SUPERSESSION/UPDATE INFORMATION: This document supersedes the document
of the same name, Order No. AA-5428B-TC.

OPERATING SYSTEMS AND VERSIONS: RT-11 V3
«RSX-11M V3.1
RSX-11D V6.2

1AS V2.0

SOFTWARE AND LANGUAGE VERSIONS: DECgraphic-11 FORTRAN Graphics Package
(QJ647) V1.1
FORTRAN IV V2
FORTRAN IV-PLUS V02

DECGRAPHIC-11

FORTRAN
Programming
Manual

Order No. AA-5428C-TC

March 1978

This manual describes the new DECgra_phic-11 FORTRAN Graphics
Package for the VS60 and VT 11 graphic display subsystems, usable
in the RT-11, RSX-11M, RSX-11D, and IAS operating systems.

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation - maynard, massachusetts

First Printing, July 1977
Revised, March 1978

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may only be used or copied in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright (:) 1977, 1978 by Digital Equipment Corporation

The postage-prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre-
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem=-=10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 0s/8

DECUS EDUSYSTEM PHA

UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX
COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-11
DECCOMM DECSYSTEM-20 TMS-~11
ASSIST-11 RTS=~8 ITPS-10

9/78-14

CONTENTS

Page
PREFACE X
CHAPTER 1 THE DECGRAPHIC-11 SYSTEMS 1-1
1.1 INTRODUCTION TO DECGRAPHIC-11 1-1
1.1.1 Overview of the Manual 1-1
1.1.2 Documentation Conventions 1-2
1.1.3 Summary of DECgraphic-11 System
Capabilities 1-3
1.2 HARDWARE AND SOFTWARE REQUIREMENTS 1-7
1.2.1 Generating an Operating System 1-7
1.2.2 Hardware for Stand-Alone Systems 1-8
1.2.3 Additional Host-Satellite Hardware
Requirements 1-8
1.2.4 Baud Rates 1-8
1.2.5 General Software Requirements 1-9
1.3 BASIC GRAPHIC CONCEPTS 1-9
1.3.1 The Display Screen 1-10
1.3.2 Menus 1-11
1.3.3 Coordinate Systems, Windows, and Viewports 1-12
1.3.4 Interaction and Tracking 1-14
1.4 DECGRAPHIC-11 PROGRAMMING PRINCIPLES 1-17
1.4.1 Subpictures 1-18
1.4.2 Primitives 1-20
1.4.3 Pointers] 1-20
1.4.4 Display Parameters 1-22
1.4.5 The Display File 1-24
1.4.6 summary 1-26
CHAPTER 2 DECGRAPHIC-11 FORTRAN SUBROUTINES 2-1
2.1 INITIALIZING AND CONTROLLING THE DISPLAY
FILE 2-3
2.1.1 INIT: Initializing the Display File 2-4
2.1.2 STOP: Stopping the Display 2-6
2.1.3 CONT: Restoring the Display 2-7
2.1.4 FREE: Releasing the Display-File Area 2-8
2.2 CHOOSING SCREEN AREA AND SCALING 2-9
2.2.1 SCOPE: Selecting a VS60 Display Scope 2-10
2.2.2 AREA: Selecting the Main or Menu Area 2-11
2.2.3 WINDW: Redefining the Window 2-13
2.2.4 NOWNDW: Restoring the Standard Coordinate
System 2-15
2.2.5 VIEWPT: Redefining the VS60 Viewport 2-17
2.3 CREATING GRAPHIC PRIMITIVES 2-19
2.3.1 APNT: Displaying an Absolute Point 2-20
2.3.2 RPNT: Displaying a Relative Point 2-22
2.3.3 VECT: Drawing a Relative Vector 2-24
2.3.4 AVECT: Drawing an Absolute Vector 2-26

iii

Page

2.3.5 SVECT: Drawing a Vector in Short Format 2-28
2.3.6 LVECT: Drawing a Vector in Long Format 2-30
2.3.7 TEXT: Displaying a Text String 2-32
2.3.8 MENU: Displaying Items in the Menu Area 2-38
2.4 DEFINING AND USING SUBPICTURES 2-40
2.4.1 SUBP: Defining a Subpicture 2-41
2.4.2 ESUB: Terminating a Subpicture 2-43
2.4.3 COPY: Copying a Subpicture 2-46
2.4.4 OFF: Turning Off a Subpicture 2-49
2.4.5 ON: Turning On a Subpicture 2-50
2.4.6 ERAS: Erasing a Subpicture 2-51
2.4.7 NMBR: Creating a Numeric Subpicture 2-52
2.4.8 CVSCAL: Scaling Subpicture Characters and

Vectors 2-54
2.5 DISPLAYING GRAPHS AND FIGURES 2-57
2.5.1 XGRA: Displaying an X-Value Graph 2-58
2.5.2 YGRA: Displaying a Y-Value Graph 2-60
2.5.3 FIGR: Displaying a Figure 2-62
2.6 USING DISPLAY-FILE POINTERS 2-64
2.6.1 POINTR: Setting Up a Pointer 2-65
2.6.2 ADVANC: Advancing a Pointer 2-67
2.6.3 GET: Returning the Coordinates of a

Primitive 2-68
2.6.4 CHANGE: Changing the Coordinates of a

Primitive 2-70
2.6.5 CHANGA: Changing a Primitive and Adjusting

the Next Primitive 2-71
2.6.6 CHANGT: Changing the Value of a Text

Primitive 2-73
2.6.7 INSRT: Inserting Primitives in the Display

File 2-75
2.6.8 ERASP: Erasing a Primitive 2-76
2,7 CHANGING DISPLAY PARAMETERS 2-77
2.7.1 SENSE: Setting the Light-Pen Parameter 2-78
2.7.2 INTENS: Setting the Intensity Parameter 2-79
2.7.3 FLASH: Setting the Flash-Mode Parameter 2-81
2.7.4 LINTYP: Setting the Line-Type Parameter 2-82
2.8 INTERACTING WITH THE DISLAY 2-83
2.8.1 LPEN: Recording a Light-Pen Hit 2-84
2.8.2 TRAK: Placing a Tracking Object on the

Screen 2-87
2.8.3 TRAKXY: Returning the Coordinates of the

Tracking Object 2-88
2.8.4 ATTACH: Attaching a Primitive to the

Tracking Object 2-990
2.8.5 DETACH: Detaching Primitives from the

Tracking Object 2-92
2.8.6 GRID: Positioning the Tracking Object on

the Grid 2-93
2.9 POLLING INTERACTIVE DEVICES 2-95
2.9.1 GRATTN: Graphic-Attention Handling 2-96
2.10 USING THE OPTIONAL PUSHBUTTON BOX 2-98
2.10.1 PBS: Checking the Status of the

Pushbuttons 2-99
2.10.2 PBH: Checking for a Pushbutton Hit 2-100
2,10.3 PBL: Generating the Pushbutton Lights 2-101

iv

CONTENTS (CONT.)

Page
2.11 CONTROLLING THE KEYBOARD 2-102
2.11.1 KBC: Reading a Character from the Keyboard 2-103
2.11.2 KBS: Reading a String from the Keyboard 2-104
2.11.3 TTW: Displaying Strings on the User's
Terminal 2-105
2.12 CONTROLLING THE OVERALL DISPLAY 2-106
2.12.1 DISPLY: Rapid Creation of Display Files 2-107
2,13 COMPRESSING, SAVING, AND RESTORING THE
DISPLAY FILE 2-109
2,.13.1 CMPRS: Compressing. the Display File 2-110
2.13.2 SAVE: Saving the Display File 2-112
2.13.3 RSTR: Restoring the Display File 2-113
2.14 INSERTING ADVANCED DISPLAY-FILE INSTRUCTIONS 2-115
2.14.1 DPTR: Returning the Next Available
Display-File Position 2-116
2.14.2 DPYNOP: Inserting No-Operation
Instructions in the Display File 2-117
2.14.3 DPYWD: Inserting a Data Word in the
Display File 2-118
CHAPTER 3 PROGRAMMING TECHNIQUES 3-1
3.1 SUBPICTURE TECHNIQUES 3-1
3.1.1 Using Subpictures Like Subroutines 3-1
3.1.2 Creating "All-at-Once" Displays 3-3
3.1.3 Moving Subpictures on the Screen 3-3
3.1.4 Creating Odometer Displays 3-4
3.2 GENERAL GRAPHIC TECHNIQUES 3-4
3.2.1 Choosing the Appropriate Vector Format 3-4
3.2.2 Ordering Picture Elements 3-5
3.2.3 Monitoring the Display File 3-5
3.2.4 Avoiding a Temporary Loss of a Display 3-5
3.2.5 Using DPYWD and DISPLY to Speed Up
Instruction Input 3-7
CHAPTER 4 INSTRUCTIONS FOR RT-11 USERS 4-1
4.1 BUILDING A FORTRAN GRAPHICS LIBRARY 4-1
4.2 LINKING PROGRAMS TO THE DECGRAPHIC-11
FORTRAN GRAPHICS PACKAGE 4-5
CHAPTER 5 INSTRUCTIONS FOR RSX-11 AND IAS USERS 5-1
5.1 BUILDING DECGRAPHIC-11 LIBRARIES 5-1
5.1.1 Contents of the Software Kit 5-2
5.1.2 Summary of Hardware/Software
Configurations 5-2
5.1.3 Copying the Software Kit 5-3
5.1.4 Compiling and Linking COND 5-4
5.1.5 RSX-11M Stand-Alone Systems 5-5
5.1.6 IAS, RSX-11M, and RSX-11D Host-Satellite
Systems 5-9
5.2 CREATING GRAPHIC TASKS 5-16
5.2.1 RSX-11M Stand-Alone Systems 5-16
5.2.2 RSX-11M, RSX-11D, and IAS Host-Satellite
Systems 5-17

APPENDIX

APPENDIX

APPENDIX

APPENDIX

GLOSSARY

INDEX

FIGURE

@]

o

ooCooo
G W N

| JUN A T Y I T TN Y Y Y TN N N Y A N Y Y Y O Y B
wWNhHO

R N N N N O N N O N N N e e el el i Tl S S g ey

HFHEHEOUONOOUIE WNDHHFRFRFRFRFOONNOOIEWN R

N=O

CONTENTS (CONT.)

Page
HOST-SATELLITE SYSTEMS 5-19
The Host-Satellite Concept 5-20
The Host-Satellite Software 5-22
Running Host-Satellite Graphic Tasks 5-26
Special Precautions for Host-Satellite
Programming 5-27
Special Uses of Satellite Keyboard
Characters 5-28
DECGRAPHIC-11 SUBROUTINE SUMMARY A-1
DECGRAPHIC-11 ERROR MESSAGES B-1
DISPLAY-FILE STRUCTURE Cc-1
FORTRAN PROGRAMMING EXAMPLES D-1
DRAW. FOR D-1
DRAWH.FTN (HOST-SATELLITE ONLY) D-2
DRAWS.FTN (HOST~-SATELLITE ONLY) D-2
USING THE DRAW PROGRAM D-3
PROGRAM LISTINGS D-5
Glossary-1
Index-1

FIGURES

Line Types

Intensity Levels

Type Fonts

Extended Characters

Rotated Characters
Subscripts and Superscripts
Character Scaling

VS60 Display Screen

Menu Area

b b e e
1
PR OO & W

VS60 Window and Viewports -14
Light Buttons 1-15
Tracking Object 1-16
CPU and DPU 1-25
AREA Subroutine 2-12
WINDW and NOWNDW Subroutines 2-16
VIEWPT Subroutine 2-18
APNT Subroutine 2-21
RPNT Subroutine 2-23
VECT Subroutine 2-25
AVECT Subroutine 2-27
SVECT Subroutine 2-29
LVECT Subroutine 2-31
VT1ll TEXT Features 2-36
VS60 TEXT Features 2-37
MENU Subroutine 2-38

vi

TABLE

2-13
2-14
2-15
2-16
2-17
2-18
2-19
2-20
2-21
2-22
2-23
2-24
2-25
2-26
3-1

5-1

CONTENTS (CONT.)

Repeated Subpictures
Restoring vs. Nonrestoring ESUB
Copied Subpictures

"NMBR Subroutine

CVSCAL Subroutine

XGRA Subroutine

YGRA Subroutine

FIGR Subroutine

GET Subroutine

CHANGE and CHANGA Subroutines
CHANGT Subroutine

INTENS Subroutine

TRAKXY Subroutine

LK-11 Pushbutton Box

A Mode Word in a Display File
Comparison of Stand-Alone and
Host-Satellite Configurations

TABLES

When to Use Subpictures

vii

Page

2-44
2-45
2-48
2-53
2-56
2-59
2-61
2-63
2-69
2-72
2-74

PREFACE

DECgraphic-11 is the family name for PDP-1l1 graphic products using the
VT1ll and VS60 graphic-display subsystems. Each subsystem consists of
a display processor and a cathode-ray-tube (CRT) display screen. The
display processor can be on the UNIBUS. 1In this case it functions as
an autonomous processor for handling graphic instructions, thereby
freeing the central processor of much of the burden of running the
graphic program. As an alternative to this stand-alone system, the
display subsystem can also serve as an intelligent terminal in a
multiprocessor, or host-satellite, graphic system.

This manual is intended for DECgraphic-1ll users who are familiar with
PDP-11 FORTRAN under the RT-11, RSX-11M, RSX-11D, or IAS operating
systems.

The DECgraphic-11 FORTRAN Graphics Package controls the VS60 or VTI11
display hardware with subroutines that are called from your FORTRAN
graphic program. The subroutines are easy to use, and dgraphic
programming with DECgraphic-~ll involves a minimal number of new
concepts that a FORTRAN prodrammer must master. Anyone who has
written PDP-11 FORTRAN programs and called subroutines to perform
discrete functions can begin writing graphic programs from the outset,
at least on an elementary level.

This manual describes all subroutines available in the DECgraphic-11
FORTRAN Graphics Package and gives instructions on their use in
graphic programming. There are many sample programs and displays that
show the precise effect of individual subroutines and hardware
features, The manual also contains suggestions for making graphic
programs more efficient, and instructions for constructing your
graphic subroutine libraries from the sources supplied in the software
distribution kit. However, the manual does not provide comprehensive
information on the FORTRAN language or on - the system resources of
RT-11, RSX-11], or IAS.

ix

ASSOCIATED DOCUMENTATION

PDP-11 FORTRAN Language Reference Manual

DEC-11-LFLRA-C-D

RT-11/RSTS/E FORTRAN 1V User's Guide
DEC-11-LRRUA-A-D

RT-11 System Reference Manual
DEC-11-ORUGA-C-D, DN1l, DN2

IAS/RSX-11 FORTRAN IV User's Guide
DEC-11-LMFUA-C-D

FORTRAN IV-PLUS User's Guide
DEC-11-LFPUA-B-D, DN1

RSX-11M Operator's Procedures Manual
AA-2567D-TC

RSX-11 Utilities Procedures Manual
DEC-11-0OXMDA-A-D

RSX-11D User's Guide
DEC-11-OXDUA~-B-D

IAS User's Guide
DEC-11-0OIUGA~B-D

IAS Editing Utilities Reference Manual

DEC-11-0OIEUA-A-D, DN1

VT1ll Graphic Display Processor Manual
EK-OVT11-TM-001

CHAPTER 1

THE DECGRAPHIC-11 SYSTEMS

1.1 INTRODUCTION TO DECGRAPHIC-11

The DECgraphic-11 FORTRAN Graphics Package is a set of
FORTRAN-callable subroutines that you can use 1in regular FORTRAN
programs written for the PDP-11 computer. When these programs are run
on a PDP-11 configuration that includes DECgraphic-11 display
hardware, the DECgraphic-11 subroutines produce graphic images on the
display screen, This manual gives full descriptions of the
subroutines and their uses, so that you can precisely control the
appearance of the graphic display.

This chapter provides an overview of the manual, describes the
documentation conventions used in the presentation of subroutines,
introduces the features of the DECgraphic-11 display hardware, and
discusses the unique features of graphic programming in DECgraphic-11
FORTRAN.

1.1.1 Overview of the Manual

This manual decribes the use of the DECgraphic-11 FORTRAN Graphics
Package in RT-11, RSX-11lM, RSX-11D, and IAS. The first three chapters
are relevant to programming in all four operating systems.

Chapter 1 introduces basic concepts you need for understanding
DECgraphic-=11 programming. It defines new terms used in the manual,
discusses the characteristics of the VTll and VS60 display hardware,
and summarizes the most important programming features of the
DECgraphic-11 FORTRAN Graphics Package.

Chapter 2 describes the DECgraphic-11 subroutines in detail, along
with examples of their use. Most of the subroutines are used
interchangeably for the VT1l and VS60 displays. Where differences
exist--for example, where subroutines use special VS60 hardware
features-—-these differences are clearly distinguished.

Chapter 3 suggests general programming techniques for making vyour
graphic programs more efficient.

Chapter 4 contains start-up instructions for RT-11 programmers. It
explains how to build a 1library of graphic subroutines from the
DECgraphic-11 distribution kit, and how to link your finished graphic
programs to the library.

Chapter 5 <contains instructions for RSX-11M, RSX-11D, and IAS
programmers. Chapter - 5 also contains instructions for building
graphic libraries and for creating graphic task images in these three
systems. Two sets of instructions are included for RSX~-11M

1-1

THE DECGRAPHIC-11 SYSTEMS

programmers, since they can use DECgraphic-11 software in either a
stand-alone PDP-11 configuration or in a multiprocessor
(host-satellite) system. In IAS and RSX-11D, DECgraphic-11 software
is always used in a host-satellite mode. Section 5.3 discusses the
host-satellite software.

In addition, a series of appendixes summarizes important information
for quick reference.

Appendix A alphabetically 1lists the FORTRAN subroutine calls and
briefly describes the function of each.

Appendix B summarizes the error messages that are generated by the
DECgraphic-11 package, the reasons for their occurrence, and the
routines that might produce these errors.

Appendix C discusses the internal format of the DECgraphic-11 display
file as it is constructed in memory.

Appendix D contains FORTRAN programming examples developed to
demonstrate the varied capabilities of DECgraphic-11 interactive
graphics.

Finally, a glossary of graphic terms defines the special words and
concepts used in this manual.

1.1.2 Documentation Conventions

The following list describes the documentation conventions wused in
describing the FORTRAN subroutine calls in this manual.

Convention Meaning
Brackets ([1) The enclosed arguments are optional.
FORTRAN variable name with Standard default FORTRAN variables
uppercase letters (X11, whose values are returned by the
I0, M2) subroutine; alternately, an array name
passed to the subroutine.
FORTRAN variable name Standard default FORTRAN variables
with lowercase letters whose values are to be supplied by the
(x11, i0, m2) user; can be any valid arithmetic

expression of the specified type (e.g.,
X is real, i is an integer).

1, i, £, t Special display parameters that are all
integers; these parameters are the only
exceptions to the rules described above.

X axis The horizontal axis.
y axis The vertical axis.
RET Symbol for a RETURN, Carriage Return, or
<CR> key.
Indicates the CTRL key and another Kkey

(x) on your terminal. To perform some
functions, you must press the CTRL Kkey
and the other key (represented here by
Xx) at the same time.

1-2

THE DECGRAPHIC-11 SYSTEMS

SPECIAL DOCUMENTATION NOTES

1. All real constants that you supply as arguments in calls to
the FORTRAN subroutines must have decimal points. If you do
not adhere to this convention, the results of program
execution are unpredictable.

2. DECgraphic-11 subroutine libraries can be specially built to
take only integer arguments. In that case all arguments
shown in the subroutine descriptions of Chapter 2 are
integers (see Chapters 4 and 5).

3. In "dialogs" with the computer (see Chapters 4 and 5), the
parts typed by the user are printed in red ink.

4. Each subroutine description in Chapter 2 gives the calling
sequence of the subroutine. When the notation " (h-s)"
follows a subroutine name, it means that the subroutine is
used only in host-satellite systems (see Section 5.3.2).

1.1.3 Summary of DECgraphic-1l System Capabilities

The following list summarizes the major features of the DECgraphic~11
interactive graphic system. Graphic terms such as beam, vector, and
menu are defined in a glossary at the end of this manual. They are
explained in greater detail in Section 1.3.

Support of varied display elements

You can display a variety of elements on the screen, including
points, 1line segments, characters, and graphs. Elements are
normally defined at coordinate positions relative to the current
beam position, although points can be defined at absolute
coordinate positions, as can line segments on the VS60. The
display elements are called "primitives" in this manual.

Variable line types
Vectors can be drawn on the screen in any of four formats: solid

line, 1long-dash 1line, short-dash line, or dot-dash line. These
line types are illustrated in Figure 1-1.

Figure 1-1 Line Types

THE DECGRAPHIC-11 SYSTEMS

Variable intensity level

You can vary the brightness of pictures or components of pictures
on the display screen. In this way, you can emphasize portions
of the display. There are eight different levels of brightness,
from 1 (faintest) to 8 (brightest), as shown in Figure 1-2.

Figure 1-2 1Intensity Levels

Hardware blink feature

You can specify that a display or a portion of a display blink on
and off. This feature is useful for warnings or for identifying
a particular picture component to be changed or highlighted.

Italic mode

Characters can be displayed in ordinary type or in italics. You
can specify the text +to be italicized by including a special
control code before the character-string specification. Examples
of the two available type fonts are shown in Figure 1-3.

THE vS68 HAS A HARDWARE CHARACTER GENERATOR WITH
THE FULL ASCII CHARACTER SET IN BOTH NORMAL AND [TALIC FONTS

ABCDEFGHI JKLMNOPQRSTUVIWXYZ ABCODEFGHT JKL MNOPORSTUVIWX Y Z

abcdefghi jhlmnopqrstuvwxyz abcdelghi jhlmnopqrstuvvwxyz

0123456789 | “#$%8 (KYX+,~ /@ 9123456789 1 #5378)X+, - /@

o= 0NINL D IR AN

Figure 1-3 Type Fonts

Extended character set

You can display any of the 96 conventional ASCII characters and
any of 31 additional characters representing Greek letters and
mathematical symbols. To select the additional characters from
this extended set, you must include a "shift-out" code before the

1-4

THE DECGRAPHIC-11 SYSTEMS

ordinary ASCII character string to which the shift-out character
string corresponds. . Extended characters can be displayed in
either of the available type fonts, as shown in Figure 1-4.

X=05L AT¥NU+ BCalQOT et M lzav]] A5t al¥NG+ * Ll nliDF7€n~r il Lz

Figure 1-4 Extended Characters

A list of extended characters and their ASCII character
correspondences is included in Section 2.3.7.

Rotated characters

On the Vs60, a character string can be displayed in the normal
horizontal position, or it can be rotated 90 degrees
counterclockwise., As in the specification of italic mode, you
can select rotated characters by including a special control code
before the character string to be rotated. Examples o©of normal
and rotated characters are shown in Figure 1-5.

Ti0RMAL

Figure 1-5 Rotated Characters

Subscripts and superscripts
On the VS60, you can display text that includes subscripts and

superscripts on the screen--for example, in the expression shown
in Figure 1-6.

THERE 1S ALso HARDWARE SUBSCRIPT AND SUPERSCRIPT GENERATON

. CQ:“:SO’.‘{

Figure 1-6 Subscripts and Superscripts

As with other special character modes, you specify a subscript or
superscript by including a special control code before the
character string to be displayed.

Character and vector scaling

On the VS60, you can display characters and lines on the screen
in the standard size and you can enlarge or compress them as
desired. The normal size of each character is 6 by 8 raster
units, and each character is displayed in a space 14 raster units
wide and 24 raster units tall. In other words, characters
displayed side-by-side have a spacing of 4 units on either side
and 16 units between lines.

1-5

THE DECGRAPHIC-1l1 SYSTEMS

NOTE

A "raster unit" is the smallest resolvable point on the
display screen of either a VTll or VsS60.

on the vs60, you can change the standard character size to
display <characters that are one-half normal size, one and
one—half normal size, or twice normal size, as shown in the
example of Figure 1-7. Vectors and other images can be scaled in
increments of one fourth, from one-fourth normal size to tnree
and three-fourths normal size.

CHARACTERS CA% BEL DRAWN [N FOUR SIZES

STNDRMAL SORMAL

Figure 1-7 Character Scaling

variable coordinate systems and viewports

Oon the VS60, you can define the screen to function as a
"viewport" on a much larger image definition area (see Section
1.3). You can vary the position of this viewport to -examine
different areas of the total image. You can also define your own
coordinate system on either a VT1ll or VS60.

Light-pen support

You can interact with the displayed image by using the lignt pen
to select options, to identify pictures to be moved, or to
otherwise manipulate displays on the screen. Support of the
1ight pen on the VT1l and VS60 and the light-pen tip switch on
the VS60 facilitates the dynamic alteration of displays on the
screen and makes DECgraphic-11l an interactive system.

Programmable pushbutton box

You can use a l6-key pushbutton box as an optional interactive
tool. Each button can be programmed to represent a menu item,
subpicture, or any other graphic operation to be performed.

Keyboards as interactive tools

Menu

Using the standard software, you can program individual keys on
your keyboard to represent menu selections or other graphic
operations.

area

You can display a special menu of character strings as a
formatted 1list on the screen, and you can select menu items by
touching them with the light pen. You can specify your own menu
area or, on the VS60, use the hardware menu area described in
Section 1.3.2.

THE DECGRAPHIC-11 SYSTEMS

Subpicture support

You can group together a series of calls, data, and picture
components to form an entity called a "subpicturE," which can
then be displayed, copied, erased, and turned on and off.
Repeated displays of identical images can be defined with greater
modularity and efficiency by using subpictures.

1.2 HARDWARE AND SOFTWARE REQUIREMENTS

This section describes the minimum hardware and software requirements
for graphic programming with the DECgraphic-11 FORTRAN Graphics
Package.

1.2.1 Generating an Operating System

The fundamental software requirement is a functioning operating
system: RT-11, RSX-11M, RSX-11D, or IAS. RT-11 can be used only for
stand-alone systems. RSX-11D and IAS can be used only for
host-satellite systems. RSX-11M can be used for either type.

IMPORTANT NOTES

e If you are using a mapped RSX-~11M system for stand-alone
graphics with a VT1l, the FORTRAN COMMON area containing the
DECgraphic-11 display file (COMMON DFILE) must be located in
the physical lower 28K of memory. (This restriction does not
apply if you are using a VS60.) It is suggested that you set
up a global common of adequate size for this purpose when you
generate your RSX-11M system. As is described in Chapter 5,
this global common must be specified as a TKB option whenever
you create a graphic task. For details on creating global
commons (also called "shared regions") and on the COMMON
option of TKB, consult the RSX-11M System Generation Manual
and the IAS/RSX-11 FORTRAN 1V User's Guide, respectively.
This restriction does not apply to unmapped RSX-11M systems or
to any host-satellite system. The RSX-11M Task Builder
Reference Manual describes global commons (shared regions) in
detail.

® For stand-alone RSX-11M systems, the AST (asynchronous system
trap) option must be selected when the system is generated.
See the RSX-11M System Generation Manual for details.

e For all RSX-11M systems, the READ/WRITE TRANSPARENT option
must be selected when you generate the operating system.

e For all RSX-11M systems, you must answer the system-generation
question WHAT IS THE SIZE OF PHYSICAL MEMORY (1024 ,-WORD
BLOCKS)? with a figure that is less than or equal to 124
(decimal) .

e If, when you are generating an RSX-11M system, the question DO
YOU WANT THE BASELINE TERMINAL DRIVER? is asked, you must
answer N.

e If you are using the LK-11 pushbutton box on a stand-alone
RSX=-11M system, you must also install its driver at
system-generation time. See Chapter 5 for more details.

THE DECGRAPHIC-11 SYSTEMS

e When generating an RSX-11D system, you must include SP and BP
devices so that the BATCH feature will work properly. The SP
device must be redirected to a disk at runtime. See the
RSX-11D System Generation Manual.

1.2.2 Hardware for Stand-Alone Systems

The following hardware is required for the DECgraphic-11 FORTRAN
Graphics Package in a stand-alone system:

® PDP-11 central processing unit (CPU) with 16K or more of
memory

® VS60 or VTll display subsystem
® user terminal

® disk or another random-access system storage device for use by
the operating system

The amount of memory required to support the graphic subsystem depends
on programming requirements, but normally ranges from 8K to 16K.

In a stand-alone configuration (all RT-11 and some RSX-11M systenms) ,
the VS60 and VTl are supported as autonomous processors that are
attached as UNIBUS peripherals to the PDp-11. Both processors are
direct-memory-access devices.

1.2.3 Additional Host-Satellite Hardware Requirements

THE DECgraphic-11 FORTRAN Graphics Package can also be used in a
host-satellite system, with the following changes and additions to the
minimum hardware:

® PDP-11 host CPU with sufficient memory to run a mapped
RSX-11M, RSX-11D, or IAS operating system

® GT41 or GT43 graphic terminal (VT1l) or GT62 graphic terminal
(VS60) for use as the satellite

e serial line interface connecting the host computer and
satellite terminal

A DECgraphic~11 program running in the host passes graphic commands to
the satellite via the terminal handler (or driver) of the host
operating system. These commands create display files in the
satellite's memory, and thus display images on the satellite screen.
The satellite CPU can also be programmed to handle graphic attentions
from an interactive satellite display so that the host computer is not
burdened.

1.2.4 Baud Rates

If you are using RSX-11M, RSX-11D, or IAS for a host-satellite system,
the host computer and satellite terminal communicate through the
host's terminal handler (or driver). You must set tne transmission
and reception speeds (baud rates) of the host-satellite communication
to the values given in the following tables:

1-8

THE DECGRAPHIC-11 SYSTEMS

RSX-11M:
HOST SATELLITE
SEND 9600 4800
RECV 4800 9600

RSX-11D, IAS:
SEND 9600 2400

RECV 2400 9600

1.2.5 General Software Requirements

Once you have generated an operating system (see Section 1.2.1), the
only additional software requirements are the DECgraphic-11 FORTRAN
Graphics Package and PDP-11 FORTRAN. The FORTRAN Graphics Package is
distributed in source form, with sections written in PDP-11 FORTRAN
and in MACRO-11 assembly language. The same basic distribution kit
can therefore be compiled and built into libraries on any of the four
operating systems, including FORTRAN IV-PLUS compilation on systems
with that feature.

In host-satellite systems, you must use the FORTRAN IV compiler to
compile the satellite software (see Chapter 5). If the FORTRAN IV
compiler is not included in the standard system-generation kit for
your operating system and you are using a host-satellite system, be
sure to add this compiler as a special option.

When you install FORTRAN on your operating system, you must enter a
particular FORTRAN library in the system library (SYSLIB). The
FORTRAN library you choose will then be used by default when the Task
Builder creates a new task image. Some FORTRAN libraries that you may
choose assume the presence of special hardware, such as a
floating-point processor or EIS. 1f you choose such a library for
your default FORTRAN library, you must also keep the "no hardware"
library (FORNHD.OBJ) on your system device. The reason is that your
satellite computer may not match the hardware features of your host
computer--for example, the PDP-11/10 computer in a GT41 terminal does
not have the EIS feature. If you attempt to build a satellite control
task (see Chapter 5) with an EIS FORTRAN library, the Task Builder
will generate EIS instructions that are illegal on a PDP-11/10. You
should specify FORNHD explicitly when you build a satellite control
task for a GT4l. The indirect command file GRSBLD, which builds a new
satellite control task (see Chapter 5), uses the default FORTRAN
library. If your choice of the default library does not match the
satellite hardware, you should edit GRSBLD to insert an explicit
reference to FORNHD in the task-builder command string.

1.3 BASIC GRAPHIC CONCEPTS

This section describes basic concepts that you need to know before you
program with DECgraphic-11 FORTRAN. The discussion of DECgraphic-11
features in this section focuses primarily on hardware, such as the
display screen and the light pen.

THE DECGRAPHIC-11 SYSTEMS

1.3.1 The Display Screen

Two graphic-display subsystems can be used with DECgraphic-11: the
V660 and the VT1l. Both graphic subsystems have "refreshed" CRTs and
solid-state light pens. The VS60 display processor can optionally
support a second CRT.

The display screen has a square main viewing area that measures 9 1/4
by 9 1/4 inches (20.74 by 20.74 centimeters) on the VTll and 12 by 12
inches (30,48 by 30.48 centimeters) on the VS60. The viewing area
capacity, when normal-size characters are produced, is 73 characters
per line and 31 lines per screen.

For the VS60, this viewing area can be considered a viewport on a
larger image definition area. The image definition area that can be
addressed on the VS60 is a 96-by-96-inch (243.84-by-243.84-centimeter)
square. You can change the position of the viewport to make different
parts of the image definition area appear on the main viewing area of
the VS60 screen (see Section 2.2.5).

Both the x axis and the y axis of the VS60 and VTLl viewing areas
consist of 1024 individual points (1777 octal). Thus, there is a
total of 1,048,576 individually addressable positions on the display
screen.

The image definition area on the VS60 has 8192 individual points on
each axis. Therefore, this area consists of 67,108,864 individually
addressable positions. 1In defining points, lines, and other elements
on the VsS60 display screen, your coordinate specifications may
normally extend beyond the bounds of the viewport. Any display that
extends beyond the bounds of the viewport will appear to be truncated
at the edge of the viewport, but will actually extend into the
remaining image definition area. However, if you address positions
that fall outside the image definition area, the display will be
truncated at the edge of the image definition area.

Figure 1-8 illustrates the relationship of the DECgraphic-11 viewport
and image definition area on the VS60.

THE DECGRAPHIC-11 SYSTEMS

(x = -4095, y = 4095) {(x = 4095, y = 4095

Yy axis

(x =0,y =1023) (x = 1023, y = 1023)

VIEWPORT

. _Center of viewport

(x =512,y = 512)

(x =0,y =0) (x = 1023,y = 0)
Center of image
definition areal

IMAGE DEFINITION AREA

{x = -4095, y = -4095) (x = 4095, y = -4095)

Figure 1-8 VS60 Display Screen

1.3.2 Menus

In addition to the main viewing area, the VS60 display screen has a
separate menu area. The main area is the 12-by-12-inch screen
discussed above, and the menu area is a vertical strip on the right
side of the screen, measuring 1 1/2 inches (128 raster units) by 12
inches (4 by 30 centimeters). The menu area can be wused for any
purpose, but it 1is usually most helpful in displaying a list of
options called a menu, from which the user of your application program
can choose. An example of such a display is shown in Figure 1-9.

THE DECGRAPHIC-11 SYSTEMS

FoSITION |
LN
rLose

PO

Figure 1-9 Menu Area

The display types listed here represent the choices available to the
user of the application program. For example, to draw a line with the
light pen, the user touches the LINE label in the menu area with the
light pen.

You can construct a menu by calling the MENU subroutine (see Section
2.3.8). This subroutine allows you to specify the character strings
to be displayed as menu items, to assign a namé or tag to each of
these items, and to specify the spacing between the items in the menu
area. !

You can position a menu area at any location on the screen by
including in the MENU call the coordinate positions at which the menu
will begin. If you do not specify these coordinates, the menu is
constructed in the separate menu area to the right of the main viewing
area.

With VTll subsystems, no separate menu area is built into the
hardware, but the MENU subroutine still constructs the menu on the
right side of the display screen. In this case, the menu is
superimposed on any objects displayed at the extreme right end of the
VT1ll viewing area. :

The subroutine AREA, which is used only with VS60 subsystems, allows
you to display any small object or text string in the hardware menu
area (see Section 2.2.2).

1.3.3 Coordinate Systems, Windows, and Viewports

The display screen of a VT1ll or VS60 subsystem . is a "window" on a
plane of real-valued coordinates. 1In the default case (when the WINDW
subroutine has not been called), the window deflined by the screen has
its lower left corner at the coordinate position (0.,0.) and its upper
right corner at (1023.,1023.). *

THE DECGRAPHIC-11 SYSTEMS

There are always 1024 addressable points, .or "raster units," on a VT11
or VS60 screen. Therefore, the default window defines a "unit-scaled"
coordinate system, in which each axis coordinate corresponds to one
raster unit. 1In this unit-scaled system, the first three raster units
in the x direction correspond to the coordinate positions (0.,0.),
(1.,0.), and (2.,0.).

With the WINDW subroutine (see Section 2.2.3), you can change the
default window to any other window you choose. The operation of the
WINDW subroutine is analogous to approaching or backing away from a
window in your home; the size of the window .itself remains the same,
but the portion of the outside world that you observe through the
window changes, by an equal amount in the horizontal and vertical
directions. On a VT1l or vS60 display screen, this operation changes
the range of coordinates on the x and y axes. The ratio of this new
range (0-1023) is called the "scaling factor."

For example, the call
CALL WINDW (0.,0.,511.,1023.)

leaves the lower left corner of the window unchanged, but changes the
coordinates of the upper right corner to (511.,1023.). The scaling
factor of the X axis is now .5; the scaling factor of the vy axis
remains 1. Note that, unlike the case of backing away from the window
in your home, this operation changes the aspects of the x and y axes
by unequal amounts. This feature of separate scaling factors is
useful when, for example, the y values of your data fall within a much
smaller range than the x values. You can still spread the y values
across the full height of the screen to make them more legible.

In the case of the Vs60, the display screen can be defined more
exactly as a "viewport" on a much larger window called the "image
definition area." The VS60 has 8192 addressable positions on each
axis of the 1image definition area. Of these positions, 1024 are
visible in each axis direction at any given time in the viewport.
With the VIEWPT subroutine (see Section 2.2.5), you can move the
viewport anywhere on the image definition area.

The WINDW subroutine has the same visible effect on the VS60 viewport
as it has on the VT1l display. The scaling factors created by WINDW,
because they affect the entire addressable window, also affect the
parts of the image definition area that are not currently visible in
the VS60 viewport.

Figure 1-10 shows the relationship between the viewport and the image
definition area (window) in a VS60 subsystem. 1In this figure the
default window is in use, so that all points from (-4095.,-4095.) are
inside the window. 1In this case, the area labeled "Old Viewport" has
the same aspect as the entire screen of the VTI1l. The area labeled
"New Viewport" results from a call such as

CALL VIEWPT (-4095.,-4095.)

After this VIEWPT call, which redefines the lower left corner of the
viewport, the new viewport will be visible on the VS60 screen.

The information in this section can be summarized as follows:

1. The viewport and window are always identical on a VT1ll.
Therefore, the VIEWPT subroutine has no effect on the VT11l.

THE DECGRAPHIC-11 SYSTEMS

2. The window, or image definition area, of a VS60 has 64 times
the number of addressable positions as are available with the
VT1ll, although the same number of points are visible on both
subsystems at any given time.

3. The WINDW subroutine has the same effect on the visible
aspects of both subsystems, but the scaling factors defined
by a WINDW operation also affect the junseen portions of the
VS60 image definition area. :

4. For a more detailed discussion of @ the WINDW and VIEWPT
subroutines, see Sections 2.2.3 and 2.2.5, respectively.

(x = 4095, y = 4095)
{x = 1023, y = 1023}
oLD
VIEWPORT
{x=0,vy=0)
IMAGE DEFINITION AREA

(WINDOW)
i
{x = -3071, y = -3071)
NEW i
VIEWPORT

(x = -4095, y = -4095) |

Figure 1-10 VS60 Window and Viewports

Interaction and Tracking

The DECgraphic-11 FORTRAN Graphics Package is a. interactive graphic
system.
on the display screen, to change these elements dynamically, and to
interact with the system. :

It allows you to display a wide variety of graphic elements

THE DECGRAPHIC-11 SYSTEMS

To facilitate this user interaction, the system supports a light pen,
a solid-state light-detecting device that can be pointed at any
display element on the screen. If a primitive has been made sensitive
to the light pen, a PDP-11 interrupt occurs when the pen touches the
displayed primitive on the screen. This specific interrupt 1is known
as a "light-pen hit." The display-processor hardware retains
information on the characteristics and coordinate positions of the
hit.

In general, signals that allow you to select particular objects on the
display and thus trigger some programmed action are called "graphic
attentions." :

The VS60 light pen also creates a second type of graphic attention
with its tip switch, whose status (in or out) is set when you press or
remove the tip from the screen. This distinct graphic attention
provides a second kind of control in interacting with the display.
For example, the tip switch can be used to confirm detection of a
particular primitive or menu item. You might also perform a certain
action after a light-pen hit with the tip switch on, and an
alternative action after a light-pen hit with the tip switch off.

The light pen is often used to select an element from the menu area of
the display screen. The application program can display a list of
options, as shown in Figure 1-11.

MOVE
COPY
ERASE
ADD
CHANGE
ROTATE
REVERSE
DELETE

Figure 1-11 Light Buttons

Each of the labels displayed in the menu area of the screen 1is known
as a light button when it is sensitive to the light pen. If you touch
the ADD element with the 1light pen, for example, the appropriate
information about the position of the light pen will be returned to
the FORTRAN program, and you can initiate a program branch to the
appropriate FORTRAN statements. For details on the returned
information, see the description of LPEN (section 2.8.1).

The coordinates of a light-pen hit will be returned with an accuracy
of precisely one raster unit for the VT1ll and approximately four
raster units for the VS60.

The interactive nature of the DECgraphic-11 system is increased by
support of a tracking object. The tracking object is an octagonal
image that can be displayed to keep track of light-pen hits. It can
be moved freely around the screen to follow the light pen.

1-15

THE DECGRAPHIC-11 SYSTEMS

Figure 1-12 illustrates the tracking object.

Figure 1-12 Tracking Object

Initially you can place the tracking object at any location on the
display screen with the TRAK subroutine (see Section 2.8.2). When the
light pen hits the tracking object, the object automatically centers
itself on the hit. :

You can alter such primitives as points and vectors by attaching them
to the tracking object, moving the tracking object and the attached
primitives, and then detaching the primitives (see Sections 2.8.3 and
2.8.4).

You can also define an invisible grid of points that are evenly spaced
at user-defined intervals on the display screen. The tracking object
can then be moved to the nearest point on the grid.

On VS60 display subsystems that have two display scopes, each scope
has its own 1light pen, Since the LPEN subroutine can distinguish
light-pen and tip-switch hits on one scope from hits on the other
scope, two users can interact separately with the displays.

The light pen is not the only interactive device that you can use with
the DECgraphic-11 FORTRAN Graphics Package. Another interactive
device that you can use is the LK-11 pushbutton box, which is an
optional feature with all DECgraphic-11 display subsystems. This
small keypad has 16 keys, each with an internal light. With the
subroutines PBS, PBH, and PBL (see Section 2.10), you can program each
of these 16 keys to represent menu items, subpictures, or even
large-scale graphic functions that will be immediately executed when
their keys are pressed. With the LK-11 You can program for at least
16 graphic attentions that are either the same as or distinct from the
attentions created by the light pen.

1-16

THE DECGRAPHIC-11 SYSTEMS

With the subroutine KBC (see Section 2.,11.1), you also can use the
keyboard of your programming console as an interactive device. KBC
allows you to associate each keyboard character with a menu item,
subpicture, or graphic function, Because ©Of the large number of
distinct ASCII codes on a typical keyboard, KBC extends the potential
number of graphic attentions that a single program can use. KBC is a
standard feature that comes with all DECgraphic-11 FORTRAN Graphics
Package kits and can be used with any hardware configuration.

Finally, the subroutine GRATTN (see Section 2.9) can "poll" all the
interactive devices used in a given program by responding to the
graphic attentions they create. Unlike LPEN, PBH, and KBC, GRATTN can
make the program wait until an attention occurs and can then identify
the attention source. 1In programs with more than one interactive
subroutine, GRATTN is extremely wuseful in simplifying the program
logic. Furthermore, GRATTN is not limited in the number of devices
that it can poll; it can perform its functions no matter how many new
interactive devices are added to your system.

As with all DECgraphic-11 features, these interactive features are
available on all four operating systems. However, when you are
programming a host-satellite system (IAS, RSX-11D, and some RSX-11M
systems), you may have to consider the large number of graphic
attentions that an interactive program will create. Your FORTRAN
program must contain subroutine calls to handle each type of graphic
attention, and the host and satellite computers must normally
communicate over their data link for each attention. DECgraphic-11
can reduce much of the time-consuming host-satellite communication by
using the satellite computer, rather than the host, to handle your
program's attentions.

Appendix D contains a FORTRAN listing of the ' program DRAW. This
program demonstrates virtually all features of the DECgraphic-11
FORTRAN Graphics Package being used in an interactive program.
DRAW.FOR 1is supplied with your DECgraphic-11 software kit, and can be
compiled, linked, and run on any of the four operating systems, with
either a VT1l or VS60 display subsystem. If this version of DRAW is
run on a host-satellite system, the host computer will handle graphic
attentions. Another example in Appendix D shows DRAW slightly
modified so that the attentions can be handled by the satellite CPU.

In summary, each of the interactive devices--the keyboard, pushbutton
box, and light pen--creates graphic attentions for your interactive
program. You can think of graphic attentions as logical signals that
tell the FORTRAN program to perform some specific function. A single
key stroke, pushbutton stroke, or light-pen hit can be programmed to
represent any graphic procedure, from a simple addition of some new
primitive to a complex rearrangement of the total picture.

1.4 DECGRAPHIC-11 PROGRAMMING PRINCIPLES

The DECgraphic-11 FORTRAN Graphics Package is easy for knowledgeable
FORTRAN programmers to use, since it uses the subroutine as the basic
building block for graphic programs. Each subroutine in the package
transmits all the appropriate display instructions for a given image
or procedure to the VS60 and VT1ll display processors. Thus, you can
concentrate on the image you want on the screen rather than on special
programming considerations.

Before you begin work with the DECgraphic-1l systems, there are five
programming principles you should understand:

THE DECGRAPHIC-11 SYSTEMS

1. The DECgraphic-11 FORTRAN Graphics Package uses a softwgre
concept called a "subpicture"; it is to graphic programming
what the subroutine is to regular FORTRAN programming.

2. The DECgraphic-11 subroutiles that display images wusually
display one graphic element for each subroutine call. These
graphic elements are called "primitives."

3. The DECgraphic-11 FORTRAN Graphics Package includes 20
"pointers” that you can use to identify individual primitives
in a program and on the screen. Pointers are used together
with subpictures to allow you to single out a certain
primitive--a vector, for example--and to make it flash on the
screen, change its brightness, or exercise any of several
options, depending on the type of primitive.

4, Certain characteristics of a graphic program are memorized by
the DECgraphic-11 software. The DECgraphic-11 FORTRAN
Graphics Package will, for example, remember throughout a
program that the primitives are sensitive to the light pen,
that phe primitives are supposed to flash on and off, and/or
that the vectors are to be displayed as solid lines rather

than dashed 1lines. These characteristics -- light-pen
sensitivity, flash mode, and 1line type, as well as the
intensity level or brightness of primitives -- are called

"display parameters."

5. The DECgraphic-11 subroutines create display instructions for
the VT1l and VS60 that are stored in a special area of the
computer's memory. This area is called the "display file."
As a FORTRAN programmer, you do not have to pay much
attention to the display file once you have initialized it,
although you do have direct control of its contents if you
need it,

The following sections examine each of these principles.

1.4.1 Subpictures

The DECgraphic-11 FORTRAN Graphics Package has a subpicture facility
that allows vyou to combine individual primitives into a single
structure. Because many displayed pictures contain repeated images,
it is often more efficient to define such images as subpictures. You
can then display the subpicture as often as needed and at different
parts of the screen without having to repeat a sequence of subroutine
calls.

This is a sample of a DECgraphic-11 subpicture definition as it might
appear in one of your programs:

CALL SUBP (1)

CALL APNT(512.,512.,,-4)
CALL VECT(100.,0.)

CALL VECT(0.,-10.)

CALL VECT(-100.,0.)

CALL VECT(0.,10.)

CALL ESUB

CALL SUBP and CALL ESUB are the subroutine calls that always begin and
end a subpicture definition, respectively. 1In that sense, they are
like the SUBROUTINE and RETURN statements used in FORTRAN subroutine
definitions.

THE DECGRAPHIC-11 SYSTEMS

The number 1 in CALL SUBP(1l) is the tag of the subpicture you are
defining. A tag is the same in function as the name of a subroutine,
except that the tag is a number (from 1 to 32767) instead of a word.
This subpicture contains five primitives: an absolute point (the APNT
call) and four relative vectors (the VECT calls). If you wrote a
program containing this subpicture, the primitives would appear on the
screen forming a small rectangle near the screen's center.

The order of the primitives in the subpicture definition is important.
For example, you can single out a particular primitive by setting a
pointer to "Primitive 1 of Subpicture 1." Primitive 1, in this case,
is the absolute point created by the APNT call. Primitive 5 is the
last of the four VECT calls. However, pointers cannot identify single
primitives unless the primitives are in a subpicture definition.

Subpictures can be copied, erased, turned on or off, and, on the vsS60,
changed in size; primitives can be added to or deleted from existing
subpictures. Calls to existing subpictures can be nested to a depth
of eight in order to allow complex structures to be built from simpler
components,

Many of the FORTRAN Graphics Package subroutines described in Chapter
2 are for use with subpictures. Some of the most important subpicture
operations you can perform in the DECgraphic-11 system are 1listed
below:

e Starting a new subpicture definition or producing multiple
images of an existing subpicture (SUBP; see Section 2.4.1).

e Terminating a subpicture definition and, on VS60 systems,
optionally restoring any display parameters (see Section
1.4.4) that were reset in the subpicture to the wvalues they
had before the subpicture was defined (ESUB; see Section
2.4.2).

e Copying a subpicture and assigning a new tag to the copied
subpicture (COPY; see Section 2.4.3).

e Turning a subpicture off temporarily and turning it on again,
often to display an image all at once on the screen after it
has been totally constructed in the display file (OFF and ON;
see Sections 2.4.4 and 2.4.5).

e Erasing a subpicture definition from the display file (ERAS;
see Section 2.4.6).

e Creating special subpictures called numeric, graph, and figure
subpictures (NMBR, XGRA, YGRA, and FIGR; see Sections 2.4.7,
2.5.1, 2.5.2, and 2.5.3, respectively).

e On the VS60, changing the size of characters and/or vectors to
be displayed in a particular -subpicture (CVSCAL; see Section
2.4.8).

e Changing individual primitives in a subpicture definition by
advancing a pointer through that subpicture's portion of the
display file (see Sections 1.4.3 and 2.6).

Special programming techniques that use subpictures are described in
Section 3.1.

THE DECGRAPHIC-11 SYSTEMS

1.4.2 Primitives

The following graphic images are treated as primitives by the
DECgraphic-11 FORTRAN Graphics Package:

® vectors, displayed with the VECT, AVECT, SVECT, and LVECT
subroutines

® points, displayed with the APNT and RPNT subroutines
® text strings, displayed with the TEXT subroutine

Primitives do not have tags or labels to distinguish them from each
other. The only way a primitive can be identified is by its numerical
order within a subpicture definition, as described in Section 1.4.1.

When you draw primitives, the position of the DECgraphic-11 display
beam is important. The beam is the stream of electrons that points to
a particular position on the display screen. When you initialize the
display file (see the INIT subroutine, Section 2.1.1), the beam is
positioned at the lower left corner of the screen (x=0., y=0.). As
you draw primitives at different coordinate positions on the display
screen, the beam changes position.

At your option, each primitive can have some unique properties. With
a vector, for example, you have a choice of making it sensitive to the
light pen, a choice of making it a constant or flashing line segment,
a choice of eight levels of brightness on the screen, and a choice of
four line types. Text strings can be in- regular English letters,
Greek letters, mathematical symbols, or italics, and they can be
displayed in the normal horizontal way or (on the VS60) rotated 90
degrees. Each subroutine call that displays a primitive also allows
you to set these display parameters in the same subroutine call.

You can combine any kind or number of primitives into a subpicture.

1.4.3 Pointers

When you have defined a subpicture, you can use one or more pointers
to single out particular primitives within the subpicture. After
identifying a particular primitive in this way, you can then change it
with a wvariety of pointer-oriented subroutines in the DECgraphic-11
FORTRAN Graphics Package.

The subroutine POINTR does the first 3job, that of associating a
pointer with a primitive. One example of a pointer-oriented
subroutine is CHANGE, which changes the coordinates of a primitive.
To illustrate these jobs, consider the sample subpicture from Section
1.4.1:

CALL SUBP(1) _
CALL APNT(512.,512.,,-4)
CALL VECT(100.,0.)

CALL VECT(0.,-10.)

CALL VECT(-100.,0.)

CALL VECT(0.,10.)

CALL ESUB

THE DECGRAPHIC-11 SYSTEMS

Starting with the SUBP call, this set of statements translates as
follows:

1. Begin the definition of Subpicture 1.

2. Go to the center of the screen. (Primitive 1 is an absolute
point at [x=512., vy=512.], which is the center. The -4
argument means that the point itself will not be visible, but
that all the following primitives will have an intensity
level [brightness] of 4.)

3. Draw a vector from (512.,512.) to (612.,512.). (Primitive 2)
4. Draw a vector from (612.,512.) to (612.,502). (Primitive 3)
5. Draw a vector from (612.,502.) to (512.,502.) (Primitive 4)
6. Draw a vector from (512.,502.) to (512.,512.). (Primitive 5)
7. End of subpicture definition.

Notice that the absolute point is the starting place for the first
vector; in other words, these are relative vectors that are all
defined with respect to the point (512.,512.). The entire subpicture
(that is, the rectangle) can be moved around on the screen by changing
the coordinates of the absolute point. The POINTR and CHANGE
subroutines are used as follows:

POINTR has the form CALL POINTR(k,m,j), where k is the pointer
number, m is the subpicture tag, and j is the primitive number.

CHANGE has the form CALL CHANGE(k,x,y), where k is the pointer
number, and x and y are the new coordinates.

Suppose these two subroutine calls are added to the example:

CALL SUBP(1)

CALL APNT(512.,,512.,,-4)
CALL VECT(100.,0.)

CALL VECT(0.,-10.)

CALL VECT(-100.,0.)

CALL VECT(0.,10.)

CALL ESUB
C
C WAIT FOR <RETURN>
C
READ (5,1) KR
1 FORMAT (12)
C

CALL POINTR(20,1,1)
CALL CHANGE(20,0.,512.)

If this fragment is part of a program, the rectangle in Subpicture 1
appears on the screen, and then the program pauses, waiting for a
carriage return. When you type a carriage return on the terminal
keyboard, the program executes the two new subroutine calls, with the
following effects:

1. POINTR assigns pointer number 20 to Subpicture 1, Primitive 1
[CALL POINTR(20,1,1)]. Pointer 20 now points to the APNT
call in Subpicture 1.

THE DECGRAPHIC-11 SYSTEMS

2. CHANGE now changes the coordinates of the primitive pointed
to by Pointer 20 (APNT) to (x=0., y=512.). At this point,
the subpicture has a new starting position; that is, as soon
as CHANGE is executed, thé rectangle moves immediately to the
left edge of the screen, halfway up from the bottom. Pointer
20 still points to the absolute point.

From this elementary example, you can see how pointers and subpictures
are wused for dynamic displays; some parts of the display--some
subpictures-~can move around on the screen while others remain still.

In a similar way, pointers can be used to change points and text
strings. The detailed subroutine descriptions in Chapter 2 clarify
the use of pointers with other kinds of primitives.

The availability of 20 pointers enables you to keep track of as many
as 20 primitive locations. '

The following list summarizes operations that you can perform by
manipulating pointers:

® Setting a pointer at a particular primitive within a
subpicture (POINTR; see Section 2.6.1).

e Advancing a pointer by a certain number of primitive elements
(ADVANC; see Section 2.6.2).

® Returning the coordinate positions of the primitive currently
identified by a pointer (GET; see Section 2.6.3).

® Changing the screen coordinates of a primitive identified by a
pointer (CHANGE, CHANGA, and CHANGT; see Sections 2.6.4
through 2.6.6).

e Inserting a new element in the display file just before the
primitive identified by a pointer (INSRT; see Section 2.6.7).

e Erasing the primitive identified by a pointer (ERASP; see
Section 2.6.8).

1.4.4 Display Parameters

Display parameters control different "modes" of the display. That is,
when a mode is entered at a certain point in the program, all
primitives from that point on will be displayed in that same mode,
unless or until the mode is changed again.

There are four display parameters in the DECgraphic-11 FORTRAN
Graphics Package. They control the following properties of the
display:

Display Parameter 1 controls light-pen sensitivity. If 1 is
positive, all subsequent primitives on the screen will be
sensitive to the light pen. When the light pen is pointed at a
sensitive primitive on the screen, a graphic attention will
occur. If 1 is negative, the subsequent primitives are not
sensitive.

Display Parameter i controls intensity level (the brightness of
primitives on the screen). The intensity level has eight values,
with 1 the faintest and 8 the brightest.

THE DECGRAPHIC—ll,SXSTEMS

NOTE

1. DECgraphic-11 display scopes also
have a knob on the scope cabinet for
adjusting the intensity. Therefore,
the intensity level 1is a relative
property, depending on the
adjustment of the knob.

2. The light pen cannot detect
primitives that are below a certain
brightness. When the intensity knob
is set near the middle of its range,
Intensity Level 4 is the minimum
intensity at which primitives can be
detected.

Display Parameter f controls flash mode. If £ is positive, the
subsequent primitives on the screen will flash; if £ is
negative, the primitives will be constant.

pDisplay Parameter t controls line type. The line type controls
the appearance of subsequent vectors on the screen. There are
four line types: Type 1 is a solid line; Type 2 is a 1line of
long dashes; Type 3 is a line of short dashes; and Type 4 is a
line of alternating dashes and dots.

yYou can set values for the display parameters by including the values
as optional arguments in some of the subroutine calls. 1In such calls,
the display parameters are always the last four arguments, and they
are always in the order 1, i, £, t. For instance, the call

CALL VECT(100.,100.,1,5,1,4)

will display a light-pen-sensitive vector at Intensity Level 5. The
vector will flash on and off and will appear as a dot-dash line. 1If
any or all of the display parameters are omitted from such a call, or
if they are set to 0, those display parameters will not change.

Another way of setting display-parameter values is with the SENSE,
INTENS, FLASH, and LINTYP subroutines (see Section 2.7). These are
pointer-oriented subroutines. In effect, each supplies a new value
for a single display parameter to the referenced primitive.

The intensity level is a special parameter in the sense that you can
use it to change the intensity of part of the display without
affecting the rest of the display. If, instead of supplying a number
from 1 to 8 for Display Parameter i, you supply a value from -1 to -8,
the primitive containing the negative value will not be displayed at
all, but the intensity 1level of primitives that follow will be the
absolute value of the negative number. For example, in the following
segment:

CALL SUBP(1)

CALL APNT(512.,512.,,-4)
CALL VECT(100.,0.)

CALL VECT(0.,-100.)

CALL VECT(-100.,0.,,8)
CALL VECT(0.,100.,,4,1,4)
CALL ESUB

THE DECGRAPHIC-11 SYSTEMS

the absolute point described by the APNT call will not be visible on
the screen. However, the first and second vectors will be displayed,
at Intensity Level 4, 1In the third VECT call, the intensity level is
changed to 8, and so the vector will appear at maximum brightness.
The fourth VECT call changes the intensity level to 4 again, and also
turns on flash mode and switches the line type to Line Type 4.

Now consider this pair of subroutine calls:

CALL POINTR(20,1,2)
CALL SENSE(20,1)

In the first call, Pointer 20 is pointed to Primitive 2 of Subpicture
1 (the first VECT call). Then the SENSE call passes the new value of
1 (1) to the VECT call, effectively adding it on to the 1list of
arguments. Now all four vectors are sensitive to the light pen.

The subroutines INTENS, FLASH, and LINTYP, described in Section 2.7,
pass new values of i, £, and t, respectively. INTENS can, by passing
a 0 for i, also effectively erase the minus sign on the intensity
parameter of a certain primitive. If, for instance, you use INTENS to
pass a 0 to this call:

CALL APNT(10.,0.,,-4)

the new intensity parameter will be 4 instead of -4, The previously
invisible point will suddenly appear on the screen.

1.4.5 The Display File

The display file is a list of graphic instructions and data that is
created by the DECgraphic-11 subroutines.

To display images on the screen, the VS60 or VTll display processing
unit (DPU) interacts with the display file much as the PDP-11 central
processing unit (CPU) interacts with PDP-11 memory. Just as the
PDP-11 CPU retrieves successive program instructions and data from
memory, the VS60 or VT1l DPU retrieves display instructions and data
from the display file, independent of the operation of the PDP-11 CPU.
The internal configuration is shown in Figure 1-13.

To display an image on the screen, the DPU simply executes the display
instructions stored in the display file, starting with the first
instruction. The DPU continues executing display instructions until
it reaches the instructions "DHALT, O0," which mark the end of the
active display list. The display processor then automatically Jjumps
back to the beginning of the file and begins to execute the display
instructions again. This process displays a seemingly continuous, or
"refreshed," image on the screen.

THE DECGRAPHIC-11 SYSTEMS

=

PDP-11 PDP-11 VS60 or VT11
CPU INSTRUCTIONS DPU
AND DATA
DISPLAY CRT
FILE SCOPE

Figure 1-13 CPU and DPU

As you call subroutines to display graphs, points, or other objects on
the screen, the display file fills up with instructions and data.
Although you can "erase" primitives or subpictures from the screen,
the space occupied by these elements cannot be reused until you call
the CMPRS subroutine (see Section 2.13.1), which removes erased
display elements and reclaims their display-file space.

As mentioned previously, you do not have to concentrate on the display
file because the display instructions are created automatically.

However, at the beginning of each graphic program, you must define a
FORTRAN COMMON area for the display file, and you must also initialize
the file with the subroutine INIT. Section 2.1 describes INIT and
other subroutines that control the display file.

When you initialize the display file, the display parameters are set
to the following initial values:

e Light-pen sensitivity (1 in the subroutines) is disabled.

e Intensity level (i) is set to 4 in the range 1 (faintest) to 8
(brightest).

e Flash (f) or blink mode is disabled.
e Line type (t) is set to solid.

There are other default conditions associated with an initialized
display file. These are described in the discussion of the INIT
subroutine (see Section 2.1.1).

Instructions in the display file occur in essentially the same order
as DECgraphic-11 subroutine calls in a FORTRAN program. Consequently,
as discussed in Section 2.2.5, a call to the VIEWPT subroutine must
precede the calls that display objects in a new viewport.

THE DECGRAPHIC-11 SYSTEMS

The special ramifications of display-file structure on the operation
of individual subroutines are described in the subroutine descriptions
in Chapter 2. -

A display file can be saved as a data file on a mass-storage device,
such as a disk, DECtape, or floppy disk. By saving and subsequently
restoring a display file, you can display a screen image without
having to rerun the FORTRAN program that was used to create the image.
Use the SAVE and RSTR subroutines (see Sections 2.13.2 and 2.13.3) to
save and restore DECgraphic-11 display files.

Section 2.14 describes three subroutines that allow you to create
unusual graphic instructions directly in the display file without
using any other DECgraphic-11 subroutines. Appendix C describes the
structure of the display file as it appears in the computer memory.
If you intend to use any of the subroutines in Section 2.14, read
Appendix C and be sure that you understand the structure of the
display file.

1.4.6 Summary

The elements displayed by the DECgraphic-11 FORTRAN Graphics Package
are called primitives. A FORTRAN program builds a complete picture by
repeated calls to subroutines that display single primitives.

Primitives can be combined into modular structures called subpictures.
You can then operate on an entire subpicture instead of addressing its
individual primitives.

You can use DECgraphic-11 pointers to identify and manipulate
individual primitives inside a subpicture.

Several modes, or display parameters, can be changed by optional
subroutine arguments or special subroutine calls to control lignt-pen
interaction, flashing displays, the brightness of objects, and the
appearance of lines on the screen.

The instructions and data created by your DECgraphic-11 subroutine
calls are stored in a memory area called the display file. The
display file can be stored permanently on a mass-storage device and
later recalled by other programs. The display processor (DPU)
retrieves and executes display instructions from the part of the
display file called the active display list.

CHAPTER 2

DECGRAPHIC-11 FORTRAN SUBROUTINES

This chapter describes in detail the graphic subroutines in the
DECgraphic-11 FORTRAN Graphics Package. You can call any of the
subroutines discussed here from your FORTRAN programs.

All subroutines in this chapter can be used in either a stand-alone or
host-satellite system.

However, this chapter does not describe the special subroutines used
for host-satellite communication, such as TOSAT. It also does not
describe the ACCESS and READWR subroutines that store and recall
satellite files. The subroutines in these special categories are
described in Section 5.3.2.

As an option, you can build DECgraphic-11 1libraries that take only
integers as arguments (see Chapters 4 and 5). This option has some
advantages, but the arguments must then be within the range of the
unit-scaled coordinate system. The user dialog of the program COND,
described in Chapters 4 and 5, details the 1legal ranges of integer
arguments.

DECGRAPHIC~11 FORTRAN SUBROUTINES

Each section in this chapter describes the use of subroutines in
of the functional categories listed below:

Initializing and controlling the display file
Choosing screen area and scaling

Creating graphic primitives

Defining and using subpictures

Displaying graphs and figures

Using display-file pointers

Changing display parameters

Interacting with the display

Polling interactive devices

Using the optional pushbutton box

Controlling the keyboard

Controlling the overall display

Compressing, saving, and restoring the display file

Inserting advanced display-file instructions

one

DECGRAPHIC-11 FORTRAN SUBROUTINES

2.1 INITIALIZING AND CONTROLLING THE DISPLAY FILE

The subroutines described in this section allow you to allocate memory
for the DECgraphic-11 display file, initialize the display file, and
control access to it.

DECGRAPHIC-11 FORTRAN SUBROUTINES

2.1.1 INIT: Initializing the Display File
Form: CALL INIT {(n)]
Arguments:

The n argument is the number of words that will be used for the
display file. The n argument is required only the first time you
call INIT; do not supply an argument when you call INIT later in
a program to reinitialize the display file.

Instructions:

Before you call INIT, you must define a COMMON block that will contain
the display file., The name of this COMMON block must be DFILE. The
COMMON statement must also assign an integer array to DFILE that is
equal in 1length to the display file your program will use. The name
of the integer array is not important, but the array must be large
enough to accommodate all the display instructions that will be
created by your program. If you run out of display-file space during
the execution of your graphic program, the message

DISPLAY FILE FULL

will appear, and program execution will terminate. To correct the
problem, you should either assign more display-file space to DFILE, or
you should compress the display file (see Section 2.13.1).

INIT clears the display screen, sets the display parameters to their
initial values, and initializes the number of display-file words equal
to n in your call.

The following example illustrates the creation of a FORTRAN COMMON
block and the use of a call to INIT.

COMMON/DFILE/I (400)
CALL INIT (400)

This COMMON statement assigns 400 words of memory to the area named
DFILE. The INIT call then initializes 400 words of DFILE, so that the
display processor will begin at the first word of the display file,
I(l), and execute any graphic instructions in the display file. When
400 words of instructions and data have been processed, the display
processor will return to I(1l) and start over. This cyclic action, or
"refreshment," draws the same picture on the screen several times a
second, creating the illusion of a continuous display.

If you call INIT later in the program to reinitialize the display, do
not include any argument. Using INIT in this way clears any existing
display from the screen, clears all graphic instructions from the
display file, and resets the display parameters to their initial
values. The display processor will continue to cycle on the display
file you defined at the beginning of the program.

Once you have defined and initialized the display file, calls to the
image-generating subroutines will add new instructions and data to the
end of the display file or will modify the existing contents of the
file. Since the INIT call has started the display processor, these
new instructions will be executed immediately and the new draphics
will appear immediately on the screen.

DECGRAPHIC-11 FORTRAN SUBROUTINES

Any FORTRAN program that has called INIT will not return to the
monitor immediately after execution or error detection. Instead, the
system will display the following message on the console:
TYPE <CR> TO EXIT
Even if an error has occurred, you will be able to view the display
created by the program without having to issue a READ or PAUSE
instruction.
NOTE

Do not use the FORTRAN library routine,

USEREX, after a call to INIT., The INIT

subroutine issues its own call to

USEREX.
INIT also sets the following initial conditions for the display:

1. The standard coordinate system 1is enabled (see Section
2.2.3).

2. The beam is positioned at the 1lower 1left corner of the
viewing area of the screen (x=0., y=0.).

3. Light-pen interaction (display parameter 1) is disabled.
4. The intensity level (display parameter i) is set to 4.
5., Flash mode (display parameter f) is turned off.

6. Line type (display parameter t) is solid.

7. Characters are displayed in the normal font, not in italics
or shift-out mode (see Section 2.3.7).

8. For the VS60, Scope 1 is on and Scope 2 is off (see Section
2.2.1).

9, On the VS60, any display is directed to the main viewing
area, not the menu area (see Section 2.2.2).

Routines called by INIT: STOP, NOWNDW, CONT, TOSAT (h-s)

Routines that call INIT: None.

DECGRAPHIC-11 FORTRAN SUBROUTINES

2.1.2 STOP: Stopping the Display
Form: CALL STOP

Arguments: None.

Instructions:

STOP halts the display processor and clears the display screen. The
stopped display can be restored by a call to the CONT subroutine (see
Section 2.1.3).

STOP also halts the transmission of interrupts from the VT1ll or VS60
display processor. Because interrupts from the display processor are
not being processed, the CPU executes at a significantly faster rate.

Attempting to stop a display that has already been stopped has no
effect.

On the VS60, STOP clears the screens on both scopes, if both are
enabled (see Section 2.2.1).

Routines called by STOP: None.

Routines that call STOP: INIT, ERAS, ERASP, ESUB, INSRT, OFF, CMPRS

DECGRAPHIC-11 FORTRAN -SUBROUTINES

2.1.3 CONT: Restoring the Display
Form: CALL CONT

Arguments: None.

Instructions:

CONT restores the display that was halted by a call to STOP. CONT
restarts the display processor and the transmission of interrupts from
the VT1l or VS60. ,

Routines called by CONT: None.

Routines that call CONT: INIT, ERAS, ERASP, ESUB, INSRT, OFF, CMPRS

DECGRAPHIC-11 FORTRAN SUBROUTINES

2.1.4 FREE: Releasing the Display-File Area

Form: CALL FREE

Arguments: None.

Instructions:

Use FREE when you need to use the memory area allocated to the display
file for another purpose. A call to FREE effectively disconnects the
display file from the display processor, thus freeing the space used
by the display file. FREE also clears the display screen.

After you have called FREE, no display file is available for wuse in
graphic processing. If you need the display file later in your
program, call INIT again., The COMMON DFILE definition remains in
effect.

Routines called by FREE: TOSAT (h-s)

Routines that call FREE: None{

DECGRAPHIC-11 FORTRAN SUBROUTINES

2.2 CHOOSING SCREEN AREA AND SCALING

The subroutines described in this section allow you to select the
scope (VS60) and the screen area and to establish your own coordinate
system for graphic displays.

DECGRAPHIC-11 FORTRAN SUBROUTINES

2.2.1 SCOPE: Selecting a VS60 Display Scope

Form: CALL SCOPE (n)

Arguments:
The n argument is the scope number, 1 for Scope 1 and 2 for Scope
2. If n is positive, the scope will be enabled, and if n is
negative, the scope will be disabled.

Instructions:

SCOPE is used in VS60 display subsystems to enable or disable either
of the two scopes. After you have enabled a scope, graphic calls will
display images on it.

A call to SCOPE has no effect on a VT1l subsystem.

An enabled scope remains enabled until you explicitly disable it, so
that both VS60 scopes can be used at the same time. However, if a
call to INIT is made during program execution, the initial scope
setting will be reestablished, and only Scope 1 will be enabled.
Routines called by SCOPE: None.

Routines that call SCOPE: None.

2-10

DECGRAPHIC-11 FORTRAN SUBROUTINES

2.2.2 AREA: Selecting the Main or Menu Area
Form: CALL AREA (n)
Arguments:

When n is 1, the display is switched to the main viewing area.
When n is 2, the display is switched to the menu area. If n has
any other value, the AREA call is ignored.

Instructions:

With VS60 subsystems, AREA allows you to switch subsequent grapnic
displays to one of the two distinct areas of the display screen; the
main viewing area or the menu area. :

A call to AREA has no effect on a VT1ll subsystem.

When you call AREA, the current beam position 1is not automatically
changed, so you must reposition the beam before displaying graphics on
the screen,.

When you address the menu area, the x coordinate can range from 0 to
127 and the y coordinate from 0 to 1023.

It is not possible to address both the main viewing area and the menu
area at the same time.

Example:

This example (see Figure 2-1) shows a figure subpicture (see Section

2.5.3) displayed in the main viewing area and a scaled copy of the
same subpicture in the menu area:

COMMON/DFILE/IBUF (1000)

REAL ENDPNT(16) -

DATA ENDPNT/O.,IOO.,100.,0.,0.,—100.,—100.,0.,100.,100.,
X -50.,50.,-50.,-50.,100.,-100./

CALL INIT(1000)

CALL APNT(512.,512.,,-4)

CALL FIGR(ENDPNT,16,2000)

CALL RPNT(0.,-50.,,-4)

CALL TEXT(-2,'MAIN AREA')

CALL AREA(2)

CALL SUBP(2001)

CALL SUBP(2002)

CALL APNT(0.,512.,,-4)

CALL COPY(,2000)

CALL RPNT(0.,0.,,-2)

CALL TEXT(1,-2,'MENU AREA')

CALL ESUB

CALL CVSCAL({2002,1,2)

CALL ESUB(2001)

CALL AREA(1)

STOP

END

DECGRAPHIC-11 FORTRAN SUBROUTINES

Figure 2-1 AREA Subroutine

Routines called by AREA: None.

Routines that call AREA: None.

DECGRAPHIC-11 FORTRAN SUBROUTINES

2.2.3 WINDW: Redefining the Window
Form: CALL WINDW (x0,y0,x1,y1[,FX[,FY]])
Arguments:

The x0 and y0 arguments are the coordinates of the lower left
corner of the window. The x1 and vyl arguments are the
coordinates of the upper right corner of the window. FX and FY
are the scaling factors of the x and y axes, respectively.

Instructions:

WINDW allows you to define your own window. The default window
describes the main screen area as the area extending from (x=0., yv=0.)
to (x=1023., y=1023.). The area has a physical size of 1024 raster
units on each axis, and each axis contains 1024 individually
addressable points. Consecutive coordinate positions on an axis are
addressed in increments of 1 (e.g., x=0., x=1., x=2.), so the default
coordinate system is unit scaled.

WINDW can change this default coordinate system to almost any other

scale. For example, you can specify a coordinate system containing
only one fourth the number of addressable points as the default scale:

CALL WINDW (0.,0.,512.,512.)

where (0.,0.) is the lower left corner and (512.,512.) 1is the upper
right corner of the display screen. The physical screen size remains
the same (1024 raster wunits along each axis), but consecutive
coordinate positions are now two raster units apart, not one. The
scaling factor along each axis is .5.

If you make the following calls:

CALL WINDW (0.,0.,200.,200.)
CALL APNT (0.,0.)
CALL VECT (200.,200.)

the vector that is produced will extend on the main display diagonal,
completely across the screen.

You can also specify one or two additional arguments in the WINDW
call. These arguments return the scaling factors for the ¥ and y
axes. TIf FX is included in the call, the x scaling factor will Dbe
returned; if you also include FY, the vy scaling factor will be
returned as well.

Each new call to WINDW redefines the window only for subsequent
graphic calls. Any previous windows still apply to primitives that
precede the new call to WINDW.

DECGRAPHIC-11 FORTRAN SUBROUTINES

NOTES ON WINDOWS AND COORDINATES

1. The length and coordinates specified in every dJraphic call
must be within the current coordinate system (the default
system or the system established by a call to WINDW). Any
graphic call that attempts to place the beam outside the
window is ignored.

2. The WINDW subroutine does not function with libraries built
to take only integers as arguments (see Chapter 4 or 5).

3. Because all vector displacements and point coordinates are
represented as integers in the display file, errors can
accumulate when several relative vectors or points are drawn
consecutively. This happens when the vector displacement or
point coordinates are converted to a noninteger number of
physical screen units. For instance, a scaling factor of .5
will convert the coordinate 511 to a noninteger number.

4. On VS60 subsystems, WINDW changes the coordinate range of the
entire 1image definition area. CALL WINDW(O0.,0.,1.,1.) will
change the 1limits of the .image definition area to the
coordinates (-4.,-4.) and (4.,4.).

An example using WINDW is included at the end of the description of
the NOWNDW subroutine (see Section 2.2.4).

Routines called by WINDW: TOSAT (h-s)

Routines that call WINDW: NOWNDW

DECGRAPHIC-11 FORTRAN SUBROUTINES

2.2.4 NOWNDW: Restoring the Standard Coordinate System
Form: CALL NOWNDW

Arguments: None,

Instruction:

NOWNDW eliminates the wuser-defined window that is in effect and
restores the default window., This action reestablishes the standard
unit-scaled coordinate system, in which the screen is described as the
area between coordinate positions (x=0., y=0.) and (x=1023., y=1023.).

Example:

This example (see Figure 2-2) draws a figure subpicture (see Section
2.5.3), changes the scaling factor to draw a larger version of the
same figure, and then restores the unit-scaled coordinate system.

COMMON/DFILE/IBUF (1000)

REAL ENDPNT(16) v

DATA ENDPNT/0.,100.,100.,0.,0.,-100.,-100.,0.,100.,100.,
X -50.,50.,-50.,-50.,100.,-100./

CALL INIT(1000)

CALL APNT(512.,512.,,-4)

CALL FIGR(ENDPNT,16,100)

CALL RPNT(125.,0.,,~4)

CALL WINDW(0.,0.,750.,750.)

CALL FIGR(ENDPNT,16,101)

CALL NOWNDW

STOP

END

DECGRAPHIC-11 FaRTRAN SUBROUTINES

e

Figure 2-2 WINDW and NOWNDW Subroutines

Routines called by NOWNDW: WINDW

Routines that call NOWNDW: INIT

DECGRAPHIC-11 FORTRAN SUBROUTINES

2.2.5 VIEWPT: Redefining the VS60 Viewport
Form: CALL VIEWPT (x,Y)
Arguments:

The x and y arguments are the coordinate positions of the lower
left corner of the user-defined viewport.

Instructions:

This subroutine allows you to redefine the viewport on the image
definition area of the Vvs60. If you are using the default window, the
image definition area extends from (-4095., -4095.) to (4095., 4095.)
and 1is therefore 64 times as large as the default viewport. With
VIEWPT, you can select the portion of the image definition area Yyou
will view on your display screen.

If you use WINDW to change the coordinate system of the screen, the
maximum coordinates of the image definition area will be changed by
the same scaling factors that apply to the viewport. For example,
after the following call:

CALL WINDW (0.,0.,1.,1.)
the image definition area will extend from (-4.,-4.) to (4.,4.) .

The size of the viewport is always 1024 by 1024 raster units. If the
lower left corner is represented by (X,Y), then the upper right corner
is (x+1023., y+1023.).

If you attempt to move the viewport across a part of the image
definition area that contains absolute vectors (see Section 2.3.4),
the absolute vectors may disappear. The absolute vectors defined by
the AVECT subroutine are the only primitives affected in this way by
VIEWPT. To avoid this problem, use VECT, SVECT, or LVECT to draw
vectors (all relative vectors) rather than AVECT whenever you plan
also to use VIEWPT.

The VIEWPT call affects only the primitives that follow the call.
Consequently, always place the VIEWPT call before the primitives that
you want it to affect. A problem can occur if you include both VIEWPT
and CVSCAL (see Section 2.4.8) in the same subpicture. The CVSCAL
call within the subpicture places the scaling instruction before all
other instructions in the subpicture, including the VIEWPT
instruction. If you want to perform both a VIEWPT and a CVSCAL
operation on a set of primitives, then do not include CVSCAL and
VIEWPT in the same subpicture.

In the following example:
CALL VIEWPT (512.,512.)

the area of the screen shown in Figure 2-3 is the new viewport.

[\
|

17

DECGRAPHIC-11 FORTRAN SUBROUTINES

(x = 4095, y = 4095)

{x = 1536, y = 1535)

VIEWPORT

(x =512,y =512}

IMAGE DEFINITION AREA

{x = -4095, y = -4095)

Figure 2~3 VIEWPT Subroutine

Example:

This example sets the viewport to extend from a lower left corner of
(1024.,0.) to an upper right corner of (2047.,1023.).

CALL SUBP (1)
CALL VIEWPT (1024.,0.)
CALL ESUB

The viewing area is now changed to extend from (x,y) to (x+1023.,
y+1023.)

To change an existing viewport, use the CHANGE subroutine (see Section
2.6.4). When CHANGE is used for this purpose, its arguments must be
the negatives of the arguments you would normally give VIEWPT. For
example, to move the lower left corner of the viewport to (512.,512.),
give to CHANGE the arguments (-512.,-512.).

Routines called by VIEWPT: None.

Routines that call VIEWPT: None.
2-18

DECGRAPHIC-11 FORTRAN SUBROUTINES

2.3 CREATING GRAPHIC PRIMITIVES

This section describes the DECgraphic-11 subroutines that create
graphic primitives such as points, vectors, and characters. These
subroutines insert primitives in the display file and, 1if you soO
request, immediately display them on the screen.

You can use many of the subroutines in this category to change the
display parameters described in Section 1.4.4.

If you are a VS60 user, remember that the primitives created by these
subroutines can be placed anywhere in the image definition area.

Remember also that, although many -of the subroutine arguments are
shown as FORTRAN REAL variables, you can create special DECgraphic-11
libraries in which all subroutine arguments are integers. For more
details, see the chapter on operating instructions for your operating
system (Chapter 4 or 5). '

¥

DECGRAPHIC-11 FORTRAN - SUBROUTINES

2.3.1 APNT: Displaying an Absolute Point
Form: CALL APNT (x,y[,1,i,f,t])
Arguments:

The x and y arguments are .the coordinates of the absolute point.
The four optional arguments 1, i, f, and t are the display
parameters described in Section 1.4.4.

Instructions:

APNT moves the beam to an absolute coordinate position and creates a
point at that location.

In the call to APNT, you can optionally specify new values for the
display parameters 1, i, £, and t. For example, to position the beam
without displaying a point, use a negative value for the intensity (i)
parameter.

Example:

This example (see Figure 2-4)- draws four flashing points on the
display screen at Intensity Level 3.

COMMON/DFILE/IBUF (1000)
CALL INIT(1000)

CALL APNT (100.,100.,,3,1)
CALL APNT (100.,923.)

CALL APNT (923.,100.)

CALL APNT (923.,923.)

STOP

END

DECGRAPHIC-11 FORTRAN SUBROUTINES

Figure 2-4 APNT Subroutine

Routines called by APNT: None.

Routines that call APNT: MENU

DECGRAPHIC-11 FORTRAN SUBROUTINES

2.3.2 RPNT: Displaying a Relative Point
Form: CALL RPNT (x,vy[,1,1i,£f,t])
Arguments:

The x and y values will be added to the coordinates of the
current beam position. The relative point will appear at the
resulting coordinates.

Instructions:

RPNT allows you to move the beam to a position relative to the current
beam position, with or without displaying a new point. If the current
beam position is represented by (x0,y0), then a call to RPNT will move
the beam to the relative position represented by (x0+x,y0+y).

When a beam is repositioned by a call to RPNT, the resulting
displacement in either the x or y direction cannot exceed 63 raster
units (approximately one sixteenth of the full screen). Thus in the
default (unit-scaled) coordinate system, the maximum values you can
specify in (x,y) are (-63.,-63.) or (63.,63.). If your (x,y)
specification exceeds 63 raster units in either the X or the y
direction, it will be truncated to 63 units by RPNT.

In the call to RPNT, you can optionally specify new values for the
display parameters 1, i, £, and t. As with APNT, you can use RPNT to
position the beam without displaying a point by specifying a negative
value for the i parameter,

Example:

This example (see Figure 2-5) draws a sine wave, made up of dots,
across the display screen.

COMMON/DFILE/IBUF (1000)
CALL INIT(1000)
CALL APNT (0.,500.)
Y0=500.
DO 10 1I=1,50
Y=SIN(.125*I)*500.+500.
CALL RPNT (20.,Y-Y0)

10 Y0=Y
STOP
END

DECGRAPHIC-11 FORTRAN SUBROUTINES

Figure 2-5 RPNT Subroutine

Routines called by RPNT: None.

Routines that call RPNT: MENU

DECGRAPHIC-11 FORTRAN SUBROUTINES

2.3.3 VECT: Drawing a Relative Vector
Form: CALL VECT (x,y[,l,i,f,t])
Arguments:

The X and y values are added to the coordinates of the current
beam position. A relative vector will be drawn to the resulting
coordinate position.

Instructions:

VECT draws a relative vector from the current beam position to a point
relative to the current beam position. If the current beam position
is represented by (x0,y0), then a call to VECT will draw a line
segment from (x0,y0) to (x0+x,y0+y).

The absolute values of the (x,y) specifications included in the VECT
call must not exceed 1023 raster units.

If the displacement of a vector is equal to (0.,0.), the vector will
not be visible on the screen, regardless of the intensity level
established by the current value of display parameter i.

VECT uses the short-vector format (one word in the display file for
each vector) whenever possible in drawing line segments. If your
program requires use of the long-vector format -- for example, for
"stretching" vectors with the light pen -- you should use LVECT (see
Section 2.3.6).

In the VECT call, you can optionally specify new values for the
display parameters 1, i, £, and t. -

Example:

This example draws a triangle (see Figure 2-6) in the center of the
screen, The triangle's starting point is repeatedly changed by the
CHANGE subroutine in such a way that the triangle rotates in a
clockwise direction and then comes to rest near its starting position.

COMMON/DFILE/IBUF (1000)

CALL INIT(1000)

CALL SUBP(100)

CALL APNT(500.,500.,,-4)

CALL VECT(100.,0.)

CALL VECT(0.,100.)

CALL VECT(-100.,-100.)

CALL ESUB

CALL POINTR(20,100)

DO 100 1=1,1500

Y=SIN(I/50.)*50.+450.

X=COS(I1/50.)*50.+450.
100 CALL CHANGE (20,X,Y)

STOP

END

DECGRAPHIC-11 FORTRAN SUBROUTINES

Figure 2-6 VECT Subroutine

Routines called by VECT: None.

Routines that call VECT: None.

DECGRAPHIC-11 FORTRAN SUBROUTINES

2.3.4 AVECT: Drawing an Absolute Vector

Form: CALL AVECT (x,y[,1l,i,£f,t])

Arguments:
The x and y values are the coordinates of the destination of the
vector. The arguments 1, i, f, and t are the display parameters
described in Section 1.4.4.

Instructions:

AVECT draws a vector from the current beam position to an absolute

point "on the image definition area, where x and y are the coordinates
of the point. AVECT uses the long-vector format (two words . for each

vector) in drawing 1line segments. In the call to AVECT, you can
optionally specify new values for the display parameters 1, i, £, and
t.

NOTE

Absolute vectors should not cross the
boundaries of the viewport. If you are
using AVECT together with VIEWPT, be
sure to observe the cautions discussed
in Section 2.2.5.

AVECT only works with the VS60 display subsystem; it 1is ignored by
the vVT11.

Example:

This example (see Figure 2-7) outlines the screen with dot-dash 1lines
(Line Type 4) at Intensity Level 4.

COMMON/DFILE/IBUF (1000)
CALL INIT(1000)

CALL APNT (0.,0.,,-4,,4)
CALL AVECT (0.,1023,)
CALL AVECT (1023.,1023.)
CALL AVECT (1023.,0.)
CALL AVECT (0.,0.)

STOP

END

DECGRAPHIC-11- FORTRAN SUBROUTINES

Figure 2-7 AVECT Subroutine

Routines called by AVECT: None.

Routines that call AVECT: None.

DECGRAPHIC-11 FORTRAN SUBROUTINES

2.3.5 SVECT: Drawing a Vector in Short Format
Form: CALL SVECT (x,yl[,1l,i,£f,t})
Arguments:

The x and y values will be added to the coordinates of the
current beam position to produce the destination of the short
vector; 1, i, £, and t are the optional display parameters
described in Section 1.4.4.

Instructions:

SVECT draws a vector from the current beam position to a point
relative to the current beam position. If the current beam position
is represented by (x0,y0), then a call to SVECT will draw a 1line
segment from (x0,y0) to (x0+x,y0+y).

SVECT always uses the short-vector format (one word for each vector)
in drawing line segments.

The displacement resulting from an (x,y) specification cannot exceed
63 raster ‘units in either the x or the y direction. The maximum
values you can specify in the default coordinate system are thus
(-63.,-63.) or (63.,63.). If a displacement exceeds 63 raster units,
it will be truncated to 63 units by SVECT. You should use VECT or
LVECT rather than SVECT if the line segment to be drawn may exceed 63
raster units in either direction.

In the call to SVECT, you can optionally specify new values for the
display parameters 1, i, £, and t.

Figure 2-8 shows the sort of small objects for which SVECT is useful.

DECGRAPHIC-11 FORTRAN SUBROUTINES

p >

WINS (L1}
FUEL 100
TORFS 250

WINS 000
FUEL 100
TORPS 050

<

WINS voe
FUEL 100
TORPS 850

Figure 2-8 SVECT Subroutine

Routines called by SVECT: None.

Routines that call SVECT: None.

DECGRAPHIC-11 FORTRAN SUBROUTINES

2.3.6 LVECT: Drawing a Vector in Long Format
Form: CALL LVECT (x,yl[,1,i,f,t])
Arguments:

The x and y values will be added to the coordinates of the
current beam position. The resulting new coordinates will be the
destination of the long vector.

Instructions:

LVECT draws a vector from the current beam position to a point
relative to the current beam position. If the current beam position
is (x0,y0), then a call to LVECT will draw a line segment from (x0,y0)
to (x0+x,y0+y).

LVECT always uses the long-vector format (two words for each vector)
in drawing line segments.

The displacement resulting from an (x,y) specification cannot exceed
1023 raster wunits 1in either the x or the y direction. The maximum
displacement in the default coordinate system is therefore
(-1023.,-1023.) or (1023,,1023.).

You should use VECT rather the LVECT if the vector being drawn is of
variable size and may be small enough for the short-vector format.
The short-vector format uses only half the display-file space required
by the long-vector format.

In the call to LVECT, you can optionally specify new values for the
display parameters 1, i, £, and t. :

Figure 2-9 shows one of the features of the DRAW program described in
Appendix D of this manual. The lines forming the triangle are long
vectors that have been attached to the tracking object (see also
Section 2.8.4 for a description of the ATTACH subroutine).

DECGRAPHIC-11 FORTRAN SUBROUTINES

POSLTION
LING
CLOSE |
DPONE

Figure 2-9 LVECT Subroutine

Routines called by LVECT: None.

Routines that call LVECT: None.

2-31

DECGRAPHIC-11 FORTRAN SUBROUTINES

2.3.7 TEXT: Displaying a Text String
Form: CALL TEXT ([ictrl,]'al'[[,ictrl],'a2,...'])
Arguments:
The values al,a2,... are FORTRAN literal text strings (i.e.,
strings of characters enclosed within single quotation marks).
The arguments represented by ictrl are optional control codes;
these codes specify the mode in which the immediately following
text string is to be displayed, and can also specify blank lines
between text strings. If you do not include a control code, the
text string will be displayed horizontally, with normal,
nonitalic characters.
Instructions:
In a single call to TEXT, you can specify up to 10 arguments,
including control codes. You can display more text strings by simply
making multiple calls to TEXT. Each text string will be displayed
with the lower left corner of the first character at the current beam
position. After a string is displayed, the beam position will be the
lower right corner of the last character.
Each TEXT call is a primitive. Therefore, when TEXT is called in a
subpicture definition, a pointer can be set to the text primitive,
which can then be changed with the CHANGT subroutine described in
Section 2.6.6.
There are two basic character sets you can use for text strings:
e normal characters (a subset of ASCII printable characters)
e shift-out characters (Greek letters and special symbols)
A normal character string can consist of any number of printable
characters with ASCII values greater than or equal to 40 (octal).
These are the following:

® uppercase letters A through Z and lowercase letters a through
Z

e numbers 0 through 9

® a variety of special characters (see the examples in Section
1.1.3)

A string must be enclosed in single quotes within the TEXT call, as
shown in the following example:

CALL TEXT ('ABCDEF')

The ictrl argument produces the following alternative displays to the
normal text string:

® a count of blank lines to be displayed
® shift-out characters

e italics

® rotated characters (VS60 only)

® subscripts or superscripts (VS60 only)

2-32

DECGRAPHIC-11 FORTRAN SUBROUTINES

NOTES ON SUBSCRIPTS AND SUPERSCRIPTS

1. Subscripts and superscripts are generated and positioned on
the VS60 screen by a hardware character scaling feature.
Each level of subscript or superscript is displayed in a
character size one level smaller than the size of the
characters preceding the subscript or superscript. The VS60
has four character sizes, and the normal character size is
the second smallest of the four valid sizes (see the CVSCAL
description, Section 2.4.8).

2. 1If you are displaying characters in the normal size, you can
include a single subscript or superscript. In this case, the
normal characters have a scaling factor of 2, and the
subscript or superscript has a scaling factor of 1. If you
want to specify multiple levels of subscripts or
superscripts, as in the previous example, you must begin with
a character size larger than the normal size of 2. For
example, 1if characters have a scaling factor of 3, then the
characters at the first level of subscripting will have a
scale of 2, and the characters at the second level will have
a scale of 1. Do not allow the character scaling factor to
fall below 1. If you specify too many subscripts, the normal
characters will be the wrong size when you return from
subscript mode.

To display italic or rotated characters, include the appropriate
negative code, followed by the character string to be displayed in the
desired mode. i

Position characters on the screen by moving the beam (for example,
with APNT) to the desired coordinate position before calling TEXT.
The lower left corner of the first character displayed will start at
the current beam position.

Every string displayed by means of a TEXT call must be terminated with
a null byte, A null character (ASCII <code 0) is automatically
appended to FORTRAN literal strings at compile time, but you must
remember to include this byte explicitly when generating your own
string data in arrays.

You cannot ordinarily display "invisible" characters on the display
screen. Text output is always visible regardless of the current value
of Display Parameter i, unless an entire subpicture containing
characters is turned off (see Section 2.4.4).

In the TEXT call, you cannot specify new values for the display
parameters 1, i, £, and t, but you can call RPNT before the TEXT call,
as shown here:

CALL RPNT (0.,0.,,-4)
CALL TEXT ('string')

Notice that a negative intensity level is specified in the RPNT call;
this specification sets the intensity level for the text string, but
does not display the point. Since the RPNT displacement is (0.,0.),
the beam position will not be disturbed by the RPNT call.

DECGRAPHIC-11 FORTRAN SUBROUTINES

Examples:
Figure 2-10 shows the TEXT features available to VT1l users.

COMMON/DFILE/IBUF (1000)

CALL INIT(1000)

CALL APNT(0.,600.,,-6)

CALL TEXT('NORMAL CHARACTERS: ABCDEF')

CALL TEXT(2,'ITALIC CHARACTERS:',-2,'ABCDEF')
CALL TEXT(2,'SHIFT-OUT CHARACTERS:',-1,'ABCDEF')
CALL TEXT(2,'ITALIC SHIFT-OUT:',-3,'ABCDEF')
STOP

END

NORMAL CHARACTERS: ABCDEF
ITALIC CHARACTERS: ABCDEF

SHIFT-OUT CHARACTERS:n¢Isar
ITALIC SHIFT-0UT: Aa#Zsa1

Figure 2-10 VT1ll TEXT Features

DECGRAPHIC-11 FORTRAN SUBROUTINES

The following example draws the axes for a graph and 1labels them in
italic letters. Note that the label for the y axis is rotated (a
unique V860 feature). See Figure 2-11.

COMMON/DFILE/IBUF (1000)
CALL INIT(1000)

CALL APNT (100.,900.,,-4)
CALL LVECT (0.,-800.)

CALL LVECT (800.,0.)

CALL APNT (50.,200.,,-4)
CALL TEXT (-6,'POWER LOSS')
CALL APNT (200.,50.,,-4)
CALL TEXT (-2,'FREQUENCY')
STOP

END

FREQUENCY

Figure 2-11 VS60 TEXT Features

Routines called by TEXT: None.

Routines that call TEXT: NMBR

DECGRAPHIC-11 FORTRAN SUBROUTINES

2.3.8 MENU: Displaying Items in the Menu Area
Form: CALL MENU ([xO],yO,dy,m,'al'[,‘aZ',...,'alO'])
Arguments:

The x0 and y0 arguments are the coordinates at which the first
menu item will appear. If x0 is not supplied in your call, the
first menu item will appear in the menu area at the distance yo0
from the bottom of the screen. The vertical spacing between menu
items is given by dy. The m argument is the subpicture tag of
the first menu item. The menu items will be numbered
sequentially, starting with m. The arguments al,a2,...,al0 are
FORTRAN 1literals, that is, character strings enclosed within
single quotation marks (').

Instructions:

MENU displays a menu of light-pen-sensitive text strings on the
display screen at Intensity Level 4., You can put as many as 10 menu
items on the screen with a single MENU call, and you can make repeated
calls to display more than 10 items. ’

You can also select the area of the screen in which the menu is to
appear. If, for example, vyou supply the arguments (512.,512.) for
(x0,y0), the first menu item will appear in the center of the main
area. If you ~do not include a value for x0, the menu will
automatically appear in the menu area at the right edge of the screen.

NOTES ON MENUS
l. If you decide to use "alphanumeric arrays" instead of
literals for MENU arguments, the last element of each array
must contain the ASCII code 0 (NUL).

2. After a MENU call, the VS60 display beam automatically
returns to the main area.

The following call will produce the display shown in Figure 2-12.

CALL MENU’(,512.,—100.,56,'ERASE','COPY','MOVE')

Figure 2-12 MENU Subroutine

The character strings of the items to be displayed in the menu are
supplied in the al,a2,...,al0 arguments. 1In the example above, the
character strings '"ERASE', 'COPY', and 'MOVE' are the menu items. The
dy argument represents the amount of vertical spacing between
character strings displayed in the menu area. If the first item

2-38

DECGRAPHIC-11 FORTRAN SUBROUTINES

begins at (x0,y0) and there are six items, then the sixth item will
begin at (x0,y0+(6-1)*dy) . In the example above, the first string is
displayed starting at a y0 position of 512. Because dy is -100, the
second item begins at (512+(2-1)*-100) or 412, and the third item at
(512+(3-1)*-100) or 312.

The m parameter is the subpicture tag of the first item (al) displayed
in the menu area. In the -example above, the tag representing
character string '"ERASE' is 56. successive character strings are
tagged sequentially, so the second item, 'COPY', is 56+ (2-1) or 57,
and the third item, '"MOVE', is 56+(3-1) or 58.

Routines called by MENU: APNT, SUBP, ESUB, RPNT

Routines that call MENU: UNone.

DECGRAPHIC-11 FORTRAN SUBROUTINES

2.4 DEFINING AND USING SUBPICTURES

The subroutines described in this section define subpictures that
enable you to generate repeated images in graphics displays; to copy,
erase, and move subpictures; to create special numeric subpictures;
and to scale the size of characters and vectors used in subpictures.

There is no intrinsic limit on the number of primitives that you can
define in a subpicture.

DECGRAPHIC-11 FORTRAN SUBROUTINES

2.4.1 SUBP: Defining a Subpicture
Form: CALL SUBP (ml[,m2])
Arguments:

The ml argument (1 to 32767) is the tag of the subpicture being
defined by this SUBP_call. If m2 is included in the call, it is

the tag of a preexisting subroutine that is being assigned the
new tag ml.

Instructions:

SUBP begins the definition of a new subpicture or repeats an existing
subpicture. The new subpicture will have the tag ml; you can then
use the tag ml later in the program to refer to the entire group of
primitives contained in the subpicture definition. For example, the
entire subpicture can be turned on or off, moved from place to place
on the screen, made sensitive to the light pen, or made to flash
instead of being a constant image.

To define a new subpicture you must call SUBP in this form:
CALL SUBP {(ml)

The graphic subroutine calls that follow this SUBP call insert the
lines, points, and other images directly into the display file, making
up a subpicture whose tag is ml.

All graphic subroutine calls following CALL SUBP (ml) will become part
of Subpicture ml until you call the ESUB subroutine (see Section
2.4.2) to terminate the subpicture definition. Thus, a series of
subpicture definitions looks like this:

CALL SUBP (120)

definition

CALL ESUB

CALL SUBP (130)

definition
CALL ESUB

The second, two-argument form of the SUBP call allows you to repeat an
existing subpicture by referring to its tag. 1In the following form:

CALL SUBP (ml,m2)

The ml argument is the tag of the new "instance" of a subpicture, and
the m2 argument is the tag of the original subpicture.

DECGRAPHIC-11 FORTRAN SUBROUTINES

Internally, the two-argument SUBP call does not actually duplicate the
code of Subpicture m2 for use by Subpicture ml (compare with the COPY
subroutine described in Section 2.4.3). 1Instead, CALL SUBP (ml,m2)
creates a "jump and return" instruction in the display file that
executes the code for Subpicture m2 and gives the tag ml to the
resulting repeated image, or instance.

Because this two-argument form of SUBP does not begin a definition, do
not include a corresponding call to ESUB.

You_cannot address a subpicture instance with the POINTR subroutine.
Instead, you must address the original subpicture.

A new subpicture is often constructed by repeating several existing
subpictures, In other words, the DECgraphic-11 FORTRAN Graphics
Package allows you to "nest" subpicture definitions. A single
subpicture definition can nest up to seven additional subpictures.
The first SUBP call in this case should be of the one-argument form;
it will define the large subpicture containing the nested ones.

Be sure to include one call to ESUB for every definition call to SuBPp,
that 1is, every call that contains only a single argument. The first
call to ESUB encountered in the code will end the last subpicture
created, as in a typical subroutine structure.

The following segment illustrates the nesting of four subpictures
(including the "main" subpicture) in a FORTRAN- program.

CALL SUBP (201) begins definition of 201

CALL SUBP (202,721) repeats 721

CALL SUBP (203) begins definition of 203

definition

CALL SUBP (204,771) repeats 771

CALL ESUB terminates 203 definition
CALL ESUB terminates 201 definition

The subpictures that precede a nested subpicture are called its
"precedents." 1In this example, the first precedent of Subpicture 204
is 203, the second precedent is 202, and the third is 201.

Nested subpictures are useful in applications in which different parts
of a graphic display are frequently repeated or tested for light-pen
hits, both individually and as a group. The following error message
is generated if more than eight subpictures are nested:

MORE THAN 8 NESTED SUBP

Two examples of the use of SUBP are included at the end of the
description of the ESUB subroutine (see Section 2.4.2),

Routines called by SUBP: TOSAT (h-s)

Routines that call SUBP: MENU, NMBR, COPY, FIGR

DECGRAPHIC-11 FORTRAN SUBROUTINES

2.4.2 ESUB: Terminating a Subpicture
Form: CALL ESUB [(m)]
Arguments:

The optional argument m not only identifies the particular
subpicture being ended but also (in VS60 subsystems) restores the
display parameters that were in dffect before the referenced SUBP
call was issued.

The m argument can be any integer; the ESUB call will always
operate on the subpicture that was defined most recently.
However, it is always a good practice to match the wvalue of m
with the tag of the subpicture being terminated.

Instructions:

In VS60 subsystems, the optional argument m is useful because you will
want to change the display parameters frequently even in simple
graphic programs. Remember that setting one of the display parameters
(L, i, £, and t), either in a primitive call like VECT or in a special
subroutine like SENSE, will change the display parameter for the
primitive in question and for all following primitives.

It is unlikely that you will want all the primitives in a subpicture,
or even most of them, to have the same display parameters. For
instance, many interactive programs have only a minority of the
vectors and menu items sensitized to the light pen. with a V860
display subsystem, ESUB can thus be used to confine the effect of a
certain display-parameter setting to a single subpicture, which could
contain only one primitive or could define a complex picture. such a
subpicture is terminated with an ESUB call that includes the m
argument. Since this type of ESUB call restores the display
parameters to their prior settings, it is called a "restoring ESUB."
Especially in combination with the nested subpicture feature, the
restoring ESUB is a powerful tool for graphic programming.

YT1ll users can accomplish the same effect as a restoring ESUB by
remembering to change the display parameters back to the proper values
at critical points in the program. One way to do so is with an
"invisible point," as follows:

CALL RPNT(0.,0.,1,-4,1,1)

Because the RPNT call has a 0 displacement, it will not affect the
position of the beam. The -4 value for i means that the relative
point will be invisible but the i value for all subsequent primitives
will be +4., The RPNT call also has set 1=1, f=1, and t=1. These newvw
display parameters will stay in effect until you change them again.
Although this method 1is more complicated than a restoring ESUB, it
accomplishes the same effect, since in a program for a VT1ll subsystem
the RPNT call can be placed immediately after an ESUB. You will have
to remember the values to which the display parameters must be
restored.

DECGRAPHIC-11 FORTRAN SUBROUTINES

This example shows repeated subpictures (see Figure 2-13). Note that
any change to the original subplcture will affect any instance of the
subpicture,

COMMON/DFILE/IBUF (1000)
CALL INIT(1000)
_CALL APNT(100.,512.,,-4)
/~CALL SUBP(100) -
' CALL VECT(100.,0.)
CALL VECT(0.,100.)
/| CALL VECT(-100.,-100.)
{ _yCALL ESUB
~>CALL SUBP(1100)
/[CALL RPNT(150.,0.,,-4)
' CALL SUBP(11015100)
CALL RPNT(150.,0.,,-4)
CALL SUBP(1102,100)
. CALL RPNT(lSO.,O.,,-4)
! CALL SUBP(1103,100) .
! CALL APNT(900.,512.,,-4) R
 _CALL SUBP(1104,100) :
MNCALL ESUB
STOP
END

Figure 2-13 Repeated Subpictures

DECGRAPHIC-11 FORTRAN SUBROUTINES

This example (see Figure 2-14) shows the distinction between a regular
ESUB call and a restoring ESUB call on the VS60. The bright figure
(third from the left) is at a higher intensity level than the previous
figure, but the bright figure 1is also nested 1in a subpicture
definition that ends with a restoring ESUB. Thus, the fourth figure
is restored to the lower intensity level.

COMMON/DFILE/IBUF (1000)

REAL ENDPT (16) _

DATA ENDPT/0.,100.,100.,0.,0.,-100.,-100.,0.,100.,100.,
X =-50.,50.,-50.,-50.,100.,-100./

CALL INIT(1000)-

CALL SUBP (1)

CALL APNT(100.,512.,,-4)

CALL FIGR(ENDPNT,16,100)

CALL ESUB

CALL SUBP(2)

CALL APNT(250.,512.,,-4)

CALL SUBP(101,100)

CALL ESUB

CALL SUBP(3)

CALL APNT(400.,512.,,-4)

CALL SUBP(102,100)

CALL ESUB(3)

CALL APNT(550.,512.,,-10)

CALL FIGR(ENDPNT,16,200)

CALL POINTR(1,3)

CALL INTENS(1,8)

STOP

END

Figure 2-14 Restoring vs. Nonrestoring ESUB

Routines called by ESUB: STOP, CONT, TOSAT (h-s)

Routines that call ESUB: MENU, NMBR, COPY, FIGR

2-45

DECGRAPHIC-11 FORTRAN SUBROUTINES

2.4.3 COPY: Copying a Subpicture
Form: CALL COPY ([ml],m2)
Arguments:

The argument m2 is the tag of an existing subpicture. If ml is
included, it is the tag assigned to the copy of Subpicture m2.
If ml is omitted from the call, Subpicture m2 is copied to the
currently open subpicture.

Instructions:

COPY creates a duplicate of Subpicture m2. This duplicate subpicture
is different from the repeated instance of an existing subpicture,
created by a two-argument SUBP call. A duplicate of a subpicture,
created by COPY, will not be affected when you change a primitive or
display parameter in the original subpicture. In contrast, a change
to a subpicture will also change all instances of that subpicture
created by a two-argument SUBP. A new subpicture created by COPY can
be addressed by the POINTR subroutine; the subpicture instances
created by SUBP cannot.

The COPY call can either assign a new tag to the copied subpicture or,
if COPY is included within a subpicture definition, can let the
defining subpicture's tag be used. For example, in the following:

CALL SUBP (122)
CALL COPY (,701)
CALL ESUB

Subpicture 122 has been "opened" for definition, and Subpicture 701 is
copied and assigned the tag 122. An alternative way of expressing
this operation is:

CALL COPY (122,701)

NOTE

As with SUBP, coordinate references in
the subpicture being copied should be to
relative, not absolute, positions on the
display screen, Avoid using APNT and
AVECT in subpictures to be copied.

DECGRAPHIC-11 FORTRAN SUBROUTINES

Example:

This example shows an original subpicture and four copies. Notice
that each of the copied subpictures can be addressed by the POINTR
subroutine, and so each can be given its own line type. (The original
subpicture is the one in the center of the screen; see Figure 2-15.)

COMMON/DFILE/IBUF (1000)

REAL ENDPT(16) VS

DATA ENDPNT/O.,lOO);lOO.,O.,0.,—100.,—100.,0.,100.,100.,
X -50.,50.,-50.,-50.%100.,-100./

CALL INIT(1000)

CALL APNT(512.,512.,,-4)

CALL FIGR(ENDPNT,16,100)

CALL APNT(0.,850.,,-4)

CALL COPY(101,100)

CALL APNT(900.,850.,,-4)

CALL COPY(102,100)

CALL APNT(900.,0.,,-4)

CALL COPY(103,100)

CALL APNT(0.,0.,,-4)

CALL COPY(104,100)

PAUSE 'TYPE <RET> TO CHANGE LINE TYPES'

CALL POINTR(14,101)

CALL LINTYP(14,1)

CALL POINTR(15,102)

CALL LINTYP(15,2)

CALL POINTR(16,103)

CALL LINTYP(16,3)

CALL POINTR(17,104)

CALL LINTYP{17,4)

CALL POINTR(18,100)

CALL FLASH(18)

CALL FLASH(14,-1)

STOP

END

DECGRAPHIC-11 FORTRAN SUBROUTINES

Figure 2-15 Copied Subpictures

Routines called by COPY: SUBP, ESUB, TOSAT (h-s)

Routines that call COPY: None.

DECGRAPHIC-11 FORTRAN SUBROUTINES

2.4.4 OFF: Turning Off a Subpicture
Form: CALL OFF (m)
Arguments:
The m argument is the tag of the subpicture being turned off.
Instructions:

OFF turns off the subpicture whose tag is m. When a subpicture is
turned off, there will be two effects on the display:

1. The graphic calls in the subpicture will not produce any
output on the screeéen.

2. If Subpicture m is terminated by a nonrestoring ESUB (i.e.,
one without an m parameter), the display parameters (e.g.,
light-pen interaction, intensity level, line type) will have
the same values as before the subpicture was defined. The
beam will also be returned to its former position.

Because of the second condition, any call to OFF should be followed by
a call to RPNT or APNT to set the beam position and change line type
and other display parameters, unless the subpicture was ended with a
restoring ESUB (VS60 only) or unless it is desirable to have these
changes occur.,

When a subpicture is turned off, the definition of the subpicture
remains in the display file; therefore, you can copy the subpicture
even though it is turned off. A turned-off subpicture can " be turned
on again by the ON subroutine (see Section 2.4.5). Attempting to turn
off a subpicture that is already turned off has no effect.

To increase system speed, you can turn off a subpicture before it has
been completely defined, that is, between the SUBP and ESUB calls that
define it. This action is often useful when building a display that
should be seen only when its construction is complete.

An example of using OFF is included in the description of the ON
subroutine (see Section 2.4.5).

Routines called by OFF: STOP, CONT, TOSAT (h-s)

Routines that call OFF: None.

DECGRAPHIC-11 FORTRAN SUBROUTINES

2.4.5 ON: Turning On a Subpicture
Form: ON (m)
Arguments:

The m argument is the tag of the subpicture to be turned on.
Instructions:

ON turns on the subpicture whose tag is m, and will therefore
redisplay a subpicture that has been turned off by the OFF subroutine.
Attempting to turn on a subpicture that is already on has no effect.

Example:

This example builds Subpicture 1500 from the data in arrays x and vy.
The subpicture 1is turned off until the -entire picture has been
constructed, and then the display is turned on. This technique gives
you the facility to display "all-at-once" pictures, as well as to show
pictures "growing” as new primitives are inserted in the display file.

CALL APNT (0.,500.,,-4)
CALL SUBP (1500)
CALL OFF (1500)
DO 100 1=1,50

100 CALL VECT (X(I),¥Y(I))
CALL ESUB (1500)
CALL ON (1500)

Routines called by ON: TOSAT (h-s)

Routines that call ON: None.

DECGRAPHIC-11 FORTRAN SUBROUTINES

2.4.6 ERAS: Erasing a Subpicture
Form: CALL ERAS [(m)]
Arguments:

The optional argument m is the tag of the subpicture that will be
erased. If m is not supplied, ERAS will erase only the tracking
object (see Section 2.8) and will not affect any subpicture.

Instructions:

ERAS permanently erases Subpicture m from the screen. Note the
difference from OFF, which turns off the subpicture, but only
temporarily.

Since ERAS effectively eliminates the definition using tag m from the
display file, tag m 1is again available for use in new definitions.
However, erasing a subpicture does not automatically reclaim the space
in the display file that was used for the subpicture definition. You
can reclaim this space by compressing the display file; use either
CMPRS (see Section 2.13.1) or SAVE (see Section 2.13.2).

NOTE

Erasing a subpicture also erases all
instances of it made with two-argument
SUBP calls.

Example:

This example creates a new subpicture whose tag is 25, copies into it
the contents of Subpictures 100 and 200, and then erases 100 and 200.
This action allows the space used by 100 and 200 to be reclaimed by
the CMPRS subroutine. Note that Subpicture 25 is turned off until
Subpictures 100 and 200 are erased; this action will prevent the two
subpictures from appearing overly bright because of the display of
multiple images at the same screen location.

CALL SUBP (25)
CALL OFF (25)
CALL COPY (,100)
CALL COPY (,200)
CALL ESUB (25)
CALL ERAS (100)
CALL ERAS (200)
CALL ON (25)

Routines called by ERAS: STOP, CONT, TOSAT (h-s)

Routines that call ERAS: None.

DECGRAPHIC-11 FORTRAN SUBROUTINES

2.4.7 NMBR: Creating a Numeric Subpicture
Form: CALL NMBR (m,var{,n,'format'])

Arguments:

The m argument is the tag that will be assigned to the numeric
subpicture, and var is the name of the FORTRAN REAL variable to
be displayed. The optional arguments n and format give the field
width and FORTRAN field descriptor (e.g., F7.2), respectively,
for the variable to be displayed. The format argument is a”
FORTRAN "literal" string, and must therefore be enclosed in
single quotation marks ('). The format argument must consist of
every character that normally follows the word FORMAT in a FORMAT
statement, including parentheses. Thus, the statement

CALL NMBR(100,XVALUE,7,'(F7.2)")
is a legal call to NMBR; the statement
CALL NMBR(100,INTER,4,'I4"')

is illegal because there are no parentheses in the format
argument. The default format for NMBR is F16.8.

Instructions:

NMBR creates a special numeric subpicture that can be displayed on the
screen 1in any FORTRAN REAL format and can be updated in "odometer"
fashion. The number is displayed with a maximum field width of 16, in
any legal real format that you specify.

The NMBR call can have either two or four arguments. The simpler form
of the call:

CALL NMBR (m,var)
creates a numeric subpicture with tag m and displays the value of var
in the default format. This default is originally F16.8, but the
default will be changed if you call NMBR with all four arguments. For
integer-only libraries, the default format of NMBR is I6.

When you use all four arguments, the format specification is a literal
string:

CALL NMBR (200,X2(I1),8,'(F8.2)")
If you do not provide the format specification in an NMBR call, the
number is displayed 1in the format last specified in an NMBR call in
the program. The second NMBR call below will display the value of B
in format F10.4.

CALL NMBR (101,A,10.'(F10.4)"')

CALL NMBR (102,B)

You can update the number displayed by NMBR by calling NMBR a second
time with only the m and var arguments. 1In this case, m is the tag of

DECGRAPHIC-11 FORTRAN SUBROUTINES

the same NMBR subpicture that was created previously; var is the same
variable name as before, with a new value having been assigned to it.
However, see the alternative technique described in Section 3.1.4.

As with other types of subpictures, you can position the numeric
subpicture on the screen by moving the beam to the desired location
(with APNT, for example) before calling NMBR. The lower left corner
of the first digit displayed will start at the current beam position.

This example (see Figure 2-16) shows a typical NMBR subpicture.

COMMON/DFILE/IBUF (1000)
DATA PI/3.14159/
REAL R(51)
DO 1 I=1,51
1 R(I)=200.+200.*SIN(PI*(I-1)/25,)
CALL INIT(1000)
CALL APNT(512.,512.,,-6)
CALL NMBR(100,R(1);75'(F7,2)")
DO 700 1=1,50 -
700 CALL NMBR(100;R(I+1))
STOP
END

Figure 2-16 NMBR Subroutine

A further example of using NMBR is included in the description of the
CMPRS subroutine (see Section 2.13.1).

Routines called by NMBR: SUBP, TEXT, ESUB, POINTR, CHANGT, TOSAT
(h-s), FRSAT (h-s) :

Routines that call NMBR: None.

DECGRAPHIC-11 FORTRAN SUBROUTINES

2.4.8 CVSCAL: Scaling Subpicture Characters and Vectors
Form: CALL CVSCAL (m[,ifc,ifv])

Arguments:

The m argument is the tag of the VS60 subpicture to be scaled.
If supplied, ifc (1 to 4) and ifv (1 to 15) are the scaling
factors for characters and vectors, respectively. The ifc and
i{fv arguments do not have to be supplied in the same call, but
CVSCAL will have no effect if both are omitted.

Instructions:

CVSCAL calls can be included in VTll programs, but they will have no
effect.

This subroutine allows you to enlarge or contract the characters and
vectors on the display screen. This feature is helpful in creating
charts or figures whose components can be enlarged for more detailed
examination, or in creating and labeling pictures that will then be
"shrunk" for inclusion in a larger structure.

The value of ifc must be an integer in the range 1 through 4, where
each number changes the character size by a factor of 2. The normal
size of characters corresponds to ifc=2,

ifc value Character Size

1/2 normal size
normal size

1 1/2 normal size

2 times normal size

> WN -

The ifv argument is the vector scaling factor. The value of ifv must
be an integer in range 1 through 15, and vectors are scaled in
increments of one quarter. The normal vector size corresponds to
ifv=4.

ifv value Vector Size

1/4 normal size

1/2 normal size

3/4 normal size
normal size

1/4 normal size
1/2 normal size
3/4 normal size
times normal size
1/4 normal size
1/2 normal size
3/4 normal size
times normal size
1/4 normal size
1/2 normal size
3/4 normal size

OO UTdWN -

—
<o
WWwwhhoNoND P EE

2-54

DECGRAPHIC-11 FORTRAN SUBROUTINES

In addition to scaling the characters or vectors 1in the specified
subpicture, CVSCAL will scale the rest of the display file, unless you
terminate the subpicture definition with a restoring ESUB call (see
Section 2.4.2).

A problem can occur if you include both VIEWPT (see Section 2.2.5) and
CVSCAL in the same subpicture. The CVSCAL call within the subpicture
places the scaling instruction before all other instructions in the
subpicture, including the VIEWPT instruction. If you want to perform
both a VIEWPT and a CVSCAL operation on a set of primitives, then do
not include CVSCAL and VIEWPT in the same subpicture.

NOTE

When you use CVSCAL ¢to scale the
characters or vectors within a
subpicture, the display screen may
become blank for a moment, and then
reappear with the changed characters or
vectors, A technique for avoiding this
occurrence is given in Section 3.2.4.

Example:

This example (see Figure 2-17) displays the string 'COMMANDS:' in
characters twice the normal size. It then displays 'SAMPLE',
'"ANALYZE', 'PLOT', and 'STOP' in a column beneath 'COMMANDS:' in
characters of normal size,

COMMON/DFILE/IBUF (1000)

CALL INIT(1000)

CALL APNT (0.,800.,,-4)

CALL SUBP (10)

CALL TEXT ('COMMANDS:',1)

CALL ESUB (10)

CALL CVSCAL (10,4)

CALL TEXT (4,'SAMPLE',1l,'ANALYZE',l,
X 'pLOT',1,'STOP')

STOP

END

DECGRAPHIC-11 FORTRAN SUBROUTINES

COMMANDS -

SAMPLE
ANALYZE
PLQOT
STOP

Figure 2-17 CVSCAL Subroutine

Routines called by CVSCAL: POINTR, INSRT, TOSAT (h-s)

Routines that call CVSCAL: None.

DECGRAPHIC~11 FORTRAN SUBROUTINES

2.5 DISPLAYING GRAPHS AND FIGURES

The subroutines described in this section allow you to make single
calls that generate more complex structures on the display screen than
the primitive elements described in Section 2.3. These subroutines
generate subpictures that contain entire graphs and figures. Because
these graphs and figures are subpictures, you can erase them and turn
them on and off. You can also modify a displayed graph or figure by
changing the values of certain primitives defined 1in the special
subpictures.

2-57

DECGRAPHIC-11 FORTRAN SUBROUTINES

2.5.1 XGRA: Displaying an X-Value Graph
Form: XGRA (dy,ARRAY,n,m[,1l,i,f,t])
Arguments:

The dy argument is the vertical spacing between points on the
graph. The maximum value for dy is 64 raster units. Be sure to
adjust the value of dy to agree with your current scaling factor.
The array contains real-valued x offsets that will be converted
to the x coordinates of points. ARRAY is the name of any legally
dimensioned FORTRAN array. The first n elements from ARRAY are
used. The entire graph is a subpicture with tag m. You can
optionally set new values for the display parameters 1, i, f, and

Instructions:

XGRA creates a special graph subpicture (with tag m) that consists of
a series of points. Each point is a primitive. XGRA allows you to
display a graph whose y coordinates are evenly spaced on the display
screen.

The array must be a one-dimensional real array.

The y coordinates of the graph displayed by XGRA are gdenerated from
integral multiples of dy. The x coordinate of the first point is the
first element of the array plus the x value of the current beam
position; the first y coordinate is at the current y value plus the
value of dy.

The subpicture created by XGRA can be changed with the POINTR, CHANGE,
and CHANGA subroutines (see Section 2.6). The y coordinate in a
CHANGE or CHANGA call is ignored when these subroutines are used on an
XGRA primitive. The GET subroutine can return the coordinates of
individual points.

When a graph subpicture 1is created by means of XGRA, the array
elements are converted to x coordinates before the subpicture is
entered in the display file, so that the array is reusable.

Example:
Figure 2-18 shows a sine function plotted with XGRA.

COMMON/DFILE/IBUF (1000)
REAL R(51)
DATA PI/3.14159/
DO 1 I1=1,51
1 R(I)=200.+200.*SIN(PI*(I-1)/25.)
CALL INIT(1000)
CALL APNT(512.,0.,,-4)
CALL XGRA(20.,R,51,1000)
STOP
END

DECGRAPHIC-11 FORTRAN SUBROUTINES

Figure 2-18 XGRA Subroutine

Routines called by XGRA: None.

Routines that call XGRA: None.

DECGRAPHIC-11 FORTRAN SUBROUTINES

2.5.2 YGRA: Displaying a Y-Value Graph
Form: CALL YGRA (dx,ARRAY,n,m[,1,i,f,t])
Arguments:

The dx argument is the horizontal spacing between points of the
graph. The maximum value for dx is 64 raster units. Be sure to
adjust the value of dx to agree with your current scaling factor.
ARRAY 1is the name of any legally dimensioned FORTRAN array. The
graph is constructed by using the first n elements of the array
as y offsets. As with XGRA, the entire graph is a subpicture
with tag m, and you can optionally set new values for the display
parameters 1, i, £, and t.

Instructions:

YGRA creates a special graph subpicture with tag m, which consists of
a series of points. Each point is a primitive. YGRA allows you to
display a graph whose x coordinates are evenly spaced on the display
screen.

The y coordinates are computed by adding the values of the array
elements to the y coordinates of the current beam position. As with
XGRA, the array is reusable since its elements are not changed by the
call.

The array must be a one-dimensional real array.

The x coordinates of the graph displayed by YGRA are generated from
integral multiples of dx. The first x coordinate 1is at the x
coordinate of the current beam position plus dx.

Like XGRA, YGRA creates a subpicture whose primitives (the individual
points) can be examined and changed by the GET, CHANGA, and CHANGE
subroutines. The x coordinate in a CHANGE or CHANGA call is ignored
when these subroutines are used on a YGRA subpicture.

Example:

This example draws a sine wave across the entire screen using 51
points (see Figure 2-19).

COMMON/DFILE/IBUF (1000)
REAL R(51)
DATA PI/3.14159/
DO 1 I1=1,51
1 R(I)=200.+200.*SIN(PI*(I-1)/25.)
CALL INIT(1000)
CALL YGRA(20.,R,51,1000)
STOP
END

DECGRAPHIC-11 FORTRAN SUBROUTINES

Figure 2-19 YGRA Subroutine

Routines called by YGRA: None.

Routines that call YGRA: None.

DECGRAPHIC-11 FORTRAN SUBROUTINES

2.5.3 FIGR: Displaying a Figure
Form: CALL FIGR (ARRAY,n,m[,1l,i,f,t])
Arguments:

The array contains real values that, when added to the current
beam position, form the endpoints of relative (long) vectors in
the figure subpicture. The first n elements of the array are
used for the figure. The tag of the figure subpicture is m. You
can optionally set new values for the display parameters 1, i, £,
and t.

Instructions:

FIGR creates a special figure subpicture with tag m from an array of
(x,y) pairs. If, for example, the array name is A, the first (x,y)
pair is formed by A(l) and A(2). If the starting beam position is
(x0,y0), the first vector is drawn from (x0,y0) to (A(1l)+x0,A(2)+y0);
this endpoint is also the new beam position and will therefore be the
starting point of the next vector.

FIGR uses the long-vector format (two words for each vector).

The individual primitives in the FIGR subpicture can be examined and
changed by the GET, CHANGA, and CHANGE subroutines (see Section 2.6).
For example, the eighth (x,y) pair is Primitive 8.

Example:

This example (see Figure 2-20) draws a crosced box in the center of
the screen.

COMMON/DFILE/IBUF (1000)

REAL ENDPNT (16)

DATA ENDPNT/O,,100.,100.,0.,0.,—100.,-100.,0.,100.,100.,
X -50.,50.,-50.,-50.,100.,-100./

CALL INIT(1000)

CALL APNT(512.,512,,,-4)

CALL FIGR(ENDPNT,16,100)

STOP

END

DECGRAPHIC-11 FORTRAN SUBROUTINES

Figure 2-20 FIGR Subroutine

Routines called by FIGR: SUBP, ESUB

Routines that call FIGR: None.

2-63

DECGRAPHIC-11 FORTRAN SUBROUTINES

2.6 USING DISPLAY-FILE POINTERS

The subroutines described in this section allow you to use pointers to
identify individual primitives in a subpicture.

You can then change the values of the primitives referenced by these
pointers. The first three subroutines in this category, POINTR,
ADVANC, and GET, do not display graphics on the screen. They allow
you to identify, skip, and return information on primitives.

CHANGE, CHANGA, CHANGT, INSRT, and ERASP let you change, add, and
erase primitives that have been identified by a pointer. They will
have an immediate effect on the display, making primitives appear or

disappear instantly.

CAUTION

There are 21 distinct pointers in the
DECgraphic-11 system, However, only
Pointers 1-20 can be wused in your
subroutine calls. Pointer 21 is the
system pointer and should never be used.

DECGRAPHIC-11 FORTRAN SUBROUTINES

2.6.1 POINTR: Setting Up a Pointer
Form: CALL POINTR (k,m[,3])
Arguments:

The k argument is the pointer number (1-20), m is the tag of the
subpicture containing the target primitive, and j (optional) is
the number of the primitive within the subpicture. If you omit
j, the pointer will go to the first primitive in the subpicture.
If j is greater than the number of primitives in the subpicture,
the pointer will point to the position following the last

primitive in the subpicture.
Instruction:

POINTR allows you to identify an individual primitive by its
subpicture tag and numerical order within the subpicture. Once you
have singled out a primitive in this way, you can examine its
coordinates (the GET subroutine), change the coordinates (CHANGE and
CHANGA), insert new primitives (INSRT), or erase the primitive
(ERASP) . If the primitive is a TEXT call, you can change its value
with CHANGT. You can also advance the pointer from one primitive to
the next with ADVANC.

NOTE

Pointers never point to erased
subpictures, nested. SUBP calls, or
erased primitives. When these elements
are encountered in the display file, the
pointers skip them automatically.

One example of using POINTR is included below. Others are given in
the descriptions of GET (see Section 2.6.3) and GRID (see Section
2.8.6).

2-65

DECGRAPHIC-11 FORTRAN SUBROUTINES

Example:

This example draws a vector that continuously sweeps out a circle in
the center of the screen. The vector moves in a counterclockwise
direction.

CALL APNT (512.,512,.,,-4)
CALL SUBP (100)

CALL VECT (500.,0.)

CALL ESUB

CALL POINTR (3,100)
ANGLE=0,

10 CALL CHANGE (3,500.*COS (ANGLE) ,500.*SIN (ANGLE))
g SLOW IT DOWN

c DO 20 I=1,100

20 CONTINUE

E PROCEED

ANGLE=AMOD (ANGLE+.01,6.28)
GO TO 10

Routines called by POINTR: ADVANC, TOSAT (h-s)

Routines that call POINTR: NMBR, CVSCAL, LPEN

DECGRAPHIC-11 FORTRAN SUBROUTINES

2.6.2 ADVANC: Advancing a Pointer
Form: CALL ADVANC (k[,n])

Arguments:

The k argument is the pointer number (1 to 20), and the optional
n argument is the number of primitives to advance from the

pointer's present position (n must be a positive integer).
you omit n, the pointer will advance to the next primitive.

Instructions:

If

A pointer cannot be advanced beyond the end of a subpicture definition
in the display file. If an ADVANC call attempts to move a pointer
beyond the subpicture boundary, the pointer will point to the position

following the last primitive in the subpicture.

ADVANC will skip any nested subpicture definitions or erased

primitives in the subpicture being examined.

An example using ADVANC is included in the description of the
subroutine (see Section 2.6.3).

Routines called by ADVANC: TOSAT (h-s)

Routines that call ADVANC: POINTR, CHANGA, LPEN

2-67

GET

DECGRAPHIC-11 FORTRAN SUBROUTINES

2.6.3 GET: Returning the Coordinates of a Primitive
Form: CALL GET (k,X,Y)
Arguments:

The k argument is the pointer number (1 to 20). X and Y are REAL
dummy variables that will return the coordinates of the primitive
pointed to by Pointer k.

Instructions:

One common use of GET is to dynamically change the appearance of a
display by retrieving (GET) and changing (CHANGE or CHANGA) the
coordinates of certain primitives.

Example:

This example draws a sine wave of dots and then shrinks it one point
at a time, using Pointer 4 to move through the subpicture definition.
(See Figure 2-21.)

COMMON/DFILE/IBUF (1000)

CALL INIT(1000)

CALL SUBP (1000)

X=0

DO 1000 1=1,51

CALL APNT (X,SIN(.125*(I-1))*500.+500.)
1000 X=X+20.

CALL ESUB

CALL POINTR (4,1000)

DO 2000 1=1,51

CALL GET (4,X,Y)

CALL CHANGE (4,X,Y/2.)
2000 CALL ADVANC (4)

STOP

END

DECGRAPHIC-11 FORTRAN SUBROUTINES

Figure 2-21 GET Subroutine

Routines called by GET: TOSAT (h-s) FRSAT (h-s)

Routines that call GET: CHANGA

DECGRAPHIC-11 FORTRAN SUBROUTINES

2.6.4 CHANGE: Changing the Coordinates of a Primitive
Form: CALL CHANGE (k,x,y)

Arguments:

This subroutine operates on the primitive identified by Pointer
. The primitive's coordinates are changed to x and y.

Instructions:

This subroutine is usually called to change a primitive defined by the
VECT, SVECT, LVECT, RPNT, APNT, or VIEWPT subroutines, or a primitive
in a graph or figure subpicture created by XGRA, FIGR, or YGRA.

When CHANGE is used on a graph subpicture created by XGRA or YGRA, the
y value is ignored in the XGRA call, and the x value is ignored in the
YGRA call. Remember that the primitives in subpictures created by
XGRA and YGRA are the individual x and y values, respectively. With
POINTR, you can set Pointer k to the individual element of the XGRA or
YGRA array that you want to change.

You can also use CHANGE to change the displacements of vectors in an
FIGR subpicture. 1In this case, each pair of values in the FIGR array
(see Section 2.5.3) is a primitive that Pointer k will identify. The
x and y arguments in the CHANGE call will be the new displacements.

The descriptions of FIGR, CHANGA, POINTR, and GET have examples of
CHANGE.
NOTE

Do not use CHANGE to update an NMBR

subpicture. The subroutine CHANGT is

useful with NMBR is some cases; see

Section 3.1.4.
Routines called by CHANGE: TOSAT (h-s)

Routines that call CHANGE: CHANGA

DECGRAPHIC-11 FORTRAN SUBROUTINES

2.6.5 CHANGA: Changing a Primitive and Adjusting the Next Primitive
Form: CALL CHANGA (k,X,y) '
Arguments:

This subroutine operates on the primitive identified by Pointer
k. The primitive's coordinates are changed to Xx and vy.

Instructions:

CHANGA changes the coordinates of the primitive referenced by Pointer
k to the new values given by x and y. Unlike the CHANGE subroutine
(see Section 2.6.4), it also adjusts coordinates of the next primitive
in the display file so that the rest of the primitives will be at the
same absolute screen positions.

The value of k must be in the range 1 through 20.

This subroutine may be called to change a primitive defined by the
VECT, SVECT, LVECT, RPNT, APNT, or VIEWPT subroutines, or a graph
subpicture created by XGRA or YGRA. When a CHANGA call is specified
for a graph created by XGRA or YGRA, the y value is ignored in the
XGRA call, and the x value is ignored in the YGRA call. When CHANGA
is used on an FIGR subpicture, x and y will be the new displacements
for the vector identified by Pointer k.

NOTE
Do not use CHANGA to update the NMBR
subpicture. The subroutine CHANGT is
useful with NMBR in some cases; see

Section 3.1.4.

Example:

This example draws a crossed box on the screen and then changes the
endpoint of the next-to-last vector, first with the CHANGE subroutine
and then with CHANGA. The difference is clear from Figure 2-22: the
CHANGA subroutine will leave the endpoint of the last vector
unaffected.

DECGRAPHIC-11 FORTRAN SUBROUTINES

COMMON/DFILE/IBUF (1000)

REAL ENDPNT(16)

DATA ENDPNT/O.,100.,100.,0.,0.,-100.,-100.,0.,100.,100.,
X -50.,50.,-50.,-50.,100.,-100./

CALL INIT(1000)

CALL APNT(512.,512.,,-4)

CALL FIGR(ENDPNT,16,100)

PAUSE 'READY FOR CHANGE? TYPE <RET)>'

CALL POINTR(20,100,7)

CALL CHANGE(20,-400.,-500.)

PAUSE 'FIGURE 2-22 () : CHANGE'

CALL INIT

CALL APNT(512.,512.,,-4)

CALL FIGR(ENDPNT,16,100)

PAUSE 'READY FOR CHANGA? TYPE <RET>'

CALL POINTR(20,100,7)

CALL CHANGA(20,-400.,-500.)

PAUSE 'FIGURE 2-22 () : CHANGA'

STOP

END

Figure 2-22 CHANGE and CHANGA Subroutines

Routines called by CHANGA: GET, ADVANC, CHANGE, TOSAT (h-g)

Routines that call CHANGA: None.

DECGRAPHIC-11 FORTRAN SUBROUTINES

2.6.7 INSRT: Inserting Primitives in the Display File
Form: CALL INSRT [(k)]
Arguments:
The optional argument k is the pointer number (1 to 20) .
Instructions: -

INSRT allows you to insert primitives in an existing subpicture just
before the position of the primitive referenced by Pointer k. 1In
other words, you can add new primitives to the subpicture, or you can
modify existing primitives by changing their relative positions in the
subpicture (with relative vectors, for example) .

When you include the k argument, an INSRT call effectively reopens the
subpicture for input, so that primitives created by the graphic
subroutine calls following INSRT will be entered 1in the subpicture
definition.

When you call INSRT a second time and omit k, the insert operation is
terminated, the subpicture is effectively closed, and any subsequently
defined primitives will be inserted at the end of the display file in
the ordinary way.

CAUTION

After you have called INSRT to reopen a
subpicture, you should not call CMPRS,
SAVE, RSTR, SUBP, SENSE, INTENS, FLASH,
LINTYP, CVSCAL, or ESUB until you have
called INSRT the second time (with no
argument) to close the subpicture again.
1f you try to do so, the error message
(Number 16) ILLEGAL DURING INSRT will
appear on your terminal.

an example using INSRT is included in the description of the ERASP
subroutine (see Section 2.6.8).
Routines called by INSRT: STOP, CONT, TOSAT (n-s)

Routines that call INSRT: CVSCAL, SENSE

DECGRAPHIC-11 FORTRAN SUBROUTINES

2.6.8 ERASP: Erasing a Primitive
Form: CALL ERASP (k)

Arguments:

The optional argument k is a pointer number (1 to 20).

Instructions:

ERASP erases the primitive referenced by Pointer k. After erasing the
referenced primitive, ERASP positions k at the next primitive in the
file.

NOTE

Because primitive numbers are relative,
erasing a primitive changes the numbers
of all subsequent primitives in the
subpicture. The numbers are reduced by
1.

Example:

This example waits for a light-pen hit on a subpicture and then erases
the primitive identified by the hit. A vector is inserted at this
point and attached to the tracking object. The program then waits for
a carriage return from the keyboard before adjusting the vector. (For
descriptions of LPEN and TRAK, see Section 2.8.)

100 CALL LPEN (IH,IT,X,Y,IP)
IF (IH.EQ.0) GO TO 100
CALL POINTR (2,IT,IP)
CALL ERASP (2)
CALL INSRT (2)
CALL LVECT (0.,0.)
CALL INSRT
CALL TRAK (X,Y)
CALL POINTR (2,IT,IP)
CALL ATTACH (2)
WRITE (5,101)
101 FORMAT (' REPOSITION TRACKING OBJECT,
X TYPE <CR> WHEN DONE')
READ (5,110) I
110 FORMAT (Al)
CALL GRID (50.,50.)

Routines called by ERASP: STOP, CONT, TOSAT (h-s)

Routines that call ERASP: None.

DECGRAPHIC-11 FORTRAN SUBROUTINES

2.7 CHANGING DISPLAY PARAMETERS

The subroutines described in this section provide a second way oOf
setting the display parameters 1, i, £, and t. The first way is by
including them as Optional arguments in calls to the graphic
subroutines APNT, AVECT, FIGR, LVECT, RPNT, SVECT, VECT, XGRA, and
YGRA.

The second way to change the’ display parameters is with the
subroutines SENSE, INTENS, FLASH, and LINTYP. Each of these
subroutines changes the 1, i, £, or t parameter associated with one of
the graphic subroutines. The connection between these subroutines and
the display parameters is as follows:

e light-pen sensitivity; 1 parameter; changed by SENSE

e intensity level; i parameter; changed by INTENS

e flash mode; f parameter; changed by FLASH

e line type; t parameter; changed by LINTYP
All four of these subroutines are used with pointers. That ig, first
use the POINTR subroutine to identify a single primitive in some

subpicture, and then use one or more of the subroutines in this
section to change that primitive's display parameter(s).

DECGRAPHIC-11 FORTRAN SUBROUTINES

2.7.1 SENSE: Setting the Light-Pen Parameter
Form: CALL SENSE (k[,1,s])
Arguments:

The k argument is a pointer number (1 to 20). The 1 argument is
the new light-pen-sensitivity parameter; if it is not included,
the primitive identified by Pointer k becomes sensitive to the
light pen.

If you have a VS60 with two display scopes, s is the number of
the scope being addressed (either 1 or 2). If you have a
one-scope VS60 or a VT1ll, the s argument will be ignored.

Instructions:

SENSE enables or disables 1light-pen sensitivity for the primitive
identified by Pointer k.

Remember that when a primitive is sensitized to the light pen, all the
primitives that follow it in the display file will also be sensitized,
unless

1. The primitive is in a subpicture terminated by a restoring
ESUB (see Section 2.4.2); or

2. Another call disables the sensitivity again, either a later
call within the subpicture or a second call to SENSE with
1=-1.

The s parameter is included in VS60 subsystems to indicate the scope
to which the light-pen reference applies; legal values are 1 and 2.
If the s parameter is omitted, Scope 1 is assumed.

NOTE

The first time you use SENSE within a
subpicture to change the 1light-pen-
sensitivity parameter (1), the display
screen may become blank for a moment,
and then reappear. A technique for
avoiding this occurrence is given in
Section 3.2.4.

Routines called by SENSE: INSRT, TOSAT (h-s)

Routines that call SENSE: None.

DECGRAPHIC-11 FORTRAN SUBROUTINES

2.7.2 INTENS: Setting the Intensity Parameter
Form: CALL INTENS (k[,i])
Arguments:

The k argument is a pointer number (1 to 20). The optional i
argument 1is a new intensity level; if i is omitted, the INTENS
call will effectively erase the minus sign from the primitive's
intensity 1level; the previously invisible primitive will appear
on the screen with its new intensity level equal to the absolute
value of its old level. ‘

Instructions:

If i is in the range 1 through 8, the intensity level of the primitive
is changed to the value of i; 1 is the faintest intensity and 8 is
the brightest.

If i is 0, omitted from the call, or greater than 8, the primitive
appears on the screen if it was formerly invisible, but the overall
intensity level does not change.

If i is in the range -1 through -8, the primitive will be invisible,
but the intensity level of subsequent primitives will be changed to
the absolute value of 1i. '

If i is less than -8, the primitive will be invisible, without any
change in the overall intensity level.

When you set the intensity level for a certain primitive to a value
from 1 to 8 or from -1 to -8, you are also setting the intensity level
for all the primitives that. follow. The new intensity level will
remain in effect unless

1. The referenced primitive is part of a subpicture that ends
with a restoring ESUB (see Section 2.4.2) -- a VS60-only
feature; or :

2. A later call to INTENS or to one of the graphic subroutines
changes the intensity level again.

NOTE

The first time you use INTENS within a
subpicture to change the intensity
parameter (i), the display screen may
become blank for ., a moment, and then
reappear. A technique for avoiding this
occurrence is given in Section 3.2.4.

Example:

This example (see Figure 2-24) displays three 1light buttons in the
menu area. It then waits for a light-pen hit on one of the light
buttons. When the light pen is pointed at one of the words on the
screen, the word's intensity is increased. If the example is run on a
VS60, the program will also wait for a tip-switch hit (the ITIP
argument) as confirmation of the menu selection.

DECGRAPHIC-11 FORTRAN SUBROUTINES

COMMON/DFILE/IBUF (1000)

CALL INIT(1000)

CALL MENU(,512.,-100.,56,'ERASE','COPY', 'MOVE"')
600 CALL LPEN(IH,IT,,,,,,ITIP)

IF(IH.EQ.0.OR.IT.GT.58.0R.ITIP.EQ.0) GO TO 600

CALL POINTR(7,IT)

CALL INTENS(7,8)

STOP

END

Figure 2-24 INTENS Subroutine

Routines called by INTENS: TOSAT (h-s)

Routines that call INTENS: None.

DECGRAPHIC-11 FORTRAN SUBROUTINES

2.7.3 FPLASH: Setting the Flash-Mode Parameter
Form: CALL FLASH (k[,f])
'Arguments:

The k argument is a pointer number from 1 to 20. The optional £
argument is a new value for the flash-mode display parameter. If
you omit £, the primitive identified by Pointer k will flash.

Instructions:

FLASH enables or disables flash mode for the primitive identified by
Pointer k.

If the f argument in the FLASH call is positive, of if £ is omitted
from the call, flash mode is enabled. The referenced primitive will
flash on and off. 1In addition, all subsequent primitives will flash
unless

1. The referenced primitive is part of a subpicture that ends
with a restoring ESUB (see .Section 2.4.2) -- a VS60-only
feature; or

2. A later call to FLASH or to one of the graphic subroutines
changes the f parameter again. -

If the f parameter is negative, flash mode is disabled for the
primitive referenced by k and for subsequent primitives.

If £ is 0, the FLASH call has no effect.

An example using FLASH is included in the description of LPEN (see
Section 2.8.1).

NOTE

The first time you use FLASH within a
subpicture to change the flash-mode
parameter (f), the display screen may
become blank for a moment, and then
reappear. A technique for avoiding this
occurrence is given in Section 3.2.4.

Routines called by FLASH: TOSAT (h-s)

Routines that call FLASH: None.

DECGRAPHIC-11 .FORTRAN SUBROUTINES

'2.7.4 LINTYP: Setting the Line-Type Parameter
Form: CALL LINTYP (k{[,t])
Arguments:
The k argument is a pointer number from 1 to 20. The optional t

argument is a new value for the line-type display parameter. If
you omit t, the LINTYP call has no effect.

Instructions:

LINTYP allows you to specify the line type of the vector identified by
Pointer k.

If the t argument in the LINTYP call is in the range 1 through 4, the
line type 1is changed for the referenced vector. The new line type
will also apply to all subsequent vectors unless

1. The vector is part of a subpicture that ends with a restoring
ESUB (see Section 2.4.2) -- a VS60-only feature; or

2. A later call to LINTYP or to one of the graphic subroutines
changes the line type again.

Vectors are drawn according to the following conventions:

t Parameter Vector Type
1 Solid line
2 Long-dash line
3 Short-dash line
4 Dot-dash line

If t is 0, omitted from the call, negative, or greater than 4, the
current line type remains unchanged.

NOTE

The first time you use LINTYP within a
subpicture to change the line-type
parameter (t), the display screen may
become blank for a moment, and then
reappear. A technique for avoiding this
occurrence is given in Section 3.2.4.

Routines called by LINTYP: TOSAT (h-g)

Routines that call LINTYP: None.

DECGRAPHIC-11 FORTRAN SUBROUTINES

2.8 INTERACTING WITH THE DISLAY

This section describes several subroutines that you can use to write
interactive programs.

To write interactive programs in DECgraphic-11 FORTRAN, use the
following procedure:

1. Choose a primitive or primitives that will be sensitive to
the 1light pen; or associate any of the 16 buttons on the
optional LK-11 pushbutton box with a graphic function; or
associate particular keyboard characters with a set of
graphic functions.

2. Use one of several subroutines (LPEN, PBS, PBH, KBC, or
GRATTN) to "poll" the interactive devices; the subroutine
will tell vyou when a graphic attention, or "hit," has
occurred and will also return information about the source of
the hit (for example, the subpicture in which the hit
occurred) . Except for GRATTN, each of the polling
subroutines polls a single device. GRATTN can optionally
poll all three devices and can suspend the program until a
hit occurs. GRATTN should usually be followed by a call to
the subroutine that is specific to the given device (e.g.,
PBH or PBS for the pushbutton box).

3. Then use the information returned by your polling call to
pranch to the appropriate section of the program; in that
section you can change a display parameter, insert a newvw
primitive, or make whatever change is necessary.

The description of each subroutine explains its use in detail.

This section also describes two subroutines, TRAK and TRAKXY, that are
used with the tracking object. TRAK will display the tracking object
on the screen, and TRAKXY returns- the coordinates of the tracking
object. The tracking object will center itself on the light pen when
the light pen touches it. You can also attach certain primitives,
usually vectors, to the tracking object so that they will "follow" it
on the screen as you move the light pen. Use the subroutines ATTACH
and DETACH to move primitives in this way.

Finally, the subroutine GRID described in this section creates an
invisible dot pattern on the screen, each dot having a known
coordinate position. As a final step in programs that use the 1light
pen and tracking object, the GRID subroutine will move the tracking
object (and any attached primitives) to the nearest point on -the
invisible grid. GRID is therefore wuseful when you are making
rectilinear drawings, since it tends to compensate for the minor
errors you may make in moving objects to an exact position with the
light pen.

DECGRAPHIC-11 FORTRAN SUBROUTINES

2.8.1 LPEN: Recording a Light-Pen Hit
Form: CALL LPEN (IH,IT[,X,Y,IP,IA,IM,ITl,ITZ])

Arguments:

The IH and IT arguments must be included. If the value returned
by IH 1is 0, no light-pen hit occurred since the last LPEN call.
If the value is 1, a hit occurred on Scope 1. If the value is 2,
a hit occurred on Scope 2. (On one-scope subsystems, a hit is
indicated by IH=1.) If a hit did occur, IT returns the tag of the
subpicture” in which the hit occurred.

The optional arguments return more detailed information: the
coordinates of the hit (X and Y), the primitive number that was
hit (IP), the precedents of a nested subpicture (array 1IA), the
screen area of the hit (IM=1l: main viewing area; IM=2: menu
area), and for VS60 scopes, the status of the light-pen tip
switches for Scope 1 and Scope 2 (ITn=0: off; 1ITn=l: on).

Instructions:

LPEN tests, or "polls," for a light-pen hit on the display screen.
You can test for a hit on any of the primitives that have been made
sensitive to the light pen (e.g., with the SENSE subroutine; see
Section 2.7.1). 1If you point the light pen at a primitive that is not
sensitive, nothing will happen; if the primitive 1is sensitive, a
graphic attention, or light-pen hit, will occur.

LPEN does not suspend the program, or "wait," until a light-pen hit
occurs., If you want to continually poll a particular primitive, for
example, put the LPEN call in a programmed 1loop. See also the
description of GRATTN (Section 2.9.1). GRATTN can make the program
wait until a light-pen hit occurs; then you can follow immediately
with an LPEN call to get all the details on the hit.

One of the noticeable properties of the light-pen device and the LPEN
subroutine is the extreme rapidity with which they generate and detect
light-pen attentions. Consider the following sample program segment;

COMMON/DFILE/I (500)
CALL INIT(500)

CALL SUBP(2)

CALL APNT(512.,512.,1,-4)
CALL VECT (0.,100.,,1)
CALL RPNT(40.,0.,,-4)
CALL VECT (0.,100.,,2)
CALL RPNT(60.,0.,,-4)
CALL VECT(0.,100.,,4)
CALL RPNT(80.,0.,,-4)
CALL VECT(0.,100.,,6)
CALL RPNT(100.,0.,,-4)
CALL VECT(0.,100.,,8)

100 CALL LPEN(IH,IT,X,Y,IP,,IM)
IF(IH.EQ.0) GO TO 100
IF(IP.EQ.10) GO TO 200
WRITE(5,110) IT,X,Y,IP,IM
GO TO 100

200 WRITE(5,120)

110 FORMAT(' ','HIT ON SUBPICTURE ',12,"',

X COORDINATES ',F7.2.',"

X (£7.2,', PRIMITIVE ',I2,'; I =',I2)
120 FORMAT(' HIT ON PRIMITIVE 10; sTop')
STOP
END

DECGRAPHIC-11 FORTRAN SUBROUTINES

Write up, compile, link, and run this short program. It will display
five vertical vectors on the screen, with intensities 1, 2, 4, 6, and
8. Since the APNT call sets 1=1, all the primitives in the subpicture
are light-pen sensitive. ,

NOTE

I1f you run this program, adjust the
BRIGHTNESS (or INTENSITY) knob on your
scope so that the first vector, at
Intensity Level 1, is barely visible.

First of all, you will notice that nothing happens when you point the
light pen at the first two vectors; they are too faint to be detected
if your scope is properly adjusted.

However, the three brightest vectors are bright enough, and an
attention will occur when you touch them with the light pen. Note
that LPEN is in a loop that will continue until you hit Primitive 10,
the brightest vector.

1f you touch the other bright vectors with the 1light pen, you will
notice that wunless you sweep the pen across the vector very quickly,
LPEN will record more than one hit. When you touch a sensitive
primitive with the light pen, several attentions are often generated
before you can move the pen again.

If the generation of these multiple attentions creates a problem for
your particular application, one solution is to make LPEN count the
number of hits on a particular primitive:

IHITS=0

100 CALL LPEN(IH,IT,IP)
IF(IH.EQ.0.0R.IT.NE.Z.OR.IP.NE.G) GO TO 100
IHITS=IHITS+1
IF(IHITS.LT.10) GO TO 100

This LPEN segment will make the program pause until it gets 10 hits on
Primitive 6 of Subpicture 2. It will ignore 'accidental' hits on
other primitives, and it will, 1in essence, demand that you
deliberately select Primitive 6. TIf you replace the LPEN section of
the previous sample program with this fragment, you will notice that
the message printed on the terminal will be better synchronized with
the act of touching the primitive. In other words, the illusion of
"real-time" interaction is more convincing.

The dummy variable IA must be dimensioned to 8 in a DIMENSION oOr
INTEGER statement when you use it. This variable tells whether a
particular primitive is in a nested subpicture. If the primitive's
subpicture, T, is nested, IA will contain the tags of the
"precedents" of IT, or in other words, the tags of the subpictures
within which IT is nested. IA(1l) will contain the tag of Precedent 1,
the innermost subpicture. Since a subpicture cannot have more than
seven precedents, the last element of IA will always equal -2. If
there are fewer than seven precedents, the element of IA following the
last precedent tag will equal -2. For instance, if there are three

2-85

DECGRAPHIC-11 FORTRAN SUBROUTINES

precedents, IA(4)=-2. 1If Subpicture IT is not a nested subpicture (no

precedents), IA(l)=-2.

Example:

This example displays a menu of program options. It then waits for a
light-pen hit in "the menu area, flashes the option selected by the

hit, and branches to the appropriate section of the program.

CALL MENU (,800.,-50.,100,
X 'SAMPLE','FFT','PLOT','STOP')
CALL POINTR(20,100)

CALL SENSE (20)

100 CALL LPEN (IH,IT)
IF (IH.EQ.0.OR.IT.LT.100.0R.IT.GT.103) GO TO 100

CALL POINTR (11,IT)
CALL FLASH (11)
GO TO (100,200,300,400), IT-99

.

Routines called by LPEN: POINTR, ADVANC, TOSAT (h-s), FRSAT (h-s)

Routines that call LPEN: None.

DECGRAPHIC-11 FORTRAN SUBROUTINES

2.8.2 TRAK: Placing a Tracking Object on the Screen
Form: CALL TRAK (x,yl,sl])
Arguments:

Yyou must supply the x and y arguments; they give the coordinate
position at which the tracking object will appear.

The optional s argument (1 or 2) is for two-scope VS60 subsystems
and identifies the scope on which the tracking object will
appear. The s argument is ignored on VT1ll subsystems and on
one-scope VS60 subsystems. If you omit s on a two-scope
subsystem, the tracking object will appear on Scope 2.

Instructions:

TRAK allows you to position an octagonal tracking object on the
display screen. The tracking object is positioned initially at the
coordinate position (x,y). When you touch the tracking object with
the light pen, it will center itself on the light-pen coordinates, and
it will then "follow" the light pen as you move it across the screen.
When the tracking object moves, so will any primitives that are
attached to it (see ATTACH, Section 2.8.4).

The tracking object cannot be positioned in the menu area of the VS60
screen. Note also that the tracking object is not moved by either a
call to CVSCAL or a call to VIEWPT.)

NOTE

On VS60 scopes, the tracking object will
follow the 1light pen only when the

light-pen tip switch is "on" (pressed
against the surface of the display
screen).

You can remove the tracking object from the screen by calling ERAS
with no argument (see Section 2.4.6).

An example using TRAK is included in the description of GRID (see
Section 2.8.6).

Routines called by TRAK: TOSAT (h-s)

Routines that call TRAK: GRID

DECGRAPHIC-11 FORTRAN SUBROUTINES

2.8.3 TRARXY: Returning the Coordinates of the Tracking Object
Form: CALL TRAKXY (X,Y[,s])

Arguments:

The REAL dummy variables X and Y return the current coordinates
of the tracking object. The optional argument s indicates, for
two-scope VS60 subsystems, whether the tracking object being
addressed is on Scope 1 (s=1) or Scope 2 (s=2). If you omit s,
Scope 1 is implied on a two-scope subsystem. On one-scope VS60
subsystems and VT1l subsystems, s is ignored.

Instructions:

This example (see Figure 2-25) shows TRAKXY being used to retrieve the
starting coordinates of a figure subpicture. The coordinates are
displayed on the screen by the TEXT and CHANGT subroutines, in
"odometer" fashion. This example uses a special subroutine, ITOA, to
convert integers to ASCII codes. See Section 3.1.4 for a description
of ITOA.

COMMON/DFILE/IBUF (1000)
REAL ENDPNT(16)

LOGICAL ARRAYS FOR COORDINATE
CHARACTER STRINGS

eNoNoXe!

LOGICAL*1 COORDX (8) ,COORDY (8)

DATA ENDPNT/O.,lOO.,lOO.,0.,0.,-100.,-100.,0.,100.,100.,
X -50.,50.,-50.,-50.,100.,-100./

CALL INIT(1000)

DISPLAY BOX FIGURE (SUBP. 101)

[oNeNe]

CALL SUBP(101)

CALL APNT(512.,512.,,-4)
CALL FIGR(ENDPNT,16,100)
CALL TRAK(512.,512.)
CALL ESUB(101)

ATTACH FIGURE TO TRACKING OBJECT

anan

CALL POINTR(15,101)
CALL ATTACH(15)

DISPLAY COORDINATE STRINGS (SUBP. 111)

[oReNe]

CALL APNT(0.,100.,,-4)
CALL SUBP(111)
CALL TEXT('MOVE THE TRACKING
X OBJECT WITH THE LIGHT PEN')
CALL TEXT(1,-2,'NEW COORDINATES:',' X=')
CALL TEXT('00000"')
CALL TEXT(', ¥Y="')
CALL TEXT('00000'")
CALL ESUB(111)

SET POINTERS TO X AND Y COORDINATE STRINGS

[oNoNe]

CALL POINTR(1,111,3)
CALL POINTR(2,111,5)

C GET TRACKING OBJECT'S COORDINATES,

2-88

[eXeReRe! @] a0 nNnn

leXeNe!

501

Another example using TRAKXY is included in the

DECGRAPHIC-11 FORTRAN’SUBROUTINES

CONVERT THEM TO INTEGERS (IXCOﬁD, IYCORD) ,
AND CONVERT INTEGERS TO ASCII (ITOA)

COORDINATE DISPLAY IS UPDATED IN LOOP 500

CALIL TRAKXY (XCORD,YCORD)

IXCORD=INT (XCORD)

IYCORD=INT (YCORD)

[sTOP PROGRAM WHEN X COORDINATE < 35]
IF (IXCORD.LT.35) GO TO 501

CALL ITOA(IXCORD,5,COORDX)

CALL ITOA(IYCORD,S,COORDY)

APPEND NULL BYTE TO END OF
5-CHARACTER COORDINATE STRINGS

COORDY (6) =0
COORDX (6) =0

UPDATE COORDINATE STRINGS

CALL CHANGT (1,COORDX) -
CALL CHANGT (2,COORDY)
GO TO 500

STOP

END

MOVE THE TRACKING OBJECT WITH THE LIGHT PEN
NEN COORDINARTES: X= 723, Y= 428

Figure 2-25 TRAKXY Subroutine

(see Section 2.8.6).

Routines called by TRAKXY: TOSAT (h-s), FRSAT (h-s8)

Routines that call TRAKXY: GRID

description

of

GRID

DECGRAPHIC-11 FORTRAN SUBROUTINES

2.8.4 ATTACH: Attaching a Primitive to the Tracking Object
Form: CALL ATTACH (k[,n,s])
Arguments:

The k argument, which you must supply, is a pointer number from 1
to 20. The optional argument n indicates which end of an
attached vector will move with the tracking object. If you omit
n, the vector's origin is stationary and its destination point
moves.

The s argument indicates which scope of a two-scope VS60
subsystem 1is being addressed; making s=1 attaches primitives to
the tracking object on Scope 1; s=2 attaches the primitives on
Scope 2 to that scope's tracking object; if you omit s, Scope 1
is implied. The s argument is ignored on one-scope VS60
subsystems and on VTl1ll subsystems.

Instructions:

ATTACH allows you to attach the primitive identified by Pointer k to
the tracking object. The primitive will not necessarily be
superimposed on the tracking object, but it will still move the same
distance in the same direction as the tracking object.

Primitives that can be attached in this fashion include the long
vector (LVECT), the absolute point (APNT), and the absolute vector
(AVECT) . If you specify a pointer to any other kind of primitive, the
ATTACH call will be ignored.

By attaching a primitive to the tracking object, you can easily change
the coordinates of a point or vector by moving it to another part of
the display screen and then detaching it (see the description of
DETACH in the next section).

If the primitive to be attached is a long vector, the vector will
follow the tracking object as it moves on the display screen. Tne
optional n argument determines which end of the vector will move and
which end will be stationary. If n is positive or omitted from the
call, the vector's origin is stationary and its destination will move.
If n is negative, the vector's destination is stationary and its
origin will move.

NOTE

If you try to use ATTACH to "stretch" a
vector more than 1023 raster units, the
vector will not move along reliably with
the tracking object.

You do not need the n argument if the attached object is an absolute
point or an absolute vector. If an absolute point or vector is
attached to the tracking object, the point or vector end point will be
moved the same distance as the tracking object.

DECGRAPHIC-11 FORTRAN SUBROUTINES
You can attach as many as 40 primitivés to the tracking object on the
display screen by simply calling ATTACH repeatedly.

An example using ATTACH is included in the description of GRID (see
Section 2.8.6). .

Routines called by ATTACH: TOSAT (h-s)

Routines that call ATTACH: None.

DECGRAPHIC-11 FORTRAN SUBROUTINES

2.8.5 DETACH: Detaching Primitives from the Tracking Object

Form: CALL DETACH [(s)]

Arguments:
The optional s argument indicates which scope of a two-scope VS60
subsystem is being addressed (s=1: Scope 1; s=2: Scope 2). 1If
you omit s, Scope 1 is implied. The s argument is ignored on
one-scope VS60 subsystems and vTll subsystems.

Instructions:

DETACH detaches all currently attached primitives from the tracking
object.

Routines called by DETACH: TOSAT (h=-s)

Routines that call DETACH: None.

DECGRAPHIC-11 FORTRAN SUBROUTINES

2.8.6 GRID: Positioning the Tracking Object on the Grid
Form: CALL GRID (gx,gyl,s])
Arguments:

The arguments gx and gy give the spacing between the individual
points of the grid.

The optional s argument identifies the scope (1 or 2) to which
the GRID call applies. 1If you omit s, Scope 1 is implied. The s
argument is ignored on one-scope vS60 subsystems and on VTL1
subsystems.

Instructions:

GRID defines on the display screen the coordinates of a grid of evenly
spaced invisible dots, and moves the tracking object to the nearest
point on the grid. GRID is useful when you are drawing with the light
pen or positioning objects on the screen.

When GRID moves the tracking object on the screen, 1t also makes
necessary adjustments to the coordinate positions of any points and
vectors that are attached to the object. An automatic DETACH is
performed after the adjustment.

Example:

This example uses input from the light pen to build a subpicture
consisting of an absolute point and a long vector. The starting of
the line is initially positioned by moving the tracking object and
typing a carriage return on the terminal when finished. The GRID
subroutine is used to force the starting point to lie on the invisible
grid whose (x,Y) spacing is (50.,50.). A long vector is then drawn
and attached to the tracking object, which can be moved with the light
pen. The vector 1is then effectively "stretched" with the tracking
object to the desired endpoint. GRID is once again called to
"normalize" the endpoint by making it lie exactly on the grid.

DECGRAPHIC-~11 FORTRAN SUBROUTINES

CALL TRAK (500.,500.)
WRITE (5,10)
10 FORMAT (' POSITION TRACKING OBJECT, TYPE <CR> WHEN DONE')
READ (5,20) I
20 FORMAT (A2)
CALL GRID (50.,50.)
CALL TRAKXY (X0,Y0)
CALL SUBP (1500)
CALL APNT (x0,Y0,,-4)
CALL LVECT (0.,0.)
CALL ESUB (1500)
CALL POINTR (20,1500,2)
CALL ATTACH (20)
WRITE (5,30)
30 FORMAT (' DRAW LINE, TYPE <CR> WHEN DONE"')
READ (5,20) 1
CALL GRID (50.,50.)

Routines called by GRID: TRAK, TRAKXY, TOSAT (h-s)

Routines that call GRID: None.

DECGRAPHIC-11 FORTRAN SUBROUTINES

2.9 POLLING INTERACTIVE DEVICES

As you have seen with the 1light-pen subroutines (Section 2.8), a
graphic program can be made interactive by the use of graphic
attentions created when the light pen detects a primitive on the
screen. The DECgraphic-11 FORTRAN Graphics Package also allows you to
use a programmable pushbutton box (Section 2.10) and the keyboard
(Section 2.11) as interactive devices. Each of these three devices
has its own set of subroutines for detecting graphic attentions, such
as the LPEN subroutine for the light pen and the PBH subroutine for
the pushbutton box. '

Because there are three devices that can be used for interactive
graphics, you can write programs that make use of graphic attentions
from all three, thereby extending the control you have over the
display. In a program that uses more than one interactive device, it
is convenient to have a simpler way of processing graphic attentions
than is provided by the individual subroutines like LPEN and PBH.
That is, you need a subroutine that can

1. Wait for a graphic attention to occur;
2. Tell you when a graphic attention does occur;
3. Tell you the source of the graphic attention; and

4. Tell the program where to 1look in its code for an
attention-processing routine, once it knows the source of the
graphic attention.

The subroutine GRATTN fulfills these requirements. It is described in
Section 2.9.1.

Remember that when using GRATTN or other attention-polling
subroutines, for all practical purposes FORTRAN 1is a synchronous
language. Synchronous, in this case, means that your program can look
for or respond to graphic attentions only at the precise moment that
you tell it to do so. For instance, the example in Section 2.8.1 for
LPEN shows that this subroutine 1is usually placed in a loop that
repeatedly looks for light-pen hits (i.e., graphic attentions):

100 CALL LPEN(IH,IT)
IF(IH.EQ.0.0R.IT.LT.lO0.0R.IT.GT.103) GO TO 100

The program will stay in this loop until it gets a light-pen hit from
subpictures 100 to 103. Once it does get outside the loop, however,
the program cannot detect light-pen hits any more. That is what 1is
meant by synchronous; if FORTRAN were asynchronous, a subroutine like
LPEN could respond to a light-pen hit no matter when it occurred.

DECGRAPHIC-11 FORTRAN SUBROUTINES

2.9.1 GRATTN: Graphic-Attention Handling
Form: CALL GRATTN(iwait,IRETRN,idevl[,idev2,idev3,...,idevn])
Arguments:

The iwait argument tells GRATTN either to return after one poll
of the interactive devices (iwait=0) or to wait until a graphic
attention occurs (iwait=1),

The IRETRN argument is the "hit indicator." It will be 0 when
GRATTN returns if there was no graphic attention. If a graphic
attention occurred, IRETRN will be an index to the list of device
numbers (idevn). That is, IRETRN will be either l, 2, or 3, if
three device numbers are sbpplied.

The idevl-idevn arguments list device numbers that stand for the
interactive devices in your display subsystem. At present, the
DECgraphic-11 FORTRAN Graphics Package recognizes three
interactive devices, with the following device numbers:

1 = Light pen
2 = Pushbutton box
3 = Keyboard

Instructions:

The three device numbers can be listed in any order; IRETRN will
point to the first, second, or third position in the list of device
numbers. Notice also that only one device number is required, so that
GRATTN can poll a single device instead of several.

For example, the LPEN subroutine always returns after a single check
for a 1light-pen attention with either a "hit" or a "no hit"
indication. That is why LPEN is usually put in a programmed loop. AS
an alternative, consider the following call to GRATTN:

CALL GRATTN(1,IRETRN,1)

When you make this call, the program will wait until a light-pen hit
occurs, You then can follow up with a call to LPEN to get detailed
information about the light-pen hit, as described in Section 2.8. To
poll the light pen repeatedly, you can put the GRATTN call in a loop,
in which case the program will wait for a light-pen hit on each pass
through the loop.

CAUTION

Each time GRATTN is called, LPEN, PBH,
PBS, or KBC must be called immediately
afterward to clear the ATTENTION flag.
Otherwise, repeated GRATTN calls (in a
DO loop, for instance) will keep
reporting the same attention that set
the ATTENTION flag in the first place.

DECGRAPHIC-11 FORTRAN SUBROUTINES

Because the device numbers can appear in any order, GRATTN can also
check only the pushbutton box,

CALL GRATTN(1l,IRETRN,2)
the pushbutton box and keyboard,

CALL GRATTN(1l,IRETRN,2,3)
or any other combination of the three devices.
When you use GRATTN to poll several devices, IRETRN can be used in a
"computed GO TO" statement to branch to the proper

attention-processing routine. For example,

CALL GRATTN(1,IRETRN,3,2,1)
GO TO (100,200,300), IRETRN

In this example, IRETRN will equal 1 if Device 3 (the keyboard)
created the graphic attention, 2 for Device 2 (the pushbutton box),
and 3 for Device 1 (the light pen).

Because IRETRN is an index to the list of device numbers, rather than
the device number itself, the list of device numbers can be expanded
when new interactive devices are added in the future.

Routines called by GRATTN: TOSAT (h-s), FRSAT (h-s)

Routines that call GRATTN: None.

DECGRAPHIC-11 FORTRAN SUBROUTINES

2.10 USING THE OPTIONAL PUSHBUTTON BOX

One of the optional features offered by the DECgraphic-11 FORTRAN
Graphics Package is support for the LK-11 pushbutton box.

Figure 2-26 LK-11 Pushbutton Box

The LK-11 has 16 buttons, each with its own programmable light. Each
button has two states, represented by the logical values .TRUE. and
-FALSE. Normally, the buttons will 1light up when they are .TRUE.,
although you can also tell the program to light up buttons directly.

A button generates a graphic attention whenever it is pushed (that is,
changed from .TRUE. to .FALSE., or from .FALSE. to .TRUE.).

The DECgraphic-11 FORTRAN Graphics Package controls the pushbuttons in
three ways:

1. Records the current .TRUE./.FALSE. status of the buttons
(PBS) ;

2. Looks for a pushbutton "hit" (PBH); and
3. Turns specific lights on or off (PBL).

As was explained in Section 2.9, the subroutine GRATTN can also 1look
for pushbutton hits. Subroutine PBH is to the pushbuttons what LPEN
is to the light pen; that is, PBH makes one check for a hit and
returns. GRATTN can wait for a pushbutton hit without having to be
placed in a loop, and can also poll other devices at the same time.
Each time you use GRATTN to check for a hit, you must follow it with
an attention-processing call -- PBH or PBS in the case of pushbuttons.

DECGRAPHIC-11 FORTRAN SUBROUTINES

2.10.1 PBS: Checking the Status of the Pushbuttons
Form: CALL PBS(STATE)
Argument:
STATE is a LOGICAL*1 array of 16 elements, one for each button.
Instructions:

When you call PBS, the subroutine will return with the elements of
STATE set to either .TRUE. or .FALSE.

PBS does not change the status of the buttons, but only records them
in STATE.

In normal operations, a light on the LK-1ll turns on when the state of
the button 1is ,TRUE. and off when the state is .FALSE. However, if
you have used subroutine PBL (see Section 2.10.3) to turn certain
lights on or off, the lights will no longer reflect the .TRUE./.FALSE.
status of the buttons.

Routines called by PBS: TOSAT (h-s), FRSAT (h-s)

Routines that call PBS: None.

DECGRAPHIC-11 FORTRAN SUBROUTINES

2.10.2 PBH: Checking for a Pushbutton Hit
Form: CALL PBH(IHIT,PUSHED)

Arguments:

IHIT will be 0 if no buttons have been pushed since the last call
to PBH., IHIT will be a nonzero integer if any of the 16 buttons
has been pushed since the last call. IHIT is therefore a "hit
indicator" for the pushbutton box.

PUSHED is a LOGICAL*1 array of 16 elements. An element of PUSHED
will be set to .TRUE. 1if the corresponding button was pushed.

Instructions:

The usual procedure for polling the pushbutton box is to put PBH in a
programmed loop to wait for a hit and then to use elements of PUSHED
in a logical IF statement. For example,

100 CALL PBH(IHIT,PUSHED)
IF(IHIT.EQ.0) GO TO 100
DO 110 I=1,16
IF (PUSHED(I)) GO TO (120,130,140,150,160,170,
X 180,190,200,210,220,230,240,250,260,270) ,I
110 CONTINUE

Notice that there is no connection between a .TRUE. value for an
element of PUSHED and the same element of the PBS argument STATE. In
other words, pushing a button may set STATE(l) to .FALSE. even though
the same action will always set PUSHED(l) to .TRUE. PBH records
whether a button has been pushed, without regard to its state.

Because there are two separate subroutines, PBS and PBH, that return
logical information about the pushbuttons, you have two dimensions of
interaction with the pushbutton box.

Routines called by PBH: TOSAT (h-s), FRSAT (h-s)

Routines that call PBH: None.

2-100

DECGRAPHIC-11 FORTRAN SUBROUTINES

2.10.3 PBL: Generating the Pushbutton Lights
Form: CALL PBL[(DARK,LIT)]
Arguments:'

DARK and LIT are both LOGICAL*1 arrays of 16 elements, one for
each button. To turn off a button, set its element of DARK to
.TRUE. before calling PBL. To 1light up a button, set its
element of LIT to .TRUE. The DARK elements are processed first,
so that setting the same element of both arrays to .TRUE. will
light up the button. :

No argument: Lights are returned to automatic control.
Instructions:
As noted in Section 2.10.1, buttons on the LK-11 are normally lit when
their status (that 1is, their elements in STATE) is .TRUE. However,
PBL disables this feature; PBS will still report the .TRUE./.FALSE.
status of the buttons, but it will not be the same as the status of
the lights.
To return the status of the lights to "automatic control," where a
.TRUE. in the STATE (PBS) array represents a lit button, call PSL
again with no arguments.
Routines called by PBL: TOSAT (h-s)

Routines that call PBL: None.

2-101

DECGRAPHIC-11 FORTRAN SUBROUTINES

2.11 CONTROLLING THE KEYBOARD

The DECgraphic-11 FORTRAN Graphics Package includes three "keyboard
control" subroutines, described in this section. The function of
these subroutines is to read and write single characters or character
strings from and to the keyboard you are using. The description of
each routine shows that they offer advantages for graphic programming
that do not exist with the usual FORTRAN READ and WRITE statements.
In fact, READ and WRITE are among the statements that cannot be used
at all in a satellite control program, and so these new subroutines
are a necessity in that situation (see Section 5.3.4 if you are
programming a host-satellite system).

One of these subroutines, KBC, allows you to use the keyboard as an
interactive device. Used in this way, KBC is similar to LPEN (see
Section 2.8); both subroutines are designed to return immediately
when called, telling you whether a graphic attention came from the
device since the last call. Therefore, KBC can be placed in a loop so
that it will continually check for a "keyboard hit." As an
alternative, you can use GRATTN (see Section 2.9.1) to make the
program wait until a graphic attention occurs from the keyboard.

2-102

DECGRAPHIC-11 FORTRAN SUBROUTINES

2.11.1 KBC: Reading a Character from the Keyboard
Form: CALL KBC (ICHAR)

Arguments:

ICHAR is an integer that returns the ASCII value of the character
that was typed since the last call to KBC. If no character was
typed, ICHAR is 0.

Instructions:

You can use KBC to return a character for text processing, or you can
process the ASCII code in ICHAR and use the keyboard as an interactive
device. For example, the letters A-P can be programmed to represent
the same conditions as the 16 buttons on the LK-11 pushbutton box.

NOTE

In RT-11, KBC cannot read the character
you type unless vyou precede it and

follow it with a <carriage return. In
the other operating systems, the
carriage returns are not required. If

you want to activate MCR when KBC is in
use in the stand-alone version of
RSX-11M, vyou may have to type CTRL/C
twice.

Routines called by KBC: TOSAT (h-s), FRSAT (h-s)

Routines that call KBC: None.

2-103

DECGRAPHIC-11 FORTRAN SUBROUTINES

2.11.2 KBS: Reading a String from the Keyboard
Form: CALL KBS(length,STRING[,NUMBER])

Arguments:

The length argument has a maximum value of 72. STRING 1is a
LOGICAL*1 array of maximum length equal to the length argument;
it holds the ASCII values of characters read by KBS.

NUMBER is an optional argument that returns the actual number of
characters read by KBS.

Instructions:

When you call KBS, the program will wait for a carriage return and
then will read a string from the keyboard. (You can use the DELETE
and CTRL/U keys to cancel characters and lines before typing the
carriage return.,) The maximum number of characters in the string
(length) is 72; .if you try to make KBS read an 80-character string,
for example, it will ignore the last 8 characters. The maximum length
does not include the NUL character (ASCII code 0) used for a
terminator of FORTRAN strings.

Routines called by KBS: None.

Routines that call KBS: None.

2-104

DECGRAPHIC-11 FORTRAN SUBROUTINES

2.11.3 TTW: Displaying Strings on the User's Terminal
Form: CALL TTW(number ,ICHARS[,number,ICHARS,...])

Arguments:

The number argument tells TTW how many characters to display from
the immediately following array, ICHARS.

ICHARS is a LOGICAL*1 array containing the characters to be
displayed.

Instructions:

TTW sends character strings to the terminal, so that they are
displayed on the screen (or on the hard copy, in the case of
printer-type terminals). '

If number is 0, you can use a FORTRAN literal (a character string
enclosed in single quotation marks) for ICHARS. If number is -1, the
characters in ICHAR are displayed as usual, but are not terminated
with a <carriage return; the cursor will remain at the end of the
displayed text string instead of moving to the next line. This mode
is useful for interactive displays in which the user must respond to a
programmed question,

Notice that number and ICHARS can be repeated indefinitely, either to
display several lines of the same string or to display different
strings in the same call.

Routines called by TTW: None.

Routines that call TTW: None.

2-105

DECGRAPHIC-11 FORTRAN SUBROUTINES

2.12 CONTROLLING THE OVERALL DISPLAY

Section 3.1.2 of this manual describes the use of the SUBP and OFF
subroutines to <create complete display files before any graphic
information is actually displayed on the screen. Creating display
files in this manner will speed up considerably the operation of a
graphic program. :

This section describes another way of creating display files quickly.
If you are using the DECgraphic-11 FORTRAN Graphics Package in a
stand-alone system (that 1is, with your display processor on the
UNIBUS), there 1is only a small gain in speed with the technique
discussed in this section versus the use of SUBP and OFF. The
advantage for a stand-alone user is that the technique described in
this section does not involve the creation of unnecessary subpictures,
and that it uses a single, easily recognized subroutine.

If you are using the DECgraphic-11l FORTRAN Graphics Package in a

host-satellite system, there will be a significant gain in speed if
you apply the technique described in this section.

2-106

DECGRAPHIC-11 FORTRAN SUBROUTINES

2.12,1 DISPLY: Rapid Creation of Display Files
Form: CALL DISPLY(n)
Argument:

The n argument is the mode switch for DISPLY. Legal values for n
are -1, 0, and 1.

Instructions:

DISPLY is a control routine that you use to specify whether graphic
instructions entered in the display file will be displayed
immediately, or whether the instructions will be put in an "inactive
display list" and then later displayed as a block.

When you call DISPLY with n=-1, no calls to the DECgraphic-11
subroutines that follow will display new primitives. Instead, the
instructions will be put into the inactive display 1list. The exact
location and size of the inactive display list depends on the type of
system configuration you are using.

If you are using RT-11 or a stand-alone RSX-11M system, the 1inactive
display 1list 1is the unused part of the display file. That is, the
active display list consists of the primitives up to the DHALT, O
instructions (see Appendix C) that mark the end of the current
display. The remaining display-file space will be available for the
inactive display 1list, and any subsequent graphic subroutine calls
will insert primitives in this area. For example, the sequence

CALL DISPLY (-1)

CALL APNT(200.,200.,,-4)
CALL VECT(100.,0.)

CALL VECT(0.,100.)

CALL VECT(-100.,0.)

enters instructions in the inactive display list for an absolute point
and four vectors, which will form a square on the screen when they are
displayed. Because of the CALL DISPLY(-l), however, these primitives
will not yet be displayed on the screen.

When you have prepared the display file in this manner, vyou can
display the image in two ways:

1. You can call DISPLY again with n=0 (or with no argument).
This call will move the DHALT, 0 instructions to the first
two vacant words in the display file. The primitives that
were formerly in the 1inactive display list are now in the
active display 1list and will immediately appear on the
screen. However, this call does not change the display
"mode"; that is, subsequent primitives are still inserted in
the inactive display list. You can continue to write calls
to the graphic subroutines, but no new images will
automatically appear on the screen.

2-107

DECGRAPHIC-11 FORTRAN SUBROUTINES

2., If you want to "activate" the inactive display list and also
to return to the normal, automatic display mode, call DISPLY
with n=l. The instructions in the inactive 1list will
immediately be activated and the corresponding primitives
will appear on the screen. Furthermore, subsequent
primitives will now be inserted at the end of the active
display list so that they appear on the screen immediately.

In a host-satellite system (RSX~11l and IAS only), the effect of the
DISPLY arguments is essentially the same; however, the inactive
display list in this case is actually a separate buffer 1in the host
computer's memory, not a part of the display file (which is in the
satellite's memory).

NOTE

Some subroutines (for example, SUBP and
ESUB) must call DISPLY (0) internally.
This occurrence can cause portions of
the display to appear even though you
have not directly called DISPLY.

If you are programming in a stand-alone system, you should choose
carefully between this technique for rapid display files and the
technique described in Section 3.1.2. DISPLY is a simpler solution to
the problem and does not create an unnecessary subpicture. However,
it is often convenient to use subpictures so that you will be able to
refer back to a set of display instructions later in the program.
Once CALL DISPLY (1) moves the instructions from the inactive to the
active display 1list, there is no way to distinguish them from other
display instructions. For this reason, you may often want to use
subpictures when you also use DISPLY.

Although the same considerations apply in a host-satellite system, the
gain in speed by wusing DISPLY makes it a much better method. As
Section 5.3 explains, each DECgraphic-11 subroutine call that you make
in satellite programs requires that the host send an "operation code
coming" message to the satellite, then transmit the code 1itself, and
finally receive an acknowledgment from the satellite. The warning
message and acknowledgment make up a "communication overhead" for each
subroutine call; when added up for several subroutine calls, the
communication overhead will delay execution of the program a great
deal.

The advantage of using DISPLY in a host-satellite system is that the
operation codes for the subroutines are not executed immediately;
they are actually placed 1in a buffer at the host end and then
transmitted to the satellite as a block when you call DISPLY(l) or
DISPLY(0). The communication overhead for this transmission will be
the same as the overhead for a single subroutine call, but for a
considerable saving in time.

Routines called by DISPLY: TOSAT (h-s)

Routines that call DISPLY: None.

2-108

DECGRAPHIC-11 FORTRAN SUBROUTINES

2.13 COMPRESSING, SAVING, AND RESTORING THE DISPLAY FILE

DECgraphic-11 display files can be stored and retrieved on
mass-storage devices. With the subroutines described in this section,
you can write a program that draws pictures and saves them on a disk
or magnetic tape. The display files stored in this way can also be
retrieved by other programs, so that you need not repeat all the
subroutine calls that created the display file in the first instance.

The first subroutine described here, CMPRS, also provides the valuable
service of reclaiming space in the display file that is being taken up
by erased primitives and subpictures. The SAVE subroutine (Section
2.13.2) also compresses the display file before writing it on your
mass-storage device.

2-109

DECGRAPHIC-11 FORTRAN SUBROUTINES

2.13.1 CMPRS: Compressing the Display File
Form: CALL CMPRS

Arguments: None.

Instructions:

CMPRS is used to reclaim space in the display file that is occupied by
erased primitives and subpictures.

After part of a graphic program is executed, the display file may
contain primitives and subpictures that are no longer needed and have
been erased. The ERAS and ERASP subroutines do not actually delete
elements of the display file; they simply tell the display processor
to skip the erased elements so that they will not be displayed.
Therefore, the space occupied by these erased display elements is not
yet available for other purposes. Although the tags associated with
erased primitives and subpictures are immediately available, the space
in the display file is not. You must periodically call CMPRS to
condense the display file and reclaim the space used by the erased
display elements.

NOTE
A CMPRS call invalidates all current
pointer assignments and detaches all
primitives from the tracking object.
Example:

This example ilustrates a reasonable technique for monitoring the
amount of space remaining in the display file; in this case, the

amount is expressed as a percentage of the total initial space. It
also calls CMPRS automatically when this total drops below a certain
threshold -- 10%. The DPTR subroutine (see Section 2.14.1) is used to

determine the amount of space used, and NMBR is used to display the
percentage remaining in the display file. You <could insert this
fragment in a program and branch to it whenever the display file needs
to be checked.

2-110

100

110
200

Routines called by CMPRS:

DECGRAPHIC-11 FORTRAN SUBROUTINES

CALL INIT (2000)

CALL DPTR (NEXT)

PLEFT = (2001.-FLOAT (NEXT))/20.
CALL APNT (0.,0.,,-4)

CALL NMBR (2000,PLEFT,5,'(F5.1)"')
IF (PLEFT.GT.10.) GO TO 200

CALL CMPRS

CALL DPTR (I)

IF (I.LT.NEXT) GO TO 200

WRITE (5,110)

FORMAT (' WARNING: DISPLAY FILE NEARLY FULL')

CONTINUE

Routines that call CMPRS: SAVE, RSTR

2-111

STOP, CONT, TOSAT (h-s)

DECGRAPHIC-11 FORTRAN SUBROUTINES

2.13.2 SAVE: Saving the Display File
Form: CALL SAVE ('[dev:]file descriptor')
Arguments:

The entire argument string must be enclosed in single quotation
marks ('). The optional dev: 1is any legal device code used in
your operating system (for example, DT0: for DECtape Drive 0).
If you do not include dev:, the display file will be written on
your system device. The file descriptor is the 1legal form of
file names for your operating system, including the User
Identification Code (UIC) for Files-11 systems. All the wusual
defaults apply:; for example, if you do not include the UIC
(RSX-11 and IAS only), the display file will be written with the
current UIC of your terminal. If you do not specify an extension
for the file name, the default is .DAT for RT-11 and no extension
for IAS and RSx-1l.

Instructions:

SAVE compresses the display file and saves it as a data file on a
mass-storage device, such as a disk or floppy disk. You can restore
the saved file as part of the current display file with the RSTR
subroutine (see Section 2.13.3).

SAVE is particularly useful in creating display files that can be
called in from secondary storage as needed by an application program.
You can use one program to create displays that other programs can
retrieve without incurring the overhead required to create new display
files. For example, a display file "picture library," consisting of a
large number of subpictures, can be created and saved on a disk. When
the saved display file is restored, individual subpictures can be
turned on and copied as desired with ON and COPY calls in the
restoring program.

NOTE
A SAVE call 1invalidates all current

pointer assignments and detaches all
primitives from the tracking object.

An example using SAVE is included in the description of the RSTR
subroutine (see Section 2.13.3).

Routines called by SAVE: CMPRS, ACCESS (h-s), READWR (h-s), FRSAT
(h-s) , TOSAT (h-s)

Routines that call SAVE: None.

2-112

DECGRAPHIC-11 FORTRAN SUBROUTINES

2.13.3 RSTR: Restoring the Display File
Form: CALL RSTR ('[dev:]file descriptor')
Arguments:

The entire argument string must be enclosed in single quotation
marks ('). The optional dev: 1is any legal device code used in
your operating system (for example, DTO: for DECtape Drive 0).
If you do not include dev:, the display file will be read from
your system device. The file descriptor is the 1legal form of
file names for your operating system, including the User
Identification Code (UIC) for Files-11 systems. All the usual
defaults apply; for example, if vyou do not include the UIC
(RSX-11 and IAS only), the display file will be written with the
current UIC of your terminal. If you do not specify an extension
for the file name, the default is .DAT for RT-11 and no extension
for IAS and RSX-11.

Instructions:

RSTR is used to restore a display file that has been saved on a
mass-storage device by SAVE (see Section 2.13.2). RSTR copies the
saved file into either an empty display file (i.e., one that has been
initialized by INIT) or a display file that is not full. 1In the
latter case, the restored file is appended to the end of the current
display file.

When the restored file is appended to an existing display file, you
should be aware that tags in the original file may duplicate those in
the restored file area. In the DECgraphic-11 FORTRAN Graphics
Package, any reference to a tag will always apply to the first
occurrence of the tag in the file. To avoid such ambiguities, number
your subpictures carefully.

If you find that two subpictures in the display file have the same
tag, vyou can copy the original subpicture with a new tag, then erase
the 0ld subpicture. You will then be able to address the restored
subpicture by referring to the new tag.

A restored display file brings with it all the properties it had when
originally created, including values for the display parameters.
NOTE
A RSTR call invalidates all current

pointer assignments and detaches all
primitives from the tracking object.

2-113

DECGRAPHIC-11 FORTRAN SUBROUTINES

Example:

As shown here, Program 1 can create a display

file, and Program 2 can restore it.

[PROGRAM 1] CALL VECT (X,Y)

CALL SAVE ('PICTUR,DSP')

[PROGRAM 2] COMMON/DFILE/IBUF (2000)

CALL INIT (2000)
CALL RSTR ('PICTUR.DSP')

Routines called by RSTR: CMPRS, ACCESS
(h-s)

Routines that call RSTR: None.

2-114

(h-S),

and

READWR

save

the

(h_s)l

display

TOSAT

DECGRAPHIC-11 FORTRAN SUBROUTINES

2.14 INSERTING ADVANCED DISPLAY-FILE INSTRUCTIONS

This section describes three subroutines that can aid advanced users
of the DECgraphic-11l _FORTRAN Graphics Package. They allow you to
insert new data and instructions in the display file without using any
of the usual DECgraphic-11 FORTRAN subroutines.

These three special subroutines provide detailed control over the
contents of the display file and should be considered advanced
features. Do not use them unless you are confident that you
understand the effects they will have on the rest of the display file.

All three of the subroutines in this section operate on the word
currently occupied by the DHALT instruction. DHALT normally is the
second-to-last word in the display file (the last word is a 0), and it
thus marks the end of the active display list. However, if you have
called the DISPLY subroutine (see Section 2.12.1) with a -1 argument,
subsequent DECgraphic-11 subroutine calls will insert primitives after
the DHALT, 0. After such a DISPLY call, the DPTR, DPYNOP, and DPYWD
subroutines described 1in this section will address the first vacant
word in the display file, rather than the word occupied by DHALT.
This change 1in operation 1is required because DISPLY adds the new
primitives to the active display 1list by relocating the DHALT, O
instructions so that they once more occupy the last twO nonvacant
display-file words.

See Appendix C for a more detailed description of display-file
structure,

2-115

DECGRAPHIC-11 FORTRAN SUBROUTINES

2.14.1 DPTR: Returning the Next Available Display-File Position

Form: CALL DPTR (I)

Arguments:

If your display file is defined by the statement
COMMON/DFILE/IDISP(1000), the dummy argument I returns a
subscript of IDISP. IDISP(I) is the element that contains the
DHALT instruction ending the display file, and is therefore the
element that will contain- the next instruction or data word
entered in the display file.

Instructions:

Oone of the simpler uses of DPTR is to determine how much of the
display file 1is <currently in use. The description of CMPRS (see
Section 2.13.1) shows DPTR being used for this purpose.

Routines called by DPTR: TOSAT (h-s), FRSAT (h-s)

Routines that call DPTR: None.

2-116

DECGRAPHIC-11 FORTRAN SUBROUTINES

2.14.2 DPYNOP: Inserting No-Operation Instructions in the Display File
Form: CALL DPYNOP (n) ‘
Arguments:
The n argument represents the number of display-file words,
beginning at the end of the display file, that will be filled
with "no-operation" instructions.
Instructions:
The DPYNOP subroutine allows you to insert any number of no-operation
instructions at the end of the display file. These instructions make
room for later insertion of data or instructions in the display file,
with simple assignment statements such as
IDISP(200)="164000

where IDISP(200) is a display-file element that was filled with a
no-operation instruction by DPYNOP.

As described in Section 2.14.1, you can determine the position of the
DHALT instruction (that is, the location that will be addressed by a
DPYNOP call) by calling DPTR.

Routines called by DPYNOP: None.

Routines that call DPYNOP: None.

2-117

DECGRAPHIC-11 FORTRAN SUBROUTINES

2.14.3 DPYWD: Inserting a Data Word in the Display File

Form: CALL DPYWD (iword,idisp)

Arguments:
The iword argument is an integer that contains a 16-bit word to
be entered at the position currently occupied by the DHALT
instruction that ends the display file. The idisp argument

indicates whether the inserted data will be displayed
immediately.

Instructions:

DPYWD will insert the information in iword at the end of the current
display file; iword will be inserted in place of the DHALT
instruction, which will be moved forward one word.

When the idisp argument is 0, the result of the inserted iword will be
displayed immediately on the screen. If idisp is a nonzero integer,
the insertion is not immediately displayed, thus facilitating the
successive insertion of several words of data.

Again, DPYWD should be used cautiously, and not at all wunless you
fully understand the structure of display files.

Routines called by DPYWD: None.

Routines that call DPYWD: None.

2-118

CHAPTER 3

PROGRAMMING TECHNIQUES

This chapter summarizes a variety of hints for making your graphic
programs more efficient in memory use and execution time. It is
divided into two major categories:

e subpicture techniques
e general graphic techniques

gsome of the methods described in these categories are also included in
Chapter 2 in the discussion of specific FORTRAN subroutines. They are
repeated here for ease of reference. These techniques are illustrated
in the FORTRAN programming examples in Appendix D.

;

3.1 SUBPICTURE TECHNIQUES

The programming techniques described in this section should help you
in defining and using subpictures in DECgraphic-11 programming. See
the discussions of subpictures in Sections 1.4.1 and 2.4.

3.1.1 Using Subpictures Like Subroutines

DECgraphic-11 programming is heavily oriented to the use of
subpictures. Approximately half of the FORTRAN graphic subroutines
described in Chapter 2 are 1intended for use in defining and
manipulating subpictures or primitives within subpictures. For
example, when a light-pen hit occurs, the position of the hit in a
subpicture is returned. pointers are positioned within subpicture
definitions. On the VS60, characters and vectors can be enlarged or
shrunk (with the CVSCAL subroutine) in particular subpictures.
Subpictures can be turned on and off and can be erased.

In DECgraphic-11 programming, use subpictures for the same reasons
that you use subroutines in ordinary FORTRAN. Group related graphic
operations in subpictures for the sake of modularity and to help

impose an orderly structure on the application program. "Tag" as a
subpicture any item that you intend to refer to or modify. The use of
subpictures is especially suited for -- but not limited to =-- the

expression of graphic entities that are repeated frequently 1in the
display file.

PROGRAMMING TECHNIQUES

Multiple displays of the same primitive group can be created in at
least two ways:

1. You can call the subroutines that produce the primitives the
required number of times; or

2. You can put the primitive-generating subroutines in a
subpicture and then repeat the subpicture the required number
of times.

Table 3-1 shows how to decide 'between these two techniques in order to
use the available memory most efficiently. 1In Table 3-1, the letter S
means "use repeated subpictures"; the letter P means "use repeated
primitive subroutine calls."

Note that if the number of display-file words for one display of the
primitives and the number of repetitions are sufficiently small, there
is no advantage in terms of memory in wusing subpictures. However,
subpictures always have the advantage of modularity and easy reference
to specific picture components.

Table 3-1
When to Use Subpictures

Repetitions Number of Words in Primitive Group

112/ 3(4|5|6|7|8[9]|10/11]12

LWuwlimwuwmwoyyw

HOWOUXNOU & WN -
Wt g
WNormrrog o g g g
W d g g
WOl g g oo g o
Wt ulg g gy g g
Lunnnunnmnoyyrg
“nnhunununwnnnowog
Nunnunnnnwnngrg
nhunhnnnnnmog
nNnhnunnnmnnnoro
Nunhunnnnnnmog

[y

As an example of using Table 3-1, consider a group of three long
vectors (created by the LVECT subroutine)., Long vectors each require
two words of memory, so the primitive group takes up six words of
space. If you were to repeat this group in a display, you could use
the space most efficiently by repeating the LVECT calls, up to seven
times. At eight repetitions, using subpictures would require the same
space, and for more repetitions, subpictures would require less space.

Table 3-1 is a tabulation of the following formula, which you can use
to calculate the Space-saving advantages for other caces:

5(No. reps)+2+(No. words) < (No. reps) (No. words)

The left side of the inequality is the space required by repeated
subpictures. Therefore, if the inequality condition is true,
subpictures will take less Space. You can see from the formula and
from Table 3-1 that the advantage of subpictures is especially

PROGRAMMING TECHNIQUES

dramatic when the number of words (i.e., the number of primitives) is
very large, It is often desirable to use subpictures for reasons
other than the obvious benefit of saving space in the display file.
some of the other reasons are described in the following sections.

3.1.2 Creating "All-at-Once" Displays

There are two approaches to creating graphic images. The more
conventional approach is to display successive primitives on the
screen as they are inserted in the display file. This approach has
the effect of creating a "growing" picture on the display screen, one
that changes dynamically as new primitives are entered.

As an alternative, you may want to display a graph or picture only
after it has been completely defined. To implement this "all-at-once"
technique, define the entire display as a subpicture (the SUBP
subroutine) that is turned off (the OFF subroutine) as soon as it is
begun. Then turn the subpicture on again (the ON subroutine) after
the definition is complete. This approach is shown below. -

CALL SUBP (100)
CALL OFF (100)

definition

CALL ESUB (100)
CALL ON (100)

Besides providing a good method of displaying a picture all at once,
the use of this technique also speeds up the process of image
creation.

NOTE

See the DISPLY subroutine, Section 2.12,
for another method of creating quick,
all-at-once displays.

3.1.3 Moving Subpictures on the Screen

You can move a subpicture around the display screen by attaching it to
the tracking object (see the ATTACH subroutine, Section 2.8.4). When
you are drawing a subpicture that is to be moved in this fashion, use
an APNT call (see Section 2.3.1) as __the first primitive,in the

subpicture, but make all the remaining primitives relative. ,

1f several instances of the same subpicture are to be moved separately
on the screen, then the APNT call should be moved out of the
subpicture. Call APNT separately before each instance of the
subpicture.

PROGRAMMING TECHNIQUES

3.1.4 Creating Odometer Displays

You can use the NMBR subroutine to create odometer-type displays (see
Section 2.4.7 for a description of NMBR). However, this application
normally requires the use of run-time formatting code, which requires
a great deal of memory. The use of memory will be much more efficient
if you perform simple integer and floating-point output conversions in
FORTRAN to accomplish the same task.

To accomplish the desired task, first convert the number to be
displayed to an ASCII string and append a null byte to the string.
Then, in order to display the number, call CHANGT (see Section 2.6.6)
to change a character primitive that you have set up at the beginning
of your program.

The subroutine ITOA is a special-purpose FORTRAN Graphics Package
subroutine that converts integer variables to ASCII codes. 1ITOA has
the form

CALL ITOA(integr,ibytes,LOGICL)

where integr is the name of the integer variable to converted, ibytes
gives the number of bytes required to hold the ASCII values (one for
each integral digit), and LOGICL is a LOGICAL*1 array that is at least
large enough to <contain all the ASCII codes. ITOA will insert the
ASCII codes in the array LOGICL, with the high-order digit of integr
in Byte 1, and so forth.

The example with the subroutine TRAKXY (see Section 2.8.3) shows TEXT,
CHANGT, and ITOA being used for an odometer displays

The odometer can be intensified by means of the INTENS subroutine (see
Section 2.7.2) or set to flash mode with the FLASH subroutine (see
Section 2.7.3). 1If the numeric output is in its own subpicture and

you are using a VS60, you can also scale the size of the characters by
calling CVSCAL (see Section 2.4.8).

3.2 GENERAL GRAPHIC TECHNIQUES
The programming techniques described in this section describe a

variety of approaches to speeding up program execution in the
DECgraphic-11 FORTRAN Graphics Package.

3.2.1 Choosing the Appropriate Vector Format
Vectors can be drawn in any of three legal formats:
e short relative format
® long relative format
® long absolute format
Short vectors require only half the storage of long vectors, but have

a limited range. A short vector is stored in one word and a long
vector in two words.

PROGRAMMING TECHNIQUES

The range of a short vector is 63 raster units along the x and y axes,
or approximately one sixteenth of a full screen. The range of a long
vector, on the other hand, is 1023 raster units.

In general, you should use the short-vector format when constructing
static displays that consist of a large number of short lines (e.g.,
shading of small objects, very irregular outlines).

Short vectors can be altered by calls to the GET, CHANGA, and CHANGE
subroutines (see Sections 2.6.3, 2.6.4, and 2.6.5), but not by
attaching to the tracking object (see the ATTACH subroutine, Section
2.8.4). Long-vector format should be used when you are attaching a
vector to the tracking object -- for example, for the "rubber-banding"
of lines on the display screen.

Absolute vectors (VS60 only) should never be used in subpictures that
are to be moved on the screen; you should always use relative vectors
in such subpicture definitions. Absolute vectors do offer one
significantly different feature: changing one absolute vector does
not change the end-point location of the next vector. -

When you are uncertain about the precise length of a vector in
physical screen units, but are not concerned about subsequently
changing the size of the vector, you should use the VECT subroutine
(see Section 2.3.3). This subroutine automatically uses the
short-vector format whenever possible., Unless short and long vectors
alternate frequently, this technique optimizes the use of display-file
space.

3.2.2 Ordering Picture Elements

A display often consists of several static elements, such as menus and
background, as well as a dynamic picture that grows by repeatedly
adding lines, points, and characters to the existing display. When
constructing a display of this kind, create the static portions first.
This technique is more efficient than using the INSRT subroutine (see
Section 2.6.7) to add elements within the display file.

Static elements such as menus can be conveniently defined in a
subpicture that 1is first turned off (see Section 3.1.2) and then
turned on when needed.

3.2.3 Monitoring the Display File

The DPTR subroutine is helpful in determining how much space remains
in the display file. You may want your program to take appropriate
automatic actions when the file reaches a certain size, such as that
provided by an automatic call to CMPRS (see Section 2.13.1).

3.2.4 Avoiding a Temporary Loss of a Display

The DECgraphic-11 FORTRAN Graphics Package provides four subroutines
(SENSE, INTENS, FLASH, and LINTYP) that allow you to change the
display parameters (1, i, £, t) defined earlier in primitives within a
subpicture.. However, the first time you use one of these subroutines
within the subpicture, the display screen may become blank for a
moment, and then reappear. A similar problem can occur when you use
CVSCAL to scale the characters or vectors within a subpicture. This

3-5

PROGRAMMING TECHNIQUES

temporary blanking of the screen can interfere with the effectiveness
of some applications. The cause of this occurrence, and some steps
you can take to avoid a temporary loss of the display, are described
in the paragraphs that follow.

When you define a new subpicture, you typically set display parameters
by including one or more of the optional arguments 1, i, £, and t in
the first primitive. 1Including some or all of these arguments creates
a mode word in the display file. This mode word precedes the
instructions that actually display your images. Figure 3-1 1is a
stylized presentation of such a file.

SUBPICTURE Contains beginning and ending addresses of the
HEADER subpicture and the subpicture tag.

Defines (for example) an absolute point that is
MODE WORD not light-pen sensitive but is visible at
Intensity Level 4.

DATA WORD X coordinate of the first point.

DATA WORD y coordinate of the first point.

DATA WORD X coordinate of the second point.
DATA WORD y coordinate of the second point.
DATA WORD X coordinate of the third point.

DATA WORD y coordinate of the third point.

REMAINDER

OF THE

DISPLAY FILE

Figure 3-1 A Mode Word in a Display File

The subpicture contains instructions for three displayed objects
(there are three sets of coordinates), but it contains only a single
mode word. Therefore, this subpicture will display three absolute
points, none of which is light-pen sensitive, and all of which are
visible at Intensity Level 4.

PROGRAMMING TECHNIQUES

Suppose that, at a subsequent point in the program, you use the INTENS
subroutine to make the third point brighter than Points 1 and 2. The
INTENS call results in a call to the INSRT subroutine, which inserts a
new mode word before the x coordinate of Point 3. The new intensity
level would then affect only the third point. It is this call to the
INSRT subroutine that causes the temporary blanking of the screen.

You can avoid the temporary blanking by inserting a "dummy" display
parameter (1, i, £, or t) in each primitive in the subpicture. Then
each primitive has its own mode word, and the INSRT operation will not
occur. For example:

CALL SUBP(100)

CALL RPNT(100.,100.,-1,-4,-1,1)
CALL VECT(0.,100.,0)

CALL VECT(100.,0.,-1)

CALL VECT(0.,-100.,0)

CALL VECT(-100.,0.,-1)

The call to RPNT sets the display parameters as follows: no light-pen
sensitivity (1=-1), the current primitive 1is invisible and has an
absolute intensity value of 4 (i=-4), the display will not flash
(f==1), and the vectors that follow will be drawn as solid lines
(t=1). Each of the four following calls to VECT includes a single
display parameter, which is sufficient to create a new mode word for
each primitive. The alternating values 0 and -1 for the 1 display
parameter leave light-pen sensitivity unchanged. Thus, any change in
the value of a display parameter creates a new mode word, even if the
two values have the same effect. Accordingly these four VECT calls
display four solid-line segments at Intensity Level 4. None of the
line segments flash and none are sensitive to the light pen.

Subsequent calls to SENSE, INTENS, FLASH, or LINTYP can change the
parameters of any primitive (for example to make the first two vectors
visible) without temporarily blanking the screen.

NOTE

This technique will require an
additional word of memory for each
primitive in the subpicture.

To avoid the temporary blanking problem with CVSCAL, insert a call to
DPYWD with the arguments "154000, 0 immediately after the call to SUBP
(which begins the subpicture definition), as follows:

CALL SUBP(120)
CALL DPYWD("154000, 0)

In effect the DPYWD subroutine inserts a "dummy" CVSCAL instruction in
the program.

3.2.5 Using DPYWD and DISPLY to Speed Up Instruction Input

A useful technique for speeding up instruction input on a VS60 display
subsystem is to combine features of DPYWD (see Section 2.14.3) and
DISPLY (see Section 2.12.1) in the following manner:

CALL DPYWD("170010,0)
CALL DISPLY(-1)

PROGRAMMING TECHNIQUES

The DPYWD call inserts the octal value 170010 at the end of the
current display file to replace DHALT (which moves forward one word).
The instruction 170010 changes the "refreshment" cycle of
DECgraphic-11 display files from the usual free-running
self-synchronized rate (see below) to a slower rate.

Ordinarily the refreshment of DECgraphic-11 files is
self-synchronized. That 1is, the display processor goes through the
display file from start to finish, taking as much time as it requires,
and then immediately returns to the beginning of the display file and
starts again. The instruction 170010 changes this self-synchronized
process to one that occurs at a fixed rate of 40 frames per second.
This rate generally is slower than the self-synchronized rate. Since
a decrease in refreshment rate entails a decrease in the rate of
direct memory accesses (DMAs) by the VS60 display processor, there is
more UNIBUS time available to the CPU, and the program's speed is
increased.

With this change in rate, it becomes important to minimize the number
of additions to the active display 1list since each addition may
require waiting one fortieth of a second instead of the considerably
faster self-synchronized operation. The DISPLY(-1) call, which places
the primitives entered immediately after the c¢all in an inactive
display 1list, 1is wused for this purpose. Use of this call can also
reduce transmission overhead in host-satellite systems.

When you want to activate the inactive display list and to return to
automatic display mode, use the following call:

CALL DISPLY (1)

The instructions you have inserted in the inactive display 1list will
be activated immediately and the corresponding primitives will appear
on the screen. The DISPLY(1l) call also returns the display subsystem
to its ordinary mode, in which subsequent primitives are inserted at
the end of the active display 1list and immediately appear on the
screen,

To return the display processor to self-gsynchronized operation later
in the program, use the DPTR subroutine immediately before DPYWD:

C MARK POSITION
CALL DPTR(I)
CALL DPYWD("170010,0)

C BEGIN FAST INSTRUCTION INPUT
CALL DISPLY(-1)

C RESTORE TO ACTIVE DISPLAY LIST
CALL DISPLY (1)

C REPLACE 170010 WITH NO-OP
IBUF(I)="164000

In this sequence, IBUF is assumed to be the name of your display file.

The use of DPTR in this sequence returns (in I) the number of the IBUF
element that will receive the instruction created by the next call;
in this «case, that instruction is 170010. At a later point,
IBUF(I)="164000 rewrites this display-file word with the
"no-operation" instruction 164000. Now all primitives are displayed
at the self-synchronized rate.

CHAPTER 4

INSTRUCTIONS FOR RT-11 USERS

This chapter gives full instructions for using the DECgraphic-11
FORTRAN Graphics Package with the RT-11 operating system, whether you
are using a VT1ll or VS60 graphic-display subsystem. The RT-11
instructions are arranged in the following way in this chapter:

Section 4.1 tells vyou what software 1is supplied in the
DECgraphic-11 FORTRAN Graphics Package kit, and how to use it to
build a library of object code for graphic programming.

Section 4.2 tells you how to link the library to each graphic
program you write in FORTRAN.

4.1 BUILDING A FORTRAN GRAPHICS LIBRARY

Your DECgraphic-11 FORTRAN Graphics Package kit contains three source
files:

COND.FOR, which generates source code that 1is tailored to the
specific hardware you are using;

GRPACK.CND, a file of FORTRAN subroutine definitions;
GRSUBS.MAC, a file of MACRO-11 assembly-language code.

To copy the RKO5 or RK06 software to your system device, put the
distribution disk in Drive 1 and your RT-11 system disk in Drive 0.
Then boot up your system and type the red parts of the following
dialog:

.COPY devl:*.* dev0:

[devn: is DKO: for RKO5, and DMO: for RKO06.]

The first step in creating a graphic library is to convert COND from a
FORTRAN source file to a runnable RT-11 load module, or .SAV file.
Boot up your RT-11 system and type the red parts of the following
dialog:

.FOR COND
.LINK CONDCxED)

Nere

'{"4‘7 '(‘f-m p‘\

QuesTrons 4,

U»Je,./,,.c‘/.

INSTRUCTIONS FOR RT-11 USERS

The FORTRAN compiler creates the object file COND.OBJ, and the 1linker
creates the load module COND.SAV. Now run the COND program by typing
the red responses:

.R conD (D)
COND V2.1
FILENAME? GRPACK (mr)

COND will start running and will begin printing a series of messages.
It will first identify itself: DECGRAPHIC-11 FORTRAN GRAPHICS PACKAGE
/ vV 1.1. It then will ask you a series of questions. The first

question is
WOULD YOU LIKE THE LONG FORM OF THE QUESTIONS (Y OR N)?

If this is the first time you have run COND, type Y followed by a
carriage return. This response makes COND explain each question in
detail and makes the library building procedure more understandable.
When you run COND in the future, you can do without the detailed
explanations.

The full COND dialog is shown here:

R coNnDpCeED)

COND V2,1

FILE NAME ? GRFACKCRD)

DECGRAFPHIC-11 FORTRAN GRAFHICS FACKAGE / V1.1

WOULLD YOU LIKE THE LONG FORM OF THE QUESTIONS (Y OR N) 7 Y&

THIS FROGRAM FRODUCES SEVERAL FILES NEEDED FOR THE GENERATION
OF THE DECGRAFHIC~11 LIEBRARY. THESE FILES, TOGETHER WITH THE
LIBRARY ITSELF CAN RE DIRECTED TO ANY FILE STRUCTURED DEVICE.
QUTFUT DEVICE <Dpud)y 7 DK2:CGeD)

THE GENERATION FROCESS FRODUCES (OFTIONALLY) SEVERAL LISTING
FILES WHICH CAN BE DIRECTED TO ANY FRINTER-LIKE DEVICE FOR
IMMEDIATE QUTFUTy OR TO SOME OTHER DEVICE FOR LATER LISTING.
IF A FILE STRUCTURED DEVICE IS SFECIFIED AND THE SYSTEM CONTAINS
A FRINT SFOOLERs THE LISTINGS WILL EE AUTOMATICALLY SFQOOLED.
LISTING DEVICE (DDUS) 7 LFO:(ED

THE DECGRAFHIC-11 SOFTWARE SUFFORTS ROTH THE VUT11 AND VS60
DISFLAY FROCESSORS CONNECTED DIRECTLY TO THE UNIERUSs OR THE
GT43 AND GT&62 DISFLAY TERMINALS CONNECTED VIA A COMM~
UNICATION INTERFACE. IF YOU HAVE EITHER A VS60 OR GT62 ANSWER
YES TO THIS QUESTION.

VS60 (Y OR N) 7 Y(&D

THE V560 CAN OFTIONALLY SUFFORT TWO SCOFES (OR DISFLAY SCREENS)

ON THE SAME CONTROLLEFK.
TWO SCOFES (Y Ok N) 7 YD

THE LK-11 FUSHEUTTON HOX CAN ALSO EE SUFFORTED AS A
FART OF THE FACKAGE. IT IS TYFICALLY USED RY THE AFFLICATION

AS AN ALTERNATIVE OR SUFPLEMENT TO LIGHT FEN MENU SELECTION
AS A FROGRAM CONTROL TECHNIQUE.,
LK-11 7 YCRD

THE DECGRAFHIC-11 SOFTWARE WILL RUN UNDER SEVERAL OFERATING
SYSTEMS., IN THE FOLLOWING QUESTION(S) ANSWER YES FOR THE SYSTEM
YOU ARE USING.

RT-11 (Y Ok N) ? YD

INSTRUCTIONS FOR RT-11 USERS

THE DECGRAFHIC-11 SOFTWARE WILL FRODUCE FAIRLY DESCRIFTIVE
ERROR MESSAGES UFON DETECTION OF ANY ERRORS IN THE USE OF
THE GRAFHIC SUBROUTINES, UNFORTUNATELY THE TEXT OF THESE
MESSAGES TAKES UF A FAIRLY LARGE AMOUNT OF MEMORY SFACE.IF
YOU WOULD LIKE TO ELIMINATE THIS TEXT, ANSWER NO TO THE NEXT
QUESTION, IN THIS EVENTy ANY ERROR WILL FRODUCE A CODE WHICH
IS DESCRIBED IN AFFENDIX B OF THE DECGRAFHIC-11

FORTRAN FROGRAMMING MANUAL.

ERROR MESSAGE TEXT (Y OR N) ? NCeeD

THE SOFTWARE MAY RE GENERATED TO ACCEFT UNSCALED INTEGER DATA
INSTEAD OF REAL DATA. IN THE INTEGER CASE» ALL NUMRBERS REFRE-~
SENTING FOINTS AND VECTORS MUST BE INTEGERS IN THE APFROFRIATE
RANGE (SHORT VECTOR: -63<:63y LONG VECTOR? ~1023<3:1023, ABSOLUTE
FOINT FOR VUT11¢ 0+x1023, ABSOLUTE FOINTy ARSOLUTE VECTORs OR
VIEWFORT FOR VUS60% ~-4095::409%5), THE ADVANTAGES OF USING THE
INTEGER FORMAT ARE SMALLER FROGRAMS (DATA ONLY TARKE ONE WORD.
NOT TWO) AND FASTER EXECUTION TIMES (INTEGER ARITHMETIC IS
FASTER THAN KEAL ARITHMETIC). THE DISANVANTAGE I8 LESS FLEXI-
BILITY IN CREATING DISPLAYS NOT REFRESENTED IN CONVENIENT UNITS.

THE GENERATION FROCEDURE WILL FRODUCE LISTINGS OF ROTH THE
MACRO~11 AND FORTRAN COMPONENTS OF THE DECGRAFHIC-11 SOFTWARE
IF DESIRED, THESE LISTINGS WILL BE SENT TO THE LISTING DEVICE
NAMED FREVIOUSLY.

MACRO LISTINGS (Y OR N) 7 NGED

FORTRAN LISTINGS (Y OR N) 7 y(=zer)

THE COMMAND FILE NORMALLY FRODUCED WILL DELETE ALL TEMFORARY
FILES CREATED DURING THE GENERATION FROCESS. THESE FILES MAY
RE FRESERVED IF DESIRED.,

DELETE FILES (Y OR N> % y(®D)

NOTES KEFORE CONTINUING WITH THE BUILD FROCESS ...
MAKE SURE THAT THE FILE GRSUES.MAC IS ON DK2:
STOF -

COND is specific about which type of display subsystem you are using,
whether or not you have an LK-11 pushbutton box, whether you will use
both real and integer arguments or integers only, and so forth. COND
is using these questions to set up a library that is specially
tailored to your hardware and your programming needs. If your needs
change, or if you add or subtract hardware from your graphic-display
subsystem, you will have to run COND again to create a new library.

After you answer the last question (DELETE FILES?), COND begins its
conditionalizing process. At this point, COND is actually choosing
from the FORTRAN source code in GRPACK.CND to create a new library
source that will include only features you have selected by your
answers to COND. This process requires a minute or more to complete.
When the message STOP -- appears on the terminal, the conditionalizing
process is finished, and COND returns control to the RT-11 monitor.

INSTRUCTIONS FOR RT-~11 USERS

COND has created the following new files on your output device:

GRPAK1.FO, a conditionalized form of the FORTRAN source code in
GRPACK.CND. .

GRSUBS.MA, a conditionalized MACRO-11 file that has recorded your
answers to the COND questions;

GRCOM.CND, a FORTRAN source file that defines the DECgraphic-11
COMMON areas DFILE and GRDAT.

GRGEN.BAT, an RT-11 BATCH control file that compiles and
assembles the source code into a library;

GRLINK.BAT, which will link your programs to the library.

You now use the file GRGEN.BAT to create the actual DECgraphic-11
FORTRAN Graphics Package library. Before running GRGEN.BAT, be sure
you have 600 contiguous blocks of space available in memory. Use the
following sequence:

.ASSIGN TT: LOG Gen)

.ASSIGN TT: LST Cmr)

.LOAD BA (mn)

.R BATCH (mi)" "4 %90 teg

*GRGEN

The first action of GRGEN is to delete o0ld versions of the files used
to create previous DECgraphic-11 libraries. GRGEN also deletes the
file GLIB.OBJ from your output device (that is, GRGEN erases any old
version of a DECgraphic-11 1library). This deletion is done to
conserve space on your storage device, but if you want to save several
different libraries on the same device, use the RENAME command to give
each library a unique name. Typical names are:

GLIBVT.OBJ (for VT1ll subsystems)
GLIBVS.OBJ (for VS60 subsystems)
GLIBIN.OBJ (for an "integer-only" library)

If you use such names for your old libraries (or any name other than
GLIB.OBJ), they will be preserved.

The results of GRGEN are summarized below:

1. All files on your output device with the extensions .0B or
-LI are deleted (these are old object and listing files
Ccreated by previous runs of GRGEN).

2. The file GLIB.OBJ is deleted from your output device.

3. The file GRSUBS.MAC is conditionally assembled to create the
object file GRSUBS.OB: if you told COND you wanted MACRO
listings, they will be printed on your listing device.

4. The entire file GRPAK1.FO will be compiled and (optionally)
listed. The object file will be named GRPAK1.OB.

5. If you told COND to DELETE FILES, all files with the
extension .FO are now deleted.

INSTRUCTIONS FOR RT-11 USERS

6. GRGEN now uses the RT-11 Librarian (LIBR) to create GLIB.OBJ,
which is your new DECgraphic-11 subroutine library.

7. If you told COND to DELETE FILES, GRGEN now deletes
GRGEN.BAT, GRCOM.CND, and all files with the extensions .MA
and .0B.

8. The message $EOJ appears when GRGEN is finished.

wWhen GRGEN is finished, you are ready to 1link the DECgraphic-11
FORTRAN Graphics Package to graphic programs that you have written.
The next section describes this process.

4.2 LINKING PROGRAMS TO THE DECGRAPHIC-11 FORTRAN GRAPHICS PACKAGE

As mentioned in the last section, it is often desirable to give your
DECgraphic-11 library a unique name so that it will not be
accidentally deleted by later runs of GRGEN.BAT. In the following
examples, a new library for the VTll subsystem is renamed:

-RENAME GLIB.OBJ GLIBVT.OBJ (&)

The name GLIBVT is now assigned to the VTll library. To 1link this
library to a graphic program called GRAPH.FOR, proceed as follows:

.FOR GRAPH Cwr)
.LINK GRAPH, GLIBVT (mr)

You can then run the resulting load module, GRAPH.SAV, by typing

-R GRAPH

USR OPERATIONS

sSome FORTRAN statements and functions,
such as CALL ASSIGN and CALL CLOSE,
require the RT-11 USR (User Service
Routine) to be swapped into memory.

When you use one of the these
statements, you must call the STOP
subroutine (Section 2.1.2) before the
USR operation takes place. Otherwise,
the display will disappear from the
screen and the display processor will
hang. When the USR operation is
complete, you can restart the display
with a call to CONT (see Section 2.1.3).
You can also protect the display with
the RT-11 SET USR NOSWAP command,
although that command will require much
more memory. Section 2.13.3 has an
example of the STOP and CONT subroutines
being used to protect the display. For
more information on the USR, refer to
the RT-11 System Reference Manual.

CHAPTER 5

INSTRUCTIONS FOR RSX-11 AND IAS USERS

If you are using the RSX-11lM operating system, the DECgraphic-11
FORTRAN Graphics Package can be used in two ways: to support a VTL1
or VS60 display subsystem operating as a UNIBUS peripheral device
(called a "stand-alone" system) or to support a “"satellite"
graphic-display subsystem operating as an intelligent terminal to an
RSX-11M host system. The DECgraphic-11 FORTRAN Graphics Package also
runs in the RSX-11D and IAS operating systems; 1in either of these two
cases it must use the host-satellite mode.

This chapter is organized as follows:

Sections 5.1 and 5.2 describe procedures for building
DECgraphic-11 libraries and for wusing the libraries to create
graphic tasks, respectively. Both sections contain separate
instructions for stand-alone systems and host-satellite systems.

Section 5.3 gives new users a brief overview of the principles of
host-satellite programming with the DECgraphic-11 FORTRAN
Graphics Package. Section 5.3.1 describes a typical
host-satellite configuration and discusses communication between
the host computer and the graphic satellite. Section 5.3.2
describes the DECgraphic-11 subroutines that make the
host-satellite communication possible; for more advanced
applications, you can modify the routine USRSAT, which handles
host-satellite messages. Section 5.3.3 gives instructions for
running graphic tasks (programs) at the satellite. For many
applications, perhaps the majority, you can go straight to
Section 5.3.3 for operating instructions after building your
libraries. The programmer should understand the principles by
which DECgraphic-11 manages host-satellite systems; however, the
routines described in Section 5.3.2 are invisible to the |user
unless USRSAT has been modified.

5.1 BUILDING DECGRAPHIC-11 LIBRARIES

This section gives you full instructions for preparing the
DECgraphic-11 1library for your operating system. Sections 5.1.1
through 5.1.4 contain important information for all wusers of the
RSX-11 and IAS systems. After you have read these sections and
completed the tasks they describe, go on to either Section 5.1.5 (for
a stand-alone system) or 5.1.6 (for a host-satellite system).

INSTRUCTIONS FOR RSX-11 AND IAS USERS

5.1.1 Contents of the Software Kit

Your DECgraphic-1ll FORTRAN Graphics Package kit contains the following
software, regardless of the operating system or operating mode you
will use:

COND.FOR, a FORTRAN program in source form that will generate
graphic libraries;

GRPACK.CND, the file of FORTRAN subroutine sources on which COND
will operate;

GRSUBS.MAC, a second input file for COND that contains MACRO-11
assembly~language code.

PBDRV.MAC and PBTAB.MAC, which are source files containing code
for the driver and the driver table for the LK-11 pushbutton box.
If you intend to use an LK-11 pushbutton box with a stand-alone
RSX-11M system, do a new system generation that includes these
two files in the system.

NOTE

The host-satellite software assumes that
your satellite communications interface
(DL11) has a CSR=175610 and vector
address=300. If your interface is not
at this standard address, edit the file
GRSUBS .MAC and change the wvariables
DLICSR and DLVEC to the correct CSR and
vector address, respectively.

5.1.2 Summary of Hardware/Software Configurations

In summary, the following software from the kit is required for each
operating system and configuration:

Stand-alone systems with RSX-11M and one or two graphic scopes:
COND.FOR, GRPACK.CND, and GRSUBS.MAC

Stand-alone systems with RSX-11M, one or two scopes, and an
LK-11:

COND.FOR, GRPACK.CND, GRSUBS.MAC, PBDRV.MAC
(SYSGEN) , and PBTAB.MAC (SYSGEN)

All host-satellite systems:
COND.FOR, GRPACK.CND, and GRSUBS.MAC
The system-generation dialog for RSX-11M gives full instructions for
assembling and incorporating "user-written" device drivers, such as

PBDRV. See also the RSX-11M System Generation Manual for your version
of the operating system.

INSTRUCTIONS FOR RSX-11 AND IAS USERS

System-Generation Options
If you are generating a new operating

system, be sure to comply with the
requirements described in Section 1.2.

5.1.3 Copying the Software Kit

The distribution kit for RKO5 and RK06 disks is in RT-11 file format.
The magnetic-tape kit is in DOS-11 format. To copy the software onto
your Files-11 system device, follow the procedure given for your
operating system. - :

To copy the RK05 or RK06 software to an RSX-11M system, put the

distribution disk in Drive 0 and type the following commands in
response to the operating system's prompt symbol (> or MCR>) :

FLX SY:/RS=dev:*,*/RT

[dev: is DKO: for RK05, and DMO: for RK06.]
To copy the magnetic-tape software, thread the distribution tape on
Drive 0 and type the following commands. (If your system has loadable

device drivers, you may have to type LOA MM: or LOA MT: first.)

FLX SY:/RS=dev:[*,*]*.*/DO (xer)
[dev: is MMO: for TJUl6 drives, and MTO0: for TUl0 drives.]

NOTE
Use the same command for copying to an

RSX-11D system, but precede the FLX
command with the command

MOU dev:/CHA=[FOR](GD

where dev: 1is the device containing the
software kit (i.e., DKO:, DMO:, MMO:, or
MTO:) .

To copy the RKO5 or RK06 software to an IAS system device, put the
distribution disk in Drive 0 and type the red parts of this dialog:

PDS>MOUNT/FOREIGN/NOOPERATOR
DEVICE?dev:

VOLUME-ID?¥XXX

PDS>COPY

FROM?dev:*,.*/RT11

TO?* , %

[dev: is DKO: for RK05, and DMO: for RK06.]

INSTRUCTIONS FOR RSX-11 AND IAS USERS

To copy the magnetic-tape software to an IAS system device, thread the
distribution tape on Drive 0 and type the red parts of this dialog:

PDS>MOUNT/FOREIGN/NOOPERATOR
DEVICE?MMO :
VOLUME-ID?XXX

PDS>COPY
FROM?dev: [*,*]*,*/DOS
TO?* *

[dev: is MTO: instead of MMO:- if you have a TULl0 tape drive.]

5.1.4 Compiling and Linking COND

Your first step in creating a DECgraphic-11 library is to compile and
build a task from the file COND.FOR. After you have your operating
system running and have copied the DECgraphic-11 kit onto the system
device, prepare COND by typing the red parts of the following dialog:

RSX-11M:

>FOR COND=COND.FOR (rer)
>TKB COND=COND

RSX-11D:

MCR>FOR COND=COND.FOR
MCR>TKB COND=COND

IAS:

PDS>FORTRAN COND.FOR (Rer)
PDS>LINK COND

Now begin the library generation process by typing

RUN COND

In response to the prompt symbol for your operating system, COND will
print its own version number, ask you for a file name (the answer is
GRPACK) , and begin asking you a series of questions. The first
question is:

WOULD YOU LIKE THE LONG FORM OF THE QUESTIONS (Y OR N)?

If you have not run COND before, type Y followed by a carriage return.
The 1long form is self-explanatory and will help you make correct
decisions. When you run COND again in the future, you can do without
the long form. .

If you are going to create a library for use on a stand-alone RSX-11M
system, proceed to Section 5.1.5. If you are an RSX-11D or IAS user,
or if you are creating a host-satellite library for your RSX-11M
system, see Section 5.1.6.

INSTRUCTIONS FOR RSX-11 AND IAS USERS

5.1.5 RSX-11lM Stand-Alone Systems

Here is a sample listing of a COND dialog creating a stand-alone
system for RSX-11M:

+R COND

COND V2.1

FILE NAME ? GRPACK (2D

DECGRAFHIC-11 FORTRAN GRAFHICS FACKAGE / V1.1

WOULD YOU LIKE THE LONG FORM OF THE QUESTIONS (Y OR N) ? y(®D)

THIS FROGRAM FRODUCES SEVERAL FILES NEEDNED FOR THE GENERATION
OF THE DECGRAFHIC~11 LIBRARY. THESE FILES, TOGETHER WITH THE
LIBRARY ITSELF CAN RE DIRECTED TO ANY FILE STRUCTURED DEVICE.
OUTFUT DEVICE (DDU:) ? DR2: D)

THE GENERATION FROCESS FRODUCES (OFTIONALLY) SEVERAL LISTING
FILES WHICH CAN RE DIRECTED TO ANY FRINTER-LIKE DEVICE FOR
IMMEDIATE OUTFUTy OR TO SOME OTHER DEVICE FOR LATER LISTING.

IF A FILE STRUCTURED DEVICE IS SFECIFIED AND THE SYSTEM CONTAINS
A FRINT SFOOLERs, THE LISTINGS WILL EE AUTOMATICALLY SFOOLED.
LISTING DEVICE (DDUs) 7P LFPOICGeD)

THE DECGRAFHIC-11 SOFTWARE SUFFORTS EOTH THE VUT11 AND VS0
DISFLAY FROCESSORS CONNECTED DIRECTLY TO THE UNIEUS» OR THE
GT43 AND GT62 DISFLAY TERMINALS CONNECTED VIA A COMM-
UNICATION INTERFACE. IF YOU HAVE EITHER A VUS40 OR GT62 ANSWER
YES TO THIS QUESTION,

US40 (Y OR N) ? Y (@D

THE V860 CAN OFTIONALLY SUFFORT TWO SCOPES (OR DISFLAY SCREENS)
ON THE SAME CONTROLLER.
TWO SCOFES (Y OR N) 7 Y &D

THE LK~11 PUSHEUTTON ROX CAN ALSO BE SUFFORTEDR AS A

FART OF THE FACKAGE., IT IS TYPICALLY USED RY THE AFFLICATION
AS AN ALTERNATIVE OR SUFFLEMENT TO LIGHT FEN MENU SELECTION
AS A FROGRAM CONTROL TECHNIQUE.

LK-11 7 vy e

THE DECGRAFHIC-11 SOFTWARE WILL RUN UNDER SEVERAL OFERATING
SYSTEMS. IN THE FOLLOWING QUESTION(S) ANSWER YES FOR THE SYSTEM
YOU ARE USING.

RT-11 (Y OR N) P NCED

REX-11M (Y OR N % YCGeED

INSTRUCTIONS FOR RSX-11 AND IAS USERS

THE DECGRAFHIC-11 SOFTWARE WILL SUFFORT SEVERAL FOSSIELE HOST-
SATELLITE CONFIGURATIONS. THESE CONFIGURATIONS ALL INVOLVE A
MAIN SYSTEM RUNNING EITHER RSX-11Ms RSX-11Dy OF IAS, AND ONE
OR MORE GRAFHIC TERMINALS (GT43 OR GT62) CONNECTED TO

THE MAIN SYSTEM VIA A COMMUNICATION LINE. IF YOU ANSWER NO

TO THE FOLLOWING QUESTIONy IT IMFLIES THAT YOU ARE RUNNING
WITH THE DISFLAY FROCESS0R (UT11 OR VS40) CONNECTED DIRECTLY
TO THE UNIEUS,

HOST-~SATELLITE (Y OR N> * NG

THE DECGRAFHIC-11 SOFTWARE WILL FRODUCE FAIRLY DESCRIFTIVE
ERROR MESSAGES UPON DETECTION OF ANY ERRORS IN THE USE OF
THE GRAFHIC SUBROUTINES. UNFORTUNATELY THE TEXT OF THESE
MESSAGES TARKES UF A FAIRLY LARGE AMOUNT OF MEMORY SFACE.IF
YOU WOULD LIKE TO ELIMINATE THIS TEXTs ANSWER NO TO THE NEXT
QUESTION. IN THIS EVENTs ANY ERROR WILL FRODUCE A CODE WHICH
IS DESCRIBED IN AFPENDIX B OF THE DECGRAFHIC-11

FORTRAN PROGRAMMING MANUAL .

ERROR MESSAGE TEXT (Y OR N> 7 NCrD)

THE DECGRAFHIC~11 SOFTWARE ALSO SUFFORTS THE FORTRAN IV-

FLUS COMFILERy WHICH GIVES MUCH FASTER PROGRAM EXECUTION AT
THE COST OF MEMORY SFACE. THE FORTRAN IV-FLUS SYSTEM REQUIRES
THAT THE FF11 HARDWARE BE FRESENT WHEN THE FROGRAM IS EXECUTED.
NOTE?: FORTRAN IV-FLUS CANNOT EE USED IN THE SATELLITE OF
HOST-SATELLITE SYSTEM.

FORTRAN IV-FLUS (Y OR N) 7 YD

THE SOFTWARE MAY RE GENERATED TO ACCEFT UNSCALED INTEGER DATA
INSTEAD OF REAL DATA. IN THE INTEGER CASEr ALL NUMEERS REFRE-
SENTING FOINTS AND VECTORS MUST BE INTEGERS IN THE AFFROFRIATE
RANGE (SHORT VECTOR: -63<3:63, LONG VECTOR: -1023<31023s ABSOLUTE
FOINT FOR VT113 031023y AERSOLUTE FOINTs AESOLUTE VECTOR»s OR
VIEWFORT FOR V840! -4095<3:4095), THE ADVANTAGES OF USING THE
INTEGER FORMAT ARE SMALLER FROGRAMS (DATA ONLY TAKE ONE WORD»
NOT TWO) AND FASTER EXECUTION TIMES (INTEGER ARITHMETIC IS
FASTER THAN REAL ARITHMETIC). THE DISADVANTAGE IS LESS FLEXI-
BILITY IN CREATING DISFLAYS NOT REFRESENTED IN CONVENIENT UNITS.
INTEGER ARGUMENTS ? NCED

THE GENERATION FROCEIURE WILL FRODUCE LISTINGS OF EOTH THE
MACRO-11 AND FORTRAN COMFONENTS OF THE DECGRAFHIC-11 SOFTWARE
IF DESIRED. THESE LISTINGS WILL BE SENT TO THE LISTING DEVICE
NAMED FREVIOUSLY.

MACRO LISTINGS (Y OR N) 7 NCeD

FORTRAN LISTINGS (Y OR N)» 7 Y(&D

INSTRUCTIONS FOR RSX-11 AND IAS USERS

THE COMMAND FILE NORMALLY. FRODUCED WILL DELETE ALL TEMPORARY
FILES CREATED DURING THE GENERATION FROCESS. THESE FILES MAY
BE FRESERVED IF DESIRED.

DELETE FILES (Y OrR N) 7 YD

NOTE: BEFORE CONTINUING WITH THE BUILD FROCESS ...
MAKE SURE THAT YOU HAVE INSTALLED LER

MAKE SURE THAT THE FILE GRSUES.MAC IS ON DK23

STOP -

*

Notice that the answer to the question RSX-11M (Y OR N) ? is Y, and
the answer to HOST-SATELLITE (Y OR N) ? is N.

Note also that the COND program includes specific questions about the
display subsystem in use (and number of scopes), the presence or
absence of an LK-11 pushbutton box, and the use of integer-only
subroutine arguments. Your answers to these questions tell COND to
change the FORTRAN code in some subroutines and to delete sources for
unneeded subroutines from the library. Therefore, if your hardware
configuration or programming needs change, you will have to run COND
again and make a new DECgraphic-11 library.

after you answer the last COND question (DELETE FILES (Y OR N) ?2),
COND begins the actual "conditionalizing" process: It records your
answers to its questions, removes unnnecessary code from the FORTRAN
sources, and prepares for the final creating of a library of object
code. This process requires a minute or more to complete. Wwhen the
message STOP -- appears, the conditionalizing process is finished.
COND has created the following new files on your output device:

GRSUBS.MA, which records your answers to the COND questions,
ready to be passed to the MACRO-1l Assembler;

GRGEN.CMD, an "indirect" command file that will be used to create
the final library;

GRPAK1.FO, a subset of the FORTRAN sources in GRPACK.CND, created
according to your answers to the COND questions;

GRCOM.CMD, which defines the DECgraphic-11 COMMON areas DFILE and
GRDAT;

GRBLD.CMD, another indirect command file that builds graphic
tasks by combining your compiled FORTRAN programs with the
library created by GRGEN.CMD.

INSTRUCTIONS FOR RSX-11] AND IAS USERS

When these files have been created, you are ready to finish building
the library. Type the red command:

>@GRGEN

The RSX-11M MCR commands in GRGEN.CMD will be executed, with the
following results: ' '

1. All old files with the extensions .0B and .LI will be deleted
from your output device. This clean-up operation removes old
versions of the DECgraphic-11 object modules and FORTRAN
listings from your storage device, to conserve storage space.
Any old versions of the DECgraphic-11 library (GLIB.OLB) will
also be deleted. If your storage device contains old
libraries that you want to save, use the Peripheral
Interchange Program (PIP) to rename them; for example, to
rename your old VT1ll library:

>PIP GLIBVT.OLB=GLIB.OLB/RE

2. GRGEN assembles the MACRO-1l routines in GRSUBS.MAC, using
the information in GRSUBS.MA to remove unneeded code from the
object file. GRGEN also compiles the FORTRAN sources in
GRPAK1.FO, using either the standard FORTRAN IV compiler
(FOR) or the FORTRAN IV-PLUS compiler (F4P), depending on
your instructions to COND. If you told COND that you wanted
them, MACRO-11 and FORTRAN listings will be printed on your
listing device.

3. GRGEN now combines the object modules GRPAK1.OB and GRSUBS.OB
into a new DECgraphic-11 library, GLIB.OLB.

4. Finally, GRGEN deletes all but the most recent version of
GRBLD.CMD and, if you told COND to DELETE FILES, also deletes
all versions of all files that have the extensions .FO, .0OB,
and .MA.

The process of creating a library does not change the contents of
GRPACK.CND or GRSUBS.MAC; the DECgraphic-11 software in your kit
remains in its original form. Now that you have created a new
library, it 1is a good practice to use PIP immediately to give the
library a new name. Typical names for libraries are:

GLIBVT.OLB (for libraries built for the VTll subsystem);
GLIBVS.OLB (for VvsS60 libraries);
GLIBIN.OLB (for "integer-only" libraries).

Giving unique names to your finished libraries allows you to save them

all on the same storage device, with no danger of accidental deletion
by GRGEN.CMD.

Now see Section 5.2.1 for instructions on building graphic tasks.

INSTRUCTIONS FOR RSX-11] AND IAS USERS

5.1.6 IAS, RSX-11M, and RSX-11D Host-Satellite Systems

Here is a sample of a COND 1iéting for creating an IAS host-satellite
system: .

+R COND

CONDI V2,1

FILE NAME 7 GRFACK GeD)

DECGRAFHIC~11 FORTRAN GRAFHICS FACKAGE / V1.1

WOULD YOU LIKE THE LONG FORM OF THE QUESTIONS (Y OR N> 7 YD)

THIS FROGRAM FRODUCES SEVERAL FILES NEEDED FOR THE GENERATION
OF THE DECGRAFHIC~-11 LIERARY. THESE FILES, TOGETHER WITH THE
LIRRARY ITSELF CAN EE DIRECTED TO ANY FILE STRUCTURED DEVICE.
QUTFUT DEVICE (mpud) ? DR2: (D)

THE GENERATION FROCESS FRODUCES (OFTIONALLY) SEVERAL LISTING
FILES WHICH CAN RE DIRECTED TO ANY FPRINTER-LIKE DEVICE FOR
IMMEDIATE OUTFUTy OR TO SOME OTHER DEVICE FOR LATER LISTING,

IF A FILE STRUCTURED DEVICE IS SFECIFIED AND THE SYSTEM CONTAINS
A FRINT SPOOLERy THE LISTINGS WILL EBE AUTOMATICALLY SFOOLED.
LISTING DEVICE (DDU!) 7 LFO:GeD)

THE DECGRAFHIC-11 SOFTWARE SUFFORTS BOTH THE VUT11 AND VUS40
DISFLAY FROCESSORS CONNECTED DIRECTLY TO THE UNIRUSy OR THE
GT43 AND GT62 DISFLAY TERMINALS CONNECTED VIA A COMM-
UNICATION INTERFACE. IF YOU HAVE EITHER A V860 OR GT62 ANSWER
YES TO THIS QUESTION.

V860 (Y OR N) 7 NCeD)

THE LK~11 FUSHRUTTON BOX CAN ALS0O RE SUFFORTED AS A

FART OF THE FACKAGE. IT IS TYFICALLY USED RY THE AFFLICATION
AS AN ALTERNATIVE OR SUPPLEMENT TO LIGHT FEN MENU SELECTION
AS A FROGRAM CONTROL TECHNIQUE.

LK-11 7 YD)

THE DECGRAFHIC~11 SOFTWARE WILL RUN UNDER SEVERAL OFERATING
SYSTEMS, IN THE FOLLOWING QUESTION(S) ANSWER YES FOR THE SYSTEM

YOU ARE USING.
RT-11 (Y OR N> ? NC=D)

REX~11M (Y OR N) ? NCaD)
REX~110 (Y OR N)Y 7 NCeD)

I8 (Y OR N 7 YD

INSTRUCTIONS FOR RSX-11 AND IAS USERS

WHEN GENERATING THE DECGRAFHIC-11 SOFTWARE FOR A HOST~SATELLITE
CONFIGURATION IT IS NECESSARY TO MAKE TWO PASSES THROUGH

THIS FROGRAM» ONE FOR EACH END OF THE SYSTEM.

SATELLITE END <Y Ok N> 7 NGeD)

THE DECGRAFHIC~11 SOFTWARE ALSO SUFFORTS THE FORTRAN IV~
FLUS COMFILER, WHICH GIVES MUCH FASTER FROGRAM EXECUTION AT
THE COST OF MEMORY SFACE. THE FORTRAN IV-FLUS SYSTEM REQUIRES
THAT THE FF11 HARDWARE EE FRESENT WHEN THE FROGRAM 1S EXECUTED.
NOTE?! FORTRAN IV-PLUS CANNOT EE USED IN THE SATELLITE OF
HOST~SATELLITE SYSTEM.

FORTRAN IV-FLUS (Y OR N> 7 NGED

THE SOFTWARE MAY BE GENERATED TO ACCEFT UNSCALED INTEGER DATA
INSTEAD OF REAL DATA. IN THE INTEGER CASEs ALL NUMEERS REPRE-
SENTING FOINTS AND VECTORS MUST EE INTEGERS IN THE APFROFRIATE
RANGE (SHORT VECTOR: -63::63s LONG VECTOR! -1023<>1023s ARSOLUTE
FOINT FOR VUT11: 031023, ABSOLUTE FOINT» ARSOLUTE VECTORs OR
VIEWFORT FOR VS60% -4095<:4095), THE ADVANTAGES OF USING THE
INTEGER FORMAT ARE SMALLER FROGRAMS (DATA ONLY TAKE ONE WORD,
NOT TWO) AND FASTER EXECUTION TIMES (INTEGER ARITHMETIC IS
FASTER THAN REAL ARITHMETIC). THE DISADVANTAGE IS LESS FLEXI-
BILITY IN CREATING DISFLAYS NOT REFRESENTED IN CONVENIENT UNITS.
INTEGER ARGUMENTS 7 Y(mr) -

THE GENERATION FROCEDURE WILL FRODUCE LISTINGS OF EOTH THE
MACRO-11 AND FORTRAN COMFONENTS OF THE DECGRAFPHIC-11 SOFTWARE
IF DESIRED. THESE LISTINGS WILL BE SENT TO THE LISTING DEVICE
NAMED FREVIOUSLY . .

MACRO LISTINGS (Y OR N) 7 NCmD

FORTRAN LISTINGS (Y OR N) ? YCmD)

THE COMMANDI FILE NORMALLY FRODUCED WILL DELETE ALL TEMFORARY
FILES CREATED DURING THE GENERATION FROCESS., THESE FILES MAY
BRE PRESERVED IF DESIRED.

DELETE FILES (Y OR N) 7 YGeD)

NOTE! BEFORE CONTINUING WITH THE BUILD FROCESS ...
MAKE SURE THAT YOU HAVE INSTALLED LER

MAKE SURE THAT THE FILE GRSUES.MAC IS ON DK2!

STOF —-

+

When you say Y to the question IAS?, COND assumes that vyou are
building a host-satellite library. The same assumption is made for
RSX-11D. These systems are always used in the host-satellite mode.
With RSX-11M, which can be used in either mode, COND asks the question
HOST-SATELLITE?. Answering N implies a stand-alone system.

The three host-satellite systems have one requirement in common; you
must make two passes through COND. In other words, you build two
libraries for host-satellite Systems, ‘one for the "satellite end" and
one for the "host end." Answering N to the question SATELLITE END?
tells COND that you are building the host-end library. After you have
answered N, proceed to the end of the .COND dialog and let COND finish
its conditionalizing process. Then use the GRGEN command toO create
the 1library for the host end. When GRGEN is finished, run COND a

5~10

INSTRUCTIONS FOR RSX-11 AND IAS USERS

second time, but this time answer Y to the gquestion SATELLITE END?.
Now the questions from COND will be slightly different because you are
making the satellite library:

+R COND

COND V2.1

FILE NAME 7 GRFACK Cer)

DECGRAFHIC~11 FORTRAN GRAFHICS FACKAGE / Vi.1

WOULE YOU LIKE THE LONG FORM OF THE QUESTIONS (Y OR N) 7 YD

THIS FPROGRAM FRODUCES SEVERAL FILES NEEDED FOR THE GENERATION
OF THE DECGRAFHIC-11 LIBRARY. THESE FILES, TOGETHER WITH THE

LIERARY ITSELF CAN RE DIRECTED TO ANY FILE STRUCTURED DEVICE.
QUTFUT DEVICE (DDUd) * pr2:CGeD)

THE GENERATION FROCESS FRODUCES (OFTIONALLY) SEVERAL LISTING
FILES WHICH CAN BE DIRECTED TO ANY PRINTER-LIKE DEVICE FOR
IMMEDIATE OUTFUT» OR TO SOME OTHER DEVICE FOR LATER LISTING.

IF A FILE STRUCTURED DEVICE IS SFECIFIED AND THE SYSTEM CONTAINS
A PRINT SFOOLERs THE LISTINGS WILL RE AUTOMATICALLY SFOOLED.
LISTING DEVICE (Dput) 7 LPo:GeD

THE DECGRAFHIC-11 SOFTWARE SUFFORTS ROTH THE VUT11 AND VUS40
0ISFLAY FROCESSORS CONNECTED DIRECTLY TO THE UNIRBUS, OR THE
GT43 AND GT62 DISFLAY TERMINALS CONNECTED VIA A COMM-
UNICATION INTERFACE. IF YOU HAVE EITHER A V560 OR GT62 ANSWER
YES TO THIS QUESTION.

V860 (Y OR N> ? NCeD)

THE LK-11 PUSHEUTTON ROX CAN ALSO RE SUFFORTED AS A

FART OF THE FACKAGE. IT IS TYFICALLY USED' RY THE AFFLICATION
AS AN ALTERNATIVE OR SUFPLEMENT TO LIGHT FEN MENU SELECTION
AS A FROGRAM CONTROL TECHNIQUE.

LK-11 7 vyCeD

THE DECGRAFHIC-11 SOFTWARE WILL RUN UNDER SEVERAL OFPERATING
SYSTEMS. IN THE FOLLOWING QUESTION(S) ANSWER YES FOR THE SYSTEM
YOU ARE USING.

RT-11 (Y OR N) 7 NCeD)

REX~-11M (Y DR NY P NCeD)

REX-110 (Y OR NY 7 NCeED)

IAS (Y OR N) 7 Yy(&D)

INSTRUCTIONS FOR RSX-11l AND IAS USERS

WHEN GENERATING THE DECGRAFHIC-11 SOFTWARE FOR A HOST-SATELLITE
CONFIGURATION IT IS NECESSARY TO MAKE TWO FASSES THROUGH

THIS FROGRAM» ONE FOR EACH- ENII OF THE SYSTEM.

SATELLITE END (Y OR N) ? Y(&ED

THE SATELLITE WILL CONTAIN THREE MAIN COMFONENTS! THE SATELLITE
CONTROL FROGRAM» THE DISFLAY FILE, AND THE (OFTIONAL) EXTENSIONS
TO THE CONTROL FROGRAM. THE CONTROL FROGRAM OCCUFIES AROUT

8K WORDS OF MEMORY» WITH THE REMAINDER BEING AVAILARLE FOR
DISPLAY FILE PLUS USER EXTENSIONS TO THE CONTROL FROGRAM.

THIS LEAVES 8K WORDS IN A 16K SATELLITE. IF YOU FLAN TO EXTEND
THE CONTROL FROGRAMy SUERTRACT THE AMOUNT OF SFACE YOU WILL

NEEDl FROM 8K AND EXFRESS THAT AS OCTAL RYTES (HINT: 2K WORDS

IS5 10000 OCTAL EBYTES). YOUR ANSWER WILL RE THE SIZE OF

THE SATELLITE’S DISFLAY FILE UNTIL YOU RUN THIS FROGRAM

AGAIN TO CHANGE THE SIZE.

RISFLAY FILE SIZE (OCTAL RBYTES) 7 10000(r)

IF YOU HAVE A GT62 TERMINAL WITH RX11 (FLOFFY) DISKSs YOU
MAY WANT TO HAVE A LOCAL SAVE/RESTORE CAFABRILITY IN ADDITION
TO THE SAVE/RESTORE AVAILAELE VIA THE HOST SYSTEM.
SELECTION OF THIS OFTION WILL ALSO FROVIDE SOME GENERAL
FILE ACCESS SUBROUTINES FOR USE IN THE SATELLITE.

IF YOU SAY ‘YES’ TO THE FOLLOWING QUESTIONs YOU MUST
MODIFY THE USER’S SATELLITE ROUTINE (USRSAT) SO THAT

THE SAVE AND RSTR SURROUTINES WILL RE EXECUTED EBY THE
SATELLITE (SEE AFFENDIX D OF THE DECGRAFHIC-11 FORTRAN
FROGRAMMING MANUAL) .

L.OCAL SAVE/RSTR ? Y(&D)

THE SOFTWARE MAY RE GENERATED TO ACCEFT UNSCALED INTEGER DATA
INSTEAD OF REAL DATA. IN THE INTEGER CASEs ALL NUMBERS REFRE-
SENTING FOINTS AND VECTORS MUST BE INTEGERS IN THE AFFROFRIATE
RANGE (SHORT VECTOR! -63::63y LONG VECTOR: -1023+:1023s ARSOLUTE
FOINT FOR VUT11:! 0+:x1023, ARSOLUTE FOINT» ARSOLUTE VECTORs OR
VIEWFORT FOR VS60! —-4095:r4095), THE AIVANTAGES OF USING THE
INTEGER FORMAT ARE SMALLER FROGRAMS (DATA ONLY TAKE ONE WORID»
NOT TWO) AND FASTER EXECUTION TIMES (INTEGER ARITHMETIC IS
FASTER THAN REAL ARITHMETIC). THE DISADVANTAGE IS LESS FLEXI-

BILITY IN CREATING DISFLAYS NOT REFRESENTED IN CONVENIENT UNITS.
INTEGER ARGUMENTS 7 YCmr)

THE GENERATION FROCEDURE WILL FRODUCE LISTINGS OF EBOTH THE
MACRO-11 AND FORTRAN COMFONENTS OF THE DECGRAFHIC-11 SOFTWARE

IF DESIREDN. THESE LISTINGS WILL EBE SENT TO THE LISTING DEVICE
NAMED FREVIOUSLY.
MACRO LISTINGS (Y OR NY ? NGeD)

FORTRAN LISTINGS (Y OR N) 7 Y(Crer)

INSTRUCTIONS FOR RSX-11 AND IAS USERS

THE COMMAND FILE NORMALLY FRODUCED WILL DELETE ALL TEMFORARY
FILES CREATED DURING THE GENERATION FROCESS. THESE FILES MAY

BE FRESERVED IF DESIRED.
DELETE FILES (Y OR N) 7 YC&D

NOTE: BEFORE CONTINUING WITH THE BUILD FROCESS ...
MAKE SURE THAT YOU HAVE INSTALLED LER

MAKE SURE THAT THE FILE GRSURS.MAC IS ON DK2:

STOF -~

When the STOP -- message appears from COND (which occurs after a delay
of a minute or more), use the GRGEN command; this time it creates the
final satellite-end library.

When yo
created

NOTES ON GRGEN PROCEDURE

It is vital that you follow the exact procedure described in
the previous paragraph. Do not run COND twice and then
command GRGEN twice. If you do, only one library will be
created and the host-satellite system will not work.

The GRGEN command file assumes that the standard FORLIB is to
be used 1in compiling your satellite library. If for any
reason different FORTRAN libraries are used to build the
host- and satellite-end libraries, re-edit the file GRGEN.CMD
so that the TKB command will retrieve the proper FORTRAN
library.

u run COND for a host-satellite system, eight new files will be

on your output device. The first four are identical in

function to the files created in a stand-alone system:

GRSUBS.MA, which records your answers to the COND gquestions,
ready to be passed to the MACRO-11 Assembler;

GRGEN.CMD (called GRGEN.BIS in RSX-11D), an "indirect" command
file that will be used to create the final library;

GRPAK1.FO, a subset of the FORTRAN sources in GRPACK.CND, created
according to your answers to the COND questions;

GRCOM.CND, which defines the DECgraphic-11 COMMON areas DFILE and
GRDAT.

INSTRUCTIONS FOR RSX-11 AND IAS USERS

The name of the fifth file depends on whether you are building a

library for the host end or the satellite end:
GRSBLD.CMD, created when you are building for the satellite end;
this file will create a new satellite control program
(SATCTL.TSK); the section on building host-satellite graphic
tasks (Section 5.2.2) explains this command in more detail;
GRHBLD.CMD, created when you are building for the host end; this
file will 1link your compiled graphic program to the host-end
library, creating a graphic task that can be executed by commands
from the satellite. Again, see Section 5.2.2 for more
information.

The sixth file is created only when you are building the host library:

LGR.FO, a FORTRAN (or FORTRAN IV-PLUS) source file containing the
Graphic Loader; its use will be explained in Section 5.2.2.

Finally, the seventh and eighth files will be created only when you
are building the satellite library:

SATDSP.FO, the source file of the Satellite Dispatcher;
USRSAT.FO, the source file of the User's Satellite Routine.
These last two files are explained in Section 5.2.2.
For the creation of the libraries, follow the same procedure, whether
you are creating the host-end or satellite-end library:
RSX-11M:
>@GRGEN (&)
RSX-11D:
MCR>BAT GRGEN
IAS:
PDS>@GRGEN
The GRGEN command performs the same functions in all three operating

systems. When you are building the host-end library, GRGEN performs
the following functions:

1. Deletes all files with the extensions .0B and .LI (that is,
the object and listing files left over from previous runs of
GRGEN) .

2, Deletes all versions of the file GLIBH.OLSB (0ld host-end
libraries).

INSTRUCTIONS FOR RSX-11 AND IAS USERS

3. Using the MACRO-11 Assembler, conditionally assembles the
code in GRSUBS.MAC, with the COND answers in GRSUBS.MA
serving as conditional assembly parameters. The output file
is GRSUBS.OB.

4. Depending on your instructions to COND, uses either the
FORTRAN IV or FORTRAN IV-PLUS compiler to compile GRPAK1l.FO,
and prints listings on your listing device if you asked for
them. The output file is named GRPAK1.OB.

5. Uses the FORTRAN IV or FORTRAN IV-PLUS compiler to compile
LGR.FO, and optionally prints listings. The output file is
named LGR.OBJ. Builds the task image LGR.TSK £from LGR.OBJ
and prints the task-build map.

6. Uses the system's Librarian to create GLIBH.OLB, the new
host-end graphic library.

7. If you told COND to DELETE FILES, deletes all versions of all
files with the extensions .FO, .0OB, and .MA, as well as all
versions of GRCOM.CND.

8. Deletes all but the most recént versions of LGR.OBJ and
GRHBLD.CMD (that 1is, all versions except the ones you have
just created).

1f you are building the satellite-end 1library, GRGEN performs
different operations:

1. Deletes all files with the extensions .0OB and .LI and all old
versions of GLIBS.OLB (o0ld satellite-end libraries).

2. Conditionally assembles GRSUBS.MAC. Listings are printed if
you request them. Note that this is a different assembly
than in the host-end case, because your COND answers in
GRSUBS.MA are for the satellite end this time.

3., Compiles (in FORTRAN IV only) the file GRPAK1.FO, which |is
also specific to the satellite end this time. Listings are
printed if you request them.

4. Compiles the Satellite Dispatcher (SATDSP.FO) and the User's
Satellite Routine (USRSAT.FO). Only the FORTRAN IV compiler
is used; FORTRAN IV-PLUS cannot be used in satellite control
programs. Listings are printed if you request them.

5. Uses the librarian to create GLIBS.OLB, the new satellite-end
library.

6. If you told COND to DELETE FILES, deletes all files with the
extensions .FO, .0B, and .MA, and deletes all but the most
recent versions of SATDSP.OBJ, USRSAT.OBJ, and GRSBLD.CMD.

When you have finished running GRGEN this second time, both the
satellite- and host-end libraries are complete. See Section 5.2.2 for
instructions on building host-satellite tasks.

¥

INSTRUCTIONS FOR RSX-11 AND IAS USERS

5.2 CREATING GRAPHIC TASKS

Graphic tasks are the final result of your graphic programming work in
RSX-11 and 1IAS. They combine a FORTRAN or FORTRAN IV-PLUS program
that you write with the libraries created from the DECgraphic-11
FORTRAN Graphics Package; they will run and display graphics on your
display screen in response to simple commands. Section 5.3 describes
the principles of host-satellite programming in detail. However,
whether you are using the DECgraphic-11 FORTRAN Graphics Package in
stand-alone mode or host-satellite mode, you may want to read this
section first and try a few programs before you get into the theory of
operation.

5.2.1 RSX-11M Stand-Alone Systems

In RSX-11M, tasks are created by the Task Builder (TKB) . This system
utility links together a number of object files to build an executable
task image. One of the object files, in the case of graphic

programming, will be a FORTRAN program you have written that includes
calls to the subroutines described in this manual. The other file
will be GLIB.OLB, the library of DECgraphic-11 subroutines.

One way to use the Task Builder is as follows (the red parts of the
dialog are the ones you type):

>TKB (&)
TKB>task=object.GLIB/LB
TKB>/

TKB>ASG=GR0:1
TKB>MAXBUF=512

TKB>//
where:

task = Your choice for the name of the final task image;

object = Your compiled FORTRAN graphic program;

GLIB = The DECgraphic-11 library;

GRO:1 = The assignment of Logical Unit 1 to the device
GRO: (your VT1ll or VS60);

MAXBUF=512 = The definition of the maximum buffer size when

using SAVE and RSTR.

NOTE

As discussed in Section 1.2, the
display-file common area (DFILE) must
reside in the physical 1lower 28K of
memory if you are using a VTl1l with a
mapped system. If, as was recommended,
you created a global common called DFILE
at the time you generated your RSX-11M
system, you must include the second
option COMMON=DFILE in the TKB commands.

INSTRUCTIONS FOR RSX-11 AND IAS USERS

The object file for your program can be created by the FORTRAN
compiler:

>FOR object=source
or by the FORTRAN IV-PLUS compiler:

>F4P object=source
where:

source = The file of FORTRAN code you have created by any
of several means, most commonly by use of the
RSX-11M Text Editor (EDI).

The procedure just described creates a task image of your program,
which can be executed by typing:

>RUN task

As an alternative to this procedure, you can edit the file GRBLD.CMD,
which COND produces. In editing GRBLD.MAC, substitute the name of
your program for the file name USER.

NOTE

GRBLD.CMD does not contain the option
statement COMMON=DFILE. If you are
using a mapped RSX-11M system with a
vTll and have created a global common
called DFILE, you should edit GRBLD.CMD
and add the COMMON=DFILE statement.
Otherwise, you should not use GRBLD.

5.2.2 RSX-11M, RSX-11D, and IAS Host-Satellite Systems

Host-satellite tasks are created by the Task Builder utility (TKB in
RSX-11 systems and LINK in IAS). To run a host-satellite graphic
task, you need to create two related tasks:

1. The task created from your FORTRAN program. To create this
task, the program (GRAPH.FTN is used as an example in this
section) is compiled and then linked by TKB or LINK to the
host library, GLIBH.OLB.

2. The satellite control task, SATCTL.TSK. SATCTL.TSK is built
by 1linking SATCTL.OBJ to the satellite library (GLIBS.OLB),
to the Satellite Dispatcher, and to the User's Satellite
Routine (USRSAT.OBJ). USRSAT, in its simplest form, is
provided automatically when you build the satellite library.
You can write modifications to USRSAT to extend the
capability of the host-satellite software (see Section
5.3.2). Section 5.3.2 also explains the Satellite Dispatcher
and Satellite Control Task in more detail.

INSTRUCTIONS FOR RSX-11 AND IAS USERS

<

To prepare for running a host-satellite system, bootstrap the computer
in your satellite display subsystem by the following procedure:

1. Load address 776000 and press the START button.

2, A blinking cursor will appear on the screen, meaning that
your display subsystem is now a terminal to the host
computer. Type either CTRL/C or CTRL/Z to make the prompt
symbol for your system appear. Log on to your account on the
host system (if necessary).

Your satellite subsystem is now functioning as a terminal to the host
operating system. Build the task from your program (GRAPH.FTN) by
typing the red commands shown below in response to your operating
system's prompt:

RSX-11:

FOR USER=GRAPH
TKB @GRHBLD (®er)
PIP GRAPH.TSK=USER.TSK/RE

IAS:

FORTRAN/OBJECT:USER GRAPH
@GRHBLD
RENAME USER.TSK GRAPH.TSK

The program GRAPH.FTN is now the graphic task GRAPH.TSK, linked to the
host 1library. The name USER.OBJ was used temporarily because that is
the name used by the command file GRHBLD.CMD for input and output.

Now build the Satellite Control Task:
RSX~-11:
TKB @GRSBLD (D)
IAS:

@GRSBLD

GRSBLD.CMD wuses whatever form of the User's Satellite Routine
(USRSAT.OBJ) you have on your storage device. 1If you do not need to
modify USRSAT (see Section 5.3.2), let GRSBLD use the version that was
created when you built the satellite 1library. When GRSBLD is
finished, the Satellite Control Task (SATCTL.TSK) will have been
created on your storage device. Unless you modify USRSAT, this is the
only time you have to use GRSBLD. The same SATCTL can run with all
your programs.

As explained in Section 1.2, you must be sure that the FORTRAN library
used to build SATCTL matches the hardware of the satellite terminal.
GRSBLD uses the default FORTRAN library that you have incorporated in
SYSLIB. If the default FORTRAN library does not match the satellite
hardware, you should edit GRSBLD.CMD and add a reference in the TKB
command to the proper FORTRAN library for the satellite.

Now you can run the Graphic Loader and load SATCTL.TSK down-line from
the host to the satellite:

INSTRUCTIONS FOR RSX-11 AND IAS USERS

RSX-11M:

RUN LGR
LGR>SATCTL

RSX-11D/IAS:

RUN LGR
LGR>SATCTL
STARTING ADDRESS? 1000

NOTE

I1f your system is RSX-11D or IAS, always
check the task-build map of SATCTL
(SATCTL.MAP) for the «correct starting
address. The starting address is not
required for RSX-11M.

When SATCTL is running, the special satellite cursor appears on the
screen. This cursor is a small square with a flashing center. (The
process of down-line loading may require a minute or more before the
cursor appears.) You are ready to run your graphic task:

RUN GRAPH

The GRAPH program will be executed by the host, creating a display
file and graphic display image at the satellite.

For more details on host-satellite principles, see Section 5.3,
especially the part (Section 5.3.4) dealing with special programming
precautions and special keyboard characters used 1in host-satellite
programming.

5.3 HOST-SATELLITE SYSTEMS

This section describes the concept and special software components of
a DECgraphic-11 host-satellite system. As was mentioned previously,
you may want to run some sample programs (such as the DRAWH/DRAWS
program in Appendix D) before you concern yourself with this
theoretical detail. Section 5.3.3, however, is useful for beginners.

Section 5.3.1 contains general information on the configuration of
host-satellite systems.

Section 5.3.2 describes in detail the special software that is called
internally by the DECgraphic-11 FORTRAN Graphics Package subroutines
when they are used in a host-satellite system. This special software
is in the form of an extra set of subroutines. 1In some situations,
you can call them directly to perform special operations.

Section 5.3.3 gives a detailed discussion of running host-satellite
graphic tasks, and of the function of the Graphic Loader (LGR).

Section 5.3.4 lists the precautions you must observe when writing
FORTRAN programs for a host-satellite system.

Finally, Section 5.3.5 lists the special control characters that you
can use on the keyboard of your satellite terminal.

INSTRUCTIONS FOR RSX-11 AND IAS USERS

5.3.1 The Host-Satellite Concept

You can best

understand

the concept
programming by studying Figure 5-1,

STAND-ALONE CONFIGURATION

of host-satellite

VT
VS60

FORTRAN
cPU LIBRARY
DECGRAPHIC-11
FORTRAN
GRAPHICS PACKAGE
DISKS
TASK 2
APPLICATION TASK
WITH
DECGRAPHIC-11 CALLS
DISPLAY FILE <:>
RT-11
OR
RSX-11M
HOST-SATELLITE CONFIGURATION
HOST FORTRAN
CPU LIBRARY
DECGRAPHIC-11
FORTRAN
GRAPHICS PACKAGE Sg’:!r/; L
HOST LIBRARY (GLIBH) e
DISKs COMMUNICATIONS |e—==—"1 COMMUNICATIONS

APPLICATION TASK
WITH
DECGRAPHIC-11 CALLS

ATTENTION HANDLING
AND
USER ROUTINES

LIGHT-PEN INTERACTION

OTHER TASKS

RSX-11M, RSX-11D
OR
I1AS

CECRE ,
GRAPHICS PACKAGE SATELLITE
SATELLITE LIBRARY CPU

(GLIBS)
DISPLAY FILE

vT11
-
VS60

Figure 5-1

Comparison of Stand-Alone and

Host-Satellite Configurations

graphic

INSTRUCTIONS FOR RSX-11 AND IAS USERS

In a stand-alone configuration, you write an application task with
DECgraphic-11 subroutine calls like the ones described in this manual.
These calls each retrieve object code from the disk-resident library
(DECgraphic-11 FORTRAN Graphics Package), and the code inserts display
instructions in the area of memory called the display file. The VS60
display processor (or the VT1ll, as the case may be) can then execute
the instructions by using the display file as 1its own portion of
memory, without using the CPU.

You can see the basic differences in the software configuration of
host-satellite systems:

1. The graphic 1library is separated into two parts, the
DECgraphic-11 FORTRAN Graphics Package on the host end and
DECgraphic-11 image generation on the satellite end.

2. Each end of the system has an area labeled "Communications."”

3. Instead of a single application task on the host end, there
is also an area on the satellite end labeled "Attention
Handling and User Routines."

4. There is no display file on the host end; the display file
and the display hardware are on the satellite end of the
system.

The two libraries are simply GLIBH.OLB and GLIBS.OLB, which were
created by the COND/GRGEN procedure described in Section 5.1.6.
Because the actual image generation takes place on the satellite end,
these two libraries are related: a call to one of the subroutines in
GLIBH will be translated into a call to a subroutine in GLIBS, so that
the appropriate display instruction is placed in the display file for
the satellite.

The "communication" areas of each end are in charge of translating and
sending messages from host to satellite and back. The routines in
these categories convert a regular subroutine call to a format that is
easily transmitted across the serial data link. Communication
software is described in more detail in Section 5.3.2. For many
applications, you can write a host-satellite program without having to
make any reference to the communication routines in your program.

The drawing shows the application task divided into two parts, one on
each end of the serial data link. 1In the simpler cases, the task on
the satellite end is simply the Satellite Control Task (SATCTL.TSK) as
built by the GRSBLD command, without modification by the programmer.
The initial form of SATCTL does all the basic work of communicating
with the host, calling the appropriate subroutines from GLIBS, and
building the display file. The application task on the host end is,
in these same cases, identical to a task that would run on a
stand-alone system, except for the way in which the display file 1is
handled.

When you built the satellite-end library with COND, COND asked you how
big the satellite display file should be. Your answer was recorded,
and the host-satellite software defines and initializes a display file
this size each time you run a host-satellite graphic task. Therefore,
you do not need to put the COMMON/DFILE or CALL INIT statements at the
beginning of the application task; the definition and initialization
are done automatically.

INSTRUCTIONS FOR RSX-11 AND IAS USERS

Host-satellite programming becomes more complicated than programming
for stand-alone systems when you write interactive graphic programs,
since such programs require a lot of graphic-attention handling for
the 1light pen or other interactive devices. 1In such programs, it is
most efficient to modify the User's Satellite Routine (USRSAT) so that
it provides local attention handling for interactive devices that are
part of the satellite hardware. This technique eliminates the need to
communicate with the host each time a graphic attention occurs, and
the interactive program runs much faster. Appendix D has an example
of an interactive program (DRAWH/PRAWS) that employs a modified USRSAT
to provide attention handling at the satellite for the light pen and
the pushbutton box.

5.3.2 The Host-Satellite Software

As was mentioned in describing the process of building host and
satellite graphic 1libraries, host-satellite systems contain software
not found in DECgraphic-11 stand-alone systems. This special software
falls into three categories:

1. An executive task, SATCTL.TSK, that interprets messages from
the host computer and the satellite terminal and executes
code in the satellite to create images on the satellite
screen.

2. Routines that control communication between the host and
satellite computers.

3. Routines that do local jobs at the satellite, such as storing
display files on the satellite's mass-storage devices.

Satellite Control and Dispatching

The Satellite Control Task (SATCTL.TSK) 1is produced during the
execution of the GRSBLD command. SATCTL is built from the Satellite
Dispatcher (SATDSP), the User's Satellite Routine (USRSAT), and the
satellite library (GLIBS.OLB).

SATDSP and USRSAT are both created by COND when you build the
satellite-end 1library. The contents of USRSAT as created by COND are
short enough to state here:

SUBROUTINE USRSAT(B,I)
LOGICAL*1 B(60)

RETURN

END

In its initial form, USRSAT simply returns when called.

In host-satellite graphic systems, the User's Satellite Routine
(USRSAT) can be modified to provide such features as local attention
handling at the satellite. Appendix D has a pair of programs, DRAWH
and DRAWS, that demonstrate one method of distributed processing in an
interactive graphic program, wherein USRSAT is modified to process all
graphic attentions at the satellite level rather than relying on the
host computer.

The Satellite Dispatcher, SATDSP, interprets messages coming from the
host to determine whether they are subroutine calls. If they are,
SATDSP transfers control to the appropriate DECgraphic-11 subroutine
in GLIBS.

INSTRUCTIONS FOR RSX-11 AND IAS USERS

Ccommunication between Host and Satellite

The DECgraphic-11 FORTRAN Graphics Package includes several
subroutines that allow the host and satellite computers to cooperate
in producing a graphic display on the satellite display screen. The
communication involves, for the most part, messages from the host that
tell the satellite to execute a particular subroutine from the
satellite library. 1In this manner, a DECgraphic-11 program can run in
the host, but its subroutine calls are executed at the satellite
display. In general terms, the following dialog takes place for a
subroutine call (VECT is used as an example) :

1. The host program uses the subroutine TOSAT to send the
satellite a message requesting the VECT subroutine. TOSAT
has the following form:

CALL TOSAT (vcode,2,4,x,4,y,NOPTS(2),
x 2,1,0,2,i,0,2,£,0,2,%,0)

which corresponds to the statement CALL VECT(x,y,l,i,f,t).
The vcode is a specific code that tells the satellite to call
the VECT subroutine from GLIBS. The rest of the TOSAT
arguments pass arguments to the VECT call that will be put
together in the satellite. The argument after vcode tells
TOSAT that two argument pairs follow. These two arguments
for the example (VECT) are the mandatory X and y arguments.
The two pairs give (a) the argument length in bytes, i.e., 4;
and (b) the argument names (X and y). NOPTS (2) is a
reference to the DECgraphic-11 statement function NOPTS,
which returns the number of optional arguments supplied in
the VECT call when two mandatory arguments are supplied.
NOPTS will be 4 in this case, since all four status
parameters (1, i, £, and t) are included in the VECT call.
This value of NOPTS will tell the satellite to expect four
data triplets, which are the last 12 arguments of the TOSAT
call. The first element in a triplet is the 1length of the
argument in bytes (2 for these integer arguments). The
second part of the triplet is the actual value (one of the
legal status parameters in this case). The last element of
the triplet is the default value for each argument (0 for the
status parameters).

2. The TOSAT call has a correspending FRHOST call in the
satellite. FRHOST has the form

CALL FRHOST(B,I)

where B is the 60-element message buffer defined by SATDSP,
and I is an integer flag for messages (0=No message,
l1=Message). The FRHOST call is located in the Satellite
Dispatcher (SATDSP), which is built into the Satellite
Control Task. SATDSP interprets the message by reading
vcode, calling VECT from the satellite library (GLIBS.OLB),
and giving VECT the same arguments that were supplied in the
TOSAT call.

3. If the subroutine being executed is supposed to return values
to the calling program, a similar pair of subroutines, FRSAT
and TOHOST, is executed.

FRSAT has the form
CALL FRSAT (numsnd,ibytes,
x destination argument,...)

5-23

INSTRUCTIONS FOR RSX-11 AND IAS USERS

FRSAT requests information from the satellite, where numsnd
is the number of values to supply, and ibytes and destination
argument (which are repeated as required in the FRSAT call)
give the number of bytes to supply for each argument and the
name of each argument for which values are being requested
from the satellite. The scaling factors in a WINDW call are
examples of data that would be transmitted from satellite to
host in this manner. If the host does not receive an
immediate response to an FRSAT call, it tries 10 times to
read a message ibytes long from the satellite, with a delay
of 10 seconds between tries.

4. For each FRSAT call in the host program, there is a TOHOST-
call in the satellite. TOHOST has the form

CALL TOHOST(ibytes, source argument,...)
TOHOST only occurs in response to an FRSAT call.

5. If an FRSAT call occurs in the host before the satellite |is
ready to transmit the requested data, the Satellite Control
Task substitutes a DHOST call (for "Delay Host") for the
TOHOST. DHOST has the form

CALL DHOST(ibytes)

When the host receives a DHOST message, it waits indefinitely
until it receives a TOHOST with the proper message length.

NOTE

If a failure occurs in the data 1link or
in the satellite computer while the host
is delayed by a DHOST, the system will
hang because the host will continue to
wait for the message signaled by DHOST.

Local Storage at the Satellite

The DECgraphic-11 FORTRAN Graphics Package allows you to store and
retrieve display files on your satellite's storage devices (if any).
To do so, two supplementary subroutines are called by the SAVE and
RSTR subroutines described in Chapter 2. These two extra subroutines
are ACCESS and READWR.

ACCESS and READWR are designed to manipulate files on RT-11 floppy
disks, such as are found with some GT62 satellite terminals. ACCESS
and READWR are used together to read or write files on the floppy
disks. To delete or rename files, ACCESS can be used by itself. The
SAVE and RSTR subroutines call ACCESS and READWR automatically when
they are called from your program. SAVE and RSTR operate only on
display files; for more general file transfers, you can call ACCESS
and READWR directly.

ACCESS has the form

CALL ACCESS(imode,filnam,ichan,IORET,isize)

INSTRUCTIONS FOR RSX-11 AND IAS USERS

where:
imode is the access mode (1 to 4);

filnam is the name of the file to look up, in a 1legal FORTRAN
alphanumeric format (usually the name 1is enclosed in single
quotation marks);

ichan is a channel number from 1 to 8 (not one of the reserved
logical unit numbers listed in Section 5.3.4);

IORET returns a condition code that tells whether the ACCESS call
was successful (IORET > 0) and gives the cause of failure if the
call failed (IORET < 0);

isize is the number of 256-word blocks to allocate on the floppy
disk when a new file is being created.

ACCESS can either 1look up (imode=l), create (mode=2) , delete
(imode=3), or rename (imode=4) a file on the floppy disk. The isize
argument is required only when you are creating a new file name.

When you are renaming a file with ACCESS, put the old file name in
place of the ichan argument.

The create and rename operations will both fail if the file name you
specify 1is in use. The failure will be noted by IORET. The specific
values for IORET, and their meanings, are as follows:

Value I/0 Sstatus Return (IORET)
+1 Operation successfully completed
-1 I/0 error on file
—2' Bad file-name string (e.g., file name too long)
-3 Error reading directory (e.g., disk not in RT-11 format)
~4 Error writing directory
-5 File name in use
-6 File not found
-7 Device full
-8 Directory full (one directory segment for each volume, not
expandable)
-9 Bad directory
-10 End of file encountered

READWR has the form

CALL READWR(ioper,ichan,iblock,nwords,ibuf,IORET)

INSTRUCTIONS FOR RSX-11 AND IAS USERS

where:

ioper indicates that the «call will read (ioper=0) or write
(ioper=1) a file;

ichan (1 to 8) 1is the same channel number used in the
corresponding ACCESS call;

iblock is the number of 256-word blocks in the file;
nwords is the number of words in the file;
ibuf is the name of the buffer for the file;

IORET is the status retufn, with the values having the same
meaning as for the ACCESS subroutine.

The DRAWS program (a modified USRSAT) in Appendix D shows ACCESS and
READWR being used for a variety of file transfers.

CAUTION

If you answer Y to the question LOCAL
SAVE/RSTR asked by COND and you do not
modify USRSAT to contain the SAVE and
RSTR calls (in other words, if they are
processed on the host end), the two
calls will perform the file storage or
retrieval on the host's storage device.

5.3.3 Running Host-Satellite Graphic Tasks

In the process of creating your host-end graphic library, GRGEN also
creates a task called LGR (the Graphic Loader). LGR, when run from
your satellite terminal, searches the mass-storage device of the host
computer for a task image that you request. The task image is then
"loaded" down the serial data link from the host computer to the
satellite computer, where it is executed.

Because of its general purpose, you can use LGR to "downh-line load"
nearly any executable task, including graphic programs written with
the DECgraphic-11 FORTRAN Graphics Package.

NOTE

Some FORTRAN statements are illegal in
satellite programs; see Section 5.3.4.

As long as the satellite CPU has enough memory to hold the task image
and the display file it creates, any functioning DECgraphic-11 program
can be run at the satellite by typing the following command from the
satellite terminal in response to the operating system's prompt
symbol:

LGR task

where task is the file name of the task image you want to run.

5-26

INSTRUCTIONS FOR RSX-11 AND IAS USERS

However, LGR is not intended to be used in such an elementary way
because the satellite processor often lacks enough free memory to run
your task. 1In general, LGR is wused to run the task SATCTL (the
Satellite Control Task) in the satellite CPU. SATCTL is created oy
the GRSBLD command described earlier in this chapter. When you type
the command

LGR SATCTL

SATCTL is down-line loaded and becomes a kind of "mini-executive' task
for the entire satellite system. As noted in Section 5.2.2, the
appearance of the screen cursor will change to show that SATCTL is
running the satellite system.

When you type
RUN task

while SATCTIL is running the satellite system, the "task" (graphic
program) is executed not in the satellite, but in the host. However,
when graphic subroutines in the host program create display
instructions for the VS60 or VT1ll, the display instructions themselves
are sent down the data link and intercepted by SATCTL. SATCTL then
refers to its own subroutine library (GLIBS.OLB) and creates a display
file in the satellite CPU.

The standard form of SATCTL, the one created during the library
building process, 1is already capable of serving as the executive for
the satellite, in the mode described 1in the previous paragraph.
However, you can, in some cases, make your graphic program even more
functional by modifying the User's Satellite Routine (USRSAT), which
is one of the components that is built into the task image of SATCTL.
The simple form of USRSAT that is created by COND can be considerably
expanded to "redistribute" the various processor functions between the
satellite and host CPUs. For instance, the program DRAWS, shown in
Appendix D, is a modified form of USRSAT that allows the satellite
processor to handle graphic attentions from the light pen and
pushbutton box, rather than forcing the host to assume the burden.
Local attention handling of this type is valuable in interactive
graphic programs, because a busy host computer will not be slowed down
by the necessarily large number of calls to attention-processing
subroutines 1like LPEN, GRATTN, and PBH. Because the communication
required on the data link 1is reduced when grapnic attentions are
handled by the satellite, the program will respond more rapidly to the
user's commands. .

5.3.4 Special Precautions for Host-Satellite Programming

A variety of suggestions have been made in previous sections for
increasing the efficiency of a host-satellite program. See, for
example, the description of the subroutine DISPLY (Section 2.12) and
the discussion of local attention handling (Sections 5.3.2 and 5.3.3).

There are also some FORTRAN statements that cannot be used 1in

satellite graphic programs. In general, they are the group of
statements that read and write data (and entire files) to the terminal
and to mass-storage devices. It is for this reason that the

subroutines KBS and TTW are available for communication between the
satellite keyboard and the satellite screen, and ACCESS and READWR
(see Section 5.3.2) are available for manipulating files on the
satellite's mass-storage devices. Examples of FORTRAN statements that
are illegal in satellite programs are READ, WRITE, CALL ASSIGN,
ENCODE, DECODE, and DEFINE FILE.

5-27

INSTRUCTIONS FOR RSX-11 AND IAS USERS

The following logical unit numbers (LUNs) are reserved for internal
use by the DECgraphic-11 subroutines. Do not attempt to use them for
other purposes.

Logical Unit 1: Display Scope (stand-alone RSX-11M only)
Logical Unit 2: Used by SAVE and RSTR

Logical Unit 3: Pushbutton box (stand-alone RSX-11M only)
Logical Unit 5: Terminal interface (TI:)

Similarly, the following event flag. numbers are reserved by the
subroutines:

Event Flags 9 and 10: Terminal communication

Event Flag 11: Light-pen interrupt (stand-alone
RSX-11M only)

Event Flag 12: Pushbutton interrupt (stand-alone
RSX-11M only)

Event Flags 17, 18, and 19: Host-satellite communications

In addition, be sure that you understand the functions of the special
control characters that can be typed on the satellite keyboard. They
are described in the next section.

5.3.5 Special Uses of Satellite Keyboard Characters

If you run a host-satellite program, you may notice that the satellite
terminal "beeps" if you +try to type characters on the satellite
keyboard. This signal exists to warn you that you are trying to send
a message while communication 1is underway between the host and
satellite (including when the host has been delayed by a DHOST call
from the satellite).

However, you will also want to use the keyboard at times to send
messages to the satellite. For example, the DRAWH/DRAWS program shown
in Appendix D has a pair of menu items named SAVE and RSTR for writing
and reading display files from the satellite storage devices. When
you select one of these options, the message FILE NAME: will appear
on the screen, and the satellite program will wait for you to type the
name of the file. Clearly, there has to be a method of distinguishing
messages of this type, which are intended to communicate with the
satellite, from messages intended for the host. The character

CTRL/H

is used for this purpose. (This CTRL/H character is made by holding
down the CTRL key while you press the H key.) When you type a CTRL/H,
the appearance of the satellite cursor will change. Instead of
appearing as a square with a flashing center, the cursor will change
to the outline of the square only. All messages you type while this
cursor is on the screen will be directed to the satellite. To talk to
the host again, type another CTRL/H; the cursor will change back to
its regular appearance.

INSTRUCTIONS FOR RSX-11 AND IAS USERS

You can abort a graphic display on the satellite screen by typing the
character

to the satellite. 1In other words, to abort a graphic program, type
CTRL/H, then CTRL/C to abort the task.

If you also want to abort SATCTL and use your graphic subsystem as a
simple remote terminal, type

*
CTRL/B

to the satellite. 1In other words, type CTRL/H, then CTRL/B. (You may
also have to follow with a CTRL/C or CTRL/Z to make the prompt symbol
for the host operating system reappear.)

APPENDIX A

DECGRAPHIC-11 SUBROUTINE SUMMARY

This appendix is an alphabetical summary of the graphic subroutines in
the DECgraphic-11 FORTRAN Graphics Package.

NOTE

The subroutines FRSAT, TOSAT, FRHOST,
TOHOST, DHOST, ACCESS, and READWR, which
are specific to host-satellite systems,
are not covered in this appendix. See
Section 5.3.2.

An asterisk (*) before a subroutine name means that the subroutine
functions differently on VTll- and VS60-based subsystems. Usually,
the difference is that only one scope is supported on the VT1ll; the s
parameter is ignored in VT1l calls.

A cross (+) identifies subroutines that work only on VS60 graphic
subsystems. Calls to these subroutines are legal in programs written
for VT1ll subsystems, but they will not perform any operation.

An explanation of the 1, i, £, and t parameters, shown as optional
arguments in many of these calls, 1is included at the end of this
appendix.

DECGRAPHIC-11 SUBROUTINE SUMMARY

Call Argument List Effect

ADVANC (k[,n]) Advances Pointer k (1-20) by n
primitives from its current position; n
must be positive; if n is omitted, the
pointer advances to the next primitive
in the display file. (See Section
2.6.2.)

APNT (x,y[,1,i,f,t}]) Positions the beam at the absolute
position represented by (x,y) and can
display a dot at that position;
optionally changes 1, i, f, and t
parameters. (See Section 2.3.1.)

+ AREA (n) Specifies that subsequent graphic calls
refer to the main viewing area (n=1) or
the menu area (n=2). (See Section
2.2.2.)

* ATTACH (k[,n,s]) Attaches the primitive identified by

Pointer k (1-20) to the tracking object
on Scope s. When the primitive is a
long vector, it will be attached to the
object and will follow it; if n is
positive or omitted, the vector's origin
is stationary and the destination end
will move; however, if n is negative,
the destination end 1is stationary and
the origin will move. If the primitive
is an absolute point or an absolute
vector, you do not have to include n.
(See Section 2.8.4.)

+ AVECT (x,vy[,1,i,£,t]) Draws a vector from the current beam
position to the absolute point that is
represented by (x,y); optionally

changes the 1, i, f, and t parameters.
(See Section 2.3.4.)

CHANGA (k,x,y) Changes the coordinates of the primitive
identified by Pointer k (1-20) to the
new value specified in (x,y). Like
CHANGE, this subroutine can be used for
primitives defined by the subroutines
AVECT, VECT, SVECT, LVECT, RPNT, APNT,
XGRA, and YGRA; but for VECT, SVECT,
LVECT, and RPNT, subsequent primitives
are adjusted so that they will appear at
the same absolute screen positions as
before the CHANGA call. (See Section
2.6.5.)

CHANGE (k,x,y) Changes the coordinates of the primitive
identified by Pointer k (1-20) to the
new values specified in (x,y). This
subroutine can be used for primitives
defined by the subroutines AVECT, VECT,
SVECT, LVECT, RPNT, APNT, XGRA, and
YGRA. (See Section 2.6.4.)

DECGRAPHIC-11 SUBROUTINE SUMMARY

Call Argument List

Effect

* CHANGT (k,'al'[,'a2',...]) Changes the argument string of the TEXT

CMPRS

CONT

CcoPY ([ml] ,m2)

+ CVSCAL (m[,ifc,ifv])

* DETACH [(s)]

DISPLY (n)
DPTR (I)
DPYNOP (n)

call identified by Pointer k (1-20) to
the new string supplied in the CHANGT
call. Characters 1in the CHANGT string
can include control codes for italics,
rotated characters, and superscripts or
subscripts. (See Section 2.6.6.)

Compresses the display file by removing
all erased primitives and subpictures,
and reclaiming the space used by them.
(See Section 2.13.1.)

Restarts the display processor, thus
restoring the display interrupted by a
call to STOP. (See Section 2.1.3.)

Creates a copy of the existing
subpicture whose tag is m2 and assigns
it the tag ml; if the ml parameter is
omitted, Subpicture m2 is copied to the
currently open subpicture. (See Section
2.4.3.)

Scales the size of displayed characters
and vectors in Subpicture m; 1ifc can be
in range 1-4, where 1 is one-half normal
character size, and 4 is twice normal
size (normal is 2); ifv must be in the
range 1-15, where 1 is one-fourth normal
size and 15 is three and three-fourths
normal size (normal is 4). (See Section
2.4.8.)

Detaches all primitives from the
tracking object on Scope s. (See
Section 2.8.5.)

Creates display files quickly by
suppressing the display of inserted

primitives; n=-1 suppresses the
display; n=0 displays all primitives
previously inserted, but still
suppresses the display of subsequently
inserted primitives; n=1 returns to
normal display mode, in which the

primitives are displayed as soon as they
are inserted in the display file. (See
Section 2.12.1.)

Returns in I the subscript of the
display-file element in which the
primitive will be entered. (See Section
2.14.1.)

Inserts n "no-operation" instructions at
the end of the display file. (See
Section 2.14.2.)

Call

DPYWD

ERAS

ERASP

ESUB

FIGR

FLASH

FREE

GET

GRATTN

DECGRAPHIC-11 SUBROUTINE SUMMARY

Argument List

(iword, idisp)

[(m)]

(k)

[(m)]

Effect

Inserts the 16-bit data word (iword) at
the end of the display file; displays
the result of iword on the screen if the
value, of idisp 1is 0. (See Section
2.14.3.)

Erases the definition of Subpicture m
from the display file; if parameter m
is omitted, the tracking object is
removed from the screen; the space
occupied by the subpicture must be
reclaimed by CMPRS or SAVE. (See
Section 2.4.6.)

Erases the primitive identified by
Pointer k (1-20), and repositions the
pointer at the next primitive in the
display file. (See Section 2.6.8.)

Terminates the definition of a
subpicture; if the m argument is
included in the call in a VS60 program,
the display parameters (e.g., light-pen
enable, intensity) that were in effect
before the current subpicture was
defined are restored; the m argument
has no effect in VT1ll programs. (See
Section 2.4.2.)

(ARRAY,n,m[,1,1i,£f,t])

(k[,£])

(k,X,Y)

Creates a special figure subpicture with
tag m. The figure is plotted with long
vectors whose displacements are the
first n (x,y) pairs specified in ARRAY.
Optionally changes the 1, i, £, and t
parameters. (See Section 2.5.3.)

Enables (£>0) or disables (£f<0) flash
mode for the primitive 1identified by
Pointer k. (See Section 2.7.3.)

Disconnects the display file from the
display processor, thus freeing the area
of memory used by the file; this action
terminates graphic processing until the
next call to INIT. (See Section 2.1.4.)

Returns in (X,Y) the coordinate
positions of the primitive identified by
Pointer k. (See Section 2.6.3.)

(iwait,IRETRN,idevl[,idev2,idev3,...,idevn])

Polls the interactive devices
idevl...idevn for graphic attentions;
waits for an attention if iwait=1;

returns after one poll if iwait=0;
returns in IRETRN an index to the list
of interactive devices if an attention
occurs, where IRETRN=1 if the attention
came from idevl, etc.; the values for

Call

* GRID

INIT

INSRT

INTENS

KBC

KBS

LINTYP

DECGRAPHIC-11 SUBROUTINE SUMMARY

Argument List

(gx,9yl,s])

[(n)]

[(k)]

(k[,i])

(ICHAR)

Effect

idevn are l=1light pen, 2=pushbutton, and
3=keyboard. GRATTN must be followed
with an attention-processing routine,
such as LPEN, PBH, or KBC. (See Section
2.9.)

Moves the tracking object on Scope s to
the nearest point on the grid and
automatically detaches any detached
primitives. Arguments gx and gy define
the spacing of points on the grid. (See
Section 2.8.6.)

Clears the display screen, initializes
the display file to wuse the firstn
words of the COMMON area, DFILE, and
sets the initial display parameters.
(See Section 2.1.1.)

Reopens a subpicture for insertion of
primitives (specified in subsequent
graphic subroutine calls). Insertion
begins just before the primitive
identified by Pointer k. If k is
omitted, the insert operation is
terminated. (See Section 2.6.7.)

Changes the intensity 1level of the
primitive identified by Pointer k to the
new value specified in 1 (1-8) and/or
makes the referenced primitive visible.
(See Section 2.7.2.)

Reads a single character from the
keyboard; returns the ASCII value of
the character in ICHAR; does not wait
for a carriage return before reading the
character (except in RT-11l), and thus
allows easy use of the keyboard

characters as function keys in
interactive programs. (See Section
2.11.1.)

(length,STRING[,NUMBER])

(k{,tl)

Reads a character string from the
keyboard (waits for carriage return in
all operating systems); length is the
number of characters to read; STRING is
a LOGICAL*1 array to return ASCII values
of characters; and NUMBER optionally
returns the number of characters
actually read. (See Section 2.11.2.)

If t is a legal line-type value (1-4),
changes the line type of the primitive
identified by Pointer k to the type
specified in t. (See Section 2.7.4.)

Call

* LPEN

LVECT

MENU

DECGRAPHIC-11 SUBROUTINE SUMMARY

Argument List Effect

(rg,17[,X,Y,I1P,IA,IM,IT1,1IT2])
Tells whether a light
place, and returns in
hit in the following
Section 2.8.1.)

IH Nonzero if
occurred (1
Scope 2);
VT1l1.

IT Tag of the
the hit occ

X,Y Coordinates

IP Number of t

the subpic
hit occurre
if the pr
subpicture.

IA Array th
precedents
(subpicture
starting w
nested subp

IM Screen area
hit (1 fo
menu area);
VTll.

IT1,IT2 Status of
switches £
and 2 (IT2)
for on;

-pen hit has taken
formation about the
variables. (See

light-pen hit has
for Scope 1, 2 for
always 0 or 1 for a

subpicture in which
urred.

of the hit.

he primitive within
ture at which the
d; 1IP is undefined
imitive is not in a

at stores the
of subpicture IT
tags are in order,
ith the innermost-
icture).

of the 1light-pen
r main area, 2 for
always 1 for a

the 1light-pen tip
or Scopes 1 (ITl)
-- 0 for off, 1
for a vTll, ITl is

always 1 and IT2 is always 0.

(x,yl,1,1i,£,¢t]) Draws a vector from
position to the
represented by (x
long-vector format;
1, i, £, and t parame
2.3.6.)

({x01,y0,dy,m,'al'[,'a2',...,'alo']) -
Displays a list
light-pen-sensitive
a menu. The items
strings 'al','a2',
first item is d
coordinate position
(x0,y0); if %0 is om
call, the 1items ar
hardware menu area of

the current beam
relative position
'Y) s using the
optionally changes
ters. (See Section

of up to 10
items to be used as
are the character
and so on, and the
isplayed at the

represented by
itted from a VS60
e displayed in the
the screen; on

the VT1l, they begin at the right edge

of the viewing area.

The dy argument is

the vertical spacing between menu items.

The m argument is t
assigned to the firs
subsequent menu i

A-6

he subpicture tag
t menu item ('al');
tems are tagged

Call

NMBR

NOWNDW

OFF

ON

PBH

PBL

PBS

POINTR

DECGRAPHIC-11 SUBROUTINE SUMMARY

Argument List

P

WU

Effect

sequehtially, so that if there are 10
menu items, the 10th item's tag is
m+l10-1 or m+9. (See Section 2.3.8.)

g |
(m[va{j,n,'format']) Creates a special numeric subpicture
..

S

(m)

(m)

(IHIT,PUSHED)

[(DARK,LIT)]

(STATE)

(k,m[,3])

whose tag 1is m. This call formats the
numeric contents of a FORTRAN variable,
var, with a width of n in the specified
format. If the format parameter is
omitted, the default format is F16.8 for
subroutine libraries that take both real
and integer arguments, and 16 for
libraries that accept only integers.
(See Section 2.4.7.)

Restores the default window (x0=0.,
v0=0.) to (x1=1023., yl=1023.) for
subsequent graphic subroutine calls, and
eliminates any user-defined window.
(See Section 2.2.4.)

Temporarily turns off the subpicture
whose tag is m. (See Section 2.4.4.)

Turns on Subpicture m. (See Section
2.4.5.)

Looks for and identifies graphic
attentions from the LK-11 pushbuttons;
IHIT returns a nonzero value if any
button was pushed since the last PBH
call; PUSHED is a l6-element LOGICAL*1
array that identifies the hit button,
where PUSHED(N)=.TRUE. 1if Button n was
pushed. (See Section 2.10.2.)

Turns specific button lights on or off
on the LK-11 pushbutton box; DARK and
LIT are l6-element LOGICAL*1l arrays,
where a .TRUE. value in an element
turns the corresponding button off or
on, respectively; 1if you call PBL with
no arguments, the button 1lights return
to automatic control. (See Section
2.10.3.)

Reports the .TRUE./.FALSE. status of
the LK-11 buttons in the 1lé6-element
LOGICAL*1l array STATE. If the button
lights are under automatic control, a
.TRUE. value in STATE corresponds to a
1it button. (See Section 2.10.1.)

_points Pointer k at the jth primitive of

Subpicture m; if j 1is omitted, the
pointer points to the first primitive of
the subpicture. The k argument must be
in the range 1-20. (See Section 2.6.1.)

Call

RPNT

RSTR

SAVE

+ SCOPE

* SENSE

STOP

SUBP

SVECT

* TEXT

DECGRAPHIC-11 SUBROUTINE SUMMARY

Argument List

(x,y[,1,i,£,t])

Effect

Moves the beam from its current position
to the relative position represented by
(x,y), and can display a point at that

position. If the current position is
(10,20) the beam is moved to
(10+x,20+y) . Optionally changes 1, i,
£, and t parameters. (See Section
2.3,2,)

("[dev:] file descriptor')

Restores in the memory area of the
current display file the display file
stored in the specified mass-storage
file. (See Section 2.13.3.)

('[dev:] file descriptor')

(n)

(k[,1,s])

(ml[,m2])

(X,Y[llrirfrt])

Saves the display file by writing it
onto the mass-storage file identified in
the call. (See Section 2.13.2.)

Specifies that subsequent graphic calls
refer to Scope 1 (n=1) or 2 (n=2). (See
Section 2.2.1.)

Enables (1>0) or disables (1<0)
light-pen sensitivity for the primitive
identified by Pointer k for Scope s (1
or 2). (See Section 2.7.1.)

Halts the display processor, stops the
display, and clears the display screen.
The display can be restored by calling
CONT. (See Section 2.1.2.)

Begins the definition of a subpicture
whose tag is ml; all primitives
specified in subsequent graphic
subroutine calls are part of the
subpicture, until the occurrence of a
terminating call to ESUB. If the m2
parameter is included in the call, a new
subpicture tag, ml, repeats an existing
subpicture whose tag is m2, (See
Section 2.4.1.)

Draws a vector from the current beam
position to the relative position
represented by (x,v), using the
short-vector format; optionally changes
1, i, £, and t parameters. (See Section
2.3.5.)

([ictrl,]'al'[[,ictrl],'az',...])

Displays the character strings supplied
in the call ('al', etc.), beginning at
the current beam position. Characters
in the call can include control codes
for italics, rotated characters (vse0) ,
and superscripts or subscripts.
(VS60.) (See Section 2.3.7.)

Call

TRAK

TRAKXY

TTW

VECT

VIEWPT

WINDW

XGRA

YGRA

DECGRAPHIC-11 SUBROUTINE SUMMARY

Argument List

(x,y[,s])

(X,Y[,s])

Effect

Positions a tracking object on the
screen of Scope s at coordinate position
(x,y) and centers the object on any
light-pen hit within the tracking object
area. (See Section 2.8.2.,)

Returns the coordinates of the current
position of the tracking object in (X,Y)
for Scope s. (See Section 2.8.3.)

(number ,ICHARS| ,number ,ICHARS,...])

(X,y[lllilflt])

(x,y)

Writes a character string on the screen;
ICHARS 1is a LOGICAL*l array containing

the characters; the argument number
tells how many characters to display;
both arguments can be repeated

indefinitely. (See Section 2.11.3.)

Draws a vector from the current beam
position to the relative position
represented by (x,Y), using the
short-vector format when possible;
optionally changes 1, i, f, and t
parameters. (See Section 2.3.3.)

Defines a viewport on the image
definition area of the VS60 by
specifying the coordinate positions
(x,y) of the 1lower left corner of the
viewport. (See Section 2.2.5.)

(x0,y0,x1,y1[,FX[,FY]])

Defines a new window in which (x0,y0)
identifies the lower left corner of the
screen, and (x1l,yl) identifies the upper
right corner of the screen; optionally
returns the x and y scaling factors in
FX and FY. (See Section 2.2.3.)

(dy,ARRAY,n,m[,1,1i,£,t])

Creates a special Graph Subpicture m,
which consists of a series of points.
The x values of the points to be plotted
are the first n elements of ARRAY, and
the y values are given by integral
multiples of dy. Optionally changes 1,
i, £, and t parameters. (See Section
2.5.1.)

(dx,ARRAY ,n,m[,1,i,£f,t])

Creates a special Graph Subpicture m,
which consists of a series of points.
The y values of the points to be plotted
are the first n elements of ARRAY, and
the x values are given by integral
multiples of dx. Optionally changes 1,
i, £, and t parameters. (See Section
2.5.2.)

Parameter

1

DECGRAPHIC-11 SUBROUTINE SUMMARY

DISPLAY PARAMETERS
Meaning

Light-pen control
Default: disabled

l=positive. Light-pen interaction is enabled, and a
light-pen attention will occur when the light pen is
pointed at a sensitive object on the display screen.

1=0 or omitted. The value of the parameter does not
change from its previous status.

l=negative. Light-pen interaction is disabled;
light-pen attentions will not occur.

Intensity level

Default: 4; with normal adjustment of the BRIGHTNESS
or INTENSITY knob, this value makes the primitive
bright enough for the light pen to detect.

i=1 through 8. The current and subsequent primitives
are visible, with intensity 1level i, where 1 is the
faintest intensity and 8 is the brightest.

i=0, omitted or greater than 8. The current primitive
becomes visible, but the intensity 1level does not
change.

i=—-8 through -1, The <current primitive (except for
characters) 1is invisible, but the intensity level of
subsequent primitives is the absolute value of i.
i=less than -8. The current primitive 1is invisible,
and the intensity 1level is unchanged for subsequent
primitives.

Flash mode
Default: off

f=positive. Current and subsequent primitives will
flash on and off.

f=0 or omitted. The value of the parameter does not
change from its previous status.

f=negative. Flash mode is disabled for current and
subsequent primitives,

Line type
Default: solid (1)

t=1., Current and subsequent vectors are displayed as
solid 1lines.

t=2. Vectors are displayed as long-dash lines.

t

3. Vectors are displayed as short-dash lines.

t=4. Vectors are displayed as dot-dash lines.

t=0, omitted, negative, or greater than 4. The value
of the parameter does not change from its previous
status.

A-10

APPENDIX B

DECGRAPHIC-11 ERROR MESSAGES

This appendix summarizes all error messages that are generated by the
DECgraphic-11 FORTRAN Graphics Package. For each DECgraphic-11
message, the appendix provides the message number (where appropriate),
briefly explains the reason for its occurrence, and lists the
subroutines in which +the error might occur. The appendix also
explains messages that relate specifically to host-satellite systems.

You can suppress the display of error-message text when you run the
COND program to create new libraries. When you are building your
subroutine library (see Chapters 4 and 5), answer N to the question:

ERROR MESSAGE TEXT (Y OR N) ?

I1f you have suppressed text output and an error occurs, only the
number of the error message will be displayed, as shown below:

ERROR #YY XXXXXXXXXX

where YY is the 2-digit error-message number (see the 1list given on
the following pages), and the 10-digit X field represents the argument
(for example, the subpicture tag) in certain messages. Errors marked
HOST-SATELLITE ONLY do not display any text.

In stand-alone systems, error messages specific to DECgraphic-11 are
returned using standard FORTRAN subroutine traceback logic. Messages
are written in the following form:

IN ROUTINE "XXXXXX" LINE YYYY
FROM ROUTINE "XXXXXX" LINE YYYY

A message of this kind will be preceded by a false error message
(Number 61):

ILLEGAL MEMORY REFERENCE
Disregard this message.

In host-satellite systems, error messages specific to DECgraphic-11
are also returned using standard FORTRAN subroutine traceback logic in
the form shown above. However, in host-satellite systems the ILLEGAL
MEMORY REFERENCE line is not written.

Because many DECgraphic-11 subroutines operate internally by calling
other subroutines, some traceback information (in either a stand-alone
or host-satellite system) will concern subroutine calls that you have
not made. Note only the references to your subroutine calls.

B-1

DECGRAPHIC-11 ERROR MESSAGES

Number Error Message Subroutine(s)

1 UNABLE TO LINK TO SCOPE INIT
You do not have a scope,
or it is being used by
another task. If you are using
RSX-11M, be sure that the :
option statement ASG=GRO:1
was included in the Task Builder
commands (see Section 5.2.1).

2 INIT NOT CALLED All subroutines
You have forgotten to call
the INIT subroutine
to initialize your display
file (see Section 2.1.1).

3 MORE ESUB'S THAN SUBP'S ESUB
There are more calls
to ESUB in your program
than corresponding SuBp
calls (see Sections 2.,4.1 and 2.4.2).

4 [SATELLITE I/0 ERROR] SAVE, RSTR,
HOST-SATELLITE ONLY ACCESS, READWR
An error has occurred
in input or output to the
satellite's storage devices.

5 [CHANGT TOO LONG] CHANGT
HOST-SATELLITE ONLY
You have given an argument
string in the subroutine
CHANGT that is too long
to fit in the host's communication
buffer (see Chapter 5).

6 SYSTEM FAULT All subroutines
An internal software error
has occurred; report to DIGITAL
with Software Performance Report.

7 [RESERVED FOR FUTURE USE]

8 DISPLAY FILE FULL All subroutines
There is not enough space
left in the display file
for any more primitives.
You may be able to correct
the condition with the CMPRS
subroutine (see Section 2.13.1).

9 FILE TOO BIG RSTR
The display file being
restored from a mass-storage
device is too big to fit in
the present display file.

10 XXXXX IS IN USE SUBP, COPY, XGRA,
The tag XXXXX is already YGRA, FIGR, NMBR,
assigned to a subpicture. MENU

DECGRAPHIC-11 ERROR MESSAGES

Number Error Message Subroutine(s)

11 MORE THAN 8 NESTED SUBP All subpicture
You have specified more than eight subroutines
nested calls to SUBP.

12 XXXXX IS NOT A SUBPICTURE suBp, COPY
The tag XXXXX is not
defined as a subpicture.

13 XXXXX IS STILL OPEN suBP, COPY
You have tried to CALL SUBP
(ml,m2) for a subpicture that has not
been "closed" by an ESUB call.

14 ILLEGAL INCREMENT XGRA, YGRA
The dx or dy value specified
in the call is less than 1 or
exceeds 63 raster units.

15 XXXXX ILLEGAL/UNDEF POINTER All subroutines
The value of Pointer XXXXX is not in that use
the range 1 through 20, or a referenced pointers
pointer has not been defined with a call
to POINTR.

16 ILLEGAL DURING INSRT CMPRS, SAVE, RSTR,
You have attempted an illegal SUBP, FLASH, SENSE,
operation while in insert mode. INTENS, CVSCAL,

ESUB, LINTYP, INSRT

17 TOO FEW ARGUMENTS All subroutines
You have omitted one or
more required arguments
from a subroutine call.

18 CAN'T COPY NESTED SUBPS COPY
You have tried to copy a subpicture
that contains another subpicture.

19 VERSION MISMATCH INIT, SAVE, RSTR

You have mismatched versions of the
components in the DECgraphic-11 FORTRAN
Graphics Package kit, or you have tried
to restore a VT1ll display file on a
VS60 screen.

The error messages explained below relate specifically to

host-satellite systems.

? ERROR XX

In host-satellite configurations, this error message indicates a
FORTRAN error at the host end. The XX refers to the number of a
standard FORTRAN error. Refer to the appropriate FORTRAN
reference manual.

DECGRAPHIC-11 ERROR MESSAGES

? SATELLITE ERROR XXX

Unless XXX is one of the numbers given 1in the following two
paragraphs, a FORTRAN error has occurred at the satellite end.
The XXX refers to the number of a standard FORTRAN error. Refer
to the appropriate FORTRAN reference manual.

If XXX is 63, an unrecognized interrupt has occurred. This
message usually indicates a hardware problem. Contact your
DIGITAL Field Service Representative.

If XXX is in the range 200 through 210, the error is caused by an
internal software problem (not a FORTRAN problem). Report to
DIGITAL with a Software Performance Report.

COMMUNICATIONS FAILURE

This message, which is usually preceded by random information
("garbage"), 1indicates a communications problem (often a line
failure or other hardware problem) between host and satellite.
Try to run your program a few more times. If failure continues,
contact your DIGITAL Field Service Representative.

APPENDIX C

DISPLAY-FILE STRUCTURE

This appendix describes the internal structure of the DECgraphic-11
display file as it is constructed in memory. Consult this appendix
before attempting to alter a display file (with the DPYWD and DPYNOP
subroutines) or before you change any of the source modules that make
up the DECgraphic-11 FORTRAN Graphics Package.

1. Overall Structure
a. Root portion

This is controlled internally by the DECgraphic-11
Display File Handler, which also sets up initial display
parameters. . .

b. User Space

Display data ("active display list"), set up by
DECgraphic-11 in the COMMON area called DFILE that ends
with the instruction DHALT, 0 (173400,0).

2. Subpictures

a. A repetition of an existing subpicture is formatted in
five words:

VT1ll: 173400 (DHALT) VS60: 162000 (DJSR)
Address of rest of file Address of subpicture
Address of subpicture 161002 (DJMPR)

tag tag

link link

b. A subpicture header, which begins every subpicture
definition, is also fiormatted in five words:

VvTll: Same as for a VS60: 163004 (DJSRR)
repetition 160000 (DJIMPA)
Address of rest of file
tag
link

c. The end of a subpicture has the following format:

VvT1ll: 173400 (DHALT) VvS60: 165000 for ESUB
0 (return, no restore)

166000 for ESUB (n)
(return, restore
display parameters)

DISPLAY-FILE STRUCTURE

d. When subpictures are turned off, their formats are
changed to the following:

Repeated subpictures:

VTll: 160000 (DJIMPA) VS60: 161004 (DJIMPR)
in first word in first word

Subpicture definitions:

VT1ll: 160000 (DJMPA) VS60: 161000 (DJIJMPR next
in first word word) in first word

e. When subpictures are erased, the first two words of the
formats are changed to the following:

VT1ll and VS60: 160000 (DJMPA)
Address of rest of buffer

The link is also removed from the tag list.

f. The pointer to the first tag is in ILST in COMMON GRDAT;
the pointer to the last tag (the one that is 0) is in
IEND.

3. Display stops are serviced by the Display File Handler.
4. Light-pen hits are serviced by the Display File Handler.
5. Display time-outs are serviced by the Display File Handler.
6. Calls to XGRA, YGRA, and FIGR:
a. XGRA and YGRA have the following format:

Five-word subpicture header
Load graphic increment

Enter graph mode

X or Y data (one word per point)

End of subpicture
b. FIGR has the following format:

Five-word subpicture header
164000 (DNOP)

LVECT

Data (two words per point)

End of subpicture
7. Calls to NMBR:

Five-word subpicture header
100001 (TEXT MODE)
Data (two characters for each word)

End of subpicture

DISPLAY-FILE STRUCTURE

File structure as a "saved file":

Total of n+3 words:
n+2=number of words to follow (first word)

n words of display data

173400,0

pisplay-file organization on sequential calls to the same
module (vector/point/graph plot module) :

The example provided below makes sequential calls to the
module LVECT.

A single call to LVECT is normally mapped into three words in
the display file.

Word 1l: mode (M)
Word 2: x coordinate
word 3: y coordinate

But on a sequential call to LVECT such as:

CALL LVECT(X1l, Y1)
CALL LVECT(X2,Y2)
CALL LVECT(X3,Y3)

the LVECT calls will be mapped into the display file as shown
below: :

This result occurs because the display-parameter word
(1,i,£,t) remains unaltered in the second and third call.

APPENDIX D

FORTRAN PROGRAMMING EXAMPLES

This appendix contains two forms of a figure-drawing program that uses
the Decgraphic-11 FORTRAN Graphics Package. Both forms are included
as FORTRAN sources in your DECgraphic-11 FORTRAN Graphics Package kit.

D.1 DRAW.FOR

The first form, DRAW.FOR, can be used in RT-11 and RSX-11M stand-alone
systems. It can also be run on host-satellite systems, but will force
the host computer to handle graphic attentions; see 1instead the
DRAWH/DRAWS program described in the next two sections.

DRAW.FOR must be used with real-valued libraries. After you have
built such a 1library (see Chapter 4 or Chapter 5), follow these
procedures to prepare DRAW:

RT-11:

.FOR dev:DRAW

.where dev: is the storage device (e.g., DKl:) that contains
the source DRAW.FOR.

.LINK dev:DRAW,GLIB
.R DRAW

The DRAW program will run as described in Section D.4.
RSX-11M (mapped stand-alone system):

>FLX SY:/RS=dev:DRAW.FOR/0OS
>FOR DRAW=DRAW.FOR
>TKB

TKB> DRAW=DRAW
TKB>GLIB/LB

TKB>/

ENTER OPTIONS:
TKB>ASG=GRO:1

TKB> COMMON=DFILE
TKB>MAXBUF=512
TKB>//

>RUN DRAW

Notice that the Task Builder commands use a global common
for the display file (DFILE). For details on global commons
(also called shared regions), which must be created at the
time you generate your RSX-11M system, see the RSX-11M

D-1

FORTRAN PROGRAMMING EXAMPLES

System Generation Manual, the RSX-11M Task Builder Reference
Manual, the IAS/RSX-I1 FORTRAN IV User's Guide, and Section
1.2 of this manual.

In the FLX command, the letters dev: stand for the device
that contains the source DRAW.FOR (an RKO5 or RK(06 disk in
RT-11 format or a magnetic tape in DOS-11 format). The
letters os represent the file format of the device, either
RT or DO.

D.2 DRAWH.FTN (HOST-SATELLITE ONLY)

DRAWH is the host portion of the host-satellite drawing program. It
must be compiled (in FORTRAN IV or IV-PLUS) and linked to the host
library (GLIBH.OLB).

This version of DRAWH uses integer-only arguments, and therefore must
be used with a GLIBH that was built with that feature; see Chapter 5.
In the sample procedures, the FORTRAN IV-PLUS option is also required.
To compile and link DRAWH, follow these procedures:

RSX-11M/RSX-11D:
>PLX SY:/RS=dev:*.FTN/os

[dev: 1is the device containing DRAWH.FTN; os is either RT
or DO,]

>F4P USER.DRAWH=DRAWH
>TKB @GRHBLD
>PIP DRAW.TSK=USER.TSK/RE

Now build the satellite portion of the program; see Section
D.3.

IAS:

PDS>MOUNT/FOREIGN/NOOPERATOR
DEVICE? dev:

VOLUME-ID? XXX

PDS>COPY

FROM?dev:* ,FTN/os

TO? *.*

PDS>FORTRAN/OBJ : USER DRAWH
PDS>@GRHBLD

PDS>RENAME USER.TSK DRAW.TSK

In the COPY commands, dev: 1is the storage device containing
the source files DRAWH.FTN and DRAWS.FTN (an RKO5 or RK06
disk in RT-11 format or a magnetic tape in DO0S-11 format).
The letters os are either RT11 or DOS.

Now proceed to the next section and build the satellite portion of
DRAW.

D.3 DRAWS.FTN (HOST-SATELLITE ONLY)
DRAWS is the satellite portion of the program, actually a modified

version of USRSAT that handles graphic attentions from the light pen,
pushbutton box, and satellite keyboard.

D-2

FORTRAN PROGRAMMING EXAMPLES
Therefore, you must create a new satellite control program (SATCTL) ,
substituting DRAWS for USRSAT:
RSX-11:

>FOR USRSAT.DRAWS=DRAWS
>TKB @GRSBLD

IAS:

PDS> FORTRAN/OBJ : USRSAT DRAWS
PDS>@GRSBLD

when both DRAWH and DRAWS have been compiled
Graphic Loader (LGR) to run SATCTL. After
appears {(about one minute), you can run DRAW:

and 1linked, use the
the satellite cursor

RSX-11M:

>RUN LGR

LGR>SATCTL

[Satellite cursor appears] RUN DRAW (®er)
RSX-11D:

MCR>RUN LGR (D)

LGR> SATCTL (rer)

STARTING ADDRESS? 1000

[Satellite cursor appears] RUN DRAW (xr)

IAS:

PDS>RUN LGR
LGR>SATCTL
STARTING ADDRESS>
[satellite cursor

1000
appears] RUN DRAW (&)

D.4 USING THE DRAW PROGRAM
The program DRAW.FOR uses the light pen to interact with a menu of
graphic options. The options, and their functions, are as follows:
Menu Item Function
DRAW Draw lines to make a subpicture.
MOVE Move a subpicture.
COMBINE Combine subpictures into one.
SCALE Change the size of a subpicture.
coprY Copy a subpicture.
ERASE Erase a subpicture.
MODIFY Split a line; make a line visible or invisible;
move a corner.
HIDE Turn off a subpicture.
SEEK Turn on all subpictures.
SEEKCOPY Turn on and copy subpictures.
ROTATE Rotate a subpicture on the screen.
SAVE Save the display (i.e., the entire picture).
RECALL Recall a display file from storage.
EXIT Terminate the DRAW program.

FORTRAN PROGRAMMING EXAMPLES

Select a function by pointing to a menu item with the light pen. The
selected item will brighten, and then the main menu will disappear, to
be replaced with a "secondary" menu.

Secondary menus give you more detailed control of an individual
function. For example, when you point to DRAW on the main menu, a
secondary menu will appear with the options POSITION, LINE, CLOSE, and
DONE, and the tracking object will appear in the middle of the screen.
To see how this function works, touch the word LINE with the 1light
pen. Then touch the tracking object and move the light pen, allowing
the tracking object to follow it. A line appears, with its origin at
the first position of the tracking object and its destination the
present position. The line's destination will move with the tracking
object, a process called "rubber-banding." This process is performed
by attaching a long vector to the tracking object using the LVECT and
ATTACH subroutines (see Sections 2.3.6 and 2.8.4).

The other secondary DRAW functions are POSITION, which moves the
tracking object to a new starting position without drawing a line;
CLOSE, which creates a closed figure by supplying a missing 1line
(e.g., the third line of a triangle); and DONE, which returns to the
main menu. You can also select LINE repeatedly, in which case the
current line's destination will be forced to a grid point (see the
GRID subroutine in Section 2.8.6) and this point will be the origin of
the next line,

The DRAW and MODIFY menu items both have secondary menus that include
DONE. The secondary menus will stay on the screen until you select
DONE. In addition, after selecting a secondary item such as POSITION,
you must perform the stated operation before you can select any new
item from the secondary menu.

The other main-menu items usually switch to their secondary menu and
then immediately back to the main menu after you request an operation
(ROTATE is such an example).

The SAVE and RECALL items on the main menu store or retrieve the
entire display file you have created, including subpictures that are
turned off. Both items, when selected, will display the message
FILENAME: on the screen; when this message appears, type the name (6
characters or less) by which the display file is to be stored or
retrieved. SAVE and RECALL also automatically remember the subpicture
tags used in a particular picture, so that they will not be duplicated
accidentally.

The DRAWH/DRAWS program functions in the same way, with the additional
features of pushbutton support and keyboard interaction. 1In other
words, you can select the menu items with the 1light pen, pushbutton
box, or satellite keyboard. On the keyboard, the 14 menu items are
represented, top to bottom, by the letters A through N. The same menu
items are also represented by the first 14 buttons on the LK-11
pushbutton box. Any time you select a menu item, the corresponding
button will 1light briefly on the LK-11. The ©LK-11 1is not a
requirement for running DRAWH/DRAWS, but only an option.

You can learn more about DRAW and DECgraphic-11 by running the program
and watching the DECgraphic-11 FORTRAN Graphics Package in operation.

D.5

SOoONOnOG

OO0

3OO

00

FORTRAN PROGRAMMING EXAMPLES
PROGRAM LISTINGS

SIMPLE DRAWING FPROGRAM USING THE NEW GRAFHICS FACKAGE

STAND ALONE VERSION
USES REAL MODE» LIGHT FPEN ATTENTIONS ONLY

COMMON/DFILE/IRUF (4096)
COMMON/FDATA/NFRIM(209) y NUFRIM(209) s NDEF s NHID
REAL SF(4)

LOGICALXL FILEL(1&6) yFILE2¢14)yUSED(T)
HATA SF/ 299592094,/

DATA USEDN/48y0,0+37:0/

SIZE=4096.

GRD=50.,

SM:50 +

YTOF=7%0.

TWARN=1%

MARGIN=10

NDREF=0

NHID=0

ISAC=0

0o 10 I=1+200

NUFRIM(I)=0

NFRIM(I)=0

SET UF MENU AREAS

CALL INITC4096)
CALL SURF(1000)
CALL OFF(1000)
L CALL SURF(1001)
" CALL MENUCYTOFs—~5Hy 2010y ‘DRAW » "MOVE /s ‘COMBINE " » “SCALE’ »

X | ‘COFY’» "ERASE " » ‘MODIFY /s ‘HIDE’ » ' SEEK ")

CCALL MENU(»YTOF-9.XS5Ms ~SMy 2019y “SEEK & COFY’y ROTATE '’y “S5AVE s

X 'RECALL 7y EXIT’)

CALL ESUE
CALL SURF(1002)
CALL MENU(y300,s~SMy 1020, 'FOSITION s "LINEy 'CLOSE’ sy "IIONE ")
" CALL ESUR
CALL MENU(s300,50.,v1003, "DIIONE’)
- CALL SURF(1004)
T CALL MENU(»300.9y-SMy103051/4/ 9 1/27972 X'»’4 X7)
callL ESUE
. CALL. SURF(1005)
CCALL MENUCy300.9~8M» 1040y "ERASE LINE’» /SFLIT LINE’»

X - ‘MOVE CORNER’»’SHOW ALL7» "TIONE’)

“CALL ESUR

CAlL. SUBF(1006)

CALL MENU(»300.,»-SMy1050,/90 CW’» 1807790 CCW")
© CALL ESUR

"CALL SURP(2006)

CaLL AREACD)

CALL APNT(0.y0.r9—4)

CaLL TEXT(‘)

CALL ESUEBC2006)

MAIN LOOF -~ WALIT FOR MENU HIT AND BRANCH TO SERVICE IT
Do 110 I=1002y1006

CALL OFF({I+0)
CALL ONC100L)

1110

1120

1140

11460
1180

1185

1190

=00

600

FORTRAN PROGRAMMING EXAMPLES

CALL ONC1000)
CALL DPTRC(I)

CALL FOINTR(2y200652)
I=(SIZE-I)/8IZEX100,

CALL FLASH(2y IWARN-I)
USED(3)=I-1/10%10+48
USED(2)=1/10+48

CALL CHANGT (2,USEIN

CALL MENUH(IT»2010,2023)

CALL OFF<1001)

GOTO (110051600517005180051900,2000521005220052300r260052700,
2400,250025000) 5 IT

IIRAW A NEW ORJECT

IF(I.LT.MARGIN)GOTO 4000
CALL ONC1002)

CALL MAKOEJ(NOR.J)

CALL SURF(NOER.J)

CALL APNT(500.»500,v15~4)
CALL POINTR(2yNOERJ)

XX=500.

YY=500.

CALL. ATTACH(2)»

CALL TRAK(XXyYY)

CALL MENUH(IT»1020,1023)
CALL GRID(GRIyGRI)

CALL TRAKXY(XXsYY)

CALL ERAS

CALL GET(2sXyY)
IF(ABS(X)oLT.GRD.ANH.ABS(Y)oLToGRD.AND.NPRIM(NUBJ)oNE«O)
GOTO 1110

II=~4
GOTO(1140y1120+1160+1180),1IT
I1=4

NUFRIM(NORJ) =NUFRIM(NOERJ) +1
NFRIM(NOEBJ) =NFRIM(NOR. +1
CALL LVECT(O.»0.ysII)

CALL ADVANC(2)

GOTO 1110

I1I=4

CALL FOINTR(2,NOR.J)

CALL GET(2+X0r»YO)

X=X0-XX

Y=Y0O-YY

IF(ARS (X)) LT .GRINLANDN.ARS(Y) LLT.GRINGOTO 1185
CALL LVECT(XsYrsII)
IF(ITI.GT.OINVFRIM(NORJI) =NUFRIM(NORBJ) +1
NPRIM(NOE.D) =NFRIM(NORJ)+1
CALL ESUR

IF(NVFRIM(NOEBJ) JEQ,0)GOTO 1190
NDEF=NDEF+1

GOTO 100

CALL ERAS(NOEJ)
NFRIM(NOE.)) =0

GOTO 100

MOVE AN ORJECT

IF(NDEF.EQ.0)GOTO 100
CALL ONC1003)

CALL FICKORBCIT»2)
CALL FOINTR(2,IT)
CALL GET(2+XXyYY)

=0GO0

1830
1840

1910

FORTRAN PROGRAMMING EXAMPLES

CALL ATTACH(2)

CALL TRAK(XXyYY)

CALL MENUH(ITy10035,1003)
CALL GRIDC(GRDYGRD)

CALL ERAS

GOTO 100

COMEBINE TWO ORJECTS

IFCILLT.MARGIN)GOTO 4000
IF(NDEF.LT.2)G0TO0 100

CALL PICKOB(ITs2)

CALL FICKORCIT2,3)
IFCIT2.EQR.ITIGOTO 1710
CALL MAKORJ(NOE.)

CALL SURF(NOE.J)

CALL COFY(sIT)

CALL GET(2sX1,Y1)

CALL GET(3yX2+Y2) :

CALL LVECT(X2-X1sY2~Y1lyr-4)
CALL OFF(IT2)

CALL ERASF(3)

CALL COPY(,IT2)

CALL LVECT(X1-X2s,Y1~Y2yy=-4)
CALL ESUR

NFRIMCNOBRJ) =NFRIMCITYENFRIMCIT2) 42
NUFRIM(NORJ) =NVUFRIMCIT) FNVFRIMCITR)
NDEF=NDEF -1

CAl.L. ERASCIT)

CALL ERASCIT2)

NFPRIMCIT)=0

NFRIMCIT2)=0

NUFRIM(IT)=0

NUFRIMC(IT2)=Q

GOTO 100

SCALE AN OBRJECT

IF(NDEF.EQ.0)GOTO 100
CALL ONC1004)

CALL MENUH(IT2y103051033)
CALL FICKOBCIT»2)

CALL OFF(CIT)

XX=0,

YY=0Q.,

00 1830 I=1sNFRIMCIT)
CALL ADVANC (2)

CALL GET(2sX»Y)

CALL CHANGE (2yXXSF(IT2)»YXSF(IT2))
CALL GET(2:X»Y)

XX=XX+X

YY=YY+Y

CALL GET(2yX»Y)

CALL CHANGE(2sX-XXrY-YY)
CALL ONCIT)

GOTO 100

COFY AN ORJECT

IFCIJLTMARGIN)GOTO 4000
IF(NDEF .EQ.0)GOTO 100
CALL ONC1003)

CALL FICKORCIT,2)

CALL MAKOEJ(NOR.D)

FORTRAN PROGRAMMING EXAMPLES

CALL COPY(NOEJ,IT)

CALL FOINTR(2yNORJ)
CALL GET(2sX»Y)

CALL ATTACH(2)

CALL TRARK(Xr»Y)

CALL MENUH(IT2y10035,1003)
CALL GRID(GRIyGRIN

CALL ERAS

NDEF=NDEF+1

NFPRIM(NORBJ) =NPRIMCIT)
NUFRIM(NORJ) =NVFRIMCIT)
IF(ISAC.EQ.0)XGOTO 100
ISAC=0

GOTO 2210

ERASE AN ORJECT

RGoOO

000 IF (NDEF.EQ.0)GOTO 100
CALL FICKOECIT»2)
CALL ERASC(IT)
NIDEF=NDEF-1
NUPRIM(IT)=0
NFRIM(IT)=0
GOTO 100

MODIFY AN ORJECT

100 IF(NDEF.EQ.0)GOTO 100
CALL ONC1005)
CALL MENUHC(IT2:104051044)
2109 IFCIT2.EQ.S)YGOTO 100
2110 CALL GRATTNC(1yITs+1)>
CALL LFENC(IHsITys»IF)
IF(IH.EQ.O+ORVIT LT 1., 0R.IT.GT.209)G0TO0 2110
CALL FOINTR(S+ITysIF)
GOTO (2120y214052130+2170)1IT2

ERASE A LINE

120 CALL INTENS(S5,~10)
NUFRIMCIT)=NUFRIM(IT)~1
IF(NVFRIMCIT).GT.0XGOTO 2100
CALL ERAS(IT)

NFRIMCIT)=0
NDEF=NDEF-1
GOTO 2100

MOVE A CORNER

2130 IFCIFPLNENFRIMCIT)+1)GOTO 2150
CALL FOINTR(4,IT)

CALL ATTACH(4)

CALL FOINTR(OHIT»2)

GOTO 21595

IO0O0

».

SPLIT A LINE

OO0

140 CALL GET(G»X»Y)
CALL OFF (1000)
CALL CHANGE(SeX/2.9Y/24)
CALL POINTR(2yITsIF+1)
CALL INSRT(D)
CALL LVECT(X/245Y/24)
CALL INSRT

FORTRAN PROGRAMMING EXAMPLES

CALL ONC1000)

NPRIMCIT)=NFRIM(IT)+1

NUFRIM(IT)=NUFRIM(IT)+1
2150 CALL FOINTR(S6sIT»IF+1)
2135 CALL ATTACH(S)

CALL ATTACH(6,-1)

CALL FOINTR(25IT)

CALL GET(2sX»Y)

no 2160 I=1yIF-1

CALL ADVANC(2)

CALL GET(2:,XXsYY)

X=X+XX
2160 Y=Y+YY

CALL TRAK(XsY)

CALL MENUH(IT2,1040,1044)

CALL GRID(GRD»GRIN

CALL. ERAS

GOTO 2105

SHOW ALL LINES

170 CALL FOINTR(S,IT)
D0 2180 I=1,NFRIMCIT)
CALL ADVANC(S)
2180 CALL INTENS()
NUFRIM(IT)=NFRIMCIT)
GOTO 2100

HIDE AN ORJECT

200 IF(NDEF.EQ.0)GOTO 100
CALL PICKORCIT»2)

2210 CALL OFF(IT)

NUPRIM(IT)=-NVFRIMCIT)

NDEF=NDEF-1
NHID=NHID+1
GOTO 100

c

C SEEK AN ORJECT

C

2300 IF(NHID.EQ.0)GOTO 100

230% nog 2310 I1=1,200
IF(NVPRIM(I)LLT.O)CALL ONCIHO)
2310 IF(NVPRIM(I) .GT.0)CALL OFF(I+0)
CALL PICKOR(IT»2)
NUFRIMC(IT)=~NUPRIMCIT)
NDEF=NDEF+1
NHID=NHID~-1
no 2320 I=1,200
IF(NVPRIMCI) LT.0)CALL OFF(I+0)
2320 IF(NVFRIM(I) .GT.O)CALL ONCI+O)
IF(ISAC)>1910,100,19210

C SAVE THE DISFLAY

2400 CALL INFILEC(FILEL»FILED)
CALL STOFP
CALL ASSIGN(2yFILED)
DEFINE FILE 2(2,254,Uy INDX)
WRITEC(2/1)Y(NPRIM(I) »I=1y206)
WRITE(2/2)(NFRIM(I) »I=2575420)y (JrJ=421,312)
CALL CLOSE(2))
CALL SAVE(FILEL)
CALL LFPENCIHYIT)

ROoOOoO

OO0

FORTRAN PROGRAMMING EXAMPLES

GOTO 100
RECALL A DISFLAY FILE

CALL INFILE(FILE1,FILEZ2)
CALL STOF

CALL ASSIGN(2,FILEZ2)

DEFINE FILE 2(2,256yUy INDX)
READ(271) (NPRIM(I) »I=1y256)
READC(2/2) (NPRIM(I) yI=2575420) y (KeI=421,512)
CALL CLOSE(2)

CALL INIT

CALL RSTR(FILEL)

CALL LPENCIH»IT)

GOTO 100

SEEK AND COFY

IF(ILLT.MARGIN)GOTO 4000
IF(NHID.EQ.0)GOTO 100
CALL ON(1003)

ISAC=1

GOTO 2305

ROTATE

IF(NDEF.EQ.0)GOTO 100
CALL ON(1006)

CALL MENUH(IT2,1050,10352)
CALL FICKOR(ITy2)

CALL OFF(IT)

D0 2750 I=1yNFRIMCIT)
CALL ADVANC(2)

CALL GET(2sXsY)
GOTO(2710+272052730) 9172
CALL CHANGE(2sYys-X)

GOTO 27350

CALL CHANGE(2y~-X»-Y)
GOTO 2750

CALL CHANGE(2s-YsX)
CONTINUE

CALL ONCIT)

GOTO 100

CAl.L CMFRS

GOTD 100

CALl. FREE

STOF

END

SURROUTINE MENUH(IT M1sM2)

WAIT FOR MENU HIT

Cal.l. GRATTN(1,Iy1)

- CALL LPENCIH,IT)
“IFCIH.EQ.O.OR.IT.LT.M1.0R,IT.GT.M2)GOTO 100

CALL POINTR(10,IT)

CALL INTENS(10,8)

- CALL WAIT(5000)

CaLl. LPENC(IHyIX)

CALL INTENS(10s4)
IT=1T+1-M1

RETURN

END

SUEBRQUTINE FICKORCIT»IF)

C

C

100

oo

100

200

100

FORTRAN PROGRAMMING EXAMPLES

FICK AN ORJECT

COMMON/DFILE/IRUF (4096)
COMMON/FDATA/NFRIM(209) s NUFRIMC209) s NDEF s NHID
CALL GRATTN(1-I»1)

CALL LFENCIH.IT)

IFC(IHEQ. Q0. OR ITWLT+1ORVIT.GT.209)GOTO 100
CALL POINTR(IF,IT)

CALL INTENS(IFy-8)

CALL WAIT(5000)

CALL INTENS(IFy-4)

RETURN

END

SUBROUTINE INFILE(FILEL,FILER)

INFUT A FILE NAME

LOGICALX1 FILEL1C18)yFILE2(146)yDSF(S)»yDAT(S)
DATA DSFyDAT/ oy ‘I /S sy F 909’ o v 'D'y’A ' T 40/
CALL TTW(Oy» "FILENAME ¢ ‘9~1)

CALL KBS(16yFILE1sN)

IF(N.EQ.0)GOTO 1

N0 100 I=1sN

FILE2(I)=FILE1(I)

no 200 I=1,9

FILEL1C(I+N)=DSF(I)

FILE2(I+N)Y=DAT(I)

RETURN

END

SUBROUTINE MAKORJ(NOEJ)
COMMON/DFILE/IRUF (4096)
COMMON/FRDATA/NFRIM(209) yNUFRIM(209) s NDEF sy NHID
DO 100 NOBJ=1,209

IF(NVPRIM(NORJ) .EQ.O0YRETURN

CONTINUE

STOF

END

FORTRAN PROGRAMMING EXAMPLES

This FORTRAN example shows the DRAW program "distributed" between the
host and satellite computers in a host-satellite system. DRAWH
performs most of the same tasks done by the stand-alone DRAW program.
DRAWS is a modified form of the User's Satellite Routine (USRSAT) that
features local handlng of graphic attentions and local storage of
display and data files on the satellite's floppy disks.

SIMFLE DRAWING FROGRAM USING DECGRAFHIC-11 SOFTWARE

C
C
C
C HOST SIDE OF HOST/SATELLITE VERSION
G . USES INTEGER MODE» 1LOCAL SAVE/RSTRy
™ AND LK11 FUSH BUTTON RBOX
C
COMMON/FIOATA/NFRIMC209) s NVFRIM(209) s NDEF yNHID
LOGICALX1 FILELC1&)yFILE2(14)sUSED(S)
INTEGER GRIOsSMyYTOFy Xy Yo XXy YYsXOrYOr X1y YL X2yY2y
X ZERODsyTWOYFOURy THREEC»SIZE»FIVELD
DATA USEDN/48+090+37y0/
SIZE=4096
GRIO=50
SM=50
YTOFP=750
ZERQ=0
TWO=2
FOUR=4
ONEC=100
THREEC=300
FIVEC=%500
IWARN=1%5
MARGIN=10
NOEF=0
NHID=0
ISAC=0
Do 10 I=1,209
NUFRIM(I)>=0
10 NFRIM(I)=0
c
C SET UF MENU AREAS
C
CALL. INIT(4096)
CALL SURF(1000)
CALL OFF(1000)
CALLL SURF(1001)
CALL MENU(yYTOF »~SMy 2010y 'DIRAW y “"MOVE “ »y COMBINE ‘v 'SCALE “»
X ‘COFY’y’ERASE’» "MODIFY’y 'HIDE‘y SEEK’)
CALL MENU(»YTOF~9%X5My-SMy2019y 'SEEK & COFY’ s "ROTATE ‘v "SAVE "y
X C‘RECALL‘y’EXIT")
CaAl.l. ESUR
CALL SUEBF(1002) :
CALL MENU(¢ sy THREEC»~SMs 1020 ‘FOSITION’ » 'LINE » "CLOSE » "DONE)
CalLl. ESUR
CALL MENU(» THREEGC»ZEROy 1003, ‘DONE)
CaLl.lL. SUERF(1004)
CALL MENUCyTHREECy -SMr1030»71/47 v/ 1/2¢’2 X7 574 X7')
CALL ESUER :
CALL SUEBF(1005)
CALL MENUC(s THREECy~-SM» 1040y "ERASE LINE» 'SPLIT LINE’y
X ‘MOVE CORNER‘»’SHOW ALL ‘s DIONE’)
CALL ESUR
CALL SURF(1006)
CALL MENU(sy THREECy~6M» 1050y /90 CW’y’ 1807’90 CCW")
CALlL. ESUER

FORTRAN PROGRAMMING EXAMPLES

CAaLL SURF(2006)

CALL AREA(2)

CALL AFNT(ZERQOyZEROy y~4)
CaLL TEXT()

CAaLL ESUR(2006)

C
c MAIN LOOF ——- WAIT FOR MENU HIT AND BRANCH TO SERVICE IT
o
100 D0 110 I=1002,1006
110 CALL OFF (I
Call. ONCL001)
CaLL ONC1000)
CALL DFTRCID)
CALL FOINTR(2,200692)
T=(GIZE-T)/(SIZE/100)
CaLL FLASH(2y TWARN-1)
USED(3)=1~-1/10%10+48
USER(2)=1/10+48
Call. CHANGT(2yUSED)
CAlL MENUHC(ITY2010,2023)
CaLL OFF1001)
GOTO (1100514600, 170051800y190092000,210052200,230052600¢2700y
X 2400,2500,5000) 41T
o
c DRAW A NEW ORJECT
[
1100 IFCI AT WMARGINIGOTO 4000

CALL ONC1002)
CAlLL MAKOBJ(NOER.J)
Cal.l. SURF(NOR.J)
CALL AFNT(FIVECYFIVECy1ly~-4)
CaLL FOINTR(Z2yNORD)
XX=FILVEC
YY=FIVEQC
1110 CALL ATTACH(Z2)
Call. TRAR(XX»YY)
Call. MENUHC(ITy»1020,1023)
CALL GRIDNOCGRIGRID)
CALL TRAKXY (XX YY)
CAlL ERAS
CALL GET(2,XsY)
ITFCIARS (X)) o LT+ GRDZAND . IARS(Y) L LTGRO AND NFRIMONOEBJ) o NE.O)
X GOTO 1110
IT=~10
GOTO(1140y1120,1160,1180)»1IT7
1120 IT=10
NUFRIM(NORS) =NVFRIM(NOED) +1
1140 NFPRIM(NORJ) =NFRIM(NOE.D) +1
CALL LVECT(ZERQy ZERQOy » 11D
CALL ADVANC(Z) '
GOTO 1110
1160 TI=10
1180 CALL FOINTR(Z2yNORDD
CALL GET(2sX0rYO0)
X=X QXX
Y=YQ~YY
IFCTARSCX) LT GROAND TARSCY) LT GRINDGOTO 11835
CALL LVECT(X»YysI1)
IFCITLGT. 0INVPRIMINORS) =NVFRIM(NOBJI) +1
NFRIMONORS) =NFRIMONQBRJD) +1
1185 CALL ESUR
TFONVFRIMONORD JEQ.OYGOTO 1190
NUEF =NDEF+1
GOTO 100

1190

C

C
1600

G
(»
1700

1710

Y

L
c
C
1800

18050

1810

calLL

FORTRAN PROGRAMMING EXAMPLES

ERAS (NORJ)

NFRIM(NOEJD) =0

GOTO

MOVE

100

AN OBJECT

IF(NDEF.EQ.0)GOTO 100

CALL
CALL
CAl.lL
CALL
Call
caLL
CALL
CAL.L
CaALL
GOTO

ON(1003)
FICKOEBCITY2)
FOINTRC(2,IT)
GET(2,XX»YY)
ATTACH(2)
TRAR(XX»YY)
MENUH(IT»1003,1003)
GRIDCGRDy GRIOD

ERAS

100

COMEBINE TWO ORJECTS

IF(I,

LT.MARGIN)GOTO 4000 .

IF(NDEF.LT.2)G0T0 100

caLl.
CALL

FICKORCIT2)
FICKOBCIT2,3)

IFCITZ2WEQ.ITYGOTO 1710

Call.
CALL.
CaAl.L.
CaAlLlL
CAlLL
CALL
cat.L.
CALL
cal.l.
caLl.
CALL

MAKOE.J (NOR.J)

SURF (NOR.D)

COFY(yIT)

GET(2yX1sY1)
GET(3yX2,Y2)

LVECT (X2-X1sY2~Y1sy~10)
OFF(ITZ)

ERASF(3)

COFY(yIT2) -
LVECT(X1-X2syY1-Y2y»~-10)
ESUR

NFRIM(NORD) =NFRIM(IT)+NFRIMCIT2)+2
NUFRIM(NORJ) =NVFRIMCIT)HNVFRIMCIT2)

CAL.l.
CAlLL

NDEF=NDEF-1

ERASCIT)
ERAS(IT2)

NFRIM(IT)=0

NFRIMCIT2)=0
NUFRIM(OIT) =0
NUFRIM(ITZ)=0

GOTO

SCALE

100

AN ORJECT

IF(NDEF .EQ.0)GOTO 100

Cal.L
cal.l
CALL
CalL

ON(C1004)
MENUH(ITZ2,1030y1033)
FICKORC(IT,2)

OFFCIT)

XX=2ERO
YY=ZERQO
00 1830 I=1yNFRIMCIT)

CALL
CALL
GOTO
CALL
GOTO
CALL.

ADVANC (2)

GET(2yX»Y)
(1803,1810,1815,18200,17T2
CHANGE (29 X/FOUR» Y/FOUR)
1825
CHANGE (2, X/TWO»Y/TWO)

GOTO 1829

D-14

FORTRAN PROGRAMMING EXAMPLES

1815 CALL CHANGE (2y XXTWO» YXTWO)
GOTO 1825
1820 CALL CHANGE (2y XXFOUR » YXFOUR)
1825 Cald. GET(2yX»Y)
XX=XX+X
1830 YY=YY+Y
1840 CALL GET(2,XrY)
CALL CHANGE (2y X-XXrY=-YY)
CALL ONCIT)
GOTO 100

C

C COFY AN ORJECT

C

1900 IFCT LT MARGIN)GOTO 4000

IF (NDEFLEQR.QIGOTO 100
CaLl. ONC1003)
CalL PICKORCIT,2)

1210 caLl MAKORJ(NORJ)
CALL COPY(NORJYIT)
CALL POINTRCZyNOED)
CALL GET(2¢yXrY)
CALL ATTACH)
CALl TRARK(X»Y)
CALL MENUHC(IT2y10035,1003)
Call. GRID(GRIyGRID
Call. ERAS
NOEF=NDEF+1
NFRIM(NORD) =NFRIMCIT)
NUFRIM(NORJ) =NUFRIMCIT)
IF(ISACVER.0)GOTD 100
I8AC=0
GOTO 2210

G
C ERASE AN OBJECT
C
2000 IF(NDEF.EQ.0)GOTO 100
CAaLL FICKORCITy2)
call. ERASCIT)
NDEF=NDEF~1
NUFRIMCIT)=0
NFRIMCIT)=0
GOTO 100
G
G MOOIFY AN ORJECT
™
2100 IF(NDEF EQ.0)GOTO 100
CALL ONCLO0M)
CALL MENUHC(ITZy1040,1044)
2105 IF(IT2.EQ.5)G0TO 100
2110 CALL GRATTNCL»ITs 1)
Call LPENCIHyITy»y»IF)
TFCIHWEROWORVIT LT 1. 0RVIT.GT.209)G0TO 2110
CALL FOINTR(S»IT»IF)
GOTO (2120,2140y213052170)51IT2
G
C ERASE A LINE
™

2120 CALL INTENS(Gy-10)
NUFRIMCIT)=NUFRIMCIT) =1
TF(NVPRIMOET) (GT.00G0OTO 2100
CALL ERAS(IT)

NFRIMCIT)Y=0
NIDEF =NDEF ~1
GOTO 2100

*

FORTRAN PROGRAMMING EXAMPLES

C
(" MOVE A CORNER

2130 IF(IPNENFRIMCIT)41)GOTO 2150
CALL FOINTRC(45IT)
CalL.L ATTACH(4)
CALL POINTR(G6ITy2)
GOTO 2155
(™
c SFLIT A LINE
G
2140 Call. GET(SsX»Y)
CALL OFF(1000)
CALL CHANGE(SsX/TWOsY/TWO)
CALL FOINTR(2,ITyIF+1)
CALL INSRT(2)
CALL LVECT(X-X/TWOrY-Y/TWO)
CALL INSRT
CALL ONC1000)
NFRIMCIT)Y=NFRIMC(IT)+1
NUFRIMCIT)=NVFRIMCIT)+1
2150 CALL FOINTR(A&»ITyIF+1)
2155 CALL ATTACH(S)
Cal.l ATTACH(&4s-1)
CALLL FOINTR(2,IT)
CALL GET(2sXrY)
No 2160 I=1sIF-1
CALL. ADVANC(2)
CALL GET(2yXXsYY)
X=X+XX
2160 Y=Y+YY
CALL TRAK(XsY)
CaLl MENUH(IT2,1040,1044)
CALL GRID(GRID»yGRID)
CAlL.L ERAS
GOTO 2105

n

C

C SHOW ALL LINES

G

2170 CALL FOINTR(SIT)
0 2180 I=1sNFRIM(IT)
CALL ADVANC (5)

2180 CALL INTENS(S5)
NVFRIMCIT)=NFRIMCIT)
GOTO 2100

(™

c HINE AN ORJECT

C

2200 IF (NDEF.EQ.0)GOTO 100
CaLl. PICKOR(ITy2)

2210 CALL OFF(IT)
NUPRIM(IT)=-NVUFRIM(IT)
NDEF =NDEF--1
NHID=NHIDE L
GOTO 100

G

G SEEK AN ORJECT

G

2300 IF(NHIDL.EQ.0)GOTO 100
2305 O 2310 I=1,200

IF(NVFRIM(I).LT.O)CALL ONCI)
2310 IF(NVFRIM(I) JGT.OXCALL OFF(I)

Call. PICKORCLIT:2)

NUFRIMCIT)=~NUFRIMCIT)

FORTRAN PROGRAMMING EXAMPLES

NDEF = NHFFfl

NHID=NHID-

o 2320 I= 17200

IFCNVFRIMCI) o LT.OXCALL OFF (D)
2320 ITF(NVUFRIM(I) WGT.OXCALL - ONCID)

IF(ISACY19210,100,1910

G SAVE THE DISFLAY

C .

2400 CALL INFILE(LyFILELYyFILER,I)
IF(IL.NE.OYGOTO 2450
Cal.L STOF
GCALL ASSIGN(2yFILER)
DEFINE FILE 2¢2s2%65Uy INDX)
WRITEC2 1LY (NFRIM(LI) » I=1,256)
WRITECZ2 2) (NPRIMCI) »I=2572420)y (Jy J=421y512)
CALL CLOSE(2)
CAlL. SAVE(FILEL)
CALL LFENCIHyIT)
GOTO 100

2450 no 24460 1=15420,20

2460 CALl TOOSAT (A0 NFRIMCI))
CALL LFENCIH,IT)
GOTO 100

G

c RECALL & DISPLAY FILE

C

2500 CALL INFILECOSFILEL FILEZyI)
IF(I.NE.0)GOTO 2850
CALL STOF
CAlL ASSIGN(R,FILER)
DEFINE FILE 2 (2y256yUyINDX)
READ(271) (NFRIM(I) » I=1y206)
REAQNC2/2) (NFRIMCI) »I=2575y420) y (K» J=421,512)
CalL.l CLOSEC(2)
CALL INIT
cALl RSTR(FILEL)
call LFEN(IH,IT)
GOTO 100

2550 Nno 2560 I=15420520

2560 CALL FRSAT(1y40yNFRIMCI))
CALL LPENCIH»IT)

GOTO 100

c

c SEEK AND COFY

C

2600 IFC(I.LT.MARGIN)GOTO 4000
IF(NHID.EQ.0XGOTO 100
CAaLL ON(1003)
ISAC=1
GOTO 2303

C

G ROTATE

G

2700 IF (NUDEF.EQ.0)GOTO 100

Cal.l. ON(1006)

CAl.l. MENUHC(IT2,1050,1052)

call. FICKORCITy2)

CALL OFFC(IT)

Nno 2750 I=1yNPRIMCIT)

CAlL ADVANC(2)

CalL. GET(2yXsY)

GOTO(R710y272092730)2IT2
2710 CALL CHANGE (2»Yy~X)

D-17

2720
2730
2750
4000

H000

C
C
(W

G
C

C
C

G

100

C
C
C
-

™

10100

10200

10300

FORTRAN PROGRAMMING EXAMPLES

GOTO 27%0

CALL CHANGE(2y~Xy-Y)

GOTO 2750

CALL CHANGE(2y-YsX)
CONTINUE

CALL ONCIT)

GOTO 100 :
CALL CMFRS

GOTO 100

CALlL FREE

STOF

END

SUBROUTINE MENUHCIT»M1sM2)

GET A MENU HIT

CALL TOSAT(102y2+2yM1s2yM2)
CALL FRSAT(1s1,1IT)

RETURN

END

SUBROUTINE FICKOBC(ITyIF)

FICK AN ORJECT

CALL TOSAT(103s1s51y1IF)

CALL FRSAT(1¢2,IT)

RETURN

END .

SUBROUTINE INFILECIFUNYFILE1FILEZ2sI)

INFUT A FILE NAME

CALL TOSAT(101ly1ls1yIFUN)

CALL FRSAT(3y11yFILE1y11sFILE2y1yI)
RETURN

END

SUBROUTINE MAKOEJ(NOE.))
COMMON/FOATA/NFRIM(209) yNUFRIM(209) s NDEF yNHID
0 100 NOEJ=1,209

IF(NUFRIM(NOEJ) +EQ.O)RETURN
CONTINUE

STOF

END

SUBROUTINE USRSAT(E,I)

SIMFLE DRAWING FROGRAM USING DECGRAFHIC-11 SOFTWARE

SATELLITE END OF HOST/SATELLITE VERSION
USES INTEGER MODEs LOCAL SAVE/RSTR»
AND LK11 FUSH BUTTON EROX

LOGICALXYL BCAO) yFILEL(16)yFILEZ2(16)
IF(IWEQ.OWORVEB(L) LT+ 101.0R.EC(L) GT.103)RETURN
GOTO (101005,10200510300)yR(1L)-100
K2=R2)

Call INFILE(K2yFILELsFILERYI)

RETURN

CALL DHOST(1)

CAL.L MENUHCITy INTEGR(E(2)) s INTEGR(BE(4)))
CALL TOHOSTC(L,IT)

RETURN

CALL DHOST (2

K=R(2)

CAlLL. FICKOBC(ITYK)

C
(W
G

10

100

110

,_
o]
4]

“ W
4 B

C

-
-

100

100

200

FORTRAN PROGRAMMING EXAMPLES

CALL TOHOST(2,IT)

RETURN

END

SUBROUTINE MENUHCLT »M1,M2)

WAIT FOR MENU HIT

LOGICALXL ALL(16) »TEMF(16)
DATA ALL/16X%.TRUE./

N0 10 I=1ys164
TEMF(I)=.FALSE .

CALL FBL (ALL Yy TEMF)

CALL GRATTNC(1yIDEVsy1s253)
GOTO (130»120,110)»IDEV
CALL KRCCIT)

IT=IT-&65+M1

ITH=1

GOTO 135

CALL FBHCIH» TEMF)

D0 125 IT=M1sM14+15
IFCTEMPCIT-MI+1))GOTO 135
CONTINUE

GOTO 100

CALL LFENCIH.IT)

IF(IHWEQ QO ORVIT.LT MLLORLITLGT.M2)GOTD 100
CALL FOINTR(10+IT)

CALL INTENS(10+8)
IT=IT-M1+1
TEMFCIT)=.TRUE,

CaLl. FPRLCALL Y TEMF)
TEMF(IT)=.FALSE.

CALL WAIT(G000)

CalLl. LFPENCIHyIXD

CALL INTENS(10y4)

CaLL FEL (ALL » TEMF)

RETURN

END

SUBROUTINE FICKORCITyIF)

FICK AN ORJECT

CALL GRATTNC(L»IT» 1)

CALL LFPENCIH»IT)
IF(IHWEQeOWORGITW LT+ 2 ORGIT.GT.209)60TO 100
CALL FOINTRCIFIT)

CALL INTENS(IFy-8)

CALL WAIT(S000)

CALL INTENS(IFs—-4)

RETURN

END

SURROUTINE INFILECIFUNSFILEL FILEZ,II)
COMMON/FDATA/NFRIM(209) yNVPRIM(209) yNDEF yNHID
LOGICALX1 FILELC(146)yFILE2C(16)sNAT(H) »D8F(T) y X
DATA DSFyDAT/ o o /D v G 2 F 909 sy "Iy Ay T/ 20/
DATA DX/ 07y’ X"/

CALL DHOST(23)

CALL TTWOy 'FILENAME ¢ “»~1)

CALL KES(16sFILELSN)

IF(NLJEQ.0XGOTO 1

no 100 I=1sN

FILE2¢(I)=FILEL1(ID)

0o 200 I=1.35:

FILELCI+N)=DSGF (1)

FILE2CT+N)=DAT(]L)

D-19

FORTRAN PROGRAMMING EXAMPLES

IF(FILEL(L) JEQ+DANDLFILEL(2) . EQ.X)BOTO 300
CaLL TOHOST(11,FILE1y11yFILE2y1+0)
RETURN

300 CALL TOHOST(R22sFILELlyls1)
IFCIFUNLEQ.OXGOTD 800 '
DGO 400 I=1y420,20

400 CALL FRHOST(NFRIM(I))
Call. ACCESS(1,FILE2y1yIR)
IFCIRWLT.OXCALL ACCESS(2yFILE2y1yIRY2)
CALL READWR(1s1+0y420,NFRIMs IR2)
CALL SAVE(FILEL)

500 IF(IRGLT«OWORGIR2,LT.OICALL TTWCOy IO ERROR’)
RETURN
800 CALL ACCESS(1syFILER2y1,IR)

CALL READWR(Oy1s0y420yNFRIMy IR2)
D0 9200 I=1+420+20
200 CALL TOHOST (A0 NFRIMCI))
CALL INIT
CALL RSTR(FILEL)
GOTO 500
ENI

D-20

GLOSSARY

ABSOLUTE POINT

A point on the display screen that is identified by absolute x
and y values in the current coordinate system (e.g., x=1023.,
y=32.). Regardless of the current beam position, the statement
CALL APNT(100.,100.) will always move the beam to the coordinates
(100.,100.) -- if they are legal coordinates =-- and may also
display a visible point at that location.

ABSOLUTE VECTOR

A line segment drawn from the current beam position to an
absolute point; available only on VS60 display subsystems.

ACTIVE DISPLAY LIST

The list of instructions in the display file that is currently
available to the display processor. The length of the active
display list is always equal to or less than that of the total
display file. New information is added to the active display
list by the primitive-generating subroutines and by the DISPLY
subroutine (see also DISPLAY FILE, DISPLAY PROCESSING UNIT,
FRAME, INACTIVE DISPLAY LIST).

ATTENTION See GRAPHIC ATTENTION

ATTENTION FLAG

BEAM

An indicator set by the DECgraphic-11 software to mark the
occurrence of a graphic attention. The GRATTN subroutine reports
the status of the attention flag and identifies the attention
source (device). After the attention flag has been set, it is
cleared by a call to an attention-handling subroutine (LPEN, PBS,
PBH, or KBC). One of these subroutines should always be called
after GRATTN reports a graphic attention so that the attention
flag properly reflects the current status of your interactive
devices.,

A stream of electrons directed at a position on the display
screen; points, vectors, and other primitives are usually
displayed relative to the current beam position. When you
initialize the display file, the beam points to the lower left
corner of the viewing area of the screen [the point (0.,0.) 1in
the default coordinate system].

BLANK MODE See FLASH MODE

BRIGHTNESS See INTENSITY

Glossary-1

GLOSSARY

CATHODE RAY TUBE <CRT>
An evacuated glass tube in which a beam of electrons 1is emitted
and focused onto a phosphor-coated tube surface. A
beam-deflection system moves the beam so that an image is traced
out on the surface. The scopes used by the VT1ll and VS60
processors are CRT units.

DISPLAY
Contents of the display screen at a given time. See also FRAME.

DISPLAY ELEMENT See PRIMITIVE

DISPLAY FILE

A discrete area of PDP-11 memory that is allocated to a COMMON
area by the wuser program and is wused to store the graphic
instructions and data used in creating displays. The nonempty
part of the display file (see also ACTIVE DISPLAY LIST) contains
instructions and data that are retrieved and executed by the
display processor to create images on the screen. The display
file can be saved as an RT-11 or Files-11 data file and later
restored and used by other programs.

DISPLAY LIST See ACTIVE DISPLAY LIST, INACTIVE DISPLAY LIST

DISPLAY PROCESSING UNIT (DISPLAY PROCESSOR, DPU)
The processing unit of a VT1l or VS60 graphic subsystem. The DPU
retrieves instructions and data directly from the display file,
without using the PDP-11 central processor.

DISPLAY SUBSYSTEM

The required hardware -- not including the PDP-11 computer -- for
running programs with the DECgraphic-11 FORTRAN Graphics Package.
A display subsystem therefore consists of a VT1l or VS60 display
processor, a CRT display scope with light pen, and a keyvoard.
The LK-11 pushbutton box is an optional interactive device
available on all DECgraphic-11 display subsystems. The terms
"Vs60" and "VT1l" are often used to refer to entire display
subsystems.

DRAWING AREA See IMAGE DEFINITION AREA

FLASH MODE
The mode in which a picture or part of a picture on the display
screen blinks on and off. You can select this mode by specifying
a positive integer value for the f display parameter (included in
many subroutine calls) or with the FLASH subroutine. When you
initialize the display file, flash mode is disabled.

FLICKER
An unsteadiness in the displayed image, caused in refreshed
displays when the display processor does not have enough time to
complete one frame before the phosphor at the beginning of the
frame begins to fade out.

FONT
A kind of type in which characters are displayed. You can
display characters in the normal (Roman) type font or in italics.
To specify the italic font, call the TEXT subroutine and precede
the character string to be displayed with a special control code.

Glossary-2

GLOSSARY

FRAME
The picture created by one pass of the display processing unit
through the active display list. To avoid flicker in a refreshed
display, 30 or more frames per second must typically be executed.
Between frames, primitives and subpictures are added and deleted
according to your programmed instructions.

GRAPHIC ARRAY
A collection of values stored in an array and plotted as points
on the x or y axis by the XGRA or YGRA subroutines. Graphic
arrays can also be plotted as sets of long vectors with the FIGR
subroutine.

GRAPHIC ATTENTION
An event created when the light pen is pointed at a primitive on
the display screen that has been made light-pen sensitive, or by
a keystroke on the LK-11l pushbutton box or terminal keyboard.

To be properly recognized as graphic attentions, these actions
must be detected by subroutines such as GRATTN, LPEN, PBH, or
KBC.

GRID
A logical construct of imaginary points evenly spaced at
user-defined intervals on the display screen. If you call the
GRID subroutine, the tracking object automatically moves to the
nearest point on the grid. This action allows you to adjust the
coordinates of primitives to predefined increments, a wuseful
feature in drawing rectilinear objects.

HOST-SATELLITE GRAPHIC SYSTEM

A hardware/software configuration in which graphic processing is
distributed between a large host computer (such as a PDP-11/70)
and a satellite graphic terminal driven by a smaller satellite
computer (e.g., a PDP-11/34). The satellite terminal in such a
system closely resembles a stand-alone system, except that the
display subsystem 1is connected to the host computer by a serial
data link rather than by the UNIBUS. Because the satellite
terminal can be wused as a general-purpose terminal to the host
computer, host-satellite systems are sometimes more
cost-efficient than stand-alone systems. However, if the same
ease of programming is desired in a host-satellite system as
exists 1in stand-alone systems, the host-satellite system cannot
execute a graphic program as quickly because of the communication
overhead required. In the DECgraphic-11 FORTRAN Graphics
Package, parts of the host-satellite software can be modified to
distribute graphic processing between host and satellite in a
manner that is most efficient for a given application (see
Chapter 5 of this manual). Host-satellite systems can be
configured with RSX-11M as the host operating system; RSX-11M
can also drive a stand-alone graphic system. RSX-11D and IAS can
also be used as host-satellite operating systems but not as
stand-alone systems.

IMAGE DEFINITION AREA

The total VS60 area in which you can define primitives. In the
default (unit-scaled) coordinate system, it extends from a lower
left corner at coordinate position (x=-4095., y=-4095.) to an

upper right corner at (x=4095., y=4095.). You can define a
viewport on this area to examine different parts of it.

Glossary-3

GLOSSARY

INACTIVE DISPLAY LIST

A list of graphic instructions and data, residing in the display
file, that 1is not included in the current frame by the display
processor. The subroutine DISPLY can create 1inactive display
lists and can also add the inactive display list to the active
display list. Creating an inactive list, and then activating it
as a block, 1is a good method for creating graphic pictures
quickly, particularly in host-satellite graphic systems.

INTENSITY

The apparent brightness of objects on the display screen. You
can select the intensity level of a picture or part of a picture
by specifying a new value for the i parameter (included 1in many
subroutine calls) or with the INTENS subroutine. When you
initialize the display file, the intensity level 1is set to 4,
which 1is normally bright enough for the object to be detected by
a light pen. 1If the specified intensity is negative, the display
will be invisible. The absolute brightness of a display is
dependent on the setting of the INTENSITY or BRIGHTNESS knob on
the display scope.

KEYBOARD INTERACTION
An optional interactive feature of DECgraphic-11 software,
available on all operating systems. The ASCII values of keyboard
characters are read by the subroutine KBC and can be programmed
to represent program branches, menu items, or large-scale graphic
functions. Each distinct ASCII <code represents a distinct
graphic attention.

LIGHT BUTTON

A name sometimes given to an item in the menu area of the display
screen. The item 1is usually a character string that has been
made sensitive to the light pen. Light buttons can also be
selected with an ©LK-11 pushbutton box or (using the KBC
subroutine) by striking a particular key on the terminal
keyboard. The keyboard and pushbutton box can select light
buttons whether or not they are sensitive to the light pen.

LIGHT PEN

A solid-state light-detecting device consisting of a
photosensitive diode. It 1is attached by a cord to the VTll or
VS60 display scope. If a primitive or subpicture has been made
light-pen sensitive, pointing to it with the light pen creates a
light-pen hit, or graphic attention. Pressing the tip switch of
the VS60 1light pen against the screen creates a second type of
graphic attention, giving you an additional interactive control.

LIGHT-PEN HIT

An event, or graphic attention, created when the 1light pen is
pointed at a primitive or subpicture on the display screen that
has been made 1light-pen sensitive. A hit is internally
recognized as a interrupt from the 1light-pen device. The
subroutine GRATTN can wait for and respond to light-pen hits, and
detailed information on the hit 1is returned by the LPEN
subroutine. LPEN also returns information about graphic
attentions created by the tip switches on the VvS60 light pen. 1If
you use GRATTN to handle light-pen hits, you should always follow
the GRATTN call by a call to LPEN to clear the ATTENTION flag.

Glossary-4

GLOSSARY

LIGHT-PEN SENSITIVITY

A characteristic of a primitive or subpicture. If a primitive or
subpicture is light-pen sensitive, a graphic attention will occur
when you point to the object with the pen. You can enable
light-pen sensitivity by specifying a positive value for the 1
parameter (included in many subroutine calls) or by using the
SENSE subroutine. When you initialize the display file,
light-pen sensitivity is disabled.

LINE TYPE
The type of line used to display vectors on the screen. You can
select one of four types:
1. solid line
2. 1long-dash line
3. short-dash line
4, dot-dash line
You can specify a new value for the t parameter (included in many
subroutine calls) or you can use the LINTYP subroutine. When you
initialize the display file, the line type is solid.
LONG VECTOR
A vector stored in long-vector format, occupying two words. A
long vector may not exceed 1023 rasters in length.
MAIN AREA See VIEWING AREA
MENU
A list of character strings or small pictures, also called 1light
buttons. You can select an option from this list by touching the
desired character string with the 1light pen, by pressing the
proper pushbutton on the optional LK-11 box, or by pressing a
programmed keyboard character. You can specify 10 light buttons
in a single <call to the MENU subroutine; by calling MENU
repeatedly, you can display as many light buttons as can fit on
the desired area of the screen.
MENU AREA
A hardware area in the VS60 display processor used to display a
list of options called light buttons, or menu items. The area is
the rightmost one and two-third inch vertical strip on the screen
(4 centimeters by 30 centimeters). This area can accommodate a
horizontal capacity of 128 raster wunits, or 14 normal-sized
characters. With the MENU subroutine, you can display the menu
anywhere on the VS60 screen, although the hardware menu area is
chosen by default. The VT1ll screen does not have a hardware menu
area; the area chosen by default is simply the extreme right
edge of the VT1ll viewing area.
POINTER
One of 20 special elements used to identify primitives in the
display file.
PRECEDENT

In nested subpicture calls, the precedent of Subpicture ml is the
"calling" subpicture, 1i.e., another subpicture that references
ml. Because up to eight subpictures can be nested, a subpicture
could have as many as seven precedents. In calls to LPEN, the
tags of precedent subpictures are returned in array IA.

Glossary-5

GLOSSARY

PRIMITIVE
A basic display element, such as a point, vector, or character
string, that can be defined in a single subroutine call and
stored in the display file.

PUSHBUTTON BOX (LK-11)

An optional DECgraphic~11 interactive device, available on all
systems. The box has 16 buttons mounted in a small keypad. Each
button can be programmed (with the PBS, PBH, and PBL subroutines)
to represent a program branch (for example, to select and respond
to a menu item). Each button creates a distinct graphic
attention when pressed. The buttons are "two-state" switches and
are assigned LOGICAL*1 .TRUE. and .FALSE. values by the
DECgraphic-11 software. Each button has an internal light that
normally is lit when the button's state is .TRUE.

RASTER UNIT
The smallest resolvable distance between two adjacent points.
There are 1024 x 1024 raster units in the viewing area of the
VT1l and VS60 display screens, and 8192 x 8192 raster units in
the image definition area of the VS60.

RELATIVE POINT
A point on the display screen that is defined in relation to the
current beam position. If the current beam position is at
(10.,20.), the statement CALL RNPT(12.,12.) moves the beam (and
may also display a point) at absolute position (22.,32.).
Compare with ABSOLUTE POINT.

RELATIVE VECTOR
A line segment drawn from the current beam position to a
coordinate position relative to the beam position. Compare with
ABSOLUTE VECTOR and RELATIVE POINT.

SCALING
Defining a user window in which physical distances and locations
on the screen are measured according to a nonunit scale -- for

example, in increments of ten raster units rather than one.
Scaling 1is accomplished with the WINDW subroutine. On the vs60,
the WINDW subroutine operates on the total image definition area,
not just the visible portion on the screen. VS60 users can also
scale (enlarge or shrink) the sizes of vectors and characters
with the CVSCAL subroutine.

SHORT VECTOR
A vector stored in short-vector format, occupying one memory
word. A short vector cannot exceed 63 rasters in length. Short
vectors are displayed by the SVECT subroutine. The VECT
subroutine uses the short-vector format whenever possible. Short
vectors cannot be attached to the tracking object. Compare with
LONG VECTOR.

STAND-ALONE GRAPHIC SYSTEM

A graphic hardware/software configuration in which the VT1l or
VS60 display processor 1is connected to the PDP-11 central
processor by the UNIBUS. Stand-alone systems have the advantage
of higher speed compared with host-satellite systems, at the
expense of dedicating computer hardware more or less totally to
graphic programming. All DECgraphic-11 systems that use the
RT-11 operating system are stand-alone systems. If you use
RSX-11M, you can use the DECgraphic-11 software in either a
stand-alone or host-satellite configuration.

Glossary-6

GLOSSARY

SUBPICTURE

An entity defined by grouping together several primitive
definitions. A subpicture is analogous to a subroutine and is
used for the same reasons —-— primarily modularity and efficiency.
By referencing a subpicture, you often save the overhead that
would otherwise be required to specify each primitive included in
the subpicture definition. For a discussion of the "break-even"
point for using subpictures instead of individual primitives, see
Chapter 3 of this manual.

TAG
A unique name assigned to a subpicture. A tag must be a positive
integer in the range 1 through 32767.

TIP SWITCH

A switch on the tip of the VS60 light pen that is set when the
pen 1is pushed against the screen. It provides an additional
graphic attention, separate from the light-pen hit, that is
useful in interactive graphics.

TRACKING OBJECT
An octagonal image that can be displayed on the screen by the
TRAK subroutine. It moves automatically to center itself on any
light-pen hit in its area. If you call GRID, the tracking object
will move to the nearest point on the logical grid. The tracking
object is stored internally as a subpicture of relative vectors.

UNIT-SCALED COORDINATES
Coordinates in the default (unscaled) coordinate system, in which
adjacent positions on an axis are separated by a single raster
unit.

VECTOR
A line segment extending from one coordinate position to another
on the display screen. The length of a relative vector cannot
exceed 1023 raster units. See also ABSOLUTE VECTOR, LONG VECTOR,
RELATIVE VECTOR, SHORT VECTOR.

VIEWING AREA

On the VT1ll, the 9.25-by-9.25-inch area of the screen in which
images can be displayed. On the VS60, the 12-by-12-inch screen
area that forms the current viewport on the total image
definition area of the display processor. On the VS60, the
viewport can be shifted to reveal different parts of the image
definition area, but the default viewport is the area extending
from a lower left corner at the (unit-scaled) coordinate position
(0.,0.) to an upper right corner at (1023.,1023.). The viewing
area on either a VT1l or VS60 consists of 1024 raster units along
the x and y axes.

VIEWPORT
On the VS60, the part of the image definition area that is
visible in the viewing area. A viewport always consists of
1024 x 1024 raster units. The position of the viewport can be
shifted on the image definition area by the VIEWPT subroutine;
the default viewport extends from the (unit-scaled) coordinate
(0.,0.) to (1023.,1023.).

Glossary-7

Absolute point,
1-19 to 1-21, 1-24,
2-20, 2-26
Absolute vectors, 2-17,
2-26, 3-4, 3-5
ACCESS subroutine,
5-24 to 5-26
Active display list, 1-24,
2-107, 2-108, 2-115,
3-8
ADVANC subroutine, 2-67,
A-2
All-at-once display, 2-50,
3-3
APNT subroutine,
1-19 to 1-21, A-2
Area,
FORTRAN COMMON, 1-7, 1-25,
2-4
hardware menu, 1-6, 1-12
image definition, 1-6,
1-10, 1-11, 1-13, 1-14,
2-14, 2-17, 2-26
main viewing, 1-10, 2-5,
2-11, 2-33, 2-84
menu, 1-6, 1-11, 1-12,
1-15, 2-5, 2-11, 2-33,
2-38, 2-39, 2-84, 2-87
Area capacity,
viewing, 1-10
AREA subroutine, 1-12, 2-11,
2-12, A-2
Arguments,
integer, 2-1, 2-14, 2-19
ASCII characters, 1-4, 1-5,
2-32
Agsembler,
MACRO-11, 5-13, 5-15
AST, 1-7
Asynchronous system trap,
1-7
ATTACH subroutine, 2-83,
2-90, 2-91, A-2
Attaching primitives, 1-16
Attention,
graphic, 1-8, 1-15, 1-1e6,
1-22, 2-83 to 2-85,
2-95, 2-96, 2-98, 2-102
ATTENTION flag, 2-96
AVECT subroutine, 2-26,
2-27, A-2
Avoiding loss of display,
2-55, 2-78, 2-79, 2-81,
2-82, 3-5 to 3-7

INDEX

Baud rates, 1-8, 1-9
Beam,
display, 1-20, 2-5, 2-11
Beam position, 2-20, 2-22,
2-24, 2-26, 2-28, 2-30,
2-32, 2-35, 2-38, 2-43
BP device, 1-8
Builder,
Task, 5-16, 5-17
Building host-satellite
tasks, 5-17, 5-18
Buttons,
light, 1-15

Capacity,
viewing area, 1-10
CHANGA subroutine, 2-71,
2-72, A-2
CHANGE subroutine,

1-20 to 1-22, 2-70, 2-72,

A=2
CHANGT subroutine, 2-73,
2-74, A-3

Character scaling, 1-5, 1-6,

2-54 to 2-56
Characters,
ASCII, 1-4, 1-5, 2-32
CTRL, 5-28, 5-29
extended, 1-5
italic, 2-32, 2-33, 2-35,
2-37
rotated, 1-5, 2-32, 2-33,
2-35, 2-37
shift-out,
2-32 to 2-34
CMPRS subroutine, 1-25,
2-51, 2-109 to 2-111
A-3
Code,
shift-out, 1-4, 1-5, 2-34
Codes,
TEXT control, 2-32, 2-33
Command,
RENAME, 4-4, 4-5
Common,
global, 1-7, 5-16, 5-17
COMMON area,
FORTRAN, 1-7, 1-25, 2-4
Communication,
host-satellite, 5-23,
5-24

Communication overhead, 2-108

Index~1

Compiler,
FORTRAN, 5-17
FORTRAN 1V, 1-9, 5-8,

5-15
FORTRAN IV-PLUS, 1-9, 5-8,
5-15, 5-17

Compressing display files,
2-109, 2-110
Computer dialog, 1-3
COND,
IAS host-end, 5-9, 5-10
IAS satellite-end,
5-11 to 5-13
RT-11, 4-2, 4-3
stand-alone RSX-11M,
5-5 to 5-7
Conditions,
initial display, 2-5
Configuration,
host-satellite, 5-20,5-21
stand-alone, 5-20, 5-21
Configurations,
hardware-software, 5-2
CONT subroutine, 2-7, A-3
Control,
keyboard, 2-102
Control codes,
TEXT, 2-32, 2-33
Controlling the display
file, 2-115
Conventions,
documentation, 1-2, 1-3
Coordinate system,
default, 2-13, 2-14, 2-22
unit-scaled, 1-13, 2-1,
2-5, 2-13, 2-15, 2-22
variable, 1-6
COPY subroutine,
2-46 to 2-48, A-3

Copying IAS software, 5-3, 5-4

Copying RSX-11M software, 5-3
Copying RT-11 software, 4-1
Creating display file,
2-106 to 2-108
CTRL characters, 5-28, 5-29
CTRL key, 1-2
Cursor,
satellite, 5-28
CVSCAL instruction,
"dummy", 3-7
CVSCAL subroutine,
2-54 to 2-56, 3-5, A-3

DECgraphic-11 libraries,
4-4, 5-8

Default coordinate system,
2-13, 2-14, 2-22

INDEX (CONT.)

Default viewport, 2-17
Default window, 1-12, 1-13,
2-13, 2-15, 2-17
Defining a subpicture, 2-41
Definition area,
image, 1-6, 1-10, 1-11,
1-13, 1-14, 2-14, 2-17,
2-26
DETACH subroutine, 2-83,
2-92, A-3
Detaching primitives, 1-16
Device,
BP, 1-8
spP, 1-8
Devices,
polling interactive, 1-16,
2-83, 2-95 to 2-97
DFILE, 2-4, 5-16, 5-17,
5-21
DHOST subroutine, 5-24,
5-28
Dialog,
computer, 1-3
Disks,
RT-11 Floppy, 5-24
Dispatcher,
Satellite, 5-14, 5-17
Display,
all-at-once, 2-50, 3-3
avoiding loss of, 2-55,
2-78, 2-79, 2-81, 2-82,
3-5 to 3-7
flashing, 1-4, 2-86
refreshed, 1-24, 2-4, 3-8
Display beam, 1-20, 2-5,
2-11
Display conditions,
initial, 2-5
Display elements, 1-3, 3-5
Display file, 1-18, 1-22,
1-24 to 1-26, 2-4, 2-8,
2-14, 2-42, 2-51, 2-106,
2-108 to 2-110, 2-112 to
2-118, 3-6, 5-21
controlling the, 2-115
creating, 2-106 to 2-108
initializing, 2-4, 2-5
monitoring, 3-5
Display files,
compressing, 2-109, 2-110
restoring, 1-26, 2-109,
2-113
saving, 1-26, 2-109,
2-112
Display list,
active, 1-24, 2-107,
2-108, 2-115, 3-8
inactive, 2-107, 2-108,
3-8

Index-2

Display parameter,
"dummy", 3-7
Display parameters, 1-2,
1-18, 1-22 to 1-25,
2-4, 2-5, 2-77, A-10
Display processing unit,
1-24
Display processor, 1-24
Display screen,
vs60, 1-11
Display-file structure,
C-1 to C-3
Displays,
odometer, 2-52, 3-4
DISPLY subroutine, 2-107,
2-108, 2-115, 3-7, 3-8,
A-3
Documentation conventions,
1-2, 1-3
Down-line loading graphic
tasks, 5-26, 5-27
Down-line loading SATCTL,
5-18, 5-19, 5-27
DPTR subroutine, 2-115,
2-116, 3-8, A-3
DPU, 1-24, 1-25
DPYNOP subroutine, 2-115,
2-117, A-3
DPYWD subroutine, 2-115,
2-118, 3-7, 3-8, A-4
DRAW, D-4
stand-alone, D-5 to D-11
DRAW program, 1-16, 2-30
DRAW.FOR, D-1
DRAWH, 5-19, 5-22, 5-28,
D-2 to D-4, D-12 to D-18
DRAWS, 5-19, 5-22, 5-26 to
5-28, D-2. to D-4,
D-18 to D-20
"dummy" CVSCAL instruction,
3-7
"dummy" display parameter,
3-7

EIS Feature, 1-9
Elements,
display, 3-5
ERAS subpicture, 2-51
ERAS subroutine, A-4
ERASP subroutine, 2-76, A-4
Error messages, B-1 to B-4
ESUB,
restoring, 2-43, 2-45,
2-49, 2-78, 2-79, 2-81,
2-82
ESUB subpicture, 2-45
ESUB subroutine, 1-18,
2-41 to 2-44, A-4

INDEX (CONT.)

Event flag numbers,
reserved, 5-28
Extended characters, 1-5

Factors,
scaling, 1-13, 1-14, 2-13
to 2-15, 2-17, 2-35, 2-54
Features,
interaction, 1-14 to 1-16
tracking, 1-14 to 1-16
FIGR subroutine, 2-62, 2-63,
A-4
File,
controlling the display,
2-115
creating display,
2-106 to 2-108
display, 1-18, 1-22, 1-24
to 1-26, 2-4, 2-8, 2-14,
2-42, 2-51, 2-106, 2-108
to 2-110, 2-112 to
2-118, 3-6, 5-21
initializing display, 2-4,
2=-5
monitoring display, 3-5
Files,
compressing display,
2-109, 2-110
restoring display, 1-26,
2-109, 2-113
saving display, 1-26,
2-109, 2-112
Flag,
ATTENTION, 2-96
Flash mode, 1-23, 1-25,
2-81, A-10
FLASH subroutine, 1-23,
1-24, 2-77, 2-81, 3-5,
A-4
Flash-mode parameter, 1-23,
2-5, 2-81, A-10
Flashing display, 1-4, 2-86
Flashing points, 2-20
Floppy disks,
RT-11, 5-24
Fonts,
type, 1-4
Format,
long-vector, 2-24, 2-26,
2-30, 2-62, 3-4, 3-5
short-vector, 2-24, 2-28,
2-30, 3-4, 3-5
FORTRAN COMMON area, 1-7,
1-25, 2-4
FORTRAN compiler, 4-2, 5-
FORTRAN IV compiler, 1-9,
5-8, 5-15

17

Index-3

FORTRAN IV-PLUS compiler,
1-9, 5-8, 5-15, 5-17

FORTRAN library, 1-9, 5-18

FREE subroutine, 2-8, A-4

FRHOST subroutine, 5-23

FRSAT subroutine, 5-23,
5-24

Generation,

system, 1-7
GET subroutine, 2-68, 2-69,
A-4
Global common, 1-7, 5-16,
5-17

Graphic attention, 1-8,
1-15, 1-16, 1-22, 2-83
to 2-85, 2-95, 2-96,
2-98, 2-102
Graphic Loader, 5-18, 5-19,
5-26, 5-27
Graphic tasks,
down-line loading, 5-26,
5-27
IAS, 5-16
RSX-11, 5-16
Graphic terminal,
GT41, 1-8, 1-9
GT42, 1-8
GT43, 1-8
GRATTN subroutine, 1-16,
2-84, 2-95 to 2-98,
2-102, A-4
Greek letters, 1-4, 1-5
GRGEN,
IAS, 5-13
RSX-11M, 5-8
RT-11, 4-4, 4-5
Grid, 1-16

GRID subroutine, 2-83, 2-93,

2-94, A-5
GT41 graphic terminal, 1
1-9
GT42 graphic terminal, 1-
GT43 graphic terminal, 1

|
(oo}
~

©

Hardware menu area, 1-6,
1-12
Hardware requirements, 1-8
Hardware-software
configurations, 5-2
Hit,
keyboard, 2-102
light-pen, 1-15, 2-76,
2-79, 2-83 to 2-86,
2-95, 2-96
tip-switch, 2-79

INDEX (CONT.)

Hits,
pushbutton, 2-98, 2-100
Host-end COND,
IAS, 5-9, 5-10
Host-end libraries, 5-14
Host-satellite
communication, 5-23,
5-24
Host-satellite
configuration, 5-20,
5-21
Host-satellite software,
5-22
Host-satellite system, 1-8,
2-1, 5-1, 5-19
Host-satellite tasks,
building, 5-17, 5-18

IAS graphic tasks, 5-16
IAS GRGEN, 5-13
IAS host-end COND, 5-9,
5-10
IAS satellite-end COND,
5-11 to 5-13
IAS software,
copying, 5-3, 5-4
IAS software kit, 5-2
Image definition area, 1-6,
1-10, 1-11, 1-13, 1-14,
2-14, 2-17, 2-26
Inactive display list,
2-107, 2-108, 3-8
INIT subroutine, 1-25, 2-4,
2-5, A-5
Initial display conditions,
2-5
Initializing display file,
2-4, 2-5
Input,
speeding up, 3-7, 3-8
INSRT subroutine, 2-75, A-5
Instruction,
"dummy" CVSCAL, 3-7
no-operation, 2-117, 3-8
Integer arguments, 2-1,
2-14, 2-19
INTENS subroutine, 1-23,
1-24, 2-77, 2-79, 2-80,
3-5, A-5
Intensity level, 1-4,
1-22 to 1-25, 2-79,
A-10
Intensity-level parameter,
1-22, 1-23, 2-5, 2-79,
2-80, A-10
Interaction features,
1-14 to 1-16

Index-4

Interactive devices,
polling, 1-16, 2-83,
2-95 to 2-97
Interactive programs,
writing, 2-83
IORET, 5-25, 5-26
Italic characters, 2-32,
2-33, 2-35, 2-37
Items,
menu, 2-38
ITOA subroutine, 2-88, 3-4

KBC subroutine, 1-16, 2-102,
2-103
KBS subroutine, 2-104, A-5
Key,
CTRL, 1-2
Keyboard, 1-6, 1-16, 2-83,
2-95 to 2-97
Keyboard control, 2-102
Keyboard hit, 2-102
Kit,
IAS software, 5-2
magnetic-tape, 5-3
RSX-11 software, 5-2
RT-11 software, 4-1

Letters,
Greek, 1-4, 1-5
Level,
intensity, 2-79, A-10,
LGR, 5-19, 5-26, 5-27
LIBR, 4-5
Librarian,
RT-11, 4-5
Libraries,
DECgraphic-11, 4-4, 5-8
host-end, 5-14)
renaming, 4-4, 4-5, 5-8
satellite-end, 5-15
Library, ‘
FORTRAN, 1-9, 5-18
system, 1-9
Light buttons, 1-15
Light pen, 1-6, 1-10, 1-12,
1-15, 1-16, 1-23, 2-83
to 2-87, 2-95 to 2-97,
A-10, D-4
Light-pen hit, 1-15, 2-76,
2-79, 2-83 to 2-86,
2-95, 2-96
Light-pen parameter, 1-22,
2-5, 2-78, A-10
Light-pen sensitivity, 1-22,
1-25, 2-38, 2-78, 2-83

INDEX (CONT.)

Light-pen tip switch, 1-6,
1-15, 2-84, 2-87
Lights,
pushbutton, 2-98, 2-101
Line types, 1-3, 1-23, 2-82,
A-10
Line-type mode, 1-25
Line-type parameter, 1-23,
2-5, 2-82, A-10
Linking procedure,
RT-11, 4-5
LINTYP subroutine, 1-23,
1-24, 2-77, 2-82, 3-5,
A-5
List,
active display, 1-24,
2-107, 2-108, 2-115,
3-8
inactive display, 2-107,
2-108, 3-8
LK-11 pushbutton box, 1-6,
1-7, 1-16, 2-83,
2-95 to 2-98
Loading graphic tasks,
down-line, 5-26, 5-27
LLoading SATCTL,
down-1line, 5-18, 5-19,
5-27
Local storage at satellite,
5-24 to 5-26
Long vector, 2-30
Long-vector format, 2-24,
2-26, 2-30, 2-62, 3-4,
3-5
Loss of display,
avoiding, 2-55, 2-78,
2-79, 2-81, 2-82,
3-5 to 3-7

LPEN subroutine,

2-84 to 2-86, A-6
LUNSs,
reserved, 5-28
LVECT subroutine, 2-30,
2-31, A-6

MACRO-11 Assembler, 5-13,
5-15

Magnetic-tape kit, 5-3

Main viewing area, 1-10,
2-5, 2-11, 2-33, 2-84

Mass storage, 1-26, 2-109,
2-112, 2~-113, 5-22,

5-26

Mathematical symbols, 1-4,
1-5

Meaning of subpicture, 1-7,
1-18

Index-5

INDEX (CONT.)

Memory requirements, 1-8
Menu, 1-6, 1-11, 1-12, 2-86,
D-3, D-4
Menu area, 1-6, 1-11, 1-12,
1-15, 2-5, 2-11, 2-33,
2-38, 2-39, 2-84, 2-87
Menu area,
hardware, 1-6, 1-12
Menu items, 2-38
MENU subroutine, 1-12,
2-39, A-6
Messages,
error, B-1 to B-4
Mode,
flash,
A-10
line-type, 1-25
Mode word, 3-6, 3-7
Monitoring display file,
3-5
Moving subpictures, 3-3

2-38,

1-23, 1-25, 2-81,

Nested subpictures,
2-84 to 2-86
Nesting subpictures, 1-19, 2-42,
2-43

NMBR subroutine, 2-52, 2-53,
A-7

No-operation instruction,

2-117, 3-8
NOWNDW subroutine,
2-16, A-7

Numbers,
reserved event flag,

2-15,

5-28

Object,
tracking, 1-15, 1l-16,
2-76, 2-83, 2-87, 2-88,
2-90, 2-92 to 2-94,
3-3
Odometer displays, 2-52,
3-4
OFF subroutine, 2-49, 2-50,
A-7
ON subroutine,
A-7
Operations,
pointer, 1-22
subpicture, 1-19
Order of primitives, 1-19,
1-20
Overhead,
communication,

2-49, 2-50,

2-108

Parameter,
"dummy" display, 3-7
flash-mode, 1-23, 2-5,
2-81, A-10
intensity-level, 1-22,
1-23, 2-5, 2-79, 2-80,
A-10
light-pen, 1-22, 2-5,
2-78, A-10
line-type, 1-23, 2-5,
2-82, A-10
Parameters,)
display, 1-2, 1-18,
1-22 to 1-25, 2-4,
2-5, 2-77, A-10
PBH subroutine, 1-16, 2-98,

2-100, A-7

PBL subroutine, 1-16, 2-98,
2-101, a-7

PBS subroutine, 1-16, 2-98,
2-99, A-7

Pen,

light, 1-6, 1-10, 1-12,

1-15, 1-16, 1-23, 2-83
to 2-85, 2-95 to 2-97,
A-10, D-4

Peripheral Interchange
Program, 5-8

PIP, 5-8
Point,
absolute, 1-19 to 1-21,
1-24, 2-20, 2-26

relative, 1-20, 2-22
Pointer operations, 1-22
Pointers, 1-18 to 1-22,
2-64, 2-67, 2-68,
2-70, 2-71, 2-73,
2-75 to 2-717

POINTR subroutine, 1-20,
1-21, 2-65, 2-66, 2-77,
A-7

Points, 1-20, 1-22

flashing, 2-20
Polling interactive devices,

1-16, 2-83, 2-95 to 2-97
Position,
beam, 2-20, 2-22, 2-24,
2-26, 2-28, 2-30, 2-32,
2-35, 2-38, 2-43
Precedents, 2-42, 2-84 to
2-86

Primitives, 1-16, 1-18 to
1-23, 2-40, 2-71
attaching, 1-16
detaching, 1-16
order of, 1-19, 1-20
properties of, 1-20
Procedure,
RT-11 linking, 4-5

Index-6

Processing unit,
display, 1-24
Processor,
display, 1-24
Program,
DRAW, 2-30
Programs,
writing interactive, 2-83
Properties of primitives,
1-20
Pushbutton box,
LK-11, 1-6, 1-7, 1-16,
2-83, 2-95 to 2-98
Pushbutton hits, 2-98,
2-100
Pushbutton lights, 2-98,
2-101
Pushbutton status, 2-98,
2-99

Raster unit, 1-6
Rate,
refreshment, 3-8
Rates,
baud, 1-8, 1-9
READ/WRITE TRANSPARENT, 1-7
READWR subroutine,
5-24 to 5-26
Refreshed display, 1-24,
2-4, 3-8
Refreshment rate, 3-8
Regions,
shared, 1-7
Relative point, 1-20, 2-22
Relative vectors, 1-21,
2-24, 3-4, 3-5
RENAME command, 4-4, 4-5
Renaming libraries, 4-4,
4-5, 5-8
Requirements,
hardware, 1-8
memory, 1-8
software, 1-7 to 1-9
Reserved event flag numbers,
5-28
Reserved LUNs, 5-28
Restoring display files,
1-26, 2-109, 2-113
Restoring ESUB, 2-43, 2-45,
2-49, 2-78, 2-79, 2-81,
2-82
Rotated characters, 1-5,
2-32, 2-33, 2-35, 2-37
RPNT subroutine, 2-22, 2-23,
A-8
RSTR subroutine, 1-26,
2-113, 2-114, 5-24, A-8

INDEX (CONT.)

RSX-11 graphic tasks, 5-16
RSX-11 software kit, 5-2
RSX-11M,
stand-alone, 5-16
RSX-11M COND,
stand-alone, 5-5, 5-6,
5-7
RSX-11M GRGEN, 5-8
RSX-11M software,
copying, 5-3
RSX-11M stand-alone system,
5-1
RT-11 COND, 4-2, 4-3
RT-11 Floppy disks, 5-24
RT-11 GRGEN, 4-4, 4-5
RT-11 Librarian, 4-5
RT-11 linking procedure,
4-5
RT-11 software,
copying, 4-1
RT-11 software kit, 4-1
RT-11 USR operations, 4-5
Rubber-banding, 3-5

SATCTL, 5-19, 5-21
to 5-23, 5-27
SATCTL,
down-line loading, 5-18,
5-19, 5-27
SATDSP, 5-22, 5-23
Satellite,
local storage at,
5-24 to 5-26
Satellite Control Task,
5-17, 5-18, 5-21 to
5~-24, 5-27
Satellite cursor, 5-28
Satellite Dispatcher, 5-14,
5-15, 5-17, 5-22, 5-23
Satellite-end COND,
- IAS, 5-11 to 5-13
Satellite-end libraries,
5-15
SAVE subroutine, 1-26, 2-51,
2-109, 2-112, 5-24, A-8
Saving display files, 1-26,
2-109, 2-112
Scaling,
character, 1-5, 1-6,
2-54 to 2-56
vector, 1-5, 1-6, 2-54,
2-55
Scaling factors, 1-13, 1-14,
2-13 to 2-15, 2-17,
2-35, 2-54
SCOPE subroutine, 2-10, A-8

Index-7

Screen,
VS60 display, 1-11
SENSE subroutine, 1-23,

2-77, 2-78, 3-5, A-8

Sensitivity,
light-pen, 1-22, 1-25,

2-38, 2-78, 2-83
Shared regions, 1-7
Shift-out characters,

2-32 to 2-34
Shift-out code, 1-4, 1-5,

2-34
Short vector, 2-28
Short-vector format, 2-24,

2-28, 2-30, 3-4, 3-5
Software,

copying IAS, 5-3, 5-4
copying RSX-11M, 5-3
copying RT-11, 4-1
host-satellite, 5-22
Software kit,
IAS, 5-2
RSX-11, 5-2
RT-11, 4-1
Software requirements,

1-7 to 1-9
SP device, 1-8
Speeding up input, 3-7, 3-8
Stand-alone configuration,

5-20, 5-21
Stand-alone DRAW,

D-5 to D-11
Stand-alone RSX-11M, 5-16
Stand-alone RSX-11M COND,

5-5 to 5-7
Stand-alone system, 1-7,

2-1

RSX-11M, 5-1
Status,

pushbutton, 2-98, 2-99
STOP subroutine, 2-6, A-8
Storage,

mass, 1-26, 2-109, 2-112,

2-113, 5-22, 5-26

Storage at satellite,
local, 5-24 to 5-26
Strings,
text, 1-20
Structure,
display-file,
C-1 to C-3
SUBP subroutine, 1-18, 2-41,
2-42, A-8
Subpicture, 1-7
defining a, 2-41
meaning of, 1-7, 1-18
nesting, 1-19

Subpicture operations, 1-19

INDEX (CONT.)

Subpictures, 1-18 to 1-22,
2-41
moving, 3-3
nested, 2-84 to 2-86
nesting, 2-42, 2-43
when to use, 3-2
Subroutine,
MENU, 2-39
Subroutines, 1-16
Subscripts, 1-5,
2-32 to 2-35
Superscripts, 1-5,
2-32 to 2-35
SVECT subroutine, 2-28,
2-29, A-8
Symbols,
mathematical, 1-4, 1-5
SYSLIB, 1-9
System,
default coordinate, 2-13,
2-14, 2-22
host-satellite, 1-8, 2-1
RSX-11M stand-alone, 5-1
stand-alone, 1-7, 2-1
unit-scaled coordinate,
1-13, 2-1, 2-5, 2-13,
2-15, 2-22
variable coordinate, 1-6
System generation, 1-7
System library, 1-9
Systems,
host-satellite, 5-1, 5-19

Task Builder, 5-16, 5-17
Tasks,
building host-satellite,
5-17, 5-18
down-line loading graphic,
5-26, 5-27
IAS graphic, 5-16
RSX-11 graphic, 5-16
Terminal,
GT41 graphic, 1-8, 1-9
GT42 graphic, 1-8
GT43 graphic, 1-8
TEXT control codes, 2-32,
2-33
Text strings, 1-20
TEXT subroutine,
2-32 to 2-37, A-8
Tip switch,
light-pen, 1-6, 1-15,
2-84, 2-87
Tip-switch hit, 2-79
TOHOST subroutine, 5-23,
5-24

Index-8

TOSAT subroutine, 5-23
Tracking features,
1-14 to 1-16
Tracking object, 1-15, 1-16,
2-76, 2-83, 2-87, 2-88,
2-90, 2-92 to 2-94,
3-3
TRAK subroutine, 1-16, 2-83,
2-87, A-9
TRAKXY subroutine, 2-83,
2-88, 2-89, A-9
TRANSPARENT,
READ/WRITE, 1-7
Trap,
asynchronous system, 1-7
TTW subroutine, 2-105, A-9
Type font, 2-5
Type fonts, 1-4
Types,
line, 2-82, A-10

Unit,
display processing, 1-24
raster, 1-6
Unit-scaled coordinate
system, 1-13, 2-1, 2-5,
2-13, 2-15, 2-22
User's Satellite Routine,
5-14, 5-15, 5-17, 5-18,
5-22
User-defined viewport, 2-17
User-defined window, 2-15
USR operations,
RT-11, 4-5
USRSAT, 5-22

Variable coordinate system,
1-6
VECT subroutine, 1-19, 2-24,
2-25, A-9
Vector, 1-20
long, 2-30
short, 2-28
Vector scaling, 1-5, 1-6,
2-54, 2-55

INDEX (CONT.)

Vectors, 1-20, 1-21
absolute, 2-17, 2-26, 3-4,
3-5
relative, 1-21, 2-24, 3-4,
3-5
Viewing area,
main, 1-10, 2-5, 2-11,
2-33, 2-84
Viewing area capacity, 1-10
Viewport, 1-10, 1-11, 1-13,
1-14, 1-25, 2-17, 2-18,
2-26
Viewport,
default, 2-17
user-defined, 2-17
Viewports, 1-6

. VIEWPT subroutine, 1-13,

1-14, 1-25, 2-17, 2-18,
2-26, 2-~55, A-9
vs60, 1-10, 2-17
VS60 display screen, 1-11
vTll, 1-10

When to use subpictures, 3-2
Window, 1~12, 1-14, 2-13
Window,
default, 1-12, 1-13, 2-13,
2-15, 2-17
user-defined, 2-15
WINDW subroutine,
1-12 to 1-14, 2-13,
2-14, 2-16, A-9
Word,
mode, 3-6, 3-7
Writing interactive
programs, 2-83

XGRA subroutine, 2-58, 2-59,
A-9

YGRA subroutine, 2-60, 2-61,
A-9

Index-9

-

]

NOTE:

DECGRAPHIC-11
FORTRAN Programming
Manual

AA-5428C-TC

READER'S COMMENTS

This form is for document comments only. DIGITAL will
use comments submitted on this form at the company's
discretion. Problems with software should be reported
on a Software Performance Report (SPR) form. If you
require a written reply and are eligible to receive
one under SPR service, submit your comments on an SPR
form.

Did you find errors in this manual? If so, specify by page.

ine.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

sl

Please cut along th

Is there sufficient documentation on associated system programs
required for use of the software described in this manual? If not,
what material is missing and where should it be placed?

0o000ad

Name

Please indicate the type of user/reader that you most nearly represent.

Assembly language programmer

Higher-level language programmer

Occasional programmer (experienced)

User with little programming experience

Student programmer

Non-programmer interested in computer concepts and capabilities

Date

Street

Organization

City

State Zip Code
or
Country

Fold Here

Do Not Tear - Fold Here and Staple

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

FIRST CLASS
PERMIT NO. 162
MARLBOROUGH, MA
01752

Postage will be paid by:

dlilgliltiall

Software Documentation
200 Forest Street MR1-2/E37
Marlborough, Massachusetts 01752

Il

	001
	002
	003
	004
	005
	006
	007
	009
	010
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	1-21
	1-22
	1-23
	1-24
	1-25
	1-26
	2-001
	2-002
	2-003
	2-004
	2-005
	2-006
	2-007
	2-008
	2-009
	2-010
	2-011
	2-012
	2-013
	2-014
	2-015
	2-016
	2-017
	2-018
	2-019
	2-020
	2-021
	2-022
	2-023
	2-024
	2-025
	2-026
	2-027
	2-028
	2-029
	2-030
	2-031
	2-032
	2-035
	2-036
	2-037
	2-038
	2-039
	2-040
	2-041
	2-042
	2-043
	2-044
	2-045
	2-046
	2-047
	2-048
	2-049
	2-050
	2-051
	2-052
	2-053
	2-054
	2-055
	2-056
	2-057
	2-058
	2-059
	2-060
	2-061
	2-062
	2-063
	2-064
	2-065
	2-066
	2-067
	2-068
	2-069
	2-070
	2-071
	2-072
	2-075
	2-076
	2-077
	2-078
	2-079
	2-080
	2-081
	2-082
	2-083
	2-084
	2-085
	2-086
	2-087
	2-088
	2-089
	2-090
	2-091
	2-092
	2-093
	2-094
	2-095
	2-096
	2-097
	2-098
	2-099
	2-100
	2-101
	2-102
	2-103
	2-104
	2-105
	2-106
	2-107
	2-108
	2-109
	2-110
	2-111
	2-112
	2-113
	2-114
	2-115
	2-116
	2-117
	2-118
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	4-01
	4-02
	4-03
	4-04
	4-05
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	B-1
	B-2
	B-3
	B-4
	C-1
	C-2
	C-3
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10
	D-11
	D-12
	D-13
	D-14
	D-15
	D-16
	D-17
	D-18
	D-19
	D-20
	GL-1
	GL-2
	GL-3
	GL-4
	GL-5
	GL-6
	GL-7
	I-1
	I-2
	I-3
	I-4
	I-5
	I-6
	I-7
	I-8
	I-9
	replyA
	replyB

