
PICTURE BOOK 

REFERENCE MANUAL 



PICTURE BOOK 

REFERENCE MANUAL 

For additional copies, order No. DEC-11-GPBMA~D 
from Software Distribution Center, Digital Equipment 
Corporation, Maynard, Mass. 

digital equipment corporation · maynard. massachusetts 



First Printing July 1973 
Second Printing December 1973 

The information in this document is subject to change without notice 
and should not be construed as a commitment by Digital Equipment 
Corporation. Digital Equipment Corporation assumes no responsibility 
for any errors that may appear in this manual. 

The software described in this document is furnished to the purchaser 
under a license for use on a single computer system and can be copied 
{with inclusion of DIGITAL's copyright notice) only for use in such 
system, except as may otherwise be provided in writing by DIGITAL. 

Digital Equipment Corporation assumes no responsibility for the use 
or reliability of its software on equipment that is not supplied by 
DIGITAL. 

Copyright c::S) 1973 by Digital Equipment Corporation 

The HOW TO OBTAIN SOFTWARE INFORMATION page, located at the back of 
this document, explains the various services available to DIGITAL 
software users. 

The postage prepaid READER'S COMMENTS form on the last page of this 
document requests the user's critical evaluation to assist us in 
preparing future documentation. 

The following are trademarks of Digital Equipment Corporation: 

CDP DIGITAL INDAC PS/8 
COMPUTER LAB DNC KAlO QUICKPOINT 
COMSYST EDGRIN LAB-8 RAD-8 
COMTEX EDUSYSTEM LAB-8/e RSTS 
DDT FLIP CHIP LAB-K RSX 
DEC FOCAL OMNIBUS RTM 
DEC COMM GLC-8 OS/8 RT-11 
DECTAPE IDAC PDP SABR 
DIBOL IDACS PHA TYPESET 8 

UNIBUS 



TABLE OF CONTENTS 

1.0 INTRODUCTION 1 

1.1 Using Picture Book 3 

1.2 Execution of the User Application Program 4 

2.0 PICTURE BOOK FORTRAN SUBROUTINES 5 

2.1 Setting Up the Book 5 

2.1.1 The Page Types 6 

2.2 Drawing the Picture 7 

2. 3 Calling a Picture to the Screen 15 

3.0 SAMPLE APPLICATION PROGRAMS 15 

3.1 POLY 16 

3.2 CLOCK 18 

4.0 THE PICLET LANGUAGE 20 

4.1 PICLET Examples 22 

APPENDIX A ASCII Telecommunication Code 25 

APPENDIX B Common Markers 29 

APPENDIX c The Picture Book Library (GLIB) 31 

APPENDIX D Core Requirements 33 

APPENDIX E The GT40 Character Set 35 

APPENDIX F Operating Instruction for the PDP-10 39 

APPENDIX G Picture Book Assembly Instructions 41 
APPENDIX H Picture Book in the DOS/BATCH System 43 

iii 





PREFACE 

Picture Book is a picture-producing controller for 
the GT40 terminal.. This manual provides the 
progranuner with the information needed to write an 
application program that uses Picture Book 
subroutines to draw graphic illustrations. The 
operator may then manipulate the simplified 
graphics functions; for example, a program that 
uses Picture Book subroutines could allow an 
architect to display the layout of a room on the 
GT40 screen and then move the room or parts of the 
room across the screen with the light pen. An 
electronic circuit designer could recall a 
specific circuit board and then alter the design. 

To produce pictures using the controller, the user 
must write an application program that uses 
Picture Book or other language subroutines. The 
subroutines draw a picture on the GT40 screen and. 
store the picture data in the GT40 memory. The 
application program, with operator interaction, 
calls any datum stored in the GT40 memory to the 
screen using the FORTRAN subroutines, and alters a 
picture that is already drawn. 

The Picture Book package consists of FORTRAN 
subroutines that simulate alphanumeric 
conununications similar to the VT06 terminal and 
perform Graphics functions on the GT40 terminal. 

This manual assumes the reader is familiar with 
the following manuals: 

GT40 Users Manual 
DEC-11-GGTGA-A-D 

GT40 Users Guide 
DEC-11-HGTGA-A-D 

For additional information about the 
terminal, refer to the following manual: 

PDP-11/05 Processor Handbook 

GT40 

PDP-11 Peripherals and Interfacing Handbook 

GT40 Graphics Display Terminal Maintenance 
Manual 
DEC-11-HGTVA-A-D 

v 





1.0 INTRODUCTION 

Picture Book, the software controller for the GT4 0 terminal, enab.les 
the user to interact with a host computer through VT06 simulation and 
produce a graphics display on the GT40 screen. The user can write an 
application program that uses this controller to draw and alter a 
design or picture on the GT40. The Picture Book controller operates 
in a GT40 terminal and requires a host computer such as the PDP-10 to 
run the application program. 

The controller makes an accurate note of each mark the user draws. 
When the user first loads the controller into the GT40 memory it 
arranges memory into a Book with a chapter (an area in memory) for 
each kind of mark he can enter into a drawing; then, as the 
application program or the user makes entries to a graphic display, 
the display appears simultaneously in the GT40 Book. 

Picture Book has broad capabilities for graphic illustration; the user 
may be, for example, a clothing designer, an electronic circuit 
designer, an architect or a surveyor. In addition, Picture Book can 
be used to build Graphs and Tables of text that may appear in 
conjunction with a drawing. 

Picture Book provides the user with two methods of producing a picture 
on the GT40; (1) creation of an application program that uses the 
FORTRAN callable subroutines to draw a picture which then can be 
changed by ·making keyboard entries, or (2) generation of a picture 
directly through keyboard entries, using the PICLET language to create 
or alter the display entries i~dividually. 

A user application program draws a picture on the GT40 screen by 
calling FORTRAN subroutines. Each FORTRAN subroutine enters a 
particular kind of mark in the book, and then returns control to the 
user program. The FORTRAN subroutines provide a variety of 
capabilities. The subroutines place the actual display data into the 
GT40 Book to access and re-display or alter anything that is drawn. 
The actual display can consist of 8 levels of brightness on the 
screen, and any part of the display may be blinking or non-blinking. 
The FORTRAN subroutines also provide various types of lines (dot-dash, 
long dash, etc.) and can make any part of the display light pen 
sensitive. 

The Picture Book software package includes a teaching program called 
Skimming, which shows examples of FORTRAN subroutine calls and then 
executes the graphics that the called subroutine produces on the GT40 
screen. By viewing the Skirmning program the user can quickly 
understand how to call Picture Book subroutines with an application 
program, and what the subroutines draw. 

The working parts of the Picture Book controller are the FORTRAN 
subroutines which reside in the host computer and the handler which 
resides in the GT40 memory. The handler consists of the Picture Book 
handler, the Table of Contents for the Book, the graphics.Book that 
contains graphics data, the Index for the Book and an input/output 
buffer for VT06 simulation. 

1 



Address O 

Picture Book 
Handler 

Table of Contents 

Book 
(Display File) 

I/O 
Buffers 

Index 

The Picture Book handler contains two sets of Markers; the Table of 
Contents and the Index (see Appendix B). The Table of Contents is a 
set of Markers that point to the currently open page of each chapter. 
The Index is a set of Markers that point to the currently open line of 
each page. 

The following illustration is a schematic of the Picture Book 
processor. 

Host Computer 

Application Program 
with subroutine calls 

Resident Executive 

FORTRAN 
Callable 
Subroutines 

I/O CALLS 

VT06 
Simulator 

ASC!I 
Interface 

GT40 Terminal 

Display File Handler 

Display Processor 

Book 
(Display File) 

VT06 Simulator 

Keyboard Screen 

When the application program is ready to draw on the GT40 screen, the 
program tells the Resident Executive to call the appropriate Picture 
Book FORTRAN subroutine (JOT, CURSOR, etc.). The Resident Executive 
then calls and initiates the subroutine, When the subroutine generates 
the appropriate code, it tells the Resident Executive to activate the 
appropriate I/O call (using ASCII characters) and the I/O call sends 
the coded data to the Display File Handler in the GT40 terminal. 

2 



The Display File Handler then places the appropriate entry into the 
display file, or Book. If the entry then appears in an open area of 
the Book, the Display File Handler automatically adds this entry to 
the entries already being sent from this open area of the Book to the 
display processor. The display file processor then sends the entry, 
along with the other entries in this open area of the Book, to the 
GT40 Screen. 

When the Resident Executive sends informative or prompting messages to 
the GT40 screen, the Executive sends the appropriate code to the VT06 
simulator. The VT06 simulator then sends the appropriate code (using 
ASCII characters) across the ASCII interface to the display processor 
in the GT40 terminal. 

The display processor then sends this entry of information to the GT40 
VT06 simulator. This VT06 simulator then displays the entry on the 
GT40 screen. 

When the operator makes a keyboard entry in response to 
display (VT06 simulation or a graphics display) , 
automatically enters the GT40 VT06 simulator. This VT06 
sends the keyboard entry to the VT06 simulator in the host 
and that VT06 simulator relays the keyboard entry to the 
Executive. 

1.1 Using Picture Book 

any GT40 
the entry 
simulator 
computer, 

Resident 

Picture Book allows the user to determine the number of lines of VT06 
simulation that will appear on the screen and their length during a 
graphics program. This capability allows conservation of storage and 
keeps the terminal display from conflicting with graphics on the 
screen. 

The Graphics Book, comprised of four types.of chapters, contains the 
current graphics data. ·Each of the chapter types contains a different 
kind of picture data~ ThE;! four types of . chapters are Pictures, 
Figures, Graphs and Tables. Pictures contain vectors, dots(absolute 
points) and subpage calls. Figures contain jots~ (displayable either 
as lines or points). Graphs contain graphs with variable axes and 
entries consisting of points, and Tables contain text entries that are 
addressable by words (character pairs). 

Pictures contain long vectors and all calls to display graphics data 
(subpage calls). A Picture entry consists of a 3-.inch line. Because 
of the size of a Picture line, Pictures are capable of more kinds of 
operations than the other three types of chapters. 

Figures contain short vectors and relative or absolute points, at 1 
inch per line. Both short vectors and relative points use the same 
data format; because of this format, the user can display a figure 
either as a set of points or a set of short vectors, depending upon 
the mode of the subroutine call. When the user specifies a short 
vector he may specify it to be up to 64 units in the X and Y 
directions on the screen. A vector longer than 64 units, in either 
direction, is considered a long vector and you must specify it in a 
Picture. 

3 



Graphs display point plotting. The user can specify any Graph to plot 
on either axis and he may change the graph increment. 

Tables display characters. which are addressable by pairs. The 
characters available are ASCII (English) or Spec:ial (partly Greek). 

1.2 Execution of the User Application Program 

An application program for Picture Book is a central program that 
calls upon the Picture Book FORTRAN Subroutines to lay out the Book, 
determine the scale of the drawing that will appear on the screen and 
create the actual drawing. The Application Program may be written in 
any language acceptable to the host computer; however, FORTRAN is 
preferable, because the callable subroutines are written in FORTRAN. 
Some of the capabilities that this central program may provide are: 

1. Making a light pen sensitive list of the parts of the 
drawing that the operator may change; 

2. Requesting user entries of variable data either 
simultaneously with a light pen hit or independently; 

3. Labeling the drawing. 

When the user application program provides a list of the variable 
parts of the picture that appear on the screen, the user may touch the 
light pen to the item in the list that he wants to change. 

The user application progran can then request the user to enter the 
variable data needed to change the selected item by displaying the 
request on the screen. 

4 



2.0 PICTURE BOOK FORTRAN SUBROUTINES 

Besides laying out the Book and scaling the GT40 screen, the Picture 
Book subroutines provide the user with the capability of opening any 
specific line of the Book, drawing various kinds of lines or points 
and calling previously drawn illustrations from the GT40 memory. 
These FORTRAN subroutines reside in the host computer with the 
application program. When the user calls Dots, Jots, Vectors or other 
marks, Picture Book makes these same entries in the Book, which 
resides in the GT40 memory. The Picture Book subroutines allow the 
graphics program to create a book suitable to its needs, to enter a 
variety of data in the book, and to perform quite complex 
manipulations of this data. However, the user who wishes to approach 
graphics on an elementary level may dispense with .all but a few of 
Picture Book's subroutines. His program need not lay out the book 
since the book has a default layout. When the user calls the Picture 
Book Handler it automatically sets up the Book to contain 32 lines of 
scrolling, 1 Figure 1 line long, 1 Graph 1 line long, 1 Table 1 line 
long and enough pages of Pictures 100 lines long to fill the rest of 
core. The LAYOUT subroutine changes this original Book to match the 
user's specifications. This program need not manipulate the markers 
since they automatically increment when data enters the book. The 
program must scale the Book because the user's Picture will not appear 
on the screen until he defines the scale of the Picture. The next 
sections describe all the FORTRAN subroutines available. 

2.1 Setting Up the Book 

LAYOUT(V,CHARS,PICS,PLINES,FIGS,FLINES,GRAPHS,GLINES,TABLES,TLINES,G) 

Layout, a FORTRAN function, sets up the user's Book according to the 
specifications in the argument list with each argument taken modulo 
128. Picture Book employs a display file that consists of a header 
called the roll which calls one line after another of VT06 display, 
followed by the graphics file which consists of pages of Pictures, 
Graphs, Figures, and Tables, in turn followed by the text buffers for 
the VT06 display. The argument V in LAYOUT specifies how many of 
these buffers the display file will contain (i.e., how many lines of 
VT06 output the user will see before scrolling takes place). The 
argument CHARS determines the length in characters of these line 
buffers. Picture Book will display only this number of characters on 

5 



each line. The other arguments in LAYOUT specify the number of pages 
and their size. Picture Bopk converts al:J_ tliese. arguments to modulo 
128 values so that the Book created may contain a maximum of 127 pages 
of any type and pages a maximum of 127 lines long. Picture Book 
always creates at least one page of each type and makes all pages at 
least one line long, even for 0 arguments in LAYOUT. If the argument 
G is a O, Picture Book produces a book whose tables display the 
standard 96 ASCII characters. If the argument is a 1, Picture Book 
produces a book whose tables display a set of special characters, 
including Greek characters and some special symbols. Picture Book 
does not allow mixing of the two sets. 

The layout routine creates the Book from a pool of inches. Each page 
or buffer requires a number of these inches depending on its size. 
The number of inches available to the user equals the size of core 
minus 1250, approximately. The· Layout function returns a value, 
modulo 4096, equal to the number of inches left over or, on overuse, 
puts in core a negative value indicating overuse. When overuse occurs 
Picture Book will reset the Book to its original layout. The 
following formula calculates the amount of core a layout will require: 

INCHES=[V * CHARS + 3 * PICS * PLINES] + FIGS * FLINES + GRAPHS * 
GLINES + TABLES * TLINES + 2 * (PICS + FIGS + GRAPHS + TABLES) + 
3 * (V + PICS + FIGS + GRAPHS + TABLES) 

The last two elements indicate overhead per page: 2 words for each 
index entry, 3 words for the margin between each page and text line. 
A program may overwrite a margin, thus using it for graphics data. 
The user calls LAYOUT only once, at the start of the program, to set 
up the graphics system. Subsequent calls to LAYOUT will re-layout the 
system, clearing all old information. 

2.1.1 The Page Types 

PICTURES 

Pictures display long vectors and absolute points both visible and 
invisible. They also contain all subpage calls. Each picture line 
has an associated graphics mode. Picture lines require 3 inches each. 

FIGURES 

Figures display short vectors and relative points. Both of these have 
the same data format. Therefore, the user can display a figure either 
as a set of points or as a set of vectors, depending upon the mode of 
the subpage call. Figure lines require 1 inch each. 

GRAPHS 

Graphs display point plotting. The axis of plot depends on the type 
of call, the graph increment depends on the current graph increment in 
effect at the time of call. Graph lines require 1 inch each. 

TABLES 

Tables display characters at 2 characters per line. 
require 1 inch each. 

6 

Table lines 



Example: 

To lay out the Book the user enters the following: 

CALL LAYOUT (10,72,20,30,2,20,1,100,5,10,0) 

This creates a Book consisting of: 

10 lines of scrolling, 72 characters long 
20 Pictures, 30 lines long 
2 Figures, 20 lines long 
1 Graph, 100 lines long 
5 Tables, 10 lines long, with ASCII characters 

SCALE(Xl,X2,Yl,Y2) 

This sets the scaling of the screen, setting its lower left 
coordinates to (Xl,Yl) and its upper right coordinates to (X2,Y2). 
Changing the scaling does not affect graphics already produced. It 
only determines the size of future graphics. Original scaling is 
(O.,o.,o.,o.) so the user must call SCALE before doing scaled 
graphics. 

Example: 

THEEND 

CALL SCALE (-l00.,-100.,lOO.,lOO.) 

Scale the screen, using -100.,-100. as the coordinates 
for the lower left hand corner of the screen and 
100.,100. as the coordinates for the upper right hand 
corner of the screen. This means that all graphics that 
enter the book from this time on will do so relative to 
these coordinates. A call to scale does not affect graphics 
already in the book. 

This subroutine requests that Picture Book reset the entire system to 
its original state, which consists of 32 lines of VT06 simulation, 72 
characters long1 figures, graphs, and tables, 1 each, 1 line long, and 
the remainder of the available inches filled with pictures 100 lines 
long (about 20 in an SK system). The applications program typically 
requests this subroutine just before it exits. The user may also 
reset the Book directly from the keyboard by typing CT:RL/R (depress 
the R key while also depressing the CT:RL key). 

Ex~ple: 

CALL THEEND 

Reset the Book to its original layout, erasing everything 
currently in the Book as well as all I/O displayed on the screen. 

2.2 Drawing the Picture 

The Picture Book subroutines_ that determine where data will enter a 
page follow: 

7 



OPENP(PAGE) ,OPENF(PAGE) ,OPENG(PAGE) ,OPENT(PAGE) 
MARKP(LINE) ,MARKF(INCH) ,MARKG(INCH) ,MARKT(INCH) 

A table of pointers to currently open pages parallels the Table of 
Contents in the Picture Book code. It keeps track of the currently 
open page in each chapter. There are always 4 open pages, 1 for each 
chapter. A table of book markers parallels the index. For each open 
page, this table contains a pointer to where the next piece of data 
for this page will go. Each page has its own marker. The markers 
originally point to the start of each page, line O. But every time a 
piece of data enters a page, Picture Book updates the page's marker to 
point to the next free line. The user may set the open page and the 
markers using the above subroutines. With OPENP(S), for instance, 
Picture Book enters a pointer to Picture 5 in the open table. When 
MARKP(23) is specified, Picture Book enters a pointer to line 23 of 
the currently open Picture in the marker table. The next datum 
directed toward a Picture such as a CALL VECTOR will go in Picture 5, 
line 23. 

Example: 

OPENP(4) 

Make Picture 4 the currently open picture. The next entry 
directed toward a picture will enter Picture 4 in the line 
indicated by Picture 4's marker. 

OPENF(2) 

Make Figure 2 the currently open figure. 

OPENG(lOO) 

Make Graph 100 the currently open graph. If the Book does not 
contain Graph 100, ignore the request. 

) 

OPENT (129) 

Since OPEN commands take arguments modulo 128, this conunand makes 
Table 1 the currently open table. 

MARKP ( 5) 

Set the marker for the currently open picture to point to line 5. 
The next entry directed toward this picture will enter line 5. 
Its marker will then point to line 6. 

MARKF (0) 

Set the marker of the currently open figure to line O of that 
figure. 

MARKG(lOO) 

Set the marker of the currently open Graph to line 100. If the 
graphs in the Book have 100 lines (i.e., their last line is line 
99) set the current graph's marker to the margin between this 
graph and the next graph. If the graph has 99 lines, set the 
current graph's marker to line 0 of the next graph. If the 
currently open graph is the last graph in the Book and if it has 
fewer than 100 lines, set its marker to line o. 

8 



MARKT (2) 

Set the marker of the currently open Table to line 2 which 
contains the 3rd character pair. 

VECTOR(X,Y) ,MOVE(X,Y) ,POINT(X,Y) ,SET(X,Y) 

The above routines enter graphic data in pictures, taking each 
argument plus or minus modulo 1024 screen units. Picture Book will, 
if the user specifies the margin of the page as the current line, 
enter data in it, thus overwriting the margin. This procedure 
combines the two pages previously separated by the margin. 

Example: 

CALL VECTOR(l00.,100.) 

In the line pointed to by the marker of the 
Picture, draw a vector of coordinates 100.,100. 
current scaling of the screen. If the marker was 
margin, entering this vector will combine the 
with the next one. 

CALL MOVE(l024.,-lOO.) 

currently open 
relative to the 
pointing to the 
current picture 

Assuming a scaling of (0.,1023.,0.,1023.) the invisible vector in 
this command has an X length of 0 since Picture Book takes 
Vector, Mode, Dot, and Set arguments modulo the size of the 
screen. 

CALL DOT(O. ,O.) 

For a scaling of (-100.,-100.,100.,100.) draw a dot at the center 
of the screen. 

CALL SET(-100.,100.) 

This will enter an invisible absolute point in the current 
picture. If the negative argument refers to a point off the 
screen relative to the current scaling, the point produced will 
result from a wrap around. 

BITS(BLINK,INTENSITY,TYPE,SENSITIVITY) 

BITS determines the mode of the next picture entry. When Picture Book 
receives this command it saves for later use the graphics modes 
indicated in the arguments. Then when it next receives a command to 

. add data to a picture (including a subpage call) , it adds to the mode 
word of this line the bits it has set up. The values of the 
arguments determine the mode as follows: 

BLINK 0 
l 

INTENSITY 0 
TYPE 0 

l 
2 
3 

SENSITIVITY 0 
l 

no blink 
blink 
(dirrnnest) to ?(brightest) 
solid 
long-dash 
short-dash 
dot-dash 
non-light pen sensitive 
light pen sensitive 

9 



Picture Doak ignores a negative argument. Thus, the next datum to 
enter a Picture for that particular mode takes on its setting from the 
previous line. 

The user can draw every line with a different mode, or call the same 
figure first blinking, then not blinking, or change the mode of an 
entire Picture by changing the mode of the first datum in the Picture. 
Data entered without a specified mode takes on the mode of the 
previous entry in the Book. 

Example: 

CALL BITS(0,-1,0,l) 
CALL VECTOR(l00.,100.) 

In the currently open Picture, enter an unblinking, dot-dash, 
light pen sensitive vector which will take on the intensity of 
the previous line in the picture. 

JOT(X,Y) ,NOJOT(X,Y) 

These routines enter a word of data in a Figure, taking each argument 
plus or minus modulo 64 screen units. It may also overwrite the 
margin that separates figures, but not the margin on the last Figure 
in the system, i.e., the user may not combine pages of different 
types. 

Example: 

CALL JOT(l0.,10.) 

Enter a jot in the currently open Figure at the line indicated by 
its marker, its length relative to the current scaling. 

CALL NOJOT (-65. 1 65.) 

Assuming a screen 
coordinates modulo 
Figure. 

scaled to 
64, draw 

screen 
a jot 

units, since jots have 
of (-1,1) in the current 

PLOT(Z) 

The PLOT subroutine enters the coordinate 
graph. For z negative, it will set the 
64. z is an integer value, modulo 1024. 
screen units. 

Examples: 

CALL PLOT (-10) 

z in the currently open 
graph increment to z, modulo 
It always refers to unscaled 

Set graph increment for all graphs in the book to 10 unscaled 
screen uni ts. 

CALL PLOT ( 15 0) 

In the currently open graph in the line indicated by its marker 
enter a point of coordinate 150 unscaled screen units. 

10 



TEXT ( N 1 !ARRAY) 

The TEXT subroutine enters the first N characters in the array into 
the currently open Table, two characters per line, incrementing the 
marker as necessary. Each array element must contain one character. 
The markers for Tables always point to the next free character in the 
Table. However, using the MARKT routine, the user may only set the 
marker to a line and, thus, may not point it to the even numbered 
characters. Text will enter ASCII characters in a Book created for 
ASCII characters. For a Greek book, the text routine will enter Greek 
characters: an "A" in the array will produce an alpha, a "B" will 
produce a phi , etc. 

Example: 

DIMENSION IARRAY(4) 
DATA IARRAY/'A','B','C','D'/ 
CALL TEXT(3,IARRAY) 

Write the characters 'ABC' starting at the marked character of 
the currently open Table. The marker for this table will 
automatically increment 1 character space as each characte.r 
enters. 

ERASEP,ERASEF,ERASEG,ERASET 

These routines erase the currently open Picture, Graph, Figure, and 
Table, respectively, starting at its marker and continuing until the 
first unwritten margin. 

Example: 

ERASEP 

Starting at the line indicated by the marker in the currently 
open Picture, erase the remainder of the Picture until the next 
unwritten margin. 

CALL ERASEG 

Starting at the line indicated by the marker in the currently 
open Graph, erase each line until the next unwritten margin. 

CALL ERASEF 

As above, erase the currently open Figure. 

CALL ERASET 

As above, erase the currently open Table starting at the marked 
character. 

HIT(PAGE,LINE) ,UNHIT(PAGE,LINE) 

HIT and UNHIT return the picture and line number of the last light pen 
hit into PAGE and LINE respectively. If the hit occurred on a Figure, 
Graph, or Table, the value returned will point to the line in the 
picture that requested the hit page's display. On UNHIT Picture Book 
will wait for a hit before returning the picture and line number. 

it• 



Example: 

WAIT 

CALL HIT(I,J) 

Return the picture number and the line number of the last light 
pen hit in the arguments I and J, respectively. 

CALL UNHIT(I,J) 

Wait for the next light pen hit and then return the picture and 
line number hit. If the user interrupts a program while it is 
waiting for a light pen hit, the user must type CTRL/R to tell 
Picture Book to exit from the UNHIT routine. 

WAIT waits for its own execution by Picture Book. Calling many erase 
subroutines without waiting for completion of each one may cause 
Picture Book's input buffer to overflow (this rings the GT40's bell) 
since erasing typically takes a long time. Inserting a WAIT after an 
erase ensures no output will go to Picture Book until the erase 
completes. 

Example: 

CALL WAIT 

Wait until Picture Book has completed the previous request. 

CURSOR(! ,J) 

The cursor, a blinking rectangle on the GT40 screen, indicates where 
the next data entry will appear on the screen. I and J can have the 
values +l, O, or -1. 

I=-1 moves the cursor down a line 
I=+l moves the cursor up a line 
I= 0 moves the cursor neither up nor down 
J=-1 moves the cursor left a space 
J=+l moves the cursor right a space 
J= 0 moves the cursor neither right nor left 

Example: 

CALL CURSOR(-1,1) 

Move the cursor one line down and one character space right. 

IOTA(I) 

IOTA is a function which handles the GT40 clock. The arguments may be 
-1, O, or 1. 

+l means start the GT40's clock ticking at l/60th second. 
0 means return the value of the timer, modulo 4096. 

-1 means stop the clock and clear the timer. 

Example: 

I=IOTA(O) 

12. 



Set I equal to the current value of the GT40's clock, modulo 
4096. 

CALL IOTA ( 1) 

Start the GT40's clock 

CALL IOTA(-1) 

Stop the GT40's clock 

ARC(D,IS,A,T,E) 

ARC draws an arc in the currently open figure. The arguments are: 

D sets the diameter. 
IS sets the number of jots used to approximate the arc. 
A specifies the arc in radians. 
T specifies the tilt from the horizontal in radians. 
E specifies the Y diameter as a fraction of the X diameter. 

Example: 

BELL 

CALL ARC(50.,10,3,14.,0.,.75) 

Starting at the marked line in the currently open Figure, draw 
ten Jots to form an arc comprising half of an ellipse whose Y 
diameter is .75 of its X diameter. The X diameter of the ellipse 
will lie horizontally (rotated 0 radians from the horizontal). 

BELL rings the GT40's bell. 

Example: 

CALL BELL 

Sound the GT40's bell. In PDP-10 FORTRAN this subroutine will 
also stop the program. 

LINEX(PAGE,LINE) ,LINEY(PAGE,LINE) 

The LINEX and LINEY functions return the X and Y coordinates (in 
screen units), respectively, of the picture and line number specified. 
Both subroutines will return -4095 when the address specified contains 
a subpage call. These functions can also return the coordinates of 
the last light pen hit. Whenever a light pen hit occurs, Picture 
Book's light pen interrupt routine takes the coordinates of the hit 
and places them in Picture O, line O, making sure not to alter the 
visibility or mode of the datum there. Picture O, line O, usually 
contains a mode word for a vector or point. Thus a light pen hit 
makes this vector or point go directly to the location of the hit. 
The user can thus draw a tracking cross directly following Picture O, 
line 0 and make it light pen sensitive. Then, every time a hit occurs 
on the cross, the cross automatically moves because the invisible 
vector that determines its starting location changes. The program can 
also insert a subpage call following the invisible vector in Picture 
O, line O, so that an entire page will move on a light pen hit. 
LINEX(O,O) and LINEY(O,O) can be used to pick up the coordinates of 
the last light pen hit for use by the program. 

13 



Example: 

I=LINEX( 0 I 0) 

Set I equal to the x-coordinate of the datum in Picture O, line O 
in screen units, not scaled units. If this line contains a 
subpage call rather than a vector or dot, return a value of 
-4095. If this line does contain a vector and if a light pen hit 
has occurred, the vector will reach the point of the last hit. 
Thus, LINEX will return,_in screen units, the X-coordinate of the 
hit. 

J=LINEY(lO,l) 

Set J equal to the Y-coordinate in screen units of the vector or 
dot in Picture 10, line 1. 

vx I (I) , VY (I) , DX ( I) I DY (I) 

VX and VY convert the absolute units for a vector into scaled units. 
DX and DY do the same for dots. 

Example: 

X=VX (LINEX ( 0 ,O)) 

Assuming Picture O, line 0 contains a vector, set X equal to its 
X length in scaled units. 

Y=VY (J) 

Assuming J contains a 
units, convert this 
scaled Y-axis. 

X=DX (LINEX ( 4, 5) ) 

value 
value 

representing a length in screen 
in Y to an equal length along the 

Assuming Picture 4, line 5 contains a dot, set X equal to its X 
coordinate in scaled units. 

Y=DY(LINEY(4,5)) 

Set Y to the scaled Y coordinate of the dot in Picture 4, line 5. 

OUTCH(I) 

OUTCH simply outputs I as a 7-bit quantity. The user who wishes to 
send the ASCII graphics string directly without having the FORTRAN 
routines perform the encoding for hiM, may e~ploy OUTCH to do so. 

Example: 

CALL OUTCH(4) 

Output the value 4 to Picture Book. 4 is the equivalent of 
CTRL/D which is the control character which indicates graphic 
data follows. 

14 



2.3 Calling a Picture to the Screen 

PICTUR(PAGE,LINE) ,VECFIG(PAGE,LINE) ,DOTFIG(PAGE,LINE), 
XGRAPH(PAGE,LINE) ,YGRAPH(PAGE,LINE) ,TABLE(PAGE,LINE) 

Picture Book displays automatically only Picture O. If a program 
writes in Picture O's margin, combining it with the next picture, then 
both will display. But to display any other page in the system, the 
applications program must enter a subpage call in a Picture already on 
display. The subroutines above request Picture Book to insert a 
subpage call. All subpage calls enter the current line of the 
currently open Picture. As the arguments imply, a Picture can request 
execution of another page starting anywh~re on the page. The subpage 
will execute up until the first unwritten margin and then return to 
the line following the line of the call. A subpage call may request 
execution of any Picture,Figure, Table or Graph; however, it may only 
request execution of a Picture starting at any picture line further 
ahead in the book than itself. This eliminates the possibility of a 
picture calling itself infinitely. A called Picture may, however, 
call a second Picture, and the second may call a third. This may 
continue to a depth of 50 calls. 

Example: 

CALL PICTUR(5,4) 

In the line pointed to by the marker of the currently open 
Picture, enter a subpage call to Picture 5 starting the execution 
of Picture 5 at line 4. 

CALL XGRAPH(O,O) 

In the current picture enter a call to Graph 0 starting at line 0 
displaying this graph along the X (horizontal) axis. 

CALL YGRAPH(O,O) 

Enter a call to Graph 0 from line 0 displaying this graph along 
the Y (vertical) axis. 

CALL VECFIG(25,4) 

Assuming that the book contains only 20 figures, Picture Book 
will ignore this request. 

CALL DOTFIG(O,O) 

In the line marked by the marker of the currently open 
enter a subpage call to Figure 0 starting at line O. 
Figure 0 as dots. 

CALL TABLE(5,15) 

Execute Table 5 starting at line 15. 

3.0 SAMPLE APPLICATION PROGRAMS 

figure, 
Display 

The following two sample application programs are examples of calling 
the Picture Book FORTRAN subroutines in an application program. 

15 



3.l POLY: 

The first application program is POLY1 this program first displays a 
list of light pen sensitive numbers across the top of the GT40 screen. 
When the user touches the light pen to one of the numbers, a polygon 
with that number of sides appears on th~ screen, and the user may then 
move the polygon across the screen. Typing carriage return will 
stabilize this polygon, allowing the user to pick up a new polygon. 

c 
c 
c 
c 
c 
c 
c 

c 

c 
c 
c 

c 
c 
c 

c 
c 

c 
c 

c 
c 

c 

c 

c 
c 
c 

COMMON/MARKS/MP,MF,MG,MT 

THIS PROGRAM ALLOWS THE USER TO 
DISPLAY A POLYGON OF UP TO 9 SIDES 
BY TOUCHING A DISPLAY LIST OF 
NUM~ERS ON THE SCREEN WITH THE 
LIGHT PEN AND THEN TO MOVE THE 
POLYGON TO ANY LOCATION ON THE 
SCREEN AND LEAVE IT THERE 

MARKS CONTAINS THE COMMON MARKERS 
CALL SCALE(0.,1023.,0.,1023.) 

SCALE THE SCREEN TO CORRESPOND TO 
SCREEN UNITS SO THAT LINEX VALUES 
NEED NOT BE UNSCALED 

CALL LAYOUT(l0,72,1,127,20,20,0,0,7,l,O) 

CALL MARKP ( 3) 

CALL BITS(0,7,0,l) 

DO l I=3,9 

CREATE A BOOK WITH 20 FIGURES AND A 
ONE LINE TABLE FOR EACH ENTRY IN 
THE DISPLAY LIST 

STARTING AT LINE 3 OF PICTURE O, 
ENTER CALLS TO THE SEVEN TABLES 

MAKE THESE CALLS LIGHT PEN 
SENSITIVE AND BRIGHT 

CALL SET(FLOAT((I-2)*100) ,700.) 

CALL TABLE(I-3,0) 

CALL OPENT (I-3) 

CALL OUTCH(4) 

CALL OUTCH(81) 

FIRST SET LOCATION OF THI·S ENTRY ON 
THE SCREEN 

ENTER THE CALL 

THEN OPEN THE CORRESPONDING TABLE 

AND INSTEAD OF USING 'CALL TEXT', 
OUTPUT THE ASCII STRING THAT TEXT 
WOULD OUTPUT FIRST OUTPUT· CTRL/D 

16 



c 

c 
c 

c 
1 

c 

c 

c 
2 
c 
c 

c 
c 

c 

c 
c 

c 

c 

c 
c 

c 
c 
c 

c 

c 
c 

c 
c 
c 
c 
c 

c 

c 
c 
c 
10 

c 

CALL OUTCH(l) 

CALL OUTCH(48+I) 

CONTINUE 
CALL BITS(0,5,0,0) 

CALL MOVE ( 0 • , 0 • ) 

IFIG=O 

MARK=MP 

CALL MARKP (1) 

CALL MOVE(O. ,O.) 
CALL MOVE(O.,O.) 
CALL MARKP (0) 

CALL BITS(0,5,2,1) 

CALL MOVE ( 0 • , 0 • ) 

CALL UNHIT (I ,J) 

J=J/2+1 

R=FLOAT(J)*lO. 

CALL OPENF(IFIG) 

THEN THE DECIMAL EQUIVALENT OF Q 

THEN INDICATE 1 CHARACTER WILL 
FOLLOW 

NEXT COMES THE DIGIT 

NOW TURN OFF SENSITIVITY 

IN THIS DUMMY ENTRY IN THE PICTURE 

SET COUNTER TO 0 

AND SAVE THE CURRENT VALUE OF THE 
PICTURE MAKER 

NOW CLEAR A COUPLE OF LINES BY 
ENTERING INVISIBLE MOVE 0 LONG 

RESET THE MARKER TO THE START OF 
THE PAGE 

AND SET LIGHT PEN SENSITIVITY ON 
AND SHORTDASH 

CLEAR OUT PICTURE O, LINE O, WHERE 
L;lGHT PEN HIT COORDINATES WILL 
ENTER 

NOW WAIT FOR A HIT ON THE DISPLAY 
LIST 

. DETERMINE THE DIGIT HIT FROM THE 
LINE NUMBER THAT CAUSED THE HIT 

AND LET THE POLYGON'S SIZE ALSO 
DEPEND ON THE NUMBER OF SIDES IT 
HAS 

NON OPEN THE NEXT FIGURE 
CALL ARC(R*2.,J,6.28,0.,1.) 

CALL MOVE ( - R, 0 • ) 

CALL VECFIG(IFIG,O) 

READ(5,10) 

FORMAT(lX) 
I=LINEX(O,O) 

AND DRAW AN ARC IN IT OF J SIDES, 
I.E., A POLYGON 

DRAW AN INVISIBLE VECTOR TO OFFSET 
THE START OF THE POLYGON FROM THE 
END OF THE LIGHT PEN COORDINATE 
VECTOR SO THAT THE POLYGON CAN MOVE 
IN ANY DIRECTION 

AND DISPLAY THE NEW FIGURE 

NOW WAIT FOR A CARRIAGE RETURN 
WHILE THE USER MOVES THE POLYGON 
AROUND THE SCREEN 

WHEN IT HAPPENS, READ THE CURRENT 

17 



c 
c 
c 

c 
c 

c 
c 

c 
c 
c 

c 

c 

J=LINEY ( 0, 0) 
CALL MARKP (MARK) 

COORDINATES OF THE LIGHT PEN 
VECTOR, I.E., THE CENTER OF THE 
POLYGON 

MARK THE PICTURE USING THE 
SAVED MARKER 

CALL SET(FLOAT(I)-R,FLOAT(J)) 

CALL VECFIG(IFIG,O) 

IFIG=IFIG+l 

IF(IFIG.LE,19)GOTO 2 

STOP 
END 

ENTER A SET TO 'l'HE CORNER OF THE 
POLYGON 

AND CALL THE FIGURE FROM THERE, 
ALSO, THUS OVERLAYING THE SHORTDASH 
POLYGON WITH A SOLID ONE 

POP THE COUNTER 

AND DO UP TO 20 FIGURES THIS WAY 

3. 2 CLOCK 

CLOCK plots a sine wave by projecting the y coordinate of a radius of 
a circle onto a set of axes. 

c 
c 

c 
c 
c 
c 

c 
c 
c 
c 
c 
c 
c 
c 
c 

INTEGER TIME (4) 
TIME CONTAINS ONE ASCII CHARACTER 
PER ARRAY ELEMENT 

DATA 'rIME/'T', 'I', 'M', 'E' / 
CALL SCALE(0.,100.,0.,lOO.) 

FIRST, SCALE THE SCREEN SO THAT THE 
LOWER LEFT HAND COORDINATES ARE 
(O.,O.) AND THE UPPER RIGHT HAND 
COORDINATES ARE (100., 100.) 

L=LAYOUT(l0,72,2,20,l,l00,2,l27,2,lO,O) 
LAYOUT THE BOOK TO CONTAIN 2 
PICTURES, 1 FIGURE, 2 GRAPHS, AND 1 
TABLE. 
NOTE THAT THE GRAPHS ARE 127 LINES 
LONG, THE MAXIMUM LENGTH FOR ANY 
PAGE. WRITING IN THE 128TH LINE, 
AS THIS PROGRAM DOES, EFFECTIVELY 
COMBINES THE PAGES INTO ONE LONGER 
PAGE 

18 



c 

c 

c 

c 

c 

c 

c 
c 

c 
c 
c 
c 

c 

c 
c 
c 

c 

c 

c 

c 

c 
c 
c 

c 

c 

c 
c 

c 
c 
c 

c 

c 

c 

IF( (L.LT.O)STOP 

CALL MOVE ( 0 • , 0 • ) 

CALL SET(5.,25.) 

CALL DOTFIG(O,O) 

IF NOT ENOUGH CORE, STOP 

ZERO OUT LINE 0 OF PICTURE 0 

AND PUT AN ABSOLUTE POINT IN LINE 1 

CALL 
CALL FIGURE 0 AS A SERIES OF DOTS 

ARC(20.,50,6.28,0.,l.) 

CALL DOT(l5.,25.) 

CALL VECTOR(0.,10.) 

CALL BITS(0,2,2,0) 

CALL VECTOR(lOO.,O,) 

CALL BITS(0,5,0,0) 

CALL SET(30.,25.) 

CALL PICTUR(l,O) 

CALL SET(30.,25.) 

CALL XGRAPH ( 0 ,O) 

CALL SET(70.,22.) 

CALL TABLE(O,O) 

CALL OPENP(l) 

CALL VECTOR(75.,0.) 

CALL MOVE(-75.,10.) 
CALL VECTOR(0.,-20.) 

CALL TEXT(4,TIME) 

CALL OPENP(O) 

STEP=3.1415/50. 

R=lO. 

CALL PLOT (-7) 

AND IN FIGURE O, THE CURRENTLY OPEN 
FIGURE, DRAWA CIRCLE OF 50 SIDES 

NOW DRAW THE CENTER OF THE CIRCLE 

AND A VERTICAL RADIUS 

MAKE THE NEXT 
SHORTDASH 

ENTRY DIM AND 

DRAW A VECTOR WITH THESE MODES THAT 
GOES OFF THE SCREEN HORIZONTALLY TO 
THE RIGHT, IT WILL START WHEREVER 
THE RADIUS ENDS. 

NOW BRIGHTEN UP THE NEXT ENTRY 

DRAW AN INVISIBLE ABSOLUTE POINT, 
IT WON'T MOVE WHEN THE RADIUS 
MOVES. 

AND CALL PICTURE 1 

AGAIN SET AN ABSOLUTE POINT 

AND CALL THE GRAPH 

ONCE AGAIN SET A POINT 

AND CALL THE TABLE. NOW PICTURE 0 
CONTAINS A NUMBER OF CALLS TO PAGES 
NOT YET DRAWN INTO. 

OPEN PAGE 1 

AND IN IT DRAW A SET OF AXES 

THESE WILL DISPLAY SINCE PICTURE 0 
CALLS PICTURE 1 

IN THE OPEN TABLE, TABLE O, WRITE 
'TIME' 
IT, TOO, WILL DISPLAY 

NOW REOPEN PICTURE 0 

SET AN INCREMENT 1/100 OF 
DEGREES 

360 

SET THE RADIUS OF THE CIRCLE TO 10 

19 



c 

c 

5 

c 
c 
c 
c 

c 

c 

DO 5 I=l,10 

CALL CURSOR(-1,0) 
CONTINUE 
DO 10 I=l,100 

THETA=STEP*FLOAT(I) 

X=R*SIN (THETA) 

Y=COS(THETA) 

SET THE GRAPH INCREMENT 
(UNSCALED) 

TO 

AND MOVE THE CURSOR DOWN 10 LINES 

THIS LOOP WILL MOVE THE RADIUS 
AROUND THE CIRCLE LIKE THE HAND OF 
A CLOCK A.~D PLOT ITS Y COORDINATE 
ON THE GRAPH 

THETA CONTAINS THE ANGLE 

X CONTAINS ITS X COORDINATE 

C TAKE TIME OUT TO WRITE THE COSINE 
C OF THETA 

WRITE ( 5 I 10 0) y 
100 FORMAT('+' ,'Y=' ,F8,5) 

Y=Y*R 
C THEN CALCULATE THE Y COORDINATE OF 

THE RADIUS 

c 
c 

c 

c 

c 

c 
10 

CALL MARKP ( 4 ) 

CALL VECTOR (X, Y} 

HT=Y+25. 

IHT=HT*l024./lOO. 

CALL PLOT ( IHT) 

CONTINUE 
CALL BELL 

POINT PICTURE O'S MARKER TO LINE 4 
WHERE THE RADIUS WAS DRAWN 

AND REDRAH THE RADIUS 

NOW COUVERT ITS Y COORDINATE TO AN 
UNSCALED QUANTITY BY ADDING THE Y 
COORDINATE OF THE CENTER OF THE 
CIRCLE 

AND CHANGING THE SCALING 

PLOT THE RESULTING VALUE 

7 

c RING THE BELL, WHICH ALSO STOPS THE 
PROGRAM. 

STOP 
END 

4. 0 THE PICLET LANGUAGE 

PICLET is a simple, on-line graphics language which allows its user to 
become acquainted with Picture Book, create siraple pictures, or alter 
pictures drawn by a FORTRAN program. 

PICLET requests input by typing 'NEXT'. 

The user may then enter a command letter followed by a set of 
arguments each on a separate line. PICLET automatically executes the 
request when it has received enough arguments for the function 
indicated by the identification letters. 

The table below contains the command letters available and their 
arguments. 

All arguments are integers and refer to a screen scaled in screen 
units. 

20 



Command 

A(Axis) 

B(Bits) 

C (Call) 

D(Dot) 
E(Erase) 

F(Figure) 
G (Graph) 
H(Hit) 

I(Inch) 
J(Jot) 
K (Karacter) 
L(Line) 
M(Move) 
N(Nojot) 
O (Open) 

P(Picture) 
Q (Quote) 

R(Reset) 
S(Set) 

T(Table) 
U(Unhit) 

V(Vector) 
W(Wait) 

X(X-coordinate) 

Y(Y-coordinate) 

Z(Z-axis) 

( (arc) 

PICLET Conunands 

Other Input 

nl 

nl,n2,n3,n4 

(P,D,V,X,Y, ORT) 

+nl,n2 

X,Y 
(P,F,T,G) 

nl 
nl 

nl 
X,Y 
nl 
nl 
X,Y 
X,Y 
nl,n2,n3,n4,n5, 
n6,n7,n8,n9,nl0,nll 

nl 
nl,cl,c2, ••• cnl 

X,Y 

Result 

sets marker in graph at line 
nl. 
sets mode of next data 
[same args as subroutine BITS] 
calls picture, dot-figure, 
vec-f igure 
x-graph,y-graph,or table nl, 
starting at line n2 of 
that page. 
absolute point at (X,Y) 
erase picture, figure, 
table or graph. 
open figure nl. 
open graph nl. 
return picture number and line 
number of 
last light pen hit. 
marks line nl of open figure. 
draw a jot of (X.Y). 
mark open table at line nl. 
mark open picture at line nl. 
invisible vector (x.y). 
invisible jot (X,Y) 
layout jot (X,Y) 
(same args as subroutine 
LAYOUT) Returns number of 
inches left over. 
open picture nl 
insert nl characters 
in current table 
reset the book 
invisible absolute point at 
x,y 

nl open table nl 
wait for next light pen hit, 
then return picture and line 
hit. 

X,Y vector (x,y) 
wait this just returns a 
carriage return/line feed 
nl,n2 prints x-coordinate of 
picture nl, line n2 
nl,n2 prints y-coordinate of 
picture nl, line n2 

Z plots Z in open graph 
or for Z negative, set 
graph increment. 

diameter, sides,arc, draws an arc in current 
tilt,ellipse figure. Arguments are all 

integer. Arc and tilt in 
degrees, ellipse in percent. 

21 



4.1 PICLET Examples 

This series of commands illustrates the interaction of PICLET and the 
user. 

ENTRIES 

NEXT 
0 
20 
20 
10 
30 
1 
20 
1 
2 
20 
20 
0 

NEXT 
v 
100 
100 

NEXT 
D 
200 
200 

NEXT 
c 
v 
0 
0 

NEXT 
J 
30 
30 

NEXT 
J 
30 
0 

NEXT 
c 
x 
0 
0 

NEXT 
z 
-10 

NEXT 
z 
100 

EXPLANATION 

LAYOUT (OPEN) THE BOOK 

(CLEARS THE. SCREEN AND 
STATES THE NUMBER OF INCHES 
REMAINING) 

DRAW A VECTOR 

DRAW A DOT 

CALL VEC-FIGURE 

ENTER A JOT 

ENTER A JOT 

CALL X GRAPH 

SET GRAPH INCREMENT 

ENTER A PLOT 

22 



NEXT 
z ENTER A PLOT 
200 

NEXT 
z ENTER A PLOT 
250 

NEXT 
( 
100 US;J:NG ARC, 
10 
360 DRAW AN ELLIPSE 
0 
150 

NEXT 
R RESET 

23 





APPENDIX A 

ASCII TELECOMMUNICATION CODE 

A table describing the ASCII code that the FORTRAN subroutines send to 
the GT40 follows. The user may send this code a byte at a time using 
CALL OUTCH(N), where N contains a 7-bit value. A CTRL/D (value=4), 
must precede each graphics command. An Identification letter as shown 
in the following chart follows the CTRL/D, then the arguments, as many 
as indicated in the table. 

All numeric arguments represent single values except those of VECTOR, 
SET, MOVE, DOT, and PLOT where each pair of arguments represents a 
14-bit quantity high byte first e.g., 177 followed by 177 yields the 
quantity -1. BITS, JOT, NOJOT, and IOTA take 1-byte, 7-bit, arguments 
ranging from the negative value 100 to the positive value 77. The 
single byte arguments of LAYOUT, OPENn, MARKn, LINEn, and the subpage 
calls represent positive values. In other words, 177 represents the 
decimal value 127. 

Some routines return values, in which case FORTRAN or MACRO calling 
routines must wait for return of a 4-digit octal value encoded in 
ASCII (i.e., 65 = 1 5 1 ), sometimes preceded by a minus sign (-55), and 
followed by a carriage return. 

FORTRAN routines may input using a FORTRAN READ with octal format 
specifications or may use CALL INNUM(I) to return the value in I or 
may CALL INCH(I) to return each byte separately. 

For example, to LAYOUT the BOOK send this string: (octal values) 

4, 117, 6, 10, 40, 20, 5, 5, 1, 100, 3, 10, 0 

then input a 4-digit octal number. 

This does what CALL LAYOUT(6, 64, 8, 16, 5, 5, 1, 64, 3, 8, 0) does. 

NOTE 

The second argument in the ASCII string 
for LAYOUT specifies character pairs, 
not characters as in the subroutine 
call. 

25 



PICTURE BOOK CODE 

In the following table, N in the arguments column equals 7 bits. 

Name 

LAYOUT 
p F 

Function 

opens the book 
G T 

(V,C,P,L,P,L,P,L,P,L,G) 
BITS mode 
0-1 0-7 0-3 0-1 
(B I T S) 
ARG=-1 MEANS NO-ENABLE 
OPEN(P) open picture 
OPENG(P) open graph 
OPENT(P) open table 
OPENF(P) open figure 
MARKP(L) at line in picture 
MARKG(I) at inch in graph 
MARKT(C) set char in table 
MARKF(I) set char in figure 
PICTUR(P,L) call picture 
XGRAPH(P,L) call graph 
YGRAPH(P,L) call graph 
TABLE(P,L) call table 
DOTFIG(P,L) call figure 
VECFIG(P,L) call figure 
VECTOR(X,Y) rel. vector 
DOT(X,Y) abs. point 
MOVE(X,Y) inv. vector 
SET(X,Y) inv. point 
TEXT(M,A) text, N chars 

ERASEP 
ERASEG 
ERAS ET 
ERASEF 
HIT(P,L) 
LINEX(P,L) 
LINEY(P,L) 
PLOT ( Z) 
THE END 
JOT(X,Y) 
NOJOT(X,Y) 
UNHIT (P ,L) 

WAIT 

IOTA (I) 

from array A 
erase picture 
erase graph 
erase table 
erase figure 
L.P. HIT 
read x-coordinates 
read y-coordinates 
plots 
resets 
writes in figure 
writes in figure 
does not return 
till LP hit 
waits for PB to 
execute it 
services the clock 

26 

Code 

Open 

B 

p 
G 
T 
R 
L 
A 
K 
I 
CP 
ex 
CY 
CT 
CD 
CV 
v 
D 
M 
s 
QM 

EP 
EG 
ET 
EF 
H 
x 
y 
z 
R 

u 

w 

I 

Argu­
ments 

Re-
~ 

ll*N Yes 

4*n 

n 
n 
n 
n 
n 
n 
n 
n 
2*n 
2*n 
2*n 
2*n 
2*n 
2*n 
4*n 
4*n 
4*n 
4*n 
m*n 

O*n 
O*n 
O*n 
O*n 
O*N Yes 
O*n Yes 
O*n Yes 
2*n 
O*n 
2*n 
2*n 
O*n Yes 

O*n Yes 

n Yes 



Examples: 

CALL OUTCH(4) 
CALL OUTCH ( 6 7 ) 
CALL OUTCH(68) 
CALL OUTCH(O) 
CALL OUTCH(S) 

This set of calls to OUTCH outputs the following octal string: 

4, 103, 104, o, 5 

which is CTRL/D followed by the ID letters c and D for CALL DOT-FIGURE 
and the numerics 0 and 5 for page o, line 5. 

The string 

4, 86, 1, 2, 177, 171 

draws a vector of coordinates 130, -7. It outputs ~ CTRL/D followed 
by 86, the ASCII equivalent of v. It then outputs the high byte of 
the x-coordinate, 1, followed by the low byte, 2, which form the value 
128+2 or 130. The next two bytes contain the Y coordinate as a 14-bit 
value, its highest bit set, indicating negativity. 





APPENDIX B 

COMMON MARKERS 

A FORTRAN common area labelled MARKS keeps track of the value of the 
markers so that the user can save the value of the marker in an array 
or variable just before writing into the line it points to. This 
allows him to later reset the marker to this saved value so that he 
can re-write the line previously modified. Common area MARKS consists 
of 4 integer variables: 

PICTURE-MARKER 
FIGURE-MARKER 
GRAPH-MARKER 
TABLE-MARKER 

i.e., COMMON/MARKS/MP,MF,MG,Ml' Will contain the figure marker in MF. 
Each common marker contains the marker for the currently open page of 
its type, but only if set correctly when the page is opened. Each 
addition to a current page increments its common marker by 1. Each 
call to a mark subroutine such as MARKP sets the marker to the value 
of the subroutine's argument. In the case of the table marker, 
however, the common marker points to the current character, not the 
current line. Since each line contains two characters, the user would 
have to divide the character marker by 2 to obtain the line currently 
marked. 

The user may set the common markers by writing into them when opening 
a new page, e.g., MP=5, or by marking a newly opened page using a 
MARKn subroutine. But if the user does not, when opening a new page, 
set the common marker of its type to the current marker for the new 
page, the common marker continues to contain the marker for the 
previously current page. 

Example: 

COMMON/MARKS/MP,MF,MG,Ml' 

M=MF 
DO 120 I=3, 10 
CALL MARKF ( M) 
CALL ARC(lOO.,I,6.28,0.,l.) 

120 CONTINUE 

This draws 7 closed polygons in the currently open figure1 each 
polygon having one more side than the previous one. For each 
pass through the loop, MARKF(M) resets the marker to the line 
where the first polygon started so that each polygon overwrites 
the previous polygon. M was set to the current value of the 
figure marker with M=MF. 

29 





APPENDIX C 

THE PICTURE BOOK LIBRARY (GLIB) 

The following list includes all the Picture Book subroutines. These 
subroutines collectively appear in the Picture Book Library (GLIB). 

SCALE 
vx 
VY 
DX 
DY 
CURSOR 
ARC 
LAYOUT 
OPENP 
OPENG 
OPE NG 
OPENT 
MARKP 
MARKF 
MARKG 
MARKT 
ERASEP 
ERASEF 
ERASEG 
ERASET 
BITS 
PICTUR 
VECFIG 
DOTFIG 
XGRAPH 
YGRAPH 
TABLE 

VECTOR 
MOVE 
DOT 
SET 
JOT 
NOJOT 
PLOT 
TEXT 
LINEX 
LINEY 
HIT 
UNHIT 
IOTA 
WAIT 
THEEND 
BELL 
INCH 
OUTCH 

31 





APPENDIX D 

CORE REQUIREMENTS 

Because of its design, Picture Book requires a minimum of core to 
implement. For instance, rather than requiring a separate file of 
subpictures in core, Picture Book allows the user to set up his own 
display file in Picture 0 of whatever dimensions he desires. And 
rather than having a separate header for each subpicture called which 
would specify the mode of that subpicture, Picture Book allows the 
user to set the mode himself in the subpicture call. In addition, 
Picture Book does not require a complicated light pen routine or one 
that must perform several operations such as displaying a tracking 
cross, connecting a subpicture, or returning coordinates of the last 
light pen hit. These and other Picture Book features limit the code 
to l-l/4K, leaving 2-3/4K of display file in a 4K system. 

33 





APPENDIX E 

THE GT40 CHARACTER SET 

The following table lists all the characters that the GT40 handles. 

7-bit code ASCII GT40 When preceded by 
(octal) Representation Keyboard Printing Shift-Out = 016 

000 NUL CTRL @ A 
001 SCH CTRL A Cl 

002 STX CTRL B cp 
003 ETX CTRL c ~ 

004 EOT CTRL D 0 
005 ENQ CTRL E 6. 
006 ACK CTRL F 1 
007 BEL CTRL G 
010 BS CTRL H Backspace II 
011 HT CTRL I (TAB) 1/J 
012 LF CTRL J (LF) Line Feed 
013 VT CTRL K 0 

014 FF CTRL L . . . 
015 CR CTRL M (CR) Carriage Return µ 
016 so CTRL N £ 
017 SI CTRL 0 Shift In 
020 OLE CTRL p 1T 

021 DCl CTRL Q II 
022 DC2 CTRL R n 
023 DC3 CRl'L s er 
024 OC4 CRTL T l" 
025 NAK CTRL u e: 
026 SYN CTRL v + 
027 ETB CTRL w + 
030 CAN CTRL x t 
031 EM CTRL y + 
032 SUM CTRL z r 
033 ESC CTRL [ (ALT) l 034 FS CTRL \ 
035 GS CTRL 1 
036 RS CTRL t v 
037 us CTRL + 0 

40 SP SPACE BAR Space l character 
41 ! SHIFT 1 ! 
42 n SHIFT 2 II 

43 # SHIFT 3 # 
44 $ SHIFT 4 $ 
45 % SHIFT 5 % 
46 & SHIFT 6 & 
47 ' SHIFT 7 ' 
50 ( SHIFT 8 ( 
51 ) SHIFT 9 ) 
52 * SHIFT * 
53 + SHIFT + 
54 I I 

55 -(MINUS) 
56 . • . 
57 I I I 
60 0 0 0 
61 1 l l 
62 2 2 2 

35 



63 3 3 3 
64 4 4 4 
65 5 5 5 
66 6 6 6 
67 7 7 7 
70 8 8 8 
71 9 9 9 
72 
73 ; ; ; 
74 < SHIFT 1 < 
75 = SHIFT - = 
76 > SHIFT . > 
77 ? SHIFT I ? 

100 @ @ @ 

101 A SHIFT A A 
102 B SHIFT B B 
103 c SHIFT c c 
104 D SHIFT D D 
105 E SHIFT E E 
106 F SHIFT F F 
107 G SHIFT G G 
110 H SHIFT H H 
111 I SHIFT I I 
112 J SHIFT J J 
113 K SHIFT K K 
114 L SHIFT L L 
115 M SHIFT M M 
116 N SHIFT N N 
117 0 SHIFT 0 0 
120 p SHIFT p p 
121 Q SHIFT Q Q 
122 R SHIFT R R 
123 s SHIFT s s 
124 T SHIFT T T 
125 u SHIFT u u 
126 v SHIFT v v 
127 w SHIFT w w 
130 x SHIFT x x 
131 y SHIFT y y 
132 z SHIFT z z 
133 [ [ [ 
134 \ \ \ 
135 1 1 1 
136 A A A 

137 
140 \ SHIFT @ \ 
141 a A a 
142 b B b 
143 c c c 
144 d D d 
145 e E e 
146 f F f 
147 g G g 
150 h H h 
151 i I i 
152 j J j 
153 k K k 
154 1 L 1 
155 m M m 
156 n N n 
157 0 0 0 

36 



160 
161 
162 
163 
164 
165 
166 
167 
170 
171 
172 
173 
174 
175 
176 
177 

p 
q 
r 
s 
t 
u 
v 
w 
x 
y 
z 
[ 

RUB OUT 

Function Key Codes 

+10 
+30 

p 

Q 
R 
s 
T 
u 
v 
w 
x 
y 
z 
SHIFT 
SHIFT 
SHIFT 
SHIFT 
R.O. 

+ 32 
+ 33 

[ 
\ 
] 

p 
q 
r 
s 
t 
u 
v 
w 
x 
y 
z 

• 

HOME 35 
EOL 36 

EOS 37 

To run an application program, the user should assign unit 5 to the 
GT40 because the FORTRAN subroutines use this unit number for input 
and output. The Picture Book FORTRMi subroutines use a common area 
labelled BOOK; therefore the User application program should not use 
this label for a new common area. 

37 





APPENDIX F 

OPERATING INSTRUCTIONS FOR THE PDP-10 

The following series of steps show how to load the Picture Book 
Controller for the PDP-10. This sequence shows how to run either an 
application program or SKIM, a teaching program, after loading Picture 
Book. SKIM illustrates the correct usage of Picture Book subroutine 
calls and executes them. 

1. Load address 166000 and start. 
This starts the bootstrap Teletype simulator. 
to reset the screen. 

2. LOGIN 

Press START 

3. Transfer all files from DECtape to disk using PIP or FILE. 

4. Type: RU LOADVT 
To start the loader program, which clears the screen and 
prompts with an asterisk. 

s. Type: +BOOK and wait for the **RESET** message, which 
indicates the load has completed. 

6. To run SKIM, the teaching program, type RU SKIM. 

7. To run PICLET, type RU PICLET. 

a. To execute a FORTRAN program that uses the FORTRAN graphics 
subroutine package. Use GLIB.REL as the standard library 
file. 

e.g. EX NAME.F4, GLIB/LIB 

Note: The graphic data generated by the graphics subroutines travels 
over the same communications line as ordinary Teletype data including 
characters echoed from the keyboard. Typing on the keyboard during 
execution of a program that does graphics can cause Picture Book to 
receive erroneous data. Therefore, the user should refrain from 
typing during the execution of a program that does graphics except in 
response to Teletype input requests, i.e. READs or ACCEPTs. 

39 





APPENDIX G 

PICTURE BOOK ASSEMBLY INSTRUCTIONS 

These instructions are provided for assembling PICTURE BOOK sources on 
a DECsystem 10. They assume the user has transferred all source files 
to a disk area on the DECsystem 10. All command lines are underlined 
and are terminated with a carriage return. For further information on 
DECsystem 10 monitor commands, consult the DECsystem 10 User's 
Handbook, DEC-10-NGZB-D. 

BOOK.BIN 

To assemble the display file handler for the GT40, BOOK.BIN, use 
MACDLX, the PDP-11 assembler, with the current version of BOOK • 

• R MACDLX 

*BOOK.BIN/I+BOOK.002 

GLIB.REL 

To assemble the relocatable FORTRAN library used with FORTRAN 
application programs, several steps are necessary. You must first 
assemble three source files, BOOK.F4, INCH.MAC, and OUTCH.MAC and then 
combine them into a single library file: 

.COMPILE INCH.MAC 
MACRO: INCH 

EXIT 

.COMPILE OUTCH.MAC 
MACRO: OUTCH 

EXIT 

.COMPILE BOOK.F4 
FORTRAN: BOOK.F4 

EXIT 

.R PIP 

*DSK:GLIB.REL=INCH.REL,OUTCH.REL,BOOK.REL 

PICLET.SAV 

To create a save image of PICLET, you must first compile and link it 
with GLIB.REL and then save the file: 

41 



SKIM.SAV 

.LOAD PICLET.F4,GLIB/L 
FORTRAN: PICLET.F4 
LINK: LOADING 

EXIT 

.SAVE 
JOB SAVED 

To create a save image of SKIM you must compile and link it with 
GLIB.REL and then save it: 

.LOAD SKIM.F4,GLIB/L 
FORTRAN: SKIM. F4 
LINK: LOADING 

EXIT 

.SAVE 
JOB SAVED 

42 



H.l.O INTRODUCTION 

APPENDIX H 

PICTUREBOOK IN THE 
DOS/BATCH SYSTEM 

This is an addendum to the Picture Book manual; the reader should be 
familiar with that manual before reading this addendum. 

This package of software for the GT40 provides the means of 
interfacing the GT40 graphics terminal to the DOS/BATCH System. The 
loader provided with the package loads programs into the GT40 through 
a DLll serial asynchronous interface, using the ROM bootstrap in the 
GT40. It may be used to load any program in paper tape binary format 
such as Picture Book, the graphics software supplied with this 
package. 

The PICTURE BOOK software supplied for DOS/BATCH is an adaptation of 
the software originally developed for DECsystem-lo. It retains all of 
the graphics capabilities of the original software described in the 
PICTURE BOOK REFERENCE MANUAL (DEC-11-GPBMA-A-D), but it differs in 
one important aspect: the GT40 is not supported as a terminal or 
console device under DOS/BATCH. 

The PICTURE BOOK graphics package consists of a display file handler 
resident in the GT40 and a library of FORTRAN subroutines. Displays 
are produced by a series of calls to the subroutines, which create the 
display file in the GT40 by transmitting data coded in ASCII format to 
the display file handler in the GT40. The display file handler decodes 
the characters and makes the appropriate entry of graphics data into 
the display file. 

Light pen support is provided locally by the display file handler, 
rendering fast response. Light pen tracking is easy to implement and 
light pen data may be requested at any time by a FORTRAN call. 
Keyboard support is provided by INLIN, a FORTRAN call to read a line 
from the keyboard, along with the standard DECODE and FORMAT 
statements, as explained in the FORTRAN IV Manual (DEC-11-LFIVA-A-D). 

H.2.0 LOADGT, THE DOS/BATCH LOADER 

H.2.1 Description 

LOADGT is a loader program which functions under DOS/BATCH and 
replaces LOADVT, the DECsystem-10 loader supplied with the original 
PICTURE BOOK package. The program will load a GT40 with any binary 
program in paper tape format from any DOS/BATCH standard device 
capable of binary input (paper tape reader, disk, DECtape). 

LOADGT uses the DLll serial asynchronous interface between the PDP-11 
and GT40 to transmit the requested program to the GT40. Since the ROM 
terminal bootstrap supplied with the GT40 is used for the loading 
function, the data being transferred will be coded by the loader into 
6-bit printing ASCII characters, as described in the GT40 USER'S GUIDE 
(DEC-11-HGTGA-A-D). 

The loader program does not check parity or checksums when 
transmitting the program. It relies on the bootstrap loader to detect 
any errors in the program being transmitted. LOADGT monitors the DLll 

43 



receiver for transmissions 
three character combinations: 

from the GT40, but it responds only to 
ALT MODE B, ALT MODE G, and CTRL C. 

The ALT MODE B combination is sent by the bootstrap when a 
error is detected. It causes the loader to abort the load, 
error message, and restart. The ALT MODE G combination, sent 
bootstrap, and CTRL c, sent by the PICTURE BOOK display file 
indicate a satisfactory load. The loader then terminates the 
restarts. 

checksum 
print an 

by the 
handler, 
load and 

The LOADGT source is conditionalized to permit its easy adaptation to 
various DOS/BATCH configurations. On most single keyboard systems, 
the DLll for the GT40 connection will be located at interrupt trap 
address 300 and device addresses 175610 to 175616. These are the 
default values used by the loader. For systems with other values, the 
source of the loader should be obtained and.assembled with the correct 
assignments, as explained in section H.5.0 on assembly instructions. 

H.2.2 Command Syntax 

The loader uses standard DOS/BATCH command string syntax (CSI format 
as described in the DOS/BATCH MONITOR PROGRAMMERiS HANDBOOK, 
DEC-11-0MPMA-A• U. However, it does not permit the use of the asterisk 
wild-card convention or the use of any switches in the command string. 
The command string format is as follows: 

where: 

<dev:filnam.ext[uic) 

dev 

filnam 

is a 2-
standard 
located; 

or 3-character designation for the 
device on which the file to be loaded is 

is a 1- to 6-character name of the file to be 
loaded; 

ext is the 3-character filename extension; 

uic is the user identification code, 

The loader identifies itself and then prompts command input by 
printing a #. 

LOADGT VOl 
# 

It then accepts a command string with a single input dataset 
specification in the format previously described. A file name need 
not be given if the device specified is not directory-structured 
(e.g., the paper tape reader, PR). If the device is 
directory-structured, a file name must be specified. 

Default values are used for some components of the command string. 
The default for device is the system device. The default file name 
extension is LDA. The default uic is the project-programmer number 
currently logged in. 

44 



H.2.3 Examples 

Some examples of loader command strings for various situations are 
given below. All commands are terminated with a carriage return. 

1. To load from the system device: 

#(BOOK.BIN 

2. To load from another UIC e.g. (100,100), on DK!: 

#(DKl:BOOK.BIN(l00,100] 

3. To load from the paper tape reader: 

#(PR: 

4. To load from DECtape: 

#<DTO:BOOK.BIN 

H.2.4 Error Messages 

In using the loader, various conditions may produce errors. Some 
conditions produce error messages through the monitor error routine. 
These are explained in the DOS/BATCH MONITOR PROGRAMMER'S HANDBOOK. 
Other errors are handled by the loader itself, and produce one of the 
error messages explained below. The loader restarts after issuing the 
error message. 

Message 

COMMAND STRING SYNTAX ERROR AT: x 

FILE NAME ERROR 

FILE NOT FOUND 

FILE READ ERROR 

XMIT ERROR 

45 

Significance 

A syntactical error was made 
in the command string, 
detected at the letter (x) 
printed after the colon. 

An error was made in the file 
name or extension, such as 
using an *, neglecting to 
specify a file for a 
directoried device, etc. 

On a directoried device, the 
specified file was not found 
in the directory for the 
specified UIC. 

Either file format 
incorrect (e.g., an 
file) or an error 
persistent after 
repetitions by the 
handler. 

was 
ASCII 

was 
many 
file 

A checksum error was detected 
by the GT40 bootstrap loader. 



H.3.0 PICTURE BOOK UNDER DOS/BATCH 

H.3.1 General Description and Limitations 

PICTURE BOOK consists of a display file handler and a library of 
FORTRAN subroutine calls. This implementation under DOS/BATCH-11 
affects only the set of subroutines - the display file handler remains 
unchanged. In addition, the use of the FORTRAN calls remains the 
same, the changes being internal to the subroutines. The descriptions 
of these calls in the PICTURE BOOK manual are still applicable. 

The major change in implementation is that the GT40 is not supported 
as a terminal device. Input and output between DOS/BATCH and the GT40 
must be done through the PICTURE BOOK calls. FORTRAN READ and WRITE 
statements can not be used1 however, ENCODES and DECODEs permit 
formatted transfers of data. 

H.3.2 SETUP Subroutine 

A new assembly language subroutine named SETUP has been added to the 
PICTURE BOOK library. This subroutine sets up the interrupt structure 
for communicating with the GT40. 

The syntax for the SETUP subroutine call is: 

where: 

Example: 

CALL SETUP (ivec,idev) 

ivec 

idev 

is a decimal or octal constant giving the legal 
address of the DLll receiver interrupt trap vector 
for this configuration1 (octal constants must be 
preceded by a quotation mark)1 

is a decimal or octal constant giving the legal 
address of the DLll receiver status register. 

CALL SETUP ("304,"175620) 

This call to SETUP defines the address 304 as the vector transfer 
address, and the address 175620 as the device address. 

A CALL SETUP mus.t be included in every FORTRAN program using the 
PICTURE BOOK graphics subroutine calls. It must also precede the 
first call of a PICTURE BOOK subroutine, including LAYOUT. This is 
necessary because SETUP makes the necessary linkages to the DOS/BATCH 
interrupt structure. 

The location of the DLll asynchronous interface to the GT40 may 
"float" from configuration to configuration. The call to SETUP 
enables the user to specify the exact locations used in his particular 
configuration. The values are stored as global values to be used by 
OUTCH and the receiver interrupt handler located in the SETUP code. 

46 



Consequently, SETUP must always be core resident and can not be 
overlaid. 

If no arguments are specified with CALL SETUP, the default values 
"300,"175610 are assumed. The default call to SETUP then appears as 
follows: 

CALL SETUP (1) 

The value 1 in the above example is the default value assigned by the 
system. 

Since SETUP has inserted the address of its own interrupt handler into 
the DLll trap address, a means is provided to restore control to 
DOS/BATCH through a terminating call to SETUP. An argument of zero 
causes SETUP to restore the previous contents of the trap address. 
This call to SETUP should be used at the end of every program before 
exiting to the monitor. 

Example: CALL SETUP (0) 

H.3.3 The INLIN Function 

A new function has been added to the PICTURE BOOK library to support 
the GT40 keyboard. The function accepts characters from the keyboard 
and packs them into a byte array until a character count is exceeded 
or a carriage return/line feed combination is encountered. The 
function then returns the actual number. of characters transferred, 
including the carriage return and line feed. The syntax for the call 
is: 

or 

where: 

CALL INLIN (n, array) 

I = INLIN (n, array) 

n. 

array 

I 

is the number of characters to transfer. 

is the name of the byte array to receive the 
characters. 

is the actual number of characters transferred. 

An example of the use of INLIN follows the description of the OUTLIN 
function. 

H.3.4 The OUTLIN Function 

Another function was added to the PICTURE BOOK library to facilitate 
transmitting strings of ASCII characters to the GT40. These character 
strings differ from the strings sent by the CALL TEXT subroutine in 
that they are not preceded by any control characters. The characters 
are sent to the scroll buffer which is maintained by the display file 

47 



handler for terminal conununications. They are not preserved in the 
buffer but are scrolled off the top of the screen as new characters 
fill the buffer. This feature is useful for sending messages to the 
GT40, since it is otherwise not supported as a terminal. 

Before the call is made, the character string must be placed in a byte 
array, using a DATA or ENCODE statement. OUTLIN interprets the first 
character in the array as a standard FORTRAN carriage control 
character and then discards the character. See the FORTRAN IV 
COMPILER AND OBJECT TIME SYSTEM PROGRAMMER'S MANUAL 
(DEC-11-LFRTA-A-D), section 7.18, for a list of carriage control 
characters. 

The syntax of the call is: 

or 

where: 

Example: 

CALL OUTLIN (n, array) 

I = OUTLIN (n, array) 

n 

array 

I 

is the number of characters to transfer; 

is the name of the byte array containing the 
characters. 

is the actual number of characters transferred. 

BYTE IN ( 72) OUT02) 
CALL SETUP(l) 
ENCODE(8,l00,0UT) 

100 FORMAT (I 0 I I 7HTYPE J=) 
CALL OUTLIN (8, OUT) 
I = INLIN (72,IN) 
DECODE (I, 101, IN) J 

101 FORMAT (F8.5) 
ENCODE (21,102,0UT)J 

102 FORMAT (X, 'YOU TYPED J=', F8.5) 
CALL OUTLIN (21,0UT) 
CALL SETUP (O) 
END 

This example demonstrates the use of INLIN and OUTLIN with ENCODE and 
DECODE. The program will request the operator to type a number in the 
format F8.5 (for example:l2.34567), and will convert this entry to a 
floating point decimal number, then back to an ASCII format number. 
The program will then output this number on the GT40 terminal. 

48 



H.4.0 OPERATING PROCEDURES 

H.4.1 Using the Loader 

To use DOS/BATCH-11 to load the GT40 with a program, the user should 
first ensure that the GT40 is interfaced through a DLll (other than 
the DLll used for the console device) and that LOADGT is present on 
his disk as a linked file. The loader is supplied as an object module 
and must be linked on the system where it will be used. (See 
section H.5.1.1.) The following procedure should then be followed 
(underlined text is output by DOS/BATCH or the program): 

1. Start the execution of LOADGT • 

.LRU LOADGT). 
LOADGT VOl 
! 

LOADGT identifies itself and prompts command input with a 
"#". 

2. Enter the command string. 

LOADGT VO! 
!<BOOK~ BIN) 

3. If the file was successfully loaded, the LOADGT program will 
start over, repeating its identification. The user should 
return to the monitor and then kill LOADGT before starting 
another program. For example, 

LOADGT VOl 
#tC 
;_KI)-
1 

4. If an error occurred, two things can happen. Errors handled 
by LOADGT result in an error message being printed on the 
DOS/BATCH console printer, followed by a restart of the 
program. Section H.2.4 explains these Errors. Or other 
errors cause an exit to the monitor's error processing 
facility. An error printout is produced on the DOS/BATCH 
console printer, consisting of a letter and three digits. 
These codes are explained in the DOS/BATCH MONITOR 
PROGRAMMER'S HANDBOOK. 

s. When transferring absolute files such as BOOK.BIN using PIP, 
the switch /UB (unformatted binary) should be used. PIP does 
not recognize the BIN extension, although it is the assembler 
default extension for absolute files. For example, to 
transfer BOOK.BIN to disk from DECtape, use the PIP command 
string: 

#DK:<DTO:BOOK.BIN[l,l]/UB 

49 



H.4.2 Using PICTURE BOOK 

The user must have an application program in FORTRAN that has been 
properly linked with both the FORTRAN system library and the special 
PICTURE BOOK library, which is called DLIB.LIB to distinguish it from 
the DECsystem-10 version of PICTURE BOOK. 

The linking procedure is as follows, assuming POLY.OBJ is the compiled 
object module for POLY.FTN, the FORTRAN application program: 

£RU LINK) 
LINK-11 VO llA 
fPOLY(POLY,DLIB.LIB/L,FTNLIB/L/E) 

The linked program can then be executed by: 

~RU POLY) 

H.5.0 ASSEMBLY INSTRUCTIONS 

H.5.1 Assembling the Loader 

LOADGT need be assembled only if it is to be used on a DOS/BATCH 
configuration where the DLll interface to the GT40 is not located at a 
trap address of 300 and device addresses of 175610 to 175616. In that 
case, the user should procure a copy of the loader source and follow 
the procedures described below. 

Use MACRO (Refer to DOS/BATCH-11 ASSEMBLER MANUAL (DEC-11-LASMA-A-D) 
to assemble the new loader, entering the values of the trap address 
and device address from the keyboard during the first pass of the 
assembler. All command lines and text lines below are terminated with 
a carriage return except END, which must be terminated with two (2) 
carriage returns. The tc represents a CTRL C combination. 

!RU MACRO 
MACRO VOOlA 
#LOADGT(KB:/PA:l,DK:LOADGT.MAC 
DLVEC=xxx 1trap address 
DLIN=yyyyyy 1device address (of 

1DLll status word) 
tc 
.END (tenninate with (2) carriage returns) 

The result will be a new LOADGT.OBJ which can be linked and used in 
place of the object module supplied with the package. 

50 



H.5.1.l Linking the Loader Object Module 

The LOADGT module should be linked on the machine on which it will be 
used. It is supplied as an object module. After placing it on the 
system device (or reassembling it, using the instructions above) the 
following procedure can be used to link the module. 

!RU LINK 
LINK VllAOl 
!LOADGT(LOADGT.OBJ/E 

TRANSFER ADDRESS: 075042 
LOW LIMIT: 075042 
HIGH LIMIT: 077460 

LINK VllAOl 
jtC 
.:,KI 

H.5.2 Creating the DLIB.LIB Library 

The library of PICTURE BOOK calls is a relocatable collection of 
FORTRAN subroutines (contained on BOOK.FTN) and MACRO subroutines 
(INCH, OUTCH, and SETUP). If the object modules of these subroutines 
are not available, they can be created from the sources using the 
following procedure: 

$RU FORTRN 
FORTRAN VO 0 4A 
!BOOK<BOOK.FTN 
:ftC . 
• KI 
!RU MACRO 
MACRO VOOlA 
!INCH< INCH.MAC 
END OF PASS l 
ERRORS DETECTED: 0 
FREE CORE: nnnn Words (Where nnnn=t of free words) 
#OUTCH(OUTCH.MAC 
END OF PASS 1 
ERRORS DETECTED: 0 
FREE CORE: nnnn Words (Where nnnn=t of free words) 
!SETUP( SETUP.MAC 
END OF PASS l 
ERRORS DETECTED: 0 
FREE CORE: nnnn Words (Where nnnn=t of free words) 
!tC 
.KI 

With the object modules available, the DOS/BATCH librarian LIBR can be 
used to create the library, using this procedure: 

§.RU LIBR 
LIBR VOOlA 
#DLIB.LIB(,BOOK.OBJ,INCH.OBJ,OUTCH.OBJ,SETUP.OBJ 
Ttc 
7KI 51 
$ 



NOTE 

The comma precedes the book in the above 
command string because there is not an 
input library. 

If the paper tape kit is purchased, a single paper tape containing 
object modules of INCH, OUTCH and SETUP is supplied. This should be 
put on disk as a single file, e.g., INOUT.OBJ. The librarian comman·d 
string would then be: 

1,RU LIBR 
LIBR VOOlA 
!DLIB.LIB<,BOOK.OBJ,INOUT.OBJ 
.ttc 
.s.KI 
j 

H.S.3 Assembling BOOK 

The assembly instructions for BOOK are as follows: 

§RU MACRO 
MACRO VROSA03 
!BOOK(BOOK.003 
END OF PASS 1 
ERRORS DETECTED: 0 
FBEE CORE: nnnn Words (Where nnnn=i of free words) 
!tC 
.KI 
I 

52 



H.6.0 SAMPLE APPLICATION PROGRAMS 

The following two examples show coding for the POLY and CLOCK 
programs, to be run under the DOS/BATCH-11 system. 

H.6.1 CLOCK 

C CLOCK PLOTS A SINE WAVE 
C AAD?US OF A tIRCLE ONTO 

lNTEGER TIME(4) 
BYTE LINOUTC72~ 

BY PROJECTING THE Y COORDINATE OF A 
A SET OF AXES, 

t 

c 
c 
c 

TIME CONTAINS ONE ASC?I INTEGER PER CELL 
TIME/•T•,tI•, 1 M•1 1 EI/ 
SCALE(0,,100,,0,,100,) 

FIRST1SCALE THE SCREEN SO THAT THE LOWER LEFT 
HAND COORDINATES ARE (0,,0;) ANO THE UPPtR 
RIGHT HAND COORDINATES ARE (100, 1 100,) -

CALL StTUP(1) 
L•L.AYOUTCl~,72,2,20,1,100,2,127,2,10,0) 

C LAYOUT THE BOOK TO CONTAIN 2 PICTURES,1 rIGURE, 
C 2 GRAPHS, AND 1 TABl.E, 
C NOTE THAT GRAPHS ARE 127 PUINTS LONG, THt MAX, 
C LENGTH FOR ANY PAGE, WRITING IN THE 128TH LINE, 
C AS THIS PROGRAM DOES, EF~ECTIVfLY COM81NtS THE 
C PAGES INTO ONE LONGER PAGE; -

IFCL,LT.0lSTOP 
t ON A BAD LAYOUTCNOT E~OUGH CORE>STOP 

CALL MOVEClil.,0,) 
C ZERO OUT LINE Ill OF PICTLJ~E 0 

CALL SET(5,,25,) 
C AND PUT AN ABSOLUTE POINT lN LINE 1 

CALL. DOTFIGUJ1k1) 
C CALL FIGURE 0 AS A SERIES UF DOTS 

CALL ARC(2~.,5~,o.2e,0,,1.) 
C AND IN FIGURE 0,THE CURRtNlLY OPEN FlGURt, 
C DRAW A CIRCLE OF 50 SIDES -

CALL DOT(15,,25,) 
C NOW ORA~ THE CENTER OF THE CIRCLE 

CALL. VECTORC~.,1~.) 
C AND A VERTICAL RADIUS 

CALL BlTS(~,2,2,0) 
C . MAKE THE NEXT ENTRY DIM ANU SHORTDASH 

CALL VECTORC100,,0,) 
C DRAW A VECTOR WITH THESE MUDES THAT GOES OFF THE 
C SCREEN HORIZONTALLY TO THE. RIGHT, . 
C iT WILL START WHERE THE. RAU?US ENDS, 

CALL BITSClll151fd10) -
t NOW BRIGHTEN UP THE NEXT ENTRY 

CALL SETCJ~,,25,) 
C . DRAW AN INVISIBLE ABSOLUTE POINT, 
C 1T 1110111' T MOVE WHEN THE ODlUS MOVES, 

CALL P1CTURC110) . 
C AND CALL PICTURE 1 

CALL. SET(3~,,2b,) 
C . 4GAIN SET AN ABSOLUTE POINT 

CALL. XGRAPH(01"'l 

53 



C AND CALL THE GRAPH 
CALL SET(7~,,22,) 

C ONCE AGAIN SET A POINT 
CALL UBLE~Z, 0) 

C AND CALI. THE TABLE 
C NOW PICTURE l1J CONTAINS A NUMBER O' CALLS TO 
C PAGES NOT VET ORON INTO, . 

CAL.I. OPENPP) 
C OPEN PICTURE 1 

CALL VECTORC75,,t,) 
C AND IN IT DRAW A SET OF AXtS 

CALL MOVE(•75,,111J,) 
CALL VECTORC0.,•20 1 ) 

C THESE WILL DISPLAY SINCE PlCTURE f/J CALLS 

C PICTURE l 
CAL.L TEXTC41TIME) 

C lN THE OPEN TABLE, TABLE 01 ~RI1E 'TIMt' 
C lT1T001WlLL DISPLAY, 

c 
c 
c 
c 

CAL.L OPENP~B) 

Sl'EP!l3 1 141~/5flJ, 

R•UIJ, 

DO !5 h1 1 U 

NOW REOPEN PICTURE 0 

SET AN INCREMENT 11100 OF J611J DEGREES 

SET THE RADIUS OF THE CIRCL,E TO 10 

SET THE GRAPH INCREMENT TO 7(UNSCALED) 

C AND MOVE THE CURSOR DOWN 1~ LINES 
CALL CURSORC•l,flJ) 

5 CONTINUE . 
00 1111 l•111H 

C THlS LOOP ~ILL MOVE TM~ RADIUS AROUND THt 
C CIRCLE LIKE THE HAND OF A CLOCK -
C ANO PLOT ITS Y COORDI~ATE ON THE GRAPH, 

THETA•STEP•FLOAT(I) 
C THETA CONTAINS THE ANGLE 

c 
c 
100 

.c 

X ITS X COORDINATE 

UKE TIME 
ENCODE(111li~,LINOUT)Y . 
F0RMAT(t+•,•y••,F8,S) 
CALL 0UTLINC11,Ll~OUT) 
V•Y•R 

OUT TO ~RITE THE COSINE OF THETA 

THEN CALCULATE THE Y COORDINATE OF THE RADIUS 

C POINT PICTURE 01 S MARKER TO LINE 4 
t WHERE THE RADIUS WAS DFUwN· 

CALL VECTORCX1Y) 
C ANO REDRAW THE RADIUS 

C NOW CONVERT ITS Y COO~DINATE TO AN UNSCALED 
C QUANTITY By ADDING THE V COORDINATE OF-T~E 
C CENTER OF THE CIRCLE . 

XHT•HT•1024./1tm~ 
t .ANO CHANGING THE SCALING 

CAl..L Pt..OTCIHT> 
C PLOT THE RESULTING VALUE 

54 



10 CONTINUE 

c 
CAL.L 8EL.L. 

STOP 
END 

RING THE BELL• WHICH ALSO STOPS THE PROG~AM 

H.6.2 POLY 

f' ORTRAN Vfll04A 18s15109 1 

c 
c 
c 

kl liH:l 1 
c 

011ll02 
00i/J3 

c 
c 

0004 
c 
c 

0005 
c 
c 

'Hh'16 
c 

0007 
00iif 8 

c 
iJ0ft:l9 

c 
0010 

c 
0011 

c 
c 
c 

THIS PROGRAM ALLOWS THE USER TO DISPLAY A POLYGON OF UP TO 9 SIDES 
~y TOUCHING A MENU WITH THE LIGHT PEN ANU THEN TO MOVE THE POLYGON 
TO ANY L.OCATION ON THE SCREEN AND LEAVt iT THERE 

COMMON/MARKSIMP,MF,MG1MT 

CAL.I. 

MARKS CONTAINS T~E COMMON MARKERS 
Sf.TUPC1 1 1) 
SCAl.ECfll.,1~23.,0.,1023.) 

SCAL.E THE SCREEN TU CORRESPOND TO SCREEN UNIT! 
SO THAT LINEX VALUtS NEED NOT dE UNSCALED 

LAYOUTC10172,1 1 127 1 20,20,0,0,l,1,01 
CREATE A BOOK WITH-20 FIGURES ANV A ONt LINE TAB 
FOR EACH ENTRY IN lHE MENU 

CAL.I. MARKP(3) 

CALL 

00 1 
CAL.I. 

CAL.I. 

STARTING AT L tNE 3 OF PICTURE r.:i, ENTER 
CALLS TO THE SEVtN TABLES 

ensc0,1,ld,1> 
MAKE THESE CALLS LlGHT PEN SENSIJIN! AVD BRIGHT 

I•3,9 
S~T(FL.OATCCI•2)*100),700 0 ) 

- FIRST SET LOCATION OF THIS ENTRY ON THt SCREEN 
TABLECI•J,0) 

ENTER THE CAL.L 
CAL.I. OPEN TC I•3) 

CAL.L OUTCl-!(4) 
THEN OPEN THE CORRtSPONOING TASLt 

AND INSTE•D OF USING 'CAL.L TEXT' 1 OUTPUT 
THE ASCII STRING-THAT TEXT WOULD OUTPUl 
FIRST OUTPUT CO~TROL D 

55 



"'1!112 

li'JliH 3 

0014 

0015 
ld016 

(cl021 
0022 
0023 

{d024 

lll025 

FORTRAN 

0026 

0027 

0028 

fi>029 

0030 

012131 

00J2 

00JJ 

0034 

c 
c 
c 
1 

c 

c 
c 
2 
c 

c 
c 

c 

c 

¥004A 

c 
c 
c 
c 
c 
c 
c 

c 
c 

c 
c 
c 
c 

c 

c 
c 
c 
c 
c 

CAL.I. 0UTCHC81) 

CAL.L. OUT~HC 1) 
THEN THE DECIMAL E~UIVALENT OF Q 

THEN INOICATt:. 1 CHARACTER WIL.L FOLL.0~ 
CAL.I. OUTCH(48+l) 

- NE~T COMES THE DIGlT 
CONTINUE 
CAL.I. BITS(l!l,5,0,0) 

NOW TURN OFF SENSITIVITY 
CAL.I. MOVt(0,,0,) · 

. IN THIS DUMMY ENTRY IN THE PlCTUWE 
IFIG•0 

CAL.I. MARKP(l) 

C•L.L MOVE(0.,0,) 
CAL.I. MOVE(lll,,0,) 
CAL.I. MARKP(0) 

SET COUNTER TO 0 

•ND SAVE THE cuq~E~T VALUE Of THt PICTURE MARKER 

NOW CLEAR A COUPLE OF LINES ~y ENT~~lNG INVISIBL 
0 L.ONG 

RESET THE M•RKER TO THE START OF THE PAGE 
CAL.L BITsc0,5,2,1> 

. ANO SET LIGHT PEN ~ENSITIVITY ON ANO SHORTDASH 
CALL MOVt(0,,0,) 

CAL.L UNHITCI1J) 

J•J/2+1 

CL.EAR OUT PICTU~~ ~, LINE 0, WHERE LIGHT PEN 
HIT COORDINATES WILL. ENTER 

NOW WAIT FOR A HIT ON TME MENU 

DETERMINE THE DIGIT HIT FROM THE LINE 
NUMBER THAT CAUStD.THE HIT 

AND LET THE POL.YGON•S SIZE ALSU OEPEND ON THE 
NUMBER OF ITS SIDES IT HAS 

CALL. OPENF(IFIG) ~ 
NO~ OPEN THE NEXT ~IGURE 

C•1.L ARC(R•2,,J,6,28,0 1 ,1,) -
. ANO DRAW AN ARC IN IT OF J SIDES, I.E. A POLYGON 

CAL.I. "40VEC•R,0,) 
DRAW AN INVISIBL.t VECTOR TO OFFSET TME START Of 
POLYGON FROM THE.END Or THE LIGHT PEN COORDINATE 
VECTOR SO THAT THE POLYGON CAN MOVE IN-
4NY DIRECTION 

CAL.L VECFIGCIFIG,0) 

CALL INNUMCNN) 
ANO DISPLAY THE NE~ FIGURE 

NOW WAIT FOR 4 CARHIAGE RETURN WHILE THE USER 
MOVES THE POLYGON AROUND THE SCRtEN 

WHEN IT HAPPENS, RtAD THE CURRENl COORDINATES 
OF THE LIGHT PEN V~CTOR, I 1 E, tH~ CENTER OF THE 
POLYGON 

56 



00.35 
0036 

011JJ7 

ia0.$8 

{11039 

0040 

0041 
i)042 

J•L.INEYCI0,0) 
CAI.I. MARKP(MARK) 

c MARK THE PICTURE U~ING THE SAVED MARKEi-i 
CAI.I. SETCFl.OATCI>~R,FLOATCJl) 

c ENTER A SFT TO THE CO~NER OF THE POLYGON 
CA I.I. VECfIGCIFIG,0) 

c AND CALL THE FIGURt FROM THERE, ALSO, THUS 
c OVERLAYING THE S~O~TOASH POLYGON WlTH A SOLID 

IFlG•IFIG+l 
c POP THE COUNTER 

IFCIFIG.LE,19)GOTO 2 
c At.JO DO UP TO 2!0 f' IllURES THIS OY 

STOP 
ENO 

ROUTINES CAL.I.EDI 
SETUP , SCALE , 1.AYOUT, MARKP , BITS , SEl , FLOAT 
TABLE , QPENT , DUTCH , MOVE , UNHIT , OP~NF 1 ARC 
VECFIG, tNNUM , 1.INEX , 1.INEY 

t;LOC!'­
MA IN, 
MAf.ll<S 

L.E~GTH 
564 (002150)• 
8 (H0020) 

**COMPIL.ER ••••• CORE** 
PHASE us~o F~EE 

DECLARATIVES 0to365 05481 
EXECUTABL.ES 00859 04994 
ASSEMBLY 01221 07543 

57 

ON 





Absolute points, 3, 6 
Absolute unit conversion to scaled 

units, 14 
ALT Mode B (or G) combination 

(DOS/BATCH) , 44 
Application program, 1, 4 
ARC function, 13 
Array element, 11 
ASCII characters, 4, 6, 25 

GT40 character set, 35, 43 
Picture Book code, 26 

Assembly instructions, 41 
for BOOK (DOS/BATCH) , 52 
for LOADGT (DOS/BATCH), 50 

BELL subroutine, 13 
BITS command, 9 
BLINK, 9 
Book, 1, 5 
BOOK.F4 file, 41 
Brightness, levels of, 1 
Buffers, number in file, 5 

Calling a picture to the screen, 
15 

Changing the picture, 4 
Chapters, 1 

types, 3 
Character count (DOS/BATCH), 47 
Character pairs, 3 
Characters, 4, 6 

GT40 set (ASCII), 35 
number in line buffer, 5 
Picture Book code, 26 

Checksum error (DOS/BATCH), 44 
Clock, GT40, 12 
CLOCK (sample program) , 18 

DOS/BATCH program, 53 
Code, PICTURE BOOK, 26 
Commands, PICLET, 21 
Command strings, DOS/BATCH 

loader, 45 
syntax, 44 

Common markers, 29 
Conversion absolute units/scaled 

units, 14 
Core for layout, 6 
Core requirements, 33 
CTRL C, 44 
CTRL/D, 14 
CTRL/R, 7 
CURSOR subroutine, 12 

DATA statement (DOS/BATCH) , 48 
Default layout, 5 

INDEX 

Display file, 5 
handler, 2, 3, 41 

DLll serial asnychronous interface 
(DOS/BATCH), 43 

location, 47 
DLIB.LIB library creation, 51 
DOS/BATCH system with PICTURE BOOK, 

43 
assembling BOOK, 52 
assembling LOADGT, 50 
DLIB.LIB library, 51 
GT40, 43 
limitations, 46 
LOADGT programs, 43 
sample programs, 53 through 57 
SETUP subroutine, 46 
using PICTURE BOOK, 50 
using the loader, 49 

Dots, 3, 5 
DOT subroutine, 9 
Drawing the picture, 7 
DX and DY functions, 14 

ENCODE statement (DOS/BATCH) , 48 
ERASE routines, 11 
Errors, DOS/BATCH-GT40 loading, 49 

messages, 45 
Examples, PICLET, 22 
Execution of program, 4 
Executive, 3 

Figures, 3 6 
FORTRAN library assmelby, 41 
FORTRAN subroutine, 1, 2, 5, 25 

GLIB (PICTURE BOOK Library), 31 
Graphics book, 3 
Graphs, 3, 4, 6, 8 
Greek characters, 4, 6 
GT40 Book, 1 
GT40 character set, 35 
GT40 clock, 12 
GT40 memory, 5 
GT40 Terminal, 2 
GT40 under DOS/BATCH, 43 

Handler, 1 
Hardware, 1 
Header roll, 5 
HIT routine, 11 
Host computer, 2 

INDEX-1 



Inches, pool of, 6 
INCH.MAC file, 41 
Index (markers), 2 
INLIN function (DOS/BATCH), 47 
INTENSITY, 9 
IOTA function, 12 

Jots, 3, 5 
JOT routine, 10 

LAYOUT subroutine, 5 
Levels of brightness, 1 
Library, Picture Book (GLIB), 31 
Light pen, 4, 11 

under DOS/BATCH, 43 
Lines, 3, 6 
LINEX and LINEY functions, 13 
Linking procedure (DOS/BATCH), SO, 

51 
LOADGT, DOS/BATCH loader program, 

43 I 49 
Loading GT40 by DOS/BATCH, 49 
Long vectors, 3, 6 

MACDLX, PDP-11 assembler, 41 
Markers, 2 

cormnon, 29 
MARKx subroutines, 8 
Memory, 1, 5 
MOVE routine, 9 

NOJOT routine, 10 
Numeric arguments, 25 

OPENx subroutines, 8 
Operating instructions, PDP-10, 39 
OUTCH.MAC file, 41 
OUTCH subroutine, 14 

under DOS/BATCH, 47 
OUTLIN function (DOS/BATCH) , 48 
Overuse, 6 

Page specification, 6 
Page types, 6 
PICLET language, 20 

cormnands, 21 
examples, 22 

PICLET.SAV, 41 
Pictures, 3, 6 
Picture subroutine, 15 
PLOT subroutine, 10 
Pointers to open pages, 8 
Point plotting, 4, 6 
Points, 3 
POLY (sample program), 16 

under DOS/BATCH, 55 

Pool of inches, 6 
Processor, 2 

Relative points, 3, 6 
Resident Executive, 2, 3 
Roll (header), 5 
ROM bootstrap, 43 

Sample programs, 15 through 20 
DOS/BATCH, 53 through 57 

SCALE subroutine, 7 
SENSITIVITY, 9 
SET routine, 9 
Setting up the book, 5 
SETUP subroutine (DOS/BATCH), 46, 47 
Short vectors, 3, 6 
Simulator, VT06, 3 
Skirmning program (SKIM), 1, 39 
SKIM.SAV, 42 
Software, 1 
Special characters, 4, 6 
Storage, 6, 33 
Subpage calls, 3, 6, 15 
Subroutines, surmnary of PICTURE BOOK, 

31 
Switches in cormnand string 

(DOS/BATCH) , 44 

Table of Contents, 2, 8 
Tables, 3, 4, 6 
Teaching program, SKIM, 39 
TEXT subroutine, 11 
THEEND subroutine, 7 
TYPE, 9 

UNHIT routine, 11 
UNJOT subroutine, 10 

VECTOR routine, 9 
Vectors, 3, S, 6 
VT06 simulator, 3 
VX and VY subroutines, 14 

WAIT routine, 12 
Wild card convention (DOS/BATCH), 

44 

INDEX-2 



HOW TO OBTAIN SOFTWARE INFORMATION 

SOFTWARE NEWSLETTERS, MAILING LIST 

The Software Communications Group, located at corporate headquarters in 
Maynard, publishes newsletters and Software Performance Summaries (SPS) 
for the various Digital products. Newsletters are published monthly, 
and contain announcements of new and revised software, programming 
notes, software problems and solutions, and documentation corrections. 
Software Performance Summaries are a collection of existing problems 
and solutions for a given software system, and are published periodi­
cally. For information on the distribution of these documents and how 
to get on the software newsletter mailing list, write to: 

Software Communications 
P. O. Box F 
Maynard, Massachusetts 01754 

SOFTWARE PROBLEMS 

Questions or problems relating to Digital's software should be reported 
to a Software Support Specialist. A specialist is located in each 
Digital Sales Office in the United States. In Europe, software problem 
reporting centers are in the following cities. 

Reading, England 
Paris, France 
The Hague, Holland 
Tel Aviv, Israel 

Milan, Italy 
Solna, Sweden 
Geneva, Switzerland 
Munich, West Germany 

Software Problem Report (SPR) forms are available from the specialists 
or from the Software Distribution Centers cited below. 

PROGRAMS AND MANUALS 

Software and manuals should be ordered by title and order number. In 
the United States, send orders to the nearest distribution center. 

Digital Equipment Corporation 
Software Distribution Center 
146 Main Street 
Maynard, Massachusetts 01754 

Digital Equipment Corporation 
Software Distribution Center 
1400 Terra Bella 
Mountain View, California 94043 

Outside of the United States, orders should be directed to the nearest 
Digital Field Sales Office or representative. 

USERS SOCIETY 

DECUS, Digital Equipment Computer Users Society, maintains a user ex­
change center for user-written programs and technical application in­
formation. A catalog of existing programs is available. The society 
publishes a periodical, DECUSCOPE, and holds technical seminars in the 
United States, Canada, Europe, and Australia. For information on the 
society and membership application forms, write to: 

DECUS 
Digital Equipment Corporation 
146 Main Street 
Maynard, Massachusetts 01754 

DEC US 
Digital Equipment, S.A. 
81 Route de l'Aire 
1211 Geneva 26 
Switzerland 





Picture Book Reference Manual 
DEC-11-GPBMA-B-D 

READER'S COMMENTS 

NOTE: This form is for document corr~ents only. Problems 
with software should be reported on a Software 
Problem Report (SPR) form (see the HOW TO OBTAIN 
SOFTWARE INFOIDilATION page) . 

Did you find errors in this manual? If so, specify by page. 

Did you find this manual understandable, usable, and well-organized? 
Please make suggestions for improvement. 

Is there sufficient documentation on associated system programs 
required for use of the software described in this manual? If not, 
what material is missing and where should it be placed? 

Please indicate the type of user/reader that you most nearly represent. 

[] Assembly language programmer 

[] Higher-level language programmer 

[] Occasional programmer (experienced) 

[] User with little programming experience 

[] Student programmer 

[] Non-programmer interested in computer concepts and capabilities 

CitY~~~~~~~~~~~~~~State~~~~~~-Zip Code~~~~~~~­
or 

Country 

If you do not require a written reply, please check here. [] 



·--------------------------------------------------------~--Fold llere------------------------------------------------------------

·----------------------------------------------- Do Not Tear • Fold llere and Staple ----------------------------------------------· 

BUSINESS REPLY MAIL 
NO POS_TAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES 

Postage will be paid by: 

Software Communications 
P. o. Box F 
Maynard, Massachusetts 01754 

FIRST CLASS 

PERMIT NO. 33 

MAYNARD, MASS. 





Digital Equipment Corporation 
Maynard, Massachusetts 

printed in U.S.A. 




