DECgraphic-11

FORTRAN
Reference Manual

Order No. DEC-11-GFRMA-A-D

digital equipment corporation - maynard. massachusetts

First Printing, November 1976

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of such
license.

Digital Equipment Corporation assumes no responsibility for the use

or reliability of its software on equipment that is not supplied by
DIGITAL.

Copyright (:) 1976 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre-
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 0s/8

DECUS EDUSYSTEM PHA
UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX
COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-10

DECCOMM DECsystem-20 TYPESET-11

11/76-14

CONTENTS

PREFACE

THE DECGRAPHIC-11 SYSTEMS

—

CHAPTER

AN INTRODUCTION TO DECGRAPHIC-11
Overview of the Manual
Documentation Conventions
Overview of DECgraphic-11 System
Capabilities

HARDWARE/SOFTWARE ENVIRONMENT

BASIC GRAPHICS CONCEPTS
The Display Screen
The Display File
Display Primitives
Subpicture Definitions
Display File Pointers
User Coordinate Systems and Windows
Light Pen Interaction and Tracking

GRAPHICS SUBROUTINES
Initializing and Controlling the
Display File
Setting Screen and Scaling Parameters
Generating Graphics Primitives
Defining and Using Subpictures
Displaying Graphs and Figures
Using Display File Pointers
Altering Display File Status Parameters
Facilitating Light Pen Interaction
Performing Display File Utility
Functions

1.4.10 Performing Advanced Display File

Functions

.
« o e
w N

=
.« e e
e

e e e o o
BB WWWWwwWwwwwN
e o o s o o

N oYU W

.

T el e

o e e o o o
.
[

e e o v o o o
WO WwN

[e
. .
O O O N O O N S

e e o o o

N

CHAPTER DECGRAPHIC-11 GRAPHICS SUBROUTINES
INITIALIZING AND CONTROLLING THE DISPLAY FILE
INIT: Initializing the Display File
STOP: Stopping the Display
CONT: Restoring the Display
FREE: Clearing the Display File Area
SETTING SCREEN AND SCALING PARAMETERS
SCOPE: Selecting a Display Scope
AREA: Selecting the Main or Menu Area
SCAL: Defining a User Coordinate System
NOSC: Restoring the Standard
Coordinate System
WINDOW: Establishing a Display
Screen Window
GENERATING GRAPHICS PRIMITIVES
1 APNT: Displaying an Absolute Point
.2 RPNT: Displaying a Relative Point

.....
« o
S WN

NN
.

N MDD NDNDN
. o o o o

N

.

w S w -

NN
wWww
.

iii

[\
[

MDD

U DD DWW

oo

¢« o
« o
[eolb N Mo W) B - U]

CONTENTS (CONT.)

VECT: Drawing a Relative Vector

AVECT: Drawing an Absolute Vector
SVECT: Drawing a Vector in Short Format
LVECT: Drawing a Vector in Long Format
TEXT: Displaying a Character String
MENU: Displaying Items in the Menu Area

DEFINING AND USING SUBPICTURES

OIS W

DN

SRR WLWWWLWWWW

SUBP: Defining a Subpicture

ESUB: Terminating a Subpicture

COPY: Copying a Subpicture

OFF: Turning Off a Subpicture

ON: Turning on a Subpicture

ERAS: Erasing a Subpicture

NMBR: Creating a Numeric Subpicture
CVSCAL: Scaling Subpicture Characters
and Vectors

DISPLAYING GRAPHS AND FIGURES

e o s e e &

oot o ;m
s o e e s

AU WNH

NMDNOMNMNNDNNDDN

XGRA: Displaying an X-Axis Graph

YGRA: Displaying a Y-Axis Graph

FIGR: Displaying a Figure

AGET: Returning the Value of a Primitive
APUT: Changing the Value of a Primitive
FPUT: Changing and Adjusting the

Value of a Primitive

USING DISPLAY FILE POINTERS

NN NN
(o)l e) W)]
. .
wN =

POINTR: Setting Up a Pointer
ADVANC: Advancing a Pointer

GET: Returning the Coordinates
of a Primitive

CHANGE: Changing the Coordinates
of a Primitive

CHANGA: Changing a Primitive and
Adjusting the Next Primitive
CHANGT: Changing the Value of a
Character Primitive

INSERT: Inserting Graphic Elements
in the Display File

ERASP: Erasing a Primitive

ALTERING DISPLAY FILE STATUS PARAMETERS

SENSE: Setting the Light Pen Parameter

INTENS: Setting the Intensity Parameter
FLASH: Setting the Flash-Mode Parameter
LINTYP: Setting the Line-Type Parameter

FACILITATING LIGHT PEN INTERACTION

DDNNDDNDNDNDDNDDND
[oolNeche o BEN BEN BEN IR IENU e)

LPEN: Recording a Light Pen Hit

TRAK: Placing a Tracking Object

on the Screen

TRAKXY: Returning the Position of the
Tracking Object

ATTACH: Attaching a Primitive to the
Tracking Object

DETACH: Detaching Primitives from the
Tracking Object

GRID: Positioning the Tracking Object
on the Grid

PERFORMING DISPLAY FILE UTILITY FUNCTIONS

CMPRS: Compressing the Display File
SAVE: Saving the Display File

iv

CONTENTS (CONT.)

2.9.3 RSTR: Restoring the Display File
2.10 PERFORMING ADVANCED DISPLAY FILE FUNCTIONS
2.10.1 DPTR: Returning the Next Available
Display File Position
2.10.2 DPYNOP: Inserting No-ops in the
Display File
2.10.3 DPYWD: Inserting a Data Word in the

Display File

CHAPTER

w

PROGRAMMING TECHNIQUES

SUBPICTURE TECHNIQUES
Using Subpictures as Subroutines
Creating Complete Displays
Attaching a Subpicture
Using NMBR for Odometer Output
GENERAL GRAPHICS TECHNIQUES
Specifying Vector Formats
Ordering Display Elements
Controlling Display File Size

. e ...

N RN N
« e o
oW

WWwwwwwwww
.« .

. .
wMN =

CHAPTER

=Y

THE RT-11 OPERATING ENVIRONMENT

BUILDING THE DECGRAPHIC-11 LIBRARIES
Binary Kit
Source Kit
LINKING USER PROGRAMS
PERFORMING USR OPERATIONS
SAMPLE PROCEDURES
VT1ll Procedures
VS60 Procedures

. e
N =

QR O SO NG O SO RN
. . . 3
s W

. .
N =

CHAPTER 5 THE RSX-11M OPERATING ENVIRONMENT

1 INTRODUCTION TO SUPPLIED SOFTWARE

2 OPERATION UNDER RSX-11M

2.1 Building Your DECgraphic-11 Library

2.2 Writing and Running Your Own DECgraphic-11
Programs

APPENDIX A DECGRAPHIC-11 SUBROUTINE SUMMARY

APPENDIX B DECGRAPHIC-11 ERROR MESSAGES

APPENDIX C DISPLAY FILE STRUCTURE

APPENDIX D FORTRAN PROGRAMMING EXAMPLE

APPENDIX E DIFFERENCES BETWEEN THE DECGRAPHIC-11
AND RT-11 GRAPHICS EXTENSIONS PACKAGES

APPENDIX F DIFFERENCES BETWEEN DECGRAPHIC-11 AND
RSX-11M/FORTRAN GRAPHIC EXTENSIONS

GLOSSARY

INDEX

| A T TS N U NS B |
B DWWNNDNHE

WWWWwwwwww

i~y

L T I N I B 1
AUV WN |

R L

CONTENTS (CONT.)

Page
FIGURES
FIGURE 1-1 Line Types 1-3
1-2 Intensity Levels 1-4
1-3 Type Fonts 1-4
1-4 Extended Characters 1-5
1-5 Rotated Characters 1-5
1-6 Subscripts and Superscripts 1-5
1-7 Character Scaling 1-6
1-8 VS60 Display Screen 1-8
1-9 Menu Area 1-9
1-10 CPU and DPU 1-10
1-11 Viewing Window 1-15
1-12 Light Buttons 1-16
1-13 Tracking Object 1-17
2-1 WINDOW Subroutine 2-8
2-2 MENU Subroutine 2-18
2-3 YGRA Subroutine 2-28

vi

PREFACE

DECgraphic-11 is the family name for PDP-11 graphic products using the
VT1ll and VS60 graphic display systems. Each system consists of a
display processor on the UNIBUS which controls a cathode ray tube
display with light pen. Installations of this type have a wide range
of applications, including simulation studies, computer-aided design,
and real-time data acquisition. The UNIBUS architecture permits a
DECgraphic-11 system to function as a small terminal or as part of a
larger stand-alone disk-based system.

DECgraphic-11 software is made up of sets of FORTRAN-callable
subroutines which give the user full access to the system's powerful
graphic capabilities. The use of the routines is in keeping with the
usual procedures in FORTRAN programming, which makes the power of
DECgraphic-11 applicable to the widest range of foreseeable
applications. By a simple procedure, the user can initialize the
software to comprise only those routines needed for a particular
application and hardware configuration.

This manual is intended for DECgraphic-11 users who are familiar with
PDP-11 FORTRAN under the RT-11 or RSX-11M operating systems. It
introduces the characteristics of the VTI11 and VS60 display
processors, describes all of the FORTRAN-callable subroutines, and
summarizes the operation of DECgraphic-11 in the environment of each
operating system. It does not provide comprehensive information on
the FORTRAN language or on the system resources of RT-11 or RSX-11M.
Information on these and related topics can be found in the manuals
listed below.

ASSOCIATED DOCUMENTATION

PDP-11 FORTRAN Language Reference Manual
DEDC-11-LFLRA-C-D

RT-11/RSTS/E FORTRAN IV User's Guide
DEC-11~-LRRUA~-A-D

RT-11 System Reference Manual
DEC-11-ORUGA-C-D, DN1, DN2

IAS/RSX-11 FORTRAN IV User's Guide
DEC-11-LMFUA-C-D

RSX-11M Operator's Procedures Manual
DEC-11-OMOGA-B-D

RSX-11M Utilities Procedures Manual
DEC-11-OMUPA-B-D

vii

RSX-11M Executive Reference Manual
DEC-11-OMERA-B-D

RSX-11M Task Builder Reference Manual
DEC-11-OMTBA-B-D

VT1ll Graphic Display Monitor User's Manual
EK-VT11-TM-001

GT40/GT42 User's Guide
EK-GT40-0P-002

The routines in this manual are largely compatible with, but more
extensive than, earlier sets of FORTRAN-callable routines described in
the FORTRAN/RT-11 Extensions Manaul (DEC-11-LRTEA-C-D) and the RSX-11M
Graphics Extensions User's Guide (DEC-11-AMLEA-A-D).

viii

CHAPTER 1

THE DECGRAPHIC-11 SYSTEMS

1.1 AN INTRODUCTION TO DECGRAPHIC-11

DECgraphic-11 graphics systems provide comprehensive hardware and
software interactive graphics facilities for PDP-11 users. The
DECgraphic~11 FORTRAN support package allows programmers to use
powerful graphics software capabilities for the VT1l and VS60 display
subsystems. This graphics package consists of a collection of
subroutines that may be issued from FORTRAN programs to perform a
variety of graphics operations. The subsections that follow provide
an overview of this manual, describe the documentation conventions
used in the presentation of subroutines, and supply an introduction to
the varied capabilities offered by the DECgraphic-11 systems.

1.1.1 Overview Of The Manual

This manual describes the use of DECgraphic-11 FORTRAN support in two
operating environments. It is divided into five chapters.

Chapter 1 introduces the basic graphics concepts necessary for an
understanding of DECgraphic-11 system operations. It defines the
terms used in the manual, discusses the characteristics of the VTI11
and VS60 display processors, and summarizes the wuse of the
FORTRAN-callable subroutines in a sequence of 10 functional
categories.

Chapter 2 describes the DECgraphic-11 FORTRAN-callable subroutines in
detail and provides a variety of examples of their use. Most of the
subroutines are used interchangeably for the VT1l and VS60 displays.
Where differences exist--for example, in cases where routines invoke
advanced VS60 hardware features-- these differences are clearly
distinguished.

Chapter 3 provides the graphics user with a variety of programming
techniques to aid in the efficient use of the DECgraphic-11 system
capabilities.

Chapter 4 describes the operation of DECgraphic-11 FORTRAN support in
an RT-11 environment. It includes information on building a library
of FORTRAN subroutines, describes a method for linking user programs,
and provides sample VT1ll and VS60 build procedures.

Chapter 5 discusses DECgraphic-11 operation in the RSX-11M
environment, including procedures for Dbuilding a DECgraphic-11
library, compiling the user's programs, and building them 1into task
images. ‘

THE DECGRAPHIC-11 SYSTEMS

In addition, a series of appendices provides summary information as a
reference aid to DECgraphic-11 users.

Appendix A provides an alphabetical list of FORTRAN subroutine calls
and briefly describes the function of each.

Appendix B summarizes the error messages that might be generated by
the DECgraphic-1l1l package, the reasons for occurrence, and routines
that might produce these errors.

Appendix C discusses the internal format of the DECgraphic-11 display
file as it is constructed in memory.

Appendix D is a FORTRAN programming example, developed to demonstrate
the varied capabilities of the DECgraphic-11 interactive graphics
system.

Appendix E summarizes the differences between the DECgraphic-11
subroutines and the subroutines supplied in the RT-11/FORTRAN Graphics
Extensions package.

Appendix F describes the differences between DECgraphic-11 subroutines
and the subroutines in the RSX-11M/FORTRAN graphic extensions.

Finally, a glossary of graphics terms defines the various special
terms and concepts used in this manual.

1.1.2 Documentation Conventions

The following list describes the documentation conventions used in
describing the FORTRAN graphics calls in this manual.

Convention Meaning

Square brackets ([1) The enclosed parameters are optional.
FORTRAN variable names with Standard default FORTRAN variable types
upper-case letters (X11, whose value 1is returned by the called
I0, M2) routine; alternatively, an array name

passed to the subroutine.

FORTRAN variable names Standard default FORTRAN variable types
with lower-case letters whose value 1s to be supplied by the
(x11, i0, m2) user; may be any valid arithmetic

expression of the specified type (i.e.,
X is real, i is an integer).

[1[,i[,£[,t]111] The only exceptions to the rules
described above; special display file
status parameters that are all integers
(see Section 2.3); in subroutine calls,
expressed only as [1, i, £, t].

x—-axis The horizontal axis.

y-axis The vertical axis.

THE DECGRAPHIC-11 SYSTEMS

NOTE

All floating-point constants supplied by
the wuser as arguments in calls to the
FORTRAN subroutines should have decimal
points. If you do not adhere strictly
to this convention, the results of
program execution are unpredictable.

1.1.3 Overview of DECgraphic-11 System Capabilities

The following list summarizes the major user-visible <capabilities of
the DECgraphic-11 interactive graphics system. Graphics terms such as
beam, vector, menu, and so on are defined in a glossary at the end of
this manual and are explained in some detail in Section 1.3.

Support of varied display elements

You may display a variety of different types of elements on the
screen, including points, line segments, characters, and graphs.
Elements are normally defined at coordinate positions relative to
the current beam position, although points can be defined at
absolute coordinate positions, as can line segments on the VS60.

User-selected line types
Vectors may be drawn on the screen in any of four formats: solid

line, long-dashed 1line, short-dashed 1line, or dot-dash line.
These are illustrated in Figure 1-1.

THE VS60 HAS A HARDWARE VECTOR GENERATOR WITH FOUR PROGRAMMABLE
LINE TYPES:

Figure 1-1 Line Types

User-selected intensity level

You may vary the brightness of pictures or components of pictures
on the display screen. In this way, you can emphasize portions
of the display. There are eight different levels of brightness,
from 1 (faintest) to 8 (brightest), as shown in Figure 1-2.

THE DECGRAPHIC-11 SYSTEMS

Figure 1-2 Intensity Levels

Hardware blink feature

You may specify that a display or a portion of a display 1is to
blink on and off. This is useful in providing user warnings or
in identifying a particular picture component to be changed or
highlighted. This feature is also known as flash mode.

Italic mode

Characters may be displayed in ordinary type or in italics. You
may specify the text to be italicized by including a special
control code before the character string specification. An
example of the two available type fonts is shown in Figure 1-3.

THE vS6@ HAS A HARDWARE CHARACTER GENERATOR WITH
THE FULL ASCII CHARACTER SET IN BOTH NORMAL AND ITALIC FONTS

ABCOEFGHI JKLMNOPQRSTUVWXYZ ABCOEFGHT JHLMNOPORS TUVWXYZ

abcdefghi jhklMnopqrstuvwxyz abcdelghi jhlmnopgrstuvwxyz

0123456789 | “#E%8 (X+, - /@ 9123456789 1 #8538 ()X+, ~ @
o= 0N N~ FCEIDLN)AL)

Figure 1-3 Type Fonts

Extended character set

You may output any of the conventional 96 ASCII characters and
may also display 31 additional <characters representing Greek
letters and mathematical symbols. To select characters from this
extended set, vyou must include a "shift-out" code before the
ordinary ASCII character string to which the shift-out character
string corresponds. Extended characters may be displayed in
either of the available type fonts, as shown in Figure 1-4.

THE DECGRAPHIC-11 SYSTEMS

A=0D8 aAl¥NVE e aIQOTEe at s Lzm]) AwOSE al¥NG+ UL T IQTTEn~r s L=n 0

Figure 1-4 Extended Characters

A list of extended characters and their ASCII character
correspondences is included in Section 2.3.7. :

Rotated characters

On the VS60, a character string may be displayed in the normal
horizontal position or may be rotated 90 degrees
counter-clockwise. As in the specification of italic mode, vyou
may select rotated characters by including a special control code
before the character string to be rotated. Examples of normal
and rotated characters are shown in Figure 1-5.

Figure 1-5 Rotated Characters
Subscript and superscript generation
On the VS60, you may display text that incorporates subscripts

and superscripts on the screen--for example, in the expression
shown in Figure 1-6.

THERE IS ALSO HARDWARE SUBSCRIPT AND SUPERSCRIPT GENERATION

Figure 1-6 Subscripts and Superscripts

As for other special character modes, you specify a subscript or
superscript by including a special <control code before the
character string to be displayed.

Character and image scaling

On the VS60, you may display characters and lines on the screen
in the standard size or may enlarge or compress them as desired
for display purposes. The normal size of each character is 6 x 8
raster units. You may change this standard character size and
display characters that are one-half normal size or one and
one-half or twice normal size, as shown in the example of Figure
1-7. Vectors and other images may be scaled in increments of
one-fourth from one-fourth normal size to three and three-fourths
normal size.

1-5

THE DECGRAPHIC-11 SYSTEMS

CHARACTERS CAMN BE DRAWN [N FOUR SIZES

. SXNORMAL NWORMAL

Figure 1-7 Character Scaling
Scaling and windowing

On the VS60, you may define the screen to function as a viewing
window on a much larger image-definition or drawing area for the
display image (see Section 1.3). You can vary the ©position of
this "window" and 1in this way examine different areas of the
total image. You may also define your own coordinate system.

Light pen support

You may interact with the display processor by using the 1light
pen to select options, identify pictures to be moved, or
otherwise manipulate displays on the screen. Support of the
light pen on the VT1l and VS60 and the light pen tip switch on
the VS60 facilitate the dynamic alteration of displays on the
screen and make DECgraphic-11 a truly interactive system.

Menu area

You may display a special menu of character strings to be
displayed in a formatted 1list on the screen and selected by
pressing the light pen down at the 1location of the desired
option. You may specify your own menu area or on the VS60 may
use the hardware menu area, described in Section 1.3.1.

Subpicture support

Internally, repeated displays of identical images can be defined
with more modularity and efficiency by making use of subpicture
support. You can group a series of calls, data, and picture
components together to form an entity called a subpicture, which
can then be displayed, copied, erased, and turned on and off.

1.2 HARDWARE/SOFTWARE ENVIRONMENT

The hardware normally required for DECgraphic-11 FORTRAN support
includes the following:

. PDP-11 central processing unit with 16K or more of memory
VS60 or VT1ll display subsystem
. user terminal

. disk or another random-access system storage device for use
by the operating system

The amount of memory required to support the graphics system |is
dependent on your own programming requirements, but will normally
range from 8K to 16K.

The VS60 and VT1ll are supported as autonomous processors, attached as
UNIBUS peripherals to the PDP-11. Both processors are
direct-memory-access devices.

1-6

THE DECGRAPHIC-11 SYSTEMS

1.3 BASIC GRAPHICS CONCEPTS

This section describes the most important of the graphics concepts
that underlie the operation of the DECgraphic-11 FORTRAN support
package. It provides background information in the use of display
screens and light pens, the construction and use of display files, the
creation of display pictures from points and line segments, and the
use of subpictures, pointers, and display parameters in the
DECgraphic=-11 system. Some of the information provided here expands
upon the discussion of system capabilities in the introductory
sections of this chapter. Understanding the concepts presented here
is necessary to interpreting the operations of the subroutines
summarized in Section 1.4 and described in detail in Chapter 2.

1.3.1 The Display Screen

Two graphics display subsystems may be used in DECgraphic-11 systems:
the VS60 and the VTI1I. Both graphics subsystems have refresh CRT
capabilities and support the use of a solid-state light pen. The VS60
display processor can support two distinct scopes.

The display screen provides a square main viewing area; this area is
a 9 1/4-inch by 9 1/4-inch (20.74-centimeter by 20.74-centimeter) area
on the VT1l and a 12-inch by 12-inch (30.48-centimeter by
30.48-centimeter) area on the VS60. It addresses 1024 by 1024 raster
units. For the VS60, this viewing area may actually be considered a
window on a larger image-definition area. The logical screen that can
be addressed on the VS60 is a 96-inch by 96-inch (243.84-centimeter by
243.84-centimeter) area. Subsequent sections of this manual describe
the ways in which you may manipulate the screen viewing area in order
to examine a different portion of this larger image-definition area.

The main viewing area's lower left corner can be described by the
coordinate positions (x=0, y=0); its upper right corner has
coordinates (x=1023, y=1023). Both the x-axis and the y-axis consist
of 1024 individual points (1777 octal), so there are a total of
1,048,576 individually addressable positions on the display screen.
You can address any of these positions by identifying the appropriate

x— and y-coordinates associated with the desired position. The
distance between one point and the next in the default display
coordinate system is one unit known as a raster. The software uses

single raster units as a default condition, but you can establish
other coordinate systems as desired.

The viewing area capacity, when normal-size characters are produced,
is 73 characters per line and 31 lines per screen.

The total drawing area available on the VS60 system extends from a
lower left corner whose coordinate position is (x=-4095, y=-4095) to
an upper right corner at (x=4095, y=4095). There are 8192 individual
points on each axis, so this total 1logical screen consists of
67,108,864 individually addressable positions.

Figure 1-8 illustrates the relationship of the DECgraphic-11 viewing
and drawing areas on the VS60.

THE DECGRAPHIC-11 SYSTEMS

(x = -4095, y = 4095) (x = 4095, y = 4095
|
|
|
Y I axis
|
(x =0,y =1023) (x = 1023, y = 1023)
VIEWING
. Center of viewing area
AREA (x =612,y = 512)
xaﬁ_ . [
{x=0,y=0) (x =1023,y = 0)

Center of drawing area

DRAWING AREA

—_— e — =2

(x = -4095, y = -4095) (x = 4095, y = -4095)
Figure 1-8 VS60 Display Screen

In defining points, lines, and other elements on the VS60 display
screen, your coordinate specifications may normally extend beyond the
bounds of the viewing area. Any display that extends beyond the
bounds of the viewing area will appear to be truncated at the edge of
the viewing area, but will actually extend into the remaining drawing
area. However, 1if you specify an x or y value that exceeds -4095 or
4095, the display will be truncated or clipped at the edge of the
drawing area.

In addition to the main area, the VS60 display processor also
addresses a separate "menu" area. The main area is the 12-inch by
12-inch screen discussed above, and the menu area is a 1logical strip
down the right side of the screen. It extends 1 1/2 inches (128
raster units) in the horizontal direction and 12 inches in the
vertical direction. This 4-centimeter by 30-centimeter area
accommodates 14 normal character positions. The menu area may be used
for any purpose but is usually most helpful in displaying a list of
options known as a menu, from which the user of vyour application
program can specify a choice. An example of such a function is shown
in Figure 1-9.

THE DECGRAPHIC-11 SYSTEMS

POINT
VECTOR
STRING
GRAPH
FIGURE

Figure 1-9 Menu Area

The display types listed here represent the choices available to the
program user. He presses the 1light pen in the area of the VECTOR
label, for example, to indicate that he wants a vector to be displayed
by the program.

You can construct a menu by invoking the MENU subroutine (see Section
2.3.8). This subroutine allows you to specify the character strings
to be displayed as menu entries, to assign a name or tag to each of
these entries, and to specify the spacing of the entries in the menu
area.

You may position a menu area at any location on the screen by
including in the MENU call the coordinate positions at which the menu
will begin. If these coordinates are not specified for the vVS60, the
menu is constructed in the separate logical menu area to the right of
the main drawing area. On the VT1ll, the menu will begin at the left
edge of the viewing area.

1.3.2 The Display File

When you issue subroutine calls and supply data wused in performing
graphics operations, the instructions and data for the display
processor are stored in a special area of PDP-11 memory called the
display file. You allocate this area of memory by defining a COMMON
block called DFILE in the FORTRAN program - that uses the graphics
subroutines. The display file is initialized for use in DECgraphic-11
by means of the INIT subroutine (see Section 2.1.1).

The memory area used as the display file should be large enough to
accommodate the display instructions and data required for the most
complex image you intend to output during the current graphics
session.

In displaying graphics on the screen, the VS60 or VT1l display
processing unit (DPU) interacts with the display file much as the
PDP-11 central processing unit interacts with PDP-11 memory. Just as
the PDP-11 CPU accesses successive program instructions and data from
memory, the VS60 or VT1l DPU accesses display instructions and data
from the display file, independent of the operations of the PDP-11
CPU. The internal configuration is shown in Figure 1-10.

THE DECGRAPHIC-11 SYSTEMS

< UNIBUS >

PDP-11 PDP-11 VS60 or VT11
CPU INSTRUCTIONS DPU
AND DATA
DISPLAY CRT
Fl LE SCOPE

Figure 1-10 CPU and DPU

In order to create a display image, the display processor simply
sequences through the display file to display images on the screen.
The DECgraphic-11 system 1is self-synchronizing, that is, after
completing one display file cycle, it jumps automatically back to the
beginning of the file and begins to execute display instructions
again. This facilitates the display of seemingly continuous images on
the display screen.

As you issue subroutine calls and provide data used to plot graphs or
display points on the screen, the display file fills up with
instructions and data. Although you can erase elements in the display
file, the space occupied by these elements cannot be reused until you
issue a call to the CMPRS subroutine (see Section 2.9.1), which
removes erased display elements and reclaims the display file space.

Many of the FORTRAN-callable subroutines described in this manual may
be wused to manipulate elements of the display file. By referencing
pointers to elements stored in the file, you can delete, insert, or
change display information. Section 1.3.5 describes the use of
display file pointers in the DECgraphic-11 package.

There are a number of status parameters associated with the display
file that vyou may set in order to change the display intensity level
or line type, to cause elements to be light pen-sensitive, or to
enable the blinking feature on a particular area of the screen. When
you first initialize the display file, these parameters are set to
certain initial values, as shown below.

. Light pen sensitivity (1 in the subroutines) is disabled.

. Intensity level (i) is set to 4 in a range of 1 (faintest) to
8 (brightest).

. Flash (f) or blink mode is disabled.
. Line type (t) is set to solid.

1-10

THE DECGRAPHIC-11 SYSTEMS

There are a number of other default conditions associated with an
intialized display file. These are described in the discussion of the
INIT subroutine.

It is possible to save a display file as a data file on a mass-storage
device such as disk, DECtape, or floppy disk. By saving and
subsequently restoring a display file wused to output a displayed
image, you can cause a screen image to be displayed without having to
rerun the FORTRAN program that was used to create the image. The SAVE
and RSTR subroutines (see Sections 2.9.2 and 2.9.3) are used to back
up and restore DECgraphic-11 display files.

1.3.3 Display Primitives

You may display a variety of different kinds of graphics elements on
the screen, including points, line segments, and characters. These
individual elements may be drawn by means of simple calls to FORTRAN
subroutines and are known as display primitives. In drawing primitive
elements, the position of the DECgraphic-11 display beam is relevant.
The beam is the stream of electrons that is directed to a position on
the display screen. At the time you initialize the graphics system
(see the INIT subroutine, Section 2.1.1), the beam is positioned at
the lower left corner of the screen (x=0,y=0). As primitive display
elements are drawn at coordinate positions on the display screen, the
beam changes position. :

The following list summarizes the display primitives that may be
specified in the DECgraphic-11 package:

. An absolute point, specified in absolute coordinate positions
(e.g., (x=512, y=512)) on the screen (the APNT subroutine,
see Section 2.3.1).

. A relative point at a relative coordinate position defined as
the current beam position plus the (x,y) coordinate
specification (RPNT, see Section 2.3.2).

. A vector that extends from the current beam position to an
absolute coordinate position on the display screen (AVECT,
see Section 2.3.4) (VS60 only).

. A vector that extends from the current beam position to a
point on the screen relative to the beam position; the
vector may be drawn in short or long vector format (VECT,
SVECT, and LVECT, see Sections 2.3.3, 2.3.5, and 2.3.6).

. A character string and associated control codes to indicate
extended characters, italic mode, rotation mode, subscripts,
and superscripts (TEXT, see Section 2.3.7).

Primitive elements are usually combined on the screen 1into more
complex graphics displays. In the display file, the subroutine calls
used to create the primitives that are combined are often grouped
together and stored as a named entity called a subpicture. Section
1.3.4 introduces the definition and use of subpictures, and Section
2.5 describes a variety of DECgraphic-11 subpicture-manipulation
routines. ’

You may combine any kind or number of primitive elements into a
subpicture. You may also create special types of subpictures called
"graphs", "figures", and "numbers" by issuing simple subroutine <calls
to XGRA and YGRA (see Sections 2.5.1 and 2.5.2), FIGR (see Section
2.5.3), and NMBR (see Section 2.4.7).

1-11

THE DECGRAPHIC-11 SYSTEMS

All of the primitive elements defined by means of FORTRAN calls are
stored in the display file and cause corresponding images to be
displayed on the screen. It is possible to add, delete, and change
individual primitives in the display file by making use of special
DECgraphic-11 software pointers. You can create a. pointer that
addresses a particular primitive in the display file, advance it
through the display file, primitive by primitive, and change or delete
information in the referenced primitive. Section 2.7 describes the
FORTRAN subroutines used to mapipulate pointers and change primitive
elements.

1.3.4 Subpicture Definitions

The DECgraphic-11 package supports a special subpicture facility that
allows you to combine individual graphics elements into a structure
known as a subpicture. Because many displayed pictures contain
repeated images, it is often more efficient to define such images as
subpictures; a subpicture can then be invoked when it is needed,
saving you from having to repeat an almost identical sequence of
display information. All subpictures defined 1in the system are
assigned names or tags that can subsequently be referenced. A tag
must be a positive integer in range 1 through 32767.

A subpicture can be defined, displayed, copied, erased, turned on and
off, and altered. Subpictures are functionally very similar to
subroutines. Calls to existing subpictures may be issued and nested
to a depth of eight calls, to allow complex structures to be bu11t up
from simpler components.

A large number of the FORTRAN graphics routines described in Chapter 2
are oriented to the use of subpictures. The following are some of the
most important subpicture operations you may perform in the
DECgraphic=11 system:

. Defining the start of a new subpicture description or
referencing an existing subpicture to be logically copied and
renamed; subpicture definitions can be nested to a depth of
eight calls (the SUBP subroutine, see Section 2.4.1)

. Terminating a subpicture definition and optlonally specifying
that any display file parameters (e.g. light pen
sensitivity, intensity, flash mode, 1line type) that were
reset for wuse in the subpicture are to be restored to the
values they had before the: subpicture was called (ESUB, see
Section 2.4.2)

. Copying a subpicture and assigning a new tag to the copied
sSubpicture (COPY, see Section 2.4.3)

. Turning a subpicture off temporarily and turning it on again,
often to display an image all at once on the screen after it
has been totally constructed in the display file (OFF and ON,
see Sections 2.4.4 and 2.4.5)

. Erasing a subpicture definition from the display file (ERAS,
see Section 2.4.6)

THE DECGRAPHIC-11 SYSTEMS

. Creating special subpictures -called "numbers", "graphs", and
"figures" (NMBR, XGRA, YGRA, and FIGR, see Sections 2.4.7,
2.5.1, 2.5.2, and 2.5.3 respectively)

. On the VS60, changing the size of characters and/or vectors
to be displayed in a particular subpicture (CVSCAL, see
Section 2.4.8)

. Changing individual primitives in a subpicture definition by
advancing a pointer through that subpicture's portion of the
display file (see Sections 1.3.5 and 2.6)

In addition to the descriptions of FORTRAN routines that define and
access subpictures, a number of advanced programming techniques used
in building subpictures are included in Section 3.1.

1.3.5 Display File Pointers

It is possible to insert, delete, or change individual primitives at
any location in the display file. To access a primitive, you must
reference it by moving a pointer to the appropriate display file
location. There are 21 available pointers in the DECgraphic-11
package. These pointers are numbered 1 through 21 inclusive. In
referencing display file elements, you can move all but the 21lst
pointer, which serves as the system pointer and should not be
referenced in a user program.

The availability of 20 individual pointers enables you to keep track
of as many as 20 different primitive locations. To alter a simple
primitive, you must first determine the location of the pointer you
will be using, and then advance the pointer until it references the
particular primitive you wish to change.

The following 1list summarizes the major operations that can be
performed by manipulating pointers:

. Setting a pointer at a particular primitive within a
subpicture (the POINTR subroutine, see Section 2.6.1)

. Advancing a pointer by a certain number of primitive elements
(ADVANC, see Section 2.6.2)

. Returning the coordinate positions of the primitive currently
referenced by a pointer (GET, see Section 2.6.3)

. Changing the coordinate values of a primitive referenced by a
pointer referenced by a pointer (CHANGE, CHANGA, and CHANGT,
see Sections 2.6.4 through 2.6.6)

. Inserting a new element in the display file just before the
primitive referenced by a pointer (INSERT, see Section 2.6.7)

. Erasing the primitive referenced by a pointer (ERASP, see
Section 2.6.8)

THE DECGRAPHIC-11 SYSTEMS

1.3.6 User Coordinate Systems And Windows

As described in Section 1.3.1, the standard DECgraphic-11 display
screen viewing area is defined as the area whose lower left corner has
coordinate positions (x=0, y=0) and whose wupper right corner has
coordinate positions (x=1023, y=1023). In this viewing area, each
axis has 1024 individually addressable points. The coordinate system
that describes this area is unit-scaled, that is, the distance from
one point to another is one raster unit, and consecutive points on an
axis are addressed in increments of one. For example, the first three
points along the x axis are (x=0, y=0), (x=1, y=0), (x=2, y=0).

It is possible to change this default coordinate system to almost any
system that you find convenient. For example, you might want to
address consecutive rasters in increments of ten units. The first
three points along the y axis might then be (x=0, y=0), (x=0, y=10),
(x=0, y=20). The physical space between these points would remain one
raster unit, but vyou would describe the positions according to your
own coordinate system. The relationship between the standard
unit-scaled coordinate system and your own coordinate system (raster
units and user units) is called the scaling factor. In the case
described, the scaling factor along both axes is 10.

The SCAL subroutine (see Section 2.2.3) is used to define the new
coordinate system by identifying the coordinate positions of the lower
left and upper right corners of the display screen viewing area. You
may optionally specify that the scaling factors along the x and y axes
are to be returned. To restore the default coordinate system, you
must issue a call to the NOSC subroutine.

As mentioned in Section 1.3.1 in the description of the VS60 display
screen, the screen viewing area can actually be considered a window on
a larger image-definition or drawing area. On the VS60, scaling the
viewing area also scales the drawing area. The specification:

CALL SCAL (0.,0.,1.,1.)

scales the viewing area to user coordinate positions (x=0,y=0) at the
lower left <corner and (x=1,y=1) at the upper right corner. This
specification also scales the total drawing area to extend from
(x==4,y==4) to (x=4,y=4).

You may freely display pictures in any portion of the total VS60
drawing area. In order to examine a display that is outside the
standard viewing area, however, you must move the viewing window to
the relevant portion of the drawing area. You do this by redefining
the viewing window. The WINDOW subroutine (see Section 2.2.5) is used
to perform this redefinition. In it, vyou specify the lower left
corner of the new viewing window, for example:

CALL WINDOW (-4095.,-4095.)

Because the viewing area is always a standard physical size (1024 x
1024 raster units), the upper right corner of the new viewing window
is thus (x=-4095 + 1024, y=-4095 + 1024) or (-3071, -3071). The
following diagram illustrates the placement of the new viewing window
in the total drawing area.

THE DECGRAPHIC-11 SYSTEMS

(x = 4095, y = 4095)

(x = 1023, y = 1023}

oLD
VIEWING
AREA

(x=0,y=0)

DRAWING AREA

(x = -3071, y = -3071)

NEW
VIEWING
AREA

(x = -4095, y = -4095)

Figure 1-11 Viewing Window

1.3.7 Light Pen Interaction and Tracking

DECgraphic-11 is an interactive graphics system. It allows you to
output a wide variety of graphics elements on the display screen, to
change these elements dynamically, and to interact with the system.
To facilitate this user interaction, the system supports a light pen,
a solid-state light-detecting device that can be pointed at any
display element on the screen. It consists of a photosensitive diode.
If a graphics element has been made 1light pen-sensitive, a PDP-11
interrupt will occur when the beam is traced in front of the light
pen. This is known as a "light pen hit". The display processor
hardware retains information on the characteristics and coordinate
positions of the hit.

The VS60 light pen also has a tip switch, whose status (in or out) is
set if you press or remove the tip from the screen to initiate certain
kinds of interaction. For example, the tip switch may be wused to
confirm detection of a particular graphics element or menu item. The
light pen's tip switch has its own separate PDP-11 interrupt and

THE DECGRAPHIC-11 SYSTEMS

allows you to exercise additional control in interacting with the
display. For example, you might perform certain actions after a light
pen hit with the tip switch set, and alternative actions after a light
pen hit without the tip switch set.

The light pen is often used to select an element from the menu area of
the display screen. The application program may display a list of
options, as shown in the following example:

MOVE
COoPY
ERASE
ADD
CHANGE
ROTATE
REVERSE
DELETE

Figure 1-12 Light Buttons

Each of the labels displayed in the menu area of the screen is Kknown
as a light Dbutton. If you press the tip of the light pen on the
screen in the area of the ADD element, for example, the appropriate
information about the position of the light pen will be returned to
the FORTRAN program and you can initiate a program branch to the
appropriate FORTRAN statements.

The coordinates of a light pen hit will be returned with an accuracy
of precisely one raster unit for the VTll and approximately four
raster units for the VS60.

The interactive nature of the DECgraphic-11 system 1is increased by
support of a tracking object. The tracking object is a diamond-shaped
image that can be displayed to keep track of light pen hits. Because
it is internally stored as a subpicture of relative vectors, it can be
moved freely around the screen to follow the light pen.

Figure 1-13 illustrates the shape of the tracking object.

THE DECGRAPHIC-11 SYSTEMS

N
Y

Figure 1-13 Tracking Object

It may initially be positioned at any location on the display screen.
When a 1light pen hit takes place on the tracking object, the object
centers itself automatically on the hit.

You may alter primitive elements such as points and vectors by
attaching them to the tracking object, moving the object, and then
detaching the primitives. You may also define a 1logical grid
consisting of a set of imaginary points, evenly spaced at user-defined
intervals on the display screen. The tracking object can then be
automatically positioned at the point on the grid nearest the light
pen hit. 1In this way, you can adjust the coordinate positions of a
light pen hit.

The following 1list summarizes the major capabilities of the
DECgraphic-11 FORTRAN support package in the area of light pen and
tracking object utilization:
Testing for a 1light pen hit on the display screen and
returning the following information for successful hits (the
LPEN subroutine, see Section 2.8.1):
-scope on which the hit occurred (VS60)
-tag of the subpicture in which the hit occurred
-x and y coordinates of .the hit
-number of the primitive within the subpicture
-array in which the subpicture precedents are stored

-screen area (main or menu) in which the hit occurred

-status of the tip switches (VS60)

1-17

THE DECGRAPHIC-11 SYSTEMS

. Positioning the tracking object at specified coordinate
positions (TRAK, see Section 2.8.2)

. Returning the current coordinate position of the tracking
object (TRAKXY, see Section 2.8.3)

. Changing primitives by attaching them to the tracking object,
moving the tracking object by means of the light pen, and
then detaching the primitives (ATTACH and DETACH, see
Sections 2.8.4 and 2.8.5) .

. Moving the tracking object to the nearest coordinate
positions on the logical grid (GRID, see Section 2.8.6)

1.4 GRAPHICS SUBROUTINES

The user interface to the DECgraphic-11 interactive graphics package
is a collection of graphics subroutines. You may invoke these
routines by issuing simple subroutine CALLs from your FORTRAN
programs.

The FORTRAN-callable graphics subroutines implemented for
DECgraphic=-11 support may be divided into a series of functional
categories. Each of the following subsections summarizes the format
and use of the subroutines in one of these categories. Each
description includes the name, argument 1list, and effect of the
graphics call.

Chapter 2 describes the graphics subroutines in more detail. Appendix
A provides a summary of the FORTRAN calls and effects, arranged in
alphabetic order for use as a reference.

Most of the graphics subroutines described below are identical for use
in VT1l and VS60 graphics systems. Where differences exist between
the subroutine calls on the two systems, an asterisk (*) is included
before the subroutine name. Usually, the difference is simply that
only one scope is supported on the VT1ll, so the s parameter is ignored
in VT1l calls. In addition, there are a number of graphics routines
that have been implemented to wutilize the more powerful VS60
capabilities. These subroutines are distinguished by a cross (+)
before the subroutine name. Calls to these routines are no-ops in
VT1ll systems.

Many of the subroutine <calls summarized below contain optional
parameters. If you want to include an optional parameter but do not
want to specify all of the parameters that precede it, you must enter
a comma for each omitted parameter. For example, to include an
intensity (i) specification in the APNT call:

CALL APNT (x,v[,1,i,£f,t])
you may specify the following:
CALL APNT (0.,512.,,-4)
The extra comma effectively holds a place for the omitted 1 parameter.

Note that it is not necessary to specify or hold places for the
trailing £ and t parameters.

THE DECGRAPHIC-11 SYSTEMS

1.4.1 1Initializing And Controlling The Display File

The subroutines in this category are used to initialize the display
processor, allocate a memory area for use as the DECgraphic-11 display
file, and control the use of the display file.

Call Argument List Effect

INIT [(n)] Clears the display screen,
initializes the display file to
use the first n words of the
FORTRAN common block, DFILE, and
sets the initial display file
status parameters.

STOP Halts the display processor,
stops the display, and clears the
display screen. The display may
be restored by calling CONT.

CONT Restarts the display processor,
thus restoring the display
interrupted by a call to STOP.

FREE Disconnects the display file from
the display processor, thus
freeing the area of memory used
by the file; this terminates
graphics processing until the
next call to INIT.

1.4.2 Setting Screen And Scaling Parameters

These routines set values for such parameters as display scope number,
screen area, and user coordinate system.

Call Argument List Effect

+ SCOPE (n) Specifies that subsequent
graphics calls refer to scope 1
(n=1) or 2 (n=2).

+ AREA (n) Specifies that subsequent
graphics <calls refer to the main
viewing area (n=1) or the nmenu
area (n=2).

SCAL (x0,y0,x1,y1[,FX,FY]) Defines a new coordinate system
in which (x0,y0) identifies the
lower left corner of the
user-specified screen, and
(x1,y1l) identifies the upper
right corner of the screen;
optionally returns the effective
X and Y scaling factors in FX and

FY.

NOSC Restores the default unit-scaled
coordinate system ((x0=0, y0=0)
to (x1=1023, y1=1023)) for
subsequent graphics <calls, and
eliminates any user-defined

coordinate system.

1-19

THE DECGRAPHIC-11 SYSTEMS

Call Argument List Effect
+ WINDOW (x,Yy) Defines a window on the drawing
area of the display screen by
specifying the coordinate

positions (x,y) of the lower left
corner of the user-defined area.

1.4.3 Generating Graphics Primitives

The routines described below insert primitives or basic picture
elements, such as points, vectors, and characters, in the display
file. As each element is inserted in the file, it is also displayed
immediately on the screen. Many of the routines in this category can
also be used to change the basic display file status parameters:

light pen enable; initial value is disabled

. intensity level (1-8); initial wvalue 1is 4 (with normal
adjustment, this makes the primitive bright enough to be
detectable by a light pen)

flash (blink) mode; initial value is off

line type (solid, long-dashed, short-dashed, dot-dash) ;
initial value is solid

A full description of the meaning of 1, i, £, and t that can be
specified in the routines summarized below is included in Section 2.3.

Call Argument List Effect

APNT (x,yl[,1,i,£,t]) Positions the beam at the
absolute position represented by
(x,y) and may display a dot at
that position; optionally
changes 1, i, £, and t
parameters.

RPNT (x,y[,1,i,f,t]) Moves the beam from its current
position to the relative position
represented by (x,y) ‘and may
display a dot at that position.
If the current position is
(10,20) the beam is moved to
(10+x, 20+y). Optionally changes
1, i, £, and t parameters.

+ AVECT (x,y[,1,i,£,t]) Draws a vector from the current
beam position to the absolute
point represented by (x,Y);
optionally changes 1, i, £, and t
parameters.

VECT (x,v[,1,i,£,t]) Draws a vector from the current
beam position to the relative
position represented by (x,Y).
using the short vector format
(see Section 2.3.5) when
possible; optionally changes 1,
i, £, and t parameters.

THE DECGRAPHIC-11 SYSTEMS

Call Argument List Effect

LVECT (x,y[,1,i,£,t]) Draws a vector from the curr
beam position to the relat
position represented by -(x,

using the long vector format (
Section 2.3.6); optiona
changes 1, i, f, and

parameters.

SVECT (x,y[,1,i,f,t]) Draws a vector from the curr
beam -position to the relat
position represented by (X,

ent
ive
),
see
11y

t

ent
ive
Y),

using the short vector format;

optionally changes 1, i, £, an
parameters.

TEXT (all,a2...]) Displays the <character stri
supplied 1in the call, (al, et
beginning at the current b
position. Characters specif
in the call may include cont
codes indicating italic mo
character rotation,
superscript or subscript mode.

MENU ([x0],y0,dy,m{[,'nl1'[,'n2']...])
Displays a list of up to 10 it
to be used as a menu. The it
are the character strings nl,

dat

ngs
c.)
eam
ied
rol
de,
and

ems
ems
n2,

and so on, and the first item is

displayed at the coordin
position represented by (x0,y

ate
0).

If x0 is omitted from a VS60

call, the items are displayed
the hardware menu area of
screen; on the VT1ll, they be

in
the
gin

at the left edge of the viewing

area. The dy parame
represents the vertical spac
between menu items. The
parameter represents the

assigned to the first item

subpicture (nl); subsequ
subpictures are tag
sequentially, so if there are
subpictures, the 1
subpicture's tag is m+10-1
m+9.

1.4.4 Defining And Using Subpictures

The routines in this category generate subpictures and control
display and manipulation of subpictures on the screen.

Call Argument List Effect

SUBP (ml[,m2]) Begins the definition of
subpicture whose tag is ml;
primitives specified

subsequent graphics calls
considered a part of

1-21

ter
ing
m
tag
or
ent
ged
10
Oth
or

the

a
all

in
are
the

Call

* ESUB

COPY

OFF

ON

ERAS

NMBR

THE DECGRAPHIC-11 SYSTEMS

Argument List

[(m)]

([ml] ,m2)

(m)

(m)
[(m)]

(m,var[,n,format])

+ CVSCAL (m[,ifc,ifv])

Effect

subpicture, until the occurrence
of a terminating call to ESUB.
If the m2 parameter 1is included
in the call, a new subpicture
tag, ml, references an existing
subpicture whose tag is m2.

Terminates the definition of the
current subpicture, created by
means of the previous call to
SUBP; if the m parameter is
included in the call (VS60 only),
the display processor status
parameters (e.9.., light pen
enable, intensity) that were in
effect before the current
subpicture was invoked are
restored.

Creates a copy of the existing
subpicture whose tag 1is m2 and
assigns it the tag ml; if the ml
parameter 1is omitted, subpicture
m2 is copied to the currently
open subpicture.

Temporarily turns off the
subpicture whose tag is m.

Turns on subpicture m.

Erases the definition of
subpicture m from the display
file; 1if parameter m is omitted,
the tracking object 1is removed
from the screen.

Creates a special numeric
subpicture whose tag is m. This
call formats the numeric contents
of a FORTRAN variable, var, with
a width of n in the specified
format. If the format parameter
is omitted, the default format of
F16.8 is used.

Scales the size of displayed
characters and vectors in
subpicture m; ifc may be in
range 1-4, where 1 is one-half
normal character size, and 4 is
twice normal size (normal is 2);
ifv must be in range 1-15, where
1 1is one-fourth normal size and
15 is three and three-fourths
normal size (normal is 4).

1-22

THE DECGRAPHIC-11 SYSTEMS

1.4.5 Displaying Graphs And Figures

These routines create special subpictures that display graphs and
figures on the screen and return information about these pictures.
Note that several of the routines may be used to alter the display
status parameters (l,i,f,t) described in Section 2.3).

Call Argument List Effect

XGRA (dvy,A,n,m[,1,i,f,t]) Creates a special graph
subpicture m, which consists of a
series of points. The x values
of the points to be plotted are
specified in the first n elements
of array A, and the y values are
given by integral multiples of
dy. Optionally changes 1, i, £,
and t parameters.

YGRA (dx,A,n,m{,1,i,£,t]) Creates a special graph
subpicture m, which consists of a
series of points. The vy values
of the points to be plotted are
specified in the first n elements
of array A, and the x values are
given by integral multiples of
dax. Optionally changes 1, i, £,
and t parameters.

FIGR (A,n,m[,1,i,f,t]) Creates a special figure
subpicture m. The figure 1is
plotted from the first n (x,y)
coordinate increment pairs
specified in array A. Optionally
changes 1, i, £, and t
parameters.

AGET (m,3,2) Returns in variable 2 the 3jth
primitive of the graph or figure
subpicture whose tag is m.

APUT (m,j,b) Assigns value b to the jth
primitive of the graph or figure
subpicture whose tag is m.

FPUT (m,j,b) Assigns wvalue b to the jth
primitive of the figure
subpicture whose tag is m;
adjusts the next element of the
subpicture to insure that

subsequent points in the figure
will be at the same absoclute
coordinate positions on the
screen.

1.4.6 Using Display File Pointers

The routines in this category manipulate any of the 20 wuser pointers
in the system and change the contents of the primitives in the display
file referenced by these pointers.

Call

POINTR

ADVANC

GET

CHANGE

CHANGA

CHANGT

INSERT

ERASP

THE DECGRAPHIC-11 SYSTEMS

Argument List

(k,m[,31)

(k[,n])

(k,X,Y)

(krx,y)

(k/x,vy)

(ksall[,a2...])

[(k)]

(k)

Effect

Sets pointer k to reference the
jth primitive of the subpicture
whose tag is m; if j is omitted,
the pointer will be set to the
first primitive of the
subpicture. The value of k must
be in range 1-20.

Advances pointer k (1-20) by n
primitives from its current
position; if n is omitted,
advances by one to the next
primitive in the display file.

Returns in (X,Y) the coordinate
positions of the primitive
referenced by pointer k (1-20).

Changes the primitive referenced
by pointer k (1-20) to the new
value specified in (x,y). This

routine can be used for
primitives defined by the
routines AVECT, VECT, SVECT,

LVECT, RPNT, APNT, XGRA, and
YGRA.

Changes the primitive referenced
by pointer k (1-20) to the new
value specified in (x,y). Like
CHANGE, this routine can be used
for primitives defined by the
routines AVECT, VECT, SVECT,
LVECT, RPNT, APNT, XGRA, and
YGRA, but for VECT, SVECT, LVECT,
and RPNT, subsequent graphics
elements are adjusted to be
displayed at the same absolute
screen position.

Changes the character string
primitive referenced by pointer k
(1-20) to the new string supplied
in the call (al, etc).
Characters specified in the call
may include control codes
indicating italic mode, character
rotation, and superscript or
subscript mode.

Reopens the display file for

insertion of primitives
(specified in subsequent graphics
calls). Insertion begins before

the primitive referenced by
pointer k (1-20). If k 1is
omitted, the insert operation 1is
terminated.

Erases the primitive referenced
by pointer k (1-20), and
repositions the pointer at the
next primitive 1in the display
file.

1-24

THE DECGRAPHIC-11 SYSTEMS

1.4.7 Altering Display File Status Parameters

The routines described below are wused to reset explicitly the
following display file status parameters:

. light pen enable
. intensiﬁy level
. flash mode

. line type

These parameters can also be changed in conjunction with subpicture
definition or image generation in a variety of other graphics calls
(see Sections 1.4.3 and 1.4.5). The meaning of the specified wvalues
of 1, i, £, and t in the following calls is explained in Section 2.3.

Call Argument List Effect

SENSE (k[,1,s1) Depending on the wvalue of 1,
enables or disables 1light pen
sensitivity for the primitive
referenced by k (1-20) in the
display file associated with
scope s (1 or 2).

INTENS (k[,i]) Changes the intensity level of
the primitive referenced by Kk
(1-20) to the brightness
specified in i (1-8) and/or
intensifies the referenced
primitive.

FLASH (k[,£]1) Depending on the wvalue of £,
enables or disables flash or
blink mode for the primitive
referenced by k (1-20).

LINTYP (k[,t]) If t is a legal line type value
(1-4), changes the line type of
the primitive referenced by k
(1-20) to the type specified in
t.

1.4.8 Facilitating Light Pen Interaction

The routines described below handle interactions with the 1light pen
and tracking object.

Call Argument List Effect

LPEN (IH,IT[,X,Y,IP,IA,IM,IT1,IT2])
Indicates whether or not a 1light
pen hit has taken place, and
returns information about the hit
in the following variables:

IH: nonzero if 1light pen
hit has occurred (1 for
scope 1, 2 for scope
2); always 0 or 1 for
the VT11.

THE DECGRAPHIC-11 SYSTEMS

Call Argument List

* TRAK (x,v[,s])

* TRAKXY (X,Y[,s])

* ATTACH (k[,n,s])

Effect

IT: tag of the subpicture

in which the hit
occurred.

X,¥: coordinates of the hit.

IP: number of the primitive
within the subpicture
at which the hit
occurred; undefined if
the primitive is not in
a subpicture.

IA: array in which the
precedents or ancestors
of subpicture IT are
stored (subpicture tags
in order, starting with
innermost nested
subpicture).

IM: screen area of 1light
pen hit (1 for main
area, 2 for menu area);
always 1 for the VT11.

IT1,IT2: status of the light pen
tip switches for scopes
1 (IT1) and 2 (IT2) (0
for off, 1 for on);
for the VvT11l, 1IT1 |is
always 1 and 1IT2 is
always 0.

Positions a tracking object on
the screen of scope s at
coordinate position (x,y) and
centers the object on any light
pen hit within the tracking area.

Returns the coordinates of the
current position of the tracking
object in (X,Y) for scope s.

Attaches the primitive referenced
by k (1-20) to the tracking
object on scope s. When the
primitive 1is a 1long vector, it
will be attached to the object

and will follow 1it; if n is
positive or omitted, the vector's
origin is stationary and the

destination end will move; if n
is negative, the destination end
is stationary and the origin end
will move. If the primitive is
an absolute point or vector, n
need not be specified.

THE DECGRAPHIC-11 SYSTEMS

Call Argument List Effect
* DETACH [(s)] Detaches all primitives from the
tracking object on scope s.
* GRID (gx,g9yl[,s]) Moves the tracking object on
" scope s to the nearest point on
the grid and automatically

detaches any attached primitives.
Parameters gx and gy define the
spacing of points on the grigd.

1.4.9 Performing Display File Utility Functions

The routines in this category are used to compress, save, and restore
the display file.

Call Argument List Effect

CMPRS Compresses the display £file by
removing all erased primitives
and subpictures and reclaiming
the space used by them.

SAVE ('[dev:]file[.ext]") Saves the display file by writing
it onto the mass-storage file
identified in the call.

RSTR ('[dev:]file[.ext]") Restores in the memory area of
the current display file the
display file stored on the
mass-storage file identified in
the call.

1.4.10 Performing Advanced Display File Functions

The routines described below provide advanced display file
manipulation facilities. They should be used only by experienced
DECgraphic-11 users.

Call Argument List Effect

DPTR (I) Returns in I the position of the
display file array element in
which the next word entered in
the display file will be stored.

DPYNOP (n) Inserts n display no-op
instructions at the current
position in the display file.

DPYWD (i,3) Inserts the 1l6-bit data word (i)
in the display file at the
current position in the display
file; displays the word on the
screen if the value of j is zero.

CHAPTER 2

DECGRAPHIC-11 GRAPHICS SUBROUTINES

This chapter describes in detail the graphics subroutines implemented
for use in the DECgraphic-11 FORTRAN support package. You can invoke
any of the subroutines discussed here by issuing simple subroutine
calls from your FORTRAN programs. Each of the sections in this
chapter describes the use of the subroutines in one of the 10 major
functional categories listed below:

. initializing and controlling the display file

. setting screen and scaling parameters

. generating graphics primitives

. defining and using subpictures

. displaying graphs and figures

using display file pointers

. altering display file status parameters

. facilitating light pen interaction

. performing display file utility functions

. performing advanced display file functions

2.1 INITIALIZING AND CONTROLLING THE DISPLAY FILE

This section describes the subroutines used to allocate memory for the
DECgraphic-11 display file, initialize the display file, and control
access to it.

2.1.1 INIT: Initializing the Display File
Form: CALL INIT [(n)]

The INIT subroutine sets up a display file for wuse in performing
graphics operations or reinitializes the file for subsequent use.
INIT clears the display screen, sets a variety of display parameters
to initial values, and allocates an area of memory for use as the
display file. The display file is used to store the instructions and
data to be accessed by the display processor and is accessed by most
of the graphics routines described in this chapter.

2-1

DECGRAPHIC-11 GRAPHICS SUBROUTINES

When you begin a graphics session, you must issue a call to the INIT
subroutine in the form:

CALL INIT (n)
where n is the number of words to be allocated to the display file.

Before issuing the call, you must allocate an area of memory for use
by the display file by defining a FORTRAN common block called DFILE.
The amount of memory allocated for display file use must be sufficient
to accommodate the largest display file that you anticipate creating
during the current graphics session. If you exceed the size of
display file, an error message will be returned by the system:

DISPLAY FILE FULL
and program execution will terminate.

The following example illustrates the creation of a FORTRAN COMMON
block and the use of a call to INIT.

COMMON/DFILE/I (400)
CALL INIT (400)

This COMMON specification allocates 400 words of memory to the area
named DFILE. When you first call INIT, you must specify the amount of
the DFILE area to be used as the display file in the subroutine call.
Subsequent calls to INIT need not include this parameter.

At any time during the graphics session, you can clear the screen and
reinitialize the display file by issuing an INIT call of the following
form:

CALL INIT

The INIT routine must be invoked in order to perform any of the
graphics operations described in this chapter. Once the display file
has been created, subsequent calls to image-generation subroutines
cause the display processor to add new instructions and data to the
display file or to modify the existing contents of the file. Any
FORTRAN program that has called INIT will not return to the monitor
immediately after execution or error detection. 1Instead, the system
will display the following message on the console:

TYPE <CR> TO EXIT

Regardless of whether or not an error has occurred, you will be able
to view the display created by the program without having to issue a
READ or PAUSE instruction.

NOTE

Do not use the FORTRAN library routine,
USEREX, after a call to INIT. The INIT
subroutine 1issues 1its own call to
USEREX.

The INIT subroutine establishes initial values for a variety of
display file status parameters. The conditions listed below are in
effect after an initial call to INIT:

DECGRAPHIC~11 GRAPHICS SUBROUTINES

1. The standard coordinate system is enabled.

2. The beam is positioned at the 1lower left corner of the
viewable area of the screen (x=0, y=0).

3. Light pen interaction is disabled.
4. The intensity level is set to 4.
5. Flash (blink) mode is turned off.
6. Solid line type is established.

7. Characters are displayed in the normal font, not in italics
or shift-out mode.

8. For the VS60, scope 1 is on and scope 2 is off.

9. On the VS60, any display is "directed to the main viewing
area, not the menu area.

Example:

This example initializes the DECgraphic-11 display processor and
allocates a 2000-word display file.

COMMON/DFILE/IBUF (2000)

CALL INIT (2000)

2.1.2 STOP: Stopping the Display
Form: CALL STOP

The STOP subroutine halts the use of the display processor, stops the
display of the current graphics, and clears the display screen. The
stopped display may be restored by a call to the CONT subroutine (see
Section 2.1.3). On the VS60, STOP clears the screens on both scopes,
if both are enabled (see Section 2.2.1). STOP halts the transmission
of interrupts from the VT1l or VS60 display processor. Because
interrupts from the display processor are not being processed, the CPU
executes at a significantly faster rate. Stopping an already stopped
display has no effect.

2.1.3 CONT: Restoring the Display
Form: CALL CONT

The CONT subroutine is used to restore the display that was
interrupted by a call to STOP. This routine causes the display
processor to be restarted and causes interrupts from the VT1l or VS60
to be transmitted once again.

DECGRAPHIC-11 GRAPHICS SUBROUTINES

2.1.4 FREE: Clearing the Display File Area
Form: CALL FREE

The FREE subroutine is issued when you need to use the memory area
allocated the display file for another purpose. A call to FREE
effectively disconnects the display file from the display processor,
thus freeing the space used by the display file. FREE also has the
effect of clearing the display screen.

After you have issued a call to the FREE subroutine, a display file is
not available for wuse 1in graphics processing. If you subsequently
require access to the display file in your program, you must issue
another call to INIT. The DFILE COMMON block definition remains in
effect.

2.2 SETTING SCREEN AND SCALING PARAMETERS

The subroutines described in this section are used to select scope and
screen area values and to establish your own coordinate system for use
in subsequent graphics displays.

2.2.1 SCOPE: Selecting a Display Scope
Form: CALL SCOPE (n)

The SCOPE subroutine is used in VS60 display systems to enable or
disable either of the two scopes supported by DECgraphic-11. A call
to SCOPE has no effect on a VT1l system. After you have enabled a
scope, you are free to issue graphics calls that will display elements
on the enabled device.

Legal forms of the SCOPE call are the following:

CALL SCOPE (1)
CALL SCOPE (2)

CALL SCOPE (-1)
CALL SCOPE (-2)

The first pair of calls enables scopes 1 and 2 respectively. The
second pair disables scopes 1 and 2 respectively. If parameter n has
any other value, the subroutine call is ignored.

An enabled scope remains enabled until you explicitly disable it, so
both VS60 scopes may be used at the same time. However, if a call to
INIT is made during program execution, the initial scope setting will
be reestablished, and only scope 1 will be enabled.

An example of using SCOPE is included in the description of the AREA
subroutine (see Section 2.2.2).

2.2.2 AREA: Selecting the Main or Menu Area
Form: CALL AREA (n)

On the VS60, the AREA subroutine allows vyou to switch subsequent
graphics displays to one of the two distinct areas of the display

2-4

DECGRAPHIC-11 GRAPHICS SUBROUTINES

.

screen: the main viewing area or the menu area. A call to AREA has
no effect on a VT1ll system. .

Legal forms of the AREA call are the following:

CALL AREA (1)
CALL AREA (2)

When parameter n is 1, as in the first call, the display is switched
to the main viewing area. When n is 2, the display is switched to the
menu area. If parameter n has any other value, the subroutine call is
ignored.

When you issue a call to AREA, the current beam position 1is not
automatically changed, so you must reposition the beam before
displaying graphics on the screen. It is not possible to access both
the main viewing area and the menu area at the same time.

Example:
This example draws four absolute points:
. one at the center of the main area on scope 2

. one at the lower left corner of the menu area on scope 2,
with the menu area flashing

. one at the lower left corner of the menu area on scope 1

. one at the center of the main area on scope 1

CALL SCOPE (2)
CALL APNT (512.,512.)
CALL AREA (2)
CALL APNT (0.,0.,,,1)
CALL SCOPE (1)
CALL APNT (0.,0.,,,-1)
CALL AREA (1)
CALL APNT (512.,512.)

2.2.3 B8SCAL: Defining a User Coordinate System
Form: CALL SCAL (x0,y0,x1,yl[,FX[,FY]]

The SCAL subroutine allows you to define your own display screen
coordinate systenm. The default coordinate system describes the
standard screen viewing area as the area extending from (x=0,y=0) to
(x=1023,y=1023). The area has a physical size of 1024 raster units on
each axis, and each axis «contains 1024 individually addressable
points. Consecutive coordinate positions on an axis are addressed in
increments of 1 (e.g., x=0, x=1, x=2), so the coordinate system is
described as unit-scaled.

The SCAL subroutine is used to change this coordinate system to almost
any other scale. For example, you can specify a virtual screen
containing only one fourth the number of addressable points on the
standard scale:

CALL SCAL (0.,0.,512.,512.)
2-5

DECGRAPHIC-11 GRAPHICS SUBROUTINES

where (0.,0.) is the lower left corner and (512.,512.) is the logical
upper right corner of the display screen. The physical screen size
remains the same (1024 raster units along each axis), but consecutive
coordinate positions are now two raster units apart, not one. The
scale factor along each axis is two.

If you specify the following calls:

CALL SCAL (0.,0.,200.,200.)
CALL APNT (0.,0.)
CALL VECT (200.,200.)

the vector that is produced will extend on the main display diagonal,
completely across the screen.

You may specify one or two additional parameters in the SCAL call.
These parameters represent variables to which the scaling factors for
the x and y axes are returned. 1If FX is included in the call, the x
scaling factor will be returned as the value of the variable; if you
also include FY, the y scaling factor will be returned as well.

Note that each new call to SCAL defines the coordinate units for
subsequent graphics calls. Any previous scale settings are negated by
a new call to SCAL. However, if vectors and points are drawn with one
scale factor and later modified by means of GET, CHANGE, or some other
subroutine after changing the scaling, the new scale factors will be
used. This can 1lead to a great deal of confusion, so you should
generally attempt to perform all work on a set of graphics elements
with the same scaling.

NOTE

The length and coordinates specified 1in
every dgraphics call must be within the
viewing area of the current coordinate
system (the default system or the
user-defined system established by a
call to SCAL). Any graphics call that
attempts to position the beam beyond the
edge of the viewing area is ignored by
the system.

Because all vector displacements and
point coordinates are represented as
integers in the display file, errors may
accumulate when several relative vectors
or points are drawn consecutively. This
happens when the user-specified
displacement or point coordinate scales
to a non-integer number of physical
screen units.

An example of using SCAL is included at the end of the description of
the NOSC subroutine (see Section 2.2.4).

DECGRAPHIC-11 GRAPHICS SUBROUTINES

2.2.4 NOSC: Restoring the Standard Coordinate System
Form: CALL NOSC

The NOSC subroutine is used to eliminate any user-defined display
screen coordinate system that is in effect and to restore unit scaling
for subsequent graphics calls. This reestablishes the standard
coordinate system in which the screen is described as the area between
coordinate positions (x=0,y=0) and (x=1023,y=1023).

Example:

This example changes the scaling factor, outlines the display screen
with vectors, and then restores the default unit scaling.

CALL SCAL (0.,0.,1.
CALL APNT (0.,0.,,-
CALL LVECT (1.,0.)
CALL LVECT (0.,1.)
CALL LVECT (-1.,0.)
CALL LVECT (0.,-1.)
CALL NOSC

'10)
4)

2.2.5 WINDOW: Establishing a Display Screen Window
Form: CALL WINDOW (x,Yy)

The WINDOW subroutine allows you to establish an effective window on
the image-definition or drawing area of the VS60 display screen. With
WINDOW, you can select the position of the drawing area you will view
on your display screen. WINDOW is a no-op on the VT1l.

The (x,y) parameters included in the WINDOW call represent the
coordinate positions of the lower 1left corner of the user-defined
window, where (x,y) must be in range (-4095.,-4095.) to (4095.,4095.).
The size of the window is the size of the display screen viewing area,
that is, 1024 by 1024 raster units. If the 1lower left <corner is
represented by (x,y), then the wupper right <corner 1is therefore
(x+1023.,y+1023.).

In the following example:
CALL WINDOW (512.,512.)

the area of the screen shown in the diagram is defined as the window.

DECGRAPHIC-11 GRAPHICS SUBROUTINES
(x = 4095, y = 4095)

{x = 1535,y = 1635)

WINDOW
AREA

(x =512,y =512)

DRAWING AREA

(x = -4095, y = -4095)
Figure 2-1 WINDOW Subroutine

Examples:

This example sets the viewing area of the screen to extend from a
lower left corner of (1024.,0.) to an upper right corner of
(2047.,1023.).

CALL SUBP (1)
CALL WINDOW (1024.,0.)
CALL ESUB

.
.

The viewing area is now changed to extend from (x,y) to (x+1023.,
y+1023.) Note that when vyou change a window by means of the CHANGE
subroutine (see Section 2.6.4), the coordinates of the lower left
corner are negated.

CALL POINTR (10,1)
CALL CHANGE (1,-x,-vy)

.

DECGRAPHIC-11 GRAPHICS SUBROUTINES

2.3 GENERATING GRAPHICS PRIMITIVES

This section describes the FORTRAN subroutines used to generate
graphics primitives such as points, vectors, and characters. These
routines cause primitives to be inserted in the display file unless
they are defined in a subpicture that is turned off (see Section
2.4.4). The primitives defined by means of these routines are also
displayed immediately on the screen. Many of the routines in this
category can be used to change the basic display status parameters
summarized below. These parameters are set to the initial default
values shown below when an INIT call is issued.

Argument Meaning

1 Light pen enable
Default: disabled

l=positive. Light pen interaction is enabled, and
a light pen interrupt will occur in subsequent
graphics output when the light pen is pointed at
an object on the display screen.

1=0 or omitted. The value of the parameter does
not change from its previous status.

l=negative. Light pen interaction 1is disabled,
and light pen interrupts will not occur.

i Intensity level
Default: 4; with normal screen intensity this
level allows the light pen to detect the
primitive.

i=1 through 8. The intensify status 1is changed
for current graphics output, and the intensity
level (brightness of objects on the screen) is set
to the wvalue of i, where 1 1is the faintest
intensity and 8 is the brightest.

i=0, omitted or greater than 8. The intensify
status is changed for current graphics output, but
the level does not change from its previous status
for subsequent calls.

i=-8 through -1. Current graphics output (except
for characters) 1is not intensified, but the
intensity level of subsequent graphics output is
set to the absolute value of 1i.

i=less than -8. Current graphics output 1is not
intensified, nor is the intensity level changed
for subsequent graphics output.

f Flash mode
Default: off

f=positive. Current and subsequent graphics
output is displayed in flash or blink mode.

f=0 or omitted. The value of the parameter does
not change from its previous status.

f=negative. Flash mode is disabled for current
and subsequent graphics output.
2-9

DECGRAPHIC-11 GRAPHICS SUBROUTINES

Argument Meaning

t Line type
Default: solid

t=1. Vectors in current and subsequent graphics
output are displayed as solid lines.

t=2. Vectors are displayed as long-dashed lines.

t

3. Vectors are displayed as short-dashed lines.
t=4. Vectors are displayed as dot-dash lines.

t=0, omitted, negative, or greater than 4. The
value of the parameter does not change from its
previous status.

2.3.1 APNT: Displaying an Absolute Point
Form: CALL APNT (x,y![,1,i,£f,t])

The APNT subroutine is used to position the beam at an absolute
position on the display screen or to display a dot at that location.
The point is represented by the coordinate position specified in
parameters (x,Yy).

In the call to APNT, you may optionally specify new values for the
display file status parameters 1,i,f, and t, the meanings of which are
described above. You can use the APNT subroutine to position the beam
but not display a point by specifying a negative value for the
intensity (i) parameter.

Example:

This example draws a flashing point in each corner of the display
screen at intensity level 3.

CALL APNT (0.,0.,,3,1)
CALL APNT (0.,1023.)
CALL APNT (1023.,0.)
CALL APNT (1023.,1023.)

2.3.2 RPNT: Displaying a Relative Point
Form: CALL RPNT (x,y[,1,i,f,t])

The RPNT subroutine allows you to position the beam at a position on
the display screen relative to the current beam position or to display
a dot at that location. If the current beam position is represented
by (x0,y0), then a call to RPNT will move the beam to the relative
position represented by (x0+x,y0+y).

DECGRAPHIC-11 GRAPHICS SUBROUTINES

When a beam is repositioned by means of a <call to RPNT, the
displacement resulting from an (x,y) specification cannot exceed 63
raster units (approximately one-sixteenth of the full screen). The
maximum allowable coordinate position that you should specify in (x,y)
is thus (-63,,-63.) or (63.,63.). 1If your (x,y) specification exceeds
63 raster units, it will be truncated to 63 units by RPNT.

In the call to RPNT, you may optionally specify new wvalues for the
display file status parameters 1,i,f, and t. As with APNT, you can
use RPNT to position the beam but not display a dot by specifying a
negative value for the i parameter.

Example:

This example draws a sine wave, made up of dots, across the display
screen.

CALL APNT (0.,500.)
Y0=500.
DO 10 1=1,50
Y=SIN(.125*%I)*500.+500.
CALL RPNT (20.,Y-YO0)

10 YO=Y

2.3.3 VECT: Drawing a Relative Vector
Form: CALL VECT (x,y[,1,i,f,t])

The VECT subroutine is used to draw a line segment or vector from the
current beam position to a point on the display screen relative to the
current beam position. If the current beam position is represented by
(x0,y0) then a call to VECT will draw a line segment from (x0,y0) to
(x0+x,y0+y) .

The absolute values of the (x,y) specifications included in the VECT
call must be 1less than (1024.,1024.) after any scaling. If the
displacement of a vector after scaling is equal to (0.,0.), the vector
will not be visible on the screen, regardless of the intensity level
established by the current value of display parameter i.

The VECT subroutine uses the short vector format (one word for each
vector) whenever possible in drawing line segments. If your program
requires use of the long vector format, you should use LVECT (see
Section 2.3.6).

In the call to VECT, you may optionally specify new values for the
display file status parameters 1,i,f, and t.

Example:

This example draws a triangle in the center of the screen.

DECGRAPHIC-11 GRAPHICS SUBROUTINES

CALL APNT (500.,500.,,-4)
CALL VECT (25.,0.)

CALL VECT (0.,25.)

CALL VECT (-25.,-25.)

2.3.4 AVECT: Drawing an Absolute Vector
Form: CALL AVECT (x,y[,l,i,f,t}])

The AVECT subroutine draws a vector from the current beam position to
an absolute point on the display screen. The point is represented by
the coordinate position specified in parameters (x,y). AVECT is only
used on the VS60 and is a no-op on the VT1l. The AVECT subroutine
uses the long vector format (two words per vector) in drawing line
segments. In the call to AVECT, you may optionally specify new values
for the display file status parameters 1,i,f, and t.

Example:

This example outlines the screen with dot-dash lines (line type 4) at
intensity level 4.

CALL APNT (0.,0.,,-4,,4)
CALL AVECT (0.,1023.)
CALL AVECT (1023.,1023.)
CALL AVECT (1023.,0.)
CALL AVECT (0.,0.)

2.3.5 SVECT: Drawing a Vector in Short Format
Form: CALL SVECT (x,y[,l,i,f,t}])

The SVECT subroutine is used to draw a vector from the current beam
position to a point on the display screen relative to the current beam
position. 1If the current beam position 1is represented by (x0,y0),
then a call to SVECT will draw a line segment from (x0,y0) to
(x0+x,y0+y). The SVECT subroutine always uses the short vector format
(one word per vector) in drawing line segments. The displacement
resulting from an (x,y) specification cannot exceed 63 raster units.
The maximum allowable coordinate position that can be specified in
(x,y) is thus (-63,-63) or (63,63). If your displacement exceeds 63
raster wunits, it will be truncated to 63 units by SVECT. It is
recommended that you use LVECT rather than SVECT if the 1line segment
to be drawn may possibly exceed 63 raster units.

In the call to SVECT, you may optionally specify new values for the
display file parameters 1,i,f, and t.

DECGRAPHIC-11 GRAPHICS SUBROUTINES

2.3.6 LVECT: Drawing a Vector in Long Format
Form: CALL LVECT (x,y[,1,i,£,t])

The LVECT subroutine draws a vector from the current beam position to
a point on the display screen relative to the current beam position.
If the current beam position is represented by (x0,y0), then a call to
LVECT will draw a line segment from (x0,y0) to (x0+x,y0+y). The LVECT
subroutine always uses the long vector format (two words per vector)
in drawing 1line segments. The displacement resulting from an (x,y)
specification cannot exceed 1023 raster units. The maximum allowable
coordinate position that can be specified in (x,y) 1is thus
(-1023.,-1023.) or (1023.,1023.). It 1is recommended that you use
LVECT rather than SVECT if the vector being drawn is of variable size
and may exceed 63 raster units.

In the call to LVECT, you may optionally specify new values for the
display file parameters 1,i,f, and t.

2.3.7 TEXT: Displaying a Character String
Form: CALL TEXT (al[,a2...])

The TEXT subroutine allows you to specify a character string including

visible characters and control codes; this string describes
characters to be displayed on the screen beginning at the current beam
position. In the <call to TEXT, you may include up to 10 arguments

representing elements to be output. Each element to be output is
represented by a parameter in the CALL format included above. A
display element may include any of the following character types:

. normal character strings (a subset of ASCII printable

characters)
. a count of carriage return/line feed pairs to be output
. special shift-out characters

. codes representing italic-font mode

. codes representing rotation mode

. codes representing subscripts or superscripts
A normal character string may consist of any number of printable
characters with ASCII values greater than or equal to 40 (octal).

These are the following:

. upper-case letters A through 7 and lower-case letters a
through z

. numbers 0 through 9

. a variety of special characters (see the examples in Section
1.1.3)

A normal string must be enclosed in single gquotes within the TEXT
call, as shown in the following example:

CALL TEXT ('ABCDEF')

DECGRAPHIC-11 GRAPHICS SUBROUTINES

If you want to specify a shift-out character or to indicate the use of
italic mode or rotated text, you must include a special numeric value
in the TEXT parameter list (al[,a2...]). When the a argument 1is an
integer in range -128 through -1, it is interpreted as a special code.
If a is in range 1 through 31, it represents a count of the carriage
return/line feed pairs to be output. Any other value of a will be
interpreted as a text string. .

The specific meanings of special TEXT codes are summarized below.

Value of a Effect
(when a is an integer)
1 to 31 Carriage return/line feed count
0 Ignored

-1 Shift-out character string follows

-2 Italic-mode character string follows

-4 Rotation-mode (90 degrees
counter-clockwise) character string
follows (VS60)

-8 Superscript in subsequent string (VS60)

-16 Leave superscript mode before displaying
subsequent string (VS60)

~32 Subscript in subsequent string (VS60)

-64 Leave subscript mode before displaying

subsequent string (VS60)

Options can be combined to represent selection of two or more modes;
values are added to indicate that two or more options are being
selected. For example, you would specify -3 to indicate an italic
shift-out character string, and -7 to indicate a rotated italic
shift-out character string.

A carriage return/line feed code in the TEXT call causes the next line
of text to be output, starting at the left edge of the viewing area of
the display screen. This will be either the main area or the menu
area, depending on the AREA setting. You may specify a value of range
1 through 31 to indicate the number of carriage return/line feed pairs
to be output and thus the number of lines to be skipped.

Shift-out characters consist of a set of 31 special characters,
including Greek letters and mathematical symbols. These characters
are invoked by specifying the special shift-out code (-1), followed by
the ordinary character string that corresponds in sequence to the
desired shift-out character string. This correspondence is indicated
in the following list.

~RRCR REPORT

The following page (p. 2-15) presents a table with an error.
The shift-out character for "P" is a space (as the text
mentions in paragreph 2). The table indicates "omega" as
the shiftout character corresponding to "P."

From "omega/P" dewn, the shift-out characters should be

one line lower, to make room for a "space'; the final

_ character, "square," corresponds to " " (underscore).

The equivalent table in the DECgraphic=11 FCRTRAN Programming
Manual, p.2=34, is correct.

DECGRAPHIC~11 GRAPHICS SUBROUTINES

Shift-Out Character Corresponding Character

y

a n
¢ B
b C
8 D
A E
1 F
¥ G
n H
¥ I
+ J
0 K
A L
m M
£ N
™ 0
It P
Q Q
o R
T S
€ T
A U
> v
* W
¥ X
r Y
1 Z
[
= \
M]
D ~

The following example causes the shift-out characters, «¢Z, to be

output:
CALL TEXT (-1,'ABC')

You may not include any character other than those included 1in the
right-hand column above in a text string following a shift-out
indicator. The letter O may be included to 1insert a blank in the
shift-out text; this letter is converted to a space when output on
the display screen.

When you are specifying subscripts or superscripts, you may include
formats such as the following:

E-x2+]

To raise a power to a power, you must specify a superscript followed
by a superscript, as in the following:

CALL TEXT ('E',-8,'-X',-8,'2")

Note that you remain in superscript mode, so the second -8 raises you
to yet another level. To return to the normal line level to output
'+1', you must include two -16 codes in the TEXT callj; the following
is the complete call.

CALL TEXT ('E',-8,'-X',-8,'2',-16,-16,"'+1")

DECGRAPHIC-11 GRAPHICS SUBROUTINES

NOTE

Subscripts and superscripts are
generated and positioned on the screen
by means of an internal character
scaling feature. = Each level of
subscript or superscript is displayed in
a character size one level smaller than
the size of the characters preceding the
subscript or superscript. DECgraphic-11
supports four character sizes, and the
normal character size 1is the second
smallest of the four valid sizes (see
the CVSCAL description, Section 2.4.8).

If you are displaying characters in the
normal size, you may specify the
inclusion of a single subscript or
superscript. In this case, the normal
characters have a scaling factor of 2,
and the subscript or superscript has a
scaling factor of 1. If you want to
specify multiple levels of subscripts or
superscripts, as in the example of TEXT
above, you must begin with a character
size larger than the normal size of 2.
For example, if characters have a
scaling factor of 3, then the characters
at the first level of subscripting will
have a scale of 2, and the characters at
the second level will have a scale level
of 1.

You may not allow the character scaling
factor of the final subscript or
superscript to fall below 1. If vyou
specify too many subscript or
superscript levels--for example, if you
begin with a normal character size and
include two or more successive
subscripts or superscripts--the
characters displayed after you return
from subscript or superscript mode will
have the wrong character size.

To output characters in italic mode, rotation mode, or as superscripts
or subscripts, you must include the appropriate negative code,
followed by the character string to be displayed in the desired mode.

You may position characters to be displayed by moving the beam to the
desired coordinate position before issuing a call to TEXT. The lower
left corner of the first character displayed will start at the current
beam position. Every string displayed by means of a TEXT call must be
terminated with a null byte. Compile-time string constants entered in
subroutine calls satisfy this requirement, but you must remember to
include this byte explicitly when generating your own string data in
arrays.

You cannot ordinarily display "invisible" characters on the display
screen. Text output is always visible regardless of the current value
of the i parameter, unless an entire subpicture containing characters
is turned off.

DECGRAPHIC-11 GRAPHICS SUBROUTINES

You may not actually specify new -values for the display file
parameters 1,i,f, and t in the TEXT call, but you may issue a call to
RPNT before the text call, as in the format shown below.

CALL RPNT (0.,0.,1,-i,f,t)
CALL TEXT ('string')

Note that a negative intensity level is specified here; this causes
the beam to be positioned but does not display a point.

Examples:

This example displays labels and text illustrating the use of normal
text, shift-out characters, italics, rotated text, superscripts, and
subscripts.

COMMON/DFILE/IBUF (1000)

CALL INIT(1000)

CALL SUBP(100)

CALL APNT(0.,500.,,-4)

CALL TEXT ('ROTATED '

X -4, 'ABCDEFGHIJKLMNOPQRSTUVWXYZ',l)
CALL APNT(0.,450.,,-4)

CALL TEXT ('NORMAL ',1)
CALL TEXT ('SHIFT OUT '

X —l,'ABCDEFGHIJKLMNOPQRSTUVWXYZ' 1)
CALL TEXT ('ITALICS

X -2, 'ABCDEFGHIJKLMNOPQRSTUVWXYZ', 1)
CALL TEXT (' SUPERSCRIPTED

X ' (X+Y)',-8, ,=8,'2", —16,-16,1)
CALL TEXT('SUBSCRIPTED ',
X 'ARRAY',-32,'I',-32,'12',-64,-64,1)
CALL TEXT ('COMBINATIONS ',

X 'ROTATED/ITALICS',-6,'ABCD')

CALL ESUB

DO 100 J=1,4

CALL CVSCAL(100,J)

READ(5,10) 1

10 FORMAT (I2)
100 CONTINUE
STOP
END

The following example draws the axes for a graph and labels them 1in
italic-mode letters. Note that the label for the y axis is rotated.

CALL APNT (100.,900.,,-4)
CALL LVECT (0.,-800.)

CALL LVECT (800.,0.)

CALL APNT (50.,200.,,-4)
CALL TEXT (-6, 'POWER.LOSS")
CALL APNT (200.,50.,,-4)
CALL TEXT (-2,'FREQUENCY')

DECGRAPHIC-11 GRAPHICS SUBROUTINES

2.3.8 MENU: Displaying Items in the Menu Area
Form: CALL MENU ([x0},y0,dy,m[,'nl'[,'n2']...])

The MENU subroutine allows you to establish a menu of elements on the
display screen. As many as 10 items may be

specified in a single call to MENU, and multiple calls may be issued.
After a MENU operation is performed, the VS60 beam is automatically
returned to the main area, so if multiple MENU calls are issued, they
should be grouped together.

The particular area to be used for menu items may be selected by the

user. If the x0 parameter is included in the call, then (x0,y0)
represents the coordinate position at which the menu items begin. For
example, if (x0,y0) is (512.,512.), then the first menu item will be

displayed beginning at the center point on the viewable area of the
display screen.

If x0 is omitted from the call, then the default hardware menu area is
used on VS60 systems (see the diagram below), and y0 is used to
identify the vertical placement of the first item in that menu area.
On VT1ll systems, the first menu item simply begins at the left edge of
the viewing area. The following call invokes the effect shown below.

CALL MENU (,512.,-100.,56,'ERASE','COPY', '"MOVE"')

40-512) § ERase
| COPY
MOVE

Figure 2-2 MENU Subroutine

The character strings of the items to be displayed in the menu are
supplied in the 'nl'['n2']... parameters. In the example included
above, the character strings 'ERASE', 'COPY', and 'MOVE' are the
display items. The dy parameter represents the amount of vertical
spacing between character strings displayed in the menu area. If the
first item begins at (x0,y0) and there are six items, then the sixth
item will begin at (x0,y0+(6-1)*dy). In the example included above,
the first string is displayed starting at a y0 position of 512.
Because dy is -100, the second item begins at (512+(2-1)*-100) or 412,
and the third item at (512+(3-1)*-100) or 312.

DECGRAPHIC-11 GRAPHICS SUBROUTINES

The m parameter identifies the tag of the first item (nl) displayed in
the menu area. 1In the example above, the tag representing character
string 'ERASE' is 56. Successive character strings are tagged
sequentially, so the second item, 'COPY', is 56+(2-1) or 57, and the
third item, 'MOVE', is 56+(3-1) or 58. An example of using MENU is
included in the description of the LPEN subroutine (see Section
2.8.1).

2.4 DEFINING AND USING SUBPICTURES

The subroutines described in this section are used to define
subpictures for use 1in generating repeated images in graphics
displays; to copy, erase, and move subpictures; to create special
numeric subpictures; and to scale the size of characters and vectors
used in subpictures. There is no intrinsic limit on the number of
primitives that maybe defined in a subpicture.

2.4.1 SUBP: Defining a Subpicture
Form: CALL SUBP (ml[,m2])

The SUBP subroutine begins the definition of a new subpicture or
references an existing subpicture. The ml parameter represents the
tag of the subpicture being defined; this tag can be referenced in
subsequent graphics calls, thus allowing the subpicture to be copied,
moved, turned on and off, and tested for light pen hits.

When you want to define a new subpicture by specifying the primitives
that compose it, you must issue a SUBP call in the form shown below:

CALL SUBP (ml)

The graphics calls included after this invocation are used to insert
in the display file the lines, points, and images that will make up
the subpicture whose tag is ml.

Succeeding graphics calls will apply to subpicture ml until you issue
a call to the ESUB subroutine (see Section 2.4.2) to terminate the
subpicture definition. The structure of subpicture definitions thus
looks like the following:

CALL SUBP (120)

definition

CALL ESUB

CALL SUBP (130)

definition

CALL ESUB

DECGRAPHIC-11 GRAPHICS SUBROUTINES

Each subpicture defined in a display file must have a unique tag
associated with it; the SUBP ml parameter assigns this tag and must
be in range 1 through 32767.

The second form of the SUBP call allows you to define an instance of
an existing subpicture by referencing the tag of that subpicture. 1In
the following form:

CALL SUBP (ml,m2)

ml assigns the tag of the new subpicture being defined and m2
references the tag of an existing subpicture. Internally, this SUBP
call does not actually duplicate the code of subpicture m2 for use by
subpicture ml. Instead, it creates for ml an instruction in the
display file that will execute the code for subpicture m2. Subpicture
ml is considered an instance of subpicture m2. Because this form of
SUBP does not begin a definition, you should not include a
corresponding call to ESUB when using this SUBP format.

A new subpicture may often be constructed by referencing several
existing subpictures. For this reason, the DECgraphic-11 package
supports a nested subpicture call facility. A subpicture may contain
a call to another subpicture, and calls may be nested to a depth of
eight. To create a nested subpicture call, begin the definition with
a call to SUBP with one argument, followed by additional calls to
SUBP, before concluding the definition with an ESUB call. Including
the first call to SUBP, there may be as many as eight calls to SUBP
before any calls to ESUB.

There must be one call to ESUB for every definition call to SUBP, that
is, every call that contains only a single argument. The first call
to ESUB encountered in the code will end the last subpicture created,
as in a typical subroutine structure.

The following diagram illustrates the nesting of four subpictures in a
FORTRAN program.

CALL SUBP (201) begins definition

CALL SUBP (202,721) references 721

CALL SUBP (203) begins definition
definition

CALL SUBP (204,771) references 771

CALL ESUB terminates 203 definition
CALL ESUB terminates 201 definition

Nested subpictures are wuseful 1in applications in which several
component graphics are frequently copied or tested for light pen hits,
both individually and as a group. The following error message is
generated if more than eight subpictures are nested:

MORE THAN 8 NESTED SUBP

Two examples of the use of SUBP are included at the end of the
description of the ESUB subroutine (see Section 2.4.2)

DECGRAPHIC-11 GRAPHICS SUBROUTINES

2.4.2 ESUB: Terminating a Subpicture

Form: CALL ESUB [(m)]

The ESUB subroutine is used to terminate a subpicture definition. The
relation of this subroutine to SUBP is described fully in Section
2.4.1. The m parameter is only relevant in VS60 systems but provides
a useful reference in VT1l systems as well. If m is included,
DECgraphic-11 restores the values of any display file status
parameters that may have been reset for use in the subpicture that
ESUB terminates. The m parameter may be any value and need not have
any particular significance in the application program. It 1is
considered good programming practice to set m to the tag of the
subpicture being terminated, but this is not a requirement.

Examples:

This example defines a subpicture whose tag is 1000. This subpicture
draws an X on the display screen. Note that the call to ESUB
terminates the subpicture definition. A call to ESUB with an argument
(1000 in the example) causes the subpicture to be terminated and the
display status parameters (light pen enable, intensity, flash mode,
line type) to be restored to the values in effect before the
subpicture was invoked.

CALL SUBP (1000)

CALL VECT (100.,100.)
CALL VECT (0.,-100.,,-10)
CALL VECT (-100.,100.)
CALL ESUB (1000)

The following example generates two calls to the subpicture whose tag
is 1000, and positions the subpicture instances at screen coordinates
(0.,0.) and (500.,500.). The new subpictures will have tags 1001 and
1002 respectively. Note that any changes to subpicture 1000 will
change the 1001 and 1002 references as well.

CALL APNT (0.,0.,,-4)
CALL SUBP (1001,1000)
CALL APNT (500.,500.,,-4)
CALL SUBP (1002,1000)

2.4.3 COPY: Copying a Subpicture
Form: COPY ([ml],m2)

The COPY subroutine allows you to create a copy of an existing
subpicture and assign a tag to a new subpicture. The m2 parameter
represents the tag of the existing subpicture. If ml is included, it
represents the tag assigned to the copied subpicture. If the ml
parameter is omitted from the call, subpicture m2 1is copied to the
currently open subpicture.

. 2-21

DECGRAPHIC-11 GRAPHICS SUBROUTINES

For example, in the following:

CALL SUBP (122)
CALL COPY (,701)
CALL ESUB

subpicture 122 has been "opened" for definition, so subpicture 701 is

copied

and assigned the tag 122. An alternative way of expressing

this operation is:

CALL COPY (122,701)

Example:

NOTE

The new subpicture will not be affected
by subsequent changes to the subpicture
that was copied. As in SUBP, coordinate
references in the subpicture being
copied should be to relative, not
absolute, positions on the display
screen. Avoid using APNT and AVECT 1in
subpictures to be copied.

This example positions the beam at (800.,800.), copies subpicture

1000,

and assigns tag 1003 to the new subpicture. Any subsequent

modifications to subpicture 1000, by means of CHANGE, ERAS, or another
routine, will not affect subpicture 1003.

CALL APNT (800.,800.,,-4)
CALL COPY (1003,1000)

2.4.4

Form:

OFF: Turning Off a Subpicture

CALL OFF (m)

The OFF subroutine is used to turn off the subpicture whose tag is m.

When

subpicture is turned off, there will be two major effects on

the display:

1.

The graphics calls included in the subpicture will not
produce any output on the screen.

If subpicture m is terminated by a nonrestoring ESUB (i.e.,
one without an m parameter), the display status parameters
(e.g., beam position, intensity, line type) will reset to
their default values by the call to OFF.

DECGRAPHIC-11 GRAPHICS SUBROUTINES

Because of the second condition, any call to OFF should be followed by
a call to APNT to set the beam position and change line type and other
display parameters, unless the subpicture was ended with a restoring
ESUB or unless it is desirable to have these changes occur.

When a subpicture is turned off, the definition of the subpicture
remains in the display file, so the subpicture may be copied even
though it is turned off. A turned off subpicture may be turned on
again by means of the ON subroutine (see Section 2.4.5). Turning off
a subpicture that is already turned off has no effect.

To increase system speed, it may be desirable to turn off a subpicture
before it has been completely defined, that is, between the SUBP and
ESUB calls that define it. This is allowed by DECgraphic-11 and is
often useful when building a display that should be seen only when its
construction is complete.

An example of using OFF is included in the description of the ON
subroutine (see Section 2.4.5).

2.4.5 ON: Turning On a Subpicture
Form: CALL ON (m)

The ON subroutine is used to turn on the subpicture whose tag is m.
ON is used to redisplay a subpicture that has been turned off by means
of the OFF subroutine. Turning on a subpicture that is already on has
no effect.

Example:

This example builds subpicture 1500 from the data in arrays X and Y.
The subpicture is turned off until the entire picture has been
constructed, and then the display is turned on. This gives you the
facility to display "all-at-once" pictures, as well as to use
"growing" picture drawing effects.

CALL APNT (0.,500.,,-4)
CALL SUBP (1500)
CALL OFF (1500)
DO 100 I=1,50

100 CALL VECT (X(I),Y(I))
CALL ESUB (1500)
CALL ON (1500)

2.4.6 ERAS: Erasing a Subpicture

Form: CALL ERAS [(m)]

The ERAS subroutine is used to turn off subpicture m and to erase the
definition of the subpicture in the display file. The OFF subroutine
turns off the subpicture but does not perform the erase operation.

ERAS eliminates references to tag m in the display file, thus making
the tag available for use in other definitions. Erasing a subpicture

2-23

DECGRAPHIC-11 GRAPHICS SUBROUTINES

does not recapture the portion of the display file used for subpicture
definition. However, file space occupied by erased subpictures may be
condensed by means of the CMPRS (see Section 2.9.1) or SAVE (see
Section 2.9.2) subroutines.

NOTE

Erasing a subpicture also erases all
references to it made in calls to SUBP
that have two arguments.

If you specify a call to ERAS without an argument, this will have the
effect of erasing the tracking object on the display screen.

Example:

This example creates a new subpicture whose tag is 25, copies into it
the contents of subpictures 100 and 200, and then erases 100 and 200.
This allows the space used by 100 and 200 to be reclaimed by the CMPRS
subroutine. Note that subpicture 25 is turned off until subpictures
100 and 200 are erased to prevent the two subpictures from appearing
overly bright due to displaying an image multiple times.

CALL SUBP (25)
CALL OFF (25)
CALL COPY (,100)
CALL COPY (,200)
CALL ESUB (25)
CALL ERAS (100)
CALL ERAS (200)
CALL ON (25)

2.4.7 NMBR: Creating a Numeric Subpicture
Form: CALL NMBR (m,var[,n,format])

The NMBR subroutine creates a special numeric subpicture that can be
displayed on the screen in any FORTRAN format and can be updated in
"odometer" fashion. The m parameter identifies the tag to be assigned
to the subpicture, and var 1is the FORTRAN variable containing the
numeric data to be output on the display screen. The number is
displayed with a maximum field width of 16, in any legal format that
you specify.

The NMBR call may be issued with two or four parameters. The simpler
form of the call:

CALL NMBR (m,var)

creates a subpicture with tag m and displays the number included in
var in the default format. This default is originally set to F16.8,
but is reset by any user calls to NMBR; this is explained in greater
detail below.

DECGRAPHIC-11 GRAPHICS SUBROUTINES

You may provide an explicit format specification in the NMBR call.
The n parameter represents the format width, and format is any legal
FORTRAN format. The format specification included in the NMBR call is
identical to the FORTRAN specification, including the use of enclosing
parentheses. The format specification is included as a string, as
illustrated below.

CALL NMBR (200,X2(I),8,'(F8.2)")

If a format specification is not provided in an NMBR call, the number
is displayed in the format 1last specified in an NMBR call in the
program. The second NMBR call below will cause the value of B to be
output in format F10.4.

CALL NMBR (101,A,10,'(Fl10.4)")

.

CALL NMBR (102,B)

References to tags associated with existing numeric subpictures will
update these subpictures.

As with other types of graphics output, you may position the numeric
data on the screen by moving the beam to the desired location before
issuing a call to NMBR. The lower left corner of the first digit
displayed will start at the current beam position.

A further example of using NMBR is included in the description of the
CMPRS subroutine (see Section 2.9.1).

2.4.8 CVSCAL: Scaling Subpicture Characters and Vectors
Form: CALL CVSCAL (m[,ifc,ifv])

On the VS60, .the CVSCAL subroutine scales the size of characters and
vectors displayed in subpicture m to the values specified in ifc and
ifv. Calls to CVSCAL have no effect in VT1ll systems. This subroutine
allows you to enlarge or contract the characters and vectors output on
the display screen. This may be helpful in creating charts or figures
whose components may be enlarged for more detailed examination or in
creating and labeling segments to be contracted for inclusion in a
larger structure.

In the CVSCAL call, ifc represents the character scaling factor. The
value of ifc must be an integer in range 1 through 4, and characters
may be scaled in increments of one-half. The size of characters in
subpicture m may vary from one-half normal size to twice normal size,
as shown in the list below. The standard size is indicated by an ifc
value of 2.

ifc Value Character Size
1 1/2 normal size
2 normal size
3 1 1/2 normal size
4 2 times normal size

The ifv argument represents the vector scaling factor. The value of
ifv must be an integer in range 1 through 15, and vectors may be
scaled in increments of one-quarter. The size of 1line segments in
subpicture m may vary from one-fourth normal size to three and
three-fourths normal size, as shown below. The standard size is
indicated by an ifv value of 4.

2-25

DECGRAPHIC-11 GRAPHICS SUBROUTINES

ifv value Vector Size

1/4 normal size

1/2 normal size

3/4 normal size
normal size

1/4 normal size
1/2 normal size
3/4 normal size
times normal size
1/4 normal size
1/2 normal size
3/4 normal size
times normal size
1/4 normal size
1/2 normal size
3/4 normal size

WWWWNONNNE

In addition to scaling the characters or vectors in the specified
subpicture, CVSCAL will scale the rest of the display file as well,
unless you terminate the subpicture definition with an ESUB call that
contains an m parameter.

Examples:

This example draws a box in the center of the screen and changes 1its
size each time the operator enters a carriage return, until the size
reaches the maximum (i.e., vector scale 15).

CALL APNT (412.,412.,,-4)
CALL SUBP (100)
CALL LVECT (200.,0.)
CALL LVECT (0.,200.)
CALL LVECT (-200.,0.)
CALL LVECT (0.,-200.)
CALL ESUB (100)
DO 200 I=1,15
PAUSE

200 CALL CVSCAL (100,,I)

.

The next example displays the string 'COMMANDS' in characters twice
the normal size. It then displays. 'SAMPLE', 'ANALYZE', 'PLOT', and
'STOP' in a column beneath 'COMMANDS' in characters of normal size.

CALL APNT (0.,800.,,-4)

CALL SUBP (10)

CALL TEXT ('COMMANDS:',1)

CALL ESUB (10)

CALL CVSCAL (10,4)

CALL TEXT (4,'SAMPLE',1,'ANALYZE',1,
X 'PLOT',1,'STOP')

DECGRAPHIC-11 GRAPHICS SUBROUTINES

2.5 DISPLAYING GRAPHS AND FIGURES

The subroutines described in this section allow you to specify simple
calls that generate more complex structures on the display screen than
the primitive elements described in Section 2.3. These routines
generate subpictures that are used to display special kinds of graphs
and figures. They allow you to display the contents of an entire
array with one simple subroutine call. Because graphs and figures are
subpictures, you can erase them and turn them on and off. You can
also modify a display by changing the values of certain primitives
defined in subpictures.

2.5.1 XGRA: Displaying an X-Axis Graph
Form: CALL XGRA (dy,A,n,m[,1,i,f,t])

The XGRA subroutine creates a special graph subpicture with tag m,
which consists of a series of points. XGRA allows you to display a
graph whose y-coordinates are evenly spaced on the display screen.
The coordinates to be plotted on the x-axis are supplied in the first
n elements of the array indicated by A in the argument 1list included
above. A must be a one-dimensional real array. The y-coordinates of
the graph displayed by XGRA are generated from integral multiples of
dy. The x coordinates of the graph being displayed are determined by
the x value of the current beam position; the first y coordinate |is
at the current y value plus the value of dy.

The subpicture created by XGRA is displayed on the screen or can be
referenced by subsequent calls to the AGET, APUT (see Sections 2.5.4
and 2.5.5), GET and CHANGE (see Sections 2.6.3 and 2.6.4) subroutines.
These routines are used to access the array of graph data in order to
change the primitive elements stored there.

When a graph subpicture is created by means of XGRA, the x-array data
is entered in the display file in absolute coordinate positions, thus
making the array reusable.

In the call to XGRA, you may optionally specify new values for the
display file parameters 1,i,f, and t, described in Section 2.3.

2.5.2 YGRA: Displaying a Y-Axis Graph
Form: CALL YGRA (dx,A,n,m[,1,i.f,t}])

The YGRA subroutine is used to create a special graph subpicture with
tag m, which consists of a series of points. YGRA allows you to
display a graph whose x-coordinates are evenly spaced on the display
screen. The coordinates to be plotted on the y-axis are supplied in
the first n elements of the array indicated by A in the format
included above. A must be a one-dimensional real array. The
x-coordinates of the graph displayed by YGRA are generated from
integral multiples of dx. The y coordinates of the graph being
displayed are determined by the y value of the current beam position;
the first x coordinate is at the current x value plus the value of dx.

Like. XGRA, YGRA creates a subpicture whose primitive elements can be
accessed and changed by means of the AGET, APUT, GET, and CHANGE
subroutines.

DECGRAPHIC-11 GRAPHICS SUBROUTINES

When a subpicture graph is created by means of YGRA, the y-array data
is entered in the display file in absolute coordinate positions, thus
making the array reusable.

In the call to YGRA, you may optionally specify new values for the
display file parameters 1,i,f, and t.

Example:
Draw a sine wave across the entire screen using 51 points.

COMMON/DFILE/IBUF (200)
DIMENSION R(51)
DATA PI/3.1415926535/
DO 1 I=1,51
1 R(I)=200.+200.*SIN(PI*(I-1)/25.)
CALL INIT(200)
CALL YGRA (20.,R,51,1000)
STOP
END

Figure 2-3 YGRA Subroutine

2.5.3 FIGR: Displaying a Figure
Form: CALL FIGR (A,n,m[,1,i,f,t])

The FIGR subroutine allows you to create a special figure subpicture
with tag m from an array of (x,y) increment pairs. The figure is
plotted from the first n elements of the array indicated by A. A must
be a one-dimensional real array consisting of pairs of relative (x,V¥)
values. (A(1),A(2)) 1is the first (x,y) pair to be plotted,
(A(3),A(4)) 1is the second (x,y) pair, and so on. The first line
segment in the figure is drawn from the current beam position to (A(1)
A(2)).

DECGRAPHIC-11 GRAPHICS SUBROUTINES

FIGR creates a subpicture which is displayed on the screen and can be
referenced by subsequent calls to the AGET, APUT, GET, and CHANGE
subroutines. These routines are used to access the array of vector
data in order to change the primitive elements stored there.

In the call to FIGR, you may optionally specify new values for the
display file parameters 1,i,f, and t.

Example:

The following example uses an "invisible" figure to move a graphics
display.

COMMON/DFILE/IBUF (200)
DIMENSION R(2)

CALL FIGR(R,2,1001,0,-5)

C MOVE THE GRAPHICS
WRITE (5,1)

1 FORMAT (' ENTER NEW COORDINATES')
READ (5,2) X,Y

2 FORMAT (2F7.2)

CALL APUT(1001,1,X)
CALL APUT(1001,2,Y)

2.5.4 AGET: Returning the Value of a Primitive
Form: CALL AGET (m,j,Z)

The AGET subroutine is used to access an array containing graph or
figure data in order to examine the value of a primitive in subpicture
m.

You may index into the array represented by A in an XGRA, YGRA, or
FIGR subroutine call by specifying an array subscript j in the AGET
call. AGET accesses the Jjth element of the array £from which
subpicture m was created and returns the value of the element in
variable 2.

2.5.5 APUT: Changing the Value of a Primitive
Form: CALL APUT (m,j.,b)

The APUT subroutine accesses an array containing graph or figure data
in order to change a primitive in subpicture m. APUT allows you to
alter graphics output while it is being displayed by XGRA, YGRA, or
FIGR.

You may index into the array represented by A in an XGRA, YGRA, or
FIGR subroutine call by specifying an array subscript j in the APUT
call. APUT accesses the Jjth element of the array from which
subpicture m was created and changes that element to the value

2-29

DECGRAPHIC-11 GRAPHICS SUBROUTINES

supplied in parameter b. The display of subpicture m is updated
immediately to reflect the change in the primitive definition.

2.5.6 FPUT: Changing and Adjusting the Value of a Primitive
Form: CALL FPUT (m,j,b)

The FPUT subroutine is used to access an array containing figure data
in order to change a primitive in subpicture m. FPUT allows you to
alter graphics output while it is being displayed by FIGR. It also
adjusts the next element of the subpicture to ensure that subsequent
points in the subpicture will be at the same absolute coordinate
positions on the screen.

You may index into the array represented by A in the FIGR subroutine
call that created the figure by specifying an array subscript j in the
FPUT call. FPUT accesses the jth primitive of the array from which
subpicture m was created@ and changes that primitive to the value
supplied in parameter b. The display of subpicture m is updated
immediately to reflect the change in the primitive definition.

2.6 USING DISPLAY FILE POINTERS

The subroutines described in this section allow you to manipulate
pointers to elements in the display file and to change the values of
the primitives referenced by those pointers. The first three
subroutines in this category, POINTR, ADVANC, and GET, do not actually
display output on the screen. They simply allow you to establish,
advance, and return information on pointers to primitives in the
display file. This facilitates the alteration of the values of
vector, point, or character primitives by the other graphics calls
described in this section.

There are 21 distinct pointers in the DECgraphic-11 system. You can
manipulate all but the 2lst pointer, which serves as the system
pointer and should not be referenced in a user program.

2.6.1 POINTR: Setting Up a Pointer
Form: CALL POINTR (k,m[,31)

The POINTR subroutine sets up pointer number k at the jth primitive of
the subpicture whose tag 1is m. The wvalue of the k parameter
identifies the particular pointer being established and must be in
range 1 through 20. If the j parameter is omitted from the POINTR
call, pointer k will be set to the first primitive of subpicture m in
the display file. If you specify a value for j greater than the
number of primitives in the subpicture, subsequent primitives will be
inserted at the end of the subpicture definition.

NOTE

Pointers never reference subpictures,
subpicture calls, or erased primitives.
When these elements are encountered in
the display file, the pointers skip them
automatically.

DECGRAPHIC-11 GRAPHICS SUBROUTINES

One example of using POINTR is included below. Others are 1in the
descriptions of GET (see Section 2.6.3) and GRID (see Section 2.8.6).

Example:

This example draws a vector that continuously sweeps out a circle in
the center of the screen. The vector moves in a counter-clockwise
direction.

CALL APNT (512.,512.,,-4)
CALL SUBP (100)

-~ CALL VECT (100.,0.)
CALL ESUB

CALL POINTR (3,100)

ANGLE=0.
10 CALL CHANGE (3,100.*COS (ANGLE),100.*SIN(ANGLE))
ANGLE=AMOD (ANGLE+.01,6.28)
GO TO 10

2.6.2 ADVANC: Advancing a Pointer
Form: CALL ADVANC (k[,n])

The ADVANC subroutine allows you to advance the position of a pointer
in the display file. The k parameter identifies the particular
pointer to be advanced and must be in range 1 through 20. If the n
parameter 1is included, the pointer is advanced by n primitives from
its current position. If n is omitted, the pointer advances by one.

A pointer cannot be advanced beyond the end of a subpicture definiton
in the display file. If an ADVANC call attempts to move a pointer
beyond the subpicture boundary, subsequent primitives will be inserted
at the end of the subpicture definition. ADVANC will skip any nested
subpicture definitions in the subpicture being examined.

An example of using ADVANC is included in the description of the GET
subroutine (see Section 2.6.3).

2.6.3 GET: Returning the Coordinates of a Primitive
Form: CALL GET (k,X,Y)

The GET subroutine is used to return the coordinates of the primitive
currently being referenced by a pointer. The k parameter identifies
the particular pointer whose primitive coordinates are to be returned
and must be in range 1 through 20. The (x,y) coordinates are returned
in variables (X,Y).

2-31

DECGRAPHIC-11 GRAPHICS SUBROUTINES

Example:

This example draws a sine wave of dots and then shrinks it one point
at a time, using pointer 4 to move through the subpicture definition.

.

CALL SUBP (1000)

X=0

DO 10 I=1,51

CALL APNT (X,SIN(.125*(I-1))*500.+500.)
10 X=X+20.

CALL ESUB

CALL POINTR (4,1000)

DO 20 I=1,51

CALL GET (4,X,Y)

CALL CHANGE (4,X,Y/2.)
20 CALL ADVANC (4)

2.6.4 CHANGE: Changing the Coordinates of a Primitive
Form: CALL CHANGE (k,x,y)

The CHANGE subroutine is used to change the coordinates of the
primitive referenced by pointer k. The coordinates are changed to the
new value specified in coordinate positions (x,y). The value of Kk
must be in range 1 through 20.

This subroutine is usually called to change a primitive defined by the
VECT, SVECT, LVECT, RPNT, APNT, or WINDOW subroutines or a graph
subpicture created by XGRA or YGRA. When a CHANGE call 1is specified
for a graph <created by XGRA or YGRA, the x value is ignored in the
XGRA call, and the y value is ignored in the YGRA call.

2.6.5 CHANGA: Changing a Primitive and Adjusting the Next Primitive
Form: CALL CHANGA (k,x,VY)

The CHANGA subroutine allows you to change the coordinates of the
primitive referenced by pointer k to the new value specified in
coordinate positions (x,y). Unlike the CHANGE subroutine (see Section
2.6.4), it also adjusts the next primitive in the display file so that
subsequent images will be at the same absolute screen positions. The
value of k must be in range 1 through 20.

This subroutine may be called to change a primitive defined by the
VECT, SVECT, LVECT, RPNT, APNT, or WINDOW subroutines or a graph
subpicture created by XGRA or YGRA. When a CHANGA call 1is specified
for a graph created by XGRA or YGRA, the x value is ignored in the
XGRA call, and the y value is ignored in the YGRA call.

Example:
This example reads a primitive number and a new value from the

keyboard. It then changes the y coordinate of a single primitive of
subpicture 100 to the new value and adjusts the following primitive.

2-32

DECGRAPHIC-11 GRAPHICS SUBROUTINES

1000 WRITE (5,1010)
1010 FORMAT (' INPUT PRIMITIVE NUMBER AND NEW VALUE')
READ (5,1020)I,V
1020 FORMAT (I5,F10.5)
CALL POINTR (1,100,I)
CALL GET (1,X,Y)
CALL CHANGA (1,X,V)
GO TO 1000

-

2.6.6 CHANGT: Changing the Value of a Character Primitive
Form: CALL CHANGT (k,al[,a2...1])

The CHANGT subroutine is used to change the value of the character
primitive referenced by pointer k. The primitive changed by CHANGT is
usually one created by the TEXT subroutine (see Section 2.3.7). The
value of k must be in range 1 through 20.

The values of parameters al,a2, and so on are constructed exactly as
the a parameters in the TEXT subroutine are. Each value may be a
character string, a carriage return/line feed count, or a control code
indicating the wuse of shift-out characters, italic or rotation mode,
or superscripted or subscripted characters.

Example:

This example reads a word from the keyboard and positions it in the
subpicture.

LOGICAL *1 WORD (80)
DATA WORD/79%'.',0/

CALL SUBP (100)

CALL APNT (0.,750.,,-4)

CALL TEXT ('THE WORD IS:',1)
CALL TEXT (WORD)

CALL ESUB (100)

CALL POINTR (10,100, 3)

READ (5,10)N, (WORD(I),I=1,N)
10 FORMAT (I2,80Al)

WORD (N+1)=0

CALL CHANGT (10,WORD)

DECGRAPHIC-11 GRAPHICS SUBROUTINES

2.6.7 INSERT: Inserting Graphic Elements in the Display File
Form: CALL INSERT [(k)]

The INSERT subroutine allows you to insert graphic elements in the
existing display file Jjust before the position of the primitive
referenced by pointer k. This enables you to add new material to the
file, not merely to replace existing primitive elements.

If the k parameter is included an INSERT call effectively reopens the
display file for input and causes subsequent graphics calls to define
the elements to be inserted in the file. If the k parameter is
omitted, the insert operation 1is terminated, the display file is
effectively closed, and any subsequently defined graphics elements
will be inserted at the end of the file in the ordinary way.

NOTE
After you have issued an INSERT call and
before you have moved the pointer, you
should not issue <calls to the CMPRS,

SAVE, RSTR, SUBP, SENSE, INTENS, FLASH,
LINTYP, CVSCAL, or ESUB subroutines.

An example of using INSERT is included in the description of the ERASP
subroutine (see Section 2.6.8).

2.6.8 ERASP: Erasing a Primitive
Form: CALL ERASP (k)
The ERASP subroutine is used to erase the display file primitive
referenced by pointer k. After erasing the referenced primitive,
ERASP positions k at the next primitive in the file.

NOTE

Because primitive numbers are relative,
erasing a primitive changes the number

of subsequent primitives in the
subpicture. The number is decreased by
one.

Example:

This example waits for a light pen hit on a subpicture and then erases
the primitive referenced by the hit. A vector is inserted at this
point and attached to the tracking object. The program then waits for
a carriage return from the keyboard to adjust the vector.

.

100 CALL LPEN (IH,IT,X,Y,IP)
IF (IH.EQ.0) GO TO 100
CALL POINTR (2,IT,IP)
CALL ERASP (2)

DECGRAPHIC-11 GRAPHICS SUBROUTINES

CALL INSERT (2) :
CALL LVECT (0.,0.) -
CALL TRAK (X,Y)
CALL POINTR (2,IT,IP)
CALL ATTACH (2)
CALL INSERT
WRITE (5,101)
101 FORMAT (' REPOSITION TRACKING OBJECT, TYPE <CR> WHEN DONE')
READ (5,110) I
110 FORMAT (Al)

2.7 ALTERING DISPLAY FILE STATUS PARAMETERS

The subroutines described in this section allow you to alter the
following basic display file status parameters for use by specific
primitives:

. light pen enable
. intensity level
. flash mode

. line type

These parameters may also be changed by a variety of other graphics
calls, especially those described in Section 2.3 and 2.5. A detailed
description of the meaning of the 1,i,f, and t parameters is included
in Section 2.3 and is not repeated below.

2.7.1 SENSE: Setting the Light Pen Parameter
Form: CALL SENSE (kf[,1,s])

The SENSE subroutine is used to enable or disable 1light pen
interaction for the primitive referenced by pointer K. The k
parameter must be in range 1 through 20.

If the 1 parameter included in the SENSE call is positive, or if 1 is
omitted from the call, 1light pen interaction 1is enabled for the
referenced primitive. A light pen interrupt will occur when the light
pen is pointed at a primitive on the display screen that has been made
light pen-sensitive. If the value of the 1 parameter is negative,
light pen interaction is disabled for the primitive referenced by k.
If 1 is zero, the current light pen status remains unchanged.

The s parameter is included in VS60 systems to indicate the scope to
which the light pen reference applies; 1legal values are 1 and 2. If
the s parameter is omitted, scope 1 is assumed.

An example of using SENSE is included in the description of INTENS
(see Section 2.7.2).

DECGRAPHIC-11 GRAPHICS SUBROUTINES

2.7.2 INTENS: Setting the Intensity Parameter
Form: CALL INTENS (k[,i])

The INTENS subroutine allows you to specify the intensity level of the
primitive referenced by pointer k. The k parameter must be in range 1
through 20.

If the i parameter included in the INTENS call is in range 1 through
8, the referenced primitive is intensified and the intensity level is
changed to the value of i; 1 is the faintest intensity and 8 1is the
brightest. If i 1is zero, omitted from the call, or greater than 8,
the referenced primitive is intensified but the intensity level is not
changed. If i is in range -1 through -8, the referenced primitive is
not intensified but the intensity level is changed to the absolute
value of 1. If i is less than -8, the referenced primitive is not
intensified and the intensity level is not changed.

Example:

This example enables light pen sensitivity for all subpictures (1
through NOBJ). It then waits for a light pen hit, with the tip switch
depressed, on one of the subpictures. The light pen enable 1is then
turned off, and the intensity level of the subpicture selected by the
light pen is increased.

DO 100 I=1,NOBJ
CALL POINTR (7,I)
100 CALL SENSE (7,1)
150 CALL LPEN (IH,IT,,,,,,ITIP)
IF (IH.EQ.0.OR.IT.GT.NOBJ.OR.ITIP.EQ.0) GO TO 150
DO 200 I=1,NOBJ
CALL POINTR (7,I)
200 CALL SENSE (7,-1)
CALL POINTR (7,IT)
CALL INTENS (7,8)

2.7.3 FLASH: Setting the Flash-Mode Parameter
Form: CALL FLASH (k[,f])

The FLASH subroutine is used to enable or disable flash or blink mode
for the primitive referenced by pointer k. The k parameter must be in
range 1 through 20.

If the f parameter included in the FLASH call is positive, or if f 1is
omitted from the call, flash mode is enabled. The display for the
referenced primitive and for subsequent graphics elements will blink
when output on the screen.

If the value of the f parameter is negative, flash mode is disabled
for the primitive referenced by k and for subsequent graphics
elements. If £ 1is zero, the current flash mode status remains
unchanged.

DECGRAPHIC-11 GRAPHICS SUBROUTINES

An example of using FLASH is included in the description of LPEN (see
Section 2.8.1).

2,7.4 LINTYP: Setting the Line-Type Parameter
Form: CALL LINTYP (k[,t])

The LINTYP subroutine allows you to specify the 1line type of the
primitive referenced by pointer k. The k parameter must be in range 1
through 20.

If the t parameter included in the LINTYP call is in range 1 through
4, the 1line type 1is changed for the referenced primitive and for
subsequent graphics elements. Any vector will be drawn according to
the following conventions:

t Value Vector Type

Solid lines
Long-dashed lines
Short-dashed lines
Dot-dash lines

=W

If t is zero, omitted from the call, negative, or greater than 4, the
current line type remains unchanged.

2.8 FACILITATING LIGHT PEN INTERACTION

The subroutines in this category allow you to wuse the interactive
light pen facilities available 1in the DECgraphic-1ll system. These
routines are used to test for light pen hits on the display screen and
to position and manipulate a tracking object on the screen.

2.8.1 LPEN: Recording a Light Pen Hit
Form: CALL LPEN (IH,IT[,X,Y,IP,IA,IM,IT1,IT2])
The LPEN subroutine is used to test for a light pen hit on the display
screen. It is possible to test for a hit if any of the graphic
elements displayed on the screen has been made 1light pen-sensitive
(e.g., by means of the SENSE subroutine; see Section 2.7.1).
If a successful light pen hit is recorded, LPEN returns information on
the position and status of the hit in the user variables specified in
the subroutine call. These variables are described below.

Variable Meaning

IH Flag used to indicate the occurrence of a light pen
hit.
IH=0: no light pen hit.
IH=1: 1light pen hit on scope 1.
IH=2: 1light pen hit on scope 2.

IT Tag of the subpicture in which the 1light pen hit
occurred (1-32767).

IT=-2: no subpicture.

2-37

DECGRAPHIC-11 GRAPHICS SUBROUTINES

Variable Meaning

X,Y Coordinates of the light pen hit on the display
screen (in user coordinate system).

Ip Number of the primitive within the subpicture at
which the light pen hit occurred.

IA Array which contains the precedents of the
subpicture in which the light pen hit occurred. The
most recent precedent is returned in the first array
element (IA(l)). The maximum number of precedents
returned by LPEN is seven, plus a terminator to
indicate the last entry in the array. The
terminator always has the value -2.

IA(l)=-2: no subpicture precedents, so only the
terminator is returned.

IM Screen area in which the light pen hit occurred.
IM=1: 1light pen hit in main area.
IM=2: 1light pen hit in menu area.

IT1,IT2 Status of the tip switches for scopes 1 (ITl) and 2
(IT2). There is no tip switch on the VT1l light
pen, so the tip switch (IT1) is always on for this
device.

ITn=0: tip switch off.
ITn=1: tip switch on.

Example:

This example displays a menu of program options. It then waits for a
light pen hit in the menu area, flashes the option selected by the
hit, and branches to the appropriate section of the program.

CALL MENU (,800.,-50.,100,'SAMPLE','FFT', 'PLOT', 'STOP")

100 CALL LPEN (IH,IT)
IF (IH.EQ.0.OR.IT.LT.100.0R.IT.GT.103) GO TO 100
CALL POINTR (11,IT)
CALL FLASH (11)
GO TO (100,200,300,400), IT-99

2.8.2 TRAK: Placing a Tracking Object on the Screen

Form: CALL TRAK (x,y[,s])

The TRAK subroutine allows you to position a diamond-shaped tracking
object on the display screen. The tracking object may not be
positioned in the menu area of the VS60 screen. The tracking object
is initially positioned on the coordinate position represented by
(x,y). For VS60 systems, the s parameter identifies the scope (1 or
2) on which the object is displayed; if s is omitted from the TRAK

2-38

DECGRAPHIC-11 GRAPHICS SUBROUTINES

call, the default is 1. Once you have placed the tracking object on
the screen, it will center itself on any light pen hit within the
boundaries of its shape.

NOTE

On VS60 systems, tracking is only
effective if you have turned on the
light pen tip switch by pressing it onto
the surface of the display screen.

You may remove the tracking object from the screen by specifying an
ERAS call without an argument (see Section 2.4.6).

An example of using TRAK is included in the description of GRID (see
Section 2.8.6).

2.8.3 TRAKXY: Returning the Position of the Tracking Object
Form: CALL TRAKXY (X,Y¥[,s])

The TRAKXY subroutine returns the current coordinate position of the
tracking object on the display screen. The position is returned in
variables (X,Y). If you have a VS60 system, you may specify in
parameter s the scope (1 or 2) on which the desired tracking object is
positioned; if s is omitted from the TRAKXY call, the default 1is 1.
An example of using TRAKXY is included in the description of GRID (see
Section 2.8.6).

2.8.4 ATTACH: Attaching a Primitive to the Tracking Object
Form: CALL ATTACH (k[,n,s])

The ATTACH subroutine allows you to attach to the tracking object the
primitive graphics element referenced by pointer k. If you have a
VS60 system, you may specify in parameter s the scope (1 or 2) on
which the tracking object 1is positioned; if s is omitted from the
ATTACH call, the default is 1.

Primitive elements that may be attached in this fashion 1include the
long vector, the absolute point, and the absolute vector. If you
specify a pointer to any other primitive in the display file, the
ATTACH call will be ignored. By attaching a primitive element to the
tracking object, you can easily change the coordinates of a point or
vector by moving it to another part of the display screen and then
detaching it.

1f the primitive to be attached is a long vector, it will be attached
to the tracking object and will follow it as the object moves on the
display screen. The optional n parameter determines which end of the
vector will move and which end will be stationary. If n is positive
or omitted from the call, the vector's origin is stationary and its
destination will move. If the value of n is negative, the vector's
destination is stationary and its origin will move. If you attach a
vector that is 1longer than 1023 raster units, the vector will not
reliably move along with the tracking object.

DECGRAPHIC-11 GRAPHICS SUBROUTINES

The n parameter need not be specified if the referenced primitive is
an absolute point or an absolute vector. If an absolute point or
vector is attached to the tracking object, the point or vector end
point will be moved the same distance as the tracking object.

You may attach as many as 40 primitives to the tracking object on the
display screen by simply issuing repeated calls to ATTACH.

An example of using ATTACH is included in the description of GRID (see
Section 2.8.6). ‘

2.8.5 DETACH: Detaching Primitives from the Tracking Object
Form: CALL DETACH [(s)]

The DETACH subroutine is used to detach from the tracking object all
primitive elements that are currently attached to the object. If you
have a VS60 system, you may specify in parameter s the scope (1 or 2)
on which the tracking object is positioned; if s is omitted from the
DETACH call, the default is 1.

An example of using DETACH is included in the description of the GRID
subroutine (see Section 2.8.6).

2.8.6 GRID: Positioning the Tracking Object on the Grid
Form: CALL GRID (gx,9y[,s])

The GRID subroutine defines the coordinates of a grid of evenly spaced
imaginary dots on the display screen and moves the tracking object to
the nearest point on the grid. This routine is often used when you
are drawing with the light pen or positioning objects on the screen.
It also allows you to detect 1light pen hits that are in the
approximate vicinity of one of the points on your grid.

You may specify the x and y spacing of the grid by including the gx
and gy parameters in the call to GRID. If you have a VS60 system, you
may specify in parameter s the scope (1 or 2) on which the tracking
object is positioned; if s is omitted from the GRID call, the default
is 1.

When the GRID subroutine moves the tracking object on the screen, it
also makes necessary adjustments to the coordinate positions of any
points and vectors that are attached to the object. An automatic

DETACH is performed after the adjustment.
Example:

This example uses input from the 1light pen to build a subpicture
consisting of an absolute point and a long vector. The start of the
line is initially positioned by moving the tracking object and typing
a carriage return on the terminal when finished. The GRID subroutine
is used to force the start point to lie on the logical grid whose
(x,y) spacing is (50.,50.). A long vector is then drawn and attached
to the tracking object, which can be moved with the light pen. The
vector is then effectively "stretched" with the tracking object to the
desired end point. GRID is once again called to normalize the end
point.

DECGRAPHIC-11 GRAPHICS SUBROUTINES

CALL TRAK (500.,500.)
WRITE (5,10)

10 FORMAT (' POSITION TRACKING OBJECT, TYPE <CR> WHEN DONE ')
READ (5,20) I
20 FORMAT (AZ2)

CALL GRID (50.,50.)
CALL TRAKXY (X0,YO0)
CALL SUBP (1500)
CALL APNT (X0,Y0,,-4)
CALL LVECT (0.,0.)
CALL ESUB (1500)
CALL POINTR (20,1500,2)
CALL ATTACH (20)
WRITE (5,30)

30 FORMAT (' DRAW LINE, TYPE <CR> WHEN DONE')
READ (5,20) I
CALL GRID (50.,50.)

2.9 PERFORMING DISPLAY FILE UTILITY FUNCTIONS

The subroutines in this category are used to perform the following
utility functions:

. compressing the display file
. saving the display file

restoring the display file

2.9.1 CMPRS: Compressing the Display File
Form: CALL CMPRS

The CMPRS subroutine is used to compress space 1in the display file
that is no 1longer actively required. This is the process sometimes
referred to as "garbage collection".

After a portion of a graphics program is executed, the display file
may contain a number of primitives and subpictures that are no longer
needed and have been erased. The ERAS subroutine does not actually
delete elements in the display file, so the space occupied by these
erased display elements is not yet available for other purposes.
Although the tags associated with erased primitives and subpictures
are immediately available, the space in the display file is not. You
must periodically issue a CMPRS call to condense the display file and
reclaim the space used by the erased display elements.

NOTE

A call to CMPRS invalidates all open
pointers and detaches any primitives
that are attached to the tracking
object.

DECGRAPHIC-11 GRAPHICS SUBROUTINES

Example:

This example illustrates a reasonable technique for monitoring the
amount of space remaining in the display file; in this case, the
amount is expressed as a percentage of the total. It also illustrates
the issuing of an automatic CMPRS when this total drops below a
certain threshold--10% in the example. The DPTR subroutine is used to
determine the amount of space used, and NMBR to display the percentage
remaining in the display file.

CALL INIT (2000)

100 CALL DPTR (NEXT)
PLEFT = (2001.-FLOAT (NEXT))/20.
CALL APNT (0.,0.,,-4)
CALL NMBR (2000,PLEFT,5,'(F5.1)")
IF (PLEFT.GT.10.) GO TO 200
CALL CMPRS
CALL DPTR (I)
IF (I.LT.NEXT) GO TO 200
WRITE (5,110)
110 FORMAT (' WARNING: DISPLAY FILE NEARLY FULL')
200 CONTINUE

2.9.2 SAVE: Saving the Display File

The SAVE subroutine allows you to compress the display file and save
it as a data file on a mass-storage device such as disk or floppy
disk. The saved file can subsequently be restored as the current
display file by means of the RSTR subroutine (see Section 2.9.3).

SAVE is particularly useful in creating a library of files that can be
called in from secondary storage as needed for application program
purposes. It allows one program to create displays that other
programs can access without having to incur the overhead required to
create these displays. For example, a display file picture 1library
consisting of a large number of subpictures may be created and saved
on disk. When the saved display file is restored, subpictures may be
turned on and copied as desired by means of the restoring program's
subpicture calls.

The saved display file is named according to the standard naming
conventions for RT-11 and RSX-11M. The subroutine call therefore has
two possible formats:

For RT-11:
CALL SAVE ('[dev:]filename[.ext]"')

For RSX-11M:
CALL SAVE ('[dev:][[g,m]]filename[.ext] [;ver]")

The format parts in brackets are optional. The size 1limitations are
as follows:

DECGRAPHIC-11 GRAPHICS SUBROUTINES

dev: maximimum of three characters followed by a colon; if
dev: is omitted, the devices specified by default are
DK: for RT-11 and SY: for RSX-11M.

file name maximum of six characters in RT-11, the first character
a letter; RSX-11M permits up to nine characters, but

only the first six are recognized as a unique name.

.ext maximum of three characters in either system; the
defaults are .DAT for RT-11, no extension for RSX-11M.

;ver version number (RSX-11M only); if omitted, the saved
file will have the highest version number for that file
name by default.

[g,m] allows the wuser. (RSX-11M only) to set the user

i identification code (UIC) for the file; allowable
values for group (g) and member (m) are octal integers
between 1 and 377; if omitted, the UIC is set to the
UIC of the terminal; note that the brackets are part
of the UIC and must be included when the UIC is given
explicitly.

NOTE
A call to SAVE invalidates all open
pointers and detaches any primitives

that are attached to the tracking
object.

An example of using SAVE is included in the description of the RSTR
subroutine (see Section 2.9.3).

2.9.3 RSTR: Restoring the Display File
Forms:

RT-11: CALL RSTR('[dev:]filename[.ext]"')
RSX-11M: CALL RSTR('[dev:][g,m]]filename[.ext] [;ver]")

The RSTR subroutine is used to restore a display file that has been
saved on a mass-storage device by means of the SAVE subroutine (see

Section 2.9.2). RSTR copies the saved file into either an empty
display file 1in memory (i.e., one that has been initialized by means
of INIT) or a non-empty display file. In the latter case, the

restored file is appended to the end of the current display file in
memory.

When the restored file is appended to an existing display file in
memory, you should be aware that tags in the original file area may

duplicate those in the restored file area. In the DECgraphic-11
package, any reference to a tag will always apply to the first
occurrence of the tag 1in the file. To avoid encountering this

situation, you should number subpictures extremely carefully.

If you find that two subpictures in display file have the same tag,
you can copy the original subpicture with a new tag assignment and
then erase the subpicture from which you copied. You will now be able
to access the restored subpicture by referencing the old tag and to
access the copy of the old subpicture by referencing the new tag.

2-43

DECGRAPHIC-11 GRAPHICS SUBROUTINES

When the file is restored, it is treated as if the code required to
create the file had been entered at this point. After the call to the
RSTR subroutine, the basic display file parameters (1,i,f, and t) have
the values they were assigned in the program that created the restored
file.

NOTE

A call to RSTR invalidates all open
pointers and detaches any primitives
that are attached to the tracking
object.

The filename included in the RSTR call must follow the standard naming
conventions described in Section 2.9.2. As in the case of SAVE, the
default device is DK: for RT-11 and SY: for RSX-11M.

Example:

This example illustrates the way in which program 1 can create a
display and save the display file, and program 2 can restore it.

PROGRAM 1 CALL VECT (X,Y)
CALL STOP
CALL SAVE ('PICTUR.DSP')
CALL CONT

PROGRAM 2 COMMON/DFILE/IBUF (2000)

CALL INIT (2000)

CALL STOP

CALL RSTR ('PICTUR.DSP')
CALL CONT

2.10 PERFORMING ADVANCED DISPLAY FILE FUNCTIONS

This section describes three subroutines that have been implemented to
aid advanced wusers of the DECgraphic-11 system. They allow you to
access and change any word in the display file by means of array

subscripting techniques. These facilities provide very detailed
control over the contents of the display file and should be considered
advanced graphics features. You should not use them unless you are

confident that the operations you are performing will not damage a
segment of the display file.

DECGRAPHIC-11 GRAPHICS SUBROUTINES

2.10.1 DPTR: Returning the Next Available Display File Position
Form: CALL DPTR (I)

The DPTR subroutine returns the position of the next available word in
the display file. It also allows you to determine how much of the
display file is currently in use.

DPTR returns an integer value in variable I. This value represents
the number of the display file array element in which the next graphic
element entered in the display file will be stored. This is the next
available word in the file.

An example of using DPTR is included in the description of the CMPRS
subroutine (see Section 2.9.1).

2.10.2 DPYNOP: Inserting No-ops in the Display File
Form: CALL DPYNOP (n)

The DPYNOP subroutine allows you to insert any number of no-op
instructions in the display file. This sets up the display file for
subsequent modification by the DPYWD routine (see Section 2.10.3),
which can subscript into the display file array and change specified
words.

The n parameter represents the number of no-op instructions to be
inserted in the file. The no-ops are inserted beginning at the next
available word in the display file. As described in Section 2.10.1,
you can determine which word this is by issuing a call to the DPTR
subroutine.

2.10.3 DPYWD: Inserting a Data Word in the Display File
Form: CALL DPYWD (i,3)

The DPYWD subroutine is used to insert the 16-bit data word
represented by i at the next available word in the display file. When
DECgraphic-11 encounters a DPYWD call in which the j parameter has a
value of zero, it displays the inserted elements on the screen. If j
is nonzero, the insertion is not immediately displayed, thus
facilitating the successive insertion of multiple words of data.

CHAPTER 3

PROGRAMMING TECHNIQUES

This chapter summarizes a variety of hints for making your graphics
programs more efficient in terms of memory use and execution time. It
is divided into two major categories:

. subpicture techniques
. general graphics techniques

Some of the methods described in these categories are also included in
Chapter 2, in the discussion of specific FORTRAN subroutines. They
are repeated here for ease of reference. These techniques are
illustrated in the FORTRAN programing example included in Appendix D.

3.1 SUBPICTURE TECHNIQUES

The programming techniques described in this section should help you
in defining and using subpictures in the DECgraphic-11 environment.
See the discussion of subpictures in Sections 1.3.4 and 2.4.

3.1.1 Using Subpictures as Subroutines

The DECgraphic-11 package is heavily oriented to the use of
subpictures. Approximately half of the FORTRAN graphics subroutines
described in Chapter 2 are intended for use in defining and accessing
subpictures and primitives within subpictures. For example, when
light pen hits are recorded, the position of the hit in a subpicture
is returned. Pointers are positioned within subpicture definitions.
Characters and vectors may be scaled for use in particular

subpictures. Subpictures can be turned on and off and can be erased.

In the DECgraphic-11 environment, subpictures are very similar to
subroutines and should be used for the same reasons that subroutines
are used. You should group logical graphics operations in subpictures
for the sake of modularity and also to help impose an orderly
structure on the application program. Although you should "tag" as a
subpicture any item that you intend to reference or modify, the use of
subpictures is not limited to the expression of graphics elements that
are to be repeated frequently in the display file. It is often
desirable to use subpictures for reasons other than the obvious
benefit of saving space in the display file.’

PROGRAMMING TECHNIQUES

3.1.2 Creating Complete Displays

There are two approaches to creating graphic images. The more
conventional approach is to display successive graphic elements on the
screen as they are inserted in the display file. This has the effect
of creating a "growing" picture on the display screen, one that
changes dynamically as new elements are defined.

It may be desirable to use another approach in constructing a picture
on the screen. You may want to display a graph or picture only after
it has been completely defined. To 1implement this "all-at-once"
technique, define the display as a subpicture that is turned off as
soon as it is begun. Then turn the subpicture on again after the
definition is complete. This approach is shown below.

CALL SUBP (100)
CALL OFF (100)

definition

CALL ESUB (100)
CALL ON (100)

Use of this technique also has effect of speeding up the ©process of
image creation.

3.1.3 Attaching a Subpicture

It is possible to move a subpicture around the display screen by
attaching it to the tracking object (see the ATTACH subroutine,
Section 2.8.4). When you are drawing a subpicture that is to be moved
in this fashion, specify a call to APNT (see Section 2.3.1) as the
first primitive in the subpicture, but then specify only relative
graphic elements as the remaining primitives.

If several instances of the same subpicture are to be moved separately
on the screen, then the APNT call should be moved out of the
subpicture. You must then issue a separate APNT call for each
instance of the subpicture. The APNT call should precede each
reference to the subpicture.

3.1.4 Using NMBR for Odometer Output

You may use the NMBR subroutine to create "odometer"-type output (see
Section 2.4.7 for a description of NMBR). However, this application
normally requires the use of run-time formatting code, which 1is very
costly in terms of memory usage. If you perform simple integer and
floating-point output conversions in FORTRAN to accomplish the same
task, the use of memory will be much more efficient.

To accomplish the desired task, first convert the number to be
displayed to an ASCII string and append a null byte to the string.
Then, in order to display the number, issue a CHANGT call (see Section
2.6.6) 1in a character primitive that you have set up at the beginning
of your program.

PROGRAMMING TECHNIQUES

The brightness of the odometer output can be intensified by means of
the INTENS subroutine (see Section 2.7.2) or set to blink mode by
means of FLASH (see Section 2.7.3). If the numeric output is in 1its
own subpicture, the size of the characters may also be scaled by
issuing a CVSCAL call (see Section 2.4.8).

3.2 GENERAL GRAPHICS TECHNIQUES

The programming techniques described in this section incorporate a
variety of miscellaneous approaches to speeding up operations in the
DECgraphic-11 system.

3.2.1 Specifying Vector Formats

Vectors may be drawn in any of three legal DECgraphic-11 formats:

. short relative format
. long relative format
. long absolute format

Short vectors require only half the storage of long vectors, but have
a limited range. A short vector is stored in one word and a long
vector in two words. The range of a short vector is 63 raster units
along the x and y axes or approximately one-sixteenth of a full
screen. The range of a long vector, on the other hand, is 1023 raster
units.

In general, you should use the short vector format when constructing
static displays that consist of a large number of short lines (e.g..,
shading of small objects, very irregular outlines). Short vectors may
be altered by means of calls to the GET and CHANGE subroutines (see
Sections 2.6.3 and 2.6.4), but not by attaching to the tracking object
(see the ATTACH subroutine, Section 2.8.4). Long vector format should
normally be used when you are attaching the vector to the tracking
object--for example, for the rubber-banding of lines on the display
screen. :

Absolute vectors should never be used in subpictures that are to be

moved as an entity; you should always specify relative vectors in
subpicture definitions. Absolute vectors do offer one significantly
different feature. Altering one absolute vector does not have the

effect of changing the end-point location of the next vector.

When you are uncertain about the precise length of a vector in
physical screen units, but are not concerned about subsequently
changing the size of the vector, you should use the VECT subroutine
(see Section 2.3.3). This routine automatically uses the short vector
format whenever possible. Unless short and 1long vectors alternate
frequently, this optimizes storage utilization.

PROGRAMMING TECHNIQUES

3.2.2 Ordering Display Elements

A display often consists of a number of static elements, such as menus
and background, as well as a dynamic picture that grows by repeatedly
adding lines, points, and characters to the existing display. When
constructing a display of this kind, creating the static portions
first is more efficient than using the INSERT subroutine (see Section
2.6.7) to add elements within the display file.

Static elements such as menus may be conveniently defined at the
beginning of a subpicture that can be turned off (see Section 3.1.2)
and then turned on when needed.

3.2.3 Controlling Display File Size

Using DPTR is often helpful in determining how much space remains in
the display file. You may want your program to take appropriate
automatic actions when the file reaches a certain size. For example,
you might issue an automatic call to CMPRS (see Section 2.9.1) or
prevent further expansion when the file is nearly full.

CHAPTER 4

THE RT-11 OPERATING ENVIRONMENT

This chapter describes the operation of the DECgraphic-11 system in an
RT-11 environment. It summarizes the contents of the kits supplied in
the graphics system, describes procedures for building a 1library of
DECgraphic-11 subroutines, and discusses how to link your programs for
use in the graphics system.

4.1 BUILDING THE DECGRAPHIC-11 LIBRARIES

The FORTRAN subroutines used to perform graphics functions in the
DECgraphic-11 system are supplied as two kits: a binary kit and a
source kit. With these kits, you can build libraries of object

modules and source programs by following the procedures outlined
below.

4.1.1 Binary Kit

There are three files in the DECgraphic-11 binary kit:

. VI.OBJ for VTll-based systems
. VS.OBJ for single-scope VS60-based systems
VS2.0BJ for two-scope VS60-based systems

Each is supplied as a file consisting of concatenated object modules
of graphics subroutines.

You can build a library of object modules from the VT.OBJ, VS.0OBJ, or
VS2.0BJ files by using the librarian as shown below (you type the
underlined part):

.R LIBR <CR>
*GLIB=VT <CR> (or VS or VS2)

The librarian will print out several messages of the form:

DFILE ILL INS
VTDAT ILL INS

You may ignore these messages.

THE RT-11 OPERATING ENVIRONMENT

4.1.2 Source Kit

The source kit consists of three files:

. GRPACK.CND
. GRSUBS .MAC
. COND.SAV

GRPACK.CND and GRSUBS.MAC are conditionalized source files from which
you can builad the graphics 1library. COND.SAV is a special
conditionalizing program used in building the library.

You can build a "customized" 1library by following the procedure
outlined below. You type the text that is underlined in the sample
procedure; the system types the rest. An explanation of the
questions asked in the sample procedure is included after the output
below. The dialog is essentially the same for all versions of
DECgraphic-11. ~

+.ASSIGN TT:LST <CR>

.ASSIGN TT:LOG <CR>

.LOAD BA <CR>
.R COND <CR>

FILE NAME?
GRPACK <CR>

DO YOU HAVE A VS60 (Y OR N)
Y <CR>

-

TWO SCOPES (Y OR N) ?
N <CR>

ERROR MESSAGE TEXT (Y OR N)
Y <CR>

~

OVERLAID VERSION (Y OR N) ?
N <CR>

STOP -~

-R BATCH <CR>
*GRBILD <CR>

$JOB/RT11

*ERRORS DETECTED: 0

FREE CORE: 10556. WORDS
*

*k

DFILE ILL INS

VTDAT ILL INS (Repeated many times)

¢ (Type CTRL/O to suppress the display of messages)

SEOJ

END BATCH

THE RT-11 OPERATING ENVIRONMENT

The various questions asked by the conditionalizer program COND allow
you to select specific options if you are building from the source
kit. The questions asked during the interaction are described below.

1. DO YOU HAVE A VS60 (Y OR N) ?
The package may be configured for either a VS60 or VTI1
display processor. .

2. TWO SCOPES (Y OR N) ?
If you are configuring for a VS60, it is possible to have a
dual-scope system. This question is not asked if the VT1l
library is being built and you have answered N to question 1.

3. ERROR MESSAGE TEXT (Y OR N) ?
You can choose to eliminate the text of the error messages
produced by the package in order to save space. In this
case, any errors that occur will result in printing an error
number that can then subsequently be interpreted by
referencing the error message table (see Appendix B).

4. OVERLAID VERSION (Y OR N) ?
You can produce an overlaid version of your program in order
to conserve memory space. Answering Y to this question
causes two batch files to be produced, as opposed to one
file. The first file (GRBILD) will cause the creation of a
set of object files, but will not result in the creation of a

library. The second batch file (GRLINK) contains the
commands necessary to 1link your own program to graphics
subroutines. The subroutines will be overlaid as much as
possible.

Section 4.3 contains complete examples of building libraries for use
with the VT1l1l and VS60.

4.2 LINKING USER PROGRAMS

After you have built a graphics library, you can link your program by
issuing the following commands:

+R_LINK <CR>
*program=program,GLIB/F <CR>

where program is the name of your program.

If you have answered Y to question 4 in the COND program, you can link
your program in the manner shown below. You type the text that is
underlined in the sample procedure.

.ASSIGN TT:LOG

+ASSIGN TT:LST

.LOAD BA

.R_BATCH
*GRLINK

$JOB/RT11
$SEOJ
END BATCH

THE RT-11 OPERATING ENVIRONMENT

GRLINK is a batch file constructed by COND which will 1link vyour
program to the DECgraphic-11 subroutines. The contents of GRLINK are
of the form:

R LINK
USER, USER=USER, subl, sub2, . . . subN

EOJ
where subl, sub2, . . . subN is a list of

the object files produced by GRBILD, i.e.,
the DECgraphic subroutines in binary form.

Note that the name USER is automatically given to the loadable program
(USER.SAV), the load map (USER.MAP), and the object file corresponding
to your program (USER.OBJ). Therefore, you should always name your
program's object file USER when you use the compiler:

.R FORTRA <CR)>
*USER [,USER]= program <CR>

where program is the name of your program
source file.

After running the batch file GRLINK, you can rename USER.SAV to the
name of your choice by using the Peripheral Interchange Program (PIP):

.R PIP
*YOUR.NAM = USER.SAV <CR>

NOTE

Each time you run GRLINK, o0ld versions
of USER.SAV and USER.MAP will be erased.

4.3 PERFORMING USR OPERATIONS

There are a variety of operations that require the RT-11 user service
routine (USR) to be swapped into memory (e.g., ASSIGN, CLOSE). When
you are performing an operation of this kind in a graphics
application, first issue a call to the DECgraphic-11 STOP subroutine
to stop the display processor. Call the CONT subroutine to restart
the display after the USR operation has completed. (See Sections
2.1.2 and 2.1.3 for a description of these two subroutines.) If you do
not follow the procedures outlined above, the display will disappear
from the screen and the display processor will hang. The only way to
avoid this situation is to issue a SET USR NOSWAP command, a far more
core-costly solution. The SAVE and RSTR subroutines require a call to
the STOP and CONT subroutines for similar reasons (see Section 2.9.3
for an example).

THE RT-11 OPERATING ENVIRONMENT

4.4 SAMPLE PROCEDURES

The follow@ng printout illustrates the complete process
separate libraries for VT1ll and VS60 systems.

4.4.1 VT11l Procedures

:AQSIGN TTELOG
JABETIGN TTILET
LLOAN BA
HROCOND

FILE NaME 7
GRFACK

00 YOU HAVE A V860 (Y OR N 7
N

ERROR MESSAGE TEXT (Y QR N» 7
Y

OUVERLAYED VERSION oy (RO NY 7
N

STOR e

SROBATCH
RGRBILL

$JORARTLL

WIRG DETECTED: O
FREE CORES 14848, WORDS

EiG
TG
TNG
TNG
ING
TN
TG
TG
TG
TNG
ING
ING
TG

OF ILE TLL
VvrneT Il
DFTLE LL.
VTnaT Tl
T T E T
VTDAT IL
nFETLE
VTIAaT Tl
DFTLE T
VUTnaT Tl TNSG
DFTLE TLb. TNG
vrnaT Tll. TN
DFTLE . ING
VTDaT TN

of building

THE RT-11 OPERATING ENVIRONMENT

LFILE
VUTDAT
UFILE
VUTnAaT
LDFILE
VTIAT
DFILE
VTDAT
DFILE
UToaT
DFTLE
vToaT
OF ILE
UTnaT
DFTLE
UTDAT
LE Il
UThe

OFITLE
UTnaT
DFTLE

OFTLE
UTUhT

”IUﬁT
DFTLE
VThaT
T L
UTDAY

I Hl
VWTIAT
DFTLLE

THE RT-11 OPERATING ENVIRONMENT

VTDAT I

DF TLE I

VThAaT I

DFILE I

UThRaT I

DFILE [

VTIAT 1

DF TLE |

UTnaT ¥

DFTLE I

UTnaT I

DFTLE [

UTDaT I

UF LLE 1

UTDAT 1

DFTLE I
VTIAT Tl

DF TLE 1

) I

|

|

i

[

I

I

I

I

[

1

1

|

!

I

1

!

I

!

f

I

I

f

!

D ILE
UTTIAT
DETLE
UTnaY
T TLE
UTnaT
D LLE
UTDAT
OFTLE
VTomT
DETLE
VThAT
D TLE
MThAT
DFILE

DFTLE
UTHIAT
UTIAT

HEO

ENID BRATCH

THE RT-11 OPERATING ENVIRONMENT

4.4,2 VS60 Procedures

+ASSIGN TT:.0G
+ASSIGN TTILST
+L.OAD EA
+R COND

FILE NAME 7
GRFACK

o YOU HAVE A VUS40 (Y OR N)Y 7
Y

TWO SCOFES (Y OR N> 7
Y

ERROR MESSAGE TEXT (Y OR N) ¥
N

QVERLAYED VERSTON (Y OR N> 7
N

STOF ~-
R BATCH
KGREILI

$JOBR/RTLL

XERRORS DETECTEDIN? ©
FREE CORE: 14592, WORDS

X

*x%

DFTLE Tt INS
UTDAT Tl ING
DFTLE Thi. ING
VTDAT Tl ING
DFILE Tl INS
VUTDAT Tl ENS
DFITLE Thi. INS
UTDAT ILL.
DFTLE Tl
VTIOAT Tl
DFILE YL
UTDAT Il
TFETLE TLL
UTnaT Tt
DFEITLE TLL INSG
UThDAT Tl
DFTLE T
VTOAT Tl
DFTLE Tl
VToaT TLt.
DFILE Tl
vroaT L.
OF LLE i, ¥

VTOAT
DFILE
vTnaT
DFILE
vuTnaT
DFILE
VUTOAT
DFLLE
UTDAT
DFTLE
UTIDAT
DETLE
uTnaT
DFTLE
UTHAY
DFTLE
UTHAT
DFTLE
UTDAT
DETLE
vTnAaT
DFILE
UTOAT
OF TLE
UTnaT
DL
UTDAT
0FETLE
VTIAT
DFTLE
vrnaT
LI E
vrnaT
DFILE
VTnaT
DFTLE
urnaT
D TLE
UTnaT
D TLE
VTIAT
DFELLE
VTHaT
DFETLE
UTnAaY
DFTLE
VTIAT
DFETLE
VTOAT
D TLLE
UTheT
DFETLE
vrnaT
DFTLE
VTnaT
DFTLE
UTHAT
DF TLE
UToAT
T TLE
VTIAT
DFTLE
urnnT

TLi. IN&
ILL ING
TLl, INS
LLl, INS
Tl INS
Thl. INSG
TLL INS
Tl INS
LLL ING
DL INS
T, INS
Tl ING
Il TNS
Thi.o INS
TLi. ING
TLi. INS
Tl TNS
Tl TNS
Thi. ING
Tl ING
TLL INSG
TLi ING
Tl ING
Tl TN
TLi. INS
Lo TNG
L. ITNG
Lo TNS
Lo INS
L. ING
. INS&
L. INS
L. TN
L. INS
Lo ING
L. TNG
L. INS
o TNE
L. ING
l. INS
o ING
Lo IN&
Lo INS
Lo THS
T TN
!
!
!
!
l
l
!
L
l
!
I
i
l
l
1
{
!

-t all aadl aagl saull -l

L INE
L ING
. ING
TNG
.. TNG
. ING
TG
. ING
ING
NG
NG
TNG
ING
TG
ING
. IN%G
. INE
A

THE RT-11 OPERATING ENVIRONMENT

THE RT-11 OPERATING ENVIRONMENT

DFILE TLi. INS
vUTonaT TLL INS
OFTLE Tl TN
VUTnAaT Tl INS
DFILE Tl IN&
T T TLL NG
OFTLE Lo TNS
UTnaT TLL ING
DFETLE Thi., TN&
UTDRAT Thl ING
T LB Tl NG
vTnaT Tl TN
NWFILE Tl ING

L. TN&
Thio IN&

!

I

L

l

!

|

!

|

1.

TN
ITNG

DFTLE
VrnaTY
L TLE
VTIIAT
D TLE
VTIDAT
QFTLE
WTOAT
LF TLLE
UThAY
D T E
VTIAT
DFETLE
UThaT
nFETLE
WTIaT
TR A
WTnaeT
G L
WTIAT
WTnaT

B EOLS

END BT

CHAPTER 5

THE RSX-11M OPERATING ENVIRONMENT

5.1 INTRODUCATION TO SUPPLIED SOFTWARE

" RSX-11M Graphics Extensions, Version 2, provide support for a single
VT1l or VS60 display processor operating as a UNIBUS peripheral
device. These extensions are a subset of the supplied DECgraphic-11
software and are selected during the question-and-answer dialog
generated by the COND program (Section 5.2.1). Answering "no" (N) to
the gquestion "RT11?" will result in a subroutine library tailored to
the RSX-11M operating system. From the programmer's viewpoint, there
is no difference 1in the operation of DECgraphic-11 between the two
operating systems. The subroutine calls are the same, and programs
written for one operating system will function identically under the
other. Only the initial procedures for building the library and for
compiling and 1linking your program vary. The RSX-11M procedures are
discussed in this chapter.

The DECgraphic-11 software kit consists of three files:
COND.FTN, which is a "conditionalizer" program used to tailor the
software configuration to your ©precise needs and

hardware;

GRSUBS.MAC, containing the subroutines written in MACRO-11 assembly
language; and

GRPACK.CND, which contains those subroutines written in FORTRAN and

which creates the indirect command file GRBILD.CMD,
used to construct your specialized library.

5.2 OPERATION UNDER RSX-11M

If you are already familiar with the system generation procedure for
RSX-11M, you might expect the creation of a DECgraphic-11 library to

be complicated under that system. Actually, the procedure is
straightforward and will be easy even for someone not familiar with
all aspects of RSX-11M. The software kit contains a built-in

generating program, COND, which is described fully in Section 5.2.1.
Follow the instructions carefully and you will have no difficulty.

Section 5.2 tells you how to turn your FORTRAN program into a “task
image" that can be executed by RSX-11M. When you have finished
creating the task image, you should study the RSX-11M manuals
referenced in the introduction to this book for information on setting
task priorities in RSX-11M. The operating system allows you to
specify “software priorities™ for tasks running 1in the same
environment so that execution time can be allocated properly among
them. Depending on the nature of your graphic task, a compromise must

5-1

THE RSX-11M OPERATING ENVIRONMENT

be made between the priority assigned to the graphic task and the
priorities given to other tasks running at the same time. For
example, testing of a real-time interactive graphic program might
reveal that the program is not responding quickly enough to light pen
"hits". The "interaction speed" can be increased by resetting the
program's software priority to a higher value, but there 1is a
potential problem. If there are other tasks in the environment that
require frequent interrupt service, they may be "slowed down"
correspondingly as you increase the priority of your graphic routine.

RSX-11M is very flexible and powerful in that you can carefully plan
the execution priorities of a virtually unlimited number of tasks;
however, the decision to set a task's priority to a certain level
requires that you know your system's requirements, not just the
requirements of a single graphic program. Fortunately, the procedure
for resetting priorities is simple enough to allow for plenty of
trials, and as your experience grows you will find the Gquestion
progressively easier to answer. The referenced RSX-11M Task Builder
Reference Manual and Executive Reference Manual are good sources of
information about software priorities.

5.2.1 Building Your DECgraphic-11 Library

Although RSX-11M is in general a far more complex (and powerful)
system than RT-11, the procedure for building your own customized
graphic library is very similar.

When the RSX~11M operating system has been loaded into core, begin the
customizing procedure by typing the underlined parts of the following
dialog.

>FOR _COND = CONDKCR>
>TKB COND = COND<KCR>
>RUN COND<KCR>

COND.TSK will be executed, responding with a series of questions vyou
must answer yes (Y) or no (N), as shown here:

FILE NAME?
GRPACK <CR>
DO YOU HAVE A VS60 (Y OR N)?

Y <CR> [Answering N implies a VT-11 processor.]

TWO SCOPES (Y OR N)?

N <CR> [Not asked if answer to above question is N.]
ERROR MESSAGE TEXT (Y OR N)?

Y <CR>

OVERLAID VERSION (Y OR N)?

Y <CR>

RT11 VERSION (Y OR N)?

N <CR> [Answering N implies an RSX-11M system.]

There will be a brief pause while COND is executing, after which it
will signal completion by printing

TTO0--STOP

At this point, COND has created a set of new files on your storage
device:

GRSUBS.MA, a small file containing your answers to the COND
questions, and

GRPAK1.FO, a file of FORTRAN subroutines.

5-2

THE RSX-11M OPERATING ENVIRONMENT

These two files have been assembled by COND to contain only those
routines appropriate to your installation, based on your answers to
the questions above. Therefore, if you change anything in your system
that would result in different answers to the questions, you should
run COND again and delete the old versions of GRSUBS.MA and GRPAK1.FO
to conserve space on your storage device.

COND also creates an "indirect" command file, GRBILD.CMD, which will
generate a library of DECgraphic-11 subroutines that can then be
linked to programs you write yourself. To create this 1library you
only have to type the single command shown below:

>@GRBILD<KCR>

You can enter this command in response to the monitor console
routine's prompt symbol (> or MCR>) at any time after you have run
COND. Usually you will want to enter it right after the "TT0--STOP"
message signaling the completion of COND. GRBILD automatically
compiles GRSUBS.MA, GRSUBS.MAC, and GRPAK1.FO, putting the resulting
object code files together in a new library called GLIB.OLB. GRBILD
also does some "housekeeping" tasks that remove old object files, old
versions of GRSUBS.MA, and preexisting versions of GLIB.OLB to
conserve storage space. When you type QGRBILD, the operating system
will print the commands in GRBILD.CMD on the terminal and execute them
automatically. You do not need to supply any new information wuntil
the message

>@EOQF

appears, signaling the end of the GRBILD indirect command file.

5.2.2 Writing and Running Your Own DECgraphic-11 Programs

PDP-11 FORTRAN is actually a "superset" of ordinary FORTRAN IV in the
sense that it allows you more flexibility than the standard language.
RSX-11M further relaxes restrictions on FORTRAN programming to some

degree. For details of PDP-11 FORTRAN, you should read the PDP-11
FORTRAN Language Reference Manual (DEC order number DEC-11-LFLRA-C-D).
Another manual, the IAS/RSX-11 FORTRAN v User's Guide
(DEC-11-LMFUA-C-D) contains helpful information for FORTRAN

programmers using RSX-11l. 1In particular, the manual suggests methods
for debugging your programs easily and for "optimizing" them (after
debugging) so that they will use a minimum of space and execution
time. If you are writing programs that will allow an operator to
interact with a graphic display in real time, or if your graphic
program will be part of an extensive multitask environment,
optimization of your program is an especially good practice.

If you are familiar with ANSI FORTRAN, you will find the DECgraphic-11
package simple to use; 1in effect, the subroutines can be called from
your program the same way you would call a subroutine you had written
yourself. After writing your program, you must enter it in a source
file so that RSX-11M can compile and link it. There are many ways of
creating a source file; a common one is to use RSX-11M's EDI (text
editing) utility and simply type the FORTRAN statements in from your
terminal. For a description of EDI, read the RSX-11M Utilities
Procedures Manual (DEC-11-OMUPA-B-D).

After creating your source file, compile the program by typing the
underlined parts of the following dialog, inserting the name of your
newly created source file in place of SOURCE.FTN, and appropriate
names for the output files PROGRAM.OBJ and LISTNG.LST.

5-3

THE RSX-11M OPERATING ENVIRONMENT

>FOR PROGRAM.OBJ,LISTNG.LST=SOURCE.FTN <CR>

The names for the object and listing files in the command string are
"positional", so that if ",LISTNG.LST" is omitted, the FOR compiler
will produce only an object file. Similarly, if only ",LISTNG.LST"
appears, a listing file will be produced, but no object file.

One feature of PDP-11 FORTRAN that is helpful in debugging your
program is the “"conditional compile switch", /DE. This compiler
feature allows you to insert statements in your program source file
with the 1letter D in column 1 and to then decide at compilation time
whether the statements are to be compiled or to be treated as
nonexecutable comments. For instance, vyou <could insert such a
statement to pass a test parameter to a DECgraphic-11 routine. When
you command RSX-11M to compile your program, add "/DE“ to the source
file, e.qg.,

>FOR PROGRAM.OBJ,LISTNG.LST=SOURCE.FTN/DE <CR>

and the compiler will treat your "D" statement(s) as executable
instructions. You can run the program and observe the test results.
When you are satisfied that the program is doing its job properly, you
can compile the source a second time, this time leaving the /DE switch
off. The compiler will generate a new object file in which the D
Statements are treated as nonexecutable comments.

The last step in this preparation is to take the object file produced
by the compiler and build it into an executable task image consisting
of the object file linked to the DECgraphic-11 library, GLIB.OLB.
Proceed as follows, typing the underlined parts:

>TKB <CR>

TKB>TASK . TSK, TASK . MAP=PROGRAM.OBJ <CR>
TKB>GLIB.OLB/LB <CR>

TKB>/ <CR>

ENTER OPTIONS:

TKB>ASG=GR0:1 <CR>

TKB>// <CR>

The task builder, TKB, will put the task image in a file called
TASK.TSK (or whatever name you put in that position) and a memory
allocation map in TASK.MAP. Both of these output files are positional
in the same manner as the compiler output files. The options line,
ASG=GR0:1, identifies your graphic desplay unit to the operating
system. The double slash (//) tells the task builder to begin the
building process, after all the files that are to be 1linked up have
been 1listed (in the example shown, PROGRAM.OBJ and GLIB.OLB). The
operating system will respond with the MCR prompt (>) to signal that
the task building 1is finished. Your program is now an executable
RSX~11M task that can be run any time by typing

>RUN TASK.TSK <CR>

The task builder is the "workhorse" of RSX-11M, since it produces the
task images toward which the multitask operating system is oriented.
As such, it gives the programmer a number of options that can be
specified when the compiler output file is made into a task image.
Among these options is the ability to assign execution priority to a
task. If you are not already familiar with the features of TKB, read
the Task Builder Reference Manual (DEC-11-OMTBA-B-D).

THE RSX-11M OPERATING ENVIRONMENT

If you have generated an overlaid DECgraphic-11 library, you can use
the indirect comand file GRBLD.CMD instead of the usual string of TKB
command lines. Some RSX-1llm systems have been generated in such a way
that you are not allowed to enter TKB options on separate lines, in
which case using GRBLD.CMD is a necessity. If your system is one of
these, you can use GRBLD.CMD to control the task buidler, since the
single command line contains all the necessary information for TKB:

>TKB Q@GRBLD <CR> R
GRBLD.CMD is constructed by COND when you answer Y to the question
"OVERLAID?", and it contains two command lines:

USER=GRBLD/MP
ASG=GRO:1

The second line is the familiar statement which assigns display
channel GRO: to logical unit 1. When TKB encounters the first
command line and the name GRBLD/MP, it searches for another file
containing the overlay description. COND has also created this file
and named it GRBLD.ODL. Notice that GRBLD.CMD assigns the task image
to a file called USER.TSK; GRBLD.ODL also employs the name USER.OBJ
for the root of the overlay. Therefore, if you want to use GRBLD.CMD,
you should compile your program source as usual, but name the output
file USER. When GRBLD is subsequently run, it will select the most
recent version of USER.OBJ, and when the task builder is finished, you
can rename the file USER.TSK to a more mnemonic name by using the
Peripheral Interchange Program (PIP):

>PIP YOUR.NAM[;ver]=USER.TSK <CR>

APPENDIX A

DECGRAPHIC-11 SUBROUTINE SUMMARY

This appendix provides an alphabetical summary of the FORTRAN graphics
subroutines available in the DECgraphic-11 system. An asterisk (¥)
before the subroutine name indicates that differences exist between
the subroutine calls on the VT1ll- and VS60-based systems. Usually,
the difference is simply that only one scope is supported on the VT1l1,
so the s parameter is ignored in VT1ll calls. A cross (+) identifies
routines available only in VS60 graphics systems. Calls to these
routines are no-ops in VT1ll systems. An explanation of the 1, i, £,
and t parameters referenced in many of these calls is included at the
end of this appendix.

Call Argument List Effect

ADVANC (k[,n]) Advances pointer Kk (1-20) by n
primitives from its current position;
if n is omitted, advances by one to
the next primitive in the display file
(see Section 2.6.2).

AGET (m,3,2) Returns in variable Z the jth
primitive of the graph or figure
subpicture whose tag is m (see Section
2.5.4).

APNT (x,vy[,1,i,£,t]) Positions the beam at the absolute
position represented by (x,y) and may
display a dot at that position;
optionally changes 1, i, £, and t
parameters (see Section 2.3.1).

APUT (m,j,b) Assigns value b to the jth primitive
of the graph or figure subpicture
whose tag is m (see Section 2.5.5).

+ AREA (n) Specifies that subsequent graphics
calls refer to the main viewing area
(n=1) or the menu area (n=2) (see
Section 2.2.2).

* ATTACH (k[,n,s]) Attaches the primitive referenced by k
(1-20) to the tracking object on scope
s. When the primitive is a long
vector, it will be attached to the
object and will follow it; if n is
positive or omitted, the vector's
origin is stationary and the
destination end will move; 1if n is
negative, the destination endi is

A-1

Call

DECGRAPHIC-11 SUBROUTINE SUMMARY

Argument List

+ AVECT (x,y[,1,i,f,t])

CHANGA

CHANGE

CHANGT

CMPRS

CONT

COPY

(k,x,y)

(k,x,y)

(k,alf,a2...1)

([ml],m2)

Effect

stationary and the origin end will
move. If the primitive is an absolute
point or vector, n need not be
specified (see Section 2.8.4).

Draws a vector from the current beam
position to the absolute point
represented by (x,y¥): optionally
changes 1, i, £, and t parameters (see
Section 2.3.4).

Changes the primitive referenced by
pointer k (1-20) to the new value
specified in (x,y). Like CHANGE, this
routine can be wused for primitives
defined by the routines AVECT, VECT,
SVECT, LVECT, RPNT, APNT, XGRA, and
YGRA, but for VECT, SVECT, LVECT, and
RPNT, subsequent graphics elements are
adjusted to be displayed at the same
absolute screen position (see Section
2.6.5).

Changes the primitive referenced by
pointer k (1-20) to the new values
specified in (x,y). This routine can
be wused for primitives defined by the
routines AVECT, VECT, SVECT, LVECT,
RPNT, APNT, XGRA, and YGRA (see
Section 2.6.4).

Changes the character string primitive
referenced by pointer k (1-20) to the
new string supplied in the call (al,
etc). Characters specified in the
call may include control codes
indicating italic mode, character
rotation, and superscript or subscript
mode (see Section 2.6.6).

Compresses the display file by
removing all erased primitives and
subpictures and reclaiming the space
used by them (see Section 2.9.1).

Restarts the display processor, thus
restoring the display interrupted by a
call to STOP (see Section 2.1.3).

Creates a copy of the existing
subpicture whose tag is m2 and assigns
it the tag ml; if the ml parameter is
omitted, subpicture m2 1is copied to
the currently open subpicture (see
Section 2.4.3).

Call

+ CVSCAL

* DETACH

DPTR

DPYNOP

DPYWD

ERAS

ERASP

* ESUB

FIGR

FLASH

DECGRAPHIC-11 SUBROUTINE SUMMARY

Argument List

(m[,ifc,ifv])

[(s)]

(1)

(n)

(i,3)

[(m)]

(k)

[(m)]

(A,n,m[,1,i,£,t])

(k[,£11)

Effect

Scales the size of displayed
characters and vectors in subpicture
m; ifc may be in range 1-4, where 1
is one-half normal character size, and
4 is twice normal size (normal is 2);
ifv. must be in range 1-15, where 1 is
one~fourth normal size and 15 is three
and three-fourths normal size (normal
is 4) (see Section 2.4.8).

Detaches all primitives from the
tracking object on scope s (see
Section 2.8.5).

Returns in I the position of the
display file array element in which
the next word entered in the display
file will be stored (see Section
2.10.1).

Inserts n display no-op instructions
at the current position in the display
file (see Section 2.10.2).

Inserts the 16-bit data word (i) in
the display file at the current
position in the display file;
displays the word on the screen if the
value of j 1is zero (see Section
2.10.3).

Erases the definition of subpicture m
from the display file; if parameter m
is omitted, the tracking object is
removed from the screen (see Section
2.4.6).

Erases the primitive referenced by
pointer k (1-20), and repositions the
pointer at the next primitive 1in the
display file (see Section 2.6.8).

Terminates the definition of the
current subpicture, created by means
of the previous call to SUBP; if the
m parameter is included in the call
(VS60 only), the display processor
status parameters (e.g., light pen
enable, intensity) that were in effect
before the current subpicture was
invoked are restored (see Section
2.4.2).

Creates a special figure subpicture m.
The figure is plotted from the first n
(X,Y) coordinate increment pairs
specified in array A. Optionally
changes 1, i, f, and t parameters (see
Section 2.5.3).

Depending on the value of £, enables
or disables flash or blink mode for
the primitive referenced by k (1-20)
(see Section 2.7.3).

A-3

DECGRAPHIC-
Call Argument List
FPUT (m,j,b)
FREE
GET (k,X,Y)
GRID (gx,9y[,s1)
INIT [(n)]

INSERT [(k)]

INTENS (k[,1i])

LINTYP (k(,t])

LPEN (IH,IT[,X,Y,IP,IA,

11 SUBROUTINE SUMMARY

Effect

Assigns value b to the ijth primitive
of the figure subpicture whose tag is
m; adjusts the next element of the
subpicture to ensure that subsequent
points in the fiqgure will be at the
same absolute coordinate positions on
the screen (see Section 2.5.6).

Disconnects the display file from the
display processor, thus freeing the
area of memory used by the file; this
terminates graphics processing until
the next call to INIT (see Section
2.1.4).

Returns in (X,Y) the coordinate
positions of the primitive referenced
by pointer k (1-20) (see Section
2.6.3).

Moves the tracking object on scope s
to the nearest point on the grid and
automatically detaches any detached
primitives. Parameters gx and gy
define the spacing of points on the
grid (see Section 2.8.6).

Clears the display screen, initializes
the display file to use the first n
words of the FORTRAN NAMED COMMON,
DFILE, and sets the initial display
file status parameters (see Section
2.1.1).

Reopens the display file for insertion
of primitives (specified in subsequent
graphics calls). Insertion begins
before the primitive referenced by
pointer k (1-20). If k 1is omitted,
the 1insert operation 1is terminated
(see Section 2.6.7).

Changes the intensity 1level of the
primitive referenced by k (1-20) to
the brightness specified in i (1-8)
and/or intensifies the referenced
primitive (see Section 2.7.2).

If t is a legal line type value (1-4),
changes the line type of the primitive
referenced by k (1-20) to the type
specified in t (see Section 2.7.4).

IM,IT1,IT2])
Indicates whether or not a 1light pen
hit has taken place, and returns

information about the hit in the
following variables (see Section
2.8.1):

Call

LVECT

MENU

DECGRAPHIC-11 SUBROUTINE SUMMARY

Argument List

(x,yl,1,i,£,t])

IH:

IT:

IA:

IM:

IT1,IT2:

Draws a vector

position

to

Effect

nonzero 1f 1light pen
hit has occurred (1 for
scope 1, 2 for scope
2); always 0 or 1 for
the VT1l.

tag of the subpicture
in which the hit
occurred.

coordinates of the hit.

number of the primitive
within the subpicture
at which the hit
occurred; undefined if
the primitive is not in
a subpicture.

array in which the
precedents or ancestors
of subpicture IT are
stored (subpicture tags
in order, starting with
innermost nested
subpicture).

screen area of the
light pen hit (1 for
main area, 2 for menu
area) ; always 1 for
the VT11.

status of the light pen
tip switches for scopes
1 (IT1) and 2 (IT2) (0
for off, 1 for on);
for the vT11l, IT1 is
always 1 and 1IT2 is
always O.

from the current beam
the relative ©position

represented by (x,y), using the 1long

vector

i, £, and t

2.3.6).

([x0],y0,dy,m[,'nl'[,'n2']...])
Displays a list of up to 10 items to
be used as a menu. The items are the
character strings nl, n2, and so on,
and the first item is displayed at the
position represented by

coordinate

(x0,y0);

format; optionally changes 1,
parameters (see Section

if x0 is omitted from a VS60

call, the items are displayed 1in the

hardware

menu area of the screen; on

the VT1l, they begin at the left edge
of the viewing area. The dy parameter

represents

menu
represents the
subpicture (nl); subsequent

between

first

the vertical spacing

items. The m parameter
tag assigned to the

subpictures are tagged sequentially,

A=-5

Call

NMBR

NOSC

OFF

ON

POINTR

RPNT

RSTR

SAVE

SCAL

DECGRAPHIC-11 SUBROUTINE SUMMARY

Argument List

(m,var[,n,format])

(m)

(m)

(kym([,3])

(xly[ll'ilf!t])

('[dev:]file[.ext]

('[dev:]file[.ext]

Effect

so if there are 10 subpictures, the
10th subpicture's tag is m+10-1 or m+9
(see Section 2.3.8).

Creates a special numeric subpicture
whose tag is m. This call formats the
numeric contents of a FORTRAN
variable, wvar, with a width of n in
the specified format. If the format
parameter is omitted, the default
format of F1l6.8 is used (see Section
2.4.7).

Restores the default unit-scaled
coordinate system (x0=0, y0=0) ¢to
(x1=1023, y1=1023) for subsequent
graphics calls, and eliminates any
user-defined coordinate system (see
Section 2.2.4).

Temporarily turns off the subpicture
whose tag is m (see Section 2.4.4).

Turns on subpicture m (see Section
2.4.5).

Sets pointer k to reference the jth
primitive of the subpicture whose tag
is m; if j is omitted, the pointer
will be set to the first primitive of
the subpicture. The value of k must
be in range 1-20 (see Section 2.6.1).

Moves the beam from its current
position to the relative position
represented by (x,y) and may display a
dot at that position. 1If the current
position is (10,20) the beam is moved
to (1l0+x, 20+y). Optionally changes
1, i, £, and t parameters (see Section
2.3.2).

)

)
Restores in the memory area of the
current display file the display file
stored on the mass-storage file
identified in the <call (see Section
2.9.3).

1

)
Saves the display file by writing it
onto the mass-storage file identified
in the call (see Section 2.9.2).

(x0,y0,x1,y1[,FX,FY])

Defines a new coordinate system in
which (x0,y0) identifies the 1lower
left corner of the user-gspecified
screen, and (xl,yl) identifies the
upper right corner of the screen;
optionally returns the effective X and
Y scaling factors in FX and FY (see
Section 2.2.3).

A-6

Call

+ SCOPE

* SENSE

STOP

SUBP

SVECT

TEXT

* TRAK

* TRAKXY

VECT

+ WINDOW

DECGRAPHIC-11 SUBROUTINE SUMMARY

Argument List

(n)

(kl[,1,s1)

(ml[,m2])

(x,y[,1,i,£,t])

(alf,a2...1)

(x,y[,s8])

(X,Y[,s])

(x,y[,1,i,£,t})

(x,Y)

Effect

Specifies that subsequent graphics
calls refer to scope 1 (n=1l) or 2
(n=2) (see Section 2.2.1).

Depending on the value of 1, enables
or disables light pen sensitivity for
the primitive referenced by k (1-20)
in the display file associated with
scope s (1 or 2) (see Section 2.7.1).

Halts the display processor, stops the
display, and clears the display
screen. The display may be restored
by calling CONT (see Section 2.1.2).

Begins the definition of a subpicture
whose tag 1is ml; all primitives
specified in subsequent graphics calls
are considered a part of the
subpicture, until the occurrence of a
terminating call to ESUB. If the m2
parameter is included in the call, a
new subpicture tag, ml, references an
existing subpicture whose tag 1is m2
(see Section 2.4.1).

Draws a vector from the current beam
position to the relative position
represented by (x,y), using the short
vector format; optionaly changes 1,
i, f, and t parameters (see Section
2.3.5).

Displays the character strings
supplied in the call, (al, etc.)
beginning at the current beam
position. Characters specified in the
call may include control codes
indicating italic mode, character

rotation, and superscript or subscript
mode (see Section 2.3.7).

Positions a tracking object on the
screen of scope s at coordinate
position (x,y) and centers the object
on any light pen hit within the
tracking area (see Section 2.8.2).

Returns the coordinates of the current
position of the tracking object in
(X,Y) for scope s (see Section 2.8.3).

Draws a vector from the current beam
position to the relative position
repesented by (x,y), using the short
vector format when possible;
optionally changes 1, i, £, and t
parameters (see Section 2.3.3).

Defines a window on the drawing area
of the display screen by specifying
the coordinate positions (x,y) of the
lower left corner of the user-defined
area (see Section 2.2.5).

A-7

DECGRAPHIC-11 SUBROUTINE SUMMARY

Call Argument List Effect

XGRA (dy,Alnrm[lllilflt])

Creates a special graph subpicture m,
which consists of a series of points.
The x values of the points to be
plotted are specified in the first n
elements of array A, and the y values
are given by integral multiples of dy.
Optionally changes 1, i, f, and t
parameters (see Section 2.5.1).

YGRA (dx,A,n,m[,1,i,£,t])

Argument

Creates a special graph subpicture m,
which consists of a series of points.
The y values of the points to be
plotted are specified in the first n
elements of array A, and the x values
are given by integral multiples of dx.
Optionally changes 1, i, £, and t
parameters (see Section 2.5.2).

ARGUMENT DESCRIPTIONS
Meaning

Light pen enable
Default: disabled

l=positive. Light pen interaction is enabled, and
a 1light pen interrupt will occur in subsequent
graphics output when the light pen is pointed at
an object on the display screen.

1=0 or omitted. The value of the parameter does
not change from its previous status.

l=negative. Light pen interaction is disabled,
and light pen interrupts will not occur.

Intensity level
Default: 4; with normal adjustment this makes
the primitive light pen-sensitive.

i=1 through 8. The intensify status is changed
for <current graphics output, and the intensity
level (brightness of objects on the screen) is set
to the value of i, where 1 1is the faintest
intensity and 8 is the brightest.

i=0, omitted or greater than 8. The intensify
status is changed for current graphics output, but
the level does not change from its previous status
for subsequent calls.

i=-8 through -1. Current graphics output (except
for characters) 1is not intensified, but the
intensity level of subsequent graphics output is
set to the absolute value of 1i.

Argument

DECGRAPHIC-11 SUBROUTINE SUMMARY

Meaning

i=less than -8. Current graphics output 1is not
intensified, nor 1is the intensity level changed
for subsequent graphics output.

Flash mode
Default: off

f=positive. Current and subsequent graphics
output is displayed in flash or blink mode.

f=0 or omitted. The value of the parameter does
not change from its previous status.

f=negative. Flash mode is disabled for current
and subsequent graphics output.

Line type
Default: solid

t=1. Vectors in current and subsequent graphics
output are displayed as solid lines.

t=2. Vectors are displayed as long-dashed lines.
t=3. Vectors are displayed as short-dashed lines.
t=4. Vectors are displayed as dot-dash lines.
t=0, omitted, negative, or greater than 4. The

value of the parameter does not change from its
previous status.

APPENDIX B

DECGRAPHIC-11 ERROR MESSAGES

This appendix summarizes all error messages that are generated by the
DECgraphic-11 package. For each message, it provides the message
number and a brief explanation of the reason for occurrence and
references the particular subroutine in which the error occurs.

It is possible to suppress the display of error message text 1f you
are building from the source Kit. When you are building your
subroutine library (see Chapters 4 and 5), answer N to the question:

ERROR MESSAGE TEXT (Y OR N) ?

If you have suppressed text output and an error occurs, only the
number of the error message will be displayed, in the format shown
below:

ERROR #YY XXXXXXXXXX

Where YY is the two-digit error message number (see the following
list), and the 10-digit X field represents the parameter (e.g.,
subpicture) in certain messages.

DECgraphic-11 error messages are returned using standard FORTRAN
subroutine trace-back 1logic. Messages are output in the following
form:

IN ROUTINE "XXXXXX" LINE YYYY
FROM ROUTINE "XXXXXX" LINE YYYY

.
.

A message of this kind will be preceded by a false error message
(number 61):

ILLEGAL MEMORY REFERENCE
This message can be ignored.

Because many of the DECgraphic-11 subroutines operate internally by
invoking other system subroutines, some of the trace-back information
will concern subroutine calls that you have not made. You need only
be concerned with references to your own subroutine logic.

Number Error Message Routine (s)
1 UNABLE TO LINK TO SCOPE INIT
You do not have a scope, or it is being

used by another task. If you are using
RSX-11M, be sure that the option

B-1

Number

10

11

12

13

DECGRAPHIC-11 ERROR MESSAGES

Error Message

statement "ASG=GR0O:1" was included
in the task building commands.

INIT NOT CALLED
You have not issued an initiating call
to the INIT subroutines.

MORE ESUB'S THAN SUBP'S

There are more calls to ESUB than
corresponding invocations of the SUBP
subroutine.

XXXXX NOT A GRAPH OR FIGR SUBP

The element being addressed by an AGET,
APUT, or FPUT is not a graph or figure
Subpicture.

SUBSCRIPT OUT OF RANGE

You have specified an array element in
an AGET, APUT, that exceeds the

the number of entries in the array.

XXXXX NOT A FIGR SUBP
The element being addressed by FPUT is
not a figure subpicture.

XXXXX NOT A NMBR SUBP
The element being addressed by NMBR is
not a numeric subpicture.

DISPLAY FILE FULL

There is insufficient space in the
display file to accommodate additional
specifications.

FILE TOO BIG
The display file being restored from a

mass-storage device is too big to fit in

the memory area allocated for display
file use.

XXXXX IS IN USE
Tag XXXXX is already assigned to a
primitive or a subpicture.

MORE THAN 8 NESTED SUBP
You have specified more than eight
nested calls to SUBP.

XXXXX IS NOT A SUBPICTURE
The tag XXXXX is not defined as a
subpicture.

XXXXX IS STILL OPEN

You have attempted to issue a CALL SUBP
(ml,m2) for a subpicture that has not
been "closed" by means of an ESUB call.

Routine (s)

All routines

ESUB

AGET, APUT, FPUT

AGET, APUT, FPUT

FPUT

NMBR

All routines

RSTR

SUBP, COPY, XGRA,

YGRA, FIGR

SUBP

SUBP, COPY

SUBP, COPY

Number

14

15

16

17

18

DECGRAPHIC-11 ERROR MESSAGES

Error Message

ILLEGAL INCREMENT
The dx or dy value specified in the call
exceeds 63 raster units.

XXXXX ILLEGAL/UNOPEN POINTER

The value of pointer XXXXX is not in
range 1 through 21, or a referenced
pointer has not been defined with a call
to POINTR.

ILLEGAL DURING INSERT
You have attempted to perform an illegal
operation while in insert mode.

TOO FEW ARGUMENTS
You have omited one or more required
parameters from a subroutine call.

CAN'T COPY NESTED SUBPS
You have attempted to copy a subpicture
which contains another subpicture.

Routine (s)

XGRA, YGRA

All routines that
use pointers

CMPRS, SAVE, RSTR,
SUBP, FLASH, SENSE,
INTENS, CVSCAL, ESUB,
LINTYP, INSERT

All routines

COPY

APPENDIX C

DISPLAY FILE STRUCTURE

This appendix describes the internal structure of the DECgraphic-11
display file, as it is constructed in memory. You should consult this
appendix before attempting to alter a display file or before you
change any of the source modules that make up the DECgraphic-11
system.

1. Overall Structure

a. Root portion

i. This is controlled by the Handler, which also sets up
initial display file status parameters.

b. User Space
i. display data, set up by DECgraphic-11 in the COMMON
area called DFILE and ending with a DHALT, O
(173400,0) .
2. Subpictures

a. A reference to an existing subpicture is formatted in the
following way for the two display processors:

VT1ll: 173400 (DHALT) VS60: 162000 (DJSR)
Address of rest of file Address of subpicture
Address of subpicture 161002 (DJMPR)
tag tag
link link

b. A subpicture header is formatted as follows:

VT1ll: Same as for a call VS60: 163004 (DJISRR)
160000 (DJMPA)
Address of rest of file
tag
link

c. The end of a subpicture has the following format:

‘VT1l: 173400 (DHALT) VS60: 165000 for ESUB
0 (return, no restore)

166000 for ESUB (n)
(return, restore on
return)

DISPLAY FILE STRUCTURE

d. When subpictures are turned off, their formats are changed

to the following:
i. Subpicture references:

VT11l: 160000 (DJMPA) VS60: 161004 (DJIMPR)
in first word in first word

ii Subpicture definitions:

VT1l: 160000 (DJMPA) VS60: 161000 (DJMPR next word)

in first word in first word

€. When subpictures are erased, the first two words of
formats are changed to the following:

VT1ll and VS60: 160000 (DJMPA)
Address of rest of buffer

The link is also removed from the tag list

f. The pointer to the first tag is in ILST in COMMON VTDAT;

the pointer to the last tag (the one that is 0)
IEND.

3. Display stops are serviced by the Handler.
4. Light pen hits are serviced by the Handler.
5. Display time-outs are serviced by the Handler.
6. Calls to XGRA, YGRA, and FIGR:
a. XGRA and YGRA have the following format:
Five-word subpicture header
Load graphic increment
Enter graph mode

X or Y data (one word per point)

End of subpicture
b. FIGR has the following format:

Five-word subpicture header
164000 (DNOP)

LVECT

Data (two words per point)

End of subpicture

7. Calls to NMBR:
Five-word subpicture header
100001 (TEXT MODE)

Data (two characters per word)

End of subpicture

8.

DISPLAY FILE STRUCTURE

File structure as a "saved file":

Total of n+3 words:
n+2=number of words to follow (first word)

n words of display data

9.

~173400/ 0

Display file organization on sequential calls to the same
module (vector/point/graph plot module):

The example provided below makes sequential calls to the
module LVECT.

A singIe call to LVECT is normally mapped into three words in
the display file.

word.l mode (M)
word.2 x coordinate
word.3 y coordinate

But on a sequential call to LVECT as indicated below:

.

.

CALL LVECT(X1,Yl)
CALL LVECT (X2,Y2)
CALL LVECT (X3,Y3)

.
.

.

these calls will be mapped into the display file as shown
below

X1
Yl
X2
Y2

Y3

This is because the mode word (l,i,f,t) remains unaltered in
the second and third call.

APPENDIX D

FORTRAN PROGRAMMING EXAMPLE

The FORTRAN program included in this appendix illustrates the use of
all of the graphics subroutines described in Chapter 2. It performs
such functions as the following:

. setting up a menu area

. drawing, moving, combining, scaling, copying, erasing, and
modifying objects on the display screen

. saving and restoring display files

. using the light pen
This program is included in the DECgraphic-11 distribution. You may
want to «compile it at your own installation and use it as an aid in

testing and demonstrating the graphics capabilities available in the
DECgraphic-11 package.

FORTRAN PROGRAMMING EXAMPLE

G
c SIMPLE DRAWING PRDOGRAM USING THE NEW GRAPMICS PACKAGE
¢
Ay COMMUN/DFILE/IBUF(IB0Y) »GRO/NPRIM(200) ,NVPRIM(20P0)
vnan REAL 8F(4)
YR LOGICALYY FILEIC(11),FILE2(11),USED(S)
bno4 UATA SF/.aspublaqa‘./
wRas UATA USED/4G,0,9,37,0/
uade Sl12Em332p,
WA07 GRD=JN,.
LT IWARNBLS
PEUL MARGIN®1Q
onln NOEF®Q
vmly NHIDRA
uwaioe 1SACmo
urla L) 10 Imy,200
vala NVPRIMLIII =Y
unis jp NPRIMCI) mp
C
C SET UP MENUL AKEAS
c
UNlR CALL INIT(3506)
prly CALL SuUBP(lnmou)
WMlR CaLL OFF(1lukik)
onlo N®id¥B./GRD
cnen U:) 20 l=p,N
vne vl 29 Js@a,N
RAd2 gv CALL APNT(IwGRU,JwGRUDY,2)
20ex CALL SuBpP(leul) .
wne4 CALL mMENU(R,,780,,«80.,2010, 'DRAW! , TMOVE!, ICOMBINE!, VSCALE?,
X VCOPY!, 1ERASE', TMOCLFY!, YHIDE', 'SEEK!)
"L PE, CaLL MENU(R,,90¢,,«50.,2019,'SEEK & COPY','RUTATE!, 18SAVE!,
X TRECALL','EXLITH)
URER CaLL ESUB
wney CaLlL SuBP(lgvd)
unen CALL MENU(BPRer7508,,=5P., 1220, 'POSITION!,'LINE!,'CLOSE"', 'DONE!)
UNeo CALL ESULB
vadn CALL MENU(BGUer752,,Be,1003, 'DONE!)
"I EY] CALL SuBP(1@u4)
w2 CaLl MtNU(GGw.:75ﬂ.p-5U-;133Q,'1/4'.‘1/2','2 xt,1rq %)
¥y CALL ESusB
nd4 CALL RuBP(leud)
vAds CALL MENU(BWGer750,,=50,,1040, 'ERASE LINE','SPLIT LINE',
X 'MUVE CORNER','SHOW ALL','DONE!)
ERY CaLl ESuUB
¥ad97 CALL SUBP(10¢b)
UNIR CALL MENU(BQUer750,,=50.,1050,100 CW!,11801,190 CCW!)
RIY CALL ESUg ‘
YY) LaLl, SJYBP(2060)
"LEY] CALL APNT (V.01 ,=4)
vnan CaLl TeEXT(! 1)
w4l CALL APNT(”.'W."'dp-I)
Y] CaLlLL EsSusB
C
c MAIN LUOP =w WALT FOR MEND HIT AND BKANCH TO SERVICE IT
C
Yn&A% 1¢a U0 112 Is1yelelys6

ua4s
Yy
Un4a
wReaq
wadp
L1 EX
vad9
T k)

Ao 4
CLEL

uads
@ao7
baos

a9
L L-X]
énoQ
ondy
wno4
woonm
unoK
wa®?
vAOR
wadg
valo
o7y

W/
U7z 4
Va7 s
un’6
ar/?
vara
"LIE)
boon
" Y-X]
"} X-¥
wasl
bava
prox
vwaosk
vooy
wnos
CAYA
Ay
Yovd
vava
VAys
VAv?
"I K
pavYey
vioa
vids

112

11in

1122

1140

1162
1130

1185

1190

X

X

FORTRAN PROGRAMMING EXAMPLE

CaLL OFF(I)

Cakl ON(1v0R1)

CALL ON(igoe)

CaLL DPTRCI)

CALL PUINTR(2,49026,2)

Is(SIZEmI)/8léE* 120,

CaLlL FLASH(2,1iWARNS])

USED(3)elel/siUvloeds

USEN(2)u]l/10+40

CALL CHANGT (2 USED)

CaLl, MENUM(IT,2810,2023)

CALL NFF(10p1)

GOT0O (lipe,10646,1700,1800,1900,2000,2100,2200,2300,2600,2700,
2400,2500,50090) ,1T

URAW A NEW 0BJECT

IF(IaLT.MARGIN)GQOT(Q o4pw

CaLlL OnN(1@g2)

Cal.l MAKQRJ (NUDJ)

CALL SUBP(NOBWY)

CALL APNT(500.r520,,,%4)

CALL PUINTR(2,NUBYJ)

CALL TRAK(5pderO900,)

CALL ATTACHK(R)

CALL MENUH(IT,1420,10¢23)

CALL GRID(GRUDGRD)

caLl GET(2,x,Y)

IF(ABS(X) LT GRU AND ABS(Y) o LT,GRD,AND NPRIM(NQBJ) ,NE,D)
G0TD 1110

IIama

GOTO(114g,1120,1160,1180),17

1I=4

NVPRIMINORJYSNVPRIM(NOBJ) ¢

NPRIMINOBJ)sNPFRIMINOBI)*+)

CALL LVECT(Rerke,,1I)

CALL AUVANG(R)

GOTO 1112

IIm4

CALL TRAKXY(X»Y)

CALL ERAS

CALL POINTR(Z/,NUBJ)

CALL GET(2,%X0rY8)

XRXA=Y

Ymyuymy

IF(ABS(X),LTGRU AND, ABS(Y)aLT.GRDIGUTO 1185

CALL LVECTY(XeYreII)

LF(TL 9T, 0)NVPNIA(NOBJ) RNVPRIM(NOBJ) ¢}

NPRIMENOBJ) aNPRIMINOBJI) *}

CALL E3UB

IFINYPRIM(NODJ) +EQ.2)LDTO 1100

NOEFBNJUEF +1

LDTO 1402

CALL ERAS(NDBJ)

NPRIM(NOBJ) my

GNTD tae

FORTRAN PROGRAMMING EXAMPLE

c MOVE AN OBJECT
c
w102 (eam 1F(NUEF ,E0,8)00TQ 160
V194 CALL ON(1owd)
UERL] CALL PICKOB(IT,2)
Vive CALL PUINTR(2/4T)
wi07 CALL BGET(2,XXsYY)
v1va CALL ATTACH(Z2)
wivg CALL TRAK(XV,YY)
vilo CALL MENUM(IT,1003,1003)
AR CALL GRID(GRD,GKD)
vlle CALL ERAS
v1la GATO 140
¢
c COmBINE TWO UBJECTS
L
Vil4 17200 IF(1.LT,MARGIN)GQTO 4vpu
vils IF (NDEF,LT,.2)6UTQ 00
vila CALL PICKDB(1T,2)
Wil 171@ CALL PICKOB(ITZ,3)
vi1dn IF(ITR2.EQ,ITIGULTO 1710
vi1ep CALL MAKQOBJ(NOBJ)
vi1es CALL SUBP(NOBJ)
vi1e4 CALL CUPY(,1T)
v14% CALL GET(2,Xx1,Y1)
U148 CALL GET(3,)XxerY2)
wid7 CALL LVECT(X2=X1,Y2aY], ;=4)
WidR CALL OFF(1T2)
w10 CaLL ERASP(3)
0190 CALL CUPYC(,1T%)
0134 CALL LYECT(X1=X2,Y1=Y2,/,=4)
w192 CALL ESuB
w193 NPRIM(NOBJI) aNPRIMCIT)*NPRIM(IT2)+2
0194 NVPRIM(NOBJ)SNYPRIMCIT)*NVPRIM(IT2)
619% NDEFBNUEFm]
w196 CALL ERAS(IT)
v1d7 CaLL FRAS(IT2)
w1da NPRIMCLT)mD
v1da NPRIM(IT2)mp
Uiéaan NVPRIM(IT)YmO
v14 NVPRIM(IT2) mU
w142 60TN 120
C
c SCALE AN pBJECT
o
0143 1ROM LF (NUEF EG.)wUIQ 1R0
v14n CALL ON(leed)
v14a CALL MENUM(ITZ,1230,1033)
0147 CALL PICKOB(1T/,2)
v14n CaLil. QFF(IT)
v149 XX®A,
¥190 YY=da,
V194 U0 1838 Isi NPRIMCIT)
R E-T] CALL aVVANC(2)
0193 CALL GET(2,XsY)
0194 CALL CHANGE(2/X*SF(IT2),YwSF(172))
V128 LALL GET(2,X,Y)

FORTRAN PROGRAMMING EXAMPLE

"RR-1.] AXBXXeX
Y197 1838 YYmYYeY
0158 1847 CALL GET(2,X»Y)

w139 CALL CHANGE(2/X=XX,YmYY)
wion CALL ONCIT)
w0y GOTO 140
¢
c COPY AN DBJECT
[
p162 1922 IF(I.LT.,MARGIN)LOTO 4bp0
V104 IF (NVEF ,EQ,R)G0TQ s00
w1068 CALL ON(120Y)
w107 caLL PICKOB(IT,2)
0168 1910 CALL mAxQoBJ (NOBJ)
0109 CALL COPY(NOBY,IT)
w170 CALL PUINTR(R/NUBJ)
Vw1714 CALL GET(2,X,Y)
0172 CaLL ATTACH(Z)
w17y CALL TRAKC(X,Y)
wi1/4 CALL MENUH(IT2,1223,1¢n3)
w7 s CALL GRID(GRD/GRD)
0178 CALL ERAS
177 NDEFBNDEF«+1
vi17a NPRIM(NOBJ) sNPRIMCIT)
0179 NVPRIM(NOBJ)BNVPRIMCIT)
visa AF(ISAC,EQ.2)G60TO 0@
0102 18ACER
183 GNYTO 2210
c
d ERASE AN pBJECT
c
V1d4 20040 1F(NDEF,EQ,0)6UTO 0o
V106 CALL PICKOB(IT,2)
wie7 CALL ERAS(IT)
v1oa NDEFBNUEF =]
Vidaq NVERIM(IT)=p
viYn NPRIMCLT)wD
0191 GOTO 140
t
¢ MODIFY AN QRJECT
c
0192 2120 IF(NDEF,EQ.n)UTQ ipn
Uiwa CaLL on(ime5)
"ERL CALL MENUR(ITZ2,1062,1044)
vive 2108 IF(I12.60,5)6010 190
vivs CALL SENSALC(1)
V199 2119 CAaLL LPEN(IH,11+,,1P)
2un IFLIN EQ, P DR dT LT 10K, ITeGT,200)GUTD 2110
v2v2 CALL SENSAL(=1)
0203 CALL PUINTR(D»1T,1IP)
w204 GOTO (2120,2140,2130,2170),172
¢
G ERASE A LINE
o
w2u% 2120 CaLlL INTENS(Dr=iw)
V2ausk NVPRIM(ITYBNVPRIMCIT)=)
w20y LE(NVPRIMCIT) bl ,2)G0TO 2120

6249
v2in
B2ly
V212

b213
vais
b21ls
va2ly
v2ia

n21i9
v2dp
v2éq
'YXy
0223
U2da
022s
v2dn
v2¢7
v24a
0249
@290
029y
Vw2992
029%
0294
024958
w2398
Y297
b2da
0299
b24n
ve4y
UF LY
6243

V244
02458
V246
u247
W24R
w249

v2oe
w252
UFER
0234
LS

2150
2135

2160

FORTRAN PROGRAMMING EXAMPLE

CALL ERASCIT)
NPRIMCIT) m0
NOEFSNUVEF Y
6NT0 2100

MUVE A CORNER

IFCIP . NE_NPRIMUITY+1)GOTO 2150
CALL PUINTR(4,1T)

CALL ATTACH(4)

CALL PUINTR(G1T7,2)

GOTO 2155

SPLIT A LINE

CALL GET(5,X,Y)

CALL OFF(1Q0®)

CALL C”ANGE(bI K/Q.aY/2.J
CALL PUINTR(2/siT,IP+1)
CALL INSERT(2)

CALL LVECT(X/%erY/2,)
CALL INSERT

CALL ON(1pe@)

MPRIMCLT) eNPRIMCIT) #d
NVPRIM(IT)eNVPRIMCIT) *}
CALL PUINTR(O,IT,IP+1y
CALL ATTACH(D)

CALL ATTACH(6,)=»1)

CALL PUINTR(2,1T)

CALL GET(2,X,Y)

00 216¢ Iel,[P=]

CALL ADvANC(R)

CaLL GET(2,XX0YY)
XEX4XX

YsyeYY

CaLlL TRAK(X,Y)

CaLl MENUH(ITZ2,1040,1v44)
CaLL GRID(GRUL,WRD)

CALL ERAg

GOTO 2105

SHOW ALL LINES

CALL PUINTR(5,4T)

Vo 2182 Isi ,NPRIMCIT)
CALL AUVANC(DH)

CALL INTENS(5)
NVPRIMCITISNPRIM(IT)
GATO 2199

HIDE AN OBJECT

1F (NUEF ,EQ,8)6LTQ 100
CALL PICKOB(IT,2)
CALL OFF(CIT)
NVPRIM(IT)maNVPRIM(IT)
NUEFaNUEF a1

FORTRAN PROGRAMMING EXAMPLE

v208 NHIDBNRID#
6257 G0TQ 1o
c
c SEEK AN OBJECT
c

0258 2392 IF(NHIOD.,E0,@)GUTO 100
v202 2395 L0 2314 Imi,QW

0201 IF(NVPRIM(L) abTe@)CALL ON(I)
0203 2310 IF(NVPRIM(I),.6T1.@)CALL OFP (1)
pvaos CaLL PICKkOB(IT/2)
Q208 NVPRIM(IT)SwNVPRIM(IT)
vwaoy NDEFBNDEF+1
2064 NHIDOBNHTIDw]
0269 G0 2920 1wy,2¢v
vergp IF(NVPRIM(Y)bTe@)CALL UFF (D)
0272 2320 1F(NVPRIM(I) GTed)CALL UNCI)
va’4 IF(I5aC)1910/,100,1910
c
c SAVE THE DISPLAY
c
0278 2490 CALL INFILECFILEY,PILER)
wa’s cakl sTOp
GN(1,FILE2)
v2/4a WRITECLINDEF,NHID,NPRIM, NVPRIM
v2709 CALL CLOSE(Y)
"PLT CALL SAVEC(FILEY)
p201 CALL LPEN(IH,IT)
¥262 6070 1¢0
C
c KECALL A DISPLAY FILE
c
w283 2500 CALL INFILE(FILEY,FILER)
"F1Y] CaLL sTop
0vous CaLl ASSIGNCLIFILER)
G286 READC1)NDEF,NHIU,NPRIM,NVPRIM
0287 CALL CLOSEC(Y)
LY CAaLL IWNIT
0280 CALL RSTRCFILEL)
vavp CALL LPENCIH,IT)
wavy G0TO w2
¢
c SEEK AND COPY
¢
€292 2607 1F(1,LT MARGINIGOTO 4bpv
V294 IF(NAIV,EQ.2)GUTD fo@
1003) CALL ON
v29y 18ACwy
028 GOTO 2995
¢
E ROTATE
Y2¥0o 277 1F(NDEF.EQ.R)GUTO 1mw
039 CALL OW(10Pu6)
03d2 CALL MENUH(ITR)1059,1082)
©v3vy CALL PICKDB(IT,2)
v3Ua CALL OFF(IT)
23uos U0 2750 1wl ,NPRIM(IT)

"B YL]
RY¥4
Y3CGR
blug
Vwilo
3l
v3l2
0iln
w34
0315
vile
w3ily
W3lAR
wilg
W3ieén

wovy

wre?
uwdod
woua
wavs
waey
0GR
/)
valo

waey

Coaun
enoa
Vaus
VAR
Vawy
VRAUYR
vRAoQ
Al
Al
uwaln
werly
wnala

€710
€729
€73
275n
Qv AR

Suan

e ol o

1o

Lol ol

279

FORTRAN PROGRAMMING EXAMPLE

CaLl AUVANC(Z)

CaLL GET(2,X,Yi
LOTO(2710,2729,2730),17¢2
CALL CHANGE(Z2,YrmX)
GOTO 275@

CALL CHANGE(Zr=X,=Y)
6GT0 2754

CALL CHANGE(Zr=Y,X)
LONTINVE

CaplL ONCIT)

LOTQ 140

CALL CMPKS
LbUTO 190
bT(IP

END

SUBRULTINE SENSAL(I)
JURN LLIGHT PEN DENSITIVITY UN/OFF FOR ALL OBJECTS

COMMUN/DFILE/IbUFCJSGu)-GRD;NPRIMCQG@),NVPRIM(QUOJ
LD 1¥n Jm1,260

IF(NVPRIM{J) dEWeg)GOTU 100

CALL PUINTR(Y9:sV)

CALL SENSE(9,1)

CONTINUE

kg TURy

BN

SUBRUUTINE MENUM(IT,M1,M2)
wWAIT FUR MENU HLT

CALL LPENCIH,1T)
LF(In,EQ,p,0nedT LT,MI,UR,IT,6T,M2)GOTD 100
CALL PUINTR(1Y,IT)H
CaLL INTENS(10,8)
KRg

vy 2¢2 Twy,Svw

XX /X2,

CALL LPEN(IHW,IX)
CaLl INTENS(1U)4)
1T T+1emy

RETURN

(X215}

wAvy

']
Vwae3
VAvw 4
CRrux
vavy
vRAGH
vPpLYY
oaln

voui

veY2
"L T}
Vnva
YRus
Uaus
ooy
“ALQ
galn
wnly
unl2
wala
wAla
boals
vwele

vao1
vRY?2
0euld
vnoa
voue
vaw?
VAVR

(R ol o

i

a0 c

i0a

FORTRAN PROGRAMMING EXAMPLE

SUBROIUTINE PLERUB(IT,IP)
PICK AN ORJECLT

COMMUN/DFILE/IOUF (IBVU) yGRO)NPRIM(200) ,NYPRIM(202)
CALL SENSAL(1)

CALL LPENCIKH,I11)

LF(IP BV 0 ORe 1T LT 1e0R,IT.GT,200)G0OT0 100

CALL PUINTR(IP,IT)

CALL SeNsab(=1)

rRETURN

ENU

SUBRUUTINE INFLILE(FILEL,FILER)
INPUT A FILE NAME

LOGICALw] FILEIC11),FILER(11),DSP(8),0AT(S)
CATA DSP,DAT/ e, 101, 'S8T, 1PY Gyt !, DY, AN, 1TY,0/
wRITE(D,10)

FORMAT(! FLLENAMEST)

READ(S 20N, (FILES(I)sI%1,N)

IF(N*FWed)GOTO 1

FORMAT(G,6A1)

Ul 192 Ismy,N

FILE2C(L)mFILEL(D)

vl 26 Imy1,5

FILELI(I+N)mDSP UL

FILERCL+#NYBDATLL)

KETURN

END

SUBRWUTINE MARUBJ(NDBJ)
COMMON/DFILEIIBUF(S5@m)pGRDvNPRIM(ZOU).NVPRIM(20m)
U0 1ol NOBJmlsgU)

IFUNVPRIM(NODBY) «EQ,@)RETURN

CONTINVE

STUP

END

APPENDIX E

DIFFERENCES BETWEEN THE DECGRAPIC-11 AND RT-11
GRAPHICS EXTENSIONS PACKAGES

This appendix
implementation

summarizes

between the

the major differences in subroutine

DECgraphic-11 FORTRAN support package

described in this manual and the RT-11/FORTRAN graphics extensions.

Extensions package subroutines (not supported by DECgraphic-11):

BLNK
SCROL
STAT
TIME
TIMR
UNBLNK

DECgraphic=-11 subroutines

ADVANC CVSCAL

AREA DETACH

ATTACH ERASP

AVECT FLASH

CHANGA GET

CHANGE GRID

CHANGT INSERT

COPY INTENS
Implementation differences
packages:

Subroutine

AGET, APUT, FPUT,

XGRA, YGRA, FIGR

ESUB

INIT

LPEN

NMBR

RPNT (RDOT)

(not supported by extensions package):

LINTYP
MENU
POINTR
SCOPE
SENSE
SVECT
TRAKXY
WINDOW

between subroutines supported by both

Differences
These routines create arrays in
Extensions package, subpictures in

DECgraphic-11

No argument in Extensions package,
optional argument in DECgraphic-11

0-2 arguments in Extensions package, 0-1
arguments in DECgraphic-11

More information on 1light pen hit
returned in DECgraphic-11

Format width (n) specification allowed
in DECgraphic-11

RDOT in Extensions package equivalent to
RPNT in DECgraphic-11

APPENDIX F

DIFFERENCES BETWEEN DECGRAPHIC-11 AND RSX-11M/FORTRAN
GRAPHIC EXTENSIONS

This appendix describes the differences between DECgraphic-11 graphic
facilities and the FORTRAN graphic extensions previously available to
users of the VT1l display processor and the RSX-11M operating system.
The previous extensions have been documented in the RSX-11M/FORTRAN
Graphics Extensions User's Guide (DEC-11-AMLEA-A-D), which has been
superceded by the present manual.

The following extensions, which were described in the User's Guide,
are not provided in the DECgraphic-11 package:

IADRS

STAT

RDOT (function and format same as RPNT in the DECgraphic-11
package)

Similarly, DECgraphic-11 includes the following routines that were not
part of the previous set of graphic extensions:

ADVANC GET
AREA GRID
ATTACH INSERT
AVECT INTENS
CHANGA LINTYP
CHANGE POINTR
CHANGT RPNT (previously called RDOT)
COPY SCOPE
CVSCAL SENSE
DETACH SVECT
ERASP

FLASH

In addition to providing the totally new features listed above,
DECgraphic-11 also has expanded the scope of certain previously
available routines. You should read the appropriate sections of this
manual for complete information, but the differences are summarized
here for reference:

Subroutine Differences
ESUB DECgraphic-11 version allows VS60 users to specify
an argument that restores previous display file

status parameters.

LPEN DECgraphic-11 version returns more detailed
information on light pen hits.

MENU DECgraphic-11 version can address the hardware
menu area on a VS60 system.

TRAK, TRAKXY DECgraphic-11 version allows users of a two-scope
VS60 to address a specific scope.

F-1

GLOSSARY

ABSOLUTE POINT
An individually addressable position on the display screen,
identified by specific x- and y-coordinate positions (e.g.,
x=1023, y=32).

ABSOLUTE VECTOR
A line segment drawn from the current beam position to an
absolute point.

ADDRESSABILITY
The smallest discrete unit in which a display element can be
defined and to which the hardware responds. The addressability
of the total DECgraphic-11 drawing area is one part in 8192 and
in the viewing area is one part in 1024.

BEAM
A stream of electrons directed to a position on the display
screen; points, vectors, and other graphic elements are
generally displayed relative to the current beam position. When

you initialize the display processor, the beam is positioned at
the lower left corner of the viewing area of the screen (x=0,
y=0) .

BLINK MODE. See FLASH MODE
BRIGHTNESS. See INTENSITY

CATHODE RAY TUBE (CRT)
An evacuated glass tube in which a beam of electrons is emitted
and focused onto a phosphor-coated tube surface. A
beam-deflection system moves the beam so that an image is traced
out on the surface. The scopes used by the VT1ll and VS60
processors are CRT units.

DISPLAY
Contents of the display screen at a given point in time, the
result of sequencing through the contents of the display file.

DISPLAY ELEMENT. See PRIMITIVE

DISPLAY FILE
A discrete area of PDP-11 memory that is allocated in the user
program and 1is used to store the graphics instructions and data
used in creating displays. The contents of the display file are
accessed by the display processor to create images on the screen.
It may be saved as an RT-11 file and subsequently restored and
used by other programs.

DISPLAY PROCESSING UNIT (DISPLAY PROCESSOR, DPU)
The VT1l or VS60 peripheral graphics unit consisting of a scope
and a light pen; the VS60 supports two scopes and a light pen
with a tip switch. The DPU accesses instructions and data
directly from the display file.

Glossary=-1

GLOSSARY (Cont.)

DRAWING AREA.

The total area on which you can define graphic elements. On the
V560, it extends from a lower left corner at coordinate position
(x=-4095,y=-4095) to an upper right corner at (x=4095, y=4095)
and contains 8192 indivdually addressable positions along the x
and y axes. You can define a viewing window on this drawing area
in order to examine different portions of it.

FLASH MODE

Mode in which a picture or portion of a picture on the display
screen blinks on and off. You may select this mode by specifying
a positive integer value for the f parameter (included in many
subroutine calls). When you initialize the display file, flash
mode is disabled.

FLICKER

FONT

An unsteadiness in image intensity caused in refresh displays in
which the display processor does not have sufficient time to
complete one pass (frame) of the display file, before the
phosphor noticeably decays.

Kind of type in which characters are displayed. You may display
characters in the normal type font or in italic mode. To specify
italic mode, issue a call to the TEXT subroutine and precede the
character string to be displayed with a special control code.

FRAME

One pass of the display processing unit through the display file.
To avoid flicker 1in a refresh display, 30 or more frames per
second must typically be executed. After each frame, display
file housekeeping 1is wusually performed before returning to the
start of the file.

GRAPHIC ARRAY

GRID

A collection of values stored in an array and plotted as points
on the x- or y-axis by means of the XGRA or YGRA subroutines.

A logical construct of imaginary points evenly spaced at
user-defined 1intervals on the display screen. If you issue a
call to the GRID subroutine and a light pen hit has occurred, the
tracking object will be automatically positioned at the point on
the screen nearest the light pen hit. This allows you to adjust
the coordinates of the hit.

IMAGE-DEFINITION AREA. See DRAWING AREA

INTENSITY

The relative brightness of the graphics output on the display
screen. You may select the intensity level of a picture or
component of a picture by specifying a new value for the i
parameter (included in many subroutine calls) between 1
(faintest) and 8 (brightest). Wwhen you initialize the display
file, the intensity level 1is set to 4. If the specified
intensity is negative, the display will be invisible. The
absolute brightness of a display is dependent on the setting of
the intensity control/beam intensity knob on the display
processor.

Glossary-2

GLOSSARY (Cont.)

LIGHT BUTTON

A name sometimes given to an entry in the menu area of the
display screen. The entry is usually a character string that has
been made sensitive to 1light pen interaction. The entry is
normally selected when you touch it with the light pen.

LIGHT PEN

A solid-state, light-detecting device consisting of a
photosensitive diode. It 1is attached by a cord to the VT1ll or
VS60 display processor. If a primitive or subpicture has been
made light pen-sensitive, touching the tip of the light pen to
the image on the screen causes a light pen hit to be recorded.
Depressing the tip switch on the VS60 light pen provides you with
additional interactive control.

LIGHT PEN HIT

An event recorded when the light pen is touched to an image of a
primitive or subpicture on the display screen that has been made
light pen-sensitive. A hit 1is internally recognized as an
interrupt from the light pen device. Information on the hit is
returned by the LPEN subroutine.

LIGHT PEN SENSITIVITY

LINE

LONG

MAIN

MENU

MENU

A characteristic of a primitive or subpicture. If a primitive or
subpicture 1is light pen-sensitive, an interrupt will occur and a
hit will be recorded when that image on the display ' screen is
touched with the pen. You may enable light pen sensitivity by
specifying a positive value for the 1 parameter (included in many
subroutine calls). When you initialize the display processor,
light pen sensitivity is disabled.

TYPE

The type of line used to display vectors on the screen. You may
select the type of line from four possible types: 1 (solid), 2
(long-dashed), 3 (short-dashed), 4 (dot-dash). You may specify a
new value for the t parmeter (included in many subroutine calls).
When you initialize the display file, the line type is solid.

VECTOR

A vector stored in long vector format, occupying two words. A
long vector may not exceed 1023 rasters in length.

AREA

The 12-inch by 12-inch (30-centimeter by 30-centimeter) viewing
area of the display screen.

A list of character string options, sometimes called 1light
buttons, in the menu displayed on the screen. You may select an
option from this list by touching the desired character string
with the 1light pen. A maximum of 10 1light buttons may be
specified in a single invocation of the MENU subroutine.

AREA

A hardware area in the VS60 display processor used to display a
list of options called 1light buttons. The area may be
user-specified, but the default is the rightmost 1 1/2-inch
vertical strip on the screen (4 centimeters by 30 centimeters).
This area can accommodate a horizontal capacity of 128 raster
units, usually 14 characters.

Glossary-3

GLOSSARY (Cont.)

POINTER
One of 21 special elements, used to reference primitives in the
display file. Pointers are numbered 1 through 21; the 21st
pointer is a system pointer and should not be referenced 1in a
user program.

PRECEDENT
In nested subpicture calls, the precedent of subpicture ml is the
“calling" subpicture, i.e., another subpicture which references
ml. Because up to eight subpictures can be nested, a subpicture
could have as many as seven precedents. In calls to LPEN, the
tags of precedent subpictures are returned in array IA.

PRIMITIVE
A basic display element, such as a point, vector, or character
string, that <can be defined in a single subroutine call and
stored in the display file.

RASTER UNIT
The distance between two adjacent addressable points along an

axis. There are 1024 x 1024 raster units in the viewing area of
the display screen and 8192 x 8192 rasters in the drawing area of
the VS60. '

RELATIVE POINT
An individually addressable position on the display screen,
defined by 1its relation to the current beam position. If the
current beam position is at (10,20), relative point (12,12) is at
absolute position (22,32).

RELATIVE VECTOR
A line segment drawn from the current beam position to a
coordinate position relative to the beam position.

SCALING
Defining a user coordinate system in which the physical screen
coordinate positions are expressed according to a different
scale--for example, in increments of ten rather than one. This
is accomplished by means of the SCAL subroutine. On the VS60 you
may also scale (enlarge or shrink) the size of vectors and
characters by means of the CVSCAL subroutine.

SHORT VECTOR
A vector stored in short vector format, occupying one word. A
short vector may not exceed 63 rasters in length.

SUBPICTURE
An entity defined by grouping together several primitive
definitions. A subpicture 1is analogous to a subroutine and is

used for the same reasons--primarily modularity and efficiency.
By referencing a subpicture, you save the overhead required to
respecify the primitives included in the subpicture definition.

TAG

A unique name assigned to a subpicture. A tag must be a positive
integer in range 1 through 32767."

Glossary-4

GLOSSARY (Cont.)

TIP SWITCH
A switch on the tip of the VS60 light pen that can be depressed
when the pen 1is touched to the screen. It provides additional
interactive facilities to the graphics wuser by allowing an
internal switch to be set at the user's option when the light pen
is pressed.

TRACKING OBJECT (TRACKING CROSS)
A diamond-shaped image that can be displayed on the screen by
means of the TRAK subroutine. It moves automatically to center
itself on any light pen hit in its area. If you specify a call
to GRID, it will move to the nearest point on the logical grid.
The tracking object is stored internally as a subpicture of
relative vectors.

UNIT SCALING
The type of scaling in effect in the standard coordinate system,
in which adjacent positions on an axis are separated by a single
raster unit.

VECTOR
A line segment extending from one coordinate position to another
on the display screen. The length of a relative vector may not
exceed 1023 raster units.

VIEWING AREA
The current window on the total drawing area of the display

processor. On the VS60, the viewing area can be user-defined,
but the default is the area extending from a lower left corner at
coordinate position (x=0, vy=0) to an upper right corner at

(x=1023, y=1623). It consists of 1024 1individually addressable
positions along the x and y axes.

WINDOW
On the VS60, a user-defined segment of the drawing area that |is
used as the viewing area. A window consists of 1024 x 1024

addressable points. The default window extends from coordinate
position (0,0) to (1023,1023).

Glossary-5

Absolute point, 1-11
Accuracy of light pen hit,
1-16
Addressable points,
number of, 2-5
Adjustment of coordinates
by GRID, 2-40
ADVANC, 1-24
AGET, 1-23
"all at once" pictures,
2-23, 3-2
APNT, 1-20
APUT, 1-23
AREA, 1-19
Area,
drawing, 1-7
menu, 1-8
AREA,
repositioning beam for,
2-5
Area of display screen,
physical, 1-7
Arguments,
omitted subroutine, 1-18
ASG, 5-4
.ASSIGN, 4-2
ATTACH, 1-26
Attaching tracking object
to vectors, 2-39
AVECT, 1-20

BATCH, 4-2
Beam,
display, 1-11
Beam for AREA,
repositioning, 2-5
Beam position,
initial, 1-11
Blink,
hardware, 1-4
Blink mode, 1-10
Brightness of pictures, 1-3

CHANGA, 1-24
CHANGE, 1-24
Changing character size,
1-13
Changing primitives, 1-13
CHANGT, 1-24
Character,
shift-out, 2-14

INDEX

Character scaling, 1-5
Character scaling factor,
2-25
Character size,
changing, 1-13
Character string, 1-11
Characters,
extended, 1-4
“invisible", 2-10, 2-16
rotated, 1-5
Characters per line, 1-7
Clearing display screen,
2-1
CMPRS, 1-27
CMPRS on pointers,
effect of, 2-41
CMPRS on tracking object,
effect of, 2-41
CMPRS subroutine, 1-10
Codes,
control, 1-11
COMMON block DFILE, 1-9
Compile switch,
RSX-11M conditional, 5-4
Compiler,
RSX-11M FORTRAN, 5-2, 5-4
RT-11 FORTRAN, 4-4
Complex displays, 1-11
COND, 4-2, 5-1, 5-2
COND questions, 4-3
Conditional compile switch,
RSX-11M, 5-4
Conditionalizer program,
4-2
Constants,
floating-point, 1-3
CONT, 1-19, 4-4
Control codes, 1-11
Conventions,
file naming, 2-42
Coordinate reference in
subpictures, 2-22
Coordinate system,
standard, 1-14
user-defined, 1-14, 2-7
Coordinates beyond viewing
area, 2-6
Coordinates by GRID,
adjustment of, 2-40
CoprPY, 1-22
"customized" library, 4-2,
5-1
CVvsCAL, 1-22

Index-1

Debugging under RSX-11M,
5-3

Definition,
subpicture,
DETACH, 1-26
DFILE, 2-2,
DFILE,
COMMON block, 1-9
DFILE ILL INS message, 4-1
Direct control of display
file, 2-44
Display beam, 1-11
Display elements,
static, 3-4
Display file,

1-12

2-4

direct control of, 2-44
pointer at end of, 2-31
saving, 1-11

Display file in use,
RSTR with, 2-43

Display instructions, 1-10

Display processing unit,
1-9
Display processor,
Display screen,
clearing, 2-1
physical area of, 1-7
Display status parameters,
2-9
Displays,
complex,
DPTR, 1-27
DPU, 1-9
DPYNCP, 1-27
DPYWD, 1-27
Drawing area,
vS60, 1-14
Duplicated subpicture tags,
2-43

1-10

1-11

1-7

EDI, 5-3

Effect of CMPRS on pointers,

2-41

Effect of CMPRS on tracking

object, 2-41
Effect of RSTR on status
parameters, 2-44
Effect of SAVE on pointers,
2-43
Effect of SAVE on tracking
object, 2-43
End of display file,
pointer at, 2-31
ERAS, 1-22
ERASP, 1-24
number of primitive and,
2-34

INDEX

(CONT.)

ESUB, 1-22
nonrestoring, 2-22
restoring, 2-21, 2-23

Exit from program, 2-2
Extended characters, 1-4

FIGR, 1-23
Figure,
"invisible", 2-29
Figure subpicture,
File format,
RSX-11M, 2-42, 2-43
RT=-11, 2-42, 2-43
File naming conventions,
2-42
Files,
program source, 5-3
using PIP for renaming,
4-4
FLASH, 1-25
Flash mode, 1-10
Floating-point constants,

2-28

FOR, 5-2, 5-4
Format,
long vector, 2-11, 2-12,
2-13
short vector, 2-11, 2-12

vector storage, 3-3

FORTRA, 4-4

FORTRAN compiler,
RSX-11M, 5-2, 5-4
RT-11, 4-4

FPUT, 1-23

FREE, 1-19

"garbage collection",
GET, 1-24
GLIB, 4-1
Graph subpicture,
GRBILD, 4-3, 5-3
GRBLD, 5-5
Greek letters,
GRID, 1-27
adjustment of coordinates
by, 2-40
GRLINK, 4-3
"growing" pictures,
3-2
GRPACK,
GRSUBS,

2-41

2=-27

2-14

2-23,

4-2, 5-1

5-1

Index-2

Hardware blink, 1-4
Hardware menu area,
vVS60, 2-18
Hit,
light pen, 1-17

Image,
task, 5-1
Image scaling, 1-5
INIT, 1-19
Initial beam position, 1-11
Initial status parameters,
1-10
INSERT, 1-24
restrictions on, 2-34
Instructions,
display, 1-10
INTENS, 1-25
Intensity level, 1-10
user-selected, 1-3
Intensity levels, 1-3
"invisible" characters,
2-10, 2-16
"invisible" figure, 2-29
Italic mode, 1-4, 2-16

Letters,

Greek, 2-14
Levels,

intensity, 1-3
Librarian,

RT-11, 4-1
Library,

"customized", 4-2, 5-1
Light button, 1-16
Light pen hit, 1-17, 2-37
Light pen hit,

accuracy of, 1-16
Light pen sensitivity, 1-10
Light pen support, 1-6
Light pen tip switch, 1-15
Line,

characters per, 1-7
Line type, 1-10
Line types,

user-selected, 1-3
Lines per screen, 1-7
LINK, 4-3
Linker,

RT-11, 4-3
LINTYP, 1-25
Listings,

program, 5-4
Logical unit number, 5-5
Long vector format, 2-~-11,

2-12, 2-13

INDEX (CONT.)

LPEN, 1-25
LVECT, 1-21

Mathematical symbols, 2-14
MENU, 1-21
Menu area, 1-6, 1-8
Menu area,
vs60, 1-9
VS60 hardware, 2-18
vT1ll, 1-9
Mode,
italic, 1-4
Modularity, 3-1
Moving subpictures, 3-2

Naming conventions,
file, 2-42
Nested subpictures, 1-12,
2-20
NMBR, 1-22
"odometer" output with,
2-24, 3-2
Nonrestoring ESUB, 2-22
NOSC, 1-19
Number,
logical unit, 5-5
Number of addressable
points, 2-5
Number of available
pointers, 1-13
Number of primitive and
ERASP, 2-34

"odometer" output with NMBR,
2-24, 3-2
OFF, 1-22
Omitted parameters, 1-18
Omitted subroutine
arguments, 1-18
ON, 1-22
Optimizing RSX-11M programs,
5-3
Options,
RSX-11M task builder, 5-4
Overlay description,
RSX-11M, 5-5
Overlays,
RSX-11M, 5-5

Parameters,
display status, 2-9
omitted, 1-18
status, 1-10

Index-3

Physical area of display
screen, 1-7
Pictures,
"all at once", 2-23, 3-2
brightness of, 1-3
"growing", 2-23, 3-2
PIP, 5-5
PIP for renaming files,
using, 4-4
Point,
absolute, 1-11
relative, 1-11
Pointer, 1-13
Pointer at end of display
file, 2-31
Pointers, 1-10, 1-12, 2-30
Pointers,
effect of CMPRS on, 2-41
effect of SAVE on, 2-43
manipulating, 1-13
number of available, 1-13
restrictions on, 2-30
POINTR, 1-24
Precedents, 2-38
Primitive and ERASP,
number of, 2-34
Primitives, 1-11
Priority,
RSX-11M task, 5-1, 5-4
Procedure,
sample, 4-2
Program,
conditionalizer, 4-2
exit from, 2-2
Program listings, 5-4
Program source files, 5-3
Programs,
optimizing RSX-11M, 5-3

Questions,
COND, 4-3

Raster, 1-7
Raster units,
vector lengths in, 3-3
Redefining window, 1-14
Relative point, 1-11
Removing tracking object,
2-39
Renaming files,
using PIP for, 4-4
Repositioning beam for AREA,
2-5
Restoring ESUB, 2-21, 2-23
Restrictions on INSERT,
2-34

INDEX (CONT.)

Restrictions on pointers,
2-30
Rotated characters, 1-5
RPNT, 1-20
RSTR, 1-11, 1-27, 4-4
RSTR on status parameters,
effect of, 2-44
RSTR with display file in
use, 2-43
RSX-11M,
debugging under, 5-3
RSX-11M conditional compile
switch, 5-4
RSX-11M file format, 2-42,
2-43
RSX-11M FORTRAN compiler,
5-2, 5-4
RSX-11M overlay description,
5-5
RSX-11M overlays, 5-5
RSX-11M programs,
optimizing, 5-3
RSX-11M task builder, 5-2,
5-4
RSX-11M task builder
options, 5-4
RSX-11M task priority, 5-1,
5-4
RT-11 file format, 2-42,
2-43
RT-11 FORTRAN compiler, 4-4
RT-11 librarian, 4-1
RT-11 linker, 4-3

Sample procedure, 4-2
SAVE, 1-11, 1-27, 4-4
SAVE on pointers,
effect of, 2-43
SAVE on tracking object,
effect of, 2-43
Saving display file, 1-11
SCAL, 1-19
SCAL subroutine, 1-14
Scaling, 1-5
character, 1-5
image, 1-5
Scaling factor, 1-19, 2-6
Scaling factor,
character, 2-25
vector, 2-25
SCOPE, 1-19
Screen,
clearing display, 2-1
lines per, 1-7
physical area of display,
1-7
Self-centering of tracking
object, 2-39

Index-4

SENSE, 1-25
Sensitivity,
light pen, 1-10
Shift-out character, 2-14
Short vector format, 2-11,
2-12
Source files,
program, 5-3
Special subpictures, 1-11
Special TEXT codes, 2-14
Standard coordinate system,
1-14
Static display elements,
3-4
Status parameters, 1-10
display, 2-9
effect of RSTR on, 2-44
initial, 1-10
sTop, 1-19, 4-4
STOP on VS60, 2-3
Storage format,
vector, 3-3
String,
character, 1-11
SUBP, 1-21
Subpicture, 1-11, 1-12
Subpicture,
figure, 2-28
graph, 2-27
Subpicture definition, 1-12
Subpicture tag, 1-12
Subpicture tags,
duplicated, 2-43
Subpictures,
coordinate reference in,
2-22
moving, 3-2
nested, 1-12, 2-20
special, 1-11
Subpictures vs. subroutines,
3-1
Subroutine arguments,
omitted, 1-18
Subroutines,
subpictures vs., 3-1
Subscripts, 1-5, 2-15
Superscripts, 1-5, 2-15
SVECT, 1-21
Symbols,
mathematical, 2-14

Tag,
subpicture, 1-12
Tags,
duplicated subpicture,
2-43

Task builder,
RSX-11M, 5-2, 5-4

INDEX (CONT.)

Task builder options,
RSX-11M, 5-4

Task image, 5-1, 5-4

Task priority,
RSX-11M, 5-1, 5-4

TEXT, 1-21

TEXT codes,
special, 2-14

Tip switch, 2-38
light pen, 1-15

TKB, 5-2, 5-4

Tracking object, 1-16
effect of CMPRS on, 2-41
effect of SAVE on, 2-43
removing, 2-39
self-centering of, 2-39
vSs60, 2-39

Tracking object to vectors,
attaching, 2-39

TRAK, 1-26

TRAKXY, 1-26

Type fonts, 1-4

Unit number,
logical, 5-5

USER, 4-4

User-defined coordinate
system, 1-14, 2-7

User-selected intensity
level, 1-3

User-selected line types,
1-3

USEREX, 2-2

VECT, 1-20
VECT important use of, 3-3
Vector, 1-11
Vector format,
long, 2-11, 2-12, 2-13
short, 2-11, 2-12
Vector lengths in raster
units, 3-3
Vector scaling factor, 2-25
Vector storage format, 3-3
Vectors,
attaching tracking object
to, 2-39
Viewing area,
coordinates beyond, 2-6
VS60,
STOP on, 2-3
VS60 drawing area, 1-14
VS60 hardware menu area,
2-18
VS60 menu area, 1-9
VS60 tracking object, 2-39

Index-5

INDEX (CONT.)

VT1ll menu area, 1-9
VTDAT ILL INS message, 4-1

WINDOW, 1-20
Window,
redefining, 1-14

XGRA, 1-23

YGRA, 1-23

Index-6

DECgraphic-11
FORTRAN
Reference Manual
DEC-11-GFRMA~-A-D

READER'S COMMENTS

NOTE: This form is for document comments only. Problems
with software should be reported on a Software
Performance Report (SPR) form.

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, -usable, and well-organized?
Please make suggestions for improvement.

Is there sufficient documentation on associated system programs
required for use of the software described in this manual? If not,
what material is missing and where should it be placed?

Please cut along this line.

Please indicate the type of user/reader that you most nearly represent.

Assembly language programmer

Higher-level language programmer

Occasional programmer (experienced)

User with little programming experience

Student programmer

Non-programmer interested in computer concepts and capabilities

000000

Name Date
Organization
Street
City ' State zip Code
or
Country

If you require a written reply, please check here. Ej

Fold Here

Do Not Tear - Fold Here and Staple

FIRST CLASS
PERMIT NO. 33
MAYNARD, MASS.

BUSINESS REPLY MAIL

—
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES ES—
|
S——

Postage will be paid by:
E——
EEE—
SEE——
E—
!ﬂl]!JII[IEHII ——
SEE——
Software Communications R —
P. O. Box F EEEE—

Maynard, Massachusetts 01754

	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	1-21
	1-22
	1-23
	1-24
	1-25
	1-26
	1-27
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-14a
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	2-38
	2-39
	2-40
	2-41
	2-42
	2-43
	2-44
	2-45
	3-01
	3-02
	3-03
	3-04
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	5-01
	5-02
	5-03
	5-4
	5-5
	A-1
	A-2
	A-3
	A-4
	A-5
	A-6
	A-7
	A-8
	A-9
	B-1
	B-2
	B-3
	C-1
	C-2
	C-3
	D-1
	D-2
	D-3
	D-4
	D-5
	D-6
	D-7
	D-8
	D-9
	E-1
	F-1
	GL-1
	GL-2
	GL-3
	GL-4
	GL-5
	I-1
	I-2
	I-3
	I-4
	I-5
	I-6
	replyA
	replyB

