INTERNET PROTOCOL V.6

PRESERVATION OF HISTORICAL

Dlgltal COMPUTER SYSTEMS
. FORTRAN FOR PARALLEL COMPUTING
Technical
SERVER PERFORMANCE EVALUATION
Jou rnal AND OPTIMIZATION

INTERNET COLLABORATION SOFTWARE

Volume 8 Number 3
1996

Editorial

Jane C. Blake, Managing Editor
Hclen L. Patterson, Editor
Kathleen M. Stetson, Editor

Circulation
Cathertine M. Phillips, Administrator
Dorothea B. Cassady, Scererary

Production

“lerri Autieri, Production Editor
Anmne S. Katzett, Typographer
Peter R Woodbury, Hlustrator

Advisory Board

Samuel H. Fuller, Chairman
Richard W. Beanc
Donald Z. Harbert
William R. Hawe
Richard J. Hollingsworth
William A. Laing
Richard F. Lary

Alan G. Nemeth

Pauline A, Nist

Robere M. Supnik

Cover Design

The function of the Internetis a simple one:

Connectindividuals through computer
nerworks worldwide for the purpose of
communication. The graphic on our cover
symbolizes this worldwide connection of
innumerable people i “cvberspace.” Inside
the issue, two papers addeess aspects of the
complex work needed ro make the connece-
tions, first, at the protocol fevel, Internet
Protocol version 6, and at the user level,
AltaVista Forum software for collaboration
on the Internet.

The cover image is based on a photograph
taken by Chuck Gillerre of sky divers who
scra record in October 1996 for the num-
ber of people (104) in a single tormation.

The cover designis by Lucinda O’ Neill

of Digital’s Corporate Design Group.

The Digital 1echnical Journal s a reterced
journal published quarterly by Digital
Equipment Corporation, 50 Nagog Park,
AKO2-3/B3,Acton, MA 01720-9843.

Subscriptions can be ordered by sending
acheck in U.S. funds (made pavable to
Digital Equipment Corporation) to the
published-by address. General subscription
rates are $40.00 (non-U.S. $60) for tour
issues and $75.00 (non-U.S. $115) for
cight issues. University and college protes-
sorsand Ph.D. students in the electrical
engineering and compurer science fields
receive complimentary subscriptions upon
request. Digital’s customers may qualify
for gift subscriptions and are encowraged
to contact their account representatives.

Single copies and back issues are available
for $16.00 (non-U.S $18) cach and can
be ordered by sending the requested issue’s
volume and number and a check to the
published-bv address. Sce the Further
Readings scetion in the back of this issuc
tor a complere listing. Recentissucs are
also available on the Internerat
http://www.digital.com/into/dtj.

Digital cmployees may order subscriptions
through Readers Choice at URL
herp://webre.das.dec.com or by entering
VTX PROFILE at the system prompt.

Inquiries, address changes, and compli-
mentary subscription orders can be sent
to the Digited Technical foirnal at the
published-by address or the clectronic
mail address, drj@digital.com. Inquiries
can also be made by calling the fournal
office at 508-486-2538.

Comments on the content ofany paper
are welcomed and may be sent ro the
managing editor at the published-by or
clectronic mail address.

Copyright © 1996 Digital Equipment
Corporation. Copying without fec is per-
mirtted provided that such copices are made
for uscein educational institutions by faculty
members and ave not distributed for com-
mercial advantage. Abstracting with credit
of Digital Equipment Corporation’s author-
ship is permirred.

The intormation in the Journal is subject
to change without notice and should not
be construed as a commitment by Digiral
Equipment Corporation or by the compa-
nies herein represented. Digital Equipment
Corporation assumes no responsibility for
anv crrors that may appear in the /ol

ISSN 0898-901X
Documentation Number EC-N7285-18

Book production was done by Quantic
Communications, Inc.

The following are trademarks of Digiral
Equipment Corporation: AJphaServer,
AlphaStation, AltaVista, DEChub, DECmate,
DEC Notes, DECsystem-10, DECrape,
DECUS, DECywriter, Digirtal, the DIGITAL
logo, GIGAswitch, GIGI, HSC, HSZ,

I-11, KA10, KI, LA, LN03, LQPO03,
LSI-11, MicroVAX, MicroVMS, MINC,
OpenVMS, PATHWORKS, PDP, PDP-11,
POLYCENTER, Q-bus, RC, RC25, RK,
RL, RM, RP, RSTS/E, RSX-1 ITM,RT-11,
RXO01, RX02, RZ, TM, TruCluster, TS,
TU, UNIBUS, VAX, VAXcluster, VAXmate,
VAXstation, VMS and VT.

ATX, DB2,1BM, Lotus Notes, PowerPC,
and RISC System /6000 are registered
trademarks and System /360 is a trademark
of International Business Machines
Corporation.

BASIC is a registered trademark of the
trustees of Dartmouth College, D.B.A.
Dartmouth College.

BSDisa trademark of the University of
California at Berkeley

CHALLENGE is a registered rrademark
ot Silicon Graphics, Inc.

Hewlert-Packard, HP, and HP-UX arc
registered trademarks ot Hewlere-Packard
Company.

Himalava and Tandem are registered trade-
marks of Tandem Computers, Inc.
INFORMIX and INFORMIX-OnLinc

are registered trademarks of Intormix
Software, Inc.

KAP is a trademark of Kuck & Associatcs,
Inc.

MEMORY CHANNEL is a rrademark of
Encore Computer Corporation.

Microsoft and Visual C++ are registered
rrademarks and Windows and Windows NT
arc trademarks of Microsott Corporation.
MIMIC isa trademark of Sicrra
Geophysies, Tnc.

Mosaic is a trademark of Mosaic
Communications Corporation.

Oracle7 is a rademark ot Oracle Corporation.

Solans and SPARCecenter are registered
tradcimarks of Sun Microsvstems, Inc.
SPECintis a rrademark of the Standard
Performance Evaluation Council.
Svbasce is a registered trademark of
Svbase, Inc.

TPC-Cis a trademark of the Transaction
Processing Pertormance Council.
Tuxcdois a registered rademark of BEA
Svstems, Inc

UNINX is a registered rademark in the
United States and in other countrics,
licensed exclusively through X/Open
Company ld.

Contents

Foreword Alan G. Ncmeth 3
INTERNET PROTOCOL V.6

Internet Protocol Version 6 and the Digital UNIX Danicl T. Harrington, James P. Bound,

Implementation Experience John J. McCann, and Matt Thomas 5

PRESERVATION OF HISTORICAL COMPUTER SYSTEMS

Preserving Computing’s Past: Restoration and Simulation ~ Maxwcll M. Burnetand Robert M. Supnik 23

FORTRAN FOR PARALLEL COMPUTING

Modern Fortran Revived as the Language of Scientific William N. Celmaster 39

Parallel Computing

SERVER PERFORMANCE EVALU ATION AND OPTIMIZATION

Performance Measurement of TruCluster Systems Judith A. Piantedosi, Archana S. Sathave, and

under the TPC-C Benchmark D. John Shakshober 46

Performance Analysis Using Very Large Memory Tarcef Kawaf, D. John Shakshober, and

on the 64-bit AlphaServer System David C. Stanlev 58

INTERNET COLLABORATION SOFTWARE

Building Collaboration Software for the Internet Dah Ming Chiu and David M. Griffin 66
Digiral Technical Journal Vol.8 No.3 1996

1~

Editor’s
Introduction

This issue presents papers on diverse
computing topics—the Internct,
modern Fortran language extensions
for parallel computing, and perfor-
mance measurement of AlphaServer
64-bit RISC systems—cach repre-
senting an area of engineering
strength for Digital. Also in the issuc
is a thought-provoking paper on the
preservation of historical computers.

The opening paper on the Interncet
Protocol version 6 examines the status
of today’s Internet and looks toward
its future. Digital is one of several
companies participating in the work-
ing groups of the Internet Enginecr-
ing Task Force on the transition to
a new protocol. Dan Harrington,
Jim Bound, Jack McCann, and Matt
Thomas report what they have learned
from designing an [Pv6 prototvpe,
and compare and contrast the new
version with the existing protocol,
[Pv4. The most important difference
between the versions—one that will
rclieve the strain on the Internet—is
the increase in IPv6 of address size
from 32 bits to 128 bits. The authors
conclude with alook at future work
in such areas as security and data link
interfaces for ATM.

Our next paper—an unusual one
not only for the issue but for this

Journal—temporarily moves the dis-

cussion from computing’s future to
its past. Max Burnet and Bob Supnik
arguc that an understanding of com-
puting’s past is vital to its future. The
authors present two computer preser-
vation techniques: restoration and
simulation. To exemplify issucs in
restoration, thev review the status of
a project to restore a large UNIBUS-
based PDP-11 system. The section

Digital Technical Journal

Vol.8 No.3

on simulation describes the types and
purposcs of simulators and presents a
case study of SIM, a simulator imple-
mented in C for the study of historical
computer architectures.

In a paper on modern Fortran, Bill
Celmaster demonstrates that today’s
Fortran is a viable mainstream lan-
guage for parallel computing. Since
its development more than 40 vears
ago, Fortran has been extended by
language designers to mecet the needs
of users, particularly the needs of
scientific/technical users who require
mathematical expressivity and code
optimization. Bill reviews key features
of Fortran 90, recent cftorts to stan-
dardize parallel extensions to Fortran,
and shared-memory parallelism. He
includes three case studics that illus-
trate the data parallel and single-
program—multiple-data styles of
programming.

Two papers describe testing
methodologices that resulted in lead-
ership system performance under
the TPC-C benchmark fora cluster
system and for a single-node svstem.
The first paper presents the evalua-
tion of an AlphaScrver 8400 5,/350
TruCluster configuration support-
ing the Oracle Parallel Server data-
basc. Judy Piantedosi, Archana
Sathaye, and John Shakshober dis-
cuss the system tuning and the record-
setring results of their work. The sec-
ond paper, by Tarccf Kawat, John
Shakshober, and Dave Stanley, looks
at two optimization techniques—
locking intrinsics and OM profile-
based optimization—applicd to a
large database program running in
the very large memory (VLM) envi-
ronment on an AlphaServer 8400

1996

system. The results of these optimi-
zations arc significant increases in
throughput and database-cache hit
ratios.

The development of AltaVista
Forum is the subject of our final
paper. Unlike other groupware prod-
ucts, AltaVista Forum uses the World
Wide Web as an infrastructure to
facilitate the rapid development of
collaboration applications for NT and
UNIX svstems. Dah Ming Chiuand
Dave Grithin explain this design deci-
sion and sharc their experiences with
usability studics, an interpretive lan-
guage (Tcl) for building the toolkit,
and the inclusion of an indexing and
search enginc.

The nextissuc of the jowrnal will
feature the new AlphaServer 4100
high-performance midrange server
svstem, a new implementation of
MEMORY CHANNEL, and large-
databasc technologices in the VLM

Alde

environment.

Jane C. Blake

Managing Edilor

Foreword

Alan G. Nemeth
Corporate Constttaint
[INIX Architecture and Technology

“The Internetis dying.” 1 teel quite
confident vou will regularly see articles
with this message in the industry and
general press over the next few vears.
The message won’t be as new as the
authors of the articles might believe,
and the work to remove the most
frequently identitied problems was
begun vears ago within the [nrerncet
Engincering Task Foree (IETE).
Internet Protocol version 6 (IPV6)

is a large family of protocols that
form the basis of the IETF response
to a sct of problems identitied in the
carly 199@s and for which the need
isaccelerared by the explosion of
[nrernet usage.

Onc of the major concerns about
the current Internet is the limited
amount ot address space. The under-
Iving address for [P endpoints is 32
bits wide, permitting a total ot 4 bil-
lion distinct addresses. Although this
number scems large (and it seemed
truly gigantic in the carly 1970s when
the width was sclected), itis currently
areal, practical barrier to current
deplovment patterns. Large users
of Internet addresses can no longer
get the address space thev need for
assignments. Because the Internet

has run as a decentralized organization
over the vears, there is no effective
central administration to support com-
petition for scarce resources such as
address space. Instead, the response of
the community is to provide resources
suthicient to keep allocation as a Jow-
overhead activity. So [Pv6 defines an
address space of 128 bits. This cur-
rently seems like a gigantic number!

But limited address space is hard to
buildintoa persuasive case for change.
End users are much more likely to be
concerned about the local problem
of gerting just “one more address,”
rather than the problems of kecp
ing the Internet as a whole alive and
functioning. So the [Pv6 design delib-
crately incorporates a set of func-
tionality improvements that provide
attractive end-user capabilines. [PV6
includes much easier schemes tor
assigning addresses, which will reduce
the administrative burden for users
and their network managers. IPv6
provides a better framework for
encrvption and an expectation that
it will be widely available and used.
And IPv6 provides some systematic
mechanisms for describing requests
for specific quality levels in the service
oftered by the transport provider.
These capabilitics will address some
very real, practical problems that
do aftlict individual end users of the
Internet.

However, there is no expectation
that it is acceptable to switch the set
of Interner users to IPv6 cither simul-
tancously or cven over an extended
time period. IPvG must interoperate
with the current installed 1Pv4 pro-
tocols for an indetinite period. This
implics services that translate berween
the ditferent addresses (and address

Digital Technical Journal

assignment approaches that casc
mechanical derivation of [Pv6
addresscs from IPv4 addresses),
dual protocol stacks to permit com-
munication with both protocols
depending on the capabilities of the
participants in the conversation, and
schemes to accommodate sceurity
mechanisms and quality of service
requests.

The entirety of IPV6 represents
alarge implementation cftort to
be undertaken by many difterent
organizations. The Internet repre-
sents the largest example T know ofa
distributed computation that has sur-
vived tor 27 vears. (I date trom 1969
when the tirst ARPANET [Advanced
Research Projects Agency Network |
nodes were installed.) With a few
notable exceptions, this computation
has run continually, despite constant
changes in hardware, sottware, imple-
menters, and operators. It has sur-
vived exp

osive growth far bevond
the designs of its originators. It has
done so with a volunteer organiza-
tion driving the development direc-
tion. The community spirit has been
crucial to making this work. 1Pv6

is an example of that community
atwork; no one organization can
implementitall, cither ata product
level or ata deplovment fevel.

The IPv6 paperin thisissuc
describes the technical design needed
to build an IPv6 implementation
for the core protocols under the
Digital UNIX operating system.
Digital has been once of the leading
prototvpe builders of the design spec-
ifications as they have evolved inthe
industry debates. At the time the
Internet Protocol Next Generation
(IPng) Directorate officially adopted

Vol.7 No.3 1996

kev clements of the protocol,
Digital’s implementation was
the only one running to demonstrate
that the design was indeed feasible,
But we don’t believe that we can
implement all the pieces of [IPv6 as a
single company. Therefore we choosce
to share the implementation experi-
ence through this paper to aid others
in their efforts to deal with the imple-
mentation problems. We also don’t
claim completeness; the tull suite of
specitications for IPv6 is evolving, and
the software to implement it is large.
We fully expect that portions of our
ulumate product offerings will be
developed by others in the industry.

The long-term evolution of the
Internet captured in the IPv6 imple-
mentation paper is but one example
in thisissuc of the extent to which
computing now has a history that
gives us much insight into the future.
Certainly the paper by Supnik and
Burnetis an explicit trip through
computing history. The re-creation,
both physical and logical, of comput-
ing svstems of the past can only help
remind us that the artifacts we create
have a longer life than we anticipate.
As our programmers write new code,
or our hardware designers produce
new architectural approaches, or our
storage designers push the bound-
arics on new media technologies, do
they consider the imponderables of
running these systems 25 or more
vears in the future? The view of archi-
Vists trving to preserve this history
reminds us of the difficulty of preser-
vation after the fact and of the amaz-
ing duration of design decisions.

The paper on the evolution of
Fortran is vet another example of the
rich historv of computing. Here we

Digital Technical Journal
8

sce clearly the evolution of a kev
language to accommodate the chang-
ing patterns of svstem architectural
designs and parallel program con-
cepts. The computer industry fre-
quently develops commercially
important programs by evolution—
the 100,000-line program that 10
vears later has become 10 million
lines of code in an assortment of
languages and computing stvles.
Here the venerable Fortran (first
introduced in 1954!) adds support
for some ot the latest approaches to
fast svstem interconnect represented
by MEMORY CHANNEL and the
parallelarchitectures of clusters of
SMP svstems.

MEMORY CHANNEL rcappears in
the paper about TPC-C performance
on TruCluster systems. This paper,
onc ot a pair on theissues of tuning
a commercially important benchmark,
presents an attractive model for the
benetits in performance that can be
derived from a very fast interconnect
and software structures to match.
The pertormance Jevels achieved
shatter world records on a bench-
mark that has had extensive atten-
ton and work.

The other paper on TPC-C per-
formance with very large memory
(VE.M)illustrates the truth ofan old
design maxum, “If memory is get-
ting cheaper, use more of it!” When
Digital first builta 2-gigabyte (GB)
memory board, it took more than
a million dollars” worth of DRAM
chips to populate the initial instance.
However, memory prices have con-
tinued to drop sharply, and today
over 40 percent of the AlphaServer
8400 svstems ship with 2 GB or morce
of memory. The memory prices will

Vol 8 No.3 1996

continuc to come down, and the
insights ottered in this paper will help
in understanding where additional
memory can provide real benehits to
customer workloads.

The final paper in the collection is
on the AltaVista Forum approach to
collaboration among groups exploit-
ing the Internet and WWW technolo-
gics and brings us back around to the
initial thoughts in this foreword. The
ubiquitous nature of the Internct per-
mits and encourages tools such as this
that utilize computer svstems in new
wavs. This approach builds on the
tabric that we emphasized in the [Pv6
paper but sees the Internet as a tool
and a component of a larger solution
and shows how to exploit these capa-
bilities to allow new ways of working.
Using imagination and building on
the work of others are characteristic
of the approach taken by those who
arc catalysts in the industry. The
paper demonstrates how casyitis to
build a svstem that would have been
a major project just five vears ago.
This case of construction is a benefit
of the programming techniques and
infrastructure investments and a spur
to keep doing more of it.

Internet Protocol
Version 6 and the Digital
UNIX Implementation
Experience

In the early 1990s, the Internet community rec-
ognized that the current TCP/IP architecture was
not capable of sustaining the explosive growth
of the Internet. In July 1994, the Internet Protocol
next generation (IPng) directorate responded to
the problem with the Internet Protocol version 6
(IPv6) as the replacement network layer proto-
col. Working groups of the Internet Engineering
Task Force (IETF) then began to build specifications
that would address the needs for an expanded
Internet address space, an increase in router table
size, and new technology features. As a contrib-
utor to these efforts, Digital has implemented
IPv6 on the Digital UNIX platform. The primary
goal of Digital’s efforts has been to evaluate the
technical feasibility of the proposed architecture
and provide critical feedback to the standards
development process in the IETF. The secondary
goal has been to evaluate system design alter-
natives to gain the experience needed to allow
Digital to incorporate this new architecture into
existing products.

Daniel T. Harrington
James P. Bound

John J. McCann
Matt Thomas

As one of its ongoing advanced development eftorts in
nenworking technology, Digital has built an Internct
Protocol version 6 (IPv6) prototvpe for the Digiral
UNIX opcrating system. In this paper, we describe the
design of the Digital UNIX IPv6 prototvpe and its his-
tory relevant to the Internet Protocol next generation
(IPng) effort in the Internet Engincering Task Force
(IETF). We also compare its relationship with the
existing Transmission Control Protocol/Internet
Protocol (TCP/IP) suite. We emphasize techniques
and technologies that were developed to accommo-
date particular aspects of the IPv6 architecture and
issues that required further discussion in the [ETF. In
particular, we discuss the modifications to the trans-
port layer modules to use two distinct network layer
protocols, along with the implications to the UNIX
socket layer and applications. In addition, we describe
the new IPv6 and Internet Control Message Protocol
(ICMP) nenwork layer modules, including their inter-
actions with both the data link layer and the IPv4
protocol. We review the new Neighbor Discovery
Protocol and its algorithms and give details of its
implementation.

To accommodatc the dynamic nature of future net-
works, IPv6 includes mechanisms to do both stateless
and stateful address configuration, as well as router
discovery; we explain the design of a user-mode
process that implements these functions. The paper
includes a discussion of cnhancements to well-known
IPv4 services, such as dynamic updates to the domain
naming service (DNS), as well as gencral techniques
to support the transition of existing applications. The
paper concludes with an overview of what we have
learned in this project and summarizes our current sta-
tus and tuture work, including cftorts in nonbroadcast
multiple access (NBMA) data link technologies such as
asynchonous transter mede (ATM) and resource reser-
vation protocols.

Internet Protocol Next Generation

In the early 1990s, the members of the Internet com-
munity realized that the address space and certain
aspects of the current TCP/IP architecture were not
capable of sustaining the cxplosive growth of the

Digital Technical Journal Vol.8 No.3 1996

U

Internet. Within the [ETF, several eftorts were under-
taken to both study and improve the use of the 32-bit
Internet Protocol (IPv4) addressces, as well as to iden-
tifi and replace protocols and services that would limit
growth. The 32-bit addressing architecrure in the net-
work laver was quickly determined to be the crux of
the problem, with both hardware and human limits
approaching fundamental boundarices.” 1Pv4 addresses
arc uncvenly allocated in blocks that are often too
large or too small; theyv are also ditticult to change
within any existing network.

When the TETF called tor replacement proposals,
Digital participated in this industry-wide cffort by
submitting white papers outlining issues and by devel-
oping and cvaluating prototvpes of the various pro-
posals. Digital also participated in the [ETF working
groups and in the IPng directorate, which had the
responsibility for making the ultimate decision. In July
1994, the IPng directorate sclected the Internct
Protocol version 6 (1Pv6) as the replacement nerwork
laver protocol, and [ETF working groups began to
build specifications. “The Recommendation for the
[P Next Generation Protocol” summarizes the candi-
dates and explains the selection of this protocol 2

Digital UNIX Prototype

The current Digital UNIX IPv6 prototype project is
Digirtal’s most recent addition to an ongoing cttort to
develop and evaluate the competing 1Png proposals.
This began with the Simple Internet Protocol (SIP),
which used cight octer addresses. SIP was later melded
with another carly proposal and became known as
Simple Internet Protocol Plus (SIPP), the direct
antecedent of IPv6.' The primary goal of Digital’s
cftorts has been to evaluate the technical feasibility of
the proposed architecture and provide feedback to the
[ETF working groups. This is critical to the standards
development process in the IETF, which requires mul-
tiple independent and interoperable implementations
of a specitication betore it mav become an Internet
standard. An additional goal has been to evaluare sys-
tem design alternatives to gain the experience needed
to allow Digital to incorporate this new architecture
mto existing products. Digital has made the prototype
available to rescarchers within the company as a source

code distribution and more recently has begun to sup-
plv binary kits tor earJv adopters and evaluators m the
Interner community. As the 1Pv6 protocol and archi-
tecture matures, we have begun to focus on how to
best mtegrate the code into the Digital UNIX product.

IPv6 Overview

To understand the svstem-wide impact of [Pv6, we
review some of its new features and contrast them with
the IPv4 model. IPv6 is both a completely new
network laver protocol and a major revision ot the
Internet architecture. At both levels, it builds upon
and incorporates experiences gained with 14,

Figurce 1 shows the evolution of the packet format
into the new IPv6 header. Tt retains some ficlds (ver-
sion, source, and destination address), clarifies the role
ot others (for example, the Time To Live [TTL] feld
1s renamed the Hop Limir), and introduces new oncs
(such as Flow ID) with as vet untapped potential. The
next header field allows tor modular construction of
complex packets: difterent header tvpes can be chained
together to provide specialized functionality, includ-
ing sccurity and source routing. Finally, all headers arce
structured to allow 64-bit alignment, which should
allow optimal processing both at source and destina-
tion svstems, as well as in transit.?

The most striking departure tfrom 1Pv4 is the
address size: it has increased from 32 bits to 128 bits.
The IPv6 addressing architecture is rich, with prefixes
tor multicast addresses and predetined scopes for both
umcast and multicast addresses. One special type of
unicast address 1s the link-local address, which permits
communications with onlv those svstems directly con-
nected on the same link. This allows a standard boot-
strapping mechanism, so that svstems can learn about
neighbors and services before a routable address is
assigned to an iterface. Various address assigniment
options have been defined, including hicrarchical
modecls based upon regienal registrics and service
provider identitiers.™ In cach case, care has been taken
to cnsure proper route aggregation, which will help
vield more efficient backbone router pertormance.

Multiple means of acquiring addresses have been
detined for [Pv6 addressing, with the goals of allowing
flexibility through ditterent administrative policies

VERSION \ PRIORITY' FLOW LABEL
PAYLOAD LENGTH NEXT HEADER HOP LIMIT
SOURCE ADDRESS
DESTINATION ADDRESS

Figure 1
1Pv6 Header

Digital Technical Journal Vol.8 No.3 1996

and, perhaps more important, of demanding that net-
work address reassignment be supported throughout
the architecture. The two new addressing services are
Statcless Address Autoconfiguration and the stateful,
transaction-based Dvnamic Host Configuration Pro-
tocol version 6 (DHCPVvG).™ In the stateless modecl,
address pretixes are learned by listening for router
advertisement packets. Addresses are formed by com-
bining the prefix with a link-specific token such as the
48-bit Ethernet hardware address. In the stateful pro-
cedure, hosts mav request addresses, configuration
information, and scrvices from dedicated configura-
tion servers, with routers potentially serving as relay
stations during the initial phase. In both cases, the
resulting addresses have associated lifetimes, and svs-
tems must be prepared to both learn new addresses
and rclease expired addresses. Combined with the
ability to register updated address information with
DNS servers, these mechanisms provide a path toward
nctwork renumbering, a goal that has proved difticult
to achieve in the [Pv4 world.

Finally, the Internet Control Message Protocol ver-
sion 6 (ICMPvO) was developed.” This specification
aimed to merge the functions of two distinet 1Pv4 pro-
tocols for reporting crrors and status, ICMP for uni-
cast packer transmission and the Internet Group
Message Protocol (IGMP) for multicast trattic.

The messages detined in this protocol are catego-
rized as cither error or informational, with a family of
messages in the sccond group used to provide the
Neighbor Discovery Protocol." Neighbor discovery
serves multiple purposes with the overall theme of
providing a svstem with topological and environmen-
tal hints. For example, link-laver address resolution,
router discovery, destination address redirection, and
address autoconfiguration mechanisms arc all specified
using ncighbor discovery packet tvpes.

Although the networklaver did experience the largest
amount of change, Figure 2 shows that the effects of
this work touch ncarly all aspects of the Digital UNIX
system. We point out examples ot decisions made due to

our fundamental design philosophy, which is based
upon integravion with the UNIX system tramework,
modular and extensible softwvare, support for multiple
operational policics, and a desire to take advantage of
the Alpha platform without compromising portability.

In the following scctions, we study these topics in
depth, beginning with the network laycr, then cover-
ing the transport layer moditications and the new
neighbor discovery algorithms. After that, we discuss
address autoconfiguration mechanisms and their
eftects upon the system. We conclude with services
that will be aftected by the transition from IPv4 to
IPv6 such as the socker application programming
interface (API) and DNS.

DNS DHCP IP-BASED NETWORK
APPLICATIONS COMMANDS
AND UTILITIES
APIs TRANSITION
MECHANISMS
USER
KERNEL
SOCKET LAYER SECURITY
TRANSITION
MECHANISM
TCP ubP
ROUTING TABLE
AND NEIGHBOR
DYNAMIC CACHE GHBO
ADDRESS NETWORK LAYER
IPV6/IPV4 LINK-LAYER NEIGHBOR
TUNNELS MODULES DISCOVERY
Figure 2

Base Platform Changes

Network Layer

In this section, we review the processing requirements
of the IPv6 modules, including 1CMPv6, extension
header options, and fragmentation. An carly design
decision was made to base the networking subsvstem
on the Berkelev Standlard Distribution (BSD) 4.4
model and code base, which allows great flexibility in
dealing with multiple network lavers.' This also has
the advantage of providing support for variable-bit-
length netmasks (also known as CIDR-stvle netmasks,
from Classless Inter-Domain Routing), which are
appropriate to both IPv4 and IPv6."* We have also
tried to take maximum advantage of the 64-bit Alpha
architecture when implementing IPv6, while making
certain that this implementation would run on 32-bit
CPUs as well. For example, the checksum routines
operate on 32-bit quantitics (allowing the carry to
overflow into the upper 32 bits of a 64-bit register).
The checksum routine is also designed to allow itto be
issued to multiple Alpha exceution units, which
remains a topic for further investigation.

Adaptations to Existing IP and ICMP Routines

The IPv6 and ICMPv6 routines are completely
independent of the corresponding IPv4 and 1CMPv4
routines, and the processing styles have distinet difter-
ences. In [Pvo, the incoming packet is treated as being
read-only, while the BSD IPv4 code manipulates fields
within the IPv4 header. We also avoird unnecessary use
of the m_pullup routine (which consolidates chained
memory bufters into a single large bufter) because this
could causce the packer to be needlessly lost. Finally,
instead of passing numerous arguments when calling
from function to function, a common data structurc is

Digital Technical Journal Vol.8 No:3 1996

8

used to store necessary data and pointers; tor most
function calls, it is only nccessary to pass a pointer
to this structure. This reduces the stack overhead and
also vields modular and casily extensible subroutines.

IPv6 has a dedicated interrupt processing thread,
and received 1Pv6 packets are placed onto their own
intertace input queue (itqueuce). When an IPv6 packet
is taken off the itqueue, basic validity tests are done;
only after passing them is the packet tested to see if it
15 direcred to a unicast or a multicast address.

If the packet is to a multicast address, the destina-
tion is compared to the enabled IPv6 multicasts for the
interface over which the packetr was received. It the
destination matches, the packet is passed up to normal
packet processing; otherwise, a copy of the packet is
passed to the multicast forwarder.

Similarly, unicast packets are checked to see that the
destination matches one of the system’s addresses. In
the special case of the packet being targeted to a link-
local address, only the link-local address for the receiv-
g interface 1s compared. If there is an exact match,
the packet is processed normally; otherwise, it is
passed to the unicast packet forwarding routine.

Header Processing

After a packet has been marched to a local address, the
IPv6 headers must be processed, independently of
whether the packer is multicast or unicast. This pro-
cessing is done in a common routine that handles all
nvpes of 1Pv6 headers. A number of actions mav result
trom the veritication and analvsis phase, including an
ICMDPv6 packet being sent back to the source, the
packet being silently dropped, or being forwarded to
another node due to a source route. If none of these
possibilitics occurs, the next 1Pv6 header in the packet
15 processed.

It the header s a known IPv6 header tvpe, the
appropriate routine is called. It not, this packet is
probably destined tor another prorocol module such
as TCP, the User Datagram Protocol (UDP), or
ICMPv6. The header type is looked up in the list of
active protocols and passed to the marching protocol
nput routine. If no entry is found, an ICMPv6 error
may be sent back.

Header Options

Since the hop-by-hop and destination node headers
have the same format, a common routine processcs
both types. As the routine processes each oprion,
it validates the option. If this fails, it checks whether
an ICMPv6 parameter problem error should be
sent, whether the packer should be discarded, or the
option ignored.

ICMPv6 Processing and Checksums
Upon receipt ofan ICMPv6 packet from a node in the
nerwork reporting an crror or other information, 1t is

Digital Technical Journal Vol.8 No.3 1996

first validated for correct packer tormar and checksum.
The packet is then turther processed based upon its
[CNVIPVO type value. Ifit has an [CMPV6 error tvpe (i.c.,
tvpe valueless than 128), the appropriate notifications
are sent to the aftected protocol. Neighbor discovery
packets, which are all informational, have a number of
additional consistency checks, and the packer s
dropped it it fails them. After the ICMPV6 packet has
been processed, it is also sent to anv ICMPV6 raw sock-
ets thar have requested reception of that tvpe. The
¢ is an LCMPv6 ccho request

exception to this ru
packet, which is not copied to the raw sockets.

When an ICMPv6 ccho request s received and
validared, the ICMPv6 ccho response packet is pre-
parcd. In the npical case, it is identical to the echo
request except for the ICMPv6 tvpe and checksum
value. The exception would be an echo request sent to
a multicast address, i which case a source address
must also be selected. Rather than computing the
checksum on the new packer, the received checksum is
simply adjusted down by 1, since the sole difference
berween the two packets is the value of the TCMPv6
pe fields, and ICMPv6 echo request and echo
response tvpes ditter by 1.

[Pv6 requires all nodes to support multicasting,
specificallv level 2 as defined in “Host Extensions tor
[P Multicasting.”* Although this was written for [Pv4,
the same general algorithms are used for 1Pv6. Onc
notable exception to this is thar the multicast addresses
used for neighbor solicitions and the predetined link-
local mulricasts such as all-nodes and all-routers do
not require periodic status reports.

Path Maximum Transmission Unit Discovery

Onc of the significant differences berween 1v4 and
IPv6 concerns fragmentation. In [Pv6, fragmentation
mav be done only by the node trom which a packet
originares. Forwarders, which mav be routers or hosts
acting upon source routing headers, are not permitted
to fragment packers. The burden is on the originating
node to send packets that are small cnough ro fit
through all the links along the paths to their destina-
tions, where cach link type may have a different maxi-
mum transmission unit (MTU). To case this burden,
IPv6 detines a mmimum link MTU of 576 bytes. A
node may usc this as the upper limit on packet size and
be assured that its packets are sufficiently small to
reach their destinations.

The mmimum MTU of all the links i a path
berween two nodes is reterred to as the path MTU.M In
many cases, the path MTU will exceed 576 bytes, and it
1s desirable to send the largest possible packets. 1P°v6
provides a mechanism by which a node mav discover
a path’s MTU.»® When a forwarder cannot forward a
packet because the packet is too large tor the nexthop’s
Imk MTU;, it sends an ICMPv6 Packer Too Big (PTB)
message back to the source of the packetr. The PTB

message contains the MTU of the constricting Jink.
The source node adjusts its packet size to fit through
this link.

Path MTU information is kept on a per-destination
basis and is stored in the routing table entry tora given
destination. Packets sent on that route will be sized
according to the path MTU vatlue. When a PTB mes-
sage is received, the appropriate route is updated to
contain the new path MTU value as reported in the
PTB message, and a timer is started. When the timer
expires, the path MTU value is increased to the
(known) MTU of the tirst hop link. This allows the
nodc to detect increases in the path MTU.

Switches are provided to disable path MTU discov-
cry system-wide, on a per-destination basis and on
a per-socket basis. When path MTU discovery is dis-
abled, packets are limited to 576 bytes.

Fragmentation

A packet that is larger than the MTU of the path on
which it is to be sent must be fragmented. Unlike 1Pv4,
the IPv6 header contains no fields to carry tragmenta-
tion information. Instead, this information is carried
in a specialized extension header, called the tragment
header. As shown in Figure 3, the ficlds in the frag-
ment header include an offset, in cight octet units, and
an identifier common to all fragments of the original
packet. The M (managed) tlag is used to indicate inter-
mediate fragments; the terminal fragment has the bit

cleared. Note that the amount of data in a fragment
packet is derived from the total packet length.

The first step in the fragmentation process is
to identity the fragmentable and unfragmentable parts
of the original packet (see Figure 4). The unfrag-
mentable part of the packet consists of the IPv6 header
and any extension headers that must be processed by
cach node traversed by the packet (¢.g., hop-by-hop
header, routing header). The fragment header is
appended to the untragmentable part. The rest of the
packetis divided into fragments, and cach fragment is
appended to a copy of the unfragmentable part plus
tragment header.

When the fragment header is appended to the
unfragmentable part, two fields in the untragmentable
part must be updated. First, the pavload length field in
the 1Pv6 header must be updated to reflect the length
of the fragment packer. Second, the next header tield
in the last header of the unfragmentable part must be
changed to indicate thata fragment header follows.

A copy of the unfragmentable part is created tor
cach fragment packet. As an optimization, Digital
UNIX allows portions ot a packet to be shared among
copies of the packet, to avoid an actual data copy. As
with IPv4, care must be taken to cnsure that fields
being updated are not contained in shared bufters.
This is typically accomplished bv copying the portions
that must be updated into a private memory butter
(mbut). Unlike IPv4, the untragmentable part may
not fit in a single mbuf, and the [Pv6 fragmentation
code must be capable of handling this case.

RESEQVED To reduce the possibility of tragment loss at the
source node, all the fragment packets are built betore
NEXT HEADER | RESERVED | FRAGMENT OFFSET ‘ |M : S .
any is passed to the data link tor transmission.
Lol 1dla(05l0)) A question that arises here is how big should
the fragment packets be? Should they be sized accord-
Figure 3 ing to the path MTU, or should they be limited to
Fragment Header 576 bytes? The former vields the desirable larger
FRAGMENTABLE PART
ORIGINAL PACKET A
))
UNFRAGMENTABLE | FIRST SECOND | Last
PART FRAGMENT | FRAGMENT | """ | FRAGMENT
&
FRAGMENT PACKETS
UNFRAGMENTABLE | FRAGMENT | FIRST
PART HEADER FRAGMENT
UNFRAGMENTABLE | FRAGMENT | SECOND
PART HEADER FRAGMENT
UNFRAGMENTABLE | FRAGMENT | LAST
PART HEADER FRAGMENT

Figure 4
Fragmentation

Digiral Technical Journal Vol.8 No.3 1996

9

packets, while the larter avoids undesirable fragment
loss (duc to the fragment packet being too big). The
Digital UNIX IPv6 prototvpe supports cither choice
on a svstem-wide, per-destination, or per-socket basis.
This is an example of separation of mechanism from
policy, a basic guideline being used across this project.

Reassembly

The reassembly process reconstructs the original
packet from fragment packets. Fragments belonging
to the same packet are identitied by a combination of
source [P address, next header rvpe (first header of the
fragmentable part) and fragment identifier. Individual
fragments are queuced within the network laver until the
original packet can be completely reassembled, at which
point it is passed to the appropriate protocol module.

When all fragments have arrived, the original packet
can be reassembled. A single copy of the unfragment-
able part is kept, and the data from each fragment
packet is appended. The pavload fength ficld of the [PvO
header is updated to reflect the length of the reassem-
bled packet, and the next header field of the last header
of the unfragmentable part is restored to reflect the first
header in the fragmentable part.

As with the fragmentation code, care must be taken
so that ficlds being updated are not in buftters shared
with other copics of the packet.

When the first fragment of a packet arrives, a timer
is started. If the timer expires before that packet is
complete, the fragments are discarded. It the offset
zero fragment has been received, an ICMPY6 error
message is sent.

Forwarding and Routing

[farcccived packet does not match one of the system’s
addresses and the svstem is not acting as a router, the
packet Is silently dropped. Otherwise, an attempt is
made to torward the packet. The first step in forward-
ing is to do a lookup in the routing table; the tpe of
lookup depends on whether the packer contains a
nonzero flow label. If it does, the lookup is based on
both the source address and the low label; otherwise
the destination address is used. It the lookup succeeds
and the length of the packet tits within the MTU of the
resultant route and interface, the packet is transmitted
to the next hop as indicated by the route. Otherwise
an appropriate ICMPV6 crror is sent back to the origi-
nating nodc.

Tunnels

Tunncling is a mechanism that allows packets of one
network tvpe to be encapsulated and forwarded within
anctwork layer packet of the same or a different tvpe.
IPv6 packets can be tunneled over cither 1Pv4 or IPv6
networks, as may 1Pv4 packets.''” The tunneling rou-
tine takes as mput a packet, prepends the appropriate

Digital Technical Journal Vol.8 No.3 1996

IP header tor the nerwork over which the packet will
be tunneled, and transmirs the resultant packer over
that network. Tunnels are unidirectional; there need
not be a corresponding tunncel in the reverse direction.

Rather than having mulaple tunnel interfaces (one
tor cach possible combination of protocol Y over
protocol X), the Digital UNIX implementation uses
asingle tunnel interface. This method was the sugges-
tion of Keith Sklower of the Universitv of California
at Berkelev.'® When the interface is initialized, onlv
automatic tunnelng of 1Pv6 over 1Pv4 is cnabled.”
To configure a static tunnel, where fixed end points
are used, a static route is added to the routing tables
with the proper destination and gateway (tunnel end
point) addresscs.

When a packer is presented to the tunnel nterface,
it looks up the route entry of the destination address.
The route contents tells the tunnceling routine how the
packet is to be encapsulated and torwarded. The route’s
gateway address indicates what underlving nerwork to
usc, and the route’s destination address indicates what
type of packet is being tunneled.

When a tunncled packer s received, the initial
header is stripped and the resulting packetis placed on
the appropriate IPv6 or IPv4 ifqueuc.

Transports

One of the strengths of the IPng cffort was the com-
mitment to prescrve the well-understood transports,
TCP and UDP, upon which a wealth of applications
have been built,
The IPvO specification calls for three particular
requirements of upper-laver protocols:
1. The pseudoheader checksum must accommodate
Jarger addresses.
2. The

computed.

maximum packet lifetime s no longer
3. The larger IPV6 header(s) must be raken into
account when computing the maximum pavload

size (e.g., TCP’s maximum scgment size [MSS]).

In addition to these mandated modifications, we had
to make a fundamental design choice. With two differ-
ent network laver protocols n the system, cach using a
difterent size address, our design choice could have
been to use two independent transport modules, one
for cach nenwork laver. Figures 5 and 6 show the inde-
pendent versus the integrated transport design options.

Although the independent model offers an clement
of design simplicity, it wastes memory by duplicating
cach transport laver function. In the Digital UNIX
implementation, these modules are implemented In
the kernel, and duplication would be expensive. Also,
the design and use ofa single programming interface
to access both sets of services would be complicated.

SOCKET
LAYER
USER /
KERNEL AF_INET AF_INET6
V4 TRANSPORT V6 TRANSPORT |—>
PCB PCB
LIST LIST
IPV4 IPV6
Figure 5

Independent Transport Implementation

SOCKET
LAYER
USER /
KERNEL
AF_INET/AF_INET6
V4 AND V6 TRANSPORT >
PCB
LIST
IPV4 IPV6
Figure 6

Integrated Transport [mplementation

The ability to maintain, let alone extend, the code base
would also sufter. Fortunately, duc to the fact that
[Pv4 addresses are a well-defined subset of the entire
IPv6 address space, it is relatively straightforward to
implement the transports so that a single sct of mod-
ules can be used over both network layers.”” To accom-
plish this, we increased the storage space allocated
tor addresses and separated those tunctions that are
dependent upon a particular network laver. We discuss
each of these issues in this section.

Storing Large Addresses

Two specific data structures must be modified to
accommodate addresses larger than the 32-bit 1Pv4
tvpe. The first of these is the sockaddr struct, whichiis
used when dealing with the BSD socket layer and
passed along to user applications. The second is the
Internet Protocol Control Block (PCB) data struc-
ture, the in_pcb. In this scction, we review the modifi-
cations to each structure.

A program that uses a transport does so by means of
the BSD sockets interface and passes addressing infor-
mation in a sockaddr structure. For IPv6, this is a
sockaddr_in6. Internally, the structure is defined so
that 64-bit alignment is preserved; however, it has the
following public definition:

struct sockaddr_in6 {
u_char siné_Llen;
u_char siné_family;
u_short siné_port;
u_int siné_flowlabel;
struct in6_addr siné_addr;

Although the concept of a sockaddr is generic in the
BSD architecture, the flow label and in6_addr mem-
bers of this structure are unique to IPv6 and would be
used only in the AF_INETO6 address tamily. The details
of'this are specified in Reference 21.

The in_pcb data structure is created for each socket
using TCP, UDP, or other clients of the network layer.
In addition to storing the source and destination
addresses, various other pieces of information required
tor proper communication are stored here, including
the port numbers, options and flags, a pointer to the
socket receiving the data, a header template, and a
pointer to the routing entry for the given destination.
For IPv6, this basic model has been retained, and addi-
tional information is stored. This information includes
local and remote flow labels and indicators of which
address tamily the application is using and which net-
work layer the transport communication is using.
Finally, a partial checksum of the transport pseudo-
header is stored here as well; its usc is described in the
following section.

In addition to the explicit storage of the network
layer and address family, the fundamental technique
that facilitates the use of a common transport is the
storage of IPv4 addresses in an [Pv6 tormat. This is
known as an IPv4-mapped address and is described
in “IP Version 6 Addressing Architecture.”® This
address format is explicitly reserved to store addresses
of systems that arc capable of using only the IPv4
protocol, and thus is an appropriate torm of storage
in the PCB for communications that will be sent using
the IPv4 protocol, as opposed to [Pv4-compatible
addresses, which are sent using IPv6 packets. These
mapped addresses are of the following form:

0000:0000:0000:0000:0000:FFFF:204.123.2.75

These addresses arc manipulated within the [Pv4
TCP and UDP protocols by means of macros that
allow the IPv4 addresses to be inserted, extracted,
or compared while in an IPv6 address structurc
(in6_addr). As an example, the code fragment in
Figure 7 shows an address being cxtracted tor use
in evaluating a configurable 1Pv4 socket option.

Special Transport/Network Layer Interactions
Within the integrated transport layers, the transport
protocol is treated independently of the particular
nenwork layer being used, and nenvork-layer-specific
functions are used to interface to either IPv4 or IPV6.
There are two particular instances in which the
transport layer has interactions with the [Pv6 network
layer over and above the exchange of data packets for
input or output. These are the notification and update
of path MTU, which is required in IPv6, and the
potential to refresh the neighbor discovery cache
based on forward progress; i.c., it the transport knows
that data is reaching its destination, it can validate the

Digital Technical Journal Vol.§ No.3 1996

12

/*

i/

* Test address for IPv4 characteristic

if (inp->inp_netlayer == AF_INET) {
struct in_addr tmp;

tmp.s_addr = IN6_EXTRACT_V4ADDR(Cinp~->inp_faddr);
if ('in_localaddr(tmp))

Figure 7
Code Fragment of a IPv4-mapped Address

current nenwork layer path. We investigate cach of
thesc issucs in turn.

Path MTU discovery, as previously described, is
triggered by ICMP messages processed in the network
layer, with learned information stored in the routing
table. In the course of processing a PTB message, the
transport laver is notified through its control input
(ctlinpurt) path. This is required because the reception
of'such an ICMP message indicates that the packet in
transit has been discarded, thus the protocol may need
to take appropriate action. In the case of TCP, it is
necessary to recompute the maximum segment size
and retransmit the affected dara. Although this is not
required for UDP, which is a purce datagram service,
this knowledge can be made available to the corre-
sponding socket owner.

The other interaction between an upper laver and
the IP layer occurs when the upper layer, specifically
the TCP transport, wishes to indicate that communi-
cations with a destination host has made forward
progress, tor the purpose of resetting the timer in the
neighbor discovery cache. This positive fecdback
mechanism is described in the neighbor unrcachability
detection portion of the “Ncighbor Discovery tor 11
Version 67 specification and prevents unnecessary
probing of the current path.” When acknowledg-
ments to previously sent data have been received, the
TCP updates the routing table entry by means of an
RTM_CONFIRM message. This call is handled by the
ncighbor discovery module, which rescts the internal
neighbor discovery state torappropriate route entrics,
as described later in this section.

Source Address Selection

Many applications do not specify a particular source
address to use when initiating communications
with a remote host but instead usc the symbol
INADDR_ANY, which allows the transport to select
a source address (and corresponding interface) to usc.
For most [Pv4 systems, this is a trivial exercise it only
a single address on a single interface exists. However,
multiple addresses per intertace will be a common

Digital Technical Journal Vol.8 No. 3 1996

occurrence on IPv6 hosts, and so the process of
choosing a source address to use becomes important.
The source address selection is typically done when
the PCB is bound to the application’s socket, but this
function is also available to users of raw sockets and to
other network-laver users such as ICMPv6.

The source address selection function takes as argu-
ments a destination address and an optional intertace
pointer. The latrer is used when known, but in the case
of initiating a transport connection it is null. The
destination address is first checked against the list of
current prefixes that have been advertised on the
host’s links, which would indicate which interface to
use. (It also indicates that the destination is a potential
neighbor, but this knowledge is not used at this
point.) Next, the address is tested tor multicast versus
unicast, and then the scope (link-local, site-local,
organization-local; and global) is evaluated. Finally,
a local address of equivalent (or greater) scope than
the destination with the longest prefix match s
returned. The scope must be taken into consideration
to ensure that the destination system will be able to
successhully respond to the communication. The
longest pretix match is an attempt to ensure a reason-
able routing path berween the two systems, which
could involve a complex mix of service providers.

Checksum Optimization
Although the [Pv6 header itself does not contain a
checksum, the TCP, UDP, and ICMPv6 protocols do
require a 16-bit one’s complement checksum calcu-
lation to validate the integrity of transmitted and
received data. Performing this checksum can be an
expensive operation. While this prototype was being
developed, some alternative mechanisms were investi-
gated, such as varying the size of the sum variables and
operand units and tight versus expanded loops. The
sclected algorithm ottered the best performance for
the Alpha processors, while retaining the ability to be
used on 32-bit processors.

At the point where the PCB is established tor trans-
port communications, a partial checksum is calculated

tor the IPv6 pseudoheader, which consists of the source
and destination addresses, the packet payload length,
and the next header value. This partial checksum, with
the exception of the payload length (which varies per
packet), is then stored in the PCB, to be passed along
with the pointer to user data within the memory butter
to the checksum function. The initial checksum caleu-
lations are donce using 32-bit values in 64-bit registers,
and later are collapsed to the final 16-bit sum. This is
coded as onc large C statement, adding the various
pseudoheader components in pieccemeal tashion. This
allows the compiler to schedule the instructions for
optimal performance. The final packer checksum can
then be computed by adding the partial checksums for
the pscudohcader with the checksum values for the
data itself] plus the pavload length.

Neighbor Discovery Overview

The Neighbor Discovery specification describes sev-
eral important aspects of an IPv6 node’s behavior in
relation to other IPv6 nodes connected to a common
link. IPv6 nodes on the same link use neighbor discov-
ery to discover each other’s presence, to determine
cach other’s link-laver addresses, to find routers, and
to maintain reachability information about the paths
to active neighbors and remote destinations.' These
functions are performed with several ICMPv6 mes-
sages and options, as shown in Figure 8. The same
messages are also used for address autocontiguration
and duplicate address detection, as described in “IPv6
Stateless Address Autoconfiguration.”’

Interface Initialization

When an interface is initialized ftor use with 1Pv6, a
link-local address may be created without any external
configuration, allowing the system to begin transmit-
ting and rcceiving packets to nodes sharing a common
link. This is performed by appending an interface
token to the predefined link-local address prefix,
FE80::. The length and content of the interface token
is link spcaitic. For example, the address token for an
Ethernet intertace is the intertace’s built-in 48-bit
IEEE 802 address, resulting in a link-local address
such as FE80::0800:2BBE:6260.*

Duplicate Address Detection

Before a unicast address can be assigned to an inter-
tace, a process known as duplicate address detection
(DAD) must be pertormed.” This process provides a
degree of assurance that two nodes do not use the
same address on the same link. The basic mechanism
involves sending an ICMPv6 neighbor solicitation
(NS), where the target address is the address being
tested. If another node is using the address, it will
respond with a neighbor advertisement (NA). Multi-
cast is used for both NS and NA packets, so DAD can

be performed fer all unicast addresses, including the
first address assigned to the interface.

While an address is undergoing DAD, it is said
to be a tentative address. It is not used to receive
packets, nor is it used in outbound packets. The
LAG_TENTATIVE flag in the in6_localaddr structure
identifies addresses in this state. When a duplicate
address is detected, the error is logged and the
LAG_DADFAILED tflag is set in the in6_localaddr
structure. If a duplicate address is not detected, the
LAG6_TENTATIVE flag is cleared, making the address
available for use on the interface.

Address Resolution

In IPv6, the function of mapping unicast IPv6
addresses into link-layer addresses is performed using
ICMPv6 messages. This is a departure from I1Pv4,
which relied on separate protocols (e.g., Address
Resolution Protocol [ARP]) to pertorm this func-
tion.? IPv6 unicast address resolution is defined in
a generic manner and can be run over any link layer
that provides a link-layer multicast service (this
includes point-to-point and broadcast links, special
cases of multicast). This protocol may also be used for
nonmulticast-capable media (c¢.g., nonbroadcast mul-
tiple access [NBMA] media such as ATM), provided
that the link laver provides the necessary services. The
function of mapping multicast IPv6 addresses into
link-layer addresses is specific to each link tvpe.

The unicast address resolution function uses two
ICMPv6 message tvpes: the NS and the NA. When a
node needs to resolve the unicast IPv6 address of
a neighbor to a link-layer address, it builds an NS
containing the IPv6 address to be resolved (targer)
and sends it to the solicited-node multicast address
corresponding to the target address. As an optimiza-
tion, the node includes its own link-layer address as
an option n the NS message.

When an address is assigned to an intertace, a node
is required to join the solicited-node multicast group
corresponding to that address, so a node will reccive
NSs sent to its solicited-node multicast address. Upon
receipt of an NS, the target node builds an NA con-
raining its link-layer address. The NA also contains the
IPv6 target address, so that the soliciting node can
associate the response with the corresponding request.
The NA is then sent back to the soliciting node.

Upon receipt of an NA, the solidting node can map
the target IPv6 address to the corresponding link-layer
address and send any packets that were queued awaiting
address resolution. Once a node has resolved an [Pv6
address, the link-laver address is cached until it must
be replaced or deleted. A different link-layer address
may be received in a subsequent NA packet, with the
O-bit (override flag) set to indicate a new value. If
the neighbor unreachability detection algorithm
(explained in the next section) detects that the cached

Digiral Technical Journal Vol.8 No.3 1996

—

ROUTER SOLICITATION
TYPE CODE CHECKSUM
RESERVED
OPTIONS ...
ROUTER ADVERTISEMENT
TYPE CODE CHECKSUM

CURRENT HOP LIMIT

ROUTER LIFETIME

m| o] reseaveo

REACHABLE TIME

RETRANSMIT TIMER

OPTIONS

NEIGHBOR SOLICITATION

TYPE Ccope CHECKSUM
RESERVED
TARGET ADDRESS
OPTIONS ...
NEIGHBOR ADVERTISEMENT
TYPE CODE CHECKSUM
R|s|o] RESERVED
TARGET ADDRESS
OPTIONS ...
REDIRECT
TYPE CODE CHECKSUM
RESERVED
TARGET ADDRESS
DESTINATION ADDRESS
OPTIONS ...

SOURCE/TARGET LINK-LAYER ADDRESS OPTION

TYPE

LENGTH LINK-LAYER ADDRESS ...

| |

PREFIX INFORMATION OPTION

TYPE

LENGTH l PREFIX LENGTH | L | A | RESERVED1

VALID LIFETIME

PREFERRED LIFETIME

RESERVED?2
PREFIX
REDIRECTED HEADER OPTION
TYPE —‘ LENGTH RESERVED
RESERVED
IP HEADER AND DATA
MTU OPTION
TYPE T LENGTH RESERVED
MTU
Figure 8
Nceighbor Discovery Packets
14 Digital Technical Journal Vol.8 No. 3 1996

value is not rcachable, the mapping will be deleted.

The address resolution process has several implica-
tions for the implementation. Outbound packets must
be queued pending link-layer address resolution, and
link-layer addresses must be stored somewhere. The
“Neighbor Discovery for IP Version 6” specification
describes a conceptual neighbor cache to hold this
information." The Digital UNIX IPv6 prototype uses
several data structures to implement the neighbor
cache. An nd6_llinfo structure keeps track of each
entry in the neighbor cache. This structure contains
the queue header for packets awaiting link-layer-
address resolution. The link-layer address is stored in
the routing table, in a host route entry for the destina-
tion IPv6 address. The RTF_LLINFO flag in the route
entry indicates the presence of link-layer information.
Each nd6_llinfo structure contains a pointer to the
corresponding routing table entry, and the routing
table entry points back to the nd6_llinfo structure.

The use of routing table entries to hold the link-
layer-address information is an optimization. A rout-
ing table entry is associated with the majority of
packets transmitted for reasons other than address res-
olution. Storing the link-layer address in the routing
table entry avoids the overhead of a separate link-layer-
address table. This approach is modeled after the BSD
4.4 system’s ARP implementation.

Neighbor Unreachability Detection

Neighbor unreachability detection (NUD) has its
roots in the dead gateway detection in 1Pv4 but has
been generalized in IPv6 to include all neighboring
nodes (not just gatcways).” Unlike IPv4, the mecha-
nisms supporting NUD are an integral part of IPv6.
IPv6 nodes monitor the reachability of neighboring
nodes to which packets are being sent. An IPv6 node

relies on reachability confirmations to determine the
reachability state of a neighbor. In the absence of any
reachability indications, an IPv6 node will periodically
use an NS to actively probe the reachability of a neigh-
bor. An NA sent in response to an NS provides reacha-
bility contirmation. The S (solicited) tlag in the NA
is provided specifically tor this purpose. It neither
method succeeds within a given period of time, a
neighbor is considered unreachable. Figure 9 shows
the neighbor unreachability states.

A reachability confirmation may take several difter-
ent forms. Any packet received from a neighbor can be
viewed as a reachability confirmation, provided that
the packet would only have been sent by the neighbor
in responsc to a packet sent from the local node.
A TCP acknowledgment is one example: receipt of
a TCP ACK indicates that a packet sent to the neigh-
bor did in factreachit. Another example is an ICMPv6
redirect message. Receipt of a redirect message indi-
cates that the neighboring router received a packet
from the local node.

In the Digital UNIX IPv6 prototype, the nd6_llinfo
structure holds NUD state and retransmit count infor-
mation. A field in the routing table entry is used tor
NUD timers. The RTF_LLVALID flag in the route
entry is used to indicate that the neighbor is reachable.
A ncw routing message type (RTM_CONFIRM)
was defined to pass reachability confirmations to the
neighbor cache. This mechanism is used by TCP upon
receipt of new aclinowledgments.

Autoconfiguration
One of the goals of IPv6 is to work properly in a

dynamic network environment without the need for
manual intervention on each system attached to the

RECEIVE LINK-LAYER ADDRESS (UNSOLICITED)

RECEIVE LINK-LAYER ADDRESS (UNSOLICITED)

NONE MAX_MULTICAST_SOLICIT

RETRIES EXCEEDED

REACHABILITY
CONFIRMATION

REACHABLE
QUEUE RECEIVE NA TIME A y
PACKET (SOLICITED) EXCEEDED
—>| INCOMPLETE REACHABLE STALE
SEND NS REACHABILITY
(MULTICAST) CONFIRMATION SEND
PACKET

REACHABILITY
CONFIRMATION

T PROBE DELAY
MAX_UNICAST_SOLICIT DELAY_FIRST_PROBE _TIME
RETRIES EXCEEDED EXCEEDED
SEND NS
(UNICAST)

Figure 9
Neighbor Unreachability States

Digital Technical Journal

Vol. 8 No.3 1996

15

nerwork. The solution is to allow important picces of
information to be learned and the system to autocon-
figure itsclt using this data. IPv6 autoconfiguration
cncompasses the following items:

= Router discovery

= On-link prefix discovery

= [nterface attribure configuration
= Srarcless address configuration

= Statctul address configuration

The mechanism tor delivering this information to
the hosts is the router advertisement (RA) packet of
the Neighbor Discovery Protocol. In the following
sections, we desceribe the methods we developed to
process these packets and update the system.

Host Autoconfiguration Daemon

To process these RAs, we designed a host dacmon
called nd6hostd, which resides in the application space
ot the Digital UNINX operating svstem. We determined
that a user-mode dacmon was the most ctficient wav
to implement IPv6 autocontiguration for the tollow-

INE reasons:

= A user-mode dacmon would avoid kernel bloat.
= Maintenanee and extensibility would be casier.
s The function is not performance critical.

The autocontiguration processing is implemented
as a single exccutable imagge, as a cohesive set ot ughrly
coupled modules. The daemon currently is designed
as a single-threaded application that uses a dispatch
mechanism to call cach specialized function module in
rurn. We will examine the idea of having this dacmon
run as a multithreaded application in the future.

The nd6hostd dacmon communicates with the
network subsvstem in the kernel through multiple
techniques. Figure 10 shows the autoconfiguration
processing modules. The raw socket interface is used to
receive RAs, and 1/0 control messages (ioctls) are used

to manipulate kernel data structures. Also, the routing
table is updated as necessary, by means ot a raw socket
interface to the PF_ROUTE protocol family.

We designed the IPVO raw socket’s interface with
the ability to pass only specific ICMPv6 messages to
a user and to flter extrancous packets or protocols.
The ndohostd dacmon sets a socket option to receive
only neighbor discovery RAs. It then exccutes a dis-
patch routine that polls the raw socker, awaiting
packets. When darta is available on the socker, the dace-
mon determines the characteristics ot the message,
creates a data structure to contain it, and calls the nece-
essary functions to pertorm autoconftiguration. The
dispatch module, in addition to polling socket descrip-
TOrs, SUPPOrts necessary timer management functions
such as creation, deletion, and expiration. Figure 11
shows the application daemon design center.

KernelInterface Data Structures

In many wavs, the data link intertace is the focus of
IPv6 autocontiguration support. The kernel data struc-
tures for IPv4 intertaces are not suthcient to implement
the necessary IPv6 functions. We designed and imple-
mented new interface data structures that encapsulated
the existing IPv4 structures. This allowed us to avoid a
recompilation ot the existing dara link drivers on the
Digiral UNIX operating svstem. In the future, we will
attempr a design i which the interface structures for
IPv4 and IPv6 are completely integrated.

As shown in Figure 12, we designed an in6_ifncet
structure to support cach data link type (c.g.,
Etherner, PPP) loopback) and used the existing
itnet structures to point to those link interfaces. The
in6_itmet has its own in6_ifaddr structure for cach
IPvO address configured in the data structure
in6_localaddr. We also defined the in6_rourer struc-
ture to support cach router available tor the imple-
mentation. The in6_router structure specities the
mterface of the router, neighbor cache route, and
the IPv6 address ot the router.

ON-LINK INTERFACE STATELESS STATEFUL
ROUTER PREFIX ATTRIBUTE ADDRESS ADDRESS
DISCOVERY DISCOVERY PROCESSING CONFIGURATION CONFIGURATION (DHCPV6)

T T T T T

RECEIVING INTERFACE

MANAGED BIT, OTHER
CONFIGURATION BIT

PREFIX OPTIONS:
ADDRESS PREFIX

PREFIX OPTIONS: | HOP LIMIT
REACHABLE TIME

IPV6 SOURCE
ADDRESS DEFAULT | ON-LINK PREFIX

ROUTER PREFIX LENGTH | RETRANSMIT TIME | PREFIX LENGTH
LIFETIME VALID LIFETIME | LINK MTU VALID LIFETIME
PREFERRED LIFETIME
ROUTER ADVERTISEMENT
Figure 10

Autocontiguration Processing Modules

lo Digiral Technical Journal \ol.§ No.3 1996

CALL AUTOCONFIGURATION

PROCESS
AUTOCONFIGURATION
DATA AND UPDATE
KERNEL STRUCTURES

PROCESSING MODULE

SET AUTOCONFIGURATION
PROCESSING TIMERS

A

DISPATCH MODULE

POLL ON SOCKET
OPEN RAW SOCKET DESCRIPTOR
BUILD TOLISTEN FOR RAs
AUTOCONFIGURATION
DATALISTS
IOCTLS
USER SPACE
________________ + — — — —m m —_— e —_— e — = —
KERNEL SPACE
ROUTING TABLE NEIGHBOR
AND INTERFACE RAW SOCKET MODULE |- s DISCOVERY
STRUCTURES PROCESSING
Figure 11
Application Daemon Design Center
in6_tfnet
~ in6_router
ifnet (IPv4)
r-—-~-""~>"">"">""~>"">""=>""="=>""=""=>"">"">”"=77 ';
| ETHERNET, PPP, FDDI, ATM, TUNNEL e
___________________ _
n6_ifaddr L 4
- LS 0 o ea e e NS S o e oo ey]
| ADDRESS CONFIGURATION PARAMETERS | ROUTING
L AND POINTERS TO IPV4 ADDRESSES _J' TABLE
_____ L I
| in6_localaddr |
} ADDRESSES
) ADDRESS STATES
DATA LINK INTERFACE !
L ______ _
in6_prefixes

Figure 12
Autocontiguration Interface Structures and Relationships

Interface Attribute Autoconfiguration

To autoconfigure the intertaces tor IPV6, we created
new ioctl functions to create, delete, update, and
access the interfaces. In addition to their use by the
nd6hostd daemon, these ioctls may be used by any
tuture modules that need to access or manipulate the
intertaces. This might include specialized contigura-
tion utilities, Simple Network Management Protocol
(SNMP) management functions, sccurity tools, or
other services,

The intertace module to update and maintain inter-
face structures tor nd6hostd serves two purposes: to
update dara link artributes providad by the RAS and wo
maintain the data structures as a set of linked lists for

router discovery, on-link prefixes, and address configu-
ration. Figure 13 shows the interface attribute updates.

Router Discovery

An RA packet has mandatory and optional parts.
Before a default router is added to the routing table,
the following interface attributes must be determined:
I. Receiving interface

2. Current hop limit

3. Reachable and retransmit times for use in NUD

The link-local address tfrom the source link-laver
option of the RA is then added to the routing table,

Digital Technical Journal Vol.8 No. 3 1996

AUTOCONFIGURATION
INTERFACE ATTRIBUTE
PROCESSING

IOCTLs
SIOCIPVEADDRTR
SIOCIPV6DELRTR
SIOCIPV6IFINIT
SIOCIPV6AIFADDR
SIOCIPVESIFATTR

SIOCIPV6GIFATTR

SIOCIPVEMIFADDR
SIOCIPV6GIFADDR
SIOCIPVEDIFADDR

USER SPACE

KERNEL SPACE

IPV6 INTERFACE CONTROL MODULE
ADDRESSES AND STATE
ON-LINK PREFIXES
ROUTEATTRIBUTES
DATA LINK ATTRIBUTES

Figure 13
[nterface Artribute Updates

and the kernel data structures tor router information
arc updated. The router litetime ficld in the RA defines
how ong this router may be used as a default router.
The nd6hostd dacmon tirst updates the interface
attrnburtes. A timer is set using the appropriate routine
from the dispatch module. When the timer expires,
the delete default router routine is called, and the
router is deleted from the routing table. The dacmon
must also be able to delete the router if it receives an
RA with a zero lifetime value, which can occurwhen a
node is acting as a router but is resct to be a host.

On-link Prefixes

An on-link prefix in IPv6 defines a subnetand is typi-
callv contigured on a router for a specific link by the
nerwork administrator. The router then advertises this
prefix to all nodes connected to that link as a prefix
option, appended to an RA. A pretix option defines a
single prefix only, but an RA may contain more than
one such oprion. As shown in Figure 8 the prefix
option provides the following information:

s Prefix length

= Link- or L-bit, which is sct if the prefix is directly
readable on link (i.c., a neighbor)

= Autonomous- or A-bir, which is setif the prefix can
be used for stateless address configuration

The length of time the prefixis valid

The dacmon adds the pretix to the routing table.
Then a rimer routine is called from the disparch mod
ule and s set for the tme the prefix e vahd, When the
dispatch routine calls the delete on-link prefix module,
the prefix is deleted from the routing table. A prefix
cann also be deleted when a new RA presents the pre
tix with a lifetime of zcro. In that case, the on-link
prefix: module will stop the timer routine and delete
the prehn trom the routmy table.

Iywcal Technrcal Tounal Vol & Noodo 1Y

Address Configuration

Address configuration is onc of the new paradigms
that must be supported in IPv6. Two configuration
methods, stareless and statetul, are provided to auto-
contigure addresses fora host. The M-bit flag in an RA
message determines which method to use and intorms
a host. In addition, the other-bit (O-bit) flag is pro-
vided to configure other nenwork parameters required
for the host’s operation on the nerwork when the
stateful configuration is used.

Address autoconfiguration in IPv6 supports the
ability to dyvnanucally renumber a link or a complere
nenwork through the use of lifetimes specified in the
RA message. The valid liferime is the time the address
has before expiration. When the timer expires, all con-
nections using that address are dropped by the imple-
mentation, and no new connections are permiteed.
The preferred lifetime is provided to inform an imple-
mentation that an address is about to expire; it tvpi-
callv is set to a lower value than the vahd hifetime.
When this timer expires, the address is said to enter the
deprecated stare, ar which point an implementation is
permitted (as a configurarion option) to prevent new
communications using this address as a source or des-
tination. This model is designed to provide network
administrators with control ever the use of network
addresses without manual intervention of cach host on
the network. The stateless model is intended for users
who do nor need tight control over address contig-
wration; stateful mechanisms will be used where the
adminictrarors want to delegare addrecces hawed on a
client/server method. Figure T4 shows the address
autoconfiguration diagram.

When rhe dacmon receives an RA - and rhe A-hir i
sety the daemon can use the prefines provided to per
form stateless address configuration. The daecmon uses
the on-link prefix(es) provided in the RA to configure

addresses tor an interface. Addresses are created,

ADDRESS

DAEMON

AUTOCONFIGURATION

STATELESS

AUTOCONFIGURATION:
USE ON-LINK PREFIXES
AND INTERFACE TOKEN

STATEFUL
AUTOCONFIGURATION:
PROCESS CONFIGURATION
INFORMATION. START
DHCPV6 CLIENT

J LOCATE
DHCPV6 CLIENT gggs‘ég
x
USER SPACE IPV6 IOCTL IPV6 10CTL
KERNELSPACE | B

INTERFACE

ADMINISTER ADDRESS
CONFIGURATION STATE
FOR THE RECEIVING

Figure 14
Address Aurocontiguration

deleted, or updated on the interface based on the pre-
fixes and lifetimes received i the RA packet.

Interactions with Stateful Address Configuration

When the daemon receives an RA, and the managed
bit flag is sct, the host can use statetul address con-
figuration, using DHCPY6, DHCPV6 is implemented
as a separate dacmon our prototvpe.
DHCPVO defines a complete new model trom the

existing DHCPv4 implementations in the industry to

process in

dvinamically configure addresses. The use of link-local
addresses, multicast, address configuration, and inher-
ent support tor dvinamic renumbering of hosts in
IPvO caused a new archirecrure and design in the
DHCPVO specitication. A comparison of the architec-
tural changes benween DHCPv4 and DHCPv6 can be
tfound in the DHCPY6 specification.”

Application Services

Most TCP and UDP applications can be used with
[Pv6 with relatively minor modifications. The primary
issuc is the larger address size, both forinternal storage
needs in the application and tor address transter across
svstem interfaces. In this section, we review these
issues and orhers.

API

Any AP currentlv in use for IPv4 could be moditied
For IPv6, but only the BSD sockers APL1s being inves-
rigared within the IETF tor two reasons.”t* First, large
numbers of applications use the sockets interface for

IPv4, which represents a very large investment and a
potential pool of IPv6 applications. Sccond, this Al is
perhaps in the most widespread use in the industry and
1s available on a wide varierv of plattorms: the bencetis
of standardization are compelling,

DNS AAAA Support

DNS provides support for mapping names to [P
addresses and mapping 1P addresses back to their cor-
responding names.* The tvpe A resource record s
used to hold an IPv4 address. Since its size is fixed
ar 4 bvtes, a new resource record npe, AAAA, was
defined ro hold IPv6 addresses.” The Digital UNIN
IPVv6 protorvpe includes a widely used implementarion
of the DNS known Interner Name
Domain (BIND), which has been modified to support
AAAA records.

as Berkelev

Address Manipulation Routines
A tvpical 1P implementation provides several library
routines tor manipulating I addresses. These include
routines for converting addresses berween binary and
rextual representations and routines for translating
names to addresses and addresses to names. New rou-
tincs had to be provided to perform these functions
for 1Pv6 addresses. The Digital UNIX [Pv6 prototvpe
provides the routines described in “Basic Socker
[ntertace Extensions tor 1Pv6. !

inetd Daemon

The inerd daemon creates sockers on behalt ot applica-
tions, invoking the applications only when needed and
Vol. 8 No. 3

Digital Technical Journal 1996

20

passing the open sockets to them. With the advent
of the AF_INETO6 socket tvpe, inctd was modified
to accept a new application configuration option in
its configuration file. The kevword inet6 is vsed to
indicare an application that wants to use AF_INET6
sockets. The kevword inet (or the absence of a kev-
word) indicates use of AF_INLET sockets.

Applications

A tvpical application needs only minor modification to
use the AF_INETG6 address tamilv. Applications that
use addresses as parr of their design or protocol, such
as the File Transter Protocol (FTP), require more
extensive moditication. The Digital UNIX IPV6 proto-
tvpe includes several basic applications that have been
moditied to support IPv6, including Telner and FTP.
These programs were modified to use IPV6O sockets,
address structures, and librarv routines. Note that the
IPv6 sockets also support communications over [Pv4,
so thatapplications need not mainrain separate sockets
tor 1Pv4 and [Pv6, and a sing
interoperate with both tvpes of remote systen.

¢ executable image can

Future Work

Future implementation efforts will include security,
routing, statcful address configuration, dvnamic
updates to DNS, IPv6 over PPP and ATM, resource
reservation, and service location. In addition, we will
review clements of our existing design and implemen-
tation architecrure toincrease performance and to ease
the transition from [Pv4 to IPv6. We will continue to
participate in the IPv6 industry multivendor interop-
crabiliov events, which is a practical and concentrated
cttore to debug the specifications and the code base.

IPvO sccurity supports both the authentication and
the encryprion of TPv6 packets end-to-end.* The mod-
ule tor these functions will reside in the kernel and most
likelvwill be called at the pontwhere the IPv6O nenwork
laver packet is processed. A key management frame-
work is being developed to support both authentica-
rion and encryption. To access the kev management
intertace, a sockers APL extension will be provided to
supply the keyving criteria for the security modules.

To test the interoperability and robustness of
the IPVO implementations, a test nenwork known as
the 6BONE has been created on the Internet. This
nascent test bed is currently being built with statically
defined tunnels connecting IPv6 nenworks. Our next
step in IPv6 development will be to implement rout-
ing prorocols, starting with Routing Information
Protocol version 6 (RIPVO) for unicast routing.
Subsequent goals will be to support Open Shortest
Path First version 6 (OSPEv6) and to provide mulri-
cast routing.

Digital Technical Journal Vol.8 No.3 1996

Stateful address configuration will be implemented
as specificd in DHCPv6 and will contain a client, a
server, and a relav-agent. This work will be tightly cou-
pled with dyvnamic updates to DNS to provide auro-
configuration in conjunction with autoregistration in
the directory service. Even for nenworks that use state-
less address autocontiguration, DHCPVO will be avail-
able to configure other parameters tor the host and to
add, delete, and update name information associated
with addresses in DNS.

Additional data link intertaces will be supported for
PPP and ATM. These nonbroadceast architectures will
require some design analvsis to implement in order to
support neighbor discovery, autocontiguration, and
the routing models tor 1Pv6. Digital has been active
within the TETF working groups that are defining the
ATM solutions.

[Pv6 now supports tlow information in the IPv6
header and in the IPv6 BSD socker APT structure. This
inherent qualitv-of-service (QOS) mechanism in 1Pv6
meshes well with efforts to support reserve resources
on a nenwork as specified in the Resource Reservation
Protocol (RSVP).*” Using RSVP over broadeast and
nonbroadcast data links will cncompass a design cen-
rer that supports a wide range of resource reservation
parameters to mainrain a consistent pertormance
modecl for video- and audio-related applications across
ancnwvork parh.

Service locarion is an emerging technology thatwill
permit a host to query the nenwork about the location
of difterent services (c.g., NFS, sccurity key manage-
ment, directory services).™ Currently in development
tor TPv4, service location holds promise for 1Pv6 and
mav benefit from the greater level of support for basic
technologies, such as sccurity and multicast capabilities.

Summary

Digital has designed a prototvpe of IPv6 on the Digiral
UNIX operating svstem. Techniques and technologies
have been developed to accommodate aspects of the
IPv6 architecture; in particular, the transport laver
modules were modified to use nwo distiner nerwork-
laver protocols. The new Neighbor Discovery Protocol
and algorithms have also been implemented in the pro-
rorvpe. IPv6 includes mechanisms to do borth statceless
and stateful address configuration as well as router dis-
covery. The Digital UNIX [Pv6 prototvpe contains
a user-mode process that implements these functions.
In addition, enhancemients have been made to 1Pv4
services, and techniques have been developed to sup-
port the transition ot existing applications.

References

1. P Gross and P Almquist, “TESG Deliberations on Rout-
ing and Addressing,” REC1380 (November 1992):

[OF)

20.

21.

22.

S. Bradner and A, Mankin, “The Recommendation
tor the 1P Next Generation Protocol,” RFC1752
(January 1995).

R. Hinden, “Simple Internet Protocol Plus White
Paper,” RFCI1710 (October 1994).

. S. Deeringand R. Hinden, “Internet Protocol, Version

6 (IPV6) Specitication,” RFCI883 (January 1996).
Y. Rekhter and T Li, “An Architecture for IPv6 Uni-
cast Address Allocation,” RFC1887 (January 1996).

R. Hinden and]. Postel, “IPv6 Testing Address
Allocation,” RECL1897 (January 1996).

. S. Thomson and T. Narten, “1Pv6 Stateless Address

Autoconfiguration,” REC1971 (August 1996).

. J. Bound and C. Perkins, “Dynamic Host Configura-

tion Protocol for IPv6 (DHCPv6),” Work in progress
(August 1996).

. A. Contaand S. Dceering, “Internet Control Message

Protocol (ICMPvO6) tor the [nternet Protocol Version
6 (IPv6),” RFCL885 (January 1996).

. T. Narten, E. Nordmark, and W. Simpson, “Ncighbor

Discovery tor IP Version 6 (1Pv6),” REC1970 (August
1996).

. M. McKusick etal., The Design and Implementation

of the 4.4 BSD @peruting System, (Reading, Mass.:
Addison-Wesley, ISBN: 0-201-54979-4, 1996).

. V. Fuller er al., “Classless Inter-Domain Routing

(CIDR): An Address Assignment and Aggregation
Strategy,” RFC1519 (Seprember 1993).

. S. Deering, “Host Extensions tor 1P Multicasting,”

RFECIT12 (August 1989).

. J. Mogul and S. Decring, “Path MTU Discovery,”

RFC1191 (November 1990).

.). McCann et al,, “Path MTU Discovery for 1P

Version 6,” RFC1981 (August 1996).

. W. Simpson, “IP in IP Tunncling,” RFCI1853

(October 1995).

. A.ContaandS. Decring, “Generic Packet Tunneling in

I Pv6 Specification,” Work in progress (October 1996).

. K. Sklower, private communication to Matt Thomas,

Scptember 1995.

. R Gilligan and E. Nordmark, “Transition Mecha-

nisms for IPv6 Hosts and Routers,” RFC1933 (April
1996).

S. Decering and R. Hinden, “IP Version 6 Addressing
Architecture,” RFC1884 (January 19906).

R. Gilligan et al., “Basic Socket Intertace Extensions
for IPv6,” (Work in progress, April 1996).

M. Crawford, “A Mecthod for the Transmission of IPv6
Packets over Ethernet Networks,” RFC1972 (August
1990).

23. D. Plummer, “An Ethernet Address Resolution Proto-
col,” RFC826 (November 1982).

24. D. Clark, “Fault Isolation and Recovery,” RFC816
(July 1982).

25. W. Stevens and M. Thomas, “Advanced Sockers API
for IPv6,” Work in progress (October 1996).

26. . Mockapetris, “Domain Names—Concepts and
Facilities,” RFC1034 (November 1987).

27. S. Thomson and C. Huitema, “DNS Extensions to
Support IP Version 6,” RFC1886 (December 1995).

28. R. Atkinson, “Securitv Architccture for the Internet
Protocol,” (Work in progress, June 1996).

29. “Resource ReSerVation Protocol (RSVP)—Version 1
Functional Specitication,” (Work in progress,
August 1996).

30. J. Veizades cr al., “Service Location Protocol,” (Work
in progress, June 1996).

General References

S. Bradner and A. Mankin, eds., IPrng—Internet Protocol
Next Generation (Reading, Mass.: Addison-Weslev, ISBN:
0-201-63395-7, 19906).

S. Thomas, JPng and rthe TCP/IP Protocols (New York:
John Wiley & Sons, Inc., ISBN: 0-471-13088-5, 1996).

R. Braden, “Requirements for Internet Hosts—Communi-
cation Layers,” RFC1122 (October 1989).

G. Wrightand R. Stevens, TCP/IP lllustrated, Volinie 2—
The Implementation (Reading, Mass.: Addison-Wesley,

[SBN:0-201-63354-X, 1995).

Biographies

Daniel T. Harrington

As a principal software engineer in Digital’s IPv6 Program
Oftice, Dan Harringron participated in the Digital UNIX
IPv6 protorype ettfort. Prior to this work, he helped develop
the DECnet/OSI products on the ULTRIX and the Digiral
UNIX platforms. Atter joining Digital in 1982, Dan worked
in performance analysis, field support, and sottware devel-
opment. He received a B.S. in mathemartics from Renssclacr
Polytechnic Institute. Dan is currentdy with Lucent
Technologics.

Digital Technical Journal Vol.8 No.3 1996

21

~
~

James P. Bound

Jim Bound isa consulting sofware engineer and the tech-
nical director for IPvO within the 1PV6 Program Oftice. Jim
is responsible for the overall advanced development archi-
recrure and reference Alpha Digtital UNIN code base, which
verities that the 1Pv6 specitications are implementable. He
isalso Digital’s TETE [PVO rechnical leader and one of the
IPvo advanced development engineers on Alpha Digiral
UNIN. In 1993, Tim began his participation in the [ETF
towork on the [Png and the advanced development [Png
prototvpe. As a member of the [ETE'S TPng Direcrorare,
Jim helped determine the requirements and core architee
ture tor IPng’s Internet protocol and relared funcrionality
to support IPng. The result was the selection ofa proposal,
now known as the Internet Protocol version 6 (1Pv6). Jim
has an A.S . in business management and an A.S in com-
puter science. He is a coauthor ofseveral [PV6 specifica-
tions and acontributing author to the book /7°ng: [nternet
Protocol Next Generation. Heis amember of the TEEL
and the Internet Socicry.

John J. McCann

Jack McCann is a principal softwiare engineer in the UNIX
Tngincering Group and a member of the IPv6 project team.
He contributed to the design and implementation of the
Digital UNIX 1PV6 prototyvpe, including rourer discovery,
autoconfiguration, fragmentation, reassembly, path MU
discovery, forwarding, and the IPvo APL He participares in
several IETE working groups and is a coauthor of Interncet
REC 1981, “Path MTU Discovery for I version 6. Jack
joined Digital in 1988 ro become amember of the Distrib-
uted Svstems Technical Evaluation Group. He also worked
in the DECner/OST tor OpenVMS Enginearing Group
before taking his current position. He received a B.S.in
computer science (magna cum laude) from the University
of Lowell in 1988 and an M.S. in computer scicncee from
Boston University in 1995,

Digital Technical Journal Vol.8 No. 3 1996

Matt Thomas

Matr Thomas joined Digital in 1983 wich Software Services
in Calitornia. Although he is a principal software engineer
in the OpenVALS Systems Software Group, Matt has spent
the fast cight vears asavdeveloper of networking products
For the Digital UNIN and ULTRIN systems. Tn addition to
his ongoing mvolvement with Digital UNINX IPVO cftorts,
he s responsible tor adding [security to the Digital UNIX
operating svstenm. Mattis an active participant in various 1E 11
working groups and is a coauthor ot several Internet Drafts.

Preserving Computing’s
Past: Restoration and
Simulation

Restoration and simulation are two techniques
for preserving computing systems of historical
interest. In computer restoration, historical sys-
tems are returned to working condition through
repair of broken electrical and mechanical sub-
systems, if necessary substituting current parts
for the original ones. In computer simulation,
historical systems are re-created as software
programs on current computer systems. In each
case, the operating environment of the original
system is presented to a modern user for inspec-
tion or analysis. This differs with computer con-
servation, which preserves historical systems

in their current state, usually one of disrepair.
The authors argue that an understanding of
computing’s past is vital to understanding its
future, and thus that restoration, rather than
just conservation, of historic systems is an
important activity for computer technologists.

Maxwell M. Burnet
Robert M. Supnik

The Computing Past

The continuous improvements in computing technol-
ogv causc the rapid obsolescence of computer svstems,
architectures, media, and devices. Smee old comput-
ing svstems are rarely perecived to have anv value, the
danger of Josing portions of the computing record is
signiticant. When a computing architecture becomes
extinet, its sofnwvare, data, and written and oral records
often disappear with it

Older computer systems embody major investments
in software, the value of which mayv persist long atter the
svstemis have lost their technical relevancy. For example,
the PDP-11 computer has not been a Jeading-edge
architecrure since the nrroduction of 32-bit svstems
in the late 1970s and has not received a new hardware
implementation since 1984, Nonctheless, PDP-11 svs
tems continue to be used worldwide, particularly in
real-time and control applications. The unavailabilioy
of suitable replacements of worn-out original parts 1s
aserious issuc for PRP-1T svstems stll in usc.

Another arca of porential loss s data. In recent
vears, archival storage media bave undergone rapid

technologic evolution, and the industry standards of

computing’s first 30 vears, such as (0.5-inch magnertic
tape, are now antiques. Salvaging dara trom origial
media is an industrv-wide problem and has generared
a small cotrage industry of specialists in data recovery.
This problem will onlv proliferate, as transitions in
media nepes aceclerate. Ten vears from now, the large-
diameter optical disks usced tor todav’s archives will
look as quaintas DECrape and magnetic tape storage
svstems do to current computer users.

Finally, the disappearance of older equipment tvpi-
cally entails loss of information: not onlv design
sketches, blueprints, and documenrtation but also the
tolklore about these systems. The absence of svstem-
atic archiving, as well as the absence of a perceived
valuce of the archived data, causes continual informa-
tion decav about design and operational details.

This paper describes two techniques for preserving
computing svstems of historical interest. The tirse
section of the paper discusses the restoration of old
computers to working order. Tralso includes a descrip-
ton of the Australian Muscum collection and the
Vol. 8 No. 3

Digital Techmical Journal 1996

1
(o8]

process of restoring a particular PDP-11 minicom-
puter. The second section discusses the simulation
of old computers on modern systems. It describes a
simulation framework called SIM, which has been
used to implement simulators for the PDP-8, PDP-11,
PDP-4,/7/9/15, and Nova mimcomputers.

Restoring Old Computers

Sinee the computer became a mass-produced iten in
the late 1960s, its tvpical lite cvele has consisted of initial
installation, rental or depreciation tor about five vears,
retention and usc for a few more vears (just in case), and
then retirement and a trip to the retuse dump. There is
only a brict window of opportunity to collect old com-
puters at the end of their working lite. Once that win-
dowis closed, the computers are gone forever.

The Australian Museum Collection

In Svdney, Australia, this window ot opportunity
first became apparent in 1971 when the carly PDP
systems reached the ends of their life cveles. Digital’s
Australian subsidiary began collecting svstems by a
creative program of trade-ins tor new equipment.' It
was especiallv urgent to obrain examples of the 12-bit,
18-bit, and 36-bit PDP serics, as thev were relatively
few in number. Table | lists the percentage ofavailable
units that have been collected. The status of cach is
Ziven as

= Sratic—can never be made to work for various
reasons

= Restorable—could be made to work with enough
care, patience, time, and cftort

= Working—running its opcrating svstem the last
time it was turned on

Once a representative sample of the early PDP
svstems had been collected, the urgency abated.
Hundreds of PDP-11 and VAX systems were then
brought to Australia; the window ot opportunity for
collecting them is still open.

The collection has grown significantly during the
last 25 vears. At the present timie, we have i Svdney
a comprehensive collection of most carly Digital
machines, including hardware, manuals, software, and
spares (see Table 2). The collection is catalogued in
4 6,000-line databasc that resides, appropriately, on a
MicroVAX 1 computer, running the first version of
the MicroVMS operating svstem. Figure 1 shows an
example from the collection, a PDP-§/E computer
svstem with peripheral cquipment.

The goals of the collection are varied and are sum-
marized i Table 3. Apart from the academic challenge
of keeping all old data media running, there is the
responsibility to ensure that they can be kepr alive and
available. The extensive varicry of media types ottered
by Digital alone in only 30 vears i1s summarized in
Table 4. The evolving status of the collection has been
reported at several Australian DECUS Svmposia.™*
The restoration of the Australian collection will prob-
ably ensure a retirement job tor the curator tor the
next 30 vears!

General Issues in Restoration

Restoration 15 a painstaking and time-consuming
process. The goal ot restoration is to return a svstem to
a state where it will reliably run a major operating svs-
tem and ofter as many media conversion facilitics of
the vintage as possible. Forrunately, computers do nort
detcriorate greatly in storage, provided the storage
arca is drv. (One item that does decav dramatically s
the black toam used to line side pancls and to separate

Table 1

Early Digital CPUs in Australia

Model Number Brought Number in

Name to Australia Museum Collection Condition
PDP-5 1 1 Restorable
PDP-6 1 1 Someitems
PDP-7 1 1 Static
PDP-8 28 3 Working
PDP-8/S 20 2 Static
LINC-8 2 2 Restorable
PDP-9 1 Restorable
PDP-10 1 Some items
PDP-12 2 2 Restorable
PDP-8/I 24 2 Restorable
PDP-8/L 21 2 Restorable
PDP-15 10 1 Static
PDP-8/E 90 4 Working

Digital Technical Journal Vol. 8 Na. 3 1996

Tahle 2

The Digital Australian Collection (chronological order)

Year Item Description Status
1958 138 A/D converter Static
1960 ASR-33 Teletype reader/punch, 110 baud Working
1962 KSR-35 Heavy-duty Teletype Working
1963 PDP-6 Modules of first Digital computer in Australia Parts

1963 PDP-5 First minicomputer in Australia Working
1967 PDP-7 Third Digital computer in Australia Static
1965 PDP-8 Classic, table-top model Working
1965 PDP-8 Cabinet model Restorable
1965 PDP-8 Typesetting system Static
1965 PDP-8 Cabinet model, first in New Zealand Restorable
1965 COPE-45 Remote batch (OEM PDP-8) Restorable
1966 PDP-9 18-bit computer Static
1966 KA10 Console of PDP-10 mainframe Static
1966 Linc-8 Early medical computer Working
1967 PDP-8/S Serial, under $10,000, CPU Static
1967 PDP-8/S Serial computer Static
1967 DF32 Digital’s first disk, 1/16 Mb Static
1967 PDP-9/L Last transistor logic, 18-bit Static
1968 PDP-8/I Digital’s first IC minicomputer Working
1968 PDP-8/L OEM version of PDP-8/I Static
1969 PDP-12 Laboratory computer Working
1969 PDP-12 Laboratory computer Static
1969 PDP-15 Last of 18-bit family Static
1969 KI10 Console of DECsystem-10 Static
1970 PDP-8/E Pinnacle of PDP-8 development Working
1970 PDP-8/E Full LAB 8 configuration Working
1970 PDP-11/20 The first PDP-11 Working
1970 CR11 Card reader, 285 cpm Working
1971 PDP-8/F Small PDP-8/E Working
1971 VTO05 Digital’s first video terminal Working
1971 LA30P Digital’s first hard-copy terminal Working
1971 PDP-11/45 Last PDP-11 Static
1972 GT40 Graphics workstation Broken
1972 PDP-11/10 Small PDP-11 Static
1973 PDP-11E10 First packaged system Working
1973 PDP-11/35 Mid-range PDP-11 Static
1973 PDP-8/A Last non-chip PDP-8 Working
1974 PDP-11/40 Mid-range, end-user PDP-11 Restorable
1975 VT50 Video terminal Working
1975 LA36 DECwriter Il printer Working
1975 DS310 Desk-based commercial system Working
1975 PDP-11/70 Largest PDP-11 Restorable
1976 PDP-11/34 Mid-range PDP-11 Working
1977 PRSO1 Portable paper tape reader Working
1977 LS120 DECwriter printer Working
1977 WS78 Word processor, 8-inch floppy disks Working
1978 LA120 DECwriter Ill printer, 180 cps Working
1978 VAX-11/780 Original unit of 1 VAX-11/780 Restorable

Digital Technical Journal

continued on next page

Vol.8 No.3 1996

Table 2 (continued)

Year Item Description Status
1979 VT100 Famous video terminal Working
1980 MINC LSI-11 lab unit with RT-11 Working
1980 VAX-11/750 Mid-range VAX system Restorable
1980 PDT-150 Table-top LSI-11 with RX01 drives Working
1981 GIGI Low-cost terminal for schools Working
1982 VT125 Video terminal with graphics Working
1982 WS278 DECmate | word processor Restorable
1982 VAX-11/730 Low-performance VAX system Working
1982 LA12 Portable hard-copy terminal Static
1982 LQPO3 Letter-quality printer Working
1982 DECmatelll Word processor on mobile stand Working
1982 DECmate ll Word processor Working
1982 Rainbow Personal computer Working
1982 PRO350 Professional PC Working
1983 VT241 Graphics color terminal Working
1983 MicroVAX | Smallest VAX 3 VUP Working
1983 VAX-11/725 Lowest cabinet VAX .3 VUP Working
1984 LNO3 Laser printer Working
1985 MicroVAX lI Famous MicroVAX I Working
1986 VAXmate 286-based PC with RX33 drive Working
1986 DECmate lll Small word processor Working
1987 MicroVAX Il 3-VUP MicroVAX Il system Working
1987 VAX 8250 Dual VAX CPU, Bl-based Restorable
1989 VAX 9000 Chip set Static
1990 DS3100 Mips UNIX workstation Restorable

ribbon cables. Atter 20 vears, it turns into a sticky,
gooey mess. [t should be removed as soon as possible;
otherwise, it falls into the modules and backplanc.
Replacing itwith a modern cquivalent can be done burt
is not essential.)

The first step in restoration is to collect hardware,
software, and documentation.

= Collect the hardware, it possible two or ideally
three items of cach example. This provides a svstem
towork on and a spare, as well as the ability to make
comparisons betwveen units.

= Collect diagnostic and operating software on origi-
nal bootstrap media. Sources are very usctul, partic-
ularly tor diagnostics.

= Collect hardware manuals and schematics.

There 1s a nerwork of enthusiasts around the world
who can help at this stage.

Once the “ingredients”™ have been collected, the
steps needed to restore a 1960s or 1970s vintage
machine are as follows:

= Inspect the hardware for physical safery, particularly
the heavy drawers and slide mechanisms.

Digital Technical Journal Vol.8 No 3 1990

Physically assemble the hardware, cheeking module
allocations, cabling, cte.

Carctully inspect the power svstem, high-voltage
seurces can kill. Although most ot the power wiring
material appears to stand the rest of time, the carly
machines often had rather thin coverings on termi-
nals. Saferv-tivst 1s a principal criterion i restora-
tion, since somedav nontechnical people may open
the back door.

Asscmble a minimal svstem of CPU, memory, and
console switch register for mitial tests.

Power up the computer, checking supply volrages,
fans, and frontconsole tor signs of life.

Use simple routines ar the switch register to check
tor elementary operation,

Fit a serial line unit so that a VT or a Telervpe con-
solecanbe used.

Get the kevboard cchoing to the screen or printer
with simple routines.

It they are available, run the internal tests of the
read-only memory (ROM).

RX01
DUAL 8-INCH FLOPPY DISKETTES

TD8E TU56
ACCUMULATOR TRANSFER
DUAL DECTAPE SYSTEM

PCB8E 300 CPS READER.
50 CPS PUNCH PAPER TAPE

PDP-8/E CPU WITH EXTENDED ARITHMETIC
ELEMENT. 16K WORDS MEMORY.

KL8E 2400-BAUD CONSOLE.

KL8E 2400-BAUD COMMUNICATION PORT.
DECTAPE BOOTSTRAP. RK0S DISK BOOTSTRAP.
REAL-TIME CLOCK

RK05 REMOVABLE 2.4-MB
CARTRIDGE DISK

STORAGE RACK FOR 10
DECTAPE SYSTEMS

H861 POWER DISTRIBUTION

Figure 1
PDP-8/F Computer Svstem

Comventional wisdom would now advise that all the
diagnostic routines be run. However, diagnostics were
(philosophicallv) akvavs used to tind bugs in a previ-
ously good machine; they are too complex when huge
chunks of the machine mighe still be missing. The
MOSt practical next step is to get mass storage on-hince.
Depending on the manutacturer, the targer device
mav be a Hoppy disk drive, a cartridge hard disk drive,
or some torm of magneric tape. With a working mass
storage device and a bootstrap routine, it becomes
possible to boota simple operating system (like OS/8
or RT-11 for Digital’s svstems). This quickly shows
whether the machine is working or not.

[fa mass storage device is not available, the nexe best
thing is paper tape. This can be cither the system’s
rack-mounted reader and punch or the paper tape
readar on an ASR33 or ASR35 console. The reha-

bilitv is questionable, however, and the procedure is
tedious. Manv diagnostics were on paper tape, but
usually the quickest test is to load a complete paper
svstem (such as FOCAL for Digiral’s svstems). It the
diagnostics run, the svsten is probably functional.
Once the CPU, console, and memory are verified,
additional peripherals can be added, one ata time. It
pays to take the tme and cftorr to rescarch bus
addresses, interrupt vecrors, power supply Toading,
and module placement, and to keep a log book with
configuration diagrams and results. In general, if the
configuration rules are tollowed, the items will work.
There arc few clectronic failures, even in 20- or 30-
vear-old modules. When a problem arises, it is usually
address vector strapping, physical damage, or missing
cables. Corrosion of board conrtacts can be a problem;
thev should be cleaned with a ¢lean cloth or cardboard

Digital Technical Journal Vol.8 No 3 1996

~
N

Table 3
Goals of the Australian Digital Museum

Table 4
Digital Data Media from 1960 to 1996

To preserve one of each model of Digital’s computers
To keep each major Digital operating system working

To have a working unit of each Digital terminal, con-
sole, and PC

To provide conversion and archival facilities for old
media

To preserve significant Digital literature and manuals

To preserve a VAX-11/780 computer as the original
unitof 1 VUP

To disseminate instructive and educational material

To educate and amuse our staff, our customers, and
the public

To support the DECUS NOP (nostalgic obsolete prod-
uct) Special Interest Group

To preserve spares, tools, test gear, and documenta-
tion to keep the collection working

To preserve and protect these treasures for future
generations

(for example, a business card), notwith a pencil eraser,
which leaves residues. Silicon components appear to
be verv stable and a tribute to the conservative design
principles of early computer engineers.

The main components that scem to age are power
supply capacitors, fans, and lights. The flter capaci-
tors across the high-voltage sources can short, and
reference electrolytic capacitors in power supply regu-
lators can dry out. Although the large capacitors in
power supply RC filters have proven to be reliable,
some restorers replace them as a matter of course tor
safetv reasons. Small rotary fans may scize if they have
logged many hours. Incandescent panel lamps are
alwavs failing and can be replaced by modern light-
emitting diodes (LEDs) it required. The irony is that
the panel lamps arc needed only during inital cheek-
out; once the operating system is running, they arc
rarely used.

Once restored, are old units reliable? Experience
proves that they arc. A classic PDP-8 svstem restored
in 1988 still turns on happily (untouched) cight vears
later. A tully configured PDP-8 /E system is still work-
ing four vears after restoration.

Restoring a Minicomputer: A Case Study

An ongoing project is the restoration of a large,
UNIBUS-based PDP-11 system with many UNIBUS
peripherals attached to it. The project was started
using the original PDP-11,/20 CPU. Since many
PDP-11 peripherals were designed long after the
PDP-11,/20 CPU, it could not cope with single-board
direct memory access (DMA) devices, metal-oxide

Digital Technical Journal Vol.§ No.3 1996

Paper tape

80-column punched and mark sense cards
7-track, half-inch magnetictape
9-track, half-inch magnetic tape
DECtape and LINCtape systems
Audiocassette

DECtape Il cartridge (TU58)
CompacTape (TK50, etc.)
Quarter-inch cartridge tape
Digital audio tape

8-inch floppy disk

5.25-inch floppy disk

3.5-inch floppy disk

RKOS5 removable disk

RKO6, RKO7 removable disk
RLO1, RLO2 removable disk
RPO1...RPO6 removable disk
RMO03, RMOS5 removable disk
RC25 removable disk

senmiconductor (MOS) memory, and other later inven-
tions. The project retocused on the mid-range
PDOP-11/34, which in retrospect has proved wise. The
PDP-11/34 supports MOS memory, hasan LED and
push-button console, and represents a mature imple-
mentation of the PDP-11 instruction sct. It has an
optional cache, battery backup, Hoating-point opera-
tion, and the extended instruction sct (EIS).

The current contiguration occupies three large cab-
incts in what used to be the dining room of Max
Burnet’s house. The virtues ot the UNIBUS are many;
in particular, it allows modular connection of 1/0
devices and other components. However, [/O devices
ot the era often weigh 100 pounds and are mounted in
10-inch drawers; their sheer physical size and weight
arce disincentives to reconfiguration.

The project currently uses the R1-11 operating
system because of its simplicity and extensive device
drivers. BEventually, it may be possible to run the
RSX-11M and the RSTS/E svstems, but thereis litde
to gain from a media conversion point of view, because
RT-11 includes utilities for dealing with torcign file
tormats.

The main difficulties encountered have been associ-
ated with the power supply: the DC low signal threads
its way through every peripheral. The absence of
UNIBUS grant continuity cards can create havoc.
Since this PDP-11 svstem is very large, it is straining
the design rules concerning tloating vectors, current
loading, and bus loads.

The CPU and memory are relatively easv to check
out. Due to the versatiliy of the UNIB US, however,
checking out the /0 system is very laborious.
Starting with programmed [/O tests works best, tol -
lowed by interrupt tests, and finallv DMA or non-
processor reference (NPR) tests. Experience shows
that tests need to be rerun whenever a new peripheral
is added.

The svstem currently runs the RT-11 version 5.04
operating system on a configuration comprising

= RT-11/34 CPU with real-time clock and bootstraps
= 256 kilobits of MOS memory

= RXOI and RXO2 floppv disks

= Dual RL.O2 disks

= TUS6 dual DECrape storage svstem

= TUS8 DECrape I1 storage svstem

= Scrial line units tor console and serial printer
= CMI1 mark sense and CRI1 punched card reader

= TUGO cassctte

PCL1 paper tape reader and punch

Although the following peripherals are available,
they await installation tume and cttort:

= [.PS-40 analog-to-digital (A/D) converter
= TUI0 magneuc tape

= TSVO3 magnetic tape

= Cache and commercial instruction sct

= Battery backup kit

The ceventual goal is to keep “the last great
(UNIBUS) PDP-117 running with almost cvery
UNIBUS peripheral ever made.* Time will tell.

Simulating Old Computers

A simulator is a computer program operating on onc
computer svstem (known as the host svstem) which
mimics the behavior of another computer svstem
(known as the target svstem). The simulator’s data is
the state of the target computer svstem—registers,
memory, timed events, and so on. The simulator oper-
ates on presented state and transtorms it, usually by
scequential evaluation, in the same manner as would
the target computer system.

Simulators typically consist of an exccution engine,
which performs the state transformations; a simple
timed-event mechanism, which supports deferred and
asvinchronous events such as I/0O completions; and a
control pancl, which provides user access to simulated
state. The exccution engine is responsible tor decoding
instructions in simulated memorv and performing the
specitied alterations of simulated machine state. The
execution engine keeps track of simulated time in arbi-
trary units, which mav be precise representations of the

execution time of the target svstem, or simple represen-

rations of advancing time, such as the number of

instructions exccuted. The event mechanism provides a
way to schedule events, such as 1/0 completion, for
later evaluation. It can also implement other time-
based mechanisms such as kevboard polling. Finally,
the control pancl provides access to simulated state as
well as basic control commands such as start and stop.
It may also provide more claborate facilities to support
performance instrumentation or debugging.

Historically, simulators have been used for many
purposes, including the tollowing:

= Design of new svstems. The simulator mimics the
behavior of a tuture chip or computer svstem and is
used to understand and debug the behavior of the
proposcd design. For example, prior to fabrication,
all modern microprocessors are extensively simu-
lated, first as abstract pertormance models and then
atincreasing levels of detail.

Debugging tor embedded systems. If the simula-
tor contains facilitics for program debugging, it
becomes a usctul tool for debugging programs that
run i highly constrained environments such as
embedded systems. Simulators can capture more
state and provide a wider range of facilities than in
situ debuggers. For example, simulators can imple-
ment program counter (PC) change queues, data
access breakpoints, or precise traps on crrors.

= Replicable event tracing. Most simulators are fully
deterministic. Asynchronous events are scheduled
based on simp
fixed time-out or calculated scek time. As a result,
simulators allow for straightforward replication or
playback ot complicated sequences, removing the
randomness factor that often plagues the debug-
ging of asynchronous sottware on real systems.

¢, nonrandom algorithms, such as

= Prescrvation of past sottware. Simulators can pro-
vide migration assistance in the transition from older
to newer architectures. Manv transitional computer
svstems have provided simulators tor older archi-
tectures, tvpicallv at the microcode level; to assist
customers and developers in preserving their invest-
ments m the previous architecture. Examples
mclude the early IBM Svstem /360 serics, wwhich had
models that simulated the 1401, 1410, 7070, and
7090 familics, and the carly Digital VAX systems,
which included a PDP-11 compatibility mode. "

Simulation Levels
Simulators can be written at various levels of detail and
thus various levels of fidelity to the target svstem.
Three common Jevels of simulation are register trans-
ferlevel (RTL), instruction, and sottware specific.

An RTL simulator attempts to mimic the major
hardware blocks of the target svstem and to imple-
ment its actual logic cquations. The goal is absolute

Digiral Technical Journal Vol. 8 No.3 1996

fidchity, the test of which is that no picce of software
running on the simulator should behave dilterently
than it would on the target hardware. In practice, such
perfect mimicry is ditticult to achicve, as it requires a
painstaking re-creation of timing detail (for example,
the actual acceleration curve of a DECrape storage
svstem) and aceess to implementation documentation
that has often vanished. Noncetheless, some simulators
have achieved resules very close to this goal: MIMIC,
a DECsvstem-10 simulator written at Applicd Dara
Research, was able to run CPU- and device-specific
diagnostics. (As testimony to the valnerability of
computing’s past, all machinc-readable copics of the
MIMIC sources appear to have been lost.)

An instruction simulator steps back from the R,

evel and trics to simulate ar the funcrional or the
behavioral level, Svstem elements are treared as funce-
tions that wranstorm state according to the abseract
definitions ot the svstem architecture, rather than
as logic blocks that transtform stare based on imple-
mentation equations. Instruction simulators sacrifice
absolute fidelity to the idiosynerasies of a particular
implementation and focus on the intentions of the
architecrure specitication. As a result, instruction sim-
ulators can usually run svstems sof tware and applica-
tions but can rarcly tool diagnostics.

Finally, a sofoware-specitic simulation further
abstracts the funcrions of the target svstem to only those
needed by a particular picce of target svstem software.
For example, the OS /8 operating system on the PDP-8
computer docs not use program interrupts; a simulator
aimed at running only the OS/8 operating svstem
would not need to implement interrupts or cven
queued events. A recent PDP-11 simulator designed to
run the 2.9 BSD UNIX operating svstem abstracted
parts of the PDP-11 svstem’s interrupt model and could
not run other PDOP-11 operating svstems. '

Simulating Minicomputers: A Case Study

SIM s a portable instruction-level minicomputer sim-
ulator implemented in C. Trs objectives are to facilirate
the studv and use of historic computer architectures by
making simulated implementations and historic sott-
warce available to anvone who has a 32-bit computer. It
supports the following rarget architectures

= PDP-8

= PDP-11

= Nova

= 18-bit PDPscrics (PDP-4, PDP-7, PDP-9, PDP-15)

and has been successtully ported to the VAX VMS, the
Alpha OpenVMS, the Digital UNIX, and the Linux
architectures. Ports to the Windows NT and the
Windows 95 architectures and toan IBM 1401 simu-
lator are under way.

Digiral Technical Journal \Vol.8 No.3 1996

General Design Considerations The design of an
mstruction-level simulator is not technically compli-
cated; indeed, simulating a PDP-8 svstemisa common
problem in undergraduate compurter science courscs,

SIM tollows the processor-memory-switch (PMS)
structure proposed by Bell and Newell and imple-
mented m MIMIC and countless other simulators
The simu
devices, one of which has special properties (the
CPU). Each deviee has state (registers) and once or
morce units. Each unit has state and fixed- or variable-

ol

sincee. ated svstem is a collection of

sized storage. In the CPU device, the storage is main
memory. Inan /0 device, the storage is the deviee
media. The CPU s distinguished trom other devices
by having the master routine for imstruction execu-
tion. This routine is responsible tor the sequential eval-
uation ofinstructions and tor the state transtormations
that represent simulated execution. The CPU also pro-
vides a few svstenuwide routines, such as svmbolic dis-
assemblhand input and a binary loader.

The devices interface to a control panel that pro-
vides access to simulated state and control over exccu-
ton. The avatlable commands - SIM are listed in
Table 5.

The control pancel also includes routines that are
needed by most simulators, such as event queue main-
renance and character-by-character terminal 1/0.
Ditferent simulators need not use the same time base,
but all the SIA-based implementations to date use the
number of instructions excecuted as the time base.

Note that the control pancel provides for starting sim-
ulation, but rermination is determined entirely by the
simulated CPU. By convention, the CPU returns con-
trol to the control pancl under the following conditions:

1. Ita HALT instruction is exceuted
2. [fa fata

3. Ita fatal /0 crroris detectred

exeeption is derected

4. It a special character is tvped at the controlling
terminal

Likewise, the control pancl does notimplement any
debugging facilities bevond state examination and
modification and instruction stepping. To facilitate
debugging with operating systems, CPUs provide
a simple mstruction breakpoint capability and o one-
level PC trace facility.

Implementation The implementation of a particular
simulator begins with collecting reterence manuals,
maintenance manuals, design documents, folklore,
and prior simulator implementations for the target
svstem. "This is nonrrivial. In the carly davs of comput-
mg, companics did not svstemartcally collect and
archive design documentation. In addinon, collected
material is subject to information decay, as noted

Table 5

Commands Available in SIM

Command

Definition

attach <unit> <file>
detach <unit> | ALL
reset <device> | ALL
load <file>

boot <unit>

run {<new PC>}

go {<new PC>}
cont

step {<number>}
examine <list>
iexamine <list>

deposit <list> <value>
ideposit <list>

save <file>

restore <file>

show queue

show configuration
show time

show <device>

set <device> <option>
help

exit I quit | bye

Associate file with unit’s media.

Disassociate unit’s (all units) media from any file.

Reset device (all devices).
Load binary program from file.

Reset all devices and bootstrap from unit.

Reset all devices and resume execution at the current PC {or new PC}.

Resume execution at the current PC {or new PC}.

Resume execution at the current PC.

Execute one instruction {or number instructions}.

Display contents of list of memory locations or registers.

Display contents of list of memory locations or registers and allow interactive

modification.

Store value in list of memory locations or registers.
Interactively modify list of memory locations or registers.

Save simulator state in file.
Restore simulator state from file.

Display the simulator’s event queue.
Display the simulator’s configuration.
Display the simulated time counter.
Show device’s configuration options.

Set a device configuration option.

Display a terse help message.
Leave the simulator.

carlier. Lastly, the matenial is like

v to be contradictory, .

embodving differing revisions or versions of the archi-
recture, as well as errors that have creprin during the

documentation process.

For Digital’s 12-birand 16-bit minicompurers, the
rvpical hierarchy of documentation was the tollowing:

= Processor Handbook. Providing an all-inclusive

summary of the instruction sct archirecture, periph-
crals, bus inrerface, and software, these paperback-
size books are the most common torm of svstem
documentation bur also the least accurate.
Subsvstem Reference Manual. As the programmer’s
reference manual for a particular subsystem, such as
the CPU or the disk drive, these manuals describe
the registers and functions accurately but omit
maintenance-level features and other tine points.
Subsvstem Maintenance Manual. As the mainte-
nance engineer’s manual for a particular subsystem,
these manuals deseribe the registers and functions
at the hardware implementation level, often includ-
ing substantial abstracts from the print sct. Because

of the level otderail, the maintenance manuals have
proven to be the most usctul references for simula-
tor implementation.

Digiral Technical Journal

Design documents. For svstems that do not have
very large-scale integration (VISI), the onlv extant
design documents are the logic prints and the binary
microcode ROM listings. The prints are essential tor
RTL simulation: thev provide the onlv documenta-
tion of implementation quirks. For VLSI svstems,
there are chip-lTevel design specifications as well as
human-readable microprogram listings.

Folklore. During the usctul lifetime ot a svstem, its
users exchange information and create an informal
record, both written and verbal, of shared expe-
riences (folklore) regarding the tine points of
operations, hardware /software interfaces, svstem
“personality,” and other tactors. Folklore is subject
to rapid information decav, particularly once the
rarget system becomes obsolete.

Prior implementations. Prior simulator implementa-
tions can provide usctul information, but it must be
used cautiously. Unless the prior implementation is
an RTL model, it embodics simplifications and
abstractions that are not explicitly documented. The
MIMIC sources (which are fragmentary and avail-
able only on paper) proved trustworthy, but others
did not: for example, the 1970s PDP-11 simulator
in the DECUS archives is highly misleading about
interrupts, condition codes, and other details.

Vol.8 No. 3 1996

(93]

o

An important consideration is that much of the
documentation, all the folklore, and most working
svstems arc in the hands of individual collectors.
The Interncet plavs avital role in locating material held
bv cnthusiasts, through news conferences such as
alefolklore.computers, alt.svs.pdp8, altsvs.pdpll,
and comp.emulators.misc, and more recently, through
World Wide Web sites devoted to historic systems. ™'
The sources tor cach simulator in SIM are listed in
Table 6.

The last step in implementation is collecting soft-
ware to run on the simulator. Software collection
immediately raises the problem of media wanslation.
Sofnwvare tor historic svstems resides on paper tapes,
DECrtape storage svstems, 200,/556,/800 bits-per-
inch magnetic tapes, disk cartridges, 8-inch floppy
disks, and so on. Few itany modern systems have these
peripherals; and few if any historic systems have mod-
ern nenwork interconnects. Thus, media translation
usually entails linking a working version of the target
system to a modern system by means of a scrial linc.
KERMIT or some other simple protocol allows for a
byte-by-byte network copy from the original media to
a file on a modern system.

Once the software has been located and moved
to a file, the next issuc is sources. Without sources,
diagnostics and other test programs arc uscless;
detected crrors cannot be traced back to causes with-
out manual decode of the binary program. The
absence ot sources was a principal reason for including
symbolic disassembly and input in SIM.

The final issue in sotoware is licensing. kven though
the target systems arc obsolete and often no longer
manufactured, the operating svstem software may be
protected by copyrights and licenses. Most PDDP-8
software is in the public domain; however, the PDP-11
and Nova opcrating svstems are still licensed, as are
all versions of UNIX. Corporate licensing policies
rarelv accommodate hobbvists; this limits operating
svstem distribution to legitimate (that is, business)
users. Table 7 lists the sofoware tound tor cach simula-
tor in SIM.

Debug The debug path for a simulator depends
on the available software. Ideally, the simulator would
be debugged with the same software tests used
to debug the target hardware, but this software is
rarely archived. Diagnostics can provide low-level
checking, but diagnostics typically check for broken
parts in a correct implementation, rather than an
mcorrect implementation. Even when diagnostics
do check architecture rather than implementation (as
in the basic instruction diagnostics on the PDP-11
system), the absence of sources limits cheir utility.
Consequently, the simulators were debugged mostly
with simple hand tests and then with the operating
systems.

Operating svstems are both exacting and imprecise
tests of implementation correctness. Unless an
operating svstem takes a deliberately restrictive view
of hardware (for example, OS/8 does not use the
PDP-8 interrupt svstem, and RT-11 doces not use anv

Table 6
Sources for Simulators in SIM
Architecture Documents Location
PDP-8 Minicomputer Handbook Private collection
Reference manuals Digital archive
Maintenance manuals Digital Australia collection
Print sets Digital Australia collection
Prior implementations Public archive”
Public archive'
MIMIC, private collection
PDP-11 Minicomputer Handbook Private collection
Reference manuals Digital archive
Maintenance manuals Digital Australia collection
Chip specifications Private collection
Microcode listings Private collection
Prior implementations Public archive™
MIMIC, private collection
Nova System Reference Manual Private collection
Reference manuals Data General archive
Maintenance manuals Private collection
Priorimplementations MIMIC, private collection
18-bit PDP Reference manuals Digital archive

Maintenance manuals
Print sets

Digital archive
Digital archive

Digital Technical Journal

Vol.8 No. 3 1996

Table 7
Software for Simulators in SIM

Architecture Software Location

PDP-8 Basic instruction tests 1 and 2 Digital Australia collection
Memory management test Digital Australia collection
FOCAL69 Digital Australia collection
0S/8 system disk Public archive™

PDP-11 RT-11 Transcribed from real system
RSX-11M Transcribed from real system
RSTS/E Transcribed from real system
UNIX V5, V6, V7, 2.9 BSD PDP UNIX Preservation Society (PUPS) archive®
2.11 BSD Private collection

Nova RDOS Private collection

18-bit PDP No software to date

optional PDP-11 instructions), the operating svs-
rem will be sensitive to every error in implementation,
For example, Digital’s second-generation PDP-11
svstems—the PDP-11/05, 11/40, and 11/45—
were debugged with DOS-11 and RSTS after diag-
nostics failed ro detect certain subtle implementation
crrors. Unfortunatcely, in an operating svstem, the
distance i time and space berween the error and the
symprom mav be enormous, and the traccable path
mav be Jengthy and complicated. Artfacts in the
software can also complicate debug: the OS/8 disk
mmage on the Interner contains a copy of BASIC that
is broken.

Results SIM implements four minicomputer architee-
turcs: PDP-8, PDP-11, Nova, and 18-bit PDP. Each
simulator includes a particular CPU; basic peripherals
such as rerminal, paper tape, clock, and printer; and
a sclection of mass storage peripherals (see Table 8).
The PDP-8 simulator has run the FOCALGY and
the OS/8 opcerating svstems. The PDP-11 simulator
has run the tollowing operating svstems: RT-11 V4
and V5, RSX-11M V4 RSTS/E V8; UNIX V5,
Vo6, and V7: and BSD V2.9 and V2.11. The Nova
simulator has run the RDOS V7.5 operating svstem.
No system software for the 18-bit PDP svstems
has been tound. The simulators were exercised on an
AlphaStation 3000,/600 workstation (approximately
120 SPECInt92), the performance is given in Table 9.
Figures 2, 3, and 4 show screen shots from the various
simulators running their principal operating svstems.

In Defense of Computing’s History

As professional engineers who bhave been Jucky
cnough to wimess the computer revolution, the
authors believe that the industry has a dury to keep
carlv machines alive. There are practical reasons, such

as preservation of sofnvare and data; bevond that,
there is an obligation to future generations. In 100
vears, the systems from computing’s carly history will
appear to be absolute dinosaurs ot the past. Yer their
educational and sociological value will be consider-
able. A computer is a machine wich a soul, and it must
be kept alive with its operating cnvironment to show
its abilities and the contemporary state of the art.

Acknowledgments

Max Burnet: T would like to thank Digital Equipment
Corporation Australia Prv Led for tolerating my
ceeentricity and for supporting the Australian Digital
muscum collection. Also the DECUS Australia NOP
(nostalgic obsolete product) SIG members for help,
encouragement, knowledge, good humor, and cama-
raderie on the last Wednesday of the month. My thanks
to my coauthor Bob Supnik for his continued inspira-
tion; 1t 1s great to see a VLI who can cut code with the
best of them. My thanks also to the contriburtors to the
Digital Notes files, a great source of folklore. Thercein
lies a treasure trove of solutions from people who are
helping cach other solve the same problems.

Bob Supnik: The design, implementation, and debug
of SIM was made possible by the generous help of
many people. Craig St. Clairand Deb Toivonen of the
Digital archives located rare manuals and documents
on Digital’s 12-bit, 16-bit, and 18-bit svstems. Tom
West and Don Lewine of Data General Corporation
provided documentation and support on the Nova.
Carl Friend’s private collection of Data General
hardware and software was a crucial source of docu-
mentation and software tor the Nova and the RDOS
operating svstem. Doug Jones, Bill Havgood, and
John Wilson allowwed mce to use the sources to their
simulators and freely answered arcane questions about

Digital Technical Journal Vol.§ No 3 1996

(O8]

29

Table 8
Architectures Implemented by SIM

PDP-11 Nova

PDP-8
CPU PDP-8/E J-11, Q-bus Nova 820
Options KEBE EAE, integral FP11 Multiply/divide
KM8E memory extension
Memory 4-32K words 16 KB-4 MB 4-32K words
Terminal KL8E DL11 KSR-33, Dasher
Paper tape PC8E PC11 Yes
Clock DK8E KwW11L Yes
Printer LESE LP11 Yes
Storage RX8E/RX01 RX11/RX01 4019
RK8E/RKO5 RK11/RK05 4046/4047, 4048,
RFO8/RS08 RLV11/RLO1,2 4057, 4234
Magnetictape TM8E/TU10 TM11/TU10 6026
PDP-4 PDP-7 PDP-9 PDP-15
CPU PDP-4 PDP-7 PDP-9 PDP-15/30
Options T177 EAE, KEO9A EAE, KE15 EAE,
T148 memory KX09A memory KM 15 memory
extension protection protection
KPOSA power KP15 power
Memory 4-8K words 4-32K words 4-32K words 4-128K words
Terminal KSR-28 KSR-33 KSR-33 KSR-35
Paper tape Integral T444 reader PCO9A PC15 reader-
T75 punch T75 punch reader- punch punch
Clock Yes Yes Yes Yes
Printer T62 T647 T647E LP15
Storage T24 drum RF09/RS09 RF15/RS09
RP15/RP02
Magnetic tape TC59/TU10 TC59/TU10

the hardware. In addition, Bill provided a working
0OS/8 system disk, and John copied several PDP-11
operating svstem disks oft a working PDP-11/34.
Mcgan Gentry was an important source of PDP-11
tolklore, debugged some of the subtlest problems, ere-
ated the Maketile, and provided the first and most
frequently used distribution site. Ben Thomas
provided the character-by-character 1I/0 routines
for VMS. Chris Suddick helped debug the PDP-11
tloating-point code. Warren Toomev and the enthusi-
asts at PUPS (the PDP UNIX Preservation Society)
in Australia allowed me access to theirarchive of carly
UNIX relcases. Leendert Van Doorn - debugged
the PDP-11 simulator with UNIX V6, and Franc
Grootjen with 2.11 BSD. Larry Stewart provided the
initial impetus to the project, and Ken Harrenstein
made an important contribution to preservation
bv implementing a DECsystem-10 simulator. Last,
but not least, Max Burnet generously provided
documentation and software trom the Digirtal

Digiral Technical Journal Vol.8 No. 3 1996

Austraha collection, answered questtons based on his
30 vears of experience with Digital’s svstems, and
made connections with and introductions to the
worldwide community of historic machine hobbyvists
and enthusiasts.

References and Notes

I As managing director of Digital’s Australian subsidiary
from 1975 to 1982, Max Burner created and operated
the PDP trade-in program.

2. M. Burner, “An Update on the Museum Treasures,”
DECUS Australia Symposivim Proceedings, August
1993,

. M. Burncer, “The 94 Update en the Muscum ‘Trea

sures,” DECUS Australia Symposiiin Proceedings.
August 1994,

(O3]

4. M. Burner, “The Last Great PDP-11,” DrCES
Australics Symposiinn Preceeclings. August 19935,

Table 9

Simulator Performance

Simulator Simulated Real Ratio
Instructions Instructions
per Second per Second

PDP-8 1,800,000 400,000 4.5:1

PDP-11 440,000 500,000 .88:1

Nova 1,700,000 750,000 2.26:1
ucoder> pdp8
PDP-8 simulator V2.2b
sim> att rk0 os8.dsk
sim> boot rkO
.DA 08-APR-96
.DIR
08-Apr-96
COPYIT.SV 2 09-Mar-93 PASS2 .SV 20 11-0ct-92 FORT3 .LD 3 06-Jul-93
DIRECT.SV 7 11-0ct-92 PASS20.SV 5 11-0ct-92 CLOSE SV 2 10-Jul-93
CCLX .SV 24 25-Feb-93 PASS3 SV 8 11-0ct-92 FORT4 . FT 1 11-Jul-93
PIP .SV 11 11-0ct-92 RALF .SV 19 11-0ct-92 FORT4 .LD 2 04-Aug-93
FOTP .SV 8 11-0ct-92 RESORC.SV 170 11-0ct-92 FORT6 .LD 2 09-Aug-93
ABSLDR.SV 5 11-0ct-92 RUNOFF.SV 24 11-0ct-92 FORTS .FT 1 09-Aug-93
BASIC .SV 11 11-0ct-92 SABR .SV 246 11-0ct-92 FORTS .LD 2 09-Aug-93
BATCH .SV 10 11-0ct-92 SCROLL.SV 17 11-0ct-92 FORT6 FT 17 09-Aug-93
BCOMP .SV 26 11-0ct-92 SET .SV 20 11-0ct-92 METSC .SV 170 11~-Aug-93
BITMAP .SV 5 11-0ct-92 SRCCOM.SV 5 11-0ct-92 METSC2.SV 10 11~-Aug-93
BLOAD .SV 10 11-0ct-92 TECO SV 32 11-0ct-92 EMAT SV 9 11-Aug-93
BOOT .SV 5 11-0ct=-92 VERSN3.SV 10 11-0ct-92 EMDCT SV 14 11-Aug-93
BRTS .SV 24 11-0ct-92 BUILD SV 33 11-0ct-92 EMTST .SV 10 11-Aug-93
CHEKMO.SV 15 11-0ct-92 BASIC .0V 16 11-0ct-92 SINST1.SV 14 11-Aug-93
COMPAF.SV 5 11-0ct-92 BUILD6.SV 33 11-0ct-92 ADDER SV 13 11-Aug-93
CREF .SV 13 11-0ct-92 BUILT SV 33 12-0ct-92 FORT7 .FT 1 30-Aug-93
EDIT .SV 10 11-0ct-92 HELP HE 17 18-0ct-92 CLEAR .LS 2 13-Jan-94
EDITS .SV 6 11-0ct-92 HELP HL 72 18-0ct-92 CLEAR .CF 2 13-Jan-94
EPIC .SV 14 11-0ct-92 HELP ocC 4 18-0ct-92 CLEAR .SV 2 13-Jan-94
Fé& .SV 20 11-0ct-92 FORT7 LD 2 07-Sep-93 CLEAR .PA 17 13-Jan-94
FRTS .SV 26 11-0ct-92 JMPTST.SV 3 18-0ct-92 CLEAR .BN 2 13-Jan-94
FUTIL .SV 26 11-0ct-92 JMPJMS .SV 3 18-0ct-92 DEMO 28 21-Mar-95
HELP .SV 5 11-0ct=-92 RKB8ENS.BN 1 30-0ct-92 DOS .PA 4 25-Jan-94
LIBRA .SV 11 11-0ct-92 INST1 SV 14 01-Dec-92 DOS .BN 1 25-Jan-94
LIBSET.SV 5 11-0ct-92 INST2 SV 11 01-Dec-92 DOS .LS 10 25-Jan-94
LOAD .SV 16 11-0ct-92 FORT WFT 1 17-Jun-93 SHELL .PA 1 25-Jan-94
LOADER.SV 12 11-0ct-92 FORT .LD 2 09-Jul-93 SHELL .BN 1 25-Jan-94
MATST .SV 9 11-Aug-93 FORT2 .LD 2 09-Jul-93 SHELL .LS 2 25-Jan-94
MDTST .SV 146 11-Aug-93 FORTZ2 FT 1 22-Jun-93 BASIC .WS 1 10-Mar-94
OCOMP .SV 8 11-0ct-92 DOS SV 2 25-Jan-9¢4 FOO -PA 1 31-Mar-94
OPTF&4 .SV 13 11-0ct-92 SHELL SV 2 25-Jan-94 FOO .BN 1 31-Mar-94
PALS8 .SV 19 11-0ct-92 FORT3 FT 1 26-Jun-93

95 Files In 980 Blocks — 2212 Free Blocks

Simulation stopped, PC: 01207 (KSF)
sim>

Figure 2

PDP-8 Simulator Running OS/8

Digital Technical Journal

Vol.§ No. 3

1996

2
o)

5

ucoder> nova

NOVA
sim>
sim>
sim>

simulator V2.2b
att dp0 rdos.dsk
set tti dasher
boot dpQ

Filename?

NOVA RDOS Rev 7.50

Date (m/d/y) ? &4 8 96
Time (h:m:s) 7?2 16 26 0
R
list/e sys~-.-
SYSS5.LB 17216 D 05/24/77 13:18 05/31/85 L[0010171] 0
SYS.SV 56320 SD 12/16/95 16:21 12/14/95 [£0050571] 0
SYS.LB 20240 D 04/30/85 14:4649 05/31/85 [0007461] 0
SYS.oL 30720 ¢ 12/14/95 16:21 12/14/95 (0052721 0
SYSGEN.SV 23040 SD 05/02/85 22:20 05/31/85 [0014011 0
R
disk
LEFT: 2158 USED: 2706 MAX. CONTIGUOUS: 2054
R
Simulation stopped, PC: 41740 (LDA 1,4,3)
sim>

Figure 3

Nova Simulator Running RDOS

1

0.

Digrical ‘Technieal Journal

A. Ahi, G Burroughs, AL Gore, S LaMar, C.-Y. Ling
and A. Wiemann, “Design Veritication of the HP 9000
Scrics 700 PA-RISC Workstations,” Hewlett-1ackerd

Jorrnel vol. 43, n0.4 (1992).

W. Andarson, “Logical Veritication of the NVAX CPU
Chip Design,” Digital Technical Journal. vol. 4,
no. 3(1992): 38-406.

R. Calcagni and W. Sherwood, “VAX 6000 Model 400
CPU Chip Ser Funcrional Design Verification,”
Digital “lechivical Journal. vol. 2, no. 2 (1990):
64-72.

. A. Hurtchings, “The Evolution of the Custom CAD

Suite Used on the MicroVAX 11 Svstem,” Digital
Technical Jorrnal. vol. 1,no. 2 (19806): 48-55.

M. Kantrowirz and L. Noack, “Funcrional Veritication
of a Mulriple-issue, Pipclined, Superscalar Alpha
Processor the Alpha 21164 €U Chip,” Digital
‘Techiical Jorrnal, vol. 7, no. 1 (1995): 136-144.

D. Siewiorek, C. Bell, and A, Newell, Computer
Structures: Principles andd txamples. “The TBM
Svstem /360, Svstem /370, 3030, and 4300: A Series
of Planned Machines That Span a Wide Pertormance
Range,” and “PMS Notation™ (New York: McGraw -
Hill, 1982)

R, Brunner, cd., 1IN Architectire Reference
Menal. chaprer 9, “Compatibility Mode™ {Bedford,

Mass.: Digital Press; 1991).
I'his simulator has since been withdrawn from the

neework.

Vol.8 No. 3 1996

14.

—
Ut

R. Rusting cd., Debuguing Technignues in Large
Systems. R Supnik, “Debugging Under Simulation™
(Englewood Clifts, No T Prentice-Hall, 1971).

For informarion on and pictures of Data General
minicomputers, sce C. Friend™s web
herp://wwwaltrancet.com /~engelbre /carl /muscum
/index.homi.

page At

For information on and pictures of many historic
computers, see .o Jacger’s web page ar htep://
www.msnfullteed.com /~cube /eollect.hom.

For imformation on and pictures of manv historic
computers, sce Do Piceree’s web page ar hrep://
wawwteleport.com /~prp /collect/index.huml.

For documentation and relevant links, see D. Jones’s
web page at waww.es.uiowa.edu/~jones/pdpS /. For
his simulator, cross assembler, and core images, sce

frp://frp.cs.uiowa.cdu/pub/jones /pdp8.

. For informanion on his simulator and OS/8 disk

image, sce W at ftp://
sunsite.unc.edu/pub//academic/computer-scicncee /
history /pdp-8 /cmulators /havgood.

Havgood’s web page

For more information on J. Wilson’s simulator (cxc-

cutable onlv), sce his web frp://

fp.update.uuse /pub/ibmpe/emulators.

page at

For morce information on the PDP-11 UNIX archive,
sce the PUPS home hewp://
minnic.cs.adla.oz.au/PUPS /index.homl.

page at

ucoder> pdp11

PDP-11
sim> att
sim> boot

RT-11SJ

rk0

(s> v05.0¢6

.da 8-apr-96

simulator V2.2b
rkO rtrk.dsk

.dir
08-Apr-96
NL .SYS 2 18-Sep-89 RT11FB.SYS 94 18-Sep-89
RT11SJ.SYS 80 18-Sep-89 SPOOL .REL 11 14-Apr-87
PTESTX.MAC 23 27-Jan-94 GVI .SAV 5 18-Apr-90
BINCOM.SAV 24 27-Sep-88 DUP .SAV 49 27-Sep-88
DIR .SAV 19 27-Sep-88 IND .SAV 58 27-Sep-88
LIBR .SAV 24 27-Sep-88 MACRO .SAV 61 27-Sep-88
LINK .SAV 49 27-Sep-88 RESORC.SAV 25 27-Sep-88
FORMAT.SAV 24 27-Sep-88 obT .SAV 8 05-0ct-89
PBCOPY.SAV 2 16-Feb-89 sysLIB.oBJ 55P 05-0ct-89
oDT .0BJ 8 05-0ct-89 SYSMAC.SML 61 16-Mar-89
SIPP .SAV 21 27-Sep-88 DATE .SAV 3 02-Feb-89
I0P .SAV 11 24-Apr-89 SWAP .SYS 27 27-Sep-88
TT .SYS 2 18-Sep-89 DL .SYS 4 18-Sep-89
DM .SYS 5 18-Sep-89 DP .SYS 3 18-Sep-89
DX .SYS [A 18-Sep-89 RK .SYS 3 18-Sep-89
LS .SYS 5 05-0ct-89 MT .SYS 9 18-Sep-89
LP .SYS 2 18-Sep-89 SP .SYS 6 18-Sep-89
PIP .SAV 30 27-Sep-88 HANDLE.SAV 7 16-Feb-89
LD .SYS 8 26-Dec-90 MAC .SAV 61 27-Sep-88
LC .SYS 2 01-Jan-80 ucL .SAV 13 22-Dec-89
ucL .CCL 4 07-0ct-90 STARTS.COM 1 19-Jan-94
MTPIP .SAV 28 27-Feb-87 MTROL .SAV 17 27-Feb-87
MLIB .SYS 300 20-Dec-90 HELP .SAV 132 20-Dec-90
XPC .SAV 16 25-Jun-91 DESS .SAV 18 09-Mar-88
PTESTX.0BJ 8
49 Files, 1432 Blocks
3330 Free blocks
.sho dev
Device Status CSR Vector(s)
NL Installed 000000 000
TT Installed 000000 000
DL Installed 1764400 160
DM Not installed 177440 210
DP Not installed 176710 254
DX Installed 177170 264
RK Resident 177400 220
LS -Not installed 176500 470 474 300 304
MT Installed 172520 224
LP Installed 177514 200
SP Installed 000000 110
LD Installed 000000 000
LC Installed 177514 200
Simulation stopped, PC: 146506 (ASR RS5)
sim>
Figure 4
LOP-T1 Simulator Running RT-11
Digical Lechmeal Journal Vol.8 No.3 1996

2l

3

7

38

Biographies

Maxwell M. Burnet

Max Burnet has been with Digital in Australia for 29 years.
During that time, he has sold, serviced, or markered all the
machines in the collection. He managed the Digital
Australia subsidiary tor seven vears, He was a salesman

in Boston during 1971 and managed to replace an IBM
1620 at Tufts Universinv witha PDP-10. He is currently
the oldest surviving “techic” in the Svdney office and
makes nany corporate presentations in Australia. He
manages the Australian DECUS Society, the Subsidiary’s
local contentand export obligations with the Australian
Government, and the local Product Assurance Group.

He has collected a muscum of carly Digital machines and
is known areund Svdney as “Museum Max.” He received
a B.Sc. (honours) from Mclbourne University.

Robert M. Supnik

Bob Supnik has been with Digital in the United States

for 19 vears. He joined the Mass Storage Group and then
moved into Semiconductor Engineering, where he succes-
sively managed the last PDP-11 implementartion (the J-11),
Advanced Development, the first single-chip VAX imple-
mentation (the MicroVAX chip), and the VAX Micro-
processor Group. He also wrote or contribured to the
microcode of every single-chip VAX microprocessor. In
1988, he started the Alpha program, which he managed
through launch ot the first products in 1992. He then
became technical direcror, first of Enginecring and then
of the Computer Systems Division. In 1996, he became
vice president of Rescarch and Advanced Development.
He has B.A. degrees in mathematics and in history from
MI'T, and an M.AL in history trom Brandeis Universiry.

Digital Technical Journal Vol.8 No.3 1996

Modern Fortran
Revived as the
Language of Scientific
Parallel Computing

New features of Fortran are changing the way
in which scientists are writing and maintaining
large analytic codes. Further, a number of these
new features make it easier for compilers to
generate highly optimized architecture-specific
codes. Among the most exciting kinds of
architecture-specific optimizations are those
having to do with parallelism. This paper
describes Fortran 90 and the standardized
language extensions for both shared-memory
and distributed-memory parallelism. In par-
ticular, three case studies are examined, show-
ing how the distributed-memory extensions
(High Performance Fortran) are used both for
data parallel algorithms and for single-program-
multiple-data algorithms.

William N. Celmaster

A Brief History of Fortran

The Fortran (FORmula TRANslating) computer lan-
guage was the result of a project begun by John
Backus at IBM in 1954. The goal of this project was to
provide a way for programmers to express mathemati-
cal tormulas through a formalism that computers could
translate into machine instructions. Initially there was
a great deal of skepticism about the efficacy of such
ascheme. “How,” the scientists asked, “would anvonc
be able to tolerate the inetficiencies that would result
from compiled code?” But, as it turned out, the first
compilers were surprisingly good, and programmers
were able, for the first time, to express mathematics in
a high-level computer language.

Fortran has cvolved continually over the vears in
responsc to the needs of uscers, particularly in the areas
of mathematical expressivity, program maintainability,
hardware control (such as [/0), and, of coursc, codc
opumizations. In the meantime, other languages such
as Cand C++ have been designed to better mect the
nonmathematical aspects of software design, such as
graphical interfaces and complexlogicallavouts. These
languages have caught on and have gradually begun to
erode the scientific/engineering Fortran code basc.

By the 19805, pronouncements of the “death of
Fortran” prompted language designers to proposc
extensions to Fortran that would incorporate the best
features of other high-level languages and, in addition,
provide new levels of mathematical expressivity popu-
laron supercomputers suchasthe CYBER 205 and the
CRAY svstems. This language became standardized as
Fortran 90 (ISO/IEC 1539: 1991; ANSI X3.198-
1992). At the present time, Fortran 95, which
includes many of the parallelization teatures ot High
Performance Fortran discussed later in this paper, is in
the final stages of standardization. It is not yer clear
whether the modernization of Fortran can, of itself,
stem the C tude. However, I will demonstrate in this
paper that modern Fortran is a viable mainstream lan-
guage for parallclism. It is true that parallclism is not
vet part of the scientific programming mainstrean,
However, it scems likelv that, with the scientists’
never-ending thirst for attordable performance, paral-
lelism will become much more common—especially

Digiral Technical Journal Vol.§8 No.3 1996

40

now that appropriate standards have evolved. Just as
carly Fortran cnabled average scientists and enginceers
to program the computers of the 1960s, modern
Fortran may cnable average scientists and engineers to
program parallel computers of the next decade.

An Introduction to Fortran 90

Fortran 90 introduces some important capabilitics in
mathematical expressivity through a wealth of natural
constructs for manipulating arravs.” In addition,
Fortran 90 mcorporates modern control constructs
and up-ro-date features tor dara abstraction and data
hiding. Some of these constructs, for example, DO
\WHILE, although not part of FORTRAN 77, arc
alrcady part of the de facto Fortran standard as pro-
vided, for example, with DEC Fortran.

Among the key new features of Fortran 90 are the
following;:

= Inclusion of all of FORTRAN 77, so users can
FORTRAN 77 without

compile their codces

modification

= Permissibility of free-form source code, so pro-
grammers can use long (i.c., meaningtul) variable
names and are not restricted to begin statements
mn column 7

= Modern control structures like CASE and DO
WHILE, so programmers can take advantage of
structured programming constructs

= Extended control of numeric precision, for archi-
recture independence

= Arrav processing extensions, for more casily express-
ing array operations and also for expressing inde-
pendence of clement operations

= Pointers, for more flexible control of data placement

= Dara structures, tor data abstraction

= Uscr-defined and operators, for data

abstraction

tvpes

= Procedures and modules, to help programmers
write reusable code
= Stream character-oriented input/output features
= New intrinsic functions
With these new features, a modern Fortran pro-
grammer ¢an not only successtully compile and exe-
cute previous standards-compliant Fortran codes burt
also design better codes with
= Dramaticallv simpliticd wavs of doing dvnamic
memory management
= Dvnanuc memory allocation and deallocation tor
memory management

= Better modularity and theretore reusability

Digiral Technical Journal Vol.8 No 3 1996

&

= Berrer readability
= Easier program maintenance

Additionally, of course, programmers have the
assurance of complete portability benween platforms
andarchitectures.

The tollowing code fragment illustrates the simplic-
ity of dynamic memory allocation with Fortran 90. Tr
alsoincludes some ofthe new syntax tor declaring vari-
ables, some examples of arrav manipulations, and an
example ofhow to use the new intrinsic matrix multi-
plication function. In addition, the exclamation mark,
which is used to begin comment statements, is a new
Fortran 90 fearure that was widely used in the past as
an extension to FORTRAN 77,

REAL, DIMENSIONC:,:,:), ' NEW DECLARATION SYNTAX
ALLOCATABLE GRID ' DYNAMIC STORAGE

REAL*8 A(4,4),B(4,4),CC4,4) | OLD DECLARATION SYNTAX
READ *, N ! READ IN THE DIMENSION

ALLOCATE(GRID(N+2,N+2,2)) |
GRID(:,:,1) = 1.0
GRID(:,:,2) = 2.0
A = GRID(1:4,1:4,1)
B = GRID(2:5,1:4,2)
C = MATMUL(A,B)

ALLOCATE THE STORAGE
ASSIGN PART OF ARRAY
ASSIGN REST OF ARRAY
ASSIGNMENT
ASSIGNMENT
MATRIX MULTIPLICATION

Somce ot the new features of Fortran 90 were intro-
duced not only for simpliticd programming but also
to permit better hardware-specific optimizations.
For example, in Fortran 90, one can write the arrav
assignment

A =8B+ C

which i FORTRAN 77 would be written as

DO 100 J = 1,N
DO 200 I = 1,M
ACI,) = B(I,J) + C(I,0)
200

100

END DO
END DO

The Fortran 90 arrav assignment not only is more
clegant but also permits the compiler to casily recog-
nize that the individual clement assignments are inde-
pendent of one another. IFthe compiler were targeting,
avector or parallel compurer, it could generate code
that exploits the architecture by taking advantage ot
this independence benveen irerations.

Of course, the particular DO loop shown above is
simple enough that many compilers would recognize
the independence of iterations and could theretore
perform the architecrure-specific optimizations with-
out the aid of Fortran 90°s new arrav constructs. But
in general, many ot the new features ot Fortran 90
help compilers to pertorm architecture-specitic opti-
mizations. Morce important, these features help pro-
grammers express basic numerical algorichms i wavs
inherently more amenable to optimizations that take
advantage of multiple arithmeric units.

A Brief History of Parallel Fortran: PCF and HPF

During the past ten vears, two significant cttorts have
been undertaken to standardize parallel extensions to
Fortran. The tirst of these was under the auspices of
the Parallel Computing Forum (PCF) and targered
global-sharcd-memory architectures. The PCF cftort
was directed to control parallelism, with litele atren-
tion ro language features tor managing data Jocalitv.
The 1991 PCF standard cestablished an approach to
sharcd-memory extensions of Fortran and also estab-
lished an interim svatax. These extensions were later
somewhat modified and incorporated in the standard
extensions now known as ANSI X3HS.

At about the time the ANST X3HS standard
was adopred, another standardization commitree
began work on extending Forrran 90 for distributed-
memoryv architectures, with the goal of providing
2 language suitable for scalable computing. This
committee became known as the High Pertormance
Foran Forum and produced m 1993 the High
Pertormance Fortran (HPF) language specification.”
The HPF programming-modecl target was data paral-
Iehism, and many data placement directives are pro-
vided for the programmer to optimize data locality. In
addition, HPF includes ways to specify a more general
style of single-program—multiple-dara (SPMD) execu-
tion in which separate processors can independently
work on ditterent parts of the code. This SPMD speci-
fication is formalized in such a way as to make the
resulting code far more maintainable than previous
message-passing-library wavs of specifving SPMD dis-

tributed parallelism.

Can HPF and PCF extensions be used together in
the same Fortran 90 code? Sure. But the PCF specifi-
cation has lots of “uscr-beware” warnings about the
correct usage of the PARALLEL REGION construct,
and the HPF specitication has lots of warnings about
the correct usage ot the EXTRINSIC(HPF_[LOCAL)
construct. So as vou can see, there are times when
a programmer had better be very knowledgeable it she
or hewants to write a mixed HPF /PCF code. Digital’s
products suppost both the PCF and HPF extensions.
The HPF extensions are supported as part of the DEC
Fortran 90 compiler, and the PCF extensions are sup-
ported through Digital’s KAP Fortran optimizer.*

Shared Memory Fortran Parallelism

The maditional discussions of parallel computing focus
rather heavily on whatis knownas control parallelisim.
Namely, the application is analvzed in terms of the
opportunitics tor paraliel execution of various threads
of control. The canonical example is a DO loop in
which the individual iterations operate on - inde-
pendent data. Fach ireration could, in principle, be

exceuted simultancously (provided of course that the
hardware allows simultaneous access to instructions
and dara). Technology has evolved to the point at
which compilers are otten able to detect these
ot parallclization opportunitics and automarically
decomposce codes. Even when the comp
to make this analvsis, the programmer often is able to
do so, perhaps atter performing a faw algorithmic

kinds

¢ris not able

modifications. It s then relatively easy to provide lan-
guage constructs that the user can add to the program
as parallclization hints to the compiler.

This kind of analysis is all well and good, provided
thar dara can be accessed democratically and quickly by
all processors. With modern hardware clocked arabout
300 megahertz, this amounts to saving that memory
latencies are lower than 100 nanoseconds, and memory
bandwidths are greater than 100 megabyres per see-
ond. This characterizes todav’s single and symmetric
multiprocessing, (SMP) computers such as Digital’s
AlphaScrver 8400 svstem, which comes with twelve
600-mcegatlop processors on a backplane with a band-
width of close to 2 gigabvtes per second.

In summary, the beaury of shared-memory paral-
lelismiis that the programmer does not need to worry
roo much about where the data is and can concentrate
instead on the casier problem of control parallelism. In
the simplese cases, the compiler can automatically
decompose the problem without requiring anv code
modifications. For example, auromatic decomposition
for SMP systems of a code called, for example, ctd.f
can be done trivially with Digital’s KAP optimizer by
using the command Jine

kf90 -fkapargs='-conc' cfd.f -o cfd.exe

As an example of guided automatic decomposition,
the tollowing shows how a KAP parallclization asscr-
tion can be included in the code. (Actually, the code
segment below is so simple that the compiler can auto-
matically derect the parallelism without the help of'the
assertion.)

C*$* ASSERT DO (CONCURRENT)
D0 100 I = 4,N

ACI) = BC(I) + C(D)
END DO

For explicit control of the parallelism, PCF dircec-
tives can be used. In the example that tollows, the KAP
preprocessor torm of the PCF directives are used to
parallclize aloop.

C*KAP*PARALLEL REGION
C*KAP*&SHARED(A,B,C) LOCALC(I)
C*KAP*PARALLEL DO
DO 10 I = 1,N
ACI) = B(I) + C(I)
10 CONTINUE
C*KAP*END PARALLEL REGION

Digiral ‘Technical Journal Vol. 8 No.3 1990

41

Cluster Fortran Parallelism

High Performance Fortran V1.1 is currently the only
language standard for distributed-memory parallel
computing. The most significant way in which HPF
extends Fortran 90 is through a rich familv ot data
placement directives. There are also library routines
and some extensions for control parallelism. HPF
is the simplest way ot parallelizing data-parallel appli-
cations on clusters (also known as “farms™) ot work-
stations and servers. Other mcthods of cluster
parallclism, such as message passing, require more
bookkeeping and are therefore less casy to express and
less casy to maintain. In addition, during the past vear,
HPE has become widely available and is supported on
the plattorms of all major vendors.

HPF is often considered to be a daier parallel lan-
guage. That is, it facilitates parallelization of arrav-
based algorithms in which the instruction stream can
be described as a sequence of array manipulations,
cach of which is inherently parallel. What is less well
known is that HPF also provides a powertul way of
expressing the more general SPMD parallelism men-
tioned carlier. This kind of parallelism, often expressed
with message-passing libraries such as MPL is one in
which individual processors can operate simultanc-
ously on independent instruction streams and gener-
allv exchange data either by explicitly sharing memory
or by exchanging messages. Three case studies tollow
which illustrate the data parallel and the SPMD sevles
of programming.

A One-dimensional Finite-difference Algorithm
Consider a simple one-dimensional grid problem—
the most mind-bogglinglv simple illustration of HPF
i action—in which cach grid value is updated as a lin-
car combination of its (previous) ncarest neighbors.
For cach interior grid index /. the update algorithm is

Y(/)=X(/i—=1)+ X(i+ 1) =2 XX(/)

In Fortran 90, the resulting DO loop can be
expressed as a single arrav assignment. How would
this be parallelized? The simplestwav to imagine paral-
lelization would be to partition the Xand Y arravs into
cqual-size chunks, with one chunk on cach processor.
Each iteration could procced simultancously, and at
the chunk boundarics, some communication would
occur between processors. The HPF implementanon
of this idea is simply to add the Fortran 90 code to two
data placement statements. One ot these declares that
the X array should be distributed into chunks, or
blocks. The other declares that the Y array should be
distributed such that the clements align to the same
processors as the corresponding clements of the X
acrav. The resultant code for arravs with 1,000 cle-
ments is as follows:

Digital Technical Journal Vol.8 No.3 1996

'HPF$ DISTRIBUTE X(BLOCK)
'HPFS ALIGN Y WITH X
REAL*8 X(1000), Y(1000)

<initialize x>
¥(2:999) = X(1:998) + X(3:1000) - 2 * X(2:999)

<check the answer>
END

The HPE compiler is responsible for generating all of
the boundary-clement communication code. The com-
piler is also responsible for determining the most even

distribution of arravs. (If; for example, there were 13
processors, some chunks would be bigger than others.)

This simple example is usetul not only as an illustra-
tion of the power of HPF but also as a way of pointing
algonthm develop-

to one of the hazards of paralle
ment. Eacly of the clement-updates involves three
floating-point operations—an addition, a subtraction,
and a multiplication. So, as an example, on a four-
processor system, cach processor would operate on
250 clements with 750 floating-point operations. In
addition, cach processor would be required to com-
municate one word ot dara for cach of the two chunk
boundarics. The time that cach of these communica-
tions takes is known as the communications latency.
Tvpical transmission control protocol/internet proto-
col (TCP/IP) nerwork latencies are twentv thousand
times (or morce) longer than the time it tvpically takes
a high-performance svstem to pertform a floating-
point operation. Thus cven 750 Hloating-point opera-
tions are negligible compared with the time taken to
communicate. In the above example, nenwork paral-
lelism would be a net loss, since the total exccution
tme would be totally swamped by the network
latency.

Of coursce, some communication mechanisms are of’
lower latency than TCP/IP nenworks. As an example,
Digital’s implementation of MEMORY CHANNEL
cluster mterconnect reduces the lateney to less than
1000 floating-point operations (relative to the perfor-
mance of, sav, Digital’s AlphaStation 600 5,/300 svs-
tem). For SMP, the latency is even smaller. In both
cascs, there may be a benetit to parallelism.

A Three-dimensional Red-Black Poisson

Equation Solver

The example of a one-dimensional algorithm in the
previous section can be casily generalized to a more
realistic three-dimensional algorithm tor solving
the Poisson equation using a relaxation technique
commonly known as the red-black method. The
grid is partitioned into two colors, following a two-
dimensional checkerboard arrangement. Each red
grid element is updated based on the values of neigh-
boring black clements. A similar array assignment can

be written as in the previous example or, as shown in
the partial code segment below, alternativelv can use
the HPF FORALL construct to express the assign-
ments in a stvle similar to that for serial DO loops.

'HPF$ DISTRIBUTE(*,BLOCK,BLOCK) :: U,V
<other stuff>
FORALL (I=2:NX=-1,J=2:NY=-1:2,K=2:N2-1:2)
UucCr,J,K> = FACTOR*(HSQ*F(I,J, K) + &
UuCI-1,J4,K) + UuCI+1,J,K) + &

The distribution directive lays out the array so that
the first dimension is completely contained within
a processor, with the other two dimensions block-
distributed across processors in rectangular chunks.
The red-black checkerboarding is performed along
the sccond and third dimensions. Note also the
Fortran 90 free-form svntax emploved here, in which
the ampersand is used as an end-of- line continuation
statement.

In this example, the parallelism is similar to that
of the once-dimensional finite-ditterence example.
However, communication now occurs along the two-
dimensional boundaries between blocks. The HPF
compiler is responsible for these communications.
Digital’sFortran 90 compiler performs several opti-
mizations ot those communications. First, it pack-
ages up all of the data that must be communicated
into long vectors so that the start-up latency is cffee-
tvely hidden. Sccond, the compiler creates so-called
shadow cdges (processor-local copics of nonlocal
boundary cdges) tor the local arrays so as to minimize
the cftect of buttering of neighbor values. These kinds
of optimizations can be extremely tedious to message-
passing programmecrs, and one of the virtues of a high-
level language like HPF is that the compiler can take
care of the bookkeeping. Also, since the compiler
can reliably do bufter-management bookkeeping (for
example, ensuring that communication bufters do not
overtlow), the communications runtime library can
be optimized to a far greater extent than one would
normally expect from a user-safe message library.
Indeed, Digital’s HPF communications are performed
using a proprictary optimized communications library,
Digital’s Parallel Sofowvare Environment.©

Communications and SPMD Programming with HPF

Since HPF can be used to place data, it stands to
reason that communication can be ftorced benwveen
processors. The beauty of HPF is that all of this can be
done in the context of mathematics rather than in the
context of distributed paralle) programming. The
code fragment in Figure 1 illustrates how this is done.

On two processors, the two columns of the U and V
arrays are cach on difterent processors; thus the array
assignment causcs onc of those columns to be moved
to the other processor. This kind ot an operation begins
to provide programmers with explicit wayvs to control
data communication and therefore to more explicitly
manage the association of data and operations to
processors. Notice that the programmer need not be
explicit about the parallelism. In fact, scientists and
engincers rarely wanrt to express parallelism. In tvpical
message-passing programs, the messages often express
communication of vector and arrav information.

However, despite the tervent hopes of programmers,
there arc times when a parallel algorithm can be
expressed most simply as a collection of individual
instruction strecams operating on local data. This SPMID
style of programming can be expressed in HPE with the
EXTRINSIC(HPF_LOCAL) declaration, as illustrared
by continuing the above code segment as shown in
Figure 2.

Because the subroutine CFD is declared to be
EXTRINSIC(HPF_LOCAL), the HPF compiler exc-
cutes that routine mdependently on each processor (or
more generally, the execution is done once per peer
process), operating on routine-local data. As tor the
array argument, V,which is passed to the CED routine,
cach processor operates only on its local slice of that
array. In the specific example above on two processors,
the first one operates on the first column of 'V and the
second one operates on the sccond column of V.

It is important to mention here that, although HPFE
permits—and even encourages—SPMD program-
ming, the more popular method at this time is the
message-passing technique embodied in, for example,
the PVM™ and MPI* librarics. Thesc libraries can be
invoked from Fortran, and can also be used in conjunc-
tion with EXTRINSIC(HPF_LOCAL) subroutincs.

"HPF$ DISTRIBUTE(*,BLOCK) ::
'"HPF$ ALIGN V WITH U
REAL*8 U(N,2),V(N,2)
<initialize arrays>
v(:,1) = U(:,2) !

MOVE A VECTOR BETWEEN PROCESSORS

Figure 1

Code Example Showing Control of Data Commiunication without Expression of Parallclism

Digital Technical Journal ‘0l.8 No. 3 1996

43

44

CALL CFDCV) ! DO LOCAL WORK ON THE LOCAL PART OF V

<finish the main program>

EXTRINSIC(HPF_LOCAL) SUBROUTINE CFD(VLOCAL)

REAL*8, DIMENSION(C:,:)
'HPF$ DISTRIBUTE *(*,BLOCK)

VLOCAL
VLOCAL

<do arbitrarily complex work with vlocal>

END

Figure 2

Code Example of Parallel Algorithm Expressed as Collection of Tnstruction Streans

Clusters of SMP Systems
During these last few vears of the second mil

ennium,
we are wirnessing the emergence of sysrems that con-
sist of clusters of shared-memory SMP computers.
This exciting development is the logical result ot the
exponential merease in performance of mid-priced
($100K to $1000K) systems.

There are two natural ways of writing parallel
Fortran programs for clusters of SMP svstems. The
casiest way is to use HPF and ro target the total num-
ber of processors. So, for example, if there were two
SMP systems, cach with tour processors, one would
compile the HPF program for cight processors (more
generally, tor eight peers). It the program contained,
for instance, block-distribution dircctives, the atfected
arravs would be split up into cight chunks of conrigu-
ous array scctions.

The second way of writing parallel Fortran pro-
grams for clustered SMP svstems is to use HPE to
target the total number of SMP machines and then
to use PCF (or more generally, shared-memory exten-
sions) to achieve parallelism locally on cach of the SMT
machines. For example, one might write

'"HPF$ DISTRIBUTE (*,BLOCK) :: V
<stuff>
EXTRINSIC(HPF_LOCAL) SUBROUTINE CFD(V)
<stuff>

C*KAP*PARALLEL REGION

It the target svstem consisted of two SMDP svstems,
cach with four processors, and the above program was
compiled for nwo peers, then the Varrav would be dis-
tributed into two chunks of columns—one chunk
per SMP system. Then the routine, CED, would be
exccuted once per SMP systen; and the PCE directives
would, on each system, cause paral
threads of execution.

It is unclear ar this time whether there would ever
bea practical reason for using a mix of HPF and PCF
extensions. It might be tempring to think thatr there

clism on tour

would be pertormance advanrages associared with the
local use of shared-memory parallelism. However,
experience has shown rthar program pertormance
tends to be restricted by the weakest link in the perfor-
mance chain (an observation that has been enshrined

Digital Technical Jouenal Vol.8 No. 3 1996

as “Amdahls Law"). In the case of clustered SMP svs-
tems, the weak link would be the inter-SMP commu-
nication and not the mra-SMP (shared-memory)
communication. This casts some doubt on the worth
ot local communications optimizations. Experimenta-
tion will be necessary.

Whatever ¢l
thing is certain: The future will not be boring,.

se one might sav about parallelism, one

Summary

Fortran was developed and has continued to evolve as
anguage that is particularly suited to
expressing mathematical formulas. Among the recent
extensions to Fortran are a variety of constructs tor
the high-level manipulation of arravs. These constructs
are especially amenable to parallel optimization. In
addition, there are extensions (PCF) for explicit
shared-memorv paral
extensions (HPF) for cluster parallelism. The Digiral
Fortran compiler performs many interestng optimiza-
tions of codes written using HPE. These HPF codes
are able to hide—without sacriticing performance—

a computer

clization and also data-parallel

much of the redium that otherwise accompanies clus-
ter programming. Todav, the most exciting trontier
ter Fortran is that of SMDP clusters and other
n()nuniﬂ)rm-1m'|no1"\'—ncccss (NUMA) svstems.

References

1. J. Adams ¢t al., Fortrene 90 Heandbook (New York:
McGraw -Hill, [nc., 1992)

2. “High Performance Foroman language specification,”
Scientific: Progrannning. vol. 2: 1-170 (New York:
John Wiley and Sons, Tnc., 1993), and C. Koclbel cral.,
The Hieh Performence Fortran Handbook (Boston:
MIT Press, 1994).

3. J. Harns ctal., “Compiling High Pertormance Fortran
tor Distributed-memory Svstems,™ Digital Technical
Journal vol. 7, no. 3 (1995): 5-23.

4. R. Kuhn, B. Leasure, and S, Shah, “'T'he KAP Parallchizer

tor DEC Fororan and DEC C Programs,” Digital

Technical fournal. vol. 6, no. 3 (1994): 37-70.

(o]

For example see Proceedings of Supercompuiting 95
(ItEE, November 1993): 878-883, and W. Gropp,
E. Lusk, and A. Skjellum, (sing M@ (Boston: MI'T
Press, 1994).

6. k. Benson cral, “Design of Digital’s Parallel Software
Environment,”™ Digital Techuical Jonmal. vol 7, no. 3
(1995): 24-38.

7. Forexample see AL Geist et aly PUAE Parallel Virtiial
Machine. A Users Guide and Tutorial for Network
Perallel Compirting (Boston: MIT Press, 1994).

Biography

William N. Celmaster

Bill Celmaster has long been involved with high-performance
computing, both as a scientist and as a compuring consul-
rant. Joining Digital from BEN in 1991, Bill managed the
porting ol major scientific and engineering applications to
the DECmpp 12000 system. Now a member of Digital’s
High Performance Computing Expertise Center, he is
responsible for parallel software demonstrations and per-
formance charactecization of Digital’s high-performance
svstems. He has published numerous papers on parallel
compuring methods, as well as on topics in the ticld of
phvsics. Bill received a bachcelor of science degree in mathe-
matics and physics from the University of British Columbia
and a PhoD i physics trom Harvard University.

Digital Techmcal Journal

Vol.§ No. 3

1996

45

46

Performance
Measurement of
TruCluster Systems under
the TPC-C Benchmark

Digital Equipment Corporation and Oracle
Corporation have announced a new TPC-C
performance record in the competitive mar-

ket for database applications and UNIX ser-

vers on the AlphaServer 8400 5/350 four-node
TruCluster system. A performance evaluation
strategy enabled Digital to achieve record-
setting performance for this TruCluster con-
figuration supporting the Oracle Parallel Server
database application under the TPC-C workload.
The system performance in this environment is
a result of tuning the system under test and tak-
ing advantage of TruCluster features such as the
MEMORY CHANNEL interconnect and Digital’s
distributed lock manager and distributed raw
disk service.

Digital Technical Jowrnal Vol.8 No.3 1996

Judith A. Piantedosi
Archana S. Sathaye
D. John Shakshober

Current industry trends have moved from centralized
computing otfered by uniprocessors and svmmetric
multiprocessing (SMP) svstems to multinode, highly
available and scalable svstems, called clusters. The
TruCluster multicomputer system ftor the Digital
UNIX environment is the latest cluster product from
Digital Equipment Corporation.' In this paper, we
discuss our testand results on a four-node AlphaServer
8400 5/350 TruCluster configuration supporting the
Oracle Parallel Server database application. We evalu-
ate this system under the Transaction Processing
Performance Council’s TPC-C benchmark to provide
performance results in the competitive market for
databasc applications.

The TPC-C benchmark is a medium-complexity,
on-line transaction processing (OLTP) workload.** Tt
1s based on an order-entry workload, with ditterent
transaction tvpes ranging from simple transactions to
medium-complesity transactions that have 2 to 50
times the number of calls of a simple transaction.” To
run the TPC-C benchmark on a clustered system, the
operating system and the database engine must present
a single database to the benchmark client. Thus the
TruCluster system running the Oracle Parallel Server
differs greatly from a nerwork-based claster svstem by
two significant teatures. First, the Digital UNIX distrib-
uted raw disk (DRD) service cnables the distributed
Oracle Parallel Server to access all raw disk volumes
regardless of their phvsical location in the cluster.
Second, the Oracle Parallel Server uses Digital’s distrib-
uted lock manager (DL.M) to svichronize all access to
shared resources (such as in memory cache blocks or
disk blocks) across a TruCluster system.

In tuning the system under test, we used the DRD
and the DLM services to balance the database across
the TruCluster multicomputer svstem. The config-
uration includes a specialized peripheral compo-
nent interconnect (PCL) known as the MEMORY
CHANNEL interconnect to greatly improve the band-
width and lateney benween two or more member
nodes.* We tuned the svstem under test to attain the
peak bandwidrh of 100 megabytes per second (MB/s)
for heavy mternode communication during check-
poiting bv using a dedicated PCL bus for the
MEMORY CHANNEL mnterconnect. We also tuned

the svstem under test to use the very large memory
technology and trade off memory for the database
cache with memory for DLM locks to improve the
throughput. (For a discussion of this technology, sce
the section Performance Evaluation Mcethodology.)
We measured the maximum throughput, the 90th
pereentile response time for cach transaction tvpe, and
the keving and think times. Finally, we compared our
measured throughput and price /performance with
competitive vendors like Tandem Computers and
Hewlert-Packard Company.

The rest of the paper is organized as follows. In the
next section, we provide a svnopsis of the TruCluster
technology and introduce the Oracle Parallel Server,
an optional Oracle product that enables the user to use
TruCluster technology with the Oracle relational
database management svstem. Following that, we give
an overview of the TPC-C benchmark. Next, we
describe the system under test and our pertormance
cvaluation methodology. Then we discuss our pertor-
mance measurement results and compare them with
compctitive vendor results. Finally, we present our
concluding remarks and discuss our future work.

TruCluster Clustering Technology

Digital’s TruCluster configuration consists of inter-
connected computers (uniprocessors or SMPs) and
external disks connected to one or more shared, small
computer systems interface (SCSI) busces providing
services to clients.® It presents a sing

¢ raw volume
namespace toa client with better application availabil -
ity than a single system and better scalability than an
SMP. A TruCluster configuration supports highly par-
allelized darabase managers, such as the Oracle Parallel

Server, to provide incaremental performance scaling
of at least 80 percent tor transaction processing appli-
cations. The underlving technology to provide this
incremental growth includes a PCI-based MEMORY
CHANNEL interconnect for communication between
cluster members® The MEMORY CHANNEL
interconnect provides a 100-MB /s, memory-mapped
connection between cluster members.” The cluster
members map transfers from the MEMORY
CHANNEL imterconnect into their memory using

standard memory access instructions. The use of

memory store instructions rather than special 1/0
instructions provides low latency (two microscconds)
and low overhead tor a transter ofany length.”

The TruCluster for Digital UNIX product supports
up to cight (four tor commercial DLM/DRD-based
applications) cluster members connected to a com-
mon cluster interconnect. The computer svstems

supported within a cluster are AlphaServer svstems of

varving processor speed and number of processors.
The member systems run applications (for example,
user applications), as well as monitor the state of cach
member system, cach shared disk, the MEMORY
CHANNEL interconnect, and the network. These
cluster members communicate over the MEMORY
CHANNEL interconnect.*Y A MEMORY CHANNEL
configuration consists of a MEMORY CHANNEL
adapter installed in a PCI slot and link cables to con-

nect the adapters. In a configuration with more than
two members, the MEMORY CHANNEL adapters
are connected to a MEMORY CHANNEL hub. A
tvpical TruCluster configuration with a MEMORY
CHANNEL hub is shown in Figure 1.

Applications can attain high availability by connect-
ing two or more member systems to one or more

CLIENT

CLIENT

CLIENT

rr-——r -~ -~ -~ -—"—-—"—-—"-—" " “-"=—-—"—"~——"=—"/—"—% -~ = 1
: SERVER 1 SERVER 2 '
|
| |
| MEMORY MEMORY |
CHANNEL CHANNEL
| ADAPTER ADAPTER |
| SHARED STORAGE |
| |
| KZPSA KZPSA |
ADAPTER ADAPTER
| |
| |
| |
| |
| LOCAL STORAGE |
l_ -]

Figure 1

A TruCluster Configuratien with MEMORY CHANNEL Hub

Digital Technical Journal Vol.8 No.3 1996

47

48

shared SCSI buscs, thus constructing an Available
Server Environment (ASE). A shared SCSI bus is
required only for two-member contigurations that do
not have a MEMORY CHANNEL hub. Although
MEMORY CHANNEL is the only supported cluster
intcrconnect, Ethernet and fiber distributed data
mtertace (FDDI) are supported for connecting chents
to cluster members. Disks are connected cither locally
(i.c., nonshared) to a SCSI bus or to a shared SCSI bus
berween nwo or more member svstems. A single node
in the cluster is used to serve the disk to other cluster
members. Disks on Jocal buses obviously become
unavailable upon fatlure of the server node. The SCSI
controller supported i this configuration is the PCI
disk adaprer, KZPSA.

The distinguishing fteature ot the TruCluster
software is its support of the MEMORY CHANNEL
as a cluster mterconnect, thus providing industry-
lcadership pertormance to intracluster communica-
tion.” The TruCluster software includes the following
components: the DM, the connection manager, the
DRD, and the cluster communication scrvice. The
DLM facilitates svnchronization to shared resources to
all member svstems in a cluster by means ot a run-time
librarv. Cooperating processes use the DLM to svi-
chronize access to a shared resource, a DRD deviee,
atile, ora program. The DLM service is primarily used
by the Oracle Parallel Server ro coordinate access to the
cache and shared disks that have the darabasce installed
The connection manager maintains information about
the cluster contiguration and maintains a communica-
tion path between cach cluster member tor use by the
DLM. The DLM uscs this configuration data and other
connection manager services to maiatain a distribured
lock databasc. The DRI allows the exporting of clus-
rerwide raw devices. This allows disk-based user-level
applications to run within the cluster, regardless of
where in the cluster the actual physical storage resides.
Thercfore a DRD service allows the Oracle Parallel
Server parallel access to storage media trom multiple

cluster members. The cluster communication service is
usced to allocate the MEMORY CHANNIIL address
space and map it to the processor main memory.

TPC-C Benchmark

The TPC-C benchmark depicts the activity ota generic
wholesale companv. The
n the TrC-C business environment is shown in
Figure 2. The company consists ot a number of geo-
graphically distribured sales districes and associared
warchouses. Furthar, there are 10 districts under each
warehouse with cach district serving 3,000 (3K) cus-
tomers. All the warchouses maintain a stock of 10,000
items sold by the company. As the company grows,

supplier hierarchy

new warchouses and associated sales districts are cre-
ated. The business activity consists ot customer calls
to place new orders or request the status of existing,
orders, pavment entries, processing orders tor delivery,
and stock-level examination. The orders on an average
are composed of 10 order lines (i.c., hne items).
Nincety-nine pereent ofall orders can be met by a local
warehouse, and only one percent ot'them need to be
sold bv a remote warchouse.

The TPC-C logical database components consist of
nine tables.” Figure 3 shows the relationship benween
these rables, the cardinalicy of the tables (i.c., the num-
ber of rows), and the cardimaliny of the relationships.
The figure also shows the approximate row length in
bytes tor cach rable and the table size in megabytes.
The cardinality of all the tables, except the wem table,
grows with the number of warchouses. The order,
order-line, and history tables grow indefinitely as the

orders arc processed.

The five tvpes of TPC-C transactions are listed in
Table 1.° The new-order transaction places an order
(of 10 order hnes) from a warchouse through a single
database transaction; it inserts the order and updates
the corresponding stock level for cach item. Ninery-
nine pereent of the time the supplving warchouse 1§

COMPANY

| |

DISTRICT 1+ vvveeeeeees DISTRICT 10

........................ WAREHOUSE W

|
|]

DISTRICT 1 -+ vreeosies DISTRICT 10

| |

CUSTOMER j r CUSTOMER |

r CUSTOMER I | CUSTOMER

Source: Transaction Processing Performance Council, TPC Benchmark C Standard Specification,

Revision 3.0, February 1995.

Figure 2

Hicrarchical Relationship m the TPC-C Business Enviconment

Digital Technical Journal Vol. 8 No.3 1996

WAREHOUSE o DISTRICT
W.89,0.000089°W W*10,95,0.00095°'W
3K
l‘OOK HISTORY - ,
STOCK W,89,0.000089° W CUSTOMER
W*100K,306,30 6°'W 34 W*30K.655,19.65'W
1 1+
w NEW-ORDER 01 \
ITEM W'9K.8.0 016"W+ <_|— ORDERS
100K.82.8 2 515 W*30K+.24.0.72*W+
ORDER-LINE
W*300K+54,16.2°W+
KEY:
TABLE NAME
CARDINALITY. CARDINALITY OF RELATIONSHIP
APPROXIMATE ROW.
TABLE SIZE
LENGTH (BYTES)

Note: + implies variations over measurement interval as rows are deleted or added.

Figure 3

TPC-C Database Tables Relationship

Table 1
TPC-C Requirements for Percentage in Mix, Keying Time, Response Time, and Think Time?
90th
Percentile Minimum
Minimum Response Mean Think
Minimum Keying Time Time
Transaction Percentage Time Constraint Distribution
Type in Mix (Seconds) (Seconds) (Seconds)
New order N/A® 18 5 12
Payment 43 3 5 12
Order status 4 2 5 10
Delivery 4 2 5 5
Stock level 4 2 5 5
Notes

* Table 1is published in the Transaction Processing Performance Council's TPC Benchmark C Standard Specification, Revision 3.0, February 1995
* Not applicable (N/A) because the measured rate is the reported throughput, though it is desirable tosetit as high as possible (45%).

the local warehouse, and only once percent of the rime
1s 1t a remote warehouse. The payment transaction
processes a paviment for a customer, updates the cus-
tomer’s balance, and reflects the pavment in the dis-
trict and warchouse sales statistics. The customer
resident warchouse is the local warchouse 85 percent
ot the time and is the remote warchousce 15 percent of
the time. The order-status transaction returns the sta-
tus ot a customer order. The customer order is selecred
60 percent of the time by last name and 40 percent of
the time by identification number. The delivery trans-

action processes orders corresponding to 10 pending
orders, 1 for cach district with 10 items per order. The
corresponding cntry in the new-order table is also
deleted. The delivery transaction is intended to be exce-
cuted in deterred mode through a queuing mecha-
nism, rather than being executed interactively; there is
no terminal response indicating the transaction com-
pletion. The stock-level transaction examines the
quantity of stock for the items ordered by cach of the
last 20 orders in a district and determines the items
that have a stock level below a specitied threshold.

Digiral Technical Journal Vol. 8 No.3 1996

49

The TPC-C pertormance metric measures the rotal
number of new orders completed per minute, with a
90th percentile response-time constraint of 5 seconds.
This metric measures the business throughput rather
than the transaction exccution rate.” Itis expressed in
transactions-per-minute C (tpmC). The metric implic-
ith takes into account all the transaction tvpes as their
individual throughputs are controlled by the mix per-
centage given in Table 1. The tpmC is also driven by
the activiny of emulated users and the trequency of
checkpointing.” The cvcle tor generating a TPC-C
transaction by an emulated uscris shown in Figurce 4.

The transactions are generated uniformly and at
random while maintaining a minimum percentage in
mix for each transaction tvpe. Table 1 gives the mini-
mum mix percentage for cach transaction tvpe, the
minimum keving time, the maximum 90th percentile
response-time constraing, and the minimum think
time defined by the TPC-C specification.

The delivery transaction, unlike the othar trans-
actions, must be exceuted in a deferred mode.” The
response time in Table | 1s the terminal response
acknowledging that the transaction has been queuced
and not that the delivery transaction itself has been
exccuted. Further, ar least 90 percent of the deferred
delivery transactions must complete within 80 scconds
of their being queuced for execution. The performance
tuning for the svstem under test determines the
number of checkpoints done in the measurement
interval and the length of the checkpointing inter-
val. The TPC-C specification, however, defines the
upper bound on the checkpointing interval to be
30 minutes.*

The other TPC-C metric is the price /pertormance
ratio or dollars per tpmC. This metric is computed by
dividing the total five-vear svstem cost for the svstem
under test with the reported tpmC.Y

Performance Evaluation Methodology
In this section, we tirst describe the contiguration ot

the svstem under test (SUT) used for the performance
cvaluation of the TruCluster svstem under the TPC-C

workload. Then we discuss the testing strategy used to
enhance the performance ofthe SUTT.

We show the configuration ot the client-server SUT
in Figure 5. The server SUT consists of a TruCluster
contiguration with four nodes; cach node is an
AlphaScrver 8400 5/350 svstem with cight 350-
megahertz (MHz) CPUs and 8 gigabyvtes (GB) of
memory. These nodes are connected together by a
MEMORY CHANNEL link cable from the MEMORY
CHANNEL adaprer on the node to a single MEMORY
CHANNEL hub. The local storage configuration for
cach node consists of 6 HSZ40 redundant array of
inexpensive disks (RAID) controllers, 31 RZ28 and
141 RZ29 disk drives, connected to the node by SCSI
buses to 6 KZPSA disk adapters. Further, cach node is
connected to FDDI by a DEFPA FDDI adaprer. The
nodes communicate with the clients over this FDDI

The client SUT consists of 16 AlphaServer 1000
4 /266 svstems, cach with 512 MB of memory, one
RZ28 disk drive, and one DEFPA FDDI adaprer.” The
remote termmal emulators (RTEs) that are used to gen-
erate the transactions and measure the various times
(1.c., think, response, or keving time) for cach trans-
actionare 16 VAXstation 3100 workstations, cach with
one RZ28 disk drive. From our logical description of
the nerwork topology shown in Figure 6, we see that
cach of the four nodes in the cluster is connected to four
client svstems, and cach RTE is connected to one client
system. The tour clients associated with cach node are
connected to a DEChub 900 switch. Each of the four
DEChub 900 products contains two concentrators,
onc DEFHU-MU 14-port unshiclded rwisted-pair
(UTP) concentrator (for FDDI) and one DEFHU-MH
concentrator (for the twisted-pair Etherner). The
DEChub 900 switches are conncected to an 8-port
GIGAswitch svstem, which is used to route communi-
cations berween the client and the server.

The software configuration of the server system 1s
the TruCluster software running under the Digiral
UNIX version 4.0A operating svstem and the Oracle
Parallel Server database manager (Oracle7 version 7.3)
nstalled on cach cluster member. The software config-
uration installed on cach client svstem is the Digital

MEASURE MENU
SELECT A RESPONSE TIME KEY TIME: TO
TRANSACTION TYPE DISPLAY SCREEN ENTER REQUIRED
FROM MENU INPUT FIELD
) MEASURE
TRANSACTION

RESPONSE TIME

THINK TIME: WHILE
SCREEN REMAINS
DISPLAYED

DISPLAY DATA

Figure 4

Cycle for Generating a 1PC-C Transaction by an Emulated User

Digital Technical Journal Vol. 8 No.3 1990

8-CPU, 8-GB
ALPHASERVER 8400
5/350 SYSTEM

8-CPU, 8-GB
ALPHASERVER 8400
5/350 SYSTEM

|
6 HSZ40
RAID
CONTROLLERS

1
6 HSZ40
RAID
CONTROLLERS

| MEMORY ’

— CHANNEL HUB S~— 31 /228
31 Rz28 — =
AND 141 RZ29 AND 141 RZ29
DISK DRIVES - - DISK DRIVES

8-CPU, 8-GB 8-CPU, 8-GB
I ALPHASERVER 8400 ALPHASERVER 8400 1
6 HSZ40 5/350 SYSTEM 5/350 SYSTEM 6 HSZ40
RAID RAID
CONTROLLERS CONTROLLERS
31 RZ28
1 RZ2

DISK DRIVES DISK DRIVES

4 VAXSTATION 3100

4 VAXSTATION 3100

ﬁ I
GIGASWITCH
SYSTEM
1 . ke

WORKSTATIONS

DECHUB 900
SWITCH

WORKSTATIONS
— DECHUB 900
— SWITCH
4 VAXSTATION 3100
WORKSTATIONS
.

4 VAXSTATION 3100
L WORKSTATIONS

16 ALPHASERVER 1000 4/266
SYSTEMS

Figure 5
Client-Server System under Test

UNIX version 3.2D operating system and the BEA
Tuxedo System /T version 4.2 transaction processing
monitor. Further, cach RTE runs the OpenVMS oper-
ating svstem and a proprictary emulation package,
VAXRTE. In the remainder of this section, we discuss
the testing strategy used to generate the transactions
on the front end. Then we discuss the tuning done on
the back end ro achieve the maximum possible tpmC
measurements frem the SUT.

In contormance with the TPC-C specitication, we
used a series of RTEs to drive the SUT. The one-to-
onc correspondence between emulated users on the
RTE and the TPC client forms on the client required
us to determine the maximum number of uscers to be
generated by the RTE. The main factor we used to
determine the number of users was the client’s mems-
orv size. We assumed that on a client, 32 MB of mem-
orvis used tor the operating system and 0.25 MB tor
cach TPC client form process. Theretore, with these
constraints, cach RTE generates 1,620 emulated users.
The emulated users then gencrate transactions ran-
domly based on the predetfined transaction mix (as

described in Table 1) with a unique seed. This ensures
the mix is well defined and a varicey of transaction
nypes arce running concurrently (to better simulate a
real-world environment). We had a local arca trans-
port (LAT) connection over Ethernet benween cach
emulared user and a corresponding TPC client form
process on the client tor taster communication. We
show the communication between an RTE, a client,
and a server in Figure 7.

We built five order queues on each client corre-
sponding to a transaction tvpe, which allowed us to
control the transaction percentage mix. A TPC client
form process queues ransactions generated by the
emulated users to the appropriate order queuc using
Tuxedo library calls. These transaction requests in
cach queuc are processed in a tirst in, first out (FIFQ)
order by the Tuxedo server processes running on the
client. We had 44 Tuxcdo server processes that were
not evenly distributed among the S order queuces but
were distributed so that the number ot Tuxedo server
processes dedicated to a queue was directly correlared
to the percentage of the workload handled by the

Digiral Technical Journal Vol.8 No.3 1996

o

CLIENT 2

CLIENT 2

GIGASWITCH
SYSTEM

_II*
00
00
]

CLIENT 2

CLIENT 1 CLIENT 3 | |CLIENT 1 CLIENT 3 | |CL|ENT 1
|RTE| |HTr| |RTE| |RTE|
CLIENT 4 RTE
NODE 1 NODE 2 NODE 3 NODE 4
MEMORY
CHANNEL
HUB
KEY:
—— MEMORY CHANNEL LINK CABLE
—— FDDI
= ETHERNET
Figure 6
Logical Description of the Network Topology
Each emulated user on the RTE uses a different RTE Fonthisitest, 1,620 users) were Sffiaiap
seed so all clients are not executing the mix in / on each RTE. This number, however, is
the same order. dependent on the amount of memory on
USERS the client.
There is a one-to-one relationship between 123 wee N ... 1619 1,620 LAT connections were used from emulated
i . __~ users to TPC Client Forms.

emulated users and TPC Client Forms, \

For this test, 44 total
Tuxedo Servers service
requests. Each process
services one type of
transaction. However,
not all transaction
types have the same
number of server
processes.

[o
l ¢ CLIENT !
ci||ce||c3 Cn C1,619(|C1.620
‘ TUXEDO LIBRARIES
NEW-ORDER PAYMENT ORDER-STATUS DELIVERY STOCK-LEVEL
OUEUE OUEUE OUEUE QUEUE QUEUE

!

)

TPC Client Forms

make Tuxedo

Library calls to
" send requests

to the appropriate

order queue

Each queue
represents one
transaction type.

e

I TR TR TR '?L § 99 -0 99 - 00
Communication is TCP/IP. ~ oD FING
SERVER (CLUSTER NODE)
Figure 7

Communication between an RTE, a Client, and a Server

Digital Technical Journal

Vol. 8 No.

31996

queue. In other words, the greater the percentage of
the workload on a queue, the greater the number
of Tuxedo server processes dedicated to that queue.
The number of Tuxedo server processes per client is
computed based on the rule of thumb thar cach queue
should have no more than 300 outstanding requests
during checkpointing and 15 at other times. These
Tuxedo server processes communicate with the server
system (cluster node) using the Transmission Control
Protocol /Internet Protocol (TCP/IP) over FDDI to
excceute related database operations. '

The industry-accepted method of tuning the TPC-C
back end is to add enough disks and disk controllers on
the server to climinate the potential foran 1/0 bottle-
neck, thus forcing the CPU to be saturated. Once the
engineers are assured that the performance limitation is
CPU saturation, the amount of memory is tuned to
improve the database hit ratio. Because all vendors sub-
mitting TPC-C results use this stvie of tuning, the per-
tormance limitation for TPC-C is usually the back-end
server’s CPU power. In fact, tests have shown that if
this method of tuning is not followed on the back-end
server, the user will not obrain the optimal TPC-C per-
tormance results. Instead, the tests reveal a back-end
server contiguration that has not ftullv utilized the
server’s potential by having unbalanced CPU and 1/0
capabilitics. This tvpe of configuration not only reduces
the server’s throughput capacity but also adversely
aftecrs the price/performance of the SU'T.

On the back end, we used TruCluster technology
teatures to achieve the maximum possible transactions
per minute (gpm)."* We balanced the 1/0 across all the
RAID controllers and disks of the cluster and distrib-
uted the darabase across all the server nodes. We dis-
tributed the database such that cach node in the
cluster had an almost equal part of the database. The
TPC-C benchmark execution requires a single data-
basc view across the cluster. We used the DRD and
DLM services of the TruCluster software to present
acontiguous view of the database across the cluster. It
both the database and the indexes could have been
completely partitioned, we could have achieved close
to lincar scaling per node. However, since the Oracle
Parallel Server does not have horizontal partitioning
of the indexes, we could not completely partition the
indexces across the cluster.' This resulted in 15 pereent
to 20 pereent of internodal access, which means that
15 pereent to 20 percent of the new orders were satis-
tficd by remote warehouses, therefore making our
TPC-C results more realistic.

We also tuned the physical memory to trade off
memory for database cache and the DIM locks.
Hecuristically, we observed a 40-percent gain m
throughput on a single-node AlphaScrver 8400 5,350
server svstem running TPC-C when the memory size
was increased from 2 GB to 8 GB. This is because, with
more data being served by memory, the number of

processor stalls decrcases, and the database-cache hit
ratio improves from 88 percent to more than 95 per-
cent.' Tuning physical memory bevond 2 GB is called
vervlarge memory (VI.M). We used the tpm results of
the AlphaScrver 8400 svstem to tune the phvsical
memory size and configuration. We show these mea-
sured tpm results for the AlphaServer 8400 cluster
systems in Figure 8.

To achieve optimal server performance, it is impor-
tant to tune the amount of memory used by the Oracle
Svstem Global Arca (SGA) and the DLM. Our testing
found that using VLM to increasce the size ot the SGA to
5.0 GB of physical memory viclded optimal pertor-
mance in a TruCluster enviconment. However, it s
important to note that on a single-node server thar doces
not run the Oracle Parallel Server, we could assign 6.6
GB ot physical memory to the SGA. (One reason that
the SGA was smaller in an Oracle Parallel Server envi-
ronment is that memory needed to be seraside tor the
DLM.) Conscquently, as scen in Figure 8, the tpm on
asingle-node cluster svstem running the Oracle Paralle]
Server (8.4K tpm) is less than a single-node cluster not
running the Oracle Parallel Server (11.4K tpm).

In an Oracle Parallel Server environment, we
assigned 1 GB of memory to the DLM for the tollow-
ing reasons: The DLM, under the 64-bit Digital UNINX
operating svstem, requires 256 bvtes for each lock. In
addition, the DM must be able to hold at least one
other location (and somctimes three) ftor Jock call-
back. As a result, cach lock requires benween 512 bvees
and 1 kilobvte (KB) of phvsical memory. To tunce the
system, we added more lfocks to increase the granu-
larity of the locks and reduce lock contention. We
observed that tor this configuration, a system ot this
size supporting the Oracle Parallel Server requires
1 million locks (occupying 1 GB of memory) for the
DLM when using 5.0 GB of memory for the SGA.
Again heuristically, we observed that it we used less
memory for the DLM, the tota
page was reduced. The decrease in locks per page
increases contention across nodes and hence reduces
the tpm as the number of nodes increases.

With the help of engincers trom Digital’s
MEMORY CHANNEL Group, we were able to usc a
hardware data analyzer to measure the percentage ot
the MEMORY CHANNEL interconnect’s bandwidth
used when running the TPC-C benchmark. By using

number of locks per

the data analvzer, we determined that we do not
approach saturation of the PCl-bascd MEMORY
CHANNEL hardwarce during a TPC-C rtest, cven
though it is capable of sustaining a peak throughput
rate of 100 MB/s. In fact, we observed that the
MEMORY CHANNEL bandwidth was not saturated;
a TPC-C test required a peak throughput rate of
only 15 MB/s to 17 MB/s from the MEMORY
CHANNEL. As stated previously, the benchmark
specification forces 15 percent of the database accesses

Digital Technical Journal Vol. 8§ No. 3 1996

n

35.000 |

30.000

25,000

20,000

tpm

15,000 f

10,000 r

5,000

3.62X

2.89X

1.89X

1-NODE (8-CPU)
WITHOUT THE ORACLE
PARALLEL SERVER

1-NODE (8-CPU)

2-NODE (16-CPU)

3-NODE (24-CPU) 4-NODE (32-CPU)

v

RUNNING THE ORACLE PARALLEL SERVER

Notes: 1. Each node is an 8-CPU AlphaServer 8400 5/350 cluster system.
2. The number preceding the X indicates a multiple of the tpmC measured on a single node running the Oracle Parallel Server.

Figure 8
TPC-C Results on the AlphaScrver 8400 Family

to be remorte, resulting in database accesses across the
MEMORY CHANNEL. Using the DRD administra-
rion service available with the UNIX TruCluster soft-
ware, we measured the DRD remote read percentages
to match the 15-percent remote aceesses rate. The
DRD remote write performance was only 3 pereent to
4 pereent during the steady state and rose to 10 per-
centto 11 percent during a database checkpoint. It is
important to note that the TPC-C benchmark per-
torms random 2K 1/0s using the Oracle Parallel
Scrver. Small; random [/0 transters are much more
difficulr to perform than large, sequential transfers.
Because the MEMORY CHANNEL interconnect not
only has sufticient bandwidtl tor TPC-C but also pro-
vides excellent Jateney (less than 5 microscconds), we
arc able to report very good scaling results.

In the section TPC-C Benchmark, we discussed that
the time taken tor a checkpoint impacts the through-
put. Therctore, we focused on improving the check-
pomting time to increase the tpmC number. First,
we used a dedicated PCI bus on cach node tor the
MEMORY CHANNEL
obtained a 5-percent improvement in performance

mterconnect and - thus

during checkpointing. Next we implemented the
highly optimized “fastcopy” routine in DRD, which
packs data on the PCIwhen ransmitting through the
MEMORY CHANNEL interconnect.

Performance Measurement Results
In this scction, we present our results for the

TruCluster configuration running the 1PC-C work-
load and compare them with results trom competitive

Digital Technical Journal Vol. 8 No.3 1996

vendors. We conducted the test on a database with
2,592 warchouscs and 25,920 emulated uscrs. The
databasc was cqually divided, which means each node
contained 648 warchouses and served 6,480 cmulated
users. We show the mitial cardinality of the darabase
tables i Table 2. The cardinaline of the history, orders,
new-order, and order-line tables increased as the test
progressed and gencerated new orders. We conducted
the expermmental runs for a mmimum of 160 min-
utes.” T'he measurement on the SUT began approxi-
mately 3 minutes after the simulated users had begun
executing transactions. The measurement period of
120 minutces, however, started after the SUT attained a
steady state in approximately 30 minutes. In agree-
ment with the TPC-C specttication, we performed
4 checkpoints ar 30-minute intervals during the mea-
surement period.

On the SUT, we measured a maximum throughput
0f30,390.65 tpmC, which unveiled a new record high
in the competitive market for database applications
and UNIN scrvers. We repeated the experiment once

Table 2

Initial Cardinality of the Database Tables

Warehouse 2,592
District 25,920
Customer 77,760,000
History 77,760,000
Order 77,760,000
New order 23,328,000
Order lines 777,547,308
Stock 259,200,000

ltem 100,000

morce to ensure the reproducibiline of the maximum
measured tpm C. Digital Equipment Corporation and
Oracle Corporation also present a price /performance
ratio ot $305 per tpmC.

In Table 3, we present the rtotal occurrences of cach
transaction tvpe and the percentage transaction mix
used to generate the ransactions i cach rest run. We
compare the percentage transaction mix in Table 1
and Table 3 and observe that our measurements are in
agreement with the TPC-C specitication. We present
the 90th percentile response time measured for each
transaction tvpe i Table 4. The 90th percentile
response time we measured is well below the TPC-C
spectfication requirement (compare Table 1 and Table
4). In Table 5, we present the mmimum, average, and
maximum keving and think times. Again, we comply
with the TPC-C specttication (compare Table 1 and
Table 5).

Now we compare the maximum throughput
achicved on the AlphaServer 8400 5,/350 tour-node
TruCluster configuration with results from Tandem

Table 3
Measured Total Occurrences of Each Transaction Type
and Percentage Transaction Mix

Transaction Total Percentage
Type Occurrences in Mix
New order 3,645,228 44.47
Payment 3,540,119 43.19
Order status 336,255 4.10
Delivery 337,423 4.12
Stock level 337,730 412
Table 4

Measured 90th Percentile Response Time

Transaction 90th Percentile
Type Response Time
New order 3.4

Payment 3.2

Order status 0.9

Delivery (interactive) 0.4

Delivery (deferred) 5.0

Stock level 1.7

Table 5

Measured Keying/Think Times

Transaction Minimum Average Maximum
Type (Seconds) (Seconds) (Seconds)
New order 18.0/0.00 18.1/12.2 18.8/188.1
Payment 3.0/0.00 3.1/12.1 3.7/201.4
Order status 2.0/0.00 2.1/10.1 2.7/125.6
Delivery 2.0/0.00 2.1/5.2 2.7/74.9
Stock level 2.0/0.00 2.1/5.2 2.7162.7

Computers and tfrom Hewletr-Packard - Company
(HP)." The Tandem nonstop Himalava K10000-112
112-node cluster reported 20,918.03 cpmCar $1,532
per tpmC. Obscrve that Digital’s measured tpmC
are 45 percent higher than Tandem’s, and Digital’s
price /pertormance s 20 percent of Tandem’s cost.
In Figure 9, we compare Digital’s performance with
HP’s. The HP 9000 EPS30 C/S 48-CPU tour-node
cluster system using the Oracle Parallel Server Oracle?
version 7.3 reported 17,826.50 tpmC at $396."
Agam, observe that the tpmC we measured on
Digital’s TruCluster configuration are 59 pereent
higher than HP’s at 77 percent ot the cost.

Conclusion and Future Work

In this paper,we discussed the performance evaluation
of Digital’s TruCluster multicomputer svstem, specifi-
callv the AlphaScrver 8400 5/350 32-CPU, four-
node cluster svstem, under the TPC-C workload.
For completeness, we gave an overview ot TruCluster
clustering technology and the TPC-C benchmark. We

discussed tuning strategies that took advantage of

TruCluster technology features like the MEMORY
CHANNEL interconnect, the DRD, and the DILM.
We tuned memory to use VILM for the database cache
and made memorv allocation trade-ofts tor DEM locks
to reduce processor stalls and improve cache hit ratios.

One common concern is performance scalabiline of

cluster svstems, that is, mcremental performance
growth with the size of the cluster. In Figure 8, we
showed the measured performance of an SMP server,
both with and without the Oracle Parallel Server, and
cluster configurations with two, three, and four SMP
servers. We do not sce linear scaling because the Oracle
Parallel Server imposes a significant amount of over-
head on each cluster node. This overhead equates to
approximatelv a 25-percent reduction m tpmC on a
per nodce basis. However, 1t is important to note that
due to the time constraines of obraining audited resulrs
for the product announcement, the testing team was
unable to fully tunc the server and saturate the server
CPUs. In future testing, additional performance tuning
1s planned to further optimize server pertormance.
The pertormance testing of the TruCluster multi-
computer system was time-consuming and expensive.
Thus, answering “what it ™ questions regarding sizing
and tuning of varving cluster configurations under dif-
ferent workloads using measurements is an expensive
(with respect to moncy and time) task. To address this
problem, we are developing an analvrical pertormance
cluster model for capacity planning and tuning." The
model will predict the performance of cluster con-
figurations (ranging from two to cight members)
with varving workloads and svstem parameters (for

Digital Technical Journal Vol.8 No. 3 1996

S

u

$396

HP 9000 ENTERPRISE SERVER MODEL EPS30 C/S

(48-CPU, 4-NODE)

35,000 |

30.390.65
20,000 |

17.826.5
$305
0 |
ALPHASERVER 8400 5/350 C/S

(32-CPU. 4-NODE)

KEY:

[e

Il rr/CE/PERFORMANCE

Figure 9
Comparison ot TPC-C Results

example, memory size, storage size, and CPU power).
We will implement this model in Visual C++ to
develop a capacity planning tool.

Acknowledgments

Many people within several groups and disciplines
in both Digital and Oracle contributed to the success
of this performance project. We would like to thank
the following individuals from Digital: Lee Allison,
Roger Deschenes, Tarcef Kawaf, Maria Lopez, Joc
McFadden, Bhagyam Moscs, Ruth Morgenstein,
Sanjav Narahari, Dave Sranley, and Greg Tarsa of
the CSD Pertormance Group; Brian Stevens and
Tim Burke of the Digital UNIX Engincering Group;
Jim Woodward, Digital TUNIN Pertormance Team
member; Scan Reillv, Doug Willianis, and Zarka
Cretanovic of the AVS Performance Group; and Don
Harberr and Pauline Nist, the test sponsors. Lastlv; we
would like to thank Jef Kennedy, Peter Lai, Karl Haas,
and Vipin Gokhale of the Oracle Performance Group.

References and Notes

1. Throughout this paper, we use the rerm cluster inter-
changeably wich TruCluster.

2. W, Kohler, A. Shah, and F. Raab, “Overview of TPC
Benechmark C: The Order Entry Benchmark™ (Trans-
action Processing Performance Council, Technical
Report, December 1991)

P

3. “Transaction Processing Pertormance Council, 77°C
Benehnenke ¢ Staned ard Specification. Revision 3.0.
February 1995.

Vol.8 No. 3

Digital Techmeal Journal 1996

0.

8.

9.

10.

11.

S. Leuteneggerand D. Dias, “A Modcling Studv of the
TPC-C Benchmark,” A SIGVIOND Recoid. vol. 22,
no. 2 (Junc 1993): 22-3 1.

R Gillerr, *MEMORY CHANNEL Nerwork for PCL”
TEEE Micro. vol. 16, no. 1 (February 1996): 12-19.

TruCluster for Digitel CUNIX Version 1.0 (Mavnard,
Mass.: Digital Equipment Corporation, Sottware
Product Descriprion 63.92, October 1995).

W. Cardoza, F. Glover, and W. Snaman Jr., “Design of
the TruCluster Multicomputer System for the Digiral
UNIX Environment,” Digital Technical Journal.
vol. 8, no.1 (1996): 5-17.

TruClusier Softwcare. Hearcweare Configuration
(Mavnard, Mass.: Digital Equipment Corporation,
Order No. AA-QLSLA-TE, December 1993).

LruCluster: Softweare stallation and Conficiie-
tion (Mavaard, Mass.: Digiral Equipment Corpora-
tion, Order No. AA-QLSMA-TE, September 1995)

Checkpointing is a process to make the copy ot the
darabasc records /pages on the durable media current;
systems do not write the modified records/pages of
the darabase at the time of the modification but at
some deferred time.

This cost includes the hardware svstem cost, the soft-
ware license charge, and the maintenance charges tor
a five-vear period.

The AlphaScrver 1000 4 /266 system can be contig-
ured with as much as 1 GB ot memory. Due to a supply
shortage of denscer error correction code (ECC) mem-
orv, the clicars in the SCT could be contigured with
amaximum memory of 512 MR,

13. Digital Equipment Corporation and Oracle Corpora-
ton, “Digital AlphaServer 8400 5/350 32-CPU
4-Node Cluster Using Oracle7, Tuxedo, and Digital
UNIX,” TPC Benchmark C Full Disclosure Report
tiled with the Transaction Processing Performance
Council, April 1996. Also available from the TPC Web
page.

14. Note that thesc results were not audited; per TPC-C
specification, we reter to them as tpm instead of tpmC.

15. Horizontal partitioning of the indexes allows the user
to have each node in the cluster store indexes thatare
mappced only to rables thatare local.

16. T. Kawaf, D. Shakshober, and D. Stanley, “Pertor-
mance Analysis Using Very Large Memory on the
64-bit AlphaServer System,” Disital Technical
Journal, vol. 8, no. 3 (1996, thisissuc): 58-065.

17. These results were withdrawn by Tandem on April 12,
1996, and hence are notincluded in Figure 9.

18. Hewlett-Packard Company, General Systems Division,
and Oracle Corporation, “HP 9000 Enterprise Parallel
Server Modcel EPS30 (4-Node) Using HP-UX 10.20
and Oracle7,” TPC Benchmark C Full Disclosure
Report filed with the Transaction Processing Perfor-
mance Council, Mav 1996. Also available from the
TPC Web page.

Biographies

Judith A. Piantedosi

A principal sottware engineer in the CSD Pertormance
Group, Judy Piantedosi evaluates 1/0 performance on
Digital UNIX systems, specializing in characterizing NFS
file servers. Judy is the project leader of the TruCluster
capacity planning modcling cftortand Digital’s technical
representative to the Standard Performance Evaluation
Corporation (SPEC) System File Server (SES) Subcom-
mittee. Judy joined Digital in 1987 to help solve customer
hardware /software problems when using System V. Before
joining Digital, Judy was emploved ar Mitre Corporation.
She was thelead sottware designer on the Joint STARS
Radar Fvaluation Activity, a radar simulation built to pro-
vide proot of concept to the U.S. Air Force for the Joint
STARS project. She wasresponsible for implementing sev-
eral radar modcls into the simulation. Judy holds a B.A.
from Boston College (1984).

Archana S. Sathaye

Archana Sathaye is currently a consultant ro Digiral in its
CSD Pertormance Group. From 1987 to 1994, she was an
employee of Digital and worked on several reliability, avail-
ability, and pertormability modeling projects tor OpenVMS
Cluster systems and other high-end CPU products. She
resigned from Digital and aceepted a position as adjunct
assistant professor in the Department of Electrical and
Computer Engineering at the University of Pittsburgh.
Archanma holds a Ph.D. in electrical and compurer engineer-
ing from Carnegic Mcllon University (1993); an M S. trom
Virginia Polytechnic and State University (1986), a B.S¢
(1981) and an M.Sc (1983) trom the University of Bombay,
India, all in mathematics. Shc is an atfiliatc member of
ACM SIGMETRICS and has authored or coauthored sev-
cral papers on reliability, availability, and performability
modeling and control svnthesis.

D. John Shakshober

John Shakshober is the technical director ot the CSD
Performance Group. The Computer Systems Division
Pertformance Group cvaluates Digital’s svstems against
industry-standard benchmarks such as those of the Trans-
action Processing Performance Council (TPC) and the
Standard Performance Evaluation Corporation (SPEC).
In this function, John has been responsible for integrat-
ing Digital’s state-of-the-art software technologics with
Digital’s Alpha-based products since their mtroduction

in 1992. Prior to joining the CSD Pertormance Group,
John modeled the performance of the 21064 and 21164
Alpha 64-bit VLSI microproccessors and was a member
of the VAX 6000 Hardware Group. He joined Digital in
1984 after receiving a B.S. in computer enginecring from
the Rochester Institute of Technology. John also received
an M.S. in electrical enginecring frem Cornell University
in 1988.

Digiral Technical Journal Vol. 8 No.3 1996

58

Performance Analysis
Using Very Large
Memory on the 64-bit
AlphaServer System

Optimization techniques have been used to
deploy very large memory (VLM) database tech-
nology on Digital’s AlphaServer 8400 multi-
processor system. VLM improves the use of
hardware and software caches, main memory,
the 1/0 subsystems, and the Alpha 21164 micro-
processor itself, which in turn causes fewer
processor stalls and provides faster locking.
Digital’s 64-bit AlphaServer 8400 system running
database software from a leading vendor has
achieved the highest TPC-Cresults to date, an
increased throughput due to increased database
cache size, and an improved scaling with sym-
metric multiprocessing systems.

Digiral Technical Journal Vol. 8 No.3 1990

Tareet’S. Kawaf
D. John Shakshober
David C. Stanley

Digital’s AlphaScrver 8400 enterprise-class server com-
bines a 2-gigabyvte-per-sccond (GB/s) multiprocessor
bus with the latest Alpha 21164 64-bit microprocessor.!
Berween October and December 1995, an AlphaScerver
8400 multiprocessor system running the 64-bit Digital
UNIX operating svstem achieved unprecedented resules
on the Transacrion Processing Pertormance Council’s
TPC-C benchmark, surpassing all other single-node
results by a facror of nearly 2. As of September 1996,
only one other computer vendor has come within 20
percent of the AlphaServer 8400 system’s TPC-C
results.

A memory size of 2 GB or more, known as very
large memory (VLM), was essential to achieving these
results. Most 32-bit UNIX systems can use 31 bits
for virtual address space, leaving 1 bit to differentiate
benveen svstem and user space, which creates ditti-
culties when attempring ro address more than 2 GB
ofmemorv (whether virtaal or physical).

In contrast, Digital’s Alpha microprocessors and the
Digital UNIX operating system have implemented
a 64-bir virrual address space thatis four billion times
larger than 32-bir systems. Todav’s Alpha chips are
capable ofaddressing 43 bits of physical memory. The
AlphaScrver 8400 svstem supports as many as 8 phvsi-
cal modules, cach of which can contain 2 CPUs or
as much as 2 GB of memory.? Using these limits, data-
base applications tend ro achieve peak performance
using 8 to 10 CPUs and as much as 8 GB of memory.,

The examples in this paper are dravwn primarily from
the eptimization of a state-of-the-art database appli-
cation on AlphaServer svstems; similar technical con-
siderations apply to anv database running n an Alpha
environment. As of September 1996, three of the
foremost databasc companics have extended their
products to exploit Digital’s 64-bit Alpha environ-
ment, namely Oracle Corporation, Svbase, Inc., and
Intormix Software, Inc.

The sections that follow describe the TPC-C work-
Joad and discuss two database optimizations that arce
useful regardless of memory size: locking intrinsics
and OM instruction-cache packing. (OM is a post—
link tme optimizer avatlable on the Digital UNIX
operating svstem.)” VLM experimental data is then
presented in the section VIM Results.

TPC-C Benchmark

The TPC-C benchmark was designed to mimic com-
plex on-linc transaction processing (OLTP) as speci-
fied by the Transaction Processing Performance
Council.* The TPC-C workload depicts the activity of
a generic wholesale supplier company. The company
consists of a number of distributed sales districts and
associated warchouses. Each warchouse has 10 districts.
Each district services 3,000 customer requests. Each
warchouse maintains a stock of 100,000 items sold by
the company. The database is scaled according to
throughput (that is, higher transaction rates use larger
databases). Customers call the company to place new
orders or request the status of an existing order.

Method

The benchmark consists of five complex transactions
that access nine ditferent tables.® The tive transactions
arc weighted as tollows:

1. Forty-three percent—A new-order transaction
places an order (an average of 10 lines) from a ware-
house through a single databasc transaction and
updates the corresponding stock level tor each item.
In 99 percent of the new-order transactions, the
supplving warchouse is the local warchouse and only
1 percent of the accesses are to a remote warehouse.

2. Forty-threc percent—A payment transaction
processes a payment for a customer, updates the cus-
tomer’s balance, and reflects the payment in the
district and warchouse sales statistics. The customer
resident warehouse is the home warchouse 85 per-
cent of the time and is the remote warehouse
15 percent of the time.

3. Four percent—An order-status transaction returns
the status of a customer order. The customer order is
selected 60 percent of the time by the last name and
40 percent of the time by an identitication number.

4. Four percent—A delivery transaction processes
orders corresponding to 10 pending orders for cach
district with 10 items per order. The corresponding
entry in the new-order table is also deleted. The
delivery transaction is intended to be executed in
deferred mode through a queuing mechanism.
There is no terminal response for completion.

5. Four percent—A stock-level transaction cxamines
the quantity ot stock for the items ordered by cach
of the last 20 ordersin a district and determines the
items that have a stock level below a specitied
threshold. This is a read-only transaction.

The TPC-C specification requires a response time
that is less than or equal to 5 scconds for the 90th
percentile of all but the delivery transaction, which
must complete within 20 seconds.

In addition, the TPC-C specification requires that
a complete checkpoint of the database be done. A
checkpoint flushes all transactions committed to the
darabase from the database cache (memory) to non-
volatile storage in less than 30 minutes. This impor-
tant requirement is one of the more ditticult parts
to tune for svstems with VLM.©

Results

Table 1 gives the highest single-node TPC-C results
published by the Transaction Processing Pertormance
Council as of September 1, 1996

For a complete TPC-C run, a remote terminal
emulator must be used to simulate users making trans-
actions. For performance optimization purposes, how-
ever, it is convenient to usc a back-cnd-only version
of the benchmark in which the clients reside on the
server. The transactions per minute (tpm) derived in
this environment arce called back-end tpm in Table 2
and cannot be compared to the results of audited runs
(such as those givenin Table 1). However, when a per-
formance improvementis made to the back-end-only
environment, performance improvements are clearly
seen in the tull environment.

Tuning for the system is iterative. For each dara
point collected, clients were added to try to saturate
the server; then the amount of memory was varied ftor
the database cache. A wade-off between database mem-
ory, system throughput, and checkpoint pertormance
required us to tune each data point individually. The
system was configured with a sufficient number of
disk drives and 1/0 controllers to ensure that it was
100-percent CPU saturated and never 1/0 limited.
The experiments reported in this paper use database
sizes of approximately 100 GB, spread over 172 RZ29
spindles and 7 KZPSA adapter/HSZ40 controller pairs,
with each HSZ40 controlicr using 5 small compurer
systems interface (SCSI) buses.

Tuning Specific to Alpha

UNIX databases on Digital’s Alpha systems werce first
ported in 1992. For database companies to fully use
the power of Alpha’s 64-bit address space, cach data-
base vendor had to expand the scope of its normal
32-bir architecture to make use of 64-bit pointers.
Thus, ecach database could then address more than
2 GB of physical memory without awkward code seg-
ments or other manipulations to the operating system
to extend physical address space.

By 1994, most vendors of large databases were ofter
ing 64-bit versions of their databases for Digital’s Alpha
environment. As a group chartercd to measure database
pertormance on Alpha systems, Digital’s Computer
Svstems Division (CSD) Performance Group worked
with each database vendor and with the Digital System
Pertormance Expertise Center to improve performance.

Digiral Technical Journal Vol.8 No.3 1996

60

Table 1
TPC-C Results

Price/ Number
System Throughput Performance of CPUs Date
AlphaServer 8400 5/350, 14,227 tpmC $269/tpmC 10 May 1996
Oracle Rdb7 V7.0, OpenVMS V7.0
AlphaServer 8400 5/350, 14,176 tpmC $198/tpmC 10 May 1996
Sybase SQL Server 11.0, Digital UNIX,
iTi Tuxedo
AlphaServer 8400 5/350, 13,646.17 tpmC $277/tpmC 10 March 1996
Informix V7.21, Digital UNIX, iTi Tuxedo
Sun Ultra Enterprise 5000, 11,465.93 tpmC $191/tpmC 12 April 1996
Sybase SQL Server V 11.0.2
AlphaServer 8400 5/350, 11,456.13 tpmC $286/tpmC 8 December 1995
Oracle7, Digital UNIX, iTi Tuxedo
AlphaServer 8400 5/300, 11,014.10 tpmC $222/tpmC 10 December 1995
Sybase SQL Server 11.0, Digital UNIX,
iTi Tuxedo
AlphaServer 8400 5/300, 9,414.06 tpmC $316/tpmC 8 October 1995
Oracle7, Digital UNIX, iTi Tuxedo
SGI CHALLENGE XL Server, 6,313.78 tpmC $479/tpmC 16 November 1995
INFORMIX-OnlLine V7.1, IRIX, IMC Tuxedo
HP 9000 Corporate Business Server, 5,621.00 tpmC $380/tpmC 12 May 1995
Sybase SQL Server 11,
HP-UX, IMC Tuxedo
HP 9000 Corporate Business Server, 5,369.68 tpmC $535/tpmC 12 May 1995
Oracle7, HP-UX, IMC Tuxedo
Sun SPARCcenter 2000E 5,124.21 tpmC $323/tpmC 16 April 1996
Oracle7, Solaris, Tuxedo
Sun SPARCcenter 2000E, 3,534.20 tpmC $495/tpmC 20 July 1995
INFORMIX-OnLine 7.1,
Solaris, Tuxedo
IBM RS/6000 PowerPC R30, 3,119.16 tpmC $355/tpmC 8 June 1995
DB2 for AlX, AlX, IMC Tuxedo
IBM RS/6000 PowerPC J30, 3119.16 tpmC $349/tpmC 8 June 1995

DB2 for AlIX, AlX, IMC Tuxedo

Table 2

Amount of Memory versus Back-end tpm, Database-cache Miss Rate, and Instructions per Transaction
Database Back-end Relative Relative
Memory (Normalized Database-cache Instructions per
(GB) tpm) Miss (Percentage) Transaction
1 1.0 1.0 1.0

2 1.3 0.73 0.75

3 1.5 0.58 0.63

4 1.6 0.50 0.57

5 1.7 0.42 0.50

6 1.8 0.40 0.45

Two optimizations generally realized 20 pereent gains

on Alpha systems.” These were

1. Optimization of spinlock primitives supported now

by DEC C compiler intrinsics

2. OM protfile-based link optimization, which per-
forms mstruction-cache packing during the final

link of the database

Digiral Technical Journal

Vol. 8 No. 3

1990

[n addition, the Digital UNIX operating svstem
version 3.2 and higher versions have optimized 1/0
code paths and support advanced processor attinicy
and other scheduling algorithms that have been opri-
mized for enterprise-class commercial pertormance.
With these optimizations, database performance on
Digital’s Alpha svstems has been significandy improved.

Lock Optimization

Locks arc used on multiprocessor svstems to synchro-
nize atomic aceess to shared dara. A lock 1s cither
unowned (clear) or owned (sct). A kev design decision
lecading to good multiprocessor performance and scal-
ing is partitioning the shared data and associared locks.
The discussion of how to partition data and associated
locks to minimize contention and the number of locks
required is bevond the scope of this paper.

The implementation ot locks requires an atomic
test-and-sct operation. On a particular system, the
implementation of the lock is dependent on the primi-
tive test-nnd-set capabilities provided by the hardware.

Locks arc used to svnchronize atomic access to
shared data. A shared dara element that requires
atomic access s associated with a lock that must be
acquired and held while the data is modificd. On mul-
tiprocessing svstems, locks are used to svnchronize
atomic access to shared data. A sequence of code that
accesses shared data protected by a lock is called a crit-

ical section. A critical section begins wirh the acquisi-
tion of a lock and ends with the release of that lock.
Although it is possible to have nested critical sections
where multiple locks are acquired and released, the
discussion in this section is limited to a critical section
with a single lock.

To provide atomic access to shared data, the critical
section running on a given processor locks the data by
acquiring the lock associated with the shared data. In
the simplest case, it a second processor trics to acquire
access to shared data thatis already locked, the second
processor loops and continually retries the access
(sps) until the processor owning the lock releasces it.
Ina complex casce, if a second processor trics to acquire
access to shared dara that is already locked, the second
processor loops a few times and then, it the lock is still
owned by another processor, puts itself into a wait
state until the processor owning the lock releascs it.

The Alpha Architecture Reference Manual specifies
that “...the order of reads and writes done in an Alpha
implementation mav difter from that specitied by the
programmer.™
requires a special test-and-set operation that is imple-
mented through the load-locked /store-conditional
instruction sequence. To provide good performance

Thercetore, process coordination

and scaling on multiprocessor Alpha svstems, it is
important to optimize the test-and-sct operation to
minimize latency. The test-and-sct operation can be
optimized by the following methods:

= Usc an in-lined load-locked/store-conditional
sequence through an embedded assembler or com-
piler intrinsics,

= Preload a lock using a simple load operaton prior
toa load-locked operation.

=]t alock is held, spin on a simple load instruction
rather than a load-locked instruction sequence.

The basic hardware building block used to imple-
ment the acquisition of a lock is the test-and-sct
operation. On many microprocessors, an atomic test-
and-sct operation is provided as a single instruction.
On an Alpha microprocessor, the test-and-set opera-
tion needs to be built out of load-locked (LDx_L) and
store-conditional (STx_C) instructions. The LDx_L
... STx_C instructions allow the Alpha microprocessor
to provide a multiprocessor-safe method to implement
the test-and-set operation with minimal restrictions on
read and write ordering. The load-locked operation
sets a locked flag on the cache block containing the
data item. The store-conditional operation ensures
that no other processor has moditied the cache block
before it stores the data. If no other processor has
modified the cache block, the store-conditional opera-
tion is successful and the datais written to memory. It
another processor has modified the cache block, the
store-conditional operation fails, and the data is not
written to memory. Oputmizing the test-and-sct
sequence on Alpha svstems is a complex task that pro-
vides significant performance gains.

Figure 1 shows code sequences that Digital’s CSD
Performance Group has given to database vendors to
improve locking intrinsics in the Alpha environment.
These code sequences can be used to implement spin-
locks in the DEC C compiler on the Digital UNINX
operating svstem.

Using OM Feedback

As previously mentioned, OM is a post-link time opti-
mizer available on the Digital UNIX operating system.
It performs optimizations such as compression of
addressing instructions and dead code elimination
through the use of feedback. The performance
improvement provided by OM on Alpha 21164
svstems is dramatic for the tollowing two reasons.*

= The 21164 microprocessor has an 8-kilobvre (KB)
direct-mapped instruction cache, which makes
code placement extremely important. In a direct-
mapped cache, the code lavour and linking order
maps onc for onc to its placement in cache. Thus
apoorlv chosen instruction stream layout or sim-
plv unlucky code placement within libraries can
alter performance by 10 to 20 percent. Routines
are frequently page aligned, which can increasce
the likelthood ot cache collisions.

= The high clock rate of the Alpha 21164 micro-
processor (300 to 500 megahertz [MHz])
requires a cache hicrarchy to attempt to keep the
CPU pipclines filled. The penalny of a tirst-level
cache miss is 5 to 9 cveles, which means that an

Digital Technical Journal Vol 8 No.3 1996

ol

62

|

//TEST_AND_SET implements the Alpha vers

//the load-locked store-conditional i
//function is to check the value pointed
//value is 0, set it to 1 and return suc
//value is already 1T or the store-condit

//remains unchanged and a failure status
//

//The status returned in RO is one of th
// 0 - failure (spinlock was clear,; sti
// 1 - success (spinlock was clear; now
// 2 - failure (spinlock was set; still
// 3 - failure (spinlock was set; still
!/

'H#define TEST_AND_SET (spinlock_address)

// BASIC_SPINLOCK_ACQUIRE implements the

ion of a test and set operation using
nstructions. The purpose of this
to by spinlock_address and, if the

cess (1) in RO. If either the spinlock
ional failed, the value of the spinlock
(0,2, or 3) is returned in RO.

e following:

Ll clear, store-conditional failed)
set)
set, store-conditional failed)
set)
asm("Lldl_L $0,(3%16),; \
"or $0,1,%1; " \
"stl_c $1,(3$16); N \
"slL $0,1,%0; " \
"or $0,%1,%0 ", \

(spinlock_address));

simple case of acquiring a spinlock. If

// the spinlock is already owned or the store-conditional fails, this function
// spins until the spinlock is acquired. This function doesn't return until the
// spinlock is acquired.
!/
Hdefine BASIC_SPINLOCK_ACQUIRE(spinlock_address) \
{ long status = 0; \
\
while (1) \
{ \
if (*(spinlock_address) == 0) \
{ \
status = TEST_AND_SET (spinlock_address); \
if (status == 1) \
{ \
MB; \
break; \
} \
} \
} \
}
Figure 1

Codce Sequences tor Locking Tnrrinsics

instruction-cache miss rate ot 10 to 12 pereent can
ctfectively stall the CPU 70 to 80 percent of the
rime. Conversely, decreasing the miss rate by
2 pereent can increase throughput by 10 pereent.

OM pertorms profile-based optimization. A pro-
gram s fist partitioned into basic blocks (that is,
regions contaming only one entrance and one exit),
and imstrumentation code i1s added to count the num-
ber of times each block is executed. The instrumented
version of the program is run to create a feedback file
rhat conrains a protile of basic block counts. OM then
uses the feedback to rearrange the blocks inan optimal
wav for the tirst-level caches on the Alpha chip. The
details of the procedure for using OM may be tound
in the manpage for cc on the Digital UNIX operating
svstem but can be summarized as follows:

Digital Technical Journal Vol. 8 No.3 1996

= Build executable with -non_shared -om options,
producing prog.

= Use pixie to produce prog.pixic (the instrumented
exceurable) and prog. Addrs (addresses).

= Run prog.pixic to produce prog.Counts, which
records the basic block counts.

= Now build prog again with -non_shared -om -WL,
om_ircorg_fteedback.

VLM Results

Figure 2 shows the increase in throughput realized
when using VM. Note that throughput nearly dou-
bles as the amount of memaory allocated ro the dara-
basc cacheis varied from 1 GB to 6 GB. Of course, the
overall svstem requires additional memory bevond
the database cache to run UNIX itsclf and other

THROUGHPUT IN NORMALIZED tpm

0.6 f
0.4t
0.2 f
0.0 ; . ; s .
1 2 3 4 5 6
DATABASE CACHE SIZE IN GB
Figure 2

Dartabase Cache Size versus Throughput

processes. For example, an 8-GB system allows 6.6 GB
to be used for the database cache.

Performance Analysis

Why does the use of VLM improve performance by a
factor of nearly 22 Using statistics within the database,
we measured the database-cache hit ratio as memory
was added. Figure 3 shows the direct correlation
between more memory and decrcased database-cache
misses: as memory is added, the database-cache miss
rate declines from 12 percent to 5 percent. This raiscs
nvo more questions: (1) Why docs the database-cache
miss rate remain at 5 percent? and (2) Why does a
small change in database-cache miss rates improve the
throughput so greatly?

The answer to the first question is that with a data-
base size of more than 100 GB, it is not possible to
cache the entire databasc. The cache improves the
transactions that are read-intensive, but it does not
entirely climinate 1/0 contention.

PERCENT

MEMORY IN GB

»—a BUS UTILIZATION

4+—+¢ B-CACHE MISS RATE

A&—A |-CACHE MISS RATE

®—8 DATABASE CACHE MISS RATE

Figure 3
Cache Miss Rates and Bus Utilization

To answer the sccond question, we need to look at
the AlphaServer 8400 system’s hardware counters that
measure instruction-cache (I-cache) miss rate, board-
cache (B-cache) miss rate, and the bandwidth used on
the multiprocessor bus. With an increase in throughput
and memory size, the VLM system is spanning a larger
data space, and the bus utilization increases from 24
percent to 32 percent. Intuitively, one might think this
would resultin less optimal instruction-and data-stream
locality, thus increasing both miss rates. As shown in
Figure 3, this proved true forinstruction stream misses
(I-cache miss rate) but not truc for the data stream, as
represented by the B-cache miss rate. The instruction
stream rarely results in B-cache misses, so B-cache
misses can be attributed primarily to the data stream.

Performance analysis requires careful examination
ofthe throughput of the system under test. The appar-
ent paradox just related can be resolved if we normal-
ize the statistics to the throughput achieved. Figure 4
shows that the instruction-cache misses per transaction
declined slightly as the memory size was increased from
1 GBto 6 GB—and as transaction throughput doubled.
Furthermore, the B-cache works substantially better
with more memory: misses declined by 2X on a per-
transaction basis. Why is this so?

Analysis of the system monitor data for each run
indicates that bringing the data into memory helped
reduce the I/O per second by 30 percent. If the trans-
action is forced to wait tor 1/0 operations, it is done
asynchronously, and the database causes some other
thread to begin exccuting. Without VLM, 12 percent
of transactions miss the database cache and thus stall
for 1/0 activity. With VLM, only § percent of the
transactions miss the database cache, and the time to
perform each transactionis greatly reduced. Thus each
thread or process has a shorter transaction latency. The
shorter latency contributes to a 15-percent reduction
in system context switch rates. We attribute the
measured improvement in hardware miss rates per
transaction when using VLM to the improvement in
context switching.

The pertormance counters on the Alpha micro-
processorwere used to collect the number of instruc-
tions issued and the number of cycles.” In Table 2,
the relative instructions per transaction results are the
ratios of instructions issued per second divided by the
number of new-order transactions. (In TPC-C, each
transaction has a difterent code path and instruction
count; therefore the instructions per transaction
amount is not the total number of new-order trans-
actions.) The relative difference between instructions
per transaction for 1 GB of database memory versus
6 GB of database memory is the measured eftect of
climinating 30 percent of the 1/0 operations, satisty-
ing more transactions from main memory, reducing
context switches, and reducing lock contention.

Digital Technical Journal Vol.8 No.3 1996

63

64

MEMORY IN GB

KEY:

4—a BUS TRAFFIC

»—a B-CACHE MISS RATE
¢—+¢ |-CACHE MISS RATE

Figure 4
Normalized Cache Miss Rates and Bus Trattic

Improved CPU Scaling— More Efficient Locking

A final benefit of using VLM is improved symmetric
multiprocessing (SMP) scaling. Because the 'TPC-C
workload has several transactions with high read con-
rent, having the data available in memory, rather than
on disk, allows an SMP svstem to pertorm more etti-
ciently, Morce requests can be serviced thatare closerin
cveles to the CPU. Data found in memory isless than
a microsccond away, whereas data found on disk is
on the order of milliseconds awav.

We have shown how this situation improves the
overall svstem throughput. In addition, it improves
SMP scaling. Figure 5 shows the relative scaling
berween 2 CPUs and 8 CPUs with only 2 GB of system
memory (1.5 GB ot database cache) compared to the
same configurations having 8 GI of svstem memory
(6.6 GB of database cache).

We used the performance counters on the Alpha
21164 microprocessor to monitor the number of
¢s spent on the memory barrier instruction.”

cve
Mcemory barriers are required for implementing
mutual exclusion in the Alpha processor. Theyvare used
by alf locking primigves in the database and the operat-
ing svstem. With VLM ar 8 GB of memory, we mea-
sured a 20-percent decline in time spent in the memory
barrier instructon. Larger memory imphed less con-
tention tor critical disk and 1/0 channel resources and
thus less time in the memory barrier instruction.

Conclusions

Open svstem database vendors are expanding inro
mainframe markets as open svstems acquire greater
processing power, larger [/O subsvstems, and the
ability to deliver higher throughput ar reasonable
response times. To this end, Digital’s AlphaScrver
8400 5,/350 svstem using VLM database technology
has demonstrated substantial gains in commercial

Digiral Technical Journal Vol.8 No.3 1996

w w s oo
o . O O
;

NORMALIZED tpm
N
<)

1.5
1.0
05 r
0 L 1 L
2 4 6 8
NUMBER OF CPUs
KEY:

¢—+ NORMALIZED tpm AT 2 GB
®—8& NORMALIZED tpm AT 8 GB

Figure 5
CPU Scaling versus Memory

performance when compared to systems without the
capability to use V.M. The usc of up to 8 GB of mem-
hput by a factor of 2,

ory helps increase system throug|
even for databases that span 50 GB to 100 GB in sizc.

The Digiral AlphaServer 8400 5/350 svstem com-
bined with the Digital UNIN operating system to
address greater than 2 GB ot memory has made possi-
ble improved TPC-C results from several vendors. [n
this paper, we have shown how VLM

= Tncreased the throughput by a tactor of nearly 2

= [ncreased the database-cache hit ratios trom 88 per-
cent to 95 pereent

By using monitor tools designed for the Alpha plat-
form, we have measured the cffect of VLM in issuing
tewer instructions per transaction on the Alpha 21164
microprocessor. When rransactions are satistied by
data that is alrcady in memory, the CPU has tewer
hardware cache nmisses, fewer memory barrier proces-
sor stalls, faster locking, and better SMP scaling.

Future Digital AlphaScrver systems that will be
capable of using more physical memory will be able to
turther exploit VLM database technology. The results
of industrv-standard benchmarks such as TPC-C,
which force problem sizes to grow with increased

throughput, will continue to demonstrate the realistic
value of statc-of-the-art computer architectures.

Acknowledgments

Many people trom a varicty of groups throughout
Digital helped tune and deliver the TPC-C results. In
particular, we would like to thank Lee Allison, Roger
Deschenes, Joc McFadden, Bhagvam Moses, and
Chervl O’Neill (CSD Performance Group); Jim
Woodward (Digital UNIX Group); Sean Reilly, Simon
Steelv, Doug Williams, and Zarka Cvetanovic (Server

Engincering Group); Mark Davis and Rich Grove
{Compilers Group); Peter Yakutis (I/0 Performance
Group); and Don Harbert and Pauline Nist (project
SpONSOrs).

References and Notes

1. . Fenwick, D. Foley, W. Gist, S. VanDoren, and
D. Wisscll, “The AlphaScerver 8000 Series: High-cend
Server Platform Development,” Digital Technical
Journal. vol. 7,no. 1 (1995): 43-65.

2. At the time this paper was written, 2 GB was the largest

size module. Digital has announced that a 4-GB option
will be available in January 1997,

[S3]

L. Wilson, C. Neth, and M. Rickabaugh, “Dclivering
Binary Object Moditication Tools For Program Analysis
and Optimization,” Digital Technical Journal, vol. 8,
no. 1 11996): 18-31.

4. Transaction Processing Performance Council, (PC
Benchmeark C Stand ard Specification. Revision 3.0,
February 1995.

5. W. Kohler, A. Shah, and R. Raab, Owverview of TPC
Benchmark: The Order Entry Benchmark. Technical
Report (Transaction Processing Performance Council,

December 1991).

6. More information about the TPC-C benchmark may
be obtained from the TPC World Wide Web site,
htep://www.tpe.org.

7. J. Shakshober and B. Warers, “Improving Dartabase
Performance on Digital Alpha 21064 with OM and
Spinlock Optimizations” (CSD Performance Group,
Digiral Equipment Corporation, July 1995).

8. R. Sites, ed., Alpha Architecture Reference Menual
(Burlingron, Mass.: Digital Press, 1992).

9. B. Wibccan, Guicde to IPROBE (Digital Equipment
Corporation, December 1994).

Biographies

Tareef S. Kawaf

Tareef Kawaf received a B.S. in computer science (magna
cum laude) from the University of Massachusetts at
Amherst. He is a member of Phi Beta Kappa. Tarcefjoined
Digital in 1994 to work on performance enhancements
and tuning of high-end systems and is a senior software

engineer in the CSD Performance Group. He worked on
atraining the world record-setting TPC-C results on the
AlphaServer 8400 5,/300 and 5/350 syvstems and the four-
node AlphaServer 8400 5/350 cluster svstem running a
state-of-the-art darabasc application. Tarcef has received
two excellence awards tfrom Digital tor his work in TPC-C
performance measurement on the AlphaServer 8000 scries.

D. John Shakshober

John Shakshober is the technical director of the CSD
Performance Group. The Computer Systems Division
Performance Group cvaluates Digiral’s systems against
industry-standard benchmarks such as those of the T'rans-
acrion Processing Performance Council (TPC) and the
Standard Performance Evaluation Corporation (SPEC).
In this function, John has been responsible for integrat-
ing Digital’s state-of-the-art software technologies with
Digital’s Alpha-based products since their introduction
in 1992, Prior to joining the CSD Performance Group,
John modecled the performance ofthe 21064 and 21164
Alpha 64-bit VLSI microprocessors and was a member
ofthe VAX 6000 Hardware Group. He joined Digital in
1984 after receiving a B.S. in computer engineering from
the Rochester Institute of Technology. John also received
an M.S. in electrical engineering trom Cornell University

in 1988.

David C. Stanley

Dave Stanley joined Digital in 1984. He is a principal soft-
warc engineer in the CSD Pertormance Group and was
the project leader for the TruCluster system thar achieved
a world-record result tor the TPC-C benchmark, Dave has
also led several TPC-C audits on the AlphaServer 8000
series running a state-of-the-art database application. He
1s a secondary representative at the TPC General Council
and a member of the TPC-C Maintenance Subcommittee,
Prior to these responsibilitics, he was a microprocessor
application engineer at Digital Semiconductor, where he
ran competitive benchmarks on the MicroVAX I processor
chip versus the Motorola 68020. Dave received a B.S.E.E.
from the Stare University of New York at Buftfalo (1981).

Digiral Technical Journal Vol 8 No. 3 1996

00

Building Collaboration
Software for the Internet

Collaboration software for the Internet’'s World
Wide Web involves the development of shared
information systems for network computing.
The AltaVista Forum version 2.0 software from
Digital contains extensions to World Wide Web
technology that facilitate collaboration on the
Internet. The extensions consist of a toolkit
and a set of collaboration applications. The
toolkit components include a built-in data-
base with an indexing and search capability.
Generic applications include discussion, docu-
ment sharing, and calendar applications and
administrative functions for managing users,
teams, and access control.

Digital Technical Journal Vol.8 No. 3 1996

Dah Ming Chiu
David M. Griffin

The Internct and the World Wide Web (WWW)
have changed the scope of network computing. As
the Internct user population has grown, so has the
demand for better wavs to collaborate on the Internet.
Some examples include the ability to share and discuss
issucs of common interest, coauthor documents, and
track project starus. Although todav’s WWW is ideal
for publishing intormation, it requires considerable
customized programming to support collaboration.
The AlraVista Forum version 2.0 product is both a set
of collaborative applications and a toolkit (plattorm)
that facilitates casy, ethcient, and rapid development of
collaborative applications for the Internct for both
UNIX and Windows NT svstems.

In this paper, we describe our experiences in build-
ing collaboration software for the Inrerner. We begin
with a brief discussion of WWW technology and
groupwarc applications. Then we present our design
philosophy and the framework of the software and dis-
cuss the applications supplied by AltaVista Forum.
Following that, we discuss the various cxperiences
gained in developing software for the new Internet
paradigm. We conclude the paper by discussing our
plans tor future development eftorts.

World Wide Web Technology

Today’s Internct was originally a government-tunded
computer that facilitated collaboration
among academic rescarchers. Information exchange
was conducted by means of clectronic mail (e-mail)
and file transfer. Over time, bulletin-board stvle
discussions were supported by the Nenwvork News
Transter Protocol (NNTP), which propagated texrual
discussion threads to a large number of NNTP servers
for viewing. With the development of the WWW tech-
nology, collaborating over the Internet has become

neework

even casicer.
The WWW rechnology consists of the following

clements:

« Universal resource locator (URL), a convention for
information naming and Jinking

= Hypertext markup language (H'TMIL), a text-based
language tor information rendering

= Hvpertext Transter Protocol (HTTP), a simple
client-server protocol to transport information
associated with a URL

= Web browser, a program that renders HTML docu-
ments, provides URL caching, and supports a
directory for URLs

= Web server, a server that responds to requests tor
information from the Web browscrs

Information Access

WWW technology has transtormed the way users
access information through computer networks.
Access to information on the Internet was primarily
text-based; with the WWW | users are able to access
information in multimedia tormat. The combination
of functionality (information linking, graphical inter-
face, and caching), extensibility (for dealing with new
protocols and new information tvpes), casc-of-use,
and low cost appealed to a wide range ot uscers in
homes, offices, and corporations. In addition, the
Mosaic-stvle of “point-and-click™ graphical Internet
browser has become the most widely accepred user
interface tor network computing.

The mostpopular use of the WW W today is for pub-
lishing information, and the process is comparable to
the way a newspaper publishes or a television station
broadcasts information. The roles of the information
provider and the information consumer arce clearly
detined. The information provider gathers and orga-
nizes the pertinent information, converts it to the
HTML scripting torrat, and makes it available on a
Web server. The information consumer, after obtain-
ing initial access to the Web server (as one might tune
into the correct television station), can then browse
and scarch for various types of information available
on that server. The linking capability of URL and
HTMI. allows the reterences or links to additional
information on various servers to be casily published
along with the original information.

In contrast, multiple information providers work
in collaboration to generate the content of shared
information. For the purposes of this paper, we will
assume that there is only one type of user—informa-
tion collaborators.

Collaboration and Groupware

The WWW is usetul for many tvpes of collaboration.
For example, a project team may need to keep track of
project status and individual progress; people with
a common interest (e.g., film enthusiasts) may want to
share and discuss their views on that topic; a customer
support group may need a svstem to provide on-line
answers to real-world customer problems; or several
authors mav wish towork on a document together.

Today, several computer applications facilitate such
collaboration. Collectively, these applications are
known as groupware. Lotus Notes is a popular group-
ware application. Tvpicallv, groupware applications
support the following capabilities:

= Management of a sct ot users and groups

= Storage of shared information in a databasc (some-
times with replication capability)

= Viewing information stored in the darabases by
means of a graphical interface

= Protection of the collaboration environment when
necessary through authentication and access control

Groupware svstems are built to run in homoge-
neous client environments, such as the Microsott
Windows environment. Thev relv on specitic client-
server technology, which is often proprictary, to sup-
portremote operations.

The popularicy and rapid growth of the Interner and
the WWW have created an open, universal, and casv-to-
program infrastructure that can readily serve several
groupware functions. Engincers at Digital’s Internet
Sottware Business Group recognized the potential of
using the WWW as the underlving infrastructure for
groupware solutions and at the same time saw that the
groupware applications available todav have teaturces
that the WWW lacks. Our goal was to add groupware
features to the WWW to facilitate collaboration.

We started exploring the idea of using the Internct
and the WWW tor groupwarc applications in the sum-
mer of 1994. Bv the end of that vear, we had built
a prototype that supported the simplified discussion
(bulletin-board) features ofan internal product known
as DEC Notes.' This prototype generated considerable
interest among active DEC Notes users who were
secking a similar solution built around an Internct
infrastructure. Based on their feedback, the prototvpe
was redesigned and became a product.”

By September 1995, we had buile several collabora-
tive applications to run over the WWW. In a workshop
organized by the World Wide Web Consortium and
the Massachusctes Institute of Technology, we par-
ticipated in discussions on how to extend the WW\WY
technology to support collaboration. All the work-
shop participants presented their ideas to the WWW
Consortium for review.?

Design

In this scction, we summarize our design philosophy
and discuss the framework and applications developed
for the AltaVista Forum product. For our design, we
adopted an object-oriented approach, which meant
that we would have to modularize the various compo-
nents for reuse and modification.

Digital Technical Journal Vol.8 No.3 1996

67

68

Design Philosophy

Our fundamental design philosophy required using
the Internet and its infrastructure as building blocks
for our collaboration software. After vears of experi-
menting and collaborating to develop an open
process, the Internct developers realized that the
Internet had reached astate of eritical mass. In the case
ot nerworks and connectivity, reaching critical mass is
a tremendous impetus for agreeing on a common
standard. As more and morc uscrs access the Internet,

the need for sottware deve

opment for the Internct

also increases. In addition, the very nature of the
Internet demands an open standardization process to

ensure the long-term viability of a product.

Our philosophy also included the reuse of existing
open software as building blocks whenever possible.
In addition to our choice of building upon the
[nternet and the WWW technology, we sclected
the Tool Command Language (Tcl) as the primary
language ftor developing most of our application and
user interface functions.! We also took advantage of
the database library in the Berkelev UNIX distribution
for built-in database support.®

Another objective was to make sure our software

would be casy to port to all the re

cvant operating

system platforms. This principle guided our sclection
of components and helped us isolate a small set of plat-
form-dependent functions into a special library for

porting the software.

As stated carlier, we tried to take an object-oriented
approach whenever possible. The advantages of our

approach became increasingly apparent as more peo-

ple became involved with the software development.

The object-oriented approach made component reusc

feasible.

Framework

Our framework organizes the AltaVista Forum soft-
ware into two lavers: toolkit and applications. The tools
required to build the applications overlap cach other.
We have wsed them to build generic applications,
including a discussion application that supports uscrs

discussing a set of related topics, much like newsgroups
do; a calendar application that supports users™ abilitics

to schedu

APPLICATION
LAYER

TOOLKIT
LAYER

¢ events on a specific date and at a particular

time; and a newspaper application that provides a per-
sonalized news filtering service. We envision that, ever
time, the framework we have developed will support
anumber of diverse applications. Figure 1 shows the
AltaVista Forum toolkir and application layers.

The roolkitis a combination ot both C and Tel code
that creates the following interface components:

= Built-in database. The application uses a built-in
databasc rostore its object instances. The databasce
1s avery simple relational model with an object
hicrarchy relationship facilinv available to those
applications that need it. The librarv also provides
inversions on certain attributes to support fast
retricval and sorting based on attribute values.

= Built-n indexing and scarch. An indexing and
scarch function complements the database by
providing a high-speed query facility. For less-
structured objects, it is often casier to index them
and look them up using a scarch tool.

= Graphical user interface support. The use ofa graph-
ical user inrerface insulates applications from hav-
ing to deal with HTML directly and cope with its
changes over time. Abstract definitions of user inter-
tace objects also tend to simplity and clarity the code
and create a more uniform appearance on the screen.

= Access control. All applications require some form
of access control to regulate who can access, create,
modifv, and delete various objects.

= Internationalization. An internationalization facil-
itv gathers strings that appear in the user interface
into message catalogs tor later translation to difter-
ent languages.

= DPlatforme-specific support. A special library isolates
those operating system—dependent functions that
vary from plattorm to plattorm. Certain tile system
accesses and date/time library accesses are exam-
ples ofthiscomponent.

Armed with all the components in the toolkit, an
AltaVista Forum application consists of a set of tunc-
tions, cach responding to a difterent user request. The
organization of an application is modular. A function
can call various objects that are defined separately as
part of the application, including the tollowing:

DISCUSSION
APPLICATION

DOCUMENT
APPLICATION

USER LISTING, CALENDAR
REGISTRATION APPLICATION

DATABASE, INDEXING/SEARCH. GUI LIBRARY,
ACCESS CONTROL, INTERNATIONALIZATION SUPPORT,
PLATFORM-SPECIFIC FILE SYSTEM, AND TIME SUPPORT...

Figure 1
A

Digiral Technical Journal

taVista Ferum Toolkit and Application Layers

Vol.8 No.3 1996

= Graphical objects such as definitions of buttons,
toolbars, various objects that arc part of a form
(¢.g., sclect boxes, radio buttons, check boxes, text
boxes), and icons.

= Databasc entrics, the definitions of their attributcs,
and dcefaulrvalues.

= User interface aggregate objects such as forms,
views, dialogs, and error messages.

= Decfaule access control policics, including detault
groups, access rights, and their mappings, to con-
trol who can access individual forums and what
actions they can take within them.

This approach encapsulates the details in low-level
modu

¢s, making the software more readable and
maintainable. Tr also makes it casv for different func-
tions to reuse the objects.

To turther facilitate code sharing, the framework
also allows applications to inherit a sct of functions
and objects that have been grouped together as a
pscudoapplication. For example, the access control
management functions can be grouped into a
pscudoapplication and certain button and toolbar
definitions can be grouped into another pscudo-
application. All applications that need access control
and the common graphical objects that lend a consis-
tent “look-and-teel”
objects from pscudoapplications.

The AlraVista Forum product works in conjunction
with the Web browser and the Web server, The Web
browser submits requests to the Web server whenever
the user opens a link. If the link points to a file, then
the Web serversends the file to the browscer, which is
the normal interaction. The link can also point to pro-
grams on the server; in this case, the Web server

can inherit those functions and

mvokes the program and then the program responds
to the uscer.

When the link points to the AltaVista Forum, the
Web server invokes the AltaVista Forum dispatcher
program through the common gateway mrerface
(CGI). Based on the information passed along with
the user request, the dispatcher invokes a specitic
application, which; in turn, calls various tools in the
roolkit to respond to the user’s request. Figure 2 illus-
trates the interaction of the AltaVista Forum software
with the Web browser and server.

Parameters are passed to the dispatcher from seg-
ments of the URL. The dispatcher parses the URL into
the pieces that provide the overall control of the pro-
gram: (1) the forum name, (2) the access control arca
name, (3) the message name, and (4) the message
arguments.

Each forum is an instance of an application object.
For example, many discussion forums are available on
various topics. Each discussion forum has its own name
at the time of creation; however, the same discussion
application can be used to manage all the forums.

An access control arca contains a set of forums and
a common user/group database. An administrator
group helps administer the user/group database and
establish overall access control policies for the environ-
ment. A uscr registers only once with an access control
area. Based on the access control area location, the
hvpertext server not only knows where to find the
user’s credentials for authentication purposes but also
knows how ro authenticate the user and pass the
authenticated user identity to the AlaVista Forum
environment. Given the user identity and the access
control location, AltaVista Forum softwarce can also
look up the user profile, check aceess control, and per-
torm other user-specific functions.

The message name and message arguments
then select particular actions to perform within the
application.

Generic Applications

The AltaVista Forum product supplies a set of generic
applications that make the software immediately
usable. The applications are described i this section.

User and Group Managementand Lookup This appli-
cation provides an interface for user registration
(either by the user or by an administrator). Uscers can
supply and moditv their business card information
such as phone numbers and e-mail addresses. Users
can also sctr certain preference parameters that help
the AltaVista Forum software rtailor its responscs
(e.g., native language and preferred displayv formats).
In addition, groups can be created and modified as a

set ot users. This application also provides the interface
tor listing and scarching for user and group informa-
tion for all forums. As discussed carlier, the AltaVista

HTML
- FILES
WEB HTTP WEB
BROWSER 7 SERVER CGI INTERFACE
ALTAVISTA
? HTTP FORUM
DISPATCHER

Figure 2

Interaction of AltaVista Forum, Web Browser; and Web Server

Digital Technical Journal Vol.8 No.3 1996

69

70

Forum product can support all the users that a Web
server can handle since only once repository of users
and groups 1s necessary.

Community, Team, and Personal Vistas A vista is
another term for home page, which is a place for the
user to log in to the WWW. Once in the community
vista, the user sces a set of public forums and links to
perform various tasks, ¢.g., register onesclt, look up
teams orjoin a team, perform AltaVista Forum admin-
istrative tasks (if an administrator), and so on. For this
reason, the community vista is also called the summit.
In much the same wav, a team vista keeps track of all
the forums and links tor a group of users, and a per-
sonal vista performs this function for a single uscr.
Both team and personal vistas can own forums that arc
not visible to the public community vista.

Discussion Much like a bulletin-board discussion
group or Digital’s DEC Notes software, this appli-
cation permits users to share ideas on a sct of related
topics. Users create topics and replies that form a hier-
archical tree (also kinown as threaded topics), providing
awav for users to navigate through existing discussions.
Other methods of reading the existing discussion arc
also provided. These include chronologically navigat-
ing through items not read; listing unrcad items only
and sclectively reading them; and scarching for topics
and replies containing certain words that were entered
during a partcular time period by a certamn author,

Users can also create multple discussion forums to
discuss different topics; this is true for the tollowing

applications as well.

Document Sharing The document sharing applica-
tion enables users to organize documents of the same
tvpe into hicrarchically organized folders. In addition,
it keeps track of versions of the documents, attach-
ments, and comments. As with the discussion applica-
rion, users can browse through and scarch for specific
documents using a variety ot methods.

Newspaper The ncwspaper application lets users
select a specific source of intformation and then detine
filters to present onlv those items of potential interest.
A good example of an information source on the
Internet is one of the real-time news teeds. Using the
newspaper application, it s also possible to read and
monitor otherinformation sources, ¢.g., c-mail sent to

a distribution list or information appearing on a set of

WWW sites.

Calendar The calendar application permits uscers
to enter a set of scheduled cvents (or a to-do list) and
present the events as a calendar (sometimes called
a diarv). The application supports requests to add
items to the calendar, thus allowing the calendar to be

Digital Technical Journal Vol.8 No.3 1996

used as a scheduling rool. Although a calendar forum
can be set up tor each person, it is equally usetul
to have a team calendar, a community calendar, or

cven a calendar for a specitic type of event.
Experiences

In this scction, we summarize some of our experiences
and discuss the lessons we lcarned along the wav. As
a result of our decision to relv on the Web browser
as the universal user interface, we had to resolve some
unique user interface issues. Because we chose to usce
evel objects, we had to cope

Tcl for developing higher-
with using an interpretive language. We designed the
database and indexing and scarch interfaces based
on cxtensibility and portability goals. Finally, in the
design of access control, we had to carcfully weigh
the pros and cons of simplicity and flexibility.

Coping with the User Interface Defined in HTML
Very carlv in the design phase, we decided to make
AlraVista Forum client-independent, with the excep-
tion of dependence on the Web browser. This decision
was based on the fact that the Web browser was already
frecly available on most of the platforms. We expected
the browser to become a ubiquitous network front
end, allowing us to tocus on building groupware func-
tions on the server, This mcant that we were faced with
the task of designing the user interface using HTML.
Since HTML was cvolving, our first step was to
detine graphical objects in more abstract constructs
supported by our toolkit. Each construct encapsulates
the specitics into a representation ot a graphical artifact
in HTML in the toolkit. Thus as HTML evolves, or as
the page design changes, onlv once area needs to be
updated. For example, a sclect box object on a form
mav be defined as tollows:

forum selectbox s.language \
-mapto language \
-labet "Select a language:" \
-labelbreak

s.language add_option English 1 selected
s.language add_option French 2

In this example, a select box is defined to begin with
a label and some spacing and then to contain two
options: English and French, with English as the
default. The values 1 and 2 are internal representations
otthe sclected values. Also, the “map-to” switch spec-
ifics that this object must correspond to the language
artribute m the database, a teature that was included to
simplity darabase update.

Note that although a label is specitied, no specifica-
tion is provided to represent that label in a particular
tont or tvpetace. Neither is the actual spacing for label
break specified. These decisions are made in the forum

select box part of the toolkit procedurce, which trans-
lates this objectinto HTML.

Most of the early Web browsers were single-window
based. This limitation was especially problematic for us
because most of our applications provide some organi-
zation to the information content. A much more nat-
ural way of browsing for our environment would
include at least two windows: one showing the context
and the other showing the content of a specific item.
For this reason, we introduced multiple navigational
methods. For example, the discussion application

= Allows hierarchical navigation (previous, next, up)

= Allows navigaton in chronological order (next
unseen, what’s new)

= DProvides a category view that lists topics according
to their category

= Supports content-based secarch or an index-like
function

Newer versions of Web browsers support frames,
which have multiple window-browsing capabilities
(although the standards in this area are still a bit
vaguc). We are updating our applications to take
advantage of these new fecatures.

Usability studies guided our decisions as we werc
designing forms and dialog boxes. It is likely that
many potential users of our product are familiar with
Windows-stvie user interface objects. Because the
carlv Web browsers (c.g., Mosaic) were UNIX-based,
little attention was given to providing a human-
computer interface that resembled the more widely
used Windows interface. However, our usability
studies indicated that many personal computer (PC)
users had difficulty using Web browsers out-of-the-
box. For example, a user might expecta dialog box to
have certain standard butrons, such as OK, cancel, and
clear. Ideally, the user would know what to do with
these buttons without any training. To make our soft-
ware casy to learn, we tried to tollow the same user
interface style that was already familiar to most users.
Since we were limited by HTML and browser design,
this was not a simple task. Thus we were often forced
to produce rough facsimiles of the more well-known
interface artifacts.

In summary, we found usability studies to be
extremely valuable when designing end-user applica-
tions. For this reason, it is important to allocate
enough time in the product design cycle to collect user
feedback before beginning product development.

The Pros and Cons of Using an Interpretive Language

As mentioned earlier, we selected Tcl as the language
for building the AltaVista Forum toolkit. T¢l is a
highly portable, extensible, and frecly available lan-
guage that was originally designed to be embedded in
alarger framework.! However, it is also an interpretive

language, which supported our goal of rapid and
iterative development of collaborative applications
for the WW W,

We extended standard Tcl to provide a set of com-
mands and objects that formed the AltaVista Forum
toolkit: database, HTML generation, access control,
internationalization, user profile management, and
platform-specific support. Many of these extensions
supported an object-based environment (i.e., the
environment supported standard Tcl objects and our
simple inheritance mechanism). The use of these
extensions made it casier to develop applications than
it would have been with Tcl (or any other language),
alone. As a result, thesc extensions form the basis tor
tuturc development tools.

From the beginning, wec kaew that the choice of
an interpretive language was going to involve trade-
ofts. In fact, performance, which was our most critical
trade-oft, continucs to be a concern for the engineer-
ing team. Although the performance of an interpreted
language is lower than that of a compiled language,
fast processors have made the use of an interpreter
worthwhile because of the reduced expense of devel-
oping applications. The usc of Tdl in the AltaVista
Forum software certainly takes advantage of this.
Although the applications and part of the toolkirt are
written in Tcl, many critical parts are implemented in
a compiled language (such as C) to stay within per-
formance requirements. The engineering team is con-
tinually searching for ways to improve performance
while accommodating requests tor new features and
tracking the rapidly evolving WWW environment.

The second trade-off was the absence of a sophisti-
cated debugging and profiling environment. Partly
due to the limitations of Tcl and partly due to the
stateless nature of WWW transactions, some of
the more sophisticated development tools that pro-
grammers expect to sce are not readily available.
Despite these shortcomings, rapid development is still
possible; however, we expect even larger gains as we
correct these problems in the future.

Interfacing to the Database
Several factors (primarily portability and cost) influ-
enced our decision to build a hybrid database rather
than the more customary relational database. The
database in the AltaVista Forum toolkit consists of a
B-tree indexed file (from the Berkeley ndbm package)
for storage of basic attributes about documents, which
is backed by the file system for the nonstructured data.
This design, combined with the scarch engine
(described in the next section), is quite effective tor
the tvpes of applications we initially developed with
the AlraVista Forum toolkir.

In eftect, the database is organized as a collection of
documents (or entries) that have unique identifiers
(document IDs), hierarchical document numbers, and

Digiral Technical Journal Voi. 8 No.3 1996

a sct of attributes that is similar to a relational database
table. The toolkit provides cach entry with a set of
built-in attributes (such as title, ¢reation and modi-
fication dates, and author). The applications can then
dcliver additional attributes.

The rtoolkit provides the means to retrieve, modity,
and iterate through the collection of entries in a
straighttorward manner. Because the attributes are
part of the application description and are not stored
in a separate database, the roolkit can use its knowl-
edge of the attributes to simplify certain common
operations. For example, because transferring data
from H'I'ML forms to the database and back is a basic
opcration in collaborative applications, the roolkit can
link fields on forms to database attributes, making it
possible to store them with a single command. To sup-
port a dynamic development environment, the toolkit
also upgrades databases in real time as new attributes

arc added or deleted. This permits the application
developer to concentrate on the task at hand rather
thanworrv about database management tasks.

Although the primary organization mechanism is a
flat rable indexed by document identifiers, the database
integrates a hierarchical rclationship between entries
when necessary. Because hicrarchies are common in
collaborative applications (c.g., tolders/documents
and topics/replies), it was important to reflect this in
anatural way in the database.

In addition to attributes, the database offers proper-
ties. Compared to attributes, which are stored tor each
entry in the database, propertics are stored within
cach forum. Application designers can use these prop-
ertics in any way they desire: thev are simple key-value
relationships. The AltaVista Forum software uscs
properties to implement a varicty of features, from
access control policies to the background color of the
screen display.

User properties are an extension of standard tforum
properties. They actlike forum propertices except that
they are tied to the user who is executing the transac-
tion. User properties keep databasce locking to a mini-
mum because, in collaborative applications, a user will
tvpically execute only one transaction at a time.

Indexing and Search: The Way of the Future?
One key design decision was to include an indexing
and scarch engine as a basic component of the prod-
uct. Although the darabase is often the central piece of
a groupware product, an indexing and search engine
often plays a similar role tor a WWW site. This devel-
opment is completely consistent with the philosophy
of the WWW-—information is linked as needed, not
necessarily following any structure. Database use is
more suitable for information objects that have some
uniformity in their definitions.

The basic function of the indexing engine is to map
a sct of words to a document containing those words.

Digital Techuical Journal Vol.8 No.3 1996

(The term document is used in a generic sense. It can
be any logical entity associated with a set or words.)
The indexing information must be stored in such a
way that subsequent searches based on individual
words (and phrases) are efficient and speedy. The
indexing engine in the AltaVista Forum toolkit is
basically the same indexing engine available on the
AlraVista Web site.” Designed and implemented at
Digital’s System Research Center, it is highly scalable
and efficient.

The built-in databasc functions as a repository tor
entries with a predefined sct of attributes. It provides
tast retrieval when the entrics arc identified using cither
an entry ID or a hierarchical 1D, and it provides simple
creating, updating, and sorting functions associated
with retrieval. The indexing and scarch engine comple-
ments the AltaVista Forum database: it provides a
content-based search method and functions at higher
speed. Since the search engine is extremely fast and
scalable, we also use it to index some of the attribute
values in the database. This allows us to use the search
engine for certain compute-intensive searches that
otherwise would be performed by the database.

Based on our experience, we expect the capabilitics
of the indexing and scarch engine to continue to
expand. As the popularity of the WWW technology
continucs to grow, the volume of published informa-
tion will also increase. Only a small amount of this
information can be effectively captured in databascs.
The indexing and search engine is an invaluable tool
tor mining useful information out of the vast amount
of data stored in these databascs.

The Dilemma of Access Control

Designing access control is very challenging because
users and administrators have difterent requirements.
On the one hand, administrators want a high degree
of tlexibility in controlling access. Their issues include
the following;:

= What type of information is subject to access control?

= Should access control be defined for everv possible
access/action tvpe?

= Should there be arbitrary flexibilicy in defining
groups (including nesting)?

On the other hand, users have stated that they do
not like products in which access control operations
arc complex, especially in the case of a product that
is supposed to help people collaborate. In a majority
of scenarios, they argue that very little access control
is needed.

Forthis reason, we tried to strike a balance between
administrators’ needs and users’ preferences. Although
we recognize the importance of access control, we did
not give it precedence over product usability. Since
usability was our priority, and the time available to

work on it was limited, we divided our efforts between
making access control flexible and choosing default
options that would promote collaboration.

We defined access control for the whole database
(forum), rather than for individual entries and attrib-
utes of entries. However, some entry-level access con-
trolis necessary. For example, it is preferable to let only
the owner (or the creator) of an entry modify and
delete that entry. As a result, we allowed the group def-
inition to include entry-specific logical users, rather
than provide a general mechanism for entry-level access
control. Therefore, a group may contain a member
who is the owner of the current entry. During access
control checking, the current entry’s owner is looked
up and matched against the currently logged-in user.

Instead of letting the administrator define access
contro! for each possible incoming access/action, our
framework allows the application definition to group
accesses together into logical access rights. For exam-
ple, tor the discussion application, we defined the fol-
lowing access rights:

s Read—Includes all read URLs (difterent views,
whether for a single entry or a list of entries)

= Contribute—Includes adding a topic or reply

= Modity—Includes any torm of modification or
deletion

= Moderate—Includes such functions as creating key-
words, polling options, controlling number of levels
of replies, and setting certain entries as hidden

= Administrate—Change access control or other
kinds of resource consumption policies

By defining these access rights, the administrator only
needs to establish who can do these five operations,
rather than define numerous other kinds of opera-
tions. It is still possible to change and add to this
group of access rights by making simple modifications
to the application definition.

Our basic strategy for making access control easy to
manage is to set up default policies of access control
that apply to as many situations as possible, within rea-
son. The default policy is added to the application def-
inition. If the administrator is satistied with the default
policies, then the access control can be used as sup-
plied. For the discussion application, the default policy
is the following:

= Read—All users, including anonymous

= Contribute—All users, excluding anonymous

= Modity—Owner (creator) of entry and moderators
= Moderatc—Owner of the forum

= Administrate—Owner of the forum

To simplity implementation, we chose not to allow
nesting of groups. Our design allows tor adding it in

the future as long as it makes management of access
control policies easier.

Future Directions

To date, we have received encouraging feedback from
users. Of the ways that we can continue to improve
the AltaVista Forum product, we feel the following
deserve the highest priority.

First, we need to provide better ways to help users
deal with information overflow. Although we have
built ways to filter and search information into our
application, further simplification is necessary. We
are working on smart agents that bring the relevant
information to the user’s fingertips.

Second, a number of the functions that we provide
can be more easily performed on the client machine.
The Java language is the best candidate for providing
these functions since it enables us to handle a wide
variety of client platforms. Initially, we arc looking into
using Java to improve certain user interface problems,
such as opening additional windows on the client
machine to notify users of new information.

Third, synchronous collaboration using video,
audio, and whiteboard will soon become feasible and
cost effective. It is important for us to help bring users
together through both synchronous and asynchro-
nous methods of collaboration. For example, users
should be able to use the calendar application to
schedule a meeting over the Internet, and Windows
should be available to the user automatically.

Fourth, as the AltaVista Forum software matures,
we hope to add to its performance and increase
its scalability. As its environment evolves, we are look-
ing into ways to bypass the CGI interface and usc a
compiled language tor more of the toolkit implemen-
tation. We also hope to add support tor large commer-
cial databases.

Finally, we will continue to add innovative applica-
tions to our product. We recently built a prototype of
a customer-support application that keeps track of
problem reporting. We are looking into other applica-
tions such as project management, group review, and
survey and decision-support systems.

Acknowledgments

We wish to thank the AltaVista Forum development
and management teams for their contributions to the
product. In particular, we wish to thank Peter Hurley
for his leadership in starting the effort; Ralph DeMent,
Bob Travis, David Marques, and Rick Frankosky, who
have worked with us throughout the lifetime of the
product and with whom we have developed a special
camaraderie; and Dan Kalikow, who was the first
adopter and has cheered us on ever since.

Digital Technical Journal Vol. 8 No.3 1996

73

74

References and Notes

. DEC Notes is a discussion application running primarily
on VAX svstems connected on a DECnet network. Still a
very popular tool within Digital, it is used tor collaborat-
ing on many topics, ranging trom product development,
customer support, and marketing to various personal
Interest topics.

2. The product was originally called Workgroup Web
Forum. It was subsequently merged into a larger family
of products and the product name became AltaVista
Forum.

For more information on the World Wide Web Consor-
tium/MIT Laboratory tor Computer Science Workshop
on the World Wide Web and Collaboration held Scp-
tember 11-12, 1995, sce hrep: //wwwaw3.org /pub/
WWW/Collaboration.

|93

4. J. Ousterhout, Tcland the Tk Toolkit (Reading, Mass.:
Addison-Weslev Publishing Company, 1994).

5. NDBM3). 4.3 BSO iy Progranyning Manual Ref-
erence Griide (Universine of Calitornia, Berkelev, 1986).

6. During this time, Java was stillon the drawing board, or at
least not generallv supported by Web brosvsers. We did
expect to use Javaro enhance our user interface over time.

7. For access to Digital’s indexing and scarch engine,
visit the AltaVista Web site at hrep: //altavista.software.
digital.com.

Biographies

Dah Ming Chiu

Dah Ming Chiu was a consulting engineer in Digital’s
Interner Software Business Unitand a technical leader in
developing the AltaVista Forum groupware product for the
Internet. Before that project, he worked tor the Netsworks
Architecture Group on congestion and flow control, net-
work monitoring, name service, and the X.500 standard.
Previous to that, he worked on performance medeling
and analysis nenvork protocols and graphical workstation
design. Dah Ming is currcatly an architect in the Interncet
Solutions Group ef Sun Microsvstems, Inc. He received a
Ph.D.inapplied mathemarics (1980) trom Harvard Uni-
versity and a B.Sc. in clectrical engineering (19753) from
the Imperial College, London University. He holds three
patents in the aveas of congestion control and nerwork
monitoring and is a coauthor of Netweork Moniloring
Ixpleined.

Digital Technical Journal Vol.8 No. 3 1996

David M. Griffin

Dave Grittin joined Digital in 198 1. He is a principal soft-
ware engineer in the AltaVista Collaboration Engineering
Group, where he Jeads the AltaVista Forum Toolkit team
For varsion 3.0. Dave also led the toolkit team tor version
2.0 and was the primary designer and implementer of

the (Workgroup Web Forum) version 1.0 toolkitand the
author ot the document-sharing application for version
1.0. Prior to this work, Dave led the DECdns server proj-
et (part ot the DECnet/OS] program) and designed

and implemented the hierarchical cells and cell-renaming
facilitics in the DCE Cell Dircctory Service. He has been
involved in the development ot'a number of distributed
information systems for Digital and other companies. He
holds two patents in distributed svstems technology.

Further Readings

The Bigital Techrical Journal is a refereed, quarterly
publication of papers that explore the foundations of
Digital’s products and technologies. fournal content
is selected by the Journal Advisory Board, and papers
are written by Digital’s engineers and engineering
partners. Engincers who would like to contribute a
paper to the Journal should contact the managing
cditor, Jane Blake, at Jane.Blake@ljo.dec.com.

Topics covered in previous issucs of the Digital
Technical Journal are as follows:

Spiralog Log-structured File System/OpenVMS
for 64-bit Addressable Virtual Memory/
High-pertormance Message Passing for Clusters/
Speech Recognition Software

Vol. 8, No. 2, 1996, EY-N6992-18

Digital UNIX Clusters/Object Modification
Tools/eXcursion for Windows Operating Systems/
Network Directory Services

Vol. §, No. 1, 1996, EY-UO25E-T)

Audio and Video Technologies/UNIX Available
Servers/Real-time Debugging Tools
Vol. 7,No. 4,1995, EY-UOO2E-T]

High Performance Fortran in Parallel
Environments/Sequoia 2000 Research
Vol. 7, No. 3, 1995, EY-T838E-T]
(Available only on the Internet)

Graphical Software Development/Systems Engineering
Vol.7, No. 2, 1995, EY-UOOLE-T)

Database Integration/Alpha Servers & Workstations/
Alpha 21164 CPU

Vol. 7,No. 1, 1995, EY-T135E-T]

(Available only on the Internet)

RAID Array Controllers/Workflow Models /PC LAN
and System Management Tools
Vol. 6, No. 4, Fall 1994, EY-TL18E-T]

AlphaServer Multiprocessing Systems/DEC OSF /1
Symmetric Multiprocessing/Scientific Computing
Optimization for Alpha

Vol. 6, No. 3, Summer 1994, EY-S799E-T)

Alpha AXP Partners—Cray, Raytheon, Kubota/
DECchip 21071/21072 PCI Chip Sets/DLT2000
Tape Drive

Vol. 6, No. 2, Spring 1994, EY-FO47E-T)

High-performance Networking /OpenVMS AXT
System Software /Alpha AXP PC Hardware
Vol. 6, No. 1, Winter 1994, EY-QO11E-T)

Software Process and Quality
Vol. 5, No. 4, Fall 1993, EY-P920E-DP

Product Internationalization
Vol. 5, No. 3, Summer 1993, EY-PI9S6FE-DI

Multimedia/Application Control
Vol. 5, No. 2, Spring 1993, EY-P963E-DP

DECnet Open Networking
Vol. 5, No. |, Winter 1993, EY-M770E-DP

Alpha AXP Architecture and Systems
Vol. 4, No. 4, Special Tssue 1992, EY-J886F-DP

NVAX-microprocessor VAX Systems
Vol. 4, No. 3, Summer 1992, EY-JS84E-DP

Semiconductor Technologies
Vol. 4, No. 2, Spring 1992, EY-L521E-DP

PATHWORKS: P C Integration Software
Vol. 4, No. |, Winter 1992, EY-]825E-DP

Image Processing, Video Terminals, and Printer
Technologies
Vol. 3, No. 4, Fall 1991, EY-H889E-DP

Availability in VAXcluster Systems/Network
Performance and Adapters
Vol. 3, No. 3, Summer 1991, EY-H890E-DP

Fiber Distributed Data Interface
Vol. 3, No. 2, Spring 1991, EY-H8706E-DP

Transaction Processing, Databases, and
Fault-tolerant Systems
Vol. 3, No. |, Winter 1991, EY-FSSSE-DP

VAX 9000 Series
Vol. 2, No. 4, Fall 1990, EY-E762E-DP

DECwindows Program
Vol. 2, No. 3, Summer 1990, EY-E756E-DP

VAX 6000 Model 400 System
Vol. 2, No. 2, Spring 1990, EY-C197E-DP

Compound Document Architecture
Vol. 2, No. 1, Winter 1990, EY-C196E-DP

Digital Technical Journal Vol.8 No.3 1996

75

76

Technical Publications by Digital Authors

R. Abugovand X. Dietrich, “A Yield Based Replacement
for Capabiliny Indexes,™ Aclvanced Semiconductor Menii-

Jactiring Conference and Workshop (November 1995).

P. Bhar, “A Casc for a Knowledge-based Performance
Tuning Advisor,” CHGO3: Proceedings of the 21st
Annal Conference for the Kesowrce Mancigenient
and Performance Evaluation of Enterprise Conpiting
Systems (December 1995).

C. Boutin, “From Manager to Individual Contriburor—
Would You Rather Be a Worker Bee?” Proceedings off
the 43rd Conference of the Society for Technical
commiumnication (May 1996).

W. Bowhill, “A 300M Hz CMOS RISC Microprocessor,”
1EEE Jouwrnal of Solid State Circuits (November 1995).

C. Brench, “Modceled and Mcasured Results trom
Two Standard EMT Problems,” 1EEE Transactions
on Llectromeagietic Compatibility (August 1995).

A. Charny, “Scalability Issues tor Explicit Rare Allocation
in NTM Nenworks,™ 1281 Infocom '96: Proceedings of
the 15th Annial Conference of the IEEE Compuiter ancd
Commuarications Societies (March 1996).

A. Charny, “Timescale Analysis for Explicit Rate Allocation
in ATM Nerworks,” 1EEE Infocom 96 Proceedings of
the 15th Annnal Conference of the IEEE Computer andd
Comnnmications Societies (March 1996).

J. Clement, “Pulsed-current Duty Cycle Dependence of
Electromigration-induced Stress Generation in Aluminum
Conducrors,” (EEFE Electron Device Letters(May 1996).

T. Collins, “POLYCENTER License Svstem: Enabling
Electronic License Distribution,” chaprer 10 n Jnte-
grated Networle Management V- Proceedings of
the Fourth International Symiposiunt on Integrated
Network Managemernt (London: Chapman & Hall,
ISBRN 0-41271-570-8, 1995).

T. Collins, “The Woltas a Metaphor for Software Agent,”
chapter five in Bots aned Internet Beasties (Indianapolis,
Ind.: Sams.nct Publishing, ISBN 1-57521-016-9, 1996).

A. Conn, “Time Affordances: The Time Facror in Diag-
nostic Usability Heuristics,™ Hiuomean Factors in Compiil-
ing. CHI 95 Proceedings (Mav 1993).

7. Cyeranovic, “Performance Characterization of the
Alpha 21164 Microprocessor Using TP and SPEC Work-
loads,” Proceedings of 1he IEEFE Second International
Symposivm on High-per{formeance Computer
Architectinre (February 19906).

M. Desai, R. Cvijetic,and J. Jensen, “Sizing ot Clock
Distribution Nerworks for High Performance CPU
Chips,” Proceedings of the 33rd Design Attonction
Conference (June 1996).

M. Desaiand Y. Yen, “A Systematic Technique for Verifv-
ing Critical Path Decaysina 300MHz Alpha CPU Design
Using Circuit Simulacion,” Proceedings of the 33rd
Design Automeation Conference (June 1996).

Digital Technical Journal Vol.8 No.3 1996

M. Elbert and R Howe, “Manufacturing Process Study
and Cerritication,” 1EET 34th Annual Spring Reliability
Svmposini (April 1996).

L. Elliotr, R. Shuman, J. Rose, and T. Spooner, “The
Elcctromigration and Failure Behaviour in Lavered
Tungsten Via Structaees,™ Matericals Reseairch Socicly
Svmpositon Proceedings (April 1995).

J. Emer eral, “Predicrive Sequential Associative Cache,”
Procecdings of the Second [nternationel Symposiim
on ligh-performance Computer Architectinre (February
1996)

J. Emer, RoStamm cral, “Exploiting Choice: Tnstruction
Ferch and lssue on an Implementable Simultancous Multi-
threading Processor,™ Proceedings of the [FEE ACMH 25rd
Iuternational Symposim on Computer Architectinre
(May 19906)

A. Flanders and M. Raven, “Using Contextual Inquiry to
Learn about vour Audiences,” The Journal of Compitter
Docrmentetion (February 1996).

K. Gehlerrand D. Scipione, “In Situ Monitoring of
Product Walers,” Solid State Technalogy iMarch 1996).

J. Grodstein, E. Lehman, H. Harkness, and Y. Waranabe,
“Logic Decomposition During Technology Mapping,”
[ELEZACM nternational Conference on Computer-
aided Design (November 1995).

P. Gronowski, “A 433MHz 64b Quad-issue RISC
Microprocessor,™ Digest of Papers, [EEE [nlernational
Solid State Circiits Conference (Fcbruary 1996).

P. Gronowski, “Dynamic Logic and Latches Part [1—
Practical Implementarion Methods and Circuit Examples
Used on the Alpha 21164, VST Circirits Symiposittin
(Junce 19906).

k. Hanson and H. Woodward, “Process Control
Mecthodology tor PSG and PETEOS Filins in a Highly
Interactive Multiprocess CVD Svstem.” Adlvanced Seni-
conductor Manifactiering Conference and Worksbop
(November 1993).

C.-L. Huang,] Faricelli. N. Khalil;and R. Rios, “An
Accurate Gate Lengeh Extraction Method for Sub-quarter
Micron MOSFETSs,” 17K Transcactions on Electron
Devices (June 1996).

H. Jakicla, “Pertormance Visualization of a Distributed
Svstem: A Case Study,”™ Computer (November 1995).

R. Kelsey, “Bad Fixes, Change Specaifications and Lin-
guistic Constraints on Problem Diagnosis,” Sofltcene
Engincering Notes (March 1996).

J. Kern, “The Chickenis Involved, But the Pigis Com-
mitted—DRBuilding Commitment Through Cascading
Teams,™ Quality Progress (October 1995).

N. Khalil, J. Faricelli,and J. Huang, “Twe-dimensional
Dopant Profiling of Submicron MOSFETs Using Nonlincar
Ieast Squares Inverse Modeling,™ fournal of Vaciinm
Science and Technology (January /February 1996).

J. Kitchin, “Design for Reliabiliny in the Alpha 21164
Microprocessor,” Proceedings of the 1kk:1: 549th Annal
Spring Reliability Sympositin (April 1996).

B. Mirman, “Choice of Models and Failure Indicators
tor ‘Uhermallv Loaded Solder Joints,” Proceedings of
the Techiical Progran NEPCON EAST 96 (June 1996).

W. Nagorski, W. McGec, E. Piccioli, and L. Bair, “Auto-
matic Test Chip Documentation Synthesis,” Proceedings
of the 1996 1EEE iternational Conference on Micro-
clectronic 'lest Structrires (March 1996).

L. Noack and M. Kantrowitz, “I'm Done Simulating;
Now What? Verification Coverage Analvsis and Cor-
rectness Checking of the DECchip 21164 Alpha
Microprocessor,” Proceedings of the 33rd Design
Attlomeation Conference (June 1996).

O. Ramabi, “Adaptive Absorbing Boundary Conditions
in Finite-difference Time Domain Applications tor EMC
Simulations,” (EEE Ticinsactions on Electronagnetic

Compalibility (November 1995).

O. Ramahi cral, “Dynamic Analysis of V Transmission
Lines,” Conference Proceedings of the 12th Anncal
Keview of Progress in Applied Computationcal
Electromagnetics (March 1996).

S Rege, “A Distribured System Client /Server Architecture
tor lareractive Multimedia Applications,” COMPOG: Digest

of Papers -1 Ist 1EEE Compuiter Sociely Interitationedl
Conference (February 1996).

R. Rios, N. Arora, C.-L. Huang, N. Khalil, J. Faricelli,
and L. Gruber, *A Physical Compact MOSFET Model,
Including Quantum Mechanical Effects, for Staristical
Circuit Design Applications,” IEEE/ Electron Devices
dechnical Digest (December 1995).

K. Rosclle; “Estimating Crosstalk in Multiconductor

Transmission Lines,” JEEE Transciclions on Componenls,

Packaging, and Mannjacturing Technology Pert B:
Advanced Packaging (May 1996).

N. Rubin, “Efficient Instruction Scheduling Using Finite
State Automata,” Proceedings of the 28th Annal
Larernationed Sympositm on Microarchitectioe
(November 1995).

C. Smith and T. Vallone, “Mentoring: Providing Protcs-
sional and Organizational Benehies,” Procecdings of
the £3rd Conference of the Sociely Jor Technical
comuntication (Mav 1996).

N. Sullivan, S. Dass, G. Pollard, W. Joncs, and "I Lindsay,
“A Comparison ot Statc-of-the-Art DUV Lenses,” ro-
ceedings of the Society of Photo-Optical Tnstricmenta-
tion Engineers (February 1995).

H. Teegan, “Distributed Performance Monitor Using
SNMP V2.7 IEEE/TFIP Network Operations end M-
agement Symposivm (April 1994).

M. Tsuk, “ID-TD Analvsis of Electromagnertic Radiation
trom Modules-on-Backplane Contigurations,” /k4F
Transactions on Electromagnetic Competibility
(August 1995).

A Villant and H. Nguven, “Corrclation of the Mechanical
to the Thermal Strengeh of Ceramic Packages,” American
Ceramic Socicty Transactions: Hybrid Microelectronic

Materials (November 1994).

W. Zahavi, “Modcling the Performance Budger—A Case
Study,” CWG95: Proceedings of the 21st Annel Con-
Sference Jorthe Resonrce Management and Perforni-
ance Ecaluation of Enterprise Computing Systems
(December 1995).

Digital Technical Journal Vol. 8 No.3 1996

77

78

Recent Digital
U.S. Patents

The following patents were recently issued to Digital
Equipment Corporation. Titles and names supplied
to us by the U.S. Patent and Trademark Office are
reproduced as they appear on the original published

patent.

17353,800 M. S. Lewis, Lo AL Treseder, R M. Tusler,
and G. Suzda

5,371,807 N. Kannan and M. S.

5,371,822 F. Horwitz and E. Thomson

5,371,868 G. P Konig, H. S, Yang, and W. Hawe
5,371,870 L. M. Goodwin, D. Smelser, and
D. A. Tatosian
5,371,874 M. Gagliardo, J. Lvnch, K. Chinnaswamy,
and . Tessar
5,371,889 J. Klcin
5,372,262 J. M. Benson and J. E. Fritscher
3,373,421 C. Dersikas and T. Spellman
5,375,068 R.S. Palmerand L. G. Palmer

J. R Harrow and F. P. Messinger

5,377,190 H Yang, K. K. Ramakrishnan, B. Spinney,
and KU R Jain
5,377,327 K. R. Jain, K. K. Ramakrishnan, and

D.-M. Chiu

5,377,354
S. Dawson, and S. Himbaut

5,378,945 H. Partovi, S. Butler, and L. Tran

5,379,419 J. S. Hefternan, P L. Savage, S.). Pittoan,
and R. V. Sunkara

5,381,052 R. Kolte

5,381,146 R. Kolte

Digital Technical Journal Vol.§ No. 3 1996

N. Scanncell, A. Redmond, P. Barces, A. Clark,

Modular Enclosure for Electronic Equipment

Register Method and Apparatus for Text Classification

Mecthod of Packaging and Assembling Opro-clectronic
Integrared Circuits

Mecthod and Apparatus tfor Deriving Addresses for Stored
Address Information for Use in Identifving Devices during
Communication

Stream Butler Memory Having a Multiple-entry Address
History But'ter tor Detecting Sequential Reads to Initiate
Preferching

Write-read /Write-pass Memory Subsystem Cycle

Journalling Oprimization Svstem and Method tor
Distributed Compurations

Frame Assembly for Rack-mountable Equipment
Fiber Oprtic Transceiver Mounting Bracker
Video Teleconferencing for Networked Workstarions

Svstem Monitoring Method and Device, Including a
Graphical User Interface ro View and Manipulate Svstem
Information

Frame Removal Mechanism Using Frame Count for Token
Ring Nenworks

Congestion Avoidance Scheme for Computer Nenworks

Mcthod and System tor Sorting and Prioritizing Elcctronic
Mail Messages

Voltage Level Converting Bufter Circuit

Methods and Apparatus tor Accessing Non-relational Data
Files Using Relational Querics

Peak Detector Circuir and Application ina Fiber Opric
Receiver

Volrage-tracking Circuitand Application in a Track-and-
hold Amplitier

5,383,096
5,384,779

5,385,289

5,385,630

5,386,514

5,386,523

5,386,524

5,387,495

5,387,530

5,388,099

5,388,222

5,388,224

5,388,247

5,388,263

5,389,757
5,390,173

5,390,286

5,390,299

5,390,302
5,390,318

5,390,327

5,392,219

5,394,143
5,394,347

5,394,401
5,394,529

B. Lee, E. Atakov, and J. Clement

M. C. Benson and L. M. Mazzone

M. Patrick and J. A. Daly
C. Bloch, P. McKinley, and R. Ranganathan
A. Philipossian, H. Soleimani, and B. Dovle

V. Boacn, R. Lary, B. Rubinson, D. Thicl,
C. Van Ingen, W. Warson, R. Willard, and
E. A. Gardner

N. A. Crook, M. J. Seaman, and
D. L. A. Brash

V. Boaen, R. Lary, B. Rubinson, D. Thicl,
C. Van Ingen, W. Warson, and R. Willard

J. C. K. Leey, M. Castro, E. Tung, C. Lcc,
and A. Ahmad

A. Philipossian and B. Dovle

N. Poole

L. A.P.Chisvin, J. F. Rantala, J. K. Grooms,
and D. W. Hartwell

B. Maskas

P. Goodwin, K. Thaller, and B. Maskas

R. K. Pererson, J. R. Ellis, and C. G. Nvlander

E. Soulicre

B. Spinney, R. Simcoe, G. Varchese, and
R. Thomas

K. K. Ramakrishnan

S. L. Rege, K. K. Ramakrishnan, and
D. A. Gagne

J. Johnson, M. Howell, and C. Whiraker

K. K. Ramakrishnan and P. Biswas

C. Lubbers and D. Thiel

S. Birch, G. Gavrel, and Z. Memon
J. Murrav and G. Antoshenkov

R. Kita, S. Tremblay, and T. Lynch

M. Patrick and J. A. Daly

J. Brown,J. Mever, and S. Persels

Integrated Circuit Metal Film Interconnect Having
Enhanced Resistance to Electromigration

I/0 Expansion Box

State Machines for Configuration of a Communications
Nerwork

Embedded Features for Registration Measurement in
Electronics Manufacruring

Process for Increasing Sacrificial Oxide Etch Rate to
Reduce Field Oxide Loss

Queuc Apparatus and Mcchanics for a Communications
Interface Archirecrure

Addressing Scheme for Accessing a Portion of a
Large Memory Space

System tor Accessing Information in a Data Processing
System

Scquential Multilaver Process for Using Fluorinated
Hvdrocarbons as a Dielectric

Threshold Optimization for SOI Transistors through Use
of Negative Charge in the Gare Oxide

Backplane Wiring for Hub in Packet Data
Communications System

Memory Subsystem Inpur Queuc

Processor Identitication Mechanism for a Multiprocessor
Svstem

History Bufter Control to Reduce Unnecessary Allocations
in a Memory Stream Bufter

Procedure State Descriptor System for Digital Dara
Processors

Elastomeric Key Switch Actuaror

Packet Formar in Hub for Packet Data Communications
System

Reticular Discrimination Network for Specifving Real-time
Conditions

Svstem for Using Three Difterent Methods to Report
Bufter Memory Occupancy Informarion Regarding
Fullness-related and /or Packet Discard-related
Informartion

Transaction Control

Cache Arrangement for File System in Digital Data
Processing System

Method tor On-line Reorganization of the Data on a
RAID-4 or RAID-5 Array in the Absence of One Disk
and the On-line Restoration of'a Replacement Disk

Dectermination of Inrerconnect Stress Test Current
Run-length Compression of Index Keys

Method and Apparatus for Generating Tests for Strucrures
Expressed as Extended Finite State Machines

Arrangement tor a Token Ring Communications Network
Branch Prediction Unit for High-performance Processor

Digital Technical Journal Vol.8 No.3 1996

79

Call for Papers
Network Products
and Technologies

The Digital Technical fournal secks technical papers in all areas of networking
technology for an issue to be published in the fall of 1997. Digital’s engineers and
industry pactners interested in participating in the special issue should send topics
and brict abstracts (100 words) by February 10, 1997, to

Jane Blake, Managing Editor
Digitel Technical Journal
Digital Equipment Corporation
50 Nagog Park, AKO2-3 /B3
Acton, MA 01720-9843

Email: jane.blake@ljo.dec.com
508-486-2544

Notice of the topics accepted will be sent to all authors by February 28, 1997.
The manuscript-submission date for accepted topics is May 30, 1997.

For information on topics published in the fournal, the andience, writing guide-
lines, and the pecr-review process, see http://www.digital.com/info/dtj/
dtj-guide.htm or contact the Managing Editor at the address above.

ISSN 0898-901X

Printed in US.A. EC-N7285-18/96 12 14 21.5 Copyright © Digital Equipment Corporation

	Front cover
	Contents
	Editor's Introduction
	Foreword
	lnternet Protocol Version 6 and the Digital UNIX Implementation Experience
	Preserving Computing's Past: Restoration and Simulation
	Modern Fortran Revived as the Language of Scientific Parallel Computing
	Performance Measurement of TruCluster Systems under the TPC-C Benchmark
	Performance Analysis Using Very Large Memory on the 64-bit AlphaServer System
	Building Collaboration Software for the Internet
	Further Readings
	Recent Digital U.S. Patents
	Call for Papers Network Products and Technologies
	Back cover

