Product Internationalization

Digital Technical Journal

Digital Equipment Corporation

"IlfilﬂmEE!ID """""""""""""""

DO C

L B e o L e o T Y ol
1
; ! WRITTEN LANGUAGE g = H ,U
/‘\ ! m T T |
S ’/5 ! CHARACTER PLACEMENT m » m ;
7728 ASS) o A
“ [DIACRITICS m o O 1
: 1 = 7z O !
PRESENTATION VARIANTS 1
in | ~o I &
e PeTEXT INPUT 5 - H i
ZA 1
1
, BI-DIRECTIONAL TEXT :o: ey
I
I
i1 NATIONAL CONVENTIONS S !
1 = o * 'y
i DATE FORMATS > o !
1 - > | I
i TIME OF DAY FORMATS AN :
| O g o PU
I NUMBER FORMATS — Z)
1 . .
I CURRENCY FORMATS o Nes|
1 g @ I
! USER INTERFACE ST ,
I i ~
Mmoo, .
"Not chaos-like, together crushed and bruided, @)
But as the world harmoniously confusedt GEOMETRY MANAGEMENT z z 4 'Z
Where order in variety we see, 1 @) [®) I
And where, though all chings differ, all agree’ | M A G E S m N I
» I
»w 0O
| SYMBOLS 0 0
: - [
e e L
1 SO N D S ki
1 - !
irectionality Control 1 FUNCTIONAL DIFFERENCES] :m

*C O R REERGEE

ISO/IEC 10646
Soms Moo 9 BUEESREER

Volume 5 Number 3
Summer 1993

Cover Design

Scripts, symbols, and writing directions

are elements of written communication
that are addressed by product international-
ization, the featured topic in this issue. Like
engineering designs and standards for inter-
nationalization, the graphic design on the
cover provides a framework that accommo-
dates a rich diversity of the world’s written
languages.

The cover was designed by Joe Pozerycki, Jr., of
Digital’s Corporate Design Grou).

Editorial

Jane C. Blake, Managing Editor

Helen L. Patterson, Editor

Kathleen M. Stetson, Editor

Circulation

Catherine M. Phillips, Administrator

Dorothea B. Cassady, Secretary

Production

Terri Autieri, Production Editor

Anne S. Katzeff, Typographer

Peter R. Woodbury, Illustrator

Advisory Board

Samuel H. Fuller, Chairman

Richard W. Beane

Donald Z. Harbert

Richard J. Hollingsworth

Alan G. Nemeth

Jeffrey H. Rudy

Stan Smits

Michael C. Thurk

Gayn B. Winters

The Digital Technical Journal is a refereed journal published quarterly by Digital
Equipment Corporation, 30 Porter Road LJO2/DI0, Littleton, Massachusetts 01460.
Subscriptions to the Journal are $40.00 (non-US. $60) for four issues and $75.00 (non-
US. $115) for eight issues and must be prepaid in U.S. funds. University and college
professors and Ph.D. students in the electrical engineering and computer science
fields receive complimentary subscriptions upon request. Orders, inquiries, and
address changes should be sent to the Digital Technical Journal at the published-by
address. Inquiries can also be sent electronically to DTJ@CRL.DEC.COM. Single copies
and back issues are available for $16.00 each by calling DECdirect at 1-800-DIGITAL
(1-800-344-4825). Recent back issues of the Journal are also available on the Internet
at gatekeeper.dec.com in the directory /pub/DEC/DECinfo/DT].

Digital employees may send subscription orders on the ENET to RDVAX:: JOURNAL.
Orders should include badge number, site location code, and address.

Comments on the content of any paper are welcomed and may be sent to the managing
editor at the published-by or network address.

Copyright © 1993 Digital Equipment Corporation. Copying without fee is permitted
provided that such copies are made for use in educational institutions by faculty mem-
bers and are not distributed for commercial advantage. Abstracting with credit of
Digital Equipment Corporation’s authorship is permitted. All rights reserved.

The information in the Journal is subject to change without notice and should not be
construed as a commitment by Digital Equipment Corporation. Digital Equipment
Corporation assumes no responsibility for any errors that may appear in the Journal.

ISSN 0898-901X
Documentation Number EY-P98GE-DP

The following are trademarks of Digital Equipment Corporation: Alpha AXP, AXP,
CDD/Plus, CDD/Repository, DEC, DEC OSF/1 AXP, DEC Rdb, DECwindows, DECwrite,
Digital, the Digital logo, EDT, OpenVMS, OpenVMS AXP, OpenVMS VAX, TeamRoute,
ULTRIX, VAX, VMS, and VT.

Apple is a registered trademark of Apple Computer, Inc.

AT&T is a registered trademark of American Telephone and Telegraph Company.
Hewlett-Packard is a trademark of Hewlett-Packard Corporation.

[BM is a registered trademark of International Business Machines Corporation.
Intel is a trademark of Intel Corporation.

Lotus 1-2-3 is a registered trademark of Lotus Development Corporation.

Microsoft, MS-DOS, and MS Windows are registered trademarks and Win32 and
Windows NT are trademarks of Microsoft Corporation.

Motif, OSF/Motif, and OSF/1 are registered trademarks and Open Software Foundation
is a trademark of Open Software Foundation, Inc.

Motorola is a registered trademark of Motorola, Inc.

PIC is a trademark of Wang Laboratories, Inc.

PostScriptis a registered trademark of Adobe SystemsInc.

Unicode is a trademark of Unicode, Inc.

UNIX is a registered trademark of UNIX System Laboratories, Inc.

X Window System is a trademark of the Massachusetts Institute of Technology.
X/0pen is a trademark of X/Open Company Limited.

Book production was done by Quantic Communications, Inc.

Contents

6 Foreword

Claude Henri Pesquet
Product Internationalization
8 International Cultural Differences in Software

Timothy G. Greenwood

21 Unmicode: A Universal Character Code
Juirgen Bettels and E Avery Bishop

32 The X/Open Internationalization Model
Wendy Rannenberg and Jurgen Bettels

43 The Ordering of Universal Character Strings
Renc¢ Haentjens

53 International Distributed Systems—
Architectural and Practical Issues
Gayn B. Winters

63 Supporting the Chinese, Japanese, and Korean
Languages in the OpenVMS Operating System
Michael M. T. Yau

80 Character Internationalization in Databases:
A Case Study
Hirotaka Yoshioka and Jim Melton

97 Japanese Input Metbod Independent of Applications

Takahide Honma, Hiroyoshi Baba, and Kuniaki Takizawa

Editor’s Introduction

Jane C. Blake
Managing Editor

Engineering products for international markets is a
multifaceted undertaking, as it entails the adaptation
of computer technology to the unique and varied
ways cultures communicate in written languages.
Papers in this issue describe some of the cultural
and technological challenges to software engineers
and their responses. Topics include conventions of
culture and language, internationalization stan-
dards, and design of products for local markets.

Product internationalization begins with identi-
fying the cultural elements and user expectations
that the software must accommodate. Tim
Greenwood has written a tutorial that provides
insight into the cultural differences and the com-
plexities of written languages as they relate to prod-
uct development. Among the topics he discusses
are scripts and orthography, writing directions, key-
board input methods, conventions for values such
as time, and user interfaces.

As a counterpoint to the complexity of languages
and cultures, industry engineers and organizations
have developed standards that lend simplicity and
uniformity. Unicode, described here by Jirgen
Bettels and Avery Bishop, is a significant interna-
tionalization standard that accommodates many
more complex character sets than does 8-bit ASCIL;
software produced using Unicode character encod-
ing can be localized for any language. The authors
discuss the principles behind the 16-bit encoding
scheme and considerations for application pro-
cessing of Unicode text. They conclude with
approaches for the support of Unicode and refer-
ence the Microsoft Windows NT implementation.

Wendy Rannenberg and Jiirgen Bettels have writ-
ten a paper on another important standard, the
X/Open internationalization model. X/Open sup-
ports multibyte code sets and provides a compre-
hensive set of application interfaces. The authors

o

examine benefits and limitations of the standard,
referencing Digital’s DEC OSF/1 AXP implementation,
and close with proposed changes to the modcl.

René Haentjens’ paper is not about a standard per
se but about the ways in which various culturces
order words and names and the methods used in
computers to emulate this ordering. He examines
the table-driven multilcvel method torordering uni-
versal character strings, its variations and its draw-
backs. The implications of Unicode relative to
ordering are also considered.

The development and adaptation of software for
use in local markets is the common theme of three
papers. Gayn Winters identifies several program-
ming practices for the development of distributed
systems and discusses the benefits of modularity in
systems and in run-time libraries to reduce reengi-
neering effort and costs. However, as Michael Yau
notes in his paper, reengineering is necessary for
systems designed when English was the only lan-
guage supported in computer systems. Michael pre-
sents an overview of the enginecering challenges
encountered and resolved in the creation of local
variants of the OpenVMS operating system to sup-
port the Japanese, Chinese, and Korean languages.
A third paper, written by Hiro Yoshioka and Jim
Mclton, provides a case study of a coengineering
project, i.e., a project in which engineers from the
local environment (or market) join in the product
development. The case references the internation-
alization of the DEC Rdb database (specifically for
Asian markets) utilizing an SQL standard.

The concluding paper focuses on software
designed to facilitate Japanese keyboard input and to
reduce reengineering/localization effort. Takahide
Honma, Hiroyoshi Baba, and Kuniaki Takizawa
review the methods of Japanese keyboard input
and then describe a three-layer, application-
independent software implementation that is
embedded in the operating system and offers users
flexibility in the choice of an input operation.

The editors are grateful to Tim Greenwood, an
architect of Unicode currently working in the
Software Development Tools Group, for his help in
coordinating the development of papers and to
Gayn Wintcrs, Corporate Consulting Engineer.

Note to Internet Users: Recent back issues of
the DT) are now available in ASCII and PostScript for-
mats on gatekeeperdec.com in the /pub/DEC/
DECinfo/DT] directory.

Qmﬂ/&w

Biograpbhies

Hiroyoshi Baba Hiroyoshi Baba is an engineer in the Japanese Input Method
Group in Digital Japan, Research and Development Center. He is currently devel-
oping the Japanese front-end input system on OpenVMS VAX and OpenVMS AXP
and the Japanese language conversion server system. He received a B.S.
(1989) and an M.S. (199)) in electronics engineering from Muroran Institute of
Technology, Japan. He joined Digital in April 1991.

Jurgen Bettels Jiirgen Bettels is an internationalization architect and the stan-
dards manager for the International Systems Engineering Group. Sincc¢ 1986, he
has worked on many internationalization architectures starting with DECwindows.
He participated in the Unicode consortium, ECMA, and X/Open on internation-
alization. He contributed to the ISO/IEC WG2/SC2, whose work merged Unicode
and 150 10646 into a single universal character encoding. Prior to joining Digital,
he was a physicist at the European particle laboratory, CERN. Jiirgen has the
degree of Diplom Physiker (physicist) from the University of Aachen.

F. Avery Bishop Avery Bishop is the program manager for Windows NT/Alpha
internationalization. Prior to this position, he worked in ISE as Digital’s represen-
tative to the Unicode consortium and the ANSI X3L2 technical advisory group on
character encoding. He worked with ISO/IEC WG2/SC2, Unicode, and others in
Digital to merge Unicode and 1SO 10646 into a single universal character encod-
ing. Prior to that, he managed projects at DECwest and worked as the product
management manager for ISE in Japan. Avery has a Ph.D. in electrical engineering
from the University of Utah.

Timothy G. Greenwood Since 1981, Tim Greenwood has held various posi-
tions related to internationalization at Digital. He was the architect for the
Japancse and Chinese versions of DECwindows. This software introduced the
compound string technology that was incorporated into Motif. Tim conceived
of, managed, and wrote much of the software section of the internal version of
the handbook on Producing International Products. He also participated in the
design of international support on the X Window System. Tim is currently
responsible for guiding the introduction of Unicode into Digital.

Biographies

René Haentjens René Haentjens is a software consultant working for both
Digital Consulting Belgium and Corporate Standards and Consortia. He was the
Belgian local engincering manager for two years. Today, René is a member of the
Belgian, the European (CEN), and the 1SO committees on characterscts and inter-
nationalization. He contributed significantly to the ISO/IEC 10646-1:1993 stan-
dard. He has a civil engincering degree (chemistry) from the University of Ghent
and has contributed to publications on compiler portability, on software engi-
neering, and on developing international software and user information.

Takahide Honma A senior software engineer, Takahide Honma leads the
Japancse Input Method Group. He joined Digital in 1985 as a soft ware service
engineer. He has worked on systems such as real-time drivers, nctwork system
(PS.1), and database on VMS and was a consultant to customers. At the same time,
he also took the role of a sales advisory support engineer. Since 1990, he has
been with Research and Development in Japan and has worked on the Japanese
input method. He has an M.S (1983) in high-energy physics from Kyoto
University and is a member of the Physics Society of Japan.

Jim Melton A consulting engineer with Databasc Systems, Jim Melton repre-
sents Digital to the ANSI X3H2 Technical Committee for Database. He represents
the United States to the ISO/IECJTC1/SC21/WG 3 Working Group for Database. He
edited the SQL-92 standard and continues to edit the emerging SQL3 standard.
Jim also represents Digital to the X/Open Data Management Working Group and
to the SQL Access Group. Jim is the author of Understanding the New SQL:
A Complete Guide, published in 1992, and is a regular columnist (SQL Update)
for Database Prograinining & Design.

Wendy Rannenberg Principal software engineer Wendy Rannenberg man-
ages the UNIX Software Group's internationalization tcam. She is responsible for
the delivery of Digital’s internationalization technology on both the ULTRIX and
the DEC OSE/1 AXP platforms. Prior to joining Digital in 1988, she held engineer-
ing positions with Lockheed Sanders Associates and the Naval Underwater
Systems Center. Wendy holds a B.S. (1980) in engineering from the University of
Connecticut at Storrs and is a member of 1EEE, SWE, and ACM. She has written
or contributed to numerous technical publications.

Kuniaki Takizawa Kuniaki Takizawa is an engineer with Digital Japan,
Research and Development Center and is a member of the Japanese Input
Method Group. lle joined Digital in April 1991 and is currently developing and
porting the henkan module and the input method library (IMLIB) on OpenVvMS,
ULTRIX, and OSF/1. e graduated from the University of Electronic Communi-
cations (Denki-Tsushin University) in Japan in 1991. His spcciality arca was the
structure of operating systems.

Gayn B. Winters Corporate consulting engineer Gayn Winters has 25 years’
experience developing compilers, operating systems, distributed systems, and
PCsoftware and hardware. He joined Digital in 1984 and managcd the DECmate,
Rainbow, VAXmate, and PCintegration architecture. He was appointed Technical
Director for Software in 1989 and contributes to the Corporate software strat-
egy. From 1990 to 1992, Gayn led the internationalization systems architecture
effort and is on the Board of Directors for Unicode, Inc. He has a BS. from the
University of California at Berkeley and a Ph.D. from MIT.

Michael M. T. Yau Michael Yau is a principal software engineer in the
International Systems Engineering Group. Since 1984, he has worked on Asian
language support in the OpenVMS operating system. He led and managed the
development team in Hong Kong from 1986 to 1991. Currently, he provides archi-
tecture and product internationalization support to US. engineering groups.
Prior to joining Digital, Michael worked for GEC Marconi Avionics (U.K.). Michael
holds a B.Sc. (Hons) in mathematics and an M.Sc. in communication engineering
from the Imperial College of Science and Technology, University of London.

Hirotaka Yoshioka A senior software enginecr in the International Softwarc¢
Engineering Group, Hiro Yoshioka is the project leader of the CDD/Repository/
Japancse. He is a member of the internationalization special committee of I'1'SC:)
(Information Technology Standards Commission of Japan) and ISO/IEC JTCl
SC22/W 20 internationalization. During the past nine years, he has designed and
implemented the Japanese COBOL, the Japanese COBOL generator, and the inter-
nationalized DEC Rdb. Hiro joined Digital in 1984, after receiving an M.S. in engi-
neering from Keio University, Yokohama.

Foreword

Claude Henri Pesquet
Engineering Group Manager,
International Systems
Enginceering

In the late 1970s, Digital began to ship its first office
products outside the U.S. We realized then that it
was no longer an option to provide users with the
ability to input, view, edit, and print foreign lan-
guage text; it was instead a necessity, as well as a
passport for Digital into world markets.

The foreign-language requirement came as a
shock to the application developers who had been
trained in the late 1960s, at a time when the U.S.
English-speaking market represented more than 70
percent of the total worldwide information tech-
nology market. Today’s reality is quite different.
The English-speaking IT market is below 40 per-
cent, and trends indicate that it will continue to
decline. This is not surprising, because only 841
percent of the world’s population is native English
speaking. Moreover, eachyear the commoditization
of computers lowers the entry point for the acquisi-
tion of computer products; consequently the mar-
ket is expanding to encompass a much broader
socioeconomic community. Further, starting in the
1980s, the creation of global markets—for labor,
materials, intellectual talent, financing, and distri-
bution channels—has forced businesses to continu-
ally reach outside their domestic markets.
Government mandates also have an impact, requir-
ing that products sold within country boundaries
have local-language capability. Together these fac-
tors will increase the demand for and requirements
of international products—products that will pro-
vide users with linguistic choices.

In recent years, Digital has broadened its market
focus to include not only the scientific/technical,
mainly English-speaking markets, but also com-
mercial markets—a large market comprising many

languages. To serve these markets well, we are com-
pelled to adopt a strategy for the internationaliza-
tion” of our products.

The strategy, i.e., to devclop products that
“speak” the local language, has evolved from a fas-
tidious reengineering of a product after the fact Lo
an architectural definition that ensures products
arc designed originally to meet local-language
requirements. Digital had three goals:

= Reduce development costs.
= Shorten thetime to market.
= Increase product quality.

The cost of reengineering products that were
designed based upon a North American paradigm is
similar to the cost of maintaining an application
that was designed without regard to future main-
tenance. Such costs could meet, if not exceed, the
original product development cost. This was dis-
couraging, because the markets outside the U.S.
were smaller and emerging; producing the local
product compared in cost to producing the original
US. product. It became obvious that it was too
expensive to continually rebuild products that sold
only to a small market.

Local-language products were late to market
when compared with availability of the same prod-
ucts in the U.S. This prescnted a twofold problem. It
denied our multinational customers the capability
of installing products and applications simul-
taneously in their worldwide operations. Further,
product launches, training, selling, support, and
retirement had to be addressed one country at a
time because specific local-language components
were not available simultaneously.

In addressing short-term “surface” issues, we had
utilized the brute force of reengineering to pro-
duce one language version at a time. As a result, we
delayed addressing the “deep” quality issue of origi-
nally designing and building into our products the
internationalization features that would allow for
easy adaptation to any language without modifica-
tion of a product’s core.

A vision on how to address the internationaliza-
tion of products was developed by a worldwide
team of architects led by Gayn Winters. The major-
ity of this team was located outside the (.S, and had

“The term internationalization as itis uscd within the context
of this Journal includes both the technologics and the pro-
cesses applied to enable a product to meet the need of any
local-linguage market without requiring modification of the
base functionality of the product.

been closely involved in Digital’s reengineering
efforts for many years. The team'’s prime motivation
was to eliminate the need for reengineering. The
vision they developed is one in which all Digital
integrated systems can process electronic informa-
tion containing multiple languages and character
sets, and can satisfy end-user linguistic preferences.
An inherent part of this vision is to make all systems
available simultaneously worldwide.

One of the major difficulties in implementing the
vision was that internationalization was not aimed
at specific products, rather it was a pervasive
attribute required across systems. For product
development groups trained to develop compo-
nents, this represented a difficult change in mind-
set. The implementation also required a huge
paradigm shift—

From one character To one character

and... and. ..
One input method Many input methods
One cell Multiple cells
One collation point Several collation points
Onc geometry Many geometries
Alphabet Ideograms
“Frozen” alphabet User-defined characters

The paradigm shift led to a redefinition of the
elements to be incorporated in the basic design
of new products. The strategy from a product
perspective was to start with the base system
(CPU, peripherals, network, and operating system),
and then move to the application side. From an

engineering-resource perspective, we would start
with parallel internationalization development,
and then inject internationalization expertise into
the original product development group. The strat-
egy from a process perspective was to customize
code for specific countrics, and then roll back the
country-specific code into the original product
code base and continue future development from
this unique code base. The implementation has
resulted in major achievements, for example, the
simultaneous shipment of products to which this
approach was applied.

To illustrate our progress, the latest version of
Rdb (relational database application) was devel-
oped with the injection of internationalization
expertise. The approach resulted in one common
code base and achieved worldwide simultaneous
shipment.

Many challenges remain. Standards have to be
defined and implemented in areas such as naming
conventions, user profiles, and character attributes.
Emerging tecchnologicssuch as object-oriented soft-
ware and multimedia nced to be addressed. And
real-time multilinguality (the simultaneous transla-
tion from one language to another) must be tackled.

This issue of the Journal provides a broad sam-
pling of our product internationalization efforts—
from the concept of cultural differences to the
specific internationalization of our Rdb product.
The papers herein represent only a few of the hun-
dreds of projects dedicated to the internationaliza-
tion of Digital’s products.

International Cultural

Timothy G. Greenwood |

Differences in Software

Throughout the world, computer users approach a computer system with a specific
setof cultural requirements. In all cultures, they expect computer systems to accom-
modate their needs. A major part of interaction with computers occurs through
written language. Cultural requirements, particularly written languages, influ-
ence the way computer systems must operate. Cultural differences concerning
national conventions for the presentation of date, time, and number and user inter-
Sface design for the components of images, color, sound, and the overall layout of
the screen also affect the development of computer technology. Successful computer
systems must respond to the multicultural needs of users.

Not chaos-like, together crushed and bruised,
But, as the world harmoniously confuscd:
Where order in variety we sce,
And where, though all things ditter, all agree.
— Alexander Pope

In the first years of the computer age, users adapted
themselves to the requirements of the computer.
They had to learn the language of the machine to
interact with it. Now thc¢ computer is part of daily
life, a tool to complete a task. Computer systems
must be adapted to the needs of their users.
Computer users approach a computer system with
a specific set of cultural requirements. Successful
systems respond to these requirements.

International Adaptation of

Computer Systems

Each nation has developed its own culture, and
some areas of the world share a cultural back-
ground. Adaptation of computer systems to differ-
ent cultures uses processes known as localization
and internationalization.

Localization is the process of changing products
to suit users from different cultural backgrounds.
Localization is achieved by taking the source code
for a product developed for one country and modify-
ing the source code and product to satisfy the needs
of other countries. Often teams of developers in dif-
ferent countries are needed to adapt products. If
the original product is not built with a view toward
being localized, this can be a very expensive and
time-consuming process. There is the direct cost of

multiple development teams modifying the source
code of the original product. This process also pro-
duces multiple code bases, which makes future
development and maintenance more complex.

Building software that can be localized with min-
imal software changes is called internationaliza-
tion, often abbreviated to T18N (the letter I followed
by 18 letters and the letter N). The basis of interna-
tionalization is to identify those cultural elements
that the software must accommodate and to sim-
plify the task of adapting the product. This paper
describes a set of these cultural elements. The
remainder of this issue of the Digital Technical
Journal details specific aspects of building interna-
tional software.

Cultural Differences

Language is the most obvious cultural difference
among people. Written language is an important
method of communication with computers. This
paper examines written languages and their repre-
sentation in computer systems. It also presents cul-
tural differences concerning national conventions
for the presentation of date, time, and number and
user interface design for the components ofimages,
color, sound, and the overall layout of the screen.
The base functions of a product may change in
response to different needs around the world, and
some examples of these differences are illustrated.
Finally, with a look to the future, the paper presents
deeper cultural differences that are only beginning
to be represented in software.

Vol.5 No.3 Swmmer 1993 Digital Technical Journal

International Cultural Differences in Software

Written Language

The written representation of spoken language
requires a script and an orthography. ‘The script is
the set of symbols that represents the sound or
meaning of components of the language. The
orthography consists of the rules of spelling and
pronunciation. Specific spelling and pronunciation
rules may differ among locations or communities;
for example, the American English orthography dif-
fers from the British English orthography. A script
may be tied to a specific language, for example,
Korean Hangul, but frequently a script can repre-
sent several languages. French and Italian both use
the Latin script.

A written language may be broadly categorized
into either an ideographic, a syllabic, or an alpha-
betic writing system. The category is determined
by examining the relation between the symbols
in the script and the unit of sound or meaning
represented.

In writing systems based on ideograms, every
symbol has a specific meaning that is not related to
its pronunciation. The ideograms imported from
Chinese, and used in Chinese, Japanese, and South
Korean writing provide examples in current use.!
Thus A represents a man or person, even though
it is pronounced ren in Chinese, zin in Japanese,
and 7n in Korean.? “3” represents “three” even
though it is pronounced tatu in Swahili and ¢rwa in
French. Ideographic writing systems typically con-
tain several thousand discrete symbols with a sub-
set of approximately 2,000 symbols in frequent use.
The users of this writing system continue to
develop new symbols.

In the syllabic writing systems, each symbol
represents a syllable. X in Japanese katakana
denotes the ma sound. There is a wide variation in
the number of discrete symbols in a syllabic sys-
tem. Japanese kana uses some 47 symbols; the
writing of the Yi people (a minority nationality
scattered through provinces in Southwest China)
uses a standardized syllabary of 819 symbols.?

In alphabetic systems, each symbol or letter
approximately matches a phoneme (the smallest
unit of speech distinguishing meaning). Thus M
in Latin script, ?3 in Hebrew, and U'in Armenian
denote the m sound. Most alphabets have from 30
to 50 discrete letters.® The match between
phonemes and letters is not exact, especially in
English, which has about 40 phoncmes.> Some
phonemes are represented by letter sequences,
such as the ¢h in thank.

No written language uses a pure set of either
alphabetic, syllabic, or ideographic symbols; each
does use one set of symbols predominantly. The
Latin script is primarily alphabetic, but numerals
and certain signs such as & are ideograms.® Other
languages use a more ¢ven mix. South Korean com-
bines the native Hangul alphabet with Hanja, the
Korcan name for their ideographic characters.
Japancsc combines the Ratakana and biragana syl-
labaries (collectively called kana) with the ideo-
graphic characters called kanji in Japanese. Written
Japanese, especially technical and advertising mate-
rial, also often uses the Latin alphabct, called romaji.

Character Placement In most European lan-
guages, basic symbols are written in a linear stream
with each character placed on a baseline. In other
writing systems, for example, Korean Hangul, the
elements do not follow this linear layout. Rather
than evolving piecemeal like most writing systems,
Hangul is the result of deliberate, linguistically
informed planning. It has been callcd “...probably
the most remarkable writing system ever invented."”
Korean uses an alphabet of 14 consonants and 10
vowels. These letters, called jamo, are blocked into
syllable clusters. If the same technique werce applied
to English, cat might be written ;. Figure 1 shows
the Korean Hangul alphabet, and Figure 2 shows
the jamo blocked into syllable clusters.

Thai also uses an alphabet and is written with the
symbols arranged in a nonlinear fashion. Thai is a
tonal language; different tones distinguish words
that would otherwis¢ be homonyms. Thai words
consist of consonants, vowcls, and tone marks.
Each component is an atomic unit of the language.
A vowel is written in front of, above, below, or
behind the consonant to which it refers. A tone
mark, if present, is usually placed above the conso-
nant or above the upper vowel. Thai potentially has
symbols at four levels, as shown in Figure 3. Level

7ZLLCZ0HA
0O XA RXRIJFEILS

CONSONANTS

VOWELS]_ }:
T —

1 4+
l

Figure 1 Korean Hangul Consonant and

Vowel Signs

Digital Tecbnical Journal Vol. 5 No. 3 Sununer 1993

9

Product Internationalization

of e nF by M4, ARE ol abdtch o] Axle Y AR AR oo, 2Fa) e

utz) k7| 9ja MAsl FCC Rules, Part 15, Subpart Jo} 423si Class A #FE Ao ik A3

AbebE Fdehs sl AZsch 3 Alodold o A F AHgsi,

Ash wbsl7h Salg 4 glo

o, 228 7ol AHEake A3t el AAskE o 3F zaF FH#of gt

Figure 2 Korean Ilangul Text Showing Blocking of Jamo

LEVEL 1. TONE MARK

e

LEVEL 2. VOWEL

|
= ,

LEVEL 3. CONSONANT OR VOWEL

LEVEL 4. VOWEL

Figure 3

one is an optional tone mark. Level two is an
optional vowel. Level three is either a consonant or
a vowel preceding or following a consonant. Level
four is another optional vowel. A consonant never
has a vowel at both level two and level four.

Some level-three consonants have part of their
glyph images rendered in another level. They either
dip into level four or rise into level two. The last let-
ter (yo ying) in Figure 3 is a level-three consonant,
butit has a small (separate) portion written below
the baseline. When this letter is written, this small
portion is written at level four. When this letter is
followed by a true level-four vowel, the vowel is
shown instead of this portion.

In Figure 3, both tone marks are shown at level
one to aid understanding of the script. In high-
quality printing of Thai, if a cell does not have a
level-two vowel, then the tone mark falls down to

PP 2% 103N T"’D}_{U D"-!Un

9Py LR EIYEY

2

Thai Script

be positioned directly above the consonant; how-
ever, it is also currently acceptable for all tone
marks to be physically positioned atlevel one. Thai
mechanical typewriters position all tone marks at
level one.

Diacritics and Vowels In Arabic and Hebrew
alphabets, vowels are indicated by placing vowel
points above, below, or beside the letter. (Arabic
also uses the consonant letters alif, ya, and waw to
represent the long vowels a, i, and u.) Vowels are
normally used only in religious text and in teaching
materials for people learning to read the language;
in other texts, vowels are inferred by the reader.
Since vowel points are used, written Hebrew with
vowels is called pointed. Figure 4 shows pointed
Hebrew from a children’s comic and the same text
with the vowels removed.

o5UN

yon ox 3,0 ono &Y .5rvh nryYy pwnnn vpirs?
V0T T QY YWY T
VT2 K¥: R

pv xacon PIART DT DDLU

yon ox " ,%rv ane XM 5ub nrsh ponnn vps’
JIOVAN DY QY PY M R
7177 ’¥* X7 P

Figure 4 Pointed and Unpointed Hebrew

10 Vol. 5 No.3 Swmmmer 1993 Digital Technical Journal

International Cultural Differences in Software

Other Symnbols Most languages written with Latin
letters have diacritical marks on some letters. In
some cases, the use of a diacritic provides a stress
or pronunciation guideline, as in the English word
cobperate. Removing the diacritic docs not change
the meaning of the word. In other languages, a mark
that appears to be a diacritic is a fundamental part
of the letter. The Danish letter 4 is a separate letter
in the alphabet and is not a variant of . In German,
three vowels have umlauts and are separate letters
in the alphabet. The deletion of an umlaut can
change the definition of a word; for example,
schweil means hot or humid, and schwul means
homosexual.

Presentation Variants The characters in the
Arabic writing systems change form, depending on
whether they are the first, last, or middle character
of a word, or if they stand alone. Note that the
abstract characters themselves do not change, only
the glyph image. Figure 5, adapted from Nakanishi,
shows the presentation variants of Arabic letters.®

Writing Direction

In English and many other writing systems, the let-
ters are written from left to right, with lines pro-
gressing from top to bottom. Japanese, Chinese,
and Korean may also be written in this form but are
traditionally written vertically. The characters flow
from the top of the page to the bottom, with lines
advancing from right to left. The pages are ordered
in the opposite direction to that used for English.
Mongolian is also written vertically, but the
columns of text advance from left to right.
Consequently, pages of Mongolian text are ordered
in the same direction as in English.

Figure 6 shows a portion of a newspaper printed
in Taiwan. The newspaper exhibits many styles of
format. Headlincs may run horizontally from right
to left, or left to right; the textof the article may run
vertically; and advertisements and tables may run
horizontally from left to right.

In Japanese writing, Latin characters (romaji)
are interspersed with vertical kanji (Han script)
characters. Romaji may be presented with each
character in a horizontal orientation running verti-
cally down, or they may be presented vertically,
with each character rotated by 90 degrees. In addi-
tion, if one, two, or three Latin characters are
mixed with vertical Han script characters, they may
be presented horizontally in the vertical stream.
Figure 7 shows mixed characters in a Japanese text.

INDEPEN-
DENT
FORM

¢ -C

(-

Naa R

v C =G L. b tr(g(\ G Q@ o o

(Y

S

INITIAL MEDIAL FINAL PHONETIC

FORM VALUE

L

L

e

(S VN ST SR T R O ol R

v

Jd

J

FORM

T

N

LA |

F kbbb

= N B b s

¥

-~

FORM

{

(.

P e Lo FRFSE S GG vy ek

G

¢

b

kh

dh

rl

> D S

~—

NUMERALS Arabic figures are written from right
to left, but the figure written to the left shows the

higher value:

Figure 5 Arabic Presentation Forms

v

Digital Technical Journal Vol. 5 No.3 Swmmer 1993

11

TEXT READS RIGHTTO LEFT

NUMBER AND PERCENT READ LEFT TO RIGHT

Product Internationalization

B

RITBES

=]
B

IITBES . 9.38%

)

&

5.43%

L0) CRGEes OQEEE:
HKOFEUDRERE S8 .- s
B+ e SRRNEE | WM< i
T - BREOETRER BE - e
BB - SR - B e
WNEBE - ERCE<H BRECM <M
EFROEDEE-R - W

RAEMRJoRF .
OB A R R I
COFFI I R -
RS RGN
1= - mmE kN
Hi--Ei - mn s
CHUEEe S - K F
VIR T SR
o %

MR - wEREEEE

HEFROE - o -2Em S

N
LEe) e R

BEFABAETIRAM-NE

///;UCLA?ﬁM&#G&N%.v:/

VERTICALLY IN LINE

LATIN TEXT

MAIN CONTENTS TEXT READS VERTICALLY
TOP TO BOTTOM, COLUMNS ADVANCING

RIGHT TO LEFT

LATIN TEXT ROTATED
90 DEGREES CLOCKWISE

Figure 6 Tuiwdanese News paper

TEXT READS LEFT TO RIGHT
PRESENTED VERTICALLY

ARABIC NUMBERS

2° SOV RY URTK—
NN
MO o Ny -N—

Ko

AMME R0 KANKAIN - [D
DR AINN L3R KR
2) DEE SN~ &~ T The
Smothers Brothers Comedy Hour;
H o —~ PO R R
L RO O L o m
ERR=N L O b R—Y
NE—KIWR NN -2 OERMR
ENSPANIN TP 4y

THREERUIRPHOR—~o
ol A Y NYKE D KOL
MAMNE o0 | BORMIEve-u
Hie0® Lon R HR-uNs O o Lo
LME DT RE 2 SER A®
- S NL - - SRR SIS SN SV
S oLl | BURLH
YORRKRTRE O IOPRRT PR
KOS O INT-R
—doooBEHNY wERVPHK

A NONO - SR SRR N
— R LRSI e

R &Y | EERLoNeTENT

WERQSHEN R OKE L HED
2 SOHE L 0 W

a~owool KINT =T+ P —
INT N KN NN - 1 D
9 KECREUK O L WO

UANR - R NN T QLM
0% NXAR<EY N
LErowmpu 05

B Tr~ e NR— N (R
(=N oK) BER IS RENG
mEY RN KLU LR
d—m—A e Ny d —2 QgL
HACKL SiLhiskkAOE &Awm
Lo o RO S RREERRBEN W
OF A RWDEE T WOKE
2 O w2 N u e B AN R0
OB L 3O UEI Qe

PRESENTED HORIZONTALLY

ARABIC NUMBERS

T N~ NN, 2y
2R QO IIUN - KR R
LRG0 EOw O Y QR
QR S S AT AN - —
KOS 3 DK O
SPHBL RS
KIRY =N p—h¥ N (FenZ)
RO (N KAT AT ARV C

PARENTHESIS ROTATED IN

VERTICAL TEXT

Sununer 1993 Digital Technical Journal

N 3

35

Vol.

Figure 7 Japanese Text Showing Latin Characters Mixed with Kanji

International Cultural Differences in Software

Semitic language scripts (e.g., Hebrew and
Arabic) are written horizontally from right to left,
with lines advancing from top to bottom, but any
numbers using Arabic numerals are written left to
right? Any fragments of text written in the Latin
script are also presented left to right. This method
leads to nesting segments of reversed writing direc-
tion as shown in Figure 8 The text in this figure
reads “Attention: Kalanit (1984) Tel-Aviv, ISRAEL;”
where “Kalanit (1984)” isa company name. Figure 9
is another example of combining left-to-right and
right-to-left text. It shows a portion of the contents
page from the EL AL airline magazine.

Text Input

The following section discusses techniques for
addressing cultural differences in computer key-
board input.

Alphabetic writing systems typically have no
more than 50 discrete symbols. Computer key-
boards contain approximately 48 keys with sym-
bols from the writing system inscribed. The
depression of a key produces a code from the key-
board that is translated into a character coding
according to some predefined coding. Input of a
character not represented directly on the keyboard
requires depression of several keys. For example, in
terminals from Digital, the @ character is input on
non-German keyboards by pressing “Compose ss”.

Latin keyboards typically have two possible charac-
ters available from each alphabetic key: lowercase
letters are displayed by depressing the key alone,
and uppercase letters are produced by depressing a
shift modifier or a locking shift and the letter key.

Some keyboards have four levels, with three or
four characters available from each key. Figure 10
shows the Arabic keyboard from Digital and the
Khmer keyboard from Apple Computer. The user
switches into the additional two groups of charac-
ters with an additional modifier or shift key. Note
that the Arabic keyboard uses the additional group
to support Latin characters as well as Arabic, but
the Khmer keyboard uses all four groups for the
Khmer characters only.® A four-group keyboard is
now a national standard in Germany."

The katakana and hiragana syllabaries have
approximately 5@ characters each. These can be
input either directly from the kcyboard or through
a mapping of the syllable typed with the phoneti-
cally equivalent Latin characters. For example, the
character X (mma) can be input either by typing
the ~ keyon a Japanese keyboard, or by typing
m and a and using an input method to convert to
.

Although some early keyboards had many ranks
of individual keys, input of ideographic characters
from modern keyboards always requires a multiple-
stroke input method, with some user interaction.

Attention; 2°IN-57 (1984) 1393 ISRAEL

LEFTTO RIGHT

RIGHT-TO-LEFT SEGMENT

>
LEFTTORIGHT

—
(1984) IS A LEFT-TO-RIGHT
SEGMENT NESTED IN A

RIGHT-TO-LEFT SEGMENT

Figure 8 Nested Bidirectional Text

» EL AL News
» EL AL Route Maps
» EL AL Services

. 86
. 48
. S0

46 Y YN mYIn <«
48 o 5y YN - o Mo «
52 L Yy AN MW«

Figure 9 Combined Direction Text

Digital Technical Journal Vol .5 No.3 Sunumer [993

13

Product Internationalization

| =
1

Py sy gr—, (s ~— — [— =l - -,_ATF_\/_/,
nEEEEEEREEEEE
=[] . 3l [F2l0 1 [3 i Antun
=] e [] ol E [[L]
— — T — _‘ g : A e _‘
A EEREEREE BleREU
T*T———,—A]’_, €51 ik = T< 7?73 L
(1]))
. sl el

[w 9 | bjm—-mmb qa ¢ ¢l[e (|flo)][- TI[- +|[Backspace
wlioe|2 olf3 o|[4 1|5 o6 7{Ve‘q°ox+_&
Tab ﬁl::c?s*ﬁsm“ "::%j']ﬂﬁQJE']WJJ
wJ EAIL fla oL . oA E e 3
Copslock 117 Aoy T he afs wlfs #flw sam|r sflaegf; : Retura
A P P S P PR O P]]
Shift ¥ wifs wle gl offv affs mffs Y ERPY (VAR BN
o e Jual. Md afla mfa [#9 D"
Option)| Command Eater Option

Figure 10 Arabic Keyboard (above) and Kbmmer Keyboard

Both Japanese and Korean have phonetic writing
systems. Users of these languages primarily use
phonetic methods to input ideographic characters.
The Chinese-language user has many different
input methods; these are based on phonetic input
or on strokes orshapes in the character. Almost all
of these methods display a list of possible candi-
dates as a result of the string input, and the user
selects the appropriate candidate. The implementa-
tion of Japanese input methods is detailcd in a sepa-
rate paper in this issue of the Journal.'?

Bidirectional Text

Hebrew and Arabic user interfaces have an addi-
tional level of difficulty. As discussed earlicr, the
text is bidirectional; the primary writing direction

PARKING NO

progresses from right to left and includes left-
to-right segments of numbers and non-Hebrew or
non-Arabic text. As shown in Figure 8, these scg-
ments can nest. The order in which to read bidirec-
tional text can be ambiguous and can depend on
the semantics of the text. Figure 11 duplicates the
information on a pair of signs displayed at parking
lots in Tel-Aviv. Urban lcgend has it that at least one
parking ticket was dismissed by the court on the
argument that the sign indicated that parking was
not allowed from 5:00 p.m. to 9:00 a.m.

To some extent the correct direction can be
assigned automatically. Hebrew and Arabic charac-
ters have an implicit direction of right to left, and
Latin text has an implicit left-to-right direction. Thus
an output method can Jay out simple combinations

1IN PR

1790-09% mywn 3

N PR

090170 MyWwn 3

(THE HOURS)

Figure 11

BETWEEN

“No Parking” Signs in Tel-Aviv

14

Vol. 5 No.3 Swmmer 1993 Digital Technical Journal

International Cultural Differences in Software

of bidirectional text correctly. Beyond these char-
acters, direction can be ambiguous. Punctuation
marks are common to both Hebrew and Latin text.
Thus a period or comma or space has no implicit
direction; the software must wait for the next char-
acter to determine the direction of the segment. In
more complex cases such as the nested directions
shown in Figure 8, direction attributes must be
explicitly assigned to the segments.8 As discussed
in the paper on Unicode in this issue, the Unicode
and ISO 10646 characters sets do include a rich set
of directional markers. "

Insertion of text should be performed in the way
the user finds most convenient, which is not neces-
sarily in accordance with the “correct” directional
order of a segment. If entering a two-digit number
in the “common” direction requires too many oper-
ations, or if the user was trained on a manual type-
writer, most users would use the easiest typing
order, i.e., entering the least-significant digit first
and the most-significant digit second. “Smart” soft-
ware, which puts the digits in the supposedly cor-
rect order, is not doing this user a service.

National Conventions

Various entities such as date, time, and numeric val-
ues can be presented differently. Such presentation
differences develop both from national and from
personal or company styles. These presentation
differences are not only tied to different writing sys-
tems. For example, dates are presented differently
in the United States and in England.

Date Formats

The ninth day of October 1990 is written 9/10/90 in
Europe but 10/9/90 in the United States. The order
of the day and month numerals is well defined fora
particular culture, but there are no overall formats
for the separator used, or indeed for the general
style. The separator may be a slash, hyphen, colon,
space, or another symbol, according to policy or
personal preference. The style may be numeric
date as shown or the name of the month may be
spelled out, and the year may be two or four digits.

In Japan, dates are based on the reign of the
emperor. As shown in Figure 12, 1990 was the sec-
ond year of Heisei, the reign of the current
emperor. (The first and last years of two eras may
coincide. Showa, the previous era, ended January 7,
1989, and Heisei started on January 8, 1989.) This
date format is routinely used in business in Japan.
The Western date formats are also used, so a date

FR_F+ANLE
SN N

HEISEI 2 YEAR 10 MONTH 9 DAY

Figure 12 Japanese Date Format

parsing program should be able to process both
formats.

Time-of-day Formats

Similarly, time-of-day formats vary according to per-
sonal and, to some extent, national preference.
Possible time formats include

915am 09:15 0915 09:15:36 09 15 09h15

Time-zone abbreviations also change around the
world. Two or more different abbreviations may
indicate the same time zone. Eastern Standard Time
(EST) is a US-specific time-zone indicator. This
zone is called HNE (Heure Normale de I'Est) in
French-speaking Canada. Central European Time is
known as HEC by the French-speaking populations
and as MEZ by German speakers. The same time-
zone abbreviation may stand for different time
zones. AST is used for both Alaska Standard Time
and Atlantic Standard Time, which are five hours
apart. Time-zone abbreviations are not standardized
and may change. Time zones are not all at one-hour
intervals. Some countries have time zones at a
30-minute difference from a neighboring zone.
Certain towns in Islamic countries use solar time
and thus can have time differences of several min-
utes between towns within one time zone.

Number Formats

The separators used with numerals to express
quantities vary as part of national and personal
preferences. In the United Kingdom and the United
States, the comma is a thousands separator, and the
period is a decimal separator. In continental
Europe, the opposite is true. Separators include

1,23456 1.234,56 123456 123456
1’23456 1,23456

Numbers written in Japanese or Chinese using
Chinese ideograms sometimes include the unit indi-
cator, as in the number 28 —_t+AN (“two”,“ten”,
“eight”) and sometimes omit it — /\ .

Positive and negative indicators differ. The plus
and minus signs may be used before or after the
number. In accounting, negative numbers are usu-

ally enclosed in parentheses.

Digital Technical Journal Vol.5 No.3 Summer 1993

15

Product Internationalization

Currency Formats

In currency formats, the currency symbol may be
one or several characters and may be placed before
or at the end of the number, or used instcad of the
decimal point. Some examples are: OS 2,50
(Austria); 2,50 $ (French-speaking Canada); 2$50
(Portugal); and $2.50 (United States).

User Interface

As the point of contact between the user and the
machine, the user interface is an obvious area for
potential clashes of culture between the designer
and therecipient. The interface must be localized to
fit the cultural expectations of the end user." The
interface designer must be aware of issues of geome-
try management, images, symbols, color, and sound.

Geomeltry Management
Graphical interfaces in English use menu bars
aligned at the left, with cascading menus falling
from left to right. Menus in Hcbrew and Arabic cas-
cade from right to left. Figure 13 shows a menu
from the Hebrew version of DECwindows XUI.
Although Japanese and Chinese are traditionally
read from top to bottom with columns advancing
from right to left, most technical material is pre-
sented with the same flow as English has. Conse-
quently, user interfaces have the same left-to-right
flow as English. This may be considered an aspect
of new technology setting new cultural norms.
Japanese and Chinese do present some geometry
management challenges. A word processor for
English uses the right scroll bar to advance from

page to page. The analogy is from writing on a long
scroll of paper, which is cut into pages. For a
Japanese word processor, which enables the uscr to
type in the traditional top-to-bottom orientation,
does the bottom scroll bar control page advance by
sliding the selection to the left? There is no one cor-
rect answer. A designer can keep consistent with
the traditional horizontal scroll or with word pro-
cessors for Latin-based writing systems.

Images

Some designers may consider that using images
instead of text creates an international, culturally
neutral product that requires no localization. This
is only the case if the image is entirely abstract and
chosen to be equally foreign to all cultures. This
may meet the requirements of internationalization,
but at the expense of good user interface design.

Most images are chosen to provide a cultural
mnemonic to the action. This link may have little
meaning in another culture. The rural mailbox
image @ chosen for certain electronic mail sys-
tems is a good example. This i mage is unknown out-
side the United States, and some American city
dwellers are unfamiliar with it as well. The conven-
tion of raising the flag on the mailbox to indicate
that new mail has arrived is not common through-
out American rural communities. It can instead
indicate the presence of outgoing mail.

In addition, a graphic may be a play on words that
will not translate. One personal computer product
uses a musical note to indicate that a written note is
associated with anitem in its database.

NDRNN EeALE NI'YDIX N3y Y7

P
ar

S

<1 nnswp
| '7T1A

no'zan
NV71N-"1V)

7 o I

Figure 13 Hebrew DECwindows XUI

16

Vol.5 No.3 Summer 1993 Digital Techuical Journal

International Cultural Differences in Software

Symbols

Symbols commonly used in one culture may be mis-
interpreted by someone from another culture. For
example, the cross is often used to indicate
prohibition. However, in Egypt it does not have
this connotation.® Designers should allow for
the replacement of selection symbols such as
ticks (checkmarks) and crosses found in many user
interfaces.

[talic Bold

Color

The significance of color varies greatly across
cultures. Table 1, taken from Russo and Boor, gives
the ideas associated with colors in six cultures.!”
Forexample,red meansdangerin the United States,
but it has the connotation of life and creativity in
India. Garland found that using a red “X" as a pro-
hibitive symbol in Egyptian pictures was not effec-
tive because the color red is not associated with
forbiddance, and the “X” is not understood as
prohibitive.'¢

Sound

In the book Global Software, Dave Taylor relates
that when Lotus localized its 1-2-3 spreadsheet
for use in Japan, the developers had to remove
all beeps from the program.'® Japanese users, typi-
cally seated much closer together than their
Western counterparts, did not appreciate the
computer broadcasting to their colleagues every
time they made an error. Since beeps can be irritat-

Table 1 Significance of Color across Cultures

ing in open offices in all cultures, well-designed
systems allow users to eliminate them or modify
the volume.

Functional Differences in Software

Much of this paper has covered areas where the
form of the information must change for different
cultures. The software may also require functional
changes for different cultures. Applications that
manipulate text provide a set of operations linked
to the nature of both the writing system and the
code set. We have seen that typing Japanese and
Chinese requires an indirect input method.
Applications using the Latin script provide a user
interface to an operation to change the case of
a character. This operation is not applicable to
Japanese, but a Japanese word processor has an
operation to convert from Ratakana to hiragana.

A delete operation on a Latin letter deletes both
the letter and the rectangular cell, a piece of the
screen real estate, causing the adjacent text to close
up. With the cursor to the right of a Korean syllable
cluster or Thai consonant/vowel/tone combina-
tion, the user presses the delete key. What should
be deleted? Thai and Korean do not have the union
between a letter and its linear space that the Latin
alphabet has. Two separate operations with differ-
ent user interfaces may be required, whereas one
suffices in English. The code set used also plays a
part in determining the nature of the operation.
The Thai code set independently codes every letter
and tone, so deleting a single letter or tone is practi-
cal. The national Korean code set codes syllable

Red Blue Green Yellow White
u.S. Danger Masculinity Safety Cowardice Purity
France Aristocracy Freedom Criminality Temporary Neutrality
Peace
Egypt Death Virtue Fertility Happiness Joy
Faith Strength Prosperity
Truth
India Life Prosperity Success Death
Creativity Fertility Purity
Japan Anger Villainy Future Grace Death
Danger Youth Nobility
Energy
China Happiness Heavens Ming Dynasty Birth Death
Clouds Heavens Wealth Purity
Clouds Power

Digital 1echnical Journal Vol. 5 No.3 Summer 1993

17

Product Internationalization

clusters.® Deleting one letter from a cluster may
produce a combination with no code. In Digital’s
Thaiand Korean products, the action of the delete
operation is as suggested by the code set. Thai
deletes one letter or tone mark; Korean deletes the
syllable cluster.

In unidirectional writing systems, the right arrow
key navigates the cursor over the logical reading
order of the text as it moves smoothly over the
screen. The operation of logical movement ancl geo-
metrical movement across the screen is identical
within one line. This is not the case with bidirec-
tional text. The following fragmentis from a Hebrew
application one two[wl'iw D’NY TNX . Pressing the
left arrow key moves the cursor to the left of the
word “one” if the action means to follow reading
order, or to the left of the “0” in “two” if the action
is one of navigating screen real estate.

Functional differences may come from regula-
tory constraints. The United States has export pro-
hibitions on certain encryption techniques.
Non-U.S. versions of products may need to remove
them or use different techniques. Standards and
regulations for connection to external devices such
as modems vary around the world.

Product features may also need to vary based on
less tangible aspects of a culture. LYRE s a hypertext
product developed in France. The product allows
students to analyze a poem from various viewpoints
selected by the teacher. Students are not allowed to
add their own viewpoints. This is acceptable in
France but not in Scandinavian countries, where
independent discovery is highly valued.’

Correct and Incorrect Actions

Learning the rules concerning cultural sensitivity
does not guarantee that a software developer from
outside, or even inside, that culture will not make
errors. Two examples illustrate this.

When Lotus localized its 1-2-3 product into
Japanese, the developers were aware that the
Japanese date counts the year from the ascension of
the emperor to the throne. In their initial test of the
product under development in Japan, they included
the ability to reset the counter and to modify the
field naming the reign. This appears to be admirable
planning, sensitive to the needs of the local date
format; however, the Japanese users strenuously
requested that this feature be removed since it
anticipated the demise of the emperor.?

In Arabic and Hebrew bidirectional text, deletion
of one segment of text can cause the surrounding

segments to be rearranged under certain circum-
stances. This follows from a logical analysis of
ordering of the segments and was implemented in
an early version of Hebrew DECwrite. Studics with
users revealed that they found this rearrangement
of text disconcerting and preferred to manually
rearrange segments. The program was changed in a
subsequent version. Note that this resolution is
dependent on the specific product. One should not
conclude that automatic reordering of text is
always incorrect. Other bidirectional text systems
perform this reordering.

Responding to and Setting Culture

New technology in computer applications must
reflect the prevalent existing culture, but it also
plays a part in creating new cultural norms. An ear-
lier section described how users of a Hebrew word
processor might enter digits into a stream of
Hebrew by reversing the order of the digits. This
cultural behavior was introduced during the days of
manual typewriters or older computer systems,
which required additional keystrokes to change
writing direction. An older technology introduced
a cultural expectation. As users in Israel grow more
accustomed to word processors that enter the cor-
rect order automatically, and as the base of users
exposed to older technology shrinks, we can antici-
pate that the standard expectation of the order in
which to enter digits will change.

The Arabic and Khmer writing systems modify
the shape of the written glyph based on surround-
ing characters. The Khmer keyboard (Figure 10)
shows separate glyphs for each variation (implying
separate codes). This design follows the lead of ear-
lier typewriters and is familiar to users trained on
such typewriters. It adds complexity to the key-
board and requires the user to manually enter the
correct glyph. The Arabic keyboard is from a sys-
tem that codes each character independently of
glyph; the renderer selects the correct glyph to dis-
play based on context. This system may require
a longer transition for users trained on manual
typewriters, but it is the preferred use of a more
advanced technology.

As described previously, written Thai and Korean
both use syllable clusters, but the delete operation
on each script differs clue to the different methods
by which the code set represents the script. Which
is the correct action? The question does not havean
easy answer. From a formal analysis of the language,
one might argue that deleting the individual letter

18

Vol. 5 No.3 Sumimer 1993 Digital Technical Journal

International Cultural Differences in Software

is correct; but as we have seen, formal analysis
need not yield an appropriate answer. Ultimately
the correct answer is a delicate balance between
users’ expectations based on the past and the
requirements of innovation. The users’ expecta-
tions are set by previous implementations, which
were derived from limitations in the technology of
the time. We have a cycle of computers adapting to
people adapting to computers.

Deeper Cultural Differences

Some of the cultural differences discussed in this
paper such as the presentation of dates and cur-
rency are obvious even on a superficial examina-
tion of the culture. Others such as the cultural
reaction to color are learned from deeper study.

We can expect the future development of soft-
ware to consider as yet unexplored cultural differ-
ences. New features in user interfaces, the use of
sound, voice, pen-based computers, and anima-
tion, will tie into aspects of cultural behavior that
are currently little explored by researchers. Higher-
resolution screens and the prevalence of color
bring the ability to design applications that relate
more directly to the user’s sense of beauty.

The personal computer revolutionized personal
productivity. Applications such as spreadsheets
succeeded because they modeled individual user’s
existing work practices and extended their capabil-
ity. A current trend is toward applications for
the work group or collaborative computing. This
style attempts to revolutionize the way groups
work. Jeffrey Hsu reports that “Collaborative sys-
tems can meet stubborn resistance when they are
introduced in a company, because they challenge
the organizational culture with a new means of
communication.”? The difference in the business
decision-making process between Japan and the
United States is well documented, with Japanese
groups valuing group decision and harmony or wa
highly. We can expect the emerging “groupware”
applications both to model existing styles of group
work and to change those styles.

The future will also bring software agents.?? This
software will act as a collaborator with the user to
process information in much the same way as a
human personal assistant. As with a human assis-
tant, we can anticipate that software agents will
adapt to the specific requirements and habits of the
user, a culture of one. We can imagine an agent rec-
ommending circulation lists for memos and aiding
in correctly phrasing the mail. The forms of address

will vary not only across national boundaries, but
across companies. As the set of cultural differences
to be addressed goes deeper, the circles of people
sharing those cultures will shrink.

Techniques exist to build products with a high
level of internationalization. These are described in
other papers in this issue. These techniques will
continue to develop and improve, but internation-
alization will never be a fully resolved considera-
tion. The term may fall from use as the cultural
differences being addressed have a decreasing
relationship to national boundaries. International-
ization is simply making software easy to localize,
and the essence of localization is meeting the indi-
vidual needs of the customers. As computer sys-
tems become more powerful and software more
sophisticated, adaptation to the individual will con-
tinue. Techniques to adjustsoftware to fit personal
preferences will continue to develop.

Acknowledgments

This paper is adapted from an earlier unpublished
work, circulated within Digital Equipment Corpo-
ration. The author would like to thank Gayn
Winters for initiating and driving the paper and
for many valuable comments on early drafts. This
paper took shape as reviews from colleagues
around the world corrected errors and contributed
many examples, some of which are seen in this
paper. The author would like to acknowledge the
input from John McConnell and Michael Yau in
the United States; Jiurgen Bettels in Switzerland,
K. H. Chan and Fred Li in Hong Kong; Trin
Tantsetthi in Thailand; Mike Feldman, Moti
Huberman, and Moshe Loterman in Israel; Hirotaka
Yoshioka in Japan; and Nai-peng Kuang in Taiwan.

References and Notes

1. South Korean writing uses two scripts.
Hangul is an alphabetic system. Hanja is the
set of ideograms imported from China and
used as the sole script until the invention of
Hangul There exists a widespread miscon-
ception that Hangul is ideographic. The
author wishes to stress that only the Hanja
scriptuses ideograms.

2. The example shown contains no phonetic ele-
ment. Many, more complex characters do
have phonetic components. Some scholars
disparage the use of the term ideograph to
describe Japanese and Chinese writing,

Digital Technical Journal Vol. 5 No. 3 Sununer 1993

19

Product Internationalization

10.

11.

12.

13.

asserting that the phonetic element is pri-
mary. (Sce references 3 and 5.) This paper
uses the termideograph since it is in common
use.

J. DeFrancis, The Chinese Language L'act and
Fantasy, Second Paperback Edition (Hon-
olulu: University of Hawaii Press, 1989): 91.

M. Stubbs, Language and Literacy. The Soci-
olinguistics of Reading (London, Boston, and
Henley: Routledge and Kegan Paul, 1980): 48.

J. DeFrancis, Visible Speech: The Diverse One-
ness of Writing Systems (Honolulu: Univer-
sity of Hawaii Press, 1989).

& is an interesting character. It was originally
formed asa ligature of e and £ and is now used
as an idcogram in many European written
languagcs.

E Coulmas, The Writing Systems of the World
(Oxford: Basil Blackwell, 1989): 118.

A. Nakanishi, Writing Systems of the World,
third printing (Rutland. VT, and Tokyo: Charles
E. Tuttle Company, 1988): 112.

The numerals 1, 2, 3, etc., are¢ generally known
as, and referred to, as Arabic numerals; how-
ever, by one of those quirks of language, the
Arabic script uses a different scet of symbols for
numerals, sometimes called Indic numerals.

Note that the Khmer keyboard has four regis-
ters becausc it is based on a glyph ¢ncoding of
Khmer rather than a character encoding,
which would use two registers at most. Also,
the subscript Khmer glyphs on the kevcaps,
which are uscd in conjuncts, are not neces-
sary if more sophisticated display software is
used.

DIN 2137, German keyboard for typewriters,
Allocation of Characters to Keys, Parts 1, 2, 6,
and 11 (Deutsch Institut fuir Normung, 1988).

T. Honma, H. Baba, and K. Takizawa,
“Japanese Input Method Independent of
Applications,” Digital Technical Journal, vol.
5, no. 3 (Summer 1993, thisissue): 97-107.

There is some dispute in the industry on the
need for explicit direction markers. Under
certain circumstances, correct rendition of
nested direction text can be computed. For
example, a renderer could show the structure

15.

10.

17

19.

20.

21.

22.

of the textin Figure 8 correctly without direc-
tional attributes. The Unicode and 1SO 10646
character scts do include a rich set of direc-
tional markers.

1. Bettels and E Bishop, “Unicode: A Universal
Character Code," Digital Technical Journal,
vol. 5, no. 3 (Summer 1993, this issue): 21-31.

J. Nielsen, “Usability Testing of International
Interfaces,” in Designing User Interfaces for
International Use, cdited by J. Nielsen (New
York: Elsevier, 1990).

K. Garland, “The Use of Short Term Feedback
in the Preparation of Technical and Instruc-
tional Illustration,” in Research in Illustra-
tion: Conference Proceedings Part 11 (1982).

P Russo and S. Boor, “How Fluent Is Your
Interface? Designing for International Users,”
paper presented at INTERCHI, Amsterdam,
April 1993.

D. Taylor, Global Software: Developing Appli-
cations for the [nternational Market (New
York, Berlin, Heidelberg, London, Paris,
Tokyo, Hong Kong, Barcelona, Budapest:
Springer-Verlag, 1992): 54.

The design of the Korean code set reflects
compromises made among cultural, eco-
nomic, and technological requirements. The
structure of the writing system leads to inde-
pendent coding of each jamo, with the dis-
play device rendering them into syllable
clusters. Coding as syllable clusters greatly
simplified the prevalent technology of the
time and reduced the cost of the display
device.

E Hapgood, “A Journey Last—The Making of
1-2-3 Relcase 2).” Lotus: Computing for Man-
agers and Professionals (Cambridge, MA:
Lotus Development Corporation, 1987).

J. Hsu and T. Lockwood, “Collaborative Com-
puting,” BYTE Magazine (March 1993): 120.

L. Tesler, "Networked Computing in the
1990s,” Scientific American (September
1991).

20

Vol. 5 No. 3

Sunumer 1993 Digital Technical Journal

Unicode: A Universal
Character Code

Jiirgen Bettels
E Avery Bisbop

A universal character encoding is required fo produce software that can be local-
ized for any language or that can process and communicate data in any language.
The Unicode standard is the product of a joint effort of information technology
companies and individual experts; its encoding bas been accepted by I1SO as
the international standard 1SO/IEC 10640. Unicode defines 10-bit codes for the char-
acters of most scripts used in the world’s languages. Encoding for some missing
scripts will be added over time. The Unicode standard defines a set of rules that belp
implementors build text-processing and rendering engines. For Digital, Unicode
represents a strategic direction in internationalization technology. Many software-
producing companies have also announced future support for Unicode.

A universal character encoding—the Unicode stan-
dard—has been developed to produce interna-
tional software and to process and render data in
most of the world’s languages. In this paper, w e pre-
sent the background of the development of this
standard among vendors and by the International
Organization for Standardization (ISO). We describe
the character encoding’s design goals and princi-
ples. We also discuss the issues an application han-
dles when processing Unicode text. We conclude
with a description of some approaches that can be
taken to support Unicode and a discussion of
Microsoft’s implementation. Microsoft’s decision
to use Unicode as the native text encoding in its
Windows NT (New Technology) operating system
is of particular significance for the success of
Unicode.

Background

In the 1980s, software markets grew throughout
the world, and the need for a means to represent
text in many languages became apparent. The com-
plexity of writing software to represent text hin-
dered the development of global software.

The obstacles to writing international software
were the following.

1. Stateful encoding. The character represented by
a particular value in a text stream depended on
values earlicr in the stream, for example, the
cscape sequences of the ISO/IEC 2022 standard.’

2. Variable-length encoding. The character width
varied from one to four bytes, making it impossi-
ble to know how many characters were in a
string of a known number of bytes, without first
parsing the string.

3. Overloaded character codes and font systems.
Character codes tended to encode glyph variants
such as ligatures; font architectures often
included characters to enable display of charac-
ters from various languages simply by varying
the font.

In the 1980s, character code experts from around
the world began work on two initially parallel proj-
ects to eliminate these obstacles. In 1984, the ISO
started work on a universal character encoding.
This effort placed heavy emphasis on compatibility
with existing standards. The 1SO/IEC committee
published a Draft International Standard (DIS) in
spring 1991.2 By that time, the work on Unicode
(described in the next section) was also nearing
completion, and many experts were alarmed by the
potential for confusion from two competing stan-
dards. Several of the I1SO national bodies therefore
opposed adoption of the DIS and asked that ISO and
Unicode work together to design a universal char-
acter code standard.

The Origins of Unicode

In some sense Unicode is an offshoot of the ISO/IEC
10646 work. Peter Fenwick, one of the early

Digital Technical Journal Vol.5 No.3 Sununer 1993

21

Product Internationalization

conveners of the ISO working group responsible for
10646, developed a proposal called “Alternative B,
based on a 16-bit code with no restriction on the
use of control octets. He presented his ideas to
Joseph Becker of Xerox, who had also been work-
ing in this area.3

In early 1988, Becker met with other experts in
linguistics and international software design from
Apple Computer (notably Lee Collins and Mark
Davis) to design a new character encoding. As one
ofthe original designers, Becker gave this code the
name Unicode, to signify the three important ele-
ments of its design philosophy:

1. Universal. The code was to cover all major mod-
ern written languages.

2. Unique. Each character was to have exactly one
encoding.

3. Uniform. Each character was to be represented
by a fixed width in bits.

The Unicode design effort was eventually joined
by other vendors, and in 1991 it was incorporated as
a nonprofit consortium to design, promote, and
maintain the Unicode standard. Today member
companies include Aldus, Apple Computer,
Borland, Digital, Hewlett-Packard, International
Business Machines, Lotus, Microsoft, NeXT, Novell,
The Research Libraries Group, Sun Microsystems,
Symantec, Taligent, Unisys, WordPerfect, and
Xerox. Version 1.0, volume 1 of the 16-bit Unicode
standard was published in October 1991, followed
by volume 2 in June 1992.45

It was sometimes necessary to sacrifice the three
design principles outlined above to meet conflict-
ing needs, such as compatibility with existing char-
acter code standards. Nevertheless, the Unicode
designers have made much progress toward solving
the problems faced in the past decade by designers
ofinternational software.

The Merger of 10646 and Unicode

Urged by public pressure from user groups such as
IBM’s SHARE, as well as by industry representatives
from Digital, Hewlett-Packard, IBM, and Xerox,
the I1SO 10646 and Unicode design groups met in
August 1991; together they began to create a single
universal character encoding. Both groups compro-
mised to create a draft standard that is often
referred to as Unicode/10646. This draft standard
was accepted as an international character code
standard by the votes of the ISO/IEC national bodies
in the spring of 1992.6

As a result of the merger with ISO 10646, the
Unicode standard now includes an errata insert
called Unicode 1.0.1 in both volumes of version 1.0
to reflect the changes to character codes in
Unicode 1.0.7 The Unicode Consortium has also
committed to publish a technical report called
Unicode 1.1 that will align the Unicode standard
completely with the ISO/IEC 10646 two-octet com-
paction form (the 16-bit form) also called UCS-2.

Relationship between Unicode and
ISO/IEC 10646

Unicode is a 16-bit code, and ISO/IEC 10646 defines
a two-octet (UCS-2) and a four-octet (UCS-4) encod-
ing form. The repertoire and code values of UCS-2,
also called the base multilingual plane (BMP), are
identical to Unicode 1.1. No characters are cur-
rently encoded beyond the BMP; the UCS-4 codes
defined are the two UCS-2 octets padded with two
zero octets. Although UCS-2 and Unicode are very
close in definition, certain differences remain.

By its scope, ISO/IEC 10646 is limited to the
coding aspects of the standards. Unicode includes
additional specifications that help aspects of
implementation. Unicode defines the semantics
of characters more explicitly than 10646 does.
For example, it defines the default display order
of a stream of bidirectional text. (Hebrew text
with numbers or embedded text in Latin script
is described in the section Display of Bidirectional
Strings.) Unicode also provides tables of character
attributes and conversion to other character
sets.

In contrast with the Unicode standard, ISO 10646
defines the following three compliance levels of
support of combining characters:

= Level 1. Combining characters are not allowed
(recognized) by the software.

= Level 2. This level is intended to avoid duplicate
coded representations of text for some scripts,
e.g., Latin, Greek, and Hiragana.

= Level 3. All combining characters are allowed.

Therefore, Unicode 1.1 can be considered a
superset of UCS-2, level 3.

Throughout the remainder of this paper, we refer
to this jointly developed standard as Unicode.
Where differences exist between ISO 10646 and
Unicode standards, we describe the Unicode func-
tionality. We also point out the fact that Unicode
and ISO sometimes use different terms to denote
the same concept. When identifying characters, we

22

Vol.5 No 3 Summer 1993 Digital Technical Journal

Unicode: A Universal Character Code

use the hexadecimal code identification and the ISO
character names.

General Design of Unicode

This section discusses the design goals of Unicode
and its adherence to or variance from the principles
of universality, uniqueness, and uniformity.

Design Goals and Principles

The fundamental design goal of Unicode is to create
a unique encoding for the characters of all scripts
used by living languages. In addition, the intention
is to encode scripts of historic languages and
symbols or other characters whose use justifies
encoding.

An important design principle is to encode each
character with equal width, i.e., with the same
number of bits. The Unicode designers deliberately
resisted any calls for variable-length or stateful
encodings. Preserving the simplicity and unifor-
mity of the encoding was considered more impor-
tant than considerations of optimization for storage
requirements.

A Unicode character is therefore a 16-bit entity,
and the complete code space of over 65,000 code
positions is available to encode characters. A text
encoded in Unicode consists of a stream of 16-bit
Unicode characters without any other embedded
controls. Such a text is sometimes referred to as
Unicode plain text. The section Processing Unicode
Text discusses these concepts in more detail.

Another departure from the traditional design of
code sets is Unicode’s inclusion of combining char-
acters, i.e., characters that are rendered above,
below, or otherwise in close association with the
preceding character in the text stream. Examples
are the accents used in the Latin scripts, as well as
the vowel marks of the Arabic script. Combining
characters are allowed to combine with any other
character, so it is possible to create new text ele-
ments out of such combinations.® This technique
can be used in bibliographic applications, or by lin-
guists to create a script for a language that does not
yet have a written representation, or to transliter-
ate one language using the script of another. An
example in recent times is the conversion of some
Central Asian writing systems from the Arabic to
the Latin script, following Turkey’s example in the
1920s (Kazakhstan).

An additional design principle is to avoid duplica-
tion of characters. Any character that is nearly iden-
tical in shape across languages and is used in an

equivalent way in these languages is assigned a
single code position. This principle led to the uni-
fication of the ideographs used in the Chinese,
Japanese, and Korean written languages. This
so-called CJK unification was achieved with the
cooperation of official representatives from the
countries involved.

The principle of uniqueness was also applied to
decide that certain characters should not be
encoded separately. In general, the principle states
that Unicode encodes characters and not glyphs or
glyph variations. A character in Unicode represents
an abstract concept rather than the manifestation
as a particular form or glyph. Asshown in Figure 1,
the glyphs of many fonts that render the Latin
character A all correspond to the same abstract
character “a”

Abstract
Letter Glyph Style
a Century Schoolbook
% a Helvetica
a a Century Gothic
§ a Script
a Book Antiqua

Figure 1 Abstract Latin Letter “a” and
Style Variants

Another example is the Arabic presentation
form. An Arabic character may be written in up to
four different shapes. Figure 2 shows an Arabic
character written in its isolated form, and at the
beginning, in the middle, and at the end of a word.
According to the design principle of encoding
abstract characters, these presentation variants are
all represented by one Unicode character.”

Since much existing text data is encoded using
historic character set standards, a means was pro-
vided to ensure the integrity of characters upon
conversion to Unicode. Great care was taken to
create a Unicode character corresponding to each

e

oo o &
Y J Y

Figure 2 Isolated, Final, Initial, and Middle Forms
of the Arabic Character Sheen

Digital Technical jJournal Vol. 5 No. 3 Summer 1993

Product Internationalization

character in cxisting standards. Characters identical
in shape appearing in different standards are identi-
fied and mapped to a single Unicode character. For
characters appearing twice in the same standard, a
compatibility zone was created. These characters
arc encoded as required to make round-trip conver-
sion possible between other standards and
Unicode. The Unicode Consortium has agrced to
create mapping tables for this purpose.

Text Elements and Combining Characters

When a computer application processes a text doc-
ument, it typically breaks down text into smaller
elements that correspond to the smallest unit of
data for that process. These unitsare called text ele-
ments. The composition of a text element is depen-
dent on the particular process it undergoes. The
Arabic ligature lam-alef is a text element for the
rendering process but not for other character oper-
ations, such as sorting,.

In addition, the same process applied to the same
string of text requires different text ¢clements depend-
ing on the language associated with the string.
Figure 3 shows sorting applied to the string “ch.” If
this string is part of English text, the text elements
for the process of sorting are “c” and “h.” In Spanish
text, however, the text element for sorting is “ch”
because it is sorted as if it wcre a single character.

For other text-processing operations, text ele-
ments might constitute units smaller than those
traditionally called characters. Examples are the
accents and diacritical marks of the Latin script.
These small textelements interact graphically with
a noncombining character called a base character.
The acute accent interacts with the base character
A to form the character A acute. If a given font does
not have the character A acute, but it docs have A
and acute accent as separate glyphs, the character
A acute has to be divided into smaller units for the
rendering process.

In Thai script, vowels and consonants combine
graphically so that the vowel mark can be cither

Spanish English
curra charm
chasquido current
dano digit

Figure 3 Text Elemments and Collation

before, above, below, or after a consonant, thus
forming one display unit. This unit becomes the text
element for purposes of rendering. For a process
such as advance to next character, however, the indi-
vidual vowels and consonants are the natural units
of operation and are therefore the text elements.

There is no simple relationship between text cle-
ments and code elements. As we have shown, this
relationship varies both with the language of the
text and with the operation to be performed by the
application. In earlier encoding systems such as
ASCII or others with a strong relationship to a lan-
guage, this problem was not apparent. When
designing a universal character code, the Unicode
designers acknowledged the issue and analyzed
which character elements have to be encoded as
code elements to represent the scripts of Unicode
across multiple languages. Rather than burden the
character code with the complexity of encoding
a rich set of text elements, the Unicode Technical
Committee decided that the mapping of code ele-
ments to more complex text elements should be
performed at the application level.

Code Space Structure

The Unicode code space is the full 16-bit space,
allowing for 65,536 different character codes. As
shown in Figure 4, approximately 50 percent of this
space is allocated. This code space is logically
divided into four different regions or zones.

The A-zone, or alphabetic zone, contains the
alphabetic scripts. The first 256 positions in the
A-zone are occupied by the SO 8859-1, or 8-bit ANSI
codes, in such a way that an 8-bit ASCIl code maps
to the corresponding 16-bit Unicode character
through padding it with one null byte. The posi-
tions corresponding to the 32 ASCII control codes
0 to 31 are empty, as well as the positions 0x0080
to Ox009F

The characters of other alphabetic scripts
occupy code space in the range from 0x0000 to
0x2000. Not all of the space is currently occupied,
leaving room to encode more alphabetic scripts.

The remainder of the A-zone up to 0x4000 is allo-
cated for general symbols and the phonetic (i.e.,
nonideographic) characters in use in the Chinese,
Japanese, and Korean languages.

The second zone up to 0xA000 is the ideograph,
or l-zone, which contains the unified Han charac-
ters. Currently about 21,000 positions have been
filled, leaving virtually no room for expansion in
the I-zone.

24

Vol. 5 No.3 Sunmmer 1993 Digital Technical Journal

Unicode: A Universal Character Code

| A-ZONE | I-ZONE

l+— 0-ZONE ——{ R-ZONE |+—

PRIVATE USE
COMPATIBILITY ZONE
UNIFIED CHINESE, JAPANESE, AND KOREAN

CHINESE, JAPANESE, AND KOREAN NONIDEOGRAPHIC
SYMBOLS

EXTENDED LATIN AND GREEK

INDIC SCRIPTS

HEBREW AND ARABIC

LATIN, GREEK, CYRILLIC, AND ARMENIAN

1ISO-646 INTERNATIONAL REFERENCE VERSION

Figure 4 Code Space Allocation for Scripts

The third zone, or O-zone, is a currently unallo-
cated space of 16K. Although several uses for this
space have been proposed, its most natural use
seems to be for more ideographic characters.
However, even 16K can hold only a subset of the
ideographic characters.

The fourth zone, the restricted or R-zone, has
some space reserved for user-defined characters. It
also contains the area of codes that are defined for
compatibility with other standards and are not allo-
cated elsewhere.

Processing Unicode Text

The simplest form of Unicode text is often called
plain Unicode. It is a text stream of pure Unicode
characters without additional formatting or
attribute data embedded in the text stream. In this
section, we discuss the issues any application faces
when processing such text. Processing in this con-
text applies to the steps such as parsing, analyzing,
and transforming that an application performs to
execute its required task. In most cases, the text
processing can be divided into a number of primi-
tive processing operations that are typically offered
as a toolkit service on a system. In describing
Unicode text processing, we discuss some of these
primitives.

Code Conversion

One of the goals of Unicode is to make it possible to
write applications that are capable of handling the
text of many writing systems. Such an application
would typically apply a model that uses Unicode as
its native process code. The application could then
be written in terms of text operations on Unicode

data, which does not vary across the different writ-
ing systems.

Today, and for some time to come, however, the
data that the application has to process is typically
encoded in some code other than Unicode. A fre-
quent operation to be performed is therefore the
conversion from the code (file code) in which data
is presented to Unicode and back.

One of the design goals of Unicode was to allow
compatibility with existing data through round-trip
conversion without loss of information. It was not
a goal to be able to convert the codes of other char-
acter sets to Unicode by simply adding an offset.
This would violate the principle of uniqueness,
since many characters are duplicated in the various
character sets. Most cxisting character sets there-
fore have to be mapped through a table lookup.
These mapping tablesare currently being collected
by the Unicode Consortium and will be made avail-
able to the public.

It was, however, decided that the 8-bit ASCII, or
1SO 8859-1 character set, was tobe mapped into the
first 256 positions of Unicode. Other character sets
(or subsets), such as the Thai standard TIS 620-2529,
could also be mapped directly, since character
uniqueness was preserved. Also, one of the blocks
of Korean syllables is a direct mapping from the
Korean standard KSC 5601.

Some character sets contain characters that can-
not be assigned code values under the Unicode
design rules. Often these characters are different
shapes of encoded characters, and encoding them
would violate the principle of uniqueness. To
allow round-trip conversion for these characters,
a special code area, the compatibility zone, was sct
aside in the R-zone to ¢ncode them and to allow

Digital Technical Journal Vol.5 No.3 Summer 1993

Product Internationalization

interoperation with Unicode. For example, the
wide forms of the Latin letters in the Japanese JIS
208 standard were invented to simplify rendering
on monospacing terminals and printers.

Character Transformations

A frequently used operation in text processing is
the transformation of one character into another
character. For example, Latin lowercase characters
are often transformed into uppercase characters to
execute a case-insensitive search. In most tradi-
tional character sets, this operation would translate
one code value to another. Thus, the output string
of the operation would have the same number of
code values as the input string, and both strings
would have the same length. This assumption is no
longer true in the case of Unicode strings.

Consider the Unicode characters, Latin small
letter a + combining grave accent, i.e., a string of
two Unicode characters. If this string were part of
a French text (in France), transforming a to A would
resultin one Unicode character, Latin capital letter
A. If the same string were part of a French Canadian
text, the accent would be retained on the upper-
case character. We can therefore make two observa-
tions: (1) The string rcsulting from a character
transformation may contain a different number of
characters than the original string and (2) The
result depends on other attributes of the string, in
this case the language/region attribute.

Another important character transformation
operation is a normalization transformation. This
operation transforms a string into either the most
uncomposed or the most precomposed form of
Unicode characters. As an example, we consider
the different spellings of the combination:

U
Latin capital letter U
with diaeresis and grave accent

This letter has been encoded in precomposed form
in the Additional Extended Latin part of Unicode.
There are two additional spellings possible to
encode the same character shape:

U+

Latin capital letter U with diaeresis
+ combining grave accent

and

U + /\\/ + /\\/
Latin capital letter U
+ combining diaeresis
+ combining grave accent

The most uncomposed and the most precomposed
forms of these spellings can be considered normal-
ized forms. When processing Unicode text, an
application would typically transform the charac-
ter strings into either of these two forms for further
processing.

Note that the spellings:

I =55
Latin capital letter U
with grave accent + combining diaeresis

and

U+ +
Latin capital letter U

+ combining grave accent
+ combining diaeresis

would result in a different character:

-~

U

This result is due to the rule that diacritical marks,
which stack, must be ordered from the base charac-
ter outwards.

Byte Ordering

Traditional character set encodings, which are con-
formant to ISO 2022 and the C language multibyte
model, consider characters to be a stream of bytes,
including cases in which a character consists of
more than one byte. Unicode characters are 16-bit
entities; the standard does not make any explicit
statement about the order in which the two bytes of
the 16-bit characters are transmitted when the data
is serialized as a stream of bytes.

The orclering of bytes becomes an issue when
machines with different internal byte-order archi-
tecture communicate. The two possible byte
orders are often called little endian and big endian.
In a little-endian machine, a 16-bit word is
addressed as two consecutive bytes, with the low-
order byte being the first byte; in a big-endian
machine, the high-order byte is first. Today all com-
puters based on the Intel 80x86 chips, as well as
Digital’s VAX and Alpha AXP systems, implement a

26

Vol.5 No. 3 Swminer 1993 Digital Technical Journal

Unicode: A Universal Character Code

little-endian architecture, whereas machines built
on Motorola’s 680xx, as well as the reduced instruc-
tion set computers (RISC) of Sun, Hewlett-Packard,
and IBM, implement a big-endian architecture. In
blind interchange between systems of possibly dif-
ferent byte ordcr, Unicode-encoded text may be
read incorrectly. To avoid such a situation, Unicode
has implemented a byte-order mark that behaves as
a signature. As shown in Figure 5, the byte-order
mark has the code value OXFEFF. It is defined as a
zerG-width, no-break space character with no
semantic meaning other than byte-order mark.

The code value corresponding to the byte-
inverted form of this character, namely OXFFFE, is an
illegal Unicode value. If the byte-order mark is
inserted into a serialized data stream and is read by
amachine with a different byte-order architecture,
itappears as OXFFFE. This fact signals to the applica-
tion that the bytes of the data stream have been read
in reverse order from that in which they were
written and should be inverted. Applications are
encouraged to use the byte-order mark as the first
character of any data written to a storage medium
or transmitted over a network.

Display of Bidirectional Strings

To facilitate internal text processing, a Unicode-
compliant application always stores characters in
logical order, thatis, in the order a human being
would type or write them. This causes complica-
tions in rendering when text normally displayed
right to left (RL) is mixed with text displayed left to
right (LR). Hebrew or Arabic is written right to left,
but may contain characters written left to right, if
either language is mixed with Latin characters.
Numerals or punctuation mixed with Hebrew or
Arabic can be written in either order.

The Default Bidirectional Algorithm

Unicode defines a default algorithm for displaying
such text based on the direction attributes of char-
acters. We outline the algorithm in this paper; for
details, see both volumes of the Unicode stan-

LITTLE-ENDIAN BYTE-STREAM BIG-ENDIAN
MACHINE TRANSFER MACHINE
|70xFEFF |—>| OXFE | * | OXFF |——> | OXFFFE |
BYTE-ORDER FIRST SECOND ILLEGAL
MARK BYTE BYTE CHARACTER

Figure 5 Byte-order Mark

dard.*> (It is important to consult the second
volume because it contains corrections to the algo-
rithm given in the first volume.)

All printing characters are classified as strongly
LR, weakly LR, strongly RL, weakly RL, or neutral. In
addition, Unicode defines the concept of a global
direction associated with a block of text. A block is
approximately equivalent to a paragraph. The first
task of the rendering software is to determine
the global direction, which becomes the default.
Embedded strings of characters from other scripts
arerenderedaccording to their direction attribute.
Neutral characters take on the attribute of sur-
rounding characters and are rendered accordingly.

Directionality Control

Although the default algorithm gives correct ren-
dering in most realistic cases, extra information
occasionally is needed to indicate the correct ren-
dering order. Therefore, Unicode includes a num-
ber of implicit and explicit formatting codes to
allow for the embedding of bidirectional text:

Left-to-right mark (LRM)
Right-to-left mark (RLM)
Right-to-left embedding (RLE)
Left-to-right embedding (LRE)
Left-to-right override (LRO)
Right-to-left override (RLO)
Pop directional formatting (PDF)

It must be pointed out that the directional codes
are to be interpreted only in the case of horizontal
text and ignored for any opecration other than bidi-
rectional processing. In particular, they must not
be included in compare string operations.

The LRM and RLM characters are nondisplayable
characters with strong directionality attributes.
Since characters with weak or neutral directionality
take their rendition directionality from the sur-
rounding characters, LRM and RLM are used to influ-
ence the directionality of neighboring characters.

The RLE and LRE embedding characters and the
LRO and RLO override characters introduce sub-
strings with respect to directionality. The override
characters enforce a directionality and are used to
enforce rendering of, for instance, Latin letters or
numbers from right to left. Substrings can be
nested, and conforming applications must support
15 levels of nesting. Each RLE, LRE, LRO, or RLO char-
acter introduces a new sublcvel, and the next fol-
lowing PDF character returns to the previous level.
The directionality of the uppermost levelis implicit
or determined by the application.

Digital Tecbnical Journal Vol. 5 No.3 Sunvner 19093

27

Product Internationalization

Only correct resolution of directionality nesting
gives the correct result. In general it cannot be
assumed that a string of text that is inserted into
other bidirectional text will have the correct direc-
tionality attributes without special processing.
This may result in the removal of directional codes
in the text or in the addition of further controls. As
shown in Figure 6. particular care nceds to be taken
for cut-and-paste operations of bidirectional text,

Transmission over 8-bit Channels

Existing communication systems often require that
data adheres to the rutes of 1SO/IEC 2022, which
rescrve the 8-bit code values between 0x00 and
Ox1F (the CO space), between 0X80 and Ox9F (the
C1 spacce), and the code position DELETE.! Since
Unicode uses these values to encode characters,
direct transmission of Unicode data over such trans-
mission systems is not possible.

The Unicode designers. in collaboration with
150, have therefore proposed an algorithm that
transforms Unicode characters so that the CO and
C1 characters and DELETE are avoided. This algo-
rithm, the UCS transformation format (UTFE), is part
of the 150 10640 standard as an informative annex.
It is expected that it will be included in the revised
Unicode standard.

The transformation algorithm has been con-
ceived in such a way that the characters corre-
sponding to the 7-bit ASCI codes and the €1 codes
are represented by one byte (see Figure 4). Code
positions OXxO0AO through 0x:4015 (which include
the remainder of the extended Latin alphabet) are

DESTINATION TEXT IN LOGICAL ORDER:
DIRECTIONALITY NESTING: (
DESTINATION TEXT IN DISPLAY ORDER:

TEXT TO BE PASTED IN LOGICAL ORDER: mr.

DIRECTIONALITY NESTING: (
TEXT TOBE PASTED IN DISPLAY ORDER:

PASTED TEXT IN LOGICAL ORDER:

DIRECTIONALITY NESTING: (
PASTED TEXT IN DISPLAY ORDER WITHOUT NESTING:
PASTED TEXT IN DISPLAY ORDER WITH NESTING:

j.

rts eod nhoj 12

PLEASE SEND TO:_ mr. J.

PLEASE SEND TO:__ htims .j
PLEASE SEND TO:_ rts eod nhoj 12 ,htims .j .rm

represented by two bytes cach, and three bytes
cach are used for the remaining code valuces.

Originally, UTF had been proposed for use in data
transmission and to avoid the problem that embed-
ded zero bytes represent for C language character
strings in the char data type. Subscquently, it has
been proposed to use UTE in historical operating
systems (c.g., UNIX) to store Unicode-encoded sys-
tem resources such as file names. "

Modifications of UTF have therefore been pro-
posed to address other special requirements such
as preservation of the slash (/) character It
remains to be seen which of these various transfor-
mation methods will be widely adopted.

Handling of Combining Characters

In some of the operations discussed above, we have
indicated that the presence of combining charac-
ters requires processing Unicode text differently
from text encoded in a character set without com-
bining characters. Normalization or transformation
of the characters into a normalized form is usually
a first helpful step for further processing. For exam-
ple, to prepare a text for a comparison operation,
onc may wish to decompose any precomposed
characters. In this way, multiple-pass comparison
and sorting algorithms, which typically pass
through a level that ignores diacritical marks, can
be applied almost unchanged.'?

For simple comparison operations, the applica-
tion must decide on a policy of what constitutes
equality of two strings. If the string contains char-
acters with a single diacritical mark, it can choose

PLEASE SEND TO:_

)

PLEASE SEND TO:_
A

insertion point

smith, 12 john doe str
«))
,htims .j .rm

smith, 12 john doe str
((G))
12 rts eod nhoj

.rm, incorrect!

Note: Caputal letters signify left-to-right writing. Small letters signify right-to-left writing.

Figure 6

Cut and Faste of Bidirectional Text

28

Vol. 5 No. 3 Sunumer 1993 Digital Technical Journal

either strong matching, which requires the diacriti-
cal marks in both strings, or weak matching, which
ignores diacritical marks. If the text includes char-
acters with more than one diacritical mark for a
medium-strong match, the presence of certain
marks might be required but not of others. Strong
matching is rcquired for the Greek word for micro-
material pwwkpoVvAkd and the Greek diminuitive
form of small pikpovAka. Without the diacritical
marks, the words would be identical.

Unicode requires that combining characters fol-
low the base character. This solution was chosen
over the alternatives of (1) precede and (2) precede
and follow, for various reasons.'* Text-editing oper-
ations must take into account the presence and
ordering of diacritical marks. A user-friendly appli-
cation should be consistent in its choice of text ele-
ment on which opcrations such as next character
or delete character operate. This choice should feel
natural to the user. For example, in Latin, Greek,
and Cyrillic, the expectation would be that
accented characters are the unit of operation,
whereas in Dcvanagari and Thai, where several
combining characters and a base character com-
bine into a cell, the natural unit is the individual
character.

Implementation Issues

In this section we describe some of the approaches
that can be taken to support Unicode. As a concrete
example, we describe how the Microsoft Windows
N'T operating system uscs Unicode as the native text
encoding and maintains compatibility with existing
applications based on a different encoding.

General Considerations in Adding

Unicode Support

Informal discussions with vendors planning to sup-
port Unicode indicate that the following data types
and data access are being considered when using
the C programming language.

L. A new data type would be designated for
Unicode only. It would be directly accessible by
the application, e¢.g., typedef unsigned short
UNICHAR.

The Unicode-only data type has the advantage
of being unencumbered with preconceptions
about semantics or usage. Also, since the appli-
cation knows that the contents are in Unicode, it
can write code-set-dependent applications.

Digital Tecbhnical Journal Vol. 5 No.3 Summer 1993

Unicode: A Universal Cheracter Code

The major disadvantage is that the data type
would vary from one vendor or platform to
another and would thercfore have no standard
string-processing librarics.

2. An existing data type, such as wchar_t in C
would be used. (Note that the char data type is
appropriate only if char is defined as 16 bits, or
if the string is given some further structure
to define its length by mcans other than null
termination. Similar issues may c¢xist in other
languages.)

The use of an existing data type has the advantage
of being widely known and implemented: how-
ever, it also has the disadvantage of precxisting
assumptions about behavior and/or semantics.

3. An opaque object would be used. Since the data
in these objects is not visible to the calling pro-
gram, it can only be processed by routines or by
invoking its member functions (e.g.. in C++).

Use of an opaque object has the advantage of hid-
ing much of the complexity inhcrent in the world's
writing svstems from the application writer. It has
the disadvantages common to object-oriented sys-
tems, such as the need for software engineers to
learn a new programming paradigm and a set of
class libraries forthe Unicode objects.

How Windows NT Implements Unicode
The Windows NT design team started with several
goals to make an operating system that would pre-
serve the investment of customers and developers.
These goals affected their decisions regarding the
data types and migration strategics describedin the
previous section.
The goals related to text processing were to

1. Provide backward compatibility
) Support existing MS-DOS and 16-bit - MS
Windows applications, including those based
on 8-bit and double-byte character set (DBCS)
code pages.
b) Support the DOS file allocation table fil¢
system.
2. Provide worldwide character supportin
a) File names
b) File contents
¢) User names
As described later in this scction. these conflict-
ing goals werce met under a single Windows NT

Product Internationalization

architecture, if not simultaneously in the same
application and file system, then by clever segrega-
tion of Windows NT into multitasking subsystems.
Thesc goals also affect the way Microsoft recom-
mends developers migrate their existing applica-
tions to Windows NT.

The Basic Approach Microsoft's overall approach
is close to that of using a standard data typc that
accesses data mainly through string-processing
functions. In addition, Microsoft defined a special
set of symbols and macros for application develop-
ers who wish to continue to develop applications
based on DOS (e.g., to scll to those with 286 and
386X systems), while they migrate their products
to run as native Win32 applications on Windows
NT. The developer can then compile the appli-
cation with or without the compiler switch
-DUNICODE to produce an object module compiled
for a native Windows NT or a DOS operating envi-
ronment, respectively.

Dual-path Data Types To select the appropriate
compilation path, Microsoft provides C language
header files that conditionally define data types,
macros, and function names for either Unicode or
traditional 8-bit (and DBCS) support, depending on
whether or not the symbol UNICODE has been
defined. An example of a data type that illustrates
this approach is TCHAR. If UNICODE is defined,
TCHAR is equivalent to wcehar_t. Otherwise, it is the
same as char. The application writer is asked to con-
vert all instances of char to TCHAR to implement the
dual development strategy.

String-bandling Functions Similarly, the macro
TEXT is defined to indicate that string constants are
wide string constants when UNICODE is defined, or
ordinary string constants otherwise. Application
writers should surround all instances of a string
or character constant with this macro. Thus,
“Filename” becomes TEXT(“Filename”), and ‘Z’
becomes TEXT('Z’). The compiler treats these as a
wide string or character constant if UNICODE is
defined, and as a standard char based string or char-
acter otherwise.

Finally, there are symbol names for each of the
various string-processing functions. For example, if
UNICODE is defined, the function symbol name
_tcsemp is replaced by wesemp by the C prepro-
cessor, indicating that the wide character function
of that name is to be called. Otherwise, _tcscmp
is replaced with the standard C library function

strcmp. Details of this procedure can be found in
Win32 Application Programming Interface."!

Procedures for Developing/Migrating Applications
in the Dual Path In his paper “Program Migration
to Unicode,” Asmus Freytag of Microsoft ¢xplains
the steps used to convert an ¢xisting application to
work in Unicode and retain the ability to compile it
as a DOS or 16-bit Windows application.’s The basic
idea is to remove the assumptions about how a
string is represented or processed. All references to
string-related objects (e.g., char data types), string
constants, and string-processing functions are
replaced with their dual-path equivalents. The fol-
lowing steps are then taken.

1. Replace all instances of char with TCHAR, char*®
with LPSTR, etc. (For a complete listing, see
“Program Migration to Unicode.”)

2. Replace all instances of string or character con-
stants with the equivalent using the TEXT
macro.'® For example,

char filemessagell = "Filename';
char yeschar = 'Y';
becomes

TCHAR filemessagell = TEXT("Filename');
TCHAR yeschar = TEXT('Y"');

3. Replace standard char based string-processing
functions with the Win32 functions. (See page
221 of Win32 Application Programming Inter-
face for a complete listing.)"}

4. Normalize string-length computations using
sizeof() where appropriate. For example, direct
computation using address arithmetic should
take the form: string_length = (last_address —
first_address) size of (TCHAR);

S. Mark all files with the byte-order mark.!””
6. Make othcer, more substantial changes.

Most character-code-dependent processing
should be taken care of by step 3, assuming the
developer has used standard functions. If the
source code makes assumptions about the encod-
ing, it will have to be replaced with a neutral func-
tion call. For example, the well-known uppercasing
sequence

char_upper = char_lower + 'a' -- 'A';

implicitly assumes the language and the uppercas-
ing rules are English. These must be replaced with a
function call that accesses the Windows NT Natural
Language Services.

30

Vol.5 No. 3 Summer 1993 Digital Technical Journal

Unicode: A Universal Character Code

Summary

A universal character encoding—the Unicode stan-
dard—has been developed to produce interna-
tional software and to process and render data in
most of the world’s languagcs. The standard, often
referred to as Unicode/10646, was jointly devel-
oped by vendors and individual experts and by
the International Organization for Standardization
and International Electrotechnical Commission
(ISO/IEC). Unicode breaks the (incorrect) principle
that one character equals one byte equals one
glyph. It stipulates the use of text elements that
are dependent on the particular text operation.
A number of software vendors are now moving to
support Unicode. Microsoft’s implementation sup-
ports Unicode as the native text encoding in its
Windows NT operating system. At the same time, it
maintains compatibility with existing applications
based on 8-bit encoding.

Acknowledgments

The authors would like to express their thanks to
Asmus Freytag of Microsoft Corporation and
Masami llasegawa (ISO/IEC 10646 edlitor) for their
efforts in reviewing this paper.

References and Notes

I. Information Processing—ISO 7-bit and 8-bit
Coded Character Sets— Code Extension Tech-
niques, 1SO 2022: 1986 (Geneva: International
Organization for Standardization, 1986).

2. Information Technology—Multiple-Octet
Coded Charcicter Set, ISO/IEC DIS 10646:
1990 (Geneva: International Organization for
Standardization/International Electrotechni-
cal Commission, 1990).

3. J. Becker, “Multilingual Word Processing,
Scientific American, vol. 251 (July 1984):
96-107.

4. The Unicode Standard, Version 1.0, Volume
1 (Reading, MA: Addison-Wesley Publishing
Company, 1991).

5. The Unicode Standard, Version 1.0, Volume
2 (Reading, MA: Addison-Wesley Publishing
Company, 1992).

6. Information Technology— Universal Multiple-
Octet Coded Character Set (UCS), 1SO/IEC
DIS 10646-1.2:1991 (Geneva: International

10.

11.

12.

13.

14.

15.

16.

17.

Organization for Standardization/Interna-
tional Electrotechnical Commission, 1991).

Unicode 1.0.1 Errata Insert for The Unicode
Standard, Version 1.0, Volume 1 and Volume
2 (Reading, MA: Addison-Wesley Publishing
Company, 1992).

ISO/IEC 10646 restricts the use of combining
characters. See the definitions of level 2 and
level 3 in the section Relationship between
Unicode and ISO/IEC 10646.

Some of the presentation variants are
encoded for compatibility with existing stan-
dards. For a discussion, see the section Code
Conversion.

R. Pike and K. Thompson, “Hello World,
Usenix Conference, 1993.

File System Safe—UCS Transformation For-
mat (Reading: X/Open Company Limited,
1993).

A. LaBonté, “Multiscript Ordering for Uni-
code,” Proceedings of the Fourth Unicode
Implementors Workshop, Sulzbach (Unicode
Inc., 1992).

Private communication, Joseph D. Becker,
1993.

Win32 Application Programming [nterface
(Redmond, WA: Microsoft Press, 1992).

A. Freytag, “Program Migration to Unicode,”
Proceedings of the Second Unicode Imple-
mentors Workshop, Merrimack (Unicode
Inc., 1992).

String constants in source code should be
avoided in all cases. They violate one of the
fundamental design rules of software interna-
tionalization, i.e., that objects dependent on
language and/or culture should be isolated
into easily accessible modules for the purpose
of localization.

Unicode defined the code value OXFEFF to
have the semantic byte-order mark (BOM) and
encourages software developers to place it as
the first character in a Unicode file. (For
details, see the section Byte Ordering.)

Digital Technical Journal Vol. 5 No.3 Summer 1993

31

The X/Open

Wendy Rannenberg
Jiirgen Bettels

Internationalization Model

Software internationalization standards allow developers to create applications
that are neutral with respect to language and cultural information. X/Open
adopted a model for internationalization and bas revised the model several times
to expand the range of support. The latest version of the X/@pen internationaliza-
tion model, which supports multibyte code sets, provides a set of interfaces that
enables users in most of Europe and Asia to develop portable applications indepen-
dent of the language and code set. One impleinentation of this inodel, the interna-
tionalized DEC OSF/1 AXP version 1.2 (based on OSF/1 release 1.2) supports complex
Asian languages such as Chinese and Japanese.

Software internationalization standards initiatives
began in the late 1980s. This paper provides a brief
history of internationalization standards activities
followed by a description and an analysis of the
X/0Open model for internationalization. The Open
Software Foundation's OSF/1 releasce 1.2 and Digital’s
DEC OSF/1 AXP version 1.2 internationalization imple-
mentations serve as reference software for the
description. The analysis covers both the strengths
and the limitations of the model. The paper con-
cludes with a discussion of current and future rela-
tionships betwcen this model and other work in
the field.

Internationalization Standards

The International Organization for Standardization
(1SO) is the primary group that is currently publish-
ing or developing internationalization specifica-
tions, including code sets, programming languages,
and frameworks. Before the 1SO adopts emerging
specifications, much work is done by other groups.
In the case of interfaces that support the develop-
ment of international applications, the Uniforum
Internationalization Technical Work Group, the
X/Open Internationalization Work Group, the
Unicode Consortium, and the X Consortium have
been instrumental.

Internationalization is generally considered to be
the processes and tools applied to create software
that is neutral with respect to language and cultural
information. This neutrality can be accomplished
by providing a set of application interfaces designed

to isolate sensitivity to language and culture-
specific information. Such interfaces include func-
tionality to

= Attain character attributes independent of coded
character sets, i.e., code sets

= Order relationships of characters and strings

» Process culturally sensitive format conversion
(e.g., clate, time, and numbers)

= Maintain user messages for multiple languages

Standardization of internationalization interfaces
began predominantly in the UNIX environment.
Companies such as Hewlett-Packard and AT&T pro-
vided early proprietary solutions.!

When X/Open announced its intention to
include support for internationalization in Issue 2
of its X/Open Portability Guide (XPG2), Hewlett-
Packard submitted its Natural Language Support
System as a proposal for an internationalization
model. X/Open further developed this proposal
and published the guide in 19872 Some principles
developed for these solutions found their way into
the emerging C programming language standard
(ISO/IEC 9899) and the POSIX operating system
interface specification (ISO/IEC 9945-1). 3

The subsequent version of the X/Open
Portability Guide, XPG3, published in 1989, demon-
strated further improvement in internationalization
support.’ The guide was aligned with the 1SO/IEC C
standard and the ISO/IEC POSIX specification, both
of which meanwhile had been finalized.

‘R
88

Yol 5 No. 3 Swmnmmer 1993 Digital Technical Journal

The X/Open [nternationalization Model

A major drawback of the XPG3 specification is
that it is limited to single-byte code sets. Such code
sets are used primarily for western European lan-
guages and preclude use of the X/Open internation-
alization model for Asian and eastern European
languages.

The Japanese UNIX Advisory Group developed
specifications to extend support to character sets
that are encoded in more than one byte. These code
sets are generally known as multibyte code sets.
The Multibyte Support Extensions developed by
this group are now included in an addendum to the
ISO/IEC C programming language standard.® This
work was also adopted by X/Open for inclusion in
Issue 4 of the X/Open Portability Guide (XPG4),
which was published in 1992.789

However, the underlying model used by X/Open
and POSIX does not fully meet the needs of dis-
tributed and multilingual computing environ-
ments. Therefore, in 1992 X/Open and Uniforum
created a joint internationalization work group,
commonly referred to as the XoJIG. This group
investigated internationalization requirements for
distributed and multilingual environments and, in
November 1992, published a revised model for
internationalization."

The X/Open Internationalization Model

When X/Open first investigated the need for
internationalization services, several needs were
identified:

= Meet the market requirements of the X/Open
member companies. (Many of these require-
ments were based on the needs of the European
Economic Community [EEC].)

= Support more than one language and cultural
environment, including messages and date/time.

= Provide for data transparency, i.e., remove 7-bit,
U.S. ASCII restrictions from the environment.

As discussed previously, X/Open adopted a
model for internationalization and has updated and
revised the model many times. The next section
describes the current X/Open model.

Overview of the X/Open Portability
Model, Issue 4
There are five components to the current X/Open

internationalization model, X/Open Portability
Guide, Issue 4 (XPG4):

1. Locale announcement mechanism
2. Locale databases
3. Internationalization-specific library routines

4. Internationalized interface definitions for stan-
dard Clanguage library routines

5. Message catalog subsystem

The locale announcement mechanism provides a
way for an application to load, at run time, a spe-
cific set of data that describes a user’s native lan-
guageand cultural information. An application user
can specify a language, a territory, and a code set
by means of environment variables. The locale
announcement mechanism checks the environ-
ment variables. If the variables are set, the applica-
tion attempts to load the locale-specific data. If the
environment variables are not set, most applica-
tions default to the use of the POSIX (i.e., C lan-
guage) locale or an implementation-defined locale.
The POSIX locale definition is based on the U.S. ASCII
code set and the U.S. English language.

In conjunction with locale databases, the
announcement mechanism provides access to code
set specification data, character collation informa-
tion, date/time/numerical/monetary formatting
information, negative/affirmative responses, and
application-specific message catalogs.

Figure 1 shows the relationships among the com-
ponents of the X/Open internationalization
model."" Refer to Figure 1 throughout this section,
as the various elements of the figure are described.

The locale announcement mechanism is based
on the setlocale() function

char *setlocale(int category,
const char *locale)

The categories correspond to components of the
locale database and have a set of corresponding
user environment variables. The announcement
mechanism supports an order of precedence when
querying the user's environment to establish the
preferred locale. Table 1 shows the environment
variables specified by XPG4.

The LC_ALL environment variable has prece-
dence over all others, whereas the LANG environ-
ment variable has no precedence. The other /C_*
environment variables are of equal weight.

Although it does not provide a naming conven-
tion for locales, the X/Open model doces specify the
locale argument as a pointer to a string in the form

Digital Technical Journal Vol. 5 No. 3 Swnmer 1993

33

ProductInternationalization

I DEVELOPMENT SYSTEM 1| INTERNATIONALIZED SYSTEM | DEVELOPMENT !
| (XPG4 ONLY) | | SYSTEM |
| I
I LOCALE || cHARMAP I L APPLICATION] : MESSAGE I
I FORMAT || FORMAT 1 TEXT FORMAT |
1 T L | | : T 1
|] INTERNATIONALIZATION AP '
| LOCALE ek I MESSAGE :
| FILE FILE | FILE
| I INTERNATIONALIZATION SERVICES I I
| | |) |
|
: I CLANGAND || LocaLE MESSAGE I ! I
ocalede
; _ : HANDLING HANDLING LSS | :
I : I 4] [! | i
1] I I | | | "
oo v i : R rite i S i
LOCALE MESSAGE
DATABASE CATALOG

Figure 1~ Components of the X/Open Internationalization Model

Table 1 Locale-specific Environment

Variables
Variable Use
LC_ALL For all categories
LC_COLLATE For collation
LC_CTYPE For character classification
LC_MESSAGES For responses and message

catalogs

LC_MONETARY For monetary information
LC_NUMERIC For numeric information
LC_TIME For date/time information
LANG If no others are set
XPG3:
languagel_territoryl.codesetlIlamodifier]
XPG4:

languagel_territoryll.codeset]Lamodifier]
Examples of environment variable settings are

LANG = ¢n_US.ISO8859-1

and

LC_COLLATE = ja_JP jpEUC

The modifier is sometimes used to specify a partic-
ular instance of a language or cultural information
for a locale. Forinstance, if support for a particular
sortorder is necessary, in a German locale the user
might specify

LC_COLLATE = de_DEISO8859-1@phone

to sort alphabetically according to the telephone
directory rather than the dictionary.

Locale databases can be provided by either
the system vendor or an application developer. A
description of utilities that convert a source format
specification of a locale to a binary file follows.

The setlocale() function accesses the binary
locale databases and provides a global locale within
a given application. The global locale is similar to
a global variable in that it is shared by all of an appli-
cation’s procedures. Locale switching can be done
within an application, but within the scope of the
XPG4 model such locale switching is unnecessarily
complex and costly, in terms of performance. A
later section discusses additional limitations of this
mechanism.

The set of interfaces shown in Table 2 supports
international application development and was
first introduced as part of the ISO/IEC C and the
XPG2 and XPG3 specifications. These interfaces are
used primarily to access data in the locale databases
or to manipulate locale-sensitive data.

The XPG3 specification is based on the use of
ISO/IEC 8859-1 as the transmission code set.'? Some
implementations use this as an internal code set,
instead of the ASCIT code set.

A limited set of functions that support multibyte
characters is also available: mblen(), mbtowc(),
mbtowcs(). wctomb(), and wcstombs(). Each
of these functions is based on the ISO/IEC C wide
character (wchar_t) data type. The size of the data
type is not specified by the standard and can vary

34

Vol.5 No. 3 Summer 1993 Digital Technical Journal

The X/Open Internationalization Model

Table 2 Interfaces for International
Application Development

Interface Use

localeconv() For retrieving locale-dependent

formatting parameters

For extracting information from
the locale database

For locale announcement
For locale-based string collation

For converting date/time formats
based on locale

For transforming a string for
collation in current locale

nl_langinfo()

setlocale()
strcoll()
strftime()

strxfrm()

from one implementation to the next, depending
on the code set support offered by a particular ven-
dor. This multibyte function set does not provide
adequate support for Asian language application
development.

In addition to the mb* and wc* functions, the
X/0pen internationalization model specifies a set
of extensions for many library functions and com-
mands. These extensions enable the support of
8-bit characters as well as provide the functionality
required to meet the original goal of ensuring data
transparency. For example, changes to the printf()
and scanf() families of functions allow the order-
ing of arguments to be specified in translated mes-
sage catalogs. In addition, about 80 commands,
including sort and date, were modified to support
the locale categories.

The XPG specifications include a message catalog
subsystem. Although not very sophisticated, this
subsystem provides much needed functionality.
Minor updates have been made with each new issue
of the Portability Guide. The subsystem comprises
only three functions: catopen(), catclose(), and
catgets(). A command, gencat, is used to converta
message source file into a binary message catalog
that is accessed at run time by an application. The
behavior of the catopen() function is dependent
on the user’s chosen locale allowing selection of
translated messages.

XPG4 Specification and the OSF/1 Release
1.2 Implementation

This section discusses the XPG4 model in terms
of the OSI/1 release 1.2 implementation. Topics
include code sct support, the locale definition
utility (the utility for handling data in mixed code

sets), worldwide portability interfaces, and local
language support.

Code Set Support As mentioned in the previous
section, the XPG3 specification primarily supports
code sets based on the ISO/IEC 8859-1 specification.
The XPG4 model goes beyond this by including
additional interface specifications to support multi-
byte locales and internationalized commands.

The XPG4 model is a superset of the five basic
components of the XPG3 model. The use of the
wchar_t data type is a key feature of the new inter-
face specifications, because this data type supports
multibyte code sets. In the internationalized DEC
OSF/1 AXP version 1.2 system, the size of wchar_t
is 32 bits, which enables the support of complex
Asian languages such as Chinese. Thisimplementa-
tion is based on the OSF/1 release 1.2, which is itself
designed to support 8-, 16-, or 32-bit wchar_t defini-
tions. The X/Open internationalization model is
based on the concept of process and file codes. In
the internationalized DEC OSF/1 version 1.2 imple-
mentation, the wchar_t data type is used as process
code. That is, internal to an application, characters
are converted to the wchar_t data type before use.
File code, i.e., on-disk data, is always stored as
multibyte characters. An application converts all
internal process code (i.e., wchar_t data type) char-
acter to multibyte character prior to storing it on
disk. This enables file compression and enforces
the use of a constant width for the processing of
character information. The mb* and wc* functions
convert between the two types of data. The size of
the wchar_t data type combined with the capability
to support multiple encoding schemes provides the
flexibility required to have a code set-independent
implementation.

Restrictions exist on the use of certain characters
in the second and subsequent bytes of a multibyte
character so that full code set independence is diffi-
cult to achieve. An example of such a restriction is
the slash character /. The UNIX file system uses this
character as a delimiter in absolute and relative
pathname specifications. Implementations based
on OSI71 release 1.2 restrict the use of characters
in the range 0x00-0x3F to the ASCIl code set.
However, even with this restriction, it is possible to
build robust systems that support a wide range of
multibyte code sets.

To gain the necessary flexibility, the Open Soft-
ware Foundation introduced an object-oriented
architecture for the internationalization subsystem.

Digital lechnical Journal Vol. 5 No.3 Summer 1993

35

Product Internationalization

‘This architecture specifies the various components
of the X/Open model as subclasses. At run time,
an application instantiates objects built from these
subclasses by means of the sctlocale() function
call.

localedef, iconv, and Code Set I[ndependence
XPG3 doces not provide a utility for describing
locales. Thercfore, the number of different
approaches to the problem matched the number of
vendors. Introduced in the POSIX specification
ISO/IEC DIS 9945-2 and hence adopted by X/Open,
the localedcf utility provides a mechanism for spec-
ifying a locale in a portable manner.'s For cach code
set supported in the internationalized DEC OSF/1
AXP system, there is a corresponding charmap file
and one or morc corresponding locale definition
files that adherc to the POSIX specifications.
Combined with a set of locale-specific methodsand
code set converter modules, these subclasses pro-
vide the foundation for the OSF internationalization
architecture.

Locale-specific methods provide a way for the
ISO/IEC C language mbtowc(), wctomb() family of
functions to work in a multiple code set environ-
ment. The wchar_t encoding of a multibyte charac-
ter in the Japanesc SJIS code sct is diffcrent from
that for a character in the Super DEC Kanji code set.
At execution time, the correct method is instanti-
ated bascd on the user’s choice of locale. An exam-
ple of such an instantiation is shown in Figure 2.

A uscr-level utility (iconv) and several library func-
tions (iconv(), iconv_open(), and iconv_close())
provide a way to handle data that may be in mixed
code sets. Internationalized DEC OSF/1 version 1.2
provides an extensive sct of code set conversion
modules. New conversion mcthods are casily added
to the system.

Worldwide Portability Interfuces The XPG4 inter-
nationalization architecture parallels the XPG 3/1SO
C model. For example, XPG4 specifies a family of
isw* functions similar in design to the is” functions

LANG =ja_JP.SdIS
mbtowc() —= sjis_mbtowc()
or
LANG =zh_TW.eucTW
mbtowc() — eucTW_mbtowc()

Figure 2 Instantiation of mbtowc()

(e.g., isalpha) specified in the ISO/IEC C standard. As
mentioned previously, the XPG3 model does not
include all the interfaces necessary forapplication
developers to handle multibyte code sets. A new
sct of interfaces, which parallels the set of ISO/IEC C
8-bit interfaces, was developed and integrated into
the XPG4 specification. The final version of the
interface specification was proposed to the ISO/IEC
C committece as the Multibyte Support Extensions.

Cultural Data/Local Language Support Local
language support is achieved through the use of
locale databases and message catalogs. The catalogs
enable translation of user messages. Locale data-
bases have two components: the charmap file and
the locale definition file. These databases are cre-
ated by means of the localedef command.

The charmap file contains a POSIX-compliant
specification of the code set, i.e., a one-to-one
mapping from character to code point. The locale
definition file contains the cultural information.
Various sections of the definition file correspond
to the categories referenced by the setlocale()
function. The definition file contains collation
specifications, numeric and monetary formatting
information, date/time formats, affirmative/
negative responsc specifications, and character
classification information. In the OS¥/1 release 1.2
implementation, these definition files are indepen-
dent of the code set. For example, the definition for
Japanese (ja_JP) can be combined with multiple
charmap files such as SIS or eucJp.

Strengtbs of the X/Open Model

The greatest strength of the X/Open international-
ization model is that it is in place today and enables
the development of portable, language- and code
set-independent applications. The international-
ized DEC OSF/1 AXP version 1.2 system provides sup-
port throughout the commands and utilities for 20
code sets that represent major European and Asian
languages. All this is accomplished using XPG4
application programming interfaces (APIs). In addi-
tion, the programming paradigm is consistent with
ANSI C, making it easier for application developers
to modify existing applications for international
support.

Limitations of the X/Open Model

As described previously, the X/Open model for
internationalization provides a comprehensive
set of application interfaces, thus enabling the

36

Vol. 5 No. 3 Swmmer 193 Digital Technical Journal

The X/Open Internationalization Model

development of applications that can be used
worldwide. Yet, as with many standards, there are
limits to what can be accomplished. In this case,
limitations manifest themselves in several areas:

= Clanguage APl

= Distributed computing environments
= Multithreaded applications

= Multilingual applications*

= Unicode and ISO/IEC 10646 support!316

Because the X/Open and POSIX specifications are
based on UNIX implementations, the APIs are speci-
fied only for the C programming language. For pro-
gramming languages such as COBOL, FORTRAN, and
Ada. it is not nccessarily possible to match the syn-
tax and scmantics of the API. The remainder of this
section explores generic problems with the global
locale model and addresses specific issues in more
detail.

Global Locale Issues

The X/Open model is based on the concept of a
global locale. This aspect of the model is achieved
through the use of locale data that is maintained in
a private, process-wide global structure. The use of
a global locale is one of the more severe drawbacks
to using the overall model.

When working with this model, application
developers typically assume that a single language-
territory-code set combination is in use at a given
time and will remain constant on a per-process
basis. Although it is possible to use the announce-
ment mechanism to determine the run-time locale
of a process, this mechanism is cumbersome. The
application must both save and restore the locale
information.

Another drawback of the X/Open model is that
existing APIs do not include a way to share locale-
specitic information betwccen processes. This, com-
bined with the difficulty of locale switching, limits
the ability to support multilingual and distributed
applications.

Distributed Processing Issues

In a client-server environment, the problem of sup-
porting multiple locales becomes a serious issue.
Consider the following examples:

= A scrver gets requests from various clients, cach
running their own locale. These requests are
processed using the locale of the client. The

process includes returning locale-specific user
messages to the client and processing user-
locale-sensitive date/time formats, collation
information, and string manipulation.

= A window manager that supports multiple
clients displays menus for a client based on the
client’s locale. The user error messages displayed
are based on the locale of the server.

When a client sends a request to a server, the
request parameters that are passed between the
client and the server imply an associated locale.
Since the global locale is not an explicitargument in
any of the XPG4 functions, this locale is difficult to
pass to the server. Consider the specific case of
remote procedure calls (RPCs), where an interface
definition language (IDL) might be used to generate
client stubs. Becausc of the global nature of the
locale, insufficient information is available to the
IDL to determine if the locale information needs to
be used as an argument to any generated functions.
Thus, the server may need to change its locale for
each client request, which may be unacceptable in
terms of system performance.

Using the current XPG model, synchronizing the
use of a specific locale between a client and server
may not be possible. Even if a client could specify
a locale as part of the request, the locale may not
be available at the server side or may be repli-
cated incorrectly on the server side. This situation
exists because locale names and content are not
standardized.

Although the XPG4 specification includes the
localedef command for specifying the content of a
locale clatabase, there is no provision for standardiz-
ing the content. The only locale for which an
X/Open specification exists is the POSIX or C locale.
In addition, there is no specification for explicitly
naming a locale. Locale namesare composed of lan-
guage, territory, and code set components. Many
vendors use ISO/IEC 639 and ISO/IEC 31606 for the lan-
guage and territory components, but there is little
agreement on code set naming conventions.'* '8
This naming scheme is not sufficient for uniquely
identifying locales, as is required in a client-server
model.

Another problem with the X/Open mocdlel that
impacts application performance and the ease with
which an application can be internationalized is
related to the process code. The representation of
the process code, i.c., wchar_t, is implementation
defined, and the mapping of multibyte characters
to wide character codes may be locale sensitive.

Digital Technical Journal Vol. 5 No. 3 Summer 1993

37

Product Internationalization

Therefore, wchar_t-encoded data cannot be
exchanged freely between the client-server pair.
The only exception would be if the end user guar-
anteed that the process code was identical for a
given locale for each part of the client-server pair.
The XPG4 specification does not include function-
ality to identify or to interrogate the wchar_t
encoding scheme used.

Multithreaded Applications

The problems encountered in a distributed process-
ing environment become more complex if the
application is also multithreaded. Using POSIX
threads, commonly referred to as pthreads, more
than one thread is in the execution phase at the
same time.'” Again, a problem with the global, pro-
cess-wide locale is evident. The application cannot
maintain the state of the global locale, accom-
plished by a save/restore process, without blocking
all other threads. Likewise, execution of locale-sen-
sitive functions requires locking all threads to
ensure that the global state is not altered prior
to completion. The need to continually lock and
unlock threads, in addition to being undesirable,
results in a performance problem for international-
ized applications. Another approach is to make
locale data thread-specific.

Multilingual Applications

The X/Open internationalization model is oriented
toward the development of monolingual applica-
tions. Therefore, the model does not provide func-
tions to handle data that consists of an arbitrary
mixture of languages and code sets.

The following are some examples of applications
that may require multilingual services:

= Applications that simultaneously interact with
a number of users (e¢.g., transaction processing
systems), where each user can choose alanguage

= A word processing application for multilingual
texts that need language-sensitive formatting,
hyphenation, etc.

Unicode Support

With the arrival of the Unicode universal character
code and the adoption of ISO/IEC 10646 as its form,
both POSIX and X/Open have to address the issues
of support.’s© The X/Open Internationalization
Working Group is preparing a paper on Unicode

support within the existing specifications; this
publication should be available in late 1993. Some
of the issues that the C language, POSIX, and XPG4
are facing to support Unicode or ISO/IEC 10646 are
character compatibility, code restrictions, and valid
character strings.

Unicode characters are incompatible with the
C language char” data type used in the POSIX and
X/Open models. Unicode characters are 16-bit enti-
ties, whereas the POSIX and X/Open characters are
in practice 8-bit bytes, even though theoretically
the byte size is implementation dependent. Most
APIs defined in the POSIX and X/Open models
implicitly assume 8-bit characters. This principle
is extended to cover Asian multibyte characters
by considering each character to be a sequence of
8-bit char data elements. Unicode characters, how-
ever, cannot be broken down into sequences of
valid 8-bit char” data elements.

The POSIX character model requires that the
code values for char” data protect the code ranges
for control characters between 0x00-Ox1F and
0x80-0x9F, the code position DELETE, and the slash
character /. No such restrictions exist in Unicode.

The C language postulates that a null character
terminates a char® string. Since the Unicode string
most likely contains zero bytes, these bytes would
be interpreted as string terminators. In principle,
the C language would allow a compiler to define
the char* data type to be of 16-bit width. However,
given the prevailing assumption in POSIX and XPG4
that one character equals one 8-bit byte, a Unicode
character string cannot be a valid char™ string.

For these reasons, Unicode cannot be a valid file
codeas defined by the POSIX and X/Open specifica-
tions. Unicode is not usable as an XPG4 process
code either. Unicode and ISO/IEC 10646 allow the
combining of 16-bit characters.'s However, in many
operations the combining character (e.g., in the
French character set, the grave accent) and the base
character (e.g., the letter e) have to be processed
together. This situation contradicts the XPG4
model, where each character of the process code is
individually addressed and processed.

Using a well-defined encoding as XPG4 process
code would also violate the principle that the pro-
cess code is opaque, implementation defined, and
not valid outside the current process. For all these
reasons, the X/Open Joint Internationalization
Group decided to propose using Unicode in a mod-
ified form of the universal multiple-octet coded
character set (UCS) transformation format (UTF).':20

Vol. 5 No. 3 Summer 1993 Digital Technical Journal

The X/Open Internationalization Model

Proposed Changes to the Model

The XPG4 model limitations described in the previ-
ous sections are well understood in the internation-
alization community. X/Open has published a
Snapshot specification for a set of distributed inter-
nationalization services.’® This specification does
not solve all the problems identified in this paper. It
does, however, address the problems associated
with the use of the global locale mechanism, locale
identification, and text object manipulation. Note
that these are proposed changes and have not been
adopted by any standards organization.
The proposed changes include

= A locale naming specification that ecnables the
identification of a given locale in a distributed
environment

= Definition and support of a locale registry
= A new set of APIs that enables application soft-
ware to

- Concurrently manage and use many different
locales

- Manipulate opaque text objects?!

- Support stateful and nonstateful encodings
and file codes that are excluded by the cur-
rent standards (c¢.g., nonzero byte terminators
used in the Unicode code set)

Locale Naming and the Locale Registry

In an internationalized environment, the server
must replicate the client’s locale. If the client’s

Table 3 Network Locale Naming Specifications

locale can be uniquely identified, the remote code
can replicate the locale by obtaining it and specify-
ing this information as part of the operation. To
solve the locale replication problem, the XoJIG
developed a locale naming scheme, referred to as
the locale specification.

The locale specification is a character string that
contains the locale name for each category that
exists within the locale. The syntax for locale
names is a list of keyword-value pairs, where each
pair defines a locale category. Certain keywords,
such as code set name, encoding name, and owner
or vendor name, are standardized as part of the reg-
istration process. Table 3 shows two examples of
locale specifications.

Although this naming scheme provides for
unique identification of locales, the names are long.
The specification calls for the use of ASCII charac-
ters to name locales. The American English locale
specification is over 200 bytes in length. A short-
hand notation called network locale specification
token has been proposed.

The network locale specification token is an
unsigned integer value that can be represented
within four bytes. The two most significant bytes
represent the registration authority. Under the pro-
posal, national and international standards bodies,
companies, and consortia, etc., that wish to use net-
work locale specification tokens will receive
unique identifiers. A block of values will be
reserved for private use between consenting sys-
tems. A set of new functions will allow conversion

American English Locale Using the ISO/IEC Latin-1 Code Set

CTYPE=ANSI;en_US;01_00;ISO-88591-1987;;/
COLLATE=ANSI;en_US;01_00;ISO-88591-1987;;/
MESSAGES=ANSI;en_US;01_00;ISO-88591-1987;;/
MONETARY=ANSI;en_US;01_00;1SO-88591-1987;;/
NUMERIC=ANSI;en_US;01_00;ISO-88591-1987;;/
TIME=ANSI;en_US;01_00;1SO-88591-1987;;/

Japanese Locale Using Japanese Extended UNIX Code (EUC) Encoding

CTYPE=ISO;ja_dJP;01_00;.11IS-X0208-1987,JI1S-X0201-1987,11S-X0212-1991;EUC;/
COLLATE=ISO;ja_JP;01_00;J1S-X0208-1987,JIS-X0201-1987,JI1S-X0212-1991;EUC;/
MESSAGES=ISO;ja_JP;01_00;JIS-X0208-1987,J1S-X0201-1987,J1S-X0212-1991;EUC;/
MONETARY=ISO;ja_JP;01_00;JIS-X0208-1987,JIS-X0201-1987,JI1S-X0212-1991;EUC;/
NUMERIC=ISO;ja_JP;01_00;J1S-X0208-1987,J1S-X0201-1987,J1S-X0212-1991;EUC;/
TIME=ISO;ja_JP;01_00;JIS-X0208-1987,JIS-X0201-1987,JI1S-X0212-1991;EUC;/

Digital Tecbnical Journal Vol.5 No.3 Sununer 1993

39

Product Internationalization

between the full locale specification and the locale
specification token.

The locale specification proposal solves the
problem of unique naming for locales. Combined
with a locale registry, this proposal overcomes
some of the limitations of the current X/Open
model. Within the registry, each locale will have
a name defined according to the new syntax.
Assuming vendors add thesc registered locales to
their systems, language-sensitive operations in a
distributed environment will obtain the same
results across systems. This registry has been estab-
lished by X/Open, and several locales have been
submitted.

Multilocale Support

A new set of interfaces, the set of o* functions, has
been proposed. These interfaces provide capabili-
ties similar to those defined by the XPG4 model.
These new functions address many of the model’s
limitations, including multithreaded applications,
distributed systems, and multilingual applications.

Most of the o* functions utilize three new data
types: locale object, attribute object, and text
object. To overcome the limitation imposed by a
global, per-process locale, the fundamental XPG4
programming paradigm is altered to define locali-
zation on a per-call rather than a per-proccess basis.
This change is accomplished by defining a new
opaque data typc called a locale object. A locale
object identifies the locale and can be passed as an
argument to locale-sensitive functions on a per-call
basis. In this way, the basic programming paradigm
becomes

1. Perform operation X on data Y using locale Z
and not

1. Setgloballocale Z

2. Perform operation X on data Y

An attribute object is a generic opaque object
that serves as a container to other opaque objects,
such as a locale object. Use of an attribute object in
the proposed APIs provides a solution that is not
specific to solving internationalization problems. It
is anticipated that objects, in addition to the locale
object, will be identified. The additional objects
might result from requirements in such areas as
multimedia, network security, and X]l1-specific
extensions to the locale.

A text object is a new data type that replaces the
character (char) and wide character (wchar_t) data

types used in the XPG4 internationalization modcl.
As previously defined, a text object refers to a col-
lection of text characters that may or may not havce
mctadata associated with them. Support for direc-
tionality, as required for right-to-left languages
such as Hebrew, is an example of when such meta-
data would be introduced. If a text object has a
locale defined as part of the metadata (i.e., self
announcing data), the locale specified as part of the
data supersedesthe locale passed as an argument to
the o* functions. The locale that is passed as a func-
tion argument acts as a default locale for operations
that require it. All 0o* functions allow a locale identi-
fier to be passed as an argument. This capability
eliminates the limitations of the XPG4 global locale.
The support of metadata associated with text
objects is implementation defined.

A text object data type is represented by a text
pointer of type txt_ptr. A text pointerrepresents all
the information associated with a particular charac-
ter position within the text object. This informa-
tion is sufficient to perform any kind of operation,
such as classification, extraction, or uppercasing.

In summary, the o* functions allow text objects
to be classified, converted, transferred to and from
files, etc. The functionality of the o* functions
is designed to parallel the character-handling
functionality provided by the X/Open internation-
alization model. For example, functions for manipu-
lating text pointers and for concatenating text
objects are tuned to the multilocale model.
Interfaces have also been introduced to provide
management functions for new objects.

Conclusions

When introduced, the X/Open Portability Guide
Issue 3 model for internationalization met about 90
percent of the known requirements in the western
European market. The introduction of the XPG4
worldwide portability interfaces expanded the
region to include Asia, Japan, and eastern Europe.
Consequently, application developers can write
portable code that supports a variety of languages.
The use of the worldwide portability interfaces for
computer-aided design applications that are dis-
tributed worldwide is one example of such code.

However, the use of the client-server model
expanded greatly in the time it took to develop
these standards. Also, the need to support truly
multilingual applications in a distributed environ-
ment became evident. New code set specifications
(i.e., Unicode) have been adopted, and systems

40

Vol. 5 No.3 Swmmer 1993 Digital Technical Journal

The X/Open Internationalization Model

supporting Unicode as both file and process code
have been implemented. Application vendors are
beginning to see their markets expand into every
corner of the world.

The XPG4 model will continue to provide much-
needed interfaces for quite some time. Yet, to meet
the challenges of the truly distributed environ-
ment, a new API, similar to the o* functions pre-
sented here, must be developed and accepted.

Acknowledgments

Thanks to Mike Feldman, Richard Hart, and Dave
Lindner, among others, who spent their time pro-
viding comments and recommendations during the
writing of this paper.

References and Notes

1. UNIX System V Release 4 Multi-National Lan-
guage Supplement (SVR4 MNLS) Product
Overview (Japan: American Telephone and
Telegraph Co., 1990).

2. X/Open Portability Guide, Issue 2 (Reading,
U.K.: X/Open Company Ltd., 1987).

3. Programming Languages—C, ISO/IEC 9899:
1990 (Geneva: International Organization for
Standardization/International Electrotechni-
cal Commission, 1990).

4. Information Technology—Portable Operat-
ing System Interface (POSIX)—Part 1: System
Application Program Interface (APD) [C Lan-
guage], 1ISO/IEC 9945-1:1990 (Geneva: Interna-
tional Organization for Standardization/
International Electrotechnical Commission,
1990).

5. X/Open Portability Guide, Issue 3 (Reading,
UK.:X/OpenCompany Ltd., 1989).

6. Multibyte Support Extensions, I1SO/IEC
9899:1990/Amendment 3:1993(E) (Geneva:
International Organization for Standardiza-
tion/International Electrotechnical Commis-
sion, 1993).

7. X/Open CAE Specification, System Interface
Definitions, Issue 4, ISBN 1-872630-46-4,
C204 (Reading, UK.: X/Open Company Ltd.,
1992).

10.

11.

12

15.

16.

17.

18.

X/Open CAE Specification, Commands and
Utilities, Issue 4, ISBN 1-872630-48-0, C203
(Reading, U.K.: X/Open Company Ltd., 1992).

X/Open Internationalisation Guide (Read-
ing, U.K.: X/Open Company Ltd., 1992).

Distributed I[nternationalization Services
(Snapshot) (Reading, UK.: X/Open Company
Ltd., 1992).

L. Laverdure, P. Srite, and J. Colonna-Romano,
NAS Architecture Reference Manual (May-
nard, MA: Digital Press, 1993): 255-264.

Information Processing—8-bit, Single-byte
Coded Graphbic Character Sets—Part 1: Latin
Alpbabet No. 1, 1SO/IEC 8859-1 (Geneva:
International Organization for Standardiza-
tion/International Electrotechnical Commis-
sion, 1987).

Information Technology—Portable Operal-
ing System Interface (POSIX)—Shell and
Utilities, 1SO/IEC DIS 9945-2 (Geneva: Interna-
tional Organization for Standardization/
International Electrotechnical Commission,
1992).

Multilingual applications can process multi-
ple languages at the same time, whereas
implementations of the X/Open model can
process several languages but only on an indi-
vidual basis.

J. Bettels and E Bishop, “Unicode: A Universal
Character Code,” Digital Technical Journal,
vol. 5, no. 3 (Summer 1993, this issue): 21-31.

Information Technology— Universal Multi-
ple-Octet Coded Character Set (UCS)—Part 1:
Architecture and Basic Multilingual Plane,
ISO/IEC 10646-1 (Geneva: International Orga-
nization for Standardization/International
Electrotechnical Commission, 1993).

Codes for the Representation of Names and
Languages, 1SO/IEC 639 (Geneva: Interna-
tional Organization for Standardization/
International Electrotechnical Commission,
1988).

Codes for the Representation of Names of
Countries, 1SO/IEC, 3166 (Genceva: International

Digital Technical Journal Vol 5 No.3 Sununer 1993

41

Product Internationalization

19.

20.

Organization for Standardization/International
Electrotechnical Commission, 1988).

Information Technology— Portable Operat-
ing System [Interface (POSIX)—Threads
Extension for Portable Operating Systems,
IEEE 1003.4a/D7 (New York: The Institute of
Electrical and Electronics Engineers, 1993).

File System Safe— UCS Transformation For-
mat (Reading, U.K.: X/Open Company Ltd,,
1993).

21.

As defined in the X/Open Draft International-
ization Services Snapshot: A text object is an
implementation-defined representation of a
fragment of text that consists of zero or more
text characters.

General Reference

S. Martin and M. Mori, Internationalization in
OSF/1 Release 1.1 (Cambridge, MA: Open Software
Foundation, Inc., 1992).

42

Vol.5 No. 3

Summer 1993 Digital Technical Journal

Rene Haentjens |

The Ordering of Universal

Character Strings

In the countries of the world, people have developed various methods to order
words and names based on their cultures. Many challenges and problems are asso-
ciated with developing ways for computers to emulate buman ordering methods.
An efficient computer method for obtaining a quality ordering bas been devised as
an extension to the single-step compare. It solves many but not all of the problems.
A universal code now exists to store words and names written in many languages
and scripts, but there is no universal way to order words and names. Hence, formal
specification methods are needed for computer users to describe culture-specific
ordering rules. This area is still open to research. Meanwhile, international stan-
dardization committees endeavor to formulate sensible proposals for multicultural

contexts.

Today, when we access information stored in com-
puters, we often ask the computer to present us
lists of items arranged in an order that is meaningful
to us and easy to use. In the future, will the com-
puter render obsolete the lists of words and names
ordered for human reference? Will the computer
look up all information in our place? Will we no
longer need the skills to find our way around in dic-
tionaries, telephone directories, and the like? These
things are not impossible, but we ourselves might
notlive to see them happen.

If ordering for human consumption is to stay
around for a while, then the next question that we
might ask is whether or not it would be possible
to harmonize the ways in which lists are ordered
around the world. Most people are aware that alpha-
betic order may differ from one country to another.
The same is true for scripts that are not based on
an alphabet: although the Chinese Han characters
are used to write Japanese and Korean, lists with
Han characters are not in the same order in the
People’s Republic of China, Japan, Korea, and
Taiwan, Republic of China.

Can we change to a universal ordering system
or at least make ordering the same where the
same script is being used? If the order of words
were the same, life would surely be easicr for the
traveler! Unfortunately (if the rcader permits that
expression), the way in which we work with
ordered lists is a cultural aspect and is related to

the languages that we use. A proposal to change
ordering habits is a bit like proposing a spelling
reform. Everyone is in favor of simplification as
long as it applies to other groups of people, but we
see no reason to change things for ourselves. In
fact, looking back to the roots of our own culture,
we find many good reasons why things are as they
are today, so a change is seldom perceived as an
improvement.

The conclusion is, for the time being, that we
may as well use the computer to help us organize
lists and to take into account that the task of order-
ing lists is not universally the same.

This paper explores the issues involved with
ordering and the ways the computer can deal
with them. It describes how people order words
and names, and consequently, how they expect
words and names to be ordered if a computer does
the ordering. It presents examples of ordering in
various cultures. This paper concentrates on the
ordering of words and names; it does not include a
discussion of numerical ordering.

Words, Names, and Character Strings

Computers store words and names as character
strings. The symbols that we use for writing are
mapped to bit patterns in computers, and these pat-
terns are chained together. For pragmatic reasons,
the bit patterns do not correspond to graphic sym-
bols in a simple one-to-one fashion. Attributes such

Digital Technical Journal Vol. 5 No.3 Summer 1993

Product Internationalization

as the font in which the symbol is presented and the
size of the symbol are usually stored in separate
arcas, and the bit pattern for the specific character
that represents the symbol remains the same. Also,
scveral characters or bit patterns can somcetimes be
represented by the same graphic symbol. For exam-
ple, the characters LATIN CAPITAL LETTER A and
GREEK CAPITAL LETTER ALPHA can be rendered with
the same graphic symbol A, Finally, the chaining of
characters to strings may not completcly agree with
the visual arrangement of corresponding graphic
symbols.

In other words, there are differences between
how people order words and names and how com-
puters order the corresponding character strings.
People combine knowledge about words and
names (for example, how to read and pronounce
them) with visual aspccts of the written or printed
words and names. Computers must work with the
bit patterns.

With regard to character coding, the Internc-
tional Standeard 1SO/IEC 10646-1:1993, Universal
Multiple-Octet Coded Character Set, and the de
facto standard, Unicode version 1.1, are considered
state of the art. These two coding methods can con-
veniently be considered as identical, and the same
abbreviation, UCS, refers to both of them. With UCS
coding, words and names can be stored in many
of the scripts of the world, and Chinesce Han charac-
ters can be chained together with Latin, Greek,
Cyrillic, Hebrew, and Arabic letters and many
more.

Before discussing the complexities of UCS
coding. this paper explores some important
aspects of ordering of character strings in the next
scction.

Lexical Ordering

With lexical ordering, the computer takes into
account only the kinds of characters that appear in
the strings and the arrangement of thesce characters.
Apart from the ordering algorithm and the associ-
ated data, the computer uses no other knowledge
that it might have about the words in the character
strings. For example, it does not use an electronic
dictionary or rules about natural language syntax,
phonetics. and semantics. The idea is to sce how
computers can work with rcasonably efficient tech-
niques, while staying closc to how people work.
Mcaning-bascd ordering and scarching with the
computer is an interesting subject in itself, but is
too broad a scope for this paper.

When people order words or names or when
they are looking for them in an ordered list, they
often use (unconsciously sometimes) the meanings
of these words or some other knowledge about the
words or names. For example, when looking for the
name McMillan in a telephone dircectory, they
might try to find it between Macleod and
MacNewville, knowing that Mc is the same as Mac.
They might even look betwceen Melbowurne and
Murphy, ignoring the Mc of McMillan altogether. 1f
thce computer has only a character string that repre-
sents the letters of the name McMillan, then it lacks
the knowledge to look up the name any other way.
Lexical ordering cannot incorporate expanding or
ignoring prefixes and abbreviations; there is no lex-
ical rule to determine what part of the character
string might be a prefix or an abbreviation.

As another example, in Japanese many Han
characters (called kanji by the Japanese) are pro-
nounced in a different way depending on the
context. Japanese dictionaries for general use are
ordered by pronunciation; therefore, if the com-
puter has only the kanji character in the character
string, it cannot order or look up in the same way
as people do in Japan. The character for rice, for
example, is pronounced szai in a form such as gai
incii (imported rice), but as bes in a form such as
bei koku (America). The difference is due to the his-
torical background of the character or when, in
its specific context, it was borrowed from the
Chinese. When kanji are used in proper names,
such as names of persons and geographical names,
there may be no context information, and human
intervention might be needed to know the correct
pronunciation.

In these cases, since the computer must mimic
how people order and is limited to lexical tech-
niques, more than codes for the letters or for
the Rasnji must be stored in the character strings.
For example, the computer might have a character
string that contains a kanji character plus its
pronunciation represented with kana characters.
Or the computer might have strings such as
(Mc)Millan with the convention that the parenthe-
ses indicate parts to be ignored for ordering and
searching.

Modern dictionaries and telephone directories
use lexical techniques as much as possible, which is
better in a multicultural environment. It is much
casicr to understand and apply lexical rules for
searching than to acquire intuitive knowledge of
an unfamiliar culture.

Vol 5 No. 3 Sunnmer 1993 Digital Technical Journal

The Ordering of Universal Character Strings

Words, Not Individual Letters

It is important to understand that people order
words and names, not just the individual letters and
symbols. Consequently, good-quality lexical order-
ing that comes close to how people work cannot be
achicved by looking at all the characters in a string
only once, from the first one through the last one.
This concept can best be illustrated with alphabetic
scripts, and some English examples are given below.

When one looks for SOS ina modern English dic-
tionary, one expects to see it betwceen sort and
soul. Now, to find SOS between sort and soul, one
mustignore that SOS is in uppercase letters and sort
and sou! are in lowercase. This type of lookup is
achievable by looking at all the letters once.

Now consider the abbreviation €A7, meaning
clear air turbulence. CAT is listed between casual
and catalyst. In this case, we cannot ignore the dif-
ference between CAZ and cat. The dictionary lists
both words, and some dictionaries consistently list
lowercase words before uppercase words (or vice
versa), so the order using lowercase first would be
castal, cat, CAT, catalyst. It is not possible to devise
an algorithm or method that would arrange these
four words in the correct order by looking at all the
letters once. To guarantee the correct order in all
cases, a first step is needed in which uppercase is
considered equal to lowercase: the two words cat
and ¢AT must be placed in the correctorderin a sec-
ond step, in which uppercase and lowercase make
adifference.

Dealing with uppercase and lowercase is not the
only issue for alphabetic ordering. Many languages
use letters with diacritical marks such as accents.
Words and names may also contain spaces or spe-
cial symbols, such as hyphens, apostrophes, and
points. Examples are big bang, best-seller, rock 'n’
roll, and PS. When ordering is strictly alphabetic, as
is the casc in many dictionaries, then accents on let-
ters, spacing, and special symbols are ignored in the
first step, but they are taken into account to resolve
a tie. For example, the correct order in French
might be denier, dénier; dernier; or N, NB, N.B., Nd,
n.d., N.0J. in English.

Table-driven Multilevel Ordering

The heart of ordering methods is the comparison of
two character strings. If we have an algorithm to
determince whether one string should precede, fol-
low, or be considered equal to a second string, then
arranging a list of strings in the correct order is
straightforward.

Single-step or One-level Comparce
The single-step compare or one-level ordering algo-
rithm is known by most readers:

Compare the first characters of the two strings; if
equal, then compare the second characters; con-
tinue until a difference is found or until at lcast one
string is cxhausted. Ifa difference is found, then the
character-collating sequence determines which
string precedes the other. (Example: words pre-
cedes working because d precedes R) If one of the
two strings is exhausted, then the shorter string
precedes. (Example: word precedes woids.) 1t both
strings are exhausted, then they are considered
equal.

Multiple-step or Multilevel Compare

The state-of-the-art computer method for compar-
ing character strings is a generalization of the single-
step compare. If, after using the above algorithm
with the first collating sequence, both strings are
found to be equal, then in the second step the algo-
rithm is repeated. Both strings are compared again,
starting from their first characters, now using the
second collating sequence. The second step may
be followed by a third step and so on, one step for
each collating sequence.

To be precise, the one collating sequence of all
characters is replaced by a matrix of collating
weights and collating weight sequencces for each
weight (W) column. Consider the following
example:

W1 W2 W3
LATIN CAPITAL LETTER D <D> <NONE> <UC>

LATIN SMALL LETTER E <E> <NONE> <LC>
LATIN SMALL LETTER E

WITH ACUTE <E> <ACUTE> <LC>
LATIN SMALL LETTER E
WITH GRAVE <E> <GRAVE> <LC>

LATIN CAPITAL LETTER E <E>
LATIN CAPITAL LETTER E

<NONE> <UC>

WITH ACUTE <E> <ACUTE> <UC>
LATIN CAPITAL LETTER E
WITH GRAVE <E> <GRAVE> <UC>

LATIN SMALL LETTER F <F> <NONE> <LC>

The collating sequence for W1 is <A>, , <C>,
etc. This means that, with the example matrix, all
variants of Latin letter E are equal in the first com-
parison step. The collating sequence for W2 is
<NONE>, <ACUTE>, <GRAVE>, which means that in
the second step, the accents make a difference, but
there is no distinction between lowercase and
uppercase variants. That distinction is made in the
third step: the collating sequence for W3 is <LC>,
<uC>.

Digital Technical journal Vol. 5 No. 3 Sununer 1993

-
S

Product Internationalization

The weight matrix and the collating sequences
can be placed in tables that are used by the ordering
algorithm, hence the name tablc-driven multilevel
ordering.

If this ¢xample matrix is extended in a similar
way, then the multilevel algorithm would place the
following words (most of which are rcal French
words) in this correct order: dénie, DENIE, denicr;
DENIER, dénier, DENIER, dénier; dernier:

The method that is described here is also used
in POSIX (ISO/IEC 9945-2.2 Shell and Utilities,
LC_COILATE Definition).' Rolf Gavare was among
the first to publish a paper on multiple-step com-
parisons.? Alain LaBonté was the first to describe it
as explained in this paper, and he also implemented
it as a Canadian Standard (CSA Z243.4.1-1992).
LaBonté devised a complete and predictable order-
ing method that corresponds to very fine detail
with the best examples of French and English dic-
tionary ordering.*

Generate Comparison Key

With the multilevel method, it is also possible to
have the algorithm generate a comparison key for
a specific character string rather than always com-
pare two strings. These comparison keys can be
stored with the character strings; a one-level com-
parison of keys then gives the same result as a multi-
level comparison of the original character strings.
For example, and again extending the example
matrix given above, the comparison key for dénie
could be a convenient numerical representation of
<D><E><N><I><E><nil><NONE><ACUTE><NONE>
<NONE><NONE><nil><LC><LC><LC><LC><LC>.

The <nil> precedes all other weights. Its pres-
ence at the end of the comparison key subfields
guarantees that shorter strings precede longer
strings. Efficient compression techniqucs exist for
such comparison keys.

Variations of the Multilevel Method

The following section expands upon the multilevel
method and gives examples of changcs necessary to
accommodate cultural differences in word order.

Special Symbols

With a small extension, the multilevel method can
also handle special characters such as the hyphen
and the apostrophe to mimic traditional human
alphabetic ordering. Another weight column must
be added to the matrix given above to distinguish
letters from special characters:

LATIN SMALL

LETTER E <E> <NONE> <LC> <LTR>

HYPHEN-MINUS IGNORE IGNORE IGNORE <HPH>

The IGNORE indicates that the character is
skipped in the comparison algorithm in the first
three steps. A collating sequence for W+, in which
<LTR> precedes all symbols for special characters
such as <HPH>, guarantees that words and names
without special characters precede the ones with
exactly the same letters, but with special characters.

A four-level ordering such as the one suggested
here is sufficient for a good-quality, complete, and
predictable alphabetic ordering with the Latin
alphabet.

Additional Letters

For most languages written in Latin characters, the
correct order of words would be senioz seiiorita,
sentimental, separable. To achieve this order, W1
would be ..., <M>, <N>, <O>, ..., and the matrix
would include LATIN SMALL LETTER N WITH TILDE,
where W1 is <N>, W2 is <TILDE>, and W3 is <L.C>.
[n Spanish, the N WITH TILDE is considcred a let-
ter to be ordered between N and O and the correct
order is senior;, sentimental, seiiorita, separable. To
achieve this type of ordering, W1 would be ..., <M>,
<N>, <NTILDE>, <O>, ..., and the matrix would add
LATIN SMALL LETTER N WITH TILDE, where W1 is
<NTILDE>, W2 is <NONE>, and W3 is <LC>.

Ligatures

The multilevel method can also handle ligatures by
allowing each matrix element to be a sequence of
weights, rather than one weight. For /£ in French,
the matrix would include LATIN SMALL LIGATl RE
AE, where W1 is <A><E>, W2 is <L.G><LG>, and W3
is <LC><LC>. In these languages, LIGATURE AE is
equivalent to two letters when ordering words. In
Norwegian, the £ is a letter on its own. W1 is ...,
<Y>, <Z>, <AE>, <OSTROKE>, <ARING>. For the
matrix element, LATIN SMALL LIGATURE AE, W1 is
<AE>, W2 is <NONE>, and W3 is <LC>.

Logograms

Some special symbols, sometimes called logograms,
can be seen as short notations for words: & + %. A
culture-specific ordering may replace such symbols
by the corresponding words. If the language is
English, for example, then Research & Development
can be ordered as Research and Development. As
long as a fixed rule exists for replacing symbols by

46

Vol. 5 No. 3 Suminer 1993 Digital Technical Journal

The Ordering of Universal Character Strings

equivalent words, the extension that was intro-
duced for /£ can be applied in a similar way to
obtain the desired ordering. On the other hand, if
the replacement word depends on the language
used in the rest of the string, then lexical ordering
cannot do the job properly without more informa-
tion coded in the character strings.

Fine Tuning for the Accents

The table-driven multilevel method, as explained so
far, would place French words in this order: cote,
coté, cote, coté, magon, mdcon. In a traditional,
correct ordering, they should be in the following
order: cote, cote, coté, coté, mdcon, magon. (In gen-
eral, accents at the end of a French word are more
important for understanding than other accents.)

To obtain the desired ordering, another exten-
sion of the multiple-step method is needed: for the
second step, the one that discriminates between
quasi-homographs (words that differ only in their
diacritical marks), the comparison algorithm should
start from the end of the strings rather than from
the beginning. For the other Western languages that
use the Latin alphabet, this reverse processing for
the accents is not needed. On the other hand, it
does not hinder either, so the French method is
acceptable as well.

French is not the only language with such quasi-
homographs. In new-Greek, with the modern
monotoniko spelling, all multisyllabic words have
one accent that indicates the stressed syllable.
New-Greek has many quasi-homographs, including
the following examples, which use a simple tran-
scription of Greek letters to Latin letters: drguros,
arguros, diakonia, diakonid, métro, metrd, para,
para. The French method of reverse processing
produces acceptable results for new-Greek as well.

Fine Tuning for the Special Symbols
With the tables extended as explained in the
section Special Symbols, the multiple-step algo-
rithm would order words as follows: unionized,
union-ized, un-ionized. For the exceptional cases
such as this one, in which two words are identical
except for the placement of a special symbol, the
order umionized, un-ionized, union-ized may
seem more appropriate. Usually, the hyphenis per-
ceived as a word break, not on the first level, but on
a subsequent level, and with word breaks, shorter
words always come first.

To obtain the latter ordering, one could use the
same technique as for the diacritical marks: have

the algorithm start from the end of the strings for
the level that deals with the special symbols. POSIX
has a small extension to the multilevel method that
gives similar results while still moving forward.
This extension adds the position of the symbol to
its table weight during comparison.

Special Symbols in Combination with
Uppercase and Lowercase Characters

This section does not introduce a new extension
but reconsiders the extension for the special sym-
bols. This method adds a fourth weight column:

LATIN SMALL

LETTER E <E> <NONE> <LC> <LTR>

HYPHEN-MINUS IGNORE IGNORE IGNORE <HPH>

With W3 for uppercase and lowercase and W4
for the special characters, the distinctions between
uppercase and lowercase are considered more
important than the presence or absence of spacing
and special symbols. In many cultures, this is
indeed the case with proper names of people. The
following order is desired with names that differ in
use of uppercase or lowercase letters: deGroot, de
Groot, Degroot, De groot, DeGroot, De Groot.

For some geographical names, it could be argued
that special symbols are more significant than the
difference between lowercase and uppercase.
For example, the desired order is Sanssouci,
SANSSOUCI, Sans Souci, SANS SOUCI, Sans-Souci,
SANS-SOUCI. (Sanssouci is a castle near Potsdam in
Germany; Sans Souci is a city in South Carolina,
US.A., and a suburb of Sydney, Australia; and Sans-
Souci is a historical place on Haiti.) To obtain this
order, W3 and W4 must be switched.

Some Problems with the
Multilevel Method

To obtain the correct order, changes are sometimes
necessary to the multilevel method. This section
discusses cases in which it is less easy to adapt the
table-driven multilevel method.

Digrapbs and Collating Elements

CH and LL have special placement in the Spanish
alphabet. Spanish is not unique in this respect; com-
binations of letters also have special placement in
the Albanian, Hungarian, Vietnamese, and Welsh
alphabets. The Welsh ordering alphabet, for exam-
ple,isABCCHDDDEFFFGNGHIJLLLMNOPPH
RRHSTTHU W Y, and the following list of words is
correctly ordered in Welsh: acw, cachos, adwy,

Digital Technical Journal Vol. 5 No. 3 Summer 1993

47

Product Internationalization

addas, agwedd, angau, almon, allan, anfynych,
anffodus, antur;, anthem.

Before the multilevel method can be applied, it
is necessary to replace the multiple-character
combinations by pseudo-characters. In POSIX
LC_COLLATE, such a mechanism is foreseen. One
can declare combinations such as LATIN SMALL
LETTER C followed by LATIN SMALL LETTER H to be
collating elcments and give them a name that can
be used in the matrix.

At first it would seem that this solves the prob-
lem. One complication, however, is that the two let-
ters together do not always represent the special
alphabetletter. In Welsh, for example, the N and G
are separatc letters in the Welsh words melyngoch,
dangos, gwyngalchu, and mwynglawcdd. The word
melyngoch then is among words starting with
melyn, not after the words with melyg. Morce infor-
mation must be coded in the character strings that
represent Welsh words to define a correct lexical
ordering.

A similar problem exists with Danish. In most
Danish words, aa is semantically and phonctically
equivalent to «. Danes expcect aa and ¢ to be
ordered together, after Z, /4, and ¢J. But in words of
foreign origin, aa is justA + A.

The reader with a knowledge of programming
complexity will probably also sce that the collating-
element extension makes the table-driven multi-
level method less straightforward to implement. If
there are only a few collating-element extensions,
then simple workarounds might help, but what if
there are thousands of them? (Improbable? Wait to
form your opinion until you read the section Added
Complexity with UCS Coding.)

Sequences, However Long

Other ordering requirements are difficult to accom-
modate with the matrix mcthod. For example, the
British standard on ordering, BS 1749:1985, requires
that (in the first step) spaccs, dashes, hyphens, and
diagonal slashes and sequences of them be treated
asa single space (which is significant), exceptat the
beginning of an entry, where they should be
ignored. Making a space significant for ordering is
casy, but the collating-element extension unfortu-
nately does not allow recursive definitions, so it
cannot incorporate the sequences of spaces, etc.

Other Problems

Context dependencies illustrate another problem
for collating-element cxtensions. The Japanese

language has several DUP characters, the weights
for which depend on the context. For first-level
ordering, a DUP character in a Japancse word or
name can be considered equivalent to the character
that precedes it. Hence, if X represents a Japanese
character, then X followed by DUP is equivalent to X
followed by X in the first comparison step. Tie
breaking is done in a subsequent step: X DUP then
precedes X X. If collating-element definitions are
used, definitions for all possible combinations are
required.

Added Complexity with UCS Coding

The concepts discussed in this section have existed
in other coded character sets for some time. For
example, 1ISO 6937 has combining characters, and
ISO/IEC 8859-7 contains Latin and Greek letters.
With UCS, script mixing and combining characters
will for the first time be implemented on a wide
scale, not only geographically speaking, but also
when counting the number and the importance of
the computer platforms on which UCS coding will
exist.

UCS has room for some 65,000 characters in the
currently defined basic multilingual plane. The first
and most obvious implication is that the tables for
the multilevel method will be huge with UCS.

Mixing Scripts

With UCS coding, many scripts can be used in a sin-
gle character string. Although all languages with a
non-Latin script have some tradition of incorporat-
ing words and names written in Latin letters, there
are not many rules about ordering in such a con-
text. For example, where should the Latin-letter
abbreviation SOS be placed in a Greek, Russian, or
Chinese dictionary? The problem with computers,
of course, is that everything must be specified,
including the unusual situations.

Ordering Han Characters

As previously stated, UCS also codes Han characters.
The people who use them for writing characterize
a Han character with attributes such as its main rad-
ical, the number of pen strokes to draw the char-
acter, and its Chinese or Japanese pronunciation.
(A radical is a constituent part of the character.)

For example, the Han characters with Japanese
pronunciation tera (temple), kata (type), and shiro
(capital) all have the same main radical. Tera has six
strokes; kata and shiro have nine. The Chinese pro-
nunciations are ji, ke, and jyou.

48

Vl. 5 No.3 Swnmer 1993 Digital Technical Journal

The Ordering of Universal Character Strings

A popular ordering is by radical first, then by
number of keystrokes, and finally by Chinese pro-
nunciation. With this ordering, tera comes first (it
has only six strokes), and kata precedes shiro
because of the Chinese pronunciation. If this were
the one and only way of ordering Han characters,
then the computer would not need to know about
the radicals, pen strokes, etc. Each Han character
has a different code (bit pattern), so a single (but
long) collation order for the corresponding codes
would be sufficient.

Significantly, each dictionary of Han characters
has developed its own tradition for ordering.
Depending on the application, audience, school, or
political considerations, the preferred ordering
may be different. For example, the onyomi order-
ing is also in popular use in Japan. It is by Chinese
pronunciation first, then by stroke count. With
onyomi ordering, kata comes first, then tera, and
shiro is the last one.

Han characters are always ordered character by
character, so the multilevel method that applies
multiple weights in multiple steps involving com-
plete strings is not required. Han characters require
multiple weights with a specific combination that
is dynamically selected for a single-step ordering.

It is not evident how this dynamic single step can
be combined with the standard multiple-step
method, which is needed for UCS strings containing
Han characters mixed with other ones.

Combining Characters

UCS also contains the concept of combining charac-
ters. In the ¢xample matrices given above, it was
assumed that letters with accents such as LATIN
SMALL LETTER E WITH ACUTE are coded as one char-
acter. UCS indeed has such one-character codings,
but it allows a letter with an accent to be coded as
two characters as well. The sequence of two char-
acters LATIN SMALL LETTER E followed by COMBIN-
ING ACUTE is also valid in UCS.

UCS does not state that LATIN SMALL LETTER
E WITH ACUTE is the same as LATIN SMALL LETTER
E followed by COMBINING ACUTE; it leaves it to
applications to consider them equivalent or not.
Needless to say, many application developers will
want users to have the possibility of considering
both forms equivalent, at least for ordering.

The notion of equivalence becomes quite intri-
cate with two or morc diacritical marks. Sec the
papcr on Unicode in this issuce for a discussion on
transformations betwecen equivalent spellings. !

For our extended matrix method, not only thou-
sands, but an unlimited number of collating ele-
ments would have to be defined. UCS allows any
number of combining characters to follow a non-
combining character.

Logical Order and Coding Order

With UCS coding, the order of the characters in a
string is the logical or reading order, not the order
in which the symbols have to be printed or dis-
played. Hence, UCS encoded text is difficult to dis-
play and print, but relatively easy to be processed,
e.g., for ordering.

In Thai, unfortunately, this approach was not
implemented totally. The vowels and diacritics that
appear above or under a consonant are coded in
logical (reading) order, but Thai has five so-called
pre-positioned vowels that are written and coded
before the consonant after which they have to be
pronounced. This corresponds to current comput-
ing practices in Thailand and was incorporated in
UCS coding as a sort of backward compatibility. For
example, the word written and encoded as E + CH +
N (ignoring vowel shortener and tone mark) is pro-
nounced chén and ordered accordingly. To allow
correct ordering for UCS-encoded Thai, some pre-
processing is necessary to arrange the Thai vowels
in the correct position for the ordering step.

Formatting Characters

Many coded character sets contain characters that
do not correspond to some written symbol but
have some control function, often for output for-
matting. For ordering, these formatting characters
can usually be handled in the same ways as special
characters.

The characters ZERO WIDTH JOINER and ZERO
WIDTH NON-JOINER are among the UCS formatting
characters. Their primary purpose is to influence
the display of characters of a cursive script such as
Arabic. Before UCS was finalized. some people sug-
gested that ZERO WIDTH NON-JOINER might be used
to indicate the absence of special digraphs such as
in the Welsh word melyngoch. 1t has also been pro-
posed that ZERO WIDTH JOINER might be used to
create new letters such as unusual or newly
invented ligatures. Today, this is no longer consid-
ered a valid use of these formatting characters.

Toward a Formal Description

of Ordering

Excellence for computer applications means not
only that the application incorporatc a different

Digital Technical Journal Vol.5 No. 3 Sununer 1993

49

Product Internationalization

way of ordering for each culture, but also that it
give freedom to its users to define variations and
use different approaches to ordering. This is impor-
tant for some cultures. Not so long ago, thce usc of
multiple letter fonts was considered specialized
work for professional printers; today every word
processor must allow it. Flexibility with regard
to ordering may also become commonplacc a few
ycars from now. But how can such flexibility be
provided in a computer-digestible yet uscr-friendly
way?

Many documents describe ordering in an infor-
mal way. National standards on ordering are seldom
formal definitions. They contain directives such as
each unbroken sequence of digits, disrcgarding
commas, spaces, and stops is considered as one
character; or multiple hyphens collate as one; or ij
is ordered as i + j; or B = ss. Such directives are
vague for computers. They are imprecise: Is the
hyphen to be understood as the character HYPHEN-
MINUS only, or also as related, but distinct charac-
ters in UCS coding such as HYPHEN, MINUS SIGN, and
others? They are also incomplete: #j is ordered, but
not [/, Ij, and iJ. They use graphic symbols, where
the computer wants to know things about charac-
ters: Does B stand for LATIN SMALL LETTER SHARP $
or for GREEK SMALL LETTER BETA?

On the other hand, the descriptions for POSIX
LC_COLLATE are quite formal. They are more or less
bound to a specific implementation, in this case the
table-driven multilevel method described above.
A more simple formal description is sometimes suf-
ficient. For example, if the data to be ordered is
filtered and contains only uppercase Latin letters,
then the POSIX syntax may seem an overkill. In
other cases, the LC_COLLATE formalism lacks
expressive power, as we have seen.

Is it possible to design a formal spccification
method that falls between the descriptive texts in
country standards and the almost algorithmic
parameters such as POSIX LOCALEs?

ISO/IEC 10646-1:1993 may provide a first step to
build formal definitions. It is the most comprehen-
sive repertoire of characters to date and a strict
superset of many earlier repertoires and coded
character sets. Moreover, it establishes a unique and
authoritative naming for characters. This paper
uses character names such as LATIN CAPITAL LETTER
E WITH ACUTE. ISO has decided that the 10646
names will be used in all future character set stan-
dards and standard updates. In a certain sense,
ISO/IEC 10646-1:1993 is a character reference

manual, and formal definitions about ordering can
be built uponits content.

Preprocessing

Preprocessing a character string, transforming it
into text elements or linguistic units in a logical
sequence, is a second concept that deserves elabo-
ration. It was mentioned in relation to Thai with its
pre-positioned vowels in a preceding section.

Breaking down a string into the smallest units to
be processed by an ordering algorithm and arrang-
ing these units in the desired processing order is
a powerful mechanism. It could also be used to
detect collating elements, to replace Japancse DUP
characters, or to transform character sequences
that contain combining characters. This mecha-
nism would then allow the table-driven multilevel
method to be used to its full extent on prepro-
cessed strings.

Preprocessing might change the character string:
units are rearranged, characters are replaced by
other ones, etc. It is possible that two originally dif
ferent character strings could be preprocessed to
an identical intermediate form. If ordering is to be
complete and predictable, preprocessing must gen-
erate additional tags that are taken into account by
the multilevel method.

Consequently, the output of the preprocessing
phase might be more than pieces of character
strings. The lines used in the matrices for the multi-
level method have (names of) characters as labels. If
preprocessing were designed to generate an output
that is easier to consume by the multilevel method,
the labels could be anything that seems suitable.

The problem, again, is how to allow for the speci-
fication of preprocessing in a formal yet user-
fricndly way. Transformations based on regular
expressions and finite state machinesare a possible
path. These techniques allow an efficient implemen-
tation. P J. Plauger has published material about
using them for ordering with the C language.>¢

Conclusions

The evolution of computer systems is progressing
toward a better quality interaction with people. An
aspect of that interaction is the ordering ot words
and names. Efficient methods exist today for obtain-
ing a quality ordering. Although some software
uses these methods, many applications perform
computer-friendly ordering rather than human-
friendly ordering. There is no technical limitation
to improve on that aspect; for example, a multilevel

50

Vol. 5 No. 3 Summer 1993 Digital Technical Journal

The Ordering of Universal Character Strings

algorithm with user-specified tables can replace a
single-step bit-code ordering.

For some cultures and in multicultural environ-
ments, not all ordering problems are solved.
Research is needed, as well as formal rules to allow
users to specify ordering preferences.

Some useful ordering techniques are in place.
The table-driven multilevel method is an important
one. Preprocessing can solve some problems, but a
convenient formalism is needed to specify it. UCS
coding provides many new challenges; but at
the same time it offers a new fixed point, from
which it may be possible to derive user-friendly for-
mal definitions.

Appendix:

International Standardization Efforts
Many countries have developed a standard on order-
ing. These standards are not listed in this section.

[SO/IEC JTC1/SC22/WG1S (Programming Lan-
guages) is the committee and work group that is
discussing the POSIX work (ISO 9945).

ISO/IEC JTC1/5C22/WG20 (Internationalization) is
working on a Technical Report that will provide a
framework for internationalization. The work
group is also preparing documents on the registry
of cultural elements, specification methods for
defining string comparison, and a default-tailorable
ordering for 10646.

CEN (European Standardization Committee)
BTS7 (Technical Bureau on IT)/TC304 (Character Set
Technology) has a project on European character
string ordering rules. The scope is to establish pro-
cedures for the registration of national and regional
ordering rules and to prepare multilingual charac-
ter ordering rules for European scripts (Latin,
Greek, and Cyrillic).

ISO TC37/SC2/WG?2 is currently working on multi-
lingual ordering for terminological and lexico-
graphical purposes. ISO TC46/5C9 has similar work
but for bibliographical pur poses. The approach is
application oriented, whereas the other I1SO and
CEN efforts mentioned above are computer-
oriented approaches.

To allow for some level of synchronization of
these efforts and to avoid overlaps, liaisons have
been established between all these committees.

Acknowledgments

Alain LaBonté of the Gouvernement du Quebec,
Direction G¢énérale des ‘lechnologies de
I'Information, has becn the inspiration for many

things written in this paper. He has on many occa-
sions encouraged me to continue with my explo-
rations of ordering. I also owe thanks to Johan van
Wingen, independent consultant in Leiden, the
Netherlands, who has gathered and made available
much background information on coded character
sets and ordering practices. A special word of
thanks goes to Kevin P Donnelly, to Denis Garneau,
andto P J. Plauger for reviewing this paper and for
providing many useful comments and suggestions.

Of the many colleagues in Digital who have
helped me, I want to especially mention Masahiro
Morozumi of International Systems Engineering in
Japan, with whom I could exchange many mails
about ordering in Japanese and about Digital’s
implementation of XPG4. I also want to mention
Tim Greenwood of International Systems Engineer-
ing in the US., who has done a lot of coordination
work for this issue of the Digital Technical Journal,
and for my contribution to it in particular. And I
know that I'm doing an injustice by not naming the
many other colleagues who contributed.

References

1. X/Open CAE Specification, System Interface Def-
initions, Issue 4, X/Open Doc N C204 (London:
X/Open Company Limited, 1992).

2. R. Gavare, “Alphabetical Ordering in a Lexicolog-
ical Perspective,” Data Linguistica 18 (Almquist
& Wiksell, 1988).

3. A. LaBonté, Regles du classement alphabetique
en langue francaise et procedure informatisee
pour le tri (Ministere des Communications du
Quebec, 1988).

4.]. Bettels and E Bishop, “Unicode: A Universal
Character Code,” Digital Technical Journal, vol.
5, no. 3 (Summer 1993, this issue): 21-31.

5. P Plauger, “Translating Multibyte Characters,’
The Journal of C Language Translation (June
1991).

6. P Plauger, The Standard C Library (Englewood
Cliffs, NJ: Prentice Hall, 1992).

General References

G. Adams, “Introduction to Unicode,” Proceedings
of the Fourth Unicode Implementors Workshop
(Mountain View, CA: Unicode Consortium, 1992).

B. Comrie, ed., The Worlds Major Languages
(Oxford: Oxford University Press, 1990).

Digital Technical Journal Vol .5 No.3 Sunvner 1993

51

Product Internationalization

E Coulmas, The Writing Systems of the World
(Oxford: Basil Blackwell, 1989).

J. DeFrancis, The Chinese Language (Honolulu:
University of Hawaii Press, 1984).

D. Garneau, Keys to Sort and Search for Culturally
Expected Results (Ontario: 1BM National Language
Technical Center, 1990).

S.Jones et al., Developing International User Infor-
mation (Burlington, MA: Digital Press, 1992).

K. Katzner, The Languages of the World (London:
Routledge. 1989).

C. Kennellv, Digital Guide to Developing Interna-
tional Software (Burlington, MA: Digital Press, 1991).

E. Kohl, “The Art of Arranging Files,” 15O Bulletin
(December 1986).

A. LaBonté, “Multiscript Ordering for Unicode,”
Proceedings of the Fourth Unicode Implementors
Workshop (Mountain View, CA: Unicode Consor-
tium, 1992).

A. Nakanishi, Writing Systems of the World (Rut-
land, VT, and Tokyo: Charles E. Tuttle, Co., 1980).

G. Sampson, Writing Systems (Hutchinson, 1985).

STRI TS73, Nordic Citltural Requirements on Infor-
mation Technology (Reykjavik: Idntaeknistofnum
Islands, 1992).

U. Warotamasikkhadit and D. Londe, Com puterized
Alpbabetization of Thai, Technical Memo TM-BA-
1000/000/01 (Santa Monica, CA: System Develop-
ment Corp., 1969).

Unicode 1.0.1, Report from the Unicode Consor-
tium (Mountain View, CA: Unicode, Inc., 1992).

S2

Vol. 5 No.3 Sununer 1993 Digital Technical Journal

Gayn B. Winters |

International Distributed
Systems—Architectural

and Practical Issues

Building distributed systems for international usage requires addressing many
architectural and practical issues. Key to the efficient construction of such systems,
modularity in systems and in run-time libraries allows greater reuse of compo-
nents and thus permits incremental improvements to multilingual systems. Using
safe software practices, such as banishing the use of literals and parameterizing
user preferences, can belp minimize the costs associated with localization, reengi-

neering, maintenance, and design.

The worldwide deployment of computer systems
has generated the nced to support multiple lan-
guages, scripts, and character sets simultaneously.
A system should focus on natural ease of use and
thus allow end users to read system messages in the
language of their choice, to have natural menus,
forms, prompts, etc., and to enter and display data
in their preferred presentation form.

Digital envisions a computer system that not
only is distributed but is distributed geographically
across the world. A single site may have end users
with varying language and cultural preferences. For
cxample, a Japancese bank in Tel Aviv may have
emplovees whose native languages are Arabic,
English, Hcbrew, Japanese, or Russian, and may
conduct business in one or several of these lan-
guages. Figure 1 could represent a portion of their

network. The client software, e.g., a mail client and
the local windowing system, could be completely
monolingual. Networking, database, and printing
services, for instance, should be multilingual in that
they support the various end users by providing
services independent of the natural languages,
scripts, or character sets used.

This paper surveys many of the architectural and
practical issues involved in the efficient construc-
tion of international distributed systems. We begin
by discussing some economic issues and pitfalls
related to localization and rcengineering. Many of
these topics can be addressed by straightforward
good engineering practices, and we explore several
important techniques. The structure of application-
specific and system-level run-time libraries (RTLs)
is a key issue. We therefore devotc several sections

ARABIC USER JAPANESEUSER MULTILINGUAL USER
PC 1 PC2 PC3
WIDE AREA
| | NETWORK

MULTILINGUAL
SERVER

=

MULTILINGUAL DATA

Figure 1

MULTILINGUAL
SERVER

—

MULTILINGUAL DATA

A Portion of a Multilingual Network

Digital Technical Journal Vol.5 No. 3 Sunmer 1993

53

Product Internationalization

of this paper to preferred RTL structures, data rep-
resentations, and key RTL services. Distributed
systems cause some special problems, which we
briefly discuss, commenting on naming, security,
management, and configuration. In particular, a
desire for client software designed for monolingual
distributed systems to work without change in a
multilingual distributed system led to a new system
model. In the model, the host servers and the sys-
tem management provide the interfaces and con-
versions necessary for these clients to interface
with the multilingual world. Finally, we observe
that all the preceding techniques can be delivered
incrementally with respect to both increasing func-
tionality and lowering engineering cost.

Localization and Reengineering

When a system component is productized for some
local market, the process of making it competitive
and totally acceptable to that market is called local-
ization. During this process, changes in the design
and structure of the product may be required.
These changes are called reengineering. For exam-
ple, US. automobiles whose steering linkages,
engine placement, console, etc., were not designed
to allow the choice of left- or right-hand stcering
were not competitive in Japan. Rceengineering
these automobiles for right-hand steering was pro-
hibitively expensive, so manufacturers had to
redesign later models.

Computer systems have problems similar to the
automobile left-hand-right-hand steering problem.
A good architecture and design is necessary to
avoid expensive reengineering during localization.
The following are examples of areas in which a
localization effort may encounter problems: user-
defined characters and ligatures; geometry prefer-
ences, such as vertical or right-to-left writing
direction, screen layout, and page size; and policy
differences, such as meeting protocols and requirec
paper trails. Building limiting assumptions into a
software or hardware product can often lead to
costly reengineering efforts and regional time-
to-market delays.

On the other hand, an internal survey of reengi-
neering problems associated with Digital’s software
indicates that simple, easy-to-avoid problems are
strikingly frequent. In fact, it is amazing how many
ways a U.S. engineer could find to make use of the
(ultimately erroneous) assumption that one charac-
ter fits into one 8-bit (or even more constrictive,
one 7-bit) byte!

Safe Software Practices

Many well-known, straightforward programming
practices, if adopted. can dramatically reducce reengi-
necring efforts.!-” Even for existing systems, the cost
of incrementally rewriting software to incorporate
some of these practices is often more than recov-
ered in lower maintenance and reengineering
costs. This section discusscs a few key practices.

Probably the most fundamental and elementary
safe software practice is to banish literals, i.e.,
strings, characters, and numbers, from the code.
Applying this practice does not simply redefine YES
to be “yes” or THREE to be the integer 3. Rather, this
practice yields meaningful names, for instance,
affirmative_response and maximum_alternatives,
to help anyone who is trying to understand how
the code functions. Thus, not only does the prac-
tice make the code more maintainable, but it
also makes it easier to parameterize or generalize
the data representation, the user interface prefer-
ences, and the functionality in ways the original
programmer may have missed. These definitions
can be gathered into separate declaration files, mes-
sage catalogs, resource files, or other databases to
provide flexibility in supporting clients of different
languages.

The abstraction of literals extends to many data
types. In general, it is best to use opaque data types
to encapsulate objects such as typed numbers (¢.g.,
money and weight), strings, date and time of day,
graphics, image, audio, video, and handwriting,.
Providing methods or subroutines for data type
manipulation conceals from the application how
these data types are manipulated. The use of poly-
morphism can servc to overload common method
and operation names like create, print, and delete.
Support for multiple presentation forms for each
data type should allow additional ones to be added
easily. These presentation forms are typically
strings or images that are formatted according
to end-user preferences. Both input and output
should be factored first into transformations
between the data type and the presentation form,
and then into inputand output on the presentation
form. For cxample, to input a clate involves
inputting and parsing a string that represents a pre-
sentation form of the date, e.g., “17 janvier 1977"
and computing a value whose data type is Date.

The concepts of character and of how a character
is encoded inside a computer vary dramatically
worldwide.27-! In addition, a process that works
with a single character in one language may need to

54

Vol.5 No. 3 Sunnner 1993 Digital Technical Journal

International Distributed Systems—Architectural and Practical Issues

work with multiple characters in another language.
One simple rule can prevent the problems that this
variation can cause: Banish the Character data
type from applications, and use an opaque string
data type instead. This rule eliminates the tempting
practice of making pervasive use of how a charac-
ter is stored and used in the programmer’s native
system. The Array of Character data typeisnearly as
insidious, because it is tempting to use the ith ele-
ment for something that will not make sense in
another natural language. One should only extract
substrings s(#;j] from a string s. Thus, when in a
given language the object being extracted is only
one code point s[i:7], the extraction is obviously a
special case. The section Text Elements and Text
Operations discusses this concept further.

Another safe software practice is to parameter-
ize preferences, or better yet, to attach them to
the data objects. As discussed previously, a
“hardwired” preference such as writing direction
invariably becomes a reengineering problem. The
language represented by the string, the encoding
type, the presentation form of the object, and the
input method for the object are all preferences. In
servers and in all kinds of databases, tagging the
data with its encoding type is desirable. In general,
the data type of the object should contain the pref-
erence attributes. The client thut processes the
object can override the preferences.

Geomeltry preferences should be user selectable.
Some geometry preferences affect the user’s work-
ing environment, e.g., the ways in which dialog
boxes work, windows and pop-up menus cascade,
and elevator bars work.! These preferences are
almost always determined by the end user’s work-
ing language. Other geometry preferences relate to
the data on which the user is working, e.g., paper
size, vertical versus horizontal writing (for some
Asian languages), how pages are oriented in a book,
layouts for tables of contents, and labels on graphs.

Computer programs, in particular groupware
applications, mix policy with processing. “Policy”
refers to the sequence or order of processing activi-
ties. For example, in a meeting scheduler, can any-
one call a meeting or must the manager be notified
first? Is an invoice a request for payment or is it the
administrative equivalent of delivered goods requir-
ing another document to instigate payment? Often
such policy issues are not logically forced by the
computation, but they need to be enforced in cer-
tain business cultures. A sequence of processing
activitics that is “hardwirced™ into the program can

be very difficult to reengineer. Thus, policy descrip-
tions should be placed into an external script
or database. The advent of workflow controllers,
such as those in Digital's EARS, ECHO, and
TeamRoute products, makes it easy to do this.

Applications should not put date formatting,
sorting, display, or input routines into their main-
line code. Often such operations have been coded
previously, and a new application’s code will prob-
ably not be international and may well contain
other bugs. Therefore, programmers should con-
struct applications to use, or more precisely reuse,
run-time libraries, thus investing in the quality and
the multilingual and multicultural capabilities of
these RTLs. When the underlying system is not rich
enough and/or competition dictates, the existing
RTL structures must be augmented.

Run-time Library Structure

A common theme for internationalizing software
and for the safe programming practices discussed
in the previous section is to keep the main applica-
tion code independent of all natural language,
script, or character set dependencies. In particular,
the code must use only RTLs with universal applica-
tion programming interfaces (APIs), i.e., the name
of the routine and its formal parameter list must
accommodate all such variants. Digital’s early local-
ization efforts typically made the mistake of replac-
ing the US-only code with code that called RTLs
specific to the local market. This practice gener-
ated multiple versions of the same product, each of
which needed to be changed whenever the perti-
nent part of the U.S. version was changed. A better
structure for run-time libraries isshown in Figure 2.

The application illustrated in Figure 2 calls an
RTL routine through the routine’s universal APIs.
This routine may in turn call another language-
specific routine or method, or it may be table driven.
For example, a sort routine may be implemented

APPLICATION

VARIOUS RUN-TIME LIBRARIES WITH UNIVERSAL
APPLICATION PROGRAMMING INTERFACES

LANGUAGE 1 | LANGUAGE 2 LANGUAGE N
RUN-TIME RUN-TIME eee RUN-TIME
LIBRARY LIBRARY LIBRARY

Figure 2 Modular Run-time Library Structure

Digital Technical Journal Vol 5 No.3 Sunnner 1993

55

Product Internationalization

using sort keys rather than compare functions for
better performance. With this structure, localiza-
tion to a new language involves only the addition of
the new language-specific RTL or the correspond-
ing new table entries.

Note that the application must pass sufficient
structure to the RTL to guarantee that the APIs are
universal. For example, to sort a list of strings, a call

sort_algorithm(list_pointer,sort_name,sort_order)

could be created. The sort_order parameter is of
the typce {ascending,dcscending}. The sort_name
parameter is necessary because in many cultures
numerous methods of sorting are standard.!'? In
some RTL designs, notably those specified by
X/Open Company Ltd., these extra parameters are
passed as global variables.>¢7 This technique has the
advantage of simplifying the APIs and making them
almost identical to the APIs for the .S, code. Such
RTLs, however, do not tend to be thrcad-safe and
have other problems in a distributed environ-
ment.>'%1 An alternative and far more flexible
mechanism is more object orientcd—using a sub-
type of the List of String data type when alternate
sorts are meaningful. This subtype has the addi-
tional information (e.g., sort_name and sort_order)
used by its Sort method. 12!

The next three sections discuss the organization
and extensibility of RTLs with this structure.

Data Representation

Data representation in RTLS incorporates text
elements and text operations, user-defined text
elements, and document interchange formats.

Text Elements and Text Operations

A text element is a component of a written script
that is a unit of processing for some text operation,
such as sorting, rendering, and substring search.
Sequences of characters, digraphs, conjunct conso-
nants, ligatures, syllables, words, phrases, and sen-
tences are examples of common text elements. 03
An encoded character sct E represents some partic-
ular set of text elements as integers (code points).
Typically, the range of E is extended so that code
points can represent not only text elements in mul-
tiple scripts but also abstractions that may or may
not be part of a script, such as printing control
codes and asynchronous communication cocles.
More complex text elements can be represented as
sequences of code points. For example, ¥ may
be represented by two code points <U> <">,and a

ligature such as (£ may be represented as three
code points <O> <joiner> <E>, wherc a “joiner” is
a special code point reserved for creating text cle-
ments. Less complex text elements, i.e., subcom-
ponents of the encoded text elements, ar¢ found
by using the code point and the opcration name
to index into some database that contains this
information. For example, if <é> is a single codc
point for é, then the base character e is found by
applying some function or table lookup to the code
point <é>. The same is true for finding a code point
for the acute accent. When a sequence of code
points represents a text element, the precise term
“encoded text element” is often abbreviated as
“text element.”

An encoded character set of particular impor-
tance is Unicode, which addresses the encoding of
most of the world’s scripts using integers from O to
2!6—1,1.7 The Unicode universal character set is the
basis of ISO 10646, which will extend the code
point interval to 23'—1 (without using the high-
order bit).? Unicode has a rich set of joiner code
points, and it formalizes the construction of many
types of text elements as sequences of code points.

Processing text clements that are represented as
scquences of code points usually requires a three-
step process: (1) the original text is parsed into
operation-specific text elements, (2) these text ele-
ments are assigned values of some type, and (3) the
operation is performed on the resulting sequence
of values. Note that each step depends on the text
operation. In particular, a run-time library must
have a wide variety of parsing capabilities. The
following discussion of rendering, sorting, and
substring searching operations demonstrates this
need.

In rendering, the text must be parsed into text
elements that correspond to glyphs in some font
database. The values assigned to these text ele-
ments are indexes into this database. The rendering
operation itself gets additional data from a font
server as it renders the textonto a logical page.

The sorting operation is more complicated
because it involves a list of strings and multiple
steps. A step in most sorting algorithms involves the
assignment of collation values (typically integers)
to various text elements in each string. The parsing
step has to take into account not only that multiple
code points may represcnt one character but also
that some languages (Spanish, for example) treat
multiple characters as one, for the purposes of sort-
ing. Thus, a sorting step parses each string into text

56

Vol.5 No.3 Sunnner 1993 Digital Technical Journal

International Distributed Systems— Architectural and Practical [ssues

elements appropriate for the sort, assigns collation
values to these elements, and then sorts the result-
ing sequences of values. Note that the parsing step
that takes place in a sorting operation is somewhat
different from the one that occurs in a rendering
operation, because the sort parse must sometimes
group into one text element several characters,
each of which has a separate glyph.

Searching a string s for a substring that matches
a given string s’ involves different degrees of
complexity depending on the definition of the
term “matches.” The trivial case is when “matches”
means that the substring of s equals s’ as an encoded
substring. In this case, the parse only returns code
points, and the values assigned are the code point
values. When the definition of “matches” is weaker
than equality, the situation is more complicated.
For example, when “matches” is “equal after upper-
casing,” then the parsing step is the same one as for
uppercasing and the values are the code points of
the uppcercased strings. (Note that uppercasing has
two subtle points. The code point for a German
sharp s, , actually becomes two code points
<S§><S>. Thus, sometimes the values assigned to
the text elements resulting from the parse consist
of more code points than in the original string. In
addition, this substring match involves regional
preferences, for example, uppercasing a French é is
E in France and £ in Canada.) The situation is similar
when “matches” equals “equal after removing all
accents or similar rendering marks.” A more com-
plex case would be when s’ is a word and finding a
match in s means finding a word in s with the same
rootas s’ In this case, the operation must first parse
s into words and then do a table or dictionary
lookup for the values, i.e., the roots.

User-defined Text Elements

When the user of a system wishes to represent
and manipulate a text element that is not currently
represented or manipulated by the system, a mech-
anism is required to enable the user to extend
the system’s capabilities. Examples of the need for
such a mechanism abound. Chinese ideograms
created as new given names and as new chem-
ical compounds, Japanese gaiji (user-defined char-
acters), corporate logos, and new dingbats are
often not represented or manipulated by standard
systems.

Uscr-defined text elements cause two scparate
problems. The first problem occurs when E, the

encoded character set in use, needs to be extended
so that a sequence of E's code points dcfines the
desired user-defined text clement. The issues
related to this problem are ones of registration
to prevent one user’s extensions from conflicting
with another user’s extensions and to allow data
interchange.

The second, more difficult problem concerns the
extensions of the text operations required to manip-
ulate the new text element. For each such text oper-
ation, the parsing, value mapping, and operational
steps discussed earlier must be extended to operatce
on strings thatinvolve the additional code points of
E. When tables or databascs define these steps, the
extensions are tedious but often straighttorward.
Careful design of the steps can greatly simplify their
extensions. In some cases, new algorithms are
required for the extension. To the extent that these
tables, databases, or algorithms arc shared, the
extensions must be registered and shared across the
system.

Document Interchange Formats

Compound documents (i.e., documents that con-
tain data types other than text) use encoded charac-
ter sets to encode simple text. Although many new
document interchange formats (DIFs) will probably
use Unicode exclusively (as docs Go Computer
Corporation’s internal format for text), existing for-
mats should treat Unicode as merely another
encoded character set with each character set
being tagged.'® This allows links to be made to exist-
ing documents in a natural way.

Many so-called revisable DIFs, such as Standard
Generated Mark-up Language (SGML), Digital
Document Interchange Format (DDIF), Office
Document Architecture (ODA), Microsoft Rich Text
Format (RTF), and Lotus spreadsheet format (WKS),
and page description languages (PDLs), such as
PostScript, Sixels, or X.11, can be extended to pro-
vide this Unicode support by enhancing the
attribute structure and extending the text import
map Strings(E) - DIF for each encoded character set
E. In doing so, however, many of the richer con-
structs in Unicode, e.g., writing direction, and
many printing control codes are often best
replaced with the DIF's constructs used for these
featuresinstead.” In this way, both processing oper-
ations are easier to extend and facilitate the layout
functions DIF »PDL and the rendering functions
PDL—Image.

Digital Technical Journal Vol. 5 No. 3 Summer 1993

Product Internationalization

Presentation Services

The practice of factoring input and output of data
types into a transformation ‘I'«»>T_Presentation_
Form and performing the I/0 on the presentation
form allows one to focus on each step separately.
This factorization also clarifies the applicability of
various user preferences, e.g., a date form prefer-
ence applies to the transformation, and a font pref-
erence applies to how the string is displayed. As
mentioned in the section Safe Software Practices,
preferences such as presentation form are best
attached to the end user’s copy of the data. Data
types such as encoded image, encoded audio, and
encoded video pose few international problems
exceptfor the exchangeability of the encodings and
the viability of some algorithms for recognizing
speech and handwriting. Algorithms for presenta-
tion services can be distributed, but we view them as
typically residing on the client.? In Figure 1, we pre-
sume that the local language PCs have this capability.

Input

Existing technology offers several basic input ser-
vices, which are presented in the following partial
list of device-data type functions:

= Keystrokes »Encoded Character

= |Image—Encoded Image

Audio Signal-»Encoded Audio

Video Signal »Encoded Video
= Handwriting > Encoded Handwriting

The methods for each input service depend on
both the device and the digital encoding and often
use multiple algorithms. Whereas for some
languages the mapping of one or more keystrokes
into an encoded character (e.g., [compose] + [e] +
['] yielding ¢) may be considered mundane, input
methods for characters in many Asian languages are
complex, fascinating, and the topic of continuing
research. The introduction of user-defined text
elements, which is more common among the
Asian cultures, requires these input methods to
be easily extendable to accommodate user-defined
characters.

Output
The basic output services are similar to the input
services listed in the previous section.

= Strings—Image

= DIF »PDL »Image

= Encoded Image —~Image

= Encoded Audio—Audio Signal
= Encoded Video—» Video Signal

s Encoded Handwriting »Image

These output services also vary with encoding,
device, and algorithm. Figure 3 illustrates the
sequence DIF »PDL—Image. Optional parameters
are permitted at each step. A viable implementation
of Strings—»Image is to factor this function by means
of the function Strings »DIF, which is discussed in
the Data Representation section. Alternatively, the
data type Strings can be simply viewed as another
DIF to be supported.

A revisable document begins in some DIF such as
plain text, Strings(Unicode), SGML, or DDIF. A lay-
out process consumes the document and some
logical page parameters and creates an intermedi-
ate form of the document in some PDL such as
PostScript, Sixels, or even a sequence of X.11 pack-
ets. To accomplish this, the layout process needs to
get font metrics from the font server (to compute
relative glyph position, word and line breaks, etc.).
In turn, the rendering process consumes the PDL
and some physical media parameters to create the
image that the end user actually sees. The rendering
process may need to go back to the font server to
get the actual glyphs for the image. Rendering, lay-
out, and font services are multilingual services. The
servers for these services are the multilingual
servers envisioned in Figure 1.

Computation Services

To build systems that process multilingual data,
such as the one shown in Figure 1, arich variety of
text operations is necessary. This section catego-
rizes such operations, but a complete specification
of their interfaces would consume too much space
in this paper. Text operations require parsing, value
mapping, and operational functions, as described
earlier.

Text Manipulation Services

Text manipulation services, such as those speci-
fied in C programming language standard ISO/IEC
9899:1990, System V Release 4 Multi-National

58

Vol. 5 No.3 Swnmer 1995 Digital Technical Journal

International Distributed Systems—Architectural and Practical Issues

PARAMETER PARAMETER
DOCUMENT PAGE
INTERCHANGE [LAYOUT —>| DESCRIPTION [RENDER —> IMAGE
FORMAT LANGUAGE

—

|

FONT SERVER

—

FONT DATABASE

Figure 3 Layout and Rendering Services

Language Supplement (MNLS), or XPG4 run-time
libraries (including characterand text element clas-
sification functions, string and substring opera-
tions, and compression and encryption services)
need to be extended to multilingual strings such as
Strings(Unicode) and other DIFs, and to various text
object class libraries.6813

Data Type Transformations

Data type transformations (e.g., speech to text,
image-to-text optical character recognition [OCR],
and handwriting to text) are operations where the
data is transformed from a representation of one
abstract data type to a representation of another
abstract data type. The presentation form transfor-
mations T«»T_Presentation_Form and the funda-
mental input and output services are data type
transformations. Care needs to be taken when
parameterizing these operations with user prefer-
ences to keep the transformation thread-safe.
Again, this is best accomplished by keeping the pre-
sentation form preferences attached to the data.

Encoding Conversions

Encoding conversions (between encoded character
sets, DIFs, etc.) are operations where only the rep-
rescntation of a single data type changes. For exam-
ple, to support Unicode, a system must have for
each other encoded character set a function
to_uni:Strings(E)—-Strings(Unicode), which con-
verts the code points in E to code points in
Unicode." The conversion function to_uni has a par-
tial inverse from_uni:Strings(Unicode) »Strings(E),

which is only defined on those encoded text ele-
ments in Unicode that can be expressed as encoded
text elements in E. If s is in Strings(E), then
from_uni(to_uni(s)) is equal to s. Other encoding
conversions Strings(E)-»Strings(E") can be defined
as a to_uni operation followed by a from_uni oper-
ation, for E and E' respectively. Another class of
encoding conversions arises when the character set
encoding remains fixed, but the conversion of a
document in one DIF to a document in another DIF
is required. A third class originates when Unicode
or 1SO 10646 strings sent over asynchronous
communication channels must be converted to a
Universal Transmission Format (UTF), thus requir-
ing Strings(Unicode)«UTT encoding conversions.

Collation or Sorting Services

Another group of computation services, collation
or sorting services, sorts lists of strings according
to application-specific requirements. These ser-
vices were discussed earlier in the paper.

Linguistic Services
Linguistic services such as spell checking, grammar
checking, word and line breaking, content-based
retrieval, translation (when existent), and style
checking need standard APIs. Although the imple-
mentation of these linguistic services is natural
language-specific, most can be implemented with
the structure shown in Figure 2.

Also, large character scts such as Unicode
and other multilingual structures require a uni-
form exception-handling and fallback mechanism

Digital Technical Journal Vol. 5 No. 3 Summer 1993

59

Product Internationalization

because of the large number of unassigned code
points. For example, a system should be able to
uniformly handle exceptions such as “glyph not
found for text element.” Mechanisms such as global
variables for error codes inhibit concurrent pro-
gramming and thercfore should be discouraged.
Returning an crror code as the return value of the
procedure call is preferred, and when supported,
raising and handling exceptions is even better.

System Naming, Synonyms,

and Security

The multilingual aspect of Unicode can simplify
system naming of objects and their attributes, e.g.,
in name scrvices and repositories. Using encoded
strings tagged with their encoding type for names is
too rigid, becausc of the high degree of overlap in
the various encoded character sets. For example,
the string “ABC" should represent one name,
independent of the character set in which the
string is encoded. Two tagged strings represent
the same name in the system if they have the same
canonical form in Unicode according to the follow-
ing definitions.

Unicode has the property that two different
Unicode strings, # and ¢, may well represent the
same sequence of glyphs when rendered.' To deal
with this, a system can define an internal canonical
form c(u) for a Unicode string . c¢(2z) would
expand cvery combined character in u to its base
characters followed by their assorted marking char-
acters in some prescribed order. The recom-
mended order is the Unicode “priority value. !
The canonical form should have the following prop-
erty: When c¢(u) is cqual to c(v), the plain text rep-
resentations of u# and v arce the same. Idcally, the
converse should hold as well.

Thus, ¢ and ¢ represent the same name in the sys-
tem if c(2e) is cqual to ¢(e). In any directory listing,
an end uscr of a language sees only one name per
object, independent of the language of the owner
who named the object. Further restrictions on the
strings uscd for names are desirable, e.g., the absence
of special characters and trailing blanks. In a multi-
vendor environment, both the canonical form and
the name restrictions should be standardized. The
X.500 working groups currently studying this prob-
lem plan to achieve comparable standardization.

Since well-chosen names convey useful informa-
tion, and since such names are entered and dis-
played in the end user’s writing system of choice, it
is often desirable for the system to store various

translations or “synonyms” for a name. Synonyms,
for whatever purpose, should have attributes such
as long_name, short_name, language, etc., so that
dircctory functions can provide casy-to-usc inter-
faces. Access to objects or attribute valucs through
synonyms should be as efficient as access by means
of the primary name.

In a global network, public key authentication
using a replicated name service is recommended. 22
One principal can look up another in the name ser-
vice by initially using a (possibly meaningless)
name for the object in some common character set,
e.g., {A-Z,0-9). Subsequently, the principals can
define their own synonyms in their respective lan-
guages. Attributes for the principals, such as net-
work addresses and public encryption keys, can
then be accessed through any synonym.

System Management and

Configuration

The system management of a multilingual dis-
tributed system is somewhat more complicated
than for a monolingual system. The following is a
partial list of the services that must be provided:

= Services for various monolingual subsystems

= Registration services for user preferences,
locales, user-defined text elements, formats, etc.

= Both multilingual and multiple monolingual
run-time libraries, simultaneously (see Figure 2)

= Multilingual database servers, font servers,
logging and queuing mechanisms, and directory
services

= Multilingual synonym services

= Multilingual diagnostic services

Since a system cannot provide all the services for
every possible situation, registering the end users’
needs and the system'’s capabilities in a global name
service is essential. The name service must be con-
figured so that a multilingual server can identify the
language preferences of the clients that request ser-
vices. This configuration allows the servers to tag
or convert data from the client without the mono-
lingual client’s active participation. Therefore, the
name service database must be updated with the
necessary preference data at client installation
time.

Typically, system managers for different parts of
the system are monolingual end users (see Figure
1) who need to do their job from a standard PC.

60

Vol. 5 No. 3 Sununer 1993 Digital Technical Journal

International Distributed Systems—Architectural and Practical Issues

Thus, both the normal and the diagnostic manage-
ment intcrfaces to the system must behave as multi-
lingual servers, sending error codes back to the PC
to be interpreted in the local language. Although
the quality of the translation of an error message is
not an architectural issue, translations at the system
management level are generally poor, and the sys-
tem design should account for this. Systems devel-
opers should consider giving both an English and
a local-language error message as well as giving
easy-to-use pointers into local-language reference
manuals.

Data errors will occur more frequently because
of the mixtures of character sets in the system, and
attention to the identification of the location
and error type is important. Logging to capture
offending text and the operations that generated it
is desirable.

Incremental Internationalization

Multilingual systems and international components
can be built increcmentally. Probably the most pow-
erful approach is to provide the services to support
multiple monolingual subsystems. Even new oper-
ating systems, such as the Windows NT system, that
use Unicode internally need mechanisms for such
support.2? Multidimensional improvements in a sys-
tem’s ability to support an increasing number of
variations are possible. Some such improvements
are making more servers multilingual, supporting
more multilingual data and end-user preferenccs,
supporting more sophisticated text elements (the
first release of the Windows NT operating system
will not support Unicode's joiners), as well as
adding more character set support, locales, and
user-defined text elements. The key point is that,
like safe programming practices, multilingual
support in a distributed system is not an “all-or-
nothing™ endeavor.

Summary

Customer demand for multilingual distributed
systems is increasing. Suppliers must provide
systems without incurring the costs of expen-
sive reengineering. This paper gives an overview of
the architectural issues and programming practices
associated with implementing these systems.
Modularity both in systems and in run-time
libraries allows greater reuse of components and
incremental improvements with regard to interna-
tionalization. Using the suggested safe software
practices can lower reengineering and mainte-

nance costs and help avoid costly redcsign
problems. Providing multilingual scrvices to mono-
lingual subsystems permits incremental improve-
ments while at the same time lowers costs through
increased reuse. Finally, the registration of syn-
onyms, user preferenccs, locales. and scrvices in a
global name service makes the system cohesive.

Acknowledgments

I wish to thank Bob Ayers (Adobe). Joscph Bosurgi
(Univel), Asmus Frevtag (Microsoft), Jim Gray
(Digital), and Jan te Kicfte (Digital) for their helpful
comments on earlier drafts. A spccial thanks to
Digital’s internationalization tcam, whosc contribu-
tions are always understated. In addition. | would
like to acknowledge the Unicode Technical
Committee, whose impact on the industry is pro-
found and growing; I havc learned a great deal from
following the work of this committce.

References

1. D Carter, Writing Localizable Software for
the Macintosh (Reading. MA: Addison-Wesley,
1991).

2. Producing International Products (Maynard.
MA: Digital Equipment Corporation, 1989).
This internal document is unavailable to
external readers.

3. Digital Guide to Developing International
Software (Burlington, MA: Digital Press,
1991D).

4. S. Martin, “Internationalization Made Easy,”
OSF White Paper (Cambridge, MA: Open Soft-
ware Foundation, Inc., 1991).

5. S Snyder et al., “Internationalization in the
OSF DCE—A Framework,” May 1991. This doc-
ument was an electronic mail message trans-
mitted on the Internet.

6. X/Open Portability Guide, Issue 3 (Reading,
U.K.: X/Open Company Ltd., 1989).

7. X/Open Internationalization Guide, Draft
4.3 (Reading, UK.: X/Open Company Ltd.,
October 1990).

8. UNIX System V Release 4, Multi-National
Language Supplement (MNLS) Product
Overview (Japan: Amcrican ‘Telephone and
Telegraph. 1990).

Digital Tecbnical Journal Vol 5 No.3 Summer 1993

61

Product Internationalization

10.

11.

12.

13.

14.

15.

16.

Information Technology— Universal Coded
Character Set (UCS) Draft International
Standard, 1SO/IEC 10646 (Gencva: Interna-
tional Organization for Standardization/Inter-
national Electrotechnical Commission, 1990).

A. Nakanishi, Writing Systems of the World,
third printing (Rutland, Vermont. and Tokyo,
Japan: Charles E. Tuttle Company, 1988).

The Unicode Consortium, The Unicode
Standard— Worldwide Character Encoding,
Version 1.0, Volume | (Reading, MA: Addison-
Wesley, 1991).

R. Haentjens, “The Ordering of Universal
Character Strings,” Digital Technical Journal,
vol. 5, no. 3 (Summer 1993, this issue): 43-52.

Programming Languages—C, 1SO/IEC 9899:
1990(E) (Geneva: International Organization
for Standardization/International Electrotech-
nical Commission, 1990).

S. Martin and M. Mori, Internationalization
in OSF/1 Release 1.1 (Cambridge, MA: Open
Software Foundation, Inc., 1992).

J. Becker, “Multilingual Word Processing,” Sci-
entific American, vol. 251, no. 1 (July 1984):
96-107.

Coded Character Sets for Text Communica-
tion, Parts 1 and 2, 1SO/IEC 6937 (Geneva:

17.

18.

19.

20.

21.

22.

23.

International Organization for Standardiza-
tion/International Electrotechnical Commis-
sion, 1983).

J. Bettels and E Bishop, "Unicode: A Universal
Character Code," Digital Technical Journal,
vol. 5, no. 3 (Summer 1993, this issue): 21-31.

Go Computer Corporation, “Compaction
Techniques,” Second Unicode Implementors’
Conference (1992).

J. Becker, “Re: Updated [Problems with]
Unbound (Open) Repertoire Paper” (January
18, 1991). This electronic mail message was
sent to the Unicode mailing list.

V. Joloboff and W. McMahon, X Window
System, Version 11, Input Method Specifica-
tion, Public Review Draft (Cambridge, MA:
Massachusetts Institute of Technology, 1990).

M. Davis, (Taligent) correspondence to the
Unicode Technical Committee, 1992.

M. Gasser et al., “Digital Distributed Security
Architecture” (Maynard, MA: Digital Equip-
ment Corporation, 1988). This internal docu-
ment is unavailable to external readers.

H. Custer, Inside Windows NT (Redmond, WA:
Microsoft Press, 1992).

Vol. 5 No.3 Summer 1993 Digital Technical Journal

Michael M. T. Yau |

Supporting the Chinese, Japanese,
and Korean Languages in the
OpenVMS Operating System

The Asian language versions of the OpenVMS operating system allow Asian-speak-
ing users to interact with the OpenVMS system in their native languages and
provide a platform for developing Asian applications. Since the OpenVMS variants
must be able to handle multibyte character sets, the requirements for the internal
representation, input, and output differ considerably from those for the standard
English version. A review of the Japanese, Chinese, and Korean writing systems and
character set standards provides the context for a discussion of the features of the
Asian OpenVMS variants. The localization approach adopted in developing these
Asian variants was sha ped by business and engineering constraints; issues related

to this approach are presented.

The OpenVMS operating system was designed in
an era when English was the only language sup-
ported in computer systems. The Digital Command
Language (DCL) commands and utilities, system
help and message texts, run-time libraries and sys-
tem services, and names of system objects such
as file names and user names all assume English
text encoded in the 7-bit American Standard Code
for Information Interchange (ASCIl) character set.

As Digital’s business began to expand into mar-
kets where common end users are non-English
speaking, the requirement for the OpenVMS system
to support languages other than English became
inevitable. In contrast to the migration to support
single-byte, 8-bit European characters, OpenvMS
localization efforts to support the Asian languages,
namely Japanese, Chinese, and Korean, must deal
with a more complex issue, i.e., the handling of
multibyte character sets. Requirements for the inter-
nal representation, input, and output of Asian text
are radically different from those for English text.
As a result, many traditional ASCIl programming
assumptions cmbedded in the OpenVMS system are
not valid for handling Asian multibyte characters.

Since the early 1980s, Digital’s engineering
groups in Asia have been localizing the OpenVMS
system to support Asian languages. The resultant
Asian language extensions allow Asian-speaking
users to interact with the OpenVMS system in their

native languages. These extensions also provide
a platform for developing Asian applications. This
paper presents a high-level overview of the major
features of Chinese, Japanese, and Korean support
in the OpenVMS operating system and discusses the
localization approach and techniques adopted.

Asian Language Variants of the
OpenVMS System

The following five separate Asian language variants
of the OpenVMS operating system are available in
the Pacific Rim geographical area:

Language Country OpenVMS Variant
Japanese Japan OpenVMS/Japanese
Chinese People’s OpenVMS/Hanzi
Republic
of China
Chinese Taiwan, OpenVMS/Hanyu
Republic
of China
Korean Republic OpenVMS/Hangul
of Korea
(South Korea)
Thai Thailand OpenVMS/Thai

This paper covers the first four variants, omitting
the Thai variant because of spacc limitations. Each

Digital Technical Journal Vol 5 No. 3 Swummer 1993

63

Product Internationalization

Asian Janguage variant of the OpenVMS system
is designed to be installed and to run as a separate
system. Currently, no provision cxists to formally
support multiple Asian languages simultaneously
on a single OpenVMS system. Each variant provides
a bilingual system environment of English and
one Asian language. Such an environment, called
Asian OpenVMS mode in this paper, supports ASCII
and onc multibyte Asian character set. The variants
are available on the VAX and the Alpha AXP plat-
forms with identical features. Throughout the
paper, the generic name Asian OpenvMs variant
denotes any of the Asian language variants of the
OpenVvMS operating system, regardless of the hard-
ware platform.

To achieve full downward compatibility for exist-
ing users, applications, and data from the standard
OpenVvMS system, each Asian OpenVMS variant is
asuperset of the standard OpenvMS system. In fact,
a user can operate in the standard OpenvMS
mode, i.e., the 1-byte DEC Multinational Character
Set (DEC MCS), on an Asian OpenVMS variant with-
out noticing any difference in the functional behav-
ior compared to a standard OpenVMs system. The
components of an Asian OpenVMS variant are
installed on a standard OpenVMS system in a man-
ner similar to that of a layered product; files (exe-
cutable images and other data files) are added and
replaced on the standard OpenVMS system. [n gen-
eral, three types of components are supplied in an
installation:

1. A standard OpenVMS component supplanted
by an Asian localized version that includes the
standard OpenvMs mode as a subsect. At the
process level, the user can set the component to
run in cither standard OpenvMS mode or Asian
OpenvMS mode. The DCL and the terminal driver
are examples of this type of component.

2. A standard OpenVMS component supplemented
by an Asian localized version that runs only
in Asian OpenVMS mode. Both versions of the
component run simultaneously on the system.
Examples are the TPU/EVE editor and the MAIL
utility.

3. A new Asian-specific component created to pro-
vide functionality for Asian processing that does
not exist in the standard OpenVas system. An
example of this type of component is the charac-
ter manager (CMGR), which is discussed later in
this paper.

Overview of Asian Writing Systems
Before looking at specific features of the Asian
OpenVMS variants, this paper briefly reviews the
Chinese, Japanese, and Korcan writing systems.
For a more detailed discussion of the differ-
ences among these writing systems, refer to Tim
Greenwood’s paper in this issue of the Journal.!

The Chinese Writing System

The Chinese writing system uses ideographic char-
acters called Hanzi, which originated in ancient
China morc than 3,000 years ago. Each ideographic
character (or ideogram) is a symbol made up of ele-
mentary root radicals that represent ideas and
things. Some ideograms have very complex glyphs
that consist of up to 30 brush strokes. Over 50,000
Chincse ideograms are known to exist today; how-
cver, a subset of 20,000 or less is typically sufficient
for general use. Two or more ideograms are often
strung together to represent more complex
thoughts.

[deographic writing systems have characteristics
that are quite different from those of alphabetical
writing systems. such as the Latin languages. For
instance, the concept of uppercase and lowercase
docs not apply toideographic characters, and colla-
tion rules are built on different attributes. The
input of ideographic characters on a standard key-
board requires additional processing.

Two forms of Chinese characters are in use
today: Traditional Chinese and Simplified Chinese.
Traditional Chinese is the original written form
and is still used in Taiwan and Hong Kong. In the
1940s, the government of the People’s Republic of
China (PRC) launched a campaign to simplify the
writing of some traditional Chinese characters in
an effort to speed up the lcarning process. The
resulting simpler set of Chinese characters is
known as Simplified Chinese and is used in the PRC,
Singapore, and Hong Kong.

The Japanese Writing System
The Japanese writing system uses three scripts:
Chinese ideographic characters (called kanji in

Japan), kana (the native phonetic alphabet), and

romaji (the English alphabet used for foreign
words). The kanji script commonly used in Japanese
includes about 7000 characters. There are two sets
of kana scripts, namely, hiragana and Ratakana,
each comprises 52 characters that represent sylla-
bles in the Japanese language. Hiragana is uscd

64

Vol. 5 No. 3 Sumumer 1993 Digital Technical Journal

Supporting the Chinese, Japanese, and Korean Languages in the OpenVMS Operating System

extensively intermixed with kanji. Katakana is used
to represent words borrowed from other languages.

The Korean Writing System

The Korean writing system uses two scripts:
Hangul (the native phonetic characters) and Hanja
(Chinese ideographic characters). The Hangul
script was invented in 1443 by a group of scholars
in response to a royal directive. Each Hangul char-
acter is a grouping of two to five Hangul letters
(phonemes) that forms a square cluster and repre-
sents a syllable in the Korean language. The mod-
ern Hangul alphabet contains 24 basic letters—14
consonants and 10 vowels. Extended letters are
derived by doubling or combining the basic letters.

Asian Character Sets

During the early days of Asian language computeri-
zation when de jure standards did not exist for
Asian character sets, individual vendors in the local
countries invented their own local character sets
for use in their Asian language products. Although
most vendors have migrated to conform with the
national standards, a variety of local character sets
still exists today in legacy systems, thus creating
interoperability issues. This paper reviews only the
national standard character sets that are supported
by the Asian OpenVMS variants.

National Standards

National standards bodies in each of the Asian
Pacific geographies have established character set
standards to facilitate information interchange for
their local characters. For languages that use Han
characters (which are large in number) in their writ-
ing scripts, the character set standards all share
a similar structure, which is illustrated in Figure 1.
Characters are assigned to a 94-row by 94-column
structure called a plane. Each character is repre-
sented by a 2-byte (7-bit) value in the range of 0x21
to OX7E. A plane, therefore, has a total of 8,836 code
points available. Such a structure avoids the ASCII
control code values, thus preventing conflicts with
existing operating systems and communication
hardware and software.

Japan Japan was the first country to announce a
2-byte character set standard, the Code of the
Japanese Graphic Character Set for Information
Interchange (JIS C 6226-1978).% This standard has
since been revised twice, in 1983 and 1990, and
renamed JIS X 0208. The JIS X 0208-1983 standard

COLUMN
1 94 ROW COLUMN
1 I | L]
ROW 0x21 — Ox7E 0x21 - Ox7E
A TWO-BYTE CODE STRUCTURE
A PLANE

* Note that the first bit of each row and column can be either 0 or 1

Code Structure in Asian Character
Set Standarcds

Figure [

includes 6,353 kanji characters divided into two
levels, according to frequency of usage.’ Level 1 has
2,965 characters, and level 2 has an additional 3,388
characters. This standard also includes complete
sets of characters for biragana and katakana,
ASCII, and the Greek and Russian scripts—a total of
453 characters. The 1990 revision, JIS X 0208-1990,
added two characters to the standard.® An addi-
tional plane of kanji characters became standard in
1990 with the announcement of JIS X 0212-1990.5

Prior to the introduction of the 2-byte standards,
Japanese systems that support katakana used the
JIS X 0201-1976 standard for a 1-byte, 8-bit character
set.® Today, there is still a demand to support this
standard, in addition to the 2-byte standards, due
to its pervasive use primarily in legacy mainframe
systems.

People’s Republic of China In 1980, China
announced a 2-byte standard, Chinese Character
Coded Character Set for Information Interchange—
Basic Set (GB 2312-1980).7 Its structure, which fol-
lows that of the Japanese standard, includes two
levels of Hanzi. Level 1 has 3,795 characters, and
level 2 has an additional 3,008 characters. The stan-
dard also has 682 characters, including ASCII,
Greek, Russian, and the Japanese kana characters.
Subsequently, China has announced additional
character set standards.

Taiwan, Republic of China The Taiwanese
national standard, Standard Interchange Code for
Generally Used Chinese Characters (CNS 11643-
1986) was first announced in 19806.% Again, the
structure is similar to the Japanese and PRC stan-
dards. It defines two planes of characters with a
total of 13,051 Hanzi, 651 symbols, and 33 control
characters. The standard was revised in 1992 and
renamed Chinese Standard Interchange Code (CNS
11643-1992). An additional five planes were
defined in this revision, adding 34.976 characters.

Digital Technical Journal Vol.5 No.3 Summer 1993

65

Product Internationalization

Republic of Korea (South Korea) The latest ver-
sion of the Korean 2-byte character set standard
is the Korean Industrial Standards Association
Code for Information Interchange (KS C 5601-1987),
announced in 19870 This standard includes 2,350
precomposed Hangul characters, 4,888 Hanja
(Chinese characters), and 352 other characters such
as ASCIl, the Hangul alphabets, Japancse kana,
Greek, Russian, and special symbols.

User-defined Characters

Character set standards do not always encode all
known characters of the writing scripts for which
the standards are intended. For instance, when the
total number of known characters exceeds the
available code space, only subsets of the most com-
mon characters are included. In addition, new char-
acters are invented over time to describe new ideas
or objects, such as new chemical elcments. The
concept of user-defined characters (UDCs), some-
times known as gaéji in Japan, was introduced to
address the user’'s need for characters that are not
coded in a character sct standard. Many computer
vendors, including Digital, providc extended code
areas for assigning UDCs and vendor-defined non-
standard characters. Attributes of these characters
for various operations such as display fonts, colla-
tion weights, and input key sequence are often
made available, e.g., by registering them in a system
database. From an end-user and application per-
spective, UDCs should be processed transparently
and in the same way as standard characters.

Asian OpenVMS System Overview

From an operating system perspective, three basic
issues need to be addressed to support Asian char-
acter processing, namely, internal representation,
(i.e., how Asian characters are represented and
stored inside the computer), basic text input, and
output.

Internal Representation

Asian OpenVMS variants support the respective
national standard character sets. To achieve full
compatibility with existing ASCII data, each Asian
OpenVvMS variant simultaneously supports one
multibyte Asian character set and ASCII. A variety of
schemes can be used to combine multiple coded
character sets. In general, the schemes fallinto one
of the following three types:

1. Shift code-based representation. In this scheme,
the 1-byte code is combined with a 2-byte code
by inserting shift control codes to switch
between the two code sets. A 1-byte “shift out”
control code changes the mode from 1- to 2-byte,
while a 1-byte “shift in” control changes the
mode back to 1-byte characters. This scheme is
in common use in mainframes.

2. ISO 2022-based representation. The ISO 2022

Code Extension Techniques allow a designated
character set to consist of two, three, or four
7-bit bytes in addition to the 7-bit sets.” The only
requirement is that all bytes of a character have
the same high-order bit setting (all O or all 1).
A simple scheme of simultaneously supporting
ASCIl and one 2-byte character set can be
achieved by statically designating ASCII to GO
and invoking it to graphics left (GL) and designat-
ing a local 2-byte set (e.g., one of the Chinese,
Japanese, or Korean sets) to G1 and invoking it
to graphics right (GR). The resulting mixed
1-byte/2-byte representation is shown in Figure 2.

The high-order bit of each 8-bit byte provides
self-identifying information for the local 2-byte
set. This scheme can be further extended to
include two additional character sets by stati-
cally designating them to G2 and G3 and invok-
ing them by the single shift codes SS2 and SS3.
The Extended UNIX Code (EUC) scheme employs
this additional extension.

3. Shift range-based representation. This scheme,

a hybrid of the previous two schemes, is used by
the “Shift JIS Code” on PC-based systems in
Japan. Bytes with codes O to 127 are interpreted
as 1-byte ASCII, codes 160 to 191 and 192 to 223
are interpreted as 1-byte katakana (as specified
by the JIS X 0201 standard), and codes 128 to 159
and 224 to 255 are combined with the byte that

FIRST BYTE SECOND BYTE

I

7-BIT ASCH

'] | [

14-BIT JIS/GB/KS

Figure 2 Example of an 1SO 2022-based
Representation That Coinbines
Multiple Coded Character Sets

66

Vol. 5 No. 3 Summer 1993 Digital Tecbnical Journal

Supporting the Chinese, Japanese, and Korean Languages in the OpenVMS Operating System

follows to form a 2-byte code that is interpreted
as a kanji character (as specified by the JIS X
0208 standard). This scheme allows more single-
byte characters to be represented at the expense
of the number of 2-byte characters allowed.

Asian OpenVMS variants employ the ISO
2022-based representation for Digital’s Asian code
sets (the DEC Asian code sets) and are named
respectively DEC Kanji, DEC Hanzi, DEC Hanyu, and
DEC Hangul for the Japancse, Simplified Chinese,
Traditional Chinese, and Korean character sets.
This encoding scheme maintains full downward
compatibility with all existing ASCII software and
data. In particular, a string or record that consists of
only ASCIl characters has the form of simple ASCII.
Because there is no nced to keep state information
about the data, this scheme simplifies processing,
when compared to the shift code-based scheme.
However, without explicit support for coded char-
acter set designation, simultaneous support for
Chinese, Japancse, and Korean is not possible.

To support UDCs, each DEC Asian code set con-
tains an extended code area for their assignment.
The high-order bit of the second byte no longer has
to be sct; thus, an additional 94 by 94 plane of code
positions is available. The disadvantages of this
approach are that synchronizing a character bound-
ary requires scanning forward from the beginning
of the string and that the second byte can now con-
flict with the ASCII characters.

The DEC Asian code set internal representation
corresponds to mapping a character plane (94 by
94) to one of the (1,1) and (0,1) quadrants of the
2-byte code space in Figure 3. The exact mappings
of individual DEC Asian character sets supported by
Asian OpenVMS vary. Table 1 provides a summary of
the common code range assignments.

DEC Kanji The DEC Kanji (OpenVMS/Japanese)
code set currently supports ASCII, JIS X 0208-1983,
and an area for UDCs, as shown in Table I. The UDC
area is further divided into the two subareas
described in Table 2.

Recently, Super DEC Kanji, a revision ancl exten-
sion to the DEC Kanji code set, has been proposed

SECOND BYTE

00 21 80 A1 FF
CONTROLS
21
w| ©0 1)
o
80
FIRST o
= CONTROLS
BYTE Al %
O
(1.0) (11
FF

Figure 3 DECAsian Code Set Internal
Representation

Table1 Summary of DEC Asian Code Range Assignments
Code Range DEC Kanji DEC Hanzi DEC Hanyu DEC Hangul
(0xxxXXXX) ASCII ASCII ASCII ASCII
(T XxxxxxxX 1XXXXXXX) JIS X 0208 GB 2312-1980 CNS 11643-1986(1)* KS C 5601-1987
(1x XXX XXX OXXXXXXX) ubDC ubC CNS 11643-1986(2)t —
(000xxxx) CO0 Control C0 Control CO0 Control CO0 Control
(100xxxx) C1 Control C1 Control C1 Control C1 Control
Notes:
* denotes plane 1 of CNS-11643-1986.
t denotes plane 2 of CNS-11643-1986.
Table 2 The DEC Kanji UDC Area

Number of
Area Usage Quadrant Rows Characters Code Range
User Area (1,0 1-31 2,914 0xA121-0xBF7E
DEC Reserved (1,0 32-94 5,922 0xC021-0xFE7E

Digital Technical Journal Vol 5 No. 3 Sunumer 1993

67

ProductInternationalization

to support additional character scts such as JIS X
0201-1978 and JISX 0212-1990, which are specified as
follows:

Additional
Code Range Planes
(SS2 1xxXXXXX) JIS X 0201
(SS3 1 XxxXXXXX TXXXXXXX) JIS X 0212

The redefined UDC area includes both a user/
vendor-defined area (UDA) and a user-definable
character set (UDCS), as described in Table 3.

DEC Hanzi The DEC Hanzi (OpenvMs/lanzi for
Simplified Chinese) code set supports ASCII, GB
2312-80, and a UDCareadescribed in Table 4.

DEC Henyir The DEC Hanyu (OpenVMS/Hanyu
for Traditional Chinese) code set currently sup-
ports ASCI, CNS 11643-1986 (first and sccond
planes), and the Digital Taiwan Supplemental
Character Set (DTSCS). The DTSCS supplements the
characters defined in CNS 11643-1986 with an addi-
tional collection of characters that address cus-
tomer needs. Currently, the DTSCS defines the 6,319
characters recommended by the Electronic Data
Processing Center (EDPC) of the Executive Yuan, a
Taiwanese government body. The CNS 116-i3-1992
standard includes the DTSCS.

To support the additional DTSCS, the mixed
1-byte/2-byte scheme is extended to a 1-byte/
2-byte/4-byte scheme. Each DTSCS character maps
to a 4-bvte code, in which a fixed Icading 2-byte

Table 3 The Super DEC Kanji UDC Area

code (0xC2CB) combines with the following 2-byte
code to form a 4-byte code. Of course, the code
point 0xC2CB is reserved for this purpose. This
scheme makes available another two 94 by 94
planes of code positions:

(OxC2CB I xXXXXXX I XXXXXX)
(OxC2CB IXXXXXXX OXXXXXX)

Table 5 shows the current definition of the
PTSCS. An additional area is available for UDCs in the
CNS planes, as defined in Table 6.

DEC Hangitl The DEC Hangul (OpenvMS/Hangul)
code set supports ASCII and K$ € 5601-1987 (with
the exception of UDCS).

Asian Text Input

The most widely used computer input device
remains the keyboard. Because it is impossible
to assign thousands of ideographic characters to a
standard QWERTY keyboard, new methods must be
devised to facilitate the Asian text input process. In
this context, an input method is basically an algo-
rithm that takes keystroke input representing cer-
tain attributes (e.g., phonetics) of a character or
string and uses a lookup table to find characters
or strings that have thosc attribute values. Typically,
a user inputs several keystrokes and selects the
desired character or string from a candidate list by
means of an iterative dialog with the input method.
This process is sometimes referred to as preediting.
Depending on the physical location of where the
dialog takes place, a preediting user interface can
be one of three styles: off-the-spot, over-the-spot,

Number of
Area Usage Quadrant Rows Characters Code Range
JIS X 0208 UDA (1,1) 85-94 940 0xF5A1-0OxFEFE
JIS X 0212 UDA SS3 (1,1) 78-94 1,598 (SS3 + OXxEEA1)-0OxFEFE
UDCS (1,0 1-94 8,836 0xA121-0xFE7E
Table4 The DEC Hanzi UDC Area

Number of
Area Usage Quadrant Rows Characters Code Range
DEC Reserved (1,1) 88-94 658 OxA1A1-0xFEFE
User Area (1,0) 1-87 8,178 0xA121-0xF77E
DEC Area (1,0) 88-94 658 0xF821-0xFE7E

63

Vol. 5 No. 3 Sununer 1993 Digital Tecbnical Journal

Supporting the Chinese, Japanese, and Korean Languages in the OpenVMS Operating System

Table 5 The DEC Hanyu DTSCS Area

Number of
Area Usage Quadrant Rows Characters Code Range
EDPC Recommended
Characters C2CB (1,1) 1-68 6,319 0xC2CBA1A1-0xC2CBE4B5
Reserved C2CB (1,1) 68-94 2,517 0xC2CBBEB6-0xC2CBFEFE
Reserved C2CB (1,0) 1-94 8,836 0xC2CBA121-0xC2CBFE7E
Table 6 The DEC Hanyu UDC Area

Number of
Area Usage Quadrant Rows Characters Code Range
ubpcC (1,1) 93-94 145 0xFDCC-0xFEFE
ubcC (1,0) 82-94 1,186 0xF245-0xFE7E

or on-the-spot. Different input methods may have
diffcrent preedit interface requirements. Usually,
several screen arcas are needed for the preediting
dialog to take place. Input methods differ from cul-
ture to culture and from script to script.

The major diffcrence in the implementation of
input method support among the Asian OpenvMs
variants is in the character cell terminal envi-
ronment. Some input methods are suitable for
programming into the terminal firmware. The
Chinese and Korean input methods supported
on the OpenVMS/Hanzi, OpenvVMS/Hanyu, and
OpenvMs/Hangul systems are examples of such
methods. Other input methods are too complex or
require so many resources as to make them too
costly for firmware implementation. This is true of
the Japanese input method, which needs to be
implemented on the host. Such implementation
causes a number of technical issues with the tracli-
tional ASCII character cell terminal-oriented appli-
cation programming model, where an application
does not have to be concerned with input methods
and expectsto receive character codes directly. The
following three alternatives have been used to
implement host-based input methods on the
OpenVvMS/Japanese system:

1. Application. All Japanese applications directly
program the input method themselves. An appli-
cation must call low-level routines (a set of
kana-kanji input method routines are available
in the JSY Run-time Library) to access the input
method dictionary and directly controls the
preedit interface in relation to its own screen
management. This method is used by applica-

tions such as text editors, which need to directly
manage the screen display. The method requires
substantial reengineering of an ASCII application
to support a Japanese input method.

2. Run-time library (RTL). Japanese applications
call special text line input routines, which han-
dle the Japanese input method. This method is
suitable for applications that require simple line
input of text. The RTLmethod hides the details of
the input method from the application but lacks
the flexibility to control the precedit user inter-
face. The reengineering needed to handle the
Japanese input method is shifted from the appli-
cation to the RTL routines. This approach
requires less application reengineering, but all
standard line input routine calls in the applica-
tion must be replaced by Japanese line input rou-
tine calls.

3. Front-end input processor (FIP). The Japanese
input method is embedded as a front-end process
inside the terminal queued 170 (QIO) system ser-
vice. This method of implementation benefits
cxisting high-level RTL text line input routines
and requires little application or RTL reengineer-
ing to support the Japanese input method in the
single-line input of Japanese text.'?

The Asian OpenVMSs graphical user interface on
workstations is called Asian DECwindows/Motif.
Current input method support is provided through
a Digital extension implcmented as an X client.
With release 5 of the X 11 standard, the implementa-
tion will migrate to using the standard X input
method (XIM) support in the Xlib library routines.

Digital Technical Journal Vol. 5 No. 3 Sununer 1993

69

Product Internationalization

Most Asian PCs have a front-end processor imple-
mentation of input methods resident on the PC.
Therefore, PC desktop computers can send Asian
characters directly when communicating with an
Asian OpenVMS host.

The following is an overview of the input meth-
ods supported by each Asian OpenvMS variant.

Japanese Input Method Kana characters can be
typed directly on a standard keyboard using a kana
keyboard layout. For kanji characters, the de facto
standard input method is called the romaji/kana-
to-kanji conversion, which is based on phonetic
conversion. The process of entering a kanji string
involves typing the kana (biragana or Ratakanc)
or the romaji pronunciation of the string. The input
method then looks in a conversion dictionary for
the list of kanji strings that have the same pronunci-
ation. Since most Japanesc words have homonyms,
the user usually needs to go through a selection
process to find the desired kanji string. More
advanced implementations involve performing syn-
tactic and semantic analysis of the sentence to
increase the cfficiency of the input method. On
the OpenVvMs/Japanese system, the kana-to-kanji
input method has a provision for separating conver-
sion units into word, clause, and sentence. The
method also has a learning capability that reorders
the candidate list entries by means of a personal
dictionary, putting the characters selected at the
top of the list so that more frequently used words
appear first in the homonym list.

Chinese Input Method No standard exists for the
Chinese input method. The large number of input
methods that have been proposed over the years
can be classified into one of two major types:

1. Pattern decomposition-based method. Each
character is decomposed into basic strokes or
patterns. Each stroke or pattern, e.g., aroot radi-
cal, is assigned a code (mapped to a key) and
each character is retrieved by inputting a
sequence of such codes.

2. Phonetic-based method. Each character is tran-
scribed into phonemic letters and retrieved by
this phonemic transcription. The system used in
Taiwan is based on the National Phonetic Alpha-
bet (Bopomofo), whercas the PRC uses Roman
alphabets based on the Wade-Giles system.

The OpenvVMs/Hanzi system supports the follow-
ing Chinese input methods:

70

= Five stroke

= Five shape

= Pinyin

= Telex code

= GB 2312 code

The OpenVMSs/Hanyu system supports the fol-
lowing Chinese input methods, which are imple-
mented by firmware on the Digital VT382 series
Chinese terminals:

= Tsang-Chi

= Quick Tsang-Chi
= Phonetic

= Internal code

s Phrase

Korean Input Method Hangul characters are
composed by directly typing the individual Hangul
letters. The composition sequence always starts
with a consonant, is followed by & vowel, and fin-
ishes with a consonant, if present. The input method
validates the composition sequence keyed in by the
user at each step. The display device updates the
intermediate rendering of the partially formed
Hangul character as the shape and position of each
letter changes during composition. Hanja charac-
ters are entered by typing their Hangul pronuncia-
tion. The input method displays a list of all possible
Hanja characters (homonyms). More sophisticated
implementations can perform Hangul-to-Hanja
conversion in word units similar to that of the
kana-to-kanji conversion. On the Digital VT382
Korean terminal, both the Hangul and the Hanja
input methods are implemented by firmware.

Asian Text Output

Asian character fonts are usually displayed or
printed as bit-map graphics. To meet the require-
ments of specific applications such as scaling and
plotting, these fonts can also be defined as outline
fonts using vector representation. International
codes of Asian language characters are mapped to
the corresponding font data when needed for out-
put. Predefined character fonts are usually stored in
the read-only memory (ROM) of terminals and print-
ers for better performance. As for the English alpha-
bet, different standards, styles, and sizes exist for
Asian language character fonts. The following list

Vol. 5 No. 3 Sununer 1993 Digital Technical Journal

Supporting the Chinese, Japanese, and Korean Languages in the OpenVMS Operating System

contains some of the more popular font styles used
in the respective markets:

Market Font Style
Japan Mincho, Gothic, Round-Gothic
Korea Myuncho, Gothic

PRC Song, Quasi-Song, Hei (boldface), Kai

Taiwan Sung, Hei (boldface), Kai

In general, Asian ideographic characters require
high-definition fonts, i.e., at least a 24-by-24 dot
matrix, to achieve acceptable visual quality. As a
result, memory requirement is a major issue when
supporting Asian fonts.

Hardware

Supporting Asian language processing requires
modifying the standard video terminals and print-
ers. In general, software products need to recog-
nize the different functional characteristics of Asian
terminals and printers. For example, the character
set designation and invocation defaults differ from
those of standard terminals.

Workstations do not require any modifications
(except for exchanging a local language keyboard
for the standard one), because input and display are
directly supported by software.

Asian Video Terminals The traditional character
cell terminal provides certain local display and
input functions on behalf of a software program.
For ¢xample, the terminal firmware preprocesses
scan codes generated by keyboard input and con-
verts them to character code before sending them
to an application. Similarly, character fonts are usu-
ally stored in the terminal ROM. Digital has devel-
oped a variety of video terminals to support Asian
language processing.

Some major hardware considerations for Asian
video terminals are

= High-resolution video display. Ideographic char-
acters have complex glyphs, which require at
least a 24-by-24 dot matrix cell to be of accept-
able display quality. Such a cell would occupy
two ASCII columns. As a result, to maintain
a 26-line (40 ideograms per line) display requires
ascreen resolution of at least 960 by 780 pixels.
Typically, Digital's Asian video terminals use
monitors that run at a 60-hertz noninterlaced
mode, a mode substantially higher than that of
standard ASCH terminal monitors.

= Font memories and loading protocol. The termi-
nal requires additional ROM to hold the fonts of
standard characters in an Asian character set, typ-
ically 7,000 to 20,000 characters. Also, for char-
acters outside the standard set, i.e., UDCs, the
terminal requires random-access memory (RAM)
to downline load the fonts from the host. Digital
Asian terminals support font-loading protocols
that work with the host software to downline
load fonts into RAM either on demand or on a
preloading basis. The font cache in Digital’s
Asian terminals can usually hold about 400 char-
acters at once.

= [nput method. Implementing input methods on
a video terminal requires additional hardware
modification. The input method algorithms
must be programmed into the firmware together
with extra memory for the input method lookup
tables. In addition to the main display area, one
extra line on the screen is needed as an input
method work area, e.g., for displaying candidate
lists for user selection. Some keys must be
assigned permanently for invoking different
input methods. The printing of legends on the
tops of the keys is now more complex, because
the keytops must include additional legends for
the input method keyboard layout. For example,
on Digital’s Hanzi terminals, four ideograms
must appear on the tiny area of one keytop.

Asian Printers Digital supports a range of
Asian printers. Similar to Asian video terminals,
Asian printers must support font-loading protocols
to downline load fonts for UDCs by either preload-
ing or on-demand-loading methods. Additional
RAM is required to hold these fonts. Also, Digital’s
Asian printers generally support multiple font type-
faces and sizes.

Asian OpenVMS Structure

The components provided by the Asian OpenvVMS
variants on top of the standard OpenVMS system
can be divided into five main groups:

1. System support for transparent processing of
UDCs

2. An enhanced OpenVMS terminal [/O subsystem
to support Asian terminal devices

3. A set of run-timc libraries to facilitate Asian
application development on Asian OpenVMS
systems

Digital Technical Journal Vol. 5 No.3 Sunier 1993

71

Product Internationalization

4. A set of localized utilities and commands for
users to perform common tasks on OpenvMs
systems in their native languages

5. A utility to sct the operating modcs (standard
OpenvMS mode or Asian OpenVMS modc) of the
localized components

Figure 4 summarizes the Asian OpcenVMS system
structure.

Asian OpenVMS Components

This section reviews the major components of the
Asian OpenVMS variants.

User-defined Character Support—
The Character Manager

Attributes of characters in the standard character
sets supported on an Asian OpenVMS system are
known and fixcd. Therefore, attribute support can
be built into the system statically. In contrast, UDCs
usually requirce their attributes to be dynamically
defined and accesscd. A new utility called the char-
acter manager (CMGR) enables users to create. man-
age (modify and update), and retricve UDCs and
their attributes. UDC support is currently offered
on the OpenVvMS/Japancse, OpenVMS/Hanzi, and
OpenVMS/Hanyu systems. In the OpenVMS/Hanyu
system, the CMGR also supports Digital-defined
characters, e.g., the DTSCS and DEC Recommended
Characters (DRC).

The CMGR manages a set of systcmwide data-
bases that store UDC attributes. Two UDC attributes
are currently supported, glyph images and collating
values.

Torepresent the UDCs in the computer, the CMGR
allows a user to assign each UDC a code point in the
designated U'DC area. Currently, UDC charactcrs are
entered by directly typing their binary code. The

code point serves as the key in the CMGR databases
for retrieving other attributes of the character.

The CMGR utility provides a user intcrface to cre-
ate and manage the UDC attribute database. The
user interface includes a font editor for users to cre-
ate the glyph image of a UDC and entries for other
attributes. To allow applications to retrieve thc
UDC attributes, the CMGR has a set of application
programming intcrfaces (APIS) used to access the
individual attribute databases. In particular, the
on-demand font loading of UDCs supported by the
Asian terminal I/O subsystem employs the CMGR
font databases, and the SORT/ MERGE utility uses the
collation databases for UDC sorting.

CMGR Font Database To output a UDC to a dis-
play or printing device, the UDC'’s glyph image must
first be defined. The CMGR provides a screen font
editor for users to create the glyph images. The
CMGR supports multiple typefaces (e.g., Hei, Sug,
and Default) and font sizes (e.g., 24 by 24,32 by 32,
and 40 by 40) in multiple databases. There are two
ways to load the UDC fonts to Asian output devices,
namely, preloading and on-demand loading.

Fonts can be preloaded by sending a file that con-
tains the appropriate control sequences and font
patterns, which are discussed in more detail laterin
this section. The CMGR provides a command that
generates a preload file from the font database for
required UDCs.

On-demand font loading is a more complicated
mechanism, which involves an on-demand loading
protocol. Font patterns are retrieved from the font
database through the CMGR callable interface by a
font-handling process.

CMGR Collation Attribute Database To facilitate
the sorting of data, including UDCs, the collation
weights of the characters must be defined.

LOCALIZED
OPENVMS USER
COMMANDS AND APPLICATION
UTILITIES
5 MODE
DEFINED
ChaRACTER | | MULTIBYTEPROCESSING RTL T
SUPPORT LOCALIZED SCREEN MANAGEMENT RTL

LOCALIZED OPENVMS CALLABLE
UTILITY ROUTINES

ASIAN TERMINAL /O SUBSYSTEM

Figure 4 Asian OpenVMS System Structure

72

Vol. 5 No. 3 Swnmer 1993 Digital Technical Journal

Supporting the Chinese, Japanese, and Korean Languages in the OpenVMS Operating System

Currently, only the OpenVMS/Hanzi and OpenvMS/
Hanyu systems offer this feature.

Asian Terminal I/0 Subsystem

The Asian terminal I/0O subsystem is an extension
of the standard OpenVMS terminal 1/0 subsystem.
It consists mainly of the OpenVMS terminal class
drivers/port drivers, auxiliary class drivers, and
server processes, and handles both standard and
Asian terminals simultaneously. For Asian termi-
nals, the subsystem provides extended functions
to support multibyte character handling in the ter-
minal QIO system service, input method, code set
conversion, and font loading.

Terminal QIO System Service/Multibyte Character
Handling The enhanced terminal QIO system ser-
vice can handle mixed ASCIl and multibyte Asian
characters in line input calls. Line editing (e.g.,
character echo, cursor movement, character dele-
tion, character insertion, word delimiters, and
character overstrike), line wrapping, uppercasing,
and read verifying will handle Asian characters
correctly. Because the QIO system service is the
lowest-level routine that handles terminal 170, all
other text I/O routines such as LIBSGET_INPUT,
$GLET RMS service, and the text 1/0 facility of pro-
gramming languages such as C, Fortran, and COBOL
are layered on it. The enhancements automatically
benefit all of these higher-level routines.

Font Loading Asian terminal devices have
writable font memory (WFM), and the firmware
supports font-loading sequences and logic. A text
file is scanned by a utility program prior to output
to a terminal or printer. The Asian terminal 1I/0 sub-
system then creates a preloading file, which con-
tains the font-loading sequence for all nonresident
characters found in the file. Next, the subsystem
sends this preloading file to the terminal or printer,
causing the required fonts to be loaded in the font
memory. Final ly, the text file is output to the termi-
nal or printer. This method is limited by the size of
the font memory, typically 300 to 500 characters.
The font preloading method is used mainly in batch
operations, such as line printers, where perfor-
mance is an important factor.

When an Asian video terminal or printer receives
an Asian character code and determines thatitis a
UDC, the terminal firmware automatically halts the
current processing and generates a font request to
the OpenvMS system. The terminal driver traps this

request and passes it on to a process called the font
handler. On behalf of the terminal, the font handler
retrieves the font bit map of the requested charac-
ter from the system font database and sends it back
to the terminal or printer, which in turn loads it
into its RAM and resumes the display processing.
Because it involves XON/XOFF flow control, which
is done at a very low levcel of the system, the process
requires modifications to device drivers. The
amount of UDC font is not limited by WFM capacity,
because the terminal firmware automatically
updates the memory.

Front-end [nput Process (FIP)'? One of the big-
gest differences between Japancsc and other Asian
language (e.g., Chinese and Korean) support on the
OpenVvMS system is in the implemcentation of the
input method. The nature of the kana-to-kanji
input method makes it unsuitable for implementa-
tion in terminal firmware. The method requires a
huge input method dictionary (about 1 megabyte in
size) and a dynamic memory work area for syntac-
tic and semantic analysis. Also, updating an input
method dictionary that is implemented in firmware
is a very costly operation.

Code Set Conversion Prior to the introduction of
the Asian OpenVMS variants, Digital's customers
used video terminals and printers that support pro-
prietary local language code sets from third-party
vendors. To protect customer investments and to
ensure a smooth migration path for legacy equip-
ment, the Asian terminal 1/0 subsystem provides an
application-transparent, code set conversion facil-
ity. This facility is bascd on the terminal fallback
facility (TFF) introduced in OpenVMS version 5.0,
which provides a similar function for conversion
between 7-bit National Replacement Character Sets
(NRCSs) and the 8-bit DEC MCS. TFF provides a mid-
driver that converts both incoming and outgoing
data from one code set to another. For the Asian
OpenVMS variants, the conversion logic is ¢xtended
to support 16-bit character entities. Currently, TFF
supports the conversion between the DOOSAN
code and the DEC Hangul code on the OpenvMS/
Hangul system and the MITAC TELEX code and the
DEC Hanyu code on the OpenvVMS/Hanyu system.

In addition, code set conversion is necessary
between heterogeneous systems because of the
proliferation of encoding schemes used by differ-
ent vendors. For instance, Chinese PCs in Taiwan
use the BIG 5 code. To facilitate the communication

Digital Technical Journal Vol.5 No.3 Summer 1993

73

Product Internationalization

between the OpenVMS system and PC desktop com-
puters, the OpenvMS/Hanyu system supports the
conversion between the BIG 5 code and the DEC
Hanyu code.

Asian Application Programming Support

To help software developers write Asian applica-
tions on Asian OpenVMS variants, Digital provides
aset of common Asian multibyte character process-
ing RTL routines to supplement the standard
OpenVMS RTLs. In particular, our Asian localization
effort to develop OpenVMS layered products uti-
lizes these RTLs. Functions provided by the Asian
language RTL (approximatcly 240 routines) are clas-
sified into the following categories of routines:

= Character conversion
= String

= Read/write

= Pointer

= Comparison

= Search

= Count

= Character type

= Date/time

= Code set conversion

The majority of the routine interfaces are com-
mon to all Asian countries. Currently, one library
image supports the Hanzi, Hanyu, and Hangul lan-
guage variants. Language-specific code is hidden
under this generic multibyte interface and
switched at run time by a system logical name
defined during system start-up.

The OpenVvMS/Japanese system has a set of rou-
tines for handling kuna-to-kanji conversion, both
high level and low level. The high-level routines,
such as JUB$GET_INPUT, JLBSGET_COMMAND, and
JLB$GET_SCREEN (Japanese versions of LIBSGET
INPUT, LIBSGET_COMMAND, and LIBSGET_SCRELN),
hide the kana-to-kanji input method details from
the application. These routines use the off-the-spot
preediting that usually takes place at the last line of
the screen; however, the flexibility of the preedit
user interface islimited. A set of low-level routines
performs primitive functions such as opening the
conversion dictionary, finding the next candidate

kanji string, and getting the contents of the inter-
nal buffer. The kana-to-kanji input method is pro-
grammed by calling a sequence of these routines.
This implementation gives the application the abil-
ity to directly control the screen management and
allows flexibility in the design of the preedit user
interface; however, the application must deal with
every detail of the input method, which is a disad-
vantage. In addition, the library IMLIB helps the
application customize the keyboard mapping for
kana-to-kanji conversion.!?

The screen management (SMG) RTL on the
OpenVMS system provides a suite of routines for
designing, composing, and keeping track of com-
plex images on a character cell video terminal in a
device-independent manner. The standard SMG ver-
sion supports only the ASCII and DEC Special
Graphics character sets and cannot correctly han-
dle multibyte Asian characters. For example, opera-
tions such as screen update optimization, boundary
processing (clipping on borders), and cursor move-
ments operate on part of a multibyte Asian charac-
ter and cause screen corruption because of the
“one-character-is-equal-to-one-byte” assumption.

The Asian OpenVMS variants provide an
extended version of SMG (about 20 percent of the
original routines have been extended) to support
multibyte character sets and DEC MCS, in addition
to ASCIl and DEC Special Graphics. To maintain
downward compatibility, most routine entries
remain identical, with an optional character set
argument added at the end of the argument list
to indicate desired character set operations.
Alternatively, users can define a logical name
SMG$DEFAULT_CHARACTER_SET without explicitly
passing the character set argument in the routine
call. Existing ASCIl applications run unmodified
with the Asian SMG. New Asian applications that
use multibyte features relink with the new library.

Asian Commands and Utilities

The OpenVMS user interface determinces the way an
end user interacts with the system. The interface
includes such components as the DCL command
line interpreter, system help and messages, and all
the system utilities provided by the OpenvMS sys-
tem. Selected user interface components of the
OpenVvMS system have been localized to support
Asian characters on the Asian OpenVMS variants. A
description of some of these localized components
follows.

74

Vol. 5 No.3 Swmimer 1993 Digital Technical Journal

Supporting the Chinese, Japanese, and Korean Languages in the OpenVMS Operating System

DCIL Coimmand Line Interpreter The algorithms
in the standard DCL that assume characters to be
equal to 1 byte and interpret these characters as
ASCII/DEC MCS are enhanced for the following DCL
primitives in the Asian code set modes:

= Command parsing. Parsing of command input
in single-byte units causes data corruption,
because part of some multibyte Asian characters
can be mistaken for one of the special DCL ASCII
characterssuchas!, @, or “. Command parsing is
now done in character units instead of byte
units, and operations such as terminator, delim-
iter checks, and quotation mark compression are
skipped on Asian characters, since the DCL spe-
cial characters are all in ASCILI.

= Character uppercasing and lowercasing. Upper-
casing and lowercasing are applied only to ASCII
characters, because the concept of uppercase/
lowercase does not exist in Asian character sets.
Uppercasing/lowercasing in single-byte units
corrupts Asian character data, because part of
an Asian character can be indiscriminately
uppercased/lowercased.

= Symbols and labels. Certain 8-bit values (those
with no character assigned in the DEC MCS) are
currently disallowed for DCIL symbol names,
symbol values, and labels. This restriction has
been removed in the Asian modes to allow all
Asian characters in DCL symbols and labels. The
enhanced algorithms maintain separate symbol
tables for each of the code set modes, because of
the possibility of code collision issues across dif-
ferent code sets.

The Asian DCL command line interpreter is
currently supplied with the OpenvMS/Hanzi,
OpenvNs/Hangul, OpenvMS/Hanyu, and OpenvMS/
Thai systems in the same binary image, i.e., a single
image supports multiple code sets. The default
code set mode for DCL for a particular system is
established during system start-up by means of a
defined logical name supplied with the start-up
procedure of each Asian OpenVMS variant. Switch-
ing the code set mode between DEC MCS and the
particular Asian code set of the system is accom-
plished through a utility, e.g., HANZIGEN in the
OpenvMS/Hanzi system. The Asian DCL is not sup-
plied with the OpenVMS$/Japanese system, because
until only recently the Japanese input method was
not available at the DCL level.

System Help and Messages The OpenVMS/Hanzi,
OpenVMS/Hanyu, and OpenVMS/Hangul systems
include a translated Asian language version of the
OpenVMS system help library (accessed by typing
HELP at the $ prompt). The Asian version of the sys-
tem help library is placed in a directory that is sepa-
rate from the original English one but that has the
same file name. The user can switch the language
(English or the particular Asian Janguage) of system
help by using the ASIANGEN utility, which redefines
the file specification logical to point to the appro-
priate file.

The OpenvMS/Japanese system provides a trans-
lated Japanese version of the system messages
(SYSMSG.EXE), which is placed in a subdirectory of
SYS$MESSAGE. Users can switch the language of the
system messages by using the SET LANGUAGE com-
mand, which reloads the message file into memory.

In addition, most of the localized original utilities
and Asian-specific utilities provide bilingual help
and messages.

SORT/MERGE Collation rules in the Asian lan-
guages are very different from those of the Latin
languages. '3

= Asian collation sequences. An Asian character
has different collation sequences based on differ-
ent attributes. The SORT/MERGE command is
extended as follows to include new subqualifiers
for the Asian collating sequences: /KEY=(POS:m,
CSIZE:n, <collating sequence subqualifier>). The
Asian OpenVMS SORT/MERGE utility supports the
Asian collating sequences shown in Table 7.

= Collation weights. Unlike ASCII, the collation
weights of the Asian collating sequences cannot
be derived by virtue of the code value. Rather,
the string comparison for Asian collation
sequences are driven by collation weight tables.
For the standard characters, these tables are built
into binary images thatare linked with the utility
for fast access.

= Multibyte characters. String comparison in the
original SORT/MERGE operation is done in byte
units, because a character is assumed to be equal
to 1 byte. For the Asian SORT/MERGE, a compari-
son operation must be aligned by character, i.e.,
multibyte, units rather than by byte units. The
operation must be able to handle the case in
which the start position of a sort key (specified
by a byte position) in arecord is in the middle of

Digital Technical Journal Vol 5 No.3 Sunvner 1993

75

Product Internationalization

Table 7 Asian Collating Sequences Supported by the OpenVMS User Interface

Collation
Sequence Type OpenVMS/Japanese OpenVMS/Hanzi OpenVMS/Hanyu
Pronunciation Onyomi* Pinyin Phonetic_Code
Kunyomit
Kokugo#
Kana8bit
Radical Bushu Radical Radical
Stroke Count Sokaku Stroke Stroke
Internal Code JIScode QuWei QuWei

Notes:
* denotes a Chinese reading.
1 denotes a Japanese reading.

+ denotes a Kana reading.

a multibyte character. Also, to avoid a truncation
problem at the key boundary, the size of the sort
key (mixed ASCIT and multibyte characters are
allowed) is specified s a number of characters
instcad of a number of bytcs.

®» Multiple passcs. Sorting Asian characters by any
of the individual collating sequences (except
QuWei) may not produce a unique sort order.
In general, multiple successive passes using
different collating sequences are needed to do
s0. Thus, the Asian OpenVMS SORT/MERGE utility
allows a sort key specificd with multiple passes

of different collating sequences. In addition, if

the /STABLE qualificr is not specificd, QuWei
collation is always added last to the sort key to
further classify records with identical collation
values.

= User-defined characters. The Asian OpenVvMs
SORT/MERGE utility supports col lation of UDCSs.
When a UDC is encountered, the SOR1T/MERGE
operation retrieves the collation weight from a
system database maintained by the CMGR utility
with the valuce defined by a user when the char-
acter was registered.

MAIL Most of the work involved inlocalizing the
MAIL utility enhances the user interface to use
Asian characters. String search enhancements
allow processing by character units instead of by
byte units. String uppercasing is not applied to
Asian characters. The subject field, the personal
name ficld. and the folder names can all contain
Asian characters. The listing of mail folders can
be displayed in sorted order in any of the sup-

ported collation sequences using the new com-
mand qualifier DIR/FOLD/COLLATING_SEQUENCE=
(<collating sequences>).

The MAIL utility invokes the Asian text editors
by default instead of invoking the standard ones.
The OpenvMS/Japanese system incorporates the

Japanese input method to allow users to enter
Japanese characters.

EDT The Asian OpenVMS EDT editor was local-
ized and enhanced for Asian text editing. Much of
the work involved driving the terminal display
correctly for Asian characters. In addition, the edi-
tor has a large number of new editing features.

TPU/EVE lLocalization of TPU and EVE deals
mainly with managing the screen update for mixed
ASCIl and Asian characters, such as cursor move-
ment and screen boundary handling. Both the TPU
editing engine and the EVE interfuce were modi-
fied. Asian-spccitic TPU built-in procedures were
added, and existing ones were enhanced. String
search is now aligned at the character boundary
rather that on byte units.

For the Japanese TPU/EVE, one of the most diffi-
cult tasks is to incorporate the Japanese input
method. This requires managing overlap windows
in a character cell terminal between the input
method working area and the background editing
areu.

DECwindows Systein - With the increasing empha-
sis on internationalization features in the X11 and
OSF/Motif standards, OpenvVMS DECwindows sys-
tems provide these features and the localization

76

Vol. 5 No. 3 Swmmer 1993 Digilal Tecbnical Journal

Supporting the Chinese, Japanese, and Korean Languages in the OpenVMS Operating Systein

features demanded by the market. For a description
of the latest internationalization support in the X
Window System standard, refer to the book by
Scheiflerand Gettys. '

Asian OpenVMS Localization Issues

The Asian OpenVMS effort has been addressing vari-
ous technical and engineering issues.'>%-" This sec-
tion discusses the major ones.

Technical Issues

Localization of the OpenVvMS components to sup-
port the Asian languages requires reengineering the
program codes and text translation. The need to
reengineer source code arises for two main reasons.

. OpenvMs components make fundamental
programming assumptions and practices based
on the ASCIl and DEC MCS character sets. For
example,

- OpenvMs components assume the character
set to be ASCIT (plus DEC MCS in some cases),
and blindly uppercase and lowercase charac-
ters, validate characters against the DEC MCS,
and define printable characters according to
the ASCIL and DEC MCS encodings.

- OpenvMs components assume characters to
be 1 byte and use string manipulation algo-
rithms based on 1-byte units.

- OpenvMS components assume the display
width of a character to be of fixed length
(1 byte) and use screen display management
algorithms based on the assumption that
1 byte equals one display column.

- OpenVMSs components assume that the char-
acter count, the byte count, and the display
width are the same, and use string manipula-
tion algorithms and character cell terminal
screen display management based on this
assumption.

8]

. Some functionality that is required to support
Asian languages is missing in the standard
OpenvMs environment, For example,

- Keyboard input of Asian characters requires
more complicated input method processing
than is available in the standard OpenvMs
environment.

- Collation rules of Asian languages are radi-
cally different from English collation rules,
on which the standard OpenvMs environ-
ment is based.

- The standard OpenVMSs environment does not
support the application-transparent process-
ing of UDCs.

- The writing direction of Asian languages can
be vertical, i.e., from top to bottom. The stan-
dard OpenvMs environment assumes hori-
zontal, left-to-right languages.

Engineering Issues

Historically, the Asian localization of the OpenVvMms
system has been organized as an enginecering ceffort
that is separate from mainstream development. As
a result, a number of engineering constraints and
overhead costs cxist.

= Single language support. The design goal for the
Asian OpenVMs variants, as driven by the local
market requirements, has been targcted at sup-
porting a single language on one system, i.e., one
language variant per system. As a result, no spe-
cial design considerations are given to support-
ing multiple languages on one system.

= Full upward compatibility. The top design
requirement is to keep full downward compati-
bility with original ASCI/DEC MCS OpenvMs
systems. All ASCI/DEC MCS applications with
existing data must be able to run unchanged on
the Asian OpenVMS variants. In fact, an Asian
OpenvMs system can, at any time, be reset to
operate in the original DEC MCS mode, if desired.
Therefore, most localized components must be
able to switch between the standard and Asian
code paths. System mechanisms for determining
the current language variant and operating
mode are required.

= Optimal performance. Another design goalis to
minimize any performance impact on standard
English components. As a result, Asian codes are
designed around standard code paths. For exam-
ple, branches for Asian code are placed at the
end of a conditional statement, and Asian code
branches out from the main line code using spe-
cial hooks.

= Limited or no kernel changes. Since Asian code
changes are not merged into the mainstream,
kernel changes in Asian code would be very diffi-
cult to maintain with new OpenVvMSs releases. In
addition, any kernel changes in the standard
OpenvMs release will likely break the Asian
code. This puts a constraint on supporting Asian
languages in OpenvMS kernel components.

Digital Technical Journal Vol. 5 No. 3 Sunomer 1993

77

Product Internationalization

= Commonality. Because the Asian languagcs
share a lot of commonality, techniques such
as common source are used for most Asian
localized components to maximize engincering
return by sharing common Asian localization
code.

Conclusions

Local language processing has become a mandatory
functionality for computer systems sold in Asian
markets. From the OpenVMS operating system per-
spective, the basic local Asian language processing
requirements are being addressed by its Asian
language variants in a single-language-for-a-single-
locale manner. With global trade and the technol-
ogy trend of distributed computing systems, the
challenge for the future is to be able to provide
OpenVMS services simultaneously to multiple
clients operating in different languages and code
sets. Such a requirement leads to the concept of a
multilingual operating system, which allows soft-
ware applications to run irrespective of the lan-
guage and/or code set they support. With the
availability of the 1SO 10646 Universal Character Set
(UCS) standard, the set of tools for building such a
multilingual opcrating system has been enhanced.®

From an engineering pcrspective, the current
Asian localization approach of OpenvMs has been
adopted historically because of a number of factors
and constraints, such as the organization of engi-
neering resources and the initial need to bring the
capability rapidly to the market. The reengineering
techniques are gcared toward the character set
encoding schemes currently supported. The
arrangement of performing localization remotely
and independently from the original mainstream
development has meant costly reengineering and
maintenance overheads in the long term. With the
industrial trend of shipping global software simul-
taneously satisfying multiple different local market
requirements, an international product engineer-
ing approach must be taken to minimize the cost
of worldwide system engineering to dcliver a
global product. In particular, the original product
must be internationalized from the ground up, so
that no separate reengineering is needed during
localization to support a local market. In addition,
to achieve simultaneous worldwide delivery, con-
current engineering of localization needs to be
performed closely in parallel with the product
development.

References

1. T Grecnwood, “International Cultural Differ-
encesin Software,” Digital Technical Jowrnual,
vol. 5, no. 3 (Summer 1993, this issue): 8-20.

2. Code of the Japanese Grapbic Characler Set
Sor Information Interchange, JIS C 6226-1978
(Tokyo: Japancsce Standards Association,
1978).

3. Code of the Japanese Graphic Character Set
Sor Information Interchange, J1S X 0208-1983
(Tolkyo: Japanese Standards Association,
1983).

4. Code of the Japanese Graphic Character Set
Sor mjormation [nterchange, NS X 0208-1990
(Tokyo: Japanese Standards Association,
1990).

5. Code of the Supplementary Japainese
Grapbic Character Set for Information Inter-
change, JIS X 0212-1990 (Tokyo: Japanese Stan-
dards Association, 1990).

6. Code for Information Interchange, JIS X 0201-
1976 (Tokyo: Japanese Standards Association,
1976).

7. Code of Chinese Graphic Character Set for
Inforination Interchange, GB 2312-1980 (Bei-
jing: Technical Standards Publishing, 1981).

8. Standard [nterchange Code for Generally-
used Chinese Characters, CNS 11643-1986
(Taipei: National Bureau of Standards, 19806).

9. Chinese Standard Interchange Code, NS
11643-1992 (Taipei: National Bureau of Stan-
dards, 1992).

10. Code for Information [nterchange (Hangul
and Hanja), KS C 5601-1987 (Seoul: Korcan
Industrial Standards Association, 1989).

11. Information Processing—ISO 7-bit and 8-Dit
Coded Character Sets—Code Extension Tech-
nigques, 3d ed., 1SO 2022 (Geneva: Interna-
tional Organization for Standardization/
International Electrotechnical Commission,
1980).

122 T Honma, H. Baba, and K. Takizawa,
“Japanese Input Method Independent of
Applications,” Digital Technical Journcal,
vol. 5 no. 3 (Summer 1993, this issue): 97-107.

78

Vol. 5 No. 3 Sanuner 1993 Digital Technical Journal

Supporting the Chinese, Japanese, and Korean Languages in the OpenVMS Operating System

13.

14.

I5.

16.

R. Haentjens, “The Ordering of Universal
Character Strings,” Digital Technical Journal,
vol. 5, no. 3 (Summer 1993, this issue): 43-52.

R. Scheifler and J. Gettys, X Window System,
X 11, Release 5, 3d ed. (Burlington, MA: Digital
Press, Order No. EY-J802E-DP-EEB, 1992).

Introduction to Asian Language Software
Localization (Maynard, MA: Digital Equip-
ment Corporation, Order No. AD-PGOAA-TE,
December 1990).

Technical Guide to Asian Language Software
Localization (Maynard, MA: Digital Equip-

17

18.

ment Corporation, Order No. AD-PGOBA-TE,
December 1990).

Addendum to Technical Guide to Asian Lan-
guage Software Localization (Maynard, MA:
Digital Equipment Corporation, Order No.
AD-PGOCA-TE, December 1990).

Information Technology—Universal Multi-
ple-Octet Coded Character Set (UCS)—Part 1:
Architecture and Basic Multilingual Plane,
ISO/IEC 10646-1 (Geneva: International Orga-
nization for Standardization/International
Electrotechnical Commission, 1993).

Digital Technical Journal

Vol. 5 No. 3 Summer 1993

79

Hirotaka Yoshioka
Jim Melton

Character Internationalization
in Databases: A Case Study

Character internalionalization poses difficult problems for database management
systeins because they must addiess user (stored) data, source code, and metadata.
The revised (1992) standard for database language SQI is one of the first standards
to address internationalization in a significant way. DEC Rdb is one of the few
Digital products that bas a complete internationalization (Asian) implementation
that is also MIA compliant. The product is still evolving from a noninternational-
ized product to a fully internationalized one; this evolution bas taken four years
and provides an excellent example of the issues that must be resolved and the
approaches to resolving them. Rdb can serve as a ccise study for the software engi-
neering community on bow to build internationalized products.

Internationalization is the process of producing
specifications and products that operate well in
many languages and cultures.' Internationalization
has sceveral different aspects such as character set
issues, datc and time representation, and currency
representation. Most of these affect many areas of
information technology where the solutions are
reasonably similar; for example, solutions to cur-
rency representation are equally applicable to
database systems and to programming languages.
Database systems, however, are affected in several
unique ways, all of which deal with character sets.
In this paper, we focus on the issues of character set
internationalization in database management sys-
tems (DBMS) and do not address the other aspects of
date and time, currency, or locales.

To better understand the problems and solutions
associated with character internationalization of
database systems, we present an overview of the
solutions found in the SQL standard and report
a case study of implementing those solutions in a
commercial product. We first discuss the character
internationalization features supported in the
recently published revision of the standard for
Database Language SQL (ISO/IEC 9075:1992 and
ANSI X3.135-1992) .2 We then describe in some detail
the application of those features in DEC Rdb,
Digital’s relational databasc product. The interna-
tionalization of DEC Rdb scrves as a case study, or a
model, for the internationalization of Digital’s soft-
ware products in general.

Internationalization in the
SOQL Standard

Like most computer languages, SQL came into being
with the minimal set of characters required by the
language; vendors were frec to support as many, or
as few, additional characters as they perceived their
markets demanded. There was little, if any, consid-
eration given to portability beyond the English
language customer base. In 1989, after work was
completed on ISO 9075:1989 and ANSI X3.135-1989
(SQL-89), significant changes were proposed for the
next revision of the SQL database language to
address the requirement for additional character set
support. (Unfortunately, this put SQL in the van-
guard, and little support existed in the rest of the
standards community for this effort.)

Character Set Support

SQL must address a more complex set of require-
ments to support character sets than other pro-
gramming languages due to the inherent nature
of database systems. Whereas other program-
ming languages have to cover the characterset used
to encode the source program as well as the char-
acter set for data processed by the program,
database systems also have to address the character
set of the metadata used to describe the user data.
In other words, character set information must
be known within three places in a database
environment.

80

Vol. 5 No. 3 Swimner 1993 Digital Technical Journal

Character Internationalization in Databases: A Case Study

1. The user data that is stored in the database or
that is passed to the database system from the
application programs.

In SQL, data is stored in tables, which are two-
dimensional representations of data. Each record
of data is stored in a row of a table, and each field
in arow corresponds to a column of a table. All
the data in a given column ofa table has the same
data type and, for character data, the same char-
acter set.

2. The metadata stored in the database thatis used
to describe the user data and its structure.

In SQL databases, metadata is also stored in tabu-
lar form (so that it can be retrieved using the
same language that retrieves user data). The
metadata contains information about the struc-
ture of the user data. For example, it specifies
the names of the users’ tables and columns.

3. The data management source code.

Data management statements (for querying and
updating the database) have to be represented as
character strings in some character set. There
‘are three aspects of these statements that can be
independently considered. The key words of the
language (like SELECT or UPDATE) can be repre-
sented in one character set—one that contains
only the alphabetic characters and a few special
(e.g., punctuation) characters; the character
string literals that are used for comparison with
database data or that represent data to be put
into the database; and the identifiers that repre-
sent the names of database tables, columns, and
so forth.

Consider the SQL statement

SELECT EMP_ID FROM EMPLOYEES
WHERE DEPARTMENT = 'Purchasing'

In that statement, the words SELECT, FROM, and
WHERE; the equals sign; and the two apostrophes
are syntax elements of the SQL language itself.
EMP_ID, EMPLOYEES, and DEPARTMENT are names of
databasc objects. (EMPLOYEES is a table; the other
two are columns of that table.) Finally, Purchasing
is the contents of a character string literal used to
compare against data stored in the DEPARTMENT
column.

That seems straightforward enough, but what if
the database had been designed and stored in Japan
so that the names of the table and its columns were

in Japanese kanji characters? Furthermore, what if
the name of some specific department was actually
expressed in Hebrew (because of a business rela-
tionship)? That means that our database would have
to be able to handle data in Hebrew characters,
metadata in Japanese characters, and source code
using Latin characters!

One might reasonably ask whether this level of
functionality is really required by the marketplace.
The original impetus for the character internation-
alization of the SQL standard was provided by pro-
posals arising from the European and Japanese
standards participants. However, considerable
(and enthusiastic) encouragement came from the
X/Open Company, Ltd. and from the Nippon
Telephone and Telegraph/Multivendor Integration
Architecture (NTT/MIA) project, where this degree
of mixing was a firm requirement.?

The situation is even more complex than this
example indicates. In general, application pro-
grams must be able to access databases even though
the data is in a different character encoding than
the application code! Consider a database contain-
ing ASCII data and an application program written
in extended binary coded decimal interchange
code (EBCDIC) for an IBM system, and then extend
that image to a database containing data encoded
using the Japanese extended UNIX code (EUC)
encoding and an application program written in
ISO 2022 form. The program must still be able to
access the data, yet the character representations
(of the same characters) are entirely different.
Although the problem is relatively straightforward
to resolve for local databases (that is, databases
residing on the same computer as the application),
itis extremely difficult for the most general case of
heterogeneous distributed database environments.

Addressing Three Issues

To support internationalization aspects, three dis-
tinct issues have to be addressed: data representa-
tion, data comparison, and multiple character set
support.

Data Representation How is the data (including
metadata and source code) actually represented?
Theanswer to this question must address the actual
repertoire of characters used. (A character reper-
toire is a collection of characters used or available
for some particular purpose.) It must also address
the form-of-usc of the character strings. that is, the
ways that characters are strung togcther into char-
acter strings; alternatives include fixed number of

Digital Tecbnical Journal Vol. 5 No.3 Summer 1993

81

Product Internationalization

bits per character, like 8-bit characters, or variable
number of bits per character, like 1ISO 2022 or ASN.1.
Finally, the question must deal with the character
encoding (for example, ASCII or EBCDIC). The com-
bination of these attributes is called a character sct
in the SQL standard.

Itis also possible for the data to be represented in
diffcrent ways within the database and in the appli-
cation program. A column definition that specifies
a character set would look like this

NAME CHARACTER VARYING (6)
CHARACTER SET IS KANJI,

or
NAME NATIONAL CHARACTER VARYING (6),

(which specifies the character set defined by the
product to the national character set), while a state-
ment that inserts data into that column might be

INSERT INTO EMPS(NAME)
VALUES (..., _KANJI'TE¥', ...);

If the name of the column were expressed in
hiragana, then the user could write

INSERT INTO EMPS(_HIRAGANA 27% ¥)
VALUES (..., _KANJI'&ES', ...);

Data Comparison How is data to be compared?
All character data has to be¢ compared using a colla-
tion (the rules for comparing character strings).
Most computer systems use the binary values of
each character to compare character data 1 byte at
a time. This method, which uses common charac-
ter sets like ASCII or EBCDIC, generally does not pro-
vide meaningful results even in English. It provides
far less meaningful results for languages like French,
Danish, or Thai.

Instead, rules have to be developed for language-
specific collations, and these rules have to resolve
the problems of mixing character scts and colla-
tions within SQL expressions.

Applications can choose to force a specific colla-
tion to be used for comparisons if the default col-
lation is inappropriate:

WHERE :hostvar = NAME COLLATE JAPANESE

Multiple Character Set Support How is the use of
multiple character sets handled? The most power-
ful aspect of SQL is its ability to combine data from
multiple tables in a single expression. What if the
data in those tables is represented in different char-
acter sets? Rules have to be devised to specify the
results for combining such tables with the rela-
tional join or union opcrations.

What if the character sets of data in the source
program are different from thosc in the database?
Rules must exist to provide the ability for programs
to query and modify databases with different char-
acter sets.

Components of Character
Internationalization

SQL recognizes four components of character inter-
nationalization: character sets, collations, transla-
tions, and conversions. Character sets are described
above; they comprise a character repertoire, a form-
of-use, and an encoding of the characters. Colla-
tions are also described above; they specify the
rules for comparing character strings expressed in
a given character repertoire.

Translations provide a way to translate character
strings from one character repertoire to a different
(or potentially the same) repertoire. For example,
one could define a translation to convert the alpha-
betic letters in a character string to all uppercase
letters; a different translation might transliterate
Japanese hiragana characters to Latin characters.
By comparison, conversions allow one to convert a
character string in one form-of-use (say, two octets
per character) into another (for example, com-
pound text, a form-of-use defined in the X Window
System).

SQL provides ways for users to specify character
s¢ts, collations, and translations based on standards
and onvendor-provided facilitics. The current draft
of the next version of the SQL standard (SQL3) also
allows users to define their own character sets, col-
lations, and translations using syntax provided in
the standard.?5 If these facilities come to exist in
other places, however, they will be removed from
the SQL standard (see below). SQL does not provide
any way for users to specify their own conversions;
only vendor-provided conversions can be used.

Interfacing with Application Programs
Application programs are typically written in a
third-generation language (3GlL) such as Fortran,
COBOL, or C, with SQL statements either embedded
in the application code or invoked in SQL-only pro-
cedures by means of CALL-type statements.® As a
result, the interface between the database system
and 3GL programs presents an especially difficult
problem in SQL’s internationalization facilities.
Figure 1 illustrates the procedure to invoke SQL
from C; Figure 2 shows SQL as it is invoked from C;
and Figure 3 shows SQL schema.

82

Vol.5 No. 3 Summer 1993 Digital Technical Journal

Character Internationalization in Databases: A Case Study

main()
{
#Hinclude <stdio.h>
Hinclude <stdlib.h>
#include "SQL92.h" /* Interface to SQL-92 */

static sqlstate charl63];

static employee_number charl(73];
static employee_name wchar_tL[261];
static employee_contact char[133];

/* Assume some code here to produce an appropriate
employee number value */

LOCATE_CONTACT (employee_number, employee_name,
employee_contact, sqlstate);

/* Assume more code here to use the result */

Figure 1 Invoking SQL from C

MODULE i18n_demo NAMES ARE Latin1
LANGUAGE C
SCHEMA personnel AUTHORIZATION management

PROCEDURE locate_contact

(zemp_num CHARACTER (6) CHARACTER SET Ascii,
emp_name CHARACTER VARYING (25) CHARACTER SET Unicode,
contact_name CHARACTER VARYING (6) CHARACTER SET Shift_jis,
SQLSTATE)

SELECT name, contact_in_japan
INTO :emp_name, :contact_name
FROM personnel.employees
WHERE emp_id = :emp_num;

Figure 2 SQL Invoked from C

CREATE SCHEMA personnel AUTHORIZATION management
DEFAULT CHARACTER SET Unicode

CREATE TABLE employees (

emp_id CHARACTER (6) CHARACTER SET Ascii,

name CHARACTER VARYING (25),

department CHARACTER (10) CHARACTER SET Latin1,

salary DECIMAL (8,2),

contact_in_japan CHARACTER VARYING (6) CHARACTER SET Shift_jis,

o
PRIMARY KEY (emp_id))

Figure 3 SQL Schema

Digital Technical Journal Vol.5 No.3 Sunumer 1993 83

Product Internationalization

In these figures, all the metadata values (that is,
the identifiers) are expressed in Latin characters;
this resolves the data representation issue. The
reader should compare the character sets of the
data items in the EMPLOYEES table and the corre-
sponding parameters in the SQL procedure. The dlif-
ficulties arise when trying to achieve a corrclation
between the parameters of the SQL procedurc and
the arguments in the C statement that invokes that
procedure.

The C variable employee_number corresponds
to the SQL parameter :emp_num; the C data type
char is a good match for CHARACTER SET ASCII. The
C variable employee name corresponds to the SQL
parameter :emp_name; the C data type wchar_t
is chosen by many vendors to match CHARACTER
SET Unicode. However, CHARACTER SET Shift_jis is
more complicated; there is no way to know exactly
how many bytes the character string will occupy
because each character can be 1 or 2 bytes in
length. Therefore, we have allocated a C char that
permits up to 13 bytes. Of course, the C run-time
library would have to include support for ASCII
data, Unicode data, and Shift JIS data.

Typically, 3GL languages have little or no support
for character sets beyond their defaults. Conse-
quently, when transferring data from an interna-
tionalized SQL database into a noninternationalized
application program, many of the benefits are lost.
Happily, that situation is changing rapidly. Program-
ming language C is adcling facilities for handling
additional character sets, and the ISO standards
group responsible for programming languages
(ISO/IEC JTC1/SC22) is investigating how to add
those capabilities to other languages as well.

The most difficult issue to resolve concerns the
differences in specific character sets (especially
form-of-use) supported by SQL implementations
and 3GL implementations. As with other issues,
purely local situations are easy to resolve because
a DBMS and a compiler provided by the same vendor
are likely to be compatible. Distributed environ-
ments, especially multivendor ones, are more com-
plicated. SQL has provided one solution: it permits
the user to write SQL code that translates and
converts the data into the form required by the
application program as long as the appropriate con-
versions and translations are available for use by
SQL. Of course, once the data has been transferred
into the application program, the question
remains: What facilities does it have to manipulate
that data?

Remote Database Access Issue

As mentioned, a distributed environment presents
significant difficulties for database internationaliza-
tion. A simple remote database access scenario
illustrates these problems. If an application pro-
gram must access some (arbitrary) database via a
remote (e.g., network) connection, then the remote
database acccess facility must be able to deal with all
the character sets that the application and database
use together; it may also have to deal with differ-
ences in available character sets. (Sce Figure 4.)

An 1SO standard for remote database access
(ISO/1EC 9579-1 and 9579-2) uses the ASN.1 notation
and encoding for transporting SQL commands and
database data across remote connections.” ASN.1
notation, as presently standardized, provides no
way to use various character sets in general
Recently work has begun to resolve this problem.
The revised standard must allow a character set to
be specified uniquely by means of a name or identi-
fier that both ends of the connection can unam-
biguously interpret in the same way. The individual
characters in ASN.1 character strings must be simi-
larly identifiable in a unique way.

This problem has not yet been resolved in the
standards community, partly because several
groups have to coordinate their efforts and produce
compatible solutions.

Hope for the Future

In the past, programming languages, database
systems, networks, and other components of
information management environments had to deal
with character sets in very awkward ways or use
vendor-provided defaults. The result has been an
incredible mess of 7-bit (ASCII, for example) and
8-bit (Latin-1, for example) code sets, PC code
pages, and even national variants to all of these. The
number of code variants has made it very difficult
for a database user to write an application that can
be executed on any database system using recom-
pilation only. Collectively, they make too many
assumptions about the character set of all character
data.

APPLICATION + DATABASE
PROGRAM SYSTEM

REQUIRES UNICODE

SUPPORTS LATIN1

Figure 4 Remote Database Access

84

Vol. 5 No. 3 Swmmer 1993 Digital Technical Journal

Character Internationalization in Databases: A Case Study

The future outlook for database internationaliza-
tion was improved dramatically by the recent adop-
tion of ISO 10646, Universal Multiple-Octet Coded
Character Set (UCS) and an industry counterpart,
Unicode .® The hope is that Unicode will serve as a
“16-bit ASCII” for the future and that all new systems
will be built to use it as the default character set.

Of course, it will be years—if not decades—
before all installed computer hardware and soft-
ware use Unicode. Consequently, provisions have
to be made to support existing character sets (as
SQL-92 has cdone) and the eccentricities of existing
hardware and software (like networks and file sys-
tems). As a result, several different representations
of Unicode have been developed that permit trans-
mission of its 16-bit characters across networks that
are intolerant of the high-order bit of bytes (the
eighth bit) and that permit Unicode data to be
stored in file systems that deal poorly with all the
bit patterns it permits (such as octets with the
value zero).

In the past few years, many alternative character
representations have been considered, proposed,
and implemented. For example, I1SO 2022 specifies
how various character sets can be combined in
character strings with escape sequences and gives
instructions on switching between them.? Similarly,
ASN.1-like structures, which provide fully tagged
text, have been used by some vendors and in some
standards, e.g., Open Document Architecture."
None of these representations has gained total
acceptance. Database implementors perceive diffi-
culties with a stateful model and with the potential
performance impact of having a varying number of
bits or octets for each character. UCS and Unicode
appear to be likely to gain wide acceptance in the
database arena and in other areas.

Future Work for the SQL Standard

One should not conclude that the job is done, that
thereis nothing left to work on. Instead, a great deal
of work remains before the task of providing full
character set internationalization for database sys-
tems is completed.

At present, the working draft for SQL3 contains
syntax that would allow users to define their own
character sets, collations, and translations using a
nonprocedural language.+5 In general, the SQL stan-
dards groups believe that it is inappropriate for a
database standard to specify language for such
widely needed facilities. Consequently, as soon as
the other responsible standards bodies provide

a language for these specifications, it is probable
that this capability will be withdrawn from the SQL3
specification. This decision would completely align
the SQL character internationalization capabilities
with the rest of the international standards efforts.

After other standards for these tasks are in place,
however, the remote data access (RDA) standard
will have to be evolved to take advantage of them.
RDA must be able to negotiate the use of character
sets for database applications and to transport the
information between database clients and servers.
In order for RDA to be able to do this, the ASN.1 stan-
dard will have to support arbitrary named character
sets and characters from those sets.

As aresult, relevant standards bodies will need to
provide (1) names for all standardized character
sets and (2) the ability for vendors to register their
own character sets in a way that allows them to
be uniquely referenced where needed. Still other
bodies will need to provide language and services
for defining collations and translations. Finally,
registries will need to be established for vendor-
supplied collations, translations, and conversions.

Of course, the greatest task will be to provide
complete support for all these facilities throughout
the information processing environment: operat-
ing systems, communication links, CPUs, printers,
keyboards, windowing systems, file systems, and so
forth. Healthy starts have been made on some of
these (such as the X Window System), but much
work remains to be done.

DEC Rdb: An Internationalization
Case Study

DEC Rdb (Rdb/VMS) is one of the few Digital prod-
ucts that has an internationalized implementation
that is also compliant with the multivendor inte-
gration architecture (MIA).'t2 Its evolution from a
noninternationalized product to a fully internation-
alized one has taken four years to achieve. The
design and development of Rclb can serve as a case
study for software engineers on how to build inter-
nationalized products. In this haif of our paper, we
present the history of the reengineering process.
Then we describe some difficulties with the reengi-
neering process and our work to overcome them.
Finally, we evaluate the result.

Localization and Reengineering

The localization process comprises all activities
required to create a product variant of an applica-
tion thatis suitable for use by some set of users with

Digital Technical Journal Vol.5 No. 3 Swnmer 1993

85

Product Internationalization

similar preferences on a particular platform.
Reengineering is the process of developing the set
of source code changes and new components
required to perform localization. DEC Rdb had to be
reengineered to support several capabilities that
are mandatory in Japan and other Asian countries.

Our experience has shown that the rcengi-
neering process is very expensive and should be
avoided. If the original product was not designed
for internationalization or localization, however,
reengineering is a necessary (and unavoidable)
evil. Typically, reengineering is required; so we
decided to develop a technology that would avoid
reengineering and to build a truly internationalized
product.

Most engineering groups follow the old assump-
tions about product design. These assumptions
include the following:

1. The character setis implicitly ASCII.
2. Each characteris encoded in 7 bits.

3. The character count equals the byte count and
equals the display width in columns.

4. The maximum number of distinct characters
is 128.

5. The collating sequence is ASCII binary order.
6. The messages are in English.

7. The character set of the source code is the same
asitisatrun time.

8. The file code (the code on the disk) is the same
asthe process code (the code in memory).

Different user environments require different
product capabilities. Japanese kanji characters are
encoded using 2 bytes per character. If a product
assumes that the character set is 7-bit ASCII, that
product must be reengineered before it can be used
inJapan. On the otherhand, internationalized prod-
ucts can operate in different environments because
they provide the capabilities to meet global require-
ments. These capabilities include the following:

1. Multiple character sets ensure that the customer’s
needs are met.

2. Each character is encoded using at least 8 bits.

3. The character count does not equal the byte
count or the display width.

4. The maximum number of unique characters is
unknown.

5. The collating sequence mects the customer's
needs.

6. The messages are in the language the customer
uses.

7. The character set of the source code is not nec-
essarily the same as itis at run time.

8. The file code is not necessarily the same as the
process code.

The reengineering process has two significant
drawbacks: (1) the high cost of reengineering and
(2) the time lag between shipping the product to
the customer in the United States and shipping
to the customerin Japan. The time lag can be reduced
but cannot be eliminated as long as we reengineer
the original product. If a local product is released
simultaneously with the original, both Digital and
the customers will benefit significantly.

In the next section, we follow the DEC Rdb prod-
uct through the reengineering process required to
produce the Japanesc Rdb version 3.0.

Reengineering Process

DEC Rdb version 3.0 was a major release and conse-
quently was very important to the Japanese market.
The International System Engineering Group was
asked to release the Japanese version by the end of
1988, which was within six months of the date that
it was first shipped to customers in the United
States.

Japanese and Asian Language
Requirements to VAX Rdb/VMS

Japanese and Asian language requirements apply to
DEC Rdb and other products as well. The require-
ments common to Asian languages are 2-byte char-
acter handling, local language editor support, and
message and help file translation.

Japanese script uses a 2-byte code; therefore
2-byte character handling is mandatory. For exam-
ple, character searches must be performed on 2-byte
boundaries and not on 1-byte boundaries. If a string
has the hexadecimal value ‘A1A2A3A4’, then its sub-
strings are ‘A1A2’ and ‘A3A4’. ‘A2A3" must not be
matched in the string.

Digital’s Asian text editors, e.g., the Japanese text
processing utility (JTPU) and Hanzi TPU (for China),
must be supported as well as the original TPU,
the standard EDT editor, and the language-sensitive
editor.

86

Vol.5 No.3 Swnmer 1993 Digital Technical Journal

Character [nternationalization in Databases: A Case Study

Messages, help files, and documentation must all
be translated into local languages.

The country-specific requirements include sup-
port for a Japanese input method. Kana-to-Ranji
input methods must be supported in command
lines. In addition, 4-byte character handling is
required for Taiwan (Hanyu). Finally, NTT/MIA SQL
features must be added for Japan.

Since there are not many requirements, one
might conclude that the reengineering task is not
difficult. However, reengineering is complicated,
expensive, and time consuming; and thus should be
avoided.

Reengineering Japanese Rdb Version 3.x

A database management system like DEC Rdb is very
complex. The source code is more than 810,000
lines; the build procedures are complicated; and a
mere subset of the test systems consumes more
than one gigabyte of disk space. Consequently, the
reengineering process is complicated. The process
encompasses more than modifying the source
code. Instead, a number of distinct steps must be
accomplished:

1. Source code acquisition

2. Build environment acquisition
3. Test system acquisition
4

. Creation of the development environment for
the Japanese version

N

. Study of the original code
6. Modification of the source code

7. Test of the results, including the new Japanese
functionality and aregression test of the original
functionality

8. Maintenance of the reengineered system

Figure 5 shows the development cost in person-
weeks for each of the eight steps. Two engineers
stabilized the development environment—com-
pile, link/build, and run—for version 3.0 of DEC
Rdb in approximately four months. It is likely that
the process required four months because it was
our first development work on DEC Rdb. In addi-
tion, approximately two months were needed to be
able to run the test system. It was not an easy task.

Each step had to be repeated for each version of
the original. (Project time decreased a little.) Every
version required this reengineering, even if no new
functionality was introduced. The cost of building

BUILD
ENVIRONMENT

SOURCE CODE ACQUISITION

ACQUISITION

TEST SYSTEM
ACQUISITION

CREATION OF THE

MAINTENANCE OF THE
REENGINEERED

SYSTEM DEVELOPMENT

ENVIRONMENT FOR
TEST OF THE THE JAPANESE
RESULTS VERSION

STUDY OF THE
ORIGINAL CODE

MODIFICATION OF
THE SOURCE CODE

Note: Each segment of the chartrepresents the project time (person-weeks)
required to complete each step in the reengineering process.

Figure 5 Reengineering Process for
Japanese Rdb Version 3.x

the environment became cheaper after the first
time. The other steps such as modifying the source
code, testing, and maintenance remained at almost
the same cost.

Reengineering Metric

We modified about 10 percent of the original
source modules during reengineering. Most of the
modification occurred in the front end, e.g., SQL
and RDML (relational database manipulation lan-
guage). The engine parts, the relational database
management system (RDMS), and KODA (the kernel
of the data access, the lowest layer of the physical
data access) were not modified very much. Table 1
gives the complete reengineering metrics.

(modified modules +

new created modules)
(original + modified +
new created modules)

Reengineering metric =

Coengineering Process:

No More Reengineering

To reduce and eliminate reengineering, we have
taken a conservative, evolutionary approach rather
than a revolutionary one. We used only proven
technologies. The evolution can be divided into
three phases:

1. Joint Development with Hong Kong. Our devel-
opment goal was to merge Japanese, Chinese
(People’s Republic of China and Taiwan), and
Korean versions into one common Asian Rdb
source code.

Digital Technical Journal Vol.5 No. 3 Sunmmer 1993

87

Product Internationalization

Table 1 Reengineering Metrics

Reengineering Modified Total Size in
Facility Metric Modules Modules Kilo Lines
SQL 6.3% 8 128 226.0
RDML 11.7% 1 94 188.3
RDMS 31% 4 127 154.0
KODA 0.6% 1 157 109.8
RMU 0.0% 0 M 80.5
Dispatcher 0.0% 0 30 60.9
Notes:

RMU is the Rdb management utility; it is used to monitor, back up, restore, and display DEC Rdb databases.
The reengineering metric for JCOBOL (a Digital COBOL compiler sold in Japan) is 47/258 = 18.2%; the size is 225.0 kilo lines.

2. Coengineering Phase I. Our goal was to merge
Asian common Rdb into the original master
sources for version 4.0. The merger of J-Rdb and
Chinese-Rdb into Rdb would eliminate reengi-
neering and create one common executable
image.

3. Coengineering Phase II. In the final phase, our
goalwas to develop the internationalized product
for version 4.2 by adding more internationaliza-
tion functionality, SQL-92 support, MIA support
for one common executable, and multiple char-
acter set support.

Coengineering is a development process in
which local engineers temporarily relocate to the
Central Engincering Group in the United States to
develop the original product jointly with Central
Engineering. The engineers from a non-English-
speaking country provide the user requirements
and the cultural-dependent technology (e.g., 2-byte
processing and input methods), and Central
Engineering provides the detailed knowledge of the
product. This process promotes good experiences
for both parties. For example, the local engineers
learn the corporate process, and the corporate
engineers have more dedicated time to understand
the requirements and difficulties of local product
necds, what internationalization means, and how to
build the internationalized product. Coengineering
minimizes the risks associated with building inter-
nationalized products.

Asian Joint Development

Our goal for the Asian joint development process
was to provide a common Asian source code for
Japan, People’s Republic of China (PRC), Taiwan,
and Korea. One common source code would

reduce reengineering costs in Asia. To achieve our
goal, we devised several source code conventions.
The purposes of the conventions were

1. To identify the module for each Asian version by
its file name

2. To make it possible to create any one of the Asian
versions (for Japan, the PRC, Taiwan, or Korea) or
the English version from the common source
codes, using conditional compilation methods

3. To identify the portions of codes that were mod-
ified for the Japanese version

4. To facilitate an engineer in Hong Kong who is
developing versions for the PRC, Taiwan, and
Korea

We developed the Japanese Rdb version 3.0 in
Japan. The files were transferred to Hong Kong to
develop versions for the PRC, Taiwan, and Korea.
The modified versions were sent back to Japan to
be merged into one common Asian source file.

Since we had one common Asian source file,
reengineering in Hong Kong was reduced. Reengi-
neering in Japan, however, was still necessary. We
used compilation flags to create four country ver-
sions, that is, we had four sets of executable images.
As a result, we needed to maintain four sets of
development environments (source codes, tests,
and so forth). We wanted to further simplify the
process and therefore entered the coengineering
phases.

Coengineering Phase 1

The integration of Asian DEC Rdb into the base DEC
Rdb product took place in two phases. In the first
phase, we integrated the Asian code modifications
into the source modules of the base product.

88

Vol.5 No.3 Swmmer 1993 Digital Technical Journal

Character Internationalization in Databases: A Case Study

Consequently, the specific Asian versions of the
product can be attained by definition and then
translation of a logical name (a sort of environment
variable). No conditional compilation is necessary.
In all releases of DEC Rdb version 3.x, source
modules of the base product were conditionally
compiled for each Asian version, which created
separate object files and images.
The process steps in this phase were

1. Merge the source code
a. Create one executable image
b. Remove Japanese/Asian VMS dependency
c. Remove kana-to-kanji input method

2. Transfer the J-Rdb/C-Rdb tests

Source Code Merge (Rdb Version 4.0) To create
a single set of images, we removed the compilation
flags and introduced a new way of using the Asian-
specific source code. We chose to do this by using
a run-time logical name; the behavior of DEC Rdb
changes based on the translation of that logical
name.

We removed the Japanese/Asian VMS dependen-
cies by using Rdb code instead of JSYSHR calls.
(JSYSHR is the name given to the OpenVMS system
services in Japanese VMS.)

We removed the kana-to-kanji input method: By
calling LIB$FIND_IMAGE_SYMBOL (an OpenVMS sys-
tem service to dynamically link library routines) to
invoke an input method, the image need not be
linked with JVMS; even an end user can replace an
input method.

Run-time Checking We removed the compilation
flags, but introduced a new logical name, the
RDB$CHARACTER_SET logical, to switch the behavior
of the product. For example, ifRDB$CHARACTER_SET
translates to DEC_KANJI, then the symbol

ARDB_JAPAN_VARIANT is set true. This would indi-
cate that all text would be treated as if it were
encoded in DEC_KANJI. The code would behave as if
it were DEC J-Rdb. This translation must occur at all
levels of the code, including theuserinterface, DEC
Rdb Executive, and KODA.

Since DEC Rdb checks the value of the logical
name at run time, we do not need the compilation
flags; that is, we can have one set of executable
images.

Figure 6 shows the values that are valid for the
RDB$CHARACTER_SET logical.

The DEC J-Rdb source contains code fragments
similar to those shown in Figure 7, which were
taken from RDOEDIT.B32 (written in the BLISS pro-
gramming language). This code was changed to use
a run-time flag set as a result of translation of the
logical RDB$CHARACTER_SET, as shown in Figure 8.

Remove Japanese VMS (JVMS) Dependency The
Japanese version of DEC Rdb version 3.x used
the JVMS run-time library (JSY routines). The JSY
routines are Japanese-specific character-handling
routines such as “get one kanji character” and
“read one kanji character” The library is available
only on JVMS; native VMS does not have it, so DEC
Rdb cannot use it. To remove the JVMS dependency,
we modified all routines that called JSY routines so
that they contain their own code to implement the
same functions.

The J-Rdb/VMS source contains code fragments
similar to the ones shown in Figure 9. The code was
changed to remove references to the JSY routines as
shown in Figure 10. This example does not use JSY
routines like JSY$CH_SIZE or JSY$CH_RCHAR.

Remove Kana-to-kanji Input Method The depen-
dency on JVMS can be eliminated by making the
2-byte text handling independent of JSY routines,
but the input method still depends on JSYSHR for

{ DEC_KANJI |

$ SET LANGUAGE JAPANESE !

$ DEFINE RDB$SCHARACTER_SET
DEC_HANZI

DEC_KANJI Japanese
DEC_HANZI Chinese
DEC_HANGUL Korean
DEC_HANYU Taiwan

If you use Japanese VMS

DEC_HANGUL | DEC_HANYU 1}

Figure 6

RDBSCHARACTER_SET Logical

Digital Technical Journal Vol.5 No.3 Summer 1993

89

Product Internationalization

! This example switches the default TPU shareable
! image (TPUSHR). If the Japanese variant is set,
! then the default editor should be JTPUSHR.

]

%#1F $ARDB_JAPAN_VARIANT

%THEN
TPU_IMAGE_NAME = (IF (.TPU_NAME EQL 0)
THEN $DESCRIPTOR ('TPUSHR')
ELSE $DESCRIPTOR ('JTPUSHR'));

ZELSE

TPU_IMAGE_NAME = $DESCRIPTOR ('TPUSHR');

Figure 7 Compilation Flag in DEC Rdb Version 3

' This code could be translated to the following
' which might contain redundant code but should work:
I

IF.ARDB_JAPAN_VARIANT ! If ARDB_JAPAN_VARIANT flag is true,

THEN ! then Rdb/VMS should use the J-Rdb/VMS behavior.
TPU_IMAGE_NAME = (IF (.TPU_NAME EQL 0)
THEN $DESCRIPTOR ('TPUSHR"')
ELSE $DESCRIPTOR ('JTPUSHR"'))

ELSE

TPU_IMAGE_NAME = S$DESCRIPTOR ('TPUSHR');

Figure 8 Run-time Checking in Version 4

%1F $ARDB_COMMON_VARIANT ZTHEN
ik
! ARDB: Advance character pointer.

I

! JSY$CH_SIZE counts the size of the character.

' If it is ASCII, return 1,

' If it is Kanji, return 2.

! CP is a character pointer

CP = CH$PLUSC .CP, JSY$CH_SIZE(C JSY$SCH_RCHARC .CP)));
| -

%ZELSE

CP = CH$PLUSC .CP, 1);

%F1 '$ARDB_COMMON_VARIANT

Figure9 Using JSY Routines in DEC Rdb Version 3

kana-to-kanji conversions. To remove this depen- We created a shareable image for the input
dency, we developed a new method to invoke the method, using the SYS$LA GUAGE logical to switch
kana-to-kanji conversion routine. Figure 11 shows to the Japanese input method or to other Asian
the new input method. language input methods. Since an input method is

Since LIB$FIND_IMAGE_SYMBOL is used to find the a shareable image, a user can switch input methods
Japanese input at run time, JSYSHR does not need to by redefining the logical name to identify the appro-
be referenced by the SQL$ executable image. priate image.

90 Vol.5 No.3 Summer 1993 Digital Technical Journal

Character [nternationalization in Databases.: A Case Study

Ihkkkkkkkkkhkkxkxx**ryn time checking

IF $RDMS$ARDB_COMMON THEN
'+
! ARDB: Advance character pointer.

If the code value of CP is greater than 128,
then it means the first byte of Kanji, so
advance 2, else it is ASCII, advance 1.

P = CH$PLUSC .CP, (IF CH$RCHAR(.CP) GEQ 128
THEN
2
ELSE

&
ELSE

CP = CH$PLUSC .CP, 1
FI '$RDMS$ARDB_COMMON

1)),

where $RDMS3ARDB_COMMON is a macro.

Figure 10 Removing JSY Routines in Version 4

SQL$.EXE

+— + —

(default) -> SMGSREAD_COMPOSED_LINE

(if Japanese Input is selected)
LIBSFIND_IMAGE_SYMBOL

+—————- > (shareable for Japanese Input).EXE

Figure 11 Input Method for Version 4. Kana-to-kanji Conversion (Japanese Input) Shareable Image

Note that the input method is a mechanism to
convert alphabetic characters to kanji characters.
It is necessary to permit input of ideographic char-
acters, i.e., kanji, through the keyboard. Asian local
language groups would be responsible for creating
a similar shareable image for their specific input
methods.

Transfer DEC J-Rdb and DEC C-Rdb Tests To
ensure the functionality of Japanese/Asian DEC
Rdb, we transferred the tests into the original devel-
opment environment. We integrated not only the
source modules but also all the tests. Consequently,
the Asian 2-byte processing capabilities have now
been tested in the United States.

Kit Components and J-Rdb [nstallation Procedure
The original DEC Rdb version 4.0 has the basic capa-

bility to perform 2-byte processing. Japanese and
other Asian language components must be pro-
vided for local country variants. The localization kit
for Japan contains Japanese documentation such as
messages and help files, an input method, and the
J-Rdb license management facility (LMF). As a result,
we need not reengineer the original product any
more. Theinstallation procedure is also simplified.
Users worldwide merely install DEC Rdb and then
install a localization kit if it is needed.

The localization kits contain only the user inter-
faces, so no reengineering is necessary; however,
translation of documentation, message files, help
files, and so on to local languages still remains nec-
essary. Nonetheless, the reengineering process is
eliminated.

In version 4.0, we achieved the main goal, to inte-
grate the Asian source code into the base product

Digital Technical Journal Vol.5 No.3 Summer 1993

91

Product Internationalization

to avoid reengineering. The Japanese localization
kit was released with a delay of about one month
after the US. version (versus a five-month delay
in version 3.0). The one-month delay between
releases is among the best in the world for such
a complex product.

Coengineering Phase 11

In the second phase of integration, we redesigned
the work done in Phase I and developed a multi-
lingual version of Rdb/VMS.

In version 4.0, we introduced the logical name
RDB$CHARACTER_SET to integrate Asian function-
ality into DEC Rdb. In Phase II, we created an inter-
nationalized version of DEC Rdb. We retained the
one set of images and introduced new syntax and
semantics. We also provided support for the NTT/
MIA requirements.

The following are the highlights of the release.
The details are given in the Appendix.

= NTT/MIA SQL Requirements
- NATIONAL CHARACTER data type
- N’national literal
- Kuanjiobject names

= Changes/extensions to the original DEC Rdb
- Add acharacter set attribute
- Multiple character set support

= Dependencies upon other products

- CDD/Plus, CDD/Repository: Add a character
set attribute

- Programming languages: COBOL, PIC, N

Since we are no longer reengineering the original
product, we now have time to develop the new
functionality that is required by NTT/MIA. The new
syntax and semantics of the character-set handling
are conformant with the new SQL-92 standard.
As far as we know, no competitor has this level of
functionality.

If we had to continue to reengineer the original,
we would not have had enough resources to con-
tinue development of important new functionali-
ties. Coengineering not only reduces development
cost but also improves competitiveness.

We introduced the RDB$CHARACTER_SET logical
during Phase I to switch the character set being
used. Since the granularity of character set support
is on a process basis, however, a user cannot mix
different character sets in a given process. In Phase
II, we implemented the CHARACTER SET clause,

defined in SQL-92, to allow multiple character sets
in a table.

Database Character Sets The database character
sets are the character sets specified for the attached
database. Database character set attributes are
default, identifier, and national.

SQL uses the database default character set for
two elements: (1) database columns with a charac-
ter data type (CHARACTER and CHARACTER VARY-
ING) that do not explicitly specify a character set
and (2) parameters that are not qualified by a char-
acter set. The user can specify the database default
character set by using the DEFAULT CHARACTER SET
clause for CREATE DATABASE.

SQL uses the identifier character set for database
object names such as table names and column
names. The user can specify the identifier character
set for a database by using the IDENTIFIER CHARAC-
TER SET clause for CREATE DATABASE.

SQL uses the national character set for the follow-
ing elements.

= For all columns and domains with the data type
NATIONAL CHARACTER or NATIONAL CHARACTER
VARYING and for the NATIONAL CHARACTER data
type in a CAST function

= In SQL module language, all parameters with the
data type NATIONAL CHARACTER or NATIONAL
CHARACTER VARYING

= For all character-string literals qualified by the
national character set, that is, the literal is pre-
ceded by the letter N and a single quote (N”)

The user can specify the national character set
for a database by using the NATIONAL CHARACTER
SET clause for CREATE DATABASE.

The following example shows the DEFAULT
CHARACTER SET, IDENTIFIER CHARACTER SET, and
NATIONAL CHARACTER SET clauses for CREATE
DATABASE.

CREATE DATABASE FILENAME ENVIRONMENT
DEFAULT CHARACTER SET DEC_KANJI
NATIONAL CHARACTER SET KANJI
IDENTIFIER CHARACTER SET DEC_KANJI;

CREATE DOMAIN DEC_KANJI_DOM CHAR(8);
CREATE DOMAIN KANJI_DOM NCHAR(6);

DEC_KANJI_DOM is a text data type with
DEC_KANJI character set, and KANJI_DOM is a text
data type with KANJl character set. The database
default character set is DEC_KAN]I and the national
character set is KANJI.

92

Vol. 5 No. 3 Summer 1993 Digital Technical Journal

Character Internationalization in Dalabases: A Case Study

As previously stated, the user can choose the
default and identifier character sets of a database.
Consequently, users can have both text columns
that have character sets other than 7-bit ASCII and
national character object names (i.e., kanji names,
Chinese names, and so on).

In Rdb version 3.1 and prior versions, the charac-
ter set was ASCIl and could not be changed. In Rdb
version 4.0, users could change character sets
by defining the RDBSCHARACTER_SET logical. It is
important to note that the logical name is a volatile
attribute; that is, the user must remember the char-
acter set being used in the database in his process.
On the other hand, the database character sets
introduced in version 4.2 are persistent attributes,
so the user is less likely to become confused about
the character set in use.

Session Character Sets The session character sets
are used during a session or during the execution of
procedures in a module. The session character set
has four attributes: literal, default, identifier, and
national.

SQL uses the literal character set for unqualified
character string literals. Users can specify the
literal character set only for a session or a module
by using the SET LITERAL CHARACTER SET statement
or the LITERAL CHARACTER SET clause of the SQL
module header, DECLARE MODULE statement, or
DECLARE ALIAS statement.

Session character sets are bound to modules or
an interactive SQL session, and database character
sets are attributes of a database. For example, a user
can change the session character sets for each SQL
session; therefore, the user can attach to a database
that has DEC_MCS names and then attach to a new
database that has DEC_HANZI names.

Octet Length and Character Length In DEC Rdb
version 4.1 and prior versions, all string lengths
were specified in octets. In other words, the
numeric values specified for the character-column
length or the start-off set and substring length
within a substring expression were considered to
be octet lengths or offsets.

DEC Rub version 4.2 supports character sets of
mixed-octet and fixed-octet form-of-use. For this
reason and to allow an upgrade path to SQL-92
(where lengths and offsets are specified in charac-
ters rather than octets), users are allowed to specify
lengths and offsets in terms of characters. To
change the default string-length unit from octet to
characters, users may invoke the following:

SET CHARACTER LENGTH 'CHARACTERS';

Multiple Character Sets Examples Users can cre-
ate a domain using a character set other than the
database default or national character sets with the
following sequence:

CREATE DOMAIN DEC_KOREA_DOM CHAR(6)
CHARACTER SET DEC_KOREAN;

CREATE TABLE TREES
(TREE_CODE TREE_CODE_DOM,
QUANTITY INTEGER,
JAPANESE_NAME CHAR(30),
FRENCH_NAME CHAR(30)
CHARACTER SET DEC_MCS,
ENGLISH_NAME CHAR(30)
CHARACTER SET DEC_MCS,
KOREAN_NAME CHAR(30)
CHARACTER SET DEC_KOREAN,
KANJI_NAME NCHAR(30));

The table TREES has multiple character sets. This
example assumes the default character set is
DEC_KANIJI and the national character set is KAN]JIL.
Users can have object names other than ASClI
names specifying the identifier character set. The
database engine uses the specific routines to com-
pare data, since the engine knows the character set
of the data. With DEC Rdb version 4.2, all three
issues of data representation, multiple character-
set support, and data comparison have been
resolved.

Conclusions

By replacing reengineering with coengineering, we
reduced the time lag between shipping DEC Rdb to
customers in the United States and in Japan from
five months for version 3.0 in July 1988 to two
weeks for version 4.2 in February 1993. Figure 12
shows the decrease in time lag for each version
we developed. We also eliminated expensive
reengineering and maintenance costs. Finally, we
increased competitiveness.

It has taken more than four years to evolve from a
noninternationalized product to an international-
ized one. If the product had originally been
designed to be internationalized, this process would
have been unnecessary. When DEC Rdb was origi-
nally created, however, we did not have an interna-
tionalization model, the architecture, or mature
techniques. Reengineering is unavoidable under
these circumstances.

By sharing our experience, we can help other
product engineering groups avoid the reengineer-
ing process.

Digital Technical Journal Vol 5 No. 3 Summer 1993

93

Product Internationalization

25

V30 V30B V3.1A V3.1B V40 V40A V42

Figure 12 Time Lag between US. and Japanese
Shipment of DEC Rdb

Future Work for DEC Rdb

Coengineering has proved that an evolutionary
approach is not only possible, but that it is the most
reasonable approach. Additional work, however,
remains to be done for DEC Rdb.

DEC Rdb must support more character sets like
ISO 10646-1. We think that the support of new char-
acter sets would be straightforward in the DEC Rdb
implementation. DEC Rdb has the infrastructure for
supporting it. SQL-92 has the syntax for it, that is,
the character set clause. Furthermore, the DEC Rdb
implementation has the attribute for a character set
in the system tables.

Collations on Han characters should be
extended. The current implementation of a colla-
tion on Han characters is based on its character
value, that is, its code value. We believe the user
would also like to have collations based on dictio-
naries, radicals, and pronunciations.?

Summanry

There are significant difficulties in the specification
of character internationalization for database sys-
tems, but the SQL-92 standard providcs a sound
foundation for the internationalization of products.
The application of SQL-92 facilities to DEC Rdb is
quite successful and can serve as a case study for the
internationalization for other software products.

Acknowledgments

The authors gratefully acknowledge the help and
contributions made by many people during the
development of DEC Rdb’s internationalization
facilities and those of the SQL standard. In par-

ticular, Don Blair, Yasuhiro Matsuda, Scott Matsu-
moto, Jim Murray, Kaz Ooiso, Lisa Maatta Smith,
and lan Smith were particularly helpful during the
DEC Rdb work. During the internationalization of
SQL, Laurent Barnier, David Birdsall, Phil Shaw,
Kohji Shibano, and Mani Subramanyam all made
significant contributions.

References

1. G. Winters, “International Distributed Sys-
tems—Architectural and Practical Issues,
Digital Technical Journal, vol. 5, no. 3 (Sum-
mer 1993, this issue): 53-62.

2. American National Standard for Informa-
tion Systems—Database Language SQL, ANSI
X3.135-1992 (American National Standards
Institute, 1992). Also published as nforma-
tion Technology—Database Languages—
SQOL, ISO/IEC 9075:1992 (Geneva: International
Organization for Standardization, 1992).

3. W Rannenberg and J. Bettels, “The X/Open
Internationalization Model" Digital Teclhni-
cal Journal, vol. 5, no. 3 (Summer 1993, this
issue): 32-42.

4. Database Language SQL (SQL3), Working
Draft, ANSI X3H2-93-091 (American National
Standards Institute, February 1993).

5. Database Language SQL (SQL3), Working
Draft, ISO/IEC JTC1/SC21 N6931 (Geneva:
International Organization for Standardiza-
tion, July 1992).

6.] Melton and A. Simon, Understanding the
New SQL: A Complete Guide (San Mateo, CA:
Morgan Kaufmann Publishers, 1992).

7. Information Technology—Remote Database
Access—Part 1. Generic Model, Service,
and Protocol, 1SO/IEC 9579-1:1993, and Infor-
mation Technology—Remote Database
Access—Part 2: SQL Specialization, 1SO/1EC
9579-2:1993 (Geneva: International Organiza-
tion for Standardization, 1993).

8. J. Bettels and E Bishop, “Unicode: A Universal
Character Code," Digital Technical Journal,
vol. 5, no. 3 (Summer 1993, this issue): 21-31.

9. Information Processing—ISO 7-bit and 8-bit
Coded Character Sets— Code Extension Tech-
niques, 1SO 2022:1986 (Geneva: International
Organization for Standardization, 1986).

94

Vol. 5 No.3 Swmmer 1993 Digital Technical Journal

Character Internationalization in Databases: A Case Study

10. Information Processing, Open Document 12.
Architecture, 1SO/IEC 8613:1989 (Geneva:
International Organization for Standardiza-

tion, 1989).

11. DEC Rdb, SQL Reference Manual (Maynard, 13.
MA: Digital Equipment Corporation, Order
No. AA-PWQPA-TE, January 1993).

Appendix: Syntax of Rdb Version 4.2

Format of CHARACTER SET Clause

<character data type> ::=
<character string type>

[CHARACTER SET <character set specification>]

| <national character string type>

<character string type> :

CHARACTER [VARYING J C
J L (<length>) 1
| VARCHAR (<length>)

| CHAR [VARYING

<national character

(<length>) 1]

string type> ::=
NATIONAL CHARACTER [VARYING 1 [(

| NATIONAL CHAR [VARYING 1 [(<length>) 1]
J (<length>)

| NCHAR CVARYING

<character set specification> ::=
set name>

<character

<character set name> ::= <name>

Character Set Names

DEC_MCS

KANJI

HANZI

KOREAN

HANYU
DEC_KANJI
DEC_HANZI
DEC_KOREAN
DEC_SICGCC
DEC_HANYU
KATAKANA
ISOLATINARABIC
ISOLATINHEBREW
ISOLATINCYRILLIC
ISOLATINGREEK
DEVANAGARI

Multivendor Integration Architecture, Ver-
sion 1.2 (Tokyo: Nippon Telegraph and Tele-
phone Corporation, Order No. TR550001,
September 1992).

R. Haentjens, “The Ordering of Universal
Character Strings,” Digital Technical Journal,
vol. 5, no. 3 (Summer 1993, this issue): 43-52.

<length>) 1

Continued on next page.

Digital Technical Journal

Vol.5 No. 3

Summer 1993

95

Product Internationalization

Example of CHARACTER SET

CREATE DATABASE FILENAME ENVIRONMENT
DEFAULT CHARACTER SET DEC_KANJI
NATIONAL CHARACTER SET KANJI
IDENTIFIER CHARACTER SET DEC_KANJI;

CREATE DOMAIN NAMES_GENERAL CHAR(Z20);

CREATE DOMAIN NAMES_PRC CHAR(20)
CHARACTER SET IS HANZI;

CREATE DOMAIN NAMES_MCS CHAR(20)
CHARACTER SET IS MCS;

CREATE DOMAIN NAMES_KOREAN CHAR(20)
CHARACTER SET IS HANGUL;

CREATE DOMAIN NAMES_JAPAN NCHAR(20);

Format of Literals

<character Lliteral> ::=
<character string LlLiteral>
| <national character string literal>

<character string Lliteral> ::=

[<introducer><character set specification> 1

<quote>[<character representation>...

<character representation> ::=
<nonquote character>
| <quote symbol>

J<quote>

<nonquote character> ::= !! See the Syntax Rules.

<quote symbol> ::= <quote> <quote>

<national character string literal> ::=

N <quote>[<character representation>...

Example of National Object Name

CREATE TABLE (n 3=|
REENFHS CHAR(6),

¥XRARE NATIONAL CHARACTER(10),
BT DECIMAL(10),

BEES DECIMAL(S),

1£57 NCHAR(30),

PRIMARY KEY X135,
SELECTEXBES

FROM TEXH

WHERE BU#HS = 100 AND

#45 > 300000 AND
TEXHK®R LIKE N' 2% %',

J<quote>

96

Vol. 5 Ne. 3 Swmmer 1993

Digital Technical Journal

Takabide Honma
Hiroyoshi Baba
Kuniaki Takizawa

Japanese Input Methbod
Independent of Applications

The Japanese input method is a complex procedure involving preediting opera-
tions. An application that accepts Japanese from an input device must bave three
systems for the input method: a keybinding system, a manipulator for preediting,
and a kana-to-kanji conversion system. Various keybinding systems and manipula-
tors accelerate input operations. Our implementation separates an application
[from the Japanese input method in three layers. An application can use a front-end
input processor to perform all operations including 1/0. An application can use the
henkan (conversion) module and implement I/O operation itself. An application
can execute all operations except keybinding, which is handled by an input method

library.

In this paper, we first present an overview of the
technical environment of the Japanese input method
implementation. Based on this overview, we briefly
describe the critical engineering issues for conver-
sion of Digital’'s products for the Japanese user. Our
most critical engineering issue was the reduction of
similar (but slightly different) work to localize
products. Another issue was to satisfy customers’
requests for the ability to use the many input styles
familiar to them. We describe our approach to the
development of a Japanese input method that over-
comes these issues by separating the input method
from an application in three laycrs.

Overview of the Japanese

Input Method

In this section, we describe Japanese input and
string manipulation from the perspective of both
the user and the application. Based on these
descriptions, we present a brief overview of reengi-

neering a product for Japanese users and a summary
of the industry’s complex techniques developed for
Japanese input methods.

Japanese Input

The Japanese writing system uses hundreds of
ideograms called kanji. In addition, Japanese uses a
phonetic system of kana characters (biragana and
katakana) and has accepted romaji, which is the
use of Latin letters to spell Japanese words. Figure 1
summarizes the Japanese character systems.
Japanese input requires users to operate in a
“preediting” mode to convert kana or romaji into
a kana-kanji string.'2

The computer keyboard used for Japanese input
has multiple character assignments. Almost all keys
on the Japanese keyboard are assigned both a Latin
alphabet character and a Japanese kana character.
The Japanese user must first choose between kana
key input or alphabet input. A user in an engineering

JAPANESE CHARACTERS —— PHONOGRAM
KANA (ORIGINAL JAPANESE CHARACTERS)

HIRAGANA
KATAKANA

ROMAUJ! (USING LATIN ALPHABET TO
EXPRESS A PHONEME)

— IDEOGRAM

(- KANJI

Figure 1 Jupanese Character Systems

Digital Technical Journal Vol.5 No.3 Swmmer 1993 97

Product Internationalization

area generally uses romaji (alphabet) key input. In
the office environment, however, a user prefers
kana key input because it requires half as many
keystrokes as romaji input.

Preediting Operation

The user inputs the phonetic expression in either
kana or romaji that represents the statement the
user wants to input. Then the user presses the con-
version key to convert the phonetic expression to
a kana-kanji mixed string. At this time, the user
checks the accuracy of the conversion result.
Sometimes the user needs to select the correct
word from a system-generated list of several
homonyms. Moreover, a user may also need to
determine the separation positions in the phonetic
expression to ensure a meaningful grammatical
construction.

Japanese has no word separator equivalent to the
space character in English. To obtain the corrector
expected separation of grammatical elements, the
user must sometimes move the separation position.
After the user constructs a corrected statement, he
or she finishes preediting and fixes the statement.
The user repeats these complex steps to construct
Japanese documents. Figure 2 shows the preediting
steps for the Japanese user.

Various techniques have been developed to accel-
erate Japanese input operations. They include
UNDO, COPY, zip code conversion, and categorized
expert dictionary.

START
|_ SET UP INPUT METHOD

INPUT PHONETIC EXPRESSION FOR A STATEMENT

(CHANGE PHONOGRAM SYSTEM)
CONVERT KANA TO KANJI

t MOVE THE SEPARATION POSITION
SELECT A WORD FROM MANY HOMONYMS

FIX A STATEMENT

—— END OF DOCUMENT

Figure 2 Preediting Japanese Input

Japanese Application Capabilities

The Japanese application has two special capabili-
tics for Japanese processing. First, the application
must be capable of handling multibyte characters.
This subject itself is interesting as it involves
wchar_t and Unicode character sets; howcver, this
paper focuses on the second capability, the imple-
mentation of the input method. An application that
accepts Japanese from an input device must have,
at least, three additional systems for the input
method. These are the so-called keybinding system,
a manipulator for preediting, and the kana-to-kanji
conversion system.

Keybinding System This system analyzes the key
input from a user and determines which of the
key’s functions the user wants to do. It defines
the user interface and the way a user operates with
keystrokes. It also defines the preediting conver-
sion key. We imagine there are as many keybinding
systems as there are word processors.

Preedit Manipulator System This system not only
echoes the input characters on the screen but also
controls the video attribute that expresses the
preediting area. This capability allows the uscr to
distinguish preediting strings from background
fixed strings. The user must be able to recognize
the preediting string for more processing (for
example, to convert the input to another expres-
sion such as kana to kanji). In addition, the user
can set this system to convert input to another
expression dynamically (for example, automatic
conversion of romaji to kanca).

Kana-to-kanji Conversion System This system
analyzes the input string, gets the word from a dic-
tionary, and constructs the correct statement gram-
matically. Many personal computer (PC) vendors
have invested in systems that use this input method.
In Japan, some vendors have introduced artificial
intelligence technology, but this system essentially
has only statistical rules.’+

Figure 3 summarizes Japanese processing as han-
dled by applications.

JAPANESE PROCESSING — VARIABLE MULTIBYTE CHARACTER HANDLING
JAPANESE INPUT METHOD

=

KEYBINDING SYSTEM
PREEDIT MANIPULATOR SYSTEM
KANA-TO-KANJI CONVERSION SYSTEM

Figure 3 Japanese Processing by Applications

98

Vol. 5 No.3 Summer 1993 Digital Technical Journal

Japanese Input Method Independent of Applications

Method of Japanese Conversion

As mentioned above, to convert a product for use
in Japanese, we must implement both a Japanese-
string manipulator and an input method. To retain
the “look-and-feel” of the original Digital product,
the interface is designed so the Japanese user does
not need to explicitly enter the preediting session
with the special-purpose key (Enter Preedit) but is
automatically entered. With most applications on
other systems, a user must explicitly enter the
preediting session by using the special keystroke.
This implementation has the advantage that it com-
pletely separates the input method from the appli-
cation, but it requires the user to remember to
perform an extra step.

To eliminate the conflict between the original
product’s key function and the additional Japanese
input function, each product has to have a slightly
different keybinding system for Japanese. As a
result, a user must learn more than one Japanese
input operation when using multiple products.

User Environments

PCs are widely used in many offices and are popular
devices for Japanese input. Naturally a user wants
to operate with a familiar PC keystroke for Japanese
input even in integrated systems (in some servers).
When PCs, which use front-end processors, are
integrated into environments with VMS and UNIX
systems, a user often prefers the PC’s interface. The
more integrated a user's environment is, the more
requirements a user has.

In addition, a distribution kit for the X Window
System in a UNIX environment has some sample
implementations of the Japanese input method.
This kit gives a user more choices for input at no
cost.

The market for the Japanese input method sepa-
rates vendors into two main groups. One is the PC
front-end processor manufacturer who imple-
ments more advanced techniques but at a high
price. The other is the UNIX system vendor who
supplies input implementations free (without guar-
antee) and thus reduces the maintenance cost.

In the next section, we present our approach to
the development of an application-independent
Japanese input method. The goals of our design
were (1) to include the PC keybinding system in
integrated environments so users could select their
preferred input method, (2) to supply a tool that
would easily convert products for the Japanese
user, and (3) to provide a way to access the

interfaces of several Japanese engines and thus
capture the free software capabilities.

Application-independent Approach

As described in the previous section, the Japanese
input method includes complex techniques. Many
PC software vendors (but not manufacturers)
decided against developing their own methods and
incorporated a popular input method for their
applications. This decision, of course, reduces
their development cost. Our approach also seeks to
reduce development cost. We separated the input
method from the application to the greatest extent
possible, as long as the separation did not adversely
affect the application.

The PC system is designed as a single-task system,
but Digital’s operating systems (OpenVMS, ULTRIX,
and DEC OSF/1 AXP) are designed as multitasking
systems. Therefore we could not adopt many of the
PC techniques that were implemented in the driver
level. For example, access to dictionary and gram-
matical analysis of the input string are too expen-
sive in the driver level of a multitasking system
because they use system resources that are com-
mon to all tasks on the system.

Our approach divides the input method into
three layers. Each layer is dependent on any lower
layer. Consequently, any application using the high-
est layer also uses the functionalities of the other
two layers.

Strategy of Three Layers

The criteria of our layering strategy were (1) to
reduce the cost of reengineering products for the
Japanese user, (2) to unify the input method user
interface, and (3) to protect the user’s operational
investment in a keybinding system.

These criteria led us to set the keybinding system
into the lowest layer. We named our system the
input method library (IMLIB) and released it on
VMS/Japanese version 5.5 and ULTRIX/Japanese ver-
sion 4.3. We also ported it to the Alpha AXP system,
and this facility is available on any Japanese plat-
form. Any application using our method needs to
use IMLIB.

In essence, this keybinding system allows a user
to change the input method of operation to any
style by changing the IMLIB definition files. If an
application supports IMLIB, a user can change the
application’s input operation by changing IMLIB
once. As a result, an application’s key customiza-
tion function can movc into IMLIB.

Digital Technical Journat Vol 5 No. 3 Summer 1993

99

Product Internationalization

At this point, we considered the simplest method
of separating the input method from applications.
The intermcdiate process, also called the front-end
method, processes all the input and then passes it
to an application. Many front-end implementations
usc the pseudo-terminal driver (pty in UNIX or FT in
OpenvMs). The intermediate process gets all I/0 to
and from an application, processes it, and finally
passes it to an application or a device. This imple-
mentation cannot recognize the application input
requests, but works only by a user’s operation. To
change this operation, we set the hook inside the
terminal driver to get all application-request infor-
mation. Our front-end process recognizes applica-
tion requests and works without conflict.

One advantage of this front-end implementation
is a complete independence of applications. This
can also be a disadvantage since an application can-
not control the input method closely. For example,
this implemcentation can alter the user interface of
an editor system.

We continued to study another layer for separa-
tion. The precditing operation, that is, all the input
string manipulations except 1/0O to devices, was a
candidate. All applications pass the input from
input devices into the Japanese input manipulator
and then pass the output from this manipulator
onto output devices. By using this system, we
can unify the input opcration ¢xcept for device-
depcendent operations and reduce the cost to imple-
ment this kind of functionality.

Our development process started at the lowest
layer (IMLIB). proceeded to the highest layer (front-
end), and finished at the middle layer (precditing
manipulator). In the following sections, we describe
the functionalitics in each layer from the lowest to
the highest layer.

Implementation of IMLIB
IMLIB is a utility that supplies the keybinding defini-
tion function and other information for customiz-
ing the Japancsc input operation. This capability
enables us to supply uscr-friendly keybinding sys-
tems. A user can changc the input sequences and
the look-and-fcel of the user interface by modifying
databases. W introduced two databases, KEYBIND
for keybinding and PROFILE for look-and-feel and an
application’s usuge. We also supplied the KEYBIND
compiler for improved performance and the elimi-
nation of the grammatical error at run time.

As mentioned in the introduction, there are
many implementations of Japanesc input styles on

PCs or some word processors, and some text edi-
tors on various opcrating systems. If a uscr needs to
usc¢ a different editor, he or she needs to learn
another opcration. Qur method unifies the input
operation. We studied several types of input styles
and recognized that we could build the general
modcl for this input opcration. The IMLIB manual
describes this model in detail.>¢ In this paper, we
discuss it briefly.

KEYBIND Database

In the Japanese input operation, entering the key
input causes several conversion actions and state
transitions. Figure 4 shows the multiple transitions
incurred during input. We necded to define the
conversion actions and some state transitions as a
single key input action. We implemented this func-
tion through the KEYBIND database and language.
Figure 5 is an example of the KEYBIND database. A
user builds an input style by changing the KEYBIND
database with the KEYBIND language.

IMLIB allows the user to change the keybinding
and to choose a different input sequence with a
different state transition vector. For the user’s con-
venience, IMLIB provides some KEYBIND databases
of the major Japanese input styles in default.

When an application calls the ImSetKeybind
function, it loads a KEYBIND binary file into mem-
ory. Each time the application gets the key input,
it queries the key’s function from IMLIB. IMLIB
searches the KEYBIND file for the key’s definition
and returns that information, called an action, to
the application. Each action is a set of orders that
has a different procedure for Japanese conversion.
For example, the action CONVER' means to convert
an input string to a kanji string. At that time, IMLIB
also maintains Japanese input states and, if neces-
sary, changes the state.

PROFILE Database

The Japanese input operation has many parameters
to determine its look-and-feel, such as the video

INITIAL STATE -t »| KANJI CONVERTED

A

J

INPUTTING STATE |= »| KANA CONVERTED

Figure 4 State Transition

100

Vol.5 No.3 Sununer 1993 Digital Technical Journal

Japanese Input Method Independent of Applications

gold
kakutei
kanji_henkan

CTRL_G;
CTRL_N;

hiragana_henkan CTRL_L;
katakana_henkan CTRL_K;
zenkaku_henkan CTRL_F;

hankaku_henkan

kigou_henkan GS;
oomoji VOID;
komoji VOID;
ji_bunsetsu CTRL_P;

zen_bunsetsu
tansyuku
sintyou
zen_kouho

kaijo = CTRL_N;

us;
gold + US;

sakujo = DEL;
hidari = LEFT;
migi = RIGHT;
space_first = "¥",;
space_input ="y ",
STATE "initial" =
space_first NONE;

kanji_henkan
hiragana_henkan
katakana_henkan
zenkaku_henkan
hankaku_henkan
kigou_henkan

1
L JUMS ZERF - R T7 740V (VAT AT Y7 L= F) v1.0

I (JVMS conversion key definition file (system template) ver 1.0)
]

NULL, gold + CTRL_K;

gold + CTRL_F;

gold + CTRL_P;

gold + (NULL, CTRL_L);

START_SELECTED,
START_SELECTED,
START_SELECTED,
START_SELECTED,
START_SELECTED,
START_SELECTED,

CONVERT, GOTO "kk_converting';
HIRAGANA, GOTO "converting";
KATAKANA, GOTO "converting";
ZENKAKU, GOTO "converting";
HANKAKU, GOTO "converting";
SYMBOL, GOTO "converting";
UPPER, GOTO "converting";
LOWER, GOTO "converting';
START, ECHO, GOTO "inputting';,

oomo ji START_SELECTED,
komoji START_SELECTED,
TYPING_KEYS

END;

' Gold key, used as a PREFIX key

' Finish without any conversion

! Convert to Kanji / next candidate
! (Convert clause) to Hiragana

! (Convert clause) to Katakana

! Convert to full width characters
! Convert to half width characters
! Symbolic code conversion

' Convert to upper characters

! Convert to lower characters

! Move to next clause

! Move to previous clause

! Shrink the clause

' Extend the clause

! Previous clause candidate

! Cancel the conversion

! and go into input state

! Delete previous character

! Move the cursor left

' Move the cursor right

' Finish by space

I (space at initial state)

! Finish by space

! (space at other states)

Figure 5 Portion of KEYBIND Database

attribute for the preediting string, preediting
exception handling, and application-specific pro-
cessing. The PROFILE database stores these addi-
tional paramecters the same way as the resource file
does in the X Window System.

The PROFILE database is a text file. It contains sev-
eral records that represent each environment. This
record format has the style of INDEX : value. The
application predefines the INDEX for its purpose;
however, IMLIB defines some INDEXes related to
Japanese input operation because it requires some
common environment definitions. The range or
value corresponding to the INDEX is placed in the
right-hand side of the record. Figure 6 shows a
record from a PROFILE database.

KEYBIND Compiler

The KEYBIND compiler analyzes the KEYBIND text
file and creates the KEYBIND binary file. IMLIB ser-
vices reads the PROFILE database and the KEYBIND
binary file and maintains them in memory. As a
response to an application’s query, IMLIB services
sends it the actions in KEYBIND and the data in
PROFILE and at this time maintains the KEYBIND
states. Figure 7 shows the relationship among the
IMLIB components.

IMLIB is available on the OpenVMS VAX, OpenVMS
AXP, ULTRIX, and DEC OSF/1 AXP operating systems.
The major applications arc DECwindows/Motif,
DECwrite, the front-c¢nd input process. and screen
management (SMG).

Digital Technical Journal Vol.5 No.3 Summnier 1993

101

Product Internationalization

DEC-JAPANESE.KEY.keybind
DEC-JAPANESE.KEY.keybind_1
DEC-JAPANESE.DISP.preEditRow current
DEC-JAPANESE.DISP.preEditColumn current
DEC-JAPANESE.DISP.inputRendition : bold
DEC-JAPANESE.DISP.kanaRendition : bold
DEC-JAPANESE.DISP.currentClauseRendition reverse
DEC-JAPANESE.DISP.leadingClauseRendition : none
DEC-JAPANESE.DISP.trailingClauseRendition : none
DEC-JAPANESE.ECHO.ascii hankaku
DEC-JAPANESE.ECHO.kana hiragana
DEC-JAPANESE.ECHO.autoRomanKana : off
DEC-JAPANESE.OUTRANGE.clauseSize : none
DEC-JAPANESE.OUTRANGE.clauseNumber rotate
DEC-JAPANESE.OUTRANGE.cursorPosition : done

im_key_jvms_Llevel?2
im_key_jvms

Figure 6 PROFILE Database Record

APPLICATION
A acTions
QUERY (KEYBIND)

KEYWORDS
(PROFILE)

KEYBIND IMLIB

COMPILER SERVICES

Y

KEYBIND KEYBIND PROFILE

TEXT BINARY DATABASE

FILE FILE FILE

Figure 7 Relationship among IMLIB
Components

Implementation of the Henkan Module

The second layer is part of the Japanese input
manipulator and is called the henkan module or
HM. (Henkan means conversion in Japancsc.) It
does not handle I/O operation but accepts key
input from the application and converts it to a
string in preediting.

Figure 8 summarizes the function of HM. An
application passes the key input to HM stroke by
stroke. HM performs all Japanese preediting opera-
tions; the application has no direct manipulation of
the input. Then the application gets the preediting
string from HM. Because HM does no 1/0, it is inde-
pendent of any specific device. As a result, all appli-
cations, including windowing systems, can use HM.

KEY /O /O _ PREEDITING
INPUT —] HENKAN [—>1 STRING
MODULE
APPLICATION

Figure 8 Henkan Module Function

In addition, HM can access the resources of IMLIB.
This feature helps the unification of the Japanese
input user interface and reduces the number of sim-
ilar product conversions. HM has another significant
capability. We defined the common (minimum)
application programming interface to potentially
accept all Japanese conversion engines and imple-
mented “PLUGGS” in HM. Therefore HM can use one
or more engines for kana-to-kanji conversion.

HM Mechanism Overview

HM is a tool that any application can use. An
application passes key input to HM by a normal pro-
cedure call. After HM processes it, HM calls applica-
tion routines with the processed result. Because
HM handles large string buffers, it dynamically allo-
cates/deallocates memory. To ensure that memory
is retained, we used a callback technique. (These
techniques are described later in the Callback
Routines section.)
HM operates by key input as follows:

1. HM gets a keycode from an application with pro-
cedure arguments.

2. HM gets the actions assigned to the key from IMLIB.

102

Vol. 5 No. 3 Swmmer 1993 Digital Technical Journal

Japanese Input Method Independent of Applications

3. If the key is not assigned to the Japanese input
operation, HM tells the application to process it
separately.

4. If the key is assigned to the Japanese input oper-
ation, HM processes it according to the actions.

S. HM modifies the information to be displayed
according to the action and calls a registered call-
back routine to update the screen.

HM passes the information that should be dis-
played on the screen in an argument of the callback
routines. The callback routines are prepared by the
application and registered into HM context at the
initialization of HM. This callback method makes
the application interface and data flow more easily.

Components

Figure 9 shows the composition of HM. The applica-
tion interfaces include both the C and the VMS bind-
ing interfaces for the OpenVMS operating system.

The Japanese input manipulator performs all
Japanese input operation by using IMLIB, the
romaji-to-kana converter, and the kana-to-kanji
converter. After it processes the input key, it calls
back the application routines. There are several
types of romaji-to-kana converters. We imple-
mented a submodule romaji-to-kana converter
driven by a conversion table; a user can change this
table to another.

The kana-to-kanji converter module is a general-
ized Japanese conversion library. Many Japanese
conversion engines exist, and each one is used dif-
ferently. The kana-to-kanji converter loads the
interface routine that absorbs these differences
dynamically at the initialization of the HM context.
It then processes the conversion request with any
engine.

Services

HM provides 17 library entries. In this section, we
describe three basic routines: HMiInitialize,
HMConvert, and HMEndConversion.

SEVERAL APPLICATION INTERFACES

JAPANESE INPUT MANIPULATOR

LB | BOMAJITO-KANA | KANA-TO-KANJI
CONVERTER CONVERTER

Figure 9 HM Component Structure

= HMlInitialize. This routine creates a context for
HM. It accepts three callback entries, a user-
defined data pointer that would be passed to the
callbacks, and an item list for initial information
asits arguments.

= HMConvert. This routine sends a key to HM. The
key is represented as a 32-bit data (longword)
that is generated by a function HMEncodeKey
from an escape sequence that the keyboard
sends or by a function HMKeysymToKeycode
from a keysym of the X Window System. IMLIB
interprets the keycode, and HMConvert per-
forms a conversion in accordance with the infor-
mation. (A summary of what is executed was
given in the Mechanism Overview section.)

= HMEndConversion. This routine aborts the con-
version and resets an internal status. It is used
when the application has to stop the input for a
particular reason, for example, if an application
issues the cancel request.

Callback Routines

HM requires three callback routines: start_conver-
sion, format_output, and end_conversion. They are
used as follows.

= start_conversion. This routine is called when
the conversion string input is started. The
application memorizes where the cursor is
positioned.

= format_output. This routine is called whenever
the information to be displayed has been
changed. The application updates the screen.

= end_conversion. This routine is called when the
input string is determined. As a result, the appli-
cation takes the string passed in the argument
of the last call of format_output into its input
buffer.

The user-defined data pointer, one of the argu-
ments for HMInitialize, is always passed to these
callbacks. Since HM is not concerned with its
contents, the user can put any kind of information
into it.

HM is available on the OpenVMS VAX, OpenVMS
AXP, ULTRIX, and DEC OSF/1 AXP operating systems.
This portability is due to the module’s indepen-
dence from physical I/0. The major client applica-
tions working on these operating systems are
DECwindows/Motif, Japanese SMG, and the front-
end input process.

Digital Technical Journal Vol. 5 No.3 Summer (993

103

Product Internationalization

Implementation of the Front-end
Input Processor

The front-end input process (FIP) for a dumb termi-
nal supports full operations for the Japanese string
manipulation. FIP is implemented on the following
operating systems: OpenVMS/Japanese/VAX version
5.5-2 or later versions and OpenVMS/Japanese/AXP
version 1.0 orlater versions.

Full Operation Support

The original product can use FIP if the product’s
mechanism, particularly its 1I/0O operation and
preediting function, does not conflict with the FIP
implementation. Some applications conflict with
the design of FIP due to the limitations of FIP and its
environment. For example, FIP does not detect the
read request that includes the NOECHO item code,
so the application that issues such a read request
to the terminal driver (TTdriver) cannot use FIP as
a Japanese front-end input process. Also FIP does
not step into a process for the termination of a read
request simply because a read buffer that is defined
by an application has overflowed. FIP continues to
communicate with the TTdriver and a conversion
engine to get the Japanese string unless the termi-
nate key is explicitly input. To overcome these con-
flicts, we implemented a pseudo-driver named
Fldriver to intercept1/O requests from the applica-
tion before they are processed by the TTdriver.

FIP Mechanism Ouvervietw

FIP processes all Japanese input operations using
HM. We supplied the Digital Command Language
(DCL) command, INPUT START/STOP for activating/
deactivating FIP. Once a user activates FIP from
DCL, it is available until the user logs out or the
system is deactivated.

Figure 10 shows FIP and its environment for
the manipulation of Japanese input. An applica-
tion issues /O requests to the TTdriver to get
user inputs, but FIP fetches the requests from
the TTdriver through the Fldriver. Then FIP starts
to communicate with the drivers and the Japanese
string conversion engine to pass the resultant
string as well as preedits to a screen.

The sequence of the front-end input process
follows.

1. An application creates a front-end input
process.

2. A front-end input process exchanges packets
with an application through its mailbox.

3. An application issues a queued I/O ($QIO)
read request to the TTdriver.

4. TheFldriver intercepts the request and passes
the information to FIP as a packet.

5. FIPissuesa $QIO read request to the TTdriver
to getinput strings for conversion.

DICTIONARY
CONVERSION
ENGINE
THE THE
INPUT RESULT
STRING STRING
SEND START REQUEST MAILBOX
AN FIP
APPLICATION
- MAILBOX SEND START CONFIRMATION y
$QIO READ $QIO | AST
REQUEST $QIO READ/WRITE REQUEST
\ WRITE BACK THE RESULT
FIDRIVER
S —— HOGK INTERCEPT OF READ $QIO
i
TERMINAL/
INPUT DEVICE

Figure 10 FIP Environment for Manipulation of Japanese Input

104

Vol. 5 No.3 Summer 1993 Digital Technical Journal

Japanese Input Method Independent of Applications

6. A user inputs a key from a terminal. FIP
receives the input and decides whether or not
to call a routine of the conversion engine. If
an input key is recognized as one of the con-
version keys, FIP calls the routine and passes
the input strings. If not, FIP issues a $QIO
write request to the TTdriver to echo an input
character.

7. A conversion engine receives a string and
converts it to the Japanese string.

8. A conversion engine returns the result to FIP.

9. FIPissuesa $QIO write request to the TTdriver
to display the resultant string from the engine
and arranges the current editing line.

10. Steps 5 to 9 are repeated.

11. Once a user inputs the Terminate key of an
application’s request, FIP recognizesitasa ter-
minator and returns the entire resultant string
to the Fidriver as a write packet.

12. The Fldriver sends the result string and 1/0
status to an application.

13. An application accepts the converted string.
After executing its internal process, it issues
another $QIO read request to the TTdriver.
(Return to step 3.)

Fldriver The Fldriver is a pseudo-driver that inter-
cepts $QIO read requests from an application to
the TTdriver. Functioning as a bridge between ter-
minal read requests and FIP, the Fldriver gets a read
request, passes its information to FIP, and maintains
it. When FIP returns the completion message with
its processed Japanese string, the Fldriver validates
it and completes a user’s read request as if the
TTdriver had returned it. Thus the user/application
can get the Japanese string without modification
for Japanese input method.

The Fldriver has other notification functions for
exception handling such as logout, cancel, or abort.

Front-end Input Process Operations All the oper-
ations in the front-end input process are driven by
the mailbox event, the Fldriver event, and the key
event. Figure 11 shows the functional structure
of FIP.

The following operations in the front-end input
process correspond to these three events.

= Mailbox Event. The mailbox event provides
communication with an application. FIP issues

FIP EVENT MANAGEMENT

KEY EVENT

FIDRIVER | MAILBOX
EVENT EVENT

ACTION CONTROL

TERMINAL | HENKAN
ACTION MODULE

Figure 11 FIP Functional Structure

a read request to its own mailbox. The mailbox
event notifies FIP of the arrival of a message from
an application. When an application sends a
start request to the FIP mailbox, the mailbox
event is set so FIP starts to initialize its environ-
ment. Also FIP terminates itself at the time a stop
request message is delivered to its mailbox.

= Fldriver Event. The Fldriver event provides com-
munication with the Fidriver. The Fldriver inter-
cepts a request from an application to the
TTdriver and creates a packet for FIP. FIP issues a
read request to the Fldriver, and this event is set
when a packet is delivered. A request is catego-
rized in three types: read request, cancel
request, and disconnect request.

= Key Event. The key event provides commu-
nication with the TTdriver. FIP issues a $QIO
read request to the TTdriver byte by byte. All
the input from a keyboard is recognized as a
key event in FIP. Once a key event is set in
FIP, FIP examines the key sequence in a read
buffer.

If the input is in the range of a terminator mask,
FIP terminates a read operation from the TTdriver
and writes back the resultant string and 170 status
block to the Fidriver as a write packet. (A termina-
tor mask is defined in the $QIO read request from
an application.)

If the input key is a conversion key, FIP calls a
conversion engine and gets the resultant converted
string. Then FIP issues a write request to the
TTdriver to display the updated string.

If the input key is a printable character, FIP
updates the contents of its internal buffers defined
in the context and issues a write request to the
TTdriver to echo the character.

If the inputkey is for line editing, for example, to
delete a line or a word or to refresh a line, FIP emu-
lates the line-editing function of the TTdriver so its
editing function is executed.

Digital Techbnical Journal Vol.5 No.3 Summer 1993

105

ProductInternationalization

FIP stores all user input and read-request infor-
mation from an application in its internal buffers
and database. The buffers contain the codes of user
input and corresponding video attributes to display.
The database contains item codes in a read request,
channel numbers to connect other devices, and
SO on.

FIP creates a new database when the updated
read request from an application is delivered, in
other words, when the Fldriver event is set. Also,
FIP adds the ASCIlI code and an attribute of the
updated user input into buffers when a user inputs,
that is, when the key eventis set.

Client/Server Conversion

The use of a client/server conversion has two
advantages: (1) It reduces the required resources
for language conversion by distributing some com-
ponents to other systems, and (2) It presents an
environment that shares a common dictionary.

All procedures for the Japanese conversion
require large system resources such as CPU power.
A user can place the conversion information server
(ClIserver) and a dictionary on a remote node and
call some functions of the Clserver client library to
get the resultant string. In this way, a local system
saves its resources while the remote server pro-
cesses the conversions.

In addition, many users can access a common
dictionary on the specific remote node. It is possi-
ble for any local user to access a dictionary on a
remote node if the Clserver on the node is active.

Clserver

The object name is “IM$CISERVER”. The Clserver
initializes itself by finding the name of a transport
protocol in a logical table. It then creates corre-
sponding shareable images, maps its required rou-
tines, and waits for a connect request from a client.
The Clserver communicates with its client via a
mailbox at the transport level. The server sets the
asynchronous system trap to the mailbox and reads
a message in it such as a connect request, a discon-
nectrequest, a connect abortion, ora client’simage
termination. The Clserver can identify the connec-
tion to a client and specify a conversion stream in
the connection.

Clserver Client Library The client library pre-
sents programming interfaces. These are callable
routines that execute various string manipulations

and operations for the Japanese conversion. The
Clserver client library is located between an appli-
cation and the Clserver body.

Input Method Control Program (IMCP) IMCP is
a command line interface to customize the Clserver
environment. A user sets proxy to a Japanese Sys-
tem dictionary at a remote node on the network,
and IMCP administrates a proxy database. A user
can confirm the status of the server at a command
line and can shut down the server from the IMCP
interface.

Other Servers HM has a conversion engine dis-
patcher that can dynamically select from several
Japanese conversion engines. HM now serves the
CIS (Clserver, Digital Japan), the Wnn (Omron
Company), the Canna (NEC), and the JSY (Digital
Japan) engines. Therefore, an application that uses
HM as the Japanese conversion interface can select
its preferred engine.

Extension in the Future

In this section, we describe the possibilities for
internationalization of FIP, HM, IMLIB, the Clserver,
and the Fldriver. Although our approach does not
provide a multilingual input method, it does pro-
vide an architecture that can be used for any
language.

FIP has a multibyte I/O operation that can be
applied to other 2-byte languages. In addition, all
the read/write communications among FIP, the
Fldriver, and the TTIdriver proved able to handle
one-byte languages such as English. Also, IMLIB can
expand its keybinding system for conversion of
other languages, and HM can add the interfaces for
conversion engines of other languages if such
engines are prepared.

Summanry

The Japanese input method is a complex procedure
involving preediting operations. Various keybind-
ing systems and manipulators accelerate input
operations. Our approach for the Japanese input
method allows an application three choices: (1) An
application can use a front-end input processor to
perform all operations including 1/0. (2) An appli-
cation can use the henkan module and implement
I/0 operation itself. (3) An application can execute
all operations except keybinding, which is handled
by an input method library.

106

Vol. 5 No.3 Summer 1993 Digital Technical Journal

Japanese Input Method Independent of Applications

Acknowledgments

We want to express our appreciation to Katsushi
Takeuchi of the XTPU development team for his ini-
tial designing and prototyping of IMLIB and some
implementation of FIP, and Junji Morimitsu on the
same team for his initial implementation of IMLIB
and its compiler. Also, we wish to thank Makoto
Inada on the DECwindows team for his implementa-
tion of HM; Hitoshi Izumida, Tsutomu Saito, and
Jun Yoshida from the JvMS driver team for their
contribution toward creating the Fldriver; and
Naoki Okuclera for his implementation to the
entire CIserver environment. As a final remark, we
acknowledge Eiichi Aoki, an engineering manager
Of ISE Japan, and Hirotaka Yoshioka in the ISA group
for their encouragement in writing this paper.

References

1. Guides to the X Window System Program-
mer’s Supplement for Release 5 (Sebastopol,
CA: O'Reilly & Associates, Inc., 1991).

2. Standard X, Version 11, Release 5 (Cam-
bridge, MA: MIT X Consortium, 1988).

3. K. Yoshimura, T. Hitaka, and S. Yoshida, “Mor-
phological Analysis of Non-marked-off
Japanese Sentences by the Least BUNSETSU’s
Number Method,” Transactions of Informa-
tion Processing Society of Japan, vol. 24
(1983).

4. K. Shirai, Y. Hayashi, Y. Hirata, and J. Kubota,
“Database Formulation and Learning Proce-
dure for Kakari-Uke Dependency Analysis,’
Transactions of Information Processing
Society of Japan, vol. 26 (1985).

S. IMLIB/OpenVMS Library Reference Manual
(in Japanese) (Tokyo: Digital EQquipment Cor-
poration Japan, Order No. AA-PUSTA-TE, 1993).

6. User’s Manual for Defining User Keys in
IMLIB (in Japanese) (Tokyo: Digital Equipment
Corporation Japan, Order No. AA-PUSUA-TE,
1993).

Digital Technical Journal Vol. 5 No.3 Suwmmer 1993

107

Furtber Readings

The Digital Technical Journal
publishes papers that explore
the technological foundations
of Digitel’s mcjor products. Each
Journal focuses on at least one
product area and presents a
com pilation of refereed papers
written by the engineers whbo
develo ped the products. The con-
tent for the Journal is selected

by the Journal Advisory Board.
Digital engineers who would
like to contribute a paper to the
Journal should contact the editor
at RDVAX::BIAKE.

Topics covered in previous issues of the
Digital Technical Journal are as follows:

Multimedia/Application Control
Vol. 5, No. 2, Spring 1993, EY-P963E-DP

DECnet Open Networking
Vol. 5, No. 1, Winter 1993, EY-M770E-DP

Alpha AXP Architecture and Systems
Vol. 4, No. 4, Special Issue 1992, EY-J88GE-DP

NVAX-microprocessor VAX Systems
Vol. 4, No. 3, Suntmer 1992, EY-J884E-DP

Semiconductor Technologies
Vol. 4, No. 2, Spring 1992, EY-L521E-DP

PATHWORKS: PC Integration Software
Vol. 4, No. 1, Winter 1992, EY-J825E-DP

Image Processing, Video Terminals, and
Printer Technologies
Vol. 3, No. 4, tall 1991, EY-H88YE-DP

Availability in VAXcluster Systems/Network
Performance and Adapters
Vol. 3, No. 3, Summer 1991, EY-H890E-DP

Fiber Distributed Data Interface
Vol. 3, No. 2, Spring 1991, EY-H87GE-DP

Transaction Processing, Databases, and
Fault-tolerant Systems
Vol. 3, No. 1, Winter 1991, EY-FS88E-DP

VAX 9000 Series
Vol. 2, No. 4, Fall 1990, EY-E7G2E-DP

DECwindows Program
Vol. 2, No. 3, Summer 1990, EY-E756GE-DP

VAX 6000 Model 400 System
Vol. 2, No. 2, Spring 1990, EY-CI97E-DP

Compound Document Architecture
Vol. 2, No. 1, Winter 1990, EY-C196E-DP

Distributed Systems
Vol. 1, No. 9, June 1989, EY-C179E-DP

Storage Technology
Vol. 1, No. 8, February 1989, EY-CIGGE-DP

CVAX-based Systems
Vol. 1, No. 7, August 1988, EY-G742E-DP

Software Productivity Tools
Vol. 1, No. 6, February 1988, EY-8259E-DP

VAXCcluster Systems
Vol. 1, No. 5, September 1987, EY-8258E-DP

VAX 8800 Family
Vol. 1, No. 4, February 1987, EY-6711 E-DP

Networking Products
Vol. 1, No. 3, September 1986, EY-G715E-DP

MicroVAX I System
Vol. 1, No. 2, March 1986, EY-3474E-DP

VAX 8600 Processor
Vol. 1, No. 1, August 1985, EY-3435E-DP

Subscriptions and Back Issues
Subscriptions to the Digital Technical Journal are
available on a prepaid basis. The subscription rate
is $40.00 (non-US. $60.00) for four issues and $75.00
(non-US. $115.00) for eight issues. Orders should be
sent to Cathy Phillips, Digital Equipment Corpora-
tion, 30 Porter Road LJO2/D10, Littleton, Massa-
chusetts 01460, U.S A, Telephone: (508) 486-2538,
FAX: (508) 486-2444. Inquiries can be sent electron-
ically to DTJ@CRL.DEC.COM. Subscriptions must be
paid in US. dollars, and checks should be made
payable to Digital Equipment Corporation.

108

Vol. 5 No. 3 Summer 1993 Digital Technical Journal

Single copies and past issues of the Digital Technical
Journal are available for $16.00 each by calling
DECdirect at 1-800-DIGITAL (1-800-344-4825).
Recent back issues of the Journal are available on
the Internet at gatekeeper.dec.com in the directory
/pub/DEC/DECinfo/DT]J.

Recommended Reading on
Internationalization Topics

B. Comrie, editor, The World’s Major Languages
(New York: Oxford University Press, 1987).

F Coulmas, The Writing Systems of the World
(Oxford: Basil Blackwell, 1989).

J. DeFrancis, The Chinese Language Fact and
Fantasy, Second Paperback Edition (Honolulu:
University of Hawaii Press, 1989).

1. DeFrancis, Visible Speech: The Diverse Oneness
of Writing Systems (Honolulu: University of Hawaii
Press, 1989).

Digital Guide to Developing International
Software (Burlington, MA: Digital Press, Order
No. EY-F577E-DP, 1991).

S. Martin, /nternationalization Explored
(UniForum, 1992).

Multilingual Computing is a publication
of Worldwide Publishing Group, Clark Fork,
Idaho, US.A. and is available on the Internet :
Multilingual@Applelink.Apple.com

A. Nakanishi, Writing Systems of the World, third
printing (Rutland, VT, and Tokyo: Charles E. Tuttle
Company, 1988).

D. Taylor, Global So ftware: Developing Applica-
tions for the International Market (New York,
Berlin, Heidelburg, London, Paris, Tokyo, Hong
Kong, Barcelona, Budapest: Springer-Verlag, 1992).

The Unicode Standard, Version 1.0, Volume 1
(Reading, MA: Addison-Wesley Publishing
Company, 1991).

The Unicode Standard, Version 1.0, Volume 2
(Reading, MA: Addison-Wesley Publishing
Company, 1992).

Technical Papers by Digital Authors

R. Abugov, “From Trendcharts to Control Charts:
Setup Tests for Making the Leap,” [EEE/SEML
International Semiconductor Manutfucturing
Science Symposium (June 1992).

R. Al-Jaar, “Performance Evaluation of Real-Time
Decision-Making Architectures for Computer-
Integrated Manufacturing,” Robotics and Computer-
integrated Manufacturing (January 1992).

P Anick and S. Artemieff, “A High-Level Morpholog-

ical Description Language Exploiting Morphological
Paradigms,” Proceedings of the 15th International

Conference on Compulational Linguistics (August
1992).

P Anick and R. Flynn, "Versioning a Full-text
Information Retrieval System,” Fifteenth Annual
International ACM SIGIR Conference on Rescurch
and Development in Information Retrieval
(June 1992).

B. Archambeault, “A New Standard Radiator for
Shielding Effectiveness Measurements,” [1EE
International Symposium on Electromagnetic
Compatibility (August 1992).

A. Berti and V. Bolkhovsky, “A Manufacturable
Process for the Formation of Self Aligned Cobalt
Silicide in a Sub Micrometer CMOS Technology,”
Proceedings of the Ninth [nternational VLSI
Multilevel Interconnection Conference (VMIC)
(June 1992).

G. Bock and D. Marca, “GROUPWARE: Software for
Computer-Supported Cooperative Work,” [LLE
Computer Society Press Tutorial (January 1992).

C. Brench, “A Method to Improve EMI Shielding
Predictions,” /EEE International Symposium on
Electromagnetic Compatibility (August 1992).

D. Byrne, “Accurate Simulation of Multifrcquency
Semiconductor Laser Dynamics Under Gigabits-
Per-Second Modulation,” IFEL Journal of
Lightwave Technology (August 1992).

R. Collica, “The Effect of the Number of Defect

Mechanisms on Fault Clustering and its Detection
Using Yield Model Parameters.” IEEE Transactions
on Semiconductor Manufacturing (August 1992).

Digital Technical Journal Vol. 5 No.3 Swummer 1993

109

Further Readings

D. Davies and J. Pazaris. “Requirements for Optical
Interconnects in Future Computer Systems,” SPIE
International Symposium on Optical Applied
Science and Ingineering (July 1992).

D. Dossa, “Above-Barrier Quasi-Bound Electronic
States in Asymmetric Quantum Wells,” Physics
Review (March 1991).

D. Dossa, “Observation of Above-Barrier Quasi-
Bound States in Asymmetric Single Quantum Wells
by Piezomodulated Reflectivity,” Applied Pbysics
Letters (November 1991).

B. Doyle, C. Conran, and B. Fishbein, “Thermal
Instability in P-channel Transistors with Reoxi-
dized Nitrided Oxide Gate Dielectrics,” IEEE
Fiftieth Device Research Conference (June 1992).

B. Doyle and K. Mistry, “Hot Carrier Stress Damage
in the Gate ‘Off" State in n-Channel Transistors,”
IEEE Transactions on Electron Devices (July 1992).

R. Dunlop, “Design for Electronic Assembly,”
Design for Manufacturability (vol. 6 of the SME
Tool and Manufacturing Engineers Handbook
series) (January 1992).

M. Good, “Participatory Design of a Portable
Torque-Feedback Device,” CHI '92 Conference
Proceedings (ACM Conference on Human Factors
Computing Systems) (May 1992).

D. Krakauer and K. Mistry, “ESD Protection in a
3.3V Sub-Micron Silicided CMOS Technology,” JEEE
Electrical Over Stress/Llectrostatic Dischar ge
Symposium Proceedings (July 1992).

P Martino, “Analysis of Complex Geometric
Tolerances by Linear Programming,” ASVE
Computer in Engineering (August 1992).

J. Oparowski and P. Terranova, “Material
and Design Considerations of Flexible Signal
Connectors for the VAX 9000 MCU,” ASM
International 7th Electronic Materials

and Processing Congress (August 1992).

A. Philipossian and D. Jackson, “Kinetics of Oxide
Growth during Reoxidation of Lightly Nitricled
Oxides,” Journal of the Electrochemical Society
(Scptember 1992).

K. Ramakrishnan, “Effectiveness of Congestion
Avoidance: A Measurement Study,” JEEE [nfocom
92 (May 1992).

K. Ramakrishnan, P. Biswas, and R. Karedla, "Anal-
ysis of File 1/0 Traces in Commercial Computing
Environments,” ACM Sigmetrics (June 1992).

Y. Raz, “The Principle of Commitment Ordering,
or Guaranteeing Serializability in a Heterogeneous
Environment of Multiple Autonomous Resource
Managers Using Atomic Commitment,” Proceed-
ings of the 18th [nternational Conference on Very
Large Databases (August 1992).

A. Rewari, “Al for Customer Service and Support,
IEEE Expert (June 1992).

J. Rose, “Fatal Electromigration Voids in Narrow
Aluminum-Copper Interconnect,” Applied Phsyics
Letters (November 1992).

W Samaras, “Futurebus+ Electrical Behavior for
High Performance,” BUSCON "92 West Conference
Proceedings (February 1992).

M. Sayani, “DC-DC Converter Using All Surface-
Mount Components and Insulated-Metal
Substrate,” IEEE Seventh Annual Applied Power
Electronics Conference (February 1992).

H. Smith and W. Harris, “SIMS Quantification of
AsCs+ at CoSi2/Si Interfaces,” Proceedings of the
Eighth International Conference on Secondary lon
Mass Spectrometry (SIMS VIID) (September 1991).

M. Stick, “Matrices and Vectors,” Six Sigma
Research Institute (April 1992).

R. Ulichney, “The Construction and Evaluation of
Halftone Patterns with Manipulated Power Spectra,”
Raster Imaging and Digital Typograpby (RIDT)
(October 1991).

G. Wallace, “The JPEG Still Picture Compression
Standard,” Communications of the ACM (April
199D).

G. Wallace, “Overview of the JPEG (ISO/CCITT)
Still Image Compression Standard,” SP/E [inage
Processing Algorithms and Techniques
(February 1990).

110

Vol. 5 No.3 Summer 1993 Digital Technical Journal

The following patents were recently issued to Digital Equipment Corporation. Titles and names supplied

Recent Digital US. Patents

te us by the US. Patent and Trademark Office are reproduced exactly as they appear on the original

published patent.

D337,761 M. Hetfield and S. K. Morgan

D338,001 M. J. Falkner, M. R. Wiesenhahn,
and M. D. Good

D338,653 M. Hetfield and S. K. Morgan

5,185,877 W. Bruckert

5,220,661 A. H. Mason, W-M. Hu,
C. Kahn, and J. C. R. Wray

5,224,263 W. Hamburgen

5,225,790 P Esling,]J. M. Rinaldis, and
R. W. Noguchi

5,226,092 K. Chen

5,226,170 P. Rubinfeld

5,227,041 B. Brogden, L. Brown, and
S. Husain

5,227,582]. Copeland and D. Robinson

5,227,604 G. M. Freedman

5,227778 G. Vacon

5,228,066 C.J. Devane

5,229,575 L. Colella, R. Pacheco, and
D. Waller

5,229,901 M. L. Mallary

5,229914 D. A Bailey

5,229,926 D. Donaldson and D. Wissell

5,230,044 N. Quaynor and X. Cao

5,231,246 D. Alessandrini, J. M. Benson,
and W. Rett

5,232,570 C. Byun, B. Haines, E. Johns,
Q. Ng, G. C. Rauch, R. M.
Raymond, and D. Ravipati

5,233,616 M. Callander

5,233,684 R. Ulichney

5,235,211 W. Hamburgen

5,235,642 M. Abadi, A. Birrell,
B. W. Lampson, and
E. Wobber

5,235,644 B. W.Lampson, C. Kaufman,
W. Hawe, M. E Kempf, J. Tardo,
and A. Gupta

5,235,693 M. Gagliardo, J.J. Lynch,

and P M. Goodwin

Electronic Device Module
Positioning Device

Power Supply Module
Protocol for Transfer of DMA Data

System and Method for Reducing Timing Channels
Digital Data Processing Systems

Gentle Package Extraction Tool and Method
Tunable Wideband Active Filter

Method and Apparatus for Learning in a Neutral Network

Interface between Processor and Special Instruction
Processor in Digital Data Processing System

Dry Contact Electroplating Apparatus

Video Amplifier Assembly Mount

Atmospheric Pressure Gaseous-Flux-Assisted Laser
Reflow Soldering

Service Name to Network Address Translation in
Communications Network

System and Method for Measuring Computer System
Time Intervals

Thermode Structure Having an Elongated, Thermally
Stable Blade

Side-by-side Read/Write Heads with Rotary Positioner
Cooling Device that Creates Longitudinal Vortices
Power Supply Interlock for Distributed Power Systems
Arbitration Apparatus for Shared Bus

Apparatus for Securing Shielding or the Like

Nitrogen-Containing Materials for Wear Protection and
Friction Reduction

Write-back Cache with ECC Protection

Method and Apparatus for Mapping a Digital Color Image
from a First Color Space to a Second Color Space

Semiconductor Package Having Wraparound Metallization

Access Control Subsystem and Method for
Distributed Computer System using Locally Cached
Authentication Credentials

Probabilistic Cryptographic Processing Method

Method and Apparatus for Reducing Buffer Storage in
a Read-Modify-Write Operation

Digital Technical Journal

Vol. 5 No. 3

Summer 1993

Recent Digital US. Patents

5,235,697
5,237,662

5,239,260
5,239,493

5,239,630
5,239,634
5,239,637

5,240,549
5,240,740

5,241,564
5,241,621

5,241,652

S. C. Steely and J. H. Zurawski

T. L. Carruthers, K. Green,
and S. Jenness

D. Ringleb and D. C. Widder
S. K. Sherman

R. E Lary and X. Cao
B. Buch and C. MacGregor

D. W. Thiel, W. Goleman,
and S. H. Davis

J. E. Fitch and W. Hamburgen
K A. Frey and M. L. Mallary

J.L. Yang
R. Smart

W. Barabash and W. Yerazunis

Set Prediction Cache Memory System using Bits of the Main
Memory Address

System and Method with a Procedure Oriented
Input/Output Mechanism

Semiconductor Probe and Alignment System (SPAS)

Method and Apparatus for Interpreting and Organizing Timing
Specification Information

Shared Bus Arbitration Apparatus Having a Deaf Node
Memory Controller for Engineering/Dequeuing Process

Digital Data Management System for Maintaining Consistency
of Data in a Shadow Set

Fixture and Method for Attaching Components

Method of Making a Thin Film Head with Minimized
Secondary Pulses

Low Noise, High Performance Data Bus System and Method

Management Issue Recognition and Resolution
Knowledge Processor

System for Performing Rule Partitioning in a RETE Network

112

Vol. 5 No. 3 Summer 1993 Digital Techuical Journal

dlilgliltlall |

ESTIEK AL
&b&nﬁ:ﬁ;

=
=)
o= R
()
o
‘et
(@]
o5
1]
=g
=
(g)]
»
IS
(@
D
S
=
=
IS
—
oQ
O
=
-
=
3
¥
-
(@
=
=
()
=
(=)
0)e}
»
c
@)
=
-
Q]
o
~
-
1)
»
(@]
[@1h

ISSN 0898-901X

Printed in U.S.A. EY-P98GE-DP/93 10 02 17.0 Copyright © Digital Equipment Corporation. All Rights Reserved.

	Front cover
	Contents
	Editor's Introduction
	Biographies
	Foreword
	International Cultural Differences in Software
	Unicode: A Universal Character Code
	The X/Open Internationalization Model
	The Ordering of Universal Character Strings
	International Distributed Systems - Architectural and Practical Issues
	Supporting the Chinese, Japanese, and Korean Languages in the OpenVMS Operating System
	Character Internationalization in Databases: A Case Study
	Japanese Input Method Independent of Applications
	Further Readings
	Recent Digital U.S. Patents
	Back cover

