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Editor’s
Introduction

No matter how powertul the under-
lving hardware, most important to
users is how that power translates to
greater application performance and
availability. Among the diverse topics
in this issuc of the Jouernal ave inno-
vative wavs engineers have devised
to meet application performance and
availability requirements, and new
tools for applications developers.

DIGITAL FX!32 is a unique soft-
ware product that makes available
hundreds of applications written
tor Intel machines to users of Alpha
machines. Described by Ray Hookway
and Mark Herdeg, FX!32 combinces
software emulation and advanced
binary translaton techniques to enable
32-bit applications that run on Inrel-
based machines with Windows NT
to also run on 64-bit RISC Alpha-
based machines with Windows NT.
The design provides both the pertor-
mance benefits and the transparency
of operation that the project engi-
neering team sought for uscrs.

Also designed for the Windows
cenvironment is DIGITAL Visual
Fortran, a tool for Fortran developers
that combines technologics from
DIGITAIL. and Microsoft Corpora-
non. Leo Treggiart reviews the tool’s
components, which include the
Component Object Model (COM),
Fortran 90, and Microsoft Developer
Studio. He addresses the question of
why developers need help aceessing
dvnamic link librarics and servers
based on COM, and then focuses on
the newly created rool that provides
this functionality, the Fortran Module
Wizard.

Digital Technical Journal

Vol. 9 No. |

DIGITAL’s shared-memory cluster
nterconnect, MEMORY CHANNEI,
2, dclivers the high levels of compu-
tational performance necessary to
support the largest rechmcal and
commercial applications. Marco Fillo
and Ruck Gilletr assess experiences
with the first implementation of
MEMORY CHANNEL. that led to
such enhancements as the cross-bar
design in this latest implementation.
Thev conclude with pertormance
data that demonstrate unparalleled
performance m terms of latencey and
bandwidth compared with traditional
interconnects. MEMORY CHANNEILL
2 provides latency of less than 2.2
microscconds and bandwidrh of
1,000 megabytes per sccond man
8-node cluster.

Data securiry has long been impor-
rant to svstem managers but not casily
achieved in distributed heterogencous
svstems. DIGITAL and BEA Svstems
have integrated ObjectBroker middle-
ware with the Distributed Computing
Environment’s Generie Security Service
Application Programming Interface
(GSS-API), as described here by John
Parodi and Fred Burgher. The authors
examine the choice of GSS-API for
ObjectBroker and future directions
in authentication software.

Design decisions made in the devel-
opment of DIGITAL’s StrongARM
microprocessor were driven by the
SOMELIMES OPPOSING requirements
of high performance and low power
consumption. Targeted for use in
handheld appliances usually powered
by conventional batteries, StrongARM
offerssignificantly higher performance

1997

than comparable microprocessors: It
operates at 160 MHz, dissipating less
than 450 milliwates. James Montanaro,
Rich Witek et al. step through the
decisions designers made to imple-
ment the ARM V4 instruction sct
from Advanced RISC Machines Ltd.
Upcoming in the nextissue of
the Journal are technical papers
about new AltaVista software and
anew Windows NT personal work-
station based on an Alpha 64-bit
RISC processor. To view the results
ota recent survev sent to Journal
Web subscribers, see htep://wwav,
digital.com /info/dyj.

M

Jane C. Blake
Managing Edilor



DIGITAL FX!132:
Combining Emulation
and Binary Translation

The DIGITAL FX!32 software product uniquely
combines emulation and binary translation

to enable any 32-bit application that executes
on an Intel x86 microprocessor running the
Windows NT 4.0 operating system to be installed
and to execute on an Alpha microprocessor run-
ning Windows NT 4.0. Benchmark tests indicate
that after translation, x86 applications run as
fast on a 500-MHz Alpha system with DIGITAL
FX!32 software installed as on a 200-MHz Pentium
Pro system. The emulator and its associated run-
time software provide transparent execution

of applications written for x86-based platforms.
The emulator produces profile data that is used
by the translator and takes advantage of trans-
lation results as they become available. The
translator provides native Alpha code for the
portions of an x86 application that have previ-
ously been executed. A server manages the
translation process for the user, making the
process completely transparent.

Raymond J. Hookway
Mark A. Herdeg

Three factors contribute to the success of a micro-
processor: price, performance, and software availability.
The DIGITAL FX!32 product addresses the third fac-
tor, softwarc availability, by making hundreds of new
applications available on Alpha-based platforms run-
ning the Windows NT operating system. DIGITAL
FX!32 software combines emulation and binary trans-
lation to provide fast, transparent exceution of Intel
x86 applications on Alpha systems.

Since its introduction in 1992, the Alpha micro-
processor has been the fastest microprocessor
available. A large number of native applications are
available on Alpha systems, particularly those applica-
tions that require a high-performance processor. With
the introduction of DIGITAL FX!32 sottware, 32-bit
programs that can be installed and exccuted on x86
systems running the Windows NT 4.0 opcerating sys-
tem can also be installed and executed on Alpha sys-
tems running Window NT 4.0. Except for having to
specity that a program is an x86 application, installing
and running an application is the same on an Alpha
system as on an x86 system. The performance of an
x86 application running on a high-end Alpha system is
similar to the performance of the same application
running on a high-end x86 system.

A number of svstems have successtully used emula-
tors to run applications on platforms for which the
applications were not initially targeted!? The major
drawback has been poor performance.? Several emula-
tors have used dynamic translation, translating small
segments ofa program asitis executed, to achieve better
performance than that obtained by an interpreter
alone.” Dynamic translation involves a basic trade-off
between the amount of time spent translating and the
resulting benctit of the translation. If an emulator spends
too much time on the translation and related processing,
the executing program will be unresponsive. This limits
the optimizations that can be performed by the emula-
tor using dynamic translation.

FX!32 overcomes the performance problem by not
doing any translation while the application is exccut-
ing. Rather, FX!32 captures an execution protfile thatis
later used by a binary translator® to translate into native
Alpha code those parts of the application that have
been executed. Since the translator runs in the back-
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ground, it can use computationally intensive algo-
rithms to improve the quality of the generated code.
To our knowledge, FX!32 is the first system to explore
this combination of emulation and binary translation.

In this paper, we describe how FX!32 works. We begin
with an overview and discuss cach of the major compo-
nents in more detail. We then present some benchmark
test results and briefly describe several limitations of the
current version of DIGITAL FX!32 software.

Overview

On Alpha systems, the Windows NT operating system
uses an emulator to run 16-bit x86 applications. Thesc
applications can be installed and run in the same way as
they are installed and run on x86 systems, but the exe-
cution is slower. The emulator built into FX!32 pro-
vides a similar capability tor 32-bit x86 applications.

Unlike the emulation softwarce in the 16-bit envi-
ronment, EX!32 provides a binary translator that
translates 32-bit x86 applications into native Alpha
code. The translation is done in the background and
requires no user interaction. Using background trans-
lation allows the translator to perform optimizations
that, in terms of computational resources, would be
too cxpensive to accomplish while an application is
running. An application translated by means of £X!32
runs up to 10 times faster than the same application
running under the emulator.

DIGITAL FX!32 software consists of the following

seven major Components:
1. The transparency agent, which provides for trans-
parent launching ot 32-bit x86 applications.

2. The runtime, which loads x86 images and sets up
the run-time environment to execute them. As part

of loading an image, the runtime component jack-
cts imported application programming intertace
(API) routines. Jackets are small code fragments
that allow the x86 code to call Alpha Windows NT
APl routines.

3. The emulator, which runs an x86 application mak-
ing usc of translated code when itis available.

4. The wvanslator, which produces a translated image
using profile information received from the emulator.

5. The database, which stores execution profiles pro-
duced by the emulator and used by the translator.
Translated 1images are also stored in the database,
along with configuration information.

6. The server, which maintains the database and runs
the translator as appropriate.

7. The manager, which allows the user to control
resources used by the DIGITAL FX!32 software.

Figure 1 shows the relationships between these
major components, cach ofwhich is discussed in more
derail in the sections that follow.

The Transparency Agent

The wansparency agent provides for transparent
Jaunching of 32-bit x86 applications. Launching an
application on the Windows NT operating system
always results in a call to the CreateProcess APl routine.
By hooking calls to this routine, the transparency agent
can examinge every image as it is about to be executed.
It'a call to CreateProcess specifies thar an x86 image is
to be executed, the transparency agent invokes the run-
time component to execute the image.

EX!32 inserts the transparency agentinto the address
spacc of each process. A process that contains the trans-

P e AND
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AGENT

RUNTIME

EMULATOR

DATABASE

TRANSLATED
IMAGES
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<REGISTRY>

EXECUTION
PROFILES

SERVER
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Figure 1
DIGITAL EX!32 System Components
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parency agent is said to be enabled. Once a process is
cnabled, any attempt to execute an x86 image causes
the runtime to be invoked to execute the process. The
agent is propagated through the system because each
attempt to create a process to run an Alpha image
results in that created process being enabled.

By the time a user is logged on, FX!32 has enabled
all the rop-level processes, and any attempt to execute
a 32-bit x86 application invokes the runtime compo-
nent. The initial processes that are enabled are the
Windows shell (explorer.exc), the service control man-
ager (services.exe), and the remote procedure call
server (rpess.exe). When EX!'32 is installed, the
fx32strr.exe file is registered as the Windows shell.
When a user logs on, £x32strr.exe runs and cnables the
real Windows shell, explorerexe. The FX!32 server
enables the service control manager when it starts,
usually when the system is booted. Currently, any ser-
vice process that is started by the service control man-
ager before the server is started is not enabled. (The
only exception is rpess.cxe, which is explicitly enabled
by the server). We hope to alleviate this limitation in a
future version of the DIGITAL FX!32 software.

Processes arc enabled using a technique described
by Jetfrey Richter in Chapter 16 of his book
Advanced Windows N to inject a copy of the trans-
parcncy agent into the process’ address space.

The Runtime

The transparency agent invokes the runtime whenever
an attempt is made to exccute an x86 image. The
runtime loads the image into memory, sets up the run-
time cnvironment required by the emulator, and then
calls the emulator to execute the image.

The runtime replaces the Windows NT  loader,
which can only load Alpha images; the Windows NT
loader returns an crror reporting an image of the
wrong architecture if it is invoked to load an x86
image. The runtime duplicates the functionality of the
Windows NT loader, which includes relocating images
that arc not loaded at their preferred base address, sct-
ting up shared scctions, and processing static thread
local storage sections.

The runtime registers cach image 1t processes with
the Windows NT opcrating system by inscrting point-
ers to that image into various lists that are used inter-
nally by the system. Maintaining thesc lists allows the
native Windows NT code to correctly implement APl
routines, such as LoadResource and GetModulcHandle,
which require access to images that have been loaded.
The registration also ensures that the DIIMain func-
tions of the loaded dynamic hink libraries (DLLs) are
called as appropriate. (The entry points of x86 DLLs
arc jacketed by the runtime.)

Fortunately, the image lists that FX!32 must modity
arc in the user’s address space, and no modification of

the Windows NT opcrating system was required to
register images with the system. Unfortunately, the
structure of these lists is not part of the documented
Win 32 interface, and using them creates a dependency
on the Windows NT version that is being run. FX!32
has dependencices on a number of undocumented fea-
tures of the Windows NT operating system. Although
the DIGITAL FX!32 product is more dependent on a
particular version of the operating system than a typi-
cal layered application is, it is remarkable that the
implementation of FX!32 did not require any changes
to the Windows NT operating system.

The runtime also registers the image in the FX!32
databasc. This database maintains information about
x86 images that have been loaded, including the appli-
cation that loaded the image, profile data that was pro-
duced by the interpreter, and any translation of the
image. The runtme accesses the database with a
unique image identifier (1D), which the runtime
obtains by hashing the image’s header. Theretore, the
image 1D is determined by the content of the image,
not by its location in the file system, and the informa-
tion that FX!32 associates with the image can be
accessed independently of the image’s location on the
disk. For example, if an application is installed in one
directory and some of the images loaded by the appli-
cation arc subsequently translated by FX!32, the trans-
lated images will be Jocated by FX!32 even it the
application is later installed in a different directory.

When the runtime finds a translated image in the
databasc, it loads this image along with the corre-
sponding x86 image. Translated images arc normal
DLLs, loaded by the native LoadLibrary AP routine.
Translated 1images contain additional scctions that
store information required by the runtime to map x86
routines to the corresponding Alpha code.

The runtime duplicates the Windows NT loader
function of binding an image’s imports, using sym-
bolic information in the image to locate the address of
the imported routine or data. "T'he runtime treats
imports that refer to entries in Alpha images specially,
however, by redirecting the imports to refer to the
correct jacker entry in the FX!32 DLL, jacket.dll.

The jacket routines in jacker.dll enable an x86 user
program to call the native Alpha implementation of
the Win32 API. Thesc jacket routines are extremely
important because they allow x86 applications to use
high-pertormance code that has been tuned to the
Alpha platform. Some x86 applications run faster on
the Alpha platform than on the x86 plattorm, cven
without being translated, becausce of the large amount
of time the applications spend in native DLLs.

Each jacket contains an illegal x86 instruction that
serves as a signal to the interpreter that a change is to
be made to the Alpha environment. The interpreter
calls an Alpha jacket routine at a fixed offset from the
illegal x86 instruction. The basic operation ot most
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jacket rourines is to move arguments trom the x86
stack to the appropriate Alpha registers, as dictated by
the Alpha calling standard. Some jacket routines pro-
vide special semantics for the native routine being
called, as required by FX!32. For example, the jacket
tor the GetSystemDirectory routine returns the path
to the FX!32 directory rather than the path to the true
system directory so that x86 applications do not over-
write native Alpha DLLs.

For an x86 application to run under FX!32, cvery
image it loads must be either an x86 image or an Alpha
image tor which jackets exist. Therctore, FX!32 pro-
vides jackets for all the DLLs that implement the
Win32 interface and for many redistributable DLLs.
FX!32 currently provides jackets tor more than 50
native Alpha DLLs, which has enabled the FX!32 devel-
opment team to run almost all the commercial applica-
tions tested. Each new release of DIGITAL FX!32
software provides additonal jackets, and the developers
intend to jacket new interfaces as they are released.

The Emulator

The fundamental job of the emulator is to run x86
applications before they are translated. The first time
an x86 image cxccutes under EX!32, the image is exe-
cuted by the emulator.

The emulator also serves as a backup for translated
code. Because it is not possible to statically determine
allthe code that can ever be executed by an application
(especially for applications that generate code on-the-
tly), the emulator is always present to exccute such
untranslated x86 application code. Previous binary
translators built by DIGITAL also depended on the
presence of an emulator in this role.” Emulator pertor-
mance is more of an issuc for FX!'32 because, unlike
those carlier binary translators, all application code is
interpreted when the x86 application is first run.

The emulator isan Alpha assembly language program
that interprets the subset of x86 instructions that can be
executed by a Win32 application. While an x86 applica-
tion is running, the x86 processor state is kept partially
in Alpha registers and partially in a per-thread data
structure called the CONTEXT. The x86 integer regis-
ters are permancently mapped to Alpha registers, and
Alpha registers store the statc of the x86 condition
codes. While the emulatoris running, a dedicated Alpha
register points to the CONTEXT. The CONTEXT
stores the x86 per-thread processor context and any part
of the x86 processor state that must be maintained
across calls to other parts of the system, tor example,
calls to Alpha API routines.

Pipelined Dispatch

The structure of the emulator is a classic fetch-and-
evaluate loop. The emulator dispatches on the first
two bytes of each instruction, performing the lookup
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in a table of 64K entries. Each entry contains the
address of the routine to execute to interpret an
instruction and the length of the instruction.

The structure of the dispatch loop has been care-
fully cratted to make efficient use of 64-bit Alpha reg-
isters and to efficiently schedule the execution of code
in the loop. Software pipelining is used to overlap the
tetch and dispatch table lookup for the next instruc-
tion with the execution of the current instruction.
Atthe top of the loop, at least cight bytcs, starting at
the address ot the current instruction, are in Alpha
registers. Length information from the dispatch table
determines the tirst two bytes of the next instruction,
allowing the dispatch table lookup to be overlapped
with the excecution of the current instruction. A fetch
of additional bytes from the instruction stream is also
initiated. Finally, the loop dispatches to the routine
whose address was obtained trom the table on the pre-
vious itcration of the loop.

The individual routines have been factored by using
subroutines and coroutines to perform operations like
operand fetching, making them as small as possible. As
a result, the emulator code required to execute the
most frequently cxecuted x86 instructions fits in the
first-level cache.

Condition Code Evaluation

Condition codes are generated by the execution of
many of the x86 instructions. We have observed that
condition codces are frequently set and relatively
infrequently examined. The emulator takes advan-
tage of this by evaluating the condition codes only
when they arc used, that is, by using a “lazy evalua-
tion” technique. The execution of a typical instruc-
tion saves only enough state to allow the evaluation
of condition codes, if required, at a later time. This
takes much less effort than mitally cvaluating the
condition codes. The additional advantage in defer-
ring the cvaluation is that only the condition codes
that are used need to be generated. For example, the
overflow condition code may never be computed if
only the zero flag is used.

Floating-point Instruction Emulation

The 80-bit x86 floating-point registers arc modeled
by a stack of 64-bit memory locations that contain
floating-point valucs. The decision to use 64-bit inter-
mediate values, rather than to faithfully replicate the
80-bit model, was based on the need to achieve good
pertormance when executing x86 floating-point code
on the Alpha processor. This decision was supported
by the fact that the Windows NT operating svstem also
uses a 64-bit floating-point modcl. Although this is an
approximation, our experience to date has shown that
this was a good compromise. Very few applications
rely on the full precision provided by the x86 floating-
point unit’s (FPU’s) 80-bit registers.



The ecmulator also implements a somewhat simpli-
fied model of the x86 FPU’s register file. Most instruc-
tions use the x86 FPU register filc as a traditional
operand stack; however, several instructions can create
aregister file state that is not strictly a stack by freeing
registers in the middle of the stack, by moving the
stack pointer without pushing or popping, or by ini-
tializing the register file in a way that breaks the stack
model. Modeling the full complexity of the x86 FPU
register file would be extremely expensive, and experi-
ence has shown that almost all programs use the regis-
ter file strictly as a stack. The current version of the
emulator takes advantage of this. We are investigating
ways to model the floating-point registers in a way that
maintains good performance but doces not depend on
their being treated as a stack.

Generation of Profiles

While it is interpreting an x86 program, the cmulator
generates profile data tor use by the translator. The
profile data includes the following information:

= Addresses that are the targets of call instructions

= (Source address, target address) pairs for indirect
control transfers

= Addresses of instructions that make unaligned ref-
erences to memory

The translator uses this information to generate
routines, that is, units of translation that approximate
asource code routine. The emulator gencrates profile
data by inserting values in a hash table whenever a rel-
evant instruction is interpreted. For example, as part of
interpreting the call instruction, the emulator makes
an entry in a hash table that records the target of the
call. When an image is unloaded (cither as a result ofa
call on the FreeLibrary routine or when the applica-
tion exits), the runtime processes the hash table to
produce a profile file for that image. This profile is
processed by the scrver and can result in the server
invoking the translaror to create a new translation of
the image.

To detect available translated code, the emulator
uses the same hash table that it cmploys to gather the
profile data. The x86 addresses tor which there are
translated routines and the address of the correspond-
ng translated code are entered into the hash tablc by
the runtime when it loads an x86 image that has been
translated. When a call instruction is interpreted, the
emulator looks up the targetaddress. Ifa correspond-
ing translated address cxists, the emulator transfers
control to that address.

The Translator

The server invokes the translator to translate x86
images for which a profile exists in the databasc. The
translator uscs the profile to produce a translated

image. On subsequent exccutions of the image, the
translated codc is used, substanually spceding up the
application.

Structure and Order of Operations

The translator has eight major components (or phases):
the regionizer, build, the register mangler, the condi-
tion code mangler, improve, the code selector, the
scheduler, and the assembler. (An additional phasc
that performs various peephole optimizations is dis-
abled in the DIGITAL FX!32 V1.0 translator.) The
major components function as fol lows:

1. The Regionmzer—The regionizer uses data in the

profile to divide the source image codc into rou-
tines, which are described in the scction Generation
of Profiles. Each call target in the protile is used to
generate an entry to a routine. The regionizer rep-
resents routines as a collection of regions. Each
region is a range of contiguous addresses, which
contains instructions that can be reached from the
entry address of the routine. Unlike basic blocks,
regions can have multiple entry points. The small-
est collection of regions that contain all the instruc-
tions that can be reached from the routine entry is
used to represent the routine. Many routines havea
single region. This representation was chosen to
efficiently describe the division of the source image
into units of translation.
The regionizer builds routines by following the
control tlow of the source image. When an indirect
jump instruction is encountered while following
the control flow, the possible targets of the instruc-
tion are obtained from the profile. Without this
profile information, it would be very ditficult to
reliably identify these targets, and indirect jumps
would have to be treated as returns from the rou-
tine. The profile information makes it possible to
reliably generate a more complete representation of
routines with correct control flow.

After the regionizer runs, cach of the other major
components is run in scquence for each routine.

2. Build—DBuild reparses the x86 instructions in the
routine to create an internal representation (1R) of
the routine for use by the subsequent components.
The IR is a graph of basic blocks and is similar to the
IR used by many optimizing compilers.

(8]

. The Register Manglcr—The initial IR is a straight-
forward representation of the source x86 code.
This representation ignores the overlap of the x86
registers; the IR treats each occurrence of EAX|
AX, AH, and AL as a scparatc register. The register
mangler adds insert and cxtract opcrations as nec-
essary to represent the actual semantics of the x86
registers.

Digiral Technical Journal Vol.9 No.1 1997



4. The Condition Code Mangler—The eftect of x86
instructions on condition codes 1s represented
implicitly in the initial IR. The condition code man-
gler adds instructions to explicitly generate condi-
ton codes. Since the condition code mangler
understands the control low ofthe entire routing,
it knows when condition codes are live and only
adds code to generate condition codes when they
are used later in the routine.

N

. Improve—Improve performs scveral transtorma-
tions that produce code more suited to the Alpha
architecture. In the initial IR, cach push and pop
mnstruction is explicitly represented as a decrement/
increment of the x86 stack pointer, accompanied by
astore/load. Improve collects all the manipulation
ot the x86 stack pointer into a single decrement at
the beginning of a basic block and a single incre-
ment at the end of that block. Improve also uses
simple value numbcering and analysis of memory
refercnces to try to eliminate loads and stores to
both the x86 stack and the tloating-point stack and
to perform constant folding. Although Improve
performs only relatively simple optimizations on a
single basic block, we have found it to be quite
effective in improving the qualiny of the code that is
gencrated.

6. The Code Selector—The code sclector transtorms
the IR from a representation that contains mostly
x86 instructions to one that contains only Alpha
instructions. This transtormation is donc instruction
by instruction, with cach x86 instruction being
replaced by a sequence of Alpha instructions that
producc the same effect. The implementation of the
code selector isbased on the TWIG code generator.”
Although the code selector is capable of dealing
with much morc complicated patterns of instruc-
tions, this capabilinis not currently used.

7. The Scheduler—Atfter the code selector is run, all
the instructions in the IR are Alpha instructions.
The scheduler reorders the instructions within a
basic block to minimize the cycle count for the tar-
get processor.

8. The Assembler—The assembler builds the output

translated image.

Use of Profile Data

The regionizer is the only component of the current
translator that uses the control flow information in the
protile. The regionizer usces the profile to determine
which parts of the source image are translated. Future
versions of the translater will usc the profile toperform
path-directed optimizations and to place code so as to
reduce cache misses. Those changes will improve the
performance of translated code.

Digiral Technical Journal Vol.9 No.1 1997

Retranslation of an image is triggered by growth in
the size of the profile. Because profile data is generated
only when the emulator executes previously untrans-
lated parts of the source image, an increase in the size
of the profile indicates that new parts of the program
have been executed. Retranslating with the new pro-
file will cause these additional parts of the image to be
translated.

Alignment Issues

On an Alpha system, references to memory locations
that are not naturally aligned result in exceptions that
are handled by the Windows NT kernel. Alignment
exceptions can be avoided by using unaligned code
sequences that use the LDQ_U and STQ _U instruc-
tions. Unaligned code scquences are slower than
aligned sequences tor accessing locations that are nat-
urally aligned but much faster for accessing locations
thatare not naturally aligned. Native Alpha compilers
always try to generate unaligned code sequences when
referencing unaligned data to avoid the expensc of
dealing with alignment exceptions.

When gencrating the code for an instruction that
reterences memory, the code selector must determine
whether to use an aligned sequence or an unaligned
scquence. To make the determination, the code selec-
tor needs to know the alignment ot the address being
referenced. In general, this cannot be determined by
static analysis of the x86 code. To solve the problem,
the code selector uses information in the profile about
the alignment of memory addresses. The profile con-
tains the address of every instruction that made an
unaligned reference to memory. The code sclector
generates unaligned scquences for those instructions
and aligned sequences tor all other memory references.
Although this code genceration process is ctfective most
of the time, some programs exhibit ditferent memory
reference behavior on successive runs. For those pro-
grams, alignment exceptions can still occur,

Shadow Stack

Translating return instructions presented particular
problems for the translator. The translation of a call
instruction saves the x86 return address on the x86
stack and then calls the translated code tor the routine.
After the translated call, the x86 return address is on
the x86 stack and the corresponding native return
addressisinan Alpha register. This maintains the x86
stack in the expected x86 state. One way to translate a
return instruction would be to use the x86 return
address to look up a corresponding Alpha address;
however, it is desirable to avoid the expense of a hash
table lookup on every return. In the usual case, the
return address is not changed by the routine and the
translated code can pop the x86 stack and perform a
native returnn by using the native return address. Two



problems must be solved, though. First, some mecha-
nism is needed to determine if the x86 return address
has been modified. Sccond, a location is needed to
save the native return address. Both problems are
solved by using the shadow stack.

The shadow stack resides at the top of the native
Alpha stack and is maintained by the translated code
(with help from the emulator). A shadow stack frame is
created for each call of a translated routine. When one
wanslated routine calls another, the calling routine saves
the x86 return address and the current x86 stack pointer
in its shadow stack frame. The called routine then saves
the native return address in the calling routine’s shadow
stack frame. On return, the called routine expects to
find the x86 return address and the current x86 stack
pointer in the calling routine’s shadow stack frame. In
this case, the called routine is returning to the environ-
ment that the calling routine expected and performs a
native return. If the value of either the return address
or the stack pointer has changed from the value
expected by the calling routine, the called routine
returns to the emulator.

In a similar manner, the emulator uses the informa-
tion in the shadow stack to determine when it can
return to translated code. A number of conditions
can cause translated code to reenter the emulator. For
example, the emulator is entered if the target of a
rranslated indirect jump instruction is not known at
translation time. Having the emulator return to trans-
lated code on a rcrurn instruction minimizes the
amount of time thatis spent in the emulator; however,
the emulator can only return to the translated code ifit
knows that it has a valid return address. The shadow
stack provides a mechanism to perform that validation.

The Database

The databasc consists of two parts. As described for
the runtime, the first part of the databasc is a directory
tree that contains profile files, translator log files, and
translated images. The second part of the database is
keptin the registry and consists of information about
x86 applications and images that the DIGITAL FX'32
software has run on the system, together with config-
uration information. The configuration information
includes the maximum amount of disk space that can
be used by FX!'32, the maximum number of images
that can be stored in the database, the default transla-
tion options, the work list that the server uses to
schedule translations, and the DatabaseDirectoryList.
The DatabascDircectoryList is a list of paths to addi-
tional databascs that arc to be searched for image pro-
files and translation results when the image is first
executed. Directories on this list can be used to access
information about the image from other machines on
a network, making available to a user translations per-
tormed on another, perhaps more powerful, machine.

The Server

The server is a Windows NT service that normally
starts whenever the system is rebooted. The server
automatically runs the translator when appropriate,
thus making the translation process completely trans-
parent to the user. The server also maintains the data-
base to control DIGITAL FX!32 resource usage.

The Manager

Usually the operation of DIGITAL FX'32 softwarc is
completely transparent to the uscr. Like any other pro-
gram, though, FX!32 consumes system resources and a
user must be able to control that resource usage. One
of the roles of the manager is to provide a user intertace
to the configuration information kept in the database.

Figure 2 shows the manager window. The upper
pane contains information about the various applica-
tions that have been run on the system: the total
amount of disk space being used for protiles and trans-
lations of images loaded by the application, the num-
ber of times the application has been run, the date
when it was last run, and the optimizer (translator)
status. The lower pane contains information about
the images that have been loaded by the highlighted
application in the upper pane: the total amount of disk
space used to store the profile and translation of the
image, the number of times the image has been
loaded, the date on which it was last loaded, and the
status of the last translation of the image.

By interacting with the manager, the user can con-
trol various aspects of FX!32 operation, such as the
maximum amount of disk space to use, which informa-
tion to retain in the database, and when the translator
should run.

Results

The DIGITAL FX!32 development team had two pri-
mary goals for the software: (1) to achicve transparent
execution of 32-bit x86 applications and (2) to yield
approximately the same performance as a high-end
x86 platform when running applications on a high-
performance Alpha system. The DIGITAL FX!32
product meets both goals.

Transparency is provided by the transparency agent
and a run-time environment thatcanload and execute
an x86 application without a translation step. Appli-
cations can be launched and executed on an Alpha
system that is running FX!32 just as they can on an
x86 system. We have performed extensive testing
of more than 75 applications that run using FX!32,
including major commercial applications such as
Microsoft Office 95, Visual Basic 4.0, Photoshop 4.0,
and Corel DRAW 6.0.
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FX!132 Manager
File Edit View QOptions Help

Application Name 20 LT | Size | Run Count | Last Run | Optimizer € |
Microsoft® Schedule+ for Windows 95(TM... 3600684 B 12/17/96 08:42:29 AM

Microsoft® Word for Windows® 35 7.0 10476556 27 1216796 10:54:14 AM
5470580 14 12/16/96 03:17:02PM  Working
Paradox for Windows 7.00 34672 3 12/16/96 05:35:15 PM v
| sy ¥
Image Name | Sizel Run Countl Last Run l Optimizer Status |
awt3230dll 160872 1 11/18/96 09:31:22AM  Success

jit3230.dll 180208 1 11/18/96 09:31:22AM  Success

int3230.dl 297220 14 12/16/96 03.17:02PM  Success

MFC40.DLL 982416 14 12/16/96 03.17:01 PM  Success

msvcirt.dll 22380 14 12/16/96 03.17:01 PM  Success

msvert.dil 216860 19 12/16/96 03:17:02PM  Success

rsvertd0.dil 4664 14 12/16/96 03:17:02PM  Success

netscape. exe 3491616 14 12/16/96 03:17:02PM  40% (06:16 rermaining]
pr3230.dl 92532 14 12/16/96 03:17:02PM  Success

uni3200.dl 15812 28 12216/9603:17:02PM  Success
For Help, press F1 [40MB |Apps v/

Figure 2

The DIGITAL FX!32 Manager

DIGITAL FX!32 softwarc also met its pertormance
goal. Figurc 3 shows the relative performance on
BYTE Magazine’s BY TEmark benchmark ota 200-
megahertz (MHz) Pentium Pro system and a 500-
MHz Alpha system running FX!32. For this
benchmark, the Alpha system provides about the
same performance as the 200-MHz Pentium Pro
system. Figurc 3 also shows that the Alpha native

version of the benchmark runs twice as fast as the
Pentium Pro version.

Of course, no single benchmark characterizes the
performance of a system. Even so, when running
translated x86 applications, we have consistently mea-
sured performance on a 500-MHz Alpha system to be
in the range between that of'a 200-MHz Pentium sys-
tem and that of'a 200-MHz Pentium Pro system. For

200-MHZ PENTIUM PRO

KEY:
[] INTEGER
O FLOATING POINT

500-MHZ ALPHA 21164A
RUNNING DIGITAL FX!132

500-MHZ ALPHA 21164A
(NATIVE ONLY)

Figure 3
DIGITAL FX!'32 Performance on the BYTE Benchmark)
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some applications, pertormance can exceed that of a
Pentium Pro system.

The initial version of the DIGITAL FX!32 software
has some limitations. FX!32 executes only application
code; it does not execute drivers. Consequently, native
drivers arc required for any peripheral that is installed
on an Alpha system. Also, as described in the
Transparency Agent section, FX!32 does not provide
complete support tor x86 scrvices. Further, FX!32
does not support the Windows NT Debug APIL
Supporting that interface would require the capability
to rematerialize the x86 state after every x86 instruc-
tion, thus severely limiting optimizations that the
translator could perform. Optimizing compilers make
a similar trade-oft by restricting optimization when
debugging information is required. Since FX'32 does
not support the Debug intertace, applications that
require it do not run under FX!32. Those applications
are mostly x86 development environments, and it
probably makes more sense to run them on an x86
system. The imitations described are not serious, and
most X806 applications that execute on an x86 proces-
sor that is running the Windows NT operating system
also execute on an Alphasystem running Windows NT
and DIGITAL FX!32 software.

Summary

DIGITAL FX!'32 software provides fast, transparent
exccution of 32-bit x86 applications on Alpha systems
running the Windows NT operating system. This is
accomplished using a unique combination of emula-
tion and binary translation. The emulator runs an
application, interprets the code, and generates profile
information. For subscquent executions, the translator
uses the profile dara to produce translated images that
contain optimized native Alpha code. An application
translated by means of DIGITAL FX!32 sottware runs
up to 10 times faster than the same application run-
ning under the emulator alone. Morcover, the transla-
tion takes place in the background and is theretore
transparent to the user.
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Development of the
Fortran Module Wizard
within DIGITAL Visual
Fortran

The Fortran Module Wizard is one of the tools

in DIGITAL Visual Fortran, a DIGITAL product for
the Fortran development environment. Visual
Fortran consists of the DIGITAL Fortran 90 compiler
and run-time libraries and the Microsoft Developer
Studio. Together, these technologies provide a
rich set of tools for the Fortran developer who

is using the Windows NT and Windows 95 sys-
tems. The Fortran Module Wizard generates
complete Fortran source code, allowing Fortran
applications to invoke routines in a dynamic link
library, methods of an Automation object, and
member functions of a Component Object
Model (COM) object.

Leo P. Treggiari

DIGITAL Visual Fortran is an integrated development
environmentfor Fortran applications.' It is supported on
the Windows NT version 4.0 opcrating system on both
Alpha and Intel hardware and on the Windows 95 sys-
tem. DIGITAL Visual Fortran is a combination of tech-
nologics from DIGITAL and Microsott Corporation.
The DIGITAL-supplied compiler and run-time libraries
support the DIGITAL Fortran 90 language.” DIGITAL
Fortran 90 conftorms to American National Standard
Fortran 90 (ANSI X3.198-1992) and provides many
extensions to the Fortran 90 standard. The Microsoft-
supplied integrated development environment is the
Microsoft Developer Studio, which is also used by
Microsoft Visual C++, Microsoft Visual J++ (for Java),
other Microsoft tools, and other companies’ develop-
ment tools. Developer Studio includes a text editor,
resource cditors, project build facilities, an incremental
linker, a source code browser, an integrated debugger,
and a profiler. The operation of all these tools is con-
rolled trom a single application. Figure 1 shows an
example of Microsoft Developer Studio from which two
Fortran source files are being edited. DIGITAL adds a
number of Fortran-specific tools to the environment,
one ot which is the Fortran Module Wizard.

Design of the Fortran Module Wizard

DIGITAL designed the Fortran Module Wizard to
help Fortran developers working in the application-rich
Windows environment. The Fortran Module Wizard
supports access to dynamic link libraries (DLLs) and
servers based upon Microsoft’s Component Object
Model (COM). This support allows Fortran developers
to use the popular mechanisms that make functionality
(services) available to other software (clicnts).

Traditionally, Microsoft and others have provided
system interfaces and reusable libraries of code as
DLLs. ADLL is a file containing functions that can be
called by programs and other DLLs. The role of DLLs
on a Windows system is very similar to that of share-
able images on the OpenVMS operating system and
shared libraries on the UNIX system. Today, DLLs are
still the primary mechanism tor accessing system inter-
faces on Windows.

Digiral Technical Journal Vol.9 No.1 1997




14

. ppopen - Microsofi Develuper Studio

HEiIe Edt View Insert Project Build Jools Window Help

| ZED  wF

SRR, o Y %|presentnlions_ppen

e '.'.‘ “

[t & | @lEnweCone <] ' Ba 8o 3o 5o+ 5 © 0 @ A

—————————— L
EWovkapace 'ppopen’: 1 project(s
- EJ ppopen files
= ‘A SourceFilas
&) POWERPOINT {30 1
] §§0§ent90
_) Header Files
—JResourceFiles
-l 'y External Dependencies
W) POWERPOINT MOD

* ppopan 190

vTrueXVT = VT_BOOL

vFalseXVT = VT_BOOL

I t !

el |

status = SApplicationWindow_SetVisible (ppAppWindow,

status = SApplication_GetPresentations(ppApplication, ppPresemtations)
vTrue%VU%BOOL_VAL = VARIANT_BOOL_TRUE

vFalseXVUXBOOL_VAL = VARIANT_BOOL_FALSE
status = SPresentations_Open(ppPresentations, filename, vTrue. vFalse, &

status = SPresentaﬁlon_GetSl1d9$how(ppPresentation, ppSlideShow)
status = S$SlideShow_Run(ppSlideShow, 1, ppPRun) v

P

1)

vFalse, ppPresentatien) ‘J

% D\ \module\POWERPOINT {90

INT E

Presentations_Open (SOBJECT, fileNama, ReadOnly, U.

DFCOMTY
.a, (IN)  :: S0BJECT Object Pointer
4 =]
4, (IN) fileName
(VARIANT) , (IN) : ReadOnly
A BUTEES &
(VARIANT) , (IN) : Untitled Optional
(VARIANT), INTENT(IN) :: WithWindow &1
. (OUT) :: patch
| | 2 i %
7i'[ﬁla\ﬂuw|‘i?lnh\ﬁsw’ m_] »
Rany n6922 Col60 | | | .F
Figure 1

Microsoft Developer Studio, Two Fortran Sourcce Files Being Edited

When Microsoft introduced OLE version 1, the
name OLE was an acronym for object linking and
embedding. OLE version 1 enabled compound docu-
ments by allowing a document to link to, or embed
data from, another document. In 1993, Microsoft
introduced COM as the base architecture of OLE
version 2.* COM is an extensible architecture that pro-
vides mechanisms for creatng and using softwarc com-
ponents. A software component consists of reusable
picces of code and data in binary form that can be
plugged into other software components from other
vendors with relatively little effort.” Like DLLs, COM
allows a software developer to provide a set of scrvices
to multiple clients. In addition, COM has the advan-
tage of allowing the services to reside in another
process and on another machine. (Distributed COM
[DCOM] allows objects to be created and used on
remotce machines.) COM also contains features that aid
in the deployment and evolution of the services.?
Microsoft has extended its languages and tools to aid
software developers in the creation of clients and
servers bascd upon COM (hereafter referred to as
clients and servers in this paper).
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Why does a Fortran developer need help accessing
scrvices in DLLs and servers? Calling code that is writ-
ten in another programming language is, in general,
difficult. There are complex issues around calling stan-
dards and data type representations. If a mistake is
made in manually translating a function signature
from one language into another, today’s program-
ming cnvironments are of little help. The application
can fail at apointin the code, for example in the rou-
tine prolog, which does little to suggest the cause of
the problem. Often, solving these problems requires
understanding the intricacies of calling standards and
single stepping through assembly code. Calling the
components in a server also requires understanding
and properly using a number of COM programming
interfaces.

The Fortran Module Wizard deals with the difficul-
tics. Itreads a description of a service, which the ser-
vice provider created, and gencrates Fortran source
code. This automatically generated code makes calling
these scrvices as casy as calling another Fortran func-
tion or subroutine.



Enabling Technologies

Components of COM, Fortran 90, and the Microsoft
Developer Studio enable the tunctionality of the Fortran
Module Wizard. This scction gives an overview of these
technologics.

COM Technologies

As mentioned carlier, COM provides mec
creating reusable software components. This paper
artcempts to explain only those parts of COM, and some
technologics based on COM, nccessary for the reader
to understand the use of server functionality trom
code generated by the Fortran Module Wizard. COM,
OLE, and ActiveX, of course, contain many more
mechanisms.® A number of the references listed at the

hanisms for

end of this paper are good sources of turther read-
ing." " Much of the description of COM in the follow-
ing scction is taken from the Component Object
Model Specitication ™

COM Objects COM is an object-based programming
modecl designed to promote software interoperability.
In other words, COM allows two or more applications
or components to easily cooperate with one another,
cven if they were written by different vendors at difter-
ent times, in difterent programming languages, or if
thev are running on difterent machines running difter-
entoperating systems. COM defines a completely stan-
dardized mechanism for creating objectsand for clients
and objects to communicate. Unlike traditional object-
oricnted programming environments, these mecha-
nisms arc independent of the applications that usc object
services and of the programming languages used to
create the objects. COM therefore defines a binary
nteroperability standard rather than a language-based
interoperability standard on any given opcrating sys-
tem and hardware plattorm.

To support its interoperability features, COM defines
and implements mechanisms that allow components to
connect to cach other as objects. The definition of an
object is a picce of software that contains the functions
that represent what the object can do (its intelligence)
and associated state information tor thosc tunctions
(data). In other words, an objectis some data structure
and some functions to manipulate that data. In this
paper, we use the term object to mean an object
instance, as opposed to an object class. An object class is
similar to a derived-type in Fortran 90 or a structure in
C. It specifies a blueprint for object instances that a
server will create upon a client’s request. An important
principle of object-oriented programming is encapsula-
tion, in which the exact implementation of those func-
tions and the exact formatand lavout of the datais only
of concern to the object itself. This information is hid-
den from the clients of an object and can theretore be
changed without affecting the client.

With COM, components interact with cach other
and with the system through collections of function
calls, also known as methods or member functions or
requests, called interfaces. An interface is a semanti-
cally related set of member functions. The interface as
awhole represents a feature of an object. The member
functions of an interface represent the operations that
make up the feature.

For a quick look at a simple example of a COM
object, imagine a Calculator object that is willing to
provide arithmetic services to any client. It could sup-
port an interface named 1Calculate. By convention,
the letter I always prefixes the name of an interface.
The ICalculate interface could contain member func-
tions named Add, Subtract, Multiply, Divide, ctc. 1t a
client wanted to usc the services of the Calculator
object, it would request COM to create an object of
class Calculator and request the ICalculate interface. It
could then call the member functions of the 1Calculate
interfaces (Add, Subtract, etc.).

With COM, a pointer to an object is actually a
pointer to a particular intertace that the object sup-
ports. All COM objects support the interface named
Iunknown, which contains the member functions
named AddRef, Release, and Querylntertace. All COM
objects must implement these member functions.
AddRef and Release implement object reference
counting. Clients use them to tell an object when they
are using it and when they are done. Objects delete
themselves when they are no longer being used by any
client. Quervinterface is the basis tor a process called
interface negotiation, whereby a client asks an object
what services it is capable of providing. For example,
if a client had a poiter to the Calculator object’s
[Unknown interface, it could ger a pointer to its
[Calculate interface by calling the TUnknown Query-
Interface member function. In general, an object can
support multiple interfaces and a client can use Query-
Interface to get a pointer to any of them. Examples in
which Fortran code calls member functions in inter-
faces are given in the section Fortran Module Wizard
Functonality. Microsoft defines a number of usctul
interfaces. Object class creators are free to use existing
interfaces and dcefine their own,

Automation Objects One Microsoft-defined intertace,
IDispatch, is the basis tor Automation.” Any object
that supports this interface, also known as a dispinter-
face, is an Automation object, and can be accessed by
any Automation client. An Automation object exposcs
methods and properties. Methods are functions that
perform an action on an object and are similar to the
member functions of COM objects. Properties hold
information about the state of an object. A property
can be represented by a pair of methods; one for get-
ting the properny’s current value, and one for sctting
the property’s valuc.
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The capabilitics oFan Automation object arc similar
to those ot a COM object. An Automation object is, in
fact, a COM object; thatis, it supports the TUnknown
intertace as well as the IDispatch intertace. However,
the mechanisms for using the services of the two are
very different. Microsoft designed Automation based
on the needs of scripting or macro languages (i.c.,
Visual Basic). It does not require understanding the
intricacies of calling conventions as does COM. It sup-
ports mechanisms more suitable to the dvnamic query-
ing of an object’s capabilitics. This makes Automation
more suited to late binding ot objects, thatis, invoking
methods of a previously unknown object at run time.

An Automation client accesses all the methods and
properties of an Automation object through a single
member function of the IDispatch intertace named
Invoke. The client passes Invoke a number of argu-
ments that identitv

= The method, its arguments, and a place to receive
the return value, or

= The property and its new value, or
= The property and a place to receive its current value

In fact, Invoke could be described as the Swiss army
knife of Automation programming.

Most of the difterences between Automation objects
and COM objects are hidden by the Fortran interfaces
that the Wizard generates.

Object Identification To cnable the use of COM objects
created by disparate groups of developers, there must
be a method of uniquely identifving an object class
regardless of its origin. COM usces globally unique
identifiers (GUIDs) to do this. A GUID is a 16-bvte
integer value that is guaranteed (fer all practical pur-
poses) to be unique across space and rime. COM uses
GUIDs to identity object classes, intertaces, and other
things that require unique identification. COM pro-
vides a routine named CoCreatcGUID, and Microsoft
provides a utility named GUIDGEN, that a developer
uses to generate a GUID. Assigning a GUID to an
object class or interface is the job of the creator of the
class or interface. To create an instance of an object,
the developer needs to tell COM the GUID of the
object. Using 16-byte integers for identification is fine
tor computers, but it poses a challenge tor the typical
developer. COM supports the use of a less precise, tex-
tual name called a programmartic identitier (Progl).
A ProglID takes the form:

application_name.object_name.object_version

For example, the name of the Basic object of the
Microsoft Word application is Word . Basic. 1. Similarly,
mntertaces are usually discussed using their Ixxx name
(tor example, IUnknown), but their GUID uniguely
idenrifies them. ProgIDs are not supplied tor all objects.
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They are normally supplicd only for Application
objects. An Application object is a top-level object that
becomes active when the application starts. It provides
a starting point for clients to access all of an applica-
tion’s subordinate objects.

Type Information Tvpe information contains descrip-
tions of object classes, interfaces, DLLs, data structures,
and so forth that are independent of anv program-
ming language. A developer accesses type information
through an interface named ITvpelnfo.” A client can
geta pointer to type information from

= A running Automation object

= A running COM object that
IProvideClassInto interface

supports  the

= A tvpe library

A tvpe library is a collection oftype information tor
any number of object classes, interfaces, cre. A devel-
oper can store a type library in a separate file (using a
"TLR extension by convention), or as part of another
file. For example, the type library that describes the
tvpe information for a DLL can be stored in the .DLL
file itself. Since the nvpe information is stored in a file, it

is available regardless of whether ornot the client hasa
pointer to the object(s) that the information describes.

The easiest way to create a type library i1s to write a
script in the Microsoft Interface Definition Language
(IDL). The Microsoft IDL compiler (MIDL) reads an
[DL scriptand creates a . TLB file.* An IDL script is similar
to a C++ header file with additional syntax for informa-
tion required by COM. An example of such information
1s whether an argument to a member function is an input,
an output, or an input/output argument.

To use the Forrran Module Wizard, the developer
must know where to find tvpe information ftor the func-
tionality to be used. Some examples of this are given in
the section Fortran Module Wizard Functionality.

Fortran 90

This scction describes features of the DIGITAL Fortran
90 language that the Fortran Module Wizard uses in
the code that it generates.

Modules Fortran 90 docs not support objects, but it
does provide a new form of program unit called a
module. A Fortran module is a sct of declarations that
arc grouped together under a global name and are
made available to other program units by means of the
Fortran USE statement. These modules have similari-
ties to Cinclude files butare more powertul.

The Fortran Module Wizard generates a source tile
containing onc or more Fortran modules and places
the following types of information in the modules:

= Derived-type detiniions—Fortran equivalents of
data structures that are found in the type information.



» Procedurc interface definitions—Fortran interface
blocks that describe the procedures found in the
type information.

s Procedurce definiions—Fortran functions and sub-
routines that are wrappers for the procedures found
in the type information. The wrappers make the
external procedures casier to call from Fortran by
handling data conversion and Jow-level invocation
details.

The use of modules allows the Fortran Module Wizard
to cncapsulate the data structures and procedurcs
exposed by an object or DLI. in a single place. These
definitions can be shared in multple Fortran programs.

Attributes The DIGITAL Fortran 90 language sup-
ports a number of calling convention attributes that
allow Fortran programs to call programs written in
other programming languages. Some attributes select
the calling convention (STDCALL, C, VARYING).
Others determine whether an argument is passed by
value or by reference (VALUE, REFERENCE). Another
attribute defines the external name of the procedure
(ALIAS).

Pointer To Procedure The address of a COM member
function is never known at program link time. The
developer must get a pointer to an object’s interface at
run time, and the address of a particular member func-
tion is computed from that. We have extended the
DIGITAL Fortran 90 language to support a Pointer
To procedure.

Microsoft Developer Studio

Microsott Developer Studio provides a number of
mcthods that allow software developers to extend its
cnvironment." This scction describes these methods.

Tools Menu Dcveloper Studio contains a Customize
dialog box through which the developer can add urili-
tics to the Tools menu and then run those utilities
from within Developer Studio.

Gallery The Developer Studio Gallery provides a
central repository tor all rcusable parts of projects. The
reusable parts can range from something as simple as a
bitmap to something as complex as a DLL..

Developer Studio Object Model Developer  Studio
provides a set of COM objects that give developers
programmatic control of its functionality. Users can
create commands that perform specitic tasks and add
them to a toolbar. The Developer Studio Object
Model is programmed in three ways: (1) by creating
macros in the Visual Basic Scripting Edition Language

(VBScript); (2) by creaung a Developer Studio DLL
Add-in, which is a server implemented as a DLL; and
(3) by creating a separate Automation client that con-
nects to the Developer Studio objects.

Wizards A wizard is code that creates the starrer
files for a new application or adds a teature to an
existing application. Wizards that add fcatures are
stored in the Developer Studio Gallery. Wizards that
create starter files for a new application are called
AppWizards. When the developer requests the cre-
ation of a new project, Developer Studio presents a
list of the types of project that can be created (for
example, a console application or a DLL). In addi-
tion, it lists the installed AppWizards that can gen-
erate complete applications. Often they contain
options that allow the developer to choose the fea-
tures of a generated application.

Microsoft  Visual C++ provides a number of
AppWizards; most of them can create tvpical C+
applications. In addition, to aid developers in extend-
ing Developer Studio, one AppWizard creates the
starter files for a custom AppWizard, and another
creates the starter files for a DILL Add-in. The Fortran
Module Wizard is currently implemented as an appli-
cation that runs from the Devcloper Studio Tools
menu. In the tuture, it may be a Developer Studio
AppWizard.

Fortran Module Wizard Functionality

This scction describes the user intertace of the Fortran
Module Wizard and presents some samples of the code
generated by the Wizard. Tt also shows examples of
calling the generated code from Fortran.

User Interface

Upon opening the Fortran Module Wizard from the
Tools menu, the user is presented with a scries of
dialog boxes. From these, the user sclects the type
information for the tunctionality needed.

Figure 2 shows the tirst dialog box. It requests the
uscr to choose the source of the tvpe information that
describes the required tfuncuonality. The developer
must consult the documentation to determine what
type of object (or DLL) the functionality is imple-
mented as, and where to find its associated type infor-
mation. The choices are the following:

= Automation object

= Type library containing automation intformation

= Type library containing COM intertace information
= Typelibrary containing DLL intormation

= DLL containing type information
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ﬁ Fortran Module Wizard [ x|

—Selectsource of OLE type information ————

€ Automation Object

C Type Library containing Automation information

C Type Library containing COM interface information

 Type Library containing DLL information;

€ DLL containing type information

¥ Generate procedures to convert between Fortran and C strings

|
|
|

Module Name:

Exit |

Figure 2
Fortran Module Wizard Dialog Box

Automation Object Microsoft rccommends that servers
provide a type library. Some applications, for example
Microsoft Word version 7.0, do not, but they do
provide type information dynamically when running.
When this option is sclected, Devcloper Studio dis-
plays the dialog box shown in Figure 3. The user then
enters the name of the application, the name of the
object, and optionally the version number. Note that
this method works only tor objects that provide a
ProgID. ProgIDs are entercd into the system registry
and identify, among other things, the exccutable pro-
gram that is the object’s server.

Alter the user enters the information and presses the
“Generate button,” the Fortran Module Wizard asks
COM to create an instance of the object identified by
the ProglD that the Wizard constructs frrom the user-
supplied information. C@®M starts the object’s serverif
it needs to do so. The Wizard then asks the object tor
its type information and gencrates a file containing
Fortran modules.

Other Options If the user chooses onc of the remain-
ing options, thatis, any of the type libraries or the DLL
(see Figure 2), Beveloper Studio displays the dialog
box shown in Figure 4. From this dialog box, the user
chooses the type library (or file containing the tvpe
library) and, optionally, the specific components of the
type library.
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At the top of the dialog box, a “combo box” lists all
the type libraries that have been registered with the
system. Their file names have a number of different file
extensions, tor example, QLB (object libraries) and
.OCX (ActiveX controls). The user either selects a type
library from the list or presscs the “Browse button” to
tind the file using the standard “Open dialog box.”
After sclecting a type library, the user presses the
“Show button” to list the intertaces described in the
tvpe library. By default, the Fortran Module Wizard
uses all the interfaces; however, the developer can select
the ones desired from the list.

After the user enters the information and presses the
“Generate button,” the Fortran Module Wizard asks
COM to open the type library and generates a file con-
taining Fortran modules.

Generated Code

The Fortran Module Wizard generates ditterent code,
depending upon the type ot object or DLL described by
the type information. Note that the gencrated code is a
static representation of an object’s type information. If
the type information should change in a future release
of the object, the Wizard would need to be run again.

Fortran Run-time Support DIGITAL Visual Fortran
provides a set of run-time routines that present to the
Fortran programmer a higher-level abstraction of the



Application Object m

Application Name:

Object Name:

Object Version:

Generate |

Cancel I

Figure 3

Microsoft Developer Studio Dialog Box for Application Object Selection

Type Library m

— Type Information File Name ——

IC:\MSOFFICE\POWERPNT\powerpnt.tlb(PowerPoint?l Ob|eﬂ Browse... l

~Interface(s) —

Applicatien
ApplicationWindew
Bitmap
BitmapButton

| |BuildEffects

| [BulletFarmat
CharFarmat
CheckBox

[T SR

Generate

Cancel

Figure 4

Microsoft Developer Studio Dialog Box for Type Library Selection
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[Dispatch member functions and other COM functions.
The routines arc used in the code that the Wizard gen-
erates. They allow the programmer to perform the tol-
lowing tasks:

= [nitialize the COM library.

— COMInitialize initializes the COM library.

— COMUninitialize uninitializes the COM librarv.
s Get an interface pointer of an object.

— COMCreateObject passes a programmatic identi-
fier or class identifier, and it creates an instance of
an objectand returns a pointer to one of the object’s
interfaces.

- COMGetActiveObject passes a  programmatic
identificr or class identifier, and it returns a
pointer to an interface of a currently active object.

- COMGectFileObject passes a file name, and it
returns a pointer to the IDispatch interface of an
Automation object that can manipulate the file.

- COMCLSIDFromPROGID passes a program-
matic identiticr, and it returns the corresponding
class identificr.

— COMCLSIDFromString passes a class identifier
string, and it returns the corresponding class
identfier.

= Geror set the value ofa property of an Automation
object.

— AUTOSetProperty passes the name or identifier
of the property and a valuc, and it scts the value of
the Automation object’s property.

— AUTOGetProperty passes the name or identifier
of the property, and it gets the value of the
Automation object’s property.

= [nvoke a method of an Automation object.

- AUTOAllocateInvokeArgs allocates an argument
list data structure that holds the arguments that
the user will pass to AUTOInvoke.

~AUTOAddArg passes an argument name and
valuc, and it adds the argument to the argument
list data structure.

- AUTOInvoke passcs the name or identiticr o fan
object’s method and an argument list data struc-
ture, and it invokes the method with the passed
arguments.

— AUTODcallocateInvokeArgs deallocates an argu-
mene list data structure.

- AUTOGetExceptionInfo retrieves the exception
information when a method has returned an
cxcepuon status.

= Pertorm IUnknown interface member functions.
- COMAddODjectReterence adds a reference to an
object’s interface.
- COMRclcaseObject indicates that the program is
done with a reference to an object’s interface.
— COMQueryInterface passes an intertace identifier,
and it returns a pointer to an object’s interface.

Digital Technical Jowrnal Vol.9 No.l1 1997

DIGITAL Visual Fortran provides three Fortran
modulcs that define basic COM information:

s DFCOMTY defines basic COM tvpes.

= DECOM detines the interfaces to the DIGITAL
Visual Fortran COM routines and to some COM
svstem routines.

= DFAUTO detines the interfaces to the DIGITAL
Visual Fortran Automation routines.

Automation Objects Figurc 5 conrains code gener-
ated by the Fortran Module Wizard tor the Word. Basic
object of Microsott Word version 7.0. Word. Basic is an
Automation objectwith almost 1,000 mcthods. These
methods represent the functionality of the Word Basic
language, which is the programming interface to
Microsoft Word. The Microsott Word, Word Basic
documentation contains information on the methods
and their arguments.'* We discuss some of the meth-
ods here in asimple example of Fortran code automat-
ing Word Basic to pertorm the task of replacing all the
occurrences of a word in a document with another
word. The Word.Basic methods of interest for this
exampleare the following:

= AppShow makes the Microsoft Word application
visible.

= FileOpen opens a document.

= EditReplace replaces a string with another string.

m FileSaveAs saves a document.

Figure 5 contains code from the Fortran subroutine
generated for the Word Basic FileOpen method. It
is representative of the code gencrated for all
Automation methods. The lines are annotated on the
lett side with numbers that are not part of the source
code but correspond to the list below. Note that the
naming convention used for the generared wrappers is
objectucme_methodncaine. Any periods in the name
arc replaced by underscorcs.

1. If the type information provides a comment that
describes the method, the comment is placed
betore the beginning of the procedure.

2. The tirst argument to the procedure is always
SOBJECT. It is a pointer to an Automation object’s
[Dispatch intertace. The last argument to the proce-
durc is always $STATUS. This optional argument can
be specified if the Fortran programmer wishes to
cxamine the return status of the method. The
[Dispatch Invoke member function returns a status of’
nvpe HRESULT, which is a 32-bit value. HRESULT
has the same structure as a Win32 error code. In
between the SOBJECT and SSTATUS arguments
are the method arguments’ names determined from
the tvpe information. When the tvpe information
does not provide a name tor an argument, the
Fortran Module Wizard creates a SARGn name.



= !Opens an existing document or

ReadOnly, LinkToSource,

Revert, WritePasswordDoc,

SQLStatement, SQLStatementl,
'DEC$ ATTRIBUTES DLLEXPORT
IMPLICIT NONE

INTEGER*4, INTENTCIN) $0BJECT ! Object Pointer
3- IDEC$ ATTRIBUTES VALUE : $0BJECT
4- CHARACTER*(*), INTENTCIN), OPTIONAL Name ! BSTR
'DEC$ ATTRIBUTES REFERENCE Name
INTEGER*4, INTENT(OUT), OPTIONAL $STATUS ! Method status
'!DEC$ ATTRIBUTES REFERENCE $STATUS

INTEGER*4 $$STATUS
INTEGER*4 invokeargs
5- invokeargs =

7- $3STATUS = AUTOINVOKE(SOBJECT,
8- IF (PRESENT(3STATUS)) $STATUS
9- CALL AUTODEALLOCATEINVOKEARGS

template
2- SUBROUTINE Word_Basic_FileOpen($0BJECT,
AddToMru,
WritePasswordDot,
$STATUS)

AUTOALLOCATEINVOKEARGS ()
6- IF (PRESENT(Name)) CALL AUTOADDARG(invokeargs,

(invokeargs)
END SUBROUTINE Word_Basic_FileOpen

Name, ConfirmConversions,
PasswordDoc, PasswordDot,
Connection,

Word_Basic_FileOpen

'Name',
VT_BSTR)

Name,
.FALSE.,

'"FileOpen', invokeargs)

$ESTATUS

Figure 5
Representative Code Generated tor Automation Methods

3. This is an example ot an attribute statement used to

specifi the calling convention of an argument.
4. Methods can take optional arguments that must fol-
low all the required arguments. In this method,
there are no required arguments. The Fortran
Module Wizard generates source lines for cach
argument using the dara tvpe and calling conven-
tions found in the tvpe information.

5. AUTOAlocateInvokeArgs allocates a data structure
that 1s used to collect the arguments that the pro-
grammer passces to the method. AUTOAdJArg adds
an argument to this data structure.

6. For cach oprional argument, the Fortran PRESENT
funcuon is used to determine it the caller supplied
the argument. If so, the argument is added to the
argument list.

7. AUTOInvoke invokes the named method passing
the argument list. This returns a status result.

8. It the caller supplicd a status argument, the code
copics the status result to it

9. AUTODcallocateInvokeArgs deallocates the mem-
orv used by the argument list data structure.

Figure 6 shows code from a user-written Fortran
program that invokes Microsoft Word to replace all
the occurrences ofa word in a document with another
werd. The example code is annotated with numbers
that correspond to the following list.

1. COMCreateObject requests COM to create an
object with the ProgId Word.Basic. A pointer
to the Word.Basic object’s 1Dispatch interface is
returned in “wordapp.” The IDispatch interface
is returned with areference count of 1.

2. The code cheeks to ensure that an [Dispatch pointer
was returned. It not, it displavs an error message and
exits. The programmer can examine the status vari-
able for the specific status return code.

3. The code calls Word.Basic methods to show the
Microsoft Word window, open the document,
replace the string, and save the moditied document.

4. COMRcleaseObject releases the single reterence to
the object’s IDispatch interface so that Microsoft
Word can terminate.

COM Objects The Microsoft PowerPomnt version 7.0
tvpe library contains a description ofa number of COM
objects and intertaces thar make up the programmable
interface to the Microsoft PowerPoint applicarion.
Figures 7 and 8 contain code generared by the Fortran
Module Wizard from the Microsott PowerPoine version
7.0 tvpe library. Unlike Microsoft Word, which provides
asingle object that presents all ot Word’s programmable

functionality, PowerPoint provides o hicrarchy of

objects. The top-level object, Application, s identitied by
the ProgID PowerPoint.Application.7. The Application
object contains member functions that return a pointer
to subordinate objects, including the Presentations
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! Create a Word object and make it visible
1T- CALL COMCREATEOBJECT ('"Word.Basic," wordapp, status)
2- IF (wordapp == 0) THEN
WRITE (*,
'(" Unable to create Microsoft Word object; Aborting")"')
CALL EXIT(-1)
END IF
3- CALL Word_Basic_AppShow(wordapp, "," $STATUS=status)
! Open the document
CALL Word_Basic_FileOpen(wordapp, filename, $STATUS=status)
! Replace all occurrences of the string
CALL Word_Basic_EditReplace(wordapp, findstring, replacestring,
ReplaceAllL=.TRUE., $STATUS=status)
! Save the file
CALL Word_Basic_FileSaveAs(wordapp, filename, $STATUS=status)
! Release the Word.Basic object since we are done
4- status = COMRELEASEOBJECT(wordapp)

Figure 6
Code tfrom a User-written Fortran Program That Invokes Microsoft Word

1. The tirst argument to the procedure is always
SOBJECT. Itis a pointer to the object’s interface.
The remaining argument names are determined
from the tvpe intormation.

object. The Presentations object consists of a collection
of Presentation objects. A Presentation contains a mem-
ber function that rerturns a pointer to its SlideShow
object, and so on. By navigating this hicrarchy, the devel-
oper can sclecr a pointer to a particular object’s interface.
A code example in which we use some of the PowerPoint
objects and interfaces to run a slide presentation from
PowerPoint is given later in this section.

Figure 7 contains the intertace description of the
Presentations object’s member function named Open. Tt
is representative of the intertaces generared torall COM
member functions. The procedure naming convention
is objectname_meniberfunctionname. I'he Open func-
tion opens an existing Power Point presentation.

2. ABSTRisalength-prefixed string data tvpe primar-
ilv for use by Automation objects. The wrappers
generated tor COM member functions convert
from Fortran strings to BSTRs and vice versa.

3. A VARTANT is a data structure that can contain any
tvpe of Automartion data. It contains a ficld that
identfics the tvpe of data and a union that holds the
data valuc. The use of a VARIANT argument allows
the caller to use any data type that can be converted
into the data type expected by the member function.

INTERFACE
1= INTEGER*4 FUNCTION Presentations_Open($0BJECT, fileName,
ReadOnly, Untitled, WithWindow, Open)
USE DFCOMTY
INTEGER*4, INTENTCIN)D :: $O0BJECT ! Object Pointer
'DEC$ ATTRIBUTES VALUE $O0BJECT
2= INTEGER*4, INTENTCIN) fileName ! BSTR
'DEC$ ATTRIBUTES VALUE :: fileName
B TYPE (VARIANT), INTENTCIN), ReadOnly ! (Optional Arg)
'DEC$ ATTRIBUTES VALUE :: ReadOnly
TYPE (VARIANT), INTENTCIN), :: Untitled ! (Optional Arg)
'DEC$ ATTRIBUTES VALUE :: Untitled
TYPE (VARIANT), INTENTCIN), :: WithWindow ! (Optional Arg)
'DEC$ ATTRIBUTES VALUE WithWindow
4- INTEGER*4, INTENT(OUT) :: Open
'DEC$ ATTRIBUTES REFERENCE Open
'DEC$ ATTRIBUTES STDCALL Presentations_Open
END FUNCTION Presentations_Open
END INTERFACE
5- POINTER(Presentations_Open_PTR, Presentations_Open)

Figure 7
Code Generated by Fortran Module Wizard from Microsott PowerPoint, Interface Description of Open Function
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4. Nearly every COM member function returms a status of
type HRESULT. Therefore it a COM member func-
tion produces output, it uscs output arguments to
return the values. In this example, the Openargument
returns a pointer to a PowerPoint Presentation object.

5. The intertace of a COM member function looks
similar to the interface tor a DLL function with one
major exception. Unlike a DLL function, the address
of a COM member tunction is never known at pro-
gram link tme. To compute the address of a particular
member function, the developer must geta pointer to
an object’s interface at run tme. We have extended the
DIGITAL Fortran 90 language to support a Pointer
To procedure. Figure 8 shows an example of its use.

Figure 8 contains the wrapper generated by the
Fortran Module Wizard for the Open function. The
name ofa wrapper is the same as the name of the cor-
responding member function, prefixed with a $. The
numbers inserted at the left margin of the code exam-
ple correspond to the following list.

1. The wrapper takes the same argument names as the
member function interface.

2. Member function arguments of type BSTR are of
type CHARACTERX*(*) in the wrapper.

. The wrapper computes the address of the member
function from the interface pointer and an oftset
found in the intertace’s tvpe information. In imple-
mentation terms, the sequence is the following: an
interface pointer to a pointer to an array of function
pointers called an Interface Funcrion Table (see
Figure 9).

(O8]

4. The wrapper declares a local variable to hold the
BSTR to be passed to the member function. The next
line docs the conversion.

5. Optional VARIANT arguments of a COM member
funcrion arc represented by a VARIANT with distin-
guished values. OPTIONAL_VARIANT is defined
in the DFCOMTY module with the distinguished
values.

6. The oftset of the Open member function is 60. The
code assigns the computed address to the function
pointer  Presentations_Open_PTR, which was
declared in Figure 7, and then calls the function.

ReadOnly,

'DEC$ ATTRIBUTES DLLEXPORT
IMPLICIT NONE
INTEGER*4, INTENTCIN)
'DEC$ ATTRIBUTES VALUE

2~ CHARACTER*(*), INTENTC(IN)
'DEC$ ATTRIBUTES REFERENCE
TYPE (VARIANT), INTENTCIN)D,
'DEC$ ATTRIBUTES REFERENCE
TYPE (VARIANT), INTENTCIN),
'DEC$ ATTRIBUTES REFERENCE
TYPE (VARIANT), INTENTC(IN),
'DEC$ ATTRIBUTES REFERENCE
INTEGER*4, INTENT(OUT)
'DEC$ ATTRIBUTES REFERENCE
INTEGER*4 S$RETURN

3- INTEGER*4 S$VTBL
POINTER($VPTR,
TYPE (VARIANT), ::
TYPE (VARIANT), ::
TYPE (VARIANT), ::

4b- INTEGER*4 $BSTR_fileName
$BSTR_fileName =

SE IF

$VTBL)

$VAR_ReadOnly =
ELSE
$VAR_ReadOnly =

ReadOnly

1T- INTEGER*4 FUNCTION $Presentations_Open($0BJECT,
Untitled,

$ VAR_ReadOnly
$ VAR_Untitled
$ VAR_WithWindow

ConvertStringToBSTR(fileName)
(PRESENT (ReadOnly)) THEN

OPTIONAL_VARIANT

Presentations_Open_PTR = $VTBL
END IF

6- $VPTR = $OBJECT ! Interface Function Table
$VPTR = $VTBL + 60 ! Add routine table offset
Presentations_Open_PTR = $VTBL
$RETURN = Presentations_Open($0BJECT, $BSTR_fileName,

ReadOnly, Untitled, WithWindow, Open)

$Presentations_Open = $RETURN

END FUNCTION $Presentations_Open

fileName,
WithWindow, Open)
$Presentations_Open

$0BJECT ! Object Pointer
$O0BJECT
fileName ' BSTR
:: fileName
OPTIONAL ReadOnly
:: ReadOnly
OPTIONAL Untitled
:: Untitled
OPTIONAL WithWindow
WithWindow
:: Open ' IDispatch
Open

! Interface Function Table

! BSTR

Figure 8

Code Generated by Fortran Module Wizard from Microsoft PowerPoint, Wrapper for Open Funcrion
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INTERFACE INTERFACE
POINTER ¥ POINTER FUNCTION
TABLE
FUNCTION 1
FUNCTION 2
FUNCTION 3
Figure 9

[nrertace Pointer to an Array of Function Pointers

In fact, PowerPoint provides dual interfaces. A dual
interface is a combination of an 1Dispatch interface
and COM member functions. The IDispatch inter-
tace ot the dual interface can be used by Automation
clients, and the COM member functions can be used
by COM clients. This means that for PowerPoint, and
any server that provides dual interfaces, the Fortran
developer can choose to generate a Fortran module
for the Automation interfaces or the COM interfaces.
The Fortran intertaces generated by the Wizard likely
will not be much different. COM interfaces typically
provide better performance since there is less over-
head in invoking COM member functions than
dispinrerface methods through the 1Dispatch Invoke
member function.

Figure 10 shows code trom a uscr-written Fortran
program that invokes PowerPoint to run a shde pre-
sentation. The code example is annotated with num-
bers that correspond to the following list.

1. COMCLSIDFromPROGID and COMCreateObject
request COM to create an object with the ProglD
PowerPoint.Application.7, and to return a pointer
to the object’s IApplication interface.

2. The code gets the AppWindow object from the
Application object and calls its Visible member
tunction to make PowerPoint visible.

3. The code gets the Presentations object trom the
Application object and calls 1ts Open member
tunction to open a Presentation. Note that three
of the arguments to Open are of the VARIANT
data tvpe. The code sets them to the values truc
and falsc.

4. The code gets the SlideShow object trom the
Presentation object and calls its Run member func-
tion to run the slide show.

DLLs When the Forran Module Wizard reads the
tvpe information describing a DLL, it generates an
interface description tor each tunction in the DLL. It
also generates Fortran-derived types tor data struc-
tures defined in the DLL tvpe information. This
relieves the Fortran deveoper from manually translat-
ing header file descriptions to Fortran descriptions.
The Wizard also provides the option of generating
wrappers that convert trom the Fortran representation
of strings to the C representation of strings and vice
versa. This option can be sclected trom the Wizard's
mitial dialog box (sce Figure 2).

CALL COMCREATEOBJECT (clsid,
IF (ppApplication == 0) THEN

CALL EXIT(-1)
END IF

status

vIirueZVT = VT_BOOL

vfalseZVT = VT_BOOL

virue, vFalse,

' Run the slide show

clsid,

! Create a PowerPoint Application object

! and make the AppWindow visible
1- CALL COMCLSIDFROMPROGID ("PowerPoint.Application.7,"
status)
CLSCTX_SERVER,
ppApplication, status)

IID_Application,

WRITE (*, '(" Unable to create PowerPoint object; Aborting")"')
2- status = $Application_GetAppWindow(ppApplication, ppAppWindow)
$ApplicationWindow_SetVisible(ppAppWindow, 1)

! Open the specified presentation
3- status = $Application_GetPresentations(ppApplication,

ppPresentations)

virue%VU%BOOL_VAL = VARIANT_BOOL_TRUE

vFalse%ZVU%BOOL_VAL = VARIANT_BOOL_FALSE
status = $Presentations_Open(ppPresentations,
virue, ppPresentation)

filename,

4— status = $Presentation_GetSlideShow(ppPresentation, ppSlideShow)
status = $SlideShow_Run(ppSlideShow, 1, ppRun)

Figure 10

Fortran Program to Invoke PowerPoint o Run Slide Presentation

Digiral Technical Journal Vol.9 No. 1 1997



Comparison of the Wizard to the Capabilities of
Other Languages

Visual C++ version 5.0, Visual J++ version 1.1, and
Visual Basic version 5.0 all have wizards that can read a
tvpe library and allow applications to use COM
and /or Automation objects.

The Visual C++ ClassWizard can read anvpe library
and create a class with all the functions of the
Mispatch intertace described in the library. Visual C++
version 5.0 also adds a preprocessor  directive,
#import. The #import directive reads a tvpe library
and generates two header files that contain the detini-
tions otthe COM objects defined in the type library.'?

The Java Tvpe Library Wizard within Visual J++
invokes the JavaTLB utility to convert the information
ina tvpe librarv into Java .class files. A Java .class file is
the binary form ot'a Java class or intertace "

To use an object defined m a tpe hbrary trom
Visual Basic, the developer must add a reference to the
objcct using the Project menu, References command.
The Reterences dialog box allows the user to sclect
trom the list of registered type librarics in a manner
similar to the Fortran Module Wizard."

The Fortran Module Wizard is unique in the tol-
lowing wavs. The Fortran 90 programming language
does not inherently support objects. The Fortran
Module Wizard emplovs a combination of language
and run-time support to provide this capability. The
supporting language features are modules and proce-
durce pointers. The supporting run-time modules arce
DFCOMTY, DECOM, and DFAUTOQO. The Fortran
Module Wizard provides support tor twpe libraries
containing the descriptions of DLL routines.

Fortran Module Wizard Architecture

The acchitecture of the Fortran Module Wizard is tairly
simple. The shell of the Wizard was generated by the
Custom AppWizard within Visual C++. The mner
workings of the Wizard consist of three major picces:
= Tvpe intormation reader
= Tvpe symbol table
= Fortran code generator

Figure 11 shows a high-level data tlow of the
Fortran Module Wizard. The tvpe information reader

traverses the data strucrures in the tvpe information
and creates the tvpe symbol table. The Win32 SDK
provides a samplce application named BROWSE OLE
sample that is an example of traversing the information
in a tvpe hbrary. The tvpe svmbol table is a symbol
table similar to thosc used by compilers. It maps tvpe
names to the descriptions of tvpes. For simplicity, the
information is stored using the same data structures
uscd by the type information. The Fortran code gen-
erator traverses the symbol table and generates a
Fortran module.

The use of a symbol table allows for a complete
separation of the funcrionality of the tvpe information
reader from the Fortran code generator. A code gener-
ator for another programming language could be
casily substituted, as could another source of tvpe
information (for example, a C header file).

Future Directions

There arc a number of possibilities tor future work that
would add to the capabilities provided by the Fortran
Module Wizard.

= Fortran support tor ActiveX controls. An ActiveX
control is an Automation object. It is a reusable
component that normally provides a user intertace
and is used in dialog boxes and other windows. The
Fortran Module Wizard can generate a module
that would allow a Fortran developer to use the
methods and propertics of an ActiveX control.
However, additional funcrionality would be needed
in the Fortran run-time libraries to make controls
usable from a Fortran application. A control has
to be placed ina special type of window called a
Control Container. The Fortran run-time librarics
do not currently contain support for a Control
Container. In addition to methods and propertics,
a control can detine events. An event allows a con-
trol to notifv its container when something of inter-
est happens to the control. For example, a “Button
control™ could detine a “Clicked event.”

= Fortran Windows Application Wizard. This Wizard
could generate starter files tor a Fortran Windows
application. This would be especially usetul it we
were to implement the Fortran support for ActiveX
controls.

TYPE TYPE _| TvPE SYMBOL FOEUA | FORTRAN
INFORMATION > INFORMATION ™ TABLE CODE MODULE
READER GENERATOR
Figure 11

Data Flow ot the Fortran Module Wizard
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= Fertran modules tfrom C header tiles. By replacing
the type information reader described in the previ-
ous section with a C parser, we could generate
Fortran modules directly trom h files. This would
expand the set ot services that arc casilv available to
Fortran developers.

= Fortran Server Wizard. This Wizard would take a
Fortran module provided by a Fortran developer
and package it as a COM object. [t would also gen-
erate a type hbrary that describes the object. This
object could then be used by any COM client, tor
example, Visual Basic, Visual C++, and Visual J++
applications.
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Architecture and
Implementation of
MEMORY CHANNEL 2

The MEMORY CHANNEL network is a dedicated
cluster interconnect that provides virtual shared
memory among nodes by means of internodal
address space mapping. The interconnect imple-
ments direct user-level messaging and guaran-
tees strict message ordering under all conditions,
including transmission errors. These character-
istics allow industry-standard communication
interfaces and parallel programming paradigms
to achieve much higher efficiency than on con-
ventional networks. This paper presents an
overview of the MEMORY CHANNEL network
architecture and describes DIGITAL's crossbar-
based implementation of the second-generation
MEMORY CHANNEL network, MEMORY CHANNEL 2.
This network provides bisection bandwidths

of 1,000 to 2,000 megabytes per second and a
sustained process-to-process bandwidth of

88 megabytes per second. One-way, process-
to-process message latency is less than 2.2
microseconds.

Marco Fillo
Richard B. Gillett

In computing, a cluster is loosely defined as a parallel
system comprising a collection of stand-alone comput-
ers (each called a node) connected by a network. Each
node runs its own copy of the operating system, and
cluster software coordinating the entire parallel system
attempts to provide users with a unitied system view.
Since each node in the cluster is an off-the-shelf
computer system, clusters ofter several advantages
over traditional massively parallel processors (MPPs)
and large-scale symmetric multiprocessors (SMPs).
Specifically, clusters provide!

= Much better price/performance ratios, opening a
wide range of computing possibilities for users who
could not otherwise afford a single large system.

= Much better availability. With appropriate software
support, clusters can survive node failures, whereas
SMP and MPP systems generally do not.

= Impressive scaling (hundreds of processors), when
the individual nodes are medium-scale SMP systems.

= Easy and economical upgrading and technology
migration. Users can simply attach the latest-
generation node to the existing cluster network.

Despite their advantages and their impressive peak
computational power, clusters have been unable to
displace traditional parallel systems in the marketplace
because their effective performance on many real-
world parallel applications has often been disappoint-
ing. Clusters’ lack of computational efficiency can be
attributed to their traditionally poor communication,
which is a result of the usc of standard networking
technology as a cluster interconnect. The develop-
ment of the MEMORY CHANNEL network as a cluster
interconnect was motivated by the realization that the
gap in effective performance between clusters and
SMPs can be bridged by designing a communication
network to deliver low latency and high bandwidth all
the way to the user applications.

Over the years, many researchers have recognized
that the performance of the majority of real-world par-
allel applications is aftected by the latency and band-
width available for communication.”* In particular,
it has been shown?? that the efficiency of parallel
scientific applications is strongly influenced by the
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system’s architectural balance as quanubed by its
communication-to-computation ratio, which is some-
times called the g-ratio.? The g-ratio is defined as
the ratio between the time it takes to send an 8-bvre
floating-point result from one process to another
(communication) and the time it takes to perform a
floating-point operation (computation). In a system
with a g-ratio equal to 1, it takes the same time for a
node to compute a result as it doces for the node to
communicate the result to another node in the system,
Thus, the higher the g-ratio, the more dithicultitis to
program a parallel system to achicve a given level of
performance. Q-ratios close to unity have been
obtained only in cxperimental machines, such as
iWarp® and the M-Machine,” by cmploying direct
register-based communication.

Table 1 shows actual g-ratios tor several commercial
systems."™"" Thesc q-ratios vary from about 100 tor a
DIGITAL AlphaServer 4100 SMP system using shared
memory to 30,000 for a cluster of these SMP svstems
interconnected over a fiber distributed data interface
(FDDI) nerwork using the transmission control
protocol/internet  protocol  (1TCP/IP). An MPP
svstem, such as the IBM SP2) using the Message
Passing Interface (MPI) has a g-ratio of 5,714. The
MEMORY CHANNEL network developed by Digital
Equipment Corporation reduces the q-ratio of an
AlphaServer-based cluster by a factor of 38 to 82 to be
within the range of 367 to 1,067. Q-ratios in this
range permit clusters to ethciently tackle a large class
of parallel technical and commercial problems.

The  benefits of  low-latency, high-bandwidth
nerworks are well understood. ' As shown by many
studies,™™ high communication latency over tradi-
tional nctworks 1s the result of the operating svstem
overhead involved in transmitting and receiving mes-
sages. The MEMORY CHANNEL network eliminates
this latency by supporting direct process-to-process
communication that bvpasses the opcerating system.

Table 1

The MEMORY CHANNLEL nenwork supports this type
of communication by implementing a natural exten-
sion of the virtual memory space, which provides
dircct, burt protected, access to the memory residing in
other nodes.

Based on this approach, DIGITAL developed
its first-generation MEMORY CHANNEL network
(MEMORY CHANNEL 1),"which has been shipping
in production since April 1996. The nenwork does not
require anv functionality bevond the peripheral com-
ponent interconnect (PCI) bus and theretore can be
used on any system with a PCl 1/0 slot. DIGITAL
currently supports production MEMORY CHANNEL
clusters as large as 8 nodes by 12 processors per node
(a total of 96 processors). One of these clusters was
presented at Supercomputing ’95 and ran clusterwide
applications using High Performance Fortran (HPF),!
Parallel Virtual Machine (PVM),” and MPI'™ in
DIGITAL’s Parallel Sottware Environment (PSE). This
96-processor svstem has a q-ratio of 500 to 1,000,
depending on the communication interface. A 4-node
MEMORY CHANNEL cluster running DIGITAL
TruCluster software' and the Oracle Parallel Server
has held the cluster performance world record on the
TPC-C benchmark?*—the industry standard in on-line
transaction processing—since April 1996.

We next present an overview of the generic
MEMORY CHANNEL network to justify the design
goals of the second-gencranon MEMORY CHANNELL
nerwork (MEMORY CHANNEL 2). Following this
overview, we describe in detail the architecture of
the two components that make up the MEMORY
CHANNEL 2 ncrwork: the hub and the adaprer. Last,
we present hardware-measured performance data.

MEMORY CHANNEL Overview

The MEMORY CHANNEL network is a dedicated
cluster interconnection neework, based on Encorc’s

Comparison of Communication and Computation Performance (q-ratio) for Various Parallel Systems

Communication

Computation Communication-

Performance Performance Based on to-computation
Latency LINPACK 100 < 100 Ratio
System (Microseconds) (Microseconds/FLOP) (g-ratio)
AlphaServer 4100 Model 300 configurations
SMP using shared memory messaging 0.6 0.006 100
SMP using MPI 3.4 0.006 567
FDDI cluster using TCP/IP 180.0 0.006 30,000
MEMORY CHANNEL cluster using
native messaging 2.2 0.006 367
MEMORY CHANNEL cluster using MPI 6.4 0.006 1,067
IBM SP2 using MPI 40.0 0.006 5,714
Digiral Technical Journal Vol.9 No.1 1997



MEMORY CHANNEL technology, that supports
virtual shared memory space by means of internodal
memory address space mapping, similar to that used
in the SHRIMP system.”’ The MEMORY CHANNEL
substrate is a flat, fully interconnected network
that provides push-only message-based communica-
tion.'? Unlike traditional networks, the MEMORY
CHANNEL network provides low-latency communi-
cation by supporting dircct user access to the network.
As in Scalable Coherent Interface (SCI)** and Myrinet*
networks, connections between nodes are established
by mapping part of the nodes’ virtual address space to
the MEMORY CHANNEL interface.

A MEMORY CHANNEL connection can be opened
as either an outgoing conncction (in which case an
address—to—dcstination node mapping must be pro-
vided) or an incoming conncection. Before a pair of
nodes can communicate by means of the MEMORY
CHANNEL network, they must consent to share part
of their address spacc—one side as outgoing and the
other as incoming. The MEMORY CHANNEL net-
work has no storage of its own. The granularity of the
mapping is the same as the operating system page size.

MEMORY CHANNEL Address Space Mapping

Mapping is accomplished through manipulation of
page tables. Each node that maps a page as incoming
allocates a single page of physical memory and makes
it available to be shared by the cluster. The page is
always resident and is shared by all processes in the
node that map the page. The first map of the page
causcs the memory allocation, and subsequent

GLOBAL

reads/maps point to the same page. No memory is
allocated for pages mapped as outgoing. The mapper
simply assigns the page table entry to a portion of the
MEMORY CHANNEL hardware transmit window and
defines the destination node for that transmit sub-
space. Thus, the amount of physical memory con-
sumed for the clusterwide network is the product of
the operating system page size and the rotal number
of pages mapped as incoming on each node.

After mapping, MEMORY CHANNEL accesses are
accomplished by simple load and store instructions, as
for any other portion of virtual memory, without any
operating system or run-time lJibrary calls. A store
instruction to a MEMORY CHANNEL outgoing
address results in data being transterred across the
MEMORY CHANNEL network to the memory allo-
cated on the destination node. A load instruction from
a MEMORY CHANNEL incoming channel address
space results in a read from the local physical memory
initialized asa MEMORY CHANNEL incoming chan-
nel. The overhead (in CPU cycles) in establishing a
MEMORY CHANNEL connection is much higher than
that of using the connection. Because of the memory-
mapped nature of the interface, the transmit or receive
overhead is similar to an access to local main memory.
This mechanism is the fundamental reason for the low
MEMORY CHANNEL latency. Figure 1 illustrates an
example of MEMORY CHANNEL address mapping.

The figure shows two sets of independent connec-
tions. Node 1 has established an outgoing channel to
node 3 and node 4 and also an incoming channel
to itself. Node 4 has an outgoing channel to node 2.

MEMORY CHANNEL
ADDRESS SPACE

NODE 1

NODE 3

NODE 2

NODE 1 TO
NODES 3 AND 4

NODE 4 TO
NODE 2

Figure 1

MEMORY CHANNEL Mapping of a Portion of the Clusterwide Address Space
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All connections are unidirectional, either outgoing
orincoming. To map a channel as both outgoing and
incoming to the same shared address space, node 1
maps the channel two times into a single process’ vir-
tual address space. The mapping example in Figure 1
requires a total of four pages of physical memory, one
for each of the four arrows pointed toward the nodes’
virtual address spaces.

MEMORY CHANNEL mappings reside in two page
control tables (PCTs) located on the MEMORY
CHANNEL interface, one on the sender side and one
on the receiver side. As shown in Figure 2, cach page
entry in the PCT has a set of attributes that specify
the MEMORY CHANNEL behavior for that page.

The page attributes on the sender side are

Transmit enabled, which must be set to allow trans-
mission from store instructions to a specific page

s Local copy on transmit, which directs an ordered

copy of the transmitted packet to the local memory
®  Acknowledge request, which is used to request
acknowledgments from the receiver node
Transmit enabled under error, which is used in
error recovery communication

Broadcast or point-to-point, which defines the
type of packet to all nodes or to a single node
in the cluster

= Request acknowledge, which requests a reception
acknowledgment from the receiver

The page attributes on the receiver side are
= Receive enabled, which must be set to allow recep-
tion of messages addressed to a specific virtual page
= Jnterrupt on receive, which generates an interrupt
on reception of a packet
Receive enabled under error, which is asserted for
error recovery communication pages

Remote read, which identifies all packets that arrive
ata page as requests for a remote read operation

Conditional write, which identifies all packets that
arrive at a page as conditional write packets

MEMORY CHANNEL Ordering Rules
The MEMORY CHANNEL communication paradigm
is based on three fundamental ordering rules:

1. Single-sender Rule: All destination nodes will
receive packetsin the order in which they were gen-
erated by the sender.

2. Multisender Rule: Packets trom multiple sender
nodes will be received in the same order at all desti-
nation nodes.

3. Ordering-under-errors Rule: Rules 1 and 2 must
apply even when an error occurs in the network.

Let Pjy .« be the jth point-to-point packet from
a sender node M to a destination node X, and let By,
be the jth broadcast packet tfrom node M to all other
nodes. If node M sends the following sequence of
packets,

PZM_.\, lel--\, Bly, Pl
(last) (first)

Rule 1 dictates that nodes X and Y will reccive the
packets in the following order:

atnode X, PZ,\\ Ny B].\n Plu.--x
(last) (first)

at node Y, Pl,“ Wy Bl,.
(last) (first)

Ita node Nis also sending a sequence of packets, in
the following order,

P3x . P24y, B2, P24 oy Bls, PLy oy, Pl
(last) (first)

there is a tinite set of valid reception orders at destina-
tion nodes X and Y, depending on the actual arrival
time of the requests to the point of global ordering.
Rule 1 dictates that all packets from node M (or N) to
node X (or Y) must arrive at node X (or Y) in the order
in which they were transmitted. Rule 2 dictates that,
regardless of the relative order among the senders,
messages destined to both receivers must be received
in the samc order. For example, if X receives B2, B,
and Bl,, then Y should receive these packets in the

SENDER RECEIVER
TRANSMIT PCT MEMORY RECEIVE PCT
SENDER TRANSMIT ENABLED CHANNEL RECEIVE ENABLED RECEIVER
STORE LOCAL COPY ON TRANSMIT PACKET INTERRUPT ON RECEIVE LOAD
TOVo ——>| ACKNOWLEDGEREQUEST [~~~ ~~~- *| RECEIVE ENABLED UNDER ERROR [ > FROM
SPACE TRANSMIT ENABLED UNDER ERROR REMOTE READ MEMORY
BROADCAST OR POINT-TO-POINT CONDITIONAL WRITE SPACE
REQUEST ACKNOWLEDGE
Figure 2
MEMORY CHANNEL Page Control Attributes
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same order. Onc arrival order congruent with both of
these rules is the following:

at node X,
1)3\ Xy 1)25' Ny P2.\| N> Bz.\') BIM’ B IN) Pl\ > Pl‘“ N
(last) (first)

at node Y,
B2y, P2y, Plysy, Bl Bl Plo e

These rules are independent of a particular intercon-
nection topology or implementation and must be
obeyed in all generations of the MEMORY CHANNEL
nerwork.

On the MEMORY CHANNEL network, error han-
dling is a sharcd responsibility of the hardware and the
cluster management software. The hardware provides
real-time precise crror handling and strict packet
ordering by discarding all packets in a particular path
that follow an erroncous one. The software is respon-
sible for recovering the network from the faulty state
back to its normal state and for retransmitting the lost
packets.

Additional MEMORY CHANNEL Network Features
Three additional features of the MEMORY CHANNEL
network make it ideal tor cluster interconnection:

1. A hardware-bascd barrier acknowledge that sweeps
the network and all its butters

2. A fast, hardware-supported lock primitive

3. Node failure detection and isolation

Because of the three ordering rules, the MEMORY
CHANNEL network acknowledge packets are imple-
mented with little variation over ordinary packets. To
request acknowledgment of packet reception, a node
sends an ordinary packet marked with the request-
acknowledge attribute. The packet is used to sweep
clean the network queues in the sender destination
path and to ensure that all previously transmitted pack-
ets have reached the destination. In response to the
reception of a MEMORY CHANNEL acknowledge
request, the destination node transmits a MEMORY
CHANNEL acknowledgment back to the originator.
The arrival of the acknowledgment at the originating
node signals that all preceding packets on that path
have been successtully received.

MEMORY CHANNEL locks are implemented using
alock-acquire software data structure mapped as both
incoming and outgoing by all nodes in the cluster.
That is, each node will have a local copy of the page
kept coherent by the mapping. To acquire a lock, a
node writes to the shared data structure at an offset
corresponding to its node identifiecr. MEMORY
CHANNEL ordering rules guarantce that the write
order to the data structurc—including the update of

the copy Jocal to the node that is setting the lock—
is the same for all nodes. The node can then determine
if it was the only bidder for the lock, in which case
the node has won the lock. If the node sees multiple
bidders ftor the same lock, it resorts to an operating
system-specific back-oft-and-retry algorithm. Thanks
to the MEMORY CHANNEL guaranteed packet order-
ing, even under error the above mechanism ensures
that at most one node in the cluster perceives that
it was the first to write the lock data structure. To
guarantee that data structures are never locked indefi-
nitely by a node that is removed from a cluster, the
cluster manager software also monitors lock acquisi-
tion and release.

The MEMORY CHANNEL nctwork supports a
strong-consistency shared-memory model due to its
strict packet ordering. In addition, the 1/0 operations
used to access the MEMORY CHANNEL are fully
integrated within the node’s cache coherency scheme.
Besides greatly simplitying the programming model,
such consistency allows for an implementation of
spinlocks that does not saturate the memory system.
For instance, while a recciver is polling tor a flag
that signals the arrival of data from the MEMORY
CHANNLEL network, the node processor accesses only
the locally cached copy of the tlag, which will be
updated whenever the corresponding main memory
location is written by a MEMORY CHANNEL packet.

Unlike other networks, the MEMORY CHANNEL
hardware maintains information on which nodes are
currently part of the cluster. Through a collection of
timeouts, the MEMORY CHANNEL hardware con-
tinuously monitors all nodes in the cluster for illegal
behavior. When a failure is detected, the node is iso-
lated from the cluster and recovery software is
invoked. A MEMORY CHANNEL cluster is equipped
with software capable of reconfiguration when a node
is added or removed from the cluster. The node is
simply brought on-line or off-line, the event is broad-
cast to all other nodes, and operation continucs. To
provide tolerance to network failures, the cluster can
be equipped with a pair of topologically identical
MEMORY CHANNEL nenworks, one tor normal oper-
ation and thc other for failover. That is, when
a nonrecoverable error is detected on the active
MEMORY CHANNEL network, the software switches
over to the standby nenwork, in a manner transparent
to the application."”

The First-generation MEMORY CHANNEL Network

The first generation of the MEMORY CHANNEL
network consists of a node intertace card and a con-
centrator or hub. The interface card, called an adapter,
plugs into the 1/0 PCIL To send a packet, the CPU
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writes to the portion of I/0 space mapped to the PCI
bus. The store-to-memory is handled by the node’s
PCI interface device, which initiates a PCI transter tar-
geting the MEMORY CHANNEL adapter transmit
window. When a message 1s received, the MEMORY
CHANNEL adapter initiates a PCI transfer to write to
the node’s CPU memory, targeting the node’s PCI
interface,which then accesses the node’s main memory.

Besides writing to the node’s CPU, an [/0 device
on the PCI bus can transmit directly to a MEMORY
CHANNEL adapter. This allows, for example, a disk
controller to transter data directly from the disk to a
remote node’s memorv. The data transter does not
affect the host system’s memory bus. The design
choicc of interfacing MEMORY CHANNEL to the
PCI bus instead of directly to the node CPU bus is
not an architectural one, but rather onc of practical-
ity and universality. The PCl is available on most of
today’s systems of varying performance and size and
is, therefore, an ideal interface point that allows
hybrid clusters to be built. The obvious disadvan-
tages of a peripheral interface bus are the additional
Jatency incurred because of the extra CPU-to-PCI
hop and a possible limitation on the available bus
bandwidth.

The MEMORY CHANNEL 1 hub is a broadcast-
only shared bus capable of interconnecting up to
cight nodes. The MEMORY Channel 1 adapters and
the hub are interconnccted in a star topology via
37-bit-wide (32 bits of data plus sideband signals)
half-duplex channels. The cables can be up to 4 meters
long, and the signaling Icvel is 5-volt TTL. A two-
node cluster can be formed without employing a hub,
by direct node-to-node interconnection. This config-
uration is also known as virtual hub configuration.

The current release of the MEMORY CHANNEL 1
hardwarc achieves a sustained point-to-point band-
width of 66 megabytes per second (MB/s) (from user
process to user process). Maximum sustained broad-
cast bandwidth is also 66 MB/s (from a user process
to many user processes). The cross-section MEMORY
CHANNEL 1 hub bandwidth is 77 MB/s. Small
message latency is 2.9 microseconds (ws) (from a
sender process STORE instruction to a mcssage
LOAD by a receiver process). The processor overhead
is less than 150 nanoseconds (ns) fora 32-byte packet
(which is also the largest packet size).

As demonstrated in the literature, standard message-
passing application programming interfaces (APIs)
benefit greatly from these MEMORY CHANNEL
communication capabilities.”>"*” MPI, PVM, and HPF
on MEMORY CHANNEL 1 all have one-way message
latencies of less than 10 ps. These latency numbers
are more than a factor of five lower than those tor
traditional MPP architectures (52 to 190 ps).!
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Communication performance improvements of this
magnitude translate into cluster performance gains
025 to 500 percent."

MEMORY CHANNEL 2 Architecture

Based on the experience with the first-generation
product, the design goals tor MEMORY CHANNEL 2
were twofold: (1) vield a significant performance
improvement over MEMORY CHANNEL 1, and (2)
provide functional enhancements to extend hardware
support to new operating systems and programming
paradigms.

The MEMORY CHANNEL 2 performance/hard-
ware enhancement goals were

= Ncrwork biscction bandwideh scalable with the
number of nodes: 1,000 MB/s tor an 8-node clus-
ter and 2,000 MB/s for a 16-nodc cluster

= Improved point-to-point bandwidth, exploiting
the maximum capability of the 32-bit PCI bus:
97 MB/s for 32-bytc packets and 127 MB/s
for 256-byte packets

= Full-duplex channels to allow simultaneous bidirec-
tional transters

= Maximum copper cable length of 10 meters
(increased from 4 mecters on MEMORY CHANNEL
1) and fiber support up to 3 kilometers

= A link layer communication protocol compatible
with future generations of MEMORY CHANNEL
hardwarc and optical fiber interconnections

=  Enhanced degree of error detection

The MEMORY CHANNEL 2 functional /software
enhancement goals were

= Softwarc compatible with the first-gencration
MEMORY CHANNEL hardware

= Recceive-side address remapping and variable page
size to better support new operating systems, such
as Windows NT, and non-Alpha microprocessors

= Remote read capabilitics
= Global time synchronization mechanism

= Conditional write access to supporta faster recover-
able messaging

These two sets of requirements translate into archi-
tectural and technological constraints that define the
MEMORY CHANNEL 2 design space. To increase the
bisection bandwidth, the hub had to implement an
architecture that supported concurrent transfers. On
MEMORY CHANNEL 1, all senders must arbitrate
for the same hub resource (the bus) on every data
transfer. Everv data transmission occupies the entire
MEMORY CHANNEL 1 hub for the duration of its



transter, and all message filtering is pertormed by the
receivers. Substantial nerwork traftic causes conges-
tion because all sender nodes fight tor the same
resource. This congestion results in a decrease in the
communication speed and thus an increase in the
cftective q-ratio as seen by the applications.

On MEMORY CHANNEL 2, the hub has been
designed as an N-by- NV nonblocking full-duplex cross-
bar with broadcast capabilitics, with N =8 or N = 10.
Such an architecture provides a bisection bandwidth
thatscales with the number of nodes and thus remains
matched to the point-to-point bandwidth of the indi-
vidual channels while avoiding congestion among
independent communication paths. Thercfore, an
increase in nevwork waftic will have lictle effecr on the
effective g-ratio.

The MEMORY CHANNEL ordering rulesarce casily
met on a crossbar of this type, as follows:

1. The single-sender ordering rule is naturally obeyed
Ly the fact that the architecture provides a single
path from any source to any destination.

o

. The multisender ordering rule is enforced by taking
over all the crossbar routing resources during
broadcast. Although less cfficient than broadcast
by packer replication, this technique ensures a strict
common ordering for all destinations.

Finally, crossbar switches are practical to implement
for a modest number of nodes (8 to 32), but given
the availability of medium-size SMPs, they provide a
satisfactory degree of scaling for the great majority of
practical clustering applications. For instance, cluster
technology can casily provide a 1,000-processor
system simply by connecting 32 nodes, cach one a
32-way SMD.

The requirement tor a higher point-to-point band-
width called tor a shift from half-duplex to full-duplex

links. A longer cable length imposed the choice of a
signaling technique other than the TTL employved in
the MEMORY CHANNEL 1 ncwwork. The design
rcam  adopted  low-voltage  differendal  signaling
(LVDS)* as the signaling technique for the second and
future  gencrations of the MEMORY CHANNEL
nerwork on copper. One of the major decisions that
taced the ream was whether to maintain the parallel
channel of MEMORY CHANNEL 1 or toadopta ser-
1l channel to minimize skew transmission problems
for large communication distances. The bandwidth
demands of tuture cluster nodes indicated that serial
links would not provide sufficient bandwidth expan-
sion capabilities at rcasonable cost. Thus, the channel
data path width was chosen to be 16 bits, a suitable
compromise that would offer a manageable channel-
to-channel skew while providing the required band-
width. Figurce 3 illustrates the distinctions between the
first- and second-gencration MEMORY CHANNEL
architectures.

MEMORY CHANNEL 2 Link Protocol

The MEMORY CHANNEL 2 communication proto-
col was engineered with the goal of ensuring compati-
bility with optical fiber’s unidirectional medium. The
interconnection substrate consists of a pair of unidirec-
tional channcls, onc incoming and once outgoing,
Each channel consists of a 16-bitr data path, a framing
signal, and a clock. The channel carrics nvo tvpes of
packets: data and control. Data packets vary in size and
carry application data. Control packets are used to
exchange flow control, port state, and global clock
iformation. Control packets take priority over data
packets. They are inscerted immediately when tlow
control state change is nceded and, otherwise, arce
generated on a regular interval (millisccond) to update
less time-critical state. The MEMORY CHANNEL 2
data packet format is shown in Figure 4a. The header
of the data packet contains a packet tvpe (TP), a
destination identificr (DNID), a remote command
(CMD), and a sender identifier (SID). The data pay-
load starts with the destination address and can vary
ength from 4 to 256 byvtes (nwo to one hundred
twentv-cight 16-bit cveles). It is tollowed by two
16-bit cveles of Reed-Solomon crror detection code.

The control packet tormat is shown in Figure 4b.
The packet is identitied by a distinct TP and carries
network and flow control information such as port
status (PSTAT), configuration (CFG), DNID, hub
status, and global status.

Similar to MEMORY CHANNEL 1, MEMORY
CHANNEL 2 uses a clock-tforwarding technique in
which the transmit clock is sent along with the data
and is used at the receiver to recover the data. Datais
transmitted on both edges of the forwarded clock, and

n

a novel dvnamic retiming technique is used to svn-
chronize the incoming packets to the node’s local
clock. The retiming circuit locks onto a good sample
of the incoming data at the start of every packet and
ensures accurate synchronization for the packer dura-
tion, as long as predetined conditions on maximum
packet size and clock drifts are maintained.

The MEMORY CHANNEL 2 link protocol has
an e¢mbedded autoconfiguranon mechanism that is
invoked whenever a node goes on-line. The hub port
and the adaprer usce this autoconfiguration mechanism
to negotiate the mode of operation (link frequency,
data path width, etc.). The same mechanism allows a
two-node hubless svstem (a vircual hub contiguration)
to consistently assign node identitiers without any
operator intervention or module jumpers.

MEMORY CHANNEL 2 Enhanced Software Support
MEMORY CHANNEL 2 provides four major addi-
tions to application and opcerating svstem support:
(1) receive-side address remapping, (2) remote reads,
(3) a global clock synchronization mechanism, and
(4) conditional writes.
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(b) MEMORY CHANNEL 2 Network

Characteristics MEMORY CHANNEL 1 MEMORY CHANNEL 2
Channel data path width 37 bits 16 bits

Channel communication Half duplex Full duplex

Electrical signaling TTL LVDS

Optical fiber compatible No Yes

Link operating frequency 33 MHz 66 MHz

Peak raw data transfer rate 133 MB/s 133+ 133 MB/s
Sustained point-to-point bandwidth 66 MB/s 100 MB/s

Maximum packetsize 32 bytes 256 bytes
Remoteread support No Yes

Packet error detection Horizontal and vertical parity 32-bit Reed-Solomon
Address space remapping None Receive

Supported page sizes 8 KB 4 KB and 8 KB

Hub architecture Shared bus Crossbar

Network bisection bandwidth 77 MB/s 800 to 1,600 MB/s

Figure 3

Comparison of First- and Second-generation MEMORY CHANNEL Architectures
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Figure 4
MEMORY CHANNEL 2 Packet Format
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On MEMORY CHANNEL 1 clusters, the network
address is mapped to a local page of physical memory
using remapping resources contained in the system’s
PCI-to-host memory bridge. All AlphaScrver systems
implement these remapping resources. Other sys-
tems, particularly those with 32-bit addresses, do not
implement  this PCl-to-host memory  remapping
resource. On MEMORY CHANNEL 2, software has
the option to enable remapping in the receiver side
of the MEMORY CHANNEL 2 adapter on a per-
nerwork-page basis. When contigured for remapping,
asection of the PCT is used to store the upper address
bits needed to map any network page to any 32-bit
address on the PCI bus. Such enhanced mapping
capability will also be used to support remote access
to PCI penpherals across the MEMORY CHANNEL
network.

A simple remote read primitive was added to
MEMORY CHANNEL 2 to support research into
software-assisted memory.  The primitive
allows a node to complete a read request to another
node without software intervention. It is imple-
mented by a new remorte read—on—write attribute in

sharcd

the receive page control table. The requesting node
generates a write with the appropriate remote address
(a read-request write). When the packet arrives at the
receiver, its address maps in the PCT toa page marked
as remote read. After remapping (it enabled), the
address i1s converted to a PCT read command. The
read datais returned asa MEMORY CHANNEL write
to the same address as the original read-request write.
Since read aceess to a page of memory in a remote
nodc is provided by a unique network address, privi-
leges to write or read cluster memory remain com-
pletely independent.

A global clock mechanism has been introduced to
provide support tor clusterwide synchronization.
Global clocks, which are highly accurate, are extremely
usctul in many distributed applications, such as parallel
databascs or distributed debugging. The MEMORY
CHANNEL 2 hub implements this global clock by
periodically sending synchronization packets to all
nodes in the cluster. The reception of such a pulse
can be made to trigger an interrupt or, on futurce
MEMORY CHANNEL-to—-CPU direct-interface sys-
tems, may be used to update a local counter. The
interrupt scrvice software updates the offset between
the local time and the global time. This synchreniza-
tion mechanism allows a unique clusterwide time to
be maintained with an accuracy cqual to twice the
range (max — min) of the MEMORY CHANNEL net-
work latency, plus the interrupt service routine time.

Conditional write transactions have been intro-
duced in MEMORY CHANNEL 2 to improve the speed
of a recoverable messaging svstem. On MEMORY

CHANNEL 1, the simplest implementation of general-
purpose recoverable messaging requires a round-trip
acknowledge delay to validate the message transter,
which adds to the communication latency. The
MEMORY CHANNEL 2’ newly introduced condi-
tional write transaction provides a more cfficient
implementation that requires a single acknowledge
packet, thus practically reducing the associated latency
by more than a factor of two.

Memory Channel 2 Hardware

As suggested in the previous architectural description,
MEMORY CHANNEL 2 hardware components arc
similar to those in MEMORY CHANNEL 1, namely
a PCI adaprer card (one per node), a cable, and a
central hub.

The MEMORY CHANNEL 2 PCl Adapter Card  The PCI
adapter card is the hardware interface of a node to the
MEMORY CHANNEL ncowork. A block diagram of
the adapter is shown in Figure 5. The adaprer card is
functionally partitioned into two subsystems: the PCL
interface and the link interface. First in, frst out (FIFQ)
queues are placed berween the two subsystems. The
PCI interface communicates with the host system,
feeds thelink interface with dara packets to be sent, and
forwards received packets on to the PCI bus. The link
interface manages the link protocol and data flow: It
formats data packets, generates control packets, and
handles error code generation and detection. It also
multiplexes the dara path from the PCI format (32 bits
at 33 megahertz [MHz]) to the link protocol (16 bits
at 66 MHz). In addition, the link interface implements
the conversion to and from LVDS signaling.

The ransmit (TX) and reccive (RX) data paths,
both heavily pipelined, are kept completely separate
from cach other, and there is no resource conflict
other than the PCI bus access. A special case occurs
when a packet is reccived with the acknowledge
request bit or the loopback bit set: the paths in both
directions arc coordinated to transmit back the
response packet while still receiving the original one
(employing the gray path in Figure 5). During a nor-
mal MEMORY CHANNEL 2 transaction, the transmit
pipeline processes a transmit request from the PCI
bus. The transmit PCT is addressed with a subset of
the PCI address bits and is used to determine the
intended destination of the packet and its attributes.
The transmit pipeline feeds the link interface with data
packetsand appropriate commands through the trans-
mit FIFO queue. The link interface formats the pack-
ets and sends them on the link cable. At the receiver,
the link interface disassembles the packet in an inter-
mediate format and stores it into the receive FTFO
queue. The PCIT interface performs a lookup in the
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Figure 5
Block Diagram ot a MEMORY CHANNEL 2 Adaprer

receiver PCT to ensure that the page has been enabled
tor reception and to determine the local destination
address.

In the simplest implementation, packers are subject
to two store-and-forward delavs—one on the wansmit
path and onc on the receive path. Beawse of the
atomicity of packets, the transmit path must wait tor
the last data word to be correctly taken m trom the
PCT bus betore tonvarding the packet to the link inter-
face. The receive path experiences a delay because the
crror detection protocol requires the checking of the
last cvele betore the packet can be declared error-free.
Ascrotcontrol/status MEMORY CHANNEL 2 regis-
ters, addressable through the PCL, s used to set vari-
ous modes of operation and to read local status of the
link and global cluster status.

The hub is the cen-
Al nodes to form

The MEMORY CHANNEL 2 Hub

tral resource thar interconnects
a cusrer. Figure 6 1s a block diagram of an 8-bv-8
MEMORY CHANNEL 2 hub. The hub implements
anonblocking 8-bv-8 crossbar and interfaces to cight
16-bit-wide tull-duplex links by means ot'a link inter-
face similar to that used in the adaprer. The acrual
crossbar has eight input ports and cight output ports,
all 16 bits wide. Each output port has an 8-to-1 multi-
plexer, which is able to choose from one ot cight mpurt
ports. Each multiplexer is controlled by a local arbiter,
which is fed decoded destination requests from: the
cight inpur ports. The port arbitration is based on a
fixed-priority, request-sampling algorithm. All requests

thar arrive within a sampling interval are considered of

cqual age and are serviced betore any new requests.
This algorithm, while not enforcing absolute arrival-

tume ordermg among packets sent from difterent
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nodes, assures no starvation and a fair age-driven prior-
iny across sampling mtervals.

When a broadeast request arrives at the hub, the
otherwise independent arbiters synchronize them-
selves to transter the broadeast packet. The arbirers
wait for the completion of the packer currently being
transterred, disable point-to-point arbitration, signal
that they are ready for broadeast, and then wait for all
other ports to arrive at the same svnchronization
point. Once all ourput ports are ready tor broadeast,
port @ proceeds to read from the appropriate input
port, and all other ports (including port 0) sclect the
same input source. The maximum  synchronization
WAL tme, assuming no output queue blocking, is cqual
to the time it takes to transter the largest size packets
(256 byvtes), abour 4 ps, and is independent of the
number of ports. As in anv crossbar architecture with
a single point of coherency, such broadcast operation
is morce costly than a point-to-point transter. Our
expericnce has been thar somie eritical bur refatively
low-frequency operations (primarily fast locks ) exploit
the broadeast circuir.

MEMORY CHANNEL 2 Design Process and Physical
Implementation
Figure 7 illustrates the main MEM@®RY CHANNEL
physical components. As shown in Figure 7a, two-nodc
clusters can be constructed by directly connectuing two
MEMORY CHANNEIL PCJ adapters and a cable. This
configuration is called the virtual hub configuration.
Figurce 7b shows clusters interconnected by means of
a hub.

The MEMORY CHANNEL adapter is implemented

as a single PCI card. "The hub consists of a mother-
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Rlock Diagram ot an 8-bv-8 MEMORY CHANNEL 2 Hub
board that holds the switch and a sct of linccards, one requirements. In addition, some of the new function-
per port, that provides the interface to the link cable. ality will evolve as software 1s modified to rake advan-
The adaprer and hub implementations use a com- tage of the new features. The MEMORY CHANNEL 2
bination of programmable logic devices and of f-the- design was developed entirelv in Vertlog at the regis-
shelf components. This design was preferred to an rer transter fevel (RTL). Tr was simulated using the
application-specitic integrared circuit (ASIC) imple- Viewlogic VCS cvent-driven simulator and synthe-
mentation  because  of the short  time-to-market sized with the Svnopsvs tool. The resulting netlist
PCI - MEMORY MEMORY
CHANNEL CHANNEL
PCI - MEMORY ARDFTEER HUB
CHANNEL
PCI - MEMORY ADAPTER 1
CHANNEL
ADAPTER 1

PCI - MEMORY
CHANNEL
ADAPTER 2

(a) Virtual hub mode: dircet node-to-node
interconnection of two PCI adaprer cards

PCI - MEMORY
CHANNEL
ADAPTER 8

(b) Using the MEMORY CHANNEL hub

to create clusters ot up to 16 nodes

Figure 7
MEMORY CHANNEIL Hardware Components
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was fed through the appropriate vendor tools for
placing and routing to the specific devices. Oncee the
deviee was routed, the vendor tools provided a gate-
level Verilog netlist with timing informartion, which
was then simulated to verifv the correctness of the
svnthesized design. Boardwide static timing analvsis
was run using the Viewlogic MOTIVE tool. The link
intertace was fitted to a single Lucent Technologics
Optimized Recontigurable Cell Arrav (ORCA) Series
ficld-programmable gate arrav (FPGA) device. The
PCT intertace was implemented with one ORCA
FPGA device and several high-speed AMD program-
mable arrav logic devices (PALs). Thanks ro the in-
svstem programmability: of PALs and FPGAs, the
MEMORY CHANNEL 2 adaprer board is designed
to be completely reprogrammable in the ficld from
the svstem console through the PCHintertace.

MEMORY CHANNEL 2 Performance

This scction presents MEMORY CHANNEL 2 pertor-
mance data configured i virtual hub mode (direct
node-to-node connection). Wherever possible actual
measured  results  are  presented. A two-node
AlphaScrver 4100 5/300 cluster was used for all hard-
WArC measurements.

Network Throughput

The MEMORY CHANNEL 2 nerwork has a raw data
ratc of 2 bvtes every 15 ns or 133.3 MB/s. Messages are
packetized by the interface into one or more MEMORY
CHANNEL packers. Packers with data pavloads ot 4 to
256 bytes are supported. Figure 8 compares, for various
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MEMORY CHANNEL 2 Point-to-point Bandwidth
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Mecasured Perforimance
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packet sizes, the maximum bandwidth the MEMORY
CHANNEIL 2 nenwork is capable of sustaining with the
effective process-to-process bandwideh achieved using a
pair of AlphaScrver 4100 svstems. With 256-bvte pack-
cts, MEMORY CHANNEIL 2 achieves 127 MB/s or
about 96 pereent of the raw wire bandwideh.

For PCl writes ofJess than orequal to 256 bytes, the
MEMORY CHANNEL 2 intertace simply converts the
PCI write to a similar-sizc MEMORY CHANNEL
packet. The current design does not aggregate multi-
ple PCI write transactions into a single MEMORY
CHANNEL packerand automatically breaks PCI writes
larger than 256 byvtes into a sequence of 256-bvte
packets.

As Figure 8 shows, the bandwidth capability of the
MEMORY CHANNEL 2 nenwork exceeds the sustain-
able data rate of the AlphaScerver 4100 svstem. The
AlphaScrver svstem is capable of generating 32-bvte
packets to the MEMORY CHANNEL 2 intertace at
88 MB /s or about 10 pereent less than the maximum
network bandwideh at a 32-bvre packetsize. This rep-
resents a 33 percent bandwidrh improvement over the
previous-gencration MEMORY CHANNEL, whosc
eftective bandwideh was 66 MB/s. An ideal PCI host
interface would achieve the full 97 MB/s, but the
current AlphaServer 4100 design inserts an extra PCI
stall cvele on sustained 32-bvre writes to the PCIL The
32-bvte packetsize is a limitation of the Alpha 211064
microprocessor; future versions of the Alpha micro-
processor will be able to gencerate larger writes to the
PCI bus.

Latency
Figure 9 shows the latency contributions along a
point-to-point path from a sending process on node
1 to a recaving process on node 2. Using a simple
§-bvre ping-pong test, we determined that the one-
way latency of this path is 2.17 ps. In the test, a user
process on node 1 sends an 8-byvte message to node 2.
Node 2 is polling its memory wairing for the message.
After node 2 sees the message, it sends a similar mcs
sage back to node 1. (Node 1 started polling its mem-
orv after it sent the previous message.) One-way
latency is calculared by dividing by owo the ime it takes
to complere a ping-pong cxchange. Approximately
330 ns clapsce trom the time a sending processor issucs
a store instruction until the store propagates to the
sender’s PCL bus. The latency from the sender’s PCI to
the receiver’s PCH over the MEMORY CHANNEL 2
nenwork is about 1.1 s, Wriring the main memory on
the receiver node takes an additional 330 ns. Finally,
the poll loop takes an average of about 400 ns to read
the tlag value from memory.

Table 2 shows the process-to-process  once-way
message lareney for different tvpes of communications
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Latency Contributions along the Path from a Sender to a Receiver

at a fixed 8-byte message size. The first row contains
the result of the ping-pong experiment previously
described. For comparison, the previous gencration

of MEMORY CHANNEL had a ping-pong latency of

2.60 ps. The second row represents the latency tor the
simplest implementation ot variable-length messaging,.
The latencies of standard communication intertaces are
shown in the last two rows, namely, High Performance
Fortran and Mcssage Passing Interface. The results
shown in this table arc only between two and three
times slower than the latencies measured for the same
communication interfaces over the SMP bus of the
AlphaScrver 4100 svstem.

Table 2

MEMORY CHANNEL 2 One-way Message Latency
in Virtual Hub Mode for Different Communication
Interfaces

One-way Message Latency

Communication Type (Microseconds)
Ping-pong 8-byte message 2.17
8-byte message plus 8-byte flag 2.60
HPF 8-byte message 5.10
MPI 8-byte message 6.40

The latency of the MEMORY CHANNEL 2 nctwork
increases with the size of the message because of the
presence ot storc-and-forward delays in the path. As
discussed in the previous hardware description, all
packets are subject to two store-and-forward delavs,
one on the outgoing butfer and onc on the incoming
buffer (required for crror checking). Thesc delavs also
play a rolc in the cftective bandwidth of a stream of
packets. On the one hand, smaller packets arc less efti-
cient than larger ones in term of overhcad. On the
other hand, smaller packets incur a shorter store-and-
forward delay per packet, which can then be over-
lapped with the transter of previous packets on the
link, making the overall transter move cfficient. The
hub performs cut-through packer routing with an
additional delav ot about 0.5 ps.

Summary and Future Work

This paper presents an overview of the second-
generation MEMORY CHANNEL network, MEMORY
CHANNEL 2. The rationale behind the major design
decisions arc discussed in light ot the cxperience
gained from MEMORY CHANNEIL 1. A description
ofthe MEMORY CHANNEL 2 hardwarc components
led to the presentation of measured performance results.

Digiral Technical Journal Vol.9 No. 1 1997



Compared to other more traditional interconnection
nerworks, MEMORY CHANNEL 1 provides unparal-
leled performance in terms of lateney and bandwidth.
MEMORY CHANNLEL 2 further enhances pertor-
mance by providing point-to-poinr bandwidth of 97
MB /s per second tor 32-bvte packets, an application-
to-application latency of less than 2.2 microscconds,
and a cross-scction bandwidth of 1,000 MB/s tor 8
nodes and 2,000 MB/s tor 16 nodes. It also provides
enhanced software support to improve the performance
of the most common operations in a cluster environ-
ment, ¢.g., global svnchronization, and reduces the
complexity of the sottware laver by providing a more
flexible address mapping. In addition, the MEMORY
CHANNEL 2 nervvork has been designed to be both
hardware and software compatible with furure genera-
tions on cither copper or fiber-optic communication up
to adistance of 3 kilometers. Future generations of the
MEMORY CHANNEL architecture will benetie from the
MEMORY CHANNEL 2 experience and will conrinue
to provide enhancements to communication pertor-
mance and to further refine those mechanisms intro-
duced ro support parallel cluster sotrware,
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Integrating ObjectBroker
and DCE Security

The integration of the ObjectBroker software
product with the Distributed Computing
Environment (DCE) Security Service makes
ObjectBroker the most secure object request
broker (ORB) in the industry. ObjectBroker and
DCE Security together allow client-to-server,
server-to-client, and mutual authentication.

The integrated software provides these security
functions, as well as message integrity protec-
tion, transparently to the applications. Integra-
tion has been accomplished in a way that allows
plug-in replacement of the ObjectBroker security
subsystem by DCE Security, Kerberos, or any third-
party software security product that supports
the DCE’s Generic Security Service Application
Programming Interface (GSS-API). This approach
supports future GSS-API-compliant third-party
security products based on Kerberos and also prod-
ucts that may address other security technologies
such as biometrics and smart cards. In addition,
the approach places responsibility for compliance
with International Traffic in Arms Regulations in
the hands ofthe purveyors and owners of GSS
libraries rather than with the ORB vendor. Note
that the ObjectBroker product is middleware
jointly developed and distributed by DIGITAL and
BEA Systems, who have formed a worldwide tech-
nology and distribution partnership.
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Digital Technical Journal

John H. Parodi
Fred W. Burgher

An object request broker (ORB) is a distributed soft-
ware laver that translates abstract service requests
from a client application into requests for specific
servers, regardless of where those servers actually
reside on the network.' In this way, ORBs provide
a middle tier in mulutiered client-scrver systems. The
ObjectBroker software, developed and distributed
by strategic partners DIGITAL and BEA Svstems, is
an implementation of the Common Object Request
Broker Architecture (CORBA) specified by the Object
Management Group (OMG).*

Sceuritvisa growing concern for those who manage
distributed computing svstems, and the sccurity options
available to the CORBA community have been quite
limited untl recently. In the past year, OMG has
adopred a specification for a CORBA Security Service,
although tew commerdially available implementations
exist at the time of this writing.

Outside the CORBA community, one widely accepted
standard for security in distributed, heterogeneous
svstems is the Generic Sceurity Service Application
Programming Interface (GSS-AP1),™ as specified by
The Open Group (which was formed by the merger
of the Open Sofnwvare Foundation and  X/Open
Company Ltd.).” The GSS-API provides the ability for
sottware entities 1n a distributed application to authen-
ticate onc another and to protect ongoing communi-
cation berween them. The Distributed Computing
Environment (DCE) Security Scrvice provides an
implementation of the GSS-APT as one wav to access
ILS Seeurity services.

Plans arc under wav to implement the CORBA
Sceurity Service in the ObjectBroker software, but
the implementation specifications were not complete
when ObjectBroker version 2.6 was designed. At
present, by integrating support for GSS-APT imple-
mentations, the ObjectBroker software provides its
customers state-of-the-art distribured system security
with the widest choice of sccurity technologies and
products. The first commercially available GSS-ADPI
yuplementation was the Kerberos-based DCE Securiny
Service itsclf, but other implementations, which use
avariery of sccurity technologics and are produced by
various independent software vendors, are expected to
tollow soon.



Security

Ensuring sccure communication among cntities in a

distributed computer svstem is a challenging task. The

rerm sccurity normally includes three broad classes

of svstem requirements:®

1. Scereev/privacv—the ability to protect information
from unauthorized access

2. Integritv—rthe ability to protect information from
unauthorized alteration or destruction

3. Availabilicv—rthe abiliny to ensure that valid access to
information can be accomplished in a rimely manner

Enforcement ot a sceurity policy is accomplished by
wav of the following sccurity functions:

= Authentication—the veritication of the idenrity of a
sceurity principal

= Authorization—rthe determination of which princi-
pals can perform which actions

= Access control—the enforcement of the sccuriry
policy, based on authentication and authorization
information, to determine whether to allow or dis-
allow a particular action

The Distributed Computing Environment

The Open Group’s Distributed Computing Environ-
ment is an integrated, standard sct of technologies,
tools, and services that enables the development and
deplovment ot distributed applications in a heteroge-
ncous, multivendor computing environment.” Tvpic-
ally, svstem vendors implement the DCE on their own
plattorms. The DCE has been endorsed by virtually all
svstem vendors, including [BM; HP, DIGITAL, NCR,
Stratus, Crav, HAL, Hirachi, Sicmens Nixdort, NEC,
Data General, Bull, Tandem, Transare, SCO, Gradient,
Siemens Pyramid, and Oliverti.

The DCE provides the following six technology
components:

I. Remote Procedure Call (RPC)
distributed communication

, which facilitates
2. Direcrory Service, which provides a single naming
model throughout the distributed environment
3. Sceurity Service, which provides rehiable authenti-
cation, authorization, and data protection

4. Distributed Time Scrvice, which synchronizes the
nerwork system clocks

5. Distributed File Service, which provides access to
nerworkwide files

6. Threads Service (The DCE uses POSIX threads
where available; on operating svstems where POSIX
is not available, the DCE supplics a threads package
that provides the same interface as POSIX threads.)

DCE users can be characterized by their need to
deploy and/or integrate large-scale applications on
multiple heterogencous plattorms. The most common
reasons given for choosing the DCE arc its security
features, its scalability, and its robustness.

DCE Security provides the following services:

= The DCE Authentication Service allows users and
resources to prove their identity to cach other. This
service 1s currently based on Kerberos, which requires
that all users and resources possess a sceret key.

s The DCE Authorization Service verifics operations
thatusers may perform on resources. A DCE Registry
contains a list of valid users. An access controf list asso-
ciated with each resource determines valid users and
the tvpes of operations a user may perform.

= The DCE Dara Integrity Service protects network
data from tampering. Automatically generated
cryprographic checksums arc appended to nerwork
transmissions, allowing the DCE to determine if
dara has been corrupted in transit. The encrvpred
checksum is a message authentication code (MAC)
based on the Data Encryption Standard (DES).

ObjectBroker uses the DCE Authentication and Data
Integrity services.

ObjectBroker Security

Although DCE Security provides three basic levels
of protection (None, Data Integrity, and Privacy),
ObjectBroker uses only the Dara Integrity
This level provides a mcchanism that computes an
encrvpred, time-stamped checksum and atraches it
to the message so thar any atrempt to change or
replav the information can be detected. In addition,
ObjectBroker uscs explicit calls to the DCE Sccurity
ltbrarv’s GSS-API to accomplish authenrication bur
maintains its own access control lists and authorization
database and mediates access control itselt

Note that within a DCE ccll, it is possible to use the
DCE RPC with the DCE Sccurity Scrvice to protect
communication at the wire protocol level. However,
because ObjectBroker does not use the DCE RPC
wire protocol, its use of the DCE Sccurity Service
is accomplished by mecans of cxplicit calls by
ObjectBroker to the GSS-APTimplementation.

ObjectBroker’s use of the DCE Sceurity Service
provides data integrity protection, authentication of
clients to servers and servers to dlicnts, and protection
against replay and scquencing artacks.  Although
encryption is used to create the digital signatures
that provide these protections at the network Dara
Integrity level, ObjectBroker docs not directly sup-
port the capability to encrvpr data, even on nodes that
have Privacy-level DCE Sccurity Service support.
ObjectBroker provides no protection from denial of
service artacks cither,

cve
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Of course, a customer’s use of DCE Sceurity is
entirely optional, and the security mechanisim used in
previous versions of the ObjectBroker software is still
supported. With this mechanism, called trusted sccu-
rity, the node/username associated with a request
from a remote node is accepred to be as claimed. For
trusted sccurity, ObjectBroker uses a proxy approach
in which the node /username associated with a remote
request is mapped to a proxy identity on the server’s
svstemy. An access control decision is thus based on
the authorization information tor the proxy identity.
The proxy approach to the trusted security mechanism
was necessary because there was no coneept of global
identiry for a user, that is, an identity known to all
computer nodes in a distributed syvstem.

To implement DCE Security on a particalar plat-
torm, a Sceurity Integration Archirecture accomplishes
the mapping of a globally understood username (¢.g., a
uscr or a sceurity principal defined withina DCE cell or
a Kerberos realm) to a login ot a local user on a particu-
lar svstem. Some implementations of DCE Sccurity and
some systems (for example, the OpenVMS operating
system) use the notion of integrated or global login, in
which a local user login also causes a global user login
to be pertormed. For the Open VMS svstem, the global
realm is the cluster. For the implementation of DCE
Scewrity on the DIGITAL UNIN svstem, the global
realm is the DCE cell.

Because an ObjectBroker contiguration can include
platforms that have no implementation ot the DCE,
and because the Security Integration Architecture is
different on every DCE platform, there was no com-
mon mechanism for ObjectBroker to use to imple-
ment an integrated global login across all supported
plattorms. Thus, ObjectBroker is limited by the inte-
grated login capabilities available on other platforms’
implementations ot the DCE.

For this rcason, ObjectBroker retains a proxy mech-
anism, even for use by nodes that support the DCE.
For authentication benween such nodes, a generic
remote host definition (called SecGlobalName) is
mapped to a local user on the local system. Should a
server receive a request that requires authentication
from a clicnt node, the server uses SccGlobalName to
attempt to match the corresponding global principal
name to alocal user name.

[n other words, because there is no common global
identity mechaiusm, ObjectBroker’s proxy implemen-
ration maps cither a trusted remote user or a global
user identity to a Jocal system identity to accomplish
a generic mapping berween global and local uscrs.
Rather than map multple host/uscrname pairs to the
local proxy, the ObjectBroker software maps a single
SecGlobalName, known to all nodes in the DCE ccll,
to that proxy whenever possible.

Digiral Technical Journal Vol 9 No.1 1997

Mechanism for Global Authentication

The DCE Sccurity Service provides the mechanism
for global identitv. The mechanism is based on
Kerberos encrvption, which is a private or svmmetric
key scheme (as opposed to a public or asymmetric kev
scheme). A private kev scheme requires some trusted
third-party node ro act as a distribution center tor
encryption kevs or credentials. Each node or uscr has a
key that is known only to the user and the distribution
center. In DCE Sceurity, the distribution center is
lknown as a privilege server.”

The following is a simplified description of the
encrvption kev protocol benween the privilege server
and a client. The actual kev exchange protrocol, which
uses three exchanges and conversion kevs, results in a
Privileged Access Certiticate (PAC) In the possession
ota client. The PAC, which isappended to cach request,
contains the aurhorization information to be com-
pared with the access control information stored with
the application scrver.

When a chient wishes to communicate with a server,
cach must acquire a time-stamped session key for
sccure communication. The session kev is protected in
several wavs., The time stamp means that the kev is
only valid ftor a limited time (the amount of time is
configurable), which protects against brute-force
attempts to break the kev and reuse it. Also, each kev is
host-specitic and can only be used from the node tor
which it is tssued. Finally, the session kev is never sent
over the network in unencrypted form.

For a user to mitiate a DCE_login, the clicnt must
enterits DCE_login password. To register as an initia-
tor and accepror of security Contexts, a server uses a
SERVTAR kev file. This file contains an encrvpted kev
that permits the server to obrain a set of credentials
similar to thosc giventoa user. These credentials allow
the server to aceept sceurity contexts from clicits or to
mitiate requests (that is; become a client) to other
servers. The reason for having servers acquire creden-
tials through the SERVTAB mechanism is that servers
mav be started on demand by the ObjectBroker Agent
(the component that locates the appropriate server
to satisfir a client request) or by system administrators
who do not want to be burdened by having to know
aserver password.

In cither case, the clienr or the server specifics the
principal name to be authenticated. The node sends
the specified principal’s name to the privilege server.
The privilege server returns a session key that is
encrvpted using the principal’s password or SERVTAB
kev. The DCE run-time software running on the local
svstem decrvpts the session kev using the password or
SERVTAB kev. Once the chent and the server have
decrvpred session kevs, they can use the kevs to minate
sccure communication with each other.



Thus, it a scrver is configured to require authentica-
tion, then before invoking a method on that server,
a client must successtully perform a DCE_login and
obtain the credentials needed to cstablish a security
context with that server. A client may also require
authentication from the server to ensure that some
malicious software is not masquerading as a real server.

Note that the operations for acquiring credentials
are accomplished outside the server executable. The
operations arc performed by the ObjectBroker run-
time software, based on configuration settings in the
ObjectBroker Sccurity Registry. The goal is to avoid
burdening applications with the knowledge of securiry
mechanisms.

Authentication requirements can apply to the
ObjectBroker Agent as well as to clients and servers.
The Agent is in fact a separate security principal,
and one canrequire client-to-Agent, Agent-to-client,
Agent-to-server, and server-to-Agent authentication
in an ObjectBroker configuraton—in addition to
authentication between the client and theserver. The
client or the server can independently set these modes,
or the ObjectBroker system can require that modes
be set nodewide,

Security Design Issues for ObjectBroker

The sccurity issucs associated with the design of
ObjectBroker versions 2.6, 2.7, and 3.0 were primar-
ily those of increasing the sccurity capabilities and
preserving  upward  compatibility  with  previous
ObjectBroker versions. While compatibility is always
a concern when upgrading software, ObjectBroker’s
requirements in this arca arc particularly stringent
because customers have mission-critical applications
running in very large configurations. In some cases, it
is ditficult or impossible to upgrade all ObjectBroker
nodes at onc time, so it must be possible to do a
rolling upgrade that minimizes the disturbance to the
configuration and allows uninterrupted opceration
ot applications.

The need tor dynamic, plug-in replaceability of
the security subsystem was an important issue for two
reasons. First, to provide standards-based solutions to
computing problems, the ObjectBroker design had to
allow the integration of any security product that
implements the GSS-API. The second reason has to do
with export controls.

United States government export regulations specify
that hardware, sofnware, and documentation for cryp-
tographic products may be exported by license only.
Specifically, the Department of State’s International
Tratfic in Arms Regulations (22 Code of Federal
Regulations Subchapter M) require that an export
license be obtained from the department betore any
cryprographic hardware, software, or documentation is

exported from the United States. An ObjectBroker
design goal was not to encumber the product with
export restrictions. Therefore, ObjectBroker itself docs
not include any cryprographic security mechanism. An
ObjectBroker customer must provide an appropriate
GSS library; whatever package is available on the system
is the one ObjectBroker will use.

ObjectBroker Security Features
The security features that have been successtully imple-
mented inthe ObjectBroker sottware include

= Client-to-server, mutual

authentication

server-to-client, and

= Protection from replay and sequencing attacks and
integrity protection

= Finc-grain control over the authentication mecha-
nism (per-host, per-server, or per-method)

s Ability to demand a new security context for an
invocation

s Ability to apply new security teatures to applica-
tions without rebuilding them

= Dynamically Joadable security libraries

Usage

One of the most important characteristics of a secure
ORB is that applications (clients and servers) need not
be aware of security operations undertaken on their
behalf. For ORBs, as well as tor other support soft-
ware, the goal is to avoid burdening applications with
the need to deal with the complexities of a distributed
system so that they can concentrate on the application
problem at hand.

Therctore, most of ObjectBroker’s sccurity-relevant
operations are invisible to applications. ObjectBroker’s
management utilities are used to specify the rules tor
authenticating clients and scrvers. These rules are
stored in the ObjectBroker Secunity Registry, and the
required authentications are performed automatically.

There are two exceptions to the general rule of
keeping security operations invisible to the applica-
tion. The firstis that a client or a server (when acting as
a client) can explicitly make a call to an ObjectBroker
AP to toggle mutual authentication on or off. This
operation is allowed as long as it does not diminish the
security level specified tor the ObjectBroker node as a
whole. In other words, a client can demand mutual
authentication on a node that does nort require such
authentication but cannot disable mutual authentica-
tion if the node does require it. This teature was imple-
mented tomake it possible tor clients to enable mutual
authentication for specific operations that have secu-
riry relevance.
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The second exception is that a server can demand
the creation of a new security contest for an invoca-
tion, which immediately tests the authentication of
the principal making the request. This is important
because the GSS-APT allows the initiation of a sccurity
context that has no expiration. Clearly, 1f a sccurity
context exists for a long enough period, there mav be
aconcern that it is no longer valid. For example, when
a user’s account is revoked from the DCE Security
Registry, it 1s possible that the user’s credentials are still
valid in some existing security context. Estabhshing a
new sceurity context forces the DCE run-time softwvare

. The sccunty subsvstem checks the rerurn status of

the GSS routine to determine whether the result-
ing token is to be passed to the invocation laver.

. If so, the token is passed to the transport laver for

marshaling.

. The client communicates with the server node

through the normal ObjectBroker channel.

. The transport layer in the receiving node unmar-

shals the message, examines the transport message
header, and passes control ro a dispatcher in the
invocation laver,

to go back to the sccurity server and verif the validioy S. Depending on the message tvpe, the message mav

of the principal. then be passed to a special dispatcher, in this casc
Figure 1 illustrates the mteraction of ObjectBroker the securiry disparcher in the sccunty subsvstem.

and the DCE Security Service components in the 9. The sceurity subsvstem determines that the mes-

establishment of a security context. Onee the security sage should be handled by the GSS implementa-

context is established, 1rl is used in the verification of tion and passes the message there.

MAC-scaled messages benveen the server and the - o _ A

) . e L . 10. The DCE Sceurity laver checks the received token

client. In this illustration, access to the DCE sceurity . o, ) -
. 4 . and 1t it is valid, accepts the security context. The
subsystem is depicted as a local call, though accessing _ :
. routine gencerates a conrext establishment token
these services could also be done remotcly. c .
- . S N to be passed to rhe client. The call also returns the
The scquence of operations i Figure 1 1s as follows: . . .
server’s context handle for the sccurity context the

1. A method invocation (a client request for a remote scrver shares with the client.

Qpcmn()n) results in a call to ObjectBroker’s secu- 11. The sceurity laver passes the token to the invoca-
ity subsystem. tion laver tor marshaling.

2. 'fhc Ob’CCtB"Oke‘: SRR L suhs'\'stcn? notum 12. The invocation laver marshals the information and
““""kcs a GSS routne mn the DCE SCC“”P‘" library. sends it as an argument to the low-level transport
This call determines \\.'hcthcr 4 new security con- e el
text needs to be established, which can happen for 5 . . .

. . o I . 13. This message 1s senr o the client.
one of nwo reasons: cither wtis the first vocation
ofthisserver from this client or the context refiesh 14. The datais unmarshaled.
rate has been specified as per-invocation. 15. The message is sent to the sceurity subsystem.

3. The DCE Security library exccutes the cally which 16. The token i passed to the GSS implementation
sets up the security context. (Note that the process to mitialize the sceurity context, with the server-
of dcleting an existing sccurity context is not supplied token as an argument. The routine
shown.) returns the client’s context handle, which is used

to sign subscquent messages.
CLIENT SERVER
INVOCATION DISPATCHER INVOCATION
LAYER D T — ) —®) LR
® SECURITY

SECURITY SUBSYSTEM
SUBSYSTEM . (2 ©

| A ] (6) DISPATCHER

5 o Lo o
DCE
SECURITY TRANSPORT TRANSPORT DCE SECURITY
Figure 1

Establishment ot a Security Context
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Performance Considerations

The bencetits of a sccure ORB are not free. Ifauthend-
cation 1s required when a client and server establish a
connection through a binding, part of that binding
involves the establishment ot a sceurity context.
Establishment of a security context requires a round-
trip on the nenwork, during which a token from the
client is passed to the server, and a token is returned
from the server to the client in the mutual authentica-
rion ¢asc.

Once established, the securiny context is used in
subscquent requests (provided that the configuration
doces not require securiny context deletion after every
mecthod invocation). It the same sceurity context is
rcused, the only additional overhead considerations
arc (1) the signing and veritication of requests and
responsces in the client and server, and (2) the security
context handle (32 additional bytes of information)
appended to cach message passed berween the client
and the server.

The signing and veritication of o signature on a
request or responsce is different from the verification
of the privileges used when the security contextis first
sct up, in that verification of a signature doces not
require a network round-trip. In contrast, when you
first sct up a sceurity context, a nerwork round-trip to
the privilege server is required, and its overhead is
significantly more costly than that of the veritication
and signature operations.

Notc thatwhen a client has multple object references
to a single method implementation ina server, a single
sccurity context can still be used. For example, a derived
object reterence doces not require a new security con-
text. This is both an optimization and a functuonal
requirement, since onlv one sccurity context is allowed
between a client process and a server implementation.

Future Work

The OMG specifics a number of object services in addi-
tionto the CORBA specitication itsclf. One of the most
important specifications is tor the CORBA Security
Scrvice. ObjectBroker’s integration with DCE Sccuriry
was designed and implemented before the OMG’s
CORBA Sccurity Service specification was complete.
Thus, cven though ObjectBroker is the most sceure
ORB available today, it is reasonable to ask when and
how its sceurity features will be made compliant with
the latest specitications from the OMG.

Given sufticient resources, ObjectBroker engineer-
ing could investigate supporting CORBA2 inter-
operability by implementing the OMG’s General
Inter-ORB Protocol (GIOP). The GIOP architecture
supports both the Internet Inter-ORB Protocol (ITOP)
and the DCE-based Common Inter-ORB Protocol

(DCE-CIOP). Today, ObjectBroker uses awire proto-
col based on the CORBA version 1.2 specification.

Security tor the IIOP is governed by the Sccure Inter-
ORB Protocol (SECIOP) specification'; although tew
commercially available implementations ot the SECIOP
are available ar the time of this writing. Also, as men-
tioned previously, securiny for the DCE-CIODP is accom-
plished by protecting the RPC connections at the wire
protocol level. For the DCE RPC, the DCE docs its
own authentication tor RPC scssions; here the RPC
connection between the client and the server, rather
than the client and the server themscelves, is authenti-
cated. This approach provides the same potential tor
security management in the ORB configuration; it
simply accomplishes the security functions at a level in
the protocol stack that does not require the use of the
GSS-APL. By building in support tor the GLOP,
ObjectBroker gains the capability to provide the secu-
rity features for both the HOP and the DCE-CIOP
protocols in future releases.

The SECIOP and the DCE-CTOP both follow the
usage model of minimizing the need tor applications
to be aware of sccurity. In the SECIOP; the OMG
has specified APIs for sccurity functions, and thesce
functions are entrely scparate from any mechanism
that implements them. ORB vendors will be free to
provide security features in much the same way that
ObjectBroker provides sccurity todav, i.c., by working
from security-related information kepr by the ORB.
The SECIOP also provides for administrative objects
and operations that perform sccurity management
functions by means of APls.

Conclusion

ObjectBroker provides statc-of-the-art - distributed
system security today. Its sccurity features provide
upward compatibility, as well as the least possible dis-
turbance to cexisting ObjectBroker applications and
configurations. In addition, ObjectBroker’s imple-
mentation of sccurity by means of the DCE’s Generic
Security Service Application Programming Interface
provides the greatest possible choice among sccurity
mechanisms and sccurity implementation providers,
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A 160-MHz, 32-b,
0.5-W CMOS RISC
Microprocessor

This paper describes a 160 MHz 500 mW
StrongARM microprocessor designed for low-
power, low-cost applications. The chip imple-
ments the ARM V4 instruction set' and is bus
compatible with earlier implementations.

The pin interface runs at 3.3 V but the internal
power supplies can vary from 1.5to 2.2 V, pro-
viding various options to balance performance
and power dissipation. At 160 MHz internal clock
speed with a nominal Vdd of 1.65 V, it delivers
185 Dhrystone 2.1 MIPS while dissipating less
than 450 mW. The range of operating points
runs from 100 MHz at 1.65 V dissipating less
than 300 mW to 200 MHz at 2.0 V for less than
900 mW. An on-chip PLL provides the internal
clock based on a 3.68 MHz clock input. The chip
contains 2.5 million transistors, 90% of which
are in the two 16 kB caches. It is fabricated

in a 0.35-jum three-metal CMOS process with
0.35 V thresholds and 0.25 jum effective channel
lengths. The chip measures 7.8 mm X 6.4 mm
and is packaged in a 144-pin plastic thin quad
flat pack (TQFP) package.
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Solid-State Circreits, volume 31, number 11, November 1996,
pages 1703-1714.
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Introduction

As personal digiral assistants (PDA’s) move into the
next generation, there is an obvious need for addi-
tional processing power to enable new applications
and improve existing ones. While enhanced function-
ality such as improved handwriting recognition, voice
recognition, and speech synthesis are desirable, the
size and weight limitations of PDA’s require that
microprocessors  deliver this pertormance  without
consuming additional power. The microprocessor
described in - this paper—the  Digital  Equipment
Corporation SA-110, the first microprocessor in the
StrongARM familv—directly addresses this need by
dehvering 185 Dbrystone 2.1 MIPS while dissipating
less than 450 mW. This represents a significantly
higher performance than is currently available at this
power level.

CMOS Process Technology

The chip is tabricated ina 0.35 wm three-metal CMOS
process with 0.35 V thresholds and 0.25 pum cettective
channel lengths. Process characteristics are shown
in Table 1. The process is the result of several genera-
tions of development eftorts directed toward high-
performance microprocessors. It is identical to the one
used in Digital Equipment Corporation’s current

generation of Alpha chips® excepr tor the removal of

the fourth layver of meral and the addition of a final
nirride passivation required tor plastic packaging.

The factors which drive process development tor
low-power design are similar to those which drive the
process tor purce high-performance although the moti-
vation sometimes difters. For example, while both
nypes of designs benetit trom maximizing Idsat of the
transistors at the lowest acceprable Vdd, the motiva-
tion for a pure high-performance design is reducing
power distribution and thermal problems rather than
extending battery life. Similar arguments apply to
minimizing transistor leakage and on-chip varation of
transistor parameters. This convergence of goals has
been essential to our ability to develop one process
to satisfv the requirements of” both low-power and
high-pertormance tamilics.
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Table 1
Process Features

Feature size 0.35um

Channellength  0.25 pm

Gate oxide 6.0 nm

Vin/Vip 0.35V/-0.35V

Power supply 2.0V (nominal)

Substrate P-epi with n-well

Salicide Cobalt-disilicide in diffusions and gates
Metal 1 0.7 pm AICu, 1.225 pm pitch (contacted)
Metal 2 0.7 um AICuy, 1.225 um pitch (contacted)
Metal 3 1.4 um AlCu, 2.8 um pitch (contacted)
RAM cell 6 transistor, 25.5 um?

Power Dissipation Tradeoffs

RISC microprocessors operating at 160 MHz are fairlv
common using current CMOS process technology.,
The novel aspect of this design is the ability to achicve
this operating frequency at power levels which are low
cnough for hand held applications. Several design
tadeoffs were made to achieve the desired power
dissipation. In order to illustrate their effect on the
design, it is interesting to imagine applying these
tradeoffs to an earlier design whosce power dissipation
occupices the opposite end of the power spectrum,
the first reported Alpha microprocessor.® This Alpha
chip was fabricated ina 0.75-pum CMOS process and
operated at 200 MHz dissipating 26 Wat 3.45 V. The
impacr of these tradeotts is summarized in Table 2.

The first decision 1s to reduce the internal power
supply to 1.5 V. This changce cuts the power by a factor
of 5.3. While this has the desired ctfecr, it has implica-
tions tor the cvele time which are considered in the
scction Circwt Implementaton.

The nexe step is to reduce the functionality. As com-
pared to the earlv Alpha chip, the most obvious sce-
tions missing n this design are the Hloating pont unit
and the branch history table. Floating point is not
required m the rarget applications and the low branch
lareney of this design climinates the nced tor the

Table 2
Power Dissipation Tradeoffs

Start with Alpha 21064: 200 MHz @ 3.45 V.
Power dissipation = 26W

Vdd reduction: Power reduction=  53x =49W
Reduce functions:  Power reduction = 3x =216W
Scale process: Power reduction = 2x =0.8W
Reduce clock load:  Power reduction = 1.3x > 0.6 W
Reduce clock rate:  Power reduction = 1.25x 05w
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branch history table. Less obvious, but very impor-
rant, is reduced control complexitv. This is a simple
machine and we have worked hard to keep it so. We
estimated that the reduced functionality would cut
power by a tactor of three.

Process scaling reduces node capacitances and there-
fore chip power. Note that although the area compo-
nents of the capacitance will decrease as the square
of the scale tactor, the rotal capacitance change with
scaling will be less dramatic primarily due to the ctfecr
of periphery capacitance. We cestumate that scaling
from 0.75 m of the carlv Alpha chip to our current
0.35 pm process results in a power reduction of about
a factor of nwo, a lincar reduction with scale factor.
Once again, coupled with rhis positive effect of process
scaling arc a host of other issues. Some of those issucs
are considered in the section Power Down Modes.

Next, consider the clock power. The clock power of
the Alpha chips is tairly farge and while that clocking
strategy works well tor Alpha machines, itis notappro-
priate tor a low-power chip. Our clocking strategy and
our latch circuits are described in some detall later.
One major change trom the Alpha design was to reject
the pair of wransparent latches per cvele used on the
Alpha design. Instead, on this design, weswitched to a
single cdge-triggered latch per cvele to reduce clock
load and larch delay. Our estimate is that the changes
in the clocking reduced the clock power by a factor of
two. Since the clock power was about 65% of the toral
power on the first Alpha chip, this results in a reduc-
tion of about 1.3.

Fiallv, the reduction in clock frequency from
200 MHz to 160 MHz drops the power by 1.25.

Clearly, this analvsis is not rigorous, butit suggests
that itis reasonable to build a 160 MHz processor chip
that dissipates around halta watt. A similar analvsis was
performed ar the beginning of the project to select the
power supply voltage and opcerating frequency and to
determine  whether significant changes in design
method would be required to mect the performance
and power goals. It is interesting to note that with the
exception of the clocking changes, the design methods
and philosophy used on this design werce very similar
to that used on the Alpha chips.

Instruction Set

The  microprocessor  implements the ARM - V4!
instruction set. The archirecture defines thirty 32-b
general purposce registers and a program counter (PC).
Registers are specificd by a 4-b ficld where registers
0 to 14 arc general purposc registers (GPR) and regis-
ter 15 1s the PC. The current processor status register
contains a current mode ficld which sclects either an
unprivileged user mode or one of six privileged modes.
The current mode sclects which ser of GPRs 1s visible.



In addition to basic RISC features of fixed length
mstructions and simple load/store architecture, the
architecture implemented includes several features to
improve code density. These include conditional execu-
rion of all instructions, load and store multiple instruc-
tions, auto-increment and auto-decrement for loads
and stores, and a shitt of one operand in every ALU
operation. The architecture supports loads and stores of
8-, 16-, and 32-b dara valucs. In addition to the stan-
dard 32-b compurations, there is a 32-b X 32-b multi-
ply accumulate with a 64-b product and accumulator.

Chip Microarchitecture

As shown in Figure 1, the chip is tunctionally parti-
tioned mro the following major sections: the instruction
unit (IBOX), integer exccution unit (EBOX), integer
multiplier (MUL), memory management unit for data
(DMMU), memory management unit for instructions
(IMMU), write bufter (WB), bus interface unit (BLU),
phase locked loop (PL1.), and caches tor data (Deache)
and instructions (Icache). To minimize pin power and
support the high-speed internal core, one halt of the
chip arca is devoted to the two 16 K caches. The pad
ring occupics one-third of the chup arca and the proces-
sor core flls the remaining one-sixth of the chip arca.

The processor is a single issuc design with a classic
five-stage pipeline—Ferch, Issue, Exceute, Butter, and
Regster File Write (Figure 2). Allarithmetic logic unit
(ALU) results can be forwarded to the ALU input and
there is a one-cvele bubble for dependent loads.

For cxample, the pipeline diagram - Figure 2
shows a SUBTRACT tollowed by a dependent LOAD.
Note that at the end of cycle 3, we bypass the result
from the SUBTRACT back into the ALU to compute
the load address n cvcle 4 without stalling the pipe.

Figure 1

Chip Photo with Overlay

1 2 3 4 ) 6
F | E B w
100: pc <-100 Read W < rn-rm
SUBSR1 [Ib<-SUBS| Rm,RN [cc <-alucc| W < w Rlcw'
F | E B w
104: pc <-104 Read w<-d+R1 [Lc-mem(la] R2< L
LDRR2,[R1,d]!'(Ib<-LDR | Rm,Rn |[la < d+R1|W < w Rl <-W'
F | | E
108: pc <-108 Read Read
ADD x,R2,y | ib <-ADD | Rm, Rn Am, Rn | W <-R2+y

Figure 2
Basic Pipeline Diagram

The third instruction is an ADD which uscs the result
of the previous LOAD. The ADD is held in the Issue
stage for one additional cycle untl the LOAD data is
available at the end of cvele 5.

The 1BOX can resolve conditional branches in the
[ssue stage even when the condition codes are being
updated in the current Exceure cvele. By providing
this optimized path, the IBOX incurs only a onc-cvcle
penalty for branches taken, so the chip docs not
require branch prediction hardware. For example, in
the pair of instructions shown in Figure 3, the
BRANCH and LINK instruction at the (program
counter) PC of 104 depends on the condition codes
which are being generated by the SUBTRACT in the
previous instruction. The condition codes from the
Exccute stage of the SUBTRACT are available at the
end of cycle 3, in time to swing the PC multiplexer in
the IBOX to point at the branch rarget PC during the
next Feteh eycle.

The optimization of the branch path represents a
power versus performance tradeoft in which pertor-

1 2 3 4 S 6
F I E B w
100: pC <-100 Read w<- In-rm
SUBS R1|lb <- SUBS| Rm,Rn [cc<-alu.cc
L %
104: F | E B w
BLNE
(Target pc Targetpc
= 200) pc <-104 <- 200 W<-pc-4| weaw R14 <-w'
v 0
F | E B
108: | pc<-108
xxx | Ib<-xoxx

200: | pc<- 200
yyy | Ib < yyy

Figure 3
Pipeline Diagram ot a Branch
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mance won. In our cffort to hold the once evele branch
penaloy, we cluded a dedicated adder in the IBOX to
calculate the branch rarger address and consumed
additional power in the EBON adder to mect the criti-
cal speed path to control the PC multiplexer. Duc to
critical path constraints, the adder in the IBOX must
run every cvcle, evenif the mstruction is not a branch.

In the carly stage of the design, one of our concerns
was whether the decision to pursue this optimized
branch path would increase our cvele nme. As the
design turned out, our best etforts m this ALU path
and n the cache acceess path vesulted in nearly identical

delavs tor these two longest eritical speed paths.
Dara tor integer operations comes troma 31-cnery

register file with three read and wwo write ports.

15 addinional shadow registers specitied by the archi-
tecture to mininize the overhead associated with miti-
ating exceprions. The EBOX contains an ALU with a
full 32-b bidirectional shifter on one of the input
operands. Tt includes bypassing circuitry to forward
the data trom the Deache or the ALU output to any
of the read porrs. Figure 4 shows the crcuit blocks
involved in the branch path. The path starts ata larch
¢, includes a

m the bypassers and, m a single cve
0-to 32-b shift, a 32-b ALU opceration, and a condi-
tion code computanion to swing the PC multiplexer
for the next cvele. The registers to hold the condition
codes were implemented in the EBOX so that this
path could be locally optimized. Analvsis of code
traces indicated that most ALLU operations included a
shift of zero, so tor this casc, the shifrer is disabled and
bypassed to reduce power.

The EBOX also contains a 32-b multiply /accumu-
latc umt. The multiplier consists of a 12- by 32-b
carry-save multiplier arrav which s used for one to
three cveles depending on the value of muluplicand
and a 32-b final adder to reduce the carry-save result.

Register File
Rn BRm Rs W L
o~ Buffer
5
by |_ Bypass [£—
3 .
ALU —
CcC ]
Logic g
Multiply/Accumulate %
Figure 4

EBONX Block Diagram
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For multiply accumulate operations, the accumulate
value s mserted mto the array so that an additional
cvele s nor required  for the Multiplies  with
Accumulate. Muluplv Long instructions  require
one additional cvele. This results ina MULTIPLY or
MULTIPLY /ACCUMULATE in two to four cycles
and MUL LLONG or MUL LONG/ACCUMULATE
in three to five cveles.

The Wallace tree implementation was chosen to
minimize the delav through the arrav. This implemen-
tarion required carctul tloor planning and custom lay-
out to keep the wiring under control. The decision to
perform 12 b ot multply per cvele was based onwiring,
tradeofts made during the phyvsical planning phase of
the design rather than crincal path concerns. When the
multiplier is not in use, all clocks to the section stop
and the input operands do not toggle.

The chip features separate 16 kBvte, 32-way sct
assocrative virtual caches tor mstructions and darta.
Fach cache is implemented as 16 fully associative
b
reads and writes, providing a two-cvele latency for
return data to the register file. One cighth ot each
cache is enabled tor a cache access.

The Deache 1s writeback with no write allocation,
The block size 1s 32 bytes with dirty bits provided for
cach balf block to minimize the data which needs to be
castout in the event of a dirty victim. The physical
address is stored with the data ro avoid address transla-

ocks. Each cache s accessed m asingle cyele tor both

rion during castouts.

Given the size of the caches and the low power
target for the chip, it was important that we have tine
agranularity ot bank sclection. Inaddition, we required
associativity of ar least four-wav tor cache efticiency
and itwas important to performance that we maintain
a single cvele access. We considered several solutions
to this problem, ncluding maditional four-way sct
associative caches, and deaded that the simplest
approach which satisfied all the requirements was to
implement the caches as smaller, bank-addressed, fully
associarive caches. This resulted in 32-way associativity
burt rhis level of associativity was a side effect of the
implementation used, not the result of a goal to get
assoctativity significanthy above tour-way.,

The chip includes separate memory management
units (MMU) tor mstructions and data. Each MMU
conrains a 32-entry fully associative translation look-
aside butfer (T1.B) with enrries which can map cither
4 kB, 64 kB, or 1 MB pages. TLB fllsarc implemented
i hardwarce. In addition to the standard memory
management protection mechanisms, the ARM archi-
recture defines an orthogonal memory protection
scheme to allow the operating svstem easy access to
large sections of memory without manipulating the
page tables. This funcrionality requires a ser ot addi-



tional checks which must be performed atter the TLR
lookup. The resulting critical path was sutticiently
long that we sclt-timed the RAM access in the TLB to
allow us to pertorm the lookup and complex protec-
tion cheeks ina single evele.

A write bufter with cight 16-bvte entrics handles
stores and castouts from the Deache. The write bufter
includes a single-enery merge larch to pack up sequen-
tial stores to the same entry.,

During normal operations, an external load request
takes priority over stores on the pin bus. However, in
the event of a load which hits in the write butter, the
chip executes aseries of priority stores which raises the
priority of the Write Butter on the external bus above
thar of anv loads. External stores occur and the write
bufter empries until the store which was pending at
the load address compleres. At this point, top priority
reverts back to loads.

Power Down Modes

There are two power down modes supported by the
chip—Idlc and Sleep.

Idle mode is intended tor short periods of inactivity
and is appropriate ftor situations - which rapid
resumption of processing is required. In Idle mode,
the on-chip PLL continuces to run but the mrernal
clock gridand the bus clock stop toggling. This elimi-
nates most activiry in the chip and the power dissipa-
tion drops from 450 mW ro 20 mW. Rerurn trom Id
to normal mode is accomplished with essentiallv no
delay by simplv restarting the bus clock.

¢

Sleep mode is designed for extended periods of inac-
tiviey which require the lowest power consumption.
The current in Sleep mode is SO pA which is achieved
by turning oft the internal power ro the chip. The 3.3V
1/0 circuitry remains powered and the chip is well
behaved on the bus, maintaining specitied levels if
required by the drive enable inputs. Return from Sleep
to normal operation takes approximatcly 140 ps.

As was noted carlier, a low voltage process is kev
to the design ot a microprocessor which will run at
160 MH7z while dissipating Jess than 450 mW.
However, the same low device thresholds which allow
the reduction of Vdd also result in significant device
lea

kage. While this leakage is not large enough to
cause a problem for normal operation, it docs pose
problems tor standby current, especially it the pro-
cess skews toward shore channel devices. Our initial
analysis indicated that the ¢hip would dissipare over
100 mW in Idle mode with the clocks stopped. To
reduce this leakage, we lengthened devices in the
cache arrays, the pad drivers, and certain other areas.
This broughr the leakage power to within the required
value of 20 mW in the fastest process corner. As a
backup, we re

aved our design rules to allow the

remaining gate regions, which are drawn with a stan-
dard 0.35 pam gate length, to be biased up algorithn-
cally without violating design rules in case it was
necessary to mecet the leakage requirements.

The requirement for standby power in Sleep 1s more
than two orders of magnitude lower than the Idle
power. To mect the power limir in Sleep, we consid-
ered a variery of options including integrated power
supply switches and substrate biasing schemes betore
choosing the simple approach of turning of t the inter-
nal supply. This approach is reasonable tor this gencera-
tion of parts since they have a dedicared low voltage
supply. As more parts of the svstem shift to the low
voltage supply, this mav no longer be aceeprable. The
contlicting requirements ot high performance atr low
voltage and low standbvy current promise to create
interesting challenges in furure designs.

The power switch to turn oft the inrernal power
supply during Sleep is implemented oft-chip as part
of the power supply circuit for the low voltage supply.
No state is stored internally during Sleep since in
typical PDA svstems, rhe Sleep state corresponds to
the user turning the svstem ott. ‘Therctore the time
associated with reloading the cache upon return trom
Sleep is aceeprable.

The requirements in Idle and Sleep complicated the
design of the bus intertace circuits, "This section
includes the level-shifting interface benween the inter-
nal low voltage (1.5 to 2.2 V) signals and the 3.3V
external pin bus. The bus intertace circuirs must drive
and receive signals which are higher voltage than those
nominally supported by the 0.35-pm process without
using cireuits which would cause us to exceed the cur-
rent limit specitied by the Idle spec. In addinon, dur-
ing Sleep the pads must be able to sustain the value
on the outpur pins despire the loss of inrernal Vdd
(Vddi) from the low voltage supplvawvhich is powered
oft by the svstem. The circuitry used to implement this
function is shewn in Figure 5.

Since Vddi will be driven to zero by the svstem
during Sleep, it is used not onlv as a power supply
bur also as a logic signal. All circuitry which must
be active in Sleep is driven from rhe exrernal, 3.3 V
supplv (Vddx) which has been dropped through diode-
connected PMOS deviees to reduce the stress on the
oxide of these devices. Betore signaling the ¢hip to
enter Sleep, the svstem asserts the nRESET pin (active
low) which drives all enabled outputs to a specitied
state—disabled  tor control signals and  zcro - for
addresses and data. It then asserts nPWRSLP (active
low) which 1s ANDed with the appropriate output
enable control ro turn on small leaker devices which
will hold the output pinin the appropriate state during
Sleep. T the arcuir shown in Figure 5, the output is
an address. Therctore, the address bus enable (ABE)
pinis the control pin on the lower NMOS leaker and a
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Pad Circuitry

buftered version ot nPWRSLL controls the top device.
Finally, the Vddi pins are acrively driven to zero by the
system. This action disables the output stage of the
pad driver circuit by turning oft the wransistors closcst
to the pad—the NMOS directly and the PMOS via the
bias nenwork whose output goces to Vddx when its
path to Vss is cut off. Note that for any input whosc
value is required during Sleep (ABE and nPWRSLP in
the example deseribed), a separate parallel input
receiver must be implemented since the normal input
receiver requires Vddi

Circuit Implementation

The circuitimplementation is pscudostatic and allows
the internal clock to be stopped indefinirely i cither
state. Use of circuirs which might limit low voltage
operation was strictlyv controlled and the design was
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simulated to ensure operation signiticantly  below
the nominal 1.5 Vlevel of the Jow voltage supply. The
valucs of the internmal supply and operating frequency
were optimized to achieve maximum pertormance for
less than halta wartt.

The vast majority of the design is purely static,
composcd of cither complementary CMOS gates or
static difterential logic. In certain situations, wide
NOR functions were required and these were imple-
mented in a pscudostatic fashion using cither static
weak feedback circuits or self-timed circuits ro latch
the output data and return the dvnamic node to its
precharged state.

The register file (RF) uses the sclt-timed approach
to return the bir ines to the precharged state after an
access (Figure 6). Tn this circuir, an extra sclf-timing
column ot bir cells with a dvnamic bit line was imple-
mented to mimic the tming ot rhe data bie lines.



Figure 6 shows one cell from a column of register file
dara bir cclls and one cell from the extea sclf-timing
column (onlyv one read port is shown). The bir cells
- this extra column arce all tied oft so thar the
SELF_BITUNE signal will alwavs discharge when
the READ_WORDLINE goces high. When o the
SELF_RITLINE falls, it will set an RS Tatch causing the
SELF_ENABLE signal to fall. This will disable the
READ_WORDLINE and causc the bit lines to be
precharged high when the read access is complere.
Since the DATA_BITLINEs are received by low sensi-
tive RS fatches, the output data will be held when the
bit line is precharged high. The selt=timing RS latch is
cleared when CLOCK_L goces low. This causces the
SELF_ENABLE signal to go high, cnabling the read
port tor the access i the nexr clock cvele. A separate
SELF_BITHINE signal is implemented tor cach of the
three register file ports so that the clocks tor the three
ports can be enabled independently.

The transistor leakage assoctated with the low
threshold voltages is problemaric for these pscudo-
stanc circuirs. I a weak feedback circuit is used in a

NOR structure which is precharged high, excessive
leakage m the pacallel NMOS pulldowns would
requirce that the feedback be tairly strong, which in turn
would reduce the speed of the circuit. In the fimit of
very wide NOR’s, 1t may not be possible to size a
PMOS leaker so thatit can supply the leakage ot all the
off NMOS pulldowns without making the leaker roo
large to be overpowered by a single active pulldown.
In the case ofa selt-timed approach, a similar problem
exists but it usually 1s manitested as a vanishingly small
timing margin for the self-timed circuit to tire betore
the data on the dvnanue node decavs awav. In cither
case, we addressed this issue by requiring the lengeh of
pulldowns on dvnamic nodes to be shghtly larger than
minimum. Transistor leakage current is a strong func-
tion of channel length so a 12% increase in device
lengrh results o a leakage reduction in the worst casce
of about a factor of 20. The resulting leakage makes
implementation of cither weak feedback or a sclt
timed approach very reasonable.

The operating trequency ar 1.5 V can be roughly
derived by starting with the frequency of the Alpha
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processor in the same process technology and scaling
for the use ota longer rick model and then Vdd. Sinee
the long tick design requires the chip to pertorm a full
SHIFT and a full ADD ina single cvele, this approxi-

matcly doubles the cyele time required. The ettect off

Vdd scaling is roughly lincar tor this range of Vdd.
Combining these cffects results inan operating,
frequency ar 1.5 V given by

433 MHz «+ 0.5*(15V /2.0 V) =162 MHz.

This pair of volrage and frequency values agrees well
with the power estimate outlined in the section Power
Dissipation Tradcofts. Note that for power supply
voltages much lower than 1.5 V| the operanng tre-
quency decreases with voltage i a manner which s
signiticantly stronger than inear. This fact sets a prac-
tcal lower imit on the power supply voltage in most
applications.

Power estimates made carly in the design are prone to
crrors in cither direction. In the case of this design, the
power dissipated at 1.5 Vwas lower than the 450 mW
rarget, sowe shitted the nominal internal Vdd to 1.65 V
ro ncreasc the vield i the 160 MHz bin,

Clock Generation

An on-chip PLL generates the internal clock at one of
16 frequencies ranging trom 88 to 287 MHz based on
a fixed 3.68 MHz input clock. Duc to internal
resource constraints and our limited experience with
low-power analog circuits, we contracted with Centre
Suisse d’Electronique cr de Microtechnique (CSEM)
from Neucharel, Switzerland, to design the PLI and
engaged Protessor 1L Tee trom Stanford as a consul-
rant on the project. Our initial feasibiliy work resulted
i several design rradeotts,

First, while there was a svstem requirement that the
chip return quickly from the Idle state to normal oper-
ation, there was no such constraint on rerurning from
the Sleep state. Based on this determination and our
20 mW power budger in Idle, we concluded that ifwe
could keep the PLL power below 2 mWV, we could
lcave the PLL running in 1dle and remove the require-
ments on the PLI lock e, Thus, the need toravery
low power PLI 1s dictared by the power budger n
Idle, not in normal operation.

Next, we had spectied alarge frequeney multiplica-
tion factor to allow the use ofa common and cheap Jow
frequency arvstal clock source for consumer products.

Larly investugations indicated that this would make
nght phase locking ditticult. However, when we
looked at rarget svstems, we tound no pressing need tor
phasc locking. Conscquently, we removed phase lock-
ing as a design enteria and concentrated our cttorts and
design tradeotts on minimizing phase compression.
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Finallv, while the PLL was designed to handle the
noise cxpected on the chip power supplics, we discov-
cred toward the end of the design that the PLL was
under i1ts arca budger and there was additional space
available in the vicinity. We took advantage of this
opportunity to provide cleaner power to the PLL by
RC filtering our internal supply and we dedicated 1 nF
of on-chip decoupling cap to this purposc.

CSEM pertormed the circuit and lavoutr design
and we placed the completed block mro the micro-
processor. Since we anticipated that the characteriza-
tion of the PLL integrated in the chip would present
some difficulties, we reserved once of the six dic sites
on our tirst pass reticle ser for a test chip which con-
rained several variants of the full PLL and interesting
sub-blocks. These circuits allowed aceess to a variety of
nodes inthe PLL without compromising the design of
the PLL instantiated in the chip. The results of the
PLL characterization are reported i Reference 4.

Clock Distribution
The chip operates from tvo clocks as shown in Figure 7.
An meernal clock, called DCLK; is usually gencerated
bv the PLIL. The second clock is a bus clock, known as
MCLK which operates up to 66 MHz. MCLK can be
supplicd by an external asvnchronous source or by the
chip based on a division of the PLIL clock signal.
There are tive clock regimes in the chip. The first
two regimes are sourced by MCLK and consist of the
pad ring which receives MCILK directly and the bus
interface unit (B1U) and partof the write butter which
receive MCIK through conditional clock butters. The
fast three regimes are sourced by the internal DCLK
clock tree and contain the Deache, the Icache, and the
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core. In this case, the core mcludes the IBOX, EBOX,
MUL, IMMU, DMMU, and part of the swrite butter.
Both MCLK and DCLK are distributed by buftered
H-trees to conditional clock bufters in the various sce-
tions of the chip. The bufters in the H-tree allow the
use of smaller lines for distribution and result in lower
clock power. Although the three inrernal clock
regimes arce all sourced by the same H-tree, the topol-
ogv of the chip did notallow corresponding sections
of the H-tree to be routed i the same metal. This
resulted inan increase i the expected skew berween
the caches and the core. In additon, we discovered
that we could squeeze a bit more performance from
the chip if we intentionally offset the clock in the
caches relative to the clock in the core. Consequently,
we used the clock butters n the H-tree to tune the
clock so that the Deache receives a clock which is one
gate delav carlier than the core and the Teache recceives
a clock whichis one gate delay later than the core.
Figure 8 shows the phvsical routing of the internal
clock tree. The bufter stages are not shown but they
exist in the center of the chip and in four symmectric
locations—rtwo in the center of the Tand D caches and
two in locations at the cache /core interface. The final
leg ot the H-tree is tied to conditional clock bufters in
the caches and the core. The problems associated with
clock skew within the caches are reduced by the fact
that only a single bank in cach cache is enabled. This
limits the physical distance over which ughtly con-
trolled clocks need to be delivered in the cache regions.

The clocks 1 the core present a more interesting
problem. The final feg of the clock tree in the core
stretches the tull height of the chip and tight control of
skew along this node is required for speed and func-
tionalitv. Tt is implemented as a vertical, meral 2 line
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Clock Arrival Time in the Core

driven from four nominally equidistant points. The
clock butters are standard cells of varving drive
strength built directly under this M2 line to mimimize
local variation in delay.

Circuit simulations of the H-tree were pertormed
using SPICE to determine the skew berween clock
regions and within cach of the clock regions. The
nodes in the grid were extracted trom lavout and con-
tained more than 30,000 R and C clements. Figure 9
shows the relative clock arrival ime versus the Y coor-
dinate for cach conditional clock bufter on the vertical
leg of the clock tree in the core. The four arrows on
the graph indicate the points trom which the final leg
1s driven. The dara points are the relative arrival times
of the clock input to the conditional clock bufters
sourced by the clock tree. The total simulated skew is
41 pS assuming maximum metal resistance.

Clock Switching

Once addinonal complication related to the internal
clock tree is that it is not always driven by the clock
from the PLL, known as CCLK. During cache fills, the
clock source for the internal sections of the chip
switches over to MCLK so that the whole chip is run-
ning synchronous to the bus (Figure 10). This simpli-
fics fills and 1t reduces power since the bus clock is
significantly slower than CCLK. Note that since this
machine has a blocking cache, not much happens
while waiting for a cache fill. Therctore, running on
the slower bus clock during fills has essentially no
performance impact.

Since MCLK and CCLK might be asvichronous,
switching the driver of DCLK quickly berween the two
clock sources is ditficult. Careful attention must be
paid to the synchronization of the Mux control signals
to prevent glitch pulses on the clock during the transi-
tion berween the clock sources.
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Clock switching i1s only used during tills. Stores
which miss in the cache and castouts are written to
memory through the write bufter without switching
the internal clock over to MCILK. The write butter
receives both DCLK and MCLK and passes the dara
for external stores across the DCLK/MCLK inter-
face with proper attention to synchronization issues
berween the two clock regimes. One interesting char-
acteristic of clock switching is that it gives the svstem
designer another option to save power in situations for
which the full performance of the chip is not required.
Bv disabling clock switching on the flv, vou can config-
ure the chip to run oft the bus clock. There is no limit
on asymmetry or maximum pulse width of the bus
clock, so the chip can be operated at very low frequen-
cies if desired.

Conditional Clock Buffers

Couditional clock butfers are simple NAND/invert
structures with an integral latch on the condition
input. The bufters must be matched to their lead
to minimize skew. Since adding dummy clock loads
1s contrary to the low-power design philosophy, we
created scaled clock butters which would produce
matched clocks for a wide range of loads and only
needed ro add dummy clock loads tor a small number
ofvery lightly loaded clock nodes. 1'he task of match-
ing the clock butters to the load was greatly simplified
by the fact the clock load presented by our standard
latches is largely data-independent.

While the use ot conditional clock bufters is central
to the design method used on the chip, it should be
noted that the critical paths to generate the condition
input to these butters represent some of the most ditti-
cult design problems in the chip. In this case, we
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decided that the power saving associated with the con-
ditional clocking was worth the additional design
cftort and possible pertormance reduction.

Latch Circuits

The standard latches used in the design are difterential
edge-triggered latches (Figure 11). The circuit struc-
turc is a precharged difterential sense amp followed by
a pair of cross-coupled NAND gates. The sense amp
need not be particularly well balanced because the
inputs to the latch are tull CMOS levels. The NMOS
shorting device berween nodes L3 and 1.4 provides a
dc path to ground tor leakage currents on nodes L1
and L2 in casc the inputs to the Jatch switch after the
latch evaluates. At normal operating frequencics, this
device is not particularly imporrant but it is required
tor the latch to be static. Note that since the de current
tflowing is duc onlv to device leakage, the magnitude
of the current is insignificant to the power in normal
operation.

Testability

The chip supports 1EEE 1149.1 boundary scan for
continuity testing. In addition, it has two hardware
features to aid in manutacturing testing. The first is a
bypass to allow CCLK to be driven from a pin svnchro-
nous to MCLK. This allows the tester to control the
timing between CCLK and MCLK to make the asvn-
chronous sections appear to be deterministic. The see-
ond test feature provides alincar feedback shift register
(LFSR) that can be loaded with instruction data from
the Tcache. Loading the LESR can be cenditioned
basced on the value of address bit 2 and the Icache hit
signal. The LFSR is loaded after the Fetch stage to
allow the instruction following a branch to be read
from the Icache and loaded into the LESR. This fea-
ture allows anv random partern to be loaded into the
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[cache and then read out by alternating branch
instructions with data patterns words.

Power Dissipation Results

Measured Results

Power dissipation data was collected on an cvaluation
board running Dhrystone 2.1 with the bus clock
running at onc-third ot the PLL clock trequency.
Dhrystone fits entirely in the internal caches so, after
the first pass through the loop, pin activity is limited.
This is the highest power case because cache missces
cause the internal clocks to run at the bus speed and
result in a lower total power. For both scts of measure-
ments, external Vdd is fixed at 3.3 V. For an internal
Vdd of 1.5 V, the total power is 2.1 mW/MHz. If
the internal supply is set to 2.0 V, the total power is
3.3 mW/MHz. Note that the ratio of the power at
1.5 and 2.0 V does not track Vdd? because it contains
a component of external power and the external Vdd
is fixed.

Simulated Power Dissipation by Section

An analysis of node transitions based on simulation
was performed to estimate the power dissipation asso-
ciated with the various major sections ot the chip
(Table 3). Toggle information was collected based on
160,000 cveles of Dhrystone and combined with
extracred node capacitances to estimate power dissipa-
tion by node and this data was further grouped by sec-
von. The clock power listed in Table 3 is due only to
the global clock circuits.

A tew points are worth noting,.

= First, the power is dominated by the caches as
vou might expect given their size. This is despite
our cttorts to reduce their power through bank
sclection and other means. The Tcache burns
more power than the Dceache because it runs
every evele.

Table 3

Simulated Power Dissipation by Section
ICACHE 27%
IBOX 18%
DCACHE 16%
CLOCK 10%
IMMU 9%
EBOX 8%
DMMU 8%
Write buffer 2%
Bus interface unit 2%
PLL <1%

= Next, the PLI. power is insignificant in normal oper-
aton. As was noted carlier, its low power character-
istics are only important in Idle.

= Finally, since reduction in clock power was one of
our explicit goals, it is interesting to consider the
total clock power. If vou extract the local clock
power from the nonclock sections and sum it, vou
get a total clock power, including the global clock
trees, the local clock bufters and the local clock
loads. This power is 25% of the total chip power,
significantly less than the 65% consumed by the
clocks in the Alpha microprocessor used in our ini-
tial feasibility studics.

Conditional clocking was an integral part of the
design method, so it is ditficult to determine the
power saving associated with it. However, the power
associated with driving the conditional clocks is 15%
of the chip power and it the conditions on all the
conditional clock bufters were always true, this power
would quadruple. This does not account for the
additional power savings that has been achieved by
blocking spurious data transitions.

CAD Tools

The CAD tools used on this chip were largelv the same
as those used on our Alpha designs.* This is not sur-
prising since the performance target of the chip
roughly parallels that of the Alpha familv as noted
in the section Circuit Implementation. The most sig-
nificant departure was in the area of static timing
verification and race analysis where the adoption of
edge-triggered latching required significant modifica-
tions to the tools used in the Alpha designs.

Project Organization

One of the challenging aspects of this project was
geographical. The detailed design was performed at
four sites across a nine hour time zone range. The ini-
tial feasibility work and architectural definition was
done at Digital Scmiconductor’s design center in
Austin with on-site participation by personnel tfrom
Advanced RISC Machines Limited (ARM). The
implementation was more widely distributed with the
caches, MMU’s, write butter, and bus interface unit at
Digital Semiconductor’s design center in Palo Alto,
the instruction unit, exccution unit, and clocks in
Austin, the pad driver and ESD protection circuits at
Digital Semiconductor’s main facility in Hudson,
MA, and the PLL at the CSEM design center in
Neucharel, Switzerland. ITn addition, we consulted
with Hudson for CAD and process issues, with ARM
in Cambridge, England, for all manner ot architec-
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tural issues and implementation tradeotts associated
with ARM designs and with T, Lee trom Stanford on
the PLL. The implementation phase of the project
took less than nine months with about 20 design
engineers.

Conclusion

The microprocessor descrit-ed uses traditional high
performance custom circuic design, an intentionally
simple architectural design, and advanced CMOS
process technology to produce a 160 MHz micro-
processor which dissipates less than 450 mW. The
internal supplics canvary from 1.5 to 2.2 V while the
pin interface runs at 3.3 V. The chip implements the
ARM V4 instruction set and delivers 185 Dhrvstone
2.1 MIPS at 160 MHz. The chip contains 2.5 million
rransistors and is tabricated ina 0.35-um three-metal
CMOS process. It measures 7.8 mm X 6.4 mm and is
packaged in a 144-pin plastic thin quad fat pack
(TQFP) package.
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