GT40/GT42
user’s guide

EK-GT40-OP-002

GT40/GT42
user’s guide

digital equipment corporation - maynard. massachusetts

1st Edition, June 1973

2nd Printing, September 1973

3rd Printing (Rev), November 1974
4th Printing February 1975

Copyright © 1973, 1974, 1975 by Digital Equipment Corporation

The material in this manual is for informational
purposes and is subject to change without notice.

Digital Equipment Corporation assumes no respon-
sibility for any errors which may appear in this

manual.

Printed in U.S.A.

The following are trademarks of Digital Equipment
Corporation, Maynard, Massachusetts:

DEC PDP
FLIP CHIP FOCAL
DIGITAL COMPUTER LAB

UNIBUS

CONTENTS

Page
GT40/GT42 GRAPHIC DISPLAY TERMINAL
1.1 PURPOSE AND SCOPE et e e e e e e e e e e e e e e 1
1.2 GENERAL DESCRIPTION e e e e e e e e e e e e e e e e e e e 1
1.3 SYSTEM ORGANIZATION e e e e e e e e e e e e e e e e e e e 1
1.4 SYSTEM OPERATION e e e e e e e e e e e e e e e e 5
1.5 EQUIPMENT SPECIFICATIONS e e e e e e e e e e 5
2.1 GT40/GT42 START-UPPROCEDURES it e e e e i 9
2.1.1 GT40/GT42 Terminal Systems v v v v i e e e e e e e e e e e e 9
2.1.2 GT42 Paper Tape Systems v v i i e e e e e e e e e e e e e e e e e e 10
2.1.3 GTA0 Paper Tape SYSTEMS .« & v v v v e e e e e e e e e e e e e e e e e e e 10
2.1.4 GT42 Bootstraps For Other Devices v v v v v i i i e e et e e e e 15
2.1.6 GT42 Graphics TeSt . v v v v v e 16
2.2 GT40/42 FAILUREPROCEDURES i it et e e e e e e e 16
3.1 GT40/42 INTERFACES e e e e e e e e e e e e e e e e e 17
3.2 PARALLEL PORT e e e e e e e e e e e e e 17
3.2.1 Unibus Structure e e e e e e e e e e e e e 17
3.2.1.1 Bidirectional Lines e e e e e e e e e e e 19
3.2.1.2 Master/Slave Relationship i i i e e 19
3.2.1.3 Interlocked Communication e 19
3.2.2 Peripheral Device Organization and Control 20
3.2.3 Unibus Control Arbitration o i e e e e e e e e e e 20
3.2.3.1 Priority Transfer Requests 0 i i v i it s e e e e 20
3.2.3.2 Processor Interrupts L. e e e e e e e e e e e 21
3.2.3.3 Data Transfers 0 i i e e e e e e e e e e e e e 21
3.3 SERIAL PORT o e e e e e e e e 22
34 DL11 PROGRAMMING it e e e e e e e e e e e e e e s e e e e e 22
3.4.1 Receiver Status Register L L e e e e e e e e e 23
3.4.2 Receiver Buffer Register e e e e 26
343 Transmitter Status Register L e e e e e 27
3.4.4 Transmitter Buffer Register 27
34.5 =T o] o 28
3.4.6 Timing Considerations i i i i e e e e e e e e e e e 28
3.4.6.1 Receiver e e e e e e e e e e e e e 28
3.4.6.2 Transmitter o L e e e e e e e e e e e e e e e e e e e 28
3.4.6.3 Break Generation Logic e 28
3.4.7 “Program Notes e e e e e e e e e e 29
3.4.8 Program Example e e e e e e e e e 29
4.1 PROGRAMMING THE GT40/42 e e e e e e e e e e e e e e 29
4.2 PROGRAMMING CONCEPT e e e e e e e e e e e e 29
4.3 IMPORTANT REGISTERS (all addresses are inoctal) 31
4.4 PDP-11 INSTRUCTION SET e e e e e e e e e e e e e e 33
4.5 GT40/42 DISPLAY PROCESSOR INSTRUCTIONSET 33
4.6 PROGRAMMING EXAMPLES e e e e e e e e e e e e s 33
4.6.1 Initializing the Display Processor i i i i i i 33
4.6.2 Display File o o o e e e e e e e e e e e e e e 38
4.6.3 Application of the Stop Interrupt39

4.7

471
4.7.2
4.7.3
4.8

4.8.1
4.8.2
4.8.3
4.8.4
5.1

5.1.1
5.1.2

APPENDIX A
APPENDIX B
APPENDIX C
APPENDIX D

APPENDIX E

Figure No.

NN WN =

CONTENTS (Cont)

Page
PROGRAMMING RESTRICTIONS e e e e e e e e e e i e e e 40
Stop and Sync, Microcoding e e e e e e e e e e 40
Display File Changes o i i i i e e e e e e e e e e e e e e 41
Non-Flicker Display o 0 i e e e e e e e e e e e e e e e e e e 41
ADVANCED PROGRAMMING TECHNIQUES 42
Subroutines L L e e e e e e e e e e e e e e e e e e e 42
Light Pen Interaction o i i i e e e e e e e e e e 44
Special Characters o i e e e e e e e e e e e e e e e e e 44
Edge Violations o i e e e e e e e e e e e e e e e e e e e 44
COMMUNICATIONS BOOTSTRAP READ-ONLY MEMORY (ROM) 45
Bootstrap Loader e 45
Character Echoing e e e e e e e e 47
KEYBOARD LAYOUT
ADDRESS MAPPING
CHARACTER CODES
ROM BOOTSTRAP LOADER PROGRAM — GT40
SCROLLING ROM BOOTSTRAP LOADER PROGRAM — GT42
ILLUSTRATIONS
Title Page
GT40 Graphic Display Terminal i i e e e e e e e e e e e e e 2
GT42 Graphic Display Terminal e e e e 2
GT40/42 Graphic Display Terminal, Block Diagram 3
GT40, Rear VieWw o o o s e 3
GT42, Rear VIieW . . . o o o i i e e e e e e e e e e e e e e e e e e 4
LKA40 Keyboard (cover removed) i i i e e e e e e e e e e e e 11
Unibus Interface Block Diagram PR V4
Receiver Status Register (RCSR) — Bit Assignments oo v v v v v 23
Receiver Buffer Register (RBUF) — Bit Assignments:25
Transmitter Status Register (XCSR) — Bit Assignments 26
Transmitter Buffer Register (XBUF) — Bit Assignments 27
Serial Character Format i i e e e e e e e e e e e e e e e e 29
Program Example e 30
GT40/42Data Paths . . . v v v et e e e e e e e e e 30
Memory Layout Example L e e e e e e e e e e e e e e e e e 31
Instruction Word Functions o i i i e e e e e e e e e e 34
Data Word Formats e e e e e e e e e e e e 35
Non-Flicker Display as Determined by Vector Quantity and Magnitude 42

Subroutining Example L L L e e e e e e e e e e e e e 43

20
21
22
23
A-1
A-2
A-3
B-1
D-1
E-1

Table No.

O NP WN =

ILLUSTRATIONS (Cont)

Page

Encoding and Decodingof Serial Data i 46
Filler Character Transmission to the GT40/42 @ i i i i i it it i e e 46
Absolute Program, Octal Format @ i i ittt i i e 47
Absolute Program Conversion and Transmission v o v v v v v v v v i i e 48
Keyboard Key Configuration @ . i e e e e e A-2
128-Character Keyboard (Position 1) i i i i e e i e e e e e e e A-2
64-Character Keyboard (Position 2) i v v i it i A3
Address Mapping o e e e e e e e e e e e e e e e e e e e B-1
Communications Bootstrap Loader Flow Diagram D-8
Communications Bootstrap Loader Flow Diagramo E-31

TABLES

Title Page

Bootstrap Loader Instructions e e e e e e e e e e e e 11
First Bootstrap Loader Instruction Locations v v v v v v v i v i e 12
Switch Register Configuration for Loading i v it e 14
Unibus Signals e e e e 18
GT40/42 Priority . . v o e 21
BCO05-C-25 Cable Output Connections v v v v v v v e e e e e e et e e e e e s 22
Standard DL11 Register Assignments for the GT40/42 23
Recommended GT40/42 MNemMONIiCS . v . v v v v v v v e e e e e e e e e e e e e e e e 37

GT40/GT42
GRAPHIC DISPLAY
TERMINAL

1.1 PURPOSE AND SCOPE

This guide describes the operation of the GT40 and GT42 Graphic Display Terminals. The following information is
included: start-up procedures, equipment specifications, programming techniques, interfacing, and a description of
the ROM Bootstrap.

1.2 GENERAL DESCRIPTION

The GT40/42 Graphic Display Terminal (Figures 1 through 5) is a high performance graphic display system that
operates through a PDP-11/10 computer. The GT40/42 is designed for applications that require both a visual display
and a computation capability. The system can display either alphanumeric information, graphic data such as
drawings, diagrams, and patterns, or any combination of these. It is particularly valuable for displaying dynamic,
fast-changing data such as waveforms. The GT40/42 can function as a general purpose computer when not
performing as a display terminal. In this nondisplay mode of operation, it can operate as a stand-alone system or
initiate communications with a host computer as part of a computer network.

1.3 SYSTEM ORGANIZATION

The GT40/42 consists of eight basic components organized to form the system described above. These components
are:

L] Central Processor Unit (CPU)

L Display Processor Unit (DPU) in which is included the Bootstrap Read Only Memory (ROM)

L Communications Interface Module
® Memory
L Keyboard

° Cathode Ray Tube (CRT) Monitor
L Light Pen

° Power Supply

ON-OFF/BRIGHTNESS
SWITCH

POWER INDICATOR
LIGHT

KEYBOARD
ENABLE -DISABLE
(ON -OFF)

SWITCH

ADDRESS / DATA FUNCTION KEY SWITCH
SWITCHES (16) SWITCHES (6)

Figure 1 GT40 Graphic Display Terminal

6959-9

Figure 2 GT42 Graphic Display Terminal

I_GT40/42 GRAPHIC DISPLAY TERMINAL
375
LIGHT
VRI4 PEN
CRT
DISPLAY

ﬂ J\} PARALLEL O
i OPTIONAL |

UNIBUS > PERIPHERAL

15 93 n LS

H740 MMl DLN I

POWER | — = ASYNCHRONOUS
SUPPLY MENORY INTERFACE l

| gy SIeA) ey Lo
I KEYBOARD (PDP11/10) B ROM

I | R
SERIAL

PORT

(BCO5-C-25

CABLE)
NOTE:

Used when the GT40/42 is operated

as a terminal device

DATA DATA HOST
SET SET COMPUTER
MODEM MODEM (NOTE)

Figure 3 GT40/42 Graphic Display Terminal, Block Diagram

CIRCUIT BREAKER KEYBOARD SCOPE BCO5-C-25
RESET CABLE CABLE ggg&mlcmoms

Figure 4 GT40, Rear View

POWER CABLE SCOPE CABLE KEYBOARD
CABLE

7242-19

7242-5

Figure 5 GT42, Rear View

1.4 SYSTEM OPERATION

The GT40/42 is a stable system that requires only minimum adjustments because it employs a combination of digital
and analog techniques as opposed to analog circuits alone. The vector function operates efficiently, providing a good
compromise of speed and accuracy and assuring a precise digital vector calculation. The presentation and
accumulation of vectors means that every point of a vector is available in digital form.

During plotting, the end-point position is automatically retained, preventing accumulated errors or drift. Four
different vector types — solid, long dash, short dash, and dot dash — are possible through standard hardware.

The GT40/42 character generator has both upper and lower case capability with a large repertoire of displayable
characters. The display is the automatically refreshing type rather than the storage type so that a bright, continuous
image, with excellent contrast ratio, is provided during motion or while changes are being made in the elements of
the picture. A hardware blink feature is applicable to any characters or graphics drawn on the screen. A separate line
clock in the display permits the GT40/42 to be synchronized to the line frequency. Scope resolution is precise
enough to allow overprinting. :

The terminal includes logic for descender characters such as “p’’ and "“g,” positioning them correctly with respect to
the text line. In addition to the 96 ASCII printing characters, 31 special characters are included which are addressed
through the shift-in/shift-out control codes. These special characters include some Greek letters, architectural
symbols, and math symbols. Characters can be drawn in italics simply by selecting the feature through the status
instruction bit. Brightness and contrast are such that the scope can be viewed in a normally lighted room.

The instruction set consists of four control-state instructions and five data-state formats. The control instructions set
the mode of data interpretation, set the parameters of the displayed image, and allow branching of the instruction
flow. Data can be interpreted in any of five different formats, allowing tasks to be accomplished efficiently from
both a core usage and time standpoint. The graph/plot feature of the GT40/42 automatically plots the x or y values
according to preset distances as values for the opposite axis are recorded.

1.5 EQUIPMENT SPECIFICATIONS

The GT40/42 Graphic Display Terminal operating requirements and physical characteristics are listed by component
in the following paragraphs. Refer to Volume 2 of the G740 Graphic Display Terminal Maintenance Manual for the
specifications pertaining to the KD11-B Processor (PDP-11/10).

Display Processor

Instruction Word Length 16 bits
Raster Definition 10 bits
Viewable Area x = 1024 raster unit (17773)

y = 768 raster units (1377g)

Paper Size 12 bits

Hardware Blink Programmable
Hardware Intensity Levels 8

Line Frequency Synchronization Hardware programmable
Character Font 6 X 8 dot matrix
Characters/Line 73

Number of Lines 31

Character Set 96 ASCII — upper and lower case plus 31 specials (Greek
letters, math symbols, etc.) (Refer to the appendix)

Control Characters Carriage return
‘ Line feed
Backspace
Bell Tone Programmable
Italics . Hardware programmable
Line Type ' Solid
) Long dash
Short dash
Dot dash
Data formats Character (2 char/word)

Short Vector (1 word)
Long Vector (2 words)
Point (2 words)
Relative Point (1 word)

~ Graphplot x/y (1 word/pt)

DPU Instructions Set Graphic Modes
Jump
No operation (NOP)
Load Status Register A
Load Status Register B

DL 11 Communications Interface Operating Specifications

Data Input and Output Serial data, EIA and CCITT specifications compatible with
Bell 103 and 202 Data Sets

Data Format 1 start bit 5, 6, 7, 8 data bits 1, 1.5, or 2 stop bits, odd,
even or no parity.

Power Required 1.8A @ +5V
0.150A @ - 15V
0.050A @ +9 to +15V
Cable Length EIA All baud rates: 50 ft (15.24m)
Noise Margin EIA 5V
MM 11 Core Memory (refer also to Volume 2 of the G740 Graphic Display Terminal Maintenance Manual).

Type Magnetic core, read/write, coincident current, random access

Organization Capacity Planar, 3D, 3-wire

Access Time

DATI
DATIP
DATO, DATOB

Cycle Time

DATI

DATIP

DATO, DATOB
(PAUSE L)
DATO, DATOB
(PAUSE H)

LK40 Keyboard

Number of Keystations

Encoding Format

Number of Codes

Output Data Format

Baud Rate
Output Signal
Bell

Controls

CRT Monitor

Viewable Area
GT40
GT42

Brightness

Contrast Ratio

Phosphor Type

Pincushion

Spot Size

400 ns
400 ns
200 ns

900 ns
450 ns
900 ns

450 ns

58 (Major board)
8 (Minor board)

1968 USASCII

Either 96 or 128 codes (internal switch controllable,

8-bit ASCII

1 start bit

7 data bits

2 stop bits
Approximately 150 baud
20-mA current loop

Tone generator

Enable/Disable transmit

6.75 X 9in. (17.145 X 22.86 cm)
8.5 X 11in. (21.590 X 27.940 cm)

> 30 fL (measured using a shrinking raster technique)
>10:1
P39 doped with IR

+1% of full scale to best fit line

< 20 mils inside the usable screen area at a brightness of 30

fL [Full Width at Half Maximum (FWHM)]

Jitter

Repeatability
Gain Change

Temperature Range
Relative Humidity

Linearity

Deflection Method

Focus Method

High Voltage

Shielding

Overload Protection

Light Pen

Length

Diameter

Light Sensing
Connector

Signal Amplification

< %1/2 spot diameter

< *1 spot diameter (repeatability is the deviation from the
nominal location of any given spot)

From a fixed point on the screen, less than *0.3% gain
change for each £1% line voltage variation

0° to 50°C (operating)
10 to 90% (noncondensing)

Maximum deviation of any straight line will be < 1% of the
line length measured perpendicular to a best-fit straight line

Magnetic (70° diagonal deflection angle)

Electrostatic

10.5 kV dc nominal (voltage proportional to input line
voltage). Supply is self-contained and equipped with a
bleeder resister.

CRT is fully enclosed in a magnetic shield.

Unit is protected against fan failure or air blockage by
thermal cutouts. Power supply and amplifiers are current

limited. Phosphor protection is provided against fault
conditions.

5.0 in. (12.7 cm)

0.45 in. (tapered to 0.35 in.)
(1.143 cm) (0.889 cm)

Phototransistor
Phono Plug

G840 Light Pen Amplifier module in VR14 CRT Display

Power Supply

Refer to Volume 2 of the GT40 Graphic Display Ter)nina/ Maintenance Manual for a detailed list of power supply
specifications.

Environmental

Shock, Nonoperating DEC STD 102, 205 at 30 + 10 ms half-sine

Vibration, Nonoperating DEC STD 102, Vertical 1.89 G rms 10 — 300 Hz

Operating Ambient Temperature DEC STD 102, Class A, 60° — 95°F (16° — 35°C)

Relative Humidity
(noncondensing)

DEC STD 102, Class 2, 20 — 80%

Physical

Weight
GT40 GT42
CRT Monitor 80 Ib (36.24 kg) 85 Ib (38.55 kg)
Processor Cabinet 60 1b (27.18 kg) 2751b (124.74 kqg)
Keyboard 6.25 1b (2.83 kg) 6.251b (2.83 kg)
GT40 Size
Height Width Denth
CRT Monitor ' 12.5in. 19.75 in. 22.25 in.
(31.75 cm) (50.165 cm) (56.515 cm)
Processor Cabinet 5.25 in. 19.75 in. 23.25 in.
(13.335 cm) (50.165 cm) (59.055 cm)
Keyboard 3.0in. 15.625 in. 6.625 in.
(7.62 cm) (42.227 cm) (16.827 cm)
GT42 Size
Height Width Depth
CRT Monitor 15in. 21.5in. 27 in.
(38.10 cm) (54.61 cm) (68.58 cm)
Processor Cabinet 50 in. 21 in. 38 in.
(127.00cm) (63.34 cm) (96.52 cm)
Keyboard 3in. 16.625 in. 6.625 in.
(7.62cm) (42.227 cm) (16.827 cm)

2.1 GT40/GT42 START-UP PROCEDURES

The procedure used to start the GT40/GT42 Graphic Display Terminal is determined by the system configuration. A
GT40/GT42 that operates as a terminal in a larger system is started differently than a GT40/GT42 that functions as
a stand-alone device. Four procedures are presented in the following paragraphs: GT40/GT42 Terminal Systems,
GT42 Paper Tape Systems, GT40 Paper Tape Systems, and GT42 Bootstraps for Other Devices.

2.1.1 GT40/GT42 Terminal Systems
The following procedure is used to initiate the ROM Bootstrap from the PDP-11/10 console on the GT40/42.

1.

Determine that the GT40/42 power cord is connected to an appropriate electrical outlet.
Turn the console key switch (Figure 1) to the POWER position.

Turn the front panel ON-OFF/BRIGHTNESS switch fully counterclockwise and then 3/4 of the way in
the clockwise direction. The red power indicator light just below the switch should be on at this time.

Press the console ENABLE/HALT switch down to halt the computer.
Press the spring-loaded START switch twice; this resets the computer.

Place 1660005 in the Switch register (SR). This is the starting address for the Bootstrap program in the
Read-Only Memory (ROM) (Figure 20).

Press LOAD ADDRESS to load the address into the computer.
Return the ENABLE/HALT switch to the up-most position.

Press the START switch. The RUN indicator light should be on at this time.

10.

11.

Ensure that the LK40 keyboard ENABLE/DISABLE (On-Off) switch is in the ON position (Figure 6).

The GT40/42 is now ready to transmit data to and receive data from the host computer via the DL11
Asynchronous Interface module.
NOTE
A detailed description of the ROM Bootstrap and the loading
procedure from a host computer are contained in Paragraph
5.1.

2.1.2 GTA42 Paper Tape Systems
The following procedure is used to initiate the ROM Bootstrap from the PDP-11/10 console on the GT42,

1.

2.

10.

11.

Determine that the GT42 power cord is connected to an appropriate electrical outlet.
Turn the console key switch (Figure 2) to the POWER position.

Turn the front panel ON-OFF/BRIGHTNESS switch fully counterclockwise and then 3/4 of the way in
the clockwise direction. The red power indicator light just below the switch should be on at this time.

Press the console ENABLE/HALT switch down to halt the computer.
Press the spring-loaded START switch twice; this resets the computer.

Place 1674005 in the Switch register (SR). This is the starting address for the paper tape Bootstrap
program in the Read Only Memory (ROM).

Press LOAD ADDRESS to load the address into the computer.
Return the ENABLE/HALT switch to the up-most position.

Place the Absolute Loader in the specified reader with the special bootstrap leader code over the reader
sensors (under the reader station).

Press START. The Absolute Loader tape will pass through the reader as data is being loaded into core.
The tape stops after the last frame of data has been read into core. The Absolute Loader is now in core.

If the Absolute Loader tape does not read in immediately after depressing the START switch, perform
steps 26 and 27 of Paragraph 2.1.3.

2.1.3 GTA40 Paper Tape Systems

1.

Determine that the GT40 power cord is connected to an appropriate electrical outlet.
Turn the console key switch (Figure 1) to the POWER position.

Turn the front panel ON-OFF/BRIGHTNESS switch fully counterclockwise and then 3/4 of the way in
the clockwise direction. The red power indicator light just below the switch should be on at this time.

Press the console ENABLE/HALT switch down to halt the computer.
Press the spring-loaded START switch twice; this resets the computer.

The Bootstrap Loader will now be loaded (toggled) into the highest core memory bank. The locations
and corresponding instructions of the Bootstrap Loader are listed in Table 1.

10

ENABLE/DISABLE 96/128 CHARACTER KEYBOARD
(ON-OFF) SET SELECT CABLE

SWITCH SWITGH
Figure 6 LK40 Keyboard (cover removed)

The Bootstrap Loader program instructs the computer to accept and store in core memory data that is punched on
paper tape in bootstrap format. The Bootstrap Loader is used to load very short paper tape programs of 162g 16-bit
words or less (primarily the Absolute Loader and Memory Dump programs). Programs longer than this must be
assembled into absolute binary format using the PAL-11A Assembler and loaded into memory using the Absolute
Loader (step 19).

Table 1
Bootstrap Loader Instructions

Location Instruction
xx7744 016701
xx7746 000026
xx7750 012702
xx7752 000352
xx7754 005211
xx7756 105711
xx7760 100376
xx7762 116162
xx7764 000002
xx7766 xx7400
xx7770 005267
xx7772 177756
xx7774 000765
xx7776 YYYYYY

In Table 1, xx represents the highest available memory bank. For example, the first location of the loader would be
0377444 if the system contained an 8K memory. Table 2 lists the locations for the first Bootstrap Loader
instruction as determined by the memory size. All other locations, for a given memory, are prefixed with the same
two digits.

1

Table 2
First Bootstrap Loader
Instruction Locations

Location Memory Bank Memory Size
017744 0 4K
037744 1 8K
057744 2 12K
077744 3 16K
117744 4 20K
137744 5 24K
157744 6 28K

The contents of location xx7776 (YYYYYY in the Instruction column of Table 1) should contain the device status
register address of the paper tape reader to be used when loading the bootstrap formatted tapes. Either paper tape
reader may be used; their respective addresses are:

10.

11.

12.

13.

14.

Teletype Paper Tape Reader — 177560
High Speed Paper Tape Reader — 177550

Set xx7744 in the Switch register (SR) and press the LOAD ADDRess switch (xx7744 will be displayed
in the address register). '

Set the first instruction, 016701, in the SR and lift the DEPosit switch (016701 will be displayed in the
data register).

NOTE
When DEPositing data into consecutive words, the DEPosit
automatically increments the address register to the next
word.

Set the next instruction, 000026, in the SR and lift DEPosit (000026 will be displayed in the data
register).

Set the next instruction in the SR and press the DEPosit switch. Céntinue depositing subsequent
instructions until 000765 is stored in location xx7774.

Deposit the desired device status register address in location xx7776, the last location of the Bootstrap
Loader.

Good programming procedure requires the verification of data that has been stored.
Set xx7744 in the SR and press the LOAD ADDRess switch.
Press the EXAMine switch. The octal instruction in location xx7744 will be displayed so that it can be

compared with the correct instruction: 016701. If the instruction is correct, proceed to step 15,
otherwise go to step 17.

12

15.

16.

17.

18.

19.

Press the EXAMine switch. When the switch is held depressed, the ADDRESS/DATA indicators display
the memory address. On releasing the switch, the instruction at that address is displayed. Compare the
indicator display with the required instruction (Table 1). (The EXAMine switch automatically
increments the address register.)

Repeat step 15 until all instructions have been verified or go to step 17 whenever the correct instruction
is not displayed.

NOTE
Whenever an incorrect instruction is displayed, it can be
corrected by performing steps 17 and 18.

When an incorrect instruction is displayed in the ADDRESS/DATA indicators, set the correct
instruction in the SR and lift the DEPosit switch.

Press and release the EXAMine switch to verify that the correct instruction has been deposited. Continue
the checking (step 15) until all the instructions have been verified.

The Absolute Loader program will be loaded into core memory at this time. The Absolute Loader is a
system program which, after being loaded into memory, allows the operator to load, into any core
memory bank, data punched on paper tape'in absolute binary format. It is used primarily to load the
paper tape system software (excluding certain subprograms) and the user’s object programs assembled
with PAL-11A. The major features of the Absolute Loader include:

° Testing of the checksum on the input tape to ensure complete, accurate loads.

° Starting the loaded program upon completion of loading without additional user action, as
specified by the .END in the program just loaded.

o Specifying the load address of position independent programs at load time rather than at assembly
time, by using the desired loader switch register option.

With the Bootstrap Loader in core memory, the Absolute Loader is loaded into memory starting anywhere between
locations xx7500 and xx7742, i.e., 162;, words. The paper tape input device used is specified in location xx7776
(step 11). The Absolute Loader tape begins with about two feet of special bootstrap leader code (ASClI code 351),
not blank leader tape.

20.

21.

22,

23,

24,

25.

Set the ENABLE/HALT switch to HALT.

Place the Absolute Loader in the specified reader with the special bootstrap leader code over the reader
sensors (under the reader station).

Set the SR to xx7744 (the starting address of the Bootstrap Loader) and press LOAD ADDRess.
Set the ENABLE/HALT switch to ENABLE.
Press START. The Absolute Loader tape will pass through the reader as data is being loaded into core.

The tape stops after the last frame of data has been read into core. The Absolute Loader is now in core.

13

26. If the Absolute Loader tape does not read in immediately after depressing the START switch (step 24),
itis due to one of the following causes:

L Bootstrap Loader not correctly loaded.
° The wrong input device was used.
° Code 3515 was not directly over the reader sensors.

L The Absolute Loader tape was not properly positioned in the reader.

27. Any paper tape punched in absolute binary format is referred to as an absolute tape, and is loaded into
memory using the Absolute Loader. When using the Absolute Loader, there are two methods of loading
available: normal and relocated.

A normal load occurs when the data is loaded and placed in core according to the load addresses on the
object tape. It is specified by setting bit 0 of the Switch register to zero immediately before starting the
load.

There are two types of relocated loads.

a. Loading to continue from where the loader left off after the previous load. This is used, for example,
when the object program being loaded is contained on more than one tape. It is specified by setting the
Switch register to 000001 immediately before starting the load.

b. Loading into a specific area of core. This is normally used when loading position independent programs.
A position independent program is one that can be loaded and run anywhere in available core. The
program is written using the position independent instruction format. This type of load is specified by
setting the Switch register to the load address and adding 1 to it, i.e., setting bit 0 to 1.

Optional Switch register settings for the three types of loads are listed in Table 3.

Table 3
Switch Register Configuration for Loading

Switch Register

Type of Load Bits 1-14 Bit0
Normal (ignored) 0
Relocated — continue 0 1

loading where left off

Relocated — load in nnnnn 1
specified area of core (specified
address)

The absolute tape is now loaded using either of the paper tape readers. The desired reader is specified in the last

word of available core memory (xx7776), the input device status word, as explained in step 6. The input device . -

status word can be changed at any time prior to loading the absolute tape.

14

28. Set the ENABLE/HALT switch to HALT.

To use an input device different from that used when loading the Absolute Loader, change the address
of the device status word (in location xx7776) to reflect the desired device, i.e., 177560 for the
Teletype ™~ reader or 177550 for the high speed reader.

29. Set the SR to xx7500 and press LOAD ADDR.

30. Set the SR to reflect the desired type of Ioad{

31. Place the absolute tape in the proper reader with blank leader tape directly over the reader sensors.
32, Set ENABLE/HALf to ENABLE.

33. Press START. The absolute tape will begin passing through the reader station as data is being loaded into
core.

34. The Absolute Loader was not correctly stored in memory if the absolute tape does not begin passing
through the reader station. If this occurs, reload the loader (steps 20—25) and then the absolute tape
(starting at step 28).

If the absolute tape halts in the middle of the tape, a checksum error occurred in the last block of data
read. Normally, the absolute tape will stop passing through the reader station when it encounters the
transfer address as generated by the .END statement, denoting the end of a program. If the system halts-
after loading, check that the low byte of the data register is zero. If so, the tape is correctly loaded. I f
not zero, a checksum error has occurred in the block of data just loaded, indicating that some data was
not correctly loaded. Thus, the tape should be reloaded starting at step 1.

When loading a continuous relocated load, subsequent blocks of data are loaded by placing the next tape
in the appropriate reader and pressing the CONTinue switch.

35. The Absolute Loader may be restarted at any time by starting at step 1.

2.1.4 GT42 Bootstraps For Other Devices

The GT42 contains bootstrap programs for the following devices:

Device Starting Address (Octal)
TA11 Cassette 167500
RF11 Fixed Head Disk 167600
RC11 Fixed Head Disk 167720
RK11 Disk Cartridge 167610
RP11 Disk Pack 167654
TC11 DECtape 167620
TM11 Magnetic Tape 167636

The following procedure is used to initiate one of the above devices from the PDP-11/10 console of the GT42.
1. Determine that the GT42 power cord is connected to an appropriate electrical outlet.
2. Turn the console key switch to the POWER position.

3. Press the console ENABLE/HALT switch down to halt the computer.

®Teletype is a registered trademark of Teletype Corporation.

15

4, Press the spring-loaded START switch twice; this resets the computer.

5. Place the address of the device to be started into the Switch register. The device starting addresses are
listed above.

6. Press the LOAD ADDRESS switch to load the address into the computer.
7. Return the ENABLE/HALT switch to the up-most position.
8. Press the START switch.

2.1.5 GT42 Graphics Test

The GT42 contains a short program which tests the fundamental graphic capabilities of the display processor. The
program, which starts at octal address 167204, displays several lines and points on the CRT.

2.2 GT40/42 FAILURE PROCEDURES

The following procedures should be followed in the event the GT40/42 fails to operate properly. If, after performing
these checks, equipment operation is still unsatisfactory, the user should notify the DEC Field Service Office of the
problem.

If the GT40/42 is completely inoperative:

1. Check the circuit breaker on the rear panel of the GT40 (Figure 4) or in the cabinet of the GT42. Press
the button to reset the circuit breaker.

2. Check the power cord to the wall receptacle. It should be properly seated.
3. Determine that the required power (115 or 230 Vac) is present at the wall receptacle.
If the display scope fails to turn on:
1. Check the keyboard cable connector on the GT40/42 rear panel for broper seating.
2. Check the power plugs on the rear panel and the power control box for proper seating.
3. Determine that the front panel ON-OFF/BRIGHTNESS switch is in the ON position (clockwise).
4, Check the following fuses on the rear panel and the power control box:

° 5A SB (115 V system)
(or 3A SB for 230 V systems)

L 10A (115 V systems)
(or BA for 230 V systems)

If the keyboard is incapable of transmitting data:
1. Check the ON/OFF switch on the rear of the keyboard (Figure 6). Place it in the ON position.

2. Check the cable connectors on the GT40/42 rear panel_(particularly the keyboard cable) for proper
seating.

16

3.1 GT40/42 INTERFACES

Transferral of information between GT40/42 components and devices external to the basic system requires a means
for connecting or interfacing an extended system. The interface can be considered to be the physical boundary
between the GT40/42 and attached units; it provides the communication link between the display terminal and
associated devices such as a host computer or additional memory units.

3.2 PARALLEL PORT

The GT40/42 possesses two interfaces. One, called the parallel port, uses conventional Unibus signals and
connections to transfer data in baraHeI format. The other interface is employed in the transfer of asynchronous data,
in a serial format, over a longer communications line. The two interfaces and their relation to the GT40/42 are
shown in Figure 7.

The parallel port is used typically to interface local high speed peripheral devices such as additional core memory,
disk storage units, etc. The parallel port is basically an extension of the PDP-11 family Unibus. '

BUS
ADDRESS REG. UNIBUS
A+C+D o
v .
PROCESSOR _/] F A ﬂ (}
BUS TIMING
D A D
+
> A c
PROCESSOR +
DATA” PATHS c BUFFER T ADDRESS
T REGISTER SELECTOR DEVICE
S ADDRESS INTERRUPT | REGISTER
/]_ SELECTOR CONTROL
BUS PRIORITY \\J—" DEVICE
CONTROL MEMORY LOGIC
G
PROCESSOR MEMORY DEVICE
KEY A-ADDRESS INFORMATION

C-CONTROL + TIMING SIGNALS
D-DATA INFORMATION
T- CONTROL TRANSFER SIGNALS .
G-BUS GRANT SIGNALS 11-0017

Figure 7 Unibus Interface Block Diagram

3.2.1 Unibus Structure

The Unibus is a single common path that connects the processor, memory, and all peripherals. Addresses, data, and
control information are transmitted along the 56 lines of the bus. All 56 signals and their functions are listed in
Table 4.

Every device on the Unibus employs the same form of communication; thus, the processor uses the same set of

signals to communicate with memory and with peripheral devices. Peripheral devices also communicate with the
processor, memory, or other peripheral devices via the same set of signals.

17

All instructions applied to data in memory can be applied equally well to data in peripheral device registers, enabling
peripheral device registers to be manipulated by the processor with the same flexibility as memory. This feature is
especially powerful, considering the capability of PDP-11 instructions to process data in any memory location as

though it were an accumulator.

Function

Table 4
Unibus Signals
Name Mnemonic Source Destination Timing
Data Transfer Signals
(For transfer of data to or from master)
Address A(17:00) Master All MSYN
Data D(15:00) Master Slave MSYN (DATO,
DATOB)
Slave Master SSYN (DATI,
DATIP)
Control C(1:0) Master Slave MSYN
Master MSYN Master Slave Beginning of
Sync transfer
Slave SSYN Slave Master Data accepted
Sync (DATO, DATOB)
Data Available
(DATI, DATIP)
Parity Bit Low PA Master Slave Same as Data
Parity Bit High PB Master Slave Same as Data

Priority Transfer Signals
(For transfer of bus control to a priority-selected master)

Non-Processor NPR Any Processor Asynchronous
Request

Bus Request BR(7:4) Any Processor Asynchronous

Non-Processor NPG Processor| Next master In parallel with
Grant data transfer

Bus Grant BG(7:4) Processor| Next master After instruction

Selection ‘ SACK Next Processor Response to NPG
Acknowledge Master or BG

Bus Busy BBSY Master All except during

transfer of control

Selects slave device -

Selects transfer operation

Initiates operation and
gates A, C, and D signals

Response to MSYN

Transmits parity bit, low
byte

Transmits parity bit, high
byte

Highest priority bus request

Requests bus mastership

Transfers bus control

Transfers bus control

Acknowledges grant &
inhibits further grants

Asserts bus mastership

18

Table 4 (Cont)
Unibus Signals

Name Mnemonic Source Destination Timing Function
Interrupt INTR Master Processor After asserting BBSY | Transfers bus control to
(not after NPR), handling routine in

device may perform processor
several transfers
before asserting

INTR.
Miscellaneous Signals
Initialize INIT Processor | All Asynchronous Clear and reset signal
AC Low ACLO Power All Asynchronous Indicates impending power
failure
DC Low DC LO Indicates dc voltages out of

tolerance, and system
operation must be sus-
pended.

NOTE
Signals on the Unibus are asserted when low (except for the uni-
directional bus grant lines).

3.2.1.1 Bidirectional Lines — Most Unibus lines are bidirectional, allowing input lines to also be driven as output
lines. This is significant in that a peripheral device register can be either read or used for transfer operations. Thus,
the same register can be used for both input and output functions.

3.2.1.2 Master/Slave Relationship — Communication between two devices on the bus is based on a master/slave
relationship. During any bus operation, one device, referred to as the bus master, has control of the bus when
communicating with another device, the slave. A typical example of this relationship is the processor (master)
transferring data to memory (slave). Master/slave relationships are dynamic. The processor, for example, passes bus
control to a disk; the disk, as master, then communicates with a slave memory.

The Unibus is used by the processor and all 1/0 devices; thus, a priority structure determines which device gains
control of the bus. Consequently, every device on the Unibus capable of becoming bus master has an assigned
priority. When two devices capable of becoming bus master have identical priority values and simultaneously request
use of the bus, the device that is electrically closest to the bus receives control.

3.2.1.3 Interlocked Communication — Communication on the Unibus is interlocked between devices. Each control
signal issued by the master device must be acknowledged by a response from the slave to complete the transfer.
Consequently, communication is independent of the physical bus length and the response time of the master and
slave devices. The maximum transfer rate on the Unibus, with optimum device design, is one 16-bit word every 400
ns or 2.5 million 16-bit words per second.

19

3.2.2 Peripheral Device Organization and Control

Peripheral device registers are assigned addresses similar to memory; thus, all PDP-11 instructions that address
memory locations can become 1/0 instructions, enabling data registers in peripheral devices to take advantage of all
the arithmetic power of the processor.

The PDP-11 controls devices differently than most computer systems. Control functions are assigned to a register
address, and then the individual bits within that register can cause control operations to occur. For example, the
command to make the paper tape reader read a frame of tape is provided by setting a bit (the reader enable bit) in
the control register of the device. Instructions such as MOV and BIS may be used for this purpose. Status conditions
are also handled by the assignment of bits within this register, and the status is checked with TST, BIT, and CMP
instructions.

3.2.3 Unibus Control Arbitration

The Unibus is capable of performing two basic and parallel tasks in order to allow transfers by multiple peripherals
at maximum speed. The first is the actual transfer of data between the current bus master and its addressed slave.
The second is the selection of the next bus master, the peripheral which will be allowed to assert control as soon as
the bus becomes free, It is important to note that the granting of future mastership is in no way influenced by either
the current master or its method of obtaining the bus. It is this fact which allows these functions to be performed in
parallel and allows transfers on the bus at a maximum rate.

3.2.3.1 Priority Transfer Requests — To gain mastership of the Unibus, a peripheral must first make a request to
the processor for the bus and then wait for its selection. The processor contains the logic necessary to arbitrate these
requests because normally there are several requests pending at any given time.

There are two classes of requests: bus requests and non-processor requests. A bus request (BR) is simply a request
by a peripheral to obtain control of the Unibus with the understanding by the processor that the peripheral may end
its use of the bus with a processor interrupt. An interrupt is a command to the processor to begin executing a new
routine pointed to by a location selected by a device. A non-processor request (NPR) is similarly a request for the
bus, but with the exception that it may not interrupt the processor. Since the granting of an NPR cannot affect the
execution of the processor, it can occur during or between instructions. BRs, however, by possibly causing execution
to be diverted to a totally new routine, can only be granted between instructions. In this way, NPRs are assigned
priority over any BR.

Between bus requests, there are four levels of priority created by four separate request lines. They are assigned
priority levels 4 through 7; BR4 is the lowest and BR7 is the highest. These levels are associated with the program
- controlled priority level of the processor, controlled by bits 7, 6, and 5 of the processor status register. Only BRs on
a priority level higher than the level of the processor are eligible for receiving a bus grant. Thus, during high priority
program tasks, all or selected Unibus requests (hence interrupts) can be inhibited by raising the level of the processor
priority.

Another form of priority arbitration occurs through the system configuration. When the processor grants a request,
the grant travels along the bus until it reaches the first requesting device which terminates the grant. Therefore, along
the same grant line, the device electrically nearest the processor has the highest priority. Also note that in the
KD11-B, the internal line clock is logically the last device on BR6, and the keyboard or Teletype interface is
logically the last device on BR4.

The GT40/42 relationship to this priority scheme is indicated in Table 5.

After a requesting device receives a bus grant it asserts its selection as next bus master until the bus is free, thus
inhibiting other requests from being granted. When the bus becomes free, the selected device asserts control of the
bus and relinquishes its selection as next bus master so that the priority arbitration among pending requests may
continue. ‘

20

Table 5

GT40/42 Priority
Relative Physical
GT40/42 Component Priority Level Position from the CPU

DL11 Asynchronous BR5 2

Interface

Display Processor BR4 1

Unibus Output Slot — 3

(Parallel Port)

NOTE: The MM11 memory is not shown as an active device because it
always functions as a slave, never asserting a bus request itself.

3.2.3.2 Processor Interrupts — After gaining control of the bus through a BR, a device can perform one or more
transfers on the bus and/or request a processor interrupt. This is typically requested after a device has completed a
given task, e.g., typing a character or completing a block data transfer through NPRs. If a peripheral wishes to
interrupt the processor, it must assert the interrupt after gaining control of the bus but before relinquishing its
selection as next bus master. Thus the processor knows that it may not fetch the next instruction, but must wait for
the interrupt to be completed. Along with asserting the interrupt, the device asserts the unique memory address,
known as the interrupt vector address, containing the starting address of the device service routine. Address vector
+2 contains the new processor status word (PSW) to be used by the processor when beginning the service routine.
After recognizing the interrupt, the processor reads the vector address and saves it in an internal register. It then
pushes the current PSW and program counter onto the stack and loads the new program counter (PC) and PSW from
the vector address specified. The service routine is then executed.

NOTE
These operations are performed automatically and no device
polling is required to determine which routine to execute.

The device service routine can cause the processor to resume the interrupted process by executing the return from
interrupt (RTI) instruction which pops the top two words from the processor stack and transfers them back to the
PC and PS registers.

3.2.3.3 Data Transfers — After asserting control of the Unibus, the device does not release control until it has
completed either one or more data transfers or an interrupt. Typically, only one transfer is completed each time the
device gains control of the bus because few single devices can give or receive information at the maximum Unibus
rate. Holding the bus for multiple transfers inhibits other devices from using the bus.

A transfer is initiated by the master device asserting a slave address and control signals on the bus and a master or
address validity signal. The appropriate slave recognizes the valid address, reads or writes the data, and responds with
a transfer complete signal. The master recognizes the transfer complete, sends or accepts data, and drops the address
validating signal. It can then assert a new address and repeat the process or release control of the bus completely.

The importance of this type of structure is that it enables direct device-to-device transfers without any interaction

from the central processor. An NPR device, such as the high speed CRT display, can gain fast access to the bus and
transfer data at high rates while refreshing itself from memory without slowing down the processor.

21

For a more detailed description of the Unibus and its function, refer to the G740 Graphic Display Terminal
Maintenance Manual, VVolume 2 or to the PDP-11 Peripherals Handbook.

3.3 SERIAL PORT

The serial port is the primary means of interfacing the GT40/42 with a host or remote computer. Access to this port
is through the DL11 Asynchronous Interface module and the 25-ft BC05-C-25 cable which terminates in a 25-pin,
RS232-defined connector at a data set modem (Figure 3 and Table 6).

Table 6
BCO05-C-25 Cable Output Connections
CINCH Connector Signal
Pin No. (to modem)

1 Ground

2 Transmitted Data

3 Received Data

4 Request to Send

5 Clear to Send

6 Data Set Ready

7 Ground

8 Carrier

9 + Power
10 - Power
11 202 Secondary Transmit
12 202 Secondary Receive
13 Secondary Clear to Send
14 EIA Secondary Transmit
15 Serial Clock Transmit
16 EIA Secondary Receive
17 Serial Clock Receive
18 Unassigned
19 Secondary Request to Send
20 Data Terminal Ready
21 Signal Quality
22 Ring
23 Signal Rate
24 External Clock
25 Force Busy

3.4 DL11 PROGRAMMING

All software control of the DL11 Asynchronous Line Interface is performed by means of four device registers. These
registers have been assigned bus addresses and can be read or loaded (with the exceptions noted) using any PDP-11
instruction referring to their addresses. Address assignments can be changed by altering jumpers on the address
selection logic to correspond to any address within the range of 174000 to 177777. However, register addresses for
the DL11 in the GT40/42 fall within the range of 175610 to 175616.

22

The four device registers and associated DL 11 addresses are listed in Table 7.

Table 7
Standard DL 11 Register Assignments for the GT40/42
Register Mnemonic Address
Receiver Status Register RCSR 175610
Receiver Buffer Register RBUF 175612
Transmitter Status Register XCSR 175614
Transmitter Buffer Register XBUF 175616

Figures 8 through 11 show the bit assignments for the four device registers. The unused and load-only bits are always
read as Os. Loading unused or read-only bits has no effect on the bit position. The mnemonic INIT refers to the
initialization signal issued by the processor. Initialization is caused by one of the following: issuing a programmed
RESET instruction; depressing the START switch on the processor console; or the occurrence of a power-up or
power-down condition of the processor power supply.

In the fbllowing descriptions, transmitter refers to those registers and bits involved in accepting a parallel character
from the Unibus for serial transmission to the external device; receiver refers to those registers and bits involved with
receiving serial information from the external device for parallel transfer to the Unibus.

15 14 13 12 " 10 7 6 5 3 2 1]
CLR RCVR | DSET REQ |DATA

oo [767 Toame [revnoee o[IRET ase [18 [oo
SEND ENB |ENB SEND |RDY *

RCSR =175610 * Not used for data operations.

Figure 8 Receiver Status Register (RCSR) — Bit Assignments

3.4.1 Receiver Status Register

Bit Name Meaning and Operation
15 DATASET INT This bit initiates an interrupt sequence provided the
' (Dataset Interrupt) DATASET INT ENB bit (05) is also set.

This bit is set whenever CAR DET, RCVR ACT, or SEC
REC changes state, i.e., on a 0 to 1 or 1 to O transition of
any one of these bits. It is also set when RING changes
from O to 1.

23

14

13

12

11

10

07

RING

l2sec

4 sec

Cleared by INIT or by reading the RCSR. Because reading
the register clears the bit, it is, in effect, a “read-once” bit.

When set, indicates that a RINGING signal is being received

from the dataset. Note that the RINGING signal is not a
level but an EIA control signal with the cycle time as shown

below:
2 sec 4 sec 2 sec |

CLR TOSEND
(Clear to Send)

CAR DET
(Carrier Detect)

RCVR ACT
(Receiver Active)

SEC REC
(Secondary Receive
or Supervisory
Received Data)

Unused

RCVR DONE
(Receiver Done)

Read-only bit

The state of this bit is dependent on the state of the
CLEAR TO SEND signal from the dataset. When set, this
bit indicates an ON condition; when clear, it indicates an
OFF condition.

Read-only bit.

This bit is set when the data carrier is received. When clear,
it indicates either the end of the current transmission
activity or an error condition.

Read-only bit.

When set, this bit indicates that the DL 11 interface receiver
is active. The bit is set at the center of the START bit
which is the beginning of the input serial data from the
device and is cleared by the leading edge of RCVR DONE.

Read-only bit; cleared by INIT or by RCVR DONE (bit
07).

This bit provides a receive capability for the reverse channel
of a remote station. A space (+6V) is read as a 1. (A
transmit capability is provided by bit 03.)

Read-only bit; cleared by INIT.

Not applicable.

This bit is set when an entire character has been received
and is ready for transfer to the Unibus. When set, initiates
an interrupt sequence provided RCVR INT ENB (bit 06) is
also set.

Cleared whenever the receiver buffer (RBUF) is addressed
or whenever RDR ENB (bit 00) is set. Also cleared by
INIT,

Read-only bit.

24

Bit Name Meaning and Operation
06 RCVR INT ENB When set, allows an interrupt sequence to start when RCVR
(Receiver DONE (bit 07) sets.
Interrupt Enable)
Read/write bit; cleared by INIT,
05 DATASET INT When set, allows an interrupt sequence to start when
ENB (Dataset DATASET INT (bit 15) sets.
Interrupt Enable)
Read/write bit; cleared by INIT,
04 Unused Not applicable.
03 SEC XMIT This bit provides a transmit capability for a reverse channel
(Secondary Transmit of a remote station. When set, transmits a space (+6V). (A
or Supervisory receive capability is provided by bit 10.)
Transmitted Data)
Read/write bit; cleared by INIT.
02 REQ TO SEND A control lead to the dataset which is required to
(Request to Send) transmission. A jumper ties this bit to REQ TO SEND or
~ FORCE BUSY in the dataset.
Read/write bit; cleared by INIT.
01 DTR (Data A control lead for the dataset communication channel.
Terminal Ready) When set, permits connection to the channel. When clear,
disconnects the interface from the channel.
Read/write bit; must be cleared by the program, is not
cleared by INIT.
NOTE
The state of this bit is not defined after power-up.
00 RDR ENB When set, this bit advances the paper-tape reader in ASR
(Reader Enable) Teletype units and clears the RCVR DONE bit (bit 07).
This bit is cleared at the middle of a START bit which'is
the beginning of the serial input from an external device.
Also cleared by INIT,
Write-only bit.
Not used in dataset configurations.-
15 14 13 12 7 0
ERR 3{,@’* EF;‘;M E‘;‘; RECEIVED DATA

RBVF = 175612

Figure 9 Receiver Buffer Register (RBUF) — Bit Assignments

25

3.4.2 Receiver Buffer Register

Bit

15

14

13

12

11-08

07-00

Name

ERROR (Error)

Meaning and Operation

Used to indicate that an error condition is present. This bit
is the logical OR of OR ERR, FR ERR, and P ERR (bits
14, 13, and 12, respectively). Whenever one of these bits is
set, it causes ERROR to set. This bit is not connected to
the interrupt logic.

Read-only bit; cleared by removing the error-producing
condition.

NOTE

Error indications remain present until the next character is
received, at which time the error bits are updated. INIT does
not necessarily clear the error bits.

OR ERR
(Overrun Error)

FR ERR
(Framing Error)

P ERR
(Parity Error)

Unused

RECEIVED
DATA BITS

When set, indicates that reading of the previously received
character was not completed (RCVR DONE not cleared)
prior to receiving a new character.

Read-only bit; cleared in the same manner as ERROR (bit
15).

When set, indicétes that the character that was read had no
valid STOP bit.

Read-only bit; cleared in the same manner as ERROR (bit
15).

When set, indicates that the parity received does not agree
with the expected parity. This bit is always 0 if no parity is
selected.

Read-only bit; cleared in the same manner as ERROR (bit
15).

Not applicable.

Holds the character just read. If less thah eight bits are
selected, then the buffer is right-justified into the least
significant bit positions. In this case, the higher unused bit

or bits read as Os.

Read-only bits; not cleared by INIT.

7 6 2 o
XMIT

T INT MAINT, BREAK
ENB

XCSR = 175614

Figure 10 Transmitter Status Register (XCSR) — Bit Assignments

26

3.4.3 Transmitter Status Register

Bit Name Meaning and Operation
15—-08 Unused Not applicable.
07 XMIT RDY This bit is set when the transmitter buffer (XBUF) can
(Transmitter accept another character. When set, it initiates an interrupt
Ready) sequence provided XMIT INT ENB (bit 06) is also set.
Read-only bit. Set by INIT. Cleared by loading the
transmitter buffer,
06 XMIT INT ENB When set, allows an interrupt sequence to start when XMIT
(Transmitter RDY (bit 07) sets.
Interrupt Enable)
05-03 Unused Not applicable.
02 MAINT Used for maintenance function. When set, disables the serial
(Maintenance) line input to the receiver and connects the transmitter
output to the receiver input which disconnects the external
device input. It also forces the receiver to run at transmitter
speed.
Read/write bit; cleared by INIT.
01 Unused Not applicable.
00 BREAK When set, transmits a continuous space to the external
device.
Read/write bit; cleared by INIT.
7 0
0 7 TRANSMITTED DATA

XMUF = 175616

CP- 0408

Figure 11 Transmitter Buffer Register (XBUF) — Bit Assignments

3.4.4 Transmitter Buffer Register

Bit

15—-08

07-00

Name

Unused

TRANSMITTER
DATA BUFFER

Meaning and Operation
Not applicable.
Holds the character to be transferred to the external device.
If less than eight bits are used, the character must be loaded

so that it is right-justified into the least significant bits.

Write-only bits.

27

3.4.5 Interrupts

The DL11 interface uses BR interrupts to gain control of the bus to perform a vectored interrupt, thereby causing a
branch to a handling routine. The DL 11 has two interrupt channels: one for the receiver section and one for the
transmitter section. These two channels operate independently; however, if simultaneous interrupt requests occur,
the receiver has priority. The receiver section is capable of handling multiple source interrupts.

A transmitter interrupt can occur only if the interrupt enable bit (XMIT INT ENB) in the transmitter status register
is set. With XMIT INT ENB set, setting the transmitter ready (XMIT RDY) bit initiates an interrupt request. When
XMIT RDY is set, it indicates that the transmitter buffer is empty and ready to accept another character from the
bus for transfer to the external device.

A receiver data interrupt can occur only if the interrupt enable (RCVR INT ENB) bit in the receiver status register is
set. With RCVR INT ENB set, setting the receiver done (RCVR DONE) bit initiates an interrupt request. When
RCVR DONE is set, it indicates that an entire character has been received and is ready for transfer to the bus. The
additional interrupt request sources for the DL 11 option are discussed in the following paragraphs.

The receiver portion of the DL11 in the GT40/42 dataset configuration can service multiple source interrupts. One
of the receiver interrupt circuits is activated by RCVR INT ENB and RCVR DONE. The additional interrupt circuit
can cause an interrupt only if the dataset interrupt enable bit (bit 05, DATASET INT ENB) in the receiver status
register is set. With DATASET INT ENB set, setting the DATASET INT bit initiates an interrupt request. The
DATASET INT bit can be set by one of four other bits: CARDET, CLR TO SEND, SEC REC, or RING.

When servicing an interrupt for one condition, if a second interrupt condition develops, a unique second interrupt, as
well as all subsequent interrupts, may not occur. To prevent this, either all possible interrupt conditions should be
checked after servicing one condition or both interrupt enable bits (bits 05 and 06) should be cleared upon entry to
the service routine for vector XX0 and then set again at the end of service.

The interrupt priority level is 5 with the receiver having a slightly higher priority than the transmitter in all cases.
Note that the priority level can be changed with a priority plug.

Any DEC programs or other software referring to the standard BR level or vector addresses must also be changed if
the priority plug or vector address is changed.

3.4.6 Timing Considerations

When programming the DL 11 Asynchronous Line Interface, it is important to consider timing of certain functions in
order to use the system in the most efficient manner. Timing considerations for the receiver transmitter, and break
generation logic are discussed in.the following paragraphs.

3.4.6.1 Receiver — The RCVR DONE flag (bit 07 in the RCSR) sets when the Universal Asynchronous
Receiver/Transmitter (UART) has assembled a full character. This occurs at the middle of the first STOP bit.
Because the UART is double buffered, data remains valid until the next character is received and assembled. This
permits one full character time for servicing the RCVR DONE flag.

3.4.6.2 Transmitter — The transmitter section of the UART is also double buffered. The XMIT RDY flag (bit 07 in
the XCSR) is set after initialization. When the buffer (XBUF) is loaded with the first character from the bus, the flag
clears but then sets again within a fraction of a bit time. A second character can then be loaded, which clears the flag
again. The flag then remains cleared for nearly one full character time.

3.4.6.3 Break Generation Logic — When the BREAK bit (bit 00 in the XCSR) is set, it causes transmission of a
continuous space. Because the XMIT RDY flag continues to function normally, the duration of a break can be timed
by the pseudo-transmission of a number of characters. However, because the transmitter section of the UART is
double buffered, a null character (all Os) should precede transmission of the break to ensure that the previous.
character clears the line. In a similar manner, the final pseudo-transmitted character in the break should be null.

28

3.4.7 Program Notes

The following notes pertain to programming the DL 11 interface and contain information that may be useful to the
programmer. More detailed programming information is given in the Paper Tape Software Programming Handbook,
DEC-11-GGPC-D and in the individual program listings.

a. Character Format — The character format for the DL 11 consists of a START bit, five to eight DATA
bits, 1, 1.5, or 2 STOP bits and the option of PARITY (odd or even) or no parity. This is illustrated in
Figure 12. Note that when less than eight DATA bits are used, the character must be right-justified to
the least significant bit. The character format pertains to both the receiver and the transmitter.

b. Maintenance Mode — The maintenance mode is selected by setting the MAINT bit (bit 02) in the XCSR.
In this mode, the interface disables the normal input to the receiver and replaces it with the output of
the transmitter. The programmer can then load various bits into the transmitter and read them back
from the receiver to verify proper operation of the DL 11 logic circuits.

IDLE
STATE OF 5 70 8 DATA BITS 8DD,EVEN _ 2$TURNOTO IDLE
— —_—] R UNUSED /" STATE OF LINE
MARK(UA—— ——T"'T-'T"T-“T—‘T"T"‘T'{' T OR
00 | 011021 031041051061 071 PJ SToOP <t START BIT OF
| LSB BIT
seace 0 — — ——L T___L_?J___TL__J___J___J___L__J___ .———l NEW CHARACTER
AR JUSTIFIED TO LSB BIT POSITIONS WHEN Co
BT 5.6.0R 7 BITS USED ot
f—t5—
1
2 . CP-0576

Figure 12 Serial Character Format

3.4.8 Program Example

Figure 13 is an example of a typical program that can be used as an echo program for a Type 103 dataset. When a
remote terminal dials in, this program answers the call and provides a character-by-character echo. Characters are
also copied onto the console device.

4.1 PROGRAMMING THE GT40/42

4.2 PROGRAMMING CONCEPT

The user should view the GT40/42 Graphic Display Terminal as two separate, programmed processors: a PDP-11/10
computer (CPU) and a special display processor (DPU). The PDP-11/10 is programmed to initiate the display, and is
then free to execute its own program. All instructions available on the PDP-11/10 are executable in the GT40/42.
Figure 14 shows the relationship of the GT40/42 components to the Unibus (the inset illustrates specific GT40/42
data flow via the Unibus).

The DPU communicates directly with the MM11 memory by way of non-processor requests (NPR), i.e., DMA
requests. The PDP-11/10, connected in parallel, also uses the MM11 memory for executing its own PDP-11 code.
The DPU executes display instructions stored in semi-contiguous memory locations called display lists. A memory
layout example is shown in Figure 15. The Display Program Counter (DPC) in the DPU is addressed by the CPU, via
the Unibus, and the data MOVed to the DPC becomes the starting address of the display list. All addresses placed on
the Unibus are even numbers, i.e., word addresses.

29

nPA2ER 13200
PpP2m0 700187 001616 START| JMP REGIN §JUMP ¥0 BEGINNING OF PROGRAM
JSYMBOL, DEFINITYIONS
40920 RINGs= 240000 JBIT 14 OF RESR, RING
n20g7p cTss 720000 §BIT 13 OF RCSR, CLEAR T0 SEND
7220200 RDONEs Ppm202 /BIT @7 OF RCSR, RECEIVER BONE
7@0gnr2 DTRs rpogm2 yBIT 2{ OF RCSR,; DATA TERMINAL READY
72920 XRDYs rpn200 JBIT 27 OF XCSR; TRANSMITTER READY
702020 , 52000
202000 175640 RCSRI 175640 JCSR OF RECE]VER
2029M2 175642 RBUF 1 175642 JBUF QF RECE]VER
792gM4 175614 XCSR1 175614 JCSR OF TRANSMITTER
292976 175646 XBUF 1 175616 JBUF OF TRANSMITTER »
20201@ 177564 CXCSR} 177564 1CSR OF CONSOLE TRANSMITTER
2@2p12 177566 CXBUFI 177566 JBUF OF CONSOLE TRANSMITTER
292p14 700p00 BUFFER) 0 {HOLDS CHARACTER RECEIVEN
2g2g16 "PAQRCR DELAYI # JHOLNS DELAY COUNY, WIGH ORDER
222022 220070 > yHOLPS DELAY COUNT, LOW ORBER
JBEGINNING OF ECHO PROGRAM
pp2922 7P5p77 177752 BEGIN} CLR ®RCSR JSTARY BY INITIALIZING ALL B!TS TO ZERO
902926 732777 740000 177744 (OO0PL; BT #RING,®@RCSR JCHERK FOR INCCMING CALL
002934 7291774 8EQ LOOPL JBRANCH IF PWONE [S NOT RINGING
2P2836 752777 MpARe2 177734 B1S #DTR,@RCSR JPHONE 1S RINGING, SO ANSWER WITH DTR
002044 012767 200005 177744 MoV #5,DELAY JSEY UP COUNT FOR DELAY
P02p52 ®@32777 220820 17772p |00P2} BIT #CTS,@RCSR JCHECK FOR CLEAR YO SEND
P02060 2@L077 BNE LOOP3 JBRAMCW 1F ON
202062 162767 0p0pel 17773p SyB #1,DELAY+2 JCHECK DELAY
PP207¢ 2@5667 177722 SBC DELAY JOECREMENT A TWOeWORD INTEGER
202p74 B@1752 RER BEGIN JBRANCH IF WE HAVE WAIYEM YOO LONG
20206 209765 BR LoopP2 JBRANCHK AND CONTINUE TO WAIT FOR CTYS
P@21Pg 732777 020008 177672 |00P3; BITY #CTS,@RC3R 11S CHANNEL STILL ESTABLISWER?
pP2176 MPL745 REQ BEGIN JBRAMCH IF CTS NOT PRESENT
0092110 ©32777 000200 177662 BlY #RDONE,, @RCSR JCHEFK FOR RECEIVED CHARACTER
Np2116 791779 BE® LOOR3 JBRANCH IF NO CHARACTER RECEIVED
202120 217767 177656 177666 MOV ®RBYF ,BUFFER JRFAM RECE!VED CHARACTER INTA RUFFER
Pg2426 232777 22200 17765@ L(OOP4: BIY #XRDY,@XCSR JCHECK FOR TRANSM]YTER READY
202134 701774 . REQ LOOP4 JBRANCH IF NOT READY
PB2136 M16777 1776%2 177642 MOV BUFFER, @XBUF JTRANSMIY CHARACTER TO REMOBTF TERMINAL
202144 732777 0292200 177636 LOOPS; BT #XRDY,®aCXCSR JCHECK FOR CONSOLE TRANSMIYTER REABY
202152 001774 BEO LOOPS IBRANCK IF NOT READY
nP2154 016777 177634 177639 MOV BUFFER,®CXBUF §TRANSMITY CHARACTER TO CONSOLE
Pp2162 7PO746 BR L00P3 JBRANCH AND WAIT FOR NEX? EHARACTER
"Figure 13 Program Example
<‘L UNIBUS >
PDP-11/10 MM11 GT40/42
CPU MEMORY DPU
l v LR [} l CRT
CPU MEMORY DPU |

CP-0654

Figure 14 GT40/42 Data Paths

30

MEMORY
ADDRESS O

600 %

DISPLAY
INSTRUCTIONS
8
DATA

DISPLAY JUMP

2000
Shown are three "lists" of display instructions and data
chained together by Display Jump instructions into one,
closed display file. The shaded memory areas can be
/ / used by the CPU for PDP-11 code,data,buffer registers,etc.
2000
DISPLAY
INSTRUCTIONS
8
DATA

DISPLAY JUMP

5000

5000
DISPLAY
INSTRUCTIONS

8
DATA

DISPLAY JUMP
600

Figure 15 Memory Layout Example

4.3 IMPORTANT REGISTERS (all addresses are in octal)
Display Addresses:

Display Program Counter (DPC) = 172000 (Read/Write)
Resume Address (RA) = 172000 (Write)

(To resume a display, for example after a light pen hit, bit 0 (LSB) = 1 should be MOVed to the RA, i.e.,
MOV #1, RA))

Display Status Register = 172002 (Read/Write)

Contents (Read):

Stop Flag Bit (15) (MSB)
Mode (14:11)
Intensity (10:8)
Light Pen Flag (7)

Shift Out (6)

Edge Indicator (5)

Italics (4)

Blink (3)

Spare (Not Used) (2)

Line (1:0)

(If an attempt is made to write to address 172002, the effect is to ring the BELL in the GT40/42, eg.,
MOV #2, 172002.)

31

X Status Register = 172004 (Read only)

Contents:
X Position Bits (9:0)
Graphplot Increment (15:10)

Y Status Register = 172006 (Read only)

Contents:
Y Position Bits (9:0)
Character Register (15:10)

(Note: When in the SHIFTED OUT character mode, and an illegal code (040 137g) is fetched, the
program is interrupted. The Character Register can then be read to find the dispatch to a user routine .
that is used to draw some special character.)

Display Interrupt Vector Addresses:

Stop Interrupt = 320/322

Light Pen Interrupt = 324/326

Time Out and Shift Out Interrupt = 330/332

(All display interrupts are requested at level BR4.,)

DL 11 Communications Interface Addresses:

Receive Status Register (RCSR) = 175610

Receive Buffer (RBUF) = 175612

Transmitter Status Register (XCSR) = 175614

Transmitter Buffer (XBUF) = 175616 N

(Additional DL11 programming information is included in Paragraph 3.1.)
DL 11 Interrupt Vector Addresses:

Receiver Interrupt = 300/302

Transmitter Interrupt = 304/306

(DL 11 interrupts are requested on level BR5.)

Miscellaneous Addresses:

CPU General Register R0 = 177700
(only console addressable) R7 _ 177707

CPU Console Switches SWR = 177570
(console and CPU addressable)

CPU Status PS =177776
(console and CPU addressable)

Keyboard Command and Status (KCSR) = 177560

Keyboard Data Buffer (KDBR) = 177562

32

Keyboard Interrupt Vector = 60/62
Line Frequency Clock (KW11-L) = 177546

ROM Bootstrap Memory = 166000
(Starting Address)

4.4 PDP-11 INSTRUCTION SET

A detailed description of the PDP-11 instruction set can be found in GT40 Graphic Display Terminal, Volume 2
(DEC-11-HGTMA-A-D). This manual assumes the reader is familiar with the instruction set and general operation of
the PDP-11/10.

4.5 GT40/42 DISPLAY PROCESSOR INSTRUCTION SET

The display processor instruction set consists of five basic instructions: Set Graphic Mode, Jump, No-op, Load
Status Register A, and Load Status Register B. Figure 16 shows the breakdown, by bit position, of each instruction.
Figure 17 provides similar information for the data words that accompany the instructions.

NOTE
The user should not insert 1-bits into those positions indicated
as spare or unused.

4.6 PROGRAMMING EXAMPLES

The following programming examples are meant to provide the user with a basic introduction to GT40/42
programming technique. They have been kept brief in order that the points being illustrated not be lost as would be
the case if larger, operational program examples were used.

Table 8 is a list of suggested mnemonics for GT40/42 operation.

4.6.1 Initializing the Display Processor

To start the DPU, the CPU executes a short program that loads the Display (processor) Program Counter (DPC) with
the starting address (SA) of the display file. The Stack Pointer must also be initialized to an address above 40035 to
prevent a stack overflow if an interrupt occurs.

The following program performs these two operations.

Address Instruction/Data Mnemonic Comment
1000 012706 MOV #500, R6 Initialize the
1002 500 ‘ stack pointer
1004 012737 MOV #SA, @ #DPC Load the DPC
1006 2000 with SA = 2000
1010 172000

1012 00001 WAIT Wait (or other
: PDP-11 code)

33

SET GRAPHIC MODE

JUMP

NO-OP

LOAD STATUS REGISTER A

LOAD STATUS REGISTER B

15 14

[

l MODE

1" INDICATES CONTROL WORD —j

0000 SET CHARACTER MODE

0001 SET SHORT VECTOR MODE

0010 SET LONG VECTOR MODE

0011 SET POINT MODE

0100 SET GRAPH X MODE

0101 SET GRAPH Y MODE

0110 SET RELATIVE POINT MODE

0111 SPARE

1" ENABLES BITS 9-7 INTO THE INTENSITY REGISTER

3-BIT INTENSITY VALUE
000= MINIMUM INTENSITY
) 1 MAXIMUM INTENSITY

WHEN SET, ENABLES BIT 5 INTO L P INTERRUPT ENABLE REGISTER

1=L P INTERRUPT ENABLED, C-NO L P INTERRUPT
WHEN SET, ENABLES BIT 3 INTO BLINK REGISTER

1= BLINK ON, 0:BLINK OFF

"1 ENABLES BITS 1-0 INTO THE LINE REGISTERS

2-BIT LINE TYPE VALUE
00=SOLID LINE
01:LONG DASH

02:SHORT DASH
03:DOT DASH

15T
'WORD

SPARE

“1" INDICATES CONTROL WORD—? T
“OP CODE" FOR JUMP

SPARE B'TS

15

ADDRESS

2ND
WORD

16 BITS (28K WORDS) OF CORE ADDRESS

SPARE

“1" INDICATES CONTROL WOitD‘f
“OP CODE" FOR DISPLAY NO OPERATION
SPARE BITS

_t

15 14 1 10 9 7 é

5 4 3 2 1 o

1110

] [T

LI L]

-
1 INDICATES CONTROL woaoJ T

“OP CODE" FOR LOAD STATUS A REGISTER

WILL STOP THE DISPLAY WHEN SET

WHEN SET, ENABLES BIT 8 INTO STOP INTERRUPT REGISTER

1=INTERRUPT 11/05 WHEN DISPLAY STOPS
0=WILL NOT INTERRUPT WHEN DISPLAY STOPS

WHEN SET, ENABLES BIT 6 INTO THE L P. INTENSITY HIT REGISTER

0=POINT OF LIGHT PEN INTERACTION WILL BE INTENSIFIED
12 POINT OF LIGHT PEN INTERACTION WILL NOT BE INTENSIFIED

[——

WHEN SET, ENABLES BIT 4 INTO ITALICS REGISTER
1= 1TALICS FONT, 0=NORMAL FONT

NOT USED
HALTS DPU AND RESUMES IN SYNC WITH LINE FREQUENC

SPARE

4
“1" INDICATES CONTROL WORD
“OP CODE" FOR LOAD STATUS B REGISTER

SPARE

WHEN SET, ENABLES BITS 0-5 INTO GRAPHPLOT INCREMENT REGISTER

]

SETS THE DISTANCE BETWEEN POINTS EXECUTED IN GRAPHPLOT

Figure 16 Instruction Word Functions

34

CHARACTER
DATA FORMAT-
Mode 0000

SHORT
VECTOR MODE-

Mode 0001

LONG VECTOR
DATA FORMAT-

0010

15 14

8

[O | 2ND 7-BIT ASC 11

||

IST 7-BIT ASCI

O INDICATES A DATA WORD—T
7 BIT ASCll CODE

SPARE

7 BIT ASCUl CODE

15 14 13 12

7 6 5

CP-0582

‘ 0 ’lNTl+/-| 6 BITS AX

]

6 BITS AY

O INDICATES A DATA WORD—T
INTENSIFY VECTOR IF Al

O INDICATES AX COMPONENT
MOVES TO THE RIGHT;
1INDICATES AX COMPONENT
MOVES TO THE LEFT

6 BIT MAGNITUDE Y COMPONENT

O INDICATES AY COMPONENT

MOVES UP; 1| INDICATES AY
COMPONENT MOVES DOWN

6 BIT MAGNITUDE Y COMPONENT

15 14 13 12 10 9

CcP-0583

I1sT WORD| 0 lINTI+/—{ J

10 BITS AX

L__1°

O INDICATES A DATA worao—T
INTENSIFY VECTOR IF Al

O INDICATES AX COMPONENT
MOVES TO THE RIGHT; 1 .
INDICATES AX COMPONENT
MOVES TO THE LEFT

SPARE
10 BIT MAGNITUDE X COMPONENT

CP 0541

2ND WORDI 0 F//%H-?// ’

10 BITS AY

0 INDICATES A DATA WORD
SPARE
O INDICATES AY COMPONENT}

MOVES UP; 1 INDICATES AY
COMPONENT MOVES DOWN
SPARE

10 BIT MAGNITUDE Y COMPONENT

Figure 17 Data Word Formats (Sheet 1 of 2)

35

CP-0542

15 14 13 10 9

I1sT wonol 0 IINTW Z 4 10 BITS X
O INDICATES A DATA woao—T
INTENSIFY POINT IF A 1
SPARE
10 BIT X COORDINATE
CP 0543
POINT DATA
MODE-
Mode OO11
2ND WORD [0 E 10 BITS Y
O INDICATES A DATA wono—T
SPARE
10 BIT Y COORDINATE
CP-0544
GRAPHPLOT X(Y)- 09
10 BITS X (Y)
Mode 0100 (0101)
0 INDICATES A DATA WORD
SPARE
10 BIT X(Y) COORDINATE
CP-0545
RELATIVE 15 14 13 12 76 5
l o lINT|+/—[6 BITS AX i+/—| 6 BITS AY

POINT MODE- 0 INDICATES A DATA WORD—T
Mode 0110 INTENSIFY POINT IF A |

O INDICATES X COMPONENT}

MOVES TO THE RIGHT, 1
INDICATES X COMPONENT

MOVES TO THE LEFT

6 BIT MAGNITUDE X COMPONENT

O INDICATES Y COMPONENT MOVES UP;
1 INDICATES Y COMPONENT MOVES DOWN

6 BIT MAGNITUDE Y COMPONENT

Figure 17 Data Word Formats (Sheet 2 of 2)

36

CP-0546

Table 8
Recommended GT40/42 Mnemonics

Mnemonic = Value Function
Group 1
CHAR = 100000 Character Mode
SHORTV = 104000 Short Vector Mode
LONGV = 110000 Long Vector Mode
POINT = 114000 Point Mode
GRAPHX = 120000 Graphplot X Mode
GRAPHY = 124000 Graphplot Y Mode
RELATV = 130000 Relative Point Mode
INTO = 2000 Intensity 0 (Dimmest)
INT1 = 2200 Intensity 1
INT2 = 2400 Intensity 2
INT3 = 2600 Intensity 3
INT4 = 3000 Intensity 4
INT5 = 3200 Intensity 5
INT6 = 3400 Intensity 6
INT7 = 3600 Intensity 7 (Brightest)
LPOFF = 100 Light Pen Off
LPON = 140 Light Pen On
BLKOFF = 20 Blink Off
BLKON = 30 Blink On
LINEO = 4 Solid Line
LINE1 = 5 Long Dash
LINE2 = 6 Short Dash
LINE3 = 7 Dot Dash
Group 2
DJMP = 160000 Display Jump
Group 3
DNOP = 164000 Display No Operation
Group 4
STATSA = 170000 Load Status A Instruction
DSTOP = 173400 Display Stop and Interrupt
SINON = 1400 Stop Interrupt On
SINOF = 1000 Stop Interrupt Off

37

Table 8 (Cont)
Recommended GT40/42 Mnemonics

Mnemonic = Value Function
LPLITE = 200 Light Pen Hit On
LPDARK = 300 Light Pen Hit Off
ITALO = 40 Italics Off
ITAL1 = 60 Italics On
‘SYNC = 4 Halt and Resume in Sync
Group 5
STATSB = 174000 Load Status B Instruction
INCR = 100 Graphplot Increment
Group 6

(Vector/Point Mode)

INTX = 40000 Intensify Vector or Point
MAXX = 1777 Maximum A X Component
MAXY = 1377 Maximum A'Y Component
MINUSX = 20000 Negative A X Component
MINUSY = 20000 Negative A Y Component

Group 7
(Short Vector Mode)

MAXSX = 17600 Maximum A X Component
MAXSY = 77 Maximum A'Y Component
MISVX = 20000 Negative A X Component
MISVY = 100 Negative A Y Component

4.6.2 Display File

The following program causes a 200z unit box to be drawn with the lower left corner at screen location 500,5005.
Initially, the DPC is loaded with the starting address. Then the display parameters, e.g., intensity, are established and
the mode set to Point. The four vectors are drawn after the Point is executed and, to conclude the file, the last
commands reload the DPC with the display file starting address. This results in the display file being re-executed; the
CRT display is refreshed.

38

Address

100
102
104
106
110
112
2000

2002
2004
2006
2010
2012
2014
2016
2020
2022
2024
2026
2030
2032

Note that since the parameters (intensity level, no blink, and line type) are specified in the point instruction, they
need not be re-specified in the long vector instruction (2006) because they will not change unless the appropriate
enable bits are set. The enable bits also allow the user to change, for example, the line type but not the intensity. In
this case, only the line type enable bit is changed, not the intensity enable bit. This retention of current,
not-to-be-changed, values saves both execution time and memory storage space. J

Instruction/Data

012706
500
012737
2000
172000
000001
117124

500
500
110000
40200
0
40000
200
60200
0
40000
20200
160000
2000

4.6.3 Application of the Stop Interrupt

The Stop Interrupt provides close interaction between the CPU and the DPU. The following program restarts the

Mnemonic
.=100
MOV #500, R6

MOV #2000, @ #DPC

WAIT

.=2000
POINT+INT4+LPOFF
+BLKOFF+LINED
500

500

LONGV

200+INTX

0

O+INTX

200 :
200+INTX+MINUS

0 .

O+INTX
200+MINUS
DJMP

2000

Comment

Initialize the
stack pointer
Load the DPC
with SA = 2000

Wait

Point mode, intensity
4, no light pen, no
blink, solid lines.
Unintensified point
at X = 500, Y = 500
Long vector mode
AX=200,AY =0,
intensified
AX=0,AY =200,
intensified
AX=-200,AY =0,
intensified
AX=0,AY =-200,
intensified

Jump to start of
display file.

display after the halt and interrupt sequence. This occurs at the end of each pass.

Address

100
102
104
106
110
112
114

320

322

400

Instruction/Data

012706
500
012737
2000
172000
000001
776

400

200

012737

Mnemonic
.=100
MOV #500, R6

MOV #2000, @ #DPC

WAIT
BR.-2
.=320
400

200
.=400
MOV #1, @ #DPC

39

Comment

Initialize the

stack pointer

Load the DPC with
SA = 2000

Wait for interrupt
Jump back one
instruction

Address of next
instruction to be
executed after a
Stop interrupt
Processor status
(BR level 4)
Resume the display

Address Instruction/Data Mnemonic Comment

402 01

404 172000

406 02 RTI Return from interrupt
2000 117124 .=2000 Point mode, intensity

POINT+INT4+LPOFF 4, no light pen, no
+BLKOFF+LINED blink, solid lines.
2002 500 500 Unintensified point
2004 500 500 at X =500, Y = 500
2006 110000 LONGV Long vector mode
2010 40200 200+INTX AX=200,AY =0,
2012 0 0 intensified
2014 40000 O+INTX AX=0,AY =200,
2016 200 200 intensified
2020 60200 200+INT X+MINUS AX=-200,AY =0,
2022 0 0 intensified
2024 40000 O+INTX AX=0,AY=-200
2026 20200 200+MINUS intensified
2030 173400 DSTOP Enable Stop interrupt,
Stop

2032 160000 DJMP Jump to start of
2034 2000) 2000 display file after

a Resume

After initializing the DPU, the CPU WAITs for an interrupt. The DPU executes the display file, eventually
performing the STOP with interrupt enabled. This causes a vectored interrupt to address 3205.

Since the Stack Pointer was initialized to 500z, the CPU stores its processor status and program counter in location
5005 and 4763 respectively; it pushes them on the “stack.” Once stored, the CPU goes to location 320g and uses its
contents as the address of the interrupt routine. The CPU takes the contents of location 3225 as its new processor
status. In this example, location 400z is the address of the interrupt handler and the CPU proceeds to that location.

The interrupt handler simply MOVes the number 1 to the DPC which is interpreted as a RESUME by the DPU. As
the DPU resumes operation, it will fetch and interpret the next instruction after stopping, in this case a DJMP, back
to the start of the display file. The final instruction of the interrupt handler is a Return from Interrupt (RTI),
_restoring the CPU to the status and location present before the interrupt, i.e., it pops two words off the stack. A
computer branch back one instruction is executed, thus placing the CPU in a WAIT condition again.

4.7 PROGRAMMING RESTRICTIONS

As with any complex system, certain restrictions must be observed by the user if trouble-free operation is to be
expected. In the case of the GT40/42, the programmer should be aware of certain programming limitations so that
the hardware may be exercised more proficiently without violating hardware rules.

4.7.1 Stop and Sync, Microcoding

Stop and Sync appear in the Load Status A instruction. However, selection of both conditions in any given Load
Status A instruction should be avoided. Priorities have been built into the GT40/42 hardware concerning the action
on the microcoding of these bits. The rules are as follows:

1. Sync and Stop
Sync will override Stop. The display will stop but will resume in sync with the line frequency.

40

2. Stop and Sync with Stop Interrupt Enabled
Setting Stop with the Stop Interrupt enabled and Sync must be avoided. Under these conditions, the
DPU will stop, post an interrupt, and restart automatically in sync with the line frequency. Since the
Sync resume happens rather randomly with respect to the interrupt, the effect of this microcoding is
undetermined.

4.7.2 Display File Changes

Restarting a Running Display — Restarting the DPU while the DPU is running should be avoided. It is possible to
“catch” the DPU in the middle of a bus operation causing inconsistent or undetermined operation.

It is recommended that the DPU be halted with a Stop instruction before restarting it again.

Modification of the File — Dynamic modification of the display file should be avoided when possible. Normally the
file can be modified dynamically without consequence. However, it is possible to cause problems when modifying
two word instructions such as a Display Jump. For example, if the DPU fetched the first part of a DJMP while the
CPU modified the second word, the DPU will process the DJMP order code and will take the modified second word
as a correct address, causing the DPU to branch to a non-intended address. |t is recommended that the DPU be
halted before modifying the display file and that care be exercised in selecting the sequence of commands used to
modify the file,

4.7.3 Non-Flicker Display

The quality of the image displayed on the screen is determined by many factors. Primarily, the display is controlled
by internal adjustments (contrast, focus, etc.) and the external BRIGHTNESS control on the front panel. However,
programming is also instrumental in producing better image quality. The selectable brightness feature, one of the
display parameters controlled by the Set Graphic Mode instruction, is one example of the role that programming
plays. Another is the control of image flicker, the repetitive dimming and brightening of all vectors and characters on
the screen. Flicker, in this case, is caused by a relatively long program execution time, i.e., the time from the
beginning of the display frame until the program recycles and the display is repeated. If this time is longer than
about 1/30 of a second the screen fluorescence will decay (the image will become dimmer), and then brighten when
the next frame begins, to the point where flicker is apparent. When the program time is less than 1/30 second, the
display is reintensified before the image dims noticeably and there is no apparent flicker. Consequently, the
objective, from a programming standpoint, is not to exceed this (1/30 second) execution period when designing a
display program.

Program time, as defined above, and where vectors make up most of the display, is primarily determined by two
factors: vector magnitude or length, and the number of vectors in the display frame. The longer the vectors and the
greater the number of vectors the longer the display frame will be. Figure 18 shows the allowable limits, considering
these two factors, for a flickerless display, defined here as display frames < 32 ms (about 1/30 second). Note that a
third factor is also present: the vector to mode word ratio. If this is a 1:1 ratio, then fewer vectors are allowed
because the mode word itself requires time to be decoded — time that must be subtracted from the 32 ms period.
However, this time is more efficiently used when the ratio increases, i.e., when a mode word is accompanied by a
number of vectors; the total number of allowable vectors is increased. This is shown in Figure 18 as the shaded area
for each vector length with the top line being the practical limit. If vector lengths vary, as is usually the case, the
total number of each length must be taken into account; the aggregate must not cause the frame time to exceed 32
ms.

41

5000

4000 —

- 3000 —

ONE MODE WORD
PER GROUP OF
2000 /VECTORS
MAXIMUM

NUMBER

OF VECTORS

PER 32 MS ONE MODE j
FRAME WORD PER
1000 — VECTOR
900 —
800 —
700 —

600 —

500 —

400 —

300

200

100 |

T | | | T | , T
g 10g 204 40g 100g 200g 400g 1000g 1777

VECTOR MAGNITUDE
CP-0651

Figure 18 Non-Flicker Display as Determined by
Vector Quantity and Magnitude

4.8 ADVANCED PROGRAMMING TECHNIQUES

4.8.1 Subroutines

This programming method is used when a section of display code is repeated a number of times during the execution
of a display file. It precludes the need to store multiple copies of the routine in memory and therefore makes more
efficient use of available storage space. Writing effective display subroutines is accomplished through use of the stop
interrupt instruction (DSTOP) followed by an identifier that informs the interrupt service routine what to do or
where to go. Figure 19 shows an example of how a display subroutine can be repeatedly called by the main display
file. An example of an interrupt service routine is shown below. It is assumed that register R5 is used for the
subroutine stack. STKST is the starting location for the subroutine stack.

Mnemonic Comment
STPINT: TST @ DPC ’ Test the DPC
BEQ STOPO If it contains a valid, non-zero address go to the next

instruction; if not go to STOPO
MOV DPC,-(R5) Push current DPC on stack

ADD #2,@R5 The stack now contains the return address from the
subroutine.

42

Mnemonic ' Comment

MOV @ DPC, DPC Move address pointed to by DPC into the
DPC, i.e., go to the subroutine.

RTI Exit

STOPO: CMP R5, STKST Is the subroutine stack empty?
BEQ TOP Yes, go to top of file
MOV (R5)+,DPC No, pop off a word and go there
RTI Exit

TOP: MOV#START,DPC Restart at TOP
RTI and exit

MAIN DISPLAY FILE
START: POINT
X=0
Y=0
DSTOP
AD1

DISPLAY
CODE

} Call subroutine at AD1

DSTOP
AD1
DSTOP

Call subroutine at AD1 again

Signals the end of the main file

DISPLAY SUBROUTINE
AD1: DISPLAY
CODE

DSTOP

CP-0659

Figure 19 Subroutining Example

43

4.8.2 Light Pen Interaction

The DPU is stopped when a light pen ““hit"” occurs during the display of a vector, character, or point, provided light
pen interrupts are permitted (bits 5 and 6 of the Set Graphic Mode word must both be true to enable the LP
interrupt function).

Priorities permitting, the LP hit interrupts the PDP-11. The interrupt service routine that is called in as a result of
the LP interrupt has access to three data in the DPU (the data can be read by specifying the addresses indicated):

® Display Program Counter (DPC) Addr = 172000. Points to the instruction/data word following the data
word on which the LP hit occurred.

L The X position of the display at the time the DPU stopped, Addr = 172004. A 10-bit absolute number.
° The Y position of the display at the time the DPU stopped, Addr = 172006. A 10-bit absolute number.
The service routine can respond to the LP interrupt by restarting the display in one of two ways:

° Resume the display — the operation in progress at the time of the interrupt is allowed to continue.
Program example: MOV #1, DPC

L Restart the display — the operation in progress at the time of the interrupt is abandoned and a new
display program routine is initiated. Program example: MOV #SA, DPC

4.8.3 Special Characters

The 31 special characters in the GT40/42 display character set are addressed through use of ASCII codes Shift Out
(0165) and Shift In (0175).

When the DPU detects the character code 0165, the hardware enters the shift mode. In this mode codes 000 through
0375 are decoded as special characters. (Appendix C contains a list of GT40/42 character codes.) Note that when
the DPU is in the shift mode, the Shift Out code (016g) itself is a legitimate printing character. The DPU is returned
to the non-special character ASCII set (non-shift mode) when Shift In is decoded. Unlike the Shift Out code, the
Shift In code (017g) does not cause a special character to be displayed. If, when in the shift mode, the DPU detects
a code = 0404, the PDP-11 is interrupted by a Shift In/Time Out interrupt vector. This is because only the special
characters (codes 000 through 0375) are legal when in the shift mode. The PDP-11 now has access to the 6 low order
bits of the 7-bit illegal code. These 6 bits could be used, for example, as an index to a table of software generated
characters.

4.8.4 Edge Violations

An edge violation occurs if either the X or Y coordinate indicated for a relative display causes the display to go
outside the physical limits of the CRT face. (Vectors, relative points, characters, and Graphplots are classified as
relative type displays.) In the event of an edge violation, the edge flag in the status word is set and the display is
clipped (terminated) at the edge of the screen; wrap-around does not take place. However, there is one exception in
which wrap-around can occur. The GT40/42 hardware is capable of counting only up to 4095, i.e., 12 bits.
Therefore, if the vector position exceeds this 12-bit limit, the count overflows to O and wrap-around occurs. For
example, if four consecutive vectors with the same coordinates (A X = 1023, A'Y = 1) are read, only the first vector
is displayed; it is the only one that can be displayed within the physical address space. The other three vectors cause
the count to legally exceed the 12-bit field. If a fifth vector, with the coordinates of AX =10 and AY =0, is
decoded, the vector will appear on the left of the display; the hardware has caused the display to wrap around. This
relative X and Y counting is performed in a 12-bit circular fashion. Absolute points are limited to 10-bit addressing.

44

5.1 COMMUNICATIONS BOOTSTRAP READ-ONLY MEMORY (ROM)

The communications bootstrap ROM in the GT40 and the GT42 connects the Graphic Display Terminal to a host
computer by way of the DL11 Asynchronous Line Interface. Two functions are performed:

1. The program allows ASCIl dialogue with the host computer in order to perform such functions as
logging in, etc., which presumably leads to

2. The ability to load the Graphic Display Terminal’s core memory with an absolute PDP-11 program. This
function is typically called a down-line load.

The ROM Bootstrap program is stored in a bipolar ROM contained in the display processor (M7014 module). The
memory is assigned addresses starting at 1660003 and is accessed via the Unibus and the display processor addressing
hardware. Although physically located in the display processor, the communications ROM should be considered a
separate, Unibus connected, memory device. In the GT40, the ROM contains 256 words; in the GT42, the ROM
contains 512 words.

Appendix D contains a program listing of the ROM Bootstrap for the GT40 and Figure D-1 is a flow diagram for the
program. Appendix E contains a program listing of the ROM Bootstrap for the GT42 and Figure E-1 is a flow

diagram for the program.

5.1.1 Bootstrap Loader

The communications down-line loader portion of the Bootstrap allows loading programs in all memory locations
except for the absolute addresses 15700 through 157763, which are used by the loader itself. If the user finds this
restriction unacceptable, it is possible to reassemble a copy of the Bootstrap program with the tag COREND equal to
the highest address in the user’s memory, e.g.,, COREND = 577765 for a 12K memory. The procedure then is to load
this modified Bootstrap first and then the user’s program.

The loader will accept properly encoded ASCII strings and effect the loading of a PDP-11 absolute program. The
encoding and decoding scheme is shown pictorially in Figure 20.

The loading procedure, from the host computer, is presented below in brief terms:

1. Initiate the Bootstrap by placing 166000 in the SR switches; press LOAD ADDRESS and START.

2. Transmit } (175g) and then R (1223) to reset the Bootstrap.

3. Transmit } (1753) and then L (114g) to start the Loader.

4, Transmit encoded characters representing the binary program to be loaded.

5. If a checksum error occurs during a load, B (102g) and } (1755) will be returned.

6. If the program loads but does not self-start, G (107g) and } (175g) are returned.

7. There is no return if the program is properly loaded and started.
To enable synchronization of the loader at high transfer rates, the host computer should transmit filler characters
after step 3 above. These fillers should be nulls in multiples of three, as indicated in Figure 21. The @ symbol (100g)

is transmitted because 1005 is added to all characters less than 040g; therefore, null (000) + 1003 = 100g. The filler
requirement is satisfied by six nulls, i.e., eight @ symbols.

45

8-8IT BYTE (n) 8-BIT BYTE (n+1) 8-BIT BYTE(n+2) W
BINARY DATA BINARY DATA BINARY DATA
CONVERSION
(See note) HOST
= = = = > COMPUTER
6-BIT 6-BIT 6-8BIT 6-8BIT ENCODING
BYTE (n) BYTE (n#1) BYTE (n+2) BYTE (n+3)
' Hi R Hi
E—) T ——— p——
=== 7
SERIAL |
TRANSMISSION
TO GT40/GT42 I : 3
Q
6-BIT 6-8IT 6-8BIT 6-BIT
BYTE (n) BYTE (nt1) BYTE(n+2) BYTE (n +3) GT40/42
-—--= DECODING
REASSEMBLY
8-BIT BYTE(n) 8-BIT BIT(n+1) 8-8IT BIT(n+3)
NOTE: - T
If 6-Bit number x <40g then x =x+100g;if 6-Bit number x> 40g then x=x.The resulting 6-Bit codes are 040g
through 137g; all are printable characters and symbols. They are serially transmitted in sequential order,until the
end of the PDP-11 program,to the GT40 where they are reassembled into their 8-Bit binary format.
CP-0650

Figure 20 Encoding and Decoding of Serial Data

@ (=100g) D (=100g - @ (=100g) @ (=100g)

l l l l

Figure 21 Filler Character Transmission to the GT40/42

It is necessary to preface the first ““one’’ byte in the absolute program with a “zero”” byte in order to save Bootstrap
code. A normal absolute program, in octal, before encoding into the 6-bit tape format, is transmitted in the order
shown in Figure 22. An example of a short program (in octal) and the resultant encoded characters transmitted are
shown in Figure 23.

46

O BYTE Inciuded only in the first block

1 BYTE
0 BYTE
BCL Low order 8 bits of byte count
FIRST BCH Hi order 8 bits of byte count
DATA ADL Low order load addr or JMP addr.
?11-)°CK ADH Hi order load addr or JMP addr.
DATA BYTES

CHECKSUM BYTE
—————

1 BYTE
0 BYTE
BCL
BCH
INTERMEDIATE ADL . ;

This pattern is repeated
DATA ADH for all intermediate

BLOCKS
(2+n-1) DATA lBYTES blocks

CHECKSUM BYTE

1 BYTE
0 BYTE
LAST 6 BYTE Indicates the last block
0 BYTE
(n)) JL - Either the jump addr
JH or an odd number
CHECKSUM BYTE

CP-0648

Figure 22 Absolute Program, Octal Format

5.1.2 Character Echoing

When not running in the LOADER mode, the Bootstrap allows the GT40/42 to communicate with the host
computer in ASCII. Depressing a key on the LK40 keyboard at this time causes the ASCII character for that key to
be sent to the host computer. [f the host computer echoes the character, it will appear on the GT40/42 display
(providing it is printable).

In reference to this type of display, several characteristics should be noted:

The GT40 Bootstrap does not scroll. If the initial dialogue runs off the bottom of the screen, the
operator must again depress START; the dialogue will then return to the top of the screen. In the GT42,
the dialogue appears at the bottom of the screen and scrolls off the top when the screen is full.

With the exception of 1754 characters with codes of from 040g through 1765 will be displayed on the
screen. Code 1755 is used to initiate restarting and loading of the GT40/42.

In the GT40 the only control characters which affect the display are CARRIAGE RETURN, LINE
FEED, and BACKSPACE. TAB, FORM FEED, etc. are not understood. In the GT42, TAB and FORM
FEED characters are understood.

The host computer should not send SHIFT OUT (016g) because this character causes the GT40/42
hardware to generate a special character set. (This restriction applies only to the Bootstrap because of
space limitations in this program. Normally the software would monitor all characters before inserting
them into the display file.) :

47

117

@ 0000 00 o L] L] o0 000 0000
Y S e o o o . .
1 il lee o0 °) oo o [
i@t @l oo °) ° °
it gt o0 ° (XY} [°
i e! o0 ° ° oo o ° ° °
"0"BYTE FIRST "1"BYTE "0"BYTE BCL BCH ADL ADH DATA DATA

00000000 00000001 00000000 00100000 00000000 00000000 00000000 1111‘0111 00010101
%,—A—v—w_&_v_&_v__H_%_&_ﬂl_Aﬂ,_&-_\,_M_v__Aﬂ,__/

S A S A (R SN (Y N AR N

(NOTE) +1ooa +1008 +100g +100g +100g +100g +100g +100g +1ooa +1003 +1ooe +1ooa

lll'lll

CHARACTERS \ ///

-— ggam\smpso LG)&)EDG)G)&)D&HG)G)&&O\ UB | c: <oo&)P 0d' aaaaaas;o CPOHBA(a! P2322200730dA ;, D0 $ VDI DD
/T : (sP) (sp) (sp) (SP) (sP)
RESET LOAD FILLER

GT40/GT42 COMMAND CHARACTERS
NOTE:
All the characters shown are originally <40g and must be incremented by 100g; this
ls not done when characters are > 40g.

CP-0647

Figure 23 Absolute Program Conversion and Transmission

A-1

APPENDIX A
KEY BOARD LAYOUT

v

HigHBHEBHannna R
SO EHBUCE D EREEEE)
~EHWEHEOHDEH D EE

)
EICBI0IRIDIDIOI0IBIHINEIN
()

CP-0607

Figure A-1 Keyboard Key Configuration

% 8 ' (0 us GS
5 6 7 8 0 us GS
% a ' () 0 - }
5 6 7 8 9 0 -]
DC2 DC4 EM NAK HT SI DLE NUL LF CR
DC2 DC4 EM NAK HT SI DLE NUL LF CR
R T Y u 1 0 P \ LF CR
r t y u i 0 p @ LF CR
c3 EOT ACK S LF VT FF + * DEL
Cc3 EOT ACK S LF vT FF ; . DEL
S D F H J K L + * DEL
s d f h j k |) R DEL

©O—

HT ESC DCI EN
HT ESC DC1 EN
HT ESC Q E
HT ESC q e

OEEEHFEBEELUE)

SP

SP

SP

SP
LEGEND:

CONTROL & SHIFT
CONTROL

SHIFT

UNSHIFT

CP-0609

Figure A-2 128-Character Keyboard (Position 1)

Qaaa
nuvnn

CP-0608

Figure A-3 64-Character Keyboard (Position 2)

CONTROL
SHIFT

_CONTROL & SHIFT
UNSHIFT

LEGEND

000

000
017
020

037
040

057
060

077
100

17
120

137
140

157
760

777

000

377
rT7
000

777
000

777
000

777
000

777
000

777
000

777
000

777

BASIC 4K(WORD)

MEMORY BLOCK

4K MEMORY

4K MEMORY

4K MEMORY

4K MEMORY

4K MEMORY

4K MEMORY

4K DEVICE
REGISTER
ADDRE SSES

/ooo 000
000 037
000 040

000 057
000 060

000 077
000 100

000 170
000 177
000 200

000 270
000 277
000 300

000 374
00 377

760
763
764

767
770

773
774

777
777

000
777
000

777
000

777
000

550

777

TRAP VECTORS

SYSTEM SOFTWARE
COMMUNICATION WORDS

TTY AND PAPER TAPE
INTERRUPT VECTORS

INTERRUPT VECTORS

INTERRUPT VECTORS

INTERRUPT VECTORS

UNASSIGNED

RESERVED FOR
USER DEVICES

RESERVED FOR
DEC DEVICES

RESERVED FOR

DEC DEVICES

0

4 ERROR

10 RESERVED
14 TRACE

20 10T

24 PWR FAIL
30 EMT

34 TRAP

60 TELETYPE KEYBOARD
64 TELETYPE PRINTER
70 PAPER TAPE READER
74 PAPER TAPE PUNCH

RESERVED FOR CUSTOMER
DEVICES

(000 170 000174)

(000 270 000 274)

APPENDIX B
ADDRESS MAPPING

777 550 PRS 5 pAPER TAPE READER
NOT PROTECTED _7,_7(; ggﬁ ’;sg
AGAINST >PAPER TAPE PUNCH
STACK OVERFLOW 777 556 PPB
777 560 TKS
TYPE KEYBOAR
117 550 777 562 Tkg > TELETYPE KEYBOARD
TELETYPE AND PAPER 777 564 TPS
TAPE DEVICE ADDRESSES 777 566 TPB ~ TELETYPE PRINTER
777 567
|—— 777570 8 777 571 ARE SWITCH REGISTER
777 577
e NN P)
[e ™ e S ——
777 700
RO-R7 PROCESSOR GENERAL STORAGE-THESE 16
77770 TEMP - SOURCE_ETC LOCATIONS ARE EACH 1 FULL WORD
277 720 R6 IS STACK POINTER
R7 1S PROGRAM COUNTER
777 775
|| 777 776 & 777 777 ARE STATUS REGISTER
777 777

Figure B-1 Address Mapping

-oi9t

APPENDIX C
CHARACTER CODES

7 Bit ASCII Keyboard GT40/42 GT40/42 Printing
(octal) Representation Printing When Preceded By
Shift-Out = 016

000 NUL CTRL @ A

001 SOH CTRL A a

002 STX CTRL B ¢

003 ETX CTRLC z

004 EOT CTRLD 6

005 ENQ CTRLE A

006 ACK CTRLF N

007 BEL CTRL G 7

010 BS CTRLH Backspace N

011 HT CTRL I (TAB) ¥

012 LF CTRLJ (LF) Line Feed +

013 VT CTRLK 0

014 FF CTRLL

015 CR CTRL M (CR) Carriage Return M

016 SO CTRLN £

017 SI CTRL O Shift In
020 DLE CTRLP m

021 DC1 CTRLQ I

022 DC2 CTRLR Q

023 DC3 CTRLS o

024 DC4 CTRLT T

025 NAK CTRL U €

026 SYN CTRLV «

027 ETB CTRL W -

030 CAN CTRL X t

031 EM CTRLY \

032 SUM CTRLZ r

033 ESC CTRL [(ALT) 1

034 FS CTRL\ #*

035 GS CTRL] A

036 RS CTRL~ \%

037 Us CTRL — O

40 SP SPACE BAR Space 1 character

41 ! SHIFT 1 !

42 “ SHIFT 2 “

43 # SHIFT 3 #

C1

7 Bit ASCII Keyboard GT40/42 GT40/42 Printing
(octal) Representation Printing When Preceded By
Shift-Out = 016
44 $ SHIFT 4 $
45 % SHIFT 5 %
46 & SHIFT 6 &
47 ’ SHIFT 7 ’
50 (SHIFT 8 (
51) SHIFT 9)
52 * SHIFT : *
53 + SHIFT ; +
54 , R y
55 - (minus) - -
56 . . .
57 / / /
60 0 0 0
61 1 1 1
62 2 2 2
63 3 3 3
64 4 4 4
65 5 5 5
66 6 6 6
67 7 7 7
70 8 8 8
71 9 9 9
72 : : :
73 ; ; ;
74 < SHIFT , <
75 = SHIFT - =
76 > SHIFT . >
77 ? SHIFT / ?
100 @ @ @
101 A SHIFT A A
102 B SHIFT B B
103 C SHIFT C C
104 D SHIFT D D
105 E SHIFT E E
106 F SHIFT F F
107 G SHIFT G G
110 H SHIFT H H
111 I SHIFT I I
112 J SHIFT J J
113 K SHIFT K K
114 L SHIFT L L
115 M SHIFT M M
116 N SHIFT N N
117 (0] SHIFT O 0
120 P SHIFT P P
121 Q SHIFT Q Q
122 R SHIFT R R
123 S SHIFT S S
124 T SHIFT T T

C-2

7 Bit ASClI Keyboard GT40/42 GT40/42 Printing
(octal) Representation Printing When Preceded By
Shift-Out = 016

SHIFT U
SHIFT V
SHIFT W
SHIFT X
SHIFTY
SHIFT Z

125
126
127
130
131
132
133
134
135
136
137 .
140 ‘ SHIFT @
141
142
143
144
145
146
147
150
151
152
153
154
155
156
157
160
161
162
163
164
165
166
167
170
171
172
173 SHIFT [
174 SHIFT \
175 SHIFT |
176 ~ SHIFTA
177 RUBOUT | RO.

D> — TN X< C
D> — T NXK X E<LC

NALAX=s<CHLXTOVOZIIOCOR—-"TIZIQTMIMUN® P
- DUl Mmoo a0 oo

N'*<><€<C"""”"-O’OO:!3"‘W"'"":‘UQ 0 a6 o

IW"-*N&<><E<C'—’V’_‘»Q'UO:B'—W'_"

Function Key Codes

<10 132 Home 35 EOS 37
-30 {33 EOL 36

C-3

1-a

;BOOTVT,S089 5/2/72

H VT-40 BOOTSTRAP LOADER. VERSION S@9, RELEASE RB1, 5/2/72

COPYRIGHT 1972, DIGITAL EQUIPMENT CORPORATION,
146 MAIN STREET
MAYNARD, MASSACHUSSETTS

31754

- e .. we

; WRITTEN BY JACK BURNESS, SENIOR SYSTEMS ARCHMITECT!

; THIS ROUTINE IS INTENDED TO BE LOADED IN THE ROM PORTION OF THE VT=4d.
3 REGISTER DEFINITIONS!
200000 RO=X0
Riz%1
220201
R2=%2
000002
R3=%3
220003 s
%4
200004
R5=%5
P00005 Raone
202006 gl
200007
220006 gg:gg
200007
700000 RET1=RO ;RETURN OF VALUE REGISTER,
200001 INP12R1 ; ARGUMENT FOR CALLED FUNCTION
200002 INP2=R2 ;SECOND ARGUMENT,
80093 WORK1=R3 ;FIRST WORK REGISTER,
2000804 WORK2=R4 ;SECOND WORKING REGISTER,
200005 SCR1=R5 ;SCRATCH REGISTER,
. L+ CKSM=WQRK1 ;OVERLAPPING DEFINITIONS FOR LOADER PORTION.
200003 -
L BYT=SRET
200000
L BC=SCRY
o0005 ADR=INPY
200001 L.
216000 COREND=16080 ;FIRST LOCATION OF NON-CORE.
ROMORG=166000 ;WHERE THE ROM PROGRAM SKOULD GO.
166000
200000 STARTX=0 ;WHERE TO START DISPLAYING THE X POSITIONS.
201368 STARTY=136¢2 sWHERE TO START DISPLAYING THE VY,

OvLlD - NVHODO0UHd H3AvOl

dvdl1sS1008 WOY
a XIdN3ddV

. 166000

166004
166006

166910

166012
166029
1660926

166034
166049
166042

166046
166050
166954
166060
166062
166066

166072
166076
166100
166102
166104

172000
177560
175614
175610

177562
175612
175616

215776
215772
715770

160000

200024

166200

a12725
205015
2108745

00080205

0312767
012767
212767

212706
205001
812702

310221
212711
212701
205000
204767
205067

204767
2Q0240
7008240
200240
212746

200026

oe0007
200001
200201

215778

160000

166756
200038

oeve22
203706

200210

166272

207570
211532
27560

START:

RESTRT?

MAJORY

VT42PC=172000
KBDI1S=177560
P180S=175614
P121S=175610

KBDIB=KBD]S+2
P10IB=P108]S+2
P1@0B=P100S+2

P1BOC=COREND=-2
P1@1C=P120C-4
STKSRT=P10@1C-2

JMPD1S=162000

PWRFAL=24
.+ 3ROMORG

MOV #PWRFAL+2,SCR1
CLR @SCR1

MOV PC,=(SCRY)
RESET

MOV #7,P181S

MOV #1.KBDIS

MOV #201,P100S

MOV #STKSRT,SP

CLR L+ADR

MOV #JMPDIS, INP2
MQV INP2, (L,ADR)+.
MOV #DISPRG, (L.ADR)
MOV #PWRFAL+4,L,ADR
CLR RETL

JSR PC:DOCHAR

CLR VT40PC

JSR PC,GETCHR

NOP

NOP

NOP

MOV #MAJOR, ~(SP)

;VT40 PROGRAM COUNTER.,
;TTY INPUT STATUS,

;PDOP-1@ OUTPUT STATUS.
3POP-18 INPUT STATUS,

sTTY INPUT BUFFER,

iPDP-12 INPUT CHARACTER,
;POP-10 QUTPUT BUFFER,

;CHARACTER T0 BE SENT TO THE PDP-1@
s INPUT CHARACTER FROM 1@ PLUS ONE SAVE
,FIRST LOCATION OF STACK.

;THE VT-48 DISPLAY JUMP xNSTRUCTiON.
;POWER FAIL RESTART LOCATION.
3SET THE ORIGIN NOW!!!!

JPICK UP POINTER TO P.F. STATUS.
iCLEAR IT OUT TQ BE SURE.
iSET UP THE RESTART LOCATION.

JRESET THE BUS.
JINITIALIZE POP-1@ INPUT

SINITIALIZE TTY [INPUT,
JINITIALIZE POP-10 OUTPUT,

JSET UP THE STACK NoW!
;CLEAR ADDRESS POINTER,

CHARACTER

sPLACE A DISPLAY JUMP INSTRUCTION IN A REGISTER,

sMOVE IT TO LOCATION 8,

sMOVE ADDRESS POINTER INTO 2.

$SET UP WHERE WE WILL STORE CHARACTERS,
;PREPARE TO INSERT A ZERO CHARACTER,

s INSERT 1T NOW,

;CLEAR THE DISPLAY PROGRAM COUNTER AND START,

5GET A CHARACTER NOW,

i INSERT IN DISPLAY BUFFER NOW,

€a

166118
166112
166114
166116
166120
166122
166124
166126
166130

166132
166136
166140
166142
166144
166146

166152
166156
166160
166162
166164
166166
166179

166172
166174
166176

166200
166222
166204
166206
166210
166212
166214
166216
166220
166222
166224
166226
166230

166232
166234
166236
166240
166242
166244
166246
166250

210195
0222525
205025
pip225
205015
285011
A50021
240211
pee2a7

24767
210046
200421
835002
205722
266207

166152

204767
210004
206300
206300
106300
146116
146300

106116
012600
peB217

206300
206300
106300
126104
1063020
1026104
106300
106104
106300
106104
0104020
212604
00207

006100
206100
206004
106000
0a6024
106000
wB5726
pe@207

200124

166250

pRB104

DOCHAR?

GETB:

GETB4:
GETPB84:

GETBP=,

GET811!

GETB2:

GET831

MOV
CMP
CLR
MOV
CLR
CLR
B1S
MOV
RTS

JSR
MOV
BR

CLR
TST
ADD

JSR
MOV
ASL
ASL
ASLB
ROLB
ASLB

ROLB
MOV
RTS

ASL
ASL
ASLB
ROLB
ASLB
ROLB
ASLB
ROLB
ASLB
ROLB
MOV
MOV
RTS

ROL
ROL
ROR
RORB
ROR
RORB
ST
RTS

L+ADR,SCR1
(SCR1)+, (SCR1)
(SCR1)+

INP2, (SCR1) e
(SCRY)

tL . ADR)
RETL. (L. ADR)
INP2, (L, ADR)

PC

PC/GETSIX
RETY,~(SP)
GETP84

INP2

(INP2)+
GETBTB(INP2),PC

PC/GETSIX
RET1, WORK2
RET1
RETY
RET1
eSP
RET1

8SP
(SP)+,RETY
PC

RETL

RETY

RETY

WORK?2

RETY

WORK2

RETY

WORK?2

RETL

WORK?2
WORK2,RETY
(SP)+,WORK2
PC ‘

RETY
RETY
WORK?2
RETY
WORK?2
RET1
tSP)+
PC

3GET CURRENT BUUFER POSITION NOW.

iBYPASS CURRENT DISPLAY JUMP,

iCLEAR FUTURE ADDRESS FOR JUMP,

3;STICK IN TEMPORARY JUMP WHILE WE REPLACE CURREN
3A DISPLAY JUMP T0 ZERO,

sNOW REPLACE CURRENT DISPLAY JUMP BY THE CHARACT
;I1T'S DONE THIS WAY TO WASTE 2 CYCLES.,

;TO AVOID TIMING PROBLEMS WITH THE VT4D,

s AND FINALLY RETURN,

JGET SIX BITS NOW,

sSAVE THE CHARACTER NOW,
sBYPASS THE B8'ER

$RESET THE MAGIC REGISTER NOW.
; INCREMENT WHERE T0 GO.
;UPDATE PC NOW.

iGET A CHARACTER NOW.
iSAVE FOR A SECOND.

;SHIFT 70 LEFT OF BYTE

SPACK THEM IN.

;A GOOD 8 BIT THING.
;POP AND RETURN NOW,

;WORST CASE., SHIFT 4

;FINAL CHARACTER ASSEMBLED.
;FUDGE STACK.
s AND RETURN NOW,

vy-d

166252
166254
166256
166260

166262
166266
166272
166274
166300
166302

166324

166306
166312
166316
166320
166322
166324
166326
166332

166334
166349
166342
166346
166354
166352
166356
166360
166364

166366
166370
166372
166376
166400

16642
166406
166419
166414
166416
166424

166430
166434

166250

200000
A2AB26
220060
177770

PY4767
a20927
AB2546
v20027
P83143
220227

205726

212700
204767
205710
201774
211046
085020
242716
201764

022716
PB1761
822710
001007
211610

1921827

no1626
021027
201455

011610
212600
020027
201743
200207

285767
201410
105767
108005
216767
20567

105767
100014

P@0020
200040

200137

015772

200064

177600

000177

00175

200122

00114

nBB1L75

N27379
207200

0927354
227346

011124

027172

GET8TB

GETSIX!

GETCHP:

GETCHR:
GETCHL ¢

GETNP:

CHECK ¢

CHECKY:

+WORD
+WORD
+WORD
+WORD

JSR
cHP
BLT
CMP
BGT
RTS

ST

MOV
JSR
TST
BEQ
MOV
CLR
BIC
BEQ

CMP
BEQ
CMP
BNE
MOV
CMP
BEQ
CMP
BEQ

MOV
MOV
cMP
BEQ
RTS

TST
BEQ
TSTB
BPL
mMav
CLR

TST8
BPL

-2

GET81=GETSEP
GET82~GETSP
GETB3-GETBP
GETB84-GETEP

PC,GETCHR
RETY, #40
L+BAD
RET1,#137
L+BAD

PC

(SP)+

#P1@21C,RETL
PC,CHECK
@RET1
GETCHL
®RETL, - (SP)
(RET1)+
#2008, (SP)
GETCHP

#177,(SP)
GETCHP
#175,9RETY
GETNP
(SP),®RETY
@RET1,#122
RESTRT
ORETYL, #1414
LOAD

(SP),®RETY
(SP)«,RETY
RETL, #1753
GETCHR

PC

plegc
CHECK1
P1@0S
CHECK1
Pl80C,P100B
pPioocC

KBO1!S
CHECK3

sPUSH ZERO CONDITION BACK INTO NEVER-NEVER LAND,

;UPDATE THE STACK,

3SET UP POINTER TO THE INPUT CHARACTER,

;ANY CHARACTERS THERE?

;PUSH THE CHAR ON THE STACK,
;CLEAR THE CHAR GOT FLAG NOW,
;CLEAR AWAY PARITY NOW,

3 1F ZERO, GET ANOTHER

3 ALSO IGNORE RUBOUTS.,
;WAS IT A "g75"

s NOPE,

3YEP, RESET [N CASE OF ABORT.

;IS IT AN R

JYEP. RESTART

IS IT AN L
3YEP, LOAD,

sNOW DO THE FDUGING,

3 IF ALTMODE,

Loor

;00 WE WANT TO OUTPUT?

iWE DO. IS THE 1@ READY?

INO,
sNOT QUITE,
317'S READY,

SEND THE CHARACTER,

;AND THE SAVED CHARACTER,

sHEY, IS THE KEYBOARD READY?
s NOPE, NO LUCK.

Ss-a

166436
166442

166450
166454
166460
166462

166466
166472
166474
166502
166510

166516

166520
166522
166526

166532
166534
166540
166542
166544

166558
166554
166556
166562
166566
166570
166574

166576
166602
166604
166606

166610
166612
166614
166620

166624
166626

166630
166634
166636
166642
166644

116746
712767

PR4767
@35767
201373
212667

105767
1000211
116767
752767
n12767

2op2e7

n25002
912712
212706

205003
204767
105300
201373
204767

A04767
7210005
162705
n22705
nB1437
024767
2io001

204767
702010
195703
281751

#12700

175
824767
nRR167

110021
PRB763

P04767
060003
042700
P05305
040207

11129
200001

177726
027316

nB7130

927116
807112

177400
000007

172000
915770

200070

A00060
200072

200004
200002

200052

n0BR26

102
200110
177210

177276

177400

v11119

027270
027262
207072

CHECKZ2:

CHECKS:

CHECKA4:

LOAD:

L.LD2¢

L.LD3¢

L.BAD:

L.LD4:

L.PTR:

MOVB
MOV

JSR
TST
BNE
MOV

7STB
BPL
MOVB
B1S
MOV

RTS

THE

CLR
MOV
MOV

CLR
JSR
DECB
BNE
JSR

JSR
MOV
SUB
CMP
BEQ
JSR
MOV

JSR
BGE
TSTB
BEQ

MOV
LBYTE
JSR
JMP

MovB
BR

JSR
ADD
BIC
DEC
RTS

KBD[B,-(SP)
#1,KBDIS

PC, CHECK
pPi@0C
CHECK2
(SP)+,P1208B

P101S
CHECK4
Pi2iB.,PLB]C
#-400,P121C
#7,P101S

PC

0 A 0 E

INP2

#172000, C(INP2)

#STKSRT,SP

L+CKSM
PC,L.PTR
L«BYT
L.LD2
PC,L.PTR

PC,L.GWRN
L+BYT,L.BC
#4,L.8C
#2,.8BC

Ly JMP

PCsL .GWRD
L+BYT,L.ADR

PC,L.PTR
LiLD4
L.CKSM
L.LD2

(PC)+,RETYL
175,102
PC,SENDIT
RESTRTY

LiBYT, (L,ADR)®

L.LD3

PC,GETS8
LiBYT,L.CKSM

#177400,L,BYY

L.BC
PC

R

;YEP. SAVE THE CHARACTER NOW,

s AND REENABLE THE COMMUNICATIONS DEVICE,

;1S THE QUTPUT READY?

3 IF NOT, WAIT TILL DONE,
;AND THEN SEND OUT THE CHWARACTER,

;1S THE 10 TALKING TO ME, -

sNOPE, EXIT,

3GET THE CHARACTER NOW,

iMAKE SURE IT'S NONE ZERO.
;REINITIALIZE COMMUNICATION LINE,

3 AND RETURN,

JRESET TO FIRST 8 BIT CHARACTER,
;AND ALSO CLEVERLY STOP THE VvT4g,
;RESET STACK POINTER NOW,

sCLEAR THE CHECKSUM

sGET A BYTE NOW,

;IS 1T ONE?

sNOPE. WAIT AWHILE

;YEP., GET NEXT CHARACTER,

;GET A WORD,

$GET THE COUNTER NOW.

;CHOP OFF EXTRA STUFF,

sNULL?

;YEP. MUST BE END,

;NOPE, GET THE ADORESS.

; AND REMEMBER FOR OLD TIMES SAKE,

JGET A BYTE (DATA)

;ALL DONE WITH TWE COUNTER?
;YEP, GOOD CHECK SUM?
sNOPE. LOAD ERROR,

;SEND OUT SOME CHARACTERS NOW.
;"CTRL BAD"

sPLACE THE BYTE [N CORE,
;GET ANOTHER ONE,

5GET 8 BITS NOW.
3UPDATE CHECKSUM

sCLEAN UP THE BYTE NOW.
$UPDATE THE COUNTER,
;RETURN NOW,

9-a

166646
166652
166654
166660
166662

166664

166666
166672
166674
166720
166702
166704
166710

166712

166714
166716
166722
166724

166726

166730
166734
166740
166742
166746

166750

166752
166754

166756
166768
166762
166764
166766
166770
166772

204767
#10046
0R4767
000300
252600

ago207

oR4767
210046
284767
105703
201342
232716
201406
212700

175
204767
200000
20802776

VeR136

284767
225767
201373
210067
105000
000320
221366
p0@207

170256
115124
200000
201360
100000
160000
200030

f0e00l

177756

177758

177754

177730
200001

107
200026

177446

827036

206650

L+GWRD:

LeJMP:

LoJMPS

SENDIT?

DISPRG:

JSR
MOV
JSR
SWAB
BIS

JSR
MOV
JSR
TST8
BNE
BIT
BEQ
MOV
WBYTE
JSR
HWALT
BR

JMP

JSR
TST
BNE
MOV
CLRB
SWAB
BNE
RTS

 WORD
+WORD
+WORD
«WORD
+WORD
+ WORD
s WORD

+END

PC,L.PTR
L+BYT,~(8P)

PCHL.PTR

LeBYT
(SP)+,L.BYT

PC

PC,L.GWRD
L«BYT,~(SP)
PC,L.PTR
L+CKSM
L+BAD
#1,(SP)
LeJMPY
(PC)+,RETY
175,107
PC,SENDITY

W2

a(spr+

PC,CHECK
PidoC
SENDIT
RETL1,P100B
RET1

RETYL
SENDIT

pC

3GET A CHARACTER,

;SAVE FOR A SECOND,

$GET ANOTHER CHARACTER,

3NOW ASSEMBLE THE WORD,

3JAND RETURN WITH A 16 BITER,

3GET A WORD

JSAVE ON THE STACK.

JGET A CHARCTER,

;1S 1T ZERO?

JYEP. WHAT CRAP.

;IS IT 0oDD?

;YEP, START PROGRAM GOING NOW.
;TELL PDP-1@ WE'VE LOADED OK.,

;AND AWAY WE GO,

sPOLL THE OUTPUT DEVICE NOW,
;0UTPUT CLEAR?

iNOPE. LOOP AWHILE LONGER,
3SEND OUT THE CHARACTER,
;CLEAR THE BYTE,

;AND SWAP THEM NOW.

3 1F NOT EQUAL» REPEAT,

THIS IS THE INITIALIZING V742 PROGRAM WHICH WILL
JUMP TO THE PROGRAM AFTER THE POWER FAIL LOCATIONS
WHICH WILL JUMP T0 ZERO WHICH WILL JUMP BACK TO WERE.

1709256
115124
STARTX
STARTY
100000
JMPDIS
PWRFAL+4

;LOAD STATUS REGISTER FOR NORMAL OPERATION,

JSET POINT MODE., "NORMAL"™,
;X COORDINATE

;Y COORDINATE

;SET CHARACTER MODE,

3 THEN JUMP TO THE POWERFAIL LOCATION,

;7O DISPLAY USERS CHARACTERS.

L£-a

CHECK
CHECK4
GETCHL
GETPB4
GETSTB
GET84
KBDIB
L.BAD
L «GWRD
LLD3
PC
P1O1S
RESTRT
R1

RS
SENDIT
STARTY
WORK2

166402
166516
166312
166144
= 16625¢
166142
= 177562
166610
166646
166576
=%000007
= 175610
166034
=%002001
=%000005
166730
= PR1369
=%000004

SYMBOL TABLE

CHECK1
COREND
GETCHP
GETSIX
GET81
INP1
KBDIS
L.BC
Lo JMP
L.LD4
PWRFAL
P1008B
RET1
R2

R6

SP
STKSRT

.

166430
= 216000
166304
166262
166152
=%000001
= 177562
=%000005
166666
166624
= pope24
= 175616
=%000000
=%000002
=%000006
=%Q00006
= P15770
= 166774

CHECK?2
DISPRG
GETCHR
GET8
GET82
INP2
LOAD
L.BYT
L«JMPL
L«PTR
P101B
P1o0C
ROMORG
R3

R7
START
VT4@PC

166450
166756
166306
166132
166200
=%000002
166520
=%000000
166726
166630
175612
15776
166000
X000003
=%000007
166000
= 172000

CHECK3
DOCHAR
GETNP
GETS8P
GETY83
JMPDIS
L ADR
L.CKSM
L.LD2
MAJOR
P1BIC
P120S
RO

R4
SCR1
STARTX
WORK1

166466
166110
166366
3 166152
166232
= 1600008
=%020001
=%0000203
166532
166072
= Q15772
= 175614
=x00p000
=%000004
=%000005
= PPQ0R2
=%008003

8-a

START

INITIALIZE COMM
1/0 & UNIBUS

RSTRT:]

INITIALIZE REGISTERS
& START DISPLAY

GETCHR: —

GET CHAR FROM HOST
(IGNORE RUBOUTS

& NULLS)

CHARACTER
-~ DISPLAY
BUFFER

DOCHA j

CHAR
READY FROM
KYBD
?

TRANSMIT
CHARACTER

LOAD: ﬂ

STOP DISPLAY-
REINITIALIZE
REGISTERS

L.BAD:

GET A WORD
(BYTE COUNT)

TRANSMIT 102, &
175, TO HOST

L.LD2: —

| CLEAR CHECKSUM |

GET A WORD
(LOAD ADDRESS)

DECREMENT BYTE
COUNT, GET DATA
BYTE & STORE

INPUT BYTE

GET

SKIP NEXT
BYTE (=0)

Figure D-1 Communications Bootstrap Loader Flow Diagram

GET NEXT WORD
(START ADDRESS)

JUMP TO
START
ADDRESS

CP-0606

APPENDIX E
SCROLLING ROM BOOTSTRAP
LOADER PROGRAM - GT42

E-1

¢-3

SCROLLING ROM BOGTSTRAP FOR THE GT4@
BOOT,T16

94

MACY11,624 16=JUL=73 18104 PAGE 1

——— e -

+TITLE SCROLLING RQM BOOTSTRAP FQR THE GT4p

BOOTGT,T15 JUNE 24,1973

COPYRIGHT 1973, DIGITAL EQUIPMENT CORPORATION
146 MAIN STREET
MAYNARD, MASSACHUSETTS

21754

WRITTEN BY JACK BURNESS,

THIS PROGRAM IS THE SECOND VERS]ON THE THE ROM BOOTYSTRAP FOR
THE GT40 DISPLAY TERMINAL, IT INCLUDES SCROLLING AND AN END OF
MEMORY SFARCW FQOR THE | OADER,

«ENABL, ABS,AMA JASSEMBLER DIRECTIVES FOR ABSOLUTE BINARY OUTPUT
} NOTEY USE "MACDLX"™ TO ASSEMBLE THIS PROGRAM,

W+SBTTL DEFINITION SECTION

€3

SCROLLING ROM BOOTSTRAP FOR THE GT42

BooT.T15

5%
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
8g
84
82
83
84

DEFINITION SECTION

fgAang
293801
uanp"2
¢a2@e3
v3e924
PpBYAS
22886
weaeal

cogaep
1 Tab Y
“@2g22
AgegNy

rargrd

2@3275

sy 117
raggal
“eega
2@2ge¢5
082023

MACDLX 622(622)ny 26=JUN»73 16111

PAGE 1=%

) REGISTER DEFINITIONS

! BAS]C DEFINT]ONS

RP3IXA
RiE%1
R23%2
R3EX3I
R4Z%4
R55%5
SPE%6
PCEX7

I GT40 DEFINYIONS

’ meee mecmmmmemn

CHAR=RD
POINTRERY
TABCNT=R?2
SCANsR3

WOLD=R4

COUNTRaRS

) LOADER DEFINITIONS

} cereet mmcpeecee= -

L1BYTECHAR
L4 ADRBPQINTR
LBCRTABCNY
LCKSMaCOUNTR
INDEX3SCAN

JDEFINE STANDARD VALUES,

JCONTAINS THE INPUY CHARACYER,

JPOINTS TQ NEXT INSERYTION BYTE [N DISPLAY BUFFER
JCHARACTER CAYUNTER FOR TWE "TAB"™ FEATURE,
JGENERALLY CONTAINS A POINTER WHICH

J1S USED WHEN SCANNING MEMORY FOR SQOMETHING,
JTYPICALLY A TEMPORARY WWICH 1S USED Y0 RETAIN
JA VALUE FOR A SHORY TIME,

JTYPICALLY USED AS A COUNTER,

JCHARACTER INPUT FOR THE BQADER. y

JCURRENT MEMORY ADDRESS TQO 8f | OADED,

INUMBER OF DAYA [TEMS TO LOAD,

JCHECKSUM ON THWE INPUT DATA, .
JINDICATES HOW TO ASSEMBLE THE 8 BIT CHARACTER'

-3

SCROLLING ROM BOOTSTRAP FOR THE GT4p

800T,T15

110
114
112
113
114
115
116
117
118
119
120
124
122
123
124
125
126
127
128
129
132
134
132
133
134
135
136
137
138
139
140
141
142
143
144
1458
146
147
148
149
1%¢
151
152
133
154
1%5
156
157
158
159
162
161

DEFINIT{ON SECTION

166228

175610
175612
175614 -
175616

177568
177562

17284€
172022

ICLL)
(97808
uB7776
200804
37012
paggan

fg5e15
7anL75

162070
173200

MACOLX 622(622) a4

26=JUNm73 16111

PAGE 1-2

MAJOR SYSTEM DEFINITIONS

mrwer sreege smerewe==ge

ORIGIN®166080

DL111SE175610
DL111BaD| 11]§%2
DL11AS=p[111R+2
DL110B20_1108%2

KBD]S%177569
KBDIBEKBD1Se2

GT40PCa172020
GTAOSREGT42PC+2

RSTART=1000
RLIMIT=z7p20
TMPEND=27776

CORSTR=4

JMPANDBBL IMIT*10,

NyMLIN=32,

CRLFa5015

ALTMOD=175

DISJMPz1402000
DISTOP=173007

JORIGIN OF THE BOOTSTRAP,

JINPUT STATUS REGISTER OF OL141
JINPUT CHARACTER FROM DL13d
JOUTPUY STATUS OF THE DLt1
JOUTPUT CHARACTER Y0 TWE DL1g

IKEYBOARD INPUT STATUS
JCURRENT CHARACTER FROM KEYBOARD,

JGY42 PROGRAM CQUNTER,
JGT42 STATUS REGISTER ADDRESS,

ISTART OF THE DISpPLAY BUFFER

JAPPROXIMATE END OF THE D]SPLAY BUFFER,
JLOCATION OF INITIALIZATION STACK,

JLOCATION OF PDP=1l TRAP VECTOR,

IWHERE THE POINTER IS YO FIRST cWAR ON SEREEN
JNUMBER OE LINES ON TEXT TO SHOWw ON THE SCREEN

JCARRIAGE RETURN w LINE FEED
) THE "KEY® CHARACTER C[1,E, ALTMODE],

JTHE GY4@ JMP INSTRUCTION
JTHE GT42 STOP DISPLAY INSYRUCTION,

+SBTTL INITIALIZATION AND RESTART CoOE

S-3

SCROLLING ROM BOOTSTRAP FOR THE GT4p

BOOT,T16

163
164
155
166
167
158
169
17¢
173
172
173
174
175
176
177
173
179
124
141
172
193
1R4
12
126
187
128
149
172
191
192
153
104
19>
196
197
198
199
20
2.1
272

223

166470
1662422
166¢1¢
1eow14
1647292
16574

lobyu26
174,32

1562306

165749

166042

186¢44

165446
165¢52
166254

ViRdLuds
12737
“12776
AEDed7
“ga337
Fuvpena

f127ey
+1272%
vebE2d

GRv776

ve2743

2136

125737
18¢375
005037

Cienen7
ra7776
175014
166652

ceilaig
166042

175614

175614

175610

MACY11,624
INITIALIZAT[ON AND RESTART CNDE

STARTH

ENDCARY

MOTHER 1

131

(SORIGIN

RESETY
OV

INC

JSR
JWORN 7

MOV
~OV

MOV

TSTR
BPL
CLR

16-JJL=73 172104 PAGE 1«3

GT42 BOOTSTRAP CODF

mree CeeeC®CGS Tmww

JDEFINE ORIGIN OF THE BOOTSTRAP,

COLO INITIALTZATION CODE

~mm9 ESsC=CgImCew= ="aw

JRESEY ALL HARDWARE NOW,

#7,0L1118 FINITIALIZE DL~11 INPUT NOW,
#TMPEND, SP JA GOOD TEMPORARY STACK
nL110S 1SET BREAK BT
SCAN,QUTLIT JFOR 2 CHARACYER TIMES

iSNED TWO ZERQ'S
#CORSTR, SCAN 1GET ADDRESS OF RAD CORE TRAP VECTOR,
#NOTHERE, (SCAN)* JAND INSERT A POINTER TQ US THERE,
(SCAN) + $1NOW CLEAR ALL OF MEMORY BEYOND TWE POINTER,
ENDCOR) JUNTIL WE RUN OUT OF MEMORY AND TRAP,
-(SCAN) JWHEN WE TRAP OUT, WE CQME HERE,

1WE BACK UP POINTER TO GOOD CORE,
INOTE THAT IF WE TRAP OUT AGAIN, IT
11S STILL Oks BECAUSE WE WILL LOOP
fUNTIL WE GET A GOOO CORE ADDRESS,

SCAN,SP IWHEN WE GET ONE, THAT IS LAST LOCATION
JIN THE MACHINE, AND HENCE OUR SP,

nLi17s JSEE]F BREAK IS DONE

1% INO GO BACK

oL11n08 JICLEAR BREAK BIT

RESTARY INITIALIZATION CODE WHEN COMMUNICATIONS 1S WORKING,

SRR eS e CSTECITICPTRNCT CeeT geRe SPLERTereTeww® ww ecevewew®

9-3

SCROLLING R04 BOOTSTRAP FOR THE GT42 MACDLX 622(622)«d 26=JUN=73 16111 PAGE 1~4
800T.T15 INITIALIZATION AND RESTART COOE

217 TR eTe AT gEeSteETeRoTe SEeS STET ecCcoCeaewene- " ®o¥ TeJeTeew
218

219

220

221 166860 152726 427776 RESTRT! 8IS #TMPEND, SP JFORCE THE SP TQ LIMIT OF EXISTING CQRE,
222

223

224 166964 12773 ub7ep MOV #BLIMIT*NUML IN*NUM[[N,SCAN INOW WE WILL FILL THE KEY AREAS OF TWE
225 166470 12772 2€d34¢ MOV BNUML IN, TABCONT JDISPLAY BUFFER WITH INITIAL CReLF!S,
226

227 1664374 112723 205815 SETLPL1 MOV #CRLF ¢ (SCAN)» JINSERT A CRLF NOW,

228 166170 =p53+2 nec TABCNT JAND LOOP UNTIL DONE,

529 166172 133374 BGT SETLPL JTHUS DISPLAY CQRE IS ALMOST C@RRECT,
Ay]

231

232 1661,/4 1112773 166432 MOV #SETUP,SCAN INOW WE WILL INITALIZE CORE FOR THE
ggs JDISPLAY, PICK UP POINYER YO LIST,

4

235 166119 12372 SETLP21 MOV (SCAN) 4, TABCNT IGET NUMBER OF ITEMS YO INSERT,

236 166112 31475 8EQ SETOUN JIF ZERQ, WE ARE DONE,

237 166114 1123741 MOV (SCAN) +,POINTR JPICK UP FIRST CORE ADDRESS POINTER,
238

239 166116 12321 SETLP31 mMQV (SCA) e, (POINTR) + IMOVE OVER A DATA ITEM NNW,

24g 166120 135372 NEC TABCNT JALL DONE?

241 166122 %3375 BGT SETLRS INOPE, MNVE OVER THE NEXT,

342 166124 vp2771 AR SETLP2 JYES, GET NEXT MAJOR LISY YO INSERT,
43

244

245 166126 412771 2¢6776 SETOUNI MOV #B IMIT=2,POINTR JESTABLISH TWE BUFFER POINYER NOW,
246

247

248

249

25p

251

252

253

254

2%5

256

257 «SBTTL vT25 SIMULATOR

L3

SCROLLING ROM BOOTSTRAP FOR THE GT42

BOOT,T15

2%¢9
260
261
262
263
264
265
266
267
268
269
279
271 -
272
273
274
275
276
277
278
279
28¢p
231
282
283
284
285%
28¢
237
288
289
290
291
292
293
2%4
295
296
297
298
299
3ap
3y
372
393
34
3as
3¢
3ay
3as
329
310
314
312

166132
166136
166142
166144
166158
166152
166154
166169
166164
166166
16617€

166172
166174
166176
1642078
166272
1662074

166276

166212
166216
166222

166222
166226
166232
166234
166248
166242

166244

166246

166252
166254

VT@a5 SIMULATOR

w4737
H20u427
vRa2373
»24927
7920206
“10p¢3
162743
P2a327
193362
" P6303
668377

rav426
APEAnE
ca3411
«3P437
Apge22
AAD424

"12772

V34737
5292
vAr744

142744
£24737
505222
32772
731372
GcEer733

111705

166564
#74177

237440

AQApR7
PLeYny

177777

166359

L2040
166350

186y17

ag2425

»R5837
9Ar726

172¢a2

MACOLX 622(622) =4

NXTCHR

CR1

NORMAL I

TAB1

BELLY

JSR
CMP
BGE
CMP
BGE
MOV
syB
CMP
BH1S
ASL
ADD

BR
RR.
BR
BR
BR
AR

MOV

JSR
INC
BR

MOV
JSR
INC
81T
BNE
RR

MOVE
R

CLR
AR

26=JUN=73

PAGE 1-5

VTB5 (SCROLLING) PORTION OF THE RQOTSTRAP

PCyGETCHR
CHAR,#177
NXTCHR
CHAR,#42
NORMAL
rHAR,SCAN
#7¢SCAN
SCAN,#7
NXTCHR
SCAN
SCAN'PC

BELL
NORMAL
TAB

LF

vT

FF

" #=1,TABCNT

PCy INSERT
TABCAT
MXTCHR

#40,CHAR
PC, INSERT
TABCNT
47, TABCNT
TAB
NXTCHR

(PCY,COUNTR

- FFLOOP

GT40SR
MXTCWR

JGET A CHARACTER NOW,

J1S 1T OUT OF RANGE?

JYEP, GEY ANOTWER ONE,

JI1S IT A PRINTING CHARACTYER?
JYES, IT'S A NORMAL PRINTING CWARACTER,
JMOVE IT QVER SO WE CAN PLAY WITHW IT,
JB1AS SO THAT BELL [7) 18 ZERO,

JIF CHARACTER 1S LESS THEN BELL OR
JIGREATER THEN CR, THEN]GNORE,

JIF GOOD, MAKE 1Y WORD INDEX,

JAND GO TQ THE CORRECT ROUTINE,

173BELY,
1123RACKSPACE

J113TAB

J12=LINE FEEN ELF)
J133VERTICAL TAB [VT]
114cFORM FEED CFF)
J15%CARRIAGE RETURN [CR]

JRESEY TAB PASITION ON A CR, AND
JFALL THRQUGw YO INSERT THE EWARACTER,

JINSERT THE CHARACTER IN THE BUFFER,
$UPDATE TAR PQSIT]ON NOW,
JAND GET NEXT CWARACTER,

JION A TAB, I~SERT BLANKS UNTIL THE
JNEXT CHARACTER POSITION IS 4 MULTIPLE
10F 8,

JARE WE DQNE YET?

INOPE 4

JYES,

JTHIS PUTS THE LOW BYTE AF THE
JBRANCH CODE IN COUNTRaSAVE 4 WORD

}
JRING BELL =WRITE IN GT428R
JAND LOOP BACK

8-3

SCROLLING ROM BOOTSTRAP FOR THE GT4g

BOOT,T15

313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
339
331
332
333
324
335
33
337
338
339
34g
344
342
343
344
345
346
347
348
349
350
351
352
35

354
355
3%6
357
Isg
359
360
361
362
343
344
365
366

1166256

166262
166266
166272
166274
166276

166320

166374

166319
166312
166314
166320
166322
166326

166330
166332
166336
166342
166346

166350
166352
166356
166349
166364
166366
166372
166374
166422
166402
166404

166406
166410
166414
16642¢

166422

VTAS SIMULATOR

v12775

1112706
134737
#O5325
xA3372
Cga71%

712746

1137723

12234¢
v31476
©28327
173773
L12773
cen77e

J952¢3
242723
35108337
UA4737
TESANG

117221
432741
*@1021
#2n127
183410
s1010d
%127"1
r94737
735923
205913
20207

w221?1
312711
712741
BT R

rge237

62040

nedegte
166354

166132

L2

7400
341090
ADRZY

0g7912
166350

A323a1

700

#2128
166476

166474
ledgag

MACDLX 622(622) 1

FFI

FFLOOP!

LR

LFSuUst

LFLoop

LFOUND!

INSERT!

INSRTL

INSRTX}

MOV

MOV
JSR
DEC
BGT
BR

MQV

MOV

CMPB
BEQ
CMP
RLO
MoV
BR

INC
BIC
MOV
JSR
CLR

MOVB
BIT
BNE
CMP
BLO
MOV
MOV
JSR
cLR
CLR
RYS

CMP
MOV
MOV
CLR

RTS

2h= JUN=7?73 36111

ENUM[TN COUNTR

#12)CHAR
PC,LFSUB
COUNTR
FFLOOP
MXTCHR

ENXTCHR)= (SP)

JMPADD,SCAN

(SCAK)#,CHAR
LFOUrD
SCAN, #BLIMIT
LFLONP
#BSTARY,SCAN
LFLOOP

SCAN
#1,SCAN
SCAN,JMPADD
PC, INSERT
CHAR

CHAR) (POINTRI®
#1,POINTR
INSRTX

POINTR, #BLIMIY
INSRTL
POINTR,SCAN
#BSTARY,POINTR
PC, INSRTL
tSgAM)+

(SEAN)

PC

(POINTR)+, (POINTR)
#HEADER, (POINTR)
#D1SJMP, - (POINTR)
«(POINTR)

PC

PAGE 1-6

JFORM FEED 19 DONE BY INSERTING LF'S,

JMAKE THE CHARACTER A | INEFEED,

100 A LINEFEED,

JDONE?

JNOPE, KEEP SENDING THEM,

JYES, NOW RETURN, DO NOT FALL THROUGHW,

JRETURN TQ0 NXTCWR AFTER PROCESSING
JTHE LF Ry FAKING A JSR,

JGET POINTER To FIRST CWAR QN SCREEN

JAND LOOK FOR & LINEFEED,

1GOT 1T, SEARCH MAS ENDED,

JARE WE AT END QF BUFFER?

INOPE, KEEP PN LOOKINGY

J1F AT Tnp, RgSET YO BOTTOM OF BUFFER
JAND KEEP NN LOOKING,

IWE'VE GNT THE LINE FEED, STOP SHOWING
JFIRST LINE By CWANGING THE nDISJMPw
JINSTRUCTION TO FIRST CHAR BEYOND (F,
JINSERY THE LF IN THE BUFFER,

JAND THEN INSERY ONE NULL CHARACTER RECAUSE
JTHE "DISUMP" ADNRESS MUST BE FyEN, AND
JTHIS GUARANTEES WE WILL NOT LOSE A

JA GOOD NATA CHARACTER, wE FALL THROUGH

JTO INSERY THE NULL IN THE BUFFER,

JSTICK IN TRE CHARACTER nQW,

3IS NExT POSITION EVEN OR 00D?

1000, NO PRORLFMS, SPACE IS5 ALLOCATED,
JEVEN, ARE WE AT THE END OF THE BUFFER?
INO, JUST MAKE ROOM FOR ANOTWER WORp,
JAT THE END, MOyE THE STUFF Y0 THE
IBEGINNING OF TWE BUFFER,

JCALL THE RQUTINE TO SAVE SPACE,

JAND CLEAR UP THE INSTRUETIONS AT THg
JEND OF THE BUFFER,

JAND THEN RETURN,

IBYPASS THE "DISJMPM™ By ADDING 4 TO POINTR,

INOW INSERT THE DISJMP INSTRUCTION T0 OUR WEADER
JAND IT'S ADNRESS (PUT TWEM IN BACKWARDS),

IMAKE AVAJLARLE A NEW CHARACYER SPOT,

JFINALLY RETURN TO THE CALLER,

6-3

SCROLLING ROM BOOTSTRAP FOR THE GT4K
VTa5 SIMULATOR

rOOT, 715

347
368
34
370
374
372
373
374
375
376
377
378
379
3¢
381
382
383
384
385
386
387
358
339
378
391
392
393
394
395
396
397
398
399
4mp
431
492

°3
474
425
476
427
408
429
419
411
412
413
414
415
416
417
418
419
42p

166424

166432
166434
166436
166440

166442
166444
166446
166452
166454
166460

166464
166466
166472

166472

166474
166476
166529
166572
166524
16651¢@
166512

212737

agARA
20833
166424
apa2ag

naeAgr?
36776
Y 1 R
160902
162¢2d
1620782

ABAA "L
172823
166474

*A%eng

183334
A8%177
116124
171349
ngeune
183324
162¢70

ad1a0@

166474
J01ure
14670

Mi13%52

247910

172900

MACOLX 622(622)=1 26=JUN~73 16111 PAGE (-7

GTBUSE!

SETUPI

HEADER

MOV

JHORD
L WORD
JWORM
+WORN

WWORN
JWORD
+WORN
+WORN
+WORN
+WORN

s WORN
o WORN
ywORN

1 WORN

+WORD
+WORD
yWORN
JWORR
s WORN
+WORN
JWORD

#BSTART,GT40PC

INTTTAL1ZATION

2

330
6TBUSE
200

7
RLIMITw2
e

NISJMP,HEADER
A1SJMP,BSTART

NISYMP,BLIMIT=NUML IN=NUMLIN

1
cT40PC
HEADER

”

JON A& BUS ERRQR, WE MERELY RESTART TWHE GTAQ AT

JTHE RYD FOR TWIS ROUTINE
J1S THE FIRST WQRD OF THE TARLFE
JBELOW=IT SAVES A WOQRD!

TABLE FOR THE SCROLLER

JINITIALTZE 2 WQRDS,~=~A_ SO RY! FROM ABOVE
JSTARTING AT LOCATION 332

JFIRST WORD 1S POINTER Tn BUS ERRQOR ROUTINE,
JSECOND NORD IS NEW STATUS WORD ON INTERUPY,

JINITIALIZE THE END OF TWE BUFFER TQ

JA CLEAR SPACE YO INSERT TME CWARACTER,

JTHIS IS TWE "AUNNING™ SYART, THIS IS
JFOLLOWEN By A DISJMP TO OUR HEADER BLOCK
JAND THEN A nISJUMP TO THg START OF TWE BUFFER

JFINALLY START THE GT40 GOING AT
JTHE POSIYION INSTRUCTION IN TWE
JHEADER BLOCH,

JEND QF INIT CHDE

~EADER BLOCK FOR THE SCRO[LER

103334

177

116124

1713490

72,1352

103324

nISYMP, JMPADD=2

JENABL CHAR MQDE,BL INKING

JA BLINKING ROX-RUB OUT}

JGO TO PDINY MODE

JLOAD STATUS REGISTER

JPOINT T UPPER LEFT

JBACK vO0 CHAR MQDE

JAND TO THE CHANGING JUMP [INSTY,

JAND A DISJMP TO THE FIRST CWAR ON SEREE

oL-d

SCROLLING ROM BOOTSTRAP FOR THE GT4e MACOLX 622(622)my 26JUN=73 16111 PAGE 1-8
ROOT,T15 VT25 SIMULATOR ‘

421
422
423
424

425 , +SBTTL COMMUN]CATIONS AND MISC, SUPPORT ROUTINES

LL-3

SCROLLING ROM BOOTSTRAP FOR THE GT4p
COMMUNICATIONS AND M1SC, SUPPORT ROUTINES

BOOT,T15

427
428
429
43¢
434
432
433
434
435
436

437

438
439
440
444
442
443
444
445
446
447
448
449
45¢
454
452
453
454
455
456
457
458
459
4649
461
462
463
464
465
466
467
468
449
470
471
472
473
474
475
476
477
478
479
43¢p

166516
166522
166524
1665302
166536
166542
166544

166546
166552
166554
166562

166564
166578
166574

166576
166622
166676
166610
166614

166616
166624

185737
187911
1137¢@
212737
042742
ag1765
ra82a7

145737
183361
113737
“BA755

7B4737
“20027
’91625

"34737
veae27
seisal
£2¢e27
201215

712737
va0137

175618
175612

22e8¢7
177670

177569
177562

166516
322175

166516
ne2114
99122

173¢¢@
166060

175610

172616

207010

MACDLX 622(622)e1

GETDL

GETOLLY

GETCHRI1

PRESTRY

1578
BPL
MOVE
MOV
BIC
REQ
RTS

TSTB
BPL
MQvs
BR

JSR
CMP
BNE

JSR
cMP
BEQ
CMP
BNE

MoV
JMP

262 JUN=T3

16113

PAGE 1=9

COMMUNICATIONS HANDLING RQUYINES

THE OL=11 WANDLER

e eTete peerTewe

PLLLtS
GETOL1
DLL11B,CHAR
#7,0L1L1S
#n200)CHAR
GETDL

rC

KBDIS
GETOL
KBDB,0L1108
GETOL

JCHECK THE M0ST INPUT STATUS,

JHOST DIN NQT SEND ANYTHING, YET,
JHOSY SENT US A CHARACTER, PROCESS IT,
JREENABLE THE WOST TELECOMMUNICATIONS,
JMAKE CHARACTER. JUST SEVEN B1TS,

JIF NULL, IGMORE 1IT,

JELLSE RETURN NOW,

J0I0 USER YYPE A CHARACTER?

JNO, GQ BACK AND CHECK HOST MACHINE,
JIMOVE THE CHARACTER YO THE WARSY,
JAND CHECK AGAIN FOR INPUT,

THE "GET CHARACTER" RQUTINE

- wow opeeeweosw

PCGETDL
CHAR, #ALTMOD
GETEXT

PC,GETDL
CHAR,#'L
LOADER
cHAR,#'R
GEYEXT

#D1STOP) JMPADDw2
RESTRT

IGET A CHARACTER FROM THE WOST NOW,
118 IT AN wALTMQODE®
INO, EXIY NOW,

JIYES, GET ANQTWER ONE NOW,
118 1T AN wye

JYES, START LOALING NQW,
'Is !T AN an

INQ, IGNORE THE ALTMODE AND JUST RETURN THE CHAR

JYES, RESET, StoP DISPLAY BY INSERTING A "DISTOP
J INSTRUCTION [N THE BUFFER, ANp RESTaART,

cl-3

SCROLLING ROM BONTSTRAP FOR THE GT4e MACDLX 6221622)~1 26=JUN=73 16111 PAGE 1-190

BOOT,Ti5 CUMMUNICATIONS AND MISC, SUPPORT ROUTINES
489
482 } THE "GET A SIX BIT CHARACTER" ROUTINF
483 b - e - eew cee o= wree-- Pecnam.
484
485
48¢ .
487 166639 204737 166564 GETSIX! JSR RC,GETCHR JGET A CHARACTER NOW,
489 166640 182517 BLT L+BAD INOPE, ABQRT
490 166642 ©23927 WILZT CMP CHAR, #137 J1T1S BIG ENOYGH, IS 1T 100 BlG?
491 166646 033114 RGTY LBAD IYEP, ABORT,
492
493 166658 s3@2:7 GETEXT! RTS PC JRETURN TQ THRE CALLER,
494
495
496 } TH1S OUTPUTS TWO CHARACTERS VIA A
497 } JSR SCAN,OUTLIT
498] *TWQ CHARACTERS'
499
53¢ 166652 112337 175616 OUTLITH MOVS (SCAM)+,DL1108B
541 166656 112337 175616 MOVB (SCAN) ¢,DL1108 JDOUBLE RUFFERFD
572 166662 202203 RTS SCAN JRETURN
543
504
535
506
527
508
549
210 } THE "GET AN EIGHT BIT CHARACTER" ROUTINE
511) =-® TS S Sw-es Zes ssoscesesy e-ecess
512
513
514
515 } THIS ROUTINE DIFFERS FRQOM TWE PREVIGIS ROUTINES
516 } IN THAT IT WILL TAKE SIX BIT CHARACTERS AND ASSEMBLE -
517 1 THEM FOR THE _LOADER YO USE, NOTE THAT FROM TW]S POINTY
518 } ON WE WILL SWITCH YO THE LOANER DEFINITIANS OF THE
519 1 REGISTERS, THUS THE CHARACTER IS RETURNER [N
522 l REGISTER "L ,8YT" RATMER TYHAN CHAR (YHQUGW YHFY ARE
521 } PHYSJCALLY THE SAME),
522
523
524 ‘ v
325 106664 04737 166030 GETstr JSK PCIGETSIX JGET A SIXBIT CHARACTER,
526 16667€ 110@46 MOV LsBYT=(SP) JSAVE IT QN THE STACK,
327 lees72 1105723 ST (INDEX)+ JUPDATE INDEX TO NEXT ITEM (ALL ARE #2)
528 166674 70163 166676 JNP GET8TB=2(INDEX) JAND DISPATCH ACCORDING TO TWE INDEX,
529)
53¢ 166732 30474 GET4TBI BR GET81 VINDEX321 ASSEMBLE FIRST CWAR
SIT1 166742 873416 ' B8R GEY82 JINDEXa4y ASSEMBLE SECOND CMAR
532 166774 ryn432 RR. GET83 JINDEX361 ASSEMBLE THIRD AND LASY CHAR
533 $INDEXs81 RESEY INDEX 70 @ (21 AND RETRY,

574

€13

SCROLLING ROM BOUOTSTRAP FOR ThE 6T4¢

ROOT,T15

535
53¢
537
538
529
54p
541
542
543
544
545
546
547
54g
549
559
551
552
553
584
555
556
557
5%8
559
560
561
562
563
564
565
546
567
ELY)
569
570
571
572
573
574
578
576
577
578
579
520
581
582
533
504
585
586
587
588

166726

166712
166716
166720
166722
166724
166726
166730
166732
166734
166736

166742
166742
166744
166746
166750
166752
166754
166756
166769
166762
166764
166766
166770

166772
166774
166776
167370
167302
1679074
167906
167010

112773

454737
13324
136302
06372
166328
136116
196328
196116
312670
A4A267

236304
i CRIY
196372
166174
126379
106174
196372
106104
19630¢
116144
10409
12614
elol'dr

206108
126140
- IrER)
126070
a6l 4
106929
85726
&Ly

ngaAAA2

166630

MACOLX 622(622)«1 24=JUN=73
COMMUNICATIONS AMD MISC, SUPPQRT ROUTINES

GET84}

GETS114

GET82}

GET33y

MOV

JSR
MOV
ASL
ASL
ASLE
ROLB
ASLB
ROLB
MOV
RTS

ASL
ASL
ASLB
ROLB
ASLB
ROL.B
ASLB
ROL,8
ASLB
ROLS
MOV
MOV
RTS

ROL
ROLB
ROR
ROKRB
ROR
RORB
TST
RTS

#2, INDEX

PC,GETSIX
L,BYT,ROLD
LsBYT

L.BYT

L.BYT

(SP)

L,BYT

(SP)
(SP)e)L,BYT
PC

LsBYT
L.BYT
LsBYY

HOLD

LBYT

HOLD

LBYT

HOLD

LsBYT

4OLD
HOLD,L,BYY
(SP)e,HOLD
PC

LiBYY
L.BYT
=OLD
L.BYTY
HOLD
LeBYT
(SP)e
PC

16111

PAGE 1-11

JTHE FOURTW INDEX 1S TWE SAME AS THE FIRST
JINDEX, JyST RESET IT AND FALL THROUGH,

JGET ANQTHER CHARACTER NOW,

JAND PRESERVE 1Y FOR NEXY TIME TWROUGH,
INOW THROW AwAY LEFT MOSY Bl?S OF

JTHE 8 BIY CWARACTER, NOw MERGE IN

JTHE LEFT Twh BITS OF THE

INEwW SIX BIT CWARACTER WITH THE SIX
}JBITS FROM THE CHARACTER ON THP

JSTACK, 1SY CHARACTER |S NOW ASSEMBLED,
1SO WE'LL RETURN IT TO THE USER,

FAND THEN WE SmALL RETURN Y0 HiM,

JTHE SECOND FKARACTER {S CREATED FRQM

JTHE 4 RIGHT BITS OF THE PREVIOUS CHARACTER
JAND TWE FOUR MIDOLE BITS OF TWE PRESENT

18 BIT CHARACTER,

JWE WILL CREATE THE NEW R BT

JIN THIS REG!STER, SINCE 1Y

JIMORE CONVIENT, WE WILL MOVE OVER THf
JANSWER AT THE END,

JONE MORFE Y0 GO

1DONE,

IBRING OVER THE VALUE,

JAND REMEMRER YME LAST CHARACTER WE RECEIVED,
JAND RETURN TQ TWE CALLER,

JFINAL CWARACTER 1S EASY, JUST A
}SIMPLE MERGER OF LEFY TWO BITS OF
JPREVIOUS VALUE WITH RIGWT SIX B1TS
JOF LAST (4TH) CHARACTER RECEIVED,

JAND WE ARE PONE,
JFINALLY THROW AWAY SYACK,
JAND RETIRN TQ THE CALLER,

vl-3

SCROLLING ROM BONTSTRAP FOR THF GT4g2.

BOOT,T15

589
50p
591
592
593
594
595

COMMUNICATIONS AND MISC,

MACDLX 622(622)=1 26w JUNm?73
SUPPQRT ROUTINES

SBTTL THE _OADER

16111

PAGE 1=12.

Gl-3

SCROLLING ROM BOOTSTRAP FOR THE GT4Q
THE LOADER

ROOT,T15

5¢7
S5eg
599
6i1g
6v1
602
693
6F4
695
60'g
637
608
679
610
611
612
613
614
615
616
617
618
619
6242
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
652

1670112
167328¢

167v22
167224
167030
167232

1670324

167240
167244
167046
167452
167¢56
167060
167¢64

1672366

167272

167874
167076

1671202
1671024
167106

167119
167112

167114
167122
167122
167124

167126

12737

-5y

ALY M)
v@a737
135378
91373

734737

7Q4737
@*18p22
162772
22272
A01433

034737

nidpvl

34737
L2206
1257¢5
391751

*24337
175
“82646

1100823
w@a765

194737
;’,‘\6;1‘3!/\5
1a53.2
~39207

124737

17302

167114

167114

167126

gAGn4
LELPLY)

167126

167114

166652
112

166664

167114

"g721¢

MACOLX 622(6223=3 26~JUN=73 16111 PAGE 1-13

LOADERT MQV

Lil02y

L0311

LBADY

LlD4

LiPTRY

CLR

CLR
JSR
DECB
BNE

JSR

JSK
MOV
syB
CMP
BEQ
WSK
MOV

JSR
3GE
TSTB
BEQ

WJSR
W«BYTE
BR

MOVB
B8R

JSR
ADD
DEC
RTS

L1GWRDI JSR

THE _OADER

#DISTOPJMPADOS2
INDEY

1.+ CKSM
PCeLPTR
LeBYT
L.LD2

PC|L|PTR

PCiL GWRD
LeBYTeL BC
#4,L,8C
#2,L,8BC
LiJMP
PC.L.GNRD
LeBYT, 1ADR

DCQL.PTR
L.LD4
L+CKSM

L.LD2

SCAN, OUTLIT
ALTMOD, 'R
PRESTRT

LiBYTo(L,ADR)*
LaLD3

PC,GETE
LyBYTyL,CKSM
L+BC

PC

PCyL PTR

JSTOP THE GT42 BY INSERTING A ®"DISTQP"™ IN THE LI
JRESET THE 8 BIT ASSEMBLER TN THE FIRSY CHAR

JCLEAR THE CHEEKSUM
JGET A BYTE NQW,

JIS 1T A ONE (HEADER)?
INO, WAIT FQR THE ONE,

JYES, SKIP QVER THE NEXT GHARACTER NOW,

JASSEMBLE A WQRD NOW,

JMOVE OVER TN THE COUNTER,

JREQUCE TQ ACTUAL DATA CnUNT,

JANY DATA AT aALL?

INO, MUST Bg gMp

JIYES, ASSEMBLE A DATA WORD NOW,

JAND TWIS MURT BE THE FIRSY ADDRESS,

IGET A BYTE rF DATA NOW,

JALL DONE?

JYEP, COUNTYER 1S MINUS, CHECK CHECKSUM,
JCHECKSUM 600D, GET NEXT CBMMAND,

JBAD LOAD INFORM HOS?T

JSEND ALTMODF R
JAND RESTART TWE DISPLAY,

JINSERY RYTE [NTO MEMOQRY,
JAND GET TYWE NEXT BYTE,

JASSEMBLE AN 8 BIT CHARACTER NoW,
JUPDATE THE CHECKSUM NOW,
IDECREHENT THE CHARACTER COUNTER,
JAND RETURN TQ THE CALLER NOW,

JASSEMBLE A WoRD, FIRSY RET A CHARACTER

9i-3

SCROLLING ROM BONTSTRAP FOR THE GT40

BoaT,T15

651
652
653
654
655
616.
657
658
639
662
661
662
66
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
689
681
632
683
684
685
636
637
688
689

167132
167124
167140
167142
167144

167146
167152
167154
167160
167162

167164
167179

167172
167176

167226
167272

THE LQADER

#LAI46
@a34737
faazee
552600
G327

64737
=10p46
104737
1257v%
"21346

w34337
175

32716
131491

cgagng
"30136

167114

167126

167114

166652
197

DELTEY

MACDLX 622(672)=1

LedMP

LHALTY
LoJMPLL

MOV
JSR
SWAB
8IS
RTS

JSR
MQV
JSR
7818
BNE

JSR
WBYTE

BIT
BEQ

HALT

JMP

26=yUN-73

LeBYT)= (SP)
PCyL,PTR
L.BYT
(SP)+,L,BYT
PC

PclL.GNRD
L,BY?,-(SP)
PCiLPTR

L +CKSM
L+BAD

SCAN,OUTLLY
ALTM0D, G

#1,(SP)
LiJMPL

e(SP)+

16111

PAGE 1-14

JAND SAVE 1T,

JAND TWEN GET ANOTHER ONE,
JAND THEN REASSEMBLE THE MESS,

JWITH THE FEARSOME POWER OF THE 11,

JAND RETURN Y0 TWE CALLER,

JALL DONE WITH THE | QAD, ASSEMBLE
JTHE STARTING ADDRESS NOW,

JAND DON'T FARGET TO CHWECKSUM 1T,
JA BAD CHECKSUM, ALL IS EVIL,

1GOOD CHKSUM, INFORM HOST
IW]TH ALTMOD G

100 WE WANT YO STARY EXECUTION?
JYES, AWAY WE GO,

JIF NOT) HALT,
JIF GOy THEN GO ALREADY, WHEEEE!

JARE

SCROLLING ROM BOOTSTRAP FOR THE GT4p

BOOT,T15

691
692
693
694
695
696
697
658
699
770
Tiq
7¢2
703
774
748
796
707
728
7029
710
711
712
713
714
718
716
717
718
719
72¢
721
722
723
724
725%
726
727
728
729
720
731
732
733
734
735
726
737
738
739
740
744
742
743
744

THE LOADER

18020
1049246
113828
114p02
120802
124230
137204¢

ag2900
“p2240
GA2400
cA260
ne3aed
G320
“a3440
fp367E

fgeLag
?Q0140
¥gep2o
L1ana3n

wAnNYr4
A02p¢5
~gep76
aApaen?

16700¢
1640090
172802
173492

BaA2IAQ
290288
zeape0
286962
200974

17430¢€

©AeLre
F4300
31777
©31377
21272000
#200008
#1760
ageg77
rgaLag

MACDLX 622(622)a1

CHAR®10RB00

SHORTYE1740002
LONGVE110200
POINT=114000
GRAPHX=120007
GRAPKHY®R124007
RELATY=1 32007

INT222000
INT122200
INT222400
INT3=22600
INT423700
INT523200
INT623400
INT733600

LPOFFs1¥0
LponE14R
BLKOFFs20
BLKON=32

LINE@s4
LINELES
LINE2a6
LINE3s?

NUMPE160200
ONOP8 164009

STATSA®172000
DSTOPa173400

LPLITE2300
LPDARK=220
1TALO=4R
ITAL1360
SYNON®4

STATSB3174097

INCR2120
INTX240000
MAXX31777
MAXY31377
MINUSX220000
MINUSYSMINUSX
MAXSX®y7680
MAXSYs77
MINSUYaivo

PAGE 1-15

JTHIS IS GY40 QUICK TESY

IGIVES QUICK VISUA[TEST
JOF CONDITION OF MACHINE
JWITHOUT READING IN OlAG,

JBRIGHTEST

JSYOP INTERRUPY

J1TALICS OFF
" ON
JSYNC ON

JLOAD GRAPH INCR
JINTENSIFY B!Y
IBIGGEST x VECTQR
IBIGGEST Yy VECYOR
ITHE MINUS BIY

JIBIGGEST x N SHWORTVEC
} " Y IN 0

IMINUS BIY FOR Y IN SHORTVEC

8L-3

SCROLLING ROM BOCTSTRAP FOR THE GT42
THE LOADER

BOOT, Y15

745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
© 760
764
762
763
764
76%
766
767
768
7469
772
771
772
773
774
775
776
777
778
779
780
781
782
783
784
788
786
787
788
789
792
791
792
793
794
75%
796
797
768

1672p4
167212

167214
167216
167229

167222
167224
167226

167230
167232
167234

167236
167240
167242

167244
167246
167250

167252
167254
167256
1672682
167262
167264
167266
167270
167272
167274
167276

167328
167322
167304
167306
167319
167312
167314
167316

167320
167322
167324
167326
16733¢
167332
167334

"12737
wageal

114028
2eeelp
t@1377

112004
141777
o311 Bl

112475
n4ngap
221377

113276
61777
L 89000

113427
744g00
ng1377

114a70
VBA4and

taAs0d
106202
357677
1866%%
77677
167244
277777
187622
"57777

114073
201422
20a500
133932
57677
77677
477777
2587777

114008
ApA423
AAR102
17412¢
114ga¢
HE1pTY
eppag

167214

172002

MACDLX 622t622)=14 26%JUN=?3 16111 PAGE 1m16

FILEDY

MOV #F 1 E0,GT48RC
WALT

POINTIBLKOFF

i}

MAXY

LONGVIINTOIL INER
INTX1MAXX
2

LONGVIINT21L INEL
INTX
MINUSXIMAXY

LONGVIINTA!INER2
INTXIMINUSXIMAXX
[

LONGV I INT6I{ INES
INTX
MAXY

POINT

400

500
SHORTV!INTS
57677
SHORTV!INT3
77677
SHORTVIINTS
77777
SHORTVIINT?Z
57777

POINT
1490
500

RELATVIINTA !B KON
57677

77677

77777
57777

PQINT

400

100

STATSBI InCR*20
POINTY

1008

200

JSTART THE GT4n
LAND WAIT

“IPOINT-=INVISIBLE

JORAW TOP [INE

JORAW LINE TO RIGHT

JORAW BOTTOM LINE

JORAW LINE TO LEFY

Jex+y
IR €4
jeX-Y

JmX+Y

XY
JeXeY
XY
JmXeY

JTRY GRAPH MADES

6L-3

SCROLLING ROM BOOTSTRAP FOR THE GT40

BOOT,T15

799
84g
8wy
832
8¢3
804
8¢5
82¢
8ey
828
829
819
811
812
813
814
815
816
817
818
819
820

167336
167340
167342
167344
167346
167350

167352
167354
167356

167362
167362
167364
167366
167370
167372

167374
167376

THE LOADER

12789¢
f310810
za1p2e
@134
Ap1040
461258

114870
2219720
fgi12ne

124000
tg41920
21030
201042
28195¢
na1060

163970
167214

MACOLX 622(622)=y

GRAPHX
1219
10290
1030
1040
1052

POINT
1009
1209

GRAPHY
1020
1939
1040
10850
1060

ngMp
FiLee

26=JUNm7$

PAGE 1~17

0c-3

PAGE 1~18
N=73 161114

ley 264y

HE G740 MACOLX 622(622

OR T

O0CTSTRAP F

SCR(T]L%igG Row 8 THE LOADER

BOOT,

822
823
824
825
826
827
828
829
83g
831
832
833
834
835
836
837
838
839
84g
8414
842
843
844
845
84g
847

lZ-3

SCROLLING ROM RONTSTRAP FOR ThHE GT42

ROOT,T15

84¢
8%
851
852
853
854
855
85

853
8%g
859
8h¢g
861
862
863
864
865
8Ag
867
868
869
87n
871
872
873
874
87s
876
877
878
879
880
881
882
883
884

167470
167474
167410
167414
167416
167422
167424
167426
167430
167432
167436

167449
167442
167444
167446
169450
167452
167454
167460
167462
167446
167470
167472

167474
167476

THE LOADER

177552
17756@
1674013

»127¢1
11272
r12718
017712
11127226
~14354
L45714
124775
r19712
112776
17441

i4mer1
V19111
~11122
195214
135714
192376
116412
45211
120227
1366
195222
1142

17756¢
17755¢

levgng
A Jar e
167502

AAE24

CAg24

AR 2

“na375

MACDLX 622(622) =4 26-JUN=73

)
} PAPER TAPE BOOY
)

HSR3177550
LSR=177560
1 SORIGIN®*1402
3
PTBOOTH MOV #1600007,R1
MQV #4,R?
“Ov #DEy+4,R3
MOV PC,®R2
MoV #24,SP
DEV1Y MOV =(R3) R4
ST &R4
AM] DEVY
MQV PC'@QZ
MOV #24,SP
MOV R4,=-(R1)
31C SP,RY
MQV R1®R1
LOOP! MOV ®RY ,R2
INC ®R4
TSTB @R 4
BP| 2
MOVB 2(R4),®R2
INC eRY
CMPB R2,#375
BNE LOOoP
INCB (R2)e
JMP ~(R2)

16111 PAGE 2

JHIGH SPEED READER ANDRESS
iLOW SPEED REANMER ADMRESS

JSET MEMORY CHECKX LIMI?TS

s TRAP ADNRESS IS LNC, 4

$POINTYER TO DEVICE APNDRESSES
JPRESET TRAP AODRESS [N LOC, 4
$STACK SET UP AT SPECIAL ADDRESS
$GET DEVJCE ADDRESS

;CHECK AVAILABILTTY OF DEVICE
JCHECK DEVICE FOR ERRQRS

;RESET TRAP ADDRESS AT LOC, ¢
JSPECTAL ADDRESS USED AS MASK | ATER
$3D0 MEM CHKIREADER STATUS ADDRESS
$]1S MOVED

JSET R13X7752,MASK M Spm24
JSTORE OWN ADDRESS [N POINTER
1GET BYTE POINTER

JENABLE READFR

$TEST DONE BIT

JWATT UNTIL READY

JTHEN PICK IT UP AND SYQRE 17
JBUMP POINTER

3STORED JUMP OFFSET?

INOT YET

IYES,)ALL DONE

160 EXECUTE AS BRANCH

DEV]CE ADDRESSFES FOLLOW « DO NOT CWANGE THE ORDER

JLOW SPEED READER
IHIGW SPEED READER

¢c3

SCROLLING ROM BRUOTSTRAP FOR THE GT4R

BOOT,T15

887
888
889
892
891
892
893
894
895
896
897
898
899
9ag
9d1
932
9233
904

9ﬂ5
9cg
947
948
9co
910
911
912
913
914
915
916
917
918
919
920
921
922
923

167578
167504
167526
167516
167514
167520

167522
167524
167526
167530
167532
167534
167536
167542
167546
167550
167552

167554
167556
1675682
167562
167564
167566
167570

167574
167576

THE LOADER

17752¢
167572
v1274@ 17750¢
“@5p10
a1p771
1627v1 760E52
127102 AgR375
112113

112118
190413
134310
np1776
135272
140772
116412 222ge2
1273337 revprp
rd1767
VAGRED
332755

A0871@
190774
057
217640
192415
112024
cddged 733eng

167542
282340

MACDLX 622(622)=1 26~JUN=73

)

} CASSETTE B80OT

)
TACSz177500
JIORIGIN®1500
TABOOTI MOV
CLR
RES MOV
4p0
MOV
MOVE

}

LOOP1} MOVB
AM]

LO00OP2; BITB
REQ
INCB
BMI
MOVa
CMPB
REQ

STOP1 HALT
B8R

NONED TST
BM]
CLR

)

TABLE} ,WORD
W WORD
WORN
WORD

+WORD
+WORN

#TACs RO
(R2)

PCyRY
#TABLEm, R4

#375,R2

(R1)*,R3

(Ri) e, (RQ)
DONE

R3I (RR)
.OOP2

R2

LOOPY
2(R2)(R2)
R3, 00
LOOR2

RES
(R}
STOP
PC
17642
2415
112024

7,0
TABOOT

342

16111 PAGE 4

3TA=11 CONTROL AND STATUS REGISTER

$SELECY UNIT #@

1USE FOR PIC

JRY WOLDS ADDR, OF COMMAND TABLE
JMEMORY PTR, AND DATA FLAG

;YESTY BITS

JCOMMAND FROM TABLE TO TACS
JWHEN COMMAND CORE NEG. e QUIT
JTEST READY AND TsREQ a]YS IN TACS
JLOOP 'TIL SOMETHING COMES UP
$ADVANCE MEMORY POINTER

$1F MINUS, TRY NEXYT COMMAND
JREAD DATA [NTO MEMQRY

JFIRST BYTE READ SHQULD BE '240¢
J1F 0,K,y GO READ ANOTHWER BYTE
JHALT ON ERROR

JRESTART ON CONTINUE

$CHECK FOR ERROR
JHALT ON ERROR
13 TyMP @ad!

5oBYTE 2424 READY+T=RED,

3aBYTE 371 ILBS«READY+GO

3 BYTE 151 SFBeGQ

34BYTE 51 READsGO

3¢BYTE 241 READ+ILBS

3,8YTE 2241 READ#]LBSeF,0,TABLE
JTHESE ARE FILLER WQRDS

$POWER UP VECTOR AND PRIORITY

.
’

€¢-3

SCROLLING ROM BOOTSTRAP FOR THE GT42

BooT.T15

925
926
927
928
929
9392
931
922
933
934
935
936
937
938
939
940
941
942
94
943
945
94g
947
948
949
950
951
9=2
953
954
9%5
956
957
958
959
960
961
9682
963
964
965
96
565
968
969
970
971
972
973
974
975
976
977
978

1676008
167692
167674
167606

167618
167612
167614
167616

167620
167622
167624
167626
167630
167632
167634

167636
167640
167642
167644
167646
167650
167652

167654
167656
167660

167662
167664
167666
167670
167672
167674
167676
167700
167702
167704
167726
le7710
167712

167714

THE LQADER

167608

710702
far4sy
177462
uaaens

¥18702
7Pa44s
1774026
¢RApas

4108702
290417
177344
a090¢5
NR4gn3
19@g02
#2400

310742
AQ2419
172524
G62PA3
260311
7en2eg
102920

(18712
VEP423
176716

J8eers
2310200
p@s5728
2l2¢gnl
£e5311
125722
1112044
a31p1d
91776
285729
431341
rAl4ae
aanLLe

167608

MACDLX 622(622) =1

262 JUN=T73

16111 PAGE 5

iMR11«DB BULK STORAGE PROGRAM LOADER LISTING

130RIGIN*1602

RF111

RK111

TC1L

T™M111

RP111

TAPES)

AGAIN]

RFVECH

MOV

PCiR2

AR OTHER
177462

5

MOV

PCyR2

BR OTHER
177406

5

MoV

PC,R?

BR TAPES
177344

5

4983

100220
24000

MOV PC,R2
BR TAPES
172524
50003
60011

200

100000

MQV

PC,R2

BR OTHER
176716

RESEY

MOV
TST
MOV
neC
TST
MOV
RIT
BEQ
ST
BIT
BREQ
JMP

RF11

R2,Rp
(D)o
(R)+,R1
(1)

(Q)e
(ﬂ)t,s(l)
), t1)
(o2

(0)«
(B),=(1)
OTHER
(2)

JKEEP TRAGK 0OF QRIGIN
JFIXED HEAD DISK (256 Kw)

JMOVING HEAD DISK (CARYRIDGE)

$ADDRESS OF WORD goOunTt
JLAST COMMAND

JFIRST COMMAND

JDONE MASK

JERROR MASK

1ADDRESS OF BYTE COUNT
JLAST COMMAND

JFIRSY COMMAND

JDONE MASK

JERROR MASK

SMOVING WEAD DJSk (PACK)

$GET THE ADDRESS QF THE BRANCH

1RO TO POINT AT LAST COMMAND

JGET THE WORD COUNT ADDRESS

$SET UP FOR ADVANGCE 1 RgCORD

$MOVE R@ TO PIRST COMMAND

JCOMMAND WORD YO COMMAND REG,

3L00K FOR DONE INDICATORS

INONE SET: TRY AGAIN

JDONE FIRST COMMAND, CWECK FOR ERROR

_ JLOOK FOR SET ERRQR BTS

JINO ERRORS = TRY THE RFAD
IRERUN FOR ERRORS

JRF11 POWER UP VECTQR

ve-3

SCROLLING ROM BOOTSTRAP FOR THE GT40
BOOT,715

979
980
984
982
983
984
9es
986
937
988
989
990
9914
992
993
994
998
994
997
998
999
10239
1004
1022
1233
1024
1008
1076

167716

167724
167722
167724

167726
167730
167732
167734
167736
167742
167744
167758
167752
167754

167756
167760
167762
167764
167766
167770
167792
167774
167776

THE | OADER

208342

7L0702
7g¢P40]
177459

1gAPLs
nie2ee
pas872@
712ga2l1
712711
211041
¢32711
e@1775
120757
¢a59¢7

ulld) 1]
167610
Ag2340
167728
wAB34Q
1676534
PAVIAL
167622
ngn34g

177¢ng
100222

MAGDLX 622(622)e4 26=JUN=73 16111 PAGE %=1

RC111

QTHER}

RKVEC)
RCVECH
RPVECH
TCVECH

340

MOV
BR 0
1774

RESE
MOV
ST
MOV
MOV
MOV
81T
BEO
BM1
CLR

2
RK11
340
RC11
340
RP11
340
TCiL
340

PC)R2
THER
50

T

R2,Re

te)e
(Q)O.RI
#ei000,(1)
(0)y=(4)
#100200,(1)
ymé

AGATN

PC

IFIXED WEAD DISK (64Ki)

$ADRS OF WORD COUNY (COMMAND*2)
1COMMAND WORD (5) 1S THE RESEY

jJR2 TO0 POINT AT WORD COUNT ADRS
JPOINT TO ADDRESS

JWORD GOUNTY ADDRESS YO R&

1L,0AD WORD COUNT

JCOMMAND TO COMMAND REGISTER
JCHECK FOR ERROR QR DQNE

$1F NEITHER, KEEP LOOKING
JERRORy TRY AGAIN

JFILLER

jJRK POWER UP VECTQR
IRC POWER UP VECTQR
IRP POWER UP VECTOR
3JTC1y POWER UP VECTYQR

G¢-3

SCROLLING ROM RONOTSTRAP FOR THE GT4g
B00T,T15 THE LOADER

1648 1LYl

MACJULX 622(622) =1

+END

26~ JUN=TJ

16111

PAGE 6

9¢-3

SCROLLING RG.1 BOOTSTRAP FCR ThE GT42
CRCSS REFERENCF TABLE

ROOT,T16

AGAIN 167712
ALTMOT = 20v175
BELL 166250
BLIMIT = ¢¥7v¢A
BLKOFF = 400324
BLKON = 273380
BSTART = il2.3d9
CHAR = 19 T
CORSTR = 27 7¢4
COUNTR 3%usbiv wd
CR 166205
CRLF = 075715
DEV 167474
DEV1L 1674¢2
DISJUP = 16...:¢Y
DISTAP = 17374wn
DJMP = 1bupee?
DLi1lt = 175617
OL111S = L7314
DL110R = 17tA16
DL110S = 17L514
DNOP = 1h6V
DONE 167594
DSTQP = 171440
ENDCOR 166,56
FF 16656
FFLGOP 160262
FILE? 167214
GETCHR 16064
GETDL 1A6516
GETOLL 166546
GETEXT 1666957
GETSIX 1664639
GEYS 166664
GETB8TH 1hc7?
GET81 166712
GEY82 16€749
GET83 166772
GET84 166726
GRAPHX = 12p.iwd
GRAPHY = 124162
GTRUSE 1664¢4
GT4UPC = 177l
GTA4WSR & 172%k2
HEADER 166474
HOLD 3%032vi4
HSR = 177559
INCR 2 YAGLOK
INDEX 3%p200¢3
INSERT 166350
INSRTL 166406
INSRTX 166422,

INTX

s c4gree

974%
1394
278
132#
7134
7148
131#
82#
469
134%
B9#
267k
138#
857
3648
141%
142#
7218
127%
119%
122%
121
722%
R99
724m
195#
283
38
746
266
4428
443
466
486w
524w
527
529
53%
531
535#
698#
699#
J68#
127%
128%
353
87#%
851#%
735#
1u6#
291
349
347
736#

993
465
I1%#
135
749
784
334
102
471
192
165

226
882#%
862
359
474
816
121
122
4524
122

917%#

196
313#
315#
749%
4644
447
a50#
472
524
642
529%
559#
551#
566#

798
809
391
128
317%
397
540
883
793
526
299
352
J62#
754

MACY11,62¢

351
267
487

3g6w

397
625

444

lgeaw
4908
18R«

318
817
486
451

492#
539

368
423
554%

527
337
3574

758

16s4u =73
Ab66
244 229
68 398
269 271
489 €yan
4313. 317e
398 399
442 445
5448
L) 228
453 464
42 7460
409%
5564 558
535« 607«
345%
762 766

17%124 PAGE 6=1

348 395 399

298¢ 315 327 338 345
415

468

560 561 5626 5688 570a

44440

446%

465

(23

SCROLLING RCM BOOTSTRAP FQOR THE GT40
CROSS REFERENCE TABLE

BOOT,T16

INTE s Y0270
INTL s prz2vn
INT2 3 pnedu?
INT3 3 WPe6LD
INT4 2 DUIdEN
INTS s 0032k?
INTS s 0 34iR
INT7 s 203502
1YAL? 5 29240
1TALL = p7oACeR
JMPADD = p07i12
KBOIB = 177562
KBDIS = 1775680
LF 166340
LFLOOP 166312
LFOUND 166338
LFSUR 166304
LINEZ = 20e0id
LINEL = 42E725
LINE2 = 47viké
LINEZ =5 punp#p7
LOADER 167612
LONGY = 11462
L.oopP 167444
LOORPL 167522
Loor2 1647526
LPDARK = ¢&e2¢f
LPLITE = ¥%¢36d
LPOFF = 244129
LPON s 40g140
LSR z 177567
LeADR =% 70t
L.BAD 1671¢?
LBC =hTae M2
LeBYT =%2V3260
Lo CKS™M 3%27%,.245
L GWRD 167126
LeHALT 167242
Ly J1P 167146
LyJdMP1 167242
LyLb?2 167222
LaLO3 167266
LaLD4 167119
L,PTR 167114
MAXSX = ¢1760¢
MAXSY = $val77
MAXX = ¢71777
MAXY s 71377
MINSUY = &7 1én
MINUSX = #%2vi¢?
MINUSY = §2¢2cid
NORMAL 1662172

722#%
703%
T04%
705#
768
707#%
T08%
769%
728#
729%
135#
125%
124#
281
3274
328
316
716%
717#
718%
T19#
474
6968
869#%
8984
Qui#
7¢7%
726#
7118
712%
852#%
163
482
1244%
1624
" 55%¢
653
165#%
617
671%
621
669
610k
6264
627
611
741%
7424
737%
738%
743%
739%
T4l 4
277

753
772
757
774
761
776
765
778

325
452
125
3224
332
334#
325#
753
757
761
765
605%
753
876
903
981

882
623 @
492
618«
525
561
660
617
622

659#
673%
613
638
6374
615

754
751
747

279

MACY11,624

784

336w
450

332

757

637e
432#
619«
540

S56h%

628
649#

629
626

762
759
759

291%

16«JUl»?3
415 47448
761 76%
663
Y44 6440
541 C42u
5674 Efon
[RE 462
[3-2
F42 8 649
767
762

19124

605w

543%s
571«

651

PAGE 6=2

545«
h12#%

661

5474
618

5514
623

5524
637

5534
643

5554
657

557«
6520

' 82-3

SCROLLING RC# BOUTSTRAP FQOR THE GT4#

BQOOT,T16

NOTHER 166042
NUMLIN 5 i vaed
NXTCHR 166132
ORIGIN = 166kl
OTHER 167726
OUTLIT L6K652
PC 2%l ?
POINT s 1l4ve?
POINTR =k s 1
PRESTR 1re6624
PTRUOT 1674¢0
RCVFC 167744
RC11 167729
RELATY = 13¢72?
RES 167596
RESTPT LA 6P
RFVE® 167714
RF11 16750V
RKVE® 167784
RK11 1A75173
RPVED 167779
RP11 167554
R =52 00aA
R1 =

RZ S% 1 w2
RS Troe AL 3
Ré EV VPR PL)
RS EVERIEY L]
SCA . %L AR163
SETIUN 166126
SETLPY 166474
SETLR2 166110
SETLPS 156116
SETUP 166482
SHORTV = 174240
SP 32LTELe6
START 166942
STATSA = 1744949
STATSB = 174020
SToP 157550
SYNQN = @vdnv4é
TAR 166222
TABCNT 3%224222
TABLE 167562
TABQOOT 167502

193
1368
266%
117#
929
1€9

74%
468w
642¢
939
5974

538
362
475%
855%
9998
9874
VBT]
893#
227
977#
928#
997#
933#
1701#
357#

674

68#
983«

694
G283«

7i%

718

72#

85#
238
I50
235
226#
2344
238#
231
6954#

73
667
185%
723%
733%#
907%
732%
282

84#%
894
391#

CRUSS REFERENCE TABLE

199#
223
268
173
934
499%
2664
486w
645«
948
749
103

634

999
784
908
475

977
997

1291
82
83

84
933«
85
87
89
106
271
353«
244y
228
241
2492
389#
772
187+«
568

793
9114

298#
104
9148
921

MACY11,624

224
274
853
958
632
276%
492%
649
957
769
236%

891«
855«

856%
336
8574
860w

189+
272«
354w

774
20 4%
673

322
224%

16 JUL~73
313 399
293 303
892 926
973 981
665
291+ 299«
5244 539«
651 % 654+
982 994«
781 792
23a4# 2444
B92e 8igw
B865% 817
658w 8y 3«
9485w 9) 7w
Ré67 856«
861 865
192 193«
273 275
499 5\¢
776 778
220 122»
859+ 164
227 234w

17104

311
985#

306
548+
659«

794
345%

92
B68#

869«
963
um
B7as

195«

274
Sh1#

525#
867

239+

PAGE 6<$

319

316w
5634

661 %.

RP5
346

oc4
B69

6738
Q8
925
871

199
325w
632%

544w

287

337w
573«
858

912
874+»

875
986

873
204
327
665#

546#

292+

J52e
611
863

350

963
893

877«

223«
329

547

390w

3554
615#
893

3519

986
894«

226w

331

562

Sp1

362
617«
912w

357

894

895w

231w
334

572

448«
622¢a
928

358«

898

9p2s

234
335«

650

464a
626w
933

359%

965#

904s

236
336

653

6¢-3

SCROLLING

BQ0T,T16

TACS
TAPES
TCVER
TCL1
TMPEND
TM1L
VT

RQ™ ROOTSTZAP FQR THE GT40 MACY11,624 16=J.(=73 12104 PAGE 6«4
CROSS REFERENCE TABLE

1775¢9
167662
167774
167620
7776
167636
156244
17406

889#%
G40
1733
939%
133#
948%
282
173#

891

949 962#
10203

187 220

306#

853% 872 BSCZ# 194 926 97

992

0€-3

SCROLLING PNm BOOTSTRAP roR THF GT40

BJOT,T16 CRUSSL REFERENCE TABLE

ADD <76 643 394

ASL 275 541 542 551

ASL.A3 543 245 5532 5585

BER Z3% az# 447 47

BGE 768 27 627

BGT ‘ negh 247 318 497

BMIS 274

BlC 335 444 567

BlS 22 653

BT 61 846 568 969

BITRH G

BLO 332 540

8LT Abs

B g tyy 9n3 911

BNE tye 847 466 472

BFL 2v7 4473 451 872

Bk 1946 24 278 279
529 93 531 634

CLR 165 Zie 31% 334

cMP 267 A 273 329

CMPB 327 675 9%

DEC 227 235 317 644

OECH 61z

HALT “71 927

INC 185k 297 agn 334

INCy n77 967

JMP 475 se7 673 878

JSR " 189 £6n 291 299
522 625 632 642

MOV 16 187 192 193
758 3173 315 322
545 B4 547 561
56 - B6.. P63 864
963 g6t 968 980

MOVE 276 345 444 452

RESET L85 962 %65

ROL 566

ROLB ©44 944 554 556

ROR 68 577

RORB . 565 5731

RTS 3hn S6¢ 445 492

SuB 272 61%

SWwAR 602

TST 199 52A 572 861

TSTB 2dib 442 450 628

WATT 747 ’ -

+BYTE 633 66~

JENARL 36

JEND 1007)

+PAGE 55 129 162 257

WSBTTL 54 161 256 424

:TITLE 2 :

s WORD 190 389 39% 391
409 41 411 412

MACY11,624

552
587
621

972

993
613
28
638
253
348

966

561

918
662

425
594

392
413

16-4UL?73
559
629 169
991
663 176
281 182
9¢E 929
354 367
357 465
874
337 152
651 159
223 24
331 136
645 118
86g 169
988 89
5¢2 (37
56¢ 167
548 163
964 867
871
595 189
394 195
414 415

17104

991

283
934
£g7
469

464
661
226
357
623
891
9979
873

573

971

396
914

PAGE 6=5

906

293
940
617
471

468
665
231
351
650
893

896

645

987

397
916

970

343
949
892
487

486
234
358
660
895

898

654

398
918

973

3p8
958
912
489

524

236
359
746
928

9p4

399
920

992

311
981
994
623

539

238
368
855
933

4g1
921

319

611

244
445
856
939

402
922

332

615

271
474
857
948

403

453

617

287
525
858
957

405

1€-3

START

INITIALIZE COMM
1/0 & UNIBUS

REGISTERS
PLAY

NEXT

CHAR =

R (1224)
?

YES

GETCHR: —

GET CHAR FROM HOST
(IGNORE RUBOUTS
& NULLS)

CHAR
PRESENT
?

CHARACTER
— DISPLAY
BUFFER

DOCHAR j

CHAR
READY FROM

KYBD
?

TRANSMIT
CHARACTER

LOAD: —i

STOP DISPLAY-
REINITIALIZE
REGISTERS

L.BAD:
GET A WORD TRANSMIT 102; &
(BYTE COUNT) 1755 TO HOST

GET A WORD
(LOAD ADDRESS)

L.LD2: —

I CLEAR

HECKSUM I

GET INPUT BYTE

SKIP NEXT
BYTE (=0)

DECREMENT BYTE
COUNT, GET DATA
BYTE & STORE

Figure E-1 Communications Bootstrap Loader Flow Diagram

GET NEXT WORD
(START ADDRESS)

JUMP TO
START
ADDRESS

CP—-0606

LINE

CUT OUT ON DO

Reader’s Comments

GT40/42 USER’S GUIDE
EK-GT40-OP-002

Your comments and suggestions will help us in our continuous effort to improve the quality and usefulness of

our publications.

What is your general reaction to this manual? In your judgment is it complete, accurate, well organized, well
written, etc.? Isit easy to use?

What features are most useful?

What faults do you find with the manual?

Does this manual satisfy the need you think it was intended to satisfy?

Does it satisfy your needs? Why?

Would you please indicate any factual errors you have found.

Please describe your position.

Name Organization

Street Department

City State Zip or Country

_ — — — — — FoldHere — — — — _—

FIRST CLASS
PERMIT NO. 33
MAYNARD, MASS.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

Digital Equipment Corporation
Technical Documentation Department
146 Main Street

Maynard, Massachusetts 01754

Digital Equipment C ti
Maynard, Massachusetts dlilgliltall

printed in U.S.A.

	000
	001
	002
	003
	004
	005
	006
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	A-01
	A-02
	A-03
	A-04
	B-01
	B-02
	C-01
	C-02
	C-03
	C-04
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	E-09
	E-10
	E-11
	E-12
	E-13
	E-14
	E-15
	E-16
	E-17
	E-18
	E-19
	E-20
	E-21
	E-22
	E-23
	E-24
	E-25
	E-26
	E-27
	E-28
	E-29
	E-30
	E-31
	replyA
	replyB
	xBack

