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Editor's
Introduction

This issue’s opening section features
audio and video technologies that
exploit the power of Digital’s 64-bit
RISC Alpha systems. Papers describe
new software and hardware designs
that make practical such applications
as text-to-speech conversion and full-
motion video on the desktop. A sec-
ond sct of papers shitts the focus to
the UNIX environment with discus-
sions of high-availability services and
of Encore Computer Corporation’s
new real-time debugging tool.

The opening paper for the audio
and video section references an audio
technology that physicist Stephen
Hawking uses to convert the text
he types to highly intelligible syn-
thetic speech. Recently, engineers
have ported this mature 10-year-
old hardware technology, called
DECralk, to text-to-speech software.
Bill Hallahan explains that the com-
putational power of Digital’s Alpha
systems now makes it possible for a
software speech synthesizer to simul-
taneously convert many text strecams
to speech without overloading a work-
station. After reviewing relevant speech
terminology and popular synthesis
techniques, he describes DECtalk
Software multithreaded processing
and the new text-to-speech applica-
tion programming interface for
UNIX and NT workstations.

Video technologies—full-motion
video on workstations—also capital-
izc on the high performance of Alpha
systcms. In the first of four papers
focused on digital video, Ken Correll
and Bob Ulichney present the J300
video and audio adapter architecture.
To improve on past full-motion video
implementations, designers sought
to allow video data to be treated the
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samc as any other data type in a work-
station. The authors review the J300
features, including a versatile color-
map rendering system, and the sub-
system design decisions made to keep
product costs low.

Victor Bahl then presents the J300
software that controls the hardware.
The challenge for softwarce designers
was to obrain real-time performance
from a non-real-time operating sys-
tem. A description of the video sub-
system highlights the video library
and an innovative use of queues in
achieving good performance. This
sottware architecture has been imple-
mented on OpenVMS, Windows NT,
and Digital UNIX platforms.

A third paper on video technology
looks at delivering vidco without spe-
cialized hardware, that is, a software-
only architecture for general-purpose
computers that provides access to
videco codecs and renderers through
a flexible application programming
interface. Again, faster processors
make a software-only solution possi-
ble at low cost. Authors Victor Bahl,
Paul Gaurhier,and Bob Ulichney
preface the paper with an overview
of industry-standard codecs and
compression schemes. They then
discuss the creation of the softwarc
video library, its architecture, and
its implementation of video render-
ing that parallels the J300 hardware.

The final paper in the audio and
video technologies section explicitly
raises the question of what features
are best implemented in hardware
and what in software. The context for
the question is a graphics accelerator
chip design that integrates traditional
synthetic graphics features and video
image display features—until now,
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implemented separately. Larry Seiler
and Bob Ulichney describe the video
processing implemented difterently
in two chips, both of which offer sig-
nificantly higher performance with
minimal additional logic.

The common theme of our second
section is the UNIX operating system.
Larry Cohen and John Williams pre-
sent the DECsafe Available Server
Environment (ASE), which provides
high availability for applications run-
ning on Digital UNIX systems. They
describe the ASE design for detection
and dynamic reconfiguration around
host, storage device, and network fail-
ures, and review key design trade-offs
that favored software reliability and
data integrity.

Mike Palmer and Jeft Russo then
contrast Encore Computer Corpora-
tion’s sct of debug and analysis tools
for real-time applications, called
Parasight, with conventional UNIX
tools. They examine the features that
are critical in an effective real-ume
debugging tool, for example, the abil -
ity to attach to a running program
and to analyze several programs simul-
taneously. A description follows of
the Parasight product, which includes
the features necessary for real-time
debug and analysis in a set of graphi-
cal user interface tools.

Upcoming in our next issue are
papers on a variety of topics, includ-
ing Digital UNIX clusters, eXcursion
for NT, and nctwork services.

loke__

Jane C. Blake
Managing Editor



Foreword

Robert A. Ulichney
Senier Consulting Fngincer

Resecrch aid Advanced Development.

Cambridge Research Lab

“Can you digit ... New York State
Throughway’s closed, Man. Far

out, Man,” announced a young Arlo
Guthrie in the vernacular on the stage
at Woodstock in 1969. Reading these
words may evoke a mental picture of
the event, but it sureis a lot more fun
to hear and see Arlo deliver this mes-
sage. Audio and video technology is
the featured theme of this issue of the
Digital Technical Journal.

Four years befere Arlo’s traffic
report, in the year that a young Digital
Equipment Corporation introduced
the PDP-8, an interesting forecast
was made. Gordon Moore, who was
yet to co-found Intel, asserted in alit-
tle-noticed paper that the power and
complexity of the silicon chip would
double every year (later revised to
every 18 months). This prediction
has been generally accurate for 30
years and is today one of the most
celebrated and remarkable “laws”
of the computer industry.

While we enjoyed this exponential
hardwarc ride, there was always some
question about the ability of applica-
tions and sottware to keep up. It any-
thing, the opposite is true. Software
has been described as a gas that imme-
diately fills the expanding envelope
of hardware. Ever since the hardware
envelope became large enough to
begin to accommodate crude forms
ofaudio and video, the pressure of the
software gas has been greatindeed.
Digitized audio and video represent
enormous amounts of data and stress
the capacities of real-time processing
and transmission systems.

Digital has participated in expand-
ing the envelope and in filling it;
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its hardware performance is record-
breaking and its audio and video tech-
nologies are state-of-the-art. Looking
specifically at the four categories into
which computer companies segment
audio and video technologies, Digital
is making contributions in cach of
these: analysis, synthesis, compression,
and input/output.

MIT’s Nicholas Negroponte
believes that practical analysis, or
interpretation, of digitized audio and
video will be the next big advance in
the computer industry, where noth-
ing has changed in human input (key-
board and pointing device) since, well,
the Woodstock era. Digital is actively
investigating methods tor speaker-
independent speech recognition and,
in the area of video analysis, means
to automatically detect, track, and
recognize people.

The synthesis of still and motion
video, more commonly referred to as
computer graphics, has traditionally
been a much larger area of focus than
the handling of sampled video. Syn-
thesis of audio, or text-to-speech
conversion, is the topic of one of
the papers in this issue; DECralk 1s
largely considered to be the best
such synthesis mechanism available.

When audio or video data are rep-
resented symbolically, as is the case
after analysis, or prior to synthesis,
amost efficient form of compression
is implicitly emploved. However, the
task of storing or transmitting the raw
digitized signal can be overwhelm-
ing, especially at high sampling rates.
Compression techniques are relied
upon to case the volume of this dara
in two ways: (1) reducing statistical
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redundancy and (2) pruning data that
will not be noticed by exploiting what
is known about human perceptual
systems. In this climate of interoper-
ability and open svstems, Digital
recognizes the importance of adher-
ing to accepted standards tor audio
and video compression versus the
promotion of some proprietary
representation.

The last category is that of 1 /O.
Audio and video input requirc a
means tor signal acquisition and
analog-ro-digital conversion. The
focus here is on preserving the integ-
rity of the signal as opposed to inter-
preting the data. Proper rendering
is needed tor good-quality outpur,
along with digital-to-analog con-
version. For both audio and video,
trade-ofts must be made to accoms-
modate the highest degree of sampling
resolution in time and amplitude.

Digital is a leader in the arca of
video rendering with our AccuVideo
technology, aspects of which are
described in part in three papers in
thisissue. Video rendering incorpo-
rates all processing that is required to
railorvideo to a particular targer dis-
play. Thisincludesscalingand filter-
ing, color adjusement, dithering, and
color-space conversion from video’s
Juminance-chrominance represen-
ration to RGB. In its most general
torm, Digital’s rendering technology
will optimize display quality given
amynumber of available colors.

The carliest form of AccuVideo
appeared in a 1989 testbed, known
internally as Picror. This led to the
widcly distributed rescarch prototype
called Jvideo in 1991. Jvideo was
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a TURBOchannel bus option with
JPEG compression and decompres-
sion and was the first prototvpe to
combine dithering with color-space
conversion. Jvideo was the basis for
design of the Sound & Motion ]300
product, which included a remarkably
improved dither method. A follow-on
to J300 is a PCI-bus version ¢a
FullVideo Supreme.

fed

In products that render RGB data
instead of video, Digital’s rendering
technology is reterred to as AcculLook;
except for this one difterence, the rest
of the rendering pipceline is identical
to AccuVideo. Accul.ook products
include graphics options for work
stations: ZLX-E (SFB+) designed for
the TURBOchannel and ZLXp-E
(TGA) designed as an entry-level
product for the PCL bus.

AccuVideo rendering is a key
feature in the DECchip 21130
PC graphics chip and in the TGA2
high-end workstation graphics chip.
While noted for its high image qual-
itv, AccuVidceo is also cthiciently
implemented in software; itis avail-
able as part ofa tool kit with every
Digital UNIX, OpenVMS, and
Windows N1 plattorm.

With Moorc’s law on the toosc,
it can be argued that hardware imple-
mentations of video rendering are
not justificd as software-only versions
grow in speed. Although today’s pro-
cessors can indeed handle the plav-
back of video by both decompressing
and rendering at a quarter of full size,
little is lett tor doing anvthing clse.
Morcover, users will want to scale
up the display sizes, and perhaps add
multiple video streams—and sull be
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able to use their processors to do
other things. For the near term, hard-
ware video rendering is justified.

The five papers that make up the
audio and video technology theme
of'this issue are but a small sampling
ot the work under wav in this arca
at Digital; look for more papers to
follow in subscquent issues of this

Jowrnal. As the audio and video gas

continucs to fill the ever-expanding
hardware envelope, we look forward
to an enriched and more natural
experience with computing devices.
Arlo’s Woodstock pals would likely
agree that this sounds like more fun.



DECtalk Software:
Text-to-Speech
Technology and
Implementation

DECtalk is a mature text-to-speech synthesis
technology that Digital has sold as a series of
hardware products for more than ten years.
Originally developed by Digital’s Assistive
Technology Group (ATG) as an alternative to

a character-cell terminal and for telephony
applications, today DECtalk also provides visu-
ally handicapped people access to information.
DECtalk uses a digital formant synthesizer to
simulate the human vocal tract. Before the
advent of the Alpha processor, the computa-
tional demands of this synthesizer placed

an extreme load on a workstation. DECtalk
Software has an application programming
interface (API) that is supported on multiple
platforms and multiple operating systems.
This paper describes the various text-to-speech
technologies, the DECtalk Software architecture,
and the API. The paper also reports our experi-
ence in porting the DECtalk code base from the
previous hardware platform.

William 1. Hallahan

Duning the past ten vears, advances in computer power
have created opportunitics for voice input and out-
put. Many major corporations, including Digital,
provide database access through the telephone. The
advent of Digital’s Alpha processor has changed the
cconomics of speech svnthesis. Instead of an expen-
sive, dedicated circuit card that supports only a single
channel of svnthesis, svstem developers can use an
Alpha-basced workstation to support many channels
simultaneously. In addition, since text-to-speech con-
version is a light load tor an Alpha processor, applica-
tion developers can freelv integrate text to speech into
their products.

Digital’s DECralk Sottware provides natural-sound-
ing, highly intelligible text-to-speech synthesis. It is
available tor the Digital UNIX operating svstem on
Digital’s Alpha-based plattorms and for Microsoft’s
Windows NT operating svstem on both Alpha and
I[ntel processors. DECtalk Software provides an easy-
to-usc application programming interface (APL) thatis
fully integrated with the computer’s audio subsystem.
The text-to-speech code was ported from the software
for the DECralk PC card, a hardware product made by
Digital’s Assistive Technology Group. This software
constitutes over 30 man vears of development cffort
and contains approximately 160,000 lines of C pro-
gramming language code.

This paper begins by discussing the features of
DECralk Software and brictly describing the various
text-to-speech technologies. It then presents a descrip-
tion of the DECralk Software architecture and the
APIL Finally, the paper relates our expericnce in port-
ing the DECralk code base.

Features of DECtalk Software

The DECralk Software development kit consists of a
shared library (a2 dvnamic link library on Windows
NT), a link library, a header file that defines the sym-
bols and functions used by DECralk Software, sample
applications, and sample source code that demon-
strates the AP

Digital Techmical Journal Vol.7 No. 4+ 1993
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DECralk Software supports nine preprogrammed
voices: four male, tour female, and one child’s voice.
Both the APT and in-line text commands can control
the voice, the speaking rate, and the audio volume.
The volume command supports stereo by providing
independent control of the left and right channcls.
Other in-line commands play wave audio files, gen-
erate single tones, or generate dual-tone multiple-
frequency (DTME) signals for telephony applications.

Using the text-to-spcech API, applications can play
speech through the computer’s audio system, write
the speech samples to a wave audio file, or write the
speech samples to bufters supplied by the application.
DECralk Software produces speech in 3 audio formats:
16-bit pulse code modulation (PCM) samples at an
11,025-hertz (Hz) sample rate, 8-bit PCM samples at
an 11,025-Hz sample rate, and p-law encoded 8-bit
samples at an 8,000-Hz sample rate. The first two for-
mats are standard multimedia audio formats for per-
sonal computers (PCs). The last format is the standard
encoding and rate used tor telephony applications.

The API can also load a user-generated dictionary
that defines the pronunciation of application-specitic
words. The development kit provides a window- based
tool to generate these dictionaries. The kit also con-
tains a window-based application to speak text and an
electronic mail-notification program. Sample source
code includes a simple window-based application that
speaks text, a command line application to speak text,
and a speech-to-memory sample program.

The version of DECralk Software for Windows NT
also provides a text-to-speech dynamic data exchange
(DDE) server. This server integrates with other appli-
cations such as Microsoft Word. Users can select text
in a Word document and then proofread the text
mercly by clicking a button. This paper was proofread
using DECrtalk Software running a native version of
Microsoft Word on an AlphaStation workstation.

Speech Terms and DECtalk Software

Human speech is produced by the vocal cords in the
larynx, the trachea, the nasal cavity, the oral cavity, the
tongue, and the lips. Figure 1 shows the human
speech organs. The glottis is the space berween the
vocal cords. For voiced sounds such as vowels, the
vocal cords produce a series of pulses of air. The pulse
repetition frequency is called the glottal pitch. The
pulse train is referred to as the glotral wavetorm. The
rest of the articulatory organs filter this wavetorm.'
The trachea, in conjunction with the oral caviry, the
tongue, and the lips, acts like a cascade of resonant
tubes of varying widths. The pulse energy reflects
backward and forward in these organs, which causes
energy to propagate best at certain frequencies. These
are called the formant frequencies.

Digiral Technical Journal Vol.7 No.4 1995
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Figure 1
The Specch Organs

The primary discrimination cues for difterent vowel
sounds are the values of the first and second formant
frequency. Vowels are either front, mid, or back vow-
els, depending on the place of articulation. They are
either rounded or unrounded, depending on the posi-
tion of the lips. American English has 12 vowdl
sounds. Diphthongs arc sounds that change smoothly
from one vowel to another, such as in boy, bow, and
bay. Other voiced sounds include the nasals mz, 12, and
ng (as in ing). To produce nasals, a person opens the
velar flap, which connects the throat to the nasal cavity.
Liquids are the vowel-like sounds /and » Glides are
the sounds y (asin you) and w (asin we).

Breath passing through a constriction creates tur -
bulence and produces unvoiced sounds. fand s are
unvoiced sounds called fricatives. A stop (also called a
plosive) is a momentary blocking of the breath
stream followed by a sudden release. The consonants
p, bt d k and g arc stop consonants. Opening the
mouth and cxhaling rapidly producces the consonant
h. The b sound is called an aspirate. Other conso-
nantssuchas p, . and £ frequently end in aspiration,
especially when they start a word. An affricative is a
stop immediately tollowed by a fricative. The English
sounds ch (as in chew and j(as in jar) are affricates.

These sounds are all American English phonemes.
Phoncemes are the smallest units of speech that distin-
guish onc utterance from another n a particular
language . An allophonc is an acoustic manifestation
of a phoneme. A particular phoneme may have many
allophones, but each allophone (in context) will
sound like the same phoneme to a speaker of the lan-
guage thatdefines the phoneme. Another way of say-
ing this is, if two sounds have different acoustic
manifestations, but the use of either one does not
change the meaning of an utterance, then by defini-
tion, thev are the same phoneme.




Phones are the sets of all phonemes and allophones
tor all languages. Linguists have developed an interna-
tional phonetic alphabet (IPA) that has symbols for
almost all phones. This alphabet uses many Greek
letters that are difficult to represent on a computer.
American linguists have developed the Arpabet
phoneme alphabet to represent American English
phonemes using normal ASCII characters. DECralk
Software supports both the IPA symbols for American
English and the Arpabet alphabet. Extra symbols are
provided that either combine certain phonemes or
specify certain allophones to allow the control of fine
speech features. Table 1 gives the DECralk Software
phonemic symbols.

Speech researchers often use the short-term spec-
trum to represent the acoustic manifestation of a
sound. The short-term spectrum is a measure of the
frequency content of a windowed (time-limited) por-
tion of a signal. For speech, the time window is typi-
cally berween 5 milliseconds and 25 milliseconds, and

Table 1
DECtalk Software Phonemic Symbols

Consonants Vowels and Diphthongs
b bet aa Bob

ch  chin ae bat

d debt ah  but

dh  this ao bought
el bott/e aw bout
en  button ax about
f fin ay bite

g guess eh be

hx  head ey bake

jih  gin ih  bit

k Ken ix kisses

| let iy beat

m met ow boat

n net oy boy

nx  sing r bird

p pet uh  book

r red uw lute

s sit yu cute

sh  shin Allophones

t test dx  rider

th thin Ix electric
v vest q we eat
w wet rx oration
yx  yet tx  Latin

z Zoo Silence

zh  azure _ (underscore)

the pitch frequency of voiced sounds varies from 80
Hz to 280 Hz. As a result, the time window ranges
from slightly less than one pitch period to several pitch
periods. The glottal pitch frequency changes very little
in this interval. The other articulatory organs move
so little over this time that their filtering eftects do
not change appreciably. A speech signal is said to be
stationary over this interval.

The spectrum has two components for each fre-
quency measured, a magnitude and a phase shift.
Empirical tests show that sounds that have identical
spectral magnitudes sound similar. The relative phase
of the individual frequency components plays a lesser
role in perception. Typically, we perceive phase ditter-
ences only at the start of Jow frequencies and only
occasionally at the end of a sound. Matching the spec-
tral magnitude of a synthesized phoneme (allophone)
with the spectral magnitude of the desired phoneme
(taken from human speech recordings) always
improves intelligibility.® This is the synthesizer calibra-
tion technique used for DECralk Software.

A spectrogram is a plot of spectral magnitude slices,
with frequency on the y axis and time on the .x axis.
The spectral magnitudes are specitied either by color
or by saturation for two-color plots. Depending on the
time interval of the spectrum window, either the pitch
frequency harmonics or the formant structure of
speech may be viewed. It is even possible to ascertain
what is said from a spectrogram. Figure 2 shows spec-
trograms of both synthetic and human speech for the
same phrase. The formant frequencies are the dark
regions that move up and down as the speech organs
change position. Fricatives and aspiration are charac-
terized by the presence of high frequencies and usually
have much less energy than the formants.

The bandwidth of speech signals extends to over
10 kilohertz (kHz) although most of the energy is
confined below 1,500 Hz. The minimum intelligible
bandwidth for speech is about 3 kHz, but using this
bandwidth, the quality is poor. A telephone’s band-
width is 3.2 kHz. The DECrtalk PC product has a
speech bandwidth just under 5 kHz, which is the same
as the audio bandwidth of an AM broadcast station.
The sample rate of a digital speech system must be at
least twice the signal bandwidth (and might have to be
higher if the signal is a bandpass signal), so the
DECralk PC uses a 10-kHz sample rate. This band-
width represents a trade-oft between speech quality
and the amount of calculation (or CPU loading). The
DECralk Software svnthesizer rate is 11,025 Hz,
which is a standard PC sample rate. An 8-kHz rate is
provided to support telephony applications.

People often perceive acoustic events that have
difterent short-term spectral magnitudes as the same
phoneme. For example, the & sound in the words &ill

Digital Technical Journal Vol.7 No.4 1995
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Figure 2

Two Specrrograms of the Utterance “Line up at the screen door.” The upper spectrogram is the author’s speech.
The lower spectrogram is synthetic speech produced by DECralk Software.

and cool have very different magnitude spectra. An
Amcrican perceives the nwo spectra as the same sound;
however, the sounds are very ditferent to someonc
from Saudi Arabia. A Japancesce person does not per-
ceive any difference between the words car and call.
Toan English speaker, the 7and the /sound difterent
cven though they have nearlv identical magniwde
spectra. The /Zsounds in the words cal/ and leaf are dit-
ferent spectrally (acousticallv) but have the sune
sound. Thus they are the same phoneme in English.

Several allophones are required to represent the £
phoneme. Most consonant phonemes require several
different allophones because the vowel sounds next to
them change their acoustic manitestations. This eftect,
called coarticulation, occurs because it is often unnec-
essary for the articulatory organs to reach the tinal
position used to generate a phoneme; they merely
need to gesture toward the final position. Another
tvpe of coarticulation is part of the grammar of a
language. For example, the phrase doir 't you is often
pronounced doci choo.

All allophones that represent the phoneme £ are
produced bv closing the velum and then suddenly
opening itand releasing the breath stream. Speakers of
the English language perceive all these allophones as
the same sound, which suggests that synthesis may be
modecled by an articulatory model of speech produc-
tion. This modelwould presumably handle coarricula-
tion cttects thatare not due to grammar. Itis currently
not known how to consistently determine speech
organ positions (or control strategics) directly from
acoustic speech dara, so articulatory models have had
lirele success tor text-to-specch synthesis.?
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For English, the voicing picch provides cues to
clause boundaries and meaning. Changing the fre-
quencey of the vibration of the vocal cords varies the
pitch. Inronation is the shape of the pitch variation
across a clause. The sentence “Tim s leaving.” is pro-
nounced differently than “Tim s leaving?™ The latter
torm requires different intonation, depending on
whether the intent is to emphasize that it is “Tim”
who is leaving, or that “leaving™ is what Tim is to do.
A word or phrasc 1s stressed by increasing its pitch,
amplitude, or duration, or some combination of these.
Intonation includes pitch changes duce to stress and
normal pitch varation across a clause. Correct intona-
tion is not ahvays possible because it requires speech
understanding. DECralk Software performs an analvsis
of clause structure that includes the form classes of
both words and punctuation and then applies a pitch
contour to a clause. The torm class definitions include
svmbols for the parts of speech (article, adjective,
adverb, conjunction, noun, preposition, verb, cte.)
and symbols to indicate it the word is a number, an
abbreviation, a homograph, or a special word (requir-
ing special proprictary processing). For the sentence,
“Tim s leaving?” the question mark causes DECralk
Software to raise the tinal pitch, but no stress is put on
“Tim” or “leaving.” Ncutral intonation sometimes
sounds boring, but at Jeast it does not sound toolish.

Text-to-Speech Synthesis Techniques
Early attempts at text-to-speech synrhesis assembled

clauses by concatenating recorded words. This tech-
nique produces extremely unnatural-sounding specch.



[n continuous speech, word durations are often short-
ened and coarticulation effects can occur between adja-
centwords. Thereis also no way to adjust the intonation
of recorded words. A huge word database is required,
and words that are not n the darabase cannot be pro-
nounced. The resulting speech sounds choppy.

Another word concatenation technique uses record-
ings of the formant patterns of words. A formant
svnthesizer smoothes formant transitions at the word
boundarics. A variation of this technique uses linear
predictive coded (LPC) words. An advantage of the
tormant svithesizer is that the pitch and duration
of words may be varied. Unfortunately, since the
phoneme boundaries within a word are ditficult to
determine, the pitch and duration of the individual
phonemes cannot be changed. This technique also
requires a large database. Again, a word can be spoken
only it it is in the database. In genceral; the quality
1s poor, although this technique has been used with
some success to speak numbers.

A popular technique todav is to store actual speech
scgments that contain phonemes and phoneme pairs.
These speech segments, known as diphones, are
obrained from recordings of human speech. They con-
tain all coarticulation effects that occur tor a particular
language. Diphonesare concatenated to produce words
and sentences. This solves the coarticulation problem,
but it is impossible to accurately modifv the pitch of
anv segment. The intonation across a clause is gener-
ally incorrect. Even worse, the pitch varies from seg-
ment to segment within a word. The resulting speech
sounds unnatural, unless the svstem is speaking a
phrase that the diphones came from (this is a devious
marketing plov). Nevertheless, diphone synthesis pro-
duces speech that is fairly intelligible. Diphone svn-
thesis requires relatively little compute power, but it is
memory intensive. Aimerican English requires approx-
mately 1,500 diphones; diphone svnthesis would have
to provide a large database of approximately 3 mega-
bvtes for cach voice included by the svstem.

CALLBACK FUNCTION FOR UNIX, MESSAGE FOR WINDOWS NT

DECralk Software uses a digital formant synthesizer.
The synthesizer input is derived from phonemic sym-
bols instecad of stored formant patterns as in a conven-
rional formant svithesizer. Intonation is based on
clause structure. Phonetic rules determine coarticula-
tion cffects. The svnthesizer requires only two tables,
one for cach gender, to map allophonic variations of
cach phoneme ro acoustic events. Modification of vocal
tract parameters in the svnthesizer allows the svstem to
generate multiple voices without a significant increase
in storage requirements. (The DECtalk code and data
occupy less than 1.5 megabytes.)

Poor-quality speech is difficult to understand and
causes fatigue. Linguists use standard phoneme recog-
nition tests and comprcehension tests to measure the
intelligibility of synthetic speech. The DECralk tamily
of products achieves the highest test scores ofall text-
to-speech systems on the market.” Visually handi-
capped individuals prefer DECralk over all other
text-to-speech systems.

How DECtalk Software Works

DECralk Software consists of eight processing threads:
(1) the rext-queuing thread, (2) the command parser,
(3) the letter-to-sound converter, (4) the phonetic and
prosodic processor, (5) the vocal tract model (VTM)
thread, (6) the audio thread, (7) the svnchronization
threcad, and (8) the timer thread. The text, VTM,
audio, synchronization, and timer threads are not part
of the DECralk PC sofoware (the DECralk PC VTM
is on a special Digital Signal Processor) and have been
added to DECtalk Software. The audio thread creates
the timer thread when the text-to-specch svstem s
mitialized. Since the audio thread docs not usually
open the audio device unrtil a sutticient number of
audio samples are queuced, the timer thread serves to
torce the audio to play in case any samples have been in
the queue too long. The DECralk Software threads
perform serial processing ot dara as shown in Figure 3.

POLL AUDIO
POSITION

CALLBACK FUNCTION FOR UNIX, MESSAGE FOR WINDOWS NT /
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Figure 3
The DECralk Software Architecture for Windows NT
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Multithreading allows a simple and efficient means
of throttling data in multistage, real-time systems.
Each thread passes its output to the next thread
through pipes. Each thread has access to two pipe han-
dles, one for input and one for output. Most threads
consist of'a main loop that has one or more calls to a
read_pipe function followed by one or more calls to
a write_pipe function. The write_pipe function will
block processing and suspend the thread if the speci-
fied pipe does not have enough free space to receive
the specified amount of data. The read_pipe function
will block processing and suspend the thread if the
specified pipe does not contain the requested amount
of data. Thus an active thread will eventually become
idle, either because there is not enough input data, or
because there is no place to store its output.

The pipes are implemented as ring bufters. The ring
bufter item count is protected by mutual-exclusion
objects on the Digital UNIX operating system and by
critical sections on the Windows NT operating system.
The pipes are created at text-to-speech initialization
and destroyed during shutdown. The DECralk Software
team implemented these pipes because the pipe calls
supplied with the Digital UNIX and Windows NT
operating systems are for interprocess communication
and arc not as efficient as our pipes.

The DECralk Software threads all used different
amounts of CPU time. The data bandwidth increases
at the output of every thread between the command
thread and the VTM thread. Since the VTM produces
audio samples at a rate exceeding 11,025 samples per
second, it is no surprise that the VTM uses the most
CPU time of all threads. Table 2 gives the percentage
of the total application time used by cach thread when
the Windows NT sample application “say” is continu-
ously speaking a large text file on an Alpha AXP 150
PC product. The output sample rate is 11,025 Hz.
Note that the “say” program main thread blocks and
uses virtually no CPU time after queuing the text
block. These percentages have been calculated from
times obtained using the Windows NT performance
monitor tool.

Because the data bandwidth increases at the output
of successive threads, it is desirable to adjust the size of
cach of the pipes ring bufters. If one imagines that all
the pipes had an infinite length (and the audio queue
was infinite) and that the operating system switched
thread context only when the active thread yielded,
then the text thread would process all the ASCIT text
data before the letter-to-sound thread would run.
Likewise, each successive thread would run to comple-
tion before the next thread became active. The system
latency would be very high, but the thread switch-
ing would be minimized. The system would use 100
percent of the CPU until all the text was converted
to audio, and then the CPU usage would become

Digital Technical Jouenal Vol.7 No.4 1995

Table 2
DECtalk Software Thread Loading

Percentage of Total

Thread Application CPU Time
Application 1.0
(say.exe)

Text queue 0.2
Command parser 1.4
Letter-to-sound 2.4
processing

Prosodic and 18.3
phonetic processing

Vocal tract model 71.9
Audio 2.9
Synchronization 0.0
Timer 0.0
System 1.9

very low as the audio played out at a fixed rate.
Alternatively, if all the pipes are made very short, the
system latency is low. In this case, all but one of the
threads will become blocked in a very short time and
the startup transient in the CPU loading will be mini-
mized. Untortunately, the threads will constantly
switch, resulting in poor efficiency. What is needed is
a trade-off between these two extremes.

For a specified latency, the optimum pipe sizes
that minimize memory usage for a given etticiency
are in a ratio such that each pipe contains the same
temporal amount of data. For example, let us assume
that 64 text characters (requiring 64 bytes) arein the
command thread. They produce approximately 100
phonemes (requiring 1,600 bytes) at the output of
the letter-to-sound thread and approximately 750
VTM control commands (requiring 15,000 bytes) at
the output of the prosodic and phonctics thread. In
such a case, the size of the input pipes for the com-
mand, letter-to-sound, and prosodic and phonctic
threads could be made 64, 1,600, and 15,000 bytes,
respectively, to minimize pipe memory usage for the
specified latency. (All numbers are hypothetical.)
The pipe sizes in DECralk Software actually increase
at a slightly faster rate than necessary. We chose the
taster rate because memory usage is not critical since
all the pipes are small relative to other data struc-
tures. The size of the VTM input pipe is the most
critical: it is the largest pipe because it supports the
largest data bandwidth.

The Text Thread

The text thread’s only purpose is to buffer text so the
application is not blocked during text processing.
An application using text-to-specch services calls
the TextToSpeechSpeak API function to queue a null-



terminated text string to the system. This AP function
copies the text to a bufter and passes the buffer (using
a special message structure) to the rext thread. This
is done using the operating system’s PostMessage
function for Windows NT and a thread-safe linked
list for Digital UNIX. After the text thread pipes the
entire text stream to the command thread, it frees the
text bufter and the message structure.

The Command Processing Thread

The command processing thread parses in-line text
commands. These commands control the text-to-
speech system voice selection, speaking rate, and audio
volume, and adjust many other system state parame-
ters. For DECtalk, most of these commands are of the
form [: command <parameters>]. The string “[:”
specifies that a command string follows. The string ]”
ends a command. The tollowing string illustrates sev-
eral in-line commands.

(:nb][:ra 200] My name is Betty.
[:play audio.wav]
[:dial 555-1212][:tone 700 1,000]

This text will select the speaker voice for “Betty,”
select a speaking rate of 200 words per minute, speak
the text “My name is Betry.” and then play a wave
audio file named “audio.wav.” Finally, the DTMF
tones for the number 555-1212 are played followed
by a 700-Hz tone tor 1,000 milliseconds.

Because the text-to-speech system may be speaking
while simultaneously processing text in the command
thread, it is necessary to synchronize the command pro-
cessing with the audio. The DECralk PC product (from
which we ported the code) did not perform synchro-
nization unless the application placed a special string
before the volume command. For DECtalk Software,
asynchronous control of all functions provided by
the in-linec commands is alrcady available through the
text-to-speech APT calls. For this reason, the DECralk
Software in-line commands are all synchronous.

The DECralk command [:volume set 70] will set
the audio volume level to 70. Synchronization is per-
tormed by inserting a synchronization symbol in the
text stream. This symbol is passed through the svstem
until it rcaches the VTM thread. When the VTM
thread receives a synchronization symbol, it pipes a
message to the synchronization thread. This message
causes the synchronization thread to signal an event as
soon as all audio (that was queued betore the message)
has been played. The volume control code in the com-
mand thread is blocked until this event is signaled. The
synchronization thread also handles commands of the
form [:index mark 17]. Index mark commands may
be used to send a message value (in this case 17) back
to an application when the text up to the index mark
command has been spoken.

The command thread passes control messages such
as voice selection and speaking rate to the letrer-to-
sound and the prosodic and phonetic processing
threads, respectively. Tone commands, index mark
commands, and synchronization symbols are format-
ted into messages and passed to the letter-to-sound
thread. The command thread also pipes the input text
string, with the bracketed command strings removed,
to the letter-to-sound thread.

The Letter-to-Sound Thread

The letter-to-sound (LTS) thread converts ASCII text
sequences to phoneme sequences. This is done using a
rule-based system and a dictionary for exceptions. It is
the single most complicated piece of code in all of
DECrtalk Software. Pronunciation of English language
words is complex. Consider the different pronuncia-
tions of the string ough in the words rough, through,
bough. thought. dough, cough, and hiccough.® Even
though the LTS thread has more than 1,500 pronun-
ciation rules, it requires an exception dictionary with
over 15,000 words.

Each phonemeis actually represented by a structure
that contains a phonemic symbol and phonemic arttri-
butes that include duration, stress, and other propri-
etary tags that control phoneme synthesis. This is how
allophonic variations of a phoneme are handled. In the
descriptions that follow, the term phoneme refers
cither to this structure or to the particular phone spec-
itied by the phonemic symbol in this structure.

The LTS thread first separates the text stream into
clauses. Clause separation occurs in speech both to
encapsulate a thought and because of our limited lung
capacity. Speech run together with no breaks causes the
listener (and the speaker) to become fatigued. Correct
clause separation is important to achieve natural into-
nation. Clauses are delineated by commas, periods,
exclamation marks, question marks, and special words.
Clause separation requires simultaneous analysis of the
text stream. For example, an abbreviated word does
not end a clause even though the abbreviation ends in
a period. If the text stream is sufficiently long and no
clause delimiter is encountered, an artificial clause
boundary is inserted into the text stream.

After clause separation, the LTS thread perforims text
normalization. For this, the LTS thread provides spe-
cial processing rules tor numbers, monetary amounts,
abbreviations, times, in-line phonemic sequences, and
even proper names. Text normalization usually refers
to text replacement, but in many cases the LTS thread
actually inserts the desired phoneme sequence directly
into its output phoneme stream instead of replacing
the text.

The LTS thread converts the remaining unprocessed
words to phonemes by using ¢ither the exception dic-
tionary or a rule-based “morph” lexicon. (The term
morph is derived from morpheme, the minimum unit
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of meaning for a language.) By combining these two
approaches, memory utilization is minimized. A user-
definable dictionary may also be loaded to detine
application-specific terms. During this conversion, the
LTS thread assigns one or more form classes to each
word. As mentioned previously, form class definitions
include symbols for abbreviations and homographs.
A homograph is a word that has more than one pro-
nunciation, such as alternate or censole. DECtalk
Sottware pronounces most abbreviations and homo-
graphs correctly in context. An alternate pronuncia-
tion of a homograph may be forced by inserting the
in-line command [:pron alt] in front of the word.
DECralk Software speaks the phrase “Dr. Smith lives
on Smith Dr.” correctly, as “Doctor Smith lives on
Smith Drive.” It uses the correct pronunciation of the
homograph fices.

Betore applving rules, the LTS thread pertorms a
dictionary lookup for cach unprocessed word in a
clause. If the lookup is successtul, the word’s form
classes and a stored phoneme sequence are extracted
from the dictionary. Otherwise, the word is tested tor
an English suftix, using a suftix table. If a suftix is
found, sometimes the form class of the word can be
inferred. Suffix rules are applied, and the dictionary
lookup is repeated with the new suffix-stripped word.
For example, the word testing requires the rule, locate
the sufhix g and remove it; whereas the word analyz-
ing requires the rule, locate the suffix /g and replace
it with ¢. The sufhix rules and the dictionary lookup are
recursive to handle words that end in multiple suffixes
such as enellessly.

If the word is not in the dictionary, the LTS thread
performs a decomposition of the word using morphs.
DECtalk uses a morph table to look up the phonemic
representation of portions of words. A morph alwavs
maps onto onc or more English words and can be
represented by a letter string. Morphs gencerally consist

of one or more roots that may contain attixes and suf-
fixes. Although new words may frequently be added to
a language, new morphs are rarelv added. Thev are
essentially sound groupings that make up many of the
words of a language. DECralk contains a table with
hundreds of morphs and their phonemic representa-
tions. Either a single character or a set of characters
that results in a single phoneme is reterred to as a
grapheme. Thus this portion of the letter-to-sound
conversion 1s referred toas the grapheme-to-phoneme
translaror. Figure 4 shows the architecture of the LTS
thread.

Morphemes are abstract grammatical units and were

originally defined to describe words that can be seg-
mented, such as tall. taller; and tallest. The word
tedlest is made trom the morphemes /afll and est. The
word went decomposces into the morphemes go and
PAST. Thus a morpheme does not necessarily: map
directly onto a derived word. Many of the pronuncia-
tion rules are based on the morphemic representations
of words.

Manv morphs have multiple phonemic representa-
tions that can depend on either word or phonemic con-
text. The correcet phonemic symbols are determined by
morphophonemic rules. For example, plural words that
end in the morpheme s are spoken by appending cither
the 5. the z, or the eh z plural morphemes (expressed
as Arpabet phonemic symbols) at the end ofthe word.”
Which allomorph is used depends on the final
phoneme of the word. Allomorphs are morphemces
with alternate phonetic torms. For another example
requiring a morphophonemic rule, consider the final
phoneme of the word the when pronouncing “the
apple,” and “the boy.”

After applving manv morphophonemic rules to the
phonemes, the LTS thread performs svilabification,
applies stress to certain svllables, and pertorms allo-
phonic recoding of the phoneme strcam. The LTS
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ALLOPHONIC
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Nore that the grapheme-to-phoneme rules are used only it the dicrionary lookup fails.

Figure 4
Block Diagram of the Leteer-to-Sound Processing Thread

Digiral Technical Journal Vol. 7 No.4 1995



thread groups phonemes into syllables, using tables
of legal phoneme clusters and special rules. The syllab-
ification must be accurate, because the LTS thread
applies stress benwveen syllable boundaries.

The LTS thread then assigns cither primary stress,
secondary stress, or no stress to cach svllable. The
stress rules are applied in order. Thev assign stress
only to syllables that have not had stress previously
assigned. These rules rake into account the number of
svllables in a word and the positions of aftixes that
were found during morph decomposition of a word.

Allophonic rules are the last rules the LTS thread
applics to the phoneme stream. These are really pho-
netic rules. Most allophonic rules are described as
follows: “it phoneme A is followed by phoneme B,
then modifv (or delete) phoneme A (or B).” Most
allophonic rules are not applied across morpheme

boundarics. These rules handle many specific cases; for
example, the pin the word spif is aspirated, whereas
the pin the word pit is not. The s phoneme modifies
the articulation of the p. The s phoneme is difterent in
the words stop and street because the 7 sound is antici-
pated and modities the sin the word sieet. This last
example is called distant assimilation.

The LTS thread passes the phonemes that include
durations and lexical information to the prosodic and
phonctic processing thread. Tone, dial, index mark,
and svnchronization messages are passed unmodified
through the LTS thread.

The Phonetic and Prosodic Processing Thread

The phonetic and prosodic processing (PH) thread,
shown in Figure 5, converts the phoneme strcam to a
series of vocal tract control commands. Both prosodic
rules and additional phonctic rules are applied to the
input phoneme strcam.® Prosodv refers to clause-
based stress, intonation, and voice quality in speech.
Words are stressed to add meaning to a clausc. Stress is
achicved by inercasing one or more of either the pitch,
the duration, or the amplitude of an utterance. The
phonetic rules handle coarticulation effects and adjust
phoneme durations based on the form class, the clause
position, and the speaking rate. One example is a
rule that increases the duration of the tinal stressed
phoneme in a clause. Additional context-dependent
phonctic coarticulation rules can adjust the durations
of phonemes or delete them.

VTM
PHONETIC PROSODIC
PHONEMES —» RULES 1 RULES > CONTROL
COMMANDS
PHONEMES

Figure 5
The Phonetic and Prosodic Processing Thread

The correct application of stress, like intonation,
requires understanding, so DECralk Software gener-
ally applies syllabic stress only as part of an intonation
contour across a clause. Intonation contours are gen-
crated by tixed rules. In most clauses, the pitch rises at
the start of the clause and falls at the end of the clause.
This basic form is changed for questions, prepositional
phrases, exclamations, compound nouns, and num-
bers. This intonation is also changed based on the
syllabic stress assigned by the LTS thread. The PH
thread can also process pitch control symbols that are
placed n-line with text. These pitch commands are
parsed in the command thread and pass through the
LTS thread.

The PH thread uses cach phoneme svmbol and its
context to generate any allophonic variation of the
phoneme. The resulting allophone symbol indexes
into one of two tables, one table for cach gender. Each
allophone symbol indexes a set of parameters that
includes voicing source amplitude, noise source ampli-
tude, formant frequencies, and formant bandwidths.
These, along with voicing source pitch and a number
of fixed spcaker-dependent parameters, make up the
VTM parameters. A new set of parameters is generated
for every 6.4 milliseconds of speech. The VTM thread
uses these parameters, which are collectively called a
voice packet, to generate the speech waveform.

In addition to sending voice packets to the VIM
thread, the PH thread can send a speaker packer to
select a new speaking voice. Thevoice is selected either
by an in-line text command or by the application call-
ing a specific API function. The PH thread has tixed
tables of parameters for cach voice. There are many
voice parameters, but some of the more interesting
ones include the gender, the average pitch, the pitch
range, the assertiveness, the breathiness, and the tor-
mant scale factor. The gender is used by some of the
PH rules and by the PH thread to select the table used
to generate voice packets. The average pitch and the
pitch range are used by the PH thread to set the
pitch characteristics for the VIM’s voicing source.
The assertiveness parameter sets the rate of fall of
the pitch at the end of a clause. A high assertivencess
factor results in an emphatic voice. The breathiness
parameter scts the amount of noise that is mixed with
the voiced path signal. The formant scale tactor etfec-
tively scales the size ot the speaker’s trachea.

Tone, dial, index mark, and synchronization mcs-
sages arc passed unmoditied through the PH thread.

The Vocal Tract Model Thread

The Vocal Tract Model (VTM) thread processes
speaker packets, voice packets, tone messages, and
synchronizanion messages. Speaker packets sct the
speaker-voice-dependent  parameters of the VTM.
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One of these, the formant scale tactor, is multiplied
by the first, second, and third formant frequencies in
cachvoice packet. Other parameters include the values
for the frequencies and bandwidths of the fourth and
fifth formants, the gains for the voiced path of the
VTM, the frication gain for the unvoiced path of the
VTM, the speaker breathiness gain, and the speaker
aspiration gain.

Each voice packet produces one speech frame of
data. The output sample rate for DECralk Software
is either 8,000 Hz or 11,025 Hz. For cach of these
sample rates, a frame is 51 and 71 samples respectively.
Each voice packet includes frequencies and band-
widths for the first, second, and third formants, the
nasal antiresonator frequency, the voicing source gain,
and gains for each of the parallel resonators. Figure 6
shows the basic architecture of the VTM.” The VTM,
in conjunction with the PH rules, simulates the speech
organs.

The VTM consists of two major paths, a voiced path
and an unvoiced path. The voiced path is excited by a
pulse generator that simulates the vocal cords. A num-
ber of resonant filters in series simulate the trachea.
These cascaded resonators simulate a cascade of tubes
of varying widths." A nasal filter in series with the res-
onant tube model simulates the dominant resonance
and antiresonance of the nasal cavity.! The cascade
resonators and the nasal filter complete the “voiced”
path of the VTM.

Unvoiced sounds occur as a result of chaotic turbu-
lence produced when breath passes through a con-
striction. This turbulence is difficult to model. In our
approach, the VTM matches the spectral magnitude of
filtered noise with the spectral magnitude of the
desired unvoiced phoneme (allophone). The noise
source is realized by filtering the output of a uniform-
distribution random number generator. Unvoiced
sounds contain both resonances and antiresonances.

Another approach to obtain an appropriate fre-
quency characteristic is to filter the noise source signal
using a series of parallel resonators. A consequence of

DIFFERENTIATED VOICED PATH
PULSE | FiLTERS
GENERATOR
PITCH AND GAIN FORMANTS,
BANDWIDTH, s }—> SPEECH
GAIN AND GAINS
UNVOICED

NOISE SOURCE PATHFILTERS

Figure 6
Basic Architecture of the Vocal Tract Model
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putting resonators in parallel is to create antrcso-
nances. The positions of these antiresonances are
dependent on the parallel formant frequencies, but it
has been empirically determined that this model pro-
vides more than enough degrees of freedom to closely
match the spectral magnitude ot any unvoiced sound.
The noise source generates fricatives, such as s, plosives,
suchas p, and aspirates, such as A. The noise source also
contributes to some voiced sounds, such as », g, and z.
The noise source output may also be added to the
input of the voiced path to produce aspiration. To gen-
erate breathy vowels, the parallel formant frequencies
are set equal to the cascade formant frequencies.”

The radiation characteristic of the lips approximates
a differentiation (derivative) of the acoustic pressure
wave. Since all the filters in the VTM are lincar and
time-invariant, the radiation eftects can be incorpo-
rated in the signal sources instead of at the output.
Theretore the glottal source (pulse source) produces
differentiated pulses. The differentiated noisc signal is
the filtered first difference of a uniform-distribution
random number generator.

The DECtalk Software VTM (also known as the
Klatt Synthesizer) is shown in Figure 7. The italicized
terms arc cither speaker-dependent parameters or con-
stant values. Al other parameters are updated every
frame. Depending on the system mode, the audio
samples generated for cach frame arc passed to the
output routine and subscquently are either queued to
the audio device, written to a wave audio file, or writ-
ten to a bufter provided by the application. After gen-
erating a speech frame, the VIM code increases the
audio sample count by the frame size. This count is
sent to the synchronization thread whencver a syn-
chronization symbol or an index mark is received by
the VTM thread. The count is reset to zero at startup
and whenever the text-to-speech system is resct.

Tone messages are processed by the VIM thread.
Tone messages are for single tones or DTMEF signals.
Each tonc message includes two frequencies, two
amplitudes (one for each frequency), and one duration.
For asingle tone message, the amplitude for the second
frequency is zero. Tone synthesis code generates tone
frames and quecues them to the output routine. The
first 2 milliseconds and the last 2 milliseconds of a tone
signal arc multplied by either a rising or a falling
cosine-squared shaping function to limit the out-of-
band pulse energy. Each tone sample is synthesized
using a sinusoid look-up tablc.”?

The Synchronization Thread

The synchronization thread is idle unless the VI'M
thread torwards a synchronization symbol message or
an index mark message. Both messages contain the
current audio samp le count. The index mark message
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Figure 7

The DECralk Software Vocal Tract Model (also known as the Klatt Synthesizer)

also contains an index mark number from 0 to 99.
After receiving one of these messages, the synchro-
nization thread periodically polls the audio thread
until the indicated audio sample has been played. If
the message contained a synchronization symbol, an
event is set that unblocks the command thread. If it is
an index mark message, the synchronization thread
sends the index mark number back to the application.
For the Digital UNIX operating system, this number
is returned by calling a callback function that the appli-
cation specifies when DECrtalk Software is started. For
the Windows NT operating system, the Send Message
function is used to return the index mark number
to the application. The message is sent to a window
procedure specified by the window handle that is pro-
vided when the text-to-speech system is started.

The Audio Thread

The audio thread manages all activities associated with
playing audio through the computer’s sound hard-
ware. An audio API insulates DECralk Software from
the difterences between operating systems. The audio
API communicates with the audio thread. The VTM
thread calls an audio APT queuing function that writes
samples to a ring bufter that is read only by the audio
thread. The audio thread opens the audio device after
approximately 0.8 seconds of audio samples have been
queued and closes the audio device when there are no
more samples to play. If the number of audio samples
in the queue is too small to cause the audio device to
be opened, and the flow rate (measured over a 100-
millisecond interval) into the audio ring bufter is zero,
the timer thread will send the audio thread a message
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that causes the audio device to open and start playing
audio. When audio cither starts or stops playing, a
message is sent to the application.

For the Digital UNIX opcrating system, the audio
thread is an intertace to the low-level audio functions
ot the Multimedia Services for Digital UNIX (MMS)
product. MMS provides a server to plav audio and
video.

For the Windows NT operating svstem, the imple-
mentation also uses the system low-level audio func-
tions, but these functions interface directly with a
svstem audio driver. The audio APT provides capabili-
tics to pause the audio, resume paused audio, stop
audio from plaving and cancel all queued audio, get the
audio volume level, set the audio volume level, get the
number of audio samples plaved, get the audio format,
and set the audio format. An in-line play command can
be used to play audio files. DECralk Software uses the
get format and set format audio capabilitics to dynami-
cally change the audio formatsoitcanplay an audio file
that has a tormat difterent from the format generated
by the VTM.

DECtalk Software API

In the mid-1980s, researchers at Digital’s Cambridge
Rescarch Lab ported the DECralk text-to-speech
C language-based code to the ULTRIX operating
svstem. The command, LTS, PH, and VTM portions
of the svstemwere difterent processes. The pipes were
implemented using standard UNIXT/O handles, stdin
and stdout. These, along with an audio driver process,
were combined into a command procedure. This

system lacked many of the rules and features found
in DECralk Softwarce todav, but it did demonstrate
that real-time speech synthesis was possible on a work-
station. Betore this time, DECralk required specialized
Digital signal-processing hardware for real-time oper-
ation.” On a DECstation Model 5000/25 work-
station, the text-to-speech implementation used 65
percent of the CPU. If the output sample rate of this
svstem had been raised from 8,000 Hz to 11,025 Hz,
the highest-quality rate provided by DECtalk Software,
it would have loaded approximately 89 percent of
the CPU. Workstation text-to-speech svinthesis, while
possible, was still very expensive.

The power of the Alpha CPU has changed this.
Today, many copies ot DECtalk Software can run
simultancously on Alpha-based systems. Speech svin-
thesis 1s now a viable multimedia form. This change
created the need for a text-to-speech API. Table 3
shows the DECralk Software CPU load for various
computers.

On Alpha systems, the performance ot DECralk
Software depends primarily on the SPECmark rating
of the computer. A Jesser consideration is the scc-
ondary cache size. System bus bandwidth is not a lim-
iting factor: The combined data rates tor the text,
phonemes, and audio arc extremely low relative to
modern bus speeds, even when running the maximum
number of real-time text-to-speech processes that the
processor can support.

The API we have developed s the result of collabo-
ration between several organizations within Digital:
the Light and Sound Group, the Assistive Technology
Group, the Cambridge Research Lab, and the Voice

Table 3
DECtalk Software CPU Loading versus Processor SPECmarks
Secondary Audio

Clock Cache Rate Total CPU
System (MHz) Processor (MB) SPECint92 SPECfp92 (kH2) Load (%)
Alpha AXP 150 Alpha 512 80.9 110.2 11,025 8
150 PC 21064
AlphaStation 266 Alpha 2,048 198.6 262.5 11,025 2.4
250 4/266 21064
workstation
DEC 3000 200 Alpha 2,048 138.4 188.6 11,025 5
Model 800 21064
workstation
DEC 3000 275 Alpha 2,048 230.6 2641 11,025 3
Model 900 21064A
workstation
AlphaStation 233 Alpha 512 157.7 183.9 11,025 3
400 4/233 21064A
workstation
AiphaStation 266 Alpha 2,048 288.6 428.6 8,000 1
600 5/266 21164
workstation
XL 590 PC 90 Pentium 512 Unknown N/A 11,025 24
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and Telecom Engineering Group. We had two basic
requirements: We wanted the APL to be casy to usce
and to work with any text-to-speech system. While
creating the API we defined intertaces so that future
improvements to the text-to-speech engine would not
require any APT calls to be changed. (Customers trown
on product updates that require rewriting code.)
Some decisions were controversial. Some contributors
telt that the text-to-speech svstem should return
speech samples only in memory bufters, and the
application should shoulder the burden of interfacing
to the workstation’s audio subsystem. The other
approach was to support the standard workstation
audio (which is platform dependent) and to provide
an API call that switched the system into a speech-to-
memory mode. We sclected the latter approach
because it simplifies usage tor most applications.

The API Functions

The core text-to-speech API functions are the
TextToSpeechStartup function, the Text ToSpeechSpeak
tunction, and the TextToSpeechShutdown function.
The simplest application might use only these three
functions.

All applications using text-to-speech must call the
TextToSpeechStartup function. This function creates
all the DECralk system threads and passes back a han-
dleto the text-to-speech system. The handle is used in
subsequent text-to-speech AP calls. The startup func-
tion is the onlv API function that has different argu-
ments tor the Digital UNIX and the Windows NT
operating systems. This is necessary because the asyn-
chronous reporting mechanism is a callback function
tor Digital UNTX and is a system message for Windows
NT. The TextToSpeechShutdown function firees all
svstem resources and shuts down the threads. This
would normally be called when dosing the application.

The TextToSpeechSpeak function is used to queue
text to the svstem. Itan entire clause is not queued, no
output will occur until the clause is completed by
queuing additional text. A special TTS_FORCE para-
meter may be supplied in the function call to torce a
clause boundary. The TTS_FORCE paramcter is nec-
essary for applications that have no control over the
text source and thus cannot guarantee that the final
text forms a complete clausc.

The text-to-speech API provides three audio output
control functions. These pause the audio output
(TextToSpecechPause), resume output atter pausing
(TextToSpeechResume), and reset the text-to-speech
svstem (TextToSpeechReset). The resct function dis-
cards all queued textand srops all audio output.

The text-to-speech API also provides a special syn-
chronization function (TextToSpeechSync) that blocks
until all previously queued text has been spoken. This
APT call mav not return for davs it a sutficient amount
of text is queued. (Index marks provide nonblocking
synchronization.)

The APLD supplies functions to both load
(TextToSpecchLoadUserDictionary)  and  unload
(TextToSpeechUnloadUserDictionary) an application-
detined dictionary. The dictionary contains words and
their phonemic representations. The developer creates
a dictionary using a window-based uscr-dictionary
tool. This tool can speak words and their phonemic
representations. [t can also convert text sequences to
phonemic sequences. This last feature frees the devel-
oper from having to memorize and usce the DECralk
Software phonemic symbols.

Additional functions sclect the speaker voice, con-
trol the speaking rate, control the language, determine
the svstem capabilities, and return status. The status
API function can indicate it the svstem is currently
speaking.

Special Text-to-Speech Modes
DECtalk Softwarce has three special modes: the speech-
to-wave file mode, the log-file mode, and the speech-

to-memory mode. Each mode has two complemen-
tary calls, onc to cnter the mode and one to cexit.
When in the speech-to-wave tile mode, the svstem
writes all speech samples to a wave audio file. The file is
closed when exiting this mode. This 1s usctul on slower
Intel systems that cannot perform real-time speech
svithesis. The log-file mode causes the system to write
the phonemic symbol output of the LTS thread to a
filc. The Jast mode is the speech-to-memory mode.
After entering this mode, the application uscs a special
APl call to supply the text-to-speech system  with
memory bufters. The text-to-speech system writes
synthesized speech to these bufters and returns the
butter to the application. The bufters are returned
using the same mechanism used for index marks, a
callback function on the Digital UNIX operating sys-
tem and a system message on the Windows NT operat-
ing system. These buffers may also return index marks
and phonemic svmbols and their durations. If the text-
to-speech system is in speech-to-memory mode, call-
ing the reset function causcs all bufters to be returned
to the application.

Porting DECtalk Software

The DECralk PC code used a simple assembly lan-

guage kernel to manage the threads. The existence of

threads on our target plattorms simplified porting the
code. The thread functions, signals (such as condi-
tions or events), and mutual exclusion objects are dif-
ferent for the Digital UNIX and the Windows NT
operating syvstems. Since these functions occur mainly
n the pipe code and the audio code, we maintain
difterent versions of code for cach svstem. The
message-passing mechanism tor Windows NT has no
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cquivalent on Digital UNIX; therefore part ofthe API
code had to be different. The command, LTS, and
PH threads are all common code tor Digital UNIX
and Windows NT. Most of the VTM thread is also
common code.

Porting the code for each thread required putting
conditional statements that define thread cntry points
mto cach module tor each supported operating systen.
We also had to add special code to each thread to sup-
portour APl call that resets the text-to-speech system.
The reset is the most complicated API operation,
because the data piped berween threads is in the form
of variable-length packets. During areset, it is incorrect
to simply discard data within a pipe because the thread
that reads the pipe will lose data synchronization.
Therefore a reset causes cach thread to loop and dis-
card all input data until all the pipes are empty. Then
cach thread’s control and state variables are set to a
known state. In many complicated systems, resetting
and shutting down arc the most complicated parts of a
control architecture. System designers should incorpo-
rate mechanisms to simplity these functions.

The VTM code is much shorter and simpler than
the code in citherthe LTS or the PH thread, but it is
by far the largest CPU load in the system. The
DECralk PC hardwarc used a specialized Digital Signal
Processor (DSP) for the VTM. The rescarch VTM
code (written in the C language) was rewritten to be
sample-rate-independent. The filters were all made
in-linc macros. With this new VTM, the DECralk
Software system loaded an Alpha AXP 150 PC product
31 percent. Atter rewriting this code using floating-
point arithmetic and then converting it to assembly
language, DECralk Software loaded the processor less
than 8 percent. (Both tests were conducted at an
11,025-Hz output sample rate.)

There are several reasons a floating-point VTM runs
faster than an integer VTM on an Alpha system. An
integer VIM requires a separate gain for cach filter to
keep the output data within the filter’s dynamic range.
For a floating-point VTM, the gains of all cascaded
filters are combined into one gain. The increased
dynamic range allows combining parts of some filters
to reduce computations. Also, floating-point opera-
tions do not require additional instructions to perform
scaling. The processor achicves greater instruction
throughput because it can dual issuc tloating-point
mstructions with integer instructions, which are used
tor pointers, indices, and some loop counters. Finally,
the current generation of Alpha processors performs
some floating-point operations with less pipeline
lateney than their cquivalent integer operations (note
the SPECfp92 and SPECint92 ratings of the current
Alpha processors listed in Table 3).
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The integer VIM s faster than the tloating-point
VTM on Intel processors, so we maintain two versions
of the VTM. Both versions support multiple sample
rates. The pitch of the glottal source and the frequen-
cies and bandwidths of the filters are adjusted for the
outputsample rate. When necessary, the fileer gains arce
adjusted. Thesce extra calculations do not add much to
the total time used by the VTM because they are per-
formed only once per frame.

Possible Future Improvements
to DECtalk Software

The Assistive Technology Group continues to improve
the letter-to-sound rules, the prosodic rules, and the
phonetic rules. Future implementations could use
object-oriented techniques to represent the dictionar-
ics, words, phonemes, and parts of the VTM. A larger
dictionary with morce syntactic informacion can be
added. There has even been some discussion of combin-
ing the LTS and PH threads to make more efhicient use
oflexical knowledge in PH. The glottal waveform gen-
crator can be improved. Syntactic parsers might provide
the information required for more accurate intonation.
Someday, secmantic parsing (text understanding) may
provide a major improvement in synthetic speech into-
nation. Rescarchers both within and outside of Digital
are investigating these and many other arcas. It scems
likely that the American English version of DECralk
Sottware will continuc to improve over time.

Summary

DECralk Software provides natural-sounding, highly
mrelligible text-to-speech synthesis. It was developed to
perform on the Digital UNIX operating system on
Digital’s Alpha-based platforms and with Microsoft’s
Windows NT operating system on both Alpha and Intel
processors. It is based on the mature DECralk PC
hardware product. DECralk Sofnwvare also provides an
casy-to-usc APl that allows applications to usc the work-
station’s audio subsystem, to create wave audio files,
and to write the speech samples to application-supplicd
memory bufters. An Alpha-based workstation can run
manv copics of DECralk Software simultancously.

DECrtalk Sofnwvare uses a dictionary and linguistic
rules to convert speech to phonemes. An application-
supplied dictionary can override the detault pronunci-
ation of a word. Prosodic and phonctic rules modify
the phoneme’s attributes. A vocal tract model synthe-
sizes each phoneme to produce a speech waveform.
The result is the highest-quality text to speech. The
Assistive Technology Group continues to improve the
DECralk text-to-specech algorithms.
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The J300 Family of Video
and Audio Adapters:
Architecture and
Hardware Design

The J300 family of video and audio adapters
provides a feature-rich set of hardware options
for Alpha-based workstations. Unlike earlier
attempts to integrate full-motion digital video
with general-purpose computer systems, the
architecture and design of J300 adapters exploit
fast system and I/0 buses to allow video data
to be treated like any other data type used by
the system, independent of the graphics subsys-
tem. This paper describes the architecture used
in J300 products, the video and audio features
supported, and some key aspects of the hard-
ware design. In particular, the paper describes

a simple yet versatile color-map-friendly render-
ing system that generates high-quality 8-bit
image data.
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Kenneth W. Correll
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The overall architectural design goal tor the J300
family of video and audio adapters was to provide the
hardware support necessary to allow the mtegration
of broadcast vidco into workstations. The three pri-
mary objectives were as follows: (1) digitized video
data should be treated the same as any other data type
in the system; (2) the video and the graphics subsys-
tem designs should be completely independent of
cach other; and (3) anv hardware designed should be
low cost.

Digital has implemented the J300 architecture in
three products: Sound & Motion ]300, FullVideo
Supreme JPEG, and FullVideo Supreme.” The Sound
& Mortion J300 (referred to in this paper simply as the
J300) was the first product designed with this archi-
recture and is the primary focus of this paper. The
FullVideo Supremce JPEG and FullVideo Supreme
products arc based on the same design database as the
J300. Thev ditter trom the J300 in the bus supported
(they support the peripheral component interconnect
[PCI] bus) and the lack ot audio support. Additionally,
the FullVideo Supreme product does not include
hardware compression/decompression cireuitry.

The J300 brings a wide range of video and
audio capabilitics to machines based on Digital’s
TURBOchannel 1I/0 interconnect. Analog broadcast
video can be digitized, demodulated, and rendered for
display on any graphics device. The J300 provides
hardware vidco compression and  decompression
to accelerate applications such as videoconferencing,.
The J300 supports analog broadcast video outpurt
from either compressed or uncompressed video files.
Audio support includes a genceral-purpose, digital
signal processor (DSP) to assist in the real-time man-
agement of the audio streams and tor advanced pro-
cessing, such as compression, decompression, and
ccho cancellation. Audio input and output capabilities
mclude stereo analog [/0, digital audio /0, and
a headphone /microphone jack. Analog audio can be
digitized to 16 bits per sample at a rate of up to
48 kilohertz (kHz).

This paper begins with an overview of some termi-
nology commonly used in the field ot broadcast video.
The paper then presents the evolution and design of
the J300 architecture, including several key enabling



technologies and the logical video data paths available,
Next follows a discussion of the hardware design phase
of the project and the trade-ofts made to reconcile
expectation and implementation. Derailed descrip-
tions arc devoted to specific arcas of the design,
including the video 1/0 logic, the AccuVideo render-
ing path, and the video and audio direct memory
access (DMA) interfaces.

Video Terminology Overview

Three fundamental standards are in use worldwide tor
representing what is referred to in this paper as broad-
cast vidco: the National (U.S.) Television Svstem
Committee (NTSC) reccommendation, Phase Alternate
Line (PAL), and Séquentiel Couleur avee Mémoire
(SECAM). The standards difter in the number of
horizontal lines in the display, the vertical refresh rate,
and the method used for encoding color information.
North America and Japan use the 525-line, 60-hertz
(H7) NTSC format; PAL is used in most of Europe;
and SECAM is used primarily in France. Both the PAL
and SECAM standards are 625-line, 50-Hz svstems.?

All three television standards split an image or a
frame of video data into towo fields, referred to as the
cven and the odd fields. Each field contains alternate
horizontal lines of the frame. The vertical refresh rate
cited in the previous paragraph is the field rate; the
frame rate is one-half of that rate.

Unlike computer display svstems that use red,
green, and blue (RGRB) signals to represent color
information, PAL and SECAM usc a luminance-
chrominance svstem, which has the three parameters
Y (the luminance component), and 7 and V (the two
chrominance components). NTSC usces a variation of
YUV, where the ¢ and Vcomponents are rotated by
33 degreesand called 7and Q. YUV is related to RGB
by the following conversion matrix:*

Y= 0.299R+ 0.587G + 0.1148
t/=—=0.169%k—0.331G + 0.5008
V=" 0.500r—-0.419G — 0.08125

All the ditterent standards limit the bandwidth of
the chrominance signal to berween one-quarter and
onc-third that of the luminance signal. This limit is
raken into account in the digital representation of the
signal and results in what is called 4:2:2 YUV, where,
for every four horizontally adjacent samples of ¥, there
are two samples of both 7 and V. All three compo-
nents are sampled above the Nvquist rate in this for-
miat with a significant reduction in the amount of dara
needed to reconstruct the video image.

Various modulation techniques transform the sepa-
rate Y. U and Vcomponents into a single signal, tvpi-
aallv referred to as composite video. To increase the
fidelity of video signals by reducing the luminance-
chrominance cross talk caused by modulation, the

S-Video standard has been developed as an alternative.
S-Vidceo, which refers to separate video, specifies that
the luminance signal and the modulated chrominance
signal be carried on separate wircs.

The J300 includes hardware support tor the Joint
Photographic Experts Group (JPEG) compression/
decompression standard.” [PEG is based on the discrete
cosine transtorm (DCT) compression method tor still-
frame color images. DCT is a widely accepted method
for image compression becausc it provides an ctheient
mechanism to climinate components of the image that
are not casily perceived by casual inspection.

Design History and Motivation

Digital arrived at the ]300 adaprer design after consid-
cring several digital video plavback architectures. The
Jvideo advanced development project, the implemen-
tation of once of the alternatives, was instrumental in
achieving the design goals.

Architectural Alternatives and Objectives
In January 1991, several Digital engineering organiza-
tions collaborated to define the architecture of a hard-
ware sced project that could be used to explore a
workstation’s capability to process video data. The par-
ticipants felt that the kev technologics required to
explore the goal of integratng computers and broadcast
video were available. These enabling technologics were
1. The TURBOchannel high-speed 1/0 bus, which
was a standard on Digital workstations
2. The acceptance  of  the  JPEG
compression/decompression standard and single-
chip implementations that supported that standard

anticipated

3. The development of a rendering svstem (now
called the AccuVideo system) that could map YUV
input values into an 8-bit color index using anv
number of available colors with very good results

We evaluated the three alternative approaches
shown in Figure 1 for moving compressed video data
from svstem memory, for decompressing and render-
ing the data, and, finally, for moving the data into the
framc buffer.

The chroma kev approach, shown in Figure la,
difters little from previous work done at Digital and
was the primary architecture used by the industry.
Several variations of the exact implementation arce in
use, but, basically, the graphics device paints a desig-
nated color into sections of the trame bufter where the
video data is to appear on the displav. A comparator
located between the graphics frame bufter and the dis-
plav device looks at the serial stream of data coming
from the graphics frame buffer and, when the data
matches the chroma key (stored in a register), inserts
the video data. As shown in Figure 1a, this approach
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Figure 1
Digiral Video Plavback Architectures

relies on a special connection benwveen the video
decompression block and the output of the graphics
device. While this approach oft-loads the system /0
bus, it treats video data difterently from other data
types to be displayed. In particular, the X Window
Svstem  graphical windowing environment has no
knowledge of the actual contents of the video window
atany given time.

The graphics controller approach, shown in Figurce
1 b, integrates the decompression technology with the
graphics accelerator. Although this approach has the
potential of incurring the lowest overall system cost, it
fails in two important aspects, First, it does not expose
the windowing system to the video data. Second, since
the graphics controller and video logic are integrated,
the user must accept the level of graphics performance
provided. No graphics upgrade path exists, so upgrad-
ing would require another product development
cycle. Including the video logic across the range of
graphics devicesis not desirable, because such a design
forces higher prices for users who are not interested in
the manipulation of broadcast video.

The rthird approach, shown in Figure l¢, is much
more radical. Tt places the responsibility of moving each
field of video data to and from the decompression/
rendering option squarely on the system. The system
1/0 bus must absorb not only the traffic generated by
the movement of the compressed video to the decom-
pression hardware but also the movement of the
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decompressed video image trom the accelerator back
to system memory and back again over the same bus
to the graphics option.

Accepting the third alternative architecture allowed
us to meet the three important objectives for the
project:

1. The workstation should be able to trear digitized
video data the same as any other data type.

2. The inclusion of video capabilitics in a workstation
should be completely independent of the graphics
subsystem uscd.

3. Any hardware option should be low cost.

The original design goals included audio [/0O, even
though the processing power and bandwidth needed
tor audio were far below those required for video.
Since users who want video capability usually require
audio capability as well, audio support was included
so that uscrs would have to buy only one option to
get both audio and video. This design reduced the
number of bus slots used.

The Jvideo Advanced Development Project

Jvideo was the name given to the advanced develop-
ment hardware seed project. Actual design work
started in February 19915 power on occurred in
September 1991, Jvideo has since become a widely
used rescarch tool.



Table 1
The Nine Video Flow Paths

| Output ‘
Input Analog Compressed Uncompressed Dithered
Analog A--C A--U A—D
Compressed C-—-A c—u Cc D
Uncompressed u-A Uu-C U-+D

Jvideo was an important advanced development
project for several reasons. First, it was the vehicle used
to verify the first two project objectives. Second, it was
the first complete hardware implementation of the
rendering circuit, thus veritving the image quality that
was available when displaying video with ftewer than
256 colors. Finally, it was during the development of
Jvideo that the DMA structure and interaction with
the system was developed and verified.

J300 Features

This section describes the various video paths sup-
ported in the J300 and presents videoconferencing
as an example of video data tlow. The AccuVideo
filter-and-scale and dithering system designs used in
theJ300 are presented in detail.

Video Paths

Table 1 summarizes the nine fundamental video paths
that the J300 system supports. The input to the J300
can come from an external analog source or from the
system in compressed or uncompressed torm. The
outputs include analog video and several internal
tormats, i.c., JPEG compressed, uncompressed, or
dithered. Dithering is a technique used to produce a
visually pleasant image while using far less intormation
than was available in the original tormat.

A conceptual flow diagram of the major compo-
nents of the J300 video system is shown in Figure 2.
Physically, the frame store and the blocks to its left
make up the video board. All the other blocks except
for JPEG compression/decompression are part of the
J300 application-specific integrated circuit (ASIC).

(The J300 Hardware Implementation section pro-
vides details on this ASIC.)

Both the upscale prior to the analog out block and
the downscale after the analog in block scale the image
size independently in the horizontal and vertical direc-
tions with arbitrary real-valuc scale factors. The filter-
and-downscale function is handled by the Philips chip
set, as described in the J300 Hardware Implementation
section. The upscale block is a copy of the Bresenham-
style scale circuit used in the filter-and-scale block.

The Bresenham-stvle scale circuit is extremely
simple and is described in “Bresenham-style Scaling,”
along with an interesting closed-form solution tor
finding initial parameters.® The filter-and-scale block is
part of the J300 rendering system. The J300 supports
arbitrary scaling tor either enlargement or reduction in
both dimensions. We carefully selected a few simple,
three-element horizontal filters to be used in combi-
nationwith scaling; the tilters were small enough to be
included in the J300 ASIC. The J300 supports three
sharpening filters that are based on a digital Laplacian:®

Low sharpness (—1/2 2 —1/2)
Medium sharpness ( —1 3 -1)
High sharpness (-2 5 -2)

The J300 also supports two low-pass or smoothing
filters:
Lowsmoothing (1/4 1/2 1/4)
High smoothing (1/2 0 1/2)
Sharpening is performed before scaling for enlarge-
ment and after scaling for reduction. Smoothing
is always pertormed betore scaling (as a band limiter)
tor reduction and after scaling (as an interpo lator) for
enlargement.

| | r
| | JPEG | |
ANALOG OUT | UPSCALE COMPRESSION/ | DMA A
I | DECOMPRESSION | | |
I I T | SYSTEM
| | e | | 1/0 BUS
N\, FRAME | ™
[ I sToRE | | |
l | > 110BYPASS DMA B
| b ! |
FILTERAND | | |
| | ANALOGIN >| bownscaLE | | ' Ficrer ano i [ 4300 |
| | || scaLe VIDEO |
L PHILIPS CHIP SET | ASIC
_______________________________ = |
Figure 2
]300 Video Flow
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The second part of video rendering occeurs in the
dither block. The AccuVideo Rendering section pro-
vides derails on this block.

The I/0 bypass skips over the video rendering blocks
when undithered uncompressed output is required.
When uncompressed digital video in used as input, the
1/0 bypass is also uscd. DMA B thus passes dithered or
uncompressed output and uncompressed input.

Compressed input and compressed output are
passed through DMA A. The JPEG compression/
decompression block handles all compression of out-
put and decompression of input. The combination of
the two DMA channels allows high data rates because
both channels are often used in paral

(&l

Videoconferencing Application

A good illustration of the video data flow in J300 is
a videoconferencing application. Figure 3 shows the
tlow of analog (A), compressed (C), and dithered (D)
video data to and from memory in a svstem on a nct-
work. The application sottware controls the flow of
data between memory and the displav and nerwork
devices. The J300 hardware must perform two funda-
mental operations:

I. Caprure the local analog signal, compress the data,
and send it to memory, and in parallel, dither the
data and send it to memory. The solid arrows
in Figure 3 denote the compress, send, and view
paths.

2. Reccive a remote compressed video stream from
memory, decompress and dither the data, and send
it back to memory. The dashed arrows in Figure 3
denote the receive, decompress, and view paths.

Figure 3 demonstrates the unique graphics con-
troller independence of the J300 architecture, as
shown n Figure Tc. In assessing the aggregate video
data traftic, it is important to keep in mind that the

MEMORY
| A B |
cC ¢ C D C D D D
| 1 1 ]
p | L ov vy
NETWORK J300 gﬁéll\:AEER
1
A
| r
CAMERA [] MONITOR

[\

Notes: Dashed arrows represent the receive, decompress, and view paths
(C—D). Solid arrows represent the compress, send, and view paths
(A=C, A-D). The symbols A, C, and D stand for analog,
compressed. and dithered data.

Figure 3
Videoconterencing Application
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dithered datais 8 bits per pixel, and the compressed
data is approximartely 1.5 bits per pixel. For example,
consider a videocontference with 11 participans,
where cach person’s workstation screen displavs the
imagces of the other 10 participants, cach in a 320-by-
240-pixcl window and with a refresh rate ot 20 He.
The bus traffic required for each window is twice the
compressed image size plus twice the decompressed
image size, l.¢., (2 X 320 X 240 X 1.5) + 8 bvtes +
(2 X 320 X 240) bvres = 182.4 kilobytres (kB) per
window. The toral bandwideh would be 182.4 kB X
11 windows X 20 Hz = 40.1 mcgabytes (MB) per
sccond, which is well within the achicvable bandwidth
ot both TURBOchanncl and PCI buscs.

These two operations through the J300 concep-
rual tlow diagram of Figure 2 arc shown explicitly in
Figure 4 tor the capture, compress, and dither paths,
and in Figure 5 tor the decompress and dither path.
In Figure 4, video data is captured through the analog
in block and buffered in the frame store block. The
frame store then sends the datain parallel to the JPEG
compression/decompression path, and to the filter,
scale, and dither path, cach of which sends the data to
its own dedicated DMA port.

In Figure 5, compressed data enters DMA A is
JPEG decompressed using the frame store as a buffer,
and is sent to the filrer, scale, and dither path, where it
1s output through DMA B.

Figures 4 and 5 illustrate three of the nine possible
video paths shown in Table 1. It is straighttorward to
sce how the other six paths flow through the block
diagram of Figurc 2.

AccuVideo Rendering

Digital’s AccuVideo method of video rendering is
used in the J300 and in other products. ™ J300 render-
ing i1s represented in Figure 2 by the filter-and-scale
block and by the dither block. The following featurces
are supported:

= Hiph-quality dithering
= Sclectable number of colors from 2 to 256

= YUV-to-RGB conversion with controlled out-of-
bounds mapping

= Brightess, contrast, and saturation control
= Color or grav-scale output
= Two-dimensional (2-D) scaling to any size
= Sharpening and smoothing control

The algorithm  tor mean-preserving mulrilevel
dithering 1s deseribed by Ulichney  in “Video
Rendering.” Mcan  preserving  denotes that the
macroscopic average in the output image is main-
rained across the entire range of input values. Figure 6
depicts the version of the dithering algorithm used for
the single component Y in the J300 prototvpe, Jvideo.
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Dither Components of the Jvideo Prototype

To quantize with a simple shitt register and still main-
tain mean preservation, a particular gain that happens
to have a value benween 1 and 2 must be imparted to
the input.” This gain is included in the adjust look-up
table (LUT), thus adding a bit to the data width of the
input value to the ditherer.

In the case of the Y (luminance) component, the
cffect of brightness and contrast can be controlled by
dyvnamically changing and Joading the contents of this
adjust LUT. Saturation control is a contrast-like map-
ping controlled on the & and Vadjust LUTSs.

The least significant bits of the horizontal and verti-
cal address (.x.)) of the pixel index the dither matrix.
In the Jvideo prototype, we used an 8 by 8 recursive
tessellation array.” Because the size of the arrav was
so small, all the components in Figure 6 could be

encapsulated with a single 16K-bv-4-bit random-
access memory (RAM). This implementation is not
the least expensive, but it is the casiest to build and is
quite appropriate for a prototvpe.

Figurc 7 illustrates the Jvideo dither svstem. The
number of dither levels and associated color adjust-
ment are designed in software and loaded into cach of
the 16K-by-4-bit LUTs for ¥, {7, and V. Each compo-
nent outputs from 2 to 15 dithered levels. The three
4-bit dithered values are used as a collective address to
a color convert LUT, which is a 4K-bv-8-bit RAM.

Loaded into this LUT is the conversion of cach
YUV triplet to one of N RGB index values. The gener-
ation of this LUT incorporates the state of the display
scrver’s color map at render tme. Although this
approach is much more ethicient than a direct algebraic
conversion known as dematrixing, an arbitrarily com-
plex mapping of out-of-range values can take place
because the table is built oft line. Another paper in this
issue of the Journal. “Softwarc-only Compression,
Rendering, and Playback ot Digital Video,” presents
details on this approach.”

Perhaps the central characteristic of AccuVideo ren-
dering is the pleasing nature of the dither patterns
generated. We are able to obrain such patterns because
we incorporate dither matrices developed using the
void-and-cluster method." These matrices are 32 by
1995
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Figure 7
Jvideo Dither System

32 mn extent. Although surprisingly small for the
complexity and secamlessness of the patterns produced,
this size requires 10 bits of display address information
tor indexing,.

While very simple to implement, the single LUT
approach used in the Jvideo system shown in Figure 7
becomes unattractive for a matrix of this size because
of the large memory requirement. Eight bits of input
plus 10 bits of array address requires a 256K-bit RAM
for cach color component; Jvideo’s 8 by 8 dither
matrix called for a more cost-eftective 16K-bit RAM.

The dither system design used n the J300 1s shown
in Figure 8. The design i1s quite simple, requiring only
RAM and three adders. We restricted the number of
U-and V-dithered levels to always be equal. Such a
restriction allows the sharing of a single dither matrix
RAM. The paper “Video Rendering” provides details on

the relationship between the number of dithered levels
for cach component, the number of bits shifted, the nor-
malization of the dither matrix values, the gain embed-
ded in the adjust LUT, and the bir widths of the data
parhs.” Note that the decision to use RAM instead of
read-only memory (ROM) tor the adjust LUTSs, dither
matrices, and color convert LUT permits complete flex-
ibility in selecting the number of dithered colors.

When the video source is monochrome, or whenever
a monochrome display is desired, a Mono Sclect mode
allows the Ychannel to be quantized to up to 8 bits.

The algorithm used in the sofrware-only version of
AccuVideo exactly paralicls Figure 8.7 “Integrating
Video Rendering into Graphics Accelerator Chips”
describes variations of this architecture for other
products.” One design alwavs renders the same num-
ber of colors without adjustment, in tavor of very low

g Y ADJUST 4
Y ——| LT Y SHIFT ——
256 BY 9 BITS
8
x> | v DITHER 4)
s | maTRIX
y ——1 1,024 BY 8 BITS
U ADJUST COLOR
U——| LuT : o—> i U SHIFT |—+4 N4 .| CcowveRT |8, COLOR
256 BY 9 BITS MONO LuT
8 SELECT
x> 3| uvoiTHeR
< | mATRIX
y =] 1,024 BY 8BITS
8
8 V ADJUST 9 9 4
V——>| LuT > V SHIFT 4,096 BY 8 BITS
256 BY 9 BITS
Figure 8

J300 Dither System
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cost. Another pertorms Y UV-to-RGB conversion first,
to allow dithering to more than 256 colors. Note that
with this design, for large numbers of output colors,
the memory required tor the back-end color convert
LUT design would be prohibirtive.

J300 Hardware Implementation

Implementing the J300 hardware design entailed
making trade-otts to keep down the costs. This section
presents the major trade-offs and then discusses
the resulting video and audio subsystem designs, the
built-in 1/0 test capabilities, and the Verilog hardwarce
description language design environment used.

Design Trade-offs

In August 1991, the Jvideo hardware design team
presented to engineering management several cost-
reducing design alternatives with the goal of turning
Jvideo into a product. Alternatives ranged from retain-
ing the basic design (which would require a short
design time and would result in the fastest time to
market) to redesigning the board with minimal cost
as the driving factor (which meant putting as much
logic as possible into the J300 ASIC). Management
accepted the latter proposal, and design started in
January 1992.

The major design trade-otfs involved in reducing
module cost centered around three portions of the
design: the accelerator chip, the pixel representation,
and the dither circuit. The design team evaluated ditf-
ferent JPEG hardware compression/decompression
accelerators in terms ot availability, performance, cost,
and  schedule risk. While  various  manufacturers
claimed to have cheaper parts available within our
design schedule constraints, the CL5S50 chip from
C-Cube Microsystems, the same chip used in the
Jvideo system, had reasonable performance and
known idiosyncrasics. The designers decided to use
one CL550 chip instead of twvo, as was done in Jvideo.
This meant that in videoconterencing applications, the
chip would have to be programmed to compress the
ncoming image and then reprogrammed to decom-
press the other images. The turnaround time of the
programming required to implement the design
change plus the compression time together accounted
tor the pertormance penalty thar the product would
pay for including only one CL.550.

To understand the impact on performance of using
just one CL550 chip, consider that all 700 registers in
the ¢hip would have to be reloaded when changing
the chip tfrom compression to decompression and vice
versa. Given a register write cyvele of 250 nanoscconds,
the penalty i1s 175 microscconds. We estimated the
time to compress an image as the number of pixels in
the uncompressed image (the CL550 does occasion-

ally stall during compression or decompression, but
we ignored this fact for these calculations) times the
period of the pixel rate. For an image size of 320 by
240 pixels and a pixel clock period ot 66.67 nanosec-
onds, the time used tor compression is 5.12 milli-
seconds. If the desired overall frame rate of all images
on the screen is 20 Hz, then approximately 11 percent
of the available time is given to compression ((5.12
milliseconds + 0.35 milliseconds) + 50 milliseconds).
We judged this decrease in decompression pertor-
mance reasonable, since approximately 30 percent of
the carly estimated cost of materials on the J300 was
the CL550 and the associated circuits.

The second major area of savings came with the
decision to use the 4:2:2 YUV pixel representation in
the frame store, the CL550, and the inpurt to the ren-
dering logic. This approach reduced the width of the
trame store and external data paths from 24 to 16 bits
with no loss of fidelity in the image. The trade-ott
associated with this decision was that the design pre-
cluded the ability to directly caprure video in 24-bit
RGB unless the ASIC included a full YUV-to-RGB
conversion. The main thrust of the product was to
accelerare image compression and decompression on
what was assumed to be the largest market, i.e., 8-bit
graphics systems, by using the AccuVideo rendering
path. Since 24-bit RGB can be obtained from 4:2:2
YUV pixel representation (which can be caprured
directly) with no loss of image fidelity, we considered
this hardwarc limiration to be minor.

The third area of trade-offs revolved around the
implementation of the dither circuit and how much of
that circuitry the ASIC should include. The rendering
system on Jvidco was implemented entire

y with
LUTs, a method that is inexpensive in terms of the
random logic nceded butexpensive in terms of com-
ponent cost. Early on, the design team decided that
including the 4K-by-8-bit color convert LUT inside
the ASIC was not practical. Placing the LUT outside
the ASIC required using a minimal number of pins,
28, and using a readily available 8K-by-8-bit static
random-access memory (SRAM) allowed the unused
portion of the RAM to store the dither matrix values.
Such a design reduced the amount of on-chip storage
required tor dither matrix values to 32 by 8 bits.

The impact of requiring dither matrix value ferches
on a per-line basis added to the interline overhead
32 accesses tor the new dither matrix values or 16 pixel
clocks. The impact of the 16 added clocks on a line
basis depends on the resultant displayed image size.
Ifthe displaved images are small, the impact is as much
as 10 percent (for a 160-by-120-pixel image). It is
uncommon, however, tor someone to view video on
a workstation at that resolution. At a more common
displayed size of 640 by 480, the amount of overhead
decreases to 3 percent.
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Video Subsystem Design

The major elements of the video subsystem design are
the ASIC, which is designed in the Verilog hardware
description language, the Philips digital videe chip sct,
and the compression/decompression circuitry. This
scction discusses the ASIC design and some aspects of
the video I/O circuit design.

The J300 ASIC The J300 ASIC design included not
only the video paths discussed carlicr in the section
J300 Features but also all the control tor the vidco
1/0 section of the design, all video random-access
memory (VRAM) control, the CL550 intertace,
access to the diagnostics ROM, arbitration with
the audio circuit for TURBOchannel access, and the
TURBOchannel interface. Figure 9 shows a block
diagram of the J300 ASIC. Only the DMA section of
the design is discussed further in this paper.

The DMA interface built into the ASIC is designed
to facilitate the movement oflarge blocks of data to or
from system memory with minimal interaction from
the svstem. The chip supports two channels: the first
is used for CL550 host port data (compressed video
and register write data); the sccond is used for pixel
dara flowing to or from the rendering circuit. Once
started, cach channel uscs its map pointer register to
access successive (address, length) pairs that describe
the physical memory to be used in the operation. (The
map pointer register points to the scatter/gather map

in svstem memory to be used.) The ASIC tills or emp-
ties the first bufter and then automatically fetches the
next (address. length) pair in the scatter /gather map
and so on until the operation is complete. When a com-
pressed image is transferred into system memory, the
exact length of the darta sct is unknown until the ASIC
detects the end-of-image marker from the CL550. In
this case, system software can read a length register to
find out exactly how much dara was transferred.

There is no restriction on the number of (adddress.
length) pairs included in cach scatter/gather map.
New pairs can be assigned to cach line of incoming
video such that deinterlacing even and odd video ficlds
can be accomplished as the data is moved into system
memory.

Since only the map pointer register needs to be
updated between operations, system software can sct
up multiple buffers, cach with its associated scatter /
gather map, ahead of time.

Video Input and Output Logic The J300 video 1/0
circuit, shown in Figure 10, was designed using Philips
Semiconductors’ digital video chip set. Explanation of
some aspects of the design tollows.

The J300 uses the Philips chip set to digitize and
decode input video. The chip set consists of the
TDAS708A and the TDAS709A, as the analog-to-
digital (A/D) converters, and the SAA7191, as the
Digital MultiStandard Decoder (DMSD). This chip

CLS50 HOST CLS50 AUXILIARY
PORT DATA CONTROL  BUS INTERFACE
VIDEO
|| COMERESSED JPEG AUXILIARY VIDEO |« TIMING AND
BUFFER CONTROL INTERFACE CONTROL
\
INTERNAL CONTROL BUS VRAM EB’A:QAEER
CONTROL CONTROL
TURBOCHANNEL | 1,8 0CHANNEL
VO BUS «———| INTERFACE AND
RUHAL S INTERRUPT TIMER CONTROL
CONTROL REGISTERS oIXEL PIXEL
oL | TIMING AND
CONTROL
/0 BYPASS
PIXEL FIFO FORMAT
DITHERING [« R0 Ten PIXEL BUS

“| BUFFER

AUDIO TURBOCHANNEL
ARBITRATION

!

COLOR CONVERT LUT

Figure 9
J300 ASIC Block Diagram
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J300 Video 1/0

sct supports NTSC (M), PAL (B, G, H, D), and
SECAM (B, G, H, D, K, K1) tormats.? Italso supports
squarc pixels, where the sampling rate is changed to
12.272727 megahertz (MHz) for the NTSC ftormat
and to 14.75 MHz tor the PAL and SECAM formats.
In addivion, the J300 uses the SAA7186, a digital
video scaler chip that can scale the input to an arbitrary
size and perform horizontal and vertical tiltering.

The A/D converters digitize the incoming video
signal to 256 levels. A video signal is composed of
negative-going svnchronization pulses, a color burst
(to aid in decoding color information), and positive-
going video." As an aid to visualizing this, Figure 11
illustrates a simplificd version of the drawing presented
in the Color Television Studio Picture Line Amplifier
Output Drawing." The level betore and atter the syn-

chronization pulses is referred to as blank level. Black
level may or may not be the same as blank, depending
on the standard. Video signals are 1 volt peak to peak.

The first stage included i the A/D converters is
a three-to-one analog multiplexer. We used this cir-
cuit to allow two composite signals to be attached
at the same ume to support S-Video while allowing
the third input to be used as an internal loop-back
connection. The TDAS708A chip is used for compos-
ite video and for the luminance portion of S-Video.
The TDA8709A chip is used only tor the chrominance
portion of S-Video.

The A /D converters contain an automatic gain con-
trol (AGC) circuit, which limits the A/D range. The
bottom of the synchronization pulse is sct at 0, and
blank levelis set at 64. Giventhesc settings, peak white
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Figure 11
Depicrion of Video Signal Terminology

corresponds to a value of 224, If the input video level
tends to exceed 213, a peak white gain control loop
is activated, which lowers the internal gain of the
video. The SAA7191 processes the luminance, and
the resulting range in the Y value is 16 for black
and approximately 220 for white. As recommended
by CCIR Report 601 -2, there is room built into the
two A /D converters and the DMSD to allow tor addi-

tive noise that might be present in the distribution of

video signals.*

The J300 video 1I/0O design includes a video scaler
sothatthe incoming video can be scaled down and fil-
tered prior to compression. There are two primary
rcasons for this scaling. First, scaling reduces the
amount of data to be processed, which results in
a smaller compressed version of the image. Sccond,
scaling removes any  high-frequency noise in the
image, which results in higher compression ratios.
Unfortunately, if the user wishes to compress and also
to view the incoming video strcam, the video will
more than likely be scaled again in the rendernng cir-
cuit in the ASIC.

The J300 output video encoding circuit uses Philips’
SAA7199B chip as the encoder. This component is fol-
lowed by a low-pass filter and an analog multiplexer
(Philips> TDA8540 chip), which functions as a 4 by 4
analog  cross-point switch. The SAA7199B  video
encoder accepts digital data in a variety of formats,
including 4:2:2 YUV. The SAA7199B processes the
chrominance and luminance according to which stan-
dard is being encoded, either NTSC or PAL (B, G).
The input range of the SAA7199B is compliant with
CCIR Report 601-2 for YUV: ¥ varies from 16 to 235;
Cand V vary from 16 to 240. The analog multiplexer
allows cither the composite or S-Video output of the
SAA7199B to be connected to the output connector.
The switch also allows the video signals to be routed to
the input circuit for an internal loop-back connection.
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The J300 video 1/0 design initially included a frame
store because the CL550 could not guarantee that
compression of a tield of videco would be completed
before the next field started. Even if the J300 scaled
and filtered the video data prior to compression, some
temporary storage was needed. We included cight
256K-by-4-bit VRAMs in the design for this storage.

In the mode where only the even ficld is being cap-
tured (which could be part of reducing the size of the
final image from 640 by 480 pixels to 320 by 240
pixels), the J300 does not know when the system will
request the next ficld of incoming vidco. VRAMs
organized as 768 by 682 by 16 bits allow room to
store two fields of either NTSC or PAL video. The
incoming video stream continually alternates between
these two bufters. The system then has the option of
requesting the field that will provide the minimum
input latency or the last complete field stored.
Requesting the field with the minimum input latency
creates the possibility that the compression and ren-
dering operations will stall waiting for the tinish of the
video ficld being processed.

In another mode of operation, the memory is
configured as a 1,024-by-512-by-16-bit butfer. This
configuration is used when compressing or decom-
pressing still images up to 1,024 pixels wide. Another
usc of the frame store organized in thisway is for dein-
terlacing. In deinterlace mode, the even and odd ficlds
arc recombined to form onc image. Deinterlacing
allows capture of a full NTSC frame, but of only 512
lines of a PAL or SECAM frame. This restriction is duc
to the nature of the shift register cycles implemented
in the VRAMs. A side effect of using this deinterlace
modc when compressing the input is that the temporal
cftects of combining the two ficlds generate what the
CLS50 considers to be a large amount of high-spatial-
frequency components in the image, thus resulting in
poorer compression.



Audio Subsystem Design

The designers belicved that the J300 design should
include audio capabilities that complemented the
video capabilities. Consequently, the design incor-
porates an analog codec (the CS4215 trom Crystal
Semiconductors) and a digital audio codec (the
MC56401 trom Motorola Semiconductors). These
two chips provide all the audio [/O specified in the
design. They communicate to the rest of the system by
means of a scrial digital intertace.

To provide audio capabilities such as compression,
decompression, and format conversion, the ]300
includes a genceral-purpose DSP (DSPS6001  from
Motorola Semiconductors) with 8K by 24 bits of
external RAM. This DSP can communicate to the
audio codecs through an integrated port. It also han-
dles the real-time nature of that intertace by using
a portion of the RAM to butter the digital audio data.

The J300 otters the same type of DMA support for
audio data as tor video data. The audio interface con-
troller ASIC, along with the DSP, provides support for
four independent DMA streams. Thesce streams corre-
spond to the four possible sources or sinks of audio
data: analog audio in, analog audio out, digital audio
in, and digital audio out. The lett channel of the ana-
log audio connection can also be routed to the head-
phone/microphonce jack. Figure 12 shows a block
diagram of the audio portion of the J300.

Testability of /O Sections

In the carly stages of design, we were awarc that built-
in test features were needed to facilitate debugging
and to reducce the amount of special audio- and video-
specific test cquipment required in manutacturing.
Conscquently, one J300 design goal was to include

internal and external loop-back capability on all major
1/0 circuits. This goal was achieved with the excep-
tion of the digital audio circuit.

The video encoder can be programmed in test
mode to outputa flat field of red, green, or blue. This
signal was used in internal and external loop-back. A
comparison of the values obrained against known
good values gives some level of confidence with regard
to the video 1/0 stage. The designers accomplished
external loop-back by using a standard S-Video cable.

The analog audio codec has internal loop-back
capability, and a standard audio cable can be used tor
external loop-back tests. External loop-back tests of
the headphone/microphone jack required a special
adapter.

Even with this degree of internal and external loop-
back capability, the goal was to be able to perform
much more rigorous testing without the need of spe-
cial instrumentation. Tests were developed that used
two ]300 systems to feed cach other data. One J300
system output video data in NTSC or PAL formats of
ditterent test patterns, and the other ]300 interpreted
the signals. The designers used the same technique for
both the digital and the analog audio codecs. This
method provided a high degree of system coverage
with no additional specialized test instruments.

Hardware Design Environment

The ASIC was designed completely n a hardware
description  language called  Verilog, using no
schematic sheets. At first, we simulated pieces of the
design, building simple Verilog models for all the
devices in the J300. We simulated complex chips such
as the video scaler and the CL550 as data sources or
sinks, reading data from or writing data to files in

DMA ARBITRATION
WITH J300 VIDEO
ASIC |
8K-BY-24-BIT
SRAM
TURBOCHANNEL
AUDIO 110 BUS
DATABUS INTERFACE —
SERIAL CONTROLLER
DIGITAL BUS ADDRESS BUS
DIGITAL
LRI TAggll\?SCEIVER
PAL
I ANALOG
ARBITRAT
LINE OUT ——  AUDIO 33-MHZ DSP56001 ABl o
HEADSET ——] CODEC

Figure 12
J300 Audio Block Diagram
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memory. This approach limited the video data that
could be compressed or decompressed to samples
where both versions alrcady existed. In all cases, the
[/O ports on devices modceled included accurate
timing information. Verilog includes the capability
to incorporate user-defined routines written in the
C programming language that can be compiled into
a Verilog executable. The J300 design team took
advantage ot this capability by writing an interface that
took TURBOchannel accesses from a portion of
shared memory and used them to drive the Venlog
model of the TURBOchannel bus. In that wav, the
designers could write test routines in C, compile them,
and run them against the Verilog model of the ASIC
and of'the rest of the board design.

The Verilog model proved to be useful in develop-
ing manufacturing diagnostics and was used to some
extent for driver and library code development. It
was a very ctfective tool tor the hardware designers,
because much of the test code written during the
design phase was used to bring up the hardware in the
lab and later as example codc for library development.
Usce of the Verilog model for software development
was not as cxtensive as was hoped, however. The
requirement to have a Verilog license available each
time a model was invoked limited the number of users.
There were enough licenses tor hardware develop-
ment, but tew were left for software development.
Another reason the software development team did
not relv on using the Verilog model was that cven
though the modcl provided an accurate simulation of
the hardware, the modelwas also very slow.

Concluding Remarks

With its Sound & Motion ]300, FullVideo Supreme
JPEG, and FullVideo Supreme products, Digital has
achicved its goal of designing a hardware option that
allows the integration of video into any workstation.
The adapter performance on ditferent platforms
depends on many factors, chict among which are the
cticiency of the bus design (cither TURBOchannel or
PCI), the amount of other traftic on the bus, and the
design of the graphics device. As the performance of
systems, particularly graphics devices, increases, the
bottleneck in the J300 design becomes the pixel fre-
quency through the J300 ASIC. For this reason, any
future adapter designs should incorporate a higher
pixel frequency.

The J300 family of products was the first to ofter
Digital’s proprictary AccuVideo rendering technol-
ogy, aftording a high-quality yet low-cost solution for
low-bit-depth frame butters. Rendering video to 8 bits
per pixel in combination with a high-speed bus
allowed an architecture that is independent of the
graphics subsystem.
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The J300 Family of Video
and Audio Adapters:
Software Architecture

The J300 family of video and audio products

is a feature-rich set of multimedia hardware
adapters developed by Digital for its Alpha
workstations. This paper describes the design
and implementation of the J300 software archi-
tecture, focusing on the Sound & Motion J300
product. The software approach taken was to
consider the hardware as two separate devices:
the J300 audio subsystem and the J300 video
subsystem. Libraries corresponding to the two
subsystems provide application programming
interfaces that offer flexible control of the
hardware while supporting a client-server
model for multimedia applications. The design
places special emphasis on performance by
favoring an asynchronous I/0 programming
model implemented through an innovative

use of queues. The kernel-mode device driver

is portable across devices because it requires
minimal knowledge of the hardware. The over-
all design aims at easing application program-
ming while extracting real-time performance
from a non-real-time operating system. The
software architecture has been successfully
implemented over multiple platforms, includ-
ing those based on the OpenVMS, Microsoft
Windows NT, and Digital UNIX operating sys-
tems, and is the foundation on which software
for Digital’s current video capture, compression,
and rendering hardware adapters exists.
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Paramvir Bahl

Background

In January 1991, an advanced development project
called Jvideo was jointly initiated by engineering and
rescarch organizations across Digital. Prior to this
endcavor, these organizations had proposed and
carricd outscveral disjoint research projects pertaining
to videco compression and vidco rendering. The
International Organization for Standardization (ISO)
Joint  Photographic Experts Group (JPEG) was
approaching standardization of a continuous-tone,
still-image compression method, and the ISO Motion
Picture Experts Group’s MPEG-1 cftort was well on
its way to defining an international standard fer vidco
compression."?* Silicon for pertorming JPEG com-
pression and decompression at real-time rates was just
becoming available. It was a recognized and accepted
tact that the union of audio, video, and computer
systems was incvitable,

The goal of the Jvideo project wasto pool the vari-
ous resources within Digital to design and develop
a hardware and software multimedia adaprer for
Digital’s workstations. Jvideo would allow rescarchers
to study the impact of video on the desktop. Huge
amounts of video data, even after being compressed,
stress cvery underlving component including net-
works, storage, svstem hardware, system software, and
application software. The intent was that hands-on
experience with Jvideo, while providing valuable
insight toward cffective management of video on
the desktop, would influence and potentially improve
the design of hardware and software for future com-
puter svstems.

Jvideo was a three-board, single-slot TURBOchannel
adapter capable of supporting JPEG compression and
decompression, video scaling, video rendering, and
audio compression and decompression—all at real-
time rates. Two JPEG codec chips provided simultane-
ous compression and decompression of video sereams.
A custom application-specific  integrated  circuit
(ASIC) incorporated the bus intertace with a direct
memory access (DMA) controller, filtering, scaling,
and Digital’s proprictary vidco rendering  logic.
Jvideo’s software consisted of a device driver, an
audio/video library, and applications. The underlying



ULTRIX operating system ( Digital’s native implemen-
tation of the UNIX operating system) ran on work-
stations  built around MIPS R3000 and R4000
processors. Application flow control was synchronous.
The library maintained minimal state information, and
only once process could access the device at anv once
time. Hardware operations were programmed directly
from user space.

The Jvideo project succeeded in its objectives.
Rescarch institutes both internal and external to
Digital embraced Jvideo tor studying compressed
video as “just another data type.” While some research
institutes used Jvideo tor designing network protocols
to allow the establishment of real-time channels over
local arca networks (LANs) and wide area nerworks
(WANSs), others used it to study vidco as a mechanism
to increase user productivity.’™ Jvideo validated the
various design decisions that were ditferent from the
trend in industry.” It proved that digital video could be
successtully managed in a distributed environment.

The success of Jvideo, the demand for video on the
deskrop, and the nonavailability of silicon for MPEG
compression and decompression influenced Digital’s
decision to build and market a low-cost multimedia
adaprer similar in functionality to Jvidco. The Sound &
Motion ] 300 product, referred to in this paperas simply
the J300, 1s a dircct descendent of the Jvideo advanced
development project. The J300 is a two-board, single-
slot TURBOchannel option that supports all the fea-
tures provided by Jvideo and more. Figure 1 presents
the J300 hardware functional diagram, and Table 1
contains a list of the features offered by the ]300
product. Dcrails and analysis of the J300 hardware
can be found in “The J300 Family of Video and
Audio Adapters: Architecture and Hardware Design,”
a companion paper in thisissue ofthe fournal?

The latest in this scries of video /audio adapters are
the single-board, single-slot peripheral component
mterconnect (PCI)-based FullVideo Supreme and
FullVideo Supreme JPEG products. These products
are direct descendants of the J300 and are supported
under the Digital UNIX, Microsott Windows NT, and
@®pcnVMS operating systems. FullVideo Supreme is
a video-capture, vidco-render, and vidco-out-only
option; whereas, FullVideo Supreme JPEG also
includes video compression and decompression. In
keeping with the trend in industry and to make the
price attractive, Digital left out audio support when
designing these two adapters.

All the adapters discussed are collectively called the
J300 family of vidco and audio adapters. The software
architecture for these options has cvolved over ycears
from being symmetric in Jvideo to having completely
asymmectric flow control in the J300 and FullVideo
Supreme adapters. This paper describes the design and
implementation of the software architecture tor the
J300 family of multimedia devices.

Software Architecture: Goals and Design

The sottware design team had two primary objectives.
The first and most immediate objective was to write
software suitable for controlling the J300 hardware.
This software had to provide applications with an
application programming interface (API) that would
hide device-specific programming while exposing all
hardware capabilities in an intuitive manner. The soft-
ware had to be robust and ftast with minimal overhcead.

Asecond, longer-term objective was to design a soft-
ware architecture that could be used for successors to
the J300. The goal was to define generic abstractions
that would apply to future, similar multimedia devices.
Furthermore, the implementation had to allow porting
to other devices with relatively minimial cftort.

When the project began, no mainstrcam multi-
media devices were available on the market, and expe-
riecnce with video on the desktop was limited.
Specitically, the leading multimedia APLs were still in
their infancy, focusing attention on control ot video
devices like videocassette recorders (VORs), laser disc
players, and cameras. Control of compressed digital
video on a workstation had not been considered in anv
SCrious manncr.

The core members of the J300 design team had
worked on the Jvideco project. Experiences gained
from that project helped in designing an API with the
tollowing attributes:

= Separate libraries for the video and audio subsystems

= Functional-level as opposed to component-level
control otthe device

= Flexibility in algorithmic and hardware tuning

= Provision for both synchronous and asynchronous
flow control

= Support tor a client-server model of multimedia
computing

= Support tor doing audio-video synchronization at
higher lavers

In addition, the archirecture was designed to be
mdependent of the underlying operating system and
hardware plattorm. It included a clean separation
between device-independent and device-dependent
portions, and, mostimportant, it left device program-
ming in the user space. This last teature made the
debugging process tractable and was the key reason
behind the design of a generic, portable kernel-mode
multumedia device driver.

As shown in the scctions that follow, the software
design decisions were influenced greatly by the desire
to obtain good performance. The goal of extracting
real-time pertormance from a non-real-time operating
systern was challenging. Toward this end, designers
placed special emphasis on providing an asynchronous
model for software tlow control, on designing a fast
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The Sound & Mortion J300 Hardware Functional Diagram

Table 1
J300 Hardware Features

Video Subsystem

Audio Subsystem

Video in (NTSC, PAL, or
SECAM formats)*

Video out (NTSC or PAL
formats)

Composite or S-Video /0

Still-image capture and
display

JPEG compression and
decompression

Image dithering

Scaling and filtering
before compression

Scaling and filtering
before dithering

24-bit red, green, and
blue (RGB) video out

Two DMA channels
simultaneously operable

Video genlocking
Graphics overlay

150-kHz, 18-bit counter
(time-stamping)

Compact disc (CD)-quality
analog I/O

Digital I/0 (AES/EBU
format support)**
Headphone and
microphone I/O

Multiple sampling rates
(5 to 48 kilohertz [kHz])
Motorola’s DSP56001 for
audio processing
Programmable gain and
attenuation

DMA into and out of
system memory

Sample counter

* National (U.S.) Television System Committee, Phase Alternate Line,
and Séquentiel Couleur avec Mémoire

** Audio Engineering Society/European Broadcasting Union
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kernel-mode device driver, and on providing an archi-
tecture that would require the Jeast number of system
calls and minimal daca copying.

The kernel-mode device driver s the lowest-level
sotftware module in the J300 softwarce hicrarchy. The
driver views the J300 hardwarce as two distiner deviees:
the J300 audio and the J300 video. Depending on the
requested service, the J300 kernel driver filters com-
mands to the appropriate subsvstem driver. This kev
decision to separate the J300 hardware by tunctional-
ity influenced the design ot the upper lavers of the soft-
It allowed designers to divide the task into
manageable components, both in terms of engineer-
ing cttorr and tor project management. Scparate teams
worked on the two subsystems for extended periods,
and the overall development time was reduced. Each

ware.

subsystem had its own kernel driver, user driver,
software library, test applications, and  diagnostics
sottware. The decision to separate the audio and the
video software proved to be a good once. Digital’s Jat-
est multimedia ottering includes PCI-based FullVideo
Supreme adaprers that build on the video subsystem
software of the J300. Unlike the J300, the newer
adaprers do not include an audio subsystenm and thus
do notuse the audio librarv and driver.

Following the philosophy behind the acrual design,
the ensuing discussion of the J300 sottware is orga-
nized into two major sections. The first describes the
software for the video subsystem, including the design



and implementation of the video software library and
the kernel-mode video subsvstem driver. Pertormance
dara is presented at the end of this section. The second
major scction describes the software written  tor
the audio subsvstem. The paper then presents the
methodology behind the development and testing
procedures for the various software components and
some improvements that are currently being mvesti-
gated. A scction on related published work concludes
the paper.

Video Subsystem

The top of the sotnware hicrarchy for the video sub-
svstem s the application laver, and the bottom is the
kernel-mode device driver. The tollowing simplified
example illustrates the functions of the various mod-
ules that compose this hicrarchy.

Consider avideo application that is linked to a multi-
media client library. During the course of exceution,
the application asks for a video operation through
a call to a client library function. The client library
packages the request and passes it though a socket to a
multimedia server. The server, which is running in the
background, picks up the request, determines the sub-
svstem ftor which itis intended, and invokes the user-
modec driver for that subsystem. The user-mode driver
translates the server’s request to an appropriate (non-
blocking) video library call. Based on the operation

requested, the video library builds scripts of hardwire-
specific commands and intorms the  kernel-mode
device driver that new commands arc available for exe-
cution on the hardware. At the next possible opportu-
nity, the kernel driver responds by downloading these
commands to the underlving hardware, which then
performs the desired operation. Once the operation is
complete, results are returned to the application.

Figure 2 shows a graphical representation of the
software hierarchy. The modules above the kernel-
mode device driver, excluding the operating svstem,
are inuser space. The remaining modules are in kernel
space. The video library is modularized into device-
independent and device-dependent parts. Most of the
J300-specific code resides in the device-dependent
portion of the library, and very little is in the kernel-
mode driver. The following sections describe the vari-
ous components of the video software hicrarchy,
beginning with the device-independent part of the
video library. The description of the multimedia client
library and the multimedia server is bevond the scope
of this paper.

Video Library Overview

The conceprual model adopted tor the sottware con-
sists of three dedicated functional units: (1) caprure
or play, (2) compress or decompress, and (3) rendar or
bvpass. Figure 3 illustrates this modcl; Figure 1 shows
the hardware components within cach of the three
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USER-MODE VIDEO DRIVER
| |
] |

MULTIMEDIA SERVER
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The J300 Video and Audio Libraryas Componenrs of Digital’s Multimedia Server
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Figure 3
Conceptual Model for the J300 Video Subsystem Software

units. The units may be combined in various configu-
rations to perform different logical operations. For
example, capture may be combined with compression,
or decompression may be combined with render.
Figure 4 shows how these functional units can be
combined to form nine different video flow paths sup-
ported by the software. Access to the units is through
dedicated digital and analog ports.

Al functional units and ports can be configured
by the video library through runable parameters.
Algorithmic tuning is possible by configuring the
three units, and I/0 tuning is possible by configuring
the three ports. Examples of algorithmic tuning
include setting the Huffman tables or the quantization
tables for the compress unit and setting the number of

COMPRESS —»

&NP%LPG—> CAPTURE BYPASS
PROCESS
RENDER

output colors and the sharpness for the render unit.'?
Examples of /0 tuning include setting the region of
interest for the compression port and setting the input
video tormat for the analog port. Thus, ports are
configured to indicate the encoding of the data,
whercas units are configured to indicate parameters
tor the video processing algorithms. Figure 5 shows
the various tunable parameters tor the ports and units.
Figure 6 shows valid picture encoding for the two
Digital 1/0 ports. Each functional unit operates inde-
pendently on a picture. A picture is defined as a video
trame, a video field, or a still image. Figure 7 illustratcs
the difterence between a video frame and a video field.
The parity sctting indicates whether the picture is an
cven field, an odd field, or an interlaced frame.

CAPTURE AND RENDER
CAPTURE AND COMPRESS
CAPTURE, RENDER, AND COMPRESS

(a) Analog [nput Mode

COMPRESSED
DECOMPRESS «—— INPUT
BYPASS

- PLAY

PROCESS ——
RENDER

DECOMPRESS AND PLAY
DECOMPRESS AND RENDER
DECOMPRESS, PLAY, AND RENDER

(b) Compressed Input Modc

COMPRESS —>

<+—— PLAY BYPASS

BYPASS
RENDER

RENDER
RENDER AND PLAY
RENDER AND COMPRESS

PROCESS «—— RAW/DITHERED

INPUT

(¢) Pixel Input Mode

Note that a shaded area represents the render unit.

Figure 4
The Nine Different J300 Video Flow Paths
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Tunable Parameters Provided by the J300 Video Library
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Valid Picture Encoding tor the Two Digital [/O Ports
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Figure 7
A Picture, Which May Be a Frame Or a Field

The sottware broadly classifies opcerations as either
nonrecurring or recurring. Nonrecurring operations
involve setting up the sottware for subsequent picture
operations. An example of a nonrecurring operation
is the configuration of the capture unit. Recurring
operations are picture operations thar applications
invoke cither periodically or aperiodically. Examples
of recurring operations are  CaptureAndCompress,
RenderAndPlay, and DecompressAndRender.

All picture operations are provided in two versions:
blocking and nonblocking. Blocking opcrations torce
the library to behave svnchronously with the hard-
ware, whereas nonblocking operations can be used for
asynchronous program flow. Programming is simpler
with blocking operations but less ctticient, in terms of
overall performance, as compared to nonblocking
operations. All picture operations relv on combina-
tions of input and output bufters tor picture data. To
avoid extra data copies, applications are required
to register these 1/0 butters with the library. The
butters are locked down by the library and are used tor
subscquent DMA transfers. Results from cvery picture
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operation come with a 90-kHz time stamp, which can
be used by applications for synchronization. (The
J300’s 150-kHz timer is subsampled to match the
timer frequency specified in the ISO MPEG-1 System
Specification.)

The video library supports a client-server model of
computing through the registration of parameters. In
this model, the video libraryis part of the server process
that controls the hardware. Depending on its needs,
cach client application may configure the hardware
device difterently. To support multiple clients simul-
tancously, the server may have to ctficiently switch
berween the various hardware configurations. The
server registers with the video library the relevant sct-
up parameters of the various functional units and 1/0

ports for ecach requested hardware configuration.
A token returned by the library serves to identity the
registered parameter sets for all subsequent operations
associated with the particular configuration. Multiple
clients requesting the same hardware configuration get
the same token. Wherever appropriate, default valucs
for parameters not specified during registration are
used. Registrations are classificd as cither heavvweight,
¢.g., sctting the number of output colors tor the render
unit, or lighnweight, e.g., setting the quantization
tables tor the compress unit. A heavvweight registra-
tion often requires the library to carry out complex
calculations to determine the appropriate values for the
hardwarce and consumes more time than a lightweight
registration, which mav be as simple as changing a
value in aregister. Once set, individual parameters can
be changed at a later time with edit routines provided
by the library. After the client has finished using the
hardware, the server unregisters the hardware configu-
ration. The video librarv deletes all related internal state
information associated with that configuration only if
no other clientis using the same configuration.

The library provides routines tor querving the con-
figurations of the ports and units at any given time.
Extensive error checking and reporting are built into
the software.

Video Library Operation

Internally, the video library relics on queuces for
supporting asynchronous (nonblocking) flow control
and for obtaining good pertormance. Three npes of
queues are defined within the library: (1) command
queue, (2) cvent (or status) queue, and (3) request
queue. The command and event queucs are allocated
by the kernel-mode driver from the nonpaged svstem
memoryv pool at kerncel-driver load time. At device
open time, the two queues are mapped to the user vir-
tual memory address space and subsequently shared
bv the video library and the kerncl-mode driver. The
request queue, on the other hand, is allocated by the
Jibrarv at device open time and is part ot the uscer
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vircual memory space. Dertailed descriptions of the
three types of queuces follow. An example shows how
the queues are used.

Command Queue The command queue, the heart of
the library, is emploved tor one-way communication
from the library to the kernel driver. Figure 8 shows
the composition of the command qucue. Essentially,
the command queue contains commands that sct up,
start, and stop the hardware for picture operations.
Picture operations correspond to video library calls
invoked by the user-mode driver. Even though the
architecture does not impose any restrictions, a picture
operation usually consists of two scripts: the first script
scts up the operation, and the sccond script cleans up
after the hardware completes the operation. Scripts arce
madc up of packets. The header packet s called a seript
packet, and the remaining packets are called command
packets. The library builds packets and purs them iro
the command queue. The kernel driver reerieves and
interprets script packets and downloads the command
packets to the hardware. Script packets provide the
kernel driver with information about the tvpe of script,
the number of command packets that constitute the
script, and the hardware interrupt to expect once all
command packers have been downloaded. Command
packets are register I,/O operations. A command packet
can contain the tvpe of register aceess desired, the ker-
nel virtual address of the register, and the value to usc
if it is a write operation. The library uses identificrs
associated with the command packets and the script
packets to identily the associated operation. The com-
mand queue is managed as a ring bufter. Two indexes
called PUT and GET dictate where new packets get
added and from where old packets are to be extracted.
A first-in, first-out (FIFO) service policv is adhered ro.
The library manages the PUT index, and the kerne
driver manages the GET index.

Event Queue The cvent queue, a companion to the
command queue, is also used for one-way communi-
cation butin the reverse direction, i.c., from the kerncl
driver to the library. Figure 9 shows the composition
of the event queue. The kernel driver puts information
into the queue in the form of event packets whenever
a hardware interrupt (cvent) occurs. Event packets
contain the tvpe of hardware interrupt, the time ar
which the interrupt occurred, an integer to identify
the completed request, and, when appropriate, a valuce
from a relevant hardware register, The library moni-
tors the queue and examines the cvent packets to
determine which requested picture operation com-
pleted. As is the case with the command queue, the
event queue is managed as a ring bufter with a FIFO
service policy. The library manipulates the GET index,
and the kernel driver manipulates the PUT index.
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The Event Queue

Request Queue The library uses the request queue
to coordinate user-mode driver requests with opcra-
tions in the command queue and with completed
events in the cvent queue. When a picture operation
is requested, the library builds a request packet and
places it in the request queue. The packet contains
all information relevant to the operation, such as
the location of the source or destination buffer, its

size, and scatter/gather maps for DMA. Subsequently,
the library uses the request packet to program the
command queue. Once the operation has completed,
the associated request packet provides the information
that the library needs for returning the results to
the user-mode driver. As with the other queues, the
service policy is FIFO, and the queue is managed as
aring buffer.
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Capture and Render Example Figure 10 shows an
application displaying live video on a UNIX work-
station that contains a J300 adapter. The picturc oper-
ation that makes this possible is the video library’s
CaptureAndRender operation. A description of the
asynchronous flow of control when the user-mode
driver invokes a CaptureAndRender picture operation
follows. This example illustrates the typical interaction
between the various software and hardware compo-
nents. The discussion places special emphasis on the
usc of the queucs previously described.

1. The user-mode video driver invokes a nonblock-
ing CaptureAndRender picture operation with
appropriate arguments.

2. The library builds a request packet, assigns an
identifier to it, and adds the packet to the request
queue. Subsequently, it builds the scriptand com-
mand packets needed for setting up and terminat-
ing the operation and adds them to the command
queue. It then invokes the kernel driver’s start
/0 routine, to indicate that new hardware scripts
have been added to the command queuc.

3. Start 1/0 queues up the kernel routine (which
downloads the command scripts to the hardware)
in the operating system’s internal call-out queue
as a deterred procedure call (DPC) and returns
control to the video library.**

: AlphaVCR

Figure 10
Live Video on a UNIX Workstation Using the Capture
and Render Path
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4. The video library returns control to the user-
mode driver, which continues from where it had
left off, performing other tasks until it invokes
a blocking (i.e., wait) routine. This gives the
library an opportunity to check the event queuc
for new events. If there are no new events to ser-
vice, the library asks the kernel driver to “put it to
sleep” until a new event arrives.

5. In the meantime, the DPC that had previously
been queued up starts to execute after being
invoked by the operating system’s scheduler. The
job of the DPCis toread and interpret script pack-
cts and, based on the interpretation, to download
the command packets that constitute the script.
Only the first script that sets up and starts the
operation is downloaded to the hardware.

6. A hardwarc interrupt signaling the completion of
the operation occurs, and control is passed to the
kernel driver’s hardware interrupt service routine
(ISR). The hardware ISR clears the interrupt ling,
logs the time, and queues up a software ISR in the
system’s call-out queue, passing it relevant infor-
mation such as the interrupt tvpe and an associ-
ated time stamp.

7. The operating system’s scheduler invokes the
queued software ISR. The ISR then reads and
interprets the current (end) script packet in the
command queue, which provides the type of
interrupt to expect as a result of downloading the
previous (start) script. The software ISR checks
to sec if the interrupt that was passed to it is the
same as one that was predicted by the (end) script.
For example, a script that starts a render operation
may expect to see a REND DONE cvent. When
the actual event matches the predicted event, the
command packets associated with the current
(end) script are downloaded to the hardware.

8. After all command packets from the (end) script
have been downloaded, the software 1SR logs the
type of event, the associated time stamp, and an
identifier for the completed operation into the
event queue. It then issues a wake-up call to any
“sleeping” or blocked operations that might have
been waiting for hardware events.

9. The system wakes the sleeping library routine,
which checks the event queue tor new cvents. If a
REND_DONE eventis present, the library uscs the
request identifier from the event packet to get the
associated request packet from the request queuc.
It then places the results of the operation in the
memory locations that are pointed to by addresscs
in the request packet and that belong to the uscr-
mode driver. (The bufter containing the rendered
data is not copied because it already belongs to the
user-mode driver.) The library updates the GET



indexes of the event and request queues and
returns control to the user-mode driver.

10. The user-mode driver may then continue to
queue up More operations.

Figure 11 shows a graphical representation of
the capture and render example. It desired, multiple
picture operations can be programmed through the
library betore asingle one is downloaded by the driver
and executed by the hardware. Additionally, perfor-
mance 1s enhanced by improving the asynchronous
tow through the use of multiple bufters tor the dit-
ferent functional units shown in Figure 3.

Sometimes it is necessary to bypass the queuing
mechanism and program the hardware directly. This is
especially true for hardwarce diagnostics and operations
such as hardware reserting, which require immediate
action. In addition, tor slow operations, such as setting
the analog port (video-in circuitry), programming the
hardware in the kernel using queues is undesirable.
The kernel driver supports an immediate mode of
operation that is accomplished by mapping the hard-
ware to the library’s memory space, disabling the com-
mand queue, and allowing the library to program the
hardware dircctly.

The Kernel-mode Video Driver

To keep the complexity of the kernel-mode video driver
manageable, we made a clear distinction between device
programming and device register loading. Device-
specitic programming is done in user space by the video
library; device register [/O (without contextual under-
standing) is pertormed by the kernel driver. Separating

the tasks in this manner resulted in a kernel driver that
incorporates little device-specific knowledge and thus is
casily portable across multiple deviees.

The kernel driver allows only one process to access
the device at any particular time. (Support tor multiple-
process access is provided by the multimedia server.)
Components of the video kernel-mode driver include

= An Initalization Routine—The driver’s initializa-
tion routine is executed by the operating system at
driver load time. The primary function of this rou-
tineistoreserve system resources such as nonpaged
kernel memory for the command queue, the event
queue, and the other internal data structurcs
needed by the driver.

= A Set of Dispatch Routines—Dispatch routines
constitute the main set of static functionality pro-
vided by the driver. The driver provides dispatch
routines tor opening and closing the video subsvs-
tem, for mapping and unmapping hardware regis-
ters to the kernel and to user virtual memory address
spaces, for locking and unlocking noncontiguous
memory tor scatter/gather DMA, and tor mapping
and unmapping the various queues to the library.

= An Asynchronous [ /O Routine—The video library
invokes this routine to check for pending events
that have to be processed. If an unserviced event
exists, the kernel driver immediately returns control
to the library; it no event exists, the system puts the
library process to sleep.

= A Start [/O Routine and a Stop 1/0 Routine
The driver uses the start I /O routine to initiate data
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|
: | DRIVER/ :
DRIVER : LIBRARY | OPERATING SYSTEM HARDWARE

| ; | :
REQUEST , ' :
OPERATION ——» BUILD AND QUEUE | :
SCRIPT AND | :
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Figure 11

One Case of Simplitied Flow Control When Using the Video Subsystem

Digital Technical Journal Vol.7 No.4 1995

43




44

transfers to and trom the J300 by downloading reg-
ister 1,/O commands from the command queuc to
the J300. The stop 1/0 routine is used to terminate
the downloading of future scripts. For performance
reasons, scripts in the process of being downloaded
cannot be stopped.

= A Hardwarce Interrupt Service Routine—Since the
hardware 1SR runs at a higher priovity than both
system and user space routines, it has purposcly
been kept small; performing only simple tasks
that are absolutely necessary and time critical.
Specifically, the hardware ISR records the interrupt
and the time at which it occurred. Tt then clears the
interrupt and queues up a software [SR.

= A Software Interrupt Service Routine—The soft-
ware ISR is the heart of the kernel driver. It runs at
a lower interrupt request level (IRQL) than the
hardwarce ISR but has a higher priority than uscr-
space routines. The softwvare ISR is mvoked as a
DPC cither by the hardware ISR or by the library
through a start /0 request. Its main function is
to process script packets and download command
packets programmed by the video library.

Debugging the Video Subsystem

Because of the real-time nature of operations, debug-
ging the software was a challenge. The size of the code,
the complex interaction between the various functional
pieces, and the asynchronous nature of operations sug-
gested that, for debugging purposes, it would be help-
ful it hardware commands could be scrutinized just
betore the final downloading took place. Fortunatcly,
the video library’s extensive use of queucs made it pos-
sible for us to design a custom tool with knowledge of
the hardware and software architectures that would
allow us to examine the command scripts.

In addition to presenting a debugging challenge,
the real-time nature of operations limited the scope of
UNIX tools like dbx, kdbx, and ctrace. Timing was
important, and the debugger had the tendency to slow
ere a previ-

down the overall program to the point w
ous failure on a free svstem would not occur with the
debugger cnabled. To catch some of these elusive
bugs while preserving the timing integrity of the oper-
ations, the scratch random-access memory (RAM) on
the J300 audio subsystem (see Figure 1) was used to
store traces. A brief description of the two approaches
follows.

Queue Interpreter The queuc interpreter was speciti-
cally developed as an aid for debugging the video
librarv. As the name suggests, its primary function was
to mteerpret the commands - the command queue
and the cvents in the evenr queue. At random
locations in the library, a list of hardware commands
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currently in the command queuce could be viewed
before the kernel driver downloaded them for execu-
tion. For cach command, the intormation displayed
included a sequence number, the tvpe of operation,
the ASCII name of the register to be accessed, the reg-
ister’s phvsical address, the value to be written, and,
when possible, a bit-wisce interpretation of the value.
This information was used to check if the upper laver
software had programmed the device registers in the
correct sequence and with the proper values.

Another important capability of the queue inter-
preter was that it could step through the command
packets and download cach command separately. On
manv occasions, this function helped locate and isolate
the specitic register access that was causing the hard-
warc to stall or to crash the system. Bv using the
scquence number, the offending hardware command
could be traced to the precise location in the library
where it had been programmed.

In addition, the queuc interpreter was able to scarch
the command queue for any access to a specitic
hardware register, could displav the contents of

the event queue, and had a “quiet mode,” in which
the interpreter would log the commands on a disk

for later analysis.

Audio RAM Printer Although it was a usctul tool for
debugging, the queuc interpreter was not a good real-
timc tool because it slowed down the overall program
exceution and  thus affected  the acrual timing.
Similarly, kernel driver operations could not be traced
using the system’s printf() command because 1t too
affected the timing. Furthermore, becausce of the asvn-
chronous nature of printf() and the possibiliry of los-
ng ity printf() was inctfective in pinpointing the
precise command that had caused the svstem to fail.
Thus, we had to tind an alternate mechanism for
debugging tailures related to timing,

The J300 audio subsvstem has an SK-by-24-bit
RAM that is never used tor anv video operarions. This
observation led to the implementation ofa print func-
tion that wrote directly to the J300’s audio RAM. This
moditied print function was intermixed in the suspect
code fragment in the kernel driver to facilitate trace
analvsis. When a svstem failure occurred or afrer the
application had stopped, a companion “snifter” rou-
tine would readand dump the contents of the RAM to
the screen or to a file for analysis. The moditied print
function was used primarily tor debugging dvnamic
operations such as the ones in the hardware and soft-
ware interrupt handlers. Many bugs were tound and
fixed using this technique. The one caveat was that this
technique was usctul only in cases where the video
subsvstem was causing a svstem failure independent of
the operation of the audio subsystem.



Video Subsystem Performance

Mcasuring the true performance of any software is
generally a difficule task. The complex interaction
berween different modules and the number of vari-
ables that must be fixed makes the task arduous. For
video, the problem is aggravated by the fact that the
speed with which the underlving video compression

algorithm works 1s nonlincarly dependent on the con-
tent of the video frames and the desired compression
ratio. A user working with a compressed sequence that
contains images that arc smooth (i.c., have high spatial
redundancy) will ger a faster decompression rate than
a user who has a sequence that contains images that
have regions of high frequencies (i.c., have low spatial
redundancy). A similar discrepancy will exist when
sequences with different compression ratios are used.
Since there are no standard video sequences available,
the analvst has to make a best guess at choosing a set of
representatve sequences for experiments. Because the
final results are dependent on the input dara, thev are
influenced by this decision. Other possible reasons for
the variability of results are the differning loads on the
operating svstems, the different configurations of
the underlving software, and the overhead imposed by
the different test applications.

Our motivation for checking the performance of
the J300 and FullVideo Supreme JPEG adapters was
to derermine whether we had succeeded in our goal
of developing sottware that would extract real-time
performance while adding minimal overhead. The
plattorms we used in our experiments were the
AlphaStation 600 5/266 and the DEC 3000 Model
900. The AlphaStation 600 5/266 was chosen
because itis a PCI-based system and could be used to
test the FullVideo Supreme JPEG adapter. The DEC
3000 Modcl 900 is a TURBOchannel svstem and
could be used to test the J300 adaprer. Both systems
are built around the 64-bit Alpha 21064A processor
running at clock rates of 266 megahertz (MHz) and
275 MHz, respectively. Each system was configured
with 256 megabytes of physical memory, and cach was
running the Digital UNIX Version 3.2 operating sys-
tem and Digital’'s Multimedia Services Version 2.0
for Digital UNIX software. No compute-intensive or
[/O processes were running in the background, and,
hence, the systems were lightly loaded.

Our experiments were designed to retlect real appli-
cations, and special emphasis was placed on obtaining
reproducible performance data. The aim was to
understand how the performance of individual ses-
sions was affecred as the number of video sessions was
increased. We wrote an application that captured,
dithered, and displayed a live video strcam obrained
from a camera while simultancously decompressing,
dithering, and displaving multiple video streams read
trom a local disk. This is a common function in
teleconferencing  applications where the multiple

compressed video streams come over the network.
We mecasured the displav rate tor the video sequence
that was being captured and dithered and the average
display rate for sequences that were being decom-
pressed and dithered. The compressed sequences had
an average peak signal-to-noise ratio (PSNR) of 27.8

decibels (dB) and an average compression ratio of

approximately 0.6 bits per pixel. The sequences had
been compressed and stored on the local disk prior to
the experiment. Image frame size was source input
formar (SIF) 352 pixels by 240 lines. Figure 12 and
Figure 13 illustrate the performance data obrained as
aresult of the experiments.

In general, we were satisfied with the pertormance
results. As seenin Figures 12 and 13, a total of five ses-
sions can be accommodated at 30 frames per second
with the J300 ona DEC 3000 Modcel 900 system and
three sessions at 30 frames per sccond with the
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Figure 12
Performance Dara Generared by a DEC 3000 Model 900
Svstem with a Sound & Motion J300 Adaprer
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Figure 13
Performance Data Generated by an AlphaStation 600
5/266 with a FullVideo Supremce JPEG Adaprer
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FullVideo Supreme JPEG on an AlphaStation 600
5/266 system. The discrepancy in performance of the
two systems may be attributed to the difterences in
CPU, system bus, and maximum burst length. The
DEC 3000 Model 900 has a 32-bit TURBOchannel
bus whosc speed 1s 40 nanoseconds with a peak trans-
ter rate of 100 megabytes per second, whereas the
AlphaStation 600 5,/266 has a PCI bus whose speed
is 30 nanoseconds. The DMA controller on the J300
adapter has a maximum burst length of 2K pages,
whereas the FullVideo Supreme JPEG adapter has
a maximum burst length of 96 bytes. Since in our
experiments data was dithcred and sent over the bus
(at 83 Kbytes per frame) to the frame bufter, burst
length becomes the dominant factor, and it is not
unreasonable to expect the J300 to perform better
than the FullVideo Supreme JPEG.

The ditterence between capture and decompression
rate (as shown in Figures 12 and 13) may be explained
as follows: Decompression operations are inter-
mixed between capture operations, which occur at
a frequency of one every 33 milliseconds. Overall per-
formance improves when a larger number of decom-
pression  operations  are accommodated  between
successive capture operations. Since the amount of
time the hardware takes to decompress a single frame
is unknown (the time depends on the picture con-
tent), the software is unable to determine the precise
number of decompression operations that can be pro-
grammed. Also, in the present architecture, since all
operations have equal priority, if a scheduled decom-
pression operation takes longer than expected, it is
liable to not relinquish the hardware when a new
frame arrives, thus reducing the capture rate. When we
ran the decompression, dither, and display opcration
only (with the capture operation turned oft), the peak
rate achicved by the FullVideo Supreme JPEG adaprer
was approximately 165 frames per second, and the rate
for the Sound & Motion J300 was about 118 frames
per sccond. Bus speed and hardware enhancements in
the FullVideo Supreme JPEG can be attributed to the
difference in the two rates.

The next section describes the architecture tor the
J300 audio subsystem. Relative to the video subsys-
tem, the audio software architecture is simpler and
took less time to develop.

Audio Subsystem

The J300 audio subsystem complements the J300
video subsystem by providing a rich set of functional
routines by way of an audio library. The softwarce hier-
archy for the audio subsystem is similar to the one for
the video subsystem. Figure 2 shows the various com-
ponents of this hierarchy as implemented under the
Digital UNIX operating system. Briefly, an application
makes a request to a multimedia server for processing
audio. The request is made through invocation of
routines provided by a multimedia client library. The
multimedia server parses the request and dispatches
the appropriate user-mode driver, which is built on top
of the audio library. Depending on the request, the
audio library may pertorm the operation either on the
native CPU or alternatively on the J300 digital signal
processor (DSP). Completed results are returned to
the application using the described path in the reverse
direction.

To provide a comprehensive list of audio processing
routines, the software relics on both host-based and
J300-basced processing. The workhorse of the J300
audio subsystem is the gencral-purpose Motorola
Semiconductor DSPS6001 (sce Figure 14), which
provides hardware control for the various audio com-
ponents while performing complex signal processing
tasks at real-time rates. Most notable, software running
on the DSP initiates DMA to and from system memory,
controls digital (AES/EBU) audio 1/0, manages ana-
log sterco and mono 1/0, and supports multiple sam-
pling rates, including Telephony (8 kHz) and fractions
of digital audio tape (DAT) (48 kHz) and compact disc
(CD) (44.1 kHz) rates. The single-instruction multi-
ply, add, and multiply-accumulate operations, the two
data moves per instruction operations, and the low
overhead for specialized data addressing make the DSP

MOTOROLA'S DSP56001 PROCESSOR

ADPCM
COMPRESSION

TIME-STAMPING

CHANNEL

RECORD CHANNEL <=—> MIXING

DMA CONTROL

ENERGY

CALCULATION <+— PLAYBACK CHANNEL

SAMPLE RATE
CONVERSION

GAIN CONTROL

Figure 14

Some Audio Functions Supported by Motorola’s DSP56081 Processor
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especially suitable for compute-intensive audio process-
ing tasks. Real-time functions such as adaptive differen-
tial pulsc code modulation (ADPCM) encoding and
decoding, energy calculation, gain control tor analog-
to-digital (A/D) and digital-to-analog (1D /A) convert-
cers, and time-stamping are pertormed by software
running on the DSP."" Other tasks such as converting
between ditferent audio formats (p-law, A-law, and lin-
ear), mixing and unmixing of multiple audio streams,
and correlating the system time with the J300 90-kHz
timer and with the sample counter are done on the
native CPU bv the library sottware.'?

Early in the project, we had to decide whether or
not to expose the DSP to the client applications.
Exposing the DSP would have provided additional
flexibility for application writers. Although this wasan
important rcason, the opposing arguments, which
were based on the negative consequences of exposing
the raw hardware, were morce compelling. System
security and reliability would have been compromised;
an incorrectly programmed DSP could cause the
system to fail and could corrupt the kernel data struc-
tures. Additionally, maintaining, debugging, and sup-
porting the software would be ditticult. To succeed,
the product had to be reliable. Therefore, we decided
to retain control of the sottware but to provide
enough flexibility to satisty as many application writers
as possible. As customer demand and feedback grew,
more DSP programs would be added to the list of
existing programs in a controlled manner to ensure
the integrity and robustness of the system.

The following subsections describe the basic con-
cepts behind the device-independent portion of the
audio library and provide an operational overview of
the library internals.

Audio Library Overview

The audio library defines a single audio sample as the
fundamental unit for audio processing. Depending on
the type of encoding and whether itis mono or stereo,
an audio sample may be any of the following: a 4-bit
ADPCM code word, a pair of left /right 4-bit ADPCM
code words, a 16-bit lincar pulse code modulation
(PCM) audio level, a pair of left/right 16-bit linear
PCM audio levels, an 8-bit p.-law level, or an 8-bit
A-law level. The library defines continually flowing
audio samplesas an audio strcam whosc attributes can
be set by applications. Attributes provide information
on the sampling rate, the type of encoding, and how
to interpret each sample.

Audio streams tlow through distinct directional vir-
tual channcls. Specitically, an audio stream flows into
the subsystem for processing through a record (input)
channel, and a processed stream tlows out of the
subsystem through a playback (output) channel.

A contigurable bypass mode in which the channels are
used for a direct path to the hardware 1/0 ports is also
provided. As is the case for audio streams, each chan-
nel has attributes such as a bufter tor storing captured
data, a bufter for storing data to be played out, permis-
sions for channel access, and a sample counter. Sample
counters arc used by the library to determine the last
audio sample processed by the hardware. Channel per-
missions determine the actions allowed on the chan-
nel. Possible actions include read, write, mix, unmix,
and gain control or combinations of these actions.

The bufters associated with the 1/0 channels are
for queuing unserviced audio data and are called
smoothing butters. A smoothing butter ensures a con-
tinuous flow of data by preventing samples from being
lost duc to the non-real-time scheduling by the under-
lying operating system. The library provides non-
blocking routines that can read, write, mix, and unmix
audio samples contained in the channcl bufters. A slid-
ing access window determines which samples can be
accessed within the buffer. The access window is char-
acterized in sample-time units, and its size is pro-
portional to that of the channel bufter that holds the
audio dara.

Like the video library, the audio library supports
multiple device configurations through a set of regis-
tration routines. Clients may register channel and
audio stream parameters with the library (through the
server) atset-up time. Once registered, the parameters
can be changed only by unregistering and then rereg-
istering. The library provides query routines that
return status/progress information, including the
samples processed, the times (both system and J300
specific) at which they were processed, and the chan-
nel and stream configurations. Overall, the library
supports four operational (execution) modes: tele-
conferencing, compression, decompression, and rate
conversion. Extensive error checking and reporting
are incorporated into the software.

Audio Library Operation

The execution mode and the associated DSP program
dictate the operation of the audio library. Execution
modes arc user selectable. All programs support mul-
tiple sampling rates, /0O gain control, and start and
pausc features, and provide location information for
the sample being processed within the channel bufter.
Bufters associated with the record and playback chan-
nels are treated asring butters with a FIFO service pol-
icy. Management of data in the buffers is through
integer indexes (GET and PUT) using an approach
similar to the one adopted for the management of the
command and event queues in the video subsystem.
Specifically, the DMA controller moves the audio data
trom the DSP’s external memory to the area in the
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channel bufter (host memory) starting at the PUT
index. Audio data in this same channel bufter is pulled
by the host (librarv) from the location pointed to by
the GET index. Managers of the GET and PUT
indexes are reversed when DMA is being performed
trom a channel butter to the DSP external memory. In
all cases, the FIFQO scrvice policy ensures that the audio
data is processed in the sequence in which it arrives.

The internal operation of the audio librarv is best
explained with the help of a simple example that cap-
tures analog audio from the J300 line-in connector
and plays out the data through the J300’s linc-out
connector. This most basic [ /O operation 1s incorpo-
rated in more claborate audio processing programs.
The example follows.

1. The server opens the audio subsystem, allocates
memory for the 1/0 bufters; and invokes a library
routine to lock down the buffers. Two bufters are
associated with the record and playback channcls.

o

. The library sets up the DSP external memory tor
communications between software running on the
two processors, 1.c., the CPU and the DSP. The
set-up procedure involves writing information at
locations known and accessible to both processors.
The information pertains to the physical addresses
needed by the DMA scheduler portion of the DSP
program and for storing progress information.

3. A kernel driver routine maps a section of system

memory to user space. This shared memory is used

for communication between the driver and the
library. The tvpe of information passed back and
forth includes the sample number being processed,
the associated time stamps, and the location of the
GETand PUT indexes within the 1/0 bufters.

4. Other set-up tasks performed by the library include
choosing the /0 conncectors, setting the gain for
the 1/0 channels, and loading the appropriate DSP
program. A start routine enables the DSP.

5. Oncce the DSP is enabled, all components in the
audio hardware arc under its control. The DSP pro-
grams the DMA controller to take sampled audio
datafrom the linc-in connector and move it into the
record channcl bufter. It then programs the same
controller to grab data from the playback channel
buffer and move it to the external memory from
where it is plaved out on the line-out conncector.

6. The library monitors the indexes associated with
the 1/0 butters to determine the progress, and,
based on rhe index values, the application copies
data trom the input channel to the output channe
bufter. The access window ensures that data copy-
ing stays behind the DSP, in the case of input, and
in tront of the DSP, in the case of output.
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Support for Multiple Adapters

The primary reason for using multiple J300 adapters
is to overcome the inherent limitations of using a single
J300. First, a single J300 limits the application
to a single video port and a single audio input port.
Some applications process multiple video input streams
simultancously. For example, a television station receiv-
ing multiple video feeds mav want to compress and
store these for later usage utilizing a single workstation.
Another example is the monitoring of multiple video
feeds trom strategically placed video cameras for the
purposc of sccurity. Since AlphaStation systems have
the nccessary horsepower to process several streams
simultancously, supporting multiple J300s on the same
system is desirable.

Sceond, if a single J300 is used, the video-in and
video-out ports cannot be used simultancously. This
limitation exists because the two ports share a common
frame store, as shown in Figure 1, and programming
the video-in and video-out chip scts is a hcavyweight
operation. Multiple J300s can alleviare this problem.
Onc example ofan application that requires the simul-
tancous usc of the video-in and vidco-out ports is
a teleconferencing application in which the video-in
circuitry is used for capruring the camera output, and
the video-out circuitry is used ftor sending regular
snapshots of the workstation screen to an overhead
projection screen. A second example is an application
that converts video streams from once format to
another (c.g., PAL, SECAM, NTSC) in rcal time.

As a result of the limitations just cited, support for
multiple J300s on the same workstation was one of
the project’s design goals. In terms of coding, achiev-
ing this goal required not relving on global variables
and using indexed structures to maintain state infor-
mation. Also, because of the multithreaded nature
of the server, care had to be taken to ensurc that dara
and operation integrity was maintained.

For most Alpha systems, the overall performance
remains good even with two J300s on the same sys-
ten). For high-end svstems, up to three J300s may be
used. The dominant limitation in the number of J300s
that can be handled by a system is the bus bandwidrth.
As the number of J300s in the svstem increases, the
data traftic on the system bus increases proportionally.

Having described the software architecture, we now
shift our attention to the development environment,
testing strategy, and diagnostics software.

Software Development Environment

During the carly phases of the development process,
we depended almost exclusively on Jvideo. Since the
J300 is primarily a cost-reduced version of Jvideo, we
were able to develop, test, and validate the design of



the device-independent portion of the sottware and
most of the kernel device driver well before the actual
J300 hardware arrived. Our plattorm consisted of
a Jvidco attached ro a DECstation workstation, which
was based on a MIPS R3000 processor and was run-
mng the ULTRIX operating system. When the new
Alpha workstations became available, we switched our
development to these newer and faster machines. We
ported the 32-bit software to Alpha’s 64-bit architee-
ture. Scctions of the kernel device driver were rewrit-
ten, but the basic design remained intact. The overall
porting cttort took a little more than a month to com-
plete. At the end of that time, we had the software
running on a Jvideo attached to an Alpha workstation,
which was running the DEC OSF /1 operating svstem
(now called the Digital UNIX operating system). We
promptly corrected software timing bugs exposed as
aresult of using the tast Alpha-based workstations.

For the development of the device-dependent por-
tion, we rclied on hardware simulation of the J300.
The different components and circuits of the J300
were modceled with Verilog behavioral constructs.
Accesses to the TURBOchannel bus were simulated
through interprocess communication calls (1PCs) and
sharecd memory (sce Figure 15). Because a 64-bit ver-
sion of Verilog was unavailable, simulations were run
on a machine based on the MIPS R3000 processor
running the ULTRIX operating svstem. The process,
though accurate, was generally slow.

Testing and Diagnostics

We wrote several applications to test the software
architecture. The purpose of these applications was to
test the software features in real-world situations and
to demonstrate through working sample code how
the librarics could be used. Applications werc classified
as video only, audio only, and ones that contained
both videco and audio.

TEST
APPLICATION

1

SOFTWARE
LIBRARY

3
Y

WRITE

J300 DEVICE

DRIVER
READ

SOFTWARE PROCESS

INTERPROCESS
COMMUNICATIONS J<«————— MODEL

In addition, we wrote rwo tvpes of diagnostic soft-
ware to test the underlving hardware components:
(1) read-only memory (ROM) based and (2) operating
system based. ROM-Dbased diagnostics have the advan-
rage that they can be execured trom the console level
without first booting the svstem. The coverage pro-
vided is limited, however, because of the complexity
of the hardware and the limited size of the ROM.
Operating system diagnostics rely on the kernel device
driver and on some of the library software. This suite of
tests provides comprehensive coverage with verifica-
tions of all the functional blocks on the J300. For the
new PCI-based FullVidco Supreme video adapters,
onlv operating-svstem-based diagnostics exist.

Related Work

When the Jvideo was conceived in carly 1991, little
had been published on hardware and sofnware solu-
tions for putting vidco on the desktop. This may have
been partly duc to the newness of the compression
standards and to the ditticulty in obtaining specialized
video compression silicon. Since then, audio and video
compression have become mainstream, and several
computer vendors now have products that add multi-
media capabilitv to the base workstations.

Lee and Sudharsanan describe a hardware and soft-
ware design for a JPEG microchannel adapter card
built for platforms based on IBM’s PS/2 opcrating
system.'* The adapter is controlled by an interrupt-
driven software running under DOS. In addition, the
software is also responsible for color-space conversion
and algorithmic tuning of the JPEG parameters. Audio
support is not included in the hardware. The paper
presents details on how the sottware programs the var-
ious components ot the board (c.g., the CL550 chip
from C-Cubc Microsystems and the DMA logic) to
achieve compression and decompression. Portability
of the software is compromised since the bulk of the
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Hardware Simulation Environment tor Sotrware Development
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code, which resides inside the mterrupt service rou-
tine, is written in assembly language.

Bolick and Allen describe the implementation of
hardware that, in addition to providing baseline JPEG
compression, uses a dynamic quantization circuit to
achieve fixed-rate compression.” The board is based
on the RIOH JPEG chip set that includes scparate
chips for performing the DCT, Huttman coding, and
color-space conversion. The paper’s main focus is
on describing the Allen Parameterized (orthogonal)
Transtorm that approximates the DCT while reducing
the cost of the hardware. The paper contains little
information about software control, architecture, and
control tlow.

Traditionally, operating systems have relied on data
copving between user space and kernel space to pro-
tect the integrity of the kernel. Although this method
works tor most applications, for multimedia appli-
cations, which usually involve massive amounts of
data, the overhead of data copying can seriously
compromise the system’s real-time performance.” Fall
and Pasquale describe a mechanism of in-kernel data
paths that directly connect the source and sink
devices.'® Peer-to-peer 1/0 avoids unnccessary data
copying and improves system and application perfor-
mance. Kitamura et al. describe an operating system
architecture, which they refer to as the zero-copy
architecture, that is also aimed at reducing the over-
hcad due to data copying.” The architecture uscs
memory mapping to expose the same  physical
addresses to both the kernel and the user-space
processes and is especially suitable for multimedia
operations. The ]300 software is also a zcro-copy
architecture. No data is copied between system and
user space.

The Windows NT 1/0 subsystem provides flexible
support ftor queue management." What the ]300
achieved on the UNIX and OpenVMS platforms
through the command and event queues can be
accomplished on the Windows NT platform using
built-in support from the 1/0 manager. A queue of
pending requests (in the form of 1/0 request packets)
may bc associated with each device. The use of
1/0 packets is similar to the use of command and
cvent packets in the J300 video software.

Summary

This paper describes the design and implementation of
the softwarce architecture for the Sound & Motion
J300 product, Digital’s tirst commercially available
multimedia hardware adapter that incorporates audio
and video compression. The presentation focused on
thosc aspects of the design that place special emphasis
on performance, on providing an intuitive API, and
on supporting a client-server model of computing.
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The software architecture has been successtully imple-
mented on the OpenVMS, Microsoft Windows NT,
and Digital UNIX platforms. Itis the basis for Digital’s
recent PCl-based video adapter cards: FullVideo
Supreme and FullVideo Supreme JPEG.

The goals that influenced the J300 design have
largely been realized, and the software is mature.
Digital is expanding upon ideas incorporated in the
design. For example, one potential area tor improve-
ment is to replace the FIFO service policy in the vari-
ous queues with a priority-based mechanism. A second
possible improvement is to increase the usage of the
hardware between periodic operations like video cap-
ture. In terms of portability, the idea of leaving device-
specific programming outside the kernel driver can be
expanded upon to design device-independent kernel-
mode drivers, thus lowering overall development
costs. Digital is actively investigating these and other
such enhancements madce possible by the success of
the J300 project.
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Software-only
Compression,
Rendering, and

Playback of Digital Video

Software-only digital video involves the com-
pression, decompression, rendering, and display
of digital video on general-purpose computers
without specialized hardware. Today’s faster
processors are making software-only video an
attractive, low-cost alternative to hardware
solutions that rely on specialized compression
boards and graphics accelerators. This paper
describes the building blocks behind popular
ISO, ITU-T, and industry-standard compression
schemes, along with some novel algorithms
for fast video rendering and presentation. A
platform-independent software architecture
that organizes the functionality of compressors
and renderers into a unifying software inter-
face is presented. This architecture has been
successfully implemented on the Digital UNIX,
the OpenVMS, and Microsoft's Windows NT
operating systems. To maximize the perfor-
mance of codecs and renderers, issues pertain-
ing to flow control, optimal use of available
resources, and optimizations at the algorithmic,
operating-system, and processor levels are con-
sidered. The performance of these codecs on
Alpha systemsis evaluated, and the ensuing
results validate the potential of software-only
solutions. Finally, this paper provides a brief
description of some sample applications built
on top of the software architecture, including
an innovative video screen saver and a software
VCR capable of playing multiple, compressed
bit streams.
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Full-motion vidceo is fast becoming commonplace to
users of desktop computers. The rising expectations for
low-cost, television-quality video with svnchronized
sound have been pushing manufacturers to create new,
mexpensive, high-quality offerings. The bottlenceks
that have been preventing the delivery of video without
specialized hardware arc being cast aside rapidlv as
faster processors, higher-bandwidth computer buscs
and neonworks, and Jarger and faster disk drives are
being developed. As a conscquence,  considerable
attention is currently being tocused on efficient imple-
mentations of flexible and extensible software solutions
to the problems of video management and delivery,
This paper survevs the methods and architectures used
in softwarc-only digital video svstems.

Due to the enormous amounts of data involved,
compression is almost alwavs used m the storage and
transmission of video. The high level of information
redundancy in video lends itself well to compression,
and many methods have been developed to take
advantage of this fact. While the literature is replete
with compression methods, we focus on those thatare
recognized as standards, a requirement for open and
interoperable systems. This paper describes the build-
ing blocks behind popular compression schemes of
the International Organization for Standardization
(1SQ), the International Telecommunication Union-
Teleccommunication Standardization Scctor (ITU-T),
and within the industry.

Rendering is another enabling technology tor video
on the desktop. It is the process of scaling, color
adjusting, quantization, and color space conversion of
the video for final presentation on the display. As an
example, Figure 1 shows a simple sequence of video
decoding. In the scction Video Presentation, we dis-
cuss rendering methods, along with some novel algo-
rithms for fast video rendering and presentation, and
deseribe an implementation that parallels the tech-
niques used in Digital’s hardwarce video otterings.

We tollow that discussion with the scction The
Sottware Video Library, in which we present a com-
mon architecture for video compression, decom-
pression, and plavback that allows integration into
Digital’s multimedia products. We then describe two
sample applications, the Videco Odvssey screen saver
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and a sofoware-only video plaver. We conclude our
paper by surveving related work in this rapidly evolv-
ing arca of software digital video.

Video Compression Methods
A svstem that compresses and decompresses video,

whether implemented in hardware or sottware, is
cal

cd a video codec (tor compressor /decompressor).
Most video codees consist of a sequence of compo-
nents usually connected in pipeline fashion. The codec
designer chooses specitic components based on the
design goals. By choosing the appropriate set of build-
ing blocks, a codec can be optimized for speed of
decompression, reliability of transmission, better color
reproduction, better edge retention, or to perform at
a specific target bit rare. For example, a codec could
be designed to trade oft color quality for transmission
bit rate by removing most of the color information
in the data (color subsampling). Similarly a codec may
include a simple decompression model (less process-
g per pixel) and a complex compression process to
boost the plavback rate at the expense of longer com-
pression times. (Compression algorithms that rake
longer to compress than to decompress are said to be
asvmmetric.) Once the components and trade-ofts
have been chosen, the designer then fine tunes the
codec to pertorm well in a specitic application space
such as teleconterencing or video browsing.

Video Codec Building Blocks

In this scction, we present the various building blocks
behind some popular and industry-standard video
codecs. Knowledge of the tollowing video codec
components is essential tor understanding the com-
pression process and to appreciate the complexity of
the algorithms.

Chrominance Subsampling Vidco is usually described
as being composed of o sequence of images. Each
image is a matrix of pixels, and each pixel is repre-
sented by three 8-bit values: a single luminance value
(Y) thatsignifies brightness, and two chrominance val-
ucs (Uand V, or sometimes Cb and Cr) which, taken
together, specify a unique color. By reducing the
amount ofcolor information in relation to luminance
(subsampling the chrominance), we can reduce the
size ofan image with little or no perceprual cttect. The

most common chrominance subsampling technique
decimates the color signal by 2:1 in the horizontal
direction. This is done cither by simply throwing out
the color information of alternate pixcels or by averag-
ing the colors of two adjacent pixels and using the
average tor the color of the pixel pair. This technique is
commonly referred to as 4:2:2 subsampling. When
compared to a raw 24-bit image, this results in a com-
pression of owo-thirds. Decimating the color signal by
2:1 in both the horizontal and the verrtical direction
(byv ignoring color information tor alternate lines in

the image) starts to result in some pereeptible Joss of

color, but the compression increases to onc-halt. This
is referred to as 4:2:0 subsampling: for cvery 4 lumi-
nance samples, there is a single color specitied by a pair
The ultimate chrominance
subsampling is to throw away all color nformation
and keep only the luminance data (monochrome
video). This not only reduces the size of the input data
burt also greatly simplifies processing tor both the com-
pressor and the decompressor, resulting in faster codec
performance. Some teleconterencing svstems allow

of chrominance valucs.

the user to switch to monochrome mode to increase
frame rate.

Transform Coding Converting a signal, vidco or
otherwise, from one representation to another is the
task of a ransform coder. Transtorms can be usctul tor
video compression if thev can convert the pixel data
into a form in which redundant and insigniticant infor-
mation in the video’s image can be isolated and
removed. Many transtorms convert the spatial (pixel)
data into frequency coctticients that can then beselee-
tively climinated or quantized. Transtorm  coders
address three central issuces in image coding: (1) decor-
relation (converting statistically dependent image
clements into independent spectral - cocthicients),
(2) energy compaction (redistribution and localization
of energy into a small number ot cocfhicients), and
(3) computational complexity. It is well documented
that human vision is biased toward low frequencics.
By transforming an image to the frequency domain,
a codec can capitalize on this knowledge and remove
or reduce the high-frequency components in the
quantization step, cffectively compressing the image.
In addition, isolating and climinating high-frequency
components in an image results in noise reduc-
tion since most noise in video, introduced during
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the digitization step or from transmission interfer-
ence, appears as high-frequency coetticients. Thus
transtorming helps compression by decorrclating (or
whitening) signal samples and then  discarding
nonessential information from the image.

Unitary (or orthonormal) transtorms fall into either
of two classes: fixed or adaptive. Fixed transforms are
independent of the input signal; adaptive transforms
adapt to the input signal." Examples of fixed trans-
forms include the discrete Fourier transform (DFT),
the discrete cosine transform (DCT), the discrete sine
transform (DST), the Harr transform, and the Walsh-
Hadamard transform (WHT). An cxample of an
adaptive transtorm is the Karhunen-Loeve transform
(KLT). Thus far, no transtorm has been found tor
pictorial information that completely removes statisti-
cal dependence between the transform coordinates.
The KLT is optimum in the mean square error sense,
and it achieves the best energy compaction; however,
it is computationally very expensive. The WHT is the
best in terms of computation cost since it requires only
additions and subtractions; however, it performs
poorly in decorrelation and energy compaction.
A good compromise is the DCT, which is by far
the most widely used transform in image coding. The
DCTis closestto the KLT in the energy-packing sense,
and, like the DFT, it has fast computation algorithms
available for its implementation.? The DCT is usually
applied in a sliding window on the image with a com-
mon window size of 8 pixels by 8 lines (or simply, 8 by
8). The window size (or block size) is important: if
it is too small, the correlation between neighboring
pixels is not exploited; if it is too large, block bound-
aries tend to become very visible. Transform coding
is usually the most time-consuming step in the
compression/decompression process.

Scalar Quantization A companion to transform cod-
ing in most video compression schemes is a scalar
quantizer that maps a large number of input levels into
a smaller number of output levels. Video is com-
pressed by reducing the number of symbols that need
to be encoded at the expense of reconstruction error.
A quantizer acts as a control knob that trades off
image quality for bit rate. A carefully designed quan-
tizer provides high compression for a given quality.
The simplest form of a scalar quantizer is a uniform
quantizer in which the quantizer decision levels are of
cqual length or step size. Other important quantizers
include Lloyd-Max’s minimum mean square error
(MMSE) quantizer and an entropy constraint quan-
tizer.** Pulse code modulation (PCM) and adaptive
difterential pulse code modulation (ADPCM) are
examples of two compression schemes that rely on
purc quantization without regard to spatial and tem-
poral redundancies and without exploiting the non-
lincarity in the human visual system.
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Predictive Coding Unless the image is changing
rapidly, a video sequence will normally contain
sequences of frames that are very similar. Predictive
coding uses this fact to reduce the dara volume by
comparing pixels in the current frame with pixels in
the same location in the previous frame and encoding
the difterence. A simple form of predictive coding uses
the value ofa pixel in one frame to predict the value of
the pixel in the same location in the next frame. The
prediction crror, which is the difference between
the predicted value and the actual value of the pixel, is
usually small. Smaller numbers can be encoded using
fewer quantization levels and fewer coding bits. Often
the difference is zero, which can be encoded very
compactly. Predictive coding can also be used within
an image frame where the predicted value of a pixel
may be the value of its neighbor or a weighted average
of the pixels in the region. Predictive coding works
best if the correlation berween adjacent pixels that are
spatially as well as temporally close to cach other is
strong. Difterential PCM and delta modulation (DM)
are examples of two compression schemes in which
the predicted crror is quantized and coded. The
decompressor recovers the signal by applying this
error to its predicted value for the sample. Lossless
image compression is possible if the prediction error
is coded withour being quantized.

Vector Quantization An alternative to transform-
based coding, vector quantization attempts to repre-
sent clusters of pixel data (vectors) in the sparial
domain by predetermined codes.® At the encoder,
cach dara vector is matched or approximated with a
code word in the codebook, and the address or index
of that code word is transmitted instead of the data
vector itself. At the decoder, the index is mapped back
to the code word, which is then used to represent the
original data vector. Identical codebooks are needed at
the compressor (transmitter) and the decompressor
(receiver). The main complexity lies in the design of
good representative codebooks and algorithms tor
finding best matches efficiently when exact matches
are not available. Typically, vector quantization is
applied to darta that has already undergone predictive
coding. The prediction error is mapped to a subset
of values that arc expected to occur most frequently.
The process is called vector quantization because the
values to be matched in the rables are usually vectors of
two or more values. More elaborate vector quantiza-
tion schemes are possible in which the difterence data
is scarched for larger groups of commonly occurring
values, and these groups arc also mapped to single
index values.

The amount of compression that results from vec-
tor quantization depends on how the values in the
codebooks are calculated. Compression may be
adjusted smoothly by designing a set of codebooks



and picking the appropriate one for a given desired
compression ratio.

Motion Estimation and Compensation Most codecs
that use interframe compression use a more elaborate
form of predictive coding than described above. Most
videos contain scenes in which one or more objects
move across the image against a fixed background or
in which an object is stationary against a moving back-
ground. In both cases, many regions in a frame appear
in the next frame but at different positions. Motion
estimation tries to find similar regions in two frames
and encodes the region in the second frame with a dis-
placement vector (motion vector) that shows how
the region has moved. The technique relies on the
hypothesis that a change in pixel intensity from one
frame to another is due only to translation.

For each region (or block) in the current frame,
a displacement vector is evaluated by matching the
information content of the measurement window with
a corresponding measurement window W within
a search area §, placed in the previous frame, and by
searching for the spatial location that minimizes the
matching criterion ¢ Let L(x,y) represent the pixel
intensity at location (.x,y) in frame #; and if (d,,d,) rep-
resents the region displacement vector for the interval
n(=(i+n)—1), then the matching criterionis defined as

d = min 2
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The most widely used distance measures are the
absolute value llxll={x| and the quadratic norm
IlxIl=x. Since finding the absolute minimum is guar-
anteed only by performing an exhaustive search of a
series of discrete candidate displacements  within
a maximum displacement range, this process is com-
putationally very expensive. A single displacement
vector is assigned to all pixels within the region.

Motion compensation is the inverse process of using
amotion vector to determine a region of the image to
be used as a predictor.

Although the amount of compression resulting
from motion estimation is large, the coding process is
time-consuming. Fortunately, this time is needed only
in the compression step. Decompression using motion
estimation is relatively fast since no searching has to be
done. For data replenishment, the decompressor sim-
ply uses the transmitted vector and accesses a region in
the previous frame pointed to by the vector for data
replenishment. Region size can vary among the codecs
using motion estimation but is typically 16 by 16.

Frame/Block Skipping One technique for reducing
datais to eliminate it entirely. In a teleconferencing sit-
uation, for example, if the scenc does not change
(above some threshold criteria), it may be acceptable
to not send the new frame (drop or skip the frame).
Alternatively, it bandwidth is limited and image quality
is important, it may be necessary to drop frames to stay
within a bit-rate budget. Most codecs used in telecon-
terencing applications have the ability of temporal sub-
sampling and are able to gracefully degrade under
limited bandwidth situations by dropping frames.

A second form of data elimination is spatial subsam-
pling. The idea is similar to chrominance subsampling
discussed previously. In most transtorm-based codecs,
a block (8 by 8 or 16 by 16) is usually skipped if the
difference benween it and the previous block is below
a predetermined threshold. The decompressor may
reconstruct the missing pixels by using the previous
block to predict the current block.

Entropy Encoding Entropy encoding is a torm of sta-
tistical coding that provides lossless compression by
coding input samples according to their frequency of
occurrence. The two methods used most frequently
include Huffman coding and run-length encoding.
Huffman coding assigns tewer bits to most frequently
occurring symbols and more bits to the symbols that
appear less often. Optimal Huffman tables can be gen-
erated if the source statistics are known. Calculating
these statistics, however, slows down the compression
process. Consequently, predeveloped tables that have
been tested over a wide range of source images are
used. A second and simpler method of entropy encod-
ing is run-length encoding in which sequences of
identical digits are replaced with the digit and the
number in the sequence. Like motion estimation,
entropy encoding puts a heavier burden on the com-
pressor than the decompressor.

Before ending this section, we would like to mention
that a number of other techniques, including object-
based coding, model-based coding, segmentation-
based coding, contour-texture oriented coding, fractal
coding, and wavelet coding are also available to the
codec designer. Thus far, our coverage has concen-
trated on explaining only those techniques that have
been used in the video compression schemes currently
supported by Digital. In the next section, we describe
some hybrid schemes that employ a number of the
techniques described above; these schemes are the basis
of several international video coding standards.

Overview of Popular Video Compression Schemes

The compression schemes presented in this section
can be collectively classified as tirst-generation video
coding schemes.” The common assumption in all these
methods is that there is statistical correlation between
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pixels. Each of these methods attempts to exploit this
correlation by employing redundancy reduction tech-
niques to achicve compression.

Motion-JPEG Algorithm Motion-JPEG (or M-JPEG)
compresses cach frame of a video sequence using the
ISO’s Joint Photographic Experts Group (JPEG)
continuous-tone, still-image compression standard.®
As such, it is an intraframe compression scheme. It is
not wed to any particular subsampling tformat, image
color space, or image dimensions, but most typically
4:2:2 subsampled YCbCr, source input format (SIF,
352 by 240) darta is used. The JPEG standard specifies
both lossy and lossless compression schemes. For
video, only the lossy bascline DCT coding scheme has
gained acceprance. The scheme relics on sclective
quantization of the frequency cocfticients tollowed by
Huffman and run-length encoding for its compres-
sion. The standard defines a bit-strecam formart that
contains both the compressed data strecam and coding
parameters such as the number of components, quan-
tization tables, Huftiman tables, and sampling tactors.
Popular M-JPEG file formats usually build on top of
the JPEG-specitied formats with little or no moditica-
tion. For example, Microsoft’s audio-video interleaved
(AVI) tormat cncapsulates each JPEG frame with its
associated audio and adds an index to the start of each
frame at the end of the file. Video editing on a frame-
bv-frame basis is possible with this format. Another
advantage is frame-limited error propagation in net-
worked, distributed applications. Many video digitizer
boards incorporate JPEG compression in hardware to
compress and decompress video in real time. Digital’s
Sound & Motion J300 and FullVideo Supreme JPEG
are two such boards.”" The bascline JPEG codec is a
svmmetric algorithm as mav be scen in Figure 2a and
Figure 3.

ITU-T's Recommendation H.261 Thc ITU-1"s Recom-
mendatton H.261 is a motion-compensated, DCT-
based video coding standard.”' Designed for the
teleconferencing market and developed primarily tor
low-bit-ratc Integrated Services Digital Network
(ISDN) scrvices, H.261 shares similarities with ISO’s
JPEG still-image compression standard. The target bit
rate is p X 64 kilobits per sccond with p ranging
benveen 1 and 30 (H.261 is also known as p X 64).
Only two trame resolutions, common intermediate
format (CIF, 352 bv 288) and quarter-CIF (QCIF,
176 by 144), arc allowed. All standard-compliant
codecs must be able to operate with QCIF; CIF s
optional. The input color space is fixed by the
International Radio Consultative Committee (CCIR)
601 YCbLCr standard’s with 4:2:0 subsampling (sub-
sampling of chrominance components by 2:1 in both
the horizontal and the vertical dircction). Two tvpes
of frames are defined: key frames that are coded
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independently and non—kev frames that are coded
with respect to a previous frame. Key frames are
coded i a manncer similar to JPEG. For non-key
frames, block-based motion compensation is per-
formed to compute interframe difterences, which are
then DCT coded and quantized. The block size is
16 by 16, and cach block can have a difterent quanti-
zation table. Finally, a variable word-length encoder
(usually emploving Huffman and run-length methods)
is used for coding the quantized coctticients. Rate
control is done by dropping frames, skipping blocks,
and increasing quantization. Error correction codes
arc embedded in the bit stream to help detrect and
possibly correct transmission errors. Figure 2b shows
a block diagram ot an H.261 decompressor.

ISO’s MPEG-1 Video Standard The MPEG-1 video
standard was developed by 1SO’s Motion Picture
Experts Group (MPEG). Like the H.261 algorithm,
MPEG-1 is also an interframe video codec that
removes spatial redundancy by compressing kev
frames using techniques similar to JPEG and removes
temporal redundancy through motion estimation and
compensation.'* The standard defines three difterent
types of frames or pictures: intra or I-frames that are
compressed independently; predictive or P-frames
that use motion compensation from the previous [-
or P-frame; and bidircctional or B-trames that contain
blocks predicted from cither a preceding or tollowing
P- or I-frame (or interpolated from both). Compres-
sion is greatest for B-frames and Jeast for I-frames.
(A fourth tvpe of frame, called the D-trame or the
DC-intracoded trame, is also dctined tor improving
fast-forward-type access, but it is hardly cver used.)
There is no restriction on the inpur frame dimensions,
though the target bitrate of 1.5 megabits per sccond is
tor video containing SIF frames. Subsampling is fixed
ar 4:2:0. MPEG-1 cmplovs adaptive quantization of
DCT coefficients tor compressing [-frames and for
compressing the difference benween actual and pre-
dicted blocks in P- and B-frames. A 16-by-16 sliding
window, called a macroblock, is used in motion esti-
mation; and a variable word-length encoder is used in
the final step to further lower the output bitrate. The
full MPEG-1 standard specities a system stream that
includes a video and an audio substrcam, along with
nceded  for  svnchronization

timing  information
berween the two. The video substream contains the
compressed video data and coding paramcters such
as picture rate, bit rate, and image size. MPEG-1 has
become increasinglv popular primarily  because it
of ters better compression than JPEG without compro-
mising on quality. Several vendors and chip manu-
facturers offer specialized  hardware tor MPEG
compression and decompression. Figure 2¢ shows
a block diagram of an MPEG-1 video decompressor.
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Intel’s INDEO Video Compression Algorithm Intel’s
proprictary INDEO video compression algorithm is
used primarily for video presentations on personal
computer (PC) desktops. It employs color subsam-
pling, pixel differencing, run-length encoding, vector
quantization, and variable word-length encoding. The
chrominance components are heavily subsampled. For
every block of 4-by-4 luminance samples, there is
a single sample of Cb and Cr. Furthermore, samples
aresshifted one bit to convert them to 7-bit values. The
resulting precompression tormat is called YVU9,
because on average there are 9 bits per pixel. This
subsampling alone yicelds a reduction of 9/24. Run-
length encoding is employed to encode any run of
zero pixel differences.

PCWG's INDEO-C Video Compression Algorithm
INDEO-C is the video compression component of a
teleconferencing system derived from the Personal
Conferencing Specification developed by the Personal
Conferencing Work Group (PCWG), an industry
group led by Intel Corporation. Like the MPEG stan-
dard, the PCWG specification defines the compressed
bit stream and the decoder but not the encoder.
INDEO-C is optimized for low-bit-rate, ISDN-based
connections and, unlike its desktop compression
cousin, is transform-based. It is an interframe algo-
rithm that uses motion estimation and a 4:1 chromi-
nance subsampling in both directions. Spatial and
temporal loop filters are used to remove high-
frequency artifacts. The transform used for converting
spatial data to frequency coefticients is the slant trans-
form, which has the advantage of requiring only shifts
and adds with no multiplies. Like the DCT, the fast
slant transform (FST) is applied on image subblocks
for coding both intraframes and difference frames. As
was the case in other codecs, run-length coding and
Huffman coding are employed in the final step.
Compression and decompression of video in software
is faster than other interframe schemes like MPEG-1
and H.261.

Compression Schemes under Development In addi-
tion to the five compression schemes described in this
section, four other video compression standards,
which are currently in various stages of development
within ISO and ITU-T, are worth mentioning: [SO’s
MPEG-2, ITU-1’s Recommendation H.262, ITU-T’s
Recommendation H.263, and ISO’s MPEG-4.'*"
Although the techniques employed in MPEG-2,
H.262,and H.263 compression schemes are similar to

the ones discussed above, the target applications are
different. H.263 focuses on providing low-bit-rate
video (below 64 kilobits per second) that can be trans-
mitted over narrowband channels and used for real-
time conversational services. The codec would be
employed over the plain old telephone svstem (POTS)
with modems that have the V.32 and the V.34 modem
technologies. MPEG-2, on the other hand, is aimed at
bit rates above 2 megabits per second, which support
a wide variety of formats for multimedia applications
that require better quality than MPEG-1 can achieve.
One of the more popular target applications for
MPEG-2 is coding for high-definition television
(HDTV). It is expected that ITU-T will adapt MPEG-2
so that Recommendation H.262 will be very similar,
if not identical, to it. Finally, like Recommendation
H.263,1SO’s MPEG-4’s charter is to develop a generic
video coding algorithm for low-bit-rate multimedia
applications over a public switched telephone networlk
(PSTN). A wide variety of applications, including
those operating over error-prone radio channels, are
being targeted. The standard is expected to embrace
coding methods that are very difterent from its precur-
sors and will include the so-called second-generation
coding techniques” MPEG-4 is expected to reach
draft stage by November 1997.

This ends our discussion on video compression tech-
niques and standards. In the next section, we turn our
attention to the other component of the video play-
back solution, namely video rendering. We describe the
general process of video rendering and present a novel
algorithm for efficient mapping of out-of-range colors
to feasible red, green, and blue (RGB) values that can
be represented on the target display device. Out-of-
range colors can occur when the display quality is
adjusted during video playback.

Video Presentation

Video presentation or rendering is the second impor-
tant component in the video playback pipeline (see
Figure 1). The job of this subsyvstem is to accept
decompressed video data and present it in a window of
specified size on the display device using a specified
number of colors. The basic components are sketched
in Figure 4 and described in more detail in a previous
issue of this Jouwrnal'> Today, most desktop systems do
not include hardware options to perform these steps,
but some interesting cases are available as described in
this issue.”'* When such accelerators are not available,
software-only implementation is necessary. Software

DECOMPRESSED COLOR SPACE RGB COLOR
YUV —{ COLOR ADJUST SCALE DITHER CONVERT — |INDEX
Figure 4

Components of Video Rendering
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rendering algorithms, although very efficient, can still
consume as many computation cycles as are used to
decompress the data.

All major video standards represent image data in a
luminance-chrominance color space. In this scheme,
cach pixel is composed of'a single luminance compo-
nent, denoted as Y, and two chrominance components
that are sometimes referred to as color difterence sig-
nals Cb and Cr, or signals U and V. The relationship
between the familiar RGB color space and YUV can be
described by a 3-by-3 linear transformation:

r RA
gl=M|ul, (2)

b v

where the transformation matrix,

1 0 a
M=|1b c|. (3)
1 d 0

The matrixis somewhat simple with only four values
that are not 0 or 1. These constants are ¢ = 1.402,
b=—-344,c= —.714,and d = 1.722.

The RGB color space cube becomes a parallelepiped
in YUV space. This is pictured in Figure 5, where the
black corner is at the bottom, and the white corner is
at the top; the red, green, and blue corners are as
labeled. The chrominance signals U and V are usually
subsampled, so the rendering subsystem must tirst
restore these components and then transform the
YUV triplets to RGB values.

Typical frame bufters are contigured with 8 bits of
color depth. This hardware colormap must, in general,
be shared by multiple applications, which puts a pre-
mium on cach of the 256 color slots in the map. Each
application, therefore, must be able to request render-
ing to a limited number of colors. This can be accom-
plished most cttectively with a multilevel dithering
scheme, as represented by the dither block in Figure 4.

Figure 5
The RGB “Cube” in YUV Space

The color adjustment block controls brightness, con-
trast and saturation by means of simple look-up tables.

Along with up-sampling the chrominance, the scale
block in Figure 4 can also change the size of the
image. Although arbitrary scaling is best performed in
combination with filtering, it is found to be too expen-
sive to do in a software-only implementation. For the
case of enlargement, a trade-off can be made between
image quality and speed; contrary to what is shown in
Figure 4, image enlargement can occur after dithering
and color space converting. Of course, this would
result in scaled dithered pixels, which are certainly less
desirable, but it would also result in faster processing.

To optimize computational efficiency, color space
conversion from YUV to RGB takes place after YUV
dithering. Dithering greatly reduces the number of
YUV triplets, thus allowing a single look-up table
to perform the color space conversion to RGB as well
as map to the final 8-bit color index required by the
graphics display system. Digital pioneered this idea
and has used it in a number of hardware and software-
only products."”

Mapping Out-of-Range Colors

Besides the obvious advantages of speed and simplic-
ity, using a look-up table to convert dithered YUV val-
ues to RGB values has the added feature of allowing
careful mapping of out-of-range YUV values. Refer-
ring again to Figure 5, the RGB solid describes those
r. & and b values that arc feasible, that is, have the nor-
malized range 0 < r; g, < 1. The range of possible val-
uesin YUV space are those tor 0 € y<'1and —.5 <.
v <.5. It turns out that the RGB solid occupies only
23.3 percent of this possible YUV space; thus there
is ample possibility for so-called infeasible or out-of-
range colors to occur. Truncating the 7, g, and bvalues
of these colors has the effect of mapping back to the
RGB parallelepiped along lines perpendicular to its
nearest surface; this is undesirable since it will result
in changing both the hue angle or polar orientation in
the chrominance plane and the luminance value. By
storing the mapping in a look-up table, decisions can
be made a priori as to exactly what values the out-of-
range values should map to.

There is a mapping where both the luminance or y
value and the hue angle are held constant at the
expense of a change in saturation. This section details
how a closed-form solution can be found for such a
mapping. Figure 6 is a cross section of the volume in
Figure 5 through a plane at y = y,. The objectis to find
the point on the surface of the RGB parallelepiped that
maps the out-of-range point (y,, i4,. ¢,) in the plane of
constant y, (constant luminance) and along a straight
line to the w-vorigin (constant hue angle). The solu-
tion is the intersection of the closest RGB surface and
the line between (y,, i, ¢,) and (y,,. 0, 0). This line can
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Figure 6
Mapping Out-of-Range YUV Points to the Surface ofthe
RGB Parallelepiped in a Plane of Constant y;,

be parametrically represented as the locus (i, ciy, aey,)
for a single parameter o The RGB values for these
points are

B a1 ) o I
] )U a((“yu,]+vl'(,
g|l=M|au, albu,+ee)ty |, (4)
b av, aldi,)+y,

where the matrix Miis as given in equation (2). To find
where this parametric line will intersect the RGB paral-
Iclepiped, we can first solve tor the acat the intereept val-
ues at cach of the six bounding surtace plancs as follows:

Surface Intercept

Planc Valuc

r=1 a, =(1=y,)/ ae,

g=1 o, =(1—yu)/(hu,+ce,)
b=1 a; =(L—y,)/du,

r=0 o, =(a,— 1)

g=0 a; =(a,— 1)

h=10 o, =(a;—1)

Exactly three a; will be negative, with cach describing
the intercept with extended RGB surface planes oppo-
site the ¢~ origin. Of the remaining three e, the two
largest values will describe interceprs with extended
RGB surtace planes in infeasible RGB space. This is
because the RGB volume, a parallelepiped, is a convex
polvhedron. Thus the solution must simply be the
smallest positive ;. Plugging this value of a into cqua-
tion (4) produces the desired RGB value.
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The Software Video Library

When we started this project, we had two objectives in
mind: to showcasc the processing power of Digital’s
newly developed Alpha processor and to usc this
power to make digital video casily available to devel-
opers and end uscrs by providing extremely low-cost
solutions. We knew that because of the compute-
intensive nature of video processing, Digital’s Alpha
processor would outperform any competitive proces-
sor in a head-to-head match. By providing the abiliey
ro manipulate good-quality desktop video without the
need for additional hardwarc, we wanted to make
Alpha-bascd svstems the computers of choice tor end
users who wanted to incorporate multimedia into
their applications.

Our objectives translated to the creation of a soft-
ware video library that became a reality because of
three key obscrvations. The first one is embedded in
our motivation: processors had become  powertul
enough to pertorm complex signal-processing opera-
tions at recal-time rates. With the potential of cven
greater speeds in the near tuture, low-cost multimedia
solutions would be possible since audio and video
decompression could be done on the native processor
without anv additional hardware.

A sccond obscrvation was that multiple cmerging
audio/video compression standards, both formal and
industry de facto, were gaining popularity with appli-
cation vendors and hence needed to be supporred
on Digital’s plattorms. On caretul examination of the
compression algorithms, we observed that most of
the prominent schemes used  common  building
blocks (sce Figure 2). For example; all five interna-
tional standards—)PEG, MPEG-1, MPEG-2, H.261,
and H.263—have DCT-based transform coders fol-
lowed by a quantizer. Similarly, all five use Huftman
coding in their final step. This meant that work donce
on one codec could be reused tor others.

A third obscrvation was that the most common
component of video-based applications was video
plavback (for example, vidcoconterencing, video-on-
demand, video plaver, and deskrop television). The
output decompressed  streams  from  the  various
decoders hawe to be software-renderced tor display on
systems that do not have support for color space con-
version and dithering in their graphics adapters. An
cthcient software rendering scheme could thus be
shared by all video plavers.

With these observations in mind, we developed
a software video library containing quality implemen-
tations of ISO, ITU-T, and industry de tacto vidco
coding standards. In the sections to follow, we present
the architecture, implementation, optimization, and
performance of the software video librarv. We com-
plete our presentation by describing examples of
video-based applications written on top of this library,




including a novel video screen saver we call Video
Odyssey and a sottwarc-only video plaver.

Architecture
Keeping in mind the observations outlined above, we
designed a software video library (SLIB) that would

= Provide a common architecture under which mul-
tiple audio and video codecs and renderers could
be accessed

= Be the lowest, funcrionally complete layer i the
software video codec hicrarchy

s Be fast, extensible, and thread-sate, providing reen-
trant code with minimal overhead

= DProvide an mtuitive, simple, flexible, and extens-
ible application programming intertace (API)
that supports a client-server model of multimedia
computing

= Provide an AP] that would accommodate multiple
upper lavers, allowing tor casy and scamless integra-
tion into Digital’s multimedia products

Our intention was not to create a library that would
be exposed to end-user applications but to create one
that would provide a common architecture for video
codecs for casy integration into Digital’s multimedia
products. SLIB’s APl was purposcly designed to be
a superset of Digital’s Multimedia Services® API tor
greater flexibility in terms of algorithmic tuning and
control. The library would fit well under the actual

APPLICATION 1 ++« APPLICATION N

:

DIGITAL'S MULTIMEDIA
CLIENT LIBRARY

l A

DIGITAL'S MULTIMEDIA

programming interface provided to end uscrs by
Digital’s Multimedia Services. Digital’s Multimedia
API is the same as Microsoft’s Video For Windows
API, which tacilitates the porting of multimedia appli-
cations from Windows and Windows NT to Digital
UNIX and OpenVMS plattorms. Figure 7 shows SLIB
in relation to Digital’s multimedia software hierarchy:.
The shaded regions indicate the topics discussed in
this paper.

As mentioned, the library contains routines ftor
audio and video codecs and Digital’s propricty video-
rendering algorithms. The routines are optimized
both algorithmically and tor the particular plattorm on
which thev are offered. The sofnwarce has been success-
fully implemented on multiple plattorms, including
the Digital UNIX, the OpenVMS, and Microsoft’s
Windows NT operating systems.

Three classes of routines are provided tor the threce
subsystems: (1) video compression and decompres-
sion, (2) video rendering, and (3) audio processing.
For each subsystem, routines can be fturther classitied
as (a) setup routines, (b) action routines, (¢) query rou-
tines, and (d) teardown routines. Setup routines create
and initialize all relevant internal data structures. They
also compute values tor the various look-up tables such
as the ones used by the rendering subsystem. Action
routines perform the actual coding, decoding, and ren-
dering operations. Query routines may be used before
setup or between action routines. These provide the
programmer with information about the capability

APPLICATION 1 ¢+« APPLICATION M

MICROSOFT'S VIDEO

SERVER (DIGITAL UNIX, FOR WINDOWS
OPENVMS) (WINDOWS NT)
| l [
NG =2 MEDIA CONTROL
COMPRESSION
MANAGER DRIVER INTERFACE DRIVER
_________ ———— [
SOFTWARE VIDEO
CODING LIBRARY
(SLIB)
R ¥ N

VIDEO CODECS

VIDEO RENDERERS

AUDIO PROCESSORS

i,
VoY oy R

; i PR

JPEG MPEG H.261 «»- DITHER SCALE COLOR COLOR SAMPLE ADPCM MPEG-1
SPACE ADJUST RATE
CONVERT CONVERSION

Figure 7
Sottware Video Library Hicrarchy
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ot the codec such as whether or not it can handle a
particular input format and provide information about
the bitstream being processed. These routines can also
be used for gathering statistics. Teardown routines, as
the name suggests, are used for closing the codec and
destroying all internal memory (state information)
associated with it. Forall video codecs, SLIB provides
convenience functions to construct a table of contents
containing the oftsets to the start of frames in the input
bit stream. These convenience functions are usetul tor
short clips: once a table of contents is built, random
access and other VCR functions can be implemented
casily. (These routines arc discussed further in the sec-
tion on sample applications.)

Implementation of Video Codecs

In this section, we present the program tlow for mult-
media applications that incorporate the various video
codecs. These applications arc built on top of SLIB.
We also discuss specitic calls from the library’s API to
explain concepts.

Motion JPEG Motion JPEG is the de facto name of

the compression scheme that uses the JPEG compres-
sion algorithm developed torstill images to code video
scquences. The motion JPEG (or M-JPEG) player was
the first decompressor we developed. We had recently
completed the Sound & Motion J300 adapter that
could perform JPEG compression, decompression,
and dithering in hardware.”" Wc now wanted to
develop a software decoder that would be able to
decode video sequences produced by the J300 and its
successor, the FullVideo Supreme JPEG adapter,
which uses the peripheral component interconnect
(PCI)." Only baseline JPEG compression and decom-
pression have been implemented in SLIB. This is sufti-
cient for greater than 90 percent of today’s existing
applications. Figure 2a and Figure 3 show the block
diagrams for the bascline JPEG codec, and Figure 8
shows the flow control for compressing raw video
using the video library routines. Due to the symmetric
structure of the algorithm, the flow diagram for the
JPEG decompressor looks very similar to the one for
the JPEG compressor.

The amount of compression is controlled by the
amount of quantization in the individual image frames
constituting the video scquence. The coefficients for
every 8-by-8 block within the image F(x,y) are quan-
tized and dequantized as

ER _ F(-x-_V)
o (“\ r}) - QiTabk‘( X,»{‘)
=F, (x,») X QTable(x,).

Fxd) g

In equation (5), QTable represents the quantization
matrices, also called visibility matrices, associated
with the frame F(x, ). (Each component constituting
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Figure 8
Flow Control fer M-JPEG Compression

the frame can have its own QTable.) SLIB provides
routines to download QTables to the encoder explic-
itly; tables provided in the ISO specification can be
used as defaults. The library provides a quality tactor
that can scale the basc quantization tables, thus pro-
viding a control knob mechanism tor varying the
amount of compression from frame to trame. The
quality factor may be dynamically varied berween
0 and 10,000, with a value of 10,000 causing no quan-
tization (all quantization table elements are equal
to 1), and a value of 0 resulting in maximum quantiza-
tion (all quantization table elements are equal to 255).
For intermediate values:

QTable(x,y) = (6)

VisibilityTabie(x, y)X( 10" = QuelFuactor)<255

Clip o e
10" Xmin (Vis[h[///.1'7'c//7/e(x.).') ]

The Clip() function ftorces the out-of-bounds values to
be either 255 or 1. At the low ¢nd of the quality sct-
ting (small values of the quality factor), the above
formula produces quantization tables that causc
noticeable artifacts.

Although Huftman rables do not affect the quality
of the video, they do influence the achievable bit rate
for a given video quality. As with quantization tables,
SLIB provides routines for loading and using custom
Hutfman tables for compression. Huffman coding
works best when the source statistics are known; in



practice, statistically optimized Huftinan tables are
rarely used due to the computational overhead involved
in their generation. In the case where these tables are
not explicitly provided, the library uses as default the
bascline tablessuggested in the ISO specification. In the
case of decompression, the tables may be presentin the
compressed bit stream and can be examined by invok-
ing appropriate query calls. In the AVI format, Huffman
tables are not present in the compressed bit stream, and
the default ISO rtables are always used.

Query routines for determining the supported
input and output formats for a particular compressor
are also provided. For M-JPEG compression, some of
the supported input formats include interleaved 4:2:2
YUV, noninterleaved 4:2:2 YUV, interleaved and non-
interleaved RGB, 32-bit RGB, and single component
(monochrome). The supported output formats
include JPEG-compressed YUV and JPEG-compressed
single component.

1S0's MPEG-1 Video Once we had implemented the
M-JPEG codec, we turned our attention to the MPEG-1
dccoder. MPEG-1 is a highly asymmetric algorithm.
The committee developing this standard purposely
kept the decompressor simple: it was cxpected that
there would be many cases of compress once and
decompress multiple times. In general, the task of com-
pression is much more complex than that of decom-
pression. As of this writing, achieving real-time
performance for MPEG-1 compression in software
is not possible. Thus we concentrated our energies
on implementing and optimizing an MPEG-1 decom-
pressor while leaving MPEG-1 compression for batch
mode. Someday we hope to achieve real-time com-
pression all in softwarc with the Alpha processor.
Figure 9 illustrates the high-level scheme of how SLIB
fits into an MPEG player. The MPEG-1 system stream
i1s split into its audio and video substreams, and each
is handled separately by the different components of

ISO 11172-2
VIDEO

the video library. Synchronization berween audio and
video is achieved at the application layer by using the
presentation time-stamp information embedded in
the system stream. A timing controller module within
the application can adjust the rate at which video
packets are presented to the SLIB video decoder and
renderer. It can indicate to the decoder whether to
skip the decoding of B- and P-frames.

Figure 10 illustrates the tlow control foran MPEG-1
video player written on top ot SLIB. The scheme relics
on a callback function that is registered with the codec
during iniual setup, and a SvAddBuffers function, writ-
ten by the client, which provides the codec with the bit-
stream data to be processed. The codec 1s primed by
adding multiple bufters, each typically containing
a single video packet from the demultiplexed system
stream. These buffers are added to the codec’s internal
butter queue. After enough data has been provided, the
decoder is told to parse thebit stream in its buffer queue
until it finds the next (first) picture. The client applica-
tion can specify which type of picture to locate (I, P, or
B) by setting a mask bit. After the picture is found and
its information returned to the client, the client may
choose to either decompress this picture or to skip it by
invoking the routine to find the next picture. This pro-
vides an eftective mechanism for rate control and tor
VCR controls such as step forward, fast forward, step
back, and fast reverse. If the client requests that a
non—key picture (P or B) be decompressed and the
codec does not have the required reterence (1 or P) pic-
tures needed to perform this operation, an error is
returned. The client can then choose to abort or pro-
ceed until the codec finds a picture it can decompress.

During steady state, the codec may periodically
invoke the callback function to exchange messages with
the client application as it compresses or decompresses
the bit stream. Most messages sent by the codec expect
some action from the client. For example, one of
the messages sent by the codec to the application is
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Figure 9
SLIB as Part of a Full MPEG Player
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Figure 10
Fiow Contral for MPEG-1 Video Playback

a CB_END_BUFFERS message, which indicates the
codec has run out ot data and the client needs to cither
add more data bufters or abort the operation. Another
message, CB_RELEASE_BUFFERS, indicates the
codec is done processing the bit-strecam data in a data
butter, and the bufter is available tor clicnt reuse. One
possible action for the clientisto fill this newly available
butter with more data and pass it back to the codec. In
the other direction, the client maysend messages to the
codec through a ClientAction ficld. Table 1 gives some
of the messages that can be sent to the codec by the
application.

Another use for the callback mechanism is to accom-
modate client operations that nced to be intermixed
betveen video encoding/decoding operations.  For
example, the application may want to process audio
samples while itis decompressing video. The codec can
then be configured such that the callback function is
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Table 1
List of Client Messages

Message Interpretation

CLIENT_ABORT
CLIENT_CONTINUE
CLIENT_DROP
CLIENT_PROCESS

Abort processing of the frame
Continue processing the frame
Do not decompress

Start processing

mvoked at a (near) periodic rate. A CB_PROCESSING
message is sent to the application by the codec at reg-
ular intervals to give it an opportunity for rate control
of video and/or to perform other operations.

Tvpically the order n which coded pictures arc pre-
sented to the decoder doces not correspond to the
order in which they arc to be displayved. Consider the
tfollowing example:



Display Order 11 B2 B3 P4 B5 B6 P7 BS
Decoder Input 11 P4 B2 B3 P7 BS B6 110

The order mismatch is an artifact ot the compression
algorithm—a B-picture cannot be decoded until both
its past and furure reference trames have been decoded.
Similarly a P-picture cannot be decoded until its past
reference frame has been decoded. To geraround this
problem, SLIB defines an output multibutter. The size
of this multibutter is approximartely cqual to three
times the size of a single uncompressed frame. For
example, for a4:2:0 subsampled CIF image, the size of
the multibufter would be 352 by 288 by 1.5 by 3 bytes
(the exact size is rerurned by the library during inttial
codlec setup). After steady state has been reached, each
mvocaton to the decompress call viclds the correct
next frame to be displaved as shown in Figure 11. To
avoid expensive copy operations, the multbufter is
allocated and owned by the software above SLIB.

ITU-T's Recommendation H.261 (a.k.a. p X 64) At the
hbrarv level, decompressing an H.261 stream is verv
similar to MPEG-1 decoding with one exception:
instead of three tvpes of pictures, the H.261 recom-
mendation detines onlv oo, key frames and non—kev
framies (no bidirectional prediction). The implication
tor implementation is that the size of the multibutter is
approximately twice the size of a single decompressed
frame. Furthermore, the order in which compressed
frames are presented to the decompressor is the same
as the order in which they are to be displaved.

To satisty the H.261 recommendation, SLIB imple-
ments a streaming interface for compression and
decompression. In this modcl, the application feeds
input butters to the codec, which processes the datain
the bufters and returns the processed data to the appli-
cation through a callback routine. During decom-
pression, the application layer passes input buffers
containing scctions of an H.261 bit strcam. The bit
stream can be divided arbitrarily, or, in the case of live
teleconterencing, cach bufter can contain data from a
transmission packet. Empry output butters are also
passcd to the codec to fill with reconstructed images.
Picture frames do not have to be aligned on bufter

boundarics. The codec parses the bit stream and,
when enough data is available, reconstructs an image.
Input bufters are freed by calling the callback routine.
When an image is reconstructed, it is placed inan out-
put buffer and the bufter is rerurned to the applica-
tion through the callback routine. The compression
process is similar, but input bufters contain images and
output bufters contain bit-stream dara. One advantage
to this streaming interface is that the application layer
docs not need to know the syntax of the H.261 bit
strecam. The codec is responsible for all bit-stream
parsing. Another advantage is that the callback mecha-
nism for returning completed images or bit-stream
bufters allows the application to do other tasks with-
out implementing muitithreading,

SLIB’s architecture and AP can casily accommo-
date 1SO’s MPEG-2 and ITU-T’s H.263 vidco com-
pression algorithms because of their similarity to the
MPEG-1 and H.261 algorithms.

Implementation of Video Rendering
Our sofoware implementation of video rendering
essentially parallels the hardware realization derailed
clsewhere in this issuc.” As with the hardware imple-
mentation, the software renderer is fast and simple
because the complicated computations are performed
oftline in building the various look-up tables. In both
hardware and software cases, a shorteut is achieved by
dithering in YUV space and then converting to some
small number of RGB index values in a look-up rable.'
Although i most cases the mapping valuces in the
look-up tables remain fixed for the duration of the
run, the video library provides routines to dvnamically
adjust image brightness, contrast, saturation, and the
number of colors. Image scaling is possible but affects
performance. When quality is important, the software
performs scaling betore dithering and when speed is
the primary concern, it is done atter dithering.

Optimizations

We approached the problem of optimization from two
directions: Plattorm-independent optimizations, or
algorithmic enhancements, were done by exploiting
knowledge of the compression algorithm and the

— — —
1 11 1 1 P7 P7 P7 P7
—
P4 P4 P4 P4 P4 P4 110
B — —_— —_—
B2 B3 B3 B85 B6 B6
> TIME

Figure 11
Multibutteringin SLIB
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input data strecam. Platform-dependent optimizations
were done by examining the services available trom
the underlving operating svstem and by evaluating the
attributes of the system’s processor.

As can be scen from Table 2, the DCT is once of the
most computationallv mtensive components in the
compression pipeline. It is also common to all five
international standards. Therctore, a special eftort was
madc in choosing and optimizing the DCT. Since all
five standards call for the inverse DCT (IDCT) to be
postprocessed with inverse quantization, significant
algorithmic savings were obtained by computing a
scalar multiple of the DCT and merging the appropri-
ate scaling into the quantizer. The DCT implemented
in cthe library is a moditied version of the one-
dimensional scaled DCT proposed by Arari etal.™ The
rwo-dimensional DCT is obtamed by performing a
one-dimensional DCT on the columns followed by
a onc-dimensional DCT on the rows. A total of 80
multiplics and 464 adds arc needed for a tully popu-
lated 8-bv-8 block. In highly compressed video, the
coctticient matrix to be transformed is generally sparse
because a large number of elements are “zerocd” out
duc to heavy quantization. We exploit this fact to
speed up the DCT computations. In the decoding
process, the Huftiman decoder computes and passes to
the IDCT alist of rows and columns that are all zeros.
The IDCT then simply skips these columns.' Another
optimization uscs a different IDCT, depending on the
number of nonzero cocfticients. The overall speedup
due to these techniques is dependent on the amount
of compression. For lightly compressed video, we
obscrved that the overhead due to these techniques
slowed down the decompressor. We overcame this dif-
ficulty by building into SLIB the adaptive selection of
the appropnate optimization based on continuous sta-
tistics gathering. Run-time statistics of the number of
blocks per frame that are all zeros are mamntained, and
the number of frames over which these statistics are
cvaluated is provided as a parameter for the client
applications. Statistic gathering is minimal: a counter
update and an occasional compare.

The second component of the video decoders we
looked at was the Huftman decoder. Analvsis of the
compressed data indicared that short-codce-length
symbols were a large part of the compressed bit
strcam. The decoder was written to handle frequently
occurring very short codes (<< 4 bits) as special cases,
thus avoiding Joads from memory. For short codes
(< 8 bits), look-up tables were used to avoid bit-by-bit
decoding. Together, these two classes of codes
account for well over 90 percent ofthe total collection
of the variable-length codes.

A third compute-intensive operation is raster-to-
block conversion in preparation for compression. This
operation had the potential of slowing down the com-
pressor on Alpha-based systems on which byte and
short accesses are done indirectly. We implemented an
assembly language routine that would recad the
uncompressed input color image and convert it to
three  onc-dimensional arravs  containing  8-bv-8
blocks in scquence. Special care was taken to keep
memory references aligned. Relevant bytes were
obrained through shifting and masking operations.
Level shifting was also incorporated within the routine

to avoid touching the same data again.

Other enhancements included replacing multip
and divides with shifts and adds, avoiding integer to
tloatng-point conversions, and using floating-point
opcrations wherever possible. This optimization is
particularly suited to the Alpha architecture, where
floating-point operations are significantly faster than
integer operations. We also worked to reduce memory
bandwidth. Ill-placed memory accesses can stall the
processor and slow down the computations. Instruc-
tions generated by the compiler were analyzed and
sometimes rescheduled to void data hazards, to keep

ics

the on-chip pipeline full; and to avoid unnecessary
loads and stores. Critical and small loops were unrolled
to make better use of floating-point  pipclines.
Reordering the computations to reuse data already in
registers and caches helped minimize thrashing in the
cache and the translation lookaside butter. Memory
was accessed  through  offsets rather than pointer

Table 2

Typical Contributions of the Major Components in the Playback of Compressed Video (SIF)

Coding Bit-stream Huffman Inverse IDCT Motion Vector Tone Adjust, Display

Scheme Parser and Quantizer Compression, Quantization Dither, Quantize
Run-length Block to (INDEO and Color Space
Decoder Raster only) Convert

M-JPEG  0.8% 12.4% 10.5% 35.2% —_— 33.7% 7.4%

decode

MPEG-1  0.9% 13.0% 9.7% 19.7% 20.2% — 31.4% 5.1%

decode

INDEO 1.0% — — —_— — 57.5% 36.0% 5.5%

decode
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increments. More local variables than global variables
were used. Wherever possible, tixed values were hard
coded instead of using variables that would need to
be computed. References were made to be 32-bit or
64-bit aligned accesses instead of byte or short.

Consistent with onc of the design goals, SLIB was
made thread-sate and fully reentrant. The Digital
UNIX, the OpenVMS, and Microsoft’s Windows NT
operating systems all ofter support tor multithreaded
applications. Applications such as video plavback can
improve their pertormance by having separate threads
tor rcading, decompressing, rendering, and display-
ing. Also, amuluthreaded application scales up well on
a multiprocessor svstem. Global multithreading is
possible it the library code is reentrant or thread-safe.
When we were trying to multithread the library inter-
nals, we found that the overhead caused by the birth
and death of threads, the increase in memory aceesses,
and the fragmentation of the codece pipeline caused
operations to slow down. For these reasons, rou-
tines within SLIB were kept single-threaded. Other
operating-system optimizations such as memory lock-
ing, priority scheduling, nonpreemption, and taster
umers that are generally good for real-time applica-
tions were experimented with but not included in our
present implementation.

Performance on Digital's Alpha Machines

Mecasuring the performance of video codecs is gener-
ally a difficult problem. In addition to the usual depen-
dencies such as system  load, efficicncy of the
underlving operating system, and application over-
head, the speed of the video codecs is dependent on
the content of the video sequence being processed.
Rapid movement and action scenes can delay both
compression and decompression, while slow motion
and high-frequency contentin a video sequence can
generally result in faster decompression. When com-
paring the performance of one codec against another,
the analyst must make certain thar all codecs process
the same set of video scquences under similar oper-
ating  conditions. Since no - scquences have  been
accepted as standard, the analvst must decide which
scquences are most tvpical. Choosing a sequence that
tavors the decompression process and  presenting
thosc results is not uncommon, but it can lead to false
expecrations. Scquences with similar peak signal-to-
noisc ratio (PSNR) may not be good enough, because
more often than not PSNR (or equivalently the mean
square crror) does notaccurately measure signal qual-
itv. With these thoughts in mind, we chose some
scquences that we thoughtwere typical and used these
to mceasure the performance of our software codecs.
We do not present comparative results to codecs

implemented elsewhere since we did not have access
to these codecs and hence could not test these with the
SAMC Sequences.

Table 3 presents the characeeristics of the three
video scquences used in our experiments. Let £,(x.))
and 7 ;(x,)) represent the luminance component of
the original and the reconstructed frame i let izand i
represent the horizontal and vertical dimensions of
a frame; and let N be the number of frames in the
video sequence. Then the Compression Ratio, the
average output BitsPerPixel, and the average PSNR are
calculared as

Compression Ratio =

\
2 bits in frame[/] of original video

- (7)
\
2 bits in frame[7 ] of compressedvideo
i=
Avg. BitsPerPixel =
1 > bits in frame[i] of (8)
NXnXm“ compressed video
r 1 —
Avg. PSNR 9)
2010, 255
¥ N n 75k
1 1 PN i
N \/ iy & (L (e)~L i)

Figure 12 shows the PSNR for individual frames in
the video sequences along with the distribution of
trame size for cach of three test sequences. Frame
dimensions within a sequence always remain constant.

Table 4 provides specifications of the workstations
and PCs used in our cxperiments for gencrating
the various performance numbers. The 21064 chip
is Digital’s first commerdiallv available Alpha proces-
sor. It has a load-store architecture, is based on a
0.75-micrometer complementary metal-oxide semi-
conductor (CMOS) technology, contains 1.68 million
transistors, hasa 7- and 10-stage integer and floating-
point pipeline, has separate 8-kilobyte instruction and
dara caches, and is designed for dual issuc. The
21064A microprocessor has the same architecture as
the 21064 but is based on a 0.5-micrometer CMOS
technology and supports faster clock rates.

We provide performance numbers for the video
scquences characterized in Table 3. Figure 13 provides
measured data on CPU usage when compressed video
(from Tablce 3) is played back at 30 frames per second
on the various test platforms shown in Table 4. We
chose “percentage of CPU used” as a measure of per-
tormance because we wanted to know whether the
CPU could handle any other tasks when it was doing
video processing. Fortunately, it turned out the
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Table 3
Characteristics of the Video Sequences Used to Generate the Performance Numbers Shown in Figure 12

Spatial Temporal
Compression Resolution Resolution Avg. Compression  Avg. PSNR
Name Algorithm (width X height)  (No. of Frames)  BitsPerPixel Ratio (dB)
Sequence 1 M-JPEG 352 % 240 200 0.32 50:1 31.56
Sequence 2 MPEG-1 352 x 288 200 0.17 69:1 32.28
Video
M-JPEG 352 x 240 200 0.56 28:1 31.56
Sequence 3 INDEO 352 X 240 200 0.16 471 28.73
SEQUENCE 1 (MOTION JPEG)
0.08F MEAN = 26.65
0.07 STD. DEVIATION = 4.97
L RANGE = 4103
o 006 - PEAK-TO-AVG. RATIO = 2.07
[7)] L
0 33 % 0.05 |
@ 32 04
a 2 0.0
g 3 0003}
@ 301 0.02
2
Q 29t 0.0}
28 . : ' : L . : . 0 v £
0 25 50 75 100 125 150 175 200 1 6 11 16 21 26 31 36 41 46 51 56 61
FRAME NUMBER FRAME SIZE (KBITS)
SEQUENCE 2 (MPEG-1 VIDEO)
0.06
a0+ 005 -
g MEAN = 17.11
@ 004 - STD. DEVIATION = 14.47
i 30 Z RANGE = 97.62
S2s 2 003k PEAK-TO-AVG. RATIO = 5.72
&0t e
az':’ 15} 0.02 +
10}
¢ Al 0.01 L
L L L L L L L L O 1 L X L L — i
0 25 50 75 100 125 150 175 200 1 11 21 31 4 51 61 71 8 91 101
FRAME NUMBER FRAME SIZE (KBITS)
SEQUENCE 3 (INDEO)
025}
020l MEAN = 16.06
40T ’ STD. DEVIATION = 6.96
53 . RANGE = 59.01
o 30 = 015} PEAK-TO-AVG. RATIO = 9.80
Sosr 2
© 20} & o010}
=}
= 151
%10 0.05F
a 5t
, . . . . . . i 0 A ‘
0 25 50 75 100 125 150 175 200 1 8 15 22 29 36 43 50 57 64 71 78
FRAME NUMBER FRAME SIZE (KBITS)
Figure 12

Characteristics of the Three Test Sequences
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Table 4
Specifications of Systems Used in Experimentation

Operating Disk

System Name CPU Bus Clock Rate  Cache Memory  System
AlphaStation Alpha PCI 266 MHz 2 MB 64 MB Digital UNIX  RZ28B
600 5/266 21164A (3.7 ns) V3.2

workstation

AlphaStation Alpha PCl 266 MHz 2 MB 32 MB Digital UNIX  RZ58
200 4/266 21064A (3.7 ns) V3.0

workstation

DEC 3000/M900 Alpha TURBOchannel 275 MHz 2 MB 64 MB Digital UNIX  RZ58
workstation 21064A (3.6 ns) V3.2

DEC 3000/M500 Alpha TURBOchannel 133 MHz 512 KB 32 MB Digital UNIX  RZ57
workstation 21064 (7.5 ns) V3.0

answer was a resounding “Yes™ in the case of Alpha
processors. The video plavback rate was measured
with softwarc video rendering enabled. When hard-
warc rendering is available, estimated values for video
plavback arc provided.

From Figurc 13, it is clear that roday’s workstations
are capable of plaving SIF video at full frame rates with

M-JPEG

3000/M500
250-4/266
3000/M900

SYSTEM NAME

600-5/266

no hardware acceleration. High-quality M-JPEG and
MPEG-1 compressed video clips can be plaved art full
speed with 20 pereent to 60 percent of the CPU avail-
able for other tasks. INDEO decompression is faster
than M-JPEG and MPEG duc to the absence of DCT
processing. (INDEO uses a vector quantization

method based on pixel difterencing.) On three out of

0 20 40

60 80 100 120 140
% OF CPU USED

MPEG-1 VIDEO

3000/M500

250-4/266
3000/M900

SYSTEM NAME

600-5/266

INDEO

3000/M500

250-4/266
3000/M900

SYSTEM NAME

600-5/266

0 20 40

60 80 100 120 140
% OF CPU USED

0 20 40

KEY:

60 80 100 120 140
% OF CPU USED

B WITH HARDWARE VIDEO RENDERING
] WITH SOFTWARE VIDEO RENDERING

Figure 13

Percentage of CPU Required for Real-time Plavback ar 30 tps on Four Different Alpha based Svstems
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the four machines tested, two SIF INDEO clips could
be plaved back at full speed with CPU capacity left
over for other tasks.

The data also shows the advantage of placing the
color conversion and rendering of the video in the
graphics hardware (see Table 2 and Figure 13).
Software rendering accounts for one-third of the total
playback time. Since rendering is essentially a rable
look-up function, it is a good candidate for moving
into hardware. If hardware video rendering is available,
multiple M-JPEG and MPEG-1 clips can be plaved
back on three of the tour machines on which the soft-
ware was tested.

Software video compression is more time-consum-
ing than decompression. All algorithms discussed in
this paper are asymmetric in the amount of processing
needed for compression and decompression. Even
though the JPEG algorithm is theoretically symmetric,
the performance of the JPEG decoder is better than
that of the encoder. The difterence in performance is
due to the sparse nature of the quantized coefticient
matrices, which is exploited by the appropriate IDCT
oprimizations.

For video encoders, we measured the rate of com-
pression for both STF and quarter SIF (QSIF) formats.
Since the overhead due to I/0 aftects the rate at which
the compressor works, we present measured rates col-
lected when the raw video sequence is read from disk
and when it is captured in real time. The caprure cards
used in our experiments were the Sound & Motion
J300 (for systems with the TURBOchannel bus) and
the FullVideo Supreme (for PCI-based systems). The
compressed bit streams were stored as AVI files on Jocal
disks. The sequences used mn this experiment were
the same ones used for obtaining measurement tor the
various decompressors; their output characteristics are

Table 5
Typical Number of Frames Compressed per Second

given in Table 3. Table 5 provides performance nums-
bers for the M-JPEG and an unoptimized INDEO
compressor. For M-)PEG, rates for both monochrome
and color video sequences are provided.

The datain Table 5 indicates that the M-JPEG com-
pression outpertorms INDEO (although one has to
keep in mind that INDEQO was not optimized). This
difference  occurs because M-JPEG  compression,
unlike INDEQO, does not rely on interframe prediction
or motion estimation for compression. Furthermore,
when raw video is compressed trom disk, the encoder
performs better than when it is captured and com-
pressed in real time. This can be explained on the basis
of the overhead resulting from context switching in
the operating system and the scheduling of sequential
capture operation by the applications. Real-time cap-
rurcand compression of image sizes larger than QSIF
still require hardware assistance. It should be noted
that in Table 5, the maximum compression rate for
real-time caprure and compression does not exceed 30
frames per second, which is the limit of the capture
hardware. Since there are no such limitations for disk
rcads, compression rates of greater than 30 frames per
sccond tor QSIF sequences are recorded.

With the newer Alpha chip we expect to see
improved performance. A factor we neglected in our
calculations was prefiltering. Some capture boards are
capable of capturing only in CCIR 601 format and do
not include decimation filters as part of their hard-
warce. In such cascs, the software has to filter cach
frame down to CIF or QCIF, which adds substantially
to the overall compression time. For applications that
do not require real-time compression, software
digital-video compression mav be a viable solution
since video can be captured on fast disk arrays and
compressed later.

M-JPEG (Color)

M-JPEG (Monochrome)

INDEO (Color)

System Compress Capture and Compress  Capture and Compress  Capture and
(fps) Compress (fps) (fps) Compress (fps) (fps) Compress (fps)
SIF QSIF SIF  QSIF SIF QSIF SIF QSIF SIF QSIF SIF QSIF

AlphaStation

600 5/266

workstation 21.0 794 20.0 30.0 32.8 130 29.0 30.0 87 354 58 230

AlphaStation

200 4/266

workstation 10.8 45.1 12.0 30.0 15.8 729 20.0 30.0 56 220 42 130

DEC 3000/M900

workstation 13.2 56.6 79 280 219 878 140 290 6.0 254 45 7.6

DEC 3000/M500

workstation 6.7 26.6 7.3 8.1 10.4 404 7.4 8.2 28 118 2.2 8.7
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Sample Applications

We implemented several applications to test our archi-
tecture (codecs and renderer) and to create a test bed
for performance measurements. These programs also
served as sample code tor sottware developers incorpo-
rating SLIB into other multimedia sottwarce layers.

The Video Odyssey Screen Saver

The Video Odyssey screen saver uses software video
decompression and 24-bit YCbCr to 8-bit pseudo-
color rendering to dceliver video images to the screen
in a variety of modes. The program is controlled by
a control panel; shown in Figure 14.

The user can select from several methods of display-
ing the decompressed video or let the computer cvcle
through all methods. The floaters mode, shown in
Figure 15, floats once to four copics of the video
around the screen with the number of floating win-
dows controlled by a slider in the control panel. The
snapshot mode floats one window of the video around
the screen, but ceverv second takes a snapshot of a
frame and pastes it to the background behind the
floating window.

All settings in the control panel are saved in a con-
figuration file in the user’s home directory. The user
sclects a video file with the file button. In the current
implementation, anv AVI file containing Motion JPEG
or raw YUV video is acceptable. The user can sct the
time interval for the screen saver to take over. Controls
for sctting brightness, contrast, and saturation are also
provided. Video can be played back at normal resolu-
tion or with X2 scaling. Scaling is integrated with

3
I =
bt abd |l | Floaters 4
| I On 3
3 7. ] s =
Sleep in {10 4 min. 1 Float Speed 10
Screen saver: : 1 7
1 Video Rate 10
— 6.0
Snap Shot r —r
Striper 0 Brightness 10
Pileup 6.0
F= oy
= 0 Contrast 10
Video File 40
clock.avi r ——

0 Saturation 10

[ar] ] ]

_{ Large Window

1 |l Password protectl

Figure 14
Video Odyssev Control Pancl

Figure 15
Video Odyssev Screen Saverin Floaters Mode

the color conversion and dithering for optimization. A
pausc feature atlows the user to leave his or her screen
n alocked state with an active screen saver. The sereen
is unlocked only if the correct password is provided.

The Software Video Player

The sotftware video player is an application for viewing
video thatis similar to a VCR. Like Video Odvssey, the
software video plaver excrcises the decompression and
rendering portions of SLIB. Unlike Video Odyssey,
the software video plaver allows random access to any
portion of the video and permits single-step, reverse,
and fast-forward functions. Figure 16 shows the dis-
play window ofthe softwarce video player.

File Options |

| 4|4§>|)<‘—

Figure 16
The Software Video Plaver Displav Window
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The user moves through the file with a scroll bar
and a set of VCR-like buttons. The button on the far
Jett of the display window allows the video to be dis-
played at normal size or at a magnification of X2. The
tar-right butron allows adjustment of brightiess, con-
trast, saturation, and number of displayed colors. The
quality of the dithering algorithm used in rendering is
such that values as low as 25 colors lead to aceeprable
image qualitv. Allowable file formats for the software
video plaver are M-JPEG (AVI format and the JPEG
file interchange tormat or JFIF), MPEG-1 (both video
and system streams), and raw YUV,

Random access into the file is donc in once of two
ways, depending on the file format. For formats that
contain an index of the frame positions in the file (like
AV tiles), the index is simply used to seck the desired
frame. For formats that do not contain an index, such
as MPEG-1 and JFIF, the sottware video plaver esti-
mates the location of a frame based on the total length
of the video clip and a running average of frame size.
This technique is adequate for most video clips and has
the advantage of avoiding the time needed to first
build an index by scanning through the file.

Intertrame compression schemes like MPEG-1 and
INDEO posc special problems when trving to access
a random framc in a video clip. MPEG-1’s B- and
P-frames arc dependent on preceding frames and can-
not be decompressed alone. One technique for han-
dling random access into files with non-kev frames
and no frame index is to use the file position specified
by the user (with a scroll bar or by other mceans) as a
starting point and then to scarch the bit stream for the
next key frame (an I-frame in MPEG-1). At that point,
displayv can proceed normally. Reverse plav is also a
problem with these formats. The software video plaver
deals with reverse by displaving only the key frames.

It could display all frames in reverse by predecoms-
pressing all frames in a group and then displaying them
in reverse order, but this would require large amounts
of memory and would pose problems with processing
delays. Rate control functions, including fast-forward
and fast-reverse functions, can be done by selectively
throwing out non-key frames and processing kev or
[- frames onlv.

Other Applications

Several other applications using different components
of SLIB were also written. Some of these are
(1) Encode—a video encoding application that uscs
SLIB’s compression component to COMpress raw
video to M-JPEG formart, (2) Rendit—a viewer for
truc color images that uses SLIB’s rendering compo-
nent to scale, tone-adjust, dither, quantize, color space
convert, and displav 24-bit RGB or 16-bit YUV
images on frame buffers with limited plancs, and
(3) routines for vicwing compressed on-line video

Digital Technical Journal Vol.7 No.4 1995

documentation that was incorporated into Digital’s
vidcoconterencing product.

Related Work

While considerable cttort has been devoted to opti-
mizing video decoders, little has been done for video
encoders. Encoding is generally computationallv more
complex and time-consuming than decoding. As a
result, obraining real-ttme performance from encoders
has not been feasible. Another rationalization for
mnterest in decoders has been that many applications
require video plavback and only a few are based on
video encoding. As a result, “code once, play many
times” has been the dominant philosophy. In most
papers, rescarchers have focused on techniques for
optimizing the various codecs; very little has been
published on providing a uniform architecture and an
intuitive API for the video codecs.

In this section, we present results from other papers
published on software video codecs. Of the three
international standards, MPEG-1 has attracted the
most attention, and our presentation is biased slightly
toward this standard. We concentrate on work that
implements at least one of the three recognized inter-
national standards.

The JPEG software was made popular by the
Independent Software JPEG Group formed by Tom
Lane.™ He and his collcaguces implemented and made
available free software that could pertorm baseline JPEG
compression and decompression. Considerable atten-
tion was given to software modulariny and portability.
The main objective of this codec was still-image com-
pression although its moditied version has been used for
decompression of motion JPEG sequences as well.

The MPEG software video decoder was made popu-
lar by the multimedia research group at the University
of California, Berkeley. The availability of this free soft-
ware sparked the interest of many who now had the
opportunity to play with and experiment with com-
pressed video. Patel et al. describe the implementation
of this software MPEG decoder.®’ The focus in their
paper is on an MPEG-1 video plaver that would
be portable and fast. The authors describe various
optimizations, including in-linc procedurces, custom
coding frequent bit-twiddling operations, and render-
ing in the YUV space with color conversion through
look-up tables. They observed that the key bottleneck
toward real-time performance was not the compu-
tation involved but the memory bandwidth. Thev
also concluded that data structure organization and
bit-level manipulations were critical for good perfor-
mance. The authors propose a novel metric for com-
paring the performance of the decoder on systems
marketed by different systems vendors. Their metric,
the percentage of required bit rate per second per



thousand dollars (PBSD), takes into account the price
of the system on which the decoder is being evaluated.

Bheda and Srinivasan describe the implementa-
tion of an MPEG-1 decoder that is portable across
plattorms because the software is written entirely in
a high-level language.® The paper describes the vari-
ous optimizations done to improve the decoder’s
speed and provides performance numbers in terms of
number of tframes displaved per sccond. The authors
compare the speed of their decoder on various
plattorms, including Digital’s first Alpha-based PC run-
ning Microsoft’s Windows NT svstem. Thev conclude
that their decoder performed best on the Alpha system.
It was able to decompress, dither, and display a 320-
pixel by 240-line video sequence ata rate of 12.5 frames
per second. A very briet” description of the API sup-
ported by the decoder is also provided. The API is able
to support operations such as random access, fast for-
ward, and fastreverse. Optional skipping of B-frames is
possible torrate control. The authors conclude that the
size of the cache and the pertormance ot the display sub-
system are critical for real-time pertormance.

Bhaskaran and Konstantinides describe a real-
time MPEG-1 software decoder that can play both
audio and video data on a Hewlett-Packard PA-RISC
processor-based workstation.* The paper provides
step-by-step details on how optimization was carried
out at both the algorithmic and the architectural
levels. The basic processor was enhanced by including
in the instruction sct several multimedia instructions
capable of pertorming parallel arithmetic operations
that are critical in video codecs. The display subsvstem
is able to handle color conversion of YCbCr data and
up-sampling of image data. The pertormance of the
decoder is compared to software decoders running on
difterent platforms tfrom difterent manufacturers. The
comparison is not trulv fair becausce the authors com-
parce their decoder, which has hardware assistance
available ro it (i.c., an enhanced graphic subsystem and

new processor instructions), to other decoders thatare
truly software based. Furthermore, since all the codecs
were not running on the same machine under similar
operating conditions and since the sequence tested on
their decoder is not the same as the one used by the
others, the comparison is not trulv accurate. The paper
does not provide any information on the programs-
ming interface, the control flow, and the overall soft-
ware architecture.

There are numecerous other descriptions of the
MPEG-1 softwarce codecs. Eckart describes a sottware
MPEG video plaver that is capable of decoding both
audio and video in real time on a PC with a 90-mega-
hertz Pentium processor.? Software tor this decoder is
available freclv over the Internet. Gong and Rowe
describe a parallel implementation of the MPEG-1

encoder that runs on a network of workstations.” The
performance improvements of greater than 650
percent are reported when the encoding process is
performed on 9 nerworked HP 9000/720 systems
as compared to a single svstem.

Wu et al. describe the implementation and per-
formance of a software-only H.261 video codec on
the PowerPC 601 reduced instruction set computer
(RISC) processor.® This paper is interesting in that it
deals with optimizing both the ¢ncoder and the
decoder to facilitate real-time, full-duplex network
connections. The codec plugs under the Quick Time
architecture developed by Apple Computer, Inc. and
can be invoked by applications that have programmed
to the QuickTime interface. The highest display rate s
slightly under 18 frames per second for a @SIF video
sequence coded at 64 kilobits per sccond with disk
access. With real-time video capture included, the
frame rate reduces to between 5 and 10 frames per
second. The paper provides an interesting insight by
giving a breakdown ot the amount of time spent in
cach stage of coding and decoding on a complex
instruction sct computer (CISC) versus a RISC system.
Although the paper does a good job of describing the
optimizations, very little is mentioned about the soft-
ware architecture, the programming interface, and the
control flow.

Weend this section by recommending some sources
for obraining additional intormation on the state
of the art in softwarc-only video in particular and in
multimedia in general. First, the Society of Photo-
Optical Instrumentation Engineers (SPIE) and the
Association ot Computing Machinery (ACM) sponsor
annual multimedia conferences. The proceedings from

these conterences provide a comprehensive record of

the advances made on a vear-to-year basis. In addition,
both the Institute of Electrical and  Electronics
Engineers (IEEE) and ACM regularly publish issucs
devoted to multimedia. These special issues contain
review papers with sufficient technical derails.**
Finally, an excellent book on the subject of video com-
pression is the recently published Digital Pictures (scc-
ond edition) by Arun Netravali and Barry Haskel from
Plenum Press.

Conclusions

We have shown how popular video compression
schemes are composed of an interconnection of dis-
tinct functional blocks put together to meet specificd
design objectives. The objectives are almost ahvavs set
by the rarger applications. We have demonstrated that
the video rendering subsystem is an important compo-
nent of a complete plavback solution and presented
a novel algorithm for mapping out-of-range colors.
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We described the design of our software architecture
for video compression, decompression, and playback.
This architecture has been successfully implemented
over multiple platforms, including the Digital UNIX,
the OpenVMS, and Microsoft’s Windows N'T" operat-
ing systems. Performance results corroborate our
claim that current processors can adequately handle
playback of compressed video in real time with little or
no hardware assistance. Video compression, on the
other hand, still requires some hardware assistance for
real-time performance. We believe the widespread use
of video on the desktop is possible it high-quality
video can be delivered economically. By providing
software-only video playback, we have taken a step in
this direction.
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Integrating Video
Rendering into Graphics
Accelerator Chips

The fusion of multimedia and traditional com-
puter graphics has long been predicted but has
been slow to happen. The delay is due to many
factors, including their dramatically different
data type and bandwidth requirements. Digital
has designed a pair of related graphics accel-
erator chips that integrate video rendering
primitives with two-dimensional and three-
dimensional synthetic graphics primitives. The
chips perform one-dimensional filtering and
scaling on either YUV or RGB source data. One
implementation dithers YUV source data down
to 256 colors. The other converts YUV to 24-bit
RGB, which is then optionally dithered. Both
chips leave image decompression to the CPU.
The result is significantly faster frame rates

at higher video quality, especially for display-
ing enlarged images. The paper compares the
implementation cost of various design alter-
natives and presents performance comparisons
with software image rendering.
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Larry D. Seiler
Robert A. Ulichney

For vears, the computer industry confidently predicted
that ubiquitous, integrated multimedia computing was
just around the corner. After a number of delavs, this
computing cnvironment is finally a reality. It 1s now
possible to buy personal computers (PCs) and work-
stations that combince audio processing with real-time
display and manipulation of video or other sampled
data, though usually with significant Jimitations.

For the most part, the industry has followed one of
two paths to achicve real-time video processing. On one
path, video teatures are implemented almost entirely in
softwarc. When applied to the display of moving
images, this approach typicallv results in a combination
of low resolution, slow update times, and small images.

The alternative has been to achieve good video
image display performance by adding a separate video
hardware option to a PC. Image display is integrared
n the box and on the screen but is distinet from the
hardwarce that implements traditional svnthetic graph-
ics. Frequently, this design forces performance com-
promises, for example, by limiting the number of video
mmages that can appear ar the same time or by limiting
the interaction of images with the window system.

Recently, two kev enabling technologics have com-
bined ro make a better solution possible. Advances in
silicon technology enable low-cost graphics controller
chips to be designed with a significant number of gates
dedicated to supporting multimedia features. In addi-
tion, the peripheral componentinterconnect (PCI) bus
provides high-bandwidth, peer-to-peer communica-
tion berween the CPU, the main memory, and option
cards. Peak bandwidth on the standard 32-bit PCI bus
1s 133 megabyres per sccond (MB/s), and higher-
performance versions are also available. Good PCl
implementations can transfer sequential data ar 80 to
100 MB/s. Equally important, the PCI bus allows mul-
timedia solutions to be incrementally built up from a
softwarc-only implementation through various levels
of hardware support. The 2t Mudtimedia Desigi
Gutide describes this incremental approach and also
provides standards tor latency and video data formars.!

This paper describes a Digital enginecring project
whose goal was to combine video rendering features
and traditional svnthetic graphics into a unified graph-
ics chip, viclding high-quality, real-time image display



as part of the base graphics option at minimal extra
cost. This project resulted in two chip implementa-
tions, cach with its own variation of the same basic
design. The TGA2 chip was designed in the Work-
systems Group for usc in Digital’s PowerStorm 31230
and PowerStorm 4120 graphics options. The Dagger
chip (DECchip 21130) was designed in the Silicon
Engincering Group to match the needs of the PC mar-
ket. The TGA2 and Dagger chips are PCI bus masters
and can accept video data from cither the host CPU or
other video hardware on the PCI bus.

The basic block diagram of the two chips is illus-
wated in Figure 1. PCI commands are interpreted as
cither direct memory access (DMA) requests or draw-
ing commands, which the pixel engine block converts

to frame buffer read and write operations. Alternately,
PCI commands can directly aceess the frame bufter or
the video graphics arrav (VGA) and RAMDAC logic.
In the Dagger chip, the VGA and RAMDAC logic is
on-chip; in the TGA2 chip, this logic is implemented
oft-chip. Mostof the video rendering logic is contained
in the pixel engine block; the command interpreter and
DMA cngine blocks require some additional logic to
support video rendering.

The tollowing sections describe the capabilities, costs,
and trade-ofts of the video rendering feature set as
implemented in the Dagger and TGA2 graphics chips.

Defining a Low-level Video Rendering Feature Set

The key question when integrating multimedia into
a traditional synthetic graphics chip is which features
should be implemented in hardware and which should
be left in software. A cost-ctfective design cannot

include enough gates to implement every feature of
interest. In addition, time-to-market concerns do not
allow all features to be designed into the hardware.
Therefore, itis essential for designers to detine the pri-
mary trade-oft between features that can be casily and
effectively implemented in hardware and those that
can be more easily implemented in sottware without
compromising performance.

For the Daggerand TGA2 graphics chips, our basic
decision was to leave image compression and decom-
pression in software and put all pixel processing opera-
tions into hardware. This approach lets sottware do
whatit does best, which is perform complex control of
relatively small amounts of data. Tr also lets hardware
do what it docs best, which is process large amounts of
data where the control is relatively simp

¢ and is inde-
pendent of the data. Specifically, in these two graphics
chips, image scaling, filtering, and pixel format conver-
sions are all performed in hardware.

Performing the scaling in hardware greatly reduces
the amount of data that the software must process and
that must be transmitted over the PCI bus. For exam-
ple, a 320-by-240-pixel image represented with 16-bit
pixels requires just 150K bvtes. Even at 30 frames per
second (fps), transmitting an image of this size con-
sumes about 5 percent of the available bandwidth of
a good PCI bus implementation. This data could be
displaved as a 1,280 by 960 array ot 32-bit pixcls for
display, which would use more than 80 percent of the
PCI bus bandwidth, if the scaling and pixel tormat
conversion oceurs in software.

One data-intensive operation that we chose not to
implement in hardware is video input. Designers will
need to revisit this decision with each new generation

PCI BUS
PCI INTERFACE
DMA COMMAND I GENERAL- 1
CONTROLLER BUFFER | purPOSE |
Y PORTAND | RAMDAC
VIDEO | CONTROL
I Loaic |
GRAPHICS CONTROLLER | (TGA2)
R |
r I, |
COPY BUFFER EgﬁSERER | VGA,
VIDEO LOGIC, | VIDEO
\ —>! AND " ouTPuT
| RAMDAC |
(DAGGER) |
FRAME BUFFER CONTROLLER ~ [——>I
i P |
FRAME
BUFFER
MEMORY
Figure 1
Dagger and TGA2 Chip Structure
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of graphics chips. For the current generation, we
decided to require the use ot a separate video input
card for the subsct of systems that require video cap-
ture. Wedecided not to include video capture support
in the Dagger and TGA2 chips for two basic rcasons.
First, current application-specific integrated circuit
(ASIC) technology would have allowed only a partial
solution. We could have put a video input port in
hardware but could not have supported the complex
operations needed tor image compression.

The second reason stems from a markcet issue. Video
display is rapidly becoming ubiquitous, just as mice
and mulowindow displays have become commonplace
for interacting with PCs and workstations. [t is now
practical to support high-quality, real-time video dis-
play in the base graphics chip. However, the market
for video input stations is still much smaller than the
market for video display stations. When the size of
the video input station market is large enough, and the
cost of integrating video input is small enouglh, sup-
port for video put should be added to the base
graphics chip.

Video Rendering Pipeline

This section describes the stages of videco render-
ing that are implemented in the Dagger and TGA2
graphics chips. These stages are pixel preprocessing,
scaling and filtering, dithering, and color conversion.
In some cases, such as scaling and filtering, the two
implementations are practically identical. In others,
such as color conversion, dramatically different imple-
mentations are used to address the difterences in
requirements for the two chips.

Pixel Preprocessing

The first stage in the pipeline inputs pixel data and
converts it into a standard form to be used by the rest
of the pipeline. This involves both converting input
pixels to a standard tormat and pretranslating pixel

31 24 23 16 15 87 0
ALPHA | v | v | v |
32-BIT YUV. LITTLE-ENDIAN ORDER

31 2423 16 15 87 0
| Y1 | VO | Y0 | o1 |
16-BIT YUV, LITTLE-ENDIAN ORDER

31 2423 16 15 87 0
| Vo1 | Y1 | vt | vo |
16-BIT YUV. GIB-ENDIAN ORDER

31 2423 16 15 87 0
| vwor | vo | voo | vi |
16-BIT YUV, BIG-ENDIAN ORDER

valucs or color component valucs. The Dagger and
TGA2 chips use DMA over the PCI bus to read packed
arrays of pixcls from memory.

Pixel Format Conversion Multimcedia images are typi-
cally represented in YUV format, where the Ychannel
specifies luminance and the ¢ and Vchannels repre-
sent chrominance. After the CPU has decompressed
the source image into arravs of ¥, (. and 1 pixel valucs,
this data is transmitted to the graphics chip in one of
anumber ofstandard formats. Alternately, images may
be specitied as red/green /blue (RGB) triples instead
ot YUV triples, or as a single index valuc that specifies
a color from a color map random-access memory
(RAM) in the video logic. The PCI Mudtimedic Design
Guide specifics many standard pixel formarts.!

Figure 2 shows some of the input pixel tormats that
are supported in the Dagger and TGA2 graphics chips.
The YUV formats on the left allocate 8 bits for each
channel. The upper format ot the four uses 32 bits per
YUV pixel and is called YUV-4:4:4+a.' The alpha ticld
is optional and is not used in the Dagger and TGA2
chips. Alpha values are used for blending opcrations
with partially transparent pixels. An alpha value ot zero
represents a fully transparent pixel, and the maximum
value represents a fully opaque pixel.

The remaining three YUV tormats specity a separate
Y value per pixel but subsample the (7 and 7 values so
that a pair of pixcls shares the same (7and V' values. Most
YUV compression schemes subsample the chrominance
channels, so this approach does not represent any loss of
data from the decompressed image. Since the human
visual system is more sensitive to changes in luminance
than ro changes in chrominance, tor natural images, (-
and ¥ can be subsampled with little loss ofimage qualitv.

The three 16-bit YUV formats represent the most
common orderings for chrominance-subsampled YUV
values. The little-endian and gib-endian orderings are
called YUV-4:2:2" The little-endian ordering s
the order that is typically produced on the PCI bus

31 2423 16 15 87 0
| ALPHA [ R [ G | B
32-BIT RGB (8/8/8)

15 1110 54 0
Lrl e |58 |
16-BIT RGB (5/6/5)

15 14 10 9 0

54
Lrlc [8 ]

16-BIT RGB (5/5/5)

7 0

|8-BIT INDEXI

8-BIT INDEXED

8-BIT RGB (3/3/2)

Figure 2
YUV and RGB Pixel Formats in the Dagger and T'GA2 Chips
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by a little-endian machine. The gib-endian ordering is
produced on the PCI bus by a big-endian machine
that converts its data to little-endian order, as required
for transter across the PCI bus. That operation pre-
serves byte order for 8-bit and 32-bit data types but
not for 16-bit data tvpes like this one. Finally, the big-
endian byte ordering is used bv some video rendering
software and hardwarc options.

The RGB formats on the right side of Figure 2 allo-
cate varying numbers of bits to the red, green, and
bluc color channcls to produce 8-bit to 32-bit pixels.
To achicve aceeptable appearance, 8-bit RGB requires
high-quality dithering, such as that provided by
the AccuVideo dithering technology contained in the
Dagger and TGA2 chips and described later in this sec-
tion. Thirty-two-bit RGB has an optional alpha chan-
nel that is not used in the Dagger and TGA2 chips.
Some hardware usces the field tor control bits or over-
lay planes instcad of tor the alpha value. Two different
16-bit RGB formarts arc common. One format pro-
vides 5 bits per color channeland a single alpha bit that
indicates transparent or opaque. The other format
provides an extra bit tor the green channel, since the
cyc is more sensitive to green than to red or bluc.

Finally, 8-bit indexed tormatis shown at the bottom
of Figure 2. This tormat is simply an 8-bit value that
represents an index into a color map. Dagger has an
mtegral color map and digital-to-analog converter,
whereas TGA2 requires an external RAMDAC chip to
provide its color map. The 8-bit indexed format can
represent an indexed range of values or simply a collec-
tion of independent valuces, depending on the needs
of the application. In the Dagger and TGA2 chips, the
8-bit indexed format is processed by being passed
through the ¥ channel.

Once in the pipeline, the pixels are converted to
a standard format consisting of three 8-bit values per
pixcl. The three values represent RGB or YUV compo-
nents, depending on the original pixel format. If
the orignal ficld contains fewer than 8 bits, tor exam-
ple, in the 8-bit RGB format, then the available bits are
replicated. Figure 3 shows the expansion of RGB
pixcls to 8/8 /8 RGB tormat. Replicating the available

bits to till low-order bit positions is preferable to fill-
ing the low-order bits with zeros, since replication
stretches out the original range of values to include
both the lowest and highest values in the 8-bit range,
with roughly equal steps benween them.

Adjust Look-up Table Inthc TGA2 chip,a 256-entry
look-up table (LUT) may beused during pixel prepro-
cessing. Figure 7 (discussed n the section Color
Conversion Algorithms) shows this table, called the
adjust LUT, in the TGA2 pipcline. This table supports
two different data conversions: luminance adjustment
and color index conversion. The adjust LUT is not
available in the Dagger chip because it requires too
many gates to meet the chip cost goal tor Dagger.
Luminance adjustment is used with YUV pixel for-
mats. When this featurc is sclected, the 8-bit ¥ value
from the input pixel is used as an index into the adjust
LUT. The 8-bit value read trom the table is used as ¥
in the next pipeline stage. Proper programming of the
table allows arbitrary luminance adjustment functions
to be performed on the input ¥ value; brightness and
contrast control are typically provided through this
mechanism. Standards for digitally encoding video
specity limited ranges for the ¥, ¢/ and Vvalues, largely
to prevent analog noise from creating out-of-range
values.? A particularly important use of this luminance-
adjust fecature is correcting the poor contrast that
would otherwise result from this range limitation. In
this casce, the adjust LUT may be used to remap the Y
values to cover the full range of values from 0 to 255.
Another desirable feature is chrominance adjust-
ment, under which the ¢/ and 1 values arcalso arbitrar-
ily remapped. The J300 provides this feature; however,
TGA2 does not, for two reasons.” First, chrominance
adjustment is required less often than luminance
adjustment and can be emulated in software when the
feature is required. Second, chrominance adjustment
consumes a significant amount of chip arca—either 2K
or4K bits of memory, depending on whether ¢ and V'
use the same table or different tables. In this genera-
tion of graphics chips, the feature could not be justi-
fied in the TGA2 chip. The Dagger chip, which was

[R4|R3|R2[R1[Ro[R4|Ra]R2| |Gs5]|a4]as]cz|a1|ao]as|aa] |B4[B3|B2]B1]B0|B4]BS[B2]

EXPANSION OF 16-BIT 5/6/5 RGB PIXELS TO 8/8/8 RGB

[ra[Rs[Ra]R1]Ro[r4RalR2] [c4|Ga|a2]a1|co|ca]es|az| B4 [B3[B2|B1]BO|B4[B3]B2]

EXPANSION OF 16-BIT 5/5/5 RGB PIXELS TO 8/8/8 RGB

[R2]R1[ro[R2[R1[Ro[ReR1]  [a2[c1]eo[a2]ai]ao]ae]a1] [B1]eo]B1]B0]B1]BO]B1BO|

EXPANSION OF 8-BIT 3/3/2 RGB PIXELS TO 8/8/8 RGB

Figure 3
Fxpanding RGB Pixcls to 8§/8/8 RGB Formart
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intended tor lower-cost systems, includes neither
chrominance nor luminance adjust LUTs.

The other use for the adjust LUT in the TGA2 chip
is for color index conversion. This operation can be
performed when the input pixel tormat is 8 bits wide.
In this case, the 8-bit input pixel is used as an index
into the table. The resulting value is used as the
Y-channel value in the rest of the pipeline, and the U
and Vchannels are ignored. Later in the pipeline, the
color conversion stage is skipped, and the ¥-channcl
value is used directly as the resulting 8-bir pixel valuc.

Color index conversion is an opceration that is
particularly desirable when using the Windows NT
operating svstem. Typically, 8-bit screen pixels are
converted to displaved colors by micans of a color LUT
in the back-end video logic. Under the X Window
System graphical windowing cnvironment, the map-
ping between an index and its color can be changed
only by the application. Under the Windows NT oper-
ating system, however, the mappings may change
dynamically. Therefore, an application that has stored
animage as 8-bit index values will need to remap those
index values betore copving it to the screen. This con-
version can be donce in software, but it is faster and
simpler to usc the adjust LUT in the TGA2 chip to per-
form the remapping.

Scaling and Filtering

In the next stage in the rendering pipeline, the chip
performs scaling and tiltering. The Dagger and TGA2
chips support one-dimensional (1-1) scaling and hlter-
ing in hardware. Limiting the chips to 1-D hltering sig-
nificantly simplifics the chip logic, since no line buffers
are needed. Somewhat higher-quality images can be
achieved using two-dimensional (2-D) hltering, but
the difference is not significant. This difference is fur-
ther reduced by the AccuVideo dithering algorithm
that s implemented by the Dagger and TGA2 chips.
Two-dimensional smoothing filters can be supported
with added software processing, if required.

Bresenham-style Scaling Image scaling in the Dagger
and TGAZ2 chips uses pixel replication but is not lim-
ited to integer multiples. Instead, images can be sca
from anv integral source width to anv integral desti-
nation width. Scaling is implemented through an
adaprtation of the Bresenham line-drawing algorithm.
A complete description ofthis Bresenham-style scaling
algorithm appears in “Bresenham-stvle Scaling”; the
following paragraphs provide an outline of the algo-
rithm, which is the same scaling algorithm used in the
J300 family of adapters.3*

The Brescnham scaling algorithm works like the
Bresenham linc-drawing algorithm. Supposc we are
drawing alinc from (0, 0) to (10, 6), so that dx =10
and ¢y = 6. This is an X-major line; that is, the linc is
longer in the X dimension than in the Y dimension.

ed
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The Bresenham algorithm draws thisvecror by initial-
izing an error term and then incrementing it ey times,
in this example, 10 times. Each time the algorithm
increments the term, a pixel is drawn. The sign of
the error term determines whether to tind the next
pixel position by stepping to the right (incrementing
the X position) or by stepping diagonally (increment-
ing both X'and }7). The crror term is incremented in
such a way that as the X position is incremented 10
times, the ) position is incremented 6 times, thus
drawing the desired vector.

For Bresenham scaling, dx represents the width of
the source image, and ¢y represents the width of the
destination image on the screen. When reducing
the size of the source image, ¢fx is greater than ¢y and
the error terms and increments are set up in the same
way as the X-major Bresenham line drawing, as
deseribed in the previous paragraph. One source pixel
is processed cach rime the error term is incremented.
When Bresenham’s line algorithm indicates a step in
the X'dimension only, the source pixel is skipped. When
the algorithm indicates a step in both the Nand the ¥
dimensions, the source pixel is written to the destina-
tion. As a result, exactlvelv source pixcels are processed,
and exactly oy of them are drawn to the screen.

Enlarging an image works in a similar tashion. For
example, considera source image that is narrower than
the destination image, that is, dix is less than ¢/y. This
is cquivalent to drawing a Y=major Bresenham line in
which the error term s incremented ¢y times and the
Xdimension is incremented dx imes. The scaling algo-
rithm draws a source pixel to the destination at cach
step. If the line-drawing algorithm increments only in
the Ydimension, it repeats the current pixel. If the line-
drawing algorithm increments in both the Xand the ¥
dimensions, it steps to and displavs the next source
pixel. Consequently, the ¢/ source pixels are replicated
to vield ¢fy destination pixcls, thus enlarging the image.

The Bresenham line-drawing algorithm has twe
nice properties that are shared by the Bresenham scal-
ing algorithm. First, it requires no divisions to com-
pure the error increments. Sccond, it produces lines
that are as smooth as possible, given the pixel grid.
That is, tor an X-major line, cach of the v pixcels has
a Y position that is the closest pixel to the intersection
of its X position with the real vector. Similarly, the
Bresenham scaling algorithm sclects pixcls that have
the most even spacing possible, given the pixel grid.

Justaslines can be drawn from lett to right or from
right to left, images can be drawn in either direction.
An image drawn in onc direction is the mirror image
of the image drawn in the other direction. Mirror
imaging is somctimes uscd in teleconferencing, so that

users can ook at themsclves the way they normally sec
themselves. Similarly, images can be turned upside
down by simply drawing to the display from bottom
to top instead of from top to botrom.



Scaling in the ¥ dimension is pertormed similarly
to X-dimension scaling. On the TGA2 chip, scaling
is performed in software instead of in hardware: the
software increments an error term to decide whether
to skip lines (for reducing) or repeat lines (for enlarg-
ing). This is acceprable because the CPU has plenty of
spare cycles to perform the scaling computations while
the algorithm draws the preceding line. The Dagger
chip supports Y-dimension scaling in hardware to
reduce the number of commands that are needed
to scale an image.

Smoothing and Sharpening Filters Likc the J300, the
Dagger and TGA2 chips provide both smoothing and
sharpening filters. Table 1 shows the available fileers.
All are three-tap fileers that are inexpensive to imple-
ment in hardware. The smoothing hilters are used to
improve the quality ot scaled images. The sharpening
filters provide cdge enhancement. The two filters
marked with asterisks (*) arc available only on the
TGA2 chip. The others are available on both the
Dagger and the TGA2 chips.

The three rows of Table 1 show three levels of
smoothing and sharpening filters that can be applied.
The degree of smoothing and sharpening mav be
selected separately. The first row shows the identity
filter. This is selected to disable smoothing or sharpen-
ing. The second and third rows show three-tap filters
that perform a moderate and an aggressive degree of
smoothing or sharpening.

Note that when using the aggressive simoothing
filter, the center clement does not contribute to the
result. This filter is intended tor postenlarge-
ment smoothing when the scale factor is large. Since
enlargement is performed by replicating some of the
pixels, the center of any span of three pixels will be
identical to onc of its neighbors when scaling up by
a factor of two or more. As a result, the center pixel
affects the resulting image, since it is replicated either
to the left or to the right. The (1,2, 0, 1/2) filter
aftfords the greatest degree of smoothing that can
be achieved with a three-tap filter.

These tilter functions are simple to implement in
hardware. The implementation requires storing only
the two preceding pixels and performing from one to
three addition or subtraction operations. The sharpen-
ing filters require an additional clamping step to

Table 1
Smoothing and Sharpening Filters
Degree of
Smoothing Filter  Filtering Sharpening Filter
(0, 1,0) Unfiltered (0,1, 0)
('/4, '/2, '/4)* Moderate (_‘/2. 2, _‘/2)
(2,0, %) Aggressive (1,3, =1~

* Available only on the TGA2 chip

ensure that the resultis in the range 0 to 1. Betrer fil-
tering functions could be obtained by using tive taps
instead of three taps but only by significantly increas-
ing the logic required tor tiltering.

Pre- and Postfiltering The order in which filters arc
applied depends on whether the image is being
cnlarged or reduced. When reducing an image, the
Bresenham scaling algorithm climinates pixels from
the source image. This can result in severe aliasing arti-
tacts unless a smoothing filter is applied betore scaling.
The smoothing filter spreads out the contribution of
cach source pixel to adjacent source pixcls.

When enlarging an image, the smoothing filter is
applied after scaling. This smoothes out the cdges
between replicated blocks of pixels. The smoothing fil-
ters eliminate the block effect entirely when enlarging
up to two times the source image size. The AccuVideo
dithering algorithm also contributes to smoothing out
the edges between blocks. Another way to smooth out
the edges is to use higher-order interpolation to find
destination pixcl values. Such methods require more
logic and do not necessarily produce a better-looking
result, particularly for modestscale tactors.

It sharpening or edge enhancement is desired, a
sharpening filter is used mn addition to whatever
smoothing filter is sclected. For reducing an image,
the sharpening filter is applied after scaling—sharpen-
ing an image betore reducing its size would only exag-
gerate aliasing cttects. For enlarging an image, the
sharpening filter is applied betore scaling—sharpening
an image after enlargingits size would only amplify the
edges berween blocks. As a result, when both sharpen-
ing and smoothing filters arc used, one is applied
betore scaling and the other is applicd after scaling.

AccuVideo Dithering Algorithm

AccuVideo dithering technology is Digital’s propri-
etary high-quality, highly efficient method of render-
ing vidco with an arbitrary number of available colors.
Included 1s YUV-to-RGB conversion, if necessary,
with caretul out-of-bounds color mapping. The gen-
eralalgorithm is described in two other papers in this
issue of the fourrnal, which discuss the implementation
of the ]300 video adapter and softwarc-only video
plavers.®* In the chips described in this paper, we sim-
plified the general implementation of the AccuVideo
technology by sctting constraints on the number of
available colors.

Review of the Basic Algorithm The development of
the gencral mcan-preserving multilevel dithering
algorithm is presented in “Video Rendering,” which
appears in an carlier issue of the fournal® Figure 4
illustrates the theorctical development of the fun-
damental algorithm for dithering a simple compon-
ent of a color image. As stated in the earlier paper,
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Multilevel Dithering Algorithm Used in the J300, with the Gain Function Separated trom the Adjust LUT

a mean-preserving dithered outputlevel Z,,can be pro-
duced by quantizing the sum of an element from a
normalized dither array and an input level Z; by simply
shifting the sum to the right by R bits. This simplified
quantizer, that is, a quantizer with step size Ag = 2%,
is possible only if the range of input to the adder Z;,
or the number of input levels N, is properly scaled by
a gain G. In the J300 and software-only implementa-
tions, G isincluded in an adjust LUT. In Figure 4, we
explicitly separate G from the adjust LUT. The adjust
LUT is optionally used to control characteristics such
as contrast, brightness, and saturation.

The components of this dithering system can be
designed by specifying three parameters:

1. &V, the number of raw input levels of the given
color component

2. N,, the number of desired output levels

3. b, the width of the adder in bits, and the number of

bits used to represent the input levels

Using the results from the multilevel dithering algo-
rithm, the number of bits to be right-shifted is

R=intg lo s
= l o —
8 N =1
and the gain is
. ,N’ Sl
' W=

where

N,=(N,—1)2%+1.

The eftect of the gain is multiplicative. Thatis, £, = L,
X G, where L, is the raw input level. In the absence of
an adjust LUT, this multiplication must be explicitly
performed.

Simplified Implementation of Gain In the above sum-
mary of the basic dithering algorithm, the values of A,
and N, can be any integer, where N, > N,. Consider
the important special case of restricting these values to
be powers of two. Introducing the three integers p, ¢,
and z, we specity that N, = 2°, N,= 29, and b=p + =z
where zis the number of additional bits used to repre-
sent L; over L,. z > O guarantees that N, > N, thus
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ensuring that all the raw input levels will be distin-
guished by the dithering system. z = Ocauses N, < N,.
This situation results in some loss of resolution of raw
input levels, because, in all cases, the number of per-
ceived output levels from the dithering system will be
at most V.

Using this information and the expressions of R and
G, it is straightforward to show that R = p — g + z,
and

N,=(2-1)2%+1.
Further,

o (@ =D2)-1 _ (20-1)2°
2

(2/)_ 1)2(1/ 2 ’

A key approximation made at this point is

2

35_1 ~ 1.

Note that this approximation becomes better as the
number of bits, p, in the raw input increases.

An approximate gain thus simplifies to

A U=
2 = 2 g2

. . ~ A - .y .
With this value of G, the resulting modified input levels
will be proportionally less than ideal by a tactor of

& _2r-1
G 2r

The fact that this error is negative guarantees that
overflow will never occur in the multilevel dithering
system. Therefore, a truncation step is not needed in
the implementation. Figure 5 illustrates the imple-
mentation of G, which consists of the subtraction of
a (g — 2)-bit right shift of Z, from a z-bit left shift
of L,. This simple “multiplier” is what is implemented
in Dagger, TGA2, and the ZLX family of graphics
accelerators, where the power-of-two constraint on
the output levels is made.

Consider, for example, the case where p = 8 (N, =
256), g = 3 (N, = 8), and z = 1. From the equations
just presented, R =06, h =9, and , = 449. Although
our approximation for the gain, G= (2 —1/4) = 1.75,
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Figure 5
Parallel-shifter Implementation of the Gain Function

is not equal to the ideal gain, G = 448 /255 =~ 1.757,
the ratio G /G = 0.996 is so close to unity that any
resulting differences in output are indistinguishable.

Shared Dither Matrix Another simplification can be
made by having all the color components in the render-
ing system share the same dither matrix. As defined in
“Video Rendering,” a dither template is an array of &,
unique elements, with values 7e {0, 1, ..., (N, — 1)].¢
These elements are normalized to establish the dither
matrix element ¢ for each location [x, y] as follows:

s

. 27, 1
dlx,y] =int /7/( r[x,y]+§]

For any real number 4 and any positive integer X,
the following is always true:

nt {1’3} =int {iﬁ[‘(A} .

It] for each color component, N, is a power of two,
we can exploit this fact by storing only a single dither
matrix designed for the smallest value of N,
Specifically, this would be N, = 27~ %2 where his the
width in bits of the adder and R, is the largest value of
R in the system. For the other larger number of output
levels N, = 2"~ * with smaller values of R’ normalized
dither matrix values ¢’ [x, y] can easily be derived by a
simple right shift by (R,, — R") bits of the stored dither
matrix, as shown in the following equation:

d'[x,y] =int 6; /[fcl:]

Since our dither matrices are typically 32 by 32 in
size, the hardware savings in storing only one matrix is
significant. Also, the stored values can be read-only
memory (ROM) instead of the more costly RAM.
Typically, RAM requires up to eight times the area of
ROM in either gate array or custom implementations.

Color Conversion Algorithms

The result of the preceding pipeline stages is three 8-bit
values that represent either RGB or YUV color chan-
nels. If this format is to be written to the frame butfter,
then no further processing is necessary. If a difterent
destination format is specified, then Dagger and TGA2
must perform a color format conversion. Both chips
use the same algorithm to dither RGB values down to
a smaller number of bits per color channel. Both chips
allow writing YUV pixels to the frame bufter, although
TGA2 allows the writing of only the 32-bit YUV for-
mat. Finally, both chips can convert YUV pixels into
the RGB color space, but they use markedly ditferent
algorithms to perform this conversion.

Although YUV pixels can be written to the frame
buffer in both Dagger and (to a more limited extent)
TGA2, neither chip supports displaying YUV pixels to
the screen. YUV pixels may be stored only in the off-
screen portion of the frame buffer as intermediate val-
ues for further processing. This is because it is far more
efficient to convert YUV to RGB in the rendering
stage than to perform the conversion in the back-end
video logic. At the rendering stage, it need only be
done at the image update rate of up to 30 fps. If
performed in the back-end video logic, the YUV-to-
RGB conversion must also be performed at the screen
update rate of up to 76 fps. This extra, higher-speed
logic may be justitied if preconverting YUV to RGB
noticeably reduces the image quality. Given the
AccuVideo dithering algorithm, however, postconver-
sion is not necessary.

RGB-to-RGB Color Conversion Even if both the source
and the destination pixel tormats represent RGB color
channels, it may still be necessary to perform a bit-
depth conversion. Input pixels are expanded out to
8 bits per color channel for processing through the
video rendering pipeline. Destination pixels may have
8, 15, 16, or 24 bits for RGB and so may need to be
dithered down to a smaller number of bits per pixel.
TGA2 also supports 12-bit RGB, as described later in
this section.

Dagger and TGA2 differ somewhat in the specific
formats that they support. Dagger allows writes to the
frame butter of 3/3/2,5/5/5,5/6/5, and 8/8/8
RGB pixel formats. TGA2 supports all these as source
pixels but does not allow writes of 5/5/5 and 5/6/5
RGB, because TGA2 does not support 16-bit pixels in
the frame buffer. Dagger supports 16-bit pixels
because they are very common in the PC industry. In
the workstation industry, however, which is TGA2’s
market, 16-bit pixels are almost unknown. As the
Windows NT operating system gains in popularity, this
situation is likely to change.

Instead of supporting 16-bit pixels, TGA2 allows
writes to the frame buffer of 4,/4 /4 RGB pixels, with
16 possible shades for each of the red, green,and blue
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color channels. This is a standard pixel format tor
workstation graphics, since it allows two RGB butters
to be stored in the space of a 24-bit, 8/8 /8 RGB pixel.
This in turn allows double buttering, in which onc
image is drawn while the other image is displayed.
Double buftering is essential for animation applica-
tions on large screens, since the rendering logic gener-
ally cannot repaint the screen tast enough to avoid
flicker eftects.

YUV-to-RGB Color Conversion on the Dagger Chip
The key design tocus for the Dagger chip was to sup-
portlow-cost graphics options with the highest possi-
ble performance and displav qualitv. As a result,
although Dagger supports up to 32 bits per pixel, its
design center is for 8-bit-per-pixel displays. Therefore,
the algorithm that Dagger uses for converting YUV to
RGB produces the best possible results given a limit of
just 256 resultant colors.

The resulting dithering system design is shown in
Figure 6. Note that the same svstem is used to dither
both RGB data and YUV data. Because the number of
output levels tor each component is always a power
of two, we can use the simple gain circuit of Figure 5
and sharc the same dither matrix by right-shifting its
contents, as derived in the last section. In hardware,
this shifting simply requires a multiplexer to sclect
the most significant bits of the data. The dither matrix
is 7 bits wide to support dithering down to 2-bit blue

values in 3/3/2 RGB, but only 6 dither matrix bits
are used for 3-bit output, and only 5 bits arc used ftor
4-bit output.

YUV data is always dithered to 4 bits of Yand 3 bits
cach of and 17 An additional bit is provided tor the ¥
channel because the eye is more sensitive to changes of
intensity than to changes of color. These 10 bits are
input to a color convert LUT, which is implemented as
a ROM. Its contents are generated by an algorithm
with some out-of-bounds mapping.™ Approximatcly
three-fourths of the possible combinations of YUV
values are outside the range of colors that can be spec-
ified n the RGB color space. In these cases, the color
convert LUT ROM produces an RGB value that has
the same luminance but a less saturated color.

The color convert LUT ROM represents these 256
colors as an 8-bit index that is stored in the frame
buffer. One additional bit per pixel in of F-screen mems-
ory specifies which pixels result from YUV conversion
and which are used by other applications. When pixels
are read from the frame bufter tor displav to the
screen, Dagger’s internal RAMDAC reads that addi-
tional bit per pixel to decide whether to map cach byte
through a standard 256-cntry color map or through a
ROM thatis loaded with the 256 colors selected in the
color convert LUT ROM. As a result, Dagger allows
sclection of the best 256 colors for YUV-to-RGB con-
version, in addition to aflowing color-mapped applica-
tions to store 8-bit index values in the frame bufter.
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Figure 6

Dithering and YUV-to-RGB Conversion in the Dagger Chip
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It is possible to extend this approach to use more bits
of dithered YUV to produce more finely quantized
RGB colors. The size of the required look-up ROM
quickly gets out of hand, however. Dagger uses a 1K-
by-8-bit ROM to convert 4/3/3 YUV into 256 RGB
colors. Using 4/4 /4 YUV would make the ROM five
rimes larger (4K by 10 bits). To produce 4K RGB col-
ors would require a ROM with 16K 12-bit entrics.

YUV-to-RGB Color Conversion on TGA2 The TGA2
graphics chip performs dithering and color conversion
in the reverse order, as compared to the Dagger chip.
In TGA2,a YUV pixcl is tirst converted into an RGB
pixel at 8 bits per channel. This 24-bit RGB pixel is
then cither written to the frame buffer or dithered
down to 8- or 12-bit RGB before being written to the
frame butter. Figure 7 shows the dithering system that
isusced in the TGA2 chip.

The key advantage of the TGA2 approach over the
Dagger approach is that it allows deeper frame butters
to usc higher-quality color conversion. It a 24-bit
frame bufter is being used, TGA2 allows YUV to be
converted to full 8§/8/8 RGB. On the Dagger chip,
YUV-to-RGB conversion produces only 256 difterent
colors, regardless of the tframe bufter depth. This is
acceptrable on Dagger, where 24-bit frame bufters are
far from the design center. Also, the Dagger method
usces fewer gates, which is an important consideration
for the cost-constrained Dagger implementation.

Another advantage of this algorithm for TGA2 is
thattheserof colors used tor video image display is the
same one used by full-color synthetic graphics applica-
tions, such as a solid modcling package or a scientific
visualization application. This allows a common color

map to be used by both image applications and shaded
graphics applications. Unlike the Dagger chip, TGA2
does not have an integrated RAMDAC and uses an
external RAMDAC. Typical low-cost RAMDAC chips
provide only one 256-entry color map, so it 1s impor-
tant for TGA2 to allow image applications to share this
color map with other applications.

Figure 8 illustrates how the TGA2 chip pertorms
YUV-to-RGB color conversion. By the standard defin-
ition of the YUV format, the conversion to RGB
consists of a 3-by-3 matrix multiplication operation
in which three terms cqual 1 and two terms cqual 0.2
The TGA2 chip performs this matrix multiplication
using four LUTSs to pertorm the remaining four multi-
plications, together with some adders. A final multi-
plexer is required to clamp the resulting values to the
range 0 to 255.

The TGA2 color conversion algorithm has onc dis-
advantage: the algorithm does not handle out-of-
range YUV valucs as well as the techmque used in the
Dagger chip. In Dagger, cach YUV triple that is out of
range has an optimal or ncar-optimal RGB triple com-
puted for it and placed in the rable. With the TGA2
technique, the red, green, and blue components are
computed separately. The individual color compo-
nents are clamped to the range boundarics, but if
a YUV triple results in an out-of-range value for green,
this cannot attect the red or blue values. The result
is some color distortion tor oversaturated images. [f
sucha result would be unsatisfactory, it is necessary to
adjust the colors in software, e.g., by reducing the sat-
uration or the intensity of the source image so that
most YUV triples map to valid RGB colors.
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Dithering System in the TGA2 Chip
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YUV-to-RGB Conversion in the TGA2 Chip

Implementation Costand Performance

Both the Dagger and the TGA2 chips have the
design goal of integrating as many as possible of
the J300 design features into a single-chip graphics
and video solution. Dagger and TGA2 include dif-
ferent features and implement some common fea-
tures in different ways because each chip focuses on
a different market. As mentioned carlier, Dagger is a
PC graphics accelerator chip, and TGA2 is a work-
station graphics accelerator chip.

Gate Cost
Table 2 shows the number of gates required to add the
various imaging operations to the TGA2 chip. TGA2
is implemented in IBM’s SL standard cell technology.
The video rendering logic represents less than 10 per-
cent of the total TGA2 logic. The chip contains no addi-
tional gates for video scaling or dithering logic, since
nearly all the gates needed to implement those functions
are already required in TGA2 to implement Bresenham
line drawing and dithering of 3-D shaded objects.
Table 2 clearly shows why the luminance adjust
LUT was omitted from Dagger. On the TGA2 chip,
the LUT requires more than half the total gates used
tor multimedia support.

Display Performance

The peak hardware performance tor image operations
on the TGA2 chip depends primarily on the internal
clock rate, which is 60 megahertz (MHz). The TGA2
chip is fully pipelined, so that one pixel is processed on
each clock cycle, regardless of the filtering, conversion,
or dithering that is required. Reducing the image
requires one clock cycle per source pixel. Enlarg-
ing the image requires one clock cycle per desti-
nation pixel. Actual hardware performance is never
quite equal to peak rates, but TGA2 performance
approaches peak rates. For example, TGA2’s hardware
performance limits support rendering a common
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Table 2
Gates Used by the TGA2 Video Rendering Logic

Gates per
Number Number Total Gates

Logic Block of Cells of Gates (Percent)
Pixel
Formatting 778 584 4.2
Look-up
Table 9,590 7,192 52.3
Filtering 2,265 1,699 124
Color
Convert 3,486 2,614 19.0
Miscellaneous 2,210 1,658 121

Total 18,329 13,747 100.0

intermediate format (CIF) image that is scaled up by
a factor of three in both dimensions at over 30 fps.

Actual system performance depends on many
factors besides hardware performance. Typically, mul-
timedia mmages are stored and transmitted in com-
pressed form, so that display pertormance depends
on the speed of the decompression hardware or soft-
ware. “Software-only Compression, Rendering, and
Playback of Digital Video” contains tables that show
the performance of a variety of AlphaGencration sys-
tems with software-only rendering and with J300 ren-
dering hardware that implements hardware algorithms
similar to those in the TGA2 and Dagger chips.’

Table 3 shows the results of preliminary tests of
TGA2 video display rates on AlphaStation 250 4/166
and AlphaStation 250 4 /266 workstations, which use
DECchip 21064 CPUs. The table shows performance
in frames per second for displaying the standard
Motion Picture Experts Group (MPEG) flower gar-
den video clip, comparing performance to software
algorithms that use the TGA graphics accelerator. Like
TGA2, the TGA chip supports fast image transfers to
the frame bufter; however, TGA does not provide any
specific logic to accelerate video display.

The first two lines of Table 3 show performance
for displaying images at their original size. Allowing
TGA2 to convert decompressed YUV pixels to RGB
improves performance by 34 to 45 percent, depend-
ing on CPU performance. This performance improve-
ment drops to 18 to 25 when data transfer times arc
included. Possibly, this gap can be reduced by further
coding to better overlap data transfer with MPEG
decompression. Note that the TGA2 performance can
include image filtering and a laminance adjust table
lookup at no loss in performance.

The third line of Table 3 shows performance when
the video clip is displaved at two times the size in both
dimensions. The flower garden movie covers an area
of 320 by 240 pixels, which is very small ona 1,280-
by-1,024-pixel monitor. Therefore, it is highly desir-
able to display an enlarged image. In this case, TGA2



Table 3

Frames per Second for Displaying MPEG Flower Garden Video Clip

AlphaStation 250 4/166 AlphaStation 250 4/266

TGA TGA2 Increase TGA TGA2 Increase
(fps) (fps) (Percent) (fps) (fps) (Percent)
247 35.8 45 Software decode rate 47.9 64.2 34

23.1 28.9 25 1x video playback rate 44.0 52.1 18

12.7 26.4 108 2x video playback rate 23.1 44.9 95

Source: Tom Morris, Technical Director, Light and Sound Engineering, Digital Equipment Corporation

displays the video clip at twice the speed of the soft-
ware algorithm that uses the TGA graphics chip. The
subjective difference is even greater, since TGA2
applies a smoothing filter to improve the quality of the
resulting images. The software algorithm on the TGA
chip performs no filtering because this would dramati-
cally reduce chip performance.

The pertormance data in Table 3 are for displaying
8-bitimages to the frame butter. TGA2 is able to display
24-bit images at the same performance, up to the
limit of its frame bufter bandwidth. For the examples
in Table 3, TGA2 is able to produce either 8-bit, 12-bit,
or 24-bit images at essentially the same performance.
Software algorithms would experience a dramatic drop
in performance, simply because they would have to
process and transfer three times as much data. Therefore,
the TGA2 chip allows significantly higher-quality images
to be displayed without sacrificing performance.

Conclusions

This paper describes two graphicsaccelerator chips that
integrate a set of image processing operations with tra-
ditional synthetic graphics operations. The image oper-
ations are carefully chosen to allow significantly higher
performance with minimal extra logic; the operations
that can be performed in software are left out. Both
chips take advantage of the PCI bus to provide the
bandwidth necessary torimage data transters.

The Dagger and TGA2 video rendering logic is
based on the AccuVideo rendering pipeline as imple-
mented in the J300 family of video and audio
adapters.® The following restrictions were made to
integrate this logic into these graphics chips:

1. Color preprocessing—Eliminate RAM for dynamic
chrominance control. For the Dagger chip, also
climinate RAM tor dynamic brightness/contrast
control.

2. Filtering—Support just one sharpening and one
smoothing filter (other than the identity tilters) in
the Dagger chip. For the TGA2 chip, support just
two sharpening and two smoothing filters.

3. Color output—For the Dagger chip, allow only
256 output colors tor YUV input [3/3 /2 tor RGB
input]. For the TGA2 chip, support only RGB col-
ors with a power-of-two number of values in each
channel.

The quality of the resulting images is excellent. The
AccuVideo 32-by-32 void-and-cluster dithering algo-
rithm provides quality similar to error ditfusion dither-
ing algorithms.* Error diffusion is a technique in
which the difterence between the desired color and
the displayed color at each pixel is used to control
dithering decisions at adjacent pixels. Error-diffusion
dithering requires considerably more logic than
AccuVideo dithering and cannot be used when ren-
denng synthetic graphics.

The high quality of the AccuVideo algorithm is
especially important when dithering down to 8-bit
pixels (3/3/2 RGB). Even in this extreme case, apply-
ing the AccuVideo dithering algorithm results in
a slight graininess but few visible dithering artifacts.
Applying AccuVideo dithering to 12-bit (4/4/4
RGB) pixels results in screen images that are almost
indistinguishable from 24-bit (8/8,/8 RGB) pixels.

We plan to continue evaluating new multimedia
teatures tor inclusion in our synthetic graphics chips.
Areas we are investigating include more elaborate fil-
tering and scaling operations, additional types of color
conversion, and inexpensive ways to accelerate the
compression/decompression process.
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Technical Description of
the DECsafe Available
Server Environment

The DECsafe Available Server Environment (ASE)
was designed to satisfy the high-availability
requirements of mission-critical applications
running on the Digital UNIX operating system.
By supplying failure detection and failover
procedures for redundant hardware and soft-
ware subsystems, ASE provides services that
can tolerate a single point of failure. In addition,
ASE supports standard SCSI hardware in shared
storage configurations. ASE uses several mecha-
nisms to maintain continuous operation and to
prevent data corruption resulting from network
partitions.

Lawrence S. Cohen
John H. Williams

The advent of shared storage interconnect support
such as the small computer system interface (SCSI) in
the Digital UNIX operating system provided the
opportunity to make existing disk-based services more
available. Since high availability is an important feature
to mission-critical applications such as database and file
system servers, we started to explore high-availability
solutions for the UNIX operating system environ-
ment. The outcome of this cftort is the DECsafe
Available Server Environment (ASE), an integrated
organization of computer systems and external disks
connected to one or more shared SCSI buses.

In the first section of this paper, we review the many
product requirements that needed to be explored. We
then define the ASE concepts. In the next section, we
discuss the design of the ASE components. In subse-
quent sections, we describe some of the issues that
needed to be overcome during the product’s design
and development: relocating client-server applications,
event monitoring and notitication, network partition-
ing, and management of available services. Further, we
explain how ASE deals with problems concerning mul-
tihost SCSI; the cross-organizational logistical issues of
developing specialized SCSI hardware and firmware
features on high-volume, low-priced standard com-
modity hardware; and moditications to the Nerwork
File System (NES) to be both highly available and back-
ward compatible.

Requirements of High-availability Software

The availability concept is simple. If two hosts can
access the same data and one host fails, the other host
should be able to access the data, thus making the
applications that use the data more available. This
notion of loosely connecting hosts on a shared storage
interconnect is called high availability. High availability
lies in the middle of the spectrum of availability solu-
tions, somewhere between expensive fault-tolerant sys-
tems and a well-managed, relatively inexpensive, single
computer system.’

Bv climinating hardware single points of failure, the
environment becomes more available. The goal of the
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ASE project was to achieve a product that could be
configured for no single point of failure with respect to
the availability of services. Thus we designed ASE
to detect and dynamically reconfigure around host,
storage device, and network failures.

Many requirements influenced the ASE design. The
most overriding requirement was to eliminate the pos-
sibility for data corruption. Existing single-system
applications implicitly assumed that no other instance
was running on another node that could also access
the same data. If concurrent access did happen, the
data would likely be corrupted. Therefore the preemi-
nent challenge for ASE was to ensure that the applica-
tionwas run only once on only one node.

Another requirement of ASE was to use industry-
standard storage and interconnects to perform its
function. This essentially meant the use of SCSI
storage components, and this did pose some chal-
lenges for the project. In a later section, we discuss the
challenge of ensuring data integrity in a multihosted
SCSI environment. Also, the limitation of eight SCSI
devices per SCSI storage bus confined the scaling
potential of ASE to relatively small envirconments of
two to four nodes.

Less obvious requirements affected the design. ASE
would be a layered product with minimal impact on
the base operating system. This decision was made tor
maintainability reasons. This is not to say we did not
make changes to the base operating system to support
ASE; however, we made changes only when necessary.

ASE was required to support multiple service types
(applications). Originally, it was proposed that ASE sup-
port only the Network File System (NES), as does the
HANES product from International Business Machines
Corporation.* Customers, however, required support
for other, primarily database applications as well. As a
result, the ASE design had to evolve to be more general
with respect to application availability support.

ASE was also required to allow multiple service
types to run concurrently on all nodes. Other high-
availability products, ¢.g., Digital’s DECsate Failover
and Hewlett-Packard’s SwitchOver UX, are “hot-
standby” solutions. They require customers to pur-
chase additional systems that could be idle during
normal operation. We felt it was important to allow all
members of the ASE to run highly available applications
as well as the traditional, hot-standby configuration.

The remaining requirement was time to mar-
ket. IBM’s HA/6000 and Sun Microsystems’
SPARCcluster] products were in the market, offering
cluster-like high availability. We wanted to bring out
ASE quickly and to follow with a true UNIX cluster
product.

One lastnote for readers who might try to compare
ASE with the VMScluster, a fully functional cluster
product. ASE addresses the availability of single-
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threaded applications that require access to storage.
For example, it does not address parallel applica-
tions that might need a distributed lock manager
and concurrent access to data. Another effort was
started to address the requirements of clusters in the
UNIX environment.?

ASE Concepts

To understand the description of the ASE design, the
reader needs to be familiar with certain availability
concepts and terms. In this section, we define the ASE
concepts.

Storage Availability Domain

A storage availability domain (SAD) is the collection of
nodes that can access common or shared storage
devices in an ASE. Figure 1 shows an example of a
SAD. The SAD also includes the hardware that con-
nects the nodes such as network devices and the stor-
age interconnects. The network device can be any
standard network interface that supports broadcast.
This usually implies either Ethernet or a fiber distrib-
uted data interface (FDDI). Although the SAD may
include many networks, only one is used for commu-
nicating the ASE protocols in the version 1.0 product.
To remove this single point of failure, future versions
of ASE will allow tor communication over multiple
networks. Other networks can be used by clients to
access ASE services. The storage interconnect is either
a single-ended or a fast, wide-differential SCSI. The
shared devices are SCSI disks or SCSI storage products
like HSZ40 controllers.

Symmetric versus Asymmetric SADs

There are many ways a SAD may be configured
with respect to nodes and storage. In a symmetric
configuration (see Figure 1), all nodes are connected

CLIENT CLIENT

NETWORK
| |

SERVER 2

SERVER 1

TT SHARED SCSI BUS TT

STORAGE STORAGE

Figure 1
Simple Available Server Environment



to all storage. An asymmetric configuration exists
when all nodes arc not connected to all the storage
devices. Figure 2 shows an asymmetric configuration.

The use of asymmetric configurations improves
performance and increases scalability. Performance is
better because tewer nodes share the same bus and
have less opportunity to saturate a bus with I /0. Scal-
ability is greater because an asymmetric configuration
allows for more storage capacity. On the other hand,
asymmetric configurations add significant implemen-
tation issues that are not present with symmetric
configurations. Symmetric configurations allow for
simplifying assumptions in device naming, detecting
network partitions, and preventing data corruption.
By assuming fully connected configurations, we were
able to simplify the ASE design and increase the
software’s reliability. For these reasons, we chose to
support only symmetric configurations in version 1.0
of ASE.

Service

We use the term service to describe the program
(or programs) that is made highly available. The
service model provides network access to shared
storage through its own client-server protocols.
Examples of ASE services are NFS and the ORACLE7
database. Usually, a set of programs or processing
steps needs to be executed sequentially to start up
or stop the service. If any of the steps cannot be exe-
cuted successfully, the service either cannot be pro-
vided or cannot be stopped. Obviously, if the shared
storage is not accessible, the service cannot begin.
ASE provides a general infrastructure for specifying
the processing steps and the storage dependencies of
each service.

CLIENT CLIENT CLIENT
NEDTORK
SERVER 1 SERVER 2 SERVER 3 SERVER 4
SHARED SCSI SHARED SCSI
BUS 1 BUS 2

STORAGE 1 STORAGE 2

Figure 2
Asymmctric Configuration of ASE

Events and Failure Modes

ASE monitors its hardware and software to determine
the status of the environment. A change in status is
reported as an event notification to the ASE software.
Examples ofevents include a host failure and recovery,
a failed network or disk device, or a command from
the ASE management utility.

Service Failover

The ASE software responds to events by relocating
services from one node to another. A relocation due to
a hardware failure is referred to as service failover.
There are reasons other than failures to relocate a ser-
vice. For example, a system manager may relocate a
service for load-balancing reasons or may bring down
anode to perform maintenance.

Service Relocation Policy

Whenever a service must be relocated, ASE uses con-
tigurable policies to determine which node is best
suited to run the service. The policy is a function of the
event and the installed system-management prefer-
ences for each service. For example, a service must be
relocated if the node on which it is running goes down
or it a SCSI cable is disconnected. The system manager
may specify the node to which the service should be
relocated. Preferences can also be provided tor node
recovery behavior. For example, the system manager
can specify that a service always returns to a specified
node if that node is up. For services that take a long
time to start up, the system manager may specity that a
service relocate only if'its node should fail. Additional
service policy choices are built into ASE.

Centralized versus Distributed Control

The ASE software is a collection of daemons (user-level
independent processes run in the background) and
kernel code that run on all nodes in a SAD. When we
were designing the service relocation policy, we could
have chosen a distributed design in which the software
on each node participated in determining where a ser-
vice was located. Instead, we chose a centralized design
in which only one of the members was responsible for
implementing the policy. We preferred a simple design
since there was little benefit and much risk to develop-
ing a set of complex distributed algorithms.

Detectable Network Partition versus

Undetectable Full Partition

A detectable network partition occurs when two or
more nodes cannot communicate over their networks
but can still access the shared storage. This condition
could lead to data corruption it every node reported
that all other nodes were down. Each node could
try to acquire the service. The service could run
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concurrently on multiple nodes and possibly corrupt
the shared storage. ASE uses several mechanisms to
prevent data corruption resulting from network parti-
tions. First, it relies on the ability to communicate sta-
tus over the SCSI bus. In this way, it can derect
network partitions and prevent multiple instances of
the service. When communication cannot occur over
the SCSI bus, ASE relies on the disjoint electrical con-
nectivity property of the SCSI bus. That is, if Server 1
and Server 2 cannot contact each other on the SCSI
bus, it is impossible tor both servers to access the same
storage on that bus.

As a safeguard to this assumption, ASE also applics
device reservations (hard locks) on the disks. The hard
lock is an extreme failsafe mechanism that should
rarely (if ever) be needed. As a result, ASE is able to
adopt a nonquorum approach to nenwork partition
handling. In essence, if an application can access the
storage it needs to run, it is allowed to run. Quorum
approaches require a percentage (usually more than
half) of the nodes to be available tor proper operation.
For nwo-node configurations, a ticbreaker would be
required: if one node failed, the other could continue
to operate. In the OpenVMS svstem, for example, a
disk is used as a ticbreaker. We chose the nonquorum
approach tor ASE becausc it provides a higher degree
of availability.

Although extremely unlikely to occur, there is one
situation in which data could become corrupted: a full
partition could occur during shadowed storage.
Shadowing transparently replicates data on one or
more disk storage devices. In a tull partition, two nodes
cannot communicate via a network, and the SCSI buscs
are disconnected in a way that the first node sees one
sct of disks and the second node sees another set.
Figure 3 shows an undetectable full partition.

Even though this scenario does not allow for com-
mon access to disks, it is possible that storage that is
replicated or shadowed across two disks and buscs
could be corrupted. Each node believes the other is
down because there is no communication path. If one
node has access to half of the shadowed disk set and
the other node has access to the other half) the service
may be run on both nodes. The shadowed set would
become out of sync, causing data corruption when its
halves were merged back together. Because the poss-
ibility of getting three faults of this nature is infinite-
simal, we provide an optional policy for running a
service when less than a full shadowed set is available.

Service Management

ASE service management provides three functions:
service setup, SAD monitoring, and service relocation.
The management program assists in the creation of
services by prompting for information such as the tvpe
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of scrvice, the disks and file systems that are required,
and shadowing requirements. ASE. gathers the require-
ments and creates the command sequences that will
start the service. It thus integrates complex subsvstems
such as the local file svstems, logical storage manage-
ment (LSM); and NES into a single service.

ASE version 1.0 supports three service tvpes: user,
disk, and NFS. A wuser service requires no disks and
simply allows a uscr-supplicd script to be executed
whenever a node goes up or down. The disk service is
a user service that also requires disk access, that is, disk
and file system information. The disk service, for
example, would be used for the creation of a highly
available database. The NES serviceis a specialized ver-
sion of the disk service; it prompts tor the additional
information that is germane to NES| for examp
export information.

The monitoring teature provides the status of a ser-
vice, indicating whether the service is running or not
and where. It also provides the status of each node.

Theservice location teature allows system managers
to move services manually by simply specifying the
new location.

C?

Software Mirroring

Software mirroring (shadowing) is a mechanism to
replicate data across two or more disks. If one disk
fails, the data is available on another disk. ASE velies on
Digital’s LSM product to provide this feature.



ASE Component Design

The ASE product components  perform  distinct
opcerations that correspond to one of the tollowing
categories:

1. Configuring the availability  environment  and
services
ot the

2. Monitoring  the

¢nvironment

status availability
3. Controlling and synchronizing service relocation

4. Conrrolling and performing single-system  ASE
management operations

om

. Logging events for the availability environment

The configuration of ASE is divided into the instal-
lation and ongoing configuration tasks. The ASE
installation process ensurces that all the members arce
running ASE-compliant kernels and the required dac-
mons (independent processes) for monitoring the
cnvironment and performing single-system ASE oper-
ations. Figure 4 illustrates these components. The
shared networks and distributed time services must
also be contigured on cach member to guarantce con-
nectivity and svnchronized time. The most current
ASE contiguration information is determined from
time stamps. Configuration information that uses time
stamps docs not change otten or trequently and is pro-
tected by a distributed lock.

The ASE configuration begins by running the ASE
administrative command (ASEMGR) to establish the
membership list. All the participating hosts and

daemons must be available and operational to complete
this task successfully. ASE remains in the install state
until the membership list has been successtully pro-
cessed. As part of the ASE membership processing, an
ASE conhguration database (ASECDRB) is created, and
the ASE member with the highest Internet Protocol
(IP) address on the primary network is designated to
run the ASE director dacmon (ASEDIRECTOR). The
ASE director provides distributed control across the
ASE members. Once an ASE director is running, the
ASEMGR command is used to configure and control
individual services on the ASE members. The ASE agent
daemon (ASEAGENT) is responsible tor performing all
the single-svstem ASE operations required to manage
the ASE and rclated services. This local system manage-
ment 1s usually accomplished by executing scripts in a
specific order to control the start, stop, add, delete, or
check ofa service or sct of services.

The ASE director is responsible for controlling and
synchronizing the ASE and the available scrvices
dependent on the ASE. All distributed decisions arc
made by the ASE director. Tt is necessary that only onc
ASE director be running and controlling an ASE to
provide a centralized point of control across the ASE.
The ASE director provides the distributed orchestra-
tion of service operations to effect the desired recov-
cry or load-balancing scenarios. The ASE director
controls the availability services by issuing sets of ser-
vice actions to the ASE agents running on each mem
ber. The ASE dircctor implements all failover strategy
and control.
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The ASE agent and the ASE director work as a team,
reacting to component faults and performing failure
recovery for services. The ASE events are generated by
the ASE host status monitor and the availability man-
ager (AM), a kernel subsystem. The ASE agents use
the AM to detect device failures that pertain to ASE
services. When a device failure is detccted, the AM
informs the ASE agent of the problem. The ASE agent
then reports the problem to the ASE director if the
failure results in setvice stoppage. For example, if the
failed disk is part of an LSM mirrored set, the service is
not affected by a single disk failure.

The ASE host status monitor sends host- or member-
state change events to the ASE director. The ASE host
status monitor uses both the networks and shared
storage buses, SCSI buses, configured between the
ASE members to determine the state of each member.
This monitor uses the AM to provide periodic SCSI
bus messaging through SCSI target-mode technology
to hosts on the shared SCSI bus.

The ASE agent also uses the AM to provide device
reservation control and device events. The ASE host
status monitor repeatedly sends short messages, pings,
to all other members and awaits a reply. If no reply is
received within a prescribed time-out, the monitor
moves to another interconnect until all paths have
been exhausted without receiving a reply. If no reply
on the shared network or any shared SCSI 1s received,
the monitor presumes that the member is down and
reports this to the ASE director. If any of the pings is
successtul and the member was previously down, the
monitor reports that the member replyingis up. If the
only successful pings are SCSI-based, the ASE host sta-
tus monitor reports that the members are experienc-
ing a network partition. During a network partition,

the ASE configuration and current service locations
are frozen until the partition is resolved.

All ASE operations performed across the members
use a common distributed logging facility. The logger
daemon has the ability to generate multiple logs on
each ASE member. The administrator uses the log to
determine more detail about a particular service
failover or configuration problem.

ASE Static and Dynamic States

As with most distributed applications, the ASE prod-
uct must control and distribute state across a set of
processes that can span several systems. This state takes
two forms: static and dynamic. The static state is dis-
tributed in the ASE configuration database. This state
1s used to provide service availability configuration
information and the ASE system membership list.
Although most changes to the ASE configuration data-
base are gathered through the ASE administrative com-
mand, all changes to the database are passed through a
single point of control and distribution, the ASE direc-
tor. The dynamic state includes changes in status of the
base availability environment components and services.
The state of a particular service, where and whether it is
running, is also dynamic state that is held and con-
trolled by the ASE director. Figure 5 depicts the flow of
control through the ASE components.

ASE Director Creation

The ASE agents are responsible for controlling the
placement and execution of the ASE director.
Whenever an ASE member boots, it starts up the ASE
agent to determine whether an ASE director necds
to be started. This determination is based on whether
an ASE director is alrcady running on some member.
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[t no ASE director is running and the ASE host status
monitor is reporting that no other members are up,
the ASE agent forks and exccutes the ASE dircctor.
Due to intermittent failures and the parallel initiali-
zation of members, an ASE configuration could find
two ASE directors running on two different systems.
As soon as the second director is discovered, the
younger director is killed by the ASE agent on that sys-
tem. The IP address of the primary network is used to
determine which member should start a director when
none is running.

ASE Director Design

The ASE director consists of four major components:
the event manager, the strategist, the environment data
manager, and the event controller. Figure 6 shows the
relationship of the components of the ASE director.

The event manager component handles all incom-
ing events and determines which subcomponent
should service the event. The strategist component
processes the event if it results in service relocation.
The strategist creates an action plan to relocate the ser-
vice. An action plan is a set of command lists designed
to try all possible choices for processing the event. For
example, it the event is to start a particular service, the
generated plan orders the start attempts from the most
desired member to the least desired member accord-
ing to the service policy.

The environment data manager component is
responsible for maintaining the current state of the
ASE. The strategist will view the current state before
creating an action plan. The event controller compo-
nent oversees the execution of the action plan. Each of
the command lists within the action plan is processed
in parallel, whereas each command within a command
list is processed serially. Functionally, this means that
services can be started in parallel, and each service
start-up can consist of a set of serially executed steps.

ASE Agent Design

The ASE agent is composed of the environment man-
ager, the service manager, a second availability
manager (AVMAN), and the configuration database
manager. Figure 7 shows the ASE agent components.

All the ASE agent components use the message
library as a common socket communications layer that
allows the mixture of many outstanding requests and
replies across several sockets. The environment man-
ager component is responsible for the maintenance
and initialization of the communications channels
used by the ASE agent and the start-up of the ASE host
status monitor and the ASE director. The environment
manager is also responsible for handling all host-status
events. For example, if the ASE host status monitor
reports that the local node has lost connection to
the network, the environment manager issues stop ser-
vice actions on all services currently being served by
the local node. This torced stop policy is based on the
assumption that the services are being provided to
clients on the network. A network that is down implies
that no services are being provided; therefore, the
service will be relocated to a member with healthy
network connections.

If the ASE agent cannot make a connection to the
ASE host status monitor during its initialization,
the ASE host status monitor is started. The start-up
of the ASE director is more complex because the ASE
agent must ensure that only one ASE director is run-
ning in the ASE. This is accomplished by first obtain-
ing the status of all the running ASE members. After
the member status is commonly known across all ASE
agents, the member with the highest IP address on the
primary network is chosen to start up the ASE direc-
tor. If two ASE directors are started, they must both
make connections to all ASE agents in the ASE. In
those rare cases when an ASE agent discovers two
directors attempting to make connections, it will send
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an exit request to the younger director, the one with
the newer start time.

The service manager component is responsible for
performing operations on ASE scrvices. The service
manager performs operations that use specific ser-
vice action programs or that determine and report sta-
tus on services and their respective devices. The service
actions are forked and executed as separate processes,
children of the agent. This allows the ASE agent to
continue handling other parallel actions or requests.
The ASE agent is aware of onlv the general stop, start,
add, dclete, query, or check nature of the action. It is
not awarc of the specific application details required to
implement these base availability functions. A more
detailed description of the ASE service interfaces can
be found in the section ASE Service Definition. When
the service manager executes a stop or start scrvice
action that has device dependencies, the ASE agent
provides the associated device reserves or unreserves
to gain or release access to the device. Services and
devices must be configured such that one device may
be associated with only one service. A device may not
belong to more than one service.

The agents’ availability manager (AVMAN) compo-
nent is called by the service manager to process
a reserve or unreserve of a particular device for a ser-
vice stop or start action. The AVMAN uses ioctl() calls
tothe AM to reserve the device, to invoke SCSI device
pinging, and to register or unregister for the following
AM events:

1. Device path failure—an [/O attempt failed on
a reserved device due to a connectivity failure or
bad device.

2. Device reservation failure—an /0 attempt failed
on a reserve device because another node had
reserved it.
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3. Reservation resct—the SCSI reservation was lost
on a particular device due to a bus reset.

A reservation resct oceurs periodically as members
reboot and join the ASE. The ASE agenr reacts by
rereserving the device and thereby continuing to pro-
vide the service. It the reservation reset persists, the
ASE agent informs the ASE director. If a device path
failure occurs, the ASE agent informs the ASE director
of the device path failure so that another member can
access the device and resume the service. The device
reservation failure can occur only if another member
has taken the reservation. This signifies to the ASE
agent that an ASE director has decided to run this ser-
vice on another member without first stopping it here.

The configuration database manager component
handles requests that access the ASE configuration
database. Working through the configuration databasc
manager component, the ASE agent provides all access
to the ASE configuration database tor all other com-
ponents of the ASE.

ASE Availability Manager Design

The availability manager (AM) is a kernel component
of ASE that is responsible for providing SCSI device
control and SCSI host pinging with target mode. The
AM provides SCSI host pinging to the ASE host status
monitor dacmon through a set of ioctl() calls to the
“/dev/am_host*” devices. As has been mentioned,
the AM provides SCSI device control for pings and
event notification to the ASE agent through ioctl()
calls to the “/dcv/ase” device. All ASE SCSI device
controls for services and SCSI host pinging assume
that all members are symmetrically configured with
respect to SCSI storage bus addressing.



ASE Host Status Monitor Design

The ASE host status monitor (ASEHSM) component
is responsible for sensing the status of members and
interconnects used to communicate between members.
As previously mentioned, this monitor is designed to
provide periodic pinging of all network and SCSI
interconnects that are  symmetrically  configured
berween ASE members. The ping rate is highest, 1 to 3
scconds per ping, on the first configured ASE network
and SCSI bus. All other shared interconnects are
pinged at a progressively slower rate to decrease the
overhead while still providing some interconnectivity
state. The ASE host status monitor provides member-
state change events to both the ASE agentand the ASE
director. The ASE agent initializes and updates the
monitor when members are added or deleted from the
ASE configuration database. The ASE host status
monitor is designed to be flexible to new rypes of net-
works and storage buses as well as extensible to
increased numbers of shared interconnects.

ASE Service Definition

ASE has provided an interface framework tor available
applications. This framework defines the availability
configuration and failover processing stages to which
an application must conform. The application inter-
faces consist of scripts that are used to start, stop, add,
delete, query, check, and modity the particular service.
Each script has the ability to order or stack a sct of
dependent scripts to suit a multilayered application.
The NES Service Failover section in this paper pro-
vides an example of a multilayered service that ASE
supports “out of the box.” ASE assumes that a service
can be in one ot the following states:

1. Nonexistent—not configured to run
2. Oftt-line—not ro be run but configured to run
3. Unassigned—stopped and configured to run

4. Running—running on a member

At initialization, the ASE director presumes all con-
tigured services should be started except those in the
oft-line state. Whenever a new member joins the ASE,
the add scrvice action seript is used to ensure that the
new member has been contigured to have the abiliry
to run the service. The delete service seript is used to
remove the ability to run the service. The delete scripts
are run whenever a service or member is deleted. The
start service script is used to start the service on a par-
ticular member. The stop service is used to stop a ser-
vice on a particular member. The check script is used
to determine if a service is running on a particular
member. The query scriptis used to determine it a par-
ticular device failure is sufficient to warrant failover.

ASE strives to keep a service in a known state. Con-
scquently, 1f a start action script fails, ASE presumces

thatexecuting the stop action will return the service to
an unassigned state. Likewise, if an add action fails, a
delete action will return the service to a nonexistent
state. If any action fails in the processing of an action
list, the entire request has tailed and is reported as such
to the ASE director and in the log. For more details
on ASE service action scripts, see the Gueide to the
DECsafe Available Server?

NFS Service Failover

In this section, we present a walk-through ot an NES
service failover. We presume that the reader is tamiliar
with the workings of NFS." The NFS scrvice exports a
file system that is remotely mounted by clients and
locally mounted by the member that is providing the
service. Other ASE members mav also remotely
mount the NEFS file system to provide common access
across all ASE members.

For this example, assume that we have sct up an NES
service that is exporting a UNIX file system (UES)
named /too_nfs. The UEFS resides on an [L.SM disk
group that is mirroring across two volumes that span
four disks on two difterent SCSI buses. The NES ser-
vice is called too_nfs and has been given its own 1P
address, 16.140.128.122. All remotc clients who want
to mount /ftoo_nts will access the server using the
service name foo_nts and associated 1P address
16.140.128.122. This network address intformation
was distributed to the clicnts through the Berkeley
Internet Name Domain (BIND) scrvice or the net-
work information service (NIS). Ifseveral NES mount
points are commonly used bv all clients, they can be
grouped into one scrvice to reduce the number of IP
addresses required. Although grouping directories
exported from NFS into a single service reduces the
management overhead, it also reduces flexibility for
load balancing.

Further, assume that the NFS service foo_nfs has
four clients. Two of the clicnts are the members of the
ASE. The other two clients are non-Digital systems.
For simplicity, the Sun and HP clients reside on the
same nenwork as the servers (but thev need not). The
ASE NEFS service foo_nfs is currently running on the
ASE member named MUNCH. The other ASE mem-
beris up and named ROLAIDS.

Enter our system administrator with his atternoon

Big Gulp Soda. He places the Big Gulp Soda on top of

MUNCH to free his hands for some scrious console
typing. Oh! We torgot one small aspect of the sce-
nario. This ASE sitc is located in California. A small
tremor later, and MUNCH gets a good taste of the Big
Gulp Soda. Scconds later, MUNCH is very upset and
fails. The ASE host status monitor on ROLAIDS stops
receiving pings from MUNCH and declares MUNCH
to be down. If the ASE director had been running on
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MUNCH, then a new director is started on ROLAIDS
to provide the much-needed relief. The ASE director
now running on ROLAIDS determines that the
foo_nfs service is not currently being served and issues
a start plan for the service. The start action is passed to
the local ASE agent since no other member is available.
The ASE agent first reserves the disks associated with
the foo_nfs service and runs the start action scripts.
The start action scripts must begin by setting up LSM
to address the mirrored disk group. The next action is
to have UFS check and mount the /foo_nfs file system
on the ASE hidden mount point /var/asc/mnt/
foo_nfs. The hidden mount point helps to ensure that
applications rarely access the mount point directly.
This sateguard prevents an unmounting, which would
stop the service. The next action scripts to be run are
related to NFS. The NFS exports files must be adjusted
to include the foo_nfs file svstem entry. This addition
to the exports files is accomplished by adding and
switching exports include files.

Theaction scripts then configure the service address
(ifcontig alias command), which results in a broadcast
of an Address Resolution Protocol (ARP) redirection
packet to all listening clients to redirect their 1P
address mapping for 16.140.128.122 from MUNCH
to ROLAIDS © After all the ARD and router tables have
been updated, the clients can resume communications
with ROLAIDS for service foo_nfs. This entire process
usually completes within ten seconds. The storage
recovery process often contributes the longest dura-

tion. Figure 8 summarizes the time-sequenced events
for an NFS service failover.

This scenario works because NFS is a stateless ser-
vice. The scrver keeps no state on the clients, and the
clients are willing to retry forever to regain access to
their NFS scrvice. Through proper mounting opcra-
tions, all writes are done synchronously to disk such
that a client will retry a write if it never receives a suc-
cesstul response.

If ASE is used to fail over a service that requires
state, a mechanism has to be used to relocate the
requircd statc in order to start the service. The ASE
product reccommends that this state be written to file
systems synchronously in periodic checkpoints. In this
manner, the failover process could begin operation at
the last successful checkpoint at the time the state disk
area was mounted on the new system. If a more
dynamic failover is required, the services must syn-
chronize their state between members through some
type of nerwork transactions. This type of synchro-
nization usually requires major changcs to the design
of the application.

Implementation and Development

We solved many interesting and logistically dithcult
issucs during the development of the ASE product.
Some of them have been discussed, such as the asym-
metric versus svmmetric SAD and distributed versus
centralized policy. Others arc mentioned in this section.

SUNCLENT| -7~ T HP CLIENT
// \\
// To - Initially, MUNCH serves NFS service foo_nfs.  ~
e T, — NFS clients mount foo_nfs from MUNCH S
’ T2 = MUNCH goes down A
) T3~ ROLAIDS senses that MUNCH is down and begins \
/ failover by acquiring the disk reservations for the ‘\

" foo_nfs service.

| T4 — ROLAIDS broadcasts an ARP redirection for the IP
! address associated with foo_nfs.

\ Ts— HP and SUN clients update their route tables to

\ reference ROLAIDS for foo_nfs.

§ Tg — Clients resume access to foo_nfs from ROLAIDS.

/
L

COMMON NETWORKS
ASE SERVER MUNCH
SHARED SCSI BUSES

COMMON NETWORKS
ASE SERVER ROLAIDS
SHARED SCSIBUSES
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Figure 8
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The SCSI Standard and High-availability Requirements
The SCSI standard provides two levels of require-
ments: mandatory and optional. The ASE require-
ments fall into the optional domain and are not
normally implemented in SCSI controllers. In particu-
lar; ASE requires that two or more initiators (host SCSI
controllers) coexist on the same SCSI bus. This feature
allows for common access to shared storage. Normally,
there is only one host per SCSI, so verv little testing is
done to ensure the electrical integrity of the bus when
more than one host resides. Furthermore, to make the
hosts uniquely addressable, we needed to assign SCSI
IDs and not hardwire them. Lastly, to support its host-
sensing needs, ASE requires that SCSI controllers
respond to commands from another controller. This
SCSI feature is called target-mode operation.

In addition to meeting the basic functional SCSI
requirements, we had to deal with testing and qualifi-
cation issucs. When new or revised components were
used in ways for which they were not originally tested,
they could break; and invariably when a controller was
first inserted into an ASE cnvironment, we found
problems. Additional qualifications were required tor
the SCSI cables, disks, and optional SCST equipment.
ASE required very specific hardware (and revisions of
that hardware); it would be difficult to support oft-
the-shelf components.

Note, however, when all was said and done, only
onc picce of hardware, the Y cable, was invented for
ASE. The Y cable allows the SCSI termination to be
placed on the bus and not in the system. As a result, a
system can be removed without corrupting the bus.

The challenge for the project was to convinee the
hardware groups within Digital that itwas worth the
expense of all the above requirements and yet provide
cost-competitive controllers. Fortunately, we did; but
these issues are ongoing in the development of new
controllers and disks. Our investigation continucs on
alternatives to the target mode design. Wealso need to
develop ways to reduce the qualification time and
expense, while improving the overall quality and avail-
ability of the hardware.

NFS Modifications to Support High Availability

The issucs and design of NES failover could consume
this entire paper. We discuss only the prominent points
in this scction.

NFS Client Notification

The first challenge we taced was to determine how ro
tell NES clients which host was serving their files both
during the minial mount and after a service relocation.
The ideal solution would have been to provide an IP
address thatall nodes in the SAD could respond to. It

clients knew only one address, all NFS packets would
be sentto that address and we would never have to tell
the client the location had changed. The main prob-
lem with this solution is performance. Each node in
the SAD would receive all NES traffic destined for all
nodes. The system overhead for deciding whether to
drop or keep the packet is verv high. Also the more
nodes and NEFS services, the more likely it would be to
saturate individual nodes. Unfortunately, this solution
had to be rejected.

The next best solution, in our minds, is per service
IP addresses. Each NES service is assigned an IP
address (not the real host address). Now each node in
the SAD could respond to its own address and to the
addresses assigned to the NES services that it is run-
ning. The main issues with this approach are the tol-
lowing: (1) It could use many 1P addresses and (2) Itis
more difficult to manage because of its many
addresses. Howcver, there were no pertormance
trade-ofts, and we could move services to locations in
a way that was transparent to the NES clients.
Notifying the clients after a relocation turned out to
be easy because of a standard feature in the ARD that
we could access through the ifcontig alias command of
the Digital UNIX operating system.® Esscntially, all
clients have a cache of translations tor 1P addresses
to physical addresses. The ARP teature, which we
reterred to as ARP redirection, allows us to invalidate a
client-cached entry and replace it with a new one. The
ifcontig command indirectly generates an ARP redi-
rection message. As a result, the client NES software
believes it is sending to the same address, but the net-
work laveris sending it to a different node.

Similar functionality could have been achieved by
requiring multiple network controllers connected to a
single network wire on the SAD nodes. This solution,
however, requires more expense in hardware and is
less flexible since there is only one address per board.
Essentially, the latter means the granularity of NFS ser-
vices would be much larger and could not be distrib-
uted among many SAD nodes without a great deal of
hardware.

NFS Duplicate Request Cache

The NES duplicate request cache improves the pertor-
mance and correctmess of an NES server.” Although
the duplicate request cache is not preserved across
relocations, we did not view this as a significant prob-
lem becausc this cache is not preserved across reboots.

Other Modifications: Lock Daemons and mountd

We moditicd only nwo pieces of software related to
NFS failover: the lock daemon and the mountd. We
wanted the lock dacmon to distinguish the locks asso-
ciated with a specific service address so that only those
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locks would be removed during a relocation. After the
service 1s relocated, we rely on the existing lock
reestablishment protocol. We moditied the mountd
to support NES Joopback mounting on the SAD, so
that a file system could be aceessed directly on the
SAD (as opposcd to a remote client) and vet be relo-
cated transparently.

Future of ASE

Digital’s ASE product was designed to address a small,
svmmetrically configured availabilicy domain. The
implementation of the ASE product was constrained
by time, resources, and impact or change in the base
system. Conscquently, the ASE product lacks extensi-
bility to larger asymmetric contigurations and to more
complex application availability requirements, c¢.g.,
support of concurrent distributed applications. The
next-generation availability product must be designed
to be extensible to varying hardware configurations
and to be flexible to various application availability
requircments.
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Parasight: Debugging
and Analyzing Real-time
Applications under
Digital UNIX

Conventional UNIX debug and analysis tools,
with their static debugging model and low-
resolution-sampling profiling techniques, are
not effective in dealing with real-time applica-
tions. Encore Computer Corporation has devel-
oped Parasight, a set of debug and analysis
tools for real-time applications. The Parasight
tool set can debug running programs, debug
multiple programs, constantly monitor local
and global variables, and perform on-the-fly
execution analysis. Thus, Parasight provides
much improved debug and analysis capabilities,
which application developers can use on both
static and dynamic applications. Parasight can
be used on any of Digital’s Alpha platforms run-
ning under the Digital UNIX operating system.

Michael Palmer
Jetfrey M. Russo

Because of their time-critical nature, real-time applica-
tions do not respond well to the perturbations that
conventional UNIX debug and analysis tools cause.
For instance, the static debugging model of the dbx
debugger requires that a program be stopped before it
can be debugged. Also, execution analvsis using the
profiling techniques of the prof profiler often provide
erroncous results tor real-time applications because of
the low-resolution sampling employed.

This paper describes the critical aspects of debugging
real-time applications, the deficiencies found in con-
ventional UNIX tools, and the methodology Encore
Computer Corporation used to develop Parasight,
a set of easv-to-use graphical user interface tools that
debug and perform execution analysis on real-time
programs while they are running. Parasight can be
used on anv of Digital’s Alpha plattorms that operate
under the Digital UNIX operating svstem.

Real-time Applications

Real-time applications perform a wide variety of
functions, from flying state-ot-the-art military aircraft
to controlling nuclear power plants. All real-time appli-
cations have one common denominator: Thev must
complete their calculations before a deadline expires.
Taking too long to calculate the correct answer can
have just as detrimental an effect as arriving at an incor-
rectanswer; cither result could cause an aircraft to crash
or anuclear power plant to experience a meltdown.

Most real-time applications consist of one or more
programs that are scheduled to run in response to an
event. The triggering event is usually transmitted in the
torm of an interrupt and can be gencrated randomly by
an external cvent or regularly by a interval timer run-
ning at a fixed rate,such as 60 times per second. Once
the interrupt is received, the application must perform
the allotted task before the nextinterrupt occurs.

The clements of a real-time application communi-
cate with each orher dvnamicallv; that is, the results of
the calculations of one element are used immediatelv
for the calculations of another clement. Real-time
applications arc often referred to as dynamic applica-
tions, since thev react dvnamically to changes in their
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environment and often refer to elapsed time in their
calculatons. In contrast, static applications have
results that rarelv depend on changes in their environ-
ment or on elapsed time.

The Problems Associated with Debugging and
Analyzing Real-time Applications Using
Conventional UNIX Tools

Debugging a real-time application during execution,
debugging and analyzing multple programs, con-
stantly monitoring variables, and analyzing program
execution are all activities that debug and analysis tools
have to deal with. This section discusses the capabili-
ties and limitations of conventional UNIX tools and
describes the features required of effective real-time
debug and analysis tools.

Running Programs

Debugging a static program typically involves control-
ling the execution flow and examining the values of
variables within the program. Stopping a real-time
program or even delaying it by single stepping, how-
ever, is usually not possible without adversely affecting
the application. Debugging real-time applications is
therefore limited to examining the values of program
variables while the program is still running.

Conventional UNIX debuggers are not able to
examine variables during program execution and
therefore cannot be employed on running real-time
applications. Consequently, these debuggers are useful
onlyin the early stages of real-time program develop-
ment, essentially while the program is still static.

The traditional methods of debugging real-time
applications involve placing all the critical data into
one or more global, shared memory regions. A data-
monitoring tool, usually written by the user, runs as
a normal UNIX process and attaches to the global
region. The tool can then be used to inspect and/or
change the values of the global variables. This tech-
nique is nonintrusive in that it does not attect the real-
time application programs in any way. Unfortunately,
the debugging is restricted to global data, and, unless
the programs are designed with this in mind, this
restriction can be a severe limitation. Modifying exist-
ing programs to change local data into global data for
debugging purposes can result in a whole new set of
problems in managing the separation of data.

An effective real-time debugging tool must be able
to attach to a running program without stopping it
and then be able to nonintrusively inspect ancd/or
change the global data.

Debugging and Analyzing Multiple Programs
Real-time applications typically consist of several pro-
grams working together. Invoking multiple copies of
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the dbx debugger to debug each program individually
is cumbersome and precludes studying the interaction
between programs.

A real-time debugger must be able to work with
one or more programs at the same time, providing
the user with an integrated and cohesive debugging
environment.

Monitoring Variables

The one-shot variable evaluation capability of conven-
tional UNIX debuggers is of limited use for programs
that are running. These debugging tools provide the
user with only one previous value of a variable, not
necessarily the current value.

A real-time debugger must be able to constantly
monitor the values of global variables. The minimum
and maximum values that each variable attainec
should optionally be available as a record of transient
conditions.

Execution Analysis (Profiling)
Since performance is important in real-time applica-
tions, program execution analvsis is often needed to
locate areas of a program where the performance
could be improved. A real-time application may have
a strict execution order requirement, whereby one
routine must run prior to the execution of another
routine. This requirement mav be accomplished easily
if the routines are in the same program; however, often
the routines are in difterent programs or are executing
on different CPUs in a symmetric multiprocessing
(SMP) environment.

The Digital UNIX profiling tools provide two kinds
of execution analysis:

1. PC sampling, which involves interrupting the
program periodically to record the value of the
program counter.

2. Block counting, which inserts profiling code at key
points in the program to count the number of times
each basic block of code executes. (A basic block
is a region of the program that can be entered only
at the beginning and exited only at the end.)

Both techniques involve the following basic steps:

1. Preprocess the program to produce the desired
profiling information.

2. Execute the program to produce a profiling data
file.

3. Postprocess the program with the profiling tools

to view the data collected.

The normal sampling period employed by the
PC-sampling method is based on the hard clock
(CLOCK_REALTIME) of the Digital UNIX operating
system. This method results in 1,024 samples being



taken per second, which provides a timing resolution
of 976 microseconds, or approximately 1 millisecond.

The routines that make up a real-time application
typically take from a few microseconds to several
milliseconds to execute. Attempting to measure the
execution time of routines that take less than 1 mil-
lisecond to execute with a clock resolution of 1 milli-
second can lead to erroneous results. A test on a
150-megahertz (MHz) Alpha 21064 CPU showed
that the prof tool, using the normal PC-sampling rate,
reported the execution time of a routine to be 4 milli-
seconds when the true execution time was 20 micro-
seconds. (The true execution time was measured using
the Parasight tool set.)

It is possible to increase the sampling rate using the
uprofile utlity, but doing so also proportionally
increases the number of interrupts per second that the
system must handle. For instance, to obtain even
10-microsecond resolution would require the system to
handle 100,000 interrupts per second. This amount of
interrupt activity would rapidly swamp the system, leav-
ing little or no CPU time to execute the program being
instrumented. The PC-sampling method of execution
analysis is therefore not suitable for the short execution
times typical in real-time application routines.

The block-counting method, although capable of
high-resolution measurement, sufters from the inabil-
ity of the pixie utility to work with programs that
receive signals. Most real-time applications use signals
for program scheduling and are therefore disqualified
from using the block-counting method.

In addition to the problems just discussed, the tradi-
tional UNIX profiling tools are unsuitable for real-
time program execution analysis for the following
reasons:

= A program must be preprocessed for profiling
prior to execution. Adding or removing profil-
ing requires stopping, processing, and restarting
the program. This assumes that the problemareais
known before the application starts to run. If
a problem suddenly develops after an uninstru-
mented program has been running for 24 hours,
the user will havelost the opportunity to determine
which routine is causing the problem.

= A program must be profiled as a whole, unless
source code modifications are made to the program
to control the protiling. This can cause excessive
overhead, which real-time programs usually cannot
tolerate.

= The profiling results cannot be seen until the pro-
gram terminates, unless source code modifications
are made to the program to permit the results to
be dumped on command. The user needs to see
the results while the program is running and often
needs to repeat a test several times to get the

desired results. Stopping and restarting the applica-
tion once for each test could be laborious.

® Only the average and cumulative times for each
routine are available. That is, the individual execu-
tion times for each call to a routine are not avail-
able. This also precludes the examination of the
calling sequence.

s The results cannot be cross-correlated between
programs to provide information about the rela-
tive calling sequences between programs or across
processors.

A real-time execution analysis tool must operate
with sufficient resolution to measure the execution
time of a routine that may take 10 microseconds to
execute. The instrumentation should be dynamically
insertable into the current areas of interest and
should be able to move to new areas of interest as
required—all without stopping and restarting the
real-time application.

Parasight: A Solution for Real-time Debugging
and Program Analysis

Parasight is an integrated set of real-time debugging
and analysis tools with a graphical user interface. The
tool set consists of a debugger (Debug), a data monitor
(DataMon), and a program analysis tool (Paragraph).
The Parasight tool set solves the real-time deficiencies
found in dbx, prof, and the other conventional UNIX
debug and analysis tools used under the Digital UNIX
operating system. Parasight is able to debug applica-
tions in either a dynamic (running) or a static (stopped)
state; it can perform debugging and program execu-
tion analysis on several programs simultaneously, with-
out adversely affecting the dynamics of time-critical
applications.

Parasight’s Foundation
The Parasight tool set features the use of'a symbol table,
the /prof file system, global memory, and scanpoints.

The Symbol Table, pg File, and /proc File System
Parasight’s source of knowledge abourt the rtarget
application is derived from the symbol table and the
.pg file. Both are generated at compile time as a result
of'the -para special compiler option.

Parasight manipulates target applications by using
the /proc file system services available under the Digital
UNIX operating svstem. The /proc file system enables
Parasight to control the program tlow and to read and
write any memoryv address in the target application.

Global Data Just as the traditional means of debug-
ging real-time applications depends on global memory
regions, Parasight uses the global memory access
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concept as the basis for accomplishing most of its
advanced capabilities. Parasight either accesses the
target program data directly, through the use of /proc,
or uscs global memory to access data gathered for
Parasight by one of its scanpoints.

Scanpoints The Parasight tool sct uses global mem-
orvaccess whenever possible to provide nonintrusive
access to the target application. Cerrtain functions,
however, require access to data that is local to a pro-
gram. Parasight accesses this data through small seg-
ments of code called scanpoints.

Ascanpoint s a function thatis dvnamicallv inserted
into the target program by Parasight. The scanpoint
function then runs in the same context as the target
program and thus has access to all the local data of the
program. The scanpoint function works as an agent
for Parasight, gathering data that Parasight does not
have direct access to. The Parasight tool set uses two
principal types of scanpoints: datamon-scanpoints,
which arc used by DataMon to perform local data
monitoring, and sensor-scanpoints, which are used by
Paragraph to perform program execution analysis.

Inserting the scanpoints does not require modifiing
the application’s source code or preprocessing the
application’s object code. The only requirement is to
link each program with the special -para option. This
adds a memory bufter to the target program tor use by
Parasight. The butter is benign until used by Parasight.

Parasight dyvnamically inserts scanpoints by using
the /proc service to build a scanpoint template in the
special bufter of the target program. This can occur
evenwhile the program is running. The template code
contains the functionality to

s Save the register state that cxisted when the pro-
gram counter was at the scanpoint insertion location

= Set up the arguments to the scanpoint function,
including the register state

= Call the scanpoint function

= Restorce the register state

s Execute the instruction that was originally at the
insertion location

= Branch back to the instruction tollowing the inser-
tion location

Parasight then dvnamically alters the template code
according to the insertion location and the instruction
contained therein. If the instruction was a branch con-
trol instruction, Parasight alters the instruction’s dis-
placement so that the location corresponds to the
instruction’s new displaced location within the tem-
plate. All other instructions, including jump control
instructions, do not require altering and are simply
copied to the new displaced location.

Once this code i1s constructed in the butter,
Parasight completes the scanpoint inscrtion process by
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overwriting the instruction at the insertion location
with a branch to the newly generated scanpoint
template. The fixed instruction length of Digital’s
Alpha microprocessors simplifies this step cnormously.

[t is important to notc that the scanpoint is built bv
Parasight, not the target program. The target program
is aftected only by the tinal step of the scanpoint inser-
tion, when Parasight overwrites the instruction at the
insertion location. This design prevents excessive inter-
ference of the target program. Scanpointsare written in
highly optimized code to minimize the impact on the
target application when thevare executed.

Parasight dvnamically deletes scanpoints by writing
back the original instruction at the insertion location.
This design allows Parasight to disable a scanpoint
even ifthe scanpoint tunction has not completed.

Meeting Requirements
Parasight has the capabilities required ot cftective reai-
time debugging and analvsis tools.

Debugging Running Programs Conventional UNIX
debuggers deliberately stop a program swhen attaching
to it, because these tools do not operate on running
programs. When Parasight’s debugger, Debug, attaches
to a program, there is no impact on the program.

Conventional UNIX debuggers refuse to access any
data while a program is running, even though global
data resides at fixed memoryv locations that are accessi-
ble at all times through the /proc service. The reason
for this limitation ot the conventional UNIX tools is
unclear. Parasight’s debugger is able to examine and ro
change the value of any global data while the program
is running or stopped.

Conventional UNIX rtools also refuse to set any
breakpoints in a program while the program is run-
ning. Again, the reason ftor this constraint is unknown.
Parasight’s debugger is able to insert brealkpoints into
running programs, a feature that is valuable in debug-
ging crror conditions in real-time applications.

Debugging Multiple Programs Dlarasight’s Debug,
DataMon, and Paragraph components constitute an
integrated sct of tools capable of working on one or
more applications simultancously, as shown in Figure
1. The Parasight main window displavs the programs
(and any children they create) attached to Parasighe.
The window also provides an easy mechanism to
access the Parasight tool for cach specitic program.

Monitoring Variables Constantly Parasight’s DataMon
tool allows the user to simultancously monitor the
values of anv Jocal or global variables in one or more
stopped or running programs. Parasight constantly
monitors the values and shows any change on the
DataMon display screen. DataMon is also capable
of displaving the minimum, maximum, and average
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Figure 1

Parasight’s Debugger Working with Five Tasks Simultancously

values attained tor any variable. A scrolling history
display along with a time stamp is also available for
solving transicnt problems.

The variables to be monitored can be sclected using
the mouse on the Debug browser or entered into a dia-
log box using the kevboard. The DataMon graphical
uscr interface has a point-and-cdit capability, which
allows the user to cdit the mnemonic daca (i.e., name,
display tormat, valuc, location, or comment) directly
on the screen. The user can store mnemonic lists on
disk tor fast retrieval when required. Figure 2 shows
a DataMon display screen.

DataMon is ablc to monitor global data completcely
and nonintrusively using the /proc scrvice and uscs
a datamon-scanpoint to implement local data moni-
toring. The daramon-scanpoint is attached to the

DataMon databasc, which is a shared memory region
connecting all the scanpoints and the DataMon display
program. The datamon-scanpoints deposit the valucs
of local dara into the database for the displav program
to show on the screen. Datamon-scanpoints are also
used to change the values of local data, depositing the
value from the database into the speditied variable,

DataMon uses the Debug tool’s expression evaluator
to parse the required mnemonic to derive the location
of the valuc to be displayed. This mav include register
access for local variables saved on the stack. Multiple
mnemonics can be monitored locally atr the same
location since a datamon-scanpoint function can tra-
verse a list of mnemonics to be monitored.

Notc that DataMon monitors data asynchronously;
theretore, DataMon cannot guarantee to display every
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The DataMon Display Screen with History Window

value that the variables reach. For global data,
Parasight records only the minimum and maximum
values that DataMon sees. For local data, however, the
scanpoint keeps track of the minimum, maximum,
and average values, so these can be guaranteed.
Parasight can also monitor global data by using a
datamon-scanpoint to monitor the value at a particu-

On-the-Fly Execution Analysis Paragraph displays
static source-code call graphs of the application’s
programs, illustrating the hierarchy of function calls,
system calls, and statement-level control flow. Point-
and-click operations allow the user to quickly view the
source code for any program or function, thus simpli-
fying the task ofanalyzing source code. Figure 3 shows

lar line of code.

a Paragraph call graph and browser.
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Figure 3
Paragraph Call Graph and Browser
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Call graphs are also used to define where to insert
instrumentation in an application. The instrumenta-
tion is used to perform execution timing analysis on
a part or the whole of one or more of an application’s
programs. The instrumentation is inserted dynami-
cally into a running program, without the need for
source-level changes or object code preprocessing and
without significantly affecting the dynamics of a run-
ning application. The inserted instrumentation may be
deleted or added to at any time.

Paragraph uses sensor-scanpoints to measure
how long a function takes to execute. The sensor-
scanpoint function is placed at a branch-to-subroutine
instruction. The function takes a time stamp from a
nanosecond-resolution timer before and after the
instruction to note the exact time the function started
and ended. The sensor-scanpoints are attached to
the Paragraph database, a shared region accessible
to the sensor-scanpoints and Paragraph. Data is written
into the database each time an instrumented function
is executed. The results of the instrumentation may

be viewed immediately, even while the program is
running. The graphical view shows each function call
as it occurred in time. Each program has a different
bar, so the user can determine the relative time
between functions called in different programs or even
across multiple processors in an SMP environment.
The zoom capability may be used to measure time peri-
ods down to a single microsecond. Figure 4 shows
the Paragraph graphical display, called Bargraph, and
the zoom capability.

Data gathering is continuous until the instrumen-
tation is removed, so new data can be added onto
the previous snapshot’s view at any time. Multple
Bargraph windows can be used to recall previously
saved timing data to easily compare current results
with past results.

The nanosecond-resolution timer used by Paragraph
is derived from the process control counter (PCC)
register available on all Alpha microprocessors. This
32-bit, free-running timer operates at the same
rate as the microprocessor and therefore provides a
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Figure 4

The Paragraph Graphical Display, Bargraph, Showing Zoom Capability
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3.6-nanosccond-resolution timer on a 275-MHz
Alpha CPU. Unfortunately, since it is only a 32-bit
timer, it wraps every 15.6 seconds. Parasight keeps
track of the wrap count to create a 64-bit timer that
allows problem-free timing tor more than 2,000 vears!

Adverse Effects

Although, ideally, the Parasight tool set should
be completely nonintrusive and thus not aftect the
application in any way, such operation is not com-
pletely achievable for all functions. Capabilitics such as
mspecting (Debug) and monitoring (DataMon) global
variables require no intrusion to implement; however,
monitoring local variables and analvzing program exe-
cution do require a small amount of intrusion.

While most real-time applications cannot tolerate
exceeding the time available for the completion of
the task, thev do have some spare time available after
completing the task. Without this spare time, the risk
of exceeding the deadline before program completion
would be too great. This spare time can be used judi-
ciously for the mildly intrusive functions of Parasight.

Summary

This paper discusses several capabilities required to
effectively debug and analyze real-time applications.
These capabilities include debugging of running pro-
grams, constant monitoring ot variables, and on-the-fly
execution analysis. The paper also dctails some of the
problems associated with conventional UNIX tools,
such as the inability to debug running programs, the
adverse effects on target programs, the erroncous pro-
filing results, and the cumbersome operation. Encore
Computer Corporation’s Parasight tool set offers a
solution to these difficult problems. The paper
describes the methodology behind the product and the
capabilirics that make Parasight an invaluable tool tor
debugging and analvzing rcal-rime applications.
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