Digital
Technical
Journal

Engnnanw

SPIRALOG LOG-STRUCTURED FILE SYSTEM

OPENVMS FOR 64-BIT ADDRESSABLE
VIRTUAL MEMORY

HIGH-PERFORMANCE MESSAGE PASSING
FOR CLUSTERS

SPEECH RECOGNITION SOFTWARE

Volume 8 Number 2
1996

Editorial

Jane C. Blake, Managing Editor
Kathleen M. Stetson, Editor
Hclen L. Patterson, Editor

Circulation
Catherine M. Phillips, Administrator
Dorothea B. Cassady, Secretary

Production

Terri Auticri, Production Editor
Anne S. Katzeft, Typographer
Peter R Woodbury, Hlustrator

Advisory Board

Samuel H. Fuller, Chairman
Richard W. Beance
Donald Z. Harbert
William R. Hawe
Richard J. Hollingsworth
William A. Laing

Richard F. Lary

Alan G. Nemeth

Paulinc A. Nist

Robert M. Supnik

Cover Design

Digital’s new Spiralog file system, a teatured
topic in the issuc, supports full 64-bit system
capability and fast backup and is integrated
with the OpenVMS 64-bit version 7.0 oper-
ating system. The cover graphic captures the
inspired character of the Spiralog design
cttort and illustrates a concept taken from
University of California rescarch in which
the whole disk is treated as asingle, sequen-
tial log and all file system modifications are
appended to the il ot the log.

The cover was designed by Lucinda O’Neill
of Digital’s Design Group using images
from PhotoDisc, Inc., copyright 1996.

T'he Digital Technical Journal is a retereed
journal published quarterly by Digital
Equipment Corporation, 30 Porter Road
1.JO2/D10, Littleton, MA 01460).

Subscriptions can be ordered by sending
acheck in U.S. funds (made payable to
Digital Equipment Corporation) to the
published-by address. General subscrip-
tion rates are $40.00 (non-U.S. $60) tor
tour issucs and $75.00 (non-U.S_$115)
for cight issues. University and college pro-
fessors and Ph.D. students in the clectrical
engineering and computer science fields
receive complimentary subscriptions upon
request. Digital’s customers may qualify
for gift subscriptions and are encouraged
to contact their account representatives.
Single copies and back issues are available
for $16.00 (non-U.S. $18) cach and can
be ordered by sending the requested issue’s
volume and number and a check to the
published-by address. See the Further
Readings section in the back of this issuc
tor a complete listing. Recent issues are
also available on the Internerat
http://www.digital.com/info/d4j.
Digital cmployces may order subscrip-
tions through Readers Choice at URL
http://webre.das.dec.com or by enter-
ing VTX PROFILE at the system prompt.

Inquirics, address changes, and compli-
mentary subscription orders can be sent
to the Digital Technical fournal at the
published-by address or the electronic
mail address, dyj@digital.com. Inquirics
can also be made by calling the Journal
oftice at 508-486-2538.

Comments on the content of any paper

are welcomed and may be sent to the
managing editor at the published-by or
clectronic mail address.

Copyright © 1996 Digital Equipment
Corporation. Copying without fee is per-
mitted provided that such copics are made
tor usce in cducational institutions by taculty
members and are not distributed for com-
mercial advantage. Abstracting with credit
of Digital Equipment Corporation’s auth-
orship is permitted.

The information in the Journal is subject
to change without notice and should not
be construed as a commitment by Digital
Equipment Corporation or by the compa-
nics herein represented. Digital Equipment
Corporation assumces no responsibility for
any crrors that may appear in the Journal.

ISSN 0898-901X
Documentation Number EC-N6992-18

Book production was done by Quantic
Communications, Inc.

The tollowing are trademarks of Digital
Equipment Corporation: AlphaServer,
DEC, DECtalk, Digital, the DIGITAL
logo, HSC, OpenVMS, PATHWORKS,
POLYCENTER, RZ, TruCluster, VAX,
and VAXcluster.

BBN Hark is a trademark ot Bolt Beranek
and Newman Inc.

Encore is a registered trademark and
MEMORY CHANNEL is a trademark

ot Encore Computer Corporation.
FAServer is a trademark of Network
Appliance Corporation.

Listen for Windows is a trademark of
Verbex Voice Systems, Inc.

Microsoft and Win32 are registered trade-
marks and Windows and Windows NT arc
trademarks ot Microsott Corporation.
MIPSpro is trademark of MIPS Technol-
ogics, Inc., a wholly owned subsidiary of
Silicon Graphics, Inc.

Netscape Navigator is a trademark of
Netscape Communications Corporation.

PAL s a registered trademark ot Advanced
Micro Devices, Inc.

UNIXis a registered trademark in the
United States and in other countrics,
licensed exclusively through X/Open
Company Ltd.

VoiceAssist is a trademark of Creative
Labs, Inc.

X Window System is a trademark of the
Massachusctts Institute ot Technology.

Contents

Foreword Rich Marcello 3

SPIRALOG LOG-STRUCTURED FILE SYSTEM

Overview of the Spiralog File System James E. Johnson and William A. Laing 5]

Design of the Server for the Spiralog File System Christopher Whitaker, J. Stuart Bayley, and 15
Rod D. W. Widdowson

Designing a Fast, On-line Backup System for Russell]. Green, Alasdair C. Baird, and 32

a Log-structured File System J. Christopher Davies

Integrating the Spiralog File System into the Mark A. Howell and Julian M. Palmer 46

OpenVMS Operating System

OpenVMSFOR 64-BIT ADDRESSABLE VIRTUAL MEMORY

Extending OpenVMS for 64-bit Addressable Michael S. Harvey and Leonard S. Szubowicz 57

Virtual Memory

The OpenVMS Mixed Pointer Size Environment Thomas R. Benson, Karen L. Nocl, and 72
Richard E. Pcterson

Adding 64-bit Pointer Support to a 32-bit Run-time Library Duanc A. Smith 83

HIGH-PERFORMANCE MESSAGE PASSING FOR CLUSTERS

Building a High-performance Message-passing System James V. Lawton, John J. Brosnan, Morgan P Dovle, 96

for MEMORY CHANNEL Clusters Scosamh D. O Riorddin, and Timothy G. Reddin

SPEECH RECOGNITION SOFTWARE

The Design of User Interfaces for Digital Speech Bernard A, Rozmovits 117

Recognition Software

Digital Technical Journal Vol.8 No.2 1996

Editor’s
Introduction

This past spring when we surveved
Journalsubscribers, readers rook the
time to comment on the particular
value of the issues featuring Digital’s
64-bit Alpha technology. The engi-
neering described in those two issucs
continues, with ever higher levels of
performance in Alpha microproces-
sors, servers, clusters, and systems
software. This issuc presents recent
developments: a log-structured file
system, called Spiralog; the OpenVMS
opcrating svstem extended ro take tull
advantage of 64-bit addressing,; high-
performance computing software for
Alpha clusters; and speech recognition
software for Alpha workstations.

Spiralogisa whollv new clusterwide
file svstem integrated with the new
64-bit OpenVMS version 7.0 operat-
ing system and is designed for high
dara availability and high performance.
The first of four papers about Spiralog
is written by Jim Johnson and Bill
Laing, who introduce log-structured
file (LES) concepts, the university
rescarch behind the design, and design
INNOVAtons.

The advantages of LES technology
over conventional “update-in-place”
rechnology are explained by Chris
Whitaker, Stuart Bavlev, and Rod
Widdowson. In their paper about the
file server design, they compare the
Spiralog implementation of the LES
technology with others and describe
the novel combination of the technol-
ogy with a B-tree mapping mechanism
to provide the system with needed
data recovery guarantecs.

A third paper about Spiralog,
written by Russ Green, Alasdair
Baird, and Chris Davies, addresscs
acritical customer requirement—
fast, application-consistent, on-line

Digiral Technical Journal

backup. Exploiting the features of
log-structured storage, designers
were able to combine the tlexibiliny
of file-based backup and the high
performance of physical lv oriented
backup. Consistent copies of the file
svstem are created while applications
modity data.

The Spiralog integration into the
OpenVMS file system required that
existing, applications be able to run
unchanged. Mark Howell and Julian
Palmer desceribe the integration of the
write-back caching used in Spiralog
into the write-through environnent

used in the existing Files- 11 file svstem.

The importance of compatibility
tor existing 32-bit applications in
a 64-bit environment is stressed
again in the set of three papers about
the latest step in the evolution of the
OpenVMS operating system. Digital
first ported the 32-bir OpenVMS
operating system to the Alphaarchi-
tecture in 1992, The extension of
the svstem to exploit 64-bit virtual
addressing is presented by Mike
Harvey and Lenny Szubowicz.
Their discussion includes the team’s
solution to significant scaling issucs
thatinvolved a new approach to
page-rable residency,

The OpenVMS team anticipated
that applications would mix 32-and
64-bit addresses, or pointers, in the
new environment. Tom Benson,
Karen Nocl, and Rich Peterson
explain why this mixing of pointer
sizes is expected and the DEC C
compiler solution they developed to
support the practice. In a related dis-
cussion, Duane Smith’s paper reviews
new techniques the team used ro
analyze and modify the Crun-time
library interfaces that accommodate

Vol.§ No.2 1996

applications using 32-bit, 64-bit, or
both address sizcs.

Designed for scientific uscers,
the parallel-programming tool
nextdescribed does not run on the
OpenVMS Alpha system but instead
on UNIX clusters connected with
MEMORY CHANNEL technology.
Jim Lawrton, John Brosnan, Morgan
Doyle, Scosamh O Riorddin, and
Tim Reddin review the challenges in
designing the TruCluster MEMORY
CHANNEL Software product, which
is a message-passing svstem intended
tor builders of parallel software
librarics and implementers of parallel
compilers. The product reduces
communications latency to Jess than
10 ps in shared memory svstems.

Finally, Bernie Rozmovits presents
the design of user interfaces for the
Digital Speech Recognition Software
(DSRS) product. Although DSRS
is targeted tor Digital’s Alpha work-
stations running UNIX, the imple-
mentation issues examined and the
tcam’s eftorts to ensure the prod-
uct’s case-of-use can be generally
applied to speech recognition prod-
uct development.

Coming up are papers on a varicty
of topics, including the interncet
protocol, collaborative software for
the internet, and high-performance
servers. These topics reflect arcas of
interest foirnal readers rated near
the top in last spring’s survev. Our
sincere thanks go to evervone who
responded to that survey.

g Bt

Jance C. Blake
Managing Fditor

Foreword

Rich Marcello
Vice President. OpenVMS Systems
Software Group

The papers you will read in this issue
of'the journal describe how we in the
OpenVMS engineering community
set out to bring the OpenVMS oper-
ating system and our loyal customer
base into the nwenty-first century.
The papers present both the devclop-
ment issues and the technical chal-
lenges faced by the engineers who
delivered the OpenVMS operating
system version 7.0 and the Spiralog
file system, a new log-structured filc
system for OpenVMS.

We are extremely proud of the
results of these efforts. In December
1995 at U.S. Fall DECUS (Digital
Equipment Computer Users Society),
Digital announced OpenVMS version
7.0 and the Spiralog file system as part
of a first wave of product deliveries for
the OpenVMS Windows NT Athnity
Program. OpenVMS version 7.0 pro-
vides the “unlimited high end” on
which our customers can build their
distributed computing environments
and move toward the next millennium.

The release of OpenVMS version
7.0 in January of this year represents
the most significant engineering
enhancement to the OpenVMS oper-
ating system since Digital releascd
the VAXcluster system in 1983.
OpenVMS version 7.0 extends the
32-bit architecture of OpenVMS
to a 64-bit architecture, allowing
OpenVMS Alpha users to fully exploit
the 64-bit virtual address capaciry of
the Alpha architecture. As you will
read in some of the papers in this
issue, however, our design goal for
OpenVMS version 7.0 went beyond
just delivering 64-bit virtual address
capability to OpenVMS users. It was

Digital Technical Journal

cssential to us that OpenVMS users
be able to upgrade to version 7.0
with full compatibility for their exist-
ing 32-bit applications.

Inaddition to achieving the sig-
nificant goals of 64-bit addressing
and compatibility for 32-bit applica-
tions, version 7.0 includes very large
memory (VLM), very large database
(VLDB), fast 1 /O, tast path, and
symmetric multiprocessing (SMD)
enhancements. These new features
recently combined with the power
of the Alpha architecture to earn
OpenVMS a world record for pertorm-
ance. In May of this year, OpenVMS
version 7.0 on an AlphaServer 8400
system configured with eight pro-
cessors and 8 gigabytes of memory,
running Oracle’s Rdb7 database
and using the ACMS transaction
processing monitor, set a new world
record tor TPC-C performance on
a single SMP system. Audited per-
formance was 14,227 tpmC at $269
per tpmC. Just this past August, the
combination of OpenVMS version
7.0, Oracle’s Rdb7 database, the
ACMS monitor, and the AlphaServer
4100 system achieved world-record
departmental server performance.
The new world record was set on
an AlphaServer 4100 5,/400 system
configured with four processors and
4 gigabytes of memory. In audited
benchmarks, the performance results
were 7,985 tpmC at $§173 per tpmC.

Such outstanding results are achicv-
able in a full 64-bit environment—
hardware architecture, operating
systems, and applications such as
Oracle’s Rdb database. No other
vendor today can deliver this power.

Vol.8 No.2 1996

In fact, Digital has two 64-bit oper-
ating svstems with this power: the
OpenVMS and the Digital UNIX
operating svstems.

As noted above, Digital mrroduced
the OpenVMS operating system with
support for full 64-bit virtual address-
ing at the same tme it introduced the
Spiralog file system, in December
1995. The Spiralog design is based
on the Sprite log-structured file sys-
tem from the University of California,
Berkeley. With its usc of this log-
structured approach, Spiralog offers
Mjor new pcn‘f2)1'|11a11cc featurces,
ncluding fast, apphication-consistent,
on-line backup. Further, it is fully
compartible with customers’ existing
Files-1 1 file svstems; and applications
that run on Files-11 will run on
Spiralog with no modification. To
deliverall of the features we felrwere
essential to meet the needs of our
loval customer basc, the Spiralog tcam
examined and resolved a number of
technical issues. The papers in this
issue deseribe some of the challenges
they faced, ncluding the decision to
design a Files-11 file svstem emulation.

The delivery of the OpenVMS
version 7.0 operating svstem and
the Spiralog file system are part of
Digiral’s continued commitment to
rhe OpenVMS customer base. These
products represent the work of dedi-
cated, talented engineering reams
that have deploved state-of-the-art
rechnology in products that will help
our cUstomMErs remain competitive
for vears to come,

In the OpenVMS group as else-
where in Digital, we are committed
to excellence in the development and

Digital Technical Journal

delivery ot business computing solu-
tions. We will continue to maintain
and enhance a product porttolio that
mecets our customers’ need for truc
24-hour by 365-day access to their
dara, full integration with Microsoft
Windows NT environments, and the
full complement of nerwork solutions
and application software for today
and well into the next millennium.

Vol. 8 No.2 1996

Overview of the Spiralog
File System

The OpenVMS Alpha environment requires a
file system that supports its full 64-bit capabili-
ties. The Spiralog file system was developed to
increase the capabilities of Digital’s Files-11 file
system for OpenVMS. Itincorporates ideas from
alog-structured file system and an ordered write-
back model. The Spiralog file system provides
improvements in data availability, scaling of the
amount of storage easily managed, support for
very large volume sizes, support for applications
that are either write-operation or file-system-
operation intensive, and support for heteroge-
neous file system client types. The Spiralog
technology, which matches or exceeds the relia-
bility and device independence of the Files-11
system, was then integrated into the OpenVMS
operating system.

James E. Johnson
William A. Laing

Digital’s Spiralog product is a log-structured, cluster-
wide file system with integrated, on-line backup and
restore capability and support for multiple file sys-
tem personalities. It incorporates a number of recent
ideas from the rescarch community, including the
log-structured file system (LES) trom the Sprite file
system and the ordercd write back from the Echo
file system.'?

The Spiralog file system is fully integrated into the
OpenVMS operating system, providing compatibility
with the current OpenVMS file system, Files-11. It
supports a coherent, clusterwide write-behind cache
and provides high-performance, on-linc backup and
per-file and per-volume restore functions.

In this paper, we first discuss the evolution of file
systems and the requirements for many of the basic
designs in the Spiralog file system. Next we describe
the overall architecture of the Spiralog file system,
identifving its major components and outlining their
designs. Then we discuss the project’s results: what
worked well and what did notwork so well. Finally, we
present some conclusions and ideas for future work.

Some of the major components, i.c., the backup
and restore facility, the LFS server, and OpenVMS
integration, are described in greater detail in compan-
ion papers in this issue.”™®

The Evolution of File Systems

File systems have existed throughout much of the his-
tory of computing. The need for librarics or scervices
that help to manage the collection of data on long-
term storage devices was recognized many years ago.
The early support librarics have evolved into the file
systems of today. During their cvolution, they have
responded to the industry’s improved hardware capa-
bilities and to users’ increased expectations. Hardware
has continued to decrease in price and improve in its
price/performance ratio. Consequently, ever larger
amounts of data are stored and manipulated by users
in ever more sophisticated ways. As more and more
dataare stored on-line, the need to access that data 24
hours a day, 365 days a year has also escalated.

Digital Technical Journal Vol.8 No.2 1996

Signiticant improvements to file systems have been

made in the following areas:

= Dircctory structures to case locating data

= Device independence of data access through the file
svstem

= Accessibility of the data to users on other systems

= Availlability of the data, despite either planned or
unplanned scrvice outages

= Rcliability of the stored data and the performance
of the data access

Requirements of the OpenVMS File System

Since 1977, the OpenVMS operating system has
offered a stable, robust file svstem known as Files-11.
This file system is considered to be very successtul in
the arcas of rcliability and device independence.
Recent customer teedback, however, indicated that
the arcas of data availability, scaling of the amount of
storage casilv managed, support for very large volume
sizes, and support tor heterogeneous file system client
tvpes were in need of improvement.

The Spiralog project was initiated in response to
customers’ needs. We designed the Spiralog file system
to match or somewhat exceed the Files-11 system in
its reliability and device independence. The focus of
the Spiralog project was on those areas that were duc
tor improvement, notably:

= Darta availability, cspecially during planned opera-
tions, such as backup.
[t the storage device needs to be taken oft-line
to pertorm a backup, even at a very high backup
rate of 20 megabytes per second (MB/s), almost
14 hours are needed to back up 1 terabyre. This
length of service outage is clearly unacceprable.
More typical backup rates of 1 to 2 MB/s can take
several davs, which, of course, is not acceptable.

= Greatly increased scaling in total amount of on-line
storage, withourt greatly increasing the cost to man-
age that storage.
For example, 1 terabyre of disk storage currently
costs approximately $250,000, whichis well within
the budger of many large computing centers.
However, the cost in staffand time to manage such
amounts of storage can be many times that of the
storage.® Thecost of storage continues to fall, while
the cost of managing it continues to rise.

= Eftective scaling as more processing and storage
resources become available.
For example, OpenVMS Cluster systems allow pro-
cessing power and storage capacity to be added
incrementally. Tris crucial that the software support-

Digital fechnical Journal Vol.8 No.2 1996

ing the file svstem scale as the processing power,
bandwidth to storage, and storage capacity increase.

= Improved performance for applications that arc
cither write-operation or file-system-operation
intensive,
As file svstem caches in main memory have
increased i capacity, data reads and file svstem read
operations have become satisfied more and more
from the cache. At the same time, many applica-
tions write large amounts of data or create and
manipulate large numbers of files. The use of
redundant arrays of inexpensive disks (RAID) stor-
age has increased the available bandwidth for data
writes and file system writes. Most file system oper-
ations, on the other hand, are small writes and are
spread across the disk at random, often negating
the benefits of RAID storage.

= Improved abilioe to transparently aceess the stored
data across several dissimilar chient rypes.
Computing cnvironments have become increas-
ingly heterogencous. Ditferent client svstems, such
as the Windows or the UNIX opcerating svstem,
store their files on and share their files with server
svstems such as the OpenVMS server. It has
become necessary to support the svntax and seman-
tics of several different file system personalitics on
a common file server.

These needs were central to many design decisions we
madec tor the Spiralog file system.

The members of the Spiralog project evaluated
much of the ongoing work in file systems, databascs,
and storage architectures. RALD storage makes high
bandwidth available to disk storage, but it requires
large writes to be effective. Databases have exploited
logs and the grouping of writes together to minimize
the number ot disk I/Os and disk sccks required.
Databases and transaction systems have also exploited
the technique of copving the tail of the log to effect
backups or data replication. The Sprite project at
Berkeley had brought together a log-structured file
system and RAID storage to good cttect.!

By drawing from the above ideas, particularly the
insight of how a log structure could support on-line,
high-performance backup, we began our development
cttort. We designed and built a distributed file system
that made extensive use of the processor and memory
ncar the application and used log-structured storage in
the server.

Spiralog File System Design
The main execution stack of the Spiralog file system

consists of three distinet lavers. Figure 1 shows the
overall structure. At the top, nearest the user, is the file

BACKUP USER
F64 FSLIB || FILE INTERFACE
SYSTEM
VPI SERVICES CLIENT
CLERK
LFS SERVER BACKUP ENGINE

O O

Figure 1
Spiralog Structure Overview

system client layer. It consists of a number of file
system personalities and the underlying personality-
independent services, which we call the VP

Two file system personalities dominate the Spiralog
design. The F64 personality is an emulation of the
Files-11 file system. The file system library (FSLIB)
personality is an implementation of Microsoft’s New
Technology Advanced Server (NTAS) file services for
use by the PATHWORKS for OpenVMS file server.

The next layer, present on all systems, is the clerk
layer. It supports a distributed cache and ordered write
back to the LFS server, giving single-system semantics
in a cluster configuration.

The LES server, the third layer, is present on all des-
ignated server systems. This component is responsible
for maintaining the on-disk log structure; it includes
the cleaner, and it is accessed by multiple clerks. Disks
can be connected to more than one LES server, but
they are served only by one LFS server ata time. Trans-
parcent failover, from the point of view of the file sys-
tem client layer, is achieved by cooperation between
the clerks and the surviving LFS servers.

The backup engine is present on a system with an
active LES server. It uses the LES server to access the
on-disk data, and it interfaces to the clerk to ensure
that the backup or restore operations are consistent
with the clerk’s cache.

Figure 2 shows a typical Spiralog cluster configura-
tion. In this cluster, the clerks on nodes A and B are
accessing the Spiralog volumes. Normally, they use the
LFS server on node C to aceess their data. If node C
should fail, the LFS server on node D would immedi-
ately provide access to the volumes. The clerks on
nodes A and B would use the LFS server on node D,
retrying all their outstanding operations. Neither user
application would detect any failure. Once node C had
recovered, it would become the standby LFS server.

NODE A NODE B

USER APPLICATION USER APPLICATION

SPIRALOG CLERK SPIRALOG CLERK

ETHERNET

ACTIVE LFS SERVER I__| STANDBY LFS SERVER

NODE C NODE D

SPIRALOG VOLUMES

Figure 2
Spiralog Cluster Contiguration

File System Client Design

The file system client is responsible for the traditional
file system functions. This layer provides files, directo-
ries, access arbitration, and tile naming rulces. It also
provides the services that the user calls to access the file
system.

VPI Services Layer The VPI layer provides an underly-

ing primitive file system interface, based on the UNIX

VES switch. The VPIlayer has two overall goals:

1. To support multiple file system personalities

2. To eftectively scale to very large volumes of data
and very large numbers of files
To mecer the first goal, the VPI layer provides

s File names of 256 Unicode characters, with no
reserved characters

= No restriction on directory depth

= Up to 255 sparsc data streams per file, each with
64-bit addressing

w Attributes with 255 Unicode character names, con-
taining values of up to 1,024 bytes

® Files and directories that are freely shared among
file system personality modules

To meet the second goal, the VPI layer provides

File identifiers stored as 64-bit integers
® Directories through a B-tree, rather than a simple
linear structure, for log(n) filc name lookup time

The VPI layer is only a base for file system personali-
ties. Therefore it requires that such personalities are
trusted components of the operating system.
Moreover, it requires them to implement file access
security (although there is a convention for storing
access control list information) and to perform all nec-
essary cleanup when a process or image terminates.

Digital Technical Journal Vol.8 No.2 1996

F64 File System Personality As previously stated, the
Spiralog product includes nwo file svstem personalitics,
F64 and FSLIB. The F64 personality provides a service
that emulates the Files-11T file svstem.™ Trs functions,
services, available file attributes, and execution
behaviors are similar to those in the Files-11 file svs-
tem. Minor differences are isolated into arcas that
reecive little use from most applications.

For instance, the Spiralog file svstem supports the
various Files-11T queued /0 ($SQTO) paramecters for
returning file attribute mformation, because they are
used implicitly or explicitly by most uscer applications.
On the other hand, the Files-11 method of reading
the file header information directly through a file
called INDEXF.SYS is not commonly used by applica-
tions and 1s not supported.

The Fo64 file svstem personality demonstrates that
the VPI laver contains sufticient tlexibility to support
a complex file system interface. Ina number of cases,
however, several VPI calls are needed to implement
asingle, complex Files-11 operation. For instance, to
do a tile open operation, the F64 personality performs
the tasks listed below. The items that end with (VPI)
arc tasks that use VPI service calls to complete.

= Access the file’s parent directory (VPI)

s Read the directory’s tile attributes (VPI)

s Verity authorization to read the directory

= Loop, scarching for the file name, by
- Reading some directory entries (VPI)
— Scarching the directory buffer for the file name
— Exiting the loop, if the match is found

= Access the target tile (VPI)
= Read the file’s ateributes (VPI)

= Audit the file open attempt

FSLIB File System Personality The FSLIB file svstem
personality is a specialized file system to support the
PATHWORKS for OpenVMS file server. Tts ovo major
goals arc to support the file names, attributes, and
behaviors found in Microsoft’s NTAS file aceess proto-
cols, and to provide low run-time cost for processing
NTAS file svstem requests.

The PATHWORKS server implements a file service
for personal computer (PC) chients Jayered on top of
the Files-11 file svstem services. When NTAS service
behaviors or ateributes do not match those of Files-11,
the PATHWORKS scerver has to emulate them. This
can Jead to checking sceurity access permissions twice,
mapping file names, and emulating file artributes.

Many of these problems can be avoided it the VI
irerface 1s used directly. For instance, because the
FSLIB personality does not laver on top of a Files-11
personality, security aceess checks do not need to be

performed nwice. Furthermore, in a straightforward
design, there is no need to map across ditterent file

Digiral Technical Journal Vol 8 No.2 1996

naming or attribute rules. For rcasons we describe
later, in the VPT Results scction, we chose not to pur-
suc this design to its conclusion.

Clerk Design

The clerks are responsible for managing the caches,
determining the order ofwrites out of the cache to the
LFS server, and mamtaining cache coherency within
acluster. The caches are write behind in a manner that
preserves the order ot dependent operations.

The clerk-server protocol controls the transfer of
data ro and from stable storage. Dara can be sent as
amultiblock atomic write, and operations that change
multiple data items such as a file rename can be made
atomically. It a server fails during a request, the clerk
treats the request as it it were lost and retries the
request.

The clerk-server protocol is idemporent. Idem-
potent operations can be applicd repeatediv with no
ceffects other than the desired one. Thus, after anv
number of server tailures or server failovers, itis alwavs
safe to reissue an operation. Clerk-to-server write
operations always Jeave the file svstem stare consistent.

The clerk-clerk protocol proteets the user data and
file svstem metadara cached by the clerks. Cache
coherency information, rather than dara, is passed
directly berween clerks,

The file svstem caches are kept in the clerks. Mul-
tiple clerks can have copices ot stabilized data, r.e., dara
that has been written to the server with the write
acknowledged. Onlv once clerk can have unstabilized,
volatile dara. Dara is exchanged berween clerks by
stabilizing it. When a clerk needs to write a block of
data to the server from its cache, it uscs a token inter-
face thatis lavered on the ¢

The writes from the cache to the server are deferred

erk-clerk protocol.

as long as possible within the constraints of the cache
protocol and the dependency guarantecs.

Dirty data remains in the cache as long as 30 sce-
onds. During that time, overwrites are combined
within the constraints of the dependency guarantees.
Furthermore, operations that are known to ottset onc
another, such as treeing a file identiticr and allocating
a file identifier, arc fully combined within the cache.

Eventually, some trigger causes the dirty data to be
written to the server, At this point, several writes arce
grouped together. Write operations to adjacent, or
overlapping, file Jocations are combined to form
a smaller number of larger writes. The resulting write
operations are then grouped into messages to the
LES scrver,

The clerks pertorm write behind for four reasons:
= To spread the I /O load over time
= To remove occluded data, which can result from

repeated overwrites of a data block, from being

transterred to the server

= Toavoid writing data that is quickly delered such as
temporary files

= To combine multiple smallwrites into larger transfers

The clerks order dependent writes from the cache
to the server; consequently, other clerks never see
“impossible” states, and related writes never overtake
cach other. For instance, the deletion of a file cannot
happen before a rename that was previously issued to
the same file. Related datawrites arccaused by a partial
overwrite, or an explicit linking ot operations passed
into the clerk by the VPI layer, or an implicit linking
due to the clerk-clerk coherency protocol.

The ordering between writes is kept as a directed
graph. As the clerks traverse these graphs, they issuc
the writes in order or collapse the graph when writes
can be safely combined or climinated.

LFS Server Design

The Spiralog file system uses a log-structured, on-disk
format tor storing data within a volume, yet presents
a traditional, update-in-place file system to its users.

l USER I/Os

FILE HEADER FILE VIRTUAL BLOCKS

Recently, log-structured file systems, such as Sprite,
have been an arca of active research.!

Within the LFS scrver, support is provided for the
log-structured, on-disk format and for mapping that
tormat to an update-in-place model. Specifically, this
component is responsible tor

= Mapping the incoming read and write operations
from their simple address space to positions in an
open-ended log

= Mapping the open-ended log onto a finite amount
of disk space

= Reclaming disk space by cleaning (garbage collect-
ing) the obsolete (overwritten) sections of the log

Figure 3 shows the various mapping layers in the
Spiralog file system, including those handled by the
LES server.

Incoming read and write operations are based on a
single, large address space. Initially, the LFS server trans-
torms the address ranges in the incoming operations
into equivalent address ranges in an open-ended log.
This log supports a very large, write-once address space.

HEEEENENEEEERENENEEER

FILE SYSTEM ADDRESS
SPACE

—— ey
VPI

CLERK

\

| \ | ||II|||||III||\\H|II\|II|I

FILE ADDRESS SPACE

NAMED CELL BYTE STREAM

-

LFS
LOG GROWS l B-TREE
_—

—
LI L

LOG ADDRESS SPACE

[T

LFS
LOG
DRIVER
LAYER

DISK PHYSICAL ADDRESS
SPACE

Figure 3
Spiralog Address Mapping

Digital Technical Journal Vol.8 No.2 1996

A read operation looks up its location in the open-
ended log and proceeds. On the other hand, a write
operation makes obsolete its current address range
and appends its new value to the rail of the log.

In turn, locations in the open-ended log are then
mapped into locations on the (finite-sized) disk. This
additional mapping allows disk blocks to be reused
once their original contents have become obso

Physically, the log is divided into Jog segments, cach
ofwhich is 256 kilobytes (KB) in length. The
ment is used as the transter unit for the backup engine.
[t is also used by the cleaner for reclaiming obsolete
log space.

More information about the LFS server can be
tound in this issuc.’

cte.

0gscg-

On-line Backup Design

The design goals for the backup engine arose from
higher storage management costs and greater data avail-
ability needs. Investgations with a number of customers
revealed their requirements for a backup engine:

= Consistent save operations without stopping any
applications or locking out data modifications

= Very fast save operations
= Both full and incremental save operations

= Restores of a full volume and of individual tiles

Our response to these needs influenced many deci-
sions concerning the Spiralog file system design. The
need for a high-performance, on-line backup led to
a scarch for an on-disk structure that could support
it. Again, we chose the log-structured design as the
most suitable one.

A log-structured organizaton allows the backup
facility to casily demarcate snapshots of the file system
at any point in time, simply by marking a point in the
log. Such a mark represents a version of the file system
and prevents disk blocks that compose that version
from being cleaned. In turn, this allows the backup to
run against a low level of the file system, that of the
logical log, and theretore to operate close to the spiral
transfer rate of the underlying disk.

The difference benwveen a partial, or incremental,
and a full save operation is only the starting point in
the log. An incremental save need not copy data back
to the beginning ot the log. Theretore, both incre-
mental and tull save operations transter data at very
high speed.

By implementing these teatures in the Spiralog file
system, we fulfilled our customers’ requirements ftor
high-performance, on-line backup save operations.
We also met their needs tor per-file and per-volume
restores and an ongoing need tor simplicity and reduc-
tion in opcerating costs.

Digital Technical Journal Vol.§ No.2 1996

To provide per-tile restore capabilitics, the backup
utiliny and the LFS server ensurce that the appropriate
file header information is stored during the save oper-
ation. The saved file svstem dara, including file head-
ers, log mapping information, and user darta, arce
stored in a file known as a saeesel. Each saveset,

regardless of the number of tapes it requires, repre-
sents a single save operation,

To reduce the complexity of file restore operarions,
the Spiralog file system provides an oft-line saveset
merge feature. This allows the system manager to
merge several savesets, either tull or incremental, to
torm a new, single saveset. With this feature, system
managers can have a workable backup save plan that
never calls for an on-line full backup, thus further
reducing the load on their production systems. Also,
this feature can be used to ensure that tile restore oper-
ations can be accomplished with a small, bounded sct
of savescets.

The Spiralog backup facility is described in detail in
this issuc.’

Project Results

The Spiralog file svstem contains a number of innova-
tions in the arcas of on-line backup, log-structured
storage, clusterwide ordered write-behind caching,
and multiple-file-system client support.

The usce ot log structuring as an on-disk format is
very ctfective in supporting high-performance, on-line
backup. The Spiralog file system retains the previously
documented benetits of LES, such as fast write pertfor-
mance that scales with the disk size and throughput
that increases as large read caches are used to oftsct
disk reads.!

[tshould also be noted that the Files-11 fi
scts a high standard for data reliability and robustess.

¢ svstem

The Spiralog technology met this challenge very well:
as a result ot the idempotent protocol, the cluster
failover design, and the recover capability of the log,
we encountered few data reliability problems during
development.

In any large, complex project, manv technical deci-
sions arc necessary to convert rescarch technology
into a product. In this scction, we discuss why certain
decisions were made during the development of the
Spiralog subsystems.

VPI Results

The VII file system was gencerally successtul in pro-
viding the underlying support necessary for different
file system personalities. We found that it was possi-
ble to construct a set of primitive operations that
could be used to build complex, user-level, tile svstem
opcrations.

By using these primitives, the Spiralog project
members were able to successtfully design two dis-
tinctly different personaliny modules. Neither was a
tunctional superset of the other, and neither was lay-
ered on top of the other. However, there was an
important second-order problem.

The FSLIB file system personality did not have a full
mapping to the Files-11 file system. Asa consequence,
file management was rather difticult, because all the
data management tools on the OpenVMS operating
system assumed compliance with a Files-11, rather
than a VPI, file system.

This problem led to the decision not to procceed
with the original design for the FSLIB personality in
version 1.0 of Spiralog. Instead, we developed an
FSLIB file svstem personality that was fully compatible
with the F64 personality, even when that compatibility
torced us to accept an additional exccution cost.

We also found an execution cost to the primitive
VPI operations. Generally, there was little overhead
tor dara read and write operations. However, for
opcrations such as opening a file, searching for a file
name, and deleting a file; we found too high an over-
head from the number of calls into the VPI services
and the resulting calls into the cache manager. We
called this the “fan-out™ problem: onc high-level
opcration would turn into several VPT operations, each
of which would turn into several cache manager calls.
Table 1 gives the derails of the fan-out problem.

We believe that it would be worthwhile to provide
slightly more complex VPI services in order to com-
binc calls that always appear in the same sequence.

Table 1
Call Fan-out by Level
Revised

F64 VPI Clerk Clerk
Operation Calls Calls Calls Calls
Create file 4 18 29 24
Open file 1 6 18 14
Read block 1 1 3 3
Write block 2 4 7 6
Close file 1 4 13 10
Clerk Results

The clerk met a number of our design goals. First, the
usc of idempotent operations allowed failover to
standby LFS servers to occur with no loss of service to
the file system clients, and with little additional com-
plexity within the clerk.

Second, the ordered write behind proved to be
eftective at ordering dependent, metadata file system

operations, thus supporting the ability to construct
complex file system operations out of simpler elements.

Third, the clerk was able to manage large physical
caches. Tt is very effective at making use of unused
pages when the memory demand from the OpenVMS
operating system is low, and at quickly shrinking the
cache when memory demands increase. Although
certain parameters can be used to limit the size of a
clerk’s cache, the caches are normally self-tuning.

Fourth, the clerks reduce the number of operations
and messages sent to the LES server, with a subsequent
reduction to the number of messages and operations
waiting to be processed. For the COPY command, the
number of opcrations sent to the server was tvpically
reduced by a tactor of 3. By using transient files with
lifetimes of fewer than 30 seconds, we saw a reduction
of operations by a factor of 100 or more, as long as the
temporary file fit into the clerk’s cache.

In general, the code complexity and CPU path
length within the clerk were greater than we had origi-
nally planned, and they will need further work. Two
aspects of the scrvices oftered by the clerk com-
pounded the cost in CPU path length. First, the clerk
has a simple interface that supports reads and writes
into a single, large address space only. This interface
requires a number of clerk operations for a number of
the VPI calls, further expanding the call fan-out issues.
Second, a concurrency control model allows the clerk
to unilaterally drop locks. This requires the VPI layer
to revalidate its internal state with each call.

Either a change to the clerk and VPI service inter-
taces to support notification of lock invalidation, or a
change to the concurrency control model to disallow
locks that could be unilaterally invalidated, would
reduce the number of calls made. We believe such
changes would produce the results given in the last
column of Table 1.

LFS Server Results

The LES server provides a highly available, robust file
system server. Under heavy write loads, it provides the
ability to group together multiple requests and reduce
the number of disk 1/0s. [n a cluster configuration,
it supports failover to a standby server.

In normal operation, the cleaner was successful in
minimizing overhcead, typically adding only a tew per-
cent to the elapsed time. The cleaner operated in a lazy
manner, cleaning only when there was an immediate
shortage of space. The cleaner operations were further
lessened by the tendency for normal file overwrites to
free up recently filled log segments for reuse.

Although this produced a cleaner that operated
with little overhead, it also brought about two unusual
interactions with the backup facility. In the first place,
the log often contains a number of obsolete areas that

Digital Technical Journal Vol.8 No.2 1996

are cligible tor cleaning but have not ver been
processed. These obsolcte arcas are also saved by the
backup engine. Although thev have no cftect on the
logical state of the log, they do require the backup
engine to move morce data to backup storage than
might otherwise be necessary.

Second, the design nitially prohibited the cleaner
from running against a log with snapshots. Consc-
quently, the cleaner was disabled during a save opera-
tion, which had the following cffeets: (1) The amount
of available free space in the log was artificially
depressed during a backup. (2) Once the backup was
finished, the activated cleaner would discover that
a great number of log segments were now cligible tor
cleaning. As a result, the cleaner underwent a sudden
surge in cleaning activity soon after the backup had
completed.

We addressed this problem by reducing the arca of
the log that was oft-limits to the cleaner to only the
part that the backup engine would read. This limited
snapshot window allowed more segments to remain
eligible tor cleaning, thus greathy alleviating the short-
age of cleanable space during the backup and climinat-
ing the postbackup cleaning surge. For an 8-gigabyte
time-sharing volume, this change rvpicallv reduced the
period of high cleaner activity from 40 scconds to fess
than onc-half ofa second.

We have notvetr experimented with different cleaner
algorithms. More work needs to be done in this arca
to sceif the cleaning efhciency, cost, and interactions
with backup can be improved.

The current mapping transformation from the
incoming operation address space to locations in the
open-ended log is more expensive in CPU time than
we would like. More work is needed to optimize the
code path.

Finally, the LES server is gencerally successful at pro-
viding the appearance of a traditional, update-in-place
file svstem. However, as the unused space n a volume
nears zero, the ability to behave with semantics that
meet users’ expectations in a log-structured file system
proved more difficult than we had anticipated and
required significant eftortto correct.

The LES server is described in much more detail in
this issue ?

Backup Performance Results

We took a new approach to the backup design i the
Spiralog system, resulting in a very tast and very low
impact backup that can be used to create consistent
copices of the file svstem while applications are actively
moditving data. We achieved this degree of success
without compromising such functionality as incre-
mental backup or fast, sclective restore.

The performance improvements of the Spiralog
save operation are particularly noticeable with the
large numbers of transient or active files that are tvpi-
cally found on user volumes or on mail server volumes.
In the tollowing tables, we compare the Spiralog
and the file-based Files-11 backup operations on a
DEC 3000 Modcel 500 workstation with a 260-MB
volume, containing 21,682 tiles in 401 directories and
A'TZ877 tape.

Table 2 gives the results of two save operations,
which are the average of five operations. Although its
saveset size is somewhat larger, the Spiralog save

operation completes nearly twice as fast as the Files-11
save operation.

Table 3 gives the results from restoring a single file
to the rarger volume. In this case, the Spiralog file
restore operation executes more than three times as
tast as the Files-11 svstem,

The performance advantage of the Spiralog backup
and restore facility increases further for large, multi-

tape savesets. In these cases, the Spiralog svstem is able
to omit tapes that are not needed for the file restore;
the Files-11 svstem doces not have this capability.

Observations and Conclusions

Overall, we believe that the significant innovation and
real suceess of the Spiralog project was the integration
of high-pertormance, on-line backup with the log-
structured file svstem model. The Spiralog tile svstem
delivers an on-line backup cngine that can run ncar
device speeds, with little impact on concurrently run-
ning applications. Many file operations arc signifi-
cantly taster in clapsed time as a result of the reduction
mn 1/0s due to the cache and the grouping of write
operations. Although the code paths for a number
1ad planned, their

of opcerations are longer than we

Table 2
Performance Comparison of the Backup Save Operation
Elapsed Time
File System (Minutes:Seconds) Saveset Size (MB) Throughput (MB/s)
Spiralog 05:20 339 1.05
Files-11 10:14 297 0.48

Digital Technical Journal Vol.8 No.2 1996

Table 3
Performance Comparison of the Individual File
Restore Operation

Elapsed Time
File System (Minutes:Seconds)
Spiralog 01:06
Files-11 03:35

length is mitigated by continuing improvements in
processor performance.

We lcarned a great deal during the Spiralog project
and madec the following observations:

= Volume full semantics and tine-tuning the cleaner
were more complex than we anticipated and will
require future refinement.

= A heavily layered architecture extends the CPU
path length and the fan-out of procedure calls. We
focused too much attention on reducing 1/0s and
not cnough attention on reducing the resource
usage of some critical code paths.

= Although clegant, the memory abstraction for the
iterface to the cache was not as good a fit to file
system operations as we had expected. Further-
morc, a block abstraction for the data space would
have been more suitable.

In summary, the project team delivered a new
file system for the OpenVMS operating system. The
Spiralog file system ofters single-system semantics in
a cluster, is compatible with the current OpenVMS
file system, and supports on-line backup.

Future Work

During the Spiralog version 1.0 project, we pursued a
number of new technologies and found four areas that
warrant future work:

= Support is neceded trom storage and file-
management tools for multiple, dissimilar file
system personalitices.

® The cleancer represents another arca of ongoing
innovation and complex dynamics. We believe a
better understanding of these dynamics is needed,
and design alternatives should be studied.

® The on-line backup engine, coupled with the log-
structured file system technology, otters many arcas
tor potential development. For instance, one area
for investigation is continuous backup operation,
either to a local backup device or to a remote
replica.

= Finally, we do not believe the higher-than-expected
code path length is intrinsic to the basic file system

design. We expect to be working on this resource
usage in the near future.

Acknowledgments

We would like to take this opportunity to thank the
many individuals who contributed to the Spiralog
project. Don Harbert and Rich Marcello, OpenVMS
vice presidents, supported this work over the lifetime
of the project. Dan Doherty and Jack Fallon, the
OpenVMS managers in Livingston, Scotland, had day-
to-day management responsibility. Cathy Foley kept
the project moving toward the goal of shipping. Janis
Horn and Clare Wells, the product managers who
helped us understand our customers’ needs, were ¢lo-
quent in explaining our project and goal to others.
Near the end of the project, Yehia Beyh and Paul
Mosteika gave us valuable testing support, without
which the product would certainly be less stable than it
is today. Finally, and not least, we would like to
acknowledge the members of the development team:
Alasdair Baird, Stuart Bayley, Rob Burke, lan
Compton, Chris Davies, Stuart Dcans, Alan Dewar,
Campbell Fraser, Russ Green, Peter Hancock, Steve
Hirst, Jim Hogg, Mark Howell, Mike Johnson,
Robert Landau, Douglas McLaggan, Rudi Martin,
Conor Morrison, Julian Palmer, Judy Parsons, lan
Parttison, Alan Paxton, Nancy Phan, Kevin Porter,
Alan Potter, Russell Robles, Chris Whitaker, and Rod
Widdowson.

References

1. M. Rosenblum and J. Ousterhout, “The Design and
[mplementation of a Log Structured File Svstem,”™ ACA
Transactions on Computter Systems, vol. 10, no. 1
(February 1992): 26-52.

2. T.Mann, A. Birrell; A, Hisgen, C. Jerian, and G. Swart,
“A Coherent Distributed File Cache with Directory
Write-behind,” Digiral Svstems Research Center,
Rescarch Report 103 (June 1993).

3. R. Green, AL Baird, and J. Davies, “Designing a Fast,
On-line Backup System tor a Log-structured File Sys-
tem,” Digital Technical Jewrnal, vol. 8, no. 2 (1996,
thisissuc): 32-45.

4. C.Whirtaker, J. Bavley, and R. Widdowson, “Design ot the
Server tor the Spiralog File System,” Digital Technical
Journal, vol. 8, no. 2 (1996, thisissuc): 15-31.

(9]

. M. Howell and J. Palmer, “Integrating the Spiralog
File System into the OpenVMS Operating System,”
Digital Technical Jeurnal, vol. 8, no. 2 (1996, this
issuc): 46-56.

6. R. Wrenn, “Why the Real Cost of Storage is More Than
$1/MB,” presented at U.S. DECUS Svmposium,
St. Louis, Mo., June 3-6, 1996.

Digital Technical Journal Vol.8 No.2 1996

13

14

Biographies

James E. Johnson

Jim Johnson, a consul ting software engineer, has been
working for Digital since 1984. He was a member of the
OpenVMS Enginecring Group, where he contributed

in several areas, including RMS, transaction processing
scrvices, the portofOpenVMS ro the Alpha architecture,
file systems, and system management. Jim recently joined
the Internet Softwvare Business Unit and is working on
the application of X.500 directory services. Jim holds rwo
parents on transaction commit protocol optinizations and
maintains a keen interest in this arca,

William A. Laing

Bill Laing, a corporate consulting engincer, is the technical
divector of the Internet Software Business Unit. Bill joined
Digital in 1981; he worked in the United States tor five
vears before transterring to Europe. During his carcer at
Digital, Bill has worked on VMS systems performance
analysis, VAXcluster desigan and development, operating
systems development, and transaction processing. He

was the rechnical director of OpenVMS engineering, the
technical director for engineering in Europe, and most
recently was focusing on software in the Technology and
Architecture Group of the Computer Systems Division.
Prior to joining Digital, Bill held rescarch and teaching
posts in operating svstems at the University of Edinburgh,
where he worked on the EMAS operating system. He was
also part of the start-up of European Silicon Structures
(1S2), an ambitious pan-European company. He holds
undergraduate and postgraduate degrees in computer
science from the University of Edinburgh.

Digiral Technical Journal Vol. 8 No.2 1996

Design of the Server for
the Spiralog File System

The Spiralog file system uses a log-structured,
on-disk format inspired by the Sprite log-
structured file system (LFS) from the University
of California, Berkeley. Log-structured file sys-
tems promise a number of performance and
functional benefits over conventional, update-
in-place file systems, such as the Files-11 file
system developed for the OpenVMS operating
system or the FFS file system on the UNIX oper-
ating system. The Spiralog server combines log-
structured technology with more traditional
B-tree technology to provide a general server
abstraction. The B-tree mapping mechanism
uses write-ahead logging to give stability and
recoverability guarantees. By combining write-
ahead logging with a log-structured, on-disk
format, the Spiralog server merges file system
data and recovery log records into a single,
sequential write stream.

Christopher Whitaker
J. Stuart Bayley
Rod D. W. Widdowson

The goal of the Spiralog file system project team was
to produce a high-performance, highly available, and
robust file system with a high-performance, on-line
backup capability for the OpenVMS Alpha operating
system. The server component of the Spiralog file sys-
tem is responsible tor reading data from and writing
data to persistent storage. It must provide fast write
performance, scalability, and rapid recovery from sys-
tem failures. In addition, the server must allow an
on-line backup utility to copy a consistent snapshot of
the file system to another location, while allowing nor-
mal file system operations to continue in parallel.

In this paper, we describe the log-structured file sys-
tem (LES) technology and its particular implementation
in the Spiralog file system. We also describe the novel
way in which the Spiralog server maps the log to pro-
vide a rich address space in which files and directonesare
constructed. Finally, we review some of the opportuni-
ties and challenges presented by the design we chose.

Background

All file systems must trade off performance against
availability in different ways to provide the throughput
requircd during normal operations and to protect data
from corruption during system failures. Traditionally,
file systems fall into two categories, careful write and
check on recovery.

= Caretul writing policies are designed to provide a
tail-sate mechanism for the file system structures in
the event of a system failure; however, they sufter
from the need to serialize several 1/Os during file
system opcrations.

s Somec file systems forego the need to scrialize file
system updates. After a system failure, however,
they require a complete disk scan to reconstruct a
consistent file system. This requirement becomes
a problem as disk sizes increase.

Modern file systems such as Cedar, Episode,
Microsoft’s New Technology File System (NTES),
and Digiral’s POLYCENTER Advanced File System
use logging to overcome the problems inherent in
these two approaches."? Logging file system metadata
removes the need to serialize I/0s and allows a simple

Digital Technical Journal Vol. 8 No.2 1996

16

and bounded mechanism for reconstructing the file

system after a failure. Rescarchers at the University of

Calitornia, Berkeley, took this process one stage fur-
ther and wreated the whole disk as a single, sequential
log where all file svstem modifications are appended to
the wail of the log.?

Log-structured file system technology is particularly
appropriate to the Spiralog file svstem, because it is
designed as a clusterwide file svstem. The server must
support a large number of file svstem clerks, cach of
which may be reading and writing data to the disk. The
clerks use large write-back caches to reduce the need to
read data trom the server. The caches also allow the
clerks to bufter write requests destined tor the server.
A log-structured design allows multple concurrent
writes to be grouped together mro large, sequential
1/0s to the disk. This 1/0 pattern reduces disk head
movement during writing and allows the size of the
writes to be matched to characteristics of the underlving
disk. This is particularly benceficial for storage devices
with redundant arravs ofinexpensive disks (RAID)

The use ot alog-structured, on-disk format greatly
simplifics the implementation of an on-line backup
capabilitv. Here, the challenge is to provide a consis-
rent snapshot of the file svstem that can be copied to
the backup media while normal operations continue
to moditv the file svstem. Because an LES appends all
data to the wil ofa log, all data writes within the log
are temporally ordered. A completre snapshot of the
file systent corresponds to the contents of the sequen-
tial log up to the pomnt n time that the snapshot was
created. By extension, an ineremental backup corre-

sponds to the scetion of the sequential log created
since the last backup was taken. The Spiralog backup
utility uses these features to provide a fast, on-line, tull
and incremental backup scheme.?

We have taken a number of teatures trom the exist-
ing log-structured file systemimplementations, in par-
ticular, the idea of dividing the log into tixed-sized
scgments as the basis tor space allocation and clean
ng.* Fundamentally, however, existing log-strucrured
file svstems have been built by using the main bodv of
an existing file svstem and Javering on top ofan under-
Iving, log-structured container.™ This design has been
taken to the logical extreme with the implementation
ofa log-structured disk.™ For the Spiralog file system,
we have chosen to use the sequential log capability
provided by the log-structured, on-disk format through-
out the file system. The Spiralog server combines log-
structured technology with more traditional B-tree
technology to provide a gencral server abstraction.
The B-tree mapping mechanism uses write-ahead log-
ging to give stability and recoverability guarantees.” By
combining write-ahead logging with a log-structured
on-disk format, the Spiralog server merges tile svstem
data and recovery log records into a single, sequential
write stream.

Digital Technical Journal Vol.8 No.2 1996

The Spiralog file svstem ditters from existing log-
structured implementations - a number ot other
important wavs, in particular, the mechanisms that we
have chosen to use for the cleaner. In subsequent sce-
tions of this paper, we compare these difterences with
existing imp

cmentations where appropriate.
Spiralog File System Server Architecture

The Spiralog file svstem emplovs a client-server archi-
recture. Each node in the cluster that mounts a
Spiralog volume runs a file svstem clerk. The term
clerk is used in this paper to distinguish the client com-
ponent of the file svstem from clienes of the file svstem
asawhole. Clerks implementall the file unctions asso-
ciated with maintaining the tile svstem state with the
exeeption of persistent storage of tile svstem and user
data. This latter responsibility falls on the Spiralog
server. There is exactlv one server for cach volume,
which mustrun on a node that has a direct connection
to the disk containing the volume. This distribution of
function, where the majority of file svstem processing
takes place on the clerk, is similar to that ot the Echo
tile svstem.’ The reasons for choosing this architecture
are described in more detail in the paper “Overview of
the Spiralog File Svstem,” elsewhere in this issue."

Spiralog clerks build files and directories in a struc-
tured address space called the file address space. This
address space 1s internal to the tile svstem and is only
loosely related o that pereeived by clients of the tile
svstem. The server provides an interface that allows
the clerks to persistently map to tile space addresses.
Internally, the server uses a logicallv infinite log struc-
ture, built on top of a phvsical disk, to store the fi
svstem data and the structures necessary to - locate
the data. Figure 1 shows the relationship berween the
clerks and the scrver and the relatonships among
the major components within the server.

C

cLerk | |cLerk | |cLERK
1 FILE ADDRESS SPACE
[A SEHVER_:
[MAPPING LAYER |
|
|
| } oG ADDRESS
| iy o CLEANER |
| _ |
| LOG DRIVER :
[
Co— il
PHYSICAL LOCATION
A
Figure 1

Server Architecture

The mapping layer is responsible for maintaining
the mapping between the file address space used by
the clerks to the address space of the log. The server
directly supports the file address space so that it can
make use of information about the relative perfor-
mance sensitivity of parts of the address space that is
implicit within its structure. Although this results in
the mapping layer being relatively complex, it reduces
the complexity of the clerks and aids performance.
The mappinglayeris the primary point of contact with
the server. Here, read and write requests from clerks
are received and translated into operations on the log
address space.

The log driver (LD) creates the illusion of an infinite
log on top of the physical disk. The LD transforms read
and write requests from the mapping layer that are cast
in terms of a location in the log address space into read
and write requests to physical addresses on the underly-
ing disk. Hiding the implementation of the log from
the mapping layer allows the organization of the log to
be altered transparently to the mapping layer. For
example, parts of the log can be migrated to other
physical devices without involving the mapping layer.

l USER I/0s

FILE HEADER FILE VIRTUAL BLOCKS

Although the log exported by the LD layer is con-
ceptually infinite, disks have a finite size. The cleaner
is responsible for garbage collecting or coalescing free
space within the log.

Figure 2 shows the relationship benwveen the various
address spaces making up the Spiralog file system. In
the next three sections, we examine each ot the com-
ponents of the server.

Mapping Layer

The mapping layer implements the mapping between
the file address space used by the file system clerks
and the log address space maintained by the LD.
It exports an intertace to the clerks that they use to
read data from locations in the file address space,
to write new data to the file address space, and to spec-
ify which previously written data is no longer required.
The interface alsoallows clerks togroup sets ot depen-
dent writes into units that succeed or fail as if they
were a single write. In this section, we introduce the
file address space and describe the data structure used
to map it. Then we explain the method used to handle
clerkrequests to modity the address space.

L

HNENEEENNEEEEENNENEER

FILE SYSTEM ADDRESS
SPACE

[N

VPI
\ CLERK
N

J

FILE ADDRESS SPACE

\ \ N
| | LTI T I [T

NAMED CELL BYTE STREAM

LFS

LOG GROWS B-TREE
—_—

rd o
HEEEREEEE BN

LOG ADDRESS SPACE

\

LFS
LOG
DRIVER
LAYER

DISK PHYSICAL ADDRESS
SPACE

Figure 2
Address Translation

Digiral Technical Journal Vol.8 No.2 1996

17

File Address Space

The file address space is a structured address space. At
its highest level itis divided into objects, cach of which
has a numeric object identifier (OID). An object may
have any number of named cells associated with it and
upto 2'°—1 streams. A named ccll may contain a vari-
ablec amount of data, but it is rcad and written as a sin-
gle unit. A stream is a sequence of bytes that are
addressed by their offset from the start of the stream,
up to a maximum of 2¢—1. Fundamentally, there are
two forms ot addresses defined by the file address
space: Named addresses of the form

<0ID, name>

specity an individual named cell within an object, and
numeric addresses of the form

<0ID, stream-id, stream-offset, length>

specify a scquence of length contiguous bytes in an
individual stream belonging to an object.

The clerks use named cells and streams to build files
and directorics. In the Spiralog file system version 1.0,
atile is represented by an object, a named cell contain-
ing its attributes, and a single strecam that is used
to store the file’s data. A dircctory is represented by
an object that contains a number of named cells.
Fach named cell represents a link in that dircctory and
conrains what a traditional file svstem refers to as a
dirccrory entry. Figure 3 shows how data files and
dirccrorics are built from named cells and streams.

The mapping layer provides three principal opera-
tions for manipulating the file address space: read,
write, and clear. The read operation allows a clerk to
read the contents ofa named cclly a contiguous range
of bytes from a strecam, or all the named cells for a par-
ticular object that fall into a specitied scarch range. The
write operation allows a clerk to write to a contiguous
range of bytes in a strcam or an individual named cell.

DATA FILE DIRECTORY
FRED.TXT
BYTE

ATTRIBUTES [-] STREAM ATTRIBUTES FRED.C
JIM.H
CHRIS.TXT

KEY:
STU.C

(O osskcT

H BYTE STREAM

N NAMED CELL

The clear opceration allows a clerk to remove a named
cell or a number of bytes from an object.

Mapping the File Address Space

We looked at a varicty of indexing structures tor mapping
the file address space onto the log address space.™'* We
chose a derivative of the B-tree for the following reasons.
For a uniform address space, B-trees provide predictable
worst-case access times because the tree is balanced
across all the keys it maps. A B-trec scales well as the
number of keys mapped increases. In other words, as
more keys arc added, the B-tree grows in width and in
depth. Deep B-trees carry an obvious performance
penalty, particularly when the B-tree grows too flarge to
be held in memory. As described above, directory entrics,
file attributes, and file data are all addresses, or kevs, in
the file address space. Treating thesce kevs as equals and
balancing the mapping B-trec across all these keys intro-
duces the possibility that a single directory with many
entries, or a file with many cxtents, may have an impact
on the access times tor all the files stored in the log.

To solve this problem, we limited the keys for an
object to a single B-tree leat node. With this restric-
tion, scveral small files can be accommodated in a sin-
gle leaf node. Files with a large number of extents (or
large dircectorices) arc supported by allowing individual
streams to be spawned into subtrees. The subtrees are
balanced across the kevs within the subtree. An object
can never span more than a single leat node ot the
main B-tree; therctore, nonleaf nodes of the main
B-tree only need to contamn OIDs. This allows the
main B-tree to be very compact. Figure 4 shows the
relationship berween the main B-tree and its subtrecs.

MAIN B-TREE

JANEAY

STREAM-SPECIFIC
SUBTREES

'

OID 100
STREAM 1

=

'
[100.1.0] [100.1.100] [100.1.400]| NODE OID 100,

7 j \ STREAM 1

MAIN B-TREE
LEAF NODE

Figure 3
File Svstem

Digiral Techmeal Journal

Vol.8 No.2 1996

Figure 4
Mapping B-tree Structure

To reduce the time required to open a file, data for
small extents and small named cells are stored directly in
the leafnode that maps them. For larger extents (greater
than one disk block in size in the current implementa-
tion), the data item is written into the log and a pointer
to it is stored in the node. This pointer is an address in
the log address space. Figure 5 illustrates how the B-tree
maps a small file and a file with several large extents.

Processing Read Requests
The clerks submit read requests that may be for a
sequence of bytes from a stream (reading a data from a
file), a single named cell (reading a file’s attributes), or
a set of named cells (reading directory contents). To
fultill a given read request, the server must consult the
B-tree to translate from the address in the file address
space supplied by the clerk to the position in the log
address space where the data is stored. The extents
making up a stream are created when the file data
is written. If an application writes 8 kilobytes (KB)
of data in 1-KB chunks, the B-tree would contain
8 extents, one for each 1-KB write. The server may
need to collect data from several difterent parts of the
log address space to fulfill a single read request.

Read requests share access to the B-tree in much
the same way as processes share access to the CPU of
a multiprocessing computer system. Read requests

-

arriving from clerks are placed in a first in first out
(FIFO) work queuc and are started in order of their
arrival. All operations on the B-tree arc performed by
a single worker thread in each volume. This avoids
the need for heavyweight Jocking on individual
nodes in the B-tree, which significantly reduces the
complexity of the tree manipulation algorithms and
removes the potential for deadlocks on tree nodes.
This reduction in complexity comes at the cost of
the design not scaling with the number of processors
in a symmetric multiprocessing (SMP) system. So far
we have no evidence to show that this design deci-
sion represents a major performance limitation on
the server.

The worker thread takes a request from the head
of the work queue and traverses the B-tree until it
reaches a leaf node that maps the address range of
the read request. Upon reaching a leaf node, it may
discover that the node contains

s Records that map part or all of the address of the
read request to locations in the log, and /or

= Records that map part or all of the address of the
read request to data stored directly in the node,
and/or

s No records mapping part or all of the address of the
read request

-7~ _ MAINB-TREE

~

NODE A T

p

7

NIEn
/ I

BN -
.- NODEB / \ NODEC .
.- ||ss. ATTRIBUTESl ‘35,1,...| 1 | ’42, A'ITF(IBUTES‘ | |42,1,o,1o | | 5
< - i 3
LY
"NODED&
| 35,10 | ||35,1,1ooo| ? I _ SUBTREE FOR OID 35,
] "~ STREAM 1
NODE E / l NODE F
- |35.1‘o,1o| l 35,1,500,40 I |35,1‘1ooo,5o| \ |35,1,1500.50| |
DATA IN LOG DATA IN LOG DATA IN LOG DATA IN LOG

B-TREE INDEX RECORD
MAPPING OID 35...

=X
m
<

5Ty
42,1,0,50 -

RECORD CONTAINING FILE
DATA: OID 42, STREAM 1,
START OFFSET 0, LENGTH 50

B-TREE INDEX RECORD
MAPPING OID 35, STREAM 1,
START OFFSET O...

o] 1]

RECORD CONTAINING POINTER
TO FILE DATA: OID 42, STREAM 1,
START OFFSET 0, LENGTH 50

Figure 5
Mapping B-tree Detail

Digital Technical Journal Vol.8 No.2 1996

Darta thatis stored in the node is simply copied
to the output bufter. When data is stored in the log,
the worker thread issues requests to the LD to read the
data into the output buffer. Once all the reads have
been issued, the original request is placed on a pend-
ing queue until they complete; then the resules are
rerurned to the clerk. When no data is stored torallor
part of the read request, the server zero-fills the corre-
sponding part of the output butter.

The process described above is complicated by the
tact that the B-tree is itself stored in the log, The map-
ping layer contains a node cache that ensures that com-
monly referenced nodes are normally tound in memory.
When the worker thread needs to traverse through a
tree node that is not in memory, it must arrange for the
node to be read into the cache. The address ofthe node
in thelog is the value of the pointer to it from its parent
node. The worker thread uses this to issuc a request to
the LD to read the node into a cache bufter. While the
node read request is in progress, the original clerk oper-
ation is placed on a pending queue and the worker
thread proceeds to the next request on the work queue.
When the node is resident in memory, the pending read
request 1s placed back on the work queue to be
restarted. In this way, multiple read requests can be in
progress at any given time.

Processing Write Requests

Write requests received by the server arrive in groups
consisting of a number of data items corresponding to
updates to noncontiguous addresses in the file address
space. Each group must be written as a single failure
atomic unit, which means that all the parts ofthe write
request must be made stable or none of them must
become stable. Such groups of writes arc called wun-
ners and are used by the clerk to encapsulate complex
file system operations.”!

Betore the server can complete a wunner, that
is, betore an acknowledgment can be sent back to
the clerk indicating that the wunner was successtul,
the server must make two guarantecs:

1. All parts of the wunner are stably stored in the log
so that the entire wunner is persistent in the event
ofa system failure.

2. All dara items described by the wunner are visible to

subscquent read requests.

The wunner is made persistent by writing cach data
item to the log. Each dara item is tagged with a log
record that identifics its corresponding file space
address. This allows the data to be recovered in the
cvenrota system failure. All individual writes are made
as part ofa single compound atomic operation (CAQ).
This method is provided by the LD faver to bracket
a scr of writes that must be recovered as an atomic

unit. Once all the writes for the wunner have been

Digital Technical Journal Vol.&§ No.2 1996

issued to the log, the mapping laver instructs the LD
layer to end (or commit) the CAO.

The wunner can be made visible to subsequent read
operations by updating the B-tree to reflect the loca-
tion of the new data. Unfortunately, this would causc
writes to incur a significant latency since updating the
B-tree involves traversing the B-tree and potentially
reading B-tree nodes into memory from the log.
Instead, the server completes a write operation before
the B-tree is updated. By doing this, however, it must
rake additional steps to ensurce that the datais visible to
subscquent read requests.

Before completing the wunner, the mapping layer
queues the B-tree updates resulting from writing the
wwunner to the same FIFO work queue as read requests.
Allitems are queuced atomically, that is, no other read
or write operation can be interleaved with the individ-
ual wunner updates. In this way, the ordering between
the writes making up the wunner and subsequent read
or write opcerations is maintained. Work cannot begin
on a subsequent read request until work has started on
the B-tree updates ahead ofitin the queue.

Once the B-tree updates have been queued to the
server work queue and the mapping laver has been
notified that the CAO for the writes has committed,
both of the guarantees that the server gives on write
completion hold. The data is persistent, and the writes
are visible to subscquent operations; therefore, the
server can send an acknowledgment back to the clerk.

Updating the B-tree

The worker thread processes a B-tree update request
in much the same way as a read request. The updarte
request traverses the B-tree until either it reaches the
node that maps the appropriate part of the file address
space, or it fails to find a node in memory.

Once the leafnode is reached, it is updated to point at
the location of the dara in the log (it the data is to be
stored directly in the node, the data is copied into the
node). The node is now dirtv in memory and must
be written to the log at some point. Rather than writing
the node immediately, the mapping laver writes a log
record describing the change, locks the node into the
cache, and places a flush operation tor the node to
the mapping layer’s tlush queue. The flush operation
describes the location of the node in the tee and
records the need to write it to the log at some point
in the future.

If, on its way to the leat node, the write operation
reaches a node that is not - memory, the worker
thread arranges for it to be read trom the log and the
write operation is placed on a pending queue as with a
read operation. Because the write has been acknowl-
edged to the clerk, the new dara must be visible to sub
sequent read operations even though the B-tree has
pot been updated fullv. This is achieved by attaching
an in-memory record ofthe update to the node that is

being read. If'a rcad operation reaches the node with
records of stalled updates, it must check whether any
of these records contains data that should be returned.
The record contains either a pointer to the data in the
log or the actual data itself. It a rcad operation finds
a record that can satisty all or part of the request, the
read request uses the information in the record to
tetch the data. This preserves the guarantee that the
clerk must see all data tor which the write request has
been acknowledged.

Once the node s read in from the log, the stalled
updates are restarted. Each update removes its log
record from the node and recommences traversing the
B-tree from that point.

Writing B-tree Nodes to the Log

Writing nodes consumes bandwidth to the disk that
might otherwise be used for writing or reading user
data, so the server tries to avoid doing so until
absolutely necessary. Two conditions make it neces-
sary to begin writing nodes:

1. There are a large number of dirty nodes in the
cache.

2. A checkpointisin progress.

In the first condition, most of the memory available
to the server has been given over to nodes that are
locked in memory and waiting to be written to the
log. Read and update operations begin to back up,
waiting tor available memory to store nodes. In the
second condition, the LD has requested a checkpoint
in order to bound recovery time (see the section
Checkpointing later in this paper).

When cither of these conditions occurs, the mapping
layer switches into flush mode, during which it only
writes nodes, until the condition is changed. In flush
mode, the worker thread processes flush operations
from the mapping layer’s flush queue in depth order,
that is, starting with the nodes turthest from the root
of the B-tree. For each flush operation, it traverses the
B-tree until it finds the target node and its parent. The
target node is identified by the keys it maps and its
level. The level ofa node is its distance from the leaf of
the B-tree (or subtree). Unlike its depth, which is its
distance from the root of the B-tree, a node’s level does
not change as the B-tree grows and shrinks.

Once it has reached its destination, the tlush opcra-
tion writes out the target node and updates the parent
with the new log address. The moditfications made to
the parent node by the flush operation are analogous
to those made to a leaf node by an update operation.
In this way, a moditication to a lcat node eventually
works its way to the root of the B-tree, causing cach
node in its path to be rewritten to the log over time.
Writing dirty nodes only when necessary and then in
deepest first order minimizes the number of nodes

written to the log and increases the average number of
changes thatare reflected in ecach node written,

Log Driver

The log driver is responsible tor creating the illusion of
a semj-infinite sequential log on top of a physical disk.
The entire history of the file system is recorded in the
updates made to the log, but only those parts of
the log that describe its current or live state need to
be persistently stored on the disk. As files are overwrit-
ten or deleted, the parts of the log that contain the
previous contents become obsolete.

Segments and the Segment Array

To make the management of free space more straight-
forward, the log is divided into scctions called
segments. In the Spiralog file system, segments are
256 KB. Segments in the log are identified by their seg-
ment identifier (SEGID). SEGIDs increase monotoni-
cally and are never reused. Segments in the log that
contain live data are mapped to physical, segment-sized
locations or slots on the disk that are identitied by their
scgment number (SEGNUM) as shown in Figure 6.
The mapping between SEGID and SEGNUM is main-
tained by the segment array. The segment array also
tracks which parts of each mapped segment contain live
data. This information is used by the cleaner.

The LD interface layer contains a segment switch
that allows segments to be fetched trom a location
other than the disk.'® The backup function on the
Spiralog file system uses this mechanism to restore files
contained in segments held on backup media. Figure 7
shows the LD layer.

LOG GROWS

SEQUENTIAL LOG

SEGMENT ID 1| SEGMENT ID 2 [SEGMENT ID 3| SEGMENT ID 4

SEGNUM A SEGNUM B
SEGNUM C
SEGNUM D

S

PHYSICAL DISK

Figure 6
Mapping the Log onto the Disk

Digiral Technical Journal Vol.8 No.2 1996

21

LD LAYER INTERFACE

SEGHENIFARRAY ALTERNATE SOURCE

OF SEGMENTS
(SPIRALOG BACKUP)

SEGMENT WRITER

, l
=

DISK TAPE

Figure 7
Subcomponents of the LD Laver

The Segment Writer

The segment writer is responsible tor all 1/0s to the
log. It groups together writes it receives from the map-
ping layer into large, sequential I/0s where possible.
This mcreases write throughput, but at the potential
cost of increasing the latency of individual operations
when the disk is lightly loaded.

As shown in Figurce 8, the segment writer is respon-
sible for the internal organization of segments written
to the disk. Segments are divided into two sections, a
data arca and a much smaller commit record arca.
Writing a picce of data requires nwo opcerations to the
scgment at the tail of the log. First the data item is
written to the data area of the segment. Once this 1/0
has completed successtully, a record describing that
data is written to the commit record arca. Only when
the write to the commit record arca is complete can
the original request be considered stable.

DATA AREA

The need tortwo writes to disk (potentially, with a
rotational delay benwveen) to commit a single data
write is clearly a disadvantage. Normally, however, the
segment writer receives a set of related writes trom
the mapping layer which are tagged as part of a single
CAO. Since the mapping laver is interested in the com-
pletion of the whole CAO and not the writes within it,
the segment wrirer is able to buffer additions to the
commit records arca in memory and then write them
with a single 1/0. Under a normal write load, this
reduces the number of 1/Os tor a single data write to
very close to one.

The boundary benwveen the commit record arca and
the data arca is fixed. Inevitably, this wastes space in
cither the commit record area or data areawhen the
other fills. Choosing a sizc for the commit record arca
that minimizes this waste requires some carc. After
analysis of segments that had been subjected to a typi-
cal OpenVMS load, we chose 24 KB as the value for
the commit record area.

This segment organization permits the segment
writer to have complete control over the contents of
the commit record arca, which allows the segment
writer to accomplish two important recovery tasks:

s Detect the end of the log

» Detect multiblock write failure

When physical segments are reused to extend the
log, they arc not scrubbed and their commit record
areas contain stale (but comprehensible) records. The
recovery manager must distinguish between records
belonging to the current and the previous incarnation
of the physical slot. To achieve this, the segment writer
writes a sequence number into a specific byte in every
block written to the commit record area. The original
contents of the “stolen” bytes are stored within the
record being written. The sequence number used for

COMMIT RECORD AREA

=
]

USER DATA OR B-TREE NODE

COMMIT RECORD

0= 1
]
|

SINGLE /O OPERATION

Figure 8
Organization of a Segment

Digiral Technical Journal Vol. 8 No.2 1996

a segment is an attribute of the physical slot that is
assigned to it. The sequence number for a physical slot
is incremented each time the slot is rcused, allowing
the recovery manager to detect blocks that do not
belong to the segment stored in the physical slot.
The cost of resubstituting the stolen bytes is incurred
only during recovery and cleaning, because this is
the only time that the commit record area is read.

In hindsight, the partitioning of segments into data
and commit areas was probably a mistake. A layout
that intermingles the data and commit records and that
allows them to be written in one 1/0 would offer bet-
ter latency at low throughput. If combined with careful
writing, command tag queuing, and other optimiza-
tions becoming more prevalent in disk hardware and
controllers, such an on-disk structure could offer sig-
nificant improvements in latency and throughput.

Cleaner

The cleaner’s job is to turn free space in segments in
the log into empty, unassigned physical slots that can
be used to extend the log. Areas of free space appear in
segments when the corresponding data decays; that is,
itis either deleted or replaced.

The cleaner rewrites the live data contained in par-
tially full segments. Essentially, the cleaner forces the
segments to decay completely. If the rate at which data
is written to the log matches the rate at which it is
deleted, segments eventually become empty of their
own accord. When the log is tull (fullness depends on
the distribution of file longevity), it is necessary to
proactively clean segments. As the cleaner continues
to consume more of the disk bandwidth, performance
can be expected to decline. Our design goal was that
performance should be maintained up to a point at
which the log is 85 percent full. Beyond this, it was
acceptable for performance to degrade significantly.

Bytes Die Young

Recently written data is more likely to decay than old
data."" Scgments that were written a short time ago
are likely to decay turther, after which the cost of
cleaning them will be less. In our design, the cleaner
selects candidate segments that were written some
time ago and are more likely to have undergone this
initial decay.

Mixing data cleaned from older segments with data
from the current stream of new writes is likely to pro-
duce a segment that will need to be cleaned again once
the new data has undergone its initial decay. To avoid
mixing cleaned data and data from the current write
stream, the cleaner builds its output segments sepa-
rately and then passes them to the LD to be threadedin
at the tail of the log. This has two important benefits:

® The recovery information in the output segment is
minimal, consisting only of the self-describing tags
on the data. As a result, the cleancr is unlikely to
waste space in the data area by virtue of having filled
the commit record area.

= By constructing the output segment oft-line, the
cleaner has as much time as it needs to look tor data
chunks that best fill the segment.

Remapping the Output Segment

The data items contained in the cleaner’s output scg-
ment receive new addresses. The cleaner informs the
mapping layer of the change of location by submitting
B-tree update operation for each piece of data it
copied. The mapping layer handles this update opera-
tion in much the same way as it would a normal over-
write. This update does have one special property:
the cleaner writes are conditional. In other words, the
mapping layer will update the B-tree to point to
the copy created by the cleaner as long as no change
has been made to the data since the cleaner took its
copy. This allows the cleaner to work asynchronously
to file system activity and avoids any locking protocol
between the cleaner and any other part of the Spiralog
file system.

To avoid modifying the mapping layer directly, the
cleaner does not copy B-tree nodes to its output seg-
ment. Instead, it requests the mapping layer to flush
the nodes that occur inits input segments (i.e., rewrite
them to the tail of the log). This also avoids wasting
space in the cleaner output segment on nodes that
map data in the cleaner’s input segments. These nodes
are guaranteed to decay as soon as the cleaner’s B-tree
updates are processed.

Figure 9 shows how the cleaner constructs an output
segment from a number of input segments. The cleaner
keeps selecting input segments until either the output
segment is full, or there are no more input segments.
Figure 9 also shows the set of operations that are gener-
ated by the cleaner. In this example, the output segment
is filled with the contents of two full segments and part
of a third segment. This will cause the third input seg-
ment to decay still further, and the remaining data and
B-tree nodes will be cleaned when that segment is
selected to create another output scgment.

Cleaner Policies

A set of heuristics governs the cleaner’s operation.
One of our fundamental design decisions was to sepa-
rate the cleaner policies from the mechanisms that
implement them.

When to clean?
Our design explicitly avoids cleaning until it is
required. This design appears to be a good match for

Digital Technical Journal Vol.8 No.2 1996

23

SECHENTS E.L____: 2 || i|f[nooEA||D3 | '1_} o5 | [noDEB
~ N | 7
S A N ! 4
I CLEANER |
~ N — }
/
> ~ A AN ! 2
~ 1
oureur | [on] [Coz |
SEGMENT m
ey OPERATIONS SUBMITTED TO MAPPING LAYER
cLean || ciean || Fuse | cLean |] o can
B-TREE NODE D1 D2 NODE A | | D3

D LIVE DATA
r——m
I ! SUPERSEDED DATA
B es o)
CLEAN
DATA 1| B TREEUPDATE REQUEST
Figure 9

Cleaner Operartion

a workload on the OpenVMS system. On our time-
sharing system, the cleaner was entirely inactive tor the
first three months of 1996; although segments were
used and reused repeatedly, they always decayed
entirely to empty of their own accord. The trade-oft
n avoiding cleaning is that although performancc is
improved (no cleaner activity), the size of the full
savesnaps created by backup is increased. This is
because backup copies whole scgments, regardless of
how much live datathey contain.

When rhe cleaner is not running, the live datain the
volume tends to be distributed across a large number of
partially full scgments. To avoid this problem, we have
added a control to allow the system manager to manu-
ally start and stop the cleaner. Forcing the cleancer to
run before pertorming a full backup compacts the live
data in the log and reduces the size of the savesnap.

In normal opcration, the cleaner will start cleaning
when the number of free segments available to extend
the log falls below a fixed threshold (300 in the cur-
rent implementation). In making this calculation, the
cleaner rakes into account the amount of space in
the log that will be consumed by writing data currently
held in the clerks’ write-behind caches. Thus, accepting
data into the cache causes the cleaner to “clear the way”
tor the subsequent write request from the clerk.

When the cleaner starts, it is possible that the
amount of live data in the log is approaching
the capacity of the underlying disk, so the cleaner may
find nothing to do. It is more likely, however, that
there will be free space it can reclaim. Because the
cleaner works by forcing the data in its input segments

Digiral Technical Journal Vol. 8 No.2 1996

to decay by rewriting, it is important that it begins
work while free segments are available. Dcelaving the
decision to start cleaning could result in the cleaner
being unable to proceed.

A fixed number was chosen tor the cleaning thresh-
old rather than one based on thesize ofthe disk. The
size of the disk does not atfect the urgency of cleaning
atany particular point in time. A more effective indica-
tor ot urgency is the time taken tor the disk ro fill at the
maximum rate of writing. Writing to the Jog at 10 MB
per seccond will use 300 segments in about 8 scconds.
With hindsight, we realize that a threshold based on a
measurement of the speed of the disk might have been
amorc appropriate choice.

Input Segment Selection
The cleaner divides segments into four distinct groups:

I. Empty. Thesesegments contain no live data and are
available to the LD to extend the log.

2. Noncleanable. These segments are not candidates
for cleaning tor onc of two reasons:

= The segment contains information that would
be required by the recovery manager in the event
of a system failure. Segments in this group arc
always close to the tail of the log and theretore
likely to undergo further decay, making them
poor candidates for clcaning.

s Thesegmentispartofasnapshot.* The snapshot
represents a reference to the segment, so it can-
not bereused even though it may no longer con-
tain live dara.

w

. Preferred noncleanable. These scgments have
recently experienced some natural decay. The sup-
position is that they may decay further in the near
future and so are not good candidates for cleaning.

4. Cleanable. These segments have not decayed tor
some time. Their stability makes them good candi-
dates for cleaning.

The transitions between the groups are illustrated in
Figure 10. It should be noted that the cleaner itself
does not have to execute to transter segments into the
empty state.

The cleaner’s job is to fill output segments, not to
empty input segments. Once it has been started, the
cleaner works to entirely fill one segment. When that
segment has been filled, it is threaded into the log;
it appropriate, the cleaner will then repeat the process
with a new output segment and a new set of input
segments. The cleaner will commit a partially full
output segment only under circumstances of extreme
resource depletion.

The cleaner fills the output segment by copying
chunks of data forward from segiments taken from the
cleanable group. The members of this group are held
on a list sorted in order of emptiness. Thus, the first
cleaner cycle will always cause the greatest number of
segments to decay. As the output segment fills, the
smallest chunk of data in the segment at the head of
the cleanable list may be larger than the space left in
the output segment. In this case, the cleaner performs
a limited scarch down the cleanable list for segments
containing a suitable chunk. The required information
is kept in memory, so this is a reasonably cheap opera-
tion. As each input segment is processed, the cleaner

USER
WRITES

DECAY
TO EMPTY

CHECKPOINT/
SNAPSHOT
DELETION

NONCLEANABLE

SNAPSHOT
CREATION

temporarily removes it from the cleanable list. This
allows the mapping layer to process the operations the
cleaner submitted to it and thereby cause decay
to occur before the cleaner again considers the seg-
ment as a candidate for cleaning. As the volume fills,
the ratio between the number of segments in the
cleanable and preferred noncleanable groups is
adjusted so that the size of the preferred noncleanable
group is reduced and segments are inserted into the
cleanable list. If appropriate, a segment in the clean-
able list that experiences decay will be moved to the
preferred noncleanable list. The preferred nonclean-
able list is kept in order of least recently decayed.
Hence, as it is emptied, the segments that are least
likely to experience further decay are moved to the
cleanable group.

Recovery

The goal of recovery ofany file system is to rebuild the
file system state after a system failure. This section
describes how the server reconstructs state, both in
memory andin the log. It then describes checkpoint-
ing, the mechanism by which the server bounds the
amount of time it takes to recover the file system state.

Recovery Process
In normal operation, a single update to the server can
be viewed as several stages:

1. The user data is written to the log. [t is tagged with
a self-identitying record that describes its position in
the file address space. A B-tree update operation is
generated that drives stage 2 of the update process.

CLEANER
OUTPUT
SEGMENT

UNDER
CONSTRUCTION

CLEANER
COMMIT

CHECKPOINT/
SNAPSHOT
DELETION

PREFERRED

CLEANABLE

~ CLEANER POLICY/
SEGMENT DECAY

NONCLEANABLE

Figure 10
Segment States

Digital Technical Jeurnal Vel.8 Ne.2 1996

25

2. The leat nodes of the B-tree are modified in mem-
ory, and corresponding change records are written
to the log to reflect the position of the new data.
A flush operation is generated and queued and then
starts stage 3.

3. The B-tree is written out level by level until the root
node has been rewritten. As one node is written to
the log, the parent of that node must be modified,
and a corresponding change record is written to the
log. As a parent node is changed, a further flush
operation is generated for the parent node and so
on up to the root node.

Stage 2 of this process, logging changes to the leaf
nodes of the B-tree, is actually redundant. The self-
identitying tags that are written with the user data are
sufficient to act as change records for the leaf nodes of
the B-tree. When we started to design the server, we
chosc a simple implementation based on physiological

write-ahead logging.” As time progressed, we moved
more toward operational logging.” The records writ-
ten in stage 2 arc a holdover tfrom the carlier imple-
mentation, which we may remove in a futurc rclease of
the Spiralog tile system.

At cach stage of the process, a change record is writ-
ten to the log and an in-memory operation is generated
to drive the update through the next stage. In effect,
the change record describes the set of changes made
to an in-memory copy of a node and an in-memory
operation associated with that change.

Figure 11 shows the log and the in-memory work
queue at cach stage of a write request. The B-tree
describing the file system state consists of three nodes:
A, B, and C. A wunner, consisting of a single data
write 1s accepted by the server. The write request
requires that both leat nodes A and B are moditied.
Stage 1 starts with an empty log and a write request tor
Darta 1.

8-TREE
oG —m———
WORK QUEUE
STAGE 1
WRITE
REQUEST
DATA 1
o —m—m—@
WORK QUEUE
STAGE 2:
TAG | B-TREE
UPDATE
DATA 1 DATA 1
oG —m—m—mMmM8M8M8MmMm ——»
STAGE 3: WORK QUEUE
TAG CHANGE | | CHANGE I__
FLUSH FLUSH
RECORD RECORD REQUEST —‘ REQUEST
DATA 1
NODEA HODED NODE A NODE B
LoG —mmM8 —»
WORK QUEUE
TAG CHANGE | | CHANGE CHANGE -
- NODE A ’_ FLUSH FLUSH
RECORD | | RECORD RECORD S Lol
DATA 1 E
NODE A || NODE 8 NODE C SONER ——
LOG
WORK QUEUE
TAG CHANGE | | CHANGE CHANGE CHANGE
RECORD | | RECORD NODE A | | ReCORD NODEB | | Recorp | | FLUSH
REQUEST
DATA1 NODE A || NODE B NODE C NODE C
NODNE C
G —mMm8@™M
WORK QUEUE
TAG CHANGE | | CHANGE CHANGE CHANGE
RECORD | | RECORD NODEA | | RECORD NODEB | | ReCORD NODE C
DATA 1 NODE A | | NODE B NODE C NODE C —
Figure 11

Stages ofa Write Request

Digital Technical Journal Vol.8 No.2 1996

After a system failure, the server’s goal is to recon-
struct the file system state to the point of the last write
that was written to the log at the time of the crash.
This recovery process involves rebuilding, in memory,
those B-tree nodes that were dirty and generating any
operations that were outstanding when the system
failed. The outstanding operations can be scheduled in
the normal way to make the changes that they repre-
sent permanent, thus avoiding the need to recover
them in the event of a future system failure. The recov-
ery process itselt does not write to the log.

The mapping layer work queue and the flush lists
are rebuilt, and the nodes are fetched into memory by
reading the sequential log from the recovery start
position (see the section Checkpointing) to the end of
the log in a single pass.

The B-tree update operations are regenerated using
the selfidentitying tag that was written with cach
piece of data. When the recovery process finds a node,
acopy of the node is stored in memory. As log records
for node changes are read, they are attached to the
nodes in memory and a flush operation is generated
for the node. Ifa log record is read for a node that has
not yet been seen, the log record is attached to a place-
holder node that is marked as not-yet-seen. The recov-
ery process does not perform reads to tetch in nodes
that are not part of the recovery scan. Changes to
B-tree nodes are a consequence of operations that
happened earlier in the log; therefore, a B-tree node

log record has the effect of committing a prior modifi-
cation. Recovery uses this fact to throw away update
operations that have been committed; they no longer
need to be applied.

Figure 12 shows a log with change records and
B-tree nodes along with the in-memory state of the
B-tree node cache and the operations that are regener-
ated. In this example, change record 1 for node A is
superseded or committed by the new version of node A
(node A"). The new copy of node C (node C") super-
sedes change records 3 and 5. This example also shows
the eftect of finding a log record without seeing a copy
of the node during recovery. The log record for node B
is attached to an in-memory version of the node that is
marked as not-yet-seen. The data record with self-iden-
tifying tag Data 1 generates a B-tree update record that
is placed on the work queue for processing. As a final
pass, the recovery process generates the set of tlush
operations that was outstanding when the system failed.
The set of lush requests is defined as the set of nodes in
the B-tree node cache that has log records attached
when the recovery scan is complete. In this case, flush
operations for nodes A" and B are generated.

The server guarantees that a node is never written to
the log with uncommitted changes, which means that
we only need to log redo records.”'* In addition, when
we see a node during the recovery scan, any log
records that are attached to the previous version of the
node in memory can be discarded.

RECOVERY SCAN

CHANGE | [cHANGE || NODEA' | | CHANGE CHANGE | [CHANGE | | NODEC
RECORD 1| | RECORD 2 RECORD 3 RECORD 4 | | RECORD 5
NODEA | | NODEB NODE C DATA1 | [NODEA' | | NODEC
RECOVERY TAIL OF
START POSITION LOG
B-TREE NODE CACHE (AFTER RECOVERY SCAN)
. NODE B .
NODE A (NOT-YET-SEEN) NODEC
—| cHANGE — cHANGE
RECORD 4 RECORD 2
NODE A' NODE B

WORK QUEUE (AFTER RECOVERY)

| | B-TREE |~ | FLUSH

UPDATE REQUEST

DATA1 NODE A'

— | FLUSH

REQUEST
NODE B

Figure 12
Recovering a Log

Digital Technical Jeurnal Vel.8 Ne.2 1996

27

Opcrations generated during recovery are posted to
the work queues as they would be m normal running,
Normal operation is not allowed to begin until the
recovery pass has completed; however, when recovery
reaches the end of the log, the server is able to service
operations firom clerks. Thus new requests from the clerk
can be serviced, potentally in parallel with the operations
thatwere generated by the recovery process.

Log records are not applied to nodes during recov-
ery fora number ot reasons:

s Less processing time is needed to scan the log and
therefore the server can start servicing new user
requests sooner.

= Recovery will not have scen copics of all nodes tor
which it has log records. To apply the log records,
the B-tree node mwst be read trom the log. This
would result in random read requests during the
sequential scan of the log, and again would resultin a
Jonger period betore user requests could be serviced.

= There may be a copy of the node later in the recov-
cry scan. This would make the additional 1/0 oper-
ation redundant.

Checkpointing

As we have shown, recovering an LFS log is imple-
mented by a single-pass sequential scan of all records
in the log from the recovery start position to the tail of
the log. This section detines a recovery start position
and describes how it can be moved forward to reduce
the amount of log that has to be scanned to recover
the file system state.

To reconstruct the in-memory state when a system
crashed, recovery must see something in the log that
represents cach operation or change of state that was
represented in memory but not vet made stable. This
mcans that at time ¢ the rcecovery start position is
detined as a point in the log after which all operations
thatare not stably stored have a log record associated
with them. Operations obrain the association by scan-
ning the log sequentially from the beginning to the
end. The recovery position then becomes the start of
the log, which has two important problems:

1. In the worst case, it would be necessary to sequen-
tially scan the entire log to perform recovery. For
large disks, a sequential read of the entire log con-
sumes a great deal of time.

[3S]

. Recovery must process every log record written
berween the recovery start position and the end of
the Jog. As a consequence, scgments between the
start of recovery and the end of the log cannot be
cleaned and reused.

To restrict the amount of time to recover the log
and to allow scgments to be released by cleaning, the

Digiral Technical Journal Vol. 8 No.2 1996

recovery position must be moved forward trom time
to time, so that it is always close to the tail of the log.

Under anv workload, a number of outstanding oper-
ations are at various stages of completion. In other
words, there is no point in the log when all activity
has ceased. To overcome this problem, we use a tuzzy
checkpoint scheme.” In version 1.0 of the Spiralog tile
system, the server initiates a new checkpoint when
20 MB of data has been written since the previous
checkpoint started. The process cannot vet move the
recovery position forward in the log to the start of
the new checkpont, because some outstanding opera-
rions mav have priority. The mapping laver keeps track
of the operations that were started betore the check-
point was initiated. When the last of these operations
has moved to the next stage (as defined by the recovery
process), the mapping laver declares that the check-
point is complete. Only then can the recovery position
be moved forward to the point in the log where the
checkpoint was started.

With this scheme, the server docs not need to write
all the nodes in all paths in the B-tree between a dirty
node and the root node. All that is required in practice
is to write those nodes that have flush operations
queuced tor them at the time that the checkpoint is
started. Flushing these nodes causes change records
to be written tor their parent nodes after the start of
the checkpoint. As the recovery scan proceeds from
the start of the last completed checkpoin, it is able to
regencrate the tush operation on the parent nodes
from these change records.

We chose to base the checkpoint interval on the
amount of data written to the log rather than on
the amount of time to recover the log. We felt thar this
would be an accurate measure of how long it would
take to recovera particular log. In operation, we find
this works well on logs that experience a reasonable
write load; however, tor Jogs that predominantly ser-

vice read requests, the recovery time tends toward the
limit. In thesecases, it may be more appropriate to add
timer-based checkpoinrs.

Managing Free Space

A traditional, update-in-place file svstem overwrites
superseded data by writing to the same phvsical loca-
tion on disk. If; for example, a single block is continu-
ally overwritten by a file system client, no extra disk
space is required to store the block. In contrast, a log-
structured file system appends all modifications to the
file system to the il of the log. Every update to a sin-
gle block requires log space, not only for the data, but

also tor the log records and B-tree nodes required to
make the B-tree consistent. Although old copics of the
dara and B-tree nodes are marked as no longer live,
this free space is not immediatelv available for reusc; it
must be reclaimed by the cleaner. The goal is to ensure
that there is sufficient space in the log to write the

parts of the B-tree that are needed to make the file
system structures consistent. This means that we can
never have dirty B-tree nodes in memory that cannot
be flushed to thelog.

The server must carefully manage the amount of free
space in the log. It must provide two guarantees:

1. A write will be accepted by the scrver only if there is
sufficient free space in the log to hold the data and
rewrite the mapping B-tree to describe it. This guar-
antee must hold regardless of how much space the
cleaner may subsequently reclaim.

2. Atthe higherlevels of the file system, if an 1/0 oper-
ation is accepted, even if that operation is stored in
the write-behind cache, the data will be written to
the log. This guarantee holds except in the event of
asystem failure.

The server provides these guarantees using the same
mechanism. As shown in Figure 13, the free space and
the reserved space in the log are modeled using an
escrow function.'”

The total number of blocks that contain live, valid
data is maintained as the used space. When a write
operation is received, the server calculates the amount
of space in the log that is required to complete the
write and update the B-tree, based on the size of
the write and the current topology of the B-tree. The
calculation is generous because the B-tree is a dynamic
structure and the outcome of a single update has
unpredictable effects on it. Each clerk reserves space
for dirty data that it has stored in the write-behind
cache using the same mechanism.

To accept an operation and provide the required
guarantees, the server checks the current state of the
escrow function. If the guaranteed free space is sufti-
cient, the server accepts the operation. As operations
proceed, reserved space is converted to used space as
writes are performed. A single write operation may
affect several leaf nodes. As it becomes clear bow the
B-tree is changing, we can convert any unrequired
reserved space back to guaranteed free space.

If the cost of an operation exceeds the free space
irrespective of how the reserved space is converted, the

GROWS l RESERVED SPACE
GUARANTEED FREE | TOTAL
SuAR b DISK
SPACE
GROWS USED SPACE
Figure 13

Modeling Free Space

operation cannot be guaranteed to complete; there-
fore it is rejected. On the other hand, if the cost of the
operation is greater than the guaranteed free space (yet it
may fit in the log, depending on the outcome of the out-
standing operations), the server enters a “maybe” state.
For the server toleave the maybe state and return defini-
tive results, the escrow cost function must be collapsed.
This removes any uncertainty by decreasing the reserved
space figure, potentially to zero. Operations and unused
clerk reservations are drained so that reserved space is
converted to either used space or guaranteed free space.

This mechanism provides a fuzzy measure of how
much space is available in the log. When it is clear that
operations can succeed, they are allowed to continue.
If success is doubttul, the operation is held until a
definitive yes or no result can be determined. This
scheme of free space management is similar to the
method described in reference 7.

Future Directions

This section outlines some of the possibilities tor future
implementations of the Spiralog file system.

Hierarchical Storage Management

The Spiralog server distinguishes between the logical
position of a segment in the log and its physical location
on the media by means of the segment array. This map-
ping can be extended to cover a hierarchy of devices
with differing access characteristics, opening up the pos-
sibility of transparent data shelving. Since the unit of
migration is the segment, even large, sparsely used files
can benefit. Segments containing sections of the file not
held on the primary media can be retrieved from slower
storage as required. This is identical to the virtual mem-
ory paging concept.

For applications that require a complete history of
the file system, segments can be saved to archive media
betore being recycled by the cleaner. In principle, this
would make it possible to reconstruct the state of the
file system at any time.

Disk Mirroring (RAID 1) Improvements

When a mirrored set of disks is forcefully dismounted
with outstanding updates, such as when a system
crashes, rebuilding a consistent disk state can be an
expensive operation. A complete scan of the members
may be necessary because 1/0s may have been out-
standing to any part of the mirrored set.

Because the data on an LFS disk is temporally
ordered, making the members consistent following
a failure is much more straightforward. In eftect, an
LES allows the equivalent of the minimerge function-
ality provided by Volume Shadowing for OpenVMS,
without the need for hardware support such as /0
controller logging of operations.'

Digital Techmcal Journal Vol.8 No.2 1996

30

Compression

Adding file compression to an update-in-place file
system presents a particular problem: whatto do when
a data item is overwritten with a new version that does
not compress to the same size. Since all updates take
place at the tail of the log, an LFS avoids this problem
entirely. In addition, the amount of space consumed
by a dataitem is determined by its size and is notinflu-
enced by the cluster size of the disk. For this reason, an
LEFS does not need to employ file compaction to make
efficient use of large disks or RAID sets."

Future Improvements

The existing 1mplementation can be improved in a
number of areas, many of which involve resource con-
sumption. The B-tree mapping mechanism, although
general and flexible, has high CPU overheads and
requires complex recovery algorithms. The segment
layout needs to be revisited to remove the need for seri-
alized 1/0s when committing wiite operations and thus
further reduce the write latency.

For the Spiralog file system version 1.0, we chose to
keep complete information about live data and data that
was no longer valid for every segment in the log. This
mechanism allows us to reduce the overhead of the
cleaner; however, it does so at the expense of memory
and disk space and consequently does not scale well to
multi-terabyte disks.

AFinal Word

Log structuring is a relatively new and exciting tech-
nology. Building Digital’s first product using this
technology has been both a considerable challenge and
a great deal of fun. Our experience during the con-
struction of the Spiralog product has led us to believe
that LFS technology has an important rolc to play in
the future of file systems and storage management.

Acknowledgments

We would like to take this opportunity to acknowl-
edge the contributions of the many individuals who
helped during the design of the Spiralog server. Alan
Paxton was responsible for initial investigations into
LES technology and laid the foundation for our under-
standing. Mike Johnson made a significant contribu-
tion to the cleaner design and was a key member of the
team that built the final server. We are very grareful to
colleagues who reviewed the design at various stages,
in particular, Bill Laing, Dave Thiel, Andy Goldstein,
and Dave Lomet. Finally, we would like to thank Jim
Johnson and Cathy Foley for their continued loyalty,
enthusiasm, and direction during what has been a long
and sometimes hard journey.

Digital Technical Journal Vol. 8 No.2 1996

References

10.

I1.

12.

14.

15.

D. Gifford, R. Needham, and M. Schroeder, “The
Cedar File System,” Communications of the ACM,
vol. 31, no. 3 (March 1988).

S. Churanai, Q. Anderson, M. Kazar, and B. Leverctt,
“The Episode File System,” Proceedings of the Winter
1992 USENIX Technical Conference (January 1992).

M. Rosenblum, “The Design and Implementation of
a Log-Structured File System,” Report No. UCB/CSD
92/696, University of California, Berkeley (June
1992).

. J. Ousterhoutand F. Douglis, “Beating the I/0 Bottle-

neck: The Case for Log-Structured File Systems,”
Operating Systems Review (January 1989).

R. Green, A. Baird, and J. Davies, “Designing a Fast,
On-line Backup System for a Log-structured File Sys-
tem,” Digital Technical Journal, vol. 8, no. 2 (1996,
this issuc): 32-45.

J. Ousterhout et al., “A Comparison of Logging and
Clustering,” Computer Science Department, Univer-
sity of California, Berkeley (March 1994).

. M. Seltzer, K. Bostic, M. McKusick, and C. Staelin,

“An Implementation of a Log-Structured File System
for UNIX,” Proceedings of the Winter 1993 { SENIX
Technical Conference (January 1993).

M. Wiebrende Jounge, F. Kaashoek, and W.-C. Hsich,
“The Logical Disk: A New Approach to Improving
File Systems,” AC/VI SIGOPS 93 (December 1993).

J. Gray and A. Reuter, Transaction Processing: Con-
cepts and Techniques (San Mateo, Calif.: Morgan
Kaufman Publishers, 1993), ISBN 1-55860-190-2.

A. Birrell, A. Hisgen, C. Jerian, T. Mann, and G. Swart,
“The Echo Distributed File System,” Digital Systems
Research Center, Research Report 111 (September
1993).

J. Johnson and W. Laing, “Overview of the Spiralog
File System,” Digitcl Technical Journal, vol. 8, no. 2
(1996, this issue): 5-14.

A. Sweeney et al.,, “Scalability in the XFS File System,”
Proceedings of the Winter 1996 USENIX Technical
Conference (January 1996).

. J. Kohl, “Highlight: Using a Log-structured File

System for Tertiary Storage Management,” USENIX
Association Conference Proceedings (January 1993).

M. Baker et al., “Measurements of a Distributed File
System,” Symposium on Operating System Principles
(SOSP) 13 (October 1991).

J. Ousterhout et al., “A Trace-driven Analysis of the
UNIX 4.2 BSD File System,” Symposium on Operat=
ing System Principles (SOSP) 10 (December 1985).

16. D. Lomet and B. Salzberg, “Concurrency and Recov-
ery for Index Trecs,” Digital Cambridge Research
Laboratory, Technical Report (August 1991).

17. P. O’Neil, “The Escrow Transactional Model,”
ACM Transactions on Distributed Systems, vol. 11
(December 1986).

18. Volume Shadowing for Open VS AXP Version 6.1
(Maynard, Mass.: Digital Equipment Corp., 1994).

19. M. Burrows et al., “On-linc Data Compression in a
Log-structured File System,” Digital Systems Research
Center, Research Report 85 (April 1992).

Biographies

Christopher Whitaker

Chris Whitaker joined Digital in 1988 after receiving
aR.Sc. Eng. (honours, 15t-class) in computer science

from the Imperial College of Science and Technology,
University of London. He is a principal software engineer
with the OpenVMS File System Development Group
located near Edinburgh, Scotland. Chris was the team
Icader for the LFS server component of the Spiralog file
system. Prior to this, Chris worked on the distributed
transaction management services (DECdtm) for OpenVMS
and the port of the OpenVMS record management services
(RMS and RMS journaling) to Alpha.

J. Stuart Bayley

Stuart Bayley is a member of the OpenVMS File System
Development Group, located near Edinburgh, Scotland.
He joined Digital in 1990 and prior to becoming a member
of the Spiralog I.ES server team, worked on OpenVMS
DECdimm services and the OpenVMS XQP file system.
Stuart graduated from King’s College, University of
London, with a B.Sc. (honours) in physics in 1986.

Rod D. W. Widdowson

Rod Widdowson reccived a B.Sc. (1984) and aPh.D. (1987)
in computer science from Edinburgh University. He joined
Digital in 1990 and isa principal software engineer with the
OpenVMS File System Development Group located near
Edinburgh, Scotland. Rod worked on the implementation
of LFS and cluster disaribution components of the Spiralog
file system. Prior to this, Rod worked on the port of the
OpenVMS XQP file system to Alpha. Rod is a charter mem-
ber of the British Computer Socicty.

Digiral Technical Journal Vol.8 No.2 1996

31

32

Designing a Fast,
On-line Backup System
for a Log-structured
File System

The Spiralog file system for the OpenVMS
operating system incorporates a new tech-
nical approach to backing up data. The fast,
low-impact backup can be used to create
consistent copies of the file system while
applications are actively modifying data.
The Spiralog backup uses the log-structured
file system to solve the backup problem. The
physical on-disk structure allows data to be
saved at near-maximum device throughput
with little processing of data. The backup
system achieves this level of performance
without compromising functionality such as
incremental backup or fast, selective restore.

Digital Technical Journal Vol.§ No.2

1996

Russell J. Green
Alasdair C. Baird
J. Christopher Davies

Most computer users want to be able to recover data
lost through user error, software or media failure, or
site disaster but are unwilling to devote system
resources or downtime to make backup copics of the
data. Furthermore, with the rapid growth in the use of
dara storage and the tendency to move systems toward
complete utilizarion (i.e., 24-hour by 7-day opceration),
the practice of taking the system off line to back up
datais no longer feasible.

The Spiralog tile system, an optional component of
the OpenVMS Alpha operating system, incorporates
a new approach to the backup process (called
simply backup), resulting in a number of substantial
customer benefits. By exploiting the features of log-
structured storage, the backup system combines the
advantages of two different traditional approaches
to performing backup: the flexibility of file-based
backup and the high performance of phvsically ori-
ented backup.

The design goal for the Spiralog backup system was
to provide customers with a fast, application-consistent,
on-line backup. In this paper, we explain the teatures
of the Spiralog file system that helped achieve this goal
and outline the design of the major backup functions,
namely volume save, volume restore, file restore, and
incremental management. We then present some per-
formance results arrived at using Spiralog version 1.1,
The paper concludes with a discussion ot other design
approaches and areas for future work.

Background

File system data may be lost for many reasons, includ-

ing

= User error—A user may mistakenly delete data.

= Software failure—An application may cxccute
incorrectly.

= Media failure—The computing cquipment may
malfunction becausc of poor design, old age, cte.

= Site disaster—Computing facilitics may experience
failures in, tor example, the clectrical supply or cool-
ing systems. Also, environmental catastrophes such
as clectrical storms and floods mav damage tacilities.

The ability to save backup copies of all or part of
a file system’s information in a form that allows it to be
restored is essential to most customers who use com-
puting resources. To understand the backup capability
needed in the Spiralog file system, we spoke to a num-
ber of customers—five directly and several hundred
through public forums. Each ran a difterent type of sys-
tem in a distinct environment, ranging from research
and development to finance on OpenVMS and other
systems. Our survey revealed the following set of cus-
tomer requirements tor the Spiralog backup system:

1. Backup copies of data must be consistent with
respect to the applications that use the data.

2. Data must be continuously available to applica-
tions. Downtime for the purpose of backup is unac-
ceptable. An application must copy all data of
interest as it exists at an instant in time; however,
the application should also be allowed to modity
the data during the copying process. Performing
backup in such a way as to satisty these constraints is
often called hot backup or on-line backup. Figure 1
illustrates how data inconsistency can occur during
an on-line backup.

3. The backup operations, particularly the save opera-
tion, must be fast. That is, copying data from the
system or restoring data to the system must be
accomplished in the time available.

4. The backup system must allow an incremental
backup opcration, i.c., an opcration that captures
only the changes made to data since the last backup.

The Spiralog backup team sct out to design and
implement a backup system that would meet the four
customer requirements. The following scction dis-
cusses the teatures of the implementation of a log-
structured file system (LFS) that allowed us to use
a new approach to performing backup. Note that
throughout this paper we use disk to describe the

FILE BACKUP EXPLANATION

The initial file contains two blocks.

Backup starts and copies the first
TIME block.

The application rewrites the file.

Backup proceeds and copies the
second block. The resulting backup
copy is corrupt because the first
block is inconsistent with the latest
rewritten file.

Figure 1
Example of an On-line Backup That Results in Inconsistent
Data

physical media used to store data and wvolume 1o
describe the abstraction of the disk as presented by the
Spiralog file system.

Spiralog Features

The Spiralog file system is an implementation of a log-
structured file system. An LES is characterized by the
use of disk storage as a sequential, never-ending repos-
itory of data. We generally reter to this organization of
data as alog. Johnson and Laing describe in detail the
design of the Spiralog implementation of an LFS and
how files are maintained in this implementation.'
Some teatures unique to a Jog-structured file system
are of particular interest in the design of a backup
system.”™ These features are

= Segments, where a segment is the fundamental
unit of storage

= The no-overwrite nature of the system
= The temporal ordering of on-disk data structures

= The means by which files are constructed

This section of the paper discusses the relevance of
these features; a later section explains how these fea-
turcs arc exploited in the backup design.

Segments

In this paper, the term segment refers to a logical
entity that is uniquely identitied and never overwrit-
ten. This definition is distinct from the physical stor-
age of a segment. The only physical feature of interest
to backup with regard to segments is that they are ethi-
cient to read in their entirety.

Using log-structured storage in a file system allows
efficient writing irrespective of the write patterns or
load to the file system. All write opcrations arc
grouped in segment-sized chunks. The segment sizc is
chosen to be sufficiently large that the time required
to read or write the segment is significantly greater
than the time required to access the segment, i.¢., the
time required for a head seck and rotational delay on
a magnetic disk. All data (except the LES homeblock
and checkpoint information used to locate the end of
the data log) is stored in segments, and all scgments
are known to the file system. From a backup point of
view, this means that the entire contents of a volume
can be copied by reading the segments. The segments
are large enough to allow etficient reading, resulting in
a ncar-maximum transfer rate of the device.

No Overwrite

In alog-structured tile system, in which the segments
are never overwritten, all data is written to new, empty
segments. Each new segment is given a segment iden-
tifier (segid) allocated in a monotonically increasing

Digital Technical Journal Vol.8 No.2 1996

manner. At any point in time, the entire contents and
statc of a volume can be described mn terms of a (check-
point position, segment list) pair. At the physical level,
a volume consists ot a list of segments and a position
within a segment that defines the end of the log.
Rosenblum describes the concept of time travel, where
an old state of the file system can be revisited by creat-
ing and maintaining a snapshot of the file system tor
future access.* Allowing time travel in this way requires
maintaining an old checkpoint and disabling the reusc
of disk space by the cleaner. The cleaner is a mecha-
nism used to reclaim disk space occupied by obsolere
data in a log, i.c., disk space no longer referenced in
the file system. The contents of a snapshot arc inde-
pendent of operations undertaken on the live version
of the file system. Moditving or deleting a file aftects
only the hive version of the tile system (sce Figure 2).
Because of the no-overwrite nature of the LES, previ-
ouslvwritten data remains unchanged.

Orther mechanisms specific to a particular backup
algorithm have been developed to achieve on-line con-
sistency.” The snapshot model as described above allows
a more general solution with respect to multiple con-
current backups and the choice of the save algorithm.

A read-only version of the file svstem atan instant
m time is preciselv what is required tor application
consistency in on-line backup. This snapshot approach
to attaining consistency in on-line backup has been

used m other systems.®” As explained in the following
sections, the Spiralog file svstem combines the snap-
shot technique with features ot log-structured storage
to obtain both on-line backup consistency and pertor-
mance benefits for backup.

Temporal Ordering

As mentioned earlier, all dara, i.c., user data and file
system metadata (data that describes the user data in
the file system), is stored in scgments and there is no
overwrite of segments. All on-disk data structures that
refer to physical placement of data usc pointers,
namely (segicl, offset) pairs, to describe the location of
the data. Each (segid. offset) pair specitics the segment
and where within that segment the dara is stored.
Together, these imply the following two propertics of
dara structures, which are key features ofan LFS:

DIRECTION IN WHICH THE LOG IS WRITTEN

[

This data is This is new live
shared by the data written since
snapshot and the the snapshot was
live file system. laken.

This data is
visible to only
the snapshot.

Figure 2
Data Accessible to the Snapshot and to the Live File
Svstem

Digital Technical Journal Vol.8 No.2 1996

1. On-disk structurce pointers, namcly (segicd. offset)
pairs, arc relatively ime ordered. Specifically, data
stored at (52, 02) was written more recently than
data stored at (sl, ol) itand only if s2 is greater
than sl or s2 cquals sl and 02 is greater than ol.
Thus, new data would appcar to the right n the
data structure depicted in Figure 3.

2. Any darastructurce that uses on-disk pointers stored
within the segments (the mapping data structure
implementing the LFS index) must be time
ordered; that is, all pointers must refer to datawrit-
ten prior to the pointer. Referring again to Figure 3,
only dara structures that point to the left are valid.

These propertics of on-disk data structures are of
mterest when designing backup systems. Such data
structures can be traversed so that segments are read
in reverse time order. To undersrand this concept, con-
sider the root of some on-disk dara structure. This root
must have been written after any of the data to which
it refers (property 2). A data item that the root refer-
ences must have been written betore the root and so
must have been stored in a segment with a segid less
than or cqual ro that of the segment in which the root
is stored (propertv 1), A similar inductive argument can
be used to show that any on-disk data structure can be
traversed using a single pass of segments in increasing
segment age, i.c., decreasing segid. This is of particular
mterest when considering how to recover selective
picces of data (c.g., individual files) from an on-disk
structure that has been stored in such a way that only
scquential access is viable. The storage ot the segments
that compose a volume on tape as part ot a backup is an
example of suchan on-disk data structure.

File Construction

Whitaker, Bavley, and Widdowson describe the persis-
tent address space as exported by the Spiralog LES X
Essentially, the interface presented by the log-
structured serveris that ot memory (various read and
write operations) indexed using a file idenrifier and an
address range. The entire contents of a file, regardless
¢ identifier and all

of type or size, are defined by the fi
possible addresses built using that idenrifier.

This mcans of file construction is important when
considering how to restore the contents of a file. All

All pointers specify
previously written segments.

V1]

[s | s2 | s3

bt ' |

DIRECTION IN WHICH THE LOG IS WRITTEN

Figure 3
A Valid Data Structure in the Log

data contained in a file defined by a file identifier can be
recovered, independent of how the file was created,
without any knowledge of the file system structure.
Consequently, together with the temporal ordering of
data in an LES, files can be recovered using an ordered
linear scan of the segments of'a volume, provided the
on-disk data structurcs are traversed correctly. This
mechanism allows efficient file restore trom a sequence
of segments. In particular, a set of files can be restored
in a single pass of'a saved volume stored on tape.

Existing Approaches to Backup

The design of the Spiralog backup attempts to com-
bine the advantages of file-based backup tools such as
Files-11 backup, UNIX tar, and Windows NT backup,
and physical backup tools such as UNIX dd, Files-11
backup /PHYSICAL,, and HSC backup (a controller-
based backup tor OpenVMS volumes).”

File-based Backup

A file-based backup system has two main advantages:
(1) the system can explicitly name files to be saved, and
(2) the system can restore individual files. In this paper,
the file or structure that contains the output data of
a backup save operation is called a saveset. Individual
file restore is achieved by scanning a saveset for the file
and then recrcating the file using the saved contents.
Incremental tile-based backup usually entails keeping
arccord of when the last backup was made (eitherona
per-file basis or on a per-volume basis) and copying
only thosc files and directories that have been created
or modified since a previous backup time.

The penalty associated with these features of a file-
based backup system is that of save performance.
In ettect, the backup system performs a considerable
amount of work to lay out data in the saveset to allow
simple restore. All files are segregated to a much greater
extent than they are in the file system on-disk struc-
ture. The limiting factor in the performance of a file-
based save operation is the rate at which dara can be
read from the source disk. Although there are some
ways to improve performance, in the case of a volume
that has a large number of files, read performance is
always costly. Figure 4 illustrates the layouts of three
different types of savesets.

Physical Backup

In contrast to the file-based approach to backup, a
physical backup system copics the actual blocks of data
on the source disk to a saveset. The backup system is
able to read the disk optimally, which allows an imple-
mentation to achieve data throughput near the disk’s
maximum transter rate. Physical backups typically
allow neither individual file restore nor incremental

DIRECTION IN WHICH THE TAPE IS WRITTEN

|1|2|3|4—|5|6|7|8|9|10|11

In a physical backup saveset, blocks are laid out contiguously on tape.
File restore is not possible without random access.

[e FILE 2 FILE 3

In a file backup saveset, files are laid out contiguously on tape.
To create this sort of saveset, files need to be read individually
from disk, which generally means suboptimal disk access.

| om | sect | sec | sec | seo

In a Spiralog backup saveset, directory (DIR) and segment table
(SEGT) allow file restore from segments. Segments are large
enough to allow near-optimal disk access.

Figure 4
Layouts of Three Difterent Types of Saveser

backup. The overhead required to include sufticient
information for these fcatures usually erodes the per-
formance benefits offered by the physical copy. In
addition, a physical backup usually requires that the
entire volume be saved regardless of how much of the
volume is usced to store data.

How Spiralog Backup Exploits the LFS

Spiralog backup uses the snapshot mcchanism to
achieve on-line consistency for backup. This section
describes how Spiralog attains high-performance
backup with respcct to the various save and restore
operations.

Volume Save Operation

The save operation of Spiralog creates a snapshot and
then physically copies it to a tape or disk structure
called a savesnap. (This term is chosen to be difterent
from saveset to emphasize that it holds a consistent
snapshot of the data.) This physical copy opcration
allows high-performance data transter with minimal
processing.' In addition, the temporal ordering of
data stored by Spiralog means that this physical copy
operation can also be an incremental operation.

The savesnap is a file that contains, among other
information, a list of segments cxactly as they exist
in the log. The structure of the savesnap allows the
cfficient implementation of volume restore and file
restore (see Figure 5 and Figurc 6).

The steps of a full save operation arc as follows:

1. Create a snapshot and mount it. This mounted
snapshot looks like a separate, read-only file system.
Read information about the snapshot.

Digital Technical Journal Vol. 8 No.2 1996

METADATA

SEGMENTS (DECREASING SEGID)

HEADER

SEGMENT
TABLE

KEY:

-------------- PHYSICAL SAVESNAP
RECORD (FIXED SIZE FOR

_______________ ENTIRE SAVESNAP)

H ZERO PADDING

SP SAVESNAP INFORMATION
ST SNAPSHOT INFORMATION

Figure 5

Savesnap Structure

THE LOG TAIL OF THE LOG

[101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 |

ROOT OF THE
SNAPSHOT

DIRECTION IN WHICH THE LOG IS WRITTEN

SAVESNAP

[105 | 104 | 102 | 101 |

DIRECTION IN WHICH
THE TAPE IS WRITTEN

KEY:
UNUSED SEGMENT

[] useD SEGMENT

Figure 6
Correspondence berween Segments on Disk and in the
Savesnap

2. Write the header to the savesnap, including snap-

shor information such as the checkpoint position.

3. Copy the contents ofthe file system directories to

the savesnap.

4. Write the list of segids that composce the snapshot
to the savesnap as a scgment table in decreasing
segid order.

. Copy these segments in decreasing segid order
from the volume to the savesnap (sce Figure 6).

(92}

6. Dismount and dclere the snapshor, leaving only the

contents ofthe live volume accessible. The cffect of

deleting the snapshot is to release all the space used
to store segments that contain only snapshot darta.
All scgments that contain dara n the live volume
arc left inract.

Digital Technical Journal Vol.8 No. 2 1996

The Spiralog backup svstem is primarily physical.
The svstem copies the volume (snapshot) data in
segments that are Jarge cnough to allow cthicient
disk reading, regardless of the number of tiles in the
volume. To save a volume, the Spiralog backup svs-
tem has to read all the directories in the volume and
then all the segments. In comparison, a file-based
backup system must read all the directories and then
all the files. On volumes with large tile populations,
file-based backup performance suftfers greatly as a
result of the number of read operations required to
save the volume. Our measurements showed that the
directory-gathering phasce ot our copy operation was
insignificant in relaton to the data transter during the
scgment copy phasc.

Incremental Save Operation

The incremental save opceration in Spiralog is very
different from that in a file-based backup. We use the
temporal ordering feature of the LES to caprure only
the changes in a volume’s dara as part of the incremen-
tal save. The temporal ordering provides a simple wav
of determining the relative age ot data. To be precise,
data m the segment with segid s2 must have been writ-
ten after data in the segment with segid s1 ifand only
it's2 is greater than s1.

Consider the lifetime of a volume as an endless
scquence of segments. A backup copy of a volume at
any time 1s a copy of all scgments that contain data
accessible in that volume. Segments m the volume’s
history that are not included in the backup copy are
those that no longer contain any usctul data or those
that have been cleaned. An ncremental backup con-
rains the sequence of segments containing accessible
data written since a previous backup.

This is difterent from an incremental save operation
in a tile-based backup scheme. The Spiralog incremen-
tal save opceration copics onlv the data writren since
the last backup. In comparison, a tile-based backup

incremental save comprises entire files that contain
new or modified data. For example, consider an incre-
mental save of a volume in which a large databasc hile
has had only one record updated in place since a full
backup. Spiralog’s incremental save copies the seg-
ments written since the last full backup that contain
the moditied record with other updated file system
index data. A file-based backup copies the entire data-
basc fi

The following steps tor the incremental save opera-
tion augment the six process steps previously
described for the save operation. Note that steps 3a,
4a, and 5a follow steps 3, 4, and 5, respectively.

(&5

3a. Write dependent savesnap information. This is a
list of the savesnaps required to complete the
chain of segments that constitutes the entire snap-
shot contents. The savesnap information includes
a unique savesnap identitier (volume id, segment
icl. segment offset). This is the checkpoint position
of the snapshot and is unique across volumcs.

4a. Dcrermine the segment range to be stored in this
savesnap. This range is calculated bv reading the
scgment range of the last backup trom a file stored

on the source volume.

5a. Record the minimum segid stored in this save-
snap with the scgment table. The segment table
contains the segids of all segments in the saved
snapshot. The incremental savesnap contains
scgments identificd by a subset of these segids.
The segid ot the last segment stored in the save-
snap is recorded as the minimum segid held in the
savesnap.

7. Record on the source volume the segment range
stored in the savesnap.

The implementation provides an interface that
allows the uscer to specity the maximum number of
savesnaps required for a restore operation. This feature
is similar to specifving the levels in the UNIX dump

Wednesday|1|3|4|5|7|

utility, where a level 0 save is a full backup (it requires
no other savesnaps for a restore), and a level 1 save
is an incremental backup since the full backup (it
requires one additional savesnap for a restore, namely
the full backup).

Figurc 7 shows the savesnaps produced trom
full and incremental save operations. Note that the
Most recently written segment may appear in two
difterent savesnaps that supposedly contain disjoint
data. For example, segment 4, the youngest scgment
in Monday’s savesnap, appears in the savesnaps made
on both Monday and Wednesday. The youngest scg-
ment is not guaranteed to be full at the time of a snap-
shot creation, and therefore a later savesnap may
contain data that was not in the frst savesnap.
Conscquently, incremental savesnaps recapture the
oldest scgmentin their segment range.

Note that with this design a slowly changing file
can be spread across many incremental savesnaps.
Restoring such a file accordingly mayv require access
to many savesnaps. The file restore section shows that
the design of file restore allows efticient tape traversal
tor these files.

Volume Restore Operation

The Spiralog backup volume restore operation takes a
sct of savesnaps and copies the segments that make up
a smapshot onto a disk. Together, this sct of scgments
and the location of the snapshot checkpoint define
avolume. The steps involved in a volume restore from
a tull savesnap arc

1. Open the savesnap, and read the snapshot check-
point position from the savesnap header.

2. Initalize the rarget disk to be a Spiralog volume.

w

. Copy all segments from the savesnap to the tar-
get disk. Note that the segments written to the
target disk do not depend in any wav on the tar-
get disk geometrv. This means that the targer disk
may be completelv ditterent trom the source

SAVESNAPS
Full save on

Monday

Wednesday
since Monday

Friday | 1 |

[« [s]7]

KR

Friday since
Wednesday

Figure 7
Snapshor Contents in Incremental Savesnaps

Digital Technical Journal Vol.8 No.2 1996

37

38

disk from which the savesnap was made, providing
the rarger container is large cnough to hold the
restored segments.

4. Backup declares the volume restore as complete
(no more segments will be written to the volume).
Backup tells the file system how to mount the vol-
ume by supplying the snapshort checkpoint locaton.

A Spiralog restore operation treats an incremental
savesnap and all the preceding savesnaps upon which it
depends asa single savesnap. For savesnaps other than
the most recent savesnap (the base savesnap), the
snapshot information and direcrory information arce
ignored. The sole purpose of these savesnaps is to pro-
vide segments to the base savesnap.

To restore a volume from a set of incremental save-
snaps, the Spiralog backup system pertorms steps 1
and 2 using the basc savesnap. In step 3, the restore
copics all the segments in the snapshot detined by
the base savesnap to the target disk. (Note that there
is a onc-to-one correspondence between snapshots
and savesnaps.) The savesnaps are processed in reverse
chronological order. The contents of the segment
table in the base savesnap define the list of segments in
the snapshot to be restored. Although the volume
restore operation copies all the segments in the base
savesnap, not all segments in the savesnaps processed
mav be required. Savesnaps are included in the restore
process if they contain some segments that are needed.
Such savesnaps may also contain segments that were
cleaned betore the base savesnap was created.

The structure of the savesnap allows the ethcient
location and copying of specific scgments. The segment
table in the savesnap describes exactly which segments
are stored in the savesnap. Since the segments are of
a fixed size, it is easy to calculate the position within
the savesnap where a particular segment is stored, pro-
vided the segment table is available and the position of
the first segment is known. This will always be the case
by the time the segment table has been read because
the segments immediately follow this table.

Most savesnaps are stored on tape. This storage
medium lends itself to the indexing just described. In
particular, modern tape drives such as rhe Digiral
Lincar Tape (DLT) series provide fast, relative tape
positioning that allows tape-based savesnaps to be
sclectively read more quickly than with a scquential
scan.' Similarly, on random-access media such as
disks, a particular segment can be read without strict
scquential scanning of data.

The volume restore operation is therefore a physical
operation. The segments can be read and written cffi-
ciently (even in the case of incremental savesnaps from
sequential media), resulting in a high-pertormance
recovery from volume failure or site disaster.

Digiral Technieal Journal Vol.8 No.2 1996

File Restore Operation

The purpose of a tile restore operation is to provide
a fast and cfticient way to retrieve a small number of
files from a savesnap without performing a full volume
restore. Typically, file restore is used to recover files
that have been inadvertently deleted. To achieve high-
performance file restore, we imposed the following

requirements on the design:

= A file restore session must process as few savesnaps
as possible; it should skip savesnaps that do not
contain data nceded by the session.

= When processing a savesnap, the file restore must
scan the savesnap lincarly, in a single pass.

The process of restoring files can be broken down
into three steps: (1) discover the file identifiers tor all
the tiles to be restored; (2) use the file identifiers to
locate the file data in the saved segments, and then
read that data; and (3) place the newly recovered data
back into the current Spiralog file system.

Discovering the File Identifiers The uscr supplics the
names of the files to be restored. The mapping
between the file names and the file identitiers associ-
ated with these names is stored in the segments, but
this information cannot be discovered simply by
inspecting the contents of the saved segments. A
corollary of the temporal ordering of the segments
within a savesnap is that hicrarchical information, such
asnested directories, tends to be presented in precisely
the wrong order for scanning in a single pass. To over-
come this problem, the save operation writes the com-
plete directory tree to the savesnap betore copying any
segments to the savesnap. This tree maps file names to
identificrs for every file and directory in the savesnap.
The file restore session constructs a partial tree of the
names of the files to be restored. The partial wee is
then matched, in a single pass, against the complete
tree stored in the savesnap. This process produces the
¢ identifiers.

required f1

Locating and Reading the File Data After discovering
the file identifiers, the file restore session reads the list
of segments present in the savesnap; this list comes
atter the dirccrory trecand betore any saved segments.
The file restore then switches tocus to discover pre-
ascly which segments contain the file dara that corre-
spond to the file identifiers.

The tirst segment read from the savesnap contains
the tail of the log. The log provides a mapping berween
file identitiers and locations of data within segments.
The tail of the Jog contains the root of the map.

We developed a simple interface for the tile restore
to usc to navigate the map. Essentially, this intertace
permits the retricval of all mapping information

relevant to a particular file identifier that is held within
a given segment. The mapping information returned
through this interface describes either mapping infor-
mation held elsewhere or real file data. One character-
istic of the log is that anything to which such mapping
information points must occur earlier in the log, that
is, in a subsequent saved segment. Recall property 2 of
the LFS on-disk data structures. Consequently, the tile
restore session will progress through the savesnaps in
the desired linear fashion provided that requests are
presented to the interface in the correct order. The
correctorderis determined by the allocation of segids.
Since segids increase monotonically over time, it is
necessary only to ensure that requests are presented in
a decreasing segid order.

The file restore interface operates on an object
called a context. The context is a tuple that contains a
location in the log, namely (segid. offset), and a type
field. When supplied with a file identifier and a con-
text, the core function of the interface inspects the seg-
ment determined by the context and returns the set of
contexts that enumerate all available mapping intor-
mation for the file identifier held at the location given
by the initial context.

The type of context returned indicates one of the
following situations:

SAVESNAP
A

= The location contains real file data.

= The location given by the context holds more
mapping information. In this case, the core func-
tion can be applied repeatedly to determine the
precise location of the file’s data.

A work list of contexts in decreasing segid order
drives the file restore process. The procedure for
retrieving the data for a single file identitier is as fol-
lows. At the outset of the file restore operation, the
work list holds a single context that identifies the root
of the map (the tail of the log). As items are taken from
the head of the list, the file restore must perform one
of two actions. If the context is a pointer to real file
data, then the file restore reads the data at that location.
It the context holds the location of mapping informa-
tion, then the core function must be applied to enu-
merate all possible further mapping information held
there. The file restore operation places all returned
contexts in the work list in the correct order prior to
piclang the next work item. This simple procedure,
which is illustrated in Figure 8, continues until the
work list is empty and all the file’s data has been read.

To cope with more than one file, the file restore
operation extends this procedure by converting the
work list so that it associates a particular file identitier

633 555 478

195 69 59

METADATA | | 81

EXTENT OF SAVESNAP TRAVERSAL SO FAR

TARGET FILE SYSTEM FOR FILE RESTORE
AL

L | [iai]

DIRECTION IN WHICH THE LOG IS WRITTEN

KEY:

[]

' ! FILEDATA

s 211

‘ FILE SYSTEM MAP DATA

The shaded areas represent the file data to be restored and the file system metadata that
needs to be accessed to retrieve that data. The restore session has thus far processed
segment 478. Part A of the file has been recovered into the target file system. Parts B and C
are still to come. After processing segment 478, the file restore visits the next known parts of
the log, segments 69 and 59. Items that describe metadata in segment 69 and data in segment
59 will be on the work list. The next segment that the file restore will read is segment 69, so the
session can skip the intervening segment (segment 195).

Figure 8
File Restore Session in Progress

Digital Technicat Journal Vol.8 No.2 1996

39

40

with cach context. File restore initializes the work list
to hold a pointer to the root of the map (the tail of the
log) tor cach file identiticr to be restored. The eftect is
to interleave requests to read more than one file while
maintaining the correct segid ordering.

A fturther subtlety occurs when the context at the
head of the work list is found to refer to a segment
outside the current savesnap. The ordering imposed
on the work list implics that all subscquent items of
work must also be outside the current savesnap. This
follows trom the temporal ordering properties of LFS
on-disk structures and the way in which incremental
savesnaps are defined. When this situation oceurs, the
work list is saved. When the next savesnap is ready for
processing, the file restore session can be restarted
using the saved work list as the starting point.

During this step, the file restore writes the pieces ot
files to the target volume as they are read from the
savesnap. Since the file restore process allocates file

identifiers on a per-volume basis, restore must allocate
new file identifiers in the target volume to accepr the
data being read from the source savesnap.

The new file identitiers are hidden tfrom users dur-
ing the tile restore until the file restore process has fin-
ished since the files are not complete and may be
missing vital parts such as access permissions. Rather
than allow access to these partial files, the file restore
hides the new file identitiers uneil all the data s pres-
ent, at which time the final stage of the file restore can
take place.

Making the Recovered Files Available to the User In
the third step of the process, the file restore operation
makes the newly recovered files accessible. At the
beginning of the step, the tiles exist only as bits ot data
associated with new file identiticrs—the files do not vet
have names. The names that are now bound to these
file identifiers come from the partial directory tree that
was originallv used to match against the directory tree
in the savesnap. This final step restores the original
names and contents to all the files that were originally
requested. The files retain the new file identitiers that

wereallocated during the file restore process.

Management of Incremental Saves
One design goal tor the Spiralog backup was to reduce
the cost of storage management. The design includes
the means of performing an incremental volume save
that copics only data written since the previous
backup. To implement a backup strategy that never
requires more than one tull backup but allows restores
using a finite number of savesnaps, we designed and
implemented the savesnap merge function,

Savesnap merge operates similarlv to volume
restore, but instead of copving segments to a disk as

Digiral Technical Jouwrnal Vol. 8 No.2 1996

in a volume restore, savesnap merge copics segments
to a new savesnap. As shown in Figure 9, the cffect
of merging a base savesnap and all the incremental
savesnaps upon which it depends is to produce a full
savesnap. This savesnap is preciscly the one that would
have been ereated had the base savesnap been specitied
as a full savesnap instcad of an incremental savesnap.
Spiralog merge copies the savesnap information and
the directory information stored in the base savesnap
to the merged savesnap betore it copics the segment
rable and the segments.

Savesnap merge provides a practical wav of manag-
ing very large data volumes. The merge operation can
be used to limit the number of savesnaps required to
restore a snapshot, even if full backups are never taken.
Merge is independent ofthe source volume and can be
undertaken on a different system to allow turther sys-
rem management flexibility,

Summary of Spiralog Backup Features

A summary of the features and performance provided
by the Spiralog backup system appears in Table 3 at
the end of the Results section. For comparison, the
table also contains corresponding information for the
file-based and physical approaches to backup.

Results

We measured volume save and individual file restore
performance on both the Spiralog backup svstem and
the backup svstem tor Files-11, the original OpenVMS
file svstem. The hardware configuration consisted of
aDEC 3000 Model 500 and asingle RZ25 source disk
cach for Spiralog and Files-11 volumes, respectively.
The rarger device tor the backup was a 12877 rape.
The svstem was running under the OpenVMS version
7.0 operating system and Spiralog version 1.1, The
volumes were populated with tile distributions that
reflected tvpical user accounts i our development
environment. Each volume contained 260 megabytes
(MB) of user data, which included a toral of 21,682
files in 401 directorics.

Volume Save Performance
For both the Spiralog backup and the Files-11 backup,
we saved the source volume to a freshly initialized tape
on an otherwise idle system. We measured the clapsed
time of the save operation and recorded the size of the
output savesnap or savesct. We averaged the results
over hive iterations of the benchmark. Table | presents
these measurements and the resulting throughpur.
The throughput represents the average rate n
megabvtes per second (MB/s) of writing to tape over
the duration of a save operation. In the case of
Spiralog, tape throughput varics greatly with the

BACKUPS

Monday — Full

Wednesday —
Incremental

Friday —
Incremental

Merge three savesets to produce one
new savesnap equivalent to a full
savesnap taken on Friday.

Figure 9
Merging Savesnaps

Table 1

Performance Comparison of the Spiralog and Files-11 Backup Save Operations

Savesnap or

Elapsed Time Saveset Size Throughput
Backup System (Minutes:seconds) (Megabytes) (Megabytes/second)
Spiralog save 05:20 339 1.05
Files-11 backup 10:14 297 0.48
phases of the save operation. During the directory Table 2

scan phase (typically up to 20 percent of the tortal
elapsed save time), the only tape output is a compact
representation of the volume directory graph. In com-
parison, the segment writing phase is usually bound by
the tape throughput rate. In this configuration, the
tapce is the throughput bottleneck; its maximum raw
data throughputis 1.25 MB/s (uncompressed)."

Overall, the Spiralog volume save operation is nearly
twice as fast as the Files-11 backup volume save opera-
tion in this type of computing environment. Note that
the Spiralog savesnap is larger than the corresponding
Files-11 saveset. The Spiralog savesnap is less efficient
at holding user data than the packed per-file represen-
tation of the Files-11 saveset. In many cases, though,
the higher performance of the Spiralog save operation
more than outweighs this inefficiency, particularly
when it is taken into account that the Spiralog save
operation can be performed on-line.

File Restore Performance

To determine file restore performance, we measured
how long it took to restore a single file from the
savesets created in the save benchmark tests. The hard-
ware and software configurations were identical to
those used for the save measurements. We deleted
asingle 3-kilobyte (KB) file trom the source volume
and then restored the file. We repeated this operation
nine times, each time measuring the time it took to
restore the file. Table 2 shows the results.

Performance Comparison of the Spiralog and Files-11
Individual File Restore Operations

Elapsed Time

Backup System (Minutes:seconds)
Spiralog file restore 01:06
Files-11 backup 03:35

The Spiralog backup system achieves such good
performance for file restore by using its knowledge of
the way the segments are laid out on tape. The file
restore process needs to read only those segments
required to restore the file; the restore skips the inter-
vening segments using tape skip commands. In the
example presented in Figure 8, the restore can skip
segments 555 and 195. In contrast, a file-based backup
such as Files-11 usually does not have accurate index-
ing information to minimize tape 1/0. Spiralog’s
tape-skipping benefit is particularly noticeable when
restoring small numbers of files from very large save-
snaps; however, as shown in Table 2, even with small
savesets, individual file restore using Spiralog backup is
three times as fast as using Files-11.

Table 3 presents a comparison of the save per-
formance and features of the Spiralog, file-based, and
physical backup systems.

Digital Technical Journal Vol.8 No.2 1996

41

Table 3

Comparison of Spiralog, File-based, and Physical Backup Systems

Spiralog Backup
System

File-based Backup
System

Physical Backup
System

The number of I/0s is
O(number of segments that
contain live data) plus
O(number of directories)

Save performance
(the number of I/0s
required to save the
the source volume)

File restore Yes
Volume restore Yes, fast

Incremental save Yes, physical

The number of 1/0s
is O(size of the disk)

The number of I/0s is
O(number of files)
I/0s to read the file
data plus O(number
of directories) 1 /0s

Yes No
Yes Yes, fast but limited

to disks of the same size
Yes, entire files that No

have changed

Notethat this table uses “big oh” notation to bound a value. O(n), which is pronounced “order of n,” means that the value represented is no
greater than Cn for some constant C, regardless of the value of n. Informally, thismeansthat O(n) can be thoughtof assome constant multiple

of n.

Other Approaches and Future Work

This scction outlines some other design options
we considered for the Spiralog backup system. Our
approach ofters further possibilitics 1 a number
of areas. We describe some of the opportunitics
available.

Backup and the Cleaner

The benefits of the write performance gains in an LFS
arc artained at the cost of having to clean segments.
An opportunity appears to cxist in combining the
cleaner and backup functions to reduce the amount of
work donc by cither or both of these components;
however, the aims of backup and the cleaner are quite
difterent. Backup needs to read all segments written
since a specific time (in the case ot a tull backup, since
the birth of the volume). The cleaner needs to defrag-
ment the tree space on the volume. This is done most
cthciently by relocating data held in cerrain segments.
These segments are those thatare suthiciently empty to
be worth scavenging for tree space. The data in these
scgments should also be stable in the sense that the
data is unlikely to be deleted or outdated immediately

after relocation.

The only real benefit that can be exacted by looking
at these functions together is to clean some segments
while performing backup. For example, once a seg-
ment has been read to copy to a savesnap, it can be
cleaned. This approach is probably not a good one
because it reduces system performance in the follow-
ing ways: additional processing required in cleaning
removes CPU and memory resources available to
applications, and the cleaner gencrates write opera-
tions that reduce the backup read rate.

Digital Technical Journal Vol.8 No.2 1996

There are two other arcas in which backup and
the cleaner mechanism interact that warrant further
investigation.

1. The save operation copics segments in their
entirety. That is, the operation copies both “stale”
(old) dara and live dara to a savesnap. The cost of
extra storage media tor this extrancous data is
traded oftagainst the performance penalty in trving
to copy only live data. It appears that the file svstem
should run the cleaner vigorously prior to a backup
to minimize the stale data copied.

2. Incremental savesnaps contain cleaned data. This
means that an incremental savesnap contains a copy
of dara thar already exists in one of the savesnaps on
which it depends. This is an apparent waste of eftort
and storage spacc.

It is best to undertake a tull backup atter a thorough
cleaning of the volume. A single strategy tor incremen-
tal backups is less casy to define. On one hand, the size
of an incremental backup is increased it much cleaning
is performed betore the backup. On the other hand,
restore operations from a large incremental backup
(particularly sclective file restores) are likely to be
more etticient. The larger the incremental backup, the
morc data it contains. Consequently, the chance of
restoring a single file from just the base savesnap
increases with the size of the incremental backup.
Studying the interactions between the backup and the
cleaner may ofter some insight into how to improve
cither or both of these components.

A continuous backup system can take copies ot seg-
ments from disk using policies similar to the cleancr.
This is explored in Kohl’s paper. 2

Separating the Backup Save Operation into a

Snapshot and a Copy

The design of the save operation involves the creation
of a snapshot tollowed by the tast copy of the snapshot
to some scparate storage. The Spiralog version 1.1
implementation of the save operation combines these
steps. A snapshot can exist only during a backup save
operation.

System administrators and applications have signifi-
cantly more tlexibility if the splitin these two functions
of backup is visible. The ability to create snapshots that
can be mounted to look like read-only versions of a file
system may climinate the need for the large number of
backups pertormed today. Indeed, some file systems
ofter this featurc®” The additional advantage that
Spiralog offers is to allow the very efficient copying of
individual snapshots to off-line media.

Improving the Consistency and Availability

of On-line Backup

There are a number of ways to improve application
consistency and availability using the Spiralog backup
design. In addition, some of these fcaturcs further
reduce storage management costs.

Intervolume Snapshot Creation Spiralog allows a
practical way of creating and managing large volumes,
but there will be times when applications require data
consistency for backup across volumes. A coordinated
snapshot across volumes would provide this.

Application Involvement The Spiralog version 1.1
implementation does not address application involve-
ment in the creation of a snapshot. A snapshot’s con-
tents are preciscly the volume’s contents that arc on
disk at the time of snapshot creation. This means that
applications accessing the volume have to commit
independently to the file system data they require to
be part of the snapshot.

There is an emerging trend to design system-
level interfaces that allow better application interac-
tion with the file system. For example, the Windows
NT operating system provides the oplock and
NtNotitvChangeDirectory interfaces to advise an
interested application of changes to files and directo-
rics. Similarly, an intertace could allow applications to
register an interest with the file system tor notification
of an impending snapshot creation. The application
would then be able to commit the data it needs as part
ot'a backup and continue, thus improving application
consistency and availabiliny and reducing work tor sys-
tem administrators.

Minimizing Disk Reads
The Spiralog file restore retrieves the data that
constitutes a number of files in a single pass of

segments read in a specific order. This design was
important to allow the efficient restore of files from
sequential media.

More generally, this way of traversing the file system
allows specific, known parts of a set of files to be
obrained by reading the segments that contain part of
this data only once. This technique is also interesting
for random-access media storage of volumes because
it describes an algorithm for minimizing the number
of disk reads to get this data. Possible applications
of this technique are numerous and are particularly
interesting in the context of data management of very
large volumes.

For example, supposc an application is required
to monitor an attribute (¢.g., the time of last access) of
allfiles on a massive volume. Suppose also that the vol-
ume is too big to allow the application to trawl the file
system daily for this information; this process takes too
long. If the application maintains a database of the
information, it necds only to gather the changes that
have happened to this data on a daily basis. Therefore,
the application could obtain this information by tra-
versing only those segments written since the last time
it updared its database and locating the relevant data
within those segments. Our mechanism for restoring
files provides exactly this capability. An investigation of
how applications might best use this technique could
lead to the design of an interface that the file system
could use tor tast scanning of dara.

Conclusions

File systems use backup to protect against data loss.
A signiticant portion of the cost associated with man-
aging storage is directly related to the backup func-
tion."*"” Log-structured data storage provides some
features that reduce the costs associated with backup.

The Spiralog log-structured tile system version 1.1
tor the OpenVMS Alpha opcrating system includes
a new, high-pertormance, on-line backup system. The
approach that Spiralog takes to obtain data consis-
tency for on-line backup is similar to the snapshot
approach used in Network Appliance Corporation’s
FAServer, the Digital UNIX Advanced File System, and
other systems.*” The teature unique to the Spiralog
backup system is its use of the physical attributes of
log-structured storage to obtain high-performance
saving and restoring of data to and from tape. In par-
ticular, the gain in save performance is the result of
a restore strategy that can efticiently retrieve data from
a sequence of scgments stored on tape as they are on
disk. This design lcads to a minimum of processing
and discrete 1/0 operations. The restore operation
uses improvements in tape hardware to reduce pro-
cessing and I/0 bandwidth consumption; the opera-
tion uses tape record skipping within savesnaps for fast

Digital Technical Journal Vol.8 No.2 1996

43

data indexing. The Spiralog backup implementation
provides an on-line backup save operation with signifi-
cantly improved performance over existing ofterings.
Performance of individual file restore is also improved.

Acknowledgments

We would like to thank the following people whose
efforts were vital in bringing the Spiralog backup sys-
tem to fruition: Nancy Phan, who helped us develop
the product and worked relentlessly to get it right;
Judy Parsons, who helped us clarify, describe, and doc-
ument our work; Clare Wells, who helped us focus on
the real customer problems; Alan Paxton, who was
involved in the early design ideas and later specifica-
tion of some of the implementation; and, finally,
Cathy Foley, our engineering manager, who sup-
ported us throughout the project.

References

1. J. Johnson and W. Laing, “Overview of the Spiralog
File System,” Digital Technical Journal. vol. 8, no. 2
(1996, this issue): 5-14.

2. M. Rosenblum and J. Ousterhout, “The Design and
Implementation of a Log-Structured File System,”
ACM Transactions on Computer Systems, vol. 10,
no. 1 (February 1992): 26-52.

3. M. Rosenblum, “The Design and Implementation of a
Log-Structured File System,” Report No. UCB/CSD
92/696 (Berkeley, Calif.: University of Calitornia,
Berkeley, 1992).

4. M. Sclrzer, K. Bostock, M. McKusick, and C. Staclin,
“An Implementation of a Log-Structured File System
for UNIX,” Proceeclings of the USENIX Winter 1993
Technical Conference, San Diego, Calif. (January
1993).

5. K. Walls, “File Backup System tor Producing a Backup
Copy of a File Which May Be Updated during
Backup,” U.S. Patent No. 5,163,148.

6. D.Hitz,].Lau,and M. Malcolm, “File System Design
for an NES File Server Appliance,” Proceedings of
the USENIX Winter 1994 Technical Conference,
San Francisco, Calif. (January 1994).

7. S. Churani, Q. Anderson, M. Kazar, and B. Leverett,
“The Episode File System,” Proceecdings of the
USENIX Winter 1992 Technical Conference,
San Francisco, Calif. (January 1992).

8. C. Whitaker, J. Bayley, and R. Widdowson, “Design of
the Server for the Spiralog File System,” Digitul
Technical journal, vol. 8, no. 2 (1996, this issue): 15-31.

9. OpenVMS System Management Ulilities Reference
Manual: A-L, Order No. AA-PVSPC-TK (Maynard,
Mass.: Digital Equipment Corporation, 1995).

Digital Technical Journal Vol.8 No.2 1996

10. L. Drizis, “A Mecthod for Fast Tapce Backups and
Restores,” Software—~Practice and Experience,
vol. 23, no. 7 (July 1993): 813-815.

11. “Digiral Lincar Tape Meets Critical Need for Darta
Backup,” Quantum Technical [nformation Paper,
http://www.quantum.com/products/whitcpapers/
dlttips.html (Milpitas, Calif.: Quantum Corporation,
1996).

12.]J. Kohl, C. Staclin, and M. Stoncbraker, “HighLight:
Using a Log-structured File System for Tertiary
Storage Management,” Proceedings of the USENIX
Winter 1993 Technical Conference (Winter 1993).

13. R. Mason, “The Storage Management Market Part 1
Preliminary 1994 Marker Sizing,” IDC No. 9538
(Framingham, Mass.: International Dara Corporation,

December 1994).

14. 1. Stenmark, “Implementation Guidelines for Client/
Server Backup” (Stamford, Conn.: Gartner Group,
March 14, 1994).

15. 1. Stenmark, “Marker Size: Nerwork and Svstems
Management Software” (Stamford, Conn.: Gartner
Group, June 30, 1995).

16. 1. Stenmark, “Client/Server Backup—Leaders and
Challengers” (Stamford, Conn.: Gartner Group,
May 9, 1994).

17. R. Wrenn, “Why the Real Cost of Storage is Morc
Than $1/MB,” presented at the U.S. DECUS Sympo-
sium, St. Louis, Mo., Junc 3-6, 1996.

Biographies

Russell J. Green

Russell Green is a principal software engineer in Digital’s
Open VMS Engineering group in Livingston, Scotland.
He was responsible for the design and delivery of the
backup component of the Spiralog file system for the
OpenVMS operating system. Currently, Russ is the tech-
nical leader of Spiralog tollow-on work. Prior to joining
Digital in 1991, he was a staff member in the computer
science department at the University of Edinburgh. Russ
received a B.Sc. (Honours, 1st class, 1983) in engincering
from the University of Cape Town and an M.Sc. (1986)
in engineering from the University of Edinburgh. He
holds two patents and has filed a patent application for
his Spiralog backup svstenm work.

Alasdair C. Baird

Alasdair Baird joined Digital in 1988 to work for the
ULTRIX Engineering group in Reading, U.K. He is

a senior software engineer and hasbeen a member of
Digital’s OpenVMS Engineering group since 1991.

He worked on the design of the Spiralog file system and
then contributed to the Spiralog backup system, particu-
larly the file restore component. Currently, he is involved
in Spiralog development work. Alasdair received a B.Sc.
(Honours, 1988) in computer science from the University
of Edinburgh.

J. Christopher Davies

Sottware engineer Chris Davies has worked for Digital
Equipment Corporation in Livingston, Scotland, since
September 1991. As a member of the Spiralog team, he
initially designed and implemented the Spiralog on-line
backup system. In subsequent work, he improved the
performance of the file system. Chris is currently working
on further Spiralog development. Prior to joining Digiral,
Chris wasemployed by NRG Surveys as a software engi-
neer while earning hisdegree. He holds a B.Sc. (Honours,
1991) in artificial intelligence and computer science from
the University of Edinburgh. He is coauthor of a filed
patent application tor the Spiralog backup system.

Digital Technical Journal

Vol.8 No.2

1996

45

40

Integrating the Spiralog
File System into the
OpenVMS Operating
System

Digital’s Spiralog file systemis a log-structured
file system that makes extensive use of write-
back caching. Its technology is substantially
different from that of the traditional OpenVMS
file system, known as Files-11. The integration
of the Spiralog file system into the OpenVMS
environment had to ensure that existing appli-
cations ran unchanged and at the same time had
to expose the benefits of the new file system.
Application compatibility was attained through
an emulation of the existing Files-11 file system
interface. The Spiralog file system provides an
ordered write-behind cache that allows applica-
tions to control write order through the barrier
primitive. This form of caching gives the benefits
of write-back caching and protects data integrity.

Digital Technical Journal Vol.8 No.2 1996

Mark A. Howell
Julian M. Palmer

The Spiralog file system is based on a log-structuring
method that offers fast writes and a fast, on-lince backup
capability."* The integration of the Spiralog file system
nto the OpenVMS operating system presented many
challenges. I'ts programming interface and its extensive
use of write-back caching were substantially ditferent
from those of the cxisting OpenVMS file svstem,
known as Files-11.

To encourage usc of the Spiralog file system, we had
to ensure that existing applications ran unchanged in
the OpenVMS environment. A file system emulation
layer provided the necessary compatibility by mapping
the Files-11 file system intertace onto the Spiralog file
system. Betore we could build the emulation layer, we
needed to understand how these applications used the
file system intertace. The approach taken to under-
standing application requirements led to a file svstem
emulation layer that exceeded the original comparibil-
ity expectations.

The first part of this paper deals with the approach
to integrating a new file system into the OpenVMS
environment and preserving application compatibility.
It describes the various levels ar which the file system
could have been inregrated and the decision to emu-
late the low-level tile svstem interface. Techniques
such as tracing, source code scanning, and functional
analvsis of the Files-11 file svstem helped determine
which features should be supported by the emulation.

The Spiralog file system uscs extensive write-back
caching to gain pertormance over the write-through
cache on the Files-11 file system. Applications have
relied on the ordering of writes implicd by write-
through caching to maintain on-disk consistency in
the event of system failures. The lack of ordering
guarantees prevented the implementation of such
carctul write policies in write-back environments. The
Spiralog file system uses a write-behind cache (intro-
duced in the Echo file system) to allow applications to
take advantage of wrirc-back caching performance
while preserving caretul write policies.” This fearure is
unique in a commercial file system. The second part of
this paper describes the dithicultics of integrating write
back caching into a write-through cnvironment and
how a write-behind cache addressed these problems.

Providing a Compatible File System Interface

Application compatibility can be described in two
ways: compatibility at the file system interface and
compatibility of the on-disk structure. Since only spe-
cialized applications use knowledge of the on-disk
structure and maintaining compatibility at the inter-
face level is a feature of the OpenVMS system, the
Spiralog file system preserves compatibility at the file
system interface level only. In the section Files-11 and
the Spiralog File System On-disk Structures, we give
an overview of the major on-disk differences between
the two file systems.

The level of interface compatibility would have a
large impact on how well users adopted the Spiralog
file system. If data and applications could be moved to
a Spiralog volume and run unchanged, the file system
would be better accepted. The goal tor the Spiralog
file system was to achieve 100 percent interface com-
patibility for the majority of existing applications. The
implementation of a log-structured file system, how-
ever, meant that certain features and operations of the
Files-11 file system could not be supported.

The OpenVMS operating system provides a number
of file system intertaces that are called by applications.
This section describes how we chose the mostcompat-
ible file system intertace. The OpenVMS operating
system directly supports a system-level call interface
(QIO) to the file system, which is an extremely com-
plex interface® The QIO interface is very specific to
the OpenVMS system and is difficult to map dircctly
onto a modern file system interface. This interface is
used infrequently by applications but is used exten-
sively by OpenVMS utilitics.

OpenVMS File System Environment
This section gives an overview of the general
OpenVMS file system environment, and the existing

OpenVMS and the new Spiralog file system intertaces.
To emulate the Files-11 file system, it was important to
understand the way it is used by applications in the
OpenVMS environment. A brief description of the
Files-11 and the Spiralog file system interfaces gives an
indication of the problems in mapping one interface
onto the other. These problems are discussed later in
the section Compatibility Problems.

In the OpenVMS environment, applications inter-
act with the file system through various interfaces,
ranging from high-level language intertaces to direct
file system calls. Figure 1 shows the organization of
interfaces within the OpenVMS environment, includ-
ing both the Spiralog and the Files-11 file systems.

The following brietly describes thelevels of interface
to the file system.

= High-level language (HLL) libraries. HLL libraries
provide file system functions for high-level
languages such as the Standard C library and
FORTRAN I/0 functions.

= OpenVMS language-specific libraries. These
libraries offer OpenVMS-specific file system func-
tionsat a high level. For example, lib$create_dir()
creates a new directory with specific OpenVMS
sccurity attributes such as ownership.

= Record Management Services. The OpenVMS
Record Management Services (RMS) are a set of
complex routines that form part of the OpenVMS
kernel. These routines are primarily used to access
structured data within a file. However, there are
also routines at the tile level, tor example, open,
close, delete, and rename. The RMS parsing rou-
tines for file secarch and open give the OpenVMS
operating system a consistent syntax for file names.
These routines also provide file name parsing oper-
ations for higher level libraries. RMS calls to the file
system are treated in the same way as direct applica-
tion calls to the file system.

APPLICATIONS

HIGH-LEVEL LANGUAGE
LIBRARIES, e.g., C LIBRARY

OPENVMS LANGUAGE-
SPECIFIC LIBRARIES

RECORD MANAGEMENT SERVICES — SYSTEM CALLS

OPENVMS FILE SYSTEM INTERFACE — SYSTEM CALLS (QIO)

FILES-11 FILE SYSTEM
EMULATION LAYER

SPIRALOG FILE SYSTEM

FILES-11 FILE SYSTEM

Figure 1
The OpenVMS File System Environment

Digital Technical Journal Vol.8 No.2 1996

47

48

= Files-11 file system interface. The OpenVMS oper-
ating system has traditionally provided the Files-11
file system for applications. It provides a low-level
file system interface so that applications can request
file system operations from the kernel.

Each file system call can be composed of multiplc
subcalls. These subcalls can be combined in numer-
ous permutations to form a complex file system
operation. The number of permutations of calls and
subcalls makes the file system interface extremely
difficult to understand and use.

= File system emulation layer. This layer provides
a compatible interface between the Spiralog file
system and existing applications. Calls to export
the new features available in the Spiralog file system
are also included in this layer. An important new
feature, the write-behind cache, is described in the
section Overview of Caching,.

s The Spiralog file system interface. The Spiralog

file system provides a generic file system interface.
This interface was designed to provide a superset
of the teaturcs that are typically available in file sys-
tems used in the UNIX operating system. File
system emulation layers, such as the one written for
Files-11, could also be written tor many ditferent
file systems.* Features that could not be provided
generically, for example, the implementation of
security policies; are implemented in the file system
emulation layer.
The Spiralog file system’s intertace is based on the
Virtual File System (VES), which provides a file
system interface similar to those found on UNIX
systems.” Functions available are at a higher level
than the Files-11 file system interface. For example,
an atomic rename function is provided.

Files-11 and the Spiralog File System

On-disk Structures

A major difference between the Files-11 and the
Spiralog file systems is the way data is laid out on
the disk. The Files-11 system is a conventional,
update-in-place tile system.* Here, space is reserved tor
tile data, and updates to that data are written back to
the same location on the disk. Given this knowledge,
applications could place data on Files-11 volumes to
take advantage of the disk’s geometry. For example,
the Files-11 file system allows applications to place files
on cylinder boundaries to reduce seek times.

The Spiralog file system is a log-structured file
system (LFS). The entire volume is treated as a con-
tinuous log with updates to files being appended to
the tail of the log. In eftfect, files do not have a fixed
home location on a volume. Updates to files, or cleaner
activity, will change the location of data on a volume.
Applications do not have to be concerned where their
datais placed on the disk; LFS provides this mapping.

Digiral Technical Journal Vol.8 No.2 1996

With the advent of modern disks in the last decade,
the exact placement of data has become much less crit-
ical. Modern disks frequently return geometry infor-
mation that does not reflect the exact gcometry of
the disk. This nullifies any advantage that exact place-
ment on the disk ofters to applications. Fortunately,
with the Files-11 filc system, the use of exact file place-
ment is considered a hint to the file system and can be
safely ignored.

Interface Decision

Many features of the Spiralog file system and the
Files-11 file system are not directly compatible. To
enable cxisting applications to use the Spiralog file
system, a suitable file system interface had to be
selected and emulated. The file system emulation layer
would nced to hook into an existing kernel-level file
system interface to provide existing applications with
access to the Spiralog file system.

Analysis of existing applications showed that the
majority of file system calls came through the RMS
interface. This provides a functionally simpler interface
onto the lower level Files-11 interface. Most applica-
tions on the OpenVMS operating system use the RMS
interface, cither directly or through HLL libraries, to
access the file system.

Few applications make direct calls to the low-level
Files-11 interface. Calls to this interface are typically
made by RMS and OpenVMS utilities that provide
a simplified interface to the file system. RMS supports
file access routines, and OpenVMS utilitics support
modification of file mectadata, tor example, sccurity
information. Although few in number, those applica-
tions that do call the Files-11 file system dircctly are
significant ones. If the only interface supported was
RMS, then these utilities, such as SET FILE and
OpenVMS Backup, would need significant moditica-
tion. This class of utilities represents a large number of
the OpenVMS utilities that maintain the tile system.

To provide support tor the widest range of applica-
tions, we sclected the low-level Files-11 interface for
usc by the file system emulation layer. By selecting this
interface, we decreascd the amount of work nceded
for its emulation. However, this gain was offset by the
increascd complexity in the interface cmulation.

Problems caused by this inrerface selection are
described in the next scction.

Interface Compatibility

Once the file system interface was sclected, choices
bad to be made about the level of support provided by
the emulation layer. Duc to the nature of the log-
structured tile system, described in the scetion Files-11
and the Spiralog File System On-disk Structures, fuil
compatibility of all teatures in the emulation layer was
not possible. This section discusses some of the deci-
sions made concerning interface compatibility.

An initial decision was made to support docu-
mented low-level Files-11 calls through the emula-
tion layer as often as possible. This would enable all
well-behaved applications to run unchanged on the
Spiralog file system. Examples of well-behaved appli-
cations are those that make use of HLL library calls.
The following categories of access to the file system
would not be supported:

= Those directly accessing the disk without going
through the file system

= Those making usc of specific on-disk structure
information

= Those making use of undocumented file system
features

A very small number of applications fell into these
categorics. Examples of applications that make use of
on-disk structure knowledge are the OpenVMS boot
code, disk structure analyzers, and disk detragmenters.

The majority of OpenVMS applications make file
system calls through the RMS intertace. Using file sys-
tem call-tracing techniques, described in the section
Investigation Techniques, a full set of file system calls
made by RMS could be constructed. Atter analysis of
this tracce data, it was clear that RMS used a small set
of well-structured calls to the low-level file system
interface. Further, detailed analysis of these calls
showed that all RMS operations could be fully emu-
lated on the Spiralog file system.

The support of OpenVMS file system utilities that
made direct calls to the low-level Files-11 intertace was
important if we were to minimize the amount of code
change required in the OpenVMS code base. Analysis
of these utilitics showed that the majority of them
could be supported through the emulation layer.

Very few applications made use of features of the
Files-11 file system that could not be emulated. This
enabled a high number of applications to run
unchanged on the Spiralog file system.

Table 1
Categorization of File System Features

Compatibility Problems

This section describes some of the compatibility prob-
lems that we encountered in developing the emulation
layer and how we resolved them.

Wlien considering the compatibility of the Spiralog
file system with the Files-11 file system, we placed the
features of the file system into three categories: sup-
ported, ignored, and not supported. Table 1 gives
examples and descriptions of these categories. A teature
was recategorized only if it could be supported but was
not used, or if it could not be easily supported but
was used by a wide range ofapplications.

The majority of OpenVMS applications make sup-
ported file system calls. These applications will run as
intended on the Spiralog file system. Few applications
make calls that could be safely ignored. These applica-
tions would run successfully but could not make use of
these features. Very few applications made calls that
were not supported. Unfortunately, some of these
applications were very important to the success of the
Spiralog file system, for example, system management
utilities that were optimized for the Files-11 system.

Analysis ofapplications that made unsupported calls
showed the following categories of use:

. Those that accessed the file header—a structure
used to store a file’s attributes. This method was
used to return multiple file attributes in one call.
The supported mechanism involved an individual
call for each attribute.

This was solved by rcturning an emulated file
header to applications that contained the majority
of information interesting to applications.

= Those rcading dircctory files. This method was used
to perform fast directory scans. The supported
mechanism involved a file system call for cach name.
This was solved by providing a bulk direcrory
reading interface call. This call was similar to the
getdirentries() call on the UNIX system and was

Category Examples

Notes

Supported. The operation requested
was completed, and a success status
was returned.

Ignored. The operation requested
was ignored, and a success status
was returned.

a file.

Not supported. The operation
requested was ignored, and a
failure status was returned.

Requests to create a file or open

Arequest to place afilein a
specific position on the disk to
improve performance.

A request to directly read the
on-disk structure.

Most calls made by applications
belong in the supported category.

This type of feature is incompatible
with a log-structured fite system.

It is very infrequently used and not
available through HLL libraries. It
could be safely ignored.

This type of request is specific to
the Files-11 file system and could
be allowed to fail because the
application would not work on the
Spiralog file system. It is used only
by a few specialized applications.

Digital Technical Journal Vol.8 No.2 1996

49

straighttorward to replace in applications that
directly read direcrorics.
The OpenVMS Backup utility was an example of
a svstem management utility that directly read
direcrory files. The backup utiliy was changed to
use the direcrory reading call on Spiralog volumes.
= Thosc accessing reserved files. The existing tile sys-
rem stores all its metadatain normal files thar can be
read by applications. These files are called reserved
files and are created when a volume is initialized.
No reserved files are created on a Spiralog volume,
with the exeeption of the master file directory
(MED). Applications thar read reserved files make
specific use of on-disk structure information and
are not supported with the Spiralog file system. The
MED is used as the root directory and pertorms
dirccrory traversals. This file was virtually emulated.
[t appears in directory listings of a Spiralog volume
and can be used to start a directory traversal, but it
docs not existon the volume asa real file.

Investigation Techniques

This scection describes the approach taken to investi-
gate the ntertace and compatibility problems
described above. Resuits from these investigations
were used to determine which features of the Files-11
file system needed to be provided to produce a high
level of comparibility.

The investigation focused on understanding how
applications called the file system and the semantics of
the calls. A number of techniques were used in lieu
of design documentation for applications and the
Files-11 file svstem. These techniques were also used
to avoid the direct examination of source code.

The tollowing techniques were used to understand
application calls to the file system:

= Tracing file svstem operations

Tracing file system operations provided a large
amount of data for applicanons. A modified
Files-11 file system was constructed thatlogged all
filc operations on a volume. A full sct of regression
tests were then run for the 25 Digital and third-
party products most often lavered on the Files-11
tile system. The dara was then reduced to deter-
mine the type of file system calls made by the
lavered products. Analysis of log data showed
that most layered products made file system calls
through HI.L librarics or the RMS interface. This
technique is uscful where source code is not avail-
able, but full code path coverage is available to con-
struct a full picture of calls and arguments.

= Surveving apphication maintainers on file system use
Surveying application maintainers was a potentially
usctul technique for alerting the other mainrainers

Digital Technical Journal Vol. 8 No.2 1996

about the impact of the Spiralog file system. More
than 2,000 surveys were sent out, but fewer than
25 usetul results were returned. Sadly, most appli-
cation maintainers were not aware of how their
product uscd the file svstem.

= Automated application source code scarching

Auromared source code scarching quickly checks
a large amount ot source code. This technique was
most useful when analvzing fle svstem calls made by
the OpenVMS operating system or utilities. How-
ever, this does not work well when applications
make dvnamic calls to the file svstem at run time.

The following techniques were used to understand
the semantics of file svstem calls:

= Functional analysis of the Files-11 file svstem

Funcrional analysis of the Files-11 file system was
one of the most uscful techniques adopred. It
avoided the need o reverse-engineer the Files-11
file system. Whenever possible, the Files-11 fi
tem was treated as a black box, and its function was
inferred from interface documentation and appli-
cation calls. This technique avoided duplicating
defects 1 the interface and enabled the design of
the emulation laver to be derived from tunction,
rather than the cexisting implementation of the
Files-11 system.

¢ Sys-

= Test programs to derermine call semantics
Test programs were used extensively to isolate spe-
citic application calls to the file svstem. Individuoal
calls could be analvzed to determine how rhey
worked with the Files-11 file svstem and with the
emulation laver. This technique formed the basis
for an extensive file svstem interface regression test
suite without requiring the complete application.

Level of Compatibility Achieved

The level offile system compatibiliny with applications
far exceeded our initial expectations. Table 2 summa-
rizes the results of the regression tests used to verity
compatibility.

Table 2 illustrates that applications that use the C or
the FORTRAN language or the RMS interface to
access the file system can be expected to work
unchanged. Verification with the top 25 Digiral lay-
ered products and third-party products shows that
all products that do not make specific use ot Files-11
on-disk features run with the Spiralog file system.
With the version 1.0 release of the Spiralog tile system,
there arc no known compatibility issucs.

Providing New Caching Features

The Spiralog file svstem uses ordered wrire-back cach-
ing to provide pertormance benetits tor applications.

Table 2
Verification of Compatibility

Test Suite Number of Tests Result

RMS regression tests ~500 All passed.
OpenVMS regression tests ~100 All passed.
Files-11 compatibility tests ~100 All passed.

C2 security test suite

C language tests ~2,000
FORTRAN language tests ~100

~50 discrete tests

All passed, giving the Spiralog
file system the same potential
security rating asthe Files-11
system.

All passed.
All passed.

Write-back caching provides very difterent semantics
to the model of write-through caching used on the
Files-11 file svstem. The goal of the Spiralog project
members was to provide write-back caching
in a way thatwas compatible with existing OpenVMS
applications.

This section compares write-through and write-back
caching and shows how somce important OpenVMS
applications rely on write-through semantics to pro-
tect data from system failure. It describes the ordered
write-back cache as introduced in the Echo file svstem
and explains how this model of caching (known as
write-behind caching) is particularly suited to the envi-
ronment of OpenVMS Cluster systems and the
Spiralog log-structured file svstem.

Overview of Caching
During the last few vears, CPU performance improve-
ments have continued to outpace performance
improvements for disks. As a result, the 1/0 bottle-
neck has worsened rather than improved. One of
the most successful techniques used to alleviate this
problem is caching. Caching means holding acopy of
data that has been recently read from, or written to,
the disk in memory, giving applications access to that
dataat memory speeds rather than at disk speeds.
Write-through and write-back caching are two
difterent modcls trequently used in file svstems.

= Write-through caching. In a write-through cache,
data read from the disk is stored in the in-memory
cache. When data is written, a copy is placed in
the cache, but the write request does not return
until the data is on the disk. Write-through caches
improve the performance of read requests but not
WFILE requests.

= Write-back caching. A write-back cache improves
the performance of both read and write requests.
Reads arce handled exactly as in a write-through

cache. This time though, a write requestreturns as
soon as the data has been copied to the cache; some
time later, the data is written to the disk. This
method allows both read and write requests to
operate at main memory speeds. The cache can also
amalgamate write requests that supersede onc
another. By dcferring and amalgamating write
requests, a write-back cache can issue many fewer
write requests to the disk, using less disk bandwidth
and smoothing the write pattern over time,

Figure 2 shows the write-through and write-back
caching modcls. The Spiralog file svstem makes exten-
sive usce of caching, providing both write-through and
write-back models. The use of write-back caching
allows the Spiralog file system ro amalgamate writes,
thus conscrving disk bandwidth. This is especially
important in an OpenVMS Cluster system wherce disk
bandwideh is shared by several compurters. The
Spiralog file system attempts to amalgamate not just
data writes butalso file system operations. For example,
many compilers create temporary files that are deleted
at the end ofthe compilation. With write-back caching,
it is possible that this tvpe of tile may be created and

deleted without ever being written to the disk.

Therc are two disadvantages of write-back caching:
(1) if the svstem fails, any write requests that have
not been written to the disk arce lost, and (2) once in
the cache, anv ordering of the write requests is lost.
The data may be written from the cache to the disk in
a completely different order than the order in which
the application issued the write requests. To preserve
data integrity, some applications rely on write ordering
and the usc of careful write techniques. (Careful writ-
ing is discussed further in the scection below.) The
Spiralog hle system preserves data integrity by provid-
ing an ordered write-back cache known as a write-
behind cache.

Digital Technical Journal Vol.8 No.2 1996

oan

m

~

MILLISECONDS —\

NO CACHE

MILLISECONDS —\

WRITE-THROUGH

=

CACHE

MILLISECONDS

CACHE O
MICROSECONDS
WRITE-BACK O /
CACHE -
&

MICROSECONDS

[|<

CACHE

Sl

Figure 2
Caching Modcls

Caching 1s more important to the Spiralog file
system than it is to conventional file systems. Log-
structured file systems have inherently worse read
performance than conventional, update-in-place tle
svstems, due to the need to locate the datain the log.
As described in another paper in this o nal. locating
data in the log requires more disk T/0Os than an
update-in-place file system.? The Spiralog file system
uses large read caches to offser this extra read cost.

Careful Writing
The Files-11

semantics. Key OpenVMS applications such as transac-
tion processing and the OpenVMS Record Manage-
ment Services (RMS) have come to rely on the implicit
ordering of write-through. Thev use a technique

file svstem provides write-through

known as carctul writing to prevent data corruption
following a svstem failure.

Carctul writing allows an application to ensure that
the data on the disk is never in an inconsistent or
invalid state. This guarantee avoids situations in which
an application has to scan and possibly rebuild the dara
on the disk after a svstem failure. Recovery to a consis-
tent state after asvstem failure is often a very complex
and time-consuming task. By ensuring that the disk
can never be inconsistent, carcful writing removes the
need for this form of recovery.

Carcful writing is used in situations in which an
update requires several blocks on the disk to be written.

Digital Techmieal Journal Vol. 8 No.2 19906

Most disks guarantee atomic update of onlyv a single
disk block. The occurrence of a system failure while
several blocks are being updated could leave the blocks
partiallv updated and inconsistent. Carcful writing
avoids this risk by defining the order in which the
blocks should be updated on the disk. If the blocks are
written n this order, the data will always be consistent.

For examp
a persistent data structure. At the start of the file is an
index block, I, that points to rwo data blocks within
the file, A and B. The application wishes to update the
dara (A, B) to the new data (A’ B'). For the file to be
valid, the index must point to a consistent set ot data
blocks. So, the index must point either to (A, B) or to
(A", B"). It cannot point to a mixture suchas (A’ B).
Since the disk can guarantee to write only a single
block atomically, the application cannot simply write
(A", B") on top of (A, B) because that involves writing
nwo blocks. Should the system fail during the updares,
doing so could Icave the data in an invalid state.

To solve this problem, the application writes the
new data to the file in a specific order. First, it writes
the new data (A, B') to a new section of the file, wait-
ing uneil the data is written to the disk. Onee (A', B”)
are known to be on the disk, it atomically updatesthe
index block to point to the new data. The old blocks
(A, B) are now obsolete, and the space they consume
can be reused. During the update, the file is never in
an inconsistent state.

¢, the file shown in Figure 3 represents

START

B’ WRITE (A", B)

l

WAIT UNTIL ON-DISK

| A B A'
t t
I' A B A'

B! WRITE (I

WAIT UNTIL ON-DISK

Figure 3
Example of'a Carchul Write

Write-behind Caching

A carctul write policy relies totally on being able to
control the order of writes to the disk. This cannot be
achicved on a write-back cache because the write-back
method doces not preserve the order of write requests.
Reordering writes in a write-back cache would risk cor-
rupting the data that applications using carctul writing
were seeking to protect. This is untortunate because
the pertormance benehits of deferring the write to the
disk arc comparible with a carctul write policy. Carctul
writing docs not need to know when the data is written
to the disk, onlyv the order it is written.

To allow these applications to gain the performance
ot the write-back cache bur still protect their data on
disk, the Spiralog tile system uscs a variation on writce-
back caching known as write-behind caching. Intro-
duced in the Echo tile system, write-behind caching is
essentially write-back caching with ordering guaran-
tees. The cache allows the application to specity which
writes must be ordered and the order in which they
must be written to the disk.

Thisis achicved by providing the barricr primitive to
applications. Barrier defines an order or dependency
berween write operations. For example, consider the
diagram in Figure 4: Here, writes arc represented as
a time-ordered queue, with later writes being added

TIME ————>

to the tail. In the example, the application issucs
the writes in the order 1,2,3,4. Without a barricr, the
cache could write the data to the disk in any order (for
example, 1,34,2). If a barricr is placed in the write
queue, it specifies to the cache that all writes prior to
the barrier must be written to the disk betore (or
atomically with) any write requests atter it. In the
example, it a barrier is placed atter the second write,
the cache file system guarantees that writes 1 and 2 will
be written to the disk before writes 3 and 4. Writes 1
and 2 may still be written in any order, as could writes
3 and 4, but 3 and 4 will be writtenatter 1 and 2.

A carctul write policy can casily be implemented on
awrite-behind cache. As shown in Figure 5, the appli-
cation would usc barricrs to control the write order-
ing. Two barricrs arc required. The first (B1) comes
after the writes of the new data (A', B'). The sccond
(B2) is placed atter the index update I'. B1 is required
to ensure that the new data is on the disk before the
mdex block is updated. B2 ensures that the index
blockis updated betore any subsequent write requests.

The usc of barricrs avoids the need to wait tor [/QOs
to reach the disk, improving CPU utilization. In addi-
tion, the Spiralog file system allows amalgamation
of superseding writes berween barriers, reducing
the number of requests being written to the disk.

NO BARRIER

BARRIER

BARRIER AFTER

SECOND WRITE

Figure 4
Barrier Insertion in Write Queue

Digital Technical Journal Vol. 8 No.2 1996

wn

(8]

[Al B START

I Al B Al B WRITE (A, BY)
BARRIER BT

I A | B Al B WRITE (I
BARRIER B2

Figure 5
Example ofa Carctul Write Using Bacrier

Internally, the Spiralog file svstem allows barriers to be
placed berween any two write operations, even if thev
are to difterent files. The Spiralog file system uscs this
to build its own caretul write policy for all changes
to files, including metadata changes. This guaranteces
that the file system is alwavs consistent and gives write-
back performance on changes to file metadata as well
as data. One major advantage is that the Spiralog file
system docs not require a disk repair utility such as the
UNIX system’s fsck to rebuild the file system following
asystem failure.

Barriers arc used internally in several places to pre-
serve the order of updates to the file system metadata.
For example, when a file is extended, the allocation of
new blocks must be written to the disk betore any
subscquent data writes to the newly allocated region.
A barrier is placed immediatcly after the write request
to update the file length.

Barriers arc also used during complex file operations
such as a file create. These complex operations fre-
quently update shared resources such as parent direc-
tories. The barriers prevent updates to these shared
objects, avoiding the risk of corruption due to the
updates being reordered by the cache.

At the application level, the Spiralog file system pro-
vides the barrier function onlv within a file. It is not
possible to order writes between files. This was sutti-
cient to allow RMS (described in the section OpenVMS
File System Environment) to exploit the performance
of write-behind caching on most of its file organiza-
tions. RMS was cnhanced to usc barriers in its own
caretul write policy, which ensures the consistency of

complex file organizations, such as indexed files, even
when thev are subject to write-behind caching. Since
the majority of OpenVMS applications access the file
system through RMS, gaining writc-behind caching
on all RMS i

performance benefit to applications.

¢ organizations provides a significant

Digiral Techuical fournal Vol.8 No.2 1996

Inrernally, the Spiralog file system supports barricers
between files. The decision to support barriers within
a file was made to limit the complexity of inrerface
changes, in the belief that a cross-file barrier was of
little use to RMS. In retrospect, this proved to be
wrong. Some kev RMS tile organizations usce sccondary
files to hold journal records for the main application
file. These file organizations cannot express the order
in which updates to the two files should reach the disk,
and so are precluded from using write-behind caching,.

Application-level Caching Policies

The main problem with the barrier primitive is its
requirement that the application express the depen-
dencies to the tile system. Although this is unavoid-
able, it means that the application has to change it
it wishes to safely exploit write-behind caching. Clearly,
many applications were not going to make these
changes. In addition, some applications have on-disk
consistency requirements that tie them to a write-
through cnvironment.

The file system emulation layer provides additional
support tor these types of applications by exposing
three caching policies to applications. The policies arc
stored as permanent attributes of the file. By default,
when the file is opened by the file system, the perma-
nent caching policy is used on all write requests.

The three policies are described as tollows:

1. Write-through caching policy. This policy provides
applications with the standard write-through beha-
vior provided by the Files-11 file system. Each write
request is flushed to the disk betore the application
request rerurns, IF an application needs to know
what data is on the disk at all times, it should use
write-through caching,.

2. Write-behind caching policy. A pure write-behind
cache provides the highest level of performance.
Dirty data is not flushed to the disk when the file is

closed. The semantics of full write-behind caching
arc best suited to applications that can easily regen-
erate lost data at any time. Temporary files from a
compiler are a good example. Should the system
tail, the compilation can be restarted without any
loss of data.

3. Flush-on-close caching policy. The tlush-on-close
policy provides a restricted level of write-behind
caching for applications. Here, all updates to the file
are treated as write behind, but when the file is
closed, all changes are forced to the disk. This gives
the performance of write-behind but, in addition,
provides a known point when the data is on the disk.
This form of caching is particularly suitable for appli-
cations that can easily re-create data in the event of
a system crash but need to know that data is on the
disk at a specific time. For example, a mail store-and-
forward system receiving an incoming message must
know the data is on the disk when it acknowledges
receipt of the message to the forwarder. Once the
acknowledgment is sent, the message has been for-
mally passed on, and the ftorwarder may delete its
copy. In this example, the data need not be on the
disk until that acknowledgment is sent, because that
is the point at which the message receipt is commit-
ted. Should the system fail before the acknowledg-
ment is sent, all dirty data in the cache would be lost.
In that event, the sender can easily re-create the data
by sending the message again.

Figure 6 shows the results of a performance coms-
parison of the three caching policies. The testwas run
on a dual-CPU DEC 7000 Alpha system with 384
megabytes of memory on a RAID-5 disk. The test
repeated the following sequence tor the difterent file
sizes.

1. Create and open a file of the required size and set
its caching policy.

2. Write data to the whole file in 1,024-byte 1/0Os.

3. Close the tile.

4. Delete the file.

With small files, the number of file operations (create,
close, delete) dominates. The leftmost side of the
graph therefore shows the time per operation for file
operations. With time, the files increase in size, and the
data I/Os become prevalent. Hence, the rightmost
side of Figure 6 is displaying the time per operation for
data 1/0s.

Figure 6 clearly shows that an ordered write-behind
cache provides the highest performance of the three
caching models. For tile operations, the write-behind
cache is almost 30 percent faster than the write-
through cache. Data operations are approximately
three times faster than the corresponding operation
with write-through caching.

0.156
0.138

01211 |
0.104
0.086
0.069}
00521
0035}
0.017

TIME PER OPERATION (SECONDS)

0.000 y - y ' ; :
1,024 2048 4,09 8,192 16,384 32768

FILE SIZE (BYTES)
KEY:
—— WRITE-BEHIND CACHE

~~- FLUSH-ON-CLOSE CACHE
-------- WRITE-THROUGH CACHE

Figure 6
Performance Comparison of Caching Policics

Summary and Conclusions

The task of integrating a log-structured file system
into the OpenVMS environment was a significant
challenge for the Spiralog project members. Our
approach of carefully determining the interface to
emulate and the level of compatibility was important
to ensure that the majority of applications worked
unchanged.

We have shown that an existing update-in-place tile
system can be replaced by a log-structured file system.
Initial effort in the analysis of application usage fur-
nished information on interface compatibility. Most
file system operations can be provided through a file
system emulation layer. Where necessary, new inter-
taces were provided for applications to replace their
direct knowledge of the Files-11 file system.

File system operation tracing and functional analysis
of'the Files-11 file system proved to be the most useful
techniques to establish interface compatibility. Appli-
cation compatibility far exceeds the level expected
when the project was started. A majority of people use
the Spiralog file system volumes without noticing any
change in their application’s behavior.

Careful write policies rely on the order of updates
to the disk. Since write-back caches reorder write
requests, applications using careful writing have been
unable to take advantage of the significant improve-
ments in write performance given by write-back
caching. The Spiralog tile system solves this problem
by providing ordered write-back caching, known as
write-behind. The write-behind cache allows applica-
tions to control the order ofwrites to the disk through
a primitive called barrier.

Using barriers, applications can build caretul write
policies on top of a write-behind cache, gaining all the
performance of write-back caching without risking

Digital Technical Journal Vol.8 No.2 1996

55

dara integrity. A write-behind cache also allows the tile
svstem itself to gain write-back pertormance on all
file system operations. Since many file svstem opera-
tions are themselves quickly superseded, using write-
behind caching prevents manv file svstem operations
trom ever reaching the disk. Barriers also allow the file
system to protect the on-disk file system consistency
by implementing its own carcful write policy, avoiding
the need for disk repair utilitices.

The barrier primiuve provided a way to get write-
through semantics within a file for thosc applications
relying on careful write policies. Changing RMS to use
the barrier primitive allowed the Spiralog file system
to support write-behind caching as the default policy
on all file tvpes in the OpenVMS environment.

Acknowledgments

The development of the Spiralog tile system involved
the help and support of many individuals. We would
like to acknowledge Tan Pattison, in particular, who
developed the Spiralog cache. We also want to thank
Cathy Foley and Jim Johnson for their help through-
out the project, and Karen Howell, Morag Currie, and
all those who helped with this paper. Fina
very gratetul to Andy Goldstein, Stu Davidson, and
Tom Speer for their help and advice with the Spiralog
integration work.

Iv, we are

References

. J. Johnson and W. Laing, “Overview of the Spiralog File
Svstem,” Digital Technical Journal, vol. 8, no. 2
(1996, this issuc): 5-14.

o

C. Whirtaker, S. Bayley, and R. Widdowson, “Design of the
Server for the Spiralog File Svstem.” Digital Technical
Journel vol. 8, no. 2 (1996, this issuc): 15-31.

3. R. Greeny AL Bawrd, and J. Davies, “Designing a Fast,
On-line Backup Svstem tor a Log-structured File Svs-
tem,” Digital Technical Jouwirnal. vol. 8, no. 2 (1996,
this issuc): 32-45.

4. A. Birrell, A Hisgen, C. Jerian, T. Mann, and G. Swart,
“The Echo Distributed File Svstem,” Digital Systems
Rescarch Centery, Research Report 111 (Seprember
1993).

5. OpenVMS VO Users Reference Manial (Maynard,
Mass.: Digital Equipment Corporation, 1988).

6. R.Goldenbergand S. Saravanan, Open VWS AXP Inter-
nals and Data Structures (Newton, Mass.: Digital
Press, 1994).

7. S. Kleiman, “Vnodes: An Architecture for Multiple File
Svstem Tvpes in Sun UNIX,” Proceedings of Sunmer
{SENIN Conference. Atlanta, Ga. (1986) 238-247.

8. K. McCoy, VIS File System Internals (Burlington,
Mass.: Digital Press, 1990).

Digital Technical Journal Vol.8 No.2 1996

Biographies

Mark A. Howell

Mark Howellis an engineering manager in the OpenVais
Engincering Group in Livingston, U.K. Mark was the proj-
ect leader for Spiralog and wrote some of the product code.
He is now managing the follow-on releases to Spiralog ver-
sion 1.0. In previous projects, Mark contributed to Digital’s
DECdrm distribured transaction manager, DECAfs distrib-
uted file svstem, and the Alpha port of OpenVMS. Prior

to joining Digital, Mark worked on flight simulators and
thght softwarce for British Acrospace. Mark received a B.Sc.
(honours) in marine biology and biochemistry from Bangor
University, Wales. He is one ofthe rare people who still like
interactive fiction (the stuftvou have to type, instead ot the
stuff vou point a mousc at.)

Julian M. Palmer

A senior software engineer, Julian Palmer is a member of
the OpenVMS Engincering Group in Livingston, Scotland.
He is currently sworking on file svstem caching tor OpenVats,
Prior to his work in file svstems, Julian contributed to
OpenVMS interprocess communication. Julian jomned
Digital in 1989 atter completing his B.Sc. (honours) in
computer science from Edinburgh University.

Extending OpenVMS
for 64-bit Addressable
Virtual Memory

The OpenVMS operating system recently
extended its 32-bit virtual address space to
exploit the Alpha processor’s 64-bit virtual
addressing capacity while ensuring binary
compatibility for 32-bit nonprivileged pro-
grams. This 64-bit technology is now available
both to OpenVMS users and to the operating
system itself. Extending the virtual address
space is a fundamental evolutionary step for
the OpenVMS operating system, which has
existed within the bounds of a 32-bit address
space for nearly 20 years. We chose an asym-
metric division of virtual address extension that
allocates the majority of the address space to
applications by minimizing the address space
devoted to the kernel. Significant scaling issues
arose with respect to the kernel that dictated
a different approach to page table residency
within the OpenVMS address space. The paper
discusses key scaling issues, their solutions,
and the resulting layout of the 64-bit virtual
address space.

Michael S. Harvey
Leonard S. Szubowicz

The OpenVMS Alpha operating system initially sup-
ported a 32-bit virtual address space that maximized
compatibility for OpenVMS VAX users as they ported
their applications from the VAX platform to the Alpha
plattorm. Providing access to the 64-bit virtual mems-
ory capability defined by the Alpha architecture was
always a goal tor the OpenVMS operating system. An
carly consideration was the eventual usc of this tech-
nology to enable a transition from a purely 32-bit-
oriented context to a purely 64-bit-oricnted native
context. OpenVMS designers recognized that such
a fundamental transition for the operating system,
along with a 32-bit VAX compatibility mode support
environment, would take a long time to implement
and could scriously jeopardize the migration of appli-
cations from the VAX platform to the Alpha platform.
A phascd approach was called for, by which the operat-
ing system could evolve over time, allowing tor quicker
time-to-market for significant features and better, more
timely support for binary compatibility.

In 1989, a strategy emerged that defined two funda-
mental phases of OpenVMS Alpha development. Phase
1 would deliver the OpenVMS Alpha operating system
initially with a virtual address space that faithfully repli-
cated address space asitwas defined by the VAX archi-
tecture. This familiar 32-bit environment would case
the migration of applications from the VAX platform
to the Alpha platform and would case the port of the
operating system itself. Phase 1, the OpenVMS Alpha
version 1.0 product, was delivered in 1992

For Phase 2, the OpenVMS operating system would
successfully exploit the 64-bit virtual address capacity
of the Alpha architecture, laying the groundwork
tor further evolution of the OpenVMS system. In
1989, strategists predicted that Phase 2 could be deliv-
ered approximately three years atter Phase 1. As
planned, Phase 2 culminated in 1995 with the delivery
of OpenVMS Alpha version 7.0, the first version of
the OpenVMS operating system to support 64-bit
virtual addressing.

This paper discusses how the OpenVMS Alpha
Operating System Development group extended the
OpenVMS virtual address space to 64 bits. Topics
covered include compatibility for existing applica-
tions, the options for extending the address space, the

Digital Techmical Journal Vol.8 No.2 1990

strategy tor page table residency, and the final layout of
the OpenVMS 64-bit virtual address space. Inimple-
menting support for 64-bit virtual addresses, design-
ers maximized privileged code compatibility; the paper
presents some key measures taken to this end and pro-
vides a privileged code example. A discussion of the
immediate use ot 64-bit addressing by the OpenVMS
kernel and a summary of the work accomplished con-
clude the paper.

Compatibility Constraints

Growing the virtual address space from a 32-bit to
a.64-bit capacity was subject to one overarching con-
sideration: compatibility. Specifically, any existing non-
privileged program that could execute prior to the
introduction of” 64-bit addressing support, cven in
binary form, must continue to run correctly and
unmoditied under a version of the OpenVMS operat-
ing system that supports a 64-bit virtual address space.
In this context, a nonprivileged program is once that
is coded only to stable interfaces that are not allowed
to change trom one release of the operating system to
another. In contrast, a privileged program is defined
as one that must be linked against the OpenVMS
kernel to resolve references to internal intertaces and
data structures that may change as the kernel evolves,
The compatibility constraint dictates that the follow-
ing characteristics of the 32-bit virtual address space
cnvironment, upon which a nonprivileged program
may depend, must continue to appear unchanged.

= The lower-addressed halt (2 gigabytes [GB]) of vir-
tual address space is defined to be private to a given
process. This process-private space is turther divided
into two 1-GB spaces that grow toward cach other.

1. The lower 1-GB space is reterred to as PO space.
This space is called the program region, where
uscr programs typically reside while running.

2. The higher 1-GB space is reterred toas P1 space.
This space is called the control region and con-
tains the stacks for a given process, process-
permanent code, and various process-specific
control cells.

= The higher-addressed halt (2 GB) of virtual address
space is defined to be shared by all processes. This
shared space is where the OpenVMS operating sys-
tem kernel resides. Although the VAX architecture
divides this space into a pair of separately named
1-GB regions (SO space and S1 space), the OpenVMS

Alpha operating system makes no material distine-

tion between the nwo regions and refers to them

collectively as SO/S1 space.

Figure 1 illustrates the 32-bit virtual address space
layout as implemented by the OpenVMS Alpha oper-
ating system prior to version 7.0." An interesting

Digital Technical Journal Vol.§ No.2 1996

mechanism can be seen in the Alpha implementation
of this address space. The Alpha architecture defines
32-bit load opcerations such that values (possibly
pointers) are sign extended from bit 31 as they are
loaded into registers.” This facilitates address calcula-
tions with results that are 64-bit, sign-extended torms
of the original 32-bit pointer values. For all PO or P1
space addresses, the upper 32 bits ot a given pointer in
a register will be written with zeros. For all S0/S1
space addresses, the upper 32 bits of'a given pointer in
a register will be written with ones. Henee, on the
Alpha platform, the 32-bit virtual address space actu-
ally exists as the lowest 2 GB and highest 2 GB of the
entire 64-bit virtual address space. From the perspec-
tive of a program using only 32-bit pointers, these
regions appear to be contiguous, exactly as they
appeared on the VAX plattorm.

Superset Address Space Options

We considered the following three gencral options for
extending the address space beyond the current 32-bit
[imits. The degree to which each option would relieve
the address space pressure being telt by applications
and the OpenVMS kernel itselt varied signiticantly,
as did the cost of implementing each option.

1. Extension of shared space

2. Extension of process-private space

3. Extension of both shared space and process-private
space

The first option considered was to extend the virtual
address boundaries for shared space only. Process-
private space would remain limited to its current size
of2 GB. It processes needed aceess to a huge amount
of virtual memory, the memory would have to have
been ereated in shared space where, by definition, all
processes would have aceess to it. This option’s chief
advanrage was that no changes were required in the
complex memory management code that specifically
supports process-private space. Choosing this option
would have minimized the time-to-market for deliver-
ing some degrec of virtual address extension, however
limited it would be. Avoiding any impact to process-
private space was also its chief disadvantage. By failing
to extend process-private space, this option proved to
be gencerally unappealing to our customers. In addi-
tion, it was vicwed as a makeshift solution that we
would be unable to discard once process-private space
was extended at a tuture time.

The sccond option was to extend process-private
space only. This option would have dclivered the
highly desirable 64-bit capacity to processes but would
not have extended shared space beyond its current
32-bit boundarics. The option presumed to reduce
the degree of change in the kernel, hence maximizing

/I 7
1 - g
00000000.00000000 e
7
p
PROCESS PO SPACE
PRIVATE
(2 GB)
P1 SPACE
00000000.7FFFFFFF
1
| FFFFFFFF.80000000

SHARED
SPACE S0/S1 SPACE
(2 GB)

FFFFFFFF.FFFFFFFF

Figure 1
OpenVMS Alpha 32-bit Virtual Address Space

privileged code compatibility and ensuring faster time-
to-market. However, analysis of this option showed
that there were enough significant portions of the ker-
nel requiring change that, in practice, very little addi-
tional privileged code compatibility, such as for
drivers, would be achievable. Also, this option did not
address certain important problems thatare specific to
shared space, such as limitations on the kernel’s capac-
ity to manage ever-larger, very large memory (VLM)
systems in the future.

We decided to pursue the option of a flat, superset
64-bit virtual address space that provided extensions
for both the shared and the process-private portions of
the space that a given process could reference. The
new, extended process-private space, named P2 space,
is adjacent to P1 space and extends toward higher
virtual addresses.** The new, extended shared space,
named S2 space, is adjacent to SO/S1 space and
extends toward lower virtual addresses. P2 and S2
spaces grow toward each other.

A remaining design problem was to decide where
P2 and S2 would meet in the address space layout.
A simplce approach would split the 64-bit address
space exactly in half, symmetrically scaling up the
design of the 32-bit address space already in place.
(The address space is split in this way by the Digital
UNIX operating system.*) This solution is ecasy to
cxplain because, on the one hand, it extends the 32-bit
convention that the mostsignificant address bit can be
treated as a sign bit, indicating whether an address
is private or shared. On the other hand, it allocates
fully one-half the available virtual address space to the

operating system kernel, whether or not this space is
needed inits entirety.

The pressure to grow the address space generally
stems trom applications rather than from the operat-
ing system itself. In response, we implemented the
64-bit address space with a boundary that tloats
between the process-private and shared portions. The
operating system configures at bootstrap only as much
virtual address space as it needs (never more than
50 percent of the whole). At this point, the boundary
becomes fixed tor all processes, with the majority of
the address space available tor process-private use.

A floating boundary maximizes the virtual address
space that is available to applications; however, using
the sign bit to distinguish between process-private
pointers and shared-space pointers continues to work
only tor 32-bit pointers. The location of the floating
boundary must be used to distinguish between 64-bit
process-private and shared pointers. We believed that
this was a minor trade-oft in return for realizing twice
as much process-private address space as would other-
wise have been achieved.

Page Table Residency

While pursuing the 64-bit virtual address space layout,
we grappled with the issue of where the page tables
that map the address space would reside within that
address space. This section discusses the page table
structure that supports the OpenVMS operating sys-
tem, the residency issue, and the method we chose to
resolve this issue.

Digiral Technical Journal Vol.8 No.2 1996

60

Virtual Address—-to—Physical Address Translation
The Alpha architecture allows an implementation to
choose one of the following tour page sizes: 8 kilo-
bytes (KB), 16 KB, 32 KB, or64 KB.* The architecture
also detines a multilevel, hierarchical page table struc-
ture for virtual address-to-physical address (VA-to—
PA) translations. All OpenVMS Alpha platforms have
implemented a page size of 8 KB and three levels
in this page table structure. Although throughout
this paper we assume a page size of 8§ KB and three
levels in the page table hierarchy, no loss of generality
is incurred by this assumption.

Figure 2 illustrates the VA-to-PA translation
sequence using the multilevel page table structure.

1. The page table base register (PTBR) is a per-process
pointer to the highest level (L1) of that process’
page table structure. At the highest level is one
8-KB page (L1PT) that contains 1,024 page table
entries (PTEs) of 8 bytes each. Each PTE at the
highest page table level (that is, cach LIPTE) maps
a page table page at the next lower level in the trans-
lation hierarchy (the L2PTs).

2. The Segment 1 bit field of'a given virtual address
is an index into the LIPT that sclects a particular
LIPTE, hence selecting a specific L2PT tor the next
stage of the translation.

3. The Segment 2 bit field of the virtual address
then indexes into that L2PT to select an L2PTE,

hence selecting o specific L3PT tor the next stage
ofthe translation.

4. The Segment 3 bit tield of the virtual address then
indexcs into that L.3PT to select an L3PTE, hence
selecting a specific 8-KB code or data page.

5. The byte-within-page bit field of the virtual address
then selects a specific byte address in that page.

An Alpha implementation may increase the page
size and/or number of levels in the page table hierar-
chy, thus mapping greater amounts of virtual space up
to the full 64-bit amount. The assumed combination
of 8-KB page sizc and three levels of page table allows
the system to map up to 8 terabvtes (TB) (i.c., 1,024
X 1,024 X 1,024 X 8 KB = 8 TB) of virtual memoryv
for a single process.

To map the entire 8-TB address space available to a
single process requires up to 8 GB of PTEs (i.c., 1,024
X 1,024 X 1,024 x 8 bytes = 8 GB). This fact alone
presents a serious sizing issuc tor the OpenVMS oper-
ating system. The 32-bit page table residency modcl
that the OpenVMS operating system ported trom the
VAX plattorm to the Alpha platform does not have
the capacity to support such large page tablcs.

Page Tables: 32-bit Residency Model

We stated carlicr that materializing a 32-bit virtual
address space as it was defined by the VAX architecture
would case the cttort to port the OpenVMS operating

63 | 42 32,31 0
VIRTUAL SIGN EXTENSION SEGMENT 1 SEGMENT 2 | SEGMENT 3 \E/avﬁgw
ADDRESS OF SEGMENT 1 : PAGE

PAGE TABLE
BASE REGISTER

L1PT L2PTs L3PTs DATA PAGES
Figure 2
Virtual Address—to—Physical Address Translation
Digital Technical Journal Vol.8 No.2 1996

system from the VAX plattorm to the Alpha platform.
A concrete example of this relates to page table resi-
dency in virtual memory.

The VAX architecture defines, for a given process,
a PO page table and a Pl page table that map that
process’ PO and P1 spaces, respectively.? The architec-
ture specifies that these page tables are to be located in
S0/S1 shared virtual address space. Thus, the page
tables in virtual memory are accessible regardless of
which process context is currently active on the system.

The OpenVMS VAX operating system places a given
process’ PO and P1 page tables, along with other per-
process data, in a fixed-size data structure called a bal-
ance slot. An array of such slots exists within SO/S1
space with each memory-resident process being
assigned to one of these slots.

This page table residency design was ported from
the VAX plattorm to the Alpha platform.’ The L3PTs
needed to map PO and P1 spaces and the one L2PT
needed to map those L3PTs are all mapped into a bal-
ance slotin S0/S1 space. (To conserve virtual mem-
ory, the process’ LIPT is not mapped into S0/S1
space.) The net effect is illustrated in Figure 3.

The VAX architecture defines a separate, physically
resident system page table (SPT) that maps SO/S1
space. The SPT was explicitly mapped into SO/SI
space by the OpenVMS operating system on both the
VAX and the Alpha platforms.

SLOT

SLOT

SLOT

BALANCE

SLOTS sLoT

SLOT

SLOT

Only 2 megabytes (MB) of level 3 PT space is
required to map all of a given process’ PO and P1
spaces. This balance slot design reasonably accommo-
dates a large number of processes, all of whose PO and
P1 page tables simultancously reside within those
balance slots in SO/S1 shared space.

This design cannot scale to support a 64-bit virtual
address space. Measured in terms of gigabytes per
process, the page tables required to map such an enor-
mous address space are too big for the balance slots,
which are constrained to exist inside the 2-GB S0/S1
space. The designers had to find another approach for
page table residency.

Self-mapping the Page Tables

Recall from earlier discussion that on today’s Alpha
implementations, the page size is 8 KB, three levels of
translation exist within the hierarchical page table struc-
ture, and each page table page contains 1,024 PTEs.
Each L1PTE maps 8 GB of virtual memory. Eight giga-
bytes of PT space allows all 8 TB of virtual memory that
this implementation can matenialize to be mapped.

An clegant approach to mapping a process’ page
tables into virtual memory is to self-map them. A sin-
gle PTE in the highest-level page table page is set to
map that page table page. That is, the selected LIPTE
contains the page frame number of the level 1 page
table page that contains that L1PTE.

PROCESS
HEADER

PROCESS-PRIVATE
L2PT

PO PAGE TABLE
(L3PTs)

_-=7--7\ sizep At
9t BOOTSTRAP

P1 PAGE TABLE
(L3PTs)

T ARROWS INDICATE
DIRECTION OF GROWTH

Figure 3

32-bit Page Tables in S0/S1 Space (Prior to OpenVMS Alpha Version 7.0)

Digital Technical Journal Vol.8 No.2 1996

61

The eftect of this selt-mapping on the VA-to—PA
translation sequence (shown in Figure 2) is subtle but
important.

= For those virtual addresses with a Segment 1 bit
field value that selects the self-mapper L1 PTE, step
2 of the VA—to-PA translation sequence reselects
the LIPT as the effective L2PT (L2PT') for the
next stage of the translation.

= Step 3 indexes into L2PT' (the LIPT) using the
Segment 2 bit field value to select an L3PT'

= Step 4 indexes into L3PT’ (an L2PT) using the
Segment 3 bit field value to select a specific data
page.

= Step 5 indexes into that data page (an L3PT) using
the byte-within-page bit field of the virtual address
to select a specific byte address within that page.

When step 5 of the VA-to—PA translation sequence
is finished, the final page being accessed is itselt one of
the level 3 page table pages, not a page that is mapped

L1PT
PTBR S :
| L1PT'S PFN }
PTE #1022 | L1PT'SPFN |

KEY:

PTBR PAGE TABLE BASE REGISTER
PFN PAGE FRAME NUMBER
PTE PAGE TABLE ENTRY

by a level 3 page table page. The sclf-map opceration
places the entire 8-GB page table structurc at the end
of the VA-to-PA translation sequence for a specific
8-GB portion of the process’ address space. This vir-
tual space that contains all of a process’ potential page
tables is called page table space (PT space).

Figure 4 depicts the cffect of self-mapping the page
tables. On the left is the highest-level page table
page containing a fixed number of PTEs. On the right
1s the virtual address space thatis mapped by that page
table page. The mapped address space consists of a col-
lection of identically sized, contiguous address range
sections, cach one mapped by a PTE in the corre-
sponding position in the highest-level page table page.
(For clarity, lower levels of the page table structure are
omitted from the figure.)

Notice that LIPTE #1022 in Figure 4 was chosen to
map the high-level page table page that contains that
PTE. (The rcason for this particular choice will
be explained in the nextsection. Theoretically, any one

64-BIT ADDRESSABLE
VIRTUAL ADDRESS SPACE

00000000.00000000

[8-GB #0

8-GB #1

1,020 x 8 GB

PT SPACE 8-GB #1022

8-GB #1023

S0/51 FFFFFFFF FFFFFFFF

Figure 4
Eftect of Page Table Self-map

Digital Technical Journal Vol.8 No.2 1996

of the LIPTEs could have been chosen as the self-
mapper.) The section of virtual memory mapped by
the chosen LIPTE contains the entire sct of page
tables needed to map the available address space of
a given process. This section of virtual memory is PT
space, which is depicted on the right side of Figure 4
in the 1,022d 8-GB section in the matcrialized virtual
address space.

The base address for this PT space incorporates the
index of the chosen self-mapper LIPTE (1,022 =
3FE(16)) as follows (sce Figure 2):

Segment 1 bitfield = 3FE
Segment 2 bitfield = 0
Segment 3 bit field = 0
Byte within page = 0,

which result in

VA = FFFFFFFC.00000000
(also known as PT_Base).

Figure 5 illustrates the exact contents of PT space
for a given process. One can observe the positional
effect of choosing a particular high-level PTE to selt-
map the pagetableseven within PT space. In Figure 4,
the choice of PTE for self-mapping not only places PT
space as a whole in the 1,022d 8-GB section in virtual
memory but also means that

s The 1,022d grouping of the lowest-level page
tables (L3DPTs) within PT space is actually the col-
lection of next-higher-level PTs (L2PTs) that map
the other groupings of L3PTs, beginning at
Segment 1 bit field = 3FE
Segment 2 bitfield = 3FE
Segment 3 bitfield = 0
Byte within page = 0,
which resultin

VA = FFFFFFED.FF000000
(also known as L.2_Base).

= Within that block of L2PTs, the 1,022d L2PT is
actually the next-higher-level page table thar maps
the L2PTs, namely, the LIPT. The LIPT begins at
Segment 1 bit field = 3FE
Segment 2 bitfield = 3FE
Segment 3 bitfield = 3FE
Byte within page = 0,
which resultin
VA = FFFFFFFD.FF7FC000
(also known as L.1_Base).

= Within that LIPT, the 1,022d PTE is the one used

for self-mapping these page tables. The address of
the sclf-mapper L1PTE is

NEXT-LOWER 8 GB
PT_BASE:
L 1,024 L3PTs
. 1,021 x (1,024 L3PTs)
PAGE TABLE
SPACE (8 GB)
L2_BASE:
Ut RS 1,024 L2PTs
L1_BASE: [~ [3pi 77
TS
L 1,024 L3PTs
NEXT-HIGHER 8 GB

. .
. .
. .

Figure 5
Page Table Space

Digital Technical Journal

63

64

Scegment 1 bit field = 3FE

Segment 2 bit field = 3FE

Segment 3 bit field = 3FE

Byte within page = 3FE X 8

which result in

VA = FFFFFFED.FF7FDFEQ.
This positional correspondence within PT space is pre-
served should a different high-level PTE be chosen for
sclf-mapping the page tables.

The propertics inherent in this sclf-mapped page
table arc compelling,.

= The amount of virtual memory reserved is exactly
the amount required for mapping the page tables,
regard
Consider the segment-numbered bit ficlds of a
given virtual address trom Figure 2. Concatenated,
these bit fields constitute the virtual page number
(VPN) portion of a given virtual address.

ess of page size or page table depth.

The total size of the PT space needed to map every
VPN is the number of possible VPNs times 8 bytes,
the size of a PTE. The total size of the address

space mapped by that PT space is the number of

possible VPNs times the page size. Factoring
out the VPN multiplicr, the difterence between
these is the page size divided by 8, which is exactly
the size of the Segment 1 bit field in the vir-
tual address. Hence, all the space mapped by a
single PTE at the highest level of page table is
exactly the size required for mapping all the PTEs
that could cver be needed to map the process’
address space.

= The mapping of PT space involves simply choos-
ing onc of the highest-level PTEs and forcing it to
sclt-map.

= No additional svstem tuning or coding is required
to accommodate a more widelv implemented

virtual address width in PT space. By definition of

the se
address space required will be available, no more

f-map cftect, the exact amount of virtual

and no less.

= Jris casv to locate a given PTE. The address of

a PTE becomes an efficient function of the address
that the PTE maps. The function first ¢
the byte-within-page bit field of the subject vir-
tual address and then shifts the remaining vircual
address bits such that the Segments 1, 2, and 3 bit
ficld values (Figure 2) now reside in the corre-
sponding next-lower bit ticld positions. The func-
tion then writes (and sign extends it necessary)

cars

the vacated Segment 1 tield with the index of

the sclf-mapper PTE. The result is the address
of the PTE that maps the original virtual address.
Note that this algorithm also works for addresses

Digiral Technical Journal Vol. 8 No.2 (990

within PT space, including that of the sclt-mapper
PTE itsclt.

= Process page table residency n virtual memory is
achieved without imposing on the capacity of
shared space. That is, there is no longer a need to
map the process page tables into shared space. Such
amapping would be redundant and wastetul.

OpenVMS 64-bit Virtual Address Space

With this page table residency strategy n hand, it
became possible to finalize a 64-bir virtual address lay-
out for the OpenVMS operating system. A sclf-mapper
PTE had to be chosen. Consider again the highest leve

of page table in a given process’ page table structure
(Figurc 4). The first PTE in that page table maps a sec-
tion of virtual memory that includes PO and Pl spaces.
This PTE was therctore unavailable tor usc as a sclt-
mapper. The last PTE in that page table maps a section
ot virtual memory that includes SO /S1 space. This PTE
was also unavailable for self-mapping purposcs.

All the intervening high-level PTEs were potential
choices tor self-mapping the page tables. To maximize
the size of process-private space, the correct choice
is the next-lowwer PTE than the one that maps the low-
estaddress in shared space.

This choice is implemented as a boot-time algo-
richm. Bootstrap code first determines the size
required tor OpenVMS shared space, calculating the
corresponding number of high-level PTEs. A suth-
cient number of PTEs to map that shared space are
allocated fater from the high-order end of a given
process’ highest-level page table page. Then the next-
lower PTE is allocated for selt-mapping that process’
page tables. All remaining lower-ordered PTEs are lefe

available for mapping process-private space. In prac-
tice, nearly all the PTEs are available, which means that
on todav’s svstems, almost 8 TB of process-private vir-
rual memory is avatlable to a given OpenViMS process.

Figure 6 presents the tinal 64-bic OpenVAILS virtual
address space lavout. The portion with the lower
addresses is entirelv process-private. The higher-
addressed portion is shared by a
spaces. PT space is a region of virtual memory that lies
berween the P2 and S2 spaces for any given process
and at the same virtual address for all processes.

Nore that PT" space itselt consists of a process-private
and a shared portion. Again, consider Figure 5. 'The
highest-level page table page, 1LIPT] is process-private.
[tis pointed to by the PTBR. (When a process’ context
is loaded, or made active, the process’ PTBR value 1s

I process address

loaded trom the process’ hardware-privileged context
block mro the PTBR register, thereby making current
the page rable structure pointed to by that PTBR and
the process-private address space thatit maps.)

7/
7/
7 7 J
Pa| %
A 11 .
|l | _7/ /’
00000000.00000000 PO SPACE in
00000000.7FFFFFFF P1 SPACE =
00000000.80000000 ’
L 7
a
4 P2 SPACE A
e
s
o
)
“4 PAGE TABLE SPACE A F---
4
i /(;éo(o
%
O
PROCESS-PRVATE| | A
SHARED SPACE
4+ S2 SPACE P
FFFFFFFF.7FFFFFFF
FFFFFFFF.80000000
S0/51 SPACE
FFFFFFFF.FFFFFFFF

Note that this drawing is not to scale.

Figure 6
Open VMS Alpha 64-bit Virtual Address Space

All higher-addressed page tables n PT space are
used to map shared space and are themsclves shared.
They arc also adjacent to the shared space that they
map. All page tables in PT space that reside at
addresses lower than that of the LIPTare used to map
process-private space. These page tables are process-
privatc and are adjacent to the process-private space
that they map. Hence, the end of the LIPT marks
a universal boundary between the process-private
portion and the shared portion of the entire virrual
address space, serving to scparate even the PTEs that
map thosc portions. In Figure 6, the linc passing
through PT space illustrates this boundary.

A dircct consequence of this design is thar the
process page tables have been privatized. That s,
the portion of PT space that is process-private is cur-
rently active in virtual memory only when the owning
process itself is currently active on the processor.

Fortunately, the majority of page table references
occur while executing in the context of the owning
process. Such references actually are enhanced by
the privatization of the process page tables because
the mapping function of a virtual address to its PTE
is now more efficient.

Privatization does raise a hurdle for certain pri-
vileged codce that previously could access a process’
page tables when executing outside the context of the
owning process. With the page tables resident in
shared space, such references could be made regard-
less of which process is currently active. With priva-
tized page rables, additional access supportis needed,
aspresented in the next section.

A final commentary is warranted for the separately
maintained system page table. The self-mapped page
table approach to supplyving page table residency in
virtual memory includes the PTEs for any virtual

Digiral Technical Journal Vol.8 No 2 1996

65

66

addresses, whether they are process-private or shared.
The shared portion of PT space could serve now as the
sole location tor shared-space PTEs. Being redundant,
the original SPT is eminently discardable; however,
discarding the SPT would creare a massive compatibil-
ity problem tor device drivers with their many 32-bit
SPT references. This arcais one in which an opportu-
nity exists to preserve a significant degree of privileged
code compatibility.

Key Measures Taken to Maximize
Privileged Code Compatibility

Toimplement 64-bit virtual address space support, we
altered central sections of the OpenVMS Alpha kernel
and many ofits key data structures. We expected that
such changes would require compensating or corre-
sponding source changes in surrounding privileged
components within the kernel, in device drivers, and
in privileged layered products.

¢, the previous discussion seems to indi-

For examp
cate thatany privileged component that reads or writes
PTEs would now nced to use 64-bit-wide pointers
instead of 32-bit pointers. Similarly, all system fork
threads and interrupt service routines could no longer
count on direct access to process-private PTEs with-
out regard to which process happens to be current
at the moment.

A number of factors exacerbated the impact of such
changes. Since the OpenVMS Alpha operating sys-
tem originated from the OpenVMS VAX operating
svste, significant portions of the OpenVMS Alpha
opcerating svstem and its device drivers are still written
in MACRO-32 code, a compiled language on the
Alpha plattorm.” Because MACRO-32 is an assembly-
level stvle of programming language, we could not
simplv change the definitions and declarations of vari-
ous tvpes and relv on recompilation to handle the
move from 32-bit to 64-bit pointers. Finally, there are
well over 3,000 references to PTEs from MACRO-32
code modules i the OpenVMS Alpha source pool.

We were thus faced with the prospect ot visiting and
potentially altering cach of these 3,000 references.
Morcover, we would need to follow the register life-
times that resulted from cach of these reterences to
ensure that all address caleulations and memory refer-

ences were done using 64-bit operations. We expected
that this process would be time-consuming and crror
prone and that it would have a signiticant negative
impact on our completion date.

Once OpenVMS Alpha version 7.0 was available
to uscrs, those with device drivers and privileged code
of their own would need to go through a similar
cftort. This would further delav wide use of the
release. For all these reasons, we were well motivared

Digital Technical Journal Vol 8§ No.2 1996

to minimize the impact on privileged code. The next
four scctions discuss techniques that we used to over-
come these obstacles.

Resolving the SPT Problem

A signihcant number of the PTE references in pri-
vileged code are to PTEs within the SPT. Device
drivers often double-map the user’s 1/0 butter into
SO/S1 space by allocating and appropriatcly initializ-
ing svstem page table entrics (SPTEs). Another situa-
tion in which a driver manipulates SPTEs is in the
substitution of a svstem bufter tora poorly aligned or
noncontiguous uscr /0O bufter that prevents the
bufter from being directly used with a particular
device. Such code relies heavilv on the svstem data ccell
MMGSGL._SPTBASE, which points to the SPT.

The new page table design completely obviates the
need for a separate SPT. Given an 8-KB page size and
8 bytes per PTE, the entire 2-GB SO /ST virtual address
space range can be mapped by 2 MB of PTEs within PT
space. Because SO/S1 resides at the highest addressable
end of the 64-bit virtual address space, it is mapped by
the highest 2 MB of PT space. The arcs on the lett in
Figure 7 illustrate this mapping. The PTEs in PT space
that map SO/S1 are tully shared by all processes, but
they must be referenced with 64-bitaddresscs.

This incompatibility is completely hidden by the
creation of a 2-MB “SPT window” over the 2 MB in
PT space (level 3 PTEs) that maps SO/ST space. The
SPT window is positioned at the highest addressable
end ot SO/S1 space. Therefore, an access through the
SPT window onlv requires a 32-bit SO/S1 address and
can obtain anv of the PTEs in PT space that map
SO0/S1T space. The ares on the nght in Figure 7 illus-
trate this access path.

The SPT window is sct up at svstem initiahzation
tume and consumes onlyv the 2 KB ot PThEs that
are necded to map 2 MB. The svstem data cell
MMGSGL_SPTBASE now points to the base of the
SPT window, and all existing references to that data cell
continue to function correctly without change.”

Providing Cross-process PTE Access for Direct I/O

The self-mapping of the page tablesis an clegant solu-
tion to the page table residency problem imposed by
the preceding design. However, the self-mapped page
tables presentsignificant challenges of their own to the

[/0 subsystem and to manv device drivers,

Typically, OpenVMS device drivers for mass storage,
nenwork, and other high-pertormance devices perform
direct memory access (DMA) and what OpenVMS ca
“direct 1/0.” These device drivers lock down mrto
physical memory the virtual pages that contan the
requester’s 1/0 bufter. The 1/0 manster is pertormed
directlv to those pages, alter which the bufter pages are
unlocked, hencee the term “direct 1/0.7

s

(8 GB)

PAGE TABLE SPACE

PTEs THAT MAP S0/S1 (2MB) | *-

Do 52(26GB) .
\ Al
* S0/S1 (2 GB) 4
SPT WINDOW (2 MB) - 'FFFFFFFF FFFFFFFF

Figure 7
System Page Table Window

The virtual address of the buffer is not adequate for
device drivers because much of the driver code runs in
system context and not in the process context of the
requester. Similarly, a process-specific virtual address is
meaningless to most DM A devices, which typically can
dcal only with the physical addresses of the virtual
pages spanned by the bufter.

For these rcasons, when the 1/0 bufter is locked
into memory, the OpenVMS 1/0 subsystem converts
the virtual address of the requester’s buffer into
(1) the address of the PTE that maps the start of
the bufter and (2) the byte offser within that page to
the first byte of the buffer.

Once the virtual address of the 1/0 buffer is con-
verted to a PTE address, all references to that bufter
are made using the PTE address. This remains the case
even if this I/O request and 1/0 butter are handed ot f
from onc driver to another. For example, the 1/0
request may be passed from the shadowing virtual disk
driver to the small computer systems interface (SCSI)
disk class driver to a port driver for a specitic SCSI host
adapter. Each of these drivers will rely solely on the
PTE address and the byte offsct and not on the virtual
address of the 1/0 butter.

Therefore, the number of virtual address bits the
requester originally used to specify the address of

the 1/0 bufter is irrelevant. What really matters is
the number of address bits that the driver must use
to reference a PTE.

These PTE addresses were always within the page
tables within the balance set slots in shared SO/S1
space. With the introduction of the sclf-mapped page
tables, a 64-bit address is required for accessing any
PTE in PT space. Furthermore, the desired PTE is not
accessible using this 64-bit address when the driver is
no longer executing in the context of the original
requester process. This is called a cross-process PTE
access problem.

In most cases, this access problem is solved for
direct 1/0O by copying the PTEs that map the 1/0
bufter when the 1/0 bufter is locked into physical
memory. The PTEs in PT space are accessible at that
point because the requester process context is required
in order to lock the bufter. The PTEs are copied into
the kernel’s heap storage and the 64-bit PT space
address is replaced by the address of the PTE copices.
Because the kernel’s heap storage remains in SO/S1
space, the replacement address is a 32-bit address that
is shared by all processes on the system.

This copy approach works becausc drivers do not
need to modity the actual PTEs. Typically, this
arrangement works well because the associated PTEs

Digital Technical Journal Vol.8 No.2 1996

67

can fit into dedicated space within the 1/0 request
packet data structure used by the OpenVMS operating
system, and there s no measurable mcrcase m CPU
overhead to copy those PTES.

It the 1/0 buffer is so large that its associated PTEs
cannot it within the /0 request packet, a separate
kernel heap storage packet is allocated to hold the
PTEs. If the 1/0 bufter is so large that the cost of
copving all the PTEs is noticeable, a direct aceess path
is created as tollows:

= The L3PTEs that map the [/O buffer are locked
into physical memory.

= Address space within SO/S1 space is allocated
and mapped over the L3PTEs that were just
locked down.

This establishes a0 32-bir addressable shared-space
window over the L3PTEs that map the [/0 bufter.

The essential point is that one of these methods is
sclected and emploved until the /O 1s completed and
the bufter is unlocked. Each method provides a 32-bit
PTE address thatthe rest ot the [/O subsvstem can use
transparently, as it has been accustomed to doing, with-
out requiring numerous, complex source changes.

Use of Self-identifying Structures

To accommodate 64-bit user virtual addresses, a num-
ber of kernel data structures had to be expanded and
changed. For cexample, asynchronous system trap
(AST) control blocks, bufttered 1/0 packets, and timer
queue entries all - contain uscr-provided
addresses and parameters that can now be 64-bit
addresses. These structures are often embedded in

\Varous

other structures such thar a change in one has a ripple
cffect roaserof other strucrures.

If these structures changed unconditionallyy many
scattered source changes would have been required.
Yet, at the samie time, cach of these structures had con-
sumers who had no immediate need for the 64-bit
addressing—related capabilities.

Instead ot simply changing cach of these structures,
we detined a new 64-bit-capable vartant that can coex-
1st with its traditional 32-bit counterpart. The 64-bit
variant’s structures are “self-identitving” because they
can readily be distinguished from their 32-bit counter-
parts by examining a particular ficld within the struc-
ture itselt. Typically, the 32-bit and 64-bit variants can
be intermixed freely within queuces and only a limited
sct of routines need to be aware of the variant types.

Thus, for example, components that do not need
64-bit ASTs can continue to butld 32-bit AST control
blocks and queuce them with the SCHSQAST routine.
Similarly, 64-bit AST control blocks can be queued
with the same SCHSQAST routine because the AST
delivery code was enhanced ro support cither tvpe of
AST control block.

Digital Technical Journal Vol 8 No. 2 1996

The use of selt-identifiing structures is also a tech-
nique that was emploved to compatibly enhance pub-
lic user-mode interfaces to library routines and the
OpenVMS kernel. This topic is discussed - greater
detail - “The OpenVMS Mixed
Environment.™

Pointer Size

Limiting the Scope of Kernel Changes

Another kev tactic that allowed us to minimize the
required source code changes to the OpenVMS kernel
came from the realization that full support ot 64-bit
virtual addressing tor all processes does not imply or
require exclusive use of 64-bit pointers within the ker-
nel. The portions of the kernel that handled user
addresses would tor the most part need to handle
64-bit addresses; however, most kernel data structures
could remain within the 32-bit addressable S0/S1
space without anv limit on uscr functionality. For
example, the kernel heap storage is stll located
in SO/S1 space and continues to be 32-bit address-
able. The Record Manmagement Services (RMS)
supports data transfers to and from 64-bit address-
able user bufters, but RMS continucs to use 32-bit-
wide pointers for its internal control structurcs.
We thercfore focused our cttort on the parts of
the kernel that could benehit from internal usc
of 64-bit addresses (sce the section Immediate Use
of 64-bit Addressing by the OpenVMS Kernel
for examples) and that needed to change to support
64-bit user virtual addressces.

Privileged Code Example—The Swapper

The OpenVMS working set swapper provides an inter-
esting example of how the 64-bit changes within the
kernel mav impact privileged code.

Only a subset of a process’ virtual pages is mapped
to phivsical memory ar any given point in time. The
OpenVMS operating svstem occasionally swaps this
working sct ofpages out of memory to secondary stor-
ageas aconsequence ofmanaging the pool of available
physical memorvy. The entity responsible for this activ-
invis a privileged process called the working set swap-
per or swapper, tor short. Since it is responsible for
transferring the working set of a process into and out
of memory when necessary, the swapper must have
intimate knowledge of the virtual address space of
aprocess ncluding that process’ page tables.

Consider the earlier discussion m the scction
OpenVMS 64-bit Virtual Address Space about how
the process’ page tables have been privatized as a wayv
to efticiently provide page table residency i virtual

memory. A conscquence of this design is that while the
swapper processis active, the page tables ofthe process
being swapped are not available in virtual memory.
Yet, the swapper requires aceess to those page tables to

do its job. This is an instance of the cross-process PTE
access problem mentioned earlicr,

The swapper is unable to directly access the page
tables of the process being swapped because the swap-
per’s own page tables are currently active in virtual
memory. We solved this access problem by revising the
swapper to temporarily “adopt” the page tables of
the process being swapped. The swapper accomplishes
this by temporarily changing its PTBR contents to
point to the page table structure tor the process being
swapped instead of to the swapper’s own page table
structure. This change forces the PT space of the
process being swapped to become active in virtual
memory and therefore available to the swapper as it
prepares the process to be swapped. Note that the
swapper can make this temporary change because
the swapper resides in shared space. The swapper does
not vanish trom virtual memory as the PTBR value is
changed. Once the process has been prepared for
swapping, the swapper restores its own PTBR value,
thus relinquishing access to the target process’ PT
space contents.

Thus, it can be scen how privileged code with
intmatc knowledge of OpenVMS memory man-
agement mechanisms can be aftected by the changes
to support 64-bit virtual memory. Also evident is that
the alterations needed to accommodate the 64-bit
changes arc relatively straighttorward. Although the
swapper has a higher-than-normal awareness of mem-
ory management internal workings, extending the
swapper to accommodate the 64-bit changes was
not particularly difhcult.

Immediate Use of 64-bit Addressing by the
OpenVMS Kernel

Page table residency was certainly the most pressing
issuc we taced with regard to the OpenVMS kernel as
it evolved from a 32-bit to a 64-bit-capable operating
system. Once implemented, 64-bit virtual addressing
could be harnessed as an enabling technology for solv-
ing a number of other problems as well. This scction
brietly discusses some prominent examples that serve
to illustrate how immediately useful 64-bit addressing
became to the OpenVMS kernel.

Page Frame Number Database and

Very Large Memory

The OpenVMS Alpha operating system maintains a

database tor managing individual, physical page frames

of memory,i.c., page trame numbers. This databasc is

stored in SO/S1 space. The size of this database grows

lincarly as the size of the physical memory grows.
Future Alpha systems may include larger memory

configurations as memory technology continues to

cvolve. The corresponding growth of the page tframe

number database for such systems could consume
an unacceptably large portion of S0/S1 space, which
has a maximum size of 2 GB. This design eftectively
restricts the maximum amount of physical memory
that the OpenVMS operating system would be able
to support in the future.

We chose to remove this potential restriction by
relocating the page frame number database from
S0/S1 to 64-bit addressable S2 space. There it can
grow to support any physical memory size being con-
sidered for years to come.

Global Page Table
The OpenVMS operating system maintains a data
structurc in SO/S1 space called the global page rable
(GPT). This pscudo—page table maps memory objects
called global sections. Multiple processes may map
portions of their respective process-private address
spaces to these global sections to achiceve protected
shared memory access tor whatever applications they
may be running.

With the advent of P2 space, one can casily anticipate
a need tor orders-of-magnitude-greater global section
usage. This usage directly increases the size of the
GPT, potentially reaching the point where the GPT
consumes an unacceptably large portion of S0/S1
space. We chose to torestall this problem by relocating
the GPT from SO/S1 to S2 space. This move allows the
configuration of a GPT that is much larger than any
that could ever be configured in SO/S1 space.

Summary

Although providing 64-bit support was a significant
amount of work, the design of the OpenVMS operat-
ing system was readily scalable such that it could
be achieved practically. First, we established a goal of
strict binary compatibility tor nonprivileged applica-
tions. We then designed a superset virtual address
space that extended both process-private and shared
spaces while preserving the 32-bit visible address space
to cnsurce compatibility. To maximize the available
space for process-private use, we chose an asymmetric
style of address space layout. We privatized the pro-
cess page tables, thereby climinating their residency
in shared space. The few page table accesses that
occurred from outside the context of the owning
process, which no longer worked after the privatiza-
tion of the page tables, were addressed in variousways.
A variety of ripple eftects stemming from this design
were readily solved within the kernel.

Solutions to other scaling problems related to the
kernel were immediately possible with the advent of
64-bit virtual address space. Alrcady mentioned was
the complete removal of the process page tables from
shared space. We also removed the global page table

Digiral Technical Journal Vol.§ No.2 1996

09

70

and the page frame number database from 32-bit
addressable to 64-bit addressable shared space. The
immediate net effect of these changes was significantly
more room in SO/S1 space tor configuring more
kernel heap storage, more balance slots to be assigned
to greater numbers of memory resident processes, etc.
We fur ther anticipate use ot 64-bit addressable shared
space to realize additional benetits of VLM, such as
tor caching massive amounts of file system data.
Providing 64-bit addressing capacity was a logical,
evolutionary step for the OpenVMS operating system.
Growing numbers of customers are demanding the
additonal virtual memory to help solve their problems
in new ways and to achieve higher performance. This
has been especially fruitful for database applications,
with substantial performance improvements already
proved possible by the use of 64-bit addressing on the
Digital UNIX operating system. Similar results are
expected on the OpenVMS system. With terabytes
of virtual memory and many gigabytes of physical
memory available, entire databases may be loaded into
memory at once. Much of the I/O that otherwise
would be necessary to access the database can be elimi-
nated, thus allowing an application to improve perfor-
mance by orders of magnitude, for example, to reduce
query time from cight hours to five minutes. Such
performance gains were difficult to achieve while
the OpenVMS operating system was constrained to a
32-bitenvironment. With the advent of 64-bit address-
ing, OpenVMS users now have a powertul enabling
technology available to solve their problems.

Acknowledgments

The work described in this paper was done by mem-
bers ofthe OpenVMS Alpha Operating System Devel-
opment group. Numerous contributors put in many
long hours to ensure a well-considered design and
a high-quality implementation. The authors particu-
larly wish to acknowledge the following major con-
tributors to this eftort: Tom Benson, Richard Bishop,
Walter Blaschuk, Nitin Karkhanis, Andy Kuchnel,
Karen Noel, Phil Norwich, Margie Sherlock, Dave
Wall, and Elinor Woods. Thanks also to members
of the Alpha languages community who provided
extended programming support for a 64-bit environ-
ment; to Wayne Cardoza, who helped shape the earli-
est notions of what could be accomplished; to Beverly
Schultz, who provided strong, early encouragement
for pursuing this project; and to Ron Higgins and
Steve Noyes, tor their spirited and unflagging support
to the very end.

The tollowing reviewers also deserve thanks for
the invaluable comments they provided in helping to
prepare this paper: Tom Benson, Cathy Foley, Clair
Grant, Russ Green, Mark Howell, Karen Noel, Margie
Sherlock, and Rod Widdowson.

Digital Technical Journal Vol.8 No.2 1996

References and Notes

1. N. Kronenberg, T. Benson, W. Cardoza, R. Jagannathan,
and B. Thomas, “Porting OpenVMS from VAX to Alpha
AXD,” Digital Technical Jeurnal, vol. 4, no. 4 (1992):
111-120.

2. T.Leonard, cd., VAX Architecture Reference Manual
(Bedford, Mass.: Digital Press, 1987).

3. R. Sites and R. Witek, Alpha AXP Architecture Refer-
ence Manual, 2d ed. (Newton, Mass.: Digital Press,
1995).

4. Although an OpenVMS process may refer to PO or P
space using cither 32-bit or 64-bit pointers, references
to P2 space require 64-bit pointers. Applications may
very well execute with mixed pointer sizes. (See refer-
ence 8 and D. Smith, “Adding 64-bit Pointer Support
to a 32-bit Run-time Library,” Digital Technical
Jeurnal vol. 8, no. 2 [1996, this issuc|: 83-95.) There
is no notion of an application executing in either a 32-bit
mode or a 64-bit mode.

. Superset system services and language support were
added to facilitate the manipulation of 64-bit address-
able P2 space.®

(o2}

6. This mecchanism has been in place since OpenVMS
Alpha version 1.0 to support virtual PTE fctches by the
translation butfer miss handler in PALcode. (PALcode
is the operating system—specific privileged architecture
library that provides control over interrupts, exceptions,
context switching, cte.”) In effecr, this means that the
OpenVMS page tables already existed in two virtual
locations, namely, SO/S1 space and PT space.

7. The SPT window is more precisely only an SO/S1 PTE
window. The PTEs that map S2 space are referenced
using 64-bit pointers to their natural locations in PT
spacc and are not accessible through the use of this SPT
window. However, because S2 PTEs did not exist prior
to the introduction of S2 space, this Jimitation is ot no
consequence to contexts that are otherwise restricted to
S0/S1 space.

8. T. Benson, K. Nocl, and R. Peterson, “The OpenVMS
Mixed Pointer Size Environment,” Digital Technical
Journal, vol. 8 no. 2 (1996, thisissuc): 72-82.

General References

R. Goldenberg and S. Saravanan, Open VMS AXP Internals
and Date Structures, Version 1.5(Ncwton, Mass.: Digital
Press, 1994).

OpenVMs Alpha Guide te 64-Bit Addressing (Maynard,
Mass.: Digital Equipment Corporation, Order No.
AA-QSBCA-TE, December 1995).

OpenVMS Alpha Guide te Upgrading Privileged-Cocde
Applicatiens (Maynard, Mass.: Digital Lquipment
Corporation, Order No. AA-QSBGA-TE, December 1995).

Biographies

Michael S. Harvey

Michacl Harvey joined Digital in 1978 atter receiving his
B.S.C.S. from the University of Vermont. In 1984, asa mem-
ber of the OpenVMS Engincering group, he participated in
new processor support tor VAX multiprocessor systems and
helped develop OpenVMS symmetric multiprocessing (SM 1)
support for these svstems. He received a patent for this work.
Mike was an original member of the RISCy-VAX rtask force,
which conceived and developed the Alpha archirecture.
Mike led the project that ported the OpenVMS Excecutive
from the VAX to the Alpha plattorm and subsequently led
the project that designed and implemented 64-bit virrual
addressing support in OpenVMS. This effort led to a num-
ber of patent applications. As a consulting software engi-
neer, Mike is currently working in the arca of infrastructure
that supports the Windows NT/OpenVMS Affinity initiative.

Leonard S. Szubowicz

Leonard Szubowicz is a consulting software engineer in
Digital’'s OpenVMS Engincering group. Currently the
technical leader for the OpenVMS 1/0 engineering team,
he joined Digital Software Services in 1983, Asa member
of the OpenVMS 64-bit virtual addressing project ream,
Lenny had primary responsibiline for 1/0 and driver sup-
port. Prior to that, he was the architect and project leader
for the OpenVMS high-level language deviee driver proj-
cct, contributed to the port of the OpenVMS operating
system to the Alpha platform, and was project Jeader tor
RMS Journaling. Lenny is a coauthor of Writing Opein Vs
Alpba Device Drivens in C.owhich was recently published
by Digital Press.

Digital Technical Journal

Vol. 8 No. 2

1996

71

72

The OpenVMS Mixed
Pointer Size Environment

A central goal in the implementation of 64-bit
addressing on the OpenVMS operating system
was to provide upward-compatible support for
applications that use the existing 32-bit address
space. Another guiding principle was that mixed
pointer sizes are likely to be the rule rather than
the exception for applications that use 64-bit
address space. These factors drove several key
design decisions in the OpenVMS Calling Stan-
dard and programming interfaces, the DEC C
language support, and the system services
support. For example, self-identifying 64-bit
descriptors were designed to ease development
when mixed pointer sizes are used. DEC C sup-
port makes it easy to mix pointer sizes and to
recompile for uniform 32- or 64-bit pointer sizes.
OpenVMS system services remain fully upward
compatible, with new services defined only
where required or to enhance the usability of the
huge 64-bit address space. This paper describes
the approaches taken to support the mixed
pointer size environment in these areas. The
issues and rationale behind these OpenVMS
and DEC C solutions are presented to encourage
others who provide library interfaces to use

a consistent programming interface approach.

Digiral Technical Journal Vol. 8 No.2 1996

Thomas R. Benson
Karen L. Noel
Richard E. Peterson

Support tor 64-bit virtual addressing on the OpenVMS
Alpha operating svstem, version 7.0, has vastly increased
the amount of virtual address space available for applica-
tion use." At the same time, fully compatible support for
applications that use only 32-bir addresses (also called
pointes) has been preserved.

An application that mixes 32-bit and 64-bit pointer
SIZCs operates i a mined pointer size encironment.
Mixed pointer size applications were the design center
tor the inttial implementation ot 64-bit support in the
OpenVMS operating svstem. This paper discusses
the reasons why mixing pointer sizes 1s expected to
be a common practice and deseribes the design of
operating svstem and language features that are pro-
vided to case programming in this mixed pointer size
cnvironment.

Reasons for Mixed Pointer Sizes

To use 64-bir address space, some simple applications
need only be recompiled fora uniform 64-bit pointer
size. For example, sclt-contained DEC C applications
that relv on only the C run-time library, without
using svstem services or other libraries, can take
this approach. Real-world applications are seldom this
clean-cur, however. In more complex applications,
where 64-bir address space is likelv to be needed,
mixes of languages, dependencics on svstem interfaces
and other libraries, and rchance on third-party pack-
ages or libraries are common. These practices all lead
to the mixed pointer size environment in which appli-
carions continue to use some 32-bit addresses while
taking advantage ot 64-bit virtual address space.

Applications that are likely to take advantage of
64-bit memory are those in which the declaration and
management of a large data set can be logically sepa-
rated from the rest of the program. This separation
does not need to be ar the source file Jevel. Trcan be
ata program ftlow level, indicating which internal and
external interfaces will be given 64-bit addresses to
work with,

The following scctions explore the reasons for
MIXING poINter sizes.

OpenVMS and Language Support

Implementation choices that Digital made ftor this first
release of the OpenVMS operating system that sup-
ports 64-bit virrual addressing will probably encour-
age mixed pointer size programming. These choices
were driven largely by the need tor absolute upward
compatibility tor existing programs and the goal of
supporting large, dynamic data sets as the primary
application tor 64-bit addressing.

Dynamic Data Only OpcnVMS services support
dynamic allocation of 64-bit address space. This mech-
anism most closcly resembles the malloc and free func-
tions for allocating and deallocating dynamic storage
in the C programming language. Allocation of this
type difters from static and stack storage in that explicit
source statements are required to manage it. For static
and stack storage, the system is allocating the memory
on behalf of the application at image activation time.
(Of course, the allocation may be extended during
execution in the case of stack storage.) This allocation
continues to be from 32-bit addressable space.

Two special cases of static allocation are worth men-
tioning. Linkage sections, which are program sections
that conrtain routine linkage information, and code
sections, which contain the exccutable instructions,
do not difter substantially from preinitialized static
storage. As a result, these sections also reside only in
32-bir addressable memory.

Upward-compatibility Constraints The OpenVMS
Alpha operating system is cautious to avoid using
64-bit memory freely where it may prevent upward
compatibility for 32-bit applications. For example, the
linkage section might seem to be a natural candidate
for the OpenVMS system to allocate automatically in
64-bit memory. This allocation would essentially free
more 32-bit addressable memory for application use;
however, even if this were done only for applications
relinked for new versions of the OpenVMS operating
system, there is no guarantee that all object code treats
linkage scction addresses as 64 bits in width. A simple
example is storing the address of a routine in a struc-
ture. Since a routine’s address is the address of its pro-
cedure descriptor in the linkage section, moving the
linkage section to 64-bit memory would cause code
that stores this addressin a 32-bit cell to fail.
Allocating the user stack in 64-bit space also appears
to be a good opportunity to easily increase the amount
of memory available to an application. Stack addresses
are often more visible to application code than linkage
section addresses are. For instance, a routine can easily
allocate alocal variable using temporary storage on the
stack and pass the address of the variable to another
routine. If the stack is moved to 64-bit space, this

address quietly becomes a 64-bir address. If the called
routine is not 64-bit capable, attempts to use the
address will fail.

Focus on Services Required for Large Data Sets Not
all system services could be changed to support 64-bit
addresses (i.c., promoted) in time for the first version
of the OpenVMS operating system to support 64-bit
addressing. With the mixed-pointer model in mind,
we focused on those services that were likely to be
required for large data sets. For example, to allow 1/0
directly to and trom high memory, it was essential that
the [/O queuing service, SYS$SQIO, accept a 64-bit
bufter address. Conversely, the SYSSTRNLNM service
for translating a logical name did not need to be mod-
ificd to accept 64-bit addresses. Its arguments include
alogical name, a table name, and a vector that contains
requests tor information about the name. These are
small data elements that arc unlikely to require 64-bit
addressing on their own. Of course, they may be part
of some larger structure that resides in 64-bit space.
In this case, they can easily be copied to or from 32-bit
addressable memory.

System services are discussed further in the section
OpenVMS System Services. The 32-bitaddress restric-
tion on certain system services again emphasizes the
importance of being able to logically separate large
data set support from the rest ot an application.

Limited Language Support Another interface point
that requires care when using 64-bit addressing is at
calls between modules written in different program-
ming languages. The OpenVMS Calling Standard
traditionally makes it easy to mix languages in an appli-
cation, but DEC C is the only high-level language
to fully support 64-bit addresses in the first 64-bit-
capable version of the OpenVMS operating system.?

The use of 64-bit addresses in mixed-language
applications is possible, and data that contains 64-bit
addresses may even be shared; however, references
that actually use the dara pointed to by these addresses
need to be limited to DEC C code or assembly lan-
guage. Mixed high-level language applications are cer-
tain to be mixed pointer size applications in this
version of the operating systen.

Support for 32-bit Libraries

Many applications rely on library packages to provide
some aspect of their functionality. Typical examples
include user interface packages, graphics libraries, and
database utilitics. Third-party libraries may or may not
support 64-bit addresses. Applications that usce these
libraries will probably mix 32-bit and 64-bit pointer
sizes and will therefore require an operating system
that supports mixed pointer sizes.

Digital Technical Journal Vol. 8 No.2 1996

73

74

Implications of Full 64-bit Conversion

For some applications, it may be desirable to mix
pointer sizes to avoid the side ettects of universal 64-bit
address conversion. The approach of recompiling every-
thing with 64-bit address widths is sometimes called
“throwing the switch.” An obvious implication of
throwing the swirch is that all pointer data doubles in
size. For complex linked data structures, this can be a
significant overall increase in size. Increasing the pointer
size may also reveal hidden dependencies on pointer size
being the same as integer size. If code accesses a cell as
both a 32-bit integer and a 32-bit pointer, the code will
no longer work if the pointer is enlarged. Thus,
universally increasing the pointersize may torce changes
to code that would otherwise continue to work.

There is a more compelling reason for not throwing
the switch for code that is part of a shared library.
Library packages must not return 64-bit addresses to
users of the library unless the calling code is definitely
64-bit capable. If the library developer throws the
switch when building a library written in DEC C, all
memory returned by the malloc function will be in
64-bit address space. This can be a problem if the
address is blindly rerurned toa library caller. It a library
is to work in a mixed pointer size environment, and
it sometimes returns pointers to memory it has allo-
cated, it needs to use mixed pointer sizes internally.

Programming Interface Issues

The coexistence of 32-bit and 64-bit pointers raised
several design questions for operating system and lan-
guage support, particularly in the arca of routine inter-
faces. When an application or library is being modified
to use 64-bit address space, argument passing may
be the most exposed area. In this section, we describe
how mixed pointer size support aftects argument-
passing mechanisms and the design decisions made to
case the coexistence of mixed pointer sizes.

Argument List Width

Even betore the introduction of 64-bit addressing, the
OpenVMS Calling Standard defined argument list cle-
ments to be 64 bits in width. When passing a 32-bit
address (that is, when passing an item in 32-bit space
by reference), compilers sign extend the 32-bit value
o the 64-bit argument location.' Passing 64-bit
addresses as values works transparently without chang-
ing the calling standard, assuming, of course, that the
called routine expects to receive 64-bit addresscs.
Passing 32-bit addresses as values to routines that
expect 64-bit addresses works properly because the
values have beensign extended to a 64-bir width.

Pointers by Reference
Passing the addresses of pointers requires special care
when mixing pointer sizes. If the caller passes a 32-bit

Digital Technical Journal Vol. 8 No.2 1996

address by reference, and the called routine reads it as
a 64-bitaddress from memory, the upper 32 bits will be
incorrect. Similarly, if the address ofa 64-bit address is
passed, and the called routine reads only 32 bits from
memory, it will fail when that address is used.

This is the simplest case in which support of 64-bit
addresses may require a programming incerface change
for 64-bit callers. A single entry point that reccives
a pointer by reference cannot tell which size pointer
it has received. Some possible solutions include a new
alternate entry point for 64-bit-capable callers or a
new parameter indicating the size of the address.

Pointers Embedded in Structures

Pointers passed by reference are a special case of the
more general problem of passing structures that con-
rain pointers. Again, the caller and called routine must
agree on the size of the pointers contained in the
structure. This case offers an option that may not
require a new programming interface, however. If the
structure is self-identitying, the routine may be able to
tell which form ofthe structure it has received and dis-
patch to appropriate code tor the corresponding
pointer length.

Function Return Values

Function return values are also defined to be 64 bitsin
width; so no calling standard change was required to
support 64-bit pointer returns. It is important that a
64-bit address not be returned blindly, though, unless
it is known that the caller is 64-bit capable. Tvpically,
this is a problem tor library support routines rather
than for those within an application. A library routine
should return a 64-bit address only if the routine has
been specitically developed tor a 64-bit environment
or ifit can tell with cerrainty, based on input parame-
ters received, that the caller is 64-bit capable.

Calling Standard Issues

The OpenVMS Calling Standard defines register usage
conventions, argument list locations, data structurces,
and standard practices for making procedure calls that
operate correctly in a multilanguage and multi-
threaded environment. As mentioned earlier, this stan-
dard alrcady detined argument list elements to be
64 bits in width; however, some key data structures
detined by the standard were based on 32-bit pointer
sizes. The goal of upward compatibility for cxisting
code complicated the job of extending the standard.
The following scctions describe how the structures
changed and illustrate
approaches to supporting mixed pointer sizes when
shared structures contain pointers.

were ultimately some

Descriptors Dcscriprors are structures defined by
the calling standard to specify an argument’s tvpe,
length, and address, along with other tpe or

structure-specific information. Typically, descriptors
are used only tor character strings, arravs, and complex
data types such as packed decimal.

Descriptor types are by definition sclf-identitving by
virtue of the type and class ficlds they contain. An
obvious choice, therefore, for extending descriptors to
handle 64-bit addresses would be to add new type
constants for 64-bit data elements and extend the
structure beyond the type fields to accommodate
larger addresses and sizes. In practice, however, the
address and length fields from descriptors are fre-
quently used without accessing the type fields, partic-
ularly when a character string descriptor i1s expected.

As a result, a solution was sought that would vield
a predictable failure, rather than incorrect results or
data corruption, when a 64-bit descriptor is received
by a routine that expects only the 32-bit form. The
final design includes a separate 64-bit descriptor layout
that contains two special fields at the same offsets as
the length and address fields in the 32-bit descriptor.
These fields are called MBO (must be one) and
MBMO (must be minus one), respectively. The sim-
plest versions of the 32-bitand 64-bit descriptors are
illustrated in Figure 1.

Ifa routine that expects a 32-bit descriptor receives
a 64-bit descriptor, it will find the value 1 in the length
ticld. This nonzero value ensures that the address will
need to be read. Otherwise, the descriptor could be
treated as describing a null value, and the address
would be ignored. In the address ficld, a 32-bit reader
will find the value —1. When the reader attempts to
reference this address, an access violation occurs,
because the OpenVMS operating system guarantecs
this address to be inaccessible. This combination of
values ensures that an access will also tail it the length is
added to the address first, in an attempt to read the last
bytc of data.

BYTE
OFFSET
CLASS ‘ DTYPE ‘ LENGTH 0
ADDRESS 4
SIMPLE 32-BIT DESCRIPTOR

CLASS | DTYPE I MBO 0
MBMO 4

LENGTH '8

ADDRESS 16

SIMPLE 64-BIT DESCRIPTOR

Figure 1
Simplest Versions of the 32-bit and 64-bit Descriprors

To distinguish the descriptor forms, a new routine
must check the MBO and MBMO fields for the
expected 64-bit descriptor values. In the OpenVMS
operating systcm, many routines now accept either
descriptor form.

Signal Arrays The signal array is a user-visible struc-
ture that is passed to condition handlers when an
exception occurs. The array contains message codes,
arguments specific to the conditions, and control data.
Because the arguments may include one or more vir-
tual addresses, a new format was necessary to accom-
modate 64-bit addresses.

The signal array could not simply be promoted to
contain 64-bit addresses, because handlers in existing
code often make assumptions about its format. The
mechanism array, a related structure containing a snap-
shot of register contents, was already 64 bits in width.

The solution was to leave the original form of the
signal array unchanged and create a 64-bit counter-
part. The items passed to a condition handler, the
32-bit signal array address, and a 64-bit mechanism
array address arc the same. The mechanism array now
contains a pointer to the 64-bit version of the signal
array. This allows existing code to work without
change, while new handlers that may require access to
64-bit addresses in exceptions can obtain the 64-bit
array address from the mechanism array. Some addi-
tional work was nceded in OpenVMS exception han-
dling to keep these two arrays synchronized, because
handlers are allowced to change their contents.

Sign-extension Checking

As described carlier, 32-bit addresses passed as routine
arguments arc sign extended into 64-bit argument loca-
tions. A safeguard that can be used in 32-bit routines
that are not extended to fully support 64-bit addresses is
referred to as sign-extension checking of the argument
addresses. This checking consists of simply reading the
low 32 bits of the argument, sign extending this value to
a 64-bit width, and comparing the result to the full
64 bits of the argument. It the bits difter, the address is
not one that can be represented in 32 bits. The routine
can then return an crrorstatus of some kind, rather than
failing in somc unpredictable way. Sign-extension
checking is a usctul tool for ensuring robust interfaces in
the mixed pointer size cnvironment.

DEC C Language Support for Mixed Pointer Sizes

To support application programming in the mixed
pointer size cnvironment, some design work was
required in the DEC C compiler. This section
describes the rationale behind the final design.

[t was clear that the compiler would have to provide
a way for 32-bit and 64-bit pointers to coexist in the
same regions of code. At the same time, customers and

Digiral Techmical Journal Vol.8 No.2 1996

o

76

internal users initially favored a simple command line
switch when polled on potential compiler support
for 64-bit address space. (At lcast one C compiler that
supports 64-bit addressing, MIPSpro C, does so only
through command line switches for setting pointer
sizes.*) The motivation for using switches was to limit
the source changes needed to take advantage of the
additional address space, especially when portability
to other plattorms is desired. For cases in which mix-
ing pointer sizes was unavoidable, something more
flexible than a switch was needed.

Why Not __near and __far?

The most common suggestion for controlling individ-
ual pointer declarations was to adopt the __near and
__far type qualifier syntax used in the PC environment
in its transition from 16-bit to 32-bit addressing.?
While this idea has merit in that it has alrcady been
used elsewhere in C compilers and is familiar to PC
software developers, we rejected this approach for the
following reasons:

s The syntax is not standard.

= The syntax requires source code edits at each decla-
ration to be affected.

= The syntax has become largely obsolcete even in the
PC domain with the acceptance of the flat 32-bit
address space model offered by modern 386-
minimum PC compilers and the Win32 program-
minginterface.

= Because of the vast difterence 1n scale in choosing
between 16-bit or 32-bit pointers on a PC as com-
paredto choosing between 32-bit or 64-bit pointers
on an Alpha system, there would be no porting ben-
efit in using the same keywords. No existing source
code base would be able to port to the OpenVMS
mixed pointer size environment more easily because
of the presence of __near and __tar qualifiers.

Pragma Support
The Digital UNIX C compiler had previously defined
pragma preprocessing directives to control pointer
sizes tor slightly different reasons than those described
for the OpenVMS system.” By default, the Digital
UNIX operating system ofters a purc 64-bit address-
ing model. In some circumstances, however, it is desir-
able to be able to represent pointers in 32 bits to
match externally imposed data layouts or, more rarely,
to reduce the amount of memory used in representing
pointer values. The Digital UNIX pointer_size prag-
mas work in conjunction with command line options
and linker/loader features that limit memory use and
map memory such that pointer values accessible to the
C program can always be represented in 32 bits.

Since compatibility with the Digital UNIX compiler
would have greater value if it met the needs of the
OpenVMS platform, we evaluated the pragma-based

Digiral Technical Journal Vol.8 No.2 1996

approach and decided to adopt it, propagating any
necessary changes back to the UNIX plattorm to main-
tain compatibility. The decision to use pragmas to
control pointer size addressed the major deficiencics
of the __near and __tar approach. In particular, the
pragma directive is specitied by ISO/ANSI C in such
away that using it docs not compromise portability as
the use of additional keywords can, because unrecog-
nized pragmas arc ignored. Furthermore, pragmas can
easily be specified to apply to a range of source code
rather than to an individual declaration. A number of
DEC C pragmas, including the pointer size controls
implemented on the UNIX system, provide the ability
to save and restore the state of the pragma. This makes
them convenient and safe to usc to modity the pointer
size within a particular region of code without disturb-
ing the surrounding region. The state may easily be
saved betore changing it at the beginning of the region
and then restored at the end.

Command Line Interaction

Pragmas fit in with the initial desire of prospective
users to have a simple command linc switch to indicate
64 bits. As with several other pragmas, we defined a
command line qualifier (/pointer_size) to specity the
initial state of the pragma before any instances arc
encountered in the text. Unlike other pragmas,
though, we also use the same command line qualifier
to enable or disable the action of the pragmas alto-
gether. In this way, a default compilation of source
code moditied for 64-bit support behaves the same
way that it would on a system that did not offer 64-bit
support. That is, the pragmas arc effectively ignored,
with only an informational message produced.

This behavior was adopted for consistency with the
Digital UNIX behavior and also to aid in the process of
adding optional 64-bit support to existing portable
32-bit source code that might be compiled for an
older system or with an older compiler. In this model,
a compilation of new source code using an old com-
mand line produces behavior that is equivalent to the
behavior produced using an older compiler or a com-
piler on another platform. With one notable excep-
tion, building an application that actually uses 64-bit
addressing requires changing the command linc.

The exception to the rule that existing 32-bit build
procedures do not create 64-bit dependencies is a sec-
ond form of'the pragma, named required_pointer_size.
This form contrasts with the form pointer_size in that it
is always active regardless of command line qualifiers;
otherwise, required_pointer_size and pointer_size arc
identical. The intent of this second pragma is to sup-
port writing source code that specifics or interfaces to
services or libraries that can only work correctly with
64-bit pointers. An example of this code might be a
header file that contains declarations for both 64-bit
and 32-bit memory management scrvices; the services

must always be defined to accept and return the
appropriate pointer size, regardless of the command
line qualifier used in the compilation.

Pragma Usage

The use of pragmas to control pointer sizes within a
range of source code fits well with the model of start-
ing with a working 32-bitapplication and extending it
to exploit 64-bit addressing with minimal source code
edits. Programming interface and data structure decla-
rations are typically packagedtogetherin header files,
and the primary manipulators of those data structures
are often implemented togetherin modules.

One good approach tor extending a 32-bit applica-
tion would beto start with an initial analysis of mem-
ory usage measurements. The purpose of this analysis
would be to produce a rough partitioning of routines
and data structures into two categories: “32-bit sufti-
cient” and “64-bit desirable.” Next, 64-bit pointer
pragmas could be used to enclose just the header files
and source modules that correspond to the routines
and data structurcs in the 64-bit-desirable category.
After recompilation, the next step would be to respond
to compiler diagnostics for pointer-type mismatches by
adding pragma regions to mark sections of the 64-bit
files as 32-bit and parts of the 32-bit files as 64-bitand
to carctullyadd type casts, where necessary. This opera-
tion is likely to iterate until the compilation is clean and
a debugging cycle has shown correctness. The end
result is an application that rakes advantage of the
increased address space for the data structures that will
benefit fromit.

A common approach to minimizing the spread of
pragmas throughout a program is to limit them to
typedefs in header files. Then, subsequent usces of the
defined type do not require the pragma. A simple
example appears in Figure 2.

This example defines a type called char_ptr64,
which may be used to declare 64-bit pointers to char-
acter data without the use of pragmas. Of course, indi-
vidual pointers within structure types may also be set
to 64-bit or 32-bit sizes.

Secondary Effects

With the decision made to use pragmas and the basic
semantics of how the pragmas take cftect established
by the Digital UNIX implementation, we needed to
consider additional requircments and issues that

might be specific to the OpenVMS implementation.
Two major difterences between the plattorms are

1. On the Digital UNIX system, the linker/loader
options used with mixed pointer size compilations
ensure that any address value obtained by the pro-
gram can be represented using 32 bits, whereas on
the OpenVMS system, any program using 64-bit
pointers in C will almost certainly encounter address
values that cannot be represented in 32 bits.

2. On the Digital UNIX system, the scope of the use
of mixed pointer sizes was expected to be quite
small and not likely to grow much over time,
whereas on the OpenVMS system, the scope is
expected to be somewhat larger at first and grow
significantly over time.

These two differences emphasized the need for effec-
tive compile-time diagnostics, debugging aids, envi-
ronmental support, and clear documentation.

Diagnostics As an aid to finding bugs resulting from
improper mixing of pointer sizes, the DEC C compiler
provides two kinds of diagnostics. Compile-time warn-
ings are issucd for assignments from long pointers to
short pointers because of the possibility of data loss. In
addition, users may enable run-time checking for
pointer truncation through a command line qualificr.
This option causes the compiler to generate code on
cach conversion from a long to a short pointer, which
willsignal a range-check errorif data truncation occurs.

Run-time checking is particularly uscful in code that
sometimes employs type casting to use long pointers
in short pointer contexts. Since this action prevents a
compile-time warning about using a long pointer
where a short pointer is expected, a run-time check
may be the only way to discover a coding crror. The
run-time check qualifier provides options distinguish-
ing this case from checking on general assignments
and parameter passing, allowing users to select for
which classes of pointer-size mixing the compiler
should generate checking code. Run-time checking is
also available for parameters received by a routine.
This allows detection of 64-bit addresses passed to
routines that expect 32-bit parameters cven when the
caller is separately compiled or written in a different
programming language. For performance reasons, it is
usually desirable to remove all run-time checking once
a program is decbugged.

Hpragma required_pointer_size save /* Save the previous pointer size */
Hpragma required_pointer_size 64 /* Set pointer size to 64 bits */
typedef char * char_ptrés4; /* Define a 64-bit char pointer */
Hpragma required_pointer_size restore /* Restore the pointer size */

Figure 2

Sample Header File Code That Limits Pragmas to Defined Types

Digiral Technical Journal Vol.8 No.2 1996

77

78

Allocation Function Mapping The command line
qualifier setting the default pointer size has an addi-
tional effect that simplifics the use of 64-bit address
space. If an explicit pointer size is specified on the
command line, the malloc function is mapped to a
routine specific to the address space for that size. For
example, _malloc64 is used for malloc when the
default pointer size is 64 bits. This allows allocation
of 64-bit address space without additional source
changes. The source code may also call the size-
specific versions of run-time routines explicitly, when
compiled for mixed pointer sizes. These size-specific
functions are available, however, only when the
/pointer_size command line qualifier is used. Sec
“Adding 64-bit Pointer Support to a 32-bit Run-time
Library” in this issue for a discussion of other eftects of
64-bit addressing on the C run-time library.®

Header File Semantics The treatment of pointer_size
pragmas in and around header files (i.c., any source
included by the #include preprocessing directive)
deserves special mention. Programs typically include
both private definition files and public or system-specific
header files. In the latter case, it may not be desirable for
definitions within the header files to be aftected by the
pointer_size pragmas or command line currently in
eftect. To prevent these definitions from being aftected,
the DEC C compiler scarches for special prologue and
epilogue header files when a #include directive is
processed. These files may be used to establish a par-
ticular state for environmental pragmas, such as
pointer_size, for all header files in the directory. This
climinates the need to modify either the individual
header files or the source code that includes them.

The compiler creates a predefined macro called
__INITIAL_POINTER_SIZE to indicatc the initial
pointer size as specified on the command line. This may
be of particular use in header files to determine what
pointer size should be used, it mixed pointer size sup-
portis desirable. Conditional compilation based on this
macro’s definition state can be used to set or override
pointer size or to detect compilation by an older com-
piler lacking pointer-size support. Ifits valuc is zero, no
/pointer_size qualifier was specified, which means that
pointer_size pragmas do not take etfect. Ifits value is
32 or 64, pointer_sizc pragmas do take ettect, so it can
be assumed that mixed pointer sizes arc in usc.

Code Example

In the simple code example shown in Figure 3, sup-
pose that the routine procl is part of a library that has
been only partially promoted to use 64-bit addresses.
This function may receive cither a 32-bit address or a
64-bit address in the argument_ptr parameter. To
demonstrate the use of the new DEC C features, procl
has been modificd to copy this character string para-
meter from 64-bit space to 32-bit space when neces-

Digital Technical Journal Vol. 8 No.2 1996

sary, so that routines that procl subscquently calls
need to deal with only 32-bit addresses.

The __INITIAL_POINTER_SIZE macro is used to
determine if pointer_size pragmas will be effective
and, hence, whether argument_ptrmight be 64 bits in
width. If it might be a 64-bit pointer, whose actual
width is unknown in this example, the pointer’s value
is copied to a 32-bit-wide pointer. The pointer_sizce
pragma is used to change the current pointer size to
32 bits to declare the temporary pointer. Next, the
two pointer values are compared to determine if
the original pointer fits in 32 bits. If the pointer does
not fit, temporary storage in 32-bit addressable space
is allocated, and the argument is copied there. Note
that the example uses malloc32 rather than malloc,
because malloc would allocate 64-bit address space
it the initial pointer size was 64 bits. At the end of
the routine, the temporary space is freed, if necessary.

A type cast is used i the assignment from
argument_plr to lemp_short_ptr, even though both
variables are of type char *. Without this type cast, if
argument_ptris a 64-bit-wide pointer, the DEC C
compiler would report a warning message because of
the potential dataloss when assigning from a 64-bit ro
a 32-bit pointer.

For other examples of pointer_size pragmas and the
use of the __INITIAL_POINTER_SIZE macro, see
Duane Smith’s paper on 64-bit pointer support in
run-time libraries.*

OpenVMS System Services

The OpenVMS opcerating system provides a suite of
scrvices that perform a variety of basic operating sys-
tem functions.” Design work was required to maxi-
mize the utility of these routines in the new mixed
pointer siz¢ environment. Issues that needed to be
addressed included the following, which arc discussed
in subsequent sections:

= Several scrvices pass pointers by reference and,
hence, required an interface change.

= Because of resource constraints, not all system ser-
vices could be promoted to handle 64-bit addresscs
in the first version of the 64-bit-capable OpenVMS
operating system.

= Since the services provide mixed levels of support, it
is important to indicate those that support 64-bit
addresses and those that do not.

= Certain new services scemed desirable to improve
the usability of 64-bit address spacc.

Services That Are 64-bit Friendly

Services that can be promoted to support 64-bit
addresses without any interface change are called 64-bit
friendly. Tfa servicereceives an address by reference, the
service is typically not 64-bit friendly, and a scparate

{

Hif __ INITIAL_POINTER_SIZE !=
H#pragma pointer_size save
#pragma pointer_size 32
char * temp_short_ptr;

The actual body of proci

addresses.
*/

#if _ INITIAL_POINTER_SIZE !=

if (temp_short_ptr !'= 0)
free(temp_short_ptr);

Hendif

}

void procl(char * argument_ptr)

temp_short_ptr = (char *)argument_ptr;
if (temp_short_ptr !'= argument_ptr) (
temp_short_ptr = _malloc32(strlenCargument_ptr) + 1);
strcpy(temp_short_ptr,argument_ptr);
argument_ptr = temp_short_ptr;
}
else {
temp_short_ptr = 0;
}
Hpragma pointer_size restore
Hendif
/*

is omitted. Assume that it calls
routines that operate on the data pointed to by argument_ptr
and that the routines are not yet prepared to handle 6é4-bit

Figure 3

Code Example of Pointer_size Pragmas and the __INITIAL_POINTER_SIZE Maao

entry point is required to support 64-bir addresses. A
single routine cannot distinguish whether the address at
the specificd location is 32 bits or 64 birs in width.

If a service does not receive or return an address by
reference, the service s usually 64-bit friendly. Even
descriptor arguments present no problem, because the
32-and 64-bit versions can be distinguished at run
time. The majority of services fall into this category.

The scrvices that are not 64-bit friendly include
the entire suite of memory management system scr-
vices, since they access address ranges passed by reter-
ence. Other such services include those that reccive
a 32-bir vector as an argument, which may include the
address of a pointer as an element. A good example
from this group is SYSSFAOL, which accepts a 32-bit
vector argument for formatted output. For all these
services, new interfaces were designed to accommo-
date 64-bir callers.

Promotion of Services

The OpenVMS project team explored the idea of pro-
moting all system services to support 64-bit addresses.
Since the majority of OpenVMS system service
routines arc written in the MACRO-32 assembly lan-
guage or the Bliss-32 programming language, the
internals of the routines could not be promoted to
handle 64-bit addresses without modifications. We
could not take advantage of the throw-the-switch
approach, and we did not want to because many

pointers used internally in the OpenVMS operating
system remain at 32 bits.

We considered using 64-bit jacket routines to copy
64-bit arguments to the stack in 32-bit space, which
would then call the 32-bit internal routine to pertorm
the requested function. However, this approach would
fail for conrext arguments such as asynchronous system
trap (AST) routine parameters, where the address of
the argument is stored for subsequent use. This
approach would also prevent services from opcerating
on any true 64-bit addresses. It was clear that at lcast
some routines would have to be moditied internally.

The idea of using jacket routines was ultimately
rejected for several reasons. First, the jackets would
need to be custom written to ensure correct parameter
scmantics. There could not be a “common jacket™
that could have saved time and lowered risk. Sccond,
there would be an undesirable performance impact tor
64-bit callers. Third, we decided that having a com-
plete 64-bit system service suite was not essential for
usable 64-bit support. We could define a subset that
would meet the needs of 64-bit address space uscrs,
while lowering our risk and implementation costs.

The services sclected for 64-bit support fall into
tour catcgorics.

1. Mcmory management scrvices.

2. Performance-critical services. This group includes
services that are typically sensitive to the addition of

Digital Technical Journal Vol.8 No.2 1996

79

80

even a few cveles of execution time. Requiring that
a 64-bit address user do any additional work, such
as copving data to 32-bit spacc, is undesirable. An
example of this type of service 1s SYSSENQ, which
is used for queuing lock requests.

3. Design center services. The primary design center
for 64-bit support was database applications.
Databasc architects and consultants were polled to
determine which services were most needed by
their products. Many of these services, for example
SYS$QIO tor queuing 1/0 requests, were also in
the performance-critical sct.

4. Other usctul basic services. This set includes ser-
vices to case the transition to 64 bits with minimal
change to program structurc. For example, the
SYSSCMKRNL service accepts a routine address
and a vecror of 32-bit arguments and imvokes the
routine in kernel mode, passing those arguments.
Without a new 64-bit version of SYSSCMKRNIL,,
acaller could not pass a 64-bit address to the kernel
modc routine without changing the form of the
argument block, such as passing a structure that
SYSSCMKRNL would not interpret as a vector.

Several steps were taken to ease programming to
this subsct implementation.

For all 64-bit scrvices, all pointer arguments mav
be n 64-bit space. Extending onlv individual argu-
ments for some services would have been contusing
and difficult to document.
= The 64-bit-capable svstem services are clearly listed
m the OpenVMS documentation, and the docu-
mentation for individual services clearly calls out
their capabilitics.™
= For C programmers, the header file that detines
function prototvpes for svstem
(STARLET.H) defines the expected pointer size
tor service arguments. This file can be used for
compile-time type checking for correct argument
pointer sizes.

SCrvices

= Astrict naming convention has been adhered ro tor
64-bit services. It a routine was 64-bit friendly, i.c.,
it required no interface change, its name was not
changed. It a new entry point was required
because, for example, an address is passed by refer-
ence, a “_64" suttix wasadded to the name to iden-
tify the new entry point.

= Sign-extension checking is pertformed in routines
that do not accept 64-bir addresses.

Centralized Sign-extension Checking

For services that have not been promoted to accept
arguments in 64-bit space, centralized sign-extension
checking takes place. As described in the section Sign-
extensien Checking, such checking prevents crrors that

Digiral Technical Journal Vol 8 No.2 1996

occurwhen a 64-bit address is crroncously passed to a
routine that uscs only 32-bitaddresses. This centralized
checking is part of the svstem service dispatcher, which
returns the crror status SS$_ARG_GTR_32_BITS when
the erroris discovered. Performing the checking at this
common point minimized the implementation effort,
while protecting sensitive inner mode services. No
changes were necessary to the modules that contain the
32-bit service code. The internal vector of services con-
rains a tlag tor cach service indicating whether checking
should be done.

Naturally, it is best for mixed-size crrors to be dis-
covered ar compile time. The DEC C compiler issucs a
warning message when a 64-bir pointer is used as a
parameter to a routine whose function prorotvpe spec-
ifics that the parameter should be o 32-bit pointer.
Run-time sign-cxrension checking works tor any lan-
guage, though, including MACRO-32.

This support can also be used to allow a run-time
decision to be made to copv data from 64-bit space

to 32-bit space. For example, a routine could call a
svstem service, passing along an address that it
had received as a parameter. If the service rerurns
SSS_ARG_GTR_32_BITS, the calling routine can
then copy the argument to the stack and retvy the ser-
vice. In this wav, the overhead of copving can be
avorded 1t copving is unnecessary. When the svstem
service 1s promoted to handle 64-bit addresses in a
futurc version of the OpenVMS operating svstem, no
change will be needed in this caller; the dara copying
code will never be invoked. This approach mav be
appropriate fora run-tume library that needs to be fully
64-bit capable roday on OpenVMS Alpha version 7.0,
it that ibrarv will not be rercleased for a future version
of the OpenVMS operating svstem.

Memory Management System Services
The OpenVMS memory management svstem ser-
vices are not 64-bit friendly because they pass 32-bic
input and output address arguments by reference.
This sct of services includes SYSSEXPREG (expand
program/control region), SYSSMGBLSC (map globa
section), SYSSCRMPSC (create and map section), and
SYSSPURGWS (purge working set), umong others.
The guiding principle in promoting these services
was that the new 64-bit services had to pertorm the
same functions as their 32-bit counterparts but not

necessarily with an identical interface. Since 32-bit
addresses can be expressed as 64-bit addresses with
sign-exrension bits in the upper 32 bits, it made sense to
accommodate 32-bit addresses in the 64-bit interfaces,
making the new services a superset of the 32-bit forms.
For example, the SYSSCRMPSC service was split into
multiple 64-bit-capable services, because it handles a
varicty of types of sections. The new services can operate
on cither 32-bit or 64-bit addresses and have simpler

intertaces than the 32-bit-only SYSSCRMPSC. The
original SYSSCRMPSC is still present so that existing
code may function without change.

Some new feature requests were considered as part
of the 64-bit eftort, but, to maintain the focus of
therelease, these features were not implemented. The
64-bit memory management services were designed
to more easily accommodate new features in the
futurce. For example, the new services check the argu-
ment count for both too many and too few supplied
arguments. In this way, new optional arguments can
be added later to the end of the list without jeopardiz-
ing backward compatibility.

Virtual Regions

One new feature that was added to the suite of 64-bit
MEMOory management services is support for new enti-
tics called virrual regions. A virtual region is an address
range that is reserved by a program for future dynamic
allocation requests. The region is similar in concept to
the program region (P0) and the control region (P1),
which have long existed on the OpenVMS operating
system.” A virtual region ditters from the program and
control regions in thatit may be detined by the user by
calling a system service and may exist within PO, P1, or
the new 64-bitaddressable process-private space, P2
When a virtual region is created, a handle is returned
that is subsequently used to identify the region in
MeMOory management requests.

Address space within virtual regions is allocated in
the same manncer as in the default PO, P1, and P2
regions, with allocation defined to expand space
toward cither ascending or descending addresses. As
in the default regions, allocation is in multiples of
pages. The OpenVMS operating system keeps track of
the first free virtual address within the region. A region
can be created such that address spacce is created auto-
matically when a virtual reterence is made within the
region, just as the control region in P1 space expands
automatically to accommodate user stack ¢xpansion.
When a virtual region is created within PO, P1, or P2,
the remainder of that containing region decreascs in
size so that it does not overlap with the virtual region.

Virtual regions were added to the OpenVMS Alpha
opcrating system along with the 64-bit addressing
capability so that the huge expanse of 64-bit address
space could be more easily managed. It a subsystem
requires a large portion of virtually contiguous address
space, the space can be reserved within P2 with little
overhead. Other subsystems within the application
cannot inadvertently intertere with the contiguity
of this address space. They may create their own
regions or create address space within one of the
defaultregions.

Another advantage of using virtual regions is that
they arc the most cfficient way to manage sparse
address space within the 64-bit P2 space. Further-

more, no quotas are charged for the creation of a vir-
tual region. The internal storage for the description
of the region comes from process address space, which
1s the onlyresource used.

Summary

This paper presents the rcasons behind the new
OpenVMS mixed pointer size environment and the
support added to allow programming within this envi-
ronment. The discussion touches on some of the new
support designed to simplify the use of the 64-bit
address space.

The approaches discussed viclded full upward com-
patibility for 32-bit applications, whi
applications access ro the huge 64-bit address space tor
dara sets that require it. Promotion of all pointers to
64-bit width i1s not required to use 64-bit space; the
mixed pointer size environment was considered para-
mount in all design decisions. A case study of adding
64-bit support to the C run-time library also appears
in this issuc of the fournal ¢

¢ allowing other

Acknowledgments

The authors wish to thank the other members of the
64-bit Alpha-L Team who helped shape many of the
ideas presented in this paper: Mark Arsenault, Gary
Barton, Barbara Benton, Ron Brender, Ken Cowan,
Mark Davis, Mike Harvey, Lon Hilde, Duanc Smith,
Cheryl Stocks, Lenny Szubowicz, and Ed Vogel.

References

1. M. Harvey and L. Szubowicz, “Extending OpenVMS
for 64-bit Addressable Virtual Memory,” Digital
Technical Journal, vol. 8, no. 2 (1996, this issuc):
57-71.

2. Openvys Calling Standeard (Mavnard, Mass.: Digital
Equipment Corporation, Order No. AA-QSBBA-TE,
1995).

3. MIPSpro 64-Bit Porting and Transition Guide, Docu-
ment No. 007-2391-002 (Mountain View, Calif.:
Silicon Graphics, Inc., 1990).

4. C Language Reference for MS-DOS and Windouws
Operating Systenis (Redmond, Wash.: Microsoft Cor-
poration, 1991) and “Declarations and Tvypes,” chap. 3,
and “Expressions and Assignments,” chap. 4, in
Microsoft C/C++ Version 7.0 (Redmond, Wash.:
Microsoft Corporation, 1991).

5. Digital UNIX Programmer’s Gutide (Mavnard, Mass.:
Digiral Equipmient Corporation, 1996).

6. D. Smith, “Adding 64-bit Pointer Support to a 32-bit
Run-time Library,” Digital Technical Jourrnal. vol. 8,
n0. 2 (19906, this issue): 83-95.

Digiral Technical Journal Vol.8 No.2 1996

81

82

7. OpenVMS Systeim Services Reference Maunual:
A-GEYTMSG (Maynard, Mass.: Digital Equipment
Corporation, Order No. AA-QSBMA-TE, 1995) and
OpenVMS System Services Reference Manual:
GETQUI-Z (Maynard, Mass.: Digital Equipment Corpo-
ration, Order No. AA-QSBN-TE, 1995).

8. OpenVMs Alpha Guide to 64-Bit Addressing (May-
nard, Mass.: Digital Equipment Corporation, Order
No. AA-QSBCA-TE, 1995).

9. T. Leonard, ed., VAN Architecture Reference Meanual
(Bedford, Mass.: Digital Press, 1987).

Biographies

Thomas R. Benson

A consulting engineer in the OpenVMS Engineering Group,
Tom Bensonis one of the developers of 64-bit addressing
support. Tom joined Digital’s VAX Basic projectin 1979
atter recciving B.S. and M.S. degrees in computer science
from Svracuse University. After working on an optimizing
compiler shell used by several VAX compilers, he joined
the VMS Group whercheled the VMS DECwindows
FileView and Session Manager projects, and brought the
Xlib graphicslibrary to the VMS operating svstent. Tom
holds three patents on the design of the VAX MACRO-32
compiler for Alpha and recently applied for nwo patents
related to 64-bit addressing work.

Karen L. Noel

A principal engineer in the OpenVMS Engineering Group,
Karen Nocl is one of the developers of 64-bit addressing
support. After receiving a B.S. in computer science from
Cornell University in 1985, Karen joined Digital’s RSX
Development Group. In 1990, she joined the VMS Group
and ported several parts of the VMS kernel from the VAX
plattorm to the Alpha plattorm. As one ofthe principal
designers of OpenVMS Alpha 64-bit addressing support,
she has recently applied for six software patents.

Digital Techmical Journal Vol.8 No.2 1996

Richard E. Peterson

Rich Peterson joined Digital’s DEC C/C++ team in 1992.
He was the project leader for the development of the C
and C++ compilers that joined the Microsoft front ends

to the GEM back end. These compilers were used to build
and deliver the first release of the Windows NT opcrating
system on the Alpha platform and later were used in Visual
C++ for Alpha. A principal software engineer in the Core
Technologies Group, Rich is currently the project leader
for DEC C on the Digital UNIX and OpenVMS platforms.
Prior to joining Digital, Rich worked at Intermetrics on
anumber of compiler projects, including HAL/S tor the
Space Shuttle and Ada tor IBM /370 and MIL-STD 1750A.
Richalso worked at COMPASS, where he was the project
leader for the Thinking Machines Fortran compiler and
Digital’s initial MPP compiler effort. He received a B.S.

in English from the California Institute of Technology
and has applied for one patent on Alpha OpenVMS 64-bit
compiler work.

Adding 64-bit Pointer
Support to a 32-bit
Run-time Library

A key component of delivering 64-bit addressing
on the OpenVMS Alpha operating system, ver-
sion 7.0, is an enhanced C run-time library that
allows application programmers to allocate and
utilize 64-bit virtual memory from their C pro-
grams. This C run-time library includes modified
programming interfaces and additional new
interfaces yet ensures upward compatibility

for existing applications. The same run-time
library supports applications that use only
32-bit addresses, only 64-bit addresses, or

a combination of both. Source code changes
are not required to utilize 64-bit addresses,
although recompilation is necessary. The new
techniques used to analyze and modify the
interfaces are not specific to the C run-time
library and can serve as a guide for engineers
who are enhancing their programming inter-
faces to support 64-bit pointers.

Duane A. Smith

The OpenVMS Alpha operating system, version 7.0,
has extended the address space accessible to applica-
tions beyond the traditional 32-bit address space. This
new address space is reterred to as 64-bit virtual mem-
ory and requires a 64-bit pointer for memory access.’
The operating svstem has an additional set of new
memorv allocation routines that allows programs to
allocate and release 64-bit memory. In OpenVMS
Alpha version 7.0, this set of routines is the only mech-
anism available to acquire 64-bit memory.

For application programs to take advantage of these
new OpenVMS programming interfaces, high-level
programming languages such as C had to support
64-bit pointers. Both the C compiler and the C run-
time library required changes to provide this support.
The compiler needed to understand both 32-bit and
64-bit pointers, and the run-time library needed to
accept and rerurn such pointers.

The compiler has a new qualifier called /pointer_size,
which scts the default pointer size tor the compilation
to either 32 bits or 64 bits. Also added to the compiler
are pragmas (dircctives) that can be used within the
source code to change the active pointer size. An
application program is not required to compile cach
module using the same /pointer_size qualitier; some
modules may usc 32-bit pointers while others usce
64-bit pointers. Benson, Nocl, and Peterson describe
these compiler enhancements.” The DEC € Users
Guide for Openvvs Systems documents the qualifier
and the pragmas.?

The C run-time librarv added 64-bit pointer sup-
port either by moditving the existing interface to a
function or by adding a sccond intertace to the same
function. Public header files define the C run-time
library interfaces. These header files contain the pub-
licly accessible funcrion prototypes and structure defi-
nitions. The library documentation and header files
are shipped with the C compiler; the C run-time
library ships with the operating system.

This paper discusses all phases of the enhancements
to the C run-time library, from project concepts
through the analvsis, the design, and finally the imple-
mentation. The DEC C Runtime Library Refereice
Manual for Open VS Systems contains user documen-
tation regarding the changes.

Digital Technical Journal Vol.8 No.2 1996

83

Starting the Project

We devored the initial two months of the project to
understanding the overall OpenVMS presentation of
64-bit addresses and deciding how to present 64-bit
enhancements to customers. Representatives from
OpenVMS enginceering, the compiler team, the run-
time library tcam, and the OpenVMS Calling Standard
ream met weekly with the goal of converging on the
deliverables tor Open VMS Alpha version 7.0).

The project team was committed to preserving both
source code compatibilitv and the upward compati-
bility aspects of sharcable images on the OpenVMS
operating svstem. Early discussions with application
devclopers reinforced our beliet that the OpenVMS
system must allow applications to use 32-bit and
64-bit pointers within the same application. The team
also agreed that for a mixed-pointer application to
work cffectively, a single run-time library would need
to support both 32-bit and 64-bit pointers; however,
there was no known precedent for designing such
alibrary.

Onc implication of the decision to design a run-
tme library that supported 32-bitand 64-bit pointers
was that the library could never return an unsolicited
64-bit pointer. Returning a 64-bit pointer to an
application that was expecting a 32-bit pointer would
result in the loss of one halt of an address. Although
typically this error would cause a hardware exception,
the resulting address could be a valid address. Storing
to or rcading from such an address could result in
incorrect behavior that would be ditficule to derect.

The Openvys Calling Stendeared specifies that argu-
ments passed to a function be 64-bit values? It a
32-bit address is used, it s always sign extended to
form a 64-bit address thar can be used by the Alpha
hardware. The C run-time library team exploited this
ibrary.

tact when creating the 64-bit interface to the
The team also agreed that using 64-bit pointers
est mode

should be as simple as possible; the simp
would allow the application to compile using the
qualifier /pointer_size=64 without making source
code changes. The design of 64-bit support must
appear as a logical extension to the C programming
environment in use todav. Furthermore, applications
written to contorm strictly to the ANSE standard must
be able to use 64-bit pointers while remaining confor-
mant. For example, allocating 64-bit virtual memory
would bean extension to the standard C memory man-
agement functions mallog, callog, realloc, and tirec.

This paper shows that cach ot the C run-ume library
interfaces examined falls into one of the following
four catcgorics (listed m order of added complexity
to library users):

1. Notattecred by the size ofa pointer

2. Enhanced to aceept both pomter sizes

Digital Technical Journal Vol 8§ No.2 1996

3. Duplicared to have a 64-bit-specific intertace
4. Restricted from using 64-bit pointers

One last point to come from the meetings was
that many of the C run-time library interfaces are
implemented by calling other OpenVMS images. For
example, the Curses Screen Management interfaces
make calls to the OpenVMS Screen Management
(SMG) faality. It is important that the C run-time
library detines the intertaces to support 64-bit
addresses without looking at the implementation of

the function. Consisteney and completeness of the
mnterface are more important than the complexiry
of the implementation. In the SMG example, it the
C run-time hbrary needs to make a copy of a string

prior to passing the string to the SMG facility, this
1s what will be implemented.

Analyzing the Interfaces

The process of analyzing the interfaces began by ereat-
mg 2 document that histed all the header tiles and the
definitions in these files. A toral of 50 header files that
contained approximatcly 50 seructures and 500 proto-
tvpes needed to be analvzed. Each strucrure or pro-
rorvpe had to be examined to see ifa change in pointer
size would atfect the interface. Keep in mind that
we analyzed only the interfaces; we did not examine
the underlying implementation changes thar would
be required.

Analyzing the Structures
It 15 necessary to distinguish between a structure,
which mav contain pointers, and a pointer to the struc-

ture itse
two integer fields. Although the size of the pointer
to div_t does not affect the contents of the structure,
the entire structure mav be allocated in 32-bit or 64-bit
virtual memory. Functions that aceepra pointer to such
a structure mav need to be modified to accommodate
the 64-bit casc. The div_t structure is

f. For example, the div_t structure contains

typedef struct {
int quot, rem;
} div_t;

Manv structures used in the C run-time library
meerfaces are allocated by the run-time library in
response to a function call. For example, a call to the
fopen function returns the following pointer to
the FILE structure:

FILE *fopen(const char *filename,
const char *mode);

The Cran-oime hbrary alwavs allocates FILE struc-
tures in 32-bit virrual memory and returns a 32-bit
pointer to the calling program. This important con-
cepr can dramatically impact the use of 64-bit pointers

mn structares. [a FILE pointer is always a 32-bit
pointer, structures that contain only FILE pointers arc
not aftected by the choice of pointer size. We use this
information when we look at the lavout of structures
and examine function prototyvpes that accept pointers
to structurcs.

In this paper, structures that are always allocated in
32-bit virtual memory are referred to as structures
bound to low memory. After determining which
structures are bound rolow memory, we examine the
lavout of cach structure to decide it the structure
is affected by pointer size. We keep in mind that
pointer size does not affect a structure that is bound
to low memory.

For upward compatibility, the analvsis must alwavs
consider existing sottware that depends on the lavout
of the structure. In the case of public header file analy-
sis, such dependence will probably alwavs be present.
An application may have exccutable code that, for
example, ferches 4 bytes beginning at byre 12 of the
structure and dereferences those 4 bytes as the address
ofa string.

For these public structures, the analysis must weigh
the impact of forcing these structures to be 32-bit
pointers. If the decision is made to allocate two differ-
ent structure tvpes, cach function that either returns
oris passed such a structure must have a pointer-size-
specitic implementation. The case analysis and further
derails appear in the scction Pointer to Pointer-size-
sensitive Structures.

Analyzing the Function Prototypes

Analyzing functions only requires looking at the tunc-
tion prototypes. To determine the cttect of pointer
siz¢ on a function, we look at cach parameter and
return value that involves a pointer. This scction
describes the tvpes of situations that are aftected by
pointer size, from the simplest tvpe to the most com-
plex. Note that when a program passcs an array of anv
tvpe to a function, the array is passed as a pointer and
must be considered.

Making 64-bit-friendly Parameters As mentioned in
the section Starting the Project, the OpenVMS Calling
Standard specifics that a 32-bit address is sign
extended to a 64-bit address when passed as an
argument to a function. This implics that existing
programs that pass addresses as parameters are alrcady
sign extending those 32-bit addresses to be passed as
64-bit quantitics. Each 32-bit address can, therefore,
be expressed as a 64-bit address in which the top
32 bits arc zcro.

This sign-cxtending scheme allows the run-time
library to have a single implementation that can be
used by both 32-bit and 64-bit calling programs. This

implementation would be modified to accept only
64-bit addresses. An implementation that supports
parameters of cither pointer size is referred to as being
64-bit friendly. The function strlen is an example of
a 64-bit-friendlyv function.

size_t strlen(const char *string);

The string paramceter is the only part of the strlen func-
tion that the pointer size aftects. To support 6G4-bit
addressing, the strlen function had to be modified to
accept a 64-bit pointer.

Parameters Bound to Low Memory In structurcs bound
to low memory, the addresses that the programs pass
are alwavs 32-bit addresses. One explanation is that
the structures are managed by the run-time library,
and the only method of creating, destroving, or
obtaining the addresses of these structures is by calling
a librarv routine. Given that a single library services
both 32-bit and 64-bit calling programs, the library
doces not change the structures based on command
qualificrs, nor docs it allocate the structures in 64-bit
virtual memory. Foruser convenience, the C run-nme
library implemented these ponters as 32-bit return
values but 64-bit-fricndly paramecters.

The reason tor this design became apparent while
testing the 64-bit interfaces to the Jibrary. Consider
the tollowing code fragment, which exists in many
applications:

FILE *fp;
char buffer[1003];

fp = fopen("the_file”, "r");
fread(array, sizeof(buffer), 1, fp);

The C run-time library always allocates a FILE
structure in 32-bit virtual memory. When the previous
code fragment is compiled using /pointer_size=64, /p
is declared as a 64-bit pointer to a FILE structure,
because using this qualifier specities the default pointer
size to be used. When the fopen function returns the
32-bit pointer, the return value is sign extended into
the 64-bit FLLE pointer. IFthe tourth parameter of the
fread function had been declared as a 32-bir FILE
pointer, the compiler would report an crror when the
64-bit FILE ponter fp was passed as an argument.
This example explains why the C run-time library
declares structures bound to low memory as 32-bit
return values but 64-bit parameters.

Parameters Restricted to Low Memory Structures
restricted to low memory are similar to those bound to
low memory except that the user allocates the struc-
tures and can allocate the structures in high memory.
The C run-time library cannot support the allocation
of such structures in 64-bit virtual memory.

Digital Technical Journal Vol.8 No.2 1996

85

86

An cxample of a parameter being restricred to a
low memory address is the butter being passed as the
paramcter to the tunction sctbut. The paramcter
defines this bufter to be used tor I/0 operations. The
user expects to see this butfer change as 1/0 opera-
tions are pertormed on the file. If the run-time library
made a copy of this bufter, the changes would appear
in the copy and not in the original bufter that the user
supplicd. When the C run-time library begins to usc
the 64-bit OpenVMS Record Management Services
(RMS) interface, this low-memory restriction will be
removed.

In most cases, the run-time library is able to hide
the fact that the 32-bit RMS interface is not able to
interpret a 64-bit virtual memory address. Consider
the filename parameter to the topen function. It the
parameter is a 64-bit virtual memory address, the run-
time hbrary copices this parameter to 32-bit virtual
memoryv and passes the address ot the copy to RMS.
Neither the user nor RMS is awarce that this copy has
been made. The library may copy the dataifand only it
such a copy operation doces not change functionality or
significantly degrade performance.

Size-independent Structure Pointers Many functions
receive the address of a structure whose lavout is not
affected by pointer size. The simplest address in this
catcgory is that of an array ofintegers. This array may
be i cither 32-bit or 64-bit virtual memory, but only
one interface is needed to determine the layout of the
structwre. If the structure lavour is independent of
pointer size, then pointer-size-specific entry points arce
not required tor this parameter. The developer would
still make the paramerer 64-bit friendly so thar the user
would have the freedom to make the allocation that is
best for the application.

Pointer to Pointer Parameters [t is common practice
for a tunction to be passed a pointer to a pointer. If the
pointer being pointed to is not bound or restricted to
a 32-bir address, then rwo implementations of the
function are necessary.

To understand why some functions require two
implementations, tollowing strrod
function:

consider the

double strtod(const char *string,
char **endptr);

The strrod function converts a string to a Hoating-
point double-precision number. The second parame-
ter to this function, endpir is a pointer to a memory
location into which the address of the first unrecog-
nized characreris to be placed. The caller of this tunc-
tion has allocated either 4 or 8 bytes to store this
address. Without pointer-size-specitic entry points,

Digital Technical Journal Vol. 8 No.2 1996

the function has no way of determining how many
bytes to write. Writing 4 bytes may truncate a pointer;,
writing 8 bytes may overwrite 4 byres of user data that
follows the pointer. The strrod function, thercfore, has
two implementations. The first expects endptr to be
the address of a 32-bit pointer, and the second expects
endplr to be the address of a 64-bit pointer.

Pointer to Pointer-size-sensitive Structures Many func-
tions receive the address ot a structure. It the analysis
reveals that the lavout of this structure is dependent
upon pointer size, the funcrions that receive or return
this structure must have pointer-size-specific entry points.

Note that the lavout of the structure is separate
trom wherher the structure is allocated in low memory
or in high memory. The 32-bit-specific entry point is
needed to understand the layout of the structure, but
the parameter should allow this structure to be allo-
cated in high memorv.

Funcrions that recave the address of an array of
addresses are treated in the same way, assuming that
the addresses in the array are nceither bound nor
restricted to low memory. The function being called
needs to know if the arrav contains 32-bit addresses or
64-bit addresses. Unlike the address of the arrav, the
individual members of the arrav are not sign extended
to 64-bit valucs.

Scparate implementations arc necessary only to
determine the layout of what is being pointed to. The
32-bir interface handles poinrers to structures contain-
ing 32-bir addresses, and the 64-bit interface handles
pointers to structures containing 64-bit addresses.

Functions That Return Pointers Many functions return
pointers as the value of the function. These pointers are
either poinrer-size specitic or they are not atfecred by
the pointer size. Similar to its specifications tor 64-bit-
friendly parameters, the Open CAS Calling Standerd
indicates that return values on the OpenVMS Alpha
operating svstem are alwavs sign extended to 64-bit
values and returned in register zero (RO).

To make an address parameter 64-bit triendly, a
function allows a 64-bit address to be passed, thus
cnabling both 32-bit and 64-bir calling programs to
use a single interface. Couversely, ifa function returns
a 64-bit address to a 32-bir calling program, the
address is safelv returned in RO bur is truncated when
moved from RO into the user’s data area. A 64-birt-
fricndly address return value is always 32 birts. When
moved from RO into the calling program’s variable,
it 15 sign extended when the calling program is using
64-bit addresscs.

It the return value of a function can be a 64-bit
address, this function must have pointer-size-specific
entry points. [t the function returns the address of a

structure that is bound to low memory, such as a FILE
or WINDOW pointer, the return value does not force
separate entry points.

Certain functions, such as mallog, allocate memory
on behalf of the calling program and return the address
of that memory as the value of the hunctton. These
functions have nvo implementations: the 32-bit inter-
fFace always allocates 32-bit virtual memory, and the
64-Dbit interface always allocates 64-bit virtual memory.

Many string and memory functions have return val-
ues that are relative to a parameter passed to the same
routine. These addresses mav be returned as high
memory addresses if and onlv it the paramerer is a
high memory address.

The following is the function prototype for streat,
which is found in the header file <string.h>:

char *strcat(char *s1, const char *s2);

The strear function appends the string pointed to by
52 to the string pointed to by s1. The return valuce is
the address of the latest string sl

In this case, the size of the pointer in the return
value is always the same as the size of the pointer
passed as the tirst parameter. The C programming lan-
guage has no wav to reflect this. Since the function
mav return a 64-bit pointer, the streat function must
have two entry points.

As discussed carlier, the pointer size used for para-
meter §2 is not related to the returned pointer size.
The C run-time library made this 52 argument 64-bit
triendly by declaring it a 64-bit pointer. This declara-
tion allows the application programmer to concate-
nate a string in high memory to onc in low memory
without altering the source code. The following streat
function statement shows this declaration:

char *strcat(char *s1, _ char_ptrbé4 s2);

The data owpe char_ptr64 is a 64-bit character
pointer whose definition and use will be explained
later n this paper.

High-level Design

The /pointer_size qualificr is available in those
versions of the C compiler that support 64-bit point-
crs. The compiler has a predefined macro named
__INITIAL _POINTER_SIZE whosc value is based on
the use of the /pomter_size qualiier. The macro
accepts the following values:

= 0, which indicates that the /pointer_size qualifier is

not uscd or is not available

s 32 which indicates that the /pointer_size qualitier
is used and has a value of 32

= (4, which indicates that the /pointer_size qualitier
is used and has a value ot 64

The C run-time library header tiles conditionally
compile based on the value of this predefined macro.
A zcro value indicates to the header files that the com-
puting environment 1s purely 32-bit. The pointer-size-
speafic function prototypes are not defined. The user
must usc the /pointer_size qualifier to access 64-bit
tunctionality. The choice of 32 or 64 determines the
default pointer size.

The header files define two distinet types of declara-
tions: those that have a single implementation and
those that have pointer-size-specific implementations.
The addresses passed or returned from functions that
have a single implementation arce cither bound to low
memory, restricted to low memory, or widened to
accept a 64-bit pointer.

Those functions that have pointer-size-specific
entry points have three function prototypes defined.
Using malloc as an example, prototypes are created for
the functions malloc, _malloc32, and _malloc64. The
latrer two prototvpes are the pointer-size-specific pro-
totvpes and are defined only when the /pointer_size
qualifieris used. The malloc prototype defaults to call-
ing _malloc32 when the default pointer size is 32 bits.
The malloc prototype defaults to calling _malloc64
when the detault pointer size is 64 bits. Applica-
tion programmers who mix pointer types use the
/pointer_size qualitier to establish the default pointer
size but can then use the _malloc32 and _malloc64
explicitly to achieve nondetault behavior.

In addition to being enhanced to support 64-bit
pointers, the C compiler has the added capabiliny of
detecting incorrect mixed-pointer usage. It is the
function prototvpe found in the header files that tells
the compiler exactly what pointer size 1s permitted or
expected in a call. Proper use of the header files helps
prevent pointer truncation.

The actual functions called in the C run-time library
are either dece$Smalloc or dece$_malloc64, depending
on the pointer size. The C run-time library docs not
contain an entry point called dece$_malloc32. "This
naming scheme was selected so that applications that
link on older systems always get the 32-bit interface.

The C compiler has always looked ata table within
the C run-time library sharcable image for assistance in
name prefixing. Using this table, the compiler knows
to change calls to the malloc function into calls to the
deccEmalloc function and not to change calls to xvz,
which is nota C run-time library tfunction, into calls to
deceSxyz.

The C run-time library and the € compiler have
added new information to the table that tells the com-
piler which functions have pointer-size-specitic entry
points. When the compiler sees a call to the function
_xvz32,itlooks it up in the name table. It the name of
the function is tound, the compiler then looks at

Digital Technical Journal Vol.8 No.2 1996

87

whether the function is the 32-bit-specitic entry point.
It it is, the compier torms the prefixed name by
adding “dece$” to the beginning of the name but
also removes the “_ " and the “32. Consequently, the
function name _malloc32 becomes deceSmalloc, but
the funcion name _xvz32 docs not change.

implementation

To illustrate changes that needed to be made to the
header files, we invented a single header file called
<header.h>. This file, which is shown in Figure 1, 1llus-
trates the classes of problems taced by a developer who
is adding support for 64-bit pointers. The functions
detined in chis header file are actual C run-time library
fumctions.

Preparing the Header File

The first pass through <header.h> resulted in a num-
ber of changes in terms of formatting, commenting,
and 64-bit support. Realizing thar many modifications
would be made to the header files, we considered
readability a major goal for this release of these files.

The initial header files assumed a uniform pointer
size of 32 bits tor the OpenVMS operating svstem,
During the first pass through <header.h>; we added
pointer-size pragmas to cnsure that the file saved the
user’s pointer size, set the pointer size to 32 bits, and
then restored the user’s pointer size at the end ofthe
header.

Next we formatted <hcader.h> to show the various
categories that the structures and functions fall into.
The categories and the result of the tirst pass through
<header.h> can be scen o Figure 2. For example,
the function rand had no pointers in the function

prototype and was immediately moved to the section
“Functions that support 64-bit pointers.™

Organizing <header.h> in this way gave us an accu-
rate reading of how manv more tunctions needed
64-bir support. If any of the sections became empty,
we did nor remove the section. This approach worked
because while some engineers were doing 64-bit

wel
work, others were adding new functions. Anv new
functions added to a header file after the 64-bit work
was done would be placed m the section “Functions
that need 64-bit support.” Prior to shipping the
header files, we removed the empry sections.

Preparing the Source Code

After several false starts, we scttled on a design tor
modifving the source code tor 64-bit support. The
expected starting design was to modifv the source
code by adding pointer_size pragmas and compile the
source modules using the /pointer_size qualifier.
Some modules would use /pointer_size=32; others
would use /pointer_size=64. The major drawback to
this approach was that looking ata variable declared as
a pointer requires an understanding of the context in
which that variable appears. No longer would “char
be sumplv a characrer pointer. It could be a 32-bitora
64-bit chavacter pointer, and the implementer needed
to know which one.

* M

The design on which we decided overcomes the
readability problem. Bv default, source files are not
compiled with the /pointer_size qualifier. This means
that no pointer-size manipulation occurs when includ-
ing the header files. The readability of the source code
is improved i that the implementers can see which
pomters are 32-bit pointers and which are 64-bit
pointers.

#ifndef _ HEADER_LOADED
#define _ HEADER_LOADED 1

#Hifndef _ SIZE_T

H define _ SIZE_T 1
typedef unsigned

Hendif
int execv(const
void free(void *);

int size_t;

char *, char *[1);

void *malloc(size_t);

int rand(void);

char *strcat(char *, const char *);
char *strerror(int);

size_t strlen(const

char *);

#endif /* __HEADER_LOADED */

Figure 1
Original Header File <hcader.hs>

Digital Techniaal Journa

Vol. 8 No.2 19906

#ifndef _ HEADER_LOADED
#define _ HEADER_LOADED 1

/*

** Ensure that we begin with 32-bit pointers.

Y.

#if _ INITIAL_POINTER_SIZE

if (__VMS_VER < 70000000

H error "Pointer size added in OpenVMS V7.0 for Alpha"
endif

pragma __ _pointer_size __save

pragma _ _pointer_size 32

Hendif

/*
** STRUCTURES NOT AFFECTED BY POINTERS
L37/
#ifndef __ _SIZE_T
define __ _SIZE_T 1
typedef unsigned int size_t;

Hendif

/*

** FUNCTIONS THAT NEED 64-BIT SUPPORT
*/

int execv(const char *, char *[1);
void free(void *);

void *malloc(size_t);

char *strcat(char *, const char *);
char *strerror(int);

size_t strlen(const char *);

/*
** Create 32-bit header file typedefs.
LY

/ *
** Create 64-bit header file typedefs.
7/

/ *
** FUNCTIONS RESTRICTED FROM 64 BITS
Liy/

/*

** Change default to 64-bit pointers.
A7/

#if __ _INITIAL_POINTER_SIZE

pragma __pointer_size 64

Hendif

/*

** FUNCTIONS THAT SUPPORT 64-BIT POINTERS
*/

int rand(void);

/*

** Restore the user's pointer context.
*/

H#if _INITIAL_POINTER_SIZE

pragma _ _pointer_size _ _restore
Hendif

Hendif /* __ HEADER_LOADED */

Figure 2

First Pass through <hcader.h>

Digital Technical Journal Vol. 8§ No.2

1996

89

We created a C run-time library private header
file called <wide_types.src>. This header file has the
appropriate pragmas to define 64-bit pointer types used
within the C run-time library, as shown in Figure 3.

This header file also contains the definitions of macros
used in the implementations of the functions. Figure 4
shows the macros declared in <wide_types.src>.

Once a module includes the file <wide_types.sres,
the compilation of that module changes to add the
qualitier /pointer_size=32. This change improves the
readability of the code because *”

“Char is read as a

32-bit character pointer, whereas 64-bit pointers usc
typedefs whose names begin with “__wide.” The
name of the new typedetis __wide_char_ptr, which is
read as a 64-bit character pointer.

The C run-time library design also requirces that the
implementation of a function include all header files
that define the function. This ensures that the imple-
mentation matches the header files as they are modi-
fied to support 64-bit pointers. For functions defined
in multiple header files, this ensures that header files
do not contradict each other.

/*
* *

This include file defines all

32-bit and 64-bit data types used in

* %
* %
* %
* *
*/
Hi
H
H
H
He

/*
* *
* *
* *
* *
*/
#i
H
H
He

ty
ty

ty
ty

ty
ty
ty

Hi
ty

typedef

Hinclude <string.h>

the implementation of 64-bit addresses in the C run-time library.
Those modules that are compiled with a 64-bit-capable compiler

are required to enable pointer size with /POINTER_SIZE=32.

fdef
if

__ INITIAL_POINTER_SIZE

(__ INITIAL_POINTER_SIZE 32)

error "This module must be compiled /pointer_size=32"
endi f

ndi f

ALl interfaces that require 64-bit pointers must use one of
the following definitions. When this header file is used on
platforms not supporting 64-bit pointers, these definitions
will define 32-bit pointers.

fdef _ _INITIAL_POINTER_SIZE
pragma __pointer_size __save
pragma __pointer_size 64
ndif

pedef
pedef

char *_ _wide_char_ptr;
const char *__wide_const_char_ptr;

pedef
pedef

int *_ _wide_int_ptr;
const int *__ wide_const_int_ptr;
pedef char **__ _wide_char_ptr_ptr;
const char **__ _wide_const_char_ptr_ptr;

pedef
pedef

void *_ wide_void_ptr;
const void *__wide_const_void_ptr;

nclude <curses.h>
pedef WINDOW *__ wide_WINDOW_ptr;

typedef size_t *__ _wide_size_t_ptr;
/] *
** Restore pointer size.
*/
Hifdef __ INITIAL_POINTER_SIZE
pragma _ _pointer_size _ _restore
Hendif
Figure 3

Typcdefs from <wide_types.sre>

90

Digiral Technical Journal

Vol.8 No.2 1996

/*
** Define macros that are used to determine pointer size
** macros that will copy from high memory onto the stack.
* /

Hifdef

and

__ INITIAL_POINTER_SIZE
H include <builtins.h>

define C$$IS_SHORT_ADDRCaddr) \
CC((

1'
(((__int64)(addr)<<32)>>32) == (unsigned __inté4)addr)

4 define C$$SSHORT_ADDR_OF_STRING(Caddr) \

(C$$IS_SHORT_ADDR(Caddr) ? (char *) (addr) \
:(char *) strcpy(__ALLOCA(strlenCaddr) + 1), (addr)))
define C$$SHORT_ADDR_OF_STRUCT(Caddr) \
(CSIS_SHORT_ADDRCaddr) ? (void *) (addr) \
:(void *) memcpy(__ALLOCA(sizeof(* addr)), (addr), sizeof(*addr)))
define C$$SHORT_ADDR_OF_MEMORY(addr, Llen) \
(C$$IS_SHORT_ADDRC(Caddr) ? (void *) (addr) \
:(void *) memcpy(__ALLOCA(len), (addr), Llen))
Helse
define C$$IS_SHORT_ADDR(addr) (1)
define C$$SHORT_ADDR_OF_STRING(addr) (addr)
define C$$SHORT_ADDR_OF_STRUCT(addr) (addr)
define C$$SHORT_ADDR_OF_MEMORY(addr, Llen) (addr)
Hendif
Figure 4

Macros from <wide_types.sre>

Implementing the strerror Return Pointer

The function strerror always returns a 32-bit pointer.
The memory is allocated by the C run-time library for
both 32-bit and 64-bit calling programs. As shown
in Figure 5, we moved the tunction strerror into the
scetion “Functions that support 64-bit pointers™ of
<header.h> to show that there arce no restrictions on
the use of this function.

The “Create 32-bit header file rypedets” section of
<header.h> isin the 32-bit pointer section, where the
bound-to-low-memory data structures are declared.
The function returns a pointer to a character string.
We, therefore, added typedefs for __char_ptr32 and
__const_char_ptr32 while in a 32-bit pointer context.
These declarations arce protected with the definition of
__ CHAR_PTR32 to allow muluple header files to use
the same naming convention. Declarations of the
const form of the typedet are always made in the same
conditional code since they usually are needed and
using the same condition removes the need for a dit-
ferent protecting name.

The strerror function could have been implemented
in <header.h> by placing the function in the 32-bit sec-
tion, but that would have imphed that the 32-bit
pointer was a restriction that could be removed later.
The pointer is not a restriction, and the strerror func-
tion fully supports 64 -bit pointers.

The private header file typedefs are always declared
starting with two underscores and ending in cither
“_ptr32”or “_ptr64.” These typedefs are created only
when the header file needs to be in a particular
pointer-size mode while referring to a pointer of the
other size. The return value of strerror is modified to
use the typedef __char_ptr32.

Including the header file, which declares strerror,
allows the compiler to verify that the arguments,
return values, and pointer sizes are correct.

Widening the strlen Argument
The function strlen accepts a constant character
pointer and rcturns an unsigned integer (size_f).
Implementing full 64-bit support in strlen means
changing the parameter to a 64-bit constant character
pointer. If an application passes a 32-bit pointer to
the strien function, the compiler-generated code sign
extends the pointer. The required header file mod-
ification is to simply move strlen from the sec-
tion “Functions that nced 64-bit support” to the
scction “Functions that support 64-bit pointers.”

The steps necessary for the source code to support
64-bit addressing arc as follows:

1. Ensure that the module includes header files that
declare strlen.

Digiral Technical Journal Vel. 8 No.2 1996

91

#ifndef __ _HEADER_LOADED
#define _ HEADER_LOADED 1

/*

** Ensure that we begin with 32-bit pointers.

*/

#if __ INITIAL_POINTER_SIZE

if (__VMS_VER < 70000000)

H error "Pointer size added in OpenVMS V7.0 for Alpha"
endif

pragma _ _pointer_size __ save

pragma __pointer_size 32

Hendi f

/*
** STRUCTURES NOT AFFECTED BY POINTERS
*/
#ifndef __SIZE_T
define __SIZE_T 1
typedef unsigned int size_t;
Hendif

] *
** FUNCTIONS THAT NEED 64-BIT SUPPORT
*/

/*
** Create 32-bit header file typedefs.
*/
#ifndef __ CHAR_PTR32
define __ _CHAR_PTR32 1
typedef char *_ _char_ptr32;
typedef const char *_ _const_char_ptr32;
Hendif

/*
** Create 64-bit header file typedefs.
*/
#ifndef __CHAR_PTR64
define __ _CHAR_PTR64 1
pragma _ _pointer_size 64
typedef char *__ _char_ptré4;
typedef const char *__ _const_char_ptréb;

pragma _ _pointer_size 32

Hendif

/*

** FUNCTIONS RESTRICTED FROM 64 BITS
*/

int execv(__const_char_ptré4, char *[1);
/*

** Change default to 64-bit pointers.
*/

Hif __ INITIAL_POINTER_SIZE

pragma __pointer_size 64

Hendif

/*

** The following functions have interfaces of XXX, _XXX32,

** and _XXX64.
* %

** The function strcat has two interfaces because the return

** argument is a pointer that is relative to the first arguments.
* %

** The malloc function returns either a 32-bit or a 64-bit
** memory address.

377/

Hif __ _INITIAL_POINTER_SIZE == 32
pragma __ _pointer_size 32
Hendif

Figure 5
Final Form of <header.h>

92 Digital Technical Journal Vol.8 No.2 1996

void *malloc(size_t _ _size);
char *strcat(char *__s1,
#if _ INITIAL_POINTER_SIZE ==
H pragma __pointer_size 64
Hendif

#if _ INITIAL_POINTER_SIZE &%

H# pragma _ _pointer_size 32
void *_malloc32(size_t);
char *_strcat32(char *__s1,

H pragma _ _pointer_size 64
void *_mallocb4(size_t);
char *_strcaté4(char *__s1,

#Hendif /* __HEADER_LOADED */

__const_char_ptréé

Hendif

/*

** FUNCTIONS THAT SUPPORT 64-BIT POINTERS
*/

void free(void *__ptr);

int rand(void);

size_t strlen(const char *__s);

__char_ptr32 strerror(int __errnum);
/*

** Restore the user's pointer context.
/7

#if __ INITIAL_POINTER_SIZE

H pragma __pointer_size _ _restore
Hendif

__s2);

32

__VMS_VER >= 70000000

__const_char_ptréé4

__s2);

const char *__s2);

’

Figure 5
Conrtinucd

2. Add the following line of code to the top of the
modulc: #include <wide_types.srcd.

3. Change the declaration of the function to accept
a __wide_const_char_ptr parameter instead of the
previous const char * parameter.

4. Visually follow this argument through the code,
looking for assignment statements. This particular
function would be a simple loop. It local variables
store this pointer, thev must also be declared as
__wide_const_char_ptr.

5. Compile the source code using the directive
/warn=cnablc=maylosedata to have the compiler
help detect pointer truncation.

6. Add ancw test to the test system to excercise 64-bit
pointers.

Restricting execv from High Memory

Examination of the execv function prototype showed
that this function receives two arguments. The first
argument is a pointer to the name of the file to start.
The seccond argument represents the argy array that is
1o be passed to the child process. This array of pointers
to null terminated strings ends with a NULL poinrer.

Initially, the exeev function was to have had two
implementations. The parameters passed to the execv
function are used as the parameters to the main func-
tion of the child process being started. Because no
assumptions could be made about that child process
(in terms of support tor 64-bit pointers), these para-
meters are restricted to low memory addresses.

To illustrate that the argy passing was a restriction,
we place that prototvpe into the section “Functions
restricted from 64 bits” of <hcader.h>. The firstargu-
ment, the name of'the file, did not need to have this
restriction. The section “Create 64-bit header file
tvpedets” was enhanced to add the definition of
__const_char_ptr64, which allows the prototypes to
define a 64-bit pointer to constant characters while in
either 32-bit or 64-bit conrext.

Returning a Relative Pointer in strcat
The streat function returns a pointer relative to its first
argument. We looked at this Amction and determined
that it required two cntry points. In addition, we
widened the second parameter, which is the address of
the string to concatenate to the second, to allow the
application to concatenate a 64-bit string to a 32-bit
string without source code changes.

Vol. 8 No.2

Digital Technical Journal 1996

93

94

Figure 5 shows the changes made to support func-
tions that have pointer-size-specific entry points. The
prototypes of functions XXX, _XXX32, and _XXX64
begin in 64-bit pointer-size modc. Since the unmodi-
fied function name (strcat, XXX) is to be in the pointer
size specified by the /pointer_size qualifier, the
pointer size is changed from 64 bits to 32 bits it and
only if the user has specified /pointer_size=32. At this
point, we are not certain of the pointer size in eftect.
We know only that the size 1s the same as the sizc of
the qualifier. The second argument to strcat uses the
__const_char_ptr64 typedet in case we are in 32-bit
pointer mode. Notice the declaration of _strcat64
does not use this typedef because we are guaranteed
to be in 64-bit pointer context. Figure 6 shows the
implementation of both the 32-bit and the 64-bit
strcat functions.

The 64-bit malloc Function

The implementation of multiple entry points was dis-
cussed and demonstrated in the strcat implementation.
Although multiple entry points are typically added to
woid truncating pointers, functions such as memory
allocation routines have newly defined behavior.

The functions decc$malloc and decc$_malloc64
use new support provided by the OpenVMS Alpha
operating system for allocating, extending, and frecing
64-bit virtual memory. The C run-time library utilizes
this new functionality through the LIBRTL cntry
points. The LIBRTL group added new entry points for
each of the cxisting memory management functions.
The LIBRTL includes an additional second cntry
point for the free function. Since our implementation
of the free function simply widens the pointer, we end
up with a single, C run-time library function that must
choose which LIBRTL Runction to call.

int free(__wide_void_ptr ptr) {
if (!(C$SIS_SHORT_ADDR(ptr)))
return(cs_freebsd(ptr));

else return(c$$_free32((void *) ptr);

Concluding Remarks

The project took approximately seven person-months
to complete. The work involved two months to deter-
minc what we wanted to do, one month to figure out
how we were going to do it, and four person-months
to modify, document, and test the softwvare.

During the initial avo months, the techntcal leaders
met on a weekly basis and discussed the overall
approach to adding 64-bit pointers to the OpenVMS
environment. Since I was the technical lead for the C
run-time library project, this initial phase occupied
between 25 and 50 percent of my time.

The one month of detailed analysis and design con-
sumed more than 90 percent of my time and resulted
in a detailed document of approximatcely 100 pages.
The document covered each ot the 50 header files and
500 function interfaces. The functions were grouped
by type, based on the amount of work required to
support 64-bit pointers.

The tirst month of implementation occupicd ncearly
all of my time, as I made several false starts. Once I
worked out the final implementation technique, 1
completed at least two of cach type of work. As coding
deadlines approached, I taught two other enginceers on
my team how to add 64-bit pointer support, pointing
out those functions already completed for reterence.
They came up to speed within one weck. Together, we
completed the work during the final month of the
project.

#include <string.h>
#include <wide_types.src>

(void) _memcpy64((s
return(s1);

+ strlen(s1)),

/ *
** STRCAT/_STRCAT64

* %

** The 'strcat' function concatenates 's2', including the

** terminating null character, to the end of 's1'.

<y

__wide_char_ptr _strcaté4(__wide_char_ptr s1, _ wide_const_char_ptr s2)
{

s2, (strlen(s2) + 1));

}
char *_strcat32(char *s1, _ wide_const_char_ptr s2) {
(void) memcpy((s1 + strlen(s1)), (strlen(s2) + 1));
return(s?1);
Figure 6

Implementation of 32-bit and 64-bit strear Functions

Digital Technical Journal Vol.8 No.2 1996

Acknowledgments

The author would like to acknowledge the others who
contributed to the success of the C run-time library
project. The engineers who helped with various
aspects of the analysis, design, and implementation
were Sandra Whitman, Brian McCarthy, Greg Tarsa,
Marc Nocl, Boris Gubenko, and Ken Cowan. Our
writer, John Paolillo, worked countless hours docu-
menting the changes we made to the library.

References

1. M. Harvey and L. Szubowicz, “Extending OpenVivIS
tor 64-bit Addressable Virtual Memory,” Digital
Technical Journal, vol. 8, no. 2 (1996, this issuc):
57-71.

2. T. Benson, K. Nocl, and R. Peterson, “The OpenVMS
Mixed Pointer Size Environment,” Digital Technical
Journal, vol. 8 no. 2 (1996, this issuc): 72-82.

3. DEC C Users Guide fer Open VIS Systems (Maynard,
Mass.: Digital Equipment Corporation, Order No.
AA-PUNZE-TK, 1995).

4. DEC C Runtime Library Reference Manual for
Opern VM Systems (Maynard, Mass.: Digital Equipment
Corporation, Order No. AA-PUNEE-TK, 1995).

5. OpenVMs Calling Stancdard (Maynard, Mass.: Digital
Equipment Corporation, Order No. AA-QSBBA-TE,
1995).

Biography

Duane A. Smith

As a consulring software engineer, Duane Smith is currently
architect and project leader of the C run-time library for
the OpenVMS VAX and Alpha platforms. He joined Digital
in 1981 and has worked on a varicty of projects, including
the A-to-7 Database Manager and the Language-Sensitive
Editor. Duanc received his B.S. in engincering trom the
University of Connecticut in 1981 and his M.S. in soft-
ware engineering from Wang Institute of Graduate Studics
in 1987. He pursued his master’s degree through Digital’s
Graduate Engincering Education Program (GEEP). Duane
holds one U.S. patent issued for the DECwindows Suructured
Visual Navigation (SVN) widget.

Digital Technical Journal

Vol. 8 No.2

1996

95

96

Building a High-performance
Message-passing System for
MEMORY CHANNEL Clusters

The new MEMORY CHANNEL for PCl cluster
interconnect technology developed by Digital
(based on technology from Encore Computer
Corporation) dramatically reduces the over-
head involved in intermachine communica-
tion. Digital has designed a software system,
the TruCluster MEMORY CHANNEL Software ver-
sion 1.4 product, that provides fast user-level
access to the MEMORY CHANNEL network and
can be used to implement a form of distributed
shared memory. Using this product, Digital has
built a low-level message-passing system that
reduces the communications latency in a MEMORY
CHANNEL cluster to less than 10 microseconds.
This system can, in turn, be used to easily build
the communications libraries that programmers
use to parallelize scientific codes. Digital has
demonstrated the successful use of this message-
passing system by developing implementations
of two of the most popular of these libraries,
Parallel Virtual Machine (PVM) and Message
Passing Interface (MPI).

Digital Technical Journal Vol.8 No.2 1996

James V. Lawton

John J. Brosnan
Morgan P. Doyle
Seosamh D. O Riordiin
Timothy G. Reddin

During the last few vears, significant rescarch and
development has been undertaken in both academia
and industry in an effort to reduce the cost of high-
performance computing (HPC). The method most
frequently used was to build parallel svstems out of
clusters of commodity workstations or scrvers that
could be used as a virtual supercomputer.” The mou-
vation for this work was the tremendous gains that
have been achieved in reduced instruction set com-
puter (RISC) microprocessor performance during the
last decade. Indeed, processor performance in today’s
workstarions and servers otten exceeds that of the indi-
vidual processors in a tightly coupled supercompurer.
However, traditional local area nenwork (LAN) per-
formance has not kept pace with microprocessor
performance. LANs, such as fiber distributed data
interface (FDDI), ofter reasonable bandwidth, since
communication is generall carried out by means of
traditional protocol stacks such as the user datagram
protocol /internet protocol (UDP/IP) or the trans-
mission control protocol /internet protocol (TCP/IP),
but software overhead is a major factor in message-
transter time.? This sofrware overhead is not reduced
by building faster LAN network hardwarce. Rather, a
new approach is needed—once that bvpasses the pro-
tocol stack while preserving sequencing, error detec-
tion, and protection.

Much current research is devoted to reducing this
communications overhead using specialized hardware
and software. To this end, Digital has been working
to make commercial Alpha clusters, descended trom
the original VAXcluster technology, available to scien-
titic and technical users.™ This cluster technology
uses available commodity hardware and software to
implement a high-performance communications sub-
svstem.® The hardware interconnect that supports
clustered operation is Encore Computer Corporation’s
patented MEMORY CHANNEL technology.” This
mterconnect provides a mechanism that allows the vir-
tual address space ot a process to be mapped so that
a store instruction in one svstem is directly retlected in
the pbvsical memory of another svstem. We have
developed software application programming inter-
fFaces (APIs) that provide uscr-level applications with
this capability in a controlled and protected manner.,

Data may then be transterred between the machines
using simple memory read and write operations, with
no software overhead, essentially utilizing the full per-
formance ot the hardware. This approach is similar to
the onc used in the Princeton SHRIMP project, where
this process is described as Virtual Memory-Mapped
Communication (VMMC). 7"

Figure 1 shows the relationship between the various
components of our message-passing system. The first
phasc of our work involved designing a program-
ming library and associated kernel components to pro-
vide protected, unprivileged access to the MEMORY
CHANNEL network. Our objective in creating this
library was to provide a facilicy much like the standard
System V interprocess communication (IPC) shared
memory functions available in UNIX implementations.
Programmers could usc the library to set up operations
over the MEMORY CHANNEL interconnect, but they
would not need to use the library functions tor data
transter. In this way, performance could be maximized.
This product, the TruCluster MEMORY CHANNEL
Sotnware, provides programmers with a simple, high-
pertormance mechanism for building parallel systems.

TruCluster MEMORY CHANNEL Software delivers
the performance available trom the MEMORY
CHANNEL network directly to user applications but
requires a programming stvle that is difterent from
that required for shared memory. This difterent pro-
gramming style is necessary because of the different
access characreristics between local memory and mem-
ory on a remotce node connected through a MEMORY
CHANNEL network. To make programming with the
MEMORY CHANNEL technology relatively simple
while continuing to deliver the hardware performance,
we built a library of primitive communications func-
tions. This system, called Universal Message Passing
(UMP), hides the derails of MEMORY CHANNEL
operations from the programmer and operates seam-
[essly over two transports (initially): shared memory
and the MEMORY CHANNEL interconnect. This
allows seamless growth from a symmetric multipro-
cessor (SMP) to a tull MEMORY CHANNEL cluster.
Development can be done on a workstation, while
production work is done on the cluster. The UMP

PARALLEL APPLICATION
PVM MPI
UMP
TRUCLUSTER
SHARED MEMORY CHANNEL | OTHER
MEMORY SOFTWARE TRANSPORT

Figure 1
Message-passing System Architecture

layer was designed from the beginning with pertor-
mance considerations in mind, pacticularly with
respect to minimizing the overhead involved in send-
ingsmallmessages.

Twodistributed memory modcels are predominantly
used in high-performance computing today:

1. Data parallel, which is used in High Performance
Fortran (HPF)." With this model, the programmer
uses parallel language constructs to indicate to the
compiler how to distribute data and what opera-
tions should be perfermed on it. The problem is
assumed to be regular so that the compiler can use
one of a number of data distribution algorithms.

[08]

. Message passing, which is used in Paraliel Virtual
Machine (PVM) and Message Passing Inrerface
(MPI).* 7 In this approach, all messaging is per-
formed explicitly, so the application programmer
derermines the data distribution algorithm, making
this approach more suitable for irregular problems.

It is not yet clear whether one of these approaches
will predominate in the future or if both will continue
to coexist. Digital has been working to provide com-
petitive solutions for both approaches using MEMORY
CHANNEL clusters. Digital’s HPF work has been
described in a previous issue of the fournal " This
paper is primarily concerned with message passing,.

Building on the UMP layer, we constructed imple-
mentations of two common message-passing systems.
The tirst, PVM, is a de facto standard tor programmers
who want to parallelize large scientific and technical
applications. In addition to messaging functions, PVM
also provides process control functions. The second,
MPI, represents the eftorts of a large group of acade-
mic and industrial users who are working together
to specity a standard API for message passing. At this
time, MPT does not provide any process control facili-
ties. The pertormance of these PVM and MP1 systems
on MEMORY CHANNEL clusters exceeds that of the
public-domain implementations.

MEMORY CHANNEL Overview

Encore’s MEMORY CHANNEL technology is a high-
performance nerwork that implements a form of
clusterwide shared virtual memory. In Digital’s first
implementation of this technology, it is a shared,
100-megabyte-per-sccond (MB/s) bus that provides
a write-only path from a page of virtual address space
on one node to a page of physical memory on another
node (or multiple other nodes). The MEMORY
CHANNEL network outperforms any traditional LAN
technology that uses a bus topology. For cxample, a
peak bandwidth of berween 35 MB/s and 70 MB/s is
possible with the current 32-bit peripheral component
interconnect (PCI) MEMORY CHANNEL adapters,

Digital Technical Journal Vol.§ No.2 1996

97

98

depending on the bandwidth of the T/0 subsystem
into which the adapter is plugged. Although the cur-
rent MEMORY CHANNEL ncrwork is a shared bus, the
plan for the next generation is to utilize a switched
technology that will increase the aggregare bandwidth
of the nenwork bevond that of currently available
switched LAN rechnologices. The latency (time to send
a minimum-length message one way between two
processes) i less than § microscconds (ps). The
MEMORY CHANNEL nenwork provides a communica-
tions medium with a low bit-crror rate, on the order of
1010, The probability of undetected errors occurring
1s so small (on the order of the undetected error rate of
CPUs and memory subsystems) that it is essentially
negligible. A MEMORY CHANNEL cluster consists of
onc or more PCI MEMORY CHANNEL adapters on
cach node and a hub connecting up to eight nodes.

The MEMORY CHANNEL cluster supports a
512-MB global address space into which each adapeer,
under operating svstem control, can map regions of
local virtual address space.™ Figure 2 illustrates the
MEMORY CHANNEL opceration. Figure 2a shows
transmission, and Figure 2b shows reception. A page
table entry (PTE) is an entry in the svstem virtual-
to-phvsical map that translates the virtual address of
a page to the corresponding phvsical address. The
MEMORY CHANNEL adaprter contains a page control
table (PCT) that indicates tor cach page of MEMORY
CHANNEIL global address spacce if that page is mapped
locallv and whether it is mapped tor ransmission or
reception. Thus, to map a page of local virtual mem-
orv tor transmission, all thatis required is to

= Set up an enrry in the system virtual-to-physical
map to point to a page in the MEMORY CHANNEIL
adaprer’s PCL 1/0 address space window, which
15 directly mapped to the page in MEMORY
CHANNEL space

= Enable the corresponding page entry in the PCT
tor transmission

Any write to the mapped virtual page will then
result ina corresponding write to the MEMORY
CHANNEL neowork.

To complete the circuit, the page of MEMORY
CHANNEL space must be mapped to virtual memory
on another node. This is accomplished on the other
node by

s Making a page of physical memory nonpageable
(wired)

= Crearing a virtual region whose PTE points to the
wired page

= Setting up the I/0 dircct memory access (DMA)
scatter /gather map to point to the physical page

= Enabling the appropriate entry i the adaprer’s
PCT for reception

Digital Technmical Journal Vol. 8 No. 2 1996

Thus, whena MEMORY CHANNEL nerwork packet
is received that corresponds to the page that is mapped
tor reception, the data is transterred directly to the
appropriate page of physical memory by the system’s
DMA engine. In addition, anv cache lines that reter to
the updared page are invalidated.

Subscquently, anv writes to the mapped page of vir-
tual memory on the first node result i corresponding
writes to physical memory on the second node. This
means that when a region in MEMORY CHANNEL
space has been allocated and attached to a process,
writes to that region arce just simple stores to a process
virtual address. The virtual address translates to a phys-
ical address that 1s mapped for transmission. Reads
from that region are simply loads from a process virtual
address, so the operating system is not involved m data
transter, with consequent reduction in overhead.

To use the MEMORY CHANNEL hardware, the
opcerating svstem must provide certain basic serviees.
Digital’s cluster software includes a set of low-level
primitives that can be used in the UNIX kernel. The
functionality that thesce services provide includes
= Allocating and deallocating regions of MEMORY

CHANNEL space for transmission or reception
= Allocating and deallocating cluster spinlocks
= Providing the capability to be notified when a page

has been written (1.c., a notification channel)

TruCluster MEMORY CHANNEL Software

We designed the TruCluster MEMORY CHANNEL
Software product to provide user-level acceess to the
kernel functions that control the MEMORY CHANNIL
hardware. The target audience tor this technology is
parallel sottware library builders and parallel compiler
mmplementers. Asshown in Figure 3, the product con-

sists of two components lavered on top of the kernel
MEMORY CHANNEL functions:
1. A kernel subsystem that interfaces to the low-level

kernel functions
2. A uscr-level APT library

There were two choices in developing the product:
provide simple user-level access to the basic functional-
itv or build a more sophisticated svsrem (c.g.., a distrib-
uted shared memory [DSM] svstem). We chose to
make a subsct of the functionality of the operating svs-
tem kernel primitives available to applications for two
reasons. First, we did not mitally know the degree

of functionality required to provide generie uscr-
level access to the MEMORY CIHHANNEL nerwork
for the long term. Sccond, the original purpose of
the work was to give scientific and technical cus-
tomers, rather than commercial cluster uscrs, carly
access to the MEMORY CHANNEL network. As a
result, the functionalicy we built into the product is

EXECUTES STORE INSTRUCTION
TO VIRTUAL ADDRESS IN
TRANSMIT REGION

VIRTUAL-TO- PHYSICAL ADDRESS
TRANSMIT PHYSICAL IN PCI VO SPACE
REGION ADDRESS
TRANSLATION
PAGE TABLE ENTRY MEMORY CHANNEL
VIRTUAL ADAPTER
ADDRESS MEMORY
PAGE CONTROL __ CHANNEL
TABLE ADDRESS
DATA
(a) Transmission
SUPSA%RE € m e —mmmmmmmmm———=== . DATA RETURNED FROM

EXECUTES LOAD INSTRUCTION
FROM VIRTUAL ADDRESS IN
RECEIVE REGION

*. PHYSICAL MEMORY
N

\
\

WIRED PHYSICAL

VIRTUAL-TO-
RECEIVE PHYSICAL
REGION ADDRESS
TRANSLATION
PAGE TABLE ENTRY
VIRTUAL
ADDRESS CACHE
INVALIDATE

sl

PAGES

f

DMA SCATTER/
GATHER MAP

t

MEMORY CHANNEL

ADAPTER
MEMORY
PAGE CONTROL | CHANNEL
TABLE ADDRESS
DATA

(b) Reception

Figure 2
MEMORY CHANNEL Operation

TRUCLUSTER MEMORY

ER SPACE
CHANNEL API LIBRARY USER SPAC

TRUCLUSTER MEMORY CHANNEL

KERNEL SUBSYSTEM NRINEEEACS

LOW-LEVEL KERNEL
MEMORY CHANNEL FUNCTIONS

Figure 3
TruCluster MEMORY CHANNEL Software Architecture

asct of simple building blocks thatare analogous to the
System V IPC facility in most UNIX implementations.
The advantage is that while a very simple interface is
provided initially, the interface can later be extended as

required, without losing compatibility with applications
based on the initial implementation. Table 1 details the
MEMORY CHANNEL API library tunctions that the
product provides. An important teature to note is that
when a MEMORY CHANNEL region is allocated using
TruCluster MEMORY CHANNEL Software, a key is
specified that uniquely identfies this region in the clus-
ter. Other processes anywhere in the cluster can attach

to the same region using the same key; the collection of

keys provides a clusterwide namespace.

The MEMORY CHANNEL API library communi-
cates with the kernel subsystem using kmodcall; a sim-
ple generic system call used to manage kernel
subsystems. The library function constructs a com-
mand block containing the type of command (i.c.,

Digital Technical Journal Vol.8 No.2 1996

99

100

Table 1

TruCluster MEMORY CHANNEL API Library Functions

Function
Name Description
imc_asalloc Allocates a region of MEMORY CHANNEL address space of a specified size and permissions and

Imc_asattach

Imc_asdetach
imc_asdealloc
imc_lkalloc

imc_lkacquire
imc_lkrelease

with a user-supplied key; the ability to specify a key allows other cluster processes to rendezvous
at the same region. The function returns to the user a clusterwide ID for this region.

Attaches an allocated MEMORY CHANNEL region to a process virtual address space. A region
can be attached for transmission or reception, and in shared or exclusive mode. The user can also
request that the page be attached in loopback mode, i.e., any writes will be reflected back to the
current node so that if an appropriate reception mapping is in effect, the result of the writes can
be seen locally. The virtual address of the mapped region is assigned by the kernel and returned
to the user.

Detaches an allocated MEMORY CHANNEL region from a process virtual address space.
Deallocates a region of MEMORY CHANNEL address space with a specified ID.

Allocates a set of clusterwide spinlocks. The user can specify a key and the required permissions.

Normally, if a spinlock set exists, then this function just returns the ID of that lock set; otherwise

it creates the set. If the user specifies that creation is to be exclusive, then failure will result if the
spinlock set exists already. In addition, by specifying the IMC_CREATOR flag, the first spinlock in

the set will be acquired. These two features prevent the occurrence of races in the allocation of

spinlock sets across the cluster.

Acquires (locks) a spinlock in a specified spinlock set.
Releases (unlocks) a spinlock in a specified spinlock set.

imc_lkdealloc Deallocates a set of spinlocks.

imc_rderrcnt

Reads the clusterwide MEMORY CHANNEL error count and returns the value to the user. This

value isnotguaranteed to be up-to-date for all nodes in the cluster. It can be used to construct
an application-specific error-detection scheme.

imc_ckerrcnt

Checks for outstanding MEMORY CHANNEL errors, i.e., errors that have notyetbeen reflected in

the clusterwide MEMORY CHANNEL error count returned by imc_rderrcnt. This function checks
each node in the cluster for any outstanding errors and updates the global error count accordingly.

imc_kill
imc_gethosts

Sends a UNIX signal to a specified process on another node in the cluster.
Returns the number of nodes currently in the cluster and their host names.

which library function has been called) and any para-
meters and sends it to the kernel subsvstem using
kmodcall. The kernel subsystem has a marching func-
tion for cach ot the library calls. When a command
block is received, it is parsed and the appropriate func-
tion is called to service the request. All security and
resource checks are performed inside the kernel.

Figure 4 shows some ot the data structures that the
kernel services use. A clusterwide region of MEMORY
CHANNEL space is allocated to store these manage-
ment structures. "This region contains a control struc-
ture and six linked lists ot descriprors. The control
structure: manages MEMORY CHANNEL resources
allocated using TruCluster MEMORY CHANNEL
Software. Each region of MEMORY CHANNEL address
space and cach set of MEMORY CHANNEL spinlocks
allocated using the product have a corresponding
descriptorin the kernel data structure.

For cach region of MEMORY CHANNEL address
space allocared n the cluster, there is a cluster region
descripror (CRD) that contains information describ-
ing the regron, mcluding its clusterwide region identi-
fication number (1D), its size, kev, permissions,
Vol.8 No.2 199

Digital Technical Journal

creation time, and the UNIX user ID (UID) and group
ID (GID) of the creating process. For an individual
CRD, there is a host region descripror (HRD) for cach
node that has the region mapped. This HRD containg
the cluster 1D of the node and other node-specitic
information. Finally, tor a specitic HRD, there is a
process region descripror (PRD) for cach process on
that node that is using the region. The PRI contains
the UNIX process 1D (PID) of the process that created
the region and any process-specitic intormation, such
as virtual addresses.

Similarly, tor cach sct of spinfocks allocated on the
cluster there is a cluster lock descripror (CLD) that
contains information describing the spinlock ser,
including its clusterwide lock 1D, the number of spin-
locks in the set, the key, permissions, creation time,
and the UID and GID of the creating process. For an
mdividual CLD, there is a host lock descripror (HLD)
tor each node thatis using the spinlock set. The HLD
contains the cluster ID of the node and otha node-
specitic information about the spinlock sct. Fora spe-
cific HLD, there s a process lock desceripror (PLD) tor
cach process on that node that is using the spinlock

HRD 0: HOST 4 . PRD 0: PID 2001

HRD 1: HOST 6 PRD 1: PID 2340
HRD 2: HOST 3 PRD 2: PID 4458
PRD 3: PID 6583
CRD 2
CRD 3
- =

HRD 0: HOST &

HRD 1: HOST 1
—— oo

(a) Regions

PLD 3: PID 4072

———| HLD 0: HOST 4
HLD 1: HOST 6

HLD 0: HOST 2 l——> PLD 0: PID 3346
h HLD 1: HOST 0
CLD 0
CLD 1
—

HLD 2: HOST 3

(b) Spinlocks

CLD CLUSTERLOCK DESCRIPTOR
CRD CLUSTER REGION DESCRIPTOR
HLD HOST LOCK DESCRIPTOR

HRD HOST REGION DESCRIPTOR
PLD PROCESS LOCK DESCRIPTOR
PRD PROCESS REGION DESCRIPTOR

Figure 4
TruCluster MEMORY CHANNEL Kernel Dara Structures

sct. The PLD contains the PID of the process that ere-
ated the spinlock setand any process-specific informa-
tion about the spinlock sct.

All these cluster data structures have pointers that
cannot be updated atomicallv. In our implementation,
they actually consist of two copics (old and new) and
atoggle that indicates which of the rwo copices is valid.
The toggle is switched from an old copy to a new copy
only when the new copy is known to be consistent, so
that failure of a cluster member while moditying the
structures can be rolerated.

Figurc 4aillustrates a hypothetical situation in which
tour regions of MEMORY CHANNEL space have been
allocared on the cluster. The first region, with descrip-
tor CRD 0, is mapped on three nodes: host 4, host 6,
and host 3. The diagram also shows four processes on
host 3 with the region mapped and lists the PID of cach
process. Figure 4b shows a similar situation ftor spin-
locks. Two sets of spinlocks have been allocared. The

first, with desceriptor CLD 0, is mapped on two nodes
of the cluster: host 2 and host 0. One process on cach
ofthese nodes is currently using the spinlock set.

Command Relay

The command relay is a kernel-level framework that
enables the exceution of a generic service routine on
another node wirhin the cluster. It functions as a sim-
ple kernel remote procedure call (RPC) mechanism
based on fixed unidirectional message locations (mail-
boxes) and MEMORY CHANNEL notification chan-
nels to awaken the server kernel thread. Figure 5
shows the major components of the command relay
and illustrates its opceration berween two hosts in a
cluster. A client kernel thread on one host invoking a
service and the corresponding server kernel thread on
another cluster host communicate data using a detined
bidirectional command /response block, known as a
parameter structure. The client and server voutines

Digital Technical Journal Vol.8 No.2 1996

101

102

HOST A HOST B
[— ------------------- 1 Fr——= - - -~ == - - - === === 1
| ! |
; I | |
! | i f
! | [|
! | [1
: CLIENT i I SERVER i
I 1
! | 1 :
: \ i ' |
5 ! | REGISTER '
| INVOKE RETURN : , SERVICE CALL | COMPLETE :
1 —_—
: 2 7 : 6 : 1 5 :
| INITIATOR RELAY K—— ' SLAVE RELAY ;
! I MEMORY CHANNEL i |
s J NOTIFICATION CHANNEL L - - - - - - - . 4

Figure 5
Command Relav Operation

must conform to this interface and must be reliable,
i.e., they must always return to the caller. The server
can call any kernel function. Server routines are regis-
tered (step 1 in Figure 5) using a clusterwide service
ID. A kernel thread invoking a remote service passcs
a packed parameter structure to the command relay,
together with a destination node [D and a service 1D
(step 2). This command relay then adds process creden-
nals and builds a service protocol data unit (SPDU).
Using a MEMORY CHANNEL notfication channel; it
signals the remote node and passes the SPDU by means
of a mailbox in MEMORY CHANNEL space (step 3).
The server parses the SPDU and calls the requested ser-
vice function, passing it the parameter structure (step
4). When the service function completes (step 5), 1ts
return status and any data values are packed into an
SPDU and placed into the mailbox, and the initiating
relav is signaled (step 6). The initator then unpacks the
data from the SPDU and returns the appropriate status
and values to the client kernel thread (step 7).

All calls to the command relay are synchronous and
scrialized. The invoking kernel thread blocks until the
server returns. Requests to the command relay subsys-
tem are treated on a tirst-come first-served basis, and
calls to a busy relay block until the relay becomes frec.
Relays are automaticallv created benveen all nodes in
rhe cluster.

The command relav mechanism makes it possible
to send a UNIX signal to a process on another node
within the MEMORY CHANNEL cluster. The imc_kill
library function uses the command relay to invoke
the registered kernel server routine for cluster signals
on the remote node, which, in turn, calls the kernel kill
tunction dircctly with the PID supplicd.

Initial Coherency

When a process on a cluster member maps a region of
MEMORY CHANNEL address space tor both recep-
tion and transmission, any writes to the transmit
region by that process are reflected as changes to the

Digital Technical Journal Vol. 8 No.2 1996

corresponding receive region. It another process on
another cluster node subsequently maps the same
region tor reception, the contents of'its receive region
are indeterminate; i.e., the two processes do not have
a coherent view of that region. This situation is known
as the initial coherency problem. For an application
developer, this problem makes it difficult to treat
MEMORY CHANNEL address space as another form
of shared memory. Applications can overcome this dit-
ficulty by using some torm of start-up synchronization.
However, all devclopers would have to implement
these solutions separately. To increase the usability of
TruCluster MEMORY CHANNEL Software, the design
team decided to build in the ability to request coherent
alfocation of MEMORY CHANNEL address space
across the cluster. Developers can specify this as an
option in the call ro imc_asalloc. As aresult, a process
can attach a MEMORY CHANNEL region for reception
following anv updates and still share a common view of
the region with other processes in the cluster.

A special process, called the mapper, is used to pro-
vide the virtual address space to hold the coherent user
space mappings. When the kernel subsystem receives
a request for coherent allocation, it allocates the
MEMORY CHANNEL region as normal and then maps
the region for reception into the virtual address space
of the mapper process. The command relay mecha-
nism then causes all the other nodes in the cluster to
allocate the same region and map it for reception into
the address space of the mapper process on each node.
Since multiple uscer-level processes on a node that
attach a particular region for reception share the same
physical memory, all updates to the region are scen by
late-joming processes on any node in the cluster. If
the requesting process exits, the region will still be
allocared to the mapper, so that another allocation of
the same region on that node will result in a coherent
picture of that region. The region is fully deallocated
(i.c., from all the mapper processes) when the last
application process allocating the region cither exits or
explicitly deallocates the region.

Given the uscfulness of coherentallocations, it may
scem unusual that we made this feature an option
rather than the default. There are several reasons ftor
this. With cohcerent allocations, the associated physical
memory becomes nonpageable on all nodes within the
cluster, and, as such, it consumes phvsical resources.
In addition, cvervy outbound write to such a region
results in an mbound write to the physical memory of
cach node in the cluster. For some application designs,
it may be more desirable to create a region that is writ-
ten by one node and only read by other nodes. Also,
automatically reflecting all writes back to a node, as
is done for coherent regions, consumes twice as much
bandwidth on the PCI bus.

Late Join and Failure Resilience

To provide an operational environment in which
nodes can join or leave the cluster atany time, the ker-
nel subsvstem needs to overcome a number of prob-
lems resulting from late join and node failurc. In fact,
the kernel subsystem is subject to the same ditheulties
of initial coherency as application-level processes. To
manage uscr space allocations, late-joining nodcs
require a coherent view of the cluster data structures.
Morcover, failure ofan existing node can result in out-
of-date or, even worse, corrupt data structures in the
subsystem’s control region. To contain the failure,
corrupt dlata structures must be repaired.

Low-level kernel routines detect cluster membership
change and wake up a management service thread on
cach node that performs operations local to that node.
The tirst management service thread to acquire a spe-
citic spinlock is clected to manage clusterwide updates.

In the case of late join, the management service
thread updates local state to reflect the new configura-
tion. The thread that has been designated to manage
clusterwide updates is responsible for providing the
ate-joining node with an up-to-date copy of the clus-
ter data structures. When triggered by the new node,
the thread retransmits the contents of the data struc-
rures so that the late-joining node has a fully up-to-
date view of allocations and resource usage.

When a node fails, the thread elected to manage
clusterwide updates must examine the entire manage-
ment data structure and repair it appropriately. Repair
is necessary when the failing node thatis in the process
of updating the global data structures has left these
clusterwide updates in an unstable state. Repair is pos-
sible because all updates to global data structures usce
two copics of the structure (old and new, as described
previously), which means that the structures can be
reset easilv o astable state. If the failed node was not
actively updating the data structures at the time of the
fFailure, the management thread simply removes all
resources atlocated to the failed node.

Error Management

The MEMORY CHANNEL hardware provides a very
low error rate, ordering guarantees, and an ability to
detectremote error situations quickly, making it possi-
ble to construct simple crror detection and recovery
protocols. A kernel interrupt service routine detects
cluster errors and updates an error counter that reflects
the clusterwide error count. A low-level kernel routine
returns the value of this counter. Due to iming consid-
erations, it is not possible to guarantee that this count
will be up-to-date with respect to possible crrors on
remote nodes. A low-level kernel routine that cthi-
ciently reads the error status of remote MEMORY
CHANNEL adaprers and detects unprocessed errors
is provided. This routine uses a hardware teature,
known as an ACK page, thatis specifically designed to
facilitate error detection. A write to such a page results
in the crror status of cach MEMORY CHANNEL
adapter being written to successive locations of the
corresponding reception mapped region.

During development, we buile simple interfaces
to access these Jow-level routines, thercby allowing
message-passing libraries to build in error manage-
ment. Because the method of getting into and out of
the kernel is a generic one, the overhead is high—
approximately 30 ps. This compares poorly with the
raw latency for short messages, which is less than 5 ps.
To provide suitable performance, we reimplemented
the functions to execute totally in uscr space. As a
result, when an application reads the error count for

the tirst ime (using ime_rderrent), the kernel value of

the error countis mapped for read-only access into the
virtual address space of the process. Subscquent reads
of the error count are then simply reads of a memorv
location. Similarly, when an application calls the check
crror service (using ime_ckerrent) for the first time,
ACK pages arce transparently mapped into the virtual
address space ofthe process, and the error detection is
pertformed ar hardware speeds directly from user
space. This has been measured at less than 5 ps.

The following sequence can be used to guarantee
detection ofintervening errors by the transmitter:

1. Save the error count.

o

. Write the message.
3. Check the error count (using ime_ckerrent).

It the ransmitrer writes the saved crror count at the
end of the message, the message receiver can deter-
mine it any intervening crrors have occurred by simply
comparing the error count in the message with the
current value using imc_rderrent. This is possible
because of the sequencing guarantees built into the
MEMORY CHANNEL nenwork. Using imc_rderrent
and imc_ckerrent, the programmer can build an appro-
priate crror derection and/or recovery scheme that
mecets the performance requirements of the application.

Digital Technical Journal Vol.8 No.2 1996

103

104

Performance

The performance of TruCluster MEMORY CHANNEL
Software on a pair ot AlphaScrver 4100 5/300
machines is presented in Table 20 These measurements
were made using version 1.5 MEMORY CHANNEL
adaprers. The bandwidth (64 MB/s) and lawency
(2.9 ps) achicved using this system are essentially that
of the hardware, since nosystem overhead is involved.
The times required to pertorm the crror-checking
functions indicate that the overhead of calling
imc_rderrent is much less than that of ime_ckerrent.
This is because the latrer has to synchronize with all
other members of the cluster. Protocols that rely on
receiver-only error detection (using ime_rderrent) will
theretore have a lower overhead.

Programming with TruCluster

MEMORY CHANNEL Software

The MEMORY CHANNEL network mposes some
unique restrictions on the programmer. Since the net-
work requires separate transnut and receive regions,
any read-write memory location that is to be visible
clusterwide must have nvo addresses: a read address
and a write address. Attempts to read trom a write
address wpically cause a segmentation violation.
MEMORY CHANNEL address space can be used like
shared memory. Unlike shared memory, though, its
latency is visib

¢ to the programmer, who must consider
larencey effects when writing to a clustenwide location.

As an cxample of programming with TruCluster
MEMORY CHANNEL Software, Figure 6 shows a
simple program that mmplements a globa
performs some worlk, and then decrements the global

counter,

counter and exits. For the purposces of this example,
assume that multiple copies of the program are run
concurrently on different machines in a cluster. Such
operation requires svnchronization to ensure safe
aceess to shared data in MEMORY CHANNET, space.
program first allocates MEMORY
CHANNEL regions tor transmission and reception and
atraches them to process virtual addresses. Nexe, a

The example

ser of spinfocks is created (unless it alecady exists). The
tirst copv of the program to create the spinlock sct
acquires the first lock in the ser and initializes the
global region, whercupon it releases the spinfock and
continues. All other copics of the program wait in
ime_lkacquire until the spinlock is released by the tirste

Table 2

TruCluster MEMORY CHANNEL Software Performance
Sustained bandwidth 64 MB/s
Latency 2.9 ps
Read error count (imc_rderrcnt) <1 s
Check error count (imc_ckerrcnt) <5us

Digital Technical Journal Vol. 8 No.2 1996

copy. Each copy in turn acquires the lock itself, incre-
ments the process counter, and releases the lock. The
copices then perform some work in parallel. When cach

program has tinished its portion of the work, it decre-
ments the global process counter (using the spinlock
to control access again). Finally, the spinlock set and
shared regions are deallocated. Several examples of
code illustrating these topics are contained w the
TruCluster MEVIORY CHANNEL Softiware Programmer’s
Menruarl " We have found that imp
message-passing laver on top of TruCluster MEMORY
CHANNEL Software is a more cftective solution than
programming dirceth with MEMORY CHANNEL
regions, as deseribed i the nextsection.

Several features described above were not initiallv
present in the TruCluster MEMORY CHANNEL
Sofovare product. As a result ofour experience imple-
menting UMP and the higher PYM and MPT lavers,
we added the following features:

cmenting a simple

Initial coherency

Command relay

Cluster signals

Uscr-level errorchecking

Universal Message Passing

The Universal Message Passing (UMP) library is
designed to provide a foundation for implementing
cthicient message-passing svstems on the MEMORY
CHANXNEL nerwork. From the outset, we were aware
that there would be a demand for PVM and MPI
implementations and that other implementations
might follow. We felt that it would be casicer to con-
steuct high-pertormance message-passing systems it

we provided a thin Layer that could cfficiently handle
the restrictions that the MEMORY CHANNEL net-
work imposcs.

The goals in developing UMP were to

= Simplify the construction of message-passing svs-
tems utilizing, the MEMORY CHANNEL nenvork
by hiding the derails of the underlving commu-
nications transport (initiallyy shared memory or
MEMORY CHANNEL).

= Optimize performance and exploit the low Jateney
of the MEMORY CHANNEL network; the initial
goal tor latency over the MEMORY CHANNEL net-
worlc using PVM was to achieve less than 30 ws.

= Easc the development of paralle) message-passing
librarics by providing a simple set of message-
passing funcrions.

= DPerform only basic communications; any more
complex operations (c.g., process control) would
bepertormed by a higher laver.

= Act as a comvergence center for possible future
INterconnects.

extern long asm(const char *, ...);
Hpragma intrinsic(Casm)
Hdefine mb() asm("mb'")

Hinclude <sys/types.h>
#include <sys/imc.h>

main ()

int status, i, locks=4, temp, errors;

imc_asid_t region_id; /* MC region ID */
imc_Llkid_t lock_id; /* MC spinlock set ID */
typedef struct { /* Shared data structure */

volatile int processes;

volatile int pattern[20471;
} shared_region;
shared_region *region_read, *region_write;
caddr_t read_ptr = 0, write_ptr = 0;
/* Allocate a region of coherent MC address space and attach to */
/* process VA */
imc_asalloc(123, 8192, IMC_URW, IMC_COHERENT, ®ion_id);

imc_asattach(region_id, IMC_RECEIVE, IMC_SHARED, 0, &read_ptr);

region_read = (shared_region *)write_ptr;
region_write = (shared_region *)read_ptr;

/* Allocate a set of spinlocks and atomically acquire the first lock */
status = imc_Llkalloc(456, &locks, IMC_LKU, IMC_CREATOR, &lock_id);
errors = imc_rderrcnt();
if (status == IMC_SUCCESS) (
do (
region_write->processes = 0; /* Initialize the global region */
for (i=0; 1<2047; i++)
region_write->patternlil = i;
i--;
mb();
} while (imc_ckerrcnt(&errors) || region_read->patternLil '= i)
imc_Llkrelease(lock_id, 0);
} else if (status == IMC_EXISTS) {
imc_Llkalloc(456, &locks, IMC_LKU, O, &lock_id);
imc_Llkacquire(lock_id, 0, O, IMC_LOCKWAIT);

’

temp = region_read->processes + 1; /* Increment the process counter */
errors = imc_rderrcnt();
do {
region_write->processes = temp;
mb();
} while (imc_ckerrcnt(&errors) || region_read->processes != temp) ;

imc_Llkrelease(lock_id, 0);

(Body of program goes here)

/* clean up */
imc_Llkacquire(lock_id, 0, 0, IMC_LOCKWAIT);

temp = region_read->processes - 1; /* Decrement the process counter */
errors = imc_rderrcnt();
do (
region_write->processes = temp;
mb () ;
} while (imc_ckerrcnt(&errors) || region_read->processes != temp) ;

imc_Lkrelease(lock_id, 0);

imc_Llkdealloc(lock_id); /* Deallocate spinlock set */
imc_asdetach(region_id); /* Detach shared region */
imc_asdealloc(region_id); /* Deallocate MC address space */

imc_asattach(region_id, IMC_TRANSMIT, IMC_SHARED, IMC_LOOPBACK, &write_ptr);

Figure 6
Programming with TruCluster MEMORY CHANNEL Software

Digitad Technical Journal Vol. 8 No. 2

1996

105

These goals placed some important constraints on
the architecture of UMP, particularly with regard to
performance. This meant that design decisions had
to be constantly evaluated in terms of their pertormance
impact. The initial design decision was to use a dedi-
cated poine-to-point circular buffer between every pair
ofprocesses. These bufters use producer and consumer
indexes to control the reading and writing of buffer
contents. The indexes can be modified only by the
consumer and producer tasks and allow fully lockless
operation of the buffers. Removing lock requirements
climinates not only the software costs associated with
lock manipulation (in the initial implementation of
TruCluster MEMORY CHANNEL Software, acquiring
and releasing an uncontested spinlock takes approxi-
mately 130 ps and 120 ps, respectively) burt also the
impact on processor performance associated with
Load-locked /Store-conditional instruction sequences.

Although this butfering style climinates lock manip-
ulation costs, it results in an exponential demand tor
storage and can limit scalability. If there are NV processes
communicating using this method, that implies N2
bufters are required for full mesh communication.
MEMORY CHANNEL address space is a relatively
scarce resource that needs to be carefully husbanded.
‘T'o manage the demand on cluster resources as fairly as
possible, we decided to do the following:

s Allocate bufters sparscly, i.c., as required up to
some default limit. Full A2 allocation would still be
possible if the user increased the number of bufters.

= Make the size of the bufters contigurable.

= Usce lock-controlled single-writer, multiple-reader
bufters to handle both the overflow trom the V2
bufter and fast multicast. One of these bufters,
called outbufs, would be assigned to cach process
using UMP upon initialization.

Note that while the channel bufters are logically
point-to-point, they mav be implemented physically as
either point-to-point or broadcast. For example, in the
first version of UMP, we used broadcast MEMORY
CHANNEL mappings for the sake of simplicity. We are
currenthy modifving UMP to use point-to-point
MEMORY CHANNEL mappings, both to increasce
available bandwidth and to exploit a switched
MEMORY CHANNEL nctwork.

Figure 7 shows scveral tasks communicating in
a cluster and illustrates how the two tvpes of UMP
buffers arc used. Task 1 and task 2 are cexccuting
on node 1, while task 3 is executing on node 2. In the
diagram, the channel buftters are located under the task
in whosc virtual address space they reside to indicate
visually that they reside in the virtual address space of
the destination task. In the figure, task 1 communicates

CHANNEL BUFFERS

! | I
: ! l
| |
: I I
| 1
! I i
1 | 1
! T I
: ! 1
1 |
| ! 1
: I 1
!
' SHARED MEMORY SHARED P MEMORY ’
: MEMORY CHANNEL MEMORY tyo CHANNEL I
| ! |
: 251 31 La| 152 Py 13 [
| : Lo :
| \ | H \
| | '
| : ! :
| P! |
I
i OUTBUF & !
| | I |
! MEMORY MEMORY 1 | MEMORY !
i CHANNEL CHANNEL !, CHANNEL !
I I
' !)
: T3 f : i '
| ' | I '
| I
[: ! :
| ! |
R P, i
LNooEY T . NODEZ

—— DIRECT WRITE TO CHANNEL BUFFER
...... LOCK-CONTROLLED READ OF OUTBUF

Figure 7
Cluster Communicatien Using UMD

106 Digital Technical Journal Vol. 8 No.2 1996

with task 2 using UMP channel bufters in shared mem-
ory, shown as 12 and 2-»1. Task 1 and task 3 com-
municate using UMP channel bufters in MEMORY
CHANNEL space, shown as 1-»3 and 3-»1. Task 3 is
reading a message from task 1 using an outbuf. The
outbuf can be written only by task 1 but is mapped for
transmission to all other cluster members. On node 2,
the same region is mapped for reception. Access to
cach outbuf'is controlled by a unique cluster spinlock.

Our rationale for taking this approach is thata short
software path is more appropriate for small messages
because overhead dominates message transfer time,
whereas the overhead of lock manipulation is a small
component of message transfer time for large mes-
sages. We felt that this approach helped to control the
use of cluster resources and maintained the lowest pos-
sible latency for short messages yet still accommodated
large messages. Note that outbufs are still fixed-size
buffers but are generally configured to be much larger
than the V2 buffers.

This approach worked for PVM because its message
transfer semantics make it acceptable to fail a mes-
sage send request due to buffer space restrictions
(e.g., if both the N2 buffer and the outbuf are full).
When we analyzed the requirements tor MPI, how-
ever, we found that this approach was not possible. For
this reason, we changed the design to use only the V2
buffers. Instead of writing the message as a single
operation, the message is streamed through the bufter
in a series of fragments. Not only does this approach
support arbitrarily large messages, but it also improves
message bandwidth by allowing (and, for messages
exceeding the available bufter capacity, requiring) the
overlapped writing and reading of the message.
Deadlock is avoided by using a background thread
to write the message. Since overflow is now handled
using the streaming N2 bufters, outbufs were not nec-
essary to achieve the required level of performance for
large messages and were not implemented. Outbufs
are retained in the design to provide fast multicast
messaging, even though in the current implementa-
tion they are not yet supported.

Achieving the performance goals set for UMP was
not casy. In addition to the bufter architecture
described carlier, several other techniques were used.

= No syscalls were allowed anywhere in the UMP
messaging functions, so UMP runs completely in
user space.

= Calls to library routines and any expensive arith-
metic operations were minimized.

= Global state was cached in local memory wherever
possible.

= Careful attention was paid to data alignment issues,
and all transfers are multiples of 32-bit data.

At the programmer’s level, UMP operation is based
on duplex point-to-point links called channels, which
correspond to the N2 buffers already described.
A channel is a pair of unidirectional buffers used to
provide two-way communication between a pair of
process endpoints anywhere in the cluster. UMP pro-
vides functions to open a channel between a pair of
tasks. While the resources are allocated by the first task
to open the channel, the connection is not complete
until the second task also opens the same channel.
Once a channel has been opened by both sides, UMP
functions can be used to send and receive messages on
that channel. Itis possible to direct UMP touse shared
memory or MEMORY CHANNEL address space for
the channel buffers, depending on the relative location
of the associated processes. In addition, UMP provides
a function to wait on any event (e.g., arrival of a mes-
sage, creation or deletion of a channel). In total, UMP
provides a dozen functions, which are listed in Table 3.
Most of the functions relate to initialization, shut-
down, and miscellaneous operations. Three functions
establish the channel connection, and three functions
pertorm all message communications.

UMP channels provide guaranteed error detection
but not recovery. Through the use of TruCluster
MEMORY CHANNEL Software error-checking rou-
tines, we were able to provide efficient error detection
in UMP. We decided to let the higher layers implement
error recovery. As a result, designers of higher layers can
control the performance penalty they incur by specify-
ing their own error recovery mechanisms, or, since
reliability is high, can adapt a fail-on-error strategy.

Performance
UMP avoids any calls to the kernel and any copying of
dara across the kernel boundary. Messages are written
directly into the reception bufter of the destination
channel. Data is copied once from the user’s bufter
to physical memory on the destination node by the
sending process. The receiving process then copies the
data from local physical memory to the destination
user’s buffer. By comparison, the number of copies
involved in a similar operation over a LAN using sock-
ets is greater. In this case, the data has to be copied
into the kernel, where the network driver uses DMA to
copy it again into the memory of the network adapter.
At this point the data is transmitted onto the LAN.
The first version of UMP used one large shared
region of MEMORY CHANNEL space to contain its
channel bufters and a broadcast mapping to transmit
this simultancously to all nodes in the cluster. This
version of UMP also used loopback to reflect transmis-
sions back to the corresponding receive region on the
sending node, which resulted in a loss of available
bandwidth. Using our AlphaServer 2100 4,/190
development machines, we measured

Digital Technical Journal Vol.8 No.2 1996

107

108

Table 3

UMP API Functions

Function

Name Description

ump_init Initializes UMP and allocates the necessary resources.

ump_exit Shuts down UMP and deallocates any resources used by the calling process.

ump_open Opens a duplex channel between two endpoints over a given transport (shared memory or
MEMORY CHANNEL). Channel endpoints are identified by user-supplied, 64-bit integer handles.

ump_close Closes a specified UMP channel, deallocating all resources assigned to that channel as necessary.

ump_listen Registers an endpoint for a channel over a specified transport. This can be used by a server process
to wait on connections from clients with unknown handies. This function returns immediately,
but the channel is created only when another task opens the channel. This can be detected using
ump_wait.

ump_wait Waits for a UMP event to occur, either on one specified channel to this task or on all channels
to this task.

ump_read Reads a message from a specified channel.

ump_write Writes a message to a specified channel. This function is blocking, i.e., it does not return until

the complete message has been written to the channel.

ump_nbread

Starts reading a message from a channel, i.e., itreturns as soon as a specified amount of the

message has been received, but not necessarily all the message.

ump_nbwrite

Starts writing a message to a specified channel, i.e., it returns as soon as the write has started.

A background thread will continue writing the message until it is completely transmitted.

ump_mcast
ump_info

Writes a message to a specified list of channels.
Returns UMP configuration and status information.

= Lateney: 11 ps (MEMORY CHANNEL), 4 ps
(shared memory)

= Bandwidth: 16 MB/s (MEMORY CHANNEL),
30 MB/s (shared memory)

To increase bandwidth, we modificd UMP to usc
transmit-only regions tor its channel bufters, thus
chminating loopback. The performance measured for
the revised UMP using the same machines was

= Latency: 9 s (MEMORY CHANNEL), 3 ps
(sharcd memory)

= Bandwidth: 23 MB/s (MEMORY CHANNEL),
32 MB/s (shared memory’)

Figure 8 shows the message transfer time and Figure
9 shows the bandwidth for various message sizes for the
revised version of UMP using both blocking and non-
blocking writes over shared memorvand the MEMORY
CHANNEL nerwork. Using newer AlphaServer 4100
5/300 machines, which have a faster [/0 subsystem
than the older machines, and version 1.5 MEMORY
CHANNEL adapters, the measured latency is 5.8 ps
(MEMORY CHANNEL), 2 s (shared memory). The
peak bandwidth achicved is 61 MB/s (MEMORY
CHANNEL), 75 MB /s (sharcd memory). In the non-
blocking cases, the bufter size used was 256 kilobvtes
(KB) for shared memory and 32 KB for MEMORY
CHANNEL. Further work is under way to improve the
performance using shared memory as the transport.
This work is aimed at eliminating the high-end falloftin
bandwidth n the blocking case and the notch when the
message size exceeds the bufter size in the nonblocking
1996

Digital Technical Journal Vol 8 No.2

case. Note that these cffects are not displaved in the
MEMORY CHANNELI. results.

Message-passing Libraries

Message-passing libraries provide the programmer
with a set of facilities to build paralle) applications.
Typically, these services include the ability to send and
receive a varicty of dara types to and from other peer
processes i a varicty of modes, as well as collective
operations that span a sct of pecr processes. Other
facilitics may be provided in addition to the basic sct,
¢.g., PVM provides tuncrions for managing PVM
processes (spawning, killing, signaling, ctc.), whereas
MPI (at lcast in its first revision, MPI-1) does not. PVM
is probably the most widely used message-passing svs-
tem. It has been available for approximately tive vears,
and implementations are available for a wide varicry of
plattorms. MPI is an emerging standard for message
passing that is growing rapidly in popularity; many
new applications are being written for it.

Parallel Virtual Machine

Parallel Virtwal Machine (PVM) is supported on a
wide variety of platforms, including supercompurers
and nenworks of workstations (NOWs). PVM uscs
a variery of underlving conumunications methods:
shared memory on multiprocessors, vartous native
message-passing svstems on massivelv parallel proces-
sors (MPPs), and UDP/IP or TCP/IP on NOWs, The
large sofoware overhead in the 1P stacks makes it ditfi-
cult to provide high-performance communications for

100,000 }
w
S 10000
-
o
w
&% & 1.000
Z0
22
-3
W 100 +

N
23
wao
®o
=2 10

1 10 100 1,000 10,000 100,000 1,000,000
MESSAGE SIZE (BYTES)

KEY:
--- UMP BLOCKING (SHARED MEMORY)
----- UMP BLOCKING (MEMORY CHANNEL)
—=* UMP NONBLOCKING (SHARED MEMORY)
—— UMP NONBLOCKING (MEMORY CHANNEL)
Figure 8

UMD Communications Performance: Message Transfer
Time

BANDWIDTH (MEGABYTES PER SECOND)

30
20 1
10
0 200:000 400..000 600j000 800:000 1‘000.‘000
MESSAGE SIZE (BYTES)
KEY:

--- UMP BLOCKING (SHARED MEMORY)

----- UMP BLOCKING (MEMORY CHANNEL)
—--—=+ UMP NONBLOCKING (SHARED MEMORY)
—— UMP NONBLOCKING (MEMORY CHANNEL)

Figure9
UMD Communications Performance: Bandwidth

PVM when using nerworks like Ethernet or FDDIL
The high cost of communications tor these systems
means thatonly the more coarse-grained parallel appli-
cations have demonstrated pertformance improvements
as a result of parallelization using PYM. Using the
MEMORY CHANNEL cluster technology described
catlier, we have implemented an optimized PYM that
ofters low latency and high-bandwidth communica-
tions. The PVM hibrary and dacmon use UM P to pro-
vide scamless communications over the MEMORY
CHANNEL cluster.

When we began to develop PVM for MEMORY
CHANNEL clusters, we had one overriding goal: to usc
the hardware pertormance the MEMORY CHANNEL
interconnect ofters to provide a PVM with industry-
[cading communications performance, specifically with
regard to latency. Initially, we set a target latency for
PVM of less than 15 ps using shared memory and less
than 30 ps using the MEMORY CHANNEL transport.

Our first task was to build a prototype using the
public-domain PYM implementation. We used an
carly protonvpe of the MEMORY CHANNEL svstem
jointly developed by Digital and Encore. The proto-
type had a hardware latency of ¢ ws. We modified the
sharcd-memory version of PVM to use the prototype
hardware and achicved a PVM latency of 60 ps.
Profiling and straighttorward codce analvsis revealed
that most of the overhead was caused by

= PVM’s support for heterogencity (1.c., external dara
representation [XDR] encoding)

= Messages being copied multiple times inside PYM

= Alarge number of tunction calls in the critical com-
munications path

= Inefhicient coding of the low-level data copy routines

Since we wanted to achieve the maximum possible
performance available trom the hardware, we decided
to reimplement the PYVM library, climinating support
tor hetcrogeneity from the communications functions
of PVM and focusing on maximum performance
mside a Digital cluster.® Heterogencity would then be
supported by using a special PVM gateway process.

The overall architecture of the Digital PVM imple-
mentation is shown in Figure 10. To maximize per-
formance, we decided that, wherever possible, an
operation should be exccuted in-line rather than be
requested from a remote task or dacmon. This con-
trasts with PVM’s traditional approach of relaving such
requests to the PYM daemon for service. For example,
whena PVM rask starts, oftenit frstcalls pvm_mtid to
request a unique task identifier (TID). Previously, this
would have involved sending a message to a PVM dae-
mon, which would then allocate a TID to the process
and return another message. In our design, we could
use global data structures in MEMORY CHANNEL
space (c¢.g., the Jist of all PVM rasks and associared
dara). Now, tor example, pvm_mytid simply involves
acquiring a cluster lock on a global table, gerting the
new TID, and releasing the lock—all executed in-line
by the calling process rather than a dacmon. Exccuting
PVM services in-line with the requesting process
increases multiprocessing capability and climinates
daemon borttlenecks and assocdated delays.

We reimplemented the PVM hibrary with the empha-
sis on performance rather than hererogeneity, although
we plan to eventually allow interoperation with het-
erogencous implementations of PVM using a special

Digital Technical Journal Vol.§ No 2 1996

109

110

MEMORY CHANNEL CLUSTER

r-—— - " - - - - - - - — - - — — - — — . — — _— — ——_——_- - — —
| HOST 1 HOST 2 I
e I G

1
| : DAEMON 1 PROCESS 1 PROCESS 2 1 : DAEMON 2 PROCESS 3 : !
| | i
I''l PvMmDAEMON PUM APPLICATION | | PVM APPLICATION || ' PVM DAEMON PVM APPLICATION | | l
I) i
: : PVM API LIBRARY PVM API LIBRARY PVM AP! LIBRARY : : PVM AP! LIBRARY PVM APILIBRARY |! |
I |
| |
| | UNIX UMP UNIX ’ UMP UNIX l UMpP | : UNIX UMp UNIX UMP : |
1 I ' 1
) |
¥ Ya t s + ||
| i — Lol . ___ S R
| € |
| D |
| |
HOST 3 |
| (o Y
I
: N DAEMON 3 PROCESS 4 GATEWAY '
| I
| | PVM DAEMON PVM APPLICATION PVM GATEWAY : |
|
| |
PVM API LIBRARY PVM API LIBRARY PVM API LIBRARY l
| = s piexos) i
I Y] UNIX | umpP UNIX L umMP UNIX umpP L
| ! [
| I
| *E __ U
| s |
| t
L e o o e e e e L _
KEY
A A PVM appiication on host 1 performs local control functions using UNIX signals.
B A PVM application on host 1 communicates vith another PVM task on the same host using
UMP (viashared memory).
C A PVM appilication on host 1 communicates with another PVM task on a different host in the
cluster (host 2) using UMP (via MEMORY CHANNEL).
D A PVM application on host 1 requires a control function (e.g.. a signal) to be executed on
another host in the cluster (host 3); it sends a request to a PVM daemon on host 3.
E The PVM daemon on host 3 executes the control function.
£ A PVM application on host 1 sends a message to a PVM task on a host outside the MEMORY CHANNEL
cluster; the message is routed to the PVM gateway task on host 3.
G The PVM gateway translates the cluster message into a form compatible with the external PVM
implementation and forwards the message to the external task via IP sockets.
Figure 10

Digital PVM Architecture

gateway daemon. The PVM AP library is a complete
rewrite of the standard PVM version 3.3 API, with
which full functional compatibility is maintained.
Emphasis has been placed on optimizing the pertor-
mance of the most frequently used code paths. In
addition, all data structurcs and data transfers have
been oprimized for the Alpha architecture. As stated
carlier, the amount of message passing berween tasks
and the local dacmon has been minimized by pertorm-
ing most operations in-linc and communicating with
the daemon onlv when absolutely necessary. Inrer-
mediate buffers are used for copying data berween the
uscr bufters. This is necessary because of the semantics
of PVM, which allow operations on bufter contents
before and after a message has been sent. The one
exception to this is pvm_pscnd; in this case, data is
copied directly since the user is not allowed to modity
the send bufter.

The purposc of our PVM dacmon is different from
that of the dacmon in the standard PVM package. Our
dacmon is designed to relay commands between dif-
ferent nodes in the PVM cluster. It exists solely to

Digiral Technical Journal Vol. 8 No.2 1996

perform remote exccution of those commands that
cannot be performed in-line by UNIX calls in the PVM
API library or by directly manipulating global dara
structures. Commands to be executed on a remote
nodce arc sent to the daemon on that node, which then
exceutes the command directly. Note that this
removes a level of indirection that exists in standard
PVM. Dacmon-to-dacmon communications arc¢ mini-
mized. Since there is no master dacmon, the PVM
cluster has no single point of failurc. All dacmons arce
equal. When not in use, the dacmon sleeps, being
awakened as required by a signal from the calling task.
For alocal task, UNIX signals arc used. If the taskis on
another node in the cluster, then MEMORY CHANNEL
cluster signals arc used. As a result, the dacmon uscs
minimal cluster resources.

The PVM group or collective functions operate on
a group of PVM rasks. For example: pvm_barrier
svichronizes multiple PVM processes; pym_bceast
sends a message to all members of a particular group;
pvm_scatter distributes an array to the members of
a group; pvm_gather reassembles the arrav from the

contributions of cach of the group members, cre. The
group tunctions arc implemented separately from the
other PVM messaging functions. They use a separate
global structure (the group table) to manage PVM
group data. Access to the group table is controlled
by locks. Unlike other PVM implementations, there is
no PVM group server, since all group operations can
manipulate the group table directly.

Performance

Table 4 comparces the communications latency achieved
by various PVM implementations. As the table indi-
cates, the lateney benween two machines with Digiral
PVM over a MEMORY CHANNEL transport is much
less than the latency of the public-domain PVM
implementation over shared memory, which validares
our approach of removing support for heterogencity
trom the critical pertormance paths. Figure 11 shows
the message transter time and Figure 12 shows the
bandwidth tor Digital PVM over shared memory and
MEMORY CHANNEL transports tor various message
sizes. Two AlphaScrver 4100 5/300 machines were
used for these measurements. The peak bandwidth
reached by Digital PVM is about 66 MB/s (shared
memory) and 43 MB/s (MEMORY CHANNEL).
Bv comparison, PVM 3.3.10 achicves a bandwideh of
24 MB /s (shared memory)and 3 MB /s (FDDI LAN).
A version of PVM developed ar Digital’s Svstems
Rescarch Center (SRC) using a speaially adapted asyn-
chronous transter mode (ATM) drnver achieved a
latency ot approximately 60 ps and a bandwidth of
approximately 16 MB /s using the AN2 ATM LAN.*
The pertormance results tor PVM latency over the
MEMORY CHANNEL transport given in Reterence 6
were obtained using an carlier version of
Digital PVM. Since those results were measured,
latency has been halved, mostly due to improvements
in UMP performance.

Figurc 13 compares the pertormance of an unmod-
ified PVM application using the public-domain PVM
3.3.7 implementation and Digital PVM version 1.0.
The application ts a parallel molecular modeling pro-
gram. The bar chart shows the clapsed time tor a vari-
ctv of configurations. The application ran for 220
seconds on 2 nwo-processor SMI machines connected

Table 4
PVM Latency Comparison

with FDDI. By replacing FDDI with a MEMORY
CHANNEL nctwork and PVM 3.3.7 with Digital
PVM, we were able to speed up pertormance by a fac-
tor of approximately 3.4 tor the same number of pro-
cessors: the run time dropped from 220 seconds to 65
scconds. For comparison, we also ran the program
on a four-processor SMP; the application completed in
64.5 scconds. This time was just marginally taster than
the MEMORY CHANNEL configuration for the same
number of processors, demonstrating that Digital PVM
scales well trom SMP to the MEMORY CHANNEL
cluster. Finally, 2 four-processor SMP machines con-
nected ina two-node MEMORY CHANNEL cluster ran
the program in 38 scconds, demonstrating a speedup

of 1.7.

Message Passing Interface

Message Passing Interface (MP1) is a message-passing
standard developed by alarge group of industrial and
academic users. The standard conrtains a substantial
number of functions (more than 120) and ofters the
same wide range of tacilitics that many earlicr message-
passing APIs provided. In fact, many parallel applica-
tions can be written using only six of the functions, but
a correct implementation must provide the complete
sct. Argonne National Laboratory (ANL) has pro-
duced a reference implementation called MPICH.??
This is a robust, clcan implementation of the complete
MPI-1 function sct. In addition, it has isolated trans-
port-specific components behind an abstract device
mterface (ADI).?* The abstrace device implements the
communications-related functions and is further lav-
cred on what is called the channel device. The public
domain version comes with channel implementations
for a number of interconnects including shared mem-
orv, TCP/IP, and other proprictary interfaces. This
version also includes a template for building a channel
device, called the channel interface.® To build a ¢han-
nel device, the programmer must supply five functions:

1. Indicate if a control message is available on a con-
trol channel

o

. Gera control message trom a control channcl

w

. Senda control message to a control channel

PVM Implementation Transport Platform Latency
PVM 3.3.9 Sockets FDDI DEC 3000/800 400 ps
PVM 3.3.9 Shared Memory AlphaServer 2100 4/233 60 ps
Digital PVM V1.0 MEMORY CHANNEL 1.0 AlphaServer 2100 4/233 11 s
Digital PVM V1.0 MEMORY CHANNEL 1.5 AlphaServer 4100 5/300 8 ps
Digital PVM V1.0 Shared Memory AlphaServer 2100 4/233 5us
Digital PYM V1.0 Shared Memory AlphaServer 4100 5/300 4 s
Digital PVM V1.0 Shared Memory AlphaServer 8400 5/350 3us

Digital Technical Journal Vol.8 No.2 1996

100,000

10,000

=)
S
S

100

-
o

MESSAGE TRANSFER TIME
(MICROSECONDS)

1 10 100 1,000 10.000 100.000 1,000,000
MESSAGE SIZE (BYTES)

-—-- SHARED MEMORY
—— MEMORY CHANNEL

Figure 11
Digital PVM Communications Performance: Message
Transfer Time

~
o
T

50

W

30

20

BANDWIDTH (MEGABYTES PER SECOND)

L ')

0 200,000 400,000 800,000 800,000 1,000,000
MESSAGE SIZE (BYTES)

KEY:

--- SHARED MEMORY
—— MEMORY CHANNEL

Figure 12
Digital PVM Communications Performance: Bandwidth

4. Receive data from a data channcl

5. Send datato a data channel

These functions can all be implemented using the
UMP functions ump_read, ump_write, and ump_wait
described earlier. In addition, hooks arc added to
the channel initialization and shutdown code to call
ump_init and ump_exit. This approach leaves the
portable MPICH API library unchanged and attemprs
to deliver optimum performance. MPICH implements
all its operations, point-to-point and collective, on the
basic point-to-point services that the ADI provides.

Working with the Edinburgh Parallel Computing
Centre (EPCC), we produced an early functional MPI
prototype by building a channel device on UMP; as

Digiral Technieal Journal Vol.8 No.2 1996

250

220

@ 200 -

o

b4

Q

Q

(ﬂ 150 |

15}

=

~

0 100+

w

g 65 64.5

%)

W 50+ 38

0 L
FODI MEMORY SMP MEMORY
2x2 CHANNEL 4 x1 CHANNEL
2x2 4x2
CONFIGURATION
Figure 13

PVM Application Performance

shown in Figure 14a. This implementation demon-
strated latencies of 12.5 ps (shared memory) and
29 ps (MEMORY CHANNEL), respectable pertor-
mance ftor such a quick port of MPI tor clusters.
Furthermore, since this implementation uses UMP, it
works transparently on shared memory and MEMORY
CHANNEL. ADI channcls typicallv support only one
interconnect; multiple ADIs are not vet supported by
MPICH. Unlikc PVM, the semantics of MPI allow
operation without an intermediate butter, so that UMD
bufters can be used directly.

To further improve the pertormance of MPI on
clusters, we climinated the MPICH channcl device and
interfaced UMP directly to the ADI, as shown in
Figurce 14b. The abstract device incurs some pertor-
mance penalty in its support tor the channel device. In
the UMP implementation, this is unnccessary as UMD
already performs the function of hiding details of the
transport mechanism. This implementation demon-
strated latencics 0f 9.5 ps (shared memorvy) and 16 us
(MEMORY CHANNEL), using an Alpha cluster con-
sisting of two AlphaScrver 2100 4,233 machines
connected by a MEMORY CHANNEI network,

Performance

Table 5 compares the communications latency
achieved by MPICH and the Digital MPI implementa-
tion, using an Alpha cluster. Results are shown for both
AlphaServer 2100 4/190 and AlphaScrver 4100
5/300 machines connected by a MEMORY CHANNEI]L
nenwork. Figure 15 shows the message transter time
and Figurce 16 shows the bandwidrh of Digital MPI
over shared memorv and MEMORY CHANNEL
transports for a varicty of message sizes. A pair of
AlphaScrver 4100 5,/300 machines were used for these
measurcments. Digital MPL reaches a peak bandwidth
ofabout 64 MB/s using sharcd memory and 61 MB /s

MPICH
r‘ T ——————————————LT T T T T T T B
[
| MP| PORTABLE API LIBRARY ABSTRACT |
I == TDEVICE "7
I MPICH ABSTRACT DEVICE VUSRS,
|
| I
| MPICH CHANNEL INTERFACE I
e = I _ _ _ _ _ |
UMP
SHARED MEMORY
MEMORY CHANNEL
(a) Inital Prototvpe
MPICH
| 1
| MPI PORTABLE APILIBRARY | asTRACT |
;== -DEVICE --|
MPICH ABSTRACT DEVICE INTERFACE |
| FRONT END
. e S N (P _
UMP
SHARED MEMORY
MEMORY CHANNEL
(b) Version 1.0 Implemenrarion
Figure 14

Digital MPI Archirecrure

using MEMORY CHANNEL. By comparison, the

unmodificd MPICH achicves a peak bandwidth of

24 MB/s using sharcd memorv and 5.5 MB/s using
TCP/1P overan EDDI LAN.

Figurc 17 shows the speedup demonstrated by an
MPI application. The application is the Accelerated
Strategic Computing Initiative (ASCI) benchmark
SPPM,; which solves a three-dimensional gas dvnamics
problem on a uniform Cartesian mesh.** The same
code was run using both Digital MPt and MPICH
using TCP/IP. The hardware configuration was a nvo-
node MEMORY CHANNEL cluster of AlphaServer
8400 5/350 machines, cach with six CPUs. Digital
MP] used shared memory and MEMORY CHANNEL
transports, whercas MPICH used the Ethernet LAN
connecting the machines. The maximum speedup

obtaincd using Digital MP[was approximatcly 7,
whereas for MPICH the maximum speedup was
approximately 1.6.

Future Work

We intend to continue rehining the components
described m this paper. The major change envisioned
regarding the TruCluster MEMORY CHANNEL Soft-
ware product is the addition of uscr-space spinlocks,
which should signiticantly reduce the cost ot acquiring
a spinlock. We intend to increase the performance
of UMP by making more ctticient use of MEMORY
CHANNEL in a number of wavs: striping large
messages over multiple adapters, supporting next-
generation adapters, and using point-to-point map-
pings with a MEMORY CHANNEL switch. In addi-
tion, we plan to add outbufs to increase multicast
message-passing pertformance. PVM - enhancements
planned include the addition of the gateway dacmon to
allow interoperation with other PVM implementations
on external platforms. PVM will also be moditicd to use
the UMP nonblocking write facility tor arbitrarily large
messages so that its performance matches thar of
MPI. Since the semantics of PVM force the use of an
intermediate butter, performance when using shared
memory will be improved by passing pointers to a lock-
controlled buffer for messages whose transter time
would exceed the overhead associated with a lock. We
will continue to improve MPI performance by optimiz-
ing the UMP ADI for the MPICH implementation.

Summary

We have built a high-performance communications
infrastructure tor scientitic applications that utilizes a
new network technology to byvpass the software over-
head that himits the applicability of traditional net-
works. The performance ofthis svstem has been proven
to be ona parwith that of current supercomputer tech-
nology and has been achieved using commodity
technology developed for Digital’s commercial cluster
products. The paper demonstrates the suitability of
the MEMORY CHANNEL technology as a communica-
tions medium for scalable svstem development.

Table 5

MPI Latency Comparison

MPI Implementation Transport Platform Latency
MPICH 1.0.10 Sockets FDDI DEC 3000/800 350 ps
MPICH 1.0.10 Shared Memory AlphaServer 2100 4/233 30 s
Digital MPIV1.0 MEMORY CHANNEL 1.0 AlphaServer 2100 4/233 16 s
Digital MPI V1.0 MEMORY CHANNEL 1.5 AlphaServer 4100 5/300 6.9 us
Digital MPI V1.0 Shared Memory AlphaServer 2100 4/233 9.5 us
Digital MPI V1.0 Shared Memory AlphaServer 4100 5/300 5.2 pus

Digital Techmeal Journal Vol. 8 No.2 1996

114

100,000 | 8}

7} _
< 10000} -
= 61
o
w o 5t
% 1.000 o
Z0 woat
g8 &

O n
w (L/U) 100 [3t
23
0 2+
n O
ss 0 1 l:l
0
. ; ; i " . 1 2 4 6 8 10 12
1 10 100 1,000 10,000 100,000 1,000,000 NUMBER OF PROCESSORS

MESSAGE SIZE (BYTES) _
KEY: N3
--- SHARED MEMORY [L] DIGITAL MPI
—— MEMORY CHANNEL Il MPICH TCP/P
Figure 15 Figure 17

MPI Communications Performance: Message Transter
Time

701

BANDWIDTH (MEGABYTES PER SECOND)

30+
20
101
0 200,000 400,000 600,000 800,000 1,000,000
MESSAGE SIZE (BYTES)
KEY:

--- SHARED MEMORY
—— MEMORY CHANNEL

Figure 16
MPI Communications Performance: Bandwideh

Acknowledgments

The authors would like to acknowledge the following
people tor their contributions to this project: Gavan
Dufty, whose testing made the TruCluster MEMORY
CHANNEL Software a much more robust product;
Liam Kelleher and Garrer Taylor, who contribured
some of the Digital PVM functionality; Wayne
Cardoza and Brian Stevens of UNIX Engineering,

who provided carly access to and ongoing support of

Digital Technical Journal Vol. 8 No.2 1996

MPI Application Speedup

kernel MEMORY CHANNEL software; Rick Gillett
and Mike Collins, who provided carlv. MEMORY
CHANNEL hardware; Richard Kautmann, who gave
us encouragement and support; and Lyndon Clarke
and Kenneth Cameron at Edinburgh Parallel Com-
puting Centre (EPCC), who moditicd MPICH to use
UMP for Digital MPI.

References and Note

1. T. Anderson, D. Culler, and D. Patterson, “A Casc tor
NOW (Nerwork of Workstations),™ Proceedings of
the Hot Interconnects 1 Syimposiuim. Palo Alto, Cahf,
(August 1994).

2. K. Keeton, T. Anderson, and D. Patterson, “LogP
Quantified: The Casc for Low-Overhead Local Arca
Nenworks,” Proceedings of the Hot Literconnects 11
Svipositem. Palo Alro, Calit. (August 1995).

R Sites, ed., Alpha Architectinre Reference Mainuel
(Burlington, Mass.: Digital Order No.
EY-1.520%-DP, 1992).

(o)

Y-
Press,

4. N. Kronenberg, H. Levy, and W. Srrecker, “VAXclus-
rers: A Closely Coupled Distributed System,” ACH
Transactions o1 Compuiler Systeins, vol. 4, no. 2
(May 1986): 130-146.

5. W.Cardoza, E. Glover, and W, Snaman, Jr., “Design of
the TruCluster Multicomputer System for the Digital
UNIX Environment,” Digital Technical fournal.
vol. 8 no. 1 (1996): 5-17.

6. R. Gilletr, “MEMORY CHANNLEIL Nerwork for PCIL:
An Optimized Cluster Interconneet,” [EE1 Micro
(February 1996):12-18.

14.

17.

M. Blumrich et al., “Virtual Memory Mapped Net-
work [nterface tor the SHRIMP Multicomputer,” Pro-
ceedings of the Twenty-first Amnnial hvernational
Symposinn on Conputer Architectire (April 1994).
142-153.

M. Blunmirich ¢t al., “Two Virtual Memory Mapped
Network Interface Designs,” Proceedings of the Hot
Interconnects 1 Sympositm. Palo Aleo, Calit.
(August 1994): 134-142.

L. Iftode eral., “Improving Release-Consistent Shared
Virtual Memory using Automatic Update,” Procecd-
ings of the Second Internationcal Symposium on
High-Performenice Computer Architectiire (Febru-
arv 1996).

C. Dubnicki cr al., “Software Support for Virtual

Memory-Mapped Communication,” Proceedings of

the Tenth Tnternational Parcallel Processing Sympo-
sttt (April 19906).

. High Performance Fortran Forum, “High Pertor-

mance Fortran Language Specification,” Version 1.0,
Scientific Programming, vol. 2,no. 1 (1993).

A. Geist et al., PVM 3 Users Guide and Reference
Menual, ORNL/TM-12187 (Oak Ridge, Tenn.: Oak
Ridge National Laboratory, Mav 1994). Also available
on-linc ac heep: //wwwnetlib.org/pyvim 3 /ug.ps.

A, Guist et al., PV Parallel Virtued Machine.
A Users Guide and Tutorial jor Networked Pearallel
Computing (Cambridge, Mass.: The MIT Press, 1994).
Also available on-line at hrep://www.netlib.org/
pym3,/book /pym-book.html.

MPI Forum, “MPIL: A Message Passing Interface Stan-
dard,” futernational Journal of Supercomputer

Applications. vol. 8, no. 3/4 (1994). Version 1.1 of

this document is available on-line at hep://
www.mces.anl.gov/mpi/mpi-repore-1.1/mpi-

report.html.

W. Gropp, E. Lusk, and A. Skjellum, Using MPr:
Portable Parallel Prograniniing with the Message
Passing Inter fece (Cambridge, Mass.: The MIT Press,
1994).

J. Harris eral., “Compiling High Pertormance Fortran
for Distributed-memory Svstems,” Digital Technical

Jouirial. vol. 7, no. 3(1995). 5-23.

E. Benson eral., “Design of Digital’s Parallel Sottware
Environment,” Digital Technical Jonrnal, vol. 7,
no. 3, (1995): 24-38.

In the first mplementations, the PCI MEMORY
CHANNEIL nctwork adapter places a Jimit of 128 MB
on the amount of MEMORY CHANNEL space that can
be allocated.

TrneCluster VIEVIORY CHANNEL Soflicare Program-
mers Mannal (Mavnard, Mass.: Digiral Equipment
Corporation, Order No. AA-QTN4A-TFE, 1996).

20. J. Brosnan, J. Lawton, and T. Reddin, “A High-
Pertermance PVM for Alpha Clusters,” Proceedings
of the Second Europeair PYM Users” Group Meceting.

Lvons, France (September 19985).

21. M. Hausncer, M. Burrows,and C. Thekkath, “Ethcient
Implementation of PYM on the AN2 ATM Network,”
Proceedings of High-Performence Compuiting cand
Networking (May 1995).

22. W. Gropp and N. Doss, “MPICH Model MPI Implc-
mentation Reference Manual,” Draft Technical Report

(Argonne, ll.: Argonne National Laboratory, June
1995).

o
(O3]

W. Gropp and E. Lusk, “MPICH ADI Implementation
Reference Manual,” Draft Technical Report (Argonne,
111 Argonnce National Laboratory, October 1994).

24, W.Gropp and E. Lusk, “MPICH Working Notc: Cre-
ating a New MPICH Device using the Channel [neer-
face,” Draft Technical Report (Argonne, Hl.: Argonne
Narional Laboratory, Junc 1995).

25. Accclerated Strategic Computing Initiative (ASCI),
RFP Statement of Work C6939RFIP6-3X, Los Alamos
National Laboratory (LANL) (February 12, 19906).
This document is also available on-linc at heep://
wwwlinl.gov /asci_rtp /asci-sow.homl.

26. The ASCI SPPM Benchmark Code is available from
Lawrence Livermore National Laboratory at htep://
www lInl.gov/asci_benchmarks /asci/limited /ppm/
asci_sppm.html.

Biographies

James V. Lawton

Jim Lawton joined Digital in 1986 and is a principal engi-
neer in the Technical Computing Group. In his current
position, he contributed to the design of Digital PVM and
the UMP library and was responsible for implementing UMP
and adding support tor collective operations to Digital PV M.
Before that, he worked on the characterization and optimi-
zation of customer scientific /technical benehmark codes
and on various hardware and software design projects. Prior
to coming to Digital, Jim contributed to the design ot ana-
log and digital motion control svstems and sensors at the
Inland Motor Division of Kollmorgen Corporation. Jim
received a B.E. in clectrical engineering (1982) and an
M.Eng.Sc. (1985) trom University College Cork, Ircland,
where he wrote his thesis on the design of an clectronic
control system for variable reluctance motors. In addition
to receiving the Hewlert-Packard (Ireland) Award for Inno-
vation (1982), Jim holds one patent and has published sev-
cral papers. He is a member of IEEE and ACM.

Digital Technical Journal Vaol. 8§ No.2 1996

116

John J. Brosnan

John Brosnan is cucrently a principal engineer in the
Technical Computing Group where he is project leader
tor Digital PVM. In prior positions at Digital, he was
project leader for the High Pertormance Fortran test
suite and a significant contriburor to a variery of publish-
ing technology products. John joined Digital after recciv-
ing his B.Ling. in clectronic engineering in 1986 from the
University of Limerick, Ircland. He received his M.Eng.
in computer svstems in 1994, also from the University of
Limerick.

Morgan P. Doyle

In 1994, Morgan Dovle came to Digital to work on the
High Performance Fortran test suite. Presently, he is an
engineer i the Technical Compurting Group. Early on,
he contribured signiticantly to the design and develop-
ment of the TruCluster MEMORY CHANNEL Sottware,
and he is now responsible tor its development. Morgan
received his B.AL and BLAL in clectronic engineering
(1991) and his M.Sc. (1993) from Trinity College
Dublin, Treland.

Seosamh D. O Riordiin

Scosamh O Riorddin is an engineer in the Technical
Computing Group wwhere he is corrently working on
Digiral MPTand on enhancements to the UMP library.
Previously, he contributed to the design and implementa-
tion of the TruClusrer MEMORY CITANNEL Software.
Seosamh joined Digital after receiving his B.Sc. (1991)
and M.Sc. (1993) in computer science from the University
of Limerick, Ireland.

Digital Technical Journal

Vol.8 No.2 1996

Timothy G. Reddin

A principal engineer in the Technical Computing, Group,
Timothy Reddin currencly leads the ream responsible tor
the TruCluster MEMORY CHANNLEL Sottw are, the UMD
library, Digital PV M, and Digital MPT. Prior to coming to
Digital in 1994, T'im worked for cight vears as a svstems
designer at ICL High Pertormance Svstems in the Unired
Kingdom. He was responsible for the /0 archirecture
of the ICIL Goldrush parallel database server, for which
he holds two patents, and the design ofan 1,/0 and com-
munications conrroller, T also worked ar Ravtheon on
the data communicarions subsvsrem for the NEXRAD
distributed real-time Doppler weather radar subsvsrem.
Prior to that, he developed the software architecture for
an integrared executive workstation while working at C'r°
Limited. Atter receiving his B.Sc. (wich distinction, 1976)
in computer scicnce and mathematics trom University
College Dublin, Irctand, Tim joined the staff of Univer-
sitv College Cork, where he wasa svstems programmer
T is 2 member of the British Computer Socieny and is

a Chartered Engineer.

The Design of User
Interfaces for Digital
Speech Recognition
Software

Digital Speech Recognition Software (DSRS) adds
anew mode of interaction between people and
computers—speech. DSRS is a command and
control application integrated with the UNIX
desktop environment. It accepts user commands
spoken into a microphone and converts them
into keystrokes. The project goal for DSRS was
to provide an easy-to-learn and easy-to-use
computer—user interface that would be a power-
ful productivity tool. Making DSRS simple and
natural to use was a challenging engineering
problem in user interface design. Also challeng-
ing was the development of the part of the
interface that communicates with the desktop
and applications. DSRS designers had to solve
timing-induced problems associated with enter-
ing keystrokes into applications at arate much
higher than that at which people type. The DSRS
project clarifies the need to continue the devel-
opment of improved speech integration with
applications as speech recognition and text-to-
speech technologies become a standard part of
the modern desktop computer.

Bernard A. Rozmovits

[n the 1960s and carly 1970s, pcople controlled com-
puters using toggle switches, punched cards, and
punched paper tape. In the 1970s, the common con-
trol mechanism was the kevboard on telenvpes and on

video terminals. In the 1980s, with the advent of

graphical uscr interfaces, people found that a new
mode of interaction with the computer was usctul.
The concept of a pointer—the mousc—ecevolved. Its
popularity grew such that the mouse is now a standard
component of every modern computer. In the 1990s,
the time is right to add ver another mode of inter-
action with the computer. As compute power grows
cach vear, the boundary of the man—machine interface
can move from interaction that is native to the com-
puter toward communication that is natural to
humans, thatis, specch recognition.

DSRS Product Overview

Very simply, DSRS is an application that provides
speech macros. The user speaksa command, phrase, or
sentence (that is, an utterance), and DSRS pertorms
some actions. The action might be to launch an appli-
cation, for example, in response to the command
“bring up calendar”; or to tvpe something, tor exams-
ple, in response to “edit to-do list,” to invoke ¢macs
\files\projectA\todo.txt. DSRS not only houscs the
speech macro capability but also provides a user inter-
face, a speech recognition engine, and interfaces to the
X Window System.

Following is a high-level description of how the
software functions. Commands are spoken into a
microphone, and the audio is captured and digitized.
The trst step in the processing is the speech analvsis
svstem, which provides a spectral representation of the
characteristics of the ime-varving speech signal. Next
is the feature-detection stage. Here, the spectral mea-
surements are converted to a set of teatures thar
describe the broad acoustic propertices of the ditterent
phonetic units.' These representations of the speech
signal arc then segmented and idenutied as phonctic
sequences. The speech recognition engine aceepts
these phonctic sequences and returns word matches
and confidence values tor cach match. These data arce
used to determine it cach match is acceprable. If a

Digital Technical Journal \ol.8 No.2 1996

117

118

match is acceprable, DSRS retrieves keystrokes associ-
ated with cach utterance, and the kevstrokes are then
sent into the system’s kevboard butter or to the appro-
priate application. For instances of continuous speech
recognition, a sentence is recognized and keystrokes
are concatenated to represent the utterance. For
example, tor the utterance “five two times seven three
tour equals,” the kevs “52 * 734 = would be deliv-
cred to the caleulator application.

Although this concept scems simple, its implemen-
tation raised significant svstem integration issues and
dircetly attected the user interface design, which was
critical to the product’s success. This paper specifically
addresses the user interface and integration issucs and
concludes with a discussion of future directions for
speech recognition products.

Project Objective

The objective of the DSRS project was to provide a
usctul but limited tool to users of Digital’s Alpha
workstations running the UNIX operating system,
DSRS would be designed as a low-cost, speech recog-
nition application and would be provided atno cost to
workstation users for a finite period of time.

When the project began in 1994, a number of com-
mand and control speech recognition products for
PCs alreadv cxisted. These programs were aimed at
end users and pertormed usctul tasks “out of the box,”
that is, immediately upon start-up. They all came with
built-in vocabulary tor common applications and gave
uscrs the ability to add their own vocabulary.

On UNINX systems, however, speech recognition
products cxisted only in the torm of programmable
recognizers, such as BBN Hark software. Our objec-
tive was to build a speech recognition product for the
UNIX workstation that had the characteristics of the
PC recognizers, that is, onc that would be functional
immediately upon start-up and would allow the non-
programmer cend user to customize the product’s
vocabulary.

We studied several speech recognition products,
including Talk-=To Next from Dragon Systems, Inc.,
VoiccAssist from Crceative Labs, Voice Pilot from
Microsoft, and Listen from Verbex. We decided to
provide users with the following featurces as the most
desirable in a command and control speech recogni-
rion product:

= [ntuitive, casv-to-use interface

= Speaker-independent models that would climinate
the need for extensive training

= Speaker-adaptive capability to improve accuracy
of words

= Continuous speech recognition capability

= Prompts tor active vocabulary

Digical Technical Journal Vol. 8 No.2 1996

= Minimum usc of screen arca

= User control over the user interface configuration

= Simple mechanism to modify and create new
vocabulary

= [nregration with the X Window System

= Support tor out-of-the-box deskrop applications
provided with the UNIX operating svstem

= Support tor vi and cmacs cditors, and for C
programming

The DSRS Architecture

DSRS comprises several major components which are
outlined below and illustrated in Figure 1. Of thesce
components, three are licensed trom Dragon Svstems,
Inc.: the front-end processor, the recognizer engine,
and the speaker-independent speech modcls.

Dragon Systems, Inc. was chosen as the provider of
the speech recognition engine based on the accuracy
of their technology, their products and expertise in
other local languages, and their long-term commit-
ment to speech recognition.

Datter cicqueisition consists of the microphone, audio
card, and the multimedia scrvices application pro-
gramming interface (API) that provides support tor
the sound card.

The front-cudd processoranalvzes a strecam of digi-
tized data and difterentiates berween silence, noise,
and speechy it then extracts a set of computed features
from the speech signals.

The recognizer. or speech recognition enging,
aceepts the computed representation of the speech
in the form of teature packets which drive the Hid-
den Markov Modcls to recognize utterances. Hidden
Markov Modecls are basicallv state machines that tran-
sition from a beginning state to a number of internal
states and then to a final state based on inpurt dataand
probabilities.” Each transition carries two scts of prob-
abilitics: a transition probability, which provides the
probability of this transition being taken, and an out-
pur probability densin function (PDF), which is the
conditional probability of emitting cach output sym-
bol from a finite alphabet given that a transition is
taken.® The PDFs are adapted when the model
1s “trained,” that s, customized, by the individual user.

The finite state grammearis a state machine that
contains a representation of the vocabulary supported
by DSRS. Each state contains words, phrases, or sen-
tences; their associated actions; and the information

needed ro transition to the next state. The current
state is used to control the Active words.

The speech models are a sct of utterance modcels
used by the recognizer. DSRS provides vocabulary and
speaker-independent modcls tor the applications sup-
ported by DSRS. Uscers who wish to include their own

TRAINING VOCABULARY
MANAGER SPEECH FINITE STATE > MANAGER
USER MODELS® GRAMMAR USER
INTERFACE INTERFACE
' ¥ COMMANDS
DIGITIZED FEATURE LS)
™| SPEECH
MICROPHONE AUDIO FRONT-END PACKETS EEECEOCGHNITION STATE MANAGER
PROCESSOR’ ENGINE* TRANSITIONS | USER
AUDIO CARD - INTERFACE
A
KEYSTROKES
, AND WINDOW X WINDOW
* Denotes a component licensed from Dragon Systems, Inc. ACTIONS EVENTS
X WINDOW
SYSTEM

Figure 1
DSRS Architectural Block Diagram

words can create models using the Vocabulary
Manager user interface,

The Speech Meanager s the main user-interface
component. The Speech Manager window provides
visual feedback to users. Italso keeps track of the cur-
rentwindow in focus and acts as the agent to control
tocus in response to users’ speech commands.

The Vocabulary Manager user-interface window
displays the current hicrarchy of the finite state gram-
mar file. The Vocabulary Manager allows the user to
customize using the functions tor addition, deletion,
and moditication of words or macros. Also in this win-
dow, the command-utterance to kevstroke translations
arc displaved, created, or moditied.

In the Training Manager user interface, the user
may main newly created words or phrases in the
user vocabulary tiles and retrain, or adapt, the product-
supplicd, mdependent vocabulary.

The DSRS Implementation

As the design team gained experience with the DSRS
prototypes, we retined user procedures and interfaces.
This scction desaribes the keyv tunctions the team
developed to ensure the user-friendliness ot the prod-
uct, including the twst-rime scrup, the Speech
Manager, the Training Manager, the Vocabulary
Manager, and the finite state grammar.

First-time Setup

DSRS requires a scrup process when used for the firse
time. The user must create user-specitic files and sct-
tings. The user begins by selecting the microphone
and by testing and adjusting the microphone input
volume to usable scrrings. The user is then prompred
to spcak a few words, which are presented on the

screen. DSRS uses the speech data to choose the
speaker-independent model that most closely matches
the speaker’s voice. There are models for lower- and
higher-pitched voices. The software copies the sclected
model to the user’s home directory; the model is then
modified when the user makes changes to the provided
models and vocabulary. Atter sctup is complete, the
next step is the Training Manager which presents the
user with a Jist of 20 words to train; when this step is
completed, DSRS is readv for use. The Training
Manager is deseribed in more detail later in this section.,
The procedure above was developed to take a new
user through the entire setup process without the
need to reter to any documentation. Once the user
files arc created, DSRS bvpassces these steps and comes
up ready to work. A notable change that we made to
the setup was instigated by our own use of the soft-
ware. We found that inconsistent microphone volume
settings were a frequent problem. When systems were
rebooted, volume settings were reset to default values.
Consequently, we created an ininalization file that
records the volume settings as well as all user-definable
characteristics of the graphical user intertace.

Speech Manager

Once DSRKS is ready and in its idle state, it presents the

user with the Speech Manager window, an example of

which is shown in Figure 2. The Speech Manager pro-

vides the fo llowing critical controls:

= Microphone on/offswitch.

= A VU (volume units) meter that gives rcal-time
fcedback to the audio signal being heard. A VU
meter s a visual feedback deviee commonly used on
devices such as tape decks. Users are generally very
comtortable using them.

Digital Technical Journal Vol.8 No.2 1996

119

File Tools Cptions

Command & Control |

Netscape |
l Active Words

add bookmarks
back

close

copy

cut

find

find again

]
]
]
]
B
[

I Always Active

|RA applications...
calculator
calendar
diterm

editor
emacs

file manager
ET]

MyApps...
nelscape
speech manager

Figure 2
DSRS Specch Manager Window

= Two uscr-controllable pances that display the Always
Acrive and Active vocabulary sets. The Ahwavs Active
vocabulary words are recognized regardless of
the currentapplication in focus. The Active vocabu-
larv words are specitic to the application i focus
and change dvnamically as the current application
changes. The vocabularies are designed in this wavso
that a uscr can speak commands both within an
application context and i order to switch contexts.

s Three small frames that provide status information
to the user.

- The Mode frame indicates the current state of

the Specch Manager: command and control or
sleeping,

Digiral Technical Journal Vol. 8§ No.2 1996

~ The Context frame displavs the class name ot the
application currently in focus. This context also
determines the current stare of the Active word list.
— The history frame displavs the word, phrase, or
seatence last heard by the recognizer. The history
frameis set up as a butron. When pressed, it drops
down ro reveal the last 20 recognized utterances.

= A menu that provides acceess to the management of
user files, the Vocabulary Manager, the Training
Manager, and various user-configurable options.

Training Manager

The Training Manager adapts the speaker-indepen-
dent speech models to the user’s speech patterns and
creates new models for added words. Qur study of
PC-based speech recognizers led us to the conclusion
that the design of a training intertace is critical to
obtain good results. For example, the training compo-
nent ot one PC-based recognizer we examined did not
car feedback to the user when an utterance

provide ¢
had been processed, thus causing the user confusion
about when to speak. This confusion lead to training
errors and frustration. Another recognizer did not
allow the uscr to pause while traiming, a major incon-
venience tor the user who, ftor example, needed to
clear his throat or speak to someone,

We developed the following list of design character-
istics for a good training uscr mterface.

= Strong, clear indications that utterances are pro-
cessed. We added a series of boxes that are checked
oft as cach utterance is processed and a VU meter
that shows the svstem s picking up audio signals.

= Reduced amount of eve movement needed for the
raming to proceed smoothly and quickly, We
placed visual feedback objects in positions that
allow users to tocus their eves on a limited area of
the screen and not have to look back and forth
across the sereen at cach utrerance.

= A glimpsc of upcoming words. A list ot words is dis-
plaved on the user intertace and moves as words are
processed.

= A progress indicator. Textis displaved and updated
as cach word is processed, indicating progress, tor
example, Word 4 of 21.

= Option to pause, resume, and restart traiming,

= Large, bold tont display of the word to be spoken
and a small prompt, “Plcase continue,” displaved
when the svstem is waiting for input.

= Automatic addition of repeated utterances that are
“bad” or do not match the expected word.

= Control over the number of repetitions.

As the example in Figure 3 shows, the Training
Manager presents a word from a list of words to be
trained. The word to be spoken is presented in a large,

TraTﬁing Console

Training Items

Digital Home Page
Digital Internal Home Page

Pleage continue:

Word 4 of 21

Digital Home Page

Cancel

Figure 3
Training Manager Window

bold font to ditterentiate it from the other elements in
the window. To train the words, the user repeats an
utterance from onc to six times. The user must speak
at the proper times to make training a smooth and cth-
cient process. DSRS manages the process by prompt-
ing the speaker with visual cues. Right below the word
is a sct of boxes that represent the repetitions. The
boxesare checked offas utterances are processed, pro-
viding positive visual feedback to the speaker. When
onc word is complete, the next word ro be trained is
displaved and the process is repeated. When all the
words in the listare trained, the user saves the files, and
DSRS returns to the Specch Manager and its active
mode with the microphone turned oft,

Vocabulary Manager

The Vocabulary Manager, an example of which s
shown in Figure 4, cnables users to modity speech
macros by changing the kevstrokes stored ftor cach
command and by adding new commands to existing
applications. Users can also add speech support for
entirelv new applications. The vocabularies are repre-
sented graphically as hierarchics of application vocabu-
larics, groups of words, and individual words. The
Vocabulary Manager provides an interface thatallows
manipulation of this databasc of words without resort-
ing to text editors, The Alwavs Active vocabularies are
accessible here and are manipulated in the same man-

ner as the application-specific vocabularics. With the
Vocabulary Manager, the user may import and export

vocabularies or parts of vocabularics in order to share
commands and thus enable specch recognition in
applications not supported by detault in DSRS.

Finite State Grammar

The finite state grammar (FSG) is a state machine with
all the vocabulary required to rransition between states
and conditions. The FSG has two distinct scts of
vocabulary, which have alrcady been mentioned: the
Alvavs Active, or global vocabulary, and the Active, or
context-specific, vocabulary.

In creating the FSG, we tound that we needed spe-
cial functions for interaction with the windowing sys-
tem and representations for all kevboard keys. While
creating these special funcrions, we designed the inter-
action for maximum convenience. For example, when
auser speaks the phrase “go o calculator” or “swirch
to calculator” or simply “calculator,” the meaning is
readily interpreted by the software. For the user’s con-
veniencee, these phrases trigger the following condi-
tional actions.

= Jfa window of class “calculator™ is present on the
svstem, then set focus to it. This is done regardless
of its state; the window may be in an icon state,
hidden, or on another work space such as mav be
found in the Common Desktop Environment
(CDE).

=] the window does not exist, then create one by
launching the application.

Vol.8 No.2 1996

Digital Technical Journal

~
~

Vocabulary Manager

File Vocabulary

Always Active Vocat

C Programming Modt

Calendar...
Calendar & Diary...
DtTerminal...

. ET—

B Emacs extensions.

I,,‘
|

Calculator... ’
w

‘ \

|

IPEFPPRPRDRPRRDRORDDRDPDRE

B Pesonal Emacs ex
File Manager...
Mail...
Netscape...
Sentences for Switch

Speech Manager...

abort

backward

backward char
backwards a page
beginning of buffer
beginning of line
beginning of word
center on line

control g

copy region

delete backward char
delete character
delete line

delete previous word
delete region

delete word

edit declare project summary

Emacs extensions...
end of buffer

] T S

words in gelected Vocabulary: 84

Figure 4

Vocabulary Manager Window

The simple logic of this speaial function enhances
uscr productivity. Often workstation and PC screens
are lictered with windows or applications icons and
icon boxes through which the user must scarch.
Speech control eliminates the steps between the user
thinking “I want the calculator” and the application
being presented in focus, ready to be used. The DSRS
team created a function called FocusOrLaunch, which
mplements the behavior described above. The tunc-
tion is encoded into the FSG continuous-switching-
modce sentences in the Always Active vocabulary
associated with the spoken commands “switch to
<application name>,” “go to <application name>,”
and just plain “<application names.”

Applications like calculator and calendar are not
likely to be needed in multiple instances. However,
applications such as terminal emulator windows are.
DSRS defines the specitic phrase “bring up <application
name>” to explicitly launch a new instance of the appli-
cation; that is, the phrase “bring up <application
name>" is tied toa function named Launch.

The phrases “next <application name>" and “previ-
ous <application name>" were chosen for navigating
between instances of the same apphcation. DSRS
remembers the previous state of the application. For

Digital Techmical Journal Vol.8 No.2 1996

mstance, it the calendar application 1s minimized when
the user says “switch to calendar,” the calendar
window is restored. When the user savs “switch to
cmacs,” the calendar is returned to its tormer state. In
this casc, itis minumized.

DSRS also adds specch control to the common win-
dow controls such as minimize, maximize, and closc.
These functions operate on whatever window is cur-
rently in focus.

Another convenient command is “Specch Manager
go to sleep.” When the user speaks this command,
DSRS transitions into a special standbyv state. In this
state, termed “sleeping,” the recognizer is still listen-
g but will rerurn to command and control mode
only when the command “Speech Manager wake up”
is spoken. The “go to sleep” command puts DSRS
into a standby stare, allowing normal conversation to
take place without words being recognized as com-
mands and causing, unwanted events to oceur.

Version 1.1 of DSRS adds cven more functions,
such as the “microphonc oft ™ command, which goes a
step bevond “go to sleep.”™ With “microphone oft.)”
the input audio section i1s completely released and
DSRS will no longer listen until the microphone is
manually turned back on. This function allows the

user to launch an audio-based application that will
record, suchasa teleconferencing session. Version 1.1
also includes a function that allows the user to play
a “wave,” or digitized audio clip. Audio cues may thus
be played as part of spcech macros. The “say” com-
mand invokes DECralk Text-to-Speech functionaliry
so that audio events can be spoken.”

Since speech recognition is a statistical process and
prone toerrors, the design team deemed “confirm” an
important function to protect uscr data and prevent
unwanted actions. The “confirm” function protects
certain sensitive actions, such as exiting an editor, with
a confirmation dialog box. Simply adding the “con-
firm” syntax within a speech macro causes the dialog
box “arc you sure?” to appear. The vocabulary is
switched to respond to only yes and no so that a higher
reliability can be achieved. If the user says no or presses
the no button, the computer returns to its previous
state. If the user says yes, the action following the
“confirm” function is executed.

Another concept encoded in the FSG for user con-
venience is menu flattening. Menu displays are hierar-
chical because the number of menu entries that can
be shown on the screen at one time is limited. A good
example is the File menu. When the user clicks the
mouse button on File, a drop-down menu appears
containing actions such as Open file, Save file, Save
file as ..., Print,and Exit. However, hierarchical menus
do not rcally represent the way people normally
think about actions; for example, when the user thinks
“exit,” he or she must then take the steps file and
exit. With speech recognition, the computer can take
the mterim steps. The FESG in DSRS was built to han-
dle two cases: (1) The user says “file” and “exit,” and
(2) the user says only “exit” and DSRS performs the
file and exit scquence transparently. This second mode
connects the actions more closcly with the user’s
thought processes and does not torce a sequence of
actions in order tor tasks to be performed. The menu-
tlattening feature of DSRS was encoded into the FSG
file. While the example given may seem trivial, the
concept is an important one and can be used to flatten
many levels of menus. For instance, users take several
steps to change the font or type size on a region of
highlighted text in a word processing program. The
following could conceivably be invoked as a speech
macro: “Change to Helvetica Bold Iralic 24 points.”

Integrating Speech Recognition in Applications

As described in the section Overview, DSRS feeds key-
strokes to applications. Therctore, the preferred appli-
cation development method for allowing access to
functions =one that will allow integration of speech
recognition—is accelerator keys. Typically, accelerator

keys are in the form of CTRL + <key> bindings that
allow direct access to a function, regardless of menu
hierarchies. It should be noted that this lack of hierar-
chy limits the number of directly accessible tunctions.

A second method for integrating speech within an
application is through menu mnemonics. Mnemonics
are the keyboard equivalents signified in application
menus by an underlined letter. The first mnemonic is
invoked by a combination of the ALT key and the
underlined letter, which can be followed by another
underlined letter. For example, pressing ALT + f
invokes the file menu item; pressing x immediately
thereafter invokes the “exit” entry for the application.

Integrating speech recognition becomes difficult
when application functions are not accessible through
the keyboard. Applications designed to allow access to
functions only by means of the mouse cannot be
speech enabled as DSRS is currently implemented.
Although DSRS can send mousc clicks into the system,
consistently locating the mouse pointer on applica-
tions is difticult. The next sections further illustrate the
issucs that stcemmed from these integration issucs as
we implemented and tested DSRS.

Client-Server Protocols

Applications such as emacs and Nctscape Navigator
have protocols that allow other processes to send
commands to them. For example, a file name or a
universal resource locator (URL) may be sent via
the command line. DSRS cxploits this facility in
Netscape Navigator to allow Web surfing by voice.
For example, in the Netscape context, the speech
macro “Digital home page” would translate to the
following command issucd to a window: nctscape-
remote openURL(“http://www.digital.com”). Although
this command string seems a bit awkward, the resultis
that the actions being taken are all transparent to the
user and they work verv well.

Problems Encountered in Implementation

Unlike the applications discussed in this paper, some
applications are not devcloped with good program-
ming practices. Neither are the keyboard interfaces
well-tested. We encountered the following types of
problems when using the keyboard as the main input
mechanism.

= Applications had multiplc menu mnemonics
mapped to the same key sequence. This approach
could not work even if the keyboard were used
directly.

= Application functions controlled by graphic but-

tons were accessible only bv mouse.

= Keyboard mapping was incomplete, that is, mnem-

onics were only partially implemented.

Digital Technical Journal Vol.8 No.2 1996

123

124

In the implementation of DSRS, we encountered
once unexpected problem. When a nested menu
mnemonic was invoked, the sccond character was lost.
The sequence of events was as follows:

= A spoken word was recognized, and keystrokes
were sent to the kevboard butter.

= The tirst character, ALT + <kceys, acted normally
and caused a pop-up menu to display.

= The menu remained on display, and the last key was
lost.

We determined that the second keystroke was being
delivered to the application betore the pop-up menu
was displaved. Therefore, at the time the key was
pressed, it did not ver have meaning to the application.
[t s apparent that such applications are written for
a human reaction-based paradigm. DSRS, on the
other hand, is typing on behalf of the userat computer
speeds and is not waiting tor the pop-up menu to
display betore entering the next key.

To overcome this problem, we developed a syn-
chronizing function. Normally the Vocabulary
Manager notation to send an ALl + t followed by an
x would be ALT + £x. This new synchronizing tunc-
tionwas designated as SALT + t'x. The synchronizing
function sends the ALT + f and then monitors events
for a map-notifv message indicating that the pop-up
menu has been written to the screen. The character
following ALT + t is then sent, in this case, the x.
The synchronizing function also has a watchdog timer
to prevent a hang in the event a map-notify message.
This method is included in the final product.

Guidelines for Writing Speech-friendly
Applications

Several guidelines fer enabling speech recognition in
applications became apparentas we gained experience
using DSRS. Coincidentally, a guideline recently pub-
lished by Microsoft Corporation documents some
of the very same points.*

= Provide kevboard access to all features.

= Provide access kevs for all menu items and controls.
= Fullydocumentthe kevboard uscrinterface.

= Whenever possible, use accelerator keys; they are
reliable than mnemonics.

Mncemonics can be overloaded or non-functional
it the menu is not active.

more using mecnu

= Client-scrver protocols can work well for enabling
speech recognition; document tully.

= Do not depend on human reaction times for dis-
plaved windows or on sJow tvping ratcs.

s Provide user-friendly titles for all windows, even it
the title isnot visible.

Digital Fechnical Journal Vol. 8§ No.2 1996

= Avold triggering actions or messages by mouse
poincer location,

= Give dialog boxes consistent kevboard aceess; for
instance, boxes should close when the ESC key is
pressed. The dialog box responses ves and no
should correspond to the vand n kevs.

Application developers who wish to design a speech
intertace dircetly into their applications now have this
option. Several speech APIs are available. Microsoft
offers the Speech Sottware Development Kit, and the
Speech Recognition AP Committee, chaired by
Novell, SRAPL Computer-human speech
interaction is the subject of ongoing research. Much of
the government-sponsored rescarch is now being
commercialized. Several groups, such as ACM CHI
have
interfaces. Thev are discovering that “translating a
graphical interface into speech is not likely to produce
an cftecrive intertace. The design of the Speech User
Interface must be a separate cttort that involves study-
ing the human—human conversations in the applica-

» 0

ofters

been and continue to studv specch-only

tion domain.
Future Directions for Speech Recognition

In addition to uncovering points for developers to
build speech-cnabled applications, we also gained a
perspective on how speech recognition mav develop in
the future. A brict overview of these insights is pre-
sented in this section.

Integrating speech and audio output—The addi-
tion of a two-way intertace of speech and audio that
gives users feedback will move the user interface to a

new leve

Telephone access—Telephone access can make
workstations more valuable communications devices
by connecting uscrs to information such as ¢-mail
messages and appointment calendars. The telephone
can extend the reach of our desktop computers.

Dictation—Discrete dictation products with capa-
bilitics of 60,000 words are commercially available
now; i the not-roo-distant future, continuous-
recognition dictation products will become viable.
A command and control recognizer thatcan be scam-
lesslv switched to dictation mode is a very powertul tool.

Speech recognition integrated with natural lan-
guage processing—The ficld of natural language
processing deals with the extraction of semantic infor-
mation contained in a sentence. Machine understand-
ing of natural language is an obvious next step. Uscers
will be able to speak in a less restricted fashion and still
have their desired actions carried out.

A new paradigm tor applications—A new class of
applications needs to be created, one thatis modeled
more on human thought processes and natural lan-
guage expression than on the functional partitioning

in today’s applications. A user agent or secretary pro-
gram that could process common requests delivered
entirely by speech is not out of reach even with the
technology available today, for example:

User: What time is it?
Computer: Itisnow 1:30 p.m.

User: Do I have any mectings today?
Computer: Staff mecting is ten o’clock to twelve
o’clock in the corner conterence room.

Computer: Mike Jones is calling on the phone.
Would you like to answer or transter the
call to voice mail?

User: Answer it.

User: Do I have any new mail?
Computer: Yes, two messages. One is from Paul
Joncs, the other trom your boss.

User: Read message two.

Uscr: What is the price of Digital stock?
Computer: Digital stock is at $72 /2, up '/s.

The example above shows the uscr agent providing
information and interacting with e-mail, telephone,
stock quote, and calendar programs. As we move into
the future, the computer—user interface should move
closer to the interaction model humans use to com-
municate with cach other. Spcech recognition and
text-to-speech software help in a signiticant way to
move in this dircction.”

Performance

DSRS word recognition, which is the primary pertor-
mance measure, is as good as comparable command
and control recognizers found on PCs. Training trou-
blesome and acoustically similar words improves the
performance. The vocabulary, because of the targets
chosen, that is, UNIX commands, does have acoustic
collisions, for example, cscape and Netscape. Further,
we had to usc the vocabularies supporting the UNIX
shell commands, and commands such as vican be pro-
nounced in difterent ways, for example, vee-eye or vie.
The shell commands are also full of very short utter-
ances that tend to result in higher error rates.

On the slower, tirst-generation Alpha workstations,
DSRS has noticeable delays, on the order ot atew hun-
dred milliscconds. However, on the newer and faster
Alpha workstations, DSRS responds within human
perceptual limits, less than 100 milliseconds.

Another interesting phenomenon associated with
the spced of the workstation is the improvement DSRS
makes in user productivity. On a slow machine, the
speech interface has little impact if the application is
slow in performing its tasks. In other words, the time it
takes to perform a certain task is not greatly atfected

unless the human input of commands is a significant
portion of that time. However on a fast machine, the
application performs tasks as quickly as the commands
are spoken, and the productivity enhancement, there-
fore, is great.

Summary and Conclusions

The DSRS team accomplished its objective of develop-
ing a low-cost speech recognition product. DSRS for
Digital UNIX is being shipped with all Alpha work-
stations at no additional cost. Integration with the
X Window System was successtul.

With reference to the focus of this paper—develop-
ing the user-friendly interface—we found through
feedback from our user base that most first-time users
perform useful work using DSRS without consulting
the documentation. The first-time setup design that
provides instructions and feedback to users was suc-
cessful. The list of Active and Always Active words and
phrases is a helpful reference tor new users until they
learn the “language” they can use to communicate
with their applications.

Adding vocabulary ftor new applications is a bit
more challenging because some “reverse cngineering”
may be required on a particular application. One
nceds to know the class name of cach of the windows
and then map the keystrokes for each of the functions
to speech macros. Although this procedure is docu-
mented in the manual, it can be challenging tor users.

Prototypes of DSRS control for sophisticated menu-
driven applications, such as mechanical computer-
aided design, show excellent promise for enhancing
user productivity. For example, with computer-aided
design or drafting software, users can focus their eyes
on the drawing target on the screen while they are
speaking menu functions.

Speech recognition is an evolutionary step in the
overall computer—user intertace. It is not a replace-
ment for the keyboard and mouse and should be used
to complement these devices. Speech recognition
works as an interface because it allows a more direct
connection benween the human thought processes
and the applications.

Speech recognition coupled with natural language
processing, text-to-speech, and a new gencration of
applications will make computers more accessible to
people by making them easier to use and understand.

Acknowledgments

Thanks go to the dedicated team of engineers who
developed this product: Krishna Mangipudi, Darrell
Stam, Alex Doohovskoy, Bill Hallahan, and Bill
Scarborough, and to Dragon Systems, Inc. for being
a cooperative business and enginecring partner.

Digital Technical Journal Vol.8 No.2 1996

125

References

1. L. Rabiner and B. Juang, Fundamentals of Speech
Recognition (Englewood Cliffs, N.J.: Prentice-Hall,
Inc., 1993): 45-46.

2. C. Schmandt, Voice Communication with Compulers:
Conversational Systems (New York; N.Y.: Van Nostrand
Reinhold, 1994): 144-145.

3. K.F. Lee, Large-Vocabulary Speaker-Independent
Continuous Speech Recognition: The SPHINX System
(Pittsburgh, Pa.: Carnegie-Mellon University Computer
Science Deparunent, April 1988).

4. W. Hallahan, “DECtalk Software: Text-to-Specch Tech-
nology and Implementation,” Digital Technical
Jowrnal, vol. 7, no. 4 (1995): 5-19.

5. G. Lowney, The Microsoft Windows Guidelines for
Accessible Software Design (Redmond, Wash.:
Microsoft Development Library, 1995): 3-4.

6. N. Yankelovich, G. Levow, and M. Marx, “Designing
SpeechActs: Issues in Speech Uscr Interfaces,” Pro-
ceedings of ACM Conference on Computer—Himan
Interaction (CHI) "95: Human Factors in Computing
Systems: Mosaic of Creativity, Denver, Colo. (May
1995): 369-376.

Biography

Bernard A. Rozmovits

During his tenure at Digital, Bernie Rozmovits has worked
on both sides of computer engineering—hardware and soft-
ware. Currently he manages Speech Services in Digital’s
Light and Sound Software Group, which developed the
user interfaces for Digital’s Speech Recognition Software
and also developed the DECralk software product. Prior
to joining this softwarce cffort, he focused on hardwarc
engineering in the Computer Special Systems Group

and was the architect for voice-processing platforms in

the Image, Voice and Video Group. Bernie received a
Dipléme D’Etude Collegiale (DEC) from Dawson
College, Montreal, Quebec, Canada, in 1974. He

holds a patent entitled “Data Format For Packers Of
Information,” U.S. Patent No. 5,317,719.

126 Digital Technical Journal Vol.8 No.2 1996

Further Readings

The Digital Technical Journal is a reterced, quarterly
publication of papers that explore the foundations of
Digital’s products and technologies. jfotrnal content
18 sclected by the Journal Advisory Board, and papers
are written by Digital’s enginecrs and engineering
partners. Engineers who would like to contribute a
paper to the journal should contact the Managing
Editor, Janc Blake, at Jane.Blake@ljo.dec.com.

Topics covered in previous issues of the
Digital Technical Journealare as tollows:

Digital UNIX Clusters/Object Modification Tools/
eXcursion for Windows Operating Systems/
Network Directory Services

Vol. §, No. 1, 1996, EY-U025E-T]

Audio and Video Technologies/UNIX Available Servers/
Real-time Debugging Tools
Vol. 7, No. 4, 1995, EY-UO02E-T)

High Performance Fortran in Parallel Environments/
Sequoia 2000 Research

Vol. 7, No. 3, 1995, EY-T838E-TT

(Available only on the Interner)

Graphical Software Development/Systems Engineering
Vol. 7, No. 2, 1995, EY-UOO1E-T]

Database Integration/Alpha Servers & Workstations/
Alpha 21164 CPU

Vol. 7, No. 1, 1995, FY-T135E-T]

(Available only on rhe Interner)

RAID Array Controllers/Workflow Models/
PC LAN and System Management Tools
Vol. 6, No. 4, Fall 1994, EY-T118E-TJ

AlphaServer Multiprocessing Systems/

DEC OSF/1 Symmetric Multiprocessing/
Scientific Computing Optimization for Alpha
Vol. 6, No. 3, Suramer 1994, EY-S799E-T]

Alpha AXP Partners— Cray, Raytheon, Kubota/
DECchip 21071/21072 PCI Chip Sets/
DLT2000 Tape Drive

Vol. 6, No. 2, Spring 1994, EY-F947E-T]

High- performance Networking /
OpenVMS AXP System Software/
Alpha AXP PC Hardware

Vol. 6, No. 1, Winter 1994, EY-QO11E-T]

Software Process and Quality
Vol. 5, No. 4, Fall 1993, EY-P920E-DP

Product Internationalization
Vol. 5, No. 3, Summer 1993, EY-P9SGE-DP

Multimedia/Application Control
Vol. 5, No. 2, Spring 1993, EY-P963E-DP

DECnet Open Networking
Vol. 5, No. 1, Winter 1993, EY-M770E-DP

Alpha AXP Architecture and Systems
Vol. 4, No. 4, Special Issuc 1992, EY-J886E-DP

NVAX-microprocessor VAX Systems
Vol. 4, No. 3, Summer 1992, EY-J884E-DDP

Semiconductor Technologies
Vol. 4, No. 2, Spring 1992, EY-L.521E-DP

PATHWORKS: PC Integration Software
Vol. 4, No. 1, Winter 1992, EY-J825E-DP

Image Processing, Video Terminals, and
Printer Technologies
Vol. 3, No. 4, Fall 1991, EY-H889E-DP

Availability in VAXcluster Systems/
Network Performance and Adapters
Vol. 3, No. 3, Sumumer 1991, EY-HS90E-DP

Fiber Distributed Data Interface
Vol. 3, No. 2, Spring 1991, EY-H876E-DP

Transaction Processing, Databases, and
Fault-tolerant Systems
Vol. 3, No. I, Winter 1991, EY-F588E-DP

VAX 9000 Series
Vol. 2, No. 4, Fall 1990, EY-E762E-DP

DECwindows Program
Vol. 2, No. 3, Summer 1990, EY-E756E-DP

VAX 6000 Model 400 System
Vol. 2, No. 2, Spring 1990, EY-C197E-Dr

Compound Document Architecture
Vol. 2, No. I, Winter 1990, EY-C196E-DD

Digital Technical Journal Vol.8 No.2 1996

127

Engnnanw

ISSN 0898-901X

-N6992-18/96 9 14 20.0 Copyright © Digital Equipment Corporation

EC

Printed in U.S.A.

	Front cover
	Contents
	Editor's Introduction
	Foreword
	Overview of the Spiralog File System
	Design of the Server for the Spiralog File System
	Designing a Fast, On-line Backup System for a Log-structured File System
	Integrating the Spiralog File System into the OpenVMS Operating System
	Extending OpenVMS for 64-bit Addressable Virtual Memory
	The OpenVMS Mixed Pointer Size Environment
	Adding 64-bit Pointer Support to a 32-bit Run-time Library
	Building a High-performance Message-passing System for Memory Channel Clusters
	The Design of User Interfaces for Digital Speech Recognition Software
	Further Readings
	Back cover

