HIGH PERFORMANCE FORTRAN
IN PARALLEL ENVIRONMENTS

Dlgltal SEQUOIA 2000 RESEARCH
Technical
Journal

Eﬂannan u

00 00 00 22 00 00 00 00

Volume 7 Number 3
1995

Editorial

Jane C. Blake, Managing Editor
Helen L. Patterson, Editor
Kathleen M. Stetson, Editor

Circulation
Catherine M. Phillips, Administrator
Dorothea B. Cassady, Secretary

Production

Terri Autieri, Production Editor
Anne S. Katzeft, Typographer
Peter R. Woodbury, Illustrator

Advisory Board

Samuel H. Fuller, Chairman
Richard W. Beane

Donald Z. Harbert

William R. Hawe

Richard J. Hollingsworth
Richard F. Lary

Alan G. Nemeth

Robert M. Supnik

Cover Design

The images on the front and back covers

of this issue are different visualizations

of the same data output from a regional
climate simulation program run by Dr.
John Roads of the Scripps Institution of
Oceanography. The data depicted con-

tain measures of temperature, liquid and
gaseous water content, and wind vectors;
the topography represented by the data

is the western U.S. in January 1990. Pro-
viding earth scientists with the ability to
visualize such data is one of the objectives
of the Sequoia 2000 research project—
ajoint effort of the University of California,
government agencics, and industry to build
a computing environment for global change
research. This issue presents papers on sev-
eral major areas explored by Sequoia 2000
researchers, including an electronic reposi-
tory, networking, and visualization.

The cover was designed by Lucinda O’Neill
of Digital’s Design Group. Special thanks go
to Peter Kochevar for supplying the cover
images.

The Digital Technical Journal is a refereed
journal published quarterly by Digital
Equipment Corporation, 30 Porter Road
LJO2/DI10, Littleton, Massachusetts 01460.
Subscriptions to the jeurralare $40.00
(non-U.S. $60) for four issues and $75.00
(non-U.S. $115) for eight issues and must
be prepaid in U.S. funds. University and
college professors and Ph.D. students in

the electrical engineering and computer
science fields reccive complimentary sub-
scriptions upon request. Orders, inquiries,
and address changes should be sent to the
Digital Technical Journal at the published-
by address. Inquiries can also be sent clec-
tronically to dyj@digital.com. Single copies
and back issues are available for $16.00 each
by calling DECdirect at 1-800-DIGITAL
(1-800-344-4825). Recent back issues of the
Journalare also available on the Interner at
http: //www.digital.com/info /DT]J /home.
html. Complete Digital [nternet listings can
be obtained by sending an electronic mail
message to info@digital.com.

Digital employees may order subscriptions
through Readers Choice by entering VTX
PROFILE at the system prompt.

Comments on the content of any paper are
welcomed and may be sent to the managing
editor at the published-by or network address.

Copyright © 1995 Digital Equipment
Corporation. Copying without fee is per-
mitted provided that such copies are made
for use in educational institutions by faculty
members and are not distributed for com-
mercial advantage. Abstracting with credit
of Digital Equipment Corporation’s author-
ship is permitted. All rights reserved.

The information in the Journal is subject
to change without notice and should not
be construed as a commitment by Digital
Equipment Corporation or by the compa-
nies herein represented. Digital Equipment
Corporation assumes no responsibility for
any errors that may appear in the fournal.

ISSN 0898-901 X
Documentation Number EY-T838E-TJ

Book production was done by Quantic
Communications, Inc.

The following are rademarks of Digital
EquipmentCorporation: Digital, the
DIGITALlogo, AlphaGeneration,
AlphaServer, AlphaStation, DEC, DEC
OSF/1, DECstation, GIGAswitch,
TURBOchannel, and ULTRIX.

Dor¢ is a registered trademark of Kubota
Pacific Computer Inc.

Exabyte is a registered trademark of
Exabyte Corporation.

Hewlett-Packard and HP are registered
trademarks of Hewlett-Packard Company
IBM and SP2 are registered trademarks
of International Business Machines
Corporation.

Hlustra is a registered trademark of Illustra
Information Technologies, Inc.

Intelis a rademark of Intel Corporation.

MCl is a registered trademark of MCI
Communications Corporation.
MEM@RY CHANNEL is a trademark
of Encore Computer Corporation.
Mosaic is a trademark of Mosaic
Communications Corporation.
Netscape is a trademark of Netscape
Communications Corporation.
NewtonScript is a trademark of Apple
Computer, Inc.

NFS is a registered trademark of Sun
Microsystems, Inc.

OpenGL is a registered trademark and
Open Inventor is a trademark of Silicon
Graphics, Inc.

PictureTel is a registered trademark of
PictureTel Corporation.

PostScript is a registered trademark of
Adobe Systems Inc.

SAIC is a registered trademark of Science
Applications International Corporation.
Siemens is a registered trademark of
Siemens Nixdorf Information Systems, Inc.
Sony is a registered trademark of Sony
Corporation.

SPEC is a trademark of the Standard
Performance Evaluation Council.

Telescript is a trademark of General Magic, Inc.

UNIXis a registered trademark in the
United States and other countries, licensed
exclusively through X/Open Company Ltd.

Contents

Foreword

HIGH PERFORMANCE FORTRAN IN
PARALLEL ENVIRONMENTS
Compiling High Performance Fortran for
Distributed-memory Systems

Design of Digital’s Parallel Software Environment

SEQUOIA 2000 RESEARCH

An Overview of the Sequoia 2000 Project

The Sequoia 2000 Electronic Repository

Tecate: A Software Platform for Browsing and
Visualizing Data from Networked Data Sources

High-performance I/0 and Networking Software
in Sequoia 2000

Jean C. Bonnev

Jonathan Harris, John A. Bircsak, M. Regina Bolduc,
Jill Ann Diewald, Isracl Gale, Neil W, Johnson,
Shin Lee, C. Alexander Nelson, and Carl D. Oftner

Edward G. Benson, David C.0. LaFrance-Linden,

Richard A. Warren, and Santa Wirvaman

Michacl Stoncbraker

Rav R. Larson, Christian Plaunt,
Allison G. Woodruft, and Marti Hearst

Perer D. Kochevar and Leonard R. Wanger

Joseph Pasquale, Eric W. Anderson, Kevin Fall, and
Jonathan S. Kay

Digital Technical Journal Vol.7 No. 3

(U8}

5

24

66

84

1995

Editor’s
Introduction

Scientists have long been motivators
tor the development of powertul
computing cnvironments. Two
sections in this issue of the jouriel
address the requirements of scientific
and technical computing. The first,
from Digital’s High Performance
Technical Computing Group, looks
at compiler and development tools
that accelerate performance in parallel
environments. The second scction
looks to the future of computing;
University of Calitornia and Digital
researchers present their work on a
large, distributed computing environ-
ment suited to the needs of carth sci-
entists studving global changes such
as ocean dynamics, global warming,
and ozone depletion. Digital was an
carly industry sponsor and participant
in this joint research project, called
Sequoia 2000.

To support the writing of parallcl
programs for computationally intense
environments, Digital has extended
DEC Fortran 90 by implementing
most ot High Performance Fortran
(HPF) version 1.1. After reviewing
the syntactic features of Fortran 90
and HPF, Jonathan Harris et al. focus
on the HPF compiler design and
explain the optimizations it performs
tO IMpProve INterprocessor communi-
cation in a distributed-memorv envi-
ronment, specifically, in workstation
clusters (farms) based on Digital’s
64-bit Alpha microprocessors.

The run-time support for this dis-
tributed environment is the Parallel
Software Environment (PSE). Ed
Benson, David LaFrance- Linden,
Rich Warren, and Santa Wirvaman
describe the PSE product, which is
lavered on the UNIX operating sys-
tem and includes tools for developing

Digital Technical Journal

parallel applications on clusters of up
to 256 machines. They also exanmine
design decisions relative to message-
passing support in distributed svstems
and shared-memory systems; 'SE
supports network message passing,
using TCP/IP or UDP/IP protocols,
and shared memory.

Michacl Stonebraker’s paper opens
the section featuring Sequoia 2000
rescarch and is an overview of'the
project’s objectives and status. The
objectives encompassed support tor
high-pertormance 1/0 on terabvte
data scts, placing all data in a DBMS,
and providing new visualization tools
and high-speed networking. After
a discussion of the architectural lavers,
he reviews some lessons learned by
participants— chief of which was to
view the system as an end-to-end
solution—and concludes with a look
at tuture work.

An efhicient meaos for locating
and retrieving data from the vast
stores in the Sequoia DBMS was
the rask addressed by the Sequoia
2000 Electronic Repository project
team. Rav Larson, Chris Plaunt,
Allison Woodruft, and Marti Hearst
describe the Lassen text indexing
and rerrieval methods developed
for the POSTGRES database svstem,
the GIPSY svstem for automatic index-
ing of texts using geographic coor-
dimates discussed in the ext, and the
TextTiling method for automatic
partitioning ot text documents to
cnhance retrieval.

The need tor tools to browse
through and to visualize Sequoia
2000 data was the impetus behind
Tecate, a software plattorm on which
browsing and visualization applica-
tions can be built. Peter Kochevar

Vol.7 No. 3 1995

and Len Wanger present the features
and functions of this research proto-
nvpe and ofter details of the object
model and the role of the interpre-
tive Abstract Visualization Language
(AVL) tor programming. Thev con-
clude with example applications that
browse data spaces.

The challenge of high-speed net-
working for Sequoia 2000 is the sub-
ject of the paper by Joseph Pasquale,
Eric Anderson, Kevin Fall, and Jon
Kay. In designing a distributed system
that cficiently retrieves, stores, and
transters very large objects (in excess
of tens or hundreds of megabytes),
they focused on operating svstem
[/0 and nerwork software. They
describe nwo 1/0 svstem sottware
solutions— container shipping and
peer-to-peer 1/O—that avoid data
copving. Their TCP/IP nerwork
software solutions center on avoiding
or reducing checksum computation.

The editors thank Jean Bonney,
Digital’s Dirccror of External
Rescarch, for her help in obtaining
the papers on Sequoia 2000 rescarch
and for writing the Foreword ro this
Isstic.

Our next issue will feature papers
on multimedia and UNIX clusters.

M

Jane C. Blake
Maiiaging Editor

Foreword

Jean C. Bonney

Director. Ixternal Rescerch

The Intformation Utlity, the
Informaton Highwav, the Internet,
the Infobahn, the Information
Economy —the sound bytes of the
1990s. To make these concepts
reality, a robust technology infra-
structure is necessary. In 1990,
Digital’s research organization saw
this need and ser out to develop an
experimental test bed that would
examine assumptions and provide a

basis for a technology edge in the "90s.

The resulting project was Scquoia
2000, a three-vear research collabora-
tion benween Digital, campuses of the
University of California, and several
other industry and government orga-
nizations. The Sequoia 2000 vision is
Petabytes (i.e.. trillions of bytes)

of data in u distributed archive,
transparently managed. and
logically vicwed over a bigh-speed
network with isochrouons capabilitics
viat a host of tools

—in other words, a big, fast, casy-to-
use system.

Although the vision is still not reality
today, our more than three years

of participation in Sequoia 2000
rescarch gave us the knowledge base
we sought.

After a nigorous process of pro-
posa

development and review by
experts at Digital and the University
of California, Sequoia 2000 began
in Junc 199 1. The tocus of the
rescarch was a high-speced, broad-
band nenwvork spanning University

of California campuses from Berkelev

to Santa Barbara, Los Angeles, and
San Dicgo; a massive database; stor-
age; a visualization systemy; and clec-
tronic collaboration. Driving the
rescarch requirements were carth
scientists. The computing needs of
these scientists push the state of the
art. Current computing technologics
lack the capabilities carth scientists
need o assimilare and interpret the
vast quantities of information col-
lected from satellites. Once the data
are collected and organized, there is
the challenge of massive simulations,

simulations that forccast world climate

ten or even one hundred vears from
now. These were exactly the kinds
ot challenges the computer scientists
needed.

Among the major results of three
vears of work on Sequoia 2000 was
asct of product requirements for

large data applications. These require-

ments have been validated through
discussions with customers in finan-
aal, healtheare, and communications
industries and in government. The
requirements include

= A computing environment built
on an object relational database,
1.c., adata-centric computing
system

= A databasce that handles a wide
variety of nontraditional objects
such as text, audio, video, graph-
ics, and images

Digital Technical Journal

= Support for a variety of traditional
databases and file systems

= Theability to perform necessary
operations from computing
environments that are intuitive
and have the same look and feel;
the interface to the environment
should be generic, very high level,
and casily tailored to the user
application

= High-spced data migration
between secondary and tertiary
storage with the ability to handle
very large data transters

= Nerwork bandwidth capable
of handling image transmission
across networks in an acceptable
time frame with quality guarantees
tor the data

= High-quality remote visualization
of any relevant data regardless
of tormat; the user must be able
to manipulate the visual data
nteractively

= Reliable, guaranteed, delivery
of data from tertiary storage to
the desktop

Sequoia 2000 was also a catalyst
for maturing the POSTGRES rescarch
database software to the point where
it was ready for commercialization.
The commercial version, Ilustra,
is available on Alpha plattorms and
is enjoying success in the banking
industry and in geographic informa-
tion system (GIS) applications, as
wellas in other government applica-
tions with massive data requirements.
[llustra is also making inroads into the
[nternet where it is used by on-line
services.

Yet another major result of Sequoia
2000 was a grant from the National

Vol.7 No.3 1995

W

Acronautics and Space Administra-
tion (NASA) to develop an alternate
architecture for the Earth Observing
Svstem Dara and Information System
(EOSDIS). EOSDIS will process the
petabytes of real-time data from
the Earth Observing Svstem (EQOS)
sarelites to be launched art the end
of the decade. The alternate infor-
mation archirecture proposed by the
University of Calitornia faculty was
the Sequoia 2000 architecture. 1t
will have a major influence on the
EOSDIS project.

For the carth scientists, gains
were made in simulation speeds and
maceess to large stores of organized
dara. These scientists used some of
Digital’s first Alpha workstation farms
and software prototvpes for their cli-
mate simulations. An cight-processor
Alpha worksration farm provided a
rwo-to-one price/performance advan-

tage over the powertul, mulamillion-

dollar CRAY C90 machince. In another

carth science application, scientists
using Alpha and hicrarchical storage
svstems could simulate two vears’
worth of climate data over the week-
end without operator intervention;
formerly, nvo months’ worth of data
rook one day to simulare and required
considerable operator intervention.
Thus many more simulations could
be processed in a fixed time and
“time to discovery” was decreased
considerably.

Now that we can look at Sequoia
2000 in retrospect, would we do
such a projectagain? The answer
is a resounding “ves” from all of
us mvolved. Irwas a complex proj-
cct that included 12 University of
Calitornia faculy members, 25 grad-
uate students, and 20 staff. Another

Digial Technical Journal

8 faculty members and students pro-
vided additional expertise. Four of
Digital’s engineers worked on site,
and a variety of support personnel
from other industry sponsors partici-
pated, including SAIC, the Calitornia
Department of Water Resources,
Hewilett-Packard, Mctrum, United
States Geological Survey (USGS),
Hughes Application Information
Services, and the Army Corps of
Engincers.

Burt as is the case with such ambi-
tious projects, there were unantici-
pated and ditficult lessons tor all
to learn. To experiment with real-
litc test beds means considerably
more than writing a rigorous set
ot hvpotheses in a proposal. Michacl
Stonebraker, in his paper; notes a
number of challenges we taced and
the lessons learned. One of the issues
that kept surfacing was the “grease
and glue” for the infrastructure, that
is, the interoperability of picces of
sofoware and hardware that composed
the end-to-end svstem. This remains
a challenge that needs research if we
are going to achieve the promised
goals of internerworking. Another
sticky point was scalability. On the
one hand, itis ditficulr to build a very
large nerworked svstem trom scratch.
On the other hand, as we slowly built
the mass storage svstem to the point
of minimal critical mass, we found
that the current oft-the-shelt rech-
nologies for mass storage were not
readv to be put use for our purposcs.
So, ves, we believe the project was
worthwhile with some caveats. We
gained critical knowledge abourt the
technology, and we also came along
wavin learning the art of directing
and lcading the tvpe of project thatis

\ol.7 No.3 1993

necessary to assist the Informartion
Technology industry in its quest
for the ubiquitous distributed
informarion system.

How clse are we going to get
insight into the critical issuces of build-
ing and reliably operating a robust
information infrastructure without
building a farge test bed with real end
users whose needs push the state of
the arrar cach point along the way?
We believe that large projects similar
to Sequoia are crucial. The papers
that follow attest to the important
knowledge gained. We have focused
specitically on the end-to-end svstem

from the scientists” deskrops to the
mass storage svstem, the challenge
of building and using a large data
repository, the timely and fast move-
ment of very farge objects over the
nerwork, and browsing and visualiz-

ing data from nerworked sources.

Compiling High
Performance Fortran
for Distributed-
memory Systems

Digital’s DEC Fortran 90 compiler implements
most of High Performance Fortran version 1.1,

a language for writing parallel programs. The
compiler generates code for distributed-memory
machines consisting of interconnected work-
stations or servers powered by Digital’s Alpha
microprocessors. The DEC Fortran 90 compiler
efficiently implements the features of Fortran 90
and HPF that support parallelism. HPF programs
compiled with Digital’s compiler yield perfor-
mance that scales linearly or even superlinearly
on significant applications on both distributed-
memory and shared-memory architectures.

Jonathan Harris
John A. Bircsak

M. Regina Bolduc
Jill Ann Diewald
Israel Gale

Neil W. Johnson
Shin Lee

C. Alexander Nelson
Carl D. Offner

High Performance Fortran (HPF) is a new program-
ming language for writing parallel programs. It is
based on the Fortran 90 language, with extensions
that cnable the programmer to specify how array oper-
ations can be divided among multiple processors ftor
increased performance. In HPF, the program specifies
only the pattern in which the data is divided among
the processors; the compiler automates the tow-level
details of synchronization and communication of data
benween processors.

Digital’s DEC Fortran 90 compiler is the first imple-
mentation of the full HPF version 1.1 language
(except for transcriptive argument passing, dynamic
remapping, and nested FORALL and WHERE con-
structs). The compiler was designed for a distributed-
memory machine made up of a cluster (or farm) of
workstations and/or servers powered by Digital’s
Alpha microprocessors.

In a distributed-memory machine, communication
between processors must be kept to an absolute mini-
mum, because communication across the nenwork is
enormously more time-consuming than anv operation
done locally. Digital’s DEC Fortran 90 compiler
includes a number of optimizations to minimize the
cost of communication between processors.

This paper briefly reviews the features of Fortran 90
and HPF that support parallelism, describes how the
compiler implements these features efficiently, and
concludes with some recent performance results
showing that HPF programs compiled with Digital’s
compiler vield performance that scales linearly or even
supcrlinearly on significant applications on both
distributed-memory and shared-memory architectures.

Historical Background

The desire to write parallel programs dates back to the
1950s, at least, and probably earlier. The mathematician
John von Neumann, credited with the invention of the
basic architecture of today’s serial computers, also
invented cellular automata, the precursor of today’s
massively parallel machines. The continuing motiva-
tion for parallelism is provided by the need to solve
computationally intense problems in a recasonable time
and at an aftordable price. Today’s parallel machines,

Digital Techmical Journal Vol.7 No.3 1995

which range from collections of workstations con-
nected by standard fiber-optic networks to tightly cou-
pled CPUs with custom high-speed interconnection
networks, are cheaper than single-processor svstems
with equivalent performance. In many cases, equiva-
lent single-processor svstems do not exist and could
not be constructed with existing technology.

Historically, one of the ditheulties with parallel
machines has been writing parallel programs. The work
of parallelizing a program was far from the original sci-
ence bemg explored; it required programmers to keep
track of a great deal of information unrelated to the
actual computations; and 1t was done using ad hoc
methods that were not portable to other machines.

The expenience gained from this work, however, led
to a consensus on a better way to write portable
Fortran programs that would pertorm well on a variety
of parallel machines. The High Pertformance Fortran
Forum, an international consortium of morce than
100 commercial parallel machine users, academics,
and computer vendors, captured and refined these
ideas, producing the language now known as High
Performance Fortran."* HPF programming systems
are now being developed by most vendors of parallel
machines and softwarc. HPF is included as partof the
DEC Fortran 90 language.”

One obvious and reasonable question 1s: Why
invent a new language rather than have compilers
automatically generate parallel code? The answer is
straightforward: it i1s generally conceded that auto-
matic parallelization technology is not vet suthciently
advanced. Although paraliclization tor particular archi-
tectures (e.g., vector machines and shared-memory
multiprocessors) has been successful, it is not fully
automatic but requires substantial assistance from the
programmer to obtain good performance. That assis-
tance usually comes in the form ot hints to the compiler
and rewritten sections of code that are more parallcliz-
able. These hints, and in some cases the rewritten code,
arc not usually portable to other architectures or com-
pilers. Agreement was widespread at the HPE Forum
that a ser of hines could be standardized and done ina
portable way. Automatic parallelization technology is
an active field of research; consequently, it 1s expected
that compilers will become increasingly adept.” ? Thus,
these hints are cast as commenrs—called compiler
directives—in the source code. HPF acrually contains
very little new language bevond this; it consists primar-
ily of these compiler directives.

The HPF language was shaped by certain kev
considerations in parallel programming:

= The need to identity computations that can be
donc i parallel

= The need to minimize communication between
processors on machines with nonuniform memory
access costs

Digital Technical Journal Vol. 7 No. 3 1995

= Theneedro keep processors as busy as possible by
balancing the computation load across processors

It is not always obvious which computations in
a Fortran program arc paraliclizable. Although some
DO loops express parallelizable compurations, other
DO loops express compurtations in which later itera-
tions of the loop require the results of earlier itera-
tions. This torces the compurtation to be done in order
(scriallv), rather than simultancously (in parallel).
Also, whether or not a computation is parallclizable
sometimes depends on user dara that mav vary trom
run to run of the program. Accordingly, HPF contains
a new statement (FORALL) for desaribing parallel
computations, and a new directive (INDEPENDENT)
to identify additional parallel computations to the
compiler. These features are equally usctul for distrib-
uted- or shared-memory machines.

HPPF’s dara distribution directives are particularly
important for distributed-memory machines. The
HPF dircctives were designed primarily to increase
performance on “computers with nonunitorm mem-
ory access costs.” Ofall parallcl architectures, distrib-
uted memory is the architecture in which the location
of data has the greatest ctfect on access cost. On
distributed-memory machines, mterprocessor com-
munication Is very expensive compared to the cost of
fetching local dara, rypically by several orders of mag-
nitude. Thus the eftect of suboptimal distribution of
data across processors can be catastrophic. HPF direc-
tives tell the compiler how to distribute data across
processors; based on knowledge of the algorithm, pro-
grammers choosc directives that will minimize com-
p
achieve good load balance: by spreading data appro-

munication time. These dircctives can also he

priately across processors, the computations on those
dara willalso be spread across processors.

Finally, a number of idioms that arc imporrant in
parallel programming either are awkward to express in
Fortran orare greatly dependent on machine archirec-
ture tor their etficient implementation. To be usctul in
a portable language, these idioms must be casy to
express and implement cthiciently. HPF has captured
some of these idioms as library routines tor etticient
implementation on very different architectures.

For example, consider the Forwan 77 program in
Figure 1, which repeatedly replaces cach clement of
a two-dimensional array with the average ofits north,
south, cast, and west neighbors. This kind ot compu-
tation arises in a number of programs, including itera-
tive solvers for partial differennal cquations and
image-filtering applications. Figure 2 shows how this
code can be expressed in HPE.

On a machine with four processors, a single HPF
dircctive causes the arrav 4 to be distributed across
the processors as shown in Figure 3. The program

integer n, number_of_iterations, i,j,k
parameter(n=16)

real A(n,n), Temp(n,n)

.. (Initialize A, number_of_iterations)
do k=1, number_of_iterations

Update non-edge elements only
do i=2, n-1
do j=2, n-1
Temp(i, j)=CACi, j=1)+ACi, j+1)+ACi+1, jI)+ACi=-1, j))*x0.25
enddo
enddo
do i=2, n-1
do j=2, n-1
ACi, j)=Temp(i,j)
enddo
enddo
enddo

Figure 1
A Computation Expressed in Fortran 77

integer n, number_of_iterations, i, j, k

parameter (n=16)

real A(n, n)

"'hpf$ distribute A(block, block)

...(Initialize A, number_of_iterations)

do k=1, number_of_iterations
forall (i=2:n-1, j=2:n-1) !'Update non-edge elements only

ACi, §)=CACGi, J=-D)+ACi, J+1)+ACGI+1, jI+ACi=-1, j))I*x0.25

endforall

enddo

Figure 2
The Same Compuration Expressed in HPF

executes in parallel on the four processors, with each
processor performing the updates to the array ele-
ments it owns. This update, however, requires inter-
processor communication (or “data motion”). To
0 2 compute a new value for A(8, 2), which lives on
processor 0, the value of A(9, 2), which lives on
processor 1, isneeded. In fact, processor 0 requires the
seven values A(9, 2), A(9, 3), ... A(9, 8) from proces-
sor 1, and the seven values 4(2,9), A(3,9), ... A(8,9)
trom processor 2."* Each processor, then, needs seven
values apiece from two neighbors. By knowing the lay-
out of the data and the computation being performed,
the compiler can automatically generate the inter-
1 3 processor communication instructions needed to exe-
cute the code.

Even for seemingly simple cases, the communica-
tion instructions can be complex. Figure 4 shows the
communication instructions that are generated for the
code that implements the FORALL statement for a
distributed-memory parallel processor.

Figure 3
An Array Distributed over Four Processors

Digital Technical Journal Vol.7 No.3 1995

Processor 0

Processor 1

Processor 2

Processor 3

SEND
A8, 2)...A(8, 8)
to Processor 1

SEND
A2, 8)... A8, 8)
to Processor 2

RECEIVE
A(9,2).. A9, 8)
trom Processor 1

RECEIVE
A(2,9)...A(8,9)
from Processor 2

SEND
A(9,2)...4(9, 8)

to Processor 0

SEND
A(9,8)...A(15,8)
to Processor 3

RECEIVE
A(8,2).. A8, 8)

from Processor 0

RECEIVE
A(9,9)...A(15,9)
trom Processor 3

SEND
A(2,9)... A8, 9)

to Processor 0

SEND
A8, 9).. A8, 15)

to Processor 3

RECEIVE
A(2,8).. A(S,8)
from Processor 0

RECEIVE
A(9,9).. A9, 15)
from Processor 3

SEND
A(9,9)...A(15,9)
to Processor 1

SEND
A(9,9)...A(9,9)

1o Processor 2

RECEIVE
A9, 8)...A(15,8)
from Processor 1

RECEIVE
A(8,9)... A8, 15)

_
5
from Processor 2

Figure 4

Compiler-gencrared Communication for a FORALL Sratement

Although the communication needed in this sim-
ple example is not difficult to tigure out by hand,
keeping track of the communication nceded for
higher-dimensional arrays, distributed onto more
processors, with more complicated computations, can
be avery ditficult, bug-pronce task. In addition, a num-
ber of the optimizations that can be performed would
be extremely tedious to figure out by hand. Never-
theless, distributed-memory parallel processors are
programmed almost exclusively today by writing pro-
grams that contain explicit hand-generated calls to the
SEND and RECEIVE communication routines. The
difference between thiskind of programming and pro-
gramming in HPF is comparable to the difference
between assembly language programming and high-
level language programming.

This paper continues with an overview of the HPF
language, a discussion ot the machine architecture tar-
geted by the compiler, the architecture of the compiler
itself, and a discussion of some optimizations per-
formed by its components. It concludes with recent
performance results, showing that HPF programs
compiled with Digital’s compiler scale linearly in sig-
nificant cases.

Overview of the High Performance
Fortran Language

High Performance Fortran consists of a small set of
extensions to Fortran 90. It is a data-parallel program-
ming language, meaning that parallelism is madce pos-
sible by the explicit distribution of large arravs of data
across processors, as opposed to a control-parallel

Digital Technical Journal Vol. 7 No. 3 1995

language, in which threads of computation are distrib-
uted. Like the standard Fortran 77, Fortran 90, and C
models, the HPF programming model contains a sin-
gle thread of control; the language itself has no notion
of process or thread.

Conceprually, the program c¢xecutes on all the
processors simultaneously. Since each processor con-
tains only a subsct of the distributed data, occasionally
a processor may need to access data stored in the
memory of another processor. The compiler deter-
mines the actual details of the interprocessor commu-
nication needed to support this access; that is, rather
than being specitied explicitly, the details arc implicit
intheprogram.

The compiler translates HPF programs into low-
level code that conrtains explicit calls to SEND and
RECEIVE message-passing routines. All addresses in
this translated codc arc modified so that they refer to
data local to a processor. As part of this translation,
addressing expressions and loop bounds become
expressions involving the processor number on which
the codeisexecuting. Thus, the compiler needs to gen-
crate only one program: the generated codce is parame-
trized by the processor number and so can be executed
on all processors with appropriate results on each
processor. This gencrated code is called explicit single-
program multiple-data code, or explicit-SPMD code.

In some cases, the programmer may find it useful
to write explicit-SPMD code at the source code level.
To accommodate this, the HPF language includes an
escape hatch called EXTRINSIC procedures that is
used to leave data-parallel mode and enter explicit-
SPMD mode.

We now describe some of the HPF language exten-
sions used to manage parallel data.

Distributing Data over Processors

Data s distributed over processors by the
DISTRIBUTE directive, the ALIGN directive, or
the default distribution.

The DISTRIBUTE Directive For parallel execution of
array opcrations, each array must be divided in mem-
ory, with cach processor storing some portion of
the array in its own local memory. Dividing the array
into parts is known as distributing the array. The HPF
DISTRIBUTE directive controls the distribution of
arrays across each processor’s local memory. It does
this by specifying a mapping pattern of data objects
onto processors. Many mappings are possible; we illus-
trate only a few.

Consider first the casc of a 16 X 16 array 4 in an
cnvironment with four processors. One possible speci-
fication tor A is

real AC16, 16)

thpfs distribute A(*x, block)

The asterisk (*) tor the first dimension of A means
that the array elements are not distributed along
the fwst (vertical) axis. In other words, the elements
in any given column are not divided among differ-
ent processors, but are assigned as a single block to
one processor. This type of mapping is referred to as
serial distribution. Figure 5 illustrates this distribution.

The BLOCK keyword tor the second dimension
means that for any given row, the array elements are
distributed over each processor in large blocks. The
blocks are of approximately equal size—in this case,
they are exactly equal—with each processor holding
one block. As a result, A is broken into four contigu-
ous groups of columns, with each group assigned to
a separate processor.

Another possibility is a (*, CYCLIC) distribution.
As in (*, BLOCK), all the elements in each column are
assigned to one processor. The elements in any given
row, however, are dealt out to the processors in round-
robin order, like plaving cards dealt out to plavers
around a table. When elements are distributed over 1
processors, cach processor contains every 2ith column,
starting from a ditferent offsct. Figure 6 shows the
same array and processor arrangement, distributed
CYCLIC instcad of BLOCK.

As these examples indicate, the distributions of the
separate dimensions arc independent.

A (BLOCK, BLOCK) distribution, as in Figure 3,
divides the array into large rectangles. In that figure,
the array clements in any given column or any given
row are divided into two large blocks: Processor 0 gets
A(1:8, 1:8), processor 1 gets A4(9:106, 1:8), processor 2
gets A(1:8,9:16), and processor 3 gets A(9:16,9:10).

Figure 5
A (*, BLOCK) Distribution

Figure 6
A (*, CYCLIC) Distribution

The ALIGN Directive The ALIGN directive is used to
specity the mapping of arrays relative to one another.
Corresponding elements in aligned arrays are always
mapped to the same processor; array operations
between aligned arrays are in most cases more efficient
than arrav operations between arrays that are not
known to be aligned.

The most common use of ALIGN is to specify that
the corresponding clements of two or more arrays be
mapped identically, as in the following example:

Digiral Technical Journal Vol.7 No.3 1995

'hpf$ align AC(i) with B(i)

This example specifies that the two arrays A and Bare
always mapped the same way. More complex align-
ments can also be specified. For example:

'hpf$ align EC(i) with F(2*xi-1)

In this example, the elements of Fare aligned with the
odd elements of F. In this case, £ can have at most half
as many elements as F.

An array can be aligned with the interior of a larger
array:

real AC12, 12
real B(16, 16
i)

'hpf$ align AC(i, with B(i+2, j+2)

In this example, the 12 % 12 array A4 is aligned with
the interior of the 16 X 16 array B(see Figure 7). Each
interior element of B is always stored on the same
processor as the corresponding element of A.

The Default Distribution Variables that are not explic-
itly distributed or aligned are given a default distribu-
tion by the compiler. The default distribution is not
specitied by the language: different compilers can
choose difterent default distributions, usually based
on constraints of the target architecture. In the DEC
Fortran 90 language, an array or scalar with the default
distribution is completely replicated. This decision was
made because the large arrays in the program are the
significant ones that the programmer has to distributc
explicitly to get good performance. Any other arrays
or scalars will be small and generally will benefit from
being replicated since their values will then be available
everywhere. Of course, the programmer retains com-
plete control and can specify a ditferent distribution
for these arrays.

Replicated data is cheap to read but generally
expensive to write. Programmers typically use repli-
cated data for information thar is computed infre-
quently but used often.

Figure 7
An Example of Array Alignment

Digital Technical Journal Vol. 7 No. 3 1995

Data Mapping and Procedure Calls

The distribution of arrays across processors introduces
a new complication for procedure calls: the interface
berween the procedure and the calling program must
take into account not only the type and size of the rel-
evant objects but also their mapping across processors.
The HPF language includes special forms of the
ALIGN and DISTRIBUTE directives for procedure
interfaces. These allow the program to specify whether
array arguments can be handled by the procedure as
they are currently distributed, or whether (and how)
they need to be redistributed across the processors.

Expressing Parallel Computations
Parallel computations in HPF can be identified in tour
ways:

= Fortran 90 array assignments
= FORALL statements

= The INDEPENDENT directive, applied to DO
loops and FORALL statements

= Fortran 90 and HPF intrinsics and library functions

In addition, a compiler may be able to discover paral-
lelism in other constructs. In this section, we discuss
the first two of these parallel constructions.

Fortran 90 Array Assignment In Fortran 77, operations
on whole arrays can be accomplished only through
explicit DO loops that access array clements one at a
time. Fortran 90 array assignment statements allow
operations on entire arrays to be expressed more simply.

In Fortran 90, the usual intrinsic operations for
scalars (arithmetic, comparison, and logical) can be
applied to arrays, provided the arrays arc of the same
shape. For example, it 4, B, and Carc two-dimensional
arrays of the same shape, the statement C= 4 + B
assigns to each element of € a value equal to the sum
of the corresponding clements of 4 and B.

In more complex cases, this assignment synrax can
have the eftect of drastically simplitying the code. For
instance, consider the case of three-dimensional
arrays, such as the arrays dimensioned in the following
declaration:

real D(10, 5:24, -5:M), EC0:9, 20, M+6)

In Fortran 77 svnrax, an assignment to every ele-
ment of D requires triple-nested loops such as the
example shown in Figure 8.

In Fortran 90, this code can be expressed in a single
line:

D = 2.5*xD+E+2.0

The FORALL Statement The FORALL statement is an
HPF extension to the American National Standards
Institute (ANSI) Fortran 90 standard but has been
included in the draft Fortran 95 standard.

k) + ECi-1, j-4, k+6) + 2.0

Figure 8
An Example ot a Triple-nested Loop

FORAIL.L is a generalized form of Fortran 90 array
assignment syntax that allows a wider variety of array
assignments to be expressed. For example, the diago-
nal of an array cannot bc represented as a single
Fortran 90 array scction. Theretore, the assignment of
a value to every element of the diagonal cannot be
expressed in a single array assignment statement. It
can be expressed in a FORALL statement:

real, dimension(n, n)

A
forall (i = 1:n) AC(i, i) =

1

Although FORALL structures serve the same pur-
pose as some DO loops do in Fortran 77,a FORALL
structure is a parallel assignment statement, not a
loop, and in many cases produces a different result
from an analogous DO loop. For example, the
FORALL statement

forall (i = 2:5) CCi, i) = CcCi=-1, i-1)

applied to the matrix

11 0 0 0 0

0222 0 0 0

¢ =10 033 0 0
0 0 044 O

L0 0 0 055

!

produces the following result:

11 0 0 0 0
01 0 0 0
¢ = 0 022 0 0
0 0 03 0
0 0 0 0 44

On the other hand, the apparently similar DO loop

5

do i = 2,
i) = cCi-1, i-1)

c(i,
end do

produces

1T 0 0 0 0
011 0 0 0
¢ =10 011 0 O
0 0 011 O
0 0 0 011

This happens because the DO loop iterations are per-
formed sequentially, so that each successive element of
the diagonal is updated betore it is used in the next
iteration. In contrast, in the FORALL statement, all
the diagonal elements are fetched and used betore any
stores happen.

The Target Machine

Digital’s DEC Fortran 90 compiler gencrates code
for clusters of Alpha processors running the Digital
UNIX operating system. These clusters can be separate
Alpha workstations or servers connected by a fiber dis-
tributed data interface (FDDI) or other network
devices. (Digital’s high-speed GIGAswitch/FDDI sys-
tem is particularly appropriate.'*) A shared-memory,
symmetric multiprocessing (SMP) system like the
AlphaServer 8400 system can also be used. In the case
of an SMP system, the message-passing library uses
shared memory as the message-passing medium; the
generated code is otherwise identical. The same exe-
cutable can run on a distributed-rmemory cluster oran
SMP shared-memory cluster without recompiling.
DEC Fortran 90 programs use the execution envi-
ronment provided by Digital’s Parallel Software
Environment (PSE), a companion product.** PSE
is responsible for invoking the program on multiple
processors and for performing the message passing
requested by the generated code.

The Architecture of the Compiler

Figure 9 illustrates the high-level architecture of
the compiler. The curved path is the path taken
when compiler command-line switches are set for
compiling programs that will not execute in parallel,
or when the scoping unit being compiled is declared
as EXTRINSIC(HPF_LOCAL).

Figure 9 shows the tront end, transtorm, middle
end, and GEM back end components ot the compiler.
These components function in the following ways:

= The front end parses the input code and produces
an internal representation containing an abstract
syntax tree and a symbol table. It performs exten-
sive semantic checking.'

Digital Technical Journal Vol.7 No.3 1995

12

SOURCE

OBJECT

CODE

— | FRONT END—I—>| TRANSFORM |—>| MIDDLE END I———>| GEM

CODE

Figure 9
Compiler Components

= The transtorm component pertorms the transtor-
mation from global-HPF to explicit-SPMD form.
To do this, it localizes the addressing of data, inserts
communication where nccessary, and distribures
parallel compurations over processors.

= The middle end translates the internal representa-
tion into another form of internal representation
suitable for GEM.

= The GEM back end, also used by other Digiral
compilers, pertorms local and global optimization,

storage allocation, code generation, register alloca-
tion, and emits binary object code."”

In this paper, we are mainly concerned with the
transform component of the compiler.

An Overview of Transform

Figure 1@ shows the transtorm phases discussed in this
o
paper. Thesce phascs perform the following kev rasks:

= LOWER. Transtorms array assignments so that
thev look internally like FORALL statements.

= DATA. Fills in the data space information for cach
symbol using informartion from HPF directives
where available. This determines where cach data
object lives, i.c., how it is distributed over the
processors.

= [TER. Fills in the iteration spacc information for
cach computational expression node. This deter-
mines where cach computation takes place and
indicates where communication is necessary.

= ARG. Pulls functions in the interior of expressions
up to the statement level. Tralso compares the map-
ping of actual arguments to that of their corre-
sponding dummies and generates remapping into
compiler-generated temporarics if necessary.

—>| LOWER I——>| DATA I——»r ITER I—
————»l ARG I-—>| DIVIDE |—>| STRIP |—>

Figure 10
The Transform Phascs

Digital Techaical Jownal Vol.7 No. 3 1995

= DIVIDE. Pulls all communication mside expres-
sions (identified bv ITER) up to the statement level
and identifies what kind of communication is
nceded. Tralso ensures that information needed for
flow of control is available at each processor.

= STRIP. Turns global-HPF code into explicit-SP MDD
code by localizing the addressing of all data objects
and inserting expliar SEND and RECEIVE calls
to make communication explicit. In the process,
it performs strip mining and loop optimizations,
vectorizes communication, and optimizes nearest-
neighbor computations.

Transform uses the following main data structures:

= Symbol table. This is the symbol table created by
the front end. Tris extended by the transtorm phase
to include dope information tor arrav and scalar
symbols.

= Dortree. Transtorm uses the dotree form of the
abstract syntax tree as an internal representation of
the program.

= Dependence graph. Thisisa graph whose nodes are
expression nodes in the dotree and whose edges
represent dependence edges.

= Dara spaces. A data space is associated with cach
data symbol (i.c., cach arrav and cach scalar). The
data spacc information describes how cach data
object is distributed over the processors. This infor-
mation is derived from HPF directives.

= [reration spaces. An iteration space is associated
with cach computational node in the dotree. The
iteration space information describes how compu-
tations arc distributed over the processors. This
information is not specified in the source code but
1s produced by the compiler.

The inrerrelationship of these data structures is dis-
cussed in Reference 18. The dara and iteration spaces
to the processing pertormed by transtornn.

arc centra
The Transform Phases

LOWER

Since the FORALL statement is a generalization of a
Fortran 90 arrav assignment and includes it as a special
case, it is convenient for the compiler to have a uni-
form representation for these two constructions. [he

LOWER p
Forran 90 array assignment into an - cquivalent
FORALL starement (actually, into the dotree repre-
sentation of one). This unitorm representation means
that rhe compiler has far fewer special cases to consider
than otherwise might be necessary and leads to no
degradation of the generated code.

wse implements this by rurning cach

DATA

The DATA phase specities where dara lives. Placing
and addressing data correctly is one of the major tasks
of ranstorm. There are alarge number of possibilirics:

When a value is available on cvery processor, it is
said to be replicated. When it is available on more than
one but not all processors, it s said to be partially
replicaled. For instance, a scalar mav live on onlyv one
processor, or on more than once processor. Tvpically, a
scalar is replicated—it lives on all processors. The repli-
cation of scalar data makes ferches cheap because cach
processor has a copy of the requested value. Stores to
replicared scalar dara can be expensive, however, it the
value to be stored has not been replicated. In that case,
the value to be stored must be sent to cach processor.

The same consideration applies to arravs. Arravs
mayv be replicated, in which case each processor has a
copv ofan entire arrav; or arravs mav be partially rephi-
cared, m which case cach element of the arrav is avail-
able on a subscr ofthe processors.

Furthermore, arravs that are ot replicated mav be
distributed across the processors in several ditferent
fashions, as explained above. In facr, cach dimension
of cach array mav be distributed mdependently of
the other dimensions. The HPEF mapping direcives,
principally ALIGN and DISTRIBUTE, give the pro-
grammer the ability to specity completely how cach
dimension ot cach array is laid out. DATA usces the
nformation in these directives to construct an internal
deseription or data space of the favour of cach array.

ITER

The I'TER phase determines where the mrermediate
results of caleulations should live. Its relationship to
DATA can be expressed as:

= DA'TA deaides where parallel data lives.
= [TER decides where parallel computations happen.

Each arrav has a fixed number ot dimensions and an
extent in cach of those dimensions; these propertics
rogether determine the shape of an array. After DATA
has finished processing, the shape and mapping of
cach array is known. Similarlv, the result ofa computa-
non has a particular shape and mapping. This shape
may be different from that ot the data used in the com-
putation. As a simple example, the computation

AC:,:,3) + B(:,:,3)

has a two-dimensional shape, even though both arravs
A and B have three-dimensional shapes. The dara

space data structure 1s used to describe the shape of

cach array and its lavour in memory and across proces-
sors; similarly, iteration spaceis used to describe the
shape of each computation and its lavout across
processors. One of the main tasks of transform is to
construct the iteration space tor cach compurtation so
that it leads to as little mterprocessor communication
as possible: this construction happens m ITER. The

compiler’s view of this construction and the interac-
tion of these spaces arc explamed in Reference 18.

Shapes can change wichin an expression: while some
operators rerurn a result having the shape of their
operands (e.g., adding two arravs of the same shape
returns an arrav of the same shape), other operators
can return a result having a different shape than the
shape of their operands. For example, reductions like
SUM rerurn a result baving a shape with lower rank
than that of the input expression being reduced.

One well-known merthod of determining where
computations happen is the “owner-computes” rulc.
With this method, all the values needed to construct
the computation on the right-hand side of an assign-
ment statement are ferched (using interprocessor
communication if necessary) and computed on the
processor that contains the lefr-hand-side location.
Then they are stored to that left-hand-side location (on
the same processor on which thev were computed).
Thus a description of where computations oceur is
derived from the output of DATA. There are, however,
simple examples where this method leads to Jess than
optimal performance. Forinstance, in the code

real A(n, n), B(n, n), C(n, n)

'hpf$ distribute A(block, block)
"hpf$ distribute B(cyclic, cyclic)
'hpf$ distribute C(cyclic, cyclic)

forall (i=1:n, j=1:n)
ACi, 3) = B(i, j) + CGi, j)
end forall

the owner-compurtes rule would move B and C to
align with .4, and then add the moved values of Band
Cand assign to /. 1ris certaily more etticient, how-
ever, to add B and Crogether where they are aligned
with cach other and then communicate the result to
where it needs to be stored to A With this procedure,
we need to communicate only one set of values rather
than two. The compiler identifies cases such as thesce
and generates the computation, as indicated here, to
minimize the communication.

ARG

The ARG phase pertorms anv necessary remapping of

actual arguments at subroutine call sites. It docs this
by comparing the mapping of the acruals (as derer-
mined by ITER) to the mapping of the corresponding,
dummies (as determmed by DATA).

Digiral Technical Journal Vol.7 No. 3 1995

(5]

In our implementation, the caller pertorms all
remapping. It remapping is necessary, ARG exposes
that remapping by inscrting an assignment statement
that remaps the acrual to a temporary thar is mapped
the way the dummy is mapped. This guarantees that
references to a dummy will access the correct data as
specified by the programmer. Of course, it the parame-
reris an OUT argument, a similar copv-out remapping
has to be inserted after the subroutine call.

DIVIDE

The DIVIDE phasc partitions (“divides™) cach expres-
sion n the dotree into regions. Each region contains
computations that can happen without interprocessor
communication. When region R uses the values of
a subexpression computed n region S, tor example,
mnrerprocessor communication is required ro remap
the computed values trom theirlocations in S to their
desired locations in R. DIVIDE makes a temporary
mapped the wav region R oneeds it and makes an
explicit assignment statement whosce left-hand side
1s that temporary and whose right-hand side s the
subexpression computed i region S. In this way,
DIVIDE makes explicit the interprocessor communi-
cation thatis implicitin the itcrarion space information
attached to cach expression node.

DIVIDE also pertorms other processing:

= DIVIDE rephicates expressions needed to manage
control flow, such as an expression representing
a bound of a DO loop or the condition in an ¥
statement. Conscquently, each processor can do
the necessary branching,.

= For cach srarement requiring communication,
DIVIDE identifics the kind of communication
needed.

Depending on what knowledge the two sides of the
communication (i.c., the sender and the receiver)
have, we distinguish two kinds of communicarion:

- Full knowledge. The sender knows whar it is
sending and to whom, and the receiver knows
what it is receiving and from whom.

- Partial knowledge. Either the sender knows

what it 1s sending and to whom, or the receiver
knows what it is receiving and from whom, but
the other party knows nothing,
This kind of message 1s typical of code dealing
with irregular dara accesses, for instance, code
with arrav references containing vector-valued
subscripts.

STRIP

The STRIP phase (shortened from “strip miner™;
probably a better term would be the “localizer™) takes
the statements categorized by DIVIDE as needing

Digiral Technical Journal Vol.7 No. 3 1995

communication and inserts calls to libraryv routines to
move the data from where it is to where it needs to be.

It then localizes parallel assignments coming from
vector assignments and FORALL constructs. In other
words, cach processor has some (possibly zero) num-
ber otarrav locations that must be stored to. A set of
loops is generated thar calculates the value to be stored
and stores it. The bounds for these loops are depen-
denton the distribution of the array being assigned to
and the scection of the arrav being assigned to. These
bounds mav be explicit numbers known at compile
time, or thev mav be expressions (when the array size
1s not known at comptle time). In any case, they are
exposed so that they mav be oprimized by later phases.
Thevare nor calls to run-time routines.

The subscriprs of each dimension of cach array in
the statement are then rewritten in terms of the loop
variable. This modification effectively turns the origi-
nal global subscript into a local subscript. Scalar sub-
saripts are also converted to local subscripts, butin this
case the subscripr expression docs not involve loop
ndices. Similarly, scalar assignments that reference
array clements have their subscripts converted from
global addressing to local addressing, based on the
original subscript and the distribution of the corre-
sponding dimension of the array. They do not require
strip loops. For example, consider the code tragment
shown in Figure Ila.

Here £ is some variable whose value has been
assigned before the FORALL. Ler us assume that A4
and B have been distributed over a 4 X 5 processor
arrav in such awav that the first dimensions of A and
arc distributed CYCLIC over the tirst dimension of the
processor array (which has extent 4), and the second
dimensions of A and £ are distributed BLOCK over
the sccond dimension of the processor array (which
has extent 5). (The programmer can express this
through a facility in HPE.) The generated code is
shownin Figure 110.

[fthe arrav assigned to on the lefr-hand side of such
a statement is also referenced on the right-hand side,
then replacing rhe parallel FORALL by a DO loop
may violate the “ferch before store” semantics of the
ortginal statement. That is, an arrav clement may be
assigned to on one iteration of the DO loop, and this
new value mav subsequently be read on a later itera-
tion. In the original meaning of the statement, how-
ever, all values read would be the original values.

This prob
the right-hand side of the statement in its entirety into

em can ahkvavs be resolved by evaluating

a temporary array, and then—in a sccond set of DO
loops—assigning that temporary to the left-hand side.
We use dependence analvsis to determine if such a
problem occurs atall. Evenitic docs, there are cases in
which loop transtormations can be used to climinate
the need fora temporary, as outlined n Reference 19.

(b) Pscudocode Generared tor Code Fragment

B(cyclic,

real AC100, 20), B(100, 20)
'hpf$ distribute A(cyclic, block),
forall (i = 2:99)
ACi, k) = B(i, k)
end forall
(a) Code Fragment
m = my_processor ()
if k mod 5 = Lm/4J then
do i = (if m mod 46 = 0 then 2 else 1),
ACi, Lk/S51) = B(i, Lk/51)
end do
end if

block)

(if m mod 4 = 3 then 24 else 25)

Figure 11
Code Fragment and Pscudocode Generared for Code Fragment

(Some poor implementations alwavs introduce the
temporary even whenitis not needed.)

Unlike other HPF implementations, ours uses
compiler-generated inlined expressions instead of
function calls to determine local addressing values.
Furthermore, our implementation does not introduce
barrier synchronization, since the sends and receives
generated by the wanstorm phase will enforee any
necessary synchronization. In general, this is much less
expensive than a naive insertion of barriers. The
rcason this works can be seen as follows: first, anv valuc
needed by a processor is computed cirher locally or
nonlocally. 1f the value is computed locally, the normal
control flow guarantees correct access order for that
ue 1s computed nonlocally, the gener-
ated recenve on the processor that needs the value

value. Ifthe va

causes the receving processor to wait until the value
arrives from the sending processor. The sending
processor will notsend the value until it has computed
it, again because of normal control-tlow. If the sending
processor is ready to send data before the receiving
processor is ready for it, the sending processor can
continuc without waiting for the data to be received.
Digital’s Parallel Sotnware Environment (PSE) butters
the dara until it is necded.”

Some Optimizations Performed by the Compiler

The GEM back end

optimizations:

performs the following

= Constant folding

= Optimizations of arithmctic 1F, logical IF, and
block TF-THEN-ELSE

= Global common subexpression elimination

= Removal of invariant expressions from loops

= Global allocation of general registers across pro-
gram units

= In-line cxpansion of statement functions and
routines

= Optimization of array addressing in loops

= Value propagation

= Deletion of redundant and unrcachable code

= Loop unrolling

= Software pipelining to rearrange instructions
between difterent unrolled loop iterations

= Array temporary climination

In addition, the transform component performs
some important oprnmizations, mainly devoted to
iImproving interprocessor communication. We have
implemented the following optimizations:

Message Vectorization
The compiler gencerates code to limit the communica-
tion to one SEND and one RECEIVE for each array
being moved between any two processors. This is the
most obvious and basic of all the optimizations that a
compiler can perform for distributed-memory archi-
tectures and has been widelv studied

20-22

Digital Technical Journal Vol.7 No.3 1995

16

It the arravs Aand B are laid outas in Figure 12 and
it 315 to be assigned to 4, then arrav clements B(4),
B(5), and 3(6), all of which live on processor 6,
should be sent to processor 1. Clear)y, we do not want
ro generate three distinet messages for this, Theretore,
we colleet these three clements and generate one mes-
sage containing all three of them. This example

involves full knowledge.

Communications involving partial knowledge arce
also vectrorized, but thev are much more expensive
because the side of the message without mitial knowl-
cdge has to be informed of the message. Although
there are several wavs to do this, all are costly, either in
time or in space.,

We use the same method, incidentally, ro inline the
HPF XXNX_SCATTER routines. These new routines
have been introduced to handle a parallel construct
that could cause morc than once value to be assigned to
the same location. The outcome of'such cases 1s deter-
minced by the routine being mmlined. For instance,
SUM_SCATTER simply adds all the values that arnive
ar cach location and assigns the final result to that loca-
tion. Although this is an cxample of interprocessor
conununication with partial knowledge, we can sull
build up messages so that only a mmimum number ot
MESSAgEs Aare Sent.

In some cases, we can improve the handling of com-
munications with partial knowledge, provided thev
occur more than once in a program. For more mtor-
mation, please sce the scerion Run-time Preprocessing
of Irregular Dara Accesses.

Strip Mining and Loop Optimizations

Strip mining and loop optimizations have to do with

generaning cthicient code on a per-processor basis, and

so in some sense can be thought of as conventional.

Generally, we follow the processing deratled in

Reterence 19 and summarized as:

= Strip mining obstacles are chininated where possi-
ble by loop transtormations (loop reversal or loop
mcerchange).

= Temporaries, ifintroduced, are of minmmal size; this
is achieved by loop interchange.

= Extcrior loop optimization is used to allow reused
data to be kepr in registers over consecutive irera-
tions of the innermost loop.

= Loop fusion cnables more ctticient use of conven-
tonal optimizations and minimizes loop overhead.

Nearest-neighbor Computations
Nearest-neighbor compurtations are common in code
writren to discretize partial differential equations. See
the example given in Figure 2.

IFwe have, torexample, 16 processors, with the arrav
A distributed n a (BLOCK, BLOCK) fashion over the
processors, then conceptually, the arrav s distribured as
in Figure 13, where the arrows indicate communica-
tion needed berween neighboring processors. In fact,
i this case, cach processor needs to sce values only
trom a narrow stripy (or “shadow edge™) in the memory
of its neighboring processors, as shown in Figure 14,

The compiler identifics nearest-neighbor computa-
tions (the user does not have to tag them), and 1t alters
the addressing ot cach arrav involved in these compu-
tations (throughout the compilation unit). As a result,
cach processor can store those array elements that are
needed from the neighboring processors. Those array
elements are moved m (using message vectorization)
at the beginning of the computation, after which the
cneire compuration is local.

Recognizing nearest-neighbor statements helps
generate betrer code in several wavs:

= Less run-time overhead. The compiler can casily
identity the exact small portion of the array
that needs to be moved. The communication for
nearest-neighbor assignments is extremely regular:
At cach srep, cach processor is sending an enrire
shadow cedge to preasely one of its neighbors.
Therctore the communication processing overhead
15 greatly reduced. That is, we are able to gencerate

ARRAY A ARRAY B
PROCESSOR A
NUMBER 12 5 6 7 8 v
mem[Apase + 0] 7 mem|(Bpase + 0] 418 |12 - -
mem[Apzse + 1] 8 mem(Bpase+ 1] | 1]5]9 A
. 1]9 . 6|10 ¥
: 2 [10 : 7 1
3|11
412
5
6
Figure 12 Figure 13

Two Arravs in Memory

Digital Technical Journal \Vol. 7 No. 3 1995

A Nearest-neighbor Communication Pattern

Figure 14
Shadow Edges tor a Nearest-neighbor Compuration

communication involving even less overhead than
general communication involving full knowledge.

= No local copving. If shadow cdges were not used,
then the tollowing standard processing would rake
place: For cach shifted-arrav reference on the right-
hand side of the assignment, shift the entire array;
then identify that part of the shifted array that lives
locally on cach processor and create a local tempo-
rarv to hold it. Some of that temporary (the part
representing our shadow edge) would be moved in
from a ncighboring processor, and the rest of the
temporary would be copied locally from the origi-
nal arrav. Our processing climinates the need for
the local temporary and tor the local copy, which is
substantial for large arravs,

= Greater locality of reference. When the actual com-
putation is performed, greater localiny of reterence
is achieved because the shadow edges (ic., the
received values) are now part of the arrav, rather

than being a temporary somewhere else in memory.

= Fower messages. Fmally, the optimization also
makes it possible for the compiler to see that some
messages mav: be combined imto one message,
thereby reducing the number of messages that
must be sent. For instance, it the right-hand side
of the assignment statement in the above example
also contained aterm A(7 + 1,/ + 1), even though
overlapping shadow edges and an additional
shadow cdge would now be in the diagonally adja-
cent processor, no - additional communication
would need to be generated.

Reductions

The SUM intrinsic function of Fortran 90 takes an
array argument and returns the sum of all its elements.
Alternarively, SUM can rerurn an arrav whose rank is

one less than the rank of its argument, and cach of

whosce values is the sum of the clements in the argu-

ment along a line parallel to a specified dimension.

In cither casc, the rank ot the resulris less than that of
the argument; therefore, SUM s referred to as a
reduction intrinsic. Fortran 90 includes a family of
such reductions, and HPF adds more.

We inline these reduction mtrinsics in such a way
as to distribute the work as much as possible across
the processors and to minimize the number of mes-
sages sent.

In general, the reduction is pertormed in three basic
steps:

1. Each processor locally pertorms the reduction oper-
ation on 1ts part of the reduction source into a butter.

2. These partial reduction results are combined with
those of the other processors in a “logarithmic”
fashion (to reduce the number of messages sent).

3. Theaccumulated resultis then locally copied to the
rarget location.

Figure 15 shows how the compurtations and com-
munications occur in a complete reduction of an array
distributed over four processors. In this higure, each
vertical column represents the memory of a single
processor. The processors are thought of (in this case)
as being arranged in a 2 X 2 squarg; this is purcly for
conceptual purposes—the actual processors are tvpi-
callv connected through a swirch.

First, the reduction is performed locallv in the
memorv of each processor. This is represented by the
vertical arrows in the figure. Then the computations
are accumulated over the tour processors in two steps:
the nwo parallel curved arrows indicate the inter-
processor communication in the first srep, tollowed by
the communication indicated by the remaming curved
arrow in the second step. Of course, for five to cight
processors, three communication steps would be
neceded, and so on.

Although this basic idea never changes, the actual
generated code must take into account various tactors.
These include (1) whet

1er the object being reduced

T =

/

Figure 15
Compurations and Communicarion tor a Complere
Reduction over Four Processors

Digital Technical Journal Vol 7 No. 3 1995

is replicated or distributed, (2) the different distri-
butions that cach arrav dimension might have, and
(3) whether the reduction is complete or partial (i.c.,
wirh a DIM argument).

Run-time Preprocessing of Irregular Data Accesses
Run-time preprocessing of wregular data accesses is
a popular technique. It an expression involving the
same pattern of irregular dara access is present more
than once in a compilation unit, additional run-time
preprocessing can be used to good cffect. An abstract
example would be code of the form:

call setup(U, V, W)

do i = 1, n_time_steps, 1

do i =1, n, 1

ACV(i)) = A(V(i)) + B(W(i))
enddo
do i =1, n, 1

C(V(id)) = CV(i)) + D(W(i))
enddo
do i =1, n, 1

ECV(i)) = E(V(i)) + F(W(i))
enddo

enddo
which could be written in HPFE as:

call setup(U, Vv, W)

do i = 1, n_time_steps, 1
A = sum_scatter(B(W(1:n)), A, V(1:n))
C = sum_scatter(D(W(1:n)), C, V(1:n))
E = sum_scatter(F(W(1:n)), E, V(1:n))

enddo

To the compiler, the signiticant thing about this
code is that the indirection vectors Vand W are con-
stant over iterations of the loop. Therefore, the com-
piler computes the source and target addresses of the
data that hasto besenrand received by each processor
once at the top of the loop, thus paving this price once
time. Each such statement then becomes a communi-
cation with full knowledge and is exceuted quite cffi-
ciently with message vectorization,

Other Communication Optimizations

The processing needed rto ser up communication ot
arrayvassignments is fairlv expensive. For each element
of source data on a processor, the value of the data and
the targer processor number are computed. For cach
rarget data ona processor, the source processor num-
berand the rarget memory address are computed. The
compiler and run time also need to sort out local data
thar do not involve communication, as well as to vece-
torize the datra thar are ro be communicated.

We trv to optimize the communication processing
bv analvzing the iteration space and data space of the
arrav scctions involved. Examples of the patterns of
operations that we optimize include the following:

= Conuguous data. When the source or target local
arrav section on cach processor is in contiguous
memory addresses, the processing can be optimized

Digital Techmcal Journal Vol.7 No.3 1995

to treat the section as a whole, instead of comput-
g the value or memorv address of each element in
the section.
In general, array scctions belong to this caregory
it the Tast veetor dimension is distrtbuted BLOCK
or CYCLIC and the prior dimensions (1f any) arce
all semal.
[t the source and rarger arrav sections satish even
more restricred constraints, the processing overhead
mav be turther reduced. For example, armav opera-
tions that invole sending a contiguous section of
BLOCK or CYCLIC distributed data to a single
processor, or vice versa, belong to this category and
result in very efficient communication processing.
= Unique source or target processor. When a proces-
soronly sends data to a unique processor, ora pro-
cessor only receives data from a unique processor,
the processing can be oprimized to use that unique
processor number mstead of compuring the proces-
sor number for cach c¢lement in the section. This
optimization also applics to rarget arrays that are
fully replicared.

s Irregular data access. IF all indirection vecrors
are fully replicated for an irregular data access,
we can actually implement the arrav operation as
a full-knowledge communication instead of a more
expensive partial-knowledge communicarion.

For example, the irregular dara access statement
ACv(:)) = B(:)

can be turned nro a regular remapping statement it
s fullv replicated and A and Bare borh distributed.
Furthermore, it B is also tullv replicated, the srare-
mene is recognized as a local assignment, removing,
the communication processing overhead altogether.

Performance

In this scction, we examine the performance of three
HPFE programs. One program applies the shallow-
water equations, discretized using a finite difference
scheme to a specific problem; anothar is a conjugate-
gradient solver for the Poisson cquation, and the
third 1s a three-dimensional finite ditference solver,
These programs are not reproduced in this paper, but
they can be obrained via the World Wide Web ar
htep:/ /www.digital.com /info /hpe /£90 /.

The Shallow-water Benchmark

The shallow-water cquations model atmospheric
flows, tides, river and coastal flows, and other phe-
nomena. The shallow-water benchmark program uscs
these equations to simulare a specitic flow problem. It
models variables refated to the pressure, veloany, and
vorticity at cach point of a two-dimensional mesh thar

is a slice through cither the water or the atmosphere.
Partial differential equations relate the variables.
The model is implemented using a finite-ditference
method that approximates the partial differential
cquations at cach of the mesh points.” Models based
on partial difterential equations are at the core of many
simulations of physical phenomena; finite ditterence
methods arec commonly used tor solving such models
on computers.

The shallow-water program is a widely quoted
benchmark, partly because the program is small
enough to examine and tune carctully, vet it performs
real computation representative of many scientific sim-
ulations. Unlike SPEC and other benchmarks, the
source ftor the shallow-water program is not controlled.

The shallow-water benchmark was written in HPF
and run in parallel on workstation tarms using PSE.
There is no explicit message-passing code in the pro-
gram. We modified the Fortran 90 version that
Applicd Parallel Research uscd tor its benchmark dara.
The F90/HPE version of the program takes advantage
of the new teatures in Fortran 90 such as modules.
The Fortran 77 version of the program is an unmodi-
fied version from Applied Parallel Research.

The resulting programs were run on two hardware
configurations: as many as cight 275-megahertz
(MHz) DEC 3000 Model 900 workstations connected
by a GIGAswitch system, and an eight-processor
AlphaServer 8400 (300-MHz) svstem using shared-
memory as the messaging medium. Table 1 gives the
speedups obrained tor the 512 X 512-sized problem,
withTMAXscetto 50.

The speedups in each line are relative to the DEC
Fortran 77 code, compiled with the DEC Fortran
version 3.6 compiler and run on one processor. The
DEC Fortran 90 -wsf compiler is the DEC Fortran 90
version 1.3 compiler with the -wsf option (“parallel-
ize HPF for a workstation tarm™) specificd. Both

Table 1

compilers use version 3.58 of the Fortran RTL. The
operating svstem used ts Digital UNIX version 3.2.

Table 1 indicates that this HPF version of shallow
watcr scales very well to eight processors. In fact, we arce
getting apparent superlinear speedup in some cases.
This is duc in part to optimizations that the DEC
Fortran 90 compiler performs that the serial compiler
doesnot, and in part to cache eftects: with more proces-
sors, there is more cache. On the shared-memory
machine, we are getting apparent superlinear speedups
even when compared to the DEC Fortran 90 -wsf
compiler’s one-processor code; this is likely due to cache
cttects. The program appears to scale well bevond eight
processors, though we have not made a benchmark-
quality run on more than cight identical processors.

For purposes of comparison, Table 2 gives the pub-
lished speedups from Applied Parallel Research on the
shallow-water benchmark tor the IBM SP2 and Intel
Paragon parallel architectures. The speedups shown
arc relative to the once-processor version of the code.
This table indicates that the scaling achieved by the
DEC Fortran 90 compiler on Alpha workstation farms
is comparable to that achieved by Applied Parallel
Research on dedicated parallel systems with high-
speed parallel interconnects.

A Conjugate-gradient Poisson Solver
The Poisson partial ditferential equation is a work-
horse of mathematical physics, occurring in problems

Table 2
Speedups of HPF Shallow-water Code on IBM's and
Intel’s Parallel Architectures

—— Number of Processors
8 4 3 2 1

IBM SP2 750 381 — 1.97 1.00
Intel Paragon 738 384 — 1.95 1.00

Speedups of DEC Fortran 90/HPF Shallow-water Equation Code

DEC Fortran 90 -wsf

DEC Fortran 77

Compiler Compiler
Number of Processors
8 4 3 2 1 1
Eight 275-MHz, 8.57 3.13 2.19 1.59 1.00 1.00
DEC 3000
Model 900
workstations in
a GIGAswitch farm
Eight-processor, 10.6 5.30 3.86 1.97 1.12 1.00

300-MHz,
shared-memory
SMP AlphaServer
8400 systems

Digiral Technical Journal Vol.7 No.3 1995

20

of heat tlow and electrostatic or gravitational poten-
tial. We have investigated a Poisson solver using the
conjugate-gradient algorithin. The code exercises
both the nearest-neighbor oprimizations and the
inlining abilities of the DEC Fortran 90 compiler.*

Table 3 gives the timings and spcedup obrained
on a 1000 X 1000 array. The hardware and softtware
configurations arc identical to those used for the
shallow-water timings.

Red-black Relaxation

A common mcthod of solving partial difterential
cquations is red-black relaxation.®* We used this
method to solve the Poisson cquation in a three-
dimensional cube. We compare the parallelization
of this algorithm tor a distributed-memory system
(a cluster of Digital Alpha workstations) wirh Parallel
Virtual Machine (PVM), which 1s an explicit message-
passing library, and with HPF.* These algorithms arc
based on codes written by Klose, Wolton, and Lemke
and made available as part of the suite of GENESIS
distributed-memory benchmarks.

Table 4 gives the speedups obtained for both
the HPF and PVM versions of the program, which
solves a 128 X 128 X 128 problem, on a cluster of
DEC 3000 Model 900 workstations connected by an
FDDI/GIGAswitch svstem. The speedups shown are
relative to DEC Fortran 77 code written for and run on
a single processor. This table shows that the HPF ver-
sion performs somewhat better than the PVM version.

There is a signiticant difterence in the complexity of

the programs, however. The PVM codc is quite intri-
cate, because it requires that the user be responsible
tor the block partitioning of the volume, and then tor
explicitly copving boundary taces between processors.
Bv contrast, the HPF code is intuitive and tar morc
casilv maintained. The reader is encouraged to obtain
the codes (as described above) and compare them.

Table 3

Tabie 4

Speedups of DEC Fortran 90/H PF
and DEC Fortran 77/PVM on
Red-black Code

—Number of Processors —
8 4 2 1

DEC Fortran 77 1.00
DEC Fortran 77/PVM 7.01 3.73 1.79 —
DEC Fortran 90/HPF 8.04 4.10 1.95 1.05

In conclusion, we have shown that important algo-
rithms familiar to the scientific and technical commu-
nity can be written in HPF. HPF codes scale well to at
least eight processors on farms of Alpha workstations
with PSE and deliver speedups competitive with other
vendors’ dedicated parallel architectures.

Acknowledgments

Significant help tfrom the tollowing people has been
essential to the success of this project: High
Performance Computing Group enginecring manager
Jett Rever; the Parallel Software Environment Group
led by Ed Benson and including Phil Cameron,
Richard Warren, and Santa Wirvaman; the Paralle]
Tools Group managed by Tomas Loftgren and includ-
ng David LaFrance-Linden and Chuck Wan; the
Digital Fortran 90 Group led by Keith Kimball; David
Loveman fer discussions of language issues; Ned
Anderson of the High Performance Computing
Numerical Library Group for consulting on numeri-
cal issues; Brendan Boulter of Digital Galway for the
conjugate-gradientcodeand help with benchmarking;
Bill Celmaster, tor writing the PVM version of the red-
black benchmark and its related description; Roland
Belanger tor benchmarking assistance; and Marco
Annaratone for useful technical discussions.

Speedups of DEC Fortran 90/HPF on Conjugate-gradient Poisson Solver

DEC Fortran 90 -wsf

DEC Fortran 77

Compiler Compiler
— — ———Number of Processors
8 4 3 2 1 1
Eight 275-MHz, 141 8.38 5.20 2.52 1.07 1.00
DEC 3000
Model 900
workstations in
a GIGAswitch farm
Eight-processor, 17.0 9.02 6.87 4.51 0.98 1.00

300-MHz,
shared-memory
SMP AlphaServer
8400 systems

Digital Technical Journal Vol.7 No.3 1995

References and Notes

l.

(O3]

High Performance Fortran Forum, “High Perfor-
mance Fortran Language Specification, Version 1.0,
Scientific Progrerinming, vol. 2, no. 1 (1993). Also
available as Technical Report CRPC-TR93300, Center
tor Rescarch on Parallel Compurtation, Rice University,
Houston, Tex.; and via anonvmous ttp trom
titan.cs.rice.edu in the directory public/HPFF /dratt,
version 1.1 isthe file hpt v11.ps.

C. Koclbel, D. Loveman, R. Schreiber, G. Stecle, Jr.,
and M. Zoscl, The High Performance Fortran
Hend book (Cambridge, Mass.: MIT Press, 1994).

Digital High Performeance Fortran 90 HPF and
PSE Manual (Mavnard, Mass.: Digital Equipment
Corporation, 1995).

DEC Fortran 90 Languicage Reference Ml (May-
nard, Mass.: Digital Equipment Corporation, 1994).

E. Albert, KL Knobg, J. Lukas, and G. Stecle, Jr., “Com-
piling Fortran 8x Arrav Features for the Connecrion
Machine Computer Svstem,” Symposiuin on Parellel
Programming: — Experience with — Applications.
Languages. and Systems. ACM SIGPLAN. July 1988.

K. Knobe, J. Lukas, and G. Steele, Jr., “Massively Par-
allel Data Oprimization,” Frontiers '88: The Second
Sympositnm on the Frontiers of Muassively Pearallel
Computation. JELLE George Mason
October 1988.

University,

K. Knobe, J. Lukas, and G. Steele, Jr., *“Data Opti-
mivation: Allocation of Arravs to Reduce Communica-
tion on SIMD Machines,” Jowrnal of Parallel and
Distributed Computing. vol. 8 (1990): 102-118.

K. Knobe and V. Nararajan, “Data Oprimization:
Minimizing Residual Interprocessor Dara Motion on
SIMD Machines,” Frontiers '90: The Third Symjo-
sittm on the Frontiers of Viassively Parallel Compii-
tation. 11EE. University of Marvland, Ocrober 1990.

M. Gupta and P Banerjee, “Demonstration of Auto-
matic Data Partitioning Techniques for Parallclizing
Compilers on Multicompurers,” /EEE Transactions
on Parallel and Distributed Systems. vol. 3, no. 2
(1992): 179-193.

M. Gupra and P. Banerjee, “PARADIGM: A Compiler
for Automaric Data Distribution on Multicomputers,”
1€S93: The Seventh ACM International Confercice
on Supercomputing. Japan, 1993.

S. Chatterjee, J. Gilbert, and R. Schreiber, “The
Alignment-distribution Graph,™ Sixth Annual Work-
shop on Languages ancd Compilers for Parallel
Computing. 1993.

14.

16.

19.

20.

21.

22.

24.

Digsral Technical Journal

J. Anderson and M. Lam, “Global Oprimizations for
Parallelism and Locality on Scalable Paralicl
Machines,” Proceedings of the ACH SIGPLAN 93
Conference on Programming Language Design
anc Jmplementation. ACM Press. vol. 28 (1993):
1290-1317.

The seven values A(9, 2), A9, 3), ... A(9, 8) can be
expressed concisely m Fortran 90 as A(9, 2:8).

R. Souza ct al, “GIGAswitch Svstem: A High-
performance Packet-switching Platform,” Digital
Technical Journal. vol. 6, no. 1 (1994): 9-22.

E. Benson, D. LaFrance-Linden, R. Warren, and
S. Wirvaman, “Design of Digital’s Parallel Software
Environment,” Digital Technical Journal. vol. 7,
no. 3 (1995, this issuc): 24-38.

D. Loveman, “The DEC High Pertformance Fortran
90 Compiler Front End,” Frontiers 95. The Fifth
Symposium on the Frontiers of Massivel)y Parallel
Computation, pages 46-53,
February 1995, 1EEE.

Mcl.ean, Virginia,

D. Blickstein etal., “The GEM Oprimizing Compiler
Svstem,” Digital Technical forrnal. vol. 4, no. 4
(Special Issue, 1992): 121-1306.

C. Oftner, “A Data Structure for Managing Parallel
Operations,” Proceedings of the 27th Haweaii Inter-
national Cornference on System Sciences. Volume
1I: Softtware Technology (IEEE Computer Socicty
Press, 1994): 33-42.

J. Allen and K. Kennedy, “Vector Register Allocation,”
IEEE Transactions on Computers. vol. 41, no. 10
(1992):1290-1317.

S Amarasinghc and M. Lam, “Communication Opti-
mization and Codc Generation tor Distributed Mem-
orv Machines,” Proceedings of the ACM SIGPLAN 93
Conference on Programming Language Design
and mplementation, ACM Press. vol. 28 (1993):
126-138.

C.-W. Tseng, “An Optimizing Forrran D Compiler
for MIMD Distribured-Mcemory Machines,” Ph.D.
thesis, Rice University, Houston, Tex., 1993, Available
as Rice COMP TR93-199.

A. Rogers, “Compiling for Locality of Reference,”
Technical Report TRO1-1195, Ph.D. thesis, Cornell
University, [thaca, N.Y., 1991.

). Saltz, R. Mirchandaney, and K. Crowley, “Run-time
Parallclization and Scheduling of Loops,” IEEE Ticins-
actions on Compuiters (1991): 603-611.

R. Sadourncy, “The Dyvnamics of Finite-ditterence
Models of the Shallow-water Equations,” Jou rnal of
Atmospheric Sciences, vol. 32, no. 4 (1975).

Vol.7 No. 3 1995

21

22

25. B. Boulter, “Pertormance Evaluation ot HPF for Scien-
titic Computing,” Proceedings of 11igh Perforimeance
Computing and Ncltworking, lectire Notes in
Computer Science 919 (Springer-\'erlag, 1995).

26. W Press, S, Teukolsky, W Verterling, and B. Flanncery,
Numerical Recipes in Fortian: The Arl of Scienlific
Computing (Cambridge: Cambridge University Press,
2d edition, 1992).

27. A, Geist, PV Parallel Virtnal Machine (Can-
bridge, Mass.: MIT Press, 1994).

28. A, Hev, “The GENESIS Distribured Memory Bench-
marks,” Parallel Computing vol. 17, no. 10-11
(1991): 1275-1283.

Biographies

Jonathan Harris

Jonathan Harnis is a consulting engineer i the High
Performance Computing Group and the project leader
for the transform (HPF parallelization) component of the
DEC Formran 90 compiler. Prior to the High Performance
Fortran project, he designed the instruction set for the
DECmpp, a 16K processor machine that became opera-
tional i 1987, He also helped design avcompiler and
debugger tor the machine, contributed ro the processor
design, and invented parallel algorithms, some ot which
were patented. He obrained an MUS. in compurer science
in 1985 asa Digiral Resident at the University of Hinois;
he has been wirh Digiral since 1977,

John A. Bircsak

A principal software enginecr in Digital’s High Pertormance
Computing Group, John Bircsak contributed to the design
and development ot the ranstorm component of the DEC
Fortran 90 compiler. Betore joining Digital in 1991 he was
mvolved i the design and development of compilers at
Compass, Inc., prior to that, he worked on compilers and
software tools ar Ravtheon Corp. He holds a B.S.E.in
compuret science and engineering from the University

of Pennsvlvania { F984) and an M.S 1in computer seience
from Boston Universin (1990).

Digiral Technical Journal \Vol.7 No. 3 1995

M. Regina Bolduc

Regina Bolduc joimed Digital in 19915 sheis a principal
sottware engineer in the High Performance Computing
Group. Reginawas involved in the development of the
transtorm and tront end components of the DEC Fortran
90 compiler. Prior to this work, she was a senior member
ofthe technical statfar Compass, Ine., where she worked
on the design and development of compilers and compiler-
generator tools. Regina recened a BLAL in mathemarics
from Emmanucl College in 1957.

Jill Aian Diewald

Jill Dicwald contributed to the design and implementa-
tion of the transform component of the DEC Fortran 90)
compiler. She is a principal software engineer in the High
Pertormance Computing Group. Betore joining Digital
in 1991, Jill was a technical coordinator at Compass,
Inc., where she helped design and develop corpilers and
compiler-related tools. Prior to that position, she worked
at Tnnovative Svstems Technigues and Dara Resourcs,
Inc. on programming languages that provide cconomic
analvsis, modeling, and database capabilities tor the finan-
aal markerplace: She has a B.S. in computer science From
the Universiny of Michigan

Israel Gale

Isracl Gale 1s a principal wrirerin the High Performance
Computing Group and the author of Digital’s High
Performance Fortran Turorial. He joined Digital in 1994
after receiving an AN degree in Near Eastern Languages
and Civilizations from Farvard University,

Neil W. Johnson

Refore coming to Digital in 1991, Neil Johnson wasa
staft scientist at Compass, Inc. He has more than 30 vears
ot experience in the developmenrt of compilers, including
work on the vecrorization and optimization phases and
tools for compiler development. Asa principal software
engineer in Digical’s High Pertormance Computing
Group, he has worked on the development ot the front-
end phase tor the DEC Forrran 90 compiler. He is a mem-
ber of ACM and holds B.A. (magna cum laude) and MLA.
degrees in mathematics from Concordia College and the
University of Nebraska, respectively.

Shin Lee

Shin Lee is a principal software engineer n Digital’s High
Pertormance Computing Group. She contributed to the
design and development of the rranstorm component of
the DEC Fortran 90 compiler. Betore joining Digiral in
1991, she worked on the design and development of com-
pilers at Encore Computer Corporation and Wang Labs,
Inc. She received a B.S.in chemistry from National Taiwan
University and an M.S. in computer science from Michigan
State University.

C. Alexander Nelson

In 1991, Alex Nelson came ro Digital to work on the
SIMD compiler for the MasPar machine. Heis a principal
software engineer in the High Performance Computing
Group and helped design and implement the transtorm
component of the DEC Fortran 90 compiler. Prior to this
work, he was employed as a sottware engineer ac Compass,
Inc.and a svstems archirect ar Incremental Svstems. He
received an VLS. in computer science from thie University
of North Carolina in 1987 and an M.S. in chemistry (cum
laudce) from Davidson College in 1985, He is a member
of Phi Bera Kappa.

Carl D. Offner

As 3 principal software engineer in Digital’s High
Pertormance Computing Group, Carl Offier has primary
responsibility for the high-level design of the transtorm
component of the DEC Fortran 90 compiler. He is also
amember of the Advanced Development Group working
onissues of parallehizing DO loops. Betore joining Digital
in 1993, Carl worked ar Intel and at Compass, Tnc. on
compiler development. Before that, he taught junior high
and high school mathemuarics for 16 vears. Carl represents
Digital at the High Performance Fortran Forum. He is

a member of ACM, AMS, and MAA and holds a Ph.D.

in mathematics from Harvard University.

Digital Technical Journal Vol.7 No.3 1995

23

24

Design of Digital’s
Parallel Software
Environment

Digital's Parallel Software Environment was
designed to support the development and exe-
cution of scalable parallel applications on clus-
ters (farms) of distributed- and shared-memory
Alpha processors running the Digital UNIX oper-
ating system. PSE supports the parallel execu-
tion of High Performance Fortran applications
with message-passing libraries that meet the
low-latency and high-bandwidth communica-
tion requirements of efficient parallel comput-
ing. It provides system management tools to
create clusters for distributed parallel process-
ing and development tools to debug and pro-
file HPF programs. An extended version of dbx
allows HPF-distributed arrays to be viewed,

and a parallel profiler supports both program
counter and interval sampling. PSE also supplies
generic facilities required by other parallel lan-
guages and systems.

Digital Technical Tournal Vol.7 No.3 1995

Edward G. Benson

David C.P. LaFrance-Linden
Richard A. Warren

Santa Wiryaman

Digital’s Parallel Software Environment (PSE) was
designed to support the development and excecution
of scalable paralle] applications on clusters (farms) of
distributed- and shared-memory Alpha processors
running the Digital UNIN operating svstem. PSE
version 1.0 supports the High Performance Fortran
(HPF) language; it also supplies generie facilitics
required by other parallel languages and svstems. PSE
provides tools to defme a cluster of processors and to
manage distributed parallel exccution. It also conrains
development tools tor debugging and protiling paral-
lel HPF programs. PSE supports optimized message
passing over multiple inrerconnect tvpes, including
fiber distribured data intertace (FDDI), asvinchronous
transter mode (ATM), and shared memory.!

In this paper, we present an overview of PSE version
1.0 and explain why it was designed and sclecred
for use with HPE programs. We then discuss cluster
definition and management, describe the PSE appli-
cation model, and discuss PSE’s message-passing com-
municaton oprions, including an optimized transport
for message passing. We conclude with our pertor-
mance results.

Overview of PSE

Manv rescarchers and computer industry experts
believe thar to achieve cost-eftective scalable parallel
processing, svstems must be built using off-the-
shelf components and nor specialized CPUs and
meerconnects.?t Inoaccordance with this view, we
have designed Digital’s PSE to support the building
of a consistent ver flexible and casv-to-use parallel-
processing cnvironment across a nenworked collection
of AlphaGeneration workstations, servers, and svim-
metric multiprocessors (SMPs). Lavered on top of the
Digital UNIX operating svstem, PSE provides the sys-
tem software and tools needed to group collections of
machines for paralle] processing and to manage trans-
parently the distribution and running of parallel appli-
cations. PSE is implemented as a set of run-time
librarics and urilities and a dacmon process.

PSE version 1.0 1s designed to support clusters con-
sisting of 1 to 256 machines mtrerconnected with any
nerworking fabric thar Digital UNTX supportswith the

ransmission control protocol /internet protocol
(TCP/1P). Nerworking technologies can range from
simple Etherner to FDDI, ATM, and MEMORY
CHANNEL. Parallel execution is most ctticient when
the interconnect technology ofters high-bandwidth
and Jow-lateney communications to the user at the
process level. When building a cluster for paraliel pro-
cessing, the biscctional bandwidth of the communica-
tions fabric should scale with the number of processors
in the cluster. In practice, such a configuration can be
achieved by building clusters using Alpha processors
and Digital’s GIGAswitch /EDDI as components in a
multistage switch configuration.*® Figures 1 and 2
show two examples of PSE cluster contigurations.
Although the design center for PSE is a set of machines
connected by a high-speed local arca interconnect, a
cluster be constructed that remote
machines connected by a wide arca nenwork.

PSEis a collection of manv interrclared entities that
support parallel processing. PSE’s modcl is to collect
machines (called meinbers) into aset (called a cluster).
The members are generally all the machines atassite or

can includes

within an organization that have or might have PSE
mstalled. Once then subsets the cluster into named
(peantitions) that may overlap. The members ofa parti-
non usually share some common artribure, which
could be administrative (e.g., the machines of the
development group), geographic (e.g., connected to
the same FDDI switch), or relevant to the configura-
tion (¢.g., large memory, SMP).

The members of a cluster, the partitions, and other
related dara form a configuration databasce that can be
maintained in difterent ways, but preferably by a sys-
rem administrator. The configuration database can be
distributed using the Domain Name System (DNS) or
as a simple hle distributed by Nerwork File System
(NFS).* A dacmon process farmd runs on cach mem-
ber to provide per-member dvnamic informarion,

such as availabilivy and svstem load average. The static
database plus the dynamic information allow applica-
tions to pertorm tasks such as load balancing,

HPF Program Support

PSE was designed to be largely language-independent;
it currently supports the HPF programming language.
HPF allows programmers to express dara parallel com-
putations casily using Fortran 90 array-operation syn-
tax. Asaresult, users can obrain the benetits of parallel
processing without becoming systems programmers
and developing message passing or threads-based pro-
grams. The HPF language and comptler are discussed
clsewhere in this issuc of the Digital Technical
Journal”

Writing parallel applications in HPF is signiticantly
less complex than decomposing a problem and coding
a solution using cxplicit message passing, but good
development tools arc required. To allow the viewing
of HPF distributed arrays, we developed an extended
version of dbx and a parallel profiler that supports both
program counter and interval sampling. These tools
are discussed Jater in this paper.

High pertormance and efticient communication are
essential to suceess in parallel processing. PSE includes
a private message-passing library for use with compiler-
generated code. Thus it avoids overhead such as bufter
alignment and size checking that are required with
user-visible programming interfaces, such as Paralicl
Virtual Machine (PVM)." The message-passing library
supports shared memory and both TCP/IP and user
datagram protocol (UDP)/IP protocols on many
types of media, including FIDDT and ATM. PSE also
includes an optional subsct implementation of the
UDP, known as UDDP_prime, that has been oprimized
to reduce latency and improve ctticiency. This opti-
mization is discussed later i this paper.

FULL-DUPLEX

FODI A
GIGASWITCH FDDI |
|
|
| |
ALPHASERVER DEC 3000 DEC 3000 DEC 3000 |
8400 MODEL 900 MODEL 900 MODEL 900 |
SMP SERVER WORKSTATION WORKSTATION WORKSTATION |
: : : - l
: : ; ; !
' | DEC 3000 » | DEC 3000 . | bEC 3000 : |
* | MODEL 900 ' | MODEL 900 * | MODEL 900 + | ALPHASERVER |
| WORKSTATION | i | WORKSTATION | + | woRksTATION | 1 | 2100 SERVER |
. o o S e p—— |
ETHERNET NETWORK v
BRIDGE
Figure 1
PSE Basic Configuration
Digital Technical Journal Vol.7 No.3 1995 25

T Clust ‘
// ST
’ '/ /| Member Me
’/ ‘/' o
VA
7
X
Clus ; \:E:E-%é :
Memter \ ﬁ*\li-. fg
[NZ/ANN

“tyr

N4
N\

N

Y/ RN

hY
)
W

My

T Vi AN

7\

A

\\\\\\\
\\\\\

,/////// ' ,
V4 \\\\\\\\\ ' Vv
7 A

Figure 2
PSE Multistage Switch Conhiguration

Before developing PSE for use with HPF programs,
Digital considered nwo major alternatives: the distrib-
uted computing cnvironment (DCE) and PVAL®
(At that time, the message-passing interface | MP1
standard cffort was in progress.")

Although a good model tor client-server application
deploviment, DCL s designed for use with remore CPU
resources via procedure calls to libraries, This model
is very different from the data-parallel and message-
passing naturc of distributed parallel processing. Its
svichronous procedure call model requires the exten-
sive use of threads. In addition, DCE contains a signif-
icant number of sctup and management tasks. For
these reasons, we rejected the DCE environment.

Digital Technical Journal Vol. 7 No.3 1993

Three major considerations in our choice to develop
PSE instead of using PVM were stability, performance,
and transparency. At the start ot the PSE projecr, the
publicly available version of PVM did not meet the sta-
biliry, pertormance, and transparency goals of the PSE
project.

Cluster Definition and Management

PSE is designed to operare in a common system envi-
ronment where svstems are organized so that user
aceess, file name space, host names, and so on are con-
sistent. T'he ulnmarte goal tor the svstems in a distrib-
uted parallel-processing environment is to approach

the mransparent usabiliny of a svmmetric multiproces-
sor. Facilirics suclhas NFS (to mount/share file svstems
among machines, in particular working direcrorics)
and neework mtormation service (NIS) (also known as
“vetlow pages™ and used to share password files) arce
tfrequently used to set up a common system environ-
ment. In such an environment, users can log into any
machine and see the same environment. Other distrib-
uted cnvironments such as Load Sharing Facility
(LSE) make this same design assumprion.!!

A consistent file name space allows all processes that
make up an application to have the same file system
view by simply changing directory to the working
dirccrory of the invoking application. Consistent user
access allows PSE to use the standard UNIX remote
shell facility to starr up peer processes with standard
security cheeking.

Svstems inacommon system environment are can-
didates to become members of a cluster. A cluster is
often the largest sct of machines running PSE and
sharing a common system environment within an
organization or site. A cluster is divided mro partitions
that can overlap. A partition consists of a ser of
machines grouped together to meet the needs of an
application or uscr. Although partitions may be
defined o many wavs, svstems in a partition usually
share common attributes.

Partitions
Parallel programs run most ctticiently on a balanced
hardware configuration. Tvpically, organizations have
a varied collection of machines. Over time, organiza-
tions often acquire new hardware with ditferent net-
work adaprers, faster CPUs, and more memory. Such
situations can casily lead to increasing difficulty in
predicting application performance 1t scheduling
and load-balancing algorithms treat all machines in
a cluster equivalently. In addition to hardware differ-
ences, individual machimes can have ditferent sofeware
at atfects the abilin to run applications.
The PSE engineering team recognized that the
number of characteristics that users might want to

installed t

manage tor processor allocation and load-balancing
purposes would be overwhelming. To limit the prob-
lem, a design was chosen thar allows machines to be
grouped arbitrarly into named partitions. A partition
can be thought of as a parallel machine. Although
a svstem can be a member of two difterent partitions
and thercfore cause overlap, PSE docs not attempt ro
load batance or schedule processes bevond partition
boundarics. Overlapping partitions can therefore cre-
are a complex and potentially contlicting scheduling
sicvation. Well-defined and managed partitions allow
tor flexibility and predictability.

In addition to identfving machme membership,
partition definition allows various execution-related

characteristics to be set. Examples include the specitfi-
cation of a default communication tvpe, the default
execution priority, the upper bound on the execution
priority, and access control to partition resources.
Access control is enforced onlv on PSE-related activiry
and does not affect the use of the machine for other
applications.

Configuration Database

PSE cluster configuration information is captured in
adatabase. The database includes a list of cluster mem-
bers, partitions, and partition members. Additional
attributes such as the detault partition of a cluster, user
access lists tor a partition, and preferred nenwork
addresses for members ot a partition can beencoded in
the database.

The PSE contiguration database can be distributed
to all cluster members in two wavs: by storing it in
afile thatis accessible from all cluster members, or by
storing it as a Domain Name Svstem (DNS) databasc.
The usage patterns of the cluster database fit well with
the usage patterns of a DNS database. In particular,
DNS provides central administrative control with
version numbering to maintain consistency during

updates. Itis designed for querv-often, update-seldom
usage; it is distributed and allows secondary servers to
increase availability. Applicanions Jinked with the PSE
run-time lbrarics transparently access the database to
obtain configuration informanon.

In the DNS darabase, cach PSE configuration
token-value pair is stored as DNS TXT records. The
original spccitication tor DNS did not have TXT
records, but additional general information was
artached to domain names at the request of MITs
Project Athena.” The list of the TXT records, along
with DNS header information such as version number,
forms a DNS domain whose name is the PSE cluster
name. To facilitate the creation and setup of a PSE
cluster, we built the psedbedit utility for editing and
maintaining configuration databases.

A simple file that s avalable on all members of the
cluster can also be used as the cluster configuration

database. The file could be made available through
NES or copiced toall nodes using rdist. This alternative
might be appropriate tor very simple clusters where
the services of DNS are not warranted or - casces
where local policy precludes the use ot DNS.

Dynamic Information and Control

In addition to rhe static information of the configura-
tion database, there are also several pieces of dvnamic
information that optimize usage of clusters and parti-
tions. At the most fundamental level is availability, i.c.,
is a machine running? Other information includes the
number of CPUs, load average, number of allowed
PSE jobs, and number of active PSE jobs. All these

Digital Technical Journal Vol.7 No.3 1995

27

R R R R R RS

g

factors can help an application choose the best set of
members for parallel exceution. This dvnamic informa-
tion is collected by a daemon process (farmd). The
farmd daemon process cxecutes as a privileged (root)
process on cach cluster member and listens for requests
on a well-known cluster-specific UDP/IP port.

Multiple cluster members defined in the configura-
von database are designated as Joad servers. The load
servers arc the central repository for the dynamic
information for the entire cluster. Their farmd process
periodically receives time-stamped updares from the
individual daemons. Applications query the load
servers for both static and dvnamic information.
Applications do not themsclves parse the database nor
query the individual farmd daemons running on each
cluster member.

Once PSE is installed and configured, farmd is
started each time the svstem is booted. The name of
the cluster that farmd will service and the number of
PSE jobs (job slots) that will be allowed ro run arc sct.
Theinetd facility 1s used to restart farmd in response to
UDP/IP connection requests, it farmd is not run-
ning.'* Use of the inetd facility to start farmd improves
the availability of machines to run PSE applications by
transparently restarting farmd i the case of a failure.

As farmd daemons are started, they attempr to
establish TCP/IP connections with their neighbors as
defined by the PSE configuration database.” This
process is underraken by all cluster members and
quickly results na configuration ring whose purpose
is the detection of node or network failures. We chosce
a simple ring ot TCP/IP connections because the
mechanism is passive, i.c., it rclics on the loss of
TCP/1P connectivity and docs not imposc any addi-
tional load on the svstem or nerwork under normal
conditions. When connectivity to a member is lost,
ncighboring cluster members report the member
being unavailable. This prevents PSE from attempting
to schedule new applications on the failed member.

Failures that do not break the contiguration ring, but
prevent updated load information from being sent to
the load scrver, are detected by checking the time-
stamps on previously received load intormation. As
soon as a “time-to-live” period expires tor a particular
member’s load informarion, the load servers disable tur-
ther use of the suspect node. Svstem managers are also
able ro sct the number of job slots to zero at any time,
thus disabling the host tor new PSE-related activities.
This has no effect on currently executing applications.

Pseudo-gang Scheduling

The start-up sequence for a PSE application includes
the potential modification of exccution priority and
scheduling policy. These changes are made n accor-
dance with the user command-line options and /or the
default characteristics defined by the PSE configura-
tion database. To allow nonroot UlD processes to

Yl 7ONG 21908

Maeriral 1 a1 be -l Ferrrriaa

clevate scheduling priorities and/or alternate sched-
uling policies, farmd modities the user process’s
scheduling priority or policy. Processes scheduled at
a high rcal-time priority using a first m, twrst out
(FIFO) queue with preemption policy achieve a
pscudo-gang-scheduling effect. (Gang scheduling
ensurcs that all processes associated with a job are
scheduled simultancously.) This cftect occurs because
of the scheduling preference given high-priority jobs
and because PSE polls for messages for a period of
time betore giving up the CPU.

Using PSE

Paralle] applications are developed for PSE using the
Digital Fortran 90 compiler. When the Fortran 90
compiler s invoked with the -wsf N tlag, HPF source
codes are compiled and then linked with a PSE library
for parallel excecution on WV processors. Atter detining a
partition in which to run, a PSE application can be run
simply by tvping the name of the application. The fol-
lowing example shows the compilation and exccution
of a four-process program called myprog on a sct ot
cluster members in the partition named fast.

csh> setenv PSE_PARTITION fast
csh> f90 ~wsf 4 myprog.f90 -o myprog
csh> myprog > myprog.out < myprog.dat &

Transparently, PSE starts up four processes on
members of the partition fast; creates communications
channels berween the processes; supports redirected
standard mput, output, and error (standard I/0O); and
controls the exccution and termination of the applica-
tion. Several environment variables and run-time tlags
are available to control how an application executes.
Figure 3 shows how to use PSE.

PSE Application Model

PSE implements an application as a collection of inter-
connected processes. The itial process created when a
user runs an application is called the contiolling process.
It provides application distribution and start-up services
and preserves UNIX user-interface semantics (i.c¢., stan-
dard 1/0), but does not participate in the HPF parallel
computation. The controlling process usually deter-
mines which partition members to usc for the paralle
computation by getting system load information from
a load server and then distributing the new processes
across the partition. As an alternative, users can direct
computauon onto specific partition members.

The controlling process starts a process called the
io_mendger on each partition member participat-
ing in the parallel execution. Each io_manager then
starts onc or more application peer processes that
perform the user-specified computation. The use of
an lo_manager is necessary to create a parent-child

STATIC
SOURCE DATABASE
*MYPROG F90" (E.G., DNS)
Y
8%%?\@\1 FORTRAN 90 LOAD SERVER
COMPILER
(E.G., -WSF 4) ‘
DYNAMIC INFORMATION
(E.G., LOAD)
OBJECT FILE CLUSTER
"MYPROG.O e
| hl
| |]
J 11 [HosT Lo
| | |(CLUSTER MEMBER) | | 1|
LIBRARIES: i Lo
- FORTRAN STANDARD ' b
- RUN-TIME LINKER (LD i
. PSE (LD) I, : HOST : :
1| |(CLUSTERMEMBER) |1 |
] b
| “_::::::::::::::_I |
| | |
“EJYESFL‘JJQ?LE : ! | HOST [SMP] R
pry— : | |(CLUSTER MEMBER) | ! |
| 3
SWITCHES AND ! el 4o
= ' |
1
EXECUTION i Fc?aTSTER MEMBER) | |
(E.G., SHELL) |)|
I 1
| \PARTITIONS]
P
CONTROLLING
PROCESS
PEER SPAWN

AND CONTROL

Figure 3
PSE Usc

process relationship between the io_manager and peer
processes. Thisrelationship is used for exit status report-
ng and process control. It also enables or cases other
activities, such as signal handling and propagation. Peer
processes create communication channels between
themselves and pertorm standard 1/0 through a desig-
nated pecer. Standard 1/0 is forwarded to and from the
controlling process through the io_manager. Figure 4
shows a PSE application structure.

Application Initialization
Prior to the exccution of anv user code, an initializa-
tion routine executes automatically through function-
ality provided by the linker and loader. The
initialization routine implements both the controlling
process functions and the HPE-specitic peer initializa-
tion. Because no explicit call is required, parallel HPF
procedures can be used within non-HPF main pro-
grams, and proper initialization will occur. A simple
HPF main program can also be used with PSE to start
up and manage a task-parallel application thar uses
PVM or MPI tor message passing.

In general, the controlling process places peer
processes onto members ot a partition, although hand
placement of individual peers onto sclected members

is possible. To achieve efficiency and fairness in map-
ping a sct of peers, the controlling process consults
with a load server for load-balancing information.
Which members are used and the order m which they
are used is based on cach member’s load average,
number of CPUs, and number of available job slots.

As an alternative, PSE mav map peer processes onto
members based upon a user-selected mode of opera-
tion. In the detault physical mode of opcration, PSE
maps one peer process per member. In virtual mode,
PSE allows more than one pecr process per member,
thereby cnabling large virtual clusters. This is usctul
for devcloping and dcbugging parallel programs on
limited resources. Virtual clusters also improve appli-
cation availability: when the requested number of peer
processes is greater than the available set of partition
members, applications continue to run; however, they
mav sufter performance degradation.

Application Peer Execution

Each application peer process has an lo_manager
parent process that provides it with environment
initialization, exit value processing, 1/0 buttering,
signal forwarding, and potential scheduling priority
and policy modification. Rather than include the

Digital Technical Journal Vol.7 No.3 1995

MEMBER MEMBER MEMBER
I0_MANAGER I0_MANAGER IO_MANAGER
PEER PEER
PROCESS PROCESS
<L """
CONTROLLING hN
PROCESS
PEER PEER
i PROCESS PROCESS
STANDARD 11O
KEY:
————— PEER-TO-PEER COMMUNICATIONS
Figure 4
PSE Application Structure
o_manager’s funcrions i cach PSE execurable, Application Exit

theio_manager is implemented as a simple utility:

Application peers run the same binary image as the
controlling process. They inherit themr current working
directorv, resource usage limits, and an augmented set
ot cnvironment variables trom their controlling process
through their parent 1o_manager. When started, the
mitialization process deseribed tor the controlling
process is repeated, but peers do nor become control-
ling processes because they detect that a controlling
process already exists. Instead, peer processes return
from the mimalization routines with communication
links established and are ready to run user-application
code. Figure 5 represents a controlling process, tour
application peers running on threc members, and the
communications berween processces.

Mulriple pecer exits can have potentiallv contlicting exit
values. Coordinating them into a single meaningtul
application exir valuce is the most challenging trans-
parency issue faced by PSE. Under normal circums-
stances, all peer processes exit without error and at
approximately the same time. The resultng exic values
are reporred to the application controlling process by
the 1o_managers. The application (i.e., the controlling
process) is allowed ro exit without error only when all
exit values are recorded and standard 1/0 connections
are drained and closed. The HPF compiler generates
svnchronization code to guarantee the roughly svn-
chronous exit for all nonerror conditions. This pre-
sumption allows PSE to implement a timelv exit
model, 1.c.; one by which we can rcasonably assume

HOST 8
farmd
LOADSERVER
farmd
Y
LOAD INFORMATION i
HOST A
oS 10 MANAGER
W t
LIBPHPF
STANDARD IO LIBPHPF
AND SIGNALS
APPLICATION |-
APPLICATION HPF
COMMUNICATIONS
CONTROLLING
PROCESS PEER PROCESS

'_bli OTHER HOSTS/PEERS

Figure 5
Communications berween PSE Processes

Digital Technical Journal Vol.7 No.3 1995

normal activine will cease atter receiving the last exit
notification from an io_managcer.

Peers that exit abnormaliy: make it dithicult to
provide a meaningful cxit value for the application.
Consider one peer process that exits due toasegmen-
ration tault and another that exits duc to a tloaring-
poimt exception. Thereis no single exit value possible
for the application; PSE chooses the tirst abnormal
value it sces. Furthermore, as a result of error detec-
tion in the communicaton hbrary, the other peer
processes will exit with lost network connections. It is
possible that the controlling process will see an exit
value tor this cttect before itsees an exit value tfor one
otthe causes, resulting ina misleading application exit

value. To understand a faulting parallel application
running under PSE, the core files associated with cach
peer process must be examined.

PSE includes support tor capturing the entire appli-
cation core state and for discriminaring the multiple
core files of a parallel application. Because peer pro-
cesses share the same working directory, any core files
generated would be inconsistent and overwrite one
another duce to N processes writing to the same core
file name. PSE solves this problem by establish-
ing a signal handler thar catches core-generating sig-
nals, creates a peer-specitic subdirectory; changes to

the new directory, and resignals the signal to cause the
writing of the core file. The root tor the core directo-
rics can be set through an environment variable.

Issues

Although PSE achieves the standard UNIX Jook-and-
feel tor most application situations, complete trans-
parcncy 1s not achieved. For example, timing an
application-controlling process using the c¢-shell’s
built-in time command, does not time uscer code or
provide meaningful statistics other rhan the clapsed
wall dock tmie to start a parallel application and to tear
it down. Another situation that highlights the paralicl
nature of PSE occurs during application debugging:
multple debug sessions are started by running the
application with a debugger flag rather than by using
dbx directly.

Tools for HPF Programming

The development model tor HPE-based applications
15 a two-step process. First, a serial Fortran 90 program
is written, debugged, and optimized. Then i is paral-
lelized with HPF directives and again debugged and
optimized. The development tools supplied with PSE
address protiling and debugging. Unlike most of PSE,
which is language-independent, both the pprof profil-
ing faciline and the “dbx in n windows” debugging
facility are specitic to HPE programming,.

Profiling

Several issues in profiling parallel HPF programs do
not apply to Fortran programs that exccute serially.
HPF exccution occurs through multiple processes on
multiple processors simultancously and therctore pro-
duces multiple profiling data sets. The storage and
analvsis of thesce dara scts must be coordinated to pro-
duce accurate and comprehensive program profiles.
Unlike typical Fortran programs, significant time can
be spent communicating in an HPF program. The
Digital UNIX prof and pixie urtilitics do not handle
cither of these issues.' In addition, the prof utility has
coarse-gramned (L-millisccond resolution) program
counter (PC) sampling and reports only down to the
procedure level. To address these issues, Digital added
protiling support to the Fortran 90 compiler and
developed the pprof analvsis tool.

Data Collecting The PSE paralicl profiling tacility
handles profilmg data collection in parallel by writing
data to a ser of files that are uniquely named. It
encodes the application name, the type of darta collec-
tion, and the peer number of the process. The analysis
tool pprof merges the dara in the file set when per-
torming analysis and producing reports.

[t supports two tvpes of data collecting: nonin-
rrusive tradinonal PC sampling and intrusive imterval
profiling. PC sampling simply records the program
counter at each occurrence of the svstem clock inter-
val interrupt. To achieve an accurare execution profile
with PC sampling, programs must be long running
to become statistically significant. Also, it is dithicult to
gather do-loop iteration data using PC sampling.

We developed interval prohling support to overcome
the deficiencies of PC sampling. Interval profiling is
achieved with compiler-inserted functions that record
the entry and exit times for the execution of each event.
This produces an accurate excecution protile. Events
include routines, array assignments, do loops, FORALL
constructs, message sends, and message receives.
Because the entry and exit nimes are recorded, time
spent exccuting other events within an event s
ncluded, which gives a hicrarchical profile. To achieve
fine-resolunon timings (smgle-digit nanoseconds), the
Alpha process cvcle counter is used to measure ume.'

Analysis The pprof utility provides many difterent
ways to examine and report on a large ser of protiling
data from a parallel program exccution. Different
approaches include focusing on routines, statements,
or communications. In contrast, prof reports on proce-
dures only. With pprof, the scope of the analvsis can be
limired to a single peer process or encompass all appli-
cation processes. The range ot reports generated can be
comprehensive or limited to a number of cvents or

Digital Technieal Journal Vol.7 No.3 1995

3l

»

(353

a pereentage of time. Users can specifv their reports
from a combination of analysis, report tormar, and
scoping options. By default, the pprof utiliny reports on
routine-level activiey averaged across all peer processes,
which provides an overall view of application behavior.

Parallel programs exccute most efficientlv when

, dara paralle] nature of the HPF
language reduces the visibility of communication to
the programmer. To make tuning casier, pprof was
designed with the abilioy to focus tuning on communi-
cation. Reports can be generated that help correlate
the use of HPF dara-distribution
observed communication activinies.

The high-leve

directives to

Debugging

For PSE version 1.0, we are supplving a “dbx i n win-
dows™ capabilinv. Each peeris controlled by a separate
instance of dbx that has its own Nterm window. This
capability: gives users basic debugging funcrionality,

imcluding the ability to set breakpoints, get backeraces,
and examine variables on an all-peer or a per-peer
basis. We added a new command to dbx, hpfget, that
allows the viewing of individual elements of a distrib-
uted arrav. We recognize it as far from mecting the
challenges otan HPF debugger, and weare continuing
the development of a new debugging technology.

Message-passing Model

One of the goals of PSE is to support high-performance,
reliable message passing for parallel applications. At
the start of the project, the HPF kinguage and com-
piler technology were stll in cheir mfancy. Even
though no HPF application code base existed, the PSE
team needed to derermine the messaging-passing
requirements. To Support message passing success-
fully, PSE had to be Hlexible enough to accommodate
new inrerconnect technologies and nertwork proto-
cols, adapt to the message-passing characteristics of
tuture HPFE applications, and support the changing
demands of the compiler. A need tor high pertor-
mance and cfficiency with low latency was assumed.
The PSE message-passing taciliy: provides primi-
tives to mitialize and terminate message-passing oper-
ations, to allocare and deallocare message butters, and
ro send and receive messages. A PSE message conrains
atag, a source peer number, and variable-lengrh dara.
The higher layers fill in the tag, which is used as o mes-
sage identifier on receive. The darais a stream of bytes
without any data-tvpe information. These primitives
are not inrended to be used in the application code.
The HPF compiler implicitly generates calls to these
primitives. Because the message-passing primitives arc
tighrlv coupled to the HPF compiler, overhead such as
darta-alignment restrictions and crror checking can be
chminated.
Vol. 7 No. 3

Digital Technical Journal 1995

The PSE message-passing model assumes that the
application peers are running on systems with the same
CPU architecture and nenworking capabilities. Each
peer process can send or receive binary messages
direetlv to or from anv other peer. This is ditterent from
the PVM model, where messages might be routed to
a pvmd dacmon to be multiplexed to another peer, or
messages might be converted ro external data represen-
ration (XDR) to allow for dara passing berween
machines with ditterent archirectures.'”

Bufter allocation and deallocation routines are spe-
afic to cach of the communication oprions that PSE
supports. (These oprions are discussed i the follow-
ing scctions.) Betore a message can be sent, a butter
must be allocated. The send primitive sends the mes-
sage and implicitty deallocares the butter. The receive
primitive implicitly allocares a butfer containing the
newly arrived message. Receive butfers have to be
deallocared explicitly after they are used. Our initial
design allowed a received message buffer to be reused
for sending a new message, possibly to a different peer.
This destgn was incfticient, especially when a commu-
nication option such as s
bufter allocation on a peer-byv-peer basis. The carrent

ared memory oprimizes

design uses a peer number as a parameter to the butter
allocation routine and docs not allow reuse of the
received message butter.

The send primitive sends a message contained in
a preallocated bufter to a specified peer. Tr guarantees
rehable in-order delivery of messages. For underlving
protocols, such as TDP/IP that do not provide this
level of service, the message-passing library must pro-
vide it A broadcast primitive is also provided to send
a single message to all peers.

The receive primitive uses a particular message tag
to receive a message with a matching tag from anv

peer. This allows the compiler to use functions that can
perform calculations correctly when data is required
trom scveral peers, regardless of the order in which
messages arrive. The normal operation ftor receive 1s
to block the receiving peer untl a matching ragged
message arives. A nonblocking receive s also pro-
vided to poll for messages.

Communication Options

PSE provides applications with several run-time sclec-
table communication options. Within a single SMP
svstem, PSE supports message passing over shared
memory. On multiple svstem contigurations, PSI sup-
ports necnwork message passing using the 1CP/IP or
UDP/IP protocols over any nenwork media that the
Digital UNIX operating system supports. Currently,
PSE supports a single communication option within
an application cxecution, but the design supports
multple protocols and interconnects. Run-time sclece-
tion of the communication options and media, which

is implemented using a vector of pointers to funcrions
within a shared librarv, provides flexibility to introduce
new protocols and media without having to recompile
or relink existing applications.

Shared-memory Message Passing

The use of shared memory as a message-passing
medium allows for very high performance because
data docs not have to be copied. When designing
shared-memory messaging, we looked ar a varicty of
mterrelared issues, including coordimation mecha-
nisms, memorv-sharing strategies, and memory con-
sumption. The use of focks (i.c., semaphores) in the
rradinonal manner to coordinate access to shared-
memory segments proved problematic. For example,
clients often request a message from any peer, not
from a particular peer. This implies the use ofa genaral
receive semaphore that senders would unlock afrer
dcehivering dara. Contention for a single lock could be
significant and could become a performance bottle-
neek. Instead of locks, a simple set of producer and
consumer indexes is used ro manage a ring bufter of
messages. Senders read the consumer index and
update the producer index, and receivers read the pro-
ducer index and update the consumer index to svn-
chronize. No locking is required.

Scveral memory-sharing strategics are possible: all
peers mayv shave a single large segment, cach pair of
peers may share a segment, and cach pair of peers may
have a pair of unidirectional segments. The use of unidi-
rectional pairs of shared-memory segments offers sev-
eral advantages: it simplifies the code by climmating
multip I'with the design of MEMORY
CHANNEL hardware, which is unidirectional; and by
creating receive segments with read-only protection, it
promotes robustness. A disadvantage to the use of
unidirectional segment pairs is increased memory usce
duc to limited sharing. Because of its advantages and
because the coordination of the producer/consumer
index does not require segments to be shared berween
peers, we o selected unidirectional pairs of - shared-

exing; it fits in we

MeEMory SCgmMents as our memorv-sharing strategy.

To enhance pertormance, a receiver spins, waiting
for a peer to produce a message. It there is no data
atter a number of spin iterations, the receiver voluntar-
ilv deschedules itselt. The number of spin iterations
was chosen to be small enough to be polite, burt large
cnough to permit scheduling when a peer produced
a message. An additional performance enhancement
allows the user, via command line option, to prevent
peers from migrating between processors, which
resules in better cache utilization.

TCP/IP Message Passing

TCP/IP is the default communication option. It pro-
vides full wire bandwideh for peer-to-peer communi-
cation with large message transfer sizes across a variety

of nerwork media, The implemenration of the message-
passing primitive operations is relatively straight-
forward since TCP/IP provides rehable, in-order,
connection-oricnted delivery of messages. The TCP/
IP initialization routine scts up a vector of bound and
connected socket descriprors, one tor each peer. These
sockets are used to send messages to other peers. The
receive primitive usesa blocking sclect() system call on
all sockers. Because TCP/IP 1s connection based,
abnormal peer termination and nenwork faulrs can be
derecred by connection loss.

Although TCP/IP provides acceprable bandwideh,
latencv-sensitive applications might sutfer from the
processing overhead of the TCP/IP protocol. The
connection-oriented naturce of TCP/IP also requirces
the application to maintain many socket descriprors,
which reduces scalability and necessitates the use of
expensive selecr() svstem calls on receive.

UDP/IP Message Passing

To address the lateney and overhead of TCP/1P, PSE
provides UDP/IP as an option that can be selected at
run time. UDP/IP 1s a connectionless protocol that
provides unordered, best-cftort delivery of messages.
Because UDP/IP is connectionless, the initialization
function needs to set up a single locallv bound socket
description for all peer-to-peer communication. File
descriptor use is not a scaling issue when UDP/IP
is used for messaging.

Reliable in-order delivery of messages is imple-
mented atthe library level. Each peer mainrains a set of
send and reccive ring bufters, one for cach peer. The
ring buffers have producer and consumer indexes
to indicate positions in the ring where messages can
be read or written. The butter-allocation primitive
allocates bufters from the send ring whenever possible,
or trom a pool ot overflow bufters when the ring is full.
The use ofan overflow bufter climinates the need for
upper levels to provide Hlow control or to block sends.
The send and reccive primitives manipulate the pro-
ducer and consumer indexes of the send and receive
rings. In-order delivery of messages is guaranteed
through the use of a sliding window protocol with
sequentiallv numbered messages. For efticiency, piggy-
backed acknowledgments are used.

To mmprove scheduling svnchronization among
multple peers, especially when a high-prioriey FIFO
scheduling policy is used, the UDP/IP option uses a
nonblocking socket. On receive, it loops calling the
recvirom() svstem call many times before calling the

expensive select() svstem call to wait for a message to
arrive. Abnormal peer termination and network faults
cannot be detected since the socker laver does not
maintan a connection state. The UDP/IP option con-
rains a user-specifiable time-out value by which the peer
application wil

exitwhen there is no socket activiry.

Digiral Technical Journal Vol.7 No.3 1995

(98]

The UDP/IP option provides better bandwidth
than the TCP/IP with smaller messages and matches
the TCP/IP bandwidth at large message size. The
user-level latency reduction, however, was less than
expected. The next two sections discuss our investiga-
tion into ways to optimize the latency of UDP/IP and
the performance of the message-passing options.

Optimizing UDP/IP

Our initial approach to improve latency was to reex-
amine the standard UDP/IP code path within the
Digital UNIX kernel for unnecessary overhead. Our
idea was to create a faster path, optimized for a
UDP/IP over a local area network (LAN) configura-
tion by reducing numerous conditional checks in the
path. Although this work yiclded some improvement,
it was not enough to justify supporting a deviation
from the standard code path. A overhaul of the origi-
nal code path would have been nccessary for this
approach to gain significant improvement in latency.

UDP/IP provides a general transport protocol,
capable of running across a range of nctwork inter-
faces. We realize the value in retaining the generality
of UDP/IP. For optimal performance, however, we
anticipate typical cluster configurations being con-
structed using a high-performance switched LAN
technology such as the GIGAswitch/FDDI system.*
In such configurations, the IP family of protocols
presents unnecessary protocol-processing overhead.
A messaging svstem using a lower-level protocol, such
as native FDDI, would offer better latency, but its
implementation requires the usc of nonstandard mech-
anisms to access the data link layer directly, which is less
general and portable than a UDP/IP implementation.

Based on the above observations, we designed a new
protocol stack in the kernel, called UDP_prime, to
coexist with the standard UDP/IP stack. UDP_prime
packets conform to the UDP/IP specification.'” To
reducc the amount of per-packet processing and
approach that of a lower-level protocol, UDP_prime
imposes several restrictions on its usc. Thesc restric-
tions optimize the tvpical switched LAN cluster contig-
urations. To retan the generality of UDP/ID,
UDP_prime talls back to the standard UDP/IP stack
when these restrictions are not applicable.

Restrictions on UDP_prime

The LAN nature of the cluster configuration imposcs
arestriction on UDP_prime. Each cluster member has
to be within the same IP subnet, which is directly
accessible from any other member. With this restric-
tion, routing decision and internct-to-hardware
address resolution can be done once ftor cach peer-
to-peer connection rather than on a per-packet basis.
Per-packet UDP/IP checksum processing can also
be eliminated, because intermediate routing is not

Digiral Technical Journal Vol.7 No.3 1995

involved and the data link cyclic redundancy check
(CRC)is sufficient to guarantee error-tree packets.

The next restriction is the maximum length of the
message. PSE message passing uses fixed-size bufters.
UDP_prime restricts the maximum butter size to be
the maximum transmission unit (MT U) of the underly-
ing network interface. This eliminates per-message IP
fragmentation and defragmentation overhead. Since
the messaging clients have to tragment the messages
inro fixed-size bufters at the higher laver, there is no
need for the IP layer to perform further fragmentation.

One complication in our current implementation
occurs when multiple peers are running on a single
system while others are on remote svstems. The
default behavior for peers within a single system is
to communicate across the loopback interface. In this
situation, there are two MTU values, one for the net-
work interface and one for the loopback interface.
Our current implementation of UDP_ prime does not
allow communication over the loopback interface so
that a single-size¢ MTU can be used. Further studies
need to be done to find an optimal maximum bufter
size, taking into account multiple MTU values, page
alignment, and so forth.

Based on the above restrictions, UDP_ prime opti-
mizes the per-packet processing overhead of sending a
packet by constructing a UDP, IP, and data link packet
header template for each peer at initialization. Except
for a tew ticlds, the content of these headers is static
with respect to a particular peer. UDP_ prime defines a
new IP option, IP_UDP_PRIME, tor the setsockopt()
system call, to allow the messaging svstem to define
the setof peersand their Internct addresses involved in
the application execution.”” The IP option processing,
done prior to sending any message, makes routing
decisions, performs Internet-to-hardware address res-
olution, and fills in the static portion of the header
fields. When sending a packet, UDP_prime simply
copies the hcader template to the beginning of the
packet, minimizing the per-packet processing over-
head and increasing the likelihood of the templates
being in the CPU cache. Several header tields, such as
the TP identification, header checksum, and packet
length tields, are then filled dynamically, and the com-
plete packetis presented to the interface layer.

UDP_ prime Packet Processing

Since a UDP_prime packer is a UDP/IP packet, the
standard UDP/IP receive processing can handle the
packet and deliver it to the messaging client. To trig-
ger the use of UDP_prime optimized receive process-
ing, the sending system uses the type of service (TOS)
field within the IP header to specify priority delivery of
the packet.”! The priority delivery indication does not
by itself uniquely differentiate between UDP_prime
and UDP/IP packets, as any other IP packets can
also have the TOS field set to priority. As a result, the

optimized receive processing has to check for the
packet’s adherence to the UDP_prime restrictions.
Nonadherence to the restrictions reroutes the packet
to the standard receive processing code.

When a packert arrives at a network interface, the
intertace posts a hardware interrupt, and the interface
interrupt service routine processes the packet. The
standard interrupt service routine deletes the data link
header, and hands the packet over to the netisr kernel
thread.” Netisr demultiplexes the packer based on
the packet header contents and delivers it to the appli-
cation’s socket receive bufter. Netisr, designed to be
a general-purpose packet demultiplexer, runs at a low-
interrupt priority level. The main reason for a thread-
based demultiplexer is extensibility. New protocol
stacks can be registered to the thread. Since there is
no a priori knowledge of the execution and SMP lock-
ing requirements of these stacks, a thread-based low-
interrupt priority demultiplexer is needed so that the
network interrupt processing time can be held to a
minimum. The extensibility feature, however, intro-
duces a context switch overhead.

For UDP_prime, the packet header processing ume
on the receive path is almost a small constant. We
modified the interface service routine o demultiplex
the packet by processing the data link, IP, and UDP
headers, and deliver the packet to the socket receive
buffer without handing it over to netisr. This short cir-
cuit path s used only when the packet is a UDP/IP
packet with no IP fragmentation and with priority
delivery indication. If these conditions are not met,
the standard netisr path is chosen. The UDP_prime
receive path eliminates the netisr context switch over-
head. This is a significant advantage, especially when
the receiving application runs with a real-time FIFO
scheduling policy.

SMP Synchronization

One difficulty n designing the UDP_prime stack to
run n parallel with the standard UDP/IP stack was
in SMP synchronization.* The socket bufter structure
1s a critical section guarded by a complex lock.
Requesting a complex lock in Digital UNIX blocks
execution if the lock is taken. To prevent deadlocks,
its use is prohibited at an elevated priority level, such
as the case in the interrupt service routine. To work
around this problem, a new spin lock was introduced
in the short circuit path and in the socket layer where
access to the socket buftfer needs to be synchronized.

Performance

To measure message-passing performance, we used
two DEC 3000 Model 700 workstations connected by
a GIGAswitch/FDDI system using TURBOchannel-
based DEFTA full-duplex FDDI adapters. Each work-

station contained a 225-megahertz (MHz) Alpha
21064 microprocessor and was running the Digital
UNIX version 3.0 operating system.

Figure 6 shows the message-passing bandwidth for
TCP/IP, UDP/IP, and UDP_prime transports at dif-
ferent message sizes. The bandwidth was measured at
the message-passing application programmer interface
(API) level, taking into account allocation and deallo-
cation of each message buffer in addition to the data
transmisston. TCP/IP, UDP/IP and UDP_prime
bandwidth peaks at approximately 95 megabits per
second at a 4,224-byte message, approaching the
FDDI peak bandwidth. UDP/IP approaches the peak
bandwidth at a 1,400-byte message, and UDP_prime
at a 1,024-byte message. Reaching the peak band-
width using small messages is a measure of protocol
processing efficiency.

Figure 7 shows the minimum message-passing
latency ftor TCP/IP, UDP/IP, and UDP_prime
transports at different message sizes. The latency was
measured as half of the minimum time to send a mes-
sage and receive the same message looped by the
receiver system over many iterations. The measure-
ment made allowance tor the allocation and deallo-
cation of each message bufter, in addition to the
round-trip transmission.

Compared to the TCP/IP option, UDP/IP has a
slightly higher minimum latency. This is not expected,
because the original goal of the UDP/IP option wasto
reduce TCP/IP processing overhead. It is, however,
encouraging to see only a slight degradation in latency
when the reliable in-order delivery protocol is imple-
mented at the library level. This prompted us to use
the same protocol engine in the library for
UDP_prime. At a very small message size (4 bytes),

100}

MBITS/SECOND

0 500 1000 1500 2000 2500 3000 3500 4000 4500
MESSAGE SIZE (BYTES)

KEY:
UDP_PRIME
—-——— TCP/P
----- UDP/IP
Figure 6

Peer-to- Peer Bandwidth

Digirtal Technical Journal Vol.7 No.3 19935

1000+
900t L
800} S -3

600
500
aof
300} -

200
100f

MICROSECONDS

0 500 1000 1500 2000 2500 SOIOO 3500 40I00 4500
MESSAGE SIZE (BYTES)

KEY:
——— UDP_PRIME
———— TCPIP

~++ UDP/IP
Figure 7

Minimum Peer-to-Peer Lateney

protrocol processing overhead dominares the larency.
At this point, UDP_prime was 44 percent (103.5
microscconds) better than TCP/IP, cven though
UDP/IP and UDP_prime use the same mechanism.

As the message size increasces, the protocol processing
tme remains constant, but the data copy time becomes
dommant. Despite this, UDP_prime was approximately
12 pereent better ata 4-kilobvre message.

Future Work

The current communication options along with the
UDP_prime optimization provide good pertormance
for HPF-stvle message passing on SM P svstems and
clusters. To remain competitive, however, we need to
consider support tor new high-performance commus-
nication media and configurations. We are working on
support for MEMORY CHANNEL, the use of multi-
ple interconnects and protocols wichin an application
running on a cluster of SMPs, and lighrweight proto-
cols tor use with ATM at speeds of 622 megabits per
second and higher. The flexibility of the message-pass-
mg design will allow current applications to use future
communication options without relinking.

Weare also working on a new HPF debugger tech-
nology. Debugging a cluster-stvle HPE program is
considerably harder than debugging a uniprocessing
program. HPF’s single-program multiple-data (SPMD)
parallel programming modcl includes a
threaded control structure, a global name space, and
looscly synchronous parallel exccurion. HPE also sup-
ports the calling of extrinsic procedures that use other

single-

parallel programming stvles or nonparallel compurta-

tional kernels.

Digital Technical Journal \ol.7 No 3 1995

The goal of an HPE debugger is to present the
application in source-level terms. Since HPF is roughbly
Fortran 90 with data-distribution directives, HPF s
conceptually a single-threaded application with the
compiler transtorming picces of the application to exe-
cute in parallel. As a resulr, an HPF debugger has to
take the stares from the actual peer processes and
recreate a single source-level view of the application. It
1s not alwavs possible to do this with complete preci-
ston. Consider the user interrupting the application,
which interrupts the peer processes at ditferent points
within the compuration. It is unlikelv cach peer is at
the same place (c.g., the same program statement),
and 1t s quite likelv that the stack backeraces of the
peers differ! Even if thev are ar the same place, thev
could be i difterent irerations of their local portions
ofa parallehized loop-like operation.

At the start of the HPF debugger project, we sur-
veved a variery of debuggers and disqualificd all of
them for logistical and /or technical reasons. Rather
than modify an existing debugger technology so that
it could debug cluster-stvle HPE programs, we initi-
ated an cttort to build a new debugger technology.
As we continue to design the new HPF debugger to
be general-purposce, porrable, and extensible, we will

7

be able to capitalize on modern programming con-
cepts, paradigms, and techniques.

Summary

PSE contains the tools and exccution environment to
debug, rune, and deplov parallel applications written
in the HPF language. From an end user’s perspective,
PSE provides transparency, flexibility, and compati-
bility with famubar tools. Using standard UNIX com-
mand svnrax, the same exceutable can be run serially
or in parallel on hardware ranging from a single-node
svstem to a cluster of SMP svstems. PSE supports se -
cral high-pertormance message-passing protocols run-
ning over a varicty of nerwork media. From a svstem
administrator’s perspective, PSE provides the tlexibil-
v ro create a cluster from standard components and
to control the cluster by assigning access controls and
screing scheduling policy and priorities. Although it
currently supports only the HPF language, PSE has
the flexibility and generie nfrastructure to support
other parallel languages and programming modcls.

Acknowledgments

The PSE team would like to thank the members ot the
Fortran 90 and HPEF compiler teams and to acknowl-
cdge the contributions of Chuck Wan, Rob Rodon,
Phil Camcaron, Isracl Gale, Rishivur Nikhil, Marco
Annaratone, Berr Halstead, and George Surka.

References

o

10.

1S.

16.

17.

Digital High Performance Fortran 90: HPF and
PSE Manual (Maynard, Mass.: Digital Equipment
Corporation, Order No. AA-2ATAA-Te, 1995).

G. Bell, “Scalable, Parallel Computers: Alternatives,
Issucs, and Challenges,™ /nternational fournal of
Parallel Prograniming. vol. 22, no. 1 (1994).

H. Kung cral,, “Nenwork-based Multicomputers: An
Emerging Parallel Architecture,” Proceedings Super-
Computing 91.

. W, Michel, £FDDI:- A Introchuction to Fiber Dis-

tributed Deta Jiterface (Newton, Mass.: Digital
Press, 1992).

R. Souza er al, “GlGAswitch Svstem: A High-
performance Packet-switching Plattorm,” Digital
Techiical forrnel, vol. 6,no. 1 (Winter 1994): 9-22,

Interner Engincering Task Force, “Domain Name
Svstem,” RFC 883 (November 1983).

J. Harris et al., “Compiling High Performance Forrran
for Distributed-memory Systems,”™ Digital Technical

Journal vol. 7, no. 3 (1995, thisissuc): 5-23.

G. Guist ¢t al., PV Parallel Virtial Machinne—
A Users” Guide ane Tutorial for Netiworked Pearallel
Computing (Cambridge, Mass.: The MIT Press,
1994).

W, Rosenberry, Cnderstanding DCE (Sebastopol,
Calit.: O’Reilly & Associates, Inc., 1992).

W. Gropp ctal., tsing VPl Portable Parallel Pro-

grannning with the Message Passing iterface
(Cambundge, Mass.: The MIT Press, 1994).

- LSE Administrator's Guide (Toronto, Ont., Canada:

Plattorm Computing Corporation, 1994).

G. Champine, MIT Project Athena: A Model for
Distributed Campis Computing (Newton, Mass.:
Digital Press, 1991).

. W. Srevens, UNIX Network Programming (Engle-

wood Clifts, N.J.: Prentice-Hall, 1990).

. D Comer, Jrternetworking with TC//IP(Englewood

Clitts, N J.: Prentice-Hall, 1991).

DEC OSF/ 1 Progreommer’s Gride (Mavnard, Mass.:
Digital Equipment Corporation, Order No. AA-
PS30C-TE, 1993).

R. Sites, ed., Alphe Architecture Reference Manual
(Burlington, Mass.: Digital Press, Order No.
FY-L520E-DP, 1992).

Internet Engincering Task Force, “XDR: External
Data Representation,” RFC 1074 (June 1987).

- R. Gillert, “Mcemory Channel Nenwork tor PCIL: An

Optimized Cluster Interconnect,”™ Haot literconnects
(1995).

19.]. Postel, “User Datagram Protocol,” RFC 708 (Menlo
Park, Calif.: SRI Nerwork Intormation Center, 1980).

20. DEC OSF/1 Reference Pages, Section 2: System Calls
(Mavnard, Mass.: Digital Equipment Corporation,
Order No. AA-I’S30C-TE, 1993).

21.] Postel, “Internet Protocol,” RFC 791 (Menlo Park,
Calit.: SRI Nenwork Information Center, 1981).

[8S]
[0S

. Open Software Foundation, Design of the @SF/I
®perating System (Englewood Clifts, N.].: Prentice-
Hall, 1993).

23. J. Denham, P. Long, and J. Woodward, “DEC OSF /1
Version 3.0 Symmctric Muluprocessing Implemen-
aton,” Digitul Technical foirnal. vol. 6, no. 3
(Summer 1994): 29-43,

Biographies

Edward G. Benson

Ed Benson is a principal engineer and the project leader
tor the parallel sottware environment product. Ed is

a 1981 graduare of Tufts University. He joined Digital
n 1984 atter working at Harvard University and ADAC
Corporation. In previous work ar Digiral, he led the
DECmpp and VAXIlab software projects and conrributed
to the design and development of the POSIX real-time
extensions in Digital UNIX and OpenVMS.

David C. P. LaFrance-Linden

David LaFrance-Linden is a principal softwave engineer in
Digiral’s High Performance Fortran Group. Since joining
Digiral in 1991, he has worked on tools tor parallel pro-
cessingand has developed a promising new debugger tech-
nology capable of debugging HPF. He hasalso contributed
to the PSE implementation and compile-time performance
of the HPF compiler. Before joining Digital, he worked ar
Symbolics, Inc. on front-end support, networks, operating
system, performance, and CPU architecture. He received

a B.S.in mathematics from M.LT. in 1982.

Digital Technical Journal Vol.7 No.3 1995

37

38

Richard A. Warren

Richard Warren is a principal sottware engineer in the
High Performance Computing Group, where his primary
responsibility is the design and developmenr of Digital’s
parallel software environment. Since joining Digital in
1977, Richard has contribured to PDP-1T svstems devel-
opment and VAN 32-bit shared-memory multiprocessor
designs. He has also been a member of Corporare Research,
tirst as an assignee i parallel processing to the Microelee-
rronics and Computer Technology Corporation (MCC 1
and later as a vescarcher ar the Digital Jomt Project oftice
at CERN, where he helped develop high-availability svstem
software. Richard hasa B.S. in electrical and computer
engineering trom the University of Massachuscerts and is

a co-inventor on several parents relating to coherent write-
back cache design and high-performance bus/memory
designs tor SMDs.

Santa Wiryaman

A senior sofware engineer in the High Performance
Computing Group, Santa Wirvaman develops enhance -
ments to the Digital UNIX kernel and UDP/IP protocol
stack te support optimal pertormance of message passing
over FDDILand ATM nerworks. Since joinimg Digital’s
performance group in 1987, he has also contributed to
many network-related pertormance characterizations,
benchmarks, and the development of pertormance tools
tor UNTN and \Windows N1, Santa received B.S. (1985)
and M.S. (1987) degrees in computer science from
Cornell University and Renssclaer Polveechnic Institute,
respectively,

Digital Technical Jowrnal Vol.7 No.3 1995

An Overview of the
Sequoia 2000 Project

The Sequoia 2000 project is the joint effort

of computer scientists, earth scientists, gov-
ernment agencies, and industry partners to
build a better computing environment for
global change researchers. The objectives of
this widely distributed project are to support
high-performance I/0 on terabyte data sets,
to put all data in a database management
system, and to provide improved visualization
tools and high-speed networking. The partici-
pants developed a four-level architecture to
meet these objectives. Chief among the lessons
learned is that the Sequoia 2000 system must
be considered an end-to-end solution, with all
pieces of the architecture working together.
This paper describes the Sequoia 2000 project
and its implementation efforts during the first
three years. The research was sponsored by
Digital Equipment Corporation.

Michael Stonebraker

The purpose of the Sequoia 2000 project is to build a
better computing environment for global change
researchers, hereatter reterred to as Sequoia 2000
clients. These researchers investigate issues such as
global warming, ozone depletion, environment toxiti-
cation, and species extinction and are members of
earth science departments at universities and national
laboratories. A more detailed conception tor the proj-
ect appears in the Sequoia 2000 technical report
“Large Capacity Object Servers to Support Global
Change Research.™

The parucipants in the Sequoia 2000 project are
investigators ot four types: (1) computer science
rescarchers, (2) earth science researchers, (3) govern-
ment agencies, and (4) industry partners.

Compurter science researchers arc responsible for
building a prototype environment that better serves
the needs of the rarget clients. Participating in
the Sequoia 2000 project are investigators from the
Computer Science Division at the University of
California, Berkeley; the Computer Science Depart-
ment at the University of California, San Dicgo; the
School ot Library and Information Studies at the
University of California, Berkeley; and the San Diego
Supercomputer Center.

Earth science researchers must explain their needs
to the computer science investigators and use the
resulting prototype environment to perform better
carth science research. The Sequoia 2000 project
comprises earth science investigators trom the
Department of Geography at the University of
Calitornia, Santa Barbara; the Atmospheric Science
Department at the University of California, Los
Angeles (UCLA); the Climate Research Division at
the Scripps Institution of Oceanography; and the
Department of Earth, Air, and Water at the University
of California, Davis.

To ensure that the resulting computer cnvironment
addresses the needs of the Sequoia 2000 clients, gov-
ernment agencies that are affected by global change
matters participate in the project. The responsibility of
these agencies is to steer Sequoia 2000 research
toward achieving solutions to their problems. The
government agencies that participate are the State of
California Department of Water Resources (DWR),

Digital Technical Journal Vol.7 No.3 1995

the State of Calitornia Department of Forestry, the
Coordinated Environment Rescarch Laboratory
(CERL) of the United States Armv, the National
Acronautics and Space Admmistration (NASA), the
National. Oceanic and Atmospheric Administration
(NOAA), and the United Srates Geologic Survey
(USGS).

The task of the industry participants is to usc
the Sequoia 2000 rechnology and to ofter guidance
and rescarch direction. In addition, thev arc a source
of free or discounted compuring equipment. Digital
Equipment Corporation was the original indus-
wy partner. Recently, Epoch Svstems, Hewletr-
Packard, Hughes, INustra, MCIL, Metrum Svstems,
PicturcTel, RSI, SAIC, Siemens, and TRW have
become participants.

The purpose of this paper is to present the goals of
the Scquota 2000 project and to discuss how we
achieved these goals and the results we accomplished
during the first three vears. The paper deseribes the
architecrure thar we decided to pursue and the state of
the software eftorts in rhe various arcas. The most
mportant lesson we have learned is that the Sequoia
2000 svstem mwst be considered an end-to-end solu-
tion. Henee, clients can be sanistied onlv it all picees of
the archirecture work together in a harmonious fash-
ion. Also, manv services required by the chients must be
provided by cevery clement of the archirecrure, cach
workig with the others. We tllustrate this end-to-end
characreristic of Sequoia 2000 by discussing three
issues that cross all parts of the svstem: guaranteed
delivery, abstracts, and compression. We then indicate
other specific lessons that we learned during the first
three vears of the project. The paper concludes with the
current state of the project and its future directions.

The Sequoia 2000 Architecture

The Sequora 2000 architecture s motivated by four
fundamental compurer science objectives:

L. Support high-performeaice 20O on terabyle dela
suts. The Sequota 2000 clients are frustrared by cur-
rent computing environments because they cannot
eftectively store the massive amounts of data
desired for rescarch purposes. The four academic
clients plus DWR collectively want to be able to
store approximately 100 rerabyvtes of information,
much ofwhich is common data sers used by multi-
ple mvestigators. These clients would like high-
performance svstem software that would allow
sharing ofassorted tertiary memory devices. Unlike
the 1/0 activites of most other scientitic comput-
ing uscrs, their acuvity mvolves primarily random
access. For example, DWR s digirizing the agenev’s
library of 500,000 slides and 1s putring it on-line
using the Sequoia 2000 svstem. This data ser has

Digital Technical Journal Vol.7 No.3 1995

some locality of reference but will have consider-
able random acriviry,

o

Lut dll data inoa database icnagenment system
(HVS). To matain the metadara thar describe
their data sets and thus aid in the retrieval ot infor-
marion, the Sequoia 2000 clients want to move
all their dara to a DBMS. More important, using
a DBMS will facilitare the sharing of information.
Because a DBMS insists on a common schema tor
sharced information, it will allow the rescarchers to
define a schema. Then all researchers must use
a common notation for shared data. Such a svstem
will be a big improvemenr over the current situa-

tion where every data set exists in a unique format
and must be converted by every rescarcher who
wishes to use ir.

3. Procide improved cisualization (ools. Scquoia
2000 clients use popular scientific visualization
tools such as Explorer, Khoros, AVS, and IDL and
are cager to use a next-generation toolkit.

4. Provide high-speed netiwcorking. Scquoia 2000
clients realize thar a 100-terabyte storage server (or
100-terabyte servers) will not be located on cach of
rheir deskrops. Morcover, the storage is ltkelv to be
located at the other end of a wide arca nerwork
(WAN), far trom their cliecnt machines. Since the
chients” visuahization scenarios invanably involve
animaton, for example, showing the lasr 10 vears
of the ozone bole by plaving ume torward, the
clients require ultraligh-speed networking to move
sequences of images from a server machine to
aclient machine.

To mecr these objectives, we adopred the four-level
architecture illustrared in Figure 1. The archirecture
comprises the tootprint laver, the file svstem laver, the
DBMS Taver, and the application laver. This section
discusses our ctforts ar cach ofthe levels and then con-
cludes with a discussion ot the Sequora 2000 nenwork-

ing that connects the elements of the architecture.

The Footprint Layer

The footprine faver s a software svstem that shiclds
higher-level sotnware, such as file svstems, trom device-
specific characteristics of robotic deviees. These charac-
teristics include specific robor commands, block sizes,
and media-specitic issues. The footprine laver can be
thought of as a common robot device driver. A foot-
print implementation exists tor cach ot the four tertiary
memory devices used by the project, namely, a Sony
write once, read many (WORM) optical disk jukebox,
an HP rewnrable oprical disk jukebox, a Metrum VHS
rape jukebox, and an Exabvre 8-millimerer rape juke-
box. Collectively, these four devices and the CPUs and
disk storage svstems in front of them were named
Bigtoor, after the legendary, very tall recluse sported
occasiomallv in the Pacific Northwest.

APPLICATIONS |

DATABASE
MANAGEMENT
SYSTEM

NETWORK

FILE SYSTEMS |

FOOTPRINT

|

! STORAGE DEVICES

Figure 1
The Sequoia 2000 Archirecture

The File System Layer

On top of the tootprint laver is the file system laver.
Two file systems manage data in the Bigtoot multilevel
memory hierarchy. The first tile system is Highlight,
which extends the Log-structured File Svstem (LES)
pioneered tor disk devices by Ousterhout and
Rosenblum to tertiary memorv.”* The original LFS
treats a disk device as a single continuous log onto
which newly written disk blocks are appended. Blocks
are never overwritten, so a disk device can always be
written sequentiallv. Hence, the LES turns a random-
write environment into a sequential-write environ-
ment. In particular problem areas, this may lead to
much higher pertformance. Benchmark data support
this conclusion.* In addition, the LES can always iden-
titv the last few blocks that were written prior toa file
system failure by finding the end of the log at recovery
time. File svstem repair is then verv fast, because
potentially damaged blocks are casily found. This
approach difters from conventional file svstem repair,
where alaborious check of the disk must be performed
to ascertain disk integrity.

Highlight extends the LES to support tertiary mem-
orv by adding a second log-structured file svstem on
top of the footprint layer. This file system also writes
tertiary memory blocks sequentially, thereby obtain-
ing the performance characteristics of the LES. The
Highlight file svstem adds migration and bookkeeping
code that treats the disk LFS file svstem as a cache for
the tertiary memory file svstem. In summary,
Highlight should provide good pertormance for
workloads that consist of mainly write operations.
Since Sequoia 2000 clients want to archive vast

amounts of data, the Highlight file system has the
potential for good performance in the Sequoia 2000
environment.

The second file svstem is Inversion.” Most DBMSs,
including the one used for the Sequoia 2000 project,
support binary large objects (BLOBs), which are
arbitrarv-length bvte strings of variable length. Like
several commercial systems, Sequoia’s data manager
POSTGRES stores large objects in a customized
storage system directly on a raw storage device.® As
aresult, it is a straightforward exercise to support con-
ventional files on top of DBMS large objects. In this
way, the front end turns everv read or write operation
nto a query or an update, which is processed directly
by the DBMS. Simulating files on top of DBMS large
objects has several advantages. First, DBMS scrvices
such as transaction management and security are auto-
matically supported for files. In addition, novel charac-
teristics of our next-generation DBMS, including time
travel and an extensible tvpe system for all DBMS
objects, are automatically available for files. Of course,
the possible disadvantage of simulating tiles on top of
a DBMS is poor performance. As reported by Olson,
Inversion performance is exceedingly good when large
blocks of data are read and written, as is characteristic
of the Sequoia 2000 workload.?

At the present time, Highlight is operational but
very buggy. Inversion, on the other hand, is used to
manage production data on Sequoia’s Sony WORM
jukebox. Unfortunately, the reliability of the proto-
tvpe svstem has not met user expectations. Sequoia
2000 clients have a strong desire for commercial oft-
the-shelf (COTS) sottware and are frustrated by docu-
mentation glitches, bugs, and crashes.

As a result, the Sequoia 2000 project ream has also
deploved two commercial file svstems, Epoch and
AMASS. The Epoch file system is quite reliable but
does not support either of Sequoia’s large-capacity
robots. Hence, it is used heavily but only for smail data
sets. The AMASS file svstem is just coming into pro-
duction use for Sequoia’s Mctrum robot and replaces
an carlier COTS svstem, which was unreliable. Given
the experience of the Sequoia 2000 team with tertiary
memory support, tertiary memory users should care-
fully test all file system sottware.

The DBMS Layer

To mecet Sequoia 2000 client needs, a DBMS
must support spatial data such as points, lines, and
polvgons. In addinon, the DBMS must support the
large spatial arravs in which satellite imagery 1s natu-
rallv stored. These characteristics are not met by pop-
ular, general-purpose relational and object-oriented
DBMSs.” The best fit to client nceds is a special-
purpose Geographic Information System (GIS) or
a next-generation object-relational DBMS. Since it

has one such object-relational svstem, namely

Digital Technical Journal Vol. 7 No.3 1995

41

42

POSTGRES, the Sequoia 2000 project clected to
tocus its DBMS efforts on this svstem.

To make the POSTGRES DBMS suitable for
Sequoia 2000 use, we require a schema tor all Sequoia
dara. This darabase design process has evolved as a
cooperative exercise berween various database experts
at Berkeley, the San Diego Supercomputer Center,
CERL, and SAIC. The Sequoia schemais the collec-
tion of meradata that describes the data stored in the
POSTGRES DBMS on Bigtoot. Specifically, these
metadata comprise

= A standard vocabulary of terms with agreed-upon
detinitions that are used to describe the dara

= A ser of nypes, instances of which mav store dara
values

= A hierarchical collection of classes that describe
aggregations of the basic ovpes

= Functions defined on the tvpes and classes

The Scquoia 2000 schema accommodates four
broad categories of data: scalar, vector, raster, and text.
Scalar quantities are stored as POSTGRES tvpes and
assembled into classes in the usual way. Vecror quanti-
tics are stored in special line and polvgon wpes.
Vectors are fullv enumerated (as opposed to an arc-
node representation) to rake advantage ot POSTGRES
indexed scarches. The advantages of this representa-
tion are discussed 1 more detail in “The Sequoa
2000 Benchmark.™

Raster data constitute the bulk of the Sequoia 2000
data. These dara are stored m POSTGRES mulu-
dimensional arrays ebjects. The contents of textual
objects (in PostScript or scanned page bitmaps) arc
stored m a POSTGRES document tvpe. Both docu-
ments and arravs make usc of a POSTGRES large
object storage manager that can support arbitrary-
length objects.

We have tuned the POSTGRES DBMS to mect
the needs of the Sequoia 2000 ¢
to POSTGRES arravs has beenimproved, and a novel

ients. The intertace

chunking strategyv is now opcerational.® Instead of
storing an array by ordering the array indexes from
fastest changing to slowest changing, this system
chooscs a stride for cach dimension and stores chunks
of the correct stride sizes n cach storage object. When
user queries inspect the array n more than one way,
this technique resules in dramatically superior retrieval
performance.

Scquota 2000 clients tvpical v run queries with user-
detined functions in the predicate. Morcover, many
of the predicates are very expensive in CPU time to
compute. For example, the Santa Barbara group has
written a funcrion, SNOW, that recognizes the snow-
covered regions i asatellice image. Itis a user-detined
POSTGRES tunction that accepts an image as an argu-
ment and returns a collection of polvgons. A typical

Digital Technical Jowrnal Vol.7 No.3 1995

query using the SNOW function ftor the rtab
IMAGES (id, date, content) would be to find the
images thatwere more than 50 percent snow and that
were observed subsequent to June 1992, In SQL, this
query s expressed as follows:

¢

selectid

from IMAGES

where AREA (SNOW (content)) > 0.5
and date > “Junc 1, 19927

The tirst clause in the predicate requires the CPU to
evaluate millions of instructions, whercas the sccond
clause requires onh a few hundred instructions. The
DBMS must be cognizant of the CPU cost of clauses
when constructing a query plan, a cost component
that has been ignored by most previous optimization
work. We have extended the POSTGRES oprimizer to
deal intelligently with expensive finctions.”

It s highly desirable to allow popular expensive
functions to be precompured. In this way, the CPU
need onlv evaluate cach such function once, rather
than once tor cach query in which the function
appears. Our approach to this issue is to allow data-
bases to contain indexes on a function of the data and
not on just the data object itself. Hence, the databasc
administrator can specifv that a B-tree index be built
for the function AREA (SNOW(content)). Arcas of
images are arranged n sort order in a B-tree, so the
tirst clause in the above query is now verv inexpensive
to compute. Using this technique, the function is
computed at dara entry or data update time and not ar
query evaluation time. A consequence of function
ndexing is that inserring a new image into the data-
base may be very time-consuming, since function
computation is now included in the Joad transaction.
To deal with the undesirable lengthy response times
tor some loads, we have also explored tazy indexing
and partial indexing. Thus, index building doces not
need to be synchronous with darta loading,

The teedback from the Sequoia 2000 clients regard-
ing POSTGRES is that it is not reliable enough to
serve as a base for production work. Morcover, the
documentation is inadequate, and no faality exists to
train users. Our users wanr a COTS product and not
aresearch prototvpe. Consequently, the Sequoia 2000
project has migrated to the commercaial version of
POSTGRES, namely the THustra system, to obrain a
COTS DBMS product. Migration to this system
required reloading all project data, a task that is now
nearly complete.

The Application Layer

The application laver of the Sequoia 2000 architecture
contains five clements:

1. An oft-the-shelf visualization tool

2. Avisualization environment

3. A browsing capability for textual information

4. A facility to interface the UCLA General Circula-
tion Model (GCM) to the POSTGRES/Illustra
svstem

5. A desktop videoconferencing or “picturephone”
tacility

For the off-the-shelf visualization tool, we have
converged around the use of AVS and DL for project
activitics. AVS has an casy-to-usc¢ “boxes-and-arrows”
user interface, whereas IDL has a more conventional
lincar programming notation. On the other hand,
IDL has better nvo-dimensional (2-13) graphics fea-
tures. Both AVS and IDL allow the user to read and
write file data. To connectto the DBMS, we have writ-
ten an AVS-POSTGRES bridge. This program allows
the user to construct an ad hoc POSTGRES query and
pipe the result into an AVS boxes-and-arrows network.
Sequoia 2000 clienrs can use AVS for further process-
ing on any data retrieved from the DBMS. IDL is
being interfaced to AVS by the vendor. Consequently,
data retrieved from the database can be moved into
IDL using AVS as an intermediaryv. Now that we have
migrated to the Illustra DBMS, we are considering
porting this AVS bridge to the Illustra application pro-
gramming interface (API).

AVS has some disadvantages as a visualization rool
for Sequoia 2000 clients. First, its type system, which
is different trom the POSTGRES /Ilustra type svstem,
has no direct knowledge of the common Scquoia
2000 schema. In addition, AVS consumes significant
amounts of main memory. Architecturally, AVS
depends on virtual memory to pass results berween
various boxes. It also maintains the output of each box
in virtual memory for the duration otan execution scs-
sion. The user can thus change a run-time parameter
somewherc in the nenwvork, and AVS will recompure
onlv the downstream boxes by raking advantage ofthe
previous output. As a result, Scquoia 2000 clients,
who generally produce very large intermediate results,
consume large amounts of both virtual and real mems-
orv. In fact, clients report that 64 megabvtes of real
memory on a workstation is often not enough to
cnable serious AVS use. Furthermore, AVS docs not
support zoommg in to invesngate data of interest to
obtain higher resolution, nor does it keep track of the
history of how any given data clement was con-
structed, 1.c., the so-called dara lincage of an item.
[Lastlv, AVS has a vidco plaver modcl for animation
that is too primitive tor many Scquoia 2000 clients.

Consequently, we have designed rwo new visualiza-
tion environments. The first svstem, called Tecate, is
being buile at the San Diego Supercomputer Center.
The Tecate infrastructure enables the creation ot appli-
cations that allow end users to browse torand visualize
data from nctworked data sources. This software

platform capitalizes on the architectural strengths of
current scientific visualization systems, network
browsers, databasc management svstem front ends,
and virtual reality svstems, as discussed in a companion
paper in this issuc of the Jorcirnal

The other svstem, Tioga, is a boxes-and-arrows pro-
gramming cnvironment that is DBMS-centric, i.¢., the
cnvironment type svstem is the same as the DBMS
type system. The Tioga user interface gives the user
a tlight simulator paradigm for browsing the output
of a nenwork. In this wav, the visualizer can navigate
around data and then zoom i to obrain additional
data on items of particular interest. The preliminary
Tioga design was presented at the 1993 Very Large
Dartabases Contference.!” A first prototvpe, described
by Woodrutt, is currently running."

A commercial version of the Tioga environment has
also been implemented by IHustra. The Sequoia 2000
project is making considerable usc of this tool, which is
named Object-Knowledge. Early user experience with
both Tioga and Object- Knowledge indicates that these
systems arc not casy to use. We are now exploring
ways to improve the Tioga system. The objective is to
build a svstem that a scientist with minimal training in
the environment can use without a reference manual.

The third celement of the application laver is a
browsing capability for textual information of interest
to our clients. This capability is a cornerstone of the
Sequoia 2000 architecture. Initially, we converted a
stand-alone text retrieval svstem called Lassen to our
DBMS-centric view. The first part of the Lassen svstem
is a faality tor constructing weighted kewvword indexcs
tor the words in a POSTGRES document. This index-
ing system, C
the Cornell Smart system and opcrates as the action
part of a POSTGRES rule, which is triggered on cach
document insertion, update, or removal.™* The scc-
ond part of the Lassen svstem is a front-end query tool
that understands natural language. This tool allows
a user to request all documents thart satistv a collection
of keywords by using a natural language intertace. The
Lassen svstem has been operational tor more than
avear, and retrievals can be requested against the cur-
rentlv loaded collection of Sequoia 2000 documents.

In addition, we have moved Lassen to Z39.50,
a popular protocol oriented toward infermation inter-
change and information retricval.” The client portion
of Lassen has been changed to emit 239.50, and
we have written a 239.50-to-POSTGRES translator
on the server side. In this wav, the Lassen client code
can access non=Scquoia 2000 information and the
Sequoia 2000 server can be accessed by text-retrieval
front ends other than the Cheshire svstem.

With our move to the Illustra DBMS, we have con-
verted the client side of Lassen to work with Ilustra.

1eshire, builds on the pioneering work of

Digital Technical Journal Vol.7 No. 3 1995

44

Hlustra: has an mregrared document dara tvpe with
capabilitics simiJar to the extensions we made to
POSTGRES.

A related Berkeley project is focused on digitizing
all the Berkelev Computer Science Technical Reports,
This project uses a Mosaie client to access o custom
World Wide Web server called Dienst, which stores
technical report objects ina UNIX file system. Jna few
months, we expect to convert Dienst to store objects
in the Sequoia 2000 darabase, rather than n files.
When this svstem, nicknamed Database Dicnst, is
operational, Mosaic/ Dicnst service will be available
for all texrual objects in the Sequoia schema.

Our tfourth thrust in the application faver is a facility
ro nterface the UCLA General Circulation Modcl
(GCM) to the POSTGRES/ Hustra svstem. This pro-
gram is a “dara pump™ because it pumps data out of
the simulation model and into the DBMS. We named
the program “the big litt™ atter the DWR pumping
station that raises Northern Ca
Tehachapi Mountains into Southern California.

Basically, the UCLA GCM produces a vector of sim-
ulation outpur variables for cach time step ot lengthy
run ftor cach tile i a three-dimensional (3-13) grid of
the armosphere and occan. Depending on the scale
of the model, its resolution, and the capability of the
serial or parallel machine on which the model is run-
ning, the CCLA GCM can produce trom 0.1 to 10.0
megabytes per second (MB/s) output. The purpose of
the big litt 1s ro mstall the output dara into o darabase
in real ume. UCLA scientists can then use Object-
Knowledge, Tioga, Tecare, AVS, or IDL to visualize
their simulation output. The big hft wall likelv have ro

ifornia warer over the

explort parallelism in the data manager, itfit s required
to keep up with rhe exceution of the model on a mas-
sivel parallel architecrure.

The fifth application svstem is a conferencing, svs-
tem. Since Scquoa 2000 1s a distribured project, we
learned early that face-to-face mecetings thar required
pactiapants to travel to other sites and clectronic mail
were not sufficient to keep project members working
as a team. Conscquently, we purchased conference
room videcoconterencing, equipment for cach project
sire. This technology costs approximately S50,000 per
site and allows multiway videoconterences over ie-
grated services digital nerwork (ISDN) lines.

Although the conference room cquipment has
helped project communication immenscly, it must be
set up and taken down ar cach use because the rooms
1t occupies ar the varjous sites are normally used as
classrooms. Therctore, videoconterencing tends to be
used for arranged conferences and not for spur-of-the-
moment mteractions. To alleviate this shortcoming,
Sequota 2000 has also mvested in deskrop videocon-
terencing. A video compression board, a microphone,

speakers, a nerwork connection, a video camera, and

Digital Technical Journal ¥Mol:7Z No. 3 195

the appropriate software can turn a conventional
workstation into a deskrop videoconterencing facility.
In addition, video can be easily ransmitred over the
nerwork intertace thatis present in virrually all Sequoia
2000 client machines. We are using the Mbone soft-
ware suite ro connect about 30 of our client machines
in this tashion and are migrating most of our video-
conferencing activitics to deskrop technology. This
eftort, which is called Hollvwood, strives to further
improve the abiliny of Sequoia 2000 researchers ro
comimunicate.

Nore thar the Sequoia 2000 rescarchers do not
need groupware, 1.c., the ability to have common win-
dows on multiple client machines separated by a WAN|
i which common code can be run, updared, and
inspected. Rather, our rescarchers need a wav to hold
imprompeu - discussions on project business. Thev
want a low-cost multicast picturephone capability, and
our desktop videoconterencing cttorrs are focused in
this dircction.

Sequoia 2000 Networking

The last topic of this scction on the Sequoia 2000
architecture 1s the nerworking agenda. Regarding
Figure 1, it is possible for the implementation ot cach
laver to exist on a different machine. Specitically, the
application can be remote trom the DBMS, which can
be remore from the file svstem, which can be remote
from the storage device. Fach laver of the Sequoia
2000 architecture assumes a local UNIY socket con-
nection oralocalarca network (1.AN) or WAN connec-
tion using the transmission control protocol /mrerner
protocol (TCP/IP). Acrual among
Sequoia 2000 sites use cither the Interner or a dedi-
cated T3 nerwork, which the Universine ot Calitornia
provides as part of its contribution to the project.
Digiral’s Alpha
processors to be fast cnough ro route 13 packets.
Hence, the project uses conventonal worksrations as
routers; custom machines are not required. Fur-
thermore, the Sequoia 2000 nerwork has installed
a unique guaranreed delivery service through which
an applicanen can make a contract with the nenwork
thar will guarantece a specific bandwidth and latenev it
the client sends information ar a rate thar docs not
exceed the rate specitied in the contract. These algo-
rithms, which are based on the work ot Ferrari, require
a sctup phase for a connection thar allocates band-
width onall the lines and in all the swirehes.”

connections

The nerworking ream judged

Lastlv, the nenwvork reseavchers are concerned that
the Digital UNIX (tormerly DEC OSE/ 1) operating
svstem copies every byre four rimes in benwveen retrien -
ing it trom the disk and sending it out over a nenvork
connection. The cfficient integration of nerworking
services mnto the operating svstem is the topic of
acompanmon paper by Pasquale et al. nn thig issue.'

Sequoia 2000 as an End-to-End Problem

The major lesson we have learned from the Sequorn
2000 project is thatr manv issucs tacing our clienrs can-
not be solated ro a single laver of the Scquoia 2000
architecture. This section describes three such end-to-
end problems: guaranteed delivery, abstracts, and
compression.

Guaranteed Delivery

Clearly, guaranteed delivery must be an end-to-end
contract. Suppose a Sequota 2000 chient wishes to visu-
alize a specitic computation; tor example, the client
wants to observe Hurricane Andrew as it moves from
the Bahamas to Florida to Louisiana. Specifically, the
client wishes o visualize appropriate satellite imagery at
a resolution of 500 X 500 in 8-bit color at 10 frames
per second. Henee, the client requires 2.5 MB/s of
bandwidth to his screen. The following scenarnio might
be the compuration steps that take place.

The DBMS must run a query to fetch the satellite
imagery. The query might require returning a 16-bit
dara value tor cach pixel thar will ultimarely appear on
the sereen. The DBMS must theretore agree to exe-
cute the query i such awav that it guarantees output
ata rate of 5.0 MB/s.

The storage svstem at the server will fetch some
number ot 1/0 blocks from secondary and /or tertiary
memory. DBMS query optimizers can accurately guess
how manv blocks they need to read to sanishe the
querv. The DBMS can then easily generate a guaran-
teed dehvery contract thar the storage manager must
satistv, thus allowing the DBMS to satisty its contract.

The nerwork must agree to deliver 5.0 MB/s over
the nerwork link that connects the client to the server.
The Sequoia 2000 nenwork software expects exactly
this tvpe of contract request.

The visualization package must agree to translate
the 16-bir data element into an 8-bit color and render
the result onto the sereen ar 2.5 MB/s.

In short, guaranteed delivery is a collection of con-
tracts that must be adhered to by the DBMS, the
storage svstem, the nerwork, and the visualization
package. One approach to architectng these contracts
was presented ar the 1993 Verv Large Databases
Conference."

Abstracts

Once aspect of the Sequoia 2000 visualization process
is the necessiry of abstracts. Consider the Hurricane
Andraw example. The client might iniriallv wane ro
browsce the hurricane at 100 X 100 resolution. Then,
on finding something of interest, the cJient would
probably like to zoom i and increase the resolution,
usually to the maximum avatlable in the original dara.
This ability to dvnamically change the amount of reso-
lution i an image is supported Ly abstracts.

Note that providing abstracts is a much more pow-
ertul construct than merchy providing for resoluton
adjustment. Speatically, obraining more detail may
entail moving from onc representation to another. For
example, onc could have an icon tor a document,
zoom in to sec the abstract, and then zoom in further
to see the enrire document. Hence, zooming can
change from iconic to rextual representation. This usce
of abstracts was popularized in the DBMS community
by an earlv DBMS visualization svstem called the
Spatial Data Management Svstem (SDMS).Y

Sequoia 2000 clients wish to have abstracts; how-
ever, it is clear that they can be managed by the visual-
ization tool, the DBMS, the nenwork, or the file
svstem. In the former case, abstracts are detined for
boxes-and-arrows nenwvorks. In the DBMS, abstracts
would be defined for individual data clements or for
dara classes. If the nerwork manages abstracts, it will
use them to automaticallv Tower resolurion to clinmi-
nate congestion. Much rescarch on the optimization
of network abstracts (called hicrarchical encoding of
data in that communiry) is available. In the tile system,
abstracts would be defined tor files. Sequoia 2000
rescarchers are pursuing all four possibihties, and it s
expected that this notion will be one of the powertul
constructs to be used Dy Scquoia 2000 software,
perhaps n multple wavs,

Compression

The Sequoia 2000 clients are adamant on the issuc of
compression—thev are open to - any compression
scheme as long as it is lossless. As scientists, thev
believe thar ultimare resolution may be required to
understand future phenomena. Since it is not possible
to predict what these phenomena might be or where
they might occur, the Sequoia 2000 scientists want
access to all dataar full resolution.

Some Sequoir 2000 dara cannot be compressed
cconomicallv and should be stored in uncompressed
torm. The inclusion of abstracts ofters a mechanism to
lower the bandwideh required benwveen the storage
device and the visualization program. No saving of
rertiary memory through compression is available tor
such dara.

Orther data ought to be stored n compressed form.
The question of when compression and decompres-
sion should occur can be handled by using a just-in-
nme decompression strategy. For example, it the
storage manager compresses data as thevare written
and then decompresses them on a read operation, the
nerwork manager may then recompress the dara tor
transmission over 2 WAN to a remorte site where they
will be decompressed a second time. Obviously, data
should be moved in compressed form and decom-
pressed only when necessarv. In general, decompres-
sion will occur in the visualization svstem on the client
machine. Ifscarch criterma are performed on the data,

Digital Techmeal Tournal Vol 7 No.3 1995

46

then the DBMS may have to decompress the data to
perform the search. If an application resides on the
same machine as the storage manager, the file svstem
must be in charge of decompressing the daca. All soft-
ware modules in the Sequota 2000 architecture must
cooperate to perform just-in-time decompression and
as-carly-as-possible compression. Like guaranteed
delivery, compression is a task that requires all sottware
modules to cooperate.

Specific Lessons Learned

In addition to the end-to-cnd issues, we learned other
lessons from the first three vears of the Sequota 2000
experience, as discussed in this scetion.

Lesson 1: Infrastructure is necessary, time-consuming,
and very expensive.

We Jearned carlv i the project that electronic mail and
travel benween sites would not result in the desired
degree of cooperation from geographically dispersed
rescarchers from ditferent disciplines. Consequently,
we made a significant investment ninfrastructure.
This included meetings tor all the Sequoia 2000 par-
ticipants, which are now held twice avear, and video-
conferencing equipment at cach site. Through this
video link, project members interact by holding
a weekly distributed seninar, semimonthly operations
committee meetings, occasional steering committec
meetrings, and mectings benwveen researchers with
common meerests. The video quality of the project’s
current vidcoconferencing cquipment is not high, and
to achieve success when participants are located far
apart, specially rained individuals must operare the
cquipment. Nevertheless, the equipment has proven
to be valuable in gencrating cohesion in the dispersed
project. We have installed deskrop videoconterencing
svstems on 30 Sequota 2000 worlkstations and expect
to replace our current conference room equipment
with nexr-gencration deskrop technology.

In addition, we conducted a learning experiment mn
which a course taught by onc ot the Sequoia 2000 fac-
ulty members ar the Santa Barbara campus was broad-
cast over our videoconferencing cquipment to four
other sites. Students could take the course tor eredit at
their respective campuses. Ot course, the overhead of
setting up such a course was substantial. A new course
had to be added at each campus, and every step in the
approval process required brictings on the fact that the
instructor was from a ditferent campus and on the way
evervthing was going to work. This experiment was
popular, and students have requested additional
courses taught i this manner.

On the other hand, we also tried to run a computer
science colloquium using this technology. We broad-
cast from various sites to six computer scicnce depart-
ments around the U.S. Initial student interest was high

Digital Techoical Journal Vol.7 No. 3 1995

because of the lineup of eminent speakers. Such speak-
crs could be recruired casily, because they only had to
locate the nearest compatible equipment and then get
to that site. No air travel was required. The experiment
failed, however, because attendance decreased through-
out the semester and ended at an extremely low level.

The basic problem was that, typically, speakers were
not skilled in using the medium—thev would put too
much information on slides and then flip though the
slides betore remote sires could get a complete trans-
mussion. Also, the question-and-answer period could

not be very interactive because of the many sites
mvolved. The experiment ended atter one semester
and will not be repeated.

Lesson 2: There was often a mismatch between the
expectations of the earth scientists and those of the
computer scientists.

The computer scientists on the Sequoia 2000 team
wanted aceess to knowledgeable application specialists
who could describe their problems i terms under-
standable to the computer scientist. The computer
scienrists then wanted to think through elegant solu-
rions, verifi with the carth scientists that the solutions
were appropriate, and then protorvpe the results. The
carth scientists wanted final COTS solutions to their
problems; they were unsympathetic about poor docu-

mentation, bugs, and crashes.

With considerable cttort, the expectations are con-
verging. The ultimate solution is to move to COTS
software modules as thev become available tor por-
tions of the svstem and augment the modules with
in-house prototvpe code.

We have found that the best wav to make torward
progress was to ensure that cach earch science group
using Scquoia 2000 protorvpe code had one or more
sophisticated staff programmers who could dcal
successtully with the quirks of prototvpe code. With
computer science expertise surrounding the carch sci-
entists, the problems in this arca became much more
manageable. We also discovered that we could distrib-
ute such expertise. In fact, support programmers tor
Scquoia 2000 chients are often not ar the same physical
location as the clienr.

Lesson 3: Interdisciplinary research is fundamentally
difficult.

One lengthy discussion on the construction of a
Sequoia 2000 benchmark eventually led to the discus-
sion presented inthe 1993 ACM SIGMOD conference
paper cnttled “The Scquota 2000 Benchmark,”
which we referred to previously.” The computer sci-
ence rescarchers were arguing strongly for a represen-
rative abstract example of carth science data access,
L.c., the “specmark of carth science.” On the other
hand, the carth scientists were equally adamane that
the benchmark convey the exact dataaccesses.

Finally, the computer scientists and the carth scien-
tists realized that the word “benchmark” has a different
meaning for cach of the two groups of researchers. To
carth scientists, a benchmark is a scenario, whercas to
computer scientists, a benchmark is an abstract exam-
ple. This vignette was typical of the experience these
two disciplines had trying to understand once another.
Fundamentally, this process is time-consummg, and
ample interaction time should be planned for any proj-
cct that must deal with multple disciphnes.

The Sequoia 2000 project participants made cffec-
tive use of “converters.” A converter is a person of one
discipline whois planted directly in the rescarch group
of another discipline. Through informal communica-
tion, this person serves as an interpreter and translator
tor the other discipline. Converters are encouraged by
the existence of'a formal exchange program, whereby
central Sequoia 2000 resources pay the hiving expenses
of the exchange personnel.

Lesson 4: Database technology is a major advance for
earth scientists.

Our initial plan was to introduce databasc technology
into the project with the expectation that the carth sar-
entists would pick it up and use it. Unfortunately, they
arc accustomed to data being in files and found it very
ditficult to make the transition to a databasce view. The
carth scientists are becoming increasingly aware of
the inherent advantages of DBMS technology.

In addition, we appointed the earth scientist with
the most computer science knowledge as leader of the
darabasce design eftort. This person chaired a commit-
tee of mainly computer scientists who were charged
with producing a schema.

This technique tailed for several reasons. Firse, the
computer scientists disagreed about whether we were
designing an interchange format, by which sites could
rehably exchange data sets (i.c., an on-the-wire repre-
sentation), or a schema for stored data at a site. Most
carth science standards, such as the Hicrarchical Data
Format (HDF) and the network Common Data Form
(netCDF), are of the first form, and there was substan-
tial enthusiasm for simply choosing one of these tor-
mats." " On the other hand, some computer scientists
argued that an on-the-wire representation mixes the
data (c.g., a satellite image) and the meradata that
describe it (c.g., the frequency of the sensor, the date
of the data collection, and the name of the satellite)
nto a single, highly encoded bit string. A better design
would separate the two kinds of data and construct
a good stored schema tor it.

A sccond problem was that numcrous legacy
formats are currently in use, and some carth scientists
did not want to change the formats thev were using.
This led to manv arguments about the merits of one
legacy format over another, which in turn caused the

opposing sides to conclude that both tormarts under
discussion should be supported in addition to a neu-
wal representation.

A third problem was that carth science data are fun-
damentally quite complex. For example, carth scien-
tists store geographic points, which are 3-D positions
on the earth’s surfacce. There are approximately 20
popular projections of 3-1) space onto 2-D space,
mcluding (latitude, longitude), Mercator projection,
and Lambert Equal Azimuthal projection. With every
instance of a geographic point, it is necessary to associ-
ate the projection system that is bemg used. Another
dataproblem is related ro units. Some geographic data
are represented as mtegers, with miles as the funda-
mental unit; other data arc represented as floating-
pomt numbers, with mcters as the underlving unit.
In addivon, satcllite imagery must be massaged in
a variety of wavs to “cook” it from raw data into
a usable form. Cooking includes converting imagery
from a one-dimensional strecam of data recorded in
satellite flight order into a 2-D representation. Many
derails of this cooking process must be recorded tor all
imagery. This dramancally cxpands the metadara
about imagery as well as forces the earth scientist to
write down all the extra data clements.

Schema design turned out to be laborious and very
difficult. The carth scientists did not have a good
understanding of database design and thus were not
prepared to take on the extreme complexity of the
task. As a result, we have reconstructed our database
design ctforr. Now, two computer scientists are
responsible for producing a schema. They interact
with the earth scientists when such action helps to
accomplish the task.

Lesson 5: Project management is a substantial problem.
Sequoia 2000 is a large project. About 110 pceople
attended the last general meeting. The atrendees
included approximately 30 computer scientists, 40
carth scientists, and 40 visitors from industry. Multiple
efforts on multiple campuses must “plug and plav.”
Svachronizing distributed development is an extreme
challenge. Furthermore, the skill of project manage-
ment is not fostered in a university environment, nor
isitrewarded in a university taculty evaluatien.

The principal investigators viewed the time spent
on project management as time that could be better
mvested in research activities. An obvious solution
would be for the Sequota 2000 project to hire a pro-
fessional project manager. Unfortunately, it is impos-
sible to pay a nonfaculty person the market rates
normally received by such skilled persons. One strat-
egv we attempted to use was to solicit a visitor with
the desired skill mix from one of our industrial spon-
sors. Our cttorts in this dircction failed, and we were
never able to recruit project management expertise for

Digital Technical Journal ‘ol.7 No.3 1995

47

48

the Sequoia 2000 effort. Asaresult, project manage-
ment was performed poorlvat best. Inany furure large
project, this component should be addressed satistac-
torily up front by project personnel.

Lesson 6: Multicampus projects are extremely difficult
to implement.

Sequoia 2000 work is taking place i seven different
organizations within the University ot California edu-
cational svstem. There is a constant need to transfer
money and people among these organizations. Accom-
plishing such moves is a difficult and slow process,
however, because of the burcaucracy within the svs-
tem. In addition, the personnel rules of the University
are often in conflict with the needs of the Sequoia
2000 project. As a result, multi-istitution projects,
where participants are in different and otten distant
Jocations, are extremelv ditficult to carry out.

Status and Future Plans

The Sequoia 2000 project is more than three vears old
and has nearlv accomplished its objectives. We have
a common schema in place tor all Santa Barbara and
UCLA data, and all participants have agreed to usce the
schema. This schema scrves as leverage for the stan-
dards cttorts under wav in the spatial arena.” The
infrastructure is i place to enable this schema to
evolve as more data tvpes, user-defined functions, and
operators are included in the future,

The combination of Object-Knowledge, Hlustra,
Epoch, and AMASS is proving robust and mects our
chients” nceds. Lastly, we have ample resources to
move our protorvpe into production use at UCLA and
Santa Barbara during the next several months.

We are also extending the scope of the prototype in
two different dircctions. First, we will recruit addi-
tional carth scientists to utilize our svstem. This will
require extending our common schema to meet their
needs and then installing our suite of softwarce at their
site. We expect to recruit nwo to three new groups
during the next vear.

Second, a companion project, the Electronic
Repository, has as once ot its objectives to use rhe
Sequoia 2000 rechnology to support an environmen-
tal digital library of acrial photography, polvgonal
data, and text torthe Resources Agencev otthe State of
Cahtornia.*' This electronic library project is extend-
ing the reach ot Sequoia 2000 rechnology from carth
scicnusts toward a broader community.

Our rescarch activities are also very active. As nored
carlier, we are continuing our visualization activitics
and anocipate an improved Tioga system. The
Sequon 2000 clients have made it clear that they wane
seamless access to distributed data, and we have
evolved POSTGRES to a wide-arca distributed DBMS

Digital Jechnical Journal Vol.7 No. 3 1995

that makes decisions based on an cconomic paradigm.
This system is called Mariposa.” In our COTS svstem,
a bad impedance mismatch exists between the DBMS
and the tertiary memory file svstems. We have there-
tore shitted our rescarch focus to constructing an
mtelligent mass storage interface that properly sup-
portsa DBMS.

Finally, the Sequoia 2000 nerwork currently sup-
ports scrvice guarantees, but there is no cconomic
framework in which to place multiple levels of service.
As aresult, our networking research is focused on con-
struction of this tvpe of framework.

We anticipate a robust production environment tor
carth science researchers by rhe end of 1995, In addi-
TioN, we expect to continue to improve the Sequoia
2000 environment with futurce research results in the
above arcas.

References and Notes

1. M Stoncbrakerand J. Dozier, “Large Capacity Object
Servers to Support Global Change Research,” Sequoia
2000 Technical Report 91/1, Berkeley, Calitornia
(Julv 1991).

)

J. Kohl cral., “Hightight: Usinga Log-strucrured File
Svstem for Tertiary Storage Management,” /’roceed-
inps of the 1993 Winter € SENIX Meeting. San Diego,
California (January 1993).

3. M. Rosenblum and J. Ousterhout, “The Design and
Implementation of a Log-structured File Svstem,”
AC Transactions on Compuiting Systeimns (TOCS)
(February 1992).

4. M Scltzer et al., “An [mplementation of 1 Log-
structured File Svstem tor UNIX” Procecdings of the
1993 Winter USENIX Mecting. San Diego, California
(January 1993).

5. M. Olson, “The Design and Implementation of the
Inversion File Svstem,™ roceedings of the 1993
Winter USENIX Meeting. San Dicgo, California
(January 1993).

6. M. Stoncbraker ¢t al., “The Implementation of
POSTGRES,” /EEE Transactions on Knowledoe ancl
Data Ingineering (1TROE) (March 1990).

7. M. Stoncbraker et al., “The Sequoia 2000 Bench-
mark,™ Proceedings of the 1993 ACA SIGVOD
Counference. Washington, D.C. (Mav 1993).

8. S, Sarawagi and M. Stoncbraker, “Efficient Organiza-
tion of Large Multidimensional Arravs,” Procecdings
of the 1993 IELE Deala Engineering Conference.
Houston, Texas ¢ February 1993).

9. J. Hellerstein and M. Stoncbraker, “Predicare Migra-
tion: Optimizing Queries with Expensive Predicates,”
rroceedings of the 1993 ACM SIGMOD Conference,
Washington, D.C. (Mav 1993).

13.

15.

16.

18.

20.

P. Kochevar and L. Wanger, “Tecate: A Software
Platform for Browsing and Visualizing Data from
Networked Data Sources,” Digital Technical

Joutrnal, vol. 7, no. 3 (1995, this issue): 66-8 3.

M. Stonebraker ct al., “Tioga: Providing Data Man-
agement for Scientific Visualization Applications,”
Preceedings of the 1993 VIDB Conference, Dublin,
Ireland (August 1993).

. A.Woodrufferal, “Zooming and Tunneling in Tioga:

Supporting Navigation in Multidimenstional Space,”
Sequoia 2000 Technical Report 94/48, Berkeley,
California (March 1994).

R. Larson, “Classification, Clustering, Probabilistic
Information Retrieval and the On-Line Catalog,”
Library @uarterly (April 1991).

Information Retrieval Application Service Defini-
tion and Protocol Specification for Open Systems
Interconnection. ANSI/NISO Z239.50-1992 (revi-
sion and redesignation of ANSt Z39.50-1988) (New
York: American National Standards Institute /National
Information Standards Organization, 1992).

D. Ferrari, “Clicnt Requirements tor Real-time
Communication Scrvices,” JEEE Connmitnications
(November 1990).

J. Pasquale et al., “High-performance 1/0 and Net-
working Software in Sequoia 2000, Digital Techni-
cal fourneal. vol. 7, no. 3 (1995, this issuc): 84-96.

C. Herot, “SDMS: A Spatial Data Base System,”
ACM Transactions on Computing Systems (TOCS)
(Junc 1980).

The National Center for Supercomputing Applications
(NCSA) at the University of Illinois developed
the Hierarchical Data Format (HDF) as a multiobject
file format.

Network Common Data Form (netCDF) is an inter-
face for scientific data access and a freelv distributed
software library that provides an implementation of
the interface. netCDF was developed by Glenn Davis,
Russ Rew, and Steve Emmerson at the Unidata Pro-
gram Center in Boulder, Colorado. The netCDF
librarv detines a machine-independent format ftor
representing scientitic data. Together, the interface,
the librarv, and the format support the creation,
access, and sharing of scientific dara.

J. Anderson and M. Stonebraker, “Sequoia 2000
Meradata Schema for Satellite Images,” SIGMOD
Record. Vol. 23, No. 4 (December 1994).

R. Larson ctal., “The Sequoia 2000 Electronic Repos-
itorv,” Digital Technical Jeurnal, vol. 7,no. 3 (1995,
this issuc): 50-65.

M. Stonebraker ct al., “An Economic Paradigm for
Quecry Processing and Data Migration in Mariposa,”
Proceedings of IEEE Parallel and Distributed
Information Systems Conference. Austin, Texas
(September 1994).

Biography

Michael Stonebraker

Michael Stonebraker is a protessor of electrical enginecr-
ing and computer science at the University of Calitornia,
Berkeley, where he has been emploved since 1971. He
was one of the principal architects of the INGRES rela-
tional database management svstem and subsequently
constructed Distributed INGRES. For the last six years,
Michael has been developing POSTGRES, a next-generation
DBMS that can manage objects and rules, as well as data.
Michael is a founder of INGRES Corporation, the tounder
of Illustra Intormation Technologies, a past chairman of
ACM SIGMOD, and the author of many papers on DBMS
technology. He lectures widelv and was the winner of the
first ACM SIGMOD innovations award in 1992.

Digital Technical Journal Vol.7 No.3 1995

49

50

The Sequoia 2000
Electronic Repository

A major effort in the Sequoia 2000 project was to
build a very large database of earth science infor-
mation. Without providing the means for scien-
tists to efficiently and effectively locate required
information and to browse its contents, how-
ever, this vast database would rapidly become
unmanageable and eventually unusable. The
Sequoia 2000 Electronic Repository addresses
these problems through indexing and retrieval
software that is incorporated into the POSTGRES
database management system. The Electronic
Repository effort involved the design of proba-
bilisticindexing and retrieval for text documents
in POSTGRES, and the development of algo-
rithms for automatic georeferencing of text
documents and segmentation of full texts

into topically coherent segments for improved
retrieval. Various graphical interfaces support
these retrieval features.

Digital Technical Journal Vol.7 No.3 1995

Ray R. Larson
Christian Plaunt
Allison G. Woodruff
Marti A. Hearst

Global change rescarchers, who studv phenomena that
include the Greenhouse Effect, ozone depletion,
global climate modeling, and ocean dvnamics, have
tound scrious problems in attempting to use current
mtormation svstems to manage and manipulate the
diverse information sources crucial to their rescarch!
These information sources mclude remore sensing data
and images from satellites and aireraft, databases of
measurements (e.g., temperature, wind speed, salinity,
and snow depth) from specific geographic locations,
complex vector information such as topographic maps,
and large amounts of text trom a variety of sources.
These textual documents range from environmental
IMPACT reports on various regions to journal articles
and technical reports documentng research resules.

The Sequoia 2000 project brought rogether com-
puter and information scientists from the University
of Calitornia (UC), Digital Equipment Corporation,
and the San Dicgo Supercomputer Cenrer (SDSC),
and global change rescarchers from UC campuses to
develop practical solutions to some of these problems.”
One goal of this collaboration was the development of
a large-scale (i.e., mulriterabyee) storage svstem that
would be available to the researchers over high-speed
nerwork links. In addition to storing massive amounts
of data in this svstem, global change rescarchers
needed to be able to share its contents, to scarch for
specitic known items in i, and to retrieve relevant
unknown items based on various criteria. This sharing,
scarching, and retrieving had to be done efticiently
and cffectivelv, even when the scale of the database
reached the multiterabyre range.

The goal of the Electronic Repository portion of
the Sequoia 2000 project was to design and cvaluate
methods to meet these needs tor sharing, scarching,
and retrieving database objects (primarily text docu-
ments). The Sequoia 2000 Electronic Repository
is the precursor of several ongoing projects at
the University of Calitornia, Berkelev, thar address
the development of digital libraries.

For repository objects to be effectively shared and
retricved, they must be indexed by content. Uscer inter-
fices must allow rescarchers to both scarch tor irems
based on specitic characteristics and browse the repos-
itorv tor desired information. This paper summarizes

the research conducted in these arcas by the Sequoia
2000 project participants. In particular, the paper
describes the Lassen text indexing and retrieval meth-
ods developed for the POSTGRES database svstem,
the GIPSY svstem for automatic indexing of texts
using geographic coordinates based on locations men-
tioned i the text, and the TextTiling method tor
improving access to tull-text documents.

Indexing and Retrieval in the Electronic Repository

The primarv engine tor information storage and
retrieval in the Scquoia 2000 Electronic Repository
is the POSTGRES next-generation darabase man-
agement system (DBMS).* POSTGRES is the core of
the DBMS-centric Scquoia 2000 system design. All
the data used in the project was stored in POSTGRES,
including complex multidimensional arravs of data,
spatial objecrs such as raster and vector maps, satellite
images, and sets of measurements, as well as all the
full-rext documents available. The POSTGRES DBMS
supports user-defined abstract data types, user-defined
tunctions, a rules system, and manv features of object-
oriented DBMSs, including inhceritance and methods,
through functions in both the querv language, called
POSTQUEL, and conventional programming lan-
guages. The POSTQUEL query language provides all
the features found in relational query languages like
SQL and also supports the nonrelational featurcs of
POSTGRES. These features give POSTGRES the abil-
ity to support advanced information retrieval methods.

We used these features of POSTGRES to develop
prototvpe versions of advanced indexing and retrieval
techniques for the Electronic Repository. We chosc
this approach rather than adopring a scparate retrieval
svstem for full-text indexing and retrieval tor the fol-
lowing reasons:

I Textelements are pervasive in the database, ranging
n size trom short descriptions or comments on
other data items to the complete text of large docu-
ments, such as cnvironmental impact reports.

[§9)

. Text elements are often associated with other data
items (c.g., maps, remote scnsing measurements,
and aenal photographs), and the svstem must sup-
port complex queries involving multiple data opes
and functions on data.

(98]

. Many text-only systems lack support for concurrent
access, crash recovery, data integrity, and security of
the databasc, which are features of the DBMS.

4. Unlike many rexr retrieval svstems, DBMSs permit
ad hoc querving of anv element of the databasc,
whether or not a predetined index exists for that

ement.

(§

Moreover, there are a number of interesting
rescarch issucs involved in the integration of methods

of text retricval dcerived from information retricval

research with the access methods and facilities of

a DBMS. Information retrieval has dealt primarily
with imprecise queries and results that require human
inrerpretation to determine success or failure based on
some speciticd notion of relevance. Darabase svstems

have dealtwith precise queries and exact matching of

the query specification. Proposals exist to add proba-
bilistic weights to tuples in rclations and to extend
the relational model and query language to deal with
the characteristics of text databases.** Qur approach to
designing this prototvpe was to usc the features of the
POSTGRES DBMS to add information retrieval meth-
ods to the existing functionalitv of the DBMS. This
section describes the processes used in the prototype
version of the Lassen indexing and retricval system and
also discusses some of the ongoing development work
directed toward generalizing the inclusion of advanced
information retrieval methods in the DBMS.®

Indexing

The Lassen indexing method operates as a daemon
invoked whenever a new text item is appended to the
database. Several POSTGRES databasc relations (i.c.,
classes, in POSTGRES terminology) provide support
for the indexing and retricval processes. Figure 1
shows these classes and their logical linkages. Thesce
classes are intended to be treated as system-level
classes, which arc usually not seen by uscrs.

The wn_index class contains the complete Word Net
dictionary and thesaurus.” It provides the normalizing
basis for terms usced in indexing text elements of the
database. Thatis, all terms extracted from data elements
in the databasc arc converted to the word form used in
this class. The POSTQUEL statement defining the
class is

create wn_index (

termid = int4, /* uniqQue term ID */
word = text, /* the term or phrase */
pos = char, /* WordNet part of speech

information */
sense_cnt = int2, /* number of senses of word */
ptruse_cnt = int2, /* types and locations of */
offset_cnt = int2, /* related terms in WordNet*/
ptruse = int2[] , /* database are stored in */
offset = intd4[]) /* these arrays

All other references to terms in the indexing process
are actually references to the unique term identifiers
(termid) assigned to words in this class. The wn_index
dictionary contains individual words and common
phrases, although in the prototvpe implementation,
only single words are used for indexing purposes. The
other parts of the record include WordNet database
information such as the part of speech (pos) and an
array of pointers to the different senses of the word.

The kw_term_doc_rel class provides a linkage
benveen a particular text item in any class or text
large object (we will refer to cither as documents) and

Digital Technical Journal Vol.7 No.3 1995

w

W

WN_INDEX

KW_TERM_DOC_REL

KW_DOC_INDEX

KW_SOURCES

ANY CLASS AND
ATTRIBUTE

KW_INDEX_FLAGS

[

KW_RETRIEVAL

KW_QUERY

Figure 1

The Lassen POSTGRES Classces tor Indexing and Their Linkages

a particular term from the wn_index class. The
POSTQUEL definition of this class is

create kw_term_doc_rel (
termid = int4, /* WordNet termid number */

synset = int4, e
docid = int4, /*
termfreq = int4) /*

WordNet sense number */
document ID */
term frequency within

the document */

The raw frequency of occurrence of the term
in the document (termfreg) is included in the
lw_term_doc_rel tuple. This information is used in
the retrieval process ftor calculating the probability of
relevance for each document that contains the term.
The kw_doc_index class stores information on indi-
vidual documents in the database. This information
includes a unique document identifier (docid), the
location ofthe document (the class, the attribute, and
the tuple in which it is contained), and whether it is
a simple attribute or a large object (with eftectively
unlimited size). The kw_doc_index class also main-
tains additional statistical information, such as the
number of unique terms found in the document. The
POSTQUEL definition is as tollows:

create kw_doc_index (

docid = int4, /* document ID */

reloid = oid, /* oid of relation
containing it */

attroid = oid, /* attribute definition of
attr containing it */

attrnum = int2, /* attribute number of attr
containing it */

tupleid = oid, /* tuple oid of tuple
containing it */

sourcetype = intd4, /* type of object -- attribute
or large object */

doc_len = int4, /* document length in words */

doc_ulen = intd4) /* number of unique words in

document */

Digital Technical Journal Vol.7 No.3 1995

The kw_sources class contains information about
the classes and attributes indexed at the class level, as
well as statistics such as the number of items indexed
from any given class. The following POSTQUEL
statement defines this class:

create kw_sources (

relname = charle, /* name of indexed
relation */

reloid = oid, /* oid of indexed
relation */

attrname = charlse, /* name of indexed
attribute */

attroid = oid, /* object ID of indexed
attribute */

attrnum = int2, /* number of indexed
attribute */

attrtype = int4, /* attribute type -- large

object or otherwise */
num_indexed = int4, /* number of items
indexed */

last_tid = oid, /* oid and time for last */

last_time = abstime, /* tuple added */

tot_terms = int4, /* total terms from all
items */

tot_uterms = int4, /* total unigque terms from

all items */
include_pat = text, /* simple patterns to */
exclude_pat = text) /* match for indexable
/* items */

The other classes shown in Figure 1 relate to the
indexing and retrieval processes. The Lassen prototype
uses the POSTGRES rules svstem to perform such
tasks as storing the elements of the bibliographic
records in an appropriate normalized form and to trig-
ger the indexing daemon.

Defining an attribute in the database as indexable
for information retrieval purposes (i.e., by appending
anew tuple to the kw_sources definition) creates a rule
that appends the class namie and attribute name to the

kw_index_flags class whenever a new tuple is appended
to the class. Another rule then starts the indexing
process for the newly appended data. Figure 2 shows
this trigger process.

The indexing process extracts each unique keyword
from the indexed attributes of the database and stores
it along with pointers to its source document and its
frequency of occurrence in kw_term_doc_rel. This
process is shown in Figure 3. The indexing daemon
and the rules system maintain other global frequency
information. For example, the overall frequency of
occurrence of terms in the database and the total num-
ber of indexed items are maintained for retrieval pro-
cessing. The indexing daemon attempts to perform
any outstanding indexing tasks before it shuts down. It
also updatesthe kw_doc_index tuple fora given index-
able class and attribute with a time stamp for the last
item indexed (last_tid and last_time). This permits
ongoing incremental indexing without having to
reindex older tuples.

Retrieval

The prototype version of Lassen provides ranked
retrieval of the documents indexed by the indexing
daemon using a probabilistic retrieval algorithm. This
algorithm estimates the probability of relevance for
each document based on statistical information on
term usage in a user’s natural language query and in
the database. The algorithm used in the prototvpe is
based on the staged logistic regression method.?

A POSTGRES user-defined function invokes ranked
retrieval processing. That is, from a user’s perspective,
ranked retrieval is performed by a simple function
call (kwsearch) in a POSTQUEL query language

' INDEXABLE
POSTGRES APPEND CLASS

APPEND FLAGS

RULE-TRIGGERED > (KW_INDE)(~ 0

\

RULE STARTS
FUNCTION
DAEMON_TRIGGER

ALREADY

DO NOTHING RUNNING?

START KWINDEXD AS
SEPARATE PROCESS

statement. Information from the classes created and
maintained by the indexing daemon are used to esti-
mate the probability of relevance for each indexed doc-
ument. (Note that the full power of the POSTQUEL
query language can also be used to perform conven-
tional Boolean retrieval using the classes created by the
indexing process and to combine the results of ranked
retrieval with other search criteria.) Figure 4 shows the
process involved in the probabilistic ranked retrieval
from the repository database.

The actual query to the Lassen ranked retrieval
process consists simply of a natural language statement
of the searcher’s interests. The query goes through the

KW RETRIEVE KW_SOURCES
SOURCES ﬁ\JNFDOEXTRACT SOURCE

RETRIEVE ANY NEW
TUPLES IN INDEXED
CLASSES

READ INDEXED
LARGE ATTRIBUTE OR LARGE
OBJECT OBJECT AND EXTRACT

WORDS AND FREQUENCY

v

NOBMALIZE WORD FORM
USING WORDNET
MORPHING AND GET
TERMID

1

APPEND NEW WORDS
TO THE WN_INDEX
DICTIONARY

¥

APPEND NEW
KW_TERM_DOC_REL
TUPLE

INDEXABLE
CLASS

L]

-

N_
EXCLUSION

HlE

KW_
STOPWORDS

WN_INDEX

KW_TERM_
DOC_REL

) 0

MORE WORDS?

KW_DOC_ APPEND NEW
INDEX KW_DOC_INDEX TUPLE

MORE

YES
DOCUMENTS?

REPLACE KW_SOURCES

KW_
SOURCES ENTRY WITH NEW TIME

i

MORE YES
INDEXES?

NO

NEW INDEX YES
FLAGS?

NO

SLEEP FOR A WHILE
AND START OVER FOR
X TIMES

Figure 2
The Lassen Indexing Trigger Process

Figure 3
The Lassen Indexing Daemon Process

Digital Technical Journal Vol.7 No.3 1995

53

RETRIEVE USING
KWSEARCH
FUNCTION CALL

WN_
EXCLUSION

TERMID

NORMALIZE WORD
FORMUSING WORDNET
MORPHING AND GET

KW_
STOPWORDS

WN_INDEX ‘

¥

KW _TERM
DOC REL

RETRIEVE EACH
KW_TERM_DOC_REL
TUPLE USING TERMID

KW _DOC
INDEX

RETRIEVE EACH
KW_DOC_INDEX
TUPLE USING DOCID

CALCULATE PROBABILITY
OF RELEVANCE USING
STAGED LOGISTIC
REGRESSION FORMULA

KW_
RETRIEVAL

APPEND ENTRIES TO
KW_RETRIEVAL AND
KW_QUERY (
KW_QUERY
RETURN
QUERYID

Figure 4
The Lassen Retrieval Process

same processing steps as documents in the mdexing
process. The individual words of the query are
extracted and located in the wn_index dictionary
(after removing common words or “stopwords”). The
termids for matching words from wn_index are then
used to retrieve all the tuples in kw_rerm_doc_rel that
conrain the term. For cach unique document identifier
n this list of tuples, the matching kw _doc_index tuple
is rerrieved. With the frequency information contained
m kw_term_doc_rel and kw_doc_indcy, the estimated
probabilinv of relevance is calculated tor cach docu-
ment that contains at Jeast onc term in common with
the query. The formulae used in the caleulation are
based on experiments with full-text retricval.® The
basic equation for the probabilistic model used in
Lassen states the following: The probability of the
event that a document is relevant K. given that there
is a set of V“clues” associated with that document, 4,
fori=1,2,...,\.is

N
log O(R1A,,..,4y) = log O(R) + D.[log O(RIA)
~log O(R)), (1)

Digital Technical Journal Vol. 7 No.3 1995

where for any cvents £ and E. the odds O(ENL") is
PEVEY/PCENL), Le., a simple transformation of the
probabilitics. Becausce there is not enough information
to compute the exact probability of relevance for any
user and anv document, an estimation is derived based
on logistic regression ot a set of clues (usuallv terms or
words) contained in some sample of queries and the
documents previously judged to be relevant to thosc
querics. Fora setof 3/ terms that occur in botha query
and a given document, the regression equation is of
the form

M
log O (R Aoy Ay) = o+ ¢+ fIM) D X, + - -
M 1

+ Cu- /(/l/[) 21\7111 K + Ckvlﬂ/[+ C/\'fl"llz) (2>

1

where there are K retrieval variables X, , used to
characterize each term or clue, and the ¢, coefticients
are constant for a given training set of queries and
documents. The coetficients used in the protowpe
were derived from analvsis of full-text documents

and queries (with relevance judgments) from the
TIPSTER information retrieval test collection.” The
derivation of this tormula is given in “Probabilistic
Retrieval Based on Staged Logistic Regression.”™ The
full retrieval equation used for the prototvpe version of
retrieval described in this section is

log O(RIA,...,A,) = —3.5]

/ \ \
+ *T/Tl[’” DX 0330 DN,

V
~0.1937 2, | + 0.0929.1, (3)

where

X, 1 18 the quotient of the number of times the mith
term occurs m the query and the sum of the toral
number of terms in the query plus 35,

X,, 2 1s the logarithm of the quotient arrived at by
dividing the number of times the #7th rerm occurs in
the document by the sum of the toral number of terms
in the document plus 80;

X, 3 18 the logarithm of the quotient arrived at by
dividing the number of times the neth term occurs in
the darabasc (i.c., in all documents) by the roral num-
ber of rerms in the collection;

M is the number of terms held in common by the
quervand the document.

Note that the W7 term called for in Equation 2 was
not found to provide any significant difterence in the
results and was omitted from Equation 3. The con-
stants 35 and 80, which were used n X, ; and X5,
ave arbitrary but appear to ofter the best results when
sct to the average size of a query and the average size
ot a document for the particular database. The
sequence of opcrations performed to calculate the
probability of relevance is shown in Figure 5. Note
that in the figure, k1, ..., £5 represent the constants
ot Equation 3.

The probability of relevance is caleulated for cach
document (by converting the logarithmic odds to a
probability) and is stored along with a unique query
identifier, the document identitier, and some location

information in the kw_retrieval class. The query itself

CALCULATE NUMBER OF
TERMS IN COMMON
BETWEEN QUERY AND
DOCUMENT m

FOR EACH DOCUMENT
il CONTAINING ANY TERM
IN THE QUERY

RETURN

v

FOR EACH TERM m THAT
OCCURS IN THE QUERY

v

SUM FREQUENCY OF
TERM IN QUERY DIVIDED
BY ALL TERM
OCCURENCES PLUS A
CONSTANT

Xm

v

CALCULATE LOGARITHM
OF SUM OF NUMBER OF
TIMES TERM OCCURS IN
DOCUMENT DIVIDED BY
TOTAL TERMS IN DOCUMENT
PLUS A CONSTANT

le?

'

CALCULATE LOGARITHM
OF SUM OF NUMBER OF
TIMES TERM OCCURS IN
DATABASE DIVIDED BY
TOTAL TERM OCCURENCES
IN DATABASE

3Xm3

YES

NO

] P

MORE DOCS?

CALCULATE DOCUMENT
PROBABILITY OF RELEVANCE
P(R)=1/1+e"(- LOG O(R))

CALCULATE DOCUMENT LOG
ODDS OF RELEVANCE
LOG O(R) = K1 + (S [k2 - ZXma

+ k3 EXmo + k4 2Xp3))

+kS5-M

1

CALCULATE
S=1/(VM+1)

A

Figure 5

The Calcularion for the Staged Logistic Regression Probabilistic Ranking Process

Digiral Technical Journal Vol.7 No.3 1995

n

wn

and its unique identifier are stored in the kw_query
class. To see the results of the retrieval operation, the
query identifier is used to vetrieve the appropriate
kw_retrieval tuples, ranked in order according to the
estimated probabilin of relevance. The kw_retrieval
and kw_query classes have the tollowing POSTQUEL
definitions:

create kw_query

query_id = int4, /* ID number */
query_user = charleé, /* POSTGRES user name */
query_text = text) /* the actual query */

create kw_retrieval (

query_id = int4, /* link to the query */
doc_id = int4, /* document ID number */
rel_oid = oid, /* location of doc */

attr_oid = oid,

attr_num = int2,

tuple_id = oid,

doc_len = int4, /* size of document */

doc_match_terms = int4, /* number of Query terms
in the document */

doc_prob_rel = float8) /* estimated probability
of relevance */

The algorithm used tor ranked retrieval in the
Lassen prototype was tested against a number of other
svstems and algorithms as part of the TREC compcti-
tion and provided excellent retrieval performance.
We have found that the retrieval coefficients used in
the tormula derived from analvsis of the TIPSTER col-
lection appear to work well for a variety of document
pes. In principle, the staged logistic regression
retrieval coetticients should be adapted to the particu-
lar characteristics of the database by collecting rele-
vance judgments tfrom actual users and reapplving the
staged logistic regression analvsis to derive new coctti-
cients. This activity has not been performed tor this
prototvpe implementation.

The primary contrnbution of the Lassen protorvpe
has been as a proof-of-concept tor the integration of
full-text indexing and ranked retrieval operations in
a relational database management svstem. The proto-
tvpe implementation that we have described in this
section has a number of problems. For example, in the
prototvpe design tor indexing and retrieval operations,
all the informarion used is vistble in user-accessible
classes m the database. Also, the overhead is fairly
high, n terms of storage and processing time, tor
maintaining the indexing and retrieval information in
this way. For example, POSTGRES allocates 40 bytes
of svstem information for cach tuple in a class, and
indexing can take several seconds per document.

Currently, we are investigating a class of new access
methods to support indexing and retrieval in a more
etficient fashion. The class of methods involves declar-
ing some POSTGRES functions thar can extract
subelements ot a given tvpe ot attribute (such as words
in a text document) and generate indexes tor each of
the subelements extracted. Other tvpes of data might

Digiral Technical Journal Vol.7 No.3 1995

also benefit from this class of access methods. For
example, functions that extract subelements like geo-
metric shapes from images might be used to generate
subcelement indexes of image collections. Particular
index element extraction methods can be of great
value in providing access to the sort of information
stored in the Sequoia 2000 Electronic Repository. The
following scction describes one such index extraction
method developed tor the special needs of Sequoia
2000 dara.

GIPSY: Automatic Georeferencing of Text

Environmental Impact Reports (EIRs), journal arti-
cles, technical reports, and myriad other text items
rclated to global change research that might be
mcluded in the Sequoia 2000 database are examples of
a cliss of documents that discuss or reter to particular
places or regions. A common retrieval task is to find
the items that refer to or concentrate on a specitic geo-
graphic region. Although it is possible to have a
human catalog cach item for location, one goal of the
Electronic Repository was to make all indexing and
retricval automatie, thus eliminating the requirement
for human analvsis and cJassification ot documents in
the database. Theretore, part of our research involved
developing methods to pertform automatic georefer-
encing of text documents, that is, to automatically
index and retrieve a document according ro the geo-
graphic locations discussed or displaved in or other-
wise associated with its content.

In Lassen and most other full-text information
retricval svstems, searches with a geographical compo-
nent, such as “Find all documents whose contents per-
tain to location X.”
indexing, query, or display funcrions. Instead, these
scarches work onlyv by reterences to named places,
essenrially as side eftects of kevivord indexing. Whereas
human indexers are usually able to understand and
apply correct references to a document, the costs in
time and monev of using geographically trained human

arc not supported directly by

indexers torcadand index the entire contents ot a large
tull-text collection are prohibitive. Even in cases where
a document is meticulously indexed manually, geo-
graphic index terms consisting of kevwords (text
strings) have several well-documented problems with
ambiguity, synonvmy, and name changes over time. "'

Advantages of the GIPSY Model

To deal with these problems, we developed a new
modecl for supporting geographically based access to
text.” In this model, words and phrases that contain
geographic place names or geographic characteristics
are extracted from documents and used as input to
certain database functions. These tunctions use spatial
reasoning and statistical methods to approximate the

geographic position being reterenced in the text. The
actual index terms assigned to a document are a set of
coordinate polvgons that describe an area on the
carth’s surface in a standard geographical projection
svstem. Using coordinates instead of names for the
place or geographic characteristic offers a number of
advantages.

s Uniqueness. Place names are not unique, e.g.,
Venice, California, and Venice, Italy, are not appar-
ently different without the qualifving larger region
to differentiate them. Using coordinates removes
this ambiguity.

= [mmunity to spatial boundary changes. Political
boundaries change over time, leading to confusion
about the precise area being referred to. Coordi-
nates do not depend on political boundaries.

= Immunity to name changes. Geographic names
change over time, making it ditficult for a user to
retrieve all information that has been written about
an area during any extended time period. Coordi-
nates remove this ambiguity.

= Immunity to spatial, naming, and spelling varia-
tion. Names and terms vary not only over time but
also in contemporary usage. Geographic names
vary in spelling over time and by language. Areas of
interest to the user will often be given place names
designated only in the context of a specific docu-
ment or project. Such variations occur frequently
for studies done in oceanic locations. Names associ-
ated with these studies are unknown to most users.
Coordinatces are not subject to these kinds of verbal
variations.

Indexing texts and other objects (¢.g., photographs,
videos, and remote sensing data sets) by coordinates
also permits the use of a graphical interface to the
information in the database, where representations of
the objects are plotted on a map. A map-based graphi-
cal interface has several advantages over one that uses
text terms or one that simply uses numerical access to
coordinates. As Furnas suggests, humans use difterent
cognitive structures for graphical information than for
verbal information, and spatial queries cannot be fully
simulated by verbal queries.”* Because many geo-
graphical queries are inherently spaual, a graphical
model is more intuitive. This is supported by Morris’
observation that users given the choice benween menu
and graphical interfaces to a geographic database pre-
ferred the graphical mode.”* A graphical interface,
such as a map, also allows for a dense presentation of
information.'

To address the needs of global change scientists, the
Sequoia 2000 project team proposed a new browser
paradigm.'” This svstem, called Tioga, displays infor-
mation topologically according to continuous charac-
teristics that are attributes of the data.' For example,

documents may be displaved on a map according to
their latitude and longitude. Documents may also be
displayed according to the time at which they were
generated and the time to which thev refer, as well as
by more abstract functions such as the reading level of
the document and the author’s attitudes as expressed
in the document. A protorype of the geographical
browsing component was included in the Lassen
Geographic Browser, which is shown in Figure 6.

This browser allows any georeferenced object in the
database to be indicated by an icon on the map. The
user emplovs the mouse to center the map on anv
location and to zoom in or out for more or less map
derail. [cons can be made to appear at any coordinates
and for any range of magnification values. When an
icon is selected by the user, a menu of the objects geo-
referenced at the icon coordinates and detail level are
displaved for selection.

An Algorithm to Georeference Text

The advantages of georeferencing are apparent. Not so
apparent is how to perform such a task automatically.
We developed the following three-part thesaurus-
based algorithm to explore this task; the algorithm pro-
vides the basis for georeferencing in GIPSY."”

1. Identifv geographic place names and phrases. This
step attempts to recognize all relevant content-
bearing geographic words and phrases. The parser
for this step must “understand” how to identifv
geographic terminology of two tvpes:

a. Terms that martch objects or attributes in the
data set. This step requires a large thesaurus of
geographic names andterms, partially hand built
and partially automatically gencerated.

b. Lexical constructs that contain spatial informa-
tion, e.g., “adjacent to the coast,” “south of the
delta,” and “between the river and the highwav.”

To implement this part of the algorithm, a list of
the most commonly occurring constructs must be
created and integrated into a thesaurus.

2. Locate perrinent data. The output of the parser is
passed to a function that retrieves geographic coor-
dinate data pertinent to the extracted terms and
phrases. Spatiallv indexed data used in this step can
include, for example, name, size, and location of
cities and states; name and location of endangered
species; and name, location, and bioregional char-
acteristics of difterent climatic regions. The system
must identifv the spatial locations that most closely
match the geographic rerms extracted by the parser
and, when geographic moditiers are used, heuristi-
cally modity the area of coverage. For example, the
phrase “south of Lake Tahoe” will map to the area
south of Lake Tahoe, covering approximately the
same volume. This spatial representation is, by

Digiral Technical Journal Vol.7 No.3 1995

Latitude (degrees) i i_Lontude (degrees) L : | Zoom (tmes)
! i ‘1 =y | S
10 3 {4
Latitude (minutes) ey 'Longitude (minutes) | Aspect Correction
| 2=y | 2 \ 5]
. , [RieT e 120
Display Map Hide Icons GeoBrowse Help AVHRR Clip Cancel Display
Figure 6
Screen from the Lassen Geographic Browser
necessity, the result of an arbitrary assumption comparison with other dara sets, the GNIS
of sizc, but its purposc is to provide only partial latitude /longitude coordinates were converred to
evidence to be used i derermining locations as the Lambert-Azimuthal projection. Examples of
described below. place nameswith associated points include
Since geopositional data tor land use (c.g., cinies, Universitye of Calitornia Davis: =1867878 —471379
schools, and industrial arcas) and habitars (c.g., Redding: 1863339 —234894

wetlands, rivers, forests, and indigenous specics)
15 also avatlable, extracted kevwords and phrases tor
these tvpes of data must be recognized. The the-
saurus entries for this data should incorporare sev-
cral other tvpes of informartion, such as synonvimy
(e.g., Larin and common names of specics) and
membership (e.g., wetlands contain catrails, but
geopositional data on catrails may not exist, so we

Data tor land use and habitar data was derived in
the United States Geological Survey’s Geographic
Intormation Retrieval and Analvsis — Svstem
(GIRAS).”?

Fach identified name, phrasce, or region description
is associated with onc or more polvgons that mav
be the place discussed in the text. Weights can be
assigned to each of these polygons based on the fre-
quency of use of its associated term or phrase in the
text being indexed and in the thesaurus. Many rele-
vant terms do not exactly march place names or the
feature and land use types listed above. For exam-
ple, alfalfais a crop grown in California and should
be associated with the crop data from the GIRAS
land usc dara set. The thesaurus was thercfore
extended, both manually and by cextraction of

must use their mention as weak evidence of a dis-
cussion of wetlands and use that data instead).

Forourimplementation of GIPSY, we used two pri-
mary data sets to construct the thesaurus. The tirse
was a subset of the United States Geological
Survev’s Geographic Names Intormation Svstem
(GNIS).”" This data set conrains latitude /longirude
point coordinates associated with over 60,000 geo-
graphic place names in California. To facilitate

58 Digital Technical Jouraal Vol. 7 No. 3 1995

relationships from the WordNer thesaurus, to
include the following tvpes of terms:”
SVnonvimy
= . = svnonvm
kind-of relationships
~ = hyponvm (maple isa~ ot tree)

@ : = hypernvm (tree is a @ of maple)
part-of relationships
= mcronvm (finger is a # of hand)
% : = holonvm (hand is a % of finger)
& = evidonvm (pinc is a & ot shortleaf
pine)

Overlav polvgons to estimate approximate loca-

(8]

tions. The objective of this step is to combine the
cvidence accumulated in the preceding step and
mfer a set of polvgons that provides a reasonable
approximation of the geographical locations men-
tioned in the rest. Each geophirase. weight. polygon
tuple can be represented as a three-dimensional

“extruded” polvgon whose base is in the plane of

the a-and z-axesand whose height extends upward

on the y-axis a distance proportional to its weight

(see Figure 7a). As new polvgons arc added, several

CASEs Mav arisc.

a. If the base of a polvgon being added does not
intersect with the base of any other polygons, it
is simplv laid on the base map beginning at y= 0
(sec Figure 7b).

b. It the polvgon being added is completely con-
tained within a polvgon that already exists on the
geopositional skvline, it is laid on top of that
extruded polvgon, 1.e., its basc plane is posi-
tioned higher on the j-axis (sce Figure 7¢).

¢. Ifthe polvgon being added intersects but is not
wholly contained by one or more polvgons, the
polvgon being added is split. The intersecting
portion is laid on top of the existing polvgon and
the nonintersecting portion is positioned ar a
lower level (i.c., at y=0). To minimize fragmen-
tation in this case, polvgons arc sorted by size
prior to being positioned on the skvline (scc
Figure 7d).

In effect, the extruded polvgons, when laid
together, are “summed” by weight to form a geoposi-
tional skyline whose peaks approximate the geograph-
ical locations being referenced in the text. The
geographic coordinates assigned to the text segment
being indexed are determined by choosing a threshold
of elevation zin the skvline, taking the x-z plane at z.
and using the polvgons at the selected elevation.
Raising the clevation of the threshold will tend to
increase the accuracy of the retrieval, whereas lowering
the elevation tends to include other similar regions.

To sec the results of this process in the GIPSY proto-
tvpe, consider the following text from a publication of
the California Department of Water Resources:

The proposed project is the construction of a new
State Warter Project (SWDP) facility, the Coastal Branch,
Phase 11, by the Department of Water Resources
(DWR) and a local distribution facility, the Mission
Hills Extension, by water purvevors of northern Santa
Barbara County. This proposed buried pipeline
would dcliver 25,000 acre-feet per vear (AF/YR) of
SWP water to San Iuis Obispo County Flood Control
and Water Conservation District (SLOCFCWCD) and
27,723 AF/YR to Santa Barbara County Flood Control
and Water Conscrvation District (SBCECWCD)....
This extension would serve the South Coast and
Upper Santa Ynez Vallev. DWR and the Santa Barbara
Water Purvevors Agency are jointly producing an
EIR for the Santa Ynez Extension. The Sanma
Ynez Extension Draft EIR is scheduled for release in
spring 1991 .+

The resulting surface plor appears in Figure 8. The
tigure contains a gridded representation ofthe state of
Calitornia, which is elevated to distinguish it from the
base of the grid. The northern part of the state is on
the left-hand side of the image. The towers rising over
the stare’s shape represent polvgons in the skyline
generated by GIPSY’s interpretation of the text. The
largest towers occur in the area referred to by the rext,
primarily centered on Santa Barbara County, San Luis
Obispo, and the Santa Ynez Valley area.

The surtace plots generated in this fashion can also
be used tor browsing and retrieval. For example, the
two-dimensional base of a polvgon with a thickness
above a certain threshold can be assigned as a coordi-
nate index to a document. These rwo-dimensional
polvgons might then be displayed as icons on a map
browscr such as the one shown in Figure 6.

Future Work

Research remains to be done on several extensions to
the existing GIPSY implementation. Because a geo-
graphic knowledge base and spatial reasoning are fun-
damental to the georeferencing process, they have
been the tocus of initial research ettorts.

The cxisting prototvpe can be complemented by
the addition of more sophisticated natural language
processing. For example, spatial rcasoning and geo-
graphic data could be combined with parsing tech-
niques to develop semantic representations of the
text. Adjacency indicators, such as “south of” or
“between,” should be recognized by a parser. Also,
the work on document segmentation described below
could be used to explore the localitv of reference to
geographic entities full-text documents.
GIPSY’s technique may be most effective when
applied to a paragraph or section level of a text instead
of to the entire document.

within

Digiral Technical Journal Vol.7 No.3 1995

(a) The “weight” of a polygon, indicated by the
vertical arrow, is interpreted as “thickness.”

55_,

(b) Two adjacent polygons do not affect each other;
each is merely assigned its appropriate “thickness.”

(c) When one polygon subsumes another, their
“thicknesses" in the area of overlap are summed.

ﬂ —
When two polygons intersect, their “thicknesses”
are summed in the area of overlap.

Figure 7
Overlaving Polvgons to Estumare Approximate Locations

60 Digital Technical Journal Vol.7 No.3 1995

Figure 8
Surface Plot Produced from the State Water Project Text

TextTiling: Enhancing Retrieval through
Automatic Subtopic Identification

Full-length documents have only recently become
available on-line in large quantities, although technical
abstracts, short newswire texts, and legal documents
have been accessible tor many vears.” The large major-
itv of on-line information has been bibliographic (e.g.,
authors, titles, and abstracts) instcad of the full text of
the document. For this reason, most information
retrieval methods arc better suited for accessing
abstracts than for accessing longer documents. Part of
the repository research was an cxploration of new
approaches to information retrieval particularlv suited
to full-length texts, such as those expected in the
Sequoia 2000 database.

A problem with applving traditional information
retrieval methods to full-length text documents is that
the structure of full-length documents is quite differ-
ent from that of abstracts. (In this paper, “full-length
document” refers to expositorv text of any length.
Tvpical examples are a short magazine article and
a 50-page technical report. We exclude documents
composed of headlines, short advertisements, and any
other disjointed texts of whatever length. We also
assume that the document does not have detailed
orthographically marked structure. Croft, Krovetz,
and Turtle describe work that takes advantage of this
kind of information.**) One way to view an expository
text is as a sequence of subtopics set against a backdrop
of one or two main topics. A long text comprises many
difterent subtopics that may be related to one another
and to the backdrop in many ditterent wavs. The main
topics of a text are discussed in its abstract, if one
exists, but subtopics are usually not mentioned.
Therefore, instead of querving against the entire
content of a document, a user should be able toissue a

query about a coherent subpart, or subtopic, of a full-
length document, and that subtopic should be specifi-
able with respect to the document’s main topic(s).

Consider a Discover magazine article about the
Magellan space probe’s exploration of Venus.”
A reader divided this 23-paragraph article into the fol-
lowing segments with the labels shown, where the
numbers indicate paragraph numbers:

1-2 Intro to Magellan space probe
3-4 Introto Venus
5-7 Lack of craters
8-11 Evidence of volcanic action
12-15 Ruver Stvx
16-18 Crustal spreading
19-21 Recent volcanism
22-23 Future of Magellan

Assume that the topic of volcanic activity is of
interest to a user. Crucial to a system’s decision to
retrieve this document is the knowledge that a dense
discussion of volcanic activity, rather than a passing ref-
erence, appears. Since volcanism is not one of the
text’s two main topics, the number of references to
this term will probably not dominate the statistics of
term frequency. On the other hand, document selec-
tion should not necessarily be based on the number of
reterences to the target terms.

The goal should be to determine whether or not
a relevant discussion of a concept or topic appears.
A simple approach to distinguishing between a true
discussion and a passing reference is to determine the
locality of the references. In the computer science
operating svstems literature, locality refers to the tact
that over time, memory access patterns tend to con-
centrate in localized clusters rather than be distributed
evenly throughout memorv. Similarly, in full-length
texts, the close proximity of members of a set of

Digital Technical Journal Vol.7 No.3 1995 61

62

reterences to a particular concept is a good indicator of
topicality. For example, the term volcanisin occurs 5
nimes in the Magellan article, the first four instances of
which occur i four adjacent paragraphs, along with
accompanving discussion. In contrast, the term scien-
tists. which is not a valid subtopic, occurs 13 times, dis-
tributed somewhat cvenl throughout. By s very
nature, a subropic will not be discussed throughout an
entire text. Similarly, true subtopics are not indicared
by only passing references. The term belly dancer
occurs only once; and its related terms are confined to
the one sentence it appears in. As its usage is onlv
apassing rcterence, bellv dancing is nota true subtopic
of this text.

Our solution to the problem of reraining valid
subtopical discussions while ar the same time avoid-
ing being fooled by passing rcterences 1s to make
use of locality information and to partition docu-
ments according to their subtopical strucrure. This
approach’s capacitv for improving a standard informa-
ton retrieval task has been vertfied by information
retrieval experiments using full-text test collections
from the TIPSTER database ™

One wav to ger an approximation of the subtopic
structure is to break the document into paragraphs, or
for very long documents, scctions. In both cascs, this
entails using the orthographic marking supplicd by the
author to determine ropic boundaries.

Another way to approximate local structure in long
documents is to divide the documents into even-sized
picces, without regard for anv boundarics. This
approach is not practical, however, because we are
interested i exploring the performance of motivared
segmentation, i.c., scgmentation that reflecrs the
text’s true underlying subropic structure, which often
spans paragraph boundarics.

Toward this end, we have developed TextTiling,
a method for partitioning full-length text documents
into coherent multiparagraph units called tiles 2>
TextTiling approximates the subropic structure of
a document by using patterns of lexical connectivity to
find coherent subdiscussions. The laveut of the tiles is
meant to reflect the parrern of subropics contained in
an expository text. The approach uses quantitatine lex-
ical analvses to determine the extent of the tiles and to
classity them with respect to a general knowledge basce.
The dles have been found to correspond well to
human judgments of the major subropic boundaries of

science magazine articles.

The algorithm is a two-step process. First, all pairs of
adjacent blocks of text (where blocks are usually three
to tive sentences long) are compared and assigned
a similarity value. Second, the resulting sequence of
similarity values, after being graphed and smoothed, is
examined for peaks and valleys. High similarity valuces,
which implv that the adjacent blocks cohere well, rend

Digiral Technical Journal \ol. 7 No.3 1995

to torm peaks, whereas low similariny values, which
mdicate a potential boundary benween tiles, create val-
leys. Figure 9 shows such a graph for the Discover
magazme article mennoned carhier. The vernical lines
mndicare where human judges thought the topic
boundaries should be placed. The graph shows the
computed similarity of adjacent blocks ot text. Peaks
indicate coherency, and valleys indicate potential
breaks berween tiles.

The one adjustable parameteris the size of the block
used for comparison. This value, & varices slightly from
text to text. As a heuristic, it is assigned the average
paragraph length (in sentences), although the block
size thar best matches the human judgment data is
sometimes one sentence greater or smaller. Actual
paragraphs are not used because their lengrhs can be
highlv irregular, leading to unbalanced comparisons.

Similarity is measured by using a varation of the
thadf (rerm frequency times inverse document trre-
quency) measurement.™ In standard tfadt, terms that
are frequent in an individual document bur relatively
mftrequent throughout rthe corpus are considered to
be good distinguishers of the contents of the individ-
ual document. In TextTilng, cach block of & sen-
rences is treated asa unir, and the frequency ofa term
within cach block 1s compared to its frequency m the
cnrire document. (Note that the algorithm usesa large
stop list; 1.e., closed class words and other very tre-
quent terms are omitted from the caleulation.) This
approach helps bring out a distinction benween local
and global extent of terms. A term thatis discussed fre-
quenth wirhin a tocahzed cluster (thus indicating
acohesive passage) will be weighted more heavilv than
a rerm that appears trequently but scattered evenly
throughout the entire document, or infrequently
within one block. Thus if adjacent blocks share many
rerms, and those shared rerms are weighted heavily,
there 1 strong evidence that the adjacent blocks
cohere with one another,

0.22}
0.20
0.18
0.16
>
=014
™
50.12
20.10
0
0.08
0.06
004
0.02

) L ‘ s . L i L

0 10 20 30 40 50 60 70 80
SENTENCE GAP NUMBER

Figure 9

Resules of TextTiling a 77-sentence Science Article

Similariov between blocks is caleulared by the tollow-
ing cosine measure: Given rwo text blocks £l and 52,

"
ZU'I m Ui
{ !

—
Eu') Eu‘?;_\
!]

(=1
where #ranges over all the terms in the document, and

L)

cos (hl,h2)

10,y is the thidfweight assigned to term £ in block bl
Thus, if the similarity score berween oo blocks is
high, then not only do the blocks have terms in com-
mon, but the common terms ave relatively rare with
respect to the rest of the document. The evidence in
the reverse is not as conclusive. [fadjacent blocks have
a low similariy: measure, this does not necessarily
mean that the blocks cohere. In practice, however, this
negative evidence is often justified.

The graphis then smoothed using a discrete convo-
lution™ of the similarity function with the function
hy(.), where

Lik=lil), |i=k-1

Sl 0, otherwise.

The resultis smoorthed furtherwith a simple median
smoothing algorithm ro climinate small local min-
ima.* Tile boundaries are derermined by locating the
lowermost portions of vallevs i the resulting plot.
The actual values of the similarity: measures are not
taken into account; the relative differences are what
arc of consequence.

Retrieval processing should reflect the assumption
thar full-length rext s meaningfully different in struc-
ture from abstracts and short articles. We have con-
ducted retrieval experiments that demonstrate that
taking text structure into account can produce better
results than using full-length documents in the standard
way. " By working within this paradigm, we have
developed an approach to vector-space-based retrieval
thatappears ro work betrer than retrieving agamst entire
documents or against segments or paragraphs alone.

The resulting retrieval method matches a query
against motivated segments and then sums the scores
from the top segments tor cach document. The high-
est resulting sums indicate which documents should
be retrieved. In our test ser, this method produced
higher precision and recall than retreving against
entire documents or against scgments or paragraphs
alone.* Although the vecror-space model of retrieval
was used tor these experiments, probabilistic models
such as the one used in Tassen are equally applicable,
and the method should provide similar improvement
in retrieval pertormance.

We believe that recognizing the structure of full-
length text tor the purposes of information retrieval

1s very important and will produce considerable
improvement in retricval effectiveness over most exist-
ing similarity-based techmques.

Conclusion

The Sequoia 2000 Electronic Repository project has
provided a rest bed for developing and evaluaring tech-
nologics required for cetfective and efficient aceess to
the digital libraries of the future. We can expect that as
digital libraties proliferare and include vast databases of
information linked together by high-bandwidth net-
works, they must support all current and future media
in an easily accessible and content-addressable fashion.

The work begun on the Sequoia 2000 Electronic
Repository is continuing under UC Berkelev’s digital
library project sponsored jomtly by the National
Science Foundation (NSF), the National Acronautics
and Space Administration (NASA), and the Detense
Advanced Rescarch Projects Agency (DARPA).
Digital hibraries arc a fledgling technology with no
firm standards, architectures, or cven conscisus
notions of what they are and how thev are to work.
Our goal in this ongoing rescarch is to develop the
means of placing the contents of this developing
global virtual library at the fingertips of a worldwide
clientele. Achicving this goal will require the applica-
tion of advanced techniques for information retrieval,
information filtering, resource discovery, and the
application of new techniques for automarically ana-
lvzing and characrerizing data sources ranging from
texts to videos. Much of the work needed to enable
our vision of these new technologices was pioneered in
the Sequota 2000 Electronic Repository project.

References

1.]. Dozier, “How Scquoia 2000 Addresses Issues in
Data and Information Svstems for Global Change,”
Sequoia 2000 Technical Report 92 /14 (S2K-92-14)
(Berkeley, Calif: University of California, Berkeley,
1992) (ftp:/ /s2k-ttp.cs.berkeleviedu/pub/sequoin/
rech-teports /s2k-9 2-14 /s2k-92- 14 ps).

S8

M. Stoncbraker, “An Overview of the Sequoia 2000
Project,™ Digital Technical fourrnal. vol. 7, no. 3
(1995, thisissuc): 39-49.

3. M Stoncbraker and G. Kemnitz, “The POSTGRES
Next-generation Database - Management - System,”
Commnunntications of the ACM. vol. 34, no. 10 (1991):
78-92.

4. N. Fubr, “A DProbabilistic Relational Model for
the Ineegration of IR and Dartabases,” Proceediyigs
of the Sixteenth Annual Internalional ACM
SIGIR Conference on Research aned Developnient
i Informertion Retriecal (SIGIR 93). Pictsburgl,
June 27-July 1, 1993 (New York: Association for
Compuring Machinery, 1993): 309-317.

Digital Technical Journal Vol.7 No. 3 1995

64

9.

10.

13.

16.

Digital [echnical Journal

D. Blair, “An Extended Relational Document
Retrieval Model,” Tnformeation Processing and

Meanagement. vol. 24 (1988): 349-371.

R. Larson, “Design and Development of a Network-
Bascd Electronic Library,” Neeiget/ing the Networks.
Proceedings of the ASIS Midyear Meeting. Portland,
Orcgon, Mav 21-25, 1994 (Mcdford, N.J.: Learned
Informatien, Inc., 1994): 95-114. Also available as
Scequoia 2000 Technical Repore 94 /54, July 1994
(ftp://s2k-ftp.cs.berkeley.edu/pub/scquoia/rech-
reports /s2k-9 4-54 /s2k-94-54 ps).

G. Miller, R. Beckwith, C. Fellbaum, D. Gross, and
K. Miller, “Five Papers on WordNet,” CSL Report 43
(Princeton, N.J.: Princcton Universitv: Cognitive
Science Laboratory, 1990).

. W, Cooper, F. Gev, and D. Dabnev, “Probabilistic

Rerrieval Based on Staged Logistic Regression,” 7ro-
ceedings of the Fifteenth Al International ACT
SIGIR Conference on Research and Development in
Information Retrieval (SIGIKR '92). Copenhagen,
Denmark, June 21-24, 1992 (New York: Association
tor Computing Machinery, 1992): 198-210.

D. Harman, “The DARPA TIPSTER Project,” SIGIR
Forum. vol. 26, no. 2 (1992): 26-28.

W. Cooper, A. Chen, and F. Gey, “Experiments in rhe
Probabilistic Retrieval of Full Text Documents,”™ 7ext
Retricval Conference (TREC-3) Diafl Conference
Papers (Gaithersburg, Md.: Nauonal Institute of
Standards and Technology, 1994).

- A. Griftiths, “SAGIS: A Proposal tor a Sardinian Geo-

graphical Informarion Svstem and an Assessment of
Alternative Implementation Strategices,” fournal
of Information Science. vol. 15 (1989): 261-2067.

. Hobmes, “Computers and Geographic Information
Access,” Meridian. vol. 4 (1990): 37-49.

A. Woodruff and C. Plaunt, “GIPSY: Georeferenced
Information Processing SYstem,” Journal of the
American Society for Informetion Science. vol. 45,
n0.9 (1994): 645-655.

G. Furnas, “New Graphic Reasoning Models tor
Understanding Graphical Inrertaces,” Human Fac-
tors in Computing Systems: Reaching Through
Technology Proceedings (CHI 91 Conference).
New Orleans, April-Mav 1991 (New York: Association
tor Computing Machinery, 1991): 71-78.

B. Morris, “CARTO-NET: Graphic Retrieval and
Management in an Automated Map Library,” Special
Libraries Association. Geography and Map Divi-
sion Bulletin, vol. 152 (1988): 19-35.

C. McCann, M. Tavlor, and M. Tuori, “ISIS: The
Interactive Spatial Information Svstem,” /niterna-
tional Journal of Man-Machine Studies. vol. 28
(1988):101-138.

J. Chen,y R. Larson, and M. Stoncbraker, “Sequoia
2000 Object Browser,” Digest of Papers. Thirty-
secenth IETE Computer Society [nterncational Con-
Jerence (COMPCON Spring 199.2). San Francisco,

Vol.7 No.3 1995

20.

21.

22.

24.

26.

February 24-28, 1992 (Los Alamitos, Cahif.: Com-
puter Socicry Press, February 1992): 389-394.

M. Stoncebraker, J. Chen, N Nathan, C. Paxson, and
J. Wu, “Tioga: Providing Dara Management Support
tor Scientitic Visualization Applications,” Procecdd-
ings of the Nincteenth International Conference on
Very Large Data Bases. Dubling Ireland (August
1993): 25-38.

A. Woodruttand C. Plaunt, “Automated Geographic
Indexing of Text Documents,” Sequoia 2000 Tech-
nical Report 94/41 (S2K-94-41) (Berkeley, Calif:
University of California, Berkeley, 1994) (ttp://s2k-
frp.cs.berkeleviedu/pub/sequoia/tech-reports /s2k-9
+4-41/52k-94-41 ps).

Geographic - Names Information Svstem /United
States Department of the Interior, United States Geo-
logical Survey, vev. ed., Data User’s Guide, vol. 6
(Reston, Vao: Unired Srates Geological Survey, 1987).

J. Andcrson, E. Hardy, J. Roach, and R. Witmer,
“A Land Usc and Land Cover Classification Svstem for
Usce with Remorte Sensor Data,” United States Geolog-
cal Survev Professional Paper #964 (Washingron, D.C.:
Unired States Government Printing Oftice, 1976).

State Water Project, Coastal Branch, Phase 11, and

Mission Hills Extension (Sacramento, Calit.: Califor-
nia Deparoment of Water Resources, 1991).

. C.Tenopirand . Ro, Full Text Databases (New York:

Greenwood Press, 1990).

W. Crott, R. Kroverz, and H. Turtle, “Interactive
Retrieval of Complex Documents,” nformiation 1ro-
cessing cnd Management. vol. 26, no. 5 (1990):
593-616.

A Chaikin, “Magcllan Pierces the Venusian Veil,”
Discover. vol. 13, no. 1 (January 1992).

M. Hcarst and C. Plaunt, “Subtopic Structuring for
Full-Length Document Acceess,” Proceedings of the
Sixteenth Annual Internationel ACM SIGIR Confer-
ence on Research and Development in hiformation
Retriecal (SIGIR 93, Pittsburgh, June 1993 (New
York: Association for Computing Machinery, 1993):
59-68.

M. Hearst, “Context and Structure in Automated
Full-Text Informaton Access,” Ph.D. dissertation,
Report No. UCB/CSD-94 /836 (Berkelev, Calit.:
University of California, Berkeley, Computer Science
Division, 1994).

. M. Hcarst, “TextTiling: A Quantitative Approach to

Discourse Scegmentation,” Sequoia 2000 Technical
Report 93 /24 (S2K-93-24) (Berkelev, Calit.: Univer-
sitv. of California, Berkelev, 1993) (ftp://s2k-
frp.cs.berkelev.edu/pub/sequoia/tech-reports /s2k-9
3-24/52k-93-24 ps).

M. Hearse, “Multi-Paragraph Segmentation of Expos-
itorv Text,™ Proceedings of the Thirty-second
Meeting of the Association for Computctionel
Linguistics. Los Cruces, New Mexico, June 1994,

30. G. Salton, Attomeatic Text Processing: The Transfor-
mattion. Analysis. cnd Retriccal of nforniation by
Computer (Reading, Mass.: Addison-Wesley, 1989).

31. The authors are gratctul to Michael Braverman tor
proving thar the smoothing algorithm is equivalent to
this convolution.

32. L. Rabiner and R. Schafer, Digital Processing of

Speech Signals (Englewood Clitts, N.].: Prentice-
Hall, Inc., 1978).

Biographies

Ray R. Larson

Rav Larson is an Associate Protessor at the University

of Calitornia, Berkeley, in the School of Intormation
Management and Svstems (formerly the School of Library
and Intormarion Studics). He teaches courses and conducts
rescarch on the design and evaluation of information
retrieval svstems. Ray received his Ph.D. from the University
ot Calitornia. He 1s a member of the American Society tor
[nformation Scicnee (ASIS), the Association tor Comput-
ing Machinery (ACM), the [EEE Computer Sociery, the
Amecrican Association tor the Advancement of Science,
and the Amcrican Library Association. He is the Associate
Editor for ACM Transactions on Informetion Systems
and recceived the ASES Joiernal Best Paper Award in 1993,

Chbristian Plaunt

Christian Plaunt is a doctoral student and graduare
rescarch assistant at the University ot Calitornia, Berkeley,
School of Information Management and Systems. His
interests include experimental information retrieval sys-
tem modcling, simulation, design, and cvaluation; arti-
ficial intelligence techniques for intormation retrieval,
multistage retricval rechniques; information fltering;

and music. Chris holds master’s degrees in library and
intormation studics and in music (composition). In his
spare time, he composcs, plays the piano, and works in the
Music Librarv ar Calitornia State University, Fresno, necar
which he lives with his wite and their three Siamese cats.

Allison G. Woodruff
Allison Woodrutt is a Ph.D. student in the Electrical

Engineering and Computcer Science Department at the
University of California, Berkeley. Her rescarch interests
include spatial informarion systems, multimedia darabascs,
visual programming languages, and user interfaces. Pre-
viously, she worked as a geographic information systems
specialist for the Calitornia Department of Water Resources.
Allison holds a B.A. in English trom California State Uni-
versity, Chico,and an MLALin linguisticsand an M.S. in
computer science trom the University of California, Davis.

Mard A. Hearst

Currently a member of the research stattat Xerox Palo Alto
Research Center, Marti Hearst complered her Ph.D.in
compurer science at the University of California, Berkeley,
in April 1994. Her disscrration examined context and
structure of full-text documents for information access.
Her current rescarch interests include intelhigent intorma-
tion access, corpus-based compurtational linguistics, uscr
interfaces, and psycholinguistics.

Digital Technical Journal Vol.7 No.3 1995

65

66

Tecate: A Software
Platform for Browsing
and Visualizing Data
from Networked Data
Sources

Tecate is a new infrastructure on which applica-
tions can be constructed that allow end users

to browse for and then visualize data within
networked data sources. This software platform
capitalizes on the architectural strengths of cur-
rent scientific visualization systems, network
browsers like Netscape, database management
system front ends, and virtual reality systems.
Applications layered on top of Tecate are able
to browse for information in databases man-
aged by database management systems and for
information contained in the World Wide Web.
In addition, Tecate dynamically crafts user inter-
faces and interactive visualizations of selected
data sets with the aid of an intelligent system.
This system automatically maps many kinds of
data sets into a virtual world that canbe explored
directly by end users. In describing these virtual
worlds, Tecate uses an interpretive language that
is also capable of performing arbitrary compu-
tations and mediating communications among
different processes.

Digiral Technical Journal Vol.7 No.3 1995

Peter D. Kochevar
Leonard R. Wanger

All pcople share the need to find and assimilate infor-
mation. Dara from which information is created is
increasingly available clectronically, and that dara
1s becorming more and more accessible with the prolif-
cration of computer nctworks. Therefore, the world
is quickly becoming abstracted as a collection of net-
worked data spaccs, where a data spacc is a data source
or repository whose access is controlled by means of
a wecll-defined software interface. Some examples
of data spaces arc a databasc managed by a darabasc
management system, the World Wide Web (WWW or
Web), and any dara object that resides in a computer’s
main memory and whosc components arc accessible
through the object’s methods.

The need 1o locate data and then map it to a form
thar is readily understood lics at the core of learning,
conducting commerce, and being entcrrained. To
address this nced, interactive tools are required for
cxploring data spaces. These tools should allow any
end user to browsc the contents of dara spaces and to
inspect, measure, compare, and identfy patterns in
sclecred data scts. Combining both rasks into one tool
is both elegant and utile in that end users need to learn
only one system to scamlessly switch back and forth
between browsing for data and assimilating it. Before
such applications can be constructed, however, a firm
foundation must be defined that provides an interface
to data spaces, hclps map data into a visual representa-
ton, and managcs user interactions with elements in
the vasualizations.

This paper describes one such software platform,
called Tecate, which has been implemented as a
rescarch prototype to help understand the issucs
involved in explonng data spaces. With Tecate, the
cmphasis has been on developing the tools needed to
build e¢nd-to-cnd applications. Such applications can
access data spaccs, automadcally create virtual worlds
that represent data found in data spaces, and give cnd
uscrs the ability to navigate and interact with those
worlds as the mechanism for cxploring data spaces.
Because of this emphasis, Tecate’s development con-
centrated on understanding what system componcents
are nceded to create end-to-end applications and how
those components interact rather than on the func-
tionality of individual componcnts. As a consequence,

the tools provided by Tecate can be used to build
applications of only modecst capabilities.

Historically, Tecate grew out of the Scquoia 2000
project, which was inigated jointly by Digital Equip-
ment Corporation and the University of California
in 1991. The primary purpose of the Sequoia 2000
project was to develop information systems that would
allow carth scientists to better study global envi-
ronmental change. Sequoia 2000 partcipants needed
to browsc for data sets on which to test scientific
hypothescs and then to intcractively visualize the data
sets once found. The dara can be quite varied in con-
tent and structure, ranging from text and images
to umce-varying, multidimensional, gridded or poly-
hedral data scts. Such dara may stream from many dif-
ferent sources, c.g., databases managed by a darabase
management svstem, a running simulation of some
physical proccss, or the WWW. Therefore, a tool was
required that could interface to any such source. To be
of maximum use, though, the tool had to be casy
to use so that the scientists themselves could make
sophisticated data queries and then experiment with
the query results using a widc variety of dara visualiza-
tion techniques.

Gencralizing from its Scquoia 2000 roots, the
design of Tecate is intended to achieve four goals:

1. Interface to general dara spaccs wherever they may
residc.

2. Salicently visualize most kinds of data, ¢.g., scientific
data and thc listings in a tclephonc book.

3. Dynamically craft user interfaces and interactive
visualizations based on what data is sclected, who is

doingthc visualizing, and why the useris exploring
the dara.

4. Allow end users to interact with elements in visual-
izations as a means to query data spaces, to explore
alternatc ways of presenting information, and to
make annotatons.

There are systems available today that have some of
these capabilines, but no one system possesses all four.
Data visualization systems such as AVS, Khoros, or
Data Explorer are capable of visualizing scicntfic data;
however, they are poor at interfacing to general data
spaces, they provide only limited interactivity within
visualizations themselves, and they require visualiza-
tons to be crafted by hand by knowlcdgeable end
users.'>* Network browscrs such as Netscape are goed
at fetching data from certain types of data spaces but
arc imited in the variety of dara they can directly visu-
alize without having to rely on external viewer pro-
grams. Morcover, most network browsers offer a
restricted type of interactivity where only hyperlinks
can be followed and text can be submitted through
forms. Finally, front ¢nds to darabase management
systems provide claborate querying mechanisms for

sclecting data from a databasc, but they lack a sophist-
cated means for visualizing and further cxploring
query results.

The Tecate architecture borrows from that of visu-
alizagon systems, network browsers, and database
management systems as well as from virtual reality sys-
tems like Alice and the Minimal Reality Toolkit/
Object Modecling Language (MR/OML).** One
major contributon of the Tecate system is that it
incorporates the architectural strengths of these
systems into a coherent whole. In addidon, Tecate
possesses at least two novel fcatures that are not found
in other data visualizaton systems. Onc feature is
Tecate’s use of an interpretive language that can
describe three-dimensional (3-D) virtual worlds. This
language is more than a markup language in that it is
capable of performing arbitrary computations and
facilitaung communicatdon among different processes.
The second novel component of Tecate is the presence
of an expert system that automatcally crafts interactive
visualizations of data. This system is intended to make
dara space exploration casier to perform by having end
uscrs simply state their goals while leaving the details
of implementing a visualization to attain those goals to
the expert system.

The remainder of the paper outlines Tecate’s sys-
tem model and architecture and then identifies and
describes Tecate’s major components. Finally, the
paper sketches Tecate’s capabilities by discussing two
simple applications that have been implemented on top
of the Tecate software framework. The first application
is a tool for visualizing carth science data residing in
a database managed by a database management system.
The second application is a Web browser that uses 3-D
graphics as an underlying browsing paradigm rather
than depending solely on the medium of hypertext.

Tecate’s System Model

After presenung an overview of Tecate’s system model,
this section provides details of the object model and the
interpretive, object-oriented language used to describe
virtual world objects.

Overview

From the standpoint of an applicatons programmer,
Tecate is a distributed, object-oriented system. All
major components of Teccatc, as well as entities appear-
ing in virtual worlds created by Tecate, are objects that
communicate with one another by means of message
passing. The main focus within Tecate is on object-
object interactions. These interactions occur primarily
when objects send messages to one another. An object
can also send a message to itself, which has the effect of
making a local funcdon call. Unlike with graphics
systems such as Open Inventor, rendering is not a cen-
wal acuvity within Tecate; rather it is just a side effect

Digiral Technical Journal Vol.7 No.3 1995

67

68

of objcct-object interactions.® In this sense, Tecate is
like virtual reality programming systems such as Alice
and MR/OML, although Tecate is tar morc flexible.

In the Tecate system, objects can create and destroy
other objects and can alter the properties of cxisting
objects on-the-fly. Such capabilities make Tecate verv
extensiblc and give it great power and flexibility. These
capabilitics can also causc problems for applications
programmers, however, if care is not taken when writ-
ing programs. Presently, all of an object’s propertics
arevisible to all other objects, and hence thosc proper-
tics can be manipulated from outside the object. In the
future, some form of sclective property hiding needs
to be added so that designated propertics of an object
cannot be altered by other objects.

A powecrtul feature of Tecatc is irs ability to dynami-
cally establish object-subobjccr relasonships. This fea-
ture provides a mechanism for building assemblics of
parts similar to the mechanisms in classical hicrarchical
graphics systems like Doré or Open Inventor.” This
teaturce also provides the capability of creating sets or
aggregates of objects that share some trait, such as
being highlighted. Tecate allows all objects within a set
to be treated en masse by providing a means of sclec-
tvely broadcasting messages to groups of objects.
A message that is sent to an objcct can be forwarded
to all the object’s subobjects. Thus, for example, onc
object can serve as a container for all other objects that
are highlighted; the highlighted objects are mercly sub-
objects of the container. To unbighlight all highlighted
objects, a single unhighlight message can be sent to the
container object, which then forwards the message to
all its subobjects. In general, an object can be the sub-
object of any number of other objects and thus simulta-
ncously be a member of many difterent sets.

The handling of user input within Tecate 1s
intended to appear the same as ordinary object-object
interactions. All physical input devices that are known
to Tecatc have an agent object associated with them
that acts as a device handler. All objects that wish to
be informed of a particular input cvent register with
the appropriate agent. When an input event occurs,
the agent sends all registered objects a message notify-
ing them of the event. Complex events, such as the
occurrence of event A and event B within a specitied
ume period, can easily be detined by creating new han-
dler objects. These handlers register to be informed of
separate events but then, in turn, inform other objects
ofthe events’ conjunction.

The Object Model

Tecate uses an object model in which no distinction
is made between classes and instances, as is done in
languagcs like C++ .* In Tecate, there is a single object
creation operation called cloning. Any object in the
system can serve as a prototype trom which a copy can
be made through the clone operation. A clone inherits

Digital Technical Journal Vol.7 No.3 1995

properties from its prototype by copying the proto-
typc’s properties, but any such property can be altered
or removed, either by another object or by the clone
itsclt, so that a clone can take on an identity of its own.

The object model is based on delegation. When
Tecate clones an object to produce a new object,
the prototype’s propertics are not explicitly copied.
Instcad, the new object retains a reference to the
objcct from which it was cloned. When a reterence to
a property 1s made within an object, the system looks
tor the property value locally within the object. It no
property value is found locally, then the object’s pro-
totype 1s scarched to associate a value with the refer-
ence. | fthe prototype is itselt a clone, the prototype’s
prototypc is recursively scarched to resolve the refer-
cnce, and so on. This type of “lazy” evaluation of
property reterences is called delegation.

Norte that with delegation, a change in valuc for
a property in an object may affect the values of all
other objects that can trace their ancestry through
prototypce-clone relationships to the original object.
This type of semantics is uscful tor establishing class-
instance-like relationships benween objects. For exam-
ple, onc object may represent a particular class of
automobile tire, and all clones of the object would
represent class instances. If a class-level change is
needed that would aftect all instances, e.g., a new tread
pattern is to be introduced, only the object represent-
ing the tire class needs to change.

The clonc-prototype chaining implied by delega-
tion can bce overridden by changing the property
valucs locally. Thus, if one particular tire instance is
to have a new tread pattern, then the pattern is altered
in that instance only. References to the tread pattern
tor that objcct will use the local tread value rather than
chain back to the tire class object. All other instances
will continuc to reference the value present in the tire
class object.

All Tecate objects possess tour classes of properties:

1. Appearance—attributes that affect an object’s
visual appearance, such as geometric and topologi-
cal structure, color, texture, and material properties

2. Behaviors—a set of methods that are invoked upon
receipt of messages from other objects

3. State—a collection of variables whose values repre-
sent an object’s state

4. Subobjects—a list of objects that arc parts of a
)) p
given object, just as a wheel 1s part of a car

Although most users of the system unitormly see
communicating objects, a distinction is actually made
between two kinds of objects based on how they are
implemented by applications programmers. Resource
objectsare implemented primarily as external processes
using some compilable, gencral-purpose program-
ming language such as C or Fortran. Objects that have

compute-intensive behaviors or whose behavior execu-
tions arc umec-critical are generally implemented as
resource objects. For instance, most Tecate objects that
provide system services, such as rendering or database
management, are implemented as resource objects.
Objects populating virtual worlds that represent
data features are implemented differently than
resource objects by using an interpretive program-
ming language called the Abstract Visualization Lan-
guage (AVL). Such objects are called dynamic objects
becausce rhey may be created, destroyed, and altered
on-the-fly as a Tecate session unfolds. Nonetheless,
the ability to dynamically add, remove, and alter object
propertics i1s not solely endemic to dynamic objects.
Resource propertics may also be changed on-the-fly
because resources are actually implemented with a
dynamic objcct that interfaces to the portion of the
resource that is implemented as an external process.

The Abstract Visualization Language

AVLis essential to the Tecate system; it is through AVL
that applications programmers write applications that
usce Tecate’s features.” AVL is an interpretive, object-
oricnted programming language that is capable of
performing arbitrary computations and facilitating
communication among different processes. Through
this language, applications programmers specify and
manipulate object properties and invoke object behav-
iors by scnding messages from one object to another.

AVL is a typcless language that manipulates char-
acter strings; it 1s based on the Tcl embeddable
command language."” AVL cxtends Td by adding
object-oriented programming support, 3-1) graphics,
and a morc sophisticated event-handling mechanism.
Although AVL is a proper superset of Tcl, the relation-
ship between AVL and Tel is much like that berween
C and C++. By adding a small sct of new constructs
to Tcl, the way applications programmers structurc
AVL programs difters markedly from how they struc-
turc Tdl programs, just as the C++ language exten-
sions to C greatly alter the C programming style.

One usc of AVL is to describe virtual worlds that
represent data sets. Through AVL, objects that popu-
late these worlds can be assigned behaviors that are
clicited through user interaction. For instanc, sclect-
ing a 3- icon can cause a Universal Resource Locator
(URL) to be followed out into the WWW. In this
sense, AVL is somewhart like the Hypertext Markup
Language (HTML) that underlies all Web browsers
today, or, more firring, it is similar to the Virtual
Reality Modeling Language (VRML) that has been
proposed as a 3-D analog of HTML." AVL does, how-
ever, differ markedly from HTML and VRML, which
arc only markup languages. Because AVL is a tull-
fledged programming language that has sophisticated
interaction handling built in, it is philosophically more
similar to interpretive languages like Telescript,

NewtonScript, and PostScript.'>'*"* Like Telescript,
for instance, AVL programs can cncode “smart
agents” that can be sent across a network to perform
user tasks at a remote machine, if an AVL interpreter
resides there. Note, however, that in the present ver-
sion of Tecate, there is no notion of security when
arbitrary AVL code runs on a remote machine.

AVL includes some additional commands that aug-
ment the Tcl instruction set, for instance, clone and
delete. The clone command is the object creaton com-
mand within AVL, and the delete command is the com-
plementary operation to delete objects from the
system. Object properties are specified and manipu-
lated using the add command and deleted using the
remove command. Behaviors in one object are initiated
by another object using the send command, which
specifies the behavior to invoke and the arguments to
be passed. Queries about object properties can be
made using the inquire command. The which com-
mandis used todcetermine where an object’s propertics
are actually defined in light of Tecate’s use of delega-
tion to resolve property references. Finally, AVL pro-
vides a rich set of matrix and vector operators that arc
uscful when positioning objects within 3-D scenes.

As an example of how AVL is used in practice,
Figure 1 depicts a code fragment similar to one that
appears in the WWW application described later in the
paper. The code fragment creates a 3-D Web site icon
that is positioned on a world map. The code begins
with the definition of the Hyperlink object from which
all Web site icons arc cloned. The Hyperlink object is
itself cloned from the Visual object that is predefined
by Tecarte at system start-up. The Visual object con-
tains propertics that relate to the viewing of objects
within scenes. For instance, objects that are cloned
from the Visual object inherit behaviors to rotate
themselves and to change their color. To the proper-
ties that are inherited from the Visual object, the
Hyperlink objcct adds the state variables wr/and desc,
which will be used to store respectively a URL and its
textual description. In addition, objects cloned from
the Hyperiink object will inherit the default appear-
ance of a solid bluc sphere having unit radius.

The specification for the Hyperlink object also
defines three behaviors: init, openUrl, and showDesc.
The init behavior replaces the init method inherited
from the Visual object. When an object cloned from
the Hyperlinkobject receives an init message, it sets its
url and desc state variables, positions itself within the
scene whose name is given by the argument scene, and
registers itself with the mouse handler agent to receive
two cevents. When mouse button 1 1s depressed, the
agent sends the object the opentrl message, which in
turn requests the WWW Interface to fetch the data
pointed to by the object’s URL. Depressing button 2
invokes the showDesc message, causing the Web site
URL and description to be displayed by a previously

Digital Technical Journal Vol.7 No.3 1995

69

70

Define a prototype for all Web icons
clone Hyperlink Visual

add Hyperlink {(

state {
url "
desc ""
}

appearance {
shape {sphere}
diffuseColor {0.0 0.0 1.0}
repType {surface}
}
behavior {
H Initialize hyperlink
init {url desc pos scene window} {
addstate url 3$url
addstate desc $desc
send [getself] move "add $pos"”
add $scene "subobject [getselfl"

}

Open the URL

H Display the description

Initialize an informational Llandscape
clone scene Visual

clone window Viewer

send window init {scene}

#H Create a Web site icon
clone hlink Hyperlink

Use the SDSC model geometry
add hlink {appearance {shape {box}}}

send $window addEvent "[getselfl {Button-1 {openUrl {}}} {Button-2 {showDesc {}}}"

openUrl {} {send www fetch "[getstate urll1"}

showDesc {} {send metaViewer display "[getstate descl"}

send hlink init {"http://www.sdsc.edu/Home.htmlL"
"SDSC home page" "-2.3 -2.0 1.0" scene window}

Figure 1

An Implementation of a World Wide Web Icon in the Abstract Visualization Language

defined interface widget called the metaViewer. The
AVL command getself, which is used within the inir
behavior body, returns the name of the object on
which the behavior was called, thus allowing applica-
tions programmers to write generic behaviors. The
other AVL commands, getstate and addstate, arc
shorthand for “get [getself] state ...” and “add [getself]
{state...}.”

Once the Hyperlink object is defined, a scene, a dis-
play window, and a Web site icon are created. The
Tecate scene object is cloned from the Visual object.
The window object, cloned from the predefined
Viewer object, is the viewport into which the scene is
to be rendered. Finally, hlinkis a Web site icon whose
appearance ditters from that which is inherited from
the Hyperlink object. Rather than being spherical, the
shape of the hlinkicon is a unit cube.

Digiral Techmcal Journal Vol.7 No.3 1995

Tecate’s Architecture

The general structure of Tecate and how it relates to
application programs is depicted in Figure 2. Tccate
consists of a kernel, a set of basic system services, and a
toolkit of predefined objects. The Tecate kernel, which
is shown in Figure 3, is an object management system
called the Abstract Visualization Machine; AVL is its
native language. The Abstract Visualization Machine
is responsible for creating, destroying, altering, ren-
dering, and mediating communication between
objects. The two major components of the Abstract
Visualization Machine are the Object Manager and
the Rendering Engine.

The Object Manager is the primary component of
the Abstract Visualization Machine. Itis responsible for
interpreting AVL programs, managing a databasc of

APPLICATIONS

[
| e e |

Y Y

SYSTEM
SERVICES FooLkn

! i

KERNEL

TECATE

Figure 2
The Tecate System and Its Relationship to Application
Programs

objccts, mediating communication between objects,
and interfacing with input devices. The Object
Manager is itsclf a resource object that is disnnguished
by the fact that all other resource objects are spawned
from this onc object. In addition, the Object Manager
is responsible for creating a distinguished dynamic
object, called Root, from which all other dynamic
objects can trace their heritage through prototype-
clone relanonships.

The Object Manager is implemented on a simplc,
custom-built thrcad package. Each object within
Tecate can be thought of as a process that hasits own
thread of control. Each thread can be implemented
cither as a lightweight process that sharcs the same
machine context as the Object Manager’s operating
system proccss or as its own opcrating system process
scparate from that of the Objccr Manager. Lightweight
processes are so named becausc their use requires little
system ovcrhead, which enables thousands of such
processes to be active at any given ime. Within Tecate,
dynamic objects arc implecmented as lightweight

processes, whereas resource objects arc implemented
as heavyweight operating system processes, which may
or may not be paired with a lightweight, adjunct
process. A low-level function library is provided to
handle the creation and destruction of threads and
to handlc interthread communication regardless of
how thc thrcads arc implemented.

Closely allied with the Object Manager is the Ren-
dering Engine, which is a spccial resource object
wholly contained within the Abstract Visualization
Machine. The Rendcering Engine is responsible for
creating a graphical renditon of a virtual world that is
specified by AVL programs interpreted by the Object
Manager. When interpreting an AVL program, the
Object Manager strips of f appearance attributes of
objects and sends appropriatc messages to the Ren-
dering Engine so that it can maintain a separate display
list that represents a virtual world. Display lists are rep-
resented as directed, acyclic graphs whosc connectvity
is determined by object-subobject relationships that
are specificd within AVL programs.

The present Rendering Engine implementation
uses the Doré graphics package running on a DEC
3000 Model 500 workstaton.” The display lists that are
created by invoking behaviors within the Rendering
Engine are actually built up and maintained through
Dor¢. The set of messages that the Rendering Engine
responds to represents an interface to a platform’s
graphics hardware that is independent of both the
graphics package and the display device.

Layered on top of the Abstract Visualization
Machinc are Tecatce’s system services and the object
toolkit. The system services consist of a collection of
resource objects that arc automatically instantiated at
system start-up. These resources include an cxpert
system called the Intelligent Visualization System,
the Database Interface, the WWW Interface, and a

INTELLIGENT
VISUALIZATION <> DYNAMIC pyNAMIC) [<1r| T e
SYSTEM OBJECT OBJECT
DYNAMIC DYNAMIC
OBJECT OBJECT
DYNAMIC
PIGRIVER = QELEGT INTERFACE
OBJECT MANAGER

4
A

RENDERING
ENGINE

ABSTRACT VISUALIZATION MACHINE

Figure 3

Detail of Tecare’s Kernel (the Abstract Visualization Machine) and the System Services Provided by Tecare

Digital Technical Journal Vol.7 No.3 1995

71

72

visualization programming system called BigRover.
Figure 3 shows these resources in rclationship to
Tecare’s kernel. Each resource is a Tecate object that
has a number of predefined behaviors that can be usc-
ful to applications programmers. For instance, the
WWW Interface has a behavior that fetches a darta file
referred to by a URL and then translates the file’s con-
tents into an appropriate AVL program.

The toolkit within Tecate is a set of predefined
dynamic objects that programmers can use to develop
applications. These objects are considered abstract
objects in the sense that they are not intended to be
used directly. Rather, they serve as prototvpes from
which clones can be created. The toolkit consists of
objects such as viewports, ights, and camcras that arc
used to illuminate and render virtual worlds. The
toolkit also contains a modest collection of 3-D uscr
interface widgets that can be used within virtual
worlds created by an applications programmer. These
widgets include shiders, menus, icons, legends, and
coordinate axcs.

Onc uscful object in the toolkit that aids in simulat-
ing physical processes and helps in performing anima-
tions is a clock. This objcct is an cvent generator that
signals every clock tick. If objects wish to be informed
of a clock pulse, those objects register themselves with
the clock object just like objects register themselves
with input device agent objects. The dctaulr clock
object can be cloned, and each clone can be instanti-
ated with a different clock period down to aresolution
of one millisccond. Any number of clocks can be tick-
ing simultaneously during a Tccate session. Since new
clocks can be created dynamically, and objects can reg-
ister and unregister to be intformed of clock pulses
on-the-fly, clocks can be used as timers and triggers,
and as pacesctters.

Application Resources

Tecate’s system services are predefined application
resources that aid in interactively visualizing data. As
mentioned previously, these objects include the Intel-
ligent Visualization System, the Database Inrerface,
the WWW Inrerface, and the BigRiver visualization
programming system. In addigon, an applications pro-
grammer can casilv add new application resources
using tools provided with the basc Tecate system. Such
new resources can be built around cither user-written
programs or commcrcial off-the-shelf applications.
To create a new application resource, a programmer
needs to provide a set of functions that can be invoked
by other Tecate objects. These tuncrions correspond
to behaviors that are called when the resource receives
a message from other objects. Tools are provided
to register the behaviors with Tecate and to manage
the communication between a resource and other
Tecate objects.”

Digital Technical Journal Vol.7 No.3 1995

The Intelligent Visualization System

The Intelligent Visualization System allows Tecate to
dynamically build interactive visualizations and user
interfaces thar aid nonexpert end users in exploring
data spaccs. This knowledge-based system is similar in
concept to other expert visualization systems, as the
literature describes.”® ?' The Intelligent Visualization
System difters from other expert visualization systems
in two important ways. First, the Intelligent Visualiza-
tion System does not merely create a presentation of
information as do most other systems. Instead, the
Intelligent Visualization System creates virtual worlds
with which ¢nd users can interact to alter the way data
is presented, to make queries for additional data, and
to store new dara back into data spaccs.

The sccond wav the Intelligent Visualization System
difters from expert visualization systems is that it takes
a holistic approach to fashioning a visualization. Most
systems decompose data into clementary components,
determine how to visualize each component separatcly,
and then recomposce the individual visualizations into
a final presentation. In contrast, Tecate’s Intelligent
Visualization System analyzes the full structure of data
by rclying on a sophisticated data modcl based on the
mathematical notion of fiber bundles.? ** One way to
view fiber bundles is as a genceralization of the concept
of graphs of mathematical functions. Depending on
the character of a fiber bundle’s independent and
dependent variables, certain visualization techniques
are more applicable than others.

In general; the Intelligent Visualization System
automatically crafts virtual worlds based on a task spec-
1hication and a description of the data that is to be visu-
alized. A task speaitication represents a high-level data
analysis goal of what an ¢nd uscr hopes to understand
from the dara. For instance, an end user may wish to
determinc if there is any correlation berween tempera-
turc and the density of liquid water in a climatology
data scr. Usually, task specifications must be input by
an end user, although at times they can be inferred
automatically by the svstem. Tecate provides a simple
rask language from which rask specifications can be
built, and it provides a point-and-click tool tor end
uscrs to creare these specifications when needed. Darta
descriptions, on the other hand, do not require any
end-user input because they are provided automati-
cally by a data-space interface when data 1s imported
inro the svstem.

From the dara description and rask specification,
a Planner within the Inrelligent Visualization System
produces a daratlow program that when executed
builds an appropriate virtual world that represents
a sclected dara ser. The Planner uses a collection of
rules, definitions, and relationships that are stored in
a knowledge base when buillding a visualization
thar addresses a given task specification. Contents of
the knowledge base include knowledge about data

models, user tasks, and visualization techniques. The
Planner functions by constructing a sentence within a
datatlow language defined by a context-sensitive graph
grammar. At cach step in the construction of the sen-
tence, rules in the knowledge base dictate which pro-
ductions in the grammar are to be applied and when.
Presently, the knowledge base is implemented using
the Classic knowledge representation system; the
Planncr is implemented in CLOS.***

BigRiver

The dataflow program produced by the Intelligent
Visualization System is written in a scripting language
that is interpreted by BigRiver, a visualization pro-
gramming system similar to AVS and Khoros."* From
a technical standpoint, BigRiver is not particularly
innovative and will eventually be reimplemented using
some existing visualizarion system that has more func-
tionality. The reason that BigRiver was created from
scratch was to better understand how existing visual-
1zation programming systems work and to overcome
limitations within those systems. These limitations are
their inability to be embedded within other applica-
tions, their lack of comprehensive data models, and
their inability to work with user-supplied renderers.
The latest generarion of visualization programming
systems, such as Data Explorer and AVS/Express,
overcome many of these limitations.

Like most of the existing visualization systems,
BigRiver consists of a collection of procedures called
modules, cach of which has a well-defined set of inputs
and outputs. Functional specifications for these mod-
ules represent some of the knowledge contained in the
Intelligent Visualization System’s knowledge base.
Visualization scripts that are interpreted by BigRiver
specify module paramcter values and dictate how the
outputs of chosen modules are to be channeled into
the inputs of others.

BigRiver modules come in three varicties: 1/0), data
manipulators, and glyph gencrators. All modules use
sclf-describing data formats based on fiber bundles.
One format is used for manipulation within memory;
the other is an on-the-wire encoding intended for
transporting data across a nctwork. An input module
is responsible for converting data stored in the on-the-
wire encoding into the in-memory format. The data
manipulator modules transform tiber bundles of one
in-memory format into those of another. The glyph
gencrators take asinput fiber bundles in the in-memory
format and produce AVL programs that when executed
build virtual worlds containing objects that represent
features of selected darta sets. A single display module
takes as input AVL code and passes it to the Abstract
Visualization Machine. Bv means of the Rendering
Engine, the Abstract Visualization Machine uses the
appcarance attributes of objects to create an image of
a virtual world that contains the objects.

The Database Interface

The Database Interface provides the means to interact
with a database management system, which in the cur-
rent version of Tecate can be either POSTGRES or
[llustra.*** Database queries, written in POSTQUEL
for POSTGRES-managed databases or in SQL for
[llustra darabases, are sent to the Darabase Interface by
Tecate objects where they are passed to a database
management system server for execution. The server
returns the query results to the Database Interface,
which then attempts to package them up as an on-the-
wire encoding of a fiber bundle buffered on local disk.
If the result is a set of tuples in the standard format
returned by POSTGRES or Illustra, the Darabase
Interface performs the fiber bundle translation. For
most other nonstandard results, the so-called binary
large objects (BLOBs) of the database realm, the
Dartabase Interface cannot yet arbitrarily perform the
translation into the on-the-wire fiber bundle encod-
ing. The only BLOBs that the Databasc Interface can
deal with presently are those that are already encoded
as on-the-wire fiber bundles. The difficult problem of
automated data format translation was not addressed
during Tecate’s initial development, although the
intent is to address this issuc in the future.

Once query results are buftered on disk, a descrip-
tion of the fiber bundle and the location of the bufter
are sent back to the object that made the query
request of the Databasce Interface. That object might
then request the Intelligent Visualization System to
structure a virtual world whose image would appear
on the display screen by way of BigRiver and the
Rendering Engine. Objects in the virtual world can be
given bchaviors that are clicited by user interactions.
These behaviors might then result in turther database
queries and so on. Chains of events such as these pro-
vide a means for browsing databascs through direct
manipulation of objects within a virtual world.

The World Wide Web Interface

The WWW Interface functions similarly to the
Databasc Interface but instead of accessing data in
adarabase, the WWW Interface provides access to data
stored on the World Wide Web. Messages that contain
URLs are passed to the WWW Intertace, which then
terches the data pointed to by the URLs. In retrieving
data from the Web, the WWW Intertace uses the same
CERN software librarics used by Web browsers like
Netscape.

Once a data file is fetched, the WWW - Interface
attempts to translate irs contents into an AVL pro-
gram, which is then passed to the Object Manager for
interpretation. AVL cither specifies the creation of
a new virtual world that represents the darta file’s con-
tents or specifies new objects that are to populate the
current world being viewed. 1t the fetched data file
contains a strcam of AVL code, the WWW Interface

Digital Technical Journal Vol.7 No.3 1995

73

74

mercly forwards the file to the Object Manager. If the
file contains general data in the form of an on-the-wirc
encoding of a fiber bundle, the WWW Intertacc
appeals to the Intelligent Visualization System to
structure an appropriate virtual world. If the dara file
contains a stream of HTML code, the WWW Interface
invokes an internal translator that translates HTMI.
code into an equivalent AVL program, which is then
nterpreted by the Object Manager. This interpreter
actually understands an extended version of HTML
that supports the dircct embedding of AVL within
HTML documents. Through this mechanism, 3-D
objects with which users can interact can be embedded
directly into a hypertext Web page—somcthing that
few if any other Web browsers can do today.

Example Applications

Applications that browse the contents of data spaces
and then interactively visualize sclected results have
the same overall structure. One browscr application
component acts as a data space interface, and through
this interface queries are posed, query results arc
imported into the application, and data gencrated by
the application is stored back into a data space. Once
data has been imported into the apphcation, a second
component must map the data into some appropriate
virtual world. Finally, a third component must manage
any interactions that may take place between an end
user and elements that populate the virtual worlds that
arc created.

In creaung an application using Tecate, the Databasce
Interface and the WWW Interface represent resources
that can be used to form the application’s data space
interface. The mapping of data into a representative
virtual world can utilize Tecate’s Intelligent Visuali-
zagon System and the BigRiver visualization program-

ming system. Finally, the management of these worlds
can take place through AVL programs that exercisc the
fcatures of Tecate’s Abstract Visualization Machine.
The following two examples that were implemented in
AVL illustrate how Tecate can be used to create applica-
tions that browse data spaces.

Visualizing Data in a Database
A simple cxample of an application that cxploits
Tecate’s features is one that browses for carth science
data in a database and then provides visualizations of
that data. The initial uscr interface for this application is
built using a collection of uscr interface widgets, where
cach widget is a Tecate dynamic object. Because the
Tecate system docs not vet have a comprehensive 3-D
widgct set, some widgets still rely on nvo-dimensional
(2-D) constructs provided by the Tk widget set that
is implemented on top of the Tel language. ™

Figure 4 depicts the tlow of messages between some
of the more important objects that are used within the
application. Onc object is the Map Query Tool that
is used to make certain graphical querices for carth
science data sets whose geographical extents and rime
stamps fall within uscr-specificd constraints. The tool
is built around a world map on which regions of inter-
est can be specified (see Figure 5). When a user marks
aregion of interest on the map and sclects a temporal
range, a query message is sent to the Database
Interface. The result of the query is returned to the
Map Query Tool, which then torwards a description
of the result to the Intelligent Visualization System.
To structure an appropriate visualization, an inferred
sclect task directive accompanies the result. The ensu-
ing script produced by the Intelligent Visualization
System is cxcecuted by BigRiver, which producces a
strcam of AVL code that is sent to the Abstract
Visualization Machine tor interpretation.

PLAN VISUALIZATION /-\ o
Y MAP QUERY)
l W‘ QUERY
RESULT
INTELLIGENT PLAN
VISUALIZATION | Y
SYSTEM VISUALIZATION QUERY
TASK Y DATABASE
EXECUTE EDITOR INTERFACE
SCRIPT i QUERY
) | RESULT
SET FETCH
DATA
BIGRIVER PARAMETERS
DATA SET
INTERPRET \CON CEv.
ABSTRACT :
VISUALIZATION
LANGUAGE O DYNAMIC OBJECT
Y
OBJECT [] RESOURCE OBJECT
MANAGER

<«—— MESSAGE FLOW

Figure 4

Message Flow between Important Objects in the Earth Science Application

Digital Technical Journal Vol.7 No.3 1995

Amplitude

Reset Set
2

Figure 5

The Map Query Tool Showing a Visualization of a Query Resulr

This AVL program crcates a new virtual world that
consists of a collection of 3-D objects. Each object acts
as an icon that corresponds to one data sct that was
rcturned as the result of the initial query (sce Figure
5). The Intelligent Visualization System also builds
in two behaviors tor cach icon. Depending on how
a uscr sclects an icon, cither the metradata associated
with rhe data sct represented by theicon is displaved in
a scparate window or a query message 1s sent to the
Databasc Interface requesting the actual data. In
the latter case, the Map Query Tool again forwards
the query result to the Intelligent Visualization System,
and another virtual world contaiing objects repre-
senting data features is created and displaved with
the aid of BigRiver and the Abstract Visuahization
Machince. In general, data exploration proceeds this
way by creating and discarding virtual worlds based on
intcractions with objects that populate prior worlds.

After sclecting anicon to actuallv view the data asso-
ciated with it; an end user s asked by the Intelligent
Visualization System to input a task specification using
a Task Ediror. Generally, data scts can be visualized in

many different ways. The Intelligent Visualization
System uscs the task specification to sclect the one
visualization that best satisties the stated task. After
a task speaification is entered, a visualization of the
sclected data set appears on the screen. The BigRiver
daraflow program that the Intclligent Visualization
System creates to do that visualization can be edited by
hand by knowledgeable end users to override the deci-
sions madc by the system.

Figure 6 shows a Task Editor and a visualization
crafted by the Intelligent Visualization System after an
end user sclected a data-set icon. The visualizagon rep-
resents hydrological dara that consists ot a collection of
tuples, cach corresponding to a sct of measurements
made at discrete geographical locations. Based on
the task speaification that the end user entered, the
[ntelligent Visualization System chose to map the data
mto a coordinate system that has axes that represent
Jatitude, longitude, and elevation. Each sphere repre-
sents an individual measurement site, whose color is
a function of the mean temperature. When an end user
sclects a sphere, the actual dara values associated with

Digital Technical Journal Vol.7 No.3 1995

75

76

E. ELEV

task operators

search
select

show network tex!

domains
ELEVATION
LATITUDE
LONGITUDE
PRECIPITATION
SNOW-RATIO

Figure 6

Task Editor Showing a Visualization of Hvdrological Darta

the location represented by the sphere are displaved.
In addition, the Tntelligent Visualization Svstem auto-
matically places into the virtual world of the visualiza-
riona colorlegendto help relate sphere colors to mean

remperature values.

Figure 7 depicts another virtual world showing a
visualizarion of data-set output trom a regional climare
modecl program. The data setisa 3-D array indexed by
latitude, longitude, and clevation. Fach array clement
15 a tuple thar contains cloud density, water conrent,
and temperature values. In this mstance, the end user
entered a task specificarion that stared thar the spatial
variation in temperature was of primary mportance.
The Inrelligenr Visualization System responded by
specifiving a visualization that represented the temper-
ature data as an isosurface, i.c., a surtace whose points
all have the same value for the temperature. Included
in the virtual world is a widget thar can be used to
change the isosurface value and the tield variable thar
18 being studied.

The 1sosurtace widgert that appears m the visualiza-

tion shown in Figure 7 is of special incerest because of

theway that it is implemented. Embedded m the rool
1s a slider that is used to change the isosurtace value. As
with most shders, the slider value indicator automati-
cally moves when a mousce button is held down while

Digital Technical Journal Vol.7 No.3 1995

pointing at one of the slider ends. To achieve this sim-
ple animation, Tecate’s clock object is used. When the
mouse butron is first depressed while the cursor is over
a slider end, the slider indicator registers itself to be
informed of clock ticks. From then on, at every clock
rick, the indicator receives an update message trom the
clock, ar which time the indicator repositions itself and
mcrements or decrements the current slider value.
When the mouse butron is released, the slider sends
a message to BigRiver indicating that a new isosurface
1s to be calculared and displaved. In addition, the shder
indicator unrcgisters itsclt from the clock signaling
that it no longer is to receive the update messages. In
general; applications can use this same clock mecha-
nism to perform more claborate animations.

A 3-D World Wide Web Browser

In the Tecate Web browser, exploration of the World
Wide Web and 1ts contents occurs by placing an end
uscer onto an informational landscape. This landscape
1s .1 3-D virtual world whose appearance reflects the
content and the structure of a designated subset of the
enrire Web. Upon application start-up, an end user
1s presented with an iminal informatonal landscape
that consists of a planar map of the earth embedded
in a 3-D space, as shown in Figure 8. In general, the

Amplitude

Reset Set
2

Sensivity
Dismiss
2

Figure 7

Task Editor Showing a Visualization of Regional Climare Dara, Including an Isosurface and a User Interface Widger

initial informational landscape can be any 3-D scenc
and does not have to be geographically basced. For
instance, an informational landscape might be a virtual
library where books on shelves serve as anchors for
hyperlinks to different Web sites.

In the present browser application, sclected Web
sites appear as 3-D icons on the world map. These
icons are positioned either in locations where Web
servers physically reside or in locations referenced
within Web documents (see Figure 8). A user places
information that describes these sites into a database
that serves as an elaboration of the hot list of current
hypertext-based browsers. When the browser applica-
tion is first started, it sends a query for the initial com-
plement of Web sites to the Database Interface. The
browser application then invokesa BigRiver script that
visualizes the results by placing icons representing
each site onto the world map.

Suspended above the world map is a 3-D user inter-
face widget that is used to query a database of Web
sites that are of interest to an end user (sce Figure 8).
This database, where the initial set of Web sites is
stored, includes information such as URLs, keywords,
geographical locations, and Web site types. Currently,

Amplitude
Reset Set

Sensivity
Dismiss
2 2

S, OO, T e

Figure 8
Tecare Web Browser Informarional Landscape Showing
WWW Sites Depicted as 3-1) Icons on a Map of the World

Digital “T'echnical Journal Vol.7 No.3 1995

77

78

individual users are responsible tor maintaiming their
own databascs by adding or removing Web site entries
by hand. An automated mcans for building these dara-
bases can be easily added to the browser application so
that Web information could be accumulated based on
where and when an end uscer travels on the Web.
During a browsing scssion, the Web Query Tool
allows arbitrary SQL quecrics to be posed to the
databasc by an end user. In addition, the Web Query
Tool has provisions to allow packaged querices to be
initiated by a simple click of a mouse button. In both
cases, querics are sent to the Darabase Interface for
forwarding ro the appropriate darabase scrver. The
Database Interface packages up the query results as
on-rhe-wire fiber bundles which are returned to the
Web Query Tool. The Web Query Tool then invokes
a BigRiver script, which converts the fiber bundle dara
into AVL code. This code, when interpreted by the
Object Manager, creates a visualization of the Web
sites that satisfies the query. Generally, a visualization
such as this consists of placing on the world map a set
of 3-D icons whose appcarances are a function of the
Web site type. However, query result visualizations
need not be hmited to an organization based on geo-
graphical position. For mstance, a query tor the con-

Amplitude
Reset Set
2

tents of an end wser’s own file directory results in a
new informational landscape that consists of an cvenly
spaced grid of icons suspended within a room, as
sbown in Figure 9.

Fach icon that appcars within an mtformational
landscape 1s cloned from an AVL Hyperfink abstract
object that stores its URL. in a state variable. Each Web
site icon inherits from the Hyperlink prototype a
behavior that causes dara poinred to by its URIL state
variable to be ferched by means of the WWW [nrerface
when the 1con is sclected. When the data is drawn
across the Web, Tecare’s WWW Interface attempts to
structure a visualizanon of it. Figure 10 summarizes
the message tlow berween the more important objects
within the Web browser application.

It an end user sclects an icon and a Web server
returns a strecam of HTML, the WWW Interface trans-
lates the strecam into AVL and displays the resulton the
basc of an mvertred pyramid whose apex is centered on
the chosen icon (sce Figure 11). The text and imagery
resulting, from the HTML appear similarly as they
would visualized using a hypcrrext-based
browser like Netscape. Hyvperlinks are represented as
highlighted text, which the user can follow by sclect-
ing the text. These hvperlinks are Tecate objects that

when

Sensivity

Dismiss
2

Figure 9
Sample End-user Nongeographical Informarional Landscape

Digital Technical Journal Vol.7 No. 3 1995

QUERY
EXECUTE SCRIPT /\ DATABASE
P WEB QUERY)
BIGRIVER |< TOOL INTERFACE
QUERY RESULT

INTERPRET
ABSTRACT
VISUALIZATION
| LANGUAGE
INTERPRET /\ FETCH URL
OBJECT ABSTRACT DATASET) .
MANAGER | vISUALIZATION ICON = e
VANGUAGE FETCH RESULT

KEY:
() ovnamcossecT
[] mesourceosecT

— MESSAGE FLOW

Figure 10
Message Flow between Important Objects in the Web Browser

Amplitude Sensivity
Reset Set Dismiss
2 2

Figure 11
Results of a Tecate Browsing Session Showing a Hyperlink and a Forest of Pyramids That Represents the User’s Travels

on the Web

Digital Technical Journal Vol.7 No.3 1995

80

are cloned from the same Hyperlink prototype as the
Web site icons. It another HTML document is
retricved by following a hyperlink, that document
1s vicwed on the base of another inverted pyramid
whosc apex rests on the sclected text and so on (see
Figurc 11). Rather than having ro page back and torth
between hypertext documents as with most hvpereest-
bascd browsers, in Tecate, an end user needs only to
move about the virtual world to gain an appropriate
viewpoint from which to examine a desired document.
Overall, as shown in Figure 11, a browsing session
with Tecate’s Web browser results ina torest of pyra-
midal structures that represent a pictorial history of
an end uscr’s travels on the Web.

Although Tecate’s Web browscer is capable of vicw-
ing HTML documents, its main purposc is not to
cmulate what can currently be done using hypertext-
based browscers, albeit using 3-1D. Rather, the new
browscr is intended to visualize primarily more com-
plex types of dara. When dara does not consist of
astrcam ot HTML code, the WWW Interface attempts
to visualize what was returned from the Web. These
visualizations can take place in virtual worlds separate
trom the informational landscape from where the data

Amplitude
Reset Set
2

request was mitiated, or they can be placed within
the original informational landscape. Figure 12 depicts
an example of a Web document that has embedded
within it a miniature virtual world containing a modcl
ofa car. An end user can freely interact with this model
to ininate any behavior detined for objects populating
the subworld. For instance, selecting the car with the
mousc causcs the car whecls to spin. Figure 13 shows
the AVILL code embedded in the HTML page tor the
Web document shown in Figure 12.

Conclusions

Tecate provides the frastructure on which applica-
tions can be created for browsing and visualizing data
from nenworked data sources. Architecturally, Tecate
sceks to bring together into one package usctul fea-
tures tound in visualization svstems, network browsers,
databasce front ends, and virtual reality systems. As a
first prototvpe, Tecate was created using a breadeh-first
development strategy. That is, developers deemed it
essential to first understand what components were
nceded to build a gencral data space exploration utility
and then determine how those components interact.

Sensivity
Dismiss
2

on=] on car fo jolate G
M&a{&: 5 wheel 1o rog';ge e
¥ fon—1 on a eal o change

Figure 12

Example ota Web Document with Embedded 3-D Virtual World

Digital Technical Journal Vol.7 No.3 1995

<HEAD>
<TITLE>The Tecate car demo</TITLE>
</HEAD>

<BODY>
<H1>The Tecate car demo</H1>

<AVL>

H Global variables

global TEC_WEB_PARENT TEC_WEB_WIN
set path "/projects/s2k/sharedata"

Define car part prototype
clone CarPart Visual
add CarPart (
state {angle 102}
appearance {
repType surface
interpType surface
}
behavior {
around {args} (
for {set i 0} {3$i < 360} {incr i [getstate anglel} {
send [getself] rotate "add 0O [getstate anglel 0"
}

}

Define car body
clone car_body CarPart
add car_body (
appearance {
replacematrix {rotate {0.0 0.0 90.0121}
shape {AliasObj "$path/car_body.tri'"}

}

H Define generic wheel
clone wheel CarPart

H Define car's four wheels
clone back_right CarPart

H Assemble car

clone wheels CarPart

add wheels {subobject {back_right back_left front_Lleft front_right}}

clone car CarPart

add car {
appearance {replacematrix {translate {28.0 -8.0 3.0} rotate {90.0 90.0 0.01}1}
subobject {car_body wheels}

}

add $TEC_WEB_PARENT {subobject {carl}

H# Bind pick events to car

send $TEC_WEB_WIN addeEvent {wheel {Pick-Shift-Button-1 {rot_wheels {}}}}
send $TEC_WEB_WIN addEvent {wheel {Pick-Button-1 {around {}}}}

send $TEC_WEB_WIN addEvent {car {Pick-Button-1 {around {22}}}

</AVL>

<PRE>

Button-1 on car to rotate the car

Button-1 on a wheel to rotate the wheels

Shift Button-1 on a wheel to change the wheels

</PRE>

<HR>
<P>
</BODY>

Figure 13
AVI. Code Embedded i the HTML Page tor the Web Document Example

Digital Technical Journal Vol. 7 No.

o

d

1995

8

82

This development strategy traded oft the functionaliny

of individual components tor the complereness of

a fully running visualization svstem,

In terms of achieving irs design goals, the Tecare
cttort has been moderately successtul. Tecare can now
provide inrerfaces to two kind of data spaces: the
World Wide Web and darabases managed by the
POSTGRES and Hlustra darabase management svs-
tems. In addition, interfaces to other data spaces can
be implemented casilv by creating new resource
objects using the tools provided by Tecate. Much
work still needs to be done, however, For example, the
artendant dara translation problem must be satistacro-
rilv solved; data passing through an interface that
1s stored in one formar should be automatically con-
verted into Tecate’s favored formar and vice versa.

When building visualizations ot data; Tecare non
understands data that has a specific conceprual struc-
ture, in particular, arbitrary scts of tuples and multi-

dimensional arravs where array clements mav be
tuples. Although dara tvpes from many ditferent discl-
plines possess such a structure, some tvpes remain that
do nor, for instance, data thar has a lartice-like or poly-
hedral structure. Furthermore, Tecate can now con-
struct onlv crude visualizations ot the data rvpes that it
does understand. The primary reason tor this short-
coming is that the basic module ser within the
BigRiver resource is incomplete, and the knowledge
base withm the Inteligent Visualization Svstem con-
rains limited knowledge of visualization technigues
thar can be used ro transform dara into virtual worlds.

At present, Tecate does dvnamically craft simple user
imrertaces and interactive visualizations using its Intelli-
gent Visualization Svstem. 'This expert svstem takes into
account how data is conceprually structured and end-
user tasks regarding what is to be understood from the
dara. Sull; the Intelligent Visualizarion Svstem doces not
ver consider data semantics, end-user preferences, or
display svstem characreristics when building visualiza-
tions. Nonetheless, Tecate does provide the capabilities
to creare highly interactive applications. Sophisticated
event handling, constructs are built into AVIL, and the
Intelligent Visualization Svstem uscs those fearures to
automatically place user intertace widgers mto the
virtual worlds it specifies.

Regarding futare work, hopetully, succeeding gen-
erations of the Tecare svstem will include many new
fecarures and enhancements. The management of
objects needs to be reworked so that thousands of
objects can be cfficiently handled simultancously.
Although Tecare now builds virrual worlds, virtual
reality gadgetry has ver to be integrated into the svs-
rem. The Abstract Visualization Language needs new
tcaturces, and it needs to be streamlined. Tecate can
also benefit greartly from a more complete toolkir of
3-1D widgers that can be used to interact with objects
within virtual worlds. Finally, the Doré graphics sys-

Digital Technical Journal \Vol.7 No.3 1995

tem thar Tecare uses should be replaced with a more
mainstream svstem Jike OpenGL, which will allow
Tecare to run on a wide varicty of bardware plattorms.

Tecare 1s an exciting svstem to use and an excellent
foundation trom w hich to pursue further rescarch and
developmenr in the exploration of general data spaces.
Tecare advances the state ot the art by demonstrating a
comprehensive means to graphically browse for dara
and then interactively visualize dara scrs that are
sclecred. Tecare accomplishes these rasks by using an
expert syvstem that automatically builds virtual worlds
and by exploiting the flexibility of an interpretive,
object-oricoted language that describes those worlds.

Acknowledgments

The work described in this paper was supported by
Digiral Equipment Corporation, the University of
Calitornia, and the San Dicgo Supercomputer Center
as part of the Sequora 2000 project. We would like to
give special thanks to Frank Araullo, Mike Kelley,
Jonathan Shade, and Colin Sharp for thewr help in con-

structing the Tecate prototvpe.
References
Lo AVS Csers Guide (Waltham, Mass.: Advanced Visual
Svstems Inc., Mav 1992).

2. Khoros Csers Mcnnal (Albuquerque, N Mexe: The
Khoros Group, Department of Elecrrical and Com-
puter Engineering, Universiny of New Mexico, 1992).

2

1B Visualization Daler Explorer: User's Guiide
(Armonk, N.Y.: Intcrnational Business Machines
Corporation, 1992).

4. R Pausch eral, “Alice: A Rapid Prototyping System
for Virtwal Realin,™ Course Notes #2: Developing
Advanced Virtual Reality Applications, Proceedings
of the ACN SIGGRALH 94 Conference (1994).

5. Object Modeling Languege (OML) Programmer’s
Mannal (Edmonton, Atberta, Canada: Department of
Computing Science, Universine of Alberta, 1992).

6. P Strauss and R. Carey, “An Object-oriented
3D Graphics Toolkit,™ Proceedings of the ACH
SIGGRAPH 92 Conference (1992).

7. Doré Programmers Guide (Santa Clara, Califs
Kubota Graphics Corporation, 1994).

8. D. Ungarand R. Smith, “Sclf: The Power of Simplic-
ity SIGPLAN Notices. volo 22, no. 12 (December
1987):227-241.

9. P Kochevar, “Programming in Tecate,™ available on the
Internct at hrep://wwwsdse.edu/SDSC /Rescarch /
Visuahzanon /Tecate /tecate. hrml (May 1995)

10. J. Ousterhour, “Tcl: An Embeddable Command
Language,” Procecdings ofthe 1990 Winler USENIX
Conference (1990)

11

._
3,

16.

17.

[SS]
o

(3]
I

G Bell, Al Parist, and ML Pesee, “The Virtual Realiey
Modcling Language Specificarion,™ available on the
Inrernetat heep://vimlavired.com (November 199+4).

J. White, “Telescripr Technology: The Foundarnion tor
the Electronic Markerplace,™ General Magic white
paper (Sunmvvale, Calit: General Magic, Inc, 1994).

J. McKeehan and N Rhodes, Progicmaning for the
Newton: Softwcare Decelopnent with NewtonScript
(Cambridge, Mass.: Academic Press Protessional, 1994).

Adobe Svstems Incorporated, PostScript Leanguege
Keference Manual (Reading, Mass.: Addison-\Wesley
Publishing Company, 1990).

L. Wanger, “Writing, Tecate Resources,” available on the
Tnterner ar hup://wawwsdseedu/SDSC/Rescarch/
Visualization /Tecate /tecate.homl (May 1995),

S. Casner, A Task-analvric Approach tothe Automated
Design of Graphic Presentations,” ACM Transcactions
on Graphics.vol 10, no. 2 (April 1991): 1T1-151.

E. fgnatius and Ho Senay, “Visualizaton Assistant,”
Procecdings of the 1EEE Visualization Worksbop on
Ltelligent Visuelization Systenis (October 1993).

J. Mackinlav, “Automarting the Design of Graphical
Presentations of Relational Intormation,™ ACH Treins-
actions on Graphics. vol. 5, no. 2 (1986): 110-141.

H. Senav and E. [gnatius, “VISTA: A Knowledge-
based Svstem tor Scientitic Data Visualization,™
Technical Report GWU-IIST-92-10 (Washingron,
D.C George Washington University, March 1992).

Z. Ahmed eral., “An Inrelligent Visuahzation Svstem
for Farth Science Data Analvais,™ Jorrnal of Visuel
Lenguciges aned Computing (December 1994,

P Kochevar eral, *An Intelligent Assistant tor Creat-
mg Dara Flow Visualization Networks,™ /7rocecdings
ofthe WS OF Conference 1 1994).

D. Burlerand M Pendlev, A Visualization Model Based
on the Mathematies of Fiber Bundles,™ Computers in
Physics. vol. 3, n0. 5 (Seprember /October 1989).

. Butler and S, Bryson, “Vecror-bundle Classes Form
Powertul Tool tor Scientitic Visualization,™ Computors
in Physics. vol. 6, no. 6 (November /December 1992):
576-58+4.

R. Haber, B. Lucas, and N. Collins, * A Data Modcl for
Scienrific Visualization with Provisions for Regular and
Trregular Grids,™ Proceedings of the Visualization
91 Conference(1991).

L. Resnick cral., €LASSIC Description and Reference

Ml for the Common ISP Impleinciication
(Murray Hill, N0 ATT Bell Laboratories, 1993).

G. Stecle, Je., Conmmon LISP: The Leangiiage. Seconed
Lddition (Bedford, Mass.: Digital Press, 1990).

AVS Express Decelopers Keference (Waltham, Mass.:
Advanced Visual Svstems Inc., June 1994).

28, ML Stoncbraker and G Kemnitz, *“'T'he POSTGRES
Nexr generation Database Managemenr - Svstem,™
Comnunications of the ACH (October 1991): 78-92

29. {sing Mustra (Oakland, Calit: Tustra Information
Technologies, Inc, June 1994).

30. J. Ousterhout, “*An X111 Toolkit Basced on the T'd
Language,™ Proceedings of the 1991 Winter (SENIN
Confercnce(1991).

Biographies

Peter D. Kochevar

Perer Kochevar is a principal sotnware engineer m Digiral’s
Fxternal Research Program. From 1992 to 1994 he led
the data visualization rescarch cettorts of the Sequoia 2000
project, which were undertaken arche San Dicgo Supercom-
puter Center (SDSC). Currently, Peteris a visiting scientist
atrthe SPSC where he leads rescarchers in developing
interactive dara visualization svstems. Peterjoined Digiral
in 1990 as a member of the Workstations Engincering
Group. In carlicr work, he was a sottware engineer tor the
Bocing Commeraial Airplane Company. Peter reccived a
B.S.(1976) in mathemartics trom the Universine of Michigan
and an NLS. (1982) in mathematics from the Universioe ot
Utah. He also holds M.S.and Ph.D. degrees in computer
science from Cornell University.

Leonard R. Wanger

[en Wanger is the head ot development ar Interactive
Simulations, Inc., working on interactive molecular model-
ing tools. He is also a member of the Computer Science
Department stattar the Universine of California, San Dicgo,
where he rescarches next-genceration visualization svstems
at the San Dicgo Supercomputer Center. He received a
R.S. n computer science from the University of Jowain
1987 and an M.S_in architectural science from Cornell
University in 1991, His rescarch interests include visual
front ends to simulations, database support tor visualiza-
tion svstems, mwvigation in virtual environments, and the
pereeption ot complex data spaces.

Digiral Technical Journal \Vol.7 No.3 1995

84

High-performance
I/0 and Networking
Software in Sequoia 2000

The Sequoia 2000 project requires a high-speed
network and 1/0 software for the support of
global change research. In addition, Sequoia
distributed applications require the efficient
movement of very large objects, from tens to
hundreds of megabytes in size. The network
architecture incorporates new designs and
implementations of operating system 1/0 soft-
ware. New methods provide significant per-
formance improvements for transfers among
devices and processes and between the two.
These techniques reduce or eliminate costly mem-
ory accesses, avoid unnecessary processing, and
bypass system overheads to improve through-
put and reduce latency.

Digital Technical Journal \ol. 7 No.3 1995

Joseph Pasquale
Eric W. Anderson
Kevin Fall
Jonathan S. Kay

[n the Sequoia 2000 project, we addressed the prob-
lem of designing a distributed compurer system that
can cthciently retrieve, store, and transter the very
large dara objects contained in carth science applica-
tions. By very large, we mean dara objects in excess
ot tens or even hundreds ot megabytes (MB). Earth
science rescarch has massive compurational require-
menrs, i large part due to the large data objects often
found m its applications. There are many examples: an
advanced very high-resolution radiomerer (AVHRR)
image cube requires 300 MB, an advanced visible and
nfrared imaging spectrometer (AVIRIS)
requires 140 MB, and the common Land satellite
(LANDSAT) image requires 278 MB. Anv throughput
botrleneck in a distribured computer svstem becomes

image

greatlv. magnified when dealing with such large
objects. In addition, Sequoia 2000 was an experiment
in distribured collaboration; thus, collaboration tools
such as videoconterencing were also important appli-
Cations ro support.

Our cttorts in the project focused on operating svs-
rem 1/0 and the nenwork. We designed the Sequoia
2000 wide area nenwork (WAN) test bed, and we
explored new designs m operating svstem 1/0O and
nenwork sottware. The contributions of this paperarce
nwotold: (1) it survevs the main resules of this work
and puts them in perspective by relating them o the
general data wranster problem, and (2) it presents
a new design for container shipping. (For a complete
discussion of container shipping, sce Reference 1))
Since conrainer shipping is a new design, this paper
devores more space to it in relation to the other sur-
veved work (whose derailed desariprions mav be found
in Reterences 2 to 9). Inaddition to thiswork, we con-
ductred other nenvork studies as part ot the Sequoia
2000 project. These mclude rescarch on protocols to
provide performance guarantees and multicasting. '

To support a high-performance distribured comput-
ing environment in which applications can cttecrively
manipulare large dara objects, we were concerned with
achieving high throughput during the transter of these
objects. The processes or devices representing the dara
sources and sinks may all reside on the same work-
station (single node case), or they mayv be distributed
over many workstations connected by the nenvork

(multiple node case). In either case, we wanred appli-
cations, be thev carth science distribured computa-
tions or collaboration tools mvolving multipoint
video, to make full usc of the raw bandwidth provided
by the underlving communication system.

In the multiple node case, the raw bandwideh is
from 45 to 100 megabits per sccond (Mb/s), because
the Sequoia 2000 nerwork used T3 links for long-
distance communication and a fiber distributed data
intertace (FDDI) tor local arca communication. In the
single node case, the raw bandwideh is approximately

choice was one of the DECstation 5000 scrics or the
Alpha-powered DEC 3000 sceries, both of which use
the TURBOchannel as the system bus.

Our work focused only on software improvements,
in particular how to achicve maximum system sofnware
performance given the hardware we sclected. In fact,
we tound that the throughpur botdenccks in the
Sequoia distributed computing environment were
indeed in the workstation’s operating system software,
and not m the underlving communication svstem
hardware (c.g., network links or the svstem bus). This
problem is not limited to the Sequoia environment:
given modern high-speed workstations (100+ millions
of instructions per sccond [mips]) and fast nenworks
(100+ Mb/s), pertormance bottlenecks are often
caused by software, especially operating svstem soft-
ware, Svstem sottware throughput has not kept up
with the throughputs of 1/0 devices, especially net-
work adaprers, which have improved temendously
n recent vears., These technology improvements are
being driven by anew generation of applications, such
as interactive multimedia involving digital video and
high-resolution graphics, that have high 1/0O through-
put requirements. Supporting these applications and
controfling these devices have taxed operating svstem
technology, much ot which was designed during times
when inrensive 1/0 was nor an issuc.

In the next section of this paper, we describe the
Sequota 2000 nerwork, which served asan experimen-
tal test bed tor our work. Following that, we analvze
the daratranster problem, which serves as the context
tor the three subsequent sections. There we describe
our solurions to the data ranster problem. Finallv, we
present our conclusions.,

The Sequoia 2000 Network Test Bed

The Sequora 2000 nenwork is a private WAN that we
designed to span tive campuses at the University of
California: Berkeley, Davis, Los Angeles, San Dicgo,
and Santa Barbara. The topology is shown in Figure 1.
The backbone link speeds are 45 Mb/s (T3) with
the exceprion of the Berkelev-Davis link, which s
1.5 Mb/s (T1). Ar cach campus, onc or more FDDI

BERKELEY

SANTA
BARBARA

Figure 1
Scquota 2000 Research Network

Jocal area nerworks (LANs) that operate at 100 Mb/s
are used for local distribution. At some campuscs,
the configuration is a hicrarchical set of rings. For
example, ar UC San Dicgo, one FDDI ring covered
the campus and joined three separate rings: once at
the Compurer Systems Lab (our laboratory) in the
Department of Computer Science and Enginceering,
one at the Scripps Institution ot Occanography, and
one at the San Diego Supercomputer Center.

We used high-performance genceral-purpose com-
puters as routers, originally DECstation 5000 scries
and later DEC 3000 scries (Alpha-powered) work-
stations. Using workstations as routers running the
ULTRIX or the DEC OSE/1 (now Digiral UNINX)
operating svstem provided us with a moditiable soft-
ware plattorm tor experimentation. The T3 (and T1)
intertace boards were specially built by David Boggs at
Digital. We used oft-the-shelf Digital products for
FDDI boards, both modcels DEFTA, which supports
both send and receive direct memory access (DMA),
and DEFZA, which supports only receive DMA.

The Data Transfer Problem

Since a dara source or sink mayv be cither a process or
device, and the operating svstem generally performs
the function of transterring data between processes
and deviees, understanding the bottlenecks in these
operating svstem data paths is kev to improving
performance. These data paths gencerally involve tra-
versing numerous lavers of operating svstem software.
In the case of nenvork transfers, the dara paths are
extended by lavers of nenwork protocol software.

Digiral Technical Journal Vol.7 No.3 1995

86

To understand the pertormance problem we were
trving to solve, consider a common client-server inter-
action i which a client has requested data from a
server. The data resides on some source device, ¢.g.,a
disk, and must be read by the server so that it mayv send
the data to the chient over a nerwork. At the cliene, the
datais written tosome sink device, ¢.g., a frame bulter
for display.

Figure 2 shows a tvpical end-to-end data path where
the source and sink end-point workstarions arc running
protected operating svstem kernels such as UNIN. The
source deviee generares data into the memory of its
connected workstation. This memory s generallv only
addressable by the kernel; o allow the server process
ro access the dara, it is phvsically copied inro memonry
addressable viathe server process’s address space, i.c.,
user space. Phvsicallv copving data from one memory
location to another (or more generally, touching the
dara for anv reason) i1s a major bottlencck m modern
worksrations.

In rravelling through the kernel, the dara gencerally
reavels over a device laver and anabstraction Laver. The
device laver is part of the kernel’s I/O subsvstem and
manages the 1/0 devices by buftering dara berween
the device and the kernel. The abstraction laver com-
prises other kernel subsvstems thar support abstrac-
tions of devices, providing more convenient services
for user-level processes. Examples of kernel abstraction
laver software include file systems and communication
protocol stacks: a file svstem converts disk blocks inro
tiles, and a communication protocol stack converrs
nerwork packers into datagrams or stream scgments.
Sometimes, a kernel implementation may cause physi-
cal copving of data benween the deviee laver and the
abstraction laver; in fact, copving mav even oceur
within these lavers.

APPLICATION LAYER

USER
SPACE

SERVER

STANDARD | O LAYER

ABSTRACTION LAYER

KERNEL |

prAgE DEVICE LAYER

NETWORK
ADAPTER

SOURCE
DEVICE

From kernel space, the dara may travel across several
morce Javers in user space, such as the standard 1/0
faver and the applicaton laver. The standard 1/0 laver
butters T/0 data m farge chunks to minimize the
number ot /0 svstem calls. The applicanon kwver gen-
crallv has its own bufters where 1/0 darais copied.

From the server process in user space, the datais
then given to the nenwork adapeer; this may cause
rransters across user process lavers and then across the
kernel lavers. The darais then transterred over the net-
work, which generally consists of a ser of links con-
nected by routrers. It the routers have kernels whose
sottware structurc is like that described above, a simi-
lar (but rvpically simpler) intramachine data transter
path will apply.

Finallv, the dara arrives at the client’s workstation.
There, the dara travels in a similar wav as was deseribed
for the server’s workstation: from the nerwork adaprer,
across the kernel, through the client process’s address
space, and across the kernel again, finally reaching the
sink device.

From this analvsis, onc can surmise why throughput
bottlenecks often occur ar the end pomts of the end-
to-end data transter path, assuming suthiciently fast
hardware devices and communication links. At the end
points, there mav be signiticant data copving as the
data traverses the various softwarce lavers, and there is
protection-domain crossing (kernel to vser to kernel),
among other functions. The overheads cansed by these
funcrions, dircerlv and indirectly, can be significant.

Conscquently, we tocused on improving operating,
svstem 1/0 and network software, mcluding opri-
mizations for the tour possible process/device dara
Transter SCenarios: process to process, process to device,
device to process, and device to device, with special
care m addressing cases where cather source or sink

APPLICATION LAYER
USER .| —| CLIENT
SPACE

STANDARD /O LAYER
KERNEL ABSTRACTION LAYER
SiSaCE DEVICE LAYER

NETWORK SINK
ADAPTER DEVICE

IF\OUTER'—> +++ —>| ROUTER

NETWORK

Figure 2

An End-to-End Dara Parh from a Source Device on One Workstatnion to a Sink Device on Another Workstation

Digital Technieal Journal Vol 7 No. 3 1995

device 15 a nerwork adaprer. In this paper, we usce
the term data tremsfer probleni to reter to the problem
ot reducing these overheads ro achieve high through-
put between a source device and a sink device, cither
of which can be a nerwork adaprer within o single
workstation.

Although the dara transfer problem may also exist in
intermediate routers, 1t does so to a much lesser
degree than with end-user workstations (assuming
modern router sottware and hardware technology).
This is because of a router’s simplitied exccution envi-
ronment and its reduced needs for ansters across
multiple protected domains. However, there is noth-
g that precludes the application of the techniques
discussed in this paper to router sofrware. In fact, since
we used general-purpose workstations tor routers to
support a flexible, modifiable test bed tor experimen-
tation with new protrocols, our work was also applied
to rourer software.

In the next three sections, we describe various
approaches to solving the data transfer problem. Sinee
data copving/touching is a major software limitation
n achieving high throughput, avoiding data copving/
touching is a constant theme. Much of our work
mvolves finding wavs to aveid or limit touching the data
without sacrificing the flexibiliny or protection com-
monlyv provided by most modern operating systems.

We deseribe two solutions to the data transter prob-
lem that avoid all phvsical copying and are based on
the principle of providing scparate mechanisms for
1/0 control and data transter.” *' The reader will sec
that while these two solutions are based on different
approaches (indeed, thev can even be viewed as com-
peting), thev fill different niches based on dittering
assumptions of how 1/O s structured. In other words,
cach is appropriate and optimal tor difterent siruations.
In addition to the data transter problem, we address a
special problem—the borttlencck creared by the check-
sum computation tor I,/O on a nctwork using the trans-
mission control protocol /interncet protocol (1'CP/1P).

Container Shipping

Conrtainer shipping is a kernel service that provides
/0 operations for user processes. High performance
is obrained by climinating the in-memorv data copices
rradinionally associated with 1/0. Additional gains are
achieved by permitting the sclective accessing (map-
ping) of data. Finally, the design we present makes
possible specitic optimizations that further improve
performance.

The goals of the container shipping model of dara
transter tor [/O are to provide high performance with-
out sacnficing protection and to fullv support the prin-
aple of general-purpose computing. Full access to
1/0 data by user-level processes has long been a stan-
dard feature of operating svstems. This ability has

rraditionally been provided by copving data to and
from process memory at cach instance when dara is
transterred. The divergence of CPU and dvnamic ran-
dom access memory (DRAM) speeds makes this in-
memory copving more inefficient and costly every
vear. This problem is often attacked with application-
specific siicon or kernel modifications. A less-costly
and longer-lasting solurion 1s to redesign the 1/0 sub-
svstem to provide copv-free [/0. Container shipping
provides this ability, as well as addinonal pertormance
gains, in a uniform, general, and pracncal wav,

Containers
A conrainer is one or more pages of memory. In these
pages, it mav contain a single block of data, whose
location 1s identificd by an oftser and a length. When
a container is mapped into an address space, the pages
torm a contiguous region of memory, where the data
can be manipulared. A container can be owned by one
and onlv one domain, ¢.g., some user process or the
kernel itself, at anv single point in time. The owning
domain mav map the container for access. When
aceess 1s not required, mapping can be avorded, which
saves time.

User-level processes use container shipping svstem
calls to pertorm the following functions:

= Allocation: ¢s_alloc and c¢s_frec allocate and deallo-
cate containers and their resources (c.g., physical
pages).

& Transter: ¢s_read and ¢s_write pertform 1/0 using
containers.

s Mapping: c¢s_map and ¢s_unmap allow a process to
access the data in a conrainer.

The ¢s_read and ¢s_write calls take as parameters an
/O path identitier (such as a UNIX file descriptor),
a data size, and parameters describing a list of contain-
ers, or a rerurn arca for such a list. Several options are
also available, such as one for ¢s_read that immediately
maps all the resulting containers. Darais never copied
within memory to satishe ¢s_read and ¢s_write, so all
/0 pertormed this way is copv-free.

Because the mapping of containers is alwavs
optional, a process can move data from one device to
another without mapping it at all. When containers of
dara flow through a pipeline of several processes, sub-
stantial additional savings can be obrained if several of
the processes do not map the containers, or if they
map only some of the containers.

Although container shipping has six ditferent svs-
tem calls versus the two of conventional 1/0, read and
write, the actual number of calls a process issues with
container 1I/0 may be no greater than with conven-
tonal 1/0. When data is not mapped, only ¢s_read
and ¢s_write calls are required. Even if data is mapped,
it may be possible to perform the mapping through

Digiral Technical Journal Vol.7 No. 3 1995

88

Hlags to es_read, without calling ¢s_map. Unmapping
IS automatic in ¢s_write, so it cs_unmap is not usced,
nwo svstem calls are sull sufticient .

As shown in Figure 3; a process reads data i a con-
rainer from one device and writes it to another device.
Three pages of memory form once container that storces
rwo and one-halt pages of data. On input (¢s_read),
the source device deposits dara into physical memory
pages forming the container. The process that owns
the contaimer mav then map (¢s_map) it so that the
data can be manipulated in its address space. The dara
1s then output (cs_write) to the sink device. Ourpur
can occur without having mapped the container.
Mapping can also occur auromatically on ¢s_read.

Eliminating In-Memory Copying

Unconditionally avoiding the copving of data within
memory during 1/0 leads to the first of several pertor-
mance gains from coprainer shipping. Other solutions
exist that avoid copics only i limited cases. To be uni-
formyand general, copy-free 1L/0 must be possible with-

out restrictions due to the devices used, the order of

operations, or the availabiline of special device hardware.

In many [/0 opcerations, the dat requested by a
user-level process is alrcady in svstem memory when
the request is made. This situation can arise when dara
1s moving between rwo processes via the 1/0 svstem,
such as 1s done with pipes. Many oprimized file svs-
rems pertorm read-ahead and in-memory caching to
improve performance, so file 1/0 requests may also be
satistfied with dara rhar is alecady in memory. Finally,

APPLICATION LAYER

USER ¢ PROCESS
SPACE r ‘
KERNEL [: — |
SPACE ' MAPPING (CS_MAP) '
‘DMA 4 ’j
Pt :
Loy

DMA
PHYSICAL MEMORY
CS_READ CS_WRITE
SOURCE SINK
DEVICE DEVICE
Figure 3

Conrainer Shipping Transter and Mapping

Digital Technical Journal \Vol.7 No.3 1995

conventional nerwork adaprers transfer entire packets
mto memory betore they are examined by protocol
lavers in the kernel. Only atter prorocot processing can
this data be delivered to the correct user-level process.
When requested dara is already in memory, the only
possible copv-free rranster mechanism thar allows tull
read /write aceess in the address space of a process is
vircual memory remapping. Fechniques that rely on
device-spectic characteristics such as programmable
DMA or outboard protocol processors cannot provide
uniform, device-independent copy-tree 1/0, because
these mechanisms cannot transter dara that is already
m memory.

Usig virtual memory remapping, container ship-
ping can perform copy-free 1/0 regardless of when
or where data arvives in memory, and with or without

anv special deviee hardware that might be available.

Virtual memory hardware is emploved to control the
ownership of, and access to, memory thar contains
/O data. Ownership and access rights are transferred
berween domains when container 1/0 is performed,
while dara sits mortionless in memory. This technique
requires no special assistance from devices and applics
ro mnrerprocess communication as well as all phyvsical
1/0. Because user-level processes retain complete
access 1o 1/0 dara wich no in-memory copving, uscr-
level programming remains a practical solution for
high-performance systems,

The Gain/Lose Model

[n conrainer 1/0, rcading and writing are coupled
with the gain and loss of memory. We chose the
can/losc model because it is simple and provides
higher performance without sacrificing protection.
Shared memory 18 a more complicated alternative to
the gain/lose modcl, which also avoids data copving,
The usc of shared memory to allow a set of processes
to efficiently communicate, however, reduces the
protection between domains. Shared-memory 1/0
schemes also tend to be complicared because of the
close coordimation required berween a user process and
the kernel when they borh manipulare a shared dara
pool. Since dara s never shared under the gain/lose
modecl, protecrion domains need not be compromised,
and less user /kernel cooperation and trust is required.

The gain/lose model has three major implications
for programmers. First, a process must dispose of 1/0
data thatit gains, or MemMory consumprion Ny grow
rapidlv. One wav to dispose of data is to perform a
CS_WTITC Operation on i, so a process performing
matched reads and writes on a stream of datawill nor
accunmiulare any extra memory. Sccond, to avoid seri-
ously complicaring conventional memory models, not
all memory is cligible for use inwrite operations. For
example, writing data from the stack would leave an
inconvenient hole m that part of the virrual memory,
so this is not allowed. Fially, because dara that s

written s 1ost, O writing process must copy any data
that will still be needed after the write. Fortunarely,
applications that move great volumes of dara often
have no further need for it after a write is completed.

Implications of Virtual Memory Remapping

In addition to the use of the gain/lose model, the
decision to use virrual memory remapping has sub-
stantial huplications tor the design and use of an 1/0
svstem. Scveral changes are unavoidably visible to pro-
grammers. For example, data can no longer be placed
exactlv at any requested location i an address space.
Virtual memory remapping can change the virtual
page n which a physical page of memorvappears, but
it cannot realign data within a page. Furthermore,
mapping can rearrange memory only ar page bound-
arics. The exact location where incoming [/0 datais
placed is determined by the kernel. After a read opera-
tion is complete, a process can discover the address of
the daraand access i at that address.

Some kinds of I/0O place data in memory in a form
that differs from the way it is presented to user-level
processes. For example, nerwork packets mav arrive
with media-level headers that are not scen by higher
levels. These packets may also arrive out of order, or
in fragments that collectively form a single message.
Without help from an outboard protocol processor
or the use of in-memory copving, these packets cannot
be lincarized. With container shipping, a process may
be required to accepra message that consists of multi-
ple fragments in memory. The semantics of the com-
munication do not change, but the data representation
ditters. This issuc is less troublesome tor writes, because
kernels tvpically use mrernal structures to reorganize
network data without copving it. The mbufs found in
UNIX are an example ot such a kernel structure.

Virtual memory remapping is not a simple tech-
nique, and it must be used with care to achieve high
performance. Although remapping a page is almost
alwavs faster than copving it, remapping also con-
sumes time. This time comes from kernelvirtual mem-
ory bookkeeping and from side cffects (such as
rranslation lookaside butter [TLR | tlushes) of address
space changes. For these reasons, container shipping
makes all mapping optional. Some operating svstems
such as Mach perform lazy mapping, using the page
fault mechanism ro map pages when thev are first
accessed.” This technique avoids unnecessary map
operations but incurs the extra penalty of having to
map on demand while a program waits for access
ro data. Taking once page tault for every page in a large
region, as is common - modern svstems, 1S particu-
farlv expensive. Furthermore, lazyv mapping sull
requires the serting of page table entries (and possibly
other data structures) to prepare tor the possibilite
of page faults, which can be costly for very large data
objecrs. This cost is avorded n container shipping,.

Optimizations

The container shipping design makes possible opti-
mizations bevond copy and map cimination. Some
make use of the tact thar 1/0 often Hows through
parhways that are predicrable. Other optimizations are
possible on a per-container basis.

High-speed 1/0 is often generated by long-running
processes, such as multimedia applications, real-time
data processing, or processes that run for a long rime
merely by virtue of processing a very large data object
(common in Scquoia applications). This 1/0 tyvpically
flows through pathwavs in the svstem thar ave essen-
tally staric. Dara enters through one device, moves
through a fixed sct of domains, and leaves through
another device. Kernel awareness of this localitv can be
used to optimize some contaner Operations.

An 1/0 path through which same-sized containers
move repeatedly ofters the opportumine to recvele
containers and therr associated data structures. Per-
rransfer cost can be reduced by reusing the same set of
pages and reusing page tables and address space. To
perform reeveling, the kernel can keep track of which
containers were given to which processes, or the ker-
ne

can match up reeveled contamers by size or by
device tvpe.

In a svstem with a large secondary cache, promptly
reeveling a just-written container may allow jts reusc
while its data s stll in the cache. In the best case, all
data may be automaticallv cached because of this recv-
chng. For example, DMA operations n DEC 3000-
series svstems update the secondary cache. Because
this cache is much faster than main memory, the dara
can now be accessed more quickly.

Even without identifving an 1/0 pathway, carctul
tracking ot the contents of container memory pages
can allow savings in securitv-driven zero fills. A just-
freed page consists entirelv of sensitive data; the entire
page must be cleaned betore it can be given to anv
other user. But it this page is used as the target of a
data-generating operation such as a DMA, only the
part not overwritren needs to be zeroed. Furthermore,
this zeroing can be postponed until the data1s mapped;
thus 1t mav be avoided completelv. It filhng memory
with zeroes causes 1t to be loaded i the cache, zeroing
immediately betore the map ofters a cache bencetit,
because the daramay be used shortlvatreritis mapped.

Container Shipping Implementation and Performance
Container shipping has been implemented in DEC
OSF/1 version 2.0 (now Digital UNIX) on Alpha-
powered DEC 3000 -serics workstarions. All six system
calls are supported, and container 1/0 can be mea-
sured in a variery of situations. Conventional UNIX
/0 remains, so a system can boot and run normally,
using contamer 1/0 onlv for specitic experiments.

In our carly paper, we showed significant through-
put improvements for container-based interprocess

Digital ‘Technical Journal Vol.7 No. 3 1995

90

communication (IPC) within the ULTRIN version
4.2a operating svstem on a DECstation 5000,/200
svstem.! With the new DEC OSF/1 implementation
on Alpha workstations, we compared the [/0 pertor-
mance of conventional UNIX 1/0 to thar ofcontainer
shipping tor a varicty of 1/0 devices as well as [PC.
These experiments are deseribed in detail elsewhere.”
Large improvements in throughput were observed,
from 40 pereent for FDDI network 1L/O (despite large
non—dara-touching protocol and device-driver over-
heads) to 700 percent tor socket-based 1PC.

We devised an experiment that excercises both the
IPC and 1/0 capabilities ot container shipping.
Images (640 x 480 pixcls, 1 byvte per pixel) are sent by
one process and received by a second process using
socket IPC. The receiver process then does output toa
tframe butter to displav the images on the sereen. This
is 2 common applicanion in the Sequoia project: view-
ing an ammation composed of images displaved ar
arare of up to 30 frames per sccond (fps). In face, sci-
entists often want to view as many simultancously

displaved animations as possible.

We carried out this experiment first using conven-
tional UNIX 1/0 (1.c., read and write) and then using
container shipping (i.¢., ¢s_read and ¢s_write). Figure 4
shows the throughput obtained for a sender process
transterring data to a receiver process, which then out-

puts the data to a frame buffer. The improvement of

continer shipping over UNIX 1/0 is almost 400 per
cent. Assuming the maximum 30 tps rate, conven-
tional 1/0 supports the tull display ofone animation
and contamer 1/0 supports six. In general, the greater
the relative speed berween an 1/0 device and mem-
ory, the greater the relative throughpur ot container
shipping versus UNIX 1/0 will be.

Related Work

The usc of virrual transter techniques to avoid the
performance penalty of physical copving goes back
to TENEX.® Mach (like TENEX) uses virrual copy-
ing, i.c., transterring a data object by mapping it in

the new address space, and then physically copving it

o, 6O0F
w
=
= L
2
8% a0}
25
= u L
EU)

a
BW 20f
=)
¢
[ong -
i
[

0
UNIX /0 CONTAINER
SHIPPING

Figure 4

Throughput of IPC and Frame Bufter Outpur

Digiral ‘lechnical Journa) Wol.7 Na. 3. 1995

the data 1s moditied (copv-on-write).?* This differs
tfrom container shipping, which uses virtual moving;
1.c., the dara object leaves the source domam and
appears in the destnation domain, where 1t can be
read and written without causing fault handling,
which 1s expensive. It the orginal domain wants to
keep a copy, it mav do so explicitly. Thus, container
shipping places a greater burden on the programmer
inrerurn for improved performaice.,

The two svstems that are most similar to container
shipping are DASH and Fbufs. " Containersare simi-
lar to the 1PC pages used in DASH and the fast bufters
used by Fbufs. DASH provides high-performance
mterprocess communication: it achieves tast, local TPC
bv means of page remapping, which allows processes
to own regions of a restricted arca of a shared address
space. The Fbufs svstem uses a similar technigue,
enhanced by caching the previous owners of a butter,
allowing reuse among trusted processes and climi-
nating memory management unit (MMU) updares
associated with changing butter ownership. The dif-
ferences berween these nwo svstems and container
shipping are examined in derail elsewhere.”

Peer-to-Peer /0O

In addinion to container shipping, we have mnvesti-
gared an alternative 1/0 svstem sottware model called
peer-to-peer I/O (PPIO). As a direct result of the
structure of this model, its implementation avoids
the well-known overheads associated with dara copy-
ing. Unhke other solutions, PPIO also reducces the
number ot context-switch operations required to per-
form 1/0 opcrations. In contrast to container ship-
ping, PPIO is based on a streaming approach, where
datais permitted to flow berween a producer and con-
sumer (these may be deviees, files, erc.) without pass-
ing through a controlling process” address space. In
PPIO, processes use the splice svstem call to create
kernel-maintained associations between producer and
consumer. Splice represents an addition to the conven-
tional operating svstem 1/0 intertaces and is not a
replacement tor the read and write svstem functions.

The Splice Mechanism

The splice mechanism is a svstem function used to
establish a kernel-managed data path directly between
1/0 device peers.? It is the primary mechanism that
processes mvoke to use PPIO. With splice, an applica-
ron expresses an association between a dara source
and sink directly to the operating svstem through the
usce of file descriptors. These descriprors do not refer to
memory addresses (1.c., they are not butters):

sd = splice (fd1, fd2);

As shown in Figure 5, the call establishes an in-kernel
data path, i.c., a splice, between a data source and sink

| APPLICATION LAYER
USER P
aoen 3 ROCESS
f '
KERNEL | -
SPACE 1 ¢
WOBUS| —F+—
SOURCE SINK
DEVICE DEVICE
Figure 5

A Splice Connceting a Source toa Sink Device

device. If the 1/0 bus and the devices support hard-
warce streaming, the data pathis directly over the bus,
avoiding svstem memory altogether. Although the
process does not necessarily. manipulate the data,
it controls the size and timing of the daratlow. To
manipulate the data, a processing module can be
downloaded cither o the kernel or directly on the
devices if they support processing,.

The dara source and smk device are specitied by the
reterences fdl and td2, respectively. The splice descrip-
tor sd is used in subscquent calls to read or write to
control the tlow of data across the splice. For example,
the tollowing call causes size byvtes of data to flow from
the source to the sink:
splice_ctrl_msg sc;
sc.op = SPLICE_OP_STARTFLOW;

sc.increment = size;
write (sd, &sc, sizeof(sc));

Data produced by the devices referenced by fd 1 is auto-
maticallv routed ro fd2 without user process interven-
nion, until size byvtes have been produced atthe source.
The increment field specities the number of bytes to
transter across a splice betore rerurning control to the
calling user apphication. When control is returned,
datatlow is stopped. A SPLICE_OP _STARTFLOW
must be executed to restart datatlow. The increment
represents an important concept in PPIO and refers to
the amount of dara the user process is willing to have
transterred by the operating svstem on its behalf.
In cttect, it specitics the level of delegation the uscr
process is willing to give to the svstem. Specitving
SPLICE_INCREMENT_DEFAULT indicates the svs-
tem should choose an appropriate increment. This is
generally a butfer size deemed convenient by the oper-
ating svstem.

The splice mechanism eliminates copy operations to
user space by not relving on bufter interfaces such as
those present n the conventional 1/0 functions read
and write. By eliminating the user-level buttering, ker-
nel butter sharing is possible. More speciticallyy when
block alignment is not required by an 1/0 device, a
kernel-level bufter used for dara inpur mav be used
subsequently tor data outpur.

In addition to removing the buttering interfaces,
sphice also combines the read/write functionality
together m one call. The splice call indicates to the
operating svstem the source and sink of a datatlow,
providing sufticient intormation tor the kernel to man-
age the data rranster by itselt without requiring uscr-
process execution. Thus, context-switch operations
for data transter are climinared. This s important: con-
rext switches consume CPU resources, degrade cache
pertormance by reducing localine of reference, and
atfecet the pertormance of virtual memory by requiring
TLB wvahdations.

For applications making no dircct manipulation ot

1/0 dara (or tor those allowing the kernel to make
such manipulations), splice relegates the issues ot man-
aging the datatlow (c.g., buftering and flow control)
to the kernel. Data movement may be accomplished
by a kerncel-level thread, possibly activated by comple-
tion events (e.g., device interrupt) or operating in a
more synchronous fashion. Flow control mav be
achieved by sclective scheduling of kernel threads or
simplyv by posting reads only to data-producing
devices when data-consuming peers complete /0
operations. A kernel-level implementation provides
much fiexibility in choosing which control abstraction
IS MOSt appropriate.

One criticism of streaming-based data transter
mechamsms is that they inhibic imnovation in applica-
non development by disallowing applications direct
aceess to [/0O dara.® However, many applications that
do not require direct manipulation of 1/0 dara can
benetit trom streaming (c.g., data-retrieving scrvers
that do not need to inspect the data they have been
requested to deliver to a clienr). Furthermore, tor
applications requiring well-known data manipulations,
kernel-resident processing modules (e.g., Ritchie’s
Streams) or outboard dedicated processors are more
casilv exploited within the kernel operating environ-
ment than in user processes. ™ In tact, PPIO supports
processing modules.”

PPIO Implementation and Performance

The PPTO design was conceived to support large dara
transfers. The decoupling of 1/0 data trom process
address space reduces cache interference and climi-
nates most data copics and process manipulation.
PPIO and the accompanving splice svstem call have

Digntal Technical Journal Vol.7 No. 3 1995

91

been implemented within the ULTRIN version 4.2a
operating svstem tor the DEC 5000 scries work-
stations, and within DEC OSF/1 version 2.0 tor DEC
3000 scries (Alpha-powered) workstations, cach tor
ahmited number of devices.

Three performance evaluation studies of PPIO
have been carried out and are deseribed in our carly
papers.>** They indicate CPU availabiliny improves by
30 percent or more; and throughput and latency
improve by a tactor of nwo to three, depending on
the speed of /0 devices. Generally, the latencey and
throughput performance improvements offered by
PPIO improve with faster 1/ devices, indicating that
PPTO scales well with new 1/O device technology.

Improving Network Software Throughput

Nenwork I/0 presents a special problem i that the
complexity of the abstraction laver (see Figure 2), a
stack of nerwork prorocols, is gencrally much greater
than that tor other tvpes of 1/0. In this section, we
summarize the results of an analvsis of overheads for
an implemenration ot TCP /1P we used in the Sequon
2000 projecr. The primary bortleneck in achieving
high throughput communication for TCP/IP is duc
to dara-touching operations: one expected culprit is

data copving (from kernel to user space, and vice
versa); anotheris the checksum compuration. Since we
have already focused on how to avoid data copving in
the previous two scctions, we discuss how one can
sately avoid computing checksums tor a common case
m nenwvork communication.

Overhead Analysis

We undertook a study ro determine whar bottlenecks
might existin TCP /1P implementations to direct us in
our goal of optimizing throughput. The full studv is
described clsewhere.”

First, we caregorized various generic functions com-
monly exccuted by TCP/IP (and UDP/1P) protocol
stacks:
= Checksum: the checksum computation tor UDP

(user daragram protocol) and TCY
= DataMove: anyv operations that involve moving

dara from one memory location to another
= Mbuf: the message-buttering scheme used by

Berkeley UNIN-based nenwork subsvstems
= ProtSpec: all prorocol-specitic operations, such as

serring header fields and maintaming protocol state

= DaraStruct: the manipulation of various data struc-
tures other than mbufs or those accounted ftor in
the ProtSpec category

= OpSvs: operaring svstem overhead

Digital Techmeal Journal Vol. 7 No.3 1993

= ErrorChk: The caregory of checks tor user and svs-
rem errors, such as parameter checking on socket
svstem calls

= Orher: This tinal category of overhead includes all
the operatons that are too small to measure. Its
time was computed by taking the difference
berween the toral processing time and the sum of
the times ofall the other categories listed above.

Orher studies have shown some of these overheads
to be expensive 2 ¥

We measured the roral amount of execution time
spent i the TCP/IP and UDP/IP protocol stacks as
mplemented n the DEC ULTRIN version 4.2a kernel,
ro send and receive TP packets of a wide range of sizes,
broken down according ro the categories listed above,
All measurements were taken using a logic analvzer
artached to a DECstation 5000 /200 workstation con-
nected to another similar workstation by an FDDI LAN
artached through a Digital DEFZA FDDIadaprer.

Figure 6 shows the per-packer processing times
versus packet size for the various overheads tor UDP
packers. These are for a large range of packer sizes,
from 1 to 8,192 bytes. One can distinguish two ditter-
ent tvpes of overheads: those due to data-touching
operations (i.¢., data move and checksum) and thosc
due to non—data-touching operations (all other cate-
gorics). Dara-rouching overheads dominate the pro-
cessing time tor large packets that tvpicallyv contain
application dara, whercas non—dara-touching opcera-
tions dominate the processing time tor small packets
that tvpicallv contain control information. Generally,
data-touching overhead times scale linearly with
packer size, whercas non-dara-touching overhead
rimesarce comparatively constant. Thus, data-touching
overheads present the major mitations to achieving
maximum throughpur.

Dara-rouching operations, which do identical work
in the TCP and UDP software, also dominate process-
ing times for large TCP packets.”

Minimizing the Checksum Overhead

As can be seen in Figure 6, the largest bortleneck ro
achieving maximum throughput (i.c., which onc
achieves by sending large packets) is the checksum
computation. We applied twwo optimizations to mini-
mize this overhcad: improving the implementation ot
the checksum computation, and avoiding the check-
sum alrogether i aspecial but common case where we
feltwe were not compronusing data integrity.

We improved the checksum computation imple-
mentation by applving some fairly standard tech-
niques: operaring on 32-bit rather than 16-bir words,
loop unrolling, and rcordering of instructions to
maximize pipelining. With these modifications, we

3000
L L
s 2500
=
O
Z
» 2000 -
%)
ooe
oZ
x O
aO
w 1500 F
& e
[OX®)
£3
o =~ 1000F
P4
<
[m}
oL e A
) 500 r -
0 \6144 8192
MESSAGE SIZE (BYTES) OPERATING SYSTEM.
DATA STRUCTURES.
KEY: ERROR CHECK
CHECKSUM —--—-- MBUF
""""" DATA MOVE — — — OPERATING SYSTEM
— - —- DATASTRUCTURES - - PROTOCOL-SPECIFIC OPERATIONS
-+ — - ERRORCHECK ——=-— OTHER

Figure 6
UDP Processing Overhead Times

reduced the checksum computation time by more
than a factor of two. Figure 7 shows that the overall
throughput improvementis 37 percent. The through-
pur mecasurements were made berween two
DECstation 5000,/200 systems communicating over
an FDDI nerwork. Overall throughput is stll a frac-
tion of the maximum FDDI nerwork bandwideh
(100 Mb/s) because of dara-copving overheads and

40 +

30F

20+

THROUGHPUT (MEGABITS PER SECOND)

ULTRIX
VERSION 4.2A

CHECKSUM
OPTIMIZATION

CHECKSUM
ELIMINATION

Figure 7
UDP/IP End-to-End Throughpur

machine-speed limitations. See Reference 6 tor
detailed resulrs.

A very easy way of significantly raismg TCP and
UDP throughpurt is to simply avoid compurting check-
sums; in fact, many svstems provide options to do just
this. The Interner checksum, however, exists for a
good rcason: packers are occasionally corrupted
during transmission, and the checksum is needed to
detect corrupred dara. In fact; the Interner Enginecr-
ing Task Force (IETF) recommends that systems not
be shipped with checksumming disabled by defaule.™

Etherner and FDDI nerworks, however, implement
their own cvelic redundancy checksum (CRC). Thus,
packers sent directly over an Ethernet or FDDI net-
work are already protecred from data corruprion, at
lcast at the level provided by the CRC. One can arguc
that for LAN communication, the Internet checksum
computation does not significantly add to the machin-
cry for error detection already provided in hardware.

Thus, oursccond optrimization was simply to ¢hmi-
nate the software checksum computation altogether
when compuring the checksum would make lirtle
difterence. Consequently, as part of the implementa-
tion of the protocol; when the source and destina-
tion arc determined to be on the same LAN, the soft-
ware checksum compuration is avoided. kFigure 7
shows the resulting 74 percent improvement in
throughput over the unmodificd ULTRIX version

Digital Technical Journal \Vol. 7 No.3 1995

94

4.2a operating svstem, and a 27 percent improvement
over the implementation with the optimized check-
sum computation algorithm.

OFf course, one must be very carchul abour deading
when the Internet checksum is of minimal value. We
believe it is reasonable to turn oft checksums when
crossing a single network that implements its own
CRC, especially when one considers the performance
benetits of doing so. In addition, since the destinations
of most TCP and UDP packets are within the same
LAN on which they are sent, this policy eliminates the
software checksum computation tor most packets.

Our checksum chmination poliey ditfers somewhar
from traditional TCP /11 design mn one aspect of pro-
tection agamst corruption. In addition to the protec-
tion benween network intertaces given by the Ethernet
and FDDI checksums, we require a software chiecksum
in host memory as a protection from crrors in data
transter over the 1/0 bus. For common devices such
as disks, however, data ransters over the 1/0 bus are
routinely assumed to be correct and are not checked in
software. Therctore, a reduction in protection against
[/0 bus wanster errors for nenwork devices does not
scem unrcasonable.

Turning oft the Interner checksum protection in
anv wider arca context scems unwise without consid-
erable justification. Notall necrworks are protected by
CRCs, and 1t is dithcult o see how one might check
that an entire routed parh is protected by CRCs with-
out undue complications involving [P extensions.
A more fundamental problem is that nenwork CRCs
protect a packer only berween nenwork interfaces;
errors mav arise while a packer is i a gateway machine.
Although such corruption is unlikelv tor a single
machine, the chance of data corruption occurring
increases exponentiallv with the number of gatewavs
a packet crossces.

Summary and Conclusions

We deseribed various solutions to achieving high per-
formance in operating svstem 1/0 and network soft-

ware, with a particular emphasis on throughput. Two of

the solutions, container shipping and pecr-to-peer 1/0,
focused on changes in the 1/0 svstem software seruc-
ture to avold dara copving and other overheads. The
third solution tocused on the avoidance of additional
dara-touching overhcads in TCP /1P nerwork sofoware.

Container shipping is a kernel service thar provides
1/0 operations tor user processes. High pertormance
is obrained by climinating the in-memory data copices
raditionallyv associated with 1/0, without sacrificing
safety or relving on devices with special-purpose func-
tionality. Further gains arce achieved by permitting the
selective accessing (mapping) of data. We measured

Digital Technical Journal Vol. 7 No. 3 1995

pertormance improvements over UNIX ot 40 pereent
(nerwork 1L/O) to 700 percent (socket 1PC).

PPIO 1s based on the hypothesis that the memory-
oriented modcl ot [/O present i most operaring svs-
tems presents a bottleneck thatadversely affects overall
performance. PPLO decouples user-process exceution
from interdevice datatlow and can achieve improve-
ments i both larency and throughput over conven-
rional svstems by a factorot2 to 3.

Finallv, we considered the special case of nerwork
I/O where data moving/copving is not the only major
overhead. We showed that the checksum compurtation
15 a major source of T'CP/IP nenwork processing over-
head. We improved pertormance by optimizing the
checksum compuration algorichm and climmating
the checksum compuration when communicating over
asingle LAN that supports its own CRC, improving
throughput by 37 percent to 74 percent for UDP/TP.

Acknowledgments

We are indebred to David Boggs, who built the T1
and T3 boards which worked like a charm. We appre-
cate the cftorts of Richard Bartholomaus and ITra
Machetsky who helped us get our tirst DECstation
5000,/200 workstations. As our intertace to Iigrral,
ped m many other wavs; we sincercly

Ira Machetsky he
thank him. We thank Fred Templin tor the rechnical
expertise he provided us on Digital nenworking cquip-
ment. We thank Mike Stoncbraker and Jett Dozier
tor their leadership of the Sequora 2000 project. We
U
Domenico Ferrari and George Polvzos, and their stu-

uank our network research colleagues, Professors

dents, with whom we enjoyed collaborating; we have
benefited from their advice. Finally, thanks to Jean
Bonnev for supporting our project from start to end.

References

1.], Pasquale, E. Anderson, and Ko Muller, “Container
Shipping: Operating Svstem Support for Inrensive
17O Applications,™ [KEE Compuder. vol. 27, no. 3
(1994): 84-93.

2. KU Fall and . Pasquale,
Paths to Improve I/O Throughput and CPU Availabil-
v, Proceedings of the CSENU Winter Tochiology

o

Conference. San Dicgo (January 1993), pp. 327-333.

Caploitmg In-kerne) Data

3. Ko Fall and J. Pasquale, “hmproving Continuous-
media Plavback Pertormance with Tn-kernel Data
Paths,™ Proceedings ofthe 1ECE International Con-
Jerence on Mullimedia Computing ccl Systems
(1S Boston, Mass. (June 1994), pp. 100-109.

4. K. Fall, *A Pear-to-Peer I/0 System in Support ot [/0
Intensive Workloads,™ Ph.DD. disscrtation, University
of Calitfornia, San Diego, 1994

A

9.

. Vo Kompella, .

J. Kav and J. Pasquale, “The Importance of Non-
Dara-Touching Processing Overheads in TCP/ 1D
Procecdings of the ACMN Commumiceations Architec-
tres and - Protocols Conference (SIGCOMAI),
San Francisco (Seprember 1993), pp. 259-2069.

] Kav and]. Pasquale, “Mcasurement, Analvsis,
and Improvement of UDP/IP Throughput for the
DECstation 5000, Proceecdings of the CSENIN
Winter Technology Conference. San Dicgo (January
1993), pp. 249-258.

J. Kay and J. Pasquale, “A Summary ot TCP/1P
Nerworking Software Performance for the DECstation
5000, Proceedings of the ACM Conference on
Meastirement aned Modeling of Computer Systems
(SIGMETRICS). Santa - Clara, Calit, (May 1993),
pp. 266-267

J. Kav, “PathIDs: Reducing Larency in Nerwork
Sotrware,” Ph.D). dissertation, University of California,
San Diego, 1995.

J. Kav and J. Pasquale, “Profiling and Reducing
Processing Overheads in TCP/UP” [EEE AC Ticins-
actions on Networking (accepred tor publication).

D. Ferrari, A, Banerjea, and H. Zhang, Netwaork Sup-
port Jor Multimedic: A Discussion of the lenet
Approach (Berkelev, Calit: International Computer
Science Institute, Technical Report TR-92-072, 1992).

H. Zhang, D. Verma, and D. Ferrari, “Design and
Implementation o the Real-Time Internet Protocol,”
Proceedings of the JEEE Workshop i the Architectioe
cicl tmplementation of 1igh Performance Coni-
nication Subsystems, Tucson, Ariz. (February 1992).

- AL Banerjea, E Knightly, Fo Templin, and H. Zhang,

“Experiments with the Tener Real-time Protocol
Suite on the Scequoia 2000 Wide Arca Nerwork,”
Proceedings of the ACM Jhiltimecia. San Francisco
(October 1994).

. V. Kompella, J. Pasquale, and G. Polyzos, “Multicast

Routing tor Mulumedia Applications,” 1ELI/ACM
Trenscactions on Netteorking. vol. 1, no. 3 (1993):
286-292.

>

Pasquale, and G. Polvzos, “Two
Distributed Algorithms for Multicasting Multi-
media Information,” Procecdings of the Second
ternational Conference on Conipiuder Conmini-
cations cand Networks (ICCCN) San Diego (June
1993), pp. 343-349.

)

J. Pasquale, G. Polvzos, E. Anderson, and V. Kompella,
“Filter Propagation in Dissemmation Trees: Trading
Off Bandwidth and Processing in Continuous Media
Nerworks,”™ Proceedings of the IFourth hiterncitional
Workshop on Network cicd Operating System Sif-
port for Digital Aucdio and Video (NOSSIDAV),
D. Shepherd, G. Blair, G Coulson, N. Davies, and
F. Garcia (eds.), Lecture Notes in Computer Science.
vol. 846 (Springer-Verlag, torthcoming).

17.

18.

20.

21.

22.

24,

20.

27.

Digital Technical Journal

. JL Pasquale, G Polyzos, E. Anderson, and V. Kompelia,
“The Multimedia Multicast Channel,™ Journal
of Interneticorking: Kesearch —and — Experience
(in press).

J. Pasquale, G. Polvzos; and V. Kompella, “Real-time
Dissemination of Continuous Mcedia in Packet-swirched
Neoworks,™ Proceedings of the 38th 1L Compuler
Sociely International Conference (COMPCON), San
Francisco (February 93), pp. 47-48.

K. Muller and). Pasquale, “A High-Performance
Multi-Structured File Svstem Design,™ Proceedings of
the 13th ACM Symposivne on Operating Systent Prin-
ciples (SOSP) Asilomar, Calif. (October 1991), pp.
56-067.

J. Pasquale, “1/0 Svstem Design tor Intensive
Mulumedia 1/0,” Proceedings of the Third I11EE
Workshop Workstation Operation Systems (WWOS),
Kev Biscavie, Fla. (April 1992), pp. 29-33.

J. Pasquale, “System Software and Hardware Support
Considerations for Digital Video and Audio Comput-
ing,” Procecdings of the 20th Hewwaii hiternationcl
Conference on Systen Sciences (111CSS). Maui, 1EEE
Computer Sociery Press (January 1993), pp. 15-20.

C. Thekkathy H. Levy, and E. Lazowska, “Scparating
Data and Control Transfer in Distribured Operating
Svstems,” Proceedings of the Sixth aternational
Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS).
San Jose, Calif. (Ocrober 1994), pp. 2-11.

R, Rashid Virtual
Memory Management for Paged Uniprocessor and
Multiprocessor Architectures,” JEEE Transactions on
Computers.vol. 37, no. 8 (1988): 896-908.

et al, “Machine-Independent

E. Anderson, “Contaver Shipping: A Unitorm Inrerface
tor Fast, Efticient, High-bandwidth 1/0,” Ph.D. disser-
tation, University of California, San Diego, 1995.

D. Bobrow, J. Burchticl, D. Murphy, and R. Tomlinson,
“TENEX, a Paged Time-Sharing Svstem for the
PDP-10" Communications of the ACH. vol. 15,
no. 3 (1972): 135-143.

o S-Y. Tzouw and D, Anderson, “The Performance of
Message-Passing Using Restricted Virtual Memory
Remapping,” Soflicare—DPractice and Experience.
vol, 21, n0.3 (1991). 251-267.

P. Druscheland L. Peterson, “Fbufs: a High-bandwidth
Cross-Domamn - Transter Faciline,” Proceedings of
the 14th ACN Symiposiunt on Opercting System Prin-
ciples (SOSP). Asheville, N.C. (December 1993), pp.
189-202.

J. Moguland A. Borg, “The Effect of Context Switches
on Cache Pertormance,™ Proceedings of the ASPLOS-
IV(Apnl 1991), pp. 75-84.

B. Bershad, T. Anderson, E. Lazowska, and H. Levy,
“Lighnweight Remote Call,” ACcm
Transactions on Compuder Systems. vol. 8 no. 1
(1990): 37-55.

Procedurce

Vol.7 No.3 1995

96

29. P Druschel; M. Abborr, M. Pagels, and 1. Pererson,
“Analvsis of I/0 Subsvstem Design tor Multimedia
Workstations,” Proceceings of the Third [uterie-
tioncl Workshop on Network: coned Operaling Systen
Support for Digital Andio and Video (NOSSDAV .,
November 1992,

30. D. Rirchic, *A Strcam Input-Outpur System,”™ L 11ET
Bell Laboratories Techidical Jowrnel. vol. 63, no. 8
(1984): 1897-1910.

31 D Presorro and Do Ritchie, * Interprocess Communi-
cation inrhe Eighth Fdinon GNINX Svstem,™ Proceed-
ings of the CSENIN Winter Conference (January
1985), pp. 309-3106.

29
[§)

].-F. Cabrera, E- Hunter, M. Karcls, and D. Mosher,
“Uscr-Process Communication Performance n Net-
works ot Computers,”™ ILEL lranscctions on Sofi-
weare Engincering vol 14, no. | (1988): 38=33.

3. D Clark, V. Jacobson, J. Romkevy, and H. Salwen,
“An Analvsis of TCP Processing Overhead,™ 7441
Comnunrications{(1989): 23-29.

29
9,

34. R, Watson and . Mamrak, “Gaining Efficieney in
Transport Scrvices by Appropriate Design and Imple
mentation Choices,™ ACH Transactions on Con-
prter Systems, vol. 5. no. 2 (1987): 97-120.

35, R Braden, “Requirements tor Tarerner Hosts—
Communication Lavers.™ lterael Reguiest o1 Coni-
ments 1122 (Nenwork Intormation Cenrer, 1989).

Biographies

Joseph Pasquale

Joscph Pasquale is an associate professorin the Department
ot Computer Science and Engincering at the Universine of
California ar San Dicgo. He hasa B.S.and an NS, fromy the
Massachuserrs Institute of Technology and a PhuD. from
the Universine of Calitornia at Berkeley, all in computer sci-
ence. In 1989, he established the UCSD Compurter Systems
Laboratory, where he and his students do researchin ner-
waork and operating svstem software design, especially

to support 1/O-intensive applications such as distributed
multimedia (digital video and audio) and scienrific com-
puting. He also investi gates ssucs of coordmation and
decentralized control in Targe distribured svstems, He has
published more than 40 refereed conterence and journal
articles in these areas and received the NSE Presidential
Young Investigator Award in 1989,

Digital ‘Technical Journal \ol. 7 No. 3 1995

Eric W. Anderson

Eric Anderson received BAL (1989), ML.S. (1991), and
Ph.D.(1995) degrees trom the University of Calitornia

at San Dicgo. His dissertation is on the development ofa
unitorm mtertace tor fast, etticient, high-bandwidrh 1,/0.
Asa rescarch assistant at UCSD, he contributed to the
planning and installation of the Sequoia 2000 nenwork

and conducted research in operating system /O and high-
speed nenworking. He is corrently a postaraduate researcher
with the Compurer Svstems Laboratory ar UCSD, where
heis mvolved i further studies ot high-pertormance 1/0
techniques. He s amember of ACNT and has coauthored
papers on the multimedia multicast channel, operating
svstem support tor [/O-intensive applications, and filter
propagation in dissenination trees in continuous media
networks.

Kevin R. Fall

Kevin Fall received a Ph.DLin computer science from the
Universite of California ar San Dicgo in 1994 and a BLA.

in computer science trom the Universiey of Californiaat
Berkelev m 1988, He held concurrent postdocroral positions
with UCSD and MIT betore joining the Lawrence Berkeley
National Laboratory in September 1995, where he s a staft
computer scientist m the Network Rescarch Group. While
ar UC Berkeley, he was responsible for the integration of
seeurity software into Berkeley UNIN and protocol develop-
ment for the campus’ supercompurer. While ar UC San
Dicgo, Kevin developed a lugh-pertormance 1/0 archiree-
ture designed to the supporr the farge /0 demands of the
Scquoia 2000 database and multmedia applications.

He was also responsible for the routing architecture and
svstem configuration of the Sequoia 2000 nenwork.

Jonathan S. Kay

Jon Kav received a PhoDoin computer science trom the
Unnersitv of Californiaat San Dicgo. While working
toward lis docrorate, he was involved in the Sequoia 2000
nerworking project. He joined Isis Distribured Svstems

of Ithaca, N.Y. in 1994 to work on distributed computing
toolkirs. He also holds a B.S. and an M.S.in compurer
scienee from Johns Hopkins University.

Call for Authors
from Digital Press

Digital Press is an imprint of Butterworth-Heinemann, a major international pub-
lisher of professional books and a member of the Reed Elsevier group. Digital
Press is the authorized publisher for Digital Equipment Corporation: The two
companies are working in partnership to identify and publish new books under the
Digital Press imprint and create opportunities for authors to publish their work.

Digital Press is committed to publishing high-quality books on a wide variety
of subjects. We would like to hear from you if you are writing or thinking about
writing a book.

Contact: Mike Cash, Digital Press Manager, or
Liz McCarthy, Assistant Editor

DIGITAL PRESS

313 Washington Street

Newton, MA 02158-1626

U.S.A.

Tel: (617)928-2649, Fax: (617) 928-2640
E-mail: Mike.Cash@BHein.rel.co.uk or
LizMc@world.std.com

Eﬂannan "

ISSN 0898-901X

Printed in U.S.A. EY-T838E-1J/95 12 14 18.0 Copyvright © Digital Equipment Corporation. All Rights Reserved.

	Front cover
	Contents
	Editor's Introduction
	Foreword
	Compiling High Performance Fortran for Distributed-memory Systems
	Design of Digital's Parallel Software Environment
	An Overview of the Sequoia 2000 Project
	The Sequoia 2000 Electronic Repository
	Tecate: A Software Platform for Browsing and Visualizing Data from Networked Data Sources
	High-performanceI I/O and Networking Software in Sequoia 2000
	Call for Authors from Digital Press
	Back cover

