-Communicatin
with Digital's MPS
mlcroproccssor

COMMUNICATING WITH DIGITAL'S

MPS MICROPROCESSOR

Prepared by

Logic Products Group

Digital Equipment Corporation

July 1975

Copyright © 1975 by

Digital Equipment Corporation

Digital Equipment Corporation assumes
no responsibility for any errors

which may appear in this guide.

Printed in U.S.A.

PREFACE

You may be familiar with such lofty terms as "FORTRAN,'" "COBOL," "foreground/back-
ground," '"batch processing,' ete. These terms conjure up visions of huge computer sys-
tems with row upon row of tape units, printers, video terminals, etc., requiring the
use of many resident software 'geniuses" to keep the system running. Such systems typi-
fied by names like PDP-10, 370, 6600, etc., do indeed exist and do require a large staff
to keep them running. They represent the high end of the computer hierarchy, and be-
cause of their huge size and power, receive a great deal of publicity and are almost
universally endowed with having an "intelligence' of their own. WNothing could be far-
ther from the truth. These computers have no innate intelligence; they are absolutely
passive devices, and they must be commanded to perform the simplest function, no matter

how large the ultimate system turns out to be.

The publicity they receive also tends to obscure another fact-—-that at the low end

of the computer hierarchy, computers known as microprocessors are revolutionizing the

field of process monitor/control in the largely unsaturated industrial and professional

markets where specialized computer power is required on a local basis. These processors
are usually so small that they are buried in larger systems and, thus, escape much pub-

licity. They are taken very much for granted but they do exist, and they are performing
an ever-growing role in today's industrial world, especially in data communications,

laboratory automation, and machine tool comtrol.

Notwithstanding their diminutive size, they are truly computers and must be com-
manded to perform, just the same as their larger brothers--they must be "programmed."”
In their case, however, we do not have to be concerned with the "buzz-words" like
FORTRAN, etc. Programming a microprocessor is a relatively simple operation--in fact,

this document will strip much of the mystery from the term "programming,"

and focus the
reader's attention on the art of communicating with and getting on thoroughly familiar

terms with the microprocessor--in this case, MPS.

When the reader has assimilated the information in this book, he will be very fa-—

miliar with MPS, and it will have become a powerful processing tool in his hands.

iii

CHAPTER 1

1.
1.
1.
1.

1

CHAPTER 2

CHAPTER 3

3.
3.
3.
3.
3.
3.
3.
3.

CHAPTER 4

4.
4,
4.

e e

4
.5
6

N NN N NN
~N oy W

1
2
2.1
2.2

.2.3
2.4
.3

1
2
2.1
2.2
2.3
2.4
2.5
3

1
2
2.1

4.2.2

4.2.2.1

TABLE OF CONTENTS

NUMBER SYSTEMS.

Introduction.
Binary Number System. .
Position Coefficient. . .
Counting in Binary Numbers.
Arrangements of Values.
Significant Digits.

Octal Number System . .
Bytes .

Data.

Instructions. .

COMPUTER HARDWARE .

.

The Typical Digital Computer.

The MPS Computer.
Input/Qutput. . . . « . .
Interrupt . -
Memory.

Addressing. . .

Summary

PROGRAMMING BASICS. . . .

General
Coding Phases .

Definition of Problem .
Choosing the Method .
Flowcharting.
Coding.

Checkout.

Communicating with MPS.

CODING A PROGRAM. . .

Introduction.

The Assembler .

Hand Assembly
Machine Assembler .

Location Assignment .

3-1
3-1
3-2
3-2
3-2
3-5
3-5
3-5

4-1

4-1
4-7
4-7
4-10
4-10

4.2.2.2
4.2.2.3

CHAPTER 5

5.1
5.2
5.3
5.4
5.5
5.6
5.7

CHAPTER 6

6.1
6.2
6.3
6.4
6.5

CHAPTER 7

7.8

CHAPTER 8

CHAPTER 9

TABLE OF CONTENTS (Cont’D.)

Symbolic Addresses.

Symbolic Coding Conventions

ARITHMETIC OPERATIONS

Introduction. . . .
Arithmetic Overflow .
Condition Flip-Flops.

Subtraction . .

Multiplication and Division .

Double-Precision Arithmetic .

Powers of Two

SUBROUTINES, LOOPING, BRANCHING .

Writing Subroutines

Inserting Comments and Headings

Looping a Program . . .
Program Delays. . . .

Program Branching . .

INPUT/OUTPUT CODING .

Introduction. .
I/0 Instruction Format.

Coding the UART .

Keyboard/Reader Instructions.

Printer/Punch Instructions.
Format Routines

Text Routines . . «

Numeric Translation Routines.

INTERRUPTS. .

General « « « « « & . .

Coding an Interrupt .

PROGRAMMING EXAMPLE .

CHAPTER 10 WHERE DO YOU GO FROM HERE?.

APPENDIX A BLOCK-OFFSET TO OCTAL CONVERSION.

vi

5-1
5-2
5-2
5-3
5-4
5-5
5-6

6-1
6-1
6-3
6-5
6-7
6-8

7-1

9-1

. 10-1

APPENDIX B

APPENDIX C

APPENDIX D

APPENDIX E

GLOSSARY

TABLE OF CONTENTS (ConT’D.)

FLOWCHART SYMBOLS « + « « .« &

7-BIT ASCII CODE. .

SUMMARY OF ASSEMBLER PSEUDO-INSTRUCTIONS. .

SOLVING THE PROBLEM .

vii

CHAPTER 1

NUMBER SYSTEMS

1.1 INTRODUCTION

A basic requirement to understanding of MPS, or any digital computer system, is
an understanding of various number systems. Presented below is a general overview of
the decimal, binary, and octal numbering systems. These systems are extensively covered
in many textbooks. We urge you to become totally well-versed in these number systems so

as to make your programming exercises a lot easier.

The concept of writing numbers, counting, and performing the basic operations of
addition, subtraction, multiplication, and division has been directly developed by man.
Every person is introduced to these concepts during his formal education. One of the
most important factors in scientific development was the invention of the decimal num-
bering system. The system of counting in units of tens probably developed because man
has ten fingers. The use of the number 10 as the base of our number system is not of
prime importance; any standard unit would do as well. The main use of a number system
in early times was measuring quantities and keeping records, not performing mathematical
calculations. As the sciences developed, old numbering systems became more and more
outdated. The lack of an adequate numerical system greatly hampered the scientific de-

velopment of early civilizations.

Two basic concepts simplified the operations needed to manipulate numbers: the
concept of position and the numeral zero. The concept of position consists of assigning
to a number a value which depends both on the symbol and on its position in the whole
number. For example, the digit 5 has a different value in each of the three numbers 135,
152, and 504. 1In the first number, the digit 5 has its original value 5; in the second,
it has the value of 50; and in the last number, it has the value of 500, or 5 times 10
times 10. Sometimes a position in a number does not have a value between 1 and 9. If
this position were simply left out, there would be no difference in notation between 709

and 79. This is where the numeral zero fills the gap. In the number 709, there are 7

1-1

hundreds, 0 tens, and 9 units.

0, arithmetic becomes quite easy.

Thus, by using the concept of position and the numeral

A few basic definitions are needed before proceeding to see how these concepts

apply to digital computers.

Unit — The standard utilized in counting separate items in the unit.

Quantity — The absolute or physical amount of units.

Number System — A number system is a means of representing quantities using

a set of numbers.
units, and other symbols to
number system is the number
example, the decimal number

10 different symbols (viz.,

All modern number systems use the zero to indicate no

1.2 BINARY NUMBER SYSTEM

indicate quantities.

of symbols it contains, including zero.

The base or radix of a

For

system is base or radix 10, because it contains

0, 1, 2, 3, 4, 5, 6, 7, 8, and 9).

The fundamental requirement of a computer is the ability to physically represent

numbers and to perform operations on the numbers thus represented.

Although computers

which are based on other number systems have been built, modern digital computers are

all based on the binary (base 2) system.

To represent ten different numbers (0, 1, 2,

.., 9) the computer must possess ten different states with which to associate a digit

value. However, most physical quantities have only two states:

a light bulb is on or

off; switches are on or off; holes in paper tape or cards are punched or not punched;

current is positive or negative; material is magnetized or demagnetized; etc. Because

it can be represented by only two such physical states, the binary number system is used

in computers.

To understand the binary number system upon which the digital computer operates,

an analysis of the concepts underlying the decimal number system is beneficial.

1.2.1 Position Coefficient

In the decimal numbering system (base 10), the value of a numeral depends upon

the numeral's position in a number, for example:

The value of each position in a number is known

347 =

3 x 100 = 300
4 x 10 = 40
7 x 1= 7

347

as its position coefficient.

It is also

called the digit position weighting value, weighting value, or weight, for short. A

sample decimal weighting table follows:

.103

102 10l

1-2

100

. and, as shown above,

Weighting tables appear to serve no useful purpose in our familiar decimal num-—

347 = 3 x 102 + 4 x 101 + 7 x 100,

bering system, but their purpose becomes apparent when we consider the binary or base 2
numbering system. In binary we have only two digits, 0 and 1. In order to represent
the numbers 1 to 10, we must utilize a count-and-carry principle familiar to us from the
decimal system (so familiar we are not always aware that we use it). To count from O

to 10 in decimal, we count as follows:
0

1

2

3

4

® s
6

7

8

9

10

with a carry to the 101 column

Continuing the counting, when we reach 0 in the units column again, we carry another 1
to the tens column. This process is continued until the tens column becomes 0 and a 1

is carried into the hundreds column, as shown below:

0 10 90
1 11 91
2 12 92
3 13 93
4 14 94
5 15 95
6 16 96
7 17 97
8 18 98
9 19 99
0 omne carry 20 ome carry 100 two carries

@ l
1.2.2 Counting in Binary Numbers
In the binary number system, the carry principle is used with only two digit sym—

bols, namely O and 1. Thus, the numbers used in the binary number system to count up to

a decimal value of 10 are the following:

Binary Decimal Binary Decimal
& 0 0) 110 (6)
1 ¢D) 111 @)
10 (2) 1000 (8)
11 (3) 1001 9)
100 (4) 1010 10
101 (5)

When using more than one number system, it is customary to subscript numbers with the

. applicable base (e.g., 1019 = 510).

1-3

A weighting table is used to convert binary numbers to the more familiar decimal

system.

24 23 22 21 20 (Weight Table)
1 0 1 0 1 (Binary Number)

I Digit

Position
Coefficient

1
2
4
8

16 16

Decimal Number = 21

non
oo+

HFOHOR
oKX MM

vy

It should be obvious that the binary weighting table can be extended, like the decimal

table, as far as desired. 1In general,

each digit by its position coefficient

1.2.3 Arrangements of Values

By convention, weighting wvalues

to find the value of a binary number, multiply

and then add all of the products.

are always arranged in the same manner: the high-

est on the extreme left and the lowest on the extreme right. Therefore, the position

coefficient begins at 1 and increases from right to left. This convention has two very
practical advantages. The first advantage is that it allows the elimination of the
weighting table, as such. It is not necessary to label each binary number with weight-
ing values, as the digit on the extreme right is always multiplied by 1 (20), the digit

to its left is always multiplied by 2 (21), the next by 4 (22), etc. The second advan-

tage is the elimination of some of the Os.

never add to the value of the binary number.

Whether a 0 is to the right or left, it will

Some Os are required, however, as any Os

to the right of the highest valued 1 are utilized as spaces or place keepers, to keep
the 1ls in their correct positions. The 0Os to the left, however, provide no information

about the number and may be discarded; thus, the number 0001010111 = 1010111.

The MPS systems operate upon 8-bit (binary digit) numbers. This means that the

numbers from 0 to 111111119 (2567() can be directly represented.

1.2.4 Significant Digits

The "leftmost”" 1 in a binary number is called the most significant digit. This

is abbreviated MSD. It is called the "most significant” in that it is multiplied by the
The least significant digit, or LSD, is the extreme right

The terms LSD

highest position coefficient.

digit. It may be a 1 or 0, and has the lowest weighting value, namely 1.
and MSD have the same meaning in the decimal system as in the binary system, as shown

below:

10110101
100101000
45,971

MSD LSD

1.3 OCTAL NUMBER SYSTEM

It is probably quite evident at this time that the binary number system, although
quite nice for computers, is a little cumbersome for human usage. It is very easy for
humans to make errors in reading and writing quantities of large binary numbers. The
octal or base 8 numbering system helps to alleviate this problem. The base 8 or octal
number system utilizes the digits 0 through 7 in forming numbers. The count-and-carry
method mentioned earlier applies here also. Table 1-1 shows the octal numbers with

their decimal and binary equivalents.

Table 1-1

Decimal-Octal-Binary Equivalents

Decimal Octal Binary Decimal Octal Binary
0 0 0 7 7 111
1 1 1 8 10 1.000
2 2 10 9 11 1001
3 3 11 10 12 1010
4 4 100 11 13 1011
5 5 101 12 14 1100
6 6 110 13 15 1101

The octal number system eliminates many of the problems involved in handling the
binary number system used by a computer. To make the 8-bit numbers of the MPS easier to
handle, they are often separated into 3-bit groups. These 3-bit groups can be repre-

sented by one octal digit,using the previous table of equivalents, as seen below.

A binary number 10111101

is separated into 3-bit groups by starting with the LSD end of the
number and supplying leading zeros if necessary:

010 111 101
The binary groups are then replaced by their octal equivalents:
010p = 2g
1119 = 78
1012 = 58
and the binary number is converted to its octal equivalent:
2 7 5

Conversely, an octal number can be expanded to a binary number
using the same table of equivalents:

307g = 11 000 111)

1.4 BYTES

In the MPS, each 8-bit binary grouping is called a byte. All operations within
the MPS are byte-oriented; i.e., bytes are added, bytes are transferred between devices,

etc,

1-5

1.5 DATA

To us, data means numeric information. It can consist of physical quantities
such as voltage, temperature, pressure, or velocity; or the data might be a stockroom
part number or a weekly payroll statement--virtually any kind of information that must
be manipulated and made useful. As mentioned earlier, the MPS is a byte-oriemnted pro-
cessor and, thus, data takes the form of 8 bits. For the most part, data is placed in
the store, or memory. This memory is conveniently organized to store bytes. Details

on memory organization are discussed later.

But how does the MPS system know what it is supposed to do with data once it re-—
ceives it; how does the system know what the problem is or what the process of solving

the problem is? The answer is instructions.

1.6 INSTRUCTIONS

An instruction is a command that directs the MPS system to perform a particular
operation on the data. An example is an "add" instruction which, as we will find out

later, directs the MPS to add one byte of data to another byte of data.

A sequence of instructions arranged in a given order to perform a particular
function is called a routine. The plan of action or plan of solution which the routine
embodies is the program. If the routine is written directly in terms of the instruc-

tions as the MPS knows them, it is said to be in machine language; that is, the instruc-

tions are encoded in the binary numbering system or its shorthand form--octal. If the
routine is written in terms of instructions foreign to the MPS, it is often said to be

in pseudo-language, or symbolic language. Translation or interpretation of symbolic

language into machine language must be done before the MPS does the routine or, more

usually, in the MPS itself through the use of a so-called "high-level language.'

In summary, we have seen that the MPS will only operate with binary numbers.
Since writing routines in binary is cumbersome, the octal equivalents are more commonly
used. The MPS is structured to operate on bytes (8 bits) of information at a time. This

information can take the form of either data or instructions.

<]

CHAPTER 2

COMPUTER HARDWARE

2.1 THE TYPICAL DIGITAL COMPUTER

A typical digital computer, whether it be a large-scale timesharing system, a

minicomputer, or a microprocessor, needs an Arithmetic Unit to contribute the arithmetic

ability; it needs a Memory to store the data bytes which the computing system will need
or produce. It needs a Control section to somehow boss the overall system and make it
produce useful work, and finally, it needs to communicate with the world in which it
finds itself. The communications link from the world to the computer is the input, and
the link from the computer back to the world, the output. Figure 2-1 shows the inter-
relationships of these units. In addition, as with most machinery, human intervention
will often be necessary, and so there is a minor and supplementary communication link
from the world into the computer: the console. The console will contain switches, dis-—

plays, etc., for human monitoring of and intervention into computer affairs.

ARITHMETIC
UNIT

INPUT CONTROL OUTPUT

MEMORY

Figure 2-1. Typical Digital Computer Block Diagram

2-1

The above major functional units are common to any digital computer, including
the MPS. They are the "hardware" or circuit elements consisting of interconnected flip-
flops, inverters, amplifiers, etc. A detailed discussion of these functional hardware

units is contained in every textbook and magazine article dealing with computer funda-

mentals.

2.2 THE MPS COMPUTER
In the MPS, all of the "hardware'" is contained on four modules:

M7341 Central Processor Module

M7344 Read/Write Memory Module

M7345 Read-Only Memory Module

M7346 External Event Detection Module
In addition, an optional operator's control panel is available that allows the user to
monitor ongoing operations. Figure 2-2 provides photographs of the MPS components. Re-

ferring to Figure 2-1, the arithmetic unit, control, input, and output circuitry ele-

ments are all contained on the 8-1/2-inch by 10-inch M7341 module.

The MPS can be arranged in many different configurations, yet they all must con-—
tain one M7341 and some amount of memory. Figure 2-3 shows the basic digital computer
units as they apply to MPS. Without delving into the circuitry itself, we must become
familiar with the major characteristics of each unit. For purposes of this guide, we'll
consider the arithmetic and the control as one unit. This arithmetic/control unit con-
tains eight 8-bit registers and one 1l4-bit register of concern to us. A register can
store one byte of data and can be considered analogous to scratch paper used in the in-

termediate calculations of an arithmetic problem. The nine registers are listed below.

Accumulator

A
B
g General Purpose Index Registers
E

H General Purpose Index Registers
L plus Memory Address Pointer

IR Instruction Register

PC Program Counter (14 bits)

The most important, for programming purposes, is the A register. The 8-bit A register
performs as the accumulator of the system; the results of all arithmetic and logical
operations appear in the A register. All input/output (I/0) operations for external de-~

vices involve data transfers via the A register,

Four 8-bit general purpose Index Registers (B, C, D, and E) are used for tempor-

ary storage and for holding data for operations with the A register.

The 8-bit H and L registers perform in an identical way to the B, C, D, and E

registers but have an additional feature: On operations requiring data in memory, the

2-2

sl

: é%?v‘*ﬁ N
4 N e S
JLJ’5§g&5§‘ 3 b

B e o
+ _‘x AL

M7341 Central Processor Module

M7345 Read-Only Memory Module

Figure 2-2.

M7344 Read/Write Memory Module

M7346 External Event Detection Module

Microprocessor Series Modules

2-3

rELW

(SLN3AZ TYN¥3LX3
A Q3NOILIANOD)

TO¥LNOD/LNANI

N

DA-!9A- (VA-VPVELW

SdH 03 parTddy satup xsindwo) OTseg “‘€-g 2In3TI

SYELW

AINO-av3y

(SLNIW3¥DNI
31A9-952 NI}

S3LAd 960V

oL

S31A8 952

AJOWaIW

Z—\

o\

L

NdD LYELW

3LIM/QV3Y
S31A8 9607 10d1N0
¥0
10dNI
S3LA8 80T
¥O 081NOD
S31A8 ¥ZOL TNn
SILIWHLINY
AJOWIW

o

Z—\

2-4

contents of the H and L registers point to the particular memory location containing the

required data; i.e., they set up the actual memory locations that are to be used.

The Program Counter (PC), consisting of 14 bits, always refers to the memory lo-—
cation from which the next byte of instruction is to be obtained. In other words, it
keeps track of the program sequence. Also associated with the PC is a functional unit
called the "stack." The "stack" is actually a set of eight 14-bit registers, each of
which can function as the PC at any given time during operation of MPS. The particular
14-bit register which currently functions as the PC depends on the particular MPS pro-

gram being executed. The operation of the "stack" is explained later in the text.

Every instruction must pass through the 8-bit Instruction Register (IR) where it
is decoded so as to be recognizable by the MPS circuits. Instructions for the IR are
either fetched from the memory location, pointed to by the PC, or are externally entered

through the input multiplexer (see below).

The operation of the MPS system is further enhanced by four status flip-flops
(or "flags") which constantly monitor the arithmetic and logical operation of the sys-
tem. Three of these flags (zero, carry, and sign) are used frequently, while the fourth

flag (parity) is used primarily in a communications environment.

2.3 INPUT/OUTPUT

Data is transferred in and out of the MPS in two ways: (a) parallel, and (b)

serial.

Parallel communication is done a byte (8 bits) at a time. Input data is accepted
by the MPS from four separate 8-bit input channels. The choice of input channel is de-
termined by the particular operation taking place in the MPS at that particular time.

This operation of selecting a channel is known as multiplexing.

Output data is sent either to the memory modules or to a peripheral device over

separate data channels.,

Serial communication is controlled by a device known as a Universal Asynchronous
Receiver/Transmitter (UART) which is part of the M7341 module. This mode of communica-
tion permits the MPS to interface with serial communication peripheral devices such as
a Teletype or DIGITAL's line of video terminals and data acquisition devices (VTO05,

V150, PDM70, RT02, ete.).

2.4 INTERRUPT

The MPS system has a full "interrupt" capability which allows I1/0 requests to be
made on one of six priority levels. An interrupt may be defined as an event taking place
external to the MPS system which is deemed to have an imperative effect on the operation

of the system; e.g., loss of line power. The M7346 module handles these interrupts on a

2-5

predetermined priority basis as well as offering the capability of automatic start-up

and halting of the system.

2.5 MEMORY

In most digital computers, the memory (storage) section consists of either small
magnetic cores or semiconductor flip-flops, each capable of representing an "ON" ('1")
or "OFF" ("0") condition. A system of these cores or flip-flops arranged in a matrix

can store any information which is represented in binary form.

Conceptually, memory can bé in two parts: one for instructions and the other for
data. It has proved more convenient and economical to provide only memory (in a func-
tional sense), which can be allocated between the routine and the data aé each user
needs. If the memory is thought of as boxes (or cells) into each of which one packet
of information (in MPS, an 8-bit byte) may be placed and held until needed, it is seen
that locating items in the memory is simply the problem of identifying locations. This
problem is analogous to that of locating houses in a town or entries in a matrix. In-
deed the locations could be labeled by means of a row number and a column number or a
street name and house number, but since the number of memory locations is fixed at the
time of system construction, it is more convenient simply to number then sequentially.

The numeric tag or address forevermore identifies each memory location to the MPS system.

MPS memory is divided into two separate and distinct functions: read/write and
read-only. Both types of memory use semiconductor technology as opposed to core. This

means, roughly speaking, that the basic storage element is the flip-flop.

In the M7344 Read/Write Memory, data is written into the storage cells by the
M7341. The data will be stored intact until new data, also written by the M7341, re-
places it. The MPS also reads the contents of the memory without destroying the origi-
nal data, thus placing this memory in the "nondestructive read-out" category. This mem—
ory is also classed as being "volatile' because the stored data will be destroyed as '
soon as the system power is turned off (by virtue of the fact that the storage medium

is the semiconductor flip-flop).

In the M7345 Read-Only Memory, data is written into the storage cells by some ex-
ternal device as opposed to the M7341. The data thus written is considered permanent
storage and is not destroyed when power is turned off because of the nature of the semi—
conductor storage used. The MPS can only read the contents of this memory; hence, the

term "read-only memory."

The M7344 Read/Write Memory modules can store a minimum of 1024 and a maximum of
4096 8~bit bytes in module increments of 1024, 2048, and 4096 bytes. The M7345 Read- ,.
Only Memory modules can store a minimum of 256 and a maximum of 4096 8-bit bytes in in-

crements of 256 bytes.

2-6

2.6 ADDRESSING

Each MPS system can have a maximum memory storage capacity of 16,3841 8-bit
bytes and, thus, 16,3841 addresses. This 16,384 number is commonly referred to as 16K
of memory. Actually, the decimal number is 16,383’since the numeral "0" is a true and
valid number. Hence, the first location is assigned the address 00000 not 00001. The
address, then, of the last location is always one less than the total number of bytes

that can be stored. The octal equivalent of 16,3831 is 37,777g.

The 16K 8-bit locations in MPS memory are grouped into "blocks,”

each containing
377g (25610) locations, or addresses. Thus, in a maximum memory configuratiom, there
would be 778 (6410) blocks (16,384 + 256). Each of the 377g locations within a block

is called an "offset." To specify a particular memory location, it is mnecessary to
specify both the block of addresses being referenced and the offset of the address with-
in the block. For example, location 100g in block O is referred to as '"block 0, offset
100" or, the abbreviated form: "00#100." A full list of octal and decimal locations,

with their block/offset equivalents, is provided in Appendix A of this guide.

As mentioned earlier, one of the functions of the 8-bit H and L registers is to
"point" to the memory address being referenced. Before we can gain access to memory,
then, we must load the desired address into these two registers. Two registers are re-—
quired because we said the maximum MPS memory can be 37,7778 locations. Looking at this
octal number in binary, we see that 14 bits are required (214):

3 7 7 7 7 octal
11 111 111 111 111 “binary

These 14 bits represent two bytes: one byte containing the right-most 8 bits and the
other containing the remaining 6 bits on the left. The 8-bit byte is referred to as the
Low byte and is loaded into the L register. The 6-bit byte is called the High byte and
is loaded into the H register. Now, look at our maximum address of 37,777g as it re-

sides in the H and L registers:

11 111 ﬂll 111 111
H Reg. L Reg.

Using the standard conventions for marking off binary numbers in octal, we see that the

H register contains 778 and the L register contains 377g:

H Reg. L Reg.
@y wom o
7 78 3 7 78

This brings us back to block and offset. We said earlier that in the maximum
memory configuration, there would be 778 blocks, each containing 3778 locations. Well,
we just proved how this is accomplished via the H and L registers. The above address is
specified as block 77, offset 377. Another example: If we specify address "block O,
offset 100" (00#100), the H and L registers appear as:

2-7

H Reg. L Reg.

000 000] 01 000 000 | binary
|o o|1 0 Oloctal

Thus, the H register contains the block number and the L register contains the offset
number. One other point. We said all of the registers contain 8 bits. How, then, can
the H register contain only 6 bits? Simple. The circuitry is designed to ignore the

two "most significant bits'" of the H register when used for addressing.

2.7 SUMMARY

All of the preceding material provides a foundation or background for understand-

ing the MPS instruction set. Recapping, the following points were covered:
+ Number systems — binary and octal familiarization
+ Bytes — a grouping of 8 binary digits
Instruction, routine, program, machine language, symbolic language
+ Typical computer — arithmetic unit, control, memory, input, and output
+ The MPS as it relates to the typical computer:
+ Nine registers — A, B, C, D, E, H, L, IR, PC

Input/Output:
+ Parallel — 8-bit input multiplexer (4 channels)
— 8-bit output to memory
— 8-bit output to peripheral device
Serial — UART

- Memory — read/write and read-only
» Memory addressing — block, offset

Now, let's get on to the main purpose of this guide; i.e., programming the MPS.

CHAPTER 3

PROGRAMMING BASICS

3.1 GENERAL

The MPS has 48 basic instructions. Knowledge of this instruction set is the
first step in learning to program a microprocessor. The next step is to learn to use
the instruction set to obtain correct results and to obtain them efficiently. The micro-
processor is capable of storing information, performing calculations, making decisions
based on the results, and arriving at a final solution to a given problem. The micro-—
processor cannot, however, perform these tasks without direction. Each step which the

microprocessor is to perform must first be worked out by the user.

The user must write a routine, which is a list of instructions for the micropro-
cessor to follow to arrive at a solution for a given problem. The list of instructions
is placed in the microprocessor memory to activate the applicable circuitry so that the
microprocessor can process the problem. The technique of listing the proper instruc-

tions is called coding.

3.2 CODING PHASES

In order to successfully solve a problem with a microprocessor, the user proceeds
through the five phases listed below. A typical example that incorporates these phases

is provided in Appendix E.
1. Definition of the problem to be solved.
2. Determination of the most feasible solution method.
3. Design and analysis of the solution--flowcharting.
4. Coding the solution in the symbolic language.

5. Program checkout.

3.2.1 Definition of Problem

The definition of the problem is not always obvious. When the problem is to sum
four numbers, the defining phase is clear-cut. However, when the problem is to monitor
and control the temperature in an office building, a precise definition of the problem
is necessary. The question that must be answered in this phase is, "What precisely is
the program to accomplish?" i.e., present the problem in language or terms understood

by the person doing the job.

3.2.2 Choosing the Method

Determining the method to be followed is the second important phase in solving a
problem with a microprocessor. There are perhaps an infinite number of methods to solve
a problem, and the selection of one method over another is often influenced by the
microprocessor system to be used. Having decided upon a method based on the definition
of the problem and the capabilities of the microprocessor system, the user must develop
the method into a workable solution. This implies a thorough knowledge of the capabil-

ities of the microprocessor.

The user must design and analyze the solution by identifying the necessary steps

to solve the problems and arrange them in a logical order, thus implementing the method.
Flowcharting is a graphical means of representing the logical steps of the solution.
The flowcharting technique is effective in providing an overview of the logical flow of

a solution, thereby enabling further analysis and evaluation of altermative approaches.

3.2.3 Flowcharting

A single problem to add three numbers together is solved in a few easily deter-
mined steps. One could sit at his desk and write out three or four instructions for the
microprocessor to solve the problem. However, he probably could have added the same
three numbers with paper and pencil in much less time than it took him to write the pro-
gram. Thus, the problems which one is usually asked to solve are much more complex than
the addition of three numbers, because the value of the microprocessor is in the solu-

tion of problems which are inconvenient or time-consuming by human standards.

When a more complex problem is to be solved by a microprocessor, the program in-
volves many steps, and writing it often becomes long and confusing. A method of solving
a problem which is written in words and mathematical equations is extremely hard to fol-
low, and coding the instructions from such a document would be equally difficult. A
technique called flowcharting is used to simplify the writing of programs. A flowchart
Is a graphical representation of a given solution, indicating the logical sequence of
yperations that the computer is to perform. Having a diagram of the logical flow is a
:remendous advantage to the coder when he is determining the method to be used for im-
)lementing the solution, as well as when he writes the coded program instructions. In
iddition, the flowchart is often a valuable aid when the coder checks the written pro-

:ram for errors.

3-2

The flowchart is basically a collection of boxes and connecting lines. The boxes
indicate what is to be done and the lines indicate the sequence of the boxes. The boxes
are of various shapes which represent the action to be performed in the program. A
guide to the flowchart symbols and procedures which are used in this guide is contained

in Appendix B.

The following are examples of flowcharts for specific problems, illustrating
methods of attacking problems with a microprocessor program as well as illustrating
flowcharting techniques. Example 1 adds three numbers together. Example 2 puts three

numbers in increasing order.

Example 1 — Straight-Line Coding

Figure 3-1 is an illustration of straight-line coding. As the flowchart shows,
there is a straight-line progression through the processing steps with no change in
course. The value of X, which is equal to A+B+C is in the accumulator when the pro-

gram stops.

C START)
I

CLEAR ACCUMULATOR .

3

LOAD A INTO
THE ACCUMULATOR

3

ADD B TO THE
ACCUMULATOR

:

ADD C TO THE
ACCUMULATOR

'
C STOP)

Figure 3-1. Add Three Numbers

Example 2 — Program Branching

Example 2 is designed to arrange three numbers in increasing order (Figure 3-2).
The program must branch to interchange numbers that are out of order. (Branching, a
common feature of coding, is described in detail later in this guide.) Note that the
arithmetic operations of subtraction are done in the accumulator, which must be cleared

initially.

C START)

CLEAR THE
ACCUMULATOR

;

GET 1ST NUMBER
INTO ACCUMULATOR

SUBTRACT
2ND NUMBER

IS AC

POSITIVE YES INTERCHANGE 1ST

AND 2ND NUMBERS

COMPARE 2ND AND
3RD NUMBERS AS ABOVE

1S AC
POSITIVE
?

YES INTERCHANGE 2ND
AND 3RD NUMBERS

COMPARE 1ST AND
2ND NUMBERS AS ABOVE

IS AC
POSITIVE

?

| INTERCHANGE 1ST
AND 2ND NUMBERS

(DONE }

Figure 3-2. Arrange Three Numbers in Increasing Order

3-4

3.2.4 Coding

Having designed the problem solution, the user begins coding the solution by im-

plementing the appropriate MPS instructions. This phase is commonly called programming
but is actually coding and is only oﬁe part of the programming process. When the pro-
gram has been coded and the program instructions have been stored in the microprocessor
memory, the problem appears to be solved. At this point, however, the programming pro-
cess is rarely complete. There are very few programs written which initially function
as expected. Whenever the program does not work properly, the user is forced to begin

the fifth step, that of checking out or "debugging" the program.

3.2.5 Checkout

The program checkout phase requires the user to methodically retrace the flow of

the instructions step-by-step to find any program errors that may exist. One cannot
tell a microprocessor: '"You know what I mean!", as he might say in daily life. The
microprocessor does not know what is meant until it is told, and once given a set of in-

structions, the microprocessor follows them precisely.

If needed instructions are left out or coding is done incorrectly, the results
may be surprising. These flaws, or "bugs'" as they are often called, must be found and
corrected. There are many different approaches to finding bugs in a program; however,
the chosen approach must be organized and painstakingly methodical if it is to be

successful.

3.3 COMMUNICATING WITH MPS

Up to this point, we have only been discussing the philosophy of programming the
MPS—-how to write programs which are internally manipulated by the machine. We have not
discussed the obvious questions of how we actually communicate physically with the MPS—-
how do we enter instructions and data into the machine; how do we then observe data is
in the machine? In this respect, two basic methods exist for entering and observing data

in MPS.

The Monitor/Control Panel (Figure 3-3) allows us to communicate directly with MPS.
Data is entered in octal format (as described earlier in this text) via a set of toggle
switches. Internal MPS data is observed via an array of lamps, also in octal format.
The Control Panel is useful primarily for on-line system troubleshooting and the de-
bugging of short programs. The mandatory use of octal code for data entry and retrieval
makes the debugging of lengthy programs (say, in excess of 20-30 instructions) cumber-
some and time-consuming. Therefore, for the purposes of this discussion, we will more
or less disregard the Control Panel as a program control device, and concentrate on a
more universally-accepted communication medium. In this area, a number of criteria are

essential in the I/0 equipment for complete program communication. These are:

3-5

« Full alphanumeric keyboard
. Hard copy read-out (or at least a video display)
- Paper tape punch

. Paper tape reader

The piece of equipment which supplies the above criteria and best suits this dis-
cussion is the DEC LT33 Teletypewriter (Figure 3-4). All references to program entry

and retrieval will imply use of the LT33.

Both the Monitor/Control Panel and the LT33 Teletypewriter are described in Chap- »

ters 2 and 4, respectively, of the MPS User's Handbook.

12 12 n 10 9 8

M microprocessor series
PR | ronitor/control panel
2 1 0

7 6 5 4 3

."’w"ﬁ"*wm | o "G N Al |
e e . * e : suesPeen

LOAL STRT
ADBDR

P DISH

TTONT EXAM BALT DEP SING D15
CYCLE DATA ADDR

Figure 3-3.

Figure 3-4

Monitor/Control Panel

. LT33 Teletypewriter

3-7

CHAPTER 4 |

CODING A PROGRAM

4.1 INTRODUCTION

As described earlier in this text, every microprocessor has a special code that
tells it what to do. These specific codes for MPS are listed in Table 4-1. What is im~
portant to remember is that microprocessors only understand instructions and numbers
that are represented in binary code. The coder tells the microprocessor whether to in-
terpret the binary configuration as an instruction or as data by the way in which the
configuration is encountered in the program. The MPS instruction to add the contents of
a location in memory to the accumulator would be 10 000 111 in binary notation. If
binary configurations appear cumbersome and confusing, the reader will not understand
why most coders seldom use the binary number system in actual practice. Instead, they
substitute the octal number system in which each digit represents 3 binary digits.
Therefore, the add instruction above would be written 207 in octal. Coding a program
in octal numbers, although an improvement upon binary coding, is also very inconvenient.
The coder must learn a complete set of octal numbers which have no logical connection
with the operations they represent. The coding is difficult for the programmer when he
is writing the program, and this difficulty is compounded when he is trying to debug or
correct a program. There is no easy way to remember the correspondence between an octal

number and a computer operation.

To simplify the process of writing or reading a program, each instruction is
often represented by a simple 3- or 4-letter mnemonic symbol. These mnemonic symbols
are considerably easier to relate to a microprocessor operation because the letters
often suggest the definition of the instruction. For example, ADM is the mnemonic for
the instruction: add memory to the accumulator. The coder is now able to write a pro-

gram in a language of letters and numbers which suggests the meaning of each instruction.

Data and Instruction Formats

Table 4-1

Basic Instruction Set

Data in MPS is stored in the form of 8-bit binary bytes. All data transfers are in the

following format:

Dy Dg D5 Dy D3 Do D3 Dy

Data Word

The program instructions may be one, two, or three bytes in length. Multiple byte in-
structions must be stored in successive words in program memory. The instruction for-
mats then depend on the particular operation executed.

One Byte Instructions

Dy D¢ D5 D4 D3 Dy D1 Do

Two Byte Instructions

Dy Dg D5 D4 D3 D2 D1 Do

D7 Dg D5 D4y D3 Dy Dy Dg

Three Byte Instructions

D7 Dg D5 D4 D3 Dy D1 Do

Dy Dg D5 Dy D3 Dy Dy Dg

X X Ds D4 D3 D2 D1 Dg

Typical Instructions

Register to register, memory reference,

Op Code 1/0 arithmetic or logical, rotate or
return instructions

Op Code
Immediate mode instructions

Operand

Op Code

Low Address JUMP or CALL instructions

High Address*

*For the third byte of this instruction, Dg and Dy are "don't care" bits.

Index Register Instructioms

The load instructions do not affect the flag flip-flops. The increment and decrement
instructions affect all flip-flops except the carry.

Instruction Code
Mnemonic D7 D¢ D5 D4 D3 D2 D1 Do Description of Operation
(1>Lr1r2 1 1 D D D S S s Foad 1nde§ register r] with the content of
index register ry.
(2)1.rM 1 1 D D D 1 1 1 Load 1ndex'reglster r with the content of
memory register M.
IMr 1 1 1 1 1 s s s Poad memory register M with the content of
index register r.
0 0 D D D 1 1 0
3 i i i
(31rrt B B B B B B B B Load index register r with data B...B
0 0 1 1 1 1 1 0 . .
LMI B B B B B B B B Load memory register M with data B...B.
INr 0 0o D D D 0 0 0 Increment the content of index register r
(r # A).
DCr 0 0 D D D 0 0 1 ?:c;ezsnt the contents of index register r

4-2

|
’ Table 4-1 (Cont'd.)
i

Accumulator Group Instructions

The result of the ALU instructions affect all of the flag flip-flops. The rotate in-
structions affect only the carry flip-flop.

. Instruction Code
Mnemonic D7 Dg D5 D4 D3 D2 D1 Do Description of Operation
| ADr 1 0 0 0 0 S 8 8 Add the content of index register r, memory
. ADM 1 0 0 0 0 1 1 1 register M, or data B...B to the accumula-
ADI 0 0O 0 0 O 1 0 O tor. An overflow (carry) sets the carry
B B B B B B B B flip-flop.
ACr 1 0 0 0 1 S S8 S Add the content of index register r, memory
ACM 1 0 0 0 1 1 1 1 register M, or data B...B from the accumula-—
ACIT 0 O 0 0 1 1 0 0 tor with carry. An overflow (carry) sets
B B B B B B B B the carry flip—flop.
‘ SUr 1 0 0 1 0 S S S8 Subtract the content of index register r,
SUM 1 0 0 1 0 1 1 1 memory register M, or data B...B from the
SUI 0 0 0 1 0 1 0 O accumulator. An underflow (borrow) szets
B B B B B B B B the carry flip-flop.
SBr 1 0 0 1 1 S S 8 Subtract the content of index ragister r,
SBM 1 0 0 1 1 1 1 1 memory register M, or data B...B {ronm the
SBI 0 0 0 1 1 1 0 O accumulator with borrow. An underflow
B B B B B B B B (borrow) sets the carry flip-flop.
NDr 1 0 1 0 0 S 8 S Compute the logical AND of the content of
NDM 1 0 1 0 0O 1 1 1 index register r, memory register M, or data
NDI 0 0 1 0 O 1 0 O B...B with the accumulator.
B B B B B B B B
XRr 1 0 1 0 1 S S § Compute the exclusive-OR of the content of
XRM 1 0 1 0 1 1 1 1 index register r, memory register M, or data
XRI 0 0 1 0 1 1 0 O B...B with the accumulator.
B B B B B B B B
ORr 1 0 1 1 0 S S S8 Compute the inclusive-OR of the content of
ORM 1 0 1 1 0 1 1 1 index register r, memory register m, or data
ORI 0 0 1 1 0 1 0 O B...B with the accumulator.
B B B B B B B B
CPr 1 0 1 1 1 S S8 8 Compare the content of index register r,
CPM 1 0 1 1 1 1 1 1 memory register M, or data B...B with the
CPI 0 O 1 1 1 1 0 O accumulator. The content of the accumula-
‘ B B B B B B B B tor is unchanged.
RLC 00 0 0 O 0 1 0 Rotate the content of the accumulator left.
RRC 0 0 0 0 1 0 1 0 Rotate the content of the accumulator right.
RAL 0 0 01 0 01 0 Rotate the content of the accumulator left
through the carry.
RAR 0 0 01 1 01 0 Rotate the content of the accumulator right
. through the carry.
Input/Output Instructions
. Read the content of the selected input port
NP 0 1 0 0 M MM (MMM) into the accumulator.
Write the content of the accumulator into
OUT 01 RR M MMl the selected output port (RRMMM, RR # 00).
Machine Instruction
HLT 0 0 0 0 0 0 0 X Entcf_-r t.:he STOPPED state and remain there
until interrupted.
‘ HLT 11 11 1 11 1 Ente':r t.:he STOPPED state and remain there
until interrupted.

4-3

Program Counter

Table 4-1 (Cont'd.)

and Stack Control Instructions

Instruction Code

Mnemonic D7 Dg D5 D4 D3 D2 D1 Dp Description of Operation
) e 01 X X X 1 0 0 Unconditionally jump to memory Bj3...B3jBg...
‘B2 B2 B2 B2 B2 B2 B2 B2 B2.
X X B3 B3 B3 B3 B3 B3
(5) JFc 0 1 0 C4 C3 0 0 O Jump to memory address B3...B3B2...Bp if
B2 B2 B2 B2 B2 B2 B2 B2 the condition flip-flop ¢ is false. Other-
X X B3 B3 B3 B3 B3 B3 wise, execute the next instruction sequence.
JTc 0 1 1 C4 C3 0 0 0 Jump to memory address B3...B3B2...B2 if
B2 B2 B2 B2 B2 B2 B2 B2 the condition flip-flop is true. Otherwise,
X X B3 B3 B3 B3 B3 B3 execute the next instruction sequence.
CAL 0 1 X X X 1 1 0 Unconditionally call the subroutine at mem-—
Bo B2 B2 Bz B2 B2 B2 B2 ory address B3...B3B2...B2. Save the cur—
X X B3 B3 B3 B3 B3 B3 rent address (up one level in the stack).
Call the subroutine at memory address Bj3...
CFc 0 1 0 C4 C3 0 1 0 B3B2...B2 if the condition flip-flop c is
B2 B> B2 B2 B2 B2 B2 B2 false, and save the current address (up one
X X B3 B3 B3 B3 B3 B3 level in the stack). Otherwise, execute
the next instruction in sequence.
Call the subroutine at memory address B3...
CTe 0 1 1 C4 C3 0 1 0 B3B2...B2 if the condition flip-flop c is
B2 B2 B2 B2 B2 B2 B2 B2 true, and save the current address (up one
X X B3 B3 B3 B3 B3 B3 level in the stack). Otherwise, execute
the next instruction in sequence.
RET 0 0 X X X 1 1 1 Unconditionally return (down one level in
the stack).
Return (down one level in the stack) if the
RFc 0 0 0 C4 C3 0 1 1 condition flip-flop ¢ is false. Otherwise,
execute the next instruction in sequence.
Return (down one level in the stack) if the
RTc 0 0 1 C4 C3 0 1 1 condition flip-flop ¢ is true. Otherwise,
execute the next instruction in sequence.
Call the subroutine at memory address
RST 00 A A A 101 AAAOOQ (up one level in the stack).
NOTES:
(1) SSS = Source Index Register DDD = Destination Index Register

These registers are designated A (accumulator—000), B(001), C(010),
D(011), E(100), H(101), L(110).

(2) Memory registers are addressed by the contents of registers H and L.

(3) Additional bytes of instruction are designated by BBBBBEBB.

(4) X = "Don't Care."

(5) Flag flip-flops are defined by C4C3:
(0l--result is zero), sign (10--MSB of result is "1"), parity (1l--parity is

even).

carry (00--overflow or underflow), zero

4-4

The microprocessor still does not understand any language except binary numbers.
Now, however, a program can be written in a symbolic language and translated into the
binary code of MPS because of the one-to-one correspondence between the binary instruc-
tions and the mnemonics. This translation could be done by hand, defeating the purpose
of mnemonic instructions, or the microprocessor could be used to do the tramslating for
us. By instructing the microprocessor to perform a translation, substituting binary
numbers for the alphanumeric characters, a program is generated in the binary code of
the microprocessor. This process of translation is called "assembling" a program. The
program that performs the translation is called an assembler. A specific mmnemonic lan-
guage for MPS, called MLA (Microprocessor Language Assembler), is described in the MPS

User's Handbook.

To illustrate how a program can be written, assembled, and loaded in this manner,

consider the following example.

Program Example 1

This is an elementary program which involves adding two numbers from specified
memory locations and storing the result in another specified memory location. The se-
quence of machine operations to do this is shown in Figure 4-1. As illustrated, the
memory address registers, designated H and L, must first be set to point to the address
where our initial piece of data is to be stored. After the data is loaded into the spe-
cified memory address, we must next increment that memory address so that the next piece
of data will be stored in the next location. Once the second number is placed into mem—
ory, it is then brought out to the accumulator (register A), where it can be qperated
upon. By decrementing the L register, we point to the address of the first number and
bring it out to the accumulator where it is added to the second number. A third memory
location is selected to store the result of the addition. A program to accomplish this

task, using the MPS instruction set in mnemonic form, is presented.

In this example, the two data numbers will be arbitrarily chosen as 6339 and 5910.
in binary notation, they would be represented as 00 111 111 and 00 111 011. Since this
binary notation is quite confusing, we will henceforth use octal notation to represent
the binary numbers which the computer uses (refer back to Chapter 1). Qur data numbers
may now be written as 077g and 0738, respectively. We have chosen block 21 oeffset 102

as the memory location where our result will reside.

Mnemonic
Code Description
LLI 100 Load low byte address (offset 100).
LHI 021 Load high byte address (bleck 21).
IMI 077 Load data into memory (77g or 633q).
INL Increment low byte address register.
LMI 073 Load data into memory (73g or 5930).
LAM Load contents of memory into accumulator.

Mnemonic

Code

DCL
ADM

LLI 102
LMA

HLT

Description
Decrement low byte address register.

Add the contents of memory address 21 100 to the
accumulator.

Load low byte address (offset 102).

Load memory address 21 102 with the contents of
accunulator.

Halt.

SET H, L REGISTERS TO POINT TO
THE FIRST ADDRESS OF DATA

LOAD FIRST NUMBER INTO MEMORY

INCREMENT MEMORY ADDRESS
REGISTER,H, L

LOAD SECOND NUMBER INTO
MEMORY

LOAD SECOND NUMBER INTO
ACCUMULATOR (REGISTER A}

DECREMENT MEMORY ADDRESS
REGISTER

1

ADD FIRST NUMBER TO
ACCUMULATOR {REGISTER A)

SET H, L REGISTERS TO POINT TO
ADDRESS WHERE ANSWER IS TO
BE STORED

LOAD CONTENTS OF
ACCUMULATOR INTO MEMORY

Figure 4~1. Sequence of Operations

Writing the above program was greatly simplified because mnemonic codes were used
for the octal instructions. However, writing down the address of each instruction is
clearly an inconvenience. If the coder later adds or deletes instructions, thus alter-
ing the memory location assigmments of his program, he has to rewrite those instructions
whose operands refer to the altered assignments. If the coder wishes to move the pro-
gram to a different section of memory, he must rewrite the program. Since such changes
must be made often, especially in large programs, a better means of assigning locations

is needed. The assembler provides this better means.

4.2 THE ASSEMBLER

Program assembly can be achieved by two methods: (a) hand assembly, and (b) ma-

chine assembly. Let's discuss both ways of doing the job.

4.2.1 Hand Assembly

Hand assembly begins in the form of mnemonic instructions used by the programmer.
Because these instructions will be assembled manually (actually written), an accurate
track of the memory locations involved must be maintained by the programmer. Figure 4-2
illustrates a typical form on which a user program might be written. This form is vis-
ualized as a "copy" of memory; therefore, if an instruction requires more than one mem-
ory location or byte, lines must be skipped to allow for the entry of code in these

locations.

For example, Figure 4-3 illustrates how our previous addition program would be
written. By referring to the MPS Programmer's Reference Card or to Table 4-1, the pro-
grammer can determine the number of bytes required for each instruction and can skip
the proper number of lines to allow for these extra memory locations. Since INL, LAM,
DCL, ADM, IMA, and HLT require only one byte of memory, no extra locations need be
allowed to assemble these instructions. Multiple byte instructions, however, such as
LLI, LHI, LMI, and JMP require two or three bytes and must have extra locations set

aside for them.

In the case of LLI 100, byte one of the instruction contains the machine code
for LLI, while byte two contains the binary code which represents the octal 100 or the

low byte memory address.

After constructing a form such as that shown in Figure 4-2, the programmer
should write his program in the usual way, allowing extra memory locations for instruc-
tions which require more than one byte for assembly, as illustrated in Figure 4-3.
Using the card, the user can then determine the octal code for each instruction and
write it in the corresponding location in the table. For example, let us assume we
have decided to locate our program in block 21 of memory, starting at location 21 000.
As illustrated in Figure 4-3, we would write our program allowing extra locations for

those instructions which require them. The next step is to look up the octal code for

4-7

Block Offset Mnemonic Assembly Code

21 000

21 001 2
21 002 |

21 003 .
21 004

21 005

21 006

21 007

21 010

21 011

21 012

21 013

21 014

21 015

21 016

21 017

21 020

21 021

21 022

21 023

21 024

21 025 .
21 026

21 027

21 030

Figure 4-2, Blank Programming Form

Block | Offset Mnemonic Assembly Code
2| oo [LI 700
21 001
21 002 LHT 02/
21 003
21 004 LMT 077
21 005
21 006 TNL
21 007 IML 073
21 010
21 011 L AM
21 012 D A
21 013 ADM
21 014 L LI /10X
21 015
21 016 LA
21 | o TMEP c#/d0
21 020
21 021
21 022
21 023
21 024
21 025
21 026
21 027
21 030

Figure 4-3. Typical Addition Program Illustrating How Locations

Are Skipped for Multiple Byte Instructions

4-9

each instruction and enter it on the proper line. Since LLI 100 loads the L register
with the contents of byte two of the instruction (location 21 00l in this case), that
byte should contain a 100. Upon completion, we have "assembled" our program by hand.

The completed programming form is shown in Figure 4-4.

Although this method appears to be "the way to go" because of its relatively di-
rect and simple approach, it has certain inherent disadvantages, not the least of which
is maintaining the instruction listing. An even easier--indeed the ultimate, accepted

solution—-—exists in the machine assembler.

4.2.2 Machine Assembler

We are now entering into the "meat" of programming a processor, and at this point,
the reader should thoroughly understand the foregoing discussions and pay more than just
cursory attention to the information about to come. The keys to the operation of machine

assembly are location assignment and symbolic addressing.

4.2.2.1 Location Assignment

As in the previous program example, most programs are written in successive mem-
ory locations. If the coder assigned an absolute location to the first location, the
assembler could be told to assign the next instructions to the following locations in
order. In programming MPS, the initial location is denoted by a precedent asterisk (*).
The assembler maintains a current location counter by which it assigns successive loca-
tions to instructions. The asterisk causes the current location counter to be set to

the value following the asterisk,

Each location in memory of the microprocessor contains a single byte (8 bits of
binary information). Some instructions require several bytes of binary data to fully
define the operation. As mentioned previously, the largest address may be 14 bits long;
therefore, we need 2 bytes (16 bits) to define a memory reference. The assembler knows
which instructions require one, two, or three bytes of binary data and updates the cur-

rent location counter to accommodate the extra memory locations needed.

4.2.2.2 Symbolic Addresses

The coder does not at the outset know which locations he will use for temporary
storage and results of arithmetic operations. Nor does he know the exact locationms
of instructions he may wish to branch to until all his coding is complete. Let us
consider, for example, the following program which multiplies 1819 by 3610 using suc-

cessive addition:

400 XRA /clear the accumulator

401 LBI -22 /set up a tally equal
/to -181¢0 to count the
/additions of 36

4-10

Block | Offset Mnemonic Assembly Code
21 000 L LT /100 0 Gt
21 001 /00
n | o | LAZ ox/ 5%
21 003 032/
21 004 LMI 077 076
21 005 o077
21 006 TNL YA,

a | o | [MT 73 076
21 010 073
21 011 LAM 307
21 012 DC L 06/
21 013 ADM 207
21 014 L LT /107 0Ge
21 015 /0 o
21 016 LA 390
21 017 TMP /o4
21 020 W/,
21 021 200
21 022

21 023

21 024

21 025

21 026

21 027

21 030

Figure 4-4. Typical Program with Corresponding Assembled Octal Code

4-11

403 LCI 44 /set up a register with
/the value of 361

405 ADC fadd 36 to the accumulator

406 INB /increment tally

407 JFZ 405 /add another 36 if tally is not
/zero

412 HLT /stop after 18 times

In this program, the coder must count the number of locations used after the initial in-
struction in order to assign the correct value to the JFZ instruction. Actually, this
is not necessary, because he may assign symbolic names (a symbol followed by a comma is
a symbolic address) to the locations to which he must refer, and the assembler will as-~
sign address values for him. The assembler maintains a symbol table in which it records
the octal values of all symbolic addresses. With symbolic address name tags, the pro-

gram is as shown below:

*400

XRA

LBI -22

LCI 44
MULT, ADC

INB

JFZ MULT

HLT

$

NOTES: (1) The dollar sign is the terminal character for the assembler.

(2) The comma after a symbol (e.g., MULT,) indicates to the as-
sembler that the symbol is a symbolic address.

4.2.2.3 Symbolic Coding Conventions

Any sequence of letters (A, B, C, ..., Z) and digits (0, 1, ..., 9) beginning with
a letter and terminated by a delimiting character (see Table 4-2) is a symbol. For ex-
ample, the mnemonic codes for the MPS instructions are symbols for which the assembler

retains octal equivalents in a permanent symbol table.

User-defined symbols may be of any length; however, only the first four charac-
ters are retained by the assembler and any additional characters are ignored. (Symbols

which are identical in their first four characters are considered identical.)

Any sequence of digits followed by a delimiting character forms a number. The
assembler will accept numbers which are octal, decimal, or hexadecimal. The "radix"
or number base--e.g., ng (octal); ni1g (decimal); n1e (hexadecimal)--is initially set to
octal and remains octal unless otherwise specified. The pseudo-instruction DEC or HEX

may be inserted in the coding to instruct the assembler to interpret all numbers as

4-12

decimal or hexadecimal until the next occurrence of the pseudo-instruction OCT, DEC, or
HEX in the coding. Pseudo-instructions are so-called because they are not part of the
MPS regular instruction set. They are special instructions designed to interpret (in
this case) different numbering schemes within the MPS system. These pseudo-instructions
affect all numbers included in the symbolic program, including those preceded by an as-—

terisk to denote change of origin.

The special characters in Table 4-2 are used to specify operations to be per-
formed by the assembler upon symbols or numbers in MPS symbolic programs. Each symbol
or number written in an MPS program must represent an 8-bit binary value or a 1l4-bit

binary address in order to be interpreted by the assembler.

Table 4-2
Special Characters for the MPS Symbolic Language

Character
Keyboard Name Use
Space Bar | space (non-printing) Combine symbols or numbers (delimiting)
CTRL/I tab (non-printing) Combine symbols or numbers or format the
symbolic tape (delimiting)
Return carriage return (non-printing) | Terminate line (delimiting)

+ plus Combine symbols or numbers

- minus Combine symbols or numbers

, comma Assign symbolic address

= equals Define parameters

* asterisk Set current location counter

; semi~colon Data separator (delimiting)

S dollar sign Terminate pass (delimiting)

. point Has value equal to current location
counter

/ slash Indicates start of a comment

& ampersand Logical AND

! exclamation point Logical OR

4 up—-arrow High byte selection

<> angle brackets Used to enclose numeric representation
of an ASCII character

pound sign Block-offset separator

+ The comma after a symbol in a line of coding (e.g., MULT, ADC) indicates
to the assembler that the value of symbol MULT is the address of the
location in which the instruction ADC is stored. When an instruction
that references MULT (e.g., JFZ MULT) is encountered, the assembler

supplies the correct address value for MULT. (Care must be taken that

4-13

a symbolic address is never used twice in the same program and that all
locations referenced by memory reference instructions are identified

somewhere in the program.)

- The space and tab are used to delimit or indicate the end of a complete
symbol or number. The space and tab similarly delimit the mnemonic from

the symbolic address.
JFZ MULT or JFZ MULT
space CTRL/I
The carriage return is used to terminate a line of coding.

The assembler will recognize the arithmetic symbols + and - in conjunc-
tion with numbers or symbols, thereby enabling "address arithmetic."

For example, the instruction JMP BEG+ 1 will cause the microprocessor

to execute the instruction in the next location after BEG. The num-—

bers specified in such instructions are subject to the pseudo~instructions
DEC, HEX, and OCT; therefore, the number is interpreted as an octal num-
ber unless otherwise directed. If you never use a number larger than 7,

then it will be the same no matter what radix you're in at the time.

+ The decimal point, or period, is a character which is interpreted by the
assembler as the value of the current location counter. This special
symbol can be used as the operand of an instruction; for example, the
instruction JMP .-1 causes the microprocessor to execute the preceding
instruction. Relative addressing with "." should be used only if avail-
able symbol table space is very tight. When instructions are added or

~ deleted during the "debugging" phase, one must be very careful to check

all relative addressing for possible errors.

The equal sign is used to define symbols. This character is used to
replace an undefined symbol with the value of a known quantity. When
used, the equal sign must delimit the symbol it is defining. TFor ex-
ample, MDP = 100; i.e., MDP, previously not assigned a value, is now

assigned the wvalue of 100.

The slash is used to insert comments and headings in the code; e.g.,
JMP MDP/JUMP TO 100. The slash is used here as the comment that
MDP = 100.

The dollar sign, as previously noted, is a terminal character for the
assembler itself. When this character is encountered, the assembler

stops accepting input and terminates the assembly pass.

Two logical operators or special symbols have been implemented for

use with the assembler. These are "&," indicating a logical AND

4-14

operation, and "!,"

indicating a logical OR operation.

Logical and

arithmetic operators can be mixed in the same expression with evaluation

proceeding from left to right without precedence.

RST&10 would have the value

Example: Logical OR:

Logical AND:

- The high byte-selection operator + (up-arrow) is

000.

RST

10 =

RST

10 =

00
00

00

= 00
00

00

000
001

001
000
001
000

101
010

111
101
010
000

[

If initially RST has
the value 005, then RST!10 would have the wvalue of 015.

Similarly,

binary 015

binary 000

a post-operator used

to indicate selection of the high byte of the entire expression (from

the beginning) which the 4 follows.

As explained earlier, addresses

are expressed by 1l4-bit binary numbers and address arithmetic is car-

ried out in 15-bit signed numbers.

Therefore, two bytes are used to

define a memory address. The most significant bits of the address are

found in the high byte. By selecting the high byte, this operator per-

forms an effective signed divide

assignments have been made

the expression

by 256.

400g
3778

A+ B+ 104+4+1 results in 003.

For example, if the following

As shown below, A + B would be equal to 01,377 in high and low 8-bit

bytes. When we add 10, the expression becomes 02,007.

The high~byte

select operator (4) replaces the low byte with the high byte and zeros

the high byte, and the result is 00,002.

result.
A = 400g =
*p=3775 =
+10g =

+ The block-offset operator #

High Byte Low Byte

000 001 00 000 000
000 000 11 111 111
000 001 11 111 111 =
000 000 00 001 o000
000 010 00 000 111 =

is used to indicate

Adding 1 yields the final

01,377g

02,007g

an address in terms of

its block number (high byte) and an offset (low byte) within that block.

For example, an origin (*) pseudo-instruction of the form
*2#200

sets the location counter to location 200 within block 2. This would

be equivalent to octal location 1200.

4-15

The example

JMP 35#377
sets the location counter to block 35 offset 377 (octal 16777). As
covered earlier in this guide, the conversion from block-offset to octal
notation proceeds as in the following. The bit pattern of 35#377 can be
represented by:

011 101 11 111 111
3 5 3 7 7

The effect of the # operator is to shift the block number 35 to the
right, causing the following displacements and conversion:

01 110 111 111 111
i 6 7 7 7

+ The angle brackets (<>) are used to enclose a numeric representation of an

ASCII character in a TEXT pseudo-instruction expression. For example,
TEXT /A/<15>

would be assembled into 101 (the numeric value of the ASCII character A)

and 15 (the octal code for a carriage return) would be assembled with-

out conversion. The slashes in this case are delimiters. The TEXT

pseudo-instruction is explained fully on pages 6-10 of the MPS User's

Handbook.

These characters and conventions will be used throughout the remainder of this
guide to code programs in MLA, the symbolic language of MPS. Thus, all examples given
may be directly punched on paper tape as described in Chapter 5 and assembled by the

procedure described in Chapter 6 of the MPS User's Handbook.

4-16

CHAPTER 5

ARITHMETIC OPERATIONS

5.1 INTRODUCTION

The instructions for MPS may be used to perform the basic arithmetic operations
within the limits of the machine to represent the negessary numbers. That is, numbers
may be added unless the sum exceeds 25579 or 377g. When a sum exceeds the size of the
accumulator, "overflow" occurs and incorrect answers result. This condition can usually
be detected by checking the value of the carry flip-flop by means of the JTC or JFC in-

struction, for example.

The following instructions will add numbers and check for overflow, halting the

program if the carry is 1.

ADDN, XRA Clear accumulator and carry flip-flop.
ADB Add contents of B register to accumulator.
ADC Add contents of C register to accumulator.
JFC .+4 If carry = 0, go to LDA.
HLT Halt if carry # O.
LDA Store accumulator (sum) in D register.

: v

Resume rest of program.

Since the carry is initially cleared in the above example by the XRA instruction, a
carry value equal to 1 (true) is an indication that the sum of the contents of registers
B and C is too large to be represented by the 8-bit accumulator alone. The micropro-
cessor will halt if the overflow is detected with the actual sum in the combined 9 bits

of the accumulator and the carry flip-flop.

5-1

5.2 ARTITHMETIC OVERFLOW

Since MPS regards the numbers O through 177 as positive numbers and the numbers
2008 through 3778 as negative numbers, the addition of two positive numbers could result
in either a positive or negative number, depending upon the size of the numbers added.
Arithmetic overflow is said to occur whenever two positive numbers add to form a nega-

tive number, as shown in the following example:

071g (a positive number)
+ 143g (a positive number)

234g (considered a negative number by MPS)

Likewise, two negative numbers could be added to yield a positive number, as in the
following example:
275g (-103g)
+ 261g (-1178)

Carry - 1 156 (considered a positive number by MPS)

5.3 CONDITION FLIP-FLOPS

Because of situations like those illustrated in the two preceding examples, the
coder must consider the size of the numbers used in programmed arithmetic operatioms.
If the coder suspects that overflow may occur in the result of an arithmetic operation,
he should follow such an operation by a set of instructions to correct the error or at
least to indicate that such an overflow occurred. To assist the MPS user, there are
four condition flip-flops which may be affected by execution of an instruction. These

condition flip-flops and their truth status are as follows:

Meaning Truth Status

Carry (C) Overflow or underflow.

Zero (Z) Result is zero.

Sign (S) Most significant bit of result is set.
Parity (P) Number of bits set in the result is even.

All the condition codes (flip-flops) are tested by the conditional instructioms JTp,
J¥n, CTn, CFn, RTy, RFL, where n represents the condition flip-flops C, Z, S, and P.

The possible outcomes outlined below may be used to test for arithmetic overflow.

Sign of Numbers Added Overflow and Carry Value

Positive + Positive May result in negative sum; no change in carry.
Positive + Negative No overflow possible; carry value is ignored.
Negative + Negative May result in positive sum; carry is always set

regardless of the sign of the result.

The following program coding uses these above facts, assuming an initially

cleared carry to quickly determine the sign of the sum of two unknown quantities, B andC.

‘ Result of Adding Only
Bit 7 of B to All of C

Sign of B Sign of C Carry Value Bit 7 of AC
Positive Negative 0 1
Negative Positive 0 1
Positive Positive 0 0

“ Negative Negative 1 0

/Coding to Add Two Numbers

/Testing for Arithmetic Overflow

STRT, XRA /clear AC and carry
ADB /add B to accumulator
NDI 200 /mask out all but bit 7
. ADC /add C to bit 7 of B
JIC BNEG /carry true implies both
/are negative
RAL /rotate bit 7 into carry
JTC OPSN /bit 7 true implies opposite signs
BPOS, LAB /bit 7 false, both positive
ADC /if two positive numbers add
JTS PERR /to form a negative number
. _ /JMP to error routine
LDA /otherwise, store sum in D
HLT
PERR, . /routine to signal arithmetic

Joverflow of positive numbers
NERR, . /routine to signal arithmetic

/overflow of negative numbers

. OPSN, LAB /if B and C are of opposite
ADC /signs, the addition cannot
LDA /result in overflow
HLT
BNEG, XRA /if two mnegative numbers
N ADB /add to form a positive
ADC /number, JMP to error
JFS NERR /routine, otherwise, store
) LDA /in register D
HLT

5.4 SUBTRACTION

‘ Subtraction in MPS is accomplished by negating the subtrahend (replacing it by

its two's complement) and then adding it to the minuend, ignoring the overflow, if any.

5-3

The following example shows the contents of the accumulator for each step of the sub-
traction process. Assume register B contains 46g and register C contains 37g before

execution of the program.

Resulting Contents

Subtraction
Program Carry Accumulator R
XRA 0 00 000 000 (000)
ADB 0 00 100 110 (046)
SucC 0 00 000 111 (007) -

Note that the number to be subtracted is complemented and incremented by MPS before it

is added to the accumulator, i.e.,

378 = 00 011 111
2's complement = 11 100 001
Add 46g = 00 100 110
Sum =[1oo 000 111
o o 7

I—Carry bit is ignored by the hardware.

5.5 MULTIPLICATION AND DIVISION

A previous example illustrated the method of performing multiplication with the

basic MPS instructions, namely by repeated addition. Obviously, multiplication by this
method is also subject to the limitation of overflow. The largest positive number which

can be directly represented is 127719 or 177g.

Multiplication by repeated addition will properly handle positive and negative
numbers within the limits of positive and negative arithmetic overflow. For example,
3778 is the MPS representation for -1. If it is multiplied by itself, the answer should
be +1. 1In other words, adding 377g to itself 3773 times should leave (after carries

from the most significant bit) the accumulator equal to 1.

377 1st
+ 377 2nd
1 376
+ 377 3rd
1 375 -
. y If the reader wishes, he
Dlzreg?rded L can verify result by doing
arries this exercise in binary
1 603 notation. i
+ 377 376th
1 002
+ 377 377th
1 001

/
Thus, successive addition will work properly as a method of multiplying negative as well

as positive numbers in the MPS.

5-4

Similarly, division could be performed by repeated subtraction. This method of
division could be used to obtain a quotient and remainder, because only whole numbers
are directly represented in MPS. Multiplication and division can also be performed
through use of the floating point packages (available through DECUS, The Digital Equip-

ment Corporation User's Society).

5.6 DOUBLE-PRECISION ARITHMETIC

Two memory locations (16 bits) are used to express double-precision numbers.
Using these 16 bits allows the representation of numbers in the range -32,7671p to
+32,76719. The following program adds two double-precision numbers, obtaining a double-

precision result.

*400

DBLA, XRA /clear AC and CARRY
ADC /low byte of lst number
ADE /low byte of 2nd number
LLA /save low byte of result in L
LAB /get high byte of lst number
ACD /add high byte of 2nd number and

[carry

LHA /save high byte of result in H
HLT
$

DBLA is the symbol representing the operation taking place.

It serves as an entry point to the routine.
Note that if the addition of register C and register E produces a carry, it will appear
in the carry flip-flop. The LLA and LAB instructions do not affect the condition codes;
therefore, the carry flip-flop would still reflect its setting as a result of the addi-
tion of C and E. The ACD instruction is a special MPS instruction which says add the
contents of register D and contents of the carry flip-flop to the contents of the accu-
mulator and store the result in the accumulator. This add with carry instruction sim-

plifies the coding of multiple-precision arithmetic operationms.

A similar procedure is followed to subtract two double-precision numbers. The

following program illustrates the technique.

#400
DBLS, XRA /clear AC and CARRY
ADC /low byte of 1lst number
y
SUE /subtract low byte of 2nd number
LLA /save low byte of result
LAB /get high byte of 1lst number

5-5

SBD /subtract high byte of 2nd number
/and the contents of the carry flip~flop

LHA /save the high byte of result
HLT /stop
$

DBLS is the symbol representing the operation taking place. It

would be used in a JMP or a CAL statement to gain entry to the

routine.
As in the double-precision add routine, SBD is a special MPS instruction which facili-
tates multiple-precision arithmetic. SBD says subtract the contents of register D and
the contents of the carry flip-flop from the contents of the accumulator and store the

result in the accumulator.

5.7 POWERS OF TWO

In the decimal number system, moving the decimal point right (or left) multiplies
(or divides) a number by powers of ten. In a similar way, shifting a binary number one
bit left or one bit right multiplies (or divides) by powers of two, respectively. How-
ever, because of the logical connection between the accumulator and the carry flip-flop,
care must be taken to use the appropriate shift instructions so that unwanted digits do
not get shifted into the accumulator. Multiplication by powers of two is performed by
shifting the accumulator left; division is performed by shifting the accumulator right.
Multiplication and division by this method are subject to the limitation of 8-bit num—
bers (unless double precision is used). That is, significant bits shifted out of the
accumulator by multiplication or division are lost and incorrect results are therefore

obtained. For example, the following program multiplies a number by 8 23).

*400
CUBE, LAB /get number into AC
NDI 340 /test high 3 bits for non-zeroes
JFZ ERR /if not zero, jump to error routine
LAB /restore number
RLC /rotate left
RLC /rotate left
RLC [rotate left
LBA /store result in register B
HLT
$

If B originally contained 0llg, it would contain 110g after execution of this routine.

5-6

CHAPTER 6

SUBROUTINES, LOOPING, BRANCHING

6.1 WRITING SUBROUTINES

We have referred to the program counter previously as a l4-bit register contain-
ing the address of the next instruction to be executed. Actually, MPS contains a ring
buffer (referred to as a pushdown stack) made up of eight l4-bit registers. Another 3-
bit register acts as a pointer to one of the 1l4-bit registers, and this register is

called the current program counter. When a JMP instruction is encountered in the pro-

gram execution, the address you wish to jump to replaces the current program counter and
the pointer is unchanged. Therefore, there is no link between the new program counter

and the old program counter after a JMP occurs.

Included in the MPS instruction set, given in Table 4-1 of this guide and in Chap-

ter 3 of the MPS User's Handbook, is the instruction CAL (call to subroutine). This

instruction is a modified JMP command which makes return to the point of departure from
the main program possible. The CAL instruction automatically increments the 3-bit regis-
ter that points to the current program counter before modifying the 1l4-bit registers.
Now, when the jump is taken to the new program counter address, the old program counter
is not destroyed. In this manner, subroutines could be nested up to seven levels. To
return to the previous program counter before the last executed CAL instruction, the
coder need only terminate the subroutine with a RET instruction. The RET instruction
decrements the program counter pointer, and control returns to the location after the

CAL instruction. The JMP, CAL, and RET instructions can be unconditional or conditional
based on the status of one of the four condition flip-flops. The following simple pro-
gram illustrates the use of a subroutine to increment a double-precision number contained
in registers H and L (the H and L registers are used as address pointers for memory ref-

erence instructions).

6-1

(Main Program)
PMSG, XRA /clear AC
ADM /add next character in

/memory to the accumulator

JTZ EXIT /jump out; if zero

OoUTO /display it

CAL INHL /jump to subroutine

JMP PMSG /return here from subroutine
EXIT,

(Subroutine)

INHL, INL /increment register L

RFZ /return to main program if not

/zero (no overflow)

INH /otherwise, increment register H
RET /and then return
$

Notice that there are two return statements in the subroutine, RFZ and RET. The first

one is a conditional return based on the status of the zero flip-flop. If the contents
of register L goes to zero after incrementing, the coqditional return will not be taken
and the next instruction, INH, will be executed. Then the unconditional RETurn will be

taken to get back to the main program.

Another way to call a subroutine in MPS is with the RST instruction. The restart
instruction can be used as a one-byte unconditional call to one of eight specified loca-
tions in the first 64 bytes of memory. Each of these eight locations can be used as the
starting address of a subroutine. The following program increments the contents of mem-

ory using one of the general purpose registers and the RST instruction.

*0

LBM /load B with contents of memory

INB /increment B

LMB /load memory with new contents

RET /return to main program

%40

LMI -10 /set counter in memory to -10g
MAIN, ADC /add register C to accumulator

RST /call subroutine at location 0
/to increment counter in memory

JFZ MAIN /loop if counter is not zero

The preceding example illustrates an important point. A conditional flip-flop set by
the INB instruction within the subroutine is tested by the JFZ instruction after return-

ing to the main program.

An interesting modification to the previous program is achieved by defining a

"new operation" INCM by including in the coding the following statement:
OPDEF INCM; RST; O
NOTE: All OPDEF statements must appear in the coding before any other

user-defined symbols. (See Chapter 6 of the MPS User's Handbook and Appen-
dix D of this guide for more information on the use of OPDEF.)

6.2 INSERTING COMMENTS AND HEADINGS

Because programs very seldom are written to be used only once, the coder should
strive to document his procedure and coding as much as is reasonably possible. There
are many instances where changes or corrections must be made by people unfamiliar with
a program; or, more commonly, the original coder is asked to modify a program months
after his original effort. In both cases, the success of the attempt to change the pro-
gram depends largely upon the documentation provided by the original coder. A complete
and accurate flowchart is the first form of documentation. It is extremely important
to document modifications made in the program by incorporating these changes in the

flowchart as well.

Many times it is desired to include headings and dates to identify a program
within the actual coding of the symbolic program. It is often helpful to add comments
to simplify the reading of a symbolic program and to indicate the purpose of any less
than obvious instruction. MPS coding allows comments and headings to be inserted sim-

ply by preceding any commentary with a slash (/).

The following example illustrates the method used to insert commentary in an
MPS program. It also illustrates the use of a rotate or shift instruction. The pro-
gram takes a binary number stored in memory and counts the number of non-zero bits.
Although the program may have no useful application, it does serve to familiarize the
reader with the structure of the accumulator and the carry flip-flop and the action of
a rotate instruction. The flowchart (Figure 6-1) and comments will aid the reader in

understanding the program.

6-3

LOOP,

ROTA,

-] CLEAR CARRY

C START)
‘

CLEAR COUNT

GET NUMBER

YES HALT

NO

ROTATE LEFT

CARRY = 0
7

INCREMENT COUNT OF
1'S

;

Figure 6-1. Count the Binary One's Program

*4#0

XRA /clear AC and carry

LBA /set count to 0

ADM /add the number from memory

JFZ ROTA

HLT /stop if the number is zero

RAL /rotate one bit into carry

JFC .-1 /rotate again if bit was 0

INB /increment count of 1's

ORA /clear carry and set other
/condition flip-flops

JMP LOOP

$

6-4

The following points should be observed in the preceding example:

1. The number was checked to see that it was non-zero to begin with.
If this check were not made, a zero number would be rotated end-

lessly by the remaining instructions in the program.

2. Because a rotate right instruction (RAR) would transfer the bits
into the carry flip-flop just as the RAL instruction does, either
could be used in the above program. Both instructions use a cir-

cular shift of the accumulator and carry bits.

3. Because the carry bit is rotated into the accumulator by the
rotate instructions, the carry must be cleared each time a 1 is

rotated into it.

4. The rotate instructions only affect the carry condition flip-flop.
To test for a zero accumulator after rotating, it was necessary to
use the ORA instruction. ORA is a very useful imstruction and in
this program, it served two functions: clearing the carry flip-
flop and setting the other condition codes without altering the

contents of the accumulator.

6.3 LOOPING A PROGRAM

As many of the examples given have already shown, the use of a program loop, in
which a set of instructions is performed repeatedly, is common coding practice. Loop-—
ing a program is one of the most powerful tools at the coder's disposal. It enables
him to perform similar operations many times using the same instructions, thus saving
memory locations because he need not store the same instructions over and over. Loop-
ing also makes a program more flexible because it is relatively easy to change the num-—
ber of loops required for differing conditions by resetting a counter. It is good to
remember that looping is little more than a jump to an earlier part of the program; how-

ever, the jump is usually conditioned upon changing program conditions.

There are basically two methods of creating a program loop. The first method is
using an INr instruction to count the number of passes through the loop. INr is usually
followed by a JFZ (jump if zero false) instruction to the beginning of the loop. This
technique is very efficient when the required number of passes through the loop can be

readily determined.

The second technique is to use the conditional jump instructions to test condi-
tions other than the number of passes which have been made. Using this second technique,
the program is required to loop until a specific condition is present in the accumulator

or carry flip-flop, rather than until a predetermined number of passes are made.

To illustrate the use of an INr instruction in a program loop situation, consider
the following program, which simply sets the contents of all addresses from 2#000 to
2#377 to zero.

*44#0

XRA /clear AC

LLA /set register L to zero

LHI 2 /set register H to 2

LMA /clear next memory location
/pointed to by H and L

INL /bump memory pointer

JFZ .-2 /if not zero; repeat

HLT /else, halt

$

Several points should be carefully noted:

1. The first three instructions initialize the loop, but are not in

the loop.

2. The L register is used as the count of the number of passes and also
serves as a pointer to the memory location being zeroed. After loca-
2#377 is cleared, the L register goes to zero, and the program con-
tinues through the JFZ instruction without branching and executes
the HLT instruction. On each previous occasion, it executed the JFZ

instruction.

3. Every time a memory reference instruction is used in a program, the

H and L registers must be set up to the desired address.

The following program outlines a conditional test to create a loop. The program

will search all of memory to find the first occurrence of the octal number 234.

OPDEF INHL; RST!10; O
%10
INL /subroutine to increment memory pointer
RFZ /called via a restart instruction
INH
RET
#3740
BEGN, XRA
LLA /initialize memory pointer to zero
LHA /offset and zero block
1L.0OP, LAM /get next number into AC
CPI 234 /compare to 234

6-6

JTZ EXIT /if equal, exit from loop
NEXT, INHL /else, increment pointer
JMP LOOP /and loop
EXIT, HLT
$

The previous example could be utilized in a debugging phase where you are search-
ing for the occurrence of a particular instruction or value. It is interesting to note
that the program will search itself as well as all other core memory locations., Also,

notice the following points with regard to the example:

1. Since the search would stop when the 234 is reached inside the pro-

gram, the program should begin near the highest available memory

locations. ‘

2. The program could be restarted at location NEXT in order to find

the next occurrence of 234g after the program had halted.

3. The search time could be reduced by preloading one of the general
purpose registers with the search number and then doing a CPr rather
than a CPI within the loop. This would save 12 us for every pass
through the loop.

6.4 PROGRAM DELAYS

Because the development of a microprocessor was primarily sparked by a desire for
speed in performing control functions, it seems inconsistent and self-defeating to slow
the MPS down with program delays. However, there are many occasions when a micropro-
cessor must be told to slow down or to wait for further information. This is because
most peripheral equipment, and certainly the human operator, are very much slower than
the microprocessor program. A temporary delay may be introduced into the execution of a
program when needed by causing the microprocessor to enter one or more futile loops in
which it must traverse a fixed number of times before jumping out. It is often neces-
sary to have a microprocessor perform a temporary delay while a peripheral device is
processing data to be submitted to the MPS. The delays can be accurately timed so as

not to waste any more processor time than necessary.

The following is a microprocessor delay routine using the INB instruction for an
inner loop and the INC instruction for an outer loop. The reader should remember when
analyzing the example that the MPS represents only positive numbers up to 1778 or 1271g.
Therefore, the microprocessor counts up to 1271g and then cortinues to count, starting
at the mext octal number 200g, which the microprocessor interprets as -12874. Successive
increments of this number will finally bring the eount to zero. Thus, a register could

be used to count 2567 iterations using an INr instruction.

(Main Program)

XRA /clear AC

LCA /set register C to zero

LBA /set register B to zero
OUTR, INB /inner

JFz .-1 /loop

INC

JFZ OUTR

The inner loop consists of an INB instruction with an execution time on the MPS
of 20 us (a microsecond is 10-6 seconds) and a JFZ instruction with an execution time of
44 us if the jump is taken and 36 us when it falls through. Therefore, the inner loop
takes 64 us for one pass, and each time it is entered, the program will traverse it
25610 times before leaving. This means that a delay of 16.376 milliseconds (millisec-
onds is 1073 seconds) has occurred. If, as in the example above, the outer loop is also
traversed 2561 times, a total delay of 2.564 seconds would be generated. For any given
purpose, a desired delay from milliseconds to seconds can be obtained precisely by vary-

ing the initial contents of B and C.

A second type of delay, which waits for a device response, is not a timed delay
but causes the microprocessor to wait until it receives a response from an external de-

vice. This is discussed more fully in the section on Input/Output Coding.

6.5 PROGRAM BRANCHING

Very few meaningful programs are written which do not take advantage of the
microprocessor's ability to determine the future course the program should follow based
upon intermediate results. The procedure of testing a condition and providing alter-—
native paths for the program to travel for each of the different results possible is
called branching a program. We have already used some of these conditional instruc-—
tions in the previous examples. There are four condition codes that may be tested:
carry, zero, sign, and parity. Each condition may be tested for a true state-—the
flip-flop is set to a one; or for a false state, the flip flop is clear (0). We can
jump, call a subroutine or return from a subroutine on any of the above conditions. A
typical example of a conditional jump would be a program to compare B and C to switch

them if C is larger than B.

6-8

C START)
'

COMPARE B-C
YES SAVE C IN D
No '
STORE B INC
C STOP STORE DINB

Figure 6-2. Comparing Two Numbers

*44#0
TEST, XRA
ADB /add B to accumulator
CPC /compare C to B
JFC STOP /STOP if B is not greater than C
LDC /otherwise switch
LCB /B and C, using D
LBD /for temporary storage
STOP, HLT
$

In MPS, the compare instructions are all performed with one of the values being
compared to the contents of the accumulator. Therefore, the first step in the examples
was to get B into the accumulator. The CPC instruction caused the zero flip-flop to be
set (B = C), the carry flip-flop to be set (B<C), or both zero and carry to be cleared
(B>C). If B is less than or equal to C, the JFC instruction will be satisfied and the
program will proceed to switch the values of B and C. The concepts illustrated by the
above example can be included in a larger program that will take a set of elements and

arrange them in increasing order.

6-9

CHAPTER 7

INPUT/OUTPUT CODING

7.1 INTRODUCTION

Coding a microprocessor to do calculations is of little use unless there is some
means of obtaining the result of the calculations from the machine. In most applica-
tions, it is also necessary to supply the microprocessor with data before calculations
may be performed. A coder must be able to translate information efficiently between the

microprocessor and the peripheral devices that supply input or serve as a means of output.

There are two methods for the transfer of information between input/output (I/0)

devices and MPS. The first method is programmed transfer, in which instructions to ac-

cept or transmit information are included at some point in the program. Programmed

transfers are program initiated and executed under program control.

Information may also be transferred via program interrupt, a standard feature of

MPS that allows I/O devices to signal the microprocessor when they are ready to transfer
information. The microprocessor interrupts its normal flow, jumps to a special routine
which processes the information, and then returns to the point at which the main program

was interrupted. Program interrupt transfers are device initiated and executed under

program control.

Both programmed transfers and program interrupt transfers use the accumulator as
the buffer, or storage area, for all data transfers. Since data may be transferred only
between the accumulator and the device, only one 8-bit byte at a time may be transferred

by programmed transfer or by program interrupt.

7.2 I/0 INSTRUCTION FORMAT

Since many different devices could be connected to one microprocessor and each
device might transfer information at any time, the instruction must identify the proper

device for each transfer. It must also specify the exact nature of the function to be

7-1

performed. The instructions used to perform programmed data transfers are called imput/
output (I/0) instructions. An I/O instruction is an 8-bit byte that has the following

format:

0 1 R R M M M 1

Bit Position: 7 6 5 4 3 2 1 0

An I/0 instruction is divided into three parts: operation code, device selection
code, and operation specification bits. Bits 7, 6, and 0 of the instruction contain the
operation code. These bits are always set to 0, 1, and 1, respectively. Bits 5 and 4
serve a dual purpose. If they are both 0, the instruction is an INPut instruction. If
bits 5 and 4 are not both zero, the instruction is an OUTput instruction. Bits 5 and 4
also combine with bits 3, 2, and 1 to form a 5-bit device selection code. Therefore,
one can select 32 different devices, of which 8 are considered input and 24 are consid-

ered output,

The states of the condition flip-flops are not affected by executing the I/0 in-
structions. Because INP moves data into the accumulator from an input device and OUT
moves data from the accumulator to an output device, it is the coder's responsibility to
load data into register A before issuing an OUT instruction and to extract data from A

after executing an INP.

7.3 CODING THE UART

As mentioned earlier, one of the most common I/0 devices is the Teletype unit,
which consists of a keyboard, printer, paper tape reader, and paper tape punch. The
Teletype unit can use either the keyboard or the paper tape reader to provide input in-
formation to the microprocessor, and either the printer or the paper tape punch to ac-
cept output information from the microprocessor. In the MPS system, the Teletype unit
is connected to the UART (Universal Asynchronous Receiver/Transmitter) control on the
M7341 Processor Module. The UART is an I/0 interface on the Processor Module which

handles data from a serial port. Three device selection codes are reserved for the UART.

Mnemonic Device Code Instruction Function
INPO 00000 01 000 001 Read data from UART
INP1 00001 01 000 011 Read status from UART
OUTO 01000 01 010 001 Write data to UART

The UART Status Register is set up as follows:

Data Data Traps—
Error Over- |[Avail- Bé??;r Unused | Unused [Unused | Unused
run able
Bit Empty
Position: 7 6 5 4 3 2 1 0

The presence of a bit set in any of positions 4~7 indicates the condition appropriate to

that position.

7-2

7.4 KEYBOARD/READER INSTRUCTIONS

The following program illustrates using the UART instructions to read one char-
acter from the keyboard or paper tape reader. This program does not print the character
on the teleprinter. It merely stores the code for the character in memory location IBUF.
In this example and the examples that follow, we will be using 7-bit ASCII code (Ameri-
can Standard Code for Information Interchange). The full set of ASCII codes are pro-

vided in Appendix C of this guide.

*4#0

READ, INP1 /read status register into A
NDI 40 /test for data available
JTZ READ /wait for data
INPO /read character into A
NDI 177 /strip off bit 7
LHI IBUF+4 /set pointer to IBUF
LLI IBUF
IMA /store character in IBUF
HLT
*10#0

IBUF, BLOCK 50; O /input buffer, reserved
$ /for 401g characters

The program begins with an INP1 instruction. If the program is started at loca-
tion 4#0, it will loop indefinitely between INP1, NDI 40, and JTZ READ until a key on
the Teletype unit is pressed or a paper tape is loaded into the reader. As soon as the
ASCII code for a character has been assembled in the keyboard/reader buffer register,
the data available bit will be set in the UART status register and the program drops out
of the waiting loop. The content of the buffer is then transferred into,the accumulator

(INPO), and the data available bit is cleared.

To store the character in memory, we have to set the H and L registers with the
14-bit address of IBUF. We do this by selecting the high byte of IBUF (IBUF+) and load-
ing it into the H register and transfer the low byte into the L register. BLOCK is a
pseudo-instruction in MLA which reserves a block of memory with IBUF equal to the first
memory location. The size of the block in this case is 50g, and the initial value of

each byte in the block will be O.

7.5 PRINTER/PUNCH INSTRUCTIONS

The following program illustrates using the UART instructions to print out one
ASCII character which is stored in memory location OBUF. Since the accumulator is used
by the INPl instructions, the character to be output is typically held in one of the

other general purpose registers until the transmit ready bit is detected.

7-3

#4340

PRNT, LHI OBUF+ /set up H, L registers
LLI OBUF /to point to OBUF
DM /get character into D
CAL TYPE /enter type subroutine
HLT /halt upon completion
TYPE, INP1 /read status register
NDI 20 /test for transmit ready
JTZ .-3 /wait for ready
LAD /put character into AC
oUTO /print it
RET /return to main line
OBUF, DATA 101 /stored ASCII 'A'
$

7.6 FORMAT ROUTINES

Input and output routines are often written in the form of subroutines similar to
the TYPE subroutine in the previous example. The following program presents a carriage
return/line feed subroutine that calls the TYPE subroutine to execute a carriage return
and line feed on the teleprinter. Similar subroutines could be written to tab space the
carriage a given number of spaces or to ring the bell of the Teletype by using the re-
spective codes for these non-printing characters. If such routines are commonly used in
a program, you may want to place them at the starting location of a restart instruction

to save time and space in your program.

*30#0
CRLF, LDI 15 /load ASCII code for
CAL TYPE /carriage return into D and print
LDI 12 /1load ASCII code for line feed
CAL TYPE /into D and print it
RET /return to main line
TYPE, INP1 /read UART status
NDI 20 /test for transmit ready
JTZ .-3 /wait for ready
LAD /load character into A
OUTO /print it
RET /return to statement after CAL
$

7.7 TEXT ROUTINES

The previous examples may be expanded to accept and print more than one character.

The following programs illustrate one such expansion. These two programs are compatible

7-4

in that the characters accepted by the first program may be typed out by running the
second program. The first program will accept input characters until a dollar sign (§)
is typed at the keyboard. It then stores 000 in the next memory location and halts.

The second program types the characters whose ASCII codes were stored by the first pro-
gram, and halts when a location with contents equal to zero is reached. Both programs
use locations beginning at 37#0 as a storage buffer for the ASCII characters. The flow-

charts in Figure 7-1 help to illustrate the techniques used in program coding.

Program to Accept ASCII Characters

*4#0
GETC, LHI BUFF+ /set up memory pointer
LLI BUFF
LISN, INP1 /read UART status
NDI 40 /test for data available
JTZ LISN /wait for data
INPO /read character
NDI 177 /strip off bit 7
CPI 44 /test for dollar sign
JTZ DONE /jump to done if dollar sign
LMA /else, store it
INL /increment pointer
JMP LISN /get next character
DONE, XRA /clear AC
LMA /store a zero in buffer
HLT /halt
*37#0
BUFF, HLT /define lst location of buffer
$

Program to Print ASCII Characters

*44#100
PUTC, LHI BUFF4 /initialize memory pointer
LLI BUFF)
CAL CRLF /initialize Teletype carriage
PMSG, LAM /get next character into AC
ORA /set condition codes
JTZ EXIT /exit if zero code set
LDA /else, save character in D
CAL TYPE /print it
INL /increment memory pointer
JMP PMSG /loop till zero is detected

CRLF,

TYPE,

EXIT,

BUFF,

LDI 15
CAL TYPE
LDI 12
CAL TYPE
RET

INP1

NDI 20
JTZ .-3
LAD

oUTO

HLT
*37#0
HLT

SET BUFFER
POINTER TO
1ST LOCATION

I

READ UART
STATUS

DATA
AVAILABLE

?

READ INTO
AC

l STORE IT IN BUFFER |

.- l

INCREMENT

BUFFER POINTER

STORE A ZERO

IN BUFFER

HALT

Figure 7-1.

/print carriage return

/print line feed

/return

/read UART status
/transmit buffer empty?
/no, loop

/yes, put character in AC
/print it

/return

.s

/halt if last character was O

/define start of buffer

-

SET BUFFER
POINTER TO
1ST POSITION

'

PRINT CR/LF

T

GET NEXT
CHARACTER INTO AC

NGO

PRINT IT

?

INCREMENT
BUFFER POINTER

HALT

Flowchart for ASCII Character Routines

The program to print ASCII characters may be specialized to print a specific
message, as in the following example. This print message subroutine (PMSG) is entered
with the H, L register pair set to the first location of the text to be printed. TEXT
is another pseudo-instruction which the assembler recognizes to store the codes for
ASCII characters. The first and last characters of a string are called delimiters and
are not stored. They can be any printing character except a left angle bracket (<).
Angle brackets are used to enclose a numeric code for am ASCII character that is stored

without translation.

Subroutine to Print the Message, '"HELLO!"

%540

HI, LHI MSG#+ /init H, L registers with
LLI MSG /address of message
CAL PMSG /print message
HLT /halt

/Print Message Subroutine

PMSG, XRA /clear AC
ADM /add character to AC
RTZ /return if AC is zero
LDA /save character in D
CAL TYPE /print character
INL /increment low byte
JFZ PMSG /loop, if not zero
INH /increment high byte
JMP PMSG /loop

/Print Character Subroutine

TYPE, INP1 /read UART status
NDI 20 /transmit buffer empty?
JTZ .-3 /no, loop
LAD /yes, load character
OUTO /print it
RET /return

/Define Message

MSG, TEXT /HELLO! /<0>

With the above routine, messages could be stored anywhere in memory because the L regis-

ter is tested for zero after incrementing.

7.8 NUMERIC TRANSLATION ROUTINES

The ASCII code for a number must be converted to octal representation before the
microprocessor may use the number in calculations. For example, 6 is represented by the

7-bit ASCII code 066. When the Teletype key for 6 is typed, the code 066 is transmitted

7-7

to the microprocessor upon execution of the next INPO instruction. The method of strip-
ping an ASCII-coded number is te subtract 60 from the character code. This process may
be reversed to print out a digit which is stored in memory by adding 60 to the digit.

The following programs illustrate these methods. The LISN and TYPE subroutines are the

same as in previous examples and are not shown here.

*4i0
NUMI, CAL LISN /read number
SUI 60 /subtract 60
LEA /store digit in E
HLT
$
*4#100
NUMO, LAE /load digit into AC
ADTI 60 /add 60
LDA /store temporarily in D
CAL TYPE /print digit
HLT
$

The routines presented so far have been designed to handle single-digit octal num-
bers. However, MPS memory locations may contain octal numbers with up to three digits.
The following flowcharts and programs illustrate the précedures employed to print out a
three-digit octal number which is stored in memory and to accept three octal digits from

the Teletype keyboard, convert them to an octal number, and store that number in memory.

liETNUMBER INTO AC l .- INIT MEMORY

POINTER TO IST ADDRESS
HALT

INIT COUNTER
FOR 3 DIGITS

CLEAR B FOR
TEMP WORK AREA

Figure 7-2. Three-Digit Octal Number Routine Flowchart

7-8

SET COUNTERTO -3

;

SHIFT DIGIT INTO
LOW 2 BITS

SAVE RESULT IN B

STRIP TO
LOW 2 BITS

GET REST OF

NUMBER INTO AC

ROTATE DIGIT
INTO BITS 2-0

SAVE REMAINDER

ISOLATE DIGIT

CONVERT TO
ASCII

PRINT DIGIT

=T

INCREMENT COUNTER

NO

YES

C RETURN)

i

PRINT CR ,LF

READ DIGIT

SAVE OCTAL
DIGIT IN C

GET OTHER
DIGITS IN A

ROTATE THEM
3 BITS LEFT

ADD IN NEW DIGITS

SAVE NEW PACKED
NUMBER IN B

INCREMENT COUNTER

ARE WE DONE
?

C GO TO NXTD)

PRINT 7

C GO TONXTN)
INCREMENT
MEMORY POINTER

STORE NUMBER
IN BUFFER

Figure 7-2. Three-Digit Octal Number Routine Flowchart (Cont'd.)

7-9

*104#0

/Program to Type a 3-Digit Octal Number

0CTO LHI NBR+
LLI NBR
LAM
CAL OCTL
HLT
/Octal Output Routine
/Called with Octal Number
OCTL, LLI -3
RLC
RLC
LBA
NDI 3
JMP NXT3
NXT2, LAB

NXT3, NDI 7

CAL TYPE

JFZ NXT2

TYPE, INP1
NDI 20
JTZ TYPE
LAD
OUTO
RET

NBR, HLT
$

*1140

/point to number in memory

/load number into AC

/call output routine

in AC
/set up counter for 3 digits

/shift 2 bits left

/to bring high digit into bits 1, 0

/save result in B

/strip to low 2 bits

/retrieve remaining bits
/shift left 3 bits

/to bring next digit
/into bits 2, 1, O
/save remainder
/isolate digit

/convert to ASCII
/store in D

/print digit

/done 37

/no

/ves

/read UART status
/transmit buffer empty?
[wait for buffer empty?
/get digit into AC
/print it

/return

/Program to Pack and Store 3-Digit Numbers

OCTI, LHT NBUF+
LLI NBUF

NXTN, LBI O
CAL CRLF

/init H, L to starting address
/of Number Buffer
/clear B

/return carriage

7-10

NXTD,

ERR,

INHL,

CRLF,

LISN,

TYPE,

CAL LISN

NDI 370
CPI 60
JFZ ERR

JFZ NXTD

CAL INHL
JMP NXTN
LDI 77

CAL TYPE

RET

LDT 15
CAL TYPE
LDT 12
JMP TYPE
INP1

NDI 40
JTZ .-3
INPO

NDI 177
LDA

INP1

NDI 20
JTZ .-3
LAD

OoUTO

/set counter for 3 digits
/get a character

/save for later

/test for number

/was 0-7 typed?

/no, jump to error routine?
/get bits 2-0 into AC

/save octal digit

/get previous digits

/rotate them left three positions

/add new digit

/save packed number
/received 3 digits yet?
/no, get another

/yes, store it

/increment memory pointer
/get a new number

/type a ?

/increment H, L pointer

/to memory

/type carriage return

/type line feed

/read UART status
/data available?

/no, loop

/yes, read into AC
/strip off bit 7
/save in D for echo
/read UART status
/transmit ready?

/no, wait for ready
/load character in AC

/print it

7-11

RET
*12#0
NBUF, HLT /starting address of buffer

In the last example, several things should be pointed out. Each character read
in is immediately echoed back or printed on the Teletype printer. The LISN routine, in-
stead of returning to the main program after the NDI statement, goes directly into the
TYPE routine to print the character just read. In the CRLF routine, instead of CALling
the TYPE routine after loading the ASCII code for a line feed, a JMP to TYPE is taken.

The RETurn instructions in TYPE will get us back to the main program.

7-12

CHAPTER 8

INTERRUPTS

8.1 GENERAL

The running time of programs using input and output routines is primarily made up
of the time spent waiting for an I/0 device to accept or transmit information. Specific-

ally, this time is spent in loops such as:

INP1 /read status register
NDI 20 /device ready
JTZ .-3 /no, wait

Waiting loops waste a large amount of processor time. In those cases where the
microprocessor can be doing something else while waiting, these loops may be eliminated
and useful routines included to use the waiting time. This sharing of a microprocessor
between two tasks is often accomplished through the program interrupt facility, which is
available to MPS users through the External Event Detection Module, M7346. The program
interrupt facility allows certain external conditions to interrupt the MPS program. It
is used to speed the processing of I/0 devices or to allow certain alarms to halt pro-

gram execution and initiate another routine.

The M7346 External Event Detection Module (EEDM) implements nine levels of prior-
ity arbitration. These include application-defined, six-level priority interrupt
schemes, an ac/dc power failure detection capability, and the processor control func-

tions of Halt and Restart.

Separate input lines to the EEDM provide for encoding up to six levels of exter-
nal application-defined event priority. Each of these lines, when asserted, initiates
an attempt to jam a one-byte unconditional call (RST) instruction into the Processor
‘Module external event port. If the Processor Module honors or recognizes an interrupt,

the RST instruction is fetched and executed. If not, the RST instruction is ignored.

8-1

The EEDM priority logic arbitrates all interrupt assertions and selects the high-
est priority level asserted, then places the corresponding RST instruction into the Pro-
cessor Module. The RST instruction associated with each priority level (zero through
five) constitutes an unconditionmal call on one of the six 8-byte subroutines located in

the first 48 words of an MPS system memory.

When the interrupt circuitry is enabled and an interrupt request is recognized,
the microprocessor automatically disables the interrupt recognition system to lock out
all other requests. It then executes a hardware RST instruction to the predetermined
location in memory associated with the recognized interrupt. The interrupt service rou-
tine calls up the necessary I/0 device service routines to satisfy the condition which
caused the interrupt, then reenables the interrupt recognition system and executes a

RET instruction to resume program execution.

Two OUT instructions are reserved for enabling and disabling the interrupt recog-
nition system. These are device selection codes llg and 12g and have the special mne-
monics ION and IQF, respectively. Execution of the ION instruction will be deferred
until the following instruction has been executed. In this manner, the interrupt recog-

nition system is not enabled until the mainline execution has resumed.

Use of the interrupt system allows a mainline routine to execute without wasting
a large amount of time in waiting loops while I/0 devices are assembling and transmitting
information. The interrupt service routine is entered automatically whenever an I/0 de-

vice requires servicing under program control.

8.2 CODING AN INTERRUPT

The program presented here consists of a background program which rotates one bit
through the accumulator endlessly, and a foreground program, initiated by the interrupt
service routine, which accepts and stores temperature readings from an A/D converter.
The coding begins with an initialized routine which allocates buffer space to store the
incoming data. Once the initialization routine has enabled the interrupt facility, the

background program is started.

An interrupt request from the A/D converter will cause the microprocessor to per-

form the following operations automatically:
1. The interrupt recognition system is disabled.

2. A restart instruction (RST) is executed which performs an uncon-
ditional CAL to location O.

The interrupt service routine then performs the following operations:
1. The contents of the accumulator are saved.
2. The data is read and stored.

3. The contents of the accumulator are restored.

8-2

4.
5.

6.

The next A/D conversion is initialized.

The interrupt recognition system is enabled.

Return is taken to the background program.

BEG,

OPDEF INP3; 107; O
OPDEF 0UT3; 127; O

%0

LDA

INP3
LMA

CAL INHL
ouT 3
ION

RET

*4{0

LHI BUFF+
LLI BUFF
INP3

LAT 1
OUT3

ION

RLC

JMP -1
INL

RFZ

INH

RET

/read A/D value

/init A/D conversion

/interrupt service routine
/save contents of AC

/read data from A/D converter
/store data in buffer
/increment buffer pointer
/start next A/D conversion
/enable recognition system

/return to background program

/init buffer pointer

/clear flags

/set bit 1 in AC

/start 1lst conversion

/enable interrupts

[/rotate AC one bit position to left
/loop

/increment memory pointer

8-3

CHAPTER 9

PROGRAMMING EXAMPLE

To summarize the material covered in this guide, the following flowchart (Figure
9-1) and program are presented. The program contains a dummy background routine that
simply waits for the next interrupt. The foreground routine is controlling the tempera-
ture in a room. The temperature is measured by a thermistor and converted to a binary
number by an A/D converter. When the binary number is completely assembled, an inter-
rupt is generated and the service routine is entered at location 0. The incoming tem-
perature is plotted on the console video screen and is compared against preset limits to
determine if the room is too cold or too hot. If it is too hot, the heating unit is
turned off and the cooling unit is turned on. If it is too cold, the reverse is done.
OUT4 sends an 8-bit byte to a controller which turns the heating element on if bit 7 is
set and off if bit 7 is clear. The controller will turn on the cooling unit if bit 6 is

set and off if bit 6 is clear.

9-1

INTERRUPT
HANDLER

CALL SERVICE
ROUTINE

START NEXT
CONVERSION

DISPLAY
CR, LF
C RETURN)

TYPE
SUB-
ROUTINE

READ UART
STATUS REGISTER

TRANSMIT
READY
?

DISPLAY
CHARACTER

(RETURN)

Figure 9-1.

CLEAR A/D
INTERRUPT FLAG

S
ROUTINE

DISPLAY CR,LF

DISPLAY
CR
INITIATE 1ST
CONVERSION
DISPLAY
SET UPPER AND LOWER
TEMPERATURE LIMITS

I

WAIT FOR

l ENABLE INTERRUPTS J-—

INTERRUPT

AUTO-
START

GO TO BEG)

C RETlTJRN)

DISPLAY
CHARACTER

SAVE AC DISPLAY SPACE

Temperature Control Program Flowchart

9-2

l CLEAR AC I

READ A/D DATA
IN AC

FILTER DATA |

SAVE FILTERED
TEMPERATURE

ABOVE
UPPER LIMIT

?

BELOW
LOWER LIMIT
?

DISPLAY
LOWER LIMIT

DISPLAY
ACTUAL VALUE

YES

YES

DISPLAY MESSAGE

[

POSITION CURSOR '—P

DISPLAY
V&PERTLI\MIT_/ DISPLAY CR, LF
) DISPLAY /_T\—J
LOWER LIMIT C RETURN)
DISPLAY
ACTUAL VALUE

-3

EXECUTE SET AC= 100
OUTPUT COMMAND {TURN HEAT OFF,
FAN ON)
SET AC=200 l
{TURN HEAT ON, . oDISETa LI:TIA .
FAN OFF) w '

DISPLAY

UPPER LIMIT

I

C RETL{RN)

DISPLAY
ACTUAL VALUE

[

DISPLAY CR,LF

C RETURN)

DISPLAY

UPPER LIMIT

Figure 9-1.

DISPLAY CR,LF

Temperature Control Program Flowchart (Cont

9-3

[POSITION CURSOR ,—.

DISPLAY MESSAGE

/_)

'd.)

/RDUM TEMPERAT

/
OFOEF
OFDEF
OPDEF
OPNEF
UPDEF
QPUEF

wo#Y
CAL St
LOY 1Y
TYPE
VuTs
RET

/TYPE CHANACTE
InPY
NDI Bu
JTZ o=
Lai
quty
RET

*Pr30
Lul 15
TYPr
Lbl 12
TYPt
RET

/PLOT CURRKENT

DS, Lal
sul e
JTC DI
LiLA
LDI 42
TYPE
JUP DI

DIse, Lon
TYPE
RET
*GReV
JMP BE

/START UF PkrUG
LR YY"

BEG, INP3
CRLF
DUT3
LCI 12
LEl R4
I1ON
JMP
JHF =

WRE CONTROL PROGRAM

TYPERRSTILI2} O
CRLFIRSTL3@:0@
DISF:RST 40in
INFS; 10720
QuUT3j;12750
QUT4: 1310

RY /INTERRUPT SERVICE ROUTINE
/RUMMY CARKRATGE RETURN

/START NEXT CONVERSION
/RETURN

R IN REGLSTER D
/REAL UART STATUS
/TRANSMIT READY

3 /NGO, walT
/LOAD CHARACTER
/UTSPLAY CHARACTER
/EXLT

/UISPLAY CR,LF

TEMPERATIRE READING
/RESTORE 4
/TRIAL SUBTKACT
8¢ /UNDERFLOW
/3AVE A
/NO, DISPLAY A JPACE

51
/GET CHARACTER

G /AUTO=8START
RAM
/JCLEAR FLAGS

/DISPLAY CR,LF TO INIT FLOT
/INITIATE 15T CONVERKSION

B /SET C EQUAL TO UPPER LIMIT
/SET E EWUAL TO LOWER LIMIT
/ENABLE INTERRUPTS
1 /LOOF FOR INTERKRUPT
4 /SAFETY LOOP

9-4

/INTERRUPT SERVICE ROUTINE

SERV,

BLOw,

ABVE,

INPR

LBA

crC

JFEC ABVE
CPE

JTC tLO0Ow
LAE

LMI 111
UISP

Lag

SUE

LH] &g
DISP

LAC

3uB

Cal. TEST
CRLF

RET

LAl 2v®
QuT4

Lag

LHI S
D1sP

LAE

K198

Cal TEST
lLAC

SUE

VISP

LAl 377
suc

ADI 1v
LMI 4y
0yLSP

LHI BNFF®™
LLI BNFF
Cal. PMSG
CrRLF

RET

LAL 1un
QuT4a

LAE

LI 11}
nise

LAC

SUE

DispP

LAB

3ucC

LRI %2
DISP

Lal 377
S8

ADI tu
Lrl 4@
DISP

LHI BFFN®
LLI BFFN
CAL PMSG
CkLF

RET

/READ DATA INTO A

/SAVE IN B

/TEST UPPER LIMIT

/ABOVE UPPER LIMITY
/TEST LOWER LIMIT

/BELOwW LOWER LIMIT

/WITHIN LIMITS, OIS8PLAY LOWER LIMIT

/ASCII CODE FOR AN "IN
/DISPLAY ACTUAL VALUE
/ASCI1 COUE FOR AN "wV

/0ISPLAY UPPER LIMIT

/TEST FOR OVERLAPFING CHARACTERS

/TUKN HEAT ON, FAN OFF
/EXECUTE OQUTPUT COMMAND
/DISPLAY ACTUAL VALUE

/RTSPLAY LOwWEK LIMIT

/LISPLAY UPPER LIMIT

/POSITION CURSOK

/ASCIY1 CODE FOR A SpACE

/DISPLAY MESSAGE

/TURN HEAT QFF, FAN ON
JEXECUTE QUTPUT COMMAND
/LUISPLAY LOWER LIMIT
/ASCII CDUE FOR AN "M

/DISPLAY UPPER LIMIT

/UISPLAY ACTUAL DATA
/ASCI1 CODDE FOR AN Me”

/POSITION CURSOR

/ASCII CODE FUR A SPALCE

/DISPLAY MESSAGE

9-5

JOISPLAY MESSAGE KOUTINE
BNFF, TEXT /HEAT ON, FAN OFF/

HLT

BFFN, TEXT /HEAT OFF, PFaN ON/
HLT

PMSu, KRA /CLEAK AC
ApH /ADD NEXT CHARACTER
RTZ /EXIT IF ZERO
LUA /3AVE IN D
TYFE /LISPLAY IT
INL - /INCREMENT MEMOKY
JFZ PMSH /LODP, IF L NOT ZERQ
INA /INCREMENT RHI=BYTE TOO
JMP PHSG /LO0P

TEST, CPL S - - /TEST FUR CHARACTER QOVERLAFPING
RIC
LHT 111t /ASCI1 CODE FOR aN "I"
DISP
RET
%

9~-6

CHAPTER 10

WHERE DO YOU GO FROM HERE?

You should now be reasonably familiar with the art of communicating with MPS. 1Imn

essence, you have learned to program a microprocessor. Your task of programming MPS

will be made even easier by the availability of the programming tools designed specific-

ally for MPS. They are available in two forms:

1. MPS module programs may be prepared with a small, low-cost PDP-8 minicom-
puter (excluding the PDP-8/S) with 4K .of memory, Teletype terminal, and
paper tape reader/punch. The software necessary to program the Micro-
processor Series is provided in a Software Kit which consists of the fol-

lowing programs. All programs are provided in paper tape form.

Program Function
MLE (Microprocessor Allows editing of source tapes from the
Language Editor) Teletype console. Runs on PDP-8%,
MLA (Microprocessor Assembles source programs into binary tape
Language Assembler) format. Runs on PDP-8.%
MRP (Microprocessor Programs PROMs from assembler's binary
ROM Programmer) tape output. Runs on PDP-8%,
MDP (Microprocessor Aids in debugging of binary programs.
Debugging Program) Runs on MPS.
MTD (Master Tape Copies paper tapes. Runs on PDP-8%,
Duplicator Program)
MHL (Microprocessor Loads binary-coded tapes into PDP-8 mem-
Host Loader Program) ory. Runs on PDP-8%.

*Except PDP-8/S.

This package is designated QF500-AB.

2. MPS module programs may also be prepared without the use of a PDP-8, on

the MPS Software Development Set, using the 54-slot prewired backplane

10-1

and 8K of RAM memory, Teletype terminal, and paper tape reader/punch.
The software required is provided also in a Software Kit, which con-
sists of the following programs. Again, all programs are provided in

paper tape form.

Program Function
MLE (Microprocessor Allows editing of source tapes from the
Language Editor) Teletype console. Runs on 8K of MPS

memory.

MLA (Microprocessor Assembles source programs into binary
Language Assembler) tape format, Runs on 8K of MPS memory.
MDP (Microprocessor Aids in debugging of binary programs.
Debugging Program) Runs on MPS.

This package is designated QY500-AB.
The two kits are fully described in the following documents:

QF500-AB MPS User's Handbook
QY500-~-AB Checkout Procedure, DEC-BE-UMCPA-A-D

The next step is learning how to apply your new expertise to making MPS work for
you~—how to solve problems in the industrial world, particularly in the area of monitor-

ing and controlling industrial equipment, for which the MPS is especially applicable.

MPS is a viable alternative to hard-wired circuits for many control-oriented func-—
tions. The programmable components are standardized, so you don't have to develop
special-purpose circuitry to solve specific problems. Modifications made necessary by
product evolution are simplified because the whole focus on the design effort is shifted
from hardware to software. Reliability is improved because there are fewer components
and interconnections. Uniformity within a series of products is increased. Applica-
tions flexibility is enhanced and design time shortened over hard-wired logic; yet the

cost is considerably less than the price of a minicomputer.

MPS adaptability ranges from devices which already incorporate some degree of
automation, such as numerically controlled machine tools or laboratory blood analyzers,
to products such as appliances for which digital control hasn't been considered because
of cost or complexity. Used with data terminals, MPS can provide higher levels of in-

teractivity among operators while reducing the traffic burden on communication channels.

Machines in industrial, commercial, and consumer use can be given capabilities
for adapting to loads or demands, operating in a variety of modes, and performing moni-
tor and control functions automatically. Interfaced with industrial knitting machines,
for example, MPS can implement safety interlocks, count pieces for inventory, select

stitching parameters and threads, and detect worn or broken needles.

10-2

Here are some typical application areas:

- Industrial Control
+ Machine tool control

+« Material Flow

+ Process Control
- Batch mixing
» Furnace monitoring

- Batch weighing

» Small Laboratory Automation
» Analog and digital instrument data acquisition

« Blood analyzers

+ Data Communications
+ Data concentrators
» Communications processors
» Minicomputer Preprocessors

» Intelligent terminals

+ Business Machines
» Optical character recognition
» Automatic banking

« "Smart" copying machines

. Health, Education, and Welfare
+ Environmental control of large buildings
- Automatic teaching machines

+ Remote pollution-monitoring systems

+ Transportation
« Traffic signal controllers
+ Vehicle recognition scanners

+ Traffic flow monitoring

The product that makes all of this possible, the MPS, consists, in the strictest

sense, of the following modular components. These are the pure Erdcessor components
of MPS.

+ M7341 CPU Module

« M7344-YA 1Kx8 Read/Write Memory Module
« M7344-YB 2Kx8 Read/Write Memory Module
« M7344-YC 4Kx8 Read/Write Memory Module

« M7345 Programmable Read-Only Memory
(PROM, capacity to 4Kx8)

- M7346 External Event Detection Module
- KC341 Monitor/Control Panel

. KMPOl Prewired Backplane (24 slots)

- KMP0O2 Prewired Backplane (54 slots)

However, in order to fully implement an MPS-controlled monitor/control applica-
tion, a number of additional functions are required; viz., input/output, data transfer
and peripheral device selection. These functions are performed by the following stan-
dard DIGITAL modules:

« M1501 8-Bit Bus Input Module
+ M1502 8-Bit Bus Output Module

. M7328 FExternal Device Selector (32 devices)

The processor, I/0, and control modules can be assembled in either the 24-slot or the

54-slot prewired backplanes, depending on the magnitude and complexity of the MPS
monitor/control system. The backplanes are prewired to the standard MPS and input/
output configuration, thus relieving the user of the task of interconnecting the pro-
cessor, control, and input/output functions. Spare slots in each backplane allow the

user the flexibility of adding his own modular electromics.

The referenced modules are all fully documented with technical data sheets and

schematics. In addition to this, a number of valuable application notes relative to

MPS usage are available. A complete list of support documentation follows:

Title Document No.
MPS User's Handbook DEC-08-UMPHA-A~PA
M7341 Processor Module Data Sheet 5804 00874 3985/M
M7344 Read/Write Memory Module Data Sheet 5804 00874 3986/M
M7345 Programmable Read-Only Memory Data Sheet 5804 00874 3987/M
M7346 External Event Detection Module Data Sheet 5804 00874 3988/M
M7328 Evoke Decoder Module Data Sheet 5804 00973 3149/TP
M1501 Bus Input Interface Module Data Sheet 044X 01171 1894/8
M1502 Bus Output Interface Module Data Sheet 0404X 10572 22376/S
M111 Inverter See 1975~76 Logic
Handbook
General Interfacing Techniques for M7341 5804 00874 4087/Y ¢
Microprocessor Module Application Note
MPS Pocket Reference Card 5313 100175 4707/Y

10-4

‘ APPENDIX A
BLOCK-OFFSET TO OCTAL CONVERSION

This appendix can be used if it is ever necessary to convert the block-offset notation in assembly language programs
and output to octal notation. Only the first and last conversions are given for each block. To convert an offset
within a given block, simply add the offset to the starting octal location in the block. For example:

Block Offset Octal
11 0 4400
11 377 4777
To convert block 11 offset 227 to octal, simply add 227 to 4400. The correct octal equivalent is thus 4627.
Block Offset Octal Block Offset Octal

. 0 000 0000 5 0 2400

0 377 0377 'S 3:77 2.777
1 0 0400 6 0 3000

377 07'77 6 377 3377

1
. 2 0 1000 7 0 3400
2 377 1377 7 377 3777
* 3 0 1400 10 0 4000
L]
3 377 1777 10 377 4377
4 0 2000
4 377 2377

Block

11
11
12
12
13
13
14
14
15
15
16
16
17
17
20
20
21
21

22

22

Offset

377

377

377

377

377

377

377

377

377

377

Octal

4400

4777
5000

5377
5400

5777
6000

6377
6400

6777
7000

7377
7400

7777
10000

10377
10400

10777
11000

11377

Block

23
23
24
24
25
25
26
2%
27
27
30
30
31
31
32
32
33
33

34

34

Offset

0

377

377

377

377

377

377

377

377

377

37

Octal

11400

11777
12000

12377
12400

12777
13000

13377
13400

13777
14000

14377
14400

14777
15000

15377
15400

15777
16000

16377

Block

35
35
36
36
37
37
40
40
41
41
42
42

43

43
44

45
45

46

46

Offset

0

377

377

377

377

377

377

377

377

377

377

Octal

16400

16777
17000

17377
17400

17777
20000

20377
20400

20777
21000

21377
21400

21771
22000

22377
22400

22777
23000

23377

Block

47
47
50
50
51
51
52
52
53
53
54
55
55
56
56
57
57

60

60

Offset

0

377

377

377

377

3717

377

377

377

377

377

Octal

23400

23777
24000

24377
24400

24777
25000

25377
25400

25771
26000

26377
26400

26777
27000

27377
27400

27717
30000

30377

Block

61
61
62
62

63

63
64

65
66

66
67
67

70

70

Offset

377

377

377

377

377

377

377

377

Octal

30400

30777
31000

31377
31400

31777
32000

323717
32400

327717
33000

33377
33400

33777
34000

34377

Block

71
7
72
72
73
73
74
74
75
75
76
76

77

77

Offset

377

377

377

377

377

3717

377

Octal

34400

34777
35000

35377
35400

35777
36000

36377
36400

36777
37000

37377
37400

37777

APPENDIX B
FLOWCHART SYMBOLS

The following is a partial list of flowchart symbols which can be used to diagram
the logical flow of a program. The symbols may be made sufficiently large to include

the pertinent information.

REPRESENTATION OF FLOW The direction of flow in a program is represented
Left to Right by lines drawn between symbols. These lines indi-
cate the order in which the operations are to be
= » performed. Normal direction of flow is from left
to right and top to bottom. When the flow direction
<4 Right to Left is not from left to right or top to bottom, arrow—
heads are placed on the reverse direction flowlines.
Ar Arrowheads may also be used on normal flowlines for
increased clarity.
Top Bottom
to | or to
Bottom Top
v
TERMINAL The oval symbol represents a terminal point in a
(::::::::::::) program. It can be used to indicate a start, stop,
or interrupt of program flow. The appropriate word
is included within the symbol.
PROCESSING The rectangular symbol represents a processing

function. The process which the symbol is used to
represent could be an instruction or a group of in-

structions to carry out a given task. A brief de-

scription of the task to be performed is included

within the symbol.

DECISION

PREDEFINED
PROCESS

CONNECTOR

ANNOTATION

INPUT/OUTPUT

PUNCHED TAPE

MAGNETIC TAPE

\J/
-
@)

A diamond is used to indicate a point in a program
where a choice must be made to determine the flow
of the program from that point. A test condition is
included within the symbol and the possible results
of the test are used to label the respective flows

from the symbol.

This symbol is used to represent an operation or
group of operations not detailed in the flowchart.
It is usually detailed in another flowchart. A sub-

routine is often represented in this manner.

The circular symbol represents any entry from or an

" exit to amother part of the program flowchart. A

number or a letter is enclosed to label the corres-—
ponding exits and entries, This symbol does not

represent a program operation.

An addition of descriptive comments or explanatory
notes for clarification is included within this

symbol.

This symbol is used in a flowchart to represent the
input or output of information. This symbol may be
used for all input/output functions, or symbols for
specific types of input or output (such as those

which follow) may be used.

This symbol may be used to represent the manual in-
put of information by means of online keyboards,

switch settings, etc.

The input or output of information in which the
medium is punched tape may be represented by this

symbol.

This symbol is used in a flowchart to represent

magnetic tape input or output.

APPENDIX C
/-BIT ASCIT CODE

Octal Char. Octal Char. Octal Char. Octal Char.
Code Code Code Code

000 NUL 040 Sp 100 @ 140

001 SOH 041 ! 101 A 141 a
002 STX 042 » 102 B 142 b
003 ETX 043 # 103 C 143 ¢
004 EOT 044 $ 104 D 144 d
005 ENQ 045 % 105 E 145 e
006 ACK 046 & 106 F 146 f
007 BEL 047 ' 107 G 147 g
010 BS 050 (110 H 150 h
011 HT 051) 111 I 151 i
012 LF 052 * 112 J 152 j
013 VT 053 + 113 K 153 k
014 FF 054 , 114 L 154 1
015 CR 055 - 115 M 155 m
016 SO 056 . 116 N 156 n
017 SI 057 / 117 0 157 0
020 DLE 060 0 120 P 160 p
021 DC1 061 1 121 Q 161 q
022 DC2 062 2 122 R 162 r
023 DC3 063 3 123 S 163 s
024 DC4 064 4 124 T 164 t
025 NAK 065 5 125 U 165 u
026 SYN 066 6 126 % 166 v
027 ETB 067 7 127 W 167 w
030 CAN 070 8 130 X 170 X
031 EM 071 9 131 Y 171 y
032 SUB 072 : 132 Z 172 z
033 ESC 073 ; 133 [173 i
034 FS 074 < 134 \ 174 |
035 GS 075 = 135] 175 }
036 RS 076 > 136 } 176 ~
037 UsS 077 ? 137 - 177 DEL

APPENDIX D

SUMMARY OF ASSEMBLER PSEUDO-INSTRUCTIONS

Pseudo-Instruction

Function

$

PAUSE
*expression
ocT

HEX

DEC

EXPUNGE

OPDEF mnemonic;value;type

label, DATA nO;nl;n2;nm

label, BLOCK size [sinitial [sincrement]]

label, TEXTW literaly

label, ADDR a0ala2;...am

Deletes instruction symbol table.

Signals end of assembly language program.

Causes pause in Assembler processing until CONTinue
switch is pressed.

Specifies initial program location counter and can be
used to reset current location counter.

Sets radix for subsequent numbers in program to
octal (base 8).

Sets radix for subsequent numbers in program to
hexadecimal (base 16).

Sets radix for subsequent numbers in program to
decimal (base 10).

Allows programmer to define own instructions
according to value and type given.

Assigns values to incremental memory locations.

Assigns a block of memory of the size given with
values of zero, an initial value, or a set of increments.

Specifies ASCII character strings and/or numeric
representations of ASCII characters to be included in

a program.

Assigns address constants to memory locations.

D-1

APPENDIX E

SOLVING THE PROBLEM

The following example might be a suggested approach for the problem of monitoring

and controlling the temperature in an office building.

A. The Application

1. Monitor and control building temperature.
2. Monitor fire alarm system in building.

3. Monitor intrusion alarm system in building.

B. Application Features

1. Continuous monitoring of building thermostats.

2. Adjustment of controller setpoints on a local basis.

3. Automatically starts and stops heating and cooling equipment.
4. Provides out-of-limits alarming and corrective action,
5

Maintains log of building operation.

C. Application Components

1. Fight thermostats monitoring room temperature points.
2, Eight burglar alarm switches to monitor intrusions.

3. Eight over-temperature thermocouple devices to monitor a
fire situation.

4., TFour fans to distribute heating air or cooling air.

5. Eight ducts which can be opened or closed for zone heating
or cooling.

6. Water-flow detection switch to monitor inadvertent operation
of sprinkler valves.

7. Fire alarm audible signal to be turned on after detection
of fire condition.

8. Visual indicators on console to advise of intrusion or fire
situation.

Solution

In order to reach the programming solution to this application, we must do the

following things:

1. Draw a system flow diagram for the application.

2. Define the software considerations.

1.

System Flow Diagram

AUTO-
START

READ UART STATUS

DATA
PRESENT
?

YES

YES
SEND "ACK’ TO
HOST COMPUTER

INITIALIZE J

TEMPERATURE
GUAGE CODE

CALL INPUT
ROUTINE

SEND TEMPERATURE
GUAGE CODE

SEND GUAGE)
READING

ROTATE
GUAGE CODE

;

’

YES

READ FIRE

DETERMINE
APPROPRIATE
FAN ZONE

CLOSE
DUCT VENT

COMPARE
A-B
?

GET HIGH
LIMIT, LOW

8 BITS INTO A

COMPARE
A-B

BOTH VENTS
CLOSED
?

TURN FAN OFF

GO TO A

GET LOW

?

GET HIGH
LIMIT, HIGH
4 BITS INTO A

CALL INPUT
ROUTINE

INITIALIZE
TEMPERATURE

ALARM STATUS

.
g e

SEND FIRE
ALARM STATUS

READ INTRUSION
ALARM STATUS

GUAGE CODE

LIMIT, HIGH
4 BITS INTO A

COMPARE
A-C

GET LOW
LIMIT, LOW
8 BITS INTO A

A< COMPARE A>
A~-B
?

SEND‘ETX’
TO HOST COMPUTER

SEND INTRUSION
ALARM STATUS

E-2

OPEN
DUCT VENT

GO 70
AUTOSTART

(GO TO B)

1.

System Flow Diagram (Cont'd.)

7

SELECT ANALOG
CHANNEL

CONVERT ANALOG
TO DIGITAL

CONVERSION
DONE

READ LOW
8 BITS

STORE IN
REGISTER 8

READ HIGH
4 BITS

STORE IN
REGISTER C

C RETURN)

FIRE
ALARM

TURN OFF
ALL FANS

CLOSE
ALLVENTS

READ ALARM
STATUS

DETERMINE
ALARM SOURCE

SOUND
ALARM

10N 1 1
UV NG RN

NOTIFY GUARD

TURN INTERRUPT
RECOGNITION
DEVICE ON

C RETURN)

NOTIFY GUARD

ENABLE INTERRUPT
RECOGNITION

(RETURN)

INTRUSIO!
ALARM

READ ALARM
STATUS

DETERMINE
ALARM SOURCE

NOTIFY GUARD

]

ENABLE INTERRUPT
RECOGNITION

C RETURN)

2. Software Considerations

The system flow diagram defines all the operations to be performed by the system
software. This particular operation determines that only PROM memory will be required
in this system. Internal processing can be done in the internal registers on the CPU

module.

The PROM memory will store all instructions, system constants, algorithms, sub-
routines, as well as the bootstrap program which, on an initial power-up, initializes
all system interfaces and starts the machine program. The PROM memory requirements are

estimated to be not more than 1K total locations.

A sample section of the system flow diagram has been isolated to show, typically,
the types of instructions and number of memory storage locations required to implement

a number of typical operations in this system.

B, LAD /get current gauge bit
NDI 3 /zone 17
e " JFzZ ZONE 1 /yes
LAD
NDI 14 /zone 27
Determine JFZ ZONE 2 /yes
appropriate TAD
fan zone
NDI 60 /zone 37
JFZ ZONE 3 /yes
ZONE 4, LAE /must be ZONE 4
NDI 300 /both vents closed?
JFZ ON4 /no
LAT FOF4 /set command word
OUT 34 /turn fan off, this zone
JMP NXT
ON 4, LAI FON4 /set command word
OUT 24 /turn fan on, this zone
JMP NXT

This particular program segment requires 18 memory locations.

2

GLOSSARY

ABSOLUTE ADDRESS — A binary number that is permanently assigned as the address of a
memory storage locationm.

ACCUMULATOR — One of the 8-bit Index Registers in which arithmetical and logical opera-
tions are performed. Abbreviated AC.

ADDRESS — A label, name, or number which designates a location in memory where informa-
tion is stored.

ADDRESS REGISTER — A register that is used as a pointer to a memory address.

ARGUMENT — A variable or constant which is given to a subroutine; a variable upon whose
value the value of a function depends; the known reference factor necessary to
find an item in a table or array.

ARITHMETIC UNIT — The component of a computer where processes-~such as addition, subtrac-
tion, multiplication, and division are performed, and operands and results are
stored temporarily.

ASCII — American Standard Code for Information Interchange. A standard code using a
character set consisting of 8-bit coded characters; used for data interchange
among data processing communication systems.

ASSEMBLE — To translate, on a one-to-one basis, from a symbolic program to a binary pro-
gram by substituting binary operation codes for symbolic operation codes and abso-
lute addresses for symbolic addresses.

ASSEMBLER — A program which translates symbolic language into machine language and
assigns memory locations for variables and constants.

BAUD RATE — A unit of signaling speed. In a message in which all characters have the
same length, one baud corresponds to a rate of one signal element per second,
usually one bit per second.

BINARY — Pertaining to the number system with a radix, or base, of two; uses only two
digits: zero (0) and ome (1).

BIT — The contracted form of binary digit; a character used to represent one of the two

digits in the binary number system. The MPS normally handles 8 bits of data at a
time.

BLOCK~OFFSET — A method of describing the absolute address of a given byte of memory.
The MPS uses l4-bit addresses. Since the MPS is an 8-bit machine, the 14-bit
address must be stored in two consecutive bytes. The low 8 bits are stored in
one byte called the offset. The high 6 bits are stored in the next byte called
the block. Each block contains 256 bytes of memory. The specific byte within
each block is identified by the offset.

BRANCH — A point in a routine where one of two or more choices is made under control of
the routine.

BREAKPOINT — A point in a program at which the program can be halted and the results to
that point analyzed or preserved for a later continuation of the program. Used
primarily in debugging.

Glossary -1

BUG — A mistake in the design or implementation of a program resulting in erroneous
operations.

BYTE — In the MPS, a group of 8 comsecutive binary digits (bits) operated on as a unit.

CALL — To transfer control to a specified routine.

CARRY FLIP-FLOP — A bistable device (capable of assuming either one of two steady
states) indicating a carry from the most significant bit in the operation.

CLEAR — To erase the contents of a storage location by replacing the contents with all
Zeros.

CODING — To write instructions using symbols meaningful to the computer, or to an
assembler or other language processor.

COMPLEMENT — One's: To replace all 0 bits with 1 bits and vice versa. Two's: To form
the one's complement and add 1.

CONDITION CODE — One of the flip-flops that preserve the results (negative, zero, carry,

or parity) of the instruction just completed.

CONTROL — The computer component that affects the carrying out of instructions in the
proper sequence, the interpretation of each instruction, and the application of
the proper commands to other sections and circuits in accordance with the inter-
pretation.

DATA — A general term used to denote any or all facts, numbers, letters, and symbols.
It connotes basic elements of information which can be processed by a computer.

DEBUG — To detect, locate, and correct mistakes (bugs) in a program.

DELIMITER — A character that separates, terminates, and organizes elements of a state-—
ment or program.

DESTINATION REGISTER — The register that contains the data to be replaced by or added
with the source register. The result of an operation will be placed in the des-
tination register.

DOUBLE-PRECISION — Pertaining to the use of two MPS bytes to represent one number. In
the MPS, a double-precision result.is stored in 16 bits.

DUMP — To copy the contents of all or part of memory, usually onto an external storage
medium.

END BLOCK — The last block of data on the binary output tape that is generated by the
assembler. It is identified by a byte count of exactly six.

EXTERNAL STORAGE — A separate facility or device on which data usable by the MPS is
stored (such as paper tape or cassette).

EXCLUSIVE-OR — A logical operator having the property that if P is a statement and Q is
a statement, then the proposition P exclusive-OR Q is true if either but not both
statements are true, false if both are true or both are false. P exclusive-OR Q
is often represented by PEQ, P¥Q. Contrast with logical OR.

Glossary -2

FLAG — A variable or register used to record the status of a program or device. In the
latter case, also called a device flag.

FLIP-FLOP — A circuit or device containing active elements, capable of assuming either
one of two stable states at a given time.

FLOWCHART — A graphical representation of the operations required to carry out a data
processing operation.

HARDWARE — Physical equipment, e.g., mechanical, magnetic, electrical, or electronic
devices. Contrast with software.

IMBEDDED LITERAL — A literal that is used in place of a symbol within a source statement.

INITIALIZE — To set counters, switches, and addresses to zero or other starting values
at the beginning of, or at prescribed points in, a computer routine. Similar to
clear.

INPUT/OUTPUT — A section providing the means of communication between the MPS and exter-
nal equipment or other computers. Input and output operations involve units of
external equipment, certain registers in the computer, and portions of the com-
puter control section. Abbreviated I/0.

INSTRUCTION — A command that causes the MPS to perform a specific operation. Usually
also contains the values or locations of the operands required for the operation.

INSTRUCTION REGISTER — In the MPS, one of the 8-bit index registers that decodes each
instruction, in turn, to set up the intermal circuitry to execute that instruc-
tion. Abbreviated IR.

INSTRUCTION SET — A group of mnemonics that are contained in the permanent symbol table
of the assembler.

INTERRUPT — An event that breaks the normal operation of the program being executed and
passes control to a specific location; generally accompanied by saving the state
of the interrupted routine so that control can return later.

JUMP — An instruction that specifies the location of the next instruction and directs
the MPS. A jump is used to alter the normal sequence control of the MPS. Under
certain conditions, a jump may be contingent upon manual intervention.

JUMP, CONDITIONAL — An instruction which, if a specified condition or set of conditions
is satisfied, is interpreted as an unconditional transfer. If the condition is
not satisfied, the instruction causes the MPS to proceed in its normal sequence
of control. A conditional transfer also includes the testing of the condition.

JUMP, UNCONDITIONAL — An instruction that switches the sequence of control to some spe-
cified location. Not contingent on any specified conditiom.

LEADER — The section of paper tape containing the punched code 200g that precedes the
binary program.

LEAST SIGNIFICANT DIGIT — The right-most digit of a number. Abbreviated LSD.

Glossary -3

LITERALS — Constants that are used in the operand field of a source statement. Ex:
LHT 20.

LOAD — To place data into internal storage.

LOCATION — A place in storage or memory where a byte of data or an instruction may be
stored.

LOCATION COUNTER — A counter kept by an assembler to determine the address assigned to
an instruction or constant being assembled.

LOGICAL AND — A logical operator which has the property that if P is a statement and Q
is a statement, the proposition P AND Q is true if both statements are true, false
if either is false or both are false. Truth is normally expressed by the value 1,
falsity by 0. The AND operator is often represented by a centered dot (P-:Q), by
a no sign (PQ), by an inverted "u" or logical product symbol (PnQ), or by the let-
ter "x" or multiplication symbol (PxQ). Note that the letters AND are capitalized to
differentiate between the logical operator AND and the word and in common usage.

LOGICAL OPERATOR — A symbol which indicates that the two terms of an expression con-
nected by it are to be combined logically.

LOGICAL OR — A logical operator having the property that if P is a statement and Q is
a statement, then the OR of P and Q is true if either is true, false if both are
false. P OR Q is often represented by P+Q, PVQ. Contrast with exclusive-OR.

LOOP — A sequence of instructions that is executed repeatedly until a terminal condi-
tion prevails.

MACHINE LANGUAGE — Information that can be directly processed by the MPS, expressed in
binary notation.

MNEMONIC — An alphanumeric designation, easy to remember and commonly used to represent
an MPS instruction, e.g., JMP for jump.

MOST SIGNIFICANT DIGIT — The left-most digit of a number. Abbreviated MSD.

MULTIPLEX — To interleave or simultaneously transmit two or more messages on a single
data channel.

NESTING TO LEVELS — A level within a program is that portion of code that has a common
program counter., In MPS, there are 8 possible levels of code, a main level and
seven sublevels. When a subroutine is called, control is transferred to the next
sublevel of coding. The ability to jump to these sublevels is called nesting.

OCTAL — Pertaining to the number system with a radix, or base, of eight; uses the digits
zero through seven.

OPERAND — A quantity entering or arising in an instruction. An operand may be an argu-
ment, a result, a parameter, or an indication of the location of the next instruc-
tion, as opposed to the operation code or symbol itself. It may even be the
address portion of an instruction.

OVERFLOW — The condition which arises when the result of an arithmetic operation exceeds
the capacity of the allotted storage space.

POINTER — A location containing the address to another location.

Glossary - 4

"

POST-OPERATOR — An operator that appears after the expression it is to operate on. Ex:
In the expression LHI BUF+4, the up-arrow is a post-operator.

PRIORITY ARBITRATION — The process of determining which interrupt, when more than one
occurs simultaneously, should be serviced first.

PROGRAM — (1) The complete sequence of instructions and routines necessary to solve a
problem. (2) To plan the procedures for solving a problem. This may include the
analysis of the problem, preparation of a flowchart, preparing details, develop-
ing subroutines, allocation of memory locations, and testing and debugging.

PROM — Programmable Read-Only Memory is any type which is not recorded during its fabri-
cation but which requires a physical operation to program it. Some PROMs can be
erased and reprogrammed through special physical processes.

PSEUDO-INSTRUCTION — An instruction to the assembler; an operation code that is not
part of the MPS instruction set.

PUSH-DOWN STACK — An area of read/write memory set aside by the processor for temporary
storage of subroutine interrupt service linkage. The stack uses the "last-in,
first-out" concept.

RADIX — The quantity of characters for use in each of the digital positions of a number-
ing system. In the most common numbering systems, the characters are scme or all
of the Arabic numerals, as follows:

System Name Characters Radix
Binary 0, 1 2
Octal 0, 1, 2, 3, 4, 5, 6, 7 8
Decimal 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 10

Unless otherwise indicated, the radix of any number is assumed to be 10. For
positive identification of a radix 10 number, the radix is written as a subscript
to the expressed number; i.e., 12670. The radix of any nondecimal number is ex-
pressed in similar fashion; e.g., 112 and 158.

RAM — Random Access Memory is any type of memory with both read and write capability.

READ — To acquire data from a source.

READ, NON-DESTRUCTIVE — A reading of the information in a register without changing
that information.

REDEFINITION WARNING — A warning message given by the assembler when the user attempts
to redefine a symbol.

REGISTER — A hardware device used to store one byte (8 bits) of information.

RELATIVE ADDRESSING — A method of expressing an address relative to the current value
of the location counter.

RING BUFFER — An area of read/write memory within the processor capable of storing 8
14-bit addresses.

RING COUNTER — A 3-bit register whose value is the location of the currently active pro-~
gram counter. (The "top" of the push-down stack.)

ROM — Read-Only Memory is any type which cannot be rewritten; ROM requires a special

operation to permanently record instruction and/or data patterns in it. Compare
with PROM memory.

Glossary -5

ROUTINE — A set of instructions arranged in proper sequence to cause the computer to
perform a desired task. A program or subprogram.

RUN — A single, continuous execution of a program.

SCRATCH PAD — A section of memory that is used for temporary storage of intermediate
results or pointers.

SEPARATOR — A character that separates, terminates, and organizes elements of a state-
ment or program.

SHIFT — A movement of bits to the left or right frequently performed in the accumulator.
In MPS, also referred to as "rotate.”

SIGNED NUMBER — A binary representation in which the most significant bit is reserved
for the sign.

SINGLE-PRECISION — The precision used when operations are performed using single 8-bit
bytes to represent a quantity.

SOFTWARE — (1) The collection of programs and routines associated with a computer, e.g.,
compilers; library routines. (2) All the documents associated with a computer,

e.g., manuals, circuit diagrams. Contrast with hardware.

SQURCE REGISTER — The register that contains the data to be loaded or added to a des-
tination register. The contents of the source register remains unchanged after
an operation.

SUBROUTINE — A series of computer instructions which perform a specific task for an-
other routine. It's distinguishable from a main routine in that it requires, as one
of its parameters, a location specifying where to return to in the main program
after its function has been accomplished.

SYMBOL TABLE — A table in which symbols and their corresponding values are recorded.

SYMBOLIC LANGUAGE — A coding system in which the mnemonics, or symbols, for the MPS in-
struction set are used instead of the actual binary machine language.

SYMBOLIC ADDRESS — A set of characters used to specify a memory location within a
program.

TEXT BUFFER — A section of memory where text will be stored temporarily until the pro-—
gram is ready to operate on it.

TRAILER — The section of paper tape containing the punched code 2008 that succeeds the
binary program.

UNDEFINED SYMBOL — A symbol appearing in the operand field of a source statement that
has not appeared as a label or in a direct assignment statement.

UNDERFLOW — The result of an attempt to subtract a positive number from a positive num-
ber of a lesser magnitude.

WORD — In the MPS, synonymous with byte.

WRITE — To record data in a register or locationm.

Glossary - 6

\‘

Communicating
with DIGITAL’s
MPS microprocessor

Reader’s Comments

Your comments and suggestions will help us in our continuous effort to improve the quality and usefulness

of our publications.

What is your general reaction to this guide? In your judgment is it complete, accurate, well organized, well

written, etc.? Is it easy to use?

What features are most useful?

What faults do you find with the guide?

Does this guide satisfy the need you think it was intended to satisfy?

Does it satisfy your needs?

Why?

Would you please indicate any factual errors you have found.

Please describe your position.

Name

Organization

Street

Department

City

State

Zip or Country

FIRST CLASS
PERMIT NO. 152
Marlboro, MA 01752

™

||

BUSINESS REPLY MAIL-NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

~

Postage will be paid by:

Digital Equipment Corporation
Logic Products

One Iron Way

Mariborough, MA 01752

Attn: MPS Mktg. / M59

dijgliltlall

LOGIC
PRODUCTS

DIGITAL EQUIPMENT CORPORATION, Component Group Headquarters: 1 Iron Way, Marlborough, Mass. 01752, Telephone: (617) 481-7400
SALES AND SERVICE OFFICES

DOMESTIC — ARIZONA, Phoenix and Tucson « CALIFORNIA, Los Angeles, Monrovia, Oakland, Ridgecrest, San Diego, San Francisco
(Mountain View), Santa Ana, Sunnyvale and Woodland Hills « COLORADO, Englewood e CONNECTICUT, Fairfield and Meriden « DISTRICT
OF COLUMBIA, Washington (Lanham, Md.)» FLORIDA, Orlando « GEORGIA, Atlanta « ILLINOIS, Chicago (Rolling Meadows) ¢ INDIANA,
Indianapolis « IOWA, Bettendorf « KENTUCKY, Louisville « LOUISIANA, Metairie (New Orleans) » MASSACHUSETTS, Marlborough and
Waltham « MICHIGAN, Detroit (Farmington Hills) » MINNESOTA, Minneanolis « MISSOURI, Kansas City and St. Louis « NEW HAMPSHIRE,
Manchester « NEW JERSEY., Fairfield. Metuchen and Princeton « NEW MEX!CO, Albuguerque « NEW YORK, Albany, Huntington Station,
Manhattan, Rochester and Syracuse « NORTH CAROLINA, Durham/Chapel Hill « OHIO, Cleveland, Columbus and Dayton « OKLAHOMA,
Tulsa « OREGON. Portland « PENNSYLVANIA, Philadelphia (Biuebell) and Pittsburgh « TENNESSEE, Knoxville = TEXAS,
Austin, Dallas and Houston « UTAH, Salt Lake City « WASHINGTON, Bellevue » WISCONSIN, Milwaukee (Brookfield)
INTERNATIONAL — ARGENTINA, Buenos Aires « AUSTRALIA, Adelaide, Brisbane, Canberra, Melbourne, Perth and Sydney « AUSTRIA,
Vienna e BELGIUM, Brussels « BOLIVIA, La Paz e« BRAZIL, Puerto Alegre, Rio de Janeiro and Sao Paulo e CANADA, Calgary,
Halifax, Montreal, Ottawa, Toronto and Vancouver « CHILE, Santiago » DENMARK, Copenhagen « FINLAND, Helsinki « FRANCE,
Grenoble and Paris = GERMANY. Berlin, Cologne, Hannover, Hamburg, Frankfurt, Munich and Stutigart « HONG KONG s INDIA,
Bombay s« INDONESIA, Djakarta « ISRAEL, Tel Aviv « ITALY, Milan and Turin « JAPAN, Osaka and Tokyo « MALAYSIA, Kuala
Lumpur « MEXICO, Mexico City s NETHERLANDS, Utrecht » NEW ZEALAND, Auckland « NORWAY, Oslo ¢ PHILIPPINES,
Manila « PUERTO RICO, Santurce » SINGAPORE « SPAIN, Barcelona and Madrid « SWEDEN, Gothenburg and Stockholm
« SWITZERLAND. Geneva and Zurich s TAIWAN, Taipei and Taoyuan « UNITED KINGDOM, Birmingham, Bristol, Dublin,
Edinburgh, Leeds, London, Manchester and Reading « VENEZUELA, Caracas « YUGOSLAVIA, Ljubljana e

"o

. EK 01028 75 070/

)

0
i'illt."[‘l".\l IN U.8.

	2016_08_25_15_40_42.pdf
	CommMPS_01.pdf
	2016_08_25_15_42_51.pdf

