
Digital
Technical
Journal

GRAPHICAL SOFTWARE DEVE LOPMENT

SYSTEMS ENGINEE RING

Volume 7 Number 2
1 995

Editorial
Jan<.: C. 1\lakc, Managing Ediror
Kathleen J\'1. Sr..:rson, Editor
Hdcn L. Parrerson, Ediror

Circulation
Catherine: M. Phillips, Adrninisrrator
Dor·orhea B. Cassady, Secretary

Production
Terri Aurieri, Producrion Editor
AnneS. Katzcff, Typographer
Peter R. vVoodbury, Illustrator

Advisory Board
Samuel H. hrller, Chairman
Richard W. Beam·
Donald Z. Harbert

William R. Hawe
Ric bard J. Hollingsworrh
Richard 1-'. Lrry
Alan G. Ncmcrh
Jean A. Proulx
Roberr M. Supnik

Cover Design
DEC l'USE software, described in this issue,
is an integrated set of programming tools
for UNIX developers. Our cover image of
unique puzzle pieces being tittc:d rogcthcr
conveys the DEC FUSE concept of an inte­
grated collection of independent tools
cooperating within a graphical dcvclopmellt
environment.

The cover was designed by Lu cinda O'Neill
of Digital's Design Group.

The: Digilctl Technical]ournu/ is a rdcrc:cd
j ournal published quarterly by Di gital
Equipment Corporation, 30 Porter Road
1 .)02/ D I 0, Lirtleron, Massachusetts 01460.
Subscriptions ro rhe.fournolare $40.00
(non- U.S $60) tor four issues and $75.00
(non- U.S. $115) lcH eight issues and musr
be prepaid in U.S. tlrnds . University and
collq;e prokssors and Ph. D. students in
the electrical engineering and computer
sci�nce fields receive complimentary sub­
scriptions upon request. Orders, inquir·ics,
and address changes should be scm ro rhc
D(qital Technical.fournalar the published­
by address . Inquir-\cs can also be scm elec­
tronically ro dtj@digital.corn. Single copies
and back issues arc available for $16.00 each
by calling DECdirect at 1-800-DJGITAL
(1-800-344-4825). Recent back issues of t he
journal are also available on rhe Internet at
hrrp:j jwww.digiral.com/into/DTJ/homc.
hrml. Complete Digital Internet listings can
be obtained by sending an electronic mail
message to info@digiral.com.

Digital employees may or-der subscriptions
through Readers Choice by entering VTX
PROFILE clt rhe system prompt.

Comments on the conrenr of any paper
are welcomed and may be sent ro the
mmaging editor at the published-by or
network address .

Copyright© l 995 Digita l Equipment
Corporation. Copying without fee is per­
mitted provided that such copies are made
for usc in eduGrtional institutions by f

.
<eulry

members and are nor distributed tor com­
mercial advantage. Abstracting wirh credit
of Digital Equipment Corporation's author­
ship is perrnitted. All rights reserved .

The intonmtion in rhejounwl is subject
ro change without noricc and should nor
be construed as a commitment by Digital
Equipment Corporation or by rhc compa­
nies herein represented. Digital Equipment
Corporation assumes no responsibility for
any errors that may appear in the Journal.

ISSN 0898-90 I X

Dou.rmcntation Number EY-UOO!E-TJ

Book production was done by Quanti..:
Communi..:cuions, Inc

Tbc following clrc rradem<rrks of Digital
Equipment C:mporarion: Digital, the
DIGITAL logo, ACrviS, CDD/ Repositorv,
DEC, DEC: FUSE, DECI.rdebug, DECmcc,
DEC:ner, DECsr:uion, DECwindows ,
ObjccrBrokcr, Open VMS, l'ATHWORKS,
POLYCENTER, ULTIUX, VAX, VA)(10000,
VAX C, <lnd VAXcluster.

AJ X cmd IBM <lre registered trademarks
and Common User Access is <1 trade­
mark of l ntcrnariona l Business Machines
C:orporarion.

AT&T and SeeSoft arc r·egisrcrcd
trademarks of AnlCI·icm Telephone
and Telegraph Com pany.

13T is a registered trademark of British
Tekcon1municarions pic.

Fujitsu is a registered rradcm;lrk of
Fujitsu Lim ired.

Hcwlerr-Packard, H P Soft Bench, and
HP-UX are registered rradermrks of
Hewlett-Packard Companv.

Hitachi is a registered rrcrdemark of
Hitachi, Ltd.

Hyper-Help is :r n·ackmark of Rrisrol
Technology, Inc.

Lcgo is a registered rradernark of
lnrerlego AG.

J'vlorif, OSF, and OSF/Morifarc regis­
tered trademarks of Open Sotnvarc
Foundation, Inc.

MS and MS-DOS are regisren:d track­
marks and Windows and Windows NT
are trademarks of Microsoft Corporation .

NEC is a registered trademark ofNEC
Corporation .

Object Plus is a trademark of Prorosoft, Inc.

OPEN LOOK is a registered trademark
of UNIX System Laboratories, Inc.

Sun JVlicrosy srems is a registered trade­
mark and SPAR.Cworks <lnd Sun OS are
trademarks of Sun Mi..:rosysrems, Inc.

UNIX is a registered trademark in the
United States and other countries, licensed
exclusively through X/Open Colnpany Ltd.

X/ Open is a trademark of X/Open
Company Limited.

X Window System is a trademark of the
Massachusetts lnsti turc of Tc:..:hnology.

Contents

Foreword

GRAPHICAL SOFTWARE DEVELOPMENT

DEC FUSE: Building a Graphical Software

Development Environment from UNIX Tools

Adding a Data Visualization Tool to DEC FUSE

SYSTEMS ENGINEERING

Multivendor Integration Architecture: Standards,

Compliance Testing, and Appl ications

Integrating Applications with Digital's

Framework-based Environment

Project Gabriel: Automated Software Deployment

in a Large Commercial Network

Mal1endra R. Patel 3

Richard 0. Hart and Glenn Lupton 5

Donald A. Zaremba 20

Eric A. Newcomer 34

James R. Kirkley and William G. Nichols 47

Owen H. Tallman 56

Digital Technical Journal Vol. 7 No.2 1995

2

Editor's
Introduction

The integration of distinct parts to
form a useful alld dkctive whole is
the underlying theme fix t\vo sets of
topics in this issue. The opening papers
describe the integration of program­
ming tools to create a graphical soft­
ware development environment. The
second set of papers addresses the inte­
gration of large, complex systems­
systems that encompass all the software
and hardware components needed to
serve the user's purpose.

The DEC FUSE software develop­
ment product is designed to take
advantage of UNIX workstations'
graphical capabilities, supporting
such programming languages as C,
C++, and Fortran. Rich Hart and
Glenn Lupton review the origins
of DEC FUSE in the FIELD environ­
ment developed at Brown University
and compare FUSE with similar envi­
ronments based on a tool integration
model. The authors present t\vo key
aspects of the product design: graphi­
cal user inrerf:1ces built on top of
UNIX commands and a multicast
messaging mechanism that allows
the tools to work together.

A tool recently integrated into the
DEC FUSE suite is tl1e Data Visualizer,
which allows software developers to
display thousands oflines of code with
associated statistics. Don Zaremba
describes the process of taking the
tool ri·om advanced development
through implementation and relates
what the engineers learned as they
adapted current visualization research
to their goals and built prototypes of
the technology. He concludes with
a description of the resulting product
and plans for future work.

Digital Technical Journal

Our next three papers explore
experiences with different aspects
of systems-level engineering and inte­
gration. Eric Newcomer's overview
ofrhe Multivendor Integration
Architecture (MIA) effort, initiated
by Nippon Telegraph and Telephone
(NTT), highlights many factors that
in general make systems imegration
challenging. NIT sought, through
standardization, to reso.lve the costly
problem of incomp:nible application
environments. Eric discusses the MIA's
chosen direction based on the need
for portability, interoperability, and
a common user interface. He then
describes Digital's contribution in
the area of distributed transaction
processing and summarizes the MIA
consortium's successes and continu­
ing work.

A specific object-oriented product
developed to integrate systems appli­
cations is the subject ofJim Kirkley's
and Wick Nichols' paper. Compris­
ing Jacobson's and Rumbaugh's
methodologies, third -party software,
and Digital's COREA-compliant
ObjectBroker, the Framework-based
Environment (FBE) product addresses
the need for new and legacy applica­
tions to interoperate in a distributed
manufacturing system. The authors
step through a typical integration
project and expand on trade-otis that
must be addressed in an integration
project that takes an object view of

the system environment.
A major systems engineering proj­

ect to solve the problem of ongoing
introductions of software into a large
computer net\vork is described in the
concluding paper by Owen Tallman.

Vol. 7 No.2 1995

The project, commissioned by a large
French bank, extended over a net­
work of data center clustered servers,
branch servers, and thousands of
workstations and personal computers.
Owen outlines tl1e customer's require­
ments and Digital's role as developer
of the automated software deplov­
ment facility. He reviews the configu­
ration management model (CMM)
and other models that were the basis
for the project team's work. His dis­
cussion of the implemenration encom­
passes examples that illustrate the
intricacies of a rigorously managed
software deployment process.

The editors thank Mikacl Rolfhamre
of Digital's UNIX Business Segment,
Ed Balkovich of Digital's Corporate
Research Group, and Hank Jakiela
of the Systems Business Unit for their
help in developing this issue. At the
end of the issue, we also acknowledge
and thank the referees for their very
valuable reviews of manuscripts sub­
mitted during this past year.

Upcoming topics in the Journal are
Digital's high-performance Fortran
compiler and parallel somvare envi­
ronment, and the Sequoia 2000

global change research project.

Jane C. Blake
/Vlanaging Editor

Foreword

Mahendra R. Patel
Corporale Consulting Ellp,ineer
Vice President, Systems Engineering

Systems engineering is the engineer·

ing of complete systems as opposed
to parts of systems. Exactly vvbat this

means depends on one's point of
view. One person's system is another
person's component. From chips
to boards to boxes to clusters to net­
works, subsystems are combined into
ever larger and more complex aggre­
gates. At Digital, systems engineering

means the engineering of systems at

a level of aggregation above individ­
ual hardware or software products.
Individual processors, storage subsys­
tems, network hubs, operating systems,
database systems, and applications are
viewed as components of the system.
For example, a nationwide network
for interactive securities trading, built
from hundreds of nodes at dozens of
sites, is one system.

A number ofu·ends in the computer
industry make it more challenging for
a computer company to practice sys­
tems engineering:

• Commoditization: Component
products, from microprocessors
to applications, are increasingly

becoming low-cost, high-volume
commodities . Ironically, as the
cost of the components drops,
the cost of integrating them into
complete systems becomes a larger
fraction of total system cost.

• Distributed systems: While they
provide new opportunities for bet­
ter performance, scaJing, and fault­

tolerance, distributed systems also
present new engineering challenges

for ensuring these same attributes.

• Heterogeneous systems: Increas­
ingly, computers from a variety of
vendors, running a variety of oper­
ating systems, are being connected

together and are expected to work
together correctly.

• Complexity: Distributed systems
arc becoming more complex tor
a number of reasons. The number
of components is growing. The

number of types of components
that must work together is grow­
ing. And the variety of unique
configurations is growing.

During the last decade, the
computer industry has changed fi-om
one that oHered vertically integrated
systems built hom proprietary crus,
disks, networks, operating systems,
and layered products to one that pro­
duces commodity products conf(>rm­
ing to de jure or de fJ.cto standards.
Unlike the manufacture of automo­
biles or aircraft, a single computer
manufacturer seldom produces all

the components of a complete work­
ing system. The hardware, system
software, and applications often come
from three djffcrent vendors. Systems
engineering, as now practiced in the
computer industry, places less empha­

sis on top-down design of hardware
and software components and their
interfaces to meet system-level goals.
Rather, it is based on anticipating
a broad spectrum of system designs.

From the point of view of a com­
puter company, systems engineering

must now be concerned with assem­
blies of commodity hardware and
software products. Thus, four areas

are of special interest to systems engi­
neering in the computer industry:

interoperability, performance, scala­
bilit)', and availabilit)'.

lnteroperability of components,
including components from different

vendors, is difficult to veri�' because

Digital Technical Journal Vol. 7 No . 2 !995 3

4

of the virtually infinite number of
possible combinations of compo­

nents. For example, the introduction
of a new component often can expose

bugs in system components previously
thought to be working. Systems engi­

neering work in this area includes the

development of tools for effective

testing and the development of indus­

try standards for interoperability.
The performance of a system can

depend in a complicated way on

the performance of its components.
Sophisticated tools are needed to

predict the performance of a complex
system from the performance of its

parts or to diagnose subtle interac­

tions between components. Today,

performance tools for distributed sys­

tems are not as sophisticated as those

for individual computers.
Scalability refers tO tl1e ability of

a system to start small and grow big.

Size may be measured in terms of

numbers of users, computers, disks,

applications, or a combination of

parameters. The ability to scale up
distributed systems over two orders
of magnitude by adding components

is one of their most attractive attrib­

utes. However, scaling effectively

requires careful analysis and design

of the system. For example, a system

design based on cost-effective pack­

aging of functionality at a small scale
can exhibit bottlenecks as computers

are added to the system to handle

increased workloads.

A distributed system is inherently

less reliable unless care is taken tO

improve availability by adding redun­
dant components. Simply partitioning

functionality between a client and
server computer requires that both

the client and the server be working
for the functionality to be available.

Given technology with the same fail­

ure and repair characteristics, distrib­
uting functionality between two

computers results in a system that is

less available than one with the com­
plete functionality on one computer.

Often this is an academic point in

simple systems, given the levels of

component reliability. However, dis­

tributed systems with critical availabil­

ity requirements (e.g., a nationwide

Digital Technical Journal

network for interactive securities

trading) demand careful analysis and

design tO add appropriate redundancy.
Systems engineering is important

to Digital because even the best com­
ponent products are of no value to

customers until they are integrated

into complete working systems that

meet business needs. Ideally, one
would like to be able to build large,

complex systems by simply snapping

together small, simple components,
as if they were Lego blocks. It is
tempting to assume tl1at this should

be easy because many of the compo­
nents are available as inexpensive,

mass-produced, reliable commodities.
However, building complex systems

from simple parts is still difficult and
requires engineering work, especially

when the overall system stretches the
limits of the technology.

Systems engineers play a vital role
in major systems integration projects

that push the edge of the technology
envelope in some way. The system
may combine components never

before used together. The trend

toward heterogeneous systems makes
this more likely. The system may

stretch scaling limits by having more
nodes or nenvork connections or

users or data than ever before. The
trend toward large distributed systems

makes this scaling possible. The sys­

tem may need to meet demanding

requirements for overall system per­

formance or dependability. Increas­

ingly, heterogeneous, distributed

systems are being used for mission­
critical business applications.

Engineering analysis and design is
needed at all phases of a complex inte­

gration project, from the definition
of the technical requirements to the
design of the system to final testing
and verification. Custom software or

hardware may need to be developed,

either to glue together components

tl1at were not built to work togeilier or
to substitute for standard components

in order to meet demanding require­
ments for performance or scaling.

Systems engineers also develop
tools and methods to simpli�, the task

of integrating complete systems.
Digital's systems engineers are active

Vol. 7 No.2 1995

in the development of industry stan­
dards for ensuring the interoperability

of components from different ven­
dors. In this issue of the journal,
Eric Newcomer's paper describes

the development of standards for use

in the telecommunications industry.
Often, a system has legacy compo­

nents. Digital's systems engineers
are also active in the development of

frameworks that apply object-oriented
programming technologies to encap­
sulate legacy applications and data,

simplifYing the incorporation of

legacy components into new systems.
A framework for the integration of

manufacturing applications is described

in the paper by James Kirkley and

William Nichols. The Systems Engi­

neering group has developed test

tools and methods, and operates an
extensive laboratory for testing, verifi­

cation, and performance characteriza­
tion of combinations of products
from Digital and other vendors.

Testing and characterization data are

the basis for configuration guidelines
for systems intended to run a number

of popular commercial applications.

Computers, disks, network switches,

database systems, desktop applications,

and many other components are now

available as inexpensive, reliable com­

modities. Hardware and software
components from various manufac­
turers can be put together to build
a wide variety of systems, from one

as simple as a PC to one as complex

as a worldwide distributed system.

While the cost of the components
has dropped dramatically in recent

years, the cost of integrating these
simple components into complex dis­

tributed systems remains high and

therefore represents a larger fraction
of the total cost of me system. Today,
Digital's ability to successfully build
complex distributed systems provides

great value for our customers, often

greater than the value of the com­

modity components from which the
systems are built. For the future,
improvements in tools and methods

for building complex systems will

lower the cost of these systems sig­

nificantly, making new types of appli­
cations feasible and affordable.

DEC FUSE: Building
a Graphical Software
Development
Environment from
UNIX Tools

DEC FUSE is an integrated programming envi­

ronment for UNIX systems. It is an evolution

of the FIELD environment developed at Brown

University. To take advantage of the features

of workstations developed during the 1980s,

these environments were designed to provide

graphical user i nterfaces for commands com­

monly used by UNIX software developers. DEC

FUSE uses two methods to create an environ­

ment from smaller and simpler software com­

ponents. These methods are sending messages

between components and layering graphical

interfaces on top of UNIX commands. DEC FUSE

uses these methods to create an easy-to-use,

integrated environ ment with more features

than its individual components.

I
Richard 0. Hart
Glenn Lupton

The UNIX operating system originated at Bel l
Laboratories in 1969 and rapid ly grew more popular,
first within Bel l Labs, then at universities and, since the
early 1980s, at commercial enterprises. One reason
cited tor its success is that it is a good operating system
for programmers. 1 The wealth of simple rools and the
abil ity tO combine them easi ly into new tools provides
an attractive environment for software development.
Projects organize their development processes around
the capabilities ofUNJX tools like sees tor version con­
trol and make for appl ication bui lding. Developers
bui ld project-specific tools using UNIX commands
in shell scripts and have become proficient in the use
of tools like the dbx debugger and the emacs and vi edi­
tors2 Developers have also become accustomed tO
commands for text manipu lation (sed, awk), searching
(grep), and comparing (diff), and the use of these in
combination with other commands to do special tasks.

In the late 1980s, workstations came into common
use for soft\vare development. Workstations provided
additional compute power and were capable of display­
ing complex graphics and providing point-and-click
interfaces. The UNIX tools and she l l environment,
designed around character-cell video terminals and
hard-copy devices, did not make effective use of these
workstation capabilities. Different tools and a different
approach to com bining them were needed tO provide
an effective workstation-based development environ­
ment that would take advantage of the additional
compute power available to workstation users and the
graphical interfaces available using the X Window
System3

In this paper, we define the characteristics of
some integrated software development environments
designed to take advantage of modern UNIX work­
stations. We describe the DEC FUSE product as an
example of one of these environments and present two
methods used to create the DEC FUSE product. With
the first method, we show how roots are built as
graphical user interfaces (GUis) on top of existing
UNIX commands. Then, we show how messaging
enables these tools to work together. We present
trade-offs and design alternatives for each method .

Digiral Techni(al Journal Vol. 7 No.2 1995 5

6

Integrated Software Development Environments

Integrated software development environments are
collections of software programs, or tools, that are used
together to accomplish one or more phases of soft­
ware development. DEC FUSE and other integrated
sothvare development environments, including HP
SoftBench from Hewlett- Packard and SPARCworks
ti·om Sun Microsystems, are based on a control inte­
gration model4-7 Control integration enables tools
to make requests of other tools tor information or to
do required tasks8

The DEC FUSE, HP Sott:Bench, and SPARCworks
environments were strongly influenced by work done
at Brown University on the FIELD programming
environment by Steven P. Reiss8·9 DEC FUSE, in tact,
continues to use some code originally written as part
of FIELD. These environments share the following
features with FIELD:

• Environments are collections of cooperating tools.
Each tool addresses a single aspect of the sofhvare
development process such as editing, searching,
debugging, or building. This follows the UNIX
philosophy of making tools or commands simple
and focused on a single problem. As a result, they
are easier to build, maintain, and use. The tools
cooperate with each other by performing opera­
tions at the request of other tools. For example, the
builder tool can request that the source code cor­
responding to an error be displayed, and the text
editor will present the code.

• Tools use a selective broadcasting communications
method. Tools send simple, usually textual, mes­
sages to communicate with other tools.1o A message
may be either a request for a service or a notification
of the occurrence of an event. Tools register their
interest in receiving particular messages. A message is
then broadcast without requiring the sender to spec­
if}' who will receive it. Since requests are not directed
to a particular tool, a tool can be replaced with a sim­
ilar tool that responds to the same messages without
making changes to the sender. Because messages are
broadcast, multiple tools can receive a notification
and each can take appropriate action.

• Source tiles and annotations are viewed using a sin­
gle text editor. Each tool that needs to present
source text to the user does so by sending request
messages that are processed by a single source text
editor. The text editor displays the desired source
tiles, and it may also place annotations next to
source lines ofinterest. Annotations are used to link
the sources with other parts of the environment.
For example, the location of breakpoints is pro­
vided by the debugger, the location of build errors
by the builder, and the location of strings matching
a pattern by the search roo I. Each of these locations

Digit�\ TcchiJical Journal Vol. 7 No.2 1995

is identified with an annotation symbol next to
a line of source code in the editor display.

• GUTs are built on top of UNIX tools. Many of the
tools in the environment are GU!s fitted to existing
UNIX commands such as make, grep, and dbx.

These interfaces provide menu and button access to
these commands and their options; they also inter­
pret the results of the commands, presenting them
in tonnatted, interactive displays.

• Program information is presented pictorially. The
graphical display capabilities of the workstation are
used ro pictorially present information that may be
complex or extensive. For DEC FUSE, this includes
a program's function call graph, the dependencies
in a makefile, or the execution times of each func­
tion in a program. This issue of the Digital
Technical Journal presents another example of
displaying information pictorially with DEC FUSE
in the paper "Adding a Data Visualization Tool
to DEC FUSE."11

• Users continue to use familiar tools and methods.
Because the FIELD and DEC FUSE environments
are built using existing tools such as make, sees, and
dbx, users can continue to use tools vvith which they
are familiar. They can also use existing makefiles
and source libraries in the environment. In addi­
tion, users can make a gradual switch to an environ­
ment such as DEC FUSE. They can use DEC FUSE
when it is most advantageous and continue to use
older tools and methods when that is preferable.

DEC FUSE Overview

The primary goal of the DEC FUSE product was
to create a commercially useful, integrated sofuvare
development environment supporting a variety of pro­
gramming languages, including C, C++, and Fortran.
The DEC FUSE environment takes advantage of the
capabilities of the UNIX workstation, while allowing
sothvare developers to preserve their investment in
familiar UNIX tools. DEC FUSE designers adopted
some FIELD components, which were converted to
use Motif Extensions were also made to the FIELD
environment to create the DEC FUSE product. These
extensions are described in the next sections. Several
tools have been added to the environment through
successive releases of DEC FUSE. The tools supplied
with DEC FUSE version 2.1 are listed in Table 1 and
are described in subsequent sections.

Selective Broadcasting Mechanism

The messaging used by DEC FUSE, called the multi­
cast messaging system, has been extended in two ways
beyond its FIELD origins. First, messages have been
made more functional in nature. In the FIELD envi­
ronment, messages are strings that are assembled by

Ta ble 1
Tools Supplied with Digital's DEC FUSE Version 2.1

DEC FUSE Tool

Editors

Debugger

Search

Builder

Code manager

Man page browser

Cross-referencer
Call graph browser
C++ class browser

Profiler

Compare

Help

DEC FUSE shell

UNIX Commands Used

emacs, vi (and a Motif-based
editor)

dbx or DECiadebug (on Digital
platforms)

grep, fgrep, egrep

make, gnumake

sees, res

man

Use common data from
compilers or other
source scanners.

prof, gprof, pixie

diff

Hyper Help

sh, csh, ksh, ...

the sending tool and delivered to receiving tools. The
receiving tools have registered an interest in particular
messages by describing them using a pattern string.
DEC FUSE uses a more functional interface that more
closely resembles a remore procedure calling mecha­
nism. Each tool detlnes the messages that it can send
and receive as function definitions using the DEC
FUSE tool integration language (TIL). Second, a set of
components called the DEC FUSE EnCASE facility has
been developed to support the integration of new tools
and new messages into the DEC FUSE environments
These components include the TIL compiler and the
Message Monitor tool, described later in this paper.

Choice of Source Code Editor

Instead of having a different editor as part of each tool,
the FIELD environment provided a single GUI-based
editor. Because most users have strong preferences
about which text editor they use, DEC FUSE
extended the environment to allow each user to
choose from three different editors: emacs, vi, and the
DEC FUSE editor2 Both emacs and the DEC FUSE
editor support use of annotations supplied through
interactions with other tools. Users of the vi editor do
not see annotations, but other tools can still position vi

on source lines of interest.

DEC FUSE Tools

The tools described in this section are currently available
in DEC FUSE. Figure 1 shows the DEC FUSE C++
class browser, builder, code manager, and profiler tools.

• The search tool searches files for strings matching
a literal string or regular expression using grep.

Options available through the user interface allow
for speci�'ing whether the search should be case­
sensitive, whether Jines matching or not matching

should be displayed, and whether the search should
be limited to a single directory or an entire direc­
tory tree.

• The builder builds applications using the make

or gnumake commands and existing makefiles or
makeflles generated by the builder. A scrollable
results window shows the output tor the build
operation, including diagnostic messages. The build
dependencies between the tiles for the application
that are described in the makdile are displayed
graphically. The builder also distributes build
actions across hosts on a local area network (LAi'\l)
and provides a user interface for speci�'ing those
hosts and tor monitoring the progress of the build.

• The debugger provides a GUJ to command line
debuggers. This interface provides a source display
with annotations for breaks, conditional breaks,
and the current execution point. Debugging com­
mands can be executed using buttons, menus, and
a command line interface. Special windows provide
for viewing and changing variables, breakpoints,
and machine registers, and for monitoring the
values of expressions.

• The compare tool displays the differences benveen
two text files in a side-by-side display with related
areas highlighted and graphically connected. The
analysis of the differences is provided by the diff

command.

• The code manager provides a GUI to the version
management tools res and sees. The code manager
displays the revision history of the managed files.
Details such as author, date created, and comment
can be displayed for each version. In addition, the
code manager uses the compare tool to display dif­
ferences between revisions or revisions and files.

• The man page browser displays the reference pages
for commands, system calls, subroutines, and spe­
cial files. References to other manual pages in
the text are hot links, and the user can click on a
reference to display the other page. The man
page browser can also display an index of selected
reference pages. Users control the index content
by specifying a keyword to match in the reference
page description or a prefix to match to the refer­
ence page name. These allow users to find reference
pages when they are unsure of the function or com­
mand name.

• The protiler runs an application to collect run-time
statistics and displays the results at the function and
line level. Statistics include the CPU time used
by functions or source lines, function-call counts,
line-execution counts, and function and .line test
coverage.

• The cross-referencer displays source locations for
declarations, references, and function calls whose

Digital Technical Journal Vol. 7 :--Jo. 2 1995 7

00

Figure 1

::-- -- - DEC FUSE . Code Manager
Buffer library Commands View Graph

llirllng

1----11 11\ /us r /use rs/1 upton/fuse-examples/co u nt/RCS
[j Makefile
@I count.c

DEC FUSE C + + Class B rowser, B u i lder, Code Manager, and Profilcr

names match a regular expression . Queries can be
constrained by declaration types and locations
among other things.

• The call graph browser graphically displays the
call relationships within a program. Relationships
between fu nctions, source files, and source direc­
tories can be shown. The user can constrain the
display to selected parts of the program.

• The C + + class browser displays the C + + -class
hierarchy graphical ly. I nheritance paths and
detailed information about each member and class
can be displayed.

• Editors include the DEC FUSE text editor, emacs,

and v i . The D EC FUSE and emacs editors allow
other DEC FUSE tools to supply annotations
on source text lines of interest. In addition , other
DEC FUSE tools can be invoked from the editor,
inclu ding the builder, the code manager, and the
man page browser. The DEC FUSE emacs editor is
a standard emacs, with additional keys defined for
DEC FUSE fu nctions.

• The help tool works with the HyperHelp tool from
Bristol Technology, Inc. to display on-line help and
training.

• The D EC FUSE shell supplies a terminal emulator
window running a standard UNIX shel l in the
context of the user's DEC FUSE development
environment.

In addition to the tools l isted above, DEC FUSE
includes a control panel tool that starts tools and
manages their environment.

Using the DEC FUSE Tools Together

The messaging mechanism allows each of the tools to
make selected operations available to other tools. For
example, the editor makes its ability to open and dis­
play a source file and to position to a specific line avail ­
able t o the other DEC FUSE rools through messages.
The man page browser accepts a message that causes it
to display a manual page for a specified topic. The fol­
lowing scenario, summarized in Figure 2, shows how
messaging ties together DEC FUSE tools into an inte­
grated environment.

1 . To locate places in an application that need to be
changed, the developer starts the DEC FUSE
search tool and looks through C source fi les for
occurrences of a particular name. The files and lines
containing a match are displayed in th e search tool .
By double-clicking on a line, the corresponding file
is loaded into the DEC FUSE editor, and the l ine is
displayed with an annotation that the search tool
provided the location. (The search roo! is used in
this scenario, but the cross-referencer can also be
used to do this task.)

...-------. 1 . POSITION
TO L INE

SEARCH

grep

2. CHECK
OUT FILE

Figure 2

CODE
MANAGER

res

DEC FUSE Tool Communications

BUILDER

make

3. OPEN FILE

2. After inspecting the source, the user decides to
modify the code, but must first checi< it out using
res. By choosing the "check out" menu item in the
editor, the user starts the D E C FUSE code man­
ager, which shows the user the revision being
checked out and allows the user to browse the
library before confirming the check-out operation.

3 . The code manager sends a message to the editor
tel l ing it to load the file to ensure that the user is
editing the latest version.

4. The user edits the file and then starts a compilation
using the "compile fi le" menu item in the editor.
This startS the DEC FUSE builder, which runs
make and displays compiler diagnostics.

5. By double-clicking on a diagnostic, the user gets
back into the editor on the line containing tl1e error.

The messaging mechanism allows for automated
switching benveen the tools . Information is passed
between the tools, thus eliminating retyping or cut­
ting and pasting. Other features also contribute to the
feeling of an integrated environment in DEC FUSE.
These include consistent GUis for all tools, global
preference setting, saving and restoring of state infor­
mation, and centralized help and trai ning. However, it
is the messaging that ties tools rogether, making DEC
FUSE an integrated environment rather than a simple
collection of tools.

We have now examined the features of integrated
software development environments in general and
the DEC FUSE environment as an example of these
environments. In the next two sections, we examine
t\¥0 important aspects of the design of DEC FUSE.
First, we discuss the mechanisms used to add graphical
interfaces to existing UNIX commands. Then we pre­
sent the design of DEC FUSE messaging.

Digital Technical Journal Vol . 7 No. 2 1995 9

Building Graphical Interfaces for Existing
UNIX Commands

Most DEC FUSE tools consist of a graphical program
that provides a point-and- click interface for invoking
UNIX commands. This program interprets the results
ti·om the execution of the commands and presents
these results graphically. This approach has several
advantages over building a completely new tool.
These are examined in this section, along with the
implementation techniques used.

Rationale for Building a Graphical Interface for

Existing Commands

Using an existing command to perform functions
needed by a new command is a technique that is often
used on UNIX systems. DEC F USE tools use existing
commands for the following reasons:

User Investment Protection Two types of investments
must be made in software development environments.
One investment is training: software developers have
learned the concepts and capabilities of the underlying
tools. Since the graphical interfaces of an integrated
environment are built on tools that are familiar to
users, they can be learned in considerably Jess time.
For example, the concept of revisions, the semantics of
revision numbers, and the capabilities of res are the
same whether res is invoked from the command line or
selected ti.-om the DEC FUSE code manager.

Second, a project may have invested in procedures
and software that depend on project tools such as
make and sees. Users often use many makefiles that
have been tailored to meet the needs of their project.
Likewise, most projects use sees and res in ways that
must be supported by scripts. By building the code
manager and builder on the existing res, sees, and make

utilities, this investment is p reserved. (The DEC FUSE
code manager provides mechanisms to support user­
written scripts used in combination with sees and res .)

Easier to I nvoke Operations Although tbe UNI X
command line environment i s extremely flexible, most
users find themselves frequently ret-erring to reference
pages to check command syntax and option flags. By
replacing commands with menu items and buttons
and by replacing flags with toggle buttons and till-in­
the- blank dialog boxes, users interact with the tools
faster with less typing and less browsing through refer­
ence pages. This is especially true for novices who have
not def-Ined their own collection of aliases and scripts.

For example, searching all the header files in a direc­
tory h ierarch)' for the occurrence of a string requires
a command like the following:

f i n d / u s r / i n c l u d e - n a m e " * . h "
- e x e c g r e p - i F L T M { } / d e v / n u l l \ ;

10 Digiral Technical journal Vol. 7 1 o. 2 1995

This is a typical example of a command that a software
developer might need to use from time to time. The
command would be entered on one line. A first-time
user, however, might not correctly input all tbe details
of tl1e command tor the toll owing reasons:

• The " *.h " designation includes q uotation marks so
that it is not immediately expanded by the shell in
the user's current directory, but instead expanded
by find in all the subdirectories in the just/include
tree.

• If the search is to be case-insensitive, the -i switch
must be used with the grep command.

• The grep command supplies the name of the file
where the string is found only if more than one
file is supplied in the grep argument list. / devjnull
is added to make grep include tl1e file names in
the output.

• The find command requires that subcommands
that it will execute be terminated with a semicolon.
Because a semicolon is also recognized by the shell,
it must be preceded with a backslash (escaped),
so that f ind will sec it.

To do the same operation ti.·om the DEC FUSE searc h
tool, the user fills in some fields and sets a toggle (see
Figure 3). This can be done easily and correctly the
first time by both novice and experienced U NIX users.

r�r-- DEC FUSE: Search _____ I ' ri
ools !uffe r O p t ions He l p

/usr/�/1�

F l ie s :
D i rectory Tree

search For: Not Matching

I FLU[Any Case
l'rws NBI Ge tlle _, tlelft jbr,..... Mtrfn

��sue} Hold output!
/usr /inc !ude/f !oat. h

F igure 3

69 * FLT_HANT_DIG
72 * FLT _MI N_EXP
73 * FLT_M l "'
74 * FLT_MIN_lO_EXP
75 * FL UIAX_EXP
76 * FL T_I1AX
77 * FLT _MAX_lO _EXP

130 -define FLT _MANT _DIG

DEC FUSE Search Tool

_)

Number of bits in the J Exponent of sma II est �
Sma l l est NORMALIZED fl
M i nimum base 10 expon<
Exponent of I argest N(
Lar·gest NORMAL IZED fie
Largest base 10 expon<

24 J

When the user spots an interesting occurrence i n
the output from a g rep command and wants to edit
the file, a command l ine i nterface requires the user to
enter the command to edit the file and to type the file
name and l ine number. Using the DEC FUSE search
interface, the user double-c licks on the i nteresting l ine
i n the search tool and the editor automatical ly loads
the file and sets the position to the desired l ine, saving
typing and eliminating the possibi lity of errors.

Hid ing Details Another advantage of graphical inter­
faces on underlying commands is the abil ity to hide
details of particular commands. For example, the DEC
FUSE code manager supports both sees and res with the
same graphical interface . A user does not need to know
the differences between res and sees; by using the
graphical interfaces, the user can see similar version his­
tory information from either u nderlying l ibrary tormat.

Graph ical Presentation One advantage of a work­
station is its ability to present information graphical ly.

Figure 4
DEC FUSE Builder Tool wirh Dependency Graph

A GUI layered on a command l ine tool can analyze the
output of the tool and present it to the user graphi ­
cal ly, making the information in the output easier to
understand.

An example of this is the dependency graph in
the DEC FUSE builder, as shown in Figure 4. The
graph d isplays the build dependencies for the user's
application as specified explicitly or implicitly in the
application's makefile . This d isplay is an analysis and
presentation of the output provided by make when
run with options that produce debugging information
about m akefiles. Nodes designated orange in the
graph represent the files that have changed . Nodes
designated red in the graph represent the files that
need to be rebu ilt because of their dependency on the
changed files.

Another example of usi ng the graphical capabilities
of the workstation is the DEC FUSE compare tool,
which is built on the UNIX diff uti lity. The output of
the UNIX diff uti l ity is textual; an exam ple is shown i n
Figure 5 . I n contrast, Figure 6 shows how the DEC

Digital Technical journal Vol. 7 No.2 1995 l l

Figure 5
Sample diff Output

Figure 6
DEC FUSE Compare Tool

1 2 Digital Technical Journal

c s h # d i f f f i l e 1 . t x t f i l e 2 . t x t
5 , 9 d 4
< T h e s e a r e L i n e s t h a t a r e o n l y i n f i l e 1 .
< T h e s e a r e l i n e s t h a t a r e o n l y i n f i l e 1 .
< T h e s e a r e l i n e s t h a t a r e o n l y i n f i L e 1 .
< T h e s e a r e l i n e s t h a t a r e o n l y i n f i l e 1 .
< T h e s e a r e L i n e s t h a t a r e o n l y i n f i l e 1 .
1 1 a 7 , 1 0
> T h e s e a r e l i n e s t h a t a r e o n l y i n f i l e 2 .
> T h e s e a r e l i n e s t h a t a r e o n l y i n f i l e 2 .
> T h e s e a r e l i n e s t h a t a r e o n l y i n f i l e 2 .
> T h e s e a r e L i n e s t h a t a r e o n l y i n f i l e 2 .
1 4 , 1 7 c 1 3 , 1 6
< T h e s e a r e L i n e s t h a t a r e d i f f e r e n t i n f i l e 1 .
< T h e s e a r e l i n e s t h a t a r e d i f f e r e n t i n f i l e 1 .
< T h e s e a r e l i n e s t h a t a r e d i f f e r e n t i n f i l e 1 .
< T h e s e a r e l i n e s t h a t a r e d i f f e r e n t i n f i l e 1 .

> T h e s e a r e l i n e s t h a t a r e d i f f e r e n t
> T h e s e a r e l i n e s t h a t a r e d i f f e r e n t
> T h e s e a r e l i n e s t h a t a r e d i f f e r e n t
> T h e s e a r e l i n e s t h a t a r e d i f f e r e n t

i n
i n
i n
i n

f i l e 2 .
f i l e 2 .
f i l e 2 .
f i l e 2 .

Vol . 7 No. 2 1 995

FUSE compare utility displays these differences graph­
ically, using highlighting to indicate the differences
and shapes to connect regions in the two files that
relate. The display allows differences to be viewed in
the context of the lines before and after them and the
lines that correspond to them in the other file.

Reduced Tool Development Work An obvious advan­
tage for the developers of the interface is that builcting
on a command line tool may involve considerably
less work than designing and implementing a new
tool that includes all the capabilities of the command
line tool . Furthermore, not every capability needs to
be provided through the user interface of the tool,
because users have access to less-used capabilities
through the command line . For example, the seldom­
used administrative features of sees and res can be omit­
ted from the user interface . Thus, with a minimum
amount of effort, it is possible to provide a convenient
interface to the most important underlying capabilities.

Managing Command Interfaces

It is common on UNIX systems to use the output of
one tool as input to another. In the case of DEC
FUSE, the output of command-line tools is being used
as input to DEC FUSE tools. The DEC FUSE tools
construct commands and pass them to a separate
process for execution. The results of these commands
are then interpreted by the DEC FUSE tools so that
desired information can be presented to the user. The
methods used to issue commands and to analyze their
results vary from one DEC FUSE tool to another.

One method used by DEC FUSE tools is to ctirectly
issue commands using the popen l i brary function,
which both starts execution of the command and
creates a pipe to the process running the command.
This is done by tools like the man page browser and
search. Output from the man or grep commands
that they issue is parsed by the DEC FUSE tool, often
using a simple mechanism such as the standard C
library function fsea nf, which applies a format string
to a line to parse it. Some tools also make use of lex

with or without yaec to aid in parsing the output of
the commands. 1 2•1 3

Other tools use PMAT (pattern matching) routines
for examining command output for desired patterns.
The PMAT functions were developed by Steven Reiss
as part of the FIELD environment. They are used in
FIELD both for managing messaging as well as for
interpreting the output of UNIX commands. For DEC
FUSE interfaces to UNIX commands, the patterns
used by the PMAT routines are organized in tables.
Portions of two of these tables are shown in Figure 7.
These examples are for the output of gnumake and
a make program supplied with Digital UNIX. l4 For
this analysis, there are two significant parts of each

pattern table entry: a text pattern that may be found
i n the command output, and the name of a routine
to be called if the associated pattern is found. For
example, when the error message "Failed to remake
target file ' % l s'" is recognized, the function named
make_g ivi ng_up is called with arguments that match
specifications in the pattern string.

Additional values from the table (omitted in the fig­
ure) are also passed as arguments to the routine. The
string ' %ls' in the pattern is similar to the conversion
specifications used by scanf. It represents a field in the
output that will be passed to the recognition routine
when a pattern is recognized. Some of the field specifi­
cation characters used are given in Table 2 . The num­
ber prececting most field specification characters tells
the pattern match what position this field should hold
in the argument list passed to the recognition routine.
When there is no number with a field specification
character, that field is not passed to the recognition
routine.

Choosing the Appropriate Command

Interface Method

The DEC FUSE product was designed to be portable
across several hardware pl atforms and many operating
system versions. DEC FUSE was developed on the
UL TRIX system and has been ported to Sun OS, AJX,
HP- UX, and Digital UNIX operating systems. It was
released to customers on all these platforms, except
AIX. Since portability across platforms and versions
is a goal, interfaces for different command implemen­
tations and versions need to be considered . The choice
of interface method is made based on the complexity
of the interface (the number of commands and
expected responses), the number of different inter­
faces needed because of system differences, and the
rate at which the interfaces are evolving.

Most common UNIX commands, such as grep, man,

and diff, have regular output that seldom changes. The
versions of these commands on the desired platforms
and operating systems have few ctifferences, so it is not
difficult to write portable code that can issue these
commands and interpret the output using the lex, yacc,

or the seanf functions.
In cases in which the output is less regular and varies

across commands and platforms, the PMAT facilities
are more appropriate. This includes the DEC FUSE
builder, which must support several ctifferent make

programs on the supported platforms. The PMAT
facilities allow for interpreting a large number of ctif­
ferent format lines and for selecting tables of patterns
appropriate to the underlying command. This makes it
easier for the builder to accommodate a variety of
make programs and interpret both output from make

and output from compilers.

Digital Technical Journal Vol . 7 No. 2 1995 1 3

14

Fig ure 7

! * * * * * * P a t t e r n t a b l e f o r g n u m a k e * * * * * * /
s t a t i c M A K E _ P A T g n u_ p a t t e r n_t a b l e [J = {

} . ,

{ " R e a d i n g m a k e f i l e s . . . " , g n u s c a n_m a k e f i L e , . . . } ,
{ " C o n s i d e r i n g t a r g e t f i l e 1 % 1 s 1 " , g n u s c a n_ c o n s i d e r , . . . } ,
{ " F o u n d a n i m p l i c i t r u l e f o r 1 % 1 s 1 " , g n u s c a n _f l a g s , . . . } ,
{ " U p d a t i n g g o a l t a r g e t s " , g n u s c a n_m a k e f i l e , . . . } ,
{ " F i l e 1 % 1 s 1 w a s c o n s i d e r e d a l r e a d y " , g n u s c a n _d o n e ,
{ " M u s t r e m a k e t a r g e t 1 % 1 s 1 " , g n u s c a n_ f l a g s ,
{ " F a i l e d t o r e m a k e t a r g e t f i l e 1 % 1 s 1 " , m a k e _g i v i n g_u p ,
{ " N o n e e d t o r e m a k e t a r g e t 1 % 1 s 1 " , g n u s c a n _f l a g s ,
{ " # F i l e s " , g n u s c a n_ f i l e s , . . . } ,

. . . } ,
. . . } ,

. . . } ,
. . . } ,

{ " # N o t a t a r g e t : " , g n u s c a n_n o t a r g e t , . . . } ,
{ " # c o m m a n d s t o e x e c u t e " , g n u s c a n_ s e t r u l e s , . . . } ,
{ " # P h o n y t a r g e t " , g n u s c a n _d e f f l a g s , . . . } ,
{ " # P r e c i o u s f i l e " , g n u s c a n_d e f f l a g s , . . . } ,
{ " # V P A T H S e a r c h P a t h s " , g n u s c a n _ f i l e s , . . . } ,
{ " # g n u m a k e : E n t e r i n g d i r e c t o r y 1 % 1 s 1 " , g n u s c a n_p r o j , . . . } ,
{ " # g n u m a k e : L e a v i n g d i r e c t o r y 1 % 1 s 1 " , g n u s c a n _p r o j , . . . } ,
{ " % 1 s : % 2 r " , g n u s c a n_d e f , . . . } ,
{ " % 1 $: I I , g n u s c a n_d e f , a • • } ,

/ * * * * * * P a t t e r n t a b l e f o r d e c m a k e * * * * * * /
s t a t i c M A K E_P A T d e c _ p a t t e r n_ t a b l e [J = {

} . ,

{ " d o n a m e (% 1 s , % 2 d) " , d e c s c a n _ c o n s i d e r , . . . } ,
{ " s e t v a r : @ % 1 s n o r e s e t " , d e c s c a n _ f l a g s , . . . } ,
{ " s e t v a r : ? = % 1 r " , d e c s c a n_ f l a g s , . . . } ,
{ ' ' ! = % 1 r ' ' , d e c s c a n_a d j u s t , . . . } ,
{ " l o o k f o r e x p l i c i t d e p s . % 1 d " , d e c s c a n_ f l a g s , . . . } ,
{ " l o o k f o r i m p l i c i t r u l e s . % 1 d " , d e c s c a n_f l a g s , . . . } ,
{ " C u r r e n t w o r k i n g d i r e c t o r y f o r m a k e i s % 1 s " ,

{ " % 1 s : % 2 r " ,
{ I I % 1 s : II ,

{ " R e a d i n g % 1 s " ,

d e c s c a n_p r o j , . . . } ,
m a k e s c a n_d e f , . . . } ,

m a k e s c a n_d e f , . . . } ,
d e c s c a n_m a k e f i l e , . . . } ,

make PMAT Patterns

Table 2
Some PMAT Field Specification Cha racters

Field
Character

d

X

c

q

e,f,g

Data Type

Deci mal num ber

Hexadecimal number

A single character

A string, del imited by wh ite space

A stri ng, del imited by quotation ma rks

A string, from the current location to
the end of the l ine

F loating-point nu mbers

The tool with the most complex command interface
is the debugger. The debugger shares the following
issues with other tools, but demonstrates them most
forcefully:

Digital Technical Journal Vol. 7 No. 2 1 995

l . Debuggers are big and complex. Debuggers are
more complex than the commands used in other
DEC FUSE tools. Each deb ugger engine accepts
many commands, all of which have their own out­
put that must be parsed. The debugger engine aJso
continues to run while the user works . Unlike most
other tools, the debugger engine is not restarted
every time the user wants more information, so the
debu gger process must be managed over a long
period of time.

2. Debuggers are evolvi ng more qu ickly. Debuggers
freq uently change to support new needs (for exam­
ple, new languages like C + + , threads, or hardware
architectures), so new debugger commands or new
output from old commands can be expected often.

3. Synchronizing the front end and the debugger
engine is a complex task. The graphical front end

must remain sync hronized with the debugger
engine it is runn ing. Preserving this synchroniza­
tion is made more diftl.cu l t for three reasons. First,
users can enter debugger commands directly as
text, making it d iffi cult for the front end to deter­
mine their effect. These commands may require
updates to the graphical displays or the internal
state information used by the front end . Second,
the debugger may nor be i n a state where it can
accept commands (when the user program is run­
ning tor example) , so the front end cannot update
d isplays. Third , spontaneous and unexpected
debugger engine output may occur as the result of
traces or certain breakpoints.

4. Different debuggers use dif'ferenr commands.
Commands on different debuggers can be different
in both name and design . For example , with the
dbx debugger available on SunOS, A IX, and Digital
UNIX, the commands func and file can be used to
find the cu rrently active fu nction and the name of
the source fi le where that fu nction is defi ned . The
xdb debugger used on HP- UX, however, uses the L

command to present both the current function and
the name of the ti le where it is defined, as well as to
display the current source code l ine .

5 . The same debugger commands have d ifferent out­
put. Other commands, a lthough similar in name
and design, can prod uce output that is different
enough to cause problems. One example is the
where command used in d bx on both D igital UNIX
and SunOS platf-orms. This command returns the
current stack information. The Digital version
includes a poi nter character (>) to show which
stack entry is the current scope; however, the
SunOS version does not supply this scope informa­
tion. Therefore, a debugger GUI program must be
carefully designed to get needed scope information
if it must support borh debugger engines.

6. The outpu t of some debugger commands is com ­
plex, and the resu l ts of some debugger commands
are difficult to parse. For example, in the display of
the content of a data structure, the format of the
output will vary depending on the source language
used in the appli cation.

Experiences with DEC FUSE suggest that there is
no easy solution. Addressing these issues results in
many specia l ized routines in the DEC FUSE debugger
tool to both construct debugger commands and inter­
pret the results . Techniq ues that help to make the
problems more manageable include the fol lowing:

• Cleanly separate generic-GUI and command­
specific code. The design of the debugger GUl
identifies the operations that i t requires of the

debugger engine and the data that it must get from
the engine . T hese are provided by a set offunctions
whose implementation will vary fi·om one engine to
another. These functions wil l be modified over ti me
to accommodate the evolution of the engi nes.
Another method being designed now is to use
C + + c lasses to encapsulate code for each sup­
ported debugger engine.

• Limit the detai ls that the GUI depe nds on . One
way to l i mit the dependency of the GUI on the
detai ls of the e ngine is to provide GUI support for
on ly the most freq uently used debugger opera ­
tions, while providing a command intertace tor the
remain ing operations. Another techn ique is to
avoid interpreti ng the output of the engine when
possible and s imply d isplay the output of the com ­
mand in a text window.

• I mplement special i ntertace commands i n the
engine. When it is possible to change the underly­
ing debugger, special commands and output can be
implemented by the debugger designed exclusively
for use by the GUI ti·ont end . For examp le , the
DECiadebug debugger e ngine bas been modified
with the introduction of rwo new commands tor
use by the graphical i nterface that s implit)r the task
of d isplaying data structures in the G U I . AJ though
other commands d isplay data structures for the
user, the format of the output of these commands is
designed to be easi ly i nterpreted by the G U I . These
commands are designed for the exclusive use of the
G U I . They need not be changed tor the user, for
example, to improve readability; thus the evolution
is control led.

Fortunately, most UNIX tools are not as complex as
the de bu gger. I n fact, bu ild ing a GUI for commands
with outpu t that seldom changes and is consistent
across implementations is a str<lightforward task.

Using Messaging to Make Independent Tools
Work Together

As described earl ier, each DEC FUSE tool focuses on
a single, separate software development task. This
design phi losophy, sometimes cal l ed "divide and con­
quer," comb ined with the DEC FUSE mul ti cast mes­
saging system (MCMS) ma kes it easier to maintain or
replace tools. DEC FUSE tools can therdore be easily
replaced with al ternative tools that provide the same
function .

MCMS is the key to making independent tools work
together. Any message sent by a tool is de livered to all
tools that express an interest in receiving the message.
Some messages, called notifications, are defined to
have no response. Other messages, cal l ed requests,

Digital Technical Journal Vo1 . 7 No. 2 1 995 15

1 6

have responses for which the sending tool usually waits.
A tool can also eavesdrop on requests that will be han­
dled by other tools. A DEC FUSE component called
the DEC FUSE message server keeps track of the active
tools and which messages each can send and receive.

l . Attributes: This is a collection of tool attributes
such as the string to be used in the DEC FUSE tools
menu and the command to invoke the tool.

2. Messages: This section lists definitions for all mes­
sages sent and received by the tool, including their
arguments and return values. Messages that have
return val ues defined are cal led requests, and the
returned value is expected by both the message
switch and the tool that sent the request. Messages
with no return value (the type is void) are called
notifications. The keyv ... ord trigger is used if the
message should automatically start the tool .

Messaging with MCMS

Messages used by tools are easily defined in a TIL file,
written in the DEC FUSE tool integration language.
An example is the manager.til file used by the DEC
FUSE code manager. Part of manager. ti l is shown in
Figure 8 . Each TIL file can define one or more tool
c lasses. Each class definition describes how a single
DEC FUSE tool will be i ntegrated with the rest of
DEC FUSE. A class definition contains three parts:

3. States: This section describes when each message
may be used during the execution of the tool . This
section defines one or more states in which the tool

c l a s s M A N A G E R = {

} ;

Figure 8

A t t r i b u t e s {
l a b e l
a c c e l
p a t h

} . ,
M e s s a g e s {

= " C o d e M a n a g e r " ; = " M e t a + M " ;
" $ (F U S E _S H_B I N) I m a n a g e r " ;

I * m e s s a g e s a c c e p t e d b y t h e F U S E c o d e m a n a g e r * I
c h a r * T o o l R e c o n f i g u r e < c h a r * w o r k i n g _d i r e c t o r y ,

c h a r * t a r g e t _d i r e c t o r y , c h a r * t a r g e t , c h a r * o t h e r) ;

t r i g g e r c h a r * C h e c k ! n (c h a r * l i b r a r y n a m e ,
c h a r * r e v i s i o n , c h a r * c o m m e n t , i n t
i n t f i l e m o d e) ;

c h a r * f i l e n a m e ,
k e e p f i l e ,

I * m e s s a g e s s e n t b y t h e F U S E c o d e m a n a g e r * I
v o i d C h e c k l n N o t i f i c a t i o n (i n t i n s t a n c e _ i d ,

c h a r * l i b r a r y n a m e , c h a r * w o r k d i r , c h a r * f i l e n a m e ,
c h a r * r e v i s i o n , i n t s t a t u s) ;
} . ,

S t a t e s {
s t a r t {

} ;

r e c e i v e s {
T o o l R e c o n f i g u r e ,

} ;
s e n d s {

} ;
} .
r � n n i n g {

} . ,

r e c e i v e s {
T o o l R e c o n f i g u r e ,
C h e c k l n ,
C h e c k O u t ,

. . . . } ;
s e n d s {
T o o l R e c o n f i g u r e ,
C h e c k l n N o t i f i c a t i o n ,
. . . . } ;

DEC FUSE Tool Integration Language File

Digital Technical Journal Vol . 7 No. 2 1 995

may exist. Tool s can change their state, and vvithi n
each state only the listed messages may be used .
Most DEC FUSE tools need only two states: an
initialization or start state used during tool start-up
and a running state. Other states may be needed by
some tools. For example, the bui lder uses a build ­
ing state to advise the message server that a build
is in progress and that some requests (.l ike another
build request) are not al lowed.

A TIL compiler translates the TIL ri les of DEC
FUSE tools i nto the data files needed to run DEC
FUSE. Figure 9 sum marizes how the files generated
by the TIL compiler for a DEC FUSE tool (named
fuse_tooJ) fit into the architecture of DEC FUSE.

The TIL compiler combines information from the
fuse_tool TIL file with TIL ti les for tools already
insta l led on a syste m . The TIL compiler generates
three files:

1. fuseschema. msl - This file tells the message server
which tools wish to receive which messages.

2. tools.rc - This file tells the control panel how to
start each tool . Tools may be started in response
to a trigger message or manua l ly from the Tools
menu found in each DEC F USE tool.

3. FUSE_fuse_tool .c - This file contains functions for
each of the messages that the tool wishes to send.
This file is compiled and l inked with fuse_tool
along with l ibfuse .a . Messages are sent by simply
calling these fu nctions. This file also contains an ini­
tialization fu nction in which cal lback functions for
messages that the tool receives are registered .

The use of the TIL compiler in DEC FUSE provides
a mechanism similar to a remote procedure call faci l ity.

SYSTEM
TIL F I LES --�

fu se_tool TIL

FUSE_fuse_lool c

This al lows tools to send a message using a single func­
tion cal l . This contrasts with the messaging mecha­
nisms used in the HP Sofi:Bench and Sun SPARCworks
products, which require a number of cal ls to the mes­
saging application programming interrace (API) to
al locate, assemble, send, and free a message. These
mechanisms also require tools to assemble and register
patterns corresponding to the messages that they want
to receive, a function handled by the initialization func­
tion in the C source file generated by the TIL compi ler.

To simpli�' the task of integrating tools, DEC FUSE
also supplies a DEC FUSE message monitor. This tool
monitors and debugs messages sent by tools and pro­
vides a mechanism for integrating shel l scripts as tools
that can send and receive messages.

Simplified Tool Replacement

MCMS does not require the user to speci�' the tool
that does the work. When a tool sends a message using
MCMS, it does not specify what tool should service
the message. This allows for replacement of the tool
that services the messages with an equ ivalent tool,
without making any change to the sender. This mech­
anism is used in DEC FUSE to al low users to select
which of three editors they want to use and whether
they want to use a GUI debugger based on dbx or
DECladebug.

This mechanism also faci l itates upgrading the DEC
FUSE environment. Recently, the Motif help widget
in DEC FUSE was replaced with the Hyper Help tool .
The replacement was faci l itated by continuing to use
the existing messages. This isolated a l l changes to the
DEC FUSE help tool . The help tool continues to
receive messages of the form

MESSAGES MESSAGES

fuse_tool CONTROL PANEL

TIL C-CODE TIL C-CODE

libfuse.a libfuse.a tools.rc

fuse_tool.c

Figure 9
Use ofTI L-generated Files i n the DEC F USE Architecture

Digiral Technical journal Vol 7 N o . 2 1 995 1 7

1 8

t r i g g e r v o i d H e l p S h o w T o p i c (c h a r * p r o d u c t ,
c h a r * m o d e ,
c h a r * t o p i c) ;

In the previous version , the message argument, topic,
was a string that i dentified what l<.i nd of help was
desired. The new help tool uses numbers i nstead of
names to identify help topics. Consequently, a simple
mechanism was designed to translate the strings
received in the He.lpShowTopic messages to the
desired HyperHelp topic number.

Conclusion

DEC FUSE provides an integrated programming envi­
ronment for UNIX software development that takes
advantage of the graphical capabil ities of workstations.
Two key tech niques are used to implement DEC
FUSE:

• The layering of GUis on existing UNIX command
l ine tools

• A multicast messaging mechanism that permits
tools to i nteroperate without limiting the environ­
ment to specific tools

The GUis provide point-and-click i nterfaces for
invoking operations and specifYing options and use
pictures and diagrams in addition to text to display
in formation. At the same time, the use of traditional
UNIX commands to perform programming tasks pre­
serves the user's investments in those underlying tools.

The GUis interpret the output of UNIX commands
and present the intormation in pictorial and interactive
displays. A variety of tec hniques can be used to process
the output of a command line tool, depending on the
complexity of the tool output. Simple text-processing
techniques are usually adeq uate for interpreting the
output of command line tools. When the u nderlying
tool output is syntactically complex or evolvi ng, or
when considerable state information is frequently
needed from the underlying tool, it becomes difficult
to apply these techniques. Under these conditions,
designs that avoid the processi ng of hu man readable
output are preferred.

The use of messaging is consistent with the U N I X
philosophy o f creating simple tools a n d letting the
user combine them in any way that might be usefi.1l.
The messagi ng mechanism ties the individual tools
together into an i ntegrated environment by allowing
tools to invoke operations in other tools on the user's
behalf. This eliminates steps for the user, and i t also
eliminates the potential tor errors. Because the tools
are still autonomous and interface solely by means of
the messaging, equivalent tools that accept the same
messages can be substituted, allowing tor user and
project preferences.

Digital Tccbllic�l)otml;l \ Vol . 7 No.2 1 99 5

Acknowledgments

We would like to thank the many past and present
members of the DEC F U SE team who contri buted to
the design and i mplementation of the DEC FUSE
product. We also want to ackn owledge the work on
FIELD done at Brown Un iversity by Steven P. Reiss
and his students that laid the groundwork for DEC
FUSE and other software development environments.

References

1 . B . Kernighan and R. P i ke, TlJe UNIX Programm ing
Environment (Englewood Cliffs , N .j . : Prentice- Hal l ,
Inc . , 1 984) .

2 . R . Sta l lman, GNU Emacs Manual (Cambridge, Mass . :
F ree Software Foundation, 1988) .

3 . R . Scheifler a n d J . Gettys , "The X W i ndow System,"
ACM Transactions on Graphics, vol . 5, no. 2 (April
1 986) .

4. Df:.C FUSE Handhooi<. (Mayn ard, 1\lhlss . : D i gita l Eq uip·
ment Corporation, Order No. M-Q8ZN1A-TE, 1994) .

;-, _ DEC FUSE EnCASE /llkmual (M ayn ard , Mass . : Digital
Equipment Corporation, Order No. AA· QSZPA-TE,
1 994) .

6 . M . Cagan, "The HP So ftBcnch Environment: An
Architecture for a New Generation of So ftware Tools,"
Hew!ett-Packard]ournal (June 1 990) : 36-47.

7. Common Desktop Environ ment- (,"el/ing Sta rted
Using Too/Tall<. Messaging (M o u ntain View, Cal if. :

S u n Microsystems, Inc. , 1 994) .

8 . S. Reiss, The Field Programming Envircm numt
A Friendly Integrated Environment for Learn ing
and Development (Boston: Kluwer Academic Pub­
lishers , 1 99 5) .

9 . S. Reiss, " I n teracting wirh the FI ELD Envi ronment,"
Sojiware-Practise and Experience, vol . 20 (June
1 990) : 89-1 1 5 .

1 0 . S . Reiss, "Connecting Tools Using Message Passing in
the Field Environ ment," !I:EE Sojiware, July 1 990:
5 7-66.

I I . D . Zaremba, "Adding a Data Visua l ization Tool to
DEC FUSE," Digital Teclm ical fournal, vol . 7, n o . 2
(1 99 5 , this iss u e) : 20- 3 3 .

1 2 . M . Lesk and E . Schmidt, " Lex-A Lexical Analvzer
Generator," Computer Science Tech 1tical Report
No. 39 (M u rt<\)' H i l l , N . J . Bell La bora tories , 1 9 7 5) .

1 3 . S. C. Johnson , "Yacc: Yet Anothe r Compi ler­
Compiler" (M urray H i l l , N . j . : Bel l Laboratories) .

1 4 . R . S tal lman and R . M cGrath , GNU Make-A Pro­
gram jc)l " Directinp, Reco mpilatio n (Cambridge,
Mass . : free Software fou nd ation , 1993) .

Biographies

Richard 0. Hart
Rich Hart joined Digital in 1 980 a nd is currently a member
of the FUSE Group. Prior to his work on the DEC FUSE
programming environment, Rich was a member of UEG
(ULTRI X Engineering Group) and led the first version of
the Pal ladium distributed printing project at MIT's Project
Athena. As one of Digital's representatives to the X/ Open,
POSI X, and ANSI standards groups, Rich has contributed
to the development of software standards for transaction
processing, printing, and CASE environments. He earned
a Ph .D . from the University of Connecticut and is a mem­
ber of AC!'vl and I E E E .

Glenn Lupton
Glenn Lupton is a consulting software engi neer and
has been with Digital for 20 years. During this rime,
he has worked primarily on programming envi ronments
and tools, including Bl iss compilers and DECset. For the
last rwo years, he has been the technical director of the
DEC FUSE project with responsibi lity for the overall tech­
nical content of DEC FUSE. Glenn received B .S.E.E. and
M . E . E . E . degrees from Rensselaer Polytechnic Institute.

Digital Technical Journ31 Vol . 7 No. 2 1 995 19

Adding a Data
Visualization Tool
to DEC FUSE

Dig ita l's Data Visualizer tool uses condensed

file views to d isplay thousands of l i nes of source

code. These displays can include the output

of many other tools. As part of the DEC FUSE

programming environment, the tool helps soft­

ware developers by providing capabi l ities for

displaying large bodies of text with associated

events or statistics. The Data Visual izer tool

combines the results of other tools into a single

d isplay, keeps track of work items, and scales

up to su pport large software projects.

20 Digital Technical Journal Vol . 7 No. 2 1995

I
Donald A. Zaremba

In January 1993, Digital began research on a tool for
visualizing l arge sets of data. The design of the Data
Visualizer tool was complete in March 1 9 9 5 , and the
tool is sched uled for inclusion with the next major ver­
sion of the DEC FUSE software . DEC FUSE is a pro­
gramming environment for UNIX that provides an
integrated suite of graphically oriented tools built on
the commonly used UNIX programming tools. For
more information on the DEC FUSE environment,
see the paper "DEC FUSE: Building a Graphical
Software Development Environment from UNIX
Tools" in this issue . 1

I n this paper, we focus o n the technology that was
used in the data visualization tool and the process by
which this tool was taken from an advanced develop­
ment project to become a part of an existing product.
We start with a discussion of the problems encoun­
tered when visua l izing large sets of data, the various
graphical techniques that are used to solve these prob­
lems, and the implementation of these techniques in
a demonstration tooL We then describe the design of
the final tool, its evolution from the prototype into a
product, and its integration with the other DEC FUSE
tools. We then give a functional overview of the tool
and scenarios of how it can be used. We conclude with
comments on the process from advanced development
work into tinal product.

Development of a Data Visual ization Tool

Software deve lopment of even a moderately sized
project typically involves working with many files and
hundreds of thousands of l ines of source code.
Worki ng with so much data in so many fi les is difficult
because most software tools are written to work on a
single file at a time (l ike a compiler or an editor). Those
tools that do operate on multip le files (l ike a grep tool
used with wildcards) produce a stream of output that
can be large and that can only be associated with the
source code by identifYing a line number or by display­
ing a single line of source in context. Although these
tools do provide the requested answer, they provide lit­
tle of the context that would help the user see how this
answer relates to the source code or how it would relate

to other answers. It is often hard to see how these
detai led answers fit i nto the l arge picture.

One technique for solving this problem is to use
com puter graph ics in the d isplay portion of software
development tools. Graphics are used to d isplay i n for­
mation such as bui ld dependencies, cross-reference
data, call tree data, a nd cl ass h ierarchies .

Unfortunately, w h e n t h e appl ication becomes large,
the grap hic d isplays become too dense to provide any
real i nsight i nto the relationsh ips between the com ­
ponents i n the application. T he screen is s imply not
large enough to d isplay all the i n formation . The lay­
out of nodes on a two-d imensional d isplay is often
inadequate to effectively represent the complexity
of the underlyin g structure and relationships in the
code . The common use of overlapping windows of
data actual ly h ides data, preventing users from see­
ing i mportant relationships among the windows or
even knowing which windows contain relevant data.
In effect, programmers who m ust work on today's
complex software appl ications are confronted with

Fig u re 1
Main Wi ndow of rhe Data Visualizer

a situation si mi l ar to enteri ng a large dark room with a
compl icated piece of machi nery in i t . Current tech nol­
ogy hands the engineers a penl ight and says figure out
what the machine is, how i rs parts work, and then
make enhancements to it .

The Data Visua l izer tool add resses some of these
problems by provid ing a condensed view of source
code; the tool is capable of displaying thousands of
l ines of code in a si ngle view. This condensed display is
used as a backdrop for showing the output from tools
and how it relates to the source code. Figure 1 is a
sample screen output from the Data Visualizer tool
bei ng used in conj u nction with a search tool to fin d
occurrences of a particular stri ng. This simple example
shows many of the features of the Data Visual i zer. The
renderi ng of each fi le i n the view shows the i ndenta­
tion of the source code . Source cod e is colored to
show comments i n green , the begi nn i ng of fu nctions
or procedu res in red , and the actual code in gray. The
sizes of files and fu nctions arc readi ly apparent . The
results of the search inquiry are highl ighted .

Digital Technical)ourn;�l Vol . 7 N o . 2 1 99 5 2 1

22

Graphical Techniques

D uring the early p hases of this work, research was
done to find appropriate graph ical techn iques. This
section descri bes in detail three techniq ues that int1u­
enced our design and appear in some form in the Data
Visualizer tool . lt also gives reterences to related work.

Condensed File View

One tec hnique that looked promising from the very
beginn ing was the condensed file representation done
by Stephen Eick i n 1993 . In his paper "Graphica l l y
Displayi ng Text," he describes a program cal led
SeeSofi: that is used to d isplay statistics associated with
l ines of text 2•3 He has used this techn ique to show
statistics about J ines of program sou rce code and other
text fi les, such as text from the Bible or revision history
of text paper. He a lso uses the technique to analyze
computer log fi l es and describes that work in a sepa­
rate paper.4

The idea behind the SeeSoft program is to create
smal l pictu res of fi les that reveal i nformation about
a file in a nontextual manner. The size of the rectangle
is sca led to the nu mber ofl ines i n the fi le . Each l i ne of
text is shown with the correct i nden tation and length.
I n addition, J ines can be color-coded either to reveal
program structure or to highlight some poin t of in ter­
est. As an example, green l ines cou ld be used for com­
ments, red J ines to ind icate the start of each fu nction,
and gray l ines for executable cod e. As can be seen in
Figure 2 , the information reveals the size of each fi le
and some information about the file contents . It is easy
to see where function definitions begin , because the
red l ines stand out. Also, the i ndentation of the code

brush .cxx pen.cxx

-
-

Fig ure 2
Condensed File View

Digital Technical Journal

draw.cxx

=
-

-- 1 0
-

-

20

30

--
-

-

40

-
-

50

Vol . 7 N o . 2 1 995

helps the viewer recognize programming structures
l i ke if then else statements or case statements.

One of the appeals of this method was the abi l ity to
display many l i nes of source code. (Eick's See Soft tool
claims to display as many as 50,000 l ines of code .)
Programmers can get a clear and complete overview of
their code . From the si mple view shown in Figure 2 ,
with no additional data, we can see the size of each rile,
the relative size of ind ividual fu nctions in a fi le , and the
frequency and distribution of comments.

Multiple Levels of Details

\Ve investigated a second tec hnique that seemed
appropriate: the drawing of objects in mu ltiple s izes
and in multiple levels of deta i l s . The concept of adjust­
ing the amount of detai l presented to the user as a fi.Jnc­
tion of the apparent size of an object is a technique
developed i n a u nique computer in terface model
cal led Pad s Pad provides an i n fin i te two-di mensional
information plane that the user can browse using por­
ta ls (analogous to magnif),ing g lasses) to zoom into
the data.

The larger the object, the more details arc revea led .
This corresponds to the notion that things that inter­
est us arc the ones we bring closest to us; they require
the greatest amount of detai l . Those items of lesser
interest are placed in the background and drawn
smal ler. As can be seen from the pictures in Figure 3,
as the size of the file i ncreases, more details are shown
about the fi le . The smallest picture reveals only the
major structural parts of the fi le ; we ca l l this chunk!
leve l . Each chunk is d rawn as a colored rectangle and
represents either a group of comments (green) , the
start of a function (red) , or l ines of executable source
code (gray) . The next picrure shows l i ne - level detai l
l ike that shown in Figure 2, and the last picture shows
each l ine l arge enough to be drawn as readable text .
Note also that the largest p icture begins to look l i ke
a text editor and that the scrol l bar on the right is a
chunk-level renderi ng of the fi le .

brush.cxx
brulh.cxx

// :zbruah
II Defaub cootetruclor for class
2Bruah::zBruehO
{

_handle = NULL;
_color = WHITE;

- _elze = DefaultSize;

H (_window I= NULL)

- {
getBackground(_wlndow);
setBackground(thls);

Figure 3
Mul tiple Sizes of Files

The Use of the Third Dimension

We also chose to investigate the use of the third
di mension for ways to better visua l ize large, dense
graphs . We did not pursue this work for several rea­
sons, which we describe l ater in this paper.

We did tind a simple usc ofthree-dimensional (3 - D)
viewing that was bendicial when trying to visual ize
certain types of data. We converted the condensed ti le
pictures in to 3-D vi ews by adding a sma l l side to each
picture. We cou ld use that area to show l ine-rel ated
data as in Figure 4 . This example shows a numeric
va l ue (the blue li nes) associated with a l i ne of source
code. The horizontal dotted l i ne is a threshold, and
va lues that exceed the threshold arc drawn in red .
We use this type of graphic to show source code profil ­
i n g data, l i ke execution cou nts and C P U time . Even
though i t i s a si mple drawing, i t uses a 3 -D effect that
helps the user visually organize a great deal of in tor­
mation . It is relatively easy tor a user to l ook at the
ti-onr data at one moment and put the side data off
into the background, and then change tours and
examine the side data. The effect is even more notice­
able and usefu l when many of these 3-D ti le pictures
appear i n the same di splay. An example of this is given
later in the section on the Soft Vis Program.

The Advanced Development Project

This section describes the advanced development
phase of the project. I t discusses the process u sed, the
software prototypes produced , and the major design
decisions made during this phase.

The Advanced Development Process at Digital

The type of work done i n D igita l 's Advanced
Devel opment Group, working with new technologies
and implementing new ideas, is d ifticu lt to do within

Figure 4
3-0 F i le Picture

a schedu le -constrained product development organi ­
zation . Although the goals of advanced development
work may be wel l specitied, only a vague idea of a pos­
sible solution and of the time needed to find the solu ­
tion is known . These two facts make i t impossi b le to
sched ule advanced developmem work in a prod uct's
project plan . At Digita l , the Advanced Development
Group is a separate organization that operates outside
the product schedu le constraints of other groups. I t is
staffed by engi neers from the development groups,
who rotate in to the Advanced Development Group,
perform their work, and then return to their sponsor­
ing group to transter the technology into a prod uct.

The stated goal at the beginn ing of our project was
to enhance tbe software browsers avai lable in the
DEC FUSE prod uct by adapting the results of current
research in visualization techn iq ues. Of particu l ar
interest was the abi l ity to browse large sofhvare sys­
tems contain ing large amounts of source code . VVe
were a lso looking for techniques that wou ld provide
new i n formation about sou rce code and new ways of
looking at sou rce code. Our objective was to add fea­
tures to DEC FUSE that were not cu rrently avai lable
in other products.

The process we used \vas to research as many dif­
ferent techniques as possi ble and select those that
appeared most promising tor prororyping. The proto­
types gave us experience i n the technol ogy and helped
us i n our evaluation . We then sought input from our
sponsoring group to determine which prototypes
were feasible to add to the prod uct, and we contin ued
to develop and refine these.

Using 3-D Computer Graphics

At the begi nn ing of the project, \.Ve wanted to explore
tl1e 3- D graphics technique. For this research , we used
a DECstation 5000/20 workstation with a 3-D graph­
ics accel erator option insta l led . The code was wri tten
in C+ + . We used the Motif standard to bui ld the win­
dows and menu part of the user i ntert;Ke and the pro­
grammers h ierarchical interactive graphica l standard
(PHIGS) to write the 3-D graphics code.

We quiddy bui lt three demonstration programs to
gai n experience i n 3 -D graph ics programming. The
first program was an i nstru mented C + + class l ibrary
that created and destroyed color-coded cu bes in 3-D
space as constructors and destructors were ca l led .
Message passing was shown by con nections between
the cubes. The z-axis was used for time: the older an
object became, the farther back i t wou ld appear on the
z-axis . The second demonstration drew hierarchies in
3-D space and gave the user l imited capa bi l i ties tor
manipulation in 3 -D . The third demonstration visua l ­
ized a C+ + class as a cube in 3 - D space, with different
sides being assigned d ifferent types of data. One side

Digital Tc(hnical Journal Vol . 7 N o . 2 1 995 23

24

contai ned a class i nheritance graph, another contained
a condensed view of the i nterface to the class, and the
third side contained a window i n to the source code of
the class.

After a short period , for several reasons, we stopped
worki ng with 3 - D graphics. We realized that the types
of visual izations we were doing would requi re 3 - D
accelerators o n users' workstations, a n d w e knew that
wou ld not be acceptable. I n additi on , development of
this tech nology would take a great deal of t ime, and
we fel t we could make better progress working on
other graphics techniques.

Early Prototypes

Having seen the work done by Stephen Eick, we
decided to experiment using his technique . We also
started to think about the concept of bui lding a frame­
work that we could use to build prototypes of d ifferent
techn iques. Eventual l y, this evolved int o the design we
describe later i n this paper. At this time, we also con­
sidered what plattorm to use. Our sponsori ng group
had developed the DEC FUSE product for the UNIX
environment, but other groups were starting to work
on the Windows NT operati n g system for personal
compu ters . Since we were i n terested in learn i ng more
about the \Vindows programming environment, we
decided to produce cod e that would work o n either
platform and to build prototypes on both platforms.
I n h i ndsight, our decision to support mu ltiple win­
dowin g systems was a d iversion that d id not d irectly
contribu te to the project goals, but i t was a valuable
learning experience.

To achieve cross-window system portabi l ity, we
developed a c lass l i brary that encapsulated parts of the
programming i nterfaces on the MS Wi ndows system
and the X Wi ndow System. We decided to restrict our
class l i brary, col lectively referred to as the "ZWindow"
or " ZWTN component," to e ncapsulate only the low­
l evel graphics drawing routines (e . g . , l ine and rectan ­
gle) and avoid trying t o encapsulate a l l the graph ical
interface components l i ke windows, icons, and menus.
We encapsulated at the l evel of the graph ics device
i nterface (G DI) on MS Windows and the X l i brary
i n terface (XIib) on the X Window Syste m . This
worked wel l ; we achieved portabil ity of our graphics
d rawing code, which was our area of concentration.
The fact that we had to do separate implementations
for the remainder of our user i n terface (that is, the
menus, toolbars, and d ialog boxes) was not a h i n ­
d rance si nce t h e b u l k o f o u r code was sti l l portable.

Designing the ZWIN i nterface was fai rly straight­
forward . The l i ne and shape d rawi ng routines were
easy to encapsul ate because t hey ex isted on both plat­
torms. The d rawing contexts were different . The M S
vVi ndows system has color pens a n d brushes t o control

Digital Technical Journal Vol . 7 No. 2 1 99 5

d rawi ng attri butes; but on the X Window System, a l l
d rawi ng attri butes are defined i n a single data struc­
ture, the graphics context (G C) . We decided to create
c lasses for pens and brushes and to handle the X
Window System implementation by encapsulating an
appropriate G C in the pen and brush classes. The
l argest class i n the ZWIN component was the canvas
class. It encompassed a D rawi ngArea Widget on the X
Wi ndow System and a window on MS vVindows . I t
h a d member fimctions that provided al l t h e drawi ng
fu nctions avai lable (e . g . , l ine or rectangl e) , as we l l as
fu nctions to select the appropriate d rawing object
(pen or brus h) .

The condensed file view was implemented i n two sets
of classes. A set of fi le-type-dependent scanner classes
was developed to handle the parsing of C, C + + , Ada,
makefiles, ere . Once scanned , a si ngle fi l e visuali zation
class could perform the renderi ng of the object on the
d isplay. Speed was a concern si nce we wanted to be
able to visual i ze an enti re d irectory of fi les very
quickly. To do this, we wrote a small , efficient scanner
tor each type of fi le that could pick out only the rele­
vant information as quickly as possi ble . Throughout
our work on al l the prototypes and i n to the fi nal prod­
uct, we found that we could always fi l l a complete d is ­
play withou t any noticeable delay to the u ser.

Figure 5 shows part of the first prototype . It displays
a condensed file view of al l the tex t ti les i n the defau l t
d i rectory. F i les were sized to ti t with i n the s ize of t he
wi ndow, with an appropriate level of detai l shown .
Fi l es cou ld also be i ndividual l y selected and resized .
Fi les are shown i n the th ree d ifferent levels of deta i l
described i n Figu re 3 . M ost of the fi les are d rawn at
the chunk level and reveal only the relative size and
location of each function i n the ti l e . Two of the fi les
have been en larged to show l i ne - level derails, and one
ti le has been fu l ly enlarged to be a read able size .

Later p rototypes improved u po n the design of this
condensed file view. We also implemented other views
that we thought woul d be usefu l . The C + + class view
rendered a condensed pictu re of a C + + class with i ts
member functions and data mem bers. I t is described
later i n this section.

SoftVis Program

Throughout the process of creati ng the tirst few pro­
tot)'Pes, we kept in mind the concept of bui lding a
framework that we could use to speed up the del ivery
of new grap hical techniques. The Soft: Vis demonstra­
tion program used that design . B ased on a View­
O bj ect-Tool architecture, i ts concept was that a view
wou ld set the backdrop and St)rle tor the display, such
as the condensed fi le view. We would render objects
i nto that view St)tle and support many d ifferent types
of objects per view. Tools wou ld then be wri tten to

� Software Vlsual l:zer D1 .2 liila:
_EiiP. lnql J iry .Qptinns

.' / /

Figure 5
First Demonstration Program

interact with the objects in the view. Our objective was
to develop a "plug-and -play" architecture that sup­
ported the fol lowing:

• View
- Condensed file view
- Condensed fi le 3 -D view
- C + + class view

• Object
- C + + source code
- C source
- Ada source
- .o (object files)
- .a (l ibrary files)
- executable files

.' / (' /

I EU I II I u lo iM • •
'
I IU I I I II.:.Wio
'
I .. . , lo llll e . l o . , . , . ' ' ' 'I' •••• ' ··-

'
I - IWI IIr.> leo,lll
'
I l lo l' l llllllt

,
I _,

'
I UIW I -o
'
I
'

::::�:·.,. �.· .. �r:-.JI 1 1 11, I o

ollllloo.l••• • ••llll•o IlL IIIJ
............ ,, -... ·-·- ..
.......... ·-
......... . . �- e11. e4r • • •

........ ,
,,.,,.,.,, · IU .. o
........

• • " • • a

• Tool
- Magnify tool
- Probe tool
- Cross-reference tool
- Search tool
- IF-DEF lens tool

The goal was to be able to create a view containing all
the fi les in a di rectory and displaying an appropriate
visualization for each of the file types (either a text file
or a binary file) , and to enable the tools to operate on
a l l the objects i n the view. For example, the magnify
tool would show a readable view of the text in a source
file; however, when used on a binary object file, i t
wou ld show information about the s ize, address, and
type of segments in the file .

Digital Technical Journal Vol . 7 No.2 1995 25

26

Figures 6 and 7 are screen captures ti·om the proto­
type. Figure 6 shows a cross-reference tool being used
on C+ + source tiles. The list box shows fi.mcrions fi-om
all the source programs, and the highlighted fi.mction
color-coded lines point to where that fi.mction is first
declared, implemented, and called. Figure 7 shows the
magnif)' tool used in the 3 -D file view to show source
code details and profiling data. In this case, the prof-iling
data is a mock-up of line execution counts; the real tool
will use this space to report actual data .

Figure 8 , also a screen shot from the prototype,
shows the C+ + class view. This view uses a condensed
representation of a C+ + class. Each l ine in the class
corresponds to either a member function or a data
arrribute of the class. These are grouped together as
public, protected, and private members. Member
fi.mctions are shown in red; data elements are shown in
blue. Inheritance is shown by connected arcs.

SoftVis Design

The system is divided into several components. Each
component can be built separately; has its own make­
tile; and, in most cases, its own test programs. Table 1
gives an overview of these components and their rei a­
tive sizes as of the latest base level.

The Sofi:Vis design begins by supporting the desired
prototype architecture of View- Object-Tool. A com­
ponent was developed for each of these; it contained
a base class, derived classes, and supporting classes.

From Advanced Development to End Product

This section describes the effort required to turn parts
of the final advanced development prototype into
a product-quality too.l tor release with DEC FUSE.

!I
11!1
•
Iii
il
!I
!ZI

iE:i*!
a u n
utch
.. -,
IIDtl•rL1st.
nextChar
ne�tLine

num!lsckgro
n umCh unks

g=t�)�g
n�ir,u
ofhet
Op<&!l
opM&ouro•
P•rnl•t•cL
pu•.Clue
n.tdt.tne

ruscvhlaa u.ao 1. 0-lO tOlOJ

Figure 6

...

-

..

-

..

..

Demonstration of the Cross·rdercnce Tool

Digiral Tec hnical Journal Vol . 7 No. 2 1 99 5

Fig ure 7

ra t · ·sev: ·

if (DBG ' t>EG VIEW)
I

-
cout << "v�JltipleVer'I10nfll•V!•� c
oout << " ha1Qht : " << he1ght « \n

_rt.UBH() ;

Demonstration of the 3-D View with Profi l i n g Data

Finding a Place for the Work

At the conclusion of the advanced development proj­
ect, we returned to our sponsoring group and
attempted to introduce the data visualization technol­
ogy into the product. A number of obstacles had to be
overcome: The Soti:Yis program was written i n C ++,
and DEC FUSE had been wtitten almost entirely in C.
The requirements tor the next release of DEC FUSE
had been gathered, and the goals were set. Where
exactly would the new data visualization technology tit
into the DEC FUSE product set)

At first we tried to build a class of reusable software
components that DEC FUSE tools could use to incor­
porate the new technology. This would be a set of
Motif widgets that encompassed the techniques pro­
tot)'Ped in the Soft:Vis program . AJthough progress
was made on building the widgets, no progress was
made incorporating these into any of the DEC FU SE
tools. Their incorporation would have required major
changes to tbe user interfaces of these tools, and it was
not clear that the benefits would justit)' these changes .

In hindsight, we realize that the plug-and- play
design we used tOr the prototype did not match the
DEC FUSE design of l oosely coupled separate tools
that passed data by means of simple messages.
Although the plug-and-play approach made it easy ro
add new components into the model, its tightly cou­
pled design made it difficult tor us to take parts of that
design and use them in the DEC rUSE product.

The proposal that was finally accepted was to develop
a new, separate tool, called the Data Visualizer, that

;&.._. ---- ---------�--- ---�-----��- -

vo Li� t O C O b j 8 � t

�

Figure 8
Demonstration of the C++ Class View

Ta ble 1
Compone nts in the Prototype Design

Component Description

VO Base classes, voObject, and voEd itor. Also, voFi le cl ass and other cl asses
derived from voObject. I m p lements features for sel ectin g, moving,
resiz ing, and drawi ng objects.

TOOL Base tool class, voTool, and classes derived from it. I n cl udes voLens,
voProbe, voMagTool, and voXRefTool .

V IEW The vB aseView class is derived from voEd itor. The t h ree main views
of the tool a re then derived from vBaseVi ew. The main views are
vFi leView, vF i le3dView, and vCiassView. This component a lso contai ns
executa ble test programs for each view.

SDM The software data model component contains the language-specific
sca nners and parsers. The base class Annotated F i le is used by text
and bin ary fi les.

ZWIN Portable graphics interface. A s in gle cl ass interface for wi ndowing and
drawing functions is provided. Two separate implementations of the
interface exist, one for MS Windows and one for the X Wi ndow System.

UTI L Various misce l la neous classes for data structu res, f i le access, etc. It a lso
contains an interface to some common operating-system-d ependent
routines.

Total

Digital Tech nical Journal

lines
of Code Classes

5,000 1 0

2,500 1 0

2,400 4

4, 500 1 5

1 1 ,000 30

3,300 1 2

28, 700 81

Vul. 7 No. 2 1995 27

wou ld build upon our advanced development work.
Bui lding a separate tool had a nu mber of advantages:
We could develop a data visualization tool apart from
the other DEC FUSE tools. We could i mplement it in
C + + and thus use some of the design from the
SoftVis tool, i f not the code. The impact on c urrent
tools was mini mal : only small changes to their user
interfaces and an added capabil ity for sending data to
the Data Visualizer were needed. By i mplementing a
separate tool that receives messages from other tools,
we would be following the style of tool integration
used in the DEC FUSE environment.

Many changes had to be made to the prototype
to move this work from advanced development i nto
a product. Functions had to be added and removed.
The design was changed in a nu mber of places . Some
changes resulted from the requ irement to fol low the
tool integration standards for the DEC FUSE product.
Other changes were merely good ideas that came
about once we started the work of i ntegration .

Data Visualizer Tool

Two major features were added to integrate the Data
Visualizer tool into the DEC FUSE programming
environment. First, all the data that composed the
view was comi ng from outside the tool , unlike the
prototype where data for the view was gene rated in ter­
nally by analyzing source files. Now activities per­
formed in other tools would generate this data and
send it to the Data Visualizer. Second, multiple tools
would be sending data that wou ld need to be merged
within the Data Visu alizer i nto a single view. The
remainder of this section sum marizes the features in
the Data Visualizer tool.

The Visual ization DataSet File The Visualization DataSet
file is used to pass information to the Data Visual izer
for display. It contains two types of data . Software
component data describes the fi les , d irectories,
libraries, and functions to be visualized. Event data
describes the data to be associated with these compo­
nents. The types of eve nts are defined in the file by the
tool creating the file, but they must adhere to one of
the predefined formats . An example of an event is
a memory leak detected by a memory analysis tool . In
the file, the memory analysis tool defines an event type
for memory leaks and then passes as many events of
this type as there are leaks detected. By allowing event
types to be defined in the Visualization DataSet file,
the Data Visualizer can easily support any tool that
creates a file in this format.

Each set of events sent to the Data Visuali zer from
a particular tool is logically grouped into an entity
cal led a DataSet. For example, a single DataSet con­
tains all the results from a single search tool inqui ry.
Subsequent searches yield separate DataSets.

28 Digital Technical Journal Vol . 7 No. 2 1 995

Condensed File Views In this paper, software com­
ponents are shown in both the condensed fi le view
i ntroduced in Figure 2 a nd the 3-D view depicted in
Figure 4. Each of these gives the tool a concise, infor­
mation-dense representation capable of displaying up
to 30 ,000 J ines of source code. Program structure is
revealed by the indentation and color coding.

Event Highl ighting, Fi ltering, and Tracking Events i n
t h e DataSet are highlighted on the screen i n a number
of ways . Event types are assigned a color, and that
color is used to color the l ine of the associated event.
The col ori ng can occur in the foreground of the line
or the background . Once a user's attention has been
drawn to the line, the user can obtain more inform a­
tion about the event at that l ine hom the smal l
descriptive window that appears whenever a hot cursor
is moved near that l ine . Figure 9 shows an example
produced by the Data Visual izer tool . In addition,
when the event contains more information than can
be displayed on a single line, for example, when a com­
plete program call stack is logged with the event, a sep­
arate window appears with this information . This is
also shown in Figure 9 .

T h e tool's legend/filter control window shown i n
Figure 1 0 serves t h e dual purposes o f providing a color
key to the events that appear in the view and a mecha­
nism for toggling on/off the appearance of events of
a particu lar type. This control window a lso a l lows the
user to toggle on/ofT the appearance of all the events
in a DataSet. When mu ltip le DataSets are present, they
are placed on top of each other. Each DataSet can be
thought of as a transparency that contains only the
event's highlighted colori ng. These transparencies are
stacked on top of each other (the user can control the
ordering) to show all the events together.

The Data Visua lizer also provides a mechanism for
keeping track of events that are seen or unseen by the
user. Th.is feature can be used when there are many
events to exam ine and the user needs assistance in
tracking what work has been finished and what
remains to be done . This i nformation can be saved
between i nvocations of the tool so that a user can put
this work aside and come back to i t at a later date.

Merging DataSets As me ntioned earl ier, one of the
important features that was added was the ability to
merge the data received from multiple tools into a sin­
gle displayed view. This allows the combination of the
results of two or more tools that normally could not
be merged or even know of each other. For example,
the output from a memory analysis tool that shows
where memory leaks occur and their size can be com­
bined with the output from a search tool that locates
the occurrence of a fu nction name in the progra m.

Figure 9
Highl ighted Event with Cal l Stack

Fig ure 1 0
Event Filtering

The tool uses a nu mber of methods for merging
DataSets, and the type of merge that is performed
depends on the types of events. The simple trans­
parency model described earlier explains how events
can be additively combined to display the sum of all
events. In this model, when two or more events are
associated with the same line in a fi le, they are treated
as separate events that pertain to that J ine . For some
event types, however, this is not the case. The tool sup-

ports the com bination of same line events in different
ways. For example, two runs of a performance analysis
tool generate l ine execution times that can be com ­
bi ned by averaging the execution ti me values to give
the user a reading on the average performance of the
code. As an alternative, these same two events can be
combined by creating a new event that shows the dif­
ference of the execution times to reveal improvements
that may have occurred between runs.

Digital Technical Journal Vol . 7 No. 2 1995 29

Integration with Other DEC FUSE Tools The Data
Visual i zer is well integrated with the other tools in the
DEC FUSE programming environment. The profilcr,
the heap analyzer, and the search tool al l have the abil­
i ty to send data to the Data Visualizer at a user's
request. The Data Visual izer makes good use of the
DEC FUSE edi tors to examine source code in detai l .
From within the Data Visualizer, the user can double­
click at any poin t in any of the d isplayed fi les to have
that source loaded i n to their p referred editor. This
capability is shown in Figure l l , where the results
obtained from the search tool are used to create a view
in the Data Visualizer and load files into the editor.

Revised Design

As seen in Table 2 , some of the prototype components
were reused in the final product design . We changed
the SDM component i n ternally to hand le more data,
but we retained the basic design . We also retained the
design of tbe UTIL component. Since portabi l i ty
between MS Windows and the X Windo'..v System was
no longer a concern, we redesigned the ZWIN com­
ponent i n to the Win Draw component. Due to this
change, the size of this component decreased by 7,600
J i nes of code.

I n addition to modit),ing components, we developed
three new components. The FUSETool component
handles the code common to all the DEC FUSE tools.

Figure 1 1
Integration with Other DEC FUSE Too ls

30 Digital Technical Journal Vol 7 No. 2 1995

I t contains abstract base classes that can be used to
derive new tools . The DVfool component contains the
main program and the bulk of the user interface code.
The View DataSet Fi le (VDSF) component provides
functions tor reading and writing these files. It contains
class l ibraries for C + + programs and C routines.

Note that this design maintains some of the plug­
and- play characteristics of the earlier design . Although
the tool component no longer exists, the VO (Visual
Object) and the vie>v components are present and pro­
vide extensi bi l ity tor future objects and views.

Conclusions

The last section gives an overview of the sofuvare design
from advanced development into final product. The
section concludes \\�th some future plans for this work.

Project History

Du ring the process of transferring this work from
advanced development int o a product, many i mpor­
tant featu res were added to enhance the useful ness
of this technology. The final product retained the abil­
ity to visualize large amounts of data in a condensed
yet compre hensible format; it also included features,
l ike event tracking and DataSet merging, that made it
a m uch more useful productivity tool. Figure 1 2
shows how the design evolved over time. The events

Table 2
Components i n the Data Visua l i zer

Lines
Component Description of Code Classes

FUSETool Base cl ass for b u i l d i n g a D E C FUSE too l . Contains code common to a l l
D E C F U S E tools.

3,000 8

DVTool The Data Visual izer m a i n c lasses. Conta ins the main prog ram and most
user i nterface c lasses.

2,400 1 0

VO Contains the svObject base c lass and its derivat ions, the svF i l e, the
svDi rectory, a n d the svlibrary.

2, 000 5

V I EW Contains the svView c lass and its der ivat ions, the svF i l eView and
svFi le3dView c l asses .

3, 500 8

S D M Software data model component. Contains the l a n g u age-specif ic
scanners and parsers. Defines the prog ra m 's i nternal data mode l .

3 , 500 1 5

WinDraw Provides C++ encaps u l ation of g raph ics d rawing functions. 4, 1 00 1 2

VDSF The Visua l i zat ion DataSet Format component provides rea d i n g and
writ ing routines for this f i le format.

1 ,000 4

UTIL Va rious m isce l l a neous cl asses for data structures, fi le access, etc. It a lso
cont a i n s an i nterface to some common operat ing-system-dependent
routines.

2 , 000 8

Tota l

described in th is paper occu rred over the course ofrwo
years and three months. The advanced development
project began in January 1 993, Jnd the final design of
the Data Visual izer tool was complete i n M arch 1995 .

In Figure 1 2 , the rectangles represe n t software
componems o f the design . A soti:\.vare component is a
col lection of C + + classes that was designed to accom­
pl ish a si ngle fu nction; these components correspond
to the design com ponents described earl ier in this
paper. T h e oval sh:�pes represent prototypes that were
bui lt fro m these components . Solid arcs connecting
components with prototypes show which com ponents
were used to bui ld tint piece of software. Dotted l i n es
between components show hoi\' components evolved
over t ime.

Figu re 12 ind icates that the work involving 3 - D
obj ects a n d some of the early prototype components
were never used . I t Jlso shows that the condensed ti l e
view component and the ZWlN component did
evolve into the ti na! product. Figure 1 2 fu rther reveals
th<1t toward the end of 1 994 several documents were
prod uced , but no work 1vas done on the d esign or any
of the componenrs. D ur ing this period of negotiation
and red esign, the advanced d evelopment technol ogy
was being converted into a prod uct.

Future Work

'vVe wou ld l i ke to c x p:1 11d the capJbi l i ties of the Data
Visual izer tool in scvcrJI areas.

Many of the cap:�bil itics r(n mergi ng DataSets are
not avai !Jblc t(Jr selection by the user. We wou ld l i ke to
extend the tool to h:�vc the added fl ex ib i l i ty of :d low­
ing the user to d ecide how n,u:�Scts should be merged
:-tnd how events should be combined . For example, the

2 1 , 500 70

tool m ight show only the i mersection of two D:�taSets,
that is, display only t hose events that point to a ti le- l ine
combi nation that is common in both sets.

vVe wi l l a lso consider other ways of di splaying in a
condensed fi l e format and additional types of fi les to
visual ize. The fi l e types might be comp l ete d i rectories
sh own as a si ngle, cond ensed object, or sh:�red and
nonshared l i braries as a si ngle object.

We have an ongoi ng effort ro rake the o u tput from
existing tools and vis ua l ize it in this tool .

Final Rema rks

The decision to inc lude the Data Visu al izer tool in the
next major rel ease of the DEC F SE programming
environ ment was not an easy one to m:�kc. 1\tlany
i m portant featu res were being consi d ered , but not
enough resources were avai lab le to pertorm the work.
Prioritized goals were establ ished , and all work items
were evaluated against these goals . The Data
Visual izer tool was inc luded t(>r t\vo i mpor tant rea­
sons. First, it suppo rted the s hort-term goals of the
project by addi n g featu res that current tools could usc
i n the upcoming release . Second, i t provided long­
term benefits by ope n i n g up the D EC ._:usE prod uct
to n ew capabi l i ties i n the area of software visual ization.
We bel ieve that the presence of both these reasons was
necessary for i ts inc l usion in the D EC fUSE prod uct.
Had i t provided su pport tor only the short-term prod ­
uct goa ls, it wou ld have been ev:� l u ated against the
many other short-term work propos:�ls and probably
would not have been selected . H ad i t supported only
the long-term goals, i t would have been lett out ti>r
Jack of ties to the current tools.

Digiral Technical journal Vol . 7 �o. 2 I 'J9S 3 1

z 0
N

JAN, FEB, MAR 1 993

Figure 1 2
Project History

APR, MAY, JUN 1 993

' ' ' ' /

- - _ _ - - _ _ _ _ _ _ _ _ _ _ _ - - - - _ _ _ _ -�;/��'- - - - -I WINDRAW

' ' ' ' '
' ' ' ' /

' '

- /

JUL. AUG, SEP 1 993 OCT. NOV, DEC 1 993 JAN, FEB. MAR 1 994 APR, MAY, JUN 1 994

I I I
FI RST REPORT SECOND REPORT THIRD REPORT

JUL, AUG, SEP 1 994

I
FINAL REPORT

OCT, NOV, DEC 1 994 JAN, FEB, MAR 1 995

I I DVT PROPOSAL

DVT FUNCTIONAL
SPECIFICATION

DVT DESIGN
SPECIFICATION

Acknowledgments

I II'O u l d l i ke to thank a n u m ber of peop le who sup­
ported me during this effort: John El lenberger tor his
con tinu ing guidance throughout the en tire process;
Mike Candel la t(>r the early work we did together in
the Advanced Deve lopment G roup; Glenn Lupton t(>r
his he lp in tkciding how th i s prototype wo u l d ti t into
the DEC rUSE prod uct; the DEC fUSE management
team for s u pporting and encouraging this work; and
fi na l ly, everyone on the DEC FUSE deve lopm ent
team .

References

I . 1\. H�n ;md (1. Lupton, " D eC rUSE: Build ing � c_;rap h ­
ictl Soft\\'Jn: Dcn: lopmcnt Envi ron ment ti·om UNIX
Tools," f)i,!{ ital Techniw!Juumal. , -o l . 7, n o . 2 (1 995,
this issu e) : 5-1 9 .

2 . S . Eiek, "SccSof't-A Tool tor Vi su;t l i z i ng I .inc Oriented
Soti:ware S tatistics ," !tEl:: Transactions 011 Soji1oare

h'ugineeling, vol . 1 8, no . I I (1 9<)2): 957-968.

3 . S . Eick, '' G r;tp hi ca l ly Displaying Text," Journal of'

Ollltf>ll/o/i()lta/ and Crapbical S!Uiist ics. \'ol . 3 , no. 2
(1 994) 1 27- 1 42 .

4 . S . Eick, M . Nelson, a n d J . Sch mid t , " G r�phio l An;t l \·sis
of Com�)U ter Log ri k:s," Com I I I / I I / icaliOIIS oj'thc ACH.
,-ol . 2 7, n o . 1 2 (I 994) : 5 0 -5 6 .

5 . K . Perl i n ;t nd D . Fox , " PAD-An Al rcrn�tin: ApproJch
ro the Com pu ter l ntcrtace," S!CGH.Af'J-1 9.-J Pmcccd
i l l.�-' (I 99 3) : 57- 6 4 .

Biography

Donald A. Zarem ba
The J)rojecr kJdn of the rUSE O;tt;t Visu;l l i zJtion tc1111,
Don Zaremba is a principJI software engineer i n Digi t:� l 's
U n i x Dcvc lopmcnr Environment Group. H e \\·as respon­
s ible tilr designing Jnd i m plement ing the DaLl Visua l izer
tool . Since JOining Digit;JI in 1 980, Don has contri b u ted to

the D J-: C : Te st 1Yb n�gcr project <tnd has worked on software
dC\·e lopmcm tools and f3u l t <lna lysis tools . He rccci,·ed �
B .A . in m Jthc mJtics from the Stare Uni\'crsity of Nc\\ York
and an M .S. in software engi n eering fi·om vV;ng Institute.

Digiral Technical Journal Vol. 7 No. 2 1 995 33

Multivendor Integration
Architecture: Standards,
Compliance Testing,
and Applications

The Multivendor Integration Architecture

(MIA) is a user-d riven in itiative that addresses

the practical appl ication of open systems

software standards to business req uirements.

This paper provides historical background

and context for this standardization effort

and describes Dig ital's contributions to the

effort, particu larly in the area of d istributed

transaction processing. Dig ital compl ied

with the MIA specifications, integrated com­

pliant prod ucts into a complete platform, and

del ivered a large appl ication on the platform.

34 Digiml Technical j o u rnal Vo l . 7 No. 2 1 995

I
Eric A. Newcomer

I n today's competitive environment, an enterprise 's
computer systems help determine its success or fai l ure.
The need for large enterprises to separately manage
appl ications on d ifferent compu ter vendors' platforms
d istracts the enterprises fi·om performing their main
business functions a nd adds to their operations cost.
Corporate mergers and acq uisitions often compound
the problem.

Whi l e the business need for high-qual ity computer
systems has never been greater, estab l ished computer
users rind themselves in a poor position due to the
tremendous burden of their l egacy systems. Newer
compan ies a l most automatica l l y gain a competitive
advantage fi·om their more flexible, state-of-the-art
computer systems.

The avai labi l ity of open , standards-based systems
enables critical business systems to be bui l t on a com­
mon p l atform that can be purchased from mul tiple
vendors at competitive prices. This offers everyone the
same level of basic fu nctiona l ity with which to bui ld
new systems. These systems must be capab le of
in tegrating com ponents from mu ltiple vendors into
a single, large app l ication .

This paper provides background information
for user-driven standard i zation eff(xts, with a tocus
on N ippon Telegraph and Te lephone's (NTT's)
Mu ltivendor I n tegration Architecture (MIA). The
paper discusses the MIA's principles, including
three mu ltivcndor interfaces, N TT's major types
of computer processing, speci fication deve lopment,
and Digita l 's approach to addressing integration prob­
lems rel ated to transaction processing (TP). AJso d is­
cussed are impl ementation and systems integration
issues and the del ivery process. Digita l 's contributions
to the open systems software in tegration effort are
described . Digital was i nstrumenta l in defi ning the
MlA specifications tor TP, and it developed the first
M IA-compliant appl ica tion .

User-driven Standardization Efforts

About 2 5 years ago, NTT, one of the world's largest
corporations, developed its first computing system pro­
curement specitlcations. These deta i led specitlcations

included designs for special hardware and operating sys­
tems to meet the enterprise's demanding req uirements.

The procurement specifications focused on systems
of sufficient capacity and robustness with which to
au tomate the fundamental business operations of a
large telephone company. They did nor requ i re porta­
bi l ity or interoperabil ity. NTT presented the specifica­
tions to Hi tachi , Fujitsu , and NEC and ordered
hardware and software that con formed . In add ition
to the Japanese suppliers, IBM also responded to the
procurement req uest and became an NTT suppl ier.

Fol lowing the s uccessfu l implementation of the
original speci fications, NTT developed appl ications on
top of the various vendors' platforms. Like many other
la rge enterprises, NTT created separate teams to tackle
the vendors' systems i nd ividual ly.

I n 1 988, NTT establ ished the M IA consortium to
resolve the inefficien t practice of having separate teams
deve lop and manage appl ications on different vendors'
platforms. The consorti um was charged with address­
ing the associated problems that intertere with the way
these appl ications comm unicate, share code, share
data, or move to a new technology base.

The MIA initiative was conducted as a Japanese
industrial col laborative research project with the goal of
resolving the problems of multivendor application
environments . NTT invi ted computer vendors to join
the project by issu ing a publ ic subscription announce­
ment and then selected participants ti·om among the
respondents. Fujitsu , Hitach i , NEC, and I B M were the
first consorti um members. Digital was a lso selected
because of its expertise in networking and client-server
computi ng. The MIA in i ti ative set out not on ly to
resolve the problems with a multivendor environ ment
but also to move NTT's computing systems forward
by i ncorporating distributed processi ng functiona l ity.

One of NTT's goals was to el imi nate al l visi ble
d i fferences among tbe vendors' pl atforms. "Visib le"
meant perceptible to (l) the hu mans who in teract
with the computers as end users, in appl ication devel ­
opment and dep loyment , i n system administration ,
and i n network configuration and management, and
(2) the protocols tor commu nication betvveen the dif­
ferent vendors' computers. A guid ing pri nciple of the
M IA i n itiative was that the systems with which peop le
interact should appear identica l , regardless of the man­
ufactmer who created the hardware or software being
used or the purpose tOr which i t was being used .

As a member of the M IA consorti um, D igital
he lped develop detai l ed specifications that met NTT's
requirements for open systems software components
that any vendor cou ld imp lement . I n particular,
Digital developed new mu l tivendor speci fications tor
distributed TP, an area of computing tor which stan­
dards did not exist.

The resu l ts of the MIA project were publ ished i n
1991 as l l volumes of detai led procurement specifica­
tions that describe a complete appl ication develop­
ment platform tor large-scale systems . ' Applications
created usi ng software that conforms to the specifica­
tions can be developed and implemented on any
vendor's computer.

The concepts behind the MIA specifications were
put to the test at a publ ic demonstration at I nterop
Tokyo in] uly 1 994. After considerable debugging and
testing, the concepts were proven to work 2 The next
measure of success is whether sufficient demand and
cost sav ings exist to induce vendors to market con­
forming products , i n particu lar, off-the-shelf products.

D igita l 's involvement in specifying solutions to user­
driven open systems software requirements continues
at the Service Providers' I n tegrated Requirements for
Information Technology (SPIRIT) consortium, which
is sponsored by the Network Management Foru m.
SPIRIT mem bers i nc lude the world's largest telecom­
munications service providers and computer vendors.
The MIA spec i fications were submitted as base input
documents for SPIR.IT, a long wi th other documents
from AT&T, Be l lcore, BT, and ETIS (a consort ium
that represents 27 European posta l , telegraph, and
telephone admin istrations) . ·;

It is un known whether this user-d riven approach to
standardization wi l l succeed and meet the importan t
goals of portabi l i ty, i nteroperabi l ity, and mul tivendor
procurement.4 Nonetheless, users and vendors are
learning some important l essons as a resu l t of the
users' strong efforts in this area.

MIA Principles

When NTT turned its attention toward creati ng the
MIA procurement standards, i t began to attack the
problem of multivendorization, which NTT believes is
strategic to i ts fu ture business. "Because a computer
system must be able to provide as broad a range ofbusi­
ness services as poss ib le , i t is desirable to construct such
a computer system flexib ly enough to inc lude different
computers, each of which covers the area of busi ness i n
which the vendor's model i s t he most powerfu l . " 5

Early in the MIA project, NTT establ ished the basic
requirement that sol utions be based on open systems
standards where possible. However, s ince the corpora­
tion 's existing complex legacy of appl ications was criti­
cal to business operations, the new standards had to
al low tor the same degree of functional ity and robust­
ness as the software for the existing platforms. AJso, if
i t was to replace its current applications with applica­
tions that took advantage of commodity technology,
NTT needed a way to migrate to the new whi le inter­
operating with the old . " Based on the assumption that

Digital Ted1nical Journal Vol. 7 No.2 1995 35

a variety of hardware and operating systems of vendor­
specific design is wi dely accepted in the general­
purpose computer market, MIA specifications must
be a feasi ble extension of, and coexist with, vendor­
specific architectures. " 5

The MIA effectively grouped related fi.mctionaliry
to match the existing requirements for business appli­
cations and added support for distributed client-server
computing. Using the resulting architectural frame­
work, the MIA consortium matched existing standards
to NTT's needs, identified missing fi.mcrionality, and
created new multivendor specifications to achieve the
additional functionality.

Three Interfaces

At the start of the MIA project, NTT identified what
it considered the three most important issues of
multjvendorization:

l . Duplicated development of application programs

2 . Ditriculties in resource sharing

3 . Differences in operating methods5

For each of these problems, NTT identified solutions
in terms of standard, i.e., multivendor, interfaces,
as follows:

• Application portability using standard application
programming interfaces

• Interoperability using standard commut1.ication
protocols

• Common user interface using a windowing style
gu ide

Figure 1 illustrates the basic architecture as specified
by the MIA consortium. The conflgurarjon incorpo­
rates three systems-the end user, the departmental
computer, and the host computer-and includes three
types of intedaces-human user interface (HUI),
application programming interface (AP I) , and systems
int erconnection i nterface (S I I) . The figure represents
the fundamental goal of M IA conformance tor each

Figure 1

E N D USER WORKSTATION

I APPLICATION I
t API

KEY:

HUI HUMAN USER I NTERFACE
API APPLICATION PROGRAMMING I NTERFACE
Sll SYSTEMS I NTERCONNECTION I NTERFA C E

SYSTEM
SOFTWARE

MIA System Configu ration

36 Digital Technical Journal Vol . 7 No. 2 1 995

vendor, i.e., to offer conforming interfaces and proto­
cols that allow NTT to purchase the same level of
compati ble software functionality ti·om multiple ven­
dors and create new applications that are inherently
d istrib u table, portable, and interoperable. Another
reason NTT focused on these three interfaces was that
if the M IA specifications contained too many low-level
interfaces, the vendor-specific strengths would be
removed and the specifications would not support the
NTT strategy of multivendorization.

Through the standardization of the three interfaces,
NTT anticipated that an end user vvould be able to
use any display device withom knowing the vendor
(via the HU I) , a programmer would be able to write
a program that would run equally well on all platforms
(via the AP I), and a computer from one vendor could
be connected to a computer from any other vendor
using common systems interconnection protocols
(via the SII).

Additional types of interfaces and protocols that
were outside the scope of the MIA specifications are
being addressed by the SPIRIT consortium. For exam­
ple, SPIRIT has taken on the task of standardizing the
system management imerbces and protocols. At the
start of the MIA initiative, NTT decided that the best
use of time and resources would be to standardize the
HUI, the API, and the SI I .

Major Types of Computer Processing

NTT categorized its computing activity into four types:
real-time processing, transaction processing, interac­
tive processing, and batch processing. Figure 2 illus­
trates the processing rypes and intertaces addressed
by the M IA specifications. Note that the specifications
did not address real-time processing issues.

NTT included the area of TP because the company
had a huge investment in developing and running TP
systems and because its b usiness relied on TP systems
such as billing, inventory control, and directory assis­
tance. The opportunity for return on investment was
therefore high for this critical application area. Data

DEPARTMENTAL
COMPUTER HOST

I APP LICATION I I APPLICATION I
S l l t API S l l t API

- -

SYSTEM SYSTEM
SOFTWARE SOFTWARE

PROCESSING TYPE
INTERFACE

TRANSACTION INTERACTIVE BATCH

I COBOL I PROGRAMMING c
LANGUAGE

I I FORTRAN

DATABASE I SOL I ACCESS

SYSTEM USER STRUCTURED

/
INTERFACE I NTERACTIVE ACCESS TRANSACTION PROC ESSING DEFI NITION

COMMUN ICATIONS LANGUAGE
ACCESS (STDL)

Figure 2
MIA Processing Types and InterLKes

i ntegrity, remote access, and system rel iabi l ity are the
key characteristics of TP that needed to be supported
through standards compliance to ful ly rea l i ze the cost
savings potential of the M iA.

fn the area ofTP, no international standards existed
for the two most significant in ter face areas NTT h ad
identi fied as candidates for mu ltivendorization: the APl
and the SI I . This ddiciency created one of the biggest
problems that the MIA consortium had to resolve and
later gave rise to a l arge systems i ntegration and appl i ­
cation del ivery chal lenge with respect t o the M IA.

NTT required the MIA TP speci fications to support
remote, d istributed transactions . M lA TP comprised
specifications for mu lt ip le programming languages
and network protocols and there fore became t he
widest i n tegration point that had to be achieved .

Developing the Specifications

As the tirst step i n speci�'ing sol utions to the p rob­
l ems that it put forth to the M lA consorti u m , NTT
prod uced user req uireme nts. The user requ irements
evolved over the course of the project as new q uestions
arose that needed c larification from N TT's busi­
ness sector. M eeting user req uirements was the fi na l
verification of the specification output at the end of
the project. I n addition, the consort ium had to
develop specifi cations that cou l d be i mplemented
by any vendor.

For the area of TP, N T T asked each vendor in the
MIA consortium to submit a proposal for a new m u l ti­
vendor specification and selected Digital 's Appl ication
Control and Management System (ACMS) TP mon i ­
tor proposal a s t h e base on which t o b u i l d . 6 A T P
monitor is a software component t h a t provides func­
tions required for TP app l ications, such as transaction
coordination, display management, and performance
improvements.

ENVIRONMENT
(I P E)

NTT selected the ACMS proposal as the base of tbe
new m u ltivendor standard tor two reasons: the ACMS
TP monitor includ ed a high-level TP control language
ca l led the Task Definition Language (TDL), which
could be made portable more easi ly than a lower leve l
API , and the monitor used a remote procedure ca l l
(RYC) com m u nications model , which is easier to pro­
gram than a peer- to-peer comm un ications mode l .
That is, the ACMS technol ogy was determi ned to pro­
vide the best solu tion to N TT's req uirements for mul ­
tivendor portabi l ity and d istri buted processing.

The p roblems to be resolved by the consorr ium
vendors, consistent with the princip les of mu ltive n ­
dorization set b y N TT, were

• Portabi l ity

• Interoperabi l ity

• Common user access

H istorical ly, portabi l i ty has best been achieved
a mong vendor platforms by using a high-level lan­
guage such as C or COBOL. This pri nciple was true
for the M IA , except that the M IA consorti u m found
i t necessary to produce profi les of programming lan­
guage standards. The C and CO BOL standards are
not sufficient to achieve portabi l ity because so many of
the spec i fication r u l es are subject to a variety of i nter­
pretations among vendors, and architectural language
l imits are not defined ?.s

An M IA profile of a programming language stan­
dard reterences the standard specification and modifies
it to improve portabi l i ty. In the case of the M I A
COBOL profile, national text support i s mandatory
for portabi l i ty of i nternational language features. The
X/Open Company adopted this work as the basis tor
their COEOL national language support and accord­
i ngly publ ished the X/Open COBOL specification .9

Digiral. Tec h n ical Jou rn a l Vol . 7 No. 2 1 9 9 5 3 7

38

The M IA COBOL profile also deletes sections of the
ANSI COBOL specification that contain optional syn­
tax that a vendor may choose to i mpleme nt . Final ly,
the MIA COBOL profi le sets common language l im its
such as the maximum length of a text stri ng a n d the
number of parameters supported o n a proced ure cal l .
The resulting profi l e a l lows programmers to create
source programs that are porta ble to any vendor who
conforms to the MIA specifi cations.

The M IA programming language profi les were
req u i re d because of the way vendor-driven standards
are typica l ly writte n . The goal of vendor-driven speci ­
fications work is to a l low the widest possi ble i n ter­
pretation of architectura l l y sign i ficant issues such as
integer precision , fi l e system naming rules, and mem­
ory manipulation , and thereby to a l low the widest
possible implementation and adoption .

The M IA C profile adds rules for defi n ing the con­
version of a signed integer i nt o an integer of smal ler or
equal size and for defin ing the results of dividing by a
negative integer. Neither of these semantics is defined
i n the ANSI specifi cation because they tend to vary
according to vendor architecture . The .MIA C profile
also defines wide-character handl ing in the print and
t-I le manipulation fun ctions so that programs support­
ing i nternational language character sets would be
portable .

Efforts t o address these portabi l ity issues, such as
the X/Open X PG portabi l ity specifications, usual ly
describe or catalogue the pro blems so that the pro­
grammer can avoid them. 1 0 J\!l iA places the burden of
ensuring application source code porta bil ity on the
vendor i nstead of on the programmer.

No language standard existed for the MIA processing
area ofTP, however. Although some protocols existed
for various degrees ofinteroperabi l ity, none existed for
complete d istri buted transaction coordination.

Solving the TP Problem

Perhaps t he most significant aspect of the M IA effort is
its approach to resolving problems associated with dis­
tri buted TP. Typical ly, TP appl ications are very large
and involve strict req uirements f(Jr perf()rmance and
availabi l i ty. TP applications i mplement the dai ly opera­
tions of a b usi ness. Some of the better-known exa m ­
ples include travel reservation systems a n d a u tomatic
teller machines . The term "transaction" is derived
from the term " busi ness transaction," which means an
exchange of goods or money between two i nd ivid ua ls
or businesses, or some combination thereof.

Transactions, when automated , take on ad d i tional
properties because computer systems arc subject to
fai l ure in ways t hat manual systems arc not. Computer
systems arc e lectrical , and electrical fai l ures can dam­
age data storage media . Computer systems arc net­
worked, and com m u nication fail u res can interrupt the

Digital Tech n ical Journal Vol . 7 No. 2 1 99 5

com pletion of a business transactio n such as a travel
reservation that req uires the participation of m u l tip le
computers at multiple sites.

A computer transaction uses logging to ensure that
busi ness data is captured rel iably or not at a l l . Perhaps
most i mportant, a computer transaction ensu res that
business computer systems recover q u ickly from any
type o f fai l u re and begi n processing data again without
manual intervention .

B ecause o f t he h ighly demanding nature of T P , \'en­
dor i m pleme ntations of TP system software depend
on the features of specific hard ware and operating sys­
tem arch i tectures for the purposes of performance
optimization and fast recovery. The mechanisms for
accomplishing fast recovery arc complex and d i fficu l t
to i mplement on a mu l tiple- user syste m . Although
business data is shared , operations on the data must be
isolated so that one operation does not overwrite the
effects of another operation . When two s imultaneous
requests arrive to update the same ban k account, for
example, the ending bal ance may be incorrect if the
two updates are not properly serial ized . Such errors
can occur u n l ess transactions arc used to isol ate and
serial i ze the updates . Fai l u res of media or communica­
tions can resul t i n inconsistent data. 1 1

These d i ffic u lties and others have deterred stan­
d ards bod ies from add ressi ng the area of TP. Conse­
quently, the market is dominated by proprietary
sol utions. Users are l iable to be locked in to a partic u ­
lar vendor and t o have d if11culty achieving t h e bcndlts
of competi tion .

The MIA TP speci fications were designed to address
these p roblems and to counter the shor tcomi ngs of
the trad itional vendor-d riven software standard ization
process. M IA TP el im inates vendor-specific d ifferences
by adding a high-level l anguagc l ayer on top of propri­
etary TP monitors and by adding a com mon protocol
at the l ower l ayers for interopcration . 1 1 The on ly
restriction that M IA places o n the underlying software
or platf(mn is that it m ust be suffi cient tor i mplement­
ing the speci fied TP fu nctional ity. Otherwise, vendor
and user i nvestment in existing systems is preserved .

The M IA consortium based the MIA TP protocol
standard on the I nternational Standards Organizati on/
Open Systems I ntercon nection (ISO/OSI) TP proto­
col , and on the Open Software Foundation's (OSf's)
Distri buted Computing Environ ment (DCE) RPC,

both of which were newly released 1 2 To balance the
r isk of adopti ng a n ew technology, the J\!! I A consor­
tium chose I B M's Systems Network Arc hitecture
(SNA) Logica l U n i t 6 .2 (LU 6 .2) as a short-term alter­
native solution.

The M IA transactional com m u nication specification
combined D CE RPC as the data transport a nd OS I TP
for the two-phase commit protocol . The result ing
protocol was cal led the Remote Task I nvocation (RTI)

protocol , which was subseq uently adopted by
X/Open as the basis of their Tx RPC specification 1 3. 1 4

Figure 3 shows the res u l ting M IA TP modeL
To solve the portabi l ity problem, the consortium

began with Digital's proposal based on the ACMS TP
monitor's TDL and developed a new Structured Task
Defi nition Language (STDL) , which is a modu lar,
b lock-structured language very s imi lar to TDL l 5 The
consorti um eliminated vendor-specif-ic syntax, ensured
that STDL's features met N TT's user req uirements,
and conducted implementation studies to verify that
the new language could be implemen ted on top of
each vend or's existing proprietary TP monitors. 1 6

Figure 4 i l l ustrates the layeri ng of the new M I A TP
language o n the M I A TP protoco l .

Because t h e M IA was based on standards as m u c h as
possi ble, the M IA TP work also had to be largely based
on standards. Theref-ore, the STDL specification was
i ntegrated with the standard l anguages C, COBOL,
and SQL to provide complete, portable application
functional ity, 1 7 The consorti u m mapped the d ata types

Figure 3

D I SPLAY
DEVICE

M IA Transaction Processing M odel

PRES ENTATION

among the f-our langu ages and specified interlanguage
cal l semantics.

STDL procedures can cal l and be called by C and
COBOL procedures. STDL implements the TP­
specific fu nctionality that standard C and COBOL
lack. Examples of th is fu nctional i ty are begi nning and
ending a transaction, handl ing transaction exceptions,
automatical ly restarting transactions, and coordi nat­
ing m u l tiple transactional resource managers (i .e . ,
databases, ti l es, a n d queues) local ly or across remote
TP systems in a network.

Adopting STD L as a new language represented a
practical way to add TP-speciflc fu nctional ity i n a mul­
tivendor environment whi le al lowi ng the C , COBOL,
and SQL languages to be used as specif-ied in inter­
national standards. This approach did, however, result
in additional i n tegration problems. It was necessary
to ensure that STDL procedures worked with C and
COBOL proced ures as wel l as with SQL and within
the entire TP envi ronment , wh ich encompassed
a l arge part of a pl atform's capabi l it ies. An additional

TRANSACTION
FLOW
CONTROL

STDL TASK
DEFINITION

PROCESSING

C, COBOL,
SOL

RESOURCES

STDL { I
RTi l

APPLICATION PROG RAMMING INTERFACE

DCE RPC DATA DCE RPC DATA
TRANSFER PROTOCOLS TRANSFER PROTOCOLS
OSI TP LU 6.2

P R ESE NTATION PRES ENTATION NETWORK ADDRESSABLE
U N IT SERVICES

SESSION SESSION
DATA FLOW CONTROL

TRANSPORT TRANSPORT
TRANSMISSION CONTROL

RFC 1 006

TCP

OSI TCP/IP SNA

F igure 4
MIA Transaction Processing A P I and Protocol

Digital Technical journal Vol . 7 No. 2 1 99 5 39

40

bendit resu lts ti·om the use of a comp i l er to c heck
STD L S�'n tax and semantics, thus red ucing the
i nstance of execution errors.

Implementing the MIA Specifications

Because the architectu re was ddined at the i nterface
leve l , the implementation and system integration prob­
lem f()r vendors emailed identifying the components
with conformi ng i nterfaces and assembl ing them on
the platform that met the M IA speci fications. Although
focusing on three i nt e d:Kes was practical with respect
to completing the l l vol u mes of the M I A specifica­
t ions i n approxi mate ly 1 8 months, such a scope left
u n covered many areas of tech nology that the vendor s
i ntend ing t o implement M IA wou ld have t o provide
for themselves. System and network management,
computer-aided software engi neeri n g (CASE) too ls,
and testi ng and debuggi ng tools a re examples of i tems
that wou ld h ave to be integrated with the components
that complied with the specitications.

Table l l ists the pri mary areas of the MIA speci tica­
tions and the types o f sta nd ards i ncluded i n each
area. 7.X . 1 2 . 1 � . 1 :>. 1 7-2�

The M l A speci tications' practical approach to
resolv ing the probl e ms of portabi l ity and i n tcropcr­
abi l ity inc lude carefu l l y docu menting where the ven­
dor d i fkrcnccs cominued to exist among the
i m plementations of the standards. "In genera l , the
amoum o f i n fcmnation transfera b le between d evelop­
ment and execution environ ments under the origi na l

Table 1
Areas of M I A Specifications and Associated Sta ndards

Areas of M IA
Specifications

API

Standards

M IA procurement specifications is less than that trans­
fe rable when both environments are provided by t he
s:1mc \'c ndor. " 1 Some vendor-specific coding, t<x
example, i nc l u d i n g ri le names i n sou rce code pro­
grams, could not be standard i zed by M I A because of
fu ndame n tal vendor d i frcrcnccs. Instances of such
u n rcsolvab lc problems were carefu l ly documented .

The amount of porrabi l irv gai ned by tc> l lowi ns the
M IA specifi cations was sign ificant, however, as com ­
pared to the amou n t that wou l d be gai n ed without
using the specifi cations. The fd l owing example ot·
d e fi n i n g the i n tege r size i l l u strates the bendi t d e rived
fi·om having the M lA C specification .

A C progr:1m written using a vend or's com pi ler th;n
i nt erprets :1 long i n teger data type as h aving 1 6 b i ts wi l l
not work correctly when ported t o another vendor's
compi ler that i n terprets the same data type as having
32 bi ts (w hich is an acceptable inte rpretation accord ­
i n g to the ANSI/ISO C specifi cation) . Tvpical sol u ­
tions t o this p roblem ha\'e bee n to docu ment the
problem �md i nstruct programmers to rccodc \\·hen
porti ng their programs, or to ha\T programmers \\Tire

their origi na l programs so as to avoid the problem.
The M IA C speci fication resoh'CCl this pro blem �m d

s imi lar problems i n that it represents agreement
�unong the M IA consortium vendors on a common
i mcrpretJtion of the A.!'IS I/150 C spec i ficati o n .

Because the M I A spec i fications arc procu rement spec­

i fications, vendors must conform to the JVI I A C speci ti ­
cation when respon d i n g to MIA-compl i�mt req u ests
t(>r procurement (R.FPs) from NTT.

COBOL
FORTRAN
c

ISO 1 989: 1 985, A N S I X3.23- 1 985
I SO/I E C 1 53 9- 1 99 1 , ANSI X3 . 1 98- 1 992
A N S I/ ISO 9899

STD L
S Q L

H U I
OSF/Motif

S l l

I B M 's Co m mon User Access
O P E N LOOK

M I A TP protocol
OSI TP
M H S X .400
FTAM
TCP/ IP, FTP, SMTP,
TELN ET, S N M P, U D P, C M I P
X . 2 5
I S D N
Ethernet

Digit.ll Tcclmicll)ourtd

M I A specification adopted by S P I R IT a n d subm itted to X /Open
ISO 9075-1 : 1 992

OSF/Motif Sty le G u ide, R e l ease 1 . 2
No sta n d a rd esta b l ished
N o sta n d a rd esta b l ished

M I A RTI specification adopted by X/Open as the TxR PC specification
I SO/I E C 1 0026- 1 : 1 99 2
I SO/I E C 1 002 1 - 1 : 1 990, CCITI X.400-89
ISO 8571 - 1 : 1 988
I nternet protocol suite

ISO/ I E C 8208 : 1 990, CCITI X.2 5-89
CCITI I Ser ies
ISO/I E C 8802-3 : 1 993, I E E E 802 . 3-93

Vol . 7 No. 2 1 Sl9S

Implications for Systems Integration and
Application Del ivery

NTT awarded Digital the f-irst contract to del iver an
MIA-compl iant appl ication . NTT selected i ts List
Mai ntenance System (LMS), the application that man­
ages the telephone number database used to produce
telephone directories f(x all of]apan 2 One purpose of
the LMS was to sufficiently test the specifications. The
LMS procurement involved 60 software p roducts
from a variety of Digital engineeri ng groups. The
components had to be modi fied to meet the specifica­
tions and then integrated , tested, characterized , and
delivered on the Open VMS operating system. The tar­
get configuration of three VA.,'{ 1 0000-630 systems i n
a VAXclustcr configuration supported more than 1 0
cJ.ient si tes throughout J apan. T h e contract i ncludes
software, hardware, and services. Figure 5 i l l ustrates
the LMS appl ication .

Of the 60 software components i n the LMS plat­
form del ivery, 27 were required for conformance to
the MIA specifications. Although the remaining 3 3
components add ressed appl ication areas outside the
scope of tbe M IA spccific::�tions, these products had to
be integrated with the M IA-comp l iant products,
tested, characterized, and verified, thus making the
in tegration effort more complicated.

Even though NTT real ized some bene fits from the
standardized prod ucts that i t procured accord ing to
the MIA specifications, it raced a dua l systems in tegra­
tion probl em. Del ivery req uired comply ing with the
specifications and a lso complying with the deta i led
terms of the specific RFP for the LMS.

Figure 5
Lisr Maintenance Sysrcm

SPECI FICATIONS
3 VAX 1 0000-630 SYSTEMS IN A CLUSTER
1 1 CLIENT SITES
60 SOFTWARE COMPONENTS
STDL TP MONITOR
500-GB DATA REQUIREMENTS
MIA-COMPLIANT PLATFORM

Figure 6 i l lustrates the system verification and char­
acterization process carried out by Digital's Systems
Appl ication In tegration and Engineering (SAlE)
group . This was the key effort in responding to the
MlA-based procurement request.

Digital establ ished a specia l -purpose production
systems program office (PSPO) to oversee the entire
process of de l iveri ng the MIA-compl iant RFP . This
prograrn office was modeled after the successful Alpha
program otlice 25

A production systems board of d i rectors re pre­
sented the various engineering departments whose
component prod ucts were included in the LMS. The
board 's function was to resolve priority and budget
conflicts among the various departments . This group
met month ly.

A special project forum was establ ished with repre­
sentatives of the i ndivid ua l products and engineers
who cou ld resolve tec h n ical problems and fi x bugs
that surfaced in the i n tegration and testing activities.
This group met weekly.

The SATE group provided a "sandbox" for compo­
nent prod uct groups to i nsta l l and test their products
on the specific version of the Open VMS operating sys­
tem on which the com ponents were to be del ivered .
This process was repeated for operati ng system
upgrades and was made more d i fficu l t because in it ia l ly
a special version of the OpenVMS system was requ ired
to fi.d ly meet the terms of the R.FP, i n particu lar, to
provide Japanese language su pport.

After the components were installed in the
Open VMS operating system, SATE engi neers verified
that the components worked together by runn ing test

Digital Technical Journal Vol . 7 No. 2 1 995 4 1

42

PRODUCT

MANAGEMENT

Figure 6

CONFORMANCE

TESTING

PRODUCT

DELIVERY

SYSTEM

VERIF ICATION

AND

CHARACTE RIZATION

Digital's M I A Systems I ntegration Process

applications and characterized the overall performance
of the platform as configured . Any problems that arose
du ring this testing and characterization work were
routed back to t h e compone nt product groups by
means of the spec ial project foru m . Fina l ly, the pro­
gram office coord inated the del ivery to the local
Digital office in Japan and to the customer (NTT) .

The integration etfort for the LMS uncovered more
than 1 70 bugs, of which 25 were major obstacles. If
D i gital had not undertaken the integration effort, the
problems wou ld have shown up at the customer site
and jeopard ized t h e contract. Of rhe bugs, nearly 50
percent were di rectly related to i ntegrating the various
components on the common platform .

For example, one bug i nvolved a fata l clash between
versions of a threading package . Two LMS component
products had i ncorporated incompatible versions of
the same threading package without considering the
potential problems that migh t arise if the two sepa­
rately developed components were i ntegrated and
tested on the same platform.

Another probl e m resu l ted from the upgrade from
the VAX C language compiler to the DEC C compi ler,
which was to comply with the new ANSI standard for
the C language . While upgrading i ts C compiler to
comply with the ANSI C standard, D igital altered the
semantics of the associated run-t ime l i brary. Most new
software components are coded using C, so nearly
every component on the platform was impacted.

D u ring the 1 8 - month period that the program
office, the board of d i rectors, and the project forum
supported the L M S effort, 56 releases and patches
were provided for LMS integrated products. Each

Digital Technical journal Vol . 7 No 2 1 995

PLATFORM

DELIVERY

DIGITAL

CONSULTING

SERVICES

CUSTOMER

t ime a new version of the operating system or a major
component was released, the integration, testing, and
characterization process had to be repeated .

The major Jesson derived from the experience with
MIA was the type of project a n d program man age ­
m e n t req uired to de liver a complete pl artorm for
e n terprise- l evel computing on a large scale. Addi­
ti onally, Digital engineers learned to work with other
vendors to ensure the compati bi l ity of Digital's imple­
mentation of the lvllA specifications with the other
vendors' i m plementations.

Digi tal remains very i nterested in pursu ing oppor­
tuni ties to resolve enterprise-wide computing plat­
forms for i ts l arge customers. The most sign ificant
proble m to be solved is the systems i n tegration p rob­
l e m . The MIA effort proves that prod ucts from differ­
ent e ngineeri ng groups with i n D igital need to be
instal led, tested, verified, and characterized. before
bei ng delivered to the customer tor use in a large appli ­
cation. Systems i ntegrators can anticipate that the i nte­
gration problems discovered du ring the LMS p roject
will be compou nded in an eftort that involves software
components from m u l tiple vend ors.

Large enterprise- level appJications such as the LMS

cannot be mass prod uced . The n u m ber of rhcse l arge
applications is smal l , and rhe needs of individua l enter­
prises can vary significan tly, eve n within a single indus­
try segment such as telecommunications. D igita l 's
experie nce with the SPIRJT consorti u m follow-on
to MIA has dem onstrated this .

I r is therefore important to preserve the learni ngs
about how the M I A platform was pur together and , of
lesser i m portance, to be able to exactly repl i cate the

platform del ivered to NTT for the LMS. Digital needs
to be able to work with large customers such as NTT
in the future and to complete l arge projects such as the
LMS, backed by an i nternal systems integration and
delivery organization.

Indeed, the systems integration problem grows
more complex in a world in which products from mul­
tiple vendors arc routinely requi red to work together
in provid ing the sol ution to a large appl ication's
requ irements . Customers tend to look more and more
toward contracting for the techn ical expertise needed
to solve these problems.

Delivery

Deliveri ng an M JA-comp l iant business so lution
involves several levels of integration, each with i ts asso­
ciated p roblems. The first l evel is i ntegrating the
requ ired functionality in specifications developed by
independent standards bodies. The next is combining
standards-compliant component products on a s ingle
operating system and hardware platform , whi le pre­
serving the requ ired interlaces and behaviors. Third
is incorporat ing the add itional prod ucts and features
necessary to develop a speci fic appl ication on the
standards-compl iant p latform . Fourth is ensuring that
com pliant platforms ti·om mult ip le vendors can work
together. The integrated prod uct set must then pass
con formance testing and verification. When appl ica­
tion deve lopment begins, additional i n tegration issues
arise that aflect the overal l process.

During Digita l 's implementation of the MIA
specifi cations and the subsequent in tegration activity
to combine the componen ts on one platform, sev­
eral problems were d iscovered in the specifications.
These problems were reported to NTT and di rected
to one of the specitication working groups, which
had continued u nder the auspices of the consortium
for this purpose . For example, after testing interoper­
abi l i ty using the RTI protoco l , the mapping of com­
munication errors to STDL exception codes was found
to be i ncorrect.

U ltimately, nor all the goals of the MIA i ni tiative
were met. During the impl ementation and del ivery
eftort, i t became apparent that specify ing a stand­
ardized H U I would not be possi ble . The use of a win­
dowing system with a com mon look and feel and
common pri nciples of operation (e .g . , a mouse, icons,
and pu l l -down menus) was sufticient for end users,
and the ind ustry pl ayers were too widely spl it to
endorse a common solu tion . Specitying a standard for
the si ze and shape of an icon or tor how to entit le
entries on a pul l -down menu became unnecessary as
windowi ng systems converged on common design
principles of operation.

STDL Maintenance and Conformance

Because STDL was a newly specified language,
it requ i red considerable main tenance . NTT care­
fu lly monitored the vendor impl ementations ofSTDL
to ensure that all the MIA vendors i nterpreted the
specification in the same way. N TT procured several
STDL-based appl ications from di tlerent vendors.
Consequently, vendors were able to experience the
inevitable implementation problems in realistic situa­
tions. Jf NTT determined that a problem was or might
be related to the specifi cation, i t encouraged the ven­
dor to submit a p roblem report to the appropriate
M IA consortium working group.

N TT detined conformance testing for MIA, includ­
ing STDL. Each vendor had to submit its completed
plattorm for testing . Wherever possible, the MIA
conformance tests were based on existing industry
tests created by organ izations such as the National
I nsti tute of Standards and Technology (N IST) and the
X/Open Company. After passing each basic test, for
example, proving conformance to ANSI C, a vendor
had to pass an additional test for the "MIA delta," i . e . ,
for the part of the specitication that was different for
M IA. I n genera l , this difference consisted of]apanese
language character support and more restrictive inter­
pretations of a specification's optional or undeti ned
parts. In the case of STDL, however, a whol ly new
suite of tests was needed to confirm contormance to
the basic speci fication .

It became clear during this stage of the project that
problems ex isted with the way in which the solutions
had been specified . For example, the specifications
for new TP technology had used existing standards
specitications as mode ls . I n its eagerness to accomplish
the task, the MIA consortium employed trad itional
methods of compromise and ambiguous wording to
obtain agreement among the participating vendors.
Not u ntil the conformance tests began did the prob­
lem become apparent .

The conformance tests for STDL were d ivided
into syntax verification tests and semantic tests. Con­
formance testi ng tor any language i s a tremendous
undertaking because there are so many potential com­
binations of language syntax and semantics to take
into account . The first problem tor NTT was to
reduce the number of tests to a practical amount,
whi le keeping the results of the tests meaningfu l .

I nitial ly, NTT took the approach o f translati ng
the specification's syntax ru les into syntax tests and the
general rules into semanti c tests. The syntax tests were
designed on rl1e assumption that a vendor's STD L
compiler wou ld produce an error message for each
violation of a syntax ru le . The semantic tests assumed
that a vendor's run-time system would produce an
error message for each violation of a general ru le. The

Digital Technical journal Vol . 7 No. 2 19 95 43

44

specification had not been written using the same
assumptions, however, and many of the syntax and
general ru les for the language e l ements contained
a high degree of ambiguity concerning whether the
rules had to be enforced at compi le time or at run time.

Although this problem was never resolved for the
STDL conformance tests, the tests were success­
fll i after they were redesigned to be more flexible
in the method of catch ing errors. NTT was able to
careful ly monitor vendor implementations for consis­
tency and compati bi l ity.

MIA Applications

The intemion of the M IA was to provide compl iant
software as the base, or heart , of a new appl ication .
Nl iA specifications standardize the most i m portant
i n terfaces and, consequently, enable users to real ize
the benefit of lower procurement costs, lower tra in ing
costs, etc .

The MIA i nitiative was d ifferent ti·om usual stan ­
dards activities i n that the implementations of the
specifications were monitored by the same au thority
that caused tbe creation of the specifi cations in the tirst
pl ace . NTT bought systems based on its specifi cations,
and worked with the vendors to maintain the specitica·
tions to correct problems d1at arose during implcmen·
tation and application development.

For Digita l , comp lying with the specifications
meant implementing soft-ware to meet the terms and
conditions of a large contract based on the specifica­
tions. Of course , the specifications covered only a por­
tion of the overal l p latform a n d conseq uently did not
address many conditions of the contract, such as CASE
tools and system management.

Even though Digital 's contract was for a si ngle­
vendor application, the source code had to be portable
in case NTT decided to substitute another vendor's
hardware for Digita l ' s . Also, the new MIA-compliant
LMS application had to fulfi l l at least the same fu nc­
tions as the old application. This appl ication was there­
fore a good test of the MIA speci fications; it would
show how wel l the user requ i rements had actually
been represented and met.

For Digita l , the eHon requi red de l ivering, tor the
first time, an integrated set of standards-compliant
products for a large-scale business appl ication . D igital
had to combine components from a wide variety of
internal prod uct groups, make them a ll work together,
and then upgrade or enhan ce the products ro meet the
M IA-specific requirements . In genera l , this entai led
ensuring that our products were adapted to the
Japanese market, i . e . , that they su pported the Japanese
language character sets. In add ition, the MIA req uired
the integration of other new open tec hnology, such as
the RPC and other elements of OSF's DCE, DECmcc,
and the new, ANSI -compliant version of DEC C.

Dip;it.J! Tec hnical Journal Vol . 7 No. 2 1 995

Conclusions

Fol lowing the success of MIA, the MIA specifications
became base input documents for the SPI RIT consor­
t ium, at which the user-driven standardi zation effort
continues. Also input to SPIIUT were documents
ti·om AT&T, BT, 13ellcore, and ETIS. The consortium
model reduces vendor disagreements and yields a
solution based on busi ness requ i rements rather than
on choice of vendor.

The fundamenta l req u i rement of the M IA was tor
a common computing platform tor NTT's new cmer­
prise appl ications that could be mul tisourced . This
fu ndamental requ i rement is shared by the SPI RIT
mem bers, who represent the world's largest te lecom­
munications corporations .

MIA and SPIRIT arc see king to lower costs i n what
has traditionally been the h ighest margin , lowest vol ­
ume area of computing. The ult imate goal of a single,
i ntegrated platform that can be purchased off the shelf
ti·om a signi ficant number of vendors docs not appear
to be completely atta inabl e . Partial gai ns arc more
J ike ly, as in the case in which suppliers integrate more or
less dynamical l y the components of the required plat­
form or platforms. Ultimately, the industry wi ll be
changed by the M IA and SPIRIT in i tiatives, a lthough
probably nor in the exact way i t was original ly envi­
sioned . For instance, since the MIA ini tiative began, the
vertica lly integrated computer manut�Kturer, i .e . , the
manufacturer who supplies al l the hardware and sott­
ware components of the platform , has nearly van ished.

Tn the users' idcaJ vision , the software components
conforming to the spec i fications i n the MIA and
SPIIUT p latforms arc off-the-shelf products that fit
together easi ly. This goal h as not proved to be the case
in Digita l 's experience . Specia l product source code
modifi cations were often req ui red , and such modi ­
fications created i ntegration chal lenges tor Digital .
For example, a specia l version of the DCE interface
defin ition language (TDL) compiler was necessary to
su pport the MIA. The new version mapped Kanji
character set encoding to the ISO ASN . l /BER stan·
dard, whereas DCE RPC normally uses Numeric Data
Representation (NDR) encoding.2<>,27

A paradox in the user-driven stand ardi zation effort
derives from the fact that the MIA and SPI RIT
platforms are in tended for Jarge projects, which are by
detln ition l im ited i n number. Therdore, creating off
the-shelf versions may be d ifficu l t due to l imited plat­
form volumes based on demand . For a vendor such as
D igita l , the effort appears to be best handled as a long­
term pJrtnership with large customers, supply ing base
technology and components to be in tegrated with
those of other vendors. I ntegration becomes a contin­
ua l and dynamic process. The key prob lem becomes
systems i ntegration , and a key question becomes who

among the mu lt ip le vendors involved in supplying
components wil l perlorm the integration .

The systems integration issue, therefore, is more
important than ever before. As more and more ven­
dors, pursuing their own core competencies, develop
standards-based components, the greater the problem
of component i ntegration for customers who seek
large-scale application solutions becomes. Enterprise­
level p l atforms of the fi.nure are Jess l ikely to have com­
ponents that are supplied entire ly by a si ngle vendor,
and la rge appl ications, even standards-based applica­
tions, wi l l conti nue to req u i re p latform customiza­
tions to meet the demanding req uirements of these
large users.

Acknowledgments

Thanks to Roger Baust, Bob Be l l , Peter Conkl in , Bo
Erden, George Gajnak, Bob Howe l l , Bob West, and
Steve Young for their he lp in del iveri ng the MIA
and tor leaving a legacy of learnings.

References

l . Multiue1 1dor lntep,mtion A rchiteuure, f)ivision 1,
Oueruiell '.· ieclm ical Requirements (Tokyo, Japa n :
Nippon Telegraph and Telephone Corporation, NTT
Data Com m u n ications Systems Corporation, lBM
)apan, Ltd . , Digital Equ ipment Corporation Japan,
NEC Corpora tion, H itJch i, Ltd . , and Fuj itsu Limited,
1 99 1) .

2 . Network Mwwftement Forum Proceedings, SPIRIT

Tracks, General Meeting, Marne La Valee, France
(October I 994) .

3 . SPIRIT Plaljurrn Hluepri1ll , SP I IUT 2 .0 , vol .
(Reading, U . K. : X/Open Company Ltd . , Nawork
Management Foru m, 1 994) .

4 . P. Conklin cmd E . Newcomer, "The Keys to the Infor­
mation H i ghway," Fu ture of Sojiware, C hapter 3,
D. Lcebaerr, ed. (Cambridge, Mass . : M fT Press, 1 995).

5. ;\1/u/tiuendor Intet;mtion A rch ilee!ure, Coru.:epts and
Des(f_{n Philosophy (Tokyo, Japa n : lippon T de graph
and Telephone and 1 TT Data Com mun ications
Systems Corporation, 1 98 9) .

6 . R. Baati, J . Carrie , W . Dru ry, and 0 . Wiesler, "ACMSxp
Open Distribu ted Tran 'action P rocessing," Di.f.{ital
Teclm icaljournal, vol . 7, no. I (1 995): 34-42 .

7. li !f'ormahon Svstems-Proftra mming Language­
c; ANSI/ISO 9899 (Revision and redesignation of
ANSI X. 3 1 59 - 1 989) (New York: American National
Standard s I nstitu te/l nrernational Organization for
Standardization , 1 989) .

8 . l.>rogramm ing Lant;Ua[ies-COBOL, ISO 1989 : 1 985
(Endorsement of ANSf X 3 . 23 - 1 98 5) (Ge neva: I nt er­
national Organization tor Stand;mi i zation, 1 9 85) .

9 . X/Open CAE Specijlcatioll. C l 92 ISBN 1 -872630-
09-X (Reading, U . K. : X/Open Company Ltd . , 1 99 1) .

1 0 . X/Open Portahility Gu ide (XI'C3J, ISBN 0 - 1 3 -
685868-6 (superseded by X/Open C, C2 1 4 , ISBN
1 - 872630-39 - 1 , COBOL dropped in latest version)
(Read ing, U . K. : X/Open Company Ltd . , 1 98 9) .

1 1 . J . Gray a n d A. Reuter, Trct nsaction Processi ng
Co ncepts and Tech n iques (San N!ateo, Calif. : Mor­
gan Kaufmann, 1 99 3) .

1 2 . Jn(ormalion Technology-Open S.vstems fntercon­
neelion-Distribu.ted Tran>aclion Processin2,-Part
1. 051 TP Model, 1SO/IEC 1 0026- 1 : 1 992 (Ge neva :
I n ternational Organization for Standardi zation/
I n ternational E leetrorechnical Comm ission, 1 99 2) .

1 3 . f\!lultiuendor Integration Architecture, Vol . 8, Div. 3 ,
S)lstems Jnterccmnection Jntetj'ace Specijicalirms,
Part 4, Remote Tasl< lnuocettion Service Definition
a nd Protocol Specijlcation (Tokyo, J apan: N i ppon
Telegraph and Telephone Corporation, 1 99 1) .

1 4 .)(!Open Preliminarv Specijication, Distrihuted
Tra nsaction. Processing: The T:>..HPC Specification
(Read ing, U.K. : X/Open Company Ltd . , 1 99 3) .

1 5 . P . Bernstein, P. Gyllstrom, a n d T . Wi mberg, "STDL­
A Portable Language tor Transacrion Processing," Pro­
ceedinMS oft he Nineteenth International Conference
on Verv Large Databases, Dubl in, I re land (1 99 3) .

1 6 . E. Newcomer, " P ioneering Distri buted Transaction
Ma nagement," Bulletin o/the Tech nical Commillee
on Data Engineering vol . 1 7 , no. I (New York: I EEE

Computer Societ-y, March 1 994) .

1 7 . lnfornw/'ion Tecbnology-Database Languaftes­
SQL. ISO/!EC 907 5 : 1992 (GenevJ : I nternational
Organ ization tor Standardi zation/International Elcc­
trotec hnicai Commission, 1 992) .

1 8 . Injurmaticm Techrwlogy-Progra mm inp, Lcm­
gua >es-FORTNAN-£\'tended, I SO/I EC 1 5 3 9 :
1 99 1 (Geneva: I n ternational Organization tor
Sta ndardi zation / I n ternational Electrotechn ical Com­
m ission, 1 99 1) and ANSI X 3 . 1 98 - 1 99 2 (New York:
American National Standards Institute, 1 99 2) .

1 9 . OSF!Moti/ Style Gu ide. version l .2 (Cambridge,
Mass . : Open Soft\-\'<He Foundation, 1 99 2) .

2 0 . Messa.�e Ha11dlinM !>)stem and SeJVice Oueruiew­
Data Commun ications Network,,· and /VIessage
1-la ndling Svstems, Recommend ation X .400-89
(Genev;1 : International Telecommun ications Union,
Co mite Cons u l tatiflnternationale de T c!egraphique et
Te!ep honique [CCITT], 1 9 89).

2 1 . Information Processing S.Fstems-Open Systems
Intercon nectio n-File Tian'i_feJ� A ccess, and Man­
agement, rso 85 7 1 - 1 : 1 988 (Geneva : 1 nrernational
Organization t(>r Standardization, 1 988).

2 2 . Interface between Data Term inal Equipment a nd
Data Circuit-terminating Equipment.for Terminals

Digiral Tcchnic1l Joun1<1l Vol . 7 No. 2 19 95 45

46

Operating in the Packet Mode and Connected to
Public Data Networks by Dedicated Circu its­
Data Com m u n ication Networks.- Seruices and
Facilities, /rlte7:faces, Recom mendation X . 2 5 -89

(G eneva: I nternational Telecommun ications U nion,
Comite Consultati f l nrernarionale d e Tclegraphique et
Telephonique [CCIIT], 1 989) .

2 3 . ISDN, /-Series Recomrnendations (Geneva : I n terna­
tional Tel ecommunications U nion , Comitc Consul­
tati f l n ternationale de Tckgraphique et Te!ephoniquc
[CCIIT], 1 98 9) .

2 4 . Information Technology-Local a n d t'vfetropolitan
A rea Networks-Part 3: Ccm'ier Sense Multiple
Access with Collision Detection (CS/V!AICD) Access
Method and Physical Layer Specifications, ISO/IEC
8802 - 3 : 1993 (Geneva: I nternational Organization for
Srandardizarion/Inrernarional E lectrotechnical Com­
mission, 1 99 3) and I EEE 8 0 2 . 3-93 (New York: The
I nstitute of Electrical and Electronics Engineers,
1993) .

2 5 . P. Conkl in , "Enrol lment Management, Managing
the Alpha AXP Program," Digital Technical journal,

vol . 4, no. 4 (Special Issue 1992) : 1 93-205 .

26 . Jnjimnation Technology-Open Systems /ntercon-
1/ecl"ion-Specij!cation o{Basic Encoding Rules for
A bstract Syntax Notation One (ASN. l), ISO/IEC

8 8 2 5 : 1 990 (Geneva : I nternational Organization for
Standardization/ International E lecrrotechnica l Com­
mission, 1 99 0) .

27. Inforrnation ProcessinJJ-Representation ofNumeri­
cal Values in Coaracter Strings for In/ormation
Interchange, ISO 609 3 : 1 98 5 (Geneva: I nternational
Organization for Standardization , I 985) .

Biography

Eric A. Newcomer
Eric Newcomer is a member of rhe Corporate Standards
Group at Digital Equipment Corporation. As Digital's
primary representative to the SPIIUT consortium i n the
United Kingdom and former representative to the M lA
consortium in Japan, he works with representatives from
other computer companies to create specifications for
open systems software u nder rhe sponsorship of large
information technology users. Eric joi11cd Digi tal in 1 984.
He has 1 7 years of experience i n database and transaction
processing software . He holds a B .A. in American Stud ies
from Antioch University.

Digital Technical journal Vol . 7 No. 2 1995

lnteg rati ng Applications
with Digital's
Framework-based
Environ ment

Digita l has developed the Framework-based

Environ ment to address the i ntegration

and i nteroperabi l ity needs of manufactu ring

and other busi ness systems. FBE consists of

a method for integrating existing applications,

frameworks of i n d ustry models, and tools that

use Digital's CORBA-compl iant ObjectBroker

i ntegration software to manage the exchange

of information between cooperating servers

on the network. Using these products, Digital

Consulting and its partner systems i ntegrators

provide FBE application integration services

to large organizations.

I
James R. Kirkley
William G. Nichols

The increasing quality and cost-effectiveness of com ­
pu ter application software has revolutionized the way
organizations share and manage their information .
Rather than develop custom information systems with
their i n ternal programming staffs, many businesses
now purchase software available in standard "off- the­
shelf" packages. A well -c hosen standard package can
save development time a nd cost. Before i t can be use­
fu l , however, i t mu st be i n tegrated with other new
software and with the mature (legacy) app lications
that hold cu rrent busi ness data and processes.

Application integration can be a substantial effort.
If busi ness changes are not antici pated du ring tl1e
planning phase, an integrated system can be inflex­
ib le . The existing applications, both legacy and new,
rare ly meet current requirements. An ad hoc inte­
gration that starts with the existing applications'
i nterfaces will seldom be flexi ble in ways that acco m ­
modate fi.tture business cha nges without widespread
program changes.

An integration derived from a clear model of
cu rrent and expected busi ness processes provides
a basis for growth and flexible change. Digital has
developed the Framework-based Environment (F B E) ,
consisting of reference models, methodologies, and
a toolkit. Together, these products provide flexible
systems integration .

In this paper, we provide a brief overview of F B E
a n d characterize the projects that can benefit from
using it . We describe flexible appl icati on integration
and the benefits of model-driven integration . Finally,
we discuss our experience using FBE.

Overview of the Framework-based Environment

FBE consists of the tollowing components.

• MethodF is an object-oriented methodology based
on nvo systems integration methodologies recog­
nized in the industry : Jacobson's use case analysis
and Rumbaugh's Object Modeling Tech nigue . t ,2,3,4
These me thodologies are explained in the section
Model-driven Integration with FBE.

Digital Technical Journal Vol . 7 No. 2 1 995 47

48

• ObjectPius is a mode l ing tool from Protosoft,
Inc. that has been tai lored for MethodF with an
FEE-specific code generator. I n addition to the
methodologies described above, the tool has exten­
sions that provide the abi l ity to create an imple­
mentation mode l . The i m plementation model
describes how objects arc distributed among the
various applications.

• ObjectBroker, D igital's object-oriented integration
sofhvare prod uct, i s compl iant with the Common
Object Request Broker Architecture (CORBA)
specification from the Object Management Group
(OMG) .5·6

• A su ite of supporting li braries and tools inc ludes
reterence models and associated code l i braries that
have been abstracted from previous projects and
made avai lable for reuse. The reference models
and associated code l ibraries are organ ized into
fi·ameworks of ind ustry-oriented business obj ects,
as given in Table l .
The tools inc lude two i m portant components:
(1) The FBE Design Center is an extensible work­
bench architectu re that supports the analysis,
design , and implementation of COREA-based
d istri buted object systems. (2) The FBE Adapter
Development System, which ti ts i n to the FBE
Design Cen ter, automatica l ly generates COREA­
or Objectl3roker-complianr code and the necessary
fi les to compi le and l i nk the code i nto platform­
specific executables.

Integration Projects Appropriate for FBE

Any integration project automates previously manual
processes i nvolv ing existing applications. Fl3 E and its
flex ib le approach to systems i ntegration a l low a busi­
ness to replace or add component applications effi­
cientlv as business condi tions change.

FBE provides the most benetits when many d ifter­
ent kinds of wel l -defined busi ness transactions occur
between a mixture of commercial and custom applica­
tions. Not all projects can benefit from FBE or its style
of development. For example, if the primary task is to
integrate data sou rces for decision support, a database
integrator or a data warehouse may solve the problem

Table 1
Frameworks of Indu stry-oriented Business Objects

quickly. I f a company is not trying to gai n an advan ­
tage by automating account ing more cheaply or
com pletely than i ts com petition , an off-the-shelf
accounting package may be the r ight choice. At the
other extreme, if the task to be autom ated is com­
pletely new, there may be no appropriate packages
avai lab le , even as components of an int egrated sol u ­
tion . e w development wou ld a lso be preferable i f
h igh - performance o r rea l - time operation were more
important than the flexibi l ity to p lug in exist ing,
unmod ified appl ications.

As an example of an appropriate FBE integration,
consider a manufacturing operation automating
a manual procedure that col lects orders ti-om an order
process ing system, schedu les production runs, and
passes the schedule to the manufacturing floor. In this
example, the company wanrs to obtai n a competitive
advantage by dynamica l ly resched u l i ng production
based on new customer orders, at once reduc ing
inventory costs, and improving del ivery performance.
This is more than a decision support system: the
integration requires that appl ications interact with
each other. Al though finding a turn key package that
can operate the entire factory is un l i ke ly, factory
schedu l ing appl ications are readi ly avai lab le . Buying
one would be more cost-effective than wri ting one
in - house. The project wou ld then need to integrate
the legacy order processing system with the newly
purchased schedu l ing appl ication . The order process­
ing system is too important to the comp:my to risk
modif),i ng it significantly at the same time as imroduc­
ing new automation.

After the integration project has been completed ,
though, the order processing system might be made
more cost-effective by moving its function fi·om
a mainframe appl ication deve loped i n - house to a stan­
dard cl ient-server product. Perhaps business condi ­
tions wi l l have changed and the order processi ng
system needs to be augmented so customers can sub­
mit orders d i rectly by electronic data in terchange
(ED I) . The project manager might decide to purchase
an ED! processor to augment or rep lace the existing
order processing syste m .

Later, after t h e manua l processes have been auto­
mated on the factory floor, another project could
extend the integration to send the schedu le d irectly

Base Business Models Man ufactu ring Business Models Ind ustry Business Models

Activity management

Production management

Resource management

Digital Techn ical Journal

Order management

Schedule management

Product management

Process management

Quality management

Vol . 7 1 o. 2 1 99 S

Semi conductor

Oi l and gas

Pharmaceutica l

Batch process

Banking and finance

to factory cell controllers. The n , if a more efficient
schedul ing package becomes avai lable, it could be sub­
stituted f<Jr the older one. The modu lar design ofFBE
wou ld min imize the programm ing changes require d
for this substitution a n d give t h e organization t h e tlex­
i bi l ity to use the most cost-efTective sol utions.

Model-driven I ntegration with FBE

An i ntegration project needs a c lear process and a
means to avoid being biased by the assumptions bui l t
into i ts component applications. We use object model­
ing to plan and document an integrated system i n
a un iform man ner. T h e abstraction in herent i n object
model ing hides detai l . This makes the model mean­
ingfi.d and a l l ows modeler and c l ient a l i ke to ensure
that the model matches the intended b usin ess
processes. The abstraction also he lps ro separate the
interface fro m the i m plementation . The i nterface
describes what is to be done; the implemen tation
describes how. The what of a business process c hanges
comparatively l i ttle over t ime: a factory takes orders
and sc hedu les production runs, a stockbroker trades
stock, a mail -order business ships packages. The how
changes dramatical ly from year to year.

In the fol l owing sections, we trace the steps of
a typical systems i ntegration project as cond ucted by
Digital Consu lting or by D igital's partner systems
i n tegrators. We show how a modeler m ight use the
FBE method , too ls, and frameworks to provide app l i ­
cation i ntegration services.

Object Modeling

B dore we start object model i ng, we ensure that
a busi ness process model , or i ts eq uivalent, is com­
p l eted . Sometimes a business process model results
from a fonnal business process reengineeri ng. More
often it comes from a less formal understanding of
existing processes and required changes. I n both cases,
the modeler wi l l cooperate closely with someone
who understands the process wel l . As always, the
better we understand our goals, the more l i kely we
are to achieve them.

With this knowledge, we can start F BE's obj ect­
oriented analysis and design process, known as
MethodF. M ethodF begi ns with Jacobson's use case
analysis method . A use case traces a chain ofevents in i ­
tiated by a single person (or other entity), acting i n
a single role, a s h e , she, o r i t works through some task.
For example, we might trace what happens when
a customer calls an order desk through the clerk's
responses, catalog checks, i nventory checks, order
placement, picking l ist generation, and fi nal ly, package
shipment. As we do this, we note a l l t he objects and
the uses that the actors make of them . Then we fol low
another use case. Perhaps t his time the customer asks

for a product that is out of stock . We fol low the discus­
sions about back -orderi ng and price guarantees that
will make our business attractive to this customer.
After analyzing many use cases, we have a l ist of busi­

ness analysis objects (objects that describe req uire­
m ents i n busi ness terms) and a list of the fu nctions and
attributes of each object.

We then compare the analysis objects with the busi­

ness design object.s in FB E's reference model l ibrary.
Here, we may wel l tind s imi lar objects that use differ­
ent names and detailed constructs to describe the same
fu nctions and attri b utes . The n ext step in Method F
i s to merge these design objects i nto the model . By
using objects from the reference l i brary, we take
advantage of previous modeling experience bui l t i nto
the reference models and prepare to reuse code associ­
ated with the reference models as wel l .

We use t h e O bj ectPius modeling tool to capture
use cases in d iagrams accord ing to Jacobson's con ­
ventions . We prefer the Ru mbaugh Object Model ing
Technique (OMT) notation , however, for descri b­
ing the business objects. OMT diagrams, with F B E
extensions, d e fi n e objects a n d t h e interfaces between
them i n enough detail that a tool can use them to gen ­
erate i nterface definitions t h a t can b e compiled. The
O bj ect Plus tool also captures OMT diagrams.

A direct connection exists fi·om the use case models,
through the business models, to the design models,
and to the cod e . We u se the term model-driven to
describe the FBE approach , because necessary c hanges
are first made to the models and new code is then gen ­
erated from t h e models .

Generating Interface Code

Once we have completed the design objects, we
use FBE tooJs that work with the ObjectPius model­
ing tool to generate COREA l ntert:1ce Definition
Language (I DL) fro m the d esign object definitions . 6
W e chose CORBA because i t is an emergi ng ind ustry
standard designed to bui ld distributed object-oriented
systems that include exisrjng non-object-oriented appli­
cations. A CORBA implementation , such as Digital's
O bj ectB roker product, generates i n terface stub rou ­
tines that marshal data to be sent t o an object, whether
the object is on the same computer or across a network.
For example, the stubs convert integers sent from big­
end ian to l i ttle-endian computers. A COR.BA imple­
mentation also provides an object request broker:
a run-time l ibrary that routes requests to objects in a
distributed system . This al lows appl ications running on
different systems to communicate without the need for
appl icarjons to know which systems wi l l be involved .

We use the IDL i nterface defi n i tions to guide pro­
gram mers as they develop adapte1:� between this
object i nterface and the existing application's inter­
face. For example, an existi ng program might take its

Digital Tech n ical Journal Vol . 7 No. 2 1995 49

5 0

input as a formatted fil e and de l iver i ts output in
another type of file . Si nce the rest of the i ntegration
shou ld not know about these files or thei r formats, we
write an adapter that translates between these tiles and
the methods and attri butes of the objects defi ned
in our mode l . Perhaps an alternative appl ication uses
a remote procedure call tOr l/0 i nstead of the ti les our
existing application uses . When we replace the existing
appl ication, we write new adapters using the same
object interfaces. As a result, the rest of the integration
needs no changes. Writing these adapters is not neces­
sari ly easy; appl ication i ntegration requ i res substantial
effort, whether the i ntegrator uses FBE or nor. By
restricting the changes to a single modu le , F B E min i ­
mizes the development and testing effort requ i red to
replace component applications.

vVe usually write the adapters i n C, rather than C+ +
or a pure object-oriented language, because much of
their interaction is with the appl ications being
adapted . The existing applications were seldom bui l t
with object-oriented principles. In many cases, usefu l
tools such as database transl ation programs and
"screen scrapers" are avai la ble to communicate with
appl ications that expect terminal I/O . These tools also
were seldom bui lt for object-oriented languages .

I n some cases, an adapter needs to be so l arge that it
is a small appl ication in itself In these cases, we might
use an object-oriented language for the bulk of the
code. A factory sched uler might generate production
tasks based on a customer order, but the cell con­
trol lers i n the factory might expect on ly a si ngle task
for each type of part prod uced . The adapter needs to
combi ne the tasks for a given part type from several
orders before it sends a message to the ce l l controller.
As the cell control ler reports progress on each task, the
adapter a l locates completed parts to the origi na l cus­
tomer orders . The ce l l control ler s imply makes parts,
the factory schedu ler s imply fu lfil ls orders, and the
adapter bridges the gap between them.

Reference Models
As we gai n experience working with integrators, we
abstract and merge the models they bui ld i nto refer­
ence models for the various appl ication domains, such
as d iscrete manufacturing, process manufactur ing, and
tinancial services. We collect and tai lor the rderence
models to comply with accepted industry standards
such as ISO STEP in the manufacturing domain and
ISA SP88 in the process ind ustry domain 7-8 These
reference models allow FBE modelers to bui ld on pre­
vious experience. Even i f they cannot use the refer­
ence model in its enti rety, they can use it as a guide
to save time and to check their own model for com­
pleteness. We also collect the adapters tor frequently
in tegrated appl ications i nto a l ibrary. Later, when we
reuse a reference model , we wi l l have corresponding

Digiral Technical Journal Vol . 7 No. 2 1 995

adapters that can also be reused, usual lv after mod i fica­
tion . It is important to note that anyone-Digi tal ,
t he systems i ntegrators (Digital's partners) , and, most
importantly, the cusromer-can bui ld their own refer­
ence models .

From Appl ications to Objects: Experience Gained

Design always involves trade-otis between competing
requirements. The rrade-offs in an integration project
are somewhat differe nt from those in a new develop­
ment project: an integration project must take existing
applications i n to accou nt wh ile tryi ng to imp lement
a business model faithfu l ly.

I n this section , we discuss trade-ofts due to the
change from a fu nctional view to an object view, then
explore three fami l iar design topics from the poi nt of
view of an FB E integration project : top-down versus
bottom-up design, improving rel iabi l i ty, and i mprov­
i ng perfOrmance .

Overcoming the Legacy of Functional Decomposition

The chal lenge of object-oriented application integra ­
tion is to make appl ication programs, which an:
designed arou nd i nd ividual business Junctions, sup­
port the uni fied business object model .

F igure 1 i l l ustrates a samp le mappi ng of business
objects to appl ication fu nctions. It shows the logical
objects ofcustomer, prod uct, and shipment, with their
data structures and methods mapped to the several dif­
ferent appl ication fu nctions of transportation, ware­
housing, and b i l l ing . As the i ntegration project maps
business objects ro application functions, it must

• Establish routings of req uests for indiv idual attri b­
u tes or operations of an object to the appl ications
that contain them

• Provide mechan isms to maintai n consistency
when mult ip le ap plications requ i re the same da ta

BUSI N ESS
OBJECTS

Fig ure 1

APPLICATION
FUNCTIONS

TRANS PORTATION
1-----------.. • LOCATION

• SHIPPER

WAREHOUSING
• AVAILABILITY
• MATE RIAL

B I LLING
• PRICE
• COST

San1ple Mapping of Business Objects ro Appl ication
Functions

Split Instances When we develop the business object
model, we may discover that a single logical object may
be hosted (its u nderlying d ata structures and methods
implemented) by more than one p hysical appl ication .
For example, a product object's price attribute is
hosted by a bi l l ing appl ication, and i ts availability

attribute is hosted by a warehousing appl ication. When
we i ntegrate these applications according to a business
object mode l , we achieve a single logical object whose
data and methods are stored in d i fferent physical appl i ­
cations and often i n d i fferent l ocations. This is called
a split instance.

vVhen a client application requests the product's avail ­
abi l ity, the object request broker sends t h e req uest to
the warehousing appl ication and forwards a req u est
for the price to the b i l l ing applicatio n . The requester
neither knows nor cares where the intormation is held .

The notion of the spl it instance is a central pri nciple
of fBE. It al lows us to model the business logical ly and
independently of the way applications may implement
busi ness fu nctions. The spl it i nstance is not without its
problems: Many ti mes the same information is stored
in more than one application. ln the above example,
i t is l ike ly that both the manufacturing and the bi l l ing
a ppl ication maintain the product name attribute.
Many other attri butes are potentia l ly dupl icated as
wel l . When a n attribute of a type exists i n two or more
appl ications, the designer is faced with two questions:

l . When a get attribute operation is requested, to
which appl ication should i t be del ivered)

2 . When a set allribute operation is req u ested, is i t
necessary t o update on l y o n e or more t h a n one
appl ication's data�

We cannot answer these questions i n a general way,
but we can highl ight some points to keep in mind
when addressing the m .

• Get attribute . Can one appl ication be considered
the primary source for d ata about a n object)
Betore any i n tegration was i n place, legacy systems
provided a formal or i n formal process that
upd ated secondary information sources from a pri­
mary source . The req uirements statement is a good
reference here . The d esigner should d iscuss this
with the business domain experts to u nd erstand
the way d ata is mai ntained and d istri buted. The
primary a pplication is the best sou rce for such
data . As a backup , secon dary applications cou ld
serve as sources for the information . The d esigner
should consider the etTect of sta l e i n formation on
the operation of the business.

• Set attribute . When attributes are set, should a l l
appl ications be updated s imultaneously? Usua l l y a
category of i n freq uent ly changed " reference data"
is accessi ble . The re fe rence d ata is more often
added to than changed . Changes to this kind of

data esse n ti a l l y ripple through the company.
Sometimes i t is the sl ow com m u nication of these
changes throughout the organ ization that d rives
the requ i rements for i n tegration (the push - p u l l
phenomenon) .

When w e m ust guarantee s imu ltaneous changes to
data on m ultiple heterogeneous computing platforms
or between appl ications that hide their data, we wou ld
prefer a two-p hase commit transaction bet\.veen dis­
s imi lar databases. U n fortunately, nothing is commer­
cially avai lable today (June 1 99 5) that works on a n
arbitrary combination of databases and applications.
Several prod ucts support a l imited set of third-party
databases and app l ications. If these products cannot
add ress the need, and our appl ications require m u lti­
ple appl ication transactions, we may have to write the
two-phase commit code .

A s a n a lternative, w e m a y b e a b l e t o u s e a workflow
to manage the u pdate of several applications. An oper­
ation can be defi ned that is implemented as a workflow
script . The workflow script can, i n turn , perform the
update (through additional method i nvocations) on
the data stored in a n u m ber of d ifferen t appl ications.
This is probably closer to the customer's method and
wou ld be easi ly automated . A workflow capable of
doing the update must have the capabi l i ty of compen­
sating for fai lure to update all appl ications. A wor.kflow
update is d ifferent from two- phase commit, because
the data in the appl ications may be i nconsistent for
a brief time.

To our knowledge, Digita l 's Obj ectBroker integra­
tion software is cu rrently the only COREA i m plemen­
tation that is able to route requests for a single object
to m ultiple servers.

Bypassing Legacy Appl ications Sometimes it is
tempting to bypass a legacy appl ication and access its
database d i rectly from an adapter. The application may
h ave a particu l arly d i ft]cult i n terf.xe, or the required
fu nction and data may be a small part of a m onol i th .
For simple appl ications, bypassing may be appropriate,
but for most we m ust either u se the application
thro ugh its i ntended interface or replace it enti rely.

The use of a legacy system to change data 01·· per­
form a function can produce u nwanted side effects
that are not appropriate in the context of the i nte­
grated system . for example , most legacy applications
maintain the referential i ntegrity of their data through
code . I nvoking the database directly to add, update, or
delete data risks violating this integrity.

Bypassing the appl ication is also dangerous because
changes may occur when the appl ication is revised.
Typical ly, appl ication d evelopers fee l free to change
the u nderlying data structures as long as the function­
a l i t)' at the user i nterface or formal program i nterface
is maintained.

Digital Techn ical journal Vol . 7 No. 2 1 995 5 1

5 2

Top-down versus Bottom-up Design

Tension a lways exists benveen the goals of top-down
a nd bottom-up designs. The F B E emphasizes top­
down modeling; it starts with the a nalysis of use cases
and then defines business objects i ndependently of any
existi ng applications. This keeps the design focused on
the busi ness problem a nd e n hances the flexibi l ity of
our i ntegration . We ri nd that the most common mod ­
e l ing error is to accept an existi ng application's
" myopic world view" without considering the overal l
system's needs. Usual ly, existing applications are a poor
source for business object models, s ince many n o
longer represent desired business processes.

If we are not conscious of bottom-up demands on
our design, however, we can design a system that
requi res need lessly large , complex , or s low adapters
between the existing appl ications and our ideal model .
Though we h ave no easy guideli nes for balancing the
top-down and bottom - up demands, some issues are
encountered repeatedly.

The problem of partial im plementations provides
a simple example of this balancing req uirement.
Projects that use top -down model ing to derive their
object m odels sometimes encounter a d i lem ma: attrib­
u tes and operations appear in the model that no appl i ­
cation i n t h e net\vork c a n i mplement. I t is reasonable,
tor example, for the object model of a factory floor
conveyor to define a stop operation, but the device
control sotl:ware installed in the factory may not pro­
vide an cq uivalent fu nction.

When implementers can not support a model , they
have two choices:

1 . M odit)r the model to reflect the capabi l i ties of the
environment.

2 . Impl ement only the part of the model that i s teasibk.

The fi rst option appears to be the easier choice, but
it l imits the reusabi l i ty of models and diminishes the
effectiveness of the top-down approach. A top-down
model of the conveyor should capture the business
users' expectations; implementations may or may not
meet these expectations. A partial i m plementation
s imply returns an error w h enever a user accesses an
attribute or i nvokes an operation that is not supported.

The partial implementation of a conveyor can sti l l
b e substituted for a complete one, though the partial
o ne alvvays fai ls when a user sends a stop request. The
system m ust be prepared to receive an error response
from an operation i nvocation at any time; other errors
could occur during the stop operation's processing,
even ifrhe i m p lementation were complete.

A partial implementation opens the way for su bse­
q uent versions of the software to support the fean1 re . I t
p rovides a placeholder for an attri bute o r an operation
and preserves the i ntegrity of the object's specification.

Digital Technical Journal Vol . 7 No. 2 1 995

Improving Reliability

Finding bugs i n an integrated system is often difficult .
Even if we assume that the component applications
work perfectly, bugs can arise from m ismatches
benveen the components. This commonly comes
about because of i nconsistent business ru les benveen
applications: what is a l lowed in one appl ication may be
i l legal in another.

An adapter i n an integrated system m ust be a fire­
wal l ; that is, it m ust l imit the spread of errors and mis­
u n derstand i ngs from i ts appl ication . We code pre ­
and post-condition cbecks around cal ls to component
appl ications. This is he lp fu l i f we cod e for the right
conditions and leave the c hecks in the prod uction
code. The use case a nalysis and business object
descriptions sometimes s uggest conditions to test,
but this process is i n formal . We find that we need
more run-rime c hecks i n adapter code than in i ndivid­
ual applications.

We also need a way to isolate a suspect application
from the integrated system so we can see how the i nte­
grated system behaves withou t it. FEE's Adapter
Development System can generate simple stu bs from
an object's OMG I D L . The tool generates a client stub
that makes appropriate requests a nd a server stub that
echoes its input . The stubs are si mple enough to be
checked at a desktop device to ensure that they work
as expected. The stubs are also useful as templates tor
starting new adapters.

Improving Performance

Without planning and careful mon itori ng, a large sys­
tem of dissi mi lar applications can be slower than the
performance of the component applications would
suggest. We have used standard approaches to
improve and monitor performance. I t is worth noting
here h ow these approaches i nfluence FBE design and
development.

Performance Req uirements i n Large Systems There
is often a trade-off between performa n ce a nd tlex i ­
b i l i ty. O ur i ntegrated system vvould be i deal ly flexible
i f i t made separate cal ls through a n adapter to a com­
ponent application for every datum i n every differ­
ent circumstance. \Ve could change storage and
behavior almost with abando n . On the other hand,
i f each adapter were a n entire rewrite of its u nderly­
ing applicatio n , we cou ld, in principle, store and
manipu late each datum in the most efficient way for
a l l accesses.

Although F B E is designed for systems that req uire
flexibi l ity at the cost of some performance degrada­
tion , we m ust be care fu l to deliver satisfactory pertor­
mance . I n the fol lowi ng s ubsections, we discuss the
trade-offs in caching and object granu larity.

Cach ing Applications fi·eque ntly generate large quan­
tities of output in response to a command , rather than
the ti ne-grain ed results that are appropriate to object­
oriented requests. It is often appropriate for an adapter
to return only a small part of the data i t receives fi·om
an appl ication interaction and cache the rest for future
req uests . Applications that prod uce data in batches
typically do not mod ifY their state tor long intervals, so
the cached val ues re main va l id long enough to be use­
ful . Of course, there must be a means to invalid ate the
cache. In some cases a timer wil l suffice; in other cases
an event, such as a new batch run, must be extended to
i nval idate the cache.

Adapter caches greatly i m prove performance and
can give the adapter developer the freedom to orga­
n ize and present the data in a form appropriate to the
object model .

Object Granularity Designing objects that work wel l
in a d istri bu ted system i s i mportant to ensure flex ib i l ­
i ty. Parts of a distributed system frequently move from
one computer to another. We should not expect our
objects or their u nderlying component applications
to remain in one particular place.

In a pure object-ori ented system, for example the
Smallta lk la nguage, everything is an object. In distri b­
uted systems, operations on objects potential ly involve
interaction across a network and incur network over­
head . Therefore, i t is not practical for everything to be
an object. Some busi ness objects wi l l be imple mented
as CORBA objects (tbose that have object refere nces)
and other busi ness objects wi l l be i mp leme nted as
user-defined types (passed by val u e) . This defines the
granulari�y of the object model . The decision to
im plement a busi ness object as a COREA object or as
a user-defined type involves balancing fl exi b i l ity with
system performance.

There are no hard and t:1st ru les that determine the
most appropriate granu larity for an object model .
Decisions need to be based on users' i nteractions with
the system and on the way applications use the objects
they share or exchange with each other. Several mat­
ters should be taken into account when determining
tl1e model's gran u l ari ty.

As an i l lustration, let us consider a cl ient appl ication
that needs to display a col lection of customer names in

a list box. The cl ient sends a req uest for these names to
an object instance cal led CustomerList; the cl ient and
object happen to be on d i fferent computers.

In Case 1 , the customer is a user-defined type repre­
sented as a C stru cture : i t is passed by value and has
no object reference . Customer attribu tes are stored
in a COREA-defi ned structure that the cl ient code
must access directly. In this case, the display of cus­
tomer names may be accomplished in a single request,
e . g . , getCustomerNames(aCustomerList) . All cus­
tomer names wou ld be passed by va lue . Figure 2
depicts this scenario.

In Case 2, the customer is a true object: it has
an object reference and a set of attri butes. The c l ient
cal ls the server separately for each attribute ; thus
the client i s less dependent on the server's storage
structure or any changes to that structure as it i s
mod i fied i n t h e fu tu re . I n this case, a sequence of
customer object references would be passed, e . g . ,
getCustomers(a Customer List) . T h e c l ient application
then must request getNa me(aCustomer) for every
customer object in the sequence. (See Figure 3 .)

Clearly, the fi rst case i s more efticient i n terms of
network ut i l ization; only one request is requ ired . The
second case requires l + n req uests, where n is the
number of customers. The first case is also more efti­
cient at the server. Case l requi res one database qu ery
to construct the name list, whereas Case 2 req uires
a separate database q uery for each customer.

At first glance, Case l would appear to be the easy
winner in terms of efficiency and effective uti l ization
of the server. This outcome, however, is not a lways
true . Let us assume that the cl ient application a l lows
the user to choose from the list of customers and then
d ispl ays attributes address and accountStatus for the
selected customer. Here, we are faced with a c hoice
between performance and flexibi l i ty :

l . The client could make another requ est that would
return all information about a customer in a struc­
ture. Then the cl ient appl ication could sort
through this information and di sp lay tl1e req u i red
data. The performance is good : one req uest and
database query provided al l the data the cl ient
cou ld want. Unless the vol ume of data is very large,
sending the data in one message yields better

CLI ENT
APPLICATION

1--'g:....e_tc_u
_

s
_
to_m_e_rN_a_m_e

s:_(a_c_u_st_o_m_er_L_is...:.t)_,--1_1 Customerlist

I r:=:==:1 l OBJECT -L__j

Figure 2
Case l : User-defined Type

{ -+--------- { --- CUSTOMER NAM ES
==== PAS SED BY VALUE

Digital Technical journal Vol . 7 No. 2 1 99 5 5 3

54

1-__ g_e_tC_u_s_to_m_e_rs_(a_c_u_s_to_m_e_rL_is--'-t) _ ____,�l Customerlist I �
I OBJECT ----------l__j

APPLICATION 1 § ------------ 1 § ��i�r:;,s
getName(aCustomer) .I CUSTOMER I /-------------�� OBJECT

1---g_e_tN_a_m_e_(_ac_u_s_to_m_e_r) ___ --..11 CUSTOMER I I OBJECT
'--------1

F igure 3
Case 2 : True Object

performance than send ing m u l tiple messages for a
subset of the data. On the other hand, this approach
is inflexible: if the server changes the structure it uses
to represent this data, all cl ient software that reads
the structure must change as wel l .

2 . The cl ient cou ld make separate requests for each
field. If the server retu rns an opaq ue object refer­
e nce along with each customer's name, then the
cl ient can send a request asking for the specific
fie lds i t needs. The performance is worse than in
Case 1 , of course, because ofthe extra network traf­
fic and message parsing. However, this approach is
flexib le . S ince the client never looks in the object
reference (i t is opaqu e) , we preserve the server's
flex i b i l ity to use any data needed to retrieve the
appropriate record . As l ong as the server continues
to support the fields the cl ient requires, the server
fi nds them in its own database no matter h ovv the
storage structures have changed .

To ensure that the system provides the max i m u m
flexibi l ity, t h e d esigner shou ld consider t he following
guidelines.

• Start with a fine-grained approach for model i ng.

• Implement the approach usmg fi ne -grained
methods.

• Change to a coarser grain if performance i s an issue.

Summary and Future Directions

Developing i ntegrated appl ications is not a lways a
straightforward process. The appl ications being inte ­
grated are seldom an exact fit t o their assigned roles i n
an i n tegrated system . I f they were, w e would probably
be able to p u rchase the i n tegration from one or more
of the vendors who had engi neered the fit .

Integrated systems bui lt with FBE are clearly docu ­
mented with Jacobson use case diagrams, Ru mbaugh

Digital Technical Journal Vol . 7 No. 2 1995

OMT object d iagrams, and OMG I DL. The existing
applications are used indirectly thro ugh object inter­
E1Ces and adapters, so the rest of the system can
address them as i f they were the i deal busi ness objects
model ed in the OMT diagrams. We cal l them busi ness
objects to emphasize their d istinction from objects
defined or impl ied by the existing app l i cations.

The adapters are constrained by the interfaces that
FB E generates automatically from the business object
representations, so they do not stray from the models
that document their behavior. Adapters are not a lways
easy to write; they can be q u i te d ifficult , depending
on the existing appl ication's fit with its intended use.
B y restricti ng this awkward code to object adapters,
we keep the overall integration modu lar. Thus we give
an organization the flex ib i l ity to use the most cost­
effective systems as busi ness cond i ti ons c hange . We
bui ld on our experience by collecting reference mod ­
els that he lp us to reuse the best models and adapters.

FBE continues to evolve rapidly, with improve ments
i n the reference models, the tools, and the support
for adapter writers. For example, developers have
asked tor better integration between the Jacobson
and Rum baugh models, between the modeli ng tools
and the code generation tools, and for rel iable queu­
ing and workflow as wel l as CORBA com m u n ication
bet\veen objects. I n response to these requ ests, we
now provide better i n tegration bet\veen the analysis,
design, and i mplementation portions of the FBE l i fe
cycle as wel l as code generation for trace messages and
support for manage ment and de bugging of the run­
time system. We would l ike to organize the reference
l i braries i nto pairs of obj ect models and correspond ­
i n g mod u l es (applications a n d adapters) that can be
assem bled to bui ld integrated applications, thus creat­
ing truly reusable business components.

\Ve wi l l be pursuing these and other i mprovements
as ou r experience grows with i ntegrated, d istri b uted
applications.

References

I . The Frameu ·orl< l3ased h'nuiron men!: MethudF, Ver­
sion .) 0. FBF l:'n,t; ineeril lp, (M aynard , M ass . : Digital
Equipm c nr Corporation, O rder No. AA-QCSOA-T H ,

1 994) .

2 . I . Jacobson c t a ! . , Ohjec/-Urien!ed Sojiu ·are Enp,fneer­
inp,: A U-;e Case /Jri! 'ell Approach. 4th ed (Waki ng­
ham, Eng! J n d : Add ison-Weslcv Inc. , 1 99 2) .

3 . I . Jacobson et a ! . , 't he Ohi('c/ Admntage. Business
Process Neenginel'rin,� tl 'ilb Uhjecl Tech nology. lsi ed.
(Wok ingham , Engbnd : Addison -Weslcv I nc . , 1 99 5) .

4 . J . Ru mbaugh c r ;1 1 . , Uhiec!-Oriented Modeling and

Desig n (Eng lewood Cl i th, N . J . : Prentice - H a l l , I nc . ,

1 99 1) .

5 . OhjectBroker: Ouemieu• a nd Glossary. Version 1 . 0
(1 \tlaynard, Mc1ss . : Digi tal Equipment Corporation,
Order No. AA- Q9 KJ A-TK, 1 99 4) .

6 . 7be Com rnon Object Nequesl Bm��er: A rcbilecture

and Specification. Ncrisirm 1 . 2 (Fra mingham, M ass . :
Object Ma11<1gemcnt G roup , Order No. 9 3 . 1 2 .4 3 ,

1 99 3)

7 . Industrial A l l lonwlion S)Jstents etlld In tegration ­

Product [)ala Neprcsenta lion and Exchange-Part
44: Integrated Neson rces.· Pmduct Stmctu re Confip,­
u ralion. ISO 7 0:)03-44, WIG:) N127 (Geneva : I nrer­
n<\t ional Organization hlr S tandard i zation , 1 992) .

8 . Batch Contm/ Part I : Jll!odels and Terminolor;y,
[)raji 72 1 9CJ4 (Rese<lrch Triangle Park, N . C . : I nstru­

ment Sm:icrv l(>r Measurement and Control , Order No.
I SA-dS88 . 0 I , I 994).

Biograph ies

James R. IGrkley I I I
J i m Kirkley h a s been with Digit;ll f(>r 1 6 years . For the
last six years, he h;lS been involved i n the deve lopment
of object-or iented ;m.:h i tectures f(>r business application
i n tegration. A software consulting engineer, J im is the
tech n ica l d irector t(>r the Applied Objects Group, which
is cu rrently f(Kuscd on the development of tools and
me thodo logies f()r the integra tion of business systems.
He is the pri ncipal :wrhor ofrhe methodology used by
Digi ta l Consu l ti n g ro d e l ive r consult ing and practice
svstcms integration usi ng COREA-compl iant m idd leware .
He received a B .S . in c lecrrical engineering from Colorado
State U niH:rsitv in 1 97 1 and an M .S. in computer science
ti·om Colorado' U nivcrsitv in 1 974.

Will iam G. Nichols
As a cons u l tant engi neer with Digita l , Wick N ichols
was part of a team that reviewed the Framework-based
Environment and provided a report suggesti ng several
i mprovements. His fami l i arity with related networking
products, particularly DCE, enab led Wick to participate i n
t h e del ivery o f several F B E projects to customers. D u ring
his 1 5 years with D igita l , Wick comri bu tcd to several proj ­
ects, including the development of distributed file services.
He also served as project leader of a group that developed
the D ECnet- 1 0 system a nd as project leader and supervisor
for the D ECnet-20 prod uct. He received :111 A . B . fi·om
H arvard U niversity i n 1 97 3 .

Digiml Techni(al journal Vol . 7 No. 2 1 99 5 5 5

56

Project Gabriel :
Automated Software
Deployment in a large
Commercia l Network

Dig ita l entered i nto an agreement with a major

French ba n k to develop an automated software

deployment fac i l ity, i .e. , to provide centra l ized

control of software installations and upgrades

for a large network of com puter systems. I nde­

pendently, Digital had developed a set of models

desig ned to gu ide the design of sol utions to

this type of com plex management problem.

The ba n k project team, which had considerable

experience bui ld ing d istri buted system manage­

ment appl ications, was a b le to take adva ntage

of these models. The result was a versati le,

scala ble appl ication for d i stributed software

deployment va l idation of the models, and a

clearer sense of the usefu l ness of such models

to com plex appl ication problems.

Digi t,d Tcchn ic.11 Jou rn;l[Vol . 7 No. 2 1995

I
Owen H. Tallman

A large French lxm k pu rchased a D ECnet network
from Digi r::tl :-t nd II'JS i n the process of depJm· ing the
ne twork to su pport a l l i ts banking operations. The
network topologY i n c l uded a p pro x i mJtelv 3 ,000
OpenVMS VA X systems and about 1 8 ,000 MS- DOS

PC workstations. As i l l ustr::ned in Fi gure l , these s\·s­
tems were Mra ngcd in a br::mch structure t hat rough l y
fol lowed t h e gcogr:1phic:1 l d istri b u tion of the ban k
branc h offices a n d their ro l es i n the branch hierarc hy.
At the bank's hcad q u <lrters, an Open VMS cluster and
an Ethernet l ocJI area n e twork (LAN) l i n ked the
mai n ti·a me data center with the rest of the banking
network. The cl uster was connected to the fi rst t ier of
approx i matclv 200 branch grou p sen·ers. The second
tier consisted o f approx i mate !\' l ,800 branc hes , each
with between one <1 11d fou r branch sen·ers, for a total
of about 3 ,000 br<mc h servers. Each branch server, i n
turn, provided Digital's PATHWO RKS a n d applicJ­
tion services to the PC workstations .

For i ts ll <Uionwidc backbone net\vork, the customer
was using a pu b lic X.25 net\vork, which was i ts on ly
available optio n . l .2 The cost t()r X .25 service was b:1scd
on usage , so each packet of data transmitted i ncreased
the operation cost. ThcrdcJrc, the need to m i n i m ize
this X . 2 5 expense was a fu ndamenta l factor in spec i fY ­
ing re<:] u i rements ti:Jr virtu<l l ly ::ti l software depl oyed i n
t h e net\vork .

The bank's busi ness depended on the correct, re l i ­
able, a n d efficien t operatio n of t h e n e m·ork. Conse ­
quently, network man agement was crucial . From the
customer's viewpoint, such an undertak.i ng meant
management ofsvstcms ::\lld <lppl ications, as ll'e l l as the
commun ications i n frJstr uctur c . By extrJpo lat ing i ts
overa l l experience with the hard ware deployment, <1 11d
i ts i n i ti a l experience with software dep loyment, the
customer foresaw pote n tia l ly unacceptab le labor costs
tor software dep l oyme n t us i ng the ava i lable methods .
The c ustomer therd(Jre gave h igh priority to im prm· ­

ing the sofuv:�re d e p l oyment process.
In this paper, the term deployment (or deplovment

operatio n) represents <1 process that dep i O]'S a set
of software components to a set of svstems. A dcplov­
ment is descr i bed by a dep loyment p l a n and req u i res

Fig ure 1

HEADQUARTERS

-200 BRANCH GROUP
SERVERS

-3,000 BRANCH
S E RVERS

- 1 8,000
PC WORKSTATIONS

D ECncr Network Topologv in a B a n ki ng Environment

a deployment program , deployment automation soft­
wa n.: to <..:xt.:cu tt.: the program, and an operations staffro
sc hedule and monitor deployment program execution
and, wht.:n necessary, respond to run -t ime problems.

The Software Deployment Problem

Ideal ly, the bank wanted networkwide consistency in
its software , with automated , nondisruptive upgrades
administert.:d ti·om a central point . G iven the scale of
the nenvork :l lld the number and variety of sof-Tware
com pont.:nts in ust.:, however, this was not a real istic
goa l . The cll:ll l engc of bui ld ing a system of automated
deployment tools that is capable of mainta in ing con­
sistency across 3,000 widel y distributed , frequent ly
updated svstems is significant in itse lf. Add ing the
problems of maintai n ing consistency in detai led busi ­
ness practices and user training in e\·ery branch greatly
increases the di fticu lry. Actua l ly, the business req u i red
sofrwarc contigurations tai lored to and mainta ined
consistent ly within i ndividual busi ness un i ts such as
branches and branch groups . Software upgrad e p lan­
n ing and deployment �Ktivities wou ld be essentia l l y
continuous, with numerous planning and deployment
operations under way concurrently. The bank's busi ­
ness would not tolerate network malfunctions caused
by ongoing upgrade operations or version mismatches
among systems in a business un i t, nor wou ld i t provide
f-()r on -sin.: support at branches or branch groups.
To implement a fu l l y automated sot-hvare dep loyment
process wou ld require rigorously managed , centra l ­
ized planning and operational control .

ETH E R N ET LAN

• • •

The bank had al ready i m plemented a system that
automated signiticant parts of the deploymellt
process, using a variety of existi ng tools and ad hoc
in tegration . These tool s inc l uded D igital Command
Langu age (DCL) command procedures, the I n f-or­
mation Distri bution Control ler (!DC) product, which
di stributes fi les in batch mode, and a system even t
reporter. T h e process, however, was sti l l l abor in ten­
sive . The customer concluded that the on ly way to
achieve acceptable operational costs was to increase
su bstantial ly the degree and qua l ity of automation in
the process.

Customer Requirements

A solution to this sofh\'are deplovment problem
wou ld have to support (1) soph isticated , c1refu l ly
managed planning, (2) a means of determining the
current state of target systems tor use in p lanning,
(3) rigorous software certification, and (4) a h igh ly
re l iab le means of automating sofnvare distribution
and insta l l ation . The bank's planning and cert i fication
processes were already developed, staffed, and in oper­
ation . An i nventory con trol database for tracking sys­
tem contigurations was under development. However,
the means to distribute and instal l sofuvare cfkcrivc ly
was lacking and wou ld have to be developed and then
integrated with the other system components . The
customer emphasized th is need for distribution and
insta l l ation automation when it first presented the
problem to Digital .

Vo l . 7 N o . 2 1 995 57

58

Al l new software must be eva luated, acquire d , pack­
aged in kits that can be i nsta l led automatical ly, tested,
and certified . S i nce software i nterdependencies may
exist, multiple software compon ents may need to be
processed together to ensure proper install ation and
operation as a set. (I n this paper, the term component
refers to any soti:ware that might be distributed as a kit,
e .g . , a commercial layered prod uct, an i n - house appl i ­
cation , or a patc h .) Planners must determine vvhich of
the certi fied components to insta l l , the branch group
to i nstal l them i n , and the sched u l i ng constraints. The
result is a carefu l ly docume nted , u n iquely named
deployment plan. Depl oyment executi o n consists of
perform i ng a l l the steps necessary to d i stribute and
insta l l the software on the target group and to report
the results for incorporation i n the planning for the
next deployment.

The operations staff, i . e . , those who monitor and
control the network on a continuous basis, keep a
repository of data that refl ects the current state of soft­
ware on the systems i n the network. P lanners use this
data to p lan new states tor parts of the n etwork; they
store these p lans in the repository also. As many as 1 0
planners may be developing plans s imultaneously. For
each plan, an application analyzes the d i fferences
between the plan ned state and the curren t state of the
network and produces a deployment program .

A deployment operation may i nvolve multiple prod­
ucts. This set of products must include all those neces­
sary to satisfY the prereq uisites of the other mem­
bers of the set (if they are not a lready satisfied by prod ­
ucts on the target syste m) . The members of the set
m ust be i nsta l led in the proper order. The p lanners
determine the proper membe rship for a ny product
set and create representations of those sets i n the
repository. They also represent the prod uct insta l la­
tion order i n the repository i n the form of i nstal lation
precedence relationships. The deployment software
uses this precedence information to determine the
order ofi nsta l latjon for members of a prod uct set.

The operations or configuration staff store the certi­
fied software kits in a l ibrary at the management cen­
ter. vVhen the kits need to be installed on a system, the
deployment software compresses the kits and t he n
copies them across t h e X.25 backbone t o stagi ng areas
on servers. From these areas, the deployment software
copies the kits to the target system or systems or, i f
necessary, t o servers closer t o t h e target systems a n d
t h e n to t h e target systems, where t h e kjts are d e c om­
pressed and use d . By staging kit d istri bution in this
way, each kjt is copied only once over each l ink, which
avoids wasting bandwidth . When all the target nodes
have the req uired ki ts, the kits at the stagi ng points
are deleted . The copy operations must proceed con­
currently when ever possible . Table 1 shows possible
states and transitions tor a software component kit on
a target system.

Digital Technical Journal Vol . 7 No. 2 1 995

Table 1
States and Transitions for a Software Component Kit
on a Target System

In itial State

(Null)

D istributed

Action

Copy

Delete

New State

D i stributed

(Null)

Installation is a multistep process designed to al low
the synchron ized cha nge of operating software on all
related systems. O nce the required kit is present on the
target system, the prod uct can be i nstal led, i . e . , the
fi les put i n p lace and any other necessary steps taken
so tha t the prod uct is ready to be activated . Activa­
tion, i . e . , making the new prod uct the cu rrent operat­
ing version, is the last step. A product can also be
deactivated and deinstal led . To upgrade a prod uct
requires i nsta l l ing the new version, deactiva ting the
old version, and then activati ng the new version .
If the activation is successfu l , the previous version
can be deinstal led . Only one version of a prod uct can
be active at any given t ime. Table 2 shows the states
and transitions for a software component on the target
system .

Table 2
States and Transitions for a Software Component
on a Target System

In itial State Action New State

(Null) Insta l l Installed

Insta l l ed Activate Active

Active Deactivate Installed

Installed Deinsta l l (Null)

Table 3 shows the state transitions to be managed
between the new version prod uct k.it, the new version
prod uct, and the previous version prod uct on the tar­
get syste m . Note that the deployment process should
min imize the time a rarger system must spend in step
4, when both versions of the prod uct are i nstalled but
neither is active .

Ta ble 3
State Transitions to Be Managed on a Target System

New Version Old Version New Version
Step Product Kit Product Product

(Null) Active (Null)

2 Distributed Active (Null)

3 Distributed Active Instal led

4 Distributed Installed Installed

5 Distributed Insta l led Active

6 Distributed (Null) Active

7 (Null) (Null) Active

A planner can specit)' to the deployment soft,vare
that an upgrade must be carried out as an atom ic
transactio n . That is, the activation transition must
eit her succeed or be rol led back. In a ro l lback, steps 3,
4, and 5 in Ta ble 3 are reversed . Most commercial
sothvare is not packaged with i nsta l lation proced ures
that su pport i nsta l l at ion, activation , deactivati on, and
deinsta l l ation steps. Therefore, the bank must package
its own software and repackage software from manu­
facturers so that upgrades behave this way. The
deployment software invo kes the indiv idua l steps
by executi ng DCL command procedures provided
in each such customized kit.

The activation of a l l prod ucts i n a deployment m ay
be transactiona l , in which case a l l the prod ucts m ust
activate successfu l ly or a l l activations wi l l be rol led
back . The instal l ation steps tor al l the prod ucts are
completed tl rst, so a l l the prod ucts are ready tor acti ­
vation at the same tim e . The activations arc then
attempted . I f a l l succeed, the newly activated products
remain as the current operati ng versions. If a prod uct
activJtion fa i ls , it and all the preced ing activations
are rol led back, in reverse ord er of activation, and
the previous versions are l i kewise reactivated. When
the rol l back completes, the deployment stops and the
manJgement center receives a status report. Once
the operations staff has corrected the problem that
caused the tai lure of the activation phJse, a n ew
deployment program may be generated . It wi l l exe­
cute only the activation steps, not any ofthe preced ing
steps that had succeeded . That is, the new deployment
program picks up where the earlier one left off.

This trJnsactional behavior appl ies to a l l activations
across all systems i n a given deployment and may
involve d ifkrent sets of products tor d i ffere nt syste ms.
The transactional characteristic appl ies to the deploy­
ment operati on , not to a prod uct or set of produ cts .
Thus, the deployment can accommodate interde­
pendenc ies among products on d i fterent syste ms.
If an activation of any prod uct bils i n a tra nsactional
deployment, a l l current or completed activations wi l l
be rol l ed back i n reverse order of <Kti vation , regardless
of location . This requ irement is specifica l lv for c l ient­
server Jppl ications whose c l ie n t and server com po­
nents must be upgraded both s imu l taneously and
atomica l l y.

The deployment software must mai ntain the state of
the depl oyment in stab le storage so that the state can
be restored and the processi ng contin ued despite tran­
sient tai lu res of systems or networks. The software
must report the state of processing to the manage­
ment ce nter at some reasonable interval Jnd a lso when
the deployment completes. The software then updates
the repository with the status of all the i nd ividual
operations in the deployment.

The deployment imp lementation must provide
management d irectives to start, suspend, resume,
stop, and abort the deployment, without leavi ng it in
an i nconsiste nt state or disrupting business operations.
Suspension proh ibits any new command procedure
executions trom starting but does not i n terrupt ongo­
ing ones, thus a l lowi ng the deploym ent to gu iesce.
Suspension does not a ffect transactions. The resume
d irective restarts execution of a dep loyment that has
been suspended . Stoppi ng is the same as suspension
except that once stopped , the deployment can not
be restarted . The a bort d i rective stops ongoing com ­
mand proced ure executions by termi nating their
processes and thus torces the rol lback of any transac­
tion that is executi ng at the ti me the d irective arrives.
An aborted deployment cannot be restarted . There is
al so an upd ate d i rective, which torces the curre nt
detai l s of operation state to be rol led up to the man­
agement center. A show directive reports the overa l l
state of each deployment at a particular host.

The management d irectives a l low an externa l enti ty,
e .g . , a batch scheduler or an operator, to intervene i n
what would otherwise b e a se lf�contained, automated
operatio n . A batch sc hed uler can suspend a l l on goi n g
deployments a t some time before bank branc hes open
and resume the dep loyments when the branches close.
It can force a deployment to stop at a predetermined
time, whether or not it has completed . An operator
can use the upd ate di rective to rol l up the state to
determine how far a remote part of a large deployment
h as progressed . It can also issue suspend and resu me
d i rectives to subsets of the network affected by
a deployment to a l low tor emergency manual i n ter­
ven tion without suspending the entire deployment.

Dig ital's Response to the Requirements

Digita l 's decision to u ndertake the project of develop­
ing an automated software depl oyment fac i li ty tor the
bank was based on two goals . First, Digital wanted to
meet the needs of an existing customer. Second, in
solvi ng the customer's prob l e m , Digital cou ld val idate
the set of network and system management models
it had a l ready developed . The fo l lowi ng sections
provide an overview of the models and deta i ls of the
automated sofhvare deployment i mp.lementation.

The EMA Configuration Management Model

When Digital began discussions with the ba n k about
automating software u pgrades, in the Enterprise
Ma nagement Architecture (EMA) group, Pau l Kelsey
was developing a com prehensive ge neral model of
configuration management for information systems.
Like the i n fl u ential EMA entity model that preceded
it, the EMA con figuration management model (CMlvl)

Digital Tech nical journal Vol . 7 No. 2 1995 59

60

defines a consistent set of concepts and terms tor
worki n g in i rs particu lar problem domai n . ' The entity
model broke new ground by applying what would
come to be known as object-ori ented concepts to the
problem of managi ng the many types of objects t-c>und
in a nerwork. The CMM goes on to address the rela­
tionships among those objects that, i n combi nation
with the objects themselves, constitute an i n tormation
system's configuration .

Conf-Iguration management concerns a broad range
of activities over the l i fetime of an engi neered sys­
tem . The large r or more complex the system to be
man aged , the greater the need t-or a configuration
ma nagement d isci p l i ne. The U.S. Ai r Force defines
configuration management as "a d iscipl i ne applying
tec h nical and administrative d i rection and survt:i ll ancc
to (a) identi�' and document the fu nctional and physi­
cal characteristics of a con tiguration item, (b) comrol
changes to those characteristics, and (c) record and
report cha nge processing and i mplementation status.
l t includes con llgura tion idcmi fication, control , status
accounting, and audits . Configu ration manageme nt is
thus the mc:tns th rough which the integri ty and conti­
n uity of the design, engi neeri ng, and cost trad e-off
decisions made between technical performance, pro­
duc ib i l ity, operabi l ity, and supportabi l ity are recorded,
comm u n i cated, and control led by program and fu nc­
tional man agers. "4

The CMM provides a conceptual framt:work t(>r
automating i n formation systt:m managt:ment, co,·u­
ing the ent ire scope defined in the preced i n g para ­
gra ph. For ex:tmple, consider a d isk drive . The EMA

entity model provides a conccprual t]:amework tor
descri b ing the drive as an object with certain attri bu tes
(e . g . , storage capacity) a nd operations (e .g . , t-(>rmat)
such that devel opers can bui ld software that a l lows
monitoring Jnd control of the object by means of
a ma nagement protoco l . /\ny object in the network
that presents a contorm ing management i nterrace
is cal led a managed object.

The CMM proposes a framework tor descri bing the
d isk drive's role i n a system configuration over the
drive's l i feti m e . The fl-amework CO\'crs

1 . The services that the di sk dri ve provides and the
c l ients of these services, e . g . , the logical storage
vol ume that the drive su pports

2. The services that the di sk drive consu mes

3. The objccrs that compose tht: d rive

4. The d rive's current and previous attri bute values

5 . The attri bute vaJues that the dri ve should prcscntlv
h ave

6. Pla ns tor fi.tture drive configurations

7. The way software should i nterpret and act on l ist
items I through 6

DigitJI Technical)ourn.tl Vo1 . 7 :.Jo. 2 1 9'!5

The k> l l owi n g d iscussion emphasizes the aspects of
the CMfvl that influenced t h e design of the Projec t
Gabriel software.

Persistent Configuration Model

In the CMM, al l users and managem ent appli cations
deal with ma naged objects in an i n formation syste m ,
whether physical or abstract, i n the abstract: they
manipu late their representations in a repository, and
au tom atic mechanisms carry out the i mpl ied opera­
tions transparently. The repository maintains a per­
siste nt rcptTSCn ta tion, i . e . , model , of the enti re
i n formation system 's srate ; i t is cal l ed the persistent
con figuration model (PCM) . The PCM provides
a common level of a bstraction tor all users and man­
agement :tpp l ications because a l l management actions
are ta ken through i t . Since the model persists, the
PCM can provide this abstraction in mu lt iple temporal
d ivisions.

Temporal Divisions

Managed objects ind icate their state through attri b­
utes and through relati onships with other obj ects.
Object state is relative to the te mporal d iv ision of rhe
PCM through \\'h ich the state is viewed . Each tempo­
ral d i vision can provide a consistent view of all the
objects in the network as they were at some point in
the past, as they are now, or as they wi l l be.

The historical temporal division records past system
states. The prese nt is represented in rhe obse rved :�nd
expected te mporal d ivisi ons, wh ere the obscrvt:d d i,·i ­
sion provides the most rece nt intormation avai lable on
actual object state, i . e . , what is now. The observed
di vision is populated by automated census services
that col lect c urrent statt: i n t(mnari o n as d i rect ly as pos­
s ib le from the objects . The expected d ivision main­
tains what is c u rre ntlv i ntended for the object state,
i . e . , wbat should be. This di , · ision is based on the
observed division but mod i fi ed as necessary to repre­
sent the state sanctioned by the system or nnwork
administrator.

The pl: umcd and com m i tted temporal divisions re p­
resent fu ture object states. States that may be re a l ized
at some time are p lanned, wh ereas those that wi l l be
real ized arc com mitted . The di sti nction permits s imu­
lat ing, analvzi ng, and evaluati n g fu ture states in the
planned d i vision without i m p l ying any com m i tment
to rea l ize them .

Realization

Difkrcnct:s between object states in t h e expected and
the com mitted d ivisions i ndicate changes that need to
take place to rea l ize the new com mitted configuration .
This is the task of the real ization services. The job of
idenri �'ing the req u i red ch�mgcs and generati ng a pro­
gra m to rc1 l izc these ch<lnges is cal led con figura tion

generation (CGN) . Other rea l ization services e xecu te
the program and u pd ate the repository based on the
resu lts . A softW<lre deployment operation wou ld be
cal led a real ization i n CMNI terms. The u l tim<lte vision
of the CMM is to a l low the user to ddine the desired
state of an in�(xmation system and, with a s ingl e com ­
mand, to realize it.

Once the plan ned state has been real i zed, a uto­
mated servi ces can mainta in that state by monitoring
the difkrences between object states in the observed
a nd the expected d ivisions. These d ifkrences repre­
sent poss ibl e bu lts and trigger fau l t- h a n d l i n g actions.

Implementation

Digital :md the bank agreed that Digital would imple­
ment the crit ical deployment automation part of the
ban k's req uirements and i ntegrate i t with the ban k's
establ ished processes . The focus of the discussion in
this section is the en gi neeri ng tea m's eft()rtS to arrive
at an etkctive, i mplementable system d esign.

System Design

The CMlvl provided an efkctive conceptual ti·ame­
work for t h i n king and tal king a bo u t the system
req u i rements and possible design choices. As one
would expect fi·om a general mod e l , however, the
CMM did not add ress i mportant design and imple­
me ntation issues. I n partic u l ar, it d id not prescribe in
any deta i l the PCM design or h ow the real ization ser­
vices should work. The Project Gabrie l e ngineeri ng
tea m , which i ncluded the CMM author, had to qu ickly
answer the fol lowing basic q u estions:

• How should the tea m implement the PCM) Is it an
object- oriented database, or wi l l it req uire fu nc­
tiona l ity beyond what the team can i m p l ement i n
such a database) vVhat schema should t h e te<lm usc?
How much of the PCM as described in the CMM

i s rea l l y necessary �(>r this project)

• How wi l l CGN convert the PCM state data to
a deplo�' ment program) I s CGN '' r u l e - based
Jppl ication or a conventional , seq u ential program)
What wi l l CGN req uire of the objects in the PCM)

How wil l CGN com mu nicate to the other, as-yet­
undesigned real i zation services what needs to
be done to carry out a deployment? How should
the team trade off the complexity of CGN versus
the comp l e x i ty of tbe servi ces that wi l l execute the
programs)

• VVhat services wi l l the rea m need to carry out the
programs CGN generates) What �(>rm w i l l these
services take)

• H ow cJn the team min imize the com plexity of the
system to arrive at a design that the ream can actu ­
a l l y i m plement)

The last q u estion was i n mJny wavs the most impor­
tant . The team had to break. down the problem
i nto man ageJ b le pieces and at the same time devise
an in tegrated whole. The ream did not have t ime �or
a seq u entia l p rocess of analysis, design, and i m p l e ­
mentation a n d , therefore, h a d t o find ways t o start
development before the design was complete. CGN

presented the pivota l problem; it might u l ti mately be
tbe most d ifficu l t part of the system to design, but the
components on which it depe nded h ad not yet been
designed . ln add ition, these components cou ld not
be designed effectively without some reasonable idea
of how CGN would work. To efficiently use the time
a l l otted, the rea m beg:m to search tor the key design
abstractions whi le it eva l u ated tech nologies and tools .

Actions and States PCM configuration data represent
mu ltiple actua l or possi b le states of the systems i n the
network. CGN wou l d generate a de ployment program
based on the d ifferences between the expected and
planned states represented in the repository. This idea
led to the development of a state table, which pre­
scribed the state transitions that would have to occur
to change each prod uct on each system from its pre­
sent state (as shown in the ex pected temporal divisio n)
t o irs p l a nned fu ture state . CGN cou ld associate a n
act.ion with each transition a n d program those actions.
When the PCM received status from the actions taken
on the target syste ms, the transition identifier wou ld
be i nc l uded and wou l d be used to update the PCM.

This became o n e of t h e key design concepts o f Project
Gabrie l : to model the target of a deployment opera­
tion as a co.l lection oftin i te state machi nes.

CGN needed a way to program t he action s so
the other rea l ization services co u l d carry them out.
The team c h ose to model the actions i n a consistent
man ner for al l foreseea ble vJriations, regardless of how
they arc implemented or what state change they effect,
as fol l ows:

l . AJI actions consist of i nvoking a command, with
some l ist of argu me nts, on some object, and within
a d iscrete process.

2. Actions are Jssociated with state transitions.
Actions themse lves have state (e . g . , runn ing) Jnd
fin ite d u ration. Actions can be started, and at some
poin t they complete. When they compl ete success­
fu l ly, they change the state of a n object; when they
tai l , they do not.

3. The im plcme ntJtion of the com mand shou ld
behave such that an action's fai l u re has no u ndesir­
able side effects, c .g., d isabl ing a system component
or causing l a rge amount s of d isk. space to be occ u ­
pied need lessly. This beh avior can not actu a l ly be
guaranteed, however, so some fa i lures may req u i re
h u man intervention to correct side effects.

Digital TcchniGli Journal Vol . 7 No. 2 1 99 5 6 1

62

In most respects, this model of com mand proce ­
dure execution is the same one used by both the
OpenVMS batch fac i l ity and the POLYCENTER

Schedu ler. The pri ncipal d i fference is that in Project
Gabriel , a user does not s imply program an arbitrary
seq ue nce of actions. Rather, each action corresponds
to a speci fic meani ngful state transition of an object.
When the PC!'v! receives completion status for an
action, the PCM u pd ate program can use the transi ­
tion identi fier to determ i ne what state an object has
attai ned and modiry i ts representation in the reposi­
tory accordi ngly.

By hiding the imp lementation interna ls behind
a consistent intertace in this man ner, the software
designed tor contro l l ing actions does not have to
be concerned with those i n ternals . This is a straight­
forward applica tion of the principle of encapsu lation,
which separates the external aspects of an object from
its i n ternal i m p.lementation details. 5 Encapsulation
a l l ows a system designer to separate the qu estion of
how an action , such as copying a ti le or invoking an
i nstallation procedure, is imp lemented from the q ues­
tion of what i n terface the control system wi l l use to
i n voke the action. This is obvi ously a s implification of
the i mplementation issue , because the team had to
deal with preexisting i m plementations, which cannot
always be made to fol l ow new ru les. From a design
point of view, however, the s impl ification is essen tia l .

Control Distribution A deployment operation consists
of mu lt iple actions, performed in various complex
seq uences . The team understood intuitively that every
host system wou l d have to run sofuvare to execute
the deployment program and that the management
center wou l d di stri bute the program to the other
host systems in the network. An advanced develop­
ment team workin g on a more sca lable design tor the
POLYCENTER Software Distribution product had
previously devel oped a model tor this kind of distri b ­
uted control . T h e Project Gabrie l team adopted two
related design ideas from its work.

The ti rst idea is recursive program decomposition
and delegation. Assume that the control system is
i m plemented by servers cal led con trol poi nts, whose
task it is to coord inate operations. Assume also that
each target system has an <lgent that carries out the
action . Assign to eac h target agent a control point, and
assign to each con trol point its own control point, such
that these control re lationships form a tree structure.

Assume that deployment programs are com posed of
nested su bprograms, which, in turn, are composed of
nested subprogra ms, and so on. Assume also that each
program (or su bprogra m) has an attri bute identi�ring
the designated control poi nt to which the program
m ust be sent tor processing. Such programs can be
decomposed , di stri buted , and executed using a recur­
sive d istri bu tion a lgorithm, as fol l ows.

Digit31 Tcch niul journal Vol . 7 No. 2 I 995

An operator subm its a compl ete deployment pro­
gram to its designated control point . (Sub mission
consists of copying the program ti le to a we l l - kno1vn
pl ace on the man agement center host system and issu­
ing a RUN com mand with the ti le name as an argu­
ment .) The control poi nt breaks down the program
i nto i ts component su bprograms and submits the indi­
vidual su bprograms to their own designated con trol
points, thereby delegating responsi bi l ity for the sub­
p rograms. The del egation e nds when ;� subprogr;�m
has been broken down to the level of indiv idual
actions, which are del ivered to the agent on the target
system for execution . In the original model developed
for POLYCENTER Software Distri bution, program
structure did not influence how operations were
decomposed and de legated . I nstead , a target could
be a group of targets, al lowing recu rsive del egation of
subprograms accord ing to the nesti ng of the groups.
The Project Gabriel in novation was to usc nested sub­
programs within the deployment program rather than
nested target groups . Both appr03ches arc b u i l t on
the notion of d istributi ng control by fiJIIowing a tree
whose nodes are man aged objects and whose edges
are control relationships. Th is is how they were u l t i ­
mately represented i n the PCtvl.

The second idea re L l tes to program state. The team
modeled the deployment program :�nd c:�ch of i ts
com ponent su bprograms as fi nite state mach in es.
Each su bprogram goes through a d din itc series of
transitions from read y to compl eted , stopped, or
aborted . The state of the program as a whole rdkcts
the state of the processing of i ts compon ent su bpro­
grams, and the state of each component reflects the
state of the processing of its components, and so on .
At any time, an operator can issue a show dirccti1-c f(lr
a control point and determi ne the local state of· al l
deployment programs. Understanding the col lective,
distri buted state of a deployment may be diffi c u l t at
times, because a given control point may have out­
dated i n formation about a del egated su bprogram. For
example, a program may be running when none of its
components are running yet, when some are running,
and when all have com pleted but norice has not ye t
rolled up to the root of the control tree. This latency
is natu ral and avoidable i n such a syste m .

The deployment sofuvare mai ntains program state
on disk. When a com.ponent subp rogram is de legated,
the state i s reflected at the sender by a p laceholder sub­
program that stands in for the one cre:�ted at the
receiver. The state is updated at the sender only after
the receiver acknowledges receiving the subprogram
and securing i t in stable storage . Given this consl TI'a­
tive approach to recording state changes, and l ogic
that ma kes redun dant delegations harm less , a control
poi nt server can be stopped or restarted withou t losing
p rogram state .

Data Distri bution The team borrowed the notion of
a distribution map from the IDC prod uct mentioned
in the section The Software Deployment Problem .
The Project Ga briel concept is a d istribu tion tree ,
which is formed i n the same fashion as the control
tree. Each host system is assigned a d istribution poi nt
from which it gets i ts copies of sotiware kits to be
insta l led . A system that hosts a distribu tion point has
its own assigned d istribu tion point, and so on, tor as
many levels as necessary. This assignment takes the
form of relationships between system objects in
the PCJ'vl . CGN uses the d istribution tree to determine
the software distribution path for each target system .

The control and distri bution trees need not be
the same, and they shou ld not be confused with
one another. The con trol tree un iquely defines the
path by which a l l other services, e .g . , k it distri bution ,
are managed .

SYREAL Programming La nguage To commun icate
a deployment plan to the servers that were to execute
it, the team invented a s imple textual representation
called the system realization language (SYREAL) . This
language was easy for the developers and users to
analyze in case problems developed and could easi ly
be prod uced by programs, by DCL command pro­
cedures, or by hand . AJ though SYREAL is verbose
(e .g . , insta l l ing a few prod ucts on a dozen systems
req uires hundreds of l ines of text) , it clearly rdlects the
structure of the deployment operation .

PCM Implementation The development team bel ieved
that an object-oriented repository wou ld provide the
most natural mapping of the PCM abstractions onto
a data model . The team used an internal tool kit cal led
AESM, which was layered on the COD/ Repository
software prod uct. The user interface is based on
D ECwindows Motif software, using faci lit ies provided
by AESM.

AESM uses membership, i . e . , conta inment, rela­
tionships to connect objects in a meani ngful way. Al l
relationships are derived by inheri tance from this basic
type. Thus, the PCM contains temporal d ivisions,
which contain groups of syste ms, which contain soft­
ware contigurations, which contain specitic software
components with certain state attributes. A software
catalog contains configurations, sofhvarc compo­
nents, and materials objects that descri be the kits used
to insta l l these components. A plan in the PCM is an
object within the planned domain that contains sys ­
tems and configurations.

Configuration Generation Processi ng Thus tar, the
paper has described the fol lowi ng abstractions ava i l ­
ab le tor CGN:

• The PCM, which conta ins systems and a catalog
of software configurations, software components,
materials, and precedence relationships-a l l 1 11
temporal d ivisions.

• Sofhvare component state table .

• Actions, which change the state of objects in the
network.

• Managed objects (e .g . , software components and
kits) as ti nite state machi nes whose transitions result
from actions.

• A control tree to p:1rtition control responsib i l ­
ity. Th is tree consists of rela tionships between
control points and between control poi nts and
target agents.

• A di stribution tree to detine the path for distri b­
uting software to target systems. This tree consists
of relationships between distribu tion points and
target agents.

• Deployment programs as finite state machines
whose nested structure is decomposed and d istrib­
uted according to the control tree.

• Control point servers that execu te deployment pro­
grams and target servers that execute actions.

Given these abstractions, the key problem of
design ing CGN was to determine the optimal order
of traversing and analyzing an in terrelated set of
trees connected with a plan in the PCM. The sol ution
had to add ress

• The PCM temporal divisions, to locate expected
and committed states of system configurations in
the plan

• The software catalog, to determine materials and
precedence rel ationships

• The precedence re l ationshi ps, to determine the
processing order for the products in the plan

• The control tree, to determine how control must
be di stri buted

• The distribution tree, to determine how software
kits must be distri bu ted

For each system, CCN must determine what prod ­
ucts wi l l undergo which state transitions based on the
state table. The same set of abstractions made it clear
what torm SYREAL should take and the nature of the
processing that the control point and target servers
would perform .

Reducing the problem to a smal l number of abstrac­
tions, many of which shared a s imi lar structure, was a
major step in the process of defining an implementable
system. AJthough the overa l l problem was st i l l com­
plex and required a nontrivial eftort to solve , at least
the problem was bou nded and cou ld be solved using
conventional programming techniques.

Digital Technical journal Vol . 7 No. 2 1 995 63

64

Overview and Example of Deployment Processing

A user, i . e . , p lan ner, begins the deployment process by
populating the repository with objects to be man:1ged
using an appl i cation that reads from the inventory
database. The objects in the repository represent a
software catalog, expected and plan ned tempora l divi­
sions, compu ter systems, software prod ucts, software
configurations, sortware materials (ki ts) , and product
pick l ists . By specifying the relationships between the
objects, i . e . , by actua l ly drawing the re lationships, the
user deve lops a model of the network con riguration.
For example, a model may represent a system that has
a pilrticu lar software con tlgu ration ;md is contained in
one of the temporal divisions.

In addition to al lowi ng the user to model the
nel'\vork, the deployment software represents policv
inr(xmation by means of relationships. A software
product may have precedence re la tionsh ips with other
software products that prescribe the i nstal lation order.
Each system has a rel ationship that indicates its distri b­
ution poi nt, i .e . , the ti le service that provides staging
f()r software distri bution to that system. Each system
a lso has a relationship that indicates i ts control poi nt,
i . e . , the management entity that controls deploymen t
operations for that system.

Using the graphical user i nterf1u::, : 1 plan ner derives
new configurations from approved con figurations
in the repositorv and assigns the new conrigu rations to
systems or groups of s�1Stems. A planner can view the
differences bel'\veen the current :1nd the proposed
configurations and see which systems wi l l be aftected .
If the observed changes are acceptable, the planner
can run CGN to produce a program to rea l ize the
changes. Once the program has been generated,
the planner can launch i t im medi:ltely, sched ule it ror
execution later, or just review i t .

Deployment programs normally run under the con­
trol of a batc h scheduler. For large-sca le deployments,
which can continue tor days, the sched u ler Jutomari ­
cal ly suspends execution whi le branch offices are open
for busi ness, resumes execu tion when the branches
c lose, and repeats rhe cycle u ntil the operation h:1s
completed . Operators oversee the execution of the
deployment, interven ing to suspe nd, resume, stop, or
abort the process, or to observe the program's stare .
Actions on i ndividual systems that fai l may suspend
themselves, thus allowing an operator to i ntervene and
correct the problem and then, if desirable, restJrt the
operation.

Certain events, such as a deployment action ta i l u re,
rol l up ro the central control poi nt and trigger the exe­
cution of a user-written event scri pt. Depend ing on
the type of event, the script m::�y notit-)1 an operator,
make a log entry, or per form a PCM update . Normal ly,
rhe last event that occurs is the completion of the
program. If the PCM completed successht l ly, i t is

DigirJI Technical Journal Vol . ? No. 2 1 99S

auromatical lv updated . Even i fa program does not run
to successfu l completion, the operator can trigger a
PCM update so that whatever changes were rea l ized
will be refle c ted in the PCM . A new program, gener­
ated with the same planned con figu ration, wi l l include
only the changes that were nor completed i n the previ­
ous attempt.

The remainder of this section describes the role of
each major Project Gabriel component in the deploy­
ment process. The example presented was intention­
a l ly kept s imple . Its assumptions are as tol lows:

• The repository has been popu lated with netll'ork
information , the prod uct catalog, etc .

• The goal is to upgrade the software conri.gurations
of a set of fou r branch servers, B 1 through 134.

• Central control poi nts nist at headquarters, HQ,
and on l'\vo group ser\'ers, G l and G2 (sec Table 4) .

• Branch servers 13 1 and R2 have their control point
on G 1 ; 13 3 :1nd 134 have theirs on G2 . HQ hosts the
control poi nts for itse iLmd ror G 1 and G2.

• The branch server systems have distribution points
(fi le servers) , which in this ex:1mple are on the same
host systems as their respective control points.
(This overlap is nor required .)

• In the PCM 's expected temporal di1·is ion, the t(> L J r
svstems B I , B2, B3 , and 134 are g01uned by the
same softw:m: conrigu ration. The only layered sort­
ware prod uct is Prod uct X version l . l , which is i n
t h e active state .

• The planners wa nt to have Product Y version 2 . 0
installed o n the tou r systems a n d in the Jctivc
stare. They create a plan in which a new conrig­
urarion, with Product Y added, governs the svs­
tems (see Table 5) . They com mit tbe p lan, which
invokes CGN .

Configu ration Generation CGN transforms the
desired fu ture state represented in the PCM to :1 pro­
gram that can be used ro real ize that state. CGN deter­
mines the difkrencc bel'\1·een the configurations in the

Ta ble 4
Des i g n ated M a nagem ent Control and D i str i bution
Poi nts

Control Distribution
System Point Point

HQ HQ HQ

G 1 HQ H Q

G2 HQ H Q

8 1 G 1 G 1

82 G 1 G 1

83 G2 G2

84 G 2 G 2

Table 5
Expected and Committed Configurations

Temporal Configu ration
Division Name Prod uct

Expected GoodConfig Product X
Com mitted BetterConfig Product X

Product Y

expected and com mi tted temporal di \'isions, \\'h ich
in the example is the Jddition of Prod uct Y 1·ersion 2.0
in the active stJte . Si nce the contlgurJtions d iftcr by
only one prod uct, the question of i nsta l lation order
docs not arise . If mu l tiple prod ucts were involved,
CGN \.Vould analyze their dependencies and arrange
them in the correct instal lation order.

CGN uses '' state table to determim: the scqw.:nce of
trJnsitions that must occur to bri ng the software to the
desired state . I n the exJmplc, Prod uct Y version 2 .0 is
not presen t on <l ilY of the target systems, so the kit
must be copied to the appropriate distribution point
and then copied to the target systems, after which it
must be insta l led and activated . CCN uses the d istrib­
ution tree to ri nd the appropriate distribution points
and then uses the control tree to determine which
control point to usc rc)r each set of systems, for each
staging copy, and f()r each trJnsi rion . F ina l ly, CGN

generates the corresponding text i n SYREAL. The
program that C:GN writes opti mizes throughput by
perform ing concurrent processing whene1·er possib le .

SYREAL Program A SYR.EAL program has t\vo pans:
(l) object deciJr:ltion and (2) the executable . The first
parr declares the objects to be acted upon . The control
point that executes the program has no knowledge of
the software prod ucts , fi l es, kits, copy commands, etc.
Ir knows only that objects exist that ha1·e idemi ricrs
and tbat undergo nJmed state transitions as a con ­
seq uence of executing commands. SYR.EAL provides
a means of declaring objects, their identifi ers, the
associated transitions, and the commands that eftcct
the transitions. hgure 2 is an example of an object

Version State

1 .1 Active

1 .1 Active
2.0 Active

declaration . The program dec lares the real i zation
object that represents Product Y version 2 .0. The
object name is PY. Note that PY i s an ad hoc, pu rely
local naming scheme . Si nce thnc can be only one
instance of any product version on a system, the name
is impl ic it ly di stingu ished by i ts locJ i i ty, in the sense
that it is the u n ique i nstance of prod uct PY on svstcm
X. PY inherits the defau l t object char<Kteristics (not
shown) and adds i ts own kit ident i fier, prod uct n�1mc,
and a defin i tion of the ACTIVATE transi tion . This
transition has command CMD, which is a DCL com ­
mand string.

The second parr of a SY REAL f)rogram is the exe­
cutable . (.l:'igure 3 shows the executable part tor the
dep loyment process exampl e .) This part consists of at
least one executable block (i . e . , su bprogra m) , which
may cont::t in any nu mber of addit ional execut:-�ble
blocks. A block may be ddlned :-�s concurrent or seria l .
Blocks nested within a seria l b lock are executed in
ord er of appc1ra nce . B locks nested ll'i thin a concur­
rent b lock Jre executed concurrently.

Any bloc k may have an �lssociated t�m l t action
expressed as one of the fo l lowing com mands: ON

ERRO R SUSPEND, ON ElUZO R CONTI NU E,

or ON ElUZOR ROLLBACK. A block is executed
by " USING" a designated control poi nt to control i t .
For example, the ri rst executable l i ne i n Figu re 3 , i .e . ,
SERIAL BLOCK USING "HQ";, declares the execu­
tion of rile ou termost block to be assigned ro HQ.

Nested USING blocks may be assigned to other con­
trol points, to the poi nt a t which the ul timate action is
ca l led tor. The SY R..EAL program expresses this assign­
ment by an AT block, in the sense that the action

O B J E C T PY C H A R A C T E R I S T I C S L I K E D E F A U L T ;
K I T _ I D " P Y 0 2 0 " ;

Figure 2

P R O D U C T _ N A M E " P Y , 2 . 0 " ;
T R A N S I T I O N F E T C H

C M D " $ @ R L Z $ S C R I P T S : R L Z $ F E T C H " ;
T R A N S I T I O N A C T I V A T E

C M D " $ @ R l l $ S C R I P T S : R L Z $ A C T I V A T E " ;
E N D C H A R A C T E R I S T I C S P Y ;

SY REAL Program-Objccr Dc..:lararion

Digi r<li Tcdmical journal Vol . 7 No. 2 I 995 65

66

Figure 3

S E R I A L B L O C K U S I N G " H Q " ·
ON E R R O R S U S P E N D ;

,

S E R I A L B L O C K A T " H G " ;

P E R F O R M F E T C H
O B J E C T P Y ;

E N D S E R I A L B L O C K A T " H Q " ;
C O N C U R R E N T B L O C K U S I N G " H Q " ;

S E R I A L B L O C K U S I N G " H Q " ;

S E R I A L B L O C K A T " G 1 " ;
P E R F O R M C O P Y

O B J E C T P Y
S E R V E R " H G " ;

E N D S E R I A L B L O C K A T " G 1 " ;
C O N C U R R E N T B L O C K U S I N G " G 1 " ;

S E R I A L B L O C K A T " B 1 " ;
P E R F O R M C O P Y

O B J E C T P Y
S E R V E R " G 1 " ;

P E R F O R M I N S T A L L
O B J E C T P Y ;

E N D S E R I A L B L O C K A T " B 1 " ;
S E R I A L B L O C K A T " B 2 " ;

P E R F O R M C O P Y
O B J E C T P Y
S E R V E R " G 1 " ;

P E R F O R M I N S T A L L

O B J E C T P Y ;
E N D S E R I A L B L O C K A T " B 2 " ;

E N D C O N C U R R E N T B L O C K U S I N G " G 1 " ;

E N D S E R I A L B L O C K U S I N G " H G " ;
S E R I A L B L O C K U S I N G " H Q " ;

S E R I A L B L O C K A T " G 2 " ;

P E R F O R M C O P Y
O B J E C T P Y
S E R V E R " H Q " ;

E N D S E R I A L B L O C K A T " G 2 " ;
C O N C U R R E N T B L O C K U S I N G " G 2 " ;

S E R I A L B L O C K A T " B 3 " ;
P E R F O R M C O P Y

O B J E C T P Y
S E R V E R " G 2 " ;

P E R F O R M I N S T A L L
O B J E C T P Y ;

E N D S E R I A L B L O C K A T " B 3 " ;

S E R I A L B L O C K A T " B 4 " ;
P E R F O R M C O P Y

O B J E C T P Y
S E R V E R " G 2 " ;

P E R F O R M I N S T A L L
O B J E C T P Y ;

E N D S E R I A L B L O C K A T " B 4 " ;

E N D C O N C U R R E N T B L O C K U S I N G " G 2 " ;
E N D S E R I A L B L O C K U S I N G " H Q " ;

E N D C O N C U R R E N T B L O C K U S I N G " H Q " ;
C O N C U R R E N T T R A N S A C T I O N U S I N G " H G " ;

C O N C U R R E N T B L O C K U S I N G " G 1 " ;
S E R I A L B L O C K A T " B 1 " ;

P E R F O R M A C T I V A T E
O B J E C T P Y ;

E N D S E R I A L B L O C K A T " B 1 " ;
S E R I A L B L O C K A T " B 2 " ;

P E R F O R M A C T I V A T E

O B J E C T P Y ;
E N D S E R I A L B L O C K A T " 8 2 " ;

E N D C O N C U R R E N T B L O C K U S I N G " G 1 " ;
C O N C U R R E N T B L O C K U S I N G " G 2 " ;

S E R I A L B L O C K A T " B 3 " ;
P E R F O R M A C T I V A T E

O B J E C T P Y ;
E N D S E R I A L B L O C K A T " B 3 " ;
S E R I A L B L O C K A T " B 4 " ;

P E R F O R M A C T I V A T E
O B J E C T P Y ;

E N D S E R I A L B L O C K A T " B 4 " ;

E N D C O N C U R R E N T B L O C K U S I N G " G 2 " ;

E N D C O N C U R R E N T T R A N S A C T I O N U S I N G " H G " ;

E N D S E R I A L B L O C K U S I N G " H Q " ;

SYREAL Program-The Excc uL\blc

Digital Tcchni..:al Journal Vol . 7 No. 2 1 99S

is aimed at a n ind ividual system. An AT block
may contain one or more PERFO RJ\11. sr::ttcmcnts,
which perform the action cal led for. The second exe­
cu ta ble l i ne i n figure 3 , i e . , SERJAL B LOCK AT

" H Q"; , G11 1s tor the fetch transition on the object PY.

This action res u l ts in execution of the command
@RLZ$SCRJ PTS: R.LZ$FETC H on H Q to fetch the
distribution kit ti les tl·om the software l ibrary.

A transaction is si mply a block that enforces the r�lll l t
action O N E RROR ROLLBAC K. Nested operations
must com plete su ccessfu l l y or a l l w i l l roll back.
A transaction may be seria l or concurrent and may
cont a i n nested blocks that are seria l or concur rent.
It may not conta in a nested transactio n .

Deployment Processing Control poi nt and target
servers are implemented on each Open VMS system i n
the nerwork b y a s ingle server daemon ca l led t h e rea l ­
ization server (RLZ) . On receipt of the SYREAL pro­
gram, the ti rst daemon , which is on H Q, converts the
program to a binary represen tation on d isk . This dara
ti le mi rrors the nesting structu re of the text ti le but
al lows t(>r storage of additional state inr(>rmati on.

The daemon then executes the program by sendi ng
the binary version of each block that is cu rrently e l igi­
ble t()l ' execution to the b lock's designated control
poi nt. F:�ch control point that receives a bin:�ry bl ock
repeats this process, u nti l an AT block arrives at its des­
ignated comroi point. The control poi nt then sends
to the target system's d aemon a request to perform
the action. The target daemon creates a process to exe­
cute the PERFORM com mand, captu res comp letion
status when the process ex its, and retu rns the status
to the control point . If the perform action is su ccess ­
fu l , the con trol poi nt sends the next pert()rl1l request.
I f the perform action ta i l s, the control poi nt decides
whether to send the next pertorm request, to suspend
processing unti l a n operator can in terve ne, or to i n iti­
ate a rol lback. This deci sion depends on the bult
action i n cfkct.

The RLZ daemon maintains process ing state on
disk to al low recove ry from system fai l ures, loss of net­
work con nectivity, and other tra nsient calami ties. As
block processing completes, block stJtus i s rol l ed u p to
its conta in ing block, whether local or on a remote
control poi nt . The state of the block changes to retlect
the block's i nterpretation of the stJtcs of its nested
blocks. i\t each l evel, tl1e control poi n t decides i f, as
a resu lt of stJtus reports, one or more Jd d i tional
blocks should be executed . Ul timately, the central
control poi nt at HQ wil l h ave received the status of
Jl i operati ons. l f a l l the perform actions compl eted
su ccessfu l l y, as determined by the fw lt �lctions spe­
cified, the deployment completes successfu l ly. O ther­
wise, the d e ployment fai l s . Com pletion tri ggers
execu tion of a PCM update script.

PCM Update The overa l l status of a Project Gabriel
real i zation is an interpretation of the resu l ts of many
i ndividual operations, some governed by fa u l t actions
d iffe rent fl·om those of the others. Because CGN

dynamica l l y generates the block stru cture of a rea l iza­
tion program, the structu re has no d irect cou nterpart
in the PCM . Therefore, only the res u l ts of individual
perform actions an.: of i n terest for updating the PCM.

The u pd ate program examines the completion status
of each perform action compl eted on each object on
each target syste m . The program updates the corre­
sponding objects in the PCM based on the resu l ts of
the l ast action com pleted on each object.

Note that since object and transition definitions arc
specific to a part icu lar SYR_EAL program, realization
servers are not l imited to the object classes that Project
Gabriel's CGN and PCM upd ate hand l e . App l i cations
can be written to perform other ki nds of operations
with n ew object c lasses, transitions, etc .

Realization Block Diagram figure 4 illustrates the
complete processing that the RLZ servers carry out
in response to the example SYREAL program in the
case w here no fa u l ts occur. Events flow from left to
right. The outermost block contains a l l the events of
interest except PCM u pdate, which is impl ic it i n evcrv
SYREA.L program and carried out automatica l ly by the
RLZ server at the root of a deployment operation .

The fi rst action to be e xecuted within the outermost
block is fetc hing PY from the l i brary to stagi n g storage
on HQ, under the control of H Q . Subseq uently, H Q

con trols concu rre nt operations to copy P Y from HQ
to both GI and G 2 . When the copy actjon is com ­
pl eted on either G l or G2, HQ transfers the next
block to the respective con trol poi nt to perform the
copy and i nsta l l actions on its two targets. For
i nstance, the concu rrent block usi ng G l executes the
copy action to B l and then the insta l l action on B l ,
while the same sequence e xecu tes on B 2 . Processi ng
of these concu rrent seq uences synch ronizes on G l
when both complete . i\t that time, the status of the
enti re concurrent b lock using G l roil s up to HQ,

where processing w i l l again synchronize w i t h t h e con­
current block using G2 .

H Q a lso executes the concurrent transaction . This
e xecution Hows s imi l arly to the preceding concurre nt
block execution except that s ince no action needs to
be taken on G l or G2 before proceeding to act on B l ,
B 2 , B 3 , and B4, the serial b loc ks at G 1 and G2 arc
unnecessary.

Fau lt Handl ing In the deployment example, the fa u lt
action represented by the command ON ERRO R

SUSPEND governs the steps prior to the transaction .
This means that, if an action tai ls , no dependent action

Digital TcchniL.li journal Vol . 7 N o . 2 199S 67

0
c:
3
"'

S E R I A L BLOCK U S I N G "HQ"

CONC U R R ENT BLOCK USING "HQ"

SERIAL BLOCK USING "HQ"

CONCU R RENT BLOCK U S I NG "G 1 "

SER IAL BLOCK AT " B 1 "

AT B 1 : AT B 1 :

S E R I A L _.. COPY PY f---- INSTALL

J:z
BLOCK FROM G 1 py
AT "G 1 "

-- r-
SER IAL BLOCK AT "B2" AT G 1 :

COPY PY
FROM HQ AT B2: AT B2:

_.. COPY PY r--- I NSTALL
FROM G1 py

SERIAL
BLOCK
AT "HQ"

r-
AT HQ:
FETCH SERIAL BLOCK USING "HQ"

PY
CON CURRENT BLOCK USING "G2"

SERIAL BLOCK AT "B3"

AT B3 AT B3:

SERIAL f-. COPY PY f----- I N STALL

BLOCK FROM G2 py
AT "G2" G2:

-- - (SYNCH)
AT G2: SER IAL BLOCK AT "B4"
COPY PY
FROM HQ AT B4 AT B4:

_.. COPY PY f---- INSTALL
FROM G2 PY

Figure 4
Rcalizarion Block Diagrc1 m

CO N C U R RENT TRANSACTION U S I N G "HQ"

CONCURRENT BLOCK USING "G 1 "

SE RIAL BLOCK A T "B1 "

AT B 1 .
ACTIVATE

R
py

SER I AL BLOCK AT "B2"
)

AT B2
ACTIVATE

1\ PY

�Q 1s��c1 HQ:

,.... UPDATE

IF
CH)

PCM

CONC U R R ENT BLOCK USING "G2"

v SERIAL BLOCK AT "B3"

AT B3
ACTIVATE
py

G2: G2:
(CONTROL) (SYNCH)

S E R I AL BLOCK AT "B4"

AT B4:
ACTIVATE
PY

wi l l be performed . I nstead, an event message w i l l be
sent up the con trol tree to HQ. An operator can detect
this cond i tion (e i ther as a res u l t of the event message
or during a period ic status c heck), i n tervene to correct
the prob l em , and restart the action that tai l ed . For
example, if the copy action of PY to B l from G l fai ls ,
the tirst serial b lock at B l wi l l be suspended and the
action to i nsta l l PY on B l wil l. not be performed . (The
i nsta l l action tal lows the copy action i n a seria l block
because i t is dependent upon successfu l completion of
the copy action .) The b locks in the fi rst part of the
deployment, i . e . , the seria l b l oc k at B2 and the concur­
rent block usi ng G2, cont i n u e to execute, however.
No processing w i l l go beyond the first HQ sync hro ­

nization poin t u nt i l the fa u l t is corrected and the seria l
b.lock at B 1 com pletes . I f t h e problem can not b e cor­
rected, the deployment can be stopped and replanned,
perhaps excluding t he node that fai led .

I f one of the actions i n the concurrent transaction
tai ls, no additional actions within the transaction w i l l
b e started a n d a n y that com pleted , i nc luding t h e tai led
one, wi l l be rol led back . Each transition may have an
associated ROLLBACK command. The rol l back of
an action consists of executing i ts ROLLBACK com­
mand. (This command is not shown i n the SYREAL
sample .) In this case, the ROLLBACK command deac­
tivates PY. If the transaction has more activations, any
that start betore the fai l u re is detected are rol led back
in the reverse order of executio n . The RLZ server
effecti ve ly r u ns the transaction in reverse, from the
poi n t at which the f

.
1 i l u re was detected, executing

the ROLLBACK command for each <lCt ion that had
completed. To accompl ish this, each control point
that detects a bi lure within a transaction or rece ives
a roll back req uest ti-om one of i ts su bord i nate control
poi nts in i tiates a rol l back in a l l the parts of the trans­
action u nder its control . At the same time, the control
poi nt sends a rol l back req uest to i ts con trol point . This
process contin ues unt i l the rol l back request reaches
the control poin t that controls the oute rmost block of
the transaction .

A Note about Testing

Consider the chal lenge of testi ng a deployment sys­
tem designed to operate over h u n d reds or thousands
of syste ms. The PCM and CGN components arc
centra l i zed, so loJd testing and boundary testing
are relatively straightforward . E xecu ti ng d eployme n t
operations is an i n herently d istri bu ted process,
however, with one RLZ server per host. The team
designed the RLZ server to isolate a l l i ts data, e .g. , net­
work object n�une, log ti les, d eployment program state
data, and com mand proced u res, based on the name
given the server process. This desi gn e nabled the team
to r u n as many copies of the server on a s ingle system

as the system's resources a l lowed-one VAXstation
4000 system was able to run more than 2 5 0 si m u l ta­
neous servers-and to execu te d u m my com mand pro­
cedures. Such a design a l l owed the team to test
e l aborate s imu lated deployments <md forced it to
design the server to deal with a n u m ber of u n usual
resource shortages.

Project Gabrie l 's performance data ind icated that
the overhead of the RLZ server was relatively insignifi­
cant when compared with that of the actions per­
formed by means of command proced ures. This datJ
supported the team's belief that the system wou ld be
scalable: A target system that has the resources to sup­
port relatively resource-in tensive actions l i ke soft\V�l re
i nstallations can support one IU,Z server to a u tomate
the i nstal lations.

Conclusions

This paper does not cover topics such as the com­
plex ru les regardi ng the suspension/resu m ption and
restart of operations, lost server ti me-outs, a nd i nterim
status u pdates . Also, the PCM data is considerably
more complex than the d iscussion indicates, as is the
asynchronous processing im plemented in the RLZ
server and the logic of CGN .

A great d ea l of detai l has been omitted i n order
to focus on the usefu lness of a particular collection

of abstractions i n solving a d i ffi c u l t p roblem . The
en tity model a nd the configuration ma nagement
model he lped to define, parti t ion, and com m u n icate
abou t the problem. The distri bu tion model ti-om
the POLYCENTER Software Distri bu tion advanced
development work provided essential i deas that the
other models d id not . These i nte l l ectual assets were
instrumental in fu l fi l l ing the customer's requirements.
In "What Good are Models, a nd vVhat Models arc
Good) " Fred B. Schneider asserts: " Distri buted svs­
tems are hard to design because we lack i ntuition tor
them . "6 By form u lating and anal yzing an abstract
model , we can develop such i ntu ition , b u t it is a slow
process. I t is easy to underesti mate both i ts d iffic u l ty
and i ts val u e .

T h e model of distributed process control developed
for Project Gabriel has p roven usefu l and versati l e . I t
could b e profi tably appl ied t o t h e design o f a process
control service tor d istri bu ted object tech nology, such
as the O bject Management Group's Common Object
Requ est Broker Arc h i tecture (CORBA) 7 In such a
design, i nstead of exec u ting a com mand proced ure to
perform an action, a process control daemon would
i nvoke a CORBA request on an object. Programs
become nested col lections of requests with associated
state . I mp roving d istri buted object and object­
oriented database technology should make poss ib le

Digital Tc.:hniol journa l Vol . 7 No. 2 l lJ95 69

70

fu l ler real i zation of the PCM and a more powerri.t l
CGN. The work accomplished i n Project Gabriel j ust
scratched the surface .

Summary

By applying relatively wel l -developed conceptual
models for network and system management, Project
Ga briel successful ly impl emented automated software
deployment in a large commercial network. The resu l t
i s a scalable, d istri bu ted system managemellt applica­
tion that can be used to solve a variety of complex
d istri buted system management problems.

Acknowledgments

The fol lowi ng ind ividuals contri buted d i rect ly to the
design and i mplementation of the Project Gabriel soft­
w:�re : Ceci le Beyh, Hugo Diaz, G i l l H:t ik, Paul Kelsey,
Mic hel Lazarescu , John Lu ndgre n , Pat M add e n ,
M a r y Mal ing, Keith Noddle, Laura Spink, S o n Voba,
David Wihl, and M ichael Young.

References

l . lr!lormation Technolog,y-Data Con!li l l l i l iuttiuus­

X. -5 Packet rarer Protocol for Data f('nnimtl

Equ ipment. ISO/I F.C 8 2 08 : 1 99 0 (Gene\'a : I nterm
tiona! Organization ror Standardi zation/I nternarion,l l
Electrotechnical Com miss ion , 1 990) .

2 . Interface betu,een Data Terminal Equipment and
Data Circu it-terminatin,� Equipnu.:nt.fc!r Teml ina!s
Operating in the Puc/Jet j\lfode and Cr! l l i /Cctcd tu
Public Data .Vet/l'orlcs br Dedicoted Circu its--Data
Communication Netu,urks: Sen ·icC's ar;d Facilil ics.

!nteifaces, Recommend ation X . 2 5 - 89 (Gene\'a :
I nternational Te k:commun icarions Union, Comitc
Consul rarif I n ternarionale de Te!egra p h i q u e et Tcle­
phon ique [CCI1T] , 1 989) .

3 . M . Sylor, " Mana�ing DECnct Phase V : The Entity
Model," IE:.EE Netu·orks (March 1 9 8 8) : 30-36.

4. Configuration Mtmctgement Pmcticcs./(1r SJ•stcii/S.
l:'quiprnent. /V/un itions, and Computer Pm.�mms.
M I L -STD- 48A (W,,sh ington, D . C . : D epartment ofthc
United States Air Force, June 4, 1 9 8 5) .

5 . J . Ru mbaugh , et a l . , Ohject-Oriented Modeling ond
Design (Englewood C l i ffs, N .J . : Prentice - H a l l I nter­
national , 199 1) : 457.

6. F. Sch neider, "What Good are Models and v\lhat
Models are Good ' " Distributed SJ•stems. 2 d c d . ,
S . Mullendcr, ed . (�ew York : ACM Press, 1 9 9 3) 1 7-26 .

7 . Common Ohjcct Request Bruker A rchitectu re

Specifiwtion, d raft 2 9 , revision 1 . 2 (Fram i ngham ,

Mass . : Object Management Grou p , Docu ment No.
9 3 - 1 2-43, December 1993) .

Digir�l Tec hn ical Journal Vol . 7 N o . 2 1 99 5

Biography

Owen H . Tallman
Currently employed by NcrLinks Tcchnolos•v, I n c . ,
of �ashua, Ne\\' H cm1psh ire , Owen Ta ll nun worked
at Digital Equ ipment Corporation ti·01n I 9 8 3 through
1 994. As a principa l sotiware cng:i n c e r in the]\;crworkcd
S\'stems 1Ybn:1gemenr Engineering g;roup, he led ProJeCt
Gabriel. He ,,·as J nunageme n t infim11ation architect
in the Enterprise M an:1gement Architecture g:roup and
helped deve lop the POLYCENTER Soli \\'are Distribution
product (tcmnerly known as the Remote Sysrcm J\tb nager
[RSlvrj product) . Owen holds a B .A. in computer science
rrom Regenrs College in Albany, Nell' York, ,md is coauthor
of two pending patents on RSM tech nolog:1·. He is a mem­
ber o F AC:L'v\ .

Referees, March 1 994
to January 1 995

The editors <Kknowledge and thank the reterccs
who have participated in a peer review of the papers
su bmi tted for publ ication in the Digital TC!chniwf

.fuurnctl. The referees' detai led reports have hel ped
ensure that papers published in the Journal offer
re levant and informative d iscussions of computer
technologies and products. The referees are computer
science and engineering professionals from academia
and industry, i ncluding Digita l 's consu lting engi neers.

Alan Abrahams, Oip,ital
Brian Al l ison , f)fp,itul

Marco Annararone, Dip,ital

Nader lhghcrzadeh , Un iuersily of Cultjin·nia, fruine

Kenneth Bares, [)ip,i!al

Edward Benson, Of.r<ilal

Thom;Js fknson, Digital

Di lcep B handarkar, Dip,ilal

David L. B l ack, Open Su}iluctre Foundation

Ken neth M . Brown, Dip, i!al

vVayne Cardoza, nigital

Danie l Cobb, n(t;ital

Seth Cohen, [)if.iilal

Will iam V. Cou rtrigh t I I , Carnegie Mellon University

Ne i l Davies, D4!!,ilal

Scott H . Davis, Digital

Wol fgang De i ters, Fraunhofer Institute

Hans de long, Dt;r<ita/

Alexis Del is , Q/.tl:enslcmd Unitxrsily ofTecbrwlu:.!.)'

Jeremy Dion, D(� ilct!

Leonard Fehskcns, Dip,itctl

John Forecast, Digital

Tryg!:,>ve Fossum, Digital

Derek Frankt(Jrth , Forte Sojtware

Les G<Jsscr, Uniwrsily of Southern California

J im Gray
Robert Gr ies , Digital

/ames Grochma l , Digital

Will ian1 Grund mann, Digital

Robert Halstead , Digital

Charles H a m m.ond, Diftital

Mark Heinrich, Stanjbrd Uniuersitv
Daniel H i rsch berg, University of Cct!ij(;rnia, lruine

Paul H u nrwork, Dip,ital

M ichael Kantrowitz, D(r.;ital
Brian Keane, Dti;ittt!
Lawrence Kenah, Dig ital

I

Jdli-ey S. Kusk.i n , .')tau(ord l 'll il!ersil y

Wil l iam Laing, D(r<ital

Edward Lee, D(�i!Cll

M ic hael Leis, Dl;r.; itcll

Debra Lelewer, CctlijiJrniu State Polytechn ic University

Daniel E . Lenoski, Si/iwu Crctph ics Computer S}·stems

Thomas Levergood , Op!!n ;'v!arket, Inc.

Saul Levy, Ru(�ers Uuiuersity

Woody Lichtenste i n , Silicon Graphics, Inc.

Peter Lucas, t1-L4 rA Des(�n Croup, Inc.
Christopher Marsha l l , f)igilul

Barry A. Maskas, D(�ilCII

John McDermott, D(� itctl

Wil l iam M ic halson, \Vi>nesler Pol)'lechnic Institute

J . Eliot B . Moss, Ullll 'eloit)' o{Massuchu.selts

Rishiyur S . N i k h i l , Oigital

M . Tamer Ozsu, Ull il 'er-sit) ' cjAiherta

David Patterson, Un iuersity c�fCulljcmlict, Berkc!t:r

Andrew Pavne, Open :vlarket. Inc.

lvlary Payne, Di,r.;ital
Stephen Root, U(f!,itct!
Robert Rowlands, Dig iwl

Howard Rubin, Hwtler Co!lege

Paul R.ubinkld , Digital

Kenneth Salem, Uniuersily o(Waterloo

Wil l Sherwood , Digital

Al len Simons, Dig ital

Arun Somani, Uniuen·fly cj" Washington

Thomas Speer, Digital
Lawrence C. Stewart, Open i'vfarket. Inc.

Jan re Kiefre, Digi/({/
David Thie l , Dig ila!
Peng Tu , Un iuersity u{!llinois

David Wecker, Digital

Lih Weng, Digital

Robert Willard, Ui,r<ital
Richard Witek, Digital
Larry D . Wirric, Stair' Un iwrsity ofNetu York,

Sto11y Brook

Bruce L. Worthington , Uniuersity ofMichigan

Digital Technical]ourn;1l Vol . 7 No. I 1 995 7 1

72

Fu rther Readings

The D�r_; ital Tech nical jou rnct! is a rdcrecd , quarterly
publ ication of papers that explore the foundations of
Digita l 's products and technologies. jou rnal content
is selected by the Jound Advisory Board , �1nd papers
�1re \l'ritten by Digita l 's engineers and engineering
partners. Engineers who wou ld l ike to contri bute
a paper to the jou mol shou ld contact rbe ManJging
Editor, Jane B lake, at RDVAX: :B LAKE or
blakc@rdvax .cncr.dcc.com .

Topics covered in prc,·ious issues of the Dip,ilaf

7ech n icaljou rnul �1 re <lS �a l l ows:

Database Integration, Alpha Servers & Works tations/

Al pha 2 1 1 64 CPU
Vol . 7, No. I , 1 99 5 , EY-T l 35 E.-TJ

RAID Array Contro l lers/Workflow Models/PC LAN
and System Management Tools
Vo l . 6, �o. 4, Fa l l 1 994, 1-:Y-Tl i S F.-TJ

AlphaServer Multiprocessing Systems/DEC OSF / 1
Symmetric M u l tiprocessing/Scientific Computing
Optimization for Alpha

Vol. 6, No. 3, S u m me r 1 994, EY-S799E-TJ

Alpha AXP Partners-Cray, Raytheon,
Kubota/DECchip 2 1 07 1 /2 1072 PCI Chip Sets/
D LT2000 Tape Drive
Vol . 6, No. 2 , Spring 1 994, EY-F947E-T]

High-performance Networking/Open VMS A.XP
System Software/ Alpha A.XP PC Hardware
Vol . 6, No. l , Winrer 1 994, F.Y-QO l l E-TJ

Software Process and Quality
Vol . 5, No. 4 , FJI \ 1 99 3 , EY- P920E-DP

Product Internationalization
Vol . 5, No. 3 , S u m mer 1 99 3 , EY- P986E- IW

Multimedia/ Application Control
Vo l . 5, No . 2 , Spring 1 993, EY- P963E- D l'

DECnet Open Networki ng
Vol . 5, No. l , W i nrcr 1 99 3 , EY-M770E-DI'

Al pha A.XP Architecture and Systems
Vol . 4, No. 4, Spn:i�1l lssuc 1 992, F.Y-J886E-D P

NV AX-m icroprocessor VAX Systems
Vo l . 4, No . 3, S u m me r 1 992, EY-) 8R4E- D P

Semiconductor Techno logies
Vol . 4, No. 2 , Spring I 992 , EY- L52 1 E-DP

Digir:li Technical)oumal Vol . 7 �o I 1 095

I

PATHWORKS: PC Integration Software
Vol . 4, No. I , Winrer 1 992, EY-)825E- D P

Image Processing, Video Terminals, and Printer
Techn ologies
Vol . 3 , No. 4, rai l 1 99 1 , EY-H889E- D P

Avai labil ity i n VAXcl uster Systems/Ner.vork
Performance and Adapters
Vol . 3, No. 3 , Su m m er 1 99 1 , EY- H!\901'. D P

Fiber Distributed Data Interface
Vol . 3, No. 2, Spring 1 99 1 , EY-H876E-DP

Tnnsaction Processing, Databases, and Fault-tolerant
Systems
Vol . 3, No. I , Winrcr 1 99 1 , F.Y- F5R8 I-: - I W

VAX 9000 Series
Vol . 2, No. 4, F,1 \ l l 990, EY-E762E · D P

DECwindows Program
Vol . 2, No. 3, S u m mer 1 990, EY-E756E- IW

VAX 6000 Model 400 System
Vol . 2, No. 2 , Spring 1 990, EY-C l 97 E- 1W

Compound Document Architecture
Vo l . 2, No. 1 , Winter 1 990, EY-C 1 96 F-D I'

Distributed Systems
Vol . I , No. 9 , J u n e 1 989, EY-C l 79 E- D P

Stmage Technology
Vol. l , No. 8, FebruJry 1 91\ 9 , EY-C l 66E-Dl'

CVAX- based Systems
Vol . I , No. 7, t\ugust 1 9 8 8 , I-:Y-6742 E - D P

Software Productivity Tools
Vol . 1 , No. 6, Februarv 1 91\ 8 , EY-82591-'. - l.W

VAXcluster Systems
Vo l . I , No. S, Scprcmbcr 1 9 87, EY- 8 2 5 8 1'. DP

VAX 8800 Family
Vol . l , No. 4, hbnury 1 987, EY-67 1 1 E-D P

Networkin g Products
Vol . I , No. 3, Scpre mbcr 1 9 86, F.Y-67 I 5 E- IW

M icro VA,'{ II System
Vol . l , No. 2 , 1'vbrch 1 9 86, EY- 3474!-'- D P

VAX 8600 Processor
Vol . I , No. ! , August 1985 , F.Y-343 5 E- IW

Subscriptions and Back Issues

Subscriptions ro the Df.r<ital Technicaljournctl are <lVai l­
,,blc on a prepaid basis. The su bscription rare is $40.00

(non- U.S. $60.00) rclr fou r issues .md $75 .00 (non- U.S .

$ 1 1 5 . 00) for eight issues. Orders should be sent ro Carlw
Phi l l ips, Digital Eq ui pment Corporation, 30 Porter Road
LJ 02/ D I O , Littleton, NLlssach usens 0 1 460, U .S .A . ,

Telephone (5 08) 486-2 5 38, F a x : (5 0 8) 486- 2444 .

I n q u i ries can be sent electronically to drj@d i giral .com.
Subscriptions must be paid i n U .S . dol lars, and checks
should be made pav:�blc ro Digital Equipment Corporation.

Si ngle copies <lnd past issues of the Oigitul Tech n ical

Jou rrwl are a,·aibble fclr $ 1 6 .00 each by ca l l ing DECdirecr
ar 1 - 800-DIG ITAL (I - 800-344-4825) . Recent back
issues ofrhe ./Ot./I TWi are available on rhc I n ternet at
http:/ jwww. digit<l l . cornjinto/DTJ/hom c . h rm l .

Dig ital Research Laboratory Reports

Reports publis l1<:d by Digita l 's research laboratories
can be accessed on rhc I nternet through the World
Wide Web or rTI'. For access i n tonn;uion on rhe
electronic or hard-copy versions ofrhe reports, see
http:/ /www. rcsc;m.:h .digira l . com/horne.html .

Techn ical Papers by Dig ita l Authors

N . Arora, R . I�os, ;md C. H uang, "Modeling the Polysi l icon
Depletion E ffect and I rs I mpact on Subm ic ron CMOS

Circu i t Ped(lrm:�ncc," !/:"leE Transactions on Electron
l)euices (M av 1 99 5) .

D . Bha,·sar ;md R. Fromm, "Tesrabi l itv features and
Tcstabil i t)' Acn:ss of rhe Alpha 2 I I 64 Microprocessor,"
Proceedi11gs o/the lf;J;'t 1995 C'ustom integrated

Circu its Conji:re11ce (Ma y 1 995) .

W. Bowh i l l er a l . , "A 300MHz 64b Qu�d- lssue Ov!OS

RISC M icroprocessor," 1995 11:'1-.L Iuter national Solid­
State Cirw its Couji:reuce (Februarv I 995) .

J . Chen, "Clocking PLL Solutions for H igh Speed
Computers," 1 99 5 International Symposium on VLS!
Technology, Systems, and Applications (June 1 995) .

T. Dalton, " Plasmcl Diagnostics: Monitoring and Control
of Plasma Tools," A merican Vacuum Societv New
England Chapter 1995 A nnual Swnposi1 1 1n (J u ne 1 995) .

lvl. Davidson <l l ld N. Sul l i ,.,,n, "Monte Carlo S imu lation
For CD SEM Algori t h m Devel opment," Proceedings of
the Society of l'hoto-Optical !nsf m mentation Engineers

(SPIE)-!ntegrated Circuit J111etrologv. !mpection, a nd
Process Con/rot tX (Fcbruary 1 99 5) .

M . Elbert a n d R . Howe, "Stress Testing Profi les-Which
Should I Usc," 'Jb it1l '-fhird Ann ual Spring IEEE !?eluliu­

ity Symposium (Apri l 1 99 5) .

T. Hongsm�rip a n d B . Twombly, "Dyn;Hnic Mechanical
Ana i)'Sis ofSi lvcr/Gbss Die Amch Materia l ," fot1y-Jijiy
F:lec!ronic Compu u(!nfs and Tech nology Conference
(Mav 1 99 5)

C. Huang, N. Arora, N . Khal i l , B . Zetterlu n d , a n d L. Bair,
" Effects of Sou rce/Drain Implants on Short-Channel
MOSFET I -V and C-V C h aracteristi cs," lt'E.E Trcmsactions
on Elect rem Deuices (J uly 1 995) .

J . [(j rc hin, "Statistical Electromigrarion Bud gering for
Rel i able Design and Verification in a 300-MHz Micropro­
cessor," .7995 S�·mposium on VLSI Cirw ils Digest ()(
Technical Papers (J u ne 1 99 5) .

B . Mirman, "Translation of Srrcs� Stares in to Reliabil ity
Terms tor Single C h i p Ceramic PJckagcs," Transac­

tions of Th(! American Society of/Vlecha nical Eng i­
neers (ASMEJ -jo u rnal ofE!ectron ic Packag ing

(Decembc1· 1 994) .

A . P h i l ipossi:m and H . Soleimani , " Determining the
Wafer Te mperature in Atmospheric Thermal Silicon
Oxidation Reactors," Journal of/he Elect rochemica/
Society (Mav 1 99 5) .

P. Rubinfeld,] . Edmondson, R . Preston, and V. Rajagopabn
"Superscaler I nstruction Execution in rhe 2 1 1 64 AJ pha
Mic roprocessor," IEEE Micro (April 1 995) .

N . Sul livan and S . Arsenault, "SEM Review ofUnpatterncd
Partic le Monitor Wafers," Proceedin,qs of the Society
of Pboto-Opt iuil !ns/rumentation t·n�ineers (SPI!D­
Intep,rated Circuit Nletrolop,y, inspection . and Process
Control IX (february 1 995) .

M . Tsuk a n d R . Evans, ''Model ing ancl Measurement
of a High- Ped(Jrmance Computer Power Distribution
System," 1/ :L'h' Ti·ansactions on Components, Packaging,

and i'vlcmuj{tct t.m'rt,q Technologv (Novcmbcr 1 994) .

E . v,,lcarcc and G. Hogland, "The ESS ENSE of l ntrusion
Detection: A Knowledge-Based Approach to Security Mon i­
toring and Control," Seventh international Confereltce
on induslritt! and h-ll8ineerin,� /ippliwtions ojA rt!ficial
Intelligence and l::xpert Systents (/l:/V/1/E) (June 1994) .

A . Vi l lani a n d W. Clark, "Ceramic Strength a n d Wei b u l l
Statistics Variation a s a Fu nction o f Sample Size," Pro­
ceedings of the lll ternafiona/ lntersocietr Electronic
Packap ,i11p, Co uji'l'ence (fn tetpak 95) (March 1 995) .

R . Wa lsh :111d C . Ozveren, "The Gigaswitch Control
Processor," lh'tt' Network (January 1 99 5) .

A . Westerhei m, A . La bun, I . Du bas h, J . Arnold , H . Swai n,
and V. Yu-Wang, "Su bstrate Bias Efrecrs in High -Aspect­
Ratio Si 02 Contact Etching Using an ICP Reactor,"
jou rnal o/ Vacu u rn Science and Technolog)'
A-Vacuum, Stnj'aces, and Films (J une 1995) .

Digital Press

Digital Press, rhe au thorized publ isher for Digital
E q u ip ment Corporation, is an imprint of B u ttenvort h ­
Hcinemann, J major internarion:�l publ isher o f profCs­
sionaJ books and a member of rhe Reed Elsevier group.
The fol lowing arc descriptions of computing titles avai l ­
able from Digital Press.

Digiral Tcc hnicol)oum.1l Vol . 7 No. I 1 995 73

74

THE SQL SERVER HANDBOOK-A Guide to
Microsoft Database Computing

Ken England and Nigel Stanley, October 1 995, paperback,
450 pages, I S B N 1 - 5 5 5 5 8 - 1 52-8 ($34.95) , EY-T8 1 8 1::: - D P.

Microsoft SQL Server for 'vVindows NT is fast becoming
the database server of choice for the Windows NT operat­
ing system . The latest release of M icrosoft SQL Server,
Version 6.0, is a sophisticated database server with a wealth
of new capabi lities i nc luding powerfi.i l graph ic1l adminis­
tration of distri buted servers, data replication across the
network, and many new performa nce tuning, administra ­
tion , and d a ta i ntegrity options. SQL Server 6.0 wil l have
a significant imp<lCt on the d;HJb<lse ind ustry.

n1e SQL Semer !-!andbook-,-1 Gu ide to Micrusuji
Database Cum pUling is essential f{Jr anyone i nvolved
in the procuremem, training, design, ad min istration,
implemenr.nion, and tu n ing ofSQL Server 6.0 d<Ha b:�ses.
Drawing on the a uthors' sign i ficanr pr;Jctical experience
with relation:�l database m<magemem systems, this book
covers a l l rhe major topics necessary to gain a good under­
standing o f rhe SQL Server, i ncluding rbe new katures
in SQL Server 6.0. The book also provides i n formation
on many other products i n the: Microsoft database bmily,
such as the Microsoft Access Upsizing Tool , M icrosoft
ODBC, and the Jet database engine.

DarabJse designers, ad min istrators, program mers, and
newcomers ro Microsoft SQL Server wi l l tind rhis book
an ind ispensable re ference for und erstanding and u ti l izing
rhe product. Database protessionJis studying tor Microsoft
Certified Professional qua l i fications wi l l also fi nd this book
essential n:ading.

Ken England is Chief Executive of D3tabase Tec hnologies
Lim ited, a company special izing in database consulting,
prod uct evaluation, and tra in ing . N igel Stanley, formerly
at M icrosoft as Eu ropean Prod uct Manager, responsible f{>r
rhe Microsoft client server products, is now tec hn ical d irec­
tor tor JCS Solu tions Lrd . , a Microsoft sol ution provider.

ADVANCED ETHERNET/802.3 MANAGEMENT
AND PERFORMANCE, Second Edition

Bi l l H a ncock, October 1995, paperback, 400 pages,
ISBN 1 - 55558 - 1 44-7 ($ 34.95) , EY-Tl40E-D P.

Advanced Ethernet/802.3 Management and Peljcrr­
mcmce, Second Edit inn was designed For users of rhe
Erhernet/802 . 3 LAN-environrncnr hardware and soft­
ware to answer the myriad questions that come up after
a network is instal led. The book add resses q uestions such
as, when do you use bridges and routers to isolate rraftic>
what are swi tch ing bridges and why are they necessary'
what are the rules for u nsh ielded nvisred-pair nenvorks'
how do you know when rhe performance of rhe n e rvmrk
i s suffering, and bow do you collect data to prove ir? what
i s " he,1rtbear," and how is i r ser' The book also con rains
information on many orher topics essential to the day-to­
day managemenr and control of rhe LA)\;. This second
edition includes i n formation on the new Fasr Ethernet
(l OOBASE -T) stand ard , the new 802.3 fiber standards, the
use of switch ing bridges to improw performance through
rraftic isolation, ;md how to clearly identifY proper serrings
of"heartbear ."

Digital T�d111 ical Jo urnal VoL 7 No. l 1 995

Dr. Bil l H a ncock is a wel l - known com purer and nerwork
cons u l rant, designer, and enginn:r. He has designed and
reengincered networks for many of the Fortune 1 000
as well as nu ny i nternational companies and govern ments .

ALPHA AXP ARCHITECTURE REFERENCE

MANUAL, Second Edition
Richard Sires and Richard Witek, September 1 99 5 ,

pape rback, 864 pages, I S B N 1 - 5 5 5 5 8 - 1 4 5 - 5 ($49 .95) ,
EY-1' 1 32 1:::- D P.

Written by rhe co-designers ofrhe Al pha archi tecture, the
Alpha AXfl A rch itecture Reference t'v!unuul, Sewnd
Edit/Oi l i s a major revision ofrhc tirsr edition . This book
inc ludes the original material plus signiticanr new inf<>rma­

tion and changes necessitated by rhe evolution of the AJpha
architecture si nce rhe writing ofrhe tirsr edition. The
second edition discusses rhe Windows NT PALcode archi­
tecture, 1 28- bit I EEE floating-point support, and bi-endian
support, and contains revised rc:c inrormation and console
inrerf.1ce section . The sign i ficant technical changes include
the chritication ofMxx FPC:T operand and trap disable flags
and of system architecture and programming impl ications,
and the addition of CVTs·r, WM B, and EXCE i nstructions.

INFORMATION TECHNOLOGY STANDARDS:
The Quest for the Common Byte

Marrin Libicki , August 1 9 9 5 , lurdcover, 432 pages (est .) ,
I S B N J - 5 5 5 5 S - 1 3 1 -5 ($59.95) , EY-S422E-DP.

This book exam i nes i n f(xmarion rechnologv standards
and d iscusses what they arc, what they do, how they origi ­
nate, Jnd how rhey evolve. Srand;lrds arc im portallt i n
i mproving system inreropera b i l i ry and thereby increasing
economic prod uctivity, bur they Jre u n l ikely ro ach ieve
their fu l l potential d u e to a varierv of f:Jcrors. Chief Jmong
these bcrors is the po l itics of rhe standard process itse W
Libicki poims our that rhe govern ment is p robably nor
the besr source for designing <l l ld promoting standards.
He brt:<lks down many complex technica l issues and pre­
sents rhem i n a fash ion that tec hnical people can enjoy
and policy makers can u ndersr:md .

Marrin Libicki is a Senior Research Fel low ar rhe National
Defense Un iversity in W;Jshingron , D.C.

SOFTWARE IMPLEMENTATION TECHN IQUES:
Open VMS, UN IX, OS/2 and Windows NT
Don Merusi , September 1 995 , ISBN 1 -5 5 5 5 8 - I 34-8,

paperback, 608 pages ($49 .95) , l:::Y -TI 3 1 E-DP

Sojill'ure lmplementcttion Techniques.· OpenV/v/S, UNIX.
05/2 and \'(/induws NT is a comparison of tour operating
system platforms. Tl1e book provides software designers
with an i ntrod uction on how to m igrate comparable pro­
gram fu nctiona l i ty benveen the d i fferent platklrms. The
book is designed ro faci l i tate determ ining what i s required
to implement a specific operating system fu nction. The
topics covered inc lude process a n d t hread sch ed u l ing, svn­
c h roniz;ltion and concurrency prim itives, fi le management,
mem ory manage ment, performance, nenvorkmg bci l i ries,
and user interfaces.

Don Merusi has been a senior computer sysrems su pport
�pecia l isr tor 22 years. Currently, he is responsi ble fi>r
adminisn:ring large-scale PC: LAN s using PATHVVORKS,

vVi ndows for Workgroups, and Win dows NT. 1V!r. Merusi
is also an associ;lte adjunct professor at the Hanford
Grad uate Center ;md reaches courses on operating systems.

WRITING DEVJCE DRIVERS:

Tutorial and Reference

Tim Burke, Mark A. Parenti, and AI Woj t;IS, April 1 99 5 ,

p;lpcrback, 1 , 1 40 pages, I S B N 1 - 5 5 5 5 8- 1 4 1 - 2 ($ 69 .95) ,
EY-S79 6 E - D l' .

\.'(lritirl[; Device })rivers Tutorial and Neference discusses
how to write device drivers tor computer svsrems running
the D igiul U N I X operating system (t(mm:rly c:1 l led the
DEC OSf/ I opcr;Hing syste m) . Bv t(>l lowing the task­
oriented <lppro;ll:h , the reader wi l l acq uire the ski l l s neces­
sary to write OS!-'- based device drivers . The book provides
inti>rmarion on designing drivers, OS!-'-b;lsed data structures,
and OSf-based kernel i nterfaces, ;l lld contains source code
listi ngs ti:.>r the driver exclmples and a gl ossary. tvlasrery of
the concepts and exam ples presented in the book provides
a fundamental background fi>r writing a v:�riety of device
drivers, inc luding disk and rape conrrol lcrs and more spe­
cialized d rivers such :�s arn1y processors.

Tim Bu rke is a principal software engi neer, Mark A. Parenri
is a consulting software engineer, ;llld AI Woj tas is a prin­
cipal software tec hnical writer, al l at Digi tal Equipment
Corporation.

ALPHA IMPLEMENTATION AND

ARCHITECTURE

Di lccp Bha ndarbr, October 1 99 5 , papcrb:�ck , 400 pages,
ISBN I - 5 5 5 5 8 - I 30-7 ($39.95), �:¥-Tl 4 1 E-DP.

Alpha !mplemeii/Cllioll and !l rchileclure provides a com­
prehensive description of a l l nujor ;I Speers of Alpha svstems.
The book inc l udes Jn overview ohhe h isrory of !USC

dcvelopmcnr in the ..:ompu tcr ind ustry and at Digi tal,
the Alph:t arch itc<.:rurc, :ti l the major processor chips, and
system implemc ntarions. The book covers RJ SC concept
and design styles, and provides an overview of other !USC
architectures :mel descriptions ofrhc new SPARC, M I PS,
PowerPC, <llld PI\ - IUSC microprocessors introduced in
1 995 . The book ,1 lso discusses operating system porting
issues, compiler techn iques, and bin:try tr:t nsl:ttion . Pr;K­
t icing co mputer engineers and graduate students in com­
plltcr architecture wil l fi nd tl1is rdcrcncc book i nvaluable
because it describes the tr;lde-ofts and design phi losophy
that lead to the development of the Alpha architecture
and irs implemen tation .

Di lccp Blundarkar was ;J senior consu l ting engineer at
Digi tal Eq ui pment Corporati on. H <:: led the technical
d i rection Jnd prod uct strategy of Al pha Personal Systems,
Alpha and VAX Servers, and H igh Pcrt(mnJnce Comput­
ing. He was the arch itecture ma nager f(>r M icroVAX, chief
arch i tect tor VAX vector process ing, and co-architect of the
PLUSM RISC architecture on which Alpha is based. He cur­
ren tly works t(>r I n te l Corporati on.

OPENVMS SYSTEM MANAGEMENT G U ID E

Law1·encc Baldwi n, October 1 995, pape rback, 4 1 6 pages
(includes diskette) , I S B N l - 5 5 5 5 8 - 1 4 3-9 ($44 .95),

EY-T l l 9E-Dl'

This book provides ;l comprehensive description of
Open VMS system management tasks and is geared roward
showi ng systems ma nagers how to ma nage smarter by
automati ng wherever possible and being proactive rather
than reactive. Basic management proced u res are nor only
documented bur also prioritized as to what shou l d be done
and why. Specitic procedures are provided to automate or
simpl if)r system management tasks.

Lawrence lhldwin, an independent consultant, is the
President ofSysr<::m Management Tech nologies.

DESIGNING AND DEVELOPING ELECTRONIC

PERFORMANCE SUPPORT SYSTEMS

Lesley A. Brown, October 1 99 5 , paperback, 250 pages,
ISB N 1 - 5 5 5 5 8 1 39 - 0 ($29.95), EY-T l 26E-DP.

Des(�ninR and Developing Electronic Performance
Support Systems describes the EPSS concept and provides
a system� tic process for creating rhese syste ms. An EPSS

is a sofrw:1re conrext that integrates the support needed
to pcrtorm � job task-information, software, and expert
advice-wirh the actual job task or tasks. EPSSs provide this
support at the appropriare time and in the most appropri­
ate format. As corporations cut their training budgets and
realize the rclcvanc<:: of on -the-job supporr, there is grow­
ing acceptance of the EPSS as an a l ternative to classroom­
b:�sed tra in ing.

ED4 (EI'SS Ddine, Design, Develop, and Del iver) , a sys­
rematic approach to creating EPSS, is based on instructional
systems methodol ogy, and was used at Digital Equ ipment
Corporation to create an EPSS "workb<::nch" for training
consu l ranrs. This book describes ED4 and rhe process that
the insrrucrionJI d <::signers and software <::ngineers used ro
create the Learning Services Workbench. Inrerviews with
Digit:d's EPSS designers and developers showed that EPSSs
created using :1 systematic approach resul n:d i n a creative,
robust, and job-relevant software prod uct.

Lt:sley Brown is an insrructional design contractor tor
the l n form:ttion Design and Consulti n g group at Digital
Equipm<::nt Corporation .

ADVANCED WORDPERFECT USING MACRO

POWER, A Guide for VMS and DOS Users

Sharilyn Due, September 1 99 5 , paperback, 400

pages (includes a DOS version 6.0 diskette), ISBN
1 - 5 5 5 5 8 - 1 47- 1 ($ 36.9 5) , EY-T8 1 7 E-DP.

A dvanced WordPeifect Usin,r; Macro Power concen trates
on the us<:: of macros for users of any version of Word Pcrkct
in the Open VMS and DOS environments. The book helps
the Word PertCcr user save time Jnd become more pro­
d uctive through the use of macros. It covers a series of
advanced topics and d1en provides macro examp les to auto­
mate the task. Explanarions, screen captu res, and keystroke
captures give the reader an easy-to-follow, step-by-step
proced ure . After providing an example macro tor a task,
the author offers other possibi l iries tor reader-created
macros . The book covers a diverse range of applications
and includes '' thorough tr<::atment of how to create, ed it,
and debug macros.

Digital TechnkJI Journal Vol . 7 No. 1 1995 75

76

Recent Digita l
U.S. Patents

The tollowi ng parents were rccenrly issued ro Digital
Equipment Corporation. Tirles and names supplied
ro us by rhe U . S . Parent and Trademark Office are
reprod uced exact ly as they appear on rhe original
published patent.

D 3 3 5 , 5 0 1
D3 37,760

D34 1 ,826

5 , 2 08,5 1 8
5 , 2 1 0,74 1
5 , 2 1 0 ,829
5 , 2 1 0,837

5 , 2 1 2 ,788

5 , 2 1 4,553

5 , 2 1 6,556

5,220,604

5,222 , 1 97

5 , 2 2 4 , 1 06
5 , 224, 1 63

5 , 2 2 5 , 8 3 3
5 , 226,1 50

5 , 226,966

5 , 227, 778

5 , 228,083

5 ,229,575

5 , 230,044

5 , 2 3 1 , 5 5 2
5 , 2 33,6 1 6
5 , 2 3 5 , 2 1 1

R . Faranda
G . Schneider

M. J. Falkner, R. Hanson, K. Korc l l is ,
:md C. Danemaycr
H. Grapenth i n and H. Haug
R. Grochmal

H. Bi tner
C . Wiecek

D. Lomet, P. Bernstei n ,]. Johnson,
and K . vVi l ncr
K. Kan, G. S<l l iba, and R. N u te

M . Stei nberg and G. Sa l iba

M . Gasser, A . Goldste in, and
C . Kauti11an
H . Teng, K. Chen, M . vVilson,
M . Verde,·en, and G . Abbruzzese

L. Wcng
M. Gasser, A . Goldstein , C. Kaufman,

and B. Lampson
E. Fisher and P. Gilbert
D. Sanders, M. Ca l lander, and L . Chao

K. Ishibashi, H . S:.1to, and M . M al ian•

G. Visser and }. Vacon

P. Lozowick and S. Ben-Michael

D. Wal ler, L. Co le l l a , and R. Pacheco

X. Cao, A. Moh:.1n11nad , N. Quaynor,
and F. Colon -Osorio
G. Schneider and K. Pau lat
M. Callander
W. Hamburgen

Digital Technical Journal Vol 7 No. l 1 995

I

Pri nter Enc losu re
Combi ned Media Cartrid ge Loader and Associ:ned
Magaz i ne

Computer Enclos u re

DC-DC Boost Conl'er ter tix Spindle Motor Control
Low Cost I S D N S"·irch

Adj ust:�ble Thresh old for B u ffer Management
1'vlcthods c1nd Apparatus for Tra nst(xm i n g Machine
Language Program Control i n to H i gh - level Language
Constructs by M anipu lating Graphical Program

Represen tations
System and Method tor Cons i ste n t Timestamping i n
Distri buted Compu ter Databases
lvlagnet ic Comact Recordi ng Hec1d tc> r Operation with
Tapes ofVcuying Thicknesses

Merhod ri >r Opti mi zed Ta pe Te nsion Adjustment r(>r
a Tape Drive

Method t(>r Pertormin g Group Exclusion in H inarehical
Group Stnrctmes
Rule ln\'ocation Mechanism f(>r I ndu cri ,·e Learn ing Engine

M u l ti- level Error Correction System
Method f(>r De legati ng Authorization from One Entity

to Another through the Usc of Session Encryption Keys
Character Encoding
Appar:�tus t(Jr Su ppressing an Error Report from an
Addr·ess for Which a n Error H as Al ready Been Reported
Apparatus tor Pro,·id i n g U n i J x ial Anistrophv in a M<.�gnetic
Recording Disk (This case was combined with 90-08 1 2 .
J apclll claims partia l priority. Nbl lary added .)
Service Na me to Network Address Translation i n
Communications N etwork
Cryptogrclph ic Process i ng in a Com mu nication Network,
Using a Sin g le Cnrprographic Engine

Tberrnode Str ucture Ha1· i ng c1 n Elongated, The rrncll l1·
Sta ble Rl.1ck
Arbitration AppJratus for Slun:d Bus

Magnine and Receiver f(Jr Media CMtrid g<:: Loader
Write- back Cache with ECC Protection
Semicondu ctor Package HJving vVrapa rou nd ML' L l l l izcltion

5 , 2 3 5 ,644

5,2 37, 662

5 , 2 37,673

5 , 239,423

5 , 2 39,493

5 , 2 39,630

5 , 240,740

5 , 2 4 1 ,62 1

5 , 243, 592

5, 246, 294

5 ,247, 5 1 0

5 , 247, 522

5 ,247, 52 4

5 ,249,090

5 , 2 5 1 , 2 05

5 , 2 5 1 , 3 1 0

5 , 2 5 3 , 203

5 , 2 5 5 , 3 8 1

5 , 2 6 1 ,059

5 , 2 6 1 ,066

5 , 2 6 1 ,097

5 , 262 ,344

5 , 2 6 3 , 1 27

5 , 263, 1 44

5 ,2 6 3 , 1 60

5,265 , 1 04

5 , 2 6 5 ,229

5,267,349

5,272 ,394

5 , 274,783

5 , 276,852

5 , 276,863

A . Gu ptJ, J. Tardo, C. Ka ufman,
B . Lampso n , W. H�1we, M . Kempf�
M . Gasser, and B . J. Herbison
K. Green, S . Jen ness, and T Carruthers

D. A . Orbits, K. D. Abramson, and
H . B. B u rrs
S. Sadowski

S . Sherma n

X. Cao, 1V\ . Abid i , N. Quavnor, R. Lary,
and F. Colon-Osorio
K . Frey and M. Malbry

R . Smart

R . Per lman and G. H arvey

C. Pan
N. Lee, Q. La m, and P. Va n Roekens

F. Reiff
R. Cal ion
W. Fehsc

R. Cal ion, E. Rosen, R. Perl man,
and] . Harper

N. Warc hol , D. Smelser, and G. Lid i ngton

H . Partovi and M . Case
T P. Fisscttc, K . Cbin naswamy,
H . A . Col l ins, M . B. Evans, M . A . Gagliardo,
] . f. Lunch, and J . E . Tcssari
W. Hed berg, M. H:livorson, D. El lsworrh ,
R. Lewis, !'. Brooks, and G. Mende lsohn
N. P.) u oppi and R. A . Eustace

P. D . s�,xon

K . R . Mistrv

W. lbrabJsh, S. A . Ki rk, W. S. Yerazunis,
and K. A. Gi l bert
R. R.amanupn, J . DeRosa,] . H . Zu rawski

J. A. Porter, D. E. Matthews, and
D. E. H augh

L. Weng
B. K . Sareen

W. Barabash, S . A . Ki rk, and W S. Yernunis

) . Ki rk and) . B:11-rett
K. A. House, J. Kirk, and L N <lrhi
D. Sanders and M. Callander

G. K . Heider

Probabi l istic Crvptographic Processing Method (This case
was combi ned with PD90-0295 .)

System a n d Method with a Procedure Oriented
In put/Out put Mechanism
Memory Manage ment Method for Coupled Me mory
Mult iprocessor Systems
Method and Apparatus tor Converting Am log Signals
into D i gi tal Signals
,vlethod and App<lr:uus tor I n terpreting and Organizing
Ti ming Spe..: i ticuion I n tormation
Shared Bus Arbitration Apparatus Having a Deaf Node

Method of Making a Thin Film Head with M i n i m ized
Secondary Pulses
M anagemenr Issue Re..:ognition and Resolu tion
Knowledge Processor
Method and Apparatus r(>r Distance Vector Routing
on Datagram Point-to - Poin t Li n ks
Flow- regu lating Hvdrodvnamic Bearing
Increasing Storage Dcnsitv of Optical Data Med ia by
Detecting a Selected Portion of a Light Spot I mage
Correspond ing to a Single Doma i n
F a u l t Tol eran t B u s

Me thod for Generating '' Checksum
Disk Storage with Device for Fixing the Disk Pack on I rs
H ub Such That It Can Be Removed
Mu lt iple Protocol Routing

Method and Appat·atus for Exchanging Blocks of
I n formation benvccn a Ca..:hc Memor)' and a Main Memory
Subarray An:h itecture with Partial Address Transbtion
Mode Switching f(>r a Memory System with a Diagnostic
Sca n

Crossbar I n terfJce tor Data Communication Nenvork

Data Processing Svstem and Method with Sma l l F u l ly
Associati 1·c Cache and Prefetch B u ffers
Com puter System and Method tor b: ecu ring Command
Scripts Using M u ltiple Synchronized Threads
N - Channel Clamp f(>r ES D Protection in Sclt�aligned
Si lic ided C M OS Process
Method for Fast Rule Execu tion of Expert Systems

Method and Apparatus f()r Sharing Data between
P rocessors in a Computer System
Augmenred Doublv Lin ked List Search and M.magement
Method for a System Hal' ing Data Stored i n a List of Data
Elements in Memorl'
Data Storage System incl uding Rcdu nd<lllt Stor<lge Devices
Si ngle Load, M u l tip le Issue Queue with Error Recovery
Capabi l i ty
Fast Deter m ination of Su btype Relationshi p in a Single
I n h e ri tance Type H ierarchy
Wide Bandwidth Peak Follower Circuitrv
SCSI I nrcrface Emploving Bus Extender and Auxi l iarv Bus
Method and Apparatus for Control l ing a Processor Bus
Used by Mult iple Pt·occssor Components during Writeback
Cache Transactions
Computer System Console

Digital Tcc hnic"�l joum.1l Vol . 7 No. I 1 995 77

78

5 ,276,868

5 ,276,877

5,277, 756

5 ,278,727

5 , 2 78,829

5 , 2 80,6 1 0

5,283,5 7 1

5 , 2 83,875

5 ,2 8 5 , 3 2 3

5 , 2 8 5 ,347

5 , 289,409

5 , 2 89,567

5,29 1 ,49 1

5 , 29 I ,497

5,30 1 , 1 63

5,303,265

5 , 303, 362

5 ,304,845

5,305, 1 6 1

5 ,305,305

5 ,305,306

5 ,307,468

5,3 07,479

5 , 307, 5 04

5 , 307, 506

5,309,4 37

5,3 1 3,5 8 1

5,3 1 3 ,623

5 , 3 1 4,596

5,3 1 5 ,657

5 ,3 1 7, 7 1 8

5,3 1 7,7 1 9

N . T Poole

K. S. Friedrich and A. R. Bousq uet

] . B . Diem
S. M . Westbrook and G. Howe l l

K .) . Dunlap

R . L. Travis, A. P. Wilson, N . F. Jacobso n ,

M.). Renzu l lo , and A . N . Ewald
H. Ya ng, G. P. Koning, W R. H awe,
and } . D. H u tchison
W. Thorsted , R. Lary, K. G i bson ,

and]. Jackson
R. C. Hetherington , F. X. Mc Keen ,

). D. Marci, T Fossu m , and }. S. Emer
P. C. Wade and L. Fox
R. Reinschmidt
j. W. Rorh

]. D. Hutchison and H . S. Y<mg
E . G. Ulrich, K. P. Lentz, and M. bl!. Gu stin

S . C. Su l l ivan and R. M. Reinschmidt

P. T McLean

D. A. Orbits, K. D. Abramson, and
H . B. Butts
S . E. Lindqu ist and D. A . Bai ley

M . G iovanetti, K. Veseskis, B. Ru b,
and F. Zayas
F. Dolan and } . A . Harper
H . S. Yang, W R. Hawe, and B . S . Sp inne1·

T Sch lage

E. U l rich and K. Lentz

S . G. Robinson and R. L Sites

R. P. Colwel l ,) . O'Do n n e l l , D. B. Parworrh,
a nd P. K. Rod man
R . }. Perl man and G. P. Kon i n g
D. Giokas and A . Lcskowitz

K. Ch i nnaswa my, H . A. Coll i ns,
M . B. Evans, M . A . Gagl iardo, J .] . Lynch,
] . E . Tessari , and T P. Fissette
H. B. Shu kovsky, S. Barra, and M. L. Mal lary

M . Abad i , A . C. Goldste in, and
B. W. Lampson
N. jouppi
B. A . Rozmovits

Digital Technical)ourn<�l Vol . 7 No. I 1 995

Method and Apparatus ti:>r Poi nter Compt·ession i n
Structured Datal)Jses
Dynamic Compute t· S\'stcm Pcrtornunce Model ing
1 nterf

.
1ce

Posr Fabrication Processi ng of Semiconducto r Chi ps
H igh Densitv E l ectrical I n terco nnection Device ;md
Method Therefor
Red uced B madcast Algori thm tor Add ress Resolution
Protocol
Methods and App<l L\tuS tor I mplemenring Data Bases
to Provide ObJeCt-oriented I m·ocation ofApp l i cuions
Testing a Commun ications Network t(Jr D u p l ic;He Station
Addresses
Methods and Apparatus for Opti miJ. ing Prell: te ll (: ,,, h i ng
by Reverse Ordering of Log ical Blocks
In tegrated Circuit Chip Having Pri m a n' and Secondarv
Random Access Memories f(lr a H ierarchica l Cache
H y brid Cool ing System for F kcrronic Components
Bipolar Transistor Memory Cell and Me thod
Computer Apparatus �md Method f(Jr finite Element
Identification i n I n teractive Modeling
Avoidance of False Re-i n i tia l ization of a Compu ter Network
Method for Testing, Debugging, and Comp;Hi ng
Computer Programs Using Concurrent Sinll l larion
of Program Paths
Memory Selection/ Dcselection Ci rcu i rrv H aving
a Word l ine Discharge Circuit
Freq uency I ndependent Encoding Technique and
Apparatus for D i gi ta l Com mun icnions
Coup led Memory 1\tlu l riprocessor Compurn Sl'stem
inc lud i ng Cache Coherencv Man agement Protocols
App<lratus for an Air I mpi ngeme n t He;lt Sink Using
Secondary Flow Generators
Adaptive Track Seeki n g for Disk Drives

Message S\\· icbing Network Mon itor i n g
Station-to-Station F u l l Du p lex Commutl icarion in a To ken
Ri ng Local Area Network
Dat<\ Process ing S\'Stem and Process for Contro l l i n g the
Latter As Wel l As a C P U Board
Method for M u l ti - Domain and M u l t i - D i mcnsion;l l
Concurrent S imu lation Using a Dig ita l Comp ute r
System a n d Method t(n Prese rving Insrntction Gt·a n u i ;Hitl'
When Translating Progr<\111 Code fi·om a Computer
H aving a First Arch i tecture to a Com purer H .wi ng
a Second Red u ced Arc h i tecture d uring the Occurrence
of I n terrupts Due ro Asvnchro nous E\-cnts
High Bandwidth M u ltip l e Computer Bus App;lrarus

B ri dge - l i ke I n ternet Protocol Rou ter
Sys te m and Method ti ll· Com mun ication between
Wi ndowing Environments
Method and Apparatus tor Pcr rc1rming D ia12-nos is Sunning
of a M emory Unit Regardless of the State of the System
C lock and without Afkcting rhc Store [);ua
Magnetic tor Fabricating M agnetic h i m Re(()rding Head
for Use with a M ;lgnct ic Record i ng Media
Compou nd Principals in Access Control Lists

Data Process in g Svsrcm and Method with Pre fe tch 1 \u fkrs
Data 1-"orm at for Packets of l n f (mnation

Call for Authors
from Digital Press

Digital Press is a n i mprint of Butterworth - H einemann, a major international pub­
l isher of professional books and a member of the Reed Elsevier group. Digital
Press is the authori zed pu bl isher for Digital Equipment Corporation: The two
companies are worki ng in partnership to identi fY and publish new books u nder the
D igital Press i mpri nt a nd create opportu nities tor authors to publish their work .

D igital Press is commi tted to publ ishing high-qual ity books on a wide variety
of s u bj ects. We wou l d l ike to hear from you if you are writing or thin ki n g about
wri ti ng a book.

Contact: Mike Cash , Digital Press Manager, or
Liz McCarthy, Assistant Editor

DIG ITAL PRESS
3 1 3 Washington Street
Newton, MA 02 1 5 8 - 1 62 6
U.S .A .
Tel : (6 1 7) 928 -2649, Fax : (6 1 7) 928-2640
E-mai l : Mike . Cash@BHein . rel .co.uk or

LizMc@world .std .com

mamaamaTM

ISSN 0898 - 9 0 1 X

Printl'll in U .S A . 1-:Y- U O O I 1-: T)/95 09 1 4 1 6.0 Copyright �) Digital Equipmenr Corpor.nion . A l l Rights RL·savcd .

	Front cover
	Contents
	Editor's Introduction
	Foreword
	DEC FUSE: Building a Graphical Software Development Environment from UNIX Tools
	Adding a Data Visualization Tool to DEC FUSE
	Multivendor lntegration Architecture: Standards, Compliance Testing, and Applications
	Integrating Applications with Digital's Framework-based Environment
	Project Gabriel: Automated Software Deployment in a Large Commercial Network
	Referees, March 1994 to January 1995
	Further Readings
	Recent Digital U.S. Patents
	Call for Authors from Digital Press
	Back cover

