DIGITAL UNIX CLUSTERS

OBJECT MODIFICATION TOOLS

Dlgltal EXCURSION FOR WINDOWS
TeChnicaI OPERATING SYSTEMS

NETWORK DIRECTORY SERVICES
Journal

Eﬂgnnan i

Volume 8 Number 1
1996

Editorial

Jane C. Blake, Managing Editor
Hclen L. Patterson, Editor
Kathleen M. Stctson, Editor

Circulation
Catherine M. Phillips, Administrator
Dorothea B. Cassady, Sccretary

Production

Tern Autiert, Production Editor
Anne S. Katzeft, Typographer
Peter R. Woodbury, Illustrator

Advisory Board

Samuel H. Fuller; Chairman
Richard W. Beane
Donald Z. Harbert
William R. Hawe
Richard J. Hollingsworth
William A. Laing
Richard F. Lary

Alan G. Nemeth

Pauline A. Nist

Robert M. Supnik

Cover Design

The “hot” colors on our cover reflect the
kind of performance delivered by 64-bit
Digital UNIX TruCluster systems. A four-
node cluster made up ot AlphaServer 8400
5/350 systems interconnected with the
high-speed MEMORY CHANNEL and
running the Oracle Universal Server with
Oracle ParallelServerrecently achieved
record TPC-C performance of 30,390
tpmC. The design of the Digital UNIX
TruCluster system is the opening topic

n this issuc.

The cover was designed by Lucinda O’Neill
of Digital’s Design Group.

The Digital Technical fournal is a refereed
journal published quarterly by Digital
Equipment Corporation, 30 Porter Road

LJO2/D]10, Littleron, Massachuserts 01460.

Subscriptions to the fournal are $40.00
(non-U.S. 860) for four issues and $75.00
(non-U.S. $115) for eight issues and must
be prepaid in U.S. funds. University and
college professors and Ph.D. students in
the electrical engineering and computer
science tields reccive complimentary sub-
scriptions upon request. Orders, inquiries,
and address changes should be sent to the
Digital Technical fournal at the published-
by address. Inquities can also be sent elec-
tronically ro dyj@digital.com. Single copies
and back issucs are available for $16.00 cach
by calling DECdirect at 1-800-DIGITAL
(1-800-344-4825). Recent issues of the

Journal are also available on the Internet

at htep://www.digital.com/into/dtj.
Complete Digital Internet listings can

be obrained by sending an electronic mail
message to inte@digital.com.

Digital employees may order subscriptions
through Readers Choice by entering VIX
PROFILE at the system prompt.

Comments on the content of any paper

are welcomed and may be sent to the
managing editor at the published-by or
network address.

Copyright © 1996 Digital Equipment
Corporation. Copying without fee is per-
mitted provided that such copies are made
for use in educational institutions by faculty
members and are not distributed for com-
mercial advantage. Abstracting with credit
of Digital Equipment Corporation’s author-
ship is permitted.

The information in the journal is subject
to change without notice and should not
be construed as a commitment by Digital
Equipment Corporation or by the compa-
nies herein represented. Digital Equipment
Corporation assumes no responsibility for
any errors that may appear in the fournal.

ISSN 0898-901X
Documentation Number EY-U025E-TJ

Book production was done by Quantic
Communications, Inc.

The following are trademarks of Digital
Equipment Cerperation: AlphaServer,
DECnet, DECsate, Digital, the DIGITAL
logo, eXcursion, ManagcWORKS, MSCP,
OpenVMS, PATHWORKS, TruCluster,
and VAXcluster.

Adobe is a registercd trademark of Adobe
Systems Incorporated.

DCE, OSF, and Motifare registered
trademarks and Open Software
Foundation is a trademark of Open
Software Foundation, Inc.

Hewlere-Packard is a trademark of
Hewlett-Packard Company.

Himalaya and Tandem are registered
trademarks of Tandem Computers, Inc.

Intelis a trademark of Intel Corporation.

MEMORY CHANNEL is a trademark of
Encore Compurter Corporation.

Microsoft, Visual C++, Win32, and
Windows 95 are registered trademarks
and Windows, Windows tor Workgroups,
and Windows NT are trademarks of
Microsoft Corporation.

NetWare and Novell are registered
trademarks of Novell, Inc.

POSIX is a registered trademark of The
Institute of Electrical and Electronics
Engineers, Inc.

Oracle7 is a trademark of Oracle
Corporation.

S3is aregistered trademark of S3
Incorporated.

Sequent is a trademark of Sequent
Computer Systems, Inc.

SPEC is aregistered rademark of the
Standard Performance Evaluation
Corporation.

StreetTalk is a trademark of Banyan
Systems, Inc.

Sun Microsystems is a registered trade-
mark of Sun Microsystems, Inc.

TPC-C is a trademark of the Transaction
Processing Performance Council.

UNIX s a registered trademark in the
United States and other countries, licensed
exclusively through X/Open Company Lid.

X Window System is a trademark of the
Massachusetts Institute of Technology.

http: //www.digital.com/info/dy

Contents

Foreword Don Harbert 3
DIGITAL UNIX CLUSTERS

Design of the TruCluster Multicomputer System for Wayne M. Cardoza, Frederick S. Glover, and 5
the Digital UNIX Environment William E. Snaman, Jr.

OBJECT MODIFICATION TOOLS

Delivering Binary Object Modification Tools for Linda S. Wilson, Craig A. Ncth, and 18
Program Analysis and Optimization Michael J. Rickabaugh

EXCURSION FOR WINDOWS OPERATING SYSTEMS

Design of eXcursion Version 2 for Windows, John T. Freiras, James G. Peterson, Scot A. Aurenz, 32
Windows NT, and Windows 95 Charles P. Guldenschuh, and Paul J. Ranauro

NETWORK DIRECTORY SERVICES
Integrating Multiple Directory Services Margaret Olson, Laura E. Holly, and Colin Strutr 46

Design of the Common Directory Interface Richard L. Rosenbaum and Stanley 1. Goldfarb 59
for DECnet/OSI

Digital Technical Journal Vol.8§ No.1 1996

Editor’'s
Introduction

Digital recently announced record-
breaking 30,390 tpmC performance
on a Digital UNIX cluster of 64-bit
RISC AlphaScrver systems. In this
issue, engineers from the UNIX team
describe the key technologies that
¢nable these near supercomputer
performance levels as well as provide
the cluster characteristics of high
availability and scalability. Also pre-
sented in this issue are advanced
UNIX programming tools for maxi-
mizing performance, X server soft-
ware that supports the Microsoft
family of operating systems, and new
network directory services that sim-
plify management.

First defined by Digital in the carly
1980s, clusters are highly available,
scalable multicomputer systems built
with standard parts and oftering the

advantages of single-computer systems.

Wayne Cardoza, Fred Glover, and
Sandy Snaman compare clusters with
other types of multicomputer config-
urations and describe the major com-
ponents of Digital’s newest cluster
immplementation, TruCluster systems,
for the 64-bit UNIX cnvironment.
The cluster interconnect, called
MEMORY CHANNEL, is critical to

the cluster’s outstanding performance.

MEMORY CHANNEL implements
clusterwide virtual shared memory
and reduces overhead and latency by
two to three orders of magnitude
over conventional interconnects.
Also developed for the Digital
UNIX environment (version 4.0) are
two program analysis and optimiza-
tion tools—OM and Atom. The tool
technology originated in Digital’s
Western Rescarch Laboratory, where

Digital Technical Journal

rescarchers focused on providing
performance diagnosis and improve-
ments for large customer applications.
Softwarc developers Linda Wilson,
Craig Neth, and Mike Rickabaugh
from the UNIX Development Envi-
ronment Group describe the object
modification tools and the flexibility
they provide over traditional tools
that are implemented in the realm of
compilers. In addition to demonstrat-
ing practical application of the tools,
the authors examinc the process of
transferring technology from rescarch
to development.

For mixed operating system
cnvironments, Digital developed
Windows-based X scrver software,
called eXcursion, to allow the win-
dows of a remote host running UNIX
or OpenVMS to display on a desk-
top running the Microsoft Windows
operating system. The latest version
of eXcursion, described here by John
Freitas, Jim Pcterson, Scot Aurenz,
Chuck Guldenschuh, and Paul
Ranauro, is wholly rewritten to maxi-
mize graphics performance and to
support the full range of Windows
platforms: Windows, Windows 95,
and Windows NT. This new version
is based on the X Window System
version 11, release 6 protocol from
the X Consortium.

Two network directory services
that reduce complexity and increase
choices for nctwork managers are the
subjects of our next papers. The first
1s designed for multiple networked
cnvironments; Integrated Directory
Services (1DS) software integrates
multiple services into onc directory-
service-independent system. Margaret

Vol.8 No.1 1996

Olson, Laura Holly, and Colin Strutt
outline the problems that have lim-
ited the use of directory services and
the difterent design approaches the
team considered to simplify directory
services use and make it more attrac-
tive. They then describe the IDS
extensible, object-based framework,
which comprises an application
programming interface and a ser-
vice provider interface. Next, Rich
Rosenbaum and Stan Goldfarb
present the Common Dircctory
Interface (CDI) for DECnet/OSI.
Implemented as shared libraries in
the Digital UNIX and OpenVMS
operating systems, CDI is designed
to give network managers a choice
of directory services. The authors
describe the libraries and the registra-
tion tool set of management opera-
tions that is laycred on a specialized
APIL.

Coming up in the Journalare
papers about a new log-structured
clusterwide file system called Spiralog,
the 64-bit OpenVMS operating
system, speech recognition software,
and the UNIX clusters message-
passing system and its use for pro-
gram paraliclization.

Klede

Jaae C. Blake
Managing Editor

Foreword

Don Harbert
Vice Presiclent, (INIX Business

Digital not only invented clusters but
continues to set the standard by
which all other cluster systems arc
measured. The VAXcluster success
and that of Digital’s latest UNIX clus-
ter systems derive from superb engj-
neering that builds on the system
definition put forth in the early 1980s
by the VAX engineering team: an
available, extensible, high-pertormance
multicomputer system built from
standard processors and a general-
purposc opcrating system, with char-
acteristics of both loosely and tightly
coupled systems!

We in the UNIX community arc
proud of our VAXcluster heritage
and have engincered our products
to provide the same kinds of benefits
to customers that VAXcluster svstems
provide! In the opening paper for
this issuc of the Journal, members
of the Digital UNIX engineering
team describe the multicomputer
system for the Digital UNIX environ-
ment, called TruCluster, which, like
the VAXcluster system, is designed
tor high availability, scalability, and
performance.

The technology, of course, is dif-
terent, and the environment is open.
The fundamental concepts are never-
theless the same. The TruCluster
svstem is a looscly coupled, gencral-
purpose system connected by a
high-performance interconnect. It
maintains a single sccurity domain
and is managed as a single system.

* Nancy P Kronenberg, Henry M. Levy,
and William D). Steecker, “VAXclusters:
A Closely-Coupled Distributed Sysrem,”
ACM Transactions on Compuiter Systenis,
vol. 4, n0.2 (May 1986): 130-1406.

t Digirtal has renamed VAXcluster systems
to OpenVMS Cluster systems.

Digiral Technical Journal

Cluster services remain available even
when other members arc unavailable.
Like VAXcluster systems, TruCluster
systems implement a distributed lock
manager, which provides synchro-
nization for a highly parallelized
distributed databasc system. The
technology for the lock manager,
however, is newly implemented for
the UNIX environment. Also com-
pletely new is the interconnect tech-
nology tor TruCluster systems.
MEMORY CHANNEL is a rehiable,
high-speed interconnect based on

a design by Digital partner Encore
Computer Corporation. MEMORY
CHANNEL addresses the unique
needs of clusters by implementing
clusterwide virtual shared memory;
the interconnect reduces overhead
and latency by two to three orders
of magnitude.! Because MEMORY
CHANNEL uses the industry-
standard PCI, designers can imple-
ment the nerwork at very low cost.
We believe this interconnect tech-
nology puts Digital years ahead of
the compctition.

The TruCluster system is the latest
example of Digital’s intent to remain
a technology leader in the UNIX
market. We began by developing
the first high-performance, 64-bit
general-purpose operating system,
DEC OSE/1, shipping in March
1993. The first Digital UNIX cluster
release, DECsate Available Server
Environment, followced soon there-
atter in April 1994. The announce-
ment in April 1996 of TruCluster
systems with MEMORY CHANNEL

t Richard B. Gillert, “Mcemory Channel
Nerwork for PCLY 11:4:F Micro
(February 1996): 12-18.

Vol. 8 No.l 1996

again places Digital far ahcad of the
competition technologicallv. The
performance of these available cluster
systems now approaches that of very
expensive supercomputers. Svstem
performance has been measured at
the record-breaking rate of 30,390
tpmC on four AlphaScrver 8400
systems running Digital UNIX and
the Oracle Universal Server with
Oracle Parallel Server. The previous
performance record, 20,918 tpmC,
was held by the proprictary Tandem
Himalava K10000-112; Digital’s
open system cluster performance
record is 1.5 times the Tandem
performance record at one-third

the svstem cost.

For Digital, clusters of high-
pertormance 64-bitsystems are
to a great extentat the heartofits
commercial and rechnical server
strategy. Digital UNIN has been
defned and enginceered for the ser-
ver business, specifically, tor the high-
pertormance commercial and large-
problem /scientific cnvironment. To
be successtul in the open svstem mar-
ket, however, a company must reach
outside itself to jointly engineer prod-
ucts with leading sottware suppliers
that have the software customers
need to be competitive. Therefore,
the first TraCluster implementation
1s designed with Digital’s partners—
major software companics—to mect
therequirements for high performance
and tunctionality in the commercial
databasce server market.

The competitive challenge now is
to maintain Digital’s significant Icad
in providing outstanding cluster per-
formance, availability, and aftordabil-
ity. From a technological perspective,
the immedrate and achievable goal

Digital Techneal Journal

is to increase the number of cluster
nodes from 4 to 10 or 20 nodcs.
Within this range, Digital maintains
a simplce cluster system model that
offers the performance advantages

of clustering and avoids the disadvan-
tages, such as the management prob-
lems and qualification headaches, of
more complex topologies. Further,
the Digital UNIX organization will
tocus on a new cluster file svstem,
configuration flexibility, management
tools, and a cluster alias that allows
asingle-svstem view for clients and
peers. The overall goal of this work

i1s to cvolve toward a more general
computing cnvironment.

The kinds of tools that both sim-
plifv and enhance performance are
exemplified by the program analysis
and optimization tools presented
in this issuc. Built on Digital UNTX
version 4.0 and announced in April,
these tools help sottware developers
extract maximum performance from
the system. The story of the tools
development is an excellent example
of the directapplication of rescarch
to products. The power of the OM
object modification tool and the analy-
sis tool with object modification
(Atom) was recognized by developers
even as rescarch progressed; in fact,
semiconductor designers developed
Atom tools to cvaluate new Alpha
chip implementations. The result
of this close cooperation between
rescarch and development is advanced
programming tools for customers.

Thesc cftorts in the UNIX organi-
zation are manifestations of Digital’s
commitment to open systems. Other
arcas ot engineering where this com-
mitment is apparent are also repre-
sented in this issue. For example,

Vol.8 No. 1l 1996

e Ncursion software is kev to integra-
tion between Microsoft’s Windows
tamilv of products and Digital’s
UNIX and OpenVMS products.

This wholly revised version both
adds new functionality and conserves
system resources. Another major arca
of strength for Digital is its networks
products. Nerworks engineers
describe nwo examples of network
services that increasc users’ choices
and extend system functionality,

i.c., the Integrared Directory Serviees
(INS) and the Common Directory
[ntertace.

Digital’s strategy is to continue to
engineer products that provide out
standing performance and price/
performance in open environments.
Inall areas of engincering—svstems,
scrvices, networking—our goal is
to sct the standard by which all others
arc measured.

Design of the TruCluster
Multicomputer System
for the Digital UNIX
Environment

The TruCluster product from Digital provides
an available and scalable multicomputer sys-
tem for the UNIX environment. Although it was
designed for general-purpose computing, the
first implementation is directed at the needs
of large database applications. Services such
as distributed locking, failover management,
and remote storage access are layered on a
high-speed cluster interconnect. The initial
implementation uses the MEMORY CHANNEL,
an extremely reliable, high-performance inter-
connect specially designed by Digital for the
cluster system.

Wayne M. Cardoza
Frederick S. Glover
William E. Snaman, Jr.

The primary goal for the first release of the TruCluster
svstem for the Digital UNIX operating svstem was to
develop a high-performance commercial database
server environment running on a cluster of several
nodes. Database applications often requirc computing
power and [/0O connectivity and bandwidth greater
than that provided bv most single svstems. In addi-
tion, availability is a kev requirement tor enterprises
that are dependent on database services for normal
operations. These requirements led us to implement a
cluster of computers that cooperate to provide services
but fail independently. Thus, both performance and
availability are addressed.

We chosc an industry-standard benchmark to gauge
our success in meeting performance goals. The
Transaction Processing Performance Council TPC-C
benehmark is a widely accepted measurement of the
capability of large servers. Our goal was to achieve
industry-leading numbers in excess of 30,000 transac-
tions per minute (tpmC) with a four-node TruCluster
system.

The TruCluster version 1.0 product provides
rcliable, shared access to large amounts of storage,
distributed svnchronization for applications, efficient
cluster communication, and application failover. The
tocus on database servers doces not mcan that the
TruCluster system is not suitable for other applica-
tions, but that the inevitable design decisions and
trade-offs tor the first product were made with this
goal in mind. Although other aspects of providing
a single-system view of a cluster are important, they
are secondary objectives and will be phased into the
product over time.

This paper begins with a brief comparison of com-
puter systems and presents the advantages of clustered
computing. Next, it introduces the TruCluster prod-
uct and describes the design of'its kev software compo-
nents and their relationship to database applications.
The paper then discusses the design of the MEMORY
CHANNEL interconnect for cluster svstems, along
with the design of the low-level software foundation
tor cluster synchronization and communication.
Finally, it addresses application failover and hardware
configurations.

Digital Technical Journal Vol.8 No.l 1996

w

Brief Comparison of Computing Systems

Contemporary computing systems evolved trom
centralized, single-node time-sharing systems into sev-
eral distinct stvles of multinode computer systems.
Single-node systems provided unitorm accessibility
to resources and services and a single-management
domain. They were limited with respect to scalability,
however, and svstem failures usually resulted in a com-
plete loss of service to clients of the system.

Multinode computer systems include symmetric
multiprocessing (SMP) systems and massively paraliel
processors (MPPs). They also include nerwork-based
computing systems such as the Open Software
Foundation Distributed Computing Environment
(OSE DCE), Sun Microsystems Inc.’s Open Network
Computing (ONC), and workstation farms.'* Each of
these svstems addresses one or more of the benetits
associated with clustered computing.

SMP contigurations provide for tightly coupled,
high-pertormance resource sharing. In their effective
range, SMP systems provide the highest-performance
single-system product for shared-resource applica-
tions. Outside that range, however, both hardware
and software costs increase rapidly as more processors
are added to an SMP system. In addition, SMP avail-
abiliny characreristics are more closcly associated with
those of single systems because an SMP svstem, by def-
inition, is composed of multiple processors but not
multple memorics or [/O subsystems.

MPP systems such as the Intel Paragon serics were
developed to support complex, high-performance
parallel applications using systems designed with hun-
dreds of processors. The individual processors of an
MPP system were tvpically assigned to specitic tasks,
resulting in fairly special-purpose machines.

The DCE and ONC technologies provide support
for common naming and access capabilitics, user
account management, authentication, and the replica-
tion of certain services for improved availability.
Workstation tarms such as the Watson Research Cen-
tral Computer Cluster dehver support for the parallel
execution of applications within multiple computer

environments tvpically constructed using ott-the-shelf
software and hardwarc.” ONC, DCE, and farms pro-
vide their services and tools in support of heteroge-
neous, multivendor computing environments with
hundreds of nodes. They are, however, much further
away from realizing the benefits of asingle-system view
associated with clustered computing,

In the continuum of multinode computer systems,
the advantage of the cluster system is its ability to
provide the single-svstem view and ease of manage-
ment associated with SMP systems and at the same
tme supply the failure isolation and scalability of dis-
tributed systems.

Digital Technical Journal Vol.8 No. 1 1996

Cluster systems have clear advantages over large-
scale parallel systems on one side and heterogeneous
distributed systems on the other side. Cluster systems
provide many cost and availability advantages over
large parallel systems. They are built of standard build-
ing blocks with no unusual packaging or interconnect
requirements. Their I/O bandwidth and storage con-
nectivity scale well with standard components. They
are inherently more tolerant of failures due to looser
coupling. Parallel or multiprocessorsystems should be
thought of as cluster components, not as cluster
replacements.

Cluster systems have a different set of advantages
over distributed systems. First they arc homogeneous
in nature and more limited in size. Cluster systems can
be more efticient when operating in more constrained
environments. Data formats are known; there is a
single-security domain; failure detection is certain; and
topologies are constrained. Cluster systems also are
likely to have interconnect performance advantages.
Protocols are more specialized; interconnect charac-
teristics are more unitform; and high pertormance can
be guarantced. Finally, the vendor-specific nature of
cluster systems allows them to evolve faster than het-
erogeneous distributed systems and will probably
always allow them to have advantages.

There are numerous examples of gencral-purpose
clusters supplied by most computer vendors, including
AT&T, Digital, Hewlett-Packard, International Busi-
ness Machines Corporation, Sequent Computer Sys-
tems, Sun Microsystems, and Tandem Computers.
Digital’s OpenVMS cluster system is generally accepred
as the most complete cluster product oftering in the
industry, and it achieves many of the single-svstem
management attributes.* Much of the functionality of
the OpenVMS cluster system is retained in Digital’s
TruCluster product offerings.

Structure of the TruCluster System

Digital’s TruCluster multicomputer system is a highly
available and scalable structure of UNIX servers that
preserves many of the benefits of a centralized, single
computer system. The TruCluster product is a collec-
ton of loosely coupled, general-purpose computer
systems connected by a high-pertormance intercon-
nect. It maintains a single security domain and is man-
aged as a single system. Each cluster node may be
a uniprocessor or a multiprocessor system executing
the Digital UNIX operating system. Figure 1 shows
a typical cluster configuration.

Each cluster member is isolated trom software and
hardwarce faults occurring on other cluster members.
Thus, the TruCluster system does not have the tightly
coupled, “fail together” characteristics of multiproces-
sor systems. Cluster services remain available even
when individual cluster members are temporarily

DISKS

SCSI BUS

NODE 0 NODE 1

MEMORY CHANNEL
INTERCONNECT

205

NODE 2 NODE 3

DISKS

Figure 1
Coutiguration ot a Four-node Cluster System

unavailable. Other important availability objectives of
the TruCluster server include quick detection of com-
ponent and member failures, on-line reconfigurations
to accommodate the loss of a failed component, and
continued service while safe operation is possible.

The TruCluster product supports large, highly
available database systems through several of its key
components. First, the distributed remote disk (DRD)
facility provides reliable, transparent remote access to
all cluster storage from any cluster node. Next, the dis-
tributed lock manager (DLM) enables the elements of
a distributed database system to synchronize activity
on independent cluster nodes. Finally, elements of
Digital’s DECsafe Available Server Environment
(ASE) provide application failover.* In support of all
these components is the connection manager, which
controls cluster membership and the transition of
nodes in and out of the cluster. Figure 2 is a block dia-
gram showing the relationships between components.

Each major componcent is described in the remain-
der of this paper. In addition, we describe the high-
performance MEMORY CHANNEL interconnect
that was designed specifically for the needs of cluster
systems.

Distributed Remote Disk Subsystem

The distributed remote disk (DRD) subsystem was
developed to support database applications by present-
ing a clusterwide view of disks accessed through the
character or raw device interface. The Oracle Parallel
Server (OPS), which is a parallclized version of the
Oracle database technology, uses the DRD subsystem.

The DRD subsystem provides a clusterwide name-
space and access mechanism for both physical and log-
ical (logical storage manager or LSM) volumes. The
LSM logical device may be a concatenated, a striped,

or a mirrored volume. DRD devices are accessible
from any cluster member using the DRD device name.
This location independence allows database software
to treat storage as a uniformly accessible cluster
resource and to casily load balance or fail over activity
between cluster nodes.

Cluster Storage Background

Disk devices on UNIX systems are commonly accessed
through the UNIX file system and an associated block
device special file. A disk device mav also be accessed
through a character device special file or raw device
that provides a direct, unstructured interface to the
device and bypasses the block buffer cache.

Dartabase management systems and some other
high-performance UNIX applications are often
designed to take advantage of the character device spe-
cial file interfaces to improve performance by avoiding
additional code path length associated with the file sys-
tem cache.*” The 1/0 profile of these systems is char-
acterized by large files, random access to records,
private data caches, and concurrent read-write sharing.

Overall Design of the DRD

The DRD subsystem consists of four primary compo-
nents. The remote raw disk (RRD) pseudo-driver redi-
rects DRD access requests to the cluster member
serving the storage device. The server is identified by
information maintained in the DRI device database
(RRDB). Requests to access local DRD devices are
passed through to local device drivers. The block ship-
ping client (BSC) sends requests for access to remote
DRD devices to the appropriate DRI server and
returns responses to the caller. The block shipping
server (BSS) accepts requests from BSC clients, passes
them to its local driver for service, and returns the
results to the calling BSC client. Figure 3 shows the
components of the DRD subsystem.

The DRD management component supports DRD
device naming, device creation and deletion, device
relocation, and device status requests. During the
DRD device creation process, the special device file
designating the DRD device is created on each cluster
member. In addition, the DRD device number, its cor-
responding physical device number, the network
address of the serving cluster member, and other con-
figuration parameters are passed to the DRD driver,
which updates its local database and communicates
the information to other cluster members. The DRD
driver may be queried tor device status and DRD data-
base information.

Clusterwide Disk Access Model

During the design of the DRD subsystem, we consid-
eredboth shared (multiported) and served disk models.
A multiported disk configuration provides good failure
recovery and load balancing characteristics. On the

Digital Technical Journal Vol.8 No.1 1996

| NODE A NODE B
| [oATABASE NSTANCE | Lo [DATABASE INSTANCE |
' ¢ ¢ L
| | | ¢ ¢
| RAW DISK LOCK bl A RAW DISK
INTERFACE MENACES I MANACGER INTERFACE
| INTERFACE INTERFACE
| - N 1
| | DECSAFE ASE AvAILABILITY SERVICES |
—
i ACTIVE
| STANDBY CONFIGURATION
| CONFIGURATION DISTRIBUTED LOCK MANAGER MANAGER
| MANAGER | |
DISTRIBUTED DIRECTORY SERVICE
| CONNECTION \ f,,gmé(ég'o'“
MANAGER -
| el [RESOURCE MANAGER | [RESOURCE MANAGER | AGENT
| Y '
! Q‘;ﬁ;g@;'” 7'[COMMUNICATION SERVICES }~ AVAILABILITY
| MANAGER
i T
! L
: DISTRIBUTED REMOTE DEVICE
DRD BLOCK DRD BLOCK
| DRD 110 . DRD 110
SHIPPING > SHIPPING >
| REDIRECTION SHPI - ey REDIRECTION
| Y MOVER
| DRD BLOCK DRD BLOCK
SHIPPING SHIPPING |*——
[CLIENT SERVER
: , T]
MEMORY CHANNEL LILL I MEMORY CHANNEL
| | LocAL bevice brivERsS AL T[] SeRvices LOCAL DEVICE DRIVERS
| ——— 4 ______________ slle o __ _ ______ _
) SHARED SCSI BUS
< D>
SHARED
> STORAGE >

MEMORY CHANNEL BUS {

NODE C NODE D
Figure 2
Software Components
DRD CLIENT —: DRD SERVER _—:
| |
| | ACCESS TO /dev/drd/drds | I | ACCESS TO /devidrd/drd5 | '
| ' | |
| | oRD DEVICE "l ! | | | l
| aTaBASE <—>| REMOTE DISK DRIVER | | | REMOTE DISK DRIVER |
| | | ¥ |
BLOCK SHIPPING | | | | BLOCK SHIPPING || |
: LM CLIENT || LSERVER i |
I ¢ Y | | ¢ ¢ |
I | DEVICE DRIVER | : I | DEVICE DRIVER I :
| |
Lo Jd oo - __ ______ J

Figure 3
Distributed Remote Disk Subsystem

Digital Technical Journal Vol. 8 No.1 1996

other hand, /O bus contention and hardware queuing
delays from fully connected, shared disk contigurations
can limit scalability. In addition, present standard 1/0
bus technologics limit configuration distances.® As a
consequence, we sclected a served disk model for the
DRD implementation. With this model, sottware
queuing alleviates the bus contention and bus queuing
delays. This approach provides improved scalability and
fault isolation as well as flexible storage conhigura-
tions.™° Full connectivity is not required, and extended
machine room cluster configurations can be con-
structed using standard networks and 1/0 buses.

The DRD implemenration supports clusterwide
access to DRI devices using a softwarc-based emula-
tion of a fully connected disk contiguration. Each
device is assigned to a single cluster member at a time.
The member registers the device into the cluster-
wide namespace and serves the device data to other
cluster members. Failure recovery and load-balancing
supportare included with the DRID device implemen-
tation. The tailure of a node or controller is transpar-
entlv. masked when another node connected to the
shared bus takes over serving the disk. As an option,
automatic load balancing can move service of the disk
to the node generating the most requests.

In the TruCluster version 1.0 product, data is
transferred between requesting and serving cluster
members using the high-bandwidth, low-latency
MEMORY CHANNEL interconnect, which also sup-
ports direct memory access (DMA) between the /0
adapter of the serving node and the main memory of
the requesting node. The overall cluster design, how'-
ever, is not dependent on the MEMORY CHANNEL
interconnect, and alternative cluster interconnects will
be supported in future software releases.

DRD Naming
The Digiral UNIX operating system presently supports
character device special file names for both physical disk
devices and 1.SM logical volumes and maintains a sepa-
rate device namespace for cach. An important DRI
design objective was to develop a clusterwide naming
scheme integrating the physical and logical devices
within the DRD namespace. We considered defining
a new, single namespace to support all cluster disk
devices. Our research, however, revealed plans to intro-
duce significant changes into the physical device nam-
ing scheme in a future base system release and the
complications of licensing the logical disk technology
from a third party that maintains control over the logi-
cal volume namespace. These issues resulted in defer-
ring a true clusterwide device namespace.

As an interim approach, we chosc to create a sepa-
rate, clusterwide DRD device namespace layered on
the existing physical and logical device naming

schemes. Translations from DRI device names into
the underlying physical and logical devices are main-
tained by the DRI device mapping database on each
cluster node. DRD device “scrvices” are created by
the cluster administrator using the scrvice registra-
tion facility."” Each “add Service” management opera-
ton gencrates a unique service number that is
used in constructing the DRD device special file name.
This operation also creates the ncw DRD device
special file on cach cluster member. A traditional
UNIX-device-naming convention results in the cre-
ation of DRD special device file names in the form of
/dev/drd/drd{service number}."

DRD Relocation and Failover
ASE failover (see the discussion in the section
Application Failover) is used to support DRD failover
and is fully integrated within the cluster product. The
device relocation policy defined during the creation of
a DRD device indicates whether the device may be
reassigned to another cluster member as a result of
a node or controller tailure or aload-balancing opera-
tion. In the event of a cluster member failure, DRD
devices exported by the failed member are reassigned
to an alternate server attached to the same shared 1/0
bus. During rcassignment, the DRD device databases
are updated on all cluster members and DRD 1/0
operations are resumed. Cluster device services may
also be reassigned during a planned relocation, such
as for load balancing or member removal. Any DRD
operation in progress during a relocation triggered by
a failure will be retried based upon the registered DRD
retry policy. The retry mechanism must revalidate the
database translation map for the target DRD device
because the server binding may have been modified.
Failover is thus transparent to database applications
and allows them to ignore configuration changes.
Several challenges result trom the support of
multiported disk configurations under various failure
scenarios. One of the more difticult problems is distin-
guishing a failed member from a busy member or a
communication tault. The ASE failover mechanism was
designed to maintain data integrity during service
tailover, and to ensure that subscquent disk operations
are not honored from a member that has been declared
“down” by the remaining cluster members. This ASE
mechanism, which makes usc of small computer sys-
tems interface (SCSI) target mode and device reserva-
tion, was integrated into the TruCluster version 1.0
product and supports the DRD service guarantees.
Other challenges relate to preserving serialization
guarantees in the case of cluster member failure.
Consider a parallel application that uses locks to serial-
ize access to shared DRD devices. Suppose the applica-
tion is holding a write lock for a given data block and

Digital Technical Journal Vol.8 No.1 1996

issues an update for that block. Before the update
operation is acknowledged, however, the local mem-
ber fails. The distributed lock manager, which will
have been notified of the member failure, then takes
action to release the lock. A second coopcrating appli-
cation executing on another cluster member now
acquires the write lock for that same data block and
issues an update for that block. If the failure had not
occurred, the second application would have had to
wait to acquire a write lock for the data block until the
first application released the lock, presumably after its
write request had completed. This same serialization
must be maintained during failure conditions. Thus, it
is imperative that the write issued by the first (now
failed) application partner not be applied after the
write issued by the second application, even in the
presence of a timing or network retransmission anoms-
aly that delays this first write.

To avoid the reordering scenario just described,
we employed a solution called a sequence barricr in
which the connection manager increments a sequence
number each time it completes a recovery transition
that results in released locks. The sequence number
1s communicated to each DRD server, which uses
the sequence number as a barrier to prevent apply-
ing stale writes. This 1s similar to the immediate com-
mand feature of the Mass Storage Control Protocol
(MSCP) used by OpenVMS cluster systems to provide
similar guarantees. Note that no application changes
are required.

As another example, client retransmissions of
DRD protocol requests that are not idempotent can
cause serious consistency problems. Request transac-
tion IDs and DRD server duplicate transaction caches
are employed to avoid undesirable effects of client-
generated retransmissions.'?

Cluster member failures are mostly transparent to
applications executing on client member systems.
Nondistributed applications may fail, but they can be
automatically restarted by ASE facilities. DRD devices
exported by a serving member become unavailable for
asmall amount of time when the member fails. Cluster
failover activities that must occur betore the DRD
service is again available include detecting and verify-
ing the member failure, purging the disk device SCSI
hardware reservation, assigning an alternate server,
establishing the ncw reservation, and bringing the
device back on-line. A database application serving
data from the DRD device at the time of the failure
may also have registered to have a restart script with
a recovery phase executed prior to the restart of the
database application. A possible lack of transparency
may result it some client applications are not designed
to accommodate this period of inaccessible DRD ser-
vice. The DRD retry request policy is configurable
to accommodate applications interacting dircctly with
a DRD device.

Digital Technical Journal Vol.§ No. T 1996

Distributed Lock Manager

The distribured lock manager (DLM) provides syn-
chronization services appropriate for a highly paral-
lelized distributed database system. Databases can use
locks to control access to distributed copies of data
bufters (caches) or to limit concurrent access to shared
disk devices such as those provided by the DRD sub-
system. Locks can also be used for controlling applica-
tion instance start-up and for detecting application
instance failures. In addition, applications can use the
locking services for their other synchronization needs.

Even though this is a completely new implementa-
tion, the lock manager borrows from the original
design and concepts introduced in 1984 with the
VAXcluster distributed lock manager." These concepts
were used in several recent lock manager implementa-
tions for UNIX by other vendors. In addition, the
Oracle Parallel Server uses a locking application pro-
gramming interface (API) that is conceprually similar
to that oftered here.

Usage of the DLM

The lock manager provides an APl for request-
ing, releasing, and altering locks.'>'* These locks are
requested on abstract names chosen by the applica-
non. The names represent resources and may be orga-
nized in a hierarchy. When a process requests a lock on
a resource, that request is either granted or denied
based on cxamination of locks already granted on the
resource. Cooperating components of an application
use this service to achieve mutually exclusive resource
usage. In addition, a mode associated with each lock
request allows traditional levels of sharing such as mul-
tiple rcaders excluding all writers.

The API provides optional asynchronous request
completion to allow queuing requests or overlapping
multiple operations for increased performance.
Queuing prevents retry delays, eliminates polling
overhead, and provides a first in, first out (FIFO) fair-
ness mechanism. In addition, asynchronous requests
can be used as the basis of a signaling mechanism to
detect component failures in a distributed system. One
component acquires an exclusive lock on a named
resource. Other components qucue incompatible
requests with asynchronous completion specified. If
the lock holder fails or otherwise releases its lock, the
waiting requests are granted. This usage is sometimes
referred to as a “dead man” lock."”

A process can request notification when a lock it
holds is blocking another request. This allows elimina-
tion of many lock calls by effectively caching locks.
When resource contention is low, a lock is acquired
and held until another process is blocked by that lock.
Upon receiving blocking notification, the lock can be
released. When resource contention is high, the lock
1s acquired and released immediately. In addition, this

notification mechanism can be used as the basis of a
general signaling mechanism. One component of the
application acquires an exclusive lock on a named
resource with blocking notification specified. Other
components then acquire incompatible locks on that
resource, thus triggering the blocking notification.
This usage is known as a “doorbell” lock."”

The DLM is often used to coordinate access to
resources such as a distributed cache of database
blocks. Multiple copies of the data are held under
compatible locks to permit rcad but not write access.
When a writer wants an incompatible lock, readers are
notified to downgrade their locks and the writer is
granted the lock. The writer modities the data before
downgrading its lock. The reader’s lock requests are
again granted, and the reader fetches the latest copy of
the data. A value block canalso be associated with each
resource. Its value is obtained when a lock is granted
and can be changed when cerrain locks are released.
The value block can be used to communicate any use-
ful information, including the latest version number of
cached data protected by the resource.

Design Goals of the DLM

The overall design goal of the lock manager was to
provide services for highly scalable database systems.
Thus correctness, robustness, scaling, and speed were
the overriding subgoals of the project.

Carcful attention to design details, rigorous testing,
internal consistency checking, and years of experience
working with the VMS distributed lock manager have
all contributed to ensuring the correctness of the
implementation for the Digital UNIX system. Because
the lock manager provides guarantees about the state
ofall locks when either a lock holder or the node upon
which it 1s running fails, it can ensure the internal lock
state is consistent as far as surviving lock holders are
concerned. This robustness permuts the design of
applications that can continue operation when a clus-
ter node fails or is removed for scheduled service. The
choice of a kernel-based service and the use of'a mes-
sage protocol also contribute to robustness as dis-
cussed below.

In terms of performance and scaling, the lock man-
ager is designed for minimal overhead toits users. The
kernel-based service design provides high perfor-
mance by eliminating the context switch overhead
associated with server daemons. The lock manager
uses the kernel-locking features of the Digital UNIX
opcrating system for good scaling on SMP systems. A
kernel-based service as opposed to a library also allows
the lock manager to make strong guarantees about the
internal consistency state of locks when a lock-holding
process fails.

The message protocol contributes to cluster scaling
and pertormance through a scaling property that
maintains a constant cost as nodes are added to the

cluster.”" The message protocol also provides suffi-
ciently loose coupling to allow the lock manager to
maintain internal lock state when a node fails. The use
of messages controls the amount of internal state visi-
ble to other nodes and provides natural checkpoints,
which limit the damage resulting from the failure of
a cluster node.

DLM Communication Services

The DLM session service is a communication layer
that takes advantage of MEMORY CHANNEL fea-
tures such as guaranteed ordering, low errorrate, and
low latency. These features allow the protocol to be
very simple with an associated reduction in CPU over-
head. The service provides connection establishment,
delivery and order guarantees, and buffer manage-
ment. The connection manager uses the communi-
cation service to establish a channel for the lock
manager. The Jock manager uses the communication
services to communicate betwween nodes. Because the
service hides the details of the communication mecha-
nism, alternative interconnects can be used without
changes to the lock manager’s corc routines.

The use of the MEMORY CHANNEL interconnect
provides a very low latency communication path for
small messages. This is ideal for the lock manager since
lock messages tend to be very small and the users of
the lock manager are sensitive to latency since they
wait for the lock to be granted before proceeding.
Small messages are sent by simply writing them into
the receiving node’s memory space. No other com-
munication setup needs to be performed. Many net-
work adapters and communication protocols are
biased toward providing high throughput only when
rclatively large packets are used. This means that the
performance drops oft as the packet size decreases.
Thus, the MEMORY CHANNLEL interconnect pro-
vides a better alternative for communicating small,
latency-sensitive packets.

Connection Manager

The connection manager defines an operating envi-
ronment for the lock manager. The design allows gen-
cralization to other clients; but in the TruCluster
version 1.0 product, the lock manager is the only con-
sumer of the connection manager services. The envi-
ronment hides the details of dynamically changing
configurations. From the perspective of the lock man-
ager, the connection manager manages the addition
and removal of nodes and maintains a communication
path benween each node. These services allowed us to
simplify the lock manager design.

The connection manager treats each node as a mem-
ber of a set of cooperating distributed components.
It maintains the consistency of the set by admitting
and removing members under controlled conditions.

Digiral Technical Journal Vol.8 No.l 1996

12

The connection :aanager provides configuration-
related event notification and other support services
to cach member of a set. It provides notification when
members are added and removed. It also maintains a
list of current members. The connection manager also
provides notification to clients when unsafe operation
is possible as a result of partinoning. Partitioning exists

when a member of a set is unawarce of the existence of

adisjoint set of similar clients.

The connection manager can be extended in
client-specific wavs to tacdilitate handling of mem-
bership change events. Extensions are integral, well-
svinchronized parts of the membership change
mechanism. The lock manager uses an extension to
distribute a globally consistent direcrory database and
to coordinate Jock database rebuilds.

The connection manager maintains a fully con-
nected web of communication channels between
members of the set. Membership in the sctis contin-
gent upon being able to communicate with all other
members of that set. The use of the communication
channels is entirelv under the control of the lock man-
ager or any other client that may usc the connection
manager in the future. When a client requests admis-
sion to a set, the connection manager establishes a
communication channel berween the new client and
all existing clients. It monitors these connections to
ensure they remain functional. A connection fails
when a communication channel 1s unusable benwveen
a pair of clients or when a client ar either end of the
channel fails. The connection manager detects these
conditions and reconfigures the set to contain only
fully connected members.

The combination of a highly available communi-
cation channel, together with set membership and
synchronized membership change responses, allows
optimizations in the lock manager’s message protocol.
The lock manager can send a message to another node
and know that either the message will be delivered or
that the configuration will be altered so that it does
not matter.

MEMORY
CHANNEL
TRANSFER

NORMAL

MEMORY

R
WRITE PAGE
NODE 0

ADDRESS SPACE

The use of the connection manager greatly sim-
plifics the design and implementation of the Jock
manager. The connection manager allows most of
the logic for handling contiguration changes and com-
munication errors to be moved away from main code
paths. This increases mainline pertormance and simpli-
fics the logic, allowing more emphasis on correct and
cFficient operation.

Memory Channel Interconnect

Cluster performance is critically dependent on the
cluster interconnect. This is duc both to the high-
bandwidth requirements of bulk data transport for
DRDand to the low latency required for DLM opera-
tions. Although rhe cluster architecture allows for any
high-speed interconnect, the initial implementation
supports only the new MEMORY CHANNEL inter-
connect designed specitically for the needs of cluster
svstems. This very reliable, high-speed interconnect is
based on a previous interconnect designed by Encore
Computer Corporation.™ It has been signiticantly
cnhanced by Digital to improve data integrity and
provide for higher pertormance in the future.

Fach cluster node has a MEMORY CHANNEL
interface card that connects to a hub. The hub can be
thought ofas a switch that provides either broadcast or
point-to-point connections berween nodes. It also
provides ordering guarantees and doces a portion of
the error detection. The current implementation is an
cight-node hub, but larger hubs are planned.

The MEMORY CHANNEL interconnect pro-
vides a 100-megabyte-per-sccond, memor v-mapped
connection to other cluster members. As shown in
Figure 4, cluster members mav map transters from the
MEMORY CHANNEL interconnect directly into
their memory. The ettect is of a write-only window
into the memory of other cluster systems. Transters
are done with standard memory access instructions
rather than special 1/0 instructions or device access

PAGE MEMORY

CHANNEL
TRANSFER

PAGE

MEMORY CHANNEL
BUS ADDRESS SPACE

NODE 1 MEMORY

Figure 4

Transters Performed by the MEMORY CHANNEL Interconnect

Digital Technical Journal Vol.8 No. 1 1996

protocols to avoid the overhcad usually present with
these techniques. The use of memory store instruc-
tions results in extremelv low latency (two microsec-
onds) and low overhead for a transter of any length.

The MEMORY CHANNEL interconnect guaran-
tecs cssentially no undetected crrors (approximately
the same undetected error rate as CPPUs or memory),
allowing the elimination of checksums and other
mechanisms that detect software errors. The detected
crror rate is also extremely low (on the order of one
crror per vear per connection). Since recovery code
exceutes verv infrequently, we are assured that rela-
tivelv simple, brute-force recovery from software
crrors is adequate. Using hardware crror insertion, we
have tested recovery code at error rates of many per
sccond. Thus we are confident there are no problems
at the acrual rates.

Low-level MEMORY CHANNEL Software

Low-level sottware interfaces are provided to insulate
the next laver of software (e.g., lock manager and dis-
tributed disks) from the details of the MEMORY
CHANNEL implementation. We have taken the
approach of providing a verv thin laver to impact per-
formance as little as possible and allow direct use of the
MEMORY CHANNEL iterconnect. Higher-level
software then isolates its use of MEMORY CHANNEL
ina transport layer that can later be moditied tor addi-
tional cluster interconnects.

The write-only nature of the MEMORY CHANNEL
interconnect leads to some challenges in designing
and implementing software. The only wav to see a
copv of data written to the MEMORY CHANNEL
interconnect is to map MEMORY CHANNEL trans-
ters to another region of memory on the same node.
This lcads to two very visible programming con-
straints. First, data is read and written from different
addresses. Thisis notra natural programming stvle, and
code must be written to treat a location as two vari-
ables, one ftor read and one for write. Second, the
cffect of a write is delaved by the transter latency. At
two microseconds, this is short bur is enough ume to
execute hundreds of instructions. Hardware features
are provided to stall until data has been looped back,
but very carctul design is necessary to minimize these
stalls and place them correctly. We have had several
subtle problems when an algorithm did not include a
stall and proceeded to read stale data that was soon
overwritten by data in transit. Finding these problems
is especially ditficult because much evidence is gone by
the time the problem is observed. For example, con-
sider a linked list that is implemented i a region ot
memory mapped to all cluster nodes through the
MEMORY CHANNEL interconnect. If two elements
are inserted on the list without inserting proper waits

tor the loopback delav, the effect of the first insert will
not be visible when the sccond insert is done. This
results in corrupting the list.

The difficulties just described arc most obvious
when dealing with distributed shared memory. Low-
level software intended to support applications is
instcad oriented toward a message-passing model.
This is especially apparent in the features provided for
error detection. The primary mechanisms allow either
the receiving or the sending node to check for any
crrors over a bounded period of time. This error check
requires a special hardware transaction with each node
and involves a loopback delay. It an error occurs,
the sender must retransmit all messages and the
receiver must not use any dara reccived in that ume,
This mechanism works well with the expected error
rates. However, a shared memory model makes it
extremely difficult to bound the data aftected by an
error, unless each modification of a data element
is scparatcly checked for errors. Since this involves
a loopback delav, many of the perceived efticiencies
ot shared memory may disappear. This is not to say
that a shared memorv model cannot be used. Itis just
that error detection and control of concurrent access
must be well-integrated, and nodc failures require
carcful recovery. In addition, the write-only nature of
MEMORY CHANNEL mappings is more suited to
message passing than shared memory due to the
extremely careful programming necessary to handle
delaved loopback at a separate address.

APIs arc provided primarily to manage resources,
control memory mappings, and provide svnchroniza-
tion. MEMORY CHANNEL APIs pertorm the follow-
ing tasks:

= Allocation and mapping
- Allocate or deallocate the
CHANNEL address spacc.
- Map the MEMORY CHANNEL interconnect
for receive or transmit.
- Unmap the MEMORY

mterconnect.

MEMORY

CHANNEL

= Spinlock synchronization
- Create and delete spinlock regions.
- Acquire and release spinlocks.

= Orther synchronization
— Creatc and delcte

regions.

Request write acknowledgment.

— Create and delete softwarc notification channels.

- Send notification.

— Wait for notification.

write acknowledgment

= Error detection and recovery
- Get current error count.
— Check tor errors.
- Regisrer for callback on error.

Digiral Technical Journal Vol.§ No. 1 1996

Higher layers of software are responsible for transter-
ring data, checking for errors, retrying transfers, and
synchronizing their use of MEMORY CHANNEL
address space after it is allocated.

Synchronization

Efficient synchronization mechanisms are essential
for high-performance protocols over a cluster inter-
connect. MEMORY CHANNEL hardware provides
two important synchronization mechanisms: first, an
ordering guarantee that all writes arc scen in the same
order on all nodes, including the looped-back write on
the originating node; second, an acknowledgment
request that returns the current error state of all other
nodes. Once the acknowledgment operation is com-
plete, all previous writes are guaranteed either to have
been received by other nodes or reported as a transmit
or receive error on some node. We have implemented
clusterwide software spinlocks based on these guaran-
tees. Spinlocks are used for many purposes, including
internode synchronization of other components and
concurrency control for the clusterwide shared-mem-
ory data structures used by the low-level MEMORY
CHANNEL software.

A spinlock is structured as an array with one clement
for each node. To acquire the spinlock, a node first
bids for it by writing a value to the node’s array ele-
ment. A node wins by seeingits bid looped back by the
MEMORY CHANNEL interconnect without seeing
a bid from any other node. The ordering guarantees of
the MEMORY CHANNEL ensure that no other node
could have concurrently bid and belicved it had won.
Multiple nodes can realize they have lost, but more
than one node cannor win. In case of a conflict, many
different back-oft techniques can be used. The win-
ning node then changesits bid value toan own value.
This last step is not necessary for correctness, but it
does help with resolving contention and with various
failure recovery algorithms. All higher-level synchro-
nization is built on combinations of spinlocks, order-
ing guarantees, and crror acknowledgments.

Error Recovery and Node Failures

Most of the difficule problems in the low-level soft-
ware relate to error recovery and node failures. I n spite
of its reliability, errors will occur in the MEMORY
CHANNEL interconnect, and they must be handled
as transparently as possible. Transparency is key to sim-
plifying the communication model seen by higher-
level software. In addition, nodc failures from
hardware or software faults are more frequent than
MEMORY CHANNEL errors and must be dealt with
even in the most inconvenient portions of the low-
level code. The MEMORY CHANNEL interconnect
is managed through a collection of distributed data

Digital Technical Journal Vol 8§ No. 1 1996

structures that must be kept consistent. Software locks
arc used to synchronizce access to these structures, but
errors may leave them in an inconsistent state.
Guaranteed error detection before the release of a lock
allows operations to be redone in case of an crror.
Thus, all sequences of MEMORY CHANNEL writes
must be idempotent to take advantage of this straight-
torward error-recovery technique.

If a node failure occurs, a surviving node must make
all data structures consistent before it relcases locks
held by the failed node. To keep this a manageable
rask, we have written carefully structured algorithms
to handle each inconsistent state. In general, struc-
tures arc changed such that a single atomic write com-
mits a change. If a node fails before this last write, no
recovery 1s necessary. As an example, consider a data
structure that 1s completely initialized before being
added to alist. A single write is used toaccomplish the
list addition. If a node fails, the last write was either
done or not and, in either case, the list is consistent.
Complications arise when another node has a receive
error on the last write done by a failing node. In this
case, the failed node cannot retry after detecting the
error, so the node with the receive error has a different
view of the list than all other surviving nodes. To
resolve this event, one node must propagate its view of
the list to all other nodes before it relcases the lock
held by the failed node. Any node can do this because
cach has a self-consistent view of the list. If the node
with the receive error propagates its view, the last ele-
ment added by the failed node is lost. This situation is
no different, however, from having the node fail a few
instructions carlier. The challenge is to design recov-
ery tor all these cases and maintain our sanity by mini-
mizing the number of such cases.

Another interesting problem is maintaining a con-
sistent count of errors across all nodes. This count
is key to the error protocols of both the low-level
MEMORY CHANNEL software and higher layers
since comparisons of a saved and a current value
bound the period over which data is suspect. The
count may be read on one node, transferred with
a message, and compared to a current value on
another node. Thus, a consistent value on all nodes
is critical and must be maintained in the presence of
arbitrary combinations of receive and transmit errors.
(Although errors arc very infrequent, they may be cor-
related; so algorithms must work well for crror bursts.)
The write acknowledgment, described earlier, guaran-
tees that other nodes have received a wrire without
error. [t 1s used both to implement a Jock protecting
the error count and ro guarantee that all nodes have
scen an updated count. Updating the count is a slow
operation due to multiple round-trip delays and long
crror ime-outs, but it is pertormed very infrequently.

Future Enhancements to MEMORY CHANNEL

Software

Fully supported MEMORY CHANNEL APIs are
currently available only to other layers in the UNIX
kernel for two important reasons: First, MEMORY
CHANNEL is a new type of interconnect and we want
to better understand its uses and advantages before
committing to a fully functional API for general use.
Second, many difficult issues of security and resource
limits will affect the final interface. To help Digital
and its customers gain the necessary experience, a lim-
ited functionality version of a user-level MEMORY
CHANNEL API has been implemented in the version
1.0 product. This interface supports allocation and
mapping of MEMORY CHANNEL space along with
spinlock synchronization. It is oriented toward sup-
port of parallel computation in a cluster, but we also
expect it will serve the needs of many commercial
applications. Once we have a better understanding of
how high-level applications will use the MEMORY
CHANNEL interconnect, we will extend the design
and provide additional APIs oriented toward both
commercial applications and technical computing.

Application Failover

Digital’s TruCluster multicomputer system is a logical
evolution of the DECsafe Available Server Envi-
ronment (ASE). An ASE system is a multinode con-
figuration with all nodes and all highly available
storage connected to shared SCSI storage buses.
Figure 5 shows an ASE configuration. Software on
each node monitors the status of all nodes and of
shared storage. In case of a failure, the storage and
associated applications are failed over to surviving sys-
tems. Planned application failover is accomplished by
stopping the application on one node and restarting
the application on a surviving node with access to any
storage associated with the application. Application-
specific scripts control failover and usually do not
require application changes.

DISKS
H SCSI BUS 1
NODE 0 NODE 1
| SCSIBUS 2

Figure 5
Typical ASE Contiguration

[n addition to supporting the application failover
mechanisms from ASE, the TruCluster system sup-
ports parallel applications running on multiple cluster
nodes. In case of a failure, the application is not
stopped and restarted. Instead, it may continue to exe-
cute and transparently retain access to storage through
a distributed disk server. In addition, more general
hardware topologies arc supported.

Hardware Configurations

The TruCluster version 1.0 product supports a maxi-
mum of four nodes connected by a high-speed
MEMORY CHANNEL interconnect. The nodes may
be any Digital UNIX system with a peripheral compo-
nent interconnect (PCI) that supports storage and the
MEMORY CHANNEL interconnect. Highly available
storage is on shared SCSI buses connected to at least
two nodes. Thus, a cluster looks like multiple ASE
systems joined by a cluster interconnect.

Although the limitation to four nodes is temporary,
we do not intend to support large numbers of nodes.
Ten to twenty nodes on a high-speed interconnect is
a reasonable target. A cluster is a component of a dis-
tributed system, not a replacement for one. If very
large numbers of nodes are desired, a distributed
system is built with cluster nodes as servers and other
nodes as clients. This allows maintaining a simple
model of a cluster system without having to allow for
many complex topologies. Aside from simplicity, there
are performance advantages from targeting algorithms
for relatively small and simple cluster systems.
Although the number of nodes is intended to be small,
the individual nodes can be high-end multiprocessor
systems. Thus, the overall computing power and the
/0 bandwidth of a cluster are extremely large.

Conclusions

With the completion of the first release of Digital’s
TruCluster product, we believe we have met our goal
of providing an environment for high-performance
commercial database servers. Both the distributed lock
manager and the remote disk services are meeting
expectations and providing reliable, high-performance
services for parallelized applications. The MEMORY
CHANNEL interconnect is proving to be an excellent
cluster interconnect: Its synchronization and failure
detection are especially compatible with many cluster-
aware components, which are enhanced by its low
latencies and simplified by its elimination of complex
error handling. The error rates have also proven to be
as predicted. With over 100 units in use over the last
year, we have observed only a very small number of
errors other than those attributable to debugging new
versions of the hardware.

Digital Technical Journal Vol.8 No.1 1996

16

Detailed component performance measurements
are still in progress, but rough comparisons of DRD
against local I /0 have shown no significant penalty in
latency or throughput. There is of course additional
CPU cost, but it has not proven to be significant for
real applications. DLM costs are comparable to VMS
and thus meet our goals. Audited TPC-C results with
the Oracle database also validated both our design
approach and the implementation details by showing
that database performance and scaling with additional
cluster nodes meet our expectations.

The previous best reported TPC-C numbers were
20918 tpmC on Tandem Computers’ Himalaya
K10000-112 system with the proprietary NonStop
SQL /MP database software. The best reported num-
bers with open database software were 11,456 tpmC
on the Digital AlphaServer 8400 5,/350 with Oracle7
version 7.3. A four-node AlphaServer 8400 5,/350
cluster with Oracle Parallel Serverwas recently audited
at 30,390 tpmC. This represents industry-leadership
performance with nonproprietary database software.

Future Developments

We will continue to evolve the TruCluster product
toward a more scalable, more general computing envi-
ronment. In particular, we will emphasize distributed
file systems, configuration flexibility, management
tools, and a single-system view for both internal and
client applications. Work is under way tor a cluster file
system with local node semantics across the cluster sys-
tem. The new cluster file system will not replace DRD
but will complement it, giving applications the choice
of raw access through DRD or tull, local-file-system
semantics. We are also lifting the four-node limitation
and allowing more flexibility in cluster interconnect
and storage configurations. A single network address
for the cluster system is a priority. Finally, further steps
in managing a multinode system as a single system will
become even more important as the scale of cluster
systems increases.

Further in the future is a true single-system view of
cluster systems that will transparently extend all
process control, communication, and synchronization
mechanisms across the entire cluster. An implicit trans-
parency requirement is pertormance.

Acknowledgments

In addition to the authors, the following individuals
contributed directly to the cluster components
described i this paper: Tim Burke, Charlie Briggs,
Dave Cherkus, and Maria Vella for DRD; Joe Amato
and Mitch Condylis for DLM; and Ali Rafieymehr for
MEMORY CHANNEL. Hai Huang, Jane Lawler, and

Digital Technical Journal Vol.8 No.1 1996

especially project leader Brian Stevens made many
direct and indirect contributions to the project.
Thanks also to Dick Buttlar for his editing assistance.

References and Notes

1. “Introduction to DCE,” OSF DCE Documentation Sel
(Cambridge, Mass.: Open Software Foundation, 1991).

2. Internet RFCs 1014, 1057, and 1094 describe ONC
XDR, RPC, and NFS protocols, respectivcly.

3. G. Pfister, In Search of Clusters (Upper Saddle River,
N.J.: Prentice-Hall, Inc., 1995): 19-26.

4. N.Kronenberg, H. Levy, and W. Strecker, “VAXclusters:
A Closely-Coupled Distributed System,” ACM Trans-
actions on Computer Systems, vol. 4, no. 2 (May
1986): 130-146.

5. L. Cohcn and J. Williams, “Technical Description of
the DECsate Available Server Environment,” Digital
Technical Journal, vol. 7, no. 4 (1995): 89-100.

6. TPC performance numbers for UNIX systems are typi-
cally reported for databases using the character device
interface.

7. The file system interfaces on the Digital UNIX operat-
ing system arc being extended to support direct 1/0,
which results in bypassing the block bufter cache and
reducing code path length tor those applications that
do not benctit from use of the cache.

8. A fast wide differential (FWD) SCSI bus is limited to
a maximum distance of about 25 meters tor example.

9. M. Devarakonda ctal., “Evaluation ot Design Alterna-
tives for a Cluster File System,” USENIX Conference
Proceeclings, USENIX Association, Berkeley, Calif.
(January 1995).

10. J. Gray and A. Reuter, Transaction Processing—
Concepts and Technigues (San Mateo, Calif.:
Morgan Kaufiman Publishers, 1993).

11. This mcchanism is inherited from the DECsafe Avail-
able Server management facility, including the asemgr
interface.

12. As an example, if the first DRD service created for a
cluster is 1, the DRD device special file name is
/dev/drd/drd] and its minor device number is also 1.

13. C. Juszczak, “Improving the Performance and Cor-
rectness of an NES Server,” USENLX Conference Pro-
ceeclings, USENIX Association, San Diego, Calif.
(Winter 1989).

14. W. Snaman, Jr.and D. Thiel, “The VAX/VMS Distrib-
uted Lock Manager,” Digital Technical Journal,
vol. 1, no. 5 (September 1987): 29-44.

15. R. Goldenberg, L. Kenah, and D. Dumas, VAX/VMS
Internals and Data Structires (Bedtord, Mass.:
Digital Press, 1991).

16. TruCluster Application Progreainming Interfaces

Guicle (Mavnard, Mass.: Digital Equipment Corpora-
tion, Order No. AA-QLSPA-TE, 1996).

17. T. Rengarajan, P. Spiro, and W. Wright, “High Avail-
abilin Mechanisms of VAX DBMS Sottware,” Digital
Technical Joirrnal. vol. 1, no. 8 (February 1989):
8§8-98.

18. Encore 91 Scries Technical Sunmmary (Fort Laud-
erdale, Fla: Encore Computer Corporation, 1991).

Biographies

Wayne M. Cardoza

Wavne Cardoza is a senior consulting engineer in the
UNIX Engincering Group. He joined Digital in 1979

and contributed to various arcas of the VMS kernel prior
tojoining the UNIX Group ro work on the UNTX cluster
product. Wavne was also one of the architects of PRISM,
an carly Digital RISC architecture; he holds several patents
tor this work. More recently, he participated n the design
of'the Alpha AXP architecture and the OpenVMS port to
Alpha. Before coming to Digital, Wavne was emploved by
Bell Laboratories. He received a B.S.ELE. from Southeastern
Massachusctes University and an M.S.E.E. trom MIT.

Frederick S. Glover

Fred Glover is a software consulting engineer and the tech-
nical director of the Digital UNIX Base Opcerating System
Group. Since joining the Digital UNIX Group in 1985,
Fred has contribured to the development of networking
services, local and remorte file systems, and cluster technol-
ogy. He has served as the chair of the LETE/TSIG Trusted
NES Working Group, as the chair of the OSE Distributed
File System Working Group, and as Digital’s representative
to the IEEE POSIX 1003.8 Transparent File Access Work-
ing Group. Prior to joining Digital, Fred was employed by
AT&T Bell Laboratorics, where his contributions included
co-development of the RMAS network communication
subsystem. He received B.S.and M.S. degrees in computer
science from Ohio State University and conducted his
thesis rescarch in the arcas of fault-tolerant distributred
computing and dara flow architecrure.

William E. Snaman, Jr.

Sandy Snaman joined Digital in 1980. He is currently a
consulting software engineer in Digital’s UNIX Software
Group, where he contribured to the ‘TruCluster architec-
ture and design. He and members ot his group designed
and implemented cluster components such as the con-
nection manager, lock manager, and various aspects of
cluster communications. Previously, in the VMS Enginecr-
ing Group, he was the project leader for the port of the
VMScluster system to the Alpha platform and the technical
supcervisorand project Jeader for the VAXcluster exccurive
area. Sandy also teaches MS Windows programming and
C++ at Daniel Webster College. He hasa B.S. in computer
science and an M.S. in information systems from the
University of Lowell.

Digital Technical Journal Vol.8 No.1 1996

17

18

Delivering Binary Object
Modification Tools for
Program Analysis and
Optimization

Digital has developed two binary object
modification tools for program analysis and
optimization on the Digital UNIX version 4.0
operating system for the Alpha platform. The
technology originated from research performed
at Digital's Western Research Laboratory. The
OM object modification tool is a transforma-
tion tool that focuses on postlink optimizations.
OM can apply powerful intermodule and inter-
language optimizations, even to routines in sys-
tem libraries. Atom, an analysis tool with object
modification, provides a flexible framework for
customizing the transformation process to ana-
lyze a program. With Atom, compilation system
changes are not needed to create both simple
and sophisticated tools to directly diagnose or
debug application-specific performance prob-
lems. The linker and loader are enhanced to sup-
port Atom. The optimizations OM performs can
be driven from performance data generated
with the Atom-based pixie tool. Applying OM
and Atom to commercial applications provided
performance improvements of up to 15 percent.

Digital Technical Journal Vol. § No. 1 1996

Linda S. Wilson
Craig A. Neth
Michael J. Rickabaugh

Historically on UNIX systems, optimization and pro-
gram analysis tools have been implemented primarily
in the realm of compilers and run-time libraries. Such
implementations have several drawbacks, however.
For example, although the optimizations performed
by compilers are effective, typically, they are limited to
those that can be performed within the scope of a sin-
gle source file. At best, the compiler can optimize the
set of fles presented during one compilation run.
Even the most sophisticated systems that save interme-
diate representations usually cannot perform opti-
mizations of calls to routines in system libraries or
other libraries for which no source or intermediate
forms arc available.'

The traditional UNIX performance analvsis tools,
prof and gprof, require compiler support for inserting
calls to predefined run-time library routines at the
entry to each procedure. The monitor routines allow
more user control over prof and gprof profiling capa-
bilitics, but their usage requires modifications to the
application source code. Because these capabilities are
implemented as compilation options, users of the tools
must recompile or, in the case of the monitor routines,
actually modify their applications. For a large applica-
tion, this can be an onerous requirement. Further, if
the application uses libraries for which the source is
unavailable, many of the analysis capabilities are lost or
severely impaired.

By comparison, object modification tools can per-
form arbitrary transformations on the executable
program. The OM object modification tool is a trans-
formation tool that focuses on postlink optimizations.
By pertorming transtormations after the link step, OM
can apply powerful intermodule and interlanguage
optimizations, even to routines in system hbrarics.

Object transformations also have benefits in the area
of program analysis. Atom, an analysis tool with object
modification, provides a flexible framework for cus-
romizing the transformation process to analyze a pro-
gram. With Atom, compilation system changes are not
needed to develop specialized types of debugging or
performance analysis tools. Application developers can
create both simple and sophisticated tools to directly
diagnosc or debug application-specific performance
problems.

The OM and Atom technologies originated from
rescarch performed at Digital’s Western Rescarch
Lab (WRL) in Palo Alto, California.? The software
was developed into products by the Digital UNIX
Development Environment (DUDE) group at
Digital’s UNIX engineering site in Nashua, New
Hampshire. Both technologies are currently shipping
as supported products on Digital UNIX version 4.0
for the Alpha platform.*

This paper first provides technical overviews tor
both OM and Atom. An cxample Atom tool is
presented to demonstrate how touse the Atom appli-
cation programming interface (API) to develop a cus-
tomized program analysis tool. Becausc OM and
Atom can be used together to enhance the eftective-
ness of optimizations to application programs, the
paper includes an overview regarding the benetits of
profiling-directed optimizations.

Subsequent sections discuss the product develop-
ment and technology transfer process for OM and
Atom and several design decisions that were made.
The paper describes the working relationship between
WRL and DUDE, the utilization of the technology on
Independent Software Vendor (1SV) applications, and
the factors that drove the separate development strate-
gics tor the two products. The paper concludes with
a discussion about areas for further investigation and
plans for future enhancements.

Technology Origins

Rescarchers at WRL investigating postlink optimiza-
tion techniques created OM in 1992.* Unlike compile-
time optimizers, which operate on a single file, postlink
optimizers can operatc on the entire exccutable pro-
gram. For instance, OM can remove procedures that
were linked into the executable but were never called,
thereby reducing the text space required by the pro-
gram and potentially improving its paging behavior.?

Using the OM technology, the researchers further
discovered that the same binary code modificarion
techniques needed tor optimizations could also be
applied to the area of program instrumentation. In
tact, the processes of instrumenting an existing pro-
gram and generating a new exccutable could be
encapsulated and a programmable interface provided
to drive the instrumentation and analysis processcs.
Atom evolved from this work.*

In 1993, WRI. rescarchers Amitabh Srivastava and
Alan Eustace began planning with DUDE engincers
to provide OM and Atom as supported products on
the Digital UNIX operating svstem. Difterent product
development and technology transfer strategics were
used for delivering the two technologies. The sec-
tion Product Development Considerations discusscs
the methods used and the forces that influenced
the strategies.

Technical Overview of OM

OM performs transtormations in three phases. It pro-
duces an intermediate representation, performs opti-
mizations on that representation, and produces an
executable image.

Intermediate Representation

In the first phase, OM reads a specially linked input
file that is produced by the linker, parses the object
code, and producces an intermediate representation
of the instructions in the program. The flow informa-
tion and the program structure are maintained in
this representation.

Optimization

In the optimization phase, OM performs various trans-
tormations on the intermediate representation created
in the first phase. These transformations include

= Textsize reductions

= Data sizc reductions

= Instruction and data reorganization to improve
cache behavior

= Instruction scheduling and peephole optimization

= User-directed procedure inlining

Text Size Reductions Onc type of text size reduction
is the elimination of unused routines. Starting at the
entry point of the image, OM examines the instruction
stream for transter-of-control instructions. OM fol-
lows each transter of control until it finds all reachable
routines in the image. The remaining routines are
potentially unrcachable and are candidates for removal.
Before removing them, OM checks all candidates for
any address references. (Such references will show up
in the relocation entries for the symbols.) If no refer-
ences exist, OM can safely remove the routine. A sec-
ond type of text size reduction is the elimination of
most GP register reloading sequences.™”

Data Size Reductions Because it operates on the entire
program, OM pertorms optimizations that compilers
are not able to perform. One instance is with the
addressability of global data. The general instruction
scquence for accessing global data requircs the use of
a table of'address constants (the .lita section) and code
necessary for maintaining the current position in the
table. Each entry in the address constant table is relo-
cated by the linker. Because OM knows the location of
all global data, it can potenually remove the address
entry while inserting and removing code to more effi-
ciently reterence the data directly. Removing as many
of the .lita entries as possible leaves more room in the
data cache (D-cache) tor the application’s global data.

Digital Technical Journal Vol.§ No. 1 1996

19

20

This optimization is not possible at link time, because
the linker can neither insert nor remove code.

Reorganization of the Image Bv default, OM rcorga-
nizes animage by reordering the routines in the image
as determined by a depth-first scarch of the routine
order, starting at the main entry point. In the absence
of profiling information, this ordering is usually better
than the linker’s ordering.

In the presence of profiling teedback, OM performs
rwo more instruction-stream rcorderings: (1) reorder-
ing ot routines based on basic block counts and
(2) rourtine ordering based on execution frequency.
OM first reorganizes routines based on the basic block
information collected by a previous run of the image
instrumented with the Atom-based pixie tool. OM lays
the basic blocks to match the program’s likely flow of
control. Branches are aligned to match the hardware
prediction mechanism. As a result, OM packs together
the most commonly executed blocks. After basic block
reorganization, OM then reorders the routines in the
image based on the cumulative basic block counts tor
cach routine. The reorganized image is ordered in
awav similar to the wav the prof tool displavs exccution
statistics. The reordering pertormed by OM is supcerior
to that performed by cord, because cord docs not
reorder basic blocks. cord is a UNIX profiling-directed
optimization utility that reorders procedures in an exc-
cutable program to improve cache performance. The
cord(1) reference page on Digital UNIX version 4.0
describes the operation of this utility in more derail.

Elapsed-time Performance The oprimizations that
OM performs without profiling teedback can provide
elapsed-time performance improvements of up to
5 percent. The feedback-directed optimizations can
often provide an additional improvement of from 5 ro
10 pereent in clapsed time, for a rotal improvement
of up to 15 percent over an image not processed
by OM. Several commercial database programs have
realized clapsed-time perforimance improvements
ranging from 9 to 11 percent with feedwack.

Executable Image

Finally, in the third phase, OM reassembles the trans-
formed intermediate representarion into an exceutable
image. It performs relocation processing to reflect any
changes in data Javout or program organization.

Technical Overview of Atom

The Atom tool kit consists ofa driver, an instrumenta-
tion engine, and an analvsis run-time system. The
Arom engine performs transformations on an exc-
cutable program, converting it to an intermediate
form. The engine then annotates the intermediate
form and generates a new, instrumented program.

Digital Technical Journal Vol.8 No. 1 1996

The Atom engine is programmable. Atom accepts
as input an instrumentation file and an analysis file.
The istrumentation file defines the points at which
the program is to be instrumented and what analvsis
routine 1s to be called at cach instrumentation point.
The analvsis file (defined later in this section) defines
the analysis routines. Atom allows instrumentation of
a program at a very fine level of granularity. It supports
instrumentation before and after

= Program cxccution

= Shared library loading
= Procedures

= Basic blocks

s Individual instructions

Supporting instrumentation at these points allows
the development of a wide variety of tools, all within
the Atom framework. Examples ofthese toolsare cache
simulators, memory checking tools, and pertormance
measurcment tools. The framework supports the cre-
ation of customized tools and can decrease costs by
simplifving the development of single-use tools.

The instrumentation file is a C language program
that contains calls to the Atom APL The instrumenta-
tion file defines any arguments to be passed to the
analysis routine. Arguments can be register values,
instruction fields, symbol names, addresscs, cte. The
instrumentation file is compiled and then linked with
the Atom instrumentation cngine to create a tool to
perform the instrumentation on a target program.

The analvsis file contains definitions ot the routines
thar are called from the instrumentation points in the
target program. The analysis routines record events or
process the arguments that are passed from the instru-
mentation points.

By convention, the instrumentation and analvsis
files arc named with the suffixes inst.c and anal.c,

respectivelv. Atom is invoked as follows to create an

nstrumented executable:

% atom program tool.inst.c tool.anal.c

The atom command is a driver thar invokes the
comptler and linker to gencerate the instrumented
program. The five steps of this processare

1. Compile the instrumentation code.

2. Link the instrumentation code with the Atom
Imstrumentation engine ro create an instrumenta-
tion tool.

(O3]

. Compile the analysis code.

4. Link the analvsis code with the Atom analvsis run-
time svstem, using the UNIX Id tool with the -
option so the object may be used as mput to
another link.

5. Exccute the instrumentation tool on the rarget
program, providing the linked analysis code as an

argument.

The final step produces an nstrumented program
linked with the analvsis code. Figure 1 shows the
changes in memory lavout between the original pro-

gram and the instrumented program.

LOwW

MEMORY

HIGH

MEMORY ’

STACK

READ-ONLY DATA
EXCEPTION DATA

PROGRAM TEXT

PROGRAM DATA
INITIALIZED

PROGRAM DATA
UNINITIALIZED

HEAP

UNINSTRUMENTED
PROGRAM LAYOUT

An Example Atom Tool for Memory Debugging
The following discussion of an example Atom tool

demonstrates how to use the Atom API to develop a

customized program analvsis tool.

A common development problem is locating the
source of a memory overwrite. Figure 2 shows a con-
trived example program in which the loop to initialize

an array exceeds the arrav boundary and overwrites a

TEXT START

STACK

NEW DATA
START

READ-ONLY DATA
EXCEPTION DATA

ANALYSIS TEXT

INSTRUMENTED
PROGRAM TEXT

ANALYSIS gp —__

OLD DATA

/ START

___— PROGRAM gp —_

ANALYSIS DATA
INITIALIZED

ANALYSIS DATA
UNINITIALIZED
(SET TO 0)

PROGRAM DATA
INITIALIZED

PROGRAM DATA
UNINITIALIZED

HEAP

INSTRUMENTED
PROGRAM LAYOUT

PROGRAM
TEXT
ADDRESSES
CHANGED

PROGRAM
DATA
ADDRESSES
UNCHANGED

Source: A. Srivastava and A. Eustace, "ATOM: A System for Building Customized Program Analysis Tools,”

Proceedings of the SIGPLAN '94 Conference on Programming Language Design and Implementation,
Orlando, Fla. (June 1994). This paper is also available as Digital’'s Western Research Laboratory
(WRL) Research Report94/2.

Figure 1

Mcemory Lavour of Instrumented Programs

{01;

i;

1 long numbersC8] =

2 Long *ptr = numbers;

3

4 main()

5 (

6 i;

7

8 for(i=0; i<25; i++)
9 numbersCil i
10 1}

/* This

/* by this array

pointer

is overwritten */

initialization. */

Figure 2

Example Program with Mcemory Overwrite

Digital Technical Journal

Vol. 8 No. |

1996

2]

22

pointer variable. In this case, rhe initialization of the
auwmbers array defined in linc 1 overwrites the con-

tents of the variable ptr detined in line 2. This type of

problem is often difticult and time-consuming to
locate with traditional debugging tools.

Atom can be used to develop a simple tool to locate
the source of the overwrite. The tool would instru-
ment each store instruction in the program and pass
the eftective address of the store instruction and the
value being stored to an analysis routine. The analysis
routine would determine if the effective address is the
address being traced and, it so, generate a diagnostic.

The instrumentation and analvsis files for the
mem_debug tool are shown in Figure 3.
InstrumentlInit() registers the analysis routines with
the Atom instrumentation cngine and specifies that
calls to the get_args() and open_log() routines be
inserted before the program begins executing. A call
to the close_log() routine is dictated when the pro-
gram terminates execution. The Atom instrumenta-
tion engine calls InstrumentInit() exactly once.

The Atom instrumentation
Instrument() routine once for cach executable object
in the program. The routine instruments each store
mnstruction thar is not a stack operarion with a call to the
analysis routine mem_store(). Each call to the routine

engine calls rthe

prevides the address ot the store instruction, the target
address of the store instruction, the value to be stored,
and the file name, procedure name, and line number.

The open_log() and close_og() analysis routines arc
self-explanatory. The messages could have been writren
to the standard output, because, in this example, thev
would not have intertered with the program output.

The ger_args() routine reads the value of the
MEM_DFEBUG_ARGS environment variable to obtain the
data address to be traced. The tool could have been
written to accept arguments from the command lince
using the -toolargs switch. The mstrumentation code
would then pass the arguments to the analysis routine.
In the case of this tool, using the environment variable
to pass the arguments is beneficial because the pro-
gram does not have to be reinstrumented to trace a
new address.

The mem_store() routine is called from cach store
instruction site that was instrumented. If the target
address of the store operation docs not match the
trace address, the routine simply rerurns. If there is a
match, a diagnostic is logged that gives information
about the location of the store.

To demonstrate how this tool would be uscd, sup-
pose one has determined by debugging that the vari-
able ptris being overwritten. The nm command 1s
used to determine the address of pii: as follows:

% nm -B program | grep ptr
0x000001400000c0 G ptr

Instrument the program with the mem_debug rool.

Digiral Technical Journal Vol.8 No. 1 19906

% atom program mem_debug.inst.c
mem_debug.anal.c

Set the MIv_DEBUG_ARCGS environment variable with
the address to trace.

% setenv MEM_DEBUG_ARGS 1400000cO

Run the instrumented program,

% program.atom

and view the log file.

% more program.mem_debug.log

Tracing address 0x1400000cO

Address 0x1400000c0 modified with\
value 0Ox16:

at : 0x1200011cé4
File: program.c

Procedure: main\
Line: 9

Using this simple Atom tool, the location ot a mem-
ory overwrite can be detected quickly. The instru-
mented program executes at nearly normal speed.
Traditional debugging merhods to detect such errors
are much more time-consuming.

Other Tools

Anarcain which Atom capabilities have proven particu-
larly powcrful is for hardware modeling and simulation.
Atom has been used as a tcaching tool in university
courses to train students on hardware and operating sys-
tem design. Moreover, Digital hardware designers have
developed sophisticated Atom teols to evaluate designs
tor new implementations of the Alpha chip.

The Atom rool kit contains 10 example tools that
demonstrate the capabilities of this technology. The
examples include a branch prediction tool, which is
uscful tor compiler designers, a procedure tracing tool,
which can be useful in following the flow of unfamiliar
code, and a simple cache simulation tool.

Atom Tool Environments

Analysis of certain types of programs can require use of
specially designed Atom tools. For instance, to analyze
a program that uses POSIX threads, an Atom tool to
handle threads must also be designed, because the
analysis routines will be called from the threads in the
application program. Therctore, the analysis routines
need to be reentrant. They may also need to synchro-
nize access to data that is shared among the threads or
manage data for individual threads. The thread man-
agement in the analysis routines adds overhead to the
execution time of the instrumented program; this
overhead is not necessary for a nonthreaded program.
To cttectively support both threaded and nonthreaded
programs, two clistinct versions of the same Atom tool
need to coexist. Designers developed the concepr of
tool environments to address the issues of providing
multple versions of an Atom tool.

/*

* mem_debug_inst.c ~ Instrumentation for memory debugging tool
*

* This tool instruments every store operation in an application and
* reports when the application writes to a user—-specified address.
* The address should be an address in the data segment, not a

* stack address.

*

* Usage: atom program mem_debug.inst.c mem_debug.anal.c

*

*x/

#include <string.h>
#include <cmplrs/atom.inst.h>

/*
* Initializations: register analysis routines
* define the analysis routines to call before and after
* program execution
*
* get_args() - reads environment variable MEM_DEBUG_ARGS for address to trace
* open_LlLog() - opens the lLog file to record overwrites to the specified address
* close_Llog() - closes the Log file at program termination
* mem_store() - checks if a store instruction writes to the specified address
*/
void InstrumentInit(int argc, char **argv)
{
AddCallProto("get_args()");
AddCallProto("open_Llog(const char *)");
AddCallProto("close_Log()");
AddCallProto("mem_store(VALUE,REGV,long,const char *,const char *,int)");
AddCallProgram(ProgramBefore, ''get_args');
AddCallProgram(ProgramBefore, "open_Llog",
basename((char *)GetObjName(GetFirstObj())));
AddCallProgram(ProgramAfter, "close_log");
}
/*
* Instrument each object.
*x/
Instrument(int argc, char *argv[l, 0Obj *obj)
{
Proc *proc;
Block *block;
Inst *inst;
int base; /* base register of memory reference */
/*
* Search for all of the store instructions into the data area.
*/
for (proc = GetfFirstObjProc(obj); proc; proc = GetNextProc(proc)) {
for (block = GetFirstBlock(proc); block; block = GetNextBlock(block)){
for (inst = GetFirstInst(block); inst; inst = GetNextInst(inst)) (
/*
* Instrument memory references. Skip $sp based references
* because they reference the stack, not the data area.
* Memory references are instrumented with a call to the
* mem_store analysis routine. The arguments passed are
* the target address of the store instruction,
* the value to be stored at the target address,
* the PC address of the store instruction in the program,
* the procedure name, file name, and source LlLine for the
* PC address.
*x/
Figure 3

Instrumentation and Analysis Code ter the mem_debug Tool

Digitat Technical Journal Vol.8 No.1 1996

23

24

if (IsInstType(inst, InstTypeStore)) {
base = GetInstInfo(inst, InstRB);
if (base != REG_SP) (
AddCallInst(inst, InstBefore, '"mem_store",

EffAddrvalue,
GetInstRegEnum(inst, InstRA),
InstPC(inst),
ProcName(proc),
ProcFileName(proc),
(int)InstLineNo(inst));

)
>
}
}
}

}
/*

* mem_debug.anal.c - analysis routines for memory debugging tool

*

* Usage: setenv MEM_DEBUG_ARGS hex_address before running

* the program.

* Diagnostic output is written to program.mem_debug.log

*

/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>

static FILE *log_file; /* OQutput file for diagnostics */
static caddr_t trace_addr; /* Address to monitor */
/*
:/Create log file for diagnostics.
void

open_Llog(const char *progname)
char namel20017;

sprintf(name, "%s.mem_debug.log", progname);
log_file = fopen(name, "w'");

if (!log_file) {
fprintf(stderr, "mem_debug: Can't create 7%s\n'", name);
fflush(stderr);
exit(1);

}

fprintf(log_file, "Tracing address Ox%p\n\n'", trace_addr);
fflush(log_file);
}

WA
* Close the log file.
L7
void
close_Llog(void)
{

fclose(log_file);
}

/*

* Get address to trace from the environment.
*/

‘void

get_args(void)

|

Figure 3 (continued)

Digital Technical Journal Vol. 8 No. 1 1996

{
char *addr;
if (!(addr = getenv("MEM_DEBUG_ARGS"))) (
fprintf(stderr, "mem_debug: set MEM_DEBUG_ARGS to hex address\n'");
fflush(stderr);
exit(1);
}
trace_addr = (caddr_t) strtoulCaddr, 0, 16);
}
/*
* The target address is about to be modified with the given value.
* If this is the address being traced, report the modification.
&Y
void
mem_store(
caddr_t target_addr, /* Address being stored into */
unsigned long value, /* Value being stored at target_addr */
caddr_t pc, /* PC of this store instruction */
const char *proc, /* Procedure name */
const char *file, /* File name */
unsigned line) /* Line number */
{
if (target_addr == trace_addr) {
fprintf(log_file, "Address Ox%p modified with value OxZ%lx:\n",
target_addr, value);
fprintf(log_file, "\tat Ox7%p ", pc);
if(proc !'= NULL) (
fprintf(log_file,"Procedure: %s ", proc);
if(file '= NULL)
fprintf(log_file,"File: %s Line: %d", file, Lline);
}
fprintf(log_file, "\n");
fflush(log_file);
}
}

Figure 3 (continued)

Tool environments accommodate seamless integra-
tion of specialized versions of tools into the Atom tool
kit. They provide a mecans for extending the Atom kit.
This tacility allows the addition of specialized Atom
tools by Digital’s layered product groups or by cus-
tomers, while maintaining a consistent user interface.

The versions of the Atom tools hiprof, pixie, and
Third Degree that support POSIX threads are pro-
vided as a separate environment. hiprof is a pertor-
mance analvsis tool that collects data similar to but
with more precision than gprof. pixie is a basic block
profiling tool. Third Degree is a memory leak detec-
rion tool.

The following command invokes the Atom-based
pixie tool tor use on a nonthreaded program:

% atom program -tool pixie

The tollowing command invokes the version of the
pixie tool that supports threaded programs:

% atom program -tool pixie -env threads

Tools tor other specialized environments can be
provided by defining a new environment name. For
example, Atom tools written to work with a language-
specitic run-time environment can be added to the

Atom tool kit by selecting an environment name for
the category of tools. Similarly, tools designed to work
on the kernel could be collected into an environment.

The environment name is used in the names of the
tool’s instrumentation, analysis, and description files.
The description file for a tool provides the names
of the instrumentation and analysis files, as well as spe-
cial instructions for compiling and linking the tool.
For example, the pixie description file for threaded
programs is named pixic.threads.desc. It identifies
the threaded versions of the pixie instrumentation and
analysis files. The Atom driver builds the name of
the description file from the arguments to the -tool and
-env switches on the command line. The contents
of the description file then drive the subsequent steps
of'the build process.

Tool environments can be added without modifica-
tion to the base Atom technology, thereby providing
extensibility to the tool kit while maintaining a consis-
tent interface.

Compact Relocations

Atom inserts code into the text of the program, thus
changing the location of routines. Atom requires
that relocation informatuon be rctained in the

Digital Technical Journal Vol. 8 No.l 1996

25

26

exccutable image created by the linker. This allows
Atom to properly perform relocations on the instru-
mented executable.

During the normal process of linking, the relocation
entrics stored in object files are eliminated once thev
have been resolved. Because it effectively relinks the
executable, Atom must have access to the relocation
information.

Consider, for example, an application that invokes a
function through a statically initialized function pointer
variable, as shown in the following code segment:

void foo(int a, int b)

{

}

void (*ptr_foo)(int, int) = foo;
void bar ()

{

) (*ptr_foo0)(1,2);

The address of function foois stored in the memory
location referenced by the pn foo variable. When
Atom instruments this application, the address of

Joo will change, and Atom nceds to know to update

the contents of the memory Jocation referenced by
ptr_foo. Thisis possible only if there is a relocation record
pointing at this memory location. Adding compact rclo-
cations to the executable file solves this problem.

Compact relocations are smaller than regutar relo-
cations tor two reasons. First, the Atom system docs
not require all the information in the regular reloca-
tion records in order to instrument an executable.
Artom changes only the layout of the text segment,
so relocation records that describe the data segments
are not needed. Second, the remaining rclocations
can often be predicted by analyzing other parts of
the executable file. This property is used to store a
compact form of the remaining relocation records.
Since compact relocation records are represented in a
different torm than regular relocations, thev are stored
n the .comment section of the object file rather than
in the normal relocation area.

Profiling-directed Optimization

OM and the Atom-based pixie tool can intcroperate
using profiling-directed optimization. The Atom-
based pixie tool is a basic block profiler that provides
execution counts for each basic block when the pro-
gram is run. The execution counts are then used as
input to OM for performing optimizations on the exe-
cutable that are driven trom actual run-tume pertor-
mance data.

As an cxample, the following steps would be
performed to utilize profiling-directed optimizations
with OM:

Digital Techmcal Jownal Vol.8 No. 1 1996

2

cc -non_shared -o program *.o
% atom —~tool pixie program
% program.pixie

SSERENE
N e

cc ~non_shared -om
-WL,-om_ireorg_feedback,program *.o

In step 1, a nonshared version of the program
is built. In step 2, the Atom-based pixie tool instru-
ments the program. Step 2 produces program.pixie
and program.Addrs files. Step 3 results in the exc-
cution of the instrumented program to generate a
program.Counts file. This file contains an execution
count for cach basic block in the program. The last
step provides the basic block profile as input to OM.
OM rearranges the text segment ofthe program such
that the most frequently exccuted basic blocks and
procedures are placed in proximity to each other, thus
improving the instruction cache (I-cache) hit rate.

Product Development Considerations

Bringing the OM and Atom technologies from the lab-
oratory into use on current Digital UNIX production
systems required frequent communication and coordi-
nation berween WRL and DUDE engineers working
on opposite coasts of the U.S. The success ot both proj-
ects depended upon cstablishing and maintaining an
atmosphere of cooperation among the engineers at the
two locations. Common goals and criteria for bringing
the technology to product supported the teams during
development and planning work.

Among the product development considerations
for OM and Atom were

I. The products must address a business or customer
requirement.

2. The products must meet customer expectations of
features, usability, quality, and performance.

3. Engineering, quality assurance, and documentation
resources must be identitied to ensure that the
products could be enhanced, updated to operate
on new plattorm releases, and supported through-
out their life cycles.

4. The products must be released at the appropriate
times. Relcasing a product too early could result in
high support costs, perhaps at the expense of new
development. Releasing a product too late could
compromise Digital’s ability to leverage the new
technology most eftectively.

Product Development and Technology Transfer
Process for OM

As part of their rescarch and development etforts,
WRL engineers applicd OM to large applications.
Researchers and Digital engineers at ISV porting labo-
ratories worked together to share information and to
diagnose the pertormance problems of programs in

use on actual production systems, such as relational
database and CAD applications. This cooperative
effort helped engineers determine the types of opti-
mizations that would benetit the broadest range of
applications. In addition, the engineers were able to
identify those optimizations that would be useful
to specific classes of applications and make them
switch-selectable through the OM interface. The per-
formance improvements achieved on ISV applications
enabled OM to meet the criteria for addressing cus-
romer needs.

Although WRL researchers also applied OM to the
SPEC benchmark suite to measure performance
improvements, the primary focus of the OM tech-
nology development was to provide pertormance
improvements for applications currently in widespread
use by the Digital UNIX customer base. With the
focus of pertormance improvements on large cus-
tomer applications, OM satisfied a prominent Digital
business need for inclusion in the Digital UNIX devel-
opment environment.

Engineers discussed the limitation that OM did not
support shared libraries and the programs that used
them. In this respect, the technology would not meet
the expectations of all customers. Many 1SV applica-
tions and other performance-sensitive programs, how-
ever, are built nonshared to improve execution times.
Engineers determined that the benetits for this class
of application outweighed this limitation of OM,
and, therefore, the limitation did not prevent moving
forward to develop the prototype into a product.
Developers recognized the risks and support costs
associated with shipping the prototype, yet again
decided that the proven benefits to existing applica-
tions outwcighed these factors.

Because of the pressing business and customer
needs for this technology, DUDE and WRL engineer-
ing concurred that OM should be provided as a fully
supported component in Digital UNIX version 3.0.
Full product development commitments from DUDE
enginecring, documentation, and quality assurance
could not be made tor that release, however. After
discussion, WRL provided technical support and
extensions to OM to address this necd. DUDE engi-
neering agreed to provide consulting support to WRL
researchers on object file and symbol table formats and
on cvaluations of text and data optimizations.

The next issue the engineers faced was how to inte-
grate OM into the existing development environment.
They evaluated three approaches.

The first approach was to make OM a separate tool
directly accessible to users as /usr/bin/om. Thus, an
application developer could utilize OM as a separate
step during the build process. This approach ottered
two advantages. First, it was similar to the approach
used to achieve the present internal use of OM and

would require few additional modifications to the
Digital UNIX development environment. The second
advantage was that Atom and OM could be more
easily merged into one tool since their usage would be
similar. This merging would provide the potential
efficiencies of a single stream of sources for the object
modification technology.

A major disadvantage of this approach was that it
put additional burden on the application developer.
OM requires a specially linked input file produced by
the linker. This intermediate input file is not a com-
plete executable nor is it a pure OMAGIC file."® This
approach would require customers to add and debug
addinonal build steps to usc OM on their applications.
The WRL and DUDE engineers agreed that the user
complexity of this approach would be a significant bar-
rier to user acceptance of OM.

The second approach was to change the compiler
driver to invoke OM for linking an executable. With
this approach, a switch would be added to the com-
piler driver. If this switch was given, the driver would
call /usr/lib/cmplrs/cc/om instead of the system
linker to do the tinal link.

This approach had the advantage of reducing the
complexity of the user interface for building an applica-
tion with OM. A developer could specify one switch to
the compiler driver, and the driver would automatically
invoke OM. This would allow a developer to introduce
teedback-directed optimizations into the program by
simply relinking with the protfiling information, thus
making OM easier to use and less error-prone.

The disadvantage of this second approach was that
the complex symbol resolution process in the linker
would need to be added to OM. The process of per-
torming symbol resolution on Digital UNIX operating
systems is nontrivial. There are special rules, boundary
conditions, and constraints that the linker must under-
stand. OM was designed to modify an already resolved
executable, and any problemsintroduced from adding
linker semantics would discourage its use. Also, dupli-
cating linker capabilities m OM would require addi-
tional overhead in maintaining both components.

The advantages and disadvantages of the second
approach motivated the development of a third
approach. The compiler driver could be changed to
invoke OM during a postlink optimization step. As
n the second approach, a switch from the developer
would trigger the invocation of OM; however, OM
would be run after the linker had pertormed symbol
and library resolution.

The third approach is the one currently used. This
method maintains separation benwveen the linking and
optimization phases. When directed by the -om switch,
Id produces a specially linked object that will be used as
input to OM. The compiler driver supplies this object
as input to OM when the linking is completed.

Digital Technical Journal Vol.8 No. 1 1996

27

28

The WRL and DUDE engineers found that this
functional separation also improved the cfficieney of
the development cftorts between WRL and DUDE.
The separation permitted concurrent WRL develop-
ment on OM and DUDE development on id, with
minimal nterference. This approach allowed more
development time ro be dedicated ro technical issues
rather than dealing with source management and inte-
gration issues.

DUDE cngineers added the OM sources into the
Digital UNIX development pool and integrated
updates from WRL. WRL assumed responsibility for
testing OM prior to providing source updates. As pre-
viously outlined, DUDE cengincers integrated support
for OM into the existing development environment
tools for the initial release.

Because of proven performance improvements on
ISV applications, committed engineering cftorts by
WRL, and testing activitics at both Digital sites, engi-
neers judged the rechnology mature enough tor release
on production systems. Efficient development srrate-
gies enabled Digiral to rapidly turn this leading-cdge
technology into a product that bencfits an important
segment of the Digital UNIX customer base.

WRIL continued cngineering support for OM
through the Digiral UNIX version 3.0 and 3.2 releasces.
Responsibility tor the technology gradually shifted
from WRL to DUDE over the course of these releases.
Currentv, DUDE fully supports and enhances OM
while WRIL continuces to provide consultation on the
technology and input for future improvements.

Product Development and Technology Transfer
Processfor Atom

WRL deploved carly versions of the Atom tool kit at
mternal Digiral sites, ISV porting laboratories, and
universities, thus allowing developers to experiment
with and evaluate the Atom APL The early availabiity
of the tool kit promoted use of the Atom technology.
User teedback and requests for features helped the
engineers to more quickly and eftectively develop a
robust technology from the prototvpe.

Engineers throughout Digital recognized Atom asa
unique and uscful technology. Atom’s API, with
instrumentation and analysis capabilities down to the
mstruction level, increased the power and diversity of
tools that could be created for sotnware and hardware
development. Hardware development teams used
Atom to simulate the performance of new Alpha
implementations. Software developers created and
shared Atom tools for debugging and measuring pro-
gram pertormance. The value of the Atom technology
n solving application development problems provided
the business justification tor developing the technol-
ogy Into a product.

Digital Technical Journal Vol.8 No. | 1996

The prototvpe version of Atom had several

limitations.

= Like OM, the prototype version of Atom worked
onlv on nonshared applications. A production
version of Atom would require support for call-
shared programs and shared libraries, since, by
default, programs are built as call-shared programs.
A viable Atom product offering needed to sup-
port these rvpes of programs, in addition to non-
shared programs.

= Programsncededto be relinked to retain relocation
intormation betore Atom could be used. This addi-
tional build step impaired the usability of Atom.

s The Atom prototype performed poorly because it
consumed a large amount of memory. Much of the
dara collecred about an executable for optimization
purposes was not needed tor program analvsis
ransformations.

= The Atom API required extensive design and devel-
opment to support call-shared programs and
shared librarics.

The engineers decided to allow the OM and Atom
technologics to diverge so that the differing require-
ments for optimization and program analvsis could be
morc cttectively addressed in cach component.

Because the cost of supporting a release of the Atom
protorype would have been ligh, WRL and DUDE
engineering developed a strategy tor simultancously
releasing the Atom prototype while focusing engineer-
ing cfforts on developing the production version. An
Arom Advanced Development Kit (ADK) was released
with Digital UNIX version 3.0 as the initial step of the
strategy. The ADK provided customer access to the
technology with limited support. Engineers viewed
the lack of support for shared execurable objects as an
acceptable imitarion for the Atom ADK but unaccept-
able ftor the fimal product.

In addition to allowing WRL and DUDE engineers
to focus on product development, this first strategic step
permitted the engineering teams more time and flexi-
bility to incrementallv add support for Atom into other
production components, such as the linker and the
loader. For usability purposces, minor extensions were
made to the loader to allow it to automatically load
instrumented shared libraries produced by Atom tools.

The sccond step of the strategy was to provide
updated Atom kits to users as development of the soft-
ware progressed. These kits included the source code
for example tools, manuals, and reference pages. The
update kits pertormed rwo functions; they supported
users and they provided feedback to the development
teams, DUDE and WRL engincers posted intormation
nternally within Digital when kits were available and
developed a mailing list of Atom users. The Atom user

community grew to include universities and several

external customers.

Once the Atom ADK and update strategy were
established, DUDE engincering began to implement
support for Atom in the linker. As mentioned carlier,
Atom inserts text into a program and requires reloca-
tion information to create a correctly nstrumented
¢. The Atom prototvpe required a program
to be linked to retain the relocation information, and
this requirement presented a usability problem for
users. Idcally, Atom would be able to instrument the
exceutables and shared libraries produced by default
by the linker.

Moditving the hnker to retain all traditional reloca-
tion information by default was nor acceprable since
the size increase in the executable would have been
prohibitive. [n some cases, 40 pereent of the object file
consists of relocation records. Engineers did not view
an increase of that magnitude as a viable solution. In
addition, this solution conflicted with the goal of
Digital UNIX version 3.0 to reduce object file size.
As a compromise, DUDE engincering implemented
ocation support in the linker. Compact
rclocations provided an acceptable solution since they
required farless space than regular relocation records,
tvpically less than 0.1 percent of the total file size.

Another side effect of using compact relocations as a
solution was that it introduced a dependency between
Atom and Id. All executable objects to be processed by
Atom nceded to have been gencerated with the linker
that contained compact relocation support. There-
fore, to support Atom, lavered product libraries and
third-parey libraries needed to be relinked with the

exccutab

compact re

compact relocation support.

In Digital UNIX version 3.0, 1d was modified to
generate compact relocation information i exe-
cutable objects. This allowed Atom to instrument the
default output of Id. Engineers viewed this capability
as ertical to the usability and ultimare success of the
Arom technology. The compact relocation support in
Id was retined and extended over the course of several
Digital UNIX relcases as development work with
Arom progressed.

Concurrently, the WRIL rescarch team expanded
and began development of the Atom Third Degree
and hiprof tools. WRL c¢ngincers also continued with
additions and improvements to a suite of example
Atom tools.

After the release of Digital UNIX version 3.0,
DUDE began design and development of the produc-
tion version of the core Atom technology and the API.
DUDE engineers modified and extended the Atom
API as tool development progressed at WRL. During
peak development periods, engineers discussed design
issucs daily by telephone and electronic mail.

The original Atom ADK included the source code
tor a number of example Atom tools. Because some
of these tools contained hardware implementation
dependencices, they would require ongoing and long-
term support to remain opcrational on changing
implementations of the Alpha architecture. Forthe sec;
ond shipment of the Atom ADK in Digital UNIX ver-
sion 3.2, these high-maintenance tools were removed
and made available through unsupported channels.

Berween releases of the ADK on the Digital UNIX
operating svstem, the engineering teams continued to
deliver update kits. Engineers scheduled delivery of
the update kits to coincide with key milestones in the
software development process. This strategy gave
them more control over the development schedule
and minimized risk. The update kits provided immedi-
ate field test exposure for the evolving Atom software.
The design, development, and kit process was prac-
ticed iteratively over a vear to develop the original
ideas into a full product. The Atom update kits were
provided for Digital UNIX version 3.0 and later svs-
rems, since most users did not have access to early ver-
sions of Digital UNIX version 4.0. Providing Atom
kits for use on pre-version 4.0 svstems allowed the
software to be exercised in the ficld on actual applica-
tions prior to its imtial release as a supported product.
Although support for carlier operating system versions
added overhead and complexity to the process of pro-
viding the updare kis, the engineering reams valued
the abundance of user feedback that the process
vielded. The benetits of uscr nput to the software
development process outweighed the overhead costs.

During Digital UNIX version 4.0 development,
WRL engineers finalized the implementations of the
hiprof and Third Degree tools and transterred the tool
sources to DUDE for further development. The WRL
developers had added support tor threaded applica-
tions on pre-version 4.0 Digital UNIX systems.
Because the implementation of threads changed in
version 4.0, DUDE engineers needed to update the
Arom rools accordingly.

DUDE engineers also developed an Atom-based
pixie ool with support for threaded applications. In
fact, the Atom-based pixie tool replaced the original
version of pixie in Digital UNIX version 4.0. The
Artom-based pixie allowed new features such as sup-
port for shared libraries and threads to be more

cthiciently added into rhe product of fering. The devel-
opment of an Atom-based pixie tool solved the exten-
sibility problems that were being ftaced with the
original version of pixie.

WRL. engineers also began to use Atom for instru-
menting pre—version 4.0 Digital UNIX kerncls, devel-
oping special tools for collecting kernel statistics.
Atom was extended by DUDE engineering as needed
to support instrumentation and analvsis of the kernel.

Digiral Technical Journal Vol.8 No. 1 1996

29

The Atom tool kit and example tools were shipped
with Digital UNIX version 4.0. The pixie, hiprof, and
Third Degree tools were shipped with the Software
Development Environment subset of Digital UNIX
version 4.0. Research regarding usc of Atom for kerncl
instrumentation and analysis continues.

WRL continues to share ideas and consults
with DUDE on the future directions for the Atom
technology.

Conclusions
Developing OM into a product directly from research
proved to be challenging. Problems and issues that
needed to be addressed had to be handled within the
schedule constraints and pressures of a committed
relcase plan.

In contrast, the ADK mcthod used to deliver the
Arom product allowed the Atom developers to spend
more time on product development issues in an envi-
ronment relatively frec from the pressures associated
with daily schedules. The ADK mechanism, however,
probably limited the exposure of Atom technology at
some customer sites.

The close cooperation of cngineers from both
research and development was necessary to accom-
plish the goals of the two projects. We believe that a
collaborative development paradigm was key to suc-
cessfully bringing research to product.

Future Directions

This paper describes the cvolution of the OM and
Atom technologies through the release of the Digital
UNIX version 4.0 operating system. Digiral plans to
mvestigate many new and improved capabilities, some
intended for future product releases. Plans are under
way to

s Provide support in OM tor call-shared programs
and shared librarics.

s Support the use of Atom tools on programs opti-
mized with OM.

= [nvestigate providing an API to allow program-
mable, customized optimizations to be delivered
through OM.

= Investigate reuse of instrumented shared librarics
by multiple call-shared programs that have been
mstrumented with the same Atom tool.

= Research support tor Atom tools that provide sys-
temwide and per-process analysis of shared librarics.

= Extend Atom to improve kernel analysis.

s Simplify the use of the profiling-directed optimiza-
tion faciliies of Atom and OM through an
improved interface.

Digital Technical Journal Vol.§8 No.1 1996

= Extend the Atom tool kit to provide development
support for thread-safc program analysis tools.

In addition to enhancements to the Atom product,
original Atom-based tools are expected to become avail-
able through the development activities of students and
cducators at universitics. Internal Digital developers will
continue to develop and share tools as well.

Acknowledgments

Many people contributed to the development of the
OM and Atom products. The following list gives
recognition to those most actively involved. Amitabh
Srivastava led the research and development work at
WRL on OM and Atom and mediated many of the
design discussions on the Atom design. Greg Lueck of
DUDE designed and implemented the production
version of Atom, compact relocations, and the Atom-
based pixie tool. Alan Eustace developed Atom exam-
ple tools, created the first Atom ADK, worked
diligently with users, developed kernel tools, provided
training and documentation on using Atom, and dis-
played eternal optimism. Russell Kao at WRL con-
tributed the hiprof tool with thread support. Jeremy
Dion and Louis Monicr at WRL developed Third
Degree and an Atom-based code coverage tool called
tracker. John Willilams and Chris Clark of DUDE com-
pleted the process of turning the hiprof, pixie and
Third Degree tools into products. Dick Buttlar pro-
vided documentation on cvery component. Last but
not lcast, the authors wish to extend a final thanks to
all the users who contributed feedback to the OM and
Arom development teams.

References

1. F. Chow, M. Himelstcin, E. Killian, and L. Weber,
“Engincering a RISC Compiler System,” Proceedings
o/ COMPCON. San Francisco, Calif. (March 1980):
132-137.

2. Western Rescarch Laboratory, located on the Web ar
htep:/ /wwaw.research.digital.com/wrl.

w

R. Sites and R, Witek, Alpha AXP Architecture Refer-
ence Manual, 2d ed. (Newron, Mass.: Digital Press,
1995).

4. A. Srivastava and D. Wall; “A DPractical System for
Intermodule Code Optimization at Link-timie,” Jour-
nal of Pregramming lLanguages. vol. 1 (1993):
1-18. Also available as WRL Rescarch Report 92 /6
(December 1992).

A. Srivastava, “Unrcachable Procedures in Object-
onented Programming,” ACM LOPLAS. vol. 1, no. 4
(December 1992): 355-304. Also available as WRL
Rescarch Report 93/4 (August 1993).

an

6. A. Eustace and A. Srivastava, “ATOM: A Hlexible
Interface for Building High Performance Program
Analysis Tools,” Proceedings of the Winter 1995
USENIX Conference. New Orleans, La. (January
1995). Also available as WRI Technical Note 1'N-44
(July 1994).

7. A. Srivastava and A. Fustace, “ATOM: A System for
Building Customized Program Analysis Tools,” ’ro-
ceedings of the SIGPLAN 94 Conference on Pro-
gramming Language Design and tmplementation.
Orlando, Fla. (Junc 1994). Also available as WRL
Research Report 94/2 (March 1994).

8. A.Srivastava and 1. Wall, “Link-Time Oprimization of

Address Calculation on a 64-bit Architecture,” Pro-
ceedings of the SIGPLAN 94 Conference on Pro-
gramming Language Design and Implementation,
Orlando, Fla. (Junc 1994). Also availablc as WRL
Research Report 94 /1 (February 1994).

9. Digital UNIX Calling Standard for Alpha Systems,
Order No. AA-PYSAC-TE, Digital UNIX version 4.0
or higher (Maynard, Mass.: Digital Equipment Corpo-
ration, 1990).

10. Digital UNIX Assembly lcnguage Programmer's
Guide, Order No. AA-PS31C-TE, Digital UNIX ver-
sion 4.0 or higher (Mavnard, Mass.: Digital Equip-
ment Corporation, 1996).

General Reference
J. Larus and E. Schnarr, “EEL: Machine-Independent Exc-

cutable Editing,” SIGPLAN Conference en Programming
Language Design and Implementation (June 1995).

Biographies

Linda S. Wilson

As a principal sof tware engineer in the Digital UNIX
Development Environment group, Linda Wilson leads
the development of program analysis tools for the Digital
UNIX opcrating system. In prior positions, she was respon-
sible for the delivery of other development environment
components,including DEC FUSE, the dbx debugger,
and run-time Jibraries on the UL'TRIN and Digital UNIX
operating systems. Linda received a B.S. in compurter sci-
ence from the University of Nebraska-Lincoln. Before
joining Digital in 1989, Linda held software enginecering
positions at Masscomp in Westtord, Massachusetts, and
Texas Instruments in Austin, Texas.

Craig A. Neth

Craig Neth is a principal software engineer in the Digital
UNIX Devclopment Environment group, where he is the
technical leader of link-time tools. In prior positions at
Digital, Craig has worked on the OM object modification
tooland the VAX and DEC COBOL compilers, and led

the development of DEC COBOL versions 1 and 2. Craig
received a B.S. in compurer science from Purdue University
n 1984 and an M.S. in computer science from the
Universitv of [llinois in 1986.

Michael J. Rickabaugh

Michael Rickabaugh is a principal softzwvare engineer in
the Digital UNIX Development Enviconment group.
He started his Digital career in 1986 in the SEG/CAD
Engineering group as a softwvare engincer on the DECSIM
logic simulation project. In 1991, Michael transitioned
to the DEC OSF /1 AXP project and was a member of
the original team responsible for delivering the UNIX
development environment on the DECOSF/1 Alpha
platform. He has since been a technical contributor to
all aspects of the Digital UNIX link-time technology

as well as the creator of the ASAXP assembler for the
Windows NT opcrating system. Michael reccived a B.S.
in clectrical and computer engineering from Carnegic
Mellon University in 1986.

Digital Technical Journal Vol. 8 No.1 1996

31

Design of eXcursion
Version 2 for Windows,
Windows NT, and
Windows 95

Version 2 of the eXcursion product is a complete
rewrite of the successful Windows-based X
server software package. Based on release 6

of the X Window System version 11 protocol,
the new product runs on Microsoft's Windows,
Windows NT, and Windows 95 operating sys-
tems. The X server is one of several components
that compose this package. The other compo-
nents are X Image Extension, the control panel
(which constitutes the user interface for product
configuration), the error logger, the application
launcher, and the setup program. An interprocess
communication facility enabies the eXcursion
components to communicate in a uniform fash-
ion under all three operating systems. A unique
server design using object-oriented program-
ming techniques integrates the X graphics con-
text with the Windows device contextinto a
combined state management facility. The result-
ing implementation maximized graphics perfor-
mance while conserving Windows resources,
which are in limited supply under the 16-bit
version of the Windows operating system. The
control panel was coded completely in the C++
programming language, thus making full use

of the Microsoft Foundation Class library to
minimize development time and to ensure
consistency with the Windows user interface
paradigm.

Digital Technical Journal Vol.8 No. 1 1996

John T. Freitas

James G. Peterson

Scot A. Aurenz

Charles P. Guldenschuh
Paul J. Ranauro

Digital developed the eXcursion family of display
server products to provide iteroperability between
desktop personal computers (PCs) running the
Microsoft Windows operating system and remote
hosts running the X Window System opcerating svstem
under the UNIX or OpenVMS operating svstems. The
first version of the eXcursion X server was a 16-bit
application written specifically tor Microsoft Windows
versions 3.0 and 3.1. As the popularity of Windows
increased and deskrop svstems were connected to cor-
porate networks, the market for X inreroperability
grew quickly. The 16-bit eXcursion code, much of
which had been ported trom 32-bir UNIX code, was
again ported—this time to Microsoft’s Win32 appli-
cation programming interface (API) to support the
Windows NT operating svstem. When release 6 of
the X Window System version 11 protocol (X11R6)
appeared and a new sample implementation source
kit became available trom the X Consortium, the
cXcursion team decided that it was time tora completce
rewrite of the eXcursion software. Microsoft had
established the Win32 API as a uniform coding inter-
face for all its Windows-based operating systems. Since
development tools such as 32-bit compilers and
debuggers of sutficient quality and robustness had
become available, it was now possible to implement a
high-quality, 32-bit product. This product would sup-
port the entire range of Windows-based plattorms,
from notcbook PCs running the Windows operating
system to high-end Alpha systems running the
Windows NT operating svstem.

Terminology

This paper incorporates certain conventions to clarify
the distinction between the two window systems
under consideration. X window refers to the collection
of data structures, concepts, and operations that con-
stitute a window, as defined in the X Window Svstem
environment. Win32 window reters to a window as
defined in Microsoft’s Win32 API.

When referring to a window svstem as opposed to
a particular window instance, X Window System
1s somctimes abbreviated to X, Windows denotes
the Microsoft Windows operating system.

Note that the word bitmap has more than one
meaning. In the X environment, a bitmap is a two-
dimensional arrav of bits, and a pixmap is a two-
dimensional array of pixels, where each pixel may
consist of onc or more bits. Under the Win32 API, the
term bitmap is used exclusively; that is, no distinction

is made berween an array of depth 1 and an arrav of

depth 2. In this paper, the term pixmap is used in
its general sense to refer to X pixel arrays, and the
term bitmap reters to the Win32 coneept.

Another common point of confusion when dis-
cussing the X Window Svstem environment is the use
of the terms server and client. To one familiar with file
and print servers, the meanings of these two terms in
the X environment mav seem to be reversed. In the X
environment, the server is a displav scrver, and the
clienrs are the applications requesting display services.
The X server and the X client applications may reside
on the same PC, but the power of the eXcursion soft-
warce is in its ability to bridge the gap berween the
Windows desktop and the traditional X11 UNIX and
OpenVMS workstations.

eXcursion Version 2 Product Goals

The design of eXcursion version 2 was driven primarily

by the following product goals:

= Support X Window System version 11, release 6.

s Support the Microsott Windows, Windows NT,
and Windows 95 operating svstems.

s Code the single source pool to Microsoft’s Win32
APL

= Exceed graphics performance of eXcursion version
1 as measured with the standard benchmark tests
X11perfand Xbench.

= Preserve maintainability by using modular coding
and limiting changes of the sample implementation
trom the X Consortium.

= Maximize reliability by performing extended crror
checking and resource management,

s Correct known prorocol conformance deficiencies
in version 1. For example, in version 1, plane mask
support was implemented for only a few graphics
operations. Version 2 would provide plane mask
support tor all graphics operations.

Components of eXcursion Version 2

In eXcursion version 1, most of the functions provided
by the product were combined in asingle exceurable.
To conserve resources and to partition the code for
easicr maintenance, version 2 is divided into several
scparate components or modules. Some of these run
as individual processcs, and some arce built as dynamic
link libraries (DLLs). A DLL is a shared memory

library module that is linked ro the calling program at
run time.

eXcursion version 2 is partitioned into the following
Mmajor components:

= X server. The X scrveris the primary component of
eXcursion version 2. The X server process 1s respon-
sible tor displaying windows and graphics on the
Windows desktop and tor sending keyboard,
mouse, and other cvents to the client application.

= X Image Extension. X cxtensions are additions to
the server that support tunctionality not addressed
by the core X11 protocol, such as displaving shaped
(nonrectangular) windows, handling large requests,
testing /recording, and imaging. All extensions
except the X Image kxtension (XIE) are imple-
mented mternally in the X server. Because of its
size, XIE is implemented as a pair of DLLs, one tor
XIE version 3 and one for XIE version 5.

= Control pancl. As the primary user intertace, the
control panel provides the user with access to the
many configuration scttings. It is an independent
Win32 application mimplemented using Microsoft
Visual C++ and the Microsoft Foundation Class
(MEC) library.

» Interprocess communication librarv. The inter-
process communication (1PC) librarv is an operat-
ing system—-indcependent library used by cooperating
processes or tasks to communicate configuration
and status information.

= Error logger. The error logger is a simple Win32
application that records error and status informa-
tion from other ¢Xcursion components in a win-
dow, a file, or the Windows NT event log,.

= Application launcher. The application launcher is a
Win32 application that starts X client applications
at the request of the X server or the control panel.
The application fauncher is invisible to the uscr.

s Registrv interface. The registry interface is an
operating svstem—independent interface to the
eXcursion configuration profile. The registry inter-
face is implemented as a Win32 DLL.

X Server

The core of the eXcursion product is the X server, a
Win32 application that accepts X requests from client
applications and transtorms them into graphics on the
Windows desktop. The device-independent portion of
the server codc is ported from the sample implementa-
tion provided by the X Consortium. The device-
dependent portion treats the Win32 API as the device
interface through which client requests are material-
ized on the screen. The eXcursion X server is illus-
trated in Figure 1.

Digital Technical Journal Vol 8 No.l 1996

34

INTERNAL WINDOW MANAGER

X REQUESTS —
X EVENTS -]

NETWORK

TRANSPORT CODE

DEVICE-INDEPENDENT

DEVICE-DEPENDENT |—> WIN32 FUNCTION CALLS
CODE <— WIN32 MESSAGES

Figure 1
The eXcursion X Server

The server can operate in once of two modes: single-
window mode or multiwindow mode. In single-
window mode, the server creates one Win32 window,
which represents the X root window. All descendant
windows and their contents are drawn into the root
window using Win32 function calls. In multiwindow
modc, the root window is a virtual windows; that is, it is
never drawn on the screen. Each top-level child of the
root window has a corresponding Win32 window,
which is created when the X window is mapped. All
descendants of a top-level window are drawn inside
the Win32 window with Win32 calls. Multiwindow
mode thereby creates a desktop environment in which
X applications are peers of other Win32 applications.

Single-window mode is usctul for emulating a com-
plete workstation environment including the window
manager and the session or desktop manager. In multi-
window mode, drawing to and getting input from the
root window is restricted by the X scrver to prevent
conflicts with the Microsoft Windows svstem’s use
of the desktop window. Despite this restriction, the
multiwindow mode, when used with the native win-
dow manager, provides the cleancest integration of the
Xand Windows environments.

Resource Management and Performance

Borh the X and Win32 svstems have buile-in notions
ot graphics state and resource allocarion. The seman-
tics and usage of the cencept, however, are quite dif-
ferent in the two window svstems.

In X, graphics state is maintained ina data structure
known as a graphics context (GC). A GC has an inde-
pendent existence and may be crcared, destroved,
updared, queried, and copied ar will by the X applica-
rion. During graphics operations, a GC is associated
with the X “drawable” (window or pixmap) being
drawn into, and information in the GC is used ro fully
define the operation. For example, the GC may specity
foreground or background colors, line sty
informarion.

The Win32 API has a concepr called a device con-
text (DC), which also contains state information but
whose purpose is more closelyv related to providing
device independence. Conscequently, two different
tvpes of DCs are required under the Win32 APILL

¢s, or font

Digital Technical Journal Vol.8 No. 1 19906

depending on whether the graphics operation is draw-
ing to a window or to a bitmap. Furthermore, a win-
dow DC mav be allocated cither permanently or from
a cache, depending onits expected litetime. Anv draw-
ing operation therefore requires that both the GC
used in the X graphics request and the DC used n the
ultimate Win32 call be properly ser up and synchro-
nized. The manner in which this is done has a signifi-
cant eftect on the graphics performance of the server.

Betore an X graphics operation can be started, the
GC must be validared. Validation is a process of
preparing the ourput device to render the graphics
properly. In the case of the eXcursion server, the out-
put device 1s a Win32 DC. For every graphics com-
mand, the GC must be checked for changes and the
appropriate Win32 objects and state values must be
sclected into the DC. This process can be very rime-
consuming. The kev to maximizing performance is to
recognize that most operations are repetitive. A typical
stream of X requests tends to contain many commands
directed ar the same window with the same GC.
Theretore, the way to reduce GC/DC validation time
is to cache the mostrecent GC/DC pair so that subsc-
quent commands that use the same combination need
not trigger a validarion step. In some cases, graphics
operations will toggle berween nwo ormore GCs. (For
example, the CopvArca operation takes a source and a
destination.) The performance in these cases can be
improved by simply caching more than enc recent
GC/DC par. Tuning experiments on the server
revealed that a cache size between 2 and 4 was suthi-
cient to maximize performance. Under the Windows
and Windows 95 opcerating svstems, where resources
are limited, a cache size of 2 is used. Under the
Windows NT opcerating systeny, the cache size is 4.

In the eXcursion server, the notion of a cached
GC/DC pair is encapsulated in a C++ class called a
WXDC. The WXDC remembers the Win32 objects that
have been selected o the DC and the last GC that was
used with it As long as these clements do nor change
frem onc graphics operation to the next, no validation
is necessarv. I the client application changes the con-
tents of the GC, anv aftected objects n the DC are
ragged and the next graphics operation on that WXDC
will require new objects to be sclected into the DC.

Events in the window svstem can also cause WXDC
clements to become invalid. For example, it the win-
dow is moved on the screen by the window manager,
its cJip list may have changed. This causes the WXDC
to invalidate the clip region inits DC. (Clip list and
region arc defined in the following section.) The next
graphics operation on that window will require the
clip region to be recaleulared and reloaded.

Clipping in Single-window Mode

In the X Window System environment, all descen-
dants of the root window have a clip list, which s a list
of rectangles that defines the visible area of the win-
dow. The clip list is cqual to the arca of the child
window minus any arcas that are occluded by other
X windows. Betore drawing into a descendant win-
dow, the server must convert the clip listinto a Win32
region. In the Win32 APIL aregionisa polvgonal arca,
not necessartly rectangufar, that can be selected into
a DC for clipping. Betore initiating a graphics out-
put operation, the target WXDC checks to sec it the
current region for the window is valid. It it is not, the
X clip list 1s converted to a Win32 region and com-

bined with the client-supplicd clip list in the GC, if

anv. The resultis sclecred into the output DC.

Clipping in Multiwindow Mode

In multiwindow modec, the root window s invisible.
Each top-level X window (first-generation child of the
root) corresponds to a Win32 window on the desktop.
No clipping is nccessary tor these windows, because
Win32 does this automatically. For windows below
the tirst generation, clipping is accomplished in a man-
nersimilar to thar used msingle-window mode, except
that the of fset of the clip region must be adjusted to be
relative to the top-level window instead of relative to
the rootwindow.

Graphics Rendering

Graphics rendering is at the heart of the X server. Two
of the core goals for the e Xcursion version 2 project
were to significantly improve server performance over
that of the eXcursion version | server and to improve
server compliance to the X protocol specification.
Figure 2 compares the performance of the eXcursion
version 2 server with that of the version 1 server. The
standard benchmark tests X1 perfand Xbench were
run over a local arca nerwork to eXcursion running
on a 66-megahertz Pentium processor with an S3
video card.

The sample X server upon which the eXcursion X
server is based provides a machine-independent laver
that is capable of rendering all X graphics through a
small set of device-dependent tunctions. In - the
eXcursion X server, the Win32 tunctions provide the
virtcual hardware interface. For maximum pertor-
mance, X graphics requests are passed to the Win32

100
o
90
g gl
= 2
7
w
8 50] _
&
g sof
= 40t
P4
& 30
[ony
&J 20
10+
0 |
(93])] wn) w () w X
w w w L w w w [rng
z pd 2 pd pd z 2 <
o) O o) O e}) O s
[= = = [= = 54
])] w (9] 7] 4] w
Yy 2 5 & &5 & =
5 8 83 < B g
s
o)
O
PERFORMANCE BENCHMARK
Performance eXcursion eXcursion
Benchmark Version1 Version2 Improvement
XBench
lineStones 135,735 239,740 76.6%
fillStones 38,083 74,331 95.2%
blitStones 59,743 88,320 47.8%
arcStones 2,172,720 3,662,770 68.6%
textStones 156,190 214,762 37.5%
complexStones 71,633 71,699 0.1%
XStones 80,057 126,408 57.9%
X1 perf
Xmark 1.6495 2.5805 56.4%
Notes:

The test machine was a DECpc XL 566.

Since eXcursion version 1 did not support 16-bit fonts, the version 2
numbers were substituted to obtain the Xmark number.

Figure 2
Comparison of cXcursion Version 1 and Version 2
Pertormance

API as carly as possible without compromising the
requested rendering. Many X graphics requests map
neatly into Win32 calls with little or no data manipu-
lation. Some complex graphics requests, however,
cannot be practically mapped into high-level Win32
calls and achieve proper pixelization. In such cases, the
machine-independent functions are cal

ed as helper
functions to break the request down into simpler
graphics requests.

GDI Context Switching To reduce context switching,
Windows batches graphics device interface (GDI)
calls. The default GDI batch size is 20, but this limit
can be adjusted per theead. Testing with amix otall X
requests showed that an overall performance increase
of about 9 pereent could be achieved by increasing the
GDI batch himit to 30. At this level, there is no mea-
surable latency, and, furthermore, inercasing the batch
size beyond this point had no mecasurable bencfit.

Digital Technical Journal Vol.8 No. 1 1996

w
o

36

Some competing X scrver products sct the batch size
very high (100) ar the beginning of every request and
flush the queue ar the end. Thisapproach has no mcea-
surable benetit over our simpler method, probably
because the Windows operating system already per-
forms timer-based flushing to prevent drawing latency.

Similarly, whenever possible, Win32 graphics calls
are combined to reduce the overhead of context
switching. For example, an X PolvLine request could
be rendered with a series of Win32 LincTo calls,
but it is much more ctficient to render the PolyLine
request with a single Win32 PolyLine call. Similarly, a
PolyRectangle X request is best rendered with a single
PolyPolyLine call.

Solid Fills Many different Win32 resources such as
pens, brushes, fonts, and clip regions mav be required
for anv given graphics request. The resources needed
are determined by the graphics operation itselfand the
state of the X GC. As noted carlier, these resources arc
created as needed and managed by the WXDC objects,
removing significant complexity and nearly redundant
code from the actual graphics drawing routines.

Windows Pen structures provide color and dash
pattern when drawing line objects. For drawing lines,
segments, and arcs, the X server creates and uses Pens
rhat correspond to the GC state. In some cases, how-
ever, exact pixclization cannot be achieved when using
Windows Pens. Examples of this are drawing wide
lines with raster operations other than GXcopy or
with long, dash patterns. In these cases, machine-
independent functions arc used to reducce the request
to a set of spans (single-width horizontal lines) ro be
filled. The use of Pens is also abandoned in special
cases when the lighly optimized GDI pattern block
transfer (PatBlt) function can be used. ParBlr tills rec-
tangular regions with specificd colors or patterns. [tis
faster, for example, to usc the PatrBlt function to draw
vertical or horizontal lines than to use the Windows
traditional line-drawing functions.

Windows Brush structures provide color and pat-
tern when drawing filled rectangles, filled polvgons,
and filled arcs. Again, for pertormance reasons, the
PatBlt tunction is often used even when there is a
higher-level funcrion that seems to be a closer match.
For example, PatBlt can pertorm the X PolyPoint
request about 10 percent faster than SetPixelV, the
Windows standard call for setting single pixel values.
Similarly, PatBlt can perform the X PolyFillRect
request about 14 percent faster than the Windows
FillRectangle call.

Tile and Stipple Fills An X pixmap can be specitied as a
pattern to be used when performing till operations.
When the pixmap is created, it is realized as a Win32
bitmap. When the pixmap has a depth greater than 1,

it is used as a color tile that will be used for the till. 1f

Digital lechnical Journal \Vol. 8 No. | 1996

the pixmap has a depth of 1 it can be used as either a
transparent or an opaque stipple. An opaque stipple
draws both the GC’s toreground and background col-
ors, where the stipple 1s 1 and 0 respectively. A trans-
parent stipple is similar except that it lcaves the
destination untouched where the stipple is 0.

When the tile or opaque stipple is 8 by 8 or smaller,
a Win32 color brush is created and cached for the
drawing. On the Windows NT system, brushes larger
than 8 by 8 can be created, but our cxperience has
shown it to be slower to draw with them thanitis to
pertorm a scrics of bit block transfer (BitBlt) opera-
tions from the tile /stipple bitmap to the destination.

Transparent Stipple Fills There is a Win32 function,
MaskBlt, that scems ideally suited tor performing
transparent stipple fills. This function, however, was
not fully implemented on all plattorms ar the time we
designed the eXcursion version 2 sottware product.
Without this funcuon, there is no casy way in the
Win32 environment to pertorm the transparent stip-
ple operations. When the foreground color is cither
0 or OxFFFF, the raster operation can be remapped
to get the proper ctfect. General rectangular fills that
do not meet the requirements of the special case previ-
oush' mentioned must be accomplished by first con-
verting the stipple bitmap to the depth of the
destination and then remapping the raster operation.
In general cases that are not rectangular fills, machine-
independent functions are called to break down the
request Into spans.

Image Requests The Getlmage and Purlmage
requests are other examples of X graphics requests
that do not map well into the Win32 API. The only
way in the Win32 environment to put image data on
the screen is to first create a Win3d2 bitmap and ital-
1ize it with the image data, and then call the BitBle
functon to copy the bitmap to the screen. X image
data always lists the top scan lines first, whereas the
bottom scan lines are listed first in Windows bitmap
data. Therctore, betore the bitmap is initialized, the
X mmage dara must be scan-line flipped. Similarly,
the X Getlmage request requires the use of an inter-
mediate bitmap and also requires the scan-line fiip.

Plane Mask Support Any graphics opceration in X can
be modified by setting a plane mask in the GC. The
plane mask specifies which bits of the destination pixel
arc allowed ro be changed. Without a plane mask, an
X graphics operation may be defined as

dst — src X dst,

where & is one of the 16 binary raster operations
(e.g., OR, AND, and XOR). When a plane mask is
given, the following assignment defines the destina-
tion pixel:

dst ((src 3 dst) & pm)| (dst & ~pm)

Most video hardware devices support plane masking,
and those that do not support it generally provide fast
aceess to video random-access memory (RAM). The
Win32 API, however, provides ncither planc masking
nor direct video RAM access. To understand why, vou
must realize that Windows has virtualized the color
handling in an artempt to mediate contlicts berween
applications that would otherwise want to modity the
colormap (the pixcl-to—color mapping table). In this
virtual color environment, the concept of planc masks
has no meanmg because Win32 applications need nort
know the pixel value that corresponds to a particular
color. See the section Color Resource Management for
an explanation of how the ¢Xcursion software manages
roassign specific pixel values to colors.

In the general plane mask case, it is necessary for the
X server to first save the contents of the destination in
a biemap. The graphics can then be temporarily drawn
without regard to the plane mask. Those bits m the
destination that are specificd by the plane mask
as being unaftected can then be restored from the saved

bitmap. This process will work in everv case but is inct-
ficient since it involves several graphics operations
before achieving the final result. Many special cases can
bereducedto one or two simple steps by modifving the
source color and raster operation. Table 1 shows how
the source color and raster operation can be set to
achieve the plane mask cftect. The eXcursion X server
uses these optimizations for many graphics operations
when the source till is asolid color.

Internal Window Manager

In the absence of a window manager, the ¢Xcursion
server creates all windows as pop-up windows. All win-
dows, including top-level windows in multwindow
mode, are undecorated. They have no Win32 borders,
title bars, or system menus. To move, size, minimize,
maximize, or close windows, the user must run a win-
dow manager.

An ceXcursion user alwavs has the option of using
onc of the many X-based window managers available,
such as the Motf Window Manager. However, many
users will want a window manager paradigm that s
consistent with Windows so that all windows on the
deskrop have the same user intertace. To accomplish

this, a buile-in window manager is provided as part of

the eXcursion server. This internal window manager
is operative only in multiwindow mode.

The internal window manager, although linked with
the server, is functionallv isolated trom the rest ot the
code so that it can easily be disabled. Thus allows exter-
nal window managers to be used and also facilitates
debugging by allowing problems to be isolated. The
window manager creates a “hook™ into the scrver’s
window procedure, so that all Win32 messagesarc tirst

examined bv the window manager. This gives the
window manager the opportunity to act on window
management-related messages such as those that indi-
cate a change in the window’s configuration or state.
Itthe window manager decides to handle a message, it
is removed from the queue, and the server never sees
i, If the window manager is not interested, the mes-
sage is passed on to the normal window procedure.

The purpose of the internal window manager is
to give X windows the same appcarance and behavior
as Win32 windows thar are created by tvpical desk-
top applications, such as word processors and
spreadsheers. When an X window is mapped tor
the first time, the internal window manager receives
a Win32 WM_CREATE message. Before the window
becomes visible on the screen, the window man-
ager alters the stvle of the Win32 window to
WS_OVERLAPPEDWINDOW. Win32 windows with
this stvle arc automatically: managed by Windows,
which handles moving, resizing, iconifying, maxiniz-
ing, and closing the windows. Each of these actions
causes a corresponding message to be sent to the
server’s window procedure. The internal window
manager intercepts the messages and dispatches them
to the appropriate internal funcrion.

The role of the internal window manager comple-
ments the role of the server. The server processes client
requests on X windows and translates them into opera-
tions on Win32 windows. The internal window man-
ager handles Windows messages that indicate changes
to a Win32 window and rranslates them into corre-
sponding changes to the underlving X window. For
example, the most important message that the window
manager handles is WM_WINDOWPOSCHANGING.
Tlis message issentjust before any change in the win-
dow’s position, size, stacking order, or visibility. It this
message indicates that the window size changed, the
window manager changes the size of the correspond-
ing X window and sends a ConfigurcNotity event to
the client. Similarly, the window manager wranslates
other uscr-dirccted cevents such as focus change, win-
dow stacking, and iconification into changes to the
underlving X data structures. In most cases, the win-
dow manager does this by calling into the device-
independent laver, thus simulating an X request that
would occur from an external window manager.

Mouse, Keyboard, and Input Focus

Mouse actions and keystrokes are received by the
eXcursion server as Win32 messages. Each message
contains information about the window thar received
the input and the time of the mnput. For mouse moves
and clicks, the server uses the window information to
locate the corresponding X window and forwards an
X event to that window. Kevboard input is forwarded
to the window that currently has X focus.

Digital Technical fournal Vol.8 No. 1 1996

37

33

Table 1
Plane Mask Optimizations

Requested X Raster src 0 0 1 1 Modified Source Color and
Operation dst O 1 0 1 Notes Raster Operations
GXclear 0 0 0 0 4 SIC « ~pm, rop «-and
GXand 0 0 0 1 1 SIC «— src I ~pm
GXandReverse 0 0 1 0 6 SrC «— src | ~pm

SIC < ~pm, rop « xor
GXcopy 0 0 1 1 8 SrC < ~pm, rop «-and

SIC «—Src & pm, rop < or
GXcopy 0 0 1 1 8 SIC «— pm, rop « or
(src & pm) = pm
GXcopy 0 0 1 1 8 src «— src | ~pm, rop «-and
(src & pm) =0
GXandInverted 0 1 0 0 2 SIC «— src & pm
GXnoop 0 1 0 1 10 —
GXxor 0 1 1 0 2 SIC «— Src & pm
GXor 0 1 1 1 SIC «—Src & pm
GXnor 1 0 0 0 SrC «—Src & pm

SIC «— ~pm, rop « xor
GXequiv 1 0 0 1 1 SrC «— src | ~pm
GXinvert 1 0 1 0 5 STC «— pm, rop «— Xor
GXorReverse 1 0 1 1 SIC «—src & pm

SIC «— ~pm, rop «- xor
GXcopyinverted 1 1 0 0 9 SIC «— ~pm, rop «-and

SIC «— ~Src & pm, rop «—or
GXorinverted 1 1 0 1 1 SIC «—src | ~pm
GXnand 1 1 1 0 6 Sr¢ «— src | ~pm

SIC «— ~pm, rop « xor
GXset 1 1 1 1 3 SIC «—pm, rop «- or
Notes:

1. dstis unchanged when src equals 1 for these raster operations. Therefore, to preserve the value of dst when
pm equals 0, set src equal to 1.

2. dstis unchanged when src equals 0 for these raster operations. Therefore, to preserve the value of dst when
pm equals 0, set src equal to 0.

3. Thisoperation sets all dst bits to 1 except where the plane mask equals 0. This can be done simply by ORing
pm into dst.

4. This operation clears all dst bits except where the plane mask equals 0. This can be done simply by ANDing
pm into dst.

5. XORing with 1 has the effect of inverting. To invert only where pm equals 1, XOR pm with dst.

6. These operations are performed in two steps. Note that dst is inverted when src equals 1. First perform the

operation with srcsetto 1 where pm equals 0. dst is now correct except that it is inverted where pm equals 0.
The second operation of XORing with the invert of pm corrects this.

7. These operations are performed in two steps. Note thatdstis inverted when src equals 0. First perform the
operation withsrc set to 0 where pm equals 0. dst is now correct except that it is inverted where pm equals 0.
The second operation of XORing with the invert of pm corrects this.

8. Thisoperation is performed in two steps. Firstdst is set to 0 whenever pm equals 1. Then dst is setto 1 when-
ever both pm and src equal 1. The two special cases can be reduced to operations that use GXset and GXclear.

9. This operation is performed in two steps. First dst is set to 0 whenever pm equals 1. Then dst is set to 1 when-
ever pm equals 1 and src equals 0.

10. dst is unchanged; therefore, no operation is required.

Digiral Technieal Journal Vol.8 No.1 1990

The X server is a single application in the Win32
cnvironment that “owns™ all the X windows it creates.
From the user’s perspective, though, there may appear
to be more than one X applicattion running, cach with
its own collection of windows. The user expects to
be able to shift the kevboard focus from one window
to another in the same fashion that focus is shifted
berween other applications. When an external window
manager is in use, focus control is straighttorward.
The window manager, using whatever semantic it
was designed for, monitors mouse events and shifts
tocus accordingly. However, the semantic model for
this may or may not be consistent with the Win32
modcl. In either case, the window decorations, c.g.,
borders, title bars, and menus, arc almost guaranteed
to be different. A uscr who wants a consistent user
mterface model across all applications must employ
the internal window manager.

At any given time, one window on the screen has
Win32 focus and one X window has X focus. The two
windows are not necessarily the same. Since the X
server creates and owns all the X windows in use, the
server receives keyboard input when any one of its
windows has Win32 focus. The keystrokes are not
necessarily sent to the underlving X window, however.
Thev are sent to the window that has X focus. The
internal window manager assigns X focus to the X win-
dow that receives Win32 tocus. The client receives
notification of this event and may decide to assign X
tocus to some other window, perhaps a child window.

The server must therctore keep track of both the
X window that currently has focus and the state of
Win32 focus. When the server loses Win32 focus, the
X ftocus is assigned to the root window. When the
server receives Win32 focus, X focus is assigned to the
X window that previously had . Whenever X tocus is
changed by an application or by the window manager,
the current X focus state is cached so that it can be
restored later, if necessary.

Font Management

Fonts and text functionality make up a significant por-
ton of any graphics architecrure. Both the X and the
Win32 svstems define a rich set of text-rendering
operations and can process several font formats.

X and Win32 Fonts The X tont management library is
a modular architecrure that defines an API for rcading
and writing individual font formats. The module that
implements the API for a given tont format is called a
renderer. This approach allows X to support several
font tormats: the library’s renderer modules convert
external formats to a single, internal bitmap format,
which is used for all drawing operations. The term
X font refers to font datain this internal format.

The font management library supports both birmap
and scalable outline fonts. Bitmap font glyphs are sim-
plv reformarted and used. Scalable tormats, such as
Adobe Typel, are rasterized on demand imto the X
font tormat.

For maximum performance, the server draws text
with native Win32 fonts using the Win32 AP1. Win32
fonts are bitmap fonts in the FON format. Win32
functionalitv covers the great majority of text-drawing
operations, but there are a few cases in which it is
cither not possible or not etficient to use Win32 tonts.

The server can also draw directly with the X fonts to
provide full X tont support and complete text-drawing
funcrionality. This method uses Win32 BirBlt() opera-
nons to copy the character glyphs to the display as
bitmaps. Drawing speed with this method is accept-
able but not maximum.

Therefore, both X and Win32 fonts are used. The
Win32 fonts may be thought of as optional accelera-
tors: the server uses them whenever possible and falls
back to the X tonts when necessary. The decision to
fall back can be made on a variety of conditions. This
technique has also proved useful in working around
problems such as text-drawing bugs in individual
video drivers.

Since scalable font outlines arc rasterized into
bitmaps at run time, they are generally drawn directly
with the internal X font format. The extra work of
compiling a companion Win32 font at run time gener-
ally ounweighs its value as an accelerator.

X bitmap tonts are most commonly distributed in
the Bitmap Distribution Format (BDF), an ASCII text
source file. The eXcursion team wrote a font compiler
tool that generates native Win32 (FON tormat) fonts
from the BDF sources. The fonts created can be used
by any Win32 application.

The compiler can generate either the commonly
used version 2 tormat or the extended version 3 tor-
mat, which is nccessary tor large fonts that require
more than 64 kilobytes (KB) of glyph storage. Figure 3
illustrates the process of generating cquivalent X and
Win32 fonts from a common source.

The X font format contains extra information (e.g.,
metrics and properties) that cannot be derived trom

X FONT
LIBRARY [XFONT
BDF FONT
EXCURSION
FONT |, WINDOWS (FON)
COMPILER FONT
Figure 3

Font Conversion

Digital Technical Journal Vol. 8 No. 1 1996

39

40

the Win32 font. Therctore, the X and Win32 fonts arc
used rogether; the X information comes from the
X fontand the Win32 fontis used by the Win32 APL.

Realizing Win32 and X Fonts When the X server first
opens a font, it invokes the tunction RealizeFont().
This function gives the server an opportunity to initial-
ize dara structures and pertorm any format-specitic
operations necessary to make the tont availab

To make a Win32 fonr avar
the server retrieves the filename of the font from the
server’s look-up table and registers it with the Win32
APT using the function AddFontResource(). A handle
to the fontis obtained from CreatcFonrIndirect(), and
thereafter the handle is sclected into the desired DC
for drawing operations. It the Win32 realization fails
for any reason, the code simply realizes the X font
instead. Failing to realize a Win32 font doces not neces-

(&5

able for drawing,

sarily imply an error condition. Such failure happens in
any case in which the server decides that it is best to
use the X font directly.

The internal X font format is a set ot data structures.
The glyphs are stored in conventional arravs in user
memory. Toimprove performance, the server realizes
an X font by writing all glvphs ro a Win32 bitmap in
off-sereen memory. CreateBirmap() returns a handle
for later reference, and the glyphs in the bitmap arce
indexed for use in drawing opcrations.

Drawing with Win32 and X Fonts The glyphs in X text
strings are often kerned, that is, overlapped tor best
tvpographic appearance. To draw with Win32 fonts,
the server emulates the wav X draws text by using
ExtTextOut(), which uscs an intercharacter spacing
vector to place the individual glyphs. The font’s X met-
rics are used directly to calculate this vector,

Glyphs from X tonts arc drawn by performing
BirBlts from the Win32 bitmap to the target window
or bitmap. The server places the glyphs using the font’s
X metrics as described in the previous paragraph.

Color Resource Management

Although some X Window Svstem concepts and struc-
tures map fairlv closely to those in the Win32 system,
color resource management is handled very ditter-
ently. The difference is most evident when dealing
with pseudocolor video systems. Consequently, this
paper describes only this case.

The X Window System environment shares 256 col-
ormap cells among allapplications that use the default
colormap (1e., those that do not have a privare col-
ormap). Applications can allocate cells in the default
colormap to protect them from modification by other
applications. In contrast, the Win32 svstem allows
cach application complete access to the svstem palette
while the application has focus and maps the palettes
of the windows without focus as best it can.

Dijgiral Technieal Journal Vol. 8 No. 1 1996

In the X Window Svstem environment, when an
application reserves a colormap ccell, it references the
cell with a pixel value. This value is an index into the
colormap and is used to Jook up the value that will
actually be stored in screen memory when that pixe
value is used in a drawing operation.

In the Win32 system, color management is handled
by the palette manager through a palette structure.
Each application hasa logical palette, and a single svs-
tem palette contains the colors currently mapped to
the hardware colormap. Applications reference colors
relative to their logical paletre, and the palette man-
ager handles the mapping between the logical palette
and the svstem palette. When an application is given
tocus, the palette manager maps all the colors from the

logical palette into the system palette. If the system
palette docs not have coough cmpry cells, the palette
manager frees cells allocated to other applications. If
this occurs, the palette manager will attempt to remap
the other applications’ colors into any remaining tree
cells i the svstem colormap. If not enough cells are
free, anv remaining unmapped colors are mapped to
the svstem palette colors that most closelv martch.

Because of this wav of handling color resource man-
agement, an application does not know what value is
being stored in screen memory forany particular color
and the value stored for any color can change over the
litctime of the application. This situation presents sig-
nificant difficulties for X operations that require exact
knowledge of the pixel values in screen memory, such
as the Getlimage operation and operations invoNing
plane masks. The server works around the difficulties
by creating two Win32 logical palettes.

The first palette, i.e., the working palette, corre-
sponds exactly to the X default colormap and does not
allow sharing of the palette by Win32 applications.
Whenever an X window has focus, the working palette
is in usc. This causes the Win32 palette manager to set
up the system palettre such that it directly corresponds
to the X colormap, and operations that are pixel based
work properly.

The other palette, 1.e., the identity palette, is set up
to correspond exactly ro rhe svstem palette. The iden-
ntv paleeee is used whenever no X window has tocus.
Because of the correspondence, no translation is
involved benwveen the identity palette and the system
palette, which allows the X server to know what pixel
value is stored in screen memory.

The X Window System environment allows for pri-
vate colormaps, which are created and used by a single
application. The server creates a working palette tor
cvery colormap created. When the colormap is installed
(normally by the window manager when the X applica-
rion is given focus), the e Xcursion software installs the
working palette associated with the private colormap.

The ceXcursion X server currently supports the
PscudoColor visual class and the StaticGray depth 1

visual class, which is mainly used tor bitmaps.
cXcursion version | also supported a StaticColor visual
class for 16-color video graphics array (VGA) displays.
eXcursion version 2 treats VGA devices identically to
PscudoColor devices and allows the Windowss palette
manager to generate dithering patterns tor the
unavailable colors.

Network Interface

With the release of X11R6, the X Consortium com-
bined all transport-specific code into a single place
m the source tree, the X transport interface. The
¢Xcursion team extended the X transport intertace to
include Nerwork Computing Device’s (NCID’s)
Xremote scrial line transport. Combined with the
transmission control protocol/internet protocol
(TCP/IP) and DECnct transports, the eXcursion
product can now cxecute X sessions over any of these
ransports simultaneouslv. The eXcursion product
supports anv TCP/IP stack thar complies with the
Winsock version 1.1 implementation, PATHWORKS
DECnet protocol, and NCD’s Xremote protocol for
serial line.

The X transport interface provides functions that
are common to all transports, such as parsing an
address into a host and port number. The intertace
does not provide an abstraction for the select() call,
because it assumes that this call is transport indepen-
dent. Unfortunately, the Xremote protocol requires
an independent select() mechanism, and, thus, it
was necessary to implement a select() abstraction ro
combine the wansport-mdependent sclect() with the
Xremote select(). Although somewhat compromised
bv this addition, performance was a problem only
when the Xremote protocol was used in combination
with either the TCP /1P or the DECnct protocol.

XImage Extension

cXcursion version 2 provides versions 3 and 5 of the
X Tmage Extension to support a wide range of imaging
apphications. Because it is a large body of code, XI1E
is implemented as a pair of Win32 DLLs to conserve
memory on systems that will not be running applica-
tions that usce XIE.

Normally, access to a DLLis one-wav. Applications
can load and make function calls into a DLL, but
because it is linked dynamically ar run time, the DLL
code cannot make function calls back into the calling
application. X1E, however, must call into the device-
dependent laver of the server to perform any required
drawing afrer processing its imaging requests. To per-
mit this, an addition to the interface was designed.
When the XIE DLL s initialized, the caller supplies a
list of pointers to the functions needed by the XIE.

The DLL fills an arrav with these pointers and then
calls back indirectly through the array. On the
Windows operating system, this design could create a
problem because under Win32 APls, global data in a
DLL is not instanced; that is, the codc is not reentrant.
The approach works in this case because there is only
one copy of the DLL loaded. It another application
was sharing the DLL, the pointers would be overwrit-
ren by the sccond initialization.

Control Panel

The eXcursion contro) panel is the primary interface
through which the user contigures and controls the
product. Some other components create simple win-
dows or icons, but these functions are limited. The
control pancel constitutes 90 percent of the user inter-
face for the eXcursion application. This fact makes the
control pancl an ideal candidate tor the rapid applica-
rion devclopment features of the Microsoft Visual
C++ environment. The control panclisa Win32 appli-
cation coded almost entirely in C++ and linked with
the Microsoft Foundation Class library.

The main purpose of the control panel is to pre-
sent a managceable interface through which the user
can view and modify the eXcursion configuration pro-
file. To do this in a manner consistent with the new
Windows 95 shell, the Property Sheet MEC object
was chosen. Property Sheets are tabbed dialog boxes
that have the advantage of organizing large amounts
of data settings in a compact space. Thev are usced
extensively by the Windows 95 operating system and
by the most recent versions of Microsoft applications.

The Property Sheet object is a subclass of the
Windows object and is essentially a container tor the
tabbed pages. Each tab, when clicked by the user, dis-
plays a dialog box that is subclassed from the MFC
Properny Page object. The individual pages can be
visually configured and revised using the class wizard
teature of Microsoft Visual C++. The designer simply
selects dialog box controls such as buttons, drop lists,
or edit fields and positions them on the dialog box.
The code to handle useractionsis then filled in.

The ¢Xcursion control pancl is shown in Figure 4.
We constructed an initial prorotvpe of the control
panel application with about 60 percent of the final
functionalitv in less than one month.

Interprocess Communication Library

eXcursion version 2 consists of several cooperating
processes that must communicate and svnchronize
with one another. When a remote X application s
started by the server or the control panel, the applica-
tion launcher signals when the operation is complete.

Digital Techmeal Journal Vol. 8§ No. L 1996

41

42

' 1‘;‘ eXcursion Control Panel X

' XDMLCP | E stensions l

J eXcursion Control Panel

Copyright © 1995
Digital Equipment Corporation

Computer Name:
Registered to:
Senal Number:
Installed Path:
Version:

X Server—— —

Server Number:
Number of Links in Use:
Number of Errors Logged:

Inlo | Accounts I Applications | Display I Fonts] Keyboard I Mouse | Logging] Access |

C:\XCURSION\x86\

Cornmunications | Modem l

E

SNOOTS
SNOOTS
21309

V2.1.309

(=-]

| 0K I i Cancel j I Help -.J

Relalt Server ‘

Figure 4
The eXcursion Control Pancl

Errorand status informarion is sent to the error logger
by the other components. When the user changes
a configuration serting through the control panel, the
change must be communicated to the X server, ifitis
running. In some casces, the change can take cffect
immediately; in other casces, the server cannot imple-
ment the change without restarting. The control pancl
and the server must engage in a dialog so that the uscr
can be informed as to what action must be taken, ifany.
The IPC library is an opcerating svstem—independent
API that permits ¢Xcursion components to determine
which other components are present and to exchange
commands and configuration information.

The Windows N'T operating system provides several
built-in IPC mechanisms, but most are not available
on the Windows or Windows 95 svstems. The only
mechanism that is universal to the three operating
svstems 1s the message-passing interface in the Win32
API. This mechanism, while not the most cfficient, is
relatively straightforward to implement. Since the per-
formance demands on the IPC Jibrary were deter-
mined to be verv light, this mechanism was chosen.

Digital Technical Journal Vol.8 No.1 1996

The disadvantage of the Win32 message-passing
interface is that it is window based, not process based.
Maessages are received by a callback procedure that
must be associated with a window before any commu-
nication can take place. If an application has not vet
created a window, or never creates a window, as is the
case with the application launcher, no communication
1s possible. To remedy this, the IPC library creates its
own window when the calling process nitializes. The
IPC window is never mapped to the screen, so it is not
visible to the user. All interprocess communication
passes through the 1PC window.

The IPC library consists of a collection of unique
messages and an API. The messages are regstered
wirh the Win32 function RegisterWindowMessage.
This ensures that the messages used by the eXcursion
application do not conflict with system messages or
messages used by other applications. The eXcursion
[PC messages are

= ipcComponentStartedMsg, which the IPC posts to
all components when a componenr initializes.

s ipcRestartServerMsg, which the 1PC sends to the
server to tell it to restart.

s ipcRestartServerStatusMsg, which the IPC posts
with the status of the restart request.

s ipclnquireMsg, which the IPC sends to retrieve a
data item from a component.

= ipcProfilcChangedMsg, which the control panel
sends when the registry profile changes.

= ipcLaunchOneCompleteMsg, which the applica-
tion launcher sends to notity the server of launch
completion.

s ipcLaunchAllCompleteMsg, which the application
launcher sends to notify the server of launch com-
plction.

s ipcHideAllWindowsMsg, which the server sends to
all components to tell them to hide all their win-
dows. The eXcursion application uses this message
to execute the pause/resume feature.

= ipcShowAllWindowsMsg, which the server sends
to all components to tell them to show all their win-
dows. The eXcursion application uses this message
to exccute the pause/resume feature.

In addition to sending and rcceiving messages,
eXcursion processes can use the IPC library to derter-
minc which other components are running. The IPC
mitialization procedurc creates a window with a
unique name that identifies the calling component. To
determine whether a specitic component s present
in the system, the IPC scarches all windows on the
system until it finds one with the correct name.

Error Logger

The error logger is a Win32 application that receives
error and informational messages from other compo-
nents and either displays them in a window or logs
them to a file. On the Windows NT operating system,
information that may hcelp system managers or users
diagnose problems may additionally be recorded in
the Windows NT event log.

Application Launcher

The application launcher is a Win32 application that
handles requests from the control panel or server to
start X client applications. The client may reside on
aremote host or on the same machine.

When the user requests the server or control panel
to start an X client application, it starts the eXcursion
application launcher in a scparate process. The applica-
tion command, host name, account information, net-
work transport, and command shell are passed to the
launcher inits command line arguments. The launcher
makes the connection to the remote system, initiates

the command using the selected protocol (rexec, rsh,
DECnct object, or local command), and sends an IPC
message to the server indicating that a new application
1 starting.

Registry Interface

The Windows NT operating system introduced a new
concept called the registry. This is a protected darabase
maintained by the operating system, wherein Win32
applications may store configuration and state infor-
mation. The registry has a well-detined API and
a maintenance utility program that is shipped with
the Windows NT operating system. Under the
Windows operating system, contiguration information
is kept in simple text files, which are vulnerable to
accidental or malicious tampering. At the time the
design of eXcursion version 2 was under way, it was
unknown which, if either, of these two methods would
be available under the Windows 95 opcrating system.
Nevertheless, all three of thesc operating systems had
to be supported.

We designed an AT for accessing the configuration
information in a manner independent of the operating
system. Knowledge of the operating system and its reg-
istry access method is encapsulated in the library. Since
sceveral independent processes must aceess the informa-
tion, the library is built as a DLI. to conserve memory.
The interface basically resembles that of the Windows
NT registry AP but eliminates some of the complexity.

It the eXcursion software has nor been configured
when the registry interface first accesses the profile,
detaulr values for all settings are selected to allow the
software to function normallv.

Summary

With computer systems based on the Microsoft
Windows operating system increasing in power and
decreasing in price, Windows-based systems are appear-
ing on desktops that once held workstations running
the UNIX or OpenVMS operating systems. Windows
systems must be able to access applications on remote
file and compute servers running in the X Window
System environment. Version 2 of the eXcursion prod-
uct provides desktop integration of X clientapplications
with native Win32 applications. Modular coding tech-
niqucs, object-oriented programming, and selective use
of the Microsoft Foundation Class library helped
reduce development time, and improve performance,
maintainabtility, and reliability.

General References

D. Giokas and A. Leskowitz, “cXcursion tor Windows:
Inregrating Two Windowing Svstems,™ Digital Technical

Jottrnal, vol. 4, no. 1 (Winter 1992): 56-67.

Digical “Techmeal Journal Vol.8 No.l 1996

44

X Window System

S, Angebranndr et al., Definition of the Porting Layver for
the X 11 Sample Server (Cambridge, Mass.: N Consor-
tium, Inc., 1994).

J. Fulton, 7he X Font Sercvice Protocol. Version 2.0.
N Version 11, Release 6 (Cambridge, Mass.: X Consor-
rium, Ince., 1994).

E. Isracl and E. Fortune, The X Window System Server,
X Yersion 11, Release S (Woburn, Mass.: Digital Press,
1993).

O. Jones, ntrodiection to the N Window System (Engle-
wood Clitts, N.J.: Prentice-Hall, Inc., 1989).

K. Packard and D. Lemke, 7he X ront Library (Cam-
bridge, Mass.: X Consortium, Inc., 1995).

D. Rosenthaly /nier-Cliennt Comnaniceation Conventions
Meannal. Version 2.0 (Cambridge, Mass.: X Consortium,
Inc., 1994).

R. Scheitler, X Window System Protocol. X Version 11,
Reloase 6 (Cambridge, Mass.: X Consortium, nc., 1994).

R. Scheitler and J. Gereys, X Window System (RBedtord,
Mass.: Digiral Press, 1992).

Networks
M. Hall cral,, “Windows Sockets: An Open Interface tor
Nerwork Programming under Microsott Windows, Version

1.17(1993).

K. Packard, X Display Manager Control Panel. Version
1.0. X Version 11, Release 5 (Cambridge, Mass.: MIT
X Consortium, 1989).

W. Stevens, UNX Network Prograniming (Englewood
Clitts, N.j.: Prentice-Hall, Inc., 1990).

X Transport Interface (Davton, Ohio: NCR Corporation,
1993).

Windows Operating Systems
R. Blake, Optimizing Windows NT. Windows N Resoirce
Kit.vol. 3 (Redmond, Wash.: Microsoft Press, 199 3).

H. Custer, Inside Windows N1 (Redmond, Wash.:

Microsoft Press, 1993).

A. King, Inside Windows 95 (Redmond, Wash.: Microsoft
Press, 1994).

Wins2 Programmers Reference. vols. 1-5 (Redmond,
Wash.: Microsoft Press, 1995).

Windows Programming
K. Christian, The Micreso/t Gitide to C++ Progremming
(Redmond, Wash.: Microsoft Press, 1992).

P. Dilascia, Windows++: Writing Reusable Windows
Code in C++ (Reading, Mass.: Addison-\Wesley Publishing
Company, 1992).

Digiral Technical Journal Vol 8 No. | 1996

The GUI Guide. huernational Terniinology for the \Win-
cdows Interface (Redmond, Wash.: Microsoft Press, 1993).

S. McConncll, Cade Complete: A Practical Flandboolk of
Softwcare Construction (Redmond, Wash.: Microsoft
Press, 1993).

C. Petzold, Progrannning Windows, 2d cd. (Redmond,
Wash.: Microsoft Press, 1990).

B. Stroustrup, 1he CH+ Prograimming Langiage (Read-
mg, Mass.: Addison-Wesley Publishing Company, 1986).

Biographies

John T. Freitas

Presently a sofrware engineer at Atria Softwvare, John
Freitas worked at Digical for 15 vears. For the Tast few
vears, he was associated with Digital’s e Ncursion product
as an individual contributor, an archirect, and a designer,
Previously, he was in the Workstation group. John received
a B.S.E.E. from Norrtheastern Universitv in 1967, While
in college, he worked as aco-op student on the Apollo
Project at MIT’s Draper Laboratory. During the 1970s,
he worked tor Harvard University developing and main-
raining medical computing facilitics at Massachuscerrs
General Hospital.

James G. Pcterson

James Pererson is currently a sottware engimeer at
DeLorme Mapping. Asa member of Digital’s Windows
NT group, James led the releases of the eXcursion soft-
ware from vewsion 1.1 through version 2.1, In additon,
he worked as architect and individual contributor on

rhe e Xcursion project, concentrating on graphics and
performance. Farlier, he worked in the PATHWORKS
and Rainbow groups. James was emploved by Compion
Corporation betore joming Digital in 1984, He received
aB.A (1979) in mathematics from Indiana University
and an M.S (198 1) in marhemarics and an M.S. (1984)
in computer science, both from the Universin ot Ulinois.

Scot A. Aurenz

Scot Aurenzis a principal software engineer in the
Windows NT group where he works on the development
ot the eXcursion PC X server, Scot has contribured to many

projects ar Digital, including the Language Sensitive Editor

(DECser LSE) and the SUVAX workstation. Scot came to
Digital n 1979 as a Purduc University co-op student and
became a full-time emplovee after receiving his B.S.E.E.
in 1982. He received an MLS E.E. from the University of
llinois in 1986.

Charles P. Guldenschuh

Charles Guldenschuh is a principal software engincer in
Digital’s Windows NT group. He is responsible tor color
supportand sottware installation of the eXcursion product.
Previously, he worked in the Real-Time Software,
Protessional 300 Software Engincering, and RT-11
Engincering groups. Charles joined Digital atter receiving
his B.S. in information and compurter science from the
Georgia Institute of Technology in 1976.

Paul J. Ranauro

Paul Ranauro joined Digital in 1987 and is a principal
software engincer in the Windows NT group. He is
responsible for application failover tor the Digital Clusters
tor Windows NT product. In carlier work, he parricipated
in the development ofthe eXcursion software and the
ACMSxp transaction processing monitor, specifically,

n the implemenration of the RTI protocol. He also par-
ticipated in the implementation of the Manufacturing
Messaging Service OS] application laver protocol tor the
DEComni product and a network performance analyzer.
Prior to coming to Digital, he wasa consultant ar Index
Systems and a senior software engineer at Micom-Interlan.
Paul holds a B.A. in history trom the University of
Massachuscrrs at Boston.

Digical Technical Journal Vol.8 No. | 1996

45

46

Integrating Multiple
Directory Services

The Integrated Directory Services (IDS) infra-
structure implements a directory-service-
independent interface. The IDS infrastructure
is used by applications that store and retrieve
information about resources in environments
with either multiple directory services or one
of several directory services. The IDS interface
isolates users and application writers from

the unique requirements of different directory
services by providing a view of a single, logi-
cal directory service through a simple federa-
tion mechanism. To retrieve resources from
the logical directory, IDS determines its phys-
ical location and converts the resource from

a directory-specific to a canonical format.
Extensible schema tables represent the canon-
ical format for each resource and allow IDS to
represent resources created using both the IDS
interfaces and the directory-specific interfaces.

Digiral Technical Journal Vol. 8 No. 1 1996

Margaret Olson
Laura E. Holly
Colin Strutt

Digital has developed the Integrated Directory
Services (IDS) technology to provide a mechanism for
integraring multiple directory services into a single sys-
tem. In this paper, we examine the development of the
IDS infrastructure. We begin by cliscussing the prob-
lems faced by network directory applications. Next we
describe our design goals, the IDS infrastructure, and
our mitial implementation on the PATHWORKS
product. We conclude with a brief discussion of plans
tor future development.

Directory Support in Multiple Environments

Although directory services are a powerful mechanism
for distributing and accessing certain kinds of informa-
tion, relatively few applications choose to use them.
Digital’s PATHWORKS application was in need of a
directory for printers and file shares. PATHWORKS is
anetwork operating system (NOS) integration product
that gives users access to both Microsoft’s LAN
Manager and Novell’s NetWare file and print shares. As
we studied how to incorporate directory support into
PATHWORKS, we came to a better understanding of
the problems taced by directory applications in general.

Nerworks are growing rapidly, as are the amount
and kind of information that can be accessed through
the network. We were certain that tuture network
application products would have an even greater need
tor a directory, and therefore a general solution was
needed. We then set out to design a system that would
remove the barriers to directory service application
usage and deployment. We resolved the tension
berween the product deadline and the time required
to implement the general solution by designing a
complete solution and implementing what was neces-
sary to prove the design and to meet the immediate
needs of the PATHWORKS product.

Existing Directory Services

There are a number of general-purpose directory ser-
vices. Some of the more familiar include X.500,
Novell’s NetWare Directory Service (NDS), the Cell
Directory Service (CDS), and Banyan Systems’

StreetTalk.” * In the past, directory services were in rel-
atively limited use because most directory services
were tied to either an operating svstem or a transport
or both. In addition, directory services were con-
nected to a multitude of application programming
interfaces (APIs) that were incompatible and difticult
tousc. More recently, directory services have been tied
to nerwork operating systems or applications, rather
than to host operating systems or transports. If any-
thing, the number of “standard™ APIs has grown.

In large nerworks, this complexity has resulted in
the proliteration of directories, often containing over-
lapping information. This makes the network man-
ager’s job difficulr, which in turn creates resistance to
direcrory applications. At the samie time, nerwork and
NOS technology has developed to a point where an
cver-inereasing amount of information is being shared
on different machines. To give a simple example,
almost every server at Digital’s Littleron site has a con-
nection to the high-volume printer in the copy center,
with a different name on every server. A directory
would simplify users’ access to this single physical
resource by presenting a single name tor the printer,
if only the application writer could figure out which
direcrory service to use and how to use it.

Other Approaches

As discussed later in the Design of the 11DS Framework
and Scrvice Providers section, 1DS defines both an APl
and aservice provider interface. Support tor any direc-
tory service can be provided by writing a service
provider module. Microsoft’s OLE Dirccrory Scrvices
(OLE DS) takes a similar approach to 1DS, with a more
limited initial implementation.® Although the current
IDS implementation runs under Microsoft Windows, it
was designed toportroother systems. OLE DS depends
on teatures of the Windows operating systems.

The X/Open Federated Naming (XFN) specitication
was not complete ar the ume we were designing [DS,
and it did notinclude eitheraservice provider intertace
or a rcterence implemenration.® We did examine the
XEN draft and designed the 1DS interface to be com-
parible with XEN, with a view toward supporting the
XEN API in the future. Supporting the XEN intertaces
on top of IDS would be a relatively straighttorward
rask, and we have considered doing this.

The PATHWORKS Application

In the NOS cnvironment, each NOS has its own
directory or pscudo-directory. NetWare version 3
mplements the Bindery; NetWare 4 implements
NDS.” The various implementations of Microsoft’s
LAN Manager protocols provide a virtual dirccrory
based on information maintained by its domain con-
rrollers. In a multiple NOS environiment, the user is

B ee—— .,

presented with multiple information sources trom the
multiple dirccrorics. Even worse, the user mav be
faced with multiple nformation sources even in a sin-
gle NOS environment, since there may be multiple
NerWare Binderies or LAN Manager domains.
Multiple NOS environments do not, in and of them-
selves, cause complexity and confusion. Problems arise
when people within asingle environment want to share
resources across multiple environments. For examp

<,
consider a common local arca network (LAN) configu-
ration where NetWare is installed on the clients and
servers for one department and Microsoft’s LAN
Manager (contained within - products such as
Microsoft’s Windows tor Workgroups, Windows 95,
and Windows NT operating systems, or the LAN
Server product from International Business Machines
Corporation) is installed on the clients and servers for
another department. If cach department’s resources,
users, and administration personnel are kept distinct,
there is no prob
users to share resources berween departments, or to
have common administration over the departments
introduces administrative and user problems. If a
printer is to be shared by the two departments, it must
be admimistered nwice: once in the NetWare environ-
ment and once in the LAN Manager environment.
Users in the nwo departments use different names for

em. However, any desire to allow

the same printer. Later NOS implementations, such as
Digiral’s PATHWORKS version 5.0 or the nerworking
software built into Microsott’s Windows 95 that pro-
vides support tor multiple NOS protocols, do nothing
to manage the multiplicity of names for the same net-
work resource.

As we were contemplating the set of capabilitics
we needed to design tor the next generation of
PATHWORKS client products, we realized thar solv-
ing the connectivity problem implied in a multiple
NOS environment was not cnough. User access and
administraror control of NOS resources needed to be
considerably simpler.

As we looked at the problems in larger networks,
we saw the need for the ability to provide more sophis-
ticated means to Jocate NOS resources. Typically,
NOS client software provides the means to browsce
the network to locate a resource. However, browsing
requires the user to know the location of the resource,
specifically the name of the server, and to be able to
choosc the resource on the server by recognizing
something about the resource name or a resource
description provided by the administrator. What was
needed was a design thar allows a user to search, as
well as browse, for a resource based on various attrib-
utes describing the resource.

Finally, existing NOS cnvironments have a fairly lim-
ited view of the serof resources that can be referenced.

Digiral Technical Journal Vol.8 No.l 1990

47

48

Both NetWare and various LAN Manager implemen-
tations provide support for printers and file shares.
We wanted to be ab
that could be referenced and managed from the new

¢ to extend the tvpes of resources

directory capability thatwe were designing.

Thus we embarked on a design for the facility we
initially called 1DS, tor Integrared Dircectory Services.
The PATHWORKS version 6.0 implementation was
eventually called Directory Assistant. We refer to this
technology as 1DS throughout this paper.

Design Goals

As we looked at the requirements ot the PATHWORKS
product, we found thar many of those requirements
could technically be merwith any dircecrory service that
was integrated into the PATHWORKS applications and
tool sets. PATHWORKS required the ability to

= Giveasingle name to resources that can be aceessed
by means of multiple servers or protocols

= Insulate end users from changes in the way
resources are allocated among the servers

= Manage resources in an NOS-independent manner

We could not simply pick a directory service and
integrate it into PATHWORKS, because we could not
require that all customers deplov a particular directory
service at their site. The PATHWORKS product s
both NOS- and transport-independent; introducing
such a dependence was unaceeptable. We quickly real-
ized that these were the requirements that kept many
other applications trom using dircecrory services.

Our assumption was that many nenwork applica-
tions would use directory services it thev could, but
that tew of them could assume or require a particular
dircctory service. Working from that assumption, we
sclecred the following design requirements for 1DS:
= Directory service independence
= Ability to access existing data
= Ability to join disparare namespaces inro a single,

logical namespace
= Removal of barriers to successtul deplovment of

a wide arca nerwork (WAN) directory
= Ability to hide directory name syntax
= Support of scarch

= Support of application-specific directory entrics

Directory Service Independence

Customers must be able to choose the directory service
in which thev store resource information. Some cus-
tomers have a preferred directory service, which they
want to continuc to usce. Other customers, who are not
using a particular directory service, prefer that Digital

Digital Technical Journal Vol. 8 No. 1 1996

provides the directory service. In a ftew cases, a cus-
tomer night wish or even need to store information
about different resources in different directory services.

Ability to Access Existing Data

A great deal of information currently exists in
application-specific directory services and in NOS-
specitic directory services. A relatively large number
of applications also use the native interfaces to store
information in the NOS dirccrories. Allowing uscrs
to access this information dircctlv through IDS was
critical. We expresslv wanted to avoid the need to
duplicate direcrory information in separate, incompat-
1ble svstems.

Ability to Join Disparate Namespaces into a Single,
Logical Namespace

Manv directory services are aimed at a specific applica-
tion or a set of applications. For example, current
X.500 deplovments contain mostly people informa-
rion such as names, phone numbers, and clectronic
mail addresses. (Note: X.500 is an extremely Hexible
dirccrory service that can be used to store almost any
kind of information, but for historical reasons most
deplovments conrain people information.) NOS direc-
torics contain information about NOS resources such
as printers. Consequently, many user environments
have multiple directory services, cach of which con-
tains critical business information. To access this exist-
ing data and present it to the user ina meaningtul way,
these multiple directory namespaces must be joined
inro a single, logical namespace.

Removal of Barriers to Successful Deployment of

a WAN Directory

Hicrarchical directory scrvices generally require that
the naming hierarchy be designed before the directory
is deploved. Since the hicrarchy consists of names,
and names are sensitive and political entities, this can
be an extremely ditticult rask. Organizations also
change over time, further complicating the problem of
designing a name hierarchy.?

Organizations that successtully deployv directory ser-
vices do so from the bottom up. The NOS directories
are deployed precisely because they avoid the prob-
lems inherent in a name hicrarchyv. An administrator
can set up a Novell 3.x Bindery tor a local organization
without worrving about how the name of one group
relates to the names of all the other groups. The
downside to the NOS dircctories is that they have
alimited ability to scale bevond a LAN. With 1DS, we
wanted to provide a framework that would grow with
the user’s environment. A uscr could start with a local
dirccrory but incorporate that directory into an enter-
prise or global directory when the time was appropri-
ate, without affecting the end users or the applications.

Ability to Hide Directory Name Syntax

The syntax of the namies in hicrarchical directory ser-
vices varies not only from one directory service to
another, but in some cases from one implementation
ofa single directory service to another. The syntax for
Domain Name Svstem names is ordered the same as a
postal mail address, that is, from the most-specitic
component.™ For example, a machine at Digirtal
might be bigAlpha.digital.com. The X.500 name
order is usually (depending on the implementation)
the reverse. The corresponding X.500 name might
be: c=us;0=Digital;,cn=bigAlpha. Particularly in the
X.500 case, ditterent svstems and applications also
accept difterent separator characters.

Together, the IDS designers have much experience
with a number ot dirccrory services and their name
svntaxes. Users and applications developers alike have
been quick to point out the problems with directory
names. These names are cumbersome, confusing, or
just plain inconvenient to tvpe. The separator charac-
ters within a directory name may have special mean-
INgs on some operating systems.

Because ofthese limitations, we decided thata name
svitax specific to IDS would detract from the value of
the solution. An application using IDS may choose to
present its own svntax, onc that is suitable toits partic-
ular environment and preferences. The AP takes the
object name and the context, as described in the
Contexts section. The service provider module uses
these to construct the name in the native name syntax.

Support of Search

Users need to locate resources in a number of ways.
The most familiar method is to locate resources
bv knowing rtheir name; this is often referred to as
a white pages lookup, named after the printed U.S.
telephone directory of alphabetically ordered names.
Scarching torresources based upon information about
the resources is reterred to as a vellow pages lookup,
named after the printed US. telephone directory
organized bv business category. To support vellow
pages lookup, resources must be retrievable from the
dircctory service based on their attributes. For a
printer, this might include the rype of printer, the loca-
tion of the printer, whether it supports color or not,
who is responsible for maintaining the printer, and
other information. IDS needed to support both vellow
pages and white pages lookups.

Support of Application-specific Directory Entries

We saw a need to support two kinds of extensibility:
the ability for an application to create new kinds of
directory entrics, and the ability for a customer to add
attributes or other descriptive information to the
directory entries created by PATHWORKS or other

applications. By providing applications with the capa-
bility to create new kinds of directory entries, the IDS
designers allowed IDS to be used by any application,
regardless of its requirements. By allowing the addi-
tion of attributes to existing directory entries, we
allowed customers to casily add information that is
specific to their organization to application objects.
For example, a customer might add a specific code,
such as an asset identification tag, to all printer direc-
tory entries.

Design of the IDS Framework and Service
Providers

IDS is an object-based system that consists of a frame-
work and a set of'service providers. For clarity, we fur-
ther divided the framework into an APT and a service
provider interface (SPI). The API consists of a subset
of the framework’s objects and their public virtual
methods. The SPIis a generalized, directory-service-
independent interface (described in detail later in this
section). The SPI objects define the abstract interface
to the directory service. We use the term service
previderto reter to any directory service that provides
IDS storage. The service providers interact with the
framework through the SPI.

Framework
The framework performs three major functions:

= It specifies the IDS directory-independent opera-
tions.

= [t dispatches operations to directory-specitic mod-
ules for execution.

= [t verifies that all IDS objects and operations do
not violate the IDS schema.

Figure 1 illustrates the structure of IDS. When an
application makes an API call, the framework examines
the name information and calls the appropriate service
provider. The service provider then makes the call to
the appropriate native directory service client. When
the directory client returns the results, the service
provider converts the results into the IDS canonical
form. The design supports junctions from one direc-
tory service to another, in that the result returned
to the framework by the service provider may be only
a reference to an object in another directory service.

The abstract interface to the dircctory service
ensures that IDS provides applications wirh a consistent
level of functionality without regard to which directory
service a customer has in his or her environment.

Because the words “object” and “object class” are
overloaded and overused in the industry, we define the
words “resource” and “resource class” to denote
objects represented in IDS. A resonrce is a directory

Digical Techmical Journal Vol.§ No.l 1996

49

IDS

APPLICATION PROGRAMMING INTERFACE

FRAMEWORK

SERVICE PROVIDER INTERFACE

SERVICE SERVICE SERVICE
PROVIDER PROVIDER PROVIDER
NATIVE NATIVE NATIVE
DIRECTORY | | DIRECTORY | | DIRECTORY
CLIENT CLIENT CLIENT

/ / /
NATIVE NATIVE NATIVE
DIRECTORY | | DIRECTORY | | DIRECTORY
SERVER SERVER SERVER

Figure 1
Structure of the Integrated Directory Services

entry; it is a directory scrvice object that represents
some network object. A resouirce classis the definition
of that type of directory entry. For example, the direc-
tory entry that describes a specific printer is an IDS
resource, and the IDS class that describes every printer
entry is a resource class.

The framework provides extensibility by dcfining
C++ object classes that allow for the creation and
manipulation of resources, attributes, and attribute
values in a type-independent manner. The type inde-
pendence allows both applications and the framework
itself to manipulate IDS attributes and attribute values
without knowing their types. Aslong as the new types
are built on top of existing IDS system types, applica-
tion writers may define new IDS types without modi-
fying the service providers.

The framework dispatches directory operations to
the appropriate service provider and maintains overall
system state and integrity. Tt maintains a list of the
service providers that are currently available and
shows the errors encountered in any failed loads.
This allows the svstem to continue to opcrate, albeit
in a degraded state, even though one of the service
providers may be malfunctioning.

Before we discuss the design of the SPI, we describe
the framework’s objects.

IDS Entry The fundamental IDS object is the canoni-
cal representation of a directory entry, the IDS entry.

Digital Technical Journal Vol.8 No. ! 1996

The IDS entry is an abstract object. To create a
resource class, applications define a resource type and
deriveit from the IDS entry. IDS entry objects are cre-
ared and manipulated through the API and translated
into the appropriate native directory format by the ser-
vice providers. Derivatives of the IDS entry may define
additional methods, but they may not override the
IDS entry methods. The 1DS entry methods are part
of the framework.

The IDS entry methods fall into one of two
categories: those which manipulate the attributes and
values contained in the IDS entry in a type-indepen-
dent manner, and those which perform operations on
the directory. Each IDS entry, each attribute, and each
attribute value contains a type. Forconvenience, deriv-
atives of the IDS entry may define additional methods
that manipulate certain attributes or values directly.
For example, a derivation that defines a printer might
define a method to set the description attribute. The
implementation of this method would call the general
IDS entry attribute and value manipulation method
to set the value of the appropriate attribute.

As shownin Figure 2, the IDS entry contains identi-
tying information and the attributes and attribute
values rhat describe the resource. The context identi-
fies the service provider that performs directory opera-
tions on this entry and the location within that
directory service in which this entry is stored. The
resource type defines the kind of resource that this
entry represents. The resource name is the name by
which applications and users refer to the entry.

The attributes of the entry are contained in a sct.
Each attribute in turn contains the value or list of val-
ues associated with the attribute.

Contexts The contextis an object that uniquely iden-
tities a particular location in a particular namespace.
The IDS contextis very similar in concept to the XFN
context.® All contexts contain the type identifier for
the directory service and an internal name. The type
idenufier is used by the IDS framework to dispatch
operations to the appropriate service provider. The
internal name is the location within the directory ser-
vice described by this context. The internal name is
represented in the native syntax of the underlying
directory service. The service provider is responsible
tor setting and maintaining this internal name. (Sec

Figure 2.)

Attributes and Attribute Values The type of an
attribute defines the data type of its value or values.
The attribute value object is a canonical representation
of an actual attribute value. The attribute value object
defines a set of methods for accessing and manipulat-
ing values. For each data type supported in IDS, there
is a corresponding attribute value derivation in the

RESOURCE TYPE IDS_PRINTER

CONTEXT

SERVICE PROVIDER TYPE: LDAP
LOCATION WITHIN SP: o=dec;ou=lkg

RESOURCE NAME NIST GROUP PRINTER

ATTRIBUTE SET

ATTRIBUTE N

ATTRIBUTE 2

ATTRIBUTE 1

ATTRIBUTE TYPE IDS-ATTR-MAINTAINER

ATTRIBUTE VALUE LIST

ATTRIBUTE VALUE DATA TYPE | IDS-TYPE-STRING

ATTRIBUTE VALUE

JANE DOE

'

ATTRIBUTE VALUE DATA TYPE

ATTRIBUTE VALUE

'

ATTRIBUTE VALUE DATA TYPE

o ATTRIBUTE VALUE

Figure 2
IDS Entry

IDS framework. This allows applications, and the IDS
framework itself, to manipulate attribute values with-
out knowing their types. The service providers, on the
other hand, use the type information to translate from
the IDS data formats to their native data formats.

Types To allow customers and third partics to identity
their own IDS resources, the IDS type mechanism
must uniquely identify objects. The two identifiers we
considered using were universal unique identifiers
(UUIDs) as defined by the Open Software Foundation
Distributed Computing Environment (OSF DCE) and
object identifiers (OIDs) as defined by the open. sys-
tems interconnection (OSI) standards.''? Some direc-
tory services identity attributes with OIDs, while others
use UUIDs. For applications defining new resources,
we wanted to avoid the nccessity to obtain both an
OID and a UUID. It is possible to encode a UUID in
an OID, but the reverse is not true.

We could encode a UUID in an OID by registering
an OID prefix. The prefix would indicate that the

sequence after the prefix was a UUID. UUIDs are
fixed-length structures generated from time stamps
and Ethernet addresses, and therefore arbitrary infor-
mation such as an OID cannot be encoded in them.
UUIDs are also easier tor application writers to gener-
ate because numerous systems ship with tools to
generate them.

Certain directory services, for example X.500, have
external type definitions tor the directory entries. It
is possible to define a generic entry and then map
arbitrary values into that entry, but IDS entries would
not be meaningful when viewed with the native direc-
tory management tools. We felt that this was unac-
ceptable, because it would make the management of
IDS entries in the namespace much more difficult.
Some systems use UUIDs to represent the type infor-
mation. We chose to use UUIDs since they are both
easy to generate and can be used in both UUID and
OID class definition systems. The use of OIDs would
require. UUIDs to be generated ftor UUID-based
systems and mappings to be maintained.

Digital Technical Journal Vol. 8 No.1 1996

52

Communities An IDS communiry is both an adminis-
trative grouping mechanism and a logical location for
IDS resources. When people inreract with the TDS svs-
tem, they sce a community as the organizing principle.
The administrator controls rhe boundaries and mem-
bershtp of an IDS community. Typically, a community
represents cither a particular location such as a build-
ing or a funcrional grouping such as a work group.
Initially, we considered a supercontext to join mult-
ple dirccrories into a single logical directory. This
supercontext would have contained multiple contexts,
one for cach tvpe of resource supported by IDS. We
eventrually subsumed the superconrext into a commu-
nity and called it a resource contexr list. An IDS com-
munitv is stored as a special object i the directory.
Each community’s resource conrext list describes the
dirccrories that make up the communiry. The resource
context list is the federation mechanism by which IDS
determines where resources of cach type are stored.
Each entry in the resource context list is a pair of
resource rype and context. As uscrs and applications
operate on entries in a community, the 1DS framework

COMMUNITY

DEFAULT Bkt
CONTEXT é"_{:“! i

RESOURCE CONTEXT LIST
RESOURCE

CONTEXT #\
CONTEXT ——tiee =

OBJECT —_|
TYPE

PRINTERS

|

FILE SYSTEMS

KEY:
[] communiTy
[] RESOURCE CONTEXTLIST
I RESOURCE CONTEXT

[] OoBJECT TYPE
[CONTEXT

(through IDS entry and community methods) inspects
the resource rvpe and the community to determine the
context. Figure 3 illustrates an IDS community.

One of the problems we anticipated was that large
organizations would naturally rend to have manv IDS
communities: How would the user identify these? We
considered an additional hicrarchy in which commu-
nities would be members of other communities. Our
usability consultants emphasized that users should not
have to browse a hicrarchy to access resources. In
response, we developed the concepts of the local and
the home community. The local communiny is associ-
ated with the machine a user is currently using—it
represents a physical location. The home community
is the one with which the user s associated or belongs.
We emvisioned that the home community would be
the same as the local community at the user’s normal
place of work, but there is no requirement inherent in
at things be organized this way. For
example, if a uscer is associated with the community at

the design t

her work site and the machine she uses is also located
at that work site, both her Jocal community and

Svc Provider Type = F7801DB7-F675-11CD-A8C2-08002B187D1A (ODBC)
External Name = IDS_Group Community

Internal Name = E:\\tuxedo\idsodbc\idsdbdir. mdb

Svc Provider Private = NULL

Svc Provider Type = EFF4B840-EC52-11CD-9ESE-08002BBA95CA (CDS)
External Name = ids_cell.lkg.dec.com

Internal Name = ids_cell.lkg.dec.com

SvcProvider Private = NULL

Svc Provider Type = C723E850-A1A6-10AB-A699-08002B361FC1 (LDAP)
External Name = c=us;o0=dec;ou=IDS_Group Community

Internal Name = c=us.o=dec;ou=IDS_Group Community

Svc Provider Private = YUMMY, 386, TCP/IP

Figure 3
DS Communin

Digital Technical Journal Vol.8 No 1 1996

her home community represent this work site. It this
user works ar another work site and uses a different
machine, her home community remains the same, but
her local community reflects the community where
the new machine resides. The concepts of local and
home communitics do not reduce the number of
communities, but they do provide a direct method by
which users can access the communities that contain
the resources they most frequently use. The Jocal and
home communitics are a convenience; users and appli-
cations are in no way restricted to those communitics.

Search Support Scarching is handled by the scarch
object. The search object contains a community (or
list of communities), a resource tvpe, and an attribute
filter. The attribute filter supports both equality and
comparison matching of attribute values and allows
callers to construct complex requests by concatenating
comparisons together in a scries of Boolean opera-
tions. For example, a caller could construct a filter
that retwrned all printer objects that (((are Jocated
on Floor2) OR (are located on Floor3)) AND (sup-
port color printing)). Combined with the local and
home community support, filters allow applications
and users to express ideas such as “print this at the
closest printer that supports color, twvo-sided printing,
and then transmit it to anv facsimile machine in mv
home community.”

The scarch object’s default flter returns all objects of
the resource type in the local community. The scarch
object resolves the community to a context and passcs
it to the service provider. The service provider con-
structs a list of matching IDS entry objects to return to
the user. In IDS, the scarch object supports browsing.

The search object has metrhods that display a dialog
and construct flters based on user input. When
designing the svstem, we debated whether it was bet-
ter for the scarch object to contain both the filter and
the search dialogs or whether the tilter construction
belonged i the IDS entry. We chose to keep the
scarch dialogs separate from the IDS entry. Expericnce
with implementing resources derived from the DS
entry has shown this to be an error. Currently it ss nece-
essary to derive from two objects, IDS entryv and the
scarch object, to implement a resource that has a
resource-specific search dialog. We will be moditving
the scarch and IDS entry objects so that the construc-
tion of the filters and the dialog that constructs the
fBlters are IDS entry merhods.

Schema The service providers translate berween the
native directorv object and the IDS entrv. In general,
directory service entries are not sclf-describing. In
existing directory services, cither a schema or the
application is expected to know the directory-specitic
format of the data. The latter is more common than

the former, and in anv case the schema methodologies
are unique to cach directory service.

From the point of view of the native directory ser-
vice, IDS is the application. To properly convert the
data, the scrvice providers must know what it is. The
service providers use the schema to determine the cor-
rect attnbute and value types to use when constructing
the IDS entry ofa particular type.

The schema describes resource tvpes, attribute
tvpes, and artribute value data types. Logically, the
schema is a sct of tables, one tor each service provider,
which maps the native name or type to the IDS name
or type. Thesc tables areread by the IS schema com-
ponent when IDS is initialized. Because these tables
are external to the svstem, they can be modified by
users or applications.

There is once limitation on the extension of the
schema: New artribute and resource nvpes can be
defined, but they must be composed from the prede-
fined IDS attribute value types that the service
providers can support. The service providers would
have to be modified to support additional artribute
value dara types. This limitation is not as severe as it
at first appears. A rich set of data tvpes is defined in
the existing dircctory services, and a relatively small set
is in common usage. By defining the IDS data types to
encompass the ser of data tvpes defined by existing
directory scrvices, we have reduced this limitation to
atheorerical rather than a practical problem.

As a consequence of the use of schema, applications
must specify the resource type tor any 1DS operation.
This is a limitation that in principle does not exist in
other dircctory svstems. After some consideration, we
concluded that few usctul operations can be performed
on an object whose tvpe is unknown. To perform an
operation on objects of all tvpes, the schema can be
interrogated for the list of all supported IDS object
tvpes, and the operation is then iterated over cach tvpe.

The System Object The svstem object loads and
initializes the service providers. On initialization, the
svstent object constructs a list of the available service
providers from those defined in a local configuration
file.

The svstem object constructs and maintains the list
of known communitics. The svstem object obtains this
list using the following mechanisms:

= Inspecta well-known location (if one exists) to see
if'it contains a cache of known communitics.

= For cach service provider, call the discover method
to ask the service provider for its list of known
communitics.

=]f the svstem object is initializing tor the Hrst time,
prompt the user to create a community.

Digital Technical Journal Vol.8 No. 1 1996

(93]

-~

54

Application Programming Interface

As mentioned previously, we divided the framework
into an API and a service provider interface (SPI). The
APT consists of the search object methods, the TDS
entry methods, the attribute object and value object
methods, and the system object methods nccessary to
access communities.

Service Provider Interface

The SPI specifies the interface between the IDS frame-
work and the native directory services. [t defines the
semantics for all operations that may be performed on
IDS information regardless of which directory service
stores the information. The SPI effectively insulates
both the IDS framework and the IDS applications
from the unique syntax and requirements of difterent
directory services.

A directory-specific module, called a service provider
library, provides a directory-service-specific implemen-
tation of all SPI operations and translates resource intor-
mation back and forth between the IDS entry and
the service-provider-specific format. A service provider
library must be implemented for each directory service
to be supported by IDS. Any directory scrvice or infor-
mation repository system that can provide the IDS SPI
semantics may be an IDS service provider.

SPI Semantics The IDS SPI defines the following
main operations: create, read, search, modify, discover,
and delete. All SPI operations specify the name of the
[DS community upon which to opcrate. Each IDS
community maintains a list of contexts that specifv
in which service provider IDS resources of a particular
type are stored and in what location within the service
provider. The SPI uses this community name to
retricve the context information that directs the oper-
ation to the correct service provider library. With the
exception of the delete operation, which requires an
explicitly set context (to be surc that an explicitly
located object is sclected for deletion), if the caller
does not set the community name, the local commu-
nity is assumed.

The create, delete, modify, and read functions all
operate on a single IDS resource ar a time. kach,
thercfore, provides an IDS entry object to idenrify
and/or describe the resource.

The create operation creates a new DS resource in
the directory. The create operation specitics the type of
IDS resource to be created, the resource’s name, and
the IDS attributes and values associated with the
resource. On a successtul create operation, the service
provider constructs a unique dircctory-specific name for
the new IDS resource and stores this name in the
object’s IDS entry. The service provider subscquently
may use this name to find the object more quickly rather
than constructing it from the name, resource type, and
context information contained in the 1DS entry.

Digiral Technical Journal Vol. 8 No. I 1996

Before constructing the resource in the directory,
the operation validates the IDS entry against the
schema to ensure that it does not violate the schema.
For example, attempting to create a resource without
arequired attribute value pair violates the schema and
is flagged as an error. Conversely, the delete operation
removes the IDS resource from the directory.

The modify operation updates the attribute and
values associated with the resource in the directory.
The modify opcration supports the following update
directives:

» Add a new attribute and value.

= Addanew value to an existing attribute.

= Replace a value of an existing attribute.

= Delcte an attribute and its associated values.

= Delete a value from an existing attribute.

Each modify directive is veritied against the schema
before being applied to the directory.

A read operation retrieves a uniquely specified
IDS resource from the directory, translates it into
IDS entry format, and rcturns the IDS entry to
the caller. The read function is typically used to com-
pare the directory format of an IDS resource to one
maintained in memory by an application, or to process
[DS resources returned from a search operation onc
ata time.

The scarch function identifies and returns IDS
resources that match the characteristics specitied by
the caller. To bound the scope of the search, the caller
specifies the tollowing scarch characteristics: resource
type, community name or names to be searched, and
a flter containing attributes and associated values or
valuce ranges.

The discover opceration is called by the 1DS system
object ro find all communities known to a given ser-
vice provider. Service providers for directory services
that support a scrver solicitation and advertisement
network protocol implement a discover function. In
these dircctorics, servers advertise their presence in
response to network solicitation requests. The dis-
cover method uscs the directory’s native solicitation
and advertisement protocol to discover local dircctory
servers and then issucs the appropriate operations to
the server to determine if it has defined any IDS com-
munitics. Service providers that do not have a solicita-
tion and advertisement protocol can implement an
alternative discovery mechanism such as retrieving the
community information from a file or provide no dis-
covery mechanism,

Construction of the System: Directory, Session, and
IDS Entry Objects The SPI is constructed of threc
framework objects: the directory object, the session
object, and the directory operation methods of the
IDS entry object. The directory object is responsible

fer scrvice provider initialization and termination,
maintenance of session objects, and community dis-
coverv. Each service provider exports one directory
object to the IDS framework. The session object
implements all the directory operations on a service
provider. Session objects are obtained from the service
provider by means of the directory object. The IDS
entrv directory operation methods deternune the con-
text it it has not been set, obtain a session object from
the proper directory, and dispatch the operation to the
associated service provider through the session object.
For efficicney, session objects may be cached by the
service providers.

Implementation Considerations

Once we had cestablished our basic approach, we
turned our attention to implementation decisions.

Client versus Server

Our first consideration was whether to implement this
technology as soffware executing on a server system or
as software exceuting on a client system. The scrver
solution had a number of attractive qualities: it would
not be necessary to have all the native directory clients
on all the deskrops, and potentially complex pro-
cessing would occur on an appropriate platform.
However, we identitied two problems with the server
solution. The tirst concerned security. To access the
dirccrory service on behalf of a particular user, we
would have to impersonate that client user on the
server machine. Although this can be done without
exposing sceurity holes, doing so adds another layer of
complexity to the problem. The second problem with
the server solution was that it required the customer
to find a machine for and deplov a server prior to get-
ting started with the system. One of the design goals
was to remove barriers to directory deplovment, and
we werce concerned that a server solution would add
a barrier. We saw a need tor both client- and server-
bascd solutions, and since the client solution was sim-
pler to implement, we chose to start there.

Security

The DS interfaces leave security to the underlying
dircctory services; we did not attempt to abstract a
genceral-purpose, access control or authentication
intertace. The primary reason for this was a conviction
that the vast majority of current directory information
is world rcad, and therefore a complex access control
interface was not necessary. An access control and
authentication layer that was directory-service-
independent would have added significantly to the
complexity of the project, and we chose to postpone
this problem. DS does pass requests directly to the
native dircctorv-service client; [DS does not alter
or impersonate the user’s identity. In that sense, it

pertectly preserves the security inherent in the under-
lying dircctory scrvices.

Filter Implementation

The implementation of the IDS attribute filter is based
on the swing filter as defined in REC 1777.'% The
Lightweight Directory Access Protocol (LDAP) string
filter provided a convenient internal representation,
and we would be able to reuse the LDAP parsing and
processing code that we had developed as part of an
carlier product. We considered using SQL to construct
INS attribute filters, but chose not to do this for imple-
mentation convenience.

Service Provider Considerations

Ininally, we thought that developing a directory-
service-independent interface would not be difticult.
Most of the required operations such as read and write
are straightforward and obvious. The implementation
of such an interface, however, proved to be difficult
because the underlying directory services have, in some
cases, verv different native capabilities and semantics.
We chose to implement service provider libraries for
the following three tvpes of service providers:

= Open Database Connect

database

(ODBC)-compliant

= X.500-based directory using the LDAP
= DCE CDS

Thesc service providers are representative of the tvpes
of dircctories that exist today. Table 1 highlights some
of the differences among the three directories. As
this table illustrates, not all directories can natively
support the semantics described by the IDS SPI.
In these situations, we have followed three alterna-
tives: (1) the service provider library implements the
functionality, (2) the IDS framework implements
the functionality, or (3) in a small number of cases, the
scrvice provider cannot implement the functionality
and remains less functional.

Some operations cannot be supported natively by
only onc or a small handful of directory services. For
these operations, we require the service provider devel-
opers to implement (or emulate as best they can) the
functionality in the specific service provider library for
that directory. For functions that a number of service
providers cannot support or that are sufticiently difti-
cult to implement, we provide a common implementa-
tion or emulation in the IDS framework that service
provider libraries can call. For example, CDS does not
natively support an attribute-based search mechanism.
Rather than attempt to implement a CDS search capa-
bility, we chose to provide an IDS framework “prune”
function that applies an IDS filter to a list of IDS entrics
and returns only those entries that satishr all conditions
of the filter. Service providers such as CDS can then

Digital Technical Journal Vol.8 No. I 1996

N

o

Table 1

Differences among the ODBC, X.500, and CDS Directories

Functionality ODBC X.500 CcDS
Distributed directory service No Yes Yes
Hierarchical organization of directory information No Yes Yes
Attribute-based search Yes Yes No
Attribute value-based search Yes Yes No
Native schema support Yes Yes No
User can extend IDS schema No Yes No
Transactional semantics Yes No No
Tolerant of intermittent connectivity No Yes Yes
Provides security mechanism on connections No Yes Yes

emulate the IDS search tunction by enumerating all
resources of a particular type and then call the prune
function topare down the list of resources.

The IDS schema implementation is another example
of'a common capability we have provided tor all service
providers to usc. Not all service providers support
object, schema and, of those that do, fewer still can sup-
port user extension of the schema. We chose to allow
user extensibility and implemented a service-provider-
independent schema interface and mechanism.

In a few instances, we determined that it would be
too expensive in terms of implementation time to pro-
vide a service-provider-specitic or an IDS-framework
implementation of an SPI-mandated function. In
these cases, we allowed the service provider to remain
noncompliant. For example, a call to initiate a session
to a service provider specifies user name and password
arguments. For those directories that support user
name and password sccurity mechanisms, we preserve
that functionality. For directories such as the ODRBC
service provider that do not support these security
mechanisms, however, we provide no additional sccu-
rity measures. The cost to implement and deploy such
a security mechanism outweighs the gain of having the
additional features.

In addition, we found that not all directories pro-
vide the same semantics for a particular operation. For
example, when updating a resource, scrvice providers
handle existence checking of resource attributes difter-
ently. If requested to add an artribute valuce to an
attribute that docs not vet exist, one service provider
returns an error, while another implicitly creates the
attribute. We worked around problems of this typce by
carcfully specifying the semantics and error conditions
of all SPI operations. Service providers that do not
natively support these SPI semantics must implement
whatever additional functionality is required to do
so. For example, the CDS service provider required
additional functions that determined and flagged
whether or not a particular attribute cxisted.

Digital Technical Journal Vol.8 No. 1 1996

In addition to all errors that are specific to service
providers, we return an error that is independent
of anv IDS framework service provider. This adds
another level of consistency across our service-
provider implecmentations.

Current Applications

As with any foundation technology, the proof of its
viability lics with the applications that emplov it. In the
PATHWORKS product, we currently have three appli-
cations that usc 1DS:

= Nenwork Connect
= DS Administration
= Resource Synchronizer

The Nerwork Connect application finds and con-
nects users’ printers and file shares. It provides a user
intertace that allows users to browsc or search tor file
shares or printers. Through Network Connect, users
can refer to resources by their logical name or their
attributes. A single physical printer, with queues on
several machines or several NOS svstems, is presented
to users as a single printer. Network Connect uses the
IDS API to access the IDS search capabilities and
to translate a printer or file share’s 1DS name to its
network-specific name to connect to the resource.
Nerwork Connect may be accessed through the
Windows version 3.1 Print Manager and File Manager
utilities and through the PATHWORKS Network
Connect utility.

The IDS Administration utility (IDS Admin) allows
a neowork administrator to manage 1DS resources
and communities. IDS Admin is integrated into the
Digital ManageWORKS Workgroup Administrator
for Windows software product.'* Admin creates, mod-
ifies, and deletes resources and communities. It
also allows uscrs to browse IDS resources and commu-
nities in the ManageWORKS hicerarchy and to search
for IDS resources.

An adminustrator can manage [DS resources manu-
ally through the ManageWORKS user interface or can
rely on information provided through the semiauto-
matic resource collection utilities called the Resource
Gatherer and Resource Synchronizer. The Resource
Gatherer periodically collects intormation about
network LAN Manager and NetWare printers and file
sharces. The Resource Svinchronizer utility processces
the gathered information, updating the directory. Tt
also climinates duplicate entries and discards informa-
tion the administrator wishes to ignore. The gatherer
and synchronizer allow the directory to be kept up-to-
date, even it resources are added or removed through
the native NOS intertaces.

Future Work

In the future, we plan to improve the IDS extensibility
mechanisms. Currently, a local copy ot the schema
exists on every client. Propagating the changes to cach
client will become a problem as users and applications
extend the schema. We are considering storing either
the schema ora pointer to the schema in the directory.

The current IDS implementation runs on both
the Windows version 3.1 and version 3.11 operating
svstems. We are currently porting it to Windows 95
and mvestigating ports to other operating svstems,
such as UNIX.

The implementation docs not support the entire
IDS design: Although resource context lists are imple-
mented, there is no reasonable way tor a user or
administrator to create them. The user interface work
for these features in the 1DS Admin application has not
vet been completed.

Summary

IDS provides a mechanism for integrating multiple
dircctory services into a single system. It is predicated
on the ability to define acommon set of directory oper-
ations and on the tvpe information. The implementa-
tion of three verv different service providers—CDS,
X.500, and ODBC—indicates that we succeeded in
detining the directory operations. The use of TDS in the
PATHWORKS product shows that it does address the
practical aspects of the problem of integrating multiple
dirccrories into a single, logical directory service.

Acknowledgments

We would ke to thank the manv past and present
members of the IDS tcam who contributed to the
design and implementation of the product. Special
thanks to Konstantinos Barviames, Anthonv
Hinxman, David Magid, Tracy Teng, and Tamar

Wexler. We would also like to thank the members of
the Directory Task Force, Dah Ming Chiu, Dennis
Giokas, and William Nichols.

References

1. CCIrr Recommendation XN.501 (1992) and
nformetion Technology— Open Systems nler-
connection—"The Directory: Madels. 1SO/1EC
9594-2: 1992 (Geneva: International Organization
tor Svandardization/International Elecrrotechnical
Commission, 1992),

2. “Naming Concepts™ in Using NetWare Services for
NIMs (Provo, Utah: Novell, Inc., 1993).

3. AES/Distributed Computing— Direclory Services
(Cambridge, Mass.: Open Software Foundation,
1993).

4. “SrreetTalk Naming Service™ in ENS Administrator’s
Planning Guide (Westborough, Mass.: Banvan
Svstems, [ne., 1992).

)

5. “Microsott Directory Services Strategy,” a whirte
paper from the Business Systems Technology Series
(Redmond, Wash.: Microsoft Corporation, 1995).

6. NOpen CALSpecification. Federated Naming: The
XFN Specification (Reading, U.K.: X/Open Com-
pany Ltd., 1995).

7. “Bindery Services™ in NetWare System lnterface:
Technical Ocerview (Provo, Utah: Nowell, Inc.,
1990).

8. S. Radicau, “Implementing the DI in X500 Direc-
tory Services: Technology and Deployment (New
York: Van Nostrand Reinhold, 1994).

9. P Mockapetris, “Domain Names— Conceprs and
Facilities,™ Inrernet Engineering Task Force, RFC
1034 (November 1987).

10. P Mockapetrts, “Domain Names—[mplementation
and Specitication,” Internet Engincering Task Force,
RFC 1035 (November 1987).

VY. AES/Distributed Comprting— Remaole Procedure
Call. Appendin A (Cambridge, Mass.: Open Sotoware
Foundation, 1993).

12, CCITT Recontmendation 208 (1992) and fufornic-
tion Technology—Open Systenis Interconiection—
Abstract Syntax Notation One (ASN.1) 1SO/1EC
8824-2:1992 (Geneva: International Organization for
Standardizanon /International Electrorechnical Com-
mission, 1992).

13. W.Yeong, T. Howes, and S. Hardcastle-Kille, “X.500
Lighrweight Directory Access Protocol,”™ Internct
Engincering Task Force, REC 1777 (March 1995).

4. D. Giokas and J. Rokicki, “The Design of Manage-
WORKS: A User Interface Framework,” Digital “Tech-
nical Jorrnal. vol. 6, no. 4 (Fall 1994) 63-74.

Digital Techmical Journal Vol. 8 No 1 1996

57

38

Biographies
-4

Margaret Olson

Margaret Olson is a consulting softwarce engincer in the
Nenwork Software Group. She was the project and tech-
nical leader for the IDS development project. For the last
six years, she has had technical leadership roles in Digital’s
Dircctory Services Group. Before joining Digiral in 1989,
she worked in the networking and distributed computing
arcas at Apollo Computer. She reccived a B.A. (Sigma Xi)
from Wellesley College in 1981. She published a paper on
neowork licensing in 1988.

Laura E. Holly

I.aura Holly is a principal engincer with the Nenwork
Software Group. She was a key techmical contributor ro
the DS development effort. Laura has previously con-
tribured to the arcas of DCE, distributed system, and
knowledge-based system development. She joined Digital
in 1985 after receiving an A.B. (high honors) from Smith
College. Laura holds a parent and has published several
papers in the area of knowledge-based systems.

Digital Technical Journal Vol. 8 No. 1 1996

Colin Strutt

Colin Strutt is a consulting software engineer and technical
director tor Teaming Software in the Network Softwarce
Group, where he is helping to define new PC-based soft-
ware products. Previously, he has held technical leadership
roles in directories, nerwork management, and rerminal
server development, and before rhatled product develop-
ments in Etherner servers and DECnet. He joined Digiral
in 1980 from British Airways in the U.K. He reccived a
B.A. (honours) in 1972 and a Ph.D. in 1978, both in com-
puter science from the University of Essex, U.K. Heis a
member of BCS and ACM. He has two patents issued and
several patents pending and has published extensively, par-
ticularly on management technology.

Design of the Common
Directory Interface for
DECnet/OSI

Digital has developed the Common Directory
Interface (CDI) as the means by which DECnet/
OSI can now access and manage node name and
address information in multiple directory ser-
vices. CDI comprises libraries for node name-to-
address translation and a tool set for managing
and migrating node information among differ-
ent directory services. The Common Directory
Registration APl is layered on top of a set of
directory service wrapper routines to provide an
extensible mechanism for adding new directory
services. CDI gives customers greater flexibility
in choosing a directory service and supports the
new multiprotocol capabilities in DECnet/OSl,
which support the open systems interconnec-
tion (OSI) standards.

Richard L. Rosenbaum
Stanley I. Goldfarb

The Common Directory Intertace (CDI) provides the
ability to store and retricve DECnet node information
from a variety of directory scrvices. It consists of the
CDI library, which enables multiple directory access,
and the CDI registration tool sct, which creates and
maintains node/addressing information in multiple
directory services. CDT was developed for the DECnet/
OSI for OpenVMS opcrating system version 6.0 and
for the DECnet /OS] for Digital UNIX operating sys-
tem version 3.0.

This paper begins by presenting the product goals
and the background of the CDI design. It then dis-
cusses the structure of the CIDI components, the CDI
library, and the CDI registration tool set.

Design Goals

As the interface to DECnet node information from
multple directory services, CDI was designed to meet
the following goals:

= Give DECnet network administrators and uscrs
a choice of directory services.

= Provide system administrators with an easy-to-usc
node registration tool.

= Enablc casy and flexible configuration of directory
choices.

= Provide developers of the DECnet protocol soft-
ware with a simple internal interface that hides the
complexities and differences between the various
directory serviccs.

= Provide a common design tor both DECnet /OS]
platforms: the OpenVMS and the Digital UNIX
operating systems.

= [nteroperate with older, non-CDI systems.
Background

In 1991, Digital updated its DECnet networking
products to include the use of the DECdns distributed
directory service.! DECdns provided a highly scalable,
distributed information source for translating node
names to addresses and addresses to node names.

Digiral Technical Journal Vol.8 No.l 1996

59

60

Ininially, customer acceprance of this name service was

low for a number of reasons:

= Adoption of this new technology required a signifi-
cant learning curve.

= Significant planning was required before the
DECdns service could be deploved.

neoworks did not need the features of

= Users of smal
a distributed naming service—the costs out-
weighed the benefits. These customers requested
a naming scrvice based on local files similar to
the Phase IV DECner product.

= Customers were deploving a number of other
directory services—in - particutar the Domain
Name System—tfor storing host information for
transmission control protocol/internct protocol
(TCP/1P) networks.*

= A jnew comprehensive service, X.500, had the
advantage of being an international standard.

These reasons, together with the need to directly sup-
port TCP/IP host names and addresscs, prompted
Digital to incorporate new directory service choices
in a new releasc of DECnet /OSI software.

CDI: Basic Design

Supporting multiple name services required decisions
to be made concerning naming svntax, multiple
address formats, and local file support. These decisions
affecred the design of both the CDI library and the
CDI registration tool sct.

Client-based versus Server-based Design

The carliest and most fundamental design decision was
choosing between a client-based or a server-based solu-
tion. With a client-based design, support tor the vari-
ous directory services would be accomplished through
avariety of client-based programming librarics. With
a server-based design, a single client library would
commumnicate with a new “multihcaded” server that
would fan out ro the directory servers.

Table 1
Naming Syntax

Since chients outnumber servers, a chent-based
approach affects more svstems during the upgrade
process. In spite of this drawback, we chose a chent-
based solution tor the following rcasons:

= Jmplementation of the client-based design would
be less complex than the server design.

= A client-based design did not have the svntax and
protocol transfation issues of a server-based design.

= With a server-based solution, client changes would
still be required to support new native naming
SVNTANCS,

= For smuall installations, no server would be needed
it node information was stored in a local file: local
file support was not possible with a scrver-only
approach.

Naming Syntax

One of the most visible complications when support-
ng multiple naming services is the nced to recognize
different name syntaxes. Table 1 gives the different
svntaxes for three widely used directory services.

A turther complication of supporting different name
svitaxes was the use of an internal DECdns name
format by network management. One of the goals of
the CDI design was to allow management requests
to be exchanged with older, non-CDI svstems.

For the imnal implementation, CDI continues to
support the internal DECdns format, rather than use
a newer, non-DECdns specific format alongside
the existing one. As a result, CDI is required to map
non-DECdns names onto the DECdns tormat. For
example, the name hg.xyz.com from the Domain
Name Svstem maps onto the DECdns name
DOMAIN: hg.xyz.com (actually onto the internal
DECdns torm of this name).

Multiple Address Support

Along with the introduction of CDI, a major inno-
vation in this release of DECnet /OSI was direct sup-
port tor TCP/IP transports in addition to the existing

Directory Service Example Name

/c=US/O=XYZ/ou=hglou=sales/ap=system1/ae=DECnet

DECdns XYZ:hq.sales.system1
Domain Name System system1.sales.hg.xyz.com
X.500

Notes:

The X.500 service is not supported by the first release of CDI.

The syntax shown for X.500 is commonly used but is not part of a standard.

Digital Technical Journal Vol.8 No. I 1996

support for DECnet Phase 1V and OSI. To simplify the
mitial implementation, IP addresses are retrieved only
tfrom the Domain Name System (not from DECdns).
However, the design of CDI allows the retrieval of
both kinds of addresses from anv supported dircctory;
for example, OSI addresses can be obtained from the
Domain Name System.*?

Support of multiple protocols created another nam-
ing issuc. Many customers alrcady have a Domain
Name Svstem in place in their networks. Often DECnet
svstems arc also running TCP /IP protocols and are reg-
istered in the Domain Name Svstem, vet these systems
are not running DECnet software over TCP/IP. For
example, a svstem registered as hg.xvz.com may be
dircctly reachable with TCP/IP but not with DECnet
over TCP/IP. In this case, it is possible that CDI may
retricve a valid [P address for a remote system that is
unrcachable by the DECnet protocol.

For these rcasons, when CDI determines that both
the Domain Name System and the DECdns naming
service (or alocal file) are specified in the search path,
it docs not stop processing the search path until borh
the IP address and the OSI address have been
obrained, or until the end of the list has been reached.
In this way, it the desired remote system is not running
DECnet over TCP/IP, an attempt to connect will be
made through the DECnet protocol, using a connec-
rionless network service (CLNS) OSI address.

Local File Support

Earlv versions of the DECnet networking product
offered only a local file for node-to-address informa-
tion. The first release of DECnet/OSI replaced the

local file with the DECdns naming service. Unfor-
tunately, administrators of small- and medium-sized
nenworks found that the benetits of DECdns (scaling
and centralized management) were ounveighed by its
additional complexity.

A subsequent version of DECnet/OSI introduced
the Local Naming Oprtion. This allowed approxi-
mately 150 nodes ro be stored in a local file, but many
customers found this number to be too small.

CDI supports a very large local file: the supported
limit is 100,000 nodecs, but there is no ftixed internal
limit. In addition, through the use of the search
path, customers can configure the local file either as
a backup to a distribured scrvice, or asa way to provide
greater performance. Note that both of these qualities
are also provided in a more automated way by the CDI
cache (see the CDI Library Cache section for more
information).

Security Considerations

CDI relies upon the security provided by the underlying
directory services (or in the case ot the local file, the file
system). Security of its remote management features
depends on the nerwork management security svstem.

CDiI Libraries: Basic Design

CDI 1s implemented as shared libraries on both the
Digital UNIX and the OpenVMS operating svstems.
Atthe highest level, the design is identical on both svs-
tems, as shown in Figure 1. Name-to-address transla-
tion requests from the session control layer are passed
through a single entry point in each CDI library.

DECNET/OSI
APPLICATION

SESSION CONTROL LAYER

NETWORK DECNET/OSI
MANAGEMENT APPLICATION
F———— — — — — - —
| CDI SHARED LIBRARY

COMMON DIRECTORY
INTERFACE LIBRARY

——— |

I —

LOCAL FILE DOMAIN NAME
INTERFACE SYSTEM
INTERFACE

DECDNS
INTERFACE

FUTURE
INTERFACE...

I
|
I
|
|

=

__47_____{7__ ______ A

DOMAIN NAME
SYSTEM
SERVER

DECDNS
SERVER

Figure 1
Block Diagram of the CDI Library

Digital Technical Journal Vol.8§ No.1 1996

6l

62

Depending upon the search path (described below),
the CDI librarics translate and forward the request to
one or more directory services (or they look up the
information in a local file).

The CDI implementation was considerably more
complex on the OpenVMS operating system than on
the Digital UNIX operating system due to the dif-
fering design of DECnct/OSI on cach system. On
the Digital UNIX operating system, the DECnet/OS]
session control layer consists of a shared hbrary that
is linked with cach nctwork application. Name
resolution requests arc processed synchronously. On
the OpenVMS operating system, session control is a
component of the NET$ACP process. Since all name
resolution requests are channeled through this single
process, operations must be asynchronous (requests
must block concurrent operations). Inaddition, since
multiple requests mav be simultaneously outstanding,
the library is multithrcaded. Asynchronous, multi-
threaded operations on the OpenVMS opcrating
system are implemented using the asynchronous sys-
tem trap (AST) mechanism. For these reasons, the
CDI implementation on OpenVMS was much larger
and more complex.

CDI Search Path

Another goal was to permit tlexibility in determining
a configuration of directory services. The CDI design
achieves this goal in two ways. First, it allows admin-
istrators to select their service(s) of choice and to use
them in any order. The search path is normally created
during network configuration and can be subse-
quently managed either locally or remotely. Second, it
gives network users the ability to use short, abbrevi-
ated names instead of potentially cumbersome full
names. For example, they can use “system1™ instcad of
“systeml.sales.hq.xyz.com.”

A single mechanism in the CDI library—the CDI
search path—provides these two capabilities. The
search path consists of a series of directory
service/name template pairs, as shown in Figure 2a.
When the CDI library is given a name to process, it
scans the search path, replacing the “*” in the name
template with the supplied name. For example, if the
library was searching for the name firodo. it would use
the directory services identified from the names gener-
ated shown in Figure 2b.

During network configuration, a default search
path is automatically configured based upon the local
node name and the administrator-specified dircctory
services. This search path behavior is similar to a
number of existing TCP/IP host name/address
lookup implementations.

CDlI Library Cache
Occasionally, name service lookups can take a long
time to complete (for example, if requests are travers-

Digital Technical Journal Vol. 8 No.1 1996

DECdns ’

DECdns XYZ:hqg.sales.

DECdns XYZ:.DNA_Node_synonym.*
Domain *

Domain *.sales.hq.xyz.com

(a) Dirccrory Service/Name Template Pairs

frodo (DECdns)
XYZ:.hq.sales.frodo (DECdns)
XYZ:.DNA_Node_synonym.frodo (DECdns)

frodo (Domain)
frodo.sales.hq.xyz.com (Domain)

(b) Address T.ookup for Name frodo

Figure 2
Using the CDI Scarch Path

ing a slow network link, a lookup could take several
seconds). To improve performance, the CDI library
mcorporates a single cache that accumulates node
information from all the directory services. Usually,
the cache is consulted before sending a request to
a remote scrvice. However, it session control deter-
mines that cached information is stale—tor example,
it connection to a node at a cached address reaches
a nodc with a different name—it will reissue the call,
requesting that the cache be bypassed.

Each entry in the cache has a creation time stored
with it. The cache itselt has a “time-to-live” value that
can be modified by the administrator. It a cache
lookup finds an entry whose lifetime (time since it was
created) is greater than the time-to-live value, the
cache entry is purged.

To prevent a period of low performance immedi-
ately after system start-up, the cache is preserved
across system reboots by periodically checkpointing
it to a disk file. The checkpoint inrerval is adjustable
by the admunistrator.

CDI Registration Tool: Basic Design

The CDI registration tool provides functions to create,
modify, rename, display, and delete node name and
address information in any of the supported directory
services. It runs on the major DECnet /OSI platforms,
the OpenVMS and the Digital UNIX operating systems.

The basic requirements for the CDI registration
tool were the same as those tor the CDI library. These
three requirements were the need to:

= Support different directory services for storing
nodc information

= Access each directory service using the appropriate
application programming interfaces (APIs)

® Store data in each directory service using the
appropriate data types

In addition, the tollowing requirements were spe-
cific to the CDI registration tool:

s Both a forms and console user interface had to
be provided. These had to work identically on all
DECnet /OSI operating svstem platforms.

» Functions to transfer node information between
the various directory services had to be provided.

® Orther applications such as the DECnet/OSI
network control language (NCL) utility and other
namespace management tools had to be able to
access node name management functions.

The directory services supported by the CDI regis-
tration tool are slightly difterent from those supported
by the CDI library. The CDI registration tool supports
the DECdns, the local file; and the DECnet Phase IV
darabase services.

The DECnet Phase 1V database is supported by the
CDI registration tool to allow administrators to use
old Phase IV node information when populating
the node names and addresses for DECnet/OSI. The
Phase IV database is not supported for node name-to-
address lookup by the CDI library.

Due to its lack of a remote update capability, the
Domain Name System is not supported by the CDI
registration tool. Node name-to-address information
in the Domain Name System is managed using its
native tools. Dynamic updating of the Domain Name
System servers is currently under study by the Internct
Engineering Task Force (IETF) Domain Name
System Working Group.

Application Design

The design of the CDI registration tool uses a client-
based, multilayer approach. It is layered on top of a
specialized API, called the Common Directory
Registration (CDR) API. The CDR API ditters from
the API provided by the CDI library in that it presents
a full set of management operations, rather than just
the lookup operations required by DECnet /OSI.

In this design, the CDI registration tool provides
forms and console user interfaces for node informa-
tion management. It also provides functions beyond
the basic ones provided by the CDR API, such as
exporting from and importing to a directory service.
The tunction of the CDR APl is to perform all under-
lying node name management operations in a stan-
dardized manner. This layered approach was adopted
to make node name management functions available
to applications other than the CDI registration tool.

The CDR API defines a node definition object. This
contains all the information that is exchanged between
the CDR API and the application and is a canonical,

directory-service-independent data representation of
all information needed by the CDR API to manage
node names and addresses.

To provide an extensible mechanism tor adding new
directory services, the CDR APl is laycred on top of
a set of directory service wrapper routines, one per
supported directory service. Access to these wrapper
routines is provided by a sct of entry point tables that
can be extended to support new directory services.
The CDR APl is responsible tor accepting application
requests and dispatching them to the correct directory
service by means of the appropriate wrapper routine.
The CDR API wrapper routines arc described later in
this section.

Figure 3 shows the design of the CDI registration
tool and the CDR API.

CDI Registration Tool User Interface

The forms and the console user interfaces had to
present exactly the same characteristics on both the
OpenVMS and the Digital UNIX operating systems.
Because no high-level software packages at the time
could provide this level of user intertace portability, we
developed them tor thisapplication.

The console user interface parses commands and
dispatches them to the appropriate uscr request pro-
cessing routine, using a portable command parser.

The torms user interface obrains input from task-
specific forms and dispatches the function or functions
associated with the form to the appropriate user
request processing routine. The forms processor
was written specifically for this application because
no existing libraries could provide the required level
of portability.

CDI Registration Tool User Request Processing

Each user request maps into a specific request process-

ing function as tollows:

= Register. Create a new node namce cntry in the
directory service.

® Add address. Add address information to a node
name entry.

= Remove address. Remove address information
from a node name entry.

= Modify address. Replace the address information in
anode name entry.

® Update address. Replace the address information in
one or more node name entries, using information
obtained from the nodes themselves (it possible).

s Modify synonvm. Replace the node svnonym in a
node name entry.

= Rename. Change the name of a node name entry.

= Show. Display the information contained in one or
more node name entries.

Digital Technical Journal Vol. 8§ No. 1 1996

63

64

CDI REGISTRATION TOOL i

FORMS USER INTERFACE CONSOLE USER INTERFACE

FORMS DEFINITIONS COMMAND TABLES
REQUEST DISPATCHER

SHOW REGISTER DELETE

PROCESSING PROCESSING PROCESSING

CDRAPI CALLS CDR API CALLS

CDR AP CALLS CDR AP1 CALLS

|
| |
] 1
t |
l I
|
L
|
!

CORAPI } | —-momom o ettt :
[1
|| 1
ENTRY POINT ENTRY POINT ENTRY POINT ENTRY POINT
SHOW REGISTER DELETE e
PROCESSING PROCESSING PROCESSING
WRAPPER CALLS WRAPPER CALLS WRAPPER CALLS WRAPPER CALLS

DIRECTORY SERVICE WRAPPER ROUTINE DISPATCHER

DECDNS
WRAPPER ROUTINES

LOCAL FILE
WRAPPER ROUTINES

PHASE IV DATABASE
WRAPPER ROUTINES

L
|
|
|

DECDNS

LOCAL FILE

DECNET PHASE
IV DATABASE

Figure 3

Block Diagram of the CDI Registration Tool and the CDR API

= Decregister. Delete one or more node name entries
by name, synonym, or address.
= Repair, Fix any detected problems or inconsisten-
cies in the directory service for one or more node
name entrics.
= Export. Copy the information tor one or more node
mumnc entries from the dircctory service into a rext file
that can be copied berween svstems, edited if neces-
sarv, and imported into anv other direcrory service.
= Import. Usc an export teat file to register, modity, or
deregister node name entries in a directory service.
The request processing routines perform any required
validation ef the user request and translate those
requests to calls into the CDR APL Each request may
map into one or more CDR API calls, depending on the
complexity of the request. For example, register and
deregister requests both map into single CDR APT calls,
and export and import requests map into scveral calls.
Most requests are straightforward in their pro-
cessing requirements. For example, a register request
simphyv calls the CDR API register entry point. The
CDRAPI takes care of anv complications in processing
the request.

Digital Technical Journal Vol. 8§ No. 1 1996

Some requests can operate over multiple node name
entries. For example, the show request enumcerates
the node name entrics, retricves the information con-
tained in cach node name entry, and displays the intor-
mation to the uscr.

An export request is similar to a show request,
except that the resulting information is written to a
text file ina standard tormatinstead of being displaved
to the user. The import request, however, is more
complicated. This request must enumerate and show
the contents of the directory service, and then com-
pare the results with the contents of the text file. Based
on the specific form of the import request, it may then
register new node name cntries, update the informa-
tion in existing node name entrics, or deregister listed
node name cntrics.

The export and import requests make use of a text
file to provide maximum flexibility. The use of a text
file allows the information to be copied between dis-
similar platforms such as the OpenVMS and the
Digiral UNIX operating svstems, and allows the intor-
mation to be manipulated using standard rools such as
batch files, grep, awk, and text editors. This is particu-
larly useful when applving a change to all node entries.

For example, the contents of a directory service could
be exported to a text file, the addresses in the text file
changed to reflect a new routing area, and the results
imported back into the directory to update the exist-
ing information.

The repair function pertorms a show operation on
all specified node names to determine if any consis-
tency crrors are found. This type of error can occur in
directory services that keep multiple physical records
for cach logical node name entry. DECdns is one
example of this kind of directory service, because it
uses soft links to map node synonyms and addresses
back to their respective node name entries. It this type
of crror is found, the repair function re-registers the
node svnonvm and address information to correct
these inconsistencies.

The most complicated request is the update request.
This performs a show request for the specified node
names and attempts to use the current addressing
information contained in the node name entry to make
a network management connection to the node itself.
For cach node name entry, it steps through the com-
plete set of registered addresses and tries cach address
n turn, using both a DECnet Phase IV connect and a
DECnet /OS] connect. 1f a connect attempt is success-
tul, it uscs the appropriate network management
requests to read the true addressing data. It then com-
pares this addressing data to what it found in the direc-
tory scrvice and makes any necessary corrections to the
node name entrv. The updare operation does not oper-
ate on I addresses due to the lack of dynamic update
capabilitics in the Domain Name System scrvers.

Betore making the CDR API calls, all request process-
ing routines convert the user request data into a node
definition object, which is discussed in the next section.

CDR API Node Definition Object

The node definition object is the only input data pro-
vided to any of the CDR API entry points. [t stores the
necessary data for any directory service operation,
using a canonical representation. The node definition
object contains the following;:

1. Type ot directory service to access
2. Namc of the node entry to access (depending on the

operation being pertormed, it may allow a fully qual-
ified name, a synonym, an address, or wildcards)

»

Synonym name (for DECnet Phase IV access)

4. DECnet Phase IV network scrvice access point
(NSAPD) prefix (for use when a Phase IV address is
specitied)

. Address information

wn

6. Directory names used for reverse mapping of
svnonym names and addresses back to the fully
qualified node name

The CDR API controls all access to elements within the
node definition object, which further isolates the call-
ing application from the lower-level data structures.

CDR APIEntry Points

Each CDR APl entry point provides one logical func-
tion to the calling application. Each user request can
translate into one or more CDR API functions. The
functions are

= Register. Create a new node name entry in the
directory service.

= Add address. Add address information to a node
name entry.

= Remove address. Remove address information
from a node name entry.

= Modify address. Replace the address information in
a node name entry.

= Modify synonym. Replace the node synonym in a
node name entry.

= Rename. Change the name of a node name entry.

= Show. Return the information contained in one or
more node name entries.

= Deregister. Delcte one or more node name entries
by name, synonym, or address.

= Enumerate. Return a series of node name entries,
one at a time, based on a wildcard specification.

All node information passed to and from the CDR
API is in the form of a node definition object, as
described previously. The CDR API functions validate
the canonical information contained in the node defi-
nition object and dispatch a directory-service-specific
function to handle the request.

CDR API Directory Service Wrapper Routines

Each directory service supported by the CDR API has
an associated set of directory service management
wrapper routines. These routines provide entry points
that are functionally identical to those provided by
the CDR API. The CDR API does the initial input
argument validation, and the directory service wrap-
per routines perform the data manipulation in the
underlying directory service.

The CDR APT dispatches the appropriate directory
service wrapper routine using a set of entry point tables.
This provides a means to easily extend the CDR API to
include additional directory services in future versions.

CDR API Wrapper Routines for DECdns

In the DECdns name service, each node name entry
contains all the information required to translate a
node name to a synonvm or a set of node addresses.
However, no search mechanism exists to allow a

Digiral Technical Journal Vol.8 No. 1 1996

65

66

lookup of the node name entry based on the synonym
or onan address. For this reason, all functions that cre-
ate, modify, and delete node name entries (register,
modify addresses, modify synonym, rename, and
deregister) must also create, modity, and delete reverse
mapping entries.

Reverse mapping entries are based on a node’s syn-
onym and addresses; they contain pointers to the true
node name entry. These entries are used by the CDI
library lookup functions and by the CDR API display
functions (show and enumerate) to access the node
name entry when given a synonym or address.

The use of reverse mapping entries requires that
multiple directory service entries be created for each
registered node. These must be synchronized by prop-
erly ordering the creation and deletion of the various
entries when registering, moditying, or deregistering
anode name. For example, when registering, the node
name entry is created and its synonym and address val-
ues arc set betore the reverse mapping entries are cre-
ated and set. Similarly, when deregistering, the reverse
mapping entries are deleted before the node name
entry is deleted. This prevents orphanced reverse map-
ping entries from being created, because they can
always be found by starting from the intormation con-
tained in the node name entry.

The repair tunction is provided in case a register or
deregister operation fails before completion. The
repair function corrects the reverse mapping entries by
re-registering all node name entries that show errors.
The CDI registration tool (not the CDR API) provides
this higher-level function.

CDR API Wrapper Routines for the Local Node File
Under the OpenVMS operating system, the local node
name file is implemented using a record management
system (RMS)-indexed file. Under the Digiral UNIX
opcerating system, a DBM-indexed file is used. On
both systems, the file content is essentially the same.

The local node name file conrains a series of logical
records, onc for each node name entry in the directory
service. Together, these records define each node’s
fully qualified name, its synonym, and its addresses.
This logical record may be looked up using the full
name, the synonym, or any of'the node’s addresses.

Each logical record consists of (1) a node definition
physical record, which contains all information related
to the node, and (2) zero or more reverse mapping
physical records, which contain alternate keys for look-
ing up the node definition. Each reverse mapping
record contains only the node name key in its record
data. All the data used to describe the node is con-
tained in the node definition record.

Because multiple records compose a node name
entry, operations that fail to complete can result in

Digital Technical Jowrnal Vol. 8 No.1 1996

inconsistencies in the local node file. Fortunately,
these inconsistencies can be resolved using the same
synchronization algorith