
GT40/GT42
user's guide

GT40/GT42
user's guide

E K -GT 40-0P-002

digital equipment corporation • maynard. massachusetts

1st Edition, June 1973
2nd Printing, September 1973
3rd Printing (Rev), November 1974
4th Printing February 1975

Copyright © 1973, 1974, 1975 by Digital Equipment Corporation

The material in this manual is for informational
purposes and is subject to change without notice.

Digital Equipment Corporation assumes no respon­
sibility for any errors which may appear in this
manual.

Printed in U.S.A.

The following are trademarks of Digital Equipment
Corporation, Maynard, Massachusetts:

DEC
FLIP CHIP
DIGITAL
UNIBUS

PDP
FOCAL
COMPUTER LAB

CONTENTS

GT40/GT42 GRAPHIC DISPLAY TERMINAL

1.1
1.2
1.3
1.4
1.5
2.1
2.1.1
2.1.2
2.1.3
2.1.4
2.1.5
2.2
3.1
3.2
3.2.1
3.2.1.1
3.2.1.2
3.2.1.3
3.2.2
3.2.3
3.2.3.1
3.2.3.2
3.2.3.3
3.3
3.4
3.4.1
3.4.2
3.4.3
3.4.4
3.4.5
3.4.6
3.4.6.1
3.4.6.2
3.4.6.3
3.4.7
3.4.8
4.1
4.2
4.3
4.4
4.5
4.6
4.6.1
4.6.2
4.6.3

PURPOSE AND SCOPE
GENERAL DESCRIPTION
SYSTEM ORGANIZATION
SYSTEM OPERATION
EQUIPMENT SPECIFICATIONS
GT40/GT42 START-UP PROCEDURES

GT40/GT42 Terminal Systems
GT42 Paper Tape Systems
GT40 Paper Tape Systems
GT42 Bootstraps For Other Devices
GT42 Graphics Test

GT40/42 FAILURE PROCEDURES .
GT40/42 INTERFACES
PARALLEL PORT

Unibus Structure
Bidirectional Lines .
Master/Slave Relationship
Interlocked Communication

Peripheral Device Organization and Control
Unibus Control Arbitration

Priority Transfer Requests
Processor Interrupts
Data Transfers

SERIAL PORT
DL 11 PROGRAMMING .. .

Receiver Status Register
Receiver Buffer Register
Transmitter Status Register
Transmitter Buffer Register
Interrupts
Timing Considerations

Receiver
Transmitter
Break Generation Logic

. Program Notes
Program Example

PROGRAMMING THE GT40/42
PROGRAMMING CONCEPT
IMPORTANT REGISTERS (all addresses are in octal)
PDP-11 INSTRUCTION SET
GT40/42 DISPLAY PROCESSOR INSTRUCTION SET
PROGRAMMING EXAMPLES

Initializing the Display Processor .
Display File
~pplication of the Stop Interrupt

iii

Page

1
5
5
9
9

10
10
15
16
16
17
17
17
19
19
19
20

· 20
· 20

21
21
22
22
23
26
27
27
28
28
28
28
28
29
29
29
29
31
33
33
33
33
38

· 39

4.7
4.7.1
4.7.2
4.7.3
4.8
4.8.1
4.8.2
4.8.3
4.8.4
5.1
5.1.1
5.1.2

CONTENTS (Cant)

PROGRAMMING RESTRICTIONS .
Stop and Sync, Microcoding
Display File Changes
Non-Flicker Display

ADVANCED PROGRAMMING TECHNIQUES
Subroutines
Light Pen Interaction
Special Characters
Edge Violations

COMMUNICATIONS BOOTSTRAP READ-ONLY MEMORY (ROM)
Bootstrap Loader
Character Echoing

APPENDIX A KEYBOARD LAYOUT

APPENDIX B ADDRESS MAPPING

APPENDIX C CHARACTER CODES

APPENDIX D ROM BOOTSTRAP LOADER PROGRAM - GT40

APPENDIX E SCROLLING ROM BOOTSTRAP LOADER PROGRAM - GT42

Figure No.

1
2
3
4
5
6
7
8
9
10
11
12
,13
14
15
16
17
18
19

ILLUSTRATIONS

Title

GT40 Graphic Display Terminal
GT42 Graphic Display Terminal
GT40/42 Graphic Display Terminal, Block Diagram
GT40, Rear View
GT42, Rear View
LK40 Keyboard (cover removed)
Unibus Interface Block Diagram
Receiver Status Register (RCSR) - Bit Assignments
Receiver Buffer Register (RBUF) - Bit Assignments
Transmitter Status Register (XCSR) - Bit Assignments
Transmitter Buffer Register (XBUF) - Bit Assignments
Serial Character Format
Program Example
GT40/42 Data Paths ..
Memory Layout Example
Instruction Word Functions
Data Word Formats
Non-Flicker Display as Determined by Vector Quantity and Magnitude
Subroutining Example

iv

Page

.40

.40

· 41
· 41
.42
.42
.44

· 44
· 44
· 45
.45
.47

Page

2
2
3
3
4

11
17
23
25

· 26
27
29
30
30
31

.34

· 35
.42

· 43

ILLUSTRATIONS (Conti

Page

20 Encoding and Decoding of Serial Data 46
21 Filler Character Transmission to the GT40/42 46
22 Absolute Program, Octal Format 47
23 Absolute Program Conversion and Transmission 48
A-1 Keyboard Key Configuration A-2
A-2 128-Character Keyboard (Position 1) A-2
A-3 64-Character Keyboard (Position 2) A-3
B-1 Address Mapping B-1
D-1 Communications Bootstrap Loader Flow Diagram D-8
E-1 Communications Bootstrap Loader Flow Diagram E-31

TABLES

Table No. Title Page

Bootstrap Loader Instructions 11
2 First Bootstrap Loader Instruction Locations 12
3 Switch Register Configuration for Loading 14
4 Unibus Signals 18
5 GT40/42 Priority 21
6 BC05-C-25 Cable Output Connections 22
7 Standard DL 11 Register Assignments for the GT40/42 23
8 Recommended GT40/42 Mnemonics 37

v

1.1 PURPOSE AND SCOPE

GT40/GT42

GRAPHIC DISPLAY

TERMINAL

This guide describes the operation of the GT40 and GT42 Graphic Display Terminals. The following information is

included: start·up procedures, equipment specifications, programming techniques, interfacing, and a description of

the ROM Bootstrap.

1.2 GENERAL DESCRIPTION

Th e GT40/42 Graphic Display Terminal (Figures 1 through 5) is a high performance graphic display system that

operates through a PDp·11 /1 0 computer. The GT40/42 is designed for applications that require both a visual display

and a computation capability . Th e system can display either alphanumeric information, graphic data such as

drawings, diagrams, and patterns, or any combination of these. It is particularly valuable for displaying dynamic,

fast·changing data such as waveforms. The GT40/42 can function as a general purpose computer when not

performing as a display terminal. In this nondisplay mode of operation, it can operate as a stand·alone system or

initiate communications with a host computer as part of a computer network.

1.3 SYSTEM ORGANIZATION

The GT40/42 consists of eight basic components organized to form the system described above. These components

are:

• Central Processor Unit (CPU)

• Display Processor Unit (DPU) in which is included the Bootstrap Read Only Memory (ROM)

• Communications I nterface Module

• Memory

• Keyboard

• Cathode Ray Tube (CRT) Monitor

• Light Pen

• Power Supply

ADDRESS / DATA
SWITCHES (16)

FUNCTION
SWITCHES (6)

ON-OFF/ BRIGHTNESS
SWITCH

'--__ POWER INDICATOR
LIGHT

KEY SWITCH

Figure 1 GT40 Graphic Display Terminal

Figure 2 GT42 Graphic Display Terminal

2

KEYBOARD
ENABLE -DISABLE
(ON -OFF)
SWITCH

6959-9

G;'T;;-/4~R;;;IC -;SP~Y 7ER~A~
I
I
I
I
I
I
I
I
I
I
I
L

NOTE :
Used when the GT 4 0/42 is operated
as a termInal device

375
LIGHT
PEN

-,
I
I
I
I
I
I

PARALLEL

'-________ --'"'-___ P_O_R_T ___ J\. r ~~~N~L-l
PER IPHERAL II

DEVICES
UNIBUS

SERIAL
PORT
(BC05 -C-2 5
CABLE)

L _____ -'

Figure 3 GT40/42 Graphic Display Terminal, Block Diagram

CIRCUIT BREAKER
RESET

KEYBOA RD
CABLE

Figure 4 GT40, Rear View

3

BC05-C-25
CO MMUNICATIONS
CABLE

CP'0327

POWER CABLE

SCOPE
CABLE

POWER
CABLE

SCOPE CABLE KEYBOARD
CABLE

7242-5

Figure 5 GT42, Rear View

4

7242-19

1.4 SYSTEM OPERATION

The GT40/42 is a stable system that requires only minimum adjustments because it employs a combination of digital
and analog techniques as opposed to analog circuits alone. The vector function operates efficiently, providing a good
compromise of speed and accuracy and assuring a precise digital vector calculation. The presentation and
accumulation of vectors means that every point of a vector is available in digital form.

During plotting, the end-point position is automatically retained, preventing accumulated errors or drift. Four
different vector types - solid, long dash, short dash, and dot dash - are possible through standard hardware.

The GT40/42 character generator has both upper and lower case capability with a large repertoire of displayable
characters. The display is the automatically refreshing type rather than the storage type so that a bright, continuous
image, with excellent contrast ratio, is provided during motion or while changes are being made in the elements of
the picture. A hardware blink feature is applicable to any characters or graphics drawn on the screen. A separate line
clock in the display permits the GT40/42 to be synchronized to the line frequency. Scope resolution is precise
enough to allow overprinting.

The terminal includes logic for descender characters such as "p" and "g," positioning them correctly with respect to
the text line. I n addition to the 96 ASCII printing characters, 31 special characters are included which are addressed
through the shift-in/shift-out control codes. These special characters include some Greek letters, architectural
symbols, and math symbols. Characters can be drawn in italics simply by selecting the feature through the status
instruction bit. Brightness and contrast are such that the scope can be viewed in a normally lighted room.

The instruction set consists of four control-state instructions and five data-state formats. The control instructions set
the mode of data interpretation, set the parameters of the displayed image, and allow branching of the instruction
flow. Data can be interpreted in any of five different formats, allowing tasks to be accomplished efficiently from

both a core usage and time standpoint. The graph/plot feature of the GT40/42 automatically plots the x or y values
according to preset distances as values for the opposite axis are recorded.

1.5 EQUIPMENT SPECIFICATIONS

The GT40/42 Graphic Display Terminal operating requirements and physical characteristics are listed by component
in the following paragraphs. Refer to Volume 2 of the GT40 Graphic Display Terminal Maintenance Manual for the
specifications pertaining to the KD11-B Processor (PDP-11/10).

Display Processor

Instruction Word Length

Raster Definition

Viewable Area

Paper Size

Hardware Blink

Hardware Intensity Levels

Line Frequency Synchronization

Character Font

Characters/Line

16 bits

10 bits

x = 1024 raster unit (17778)

y = 768 raster units (1377 8)

12 bits

Programmable

8

Hardware programmable

6 X 8 dot matrix

73

5

Number of Lines

Character Set

Control Characters

Bell Tone

Italics

Line Type

Data formats

DPU Instructions

31

96 ASCII - upper and lower case plus 31 specials (Greek
letters, math symbols, etc.) (Refer to the appendix)

Carriage return
Line feed
Backspace

Programmable

Hardware programmable

Solid
Long dash
Short dash
Dot dash

Character (2 char/word)
Short Vector (1 word)
Long Vector (2 words)
Point (2 words)
Relative Point (1 word)
Graphplot x/y (1 word/pt)

Set Graphic Modes
Jump
No operation (NOP)
Load Status Register A
Load Status Register B

DL 11 Communications I nterface Operating Specifications

Data I nput and Output

Data Format

Power Required

Cable Length EIA

Noise Margin EIA

Serial data, EIA and CCITT specifications compatible with
Bell 103 and 202 Data Sets

1 start bit 5, 6, 7, 8 data bits 1, 1.5, or 2 stop bits, odd,
even or no parity.

1.8A@+5V
0.150A @ - 15V
O.050A @ +9 to + 15V

All baud rates: 50 ft (15.24m)

5V

MM11 Core Memory (refer also to Volume 2 of the GT40 Graphic Display Terminal Maintenance Manual).

Type Magnetic core, read/write, coincident current, random access

Organization Capacity Planar, 3D, 3-wire

6

Access Time

DATI
DATIP
DATO,DATOB

Cycle Time

LK40 Keyboard

DATI
DATIP
DATO,DATOB
(PAUSE L)
DATO,DATOB
(PAUSE H)

Number of Keystations

Encoding Format

Number of Codes

Output Data Format

Baud Rate

Output Signal

Bell

Controls

CRT Monitor

Viewable Area
GT40
GT42

Brightness

Contrast Ratio

Phosphor Type

Pincushion

Spot Size

400 ns
400 ns
200 ns

900 ns
450 ns
900 ns

450 ns

58 (Major board)
8 (Minor board)

1968 USASCII

Either 96 or 128 codes (internal switch controllable,

8-bit ASCII
1 start bit
7 data bits
2 stop bits

Approximately 150 baud

20-mA current loop

Tone generator

Enable/Disable transmit

6.75 X 9 in. (17.145 X 22.86 em)
8.5 X 11 in. (21.590 X 27.940 em)

> 30 fL (measured using a shrinking raster technique)

> 10:1

P39 doped with I R

± 1% of full scale to best fit line

< 20 mils inside the usable screen area at a brightness of 30
fL [Full Width at Half Maximum (FWHM)]

7

Jitter

Repeatability

Gain Change

Temperature Range

Relative Humidity

Linearity

Deflection Method

Focus Method

High Voltage

Shielding

Overload Protection

Light Pen

Length

Diameter

Light Sensing

Connector

Signal Amplification

Power Supply

< ±1/2 spot diameter

< ±1 spot diameter (repeatability is the deviation from the
nominal location of any given spot)

From a fixed point on the screen, less than ±0.3% gain
change for each ± 1 % line voltage variation

0° to 50°C (operating)

10 to 90% (noncondensing)

Maximum deviation of any straight line will be < 1% of the
line length measured perpendicular to a best-fit straight line

Magnetic (70° diagonal deflection angle)

Electrostatic

10.5 kV de nominal (voltage proportional to input line
voltage). Supply is self-contained and equipped with a
bleeder resister.

CRT is fully enclosed in a magnetic shield.

Unit is protected against fan failure or air blockage by
thermal cutouts. Power supply and amplifiers are current
limited. Phosphor protection is provided against fault
conditions.

5.0 in. (12.7 em)

0.45 in. (tapered to 0.35 in.)
(1.143 em) (0.889 em)

Phototransistor

Phono Plug

G840 Light Pen Amplifier module in VR14 CRT Display

Refer to Volume 2 of the GT40 Graphic Display Terminal Maintenance Manual for a detailed list of power supply
specifications.

Environmental

Shock, Nonoperating

Vibration, Nonoperating

Operating Ambient Temperature

Relative Humidity
(noncondensing)

DEC STD 102, 205 at 30 ± 10 ms half-sine

DEC STD 102, Vertical 1.89 G rms 10 - 300 Hz

DEC STD 102, Class A, 60° - 95°F (16° - 35°C)

DEC STD 102, Class 2, 20 - 80%

8

Physical

Weight
GT40 GT42

CRT Monitor
Processor Cabinet
Keyboard

80 Ib (36.24 kg) 85lb (38.55 kg)
60 Ib (27.18 kg) 2751b (124.74 kg)
6.25 Ib (2.83 kg) 6.25 Ib (2.83 kg)

GT40 Size
Height Width Depth

CRT Monitor 12.5 in. 19.75 in. 22.25 in.
(31.75 cm) (50.165 cm) (56.515 cm)

Processor Cabinet 5.25 in. 19.75 in. 23.25 in.
(13.335 cm) (50.165 cm) (59.055 cm)

Keyboard 3.0 in. 15.625 in. 6.625 in.
(7.62 cm) (42.227 cm) (16.827 cm)

GT42 Size
Height Width Depth

CRT Monitor 15 in. 21.5 in. 27 in.
(38.10cm) (54.61 cm) (68.58 cm)

Processor Cabinet 50 in. 21 in. 38 in.
(127.00em) (53.34 em) (96.52 em)

Keyboard 3 in. 16.625 in. 6.625 in.
(7.62 cm) (42.227 cm) (16.827 em)

2.1 GT40/GT42 START-UP PROCEDURES

The procedure used to start the GT40/GT42 Graphic Display Terminal is determined by the system configuration. A
GT40/GT42 that operates as a terminal in a larger system is started differently than a GT40/GT42 that functions as
a stand-alone device. Four procedures are presented in the following paragraphs: GT40/GT42 Terminal Systems,
GT42 Paper Tape Systems, GT40 Paper Tape Systems, and GT42 Bootstraps for Other Devices.

2.1.1 GT40/GT42 Terminal Systems

The following procedure is used to initiate the ROM Bootstrap from the PDP-11/10 console on the GT40/42.

1. Determine that the GT40/42 power cord is connected to an appropriate electrical outlet.

2. Turn the console key switch (Figure 1) to the POWER position.

3. Turn the front panel ON-OFF/BRIGHTNESS switch fully counterclockwise and then 3/4 of the way in
the clockwise direction. The red power indicator light just below the switch should be on at this time.

4. Press the console ENABLE/HALT switch down to halt the computer.

5. Press the spring-loaded START switch twice; this resets the computer.

6. Place 1660008 in the Switch register (SR). This is the starting address for the Bootstrap program in the
Read-Only Memory (ROM) (Figure 20).

7. Press LOAD ADDRESS to load the address into the computer.

8. Return the ENABLE/HALT switch to the up-most position.

9. Press the START switch. The RUN indicator light should be on at this time.

9

10. Ensure that the LK40 keyboard ENABLE/DISABLE (On·Off) switch is in the ON position (Figure 6).

11. The GT40/42 is now ready to transmit data to and receive data from the host computer via the DL 11
Asynchronous Interface modu Ie.

NOTE
A detailed description of the ROM Bootstrap and the loading
procedure from a host computer are contained in Paragraph
5.1.

2.1.2 GT42 Paper Tape Systems

The following procedure is used to initiate the ROM Bootstrap from the PDp·11/10 console on the GT42.

1. Determine that the GT42 power cord is connected to an appropriate electrical outlet.

2. Turn the console key switch (Figure 2) to the POWER position.

3. Turn the front panel ON-OFF/BRIGHTNESS switch fully counterclockwise and then 3/4 of the way in
the clockwise direction. The red power indicator light just below the switch should be on at this time.

4. Press the console ENABLE/HALT switch down to halt the computer.

5. Press the spring·loaded START switch twice; this resets the computer.

6. Place 1674008 in the Switch register (SR). This is the starting address for the paper tape Bootstrap
program in the Read Only Memory (ROM).

7. Press LOAD ADDRESS to load the address into the computer.

8. Return the ENABLE/HALT switch to the up·most position.

9. Place the Absolute Loader in the specified reader with the special bootstrap leader code over the reader
sensors (under the reader station).

10. Press START. The Absolute Loader tape will pass through the reader as data is being loaded into core.

11. The tape stops after the last frame of data has been read into core. The Absolute Loader is now in core.
If the Absolute Loader tape does not read in immediately after depressing the START switch, perform
steps 26 and 27 of Paragraph 2.1.3.

2.1.3 GT40 Paper Tape Systems

1. Determine that the GT40 power cord is connected to an appropriate electrical outlet.

2. Turn the console key switch (Figure 1) to the POWER position.

3. Turn the front panel ON·OFF/BRIGHTNESS switch fully counterclockwise and. then 3/4 of the way in
the clockwise direction. The red power indicator light just below the switch should be on at this time.

4. Press the console ENABLE/HALT switch down to halt the computer.

5. Press the spring-loaded START switch twice; this resets the computer.

6. The Bootstrap Loader will now be loaded (toggled) into the highest core memory bank. The locations
and corresponding instructions of the Bootstrap Loader are listed in Table 1.

10

ENABLE! DISABLE
(ON - OFF)
SWITCH

96/126 CHARACTER
SET SEL ECT
SWITCH

Figure 6 LK40 Keyboard (cover removed)

KEYBOARD
CABLE

The Bootstrap Loader program instructs the computer to accept and store in core memory data that is punched on
paper tape in bootstrap format. The Bootstrap Loader is used to load very short paper tape programs of 1628 16-bit
words or less (primarily the Absolute Loader and Memory Dump programs). Programs longer than this must be
assembled into absolute binary format using the PAL-11A Assembler and loaded into memory using the Absolute
Loader (step 19).

Table 1
Bootstrap Loader Instructions

Location Instruction

xx7744 016701
xx7746 000026
xx7750 012702
xx7752 000352
xx7754 005211
xx7756 105711
xx7760 100376
xx7762 116162
xx7764 000002
xx7766 xx7400
xx7770 005267
xx7772 177756
xx7774 000765
xx7776 YYYYYY

In Table 1, xx represents the highest available memory bank. For example, the first location of the loader would be
0377448 if the system contained an 8K memory. Table 2 lists the locations for the first Bootstrap Loader
instruction as determined by the memory size. All other locations, for a given memory, are prefixed with the same

two digits.

11

Table 2
First Bootstrap Loader
Instruction Locations

Location Memory Bank Memory Size

017744 0 4K
037744 1 SK
057744 2 12K
077744 3 16K
117744 4 20K
137744 5 24K
157744 6 2SK

The contents of location xx7776 (YYYYYY in the I nstruction column of Table 1) should contain the device status
register address of the paper tape reader to be used when loading the bootstrap formatted tapes. Either paper tape
reader may be used; their respective addresses are:

Teletype Paper Tape Reader - 177560
High Speed Paper Tape Reader - 117550

7. Set xx7744 in the Switch register (SR) and press the LOAD ADDRess switch (xx7744 will be displayed
in the address register).

S. Set the first instruction, 016701, in the SR and lift the DEPosit switch (016701 will be displayed in the
data register).

NOTE
When DEPositing data into consecutive words, the DEPosit
automatically increments the address register to the next
word.

9. Set the next instruction, 000026, in the SR and lift DEPosit (000026 will be displayed in the data
register).

10. Set the next instruction in the SR and press the DEPosit switch. Continue depositing subsequent
instructions until 000765 is stored in location xx7774.

11. Deposit the desired device status register address in location xx7776, the last location of the Bootstrap
Loader.

12. Good programming procedure requires the verification of data that has been stored.

13. Set xx7744 in the SR and press the LOAD ADDRess switch.

14. Press the EXAMine switch. The octal instruction in location xx7744 will be displayed so that it can be
compared with the correct instruction: 016701. If the instruction is correct, proceed to step 15,
otherwise go to step 17.

12

15. Press the EXAMine switch. When the switch is held depressed, the ADDRESS/DATA indicators display
the memory address. On releasing the switch, the instruction at that address is displayed. Compare the
indicator display with the required instruction (Table 1). (The EXAMine switch automatically
increments the address register.)

16. Repeat step 15 until all instructions have been verified or go to step 17 whenever the correct instruction
is not displayed.

NOTE
Whenever an incorrect instruction is displayed, it can be
corrected by performing steps 17 and 18.

17. When an incorrect instruction is displayed in the ADDRESS/DATA indicators, set the correct
instruction in the SR and lift the DEPosit switch.

18. Press imd release the EXAMine switch to verify that the correct instruction has been deposited. Continue
the checking (step 15) until all the instructions have been verified.

19. The Absolute Loader program will be loaded into core memory at this time. The Absolute Loader is a
system program which, after being loaded .into memory, allows the operator to load, into any co're
memory bank, data punched on paper tape in absolute binary format. It is used primarily to load the
paper tape system software (excluding certain subprograms) and the user's object programs assembled
with PAL·11 A. The major features of the Absolute Loader include:

• Testing of the checksum on the input tape to ensure complete, accurate loads.

• Starting the loaded program upon completion of loading without additional user action, as
specified by the .END in the program just loaded.

• Specifying the load address of position independent programs at load time rather than at assembly
time, by using the desired loader switch register option.

With the Bootstrap Loader in core memory, the Absolute Loader is loaded into memory starting anywhere between
locations xx7500 and xx7742, i.e., 16210 words. The paper tape input device used is specified in location xx7776
(step 11). The Absolute Loader tape begins with about two feet of special bootstrap leader code (ASCII code 351),
not blank leader tape.

20. Set the ENABLE/HALT switch to HALT.

21. Place the Absolute Loader in the specified reader with the special bootstrap leader code over the reader
sensors (under the reader station).

22. Set the SR to xx7744 (the starting address of the Bootstrap Loader) and press LOAD ADDRess.

23. Set the ENABLE/HALT switch to ENABLE.

24. Press START. The Absolute Loader tape will pass through the reader as data is being loaded into core.

25. The tape stops after the last frame of data has been read into core. The Absolute Loader is now in core.

13

26. If the Absolute Loader tape does not read in immediately after depressing the START switch (step 24),
it is due to one of the following causes:

• Bootstrap Loader not correctly loaded.

• The wrong input device was used.

• Code 3518 was not directly over the reader sensors.

• The Absolute Loader tape was not properly positioned in the reader.

27. Any paper tape punched in absolute binary format is referred to as an absolute tape, and is loaded into
memory using the Absolute Loader. When using the Absolute Loader, there are two methods of loading
available: normal and relocated.

A normal load occurs when the data is loaded and placed in core according to the load addresses on the
object tape. It is specified by setting bit 0 of the Switch register to zero immediately before starting the
load.

There are two types of relocated loads.

a. Loading to continue from where the loader left off after the previous load. This is used, for example,
when the object program being loaded is contained on more than one tape. It is specified by setting the
Switch register to 000001 immediately before starting the load.

b. Loading into a specific area of core. This is normally used when loading position independent programs.
A position independent program is one that can be loaded and run anywhere in available core. The
program is written using the position independent instruction format. This type of load is specified by
setting the Switch register to the load address and adding 1 to it, i.e., setting bit 0 to 1.

Optional Switch register settings for the three types of loads are listed in Table 3.

Table 3
Switch Register Configuration for Loading

Switch RI!!; ister
Type of Load Bits 1-14 Bit 0

Normal

Relocated - continue
loading where left off

Relocated - load in
specified area of core

(ignored)

o

nnnnn
(specified
address)

o

The absolute tape is now loaded using either of the paper tape readers. The desired reader is specified in the last
word of available core memory (xx7776), the input device status word, as explained in step 6. The input device .
status word can be changed at any time prior to loading the absolute tape.

14

28. Set the ENABLE/HALT switch to HALT.

To use an input device different from that used when loading the Absolute Loader, change the address
of the device status word (in location xx7776) to reflect the desired device, i.e., 177560 for the
Teletype@ reader or 177550 for the high speed reader.

29. Set the SR to xx7500 and press LOAD ADDR.

30. Set the SR to reflect the desired type of load.

31. Place the absolute tape in the proper reader with blank leader tape directly over the reader sensors.

32. Set ENABLE/HALT to ENABLE.

33. Press START. The absolute tape will begin passing through the reader station as data is being loaded into
core.

34. The Absolute Loader was not correctly stored in memory if the absolute tape does not begin passing
through the reader station. If this occurs, reload the loader (steps 20-25) and then the absolute tape
(starting at step 28).

If the absolute tape halts in the middle of the tape, a checksum error occurred in the last block of data
read. Normally, the absolute tape will stop passing through the reader station when it encounters the
transfer address as generated by the .END statement, denoting the end of a program. If the system halts
after loading, check that the low byte of the data register is zero. If so, the tape is correctly loaded. If
not zero, a checksum error has occurred in the block of data just loaded, indicating that some data was
not correctly loaded. Thus, the tape should be reloaded starting at step 1.

When loading a continuous relocated load, subsequent blocks of data are loaded by placing the next tape
in the appropriate reader and pressing the CONTinue switch.

35. The Absolute Loader may be restarted at any time by starting at step 1.

2.1.4 GT42 Bootstraps For Other Devices

The GT42 contains bootstrap programs for the following devices:

Device
TAll Cassette
RF11 Fixed Head Disk
RC11 Fixed Head Disk
R K 11 Disk Cartridge
RP11 Disk Pack
TCll DECtape
TM11 Magnetic Tape

Starting Address (Octail
167500
167600
167720
167610
167654
167620
167636

The following procedure is used to initiate one of the above devices from the PDP-ll/l 0 console of the GT42.

1. Determine that the GT42 power cord is connected to an appropriate electrical outlet.

2. Turn the console key switch to the POWER position.

3. Press the console ENABLE/HALT switch down to halt the computer.

®Telewpe is a registered trademark of Teletype Corporation.

15

4. Press the spring·loaded START switch twice; this resets the computer.

5. Place the address of the device to be started into the Switch register. The device starting addresses are
listed above.

6. Press the LOAD ADDRESS switch to load the address into the computer.

7. Return the ENABLE/HALT switch to the up-most position.

8. Press the START switch.

2.1.5 GT42 Graphics Test

The GT42 contains a short program which tests the fundamental graphic capabilities of the display processor. The
program, which starts at octal address 167204, displays several lines and points on the CRT.

2.2 GT40/42 FAILURE PROCEDURES

The following procedures should be followed in the event the GT40/42 fails to operate properly. If, after performing
these checks, equipment operation is still unsatisfactory, the user should notify the DEC Field Service Office of the
problem.

If the GT40/42 is completely inoperative:

1. Check the circuit breaker on the rear panel of the GT40 (Figure 4) or in the cabinet of the GT42. Press
the button to reset the circuit breaker.

2. Check the power cord to the wall receptacle. It should be properly seated.

3. Determine that the required power (115 or 230 Vac) is present at the wall receptacle.

If the display scope fails to turn on:

1. Check the keyboard cable connector on the GT40/42 rear panel for proper seating.

2. Check the power plugs on the rear panel and the power control box for proper seating.

3. Determine that the front panel ON-OFF/BRIGHTNESS switch is in the ON position (clockwise).

4. Check the following fuses on the rear panel and the power control box:

• 5A SB (115 V system)
(or 3A SB for 230 V systems)

• 10A (115 V systems)
(or 5A for 230 V systems)

If the keyboard is incapable of transmitting data:

1. Check the ON/OFF switch on the rear of the keyboard (Figure 6). Place it in the ON position.

2. Check the cable connectors on the GT40/42 rear paneL (particularly the keyboard cable) for proper
seating.

16

3.1 GT40/42INTERFACES

Transferral of information between GT40/42 components and devices external to the basic system requires a means
for connecting or interfacing an extended system. The interface can be consid.ered to be the physical boundary
between the GT40/42 and attached units; it provides the communication link between the display terminal and
associated devices such as a host computer or additional memory units.

3.2 PARALLEL PORT

The GT40/42 possesses two interfaces. One, called the parallel port, uses conventional Unibus signals and
connections to transfer data in parallel format. The other interface is employed in the transfer of asynchronous data,
in a serial format, over a longer communications line. The two interfaces and their relation to the GT40/42 are
shown in Figure 7.

The parallel port is used typically to interface local high speed peripheral devices such as additional core memory,
disk storage units, etc. The parallel port is basically an extension of the PDP-11 family Unibus.

I

I BUS I ADDRESS REG.

~C+D +

I
PROCESSOR I BUS TIMING

I
PROCESSOR

I DATA PATHS

•
BUS PRIORITY

CONTROL

PROCESSOR

KEY A-ADDRESS INFORMATION
C -CONTROL + TIMING SIGNALS
D - DATA INFORMATION
T- CONTROL TRANSFER SIGNALS
G - BUS GRANT SIGNALS

T

Vt-

tJ

UNIBUS

/~ {~ A
A
+

~D;
C BUFFER T

REGISTER

~ W ADDRESS

-,/ SELECTOR

MEMORY

MEMORY

Figure 7 Unibus Interface Block Diagram

3.2.1 Unibus Structure

.() ()

~V ~DJ
ADDRESS

SELECTOR DEVICE

INTERRUPT
REGISTER

CONTROL

DEVICE
LOGIC

DEVICE

11-0017

The Unibus is a single common path that connects the processor, memory, and all peripherals. Addresses, data, and
control information are transmitted along the 56 lines of the bus. All 56 s.ignals and their functions are listed in
Table 4.

Every device on the Unibus employs the same form of communication; thus, the processor uses the same set of
signals to communicate with memory and with peripheral devices. Peripheral devices also communicate with the
processor, memory, or other peripheral devices via the same set of signals.

17

All instructions applied to data in memory can be applied equally well to data in peripheral device registers, enabling
peripheral device registers to be manipulated by the processor with the same flexibility as memory. This feature is
especially powerful, considering the capability of PDP-ll instructions to process data in any memory location as
though it were an accumulator.

Name Mnemonic Source

Data Transfer Signals
(For transfer of data to or from master)

Address A(17:00) Master

Data 0(15:00) Master

Slave

Control C(l :0) Master

Master MSYN Master
Sync

Slave SSYN Slave
Sync

Parity Bit Low PA Master

Parity Bit High PB Master

Priority Transfer Signals

Table 4
Unibus Signals

Destination

All

Slave

Master

Slave

Slave

Master

Slave

Slave

(For transfer of bus control to a priority-selected master)

Non-Processor NPR Any Processor

Request

Bus Request BR(7:4) Any Processor

Non-Processor NPG Processor Next master
Grant

Bus Grant BG(7:4) Processor Next master

Selection SACK Next Processor
Acknowledge Master

Bus Busy BBSY Master All

18

Timing Function

MSYN Selects slave device

MSYN (DATa,
DATOB)
SSYN (DATI,
DATIP)

MSYN Selects transfer operation

Beginning of Initiates operation and
transfer gates A, C, and 0 signals

Data accepted Response to MSYN
(DATO,DATOB)
Data Available
(DATI,DATIP)

Same as Data Transmits parity bit, low
byte

Same as Data Transmits parity bit, high
byte

Asynchronous Highest priority bus reques

Asynchronous Requests bus mastership

In parallel with Transfers bus control
data transfer

After instruction Transfers bus control

Response to NPG Acknowledges grant &
or BG inhibits further grants

except during Asserts bus mastership

transfer of control

t

Name Mnemonic

Interrupt INTR

Miscellaneous Signals

Initialize INIT

Source

Master

Processor

Table 4 (Cont)
Unibus Signals

Destination

Processor

All

Timing Function

After asserting BBSY Transfers bus control to
(not after NPR), handling routine in
device may perform processor
several transfers
before asserting
INTR.

Asynchronous Clear and reset signal

AC Low AC LO Power All Asynchronous Indicates impending power

DC Low

failure

DC LO Indicates dc voltages out 0

tolerance, and system
operation must be sus·
pended.

NOTE
Signals on the Unibus are asserted when low (except for the uni·
directional bus grant lines).

3.2.1.1 Bidirectional Lines- Most Unibus lines are bidirectional, allowing input lines to also be driven as output
lines. This is significant in that a peripheral device register can be either read or used for transfer operations. Thus,
the same register can be used for both input and output functions.

3.2.1.2 Master/Slave Relationship - Communication between two devices on the bus is based on a master/slave
relationship. During any bus operation, one device, referred to as the bus master, has control of the bus when
communicating with another device, the slave. A typical example of this relationship is the processor (master)
transferring data to memory (slave). Master/slave relationships are dynamic. The processor, for example, passes bus
control to a disk; the disk, as master, then communicates with a slave memory.

The Unibus is used by the processor and all I/O devices; thus, a priority structure determines which device gains
control of the bus. Consequently, every device on the Unibus capable of becoming bus master has an assigned
priority. When two devices capable of becoming bus master have identical priority values and simultaneously request
use of the bus, the device that is electrically closest to the bus receives control.

3.2.1.3 Interlocked Communication - Communication on the Unibus is interlocked between devices. Each control
signal issued by the master device must be acknowledged by a response from the slave to complete the transfer.
Consequently, communication is independent of the physical bus length and the response time of the master and
slave devices. The maximum transfer rate on the Unibus, with optimum device design, is one 16·bit word every 400
ns or 2.5 million 16·bit words per second.

19

f

3.2.2 Peripheral Device Organization and Control

Peripheral device registers are assigned addresses similar to memory; thus, all PDP-" instructions that address
memory locations can become I/O instructions, enabling data registers in peripheral devices to take advantage of all
the arithmetic power of the processor.

The PDP-" controls devices differently than most computer systems. Control functions are assigned to a register
address, and then the individual bits within that register can cause control operations to occur. For example, the
command to make the paper tape reader read a frame of tape is provided by setting a bit (the reader enable bit) in
the control register of the device. Instructions such as MOV and BIS may be used for this purpose. Status conditions
are also handled by the assignment of bits within this register, and the status is checked with TST, BIT, and CMP
instructions.

3.2.3 Unibus Control Arbitration

The Unibus is capable of performing two basic and parallel tasks in order to allow transfers by multiple peripherals
at maximum speed. The first is the actual transfer of data between the current bus master and its addressed slave.
The second is the selection of the next bus master, the peripheral which will be allowed to assert control as soon as
the bus becomes free. It is important to note that the granting of future mastership is in no way influenced by either
the current master or its method of obtaining the bus. It is this fact which allows these functions to be performed in
parallel and allows transfers on the bus at a maximum rate.

3.2.3.1 Priority Transfer Requests - To gain mastership of the Unibus, a peripheral must first make a request to
the processor for the bus and then wait for its selection. The processor contains the logic necessary to arbitrate these
requests because normally there are several requests pending at any given time.

There are two classes of requests: bus requests and non-processor requests. A bus request (BR) is simply a request
by a peripheral to obtain control of the Unibus with the understanding by the processor that the peripheral may end
its use of the bus with a processor interrupt. An interrupt is a command to the processor to begin executing a new
routine pointed to by a location selected by a device. A non-processor request (NPR) is similarly a request for the
bus, but with the exception that it may not interrupt the processor. Since the granting of an NPR cannot affect the
execution of the processor, it can occur during or between instructions. BRs, however, by possibly causing execution
to be diverted to a totally new routine, can only be granted between instructions. In this way, NPRs are assigned
priority over any BA.

Between bus requests, there are four levels of priority created by four separate request lines. They are assigned
priority levels 4 through 7; BR4 is the lowest and BR7 is the highest. These levels are associated with the program

. controlled priority level of the processor, controlled by bits 7,6, and 5 of the processor status register. Only BRs on
a priority level higher than the level of the processor are eligible for receiving a bus grant. Thus, during high priority
program tasks, all or selected Unibus requests (hence interrupts) can be inhibited by raising the level of the processor
priority.

Another form of priority arbitration occurs through the system configuration. When the processor grants a request,
the grant travels along the bus until it reaches the first requesting device which terminates the grant. Therefore, along
the same grant line, the device electrically nearest the processor has the highest priority. Also note that in the
KD "-B, the internal line clock is logically the last device on BR6, and the keyboard or Teletype interface is
logically the last device on BR4.

The GT40/42 relationship to this priority scheme is indicated in T~ble 5.

After a requesting device receives a bus grant it asserts its selection as next bus master until the bus is free, thus
inhibiting other requests from being granted. When the bus becomes free, the selected device asserts control of the
bus and relinquishes its selection as next bus master so that the priority arbitration among pending requests may
continue.

20

GT40/42 Component

DL 11 Asynchronous
Interface

Display Processor

Unibus Output Slot
(parallel Port)

Table 5
GT40/42 Priority

Priority Level

BR5

BR4

Relative Physical
Position from the CPU

2

3

NOTE: The MM 11 memory is not shown as an active device because it
always functions as a slave, never asserting a bus request itself.

3.2.3.2 Processor Interrupts - After gaining control of the bus through a BR, a device can perform one or more
transfers on the bus and/or request a processor interrupt. This is typically requested after a device has completed a
given task, e.g., typing a character or completing a block data transfer through NPRs. If a peripheral wishes to
interrupt the processor, it must assert the interrupt after gaining control of the bus but before relinquishing its
selection as next bus master. Thus the processor knows that it may not fetch the next instruction, but must wait for
the interrupt to be completed. Along with asserting the interrupt, the device asserts the unique memory address,
known as the interrupt vector address, containing the starting address of the device service routine. Address vector
+2 contains the new processor status word (PSW) to be used by the processor when beginning the service routine.
After recognizing the interrupt, the processor reads the vector address and saves it in an internal register. It then
pushes the current PSW and program counter onto the stack and loads the new program counter (PC) and PSW from
the vector address specified. The service routine is then executed.

NOTE
These operations are performed automatically and no device
polling is required to determine which routine to execute.

The device service routine can cause the processor to resume the interrupted process by executing the return from
interrupt (RTI) instruction which pops the top two words from the processor stack and transfers them back to the
PC and PS registers.

3.2.3.3 Data Transfers - After asserting control of the Unibus, the device does not release control until it has
completed either one or more data transfers or an interrupt. Typically, only one transfer is completed each time the
device gains control of the bus because few single devices can give or receive information at the maximum Unibus
rate. Holding the bus for multiple transfers inhibits other devices from using the bus.

A transfer is initiated by the master device asserting a slave address and control signals on the bus and a master or
address validity signal. The appropriate slave recognizes the valid address, reads or writes the data, and responds with
a transfer complete signal. The master recognizes the transfer complete, sends or accepts data, and drops the address
validating signal. It can then assert a new address and repeat the process or release control of the bus completely.

The importance of this type of structure is that it enables direct device·to·device transfers without any interaction
from the central processor. An NPR device, such as the high speed CRT display, can gain fast access to the bus and
transfer data at high rates while refreshing itself from memory without slowing down the processor.

21

For a more detailed description of the Unibus and its function, refer to the GT40 Graphic Display Terminal
Maintenance Manual, Volume 2 or to the PDP-11 Peripherals Handbook.

3.3 SERIAL PORT

The serial port is the primary means of interfacing the GT40/42 with a host or remote computer. Access to this port
is through the DL 11 Asynchronous Interface module and the 25-ft BC05-C-25 cable which terminates in a 25-pin,
RS232-defined connector at a data set modem (Figure 3 and Table 6).

3.4 DL 11 PROGRAMMING

Table 6
BC05-C-25 Cable Output Connections

CINCH Connector
Pin No. (to modem)

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Signal

Ground
Transmitted Data
Received Data
Request to Send
Clear to Send
Data Set Ready
Ground
Carrier
+ Power
- Power
202 Secondary Transmit
202 Secondary Receive
Secondary Clear to Send
EIA Secondary Transmit
Serial Clock Transmit
EIA Secondary Receive
Serial Clock Receive
Unassigned
Secondary Request to Send
Data Terminal Ready
Signal Quality
Ring
Signal Rate
External Clock
Force Busy

All software control of the DL 11 Asynchronous Line Interface is performed by means of four device registers. These
registers have been assigned bus addresses and can be read or loaded (with the exceptions noted) using any PDP-11
instruction referring to their addresses. Address assignments can be changed by altering jumpers on the address
selection logic to correspond to any address within the range of 174000 to 177777. However, register addresses for
the DL 11 in the GT40/42 fall within the range of 175610 to 175616.

22

The four device registers and associated DL 11 addresses are listed in Table 7.

Table 7
Standard DL 11 Register Assignments for the GT40/42

Register Mnemonic Address

Receiver Status Register RCSR 175610
Receiver Buffer Register RBUF 175612
Transmitter Status Register XCSR 175614
Transmitter Buffer Register XBUF 175616

Figures 8 through 11 show the bit assignments for the four device registers. The unused and load-only bits are always
read as Os. Loading unused or read-only bits has no effect on the bit position. The mnemonic I NIT refers to the
initialization signal issued by the processor. Initialization is caused by one of the following: issuing a programmed
RESET instruction; depressing the START switch on the processor console; or the occurrence of a power-up or
power-down condition of the processor power supply.

In the following descriptions, transmitter refers to those registers and bits involved in accepting a parallel character
from the Unibus for serial transmission to the external device; receiver refers to those registers and bits involved with
receiving serial information from the external device for parallel transfer to the Unibus.

R C S R = 175610 * Not used for data operations.

Figure 8 Receiver Status Register (RCSR) - Bit Assignments

3.4.1 Receiver Status Register

Bit

15

Name

DATASET INT
(Dataset Interrupt)

Meaning and Operation

This bit initiates an interrupt sequence provided the
DATASET INT ENB bit (05) is also set.

This bit is set whenever CAR DET, RCVR ACT, or SEC
R EC changes state, i.e., on a 0 to 1 or 1 to 0 transition of
anyone of these bits. I t is also set when RING changes
from 0 to 1.

23

14

13

12

11

10

9-8

07

RING

Cleared by INIT or by reading the RCSR. Because reading
the register clears the bit, it'is, in effect, a "read-once" bit.

When set, indicates that a RINGING signal is being received
from the dataset. Note that the RINGING signal is not a
level but an EIA control signal with the cycle time as shown
below:

~ ______ 4 __ se_c ______ ~~L _____ 4 __ se_c ____ ~1 2sec ~

CLR TOSEND
(Clear to Send)

CAR DET
(Carrier Detect)

RCVR ACT
(Receiver Active)

SEC REC
(Secondary Receive
or Supervisory
Received Data)

Unused

RCVR DONE
(Receiver Done)

Read-only bit

The state of this bit is dependent on the state of the
CLEAR TO SEND signal from the dataset. When set, this
bit indicates an ON condition; when clear, it indicates an
OFF condition.

Read-only bit.

This bit is set when the data carrier is received. When clear,
it indicates either the end of the current transmission
activity or an error condition.

Read-only bit.

When set, this bit indicates that the DL 11 interface receiver
is active. The bit is set at the center of the START bit
wh ich is the beginning of the input serial data from the
device and is cleared by the leading edge of RCVR DON E.

Read-only bit; cleared by INIT or by RCVR DONE (bit
07).

This bit provides a receive capability for the reverse channel
of a remote station. A space (+6V) is read as a 1. (A
transmit capability is provided by bit 03.)

Read-only bit; cleared by INIT.

Not applicable.

This bit is set when an entire character has been received
and is ready for transfer to the Unibus. When set, initiates
an interrupt sequence provided RCVR INT ENB (bit 06) is
also set.

Cleared whenever the receiver'buffer (RBUF) is addressed
or whenever RDR ENB (bit 00) is set. Also cleared by
INIT.

Read-only bit.

24

Bit

06

05

04

03

02

01

00

Name

RCVR INT ENB
(Receiver
Interrupt Enable)

DATASETINT
ENB (Dataset
Interrupt Enable)

Unused

SEC XMIT
(Secondary Transmit
or Supervisory
Transmitted Data)

REOTOSEND
(Request to Send)

DTR (Data
Terminal Ready)

Meaning and Operation

When set, allows an interrupt sequence to start when RCVR
DON E (bit 07) sets.

Read/write bit; cleared by INIT.

When set, allows an interrupt sequence to start when
DATASET INT (bit 15) sets.

Read/write bit; cleared by INIT.

Not applicable.

This bit provides a transmit capability for a reverse channel
of a remote station. When set, transmits a space (+6V). (A
receive capability is provided by bit 10.)

Read/write bit; cleared by INIT.

A control lead to the dataset which is required to
transmission. A jumper ties this bit to REO TO SEND or
FORCE BUSY in the dataset.

Read/write bit; cleared by INIT.

A control lead for the dataset communication channel.
When set, permits connection to the channel. When clear,
disconnects the interface from the channel.

Read/write bit; must be cleared by the program, is not
cleared by INIT.

NOTE
T~le state of this bit is not defined after power-up.

RDR ENB
(Reader Enable)

When set, this bit advances the paper-tape reader in ASR
Teletype units and clears the RCVR DONE bit (bit 07).

This bit is cleared at the middle of a START bit which is
the beginning of the serial input from an external device.
Also cleared by INIT.

Write-only bit.

Not used in dataset configurations.

7 o

RECEIVED DATA

RBVF = 175612

Figure 9 Receiver Buffer Register (RBUF) - Bit Assignments

25

3.4.2 Receiver Buffer Register

Bit

15

14

13

12

11-08

07-00

Name

ERROR (Error)

Meaning and Operation

Used to indicate that an error condition is present. This bit
is the logical OR of OR ERR, FR ERR, and P ERR (bits
14, 13, and 12, respectively). Whenever one of these bits is
set, it causes ERROR to set. This bit is not connected to
the interrupt logic.

Read-only bit; cleared by removing the error-producing
condition.

NOTE
Error indications remain present until the next character is
received, at which time the error bits are updated. INIT does
not necessarily clear the error bits.

OR ERR
(Overrun Error)

FR ERR
(Framing Error)

P ERR
(Parity Error)

Unused

RECEIVED
DATA BITS

When set, indicates that reading of the previously received
character was not completed (RCVR DONE not cleared)
prior to receiving a new character.

Read-only bit; cleared in the same manner as ERROR (bit
15).

When set, indicates that the character that was read had no
valid STOP bit.

Read-only bit; cleared in the same manner as ERROR (bit
15).

When set, indicates that the parity received does not agree
with the expected parity. This bit is always 0 if no parity is
selected.

Read-only bit; cleared in the same manner as ERROR (bit
15).

Not applicable.

Holds the character just read. If less than eight bits are
selected, then the buffer is right-justified into the least
significant bit positions. In this case, the higher unused bit
or bits read as Os.

Read-only bits; not cleared by INIT.

7 6 2 0

~~~T I~~f _MAINT.BREAKI 
XCSR= 175614 

Figure 10 Transmitter Status Register (XCSR) - Bit Assignments 

26 



3.4.3 Transmitter Status Register 

Bit 

15-08 

07 

06 

05-03 

02 

01 

00 

Name 

Unused 

XMIT RDY 
(Transmitter 
Ready) 

XMIT INT ENB 
(Transmitter 
Interrupt Enable) 

Unused 

MAINT 
(Maintenance) 

Unused 

BREAK 

XMUF = 175616 

Meaning and Operation 

Not applicable. 

This bit is set when the transmitter buffer (XBUF) can 
accept another character. When set, it initiates an interrupt 
sequence provided XMIT INT ENB (bit 06) is also set. 

Read·only bit. Set by INIT. Cleared by loading the 
transmitter buffer. 

When set, allows an interrupt sequence to start when XMIT 
RDY (bit 07) sets. 

Not applicable. 

Used for maintenance function. When set, disables the serial 
line input to the receiver and connects the transmitter 
output to the receiver input which disconnects the external 
device input. It also forces the receiver to run at transmitter 
speed. 

Read/write bit; cleared by INIT. 

Not applicable. 

When set, transmits a continuous space to the external 
device. 

Read/write bit; cleared by INIT. 

7 o 

TRANSMITTED DATA 

cpo 0408 

Figure 11 Transmitter Buffer Register (XBUF) - Bit Assignments 

3.4.4 Transmitter Buffer Register 

Bit 

15-08 

07-00 

Name 

Unused 

TRANSMITTER 
DATA BUFFER 

Meaning and Operation 

Not applicable. 

Holds the character to be transferred to the external device. 
If less than eight bits are used, the character must be loaded 
so that it is right-justified into the least significant bits. 

Write-only bits. 

27 



3.4.5 Interrupts 

The DL 11 interface uses BR interrupts to gain control of the bus to perform a vectored interrupt, thereby causing a 
branch to a handling routine. The DL 11 has two interrupt channels: one for the receiver section and one for the 
transmitter section. These two channels operate independently; however, if simultaneous interrupt requests occur, 
the receiver has priority. The receiver section is capable of handling multiple source interrupts. 

A transmitter interrupt can occur only if the interrupt enable bit (XMIT INT ENB) in the transmitter status register 
is set. With XMIT INT ENB set, setting the transmitter ready (XMIT RDY) bit initiates an interrupt request. When 
XMIT RDY is set, it indicates that the transmitter buffer is empty and ready to accept another character from the 
bus for transfer to the external device. 

A receiver data interrupt can occur only if the interrupt enable (RCVR I NT ENB) bit in the receiver status register is 
set. With RCVR INT ENB set, setting the receiver done (RCVR DONE) bit initiates an interrupt request. When 
RCVR DONE is set, it indicates that an entire character has been received and is ready for transfer to the bus. The 
additional interrupt request sources for the DL 11 option are discussed in the following paragraphs. 

The receiver portion of the DL 11 in the GT40/42 dataset configuration can service multiple source interrupts. One 
of the receiver interrupt circuits is activated by RCVR INT ENB and RCVR DONE. The additional interrupt ciq:uit 
can cause an interrupt only if the dataset interrupt enable bit (bit 05, DATASET INT ENB) in the receiver status 
register is set. With DATASET INT ENB set, setting the DATASET INT bit initiates an interrupt request. The 
DATASET INT bit can be set by one of four other bits: CAR DET, CLR TO SEND, SEC REC, or RING. 

When servicing an interrupt for one condition, if a second interrupt condition develops, a unique second interrupt, as 
well as all subsequent interrupts, may not occur. To prevent thi.s, either all possible interrupt conditions should be 
checked after servicing one condition or both interrupt enable bits (bits 05 and 06) should be cleared upon entry to 
the service routine for vector XXO and then set again at the end of service. 

The interrupt priority level is 5 with the receiver having a slightly higher priority than the transmitter in all cases. 
Note that the priority level can be changed with a priority plug. 

Any DEC programs or other software referring to the standard BR level or vector addresses must also be changed if 
the priority plug or vector address is changed. 

3.4.6 Timing Considerations 

When programming the DL 11 Asynchronous Line Interface, it is important to consider timing of certain functions in 
order to use the system in the most efficient manner. Timing considerations for the receiver transmitter, and break 
generation logic are discussed in.the following paragraphs. 

3.4.6.1 Receiver - The RCVR DON E flag (bit 07 in the RCSR) sets when the Universal Asynchronous 
Receiver/Transmitter (UART) has assembled a full character. This occurs at the middle of the first STOP bit .. 
Because the UART is double buffered, data remains valid until the next character is received and assembled. This 
permits one full character time for servicing the RCVR DONE flag. 

3.4.6.2 Transmitter - The transmitter section of the UART is also double buffered. The XMIT RDY flag (bit 07 in 
the XCSR) is set after initialization. When the buffer (XBUF) is loaded with the first character from the bus, the flag 
clears but then sets again within a fraction of a bit time. A second charcacter can then be loaded, which clears the flag 
again. The flag then remains cleared for nearly one full character ti'me. 

3.4.6.3 Break Generation Logic - When the BREAK bit (bit 00 in the XCSR) is set, it causes transmission of a 
continuous space. Because the XMtT RDY flag continues to function normally, the duration of a break can be timed 
by the pseudo-transmission of a number of characters. However, because the transmitter section of the UART is 
double buffered, a null character (all Os) should precede transmission of the break to ensure that the previous 
character clears the line. In a similar manner, the final pseudo-transmitted character in the break should be null. 

28 



3.4.7 Program Notes 

The following notes pertain to programming the DL 11 interface and contain information that may be useful to the 
programmer. More detailed programming information is given in the Paper Tape Software Programming Handbook, 
DEC-11-GGPC-D and in the individual program listings. 

a. Character Format - The character format for the DL 11 consists of a START bit, five to eight DATA 
bits, 1, 1.5, or 2 STOP bits and the option of PAR ITY (odd or even) or no parity. Th is is illustrated in 
Figure 12. Note that when less than eight DATA bits are used, the character must be right-justified to 
the least significant bit. The character format pertains to both the receiver and the transmitter. 

b. Maintenance Mode - The maintenance mode is selected by setting the MAl NT bit (bit 02) in the XCSR. 
I n this mode, the interface disables the normal input to the receiver and replaces it with the output of 
the transmitter. The programmer can then load various bits into the transmitter and read them back 
from the receiver to verify proper operation of the DL 11 logic circuits. 

IDLE 
STATE OF ODD,EVEN RETURN TO IDLE 
L~INE I' 5 TO 8 DATA BITS 'I/OR UNUSED ' r STATE OF LINE 

MARK (1) -- T--T--T--T--T--T--T--T----, OR 
00 I 01 I 02 I 03 I 04 I 05 I 06 I 07 I P J STOP I -L- START BIT OF 

SPACE(O)---- .:~B...l. __ .1. __ .1. __ ..1. __ .1. __ ..1. __ .1. __ .1.~12 L....=J NEW CHARACTER 

STARTI--- JUSTIFIED TO LSB BIT POSITIONS WHEN 1-1':: 
BIT 5,6,OR 7 BITS USED --: : i 

1-1.5 --: i 
1--2 --! CP~0576 

Figure 12 Serial Character Format 

3.4.8 Program Example 

Figure 13 is an example of a typical program that can be used as an echo program for a Type 103 dataset. When a 
remote terminal dials in, this program answers the call and provides a character-by-character echo. Characters are 
also copied onto the console device. 

4.1 PROGRAMMING THE GT40/42 

4.2 PROGRAMMING CONCEPT 

The user should view the GT40/42 Graphic Display Terminal as two separate, programmed processors: a PDP-l1/10 
computer (CPU) and a special display processor (DPU). The PDP-11 /1 0 is programmed to initiate the display, and is 
then free to execute its own program, All instructions available on the PDP-11/10 are executable in the GT40/42. 
Figure 14 shows the relationship of the GT40/42 components to the Unibus (the inset illustrates specific GT40/42 
data flow via the Unibus). 

The DPU communicates directly with the MM11 memory by way of non-processor requests (NPRl. i.e., DMA 
requests. The PDP-11 /1 0, connected in parallel, also uses the MM 11 memory for executing its own PDP-11 code. 
The DPU executes display instructions stored in semi-contiguous memory locations called display lists. A memory 
layout example is shown in Figure 15. The Display Program Counter (DPC) in the DPU is addressed by the CPU, via 
the Unibus, and the data MOVed to the DPC becomes the starting address of the display list. All addresses placed on 
the Unibus are even numbers, i.e., word addresses. 

29 



"'0"'2~121 ,.20 11 
00~2~0 ~00161 001616 STARr. JMP REGIN 

~020!?'kl 
0020i"2 
~021211"4 

002121"'6 
002121U 
0021H2 
002014 
0",2rH6 
00?0?1II 

002{)26 
002034 
e021)36 
002044 

002052 
002060 
~02"62 
o I/J " 121 70 
01212ro'4 
0,,212116 

00211"11: 
0",219'6 
00211121 
"'02116 
121 121 21?0 

012121'6 
01212134 
P.l02136 

0021H 
,,,,,2152 
01212154 
01212162 

1"4"'I)~0 

~2('1"'~0 
!?'rIl~2~1il 

~1ilC!'1I"~ 
~002i110 

~020"'0 

1756121 
175612 
175614 
175616 
177564 
1775~6 
~011J0"'0 
t?l0e1121C'!0 
~000~0 

7>32717 
~01774 
~52777 

"'12767 

'1132777 
1"010>"7 
162767 
"05667 
001752 
1"0~765 

~32777 

'11017 45 
032777 
001770 
t?l17767 

?,32777 
~01774 

1'11"'777 

'1132777 
"'1"177 4 
"'16777 
f'!0e1746 

"'1il1il12l~2 
"00121(15 

~200l'1lil 

0002"'''' 

177656 

~0~20'10 

PDP-11/10 
CPU 

177744 

177734 
177744 

177720 

t77730 

177672 

177662 

177666 

177650 

177642 

177636 

171630 

.sv~eOL ~ErJNI'IONS 

RING­
ers_ 
ROONE­
DTR_ 
XRDY_ 

RCSR' 
RBUF'. 
XCSRI 
XBUFI 
CXCSR; 
CXBurl 
BurFERI 
OEL.AY I 

1"41'10"121 
i?!2"'''00 
"'00'12~12I 
~"L'l12I0'I2 
"01'12"121 

,.20"'0 
175610 
175612 
H5614 
1.75616 
177564 
177566 
l'I 
~ 

? 

.BEGINNING or ECHO PROGRAM 

BEGIN; CL,R 

~OOPt; 

~OOP21 

1.00P41 

1.00P'5' 

flIT 
BEO 
SIS 
MOV 

BIT 
BN!: 
SUB 
SElC 
BEa 
fiR 

BIT 
REO 
BIT 
REa 
MOV 

BIT 
!lEO 
MOV 
SR 

"ReSR 

#RING,IiIRCSR 
L,OOP1 
~OTR,IlRCSR 
#5,on.Av 
#CTS,IlI RCC;R 
1.00P3 
U,OEL,AY.2 
DEI.AY 
BEGIN 
LOOP2 

~CTS,IlRCSR 

BEGIN 
*RDONE,IlRC5R 
I,.OOP3 
IlRBur,BUrFp.R 

*XROY,[IlXCS~ 

I.OOP4 
fl\.lF"F"(R,IlXBUF" 

'XRO·,"CXCSR 
LOOP~ 
BUfF"ER,,lCXIIlUF' 
1.00P~ 

. Figure 13 Program Example 

MM11 
MEMORY 

,----------, 
II r. • I • 1 I 

CPU MEMORY DPU I 

L ________ JT_~ 

i9!T 14 or ReSR, RING 
iB!T 1~ or Res~, CLEAR Tn SE~O 
iBfT 0' or RCSR, RECEIVER ~ONE 
is!T 01 or RCSR, DAtA 'E~MINI~ RE.OY 
iSIT 0' or XCSR, TRA~SMI'TrR REAOY 

iCSR or RECEIVER 
.Bur or RECEIVER 
.C~R 0' TRANSMITTER 
IBur or TRANSMITTE~ 
.C~R or r.ONSO~~ TRANSMIT'E~ 
leur OF' CONSO~E TRANSMIT'ER 
I~O~~S C~ARACTER R~CEIVE" 
IHOL~S DELAY COUNT, ~I~H ORor R 
iHO~~S DELAV COUNT, LOW OR~ER 

IS'A~T BY INITIALlllNG ALL BITS TO iERO 

iCWE~K FOR INCOMING CALL 
IBRAMC~ IF P~ONE IS NOT ~INCIN~ 
IpwOME IS RINCING, sa ANSWfR WITH OTR 
IS~T U~ COUNT POR OELAV 

iCWECK F"OR CLEAR TO SEND 
.BRA"CW IF' 0'1 
iCHEeK DELAY 
iD[C~EMENT A TWO.WORD IN'E~E~ 

JB~ANCW IF WE HAVE WAITE" TOO LONG 
JBRANCH AND CONTINUE TO WAIT FOR CTS 

• IS eHANNEL STILL fSTAeLISwE~? 
18RA~CH IF crs NOT P~ESENT 
ICAE~K FOR RECEIVED ~HARAC'E~ 
.BRANCH IF NO CHARACTER ~E~EIVro 
iRrA" ~ECE!VED CWARAeT~R INT~ 8urFER 

CHErK FOR TRANSMI1TER REAOY 
BRAMCW Iv NOT R£A~Y 
TRANSMIT CHARACTER TO RrM~TF 'ER~INAL 

CwECK FOR CONSOLE T~ANSMITTrR REAOV 
aRA~C~ Ir NOT RfAOY 
TRA~SMI' OHARACTER TO CONSOLE 
BRAMCW AND WAIT rOR N~X' ~HARACTER 

GT40/42 
DPU 

CP- 0654 

Figure 14 GT40/42 Data Paths 

30 



MEMORY 
ADDRESS 0 

600 

5000 

Shown are threeillists"of display instructIOns and data 
chained together by Display Jump instructions into one, 
closed display file. The shaded memory areas can be 
used by the CPU for PDP-11 code,data,buffer registers,etc. 

CP- 0653 

Figure 15 Memory Layout Example 

4.3 IMPORTANT REGISTERS (all addresses are in octal) 

Display Addresses: 

Display Program Counter (DPC) = 172000 (Read/Write) 
Resume Address (RA) = 172000 (Write) 

(To resume a display, for example after a light pen hit, bit 0 (LSB) = 1 should be MOVed to the RA, i.e., 
MOV #1, RA.) 

Display Status Register = 172002 (Read/Write) 

Contents (Read): 
Stop Flag 
Mode 
Intensity 
Light Pen Flag 
Shift Out 
Edge Indicator 
Italics 
Blink 
Spare (Not Used) 
Line 

Bit (15) (MSB) 
(14:11) 
(10: 8) 
(7) 
(6) 

(5) 

(4) 

(3) 
(2) 

(1 :0) 

(If an attempt is made to write to address 172002, the effect is to ring the BELL in the GT40/42, e.g., 
MOV #2,172002.) 

31 



X Status Register = 172004 (Read only) 

Contents: 
X Position Bits (9:0) 

Graphplot Increment (15: 10) 

Y Status Register = 172006 (Read only) 

Contents: 
Y Position 
Character Register 

Bits (9: 0) 
(15: 10) 

(Note: When in the SHIFTED OUT character mode, and an illegal code (O40~ 1378 ) is fetched, the 
program is interrupted. The Character Register can then be read to find the dispatch to a user routine 
that is used to draw some special character.) 

Display Interrupt Vector Addresses: 

Stop Interrupt = 320/322 
Light Pen Interrupt = 324/326 
Time Out and Sh ift Out Interrupt = 330/332 
(All display interrupts are requested at level B R4.) 

DL 11 Communications I nterface Addresses: 

Receive Status Register (RCSR) = 175610 
Receive Buffer (RBUF) = 175612 
Transmitter Status Register (XCSR) = 175614 
Transmitter Buffer (XBUF) = 175616 
(Additional DL 11 programming information is included in Paragraph 3.1.) 

DL 11 Interrupt Vector Addresses: 

Receiver Interrupt = 300/302 
Transmitter Interrupt = 304/306 
(DL 11 interrupts are requested on level BR5.) 

Miscellaneous Addresses: 

CPU General Register 
(only console addressable) 

RO =,177700 

R7 =' 177707 

CPU Console Switches SWR = 177570 
(console and CPU addressable) 

CPU Status PS = 177776 
(console and CPU addressable) 

Keyboard Command and Status (KCSR) = 177560 

Keyboard Data Buffer (KDBR) = 177562 

32 



Keyboard Interrupt Vector = 60/62 

Line Frequency Clock (KW11-L) = 177546 

ROM Bootstrap Memory = 166000 
(Starting Address) 

4.4 PDP·11 INSTRUCTION SET 

A detailed description of the PDP-11 instruction set can be found in GT40 Graphic Display Terminal, Volume 2 
(DEC-11-HGTMA-A-D). This manual assumes the reader is familiar with the instruction set and general operation of 
the PDP-11/1 O. 

4.5 GT40/42 DISPLAY PROCESSOR INSTRUCTION SET 

The display processor instruction set consists of five basic instructions: Set Graphic Mode, Jump, No-op, Load 
Status Register A, and Load Status Register B. Figure 16 shows the breakdown, by bit position, of each instruction. 
Figure 17 provides similar information for the data words that accompany the instructions. 

NOTE 
The user should not insert 1·bits into those positions indicated 
as spare or unused. 

4.6 PROGRAMMING EXAMPLES 

The following programming examples are meant to provide the user with a basic introduction to GT40/42 
programming technique. They have been kept brief in order that the points being illustrated not be lost as would be 
the case if larger; operational program examples were used. 

Table 8 is a list of suggested mnemonics for GT40/42 operation. 

4.6.1 Initializing the Display Processor 

To start the DPU, the CPU executes a short program that loads the Display (processor) Program Counter (DPe) with 
the starting address (SA) of the display file. The Stack Pointer must also be initialized to an address above 4008 to 
prevent a stack overflow if an interrupt occurs. 

The following program performs these two operations. 

Address Instruction/Data Mnemonic 

1000 012706 MOV #500, R6 
1002 500 
1004 012737 MOV #SA, @ #DPC 
1006 2000 
1010 172000 
1012 00001 WAIT 

33 

Comment 

I nitialize the 
stack pointer 
Load the DPC 
with SA = 2000 

Wait (or other 
PDP-11 code) 



SET GRAPHIC MODE 

JUMP 

NO-OP 

15 14 11 10 

I I MODE 

"I" INDICATES CONTROl WORD 

I~ 
0000 SET CHARACTER MODE 
0001 SET SHORT vtCTOO MOOE 
00 1 0 SET LONG VECTOR MODE 
00 11 SET POINT MODE 
0100 SET GftAPH X MODE 
010 1 SET GRAPH '( MODE 
0110 seT RELATIVe POINT MODE 
0111 SPARE 
"I" ENABLES 61TS 9·7 INTO TH 

J-BIT INTENSITY VALUE } 

~~;:~~1= :~~~~~~ . 
L P INTERRUPT ENABLE REGISTER 

NO l P INTERRUPT 
o 8lINK REGISTER 

E LINE REGISTERS 

OO'SOLID LINE 

'--------' 

WHEN SET, ENABlES liT 5 INTO 

1: L P INTERRUPT ENABLED. 0-
WHEN SET, ENABlES BIT 31NT 
I; BliNK ON. O'BUNK OFf -

"'''ENABlES BITS '-0 INTO TH 
2-BIT LINE TYPE VALUE} 

gJ;~~~~~ --------------------
03=OOT DASH 

JUMP 

15 I. 11 10 

SPARE 

~ 

--

~611 1100 I 
J~\====~==~)t\============~==============~ 

"1" INDICATES CONTROL WORD t t 
"OP CODE" fOIl JUMP---------'· I 
SPARE B'TS -----------------------' 

15 

~gt!=========================A=O=O.:'=SS========================~ 
16 BITS {21K WOROS) OF COIlE AOOllESS -----------..." 

o 
SPARE 

j~ 
"1" INDICATES CONTROL WORD" t 
"OP CODE" FaA: DISPLAY NO OPERATION ~ I 
SPARE 811S-------------------------' 

LOAD STAlUS REGISTER A 15 I. " 10 o 

1110 

"1"INDICATES CONTROlWORO-.1 ~~dlJ 
~~L ~':.'~~c;D~~:~~~ ~RTeGISTER J' 
WHEN SET. ENABLES 81T 8 INTO STOP NTBlRUPT REGISTER 
l:INTERRUPT 1110.5 WHEN DtSPLAY STOPS 

::I~L :: ~:::~P~T~:~:::~A: ::~:NSITY HIT REGlSTER 

O:POtNT Of lIGHT PEN INTERACTION Will BE INTENSIFIED 
I:PONT ~ LIGHT peN INTERACTION Will NOT BE INTENSIFIED 

Wt-EN SET, ENABlES BIT 4 INTO ITAliCS REGISTER -------------' 
I: ITALICS FONT. O:NORMAl FONT --------------------' 

NOT U~O------------------------------------------------------...J 
HALTS DPU AND RESUMES IN SYNC WITH LINE FREOOENCY'-----------------' 

~PARE 

LOAD STAlUS REGISTER B 11 10 

1 ' 1 ' 1 

"1"INOICATESCONTROlWORO.J ~' ~ , I ~ 
"OP COO£" FOR LOAD STATUS B REGISTER -----1 I 
SPARE ------------------
WHEN SET. ENABLES BITS 0-5 INTO GRAPHPLOT INCREMENT REGISTER 
SETS THE DISTANCE BeTWEEN PQINTSEXECUTED IN GRAPHPLOT--------------'· 

Figure 16 Instruction Word Functions 

34 

a 

::=J 



CHARACTER 

DATA FORMAT-

Mode 0000 

SHORT 

VECTOR MODE-

Mode 0001 

LONG VECTOR 

DATA FORMAT-

0010 

15 14 8 7 6 0 

10 1 
2ND 7- BIT ASC II I I 1ST 7- BIT ASC II 

WORD~ r o INDICATES A DATA 
7 BIT ASCII CODE 
SPARE 
7 BIT ASCII CODE CP-0582 

15 14 13 12 7 6 5 

1 0 IINTI+I-I 6 BITS t,. X 1+1-1 6 BITS t,. Y 

D~ r o INDICATES A DATA WOR 
INTENSIFY VECTOR IF A 1 

o INDICATES t,.X COMPON 
MOVES TO THE RIGHT; ''') 1 INDICATES t,.X COMPONE 
MOVES TO THE LEFT 

NT 

6 BIT MAGNITUDE Y COMP 

o INDICATES t,. Y COMPONE 
MOVES UP; I INDICATES t,. 
COMPONENT MOVES DOW 

ONENT 

;T l 
6 BIT MAGNITUDE Y COM PONENT 

o INDICATES A DATA WORD 

INTENSIFY VECTOR IF A I 

o INDICATES t,.X COMPONENT) 
MOVES TO THE RIGHT; I . 
INDICATES t,.X COMPONENT 
MOVES TO THE LEFT 

SPARE------------------~--------~ 

10 BITS t,.X 

10 BIT MAGNITUDE X COMPONENT---------------...J 

o INDICATES A DATA WORD 

SPARE-------------' 

o INDICATES t,. Y COMPONENT} 
MOVES UP; 1 INDICATES t,. Y 
COMPONENT MOVES DOWN 

SPARE-----------------' 

10 BITS t,. Y 

10 BIT MAGNITUDE Y COMPONENT------------------' 

Figure 17 Data Word Formats (Sheet 1 of 2) 

35 

CP-0583 

CP0541 

CP-0542 

o 

o 

1 

1 



o INDICATES A DATA WORD 
INTENSIFY POINT IF A 1 

SPARE 
10 BIT X COORDINATE 

POINT DATA 

MODE-

Mode 0011 

o INDICATES A DATA WORD 

SPARE 

10 BIT Y COORDINATE 

GRAPHPLOT X(Y)­

Mode 0100 (0101) 
o INDICATES A DATA WORD 
SPARE------------------------~ 

10 BITS X 

C P 0543 

10 BITS Y 

CP-0544 

10 BITS X (Y) 

10 BI T X (Y) COORDI NATE---------------------------------' 

RELATIVE 

POINT MODE­

Mode 0110 

15 14 13 12 

l 0 lINT]+I-] 

D~ 1 o INDICATES A DATA WOR 

INTENSIFY POINT IF A I 

o INDICATES X COM PONE 
MOVES TO THE RIGHT; 1 
INDICATES X COMPONENT 
MOVES TO THE LEFT 

") 
PONEcNT 6 BIT MAGNITUDE X' COM 

o INDICATES Y COMPON 
1 INDICATES Y COM PONE 

ENT MOVES UP; } 
NT MOVES DOWN 

6 BIT MAGNITUDE Y COM PONENT 

6 BITS l>X 

Figure 17 Data Word Formats (Sheet 2 of 2) 

36 

CP-0545 

7 6 5 

1+1-] 6 BITS l>Y 

CP-054S 

0 

o 

o 

] 



Table 8 
Recommended GT40/42 Mnemonics 

Mnemonic = Value Function 

Group 1 

CHAR 100000 Character Mode 
SHORTV 104000 Short Vector Mode 
LONGV 110000 Long Vector Mode 
POINT 114000 Point Mode 
GRAPHX 120000 Graphplot X Mode 
GRAPHY 124000 Graphplot Y Mode 
RELATV 130000 Relative Point Mode 

INTO 2000 Intensity 0 (Dimmest) 
INT1 2200 Intensity 1 
INT2 2400 Intensity 2 
INT3 2600 Intensity 3 
INT4 3000 Intensity 4 
INT5 3200 Intensity 5 
INT6 3400 Intensity 6 
INT7 3600 Intensity 7 (Brightest) 

LPOFF 100 Light Pen Off 
LPON 140 Light Pen On 

BLKOFF 20 Blink Off 
BLKON 30 Blink On 

LlNEO 4 Solid Line 
LlNE1 5 Long Dash 
LlNE2 6 Short Dash 
LlNE3 7 Dot Dash 

Group 2 

DJMP 160000 Display Jump 

Group 3 

DNOP 164000 Display No Operation 

Group 4 

STATSA 170000 Load Status A Instruction 

DSTOP 173400 Display Stop and Interrupt 

SINON 1400 Stop Interrupt On 
SINOF 1000 Stop I nterrupt Off 

37 



Table 8 (Cont) 
Recommended GT40/42 Mnemonics 

Mnemonic = Value Function 

LPLITE 200 Light Pen Hit On 
LPOARK 300 Light Pen H it Off 

ITALO 40 Italics Off 
ITAL 1 60 Italics On 

SYNC 4 Halt and Resume in Sync 

Group 5 

STATSB 174000 Load Status B Instruction 

INCR 100 Graphplot Increment 

Group 6 
(Vector/Point Mode) 

INTX 40000 Intensify Vector or Pojnt 

MAXX 1777 Maximum /::, X Component 
MAXY 1377 Maximum /::, Y Component 

MINUSX 20000 Negative /::, X Component 
MINUSY 20000 Negative /::, Y Component 

Group 7 
(Short Vector Mode) 

MAXSX 17600 Maximum /::, X Component 
MAXSY 77 Maximum /::, Y Component 

MISVX 20000 Negative /::, X Component 
MISVY 100 Negative /::, Y Component 

4.6.2 Display File 

The following program causes a 200s unit box to be drawn with the lower left corner at screen location 500,500s. 
Initially, the OPC is loaded with the starting address. Then the display parameters, e.g., intensity, are established and 
the mode set to Point. The four vectors are drawn after the Point is executed and, to conclude the file, the last 
commands reload the OPC with the display file starting address. This results in the display file being re-executed; the 
CRT display is refreshed. 

38 



Address Instruction/Data Mnemonic Comment 
.=100 

100 012706 MOV #500, R6 Initialize the 
102 500 stack pointer 
104 012737 MOV #2000, @ #Ope Load the DPC 
106 2000 with SA = 2000 
110 172000 
112 000001 WAIT Wait 

2000 117124 .=2000 Point mode, intensity 
POI NT +1 NT 4+LPO FF 4, no light pen, no 
+BLKOFF+LlNED blink, solid lines. 

2002 500 500 Un intensified point 
2004 500 500 at X = 500, Y = 500 
2006 110000 LONGV Long vector mode 
2010 40200 200tlNTX 6. X = 200, 6. Y = 0, 
2012 0 0 intensified 
2014 40000 OtINTX 6. X = 0, 6. Y = 200, 
2016 200 200 intensified 
2020 60200 20OtINTX+MINUS 6. X = - 200, 6. Y = 0, 
2022 0 0 intensified 
2024 40000 OtINTX 6. X = 0,6. Y = -200, 
2026 20200 200tMINUS intensified 
2030 160000 DJMP Jump to start of 
2032 2000 2000 display file. 

Note that since the parameters (intensity level, no blink, and line type) are specified in the point instruction, they 
need not be re·specified in the long vector instruction (2006) because they will not change unless the appropriate 
enable bits are set. The enable bits also allow the user to change, for example, the line type but not the intensity. In 
this case, only the line type enable bit is changed, not the intensity enable bit. This retention of current, 
not-to-be-changed, values saves both execution time and memory storage space. 

4.6.3 Application of the Stop Interrupt 

The Stop Interrupt provides close. interaction between the CPU and the DPU. The following program restarts the 
display after the halt and interrupt sequence. This occurs at the end of each pass. 

Address Instruction/Data 

100 012706 
102 500 
104 012737 
106 2000 
110 172000 
112 000001 
114 776 

320 400 

322 200 

400 012737 

Mnemonic 
.= 100 
MOV #500, R6 

MOV #2000, @ #OPC 

WAIT 
BR.- 2 
.=320 
400 

200 
.=400 
MOV #1, @#DPC 

39 

Comment 

Initialize the 
stack pointer 
Load the DPC with 
SA = 2000 

Wait for interrupt 
Jump back one 
instruction 
Address of next 
instruction to be 
executed after a 
Stop interrupt 
Processor status 
(BR level 4) 
Resume the display 



Address Instruction/Data 

402 01 
404 172000 
406 02 

2000 117124 

2002 500 
2004 500 
2006 110000 
2010 40200 
2012 0 
2014 40000 
2016 200 
2020 60200 
2022 0 
2024 40000 
2026 20200 
2030 173400 

2032 160000 
2034 2000 

Mnemonic 

RTI 
.=2000 
POINT+INT4+LPOFF 
+BLKOFF+LlNED 
500 
500 
LONGV 
200+INTX 
o 
O+INTX 
200 
200+INTX+MINUS 
o 
O+INTX 
200+MINUS 
DSTOP 

DJMP 
2000 

Comment 

Return from interrupt 
Point mode" intensity 
4, no light pen, no 
blink, solid lines. 
Unintensified point 
at X = 500, Y = 500 
Long vector mode 
!::, X = 200, !::, Y = 0, 
intensified 
!::, X = 0, !::, Y = 200, 

intensified 
!::, X = - 200, !::, Y = 0, 
intensified 
!::, X = 0, !::, Y = - 200 
intensified 
Enable Stop interrupt, 
Stop 
Jump to start of 
display file after 
a Resume 

After initializing the DPU, the CPU WAITs for an interrupt. The DPU executes the display file, eventually 
performing the STOP with interrupt enabled. Th is causes a vectored interrupt to address 3208 . 

Since the Stack Pointer was initialized to 5008 , the CPU stores its processor status and program counter in location 
5008 and 4768 respectively; it pushes them on the "stack." Once stored, the CPU goes to location 3208 and uses its 
contents as the address of the interrupt routine. The CPU takes the contents of location 3228 as its new processor 
status. I n this example, location 4008 is the address of the interrupt handler and the CPU proceeds to that location. 

The interrupt handler simply MOVes the number 1 to the DPC which is interpreted as a RESUME by the DPU. As 
the DPU resumes operation, it will fetch and interpret the next instruction after stopping, in this case a DJMP, back 
to the start of the display file. The final instruction of the interrupt handler is a Return from Interrupt (RTI), 
restoring the CPU to the status and location present before the interrupt, i.e., it pops two words off the stack. A 
computer branch back one instruction is executed, thus placing the CPU in a WAIT condition again. 

4.7 PROGRAMMING RESTRICTIONS 

As with any complex system, certain restrictions must be observed by the user if trouble·free operation is to be 
expected. In the case of the GT40/42, the programmer should be aware of certain programming limitations so that 
the hardware may be exercised more proficiently without violating hardware rules. 

4.7.1 Stop and Sync, Microcoding 

Stop and Sync appear in the Load Status A instruction. However, selection of both conditions in any given Load 
Status A instruction should be avoided. Priorities have bee~ built into the GT40/42 hardware concerning the action 
on the microcoding of these bits. The rules are as follows: 

1. Sync and Stop 
Sync will override Stop. The display will stop but will resume in sync with the line frequency. 

40 



2. Stop and Sync with Stop I nterrupt Enabled 
Setting Stop with the Stop Interrupt enabled and Sync must be avoided. Under these conditions, the 
DPU will stop, post an interrupt, and restart automatically in sync with the line frequency. Since the 
Sync resume happens rather randomly with respect to the interrupt, the effect of this microcoding is 
undetermined. 

4.7.2 Display File Changes 

Restarting a Running Display - Restarting the DPU while the DPU is running should be avoided. It is possible to 
"catch" the DPU in the middle of a bus operation causing inconsistent or undetermined operation. 

It is recommended that the DPU be halted with a Stop instruction before restarting it again. 

Modification of the File - Dynamic modification of the display file should be avoided when possible. Normally the 
file can be modified dynamically without consequence. However, it is possible to cause problems when modifying 
two word instructions such as a Display Jump. For example, if the DPU fetched the first part of a DJMP while the 
CPU modified the second word, the DPU will process the DJMP order code and will take the modified second word 
as a correct address, causing the DPU to branch to a non-intended address. I t is recommended that the DPU be 
halted before modifying the display file and that care be exercised in selecting the sequence of commands used to 
modify the file. 

4.7.3 Non-Flicker Display 

The quality of the image displayed on the screen is determ.ined by many factors. Primarily, the display is controlled 
by internal adjustments (contrast, focus, etc.) and the external BRIGHTNESS control on the front panel. However, 
programming is also instrumental in producing better image quality. The selectable brightness feature, one of the 
display parameters controlled by the Set Graphic Mode instruction, is one example of the role that programming 
plays. Another is the control of image flicker, the repetitive dimming and brightening of all vectors and characters on 
the screen. Flicker, in this case, is caused by a relatively long program execution time, i.e., the time from the 
beginning of the display frame until the program recycles and the display is repeated. If this time is longer than 
about 1/30 of a second the screen fluorescence will decay (the image will become dimmer), and then brighten when 
the next frame begins, to the point where flicker is apparent. When the program time is less than 1/30 second, the 
display is reintensified before the image dims noticeably and there is no apparent flicker. Consequently( the 
objective, from a programming standpoint, is not to exceed this (1/30 second) execution period when designing a 
display program. 

Program time, as defined above, and where vectors make up most of the display, is primarily determined by two 
factors: vector magnitude or length, and the number of vectors in the display frame. The longer the vectors and the 
greater the number of vectors the longer the display frame will be. Figure 18 shows the allowable limits, considering 
these two factors, for a flickerless display, defined here as display frames ~ 32 ms (about 1/30 second). Note that a 
third factor is also present: the vector to mode word ratio. If this is a 1: 1 ratio, then fewer vectors are allowed 
because the mode word itself requires time to be decoded - time that must be subtracted from the 32 ms period. 
However, this time is more efficiently used when the ratio increases, i.e., when a mode word is accompanied by a 
number of vectors; the total number of allowable vectors is increased. This is shown in Figure 18 as the shaded area 
for each vector length with the top line being the practical limit. If vector lengths vary, as is usually the case, the 
total number of each length must be taken into account; the aggregate must not cause the frame time to exceed 32 
ms. 

41 



MAXIMUM 
NUMBER 

5000 

4000 

3000 

2000 

OF VECTORS 
PER 32 MS 
FRAME 

1000 
900 
BOO 

700 

600 

500 

400 

300 

200 

100~------~--------.--------r-------'--------'--------r-------.--------'---

200a 

VECTOR M-AGNITUDE 

Figure 18 Non-Flicker Display as Determined by 
Vector Quantity and Magnitude 

4.8 ADVANCED PROGRAMMING TECHNIQUES 

4.8.1 Subroutines 

4008 1000a 1777a 

CP-0651 

This programming method is used when a section of display code is repeated a number of times during the execution 
of a display file. I t precludes the need to store multiple copies of the routine in memory and therefore makes more 
efficient use of available storage space. Writing effective display subroutines is accomplished through use of the stop 
interrupt instruction (DSTOP) followed by an identifier that informs the interrupt service routine what to do or 
where to go. Figure 19 shows an example of how a display subroutine can be repeatedly called by the main display 
file. An example of an interrupt service routine is shown below. It is assumed that register R5 is used for the 
subroutine stack. STKST is the starting location for the subroutine stack. 

STPINT: 

Mnemonic 

TST@DPC 

BEQSTOPO 

Comment 

Test the DPC 

If it contains a valid, non-zero address go to the next 
instruction; if not go to STOPO 

MOV DPC,-(R5) Push current DPC on stack 

ADD #2, @ R5 The stack now contains the return address from the 
subroutine. 

42 



Mnemonic Comment 

MOV @ OPC, OPC Move address pointed to by OPC into the 
OPC, i.e., go to the subroutine. 

RTI Exit 

STOPO: CMP R5, STKST Is the subroutine stack empty? 

BEQ TOP Yes, go to top of file 

MOV (R5)+,OPC No, pop off a word and go there 

RTI Exit 

TOP: MOV#START,OPC Restart at TOP 
RTI and exit 

MAIN DISPLAY FILE 

START: POINT 

x=o 

Y=O 

DSTOP 

AD1 
} Call subroufine of ADt 

DI SPLAY 
CODE 

j 
DSTOP 

AD1 

DSTOP 

0 

} Call subraufine of ADt again 

} Signals fhe end of fhe main file 

DISPLAY SUBROUTINE 

ADt: DISPLAY 
CODE 

j 
DSTOP 

o 
CP-0659 

Figure 19 Subroutining Example 

43 



4.8.2 Light Pen Interaction 

The DPU is stopped when a light pen "hit" occurs during the display of a vector, character, or point, provided light 
pen interrupts are permitted (bits 5 and 6 of the Set Graphic Mode word must both be true to enable the LP 
interrupt function). 

Priorities permitting, the LP hit interrupts the PDP·11. The interrupt service routine that is called in as a result of 
the LP interrupt has access to three data in the DPU (the data can be read by specifying the addresses indicated): 

• Display Program Counter (DPC) Addr = 172000. Points to the instruction/data word following the data 
word on which the LP hit occurred. 

• The X position of the display at the time the DPU stopped, Addr = 172004. A 10-bit absolute number. 

• The. Y position of the display at the time the DPU stopped, Addr = 172006. A 10-bit absolute number. 

The service routine can respond to the LP interrupt by restarting the display in one of two ways: 

• Resume the display - the operation in progress at the time of the interrupt is allowed to continue. 
Program example: MOV #1, DPC 

• Restart the display - the operation in progress at the time of the interrupt is abandoned and a new 
display program routine is initiated. Program example: MOV #SA, DPC 

4.8.3 Special Characters 

The 31 special characters in the GT40/42 display character set are addressed through use of ASCII codes Shift Out 
(0168 ) and Shift In (0178 ), 

When the DPU detects the character code 0168 , the hardware enters the shift mode. In this mode codes 000 through 
0378 are decoded as special characters. (Appendix C contains a list of GT40/42 character codes.) Note that when 
the DPU is in the shift mode, the Shift Out code (0168) itself is a legitimate printing character. The DPU is returned 
to the non-special character ASCII set (non-shift mode) when Shift In is decoded. Unlike the Shift Out code, the 
Shift In code (017 8 ) does not cause a special character to be displayed. If, when in the shift mode, the DPU detects 
a code;;;' 0408 , the PDP-11 is interrupted by a Shift In/Time Out interrupt vector. This is because only the special 
characters (codes 000 through 0378) are legal when in the shift mode. The PDP-11 now has access to the 6 low order 
bits of the 7-bit illegal code. These 6 bits could be used, for example, as an index to a table of software generated 
characters. 

4.8.4 Edge Violations 

An edge violation occurs if either the X or Y coordinate indicated for a relative display causes the display to go 
outside the physical limits of the CRT face. (Vectors, relative points, characters, and Graphplots are classified as 
relative type displays.) In the event of an edge violation, the edge flag in the status word is set and the display is 
clipped (terminated) at the edge of the screen; wrap-around does not take place. Ht;>wever, there is one exception in 
which wrap-around can occur. The GT40/42 hardware is capable of counting only up to 4095 10 , i.e., 12 bits. 
Therefore, if the vector position exceeds this 12-bit limit, the count overflows to 0 and wrap-around occurs. For 
example, if four consecutive vectors with the same coordinates (~ X = 1023, ~ Y = 1) are read, only the first vector 
is displayed; it is the only one that can be displayed within the physical address space. The other three vectors cause 
the count to legally exceed the 12-bit field. If a fifth vector, with the coordinates of ~ X = 10 and ~ Y = 0, is 
decoded, the vector will appear on the left of the display; the hardware has caused the display to wrap around. This 
relative X and Y counting is performed in a 12-bit circular fashion. Absolute points are limited to 10-bit addressing. 

44 



5.1 COMMUNICATIONS BOOTSTRAP READ·ONLY MEMORY (ROM) 

The communications bootstrap ROM in the GT40 and the GT42 connects the Graphic Display Terminal to a host 
computer by way of the DL 11 Asynchronous Line Interface. Two functions are performed: 

1. The program allows ASCII dialogue with the host computer in order to perform such functions as 
logging in, etc., which presumably leads to 

2. The ability to load the Graphic Display Terminal's core memory with an absolute PDP-ll program. This 
function is typically called a down-line load_ 

The ROM Bootstrap program is stored in a bipolar ROM contained in the display processor (M7014 module). The 
memory is assigned addresses starting at 166000s and is accessed via the Unibus and the display processor addressing 
hardware. Although physically located in the display processor, the communications ROM should be considered a 
separate, Unibus connected, memory device. In the GT40, the ROM contains 256 words; in the GT42, the ROM 
contains 512 words. 

Appendix D contains a program listing of the ROM Bootstrap for the GT40 and Figure D-l is a flow diagram for the 
program. Appendix E contains a program listing of the ROM Bootstrap for the GT42 and Figure E-l is a flow 
diagram for the program. 

5.1.1 Bootstrap Loader 

The communications down-line loader portion of the Bootstrap allows loading programs in all memory locations 
except for the absolute addresses 15700 through 15776s , which are used by ~he loader itself. If the user finds. this 
restriction unacceptable, it is possible to reassemble a copy of the Bootstrap program with the tag COREND equal to 
the highest address in the user's memory, e.g., COREND = 57776s for a 12K memory. The procedure then is to load 
this modified Bootstrap first and then the user's program. 

The loader will accept properly encoded ASCII strings and effect the loading of a PDP-ll absolute program. The 
encoding and decoding scheme is shown pictorially in Figure 20. 

The loading procedure, from the host computer, is presented below in brief terms: 

1. Initiate the Bootstrap by placing 166000 in the SR switches; press LOAD ADDRESS and START. 

2. Transmit } (175s ) and then R (1228 ) to reset the Bootstrap. 

3. Transmit} (175s ) andthenL (l14s ) to start the Loader. 

4. Transmit encoded characters representing the binary program to be loaded. 

5. If a checksum error occurs during a load, B (1028 ) and } (175s ) will be returned. 

6. If the program loads but does not self-start, G (107s ) and } (175s ) are returned. 

7. There is no return if the program is properly loaded and started. 

To enable synchronization of the loader at high transfer rates, the host computer should transmit filler characters 
after step 3 above. These fillers should be nulls in multiples of three, as indicated in Figure 21. The @ symbol (100s ) 
is transmitted because 100s is added to all characters less than 040s ; therefore, null (000) + 1008 = 1 OOs. The filler 
requirement is satisfied by six nulls, i.e., eight @ symbols. 

45 



I 8-BIT BYTE (n) I S- BIT BYTE ( n+1) I S-BIT BYTE ( n+2) I BINARY DATA BINARY DATA BINARY DATA 

c ONVERSION 

TR 
TO 

R 

(See nole) 

I 6-BIT 

I 
6-BIT 

I 
6-BIT 

I 
6-BIT I BYTE ( n) BYTE (,,+1) BYTE (,,+2) BYTE(n+3) 

1 1 121 J 31 141 

f[ . ) ~ ~ • 
SERIAL 

ANSMISSION 
GT40/GT42 

~--·--lTF 1 · ~lj , t~ ~~7 ~~ 
I 6- BIT 

I 
6-BIT 

I 
6-BIT 

I 
6-BIT 

BYTE (n) BYTE (n+l) BYTE (n +2) BYTE (" +3) 

EASSEMBLY 

I S-BIT BYTE(n) I S-BIT BIT (n+1) I S- BIT BIT(n +3) 

NOTE: 
If 6-Bil number x <40S Ihen x = .. ,OOSdf 6-Bil number x:;;' 40S Ihen x =x. The resulting 6-Bit codes are 040S 
through 137S; all are printable characters and symbols. They are serially transmitted in sequential order,until the 
end of the PDP-l1 program,to the GT40 where they are reassembled into their S-Bil binary format. 

Figure 20 Encoding and Decoding of Serial Data 

I 

I 

000 000 

Figure 21 Filler Character Transmission to the GT40/42 

HOST 
COMPUTER 
ENCODING 

GT40/42 
DECODING 

CP-0650 

It is necessary to preface the first "one" byte in the absolute program with a "zero" byte in order to save Bootstrap 
code. A normal absolute program, in octal, before encoding into the 6-bit tape format, is transmitted in the order 
shown in Figure 22. An example of a short program (in octal) and the resultant encoded characters transmitted are 
shown in Figure 23. 

46 



FIRST 
DATA 
BLOCK 
(1) 

INTERMEDIATE 
DATA 
BLOCKS 
(2 ... n -1 ) 

LAST 
DATA 
BLOCK 
( n) 

5.1.2 Character Echoing 

o BYTE 
1 BYTE 
o BYTE 

BCL 
BCH 
ADL 
AOH 

DATA BYTES 

~ 
CHECKSUM BYTE 

1 BYTE 
o BYTE 

BCL 
BCH 
ADL 
ADH 

DATA BYTES 

CHECKSUM BYTE 

1 BYTE 
o BYTE 
6 BYTE 
o BYTE 

Included only in the first block 

Low order B bits of byte count 
Hi order B bits of byte count 
Low order load addr or JMP addr. 
Hi order load addr or JMP addr. 

This pattern is repeated 
for all intermediate 
blocks 

Indicates the last block 

J L } Either the jump addr 
J H -t------ or an odd number 

CHECKSUM BYTE 

CP-0648 

Figure 22 Absolute Program, Octal Format 

When not running in the LOADER mode, the Bootstrap allows the GT40/42 to communicate with the host 
computer in ASCII. Depressing a key on the LK40 keyboard at this time causes the ASCII character for that key to 
be sent to the host computer. If the host computer echoes the character, it will appear on the GT40/42 display 
(providing it is printable). 

In reference to this type of display, several characteristics should be noted: 

• The GT40 Bootstrap does not scroll. If the initial dialogue runs off the bottom of the screen, the 
operator must again depress START; the dialogue will then return to the top of the screen. In the GT42, 
the dialogue appears atthe bottom of the screen and scrolls off the top when the screen is full. 

• With the exception of 1758 characters with
J 

codes of from 0408 through 1768 will be displayed on the 
screen. Code 1758 is \jsed to initiate restarting and loading of the GT40/42. 

• In the GT40 the only control characters which affect the display are CARRIAGE RETURN, LINE 
FEED, and BACKSPACE. TAB, FORM FEED, etc. are not understood. In the GT42, TAB and FORM 
FEED characters are understood. 

• The host computer should not send SHIFT OUT (0168 ) because this character causes the GT40/42 
hardware to generate a special character set. (This restriction applies only to the Bootstrap because of 
space limitations in this program. Normally the software would monitor all characters before inserting 
them into the display file.) 

47 



• ••••• •••• • • · ... .. ..... <4 · .. .. . . ~. . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ........ . 
::: ::: .. .. ... . ::: :::.. .. .. ... . 
11.'I'e' •• • •• • • 
1IIIIIe i •• • ••• • • :::::::,: .. .. ..... . 

"0" BYTE FIRST "1"BYTE "O"BYTE BCl BCH ADl ADH DATA DATA 

0000·0000 0000·0001 0000·0000 0010·0000 0000·0000 0000·0000 0000·0000 11·01 • 11 11 00010101 

! ! ! ! ! ! ! ! ! ! ! ! 
(NOTE) + 1008 + 1008 + 100 8 +1008 + 1008 + 1008 +1008 +1008 +1008 +1008 +1008 +1008 

! ! ! ! ! ! ! ! ! ! ! ! 
@ @ D @ H @ @ @ @ 0 u 

- ~~~:~~~TfND } R} ~@' @"@@@@" " , I C : < 0 D @P I D @' I @@@@@@$ 0 = CpO H 8 @( @I P @@@@@@@@D@A I @@@O $@@@@@@@ 
SERIAllY 

/T~ "" "" '''' "" '''' 
RESET lOAD FillER 

GT40/GT42 COMMAND CHARACTERS 
NOTE: 

All the characters shown are originally <408 and must be incremented by 1008 ; this 
i.s not done when characters are ~ 408' 

Figure 23 Absolute Program Conversion and Transmission 

CP-0647 



A-1 

APPENDIX A 

KEY BOARD LAYOUT 



CDCJCJGJ[IJ[IJGJCJCJCJ000CD 
BB8000~~G8Gc:Jw0G 
8CJ008080808CJCD@D 

800888080[JCD8CJ 
(~ _______________ S_PA_C_E ________________ ~) 

Figure A-l Keyboard Key Configuration 

[TISC OJ' OJ' rn rn OJy. rn OJ OJ CD CD []-rns [I}s ESC 1 2 3 4 5 6 7 8 9 0 - US GS 
{ ! " # $ % a' ( ) 0'" - } 
[ 1 2 3 4 5 6 7 8 9 0 - - I 

[]DT 
HT 
HT 
HT 

mC1 
mTB [TINQ [!JC2 [!]C4 wM [IJAK wT WI [!JLE [lJUL [[]F [[]R DC1 ETB ENQ DC2 DC4 EM NAK HT SI DLE NUL LF CR 

Q W E R T Y U lOP \ LF CR 
q w e r , Y u i 0 P (ij) LF CR oms [TIoH [TIC 

3 
[TI0T [!JCK mEL wS 

[TIF wT wF rnrn RS SOH DC3 EOT ACK BEL BS LF VT FF ; : 
'V A S D F G H J K L + * 
'" a s d f g h j k I ;. : 

O 0 [!JUB [!JAN ITJTX [!JYN mTX rn° rnR OJ IT] ITJ' 0 WS SUB CAN ETX SYN STX SO CR ' '/ FS 
Z X C V B N M < >? \ 
z x c vb n mi' / \ 

LEGEND: 
CONTROL a SHIFT 
CONTROL 
SHIFT 
UNSHIFT 

SP 
SP 
SP 
SP 

Figure A-2 128-Character Keyboard (Position 1) 

1 

I I 

- -
EOS EOL 

HOME LOCK 

CP-0607 

SUB VT 
SUB VT 
SUB VT 
SUB VT 

BS CAN 
8S CAN 
BS CAN 
BS CAN 
US RS 
US RS 
US RS 
US RS 
GS 
GS 
GS 
GS 

CP-0609 



[TISC ITJ' CD' CD CD CDr. [lJ OJ CD CIJ OJ OJ []]S rn
s ESC I 2 3 4 5 6 7 8 9 0 = US GS 

[ I " # S % a' ( ) 0 = - I 
( 234 67 90 - - SUB VT 

SUB VT 

[IDT rn mCI 
ITJTB ITJNO [!JC2 [!JC4 (IJM [TIAK WT WI [TILE [lJUL [[JF (]]R HT t DC I ETB ENO DC2 DC4 EM NAK HT S IDLE NUL LF CR 

HT tOW E R T Y U lOP IQ) LF CR 
HT tOW E R T Y U lOP IQ) LF C R 

~~~ H 
BS CAN
BS CAN

~~ a~

O (]]s [TI0H []jC3 [TI0T [TICK mEL WS
[lJF WT WF OJ IT] RS SOH DC3 EOT ACK BEL BS LF VT FF ; :

~ AS D F G H J K L + *
AS 0 F G H J K L + :

US RS
US RS
US RS
US RS
GS

00 [TIITJ ITJIT] CTI []J rn[IJrn[DO rn SUB CAN ETX SYN STX SO FS

» z x C V B N \
Z X C \

W

GS
GS
~ ~~

L SP

J
SP
SP
SP

LEGEND
CONTROL a SHIFT
CONTROL
SHIFT
UNSHIFT

CP-0608

Figure A-3 64-Character Keyboard (Position 2)

000000

000 377
017 777
020 000

037 777
040000

057 777
060 000

077 777
100 000

117 777
120 000

137 777
140 000

157 777
760 000

777 777

BASIC 4KIWORD)
.. - .. - -- ------
MEMORY BLOCK

4K MEMORY

4K MEMORY

4K MEMORY

4K MEMORY

4K MEMORY

4K MEMORY

4K DEVICE
REGISTER

ADDRESSES

foOO 000

1000037
000040

000170
000 177
000200

000374
00377

000

777
000

777
000

777 550

/'

"

....
"

::::
/'

TRAP VECTORS

SYSTEM SOFTWARE
COMMUNICATION WORDS

TTY AND PAPER TAPE
INTERRUPT VECTORS

INTERRUPT VECTORS

INTERRUPT VECTORS

INTERRUPT VECTORS

UNASSIGNED

RESERVED FOR
USER DEVICES

RESERVED FOR
DEC DEVICES

RESERVED FOR

DEC DEVICES

APPENDIX B
ADDRESS MAPPING

~
o
4 ERROR
10 RoSERVED
14 TRACE
20 lOT
24 PWR FAIL
30EMT

~
34 TRAP

60 TELETYPE KEYBOARD
64 ToLE TYPE PRINTER
70 PAPER TAPE READER
74 PAPE R TAPE PUNCH

~
RESERVED FOR CUSTOMER
DEVICES
1000 170 000174)
1000 270 000 274)

TECTED NOT PRO
AGAINST
STACK 0 VERFLOW

777550
TELETYPE AND PAPER

TAPE DEVICE ADDRESSES
777 567

777577

777 700
RO-R7

777710
TEMP-SOURCE-ETC

777 720

777775

777 777

/
-----i

PROC
LOCA

-----i

~~~ ;;~ :~~ > PAPER TAPE READER 

~;; ;;: ::~ > PAPER TAPE PUNCH 

;;; ;:~ ~~~ > TELETYPE KEYBOARD 

~;~ ;:: ~:~ > TELETYPE PRINTER 

777570 a 777 571 ARE SWITCH REGISTER 

ESSOR GENERAL STORAGE-THESE 16 
TIONS ARE EACH 1 FULL WORD 

RS IS STACK POINTER 
R7 IS PROGRAM COUNTER 

777 776 a 777 777 ARE STATUS REGISTER 

11-0191 

Figure 8-1 Address Mapping 

8-1 





7 Bit ASCII 
(octal) Representation 

000 NUL 
001 SOH 
002 STX 
003 ETX 
004 EOT 
005 ENQ 
006 ACK 
007 BEL 
010 BS 
011 HT 
012 LF 
013 VT 
014 FF 
015 CR 
016 SO 
017 SI 
020 DLE 
021 DCl 
022 DC2 
023 DC3 
024 DC4 
025 NAK 
026 SYN 
027 ETB 
030 CAN 
031 EM 
032 SUM 
033 ESC 
034 FS 
035 GS 
036 RS 
037 US 
40 SP 
41 ! 
42 " 
43 # 

Keyboard 

CTRL@ 
CTRLA 
CTRL B 
CTRLC 
CTRLD 
CTRLE 
CTRLF 
CTRLG 
CTRLH 
CTRL I (TAB) 
CTRL J (LF) 
CTRLK 
CTRLL 
CTRLM (CR) 
CTRLN 
CTRLO 
CTRLP 
CTRLQ 
CTRLR 
CTRLS 
CTRLT 
CTRLU 
CTRLV 
CTRLW 
CTRLX 
CTRLY 
CTRLZ 
CTRL [(ALT) 
CTRL\ 
CTRL] 
CTRL-
CTRL-
SPACE BAR 
SHIFT 1 
SHIFT 2 
SHIFT 3 

C-1 

APPENDIX C 
CHARACTER CODES 

GT40/42 GT40/42 Printing 
Printing When Preceded By 

Shift-Out = 016 

A. 
a 
cP 
~ 

b 
A 
'V ., 

Backspace n 
l/I 

Line Feed 
0 

00 

Carriage Return J.J. 

£-
Shift In 
1T 

II 
n 
a 
T 
€ 

+-

~ 

t 
-I-

r-
1 
=1= 
~ 

V 
0 

Space 1 character 
! 
" 
# 



7 Bit ASCII Keyboard GT40/42 GT40/42 Printing 
( octal) Representation Printing When Preceded By 

Shift-Out = 016 

44 $ SHIFT 4 $ 
45 % SHIFT 5 % 
46 & SHIFT 6 & 
47 , 

SHIFT 7 , 
~ 

50 ( SHIFT 8 ( 
51 ) SHIFT 9 ) 
52 * SHIFT: * 
53 + SHIFT; + 
54 , , , 
55 - (minus) - -
56 
57 / / / 
60 0 0 0 
61 1 1 1 
62 2 2 2 
63 3 3 3 
64 4 4 4 
65 5 5 5 
66 6 6 6 
67 7 7 7 
70 8 8 8 
71 9 9 9 
72 
73 , , , 
74 < SHIFT, < 
75 = SHIFT - = 
76 > SHIFT. > 
77 ? SHIFT / ? 
100 Cal @ @ 

101 A SHIFT A A 
102 B SHIFT B B 
103 C SHIFT C C 
104 D SHIFT D D 
105 E SHIFT E E 
106 F SHIFT F F 
107 G SHIFT G G 
110 H SHIFT H H 
III I SHIFT I I 
112 J SHIFT J J 
113 K SHIFT K K 
114 L SHIFT L L 
115 M SHIFT M M 
116 N SHIFT N N 
117 0 SHIFT 0 0 
120 P SHIFT P P 
121 Q SHIFT Q Q 
122 R SHIFT R R 
123 S SHIFT S S 
124 T SHIFT T T 

C-2 



7 Bit 
( octal) 

125 
126 
127 
130 
131 
132 
133 
134 
135 
136 
137 
140 
141 
142 
143 
144 
145 
146 
147 
150 
151 
152 
153 
154 
155 
156 
157 
160 
161 
162 
163 
164 
165 
166 
167 
170 
171 
172 
173 
174 
175 
176 
177 

Function Key Codes 

ASCII 
Representation 

U 
V 
W 
X 
Y 
Z 
[ 
\ 
] 

1\ 
-

a 
b 
c 
d 
e 
f 
g 
h 
i 
j 
k 
1 
m 
n 
0 

P 
q 
r 
s 
t . 

U 
v 

w 
x 
y 
z 

-
RUB OUT 

+-10 
~30 

Keyboard 

SHIFT U 
SHIFT V 
SHIFT W 
SHIFT X 
SHIFT Y 
SHIFT Z 
[ 
\ 
] 

1\ 
-
SHIFT ~i' 
A 
B 
C 
D 
E 
F 
G 
H 
I. 
] 

K 
L 
M 
N 
0 
P 
Q 
R 
S 
T 
U 
V 
W 
X 
Y 
Z 
SHIFT [ 
SHIFT \ 
SHIFT] 
SHIFT 1\ 

R.O. 

t 32 
{.33 

C-3 

GT40/42 
Printing 

U 
V 
W 
X 
Y 
Z 
[ 
\ 
] 

1\ 
-

a 
b 
c 
d 
e 
f 
g 
h 
i 
j 
k 
1 
m 
n 
0 

P 
q 
r 

s 
t 
u 
v 
w 
x 
y 
z 
{ 
I 
I 

L 
• 

Home 35 
EOL 36 

GT40/42 Printing 
When Preceded By 

Shift-Out = 016 

c 

EOS 37 





eJflJflJ0eJ0 
1300001 
000002 
00000J 

9 000004 .... 130013135 
0000136 
0000137 

13013006 
0013007 

13000130 
13013001 
1300002 
0000133 
00013134 
130131305 

130130133 
1300000 
1300005 
00130131 

016000 
16601110 

001110130 
1301360 

;800TVT.S09 5/2/72 

VT·413 BOOTSTRAP LOADER, VERSION S09, RELEASE R01, 5/2/72 

COPYRIGHT 1972, OIGITAL [QUIPMENT CORPORATION. 
146 MAIN STREET 
MAYNARD, MASSACHUSSETTS 

01754 

wRITTEN BY JACK BURNESS, SENIOR SYSTEMS ARC~ITECTI 

THIS ROUTINE IS INTENDEO TO BE LOAOED IN THE ROM PORTION or THE VT-40. 

REGISTER DEF'INlTIONSI 

A0·XeJ 
R1-U 
R2="2 
RJ=%J 
R4=X4 
R5=%5 
R6=X6 
R7=X7 

SP=R6 
PC=R7 

RETl:R0 ;RETURN or VALUE REGISTER. 
INP1=Rl ;ARGUMENT FOR CAL~EO FUNCTION 
INP2=R2 ;SECOND ARGUMENT. 
WORK1=R3 ;rIRST WORK REGISTER. 
WORK2=R4 ;SECOND WORKING REGISTER. 
SCR1=R5 ;SCRATCH REGISTER, 

~,CKSM=WORKl ;OVERLAPPING DErINITIONS rOR LOADER PORTION. 
~,8YT=RETl 
I.,BC=SCRl 
~,ADR=INPl 

COREND:16000 ;FlRST LOCATION or NON-CORE. 
ROMORG=166111013 ;WHERE THE ROM PROGRAM SHOULD GO. 

STARTX=0 ;WHERE TO START DISPLAYING THE x POSITIONS. 
STARTY=1360 ;WHERE TO START DISPLAYING THE Y. 

r-
0 » 
C 
m 
::D 

"U ::D 
::D 0 0 3: G) 
::D aJ » » 0 "U 
3: 0 "U 

-I m 
en Z 

G) -I C --I ::D >< 
~ » 
0 "U C 



16611"'10 
16601il4 
166006 

172~0~ 

177:>6'" 
175614 
175610 

177562 
175612 
175616 

015776 
~15772 

015770 

166000 

1il12705 
"'05015 
1<110745 

166010 000005 

166012 
166020 
166026 

166034 
166040 
166042 

166046 
166050 
166054 
1661116111 
166062 
166066 

16611172 
16611176 
16610111 
16611112 
16611114 

012767 
012767 
012767 

012706 
005001 
012702 

010221 
012711 
01271/l1 
005000 
004767 
00511167 

11100007 
000001 
000201 

015770 

160000 

166756 
000030 

000022 
01113706 

004767 00121210 
0011J240 
00024fil 
000240 
012746 166072 

007570 
011532 
007560 

START: 

VT40PC=17201110 
KBOIS=177560 
Pl.00S=175614 
P101S=1756111J 

KBOI8=KBO!S.2 
P10IB=P10IS·2 
P100B=PH10S.2 

P100C=COREND-2 
P10IC=P100C-4 
STKSRT=P1f1lIC-2 

JMPD I S= 160000 

PWRFAL=24 

.:ROMORG 

MOV 
CLR 
MOV 

RESET 

MOV 
MOV 
MOV 

#PWRFAL+2.SCR1 
c,1SCR1 
PC.· (SCR1l 

#7.P10IS 
lil.K8DIS 
#2IH.PUOS 

RESTRTI MOV 
Cl.R 
MOV 

'STKSRT.SP 
L,ADR 
#JMPDIS.INP2 

MAJORI 

MOV 
MOV 
MOV 
CL,R 
JSR 
CLR 

JSR 
NOP 
NOP 
"lOP 
MOV 

INP2.(L.ADRl+ 
'DISPRG. (L.AORl 
#PWRFAL+4,L,.ADR 
RETi 
PC.DOCHAR 
VUIIlPC 

;VT40 PROGRAM COUNTER. 
;TTy INPUT STAlUS. 
;PDP·1111 OUTPUT STATUS. 
IPOP-10 INPUT STATUS. 

;TTy INPUT BUFFER. 
;PDP-10 INPUT CHARACTER. 
;PDP-ll1l OUTPUT BUFFER. 

;CHARACTER TO BE SENT TO T~E PDP-10 
;INPUT CHARACTER FROM 10 PLUS ONE SAvE CHARACTER 
;FlRST LOCATION OF STACK. 

;THE VT-40 DISPLAY JUMP INSTRUCTION. 

;POWER FAIL RESTART LOCATION. 

;SET THE ORIGIN NOW!!!! 

IPICK UP POINTER TO P.F. STATUS. 
;CLEAR IT OUT TO BE SURE. 
;SET uP T~E RESTART LOCATION. 

I RESET THE BUS. 

IINITIALIlE POP-111l INPUT 
IINITIALllE TTY INPUT. 
IINITIALIlE PDP-llll OUTPUT. 

ISET UP T~E STACK NOW: 
;CLEAR ADDRESS POINTER. 
IPLACE A DISPLAY JUMP INSTRUCTION IN A REGISTER. 

;MOVE IT TO LOCATION m. 
;MOVE ADDRESS POINTER INTO 2. 
ISET uP WHERE WE WILL STORE CHARACTERS. 
IPREPARE TO INSERT A lERO CHARACTER. 
I INSERT I T NOW. 
;CLEAR T~E DISPLAY PROGRAM COUNTER AND START. 

;eET A CHARACTER NOW. 

;INSERT IN DISPLAY BUFFER NOW. 



166110 13113105 DDCHARI MOV I.,ADR,SCRl, IGET CURRENT BUUrER POSITION NOW. 
166112 02252.5 CMP (SCR1l., (SCR1" 'BYPASS CURRENT DISPI.AY JUMP. 
166114 13051325 CI.R (SCR1)· ICI.EAR FUTURE ADDRESS FOR JUMP. 
166116 1310225 MOV INP2,(SCRll. ISTICK IN TEMPORARY JUMP WHILE WE REPI.ACE CURREN 
166120 1305015 C~R (SCR1) IA DISPLAY JUMP TO lERO. 
166122 131351311 CLR II..AOR) INOW REPLACE CURRENT DISPLAY JUMP BY THE CHARACT 
166124 1'1513021 8.1S RE T1,(L.AORl. lIT'S DONE THIS WAY TO WASTE 2 CYCLES, 
166126 1310211 MOV INP2,IL,AORl ITO AVOID TIMING PROBI.EMS WITH THE VT40. 
166130 0013207 RTS PC lAND FINAI.LY RETURN. 

166132 13134767 01313124 GETB: JSR PC,GETSIX IGET SIx BITS NOW. 
166136 ;?J1,01346 MOV REH.· (SP l ISAVE THE CHARACTER NOW. 
166140 000401 BR GETPB4 IBYPASS THE 8'ER 
166142 005002 GETB4 : CLR INP2 IRESET THE MAGIC REGISTER NOW. 
1661,44 1305722 GETPB4: TST IINP2l+ IINCREMENT WHERE TO GO. 
16614.6 0t16207 1662513 ADD GET8TB! INP2) ,PC IUPDATE PC NOW. 

166152 GETBP=, 

166152 130.4767 0130104 GETBll JSR PC,GETS!X IGET A CHARACTER NOW. 
166156 1'1101304 MOV ~En., WORK2 ISAVE FOR A SECOND. 
166160 131363013 4SL RETl 
166162 0136300 ASL RETl ISHIFT TO LEFT OF' BYTE 
166164 1!/l631'J!/l ASLB RETl 
166166 1~6116 ROLB liSP IPACK THEM IN. 
166170 

0 
11663013 ASLB RETi 

W 
166172 106116 ROLB liSP IA GOOD 8 BIT THING. 
166174 0126013 MOV (SP)+ I RE.Tl IPOP AND RETURN NOW. 
166176 0013207 RTS PC 

166200 ~063130 GETB2: ASI. RET1 IWORST CASE. SHIF'T 4 
1662 el,2 elI2J63ellll A5L RETl 
1662134 U630!/l ASLB RETl 
166206 106104 ROLB WORI(2 
16621[6 106312113 ASLB RETl 
166212 112161!/l4 ROLB WORI(2 
166214 1063013 ASI.B RETl 
166216 U6104 ROI.B WORK2 
166220 112163013 ASLB RETl 
166222 106104 ROLB WORK2 
166224 01,0400 MOV WORK2,RETl 
166226 012604 MOV ISPl.,WORK2 
166230 0013207 RTS PC 

1662.32 0061013 GETB31 ROL RETl 
166234 006100 ROL RETl 
166236 006004 ROR WORK2 
166240 10601313 RORB RET1 
166242 0(1.61304 ROR wORK2 
166244 10600!/l RORB RET1 Fl NAI.. CHARACTER ASSEMBLED. 
166246 005726 1ST (SP) .. FUDGE STACK. 
166250 000207 RTS PC AND RETURN NOW. 



166251/l GETBTB " ... 2 ;PUSH ~ERO CONDITION BACK INTO NEVER-NEVER LAND. 

166252 1/l1/l1/l01/l1/l ,WORD GET81-GETBP 
166254 01001026 ,WORD GET82-GET8P 
166256 001/l060 ,WORD GET83-GETSP 
166260 177770 ,WORD GET84-GETSP 

166262 01il4767 000020 GETSIXI JSR PC,GETCHR 
166266 020027 000040 CMP RET1,*40 
166272 01"'2546 BLT I.. ,BAD 
166274 020027 000137 CMP RET1,1131 
166300 003143 BGT L,BAD 
166302 011l02(lJ7 RTS PC 

166304 01/l5726 GETCHP: TST (SP) .. ;UPDATE THE STACK, 

166306 012700 015772 GETCHR: MOV #P10IC,R[Tl ; SET uP POINTER TO THE INPUT CHARACTER. 
166312 004767 0iH"064 GETCHL: JSR PC. CHECK 
166316 005710 TST liRETl ;ANY CHARACTERS THERE? 
166320 0"1774 BEQ GETCHL 
166322 011046 MOV • RETt, .. (SP) ;PUSH THE CHAR ON THE STACK • 
166324 005020 CLR (RETt ,.. ;CLEAR THE CHAR GOT FLAG NOW. 
166326 042716 177600 BIC #~20f11, (SP) ;CLEAR AWAY PARITY NOW. 
166332 001764 BEQ 

0 
GETCHP ; IF HRO, GET ANOTHER 

~ 

166334 022716 000177 CMP #l77,(SP) 
166340 001761 BEQ GETCHP ;ALSO IGNORE RUBOUTS. 
166342 02271fcl 000175 CMP #175,IIRETl IWAS IT A "175" 
16634.6 001007 BNE GETNP ;NOPE. 
166350 011610 MOV (SP) .IIRETl ;YEP. RESET IN CASE OF AlORT. 
166352 ·021027 "00122 CMP !lRET1,1I122 ; IS IT AN R 
166356 001626 eEQ RESTRT IYEP. RESTART 
166360 "21027 000114 CMP IIREH,#l14 ; IS IT AN L 
166364 001455 BEQ LOAD IYEP. LOAD. 

166366 011610 GETNP: ,..0 v (5P),IIRET1 ;NOW DO THE FDUGING. 
166371/l 012600 MOV (SP) .. ,RET1 
166372 020027 000175 CMP RET1,I175 
166376 001743 BEQ GETCHR ;IF ALTMDE, LOOP 
166400 01/l0207 RTS PC 

166402 (lJ05767 9.127370 CHECK: 1ST Plf1l0C 100 WE WANT TO OUTPUT? 
166406 1Il1il14H'l BEQ CHECK1 I NO. 
166410 105767 01/l7200 15TB PUOS IWE DO. IS THE 1IIl READY? 
166414 11/l001/l5 BPL CHECKl INOT QUITE. 
166416 "16767 027354 007172 MOV P1QlOC.PUOB lIT'S READY. SEND THE CHARACTER. 
166424 005067 027346 eLR P1I/l0C ;AND THE SAVED CHARACTER. 

166430 Hl5767 011124 CHECK1: TSTB KBDIS IHEY. IS THE KEYBOARD READY? 
166434 10Ql i:l 14 8PL CHECK3 ;NOPE. NO LUCK. 



166436 116746 011120 MOVB KBDIB,-(SPl ; YEP. SAVE THE CHARACTER NOW. 
166442 ",12767 000001 ftl1110 MOV #i.KBDIS :AND REENABLE THE COMMUNICATIONS DEV I CEo 

166450 004767 177726 CHECK2: JSR pC. CHECK ; IS THE OUTPUT READY? 
166454 0il5767 027316 TST P100C 
166460 I1!IH373 BNE CHECI<2 ;IF NOT, WAIT TILL DONE. 
166462 1.:'12667 1.:'07130 MOV (Sp)+,p100B :AND THEN SEND OUT THE CHARACTER. 

166466 j0~767 007116 CHECI<,s: TSTB 1'10 IS ; IS THE 10 TALI<ING TO ME.' 
166472 Hl0.Hl BPL CHECK4 ;NOPE. EXiT • 
166474 116767 1.:'07112 027270 MOVB P10IB,P10IC ;GET THE CHARACTER NOW. 
16651'2 052767 177400 027262 BIS 1I.400,P1~IC :MAKE SURE IT'S NONE tERO. 
166510 1.:'12767 1.:'''''0007 "07072 MOV #7.P10IS ;REINITIALIi!E COMMUNICATION LINE. 

166516 1.:'002V17 CHECK4: RTS PC ;AND RETURN. 

THE L- 0 A D E R 

166520 005002 LOAD: CLR INP2 :RESET TO FIRST 8 BIT CHARACTER. 
166522 012712 172000 MOV 11172000, (INP2) :AND ALSO CLEVERLY STOP THE VT40. 
166526 012706 015770 MOV IISTI<SRT.SP :RESET STACK POINTER NOW. 

166532 0050"3 L.LD2: CLR L,CKSM ; CLEAR THE CHECKSUM 
166534 004767 000070 JSR pC,L.PTR :GET A BYTE NOW. 
166540 1il5300 DECB L ,BYT ; IS IT ONE? 

0 166542 001373 BNE L,LD2 ;NOPE. WAIT AWHILE 
0, 166544 004767 000061.:' JSR PC,L.PTR ; YEP. GET NEXT CHARACTER. 

166550 004767 000072 JSR PC,L.GWRO ; GET A 100RD. 
166554 010005 MOV L,BYT,L.BC IGET THE COUNTER NOW. 
166556 162705 000004 SUB #4,L.BC ;CHOp OFF EXTRA STUFF. 
166562 022705 000002 CMP 112.L.BC :NULL? 
166566 001437 BEQ L,JMP ;yEP. MUST BE END, 
166570 004767 000052 JSR PC d •• GIORD :NOPE. GET THE ADDRESS. 
16657 4 0U001 MOV L.BYT.L.ADR :AND REMEMBER FOR OLD TIMES SAKE. 

166576 004767 fH10026 L.LD31 JSR pC,L.PTR :GET A BYTE (DATA) 
166602 002010 BGE L.LD4 ;ALL DONE WITH T~E COUNTER? 
166604 105703 TSTB L,CKSM :YEP. GOOD CHECK SUM? 
166606 0il11751 BEQ L.LD2 :NOPE. LOAD ERROR. 

166610 012700 L.BAO: MOV (PC).,RET1 ;SEND OUT SOME C~ARACTERS NOW. 
166612 175 102 .BYTE 175,U2 :"CTRL. BAD" 
166614 004767 000110 JSR PC, SEND IT 
166620 000167 177210 JMP RESTRT 

1,66624 110021 L.LD4: MOVB L.BYT,(L.ADRl. : PLACE THE BYTE IN CORE. 
166626 000763 BR L.LDJ :GET ANOT~ER ONE. 

166630 004767 177276 L. P TR: JSR pC,GElS ;GET 8 BITS NOW. 
166634 060003 ADD L.BYT,L.CKSM IUPDATE CHECKSUM 
166636 042700 177400 BIC U77400,L.BYT ICLEAN UP THE BYTE NOW. 
166642 005305 DEC L.BC IUPDATE THE COUNTER. 
166644 0i11"207 RTS PC ;RETURN NOW. 



a 
a, 

166646 
166652 
166654 

16666 " 166662 

166664 

166666 
166672 
166674 
166700 
166702 
166704 
166711(1 
166712 
166714 
166716 
166722 
166724 

166726 

166730 
166734 
166741(1 
166742 
166746 
1667513 
166752 
166754 

166756 
166760 
166762 
166764 
166766 
166770. 
166772 

0"4767 
010"46 
01(14767 
01(10300 
0'52600 

0"0207 

O04767 
O10"46 
O04767 
11(15703 
01H342 
032716 
0"1406 
01270" 

175 
""4767 
000001(1 
O00776 

000136 

004767 
005767 
01(11373 
010"67 
U5,,00 
00031110 
001366 
0"0207 

170256 
115124 
000000 
0"1360 
11(11""00 
160001(1 
0.0003" 

177756 

177751(1 

177754 

17773" 

0OO001 

107 
01(101(106 

·177446 
027"36 

00665" 

L.GWRDI 

L.JMP: 

L.JMP11 

SEND IT I 

DISPRG: 

JSR 
MOV 
JSR 
SWAB 
BIS 

RTS 

JSR 
MOV 
JSR 
TSTB 
BNE 
BIT 
BEQ 
MOV 
,BYTE 
JSR 
IoIALT 
SR 

JMP 

JSR 
TST 
BNE 
MOV 
CLRB 
SWAB 
BNE 
RTS 

,WORn 
.WORD 
,WORD 
.WORD 
.WORD 
.WORD 
,WORn 

,END 

PCd •• PTR IGET ~ CHARACTER. 
L,BYT/-(SP) ;SAVE FOR A SECOND. 
PC,L..PTR IGET ANOTHER CHARACTER. 
L ,BYT INOW ASSEMBLE THE WORD. 
(SP)·,L.BYT lAND RETURN WITH A 16 BITER. 

PC 

PC,L..GWRO IGET A WORD 
L,BYT,-(SP) ISAVE ON TH~ STACK. 
PC,L.PTR IGET A CHARCTER. 
L,CKSM I IS IT i!ERO? 
L,BAD IYEP. WHAT CRAP. 
'l,(sP> I IS IT ODD? 
L,JMPl IYEP. START PROGRAM GOING NOW. 
(PC).,RET1 ITELL PDP·10 WE'VE LOADED· OK. 
175, U7 
PC, SEND IT 

•• 2 

~(SP)· lAND AWAY WE GO. 

PC,CHECK IPOLL THE OUTPUT DEVICE NOW. 
pUloe ;OUTPUT CLEAR? 
SENDIT INOPE. LOOP AWHILE LONGER. 
RETl.PUOB ISEND OUT THE CHARACTER. 
RETl I CLEAR THE BYTE. 
RETi ;AND SWAP THEM NOW. 
SENDIT ;IF NOT EQUAL, REPEAT. 
PC 

lions IS THE INITIALI2ING VT40 PROGRAM WHICH WILL 
JUMP To THE PROGRAM AFTER THE· POWER rAIL L.OCATIONS 
WHICH WILL JUMP TO i!ERO WHICH WILL JUMP BACK TO HERE. 

170256 
115124 
STARTX 
STARrY 
100000 
JMPDIS 
PWRfAL+4 

;LOAD STATUS REGISTER FOR NORMAL OPERATION. 
JSET POINT MODE, "NORMAL". 
;X COORDINATE 
;Y COORDINATE 
ISET CHARACTER MODE. 
;THEN JUMP TO THE POWERFAIL LOCATION. 
;TO DISPLAY USERS CHARACTERS. 



SYMBOL. TABLE 

CHECK 166402 CHECK1 166430 CHECK2 166450 CHECK3 166466 
CHECK4 166516 COREND = 016000 DISPRG 166756 DOCHAR 166110 
GETCHL. 166312 GETCHP 166304 GETCHR 166306 GETNP 166366 
GETP84 166144 GETSIX 166262 GET8 166132 GET8P ~ 166152 
GET8TB = 166250 GETBl 166152 GET82 16620121 GET83 166232 
GET84 166142 INP1 =%lIfM101211 INP2 =%012101102 JMPDlS = 160000 
KBDIB = 177562 KBDIS = 177560 L.OAD 16652121 L.ADR =%00001111 
L,.BAD 1666Hl L.BC =%1112112112105 I.. BYT =%0I21k"'"00 L.CKSM ="0121012103 
L..GWRD 166646 L.JMP 166666 I..JMPl 166726 L.LD2 166532 
L,.L.D3 166576 L.LD4 166624 L..PTR 166630 MAJOR 166072 
PC =%00121007 PIofRFAL = 0012112124 P10I8 = 175612 P10IC :: 015772 
puns = 175610 P100B = 175616 Pl1210C = IH5776 PUoS = 175614 
RESTRT 166034 RETi =%110000121 ROMORG = 16612100 R0 =%0011100111 
R1 =%00:210IH R2 =%0011002 R3 =%'HH1003 ~4 =%111001111114 
~5 =%rHl0005 R6 =%000006 R7 =%000007 SCRl =%000111115 
SENDIT 166730 SP =%00I1f1H16 START 166000 STARTX = 000000 

0 STARTY = "01360 STKSRT = O15770 VT40PC = 1720'''') WORKl ="o00003 
.!..J IofORK2 =%000(104 = 166774 



o 
00 

o 

RSTAT" 

INITIALIZE REGISTERS 

& START DISPLAY 

GETCHR: 

YES 

NO 

CP-0606 

Figure 0-1 Communications Bootstrap Loader Flow Diagram 



APPENDIX E 

SCROLLING ROM BOOTSTRAP 
LOADER PROGRAM - GT42 

E-' 



SCROllING ROM BOOTSTRAP 'OR THE G140 
BOOT ,'116 

1 
~ 
3 
4 
5 
o 
7 
8 
9 

1.;1 
11. 
12 
13 
14 
15 
16 
17 
1d 
19 
20 
21 
22 
23 
24 
25 
26 
21 
20 
2" 
3,l 
31 
32 
33 
34 
35 
30 
37 
3d 
39 
4 ~,~ 

41 
42 
4,3 

4~ 

45 
46 
47 
48 
49 
"VI 
!:>:J. 
52 
53 
'>4 

,TITLE SCROl~ING RO~ BOOTSTRAP POR THE GT 4 0 

BOOTGT, T15 

COPYRIGHT 1973, DIGITAl EQUIPMENT CORPORATION 
146 "1AII'l STREET 
MAVN4RD, MASSACHUSETTS 

01754 

WRtTTEN BY JACK BURNESS, 

THIS PROGRAM IS THE SECONQ VERSION THE THE RO"1 BOOTSTRAP fOR 
THE GT40 DISPlAY TERMINAL, IT INClUDES SCROLLING ANQ AN END Of 
MEMORY SrARC~ POR THE ~OADER, 

,EIJABl. A8S, AMA IASSEMBlER DIRECTIVES fOR ABSOLUTE BINARY OUTPUT 
, NOTEI USE "MACDLX" TO ASSEMBLE THIS pROGRAM, 



m 
W 

SCRO~~ING ROM BOOTSTRAP fOR THE GT40 
BOOT,T15 DEFINITION SECTION 

'56 
57 
58 
'19 
60 
61 
62 
63 
64 
65 
66 
~7 

68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
'17 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 
101 
102 
103 
104 
105 
106 
107 
108 

>'01'191(1121 
;)1(I;1)0CJ1 
~]0P10"'2 

0fc! 0 (1103 
";H"004 
0910"~5 
el!lrll0f'6 
lIIrlll1l01l7 

1l00,H"0 
1'000('11 
~1Il00"'2 
Cl000i~3 

("1040 iHl (( 
r~0"<;J1 
fl00"~2 
0911"1111'5 
000Ql?3 

f""" %0 
1'11"%1 
R2:'''2 
R3"X3 
R4"X4 
R5-X'5 
SP·X6 
PC~X7 

-~------

-------... -. . 

GT40 OHINTlONS 
--"!-

CHARIR" 
POINTRI'R1 
U!lCNT-R2 
SCAN.R3 

-.---.---., 

--~- .. ~ 

~ .Bn-CHAR 
L..AOlhPOINTR 
~IBC'TAi:lCNT 
~ICKSM.COUNTR 
INDEX-SCAN 

----------~ " . 

'DEfINE STANDARD V'~UES, 

,CONTAINS THE INPUT CHARACTER, 
,POINTS TO NEXT INSERTION eYTE IN OISP~AY 'UrFER 
,CHARACTER cnUNTER fOR THE "TA8" r!A'URE, 
IGEN~R4~~Y CONTAINS. 'OINTER WHICH 
lIS US!D WHEN SCANNING M[MORY ,OR SOMETHING. 
ITYP!CA~~V A TEMPORAAy WHICH lS USED '0 R£TAlN 
JA VA~UE rOR A SHORT TIMr, 
ITyPIC'L~y USEO AS A cOUNTrR~ 

,CWARACTER INPUT fOR THE LOADER, 
,CURRENT MEMORY ADDRESS TO B! ~OAOEO; 
'NUMBER Of DATA ITEMS TO ~OAC, 
IC~ECKSU~ ON TWE INPUT OAT*, 
'INDICATES MOW TO ASSEMBLE T~E 8 BIT CHARACTrR; 



SCROLLING RO~ BOOTSTRAP rOR THE GT 40 
900T.115 DEFINITION SECTIO~ 

110 
111 
112 
113 
114 
115 
116. 
117 166000 
118 
119 175610 
120 175612 
121 175614 
122 175616 
123 
124 177560 
125 177562 
126 
127 1720"2' 
128 1120012 
129 
130 
131 nU.1600 
132 ~"701'10 

m 133 "''''776 
.i::.. 134 060111014 

135 i'~'012 
1;:56 ilkHI04 iii 
137 
138 r!05015 
139 001'11'5 
140 
141 16{'J0('10 
142 173000 
143 
1<\4 
145 
146 
14, 
148 
149 
1~0 
151 
152 
153 
154 
1'!'5 
156 
1~7 
158 
159 
163 
1&1 

I'lRIGIN-16601HI 

0L,11 I 5-175610'1 
I'll. 11 I a-OL,l1 15.2 
Ol.l1n5-0Ll1I 9+2 
OI.111'l8·01.110S+2 

1(8015-171560 
I(BC I 9-1(8'0 U.2 

GT40PC-172000 
Gl~0SR.GT40PC+2 

""~.-- ----!'-

RSTA'RT-U00 
BL,IMth711l00 
TMPE"JC·'776 
CORSTR=4 
JMPAno-BL.IMIT·ll6, 
""U"L.tN"32, 

CRLf·~11l15 
AL.TM~D=1'5 

OIS,JMP"1601'J00 
OlSTOP a 1730001 

---------.~ .. -

'ORIGIN n, T~E BOOTSTRAP, 

'I~PUT STATUS REG(STER 0' D~il 
'INPUT C~ARACT£R rRO" 01.11 
.OUTPUT STATuS or THE 0L,11 
'OUTPUT CHARActER TO TWE D~11 

.KEYBOARo INPUT STATUS 
'CURRENT CHARAeT[R FROM W[YBOAAO, 

'GT40 PROGRA~ eOUNTER, 
'GT40 STATUS R~GISTER ADDRESS. 

'START OF THE OISPLAY BU"ER 
,APPROXIMA'i END 0' THE DISPLAY BurrlR. 
'L,OCATION or 1~1'IAL.J~ATION STACK, 
,L.OCATION O~ POP-l1 TRAP VECTO •• 
,WHERE TH~ P~lNT£R IS TO rfRST CwAR QN SCREEN 
'NUMBER I'lP L,fNtS ON TExT T~ SHOw ON THt SCAEEN 

'CARRIAGE RETU~N • LINE 'EEC 
,THE "I(E'" C~ARACTER tl,!. AL.TMOOEl. 

'THE G'4~ JMP tNSTRUCTION 
'THE GT4~ STOP DISPL.AY I~S'RUCTION, 



SCqOL~ING RO~ BOOTSTRAP rop THE GT 40 ~ACY11,6~4 16·J~L-73 13104 PAGE 1.3 
800T,T16 )NITI'LI~ATION AND RESTART C~DE 

163 
164 
l~~ 
L66 GT4Z BOOTSTRAP COor. 
1'>7 
1~8 

l69 
lhl 
171 
172 
~73 ,:O"IGI\I IDEFINE ORIGIN Or THE BOOTSTRAP, 
~74 

~7'> 

1.70 
'.77 
175 
t79 
15~ J COLD I~ITIALI~ATION COOE 
1~1 ; .... -=-\;1;3;;-;;.,--
1;l2 
lOS 
1.~4 

lc:i 1 ~ 6~,~' ~ \>: ~~ ;l ~.l!) 5 STARTI «ESET IRESET .~L. HARDWARE NOW, 
J.i' 6 161>0<2 12737 l;\!lV,", "7 175610 'iOV n,OLllJ'l IINITIAUlE O~"l1 INPUT NOW, 

r;n t~ 7 
(J'1 V8 

1~9 

1,,6di "'id 1('6 "07776 'IOV IIT~PENI),SP I A GOOO TEMPORARY STACK 
1" b ,,14 ,1,'>,37 175014 INC fJUH)S ISET BREAK BIT 
16'>,/U "e4317 1666':>2 "IS" SCA~, OliTU T IrOR 2 CHARACTER TIMES 

11;..1 J ~,\<,?4 o 10 it kI" f!\ ,wORn i1I ;SNEO TWO i!ERO'S 
191 
g2 100026 ;'lC7l'3 rCy.~0 ~4 "CV #CORSTR, SCH~ I GET ADDRESS OF' 8AD CORE TRAP VECTOR'. 
193 1~Ai32 '1<:72;$ 16f·V)42 "QV #Nr'lTrlERE, (SCAN). 
1.94 

lAND INSERT A POINTER TO US THERE, 

19" 
to/) 

~o6~"Q V~?(2,3 E~,J')C(1R I C l.'< (SCA"). J :~ow CL.EAR ALL or MEMORy BEYOND THE POINTER, 
lb~?4,) 1-'0V'<7 7 o, Sf< ENflCOR IUNTIL WE RU"! OUT OF' MEMORY AND TRAP. 

1'"1l 
191' 
199 : 6o,' ,.~ ,'.;" 7 4 J 'IOTHER I TST -(SCAN) llOIHEN WE TRAP OUT, WE COME HERE, 
2, J I~E BACI( uP POINTER TO GOOD CORE. 
2, 1 
2"2 

I'JOTE THAT IF' WE TRAP OUT AGAIN, IT 
II S STILL. OI(, BECAUSE WE WILL LOOP 

;;;>,3 
2,)4 

IUNTIL. WE GET A GOOO CORE ADDRESS, 
16~.:i44 "1~3"6 .' OV <;CAII:,SP IOIHEN WE GET ONE. THAT IS LAST L.OCATION 

-1;1, 
276 

I IN THE MACHINE, AND HENCE OUR SP, 
106041) 1~5737 175614 1$' TSTR nLl1':!S ISEE IF' BREAK IS DONE 

do) 7 16~~"2 H1I<'3 7 5 8PL U. INO GO BACK 
2118 16"2:'4 "~"~'~7 17<;614 eLI' :lU1IJS ICLEAR BREAI( BIT 
2('19 
21<1 
<'11 
212 
213 
214 
21:; 
216 

RESTART INIT!ALllATION CODE WHEN COMMUNICATIONS 15 WORKING, 
-.--~ .. ----.---



m en 

SCROLLING ~O~ 800TSTRAP ,OR THE GT 4 e "'ACOLX 622(622).1 2~~JUN-'3 l6111 PAGE 1_4 
ROOT,T15 I~ITIAlI~ATION A~D REST,RT CCDE 

217 
218 
219 
220 
221 166061<1 "527 il6 ,11,7776 
222 
223 
224 166064 ·'12793 :'067<'(' 
225 166070 :127~2 ,~e J:340 
226 
227 166074 ~12723 [J05015 
228 16611'0 :'053'2 
229 1661912 ·,.,3374 
2~21 
231 
232 166lfl4 "127;'3 166432 
233 
234 
235 16611" ,1123 '2 
236 166112 \'Z14"5 
2'37 166114 (1123" 1 
238 
239 166116 ';12321 
2421 16612" 11053;>2 
241 166122 ~1i.l3375 

242 1.66124 ,'01'1771 
2"3 
244 
245 166126 ,'127"1 7' .. 6776 
246 
247 
248 
219 
25" 
251 
252 
253 
254 
255 
256 
257 

.---.-. --.---.------. ---- .--- -----_.-----.- .. --~---~-

RESTRTI 8IS ,FORCE THE S~ TO LIMIT or EXISTING CORE. 

MOV #BlIMIT-NUMLIN.NUM~IN,SCAN 'NOW WE WILL FILL 'HE KEV AREAS OF THE 
MOV *NUMLI~,TlBCNT ,DISPLAy Bur'E~ WITH INITIAL CR-LF'S; 

SEn..Pll MOV 
!'lEC 
BGT 

MOV 

SETLP21 MOV 
'lEQ 
MOV 

SETLP31 MOV 
'lEG 
8GT 
8R 

SETOUNI MOV 

ilCRL',(SCAN)· 
TA8C;~'T 
SE'fLPl 

IISETUP,SCAN 

'SCA~).,TABCNT 
5ETDUN 
(SCAQ",POINTR 

(SCA~)·"Pnl~TR). 
TABC~'T 
SETLP.s 
SETLP2 

.SBTTL vT~5 SIMULATOR 

IINSERT A CR~r NOW, 
lAND LOOP UNTIL DONE, 
'T~US DI~PLA' eORE IS AL~OST CORRECT. 

'NOW WE WILL INIT4LI~E C~R~ rOR THE 
,DISPLAy, PICK UP POINTE~ '0 LIST, 

,GET NUM8E~ or ITEMS TO !NSE.T, 
'IP lERO, ~E ARE CONE, 
'P!C~ UP rtRST CORE ADDRESS ~OINTER, 

'MOVE OVER A OATA ITEM N~W, 
IALL DONE? 
'NOPE, MnYE nYER THE NEXT, 
IYES, GET NE~T MAJOR LIST '0 INSERT, 



SCROL.L.ING RO~ BOOTSTRAP rOR THE GT~e 'IACDI.X 622(622)~1 26-JUN·'3 16111 PAGE 1-5 
BOOT, T15 VT~5 SIMVL.ATnR 

259 
2610 
1::61 
1::62 V HI:' (SCROI.L.ING) PORTION OF' THE ROOTST""" 
1::63 ---- .. ---. ------- ---------264 
265 
266 
1::67 166132 ,,~4737 166564 NXTCHRI ,JSR pC, GfTCHR ,GET A C,"ARACHR NOW, 
268 166136 ,'20027 ;'0,1117 CMP CHAR,lIl77 , IS IT OliT Or "ANGE? 
269 166142 (:\'12373 RGE ~iX'l'CI;R • YEP, GET ·NOT~ER ONE, 
210 166144 '>20027 ?!3 91 1dal1l eMP CHAR,1I4i!l ,I S IT A PRI~TING CHARACTEQl 
271 16610;10 002020 SGE NORMAL. , YES, IT'S A NORMAl. PRIN"I"G CWARACTp:R, 
"2 166152 1'111110('3 MOV CHAR,SCAN ,MOVE IT OVER SO wE CAN Pl.'" \oIIT~ ! T , 
27 3 16610;4 1627\13 "'(1"007 SUI:l In ,SCAN ,BIAS SO THAT BEI.I. en III !ERO,' 
214 16616 21 "20327 "'000(17 eMP SCAII,II7 'IF' CHARACTER IS L.ESS THE:N 8[1.1. OR 
215 166111 4 HI3362 I'!HIS NXTC4R ,GREATER THEN CR, THEN IGNORP:, 
2'6 166166 .:Q!63r3 ASL. SCAN , IF' GOOO, MAKE IT 1oi0RO P;OEX, 
217 16617f: C6031"1 ADD SCM., PC .AND GO TO T!.IE CORRECT RIIU' I NE', 
278 
2'9 166172 C'''\~426 BR BEL.L. '7 8 8EL.I" 
2PQl 16611 4 "12104;16 BR NOR"4AL. , UI=RACKSPACE 
281 1661 76 ('0"'111 BR TAB 'l1=TA8 

m 282 1662"'0 ,,}('437 BR U' ,12=I.INE fEE" fl.'J 
..:...t 283 1662 c12 ""1ft, 4 2 QI 8R liT ,lJ=VERTICAL. TAil tVTJ 

2114 1662('4 000424 RR rf 114:POR~ fEEl' err] 
285 '1 51 CARRIAGE RETURN tCR~ 
2136 
297 
288 166206 '127"2 177777 CRI ~Ov #-l,TABCNT J RESET TA8 P~SITlON ON A CII, Af.D 
289 .FAL.L. T~ROUG" 'fO INSERT TH[ ~HARACTE'" 
2921 
291 
292 166212 >'34737 1663521 "lORMAI.I JSR F'C,I'lSERT , I NS[RT T~E r,~'RACTER IN r .. e:: BUF'rER, 
293 166216 ('.152"2 INC 1'ABC~,T , UPOHE TAB POSITION NO", 
294 166220 ':''''~7 44 AR ~i X, C "R 'AND GET ~EXT C~AR.CTER , 
29 5 
296 
297 
298 
299 166222 '\127l'~ ]1iJ304111 TABI MOV It4I11,C~AR 'ON " TAR, I"SEkT BL.ANKS UNT!L. T~E 
300 166226 1I!2I4,37 16635(1 JSR PC,!~SERT ,NEXT CHARACTEII POSITION IS • ~UL.TIF'L.i: 
3"1 166232 (';052J2 !NC '!'A.BC~:T ,or 8, 
3:'2 166234 q27?2 0001017 BIT 1117, B8CN,. ,ARE wE nONE yET? 
303 166240 '''t3'''' BNE He 'NOPE, 
3,~4 166242 81211'73.3 I',1R \iXTC!.IR 'YES, 
3'~5 
3'6 

BYTE 1'If" TIoiE 3t"i' 166244 1117('5 VTt ·~OV8 (PC),COUNTR 'THIs f>UTS THE LOW 
308 , 8RA~iCH conE IN COUNTR~SA V[ • 1oI0RO 
3~9 166246 \1 Iil "4 ,'5 RR F"FL.OC!P 
3121 I 
311 16620;:21 fJ05!/137 172002 BEI.LI CL.R GT4i:lSR .RIIliG BEl. I. ."f< t TE IN GT4C'iSR 
312 1662'54 :'OH'72 6 RR 'JXTCkR , AND L.OOf> BACK 



m 
00 

SCROLLING ROM BOOTSTRAP rOR THE GT4~ 
800T,T15 VT~5 SIMULATOR 

313 
314 166256 
315 
316 166262 
317 166266 
318 166272 
319 166274 
320 166276 
321 
322 
323 16631110 
324 
325 
326 166304 
327 
328 166310 
329 166312 
330 166314 
331 166320 
332 166322 
333 1663~6 
334 
335 166330 
336 166332 
337 166336 
338 166342 
339 166346 
3 40 
3 41 
342 
343 
34" 
345 
346 166350 
347 166352 
348 166356 
349 166360 
350 166364 
351 166366 
352 166370 
353 166374 
354 166400 
355 1664012 
3'!6 166404 
3;7 
358 1664i~6 
359 1664).0 
3t'dZI 166 414 
361 16642e' 
362 
363 166422 
3A4 
365 
366 

•. ·1270'5 

"127N; 
1(.'14737 
,'0':>305 
>;Pl3372 
(:0111715 

"12746 

1223t'H' 
.'614"6 
,,;20327 
11(1 37,3 
~i127f.'3 

00"'77'" 

JI1!52"3 
·,'427,>3 
"10337 
L,;14 737 
·;1t:5i<W~ 

11"021 
kI327~'1 
"\"1021 
k·'2(1127 
Hl~410 
.·)ll.)l~J 
'~127"1 
;,',,14737 
P'051i:!23 
;'05013 
,'\:0\112 0 7 

0.1221;>1 
')12711 
~,12,41 
:~~5k141 

i'0JiH2 
1663,14 

,H?7H'12I 

·10 il"iH' 1 
lltliJ12 
16635121 

:'010.!1') 
166406 

1664'" 
16 (Hl(ll0 

HI "IOV 

rfLOOPI MOV 
JSR 
DEC 
BGT 
BR 

Lf I MOV 

I.fS\I'11 f'OV 

LF'Lonp, CHPB 
flEO 
CMP 
ALO 
~Ov 
BR 

LfOUNO' INC 
BIC 
~Ov 

JSf< 
CLf< 

INSERT' "OVI:l 
BIT 
ANE 
CMP 
BL.O 
'10v 
MOV 
JSR 
CL.R 
CL.R 
FITS 

INSRTLI eMP 
'-10V 
110V 

CL.R 

I NSHTX.: RTS 

iliNUMLI"',COUNTR 

U2, CHAR 
PC,LfSUB 
COU~TR 
ffLOOP 
~,XTCflR 

IIINXTCHR,"(SPI 

JHPAOo,SCAN 

(SCA';).' CHAR 
LfOU~O 
SC4N,IIBL.IMIT 
L.FL,OnP 
IIBST4RT,SCU, 
Lon.OOP 

SCAN 
IIi/seA" 
SCAiIj,JMPADO 
PC,Ii\lSERT 
CH4R 

CH4R, (POINTHI· 
1II1,PnINTR 
I NSRTX 
POINTR,IIBL.IMIT 
INSRTL. 
POINTR,SCAN 
IIBSTART,POINTR 
PC,INSRT!.. 
(SC A". (seA,,) 
PC 

(POIvTR).,IPOINTR). 
IIHEADER,(POINTR) 
lIoISJMP,.(POINTR) 
-(POINTR) 

FC 

IfORM FEED I q ~ONE BY !N~E~T!NG Lf'S~ 

IMAKE THE CHARACTER A L.INE'EEo; 
100 A L.INErEEo, 
'DONE? 
,NOPE, KEEP SENDING THEM, 
IYES, NOW RE"U~N, DO NOT fAL.L THROUG~, 

JRETURN TO NXTCHR AfTER P~OCESSING 
ITME L.r fly fAKING A JSR, 

IGET POINTER Tn rlRST C~'R O~ ~CREEN 

lAND L.OOK rop A LINEF'EEo, 
IGOT IT, SEAFlCM MAS [NDEO, 
IARE WE AT END or BurfER' 
INOPE, ~EEP rN L.OOKING~ 
Ilr AT T~P, RESET TO BOTTOM Of BUffEP 
lAND KEEP ON L.nOKING, 

'WE'vE cnT T~E L.INE rEEO, 9ToP SHowl~G 
IflRST LINE 8y CMANGING THE qotSJMP" 
IINSTRUCTION TO fIRST CHAR BEYONO Lf, 
IINSrRT THE ~~ IN THE BUr~£R, 
lAND T~E~ INSl~T ONE NULL CHARACTER BECAUSE 
,THE "OI~J~P" AODRESS M\lST 6f EvEN, ANO 
'TMIS GUARANTEES WE ~ILL. NOT ~OSE • 
IA GOOD nATA CMARACTER~ ~E ~ALL THROUGH 
ITO INSERT T~E NUL.L IN T~E BUFrER, 

ISTICK I~ 'Hr CMARACTER ~Ow, 
,IS NExT POSITION EVEN OR ODD? 
1000, NO PROALEMS, SPACE IS ALLOCATEO, 
lEVEN, ARE W£ AT TME END or fM[ Iuff[R' 
INO, JUST MA~E ROOM fOR .NOTME~ WORO~ 
,AT THE ENO, MOVE THE STu" TO TME 
IBEGINNI~G or 'ME BurfER, 
ICALL T~E ROUTINE TO SAvr SPACE, 
lAND C~EAR U~ TME INSTRUcTIO~S AT THE 
,END Of TM[ BUr,ER, 
lAND THEN RETURN, 

IBVPASS THE potSJMP" BV .ODl~G 4 TO POINTR; 
INOW INSERT THE OISJMP IN5fRUCTION TO OUR MEADER 
lAND IT'S AOORESS (PUT TMEM IN BACKWARDS), 
'MAKE AV'ILA~L.E A NE~ CH4RAC'ER S~OT, 

,fINAL.LV RETe)RN TO THE C'~LER, 



m 
to 

SCROLLING ROM gOOTSTRAP fOR THE GT~~ 
POOT,T15 uTn5 SIMULATOR 

31-.7 
368 
3~9 166424 ~12737 ~0100~ 172121121121 
370 
371 
372 
3'3 
374 
375 
376 
377 
318 
379 
3~0 
381 
3112 
31'\3 
384 
385 
386 
387 
358 
339 
3?0 
391 
392 
393 
394 
395 
396 
397 
398 
399 
4'0 
4;~ 1 
4'12 
4.'3 
4"4 
4;'5 
4"6 
'In 
4,'8 
4"9 
4H~ 
411 
4i2 
4 t 3 
414 
415 
416 
417 
4t8 
419 
420 

166432 
166434 
166436 
'-6644121 

166442 
166444 
166446 
16645 0 
1664'54 
166460 

166464 
166466 
16647 0 

166472 

16~474 

166476 
16~500 
1665;;12 
1665H 
166510 
166512 

"IP0,12 
.HFI 33i: 
166424 
"13012 "'.1 
"011'.,;'7 
"(J6776 
"i1!~0~" 
16f'0\'Z 1664'4 
1611121;'" J 01l<H"12I 
16,101~ :1"'67"121 

'~0""! '1 
1720,.'J 
166474 

";1I:l0~'0 

103334 
Ill'lCll71 
116124 
171340 
:'iHhl0(' 1'<1352 
103324 
16Ml"~ ".t71<lH' 

GTBUSEI MOV 

SETUPI,WOK') 
,WORn 
,WORr'! 
,wOR,) 

,WORn 
,",OR[1 
,WORr1 
,ioIORr" 
,WORn 
,WOR~ 

,WOR') 
,WORn 
,,,OR" 

,WOR'1 

HEADf:R I ,WOKn 
,WORn 
,oI0Rn 
,WORr1 
,WORr) 
,wOR" 
,WOR'] 

#BSTART,GT"IIIPC 

2 
330 
GTBUSE 
20i! 

-- .. -------~---

ION A BUS ERPOR, wE MERELY RrST4RT T~E GT40 AT 

'THE RTI f~R THIS ROUTI~~ 
,IS THE fiRST ~ORD OF TH~ TARL[ 
'BELOW-IT SAVlS A WORDI 

'I~ITIA~ItE 2 WOROS.--AL~O RTI rROM ASOVE 
,STARTING AT LOCATION 33~ 
IFIRST WQRD IS POINTER Tn IU9 ERROR ROUTINE, 
,SECOND ~ORD IS NE~ STATUS WORe ON INTERUPT, 

7 IINITIALlt~ THE END or T~E aUrrER TO 
RLIMIT~2 ,A CLEAR SP4C[ TO INSE~T T~E C~ARACTrR, 
e 'TwIS IS THE "RUNNING" START, THIS IS 
nISJMP,~EAOER IFOLLowEn BY A OISJMP TO OUR H[4DER sLOCW 
CISJYP,BSTART 'AND THEN A nlSJMP TO THE START OF THE BUFFER 
nISJ~P,8~IMIT~NUMLIN-NUMLIN 'ANO A OISJMP TO T~E FIRST CHAR ON SCREE 

1 
GH0PC 
"EADER 

11'13334 
177 
116124 
17134" 
~,13'52 

103324 
nISJ",p,J~P4DO"2 

IFI~ALLY STA~T THE GT40 ~OIN~ AT 
,THE POSITIO~ INSTRUCTIO~ IN T~E 
IHEADER RL.OCI(, 

JENABL C"AR "'OOE,BLINKINC 
,A BLINKI~r, ROX~RUB OUTI 
IGO TO POINT MODE 
'L.OAC STATUS REGISTER 
,POINT Tn UPPER LEFT 
IBACK TO CHA~ MODE 
'AND TO THE CHANGING JMP INST, 



SCRO~~ING RO~ BOOTST~AP FOR THE GT40 
~OOT,T15 VT~5 SIMU~ATOR 

421 
422 
423 
424 
425 



SCROLLING ROM BOOTSTRAP fOR THE GT4~ MACULX 622(6221.1 26~JUN~13 t6'1~ P~GE 1~9 
BOOT.T15 COMHYNICATIO~S AND MISC. SUPPORT ROUTINES 

427 
428 
429 
4311J COMMUNICATIONS HANDLING ROUTINES 
431 ----------~--- -------- --------
432 
433 
434 
4~5 
436 
431 
438 THE ()L.~11 HANDl,ER 
439 .-.---., 
4411J 
4"1 
442 
443 166516 1("5737 17561'1 GETDLI TST8 1)L.l1IS ,CHECK THE Hr-S' INPUT STATUS. 
444 
445 

166522 hlM011 BP~ GEl'Oi.1 ,HOST 010 NO' SiND ANyTHINO, yn, 
166524 11371<0 175612 HOVa OL.'-1t B,CHAR 'HOST SENT US A CHARACTEP, PrlOeESS IT, 

446 
447 

16653>:' 012737 0130(3{'7 17'610 HOV '",DL.UIS ,REENA8L.E THE HOST TEL.ECOM~U~leATIONS~ 
1665~6 ;;4270111 1776910 SIC jj"Zi'J9I,CHAR 'MAKE CHARACTER JUST SEVEN BITS. 

448 166542 <101765 PEQ eEToL. ,IF' NUL.L., I Ci~JORE IT, 
449 166544 1011207 IHS PC IEL.SE RETURN N~W, 

r;n 4511J 
.... 451 166546 105737 17756"" GETOL.ll TSTB KBDIS ,DID USER TYPE A CHARACTERt 

452 
453 

166552 HIIJ361 8PL. eETOl INO, CiO BACK AND CHECK HOST ~ACHINE, 
166554 113'37 177562 17'616 MOVo KBOIS,OL1l0S 'MOVr THE ~H'RACTER TO THE HMST, 

454 16656 2 :'0!'i1755 BR GETO~ ,AND CHECK AGA!N fOR INPuT, 
455 
456 
451 
458 
459 
4611J THE "GET CHARACTER" ROUTINE 
461 --~ -.---.--- -.--_ .. 
462 
463 
464 
465 
466 

166564 .',""A7l? 166S16 GETCHR I JSH PC/GErOL. ,GET A CHARACTER PROM THE: "'OST NOW, 
166570 .'2"027 ~001'5 CMi> CHAR,#ALTHOo ,IS IT A~I "AL. TMODE" 

461 166574 .'12!1\',2, BNE GETE)(T I NO, EXIT NO"', 
468 
469 166576 ~12l4737 166516 JSR PC, Ge:TDL. I YES, GET ANOTHi:R ONE NOW, 
4'0 166602 ;;2>1027 ~J00114 CMP CHAR,.'L. II S IT AN "I." 
471 1666Q16 (>11/115,11 8EQ L.OADF.'R ,YES, START ~OAulNG NOW. 
4'2 166610 ('21"027 Oiil 0122 CMP CHAR,"R , IS IT AN "R" 
473 
474 

166614 0':010l5 BNl GETEXT ,NO, IGNORE THE AL.TMODE 4NO JUST RETURN THE CHAR 

415 166616 ·'12737 1731Clel2l ''''J 7 0 Hl MOV #oISTOP,JHRADO~2 /yES, RESET. S'oP OISPlAV BY INSERTIMCi A "0 I STOP 
476 166624 v'0~137 16612!60 PRESTRI JMP RESTRT JI'JSTRUCTION IN THE BUfn R, ANI) RESTART, 
47] 
478 
479 
HI1J 



SCROLLI~G RO~ BO~TSTRAP rOR THE GT~0 MACDLX ~22(o22)~1 26~JUN~'J 16111 ~AGE 1~1~ 
BOOT,T15 CQMMuNICATIONS AND MISC, SUPPORT ROUTINES 

48 1 
482 
4B3 
484 
485 
486 
487 
4Ae 
469 
490 
49 1 
492 
493 
494 
495 
496 
497 
496 
499 
5JIIJ 
5°1 
5:>2 
5"-3 
5['4 
535 
506 
5'~7 
5('8 
5919 
5H' 
5a 
512 
513 
514 
515 
516 
511 
51e 
519 
5~2I 
521 
522 
523 
5~4 
525 
526 
52 7 
528 
529 
53111 
531 
532 
533 
5~4 

1666321 
16~634 
1666411J 
16664 2 
166646 

166650 

166652 
166656 
16666 2 

166664 
16667~ 
166672 
16667 4 

16671'10 
166702 
1667['4 

034737 
!2:il027 
M'2517 
('20027 
:'1"3114 

112337 
112337 
.'0"'203 

'04737 
f1:10 4 6 
"21 5723 
" 0101 163 

,'M4:''! 
,'.,-<141-6 
"<Jf"4:~2 

166564 
(,!liH~040 

17563.6 
175616 

166630 

166676 

GETSIXI JSR 
CMP 
RLT 
CMP 
IiIlT 

GETEXTI RTS 

DUTL!T. Move 
MOVB 
RTS 

GETo. JS~ 
MOV 
TST 
J~1P 

GErdTB I 8R 
tlR 
RR 

THE "GET A SIX BIT CWARACTER" ROUTtN[ 

pC,GrTCHR 
CHAR I *'10 
L,BAll 
CHAR,.137 
L,8An 

PC 

--.------ ~-----. 

IGET A CHARACT~R NOW, 
,IS IT • ~EGAL PRINTING CHARACTER? 
INOPE, AgORT 
'IT'S 8tC ENOUGH, IS IT TOO BIG? 
'YE~, ABORT, 

'RETURN TO THE CALLER, 

THIS OUTPUTS TWO CHARACTERS VIA A 
JSR SCAN, OUTL IT 
'TWO CWARACTERS' 

(SCA~'l .. ,DLUOB 
(SCA1\!l+,D~i10B 
SCAN 

'DOUBLE IIUF"F'ERfD 
I RETURN 

THE -GET AN EIGHT BIT CHARACTER" ROUTl~E 

THIS ROUTINE DIFrERs FROM THE PR~VIOUS ~OUTINES 
I~ THAT IT WILL TAKE SIX BIT CWARACTERS ANO ASSEMBLE 
THEM FOR THE ~OAOER TO USE, ~OTE THAT rROM T~I! POINT 
nN WE WI~L S~ITCH TO THE LOA~ER DErINITI~NS or THE 
REGISTERS, THUS THE CHAR4CTE~ IS RETURNEr IN 
REGISTER "L,BYT" RATHER THAN CHAR ITHOUG~ TH~Y ARE 
PHYSICA~~Y T~E SAMEl, 

PC,GETSIX 
L,8YT, .. (SP) 
(INDEX). 

IGET A SIxBIT CMARACTER, 
'SAVE IT ON THE STACK, 
'UPDATE INDEX TO NEXT IT[M "LL ARE .2) 
'AND OISPATCW ACCORDING TO THE INDEX~ r,ETBTB .. 2( INDEX) 

GEr81 
GET82 
GET8~ 

'INDEX-2, 4S~EMBLE FIRST CHAR 
JINDEXa4, ASSEMBLE SECONn C~.R 
'INDEX a6' ASSEMBLE THIRO A~D LAST CHAR 
,INOEXeS' RESET INDEX TO 0 ~2J AND RETRY, 



SCRO~~ING PO~ BOOTSTRAP fOR TME GT4~ MACOLX 022(022)-1 2~·JUN-13 1011l PAGE 1-11 
800T,T15 COMMUNICATIONS AND MISC, SUPPORt ROUTINES 

535 
536 16f·1:Jo '12773 ",~;:l":l2 GET8 41 "lOV 112,!I.!DEX IT~E FOURT>l !NOEX IS T~E SUoH' AS THE rlRST 
531 IINOEX, JUST RESET IT AN" 'A~L T~ROUGH, 
538 
539 
5421 166712 01»4137 1660310 GETdl.I JSr( PC,GETS!X IGET ANOT~ER C~ARACTER NrlW, 
541 166116 '·1<l0:114 MOV L,8YT,~OLD lAND PRESERVF: IT rOR NEXT '!~E THROU(';H " 
542 166720 "'063rr ASL L,BY" INOw T~R"W hAlf IoEF'T MOST BITS OF" 
543 166122 ~11J63("e ASL L.,8n ITHE 8 tllT CIoiM'ACTER, NOioi MERGE !N 
544 16672 4 U!63i1'e ASL.i:i i.,BYT /THE LEFT 'l'wr" !'!ITS OF' THE 
545 166126 1~6116 ROl,,8 (SP I INEW SIX tilT CHARACTER W!TH THE SIX 
546 166130 HJI.I3~12I ASI.8 L ,BYT IBITS fRrlM TIolE C~ARACTER 0101 THr 
541 166732 1,,6116 ROLS (SPI 'STACK, 1ST CHARACTER IS NOW ASSEMBLEO, 
548 1667:H 01 26\'0 .,ov (SPI",L.,BYT ISO IoIE'I.L FlE'I'UI'lN IT TO THE USER, 
549 166136 "'11111201 RTS pC lAND THEN IoIE S~ALL RETUR~' TO HIM, 
5521 
551 
552 1.66141l' O~(\30"" GET821 ASl, L,BYT IT~E SECON" r:H4RACTER IS CRElTED F"RO" 
553 166742 i'e03'·~' ASl. L ,BVT ITHE " RICiIoiT 81TS OF' THE PREVIOUS CHARACTEII! 
554 166744 1063;'1/! AS~tl L, BVT lAND T~E f"OUR ~"IOOL.E BITS or h'E PRESENT 
5'55 166146 1l'l6F4 R 0(" 13 ~OLD 18 BIT CHARACTER, 
556 1.6615~J 111163'1" 4 S(., 13 L,BY" IOIE 10111.1. CRt::.1£ THE NEW ~ In 
551 166752 1~611J'4 RO\.,13 HOLD lIN THIS REGIS'ER, SINCE n 
5'58 166154 1>'63"'0 451.8 I,. ,BVT IMORE CO"l\lIE'11 , WE WILl, MOVE OVE" THE' 

':1 559 166756 106104 ROI..B ~OI.D IANSwE.R AT TIolE. t.NO, 
-' 560 166160 1~63(\e 4SL8 L,Bn lO"lE MaRl': TO GO VJ 

561 166762 1"'61<'4 ROLB .. OL.D IDONE, 
562 :1.667,,4 "1'''''00 ~Ov HOLO,l"BVT IBqlNG OV[q THE IIA\.UE, 
563 166766 '.'126,'4 ~Ov (SPI",,40I.D lAND REMEM8El'I THE I.A5T CIoI'~AeT(R WE II!tCEIVED, 
564 16677'" (1('1"'201 RTS PC 'AND RETURN "0 THE CALLEII, 
565 
5"'6 
561 166772 MJ61~~1il GET!l3 I 1'101., L,BY" IflNAl C~MUCT£R 15 EASY, JUST A 
5"'8 166114 1~61011l 1<01,.8 1..,8'1''' ISIMPl,E "ERG,R OF" IoEF"T TWO BITS OF' 
569 166116 d\!6~"'4 ROR 10101.0 IPREVIOU-: VALUE !<11TH RIGIoiT SIX BITS 
5121 1670"" 1~61il"" !;ORB L,BY" 1OF' L.AST (4TIoI) CHARACTER R[CEI \/EO, 
571 1010!112 :'i/l60,"4 ROf.! ~OL.D 
512 16101"4 106,):10 RORi:l L.,BYT I AfJU wE ARE "O"lE, 
573 1670Q!6 ",,5126 TST (SP). IFPaI.L.v TJ.IR"W AWAY SUCI(, 
514 16701'" .',",1'2" 1 RTS PC lAND RETIIRN '1'0 THE CALL-Ell, 
5:05 
576 
571 
578 
579 
5~0 
581 
5P2 
5~3 
524 
585 
586 
58? 
588 



SCROlLING RO~ 80~TSTRAP ,OR THE GT~e MACOLX 622(6221~1 26'JUN~'3 16111 PAGE 1.t2-
800T,T15 COMMUNl~ATIONS A~O MISC, SUPPOPT ROUT!N£5 



SCROlll i'~G ROM BOOTSTRAP F"OR THE GT~il MACOlX ~22(o;:>2)"1 26",JUN .. ,3 1611l. PAGE 1·13 
ROOT,T15 THE I.OAO(R 

597 
5°8 
599 
6['0 
61.'1 

THE I.OAOER 

6['2 
6f13 
604 
6,15 
6,'6 167(112 .'12737 173~H'11J "070H'1 L.OADER' t10V IIDISTOP,JMI'ADO,,2 'STOP THE GT'" 8Y INSERTING A ·OISTOP" IN TH£ LI 
607 
608 16':120 , 05i/!',:3 CI.R INDEX ,RESET THE 6 BIT 4SSEMBL.E:R Tn THE F"IRST CHAR 
6f"9 
610 
611 1671022 !\r/.I50:15 L,,1,.021 CL,H l"CKSM , CLEAR THE. CHECKSUM 
612 167n4 ,'04737 107114 JSR FOCIL"PTR ,GET A BYTE "0 101 , 
613 167103 0 1 ~53"0 DECB l..Bn 'I S IT A ONE (HEADER)? 
634 167032 nH373 !'NE L.L,D2 I NO, WAIT rOil THE ONE, 
615 
616 167034 7~4737 167114 JSR FCd.,PTR 'YES, 
617 

SKIP OVER THE NEXT cRA"AeTER NOW, 

61.8 167040 ~11J4737 167126 JSR PC,I.,GWRD ,ASSEMBI,.E A !.IO"O NOW, 
619 t67044 "100"2 MOV L.BVT,L.,BC ,MOVE OVER T!'I THE COUNTER, 
620 j 61046 1627'2 (~0a",?l4 SUB #4,L.,8C 'REDUCE TO ACTUAL, DATA COUNT, 

r;n 621 167052 ;1227,,2 ?I.H',,:"2 Cf'lP 1t2,L" SC ,ANY DATA AT ALL? 
~ 622 167~'56 "'\1,11433 REQ L.JMI" 'NO. MUST BE EIJO 
CJ1 623 167060 ,H!l4737 167126 JSH PC,I.,GwRD 'YES, 4SSEMtiL.E A OAH wOAD NOlO, 

624 16106 4 r:1.'0l'1 MOV L.8Y'!',l..,.OR lAND HilS M\,I~T 6E THE F'lIlST ADClRESS. 
625 
626 
627 167;'166 ."4737 167114 1.,L,031 .;SR PC'I.,PTR IGET A BIITE N" DATA NO 101 , 
628 167~12 ,'1,20"6 8GE L,1.04 'AL.I. DONE? 
629 167014 1057';"5 TSTB L,CKSM I YEP, COUNTER IS MINUS', CH!:CI( CH£CKSUH, 
630 167076 .101751 llEO l.,l.02 ,CHECKSUM GOOD', GET NEXT COMMAND. 
631 
632 
633 1671;;<0 ~~4337 166652 L,.BAD, JS~ SCAN, OUTL IT ,BAO 1.0 AD INF'ORM HOST 
634 1671~4 175 1.12 ,BV TF: AI. TI'IC'O,' A ,SEND AI.TMOOr e 
6:15 1671('16 r:~0646 BR pRESTRT 'AND RESTART THE DISPI.AY, 
636 
637 
638 16111~ 11('1,121 I.,L.U 41 MOVB L.,BYT, (L.,AOR)· 'INSERT f'lYTE INTO MEMORY, 
639 167112 ,)00]65 RR 1..1.03 ,AND GET THE NE:XT BYTE, 
640 
641 
642 
643 16711 4 "f.§4737 166664 I.. PTR I JSR PC,GET8 ,ASSEMBI,.E AN 8 YIT CHARACTfR NOW. 
644 167120 ';',6;'0','5 ADD L.BYTd.,CKSM I UPDA TE THE: eMf'CKSUM NOW, 
645 167122 ","53':2 DEC L..BC ,oe;CREMENT T~E CHARACTER COUNTER. 
646 167124 "0~2q RTS "C IANO RETURN "0 TME CALLER !jOW, 
647 
648 
649 
6'5" 16'126 1.:'4737 j6 7114 L.,G~ROI JS~ FC'L-,PTR IASSEMBI."" A 1oi0RO. F' !RST I:U A CHARACTER 



SC~OLLING ROM BOOTSTRAP FOR THE GT!0 
BOOT,T15 THE LOADER 

651 1671J2 ~11!11~46 MOV L,BYT,,,CSPI lAND SAVE IT, 
652 1671~4 ~347J7 167114 JS~ PC,L,PTR lAND TIoIE\I GET ANOTIo4EA ONE, 
653 167140 ~""'3~0 SwAB L ,BYT lAND TIolEN REASSL"B~E TIolE ~ESS, 
654 161142 ,"5~6(,!11l 81S ISPh,L,BYT IWITw THE fEARSOME POWER 0' THE 11. 
655 167144 !'!""2(17 RTS PC lAND RETURN TO TIolE CALLER, 
6"6 . 
657 
6"8 
659 
662) 167146 11I/!4737 1.67126 I..J>1PI .JS~ PC'I.,GWRO I A\.L- DONE wITH T~E LOAD, ASS!HBL£ 
661 167152 ,:'111'046 MOV L.BYT,,·CSPI ITIolE STARTINC 'CDRESS NO~, 
662 167 154 fltH737 167 ll,4 JSR PC,L,PTR lAND DON'T r~RGET TO CWECKSUH IT. 
663 167160 1057\'5 TSTB L.CI(~M 
664 167162 v'~1346 BNE L,BA!:, IA BAD CWECKSUH, A~L IS t V II •• 
665 
666 16716 4 "'il4337 166652 JS~ SCAr'j, OUT\'I T 11'0000 CHI(SUH.INfORM HOST 
667 167170 115 1;,7 ,BYTe: ALTM(\D,'G PO Tiol AL TMOO G 
668 
669 167172 .'32716 11.,30"1 BIT U, eSP) JOO WE WANT TO iTART EXECUTION' 
671/l 167116 ~)il14"1 BEU L.JMlll IYES, AWAY W! GO, 
671 
672 1672(l0 ,"H~V:t'0 I..HAI.TI HALT IIF NOT, HAL.T, 
673 

r:n 674 1672112 1'30136 I.,JM Pll JMP f'(Sp,· liP GO, THEN GI"J ALREADY, WwEEEE I .... 675 0) 
616 
671 
678 
679 
6B(II 
68 1 
632 
683 
6P4 
6115 
6g6 
687 
688 

·6B9 



SCROL.LING RO~ BOOTST~AP rOR THE GT~<1 ~~ACOL.X 622(622) .. 1 26-JUf.I .. Y3 16111 PACE 1·15 
BOOT I T15 THE LOADER 

691 ITHIS IS GT4(1! QUICK TEST 
692 ,GIVES QIJICK VISUAL. TEST 
61/3 ,or CONDITIO" O~ MACHINE 
694 'WITHOUT REAOING IN 0IAG, 
695 1 k'(~0<' e. CHARal~1/l1!!0" 
696 1~4""~j SHORTV a iel4f1!I/l[/I 
697 11'1\""0 LO'JGval11l01/l0 
696 114"0i2' POI'Jhl1 40f1!lcl 
699 12(J0N~ GRAPHX=120"0111 
'''11'1 124,\;10 GRAPHY-124f1!k!lf'l 
7')1 13C'1kHH) RELATV alJI'11!!k!l1" 
7"2 
703 k'020C10 I NT0 a 2l1l ijl, 
7V14 i~022<H" INT1"22k!l\!l 
7;'5 ~i"24"'111 INT2 824,,0 
7(16 (>02 IH'k' INT3=261/l0 
7f!!7 i'1!i3ill1'lcl I NT4 a31'·I/lel 
71'8 1'032"0 I~T:'=32"'11I 
709 0034.10 INT6 834!C0 
711'1 0213600 INT7"36';i!I HlRICHTEST 
711 
712 ,'12!01"''' LPOrrIl1f/J1il 
713 1'1il0140 I.PON a 140 
714 vi00020 F3I.KOrF'''2~ 

m 715 0;1)1'1030 BI.I<ON=30 ..... 716 ...... 
717 IJ0"'1cl!l' " 1.11.1£08" 
718 ,101l 0 I:': 5 LlNElc!5 
719 1'1/J2I0"6 I.INE2-6 
720 0M0\1? 1.11.1,3.7 
721 
722 1691000 I)J~P·16"00fcl 
723 1640iOiJ ONOPa1641'10f/l 
724 173000 STATSA-i7000 91 

7<?5 t7340€! DSToPa17J4k1f/J ,S'OP INTERRUPT 
726 
727 ,H!I~300 LPI.!TE a 300 
?28 'l1lJ020kl I.pOARK a 2Pl I/J 
729 IHJ"'04iJ lTAL.0 ... " ,I TAI.l CS on' 
nil "IS(;060 ITAI.1 a60 I" ON 
731 0SQl0"4 SYNONC4 'SYNC ON 
732 
7:33 
734 174iIH:Hi STATSS·1741lf/J1'I 
735 
7:'56 v) Sf/IH'S I NCR 8Vf/J '1.0AO GRApH INCR 
7:37 11'49,10"'0 INTx a .. 01111'10 ,INTfNSIF'V 81T 
736 eiH?77 MAXX D l777 ,BIGGEST X VECTOR 
739 01!11J77 MAXY 81377 ,BIGGEST Y Vrc'OR 
74iJ i~\2:111il00 M 1 NUSxa2111IiH!0 ,T!04E MINUS BIT 
741 021'10ri!0 MINUS."aMINUSl( 
742 \11'6?0 MAXSh17 60ftl ,BIGGEST X IN SHORT VEe 
74 3 @00077 '1AXSYa77 , " y I~ " 744 NJ"'1t'!0 MINSuvd00 'MINUS BIT rOR v IN SHORTvre 



SCROLLING ~O~ BOOTSTRAP FOR THE GT"~ ~4CDLX ~22(6221"1 2tt·JUr.J .. ,J 16111 PAGE 1"1 6 
900T,T15 T~E LOADER 

745 
746 
747 16'7204 ['12737 16721.4 172£1210 MOV *flL[k'I,GT40PC 'STAin TIofE GUI!! 
748 167212 ,11100 :'11 !.IAIT ,AND WAIT 
749 
7~0 16'21 4 114021/J fI"ILE0, PO I~n 8LKOF"F ' ,POINT--INVI5IBLE 
7~1 16'216 ;?e0~HHl 111 

752 16'220 [101377 ,~ AX'!' 
753 
754 167222 112004 LONGI/ IINUIL INE0 ,DRAW TO" LINE 
755 167224 ,l41777 INTXtMAXl( 
7'56 167226 "'0~0N' 0 
7')7 
758 167230 1124(,15 LONGVIINT21LINE1 
759 16'232 ,'4~0"'1O !NTX ,ORA~ ~INE TO RIGHT 
760 16723 4 021377 MINUSXl/'1AXV 
7"1 
762 167236 11321~6 I,.ONGvIIN'!'41LINE2 
763 16'240 ,161777 INTXIMINUS)(p'AXX 'DRAW BOTTOM LINE 
764 16724 2 .(,1"101'10 111 

765 
766 167244 113417 LONGvIINT61LINE3 
767 167246 04"",;'1" INTX 
768 1672511' \101377 MAXY ,DRAW LINE TO LEF'T 

r:n 769 
CXl 770 :1.672'52 1140e" POINT 

771 167254 IH'H'4Cl0 ' 'I"'''' 
772 167256 "00500 5~0 

773 16'260 1>"6200 SHORTVII~IT1 

774 16'7262 G5 7677 57077 ,+)(+'1' 
775 167264 1066N! SHORTVI!NT3 
716 167266 077677 77077 ,+)(~\' 

7'77 167270 H172(~0 SHORTVI!"<T5 
778 161272 ?-7'7777 77777 , .. )(-'1' 
7'19 167274 HP6;'\;"j SHORTVI!~IT7 
780 167276 '~57777 57777 ' .. X+\' 
7B1 
782 1673?l0 1140~'21 POINT 
783 167302 0l/J14~0 1400 
784 161304 ,j{lQl5C"0 50'" 
785 1613M 133",.30 R~~ATVIINT4IB~KON 
786 16731 0 ,;57677 57077 ,+)(+'1' 
787 16'312 '.;77677 77677 ,+)( .. '1' 
788 167314 ;,\77777 77777 ,.)( .. '1' 
789 167316 057777 ":17777 ''')(+'1' 
790 
791 167320 11 40('0 POINT 
792 16'73 22 !II(''''4,H,J 401e 
793 167324 0001('1(1 100 
794 167326 17412", STATS811'!CR+20 'TRV G~APH MODE's 
795 167330 1140:'10 POINT 
796 16'7332 ~lf!i10!?" 1,0"'0 
797 167334 ~'r02:~1?! 200 
798 



SCROLLING POM BOOTSTRAP rOR THE GT~0 HACOLX 622(622)"1 26",JUI>J·'1,s 16111 PAGE 1"17 
BOOT I 115 THE LOAOER 

799 167336 12Q1"~'" GRAP",X 
8~1!I 16'340 "'!/J101 0 1IIlU 
801 16'342 1"01020 1020 
8:'12 16'344 "'0103011 U.s" 
81113 16'346 i'l11l1lll41!1 l,040 
804 16'350 ~"U50 l,0~" 
805 
8;>6 16'352 1140"'10 POINT 
807 167354 ~0U~0 10''''' 8~8 16'356 C012"" 1200 
81219 
8U 167360 12"'H"0 GRAPI.jY 
811 16'362 "(U021!1 U20 
812 16'364 001030 U.s" 
813 167366 9!01040 1040 
814 167370 ~0U50 1.0'" 815 1673'2 "'''1061!1 106 " 
816 
81'1 16'374 16~QH"11J OJMP 
818 1673'6 16'214 PILE0 
819 
821!1 

r:n .... 
co 



SCROLLING RO~ BOOTSTRAP rOR THE GT 4 0 
BOOT.T15 TH~ LOADER 

822 
823 
824 
825 
826 
827 
626 
8:29 
6:50 
8:51 
832 
833 
8:54 
835 
836 
837 
838 
839 
840 
8 41 
842 
843 
844 

m 8 4 5 
N 8 4 6 
o 847 



SCROlLlNt; ClO'1 ROr'lTST.,AP .OR ThE GT40 "'ACDLX 022(0;>2)"1 26"JU~J·"3 1611l. PAGE 2 
I'<OCT • T15 THE LOADER 

649 
6"", I PAPER TAPE BOOT 
651 l 
6'52 j775?~ "SR~177!;)<;0 llolIG" SPEED READF:R Ar)DRESS 
653 177560 I.SR=177 56 11 11.0 .. SPEE D REAI'lE~ ADI"RESS 
6<;4 1674(1:~ .=ORIG!IIi+l'1i;l'" 
6'55 I 
6'36 1674"'''' '127"'1 lo<'kJ00 PT800TI MOV 1t16,,'rllfl,Rl ISET MEMORV CHEC'< LP' I 1S 
6'\7 1614,,4 '12712 ' ,)(ii'" 4 >-lDV #4,R2 IT"AP ADDRESS IS LI'lC. 4 
8"8 167410 :' 127 ,'3 16751"'0 "OV IIDEV·4,R3 IPOINTER TO [lEV 1(::E A'lDRESSES 
859 167414 ':1G'712 "'OV "C,@R2 IPRESET TRAP ADDRESS IN lOC, 4 
8"(J 167416 ,'1 27'6 ~li''''''24 "DV #24,SP ISTACK SET UP AT SPECIAl. AOORESS 
861 161422 ,'143s4 DEVil MOV .. (RJ) , R4 ;GET DEVICE ADDRESS 
862 16742 4 105714 TST ilQR4 ;CH(CK AVAILAtlll.'!'TV rl. DEVICE 
863 161426 1'~VI775 AMI nEVi ICHECK DEVlcr FOR ERRORS 
86 4 16743 0 '1~712 '"OV PC,~P2 lHf.5ET T~AP ADDRESS .,. I.OC, 4 
865 167432 1::7 0 6 (l'(i: ,_10'4 MOV 1124,SP ISPECIAL ArloRESS USED 4S MASK L." 'E!:I 
8~6 161436 " 1"4 4 1 MOV 1'14,-(R1) 100 MEM CHI<IREAOER STATUS AODRESS 
667 liS MOVED 
868 16744~ ,;149'6·'1 'lIe SP,Rl ISET R1.X7752,MASK P' sp-24 
869 161442 >1"'111 MOV 1'11,111'11 ISTORE O\<JN ADDRESS II''' "OINTER 
67Q! 167444 "111 e'2 1.00PI MOV 9R1,R2 IGET BYTE PO! NTER 
671 161446 (,;;5214 INC 1111'14 IENABLE i<EADfR 

m 812 16,450 1(j5714 TSTS !itR4 I TEST DONE BIT 
N 873 1674<;2 lti)0I376 BPI. .~2 l\tU IT UNTIL REALlv 

874 167454 116412 h 1,,",H'2 MOV13 2(i<4),@R2 IT'"EN PICK IT UP AND STORE IT 
875 167460 "'05211 INC i!lRt IBUMP POINHR 
676 t67462 12"227 "00375 CMPB R2,#375 lSTORED .JUMP Of'SE:T? 
677 167466 ;'01366 BNE l.OOP INOT YET 
878 1614711 105222 INCtl (1'12) • IVES/ALI. DON~ 

679 1674~2 "~)<;J14, .,IMP .(1'12) lGO EXECUTE AS 8RANCI.i 
68~ J 
881 I DEVICE ADDRESSrS FOLLOW . DO IliOT C"ANGE THE ORnER 
682 I 
883 167474 17756C DEVI L,SK ILOw SPEED READER 
884 161476 17755~ HS" lHIG" SPEED RODER 



SCROLLING ROM BOOTSTRAP ~OR THE GT40 
BOOT,T15 THE LOAOER 

68, 
868 
889 
89Ql 
691 
692 
69 3 
894 
695 
696 
697 
696 
699 
900 
901 
9:12 
9~3 
9114 
9(15 
9(16 
9k', 
9<16 
9('9 
910 
911 
912 
913 
914 
915 
916 
917 
916 
919 
9~Ql 
9~1 
922 
92 3 

1615~kl 

1675~4 

1675~6 
16751 fd 
167514 
16752fd 

161522 
167524 
161526 
161530 
j61532 
16753 4 
161536 
161542 
167546 
1675150 
167552 

167554 
16'556 
161560 

167562 

167564 

167566 

167570 
167574 
161576 

1775i"fl 
1675:'0 
\ 12'110 
"'05010 
'~1"'7"1 
"627"1 
~12'!'2 
i121"3 

112110 
11'1(11413 
13~31111 
r'~1776 
H'52~A2 
lM772 
1161d12 
12"337 
~'itl176' 
~'!i.'f1ii0(;111 

"H'755 

.11'157l.0 
H'~774 
1@50>" 

j 121/l24 

[!III!Il0"" 
1675V~ 
01/l03 4 (l 

1775(.10 

:"IHl1C52 
~kH'!375 

'~M~W2 
NH10;'11I 

J 
I CASSETTE 800T 
I 
TACS=17750f11 
,aORIGIN·1 5 i/10 
TABOOT I "'OV 

CLR 
RESI ~'OV 

I 

ADD 
MOV 
"IOVB 

LOOP11 "'0 VIS 
RMI 

LOOP21 BITIS 
8EQ 
INCB 
8MI 
Movd 
CMPB 
REG 

STOP 1 ioIAL T 
BR 

I 
OO~EI TST 

BMI 
CL,R 

,WORn 

,WORD 
,1010'111 
,WORI1 

j;TAC~,RI/l 
(R0) 
PC,Rl 
IllTABLE .... R1 
'111375, R2 
(R1)·,R3 

(Rl)., (R0) 
aONE 
R3, (R0) 
1.00P2 
R2 
LOOPt 
2(R0),(R2) 
R3,1111110 
LOOP2 

RES 

(R0 ) 
STOP 
pC 

1764r 

2415 

3,12024 

",,0 
TABoeT 

.34 0 

ITA.l1 CONTROL AND STATUS REGlST!R 

ISEL.ECT UNIT #I! 
IUSE J'OR PlC 
IRi HOL.DS ADDR, nr COMMAND TABL.E 
IMEMORy PTR, ANO OAT' '~AG 
,TEST BITS 

ICOMMAND fROM TAB~E TO TACS 
IWHE~ COMMA~O COOE NEG~, QUIT 
ITEST READy AND T.REO RJTS IN TAeS 
I~OOP 'TIL. SOMETHING COMES UP 
IADVANCE MEMORY POINTER 
Ilf MlNUS, TRY NEXT CO~MANO 
IREAD DATA INTO MEMORy 
IFIRST BYTE READ SHO~LO BE '240' 
IIf O,K" GO READ ANOT~e:R BYTE 
,HALT ON ERROR 
IR£START ON CONTINUe: 

'CHECK J'OR ERROR 
IHALT ON ERROR 
I. 'JMP .#0' 

1,I:lYTE 
" ByTE 
I,BYTE 
, ,BYTE 
I, BYTE 
I,BVTE: 
ITHESE 
IPOwER 

2401 READV.T.REO, 
371 I~BS+REAOy.GO 

151 SFS.CO 
51 READ+(';o 

241 READ+ILI:iS 
2241 READ.1L8S.E,O,TAB~E 
ARE ff~L.£R WORDS 
UP VECTOR AND PRIORITY 



SCROL.L.ING ROM BOOTSTRAP rOR THE GT~0 MACOL.X 6221(22)~1 26"JUN .. "3 16111 PAGE: 5 
BOOT.T15 TrlE LOAOER 

925 ,MR1hDS BUL.l( STORAGE: PROGRAM L,OADER L.ISTING 
926 
921 1616N' 
928 

I"OR I G I N*16fIH" ,KEE" TRACK 0' oRlGIN 

929 16'61110 1111071'2 Rflll MOV PCd~2 I F'l XED MEAO OISK (256 KW) 
930 16'69J2 r'IH"4'51 FIR OTHER 
931 16'61114 177462 171462 
932 1676",6 elf1I011J('!5 5 
933 
934 16'610 0107"2 RKlll HOV PC,R2 'MOYING ~EAD 0151( (CARTRIDGE) 
935 161612 ~~);'l445 SR OTHER 
936 16'614 17741"6 1774r/1~ 
937 16'616 01111"0:>15 , 
938 
9~9 
94Ql 16'62111 "107N! TClll '10V PC.R2 
941 167622 0100411 SR TAPES 
94 2 16'624 177344 177.s4~ IACDRESS Of WORD COU"'T 
94 3 167626 000005 , JL.AST COMMAND 
944 167630 >1f140113 401i!3 I F'I RST COMMA~O 
945 161632 Hl0f11111il 10021:110 IDONE MASK 
94 6 167634 fA240011J 24001'l IERROR MASK 
947 

m 948 
r:.., 949 167636 011'17:.12 TM111 MOV PC,R2 
c.u 9'5Ql 16'640 ;1011J410 SR TAPES 

951 167642 17ii!524 17252~ 'ADDRESS OP BYTE COUNT 
9~2 167644 06,HH'3 61"003 ,I.,AST COMMAND 
953 16'646 "6eau 61')011 "IRST COMMANO 
954 16'650 "'0!1l2Q!0 200 IDONE MASK 
955 16'652 H"'Hl~0 Ufil01/J0 'E~ROR MASI< 
956 
957 
9'8 16'654 011117t12 RPlll MOV "C,R2 'MOYIIIIG IoIEAC CISI( (PACK) 
959 16'656 0efll423 BR OTHER 
96111 16'660 176716 17~71~ 
961 
962 
963 167662 01l11l10P' TAPES, RESET 
964 167664 ~1"2(111l1 MDV R2,RP' ,GET TIoI£ ADO~£SS 0' 'HE BRANCH 
965 167666 N!5720 TST 101. JR0 TO POINT AT ~AST COMMAND 
966 167670 012elll MOV 1~",R1 ,GET 1101E wORO COUNT ADDRESS 
967 16'672 Cl1l53U ~EC (1) ,SET UP rOA AOVANCE 1 ~[COAD 
968 16'6;4 105720 TST (0). ,MOyE R~ TO rlRST COMMAND 
969 167676 ,'12Qj41 "lOV cr~).,.I1) 'COMMAND WORD TO COMMAND R~G, 
9711J 16'17f/1l1J '13111111 FlIT (0),e1) '~OOK fOA DONE INDICATORS 
911 16'1702 o~1iI1776 BEQ I.I! 'NONE SET, T~Y AGAIN 
9'2 16771/J4 1'05720 TST 10h ,DONt FIRST cOMMAND, CHECK POR EIIRO~ 
973 16'706 ,,31041 BJT (0).-(1) '~OOK POR SET ERROR BITS 
974 161710 1"1lI14Q16 SEQ OTHER ,NO ERRORS. TIIY T~E R!AO 
975 16'1712 00"'112 AGAINI JMP (21 'RERUN pOR ERRORS 
976 
971 
978 16'171 4 167600 RF'VECI RP11 'RP11 POWER UP YEC'OA 



SC~O~LING RO~ BOOTSTRAP ~OR THE GT~1il MACO~X ~22Ib221·1 2h,JUN-'3 16111 PAGE ' .. f-
BOOT,'!'15 THE ~OAOER 

919 167116 ';'1/10340 340 
980 
981 t67721il 9'11il702 RCUI MOV PC,RiI ,rIXEO HeAD DISK '64~"' 
9112 167722 i1f/J2'4!' 1 SR OTHER 
983 167724 111451/1 17745" .ADRS 0' WORD COUNT CCOMMANO.ZI 
984 ,COMMAND WORD (5) IS THE RESET 
9!!5 
986 167726 "'IilI1IllHC5 oTIoIEAI RESET 
967 167730 "1~217!0 MOV A2,RI') ,RI TO POINT AT WORD COUN'!' AORS 
988 1.67132 0"5121il TST 1111 I. 'POINT TO AODRESS 
989 161734 (/11 200)1 "IOV (~h,Rl 'WORD COUNT ADDRESS TO R1 
990 161736 'l12711 117"Ml MOV "U0f11,111 'I,.OAO WORD COUNT 
991 167142 t'll11041 MOV elill,..c 1.) ,COMMAND TO eOMMANO RECI$TER 
992 167744 1!32711 100231i! BIT II 10"l!iIlIJ , (11 'CHECK FOR ERROR OA DONE 
993 167150 01'11175 SEQ ,-' 'I' NEITHER, KEEP ~OOKiNG 
994 167152 10f1157 8MI .GA1N ,ERROR, TRV AGAIN 
995 167154 11'''50~1 C~R PC 
996 
997 167756 01"''I001il 21 '''IL.~ER 
998 167761il 167610 RKVEC, AK:L1 ,RK POWER UP VECTOR 
999 167162 ilea3 4 " 34\; 
10~0 167764 167720 RCVEC\ RCll IRC PlOWER UP VE;CTOR 
1001 167166 .,00340 340 

m 1 021 2 161170 1676'''' RPVEC\ AP;'l 'RP PoWER UP VECTOR 
i\) 1Iil ill 3 1671;2 00"340 340 
.j::o. iQl04 167174 167620 TCVEel TC11 'Tell POWER UP V~CTOq 

i0"5 167176 0'10£'134111 340 
10"6 



SCRO~LI~G ROM ~OOT~T~AP rOR THE CT 4 e 
800T,T15 TM£ LOADER 

,END 



SCROLI.ING FIG.: gOOTSTFlAP ,C,;"l T"E CHill '1ACVll,62 4 1b"JIJL·73 H""4 PAGE 6-1 
800T • T16 CRGSS REq;RE~Cf TARL.E 

AtOA I~. Hi 712 974/; 993 
AL- THor) = e:r',v 1 7!> 13911 46'5 63~ 666 
BEL-L 11)62!>v., 278 310. 
BL I M IT = ""];:",(1 13211 135 223 <'44 329 348 395 399 
BLKon:- = "'0<. ·'2" 713# 749 
BL.KO~' = 0:',· .jJI'l 714. 784 
BSTART = 0~"j .1~v.'l 131# 331 351 368 ~98 

CHAR = 1 '~k l' ~ iiI 82/1 H'2 267 ?69 271 298. 315· 327 338. 345 444. 446. 465 
469 471 487 489 l!y4/1 

CORST1i = 2;~" ;- 04 !.34/1 192 
COUNTR :I A.~ ~~ ~',"':.:.? 0\1# a5 306. 313- 317-
CR lht·~b~ ::>I;!H 
CRI,.F = <,0~>1? 13El# 226 
DEV 11\7 4 74 R57 882' 
DE-Vi 167 4 ;:2 '16'·'" 862 
o I SJ:~f' = iii ;,,: It <:j 141# 359 397 3'18 399 415 
DIST')P = 17;":",,iIJ 14<,# 474 6215 
DJMP = 1/),,:-~?I 72111 1116 
DL,l11 to = 17~,f,1 ;> 12"# 121 444 
OL11IS = 17~,,::"(j 119# 12!IJ 1e~. 442 '45. 
DL-110':; = 17 :"16 in,. 452. 4'19- 5,,"-
DL,110S • 17:":.1 4 12h 122 18"· "<i,, 2.lill. 
D"lOP = 1 t) ... ~.: v 7U# 

m DONE Hi",4 1199 9l'l# 
,:." DSTOP = 17~"'4.1;J '124# 
0> ENOC n .. : 16f; ~I) ~95# 196 

F"F 1 h (,;-:,6 ?8~ 313' 
,FLoor 160;'62 3~8 315' 318 
FILE" 16i';>14 74" 749' 81'1 
GETCI-I;; 16t.:,b4 266 464/1 48tc. 
GE:TDL. 1"'6'116 442# 447 45~ 453 4~4 468 
GE:TDLl 1f,6~46 443 450l# 
GETEXT 16bb~" 4/)6 472 4'12# 
GETSIX 1666J>l 486# 524 539 
GETS 166064 524. 642 
GET8T~ 1"'c71"" 527 529. 
GE"81 16t:.712 529 539. 
GET/!2 11)£'74" 53C\ 551# 
GET83 161>772 '531 566# 
GETS4 1l>6 7016 '535# 
GRAPH X = 10!V, ,; ,,-;Ii 698# 798 
GRAPIolV :; 124",,,,, 69911 809 
GTBUSE 1"6 4e 4 J6~# 391 
GT40PC :; 17~ ?,'" )'27* 128 368· 402 '146-
GT40SR • l.72CJ~2 128* 31"'. 
HEACER 166474 358 397 403 409# 
HOL-C .%"0ilh',04 8a 54136 5546 55fl- 558. 5621. 561 562_ 568_ 57216 
HSR = 17755.'" 851# 883 
II',CR • 0"'~lit'f; '35' '93 
INDEX 11%000'-:",3 1i16* 526 527 535. 6'117 • 
INSERT 1663,0 291 299 331 3<\<;, 
INSRTL 166406 349 352 35'* 
I NSRTll 166422. 347 362' 
INTX :; &40 .. 00 736* 754 '5~ 762 '66 



SCROLLIr-.jG ReM BOOTSTRAP F'OR THE CT40 "IACV1l.,624 16"JUI..73 1~112!4 PACE: 6 .. 2 
BOOT.116 CROSS REF'ERE:NCE TABI.E 

INU :;; i:H:l2>11<.i0 '''2# 753 
INTl a kJe?2;o" 703# 772 
INT2 :; ft)0241<1Vi '04. 757 
IN'f3 " J00,,6k'\J 70511 774 
1"!'f4 " .,,:l300V1 7~6# 761 784 
IN'f5 " ",0l321<~ '~7# 776 
IN'I'6 " 0034kJV! 1f11l. 765 
INT? = 0"3t>.;l0 "10911 778 
IHU1 :; ;0&1.,,,<;('1 728/1 
IHLl :;; ~I"M6Ql 729# 
,JMPADD " fl07q,2 13511 325 336- 415 474. 6fl5-
KSD Ul :; 177,1>2 125# 452 
KerlIS = 177500 12411 125 450 
1.'- 166.'.crJ 281 322# 
I.rl.ooP lb631fl ~27# 332' 332 
I.I'OUI~D 1'<'t330 :328 334# 
I.F'SU8 1663[')4 316 32~# 
1.1NE0 " eJ~1i0k;.'4 716# 753 
L.INE1 :; JO"Jir'>j~5 717# 757 
l.pJE:2 :; ;oJv ~ii,6 718# 761 
L INE3 = 0~·"i'''7 719# 765 
LOAOER 1(> 1(·12 47:" 1J0511 
LONGV = ll.i'v;iO\~ 696# 753 757 761 765 

m LOOP 167444 1l69# 876 
N LOOP1 167522 89811 903 
~ LOOP2 V,7,),,6 900# 901 91iJ6 

LPOARK = ~HH,2~0 n.7# 
LPLITE = 07e 314~1 726. 
LPOF'F = 001<)1391 711# 
L.PON = ,:ple14~ 71211 
I.SR :; 177j¢>?1 85211 882 
L,ADR =li;;~v·'''l 10:1# 623- 637-
L,8AO lJ71~Z 48'3 49~ 632# 663 
L,Be =%0c)~1"'1~2 104/1 618- 619- 61(" 6~4_ 

L..AYT =%2[1.z.~i(H~ 10211 525 541?1 '541" ~42. 54~. 545- ~47" 551* !:l52" 553. 555. 557. 
559. 561- 56~- 567" 0;19. 571" "12" 618 623 1>37 643 65? 652_ 
65:;. 660 

L,CKS" :: lI,.,; t? I'~ I, }: ,j :, 1051/ 610_ 112? t43" ~62 
L,GWR] 1671,,6 617 622 649# f,,, 
L,HAlT 1672;;2) 671/1 
L, JeW 167146 621 659* 
1.,,JHPl 167:-'.;2 669 67311 
L.,LD2 167?n bl~# 613 629 
l..LJ1 167~66 626. 638 
L,LD4 16711;') 627 637# 
l.,PT'l 1b7114 611 615 62" f42# 649 651 661 
M"XSX : ,.·176.;0 7411> 
"1.,XSY = ,5;';1:n 742# 
MAl<X = rtll1777 737// 754 762 
MAXY :; r;un 73811 751 75Q 767 
MINSUY : Y.''''' 1/,,'1 743/1 
MINUS~ = 'I) 2 y Z.;9' 73QII 74~ 759 762 
MINUSV = {'2;;J~O 74i';# 
NOR'1Al 1662~;> 2"11 279 291* 



SCROLI..lNG HC('~ 800TSTRAP rOR THE GT 4 iiJ "ACY11,6?4 16 o JUL.·73 1"104 PAGE 6-J 
BOOT,T16 CRCJSS RUERENCE. TABL.E 

NOTHI'R 16/,('42 1'13 199. 
Nl,It"L1'J ; ic0~ .140 U~# 223 <'24 3U 399 
NXTCI-J" ;t66U2 :?66/1 268 274 ;,>91 ~~3 311 319 322 
OR I G 1\; = 166k'~0 U7# 173 A53 A9? 926 
OTHE~ 1617<'6 9,,9 934 95R 97,3 981 985# 
OUTU T 16M,::'2 189 499. 6,32 66') 

PC =~ g)VI ~<!Z k" 7 74# 266. 276- 2<;1* 2'19* 31d6 31"· 337- J52- 355_ 362- 448_ 464_ 
4(,8_ 486_ 492- 524- 539- 548_ 563- 573_ 611_ 615- 617· 622- 626_ 
1142. 645. 649- 651- 654_ 6;9. 661- 858 863 893 912. 9211 933 
939 94A 957 ge~ 994_ 

PO! '\11 ; 11 ,; i," 697# 749 769 7tl1 7\1~ 7>/4 !l0'i 
POI',TR =';~.' iV"'; 1 ':1311 103 236- 238- :;144_ 345- 346 348 35'" S51- 357 358- 359_ 

36~-

PR.ST" ,\6Ud4 475. 634 
PTPonT 1.,,-;4(:0 8?5# 
RCVFC 16771)4 999# 

Rel1 16ll<'Vl 98"# 91/9 
RE:LATV = 13 ~ ., ~ V:' 70;'# 784 
RES :1. f. 7 ').16 8'13# 908 
RESTr:T 1" 0" ~ f' 2~(>1t 475 
RF'VEr: lh7714 977# 
RF 11 1 f: 7 f) ~:.l\/; 928# 977 
RKVEr: l 1.77 ov" 99711 

m RK11 1. h I"il 933# 997 

N RPVlG lh77 /il 1'''11# 
00 RF'tl 1 f; 7,\:> 4 9':>7# 1ihH 

R0 :: ;'i:> ";~ • j .,'~ ~:; .'1 67# 82 891· 892* illS_ 91d" 904 910 963_ 986-
Ri ; Io't:' ,1 v ,~k:il 68# 81 85'5- 865- ~i 7. 868- 869 874. 893. 894_ 896 898 965* 

98a_ 
R;'> =~,; ) t,,',.,?' 69# 84 856* 658- ~I 3* 869* b73- 875 877_ 878 895* 902_ 904. 

92·8_ 933* 939* 94/i_ 9; 70 963 91)"_ 986 
RJ ;/.-':H ::~'~/,3 7';'# 85 85'* 1\617 896_ 91ei'" 905 
R4 =%/F~/~J~4 71# 87 86;1_ 861 M5 1\7>1_ 871 873 
R':> :%,j,11!'115 72# 89 
S C A~ :0/..01)0,1,163 85# 106 189* 1~2* 193_ 195_ 1<,11/ 204 223* 226* 231* 234 23,. 

23,g 271- 27'2- 273 275- 27" 32'i* 327 329 331- 334* 335- 336 
35CJ. 353- 354* 499 5\ l1' 501* 632* 665_ 

SETJJ'< 160126 235 244# 
SETLPl 166'>' 14 226# 228 
SETLo2 lh611"1 234# 241 
SE:1L.PJ 1"IJ1l6 238# 2421 
SETuP 1064.$2 231 389# 
S;.IORTJ = F4l.o~ 695# 772 774 776 178 
SP =;tt;~~~:it16 73/1 187_ 2Q:4- 220- 122* 525* 544* 546_ 547 562 572 65"'* 653 

e6;>1- ~68 673 859* 164- 867 
START 11l60~" 183# 
STATSA " 17.0".:)" 723# 
STATS8 = F4"~'" "3~t/ 793 
STOP 1175;'" 9~7. 911 
SYNO~' • 00MH04 73MI 
TAB 1"'62<,2 :?8~ 298. 302 
TABC:~T .. %~il0l~2 04# 104 224* 227. 234· 239. 287· 292* 3000 301 
TABI.E 167562 894 914' 
TABooT 1675kl0 89\# 921 



SCRnLLl1llG RONI "OQTST" AP I'OR THE GT40 '1ACYll,624 16·J';~w73 10104 PAGE 6~4 
80(1T,T1f> C~(1SS REI'ERENCE' TAB~E 

TACS = 1175';0 889# 891 
TAPES 1 1,7602 94~ 949 96211 
TCVEr:: 167774 lP'~3# 
Tell 16762<) 939# 1003 
T"'PE~'O = --"':7771\ 13311 187 2201 
H,ll 167"'36 948# 
VT 1')6244 232 306# 

= 17l~.;'~ 173# 853# 872 8gell \94 92611 97'" 992 

m 
N 
co 



SCROLL I i~G p n ~-1 BOOTSTRAP ""0" THf" GT40 f'ACY11,624 1O·';UI..?73 1i";04 PAr;E 6~5 

BOOT. T16 CRCS::' "t:.:FERE'Jcr TABLE 

ADO <76 643 fl94 
ASl. ~ 7') ':>4: <;4? 551 55:-
ASL'l ';4' ~4";i .,?~ 555 557 559 
BEQ ;3? ~\ 2 ~ 447 47~ 621 629 l69 9ldl 906 970 973 992 
aGE :.?6f3 ~ 7" 627 
8GT :?2h 24/ 31" 490 
BMIS ?14 

BIC n'> 446 '367 
815 <<'" t'53 
BIT '~d ~4~ 66~ 969 972 991 
BIT8 I.J ~ < :/~ 

8~.r) .~ 3? j 4" 
81..T 4 b (j 

Ail! "b? t ':6 9,)3 911 993 
8.\( I v;2 .547 46f, 472 61:'1 663 ! 76 
an en 44:\ 451 872 
B~ 1 So r; c:41 27F' 279 28ft 281 \ 82 283 293 3113 308 311 319 332 453 

5,,'1 ') 3" 531 634 63il 9~E\ 929 934 94? 949 958 981 
CL,R 1~" ~0c 3l", 33B 353 35A 36~ f07 /1:1.>1 892 912 994 
CMP ?f,7 <:!,,, 273 329 341', ~57 465 469 471 487 489 620 
eMP8 Y;7 b7S 9 ()') 
DE.C 227 ~3S;' 317 644 966 
DE.r:b bl~ 

m HALT (, 71 9Z7 

tv Ii~C lijk <'9(' 3iW 334 87r 874 
a I ~JCt! "77 't0~ 

J>1P ~ 7,,' ':127 673 878 974 
JSR 1.,;9 ~ 6" ?91 299 316 337 : 52 464 468 486 524 539 611 615 617 

;,22 b"" 632 642 649 651 159 661 665 
MOV 1 t, f, H7 1"2 193 2[64 2<:3 124 226 231 234 236 238 244 271 281 

/~tl 3F3 315 322 325 331 : 36 3!:>~ ~51 35B 359 368 445 474 525 
::, ~'i~ ':>4: ">47 561 562 6.:15 , 18 623 650 /l6YJ 74/1 H55 856 857 858 
r:';9 b6 .. P63 864 8b5 868 169 891 1193 895 928 933 939 94A 957 
'leI 'I6~ '169 980 986 988 f B 9 9<;?J 

Move .~~ 6 ~4" 444 45<, 499 5V,J' ( 37 873 896 898 904 
RESET lb:, ~ 6:' 9H5 
ROl ">66 

ROL.ll '.;44 ':14'; ",4 556 5SA 56e ! 67 
ROf< ':oil ~7:' 

RORS :·69 ~7: 
RTS 3~~ j6~ 44B 492 501 548 163 573 645 654 
SUtJ ~) 7 2 !')l '; 
SWAd 6;;2 
TST 199 ':121\ 572 861 910 964 967 971 987 
TSTB 206 442 4, ~J 628 662 871 
WAIT 747 
,BVTE' 633 66~ 

,ENAIlL, 36 
,END lei07 
,PAGE 55 H19 162 257 425 595 189 82:l 
,SBTH. 54 161 256 424 594 
• TITLE 2 
,lo/ORll 190 31:19 39Cl 391 392 394 ~95 3S16 397 398 399 401 402 403 "'" 409 "1(! ~11 412 41 3 414 1115 914 916 918 920 921 922 



o 

YES 

m 
W 

NO 

CP-0606 

Figure E-1 Communications Bootstrap Loader Flow Diagram 



I 
I 
I 

I 
I 
~ 

·z 
l::l 

I 
\' 

I 
I 

GT40/42 USER'S GUIDE 
EK-GT40-0P-002 

Reader's Comments 

Your comments and suggestions will help us in our continuous effort to improve the quality and usefulness of 

our publications. 

What is your general reaction to this manual? In your judgment is it complete, accurate, well organized, well 

written,etc.? Is it easy to use? 

What features are most useful? 
--------------~------------------~------------------------

What faults do you find with the manual? 

Does this manual satisfy the need you think it was intended to satisfy? 

Does it satisfy your needs? _________________ __ Why? ________________________ __ 

Would you please indicate any factual errors you have found. 

Please describe your position. 

Name ______________________ Organization 

Street _______________________________ DepMtment 

City _____________ __ State ___________ __ Zip or Country 



- -- -- -- -- - - - - - Fold Here - - - - -- -- -- -- -- -

- - - - - - - - - Do Not Tear - Fold Here and Staple - - - -- -- -- -- --

BUSINESS REPLY MAIL 
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES 

Postage will be paid by: 

Digital Equipment Corporation 
Technical Documentation Department 
146 Main Street 
Maynard, Massachusetts 01754 

FIRST CLASS 
PERMIT NO. 33 

MAYNARD, MASS. 



Digital Equipment Corporation 
Maynard, Massachusetts 

printed in U,S,A, 


	000
	001
	002
	003
	004
	005
	006
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	A-01
	A-02
	A-03
	A-04
	B-01
	B-02
	C-01
	C-02
	C-03
	C-04
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	E-09
	E-10
	E-11
	E-12
	E-13
	E-14
	E-15
	E-16
	E-17
	E-18
	E-19
	E-20
	E-21
	E-22
	E-23
	E-24
	E-25
	E-26
	E-27
	E-28
	E-29
	E-30
	E-31
	replyA
	replyB
	xBack

