
DEC-08-UMPHA-A-D

MPS

MICROP~ROCESSOR SERIES
USER'S HANDBOOK

1st Edition, July 1974
2nd Printing (Rev), November 1974

Copyright © 1974 by Digital Equipment Corporation

The material in this manual is for informational
purposes and is subject to change without notice.

Digital Equipment Corporation assumes no respon­
sibility for any errors which may appear in this
manual.

Printed in U.S.A.

The following are trademarks of Digital Equipment

Corporation, Maynard, Massachusetts:

DEC

FLIP CHIP

DIGITAL

PDP

FOCAL

COMPUTER LAB

CHAPTER 1

1.1
1.2
1.3
1.3.1
1.3.2
1.4
1.4.1
1.4.2
1.4.3
1.4.4

CHAPTlER 2

2.1
2.2
2.2.1
2.2.2
2.2.3
2.2.4
2.2.5
2.2.6
2.2.7
2.3
2.3.1
2.3.2
2.3.3
2.4
2.4.1
2.4.2
2.5
2.5.1
2.5.2
2.5.3
2.5.4
2.6
2.6.1
2.6.2
2.6.3

CHAPTER 3

3.1
3.2
3.3
3.3.1
3.3.2
3.3.3
3.3.4

CONTENTS

OPERATING CHARACTERISTICS

INTRODUCTION
GENERAL DESCRIPTION
FUNCTIONAL DESCRIPTION

Microprocessor Series Modules
MPSST Software Tools Package

SPECIFICATIONS
Performance Specifications
Electrical Specifiica tions
Mechanical Specifications
Environmental Specifications (all modules)

FUNCTIONAL DESCRIPTION

INTRODUCTION
PROCESSOR MODULE

Processor Modul,e Timing
Processor Module Instruction Cycle
Input Data Paths .
Output Data Paths
Control Logic
Asynchronous Communications Receiver/Transmitter Logic
Interrupt Control

READ/WRITE MEMORY MODULE
Memory Read Tiiming
Memory Write Timing
Address Decoding

PROGRAMMABLE READ-ONLY MEMORY MODULE
Memory Organization
Address and Control Decoding

EXTERNAL EVENT DETECTION MODULE
Priority Arbitration Logic
Start Circuit
Power Failure Detection Circuit
Stop Function

MONITOR/CONTROL PANEL
Monitor/Control Panel Cable Connections
Monitor/Control Panel Functions
Resident Memory

MICROPROCESSOR SERIES INSTRUCTION SET

INTRODUCTION
INSTRUCTION FUNCTIONS AND FORMATS ..
INDEX REGISTER INSTRUCTIONS

Loading Data into Index Registers or Memory
Loading Data Immediate
Incrementing an Index Register
Decrementing an Index Register

iii

Page

1-1
1-1
1-1
1-1
1-4
1-5
1-5
1-8
1-8
1-9

2-1
2-1
2-1
2-4
2-4
2-5
2-5
2-5
2-6
2-7
2-7
2-8
2-8
2-9
2-9
2-9

2-11
2-11
2-13
2-13
2-14
2-14
2-14
2-14
2-20

3-1
3-1
3-3
3-3
3-4
3-4
3-4

3.4
3.4.1
3.4.2
3.4.3
3.4.4
3.5
3.5.1
3.5.2
3.5.3
3.6
3.6.1
3.6.2
3.6.3
3.7
3.7.1
3.7.2
3.7.3

CHAPTER 4

4.1
4.2
4.2.1
4.2.2
4.2.3
4.2.4
4.2.5
4.3
4.3.1
4.3.2
4.3.3
4.3.4
4.3.5
4.3.6
4.3.7
4.3.8

CHAPTER 5

5.1
5.2
5.2.1
5.2.2
5.2.3
5.3
5.4
5.4.1
5.4.2
5.4.3

CONTENTS (Cont)

ACCUMULATOR INSTRUCTIONS
Index Register Instructions
Operations With Memory
Immediate Instructions
Rotate Instructions

PROGRAM COUNTER AND STACK CONTROL INSTRUCTIONS
Jump Instructions
Call Instructions
Return Instructions

INPUT /OUTPUT INSTRUCTIONS
Input Instruction
Output Instruction
Reserved INP and OUT Instructions

MACHINE INSTRUCTIONS
Halt Instruction
Restart Instruction
Interrupt Enable and Disable Instructions

THE PDP-8 HOST ENVIRONMENT

INTRODUCTION TO THE PDP-8 .
PDP-8 HARDWARE ENVIRONMENT

Central Processing Unit (CPU)
Programmer's Console
Keyboard/Printer Terminal
Low-Speed Paper-Tape Reader/punch
High-Speed Paper-Tape Reader/punch

PDP-8 SOFTWARE ENVIRONMENT
The RIM Loader
The Microprocessor Host Loader . .
The Microprocessor Language Editor
The Microprocessor Language Assembler
Master Tape Duplicator IV erifier .
Microprocessor ROM Programmer
Microprocessor Debugging Program
Microprocessor Program Loader

MICROPROCESSOR LANGUAGE EDITOR

INTRODUCTION TO THE EDITOR
OVERVIEW OF EDITOR COMMANDS

General Editor Syntax
Errors in Specifying Commands
Line Numbering

EDITOR MODES OF OPERATION .
SPECIAL CHARACTERS AND FUNCTIONS

RETURN: Terminating a Line
CTRL/U: Erasing a Line
RUBOUT: Erasing A Character

iv

Page

34
3-5
3-7
3-8

· 3-10
· 3-11
· 3-12

3-13
3-14
3-16
3-16
3-16
3-16
3-17
3-17

· 3-17
· 3-17

4-1
4-1
4-1
4-1
4-5
4-6
4-8
4-9

· 4-10
· 4-11
· 4-11
· 4-11
· 4-13
· 4-14

.. 4-14
· 4-14

5-1
5-1
5-1
5-1
5-2
5-3
5-3
5-3
5-3
5-4

5.4.4
5.4.5
5.4.6
5.4.7
5.4.8
5.4.9
5.4.10
5.4.11
5.4.12
5.4.13
5.4.14
5.5
5.6
5.6.1
5.6.2
5.6.3
5.7
5.7.1
5.7.2
5.7.3
5.7.4
5.7.5
5.8
5.8.l
5.8.2
5.8.3
5.8.4
5.8.5
5.8.6
5.9
5.9.1
5.9.2
5.9.3
5.9.4
5.9.5
5.9.6
5.10

CHAPTER 6

6.1
6.2
6.3
6.3.1
6.3.2
6.3.3
6.3.4
6.4

CONTENTS (Cont)

CTRL/L: Entering A Form Feed
Dot (.): Identifying the Current Line
Slash (/): Identifying the Last Line
LINE FEED: Identifying the Next Line
ALT MODE: Incrementing the CUrrent Line
Right Angle Bracket (»: Identif)'jing the Next Line
Left Angle Bracket «): Identifying the Previous Line
Equal Sign (=): Requesting a Value
Colon (:): Requesting a Value
Blank Tape and Leader/Trailer Tape: Processing Paper Tape
CTRL/I: Tabbing Editor Output

SWITCH REGISTER OPTIONS
INPUT COMMANDS

R: Reading Paper Tape
A: Appending Terminal Text
I: Inserting Text in the Buffer

OUTPUT COMMANDS
L: Listing on the Terminal Printer
P: Punching Out Paper Tape
F: Punching a Form Feed
T: Punching a Paper Tape Trailer .
N: Combining P, F, K, and R Corrimands .

EDITING COMMANDS•..
C: Changing Lines in the Text Burfer
D: Deleting Lines of Text
G: Getting a Tagged Line
K: Killing the Text Buffer
M: Moving Text in the Buffer
S: Searching the Text Buffer

EDITOR OPERATING PROCEDURES ,
Loading the Editor into Core
Generating a Symbolic Program Off-Line
Loading a Symbolic Tape Using the Editor
Restarting the Editor • . .
Editing the Source Program
Punching the Corrected Symbolic Tape

EDITING EXAMPLE

MICROPROCESSOR LANGUAGE ASS£MBLER

INTRODUCTION TO THE ASSEMBLER
OVERVIEW OF THIS CHAPTER
BASIC CHARACTER SET

Legal Source T~~xt Characters
Format Control
Construction of Numbers
Construction of Symbols

STATEMENT SYNTAX ...

v

Page

54
54
5-5
5·5
5·5
5·5
5-5
5·5
5-5
5·5
5·5
5·6
5-6
5-7
5-8
5-8
5-9
5-9
5-9

5·10
5-10
5-11
5-11
5-11

. 5·12
5-13

· . 5-13
· . 5-13
· . 5-14

5·16
5-16
5-16
5·16
5·16

. 5·17
· . 5·18
· . 5-18

6·1
6·1
6-1
6·2
6-2
6·2
6-3
6-3

6.4.1
6.4.2
6.4.3
6.4.4
6.5
6.6
6.6.1
6.6.2
6.6.3
6.6.4
6.6.5
6.7
6.8
6.9
6.10
6.10.1
6.10.2
6.10.3
6.10.4
6.10.5
6.10.6
6.10.7
6.10.8
6.10.9
6.10.10
6.11
6.11.1
6.11.2
6.11.3
6.11.4
6.11.5
6.11.6
6.11.7
6.12
6.12.1
6.12.2

CHAPTER 7

7.1
7.2
7.3
7.4

CHAPTER 8

8.1
8.2
8.3
8.4

CONTENTS (Cont)

Construction of a Label
Construction of an Instruction
Construction of an Operand
Construction of a Comment .

THE LOCATION COUNTER
EXPRESSIONS AND OPERATORS

Expression Evaluation
Replacement and Arithmetic Operators
Logical Opera tors
High Byte-Selection Operator
Block-Offset Operator

THE MEMORY MAP
ASSEMBLER SYMBOL TABLES
MLA INSTRUCTION SET
PSEUDO-INSTRUCTIONS

$: Indicating End of Program
PAUSE: Pausing During Assembly
*: Specifying an Origin
OCT, HEX, and DEC: Specifying Radix Control
EXPUNGE: Deleting the Instruction Symbol Table
OPDEF: Specifying User-Defined Instructions
DATA: Assigning a Value to Storage
BLOCK: Assigning a Block of Data .
TEXT: Spt~cifying a Character String
ADDR: Generating an Address

ASSEMBLER OPERATING PROCEDURES
Loading the Assembler into Core
Preparation of Input .
Starting the Assembler
Assembler Output
Symbol Table Format
Binary Output Format
Output Listing Format

ASSEMBLER DIAGNOSTIC MESSAGES
Error Types
Summary of Diagnostics

MICROPROCESSOR PROGRAM LOADER

OPERATING ENVIRONMENT
LOADING A BINARY TAPE
REST ARTING THE LOADER
MCPMEMORY

MICROPROCESSOR DEBUGGING PROGRAM

INTRODUCTION TO MDP
OPERATING ENVIRONMENT
BASIC CHARACTER SET .
ADDRESS SPECIFICATION

vi

Page

~-4
6-4
p-5
6-5
6-5
6-5
f)-6
6-6
6-6
6-6
6-6
6-7
6-8
6-8
6-8
6-8
6-8
,6-9
6-9
,6-9
6-9

· 6-10
· 6-10
· 6-10
· 6,-11
· 6-11
· 6-11
· 6-11
· 6-11
· 6-12
· 6-12
· q-14
· 6-14
· 6-15
· 6-15
· 6-15

,7-1
7-1
7-1
7-2

8-1
8-1

,8-1
8-2

8.5
8.6
8.7
8.7.1
8.7.2
8.8
8.8.1
8.8.2
8.8.3
8.8.4
8.9
8.9.1
8.9.2
8.9.3
8.9.4
8.9.5
8.10
8.10.1
8.10.2
8.10.3
8.11
8.11.1
8.11.2
8.11.3

CHAPTER 9

9.1
9.2
9.2.1
9.2.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.9.1
9.9.2
9.10
9.10.1
9.10.2
9.10.3
9.10.4
9.10.5
9.11
9.11.1
9.11.2
9.11.3

CONTENTS (Cont)

OVERVIEW OF MDP COMMANDS ...
ERRORS IN SPECIFYING COMMANDS
SPECIAL FUNCTION KEYS

RUBOUT: Deleting a Digit
Control C: Aborting MDP Operati<!>n

INPUT /OUTPUT COMMANDS
R: Reading Paper Tape
P: Punching Paper Tape
T: Punching Leader and Trailer Tape
E: Punching an End Block on Tape

LOCATION-EXAMINATION COMMANDS
/: Opening a Memory Location
Carriage Return: Closing an Open Location
Line Feed: Opening the Next Location
.: Reopening the Current Location
t: Opening the' Previous Location

DISPLAY COMMANDS
D: Dumping Address Contents
S: Displaying Status Flip-Flops
X: Displaying an Index Register

CONTROL COMMAJ~S
G: Executing the Program
B: Setting a Breakpoint
L: Loading Memory with a Constant

MICROPROCESSOR ROM PROGRAMMER

INTRODUCTION TO MPR
HARDWARE ENVIRONMENT

MR873 Hardware Assembly
PROM Assemblly and Manipulation

OPERATING ENVIRONMENT
SWITCH REGISTER OPTIONS
BASIC CHARACTER SET . . .
ADDRESS SPECIFICATION
OVERVIEW OF MRlP COMMANDS
MRPERRORS
SPECIAL FUNCTION KEYS

RUBOUT: Deleting a Digit
Control C: Aborting MRP Operation

PAPER TAPE I/O COMMANDS
R: Reading Paper Tape
Q: Reading Additional Paper Tape
P: Punching Paper Tape ,
T: Punching Leader and Trailer Tape
E: Punching an End Block on Tape

PROM I/O COMMANDS .
F: Reading a PROM
C: Checking a PROM
W: Writing a PROM

vii

Page

8-2
8-3
8-3
8-3
8-4
8-4
8-4
8-5
8-5
8-6
8-6
8-6
8-7
8-7
8-7
8-7
8-7
8-8
8-8
8-9
8-9

· 8-10
· 8-10
· 8-11

9-1
9-1
9-1
9-2
9-3
9-3
9-4
9-5
9-5
9-5
9-6
9-6
9-6
9-6
9-7
9-8
9-9

· 9-10
· 9-11
· 9-11
· 9-11
· 9-12

.. 9-13

9.11.4
9.12
9.12.1
9.12.2
9.12.3
9.12.4
9.12.5
9.13
9.13.1
9.14
9.14.1

CONTENTS (Cont)

V: Verifying a PROM
LOCATION-EXAMINATION COMMANDS

/: Opening a Memory Location
Carriage Return: Closing an Open Location
Line Feed: Opening the Next Location ..
.: Reopening the Current Location
t: Opening the Previous Location

DISPLAY COMMAND
D: Dumping Address Contents

CONTROL COMMAND
L: Loading Memory with a Constant

CHAPTER 10 SAMPLE PROGRAMS

10.1
10.2
10.3

LOADING REGISTER IN RAM
READING A BLOCK OF DATA
CONVERSION/PRINT SUBROUTINES

APPENDIX A SUMMARY OF EDITOR (MLE) COMMANDS

APPENDIX B SUMMARY OF ASSEMBLER (MLA) INSTRUCTIONS

APPENDIX C SUMMARY OF ASSEMBLER PSEUDO-INSTRUCTIONS

APPENDIX D SUMMARY OF MICROPROCESSOR DEBUGGING PROGRAM (MDP) COMMANDS

APPENDIX E SUMMARY OF MICROPROCESSOR ROM PROGRAMMER (MRP) COMMANDS

APPENDIX F BLOCK-OFFSET TO OCTAL CONVERSION

APPENDIX G 7-BIT ASCII CODE

ILLUSTRATIONS

Figure No.

1-1
1-2
1-3
1-4
1-5
2-1
2-2
2·3
2-4
2-5
2-6

Processor Module
Read/Write Module
Programmable Read-Only Module
External Event Detection Module
Monitor/Control Panel .. .
PM Block Diagram
Instruction Execution States
Time State Flow Diagram
I/O Timing Diagram
M7344 Block Diagram .
Memory Timing Diagram

Title

viii

Page

· . 9·14
. 9-15

· . 9-15
· . 9·15
· . 9·15
· . 9·16
· . 9·16
· . 9-16
· . 9·16

. 9·17
· . 9·17

10·1
10·2
10·3

Page

1-2
1·3
1·3
1-3
1·5
2·2
2-3
2-3
2·6
2-7
2·8

Figure No.

2-7
2-8
2-9
2-10
2-11
2-12
2-13
2-14
4-1
4-2
4-3
44
4-5
4-6
4-7
4-8
4-9
4-10
4-11
5-1
5-2
5-3
54
9-1
9-2
9-3

Table No.

3-1
4-1
4-2
4-3
4-4
5-1
5-2
5-3
54
5-5
5-6
5-7
5-8
5-9
5-10
6-1
6-2

ILLUSTRATIONS (Cont)

Title

M7345 Block Diagram
Physical Location and Octal Address of M7345 PROMs
Memory Timing Diagram
M7346 Logic Diagram
MCP Cable Connections
MCP Front Panel
MCP Block Diagram
MCP Resident Memory Block Diagram
PDP-8E Programmer's Console
LT33 Teletype Console
Teletype Keyboard
ASCII Format
RIM Format
BIN Format
High-Speed Paper-Tape Reader/punch
Loading the RIM Loader
Checking the RIM Loader
Loading the Microprocessor Host Loader
Loading a Binary Tape Using MHL . . .
Loading the Editor into Core
Generating a Symbolic Program Off-Line
Loading a Symbolic Tape Using the Editor
Generating a Symbolic Tape Using the Editor
PDP-8 I/O Bus
MR873 ROM Programmer
Y168 Socket Module (with PROM inserted)

TABLES

Title

Instruction Set Notation
Programmer's Console Control and Indicator Functions
Special Key board Functions
PDP-8 System Programs
RIM Loader Programs.
Editor Command Options
Switch Register Options
Input Commands .
LIST Commands
PUNCH Commands
NEXT Command Functions
CHANGE Commands
DELETE Commands
SEARCH Commands
SEARCH Options
Switch Register Settings
Switch Register'Options

ix

Page

2-10
2-10
2-11
2-12
2-15
2-16
2-17
2-21

4-2
4-5
4-6
4-7
4-8
4-8
4-8

. ... 4-10
· . 4-11

· 4-12
· . 4-12
· . 5-16

5-17
5-17
5-18
9-2
9-3
9-3

Page

3-2
4-2
4-6
4-9

· 4-10
5-2
5-6
5-7
5-9
5-9

5-11
5-11
5-12

· 5-14
5-15
6-12

· 6-13

Table No.

6-3
8-1
8-2
8-3
8-4
9-1
9-2
9-3
9-4
9-5

TABLES (Cont)

Tide

Assem bIer Diagnostics
Input/Output Commands
Location-Examination Commands
Display Commands
Control Commands
Socket Positions for PROM Commands
Switch Register Options
Paper Tape I/O Commands
PROM I/O Commands
Location-Examination Commands

x

Page

. 6~16
8-4
8~6
8~8

8-10
9~3

94
9;7

9·11
9·15

PREFACE

The user's handbook provides a detailed range of hardware and software information pertinent to the operation of
Microprocessor Series (MPS) modules. This information is presented in ten chapters:

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

provides an overview of the functions
performed by the MPS modules and the
programming routines

presents a functional description of each
MPS module based on detail block
diagrams

consists of a detailed presentation of the
Processor Module instruction repertoire

describes, in detail, the PDP-8 host
environment as it applies to the use of the
applicable program in the software
package supplied by Digital to support
use r-development of MPS system
programs

provides the application programmer wi th
the detailed information necessary to the
use of the Microprocessor Language
Editor (MLE)

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Chapter 10

describes, in
Microprocessor
(MLA)

detail, the use of the
Language Assembler

summarizes the operation of the
Microprocessor Program Loader (MPL)

presents instructions for utilizing the
Microprocessor Debugging Program
(MDP) which facilitates analysis and
alteration of binary programs

provides operating instructions for
reading and writing data and instruction
bits into programmable read-only
memory (PROM) circuits using the
M icrop rocessor Read-Only Memory
Programmer (MRP)

contains sample programs which might be
useful to the user as a reference aid

· " .' • • • · ,,' · "
• ,',>

~ ... '"., ..• '.," .. "'.",""/~ '". "'

- ~, '

·'····""".M~

1.1 INTRODUCTION
Digital Equipment Corporation's Microprocessor Series
(MPS) consists of a group of four M Seriles modules and an
optional operator's control panel, designed to efficiently
perform a range of process control and decision-making
functions that were previously uneconomic subjects for
automation. When used together, these modules can form
low-cost digital control systems that exhibit the
characteristics normally attributed to more costly
minicomputer-based systems. With this capability, systems
structured from MPS modules can perform the functions of
dedicated controllers, operate as a Central Processor Unit
(CPU) in intelligent terminals, perform data aquisition and
analysis tasks in the laboratory, and automate a host of
industrial processes.

1.2 GENERAL DESCRIPTION
The Microprocessor Series is listed below by model number
and name:

• M7341 Processor Module

•

•

•

M7344-Y A 1 K Read/Write Memory Module
M7344-YB 2K Read/Write Memory Module
M7344-YC 4K Read/Write Memory Module

M7345 Programmable Read-Only Memory
Module

M7346 External Event Detection Module

• KC341 Monitor/Control Panel

In a systems context, the M7341 Processor Module (PM)
acts as the central processor unit with the remaining

1-1

CHAPTER 1
OPERATING

CHARACTERISTICS

modules performing supporting functions. Activity in a
given system, then, is directed by a unique stored program
contained in a read/write and/or a programmable read-only
memory and executed by the PM. A major factor in the
structuring of an MPS system for a specific application is
the development of this unique system program by the
user. To support user development of application software,
Digital provides the Microprocessor Series Software Tools
(MPSST) package that includes the following routines:

• Microprocessor Language Editor (MLE)

• Microprocessor Language Assembler (MLA)

• M i c r 0 processor Read-Only Memory
Programmer (MRP)

• Microprocessor Host Loader (MHL)

• Microprocessor Debugging Program (MDP)

• Master Tape Duplicator (MTD)

In addition, the Microprocessor Program Loader (MPL) is
available to users of the optional KC341 Monitor Control
Panel.

1.3 FUNCTIONAL DESCRIPTION

1.3.1 Microprocessor Series Modules
The discussions that follow present brief descriptions of the
functions performed by each module within the context of
a generalized MPS system structure.

Figure 1-1 Processor Module

Processor Atlodule (Figure 1-1)
The M734I Processor Module performs the functions of a
CPU in a system structured from MPS modules. The
module consists of solid-state integrated circuits with input
and output lines that are TTL-compatible; its major CPU
functions are executed by a single-chip, large-scale,
integrated (LSI) microprocessor. Supportive functions such
as timing, data and address busing, input multiplexing,
gating, buffering, storage and external communication are
performed by the remaining logic population on the board.

The processor chip is a parallel, 8-bit control processor unit
configured as a single metal oxide silicon circuit packaged
in an l8-pin dual in-line package. Through the supportive
logic in the M734I module, the processor can communicate
the consequences of program execution with all other MPS
modules.

LSI processor internal logic includes an accumulator, two
memory address registers, six general-purpose registers, four
condition flip-flops, complete instruction control and
decoding logic, and a stack. All communication between
internal registers and logic and other MPS modules and
peripheral devices is conducted through an 8-bit
bidirectional data port integral to the processor chip. The
internal stack contains the 14-bit program counter and
seven other 14-bit registers for nesting up to seven levels of
subroutines. This I4-bit addressing capability permits
accessing up to 16K memory locations that can be any
mixture of RAM or ROM.

1-2

The instruction control and decoding logic implement a set
of 48 register transfer, arithmetic, control, and 10gJlcal
instructions which are speCifically optimized for the process
control environment. The processor chip is also equipped
with an interrupt line under control of supporting PM logic
which allows the enabling or disabling of interrupts. Input
to this interrupt recognition logic is generated by the
external event detection module which implements the
detection of, and response to, application-defined events or
power failure conditions. Enabling and disabling interrupts
is performed under program control.

Serial communication between the processor and external
equipment is furnished by a universal asynchronous
receiver /transmitter which is also part of the PM supportive
logic. Through this interface, programs can be loaded from
an external peripheral device such as a paper-tape loader
and MPS systems communicating directly with external
data bases.

Read/Write and Programmable Read-Only Memories
(Figures 1-2 and 1-3)
These two MPS memory modules provide the user with a
wide range of options with respect to the mixing of RAM
and ROM memory within a system. The read/write memory
module is available in three versions: a IK module, a 2K
module, and a 4K module. All memory circuits in a
programma ble re ad-only memory module are
socket-mounted so that the storage capacity of a given
module can be expanded to 4K by adding memory circuits.

Figure 1-2 Read/Write Module

Figure 1-3 Programmable Read-Only Module

This feature permits varying PROM capacity in response to
changing system requirements. Each PROM circuit is
equipped with a sealed transparent quartz lid which permits
erasure prior to reprogramming using an ultraviolet light
source.

With both memory modules, the address range for
each - within a group of modules forming a system
memory- can be determined either by inserting the
appropriate jumpers or through backplane selection.

1-3

Figure 1-4 External Event Detection Module

External Event Detection Module (Figure 1-4)
The M7346 External Event Detection Module (EEDM)
implements nine levels of priority arbitration including
application-defined six level priority interrupt schemes, an
ac and dc power failure detection capability, and the
processor control functions of halt and restart. The EEDM
is completely contained on a single-height, extended-length
PC board.

Monitor/Control Panel (Figure 1-5)
The KC341 Monitor/Control Panel (MCP) serves as an
operator's panel for the processor· module. In addition to
the conventional panel controls and indicators, the MCP is
equipped with controls and visual displays for examining
and changing the content of manually accessed read/write
memory locations and for performing single-step
instruction execution. These functions are supported by a
resident memory consisting of a 256. X 8-bit PROM and a
32 X 8-bit RAM completely contained on the MCP. The
PROM contains the Microprocessor Program Loader (MPL).
The RAM and the PROM are directly addressable as system
memory, and the RAM can be used as a scratch pad by
user-diagnostics and by operating programs.

The MCP .interfaces with the processor module through a
dedicated cable of up to 8 feet. Although normally
configured for table mounting, the MCP can be panel­
mounted in a standard EIA rack panel fitted with a suitable
bezel.

1.3.2 MPSST Software Tools Package
This software package (supplied by Digital) aids the user in
developing application programs. The support functions
performed by each of these routines are presented in the
following paragraphs.

Microprocessor Language Assembler (MLA)
MLA is a three-pass symbolic assembler that operates on a
PDP-8 to produce either a listing or a binary punched paper
tape of an MPS object program from punched paper tape
source code. This program has been designed to conform
generally to the operational characteristics of other PDP-8
assemblers. Assembled code is generated in punched paper
tape form or as a printed listing at the option of the user.
Diagnostic messages are also printed out to designate syntax
errors and to indicate warnings or actions taken by the
assembler.

~Microprocessor Language Editor (MLE)
MLE is an on-line symbolic editor that operates on the
PDP-8 to create and modify MPS source program punched
paper tapes. This editor implements both program entry
and on-line program editing. Source text can be entered
from a keyboard or from a punched paper-tape reader.
After editing, the user may produce a source paper tape
ready for input to MLA and/or a source text listing.
Listings and tapes of source text can be made in whole or in
part as required by the user.

Microprocessor Host Loader (MHL)
MHL is a utility program loaded into core to read
binary-coded data from paper tape and to store it in core
memory, and used primarily to load system binary object
programs.

1-4

Microprocessor Read-Only Memory Programmer (MRP)
MRP operates on an MR873 PROM writer in cdnjunction
with a PDP-8/E, /F, or 1M to set data and instruction bits
into ultra-violet light erasable PROM circuits using object
tapes produced by MLA.

Microprocessor Debugging Program (MDP)
MDP operates on the processor module in conjunction with
the Monitor/Control Panel from either PROM or RAM
memory. This octal debugger permits the following
diagnostic actions under control of the MCP panel as
directed by an operator:

•
•

•

Reads and punches paper tape

Opens specified memory locations for
modifications and allows the previous, current,
and next locations to be opened, displayed, and
closed

Dumps the contents of program addresses,
status flip-flops, and index registers on the
Teletype printer

• Allows a program segment to execute for test
purposes under MDP control

• Specifies a breakpoint location for program
execution

• Loads specified locations in memory with a
constant value

Microprocessor Program Loader (MPL)
MPL is a binary paper-tape loader that operates on the
processor module and resides in the Monitor/Control Panel
PROM memory. This program provides for the loading of a
binary punched tape from an external paper-tape reader
through the universal asynchronous receiver/transmitter
integral to the PM. Operation of MPL is performed from
the MCP control panel.

Figure 1-5 Monitor/Control Panel

1.4 SPECIFICATIONS

1.4.1 Performance Specifications

M7341 Processor Module

Operating Speed @ 500 kHz
Two-phase clock period
Time state
Instruction time

Word Size
Data
Instruction
Address

1-5

2 J1S
4 J1S
12 to 44 J.Ls

8-bit word
1, 2, or 3 8-bit words
14 bits

Input Data Ports
Memory data
Peripheral data
Power fail/stop
I/O Interrupt/start

Input/Output Lines
Memory data
Memory address
Peripheral data
Peripheral address
Communication Lines
Baud rate

With internal clock
With external clock

Instruction Repertoire
Forty-eight basic instructions
Instruction Categories

Register Operation
Accumulator Operation
PC and Stack Control
I/O
Machine

KC341 Monitor/Control Panel

Controls
Switch register

ADDRLOAD

STRT

CONT

EXM

DEP

SING CYCLE

DISP DATA

DISP ADDR

1-6

8 bitS}
8 bits
8 bits
8 bits

Multiplexed

8 bits bidirectional
14 bits, output only
8 bits input and output
5 bits, output only (may be expanded)
2; 20 rnA current loop, active or passive

110 baud (1.76 kHz)
9600 baud (153.6 kHz) maximum (TTL)

14-switch manual input register

Load address from switch register with PM halted

Start Processor Module

Execute one machine cycle if in single cycle mode,
or continue program execution at machine speed if
not in single cycle mode

Display content of memory location addressed by
either switch register content or incremented switch
register content

Deposit content of switch register into a memory
location accessed by a previously loaded address

Enter single cycle mode

Display data contained in location being examined

Display address loaded from switch register or
address of location being examined

Indicators

RUN

HALT

WAIT

PCI, PCW, PCR, PCC

1> 2, 1>1, SYNC

RDY

INTR

Mep-PM Interface

Cable length (max) @ PM clock rate
of 500 kHz/phase

Connector /plug types
Cable type

M7344-Y A, -VB, -YC Read/Write Memory Modules

Memory type
Data word size
Address word size

Number of words
Memory read or write cycle time

M7345 Programmable Read-Only Memory Module

Memory type
Data word size
Address word size
Number of words
Cycle time
Erasure method

Program write time

1-7

Lights when processor module is operating

Lights when processor module is in the stopped
state

Lights when processor module is in wait state

Each indicator lights when the processor module is
executing the corresponding machine cycle

These indicators light to designate the operation of
the corresponding processor module timing signal

Lights when the processor module Ready line is
asserted true

Lights when the processor module Interrupt line is
asserted true

8 [t. (204m)

50-pin PC board connector /header
50-conductor, flat, shielded

Static MOS
8 bits
14 bits, expandable to 16 bits plus address
expansion line
1024, 2048, or 4096
1.15 J1S

Static MOS PROM
8 bits
14 bits, expandable to 16 bits plus selection line
Up to 4K (multiples of 256)
1.0 J1S
Ultraviolet light; 256 words erased per circuit
exposed
2 minutes, typical per 256 words

M7346 External Event Detection Module

Number of event detection input lines
Priority encoded

External event response time
Power failure response time
Input polarity
Ou tpu t polarity
Power fail sense input

1.4.2 Electrical Specifications

Power supply (all modules)
Input Logic Levels (all modules)

TTL Logical Low
TTL Logical High

Output Logic Levels (all modules)
TTL Logical Low
TTL Logical High

Power Consumption
Processor Module
Monitor/Control Panel
Read/Write Memory, M7344-YA

M7344-YB
M7344-YC

Programmable Read-Only Memory, 1 K
2K
4K

External Event Detection Module

1.4.3 Mechanical Specifications

M7341 Processor Module

Board type
Dimensions

KC341-B Monitor and Control Panel

Overall panel dimensions
Width
Height
Depth

1 -8

9
1, lowest
9, highest
12 to 44 J.Ls
21 ms (from ac loss to power-fail request)
Zero volts true
Zero volts true
6.3 Vac

+5 Vdc, -15 Vdc, ±5%

0.0 to 0.8 Vdc
2.0 to 3.6 Vdc

0.0 to 0.4 Vdc
2.4 to 3.6 Vdc

1.62 A @+5 V, 150 rnA @-15 V, 10.25 W
2.43 A @ +5 V, 60 rnA @-15 V, 12 W
1.2 A @ +5 V, 6.0 W
1.5 A @ +5 V, 7.5 W
2.2 A @ +5 V, 11.0 W
490 rnA @ +5 V, 300 rnA @ -15 V; 6.0 W
630 rnA @ +5 V, 530 rnA @ -15 V; 11.0 W
900 mA@+5 V, 1.0 A@-15 V; 19.5 W
250 rnA @ +5 V, 50 rnA @6.3 Vac, 1.5 W

Quad-height, extended-length, single width
10.436 X 8.50 X 0.50 in. (26.5 X 21.6 X 1.27 cm)

18 in. (45.7 cm)
8.75 in. (22.2 cm)
1.75 in. (4.4 cm) excluding switches
2.50 in. (6.35 cm) including switches

M7344 Read/Write Memory Module
Board type
Dimensions

M7345 Programmable Read-Only Memory Module
Board type
Dimensions

M7346 External Event Detection Module
Board type
Dimensions

1.4.4 Environmental Specifications (all modules)

Ambient Temperature
Operating
Nonoperating
Humidity

1-9

Quad-height, extended length, single width
10.436 X 8.50 X 0.50 in. (26.5 X 21.6 X 1.27 em)

Quad-height, extended length, single width
10.436 X 8.50 X 0.50 in. (26.5 X 2l.6 X l.27 em)

Single height, extended length, single width
2.4375 X 8.50 X 0.50 in. (6.2 X 21.6 X 1.27 em)

5° to 50° C (41 ° to 122° F)
-400 to 66° C (-40° to 150° F)
10 to 95% noneondensing

CHAPTER 2
FUNCTIONAL DESCRIPTION

2.1 INTRODUCTION
This chapter presents a detailed functionall description of
each Microprocessor Series module and the operator's
monitor/control panel. The discussion conveying these
descriptions is based on comprehensive block diagrams
which relate input and output signals andl internal signal
flow to the event sequence within each module.

Each of the detailed block diagrams supporting these
discussions graphically represents module throughput as
logic circuit blocks that are functional1y cohesive. For
example, registers, multiplexers, gating networks, clocks,
and various control logic are depicted as functional blocks.
Data and address buses, control and enabling lines, and
interna11y generated signals are shown as they affect the
pertinent functional blocks. The discussions supported by
these block diagrams deal with the effect of inputs on the
function of throughput, how functional blocks interrelate
to implement throughput, and what actions result from
outputs. A more comprehensive technical description
including pinouts, input and output loading, signal
descriptions, and jumper selections is contained in the
respective data sheet supplied with each module.

2.2 PROCESSOR MODULE
The M7341 Processor Module (PM) contains a single chip
MOS/LSI microprocessor along with the ilntegrated logic
,md control circuitry necessary to operate as a para11el 8-bit
central processing unit. This microprocessor support logic
consists of an adjustable 500 kHz variable clock; a four
channel input multiplexer; data, memory, and address bus
gating; I/O control logic; interrupt recognition logic; and a
universal asynchronous receiver/transmitter driven by an
integral 844.8 kHz clock. The relationships of the
supporting] ogic to the processor chip are shown in Figure
2-1.

2-1

The single chip microprocessor contains a bidirectional data
port, complete instruction decoding logic, an arithmetic
unit, a state counter, an accumulator, an address stack, six
general registers, and memory and I/O timing and control
logic.

2.2.1 Processor Module Timing
The basic timing signals shown in Figure 2-1, for the PM are
produced by the two-phase clock. These signals, labeled ¢1
and ¢2, are symmetrical, nonoverlapping positive-going
clock pulses which drive the processor chip state counter.
This state counter controls all activity internal to the
processor chip and produces the output signals SO, S 1, S2,
and SYNC. The timing signals available for external use are
¢ICLK H, ¢2CLK H, and SYNC H. The SYNC H signal,
along with SO, SI, and S2 defines processor module
instruction execution states.

A typical PM machine cycle involves five sequential time
states: TS1, TS2, TS3, TS4, and TSS (Figure 2-2). During
time states TS 1 and TS2, system memory is addressed by a
lower and an upper address byte respectively to form a
14-bit address; during TS 1 the program counter (PC) is
incremented. In time state TS3 the instruction addressed
during TS 1 and TS2 is fetched, and during TS4, or TS4 and
TSS, the fetched instruction is executed. The flow chart of
time state transitions is shown in Figure 2-3 which
Simplifies the progression through time states during a
machine cycle.

If an interrupt is initiated by an external event, control
does not return to TS 1 after completing instruction
execution but instead reverts to time state TSII which
replaces TS!. During TSII, the external event is recognized,
an interrupt is generated, and incrementing of the PC is
suppressed to permit execution of a one-byte instruction
generated by the external event.

N
N

BIDIRECTIONAL MEMORY DATA BUS

DM0 L -DM7 L INPUT DATA BUS

DIosrp L-DIOST7 L

DPFS(Il L -DPFS7 L
r-------------I-IINTERRUPT

: PARALLEL DATA; XMIT
lOUT : CLK
L __________ ...1

UPOE-I REC

CLK Il~UTCLKH
UNIVERSAL
ASYNCHRONOUS URCLK H
RECEIVER I

TBMT H-..l TRANSMITTER

DA H
XMIT DATA

RCV DATA

r-------

) PA~~iALEL 0-7
L __ ~N ___

USI H

TTY OUT TTY IN

TSI1

INIT

TS2

PCI

INiT

I/O IN

<l>ICLK H

TWO I. -I ¢>1

PHASE 'L -, ¢>2 MASTER ¢>2 CLK H
CLOCK

'SCLK H

ROY H

50

ucu, H

9-13

I/O OUT

LSI
PROCESSOR

CHIP

TiME
STATE

DECODER

TSI

TSII

TS2
TS3
TS4
TS5
SYNC H
WAiT
STOP

INIT

r;;
i V

11
12

:3
14

:5
OUTPUT I 6

REGISTER I 7
16 BITS iii

:9
rIO

:11
112

~1~
14
15

Figure 2-1 PM Block Diagram

00 OUT- 07 OUT

0-13

110 IN H
MEM RO H
lIO OUT H

MEM WR H

PCI
PCC
PCR
pew

INTERFACE

Cl

READY

DATA OUT
GATE

SIM INTERRUPT

SIM JAM ENABLE

LAI

LA2

SIM MEM READ OR
SIM 0 (N) GATE

ISO. MEM WRITE

I

cp- 0987

+1 ---.lLJLJl
.., I- 500n5

+ 2 .J1--fl.--Jl- I
I I I

SYNC ,.... 4fLS --, :

(INTERRUPT, WAIT JLJl rI rI i rltf1--f1---\
AND STOPPED STATES . ~ ~~ _ ~ ___ Lf:

SHOWN) 1 TS11 I TS2 1 WAIT I TS3, ISTOPP 01 TS4 1 TS5 1

(NORMAL

TS2 TS3 I TS4 I TS5 I TS1

Figure 2-2 Instruction Execution States

Figure 2-3 Time State Flow Diagram

S2 SI

1 1

0 1

1 0

0 0

0 0

0 1

1 1

1 0

SO STATE

0 TSII (INTERRUPT)

0 TSI

0 TS2

0 WAIT

1 TS3

1 STOPPED

1 TS4

1 TS5

CP-0985

YES

CP -0984

At the completion of time state TS2, the processor checks
the state of the READY line. If this line is true (High), time
state TS3 is entered; if not true (Low), the Wait state is
entered. Time state TS3 is entered from the Wait state
when the READY line is asserted again. The state of the
READY line is available for external use through the signal
RDYH.

If the instruction fetched during time state TS3 is a Halt,
the processor stops operation at the end of that time state.
The processor remains halted until the START line is
asserted forcing entry into time state TSlI and execution of
a jammed one-byte instruction which can be supplied by
the External Event Detection Module. When the PM is
operating (STOP H not asserted) the RUN indicator is lit;
when the Stop state is entered (STOP H asserted), this
indicator will be extinguished.

2.2.2 Processor Module Instruction Cycle
Figure 2-3 shows that a machine cycle can be completed at
the end of time states TS3, TS4 or TSS. The instruction
cye1e for instructions in the PM repertoire is variable
depending on the class and function of the speCific
instruction executed and can consist of one, two, or three
machine cycles. The completion point within a machine
cycle is also instruction-dependent so that the number of
time states encompassed by PM instructions can range from
a minimum of three to a maximum of eleven.

The processor module executes four types of machine
cydes which are listed and defined below:

PCI Cycle - This is always the first cycle of every PM
instruction and initiates an instruction fetch. The two bytes
which address memory during this cycle are always taken
from the PC.

PCR Cycle - This cycle initiates the addreSSing of memory
by the incremented PC to retrieve a subs.equent byte of a
two- or three-byte instruction, or to retrieve a data byte
addressed by the contents of registers Hand L.

pcC Cycle - This cycle initiates the set-up and execution
of I/O instructions by placing the address of the peripheral
device to be accessed and the content of the accumulator
onto the memory address bus and retrieving and/or storing
the data at the pertinent peripheral.

pew Cycle - This cycle initiates the addreSSing of memory
by the content of the Hand L registers and implementing
the writing of data into that location.

2-4

As shown in Figure 2-1, a corresponding signal for each of
these machine cycles is available as output from the
processor. At time state TS2, the specific signal
corresponding to the machine cycle being executed is
asserted and latched for external use. These signals are
derived from the states of the two high-order bits of the
high address byte and are decoded and gated out for
external use during time state TS3.

2.2.3 Input Data Paths
The processor chip is equipped with a single time-shared
8-bit bidirectional data port to permit memory addressing,.
instruction fetching, and data input and output. This port
connects to the bidirectional data bus on the processor
module. As shown in Figure 2-1, input data in the form of
an 8-bit byte is gated onto this internal bidirectional bus
from the unidirectional input data bus. Data is multiplexed
and gated onto the input data bus from four input ports
which are selected as a function of the machine cycle
currently being executed.

When a PCI or PCR machine cycle is in process, time state
TS3 selects the bidirectional memory port DMO L to DM7
L to fetch the instruction or data word addressed dl,uing
TSI and TS2 of that cycle from memory. During a PCC
cycle the signal I/O IN, asserted by the control logic, selects
the peripheral data-in port DIO L to DI7 L to retrieve data
from the addressed peripheral device as specified by the
read I/O instruction being executed.

At start-up or restart time, or in response to an external
event, one of the signals START L or 10EE L is asserted to
select the I/O start port DIOSTO L to DIOST7 L for
external instruction input.

Figure 2-3 illustrates that when an interrupt occurs in
response to an external event, time state TSlI is entered so
that normal incrementing of the PC is inhibited.

As a consequence of selecting the I/O start port, an
externally supplied one-byte instruction is automatically
fetched. This instruction is executed during time states TS4
and TSS. Note that when 10EE L is asserted, the external
event recognition logic must be enabled under program
control in order for the I/O start port to be selected as a
response to an external event. The signal START L, when
asserted, bypasses the event recognition to select the I/O
start port regardless of program-enabling action.

The signal PFSEE L can be asserted by a system start-stop
switch, by a power-fail sensing circuit, or by some other

external logic. A power-fail circuit or external logic
connected to the power-fail/stop port DPFSO L to DPFS7
L can jam a one-byte RST instruction (see section 3.7.2)
into this port upon detection of a power failure or in
reaction to some external event. This instruction would
then be executed to initiate a service routine or sequence.

Activating an external system stop switch would also select
the power-fail/stop port; however, in this case, all the data
lines into this port would normally be High . which is
equivalent to a Halt instruction. When the signal PFSEE L
is asserted, the power-fail stop port is selected at time state
TS3 following entry into time state TSlI which, as shown
in Figure 2-3, occurs in the same manner as with a normal
interrupt. During time state TS3, the instruction at this
port is fetched by the processor for execution.

2.2.4 Output Data Paths
Processor Module output can be in the form of memory
addresses, memory and I/O control information, I/O device
addresses, data output to memory, and data output to
peripherals. With the exception of data output to memory,
aU of these addresses and data are stored for output in the
16-bit multipurpose output register. Data words are latched
into the register by the data selection logic during time
states TSI and TS2 (Figure 2-1).

Memory addresses are issued as two separate words to form
a 14-bit address word during machine cycles PCI, PCR, and
PCW - the lower word at time state TSI and the upper
byte at TS2 of these cycles. During each one of these time
states the corresponding memory address word is loaded
into the 16-bit output register by the address selection
logic. At the end of time state TS2, the current memory
address is present at the output side of the output register.
These output lines are buffered to drive the address/data
lines ADRDOO L to ADRD 13 L which can be bused out to
the Microprocessor Series ROMs, RAMs, and I/O devices.

During a PCC cycle, the contents of the accumulator and
the instruction register are stored in output register bits 0
through 13 for use as peripheral device output data and
address. At time state TSI of a PCC cycle the content of
the accumulator (Register A), which is the data to be
output to the addressed peripheral device, is placed in the
output register bit positions 0 to 7.

At time state TS2, the content of the instruction register is
transferred to output register bit positions 8 through 15,
with bits 9 through 13 containing the address of the
peripheral device being accessed during the PCC cycle. Once

stored in the output register, these address and data fields
are available to external peripheral devices over the lines
ADRDOO L to ADRD 13 L. This device address field
permits the addressing of up to eight input devices and 24
output devices.

Data to be written in read/write memory is gated onto the
bidirectional memory bus DMO L to DM7 L during time
states TSI and TS2 of a PCW cycle. Data must be accepted
by the memory during time state TS3 of that cycle.

2.2.5 Control Logic
The control logic (Figure 2-1) provides the various control
signals necessary to memory accessing and to the
performance of input/output operations with associated
peripherals. Input to the control logic is the state of bits 14
and 15 of the output register.

During time state TS3 of every machine cycle, the control
signals pertinent to the machine cycle currently being
executed are asserted. For example, during PCI and PCR
cycles where memory is addressed to fetch an instruction or
data, the signal MEM RD H is asserted at the end of time
state TS2 and throughout TS3. As shown in Figure 2-4, this
signal controls the reading of data from that memory
location addressed during the pertinent machine cycle.

For a PCC cycle, the signals I/O IN H or I/O OUT Hare
asserted during time state TS3 to control the storage and
retrieval of data at external peripheral devices. When data is
to be written into an addressed memory location during a
PCW cycle, the signal MEM WR H is asserted by the control
logic during time state TS3 of that machine cyc1e.

In addition to these signals, the control logic also asserts
one of the signals PCI L, PCC L, PCR L, or PCW L during
time state TS3 of the corresponding machine cyc1e.

2.2.6 Asynchronous Communications Receiver/
Transmitter Logic
The PM is equipped with a full duplex communication
receiver/transmitter implemented by a Universal
Asynchronous Receiver/Transmitter (UART). A 1.76 kHz
clock, ,driven by an 844.8 kHz crystal-controlled clock
integral to the PM, is input to this device to produce a 110

. baud data transfer rate. The UART is addressed during time
state TS3 by bits 9 to 13 of the output register. Data is
transmitted and received at the module over 20 mA current
loop or TTL-compatible lines (USI Hand usa H) to
interface with Teletype-like lines or to telephone lines

. through a modem.

2-5

TS2~-----------------TS3--------------------~·~I·~TS4---

TIME STATES ~
I
~---

MEMORY IDEVICE X ADDRESS
I

I

F MEMORY READ -I 125 ns
OR IIO IN

I

"'-DATA
READ

MEMORY WRITE _____________________ ~~oons--l OR IIO OUT ____ _

* At a 500 KHz clock rote. DATA READY
FOR OUTPUT

CP·0988

Figure 24 I/O Timing Diagram

Higher baud rates can be obtained by using an external
clock input (URCLK or UTCLK) that can be derived from
external logic which divides the basic crystal clock
frequency. The maximum data transfer rate is 9600 baud
for TTL lines and 4800 baud for current loop lines (at
limited lengths). Interna1 switches on the PM permit
selection of operation under external clock control; the
number of stop bits used (one or two) can be selected
through switch action. Active or passive operation of
current loop lines is jumper-selectable.

Odd parity, even parity, or no parity is selected by the PM
input line UPOE. Also, the number of data bits in a word
can be selected to vary from five to eight bits. Both TBMT
(Transmitter Buffer Empty) and DA (Data Available) are
available for external interrupt drive capability.

When an input instruction is being executed, the signal I/O
IN H is asserted by the control logic. This signal and the
receiver/transmitter device receive address are decoded to
gate data from the device onto peripheral bus lines DIO L to
DI7 L and into the peripheral data-in port.

Data for transmission is written from the output register
into the UART transmission buffer during time state TS3
of a PCC cycle when the signal I/O OUT H is asserted
(Figure 24). This signal and the transmit data address are
decoded to strobe data from the PM output register into
lhe transmission buffer.

2-6

Status information, which includes receiver/transmitter
error conditions and transmit and receive buffer status, is
retrievable through execution of an input instructi<on with
the assigned status device address. As with readihg data
from the receiver/transmitter, the signal I/O IN H is
asserted as a result of a PCC cycle execution. This ~ignall is
gated with the device address to, in turn, gate device status
into the peripheral data-in port DIO L through DI7 L.

2.2.7 Interrupt Control
The interrupt control logic drives the input data
multiplexer to select one of two input ports. If the
interrupt results from a power failure or a stop command,
the power-fail/stop port DPFSO L to DPFS7 L is selected.
Similar1y, if the 10EE L line or the system START ~ line is
asserted, the I/O start port DIOSTO L to DIOST7 L is
selected. The instruction jammed into these ports as a
consequence of a power failure or an I/O or. restart
interrupt is furnished by the External Event Detection
Module or external logic as determined by the specific
application.

I/O interrupts can be enabled or disabled under program
control by the PM external event enable/disable logic.
Interrupts are disabled by executing the instruction IOF
and enabled by executing ION (paragraph 3.7.3).

Since interrupts will be enabled or disabled one instruction
time after execution of an ION or 10F, one instruction can

be executed after ION or IOF before interrupts are actually
enabled or disabled. The external event recognition logic is
automatically disabled after every interrupt.

2.3 READ/WRITE MEMORY MODULE
The M7344 Read/Write Memory Module provides a IK, 2K,
or 4K X 8-bit random access memory capacity along with
all necessary timing, control, and decoding logic (Figure
2-5). This module is completely contained on a single quad
extended-length board. The module memory matrix is
formed by up to 32 1024 X I-bit static MOS MSI memory
circuits. The nature of these MOS circuits precludes the
need for external refresh logic.

The M7344 Read/Write Memory Module is available in
three versions to satisfy varying mem~)fy capacity
requirements. Model numbers identifying these memory
versions are listed below:

• M7344-Y A IK X 8-bit capacity
• M7344-YB 2K X 8-bit capacity
• M7344-YC 4K X 8-bit capacity

All versions of the M7344 can be accessed by up to 16-bits
of address data and are equipped with an address expansion
line to implement multi-module memory systems having
potential capacities of up to 128K 8-bit words. M7344
Read/Write Memory Modules also contain a jumper
network which can be configured to permit assignment of a
module within an application-defined address space.

Operation of each memory circuit in either the read mode
or write mode is determined by a read/write (R/W) linc.
Each of the 32 MSI circuits in the memory matrix connect
to a data input line' and a data output line with the
significance of the line corresponding to the position of a
circuit with a IK X 8-bit group. Data input lines are
wire-ORed to each memory circuit from the data input
register. Similarly, data output lines are wire-ORed to the
data output gates from each memory circuit.

2.3.1 Memory Read Timing
The timing and control logic (Figure 2-5) furnishes the
signals necessary to time memory read and write
operations. The processor module asserts the level MEM RD
H after providing the address of the memory location to be

I BIDIRECTIONAL MEMORY DATA BUS

...-_----""-1'\'\ A D~RESC~ ~::
r--V' DEggPc

E
CE3

CE1; .A) A Y

~ ~ DATA
'\ 1Kx8-BIT ,'\r----., ~ INPUT

CE4

ADR/DAT! STROBE H

J
... MEMORY ADRD10-ADRD15

'---------" ADDRESS
MEMORY ADDRESS IN) REGI STEI~

y ADRD00-· I-------~
ADRD15 ADRD00-ADRD09

ADR IDATA tSTROBE H

MEM RD H

MEM WR H

-ADR/DATA STROBE H
TIMING

CO~~~OL -DATA ENABLE L

LOGIC -WRITE PULSE L

- / MATRIX " REGISTER'_
IV ----. B-BITS • ~

WRITE !ULSE L

C;2
A

/
~ 1K x 8-BIT '-., ,,',......., .,.......,...---, r-vI MATRIX ~

'----r----'-

WR ITE ;ULSE L

C;3

~ 1K x 8- BIT K ~ ____ --,
.,/ MATRIX ~

~ 1 K x 8 -BIT K,r---r---r------'
L- / MATRIX ~ Lo.....-_ "-"

ADRJDATA
STROBE H

DATA
OUTPUT
GATES

---v)
L--t..--J-------v.... '---'f----'

WRITE PULSE L DATA ENABLE L

Figure 2-5 M7344 Block Diagram

2-7

'P-0988

read. At the read/write memory module, the signaJ MEM
RD H generates the internal signaJs ADR/DATA STROBE
H and DATA ENABLE L.

The signal ADR/DATA STROBE clocks the memory
address register to store the address currently on the
memory address bus ADRDOO L to ADRD15 L. This action
initiates address decoding which enables assertion of DATA
ENABLE L along with addressing of the memory location
being read. DATA ENABLE L, when asserted, enables the
output gating network to place the data from the addressed
location onto the bidirectionaJ memory data bus DMO L to
DM7 L. Figure 2-6 shows that data becomes vaJid on this
bus 1.15 JiS after the assertion of MEM RD H.

2.3.2 Memory Write Timing
For a write operation, the address of the memory location
to be written into is placed on the address bus and must be
stable for at least 150 ns prior to the assertion of MEM WR
H. Data to be written into the addressed location is placed
on the bidirectional memory data bus coincident with the
signal MEM WR H.

~--­

M7341 ~
TI ME STATES...J

As shown in Figure 2-6, the signal MEM WR H has a
minimum period of 250 ns and is asserted by the processor
module. Pulse-stretching circuitry in the M7344 control
logic uses the leading edge of MEM WR H to set a latch to
store the signal. Approximately 200 ns after the receipt of
MEM WR H, this signal is ANDed with the decoded address
to generate the internaJ 1 /J.S signal WRITE PULSE L. This
pulse then enables the data stored in the data input register
by the assertion of ADR/DAT A STROBE to be written
into the addressed memory location.

2.3.3 Address Decoding
Input to the memory address decoding logic is an address
loaded into the memory address register from the address
bus by the assertion of ADR/DATA STROBE. Both the
address bus and the memory address register can
accommodate a 16-bit address to permit memory system
capacities up to 64K.

As shown in Figure 2-5, the 10 low-order bits (ADRDOO to
ADRD09) of the memory address access the same location
in each of the four 1 K memory segments. The next
high-order two bits (ADRDIO and ADRDll) define the

TS3 ----------.-jo-I .. - TS4 -

READ CYCLE

READADDRESS~ _______________________ ~
I I
1 ~I _______________________ ~

MEM RD H -1 \ I-- ~ 150 ns
----:....-.1d--t_ ---1.15/oL5----------.l1 1

I I

~~~~ __________ D_A_TA_IN_V_AL_I_D ______ .....JX DATA VALID FOR READIN~ 

WRITE CYCLE 

~~ WRITE ADDRESS ~ ___________________________ ~ 

I I 
-"1 ~~ 150n5 

14"-=::J ~ 250n5 MEM WR H ------H-{ L.. __________________ ~ 

J+-.--.---- 1.15 fL5 -------..t--t 

WRITE DATA _____ ,=><~ ______________ ,.:-------~ 
:- DATA 

WRITTEN 
CP-0981 

Figure 2-6 Memory Timing Diagram 

2-8 



final magnitude of the addressed location and are decoded 
by the segment address decoding logic to assert one of the 
four signals CE1, CE2, CE3, or CE4. These signals enable 
the 1K segment, which contains the location pointed to by 
the low-order 12 bits of a 14-bit address. Note that each of 
the signals CE1, CE2, CE3, and CE4 is jumpered to permit 
a module to contain multiples of 1K memory locations 
within the total memory system address space. 

A 16-bit address field, all of decoded states of bits 
ADRD13 L to ADRD15 L, can be jumper-configured. As a 
consequence, each 4K module in a. multiple module 
memory system can be uniquely jumpered to be assigned as 
a given set of 4K memory locations within a.consecutive set 
of up to 16K locations. 

This jumper network is configured to permit allocation of 
address space in 1K intervals within an address range of 4K 
to 8K formed by either one or two M7344 modules. In 
addition, each module can be assigned an address space of 
up to 4K within a total 64K address set. Each side of this 
jumper network is also brought out to the module edge 
fingers to permit address space allocation to be 
supplemented by wire wrap on the connl~ctor block. 

Since the M7344 Read/Write Memory is electrically and 
logically compatible with the M7345 Programmable 
Read-Only Memory, these modules can be used together to 
form a contiguous RAM-PROM memory space. 

2.4 PROGRAMMABLE READ-ONLY MEM ORY 
MODULE 
The M7345 Programmable Read-Only Memory (PROM) 
Module provides a variable read-only data storage capacity 
for systems structured from modules in this family. The 
functional logic blocks comprising this module (Figure 2-7) 
consist of plug-in socket space for up to four 1K memory 
matrices, an address buffer, address and control decoding 
logic, and an output gating network. Each of these 
functional blocks is discussed in terms of functions 
performed and how these functions intl~rrelate. Figure 2-7 
also provides a graphic reference for data and signal flow 
within the module. 

2.4.1 Memory Organization 
The M7345 PROM module is an 8-bit electrically 
programmable and erasable read-only memory contained on 
a single quad board. Maximum PROM capacity is formed 
by 16 MSI memory circuits mounted in plug-in sockets and 
organized as 16 separate matrices each containing 256 8-bit . 
words (Figure 2-8). As a consequence l, memory capacity 
can range from 256 to 4K words in 256 word increments. 

2-9 

PROM circuits can be removed at will to satisfy changing 
system requirements and for erasure and reprogramming 
(Chapter 9). 

A transparent quartz lid on each PROM circuit permits 
exposure to an ultraviolet light source for erasing an 
existing bit pattern. Then a new bit pattern can be 
electrically written. 

2.4.2 Address and Control Decoding 
Address input to the PROM module consists of the fuB 16 
bits of the address bus (ADRDOO L to ADRD15 L) with 14 
of these bits (ADRDOO L to ADRD13 L) relevant to the 
PM. The remaining two bits provide for memory address 
expansion. As shown in Figure 2-7, the low-order eight bits 
directly address each PROM circuit in the memory matrix 
through the address buffer. The remaining bits on the 
address bus, ADRD08 to ADRD 1 5, are input to the address 
and control decoding logic which is enabled by the signal 
MEM RD 1. This signal is asserted by the processor module 
during time state TS3 of a PCI or PCR machine cycle. 

Address bits ADRD10 and ADRD11 are decoded to 
determine the 1 K group associated with an addressed 
location within a 4K group, and bits ADRD08 and 
ADRD09 are decoded to point to the 256 X 8-bit PROM 
circuit within that 1K group containing the location being 
accessed. The result of this decoding is the assertion of one 
of 16 chip enable signals which causes the addressed PROM 
circuit to output data from the addressed location within 
1.1 5 J.1s after the assertion of MEM RD H (Figure 2-9). This 
data is present at the data output gates. An chip enable 
signals are wire-ORed to assert the internal signal DATA 
ENABLE which gates the data at the output data gates 
onto the bidirectional memory data bus DMO L to DM7 1. 
This same logic also asserts the external synchronizing 
signals MEM SYNC L and DATA READY 1. 

Bus address bits ADRDl2 and ADRDl3 are decoded to 
implement the addreSSing of multiple module PROM 
systems having up to 16K locations. Address bits ADRD14 
and ADRD15 are decoded to permit expansion of multiple 
module PROM systems beyond 16K locations up to 64K 
locations. 

Each of the 16 chip enable signals derived as a consequence 
of decoding address bits ADRD08 through ADRD 11 are 
jumper-connected for assertion to permit depopulation of a 
given PROM module down to 256 locations by multiples of 
256. In addition, the results of decoding address bits 
ADRD12 and ADRD13 can be jumper-configured to permit 
the selection of 1 K contiguous addresses of PROM memory 



MEM 
RD L 

PROM 
E27 
3400 

TO 
3777 

PROM 
E26 
4000 

TO 
4377 

ADDRESS 
DECODING 

LOGIC 

PROM 
E24 

3000 
TO 

3377 

PROM 
E23 

4400 
TO 

4777 

ICEI 

ICE2 

lCE3 

lCE4 

2CEI 

2CE2 

2CE3 

2CE4 

3CEI 

3(:E2 

3CE3 

3CE4 

4CEI 

4CE2 

4CE3 

4CE4 

_DATA 
ENABLE 

BI DIRECTIONAL MEMORY DATA BUS 

lCE' 
ICE2 ICE3 

lCE4 

4 
256 

X 
8-BIT 
PROMS 

2CE2 2CE3 
2CEI 2CE4 

4 
256 

X 
8-BIT 
PROMS 

3CE2 3CE3 
3CEI 3CE4 

4 
256 

X 
8-BIT 

PROMS 

4CE2 4CE3 
4CEI 4CE4 

4 
256 

X 
8-BIT 

PROMS 

Figure 2-7 M7345 Block Diagram 

PROM 
E21 
2400 
TO 

2777 

PROM 
E20 

5000 
TO 

5377 

PROM 
E18 

2000 
TO 

2377 

PROM 
EI7 

5400 
TO 

5777 

1 

PROM 
E15 
1400 
TO 

1777 

PROM 
EI4 

6000 
TO 

6377 

EDGE 
CONNECTOR 

PROM 
E12 

1000 
TO 

1377 

PROM 
Ell 

6400 
TO 

6777 

Figure 2-8 Physical Location and Octal 
Address of M7345 PROMs 

2-10 

DATA 
ENABLE 

PROM 
E9 

400 
TO 

777 

PROM 
E8 

7000 
TO 

7377 

CP-09B2 

PROM 
E6 
o 

TO 
377 

PROM 
E5 

7400 
TO 

7777 

CP-0983 



~~---------------------TS3--------------------~·.I·~TS4---

~iJ:1STATES J 
READ CYCLE 

READADDRESS~~ ____________________________________________ ~ 
I I 
I rl ----------------______________________________ ~ 

-, \ J-~150nS 
MEM RD H -----....:..--Itr- 10--. __________ _ 

~ 1.15p.s ------------..1,1 
I I 

~~~~ ___________________ DA_T_A_I_N_VA_L_ID ______________ ..JX DATA VALID FOR READIN~ 

Figure 2-9 Memory Timing Diagram

within 8K location. This feature allows implementing
memory systems that require the intermixing of lK ROM
and RAM memory sections within an overall set of
contiguous locations.

2.S EXTERNAL EVENT DETECTION MODULE
The M7346 External Event Detection Module (EEDM) is a
mUlti-purpose Microprocessor Series modul,e designed to
implement priority interrupt schemes, provide power
failure detection, and processor start/restart/stop control.
This module is contained on a single-height,
extended-length PC board. Both the priority arbitration
logic and the power failure detection circuit are present on
this module and can be selected as required, for use in a
system.

Separate input lines to the EEDM provide for encoding up
to six levels of external application-defined event priority.
Each of these lines, when asserted, initiates an attempt to
jam a I-byte unconditional call (RST) instruction into the
M7341 Processor Module external event port.

The EEDM priority logic arbitrates all assertions and selects
the highest level asserted, then jams the corresponding
instruction into the processor module. The jammed RST
instruction associated with each priority level (zero through
five) constitutes an unconditional calion one of six 8-byte
subroutines located in the first 48 words of a.n MPS system
memory.

The eight output lines which propagate the instructions
that are jammed, are connected in common to the
processor module external event port and the power-fail
port.

2-11

To jam an RST instruction, the EEDM asserts a signal to
enable multiplexing the external event port and to initiate
an external event interrupt. If interrupts are enabled at the
processor module, the RST instruction is fetched and
executed. If not, the RST instruction is ignored.

The seventh priority level is asserted by either a manually
initiated start signal or automatically as a consequence of
power-up. In either case, an RST instruction is generated
which makes an unconditional calIon eight reserved
memory words headed by location 48 (60s).

Priority level eight is asserted by the power failure
. detection circuit which monitors ac power inputs to an
MPS system. When a power failure condition is detected, an
RST instruction is automatically generated making an
unconditional call on location 70s (5610), Since level eight
is the highest arbitrated priority, a power failure takes
precedence over any of the six levels of application-defined
event priority as well as the seventh or start level.

Level nine implements the halt function for MPS systems
which can be initiated manua]]y or automatical1y, and
overrides all other priorities. When initiated, a halt
instruction is placed on the lines to the processor module,
and the power fail/stop port is enabled for multiplexing.
When fetched, this instruction forces the processor module
into the stopped state.

2.5.1 Priority Arbitration Logic
EEDM priority aribtration logic (Figure 2-10) accepts nine
levels of ascending priority. Eight of these levels result in a
memory reference and the ninth, and highest, is executed
by the processor module without referencing memory.

t;>
......
N

1 1
AC PLUS IN Dy

'" I ('~' :;",
+5V

RIS

AC MINUS IN

+ 5Y

+5V TP2

~
TPI

C I
+3V

1'"
M005 l

M015 l

M025 l

M035 l

M045 l

M055 l

01 ClK H

SYNC H

EXT AC lOW l

EXT OC lOW l

STOP l

START UP l

PINIT l

AUTO START IN H

I l....£.J I " f'" 1" r CI2[.: 02

l 9~~ 7

~RI3
L

-=}
I V' ~ 10 E6

I +3V 35ms
5

I

0

T
12

+5V

R16
I

E5
2 3 E5 4

C141+ I

~RI -=- EI
14

05 R5(\) 15

lRS
13 04 R4(!) 12

lR9
II

03 R3(1) 10

nR2

6 02 R2(f) 7

lRI0
4 01 R HI) 5

lR3
3 D0 R0(I 2

ClR ClK
2...-- + 3Y.Y

'
9

3J ES
I 9 E5

8 E2

'203 R3(1l ~

lR'2
R3(0) ~

lR51

~02
13 ___

12 R2(O ~
2 E9
I
-....-

R2(f)) ..!..!...-

I '" RI9 RHI) L
+5V +5Y

1 .. T ":U" CI3U03 ~ 01 R 1(0) 6

R? 6 1
9~ 5

14 15
13

I~ r.=- rL
,~ I~ ~ I~ R0 (1)

+3V E7 2 E7
50MS ~~ 50p.S R0(0) 2

0~ R20 0~
4 :r-r=- +5V 4 00 -or ClR ClK

+3V
JI r

Figure 2-10 M7346 Logic Diagram

"--"--"'- .-
+5V

r TP3
RI?

I

I CII~ 01

I ~1513 ~ 4 6
AC lOW l 5 E9./

I D ,,<-
-

E6
+3'.' 5m. 13

0~ 'r-
AUTO START OU T H

I

E3

10 0 ~B07

II
1 r---- 806

12 2 A2 6 805

13 3 AI 1 B04

I 4 A0 9 B03

I
2

5 r--- B02

3 6 >--r----- Btll

4
1 GS B00

E0 EI

I

~
3

~
~8

ES 10
~ 8 +5V

\I ~ -
6 6 R6
5 ~ES

4
4 - IOEE l

12
10

E8
13 II E5

II

PFSEE l

-- - START L

Levels 0 through 5, designated by the input signal lines
MOOS L, M015 L, M025 L, M035 L, M045 L, and MOSS L,
constitute the six lowest priority levels. These lines are
reserved for implementing six levels of application-defined
interrupt priority arbitration.

The seventh level is reserved for the automatic and manual
restart function, and the eighth and highest arbitrated level,
for power failure detection. The ninth, and highest absolute
level is reserved for the stop function which automatically
jams an HLT instruction into the processor module to stop
operation.

EEDM priority arbitration logic is formed by the nine-stage
external event storage latch E1 and E2 and the octal
encoder E3. Assertions of any of the nin€~ levels are stored
during the combined periods of the processor module
synchronous timing sig"nals SYNC Hand <j>lCLCK H. These
signals are ANDed to strobe the external event storage latch
E1 and E2 once during each processor time state (every 4
p.s) to store asserted events. The output of the first eight
stages of the external event storage latch are input to the
octal priority encoder E3. These eight input lines are ORed
by E3 to enable the encoder. The outputs of the encoder,
EO and GS, are wired to assert the code for an RST
instruction on module output lines BOO to B02 and B06
and B07. The octal number corresponding to the external
event input line asserted is simultaneously placed in the
address field (B03 to B05) of the RST instruction generated
by encoder E3.

In parallel with the generation of the RST instruction, the
outputs of the first eight stages of latch E1, E2 are ORed
by E3 to assert the signal IOEE L at the processor module.
This signal, when asserted, generates an interrupt if
interrupts are enabled, and initiates multiplexing of the
RST instruction on EEDM output lines BOO to B07 at the
processor module external event port DIOSTO L to
DIOST7 L for fetching.

The octal number placed in the address field of the RST
instruction genera ted is in the range 0 to 7. By decoding
this instruction, this value is mapped to address one of the
eight locations 10,20,30,40,50,60, and 70 (decimal 0,8,
16, 24, 32, 40, 48, and 56 respectively) in an MPS system
memory. The result is a correspondence between a given
external event input line and an unconditional call on a
dedicated memory location. Through this mechanism,
application-defined routines can be developed to implement
priority interrupt schemes, start-up routines, and power­
failure handling routines.

2-13

2.5.2 Start Circuit
Th e start function can be initiated in two
ways: automatically by an integral EEDM circuit, or
manually by an external switch. The automatic start output
signal AUTO START OUT H is generated by the RC circuit
R16, C14, and E5 when +5 V power is turned on and is
maintained high as long as +5 V is maintained. The output
of this circuit also clears the two monostable multivibrators
E6 in the power failure detection circuit. This
automatically-generated start signal, when fed back to the
EEDM,becomes the input signal AUTO START IN H.
When asserted, this signal triggers the monostable
multivibrator E7 to produce a 50 p.s signal at pin 4. This
signal is stored in the seventh stage of the exter~al event
latch E1, E2 on the next assertion of ¢lCLK H and SYNC
H from the processor module. As a consequence, an RST
instruction making an unconditional calion memory
location 60 (4810) is generated and placed on output lines
BOO to B07. Simultaneously, the signal START L is
asserted at the processor module to initiate a demand
interrupt and to multiplex the RST instruction into the
external event port DIOSTO L to DIOST7 L for fetching.
Manual restarts are implemented through the EEDM input
signal START L which can be derived from an external
switch. This signal is debounced by the monostable
multivibrator E7 which produces a 50 ms negative-going
debouncing level at pin 5 for input to E7 at pin 1. From
this point, the circuit path is exactly the same as with an
automatic restart. Both automatic and manual start signals
take priority over all other external events except power
failure detection and stop functions.

2.5.3 Power Failure Detection Circuit
The EEDM contains a complete ac power failure detection
circuit (Figure 2-10) which samples a 6.3 V, 50 or 60 Hz, ac
input derived from the local Hne voltage by an external
transformer. This sampled qC voltage, which is received
through two F ASTON tabs on the handle end of the
module, is rectified by a full-wave diode bridge to produce
a signal having a frequency twice that of the ac input
frequency. This signal is input to the frequency integrators
E5, E9, and E6 which detect the absence of line voltage for
two complete cycles. The signal period triggered by a power
failure is approximately 35 ms and is determined by the
value of capacitor C12 which, together with R18, forms the
RC for the monostable multivibrator E6 at pins 6 and 7.
Note that C 12 is connected to the circuit with split lugs.
This manner of connection permits the value of C 12 to be
changed to accommodate different application
requiremen ts.

When an absence of two or more ac cycles is detected, the
multivibrator E6 is triggered at pin 1 to assert a 5 ms signal
to be gated out by E9 at pin 6. This period is determined
by the RC circuit R17, C 11 when~ capacitor C 11 is
connected to the circuit with split lugs to allow the value of
C11 to be changed to accommodate different application
requirements. The 5 ms output signal from the frequency
integrator is ORed with the externally generated signals AC

. LOW L and DC LOW L for input to level seven of the
,external event storage latch El, E2. This input is stored in
the latch on the assertion of the processor module signals
SYNC Hand 1> 1 CLK H. Since both of these signals are
continuous regardless of processor state, storage of a power
failure detection signal for fetching by the processor is
assured even when the processor is in the Wait state.

The external inputs AC LOW L and DC LOW L a]]ow use of
application-defined power failure detection circuitry whose
outputs are TTL levels.

NOTE
Many commercially available power supplies
provide such output signals.

Power failure detection by the integral EEDM circuit or
assertion of one .of these external signals takes priority over
all external events except assertion of the external signal
STOP L.

A detection of power failure results in the automatic
generation of an RST instruction which makes an
unconditional calIon memory location 48 (60s).
Simultaneously, the signal PFSEE L is asserted by E8, pin
13 of the priority arbitration logic to generate a mandatory
interrupt at the processor module and to enable
multiplexing of the RST instruction in to the power-fail
port DPFSO L to DPFS7 L for fetching ..

2.5.4 Stop Function
A halt instruction is generated by the EEDM when the
input signal STOP L is asserted. When this occurs, the signal
is stored in the ninth stage of the external event latch E 1,
E2 in the same manner as other external events. This stage
disables encoder E3 to generate and place a halt instruction
(HLT) on the lines BOO to B07.

As with detection of a power failure, the signal PFSEE L is
asserted at the processor module power fail/stop port by
the EEDM to initiate multiplexing and fetching of the halt
instruction.

2-14

2.6 MONITOR/CONTROL PANEL
The KC341 Monitor/Control Panel (MCP) interfaces
directly with the processor module (PM) over a 50-wire
dedicated interface cable to provide an on-line control and
program diagnostic capability for systems configured from
Microprocessor Series modules. Specifically, the KC341
MCP serves as an address and data input station for .the PM
to provide a visual display of data as we]] as display of
machine states and PM operating status. The MCP also
contains a resident memory formed by a random access
scratch pad memory and a programmable read-only
memory. Together, these memories provide for program
loading as well as other application-defined requirements.

2.6.1 Monitor/Control Panel Cable Connections

Data/Control Interface Cable (BC05-W)
Connect the flat Data/Control Cable between the 50-pin
connector on the MCP and the 50-pin connector on side 1
(component side) of the M7341 Processor Module as shown
in Figure 2-11. Be sure that the flat cable is not twisted
between the two units.

Power Cable (BC05- Y)
The power cable connections to the MCP must be made to
the appropriate FASTON tabs as listed below:

Black
Blue
Red

Ground
-15 V
+5V

2.6.2 Monitor/Control Panel Functions
The discussion that follows relates the functions performed
by the MCP to data, address, and signal flow, both within
the module and between the MCP and the PM. This
discussion is centered on two categories: panel functions
and diagnostic memory. Discussions of MC pane] functions
and the diagnostic memory are based on the detailed block
diagrams which graphically depict data address and signal
flow as related to the functional logic blocks comprising the
monitor/control panel.

In Figure 2-12 the MCP consists of a 14-bit switch register
for entry of addresses and data with corresponding display
ligh ts, nine function switches, and 12 signal, status and
condition display lights. The switch register, together with
corresponding bit display lights, is marked off for qUick
visual observation of octal as well as address blocking
notation. The line of function switches located below the
switch register is divided into two groups with one group
containing seven switches and the other containing two
switches. The seven-switch group provides the mechanism

Figure 2-11 MCP Cable Connections

for controHing the input of addresses and data and for
monitoring and control of PM operation. The two-switch
group controls the display of addresses and data. Each of
the seven function switches connects to an implementing
logic circuit (Figure 2-13) which performs the action
speCified by the switch. The ADDR LOAD and DEP
switches control address and data entry, with the EXM
switch initiating the visual display of the data contained in
the memory location accessed by the address entered
through the switch register. Data, addresses, and signals

2-15

pertinent to, or resulting from, these panel actions are
received from or sent to the processor module over the
50-wire interface cable.

Use of the ADDR LOAD, DEP, and EXM switches requires
that the PM be in the halt state (HLT switch must be on).
The remaining four switches permit the on-line control of,
and intervention in the operation of the PM. Intervention in
this case refers to the single-cycle execution, on a sequential
basis, of processor module program instructions performed

Figure 2-12 MCP Front Panel

by the SING CYCLE and CONT switches. Each of these
seven switch functions is discussed in detail with all
discussior based on Figure 2-13.

Load Address Function
The load address function permits the manual insertion of a
14-bit memory address through the switch register to
deposit data in the location accessed to or examine its
content. Once an address has been loaded, it is displayed
automatically. Prior to implemeting the load address
function, the HLT switch must be on.

Pressing the ADDR LOAD switch causes this switch action
to be stored in the load address flip-flop. Flip-flop output is
then gated with the signals SSYNC Hand ¢IB H derived
from the PM synchronous signals SYNC Land ¢ I, to assert
the signal LOAD. Assertion of LOAD causes the manually

2-16

inserted content of the switch register to be loaded into the
address counter. Address counter output is direct input to
the address multiplexer. Note that the two most significant
bits of the high address byte (ADRDI4 Hand ADRDl5 H)
are hardwired to logic ONE (+3 V). This assures that the
PM will address memory under the control of a PCI
machine cycle so that the memory data-in port at the PM
input data multiplexer is selected for subsequent fetching.
The signal LOAD is also ORed with the signal~ COUNT
DOWN to clock a second flip-flop whose output is gated
with SSYNC Hand ¢2B H to assert LAL (¢2B H is derived
from the PM synchronous signal ¢2.) Note that the signals
SOB and SIB control selection of the low and high address
bytes for multiplexing onto the 8-bit output· data bus.
During the period of LAI, SOB is high and SIB, which is
the reset side of the flip-flop whose set side is gated with
SSYNC Hand ¢2B H to assert LAI, is already low. As a
consequence, low address byte is multiplexed onto the data
bus.

t;-J --...l

~2BH

~1BH
~'--.L-.&..,

RESET

SIM JAM ENABLE

LA1

LA2

T3L

START / HALT
MUX

• SELECT COUNTER
I

SSYNC
H

~IBH

~2BH

JMP INST.

HALT INST.

SIM
INTERRUPT

SIM SIM
MEM JAM

WRITE ENABLE

DATA
OUT
GATE

SIM MEM READ AND

SIM D(N) GATE

ADDRESS BUS

HALT/

,,',!;!,,~
I SYNCL ROY INTR

~ START LINE

-""1 A B ENA.I I ,
r f

co C1

RUN HALT WAIT

T3L

SO S1 S 2

CP-0989

Figure 2-13 MCP Block Diagram

At the PM, LAlloads this low address byte into the output
register (Figure 2-1) as though processor time state TSI had
commenced.

The trailing edge of LA1, as determined by (j>2B H, clocks a
third flip-flop causing SOB to go low along with SIB so that
the high address byte is multiplexed onto the output data
bus. The set side of this flip-flop is gated with (j>2B H to
assert LA2. At the PM, LA2 causes the high address byte to
be loaded into the output register as though the processor
time state TS2 had commenced. The assertion of LA2 also
initiates a reset cycle to prepare this condition-sensitive
logic for the next load address cycle.

At this point, the output register at the PM contains a
14-bit address and this address is present on the address bus
to system memory.

Deposit Function
The deposit function permits an 8-bit data byte to be
written into the memory location currently accessed by a
14-bit address inserted into the switch register and placed
on the PM memory bus by pressing the ADDR LOAD
switch. Each data byte inserted into the switch register for
deposit can be displayed after being deposited by pressing
the DISP DATA button.

Since the content of the address counter is incremented
after each deposit, and this new address is placed on the PM
memory bus, sets of data bytes can be deposited into
consecutive memory locations of ascending magnitude
merely by inserting and depositing each byte. The data byte
to be deposited is inserted into the eight least significant
switches (labeled 0 to 7).

Pressing the DEP switch causes the switch action to be
stored by the two deposit flip-flops which are configured to
form a two-phase selector. During the first phase, which is
selected by the initial pressing of the DEP switch, the
resulting signal is stored in an associated flip-flop, then
gated with the AND of signals SSYNC H and (j> 1 B H. The
result of this gating is then stored in a second associated
flip-flop to assert the simultaneous signals S21 and DATA
OUT GATE. Data inserted into the eight least significant
positions of the switch register, in addition to being the low
address input to the address multiplexer, is also input to the
data out gates.

The assertion of S21, then, gates the 8-bit data byte to be
deposited out of the switch register onto the output data
bus and to the PM. At the same time, DATA OUT GATE
enables the output data gates at the PM to gate this data
onto the bidirectional memory data bus.

2-18

The assertion of S21 and DATA OUT GATE is gated with
the next (j>2B H pulse to assert SIM MEM WRITE at the PM.
As shown in Figure 2-1, this signal activates the PM control
logic to assert MEM WR H causing the data on the
bidirectional memory bus to be written into memory. [f a
new address were loaded at this point, the two-phase
selector would be reset and the next pressing of the DEP
switch would cause the deposit cycle, just discussed, to be
repeated.

When the DEP switch is pressed a second time with no
intervening address loading or examining, the second phase
of the two-phase selector is entered causing assertion of the
signal COUNT DOWN. This signal updates the. address
counter by one and is ORed with the signal LOAD to
initiate the load address sequence as described in the
discussion under Load Address Function. After a 200 ns
delay, to permit gating of the incremented address.onto the
PM memory bus, a deposit cycle is initiated to· write the
new data inserted in the switch register into the memory
location accessed by the incremented address.

Examine Function
The examine function, as the name implies, permits the
examination of the content of that location access~d by the
current content of the PM address bus. The content of this
location is automatically displayed in the Address/Data
display as a resul t of pressing the EXM switch. The address
currently being examined can be displayed by pressing the
DISP ADDR button. As with the Load Address and Deposit
functions, the processor module must be in the Halt state
prior to examining a memory location.

If a sequential set of addresses of ascending magnitude jis to
be examined, only the starting address need be erttered into
the MCP switch register. With each subsequent pressing of
the EXM switch following the first pressing, the initial
address is incremented by one to access the next sequential
location for examination.

After an address has been loaded, pressing the EXM switch
causes the switch action to be stored by the two examine
flip-flops which are configured to form a two-phase
selector. During the first phase, which is selected by the
initial pressing of the EXM switch, the resulting signal is
stored in a third flip-flop to assert the simultaneous signals
SIM MEM READ and SIM D (N) GATE at the PM. SIM
MEM READ is input to the PM control logic causing that
logic to assert the PM signal MEM RD H. As a consequence,
the data contained in the location accessed by the MCP (see
discussion of Load Address Function) is placed on the
memory bus as input to the PM input multiplexer memory

data port DMO L to DM7 L. Since this port is always
selected when the PM is halted, the content of the
addressed location is present at the PM input data gates.

These gates are enabled by the signal SIM D (N) GATE
placing the data on the input data bus and hence onto the
dedicated bidirectional data Hnes to the MCP. At the MCP,
this 8-bit data byte to be examined is input to the eight
low-order positions of the Address/Data display. The
display is enabled along with the assertion of SIM MEM
READ and SIM D (N) GATE, thereby automatica11y
displaying the retrieved data for examination.

When the EXAMINE switch is pressed a second time, the
second phase of the two-phase examine selector is entered.
During this phase, which is maintained until a new address
is manually entered into the switch register, each pressing
of the EXM switch asserts the COUNT DOWN signa1. The
assertion of COUNT DOWN updates the MCP address
counter by one, placing the next sequential address to be
examined as input to the address multiplexer. COUNT
DOWN is also ORed with LOAD to initiate the load address
sequence. The load address sequence generates a 200 ns
delay to inhibit the examine sequence until the
incremented address has been gated onto the data output
bus and placed on the PM memory address bus. At the end
of this 200 ns delay, the examine sequence is initiated to
read and display the data contained in the memory location
accessed by the incremented address.

When a new address is entered into the switch register
following an examine sequence, the resulting load address
sequence wil1 reset an condition-sensitive examine logic
including the two-phase selector in the same manner as with
the Deposit function.

Single Cycle and Continue Function
The switches implementing these functions, the SING
CYCLE and CONT switches, permit the examination on a
cycle-by-cyc1e basis of the PM memory address bus and the
bidirectional data port content. Pressing the SING CYCLE
switch serves to pull the RDY (Ready) Hne to the PM to
ground causing the processor to enter the Wait state.
Entrance into the Wait state by the PM is designated when
the WAIT indicator lights. With the proce8sor in the Wait
state, each pressing of the CONT switch clocks the continue
flip-flop to assert the RDY line at +3 volts causing the PM
to escape the Wait state and begin execution starting at
time state TS3.

2·19

As soon as time state TS3 begins, the states of SO, S 1, and
S2 at the MCP assert the internal signal T3L. This signal
then resets the Continue flip-flop pu1ling the RDY line back
to ground within a time frame which assures that the PM
wil1 enter the Wait state fo11owing execution of the next
time state TS2.

As a consequence each time the CONT switch is pressed,
the machine cycle, which is the current constituent of the
instruction under execution, is performed starting at PM
time state TS3, continues into the next constituent
machine cycle, and stops in the Wait state. At that point,
the identity of the next machine cycle to be executed will
be displayed by the pertinent indicator (PCI, PCC, PCR, or
PCW). In addition, the address of the locations containing
the bytes constituting the instruction being executed is
automatically displayed as each byte is accessed. The actual
content of each address can be displayed by pressing the
DISP DATA button.

Start Function
The Start function permits an operator to begin executing a
program at any location within that program merely by
inserting the address of the desired memory location into
the MCP switch register and pressing the STRT switch. This
address could be, for example, the starting location of the
bootstrap routine contained in the MCP PROM resident
memory.

Pressing the STRT switch wil1Hght the RUN indicator. Use
of the Start function is always based on the processor
module initially in the halted state. The MCP HALT switch
must be in the off position (down) to initiate the Start
Function.

Pressing the STRT switch stores the switch action in the
start flip-flop causing the output of that flip-flop to assert
SIM INTERRUPT at the PM which interrupts the
processor. As a result, the processor enteres time state TS 11
after completing the current machine cycle. At the start of
the next time state TS3 fo11owing TS 11, the PM asserts the
signa1 TUB to the MCP which is gated with the start
flip-flop to enable the 2-bit Start/Halt multiplexer select
counter and to assert the signa1 SIM JAM ENABLE to the
PM. The signal TUB represents the first occurrence of time
state TS3 at the PM following entry into time state TSII.
The signal SIM JAM ENABLE inhibits the PM input data
gates to prevent any extraneous data out of the input data
multiplexer from entering the PM bidirectional data port.
(Figure 2-1). On the first assertion of TS3 during a start
sequence, the initial byte of a JMP Gump unconditiona11y)

instruction, which is hardwired at the MCP, is selected. This
Hrst byte is multiplexed onto the MCl' output bus to the
PM and directly into the PM data port simultaneously with
the assertion of SIM JAM ENABLE. On the second
assertion of TS3, the Jow byte of the jump address
«B2» previously inserted into the switch register is
multiplexed and gated onto the output data bus and into
the PM. On the third assertion of TS3, the high byte of the
jump address (<B3>) is multiplexed and gated in the same
manner. The next instruction executed, which would be the
first instruction of a start-up routine, would be fetched
from this address. During the jamming of this 3-byte JMP
instruction, all system memories including the MCP resident
memory are disabled until the jammed instruction has been
fetched by the PM.

Halt Function
The Halt function permits a user to arbitrarily halt
operation of the processor module through a single switch
action. When using one of the panel functions such as load
a.ddress, examine, or deposit, this switch must be actuated
to perform any of these operations.

When the HLT switch is actuated, this action is stored in
the Halt flip-flop. The output of this flip-flop then asserts
the signal SIM INTERRUPT to the PM thereby interrupting
the PM and causing the INTR indicator att the MCP to light.
As a consequence of the interrupt, a PCI machine cycle is
initiated and TUB is issued by the PM to set the Start/Halt
multiplexer select counter to a zero count thereby selecting
the hardwired halt instruction for gating onto the output
data bus. Simultaneously, TUB is gated with start flip-flop
output to enable the Start/Halt multiplexer, placing the
HLT instruction at the PM data port to be fetched and
executed. At that point, the RUN indicator will be
extinguished and the HLT indicator will light. AIl
condition-sensitive circuits in the Start/Halt logic are also
n~set.

2.6.3 Resident Memory
lhe MCP Resident memory is a semiconductor memory
matrix formed by a fully decoded bipolar 32-word X 8-bit
random access scratch pad memory (RAM) and an MOS
256-word X 8-bit programmable read-only memory
(PROM). In all systems configured from Microprocessor
Series modules, this memory occupies the last 288 memory
locations within a 16K address set regardless of actual
system memory size. The octal address set 37340 to 37777

2-20

is hardwired-dedicated to the MCP resident memory. The
resident memory may be removed from a system and this
address space used by a system memory by cutting jumper
WI and installing a soldered wire connection between the
adjoining split lugs. Resident memory is discussed under the
two memory categories - the RAM and the PROM. Each
discussion is based on the block diagram shown in Figure
2-14.

Resident RAM
The Resident RAM is configured for addressing as 16 upper
words and 16 lower words. To access this memory, the
address decoding logic decodes the state of bus address lines
ADRD04 H through ADRD 13 H to determine that the
current address is in the range 373408 to 373578 (Iower
words) or 373608 to 373778 (upper words).

When one of the lower bytes is addressed, the signal
SELECT LOWER RAM is asserted to select the lower word
locations for accessing. Similarly, when one of the upper
words is addressed, the signal SELECT UPPER RAM is
asserted to select upper word locations for accessing. The
lines ADRDOO H through ADRD03 H are the four
low-order address bits in the 14-bit address and are
wire-ORed to all 32 memory locations to address one of 16
locations in both the upper and lower memory word
locations. Resident memory timing is performed by the
signals MEMORY READ and MEMORY WRITEln
conjunction with the signals SYNC Land </>2 from; the PM
and T3L as derived at the MCP. Both signals, MEMORY
READ and MEMORY WRITE, are derived by the MCP
from the signals CO and C 1 from the PM. These signals are
asserted simultaneously with the corresponding PM signals
MEM RD Hand MEM WR H and are, therefore, equivalent.

Two memory-enabling signals are associated with each
select signal to implement reading and writing operations.
These are: ME UPPER, ME LOWER, WE UPPER and WE
LOWER. The signals ME UPPER and ME LOWER aTe
asserted in parallel with the corresponding select sigrral to
initiate a memory-read operation. However, for a write
operation, the pertinent select signal is gated with
MEMORY WRITE to enable the addressed location for
writing of data present on the MCP input data bus. During a
read operation, data from the addressed location is gated
onto the bidirectional data bus by the signal MEMORY
READ.

DATA IN DATA OUT
... f"" . ~

SELECT UPPER RAM

1 ME UPPER

1 WE UPPER
~.

A1
ADRD00H ~ A2 UPPER

ADDRESS

Q? ADRD 01 H r-----' - A3 RAM
ADRD02H 1 .. A4

DECODE ~ 16 -WORDS RAM -ADRD03H L ' r OUT
A1 -LOGIC LOWER GATES ... - A2

ADRD00H TOADRD13~ A3 RAM

1 A4
r

16-WORDS ..
t r r

MEMORY
SELECT LOWER RAM READ

ME LOWER
WE LOWER

r---- MEMORY WRITE .. PROM

ADRD00H TO ADRD07H) 256-WORDS ..
ENABLE - MEMORY READ f

r---- MEMORY READ

CO

MEMORY TlMI~ C1

LOGIC cZl2
SYNC L
T3 L

-.J SIM MEM WRITE SIM MEM READ C.P 0990

Figure 2-14 MCP Resident Memory Block Diagram

Resident PROM
The Resident PROM (Figure 2-14) is a 256 word X 8-bit
electrically programmable and, ultra violet erasable
read-only memory accessed by octal addresses in the range
37400 to 37777. The signal MEMORY READ is gated with
address bits ADRD09 H through ADRD 13 H when the
magnitude of these bits is decoded to be equal to or greater
than 374008 to enable the PROM for reading. The content
of the location accessed by the eight low-order bits of an

2-21

asserted address (ADRDOO H to ADRD07 H) is placed on
the MCP output data bus as a direct consequence of
addressing.

Note that the resident PROM is formed by a single socket
mounted dual in-line integrated circuit which contains the
Microprocessor Program Loader (MPL). MPL is a bootstrap
loader which permits the user to read in object paper tapes
from a Teletype.

CHAPTER 3

MICROPROCESSOR SERIES

3.1 INTRODUCTION
This chapter defines the instruction set for the Micro­
processor Series (MPS) M7341 Processor Module, the
central control element of the system described in this
manual. This instruction set is highly optimized for process
control applications. Chapter 3 and Chapter 6 are intended
to be used together by system users who develop applica­
tion programs. Chapter 3 presents the instruction set itself
in terms of its graphic and mnemonic representation, the
number of bytes in the instruction, the number of time
states, the types of machine cycles executed, and examples
of program usage. Chapter 6 describes the Microprocessor
Language Assembler (MLA) (which assembles the instruc­
tions defined in Chapter 3), presents the MLA character set
and syntax, describes pseudo-instructions defined for MPS,
and summarizes operating procedures and possible error
messages.

3.2 INSTRUCTION FUNCTIONS AND FORMATS
Instructions are presented in this chapter :in five functional
categories:

• Index register instructions

• Accumulator (arithmetic/logical) instructions

• Program counter and stack control instructions

• Input/output instructions

• Machine instructions

3 ·1

INSTRUCTION SET

Table 3-1 summarizes the conventions used in describing
the instruction set, and translates terms used frequently as
shorthand descriptions of individual instructions.

The following list of registers and codes applies both to
source and destintion registers:

A
B
C
D
E
H
L

Register

M (memory addressed by Hand L)

Code

000
001
010
011
100
101
110
111

Data is stored and handled in the form of 8-bit words; all
data transfers between registers and memory occur in this
format. The instruction syntax shown in the paragraphs
which follow includes the number of machine states
executed by the instruction. To obtain the amount of time
in seconds, use the follOWing computation:

1
seconds = * 2 * state times executed

clock frequency

where clock frequency is expressed as Hz. If the frequency
is given in megacycles, the result will be expressed in
microseconds.

Symbol

<82>

<83>

r(1)
r(2)

A

B,C,D,E,H,L

H,L

c

C(4)C(3)

M

()

1\
V

v

A(m)

stack

P

xxx

SSS

DDD

Table 3-1
Instruction Set Notation

Meaning

Second byte of an instruction

Third byte of an instruction

One of the 8-bit registers A, B, C, D, E, H, L

Register used as the accumulator

Scratch pad registers

Registers used as memory-address registers

One of the status flip-flops (C, Z, S, or P)

Condition flip-flop codes:

Meaning Code Truth Status

Carry (C) 00 Overflow, underflow

Zero (Z) 01 Result is zero

Sign (S) 10 Most significant bit
of result is set

Parity (P) 11 Number of bits set in
result is even

Memory location referenced by the contents of registers
Hand L (code for memory is 111)

Contents of register, memory location, or status flip-flop

Logical AND

Exclusive OR

Inclusive OR

Bit m of the accumulator (register A)

Pushdown registers storing nested subroutine return addresses

Program counter register containing the address of the next
instruction to be executed

Is replaced by

Can be any value

Source register code

Destination register code

3-2

3.3 INDEX REGISTER INSTRUCTIONS
Index register instructions have been :implemented to
perform the following functions:

•
•

Load data into index registers or memory

Load constant immediately after the instruc­
tion into index registers or memory

• Increment an index register

• Decrement an index register

The registers maniplulated by these instructions include the
following:

•
•
•
•

Accumulator or A register

Scratchpad registers B, C, D, and E

Memory address registers Hand L

Any addressable read/write or read-only
memory location

3.3.1 Loading Data into Index Registers or Memory
Data can be loaded into any of the index or memory
registers or can be moved among these registers. Loads of
this kind are one-byte instructions, and their execution
does not affect the condition flip-flops in any way. Data
can be loaded in any of the following ways:

• Load a register with the contents of another
register

•

•

Load a register with the contents of a memory
location

Load a memory location with the contents of a
register

In all of these instructions, data is loaded from a source
(SSS) to a destination (DDD) register; the source register
remains in tact.

3-3

The format for loading a register with the contents of
another register is:

Form

Examples

Time States/

Lr(l)r(2)
11 DDD SSS
r(l)+-r(2)

LAB
LDE

Machine Cycles 5,PCI

The contents of r(2), the source register, are transferred to
r(l), the destination register. The contents of r(2) remain
unchanged. If the source and destination registers are the
same, this is considered a NOP (no operation) instruction.

To load a register with the contents of a memory location,
the following is issued:

Form

Examples

Time States/

LrM
11 DDD 111
(r)+-(M)

LAM
LDM

Machine Cycles 8,PCI,PCR

The contents of a memory location (M), addressed by
registers Hand L, are transferred to r, the destination
register. If the code of the destination register is 111, an
HLT instruction is executed.

To load a memory location with the contents of a register,
use the following instruction:

Form LMr
11 111 SSS
(M)+-(r)

Examples LMA
LMC

Time States/
Machine Cycles 7,PCI,PCW

The contents of r, the source register, are transferred to a
memory location (M), addressed by registers Hand L. The
contents of r remain unchanged. If the code of the source
register is 111, an HLT instruction is executed.

3.3.2 Loading Data Immediate
These instructions are executed to load the byte of data
immediately following the instruction into a register or
memory location. Condition flip-flops are not affected.
Loads of this kind are two-byte instructions. Data can be
loaded as follows:

• Load data into a register

• Load data into a memory location

To load byte two of an instruction into a register, use the
follOwing format:

Form

Examples

Time States/

Lrl
00 DDD 110

<B2>
(r)+-<B2>

LAIA+B
LLI340

Machine Cycles 8,PCI,PCR

The data contained in byte two of this instruction will be
loaded immediately into r, the destination register.

To load byte two of an instruction into a memory location
addressed by the contents of registers Hand L, use the
following:

Form

Example

Time States/

LMI
00111110
<B2>
(M)+-<B2>

LMI104

Machine Cycles 9,PCI,PCR,PCW

The data contained .in byte two of this instruction will be
loaded immediately into M, the memory location addressed
by registers Hand L.

3-4

3.3.3 Incrementing an Index Register
The one-byte instruction is used to increment an index
register by one. All condition flip-flops are affected except
the carry. Registers B, C, D, E, H, and L can be
incremented, but the accumulator (register A) and memory
cannot. The instruction format is:

Form

Examples

Time States/

INr
OODDDOOO
(r)~r)+l

INB
INL

Machine Cycles 5,PCI

The contents of r, the destination register, are incremented
by one, and the result is stored in r. If the code of the
destination register is 000, an HLT instruction is executed.

3.3.4 Decrementing an Index Register
An index register can be decremented by one by means of
the one-byte instruction. All condition flip-flops are
affected except the carry. Registers B, C, D, E,H, and L
can be decremented, but the accumulator and memory
cannot. The instruction format is:

Form DCr
00 DDD 001
(r)~r)-l

Examples DCB
DCC

Time States/
Machine Cycles 5,PCI

The contents of r, the destination register, are decreme:nted
by one, and the result is stored in r. If the code of the
destination register is 000, an HLT instruction is executed.

3.4 ACCUMULATOR INSTRUCTIONS
The instructions summarized in this paragraph are used to
perform arithmetic, logical, and rotation operations usually
between the accumulator and a register or memory loca­
tion. Accumulator instructions can be divided into the
following areas:

• Arithmetic/logical index register instructions

• Arithmetic/logical operations with memory

• Arithmetic/logical immediate instructions

• Rotate instructions

These instructions use the contents of the accumulator as
one argument, and an index register, a memory location, or
the second byte of the instruction as the other argument.
Instructions in this category affect the condition flip-flops
in a variety of ways:

1.

2.

3.

4.

If a carry or borrow is generated by the
instruction, the carry flip-flop (C) is set to one;
if no carry or borrow is generated, the carry
flip-flop is set to zero.

If the result of a comparison with the accumu­
lator is zero, the zero flip-flop (Z) is set to one;
if the result of the comparison is nonzero, the
zero flip-flop is set to zero.

If bit 7 of a result is one, the sign flip-flop (S) is
set to one; if bit 7 is not one, the sign flip-flop
is set to zero.

If a result contains an even number of ones, the
parity flip-flop (P) is set to one; if the result
contains an odd number of ones, the parity
fli p-flop is set to zero.

Depending on the specific instruction being executed, one
or more of the condition flip-flops Gan be set as a
consequence of instruction execution.

Multiple-precision binary arithmetic is performed using the
carry flip-flop; logical operations always reset the carry
flip-flop to zero. Rotate instructions affect only the carry
flip-flop leaving other condition flip-flops unchanged. Sub­
sequent paragraphs define flip-flop consequences of
executing other instructions.

3.4.1 Index Register Instructions
The eight instructions described in this paragraph are used
to perform arithmetic and logical operations between the
accumulator (register A) and the contents of one of the
index registers. The results of the operations affect the
accumulator but do not change the contents of any other
index register (SSS in boxes below). All of the operations
described are one-byte instructions.

3-5

To add the contents of a register to the contents of the
accumulator, use the following:

Form

Examples

Time States/

ADr
10000 SSS
(A)~(A)+(r)

ADC
ADD

Machine Cycles 5,PCI

The contents of r, the source register, are added to the
contents of the accumulator and the sum is stored in the
accumulator. The result of executing this instruction can
affect any of the condition flip-flops.

To add the contents of a register and the carry flip-flop to
the accumulator, issue the following:

Form

Examples

Time States/

ACr
10001 SSS
(A)~(A)+(r)+(carry)

ACB
ACD

Machine Cycles 5,PCI

The contents of the source register (r) and the carry
flip-flop are added to the contents of the accumulator and
the sum is stored in the accumulator. When used in
conjunction with the ADr instruction, this instruction
facilitates multiple-precision addition of register and
accumulator data. Any of the condition flip-flops can be
affected by executing this instruction.

To subtract the contents of a register from the contents of
the accumulator, use the following:

Form SUr
10010 SSS
(A)+-{A)-(r)

Examples SUB
SUE

Time States/
Machine Cycles 5,PCI

The contents of r, the source register~1 are subtracted from
the contents of the accumulator and the difference is stored
in the accumulator. Subtraction is performed using two's
complement arithmetic. Any of the condition flip-flops can
be affected by executing this instruction.

To subtract and borrow use the following:

Form SBr
10011 SSS
(A)+-(A)-(r)-(carry)

Examples SBB
SBD

Time States/
Machine Cycles 5,PCI

The contents of the source register (r) and the carry
flip-flop are subtracted from the contents of the accumu­
lator and the difference is stored in the accumulator.
Subtraction is performed using two's complement arith­
metic. When used in conjunction with the SUr instruction,
this instruction facilitates multiple-precision subtraction.
Any of the condition flip-flops can be affected by
executing this instruction.

To perform a logical AND operation on the contents of the
accumulator and a register, use the following:

Form

Examples

Time States/

NDr
10 100 SSS
(A)+-(A) 1\ (r)

NDB
NDD

Machine Cycles 5,PCI

Each bit of r, the source register, is ANDed with each bit of
the accumulator. The logical product is stored in the
accumulator .

3-6

To perform an exclusive OR operation on the contents of
the accumulator and a register, use the following:

Form XRr
10 101 SSS
(A)+-(A) ¥ (r)

Examples XRA
XRD

Time States/
Machine Cycles 5,PCI

The contents of r, the source register, are exclusively ORed
with the contents of the accumulator. The result is stored
in the accumulator.

To perform an inclusive OR operation on the contents of
the accumulator and a register, use the following:

Form ORr
10 110 SSS
(A)~(A) V (r)

Examples ORA
ORB

Time States/
Machine Cycles 5,PCI

Each bit of r, the source register, is ORed with each bit of
the accumulator. The result is stored in the accumulator.

To compare the contents of a register with the contents of
the accumulator, use the following:

Form

Examples

Time States/

CPr
10 111 SSS
(A)-(r)

CPB
CPD

Machine Cycles 5,PCI

The contents of r, the source register, are compared with
the contents of the accumulator. The accumulator remains
unchanged. After the instruction has been executed, if the
contents of r are greater than the contents of the
accumulator, the carry flip-flop is set to one; if not, it is
reset to zero. If the two values are tht~ same, the zero
flip-flop is set to one; if not, it is reset to zero. The sign and
parity flip-flops are set as if the subtraction had actually
occurred.

3.4.2 Operations With Memory
The eight instructions described in this paragraph are used
to perform arithmetic and logical operations between the
accumulator (register A) and the memory byte of data
addressed by the contents of registers Hand L. The results
of the operations affect the accumulator but do not change
the contents of the memory location (M in all models
below). All of the operations described are one-byte
instructions.

To add the contents of a memory location to the contents
of the accumulator, use the following:

Form ADM
10000 111
(A)~A)+(M)

Example ADM

Time States/
Machine Cycles 8,PCI,PCR

The contents of M are added to the contents of the
accumulator and the sum is stored in the accumulator. Any
of the condition flip-flops can be affected by executing this
instruction.

To add the contents of a memory location and the carry
flip-flop to the contents of the accumulator, use the
following:

Form ACM
10001 111
(A)~ A)+(M)+(carry)

Example ACM

Time States/
Maehine Cycles 8,PCI,PCR

3-7

The contents of the specified memory location and the
carry flip-flop are added to the contents of the accumu­
lator; the sum is stored in the accumulator (A). When used
in conjunction with the ADM instruction, this instruction
facilitates multiple-precision addition of memory and
accumulator data. Any of the condition flip-flops can be
affected by executing this instruction.

To subtract the memory location from the contents of the
accumulator, use the following:

Form SUM
10010111
(A)~A)-(M)

Example SUM

Time States/
Machine Cycles 8,PCI,PCR

The contents of the specified memory location are sub­
tracted from the accumulator and the difference is stored in
the accumulator. Subtraction is performed using two's
complement arithmetic. Any of the condition flip-flops can
be affected by executing this instruction.

To subtract the contents of a memory location and the
carry flip-flop from the contents of the accumulator, usc
the following:

Form SBM
10011111
(A)~A)-(M)-(carry)

Example SBM

Time States/
Machine Cycles 8,PCI,PCR

The contents of the specified memory location and the
carry flip-flop are subtracted from the contents of the
accumulator. Subtraction is performed using two's comple­
ment arithmetic. When used in conjunction with the SUM
instruction, this instruction facilitates multiple-precision
subtraction. Any of the condition flip-flops can be affected
by executing this instruction.

To perform a logical AND operation on the contents of the
accumulator and the memory location use the following:

Form

Example

Time States/

NDM
10100111
(A)+-(A) 1\ (M)

NDM

Machine Cycles 8,PCI,PCR

Each bit of the memory location is ANDed with each bit of
the accumulator. The logical product is stored in the
accumulator.

To perform an exclusive OR operation on the contents of
the accumulator and the memory location, use the
following:

Form XRM
10101111
(A)+-(A) V (M)

Example XRM

Time States/
Machine Cycles 8,PCI,PCR

The contents of M are exclusively ORed with the contents
of the accumulator and the result is stored in the
accumulator.

For an inclusive OR operation on the contents of the
accumulator and the memory location, issue the following:

Form ORM
10110111
(A)~A) V (M)

Example ORM

Time States/
Machine Cycles 8,PCI,PCR

The contents of M are inclusively ORed with the contents
of the accumulator and the result is stored in the
accumulator.

3-8

To compare the contents of the memory byte with the
contents of the accumulator, use the following:

Form

Example

Time States/

CPM
10111111
(A)-(M)

CPM

Machine Cycles 8,PCI,PCR

The contents of M are compared with the contents of the
accumulator; the accumulator remains unchanged. After
the instruction has been executed, if the contents of Mare
greater than the contents of the accumulator, the cafl('Y
flip-flop is set to one; if not, it is reset to zero. If the two
values are equal, the zero flip-flop is set to one; if not, it is
reset to zero. The sign and parity flip-flops are set as if the
subtraction had actually occurred.

3.4.3 Immediate Instructions
The eight instructions described in the paragraph are used
to perform arithmetic and logical operations between the
accumulator and the byte of data immediately following
the instruction. The results of the operations described
below affect the accumulator but do not change the
contents of the immediate byte. All of the operations
described are two-byte instructions.

To add the contents of byte two to the contents of the
accumulator, use the following:

Form

Example

Time States/

ADI
00000 100
<82>
(A)~(A)+<82>

ADI2

Machine Cycles 8,PCI,PCR

The second byte of this instruction, <82>, is added to the
contents of the accumulator and the sum is stored in the
accumulator. Any of the condition flip-flops can be
affected by executing this instruction.

To add byte two and the carry flip-flop to the contents of
the accumulator, issue the following:

Form

Example

Time States/

ACI
00001 100
<B2>
(A)~A)+<B 2>+(carry)

ACI104

Machine Cycles 8,PCI,PCR

The second byte of this instruction (<B2» and the carry
flip-flop are added to the contents of the accumulator and
the sum is stored in the accumulator. In conjunction with
the ADI instruction this instruction facillitates multiple­
precision addition of instruction and accumulator data.
Any of the condition flip-flops can be affected by
executing this instruction.

To subtract byte two from the contents of the accumu­
lator, use the following:

Form

Example

Time States/

SUI
00010 100
<B2>
(A)~A)-<B2>

SUI 1

Machine Cycles 8,PCI,PCR

The second byte of this instruction, <B2>, is subtracted
from the contents of the accumulator and the difference is
stored in the accumulator. Subtraction is performed using
two's complement arithmetic. Any of the condition flip­
flops can be affected by executing this instruction.

To subtract byte two and the carry flip-flop from the
accumulator, use the following:

Form SBI
00011 100
<B2>
(A)~ A)-<B 2>-(carry)

Example SBI6

Time States/
Machine Cycles 8,PCI,PCR

3-9

The second byte of this instruction, (<B2», and the carry
flip-flop are subtracted from the contents of the accumu­
lator and the difference is stored in the accumulator.
Subtraction is performed using two's complement arith­
metic. In conjunction with the SUI instruction, this
instruction facilitates multiple-precision subtraction.

To perform a logical AND operation on the contents of the
accumulator and byte two, use the following:

Form NDI
00 100 100
<B2>
(A)~(A) 1\ <B2>

Example NDI 100

Time States/
Machine Cycles 8,PCI,PCR

The second byte of this instruction, <B2>, is ANDed with
the contents of th~ accumulator. The logical product is
stored in the accumulator.

To perform an exclusive OR operation on the contents of
the accumulator and byte two, use the following:

Form

Example

Time States/

XRI
00 101 100
<B2>
(A)~(A) V- <B2>

XRI340

Machine Cycles 8,PCI,PCR

The second byte of the instruction, <B2>, is exclusively
ORed with the contents of the accumulator and the result
is stored in the accumulator.

For an inclusive OR operation on the contents of the
accumulator and byte two, issue the following:

Form ORI
00 110 100
<B2>
(A)~A) V <B2>

Example ORI 102

Time States/
Machine Cycles 8,PCI,PCR

The second byte of the instruction, <B2>, is inclusively
ORed with the contents of the accumulator and the result
is stored in the accumulator.

To compare the contents of byte two with the contents of
the accumulator, use the following:

Form

Example

Time States/

CPI
00 111 100
<132>
(A)-<B2>

CPI4

Machine Cycles 8,PCI,PCR

The second byte of the instruction, <B2>, is compared
with the contents of the accumulator; the accumulator
remains unchanged. After the instruction has been
executed, if the contents of <B2> are greater than the
contents of the accumulator, the carry flip-flop is set to
one; if not, it is reset to zero. If the two values are the
same, the zero flip-flop is set to one; if not, it is reset to
zero. The sign and parity flip-flops are set as if the
subtraction had actually occurred.

3.4.4 Rotate Instructions
The four instructions described in this paragraph are used
to rotate the contents of the accumulator, one bit per
instruction execution, in one of the following ways:

• Left and into the carry flip-flop

• Right and into the carry flip-flop

• Left and through the carry flip-flop

• Right and through the carry flip-flop

These instructions affect only the carry flip-flop; all other
condition flip-flops remain unchanged. All rotates described
are one-byte instructions.

3-10

To rotate the contents of the accumulator one bit to the
left and into the carry flip-flop, use the following:

Form

Example

Time States/

RLC
00 000 010
A(m+1)+-A(m)
A(0)+-A(7)
(carry)+-A(7)

RLC

Machine Cycles 5,PCI

The contents of the accumulator are rotated to the left by
one bit. Bit 7 is moved to the bit position of bit 0, and bits
o through 6 are moved to bit positions 1 through 7. Bit 7 is
also stored in the carry flip-flop. The following diagrams
show the bit positions before and after the rotate. The
original contents of the accumulator are as follows:

7 6 5 4 3 2 a

After the rotate, the following is the case:

a a a a o

carry 7 6 5 4 3 2 o

To rotate the contents of the accumulator one hit to the
right and into the carry flip-flop, use the following:

Form RRC
00 001 010
A(m)+-A(m+1)
A(7)+-A(0)
(carry)+-A(0)

Example RRC

Time States/
Machine Cycles 5,PCI

The contents of the accumulator are rotated to the right by
one bit. Bit 0 is moved to the bit position of bit 7, and bits
7 through 1 are moved to bit positions 6 through O. Bit 0 is
also stored jin the carry flip-flop. The original position is:

~[O I 0 o o o

7 6 5 4 3 2 o

The next diagram represents the contents of the accumu­
lator after an RRC:

carry 7 6 5 4 3 2 o

To rotate the contents of the accumulator one bit to the
left and through the carry flip-flop, use the following:

Form RAL
00010010
A(m+ 1)+-A(m)
A(O)+-(carry)
(carry)+-A(7)

Example RAL

Time States/
Machine Cycles 5 ,PC I

The contents of the accumulator are rotated to the left by
one bit. Bit 7 is stored in the carry flip-flop; the contents of
the carry flip-flop are stored in A(O). Bits 0 through 6 are
moved to bit positions 1 through 7. The original contents
of the accumulator and the carry flip-flop an~:

G ~ 0 0 0 0 o

To rotate the contents of the accumulator one bit to the
right and through the carry flip-flop, use the following:

Form

Example

Time States/

RAR
00011 010
A(m)+-A(m+ 1)
A(7)+-(carry)
(carry)+-A(O)

RAR

Machine Cycles 5,PCI

The contents of the accumulator are rotated to the right by
one bit. Bit 0 is stored in the carry flip-flop; the contents of
the carry flip-flop are stored in bit 7. Bits 7 through 1 are
moved to bit positions 6 through O. The original contents
of the accumulator and the carry flip-flop are:

G 1
0

1
0 o o o

carry 7 6 5 4 3 2 o

After the rotate, the following is the case:

0 10 I 0 0 0 0

carry 7 6 5 4 3 2 o

3.5 PROGRAM COUNTER AND STACK CONTROL
INSTRUCTIONS
The instructions summarized in this paragraph are used to
transfer control from one address to another. These
instructions are divided into three categories:

• Jump instructions
• Call instructions

• Return instructions

carry '7 6 5 4

Mter the rotate, the contents are:

G @] 0 0 0

3 2

0

o All of these instructions make use of the processor stack
and/or program counter. The stack is a set of eight 14-bit
registers. Seven of these registers are organized as a last-in
first-out (LIFO) pushdown stack which is used to store
nested subroutine addresses. The eighth register serves as
the current program counter (P) and always contains the

carry 7 6 5 4 3 2 o address of the next instruction to be fetched.

3 -11

Each of the three instruction types described uses the stack
or program counter in a different way. The second and
third bytes, <82> and <83>, of each jump instruction

. (.IMP, JFc, JTc) contain an address. This address points to
the memory location from which the next instruction is to
be fetched if the jump is an unconditional one or if the
conditions of the jump are satisfied. The address contained
in the jump instruction is stored in the program counter (P)
for use during execution. <82> and <B3> are 8-bit bytes
which form the 14-bit address to be stored. <82> contains
the eight low-order bits of the address, ilnd <83> contains
the six high-order bits. Bits 6 and 7 of <B3> are not used.

Subroutine call instructions (CAL, CFc, CTc) store the
current program counter (P) in the pushdown stack and
then store the starting address of the subroutine to be
called in the program counter. This address is contained in
the second and third bytes of the call instruction. Calls can
be performed unconditionally in a CAL instruction, or
conditionally in the case of CFc and CTc.

Subroutine return instructions (RET, RFc, RTc) cause the
current program counter to be replaced by the last inserted
address in the stack, and for all remaining addresses in the
stack to be "popped up" one level. These actions can be
performed unconditionally in the case of a RET instruc­
tion, or conditionally in the case of RFc and RTc. Because
the stack is an eight-register LIFO pushdown stack, is
popped up one level at a time, and has a program counter as
its eighth register, subroutines can be nested to seven levels.

With conditional jumps, calls, and returns, any of the four
condition flip-flops (carry, zero, sign, and parity) can be
tested to determine the condition on which the instruction
will be executed.

Each of the instruction groups introduced is explained in
detail. The following example shows a call to a subroutine,
a conditional jump, and an unconditional return.

NXTBLK, CAL GETBYT

3.5.1 Jump Instructions
Jump instructions are three-byte instructions which are
used to alter the normal flow of a program by branching
conditionally or unconditionally to another location. The
address to which control is passed is specified by bytes two
and three of the jump instruction. Byte two (<82»
contains the eight low-order bits of the address and byte
three (<83» contains the six high-order bits. Because the
processor uses a 14-bit address, bits six and seven of <83>
are ignored. There are three jump instructions:

• Jump unconditionally

• Jump if condlllon is false

• Jump if condition is true

To perform an unconditional jump, issue the following:

Form JMP
01 XXX 100

<82>
<83>

(P)~3><B2>

Examples JMP CKDONE
JMPAL

Time States/
Machine Cycles 11 ,PC I ,PCR,PCR

<82> and <83> make up a 14-bit address which is stored
in the program counter to initiate an unconditional transfer
of program control to that address. <82> and <83>
therefore represent the next instruction to be executed
after the JMP.

/SUBROUTINE TO GET ONE BYTE OF DATA FROM PAPER TAPE
/ AND UPDATE CHECKSUM
GETBYT, INPI

NDI
JTZ
TI'IPO
LEA
ADD
IDA
LAE
RET

40
GETBYT

3 -12

/INPUT STATUS
/MASK "DA" (IGNORE ERRORS)
/WAIT FOR "DA"
/GET CHAR
/SAVE CHAR
/ ADD CHECKSUM TO INPUT BYTE
/SA VE NEW CHECKSUM
/RESTORE CHAR
/RETURN UNCONDITIONALLY

To jump on a false condition use the following:

Form

Examples

Time States/
Machine Cycles

JFc

01 OC(4)C(3) 000
<82>
<B3>

If (c)=O
(P)+-<B3><B2>

Otherwise
(P)=(P)+3

JFZ NXTBLK
JFP B2

If (c)=O
11,PCI,PCR,PCR

Otherwise
9,PCI,PCR,PCR

If the condition flip-flop represented by c is false (reset to
zero), the address specified by <B3> <Bl> is stored in the
program counter and the next instruction to be executed is
fetched from this address. If the relevant status flip-flop is
true (set to one), the program counter is incremented by
three and the branch is not taken. In this case, time states
T4 and TS of the second PCR cycle are skipped. For
example, if instruction JFC is executed, a branch will occur
if the carry condition flip-flop is zero.

To jump on a true condition, use the instruction following:

Form

Examples

Time States/
Machine Cycles

JTc

01 lC(4)C(3) 000
<B2>
<83>

If (c)=1
(P)+-<B3> <B 2>

Otherwise
(P)=(P)+3

JTSER
JTC DONE

If (c)=1
II,PCI,PCR,PCR

Otherwise
9,PCI,PCR,PCR

3 -13

If the condition flip-flop represented by c is true (set to
one), the address specified by <83> <81> is stored in the
program counter and the next instruction to be executed is
fetched from this address. If the relevant condition flip-flop
is false (reset to zero), the program counter is incremented
by three and the branch is not taken. In this case, time
states T4 and TS of the second PCR cycle are skipped. For
example, if instruction JTP is executed, a branch will occur
if the parity condition flip-flop is set.

3.5.2 Call Instructions
Call instructions are three-byte instructions which are used
to alter the normal flow of a program by branching
conditionally or unconditionally to a subroutine. Sub­
routine calls may be nested to seven levels. Byte two
(<82» contains the low-order eight bits of the address,
and byte three (<83» contains the high-order six bits. Bits
six and seven of byte three are ignored. A call causes <B3>
<82> to be stored in the curren t program counter (P) an d
for the previous contents of P to be inserted at the top of
the pushdown stack. There are three call instructions:

• Call unconditionally
• Call if condition is false
• Call if condition is true

To perform an unconditional call to a subroutine, issue the
following:

Form

Examples

Time States/

CAL
01 XXX 110

<82>
<83>

(stack)+-(P)
(P)+- <83> <B2>

CALGETBYT
CAL DOAI

Machine Cycles II,PCI,PCR,PCR

The contents of P are shifted into the stack and the starting
address of the subroutine, <83> <B2>, is stored in the
program counter. This causes the next instruction executed
to be the starting address of the subroutine whose name is
included in the CAL.

To perform a call on a false condition, use the instruction
following:

Form

Examples

Time States/
Machine Cycles

CFc

01 OC(4)C(3) 010
<82>
<83>

If (c)==O
(stack)'*iP)
(P)~:- <83> <B 2>

Otherwise
(P)=(P)+3

CFZALL
CFP ADDUP

If (c}=O
II,PCI,PCR,PCR

Otherwise
9 ,PCI ,PCR,PCR

If the condition flip-flop represented by c is false (reset to
zero), the address specified by <83> <B2> is stored in the
program counter and the next instruction to be executed is
fetched from this address. If the relevant condition flip-flop
is true (set to one), the program counter is incremented by
three and the subroutine is not called. In this case, time
states T4 and TS of the second PCR cycle are skipped. For
example, if instruction CFS is executed, a subroutine call
will be issued if the sign condition flip-flop is not set.

To call a subroutine on a true condition, issue the
following:

Form

Examples

Time States/
Machine Cycles

CTc

01IC(4)C(3) 010
<82>
<B3>

If (c)=1
(stack)'*iP)
(P)~ <83> <82>

Otherwise
(P)=(P)+3

CTS CKDONE
CTCCX

If (c)=1
11 ,PCI,PCR,PCR

Otherwise
9,PCI,PCR,PCR

If the condition flip-flop represented by c is true (set to
one), the address specified by <B3> <82> is stored in the
program counter and the next instruction to be executed is
fetched from this address. If ~he relevant condition flip-flop
is false (reset to zero), the program counter is incremented
by three and the subroutine is not called. In this case, time
states T4 and TS of the second PCR cycle are skipped. For
example, if instruction CTZ is executed, a subroutine caUl
will be issued if the zero condition flip-flop is set.

3.5.3 Return Instructions
The instructions described in this section are one-byte
instructions which are used to exit unconditionally or
conditionally from a subroutine entered via a call instruc­
tion and to return to the next sequential instruction. after
the call. Returns cause the pushdown stack to be popped
up one level at a time. The popped entry in the pushdown
stack is stored in the program counter (P). The following
example illustrates both an unconditional and a conditional
subroutine return:

3-14

CAL INCHL

INCHL, INL
RFZ
INH
RET

/INCREMENT LOW BYTE OF MEMORY ADDRESS
/RETURN IF NO OVERFLOW
/OVERFLOW-INCREMENT HIGH BYTE
/RETURN

To perform an unconditional return from a called sub­
routine, issue the following:

Form RET

00 XXX 111

(P)+{ stack)

Example RET

Time States/
Machine Cycles 5,PCI

The stack is popped up one level and the popped entry in
the pushdown stack is stored in the program counter. P
now points to the next instruction after the call.

To perform a return on a false condition, use the following:

Form RFc

OOOC(4)C(3) 011

If (c)=O
(P)+-(stack)

Otherwise
(P)=(P)+1

Example RFZ

Time States/ If (c)=0; 5,PCI
Machine Cycles Otherwise; 3,PCI

3 -15

If the condition flip-flop represented by c is false (reset to
zero), the stack is popped up one level and the popped
entry in the pushdown stack is stored in the program
counter. P now points to the next instruction after the call.
If the relevant condition flip-flop is true (set to one), the
program counter is incremented by one and the return is
not performed. In this case, time states T4 and T5 are
skipped. For example, if instruction RFP is executed, a
return will be issued if the parity condition flip-flop is not
set.

To return on a true condition, issue the following:

Form RTc

00 lC(4)C(3) 011

If (c)=1
(P)+-(stack)

Otherwise
(P)=(P)+1

Example RTS

Time States/ If (c)=I; 5,PCI
Machine Cycles Otherwise; 3,PCI

If the condition flip-flop represented by c is true (set to
one), the stack is popped up one level and the popped entry
in the pushdown stack is stored in the program counter. P
now points to the next instruction after the call. If the
relevant condition flip-flop is false (reset to zero), the
program counter is incremented by one and the return is
not performed. In this case, time states T4 and T5 are
skipped. For example, if instruction RTZ is executed, a
return will be issued if the zero condition flip-flop is set.

3.6 INPUT/OUTPUT INSTRUCTIONS
The one-byte instructions described in this section are used
to perform input or output operations. With these instruc­
tions, data can be transferred between the accumulator
(register A) of the Processor Module and any peripheral
device associated with the system. The data transfer is
performed in 8-bit bytes at the rate of one byte per I/O
instruction executed. It is possible to access eight different
input devices by specifying the appropriate address field in
the INP instruction. By supplying the proper address in an
OUT instruction, 24 different output devices can be
accessed.

The states of the condition flip-flops are not affected by
executing the I/O instructions described. Because INP
moves data into the accumulator from an input device and
OUT moves data from the accumulator to an output device,
it is the programmer's responsibility to load data into
register A before issuing an OUT instruction, and to extract
data from A after executing an INP.

3.6.1 Input Instruction
To read one byte of data into the accumulator (register A)
from an input device, use the following:

Form INP

01 OOM MMI

(A)~input data lines)

Example INP + 10*

Time States/
Machine Cycles 8,PCI,PCC

The contents of the accumulator are~ placed on the
peripheral device input bus during time state Tl of the PCC
cycle. The device address field, represented by MMM, is
placed on the device address bus to select the appropriate
device during time state T2 of that cycle. During time state
T3 of the PCC cycle, data contents from the selected device
are removed from the input bus and loaded into the
accumulator.

*Where lOs represents input device 4 multiplied by 2.
**Where 60s represents output device 30 multiplied by 2.

[:r Data Data Trans-

over- Avail· mit

run able buffer
empty

7 6 5 4

3 -16

Eight input devices may be referenced by the INP instruc­
tion. The contents of the accumulator is latched during
time state Tl of the PCC cycle to facilitate expansion of
the number of input-only devices that can be connected to
an MPS system.

3.6.2 Output Instruction
To write data to an output device from the accumulator,
use the following:

Form OUT

01 RRM MMI (RR=O)

(output data line)~A)

Example OUT + 60**

Time States/
Machine Cycles 6,PCI,PCR

The contents of the accumulator are placed on the
peripheral device output bus at time state Tl of the PCC
cycle. The device address field, represented by RRMMM, is
placed on the device bus at time state T2 of the same cycle.
RRMMM must be a nonzero number in the range 1 0 (octal)
through 37 (octal).

OUT can reference 24 output devices.

3.6.3 Reserved INP and OUT Instructions
Three input/output instructions are reserved for UART
(Universal Asynchronous Receiver/Transmitter) control on
the Processor Module. The UART is an I/O interface on th(~
Processor Module which handles data from a serial port.
Control of the UART is accomplished as follows:

Instruction

INPO 01 000001
OUTO 01 010001
INPI 01 000011

Function

Read data from UART
Output data to UART
Read status from UART

The status register looks like the following:

3 2 o

3.7 MACHINE INSTRUCTIONS
The four instructions in this category perform the basic
machine control functions halt, restart, interrupt enable,
and interrupt disable. All four of these instructions have a
one-byte format.

3.7.1 Halt Instruction
The halt instruction is issued by the following:

Form HLT

00 000 OOX
or

11111111

Example HLT

Time States/
Machine Cycles 4,PCI

When the HLT is executed, the proc1essor enters the
stopped state after completion of time state T3. The
program counter is incremented by one, and the contents
of all condition flip-flops, registers, and memory are
unchanged.

3.7.2 Restart Instruction
The restart instruction can be used as a one-byte uncondi­
tional call to any of eight specified locations in the first 64
words of memory. The called addresses are the following
octal locations:

o
10
20
30
40
50
60
70

Each of these eight locations can be use:d as the starting
address of an eight-word subroutine.

The restart is a one-byte instruction which is issued by the
following:

Form RST

00 AAA 101

(stack)+-(P)
(P)+-(OOOOOO OOAAAOOO)

Example RST + aO*

Time States/
Machine Cycles 5,PCI

The contents of the program counter, P, are shifted into the
top entry of the pushdown stack. Bits 3-5 of the
instruction, AAA in the model, are moved into positions
3-5 of P. All other bit positions of the program counter arc
zeroed.

The restart is sometimes used in place of a call instruction
because it is at least twice as fast and uses only one-third as
much memory. For example, instead of issuing a CAL
INCHL directly in the assembly language code, the pro­
grammer might place the INCHL subroutine in low memory
to be called with an RST.

NOTE
Users may employ OPDEF (Paragraph 6.10.6)
to define their specific instructions involving
RST, INP, and OUT.

3.7.3 Interrupt Enable and Disable Instructions
The interrupt enable (ION) and interrupt disable (lOF)
instructions are specialized input/output instructions which
are defined as machine instructions because of the interrupt
control functions performed.

*Where a represents an octal digit from 0 to 7

3·17

To enable external events to interrupt normal program
sequence, issue the following:

Form ION

01 010011

Enable external event interrupt

Example ION

Time States/
Machine Cycles 8,PCI,PCC

To disable external events from in terru pting, issue the
following:

Form IOF

01 010 101

Disable external event interrupt

Example IOF

Time States/
Machine Cycles 6,PCI,PCC

External event control is similar to iIiterrupt control, but
the condition flip-flops cannot be saved and restored, and
the registers cannot be saved and restored with sufficient
generality. The STRT switch on the programmable module
performs a simulated interrupt and jumps to the address set
in the Monitor/Control Panel (MCP) Switch Register. As.in
an actual interrupt, the interrupt recognition logic is
automatically disabled after every interrupt. Therefore, if a
program is to recognize interrupts, an ION instruction must
be issued in the initialization routine. After the ION is
executed, one more instruction can be executed before
interrupts are enabled. The ION instruction should be the
last executable instruction before the RET command in an
interrupt service routine.

The IOF instruction is used to disable interrupts from
external events excluding power fail. This instruction
should therefore be used with extreme caution. Typically it
is used when a particular operation is being performed and
it is not appropriate to allow interrupts for the duration of
the operation.

A typical program sequence is shown on the opposite page.

3-18

DOFF,

PFR,

*50
JMPDOFF

*70
JMPPFR

*100
XRA

ION
JMP.

ION
RET

HLT

/ASSUMlE DOFF IS CONNECTED TO PIN 11

/ ASSUME POWER FAIL CONNECTED TO Ul

/CLEAR STATUS FLIP-FLOPS AND AC
/OTHER INITIALIZATION CODE

/ENABLEINTERRUPTS
/LOOP HERE UNTIL INTERRUPT OCCURS
lOR COULD BE VERY LOW PRIORITY
/ROUTINES

/DOFF INTERRUPT SERVICE ROUTINE
/CLEAR DOFF INTERRUPT FLAG

/ENABLE INTERRUPT
/RETURN TO PROGRAM SEQUENCE BEFORE
/INTER*UPT OCCURRED

/ROUTINE TO SHUT DOWN OR STABILIZE
/SYSTEM BEFORE ALL POWER IS LOST.
/AFTERPOWER IS RESTORED, SYSTEM
/SHOULb BE RESTARTED AT THE BEGINNING

3-19

CHAPTER 4
1'HE PDR-8 HOST ENVIRONMENT

The Digital Equipment Corporation PDP-8 computer
system has been selected as the host machine for preparing
and processing programs designed for Microprocessor Series
(MPS) use. This chapter describes the hardware and
software environment in which programs wHl be developed
and assembled, defines both minimum operational require­
ments and expanded capabilities and options, and outlines
the characteristics and use of major PDP-8 hardware and
software modules, some of which are described in far
greater functional detail in subsequent chapters of this
handbook.

4.1 INTRODUCTION TO THE PDP-8
The PDP-8 is a small, economical, and efficient computer
designed for effective program development, assembly, and
execution. It is a single-address parallel machine which
operates on 12-bit binary numbers using two's complement
arithmetic. An effective PDP-8 can function with only 4K
of core memory and no peripheral devices whatsoever . Yet
this minimum configuration can expand to support as much
as 32K of core and a variety of devices. PDP-8 users of
Microprocessor Series Modules are assumed to possess only
the minimum hardware configuration described in the next
paragraph. They will receive a set of system programs in
paper tape form, sufficient to load and copy paper tapes
and to edit and assemble programs developed for the
Processor Module. This software system will be described in
detail in subsequent paragraphs of this chapter.

4.2 PDP-8 HARDWARE ENVIRONMENT
The minimum configuration of PDP-8 equipment for
support of the software defined for this product consists of
the following:

• PDP-8 central processing unit, programmer's
console, and 4K (4096 decimal words) of core
memory

• Keyboard/printer terminal, often a Teletype ®

®Teletype is a registered trademark of the n~letype Corporation.

• Low-speed (associated with the Teletype)
paper-tape reader/punch

• If Teletype is not the terminal device,
high-speed paper-tape reader/punch

Other peripheral devices may be supported by an installa-
, tion's PDP-8 configuration~ these will normally" be ignored

while processing MPS programs. The only exception occurs
when both high-speed and low-speed paper-tape readerl
punches are availabe. With most programs, the user must
specify which paper tape unit is available by setting a
switch on the PDP-8 console. One variety of paper tape unit
is a necessary component of the PDP-8 minimum configura­
tion, but both are supported by the system and described in
this chapter. The following paragraphs describe the usc of
each hardware module just defined.

4.2.1 Central Processing Unit (CPU)
The PDP-8 computer system is available in many models
and configurations. The CPU most frequently utilized by
MPS users is the PDP-8/E. In many of the paragraphs which
follow, specific references to switches or keys may be most
relevant to the PDP-8/E. However, users of other PDP-8
computer models (e.g., PDP-8/F, PDP-8/I, PDP-8/L,
PDP-81M) normally can use the software supplied with this
system with equal facility.

4.2.2 Programmer's Console
The PDP-8 programmer's console provides switches and
indicator lamps, facilia ting manual control of the computer
by allowing a programmer to examine or alter the contents
of memory locations and to determine the status of a
program in execution. In Figure 4-1 you can see a
photograph of a PDP-8/E console. Table 4-1 summarizes
the functions of all switches and indicators on this console.
Note that some of these functions are specific to the
PDP-8/E and may not be relevant to all user machines.

aM -.1: SiWC
Q,.t:;M: ~ DV

'.='1iJM @ill. -

Figure 4-1 PDP-8E Programmer's Console

Table 4-1
Programmer's Console Control and Indicator Functions

Control or Indicator

OFF /POWER/PANEL LOCK

SW

SWITCH REGISTER

ADDR
LOAD

EXTD
ADDR
LOAD

Function

In the counter-clockwise, or OFF position, this key-operated switch
disconnects all primary power to the computer. In the POWER, or vertical
position, it applies power to the computer and all manual controls. In the
PANEL LOCK, or clockwise position, it applies power to the computer, the
Switch Register and the RUN light only. In this position, a running program
is protected from inadvertent switch operation.

When this switch is up, the OMNIBUS SW line is high (logical 1). When it is
down, the SW line is low. This switch is used by special peripheral routines.

The Switch Register (SR) may be loaded with a 12-bit binary number by
setting each of the twelve switches either up for aI, or down for a O.

Pressing the ADDRess LOAD switch loads the contents of the SR into the
central processor MA register and forces the processor to enter a fetch state.
This causes the contents of the core memory location designated by the SR
to be loaded into the MB register.

Pressing the EXTendeD ADDRess LOAD switch loads the contents of SR bits
6-8 into the instruction field register and the contents of SR bits 9-11 into
the data field register.

4-2

Control or Indicator

CLEAR

CONT

EXAM

HALT

SING
STEP

DEP

EMA

MEMORY ADDRESS

RUN

Indicator Selector Switch

Setting this knob to:

BUS

Table 4-11 (Cont)
Programmer's Console Control and Indicator Functions

Function

Pressing the CLEAR switch loads a binary 0 into bits 0-11 of the
accumulator, the link~ all I/O device flag registers, and the interrupt request
flag register. This is equivalent to executing a CAF (Clear All FI,ags)
instruction.

Pn~ssing the CONTinue switch sets the run flip-flop and issues a memory start
to begin program execution at the address specified by the current contents
of the central processor MA register.

Pressing the EXAMine switch loads the contents of core memory at the
address specified by the MA register into the MB register and then increments
the MA register and the PC. Repeated operation of this switch permits the
contents of sequential core memory locations to be examined.

Pressing HALT clears; the run flip-flop and causes the computer to stop at the
beginning of the next fetch state. Operating the computer with HALT
depressed causes on¢ complete instruction to be executed whenever the
CONTinue switch is pressed.

Pressing SINGle STEP clears the run flip-flop and causes the computer to halt
at the next machine cycle. Operating the computer with the SINGle STEP
switch depressed causes only one machine cycle to be executed whenever the
CONTinue switch is pressed.

Lifting the DEPosit switch loads the contents of the SR into the MB register
and into core memory at the address specified by the current contents of the
central processor MA register, then increments the PC and the MA registers.
This facilitates manual storage of information in sequential core memory
locations.

The 3-bit Extended, Memory Address register displays the memory field
d~~signation of the memory field currently being accessed.

The MEMORY ADI!>RESS register displays the contents of the central
processor MA regist~r. It combines with the EMA register to provide the
IS-bit address of the next core location to be accessed.

The RUN indicator is lit whenever all machine timing circuits are activated
and capable of executing instructions.

This six-position rotary knob designates which of six possible registers (or
combinations of registers) is to be loaded into the adjacent 12-bit display.

Displays the logical state of the data gating lines which connect the major
registers.

4-3

Control or Indicator

MQ

MD

AC

STATUS

Table 4-1 (Cont)
Programmer's Console Control and Indicator Functions

Function

Displays the contents of the multiplier quotient register.

Displays the contents of the MB register. This indicates the last information
read from or written into core memory.

Displays the contents of the accumulator.

Each display light is turned on to indicate the designated condition:

Indicator Light/Bit Position Turned On to Indicate

o
1
2
3

4
5
6-8
9-11

STATE

The link contains a binary 1.
The Greater Than Flag (GTF) is raised.
The interrupt request line is asserted.
A processor condition, which prevents program interrupts, has been initiated
by software.

The interrupt enable flip-flop is on.
The user mode line is asserted.
Displays the contents of the instruction field register.
Displays the contents of the data field register.

With the Indicator Selector knob in the STATE position, each display light is
turned on to indicate the following condition:

Indicator Light/Bit Position Turned On to Indicate

o
1
2
3-5
6
7
8
9
10
11

Currently in fetch state.
Currently in defer state.
Currently in execute state.
Displays the contents of the instruction register.
The MD DIR line is asserted.
The BREAK DATA CONT line is asserted.
The SW line is asserted.
The PAUSE I/O line is asserted.
The BREAK IN PROG line is asserted.
The BREAK CYCLE line is asserted.

NOTE
The function of the various transmission lines cited and
their associated control logic is documented in Digital's
Small Computer Handbook.

4-4

4.2.3 Keyboard/Printer Terminal
The PDP-8 user interacts with many of the system programs
described in this chapter in a command-oril~nted way using
a terminal as the input/output device. The following
terminals may be used with the PDP-8 system described.

•
•
•

LT33 Teletype
VT05 Display Terminal
LA30 DECwriter Data Terminal

The VT05 and LA30 are much faster than the Teletype,
which prints at a maximum rate of ten characters per
second; but the Teletype offers the advantage of a built-in
low-speed paper-tape reader/punch unit. The VTOS has a
video display screen; the other two terminals supply hard
copy. Figure 4-2 is an illustration of the LT33 Teletype, the
basic I/O device assumed for users of the system.

OFF

REL.

B.SP.

ON

STOP ----,~.:.

Certain specialized Teletype knobs and keys require some
clarification. The control knob of the LT33 Teletype has
the following three positions:

Position

LINE

Meaning

The Teletype console is energized and con­
nected to the computer as an input/output
device under computer control.

OFF The Teletype console is de-energized.

LOCAL The Teletype console is energized for off­
line operation under control of the Teletype
keyboard and switches exclusively.

These three positions will be referenced in this and
subsequent chapters when discussing the handling of paper
tape functions.

LINEO LOCAL

2428-1

Figure 4-2 LT33 Teletype Console

4-5

The Teletype keyboard shown in Figure 4-3 combines
standard typewriter characters with special functions which
are summarized in Table 4-2.

4.2.4 Low-Speed Paper-Tape Reader/Punch
The Teletype paper-tape reader (also called the low-speed
reader) is used to read data punched on paper tape into
core memory. The data is read from an eight-channel,
perforated paper tape at a maximum rate of ten characters
per second. Operation is controlled by a three-position
switch, shown in Figure 4-2.

Setting

START

STOP

FREE

Meaning

Activates the reader; reader sprocket wheel
is engaged and operative.

De-activates the reader; reader sprocket
wheel is engaged but not operative.

De-activates the reader; reader sprocket
wheel is disengaged.

The paper-tape punch is used to perforate eight-channel,
rolled, oiled paper tape at a maximum rate of ten characters

O()C)C)OC)G)C)OQC)O®
A(\(\~~~OO~Af'®\t::;\R\
~ \.V \V \V \.:,J '-V y u \V \.V \..:..) \:.:!Y \:::Y

eOG)G)G)6)OOCDe?o@ee
80000.0000008

Figure 4-3 Teletype Keyboard

per second. The punch controls are shown in Figure 4-2 and
described below:

Setting

REL.

B.SP.

Meaning

Disengages the tape to allow tape removal or
loading.

Backspaces the tape one space for each firm
depression of the B.SP. button.

ON Activates the paper-tape punch.

OFF De-activates the paper-tape punch.

Table 4-2

Key

SPACE

RETURN

HERE IS

RUBOUT

CTRL/SHIFT /
REPT/P

LINE FEED

SHIFT

Special Keyboard Functions

Function

Space

Carriage Return

Blank Tape

Rubout

Code 200

Line Feed

Use

Used to combine and delimit symbols or
numbers in a symbolic program.

Used to terminate a line of input.

Used to generate leader/trailer tape.
Effective in LOCAL control mode only.

Used for deleting erroneous characters.
Punches all eight channels.

Used for leader/trailer on BIN format tapes.
Keys must be released in reverse order: P,
REPT, SHIFT, CTRL.

Follows carriage return to advance terminal
printer one line.

Used to type the characters and symbols
which appear on the upper portion of
certain keys.

4-6

The use of the low-speed paper-tape reader/punch for
performing specific editing and assembling functions is
described in chapters on those modules. The following list
of instructions is supplied only as an example of off-line,
low-speed, paper tape usage. It allows a PDP-8 user to
generate off-line a symbolic tape to be used as input to the
Assembler when, for some reason, tapes cannot be created
by the Editor.

1.

2.

3.

4.

Set the Teletype control knob to LOCAL and
turn the paper-tape punch ON.

Press the HERE IS key on the Teletype
keyboard to produce several inches of leader
tape.

Type the program on the Teletype keyboard.
To correct an error, press B.SP'. until the error
is under the print/punch station; then press
RUBOUT until the error and all subsequent
characters have been deleted. The erroneous
character and all subsequent characters may
now be retyped.

Press the HERE IS key to produce several
inches of trailer following the symbolic pro­
gram; remove the tape by tearing it against the
plastic cover of the punch.

The following procedure is employed to obtain an off-line
listing of an ASCII-coded (USA Standard Code for Informa-
tion Interchange) symbolic tape:

l. Set the paper tape reader switch to STOP or
FREE.

2. Release the plastic cover of the reader unit and
place the tape over the read station with the
small sprocket holes over the sprocket wheel.
Close the cover.

3. Set the Teletype control kno b to LOCAL.

4. Push the paper-tape reader switch to START
and release. A printed copy of the tape will be
produced on the Teletype. If the paper-tape
punch is ON, a duplicate of the tape will also be
generated.

4-7

There are three basic paper tape formats used by PDP-8
system programs provided with this system:

1. ASCII format, used for source text output from
the Editor or input to the Assembler.

2. BIN (binary) format, used for almost all of the
system programs which execute on the PDP-8.

3. RIM (read-in mode) format, used for the
Microprocessor Host Loader.

In addition to these basic formats, the MLA Assembler
(Chapter 6) punches paper tape in a binary format suitable
for execution on the Processor Module. While the BIN tape
just mentioned has a PDP-8 format, the binary tape
produced by the Assembler has a format which is used by
MPS. This format is described in detail in Chapter 6.

Paper tapes punched in ASCII format use all eight channels
of the tape to represent a single character (letter, number,
symbol). An example of source text output by the Editor is
shown in Figure 44.

Paper tapes input to the MLA contain mnemonic instruc­
tions and symbolic addresses punched in ASCII format.
These are translated into binary instructions and absolute
addresses during assembly and are punched out into binary
format for execution on the Processor Module.

• • • • • 324 T

• • • • 310 H

• • • • • 311 I

• • • • • 323 S

• • 240

• • • • • 311 I

• • • • • • 323 S

• • 240

• • • 301 A

• • • • • 323 S

• • • • 303 c
• • • • • 311

• • • • • 311

• • 240

• • • • • 306 F

• • • • • • • 317 0

• • • • 322 R

• • • • • • 315 M

• 301 A
324 T

Figure 44 ASCII Format

System tapes containing assembled programs in binary
format are usually loaded into core under program control,
using the Microprocessor Host Loader (MHL) , a system
program provided to users of this system. This binary
loader must be placed in core before any binary format
tape is loaded. The Microprocessor Host Loader itself is the
only system tape punched in RIM (read-in mode) format.
To read a tape in RIM format, the RIM Loader, a
17-instruction program which must be keyed-in manually,
must be in core (see the paragraph on the RIM Loader).
RIM format uses pairs of adjacent columns to represent
12-bit binary words directly.

Channels 1 through 6 are used to represent either addresses
or information to be stored. A channel-7 punch indicates
that the current column and the following column are to be
interpreted as an address specifying the location at which
the information contained in the following two columns is
to be stored. The tape leader and trailer for RIM format
tape must be punched in channel-8 only (octal 200). Figure
4-5 is an ~xample of tape punched in this way.

BIN (binary) format tape is similar to RIM format tape,
except only the first address in a series of consecutive
addresses is specified. A channel-7 punch indicates that the
current column and the following column are to be
interpreted as an address. Successive pairs of columns are
stored in sequential locations following this address until
another channel-7 punch is encounten:d. A channel-7 and a
channel-8 punch designate the current column as a memory
field specification. Leader/trailer tape must be punched in
channel-8 only. Figure 4-6 IS an example of binary format.

4.2.5 High-Speed Paper-Tape Reader/Punch
Loading long series of paper tape programs into core
memory with the low-speed reader of the LT33 Teletype
unit can be time-consuming. Punching a long assembled
program on paper tape can also be slow. If handling lengthy
paper tapes is required frequently, much computer time is
wasted while low-speed input/output devices read or punch
data. The high-speed paper-tape reader/punch unit performs
paper tape input and output at a considerably faster rate
than the low-speed reader and punch. It is of great value in
any system that requires a great deal of tape handling.

The high-speed paper-tape reader/punch unit is available in
two versions: The rack-mounted PC8-EA illustrated in
Figure 4-7 and the table-top PC8-EB. Both units consist of
a PR8-E high-speed paper-tape reader and a PC8-E high­
speed paper-tape punch mounted on a single chassis. The
reader and punch are also available separately. Figure 4-7
illustrates the reader/punch unit.

4-8

r CHANNEL 7

77
LOCATION • • • 61

••• • 32

• • • 12
CONTENTS

• • • • • • • • 77
LOCATION • • • • 52

• • • • 13
CONTENTS • • • 11

• ••••••• 77
LOCATION • • • • • 53

• • • • 13

• • 10
CONTENTS

• • • • • • • • 77
LOCATION • 00

• • • • • • • 77
CONTENTS

• • • • 07

• • • • • 07
00

LOCATION

Figure 4-5 RIM Format

• 2 FIELD SETTING

• 00

• • • • • 17
ORIGIN

• • • • 32
INSTRUCTION • • • 50

• 00
INSTRUCTION

00
00

INSTRUCTION
00

• 02
INSTRUCTION • • • • • 56

• •••••• 77
INSTRUCTION • 01

• ••••• 76
INSTRUCTION

00

• •••••• 77 INSTRUCTION •• 60

• 01

• •••••• 77
INSTRUCTION

• • • • 45
INSTRUCTION

77

Figure 4-6 BIN Format

Figure 4-7 High-Speed Paper-Tape Reader/Punch

The high-speed reader accepts input data from eight­
channel, fan-folded, non-oiled paper tape alt a maximum
rate of 300 characters per second, or thirty times the LT33
maximum input rate. The high-speed punch records output
data at a maximum rate of 50 characters per second.

The reader and punch are each supplied with an ON/OFF
rocker switch which applies power to the respective units in
the ON position and disconnects power in the OFF
position. Each device is also provided with a FEED switch
which advances the tape without reading, in the case of the
reader, or advances tape with only the feed holes punched,
in the case of the punch unit. The reader is supplied with a
control knob which may be turned clockwise to raise the
tape retaining lever and free the tape, or counter-clockwise
to lower this lever ang engage the sprocket wheel.

The following procedure is employed to position tapes in
the high-speed reader:

1. Turn the control knob to raise the tape
retaining lever.

2. Place a fan-folded tape in the right-hand bin.

3. Place several folds of leader in the left-hand bin
and position the tape so that the sprocket
wheel engages the feed holes.

4. Turn the control knob to lower the tape
retaining lever.

5. Press the FEED switch briefly to ensure that
the tape is properly positioned.

6. Tape is advanced and read during program
execution.

4.3 PDP-8 SOFTWARE ENVIRONMENT
The minimum software environment required for con­
venient and efficient program development, assembly, and
duplication is quite limited. The few necessary system
programs are designed to be used with ease, and are
documented in full detail in this and subsequent chapters.
These programs are grouped together in kit form, desig­
nated Microprocessor Series Software Tools (MPSST), DEC
No. QF500-AB. All software components of MPSST will be
provided in the form of binary paper tapes ready to be
loaded on the user's PDP-8. Table 4-3 summarizes the
binary tapes which compose the minimum necessary PDP-8
software system.

Table 4-3

Program

Microprocessor Host
Loader (MHL)

Microprocessor Language
Editor (MLE)

Microprocessor Language
Assembler (MLA)

Master Tape Duplicator/
Verifier (MTD)

Microprocessor ROM
Programmer (MRP)

PDP-8 System Programs

Function DEC Number

Loads binary-coded tapes DEC-08-UMPLA-A-PM

Modifies or generates DEC-08-UMPEA-A-PB
source text from
Teletype commands by
reading and writing
paper tapes

Assembles source text DEC-08-UMPAA-A-PB
into binary format by
reading and writing
paper tapes and listing
at user's option

Copies paper tapes and DEC-08-UMPDA-A-PB
verifies their contents

Copies and modifies paper DEC-08-UMPP A-A-PB
tapes and PROMs

4-9

These system programs run on the PDP-8 and are described
in greater detail below. Two other programs, the
Microprocessor Debugging Program (MDP) (DEC-08-
UMPMA-A-PB), and the Microprocessor Program Loader
(MPL) are supplied for use on the Processor Module itself
and will be described here. MDP is provided in paper tape
form; MPL is supplied as part of the MPS hardware. An
additional component, the RIM Loader, is also described;
thjs Loader is not a binary tape but a series of instructions
to be entered manually into the PDP-8 before any of the
system paper tapes can be used.

4.3.1 The RIM Loader
The RIM (Read-In-Mode) Loader is used to load into core
programs punched in RIM format. For purposes of this
system, the only program entered in this format is the
Microprocessor Host Loader, described here. Unless the
PDP-8 being used has a PDP-8/E Hardware Bootstrap
Option, the RIM loader must be loaded manually
("toggled"), using the switches located on the pro­
grammer's console.

There are two versions of the RIM Loader: one program is
designed to be used when tapes are to be loaded from the
low-speed (Teletype) paper-tape reader, and the other is
intended for input from the high-speed reader. Table 4-4
lists the octal instructions for these programs. The loading
and verifying procedures are detailed in the flowcharts in
the two figures which follow. After loading RIM, it is good
programming practice to verify that all instructions have
been entered properly.

Loc ation

56
57
60
61
62
63

77
77
77
77
77
77
7-J 164
77
77
77
77
77
77
77
77
77
77

65
66
67
70
71
72
73
74
75
76

Table 44
RIM Loader Programs

Instruction
Low-Speed High-Speed

Reader Reader

6032 6014
6031 6011
5357 5357
6036 6016
7106 7106
7006 7006
7510 7510
5357 5374
7006 7006
6031 6011
5367 5367
6034 6016
7420 7420
3776 3776
3376 3376
5356 5357
0000 0000

4-10

When loaded, the RIM loader occupies absolute locations
7756 through 7776. The following procedures are used to
load. (Figure 4-8)

*DECTAPE USERS SHOULD
LOAD RIM INTO FIELD 0

SET SWITCHES 6-8
TO DESIRED

INSTRUCTION FIELD*

Figure 4-8 Loading the RIM Loader

To ensure that the load has been successful, follow the
steps shown in Figure 4-9.

SET SWITCHES
6-8 TO FIELD IN
WHICH RIM HAS
BEEN LOADED

Figure 4-9 Checking the RIM Loader

4.3.2 The Microprocessor Host Loader
The Microprocessor Host Loader (MHL) is a utility program
which is loaded into core to read binary-coded data on
paper tape and store it in core memory. MHL is used
primarily to load system binary programs.

MHL is stored on punched paper tape in RIM-coded
format; therefore, RIM must be in core before MHL can be
loaded. When loading MHL, the input device (low-speed or
high-speed reader) must be the same as that selected when
loading RIM, and RIM and MHL must be loaded into the
same field.

Once stored in core, MHL resides on the last page of core,
occupying absolute locations 7625 through 7752 and 7777
of the field in which it was loaded. The programmer must
be aware that if he writes a program that uses the last page
of core, MHL will be destroyed when the program is run,

4-11

and both RIM and MHL will require reloading before
another program can be loaded. Figure 4-10 details the
method of loading MHL.

The programmer is now able to load binary tapes using the
method described in Figure 4-11.

4.3.3 The Microprocessor Language Editor
The Microprocessor Language Editor (MLE) provided with
this system is a paper tape-oriented source text editor with
which the user modifies source program tapes by submit­
ting commands from the Teletype keyboard. Using MLE
alleviates the tedious task of preparing source program
tapes off-line. This program is described in detail in Chapter
5.

The Microprocessor Language Editor is provided to users of
this system in the form of a binary tape which is loaded
into core by means of the Microprocessor Host Loader,
using either the low-speed or high-speed paper-tape reader.
The unit is selected at the time MLE is loaded, as shown in
Figure 4-11. MLE itself uses either the low-speed or
high-speed paper tape reader/punch for I/O. Text to be
modified may be entered into core using either the
Teletype or the paper-tape reader. The modified source text
may be punched-out using the paper-tape punch. Switch
Register bits are set to indicate high-speed input and output
(low-speed tape is the default).

4.3.4 The Microprocessor Language Assembler
The Microprocessor Language Assembler (MLA) offers a
complete instruction set and group of pseudo-instructions
for straightforward development and processing of assem­
bly language programs for the Processor Module. For
consistency of use and ease of training, the Assembler's
character set, available operators, and construction of
sta tements, symbols, and expressions conform in many
ways to other standard PDP-8 Assemblers. This program is
described in detail in Chapter 6.

The Assembler is provided to users of this system in the
form of binary tape which is loaded into core by means of
the Microprocessor Host Loader, using either the low-speed
or high-speed paper-tape reader. The unit is selected at the
time MLA is loaded, as shown in Figure 4-11.

The Assembler itself is oriented to the use of paper tape,
and uses either the low-speed or high-speed paper-tape
reader /punch for I/O. The source program to be assembled
is usually prepared using the Microprocessor Language
Editor (but can be generated off-line) and is read by the
available paper-tape reader. The assembly itself is per­
formed in three passes, each of which produces certain

---"T"'""--"

SET SWITCHES
6-8 TO FIELD

WHICH CONTAINS
RIM

SET SWITCHES
9-11 TO FIELD IN

WHICH MHL IS
TO BE LOADED

---~ SEE FIGURE 4- 81

* = WITH LEADER/TRAILER
OVER THE READ HEAD

~L9 SET SWITCHES
6-8 TO FIELD

M H L WAS LOADED
INTO

Figure 4-10 Loading the Microprocessor Host Loader

4-12

* . WITH LEADER/TRAILER
OVER THE READ HEAD

_-=..;:,---'--../ ----I SEE FIGURE 4-10 I

Figure 4-11 Loading a Binary Tape
Using MHL

listings of errors and program text. Listings can be
produced on either the Teletype, the line printer, or the
paper-tape punch; selection of the appropriate unit is made
at the start of pass 3 by setting the appropriate Switch
Register bits. A symbol table created in pass 1 is used to

punch a binary-coded output tape during pass 2. This
binary tape can subsequently be loaded into the Processor
Module for testing and execution.

Either the low-speed or high-speed paper-tape reade'r can be
used for Assembler input. If both units are available, the
high -speed reader is selected for use in reading the source
tape and producing Assembler output. If only one unit is

available, the Assembler will dynamically determine which
type of paper-tape reader is to be used. Switch Register bits
are set to determine which unit is to be used for punching
purposes.

4.3.5 Master Tape DuplicatorNerifier
The Master Tape Duplicator/Verifier (MTD) is a system
program used to copy and check eight-channel paper tapes
using the high-speed paper-tape reader and punch. Installa­
tions with a low-speed (Teletype) punch can perform the
same function by simply copying and listing off-line, as
outlined in the paragraph on the low-speed paper-tape
reader /punch.

MTD is provided to users of this system in the form of a
binary tape which is loaded into core by means of the
Microprocessor Host Loader. Since only installations with a
high-speed paper-tape reader punch will be using MTD, the
high-speed device will normally be selected at the time the
system program is loaded. Once in core, MTD uses all but
the last page of memory as a buffer.

Paper tapes are duplicated and verified in three passes as
described below:

Pass

1
2
3

Function

Production of the master tape
Duplication of the master tape
Verification of the duplicated tape

After MTD has been loaded into core, the user performs the
following initial procedures:

1. Set the Switch Register to 0200.

2.

3.

4.

Press the ADDR LOAD and START keys; the
computer will halt.

Set the Switch Register to 4000.

Place the paper tape to be duplicated in the
high-speed paper-tape reader.

5. Turn the paper-tape punch on and feed paper
through the punch unit for approximately one
length of a fold.

6. Press the CONTinue key.

4:-13

After these procedures have been completed, pass 1 begins.
The input tape is read and an output master tape is
punched. Because the paper-tape reader is faster than the
punch, the reader stops occasionally to allow the punch to
catch up. After punching is complete, the following
message will be displayed on the terminal:

MASTER CREATED

During pass 1, two types of checksums are accumulated:

1. The number of nonzero characters on the tape.

2. The sum of characters on the tape.

Both sums are computed module 4096 and are punched-out
at the end of the master tape.

To begin pass 2, remove the punched master tape from the
punch unit and place it in the reader. Prepare the punch
unit for another copy by feeding blank tape. Set the Switch
Register to 2000 and press the CONTinue key. During this
pass, the master tape will be duplicated and a new set of
checksums will be accumulated. After the master tape has
been duplicated, the following message will be displayed on
the terminal:

SET SWITCHES TO NUMBER OF COPIES TO BE
MADE - PRESS CONTINUE

If the user wants to generate one master and four copies of
his input tape, now he will set the Switch Register to 0003,
turn the punch on, ready tape, and press the CONTinue
key. After the next copy has been duplicated, MTD will
feed several folds of blank tape and then output the
following message on the terminal:

PRESS CONTINUE

The user presses CONTinue. MTD produces another copy,
feeds several folds of blank tape, and displays the following
message:

PRESS CONTINUE

The user presses the CONTinue key. MTD produces another
copy and displays the following message:

DUPLICATION OK

Mter all copies have been produced, pass 3 can begin.
During this pass, the tape copies are verified by comparing
checksums. The user places the "master" tape in the reader,
sets the Switch Register to 1000, and presses CONTinue.
The master tape will be read and the following message
displayed:

0001 VERIFY OK

Next, the user loads the first duplicate tape in the reader
and presses CONTinue. After reading the tape, MTD will
display the following:

0002 VERIFY OK

The next three duplicate tapes are loaded and verified in
turn. The following messages are displayed - one for each
tape:

0003 VERIFY OK
0004 VERIFY OK
0005 VERIFY OK

MTD uses the PDP-B program interrupt facility to keep
both the paper-tape reader and punch operating at
maximum speed. A buffer is filled by the reader and
emptied by the punch. Never remove a paper tape from the
reader until all punching has stopped or valuable data may
be lost from the tape.

The Duplicator does not currently check for extra blank
frames in the duplicate tape. If this presents a problem for
users of the program, another program can be used for
secondary verification. User tapes that are too long for the
space left in core should be broken into two or more
shorter tapes for this operation. The alternate binary tape
and documentation may be ordered from the DECUS
Program Library, numbered DIGITAL·5-10-S-BIN.

4.3.6 Microprocessor ROM Programmer
The Microprocessor ROM Programmer (MRP) is used to
read, write, and verify programmable read-only memory
(PROM) chips for use on the MPS modules. PROMs can be

4-14

copied to or from paper tape, and memory locations can be
examined, modified, zeroed, or listed. This program is
described in detail in Chapter 9.

MRP is provided to users of this system in the form of
binary tape which is loaded into core by means of the
Microprocessor Host Loader, using either the low-speed or
high-speed paper-tape reader: The unit is selected at the
time MRP is loaded, as shown in Figure 4-11. Switch
Register bits can be set to send selective output to the line
printer or to choose the high-speed or low-speed paper-tape
punch as the punch unit.

4.3.7 Microprocessor Debugging Program
The Microprocessor Debugging Program (MDP) is a debug­
ging aid which runs on the Processor Module, not on the
PDP-B. It enables the user to read, modify, and rewrite
binary programs in paper tape form. MDP capabilities
include the ability to examine memory locations, condition
flip-flops, and index registers, to set a breakpoint, and to
allow a program segment to execute to that breakpoint.
Binary code can be examined, tested, and modified without
requiring reassembly on the PDP-B. This program is
described in detail in Chapter B.

MDP is provided to users of MPS in the form of an MPS
binary tape. It is loaded into module memory by means of
the Microprocessor Program Loader (MPL). Input to MDP
is normally an MPS binary tape produced by the Micropro­
cessor Language Assembler. MDP produces paper tape and
Teletype printer listings as output.

4.3.8 Microprocessor Program Loader
The Microprocessor Program Loader (MPL) is a loader
which is supplied as part of the Microprocessor Series
hardware and is available to users of the KC341 MPS
Monitor/Control Panel (MCP). It allows programs to be
loaded into MPS memory from paper tape for execution on
the module. A paper-tape reader must be available for use
with MPL, as well as the MPS Universal Asynchronous
Receiver/Transmitter (UART) interface, and read-only and
random-access MPS memory. Operation of the loader is
described in detail in Chapter 7.

5.1 INTRODUCTION TO THE EDITOR
The Microprocessor Language Editor (MLE) provided to
users of this system is a PDP-8 based Editor oriented to
paper tape usage. I t is interactive and offers an extensive set
of commands which can be entered from the Teletype or
other terminal keyboard. Primarily it is used as an on-line
tool for creating and modifying source program tapes.

The Editor facilitates both program entry and program
correction. Source text is either entered directly from the
keyboard or read into core using the low-speed (Teletype)
or high-speed paper-tape reader. Once in core, the program
text can be changed freely, expanded, deleted, or
reformatted. At any point, all or some of the source text
can be listed on the terminal printer or punched out using
one of the paper-tape punches.

MLE is supplied in the form of a paper tape which is loaded
into core using the Microprocessor Host Loader (MHL).
Precise instructions for loading the Editor are supplied in
Paragraph 5.9 of this chapter. The Editor occupies about
1000 locations of core and reserves all but the last page of
core for source program use. In a 4K machine, this provides
room for approximately 4200 decimal characters; that is
about 60 lines of heavily commented text or about 340
lines of text without comments. When the core area (text
buffer area) used by the source program is full, the Editor
causes the Teletype bell to ring or an audible signal to be
produced on another terminal. The buffer may then be
enlarged, as described in the Operating Procedures, or the
buffer may be dumped by punching it out onto paper tape.
After punching, the Editor can be restarted and can
continue with a clear text buffer area. If this occurs, it is
recommended that the remainder of the source program be
placed in Gore and punched out, so that the entire source
program is on a single paper tape.

5.2 OVERVIEW OF EDITOR COMMANDS
This paragraph summarizes general syntax and err or­
detection characteristics of the Microprocessor Language
Editor.

5 ·1

CHAPTER 5
MICROPROCESSOR

LANGUAGE EDITOR

5.2.1 General Editor Syntax
MLE commands are . entered from the keyboard in the
following way:

Form [[m,] n [$j]] command<cr>

The command is a one-character function that directs the
Editor to perform a particular operation; commands are
preceded by zero, one, two, or three arguments. These
arguments, represented by m, n, and j in the syntax, are
digits or expressions that specify line numbers in the source
text which are affected by the particular MLE function.
The , (comma) and $ (dollar sign) symbols in this form
represent argument delimiters, and <cr> is the command
terminator - usually a carriage return. The user typical1y
types the carriage return, and MLE inserts an automatic line
feed character. Arguments enclosed in brackets are nor­
mally optional, but specific usage depends on the syntax of
particular commands.

Table 5-1 provides examples of different forms of Editor
commands.

5.2.2 Errors in Specifying Commands
A question mark (?) followed by a carriage return/line feed
will be displayed on the terminal printer if the user does
any of the following:

1. Specifies a nonexistent command; for example,
the following is an error:

H
?

because H is not an MLE command.

2. Requests nonexistent information; for example,
if the user requests a listing by typing L, and
the text buffer is empty, the following will
occur:

L
?

3.

4.

Similarly, if certain lines not in the buffer are
requested or if negative line numbers are
supplied, a question mark will be disp1ayed.

Includes too few arguments; for example, if the
user wants to move the first 17 lines of text in
the buffer to precede line 100, and types the
following:

17$100M
?

the question mark will be printed, because a
MOVE command requires two arguments
before $, and only one is supplied. The correct
format is:

1,17$100M

SpeCifies line numbers in incorrect order; in
form:

m,ncommand

m must be less than n; thf:refore the fol1owing
specification results in an error condition:

7,5L
?

Whenever a question mark is displayed in this way, the
command speCification in which the error occurred is
ignored, and the user is free to re-enter the command.

There is one kind of command "error" which does not
cause the question mark to be displayed and the command
to be ignored. This is the case in which one or more
arguments may be supplied for a command which requires
no arguments; the following illustrates this incorrect usage:

1,15A

Because the APPEND command takes no arguments, the
1,15 specification will simply be ignored, and the text will
be appended as usual.

5.2.3 Line Numbering
All lines in the text buffer area are assigned implicit decimal
line numbers starting with I. This implicit numbering
scheme causes line numbers to be continua11y updated by
the Editor to account for line insertions, moves, and
deletions. This implies that the line numbers on the
following original lines of text may be changed during the
editing process.

Implicit Line Number Text

I
2
3
4

AAA
BBB
DDD
EEE

For example, if the following two commands are performed
to delete line 4 and insert a new line between 2 and. 3

4D
31
eee

Table 5-1
Editor Command Options

Type of Command Format Example Meaning

No Argument A A Append incoming text to buffer.

One Argument nl 841 Insert incoming text before Hne
number 84.

Two Arguments m,nL I,IOOL List text buffer lines I through 100.

Three Arguments m,n$jM 12,20$96M Move lines 12 through 20 to before
1ine number 96.

5-2

the following will result:

Implicit Line Number

1
2
3
4

Text

AAA
BBB
CCC
DDD

If deletions are being performed, it is wise to delete from
the bottom of the text to the top, since deletions cause all
text after lines being deleted to be adjusted. If the
command shown had been performed in a different order,
that is:

31
CCC
4D

the follOWing would have occurred:

Implicit Line Number

1
2
3
4

Text

AAA
BBB
CCC
EEE

The line containing CCC was inserted as line 3; the previous
line 3, containing DDD, was therefore renumbered line 4
and the line containing EEE was renumbered line 5. After
deletion of the new line 4, line 5 was renumblered line 4.

5.3 EDITOR MODES OF OPERATION
To distinguish between editing commands and actual text
to be entered into the buffer, the Editor operates in either
COMMAND mode or TEXT mode. In COMMAND mode,
all input typed on the keyboard is interpreted as commands
to the Editor to perform some operation on one or more
lines of text stored in the buffer. In TEXT mode, all typed
input is interpreted as text to replace, be inserted into, or
be appended to the contents of the text buffl~r.

Immediately after being loaded into core: memory and
started, the Editor is in COMMAND mode waiting for a
command. The user can freely enter any of the Editor
commands described in this chapter. The Editor moves
automatically into TEXT mode when an APPEND (A),

5-3

INSERT (I), or CHANGE (C) command is supplied. In this
t11ode, new text lines or text corrections and insertions are
-qyped and appended or inserted as specified. To return
£rom TEXT to COMMAND mode, the user types either of
the following characters on the terminal keyboard:

1. CTRL/L: Type L while holding down the
CTRL key

2. CTRL/G: Type G while holding down the'
CTRLkey

[The Editor indicates the successful transition from TEXT
back to COMMAND mode by ringing the bell on the
;Teletype or producing an audible signal on another ter­
minal.

:S.4 SPECIAL CHARACTERS AND FUNCTIONS
:Editor commands entered from the terminal often involve
using certain special keys for such purposes as error
correction, mode transition, paper tape control, and text
:buffer analysis. This paragraph summarizes the functions of
:these keys with particular reference to the Teletype
keyboard. Specific keys may differ slightly on the key­
boards of other terminals, and differences in function will
be noted where these occur.

.5.4.1 RETURN: Terminating a Line
; In both COMMAND and TEXT modes, typing the
; RETURN key signals the Editor to process the information
'just typed. In COMMAND mode, it allows the Editor to
. execute the command just entered. A command will not be
. executed until it is terminated by the RETURN key (with
the exception of = and:, explained later). In TEXT mode,
RETURN causes the line of text which it follows to be
entered into the text buffer. A typed line is not actually
part of the buffer until terminated by the RETURN key.

5.4.2 CTRL/U: Erasing a Line
The erase character (CTRL/U combination) is used for
error recovery in both COMMAND and TEXT modes. It is
generated by holding down the CTRL key while typing a U
and is not echoed on the Teletype. When used in TEXT
mode, CTRL/U cancels everything to the left of itself back
to the beginning of the line; the Editor performs a carriage
return/line feed «cr> <If». The user then continues
typing on the next line. When used in COMMAND mode,

CTRL/U cancels the entire command; MLE prints a ? and
performs a <cr> <If>. The erase character cannot cancel
past a <cr> <1£> in either COMMAND or TEXT mode. For
example, in COMMAND mode, the CTRL/U character after
the A cancels the append command.

A?

In TEXT mode, the CTRL/U is pressed after "THIS" and
results in a carriage return. The line containing "THIS" will
not be entered in the text buffer.

THIS
HERE IS A TEXT MODE EXAMPLE

5.4.3 RUBOUT: Erasing A Character
RUBOUT is used for error recovery in both COMMAND
and TEXT modes with one exception. When executing a
READ command (explained later) from the paper-tape
reader, RUBOUTs are ignored completely and are not
entered in the buffer. It is necessary for the READ
command to disable the RUBOUT function because a1J tab
characters on paper tape are, for timing purposes, fo11owed
by RUBOUTs; recognition of these characters would cause
the tabs to be ignored. RUBOUTs are not stored in the text
buffer but are inserted by the Editor fo]]owing a]] tab
characters on the output tape.

At any other time, typing the RUBOUT key in TEXT mode
echoes a backslash (\) and deletes the last typed character.
Repeated RUBOUTs delete from right to left up to but not
including the <cr> <If>, which separates the current line
from the previous one. For example:

THE QUUICK\ \ \ \ICK BROWN FOX

will be entered in the buffer as:

THE QUICK BROWN FOX

When used in COMMAND mode, RUB OUT is equivalent to
CTRL/U and cancels the entire command; the Editor then
prints a ?, performs a <cr> <If>, and waits for the user to
type another command.

5.4.4 CTRL/L: Entering A Form Feed
The form feed character signals the Editor to return to
COMMAND mode. A character of this kind is generated by
typing L while holding down the CTRL key. This combina­
tion is typed while in TEXT mode to indicate that the

5-4

desired text has been entered and that the Editor should
now return to COMMAND mode. The Editor rings the
Teletype bell or produces an audible signal on another
terminal in response to a CTRL/L to indicate that it is back
in COMMAND mode. If the Editor is already in COM­
MAND mode when CTRL/L is typed, no be1J or signal wi11
sound. CTRL/G is equivalent to CTRL/L (except in the
case of a SEARCH command, as explained later).

5.4.5 Dot (.): Identifying the Current Line
The Editor keeps track of the implicit decimal numbe:r of
the line on which it is currently operating. At any given
time, the dot, which is produced by typing the period key,
represents this number and may be used as an argument in a
command. For example:

.L

means list the current line, and

.-I,.+IL

means list the line preceding the current line, the current
line, and the line following it; then update the current line
counter to the decimal number of the last line printed. The
current line counter, represented by the dot, is genera]]y
updated as follows:

1.

2.

3.

4.

5.

6.

7.

After a READ or APPEND command, dot is
equal to the number of the last line in the
buffer.

After an INSERT or CHANGE command, dot
is equal to the number of the last line entered.

After a LIST or SEARCH command, dot is
equal to the number of the last line listed.

After a DELETE command, dot is equal to the
number of the line immediately after the
deletion.

After a KILL command, dot is equal to zero.

After a GET command, dot is equal to the
number of the Hne printed by the GET.

After a MOVE command, dot is not updated
and remains whatever it was before the com­
mand.

5.4.6 Slash (/): Identifying the Last Line
The slash (/) symbol has a value equal to the decimal
number of the last line in the text buffer. It may also be
used as an argument in a command. For example:

10,/L

means list from line 10 to the end of the buffer.

5.4.7 LINE FEED: Identifying the Next Une
Commands and lines of text are terminated by the
RETURN key which generates a carriage return/line feed
combination. LINE FEED characters are completely
ignored when input is on paper tape. During output, the
Editor automatically punches a LINE FEED following each
carriage return.

Typing the LINE FEED while in COMMAND mode is
equivalent to typing:

. +lL

and will cause the Editor to print the line following the
current one and to increment the value of the current line
counter (.) by one.

5.4.8 ALT MODE: Incrementing the Curre:nt Line
Typing the ALT MODE key while in COMMAND mode will
cause the line following the current line to be printed and
the current line counter (.) to be incremented by one. If the
current line is also the last line in the buffer, typing either
ALT MODE or LINE FEED will cause a ? to be typed by
the Editor to indicate that there is no n{~xt line. (Some
Teletypes and most other terminals have an escape key
(ESC) in place of the ALT MODE; the function is identical
for both ESCape and ALT MODE.)

5.4.9 Right Angle Bracket (»: Identifying the Next Line
Typing the right angle bracket (» while in COMMAND
mode is equivalent to typing:

.+lL

and will cause the Editor to echo > and then print the line
following the current line. The value of the current line
counter is incremented by one so that it refers to the last
line printed.

, 5.4.10 Left Angle Bracket «): Identifying the Previous
Line
Typing the left angle bracket «) while in COMMAND
mode is equivalent to typing:

.-lL

and will cause the Editor to echo < and then print the line
preceding the current line. The value of the current line
counter is decremented by one so that it refers to the last
line printed.

5.4.11 Equal Sign (=): Requesting a Value
The equal sign is used in conjunction with the line

: indicators dot (.) or slash (/). When typed in COMMAND
mode it causes the Editor to print the decimal value of the
argument preceding it. In this way the number of the
current line may be found (.=xxx), or the total number of
1ines in the buffer (/=xxx) or the number of some particular
1ine (/-8=xxx) may be determined without counting from
the beginning .

5.4.12 Colon (:): Requesting a Value
Colon is a lower-case character with exactly the same
function as the equal sign (=).

5.4.13 Blank Tape and Leader/Trailer Tape: Processing
: Paper Tape
, Both blank tape and leader/trailer (octal code 200) tape are
: completely ignored on an input tape, as are line feed
: characters and RUBOUTs. Line feeds and RUBOUTs are
: automatically replaced wherever necessary on output, but
, blank tape and leader/trailer are not. The production and

processing of paper tape at the terminal is, of course,
specific to the Teletype.

5.4.14 CTRL/I: Tabbing Editor Output
The Editor simulates tab stops at eight-space intervals
across the Teletype paper. The user can tabulate by typing I
while holding down the CTRL key. A tabulation consists of
from one to eight spaces, depending on the number needed
to bring the carriage to the next tab stop. This feature

, facilitates the production of neat columns on output copy.

The tab function is used in conjunction with two Switch
Register bits set to allow the user to produce and control
tabulations in the text buffer during input and output

, operations (see Paragraph 5.5). On input (under a READ
command), the Editor can replace a group of two or more
spaces with a tabulation if the user chooses to set bit 0 on.

5-5

On output, it will produce either a tab character followed
by a RUBOUT (for timing purposes) or enough spaces to
reach a tab stop, depending on the setting of bit L The
Editor cannot output tab characters unless tabulations have
been entered in the buffer either from the keyboard or by
setting bit 0 on input.

NOTE
Location 0002 contains the negative (two's
complement) of the number of spaces used to
simulate tab stops. To change the tabulation,
simply change the constant in location 0002
after loading the Editor.

5.5 SWITCH REGISTER OPTIONS
The Editor uses five Switch Register bits in conjunction
with input and output commands to control the reading
and punching of paper tape. Switch Register bits may be set
for a variety of reasons including the fo11owing:

1.

2.

To select the low-speed (Teletype) or high­
speed paper-tape reader or paper-tape punch

To suppress output operations

3. To select celiain interpretations for tabulation

The selection of the paper tape unit is probablY the most
critical of these functions. Natural1y, if a PDP-8 configura­
tion has a terminal device other thlm the Teletype, it is
necessary to select the high-speed paper-tape reader and
punch. If both high- and low-speed devices are supported,
the decision might be more complex. Setting Switch
Register options allows the user to select one unit for
reading and the other for punching.

It is often desirable to be able to interrupt a command
before it finishes. For example, if the user mistakenly
supplied a LIST command instead of a PUNCH, he may not
want to wait for the terminal to list a large amount of text.
Setting bit 2 on the console Switch Register allows the user
to interrupt any output command and to return immedi­
ately to COMMAND mode. Table 5~2 lists options for all
relevant Switch Register bits.

5.6 INPUT COMMANDS
Input commands allow source text to be entered into the
text buffer area, either from one of the paper-tape readers
or from the terminal keyboard. Available input commands
are listed in Table 5-3.

5-6

Bit

o

2

10

Table 5-2
Switch Register Options

Setting Meaning

o Read the input tape exactly as is.

o

o

o

Read the input tape and keep track
of spaces. Each time two or more
successive spaces are found, sub­
stitute in the buffer a tabulation for
that whole group of spaces; this
option affects only the READ com­
mand.

On punching (or listing) text from
the buffer, interpret tabulations as
an appropriate number of spaces.

Interpret tabulations as a tab char­
acter followed by a rubout (Tele­
type codes 211 and 377).

Normal operation; a11 output com­
mands completed as specified.

Suppress list, punch, or si~arch

operation. If at any time during
execution of an output command
this bit is set to 1, output will cease
and the Editor will return immedi­
ately to COMMAND mode; if this
occurs while a line is being
searched, any modifications to the
line made during that search will be
disregarded; the current line
counter (.) will be equal to the
number of the line being printed or
punched at that time. Until the bit
is set to 0, any further output
command will be ignored.

Low-speed output; a]] punching will
be performed on the Teletype
punch.

High-speed output; all punehing
will be performed on the high-speed
punch.

Bit

11

Table 5-2 (Cont)
Switch Register Options

Setting Meaning

o Low-speed input; the READ com­
mand expects the source tape to be
in the Teletype reader. Do not use
the APPEND command to read
tapes.

High-speed input; the source tape
will be read from the high -speed
reader.

Table 5-3
Input Commands

Command Meaning

R

A

nl

Read a page of text and append it to
the text buffer using the paper tape
unit defined by Switch Register bit 11.

Append text entered from the ter­
minal to the text buffer.

Insert text entered from the terminal
before line 1 of the text buffer.

Insert text entered from the terminal
before line n of the text buffer.

For all input commands, the Editor is assumed to be in
TEXT mode until a form feed characte~r (CTRL/L) is
encountered. If CTRL/L is typed or if a full buffer
condition occurs, the Editor returns to COMMAND mode.

NOTE
In these commands, the Editor ignores ASCII
codes 340 through 376. These cod,es include
the codes for the lower-case alphabet (ASCII
341-372).

5.6.1 R: Reading Paper Tape
The READ command is issued as follows:

Form R

5-7

It is used. to read a page of text from the paper-tape reader.
Depending on the position of Switch Register bit 11,
reading will be performed on the high-speed (one) or
low-speed (zero) reader. MLE will read the input tape until
fl form feed character (CTRL/L key combination) is
detected or until the Editor senses a text buffer full
,condition. All incoming text except the form feed is
:appended to the end of the text buffer. Information
:already in the buffer remains there.

.In the case of input from the high-speed reader, the end of
,the tape will be interpreted as a form feed if an actual form
Jeed character does not appear on the tape; the Editor will
return to COMMAND mode. In the case of input from the
ilow-speed reader, a form feed must be entered from the
· keyboard to return the Editor to COMMAND mode if an
actual form feed character does not appear on the tape. If

'this is not done, the READ command remains in effect, and
all subsequent commands will be interpreted erroneously as

· text and appended to the text just read from tape.

· Any RUBOUT encountered during a READ command will
be ignored; as described in the discussion of the special
Teletype keys.

The appropriate paper-tape reader unit must be turned on
and positioned to read at the time the READ command is
issued. For the low-speed reader, do the folloWing:

1.

2.

Set the paper-tape reader switch to STOP or
FREE.

Release the plastic cover of the reader unit and
place the tape over the read station with the
small sprocket holes over the sprocket wheel.
Close the cover.

3. Push the paper-tape reader switch to START
and release.

For the high-speed reader, do the folloWing:

1.

2.

Turn the reader unit on.

Turn the control knob to raise the tape
retaining lever.

3. Place a fan-folded tape in the right-hand bin.

4. Place several folds of leader in the left-hand bin
and position the tape so that the sprocket
wheel engages the feed holes.

5.

6.

Turn the control knob to lower the tape
retaining lever.

Press the FEED switch briefly to ensure that
the tape is properly positioned.

5.6.2 A: Appending Terminal Text
The APPEND command is issued as follows:

Form A

It signals the Editor that the text which is entered next
from the terminal keyboard is to be appended to the text
already in the buffer. If the buffer is e'mpty at the time the
command is issued, a new me is created. This effectively
generates a symbolic program on-line by accepting program
text from the keyboard. On receiving the APPEND com­
mand, MLE enters TEXT mode to accept as much text as
the user enters (until the buffer area is ful1). To return to
COMMAND mode, a form feed (CTRL/L key combination)
is typed.

A RUBOUT character encountered during execution of an
APPEND command (i.e., while program text is being
entered) will delete the last typed character. Repeated
RUBOUTs will delete from right to left up to but not
beyond the beginning of the current line.

5.6.3 I: Inserting Text in the Buffer
The INSERT command causes text to be read from the
terminal keyboard and inserted into the buffer in the
specified position. It is issued as follows:

Form [n] I

If a command of the form nl is entered, text from the
keyboard will be inserted in the buffer just before the Jine
implicitly numbered n. If a simple I command is typed, text
will be inserted at the very beginning of the text buffer, just
before line 1.

The Editor enters TEXT mode to accept input, and the first
line typed becomes the new line n. Both the line count and
the numbers of all lines following the insertion are
increased by the number of lines inserted; the value of the
current line counter (.) is equal to the number of the last
line inserted using the I command. To re-enter COMMAND
mode, the form feed (CTRL/L combination) must be typed

5-8

terminating TEXT mode. If CTRL/L is not typed, all
subsequent commands will be interpreted erroneously as
text and entered in the program immediately after the
intended insertion. The follOWing example illustrates the
use of the INSERT command. The text buffer is assumed
to contain the following:

Implicit Line Number

2
3

Text

AAA
BBB
CCC

The following command is given

31
ABA
BAA
BAB

To insert text before line 3 and cause the following:

Implicit Line Number Text

1 AAA
2 BBB
3 ABA
4 BAA
5 BAB
6 CCC

Next, the following command causes two lines of text to be
inserted before the old line 1:

I
AAO
AOA

Implicit Line Number

1
2
3
4
5
6
7
8

Text

AAO
AOA
AAA
BBB
ABA
BAA
BAB
CCC

5.7 OUTPUT COMMANDS
Output commands are available for both listing and
punching purposes. Both kinds of commands provide for
the output of part or a11 of the contents of the text buffer.
LIST commands facilitate examining the text by producing
output on the terminal keyboard. PUNCH commands
output leader and trailer tape, form feeds, corrected text,
or duplication of pages of an input tape on the paper-tape
punch. Neither LIST nor PUNCH commands affect the
contents of the buffer in any way. All listing opera tions can
be interrupted by setting Switch Register bit 2 on.

5.7.1 L: Listing on the Terminal Printer
The LIST command causes part or all of the contents of the
text buffer to be listed on the terminal. A LIST command
is constructed as follows:

Form [[m,] n] L

where m and n are optional arguments as defined in Table
5-4, which summarizes different forms of the LIST com­
mand:

Command

L

nL

m,nL

Table 5-4
LIST Commands

Meaning

List the entire page; this causes the
Editor to list the entire contents of the
text buffer on the terminal.

List line n; this line will be printed
followed by a carriage return and a
line feed.

List lines m through n inclusive (m
must be less than n); lines m through n
will be printed on the terminal.

The Editor remains in COMMAND mode after a LIST
command and the value of the current line counter is
updated to be equal to the number of the last line printed.
Some examples of the LIST command might be helpful.
The contents of the text buffer at the time the commands
are issued as follows:

Implicit Line Number

1
2
3
4

Text

AAA
BBB
CCC
DDD

5-9

The following illustrates interspersed command input and
text output as in actual terminal interactions:

2L
BBB
1,3L
AAA
BBB
CCC
L
AAA
BBB
CCC
DDD

5.7.2 P: Punching Out Paper Tape
The PUNCH command causes part or all of the contents of
the text buffer to be punched-out using either the
low-speed or high-speed paper-tape punch. The device
selection depends on the setting of Switch Register bit 10
at the time the PUNCH is issued. If bit lOis set on, the
high-speed device is used; otherwise the Teletype punch is
selected.

The PUNCH command is constructed as follows:

Form [[m,]n]P

where m and n are optional arguments as defined in Table
5-5, which summarizes different forms of the PUNCH
command. This table also illustrates utility commands used
for punching purposes.

Command

P

nP

m,nP

F

T

Table 5-5
PUNCH Commands

Meaning

Punch the entire contents of the text
buffer using the punch unit defined by
Switch Register bit 10.

Punch line n only.

Punch lines m through n inclusive
(where m must be less than n).

Punch four blanks, a form feed charac­
ter, and approximately two inches of
leader /trailer tape.

Punch four inches of leader/trailer
tape.

Table 5-5 (Cont)
PUNCH Commands

Command Meaning

N Punch the entire contents of the text
buffer, issue a FORM FEED com­
mand, erase the contents of the text
buffer, and read a new page of text
into the text buffer using the appropri­
ate paper-tape reader unit (perform P,
F,K,and R).

nN Perform P, F, K, and R n times in
sequence.

Because the appropriate paper-tape punch unit must be
readied before tape is punched, the Editor will cause the
computer to be temporarily halted when a PUNCH is
supplied. After the unit has been readied, the user should
press the CONTinue key on the console to cause punching
to begin.

To position tape in the low-speed punch, do the fol1owing:

1. Turn the Teletype control knob to LOCAL.

2. Turn the punch unit on.

3. Press the HERE IS key on the Teletype to
p~oduce several inches of reader tape.

4. Turn the punch off.

5. Turn the Teletype control knob to LINE.

6. Turn the punch unit on.

For the high-speed punch, do the following:

1. Turn the punch unit on.

2. Press the FEED switch briefly to ensure that
the tape is properly positioned; this switch will
advance the tape with only its feed holes
punched.

5-10

The Editor remains in COMMAND mode after a punching
operation, and the value of the current line counter is
updated to be equal to the number of the last line punched.
PUNCH commands do not cause a form feed character to
be output following the text. An explicit form feed' must be
supplied using the F command.

MLE is designed to minimize the possibility of illegal or
meaningless characters being punched into a source tape;
therefore the illegal codes 340-376 and 140-177 and most
illegal control characters will not be punched. This provides
a means of correcting a tape containing illegal characters by
simply reading this tape using the Editor and by sub­
sequently punching it out.

5.7.3 F: Punching a Form Feed
The FORM FEED command is issued as follows:

Form F

and is used to punch the following on a paper tape, using
either the high-speed or low-speed unit.

1. Four blanks.

2. A form feed character.

3. Approximately two inches of blank tape.

The Editor does not cause the computer to halt when a
FORM FEED command is encountered. To avoid the
insertion of extraneous characters on the paper tape when
the low-speed paper-tape punch has been selected, the user
should follow this sequence when issuing a FORM FEED
command:

1 . Turn the punch off.

2. Type F followed by RETURN.

3. Turn the punch on.

5.7.4 T: Punching a Paper Tape Trailer
The TRAILER command is issued as follows:

Form T

and is used to punch a paper-tape trailer consisting of
approximately four inches of blank tape on either the
high-speed or low-speed unit.

The Editor does not cause the computer to halt when a
TRAILER command is encountered. To avoid inserting
extraneous characters on the paper tape when the low­
speed paper-tape punch has been selected, the user should
follow this sequence when issuing a TRAILER command:

1. Turn the punch off.

2. Type T followed by RETURN.

3. Turn the punch on.

5.7.5 N: Combining P, F, K, and R Commands
The NEXT command is a utility command which is used to
read in the next page of text from paper tape one or more
times by combining the functions of four distinct MLE
commands. It is issued as follows:

Form nN

and performs the functions of the four commands in Table
5-6 in sequence.

Command

PUNCH

FORM FEED

KILL

READ

Table 5-6
NEXT Command Functions

Function

Punch the entire contemts of the text
buffer using the punch unit defined by
Switch Register bit 10.

Punch four blanks, a form feed charac­
ter, and approximately two inches of
blank tape.

Erase the contents of the text buffer.

Read a page of text into the text
buffer using the reader unit defined by
Switch Register bit 11.

If a simple N command is given, this sequence will be
performed only once. If nN is supplied, the sequence will
be performed n times.

Because the appropriate paper-tape punch unit must be
readied before tape is punched, MLE will cause the
computer to be temporarily halted when a NEXT is
supplied. After the unit has been readied, as just described,

the user should press the CONTinue key on the console. If
!an nN command is given, the halt will occur only before the
!first cycle. If n is greater than the number of pages of input
tape, the commands will proceed in the speCified sequence
until the end of the input tape is read. The Editor will then
return to COMMAND mode if the unit being used is the
high-speed punch. If the Teletype unit has been selected,
the user must type CTRL/L to return to COMMAND mode
when the tape runs out.

· 5.8 EDITING COMMANDS
Editing commands allow source text to be deleted,

· changed, moved, and expanded in the text buffer. In
· addition to standard replacement and deletion features, the
'Editor described in this chapter facilitates such advanced

5 -11

editing features as moving a block of text from one part of
the buffer to another or searching the text buffer for
specific characters or for lines containing tags.

5.8.1 C: Changing Lines in the Text Buffer
The CHANGE command allows the user to replace one or
more lines in the buffer with text entered on the terminal
keyboard. It is issued as follows:

Form [m,] nC

where m is optional and n is a required argument, supplied
as shown in Table 5-7.

Command

nC

m,nC

Table 5-7
CHANGE Commands

Meaning

Delete line n and replace it with the
line(s) that follow.

Delete lines m through n and replace
them with the lines that follow (m
must be less than n).

When the Editor receives a CHANGE command, it deletes
the speCified lines and then enters TEXT mode to accept
text typed by the user to replace the deleted line(s).

Once in TEXT mode, RUBOUTs can be used to erase
characters in the inserted text. It is not necessary to replace
the changed text with the same number of lines that were
deleted. Since lines are automatically renumbered, the user
may enter any number of new lines to replace the old. The

line count will automatically be updated. In addition, after
a CHANGE has been performed, the value of the current
line counter (.) is equal to the number of the last line of the
inserted text.

An example of changing text in the buffer might be helpful.
If the contents of the buffer are as follows:

Implicit Line Number Text

1
2
3
4

typing the command:

2C
Bll
B22
B33

will result in the following:

Implicit Line Number

The next command:

4,6C
BBB

causes the following:

1
2
3
4
5
6

Implicit Line Number

2
3

4

AAA
BBB
CCC
DDD

Text

AAA
Bl1
B22
B33
CCC
ODD

Text

AAA
B11
B22
BBB

To return to COMMAND mode after replacing text with
the CHANGE command, the user types a form feed
(CTRL/L) to terminate input from the keyboard.

5 -12

5.8.2 D: Deleting Lines of Text
The DELETE command causes the deletion of one or more
lines of text in the buffer. It is issued as follow~:

Form [m,]nD

where m is optional, and n is a required argument, supplied
as shown in Table 5-8.

Command

nD

m,nD

Table 5-8
DELETE Commands

Meaning

Delete line n.

Delete lines m through n (m must be
less than n).

When the Editor has performed the specified deletion, it
automatically renumbers all succeeding lines reducing their
implicit numbers by the number of lines deleted. When a
command of the form

m,nD

is performed, the line following n becomes the new line m,
and the rest of the lines are renumbered accordingly.

FollOWing is an example of deletion of text in the buffer:

Implicit Line Number Text

1 AAA
2 BBB
3 CCC
4 DDD

The command:

2,3D

changes the text buffer to the following:

Implicit Line Number Text

1
2

AAA
DDD

5.8.3 G: Getting a Tagged Line
The GET command is used to locate the next line in the
text buffer with a tag associated with it. It is issued as
follows:

Form [nl G

If a simple G command is supplied, the Editor begins the
search for the next tagged line with the line following the
current line (the value of the current line counter). If the
optional argument precedes the G, the search begins at line
n, testing it and each succeeding line. The line which first
passes the test will be printed on the terminal by the
Editor.

A tagged line is defined as one which does not begin with a
tab, slash, or space character. Usually such lines begin with
tags or labels, but lines not indented will also pass the test.
For example:

Sample GET commands, with the initial line counter at line
5, are given below:

IG
VERI, LMA
G
VER2, JFZ VERI
G
?

5.8.4 K: Killing the Text Buffer
The KILL command causes the entire page in the text
buffer to be erased. It is issued as follows:

Form K

The values of special characters / (last line in buffer) and.
(current line counter) are set to zero. The Editor remains in
COMMAND mode after the buffer has been erased.

LAB This is the current line.
INP2

/THIS IS A COMMENT
HERE, LMA This line will be printed by GET.

RAR
JFZ HERE

*20#377 This line will be printed next if another GET is entered.

If the GET command succeeds in finding a tagged line, the
current line counter is updated. However, if the GET
reaches the end of the buffer without finding a tagged line,
the current line counter (i.e., the value of the line counter
before the GET was issued) is preserved. A question mark
(?) is typed on the terminal to indicate that tests were not
successful. The Editor remains in COMMAND mode after
all GET operations.

The following is the current text -buffer:

Implicit Line Number Text

I LAB
2 INP2
3 /OLD VERS][ON
4 VERI, LMA
5 RAR
6 VER2, JFZ VERI
7 HLT

5 -13

5.8.5 M: Moving Text in the Buffer
The MOVE command is used to move a line or lines from
one location in the text buffer to another. It is issued as
follows:

Form m,n$jM

where m, n, and j are all required arguments. The MOVE
command causes text buffer lines m through n inclusive to
be moved to the position just before line j. The user must
ensure that m is less than n. After the MOVE is complete,
lines are renumbered but the value of the current line
counter (.) is not changed.

The following example:

I,IO$20M

causes lines I through 10 to be moved to just before line
20. If the user wishes to move a single line to a new

location, three arguments must nevertheless be supplied;
this is accomplished by specifying the same value for both
m and n, as in the following:

15,15$25M

lbis moves line 15 to before line 25. To insert text at the
beginning of the buffer, simply specify 1 as the j argument:

20,30$IM

To move text to the end of the current text in the buffer,
the user supplies a special j specification of /+1 (i.e.,
cnd-of-buffer + 1), as in the following:

1,10$/+IM

This moves lines 1 through 10 to the end of the current
contents of the text buffer.

MLE remains in COMMAND mode after performing a
MOVE command. Moving lines does not affect the size of
the buffer in any way since lines are merely rearranged, not
added.

The following example illustrates the use of several vers:ions
of the MOVE command. The initial contents of the buffer
follows:

lmplicit Line Number Text

1 AAA
2 BBB
3 CCC
4 DDD
5 EEE
6 FFF

First, move line 5 to the beginning of the buffer:

5,5$IM

The buffer now looks like this:

Implicit Line Number Text

1 EEE
2 AAA
3 BBB
4 CCC
5 DDD
6 FFF

5-14

Next, move lines 1, 2, and 3 to the end of the buffer:

1,3$/+IM

Implicit Line Number Text

1 CCC
2 DDD
3 FFF
4 EEE
5 AAA
6 BBB

Finally move lines 3 and 4 to before line 2:

3,4$2M

Implicit Line Number Text

1 CCC
2 FFF
3 EEE
4 DDD
5 AAA
6 BBB

5.8.6 S: Searching the Text Buffer
The SEARCH command is used to examine all or part of
the text buffer for a specified character. It is issued as
follows:

Form [[m,] n] S

where m and n are optional arguments, supplied as shown
in Table 5-9.

Command

S

nS

m,nS

Table 5-9
SEARCH Commands

Meaning

Search the entire buffer for all oceur­
rences of a particular character.

Search line n for an occurrence of a
particular character.

Search lines m through n for an
occurrence of a particular character.

The SEARCH command is very different from the MLE
commands already discussed in this manual. It is far more
interactive and therefore facilitates far more complex
editing operations.

The SEARCH command string itself does not specify the
character for which the Editor is to search. That character
must be entered after the command, terminated by a
RETURN key, has been typed. No searc:h operations will
begin until a character is typed; MLE will simply halt
waiting for input. The user is expected to type a single
character as the object of the search, but the typed
character will not be echoed. Instead, the Editor will
respond either by typing a question mark (?) to indicate
that the desired character cannot be found in the speCified
line or lines, or by supplying part of the first line
encoun tered which contains the specified character, from
the first character in the line to the position where the
specified character occurred.

An example may be helpful. Assume that line 10 contains
AB**N&&:

lOS
AB*

In this example, the user requested a search of line 10 for
the asterisk character (*) entered in the place where A
appears. The * is not echoed, but the Editor locates that
character in line 10 and types out line 10 from the
beginning to the position in which * occurs. At this point,
the user may choose one of many options which affect the
selected line or the text in the rest of the buffer. These
options are listed in Table 5-10.

The options shown in Table 5-10 apply particularly to the
nS form of the SEARCH command. In almost all cases,
however, they are applicable to the other command formats
as well. If the follOWing form:

m,nS

is used, indicating a search in lines m through n inclusive,
one major difference occurs. If RETURN is typed in .
response to the Editor's display of the search character line, .
the entire unprinted portion of the line is deleted and the
line is terminated. However, the search will continue on the
next line.

By typing CTRL/G to change search characters, all editing
of a single line may be performed in one pass. Typing
CTRL/G twice will cause the search to terminate since the
search character will now be BELL, which is not stored in
the buffer.

5 -15

Option

CTRL/U

RETURN

RUBOUT (\)

character(s)

LINE FEED

CTRL/L

CTRL/G
character

Table 5-10
SEARCH Options

Action

Delete the entire printed portion of
the line with the CTRL/U (erase)
character. This preserves the unprinted
portion of the line. A carriage return/
line feed character is automatically
generated.

Delete the entire unprinted portion of
the line, and terminate the search.
MLE resumes in COMMAND mode.

Delete one character from right to left
for each RUBOUT typed; only printed
characters are affected.

Insert typed character(s) after the last
printed character.

Insert a carriage return/line feed char­
acter between the printed and un­
printed portions of the line.

Continue the search to the next occur­
rence of the specified character; when
the next line portion has been printed,
all options are available again.

Change the search character to char­
acter and continue the search to the
first occurrence of this character.

Specifying a simple S command causes the entire buffer to
be searched for occurrences of a single search character. It
should be remembered, however, that as with CHANGE,
every SEARCH command uses additional buffer space for
storage of the new line. This is necessary, since the program
can have no prior knowledge of whether the size of the line
will be . less than, greater than, or equal to that of the old
line, and it must therefore assume that it will be greater.
The entire text buffer is searched and a new image of this
text is created in core; it is guaranteed to occupy the same
space as before, or somewhat less, since all deleted spaces
have been removed. The only prerequisite to condensing
the text image is that there be enough core space left to
contain another image of the edited text. The options
available in a simple S specification are exactly the same as
those for the m,nS version of the command.

5.9 EDITOR OPERATING PROCEDURES
This paragraph summarizes operating procedures for load­
ing, using, and restarting the Editor. These include:

1.

2.

Loading the Editor into core.

Generating a source program off-line.

3. Loading a tape using the Editor.

4. Restarting the Editor.

5. Editing a tape.

6. Punching a tape.

5.9.1 Loading the Editor into Core
MLE is loaded into core using the Microprocessor Host
Loader (MHL). This loading procedure is illustrated in
Figure 5-1. This flowchart also illustrates the selection of
Switch Register bits to specify the appropriate paper-tape
reader/punch and demonstrates actiom; required to generate
a program on-line. After the Editor is, loaded, it resides in
core in locations 0200-1624.

5.9.2 Generating a Symbolic Program Off-Line
Figure 5-2 illustrates the generation of a symbolic program
off-line using the Teletype low-speed punch. This procedure
is generally much slower than using MLE, but in the case of
creating extremely short programs it may prove advanta­
geous. Leader/trailer tape made up of octal 200 code
(rather than the blank tape produced by the HERE IS key)
may be generated off-line by pressing the SHIFT, CTRL,
REPT and P keys in order and holding all down simul­
taneously.

5.9.3 Loading a Symbolic Tape Using the Editor
Figure 5-3 illustrates how to load a symbolic tape using
either the low-speed or high-speed paper-tape reader. MLE
will continue to read a tape until a form feed code is
encountered (see the section on FORM FEED). As soon as
it recognizes the form feed character, MLE enters COM­
MAND mode and rings the Teletype bell or produces an
audible signal on another terminal to indicate that it is
ready to accept a command.

NOTE
When using the Teletype reader, if the form
feed code is encountered before the symbolic
tape has been completely read in (as indicated
by the bell or signal), turn off the paper-tape
reader. Otherwise, characters on tape will be
interpreted as commands to the Editor. The
section of tape read in up to the form feed code
should then be edited before proceeding with
the remainder of the tape.

5 -16

MLE IS IN
COMMAND MODE

'-------r----'

'------r----'

-----1SEE FIGURES 4-7. 4-~

------1SEE FIGURE 4-9]

un - -1 SEE FIGURE 4 -IC~

Figure 5-1 Loading the Editor into Core

5.9.4 Restarting the Editor
If the user halts the computer for any reason during the
editing process, MLE may be restarted. The user has the
option of either clearing the text buffer or restarting SOl that
the text in the buffer is maintained.

1. To clear the buffer, set 0176 in the Switch
Register; press ADDR LOAD, CLEAR, and
CaNT.

2. To restart without clearing the buffer, set 0177
in the Switch Register; press ADDR LOAD,
CLEAR, and CaNT.

Figure 5-2 Generating a Symbolic Program Off-Line

3. Set 0200 in the Switch Register.

4. Press ADDR LOAD, CLEAR, and CONT.

This has the effect of restarting the Editor in COMMAND
mode.

5.9.5 Editing the Source Program
Actual editing procedures depend, of course, on the
particular programs being created or modified. A general
approach is illustrated in the example presented in Para­
graph 5.10. For input, editing, and output commands to
the Editor, refer to the specific paragraphs just discussed.
Also observe the following operating notes and precautions:

1. Terminate each command to the Editor by
typing the RETURN key. This directs MLE to
execute the command.

5~1 7

NO TAPE
READS IN

?

'------;;----" -------1SEE FIGURE 5-11

Figure 5-3 Loading a Symbolic Tape Using the Editor

2.

3.

After a command to insert, change, or append
text to a symbolic program has been executed,
MLE remains in TEXT mode until the operator
types CTRL/L on the terminal. This genera tes
the form feed code, which tells the Editor to
return to COMMAND mode.

The Editor senses a buffer full condition
(buffer capacity is approximately 60 lines of
commented text or 340 lines of uncommented
text) when, after completing input of a text
line, it finds that characters have been packed
in the last 128 locations in the text buffer.
When this condition occurs, MLE rings the
Teletype bell or produces an audible signal on
another terminal five times and exits to COM­
MAND mode. The user then has a choice of
deleting text and continuing editing as usual, or
attempting to input more than 200 additional
characters. After each line, the buffer full alarm
will precede a return to COMMAND mode.
When no more characters can be packed, the
Editor will again output the alarm five times
and will exit from the input routine. Any
further attempts to input text will be answered
in the same manner until deletions have made
room for text input. Although characters are
received through the input device, they
probably will not be appended as text.

4.

If the Editor runs out of buffer space while
searching a line, the unsearched portion of the
line may be lost or the text line counter may be
incorrectly set during the buffer full exit so
that the Editor recognizes one more line of text
in the buffer than actually exists. Occurrence of
the latter will cause an error return after or
during any output operation involving the last
line (for example, an N operation will be
terminated as soon as the text buffer is
punched). After the enor return, th,~ line
counter will contain the correct value.

Users should note that all such problems may
be avoided by logically segmenting a program
on paper tape into "pages" of 50 to 60 lines.
This is accomplished by punching groups of 50
lines followed by a form feed character.

The Editor may be stopped at any time by
pressing the HALT key on the console; to
continue, press the CONTinue key.

5.9.6 Punching the Corrected Symbolic Tape
The procedure for punching out the corrected symbolic
tape depends to some extent on the user's requirements.
The general sequence is given below and in Figure 5-4.

1. Enter output commands to punch blank tape
for leader/trailer purposes (T), form feeds (F),
the appropriate lines of text (m,nP), or the
entire text buffer (P).

2. Following the PUNCH command, the computer
will halt giving the user the opportunity to
check Switch Register bits and to turn on the
appropriate punch if he has not done so
already. Punching is initiated by pressing the
CONTinue key on the console.

NOTE
If the low-speed punch is used, it should!
be turned off during the typing of com··
mands; otherwise these codes will bf!
punched on the symbolic tape.

R
L

*100#0
XR%
JTS NEG

ROTAT, RAR

L
TYPE F COMMAND

AND QUICKLY
SET LSP ON

r:
~LSP~

1:::
I TYPE T eo'UMAND

ANCI TunN
LSP ot!

Figure 5-4 Generating a Symbolic Tape Using the Editor

3. Punching the symbolic program does not ddete
it from memory. The page remains in the text
buffer in core until the KILL command is given
to erase it. If the user wants to read another
tape into the buffer he must first delete the
entire page of text (K). Remember that the
recommended page length, as delimited by the
form feed, is approximately 60 lines of heavily
commented text. However, MLE can ac,~ept

more text if necessary.

5.10 EDITING EXAMPLE
This paragraph illustrates the reading, editing, and punching
of a short assembly language program. MLE is loaded and
started as described in the previous section. The paper tape
containing the program to be edited is then read :in and
listed.

/CLEAR ACC
/LOAD DATA FROM MEMORY
/JUMP TO NEG IF DATA NEGATIVE
/ROTATE DATA RIGHT

5 -18

The user wishes to append text to this incomplete program and does so by typing:

A
LMA /STORE RESULT

NEGT, RAR/ROTATE DATA RIGHT
OR% 200 /SET THE LEFTMOST BIT TO 1
LAM /STORE RESULT
HLT
$

To obtain a fresh listing of the text, the user types L again:

L
*100#0
XR% /CLEAR ACC
ADM /LOAD DATA FROM MEMORY
JTS NEG /JUMP TO NEG IF DATA NEGATIVE

ROTAT, RAR /ROTATE DATA RIGHT
LMA /STORE RESULT

NEGT, RAR/ROTATE DATA RIGHT
OR% 200 /SET THE LEFTMOST BIT TO 1
LAM /STORE RESULT
HLT
$

A few errors are noticed immediately and are corrected.

2L

2C

6L

71

7,l1L

NEGT,

lID
111

10L

10C

XR% /CLEARACC

XRA /CLEAR ACC

LMA /STORE RESULT

HLT /DONE

HLT /DONE
RAR/ROTATE DATA RIGHT
OR% 200 /SET THE LEFTMOST BIT TO 1
LAM /STORE RESULT
HLT

HLT /DONE

LAM /STORE RESULT

LMA 0 /STORE RESULT

5-19

The user decides that the program is ready for assembly and
formats the output tape in the following way:

P
F
T

This produces the text of the program followed by a form
feed, followed by a trailer. The computer halts after the
PUNCH command is issued and wa.its for the paper-tape
unit to be readied. When this has been performed, the
CONTinue key on the console must be pressed.

Message Statement

AD AT 00 000 *100#0

IC 245 AT 00 010 OR%

OA AT 00 011 LMAO

US NEG AT 00 002

The first assembly of this program produces the following
error messages on pass 1. See Chapter 6 for detailed
descriptions of all statement syntax and errors.

AD
IC 245
OA
US NEG

AT 00 000
AT 00 010
AT 01 011
AT 00 002

Addresses in AT specifications are given in octal offsets
within blocks. These messages can be matched to source
statements as follows:

Meaning

Address specified in origin is out of range. Maximum
block-offset is 77#377; origin is set to zero so the addresses
in the rest of the program are not affected.

Illegal character (%) is not recognized by the Assembler.
ASCII representation of % (245) is supplied; ORI was
simply misspelled.

Operand error; LMA load instruction does not take an
operand and 0 is supplied.

Undefined address. No NEG label can be found in the
program; statement with label NEGT is probably in erroT.

The program can now be corrected as follows:

lL
*100#0

IC
*35#40

G
ROTAT, RAR
6G

/ROTATE DATA RIGHT

NEGT, RAR/ROTATE DATA RIGHT

8
8C
NEG,
1,12S

9
9C

RAR

OR%

ORI

/ROTATE DATA RIGHT

200 /SET THE LEFTMOST BIT TO 1

200 /SET THE LEFTMOST BIT TO 1

5-20

A few commands require explanation. The interaction:

1,12S
OR%

does not show the typing of the search character, the %.
The user types % right after the carriage return following

L
*35·#40
XRA
ADM
JTS NEG

ROTAT, RAR
LMA
HLT

NEG, RAR
ORI 200
LMA
HLT
$

The program is then punched-out for assembly and the text
buffer cleared for subsequent use.

P
F
T
K

1,12S, but this character is not echoed. To return to
COMMAND mode after the line is found and the string
OR% printed, the user types CTRL/L. The .t: command
requests, in two cases, that the decimal number of the
current line be printed so that it can be changed. Then, the
user verifies that all corrections have been made by listing
the entire program.

/CLEAR ACC
/LOAD DATA FROM MEMORY
/JUMP TO NEG IF DATA NEGATIVE
/ROTATE DATA RIGHT
/STORE RESULT
/DONE
/ROT ATE DATA RIGHT
/SET THE LEFTMOST BIT TO 1
/STORE RESULT
/DONE

5-21

6.1 INTRODUCTION TO THE ASSEMBLER
The Microprocessor Language Assembler (MLA) is a
powerful paper tape-oriented system program which is used
to assemble source code on the PDP-8 into binary output
which is loaded and executed on the Processor Module.
Input to the Assembler is usually prepared with the aid of
the PDP-8 Microprocessor Language Editor (MLE)
described in Chapter 5; it can also be generated off-line.
The Assembler expects all input to be in paper tape form,
and reads input tapes, dynamically' selecting the high-speed
paper-tape reader. If a high-speed device is not part of the
system configuration, the Assembler reads from the
low-speed reader associated with the Teletype. At the user's
option, assembled code can be output in punched paper
tape form or can be listed on the terminal printer.
Diagnostic messages are displayed to indicate errors in
syntax, warnings, or actions taken by the Assembler.

The Assembler operates in three passes to produce binary
code suitable for testing and executing on the
Microprocessor Series, and outputs a variety of program,
diagnostic, and symbol table listings. The lPDP-8 therefore
serves as the host computer for the preparation and
development of executable code. In an effort to aid those
who have used other PDP-8 Assemblers, such as PAL III,
MLA has been designed to conform to such existing
Assemblers in terms of its character set, error messages,
available operators, and construction of statements,
symbols, and expressions whenever possible.

6.2 OVERVIEW OF THIS CHAPTER
Information necessary for developing and assembling
programs for the Microprocessor Series is presented in this
chapter and structured as a series of seven major topics:

1. Character set, including use of numbers and
symbols.

6-1

CHAPTER 6

MICROPROCESSOR

LANGUAGE ASSEMBLER

2. Language syntax, focusing on construction of
statements and use of instructions, operators,
and expressions.

3. Internal Assembler characteristics, including
mapping of memory and use of tables.

4. Instruction set comprising index register,
accumulator, program-counter, stack-control,
input/output, and machine instructions.

5. Pseudo-instructions used to assign values to
storage, to indicate end of program or tape, to
define operation codes, and to perform other
Assembler functions.

6. Operating instructions necessary to load the
Assembler and the source program, to run and
restart the Assembler, and to define desired
output.

7. Error messages produced during assembly, with
suggested possible reasons for occurrence.

This information, when supplemented by specific details of
Editor (Chapter 5) and Loader (Chapter 7) usage, should
provide the necessary background for developing source
programs and preparing them for execution on the target
module.

6.3 BASIC CHARACTER SET
This paragraph defines the set of characters allowed in
Assembler input, defines special characters used for paper
tape or listing control, and describes construction of
numbers and symbols.

6.3.1 Legal Source Text Characters
The following list summarizes all characters that may be
included in a source program and are accepted by the
Assembler:

• Alphabetic characters A through Z

• Numeric characters 0 through 9

• Selected special (printing) ,;haracters, such as:

Character Meaning

•

•

Space
+

Space
Plus
Minus

&

t

$

/
<
>
*

Label terminator
Is replaced by
Logical AND
Logical OR
High byte-selection operator
Data separator
End of source program
Current value of location counter
Comment initiator

{
Used to enclose numeric representation
of ASCII character
Used to reset location counter
Block-offset operator

Selected special (nonprinting) characters, such
as:

TAB
Carriage return
Form feed

Ignored characters, often produced by the
editor, such as:

Blank tape
RUBOUT
Leader /trailer (octal code 200)
Line feed

Characters other than those listed above may be included in
an assembly language source program only when included
after a comment character (/) or within a TEXT literal. The
presence of an illegal character in A8sembler code causes

6-2

the following message to be displayed during Assembler
pass 1:

IC xxx AT yy zzz

where IC identifies this as an illegal character message, xxx
is the ASCII value of the illegal character, and yy zzz is the
address at which the error was encountered, in block-off~,et
notation. This message causes the illegal character and the
rest of the current line to be ignored while assembly
proceeds. If an illegal character is detected in a symbol,
however, the symbol is assumed to terminate at the
position where the illegal character occurred.

6.3.2 Format Control
Certain keys on the terminal may be used to affect the
format of an Assembler listing by skipping to the next line
or by inserting blank lines or spaces. These spedal
characters include the following:

Character

Form feed

TAB

Carriage return

Meaning

Assembler outputs 12 blank lines in
the output listing when form teed
(CTRL/L on the terminal) is entered.
It is used to begin a new page of text
and has no effect on the binary
output.

Assembler outputs between on,e and
eight spaces in the output listing line if
bit 10 is set in the Switch Register;
total number of characters in inserted
spaces and prior symbols equals eight.
It is also used to line up column:; of
code (symbols, comments, etc.) in the
listing.

Terminates a line in the source
program and output listing; used to
separate one statement from th(~ next.

6.3.3 Construction of Numbers
The Assembler recognizes numbers in octal, hexadecimal,
and decimal form. In all cases, a number must be
represented by a string which begins with a digit (0-9).
Therefore, hexadecimal A2 is constructed as OA2.

6.3.4 Construction of Symbols
The user can construct symbols to represent labels in the
assembly language program by combining legal letters and
digits in a string. Rules for user-defined symbols follow:

1. A symbol must begin with an alphabetic
character (A-Z).

2. A symbol may contain any number of letters
(A-Z) and digits (0-9), but only the first six
characters are recognized.

3. A symbol must be terminated by a comma.

4. The space character is used to delimit a field
and may not be embedded in a symbol.

Any of the following are legal symbolic labels:

TOTAL,
NEG,
PROD!,
HALT!O,
AIB2C3D4E5, (only Al B2C3 is recognized).

NEG, RAR
ORI
lMA
HLT

The following are examples of illegal labels which do not fit
the definition of a symbol:

Label

lADDUP
SET%X
ADD UP
SET*X
NEG

Reason

First character (1) not alphabetic
lllegal character
Embedded space
Legal but nonalphanumeric character
Not terminated directly by comma
(spaces not allowed)

6.4 STATEMENT SYNTAX
An assembly language statement consists of a maximum of
four fields and is constructed as follows:

Form [label,] [instruction] [operand] [lcomment]

All four fields are optional under different circumstances.
The instruction is normally a required item in every
statement. In many cases an operand field must be included
as well. A label is only necessary to identify the object of a
branch, but if it is included, the label must be separated
from the rest of the statement by a comma (,). The
comment field is optional in all cases; if included, the
comment must be preceded by a slash (/). Comments may
be entered on a line without any other text, as in the
following:

/FOLLOWING IS A
/COMMENT

In this case, the instruction field need not be included.

The order of the fields shown in this form must be
preserved, but the particular placement of individual fields
is not significant. Spacing is specified to give the impression
of tabbing throughout this chapter, but tabbing is, of
course, optional, and both of the follOWing examples are
interpreted identically by the Assembler. First, with
tabbing to columns 1, 9, 17, and 25 for labels, instructions,
operands, and comments respectively:

/ROTATE DATA RIGHT
200 /SET THE LEFTMOST BIT TO 1

/STORE RESULT

6-3

/DONE

Next, with free-form specification of fields:

NEG,RAR/ROTATE DATA RIGHT
ORI 200 /SET THE LEFTMOST BIT TO 1
LMA/STORE RESULT
HLT/DONE

The use of standard tabbing does improve the readability of
a source listing and is recommended for that reason. But a
certain delimiting of fields is necessary whether or not
tabbing is performed. Fields must be separated by:

1. A label from an instruction by a comma
(followed by as many spaces as desired),

2.

3.

An instruction from an operand by at least one
space or tab, or

An instruction or an operand from a comment
by a slash (preceded and followed by as many
spaces as desired).

To facilitate a clear and easy-to-read program listing, the
following coding practices are recommended. Use of these
practices is also recommended to improve the ease of
sharing programs among different programmers.

l.

2.

3.

4.

5.

If a title or introductory program comment is
included, begin the line with a slash and regard
the entire line as a comment.

Begin all statement labels at the left margin and
tab once to the sta tement's instruction field.

Tab once from the margin before typing an
unlabeled instruction or pseudO-instruction to
align this field with labeled instructions.

If an operand is included in the statement, tab
twice from the margin before typing it.

If a comment is included, tab once from the
operand field, twice from the instruction field
(if an operand is not required), or three times
from the margin (if the comment is effectively
continued from the previous line) to line up all
comment fields. It is legal to include a full-line
comment and to specify a slash as thE: first
character of the line; this is useful in delineating
parts of the program.

The four components of a statement are described in
greater detail in the paragraphs which follow.

6.4.1 Construction of a Label
A statement label is used to tag an assembly language
statement and thereby identify its, location so other
statements can branch to it or reference it during
execution. A label must be a legal symbol, as just defined,
and must be immediately followed by a comma, as In the
following examples:

END1,
NEG,
STORE,

HLT
LMA
ORI 200

If a label is included, it must be the first field in a statement
preceding the instruction, operand, and comment fields.

6-4

All statement labels referenced in an assembly language
program must appear in that program. For example, in the
following routine:

NEGT,

1#200
XRA
ADM
JTS
RAR
LMA
HLT
RAR
ORI
LMA
HLT
$

NEG

200

The JTS jump instruction references label NEG which d.oes
not appear in the program (in actual practice, this may
indicate a simple misspelling, as suggested). At the end of
Assembler pass 1, the symbol NEG will be undefined and
the follOWing message will be printed

US NEG AT 01 202

where US identifies this as an undefined symbol message,
NEG is the symbol used but not defined, and 01 202 is the
current location at the time the undefined symbol was first
specified (the JTS instruction).

A different error message will be output if the same symbol
is used as a label more than once in a single program. In this
case, the following message will be printed

DT xxxx AT yy zzz

where DT identifies this as a duplicate tag message, xxxx is
the duplicate symbol, and yy zzz is the location of the
second occurrence of the label in block-offset notation. The
symbol will not be redefined.

6.4.2 Construction of an Instruction
The instruction field in a statement must be occupied by
one of the following:

•
•
•

Mnemonic MLA instruction

MLA pseudo-instruction

User-defined instruction

Assembler instructions and pseudo-instructions are
implemented as reserved words and are described in detail
in subsequent paragraphs. These words may not be selected
as user-defined symbols or used in any other part of a
statement except in the comment field, as follows:

ENDL, HLT /HLT INDICATES END PROGRAM

User-defined instructions can be used only after they have
been explicitly defined in the user program. Some
instructions and pseudo-instructions require the inclusion
of operands. If an operand is specified as the object of an
instruction, at least one space must separat1e the two fields.
If an operand is not included, the comment field (if
specified) must be preceded by a slash. If an instruction is
labeled, a comma must separate the label and the
instruction.

6.4.3 Construction of an Operand
The inclusion of an operand is required after many
Assembler instructions and pseudO-instructions. After an
instruction, the operand is usually an octal, hexadecimal, or
decimal address, a symbol representing the data to be
manipulated, or the address to be refere:nced when the
instruction is executed. An operand is usually included
after a pseudo-instruction as the argument of that
pseudo-instruction. At least one space must separate the
instruction field from the operand field of a statement. A
slash must separate the operand from a comment (if
included).

6.4.4 Construction of a Comment
Comments can be included in an assembly language
program to annotate the functions of particular statements
or to document complicated logic for future ease of
debugging or recoding. In processing input statements, the
Assembler ignores everything from the slash, used to denote
the beginning of a comment, to the next carriage return.
This means that the comment field must be the last or the
only field in a statement. Some examples follow:

/THIS IS A SAMPLE PROGRAM
/

NEG,

*1#200
XRA
ADM
JTS
RAR
LMA
HLT

NEG

MLA allows lines to be inserted in the text of a program as
shown in the third line of the previous example.

6.S THE LOCATION COUNTER
The location counter is a special Assembler pointer which is
constantly updated during program execution to keep track
of the current address. The user ordinarily sets the location
counter at the beginning of the program with the origin (*)
pseudo-instruction to indicate the address at which
execution is to begin. Subsequently, the location counter
can be referenced as an operand to set a value or to specity
a jump to a location relative to the counter. In the
following code

*1#200
INPI
NDI
JFZ

200
.-3

/GET STATUS
/MASK BIT 7
/LOOP UNTIL BIT IS SET

* 1 #200 sets the counter initially at block 1 offset 200, and
JFZ .- 3 indicates a conditional jump to the current
location minus 3.

Because MLA is a symbolic Assembler capable of setting
the location counter and performing all other operations
based on symbolic assignments like

*A#B

the extensive use of the . to set the location counter is not
recommended. Symbolic addresses and values should be
used to avoid rewriting the entire program if the program is
moved in core and specific locations have been represented
throughout the source text. Relative addressing with .
should be used only if available symbol table space is very
tight.

6.6 EXPRESSIONS AND OPERATORS
This paragraph describes legal operators in the MLA
assembly language and discusses the construction and
evaluation of expressions.

/CLEAR ACCUMULATOR
/LOAD DATA FROM MEMORY
/JUMP TO NEG IF DATA NEGATIVE
/ROTATE DATA RIGHT
/STORE RESULT
/DONE

6-5

There are five different kinds of operators available to MLA
users:

• Replacement operator =

• Arithmetic operators + and-·

• Logical operators & and !

• High byte-selection operator t

• Block-offset operator #

6.6.1 Expression Evaluation
Expressions are evaluated by the MLA from left to right
without pre(;edence in signed 23-bit arithmetic. Parentheses
are not legal characters and cannot be used to impose
precedence on an expression; the components must simply
be ordered appropriately.

6.6.2 Replacement and Arithmetic Opelrators
Replacement and arithmetic operators are used in
arithmetic expressions to indicate two's complement
addition (+), subtraction (-), and replacement (=).
Following are two examples of arithmetic expressions:

D=A-B+3
C=.+2

Arithmetic is carried out on signed 23-bit numbers. Only
the lower 14 bits are used as an address in a jump or call
instruction. If the high-order bits are set, an error message
of the following kind will result

AD AT yy zzz

where AD identifies this as an address out-of-range message
and yy zzz is the value of the location counter when the
address was specified in block-offset notation.

6.6.3 Logical Operators
Two logical opera tors have been implemented for use with
the Assembler. These are &, indicating a logical AND
operation, and !, indicating a logical OR operation. Logical
operators are used in logical expressions of the following
forms:

A&B
X!Y!Z
A&B!X&Z
X+Y&Z-A!B

Logical and arithmetic operations can be mixed as just
shown in the fourth example.

6-6

6.6.4 High Byte-Selection Operator
The high byte-selection operator t (up arrow) is a
post-operator used to indicate selection of the high byte of
the entire expression (from the beginning) which the t
follows. For example,

LHI A+Bt

indicates a load immediate of the high byte of expression
A+B to register H. The example below, on the other hand,
indicates a load immediate of the low byte of value A to
register L.

LLI A

By selecting the high byte, this operator performs: an
effective signed divide by 256. For example, if the
follOWing assignments have been made

A = 0400
B = 0377

the expression

A+B+I0t+l

resul ts in 0003.

6.6.5 Block-Offset Operator
The block-offset operator # is used to indicate an address in
terms of its block number and an offset within that block.
For example, an origin (*) pseudo-instruction of the form

*2#200

sets the location counter to location 200 within block 2
(octal 1200). The example

JMP 35#377

sets the location counter to block 35 offset 377 (octal
16777).

The conversion from block-offset to octal notation
proceeds as in the following. The bit pattern of 35#377 can
be represented by:

011 101 11
3 5 3

111 111
7 7

The effect of the # operator is to shift block number 35 to
the right causing the following displacements and
conversion:

01
1

110 111
6 7

111 111
7 7

Appendix F serves as a conversion table for block-offset to
octal notation.

6.7 THE MEMORY MAP
The memory map of the M7341 module is relevant to the
user's understanding of the instruction set described in
Chapter 3. The map consists of a string of 8-bit bytes as
shown:

Bytes

n
n-l

2
1
o

7

7

H

6 5

o

Bits

Byte 1

H H H H H

4 3 2 o

6-7

Bytes go from low (0) to high (n) in increments of 1.
Within each byte, bits are numbered from right (0) to left
(7). Bit 7 is the most significant bit.

Addresses in memory are 14 bits long and consist of one
8-bit byte plus the low six bits of the next byte, as shown:

n
n-l

Bytes

"-

_.
2 ,-
1 H H H H H H
0 L L L L L L L L __

7 6 5 4 3 2 o

Bits

Bit 5 of byte 1 above is therefore the most significant bit of
the 14-bit address stored in bytes 0 and 1, as shown below:

Byte 0

L L L L L L L L

7 6 5 4 3 2 o

6.8 ASSEMBLER SYMBOL TABLES
Symbols that appear in assembly language statements are
stored in one of the following three symbol tables:

1. Pseudo-instruction symbol tables

2. Instruction symbol table

3. User symbol table

When searching for a symbol defined in the instruction field
(or OP code field) of a statement, the search precedence is:

• Pseudo-instruction symbol table

• Instruction symbol table

When searching for a symbol defined in the operand field,
the precedence is:

• User symbol table

• Instruction symbol table

If an operand of a three-byte ("type 2") instruction (e.g.,
CAL or JM!» is found in the instruction symbol table, this
operand is assumed to be a two-byte address. The following
warning message will be given

AW xxxx AT yy zzz

where A W identifies this as an address warning message,
xxxx is the address (label) found in the instruction symbol
table, and yy zzz is the current location counter at the
time the label was processed, in block-offset notation. This
message applies only to three-byte instruction entries and it
is only a warning - the code is generated from the
instruction symbol table.

The instruction symbol table is often called the OP Code
Table, and the pseudo-instruction symbol table the
Pseudo-OP Code Table.

6.9 MLA INSTRUCTION SET
The MPS instruction set is described fully in Chapter 3 in
terms of components, number of bytes and time states,
types of machine cycles executed, and examples of program
usage. The following list summarizes classes of instructions:

• Index register instructions

• Accumulator (arithmetic/logical) instructions

6-8

• Program counter and stack control instructions

• Input/output instructions

• Machine instructions

Legal instructions in each of these categories are descIibed
in detail in Chapter 3 and are sununarized in Appendix B.

6.1 0 PSEUDO-INSTRUCTIONS
The MLA pseudo-instructions documented in this section
have been implemented to supplement the capabillitiles
offered by the instruction set itself. Pseudo-instructions a.re
referenced in the pseudo-instruction symbol table (also
called the pseudo-OP table).

6.10.1 $: Indicating End of Program
The $ (dollar sign) pseudo-instruction is used to indicate
the end of an assembly language program as follows:

Form $

The $ is a required part of every program and causes the
current pass to be terminated. A carriage return must
terminate the $ or the program will not execute.

The following is a legitimate end to an assembly language
program:

LMA
HLT
$

/STORE RESULT
/DONE

6.10.2 PAUSE: Pausing During Assembly
The PAUSE pseudo-instruction causes a pause in the
Assembler processing and is issued as follows:

Form PAUSE

A carriage return must be typed after the PAUSE. The
Assembler stops processing the paper tape being read at the
time the PAUSE is encountered, but the current pass on the
tape is not terminated. Processing continues when the user
presses the CONTinue switch on the PDP-8 console.

PAUSE is nonnally used only at the end of a physical tape
when the program being processed is stored on more than
one tape. When the Assembler PAUSEs, it resets the input
buffer pointer and waits for the operator to resume. He is
expected to position the next tape segme:nt of the program
in the reader and, when the tape has been readied, to press
the CONTinue switch.

6.10.3 *: Specifying an Origin
The * (asterisk) pseudo-instruction is used to specify the
origin of the program and to set the initial program location
counter as follows:

Form *expression

where ex.pression is any legal Assembler expression as
defined in previous paragraphs. The origin is assumed to be
the value of expression and the location counter is set to
this initial value. The value of the expressilon must be in the
range bloGk 0 offset 0 through block 77 offset 377 (octal 0
through 37777) respectively. If a valm~ larger than the
maximum value or smaller than zero is specified, the error
message given in the following example is printed:

*177#000
AD AT 77 000

AD identifies this as an out-of-range addlress message, and
77 000 is the value of the current location counter. To
avoid genera ting needless errors in the assembly, the
out-of-range expression included in the origin statement
will be truncated to 14 bits before the location counter is
set. A symbolic origin can be specified" but any symbol
must be defined before the origin pseudo-instruction is
given. The following shows an example of such a
specification:

ST ART=04#200
*START

6.10.4 OCT, HEX, and DEC: Specifying: Radix Control
Three pseudo-instructions have been impilemented to allow
the user to set the radix for numbers interpreted in the
assembly language program. The octal base is assumed by
default and must be explicitly overridd,en by one of the
following pseudo-instructions:

Forms HEX
DEC

6-9

All numbers appearing after the new declaration are
interpreted in the new base. To resume octal interpretation,
the following specification must be given:

Form OCT

These pseudo-instructions set the radix as follows:

Pseudo-Instruction

HEX
DEC
OCT

Meaning

Set radix to base 16
Set radix to base 10
Set radix to base 8

6.10.5 EXPUNGE: Deleting the Instruction Symbol Table
The EXPUNGE pseudo-instruction is used to delete the
entire instruction symbol table and is issued as follows:

Form EXPUNGE

EXPUNGE is used to give the assembly language
programmer more core storage for his own user-defined
symbols. It is recognized by the Assembler during pass 1
and is ignored during pass 2 and pass 3.

EXPUNGE deletes only the instruction symbol table and
has no effect on the pseudo-instruction table. To define a
new instruction symbol table, OPDEF must be invoked
before any definitions are supplied. EXPUNGE must also
be used before the space allocated for the user symbol table
is used.

6.10.6 OPDEF: Specifying User-Defined Instructions
The OPDEF pseudo-instruction allows the assembly
·language programmer to define his own instructions with
the following format:

Form OPDEF mnemonic;value;type

The mnemonic represents the user-defined operation and
value is the value generated by that operation. The type
represents the type of instruction genera ted and must be
one of the following:

Type

o
1
2

Meaning

One-byte instruction
Two-byte instruction
Three-byte instruction

Type 0 instructions require no operands but both type 1
and type 2 instructions do require operands.

OPDEF must be issued before the space allocated for the
user symbol table is used.

6.10.7 DATA: Assigning a Value to Storage
The DATA pseudo-instruction is used to assign one or more
values to specific memory locations. It is included in a
statement in the following way

Form label, DATA nO;nl ~n2; ... nm

where each n is a value, variable, or expression constructed
as described in the paragraphs above. Entries are separated
by semicolons (;). The numerical values of the expressions
are assigned in sequence to memory locations beginning at
the value of the current location counter.

For example, in the following exampl,e

*70#370
DATA 5;6;7

the current location counter is set at block 70, offset 370
(octal 34370) by the origin (*) pseudo-instruction. Values
5, 6, and 7 are assigned in sequence to memory IOf:!ations
70 370, 70 371, and 70 372. The current location
counter is then reset at 70 372. Inclusion of a label in the
DATA statement is optional.

6.10.8 BLOCK: Assigning a Block of Data
The BLOCK pseudo-instruction is used to assign a block of
core by placing in it a fixed value or by filling it with values
with fixed increments or decrements. A BLOCK statement
is constructed as follows

Form label, BLOCK size [; initial [; increment]]

where a block of the size specified is assigned values. If the
following example is evaluated

*1=1/=0
BLOCK 10;1 ;1

a block of size 1 0 (octal) is filled as follows with an initial
value of 1 and a fixed increment of 1.

Address

400
401
402

407
(octal)

Value

1
2
3

10

6-10

If a simple BLOCK 10 speCification is supplied, the entire
block will be filled with zeros. If BLOCK 10;4 is given., the
entire block will be filled with 4 'so A label can be included
optionally in the BLOCK statement.

6.10.9 TEXT: Specifying a Character String
The TEXT pseudO-instruction is used to specify the
inclusion of an ASCII character string in an assembly
language program. It is issued as follows

Form label, TEXT \7 literal \7 ...

where \J represents a delimiter and ... indicates that the
literal specification can be repeated. An example of a TEXT
statement follows

TXOUT, TEXT /HI THERE/ <215> <0>

where HI THERE will be output followed by a carriage
return (ASCII code 215) and a null (ASCII code 0).

Rules for the construction of literals in TEXT statements
are summarized below:

1.

2.

The literal is delimited by a pair of any printing
ASCII characters with the exception of a left
angle bracket (<).

Right and left angle brackets « and » are
used to enclose a numeric representation of an
ASCII character. For example, <215> is used
to represent a carriage return and might often
be included after a text string to force a n:turn
before processing the next statement. ASCII
codes are evaluated according to the current
radix, set by OCT, DEC, or HEX.

3. There is no limit on the number of literals or
ASCII representations that may appear in a
TEXT statement, but the entire text string may
not exceed the length of a line.

The TEXT statement may be labeled and commented, as
shown in the following:

QUERY, TEXT /pRESS RETURN TO CONTINUE/<211> <207> /TAB AND RING BELL

In this example, a pair of slashes is used to delimit the text
string itself and a space followed by a slash indicates the
beginning of the comment field in the conventional way.

6.10.10 .ADDR: Generating an Address
The ADDR pseudo-instruction is used to generate address
constants in the following way

Form label, ADDR aO;al ;a2; ... ;am

where each a is an argument that generates a two-byte (low­
and high-byte) address, and a's are separated by semicolons
(;). The addresses are stored low-byte, high-byte, in
sequence, in locations beginning at the current location
counter. If a label is given, it refers to the low-byte of the
first address.

The high two bits of an address are regarded as "don't care"
bits by the Assembler and can be used as "flags."

6.11 ASSEMBLER OPERATING PROCJEDURES
This paragraph summarizes Assembler inputs and outputs
and describes procedures for loading and operating the
Microprocessor Language Assembler.

6.11.1 Loading the Assembler into Core
MLA is supplied in the form of a paper tape, punched in
binary-coded format. This tape is loaded into core by
means of the Microprocessor Host Loader (MHL), using
either the low-speed or high-speed paper-tape reader.
Selection of the reading unit and other load procedures are
shown in Figure 4-11.

6.11.2 Preparation of Input
Input to the Assembler consists of 3l source program
punched in ASCII code on eight-channel paper tape. The
tape can be prepared in one of two ways:

1. It can be punched by the user with an off-line
Teletype (Model LT33), or

2. I t can be punched by the Microprocessor
Language Editor (MLE) (see Chapter 5).

6-11

In either case, the paper tape should begin with leader code
which may be any of the following:

• Blank paper tape

• Code 200

• RUBOUT characters

The source program tape is read by the high-speed
paper-tape reader or, if the high -speed device is not
available, the low-speed reader associated with the
Teletype. The input tape should be positioned in the
appropriate reader after the Assembler itself is in core.

6.11.3 Starting the Assembler
The procedures outlined below should be followed in
operating the Assembler.

1. Load the Assembler into core.

2.

3.

4.

Set 0200 in the Switch Register and press
ADDRLOAD.

Position the input tape in the paper-tape reader
and turn on the appropriate reader and punch.

Set bits 0 and 1 of the Switch Register to
indicate the pass and bits 2, 9, 10 and 11 as
appropriate, to select output options (Tables
6-1 and 6-2).

5. Press CLEAR and CONTinue to begin pass 1.

6. The Assembler halts at the end of pass 1; set
bits 0 and 1, position the source tape again, and
press CONTinue to begin pass 2. Do the same
for pass 3.

The Assembler will dynamically select the high-speed reader
for input; if the high-speed unit is not available, MLA will
select the low-speed reader.

Bits 0 and 1 of the Switch Register are set to indicate the
current pass. The proper settings are listed in Table 6-1.

Pass

2
3

Table 6-1
Switch Register Setltings

Bit 0

o

Bit 1

1
o

6.11.4 Assembler Output
Output from an assembly consists of a binary tape
containing the object text punched by the Assembler and a
listing of the source program and symbol table. These are
produced as follows:

1. The symbol table is printed or punched by
Assembler pass 1.

2. The object tape is punched by Assembler pass
2.

3. The listing and symbol table are printed or
punched by Assembler pass 3.

The user has extensive control over the production of these
outputs. By means of the Switch Register settings just
mentioned, pass 2 (punching the binary tape) or pass 3
(listing the source text) can be entirely omitted. Switch
Register bits 2, 9, 10 and 11 can also be set as shown in
Table 6-2, to select or suppress certain Assembler outputs.
The following can be controlled:

1. The listing of the symbol table can be produced
or suppressed.

2. If produced, the symbol table can be punched
on the high-speed device, printed on the line
printer, or punched and listed on the Teletype.

6-12

3.

4.

5.

6.

The program listing can be produced or
suppressed.

If produced, the program Itsting can be
punched on the high-speed device, printed on
the line printer, or listed on the Teletype.

The binary tape can be produced or suppressed.

If produced, the binary tape can be punche:d on
the high-speed device or on the low-speed
punch associated with the Teletype.

Combinations of bits can be set in such a way that any or
all of these outputs can be produced on the desired media.
Bit 2 can be set on to indicate suppression of the symbol
table listing during passes 1 and 3. Bit 9 can be set during
passes 1 and 3 to select the line printer for symbol table,
program listing, or error message output. When bit 9 is set,
bit lOis automatically set on as well. Bit lOis set during
pass 3 to choose a particular tabbing convention for listing
output. Bit 11 is used to select the appropriate device for
symbol table, binary tape, and listing output. Table 6-2
summarizes all bit options.

If both bit 9 and bit 11 are set on during pass 3, bit 11 will
take precedence and the program will be punched using the
high-speed unit.

6.11.5 Symbol Table Format
During pass 1 the Assembler defines all user symbols and
creates the symbol table. If the user chooses, this table is
printed or punched at the end of pass 1 and repeated during
pass 3. It is produced in alphabetical order showing both
symbols and addresses at which they are referenced. If any
symbols remain undefined, the US undefined symbol
diagnostic is printed during the pass. Following i:;; an
example of the beginning of a symbol table listing:

Al
Q
WHAT

45 100
45 177
45 105

Pass Bit Setting

1 2 0

1

9 0

1

11 0

1

2 11 0

1

3 2 0

1

9 0

1

10 0

1

11 0

1

Table 6-2
Switch Register Options

Output the symbol table.

Meaning

Suppress output of the symbol table.

Do not send oliltput to the line printer.

Print the symbol table on the line printer.

Print and punch the symbol table on the Teletype printer and
the low-speed punch.

Punch the symbol table on the high-speed punch (if available).

Punch the binary tape on the low-speed punch.

Punch the binary tape on the high-speed punch (if available).

Output the symbol table.

Suppress output of the symbol table.

Do not send output to the line printer.

Print the assembly listing on the line printer.

Output TAB as TAB RUBOUT (codes 211 and 377).

Output TAB (code 211) as eight-space TAB stops.

Print the assembly listing on the terminal.

Punch the assembly listing tape in ASCII on the high-speed punch.

6-13

6.11.6 Binary Output Format
A block of data punched on paper tape in absolute binary
format has the following format:

FRAME 1 001
2 000
3 xxx
4 xxx
5 yyy
6 yyy

n zzz

The binary output tape may contain one or more blocks of
data. Each block has a positive integer byte count (frames 3
and 4) greater than ·six. The byte count is derived by
counting the total number of bytes in the block excluding
the checksum. The end-of-data block is signaled by a block
with a byte count of exactly six. The loader will halt after
loading tape in this format.

The maximum size of a block generated by the Assembler is
64 decimal (100 octal). Blocks are not padded out to an
even length.

If a program contains an origin resetting as in the following

*1#200
INP2

LMA
*2#300

blocks will not be output for locations skipped between
origin settings, and a new block will be started for each new
origin setting.

6.11.7 Output Listing Format
All output listings are produced in the format :;;hown
below:

Address

block number offset

Start frame
Null Frame
Byte count (low eight bits)
Byte count (high eight bits)
Load address (low eight bits)
Load address (high eight bits)

Data placed here

Last frame contains a block checksum

A statement may generate none or several bytes of code,
depending on its function and number of required
operands. Blocks and offsets are in the range block 0 offset
o through block 77 offset 377. Following is an example of
part of an output listing:

45 100

45 102
45 103
****IC

45 lOS

45 110
****OA
45 III

****AD

Code

generated code
[generated code]
[generated code]

6-14

004
100
370
006
245
103
104
100
045
301

104
205

112

*45#100
AI, ADI Q l,mAT?

LMA
LAI AI%IO

AT 45 103

WHAT, lMP Al

LAB Al
AT 45 110

lMP AI+WHAT

AT 45 III
$

Source

statement

6.12 ASSEMBLER DIAGNOSTIC.MESSAGES
Errors or warnings encountered during assembly are output
on the terminal or line printer; selection of the device
depends on the setting of Switch Register bit 9.

Pass

3

Errors

Messages output on terminal or
line printer, noting illegal values
and addresses where errors
occurred.

Listing of program output on
terminal or line printer, with
error messages following
sta tements to which they apply.

The total number of errors encountered is always output on
the terminal at the end of each pass regardless of the setting
of bit 9. Following is an example of pass 1 output:

IC 245 AT 45 103
OA AT 45 110
AD AT 45 111

Al 45 100
US AlIO AT 45 103
US Q AT 45 100
WHAT 45 105

005 ERRORS

An example of pass 3 output is included in the previous
section.

6.12.1 Error Types
Three types of error messages have been implemented for
Assembler use and are described below. The syntax of an
error message follows:

error code [
symbol]
ASCII representation

address

When an illegal symbol or unidentified address of some
kind is found in an Assembler statement, a type 1 error
message of the following kind is produced

US Q AT 45 100

6-15

where US indicates an undefined symbol message, Q is the
address symbol which caused the error, and 45 100 is the
location at which the error occurred, in block-offset
notation. The listing of the statement which caused this
error follows:

45 100 004 AI, ADIQ

In type 2 error messages, the illegal symbol cannot be
printed because the character that caused the error is not
recognized by the Assembler. Thus the following might be
produced

IC 245 AT 45 103

where IC indicates an illegal character message, 245 is the
ASCII representation for % - the illegal character
encountered but not recognized by the Assembler -- and
45 102 is the address at which the character was found.
Following is the statement which produced this error:

45 102 006 LAI Al%10 /ADD Al AND 10
103

Type 3 error messages report on errors in which a symbol
has not caused the error. These are errors in which an
address is out of range or an operand is missing. For
example, the statement:

45110 301 LAB Al

causes an error because the LAB instruction does not take
an operand. The following error message is produced

OA AT 45 110

where OA indicates an operand error message and 45 110
is the address at which the error occurred.

6.12.2 Summary of Diagnostics
Table 6-3 summarizes all error messages that may be
produced by the Assembler. These messages may be printed
out during pass 1 and again during pass 3 to correspond to
the statement listing produced during that pass. The type
column identifies the message as a type 1, type 2, or type 3
diagnostic in accordance with the syntax specifications just
given. In all of the messages, the address specification

AT yy zzz

indicates that the described error was encountered at block
yy offset zzz.

Type Message

AW xxxx ATyy ZZZ

DT xxxx AT yy zzz

ID xxxx AT yy zzz

RD xxxx AT yy lZZ

us xxxx AT yy zzz

UO xxxx AT yy lZZ

2 IC xxx AT yy zzz

3 AD ATyy ZZZ

3 IN AT yy ZZZ

3 OA ATyy ZZZ

3 OV ATyy zzz

3 ST AT yy zzz

3 PE AT yy zzz

2 PO xxx AT yy 'ZZl

2 PU xxx AT yy ZZl

Table 6-3
Assembler Diagnostics

Meaning

Address warning message; instruction xxxx found in the operand
field as in JMP lMP.

Duplicate tag message; label xxxx (symbol ending with a comma) is
repeated. Previous value of the symbol is retained, and the label is
not redefined.

Illegal definition message; instruction or pseudo-instruction xxxx
used illegally (EXPUNGE not given) as in A=LAB.

Redefinition by parameter assignment warning message; symbol
xxxx is redefined (see DT for illegal definition of label fields).

Undefined symbol message; xxxx is a symbol used in the program
but not defined, as in US Q AT 45 100.

Undefined operation code message; xxxx is a symbol used in the
instruction field of a statement but is not a legal instruction, as in
AI, A2.

IUegal character message; xxx is the ASCII representation of the
illegal character encountered, as in IC 245 AT 45 102. The portion
of the line following the illegal character is ignored.

Address out of range message. The illegal address was speCified in an
origin (*), a JMP, or in some other instruction, as in AD AT 45 111
for statement JMP Al+WHAT; when the error occurs in an origin,
the current location counter is not set to the out-of-range value but
to that value truncated to 14 bits.

megal numeric constant message; a specified number was
unacceptable to the Assembler (e.g., 123K).

Operand error message; operand missing from a statement that
requires one (e.g., JMP), or operand included in a statement that
does not require one (e.g., LAB AI).

Input buffer overflow message; will happen only in the unlikely
event that a simple input statement exceeds 126 characters in length.

Symbol table overflow message; will happen only if a large number
of symbols defined (number of symbols allowed is approximately
200). Assembler halts and must be restarted.

Pseudo-instruction parameter error message; illegal parameter
specified, as in OPDEF JUMP;I04;3, where 3 is an illegal assignment
for the instruction type.

Pushdown list overflow message; xxx is the list location. This is a
fatal error.

Pushdown list underflow message; xxx is the list location. This is a
fatal error.

6-16

This chapter summarizes the operation of the
Microprocessor Program Loader (MPL) provided to MPS
Monitor/Control Panel (MCP) users. Binary program tapes,
normally produced by the Assembler described in Chapter
6, can be loaded into MPS memory by means of the
Microprocessor Program Loader. The Loader is intended to
be used extensively on the MCP for debugging and
generation purposes.

7.1 OPERATING ENVIRONMENT
The Loader requires the following hardware to be available:

1.

2.

The Microprocessor Series Monitor/Control
Panel (MCP)

A paper-tape reader (the low-speed device
associated with the Teletype).

The paper··tape reader must be interfaced to the Processor
Module.

7.2 LOADING A BINARY TAPE
Input to the Loader consists of a paper tape in MPS binary
format usually produced as output from an MLA assembly
on the PDP-B. To load the binary program into the module,
follow the procedure outlined below:

I . Set the starting address on the MCP Switch
Register to block 77 offset 0 (octal 37400).

2. Position the binary tape in the paper-tape
reader and ready the device.

7-1

3.

4.

CHAPTER 7

MICROPROCESSOR

PROGRAM LOADER

Press the ADDR LOAD and STRT keys on the
MCP.

Turn the paper-tape reader on. Low-speed tape
will be read until the process is stopped
manually by pressing the STOP switch on the
reader. High-speed tape will stop automatically.

A binary program can have blocks of almost any length (the
maximum is a block of 214 bytes. If binary output is
generated in the normal way by the Assembler, 64-byte
(decimal) blocks are output.

If the MPL load is successful, the Loader will halt at block
77 offset 141. If a checksum error occurs during the
loading procedure, the load will not succeed and MPL wil1
halt at block 77 offset 124 (octal 37524).

7.3 RESTARTING THE LOADER
It is possible to restart the loader after saving the contents
of all but two of the module's registers. If the user presses
ADDR LOAD and STRT at block 77 offset 200, the
following registers will be saved:

Register Block and Octal
Displacement Equivalent

A 76 340 37340
B 76 341 37341
C 76 342 37342
H 76 343 37343
L 76 344 37344

If the user presses ADDR LOAD and STRT at block 77
offset 202, the following registers will be saved:

Register Block and Octal
Displacement Equivalent

A 76 340 37340
B 76 341 37341
C 76 342 37342
D 76 343 37343
E 76 344 37344

MPL will halt at block 77 offset 217.

7.4 MCP MEMORY
The Loader reserves two areas of Monitor/Control Panel
(MCP) memory for its own use:

7-2

1. Random-Access Memory (RAM) (32 decimal
words)

2. Read-Only Memory (ROM) (256 decimal
words)

The RAM begins at block 76 and offsets 340 through 377
(octal 37340 through 37377). The ROM begins at block 77
and offsets 0 through 377 (octal 37400 through 37777).
These addresses are used by the MCP and should not be
accessed by the user.

8.1 INTRODUCTION TO MDP
The Micr.oprocess.or Debugging Program (MDP) is a
software tool which runs .on the Processor Module and
facilitates analysis and alteration of binary programs. These
programs are normally produced by the Assembler (see
Chapter 6).

MDP provides the following capabilities:

1. Reads and punches paper tape,

2.

3.

4.

5.

6.

Opens specified mem.ory locations for
modification and allows the previous, current,
and next locations to be opened, displayed, and
closed,

Dumps the c.ontents .of program addresses,
status flip-flops, and index registers on the
Teletype printer,

Allows a program segment to execute for test
purposes under MDP control,

Specifies a breakpoint location for program
execution, and

L()ads specified locations in memory with a
constant value.

The major advantage of using a debugging package such as
MDP is that the binary code itself can be examined and
modified, allowing the program to be tested and corrected
without requiring reassembly. This is an especially useful
capability in the environment in which Microprocessor
Series programs are typically developed.

8-1

CHAPTER 8
MICROPROCESSOR

DEBUGGING PROGRAM

8.2 OPERATING ENVIRONMENT
MDP is supplied in the form of a binary paper tape. To use
the program, read the tape int.o memory using the standard
Microprocessor Program Loader (MPL). After l.oading the
tape set the starting address for MDP on the
Monitor/Control Panel, raise the HLT switch, and press
STRT. If the Teletype control knob is turned to LINE,
MDP will respond by typing the MDP prompting character
(*) .on the Teletype printer. The starting address for MDP is
block 0 offset 1 00 (octal 0100). All bits are zero except
low bit 6.

The minimum memory requirement for running MDP is 1 K
of Random Access Memory (RAM) on a Microprocessor
Series module. A Teletype must be interfaced with the
M7341 m.odule for MDP command input from the key­
b.oard and the display .of memory locations on the printer.

The low-speed paper-tape punch associated with the
Teletype is used in conjunction with the R, P, T, and E
c.ommands to read the binary program tape into memory
and to punch out a corrected version.

Input to MDP is usually a binary paper tape produced by
the Assembler described in Chapter 6. The listing produced
during pass 3 of the assembly is necessary for determining
addresses to be examined and modified.

8.3 BASIC CHARACTER SET
The following list summarizes all ASCII characters that may
be included in MDP command input and are rec.ognized by
the debugging program:

• Alphabetic characters B, D, E, G, L, P, R, S, T,
X

• Numeric characters 0 through 7

• Selected special (printing) characters.

Character

space

t

RUB OUT

tc

Meaning

Space

Block-offset operator used to
specify an address

Address separator

Used to open and display a location

Used to close and then reopen and
display the current location

Used to close current location and
then open and display the previous
location

Used to delete digits back to a
separator; echos backslash (\)
followed by deleted digit

CTRL/C; used to abort current
command

• Selected special (nonprinting) characters.

Character Meaning

carriage return Used to close current location or
terminate a command

line feed Used to close current location and
then open and display the next
location

If any character other than those just describecl is
encountered by MDP, a question mark (?) is typed, the
contents of the line containing the illegal character is
ignored, and the command is aborted. The user can retype
the command without typing a carriage return first.

8.4 ADDRESS SPECIFICATION
The format in which addresses are specified in MOP
commands is the same format as that used in the binary
program tape input to MOP. An address is a 14-bit fjeld,
described as follows:

hh 111
hh#l1l

8-2

The two forms are interchangeable and represent the high
six bits (hh) followed by the low eight bits (111) of the
address. For example, in address

35#200

35 represents the high bits or block, and 200 represents the
low bits or offset within block 35. A detailed discussion of
address specification is provided in Chapter 6 in
descriptions of the Assembler block-offset operator # and
the format for binary output.

Addresses are specified by the user in a great many MOP
commands and the format may be either of those just
shown: When output by MOP, as in the D command" an
address specification is always of the form:

hh 11l

If the user types too many digits when specifying an
address, the results of such an error are unpredictable. It is
recommended that the command be aborted by typing
CTRL/C - the location can then be examined and modified
if necessary.

Although leading zeros are never required in user
speCifications or addresses, MOP does supply the full
complement of digits in its display, as follows:

*D 1#0;1#3
01 000/000
01 001/001
01 002/007
01 003/000

8.S OVERVIEW OF MDP COMMANDS
After MOP has been started, an asterisk (*) output by the
debugging program indicates that it is at monitor level and
ready to accept a command. The user responds to this
prompting character by entering a one-character command
from the keyboard. If the specified command does not
require parameters of any kind, MOP performs the
operation at once without waiting for the user to end the
command with a termination character (e.g., carriage
return). Commands performed in this way include T, E, S,
and X. MOP itself outputs necessary carriage return/line
feed characters and types a new prompting character (*)
after performing the speCified operation. This capability
implies that the user must be extremely careful to type the

correct characters. A paper tape read is performed as soon
as the R command is typed, but MDP halts after reading
tape and then waits to be restarted.

All other MDP commands require that parameters be
included in the command line. After the user types one of
the commands P, D, G, B, or L, MDP inserts a space after
the one-character command and waits for necessary
parameters to be typed by the user. The user must indicate
that the command line is complete by typing a carriage
return to terminate the command. MDP automatically
inserts a line feed, performs the desired operation, and
indicates a return of control to MDP monitor level by
displaying an asterisk (*) on the Teletype printer. In the
syntactic models shown in subsequent paragraphs, a
carriage return/line feed combination, in which the user
must supply the carriage return, is represented by <cr>. An
explicit line feed character is represented by <If>.
Terminators output solely by MDP (as in SorT, for
example) are not shown.

8.6 ERRORS IN SPECIFYING COMMANDS
A question mark (?) will be displayed on the Teletype
printer if the user does any of the following:

1.

2.

3.

Uses a character not in the basic MDP character
set; for example, the following is an error:

*D 1#0,

because comma (,) is not a legal MDP character.

Specifies a nonexistent command, for example:

*A

A is not a valid MDP command"

Specifies an address with alphabetic or special
characters or with illegal numeric characters;
either of the following causes an error:

*46#20A
*1 379

After displaying the ? character, MDP ignores the current
line and aborts the command. If the user omits parameters
from a command line and types a carriage return to
terminate this line, MDP will wait and will not return to
monitor level until the parameters are typed or CTRL/C is
issued.

8·3

8.7 SPECIAL FUNCTION KEYS
The following two paragraphs detail the operation of two
special functions used to correct errors and to abort MDP
activity.

8.7.1 RUBOUT: Deleting a Digit
The RUBOUT key on the Teletype keyboard is used for
error correction when entering MDP parameters. Each
RUB OUT causes the deletion of one digit, from right to
left, beginning with the digit just to the left of the first
RUBOUT and ending with the digit just to the right of the
first separator encountered in the scan. Separators include
the following:

Character

space

Meaning

Space output by MDP following a
command or used as a block-offset
operator

Block-offset operator used to
separate the high and low bits of an
address

Semicolon used to separate starting
and ending address specifications

carriage return Terminator typed after a command
or used to close the current
location in an examination
command

line feed Inserted by MDP after carriage
return following a command or
used to open the next location in
an examination command

Open location or may be used as ;

RUBOUT echoes a backslash followed by the digit it
deletes back to the most recent separator. Thus in the
following command

*77#177\7\7\1277

the address originally specified

*77#177

is corrected and respecified as 77#277. The sequence
\7\7\1 simply represents the digits 177 rubbed out, and 277
represents the new offset. RUBOUT of a digit causes a
backslash, followed by the deleted digit, to be echoed on

the Teletype printer. If digits typed beyond the most recent
separator must be deleted, the user must abort (Paragraph
8.7.2) and retype the entire command. An attempt to rub
out digits beyond the separator causes zeros to be typed for
these digits as in the following:

* 72#123\3\2\1 \0\0\0

In this command line, the user successfully rubbed out the
digits 123; an attempt to delete the separator and block 72,
however, failed, resulting in the printing of \0\0\0.

8.7.2 Control C: Aborting MDP Operation
A control C character can be issued at any time to return
control to MDP monitor level. This function is useful to
correct the ~mtry of an invalid command or to terminate
long input or output operations. It is recommended that
this character be typed to abort a command when the user
has made more than one or two errors when entering this
command. Retyping the command is often a more
straightforward and reliable method of correction than
mbbing out and retyping multiple digits in an invalid line.
To enter control C, type C while holding down the CTRL
key. When CtRL/C is typed, the command being typed or
executed is aborted, and the character is echoed as:

tc

Control then returns to MDP, a new prompting character is
output, and a new command is expected. The following is
an example of the use of CTRL/C when terminating and
address dump:

*D 45#100;47#377
45 100/000
45 101/000
45 102/377
45 tc
*

8.8 INPUT/OUTPUT COMMANDS
The user can read and punch binary paper tapes by means
of the MDP commands listed in Table 8-1.

8-4

Table 8-1
Input/Output Commands

Command Meaning

R

P

T

E

Read paper tape from low-speed
paper-tape reader.

Punch paper tape for address range
specified on low-speed punch.

Punch leader or trailer tape.

Punch end block and trailer.

These are described in more detail in Paragraph 8.8.1.

8.8.1 R: Reading Paper Tape
The R command is used to read the contents of a binary
paper tape into memory. It is issued in the following way:

Form R

This command does not require the user to type a carriage
return. As soon as the character R is typed, the paper tape
loaded in the low-speed tape reader associated with the
Teletype is read into the memory addresses specified on the
binary tape. This implies that the paper tape to be read
must be properly positioned in the reader at the time the
command

*R

is given.

The following sequence of steps should be used when
loading paper tape into the reader:

1.

2.

Set the paper-tape reader switch to STOP or
FREE.

Release the plastic cover of the reader unit and
place the program tape over the read station
with the small sprocket holes over the sprocket
wheel. Close the cover.

3. Type R

4. Push the paper-tape reader switch to START
and release.

After the entire program tape has been read into memory
and an end block has been encountered, MDP halts. It can
be restarted by setting the starting address (0 100) again,
raising the HLT switch, and pressing STRT. To determine
whether or not the read has been successfuL, the user should
examine the accumulator (register A) after MDP has been
restarted. If the contents of A are zero, reading has been
successfully performed.

8.8.2 P: Punching Paper Tape
The P command facilitates the following operations:

• Punching selected program or other memory
locations on paper tape.

• Punching an entire program tape by dumping
the contents of part or all of memory.

All punching is performed on the low-speed paper-tape
punch associated with the Teletype. The command is
supplied as follows:

Form

Where

P addrl ;addr2<cr >
addrl is the starting memory location in
block-offset notation
addr2 is the ending memory location in
block-offset notation

Example *p 45#100;47#377

In this example, memory locations from block 45, offset
100 through block 47, and offset 377 are punched out on
paper tape using the low-speed paper-tape punch. This
command does not automatically punch leader tape and an
end block so it should be used in conjunction with the T
and E commands.

The addr2 parameter is not optional. If only one address is
to be punched, the user must nevertheless supply starting
and ending range speCifications. In this case, both are
identical, as in the following:

*p 11 #300 ;11 #300

The paper-tape punch must be readied at the time the
command is issued. To position tape in the low-speed
punch, do the following:

1.

2.

Turn the Teletype punch unit off.

Type the P command on the Teletype keyboard
but do not type a carriage return.

8-5

3. Turn the punch unit on.

4. Type a carriage return to initiate punching.

It is important to follow this sequence to avoid punching
command input on the program tape output by the punch.

It is a relatively easy matter to use MDP as a tool in
generating paper tapes for use on the Microprocessor Series.
Read a binary tape into memory and punch it out again
using the following commands. This example assumes that
program locations include blocks 15 through 1 7 and that all
appropriate actions are taken to avoid punching unwanted
characters on the output tape.

*R
*T
*p 15#0;17#377
*E
*

Read paper tape into memory
Punch header tape
Punch blocks 15 through 1 7
Punch end block and trailer tape
Return to MDP

8.8.3 T: Punching Leader and Trailer Tape
The T command uses the low-speed Teletype punch to
produce either leader or trailer tape. Both leader and trailer
tape have exactly the same format and consist of
approximately four inches of tape punched with octal code
200. The command is issued as follows:

Form T

This command does not require that the user type a
carriage return. As soon as the character T is typed, header
or trailer tape is produced. MDP then inserts an automatic
carriage return/line feed to return control to MDP monitor
level.

If the punch is turned on at the time T is typed, the
command character, as well as the carriage return/line feed
inserted by MDP, will be output on the tape but ignored
when the program is loaded. If the user wishes to exclude
these extraneous characters from the program tape, he/she
should follow certain procedures when producing header or
trailer tape:

1. Turn the punch off.

2. Type the T command after the prompting
character:

*T

3.

4.

Turn the punch on immediately after typing
the T command.

Turn the punch off after header or trailer tape
has been produced.

Control returns automatically to MOP. Because the punch
is not turned on until after T begins operation, a small
amount of trailer tape might be lost.

8.8.4 E: Punching an End Block on Tape
The E command punches the end block, followed by
approximately four inches of octal code 200 trailer tape,
using the low-speed paper-tape punch. It is issued as
follows:

Form E

This command does not require that the user type a
carriage return. As soon as the character E is typed, end
block and trailer tape are produced. MOP then inserts an
automatic carriage return/line feed to return control to
MOP monitor level.

An end block punched by MOP has the same format as that
produced by the MLA Assembler. In this format, e:ach
block of data has a byte count of greater than six. The end
block contains no data and therefore has a byte count of
exactly six. The sequence of steps shown for the T
command could be followed to prevent the E character
from being punched out on paper tape. However, it is a
more serious matter to lose part of the end block than to
lose part of the leader/trailer tape. Therefore, it is usually
preferable to leave the punch on while typing E and to rely
on these command characters being ignored when the
program tape is loaded.

Note that E implies automatic execution of the T command
so trailer tape need not be explicitly requested.

8.9 LOCATION-EXAMINATION COMMANDS
MOP commands have been implement(~d to facilitate the
examination and modification of memory locations. All
commands .in this category primarily consist of special
Teletype keyboard characters as shown in Table 8-2.

8.9.1 /: Opening a Memory Location
The / command allows the user to specify that a particular
memory location is to be opened and the contents of this

8-6

Table 8-2
Loca tion-Examination Commands

Command Meaning

o pens specified location for
modification

carriage return Closes current location

line feed

t

Closes current location and opens
next location

Closes current location and reopen s
it

Closes current location and opens
previous location

location displayed. These contents can subsequently be
changed. The command is issued in the following way:

Form addr/

Where addr is the location to be examined :In
block-offset notation

Example *45#100/001

In response to the prompting character, the user types the
address to be examined and follows it with a slash (/)
character. MOP automatically inserts a space after the sJa:;h
and prints out the contents of the examined location in
three-digit octal form. The user can then modify the
contents of the location by typing the new value to replace
the value displayed as follows:

*45#100/001 111

The space between the old and new values is also output by
MOP.

To terminate the command line, to return control to MOP,
or to examine another location, the user types carriage
return, line feed, period, or up-arrow. The different
characteristics of these Teletype keys are presented in the
following paragraphs.

8.9.2 Canriage Return: Closing an Open Location
In addition to its typical function as a stat~~ment terminator
(for example, in Band P commands), the RETURN key can
be used to close an open location which is being examined.
A carriage return is typed at the end of the following
command

*12#141/000 111 <cr>

to indicate that the specified change in contents is to be
made, and the location at block 12, offset 141 is to be
closed. After the RETURN key has been pressed, control
returns to MDP and the prompting asterisk is displayed. No
further locations are opened until explieitly directed by
another command.

8.9.3 Line Feed: Opening the Next Location
The line feed character can be typed instead of the carriage
return to perform three distinct actions:

1. Close the location being examined.

2. Open the next location and display its contents.

3. Allow modification of the displayed location.

Use of the line feed in terminating the command

*27#0/377<It>

causes the location at block 27 offset 0 to be closed and the
location at block 27 offset 1 to be opened automatically.
The full interaction looks like

*27#0/377<It>
27001/001

where the user types only the initial 27#0/ specification.

The long form of this function requires that the user issue
two separate examination commands:

*27#O/377<cr>
*27#1/001

8.9.4 .: Reopening the Current Location
The period (.) is used to perform the following functions:

1. Close the location being examined.

8-7'

2. Reopen the same location and display its
contents.

3. Allow modification of the displayed location.

Use of the period is valuable when correcting an incorrectly
altered location or when verifying that a change has been
made. For example, in the following

*45#10/000 770\0\7\326\61 \171.
45 010/271

the use of RUBOUT characters, echoing deleted characters,
has made the modification of location 45#10 difficult to
read. The period is used to verify that the desired
correction has been made. Note that rubbing out 770 has
indicated that 770 was truncated to 370, since MPS
addresses can include offsets of only eight bits.

8.9.5 t: Opening the Previous Location
Use of the up-arrow (t) character complements the use of
the line feed. While line feed allows the user to view the
next location, up-arrow causes the previous location to be
opened. The following functions are performed:

1.

2.

3.

Close the location being examined.

Open the previous location and display its
contents.

Allow modification of the displayed location.

Use of t in the followil1g commands

*22#0/001 t
21 377/ 377 ooot
21 376/001

allows the user to view the contents of the location before
22#0, 21 #377 (377) and to modify that location. t is used
again to view the contents oflocation 21#376 (001).

8.10 DISPLAY COMMANDS
A variety of commands have been implemented to allow a
range of addresses or certain key locations to be displayed
on the Teletype printer. Some commands allow
modification of the contents of these locations; others do
not. Table 8-3 lists the commands in this category.

Command

Table 8-3
Display Commands

Meaning

D Dump the contents of a range of
specified addf{~sses on the Teletype
printer.

S Display the contents of the
condition flip-flops and allow
modification.

X Display the contents of the
accumulator and allow
modification.

These are more fully described in subst~quent paragraphs.

8.10.1 D: Dumping Address Contents
The D (dump) command allows the user to obtain a listing
on the Teletype printer of all or some of the binary
program in memory. It is issued as follows:

Form

Where

D addrl ;addr2<cr>

addrl is the starting memory location in
block-offset notation
addr2 is the ending memory 10caHon in
block-offset notation

Example *D 1#0;1#377

The user terminates the command by typing a carriage
return; MDP inserts a line feed and proceeds to type out the
desired listing in the following format:

*D addrl ;addr2<cr>
addrl/ contents
addra/ contents
addrb/ contents
addre/ contents
addrd/ contents

addr2/ contents

*

8-8

An example is included below:

*D 1#0;1#377
01 000/ 000
01 001/ 000
01 002/ 001
01 003/ 002
01 004/ 077

01 377/000

*

If the user decides that he need not view the entire dump,
the listing can be terminated by typing CTRL/C on the
Teletype keyboard.

The addr2 parameter is not optional. If only one address is
to be dumped, the user must nevertheless supply starting
and ending range specifications. In this case both are
identical, as in the following:

*D 36#0;36#0

8.10.2 S: DisplayingStatus Flip-Flops
The S (status) command allows the user to examine and
modify the contents of the status register which contains
the following condition flip-flops:

Bit Meaning

7 Sign
2 Parity

Zero
a Carry

The status register has an organization as shown below:

STATUS REGISTER

sign unused parity zero carry

~
7 6 5 4 3 2 a

The unused bits are always considered to be zeroed. Sign,
parity, zero, and carry are normally set to one or reset to
zero depending on the results of instmction execution.
MDP allows the user to set these bits explicitly by means of
the S command.

If the sign bit is set to one and all other bits are zero, the
status register has contents of 200, as shown below:

10000000
2 0 0

If the padty, zero, and carry bits are set to one and the sign
bit is zero, the status register will have contents of 007, as
follows:

00000 111
o 0 7

If only the zero bit is set, the following will be the case:

00000010
o 0 2

The S command is entered in the following way:

Form S

This command does not require that the user type a
carriage return. As soon as the character S is typed, MDP
itself inserts a carriage return/line feed and produces status
bits in the following form on the Teletype printer:

addr / contents

An example follows:

*S
20 105/ 200

The address returned by MDP is the address in which the
status register is found. In the example just shown, the sign
bit is set and all other bits are zero. To modify status bits,
simply type new contents as in the following:

*S
20 105/ 200005

Here the space between the old and new contents is output
by MDP. The user changes the contents so that the parity
and carry bits are set.

8-9

8.1 0.3 X: Displaying an Index Register
The X (index) command is used to examine and modify the
index registers. The accumulator (register A) is accessed in
the following way:

Form X

This command does not require that the user type a
carriage return. As soon as the character X is typed, MDP
itself inserts a carriage return/line feed and displays the
contents of the accumulator in the following form on the
Teletype printer:

addr/ contents

An example follows:

20 111/000

The address returned by MDP is the address of the
accumulator storage location on the user's machine and is
not necessarily the one just shown. The contents of this
address can be modified by typing in a new value, as
follows:

*X
20 111/000377

To examine and modify subsequent registers (B, C, H, L),
the user terminates this and succeeding lines with an
explicit line feed. For example:

*X
20 111/ 000377 < If >
20 112/ 001 < If >
20 113/ 000 < If >
20 114/007 < If >
20115/377000<cr>

<If> indicates a line feed entered by the user, <cr> a
carriage return. This sequence allows the user to examine all
index register storage locations.

8.11 CONTROL COMMANDS
Commands used to set breakpoints, begin test execution,
and clear memory locations can be categorized as control
commands. Table 84 summarizes the functions of these
commands.

Table 84
Control Commands

----~----------------------------

Command

G

B

L

Meaning

Start execution of binary program
at specified address.

Set breakpoint at specified address
in binary program.

Set range of .addresses to specified
constant.

These commands are described in greater detail in the
paragraphs that follow.

8.11.1 G: Executing the Program
The G (go) command is used to execute a binary program
or part of the program. Often it is used in conjunction with
the B (breakpoint) command to test part or all of the
binary program read in to memory. G is issued in the
following way:

Form

Where

G addr<cr>

addr is the first address to be executed in
block-offset notation

Example *G 10#121

The user types a carriage return to terminate the G
command, and MDP inserts an automatic line feed. The
status bits and registers saved when MDP was loaded are
restored, and the program segment beginning at addr is
executed. For test purposes, the user can set initial
conditions before beginning program execution by
modifying the status bits and index register storage
locations as previously indicated.

8.11.2 B: Setting a Breakpoint
The B command provides one of the most useful fe,atures
available through MDP. It is used to specify a location to be
used as a breakpoint in the binary program currently in

8-10

memory. When the program encounters this location during
execution, it returns control to MDP. The B command is
issued as follows:

Form B addr<cr>

Where addr is the address to be used as a
breakpoint in block-offset notation.

Example *B 37#0

The user types a carriage return to terminate the B
command, and MDP inserts an automatic line feed.

The B eommand modifies the location specified and the
two following locations; therefore, care must be used when
placing breakpoints due to the variable length instructions.
It specifies the address to be treated as a breakpoint
location when the program is exe<;uted. Thus B is used in
conjunction with G to test segments of a program" When
the specified address is executed, the following actions
occur:

1. The binary program stops.

2. Registers A, B, C, H, L, and the status bits are
saved.

3. Control returns to MDP and the following is
printed on the Teletype

B

*

to indicate that the breakpoint has been
reached.

The saved registers and status bits can now be examined
and modified if necessary.

The breakpoint does not normally remain in the binary
program; it is removed under any of the folltowing
circumstances:

1. The specified address is executed.

2. MDP is restarted.

3. A special version of the B command is entered:

The expliCllt B reset command has the following form:

Form B R

This command does not require that the user conclude with
a carriage return. As soon as the B R combination is typed,
MDP itself inserts a carriage return/line feed. The space
between Band R is also output by MDP. After B R is
typed, MDP returns to monitor level, removes the
breakpoint from the binary program, and outputs a new
prompting character.

8.11.3 L: Loading Memo.ry with a Constant
The L command is used to load a segment of memory with
a specified constant. It is issued in the following way:

Form

Where

L addrl ;addr2;[constant] <cr>

addrl is the s1tarting memory
location in block-offset notation
addr2 is the ending memory
location in block-offset notation
constant is optional and represents
the value to be inserted in the
memory locations

8-11

Examples *L 76#340;76#377;77<cr>
*L 76#343;76#362;<cr>

The user terminates the command with a carriage return
and MDP inserts an automatic line feed. The addr2
parameter is not optional. If only one address is to be
cleared, the user must nevertheless supply starting and
ending range specifications. In this case, both are identical,
as in the following:

*L 1#0;1#0;

L is often used to clear memory locations; if constant is
omitted from the command, zero is the default, and the
memory range specified is zeroed. The semicolon following
addr2 must be supplied, even if constant is omitted from
the command. After the operation defined in L is
performed, MDP returns to monitor level and outputs a
new prompting character.

9.1 INTRODUCTION TO MPR
The Microprocessor Read-Only Memory (ROM)
Programmer (MRP) is a PDP-8 system program used to read
and write programmable read-only memory (PROM)
circuits for use on the M7345 PROM Module. The write
function performed by MRP can also be called
programming a PROM. A special hardware assembly is
required to implement the functions supported by MRP,
since PROMs, the I/O medium used by this program, are
not a standard device supported by a PDP-8 interface. The
particular hardware environment in which MRP functions,
is described in detail in the next paragraph.

MRP provides the following capabilities:

1. Reads and punches paper tape using the
high-speed or low-speed unit

2. Reads, writes, and verifies PROMs

3.

4.

5.

Opens specified memory locations for
modification and allows the previous, current,
and next locations to be opened, displayed, and
closed

Dumps the contents of memory locations on
the Teletype or line printer

Loads specified locations in memory with a
constant value

MRP permits examination and modifkation of PROM
locations read into memory, and provides a facility for
obtaining both Teletype and line printer listings of
programs stored in paper tape or PROM form.

9.2 HARDWARE ENVIRONMENT
This paragraph describes the characteristics and use of the
special hardware used by MRP.

9-1

CHAPTER 9
MICROPROCESSOR

ROM PROGRAMMER

9.2.1 MR873 Hardware Assembly
Using the MRP on the PDP-8 requires a special hardware
assembly to be placed on the machine's I/O bus. Only those
PDP-8 models with OMNIBUS construction can support
this assembly; thus MRP can run on PDP-8/E, PDP-8/F, and
PDP-8/M models, but not normally on the PDP-8/1,
PDP-8/L, or PDP-8/S.* The special hardware used by MRP
consists of one basic unit, the MR873, which holds PROM
circuits and is attached to the I/O bus as shown in Figure
9-1.

Any other devices supported by a particular PDP-8
configuration can also be conveniently added to the bus.
Often a high-speed paper-tape reader/punch and a line
printer are supported.

The MR873 consists of the following:

1. Main rack-mountable or bench top MR873
hardware assembly

2. One M1703 input interface module which plugs
directly into the PDP-8 OMNIBUS

3. One M1705 output interface module which
plugs directly into the PDP-8 OMNIBUS

4. Two Y168 zero-insertion force socket modules

When these components are unpacked at the user's
installation they should be inspected for any obvious signs
of damage that may have occurred during shipping.

*It is possible to use a special hardware interface to facilitate MRP

use on the PDP-B/I, PDP-8/S, and PDP-BIL. Users of these CPU's

should contact Logic Products Applications Engineering at Digital

for information.

~]-----I ~---1 TELETYPE I

Figure 9-1 PDP-B I/O Bus

Protruding from the rear of the MRB73 unit are three flat
gray cables and one standard power cord. When the
BCOBR-6 cables, used to connect the MRB73 to the
OMNIBUS, are unrolled the user will find a sticker attached
to each cable at the plug end. This sticker identifies each
cable and identifies its terminus as follows:

1. From 11 - MRB73 to 11 M:l703
2. From J2 - MRB73 to 11 M1705
3. From J3 - MRB73 to J2 MJl705

The user should connect these cables in the way described,
ensuring that the letters on the plug housing match the
letters on the top of the board-mounted jack. Then the
MI703 and MI705 modules can b,~ installed in any
convenient position on the OMNIBUS of the PDP··B/E,
PDP-B/F, or PDP-B/M.

Next, the user should install the two YI6B modules that are
designed to hold the PROMs. Plug one module into the slot
labeled CHECK, VERIFY, FETCH, and the other into the
slot labeled WRITE. After the line cord has been connected
to any nearby 115 Vac 60-cyc1e outlet, the MRB73 is ready
for operation under MRP.

9.2.2 PROM Assembly and Manipulation
The YI6B modules are designed to hold PROM packages
and to facilitate easy movement of these packages from one
module socket to another. There are three sockets mounted
on the front panel of the MRB73 assembly labeled from left
to right:

1 . SIMULATE (RTM ONLY)
2. CHECK, FETCH, VERIFY
3. WRITE

These sockets have the following functions:

1. The socket labeled SIMULATE is not relevant
to MRP and should be disregarded by the user.

9-2

2. The socket labeled CHECK, FETCH, VERIFY
can be used only to read PROM data during
check, fetch, or verify MRP operations.

3. The socket labeled WRITE can be used only to
load PROM data during write MRP operations.

Only 1702A ultraviolet-erasable PROMs can be used with
the MRB73 and MRP. PROMs of this kind can be writiten
in approximately two minutes.

WARNING
When PROMs are being written by the MRB73,
high voltage pulses (60 Vdc) are generated; the
user should therefore be careful not to handle
the PROM or MRB73 assembly during this
process. The vol tage level generated can be
dangerous and is present on both the PROM
and the etch of the Y168 module into which
the PROM is plugged while being written.

If it is ever necessary to remove or touch a
PROM before writing has been completed, the
user should stop the process either by pressing
the HALT switch on the PDP-B console or by
typing CTRL/C on the Teletype keyboard.

Before a PROM is written, it should be
completely erased by exposing it to ultraviolet
light for five to ten minutes. The user should be
sure to protect his eyes from the ultraviolet
light.

PROMs must be inserted in the socket in the proper way, as
shown in Figure 9-2.

If the user inserts the PROM into the module incorrectly,
the chip may be destroyed. With the locking lever in the
raised position, insert the PROM in the socket with the: dot
on the PROM in the position shown in Figure 9-3. Thien
lock it in by pushing the lever all the way down.

The following example illustrates a sequence in which a
segment of the PDP-B memory data buffer is loaded into a
PROM and then verified. It is assumed that PDP-B memory
contains the desired data.

1. Install a clear PROM in the socket labeled
CHECK, FETCH, VERIFY, and check that the
PROM is clear by issuing a C (check) command
from MRP.

2. Move the PROM to the socket labeled WRITE
and load it with data by issuing a W (write)
MRP command.

3. Move the PROM back to the socket labeled
CHECK, FETCH, VERIFY and verify that the
PROM was loaded correctly by issuing a V
(verify) command from MRP.

Figure 9-2 MR873 ROM Programmer

Figure 9-3 Y168 Socket Module (with PROM inserted)

Table 9-1 summarizes the correct location of the PROM
during various MRP PROM I/O commands.

Table 9-1
Socket Positions for PROM Commands

Command

WRITE
CHECK
FETCH
VERIFY

Socket Labeled
WRITE

X

Socket Labeled
CHECK
FETCH

VERIFY

x
X
X

To fetch data from a PROM, the user positions the PROM
in the socket labeled CHECK, FETCH, VERIFY, and issues
an F (fetch) command from MRP. Before performing this
or any PROM operation, ensure that the PROM is securely
locked in place with the socket lever.

9.3 OPERA TING ENVIRONMENT
MRP is provided to users of this system in the form of a
binary paper tape which is loaded into core by means of the
Microprocessor Host Loader (MHL) using either the
low-speed or high-speed paper-tape reader. Selection of the
reading unit and other load procedures performed at this
time are illustrated in Figure 4-11. To start the program, set
the starting address 02008 in the Switch Register and press
the ADDR LOAD and START keys on the PDP-8 console.
If the Teletype control knob is turned to LINE, MRP will
respond by typing the prompting character (*) on the
Teletype printer.

The minimum memory and peripheral device requirements
are the same as those described in Chapter 4. Input to MRP
usually consists of a binary paper tape produced by the
MLA Assembler and/or a previously programmed PROM.
Output can be a punched binary tape, a programmed
PROM, and/or a listing on the Teletype or line printer.

9.4 SWITCH REGISTER OPTIONS
Alternate output devices may be selected for use by MRP
by setting the appropriate PDP-8 Switch Register bits
before output is directed to these devices. Table 9-2
summarizes selection of the printing and punching units.

Bit 9 is set to indicate that the line printer is the primary
output device. Error messages are always displayed on the
terminal; if bit 9 is set they will also appear on the line
printer, but they will never only appear on the line printer.

Table 9-2
Switch Register Options

Bit Setting Meaning

9 0

11 o

Print output on the Teletype printer.

Print output on the line printer.

Punch tape on the low-speed paper-tape
punch associated with the Teletype.

Punch tape on the high-speed punch (if
available).

Although output will be printed on the specified device if
the setting of bit 9 is established before the command that
produces output is typed, it is possible for output to be
sent to both devices. If bit 9 is set 0 when the initial
character of the MRP command is typed, the user can set
the bit on after MRP outputs the space following that
character. Then, when output is produced, it will appear on
both the Teletype printer and the line printer. If the
following command is typed

*D 21#O;21#27<cr>

and bit 9 is set after the MRP space and before <cr>,
locations 21 #0 through 21 #27 will be dumped on both
output devices.

If bit 9 is set but a line printer is not part of the PDP-8
configuration, the system will wait 150 milliseconds for the
line printer to be attached and will then assume that the
Teletype is the primary output device.

9.5 BASIC CHARACTER SET
The following list summarizes all ASCII characters that may
be included in MRP command input and are recognized by
the blasting program:

•

•

Alphabetic characters C, D, E, F, L, P, Q, R, T,
V,W

Numeric characters 0 through 7

9-4

• Selected special (printing) characters, as
follows:

Character Meaning

space

t

Space

Block-offset operator used to
specify an address

Address Separator

Used to open and display a location

Used to close and then reopen and
display the current location

Used to close current location and
then open and display the previous
location

RUBOUT Used to delete digits back to a
separator; echoes backslash (\)
followed by deleted character

tc

•

CTRL/C; used to abort current
command

Selected special (nonprinting) characters, as
follows:

Character Meaning

carriage return Used to close current location or
terminate a command

line feed Used to close current location and
then open and display the next
location

If any character other than those just described is
encountered by MRP, a question mark (?) is typed, the
contents of the line containing the illegal character is
ignored, and the command is aborted. The user can retype
the command without typing a carriage return first.

9.6 ADDRESS SPECIFICATION
The format in which addresses are specified in MRP
commands is the same format as that used in the
Microprocessor Debugging Program (MDP) (Chapter 8) or
in the binary program tape input to MRP. An address is a
14-bit field, described as follows:

hhlll
hh#l11

The two forms are interchangeable and represent the high
six bits (hh) followed by the low eight bits (111) of the
address. For example, in address

23#0

23 represents the high bits or block, and 0 represents the
low bits or offset within block 23. A detailc~d discussion of
address specification is provided in Chapter 6 in
descriptions of the Assembler block-offset operator # and
the format for binary output.

Addresses are specified by the user in a great many MRP
commands and the format may be either of those just
shown. When output by MRP, as in the D command, an
address specification is always of the form:

hhlll

If the user types too many digits when specifying an
address, the results of such an error are unpredictable. It is
recommended that the command be aborted by typing
CTRL/C. The location can then be examined and modified
if necessary,

Although leading zeros are never required in user
specifications or addresses, MRP does supply the full
complement of digits in its display as follows:

*D 1#0;1#3
01 000/000
01 001/001
01 002/007
01 003/000

9.7 OVERVIEW OF MRP COMMANDS
After MRP has been started, an asterisk (*) output by the
program indicates that it is at monitor level and ready to
accept a command. The user responds to this prompting
character by entering a one-character command from the
keyboard. If the specified command does not require
parameters of any kind, MRP performs the operation at

9-5

once without waiting for the user to end the command with
a termination character (e.g., carriage return). Commands
performed in this way include R, Q, T, E, and C. MRP itself
outputs necessary carriage return/line feed characters and
types a new prompting character (*) after performing the
specified operation. This capability implies that the user
must be extremely careful to type the correct characters. If
an incorrect character is typed, the user can type CTRL/C
to cancel the incorrect character. RUBOUT does not erase
command characters - only digits in addresses.

All other MRP commands require that parameters be
included in the command line. After the user types one of
the commands P, F, W, V, D, or L, MRP inserts a space
after the one-character command and waits for necessary
parameters to be typed by the user. The user must indicate
that the command line is complete by typing a carriage
return to terminate the command. MRP automatically
inserts a line feed, performs the desired operation, and
indicates a return of control to MRP monitor level by
displaying an asterisk on the Teletype printer. In the
syntactic models shown in subsequent paragraphs, a
carriage return/line feed combination, in which the user
must supply the carriage return, is represented by <cr>. An
explicit line feed character is represented by <It>.
Terminators output solely by MRP (as in R or T, for
example) are not shown.

9.8 MRP ERRORS
There are two kinds of errors that are recognized by MRP.
Command errors cause a question mark (?) followed by a
carriage return/line feed to be displayed on the Teletype
printer (and also on the line printer, if bit 9 is set).
Execution errors cause a question mark followed by a
message and a carriage return/line feed to be displayed.

Command errors occur when the user specifies a
nonexistent command, as in the following:

*z

A question mark and error message will be displayed when
invalid characters are included in the command:

*F A
? ILLEGAL CHARACTER

Execution errors occur when an invalid or out-of-range
address specification is included in a command, when a
checksum error occurs during a read, or when an illegal
address separator is specified. Error and warning messages
are discussed in detail in the paragraphs on specific MRP
commands which produce these messages.

9.9 SPECIAL FUNCTION KEYS
The following two paragraphs detail the operation of two
special functions used to correct errors and to abort MRP
activity.

9.9.1 RUBOUT: Deleting a Digit
The RUBOUT key on the Teletype keyboard is used for
error correction in entering MRP parameters. Each
RUBOUT causes the deletion of one digit, from right to
left, beginning with the digit just to the left of the first
RUBOUT and ending with the digit just to the right of the
first separator encountered in the scan. Separators include
the following:

Character

space

Meaning

Space output by MRP following a
command, or used as a block-offset
operator

Block-offset operator used to
separate high and low bits of an
address

Semicolon used to separate starting
and ending address specifications

carriage return Terminator typed after a command,
or used to close the current
loca tion in an examination
command

line feed Inserted by MRP after carriage
return following a command or
used to open the next location in
an examination command

RUBOUT echoes a backslash followed by the digit it
deletes back to the most recent separator. Thus in the
following command

*77#177\7\7\1277

the address originally specified

*77#177

is corrected and respecified as 77*,1:277. The sequence
\7\7\1 represents the digits 177 rubbed out and 277
represents the new offset. RUBOUT of a digit causes a
backslash, followed by the deleted digit, to be echoed on

9-6

the Teletype printer. If digits typed beyond the most recent
separator must be deleted, the user must abort (ParagJaph
9.9.2) and retype the entire command. An attempt to rub
out digits beyond the separator causes zeros to be typed for
these digits, as in the following.

*72#123\3\2\1 \0\0\0

In this command line, the user successfully rubbed out the
digits 123; an attempt to delete the separator and block 72,
however, failed, resulting in the printing of \0\0\0.

9.9.2 Control C: Aborting MRP Operation
A control C character can be issued at any time to return
control to MRP monitor level. This function is useful to
correct the entry of an invalid command, or to terminate
long input or output operations. It is recommended [hat
this character be typed to abort a command when the user
has made more than one or two errors when entering this
command. Retyping the command is often a lTlore
straightforward and reliable method of correction than
rubbing out and retyping multiple characters in a command
line. To enter control C, type C while holding down the
CTRL key. When CTRL/C is typed, the command being
typed or executed is aborted, and the character is e,choed
as:

tc

Control returns to MRP, a new prompting character is
output, and a new command is expected. Following i~. an
example of the use of CTRL/C in terminating an address
dump:

*D 45#100;47#377
45 100/000
45101/000
45 102/377
45 tc
*

There is one case in which CTRL/C cannot be used to
terminate an I/O operation. If the low-speed papeJr-tape
reader is in the process of reading a program tape, CTRL/C
will not terminate the input operation. The computer must
be halted and the program restarted to return control to
MRP monitor level. Set 0200 in the Switch Register and
press the ADDR LOAD and START keys to restart.

9.10 PAPER TAPE I/O COMMANDS
The user can read and punch binary paper tapes by means
of the MRP commands listed in Table 9-3.

Table 9-3
Paper Tape I/O Commands

Command Meaning

R Read paper tape (up to capacity of
data buffer) from high-speed or
low-speed paper tape reader.

Q Clear data buffer and continue to
read paper tape from reader.

P Punch paper tape from address
range specified on high-speed or
low-speed punch.

T Punch leader or trailer tape.

E Punch end block and trailer.

These are described in more detail in the following
paragraphs.

9.10.1 R: Reading Paper Tape
The R command is used to read a segment of binary paper
tape into the data buffer. The capacity of this buffer at any
time is only eight blocks or PROMs. Thus 2048 decimal or
4000 octal words can be loaded with a single read or queue
(Paragraph 9.1 0.2) command. Any address in this data
buffer can then be examined or modified with other MRP
commands. When the next paper tape input command is
processed, the data buffer is cleared before new data is
loaded. A constant value or the contents of a PROM can be
read into part of the buffer, however, overlaying or
supplementing the current contents at any time.

The data buffer can be considered to be an eight-block
window on the 64-block address space of the processor.
The following illustrates this concept:

DATA
BUFFER

7 10 17 20 27 30 3740 4750 57

[
BLOCKS 0

9-7

At this point, the data buffer consists of blocks 30 through
37. Only addresses in this eight-block space can be accessed
with normal examination, modification" or display
commands. As new data is queued from· paper tape,
however, the placement of the data buffer window will
change, as follows:

BLOCKS 1 ,1 "I" I nm I BUFFER

37 40 47 50

Now only addresses in the range 40 through 47 can be
examined and modified.

Paper tape can be read from either the high-speed or
low-speed paper-tape reader. If the high-speed device is
available, it will be selected automatically for use. The
low-speed reader associated with the Teletype will be used
if the high-speed device is not available.

The basic read command is issued as follows:

Form R

This command does not require the user to type a carriage
return. As soon as the character R is typed, the paper tape
loaded in the appropriate paper-tape reader is read into the
data buffer. Note that MRP does not halt after the read is
issued; thus the paper tape must be properly positioned in
the reader at the time the command

*R

is given.

If the data buffer must be cleared of data previously read
into it, the following interaction will take place:

*R
CLEARING THE DATA BUFFER
THE NEW DATA BUFFER RANG E IS FROM

BLOCK 20 TO BLOCK 27

As the tape is read into blocks 20 through 27, the following
messages will be output:

ST ARTING AT 20 000
LOADING BLOCK 20
LOADING BLOCK 21
LOADING BLOCK 22
LOADING BLOCK 23
LOADING BLOCK 24
LOADING BLOCK 25
LOADING BLOCK 26
LOADING BLOCK 27
STOPPED AT 27 377

If the tape end block is encountered before the end of the
current data buffer, the following messages might be
displayed:

*R
STARTING AT 20 000
LOADING BLOCK 20
LOADING BLOCK 21
STOPPED at 21 305
END-OF-DATA BLOCK WAS SEEN

If there is nothing in the segment of tape being read, the
following will be displayed:

*R
STARTING AT 20000
STOPPED AT 20 000
END-OF-DATA BLOCK WAS SEEN

If this occurs, nothing will be loaded into the data buffer.

If an error occurs while performing the read, the following
message might be output:

*R
ST ARTING AT 20 000
LOADING BLOCK 20
? CHECKSUM ERROR

If the high-speed paper-tape reader is used, the following
sequence of steps should be followed to position tape in the
reader:

1. Turn the control knob to raise the tape
retaining lever.

9-8

2. Place a fan-folded tape in the right-hand bin.

3. Place several folds of leader in the left-hand bin
and position the tape so that the sprocket
wheel engages the feed holes.

4. Turn the control knob to lower the tape
retaining lever.

5. Press the FEED switch briefly to ensure that
the tape is properly positioned.

6. Issue R command.

The sequence of steps below should be followed if the
low-speed reader is selected:

1. Set the paper-tape reader switch to STOP or
FREE.

2. Release the plastic cover of the reader unit and
place the program tape over the read station
with the small sprocket holes over the sproGket
wheel. Close the cover.

3. Issue R command.

4. Push the paper-tape reader switch to START
and release.

9.10.2 Q: Reading Additional Paper Tape
The Q (queue) command is used to clear the data buffer if
it currently contains data and to read the next segment of
paper tape. It is issued as follows:

Form Q

This command does not require that the user type a
carriage return. As soon as the character Q is typed, the
next segment of the paper tape loaded in the paper-tape
reader used by the previous read command is read.

Q is used in conjunction with a paper tape whose addresses
span more than eight consecutive blocks. It can also be used
to reset the data buffer at any time. The R command is
issued to read the first eight blocks of the new tape
positioned in the high-speed or low-speed paper-tape reader.
Q is used to clear the buffer of the data just read and 10

load the next address section(s).

If the data buffer must be cleared of data previously read
into it, the following interaction might take place:

*Q
CLEARING THE DATA BUFFER
THE NEW DATA BUFFER IS FROM

BLOCK 30 TO BLOCK 37

As the tape is read into blocks 30 through 37, the following
messages will be output:

STARTING AT 30 000
LOADING BLOCK 30
LOADING BLOCK 31
LOADING BLOCK 32
LOADING BLOCK 33
LOADING BLOCK 34
LOADING BLOCK 35
LOADING BLOCK 36
LOADING BLOCK 37
STOPPED AT 37 377

If the tape end block is encountered before the end of the
current data buffer, the following messages might be
displayed:

*Q
CLEARING THE DATA BUFFER
THE NEW DATA BUFFER IS FROM

BLOCK 30 to BLOCK 37
ST ARTING AT 30 000
LOADING BLOCK 30
LOADING BLOCK 31
LOADING BLOCK 32
STOPPED AT 32 377
END-OF-DATA BLOCK WAS SEEN

If an error occurs while performing thle queue, the
following message might be output:

*Q
CLEARING THE DATA BUFFER
THE NEW DATA BUFFER IS FROM

BLOCK 30 TO BLOCK 37
STARTING AT 30 000
LOADING BLOCK 30
? CHECKSUM ERROR

9-9

If an R command has not preceded the Q or if the read
encountered a checksum error or an end-of-data block, the
following warning message will be displayed:

*Q
% ILLEGAL USE OF Q
% READ COMMAND ASSUMED
*R

After Q has been typed, enabling of the low-speed
paper-tape reader can be performed at any time; MRP will
wait until the reader is ready. The high-speed reader must
be readied at the time the command is issued.

9.10.3 P: Punching Paper Tape
The P command facilitates the following operations:

1. Punching selected locations from paper tape,
PROM, or the data buffer on paper tape.

2. Duplicating a paper tape by punching segments
of the binary program stored in the data buffer.

3. Duplicating a PROM by writing out the
contents of the data buffer.

4. Backing up a PROM on paper tape, or paper
tape on one or more PROMs.

Punching is performed on either the high-speed or
low-speed paper-tape punch, depending on the setting of
Switch Register bit 11. If the bit is on, the high-speed
punch is selected; otherwise, the low-speed device
associated with the Teletype is used.

The P command is issued as follows:

Form

Where

Example

P addrl ;addr2<cr>

addr 1 is the starting memory
location in block-offset notation
addr2 is the ending memory
location in block-offset notation

*p 45#100;47#377

In tius example, memory locations from block 45, offset
100 through block 47, offset 377 are punched out on paper
tape using the appropriate paper-tape punch. This
command does not automatically punch leader tape and an
end block so it should be used in conjunction with the T
and E commands.

The addr2 parameter is not optional. If only one address is
to be punched, the user must nevertheless supply starting
and ending range specifications. In this case, both are
identical, as in the following:

*p 11 #300 ;11 #300

There are several error messages whieh may be produced
because of errors in address specifications. If an alphabetic
or special character is supplied in an address of if an invalid
address separator is typed, the following message will be
displayed:

*p 30:#0;37#37 A
? ILLEGAL CHARACTER

If the starting block is greater than the ending block in the
address specification, the following message will be
displayed:

*p 7#0;0#377
? ADDRESS SPECIFICATION ERROR:

BLOCK 1 > BLOCK 2

If the starting offset is greater than the ending offset in the
address specification, the following message will be
displayed:

*p 20#377;20#0
?LOW BYTES OF THE ADDRESS

SPECIFICATION ARE
REVERSED

This message only occurs when the starting and ending
block specifications are the same.

The paper-tape punch must be readied at the time the
command is issued. No special action need be taken to
position paper tape for punching on the high-speed device.
To ready tape for the low-speed punch, do the following:

1. Turn the Teletype punch unit off.

9-10

2.

3.

4.

Type the P command on the Teletype keyboard
but do not type a carriage return.

Turn the punch unit on.

Type carriage return to initiate punching.

It is important to follow this sequence in order to avoid
punching command input on the program tape outpUll by
the punch.

It is a relatively easy matter to use MRP as a tool to
facilitate high-speed or low-speed on-line tape duplication.
Read a binary tape into memory and punch it out again
using the following commands. This example assumes that
program locations include blocks 15 through 17 and that all
appropriate actions are taken to avoid punching unwanted
characters on the output tape. Remember that the tapes
will not be exact copies since MRP inserts a few sptxial
control characters.

*R
*T
*p 15#0;17#377
*E
*

Read paper tape into memory
Punch header tape
Punch blocks 15 through 17
Punch end block and trailer tape
Return to MRP

9.10.4 T: Punching Leader and Trailer Tape
The T command uses the high-speed or low-speed Teletype
punch to produce either leader or trailer tape. Both leader
and trailer tape have exactly the same format and consist of
approximately four inches of tape punched with octal code
200. Selection of the punching unit depends on the s,etting
of Switch Register bit 11. The command is issued as
follows:

Form T

This command does not require the user to type a carriage
return. As soon as the character T is typed, header or trailer
tape is produced. MRP then inserts an automatic carriage
return/line feed to return control to MRP monitor lev,el.

If the punch is turned on at the time T is typed, the
command character, as well as the carriage return/line feed
inserted by MRP, will be output on the tape but ignored
when the program is loaded. If the user wishes to exclude
these extraneous characters from the program tape~ he
should follow certain procedures when producing header or
trailer tape.

1.

2.

3.

4.

Turn the punch off.

Type the T command after the prompting
character:

*T

Turn the punch on immedia.tely after typing
the T command.

Turn the punch off after header or trailer tape
has been produced.

Control returns automatically to MRP. Because the punch
is not turned on until after T begins operation, a small
amount of trailer tape might be lost.

9.10.5 E: Punching an End Block on Tape
The E command punches the end block, followed by
approximately four inches of octal code 200 trailer tape,
using the high-speed or low-speed paper-tape punch.
Selection of the punching unit depends on the setting of
Switch Register bit 11. It is issued as follows:

Form E

This command does not require the user to type a carriage
return. As soon as the character E is typed, end block and
trailer tape are produced. MRP then inserts an automatic
carriage return/line feed to return controll to MRP monitor
level.

An end block punched by MRP has the same format as that
produced by the MLA Assembler. In this format, each
block of data has a byte count of greater than six. The end
block contains no data and therefore has a byte count of
exactly six. The sequence of steps shown for the T
command could be followed to prevent the E character
from being punched out on paper tape. However, it is a far
more serious matter to lose part of the e,nd block than to
lose part ot the leader/trailer tape. It is therefore preferable
to leave the punch on while typing E and to rely on these
command characters being ignored when the program tape
is loaded.

Note that E implies automatic execution of the T
command, so trailer tape need not be explicitly requested.

9.11 PROM I/O COMMANDS
A variety of input/output commands have been
implemented to allow the MRP user to read, check, write,
and verify PROMs. These commands are listed in Table 9-4.

9·11

Command

F

C

W

V

Table 94
PROM I/O Commands

Meaning

Read or fetch contents of PROM in
read socket, copying it into data
buffer.

Check contents of PROM in read
socket to ensure that all locations
are clear.

Write specified address range onto
PROM in write socket.

Verify that contents of PROM in
write socket correspond to
specified addresses in data buffer.

These are described in greater detail in the following
paragraphs.

9.11.1 F: Reading a PROM
The F (fetch) command is used to read the contents of a
PROM into the data buffer. The PROM must be in the read
socket on the MR873 assembly. This command is issued as
follows:

Form

Where

Example

F addrl ;addr2<cr>

addr 1 is the starting memory
location in block-offset notation
addr2 is the ending memory
location in block-offset notation

*F 30#0;30#377

In this command, addr 1 and addr2 reference memory
locations in the data buffer in which the contents of the
PROM will be loaded.

There are several error messages which may be produced
because of errors in address specifications. If an alphabetic
or special character is supplied in an address or if an invalid
address separator is typed, the following message will be
displayed:

*F 30#0;30#37%
? ILLEGAL CHARACTER

If the starting offset is greater than the ending offset in the
address specification, the following message will be
displayed:

*F 20#377 ;20#0
?LOW BYTES OF THE ADDRESS

SPECIFICATION ARE
REVERSED

Because the capacity of a PROM is only 256 decimal or 400
octal words, the address range cannot exceed one block and
cannot cross a block boundary. All of the following are
therefore invalid:

*F 1#0;7#377
*F 30#377;31#123
*F 47#200 ;50#1 77

If the block numbers of the starting and ending range
specifications are not the same, the following will occur:

*F 1 #0;7#377
?HIGH BYTES OF THE ADDRESS

SPECIFICATION MUST BE
THE SAME

Careful placement of PROM data is essential when copying
from PROM to paper tape. The following illustrates
concatenation of three PROMS onto paper tape. This
example assumes that a new PROM is inserted in the read
socket for each fetch.

*1' Punch header tape

*F 10#0;10#377 Fetch data from PROM and
copy to data buffer

*F 11#0;11#377 Fetch data from PROM and
copy to data buffer

*F 12#0;12#377 Fetch data from PROM and
copy to data buffer

*L 13#0;17#377 Clear remaining locations in data
buffer

*£1 10#0;1 2#377 Punch blocks 10 through 12

*E Punch end block and trailer tape

* Return to MRP

The user types a carriage return to conclude the F
command. MRP inserts an automatic line feed, performs
the fetch, and returns to monitor level.

9-12

The fetch command is a very powerful one, since it can be
used to redefme the current window on the data buffer. If
the data buffer is defined as extending from 10#0 thTOugh
17#377 and the following command is issued

*F 37#16;37#377

MRP will display the following message:

CLEARING THE DATA BUFFER
THE NEW DATA BUFFER RANGE IS FROM

BLOCK 30 TO BLOCK 37

The user has the option of electing not to redefine 1th(~ data
buffer at this time. If an error has been made or if ya]uable
information is still in the current data buffer, the us{:r can
simply type CTRL/C at any time while the message is being
displayed. After the message has been typed completely,
the data buffer will be redefmed as extending from 30#0
through 37#377.

9.11.2 C: Checking a PROM
The C (check) command examines every location of a
PROM to ensure that the entire PROM is clear before the
user attempts to write on it. The PROM must be in 1the read
socket in the MR873 assembly at the time the command is
given. The user types the follOWing:

Form C

It is not necessary to terminate this command with a
carriage return. As soon as the character C is typed, MRP
begins to examine PROM locations.

Each location is checked to ensure that it is clear. [f the
entire PROM is clear, the following message will be
displayed:

*C PROM IS CLEAR

If any locations in the PROM have invalid contents, MRP
will display both address and contents in a formatted list.
Following is an example:

*C
ADRSPROM
003001
127010
322072
376077
377 177

*
Because a PROM consists of one complete block (400 octal
words) of data, it is not necessary for MRP to supply the

block numbers of addresses with invalid contents. The three
octal digits displayed beneath the ADRS label represent
offsets within the block.

MRP automatically outputs a carriage~ return/line feed
combination at the end of each line printed; it returns
automatiGally to the monitor when all relevant addresses
and contents have been printed.

9.11.3 W: Writing a PROM
The W (write) command is used to load (or program) a
PROM with the contents of specified addresses in the data
buffer. The PROM to be used for output must have been
checked for clear contents and must be iln the write socket
on the MR873. The W command is issued as follows:

Form

Where

Example

W addrl ;addr2<cr>

addr 1 is the starting memory
location in block-offset notation
addr2 is the ending memory
location in block-offset notation

*W 1#0;1#377

The user types a carriage return to conclude this command.
MRP inserts an automatic line feed and displays the
following message:

WAIT FOR BELL

The PROM will now be programmed. By watching the
lights on the PDP-8 console panel, the Ulser can determine
when the PROM has been loaded. During the loading
process, the MQ register displays the binary representation
of all characters loaded. When the panel Hghts stabilize, the
PROM has been loaded. At this time, MRP causes the
Teletype bell to ring or the audible signal on another
terminal to be produced. A carriage return/line feed is
output and MRP returns to monitor level.

There are several error messages that may be produced
because of errors in address specifications. If an alphabetic
or special character is supplied in an address or if an invalid
address separator is typed, the following message will be
displayed:

*W
? ILLEGAL CHARACTER

9-13

If the starting offset is greater than the ending offset in the
address speCification, the following message will be
displayed:

*W 20#377;20#0
?LOW BYTES OF THE ADDRESS

SPECIFICATION ARE
REVERSED

Because the capacity of a PROM is only one block, the
address range cannot exceed one block and cannot cross a
block boundary. The following are therefore invalid:

*W 20#0;27#377
*W 50#377;51#10

If the block numbers of the starting and ending range
speCifications are not the same, the following will occur:

*W 20#0;27#377
?HIGH BYTES OF THE ADDRESS

SPECIFICATION MUST BE
THE SAME

MRP can be used to duplicate PROMs in a straightforward
on-line way. Read a PROM into the data buffer and write it
out again using the following commands. This example
assumes that program locations comprise block 36.

*C PROM IS CLEAR

*F 36#0;36#377

*W 36#0;36#377

WAIT FOR BELL

*V 36#0;36#377
PROM VERIFIED OK

*

Check that PROM is clear

Fetch data from PROM
and copy it into data
buffer

Write PROM from data
buffer

Verify contents of PROM

Return to MRP

MRP can also be used to copy PROM-to-tape or
tape-to-PROM. Remember, however, that the capacity of
paper tape is much larger than that of a PROM, so care
must be used when specifying addresses to be copied.

9.11.4 V: Verifying a PROM
The V (verify) command compares specified addresses in
the data buffer with addresses of the PROM in the read
socket on the MR873 assembly. It is issued in the following
way:

Form

Where

Example

V addrl ;addr2<cr>

addr 1 is the starting memory
location in block-offset notation
addr2 is the ending memory
location in block-offset notation

*V 74#100;74#277

The user types a carriage return to conclude this command.
MRP inserts an automatic line feed, performs the
verification operation, and returns to monitor level.

There are several error messages that may be produced
because of errors in address speCifications. If an alphabetic
or special character is supplied in an address of if an invalid
address separator is typed, the following message will be
displayed:

*V 30#0;30#37 A
? ILLEGAL CHARACTER

If the starting offset is greater than the ending offset in the
address specification, the following message wHl be
displayed:

*V 20#377;20#0
?LOW BYTES OF THE ADDRESS SPECIFICATION

ARE REVERSED

This message only occurs when the starting and ending
block specifications are the same.

Because the capacity of a PROM is only one block, the
address range cannot exceed one block and cannot cross a
block boundary. The following are therefore invalid:

*V 70#0;75#377
*V 60#377;61#2

9-14

If the block numbers of the starting and ending range
speCifications are not the same, the following will occur:

*V 20#0;27#377
?HIGH BYTES OF THE ADDRESS SPECIFICATION

MUST BE THE SAME

If the specifications are outside the range of the current
data buffer, the message shown below will be displayed.
The current data buffer is assumed to include blocks 20
through 27.

*V 70#0;70#377
?HIGH BYTE OF THE ADDRESS SPECIFICA llION

OUTSIDE THE RANGE OF THE CURRENT
DATA BUFFER

The contents of each PROM location is compared to the
contents of the corresponding data buffer address. If the
address contents are all the same, the following message will
be displayed:

PROM VERIFIED OK

If any locations do not correspond, MRP will display both
addresses and contents in a formatted list. Following i:; an
example:

*V 36#0;36#377
ADRS BUF PROM
305001 210
375 007010

*

Because a PROM consists of one complete block of data, it
is not necessary for MRP to supply the block numbers of
addresses that cannot be verified. The three octal digits
displayed beneath the ADRS label represent offsets within
the block. The digits that appear beneath the BUF labe)l are
the contents of the specified offset in the data buffer; the
digits beneath PROM are the contents of the PROM at that
offset.

MRP automatically outputs a carriage return/line feed
combination at the end of each line printed. It returns
automatically to the montior level when all rE:levant
addresses and contents have been printed.

9.12 LOCATION-EXAMINATION COMMANDS
MRP commands have been implemented to facilitate the
examination and modification of memory locations. All
commands in this category consist primarily of special
Teletype keyboard characters as shown in Table 9-5.

Table 9-5
Location-Examination Commands

Command Meaning

/ 0 pens specified location for
modification

carriage return Closes current location

line feed

t

Closes current location and opens
next location

Closes current location and reopens
it

Closes current location and opens
previous location

9.12.1 /: Opening a Memory Location
The / command allows the user to specify that a particular
data buffer location is to be opened and the contents of
this location displayed. These contents can subsequently be
changed. The command is issued in the following way:

Form

Where

Example

addr/

addr is the location to be examined
in block-offset notation

*45#100/001

In response to the prompting character, the user types the
address to be examined and follows it with a slash (/)
character. MRP automatically inserts a space after the slash
and prints out the contents of the examined location in
three-digit octal form. The user can then modify the
contents of the location by typing the new value to replace
the value displayed, as follows:

*45#100/001 111

9-15

The space between the old and new values is also output by
MRP.

To terminate the command line, returning control to MRP
or examining another location, carriage return, line feed,
period, or up-arrow can be typed. The different
characteristics of these Teletype keys are presented in the
following paragraphs.

9.12.2 Carriage Return: Closing an Open Location
In addition to its typical function as a statement terminator
(for example, in F and P commands), the RETURN key can
be used to close an open location that is being examined. A
carriage return is typed at the end of the following
command

*12#141/000 111 <cr>

to indicate that the specified change in contents is to be
made, and the location at block 12, offset 141 is to be
closed. After the RETURN key is pressed, control returns
to MRP and the prompting asterisk is displayed. No further
locations are opened until explicitly directed by another
command.

9.12.3 Line Feed: Opening the Next Location
The line feed character instead of the carriage return can be
typed to perform three distinct actions:

1. Close the location being examined.

2. Open the next location and display its contents.

3. Allow modification of the displayed location.

Use of the line feed in terminating the following command

*27#O/377<If>

causes the location at block 27 offset 0 to be closed and the
location at block 27 offset 1 to be opened automatically.
The full interaction looks like

*27#O/377<If>
27001/001

where the user types only the initial 27#0/ specification.

The long form of this function requin~s that the user issue
two separate examination commands, as follows:

*27#O/377<cr>
*27#1/001

9.12.4 .: Reopening the Current Location
The'period (.) is used to perform the following functions:

1.

2.

3.

Close the location being examined.

Reopen the same location and display its
contents.

Allow modification of the displayed location.

Use of the period is valuable when correcting an incorrectly
altered location or when verifying th,at a change has. been
made. For example, in the following:

*45#10/000 770\0\7\326\671.
45010/271

the use of RUBOUT characters, echoing deleted characters,
has made the modification of location 45#10 difficult to
read. The period is used to verify that the desired
correction has been made. Note that rubbing out 770 has
indicated that 770 was truncated to 370, since MPS
addresses can include offsets of only eight bits.

9.12.5 t: Opening the Previous Location
Use of the up-arrow (t) character complements the use of
line feed. While line feed allows the user to view the next
location, up-arrow causes the previous location to be
opened. The following functions are performed:

1.

2.

Close the location being examined.

Open the previous location and display its
contents.

3. Allow modification of the displayed location.

Use of the t in the following commands

*22:f.!:01 001 t
21 3771 177 ooot
21 376/001

9-16

allows the user to view the contents of the location before
22:#0, 21 #377 (177) and to modify that location; t is used
again to view the contents oflocation 21#376 (001).

9.13 DISPLAY COMMAND
The D command has been implemented to allow the MRP
user to obtain listings of part or all of the data buffer on
the Teletype or the line printer.

9.13.1 D: Dumping Address Contents
The D (dump) command allows the user to obtain a listing
on the Teletype or line printer of a range of memory
addresses in the data buffer. It is issued as follows:

Form

Where

Example

D addrl ;addr2<cr>

addr 1 is the starting memory
location in block-offset notation
addr2 is the ending memory
location in block-offset notation

*D 1 :#0;7#377

There are several error messages that may be produced
because of errors in address specifications. If an alphabetic
or special character is supplied in an address or if an invalid
address separator is typed, the following message wiU be
displayed:

*D 30#O;37#37N
? ILLEGAL CHARACTER

If the starting block is greater than the ending block in the
address specification, the following message wHl be
displayed:

*D 7:#0;0#377
? ADDRESS SPECIFICATION ERROR:

BLOCK 1 > BLOCK 2

If the starting offset is greater than the ending offset in the
address specification, the following message wiJI be
displayed:

*D 20#377;20:#0
?LOW BYTES OF THE ADDRESS SPECIFICATION

ARE REVERSED

This message occurs only when the starting and ending
block specifications are the same.

A dump command can access only the current data buffer.
If the buffer is assumed to include blocks 0 through 7, the
following are illegal specifications:

*D 1 #0;36#377
*D 27#377;30#0
*D 70#0;70#377

The following interaction will take place:

*D 1#0;36#377
?HIGH BYTE OF ADDRESS SPECIFICATION

IS OUTSIDE THE RANGE OF THE
CURRENT DATA BUFFER

The user terminates the D command by typing a carriage
return; MRP inserts a line feed and proceeds to type out the
desired listing in the following format:

*D addrl; addr2<cr>
addr 1 / contents
addra/ contents
addrb/ contents
addre/ contents
addrd/ contents

addr2/ contents

*

An example is included below:

*D 1 #0;7#377
01 000/ 000
01 001/001
01 002/ 007
01 003/000
01 004/070

07377/ 000

*

If the user decides that he need not view the entire dump,
or if the Teletype or line printer requires maintenance of
any kind, the listing can be terminated by typing CTRL/C
on the Teletype keyboard.

9-17

The addr2 parameter is not optional. If only one address is
to be dumped the user must nevertheless supply starting
and ending range specifications. In this case, both are
identical, as in the following:

*D 36#0;36#0

9.14 CONTROL COMMAND
One MRP command has been implemented to allow the user
to clear memory locations or to fill specified addresses with
a constant.

9.14.1 L: Loading Memory with a Constant
The L command is used to load a segment of memory with
a specified constant. It is issued in the follOWing way:

Form

Where

Examples

L addrl ;addr2;[constant] <cr>

addr 1 is the starting memory
location in block-offset notation
addr2 is the ending memory
location in block-offset notation
constant is optional and represents
the value to be inserted in the
memory location

*L 76#340;76#352;7
*L 20#343;27#377;

The user terminates the command with a carriage return,
and MRP inserts an automatic line feed. The addr2
parameter is not optional. If only one address is to be
cleared the user must nevertheless supply starting and
ending range specifications. In this case, both are identicaL
as in the following:

*L 70#0;70#0;

L is often used to clear memory locations; if constant is
omitted from the command, zero is the default, and the
memory range specified is zeroed. The semicolon following
addr2 must be supplied, even if constant is omitted from
the command.

There are several error messages that may be produced
because of errors in address specifications. If an alphabetic
or special character is supplied in an address or if an invalid
address separator is typed, the following message will be
displayed:

*L 30#O;37#37Q
? ILLEGAL CHARACTER

If the starting block is greater than the ending block in the
address specification, the following message will be
displayed:

*L 7#0;0#377;
? ADDRESS SPECIFICATION ERROR:

BLOCK 1 > BWCK 2

If the starting offset is greater than the ending offset in the
address specification, the following message will be
displayed:

*L 20#377;20#0;
?LOW BYTES OF THE ADDRESS SPECIFICATIONS

ARE REVERSED

This message only occurs when the starting and ending
block specifications are the same.

The load command can be used to redefine the current
window on the data buffer. If the buffer is defined as
extending from 20#0 through 27#377 and the following
command is issued:

*L 72#0;73#377;

9-18

MRP will display the following message:

CLEARING THE DATA BUFFER
THE NEW DATA BUFFER IS FROM

BLOCK 70 TO BLOCK 77

The user has the option of electing not to redefine the data
buffer at this time. If an error has been made or if valuable
information is still in the current data buffer, the user can
simply type CTRL/C at any time while the message is being
displayed. After the message has been typed completely,
the data buffer will be redefined as extending from 70#0
through 77#377.

Although the data buffer can be redefined by specifying an
address range in the new data buffer, a load cannot actually
cross the boundary of a data buffer. Therefore, if the
current data buffer extends from 20#0 through 27#377,
the following is legal:

*L 70#0;77#377;

but the following example is illegal and results in the
message displayed:

*L 26#0;32#377;
?HIGH BYTE OF ADDRESS SPECIFICATION

IS OUTSIDE THE RANGE OF THE
CURRENT DATA BUFFER

This chapter contains a series of sample programs that
might be useful as a reference when the user begins to
construct programs based on the syntax described in
Chapter 6. This sample code is heavily commented and is
included in the form of assembly listings.. Symbol table
listings are included when indicated by the setting of the
PDP-8 Switch Register.

10.1 LOADING REGISTER IN RAM
The following example illustrates suppression of symbol
table output during assembly.

*77#200
RAM = 76#340

CHAPTER 10
SAMPLE PROGRAMS

/OPERATION = LOAD ADDRESS OR JUMP TO 77#200
77 200 335 SA VEHL, LDH /pUT REGISTER H IN REGISTER D
77 201 346 LEL /PUT REG ISTER L IN REG ISTER E

/OPERATION = LOAD ADDRESS OR JUMP TO 77#202
77 202 066 SAVREG, LLI RAMt /SAVE REGISTERS A-E

340
77 204 056 LHI RAM /IN LOCATION 76#340 (37340)

076
77 206 370 LMA /STORE A
77 207 060 INL /B
77 2]0 371 LMB
77 211 060 INL /C
77 212 372 LMC
77 213 060 INL /D
77 214 373 LMD
77 215 060 INL /ANDE
77 216 374 LME
77 217 000 HLT /HALT

$
000 ERRORS

10-1

10.2 READING A BLOCK OF DATA

/READ IN A BLOCK OF DATA OF 10 (OCTAL)

OPDEF INPUT;INP;O /DEFINE OPCODE INPUT
OPDEF CALL~106;2 /DEFINE OPCODE CALL
START = 04#200
* START

04 200 056 LHI BLKt /LOAD ADDRESS BLOCK TO HAND L REGS
004

04 202 066 LLI ELK
230

04 204 016 LBI 10 /SET COUNT TO 10
010

04 206 106 AGAIN, CALL READIN /READ A BYTE OF DATA
220
004

04 211 370 LMA /STORE IT IN BLOCK
04 212 060 INL /INCREMENT POINTER IN BLOCK
04 213 011 DCB /DECREMENT COUNTER
04 214 110 JFZ AGAIN /IF NOT DONE, GO BACK FOR NEXT

206
004

04 217 000 HLT

04 220 103 READIN, INPI /INPUT STATUS
04 221 044 NDI 40 /MASK "DA" (IGNORE ERRORS)

040
04 223 150 JTZ READIN /WAIT FOR "DA"

220
004

04 226 101 INPUT /GET A BYTE OF DATA
04 227 007 RET /RETURN

04 230 000 BLK, BLOCK 10
000
000
000
000
000
000
000

$
AGAIN 04 206
ELK 04 230
READIN 04 220
START 04 200

000 ERRORS

10-2

10.3 CONVERSION/pRINT SUBROUTINES
The following subroutines are included as examples of MLA
code. They must be assembled with other segments of a
program.

IBINARY TO DECIMAL CONVERSION AND PRINT
IB AND C REGISTERS ARE USED FOR WORKING VARIABLES
IE REGISTER WILL HOLD FINAL DIGIT TO BE PRINTED
ICAL DCM TO PRINT INTEGER PORTION OF NUMBER
ICAL FRA TO PRINT FRACTIONAL PART
ICAL EITHER WITH DATA IN AC

*22#042
22 042 066 DCM, LLITENS

062
22 044 026 LCI -3 ITYPE 3 PLACES BEFORE DECIMAL POINT

375
22 046 104 JMP DCP

055
022

22 051 066 FRA, LLITENTH

065
22 053 026 LeI -2 ITYPE 2 PLACES AFTER DECIMAL POINT

376
22 055 310 DCP, LBA ISAVE BINARY IN B

22 056 046 LEI 60 IINIT E TO CHAR (0)
060

22 060 104 JMPSKP

064
022

22 063 310 SVB, LBA ISAVE NEW B

22 064 250 SKP, XRA ICLEAR AC & CARRY

22 065 201 ADB IADDB TO AC

22 066 207 PTR, ADM ITRIAL SUBTRACT OF CONVERTER

22 067 100 J1FC CNS /SKIP IF CARRY NOT SET

076
022

22 072 040 INE

22 073 104 IMP SVB /ELSE, BUMP DIGIT AND LOOP

063
022

22 076 106 CNS, CALTYP /PRINT DIGIT

361
021

22 101 046 LEI 60 IRESET 'E'

060
22 103 060 INL I ADVANCE TO NEXT CONVERTER

22 104 020 INC IARE WE DONE?

22 105 110 JFZ SKP INO
064
022

22 110 007 RET IYES, RETURN TO CALLING ROUTINE

10-3

*24#062
24 062 234 TENS, DATA 234;366;377 1-100,-10,-1

366
377

24 065 347 TENTH, DATA 347;375/-.1,-.01
375

*21#361
ITYPE A CHARACTER FROM REGISTER 'E'

I
21 361 103 TYP, INPI IREAD THE 'UART' STATUS
21 362 044 NDI20 ITRANSMITTER BUFFER EMPTY?

020
21 364]50 JTZ TYP INa, WAIT

361
021

21 367 304 LAE IPRINT CHARACTER IN REGISTER 'E'
21 370 121 aUTO
21 371 007 RET

10-4

Category

READ

APPEND

INSERT

LIST

PUNCH

FORM FEED

APPENDIX A
SUMMA~RY OF EDITOR (MLE) COMMANDS

Command Example

R R

A A

nl 31

L L

nL 100L

m,nL 1,50L

P P

nP 6P

m,nP 100,120

F F

Function

Read text from paper-tape reader and
append it to text buffer.

Read text from terminal and append it to
text buffer.

Insert text from terminal before line 1 in
text buffer.

Insert text from terminal before line n in
text buffer.

List the contents of the text buffer on
the terminal.

List line n of the text buffer on the
terminal.

List lines m through n of the text buffer
on the terminal.

Punch the contents of the text buffer on
the high- or low-speed paper-tape punch
(selection depends on setting of Switch
Register bit 10).

Punch line n of the text buffer on the
paper-tape punch.

Punch lines m through n of the text
buffer on the paper-tape punch.

Punch a form feed (four blanks, a form
feed character, and approximately two
inches of blank tape) on the paper-tape
punch.

A·l

Reference

5.6.1

5.6.2

5.6.3

5.6.3

5.7.1

5.7.1

5.7.1

5.7.2

5.7.2

5.7.2

5.7.3

CategOlY Command Example

TRAILER T T

NEXT N N

nN ION

CHANGE nC IOOC

m,nC I,IOC

DELETE nO 420

m,nD 12,200

GET G G

nG 15G

KILL K K

MOVE m,n$jM 1,10$20M

SEARCH S S

nS lOS

m,nS I,IOS

Function

Punch a trailer (approximately four
inches of blank tape) on the paper-tape
punch.

Perform the functions of P, F, K, and R
respectively.

Perform the functions of P, F, K, and R
respectively, n times in sequence.

Delete line n of the text buffer and
replace it with the text entered from the
terminal.

Delete lines m through n of the text
buffer and replace them with the text
en tered from the terminal.

Delete line n from the text buffer.

Delete lines m through n from the text
buffer.

Output the first tagged (labeled) line after
the current location in the text buffer on
the terminal.

Output the first tagged line after line n in
the text buffer on the terminal.

Kill (erase) the entire contents of the text
buffer.

Move lines m through n in the text buffer
to the location just before line j.

Search the entire text buffer for all
occurrences of the character entered from
the terminal, but not echoed, after the
carriage return.

Search line n for occurrences of the
character entered from the terminal and
then allow command modification.

Search lines m through n for occurrences
of the character entered from the
terminal and then allow command
modification.

A-2

Reference

5.7.4

5.7.5

5.7.6

5.8.1

5.8.1

5.8.2

5.8.2

5.8.3

5.8.3

5.8.4

5.8.4

5.8.6

5.8.6

5.8.7

APPENDIX B
SUMMARY OF AS~SEMBLER (MLA) INSTRUCTIONS

Instruction Example

Lr(1)r(2) LAB

LrM LDM

LMr LMA

Lrl LAIA+B

LMI LMII04

1m INL

DCr DCB

ADr ADD

ACr ACB

SUr SUB

SBr SBD

NDr NDB

XRr XRA

ORr ORB

CPr CPB

ADM ADM

Function

Load register 1 with the contents of register 2.

Load a register with the contents of memory.

Load memory with the contents of a register.

Load a register with the byte of data immediately following
the instruction.

Load memory with the byte of data immediately following
the instruction.

Increment a register.

Decrement a register.

Add the contents of a register to the accumulator.

Add the contents of a register and the carry flip-flop to the
accumulator .

Subtract the contents of a register from the accumulator.

Subtract the con~ents of a register and the carry flip-flop
from the accumulator.

Logical AND the contents of register with the accumulator.

Exclusively OR the contents of a register with the
accumulator.

Inclusively OR the contents of a register with the
accumulator.

Compare the contents of a register with the accumulator
and set the status ,flip-flops.

Add the contents of memory to the accumulator.

B-1

Reference

3.3.1

3.3.1

3.3.1

3.3.2

3.3.2

3.3.3

3.3.4

3.4.1

3.4.1

3.4.1

3.4.1

3.4.1

3.4.1

3.4.1

3.4.1

3.4.2

Instnlction Example

ACM ACM

SUM SUM

SBM SBM

NDM NDM

XRM XRM

ORM ORM

CPM CPM

ADI ADI2

ACI ACI104

SUI SUI 1

SBI SBI6

NDI NDI100

XRI XRI340

ORI ORI 102

CPI CPI4

RLC RLC

RRC RRC

Function

Add the contents of memory and the carry flip-flop to the
accumulator .

Subtract the contents of memory from the accumulator.

Subtract the contents of memory and the carry flip-flop
from the accumulator.

Logical AND the contents of memory with the
accumulator.

Exclusively OR the contents of memory with the
accumulator.

Inclusively OR the contents of memory with the
accumulator.

Compare the contents of memory with the accumulator
and set the status flip-flops.

Add the byte of data immediately following the instruction
to the accumulator.

Add the byte of data immediately following the instruction
and the carry flip-flop to the accumulator.

Subtract the byte of data immediately following the
instruction from the accumulator.

Subtract the byte of data immediately following the
instruction and the carry flip-flop from the accumulator.

Logical AND the byte of data immediately following the
instruction with the accumulator.

Exclusively OR the byte of data immediately following the
instruction with the accumulator.

Inclusively OR the byte of data immediately following the
instruction with the accumulator.

Compare the byte of data immediately following the
instruction with the accumulator and set the status
flip-flops.

Rotate the contents of the accumulator one bit to the left
and into the carry flip-flop.

Rotate the contents of the accumulator one bit to the right
and into the carry flip-flop.

B-2

Referenc(~

3.4.2

3.4.2

3.4.2

3.4.2

3.4.2

3.4.2

3.4.2

3.4.3

3.4.3

3.4.3

3.4.3

3.4.3

3.4.3

3.4.3

3.4.3

3.4.4

3.4.4

Instruction Example

RAL RAL

RAR RAR

JMP JMPCKDONE

JFc JFZ NXTBLK

JTc JTSER

CAL CALGETBYT

CFc CFZ ALL

CTc CTP CKIT

RET RET

RFc RFZ

RTc RTS

INP INP

OUT OUT

INPO INPO

INPI INPI

aUTO aUTO

HLT HLT

RST RST

ION ION

IOF IOF

Function

Rotate the contents of the accumulator one bit to the left
and through the carry flip-flop.

Rotate the contents of the accumulator one bit to the right
and through the carry flip-flop.

Jump unconditionally to the address specified in the
instruction.

Jump on a false flip-flop condition to the address specified
in the instruction.

Jump on a true flip-flop condition to the address specified
in the instruction.

Call unconditionally the subroutine specified in the
instruction.

Call on a false flip-flop condition the subroutine specified
in the instruction.

Call on a true flip-flop condition the subroutine specified in
the instruction.

Return unconditionally from a subroutine, popping the
stack up one level.

Return on a false flip-flop condition from a subroutine,
popping the stack up one level.

Return on a true flip-flop condition from a subroutine,
popping the stack up one level.

Read one byte of data from the input device into the
accumulator.

Write one byte of data from the accumulator to an output
device.

Read data from the UART.

Read status from the UART.

Output data to UART.

Halt the Assembler.

Restart the Assembler with a call to low memory.

Enable external events.

Disable external events.

B-3

Reference

.3.4.4

3.4.4

3.5.1

3.5.1

3.5.1

3.5.2

3.5.2

3.5.2

3.5.3

3.5.3

3.5.3

3.6.1

3.6.2

3.6.3

3.6.3

3.6.3

3.7.1

3.7.2

3.7.3

3.7.3

APPENDIX C
SUMMARY OF

ASSEMBLER PSEUDO-INSTRUCTIONS

Pseudo-Instruction

$

PAUSE

*expression

OCT

HEX

DEC

EXPUNGE

OPDEF mnemonic ;value ;type

label, DATA nO;nl ;n2;nm

label, BLOCK size [;initial [;increment]]

label, TEXT? literal 'V

label, ADDR aO;al ;a2; ... ;am

Function

Signals end of assembly language program.

Causes pause in Assembler processing until CONTinue
switch is pressed.

Specifies initial program location counter and can be
used to reset current location counter.

Sets radix for subsequent numbers in program to
octal (base 8).

Sets radix for subsequent numbers in program to
hexadecimal (base 16).

Sets radix for subsequent numbers in program to
decimal (base 10).

Deletes instruction symbol table.

Allows programmer to define own instructions
according to value and type given.

Assigns values to incremental memory locations.

Assigns a block of memory of the size given with
values of zero, an initial value, or a set of increments.

Specifies ASCII character strings and/or numeric
representations of ASCII characters to be included in
a program.

Assigns address constants to memory locations.

C-l

Reference

6.10.1

6.10.2

6.10.3

6.10.4

6.10.4

6.10.4

6.10.5

6.10.6

6.10.7

6.10.8

6.10.9

6.10.10

APPENDIX D
E,UMMARY OF MICROPROCESSOR

DEBUGGIJNG PROGRAM (MDP) COMMANDS

Command Example

R R

P addr 1 ;addr2 P 41#0;41#377

T T

E E

addr/ 1#0/

D addrl ;addr2 D 1#0;1#377

s s

x x

G addr G 10#121

Function

Read paper tape from low-speed
reader.

Punch out an address range on
low-speed punch.

Produce leader or trailer tape (octal
code 200) on low-speed punch.

Punch end block and trailer tape on
low speed punch.

Open specified location for
examination or modification; specific
line terminators may cause additional
locations to be examined:

Reference

8.8.1

8.8.2

8.8.3

8.8.4

8.9.1

<cr> close location. 8.9.2

D-1

<If> close location and open next 8.9.3
one.
close location and reopen it. 8.9.4

t close location and open 8.9.5
previous one.

Dump specified address range on
Teletype printer.

Display and allow modification of
status register contents.

Display and allow modification of
index register contents.

Execute program to breakpoint
location.

8.10.1

8.1 0.2

8.10.3

8.11.1

Command Example

B addr B 37#0

L addrl flddr2;[constant] L 76#340;76#377;7

D-2

Function

Set program breakpoint at specified
location.

Load a segment of memory with a
specified constant.

Referenc~~

8.11.2

8.11.3

Command

R

Q

P addrl ;addr2

T

E

F addrl ;addr2

C

W addrl ;addr2

V addrl ;addr2

addr/

APPENDIX E
~3UMMARY OF MICROPROCESSOR

ROM P~ROGRAMMER (MRP) COMMANDS

Example

R

Q

P 45#100;47#377

T

E

F 30#0 ;30#377

C

W 1#0;1#377

V 74#100;74#377

1#0/

Function

Read paper tape from low-speed or
high-speed reader.

Clear data buffer and continue to read
paper tape.

Punch out an address range on
low-speed or high-speed punch.

Produce leader or trailer tape (octal
code 200) on punch.

Punch end block and trailer tape on
punch.

Read contents of PROM into data
buffer.

Check that each location of PROM is
clear.

Write (program) PROM from data
buffer.

Verify that addresses in data buffer
and PROM are the same.

Open specified location for
examination or modification; specific
line terminators may cause additional
locations to be examined:

<cr> close location.
<If> close location and open next

one.
close location and reopen it.

t close location and open
previous one.

Reference

9.10.1

9.10.2

9.10.3

9.10.4

9.10.5

9.11.1

9.11.2

9.11.3

9.11.4

9.12.1

9.12.2
9.12.3

9.12.4
9.12.5

Command Example

D addr 1 ;addr2 D 1#0;7#377

L addrl ;addr2;[constant] L 20*343;27#377;1

E-2

Function

Dump specified address range on
Teletype printer.

Load a segment of the data buffer
with a specified constant.

Reference

9.13.1

9.13.1

APPENDIX F

BLOCK··OFFSET TO OCTAL CONVERSION

This appendix can be used if it is ever necessary to convert the block-offset notation in assembly language programs
and output to octal notation. Only the first and last conversions are given for each block. To convert an offset
within a given block, simply add the offset to the starting octal location in the block. For example:

Block Offset Octal

11 o 4400

11 377 4777

To convert block 11 offset 227 to octal, simply add 227 to 4400. The correct octal equivalent is thus 4627.

Block

1
2

2
3

3
4

4

Offset

o

377
o

377
o

377
o

377

Octal

0400

0777
1000

1377
1400

1777
2000

2377

Decimal

0256

0511
0512

0767
0768

1023
0124

1279

F-l

Block

5

5
6

6
7

7
10

10

Offset

o

377
o

377
o

377
o

377

Octal

2400

2777
3000

3377
3400

3777
4000

4377

Decimal

1280

1535
1536

1791
1792

2047
2048

2303

Block

11

11
12

12
13

13
14

14
15

15
16

16
17

17
20

20
21

21
22

22

Offset Octal

o 4400

377 4777
o 5000

377 5377
o 5400

377 5777
o 6000

377 6377
o 6400

377 6777
o 7000

377 7377
o 7400

377 7777
o 10000

377 10377
o 10400

377 10777
o 11000

377 11377

Decimal

2304

2559
2560

2815
2816

3071
3072

3327
3328

3583
3584

3839
3840

4095
4096

4351
4352

4607
4608

4863

F-2

Block

23

23
24

24
25

25
26

26
27

27
30

30
31

31
32

32
33

33
34

34

Offset

o

377
o

377
o

377
o

377
o

377
o

377
o

377
o

377
o

377
o

377

Octal

11400

11777
12000

12377
12400

12777
13000

13377
13400

13777
14000

14377
14400

14777
15000

15377
]5400

15777
16000

16377

Decimal

4864

5119
5120

5375
5376

5631
5632

5887
5888

6143
6144

6399
6400

6655
6656

6911
6912

7167
7168

7423

Block

35

35
36

36
37

37
40

40
41

41
42

42
43

43
44

44
45

45
46

46

Offset Octal

o 16400

377 16777
o 17000

377 17377
o 17400

377 17777
o 20000

377 20377
o 20400

377 20777
o 21000

377 21377
o 21400

377 21777
o 22000

377 22377
o 22400

377 22777
o 23000

377 23377

Decimal

7424

7679
7680

7935
7936

8191
8192

8447
8448

8703
8704

8959
8960

9215
9216

9471
9472

9727
9728

9983

F-3

Block

47

47
50

50
51

51
52

52
53

53
54

54
55

55
56

56
57

57
60

60

Offset Octal Decimal

o 23400 9984

377 23777 10239
o 24000 10240

377 24377 10495
o 24400 10496

377 24777 10751
o 25000 10752

377 25377 11007
o 25400 11008

377 25777 11263
o 26000 11264

377 26377 11519
o 26400 11 520

377 26777 11775
o 27000 11776

377 27377 12031
o 27400 12032

377 27777 12287
o 30000 12288

377 30377 12543

Hlock

61

61
62

62
63

63
64

64
65

65
66

66
67

67
70

70

Offset Octal

o 30400

377 30777
o 31000

377 31377
o 31400

377 31777
o 32000

377 32377
o 32400

377 32777
o 33000

377 33377
o 33400

377 33777
o 34000

377 34377

DecimaJ

12544

12799
12800

13055
13056

13311
13312

13567
13568

l3823
13824

14079
14080

14335
14336

14591

F-4

Block

71

71
72

72
73

73
74

74
75

75
76

76
77

77

Offset

o

377
o

377
o

377
o

377
o

377
o

377

Octal

34400

34777
35000

35377
35400

35777
36000

36377
36400

36777
37000

37377
37400

37777

Decimal

14592

14843
14848

15103
15104

15359
15360

15615
15616

15871
15872

16127
16128

16383

Octal Char. Octal Char.
Code Code

000 NUL 040 SP
001 SOH 041 !
002 STX 042 "
003 ETX 043 #
004 EOT 044 $
005 ENQ 045 %
006 ACK 046 &
007 BEL 047

,

010 BS 050 (
011 HT 051)
012 LF 052 *
013 VT 053 +
014 FF 054 ,
015 CR 055 -

016 SO 056
017 SI 057 /
020 DLE 060 0
021 DCl 061 1
022 DC2 062 2
023 DC3 063 3
024 DC4 064 4
025 NAK 065 5
026 SYN 066 6
027 ETB 067 7
030 CAN 070 8
031 EM 071 9
032 SUB 072
033 ESC 073 ,
034 FS 074 <
035 GS 075 =
036 RS 076 >
037 US 077 ?

G-1

Octal
Code

100
101
102
103
104
105
106
107
110
111
112
113
114
115
116
117
120
121
122
123
124
125
126
127
130
131
132
133
134
135
136
137

APPENDIX G

7 -BIT ASCII CODE

Char. Octal Char.
Code

@ 140
,

A 141 a
B 142 b
C 143 c
D 144 d
E 145 e
F 146 f
G 147 g

H 150 h
I 151 i
J 152 j
K 153 k
L 154 1
M 155 m
N 156 n
0 157 0

P 160 P
Q 161 q
R 162 r

S 163 s
T 164 t

U 165 u

V 166 v
W 167 w
X 170 x
Y 171 y
Z 172 z
[173 {
\ 174 I
] 175 }
t 176 ,..."

-- 177 DEL

NORTHEAST
REGIONAL OFFICE:
235 Wyman Street. WHitham, Mass. 02154
Telephone: (617)-890-0330/0310 Dataphone: 617-890-3012 or 3013

CONNECTICUT
Meriden
240 Pomeroy Ave., Morlden. Conn. 06540
Telephone, (203)-237-844117466 Detaphone 203-237-8205
Fairfield
1275 Post Road, Fairfield. Conn. 06430
Telephone, (203)-255-0-991

NEW YORK
Rochester
130 Aliens Creek Road. Rochester. New York
Telephone, (716)-481-1700 Dataphone, 716-244-1680
Syracuse
6700 Thompson Road. Syracuse, New York 13211
Telephone, (315)-437-159317085 Dataphone, 315-454-4152

MASSACHUSETTS
Marlborough
One Iron Way
Marlborough, Mass. 01752
Telephone, (617)-481-7400 Tele" 710-347-0348

MID-ATLANTIC
REGIONAL OFFICE:
U.S. Route 1. Prlncetcn, New Jersey 08540
Telephone, (609)-452-2940
FLORIDA
Orlando
Suite 130. 7001 Lake Ellener Drive, Orlando, Florida 32809
Telephone, (305)-851-4450 Dataphone, 305-859-2360

GEORGIA
Atlanta
2815 Clearvlew Piece. Suite 100
Atlante, Georgie 03040
Telephone, (404)-451-7411 Detaphone, 305-859-2360

NORTH CAROLINA
Durhem/Chapel HIli
Executive Park
3700 Chepel HIli Blvd.
Durham. North Carolina 27707
Telephone, (919)-489-3347 Dataphone, 919-489-7832

NEW JERSEY
Fairfield
253 Passaic Ave .. Fairfield, N~w Jersey 07006
Telephon., (201)-227-9280 Dataphone, 201-227-9290
Metuchen
95 Main Street. Metuchen, New Jersey 08840
Telephone, (201)-549-4100/2000 Dataphone, 201-548-0144

EUROPEAN HEADQUARTERS
Digital Equipment Corporation International Europe
81 route de I' Alre
1211 Geneva 26, Switzerland
Telephone, 42 79 50 Tele., 22 663

FRANCE
Digital Equipment France
Centre Sllie - Cldex L 225
94533 Rungls, France
Telephone: 687·23·33 Telex 26840
GRENOBLE
Digital Equipment France
Tour Mangin
16 Rue Du Gal Mangin
38100 Grenoble. France
Telephone, (76)-87-56-01 Tele., 212-32882

GERMAN FEDERAL REPUBLIC
Dlgltel Equipment GmbH
MUNICH
8 Muenchen 13. Wallenstelnplatz 2
Telephone, 0811-35031 Tele" 524-226
COLOGNE
5 Koeln 41. Aachener Strass9 311
Telephone, 0221-<\4-40·95 Tele" 888-2269
Telegram: Flip Chip Koeln

FRANKFURT
6078 Neu·lsenburg 2
Am Foretau8 Gravebrllch 5-7
Telephone, 06102-5526 Tel • ., 41-78-82
HANNOVER
3 Hannover, PodbrelsJ.:lstraase 102
Telephone, 0511-69-70·95 T.le., 922-952
STUTTGART
0·7301 Kemnat, Stuttgart
Marco·Polo·Strasse 1
Telephone, (0771)-45-50-65 Telex, 841-722-393

AUSTRIA
Digital Equipment Corporation Ges,m.b.H.
VIENNA
Marlahllferstrasse 136. 1150 Vienna 15. Austria
Telephone, 88 51 88

UNITED KINGDOM
Digital Equipment Co. Ltd,
U.K. HEADQUARTERS
Fountain House. Butts Centre
Re.dlng RGI 7QN. Eogland

Telephone, (0734)-5835'>5 Tele" 8483278
BIRMINGHAM
Maney Buildings
29/31 Birmingham Rd .. Sutton Coldfleld
Warwlckahlre. England
Telephone· 021-355-5501 Tele" 337-080
BRISTOL
Fish Ponds Road. Fish Ponds
Bristol. Englend BS163HQ
Telephone: Bristol 651·431
EAL/NG
Bilton House. Uxbridge Road. Eallng. London W.5.
Telephone, 01-579-2334 Telo" 22371
EDINBURGH
Shiel House, Cralgshill. Livingston.
West Lothian. Scotland
Telephone: 32705 Telex: 727113

LONDON
Management House
43 Parker St.. Holborn. London
WC 2B 5PT. Englend
Telephone: 01·405-261~114067 Telex' 27560
MANCHESTER
Arndale House
Chester Road. Stretford. Manchester M32 9BH
Telephone, (061)-885-7011 Tele" 668866

~D~DD~D
DIGITAL EQUIPMENT CORPORATION

WORLDWIDE SALES OFFICES
COMPONENTS GROt;JP HEADQUARTERS
ONE IRON WAY. MARLBOROUGH. MASSACHUSETTS 01752

(617) 4817400 TWX 710·34J.0348
For detaIled l%rmahor aboulproducls and polICIes. call800·225-9480 loll·/ree (USA only). Massachusellsresldents call (617)481-7400

OOMESTIC

MID-ATLANTIC (cont.)
Princeton
U.S. Route 1. Princeton. New Jersey 08540
Telephone, (609)-452-2!14O Detephone, 609-452-2940

NEW YORK
Long Island
1 Huntington Quadrangle
Suite 1507 Huntington Station. New York 11746
Telephone, (516)-694-4131. (212)-895-6095
Detaphone, 516-293-56H3
Manhattan
810 7th Ave .. 22nd Floor
New York. N.Y. 10019
Telephone, (212)-562-1:300

PENNSYLVANIA
Philadelphl.
Digital Hall
1740 Walton Road, Blue Bell. Pennsylvania 19422
Telephone, (215)-825-4200

TENNESSEE
Knoxville
6311 Kingston Pike, Suite 21E
Knoxville. Tennessee 37919
Telephone, (615)-588-6S71 Dataphone, 615-584,0571

WASHINGTON D.C.
Lanham 30 Office Building
4900 Princess Garden Parkway. Lanham. Maryland
Telephone, (301)-459-7.00 Dataphone, 301-459-7900 X53

CENTRAL
REGIONAL OFFICE:
1850 Frontage Road. N,orthbrook. Illinois 60062
Telephone, (312)-498-2!OO Detephone, 312-498-2500

INDIANA
Indianapolis
21 Beachway Drive. S'.ute G
Indianapolis. Indiana 46224

Ex. 78

Telephone, (317)-243-8:141 Dataphone, 317-247-1212

ILLINOIS
Chicago
1850 Frontage Road
Northbrook. illinois 80062 Dataphone, 312-498-2500

LOUISIANA
New Orleans
3100 Rldgel.ke Drive. Suite 108
Metairie. Louisiana 70002
Telephone, (504)-837-02'57 Dataphone, 504-633-2800

CENTRAL (cont.)
MICHIGAN
Ann Arbor
230 Huron View Boulevard. Ann Arbor, Michigan 48103
Telephone, (313)-761-1150 Dataphone, 313-769-9863
Detroit
23777 Greenfield Road
Suite 189
Southfield. Michigan 48075 Dataphone, 313-557-3063
MINNESOTA
Minneapolis
8030 Cedar Ave. South, Minneapolis, Minnesota 55420
Telephone, (612)-854-6562-3-4-5 Detaphone, 612-654-1410
MISSOURI
Kensaa City
12401 East 43rd Street. Independence, Missouri 64055
Telephone, (816)-252-2300 Dataphone, 816-481-3100
St. Louis
Suite 110. 115 Progress Parkway
Maryland Heights. Missouri 63043
T.'ephone, (314)-878-4310 Datephone, 816-481-3100
OHIO
Cleveland
2500 Euclid Avenue. Euclid. Ohio 44117
Telephone, (216)-948-8484 Dataphone, 216-948-8477
Dayton
3101 Kettering Boulevard
Dayton. Ohio 45439
Telephone, (513)-294-3323 Dataphone, 513-298-4724
OKLAHOMA
Tulsa
3140 S. Wlneton
Winston Sq. Bldg., Suite 4, Tulsa. Oklahoma 74135
Telephone, (918)-749~4476 Detephone, 918-749-2714
PENNSYLVANIA
Pittsburgh
400 Penn. Center Boulevard. Pittsburgh. PennsylvanIa 15235
Telephone, (412)-243-9404 Dataphone, 412-824-9730
TEXAS
Dallas
Plaza North. Suite 513
2880 LBJ Freeway, Dallas. Texas 75234
Telephone, (214)-620-2051 Datephone, 214-620-2061
HOUSTON
6656 Hornwood Drive
Monterey Park, Houston. Texas 77036
Telephone, (713)-777-3471 Dataphone, 713-777-1071
WISCONSIN
Milwaukee
8531 West Capitol Drive. Milwaukee. Wisconsin 53222
Telephone, (414)-483-9110 Detephone, 414-463-9115

UNITED KINGDOM (cont.)
READING

INTERNATIONAL

ISRAEL

Fountain House. Butta Centre
Reading RGI 7QN. En'lland
Telephone, (0734)-5635S5 Tele" 8463278

NETHERLANDS
Dlgltel Equipment N.V.
THE HAGUE
Sir Winston Churchillian 370
RIjswijk/The Hague. Netherlands
Telephone, 94 9220 Tele" 32533

BELGIUM
Dlgltel Equipment N.V'/S.A.
BRUSSELS
108 Rue D'Arlon
1040 Brussels. Belgium
Telephone, 02-139258 Tele" 25297

SWEDEN
Dlgltel Equipment AB
STOCKHOLM
Englundavagen 7. 171 411 So Ina. Sweden
Telephone, 98 1390 Telex, 170 50
Cable, Dlgltel Stockholm

NORWAY
Digital Equipment Cor,p_ A/S
OSLO
Trondhelmsvelen 47
0.10 5. Norway
Telephone, 02/6834 40 Tele" 19079 DEC N

DENMARK
Digital Equipment Aktfebolag
COPENHAGEN
Hellerupveg 66
2900 Hellerup. Denmark

FINLAND
Dlgltel Equipment AB
HELSINKI
Tltlsmaantle 6
SF-00710 HelSinki 71
Telephone, (090) 370133
Ceble, Dlgltel HelSinki

SWITZERLAND
Digital Equipment Corporation S.A.
GENEVA
20. Qual Ernest Anserrnet
Boite Postale 23, 1211 Geneva 8. SWitzerland
Telephone No. 022/204020 and 2058 93 and 20 68 93
Tele" 289201

ZURICH
Digital Equipment Corp. AG
SchaHhauserstr.315
CH-8050 Zurich. SWitzerland
Telephone: 01·46-41-91 Telex: 56059

ITALY
Digital Equipment S.p.A.
MILAN
Corso Garibaldi 49. 20121 Milano. Italy
Telephone, (02)-879-051/2/3/4/5 Tele" 643-33815

SPAIN
Digital Equipment Corporation Ltd.
MADRID
Atalo IngenleroB S.A .. Enrique Larreta 12. Madrid 16
Telephone, 215 35 43 Tele" 27249

BARCELONA
Atelo Ingenleroe S.A .. Granduxer 76. Barcelona 6
Telephone, 221 44 66

DEC Systems Computers Ltd.
TEL AVIV
Suite 103. Southern Habakuk Street
Tel Aviv, Israel
Telephone, (03) 443114/440763 Tele" 922-33-3163

OANADA
Digital Equipment of Caneda. Ltd.
CANADIAN HEADQUARTERS
P.O. Box 11500
Ottawa. OntariO. Canada
K2H aK8
Telephone, (613)-592-5111 TWX, 610-562-8732

TORONTO
2550 Goldenrldge Road, Mississauga. OntariO
Telephone, (416)-270-9400 TWX, 610-492-7118

MONTREAL
9045 Cote De Uease
Dorval. Quebec. Canada H9P 2M9
Telephone· (514)-638-9393 Tele" 610-422-4124

CALGARY/Edmonton
Suite 140. 6940 Fisher Road S.E.
Calgary. Alberta. Canada
Telephone, (403)·435-4661 TWX, 403-255-7408

VANCOUVER
Suite 202
644 S.W. Marine Dr .. Vancouver
British Columbia. Canada VBP 5Y1
Telephone, (604)-325-3231 Tele" 610-929-2006

GENERAL INTERNATIONAL SALES
REGIONAL OFFICE
146 Main Street. Maynard. Massachusetts 01754
Telephone, (617) 697-5111

From Metropolitan Boston, 646--8600
TWX, 710-347-0217/0212
Ceble, DIGITAL MAYN
Tele" 94-8457

AUSTRALIA
Digital Equipment Australia Ply. Ltd.
ADELAIDE
6 Montrose Avenue
Norwood. South Australia 5067
Telephone, (08)-42-1339 Telex, 790-82825

BRISBANE
133 Lelchhardt Street
Spring Hili
Brisbane. Queensland. Australia 4000
Telephone, (072)-293088 Tele" 790-40816

CANBERRA
21 Collie St.
Fyshwlck. A.C.T. 2609 Australia
T.'ephone, (062)-959073

MELBOURNE
60 Park Street. South Melbourne. Victoria 3205
Australia
Telephone, (03)-699-2888 Tele" 790-30700

PERTH
643 Murray Street
West Perth. Western Australia 6005
Telephone, (092)-21-4993 Telex, 790-92140

SYDNEY
P.O. Box 491. Crows Nest
N.S.w. Auatralle 2065
r.lephone, (02)-439-2566 Tele" 790-20740

NEW ZEALAND
Digital Equipment CorporatIon Ltd.
AUCKLAND
Hilton House. 430 Queen Street. Box 2471
Auckland. New Zealand
Telephone, 75533

WEST
REGIONAL OFFICE:
310 Soquel Way. Sunnyvale, California 9<4086
Telephone, (408)-735-9200 Detephone, 403-735-1820

ARIZONA
Phoenix
4358 EaBt Broadway Road. Phoenix. Arizona 85040
Telephone, (802)-268-3488 Dataphone 602-268-7371

CALIFORNIA
Santa Ana
2110 S. Anne Street. Santa Ana. CalifornIa 92704
Telephone, (714)-979-2460 Dataphono, 714-979-7650
San Diego
6154 Mission Gorge Road
Suite 110. San ~iego. Celifornle
Telephone, (714)-290-788017970 Dataphone, 714-280-7825
Sen Francisco
1400 Terra Bella. Mountain View. CalifornIa 94040
Telephone, (415)-964-6200 Dataphone, 415-964-1438
Oakland
7850 Edgewater Drive. Oakland. California 94621
Telephone, (415)-635-545317930 Datephone, 415-562-7180
West Los Angeles
1510 Cotner Avenue. LOB Angeles. California 90025
Telephone, (213)-479-3791/4318 Dataphone, 213-478-5626
COLORADO
7901 E. Bellevue Avenue
Suite 5. Englewood. Colorado 80110
Telephone, (303)-770-6150 Dataphone, 303-770-6628

NEW MEXICO
Albuquerque
10200 Menual N.E .. Albuquerque. New Maxlco 87112
Telephone, (505)-296-50411/5426 Dataphone, 505-294-2330

OREGON
Portland
Suite 188
5319 S.W. Westgate Drive, Portland. Oregon 97221
Telephone, (503)-297-3761/3765

UTAH
Salt Lake City
429 Lewn Dale Drive. Salt Leke City. Utah 84115
Telephone (901)-467-4869 Detephone, 801-467-0535

WASHINGTON
Bellevue
13401 N_E. Bellevue. Redmond Road. Suite 111
Bellevue. Washington 98005
Telephone, (206)-545-4056/455-5404 Detaphone, 206-747-3754

JAPAN
Digital Equipment Corporation International
Kowa Building No. 18 - Annex. Firat Floor
9·20 Akaseka 1-Chome
Minato-Ku, Tokyo 107, Japan
Telephone, 588-2771 Tole" J-26428
Rlkei Trading Co .• Ltd. (s.le. only)
Kozato·Kalkan Bldg.
No. 1S-14 Nlahiehlmbashl 1-Chome
Mlnato·Ku, Tokyo. Japan
Telephone: 5915246 Telex: 781·4208

PUERTO RICO
Digital Equipment Corporation De Puerto RICO
407 del Parque Street
Senturce. Puarto Rico 00912
Telephone, (809)-723-8069/67 Tel." 385~9056

ARGENTINA
BUENOS AIRES
Coesln S.A.
Vlrrey del Pino. 4071. Buenos Aires
Telephone' 52-3185 Telex: 012·2284

BRAZIL
RIO DE JANEIRO - GB
Ambrlex S.A.
Rua CearA. 104. 2 e 3 andares ZC - 29
Rio De Janeiro - GB
Telephone, 264-7408/046117825

SAO PAULO
Ambrlex S.A.
Rua Tupl. 535
Sao Paulo - SP
Telephone, 52-7808/1870. 51-0912

PORTO ALEGRE - RS
Rua Coronel Vicente 421/101
Porto Alegre --- RS
Telephone, 24-7411

CHILE
SANTIAGO
Coasln Chile Ltda. (sales only)
CasUla 14588. Correo 15.
Telephone, 396713 Cable, COACHIL

INDIA
BOMBAY
Hlndltron Computers Pvt. Ltd.
69/ A. L. Jsgmohandas Marg.
Bombay~6 (WB) Indle
Telephone, 38-1615,38-5344 T.le" 011-2594 Plenty
Cable, TEKHIND

MEXICO
MEXICO CITY
Mexltek. S.A.
Eugenia 408 Deptos. 1
Apdo. Postal 12-1012
MexiCO 12. D.F.
Telephone, (905) 536~09-10

PHILIPPINES
MANILA
Stanford Computer Corporation
P.O. Box t808
416 D8smarlnas St .• Manila
Telephone, 49-68-96 Tele" 742-0352

VENEZUELA
CARACAS
Coesln. C.A.
Apartado 50939
Sabane Grande No.1. Caracas 105
Telephone, 72-8662, 72-9637
C.ble, INSTAUVEN

~DmDDmD
COMPONENTS

GROUP
DIGITAL EQUIPMENT CORPORATION. COMPONENTS GROUP. ONE IRON WAY. MARLBOROUGH. MASSACHUSETTS 017e,2

(617) 481-7400 TWX 710-347-0348

~RINTED IN U.S.A. 11174 531009/04/14 20

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	07-01
	07-02
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	10-01
	10-02
	10-03
	10-04
	A-1
	A-2
	B-1
	B-2
	B-3
	C-1
	D-1
	D-2
	E-1
	E-2
	F-1
	F-2
	F-3
	F-4
	G-1
	xBack1
	xBack2

