SYSTEM VIRTUAL MACHINE

driver converted to an asynchronous call. I so.
control must not rcturn to the calling application
until the operation is complete. Normally, the call-
back routine in the driver is called at this time.
Howcever, certain NetBIOS crror couditions causce
the operation to return immediately without call-
ing the callhack routine. Thercfore. the NetBIOS vir-
tual device driver checks the status of the call.

If the call is still in progress, the cequesting vir-
tual machine retinquishes its allocated time and
retrics when the process wakes up. Fhis design pro-
tects the process from being awakencd pren-
turcly by another virtual device driver. Also. some
NCBLOS request crrors cause the NetBlos software
interrupt to return immediately and do not transfer
control to the callback routine. Ordinarily, the pro-
cess is only iwakencd by the callback coutine in the
virtual device driver oncompletion ol the call.

VIRTUAL MACHINE

| RUNNING A |
[DOS APPLICATION |
| |
| |
I l
WINDOWS APPLICATION -~ - - - - - |->--=» CcALLTO |
1
L THE
10 | caLLBACK | | NETWORK |
CONTROL |] |
BLOCK |—| BUFFER |
ARGUMENT o | : |
BLOCK T |
PASSED f T TTTT 77 e N et et +
CALLBACK va\.sse VIRTUAL DEVICE DRIVER
10BBKB :
1624KB HIGH MEMORY AREA Hl.GH MEMORY AREA
i VIDEO MEMORY VIDE® MEMORY
EXPANDED MEMORY PAGE EXPANDED MEMORY PAC.
FRAME FRAME
ADAPTER MEMORY APTER MEMORY
640KB
AVAILABLE Y AvaiLaBLE
1
DOS APPLICATION DSSWPPLICATION
1
TOP OF ;
GLOBAL |
MEMORY AVAILABLE HOOK | [ALLOCATED HOOK | !
| CONTROL BLOCKS | | CONTROL BLOCK [T
MAPPING AREA .
OTHER RESIDENT SOFTWARE!
Y
DECNET NETWORK PROCESS
DOS OPERATING SYSTEM

>

Figure 3

Digital Techuical Jowrnal Vil 1 Noo [Winter 1992

Invoking the Network Process

PATHWORKS: PC Integration Softwarc

The Suspend_VM service can be used to block a
virtual machine during such a call. Howcever, sus-
pending a virtual machine requires that the system
call every Windows virtual device driver to notify
it of the suspension. The notification process con-
stitutes a high-overhead opceration and is therefore
unsuitable for this use.

If the operation is asynchronous, the system
transfers control to the virtual device driver call-
back routine when the operation is complete, as
shown in Figurc 4. This routine calls the Windows
scheduler to wake up the virtual machine that
requested the operation. The Windows cvent ser-
vices are also called to invoke the event-handler
routine in the virtual device driver when the
requesting virtual machine is scheduled. In this
way, the virtual device driver regains control. This

SYSTEM VIRTUAL MACHINE

WINDOWS APPLICATION

l{e] 17| CALLBACK

process restores the caller's context before updat-
ing the caller's data.

As shown in Figurc 4. the event routine updates
the user's argument block and calls the user’s call-
back routinc. Finally, the virtual device driver
unmaps the buffers, frees up the hook control block,
and returns control to the calling application.

Virtual Machine Termination

When a virtual machine terminates, all virtual
device drivers are called to perform cleanup. The
network virtual device drivers check for outstand-
ing network operations to the virtual machine that
is being terminated. All such operations are can-
celed, and a warning message is displayed to the
user. Windows applications execute in the system
virtual machine, so their outstanding network

VIRTUAL MACHINE
RUNNING A
DOS APPLICATION

CONTROL |- >
BLOCK : BUFFER
|
A
:
CALLBACK |<=—— yDNET.386 VIRTUAL DEVICE DRIVER
1088KB *
HIGH MEMORY AREA HIGH MEMORY AREA
1024KB :
VIDEO MEMORY ! VIDEO MEMORY
EXPANDED MEMORY PAGE EXPANDED MEMORY PAGE
FRAME ! FRAME
ADAPTER MEMORY | ADAPTER MEMORY
640KB :
AVAILABLE 1 AVAILABLE
¥
DOS APPLICATIONI DOS APPLICATION
|
TOP OF :
GLOBAL L
MEMORY u AVAILABLE HOOK | I ___['ALLOCATED HOOK T
CONTROL BLOCKS | | CONTROL BLOCK
]
]

MAPPING AREA

OTHER RESIDENT SOFTWARE
DECNET NETWORK PROCESS

DOS OPERATING SYSTEM

Figure 4 Callback Routine

Vol. .t No. I Winter 1992 Digital Technical Journal

Microsoft Windodas NelweorR Virtual Device Dirieers in FATHWORRS for 105

operations. if anv. are canceled when the user exits
from the Windows system. Network operiations by
resident software are not canceled when w virtual
machine terminates,

Debugging Intry Points

The VDNET and VNETBIOS ncetwork virtual device
drivers provide debugging cntey points for usc by
the Windows kernel debugger. These entry points
give aformatted displayv of the hook control block
for cach hooked network call in progress. The
display includes the requested function. buffer
address, the handle of the virtual machine from
which the call was requested, the virtaal-muachine-
specific address of the caller's argument block, and
flags. The flags included in the debugging display
mdicate the state of the operation, as shown in
Table |

Special APty Poinl

The VDNET network virtual device driver provides
an APEentry point that allows application software
Lo determine what version of the VONET driver is
loaded This function is available to both protected-
modc and real-mode applications,

Summary

PATIIWORKS network virtual device drivers extend
the Microsoft Windows enhanced mode environ-
ment to o support most hardware that can be
installed in a personal computer These drivers
also support all software that can run under the
DOS opcerating system, including software that
bypasses the operiting svstem to access the hard-
wiare directlv. Network virtual device drivers make

Table 1

Flags Included in the Debugging Display

network services available to the Windows kerndl
to Windows and non-Windows applications. and
to other virtual device drivers. ‘Fhe virtual device
drivers included in the PATHIWORKS [or DOS soft-
wiare product permit full use of the DECncet and
NetBLOS APIs, including Digital-specific extensions
to the NetBloS interlace, in the Microsoft Windows
enhanced mode environment.,

Reference

Lo Microsoft Windows Decice Developnient Kit—
Virtual Device Adaptation Guide (Redmond.
AL Microsolt Corporation. 1990)

General References

litel 8O386 [laicdicare Reference Mcal (Santa
Clara. Ca: Intel Corporation, 1987)

lidel 8O386 Progranuers Reference Manual (Santa
Clara. €A Intel Corporation. 1987).

[nlel 8O3S6 Systent Writers Guide (Santa Clara, CA:
Intel Corporation, 1987).

Flag Indication

HF Wait For IRET
device driver.

HF_Wait_For POST

Cleared when the DECnet Network Process component returns to the virtual

Set if the virtual device driver callback is required; cleared when the virtual

device driver callback is called.

HF Wait For Sim POST
HF_POST _Crit

HF From_PM
HF_Canceled
HF_Canceling
HF_Suspend_Until_POST

Set if the caller requested callback; cleared when the caller’s callback returns.
Set while in a critical section.

Set if the caller was in protected mode.

Set if the operation was canceled.

Set if the operation is being canceled.

Set if the operation is a blocking call that is being simulated using an

asynchronous call. Do not return to caller until the operation is complete.

Digital Jechnical Journal Vol 1 Noo | Winter 1992

(i
N

Dennis G. Giokas
Andrew T. Leskowilz

eXcursion for Windows:
Integrating Two Windowing Systems

Digital’s eXcuwrsion for Windows display server is an application for Microsoft
Windews. The eXcursion for Windows product is based on the X Window System
and allows X client applications to displuy output, receive input, and exchange
data in the Microsoft Windows environment. The eXcursion software visually
integrates the X and Microsoft Windows environments—applications from both
enviromments display on a single screen and have the same appearance. 4 key com-
ponent of Network Applications Support (NAS) and Digitals PC integration pro-
gram, the eXcursion for Windows display server enables information exchange
among PCusers and non-Pc users linked throughout a network.

The eXcursion for Windows software is a display
server bascd on the X Window System version 11,
release 4 protocol and implemented as an appli-
cation for Microsoft Windows softwarc. ¢Xcursion
allows X11 client applications based on any X11
toolkit to display output and receive input in the
Microsoft Windows environment. The two window
environments are seamlessly integrated. Microsoft
Windows software provides the window manage-
ment for X Window System applications. The
eXcursion display server smoothly handles the dis-
play and user input for the X applications along
with data exchange between the applications.

This paper first establishes the relationship of the
eXcursion display server to the X Window System
and Microsoft Windows environments. It then pre-
sents the personal computing intcgration philoso-
phy behind the development of the c¢Xcursion
product. This paper then relates the design philoso-
phy and implementation architecture of the scrver.
It concludes with a discussion of resource usage.

Overview

The DECwindows architecture integrates the user
and graphical interfaces of the VMS, ULTRIX, and
DOS operating system and desktop environments.
The X Window System client-server architecturc,
on which the DECwindows system is bascd,
provides the means to achieve this integration.
The X architecture, as implemented by Digital's
DECwindows Motit program, is shown in Figures 1

and 2. This architecturce is hardware and software
system independent. It allows X applications, or
clients, to execute on any processor and display on
any devicc in a distributed network.

X applications are linked with toolkits and
libraries that include windowing controls, user inter-
face objects, and graphics capabilities. The X tool-
kits also include interprocess communications
capabilities that provide data interchange between
the application clients. Figure 2 presents some of
the libraries in the DECwindows environment.

These applications communicate with an X Win-
dow System display scrver over a network through
the X protocol. The X protocol is independent of

VMS ULTRIX
HOST HOST

NETWORK
Figure | X Applications Running on Reinote

Nodves and Displayed on « PC

Vol.« No. | Winter 1992 Digital Technical Journal

eXcursion for Windowes: hilegrating Lo Windowing Systenis

APPLICATION
OTHER
GRAPHICS AND
LTOOLKI LIBRARIES | EXTENSION
LIBRARIES
MOTIF TOOLKIT - PEX CLIENT
- - POSTSCRIPT
XT (INTRINSICS) - IMAGING
| XLIB
I TRANSPORT MECHANISM |
X11 PROTOCOL
| TRANSPORT MECHANISM |
EXTENSIONS
- PEX
X SERVER KERNEL - POSTSCRIPT | SERVER
- IMAGING

Lignre 2 X Client-Server Archilectiie

opcrating system, nctwork transport, and nctwork
wiring technology and topology. The display server
provides basic windowing, graphics rendering, and
uscrinput services for X applications.,

eXcursion Implementation
The eXcursion application implements the X Win-
dow Svstem display server on Microsoft Windows
The eXcursion softwarce allows the windows of the
X applications, running on a remote host, to dis-
play on a personal computer. The two environ-
ments are visually integrated—applications from
both ¢nvitonments display on a single screen and
have the same visual appearance. The two environ-
ments use the same mechanisms to manage win-
dows and thus present a consistent user interface.
In addition, eXcursion uscs metaphors and mecha-
nisms familiac to the user of Windows. A control
pancl is cmployed to handle configuration and
customization of the eXcursion application. The
Windows Program Manager is emploved to trans-
parently invokce applications on remote Dosts.
Figure 3 shows the eXcursion control pancl. the
Windows calendar, and the DECwindows Motit cal-
endar as viewed on a desktop device. The Windows
Program Managcer is also displaved to show the
cXcursion program group with icons installed.
Users can simply double click the icons in the pro-
gram group to start applications on a remote host.

Digital 1echnical Jowrnal Vol @ No | Winter 1992

eXcursion—A Component of PC
Integration

One of the goals of Digital's PC integration program
is to integriate PCs throughout a network so they
may share resources. Ina local arca network (TLAN)
or a wide area network (WAN), PCs sharc files and
printers through a file server. Traditionally, Digital
has provided terminal emulation softwarce for
interaction with a time-sharing svstem on the net-
work. The X Window Svstem distributes another
resource load throughout the network, namcly
application services. X applications canberunona
special-purpose host, such as a CRAY system, or on
a general-purposc host such as a VAX system. The
applications share the CPU, memory, disk, and print
resources of that host. Thus, the optimal or appro-
priate device can provide the application services.
The eXcursion product is an X display server
through which the PC user can access the X Win-
dow System class of application.

Because it enables information exchange among
PC users and non-PC users throughout a network,
the eXcursion software is a key component of
Digital's Network Applications Support (NAS) and
Digital's PC integration program in the Personal
Computing Systems Group.

Design Philosophy

As in any software development project, a number
of very important design goals and decisions were
established for the eXcursion for Windows product
which affected the implementation. The eXcursion
application had to be extremely compatible with
the Microsoft Windows environment. There were
important reasons for this decision.

First, it was critical thateXcursion run onany PC,
with any combination of devices that the standard
Microsoft Windows c¢nvironment supports. Typi-
cally, the manufacturer that builds the hardware is
responsible for writing the Windows-compatible
drivers. The devices that most affect eXcursion are
keyboard, pointing device, and display.

Sceond, a tremendous amount of development
cffort has been invested in the functionality and
pecformance of the Windows product. We wanted
to apply that functionality and not duplicate it in
the X server. For example, Windows software has a
hit block transter (BitBIt) routine that can more
effectively handle that opcration than eXcursion.
It is one of the operations that Microsoft has opti-
mized. In addition, it is one of the operations that

PATHWORKS: PC Integration Software

(5 s D
Ligure 5

can be custemized and eptimized fer the PC’s graph-
ics adapter. If the graphics adapter can handle
BitBlt eperatiens with built-in hardware, it is mere
likely that the eperatien can be pcrfermed faster
with that hardware than with the CPU. Therefere,
eXcursien is cempletely insulated frem the hard-
ware and benefits frem functiens that have been
eptimizcd fer specialized hardware.

The third reasen for develeping cXcursien as a
well-behaved Windews applicatien is indepcn-
dence frem the internals of the underlying windew-
ing system. We might have becn ablc te de a slightly
better job ef integration of the Microsoft Windews
and X Windew System envirenments if we had
ebtained a seurce cedc license from Micreseft and
truly blended the twe envirenments inte enc. How-
ever, the cest, develepment reseurces, and time
needed te implement this typc ef intcgratien were
prehibitive.

Feurth, the eXcursien application had to share
the PC systemreseurces of display. peinting device
(meuse), kevboard, sound subsystem, memery, and

85 CORIIon N 3 2<Jcalendar: USERT{GIOKASIDECWSCALENDAR FILED ~ =~
Settings Application Help
— — File Edit Link View Entry Options Help
R & A N = = .
Wednesday the 12th of February, 1992
a Message Log Fant Access
) 30 i
=) =) i} 9:00
Eeytoard Mouse Password Session 30
' i (et @ “Receve @ 10:00 g“g“Meellng with Joe | J
Ee— — i 30
Program Manager |- 11:00
| File Options Window Help 30>
=-[eXcursion 12:00 |
g & 4 = = =
Filées Notss LTRI Calanid =] Calendar - (untitled) BB
. File Edit View Show Alarm QOptions Help
g) ﬁ L 2:24 PM EIE Wednesday, February 12, 1992
ULTRE Mall ULTRE Paim ULTRE Mote — . : ;,
a1l g) 9:00 AM i
10:00 Mectingwith Joe
Iaen 11:00
axgis et O = 12:00 PM
: et 1:00
2:00
J:00
4:.00
5:00
6:00 -

Windows Display with eXcursion

netwerk with anether windewing system and its
applicatiens. The first five reseurces were all ewned
and managed by Micreseft Windews. We had te usc
its applicatien pregramming interfaces (APIS) to
cerrcctly share these reseurces. The netwerk
reseurce was shared ameng many netwerked appli-
catiens threugh its APIs as well.

Use of Windows Resources

A substantial portien ef the design debate centered
en the way eXcursien weuld use the Micreseft
Windews rcseurces. We needed te determine hew
te map the windews, graphics centexts, fents, and
celer maps of the X envirenment te the windews,
device centexts, fents, and celer maps ef the
Micreseft Windews cnvirenment.

The majer dilcmma was: Sheuld each X windew
be created as a Micreseft Windews windew and
thus be knewn to beth envirenments? Or sheuld
enly the top-level X windews—these which were
parented by the Windews desktep er reet win-
dew—Dbe created as windews in the Microseft

Vol 4 No. 1 Winter 1992 Digital Technical Journal

eXcursion for Windows: Integrating Toeo Windowing Systenis

Windows cnvitonment, with all other windows
created strictly as X windows and known only to
eXcursion?

The first proposal was certainly casy to imple-
ment and it led to consistency throughout the
X scerver. The Windows environment had an APJ
rich cnough to make this plan feasible. In addition,
Windows would handle all the window stacking
and clipping for eXcursion fairly transparently.
Despite these reasons. the alternative plan was
proven more workable duting our prototyping
phasc.

The X Window System was designed to cmploy
many windows since they are considered to be
inexpensive resources.” Servers use tirtle memory
for cach window. X windows arc tast 1o create,
map, unmap, and dostrov: and they can navigate
quickly through the window tree. Thus, X-based
toolkits, such as Motif, employ many windows.
Whenwe tested our initial proposal, we discovered
that both windowing svstems maintained window
trees, which resulted in a performance problem.
For exauple, when certain operations such as
graphics were performed, some of the clipping
was done twice, once by eXcursion and once
by Microsoft Windows. In addition, Microsoft
Windows limited the number of windows that
could be created, by the 64 kilobyte (KB) memory it
reserved for these and other svstem resougces.

Functionally the X Window System graphics con-
texts (GEs) mapped taidy well 1o the Microsoft
Windows device contexts (DCs). TTowever, the way
Noapplications emplov GCs is signiticantly differ-
cnt from the way Microsoft Windows employvs DCs.
X applications store nmuany GCso cach is sctoup
uniquely with different values forthe draswing state
variubles. Sometimes many GCs are usced for one
window and often a different GC is used for cach
window. The use of many GCs can sigimicantly
reduce the communication between the X server
and application. since graphics state is communi-
cated only once. Microsoft Windows applications
usc one DC for Wl window painting. modifving itas
necded. Some innovative caching agorithms in the
eXcursion product were used to address this mis-
match m usage style.

Font resources were also ctficienthy mapped
between the two windowing cenvironments. A
substantial portion of the graphics donce by an
application in a windowing cnvironment is text.
Microsoft rccognizes this and optimized the text
output routines in Windows. Thus, the optimal

way of drawing text was through Windows. There-
fore, the X server's font resources were compiled
into Windows-compatible font filc resources so
Windows could do all the text drawing. For cach
X font resource, we included a second file for the
font and glyph mctrics that did not map to the
Windows font file resource. Some of the eXcursion
font file resources were modified to resolve incon-
sistencies between the two environments and
make ¢Ncursion compatible with Windows. For
example, unlike X, Windows docs not alfow text
drawing outside the characters” bounding box.

Color maps are another resource Windows
shares with eXcursion. Microsoft Windows version
3.0 with standard video graphics array (VGA) hard-
ware (a0 640 by 480 resolution device with 16 colors
supported) pre-alfocates all 16 colors in the color
tahle for the Windows environment. For eXcursion,
this is effectively the X Window Svsten static color
visual, where the color map is read-only. With
enhanced VGA cards that support 256 simultaneous
colors, Windows pre-allocates 20 cntries in the
color tuble. For eXcursion, the X Window System's
pseudocolor visual can be supported with only
236 entries for allocation in the color table. Again,
it was important that eXcursion was well behaved
with respect to color-map allocation and use
within the Windows cnvironment.

Performance Considerations
Performance of the eXcursion product is a continu-
ing arca of concern, investigation, and develop-
ment. Many performance concerns were remedied
by efficient code paths and innovative algorithms:
others necd to be addressed by the user in the form
of trade-offs, In this section we discuss some major
architectural ditferences between Microsoft Win-
dows and the X Window System that leave X perfor-
mance at a4 disadvantage when it is layvered on
another windowing system

First and foremost. ¢Xcursion has to translate
X requests into Windows APLs as well as translate
Windows events, APLreturn values, and APL crrors
into X events, Xrequest replies, and X request error
events. respectively The disadvantage. of coursce, is
the increased processing time eXcursion necds to
complete these translation tasks. Since our design
gol wias to layer a forcign window system on the
desktop deviee's native windowing, svstem, we had
to accept this performance penalty.

Sceond, X cmplovs a clicnt-scrver model. All
X protocol requests of the X client (X application)

Digital Techuical Journal Vol 1 No. [Winter 1992

59

PATHWORKS: PC Integration Software

to the X display server have to be encoded into the
X protocol and transmitted to the scrver through an
interprocess communication mechanism. For the
¢Xcursion product, this mechanism is a nctwork
because the client and scerver are always on differ-
ent systems. Operations in X, e.g., menu sweeping
and resizing of objects, always involve both the
client and the server. These operations in particu-
lar have to be fastbecause they affect the user's per-
ception of the windowing system’s performance.
Thus these code paths had to be efticient.

Third, X has strict pixelization rules. Thesc rules
determine which pixcls must be included in the
rendering of a graphics object. In genceral, all the
interior points of an object are rendered, but only
certain points on the outer boundary of the object
are renderced. If the area of the pixel below and to
the right of the center point is touched, then the
pixel is included; otherwisc it is not.? Thus, a rect-
angle has its top and left edges included, but not its
right and bottom edges. The pixclization rules for
the X protocol were strictly specitied to satisfy the
technical market’s graphics requirements, such as
CAD/CAM. If one were to tessellate polygons in the
X environment, one would be guaranteed that cach
pixelisincluded once and only once.

The Microsoft Windows environment was
designed with a business graphics presentation
model. The pixelization rules are not widely known
and may change.

Based on these facts, we chose to adhere to the
X protocol and its pixclization rules. We believed
most users would run office productivity applica-
tions. For these applications, pixcelization rules do
not affect the opceration or functionality of the
application. In a majority of cases, the uscr is never
able to sce the subtle diffcrences in the rendering
of a graphics object. As part of ¢Xcursion’s cus-
tomization, we allow the user to select the way
graphics are rendered—optimized for performance
or optimized for correctness. This choice is analo-
gous to printing draft (fast) mode for proof copics
or letter-quality, high-resolution mode (high qual-
ity but slow speed) for final copy. The user can
change this parameter at any time in eXcursion
and force a redraw by the X application, e.g.,
through an iconify/dciconify procedure, to render
the graphics in the other mode.

Seamless Integration
One of our design goals was the seamless integra-
tion of eXcursion into the Microsoft Windows

environment to the greatest extent possible. Two
important areas to integrate were window manage-
ment and data exchange.

Window Management We believed that Micro-
soft Windows should provide window management.
Top-level windows in the two environments are
pecrs and should be visually and functionally iden-
tical. With this capability the user docs not have to
run a remote window manager or learn and remem-
bera second user interface.

We wanted the outer frame of the windows in
X to look like the windows in Microsoft Windows.
Furthermore, we wanted Windows to provide all
of the end-user window management functional-
ity—move, resize, iconify, deiconify, stacking, and
focus. The windows for these operations had to con-
tain the same user interface objects found in the
Microsoft Windows environment. We did violate
this design principle in one case. In place of the stan-
dard Microsoft Windows system menu icon in the
upper left corner of the window frame, we placed
an “X” (see Figure 3). This object visually cued the
user that the window represented an X Window
System application running remotely but display-
ing within the Microsoft Windows environment.

On the other hand, X servers are not aware if the
graphics object being rendered is a component of
a scroll bar, command button, radio button, check
box, text entry field, etc. For this reason, eXcursion
cannot make graphics objects look like and func-
tion as the equivalent objects in the Microsoft
Windows environment. Unfortunately, the user has
to deal with these inconsistencies between the two
windowing environments.

The eXcursion product had to conform to
the X Consortium’s Inter-Client Communications
Conventions Manual (JCCCM) specification for win-
dow management within the Windows environ-
ment. Window properties such as name, icon
name, size. and position on a top-level window
must be recognized by eXcursion and must be set
using the appropriate Microsoft Windows APIs.*

Data Exchange We belicved users should be able
to seamlessly exchange text and bit-map data
between the Microsoft Windows and X Window
System environments. For example, the user should
be able to use the standard application mechan-
isms to sclect data and cut or copy it from one
environment, move to an application in the other
environment, and use the standard application

60

Vol. 4 No. L Winter 1992 Digital Technical Journal

eXcursion for Windows: integraling Lwwo Windowing Systems

mechanisms to paste the data. No special user inter-
vention between these two operations would be
acceptable.

To enhance the data integration capabilities of
eXcursion, we did implement a special feature to
capturc any part of an X window as bit-map data
and save it in the Microsoft Windows clipboard.
Microsoft Windows applications could then paste
that data.

Cross-cultural Compatibility

cXcursion functions as any other Microsoft Win-
dows application and conforms to its stvle guide in
three arcas—installation, configuration, and help.

The installation design principles are quite sim-
ple. Installation has to be performed through a
Microsoft Windows application and has to allow
the user to run the initial application without fur-
ther configuration. Only two configuration param-
eters. fonts and keyboard, must be specified by
the user. Inaddition, a uscr in the VMS, ULTRIN, or
Sun OpenWindows environment has casy access
to the standard applications of the operating sys-
tem. The installation procedure installs icons that
represent all of the standard DECwindows applica-
tions for the VMS and CLTRIX systems and standard
Sun OpenWindows applications in the Microsoft
Windows Program Manager. A user can invoke the
application on the remote host using the stan-
dard Program Manager mechanisms, such as a dou-
ble click of the program icon with the pointing
device.

W devored significant cogineering resources
to the configuration for eXcursion: Since the con-
Bguration was for a windowing covironment, we
decided to use the control pancl metaphor that
is common to other windowing environments,
such as the Macintosh and Microsoft Windows.
The eXcursion control pancl (partially shown in

Figure 3), provides access toall the user preference
features and configuration parameters. Another
important design principle was the immediate acti-
vation of configuration parameters or uscr prefer-
cnce features whenever it was technically feasible.
We did not want the user to exit all the X applica-
tions or restart the X server to activate configura-
tion parancters.

The eXcursion control pancl also allows users
to customize their X application environments. The
eXcursion control pancl provides a mechanism to
build an applications menu within the control
panel and install application start-up commands in
the Microsoft Windows Program Manager as icons
forcasy invocation of remote applications.

On-line help also conforms to the Windows stylc
guide. Our design goal was to supply a concise
Quick Start card with all the information a user
needed to determine the prerequisites for install,
install the product. and invoke the first application.
All of the remaining end-user documentation is
available on line. The only other printed documen-
tation is the reference manual.

For install. configuration, and help. human fac-
tors engineers provided usability evaluations, and a
graphics designer assisted in the final design of the
user interface.

X Server Internal Architectitre

The X11 release 4 MIT sample server implementa-
tion provided the bascline for our development
cffort. This architecturc is depicted in Figure 4. The
sample server architecture has three distinct lavers:
device-independent X (DIX), operating system (OS),
and device-dependent X (DDX). The DIX laver is pri-
marily concerned with high-level decision making.
The Os laver connects the X server to its underlying
actwork transport. The DDX layver translates a
client’s request into a pixel display. To conform to

X SERVER
APPLICATION DEVICE-INDEPENDENT X

WINDOWS MESSAGE PROCESSING

i OPERATING SYSTEM

DEVICE-DEPENDENT X

WINDOWS USER. GRAPHICS

DEVICE INTERFACE. AND KERNEL

DECNET
MS-DOS | (TOX
CLIENT)

MS-WINDOWS DEVICE DRIVERS

ligure 4

Digital Technical Journal Vol i Noo | Winter 1992

eXcursion X Server Interincel Architectiire

0l

PATHWORKS: PC Integration Software

the Windows application model, our implemen-
tation adds a fourth layer, the Windows message
processing layer.

Device-independent X

The DIX layer consists of modules that provide
high-level server data structure manipulation,
X request vectoring, and server task scheduling.
Every attempt was made during the development
process to change as little as possible in this layer,
and to maintain the firewall between the DIX layer
and the underlying DDX layer. The DIX layer’s most
important task is the dispatch loop, the scheduler
for eXcursion processing of all asynchronous client
requests. Requests fall into three categories:

1. Edits to internal data structures such as the cur-
rent procedure vector for drawing wide, dashed
lines

2. Queries on internal resources such as available
fonts and their metrics

3. Drawing requests such as rendering of text and
lines

The DIX layer maintains the current state of the
window tree and all its compronents, as well as the
graphics contexts and all of their associated data.
DIX code dynamically alters the processing paths
chosen for X request completion based on the
current states of these data structures. For exam-
ple, suppose that a GCis being used to draw a series
of single-width, solid lines in a window. Now the
X client wishes to begin drawing with 10-pixel-
wide, tile-filled lines. DIX then reads the client
requests dealing with the GC state changes, and
updates its data to reflect the new drawing condi-
tions for lines. DIX changes the drawing vector and
updates the GC data structure. (Device-specific
drawing operations are performed in the DDX layer.)

Windows Message Processing

The Windows message processing layer is the inter-
face to the user’s input devices, the mouse and key-
board. Actions taken by a user result in Windows
messages containing information on the message
type, conditions, and parameters being sent to the
application’s Windows message procedure. Here
the data must be modified and translated into some-
thing that an X client can understand, an X c¢vent.
Event processing is done by the DIX laycr, and the
event data is then shipped to the client by the OS
layer.

Operating System

Data transferred on the X wire is arbitrated in
the OS layer. When an X client application makes a
server request, the underlying network code
receivesit, packages it, and makesitavailable to the
Os layer. The eXcursion product runs layered above
one of two entirely distinct network transports
(either the DECnet or the TC/IP protocol) and must
provide some mechanismfor passing data back and
forth between the real mode of the network inter-
face and the protected mode of a Windows applica-
tion. For this reason, we chose to interface the
server to the network by means of a generic OS
module. Since all server-generated calls are now
network-independent, the server is freed from any
network-specific decisions.

Data conversions from real mode to protected
mode are provided by a group of Windows dynamic
link libraries (DLLs). Functions in DLLs are called
directly from a Windows application (in this
case, eXcursion). The DLLs in turn use Windows’
extended memory manager to make DOS protected
mode interface (DPMI) calls to pass the data to the
network stack which runs in real mode. For exam-
ple, assume eXcursion is running the TCP/IP proto-
col, and the user presses a mouse button in an
eXcursion window. The data comprising the
X event is assembled, packaged, and presented to
the OS layer for shipment to the remote X client.
The server makes its “send data” call into the
generic OS module. This module makes a call into
a common, shared DLL, and passes the data
unchanged. The generic DLL acts as the network
arbitrator. It knows about the underlying net-
work transport and vendor since it performed
a network installation check at start-up. There-
fore, the generic DLL calls into the vendor-specific
eXcursion DLL to modify the data, pack it into the
format required by the network stack, and ship it
to the real mode stack.

This implementation strategy requires several
DLLs, but it completely shields the server, and more
importantly the user, from the underlying network.
The DLLsare simply copied once into the eXcursion
execution path and forgotten. There is no need to
reconfigure eXcursion if the underlying network
changes.

Device-dependent X

All the visually recognizable work takes place in the
DDX layer. DDX translates a client’s X request into
pixel manipulation on the screen. The sample

62

Vol. 4 No. | Winter 1992 Digital Technical Journal

eXcursion for Windows: itegrating lwo Windowing

g Systenis

server implementation that provided our starting
point came with a DDN laver designed for mono-
chrome frame buffer (MEB) devices. We replaced
the MFB device-specific code in the DDX layer with
implementation-specific code for Windows.

Our bascline sample scrver implementation also
provided a machine-independent DDNX mechanism
(MD). The Mt modules manipulate the video termi-
nal as a virtual device: video memory is emulated
and all drawing opcerations take place into this vir-
tual space until the final output renders the bits
onto the screen. The MI manipulates bits and per-
forms logical opcrations until it achicves a final rep-
resentation ol the requested operation. This final
drawing requires two distinet functions: fill spans
and push pixcls. The fill spans function renders
output in single making
cepeated calls o Windows BitBlt. The push pixcels
function docs much the same thing. but at a more

drawing scan lines,

complex level—it pushes bits through a mask or
filtcr before they appear on the screen. These
mechanisms are required for proper text rendition
when tile or stippled filled text characters are
requested with unaltered character outlines and
backgrounds. These mechanisms are. by definition,
clumsy and inctticient, but they provide pixel per-
fect renditions. eXcursion usces these MI functions
when any of the following conditions must be met.

L. Drawings arc complex filled arcas.

2. Tile and stipples used are not 8 by 8 pixels in
size. (Windows is optimized to handle this one
case. and breaks down casily for all other sizes.)

Y

All operations require pixel pertection, such as
displiy of @ CAD application.

if (gc.lineWwidth == 0)
switch (gc.lineStyle)

{
case Solid:

case OnOffDash:

else
switch (gc.lineStyle)
{

case Solid:

case OnOffDash:

Figure 5

{
{

Using Windows APIs
We designed o set of Windows-specific modules
that filled the bardware-dependent space provided
by MEB. These functions are called by the DIX laver's
request dispatcher through the request vectors set
up in the server's main data structures (screen, win-
dow, GCosee Figure 5 for examples). All N relative
dritwing requests are translated here into Windows
operations, and Windows APlls are called to satisty
them

As described previously, we decided to match
window trees by creating a Windows window for
each top-level X window only, X child windows are
handled as it they are rectangulur arcas of their
parents, thereby saving room in the finite (64KB
total size) pool of Windows resources available for
other objects. This decision led to a difficult prob-
lem that necded a solution: How do we handle win-
dow clipping?

Window Llipping

Clipping is accomplished in X by maintaining a list,
for each window in the system, of the rectangles
into which drawing is allowced. Clipping in Windows
is accomplished essentially the same way, but
it requires allocation of another resource, a region
We implemented clipping by adhering to the
X model. letting the server code do as much of the
work as possible.

The DIX code manipulates and maintains a “clip
list™ foreach X window. When a Windows window
is created and uscd, Windows expects this clipping
information to reside in the window's DC it some-
thing is to be drawn in the window. To get the X clip
listinto the Windows DC. we allocated a small pool

ec.line
break;
gc.line
break;

gc.line
break;
gc.line
break;

Digital Technical Journal Vol 4 No. | Winler 1992

GPXZeroLineSolid;

GPXZeroLineDashed;

GPXWidelLineSolid,

GPXWidelLinrDashed;

Modifying Data Strictures to Change Drawing Algorithins

PATHWORKS: PC Integration Software

of cached Windows regions. A DC (and X parallel GC)
used for a drawing opcration must be validated to
cnsure that all components are up-to-date. If the
DC does not have a copy of the clip list, a Windows
region is built from the rectangles in the X clip list
and installed as the clipping region of the DC. When
the drawing takes place, the clip list is installed.
As long as the window is not moved, resized, or
obscured, the region remains unchanged and fur-
ther region validation is unnecessary. When the
number of visible windows exceeds the cache lim-
its, the least recently used DC is “thrown eut™ of the
cache, and must be revalidated if it is uscd again.
This mcchanism allows smooth, efficient output
to multiple windows without extensive use of
Windews precious regien resources.

Windows places a further restriction on resource
usage. In addition to being created, a reseurce must
be selected into a DC before it can be used.
Deselected, old resources are deleted to save space.
If a request asks for one of the deleted resources, it
must be re-created and selected again. The caching
and updating ef DCs in Windows is handlcd by the
same function that validates and refreshes GCs in X
When an X request results in a GC change. it may
also result in a DC change. For example, if the line
drawing mode changes from single-pixel-wide,
solid fill to multiple-pixel-wide, tile fill, the GC is
updated with new procedure vectors and data
fields. At the same time, the DC must be updated so
the next line drawing request results in a wide, tile-
filled line. A Windows bit map is created fer the
X tile, and it is sclected into the DC as the pattern.
Any line then drawn using the DC results in a wide,
tile fill. This methed is used to update the DC when-
ever any GC object with a parallel Windows ebject
is changed. The cache ensures that Windows
objects can be allocated.

Drawing APIs

The Windows environment contains a rich collec-
tion of APIs designed to accomplish many types of
drawing. The eXcursien application takes full
advantage of these drawing APIs. Wherever X and
Windows share drawing rules and conditions, the
appropriate Windows API is called quickly to maxi-
mize performance. This mechanism is utilized
when the user selects the “optimized for perfor-
mance” drawing mode. When the rules between
X and Windows differ, eXcursion calls the most
appropriate API for the more common variants,
again, to maximize performance. For ¢xample,

since a wide, solid, horizontal line is rectangular,
eXcursion calls the Windows FilIRect APl to draw it.
Only rarely is the MI code path required.

Pixmap Manipulation

The X pixmap presented us with a major challenge.
Since it is a bitwisc representation of a visual
object, its bit values must be maintained regardless
ofits use. Pixmaps can be used in a variety of ways
by complex X client applications. Pixmaps can hold
off-screen cepies of window contents, or they
can hold a pattern for a window background. They
can provide a mask through which a color or pat-
tern can be squeezed to give a stencil-like filling
effect. They can also contain text characters prior
to output.

The real challenge, however, lies in how pixmaps
are manipulated. There are monochrome pixmaps,
color pixmaps, pixmaps presented as an array of
bits one color plane at a time, or packed te present
each color plane for one pixel in succession. For
these myriad forms and prescntations we created a
set of pixmap manipulation routines that translate
back and forth betwcen X and Windows. Since
Windows provides a set of APIs for manipulating
device-independent bit maps (DIBs), we stored the
bit map internally in one, generic form regardless
of its X representation. eXcursion extracts the bits,
modifies them, and sends them to the client when it
requests them in another format. One of the biggest
perfermance bottlenecks in eXcursion lies in the
pixmap format convcersions which are constantly
taking place under the surface. Since we have
stored all pixmaps in device-independent format,
the performance penaltyislow.

Font Compiler

The X and Windows environments include a sec-
tion dedicated to information about the font met-
rics and a section for the character bit maps.
However, their font storage methods are different.
Furthermere, since eXcursion is a compatible
Windews applicatien, it uses Windews fonts to
draw text.

We designed a font compiler to create Windows-
usable fonts from an X font file input. The font com-
piler takes a bit-map distributien fermat (.BDF)
(X Window System font files are supplicd in this
ASCII readable format) and produces two eutput
files. One, called the X font file (. XFN), centains the
X metrics readable by the server witheut having to
load the character bit maps themsclves. The other,

64

Vol.4 No. I Winter 1992 Digital Technical Journal

eXcursion for Windows: Iitegrating Iwo Windowing Systens

A Windows font file (FON), contains the character
elyphs uscd by the Windows APIs. ¢Xcursion’s
X-specitic code uses the XEN file to match avail-
able fonts with those requested, and to calculate
string sizes, positions, character oftsets, ascents,
descents, and anything clse related to the location
and position of the characters. The (FON fle is
loaded as a Windows resource. selected into a DC
as desceribed above. and used for any drawing oper-
ations since it contains the actual character repre-
sentations ‘The font compiler can gencriate custom
fonts: any font compiled with it produces a
Windows font file suitable for use in any other. non-
X, Windows application. For cxample. any of the
supplied eXcursion fonts could be used with Word
for Windows.

Handling Input Devices

In the scection Scamiless Integration, we described
our design strategy for eXcursion to handle draw-
ing requests from X clients. In this scection we dis-
cuss requests from the user.

When a user clicks a mouse button, or moves the
mousc. or types on the keyboard. Windows gener-
ates messages which are shipped to eXcursion's
Window message processing function. Interrupt
processing is not needed since Windows shields
excursion {rom the underlying hardware. In fact,
cXcursion has generic input handlers that work
with any hardware configuration supported by
Windows,

The message processor translates the data into
aformat understood by X, then packages and trans-
mits it over the Xowire as an N event. Since thesc
user-initiated actions are asvnchronous events,
eXxcursion calls the Windows PeckMessage() func-
tion when it has finished processing an X request,
orwhen itis in the idle Toop.

Windows and X sharce the same coordinate
mapping conventions. When eXcursion reccives
4 mousce move message. it does not perform trans-
lations on the v and p coordinates; it merely
reports in which window the pointer resides.
FFurthermorce. when eXcursion creates a window in
Windows, it storces the corresponding Xowin-
dow’s handle in the extra data arca of the Windows
window structure. Tt can retrieve the handle of a
matching X window at any time with the Windows
APL GetWindowlong(). Since eXcursion always
matches a Windows window to a top-level X win-
dow, the combination of the top-level window
handle and the v and) coordinates of the pointer

Digital Technical fowrnal Vol 1 No. | Winter 1992

allows eXcursion to scan the X window tree and
determine which child window holds the pointer.

When a user presses @ mouse button, the same
kind of activity is used to determine which window
contains the pointer. The X event data structure is
filled inand shipped to the client for further action.

When a user presses a kev on the keybouard,
much the same processing takes place. Windows
sends eXcursion all the information needed to
build an event data structure containing the kev
state, the scan code of the key, and the kev modifier
state (whether Ale, Cerll or Shift is depressed).
eXcursion then packages and ships the data seruc-
turc to the client application.

eXcursion loads a kevsym file at start-up. The ble
contains the kevboard mapping of hardware scin
codesto kevsym detmitions for the user’s kevboard.
It permits custom configuration for a user's key-
board. The keysym compiler in eXcursion takes an
ASCIT text. kevboard mapping tile as its input, and
produces a binary kevsvm file as its output. Aslong
as the uscer follows the lavout of the input ASCH file,
any key can be remapped in any way desired.

Meanipulating Application Window's

As stated previously, eXcursion uses the Microsoft
Windows window managcer to manage and manipu-
late windows. Whenever the user moves, resiecs,
iconities, maximizes. or closes a window, cither by
the Windows system menu or the mouse, Windows
scends the eXcursion window procedure a message
with specific parameters. For example, a message
sent when a window is resized contains the old and
new sizes and origins of the window. ¢Xcursion
translates every Windows input message into an
Xceventand sends it to the X client.

Individual messages from Windows generally
correspond to X cvent types that provide data
to clicnts. However, complications arise when
Windows generates multiple messages for a single
action. For example, when a user presses a button
to sclectan item froma menu, a new window is cre-
ated. mapped., sized, placed on the screen. acti-
vated, and given the input focus—all as a result of
the single user action. Windows messages are gen-
crated for cach of these operations, yet the uscer has
provided no fur ther action.

To handle this extremcely complex web, we
benetited from our initial design decision to create
only top-level Windows, We eliminated literally
hundreds of Windows messages for cach child win-
dow, simply by not crearing them. Messages are

PATHWORKS: PC Integration Software

sent only to the top-level window, and eXcursion
can quickly determine which child (if any) needs
attention. On the other hand, we had to observe
and study window stacking, configuration, repar-
enting, activation, and window focus before we
arrived at the final implementation. Only through
extensive prototyping and empirical testing were
we able to eliminate poor design choices and arrive
at the best ones. As a result, every possible window
manipulation action, whether initiated by the user
or directed by a client, requires a translation from
Windows to X and a careful selection of Windows
function calls to keep the delicate balance between
X and Windows.

Cutting and Pasting Data

To cut and paste data between X and Windows
applications, we merged the Windows clipboard
mechanism with the X selection mechanism by
incorporating the cut/paste “pseudo-client” into
eXcursion. This module watches for data cut-
and-paste requests from X clients, as well as those
from any Windows applications running on the PC.
When it notices an X client gaining control of a
selection, it asks the controlling client for the
selected data, which it then puts into the Windows
clipboard. The data thus becomes available to any
Windows application with access to the clipboard.
When a Windows application cuts or copies data
into the Windows clipboard, the pseudo-client is
notified, at which point it informs all X clients that
itnow owns the clipboard selection. X clients can
then request the data from the pseudo-client by
selecting paste from their edit menus.

Accessing Remote Applications

The user initiates remote X client applications
through an application launching mechanism that
provides several starting options.

1. Selection of an application from the eXcursion
control panel’s application pull-down menu

2. Selection from a dialog box of defined appli-
cations

3. Selection of the “Start X Application” dialog box

4. Double clicking on an icon installed for the appli-
cation in the Windows Program Manager

The most interesting option, double clicking on
an installed icon in the Windows Program Manager,
allows the user to start up an X application without
any knowledge of the current state of eXcursion.
The double click activates XREMOTE.EXE, the

remote application launcher. XREMOTE sends
out a Windows message, with an identification
known only to eXcursion. If eXcursion responds,
XREMOTE passes it the command line for appli-
cation start-up. If eXcursion does not respond
within a short timeout period, XREMOTE issues
a WinExec call, requesting start-up of eXcursion
itself. Windows starts up eXcursion, passing it the
command line string for the selected application
start-up sequence. XREMOTE then terminates until
the nextstart-up request.

Obviously, security is a major concern for any
system that requires and handles account pass-
words; eXcursion application activation is no
exception. Users log into their accounts by activat-
ing an X application such as DECterm. Two distinct
passwords are required: (1) the eXcursion global,
session password and (2) individual, application
account password.

The eXcursion session password is optionally
selected and set by the user from a control panel
dialog box. It is stored as an encrypted string in the
initialization file, and is used as the decryption key
for the individual application account passwords,
also stored in the initialization file. This design pre-
vents an unauthorized person from using some-
one’s .INI file to obtain access to an account. The
user is prompted for the session password when
eXcursion starts up. If an incorrect value is entered,
the server terminates and application activation is
impossible. A further level of security is provided
by the “Prompt for Password” option, which the
user can select forany application start-up.

Summary

The eXcursion for Windows display server seam-
lessly integrates the Microsoft Windows and
X Window System environments. It provides a
desktop integration tool that allows the user to dis-
play and interact with applications designed for
both windowing systems at the same time. Data
can be exchanged between them and desktop
resources shared. A user is no longer required to
work with two incompatible desktop devices in
order to complete work assignments.

Acknowledgments

The authors would like to thank everyone who
worked on the product during its development. In
particular we would like to thank the other full- or
part-time members of the software development
team: Ray Shapiro, John Freitas, Mike Pfeffer, Lee
Karge, Alice Chen, Mary VanLeeuwen, and Andy

66

Vol. 4 No. 1 Winter 1992 Digital Technical Journal

CACUTSION for wWindowes: fitlegraling Lo Windowimg 5y stems

Noursc. Two other members of the PC DECwindows
Group who work on the DOS-based X server, John
Wasser and Jim Pcterson, provided some valuable
assistance. We are also indebted to the following for
their support and contributions: Emilie Schmidt,
Carnel Hoover, Kathy Maxham, Andre Fontaine,
Alice Chen, and Tracey Wemett. This great group
of pcople made this project a joy to work on and a
SUCCESS.

References

I. R Scheifler, [0 Gettys, and R Newman, X Win-
dow System C Library and Protocol Reference
(Bedford, MA: Digital Press, 1988): xvii.

2. R. Scheifler, X Window System Protocol (Cam-
bridge: MIT Laboratory for Computer Science,
1989): 37.

Digital Technical Journal Vol - No. | Winter 1992

3 . Rosenthal, Inuter-Client Conmmunication Con-
ventions Manial (Cambridge: MIT Laboratory
for Computer Science, 1989): 18-30.

General References

Digital Technical Journal, vol. 2. no. 3 (DECwindows
Program, Summer 1990).

R. Scheifler, J. Gettys, and R. Newman, X" Windouw:
System C Library and Protocol Reference (Bedford,
MA: Digital Press, 1988).

Microsoft Windows Software Development Kit
Reference, vols. 1 and 2 (Redmond, WA: Microsoft
Corporation, 1990).

Microsoft Windows Software Development Kit
Guide to Progranmming (Redmond. Wa: Microsoft
Corporation, 1990).

Christophber E. Methot |

Capacity Modeling of
PATHWORKS Client-Server
Workloads

PATHWORKS network operaling system software runs on the remote server com-
puter that accesses files on behalf of clients connected to a network. The PATHWORKS
file server provides clients with centralized backup, printing, and security. Popular
desktop applications can be used in a manner that consuines large or sinall
amounts of server resources. Capacity planning seeks to determine which network
Siling system is appropriate to current workloads and to predict capacity needs as
the PATHWORKS client-server environiment changes. The desktop industry lacks
standardized perforinance tests. Digital has developed a general process that
can be applied to any workload, including those in which the number of users caus-
ing the server processs resource consumption are unknown to a data collector:
DLCperformance Solution software was the primary tool used in the modeling
process. Iis analytical queuing model was used to predict performance and belp

define confisuration alternalives.

The PATHWORKS network operating system soft-
ware provides remotc file service to desktop com-
puting devices across a local area network (LAN).
Integration of personal computers (PCs) on a net-
work allows users to share applications, files, and
printers. Mostapplications available on the desktop
can be uscd in a manner that consumes widely vary-
ing amounts of that single-point resource known as
the file server.

Some of this variation is due to the intentional
part-time nature of the server's resource utiliza-
tion, and some is caused by innocent changcs in
the user community’s work techniques. Since desk-
top applications are used by novices and experts
alike, small changcs in the levels of skill, experi-
ence, and thus technique can significantly affect the
performance of the server.

Capacity planning is a method of estimating
the changing hardware needs for a computer sys-
tem due to changes in workload. It can also be
used to explore “what-if” alternatives for existing
workloads.

Changes in user work habits such as running
Macros can increase a server computer’s response
time by as much as an order of magnitude. In addi-

tion, simplistic rules of estimating the consump-
tion of server resources, such as number of users
per VUP (VAX-11/780 unit of performance), can be
very misleading. The use of applications in ways
that increase individual productivity can slow
server response time for the user community.
These issues should be considered when selecting
a file server system. Because the number of active
users is often unknown in client-server environ-
ments and the user application technique may vary,
capacity planning uses a model of the actual work-
load to predict server performance and help define
configuration alternatives.

This paper describes a queuing analytical model
that was used to gain knowledge about resource
consumption on the PATHWORKS server computer.
The papcr discusses the special modeling process
required for the client-server environment. It
describes data capture and workload classification
using DECperformance Solution software. Finally,
the paper presents the results of a performance
analysis of a PATHWORKS server with response-time
constraints.

Some of the terms found in this paper have spe-
cific definitions. Many of the “correct™ terms for

068

Vol. 4 No. 1 Winter 1992 Digital Technical Journal

Capacity Modeling of PATHWOKRS Clienlt-Server WOrkiodds

ncetwork file serving are not the terms uscd by uscers
ol these systems. Network file serving has acquired
the name “networked ™ Server computers are often
referred to as “the network.” and getting access to
onc’s files on the server is usually called logging,
into “the nctwork” In this paper, we refer to
MS-DOS-based PCs and Macintosh computers gener-
ically as desktop computing devices. I addition,
the word “workload™ refers to the cause of the
resource consumption, which is the combination
of cliecntapplicationand uscrtechnique within that
application. The term “workload class™ has a spe-
cific detmition in DECperformance Solution soft-
ware. It refers o group of VS processes that
the modceler wants to manipulate differently from
other processces.

Defining the Question

PCousers on anintegrated PATHWORKS network
nced to determine which server computer system
is appropriate to their workloads todaye and which
will be appropriate as their numbers increase in
the future. The system they choose must deliver
sufticient performance today and allow a method to
pln forexpanded neceds in the future Uscers of desk-
top computing devices, which are not nctworked,
can benefit from a series ol anecdotal model case
studics which describe other workloads and the file
scrvers which were recommended. This paper
gives the results of our efforts to gain insight into
the reasons for and symptoms of server resource
cxhaustion (bottenccks) on PATITWORKS file server
Svstems.,

Analytical Models
PATTHIWORKS soltwiare takes advantage of the
expanded computational power ot the client-
scerver architecture, which requires special model-
ing techniques. Two of Digital's analvtical modeling,
tools cuan be uscd inour capacity modeling process,
however. DECperformance Solution was the pri-
mary tool. The model wis uscd to answer questions
about the need to enhance file server computer
resource requirements as aresult of changes in
hardwarce or workload

Performance models can answer Gt least two
questions.! Firste "How is performance affected
it we change cither the number ol users or the
amount of hardware?” Sccond. "How can we main-
tuin performance it we add users doing the same
kinds of tasks?” Of the two. the sccond question

Digital Techuical Journal Vol o« No.o [Winler 1992

is the one we scek to answer when we model
PATHHWORKS client-scrver workloads.

Deita Collection

Data can be collected with the VAN Performance
Advisor (VPA) version 2.1 or the DECperformance
Solution version LO or later. DECperformance
Solution software is an integrated product sct that
provides porformuance and capacity management
capabilitics for computing syvstems. This Tavered
software product runs on the VAN VMS operating
system oand uses a queuing analvtical model to
answer questions. This process requires collection
of two kinds of information

L. A dctailed record of the causce of resource con-
sumption, including which process is causing
cach disk or CPU activity. Processes should be
combincd mnto like groups. called workload
classes. which may be manipulated indepen-
dentdy: Forexample, some workload classes may
be reduced or climinated and some may be
increascd.

v

As detailed a record as possible of the effect of
resource consumption. including the clfect on
multiple remote clients. Changes in perfor-
mance are typically measurcd by the clapsed
time from the carriage return to the return ol the
prompt. In the case of a timeshare uscer, this isa
closed loop since almost the entire process is
visible to the data collector,

In o PATITWORKS environment. such data capture
is not possible. A data collection device running on
the server computer cannot determine the number
of uscrs forwhom the PATHWORKS SCrver process is
consuming resources. Furthermore, the collector
cannot detect the response time seen by the users
of the desktop devices.

We hive developed a gencral process that can
be applicd to all client-server workloads. These
include applications such as VIX or VAN Noles. in
which the number of users initiating the scrver
process’ resource consumption are unknown to a
data collector.

Figure I illustrates a simplificd closed queuing
modcl of a PATUWORKS transaction. T'he user initi-
ates the transaction through a kevboard or pointing
device. The application running on the desktop
computer performs the initial local processing and
issues a cll to the server requesting (/0. The server
performs some remote computing. and the 17O

069

PATHWORKS: PC Integration Software

request is satisfied when the server transmits
either the data or acknowledgment that the data
has been written. This travels back to the user’s
desktop device and some further computing lcads
to agraphic indication to the user to procced to the
nextstep.

If these threesequential queues—client, network,
and server computer—were equal in response time,
the server would have only a one in three influence
on the responsiveness the desktop user sces. Of
coursc in reality the three queues are never equal,
and the two local queues are highly dependent on
the local desktop computer’s capabilities. Each
queue can havea request backlog if the service time
is not faster than the arrival rate. The responsc time
of any queue is the queue wait time plus the actual
time to be serviced. The total response timce of the
workload class, as modeled on the server, is the ana-
lytic sum of all its queues’ responsc times.

In reality, the analytical model of the PATHWORKS
environment is more complex than the one
shown in Figure 1 and involves disk, memory, and
CPU queues. The response time calculated for a
PATHWORKS server computer workload class is the
calculated sum of the response times of all server
process qucues for that workload class. As stated
earlier, this is only an indicator of a desktop user
response time.

Cause and Effect

A data collector, running on the server computer is
not aware of the response time perceived by the
user at the desktop device, nor can the server's data
collector process know how many users are gener-
ating the current workload. Scrver response time is
a subset of the responsce time as seen at the desktop;

74 2 // /|
2
e
RETURN _HI
KEY 3 / J'
7 :
DESKTOP | A A
COMPUTER 77 A,
CLIENT NETWORK SERVER

Figure | Simple PATHWORKS Queuing Model

70

and if the server’s response time improves, the
user’s will improve as well, as shown in Figure 1.

A model that is built from a data collector which
has only a partial definition of the whole loop (i.e.,
the server computer portion as shown in Figure 1)
is called an open model.? The models described in
this paper are open models. Since the most likely
bottleneck is the shared resource known as the
server, this is a useful way to model client-server
workloads.

Uniform Service Level

Model analysis of a PATHWORKS client-server com-
puter workload cannot predict the increase or
decrcuse in response time seen by the user. A
model can determine the effect of any changce in
hardware configuration or arrival rate (numbcr of
users). Capacity planners can use this method to
add more users by incrementing arrival rates. Then
hardware can be upgraded until an equal or faster
server response time is reached. This method can
be used to increase the number of users at the same
performance or split uscrs into smaller groups
with the same or better performance.!

Not all desktop transactions require server inter-
vention. In fact, the success of the client-server
architecture depends on infrequent access to
servers. Obviously, file servers are required when
a file is saved. However, many applications per-
form disk I/0 without any obvious or explicit user
action. For example, WordPerfect software pro-
vides a temporary file that is a type of journal file.
Periodically, the application updates this file with
data stored in memory. When a user’s input reaches
a predefined buffer limit, the next keystroke causes
the file to be written. The capabilities of this appli-
cation, and many others, must be considered when
planning the capacity of a PATHWORKS file server
installation. In this example, the load per client on
the server can be significantly reduced by placing
the temporary file on a local hard disk.

Performance of a file server computer can also
be affected when expert users employ macro tech-
niques or when users generate automated output.
Macros read each instruction from the macro file
one record at a time, thereby continuously doing
I/0. Most expert users provide a save as the last
instruction in the macro, which allows them to be
absent when the work is being accomplished and
then saved. This increases server 1/0 as well. Most
desktop applications permit automated output.
For example, some allow form letter generation;

Vol. 4 No. | Witer 1992 Digital Technical Journal

Capacily Modeling of PUTTTWORKS Client-Sereer Worklocel s

some computer-aided design (CAD) applications
provide Bills ol Matcrrls. This capability adso
INCICASCS SCrverl/o.

The usc ol cither macro techniques orautonuted
output can impact server computer utilization
Aserver that was intended to be a part-time file
server can become a full-time 170 device which can
rapicthy oxceed s capacity.

1o tustrate how a small change in environment
can alfect file server performance. we employed
4 Mirkov model, using i SHARPE queuing model ol
Loserver environment. Figures 2 and 3 show the
results, We asked the question "I we had 120 uscers
cach randomlv filing once an hour and cach filc
action 1ook 5 scconds. how often would @ uscr
witit for another user o complete a file trans-
action?” We discovered that only 1 percent of the
timce another transaction would be running in the
server process Then swe asked. “What would hap-
pen it 3 of the 120 users started running @ macro
and this macro did /O for 5 minutes at random
mtervals within the hour?” 'T'he remaining LIS uscrs
continucd working as before. In this case the possi-
bility increased to 28 percent that a job request
would be on the queuc. 21 pereent that two job
requests were waiting, and 20 percent that three
job requests were present.

[n the same studye dess than S percent ol the

uscrs changed the way they were working. Nonc off

the applicitions was changed. Almost any PC or
Macintosh application can rcasonably be uscd in
this wan &s the smaller group ot uscrs beciume more
productive. the other 95 percent experienced a sig-
nificant delay in response tme. The system capice-
ity must be sized to allow for a situation in which
uscractivity lessens overall response time.

Modeling Process
The modcling process we describe in this paper
was developed over a two-vear period. Before dis-

IDLE

THREE JOB

- REQUESTS
WO JOB

REQUESTS

ONE JOB
REQUEST

LFigrire 2 Low Use with Infreqguent Saces

Digital 1echuical forrnal Vol 1 Noo | Winder 1992

ONE JOB
REQUEST .- IDLE
TWO JOB THREE JCB
QUES REQUESTS

Figure 5 High Use with e Macros Riing
cussing the modcling procedures.we list the bene-
fits and Limitations of the process

Benefils

= Determinations can be made as to the numbers
of PATHIWORKS and new workload class uscers
requircd to maintain the same performance.

= Sipgle-function server computer models. with
onhy PATHWORKS workload cliasses, can have non-
PATHWORKS workload classes added for a morce
complex environment.

= The server can be upgraded to maintain the per-
formance level of growing uscr communitices.

= Larger user communitics can be divided between
two standalone servers to maintain an acceptable
level of performance.

= Stable uscr communitics can be reduced to pro-
vide cqual devels of performance with two
smualler servers.

= Lardware wrade-offs can be explored. For exam-
ple.some users can be moved o another disk.

= Local site manageoment can be made aware of the
magnitude of daily workload variation: under-
stunding this variation is also part of the model
Process.

Limitations
= The model cannot predict response time chinges
atthe client, due to changes in server loading,

= [nformation about the number of uscrs generat-
ing the applicd workload must be collected
by mcthods other than using DECperformance
Solution software. These methods are detailed in
the section Capturing Workloads.

= Although memory can be modeled. the modcl
cannot anticipate the increascd PATHWORKS

PATHWORKS: PC Integration Softwarce

read or record management services (RMS) cache
requirements. When adding users to a
PATHWORKS server computer, adequate spare
memory must be allowed to provide the same or
better cache hit rates. The RMS cache hit rates
can be determined, without software tools, by
executing a program at the Digital command
language (DCL) prompt: @SYSSUPDATE:AUTOGEN
SAVPARAMS TESTFILES FEEDBACK, and then read-
ing SYSSSYSTEM:AGENSPARAMS.REPORT.

= Available modeling tools only allow PATHWORKS
workloads to be modeled onto VAX VMS servers.

= Prior to data collection, the server must be
checked to see if it is tuned for use today and for
the future, or the recommended server system
may he incorrectly sized.!

Capturing Workloads

DECperformance Solution software requires VAX
Performance Advisor version 21 or later collector
files named nodename_date.CPD. In addition, either
a VPASSCHEDLU LE.DAT or a PSDCSSCHEDULE.DAT file
is requirced to define the cluster configuration and
collection schedule. Either a VAX Performance
Advisor version 2.1 or DECperformance Solution
version 1.0 Data Collector, or the DECperformance
Solution Service Delivery Software kit may be used
to collect data. All threc require a licensc and prod-
uct authorization kit.

Enough data must be collected to represent the
rangc of a typical workload. The sum of the subjec-
tive user opinion of performance must be collected
as well as the tasks the uscrs were performing.
If this data is not collected, the planncer may mis-
takenly model equal levels of user dissatisfaction
rather than cqual levels of user satisfaction. Sub-
jective performance evaluation is always gathered
by interviewing or monitoring users.

Collections should be made over a series of nor-
mal workdays to avoid gathering misleading data.
We have observed two normal workdays with only
a 5 percent difterence in the number of desktop
users logged into the server, yet five times more
server resources were used.

Additional data on user activity that is con-
suming resources must be collected by methods
other than the DECperformance Solution collector.
Both the Macintosh and MS-DOS scrver products
have interactive DCL softwarc utilities that provide
some information about the condition of the cur-
rent server process. Command procedurcs can call

thesc utilitics with a brief DCL command string,.
For example, ADMIN/PC SHOW FILE COUNTERS dis-
plays the current cache misses and request rates,
and ADMIN/PC SHOW FILE SESSIONS shows the
client device 1D, client connections, and open files.
The size of the server process cache configuration
can be gathcered using the ADMIN/PC SHOW FILE
CHARACTERISTICS command. If analysis is per-
formed offsite, a DCI. procedure can gather infor-
mation about volumes and system logical names,
which allows user disk assignments to be defined.
Finally, user authorization resource limits on the
server process can be extracted from the system.
The Macintosh server software has similar com-
mands using the ADMIN/VISA SHOW CONNECTION
command.

When the size of the user community is
unknown, the above data must be used to charac-
terize the number of uscrs being modeled. Specific
customers with large installations or many remote
sites need quantitative user characterization. In all
casces the cause of the obscerved performance char-
acteristics must be determined at some quantita-
tive level.

The data gathered by using the ADMIN/PC SHOW
FILE COUNTERS and ADMIN/PC SHOW FILE SESSIONS
commands can be invalidated if desktop devices
include automated proccedures to attach to file ser-
vices when the desktop device is booted. The sim-
ple act of activating the client power switch should
not count that user as explicitly intending to use
the server computer. On the other hand, explicitly
connecting to file services and being interrupted
for an uncxpected event should not exclude that
user from the total active user count. Ultimately, a
combination of the total possible and the total
active connections is needed.

Defining Workload Classes

With the DECperformance Solution data collector,
workload classes are defined prior to starting the
modeling process. They are defined either by speci-
fying the anticipated logical divisions or by deter-
mining them from the obscerved performance data.
DECperformance Solution software provides many
ways to group processcs, e.g. user identification
code (UIC), resource usage. image name.?

The DECwindows interface to the performance
tool DECperformance Solution provides an excel-
lent way to review the data.' The graphic display of
the server process by day along with the subjective
user characterization can help select the day or

72

Vol -4 No. I Winter 1992 Digital Technical Journal

Capacity Modeling of PATHWORKS Client-Server Worklodads

days to be modeled. The same method can be used
to determine peak usage hours. Finally, this tech-
nique can help categorize workload classes by
applicabic processes. ‘lable 1 lists the workload
class groupings we usced.

Worldoad families arc groups of workload classes
that the data collector can expect to see. The
PW_DOS workload family characterizes a system as
A PATHWORKS file service environment. it includes
PATHWORKS server processes, required systen
overhead functions, and processes necded to col-
lect data that are not normally part of the system.
All other processes are automatically placed in a
category called “other™ This suits the needs of our
general-case, single-function PATIIWORKS server
computer, but any server can be used for tasks
unrclated to the PAITIWORKS print and file service.
[f the tasks in the default (other) category need to
be subdivided for separate scaling, the workload
class definitions have to be added to a family which
calls cach workload class explicitly. as indicated for
the PW _LAD workload class famity in Table 1.

For example, consider the uestion “As groups of
ALIAN-I system users change to PCs, how many

Table 1 Workload Class Groupings

Workload

Name Image Name Selection Criteria

FILESVS NETBIOS, PCFS_*, PCSAS$*

OVERHEAD AUDIT_SERVER, NETACP, EVL,
ERRFMT, OPCOM, JOBCTL,
REMACP, CONFIGURE, IPCACP,
TPSERVER, FILESERV, CSP,
SMISERVER

ABNORMAL PSDC*, VPASDC_V5, DECC*, SPM,
MONITOR

MAC_FILESVS ATK*, MSAP*, MSAD*, MSAF*

LAD LADSKERNEL

OTHER (All Else)

Workload

Family Workload Member(s)

PW_DOS FILESVS, OVERHEAD, ABNORMAL

PW_MAC MAC_FILESVS, OVERHEAD,
ABNORMAL

PW_BOTH FILESVS, MAC_FILESVS,
OVERHEAD, ABNORMAL

PW_LAD LAD, FILESVS, OVERHEAD,
ABNORMAL

PW_THREE LAD, FILESVS, MAC_FILESVS,

OVERHEAD, ABNORMAL

Bigital Technical Journal Vol 1 No. | Winter 1992

users can the PATHWORKS server computer sup-
port?” This determination requires defining another
workload class by UIC for the ALI-IN-1 system users.
The workload class could be moved by UIC to the
FILESVS workload class. This method assumes the
current collection of FILESVS workload classcs
reflects the mix of the remaining ALL-IN-1 system
users.

Even before the model building step takes place,
the PSDCSDATABASE logical must be pointing to
the location of the VPASSCHEDULE.DAT and the
VPASPARAMS.DAT files. The model building step
generates a model with the workload class group-
ings given in Table 1. The workload class and tamily
definitions are made using the DCL command
ADVISE PLAN EDIT in the VPA/VME (VAX Performance
Advisor/vaXcluster Modeling Environment) utility
and are written to a file named VPASPARAMS. DAT.
(If the DECperformance Solution tool is used,
the files are named PSDCSSCHEDULE.DAT and
PSDCSPARAMS. DAT.)

If this logical is defined while using the
DECpertormance Solution DECwindows interface
invoked from the session manager. the logical may
not take eftect in the DCL session in which the
model is to he built. The command to generate a
model] can include the time selected to be represen-
tative and the workload class family definition
name. A report can be generated which describes
the newly built model. The command used is:
ADVISE PLAN BUILD/CLASS=(USER=PW _DOS)/BEGIN=
9-DEC-1991:10:30-/END=9-DEC-1991:11:30/REPORT/
OUTPUT=MYMODEL.RPT MYMODLEL MDI..#

At this point the model must be validated by typ-
ing ADVISE PLAN REPOR'T MYMODEL.MDL VALIDATION/
OUTPUT=MYMODEL_VALID RPT at the DCL prompt.
All predicted values should be within 10 percent
of the calculated values. % A CPU validation report
fora collected workload includes data on through-
put. queue length, average service time, average
response time, and percent of utilization. For the
FILESVS workload, the mcasured utilization was
677 percent as compared to 64.7 percent for the
model. This 3 percent difference is 4.4 percent of
the measurced value and thus well within the 10 per-
cent range.

Normalizing the Environment

The next step is to return the system to the normal
environment. Even though data collectors are typi-
cally designed to utilize a small amount of sys-
tem resources, they are not normally part of the

~J
o

PATHWORKS: PC Integration Software

server workload. Grouping abnormal processes
into a workload makes it easier to remove them dur-
ing the DECperformance Solution model process.
Access to the DECperformance Solution model
interface is achieved through the command ADVISE
PLAN MODEL MYMODEL.MDL.?

Recording Response Times

The next step is to solve the model and view the cal-
culated response times for the remaining workload
classes. These are FILESVS, OVERHEAD, OTHER, and
any custom-dcfined classes. The OTHER workload
class can be used as a defined workload class pro-
vided it contains no unexpected processes that
are using significant resources. The calculated
response times for the remaining workload classes
should be considered maximum times, and model
manipulations should always seek to attain these
numbers or less.

If the intention is to capture the PATHWORKS
workload class for use elsewhere and if the same
system had significant OTHER workload classes,
these classes should be removed (turning the
server computer into a single-function PATHWORKS
server).? This reduces the response times of the
remaining workload classes and requires increasing
the PATHWORKS workload class until the response
time returns to the observed value. The increase in
throughput is proportional to the increasc in
PATHWORKS users accommodated at the same per-
formance, without the competition of the OTHER
workload class.

Model Manipulation

Basically, the response time can be manipulated
(1) by decreasing the usage of a significant resource
(model resource utilization percentages help
locate the bottlenecks) or (2) by increasing the
capacity of that resource.

Thereare two ways of decreasing the resource uti-
lization. If the resource is single-threaded on the crit-
ical path, as a CPU would be in a non-symmetrical
multiprocessor (SMP) machine, the method is to
reduce the number of users by decrementing their
arrival rate (called throughput or transactions per
second [TPS] in various menus) or by increasing the
speedofthe bottlenecked device.

The model allows for workload class manipula-
tion to remove arrival rates of the workload class.
As this is being done, the original arrival rate must
be noted so the same changes can be applied to the
number of users that caused the workload.

If the bottleneckis not on a single path, its capac-
ity can be increased by spreading the load across
another similar device. This can be achieved with
multiple disks.

In the ALL-IN-1 system case discussed earlier,
100 percent of the workload class from the first
UIC group of ALL-IN-1 system users can be removed
from the model.? If the model is solved at this point,
all the workload class’s response times should
diminish. If the FILESVS workload class throughput
is incremented in proportion to the additional
PATHWORKS users and the model is solved again,
the response times of all workload classes increase.

The question is: “Has the removal of the ALL-IN-1
system users decreased critical resource usage
sufficiently that their addition to the PATHWORKS
FILESVS workload class does not increase any of the
remaining workload class’s response times beyond
their target?” The answer depends on the per capita
usage of the critical resource of each workload
class. The nature of each workload class may be
different. For example, PATHWORKS workloads do
not scale well over SMP processors. The workload
class being removed may use more CPU time per
user than the PATHWORKS FILESVS workload class.

Findings

We analyzed a large PATHWORKS workload class
from a VAX 6000 model 510 system whose CPU uti-
lization averaged 72 percent. The subjective user
evaluation was that this system was very near
performance capacity limits, and a fair amount of
dissatisfaction was associated with the level of per-
formance. The question was asked “Could this com-
munity be split in half across two VAX 4000 model
300 systems with the same or better performance?”
We immediately agreed this would work, but went
about proving it with a model. After the workload
class was normalized and the response times were
noted, the workload class arrival rate was reduced
by 50 percent and the CPU and disk systems were
changed to the VAX 4000 model 300. The new model
was solved, and the response times were signifi-
cantly worse than with the VAX 6000 model 510 sys-
tem. The workload class was halved again, and the
resulting response time was still slightly over the
target.

This finding was difficult to understand since the
VAX 4000 model 300 system CPU was now down to
36 percent utilized, and only one quarter of the
users remained. The reason for the inadequate
response time was found by studying the queuing

Vol. 4 No 1 Winter 1992 Digital Technical Journal

Capacily Modeling of PULIWOKRS Clent-server WorRlodds

modcl. Figure 4 s a simplificd mode] showing two
CPUs and thetr queuces displaved on a time scale.
The firstis aslower CPU and the second a faster one.
Since we did not allow the tesponse time (total
queue plus service time) to vary, the queuc length
(mcasurced in numbcer ofwaiting jobs) on the stower
CPU was shorter. The service time of the slower €L
WS larger. in proportion Lo its queue wiit time, and
thercfore an interruption by an overhead process
causcd significant loss of processing time (responsce
time) 1o be available for the critical workload cliass®

Thercetore, the genceral rule became: Slower CPUS
will be less utifized at the same workload class
response time. This resulthas been scen on two dif-
ferent customers” workload classes (one with DOS
and one with Macintosh clients) which were mod-
cled by diffarent enginceers using different modcl-
ing tools

Another surprising result became evident in the
dav-to-day variation at <t custoner's installation.
The same two workload cliasses were analyzed
across several days to examine ty pical workday vari-
ations in workload class resource utilization. Two
normal workdavs were sclected by the customer.
The mostintense hours of these two day swere dif-
ferent by asignilicant factor. On one workday, three
to five times as many users applicd the siame work-
load class as on the other dayve vet all experienced
the same responsce times. This wide variation is typ-
ical of client-scrver workloads.

Library of Workload Classes
Alterwe had captured a scrices of data we created a

sl library of real workloads that represented viar-
ious conditions. The actuwl workloads consist of a

SERVICE TIME —--» .

B RESPONSE Tip >

s U ==

SERVICE TIME > =

Figure & Server Quene Conmparisoi o

Differcit CPUs

Digital Technical fonrnal Vol 1 \o. Winter 1992

modcl file that is devoid ol uscr-specific inlor-
mation. Other non-PATHWORKS workloads can be
added to these models: Alternatively, the numeric
workload characterization can be added to existing,
modcls. Using the above methodology. the model
can be manipubiated o determine what svstem is
appropriate for this more complex environment,
Asadditional installations arc analyvzed. theirmodel
files will be added to the Tibrary.

With crther the DECperformance or DEC Capacity
Planner modcling tool, the process is the same:
Change the hardware and modify the throughput to
maintain or lowcer the responsce times of the modcl
during iteratons. ‘The changes to throughput are
then applied to the original number of users to
determine the aceeptable number of users in terms
of scryver computer capacity:

Although both modcling tools exhibit similar
mapping of the quantitative workload class charac-
terizatton. we do not know the units of some ol the
kev metrics uscd. Therclore. entering a workload
class captured in once modcl to another modcl is not
recommended

Sunrmary

The PATHIWORKS network operating sysiem soft-
ware provides remote file service to desktop com-
puting devices across o local arca network
Capacity planning ol client-scrver cnvironments
requires the use ol special modeling techniques,
DECpCrformance Solittion soltwiare provides per-
formance and capacity management capabilitics
for computing systeims: it uses @ quening analvticil
MOdC! Lo ans\Wer resource ConsumpLon questions.,
The modcling process depends on the collection of
enough data to represent the range of a typical
workload. Addittonal data on uscractivity that con-
SUMCs server resources must also be collected.
Analyvsis of workload modcls reveals the reasons for
and symptoms of bottlencecks, Capacity planning
depends on the results of these anadyses to predict
SCIVEL FesSponse tmes,

Acknowledgments

[would like o thank Prashant Bhabhalia, who
helped me ensure that the modceling process is
correct, and Dick Dunnington, who checked my
queuing theory. Also. | would like to thank
Frank Caccavale, who helped me undastand
the PATHIWORKS
Raghuraman helped me grope toward the Uniform

server architecture. Mclur

Service Level modcel described here Karl Friedrich,

PATHWORKS: PC Integration Software

Ann Bousquet, and Lindsey Stephens helped me
transition to DECperformance Solution software.
Finally, I would like to thank Pete Stoddard for
applying his technical reviewer skills to this paper.

References

L

Guide to DECcp Methodology (Maynard: Digital
Equipment Corporation, Order No. AA-NA34A-TE,
1989).

. R. Jain, The Art of Computer Systems Perfor-

mance Analysis (New York: John Wiley & Sons,
199D).

DECperformance Solution Capacity Planner
User’s Guide (Maynard: Digital Equipment Cor-
poration, Order No. AA-PHOLA-TK, August 1991).

. DECperformance Solution Performance Advisor

User’s Guide (Maynard: Digital Equipment Cor-
poration, Order No. AA-PHGSA-TK, August 1991).

. E Hiller and G. Lieberman, Operations Research

(San Francisco: Holden Day, 1967).

76

Vol. 4 No. 1

Winter 1992

Digital Tecbhnical Journal

| Further Readings

e Digital Technical Journal
ublishes papers that explore
the techuological foundations
of Digital's micijor products. Each
Journal Jocuses on al least one
product areca and presents a
compilation of peapers writlen
by the engineers who deceloped
the product. The content jor

the Journal is selected by the
Jowrnal Adeisory Boaid.

Digital engineers 1eho wotld
like to contribute a paper

(o the Journal sbould contact
the editor alt RDVANBLAKL

Topics covered in previous issuces of the Digital
Technical Journal are as follows:

Image Processing, Vidco Terminals,
and Printer Technologics
Vol 3. .No 1. Fall 1991

Availability in VAXcluster Systems/
Network Performance and Adapters
Vol 5. No. 3. Suinner 1991

Fiber Distributed Data Interface
Vol 3. No. 2 .Spring 1991

Transaction Processing, Databascs, and
Fault-tolerant Systems
Vol 3. No 1. Winter 1991

VAX 9000 Scries
Vol 2. No. 1. Fall 199()

DECwindows Program
Vol 2. No. 5. Sunner 1990

VAX 6000 Modcl 400 System

Vol 2. No. 2, Spring 1990

Compound Document Architecture
Vol 2. No. [Winter 1990

Distributed Systems
Vol 1. No. 9. Jinre 1989

Storage Technology
Vol 1.No. S Iebriary 1989

CVAX-based Systems
Yol 1. No. 7. August 1988

Softwarce Productivity Tools
Vol 1. No O Febriary 1988

Digital Techuical Jowrnal Vol -1 Noo [Winder 1992

VAXcluster Systems
Vol 1, No. 5. Sepleinber 1987

VAX 8800 Family
Vol 1..No q. February 1987

Networking Products
Vol 1. No. 3. Septenber 1960

MicroVAX II System
Vol. 1. No. 2, Mairch 1986

VAX 8600 Processor
Vol 1. No. 1. Angust 1985

Subscriptions to the Digital Techuical Journal ace
available on a vearly prepaid basis. The subscrip-
tion rate is $40.00 per yeace (fourissues). Requests
should be sent to Cathy Phillips, Digital Equipment
Corporition. MLO 1-3/BOS. 16 Main Strect. Mavnard,
MA 01751, U.S.A, Subscriptions must be paid in .8
dolars, and checks should be made pavable to
Digital Equipment Corporation

Single copics and past issucs of the Digital
Technical Jourial can be ordered from Digital
Press ata costof $16.00 percopy.

Technical Papers by Digital Authors

R. Al-Jurr. "Performance Modceling of Computer
Systems: The Petri Net Approach.” Computer
Measurement Group Conference (NDecember
1991).

S Angebranndt, R Drewry, and T. New man,
“Writing Tailorable Software: The NI Sample
scrver” Softecaire (October J1991).

P> Anick. "Lexicon Assisted Information Retrieval
for the Help-Desk ™ Eighth 1161 Conference on
JArtificial Intelligence Applications (March 1992)

N. Aroraand M. Sharma, “Modeling the Anomilous
Threshold Voltage Behavior of Submicrometer
NMOSFETS! (L) Electron Derice Lelters (February
1992).

S Bazyvdola, "An Experimental Investigation ot
Staggerced Array of Heatsinks in the Hyvdrodynamic
and Thermal Entrance Regions ofa Duct.”
[THERM 111 (February 1992)

D. Bhavsar, "An Architecturce for Exiending the
1IEEE Standard THO1 Test Access Port to Svstem
Backplanes” 1eee International Test Conference
(October 1991).

Further Readings

E. Braginsky, “The X/Open DTP Effort,” Fourth
International Workshop on High Perforinance
Transaction Systeins (September 1991).

X. Cao, “An Introduction to Ensemble-Average
Importance Sampling of Markov Chains,”
Proceedings of the Thirticth 1E1:1; Conference
on Decision and Control (Dccember 1991).

R. Cembrola, “Analytical Chemistry in Support
of Microelectronics Technology,” Boston Section
Meeting of the American Chernical Society
(November 1991).

Z. Cvetanovic and E. Freedman, “Efficient
Decomposition and Performance of Parallel
PDE, FFT, Monte Carlo Simulations, Simplex, and
Sparse Solvers,” The Journal of Supercomputing,
vol. 5 (1991).

S. Denker, “A Common Sense Approach to Improv-
ing the Design and Managemcent of Electronics
Manufacturing Proccesses,” International Confer-
ence on Automated Materials Hanelling (1990).

B. Doyle, R. O’Connor, K. Mistry, and G. Grula,
“Comparison of Trench and LOCOS Isolation for
Hot-Carrier Resistance,” (LEE Electron Device
Letters (December 1991).

B. Fishbein, D. Krakauer, and B. Doyle, “Measure-
ment of Very Low Tunneling Current Density in
SiO2 Using the Floating-Gatce Technique!” 7277
Electron Device Letters (December 1991).

W. Harris, H. Smith, and A. Pelillo, “SIMS Test
Structures for Analyses of Semiconductor Product
Wafers,” American Vacuum Society Thirty-cighth
National Symposium (November 1991).

D. Heimann and W. Clark, “Proccess-Related
Reliability-Growth Modeling—How & Why,”

IEEE Reliability and Maintainability Symposiwin
(January 1992).

S.Heng, H. Pei, and J. Watson, "Closed-Loop Cool-
ing for Computers—Opportunities for the 90s,”
National Electronic Packaging and Production
Conference (June 1991).

S. Knecht, “Integrated Matrix Creep: Application
to Lifetime Prediction of Eutectic PbSn Solder
Joints,” Materials Resccich Society Symposium
Proceedings (November 1990).

L. Lee and B. Mirman, “Bonding Quality and

Bending Stiffness,” International Electronics
Packaging Society Conference (September 1991).

M. Lefebvre, “Test Generation: A Boundary Scan
Implementation for Module Interconnect Testing,”
IEEL International Test Conference (December
1991).

R.Jain, “The Artof Computer Systems Performance
Analysis,” Computer Measurement Group Confer-
ence (December 1991).

J. McGrathandJ. Derosa, “3-D Solid Modeling for 1C
Assembly,” IEEL: Advanced Seniiconductor Manu-
Sacturing Conference Proceedings (October 1991).

J. McPhee, T. O'Toole, and M. Yedvabny, “Cooling
the VAX 9000,” Electro/ 90 Conference Record
(May 1990).

J. McWha and P Kouklamanis, “A Product Inforima-
tion Access System for Verification, Test, Diagnosis
and Repair of Electronic Assemblies,” IEEE Inter-
national Test Conference (October 1991).

B. Mirman, “A Way to Avoid Stress Singularities
in Multimaterial Elastic Bodics!.” Transactions
of Annual Meeting of the Amcrican Society of
Mechanical Engineers (Dccember 1991).

T. Moore, “A Workstation Environment for Bound-
ary Scan Interconnect Testing,” /EEE International
Test Conference (October 1991).

C. Pietras, “Cognitive Modcls of Planning in the
Design of Project Management Systems,” Proceed-
ings of the Human Factors Society Thirty-fifth
Annual Meeting (September 1991).

K. Ramakrishnan, “Dynamics of Congestion Con-
trol and Avoidance of Two-Way Traffic in an OS]
Testbed,” ACM Computer Conumunications Review
(April 1991).

S. Rege. R Kalkunte, R. Edgar,and A. Russo,
“A High Performance FDDI Adapter for VAX
Systems,” Thirty-seventh ILIT: Computer Sociely
International Confercunce (February 1992).

M. Register, A. Rewari, and M. Swartwout,

“The CANASTA Experience: Key Management and
Technical Decisions in a Hybrid Expert System
Project,” IEEEACM International Conference

on Developing and Managing Expert System
Progrants (September-October 1991).

K. Symonds, M. Bahrami, and P Skerry, “Functional
Failure Analysis Using Photoemission Microscopy,”
Proceedings of the Seventeenth International
Symposium for Testing and Failure Analysis
(November 1991).

Vol. -t No. 1 Winter 1992 Digital Technical Journal

Digital Press

Digital Pressis the book publishing group of
Digital Equipment Corporation. The Pressis an
international publisher of computer books and
journals on new technologics and products for
uscrs, system and network nmanagers, program-
mers.and other professionals. Proposals and idceas
tor books in these and related arcas are welcomed.

The folTowing book descriptions represent i
sanmiple of the books aviilable from Digital Press.

BITNET FOR VMS USERS

Michacl A Moore and Ronald M Siw ey 1992,
softhound. 176 pages. Order Noo EY-LAG-1E-DP-EER
(525.99)

Designed to help people swho have never used
anational computer network. this book also
proyides aninvaluable reference for thosce iready
familicor with accessing BUCNTT from the N S
opcrating svstem of pigital Lguipmaent Corpora-
tion. This first exclusive coverage of BITNET details
many aspects from clectronic mail to scarching,
remote databases to crryving on RELAY conversir
tions with pcople haltway around the world Morc
expericnced computer users will appreciate the
appendixes which contain more detailed infor-
mation. Specific programs:nd listings of more
popular mailing lists, digestscand clectronic
magazines available swill help people get the most
out Of BUENET.

FDDI: Fiber Distributed Data Interface
for Local Arca Ncetworks

Wendy L Michacl, William [Cronin, Jr.

and Karl)2 Pieper. 19920 sotthound. 180 pages.
Order No. EY-I840E-DP-EER (S17.93).

Bascd upon the primer of the same name that
reccived a 1991 Award tor Excellence from the
Socicty of Technical Communications (8TC). this
is the tirst book devoted to this new standard.

A conciseand thorough technical introduction to
the subject. this book coversallaspects of the FpDI
standacd fromits protocols to its implementation
in reabworld localarca nctworks, Written and
designed Jor rapid comprehension, this fully
illustrated text presceats FDDE technology and
applications without mention ot Digital's FDDI
products Bricf chapter summarics promote
skimming and review, and the extensive glossary
detines key networking LAN and FDDIE terms,

Digital Jechnical Journal Vol No [Wintey [992

DIGITAL AT WORK:

Sniapshots from the First Thirty-five Years
Cdited by Jamic Parker Paarson. 19920 solthound.
225 pages. Order Noo EY-IS20E-DP-EER (5 19.93).

Though not a tormal histors. Digital at Work
tells the story of the first thirey-five vears ol
Digitad Lguipment Corporation and illuminates
the origins ol its uniquce culture. First-person
accounts from pastand present members of the
Digital community, industry associates, board
members, and fricends trace the company's evolo-
tion from the 1950s to the 1990s. Designed for
browsing and sclective reading, this book provides
real storices in the words of real people. Photo-
craphs from Digita I's archives make the stories
more vivid.

ALL-IN-1: A Technical OQdysscy
Tony Redmond, 19920 softbound. 530 pages.
Order No. EY-H9S2E-DP (S-1:1.99)

This extensive treatment of Digital Bquipment
Corporation’s otlice automation tool addresses the
needs of svstem managcers. application progrims-
mers, and technically oriented users who work
With ALL-IN-E Based on the authors ten vears of
expericnce in developing ALL-IN-L subsystems and
in customizing its application to specilic customer
sites, the presentation extends bevond the product
documentation to explore the deep and distant
corners of the product. Thewealth of examples of
actudd installation and customization expericnces
help communicate how o best use ALE-IN-T on
VAN, DOS PCoand Apple Macintosh computers.

The Third Edition of X WINDOW SYSTEM:
The Complete Reference to Xlib, X Protocol,
ICCCM, XLEFD X Version 11, Release 5

Robert W, Scheifler and James Gettys, 1992,
soltbound. 1000 pages. Order No. EYI802E-DP-ELER
(S9Y9)

Written by the designers ol the N W indow Svstem.
this majorrevision brings clacity 1o both new and
retitined nurteriad and integrates new descriptions
of the features ol Version T Release 50 into one
convenient-to-use volume: This single volume
isin essence atullyintegrated and indexed four-
book reference library ol the MU Consortium's
stundard specifications tfor the N Window Svstem.
Relcase S adds four major components: device-
independent color support. internationalization
SUPPOrL NEW resource manager lunctions, and

-

Further Readings

scalable fonts. Two appendixes on Bitmap Distri-
bution Format and Compound Text Encoding
extend the usefulness of this volume.

MOTIF PROGRAMMING:

The Essentials...and More

Marshall Brain, 1992, softbound, 632 pages,
Order No. EY-J816E-DP-EEB (529.95).

A straightforward and easy-to-understand intro-
duction to Motif application development, this
book will case you into Motif programming as
smoothly and quickly as possible. It starts with
an introduction to event-driven programming
and procceds to discuss three concepts essential
to Motif programming: resources, callbacks, and

containers. Advanced topics will expose the reader

to all of the Motif widgets, the capabilities of the
X and Xtlayers, the X drawing model, and the
process of application design in Motif.

To receive a copy of our latest catalog or further
information on these or other publications from
Digital Press, please write:

Digital Press

Department EEB

1 Burlington Woods Drive
Burlington, MA 01803-4597

Or, you can order a Digital Press book by calling
DECdirect at 800-DIGITAL (800-344-4825). When
ordering be sure to refer to Catalog Code EEB.

80

Vol. 4 No. |

Winter 1992

Digital Technical Journal

— EsoRe0

S —

/N

7

z

Printed 'S.A. EY-J825E-DP/92 05 02 18.0 DBP/NRO Copyright © Digital Equipment Corporation. All Rights Reserved.

L

ISSN 0898496

	Front cover
	Contents
	Editor's Introduction
	Biographies
	Foreword
	An Overview of the PATHWORKS Product Family
	PATHWORKS for VMS File Server
	The Development of an Optimized PATHWORKS Transport Interface
	Design of the PATHWORKS for ULTRIX File Server
	DECnet Transport Architecture
	Microsoft Windows Network Virtual Device Drivers in PATHWORKS for DOS
	eXcursion for Windows: Integrating Two Windowing Systems
	Capacity Modeling of PATHWORKS Client-Server Workloads
	Further Readings
	Back cover

