
DEC OSF/l

mamaomo Kernel Debugging

Part Number: AA-PS2TB-TE

DEC OSF/1

Kernel Debugging

Order Number: AA-PS2TB-TE

February 1994

Product Version: DEC OSF/1 Version 2.0 or higher

This manual explains how to use the tools to debug a kernel and analyze
a crash dump of the DEC OSFIl operating system. Also, this manual
explains how to write extensions to the kernel debugging tools.

digital equipment corporation
Maynard, Massachusetts

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to
restrictions as set forth in subparagraph (c) (1) (ii).

Digital Equipment Corporation makes no representations that the use of its products in the
manner described in this publication will not infringe on existing or future patent rights, nor
do the descriptions contained in this publication imply the granting of licenses to make, use,
or sell equipment or software in accordance with the description.

Possession, use, or copying of the software described in this publication is authorized only
pursuant to a valid written license from Digital or an authorized sub licensor.

© Digital Equipment Corporation 1993, 1994
All rights reserved.

The following are trademarks of Digital Equipment Corporation:

ALL-IN-I, Alpha AXP, AXP, Bookreader, CDA, DDIS, DEC, DEC FUSE, DECnet,
DEC station, DECsystem, DECUS, DECwindows, DTIF, MASSBUS, MicroVAX, Q-bus,
ULTRIX, ULTRIX Mail Connection, ULTRIX Worksystem Software, UNIBUS, VAX,
VAXstation, VMS, XUI, and the DIGITAL logo.

NFS is a registered trademark of Sun Microsystems, Inc. Open Software Foundation, OSF,
OSF/1, OSFlMotif, and Motif are trademarks of the Open Software Foundation, Inc. UNIX is
a registered trademark licensed exclusively by X/Open Company Limited.

All other trademarks and registered trademarks are the property of their respective holders.

Contents

About This Manual

Audience IX

Organization IX

Related Documents

Reader's Comments

ix

X

Conventions xi

1 Kernel Debugging and System Crash Analysis

1.1

1.2

1.3

Overview

Background Knowledge Needed for Kernel Debugging

System Crash and Recovery Process

1.2.1 Saving Dumps to a File System
1.2.2 Crash Dump Files .. .

1-1

1-1

1-1
1-2

1.2.2.1 Partial Crash Dump Files 1-3
1.2.2.2 Full Crash Dumps .. 1-3
1.2.2.3 Selecting a Crash Dump Type 1-3
1.2.2.4 Determining Crash Dump Partition Size 1-4
1.2.2.5 Determining File System Space for Saving Crash

Dumps .. 1-4

1.2.3 The bounds File .. 1-4

Types of System Failures

1.3.1 Hardware Trap

1-5

1-5

1.3.2
1.3.3
1.3.4

Software Panic .. .
Hung System .. .
Resource Exhaustion .. .

1.4 Procedures for Creating Dumps of a Hung System

2 Kernel Debugging Utilities

1-5
1-5
1-5

1-5

2.1 The dbx Debugger ... 2-1

2.1.1 Kernel Debugging Option 2-1
2.1.2 Extracting Information from Kernel Images 2-2

2.1.2.1 Printing the Values of Variables and Data Structures 2-3
2.1.2.2 Displaying a Data Structure Format 2-4

2.1.3 Multithreaded Debugging 2-4
2.1.4 Exception Frame Examination .. 2-5
2.1.5 Character Message Buffer .. 2-5

2.2 The kdbx Debugger ... 2-6

2.2.1 Beginning a kdbx Session .. 2-6
2.2.2 Examining Running Systems and Dump Files 2-7
2.2.3 kdbx Debugger Commands .. 2-7
2.2.4 Predefined Aliases .. 2-9
2.2.5 Extensions ... 2-10

ivContents

arp .. .
array_action .. .
buf .. .
callout
cast
config .. .
convert .. .
dis
export
file
inpcb
list_action .. .
mount .. .
namecache .. .
ofile

2-11
2-12
2-13
2-14
2-14
2-14
2-15
2-15
2-15
2-16
2-16
2-17
2-18
2-19
2-20

paddr
pcb
printf
proc
procaddr
socket .. .
sum
swap .. .
task
thread .. .
u
ucred
unaliasall .. .
vnode

2-20
2-21
2-21
2-22
2-22
2-23
2-23
2-23
2-24
2-24
2-25
2-26
2-27
2-27

2.3 The kdebug Debugger .. 2-29

2.3.1 Requirements 2-29
2.3.2 Setup 2-29
2.3.3 Invoking the kdebug Debugger and Using Its Commands 2-30
2.3.4 Debugging Your Setup .. 2-31

2.4 The crashdc Utility 2-33

3 Crash Analysis Examples

3.1

3.2

3.3

3.4

3.5

3.6

Guidelines for Examining Crash Dump Files

Identifying a Software Panic with the dbx Debugger

Identifying a Hardware Trap with the dbx Debugger

Debugging Kernel Threads with the dbx Debugger

Identifying a Software Panic with the kdbx Debugger

Identifying a Hardware Error with kdbx Debugger

4 Writing Extensions to the kdbx Debugger

4.1

4.2

Considerations and Guidelines

Standard kdbx Library Functions

3-1

3-1

3-2

3-6

3-8

3-12

4-1

4-2

Contents v

4.3

4.4

4.5

4.2.1 Standard kdbx Library Functions

addr_to_proc .. .
array_element
array _element_ val
array _size
cast
check_args
check_fields .. .
context
dbx .. .
deref_pointer
field_errors
format_addr
free_sym .. .
krash
list_nth_cell .. .
new_proc
next_number
next_token
print .. .
print_status
quit
read_field_ vals .. .

read_memory .. .
read_response
read_sym
read_sym_addr .. .
read_sym_ val .. .
struct_addr

4.2.2 Standard kdbx Extension Data Types

Examples of kdbx Extensions

Build and Compile Considerations

Debugging Custom Extensions

vi Contents

4-2

4-2
4-3
4-4
4-5
4-5
4-6
4-6
4-7
4-8
4-8
4-9
4-9

4-10
4-10
4-:11
4-12
4-12
4-13
4-14
4-14
4-15
4-15
4-16
4-16
4-17
4-17
4-18
4-18
4-19
4-20

4-20

4-21

4-29

4-30

5 Using the System Exercisers

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

Running System Exercisers

U sing Exerciser Diagnostics .. .

Exercising a File System

Exercising System Memory

Exercising Shared Memory

Exercising a Disk Drive

Exercising a Tape Drive

Exercising the Terminal Communication System

Index

Examples

4-1: Template Extension Using Lists

4-2: Extension that uses linked lists: callout.c

5-1

5-2

5-2

5-3

5-4

5-6

5-11

5-20

4-22

4-23

4-3: Template Extensions Using Arrays 4-24

4-4: Extension that uses arrays: file.c. ... 4-26

4-5: Extension that uses global symbols: sum.c 4-28

4-6: Sample Makefile .. 4-29

Tables

2-1: dbx Address Modes .. 2-2

2-2: kdbx Aliases .. 2-9

2-3: kdbx Extensions ... 2-10

5-1: tapex Options and Option Parameters 5-12

Contents vii

About This Manual

This manual provides information on the tools used to debug a kernel and
analyze a crash dump of the DEC OSFIl operating system. It also explains
how to write extensions to the kernel debugging tools. You can use
extensions to pull customized information from a kernel or crash dump.

Audience
This manual is intended for system administrators who are responsible for
managing the operating system, and for systems programmers who are
writing applications for the operating system. Administrators and
programmers should have in-depth knowledge of the operating system
concepts, commands, and utilities, especially the dbx debugger.

This manual assumes that the operating system has been installed.

Organization
This manual consists of 5 chapters:

Chapter 1 Provides an overview of kernel debugging and crash dump analysis.

Chapter 2 Describes the tools used to analyze kernels and crash dump files.

Chapter 3 Provides examples with commentary to show how to analyze a
running kernel or crash dump.

Chapter 4 Describes how to write a kdbx debugger extension. This chapter
assumes you have access to source files (for example, have purchased
and installed a DEC OSFIl Source Kit).

Chapter 5 Describes the various exercise utilities for disk, tape, memory, and
communications devices.

Related Documents
The Installation Guide describes how to install your operating system.

The System Administration manual provides information on managing and
monitoring your system.

The Programmer's Guide provides information on the tools, specifically the
dbx debugger, for programming on the DEC OSFIl operating system.

The printed version of the DEC OSFIl documentation set is color coded to
help specific audiences quickly find the books that meet their needs. (You
can order the printed documentation from Digital.) This color coding is
reinforced with the use of an icon on the spines of books. The following list
describes this convention:

Audience Icon Color Code

General Users G Teal

System Administrators S Red

Network Administrators N Yellow

Pro grammers P Blue

Reference Page Users R Black

Some books in the documentation set help meet the needs of several
audiences. For example, the information in some system books is also used
by programmers. Keep this in mind when searching for information on
specific topics.

The Documentation Overview provides information on all of the books in the
DEC OSFIl documentation set.

Reader's Comments
Digital welcomes your comments on this or any other DEC OSFIl manual.
You can send your comments in the following ways:

• Internet electronic mail:
readers comment@ravine.zk3.dec.com

• Fax: 603-881-0120 Attn: USG Documentation, ZK03-3/Y32

• A completed Reader's Comments form (postage paid, if mailed in the
United States). Two Reader's Comments forms are located at the back of
each printed DEC OSFIl manual.

If you have suggestions for improving particular sections or find any errors,
please indicate the title, order number, and section numbers. Digital also
welcomes general comments.

x About This Manual

Conventions
The following conventions are used in this manual:

%
$

% cat

file

[I]
{ I }

cat(l)

Ctrllx

A percent sign represents the C shell system prompt. A dollar sign
represents the system prompt for the Bourne and Korn shells.

A number sign represents the superuser prompt.

Boldface type in interactive examples indicates typed user input.

Italic (slanted) type indicates variable values, placeholders, and
function argument names.

In syntax definitions, brackets indicate items that are optional and
braces indicate items that are required. Vertical bars separating items
inside brackets or braces indicate that you choose one item from
among those listed.

A vertical ellipsis indicates that a portion of an example that would
normally be present is not shown.

A cross-reference to a reference page includes the appropriate section
number in parentheses. For example, eat(l) indicates that you can
find information on the cat command in Section 1 of the reference
pages.

This symbol indicates that you hold down the first named key while
pressing the key or mouse button that follows the slash. In examples,
this key combination is enclosed in a box (for example, ICtrI/CI).

About This Manual xi

Kernel Debugging and System Crash 1
Analysis Overview

This chapter contains an overview of kernel debugging and system crash
analysis. It also includes information pertaining to the DEC OSFIl operating
system.

1.1 Background Knowledge Needed for Kernel
Debugging
Tracing a problem can require a basic understanding of one or more of the
following technical areas: the hardware architecture, the internal design of
the operating system at a source code and data structure level, and the
compilers and programming languages used to create the operating system.

See the Alpha Architecture Handbook for an overview of the ALPHA AXP
hardware architecture and a description of the 64-bit ALPHA RISC
instruction set.

See the Alpha Architecture Reference Manual for information on how the
Open VMS and DEC OSFIl operating systems interface with the hardware.

1.2 System Crash and Recovery Process
If the system panics due to an unrecoverable software state or hardware fault,
a dump function is invoked. The dump function copies the core memory into
the primary default swap disk area as specified by the / etc / f s tab file
structure table and the / sbin/ swapdefaul t file.

You can also invoke the dump function at the console prompt. This ability is
especially valuable because it enables you to force crashes on hung systems.

The following sections describe procedures for obtaining and creating dump
files prior to any debugging or analysis of these files.

1.2.1 Saving Dumps to a File System
When the system reboots, it attempts to save a crash dump from the crash
dump partition to a file system. The savecore utility
(/ sbin/ savecore), which is invoked during system startup before the
dump partition is accessed, checks to see if the system crashed or was simply
rebooted. If the system crashed recently, the savecore utility performs the

following tasks as the system reboots:

• Checks to see if a dump has been made recently (within the last three
days) and that there is enough space to save it.

• Saves the dump file and kernel image into a specified directory. The
default files for the kernel image and the dump file are vmunix • nand
vmcore. n, respectively.

• Logs a reboot message using the facility LOG CRIT, which logs critical
conditions. For more information, refer to the-syslog(3) reference page.

• Logs the panic string in both the ASCII and binary error log files, if the
system crashed as a result of a panic.

• Attempts to save the kernel syslog message buffer from the dump files.
The msgbuf. err entry in I etcl syslog. conf file specifies the file
name and location for the msgbuf dump file. The default
I etc I sys log. conf file specification is as follows:
msgbuf.err /var/adm/crash/msgbuf.savecore

If the msgbuf .err entry is not specified in the letc/syslog .conf
file, the msgbuf dump file is not saved. The msgbuf dump file cannot
be forwarded to any system.

When the syslogd daemon is later initialized, it checks for the
msgbuf dump file. If a msgbuf dump file is found, syslogd
processes the file and then deletes it.

• Creates the file binlogdumpfile.n in the Ivar/adm/crash
directory. The variable n is determined by the value of the bounds file.

You can modify the system default for the location of dump files by using
the rcmgr command to specify another directory path for the
I sbinl savecore utility:
/usr/sbin/rcmgr set SAVECORE_DIR </newpath>

The I sbinl ini t • dl savecore script invokes the I sbinl savecore
utility.

1.2.2 Crash Dump Files
Crash dump files are either partial (the default) or full. The following
sections describe each type and present guidelines for allocating the proper
amount of space in the crash dump partition and file system.

1-2 Kernel Debugging and System Crash Analysis Overview

1.2.2.1 Partial Crash Dump Files

Unlike full crash dumps, the size of a partial crash dump file is proportional
to the amount of system activity at the time of the crash. That is, the higher
the level of system activity and the larger amount of memory in use at the
time of a crash, the larger the partial crash dump files will be. For example,
when a system with 96 megabytes of memory crashes, it creates a
vmcore . n file with 10-to-96 megabytes of memory (depending upon
system activity) and a vmunix. n file with approximately six megabytes of
memory.

Note

If you compress a core dump file from a partial crash dump, you
must use care in decompressing it. Using the uncompress
command with no options results in a core file equal to the size
of memory. To ensure that the decompressed core file remains at
its partial dump size, you need to use the uncompress
command with the -c option and the dd command with the
conv=sparse option. For example, to decompress a core file
named vmunix. 0 • z, issue the following command:
uncompress -c vmcore.O.Z I dd of=vmcore.O conv=sparse
262144+0 records in
262144+0 records out

1.2.2.2 Full Crash Dumps

Full crash dump files can be very large because vmunix . n is a copy of the
running kernel and the size of vmcore . n is slightly larger than the amount
of physical memory on the system that crashed. For example, when a system
with 96 megabytes of memory crashes, it creates a vmcore . n file with
approximately 96 megabytes of memory and a vmunix. n file with
approximately six megabytes of memory.

1.2.2.3 Selecting a Crash Dump Type

The default is to use partial crash dumps. If you want to use full dumps, you
can modify the default behavior in the following ways:

• By specifying the d flag to the boot osflags console environment
variable. -

• By modifying the kernel's partial_dump variable to 0 using the dbx

Kernel Debugging and System Crash Analysis Overview 1-3

debugger (discussed in Chapter 2) as follows:

(dbx) a partial_dump = 0

Note that a partial dump value of 1 indicates that partial dumps are
to be generated. -

1.2.2.4 Determining Crash Dump Partition Size

If you intend to save full crash dumps, you need to reserve disk space equal
to the size of memory, plus one additional block for the dump header. For
example, if your system has 128 megabytes of memory, you need a crash
dump partition of at least 128 megabytes, plus one block (512 bytes).

If you intend to save partial crash dumps, the size of the disk partition may
vary, depending upon system activity. For example, for a system with 128
megabytes of memory, if peak system activity is low (never using more than
60 megabytes of memory), the size of the crash dump partition can be 60
megabytes. If peak system activity is high (using all of memory), 128
megabytes of disk space is needed.

If full dumps are turned on and there is not enough disk space to create dump
files for a full dump, partial dumps are automatically invoked.

1.2.2.5 Determining File System Space for Saving Crash Dumps

The size of the file system needed for saving crash dumps depends on the
size and the number of crash dumps you want to retain. A general guideline
is to reserve, at a minimum, the size of your crash dump partition, plus 10
megabytes. If necessary, you can increase this amount later.

If your system cannot save a crash dump due to insufficient disk space, it
returns to single user mode. This is done to prevent system swapping from
corrupting the dump. Space can then be made available in the crash dump
directory, or the directory changed as described in Section 1.2.1, before
continuing to multiuser mode. This option can also be overidden using the
following command:
/usr/sbin/rcmgr set SAVE CORE_FLAGS M

This command causes the system to always boot to multiuser mode even if it
cannot save a dump.

1.2.3 The bounds File
The bounds file is created in the crash dump directory after the first crash
and contains the integer value used for the version number (n) for the
vmunix . nand vmcore . n files. The integer value is incremented for the
first crash and every crash thereafter.

1-4 Kernel Debugging and System Crash Analysis Overview

1.3 Types of System Failures
The operating system can crash in at least four distinct ways:

• Hardware trap

• Software panic

• Hung system

• Resource exhaustion

Sometimes these crashes are intermittent, and sometimes they are fairly easy
to reproduce. The following sections describe each type of failure.

1.3.1 Hardware Trap
A hardware problem often results in the kernel trap () function being
invoked. In this case, certain variables, such as savedefp, are set for later
use when diagnosing dump files. If an exception occurs, the trap routine
variables, such as the program counter (pc) and the stack pointer (sp), are
readily obtainable for later debugging references.

1.3.2 Software Panic
A software panic, resulting from a software failure, calls the kernel
panic () function. The function that called the panic routine usually can be
identified by looking at the crash dump using the dbx debugger or by
examining the error logging file with the uerf utility. After identifying the
function, you need to examine the source code to determine why it failed.

1.3.3 Hung System
When a system hangs, it is often necessary to force the system to create
dumps that you can analyze to determine why the system hung. Section 1.4
describes the procedure for forcing a crash dump of a hung system.

1.3.4 Resource Exhaustion
In some instances, the system tries to utilize more resources (for example,
swap space or memory) than the system has available. In some instances, the
only way to fix this type of problem is to add more resources, such as swap
space or memory.

1.4 Procedures for Creating Dumps of a Hung System
If necessary, you can force the system to create dump files when the system
hangs. The method for forcing crash dumps varies between the various
hardware platforms:

Kernel Debugging and System Crash Analysis Overview 1-5

• DEC 3000-series systems

1. Press the reset button.

2. At the console prompt, issue the c command as follows:
»> c

• DEC 4000 systems

1. Press the Halt button.

2. At the console prompt, issue the crash command as follows:
»> crash

• DEC 7000 systems

1. Ensure that the front panel switch is set to Enable.

2. Type Ctrl/P at the console.

3. At the console prompt, issue the crash command as follows:
»> crash

If none of the above methods work, you can force the crash dump using the
following method:

1. Find the address of start (the function that initializes the system at
boot time) by using the nm and grep utilities as follows:
nm Ivmunix I grep fAstart f

start Ifffffc00002540041proc Iref=5 1889861Text

2. When the system hangs, press the reset button.

3. Set the radix to hexadecimal as follows:
»>set radix 16

4. Force the system to dump a copy of core memory by loading the address
of start (plus 4) at the console prompt. For example, if the the address
of start is fffffc0000254004, do the following for DEC 3000-
series systems:
»> start fffffc0000254008

For DEC 4000 and DEC 7000 systems, do the following:
»> deposit pc fffffc0000254008
»> continue

Do not precede the address with "Ox" when typing the start address.

1-6 Kernel Debugging and System Crash Analysis Overview

Kernel Debugging Utilities 2

This chapter discusses the various debuggers available to debug kernels and
analyze crash dumps:

• dbx (Section 2.1)

• kdbx (Section 2.2)

• kdebug (Section 2.3)

It also describes the crashdc utility (Section 2.4), which automatically
collects system information from crash dumps.

2.1 The dbx Debugger
The dbx debugger is a symbolic debugger that is capable of examining,
modifying, and displaying the variables and data structures found in the
nonstripped kernel images.

By default, the kernel is compiled with a debugging option that does not strip
all of the symbol table information for the executable kernel image. The
kernel is also partially optimized during the compilation process by default.
If the kernel or any other file is fully optimized and stripped of all symbol
table information during compilation, your ability to debug the file is greatly
reduced.

The default C compiler for the DEC OSFIl operating system produces an
output file in common output file format (COFF). The dbx debugger is able
to use COFF files that are nonstripped and either nonoptimized or partially
optimized. Output file formats produced by other C compilers, such as ROSE
or ELF, can neither be interpreted by this version of dbx nor supported by
the DEC OSFIl operating system.

The following sections describe the dbx debugger as it pertains to kernel
debugging. For more information on dbx, see the Programmer's Guide.

2.1.1 Kernel Debugging Option
The dbx option -k operates on two separate files that reflect the current state
of the kernel that you want to examine. These files are as follows:

• The disk version of the executable kernel image

• The system core memory image

These files may be files from a running system, such as / vmunix and
/dev/mem, or dump files, such as vmunix.n and vmcore.n, which
usually reside in the /var / adm/ crash directory.

Note

You may need to be logged in as root to examine either the
running system or crash dumps produced by savecore. This
depends on the directory and file protections for the files you are
attempting to examine with the dbx debugger.

Use the following command to examine the running system with dbx:

dbx -k /vmunix /dev/mem

Use the following command to examine dump files with bounds equal to
one:

dbx -k vmunix.l vmcore.l

2.1.2 Extracting Information from Kernel Images
You can extract information from kernel images with dbx. To examine
memory contents with dbx, use the following syntax:

addressl count[mode]

The count argument specifies the number of items that the debugger
displays at the specified address, and the mode argument determines how
dbx displays memory. If you omit the mode argument, the debugger uses
the previous mode. The initial default mode is X (hexadecimal). Table 2-1
lists the dbx address modes.

Table 2-1: dbx Address Modes

Mode Description

b Displays a byte in octal.
c Displays a byte as a character.
d Displays a short word in decimal.
D Displays a long word in decimal.
f Displays a single precision real number.
g Displays a double precision real number.
i Displays machine instructions.
n Displays data in typed format.
a Displays a short word in octal.
o Displays a long word in octal.

2-2 Kernel Debugging Utilities

Table 2-1: (continued)

Mode Description

s Displays a string of characters that ends in a null.
x Displays a short word in hexadecimal.
X Displays a long word in hexadecimal.

The following examples show how to use dbx to examine kernel images:

(dbx) realstart/X
fffffc00002a4008: c020000243c4I53e
(dbx) _realstart/i
[realstart:153, Oxfffffc00002a4008]
(dbx) realstart/lOi

[_realstart:153, Oxfffffc00002a4008]
[realstart:154, Oxfffffc00002a400c]
[-realstart:156, Oxfffffc00002a4010]
[-realstart:157, Oxfffffc00002a40I4]
[-realstart:171, Oxfffffc00002a40I8]
[=realstart:172, Oxfffffc00002a40Ic]
[_realstart:177, Oxfffffc00002a4020]
[realstart:178, Oxfffffc00002a4024]
[=realstart:179, Oxfffffc00002a4028]
[realstart:181, Oxfffffc00002a402c]

(dbx) cpup.system string/s
fffffc00004660d8:- u DEC3000 - M500"

subq sp, Ox20, sp

subq sp, Ox20, sp
br rl, Oxfffffc00002a40I8
call_pal Ox4994eO
bgt r31, Oxfffffc00002a30I8
Idq gp, O(rl)
stq r31, 24(sp)
bis r16, r31, r9
bis r17, r31, rIO
bis r18, r31, rll
bis r19, r31, rI2

2.1.2.1 Printing the Values of Variables and Data Structures

You can use the print command to examine values of variables and data
structures. The print command has the following syntax:

print expression

p expression

For example:
(dbx) print utsname
struct {

}

sysname = "OSFl"
nodename = "decosf.dec.com"
release "1.4"
version
machine

"1.2"
"alpha"

Kernel Debugging Utilities 2-3

Note that dbx has a default alias of p for print.

(dbx) p utsname

2.1.2.2 Displaying a Data Structure Format

You can use the whatis command to display the format for many of the
kernel data structures. The whatis command has the following syntax:

whatis type name

The following example displays the i timerval data structure.

(dbx) whatis struct itimerval
struct itimerval {

} ;

struct timeval {
int tv_sec;
int tv usec;

} it interval;
struct timeval {

int tv_sec;
int tv usec;

} it_value;

2.1.3 Multithreaded Debugging
The dbx debugger can be used to examine the state of the kernel's threads
using the querying and scoping commands described in this section. The
commands are used to show process and thread lists and to change dbx' s
context (by setting its current process and thread variables) so that a stack
trace for a particular thread can be displayed. The following commands can
be used for these purposes:

p $tid
Show the thread ID of the current thread.

p $pid
Show the process ID of the current process.

t
Show a stack trace for the current thread.

tlist
Show a list of kernel threads for the current process.

kps
Show a list of processes (not available when used with kdebug).

set $pid=process id
Change the contextio another process (a process ID of 0 changes
context to the kernel).

2-4 Kernel Debugging Utilities

tset thread id
Change the context to another thread.

2.1.4 Exception Frame Examination
The dbx debugger can be used to examine the exception frame as an aid in
debugging crash dumps. The variable savedefp contains the location of
the exception frame. (Note that exception frames are not created when
systems are forced to dump, as described in Section 1.4.) Refer to the header
file /usr / include/machine/ reg. h to determine where registers are
stored in the exception frame. The following example shows an exception
frame:

(dbx) p savedefp/33x
ffffffff9618d940: 0000000000000000 fffffc000046f888
ffffffff9618d950: ffffffff8632gedO 0000000079cd612f

ffffffff9618da30:
ffffffff9618da40:

0000000000901402 0000000000001001
0000000000002000

2.1.5 Character Message Buffer
The preserved message buffer can be extracted from the running system and
dump files to display system messages logged by the kernel. For example:
(dbx) p *pmsgbuf
struet {

msg magic = 405601
msg-bufx = 1181
msg::)ufr = 1181
msg bufe = "Alpha boot: memory from Ox68aOOO to Ox6000000

DEC OSF71 T1.2-2 (Rev. 5); Thu Dec 03 11:20:36 EST 1992
physical memory = 94.00 megabytes.
available memory = 83.63 megabytes.
using 360 buffers containing 2.81 megabytes of memory
teO at nexus
seeO at teO slot 7
aseO at teO slot 6
rz1 at aseO bus 0 target 1 lun 0 (DEC
rz2 at aseO bus 0 target 2 lun 0 (DEC
rz3 at aseO bus 0 target 3 lun 0 (DEC
rz4 at aseO bus 0 target 4 lun 0 (DEC
tz5 at aseO bus 0 target 5 lun 0 (DEC
ascI at teO slot 6
fbO at teO slot 8

1280X1024
InO: DEC LANCE Module Name: PMAD-BA
InO at teO slot 7

RZ25
RZ25
RZ26
RRD42
TLZ06

(C) DEC
(C) DEC
(C) DEC

(C) DEC
(C)DEC

0700)
0700)
T384)
4.5d)
0374)

InO: DEC LANCE Ethernet Interface, hardware address: 08:00:2b:2e:f6:9f
DEC3000 - M500 system
Firmware revision: 1.1
PALeode: OSF version 1.14

Kernel Debugging Utilities 2-5

lvrnO: configured.
lvrnl: configured.
setconf: bootdevice_parser translated 'SCSI 0 6 0 0 300 0 FLAMG-IO' to 'rz3'

}

(dbx)

2.2 The kdbx Debugger
The kdbx debugger is an interactive program that enables you to examine
either the running kernel or dump files created by the savecore utility. In
either case, you will be examining an object file and a core file. For running
systems, these are usually /vmunix and / dev /mem, respectively. Dump
files created by savecore are saved in the directory specified by the
/ sbin/ ini t. d/ savecore script. By default, the savecore script
directs dump files to be saved in the /var / adm/ crash directory.

The kdbx debugger is a crash analysis and kernel debugging tool; it serves
as a front-end to the dbx debugger. The kdbx debugger is extensible,
customizable, and insensitive to changes to offsets and sizes of fields in
structures. The only dependencies on kernel header files are for bit definitions
in flag fields.

The kdbx debugger has facilities for interpreting various symbols and data
structures. It can format and display these symbols and data structures in the
following ways:

5 In a predefined form as specified in the source code modules that
currently accompany the kdbx debugger

5 As defined in user-written source code modules according to a
standardized format for the contents of the kdbx modules

All dbx commands (except signals such as Ctrl/P) are available through
kdbx using the dbx option to kdbx.

2.2.1 Beginning a kdbx Session
If you do not specify a core file, kdbx uses the dbx default of / dev / memo
Therefore, you can use kdbx with /vmunix as its only argument to
examine a running system. In general, kdbx assumes hexadecimal addresses
for commands that perform 1/0.

\"hen you begin a debugging session, kdbx reads and executes the
commands in the system initialization file /var /kdbx/ system. kdbxrc.
The initialization file contains setup commands and alias definitions that are
automatically executed when you begin a kdbx session. (The aliases defined
in the system.kdbxrc file are listed in Section 2.2.4.) You can further
customize the kdbx environment by adding commands and aliases to one of
the following initialization files:

2-6 Kernel Debugging Utilities

• Ivar/kdbx/site.kdbxrc

Contains customized commands and alias definitions for a particular
system.

• -I.kdbxrc

Contains customized commands and alias definitions for a specific user.

• .I.kdbxrc

Contains customized commands and alias definitions for a specific
project. This file must reside in the current working directory when
kdbx is invoked.

2.2.2 Examining Running Systems and Dump Files
To examine a running system, issue the kdbx command with the following
parameters:

kdbx -k Ivmunix Idev/mem
dbx version 3.12.1
Type 'help' for help.

stopped at [thread_block:1403 ,Oxfffffc000032e3cO]
(kdbx)

Source not available

To examine an object file and core file created by the savecore utility,
issue a kdbx command similar to the following:

kdbx -k lusr/adm/crash/vmunix.l lusr/adm/crash/vmcore.l
dbx version 3.12.1
Type 'help' for help.

stopped at [thread_block:1403 ,Oxfffffc000032e3cO]
(kdbx)

Source not available

The version number (vmunix.n and vmcore .n) is determined by the
value contained in the file bounds, which is located in either the default
crash directory (/var I adml crash) or an alternate directory specified by
the I sbinl ini t. dl savecore script.

2.2.3 kdbx Debugger Commands
The kdbx debugger provides the following commands:

alias [name] [command-string]
Sets or prints aliases. If no arguments are specified, alias prints all
aliases. If the variable name is specified, alias prints the alias for
name, if one exists. If name and command-string are specified,
alias establishes name as an alias for command-string.

context proc luser
Sets context to the user's aliases or the extension's aliases. Used only
by the extensions.

Kernel Debugging Utilities 2-7

coredata start address end address
Dumps, in hexadecimal, the contents of the core file starting at
start_address and ending before end_address.

dbx command-string
Passes the variable command-string to dbx. Specifying dbx is
optional; if the command is not recognized by kdbx, it is passed to
dbx automatically. See the dbx(1) reference page for a complete
description of dbx commands.

help [-long] [args]
Prints help text.

proc [options] [extension] [arguments]
Executes an extension and gives it control of the kdbx session until it
quits. The variable extension specifies the named extension file and
passes arguments to it as specified by the variable arguments. Valid
options are as follows:

-debug
Causes I/O to and from the extension to be printed on the screen.

-pipe in pipe out pipe
U sed in conjunctiollwith the dbx debugger for debugging
extensions. See Chapter 4 for information on using the -pipe
option.

-print output
Causes the output of the extension to to be sent to the invoker of
the extension without interpretation as kdbx commands.

-redirect output
U sed by extensions that execute other extensions to receive the
output from the called extensions. Otherwise, the user receives the
output.

-tty
Causes kdbx to communicate with the subprocess through a tty
line instead of pipes. If the -pipe option is present, proc
ignores it.

print string
Prints string on the terminal. If this command is used by an
extension, the terminal receives no output.

quit
Exits the kdbx debugger.

source [-x] [filers)]
Reads and interprets files as kdbx commands in the context of the
current aliases. If the -x option is present, commands are printed out as

2-8 Kernel Debugging Utilities

they are executed.

unalias name
Removes the alias, if any, from name.

2.2.4 Predefined Aliases
The kdbx debugger contains many predefined aliases, which are defined in
the kdbx startup file (/var/kdbx/system.kdbxrc). Table 2-2 lists
some of the more commonly used aliases and their definitions.

Table 2-2: kdbx Aliases

Alias

arp
array_action
buf
buf action
callout action

cast
eonfig
convert
dis
echo
export
fields
file
h
inpeb action
list action
mount action

mount
nameeache
ofile
paddr
pcb
pr
printf
proc
procaddr
procp
proepd

Definition

"proe" arp
"proe" array_action
"proe" buf
list action "struct buf *" b forw buf buf
list-action "struct callout *" c next 0

callout
"proe" cast
"proe" eonfig
"proe" convert
"proe" dis
"proe" echo
"proe" export
"proe" fields
"proe" file
help
list action "struet inpcb *" inp_next
"proe" list action
list action-"struct mount *" m next

rootfs rootfs
"proe" mount
"proe" namecache
"proe" ofile
"proe" paddr
"proe" pcb
"proe"
"proe" printf
"proe" proc
"proe" procaddr
"proe" -pipe /tmp/pipein /tmp/pipeout
"proe" -debug -pipe /tmp/pipein
/tmp/pipeout

Kernel Debugging Utilities 2-9

Table 2-2: (continued)

Alias Definition

proe_aetion list action "struet proe *" p_nxt 0
allproe

ps "dbx" kps
sh "proe" -print_output -tty
socket "proe" socket
sum
swap
task
thread
u
uered
unaliasall
vnode

2.2.5 Extensions

"proe"
"proe"
"proe"
"proe"
"proe"
"proe"
"proe"
"proe"

sum
swap
task
thread
u
uered
unaliasall
vnode

Table 2-3 lists the default extensions for the kdbx debugger that reside in
the directory /var /kdbx.

Table 2-3: kdbx Extensions

Extension

arp
array_action
buf
callout
cast
eonfig
convert
dis
export
file
inpeb

list action
mount
nameeaehe
ofile
paddr
pcb
printf
proe

Action

Prints contents of the address resolution protocol (arp) table
Performs some action on each element of an array
Prints the buffer table
Prints the callout table
Tells dbx to print a piece of memory as a given type
Displays the configuration of the machine
Converts a number from one base to another
Disassembles instructions
Displays the exported file systems
Displays the file table
Displays the user datagram protocol (udb) and the transmission
control protocol (tcp) tables
Performs some action on each element of a list.
Prints the mount table.
Prints all namecaches.
Prints the open files of processes.
Converts a range of memory to symbolic references.
Displays the pcb of a process.
Uses the dbx printf capability.
Prints the process table.

2-10 Kernel Debugging Utilities

arp

Table 2-3:

Extension

procaddr
socket
sum
swap
task
thread
u

(continued)

Action

Converts an address to a procedure name.
Displays the sockets in the file table.
Displays a summary of the system.
Displays a summary of swap space.
Displays all task structures on the system.
Displays all thread structures on the system.
Displays a u structure.

ucred
unaliasall
vnode

Displays or checks references to ucred structures.
Removes all aliases.
Displays the vnode table.

For extensions that display addresses as part of their output, some use a
shorthand notation for the upper 32-bits of an address to keep the output
readable. The following table lists the notation for each address type.

Notation Address Type Replaces Example

v virtual ffffffff vOx902416fO
k kseg fffffcOO kOx00487c48
u user space 00000000 uOx86406200
? Unrecognized or ?Ox3782cc33

random type

The following list describes each of the kdbx extensions.

arp [-]

The arp extension prints the contents of the address resolution protocol (arp)
table. If the optional hyphen (-) is present, arp prints out the entire arp
table; otherwise, it prints out those entries that have nonzero at
iaddr. s _ addr and at _flags fields.

Example:
(kdbx) arp

NAME BUCK SLOT IPADDR ETHERADDR MHOLD TIMER FLAGS

ruddy.zk3.dec.com 11
rl-blue.zk3.dec.com IS
ditch.zk3.dec.com 31

o 16.140.12S.4 170.0.4.0.91.S o 450 3
o 16.140.12S.1 O.O.c.l.S.eS o 194 3
o 16.140.12S.6 S.0.2b.24.23.64 o 539 103

Kernel Debugging Utilities 2-11

array_action

array_action II typell/ength start_address [options] command

The array action extension performs a command action on each element
of an array. -This extension allows you to step through any array in the
operating system kernel and print out specific components or values as
described in the list of command options. The arguments to the
array_action extension are as follows:

"type"
The type of address of an element in the specified array.

length
The number of elements in the specified array.

start address
The address of an array. The address can be specified as either a variable
name or a number. The more common syntax or notation used to refer
to the start _address is usually of the form &arrayname [0].

options
If the -head option is specified, the next argument is printed as the
table header.

If the -size option is specified, the next argument is used as the array
element size. Otherwise, the size is calculated from the element type.

If the -cond option is specified, the next argument is used as a filter. It
is evaluated by dbx for each array element, and if it evaluates to TRUE,
the action is taken on the element. The same substitutions that are
applied to the command are applied to the condition.

command
The kdbx or dbx command to perform on each element of the
specified array.

Note

The kdbx debugger includes several aliases, such as
file action, that may be easier to use than using the
array_action extension directly.

Substitutions similar to printf can be performed on the command for each
array element. The possible substitutions are as follows:

% a Address of element
% c Cast of address to pointer to array element
% i Index of element within the array
% s Size of element

2-12 Kernel Debugging Utilities

but

% t Type of pointer to element

Example:
(kdbx) array action "struct kernargs *" 11 &kernargs[O] p %c.name
OxfffffcOOooi737f8 "askrne"
Oxfffffc0000473800 "bufpages"
Oxfffffc0000473810 "nbuf"
Oxfffffc0000473818 "rnernlirnit"
Oxfffffc0000473828 "prnap_debug"
Oxfffffc0000473838 "syscalltrace"
Oxfffffc0000473848 "boothowto"
Oxfffffc0000473858 "do virtual tables" - -
Oxfffffc0000473870 "netblk"
Oxfffffc0000473878
Oxfffffc0000473888
(kdbx)

"zalloc physical"
"trap_debug"

buf [addresses I -free I -all]

The bu f extension prints out the buffer table. If no arguments are specified,
the buffers on the hash list are displayed.

If addresses are specified, the buffers at those addresses are displayed. If the
-f ree option is specified, the buffers on the free list are displayed. If the
-all option is specified, buffers on the hash list are displayed first, followed
by buffers on the free list.

Example:
(kdbx) buf
BUF MAJ MIN BLOCK COUNT SIZE RESID VNO FWD \

BACK FLAGS
=========== === ===== ===== =========== ===========\

=========== ===========
Bufs on hash lists:
vOx904elb30 8 2 54016 8192 8192 0 vOx902220dO vOx904f23a8\

vOx904e1d20 write cache
vOx904e2lf8 8 1025 131722 1024 8192 o vOx90279800 vOx904e3748\

vOx904e22fO write cache
vOx904e46c8 8 1025 107952 2048 8192 0 vOx90220fa8 vOx904e22fO\

vOx904e23e8 read cache
vOx904egefO 8 2050 199216 8192 8192 0 vOx90221560 vOx904f2b68\

vOx904e66cO read cache
vOx904df758 8 1025 107968 8192 8192 0 vOx90220fa8 vOx904eac80\

vOx904df378 write cache
vOx904eb538 8 2050 223840 8192 8192 0 vOx90221560 vOx904ec990\

vOx904eb440 read
vOx904e5930 8 2050 379600 8192 8192 0 vOx90221560 vOx904f3fcO\

vOx904ec5bO read cache
vOx904eae70 8 2050 625392 2048 8192 0 vOx90221560 vOx904df378\

vOx904e08c8 write cache
vOx904f3ec8 8 1025 18048 8192 8192 0 vOx90220fa8 vOx904dff18\

vOx904e1560 write cache

Kernel Debugging Utilities 2-13

callout

cast

config

(kdbx)

callout

The callout extension prints the callout table.

Example:

(kdbx) callout
FUNCTION
ss process timeouts
thread timeout
realitexpire
realitexpire
realitexpire
realitexpire
ubc_dirty_memory

cast address type

ARGUMENT
Oxffffffff90864000
Oxffffffff865b6c28
Oxffffffff903e21d8
Oxffffffff903e2328
Oxffffffff903e2b08
Oxffffffff903e3828
OxOOOOOOOOOOOOOOOO

TIME
o

570
807
344
516
889
320

The cast extension forces dbx to print a piece of memory as a given type.
This is equivalent to the following command:

dbx print *((type) address)

Example:

(kdbx) cast Oxffffffff903e3828 char
, "@'

config

The conf ig extension prints out the configuration of the machine.

2-14 Kernel Debugging Utilities

Example:
(kdbx) config
Bus #0 (Oxfffffc000048c6aO): Name - "tc" Connected to - "nexus"

Config 1 - tcconfll Config 2 - tcconf12
Controller "scc" (Oxfffffc000048c970)

(kdbx)

convert

dis

export

convert [-in 8 110 116] [-out 2 1 8 110 116] [args]

The convert extension converts numbers from one base to another. The
-in and -out options specify the input and output bases, respectively. If
-in is not present, the input base is inferred from the arguments. The
arguments can be either numbers or variables.

Example:
(kdbx) convert -in 16 -out 10 864c2a14
2253138452
(kdbx)

dis start-address [num-instructions]

The di s extension disassembles some number of instructions as specified in
num-instructions, starting at start-address. If the number of
instructions is not given, 1 is assumed.

Example:
(kdbx) dis Oxffffffff864c2a08 5

[0' Oxffffffff864c2a08]
[0' Oxffffffff864c2aOc]
[0' Oxffffffff864c2alO]
[0' Oxffffffff864c2a14]
[0' Oxffffffff864c2a18]

(kdbx)

export

call_pal Ox20001
call pal Ox800000
ldg - $f18, -13304(r3)
bgt r31, Oxffffffff864c2a14
call_pal Ox4573dO

The export extension prints out the exported entries that are mounted
remotely.

Example:

Kernel Debugging Utilities 2-15

(kdbx) export
ADDR EXPORT MAJ MIN INUM
================== ===
Oxffffffff863bfe40 8 4098 2
Oxffffffff863bfdcO 8 2050 67619
Oxffffffff863bfeOO 8 2050 15263
Oxffffffff863bfe80 8 1024 6528

file

file [address]

GEN MAP FLAGS PATH
========== =================
l308854383 -2 0 /cdrom

736519799 -2 0 /usr/users/satish
731712009 -2 0 /usr/staff/jjchen
731270099 -2 0 /mnt

The file extension prints out the file table. If no arguments are present, all

inpcb

file entries with nonzero reference counts are printed. Otherwise, the file
entries located at the specified addresses are printed.

Example:
(kdbx) file
Addr Type Ref Msg Fileops f data ered Offset Flags
=========== ======= =========== ===========
vOx90406000 file 4 0 vnops vOx90259550 vOx863d5540 68 r w
vOx90406058 file 1 0 vnops vOx9025b5b8 vOx863d5eOO 4096 r
vOx904060bO file 1 0 vnops vOx90233908 vOx863d5d60 o r
vOx90406108 'file 2 0 vnops vOx90233908 vOx863d5d60 602 w
vOx90406160 file 2 0 vnops vOx90228d78 vOx863d5b80 904 r
vOx904061b8 sock 2 0 sockops vOx863b5c08 vOx863d5c20 0 r w
vOx90406210 file 1 0 vnops vOx9023ge10 vOx863d5c20 2038 r
vOx90406268 file 1 0 vnops vOx90245140 vOx863d5c20 301 w a
vOx904062cO file 3 0 vnops vOx90227880 vOx863d5900 23 r w
vOx90406318 file 2 0 vnops vOx90228b90 vOx863d5c20 856 r
vOx90406370 sock 2 0 sockops vOx863b5a08 vOx863d5c20 0 r w

inpcb [-Udp] [-tcP] [address]

The inpcb extension prints the udb and tcb tables. If no arguments are
specified, both tables are printed. If either -udp or -tcp are present, the
corresponding table is printed.

If addresses are present, then -udp and -tcp are ignored and the entries
located at the specified addresses are printed.

2-16 Kernel Debugging Utilities

Example:
(kdbx) inpcb -tcp
TCP:

Foreign Host FPort Local Host LPort Socket PCB Options
0.0.0.0 0 0.0.0.0 47621 uOxOOOOOOOO uOxOOOOOOOO
osfdec.dec.com 6000 decosf.dec.com 1451 vOxB643f40B vOxB63da40B
osfdec.dec.com 99B decosf.dec.com 1020 vOxB643fcOB vOxB63da20B
osfdec.dec.com 999 decosf.dec.com 514 vOxB643acOB vOxB643dOOB
osfdec.dec.com 6000 decosf.dec.com 1450 vOxB63fbaOB vOxB63dadOB
osfdec.dec.com 100B decosf.dec.com 1021 vOxB6431eOB vOxB641470B
osfdec.dec.com 1009 decosf.dec.com 514 vOxB6412BOB vOxB643ceOB
osfdec.dec.com 6000 decosf.dec.com 1449 vOxB643660B vOxB6415eOB
osfdec.dec.com 6000 decosf.dec.com 144B vOxB6431B08 vOxB63daa08

0.0.0.0 o 0.0.0.0 B06 vOxB63e3eOB vOxB63dbeOB
0.0.0.0 o 0.0.0.0 793 vOxB63d1BOB vOxB635a70B
0.0.0.0 0 0.0.0.0 0 vOxB6394408 vOxB635bOOB
0.0.0.0 0 0.0.0.0 1024 vOxB639420B vOxB635b10B
0.0.0.0 o 0.0.0.0 111 vOxB63d1eOB vOxB635b20B

list action -

list_action II typell next-field end-addr start-addr [options] command

The list action extension performs some command on each element of
a linked list This extension provides the capability to step through any
linked list in the operating system kernel and print particular components.
The argument to the list_action extension are as follows:

"type"
The type of an element in the specified list.

next-field
The name of the field that points to the next element.

end-addr
The value of the next field that terminates the list. If the list is NULL­
terminated, the value of end-addr is O. If the list is circular, the value
of end-addr is equal to start -addr.

start addr
The address of the list. This can be either a variable name or a number.

options
If the -head header option is specified, the header argument is
printed as the table header.

If the -cond arg option is specified, the arg argument is used as a
filter. It is evaluated by dbx for each array element, and if it evaluates
to true, the action is taken on the element. The same substitutions that
are applied to the command are applied to the condition.

Kernel Debugging Utilities 2-17

mount

command
The kdbx or dbx command to perform on each element of the list.

Note

The kdbx debugger includes several aliases, such as
proc action, that may be easier than using the
list == action extension directly.

Substitutions similar to printf substitutions are performed on the
command for each element. The possible substitutions are as follows:

% a Address of element
%c Cast of address to pointer to list element
% i Index of element within the list
%n Name of next field
% t Type of pointer to element

Example:
(kdbx) list action "struct proc *" p nxt 0 allproc p
%c.task.u address.uu comm %c.p~id-
"list actIon" 1382 -
"dbx" 1380
"kdbx" 1379
"dbx" 1301
"kdbx" 1300
"sh" 1296
"ksh" 1294
"csh" 1288
"rlogind" 1287

mount [-s] [address]

The mount extension prints the mount table. The -s option outputs a short
form of the table. If addresses are present, the mount entries named by the
addresses are printed.

2-18 Kernel Debugging Utilities

Example:
(kdbx) mount
MOUNT MAJ MIN VNODE ROOTVP TYPE PATH \

FLAGS
vOx863abab8 8 1024 uOxOOOOOOOO vOx90342ba8 ufs \

loc
vOx863aaOOO vOx903033aO vOx903188d8 nfs /share/firstout/bui\
Id/agosminor.dsk4
vOx863aa1c8 vOx90277798 vOx90315748 nfs /share/bigbld/build\
/agos.dsk1
vOx863aa390 vOx902771eO vOx902773c8 nfs /share/buffer/build\
/submits.dsk2
vOx863aa558 vOx90276e10 vOx90330faO nfs /share/bigbld/build\
/alpha.dsk5
vOx863aa720 vOx90276858 vOx903lff08 nfs /share/lastin/build\
/goldos.dsk6
vOx863aa8e8 vOx902762aO vOx9033e8fO nfs /share/bigbld/build\
/agos.dsk2
vOx863aaabO vOx90275bOO vOx903412eO nfs /share/buffer/build\
/submits.dsk1
vOx863aac78 vOx90273e68 vOx903385dO nfs /share/lastin/build\
/agosminor.dsk6
vOx863aae40 vOx9026ge48 vOx9026cc08 nfs /usr/comet
vOx863ab008 vOx90266700 vOx9033fde8 nfs /usr/sde
vOx863ab1dO vOx90247d18 vOx90269a78 nfs /usr/staff/alpha1/j\
jchen
vOx863ab398 vOx902692d8 vOx902694cO nfs /usr/projects/osf_v\
1.2
vOx863ab560 8 2 vOx90221b18 vOx90322cc8 ufs /usr3 \

loc
vOx863ab728 8 2050 vOx902lf310 vOx903414c8 ufs /usr \

loc
vOx863ab8fO 8 1025 vOx902209fO vOx90341c68 ufs /usr2 \

loc
(kdbx)

namecache

namecache

The namecache extension prints the namecache structures on the system.

Example:
(kdbx) namecache
namecache nc_vp nc_vpid nc nlen nc _dvp nc - name
=========== =========== ======= ======= ============ =============
vOx9047b2cO vOx902lf4f8 24 4 vOx9021e5b8 sbin
vOx9047b310 vOx9021e988 0 11 vOx9021e7aO swapdefault
vOx9047b360 vOx9021e5b8 0 2 vOx9021e7aO
vOx9047b3bO vOx9021e7aO 199 3 vOx9021e5b8 dev
vOx9047b400 vOx9021ed58 0 4 vOx9021eb70 rz1g
vOx9047b4aO vOx902lf128 0 4 vOx9021e7aO in it
vOx9047b4fO vOx902lf310 0 7 vOx9021e5b8 upgrade
vOx9047b540 vOx902lfabO 20 3 vOx9021e5b8 etc
vOx9047b590 vOx902lf6eO 0 7 vOx902lf4f8 inittab
vOx9047b5eO vOx9021eb70 28 3 vOx9021e5b8 var
vOx9047b630 vOx902lf310 34 3 vOx9021e5b8 usr

Kernel Debugging Utilities 2-19

ofile

vOx9047b6dO vOx902lfc98 0 7 vOx9021eb70 console
vOx9047b720 vOx902lfe80 0 2 vOx9021e7aO sh
vOx9047b770 vOx90220068 0 3 vOx902lf4f8 nls
vOx9047b810 vOx90220250 0 8 vOx9021e7aO bcheckrc
vOx9047b8bO vOx90220438 0 4 vOx9021e7aO fsck
vOx9047b900 vOx90220620 0 5 vOx902lf4f8 fstab
vOx9047b950 vOx90220808 0 8 vOx9021e7aO ufs fsck
vOx9047b9aO vOx902209fO 0 4 vOx9021eb70 rzla
vOx9047b9fO vOx90220bd8 0 5 vOx9021eb70 rrzla

ofile [-proc address I-pid pid I -v]

The ofile extension prints the open files of processes. If no arguments are
specified, the extension prints the files opened by each process. If either
-proc address or -pid pid is present, the open files of the given
process are printed. The -v option prints out more information about the
open files.

Example:
(kdbx) ofile -pid 1136 -v

Proc=Oxffffffff9041e980 pid= 1136

ADDR FILE f cnt ADDR VNODE V TYPE V TAG USECNT HLDCNT V MOUNT INO# QSIZE -=========== =========== ------ ------ ====== ===========
vOx90408520 27 vOx902c1390 VCHR VT UFS 3 0 vOx863abab8 1103
vOx90408520 27 vOx902c1390 VCHR VT UFS 3 0 vOx863abab8 1103
vOx90408520 27 vOx902c1390 VCHR VT UFS 3 0 vOx863abab8 1103
vOx90408368 1 vOx9026e6b8 VDIR VT UFS 18 1 vOx863ab728 64253

paddr

paddr address number-of-Iongwords

The paddr extension converts a range of memory to symbolic references.
The arguments to the paddr extension are as follows:

address
The starting address.

number-of-longwords
The number of longwords to dump out.

2-20 Kernel Debugging Utilities

0
0
0

512

pcb

printf

Example:
(kdbx) paddr Oxffffffff90be36d8 20
[., Oxffffffff90be36d8]: [h_kmem_free_memory_:824 , Oxfffffc000037f47c] OxO\
000000000000000
[., Oxffffffff90be36e8]: [., Oxffffffff8b300d30] [hardclock:394, OxfffffcO\
0002a7d5c]
[., Oxffffffff90be36f8]: OxOOOOOOOOOOOOOOOO [., Oxffffffff863828aO]
[., Oxffffffff90be3708]: [setconf:133, Oxfffffc00004949bO] [., Oxffffffff9\
Obe39f4]
[., Oxffffffff90be3718]: Ox00000000000004eO [thread_wakeup_prim:858, Oxfff\
ffc0000328454]
[., Oxffffffff90be3728]: OxOOOOOOOOOOOOOOOl OxffffffffOOOOOOOc
[., Oxffffffff90be3738]: [., Oxffffffff9024e518] [hardclock:394, OxfffffcO\
0002a7d5c]
[., Oxffffffff90be3748]: Ox00000000004d5ff8 Oxffffffffffffffd4
[., Oxffffffff90be3758]: OxOOOOOOOOOOObc688 [setconf:133, Oxfffffc00004946\
fO]
[., Oxffffffff90be3768]: [thread_wakeup_prim:901, Oxfffffc00003284dO] OxOO\
0003ff85ef4caO

pcb thread_address

The pcb extension prints the process control block for a given thread
structure located at thread address. The extension also prints the
contents of integer and floating-point registers (if nonzero).

Example:
(kdbx) pcb Oxffffffff863a5bcO
Addr pcb ksp usp
vOx90e8cOOO vOx90e8fb88 OxO
sp
Oxffffffff90e8fb88

r9 Oxffffffff863a5bcO
rIO Oxffffffff863867aO
rII Oxffffffff86386790
r13 Ox5

printf format-string [args]

ptbr
Ox2ad4

pc
Oxfffffc00002dcII0

pcb physaddr
Ox55aaOOO

ps
Ox5

The printf extension formats one argument at a time to work around the
dbx debugger's command length limitation. It also supports the % s string
substitution, which the dbx debugger's printf command does not. The
arguments to the printf extension are as follows:

Kernel Debugging Utilities 2-21

format-string
A character string combining literal characters with conversion
specifications.

proc

args
The arguments whose values are to be printed.

Example:
(kdbx) printf "allproc = Ox%lx" allproc
allproc = Oxffffffff902356bO

proc [address]

The proc extension prints the process table. If addresses are present, the
proc structures at only those locations are printed. Otherwise, all proc
structures are printed.

Example:
(kdbx) proc
Addr PIO PPIO PGRP UIO py CPU SIGS Event Flags
vOx904lf6aO 1166 1136 1136 0 0 0 00000000 vOx863d6e68 in pagv ctty
vOx904lf550 1164 1136 1136 0 0 0 00000000 vOx863d7668 in pagv ctty
vOx904lf400 1163 1136 1136 0 0 0 00000000 vOx863d7e68 in pagv ctty
vOx904lf2bO 1161 1136 1136 0 0 0 00000000 vOx8637a668 in pagv ctty
vOx9041dc60 1098 1097 1097 1138 0 0 00000000 vOx8640f268 in pagv ctty
vOx9041d480 1097 1009 1097 1138 0 0 00000000 vOx8641ecOO in pagv ctty
vOx9041d720 1061 1060 1060 1138 0 0 00000000 vOx864lf668 in pagv ctty
vOx9041cf40 1060 1026 1060 1138 0 0 00000000 vOx864lfeOO in pagv ctty
vOx9041e2fO 1050 1010 1050 0 0 0 00000000 kOx0045f860 in omask pagv ctty
vOx9041d870 1032 1011 1032 1138 0 0 00000000 kOx0045f860 in omask pagv ctty
vOx9041d5dO 1026 1024 1026 1138 0 0 00000000 kOx0045f860 in omask pagv ctty

procaddr

procaddr [address]

The procaddr extension converts an address to a procedure name.

Example:

(kdbx) procaddr callout.c func
xpt_pool_free

2-22 Kernel Debugging Utilities

socket

socket

The socket extension prints out those files from the file table that are
sockets with nonzero reference counts.

Example:
(kdbx) socket

Fileaddr Soekaddr Type PCB Qlen Qlim Sec Sproe
=========== =========== =========== ===========
vOx904061b8 vOx863b5e08 DGRAM vOx8632de88 0 0 0 vOx863b5ef8
vOx90406370 vOx863b5a08 DGRAM vOx8632db08 0 0 0 vOx863b5af8
vOx90406478 vOx863b5808 DGRAM vOx8632da88 0 0 0 vOx863b58f8
vOx904064dO vOx863b5608 DGRAM vOx8632d688 0 0 0 vOx863b56f8
vOx904065d8 vOx863b5408 DGRAM vOx8632de08 0 0 0 vOx863b54f8
vOx90406630 vOx863b5208 DGRAM vOx8632d588 0 0 0 vOx863b52f8
vOx904067e8 vOx863b4208 DGRAM vOx8632d608 0 0 0 vOx863b42f8
vOx90406840 vOx863b4008 DGRAM vOx8632d788 0 0 0 vOx863b40f8
vOx904069aO vOx864lfOO8 STRM vOx8632e808 0 0 0 vOx8641fOf8
vOx90406aa8 vOx863b4e08 STRM vOx8632d508 0 2 0 vOx863b4ef8
vOx90406bbO vOx863b4e08 STRM vOx8632da08 0 0 0 vOx863b4ef8

sum

sum

The s urn extension prints a summary of the system.

Example:

swap

(kdbx) sum
Hostname : decosf.dec.com
cpu: DEC3000 - M500 avail: 1
Boot-time: Tue Nov 3 15:01:37 1992
Time: Fri Nov 6 09:59:00 1992
Kernel: OSF1 release 1.2 version 1.2 (alpha)
(kdbx)

swap

The swap extension prints a summary of swap space.

Example:

Ree Rproe
========

0 vOx863eff08
0 vOx863efefO
0 vOx863b5898
0 vOx863efe68
0 vOx863efe50
0 vOx863eff80
0 vOx863effe8
0 vOx863b4098
0 vOx864lf098
0 vOx863efddO
0 vOx863b4e98

Kernel Debugging Utilities 2-23

(kdbx) swap

Swap device name Size In Use Free

/dev/rz3b 131072k
16384p

32424k
4053p

98648k Dumpdev
12331p

/dev/rz2b 131072k 8k 131064k
16384p lp 16383p

---------- ---------- ----------
Total swap partitions: 2 262144k 32432k 229712k

32768p 4054p 28714p
(kdbx)

task

thread

task [proc_address]

The task extension prints the task table. If addresses are present, the task
structures named by the argument addresses are printed. Otherwise, all tasks
are printed.

Example:
(kdbx) task
Task Addr Proc Addr Ref Threads Utask Addr
=========== =========== ======= ===========
vOx8637eecO vOx9041eadO 3 1 vOx8645a880
vOx8637e440 vOx9041e830 3 1 vOx8645afcO
vOx8637elaO vOx9041eecO 3 1 vOx8645b700
vOx86380baO vOx9041dblO 3 1 vOx86417aOO
vOx86380e40 vOx9041d9cO 3 1 vOx86418140
vOx8637ec20 vOx9041e6eO 3 1 vOx863cc140
vOx8637f400 vOx9041ed70 3 1 vOx863cc880
vOx8637f160 vOx9041e980 3 1 vOx863ccfcO
vOx863818cO vOx9041dc60 3 1 vOx863e8000

thread [proc_address]

The thread extension prints information about threads. If addresses are
present, the thread structures named by the addresses are printed. Otherwise,
all threads are printed.

2-24 Kernel Debugging Utilities

Example:

(kdbx) thread
Thread Addr Task Addr Proc Addr Event pcb
=========== =========== =========== =========== ===========

vOx8644d690 vOx8637e440 vOx9041e830 vOx86420668 vOx90f50000
vOx8644d480 vOx8637elaO vOx9041eecO vOx86421068 vOx90f48000
vOx863a17bO vOx86380baO vOx9041dblO vOx8640e468 vOx90f30000
vOx863a19cO vOx86380e40 vOx9041d9cO vOx8641f268 vOx90f2cOOO
vOx8644dccO vOx8637ec20 vOx9041e6eO vOx8641fcOO vOx90f38000
vOx863a0520 vOx8637f400 vOx9041ed70 vOx8640eaOO vOx90f3cOOO
vOx863a0310 vOx8637f160 vOx9041e980 uOxOOOOOOOO vOx90f44000
vOx863a2410 vOx863818cO vOx9041dc60 vOx8640f268 vOx90f18000
vOx863a15aO vOx86380900 vOx9041d480 vOx8641ecOO vOx90f24000

u

u [proc-addr]

The u extension prints a u structure. If no argument (proc-addr) is
specified, the u structure of the currently running process is printed.

Example:
(kdbx) u ffffffff9027ff38
procp Ox9027ff38
arO Ox90c85ef8
corom cfgmgr
args gB* I
u ofile of: Ox86344e30 u_pofile_of: Ox86345030
o Oxffffffff902322dO
1 Oxffffffff90232278
2 Oxffffffff90232278
3 Oxffffffff90232328
4 Oxffffffff90232380 Auto-close
5 Oxffffffff902324eO

sizes 29 45 2 (clicks)
u outime 0
sigs

40 40 40 40 40 40
40 40 40 40 40 40
40 40 40 40 40 40
40 40 40 40 40 40

sigmask
o fffefeff fffefeff fffefeff 0
o 0 0 0 0 fffefeff

40
40
40
40

o 0 0 0 0 0 0

sigonstack
oldmask
sigstack
cdir rdir
timers
start

o 0 0 0 0 0 0
o

2000
o

901885b8

o

o
o

723497702

40
40
40
40

o 0
o fffefeff

o
o

o

state

wait
wait
wait
wait
wait
wait
run
wait
wait

Kernel Debugging Utilities 2-25

ucred

acflag
(kdbx)

193248

ucred [-proc I-uthread I-file I-buf I-ref addr I-check addr I checkall]

The ucred extension prints all instances of references to ucred structures.
The options are described as follows.

Argument Description

(none) Prints all ucred references
-proc Prints all ucreds referenced by the proc structures
-uthread Prints all ucreds referenced by the uthread structures
-file Prints all ucreds referenced by the file structures
-buf Prints all ucreds referenced by the buf structures
-ref address Prints all references to a given ucred
-check address Checks the reference count of a particular ucred
-checkall Checks the reference count of all ucreds (mismatch

marked by *)

Example:
(kdbx) ucred

ADDR OF UCRED AD DR OF Ref Ref Type cr ref cr_uid cr_gid cr_ruid
=================== ================== ======== =======
Oxffffffff863d4960 Oxffffffff90420f90 proc 3 0 1 0
Oxffffffff8651fb80 Oxffffffff9041e050 proc 18 0 1 0
Oxffffffff86525c20 Oxffffffff90420270 proc 2 0 1 0
Oxffffffff86457eaO Oxffffffff90421380 proc 4 1139 15 1139
Oxffffffff86457eaO Oxffffffff9041f6aO proc 4 1139 15 1139
Oxffffffff8651b5eO Oxffffffff9041f010 proc 2 0 1 0
Oxffffffff8651efaO Oxffffffff9041e1aO proc 2 1138 10 1138

Oxffffffff863d4960 Oxffffffff90fb82eO uthread 3 0 1 0
Oxffffffff8651fb80 Oxffffffff90fbc2eO uthread 18 0 1 0
Oxffffffff86525c20 Oxffffffff90fb02eO uthread 2 0 1 0
Oxffffffff86457eaO Oxffffffff90f882eO uthread 4 1139 15 1139
Oxffffffff86457eaO Oxffffffff90f902eO uthread 4 1139 15 1139
Oxffffffff8651b5eO Oxffffffff90fc02eO uthread 2 0 1 0
Oxffffffff8651efaO Oxffffffff90fac2eO uthread 2 1138 10 1138

Oxffffffff863d5c20 Oxffffffff90406790 file 16 0 0 0
Oxffffffff863d5b80 Oxffffffff904067e8 file 7 0 0 0
Oxffffffff863d5c20 Oxffffffff90406840 file 16 0 0 0
Oxffffffff863d5b80 Oxffffffff90406898 file 7 0 0 0
Oxffffffff86456000 Oxffffffff904068fO file 15 1139 15 1139
Oxffffffff863d5c20 Oxffffffff90406948 file 16 0 0 0

2-26 Kernel Debugging Utilities

(kdbx) ucred -ref Oxffffffff863d5a40
ADDR OF UCRED ADDR OF Ref

Oxffffffff863d5a40
Oxffffffff863d5a40
Oxffffffff863d5a40
Oxffffffff863d5a40

Oxffffffff9041cOdO
Oxffffffff90ebc2eO
Oxffffffff90406f78
Oxffffffff90408730

proc
uthread

file
file

4
4
4
4

o
o
o
o

o
o
o
o

o
o
o
o

(kdbx) ucred -check Oxffffffff863d5a40
AD DR OF UCRED cr ref Found

Oxffffffff863d5a40 4 4

unaliasall

vnode

unaliasall

The unaliasall extension removes all aliases, including the predefined
aliases described in Section 2.2.4.

Example:
(kdbx) unaliasall

vnode [-free I -all I-ufs I -nfs I-cdfs I -fs address I-u uid I -g gid I -v]

The vnode extension prints the vnode table. The arguments are described as
follows.

Argument

(none)

-free
-all

-ufs
-nfs
-cdfs
-fs address
-u uid
-g gid
-v

Description

Prints ACTIVE entries in the vnode table. (ACTIVE means that
usecount is nonzero or holdcnt is nonzero.)
Prints INACTIVE entries in the vnode table.
Prints ALL (both ACTIVE and INACTIVE) entries in the vnode
table.
Prints all UFS vnodes.
Prints all NFS vnodes.
Prints all CDFS vnodes.
Prints vnode entries of a mounted file system.
Prints vnode entries of a particular user.
Prints vnode entries of a particular group.
Prints related inode/rnode/cdnode info (used with -ufs, -nfs or
-cdfs only).

Kernel Debugging Utilities 2-27

Example:
(kdbx) vnode
ADDR VNODE V TYPE V TAG USECNT HLDCNT V MOUNT

vOx9021eOOO
vOx9021e1e8
vOx9021e3dO
vOx9021e5b8
vOx9021e7aO
vOx9021ed58
vOx9021ef40
vOx902lf128
vOx902lf310
vOx902lf8c8
vOx902lfe80
vOx902209fO
vOx90220fa8
vOx90221190
vOx90221560
vOx90221748

VBLK VT NON
VBLK VT NON
VBLK VT NON
VDIR VT UFS
VDIR VT UFS
VBLK VT UFS
VBLK VT NON
VREG VT UFS
VDIR VT UFS
VREG VT UFS
VREG VT UFS
VDIR VT UFS
VBLK VT UFS
VBLK VT NON
VREG VT UFS
VBLK VT UFS

(kdbx) vnode -nfs -v

1
83

1
34

1
1
1
3
1
1
1
1
9
1
1

3153

o
18
o
1
1
o
o
o
1
o
o
1
8
o
o

257

kOx00467ee8
vOx863abab8
kOx00467ee8
vOx863abab8
vOx863abab8
vOx863abab8
kOx00467ee8
vOx863abab8
vOx863abab8
vOx863abab8
vOx863abab8
vOx863abab8
vOx863abab8
kOx00467ee8
vOx863abab8
vOx863abab8

ADDR VNODE V TYPE V TAG USECNT HLDCNT V MOUNT FILEID MODE UIO GID QSIZE

vOx90246820 VDIR VT NFS
vOx902471a8 VOIR VT NFS
vOx90247578 VDIR VT NFS
vOx90247948 VDIR VT NFS
vOx9026d1cO VDIR VT NFS
vOx9026e8aO VDIR VT NFS
vOx9026ea88 VDIR VT NFS
vOx90272788 VDIR VT NFS
vOx902fd080 VREG VT NFS
vOx902ff888 VREG VT NFS
vOx90326410 VREG VT NFS

(kdbx) vnode -ufs -v

1
1
1
1
1
1
1
1
1
1
1

o
o
o
o
o
o
o
o
o
o
o

vOx863ab560 205732
vOx863ab398 378880
vOx863ab1dO 2
vOx863ab008 116736
vOx863ab1dO 14347

40751
40755
40755
40755
40755

vOx863aae40 2 40755
vOx863ab1dO 36874 40755
vOx863ab1dO 67594 40755
vOx863ab1dO 49368 100755
vOx863ab1dO 49289 100755
vOx863aae40 294959 100755

1138
1138

o
1114

o
o
o
o

8887
8887

3

23 2048
10 5120
o 1024
o 512

10 512
10 512
10 512
10 512

177 455168
177 538200

4 196608

ADDR VNODE V TYPE V TAG USECNT HLOCNT V MOUNT INOOE# MODE UID GID QSIZE

vOx9021e5b8
vOx9021e7aO
vOx9021ed58
vOx902lf128
vOx902lf310
vOx902lf8c8
vOx902lfe80
vOx902209fO
vOx90220fa8
vOx90221560
vOx90221748

VOIR VT UFS
VOIR VT UFS
VBLK VT UFS
VREG VT UFS
VDIR VT UFS
VREG VT UFS
VREG VT UFS
VOIR VT UFS
VBLK VT UFS
VREG VT UFS
VBLK VT UFS

34
1
1
3
1
1
1
1
9
1

3151

2-28 Kernel Debugging Utilities

1
1
o
o
1
o
o
1
8
o

257

vOx863abab8
vOx863abab8
vOx863abab8
vOx863abab8
vOx863abab8
vOx863abab8
vOx863abab8
vOx863abab8
vOx863abab8
vOx863abab8
vOx863abab8

2 40755
1088 40755
1175 60600
7637 100755
8704 40755
7638 100755
7617 100755
9792 41777
1165 60600
7635 100755
1184 60600

o
o
o
3
3
3
3
o
o
3
o

o 1024
o 2560
o 0
4 147456
4 512
4 90112
4 196608

10 512
o 0
4 245760
o 0

2.3 The kdebug Debugger
The kdebug debugger is used for the symbolic, breakpoint debugging of the
kernel. Kernels are tested on a DEC OSFI1 test system. The user interface,
the dbx debugger, runs remotely on a second DEC OSFI1 system, the build
system. The build system minimally needs to have a copy of the kernel you
are testing and, preferably, the source used to build the kernel. The dbx
debugger communicates with the test system by connecting the two systems
with a serial line. However, a gateway system can be used if it is not
possible to locate the test and build systems within a serial line's reach. The
build system will then communicate with the gateway system over the
internet, and the gateway system will communicate with the test system over
the serial line.

2.3.1 Requirements
Prior to running the kdebug debugger, the test, build, and gateway systems
must meet the following requirements:

• Test system

Must be running DEC OSFIl Version 2.0 or higher, must have the
"Kernel Debugging Tools" subset loaded, and must have the "Kernel
Breakpoint Debugger" kernel option configured.

• Gateway system

Must be running DEC OSFIl Version 2.0 or higher and must have the
"Kernel Debugging Tools" subset loaded.

• Build system

Must be running DEC OSFIl Version 2.0 or higher and must have the
"Kernel Debugging Tools" subset loaded.

2.3.2 Setup
To use the kdebug debugger, you must do the following:

• Attach one end of the serial line to the test system.

•

Attach the other end of the serial line to the equivalent port on the build
system (or gateway system, if one is being used).

Serial lines are attached to the DEC 3000-series and DEC 4000-series
systems using a 25-pin connector slot. On DEC 3000-series systems, this
slot is marked by the communications/printer icon.

To debug kernels, your kernel must be configured with the configuration
file option "OPTIONS KDEBUG". If you are debugging the installed
kernel, this can be done by selecting "KERNEL BREAKPOINT

Kernel Debugging Utilities 2-29

DEBUGGING" from the kernel options menu.

• By default, the kernel is compiled with only partial debugging
information. Occasionally, this causes kdebug to display erroneous
arguments or mismatched source lines. To correct this, recompile selected
source files specifying the CDEBUGOPTS=-g argument.

2.3.3 Invoking the kdebug Debugger and Using Its Commands
Prior to invoking the kdebug debugger, you must install the Product
Authorization Key (PAK) for the Developer's kit (OSF-DEV).

You invoke the kdebug debugger as follows:

1. On the build system, add the following lines to your • dbxini t file if
you need to override the default values:
set $kdebug host="gateway_system"
set $kdebug -line="seriaLline"
set $kdebug=dbgtty="tty"

The variable $kdebug host is the name of the gateway system. By
default, $kdebug host is set to localhost, assuming no gateway
system is being used. The variable $kdebug line specifies the serial
line to use as defined in the I etc I remote me of the build system (or
the gateway system, if one is being used). By default, $kdebug line
is set to kdebug. The variable $kdebug dbgtty sets the tty on the
gateway system to display the communication between the build and test
systems, which is useful in debugging your setup. To determine the tty
name to supply to the $kdebug dbgtty varible, issue the tty
command in the desired window on the gateway system. By default,
$kdebug_dbgtty is null.

2. Copy the kernel to be tested to Ivmunix on the test system.

3. Start the dbx debugger on the build system, supplying the pathname of
the test kernel. Set a breakpoint and start running dbx as follows:
dbx -remote vmunix
dbx version 3.12.1
Type 'help' for help.
main: 602 p = &proc[O];
(dbx) stop in main
[2] stop in main
(dbx) run

Note that you can set a breakpoint anytime after the execution of the
kdebug bootstrap () routine. Setting a breakpoint prior to the
execution of this routine may result in unpredictable behavior.

4. Halt the test system and, at the console prompt, set the boot osflags
console variable to contain the k option, and then boot the syStem. For

2-30 Kernel Debugging Utilities

example:
»> set boot osflags k
»> b -

The kernel starts executing, dbx will catch the breakpoint, and you can
begin issuing dbx debugging commands. See Section 2.1, the dbx(1)
reference page, or the Programmer's Guide for information on dbx
debugging commands.

If you are unable to boot your test kernel, see Section 2.3.4 for information
on debugging your setup.

Note

By default, the dbx debugger assumes the disk copy of the
kernel contains accurate instructions. However, if you are
debugging portions of the kernel containing self-modifying code
(for example, spl routines), this is not the case. To handle these
situations, you need to add the following line to your dbxini t
file:

set $readtextfile=O

Note that setting this variable may degrade the performance of
the debugger.

2.3.4 Debugging Your Setup
If you have completed the kdebug setup as described in Section 2.3.3 and it
stills fails to work, follow the steps in the following list to isolate the
problem:

1. Test the serial line connection. Log onto the build system (or the gateway
system if one is being used) as root and enter the following command:

tip kdebug

If the command does not return the message, "connected," another
process, such as a print daemon or login getty, may be using the serial
line port that you have dedicated to the kdebug debugger, for example,
/ dev / tty 00. To check for this condition, do the following:

• Look at the / etc/ ini ttab file to see if any processes are using
that line. If so, disable these lines until you are finished with the
kdebug session. See the ini ttab(4) reference page for information
on disabling lines.

• Use the ps command to see if any processes are currently using the

Kernel Debugging Utilities 2-31

line as follows:

ps agxtOO

If a process is using t t yO 0, kill the process using the process ID in
the first field.

• See if any runaway kdebugd gateway daemons are still running:

ps agx I grep kdebugd

If one is running, kill the process using the process ID in the first
field.

2. If you detect no problems in step 1, at the console prompt of the test
system, ensure that the boot osflags console environment variable
specifies the k flag. Boot the test system. If the system boots to single
user or beyond, then kdebug has not been configured into the kernel as
specified in Section 2.3.2.

If the system does not boot and you do not see informational messages in
your tip session, then the serial line is not working or is not attached
properly. If you see informational messages in the tip session, then the
test system and serial line are operating correctly. Exit the tip session.

3. Determine which pseudoterminalline you ran tip from by issuing the
lusr Ibin/tty command. For example:
/usr/bin/tty
/dev/ttyp2

This example shows that you are using pseudoterminal I dev Ittyp2.
Edit your $HOMEI • dbxini t file on the build system and make the
following edits:

• Set the $kdebug_dbgtty variable to Idev/ttyp2 as follows:
set $kdebug_dbgtty="/dev/ttyp2"

• Set the variable $kdebug host to the host name of the system
from which you issued the tip command. For example, if the host
name is DECOSF, the entry in the. dbxini t file will be as follows:

set $kdebug_host="decosf"

• Remove any settings of the $kdebug_line variable as follows:
set $kdebug_line=""

Start dbx on the build system. You should see informational messages
on the pseudoterminalline I dev Itt yp2 that kdebu g is starting. If no
messages appear, ensure that the inetd daemon is running on the
gateway system. Also, check the tcp/ip connection between the build and
gateway system using one of the following commands: rlogin, rsh,
or rep.

2-32 Kernel Debugging Utilities

2.4 The crashdc Utility

The crashdc utility collects critical data from operating system crash dump
files or from a running kernel. The data collected can be used to analyze the
cause of the crash. The crashdc utility uses existing system tools and
utilities to extract information from crash dumps. The information garnered
from crash dumps files or from the running kernel includes the hardware and
software configuration, current processes, the panic string (if any), and swap
information.

The crashdc utility is invoked each time the system is booted. If it finds a
current crash dump, a data collection file is created with the same numerical
file name extension as the crash dump (see Section 1.2.3 for information
about crash dump names).

You can also invoke crashdc manually. The syntax of the command for
invoking the data collection script is as follows:

Ibin/crashdc vmunix.n Ivmcore.n

The following example shows sample output from crashdc:

CANASTA Data Collection (Version 1.3)

crash data collection time: Thu Sep 2 15:01:07 EDT 1993

-current directory: / -
-crash kernel: /var/adm/crash/vmunix.O
-crash-core: /var/adm/crash/vmcore.O
-crash-arch: alpha
-crash-os: DEC aSF/l
-host version: DEC aSF/l T2.0-1 (Rev. 114.2); Wed Sep 1 09:24:01 EDT 1993
-crash version: DEC aSF/l T2.0-1 (Rev. 114.2); Wed Sep 1 09:24:01 EDT 1993
dbx version 3.11.4
Type 'help' for help.

stopped at
warning: Files compiled -g3: parameter values probably wrong

[boot:1118 ,Oxfffffc0000374a08] Source not available
_crashtime: struct {

}

tv sec = 746996332
tv usec = 145424

boottime: struct {
tv sec = 746993148
tv usec = 92720

_config: struct {
sysname = "aSFl"
nodename = "madmax.zk3.dec.com"
release = "T2.0"
version = "114.2"
machine "alpha"

cpu: 30
=system_string: Oxfffffc0000442fa8 "DEC3000 - M500"

Kernel Debugging Utilities 2-33

num cpus: 1
=partial_dump: 1

physmem(MBytes): 96
-panic string: Oxfffffc000043cf70 = "kernel memory fault"
-stack-trace begin:
"> 0 boot(reason = 0, howto = 0) [" •• / •. / •. / •. /src/kernel/arch/alpha/machdep.c":\
1118, Oxfffffc0000374a08]

1 panic(s = Oxfffffc000043cf70 = "kernel memory fault") [" .• / .. / •• / .• /src/ke\
rnel/bsd/subr prf.c":616, Oxfffffc000024ff60]

2 trap() [~ •• / .. / •• / .. /src/kernel/arch/alpha/trap.c":945, Oxfffffc0000381440]
3 _XentMM() [" .. / .• / .• / .. /src/kernel/arch/alpha/locore.s":949, Oxfffffc000037\

2dec]
stack trace end: - -
preserved message_buffer_begin:

struct {
msg_magic = Ox63061
msg bufx Ox56e
msg-bufr = Ox432
msg-bufc = "Alpha boot: available memory from Ox678000 to Ox6000000

DEC aSF71 T2.0-1 (Rev. 114.2); Wed Sep 1 09:24:01 EDT 1993
physical memory = 94.00 megabytes.
available memory = 84.50 megabytes.
using 360 buffers containing 2.81 megabytes of memory
tcO at nexus
sccO at tcO slot 7
tcdsO at tcO slot 6
ascO at tcdsO slot 0
rzO at ascO bus 0 target 0 lun 0 (DEC
rz4 at ascO bus 0 target 4 lun 0 (DEC
tz5 at ascO bus 0 target 5 lun 0 (DEC
ascI at tcdsO slot 1
rz8 at ascI bus 1 target 0 lun 0 (DEC
rz9 at ascI bus 1 target 1 lun 0 (DEC
fbO at tcO slot 8

1280XI024
bbaO at tcO slot 7
lnO: DEC LANCE Module Name: PMAD-BA
lnO at tcO slot 7

RZ26 (C) DEC
RRD42 (C) DEC
TLZ06 (C)DEC

RZ57 (C) DEC
RZ56 (C) DEC

T384)
4.5d)
0374)

5000)
0300)

lnO: DEC LANCE Ethernet Interface, hardware address: 08-00-2b-2c-f3-83
DEC3000 - M500 system
Firmware revision: 2.4
PALcode: aSF version 1.28
lvmO: configured.
lvm1: configured.
<3>/var: file system full
<3>/var: file system full
<3>/var: file system full
<3>/var: file system full
<3>/var: file system full

trap: invalid memory ifetch access from kernel mode

faulting virtual address: OxOOOOOOOOOOOOOOOO
pc of faulting instruction: OxOOOOOOOOOOOOOOOO
ra contents at time of fault: Oxfffffc000028951c
sp contents at time of fault: Oxffffffff96199a48

panic: kernel memory fault
syncing disks ••• done

2-34 Kernel Debugging Utilities

}
preserved message buffer end:

=kernel_process_status_begin:
PID COMM

00000 kernel idle
00001 init
00002 exception hdlr
00342 xdm
00012 update
00341 Xdec
00239 nfsiod
00113 syslogd
00115 binlogd
00240 nfsiod
00241 nfsiod
00340 csh
00124 routed
00188 portmap
00197 ypbind
00237 nfsiod
00249 sendmail
00294 internet mom
00297 snmpye
00291 mold
00337 xdm
00325 Ipd
00310 cron
00305 inetd
00489 tar
kernel process_status_end:

-current pid: 489
-current-tid: Oxffffffff863d36cO
-proc thread list begin:
thread ox863d36cO-stopped at [boot:1118,Oxfffffc0000374a08] Source not available

proc thread list end:
=dump=begin:- -
> 0 boot(reason = 0, howto 0) [" .. / .. / .. / .. /src/kernel/arch/alpha/machdep.c":\
1118, Oxfffffc0000374a08]
mp = Oxffffffff961962f8
nmp = Oxffffffff86333ab8
fsp = (nil)
rs = 5368785696
error = -1776721160
ind = 2424676
nbusy = 4643880

1 panic(s = Oxfffffc000043cf70 = "kernel memory fault") [" .. / .. / .. / .. /src/ker\
nel/bsd/subr_prf.c":616, Oxfffffc000024ff60]
bootopt = 0

2 trap() [" •. / .. / .. / •. /src/kernel/arch/alpha/trap.c":945, Oxfffffc0000381440]
t = Oxffffffff863d36cO
pcb = Oxffffffff96196000
task = Oxffffffff86306b80
p = Oxffffffff95aaf6aO
syst = struct {

tv sec = 0
tv usec = 0

nofault save = 0

Kernel Debugging Utilities 2-35

exc_type = 18446739675665756628
exc code = 0
exc subcode = 0
i = -2042898428
s = 2682484
ret = 536993792
map = Oxffffffff808fc5aO
prot = 5
cp = Oxffffffff95a607aO =
i = 0
result = 18446744071932830456
pexcsum = OxffffffffOOOOOOOO
i = 16877
pexcsum = Oxffffffff00001000
i = 2682240
ticks = -1784281184
tv Oxfffffffc00500068

3 _XentMM() [" .• / .• / .. / .. /src/kernel/arch/alpha/locore.s":949, Oxfffffc000037\
2dec]

dump end:
-kernel thread list begin:
thread Ox8632fafO stopped at [thread_block:1427 ,Oxfffffc00002ca3aO] Source not\

available
thread Ox8632f8d8 stopped at [thread_block:1427 ,Oxfffffc00002ca3aO] Source not\
available

thread Ox8632d328 stopped at [thread_block:1400 +Ox1c,Oxfffffc00002ca2f8] Sourc\
e not available
thread Ox8632d110 stopped at [thread_block:1400 +Ox1c,Oxfffffc00002ca2f8] Sourc\
e not available
kernel thread list end:

-savedefp: Oxffffffff96199940
=kernel_memory_fault_data_begin:
struct {

fault va OxO
fault=pc OxO
fault ra Oxfffffc000028951c
fault_sp Oxffffffff96199a48
access Oxffffffffffffffff
status = OxO
cpunum = OxO
count = Ox1
pcb = Oxffffffff96196000
thread = Oxffffffff863d36cO
task Oxffffffff86306b80
proc = Oxffffffff95aaf6aO

kernel memory fault data end:
Invalid-character in-input
_uptime: .88 hours

dbx version 3.11.4
Type 'help' for help.

stopped at
warning: Files compiled -g3: parameter values probably wrong

[boot:1118 ,Oxfffffc0000374a08] Source not available

2-36 Kernel Debugging Utilities

savedefp exception frame (savedefp/33X):
ffffffff96199940: 0000000000000000 fffffc000046f888
ffffffff96199950: ffffffff863d36cO 0000000079c2c93f

ffffffff96199a30: 0000000000901402 0000000000001001
ffffffff96199a40: 0000000000002000
_savedefp_exception_frame_ptr: Oxffffffff96199940

savedefp stack pointer: Ox140026240
-savedefp-processor status: OxO
-savedefp-return address: Oxfffffc000028951c
-savedefp-pc: oio
=savedefp=pc/i:

can't read from process (address OxO)
_savedefp_return_address/i:

[spec open:997, Oxfffffc000028951c]
_kernel=memory_fault_data.fault_pc/i:

can't read from process (address OxO)
kernel memory fault data. fault ra/i:

- [spec=open: 997 , Oxfffffc000028951c]

Kdbx Output (swap,sum)

dbx version 3.11.4
Type 'help' for help.

bis

bis

rO, rO, r19

rO, rO, r19

stopped atwarning: Files compiled -g3: parameter values probably wrong
[boot:1118 ,Oxfffffc0000374a08] Source not available

kdbx sum:
Hostname : madmax.zk3.dec.com
cpu: DEC3000 - M500 avail: 1
Boot-time: Thu Sep 2 14:05:48 1993
Time: Thu Sep 2 14:58:52 1993
Kernel: OSF1 release T2.0 version 114.2 (alpha)

kdbx swap:
- - Swap device name

/dev/rzOb

Total swap partitions: 1

_kdbx_proc:
Addr
vOx95aaf6aO
vOx95aad5dO
vOx95aad8fO

vOx95aad2bO
vOx95aad120

PID
489
342
341

1
o

PPID
340
337
337

o
o

PGRP
489
342
341

1
o

Size In Use Free
---------- ---------- ----------

131072k 10560k 120512k Dumpdev
16384p 1320p 15064p

---------- ---------- ----------
131072k 10560k 120512k

16384p 1320p 15064p

UID PY CPU SIGS Event Flags
0 0 0 00000000 NULL in pagv ctty
0 0 0 00000000 vOx8632fdfO in pagv ctty
0 0 0 00000000 vOx8632cdc8 in pagv ctty

o 0 o 00000000 kOx0048dc10 in omask pagv
o 0 o 00000000 vOx8632fdfO in sys

crash data collection finished: - - -

Kernel Debugging Utilities 2-37

Crash Analysis Examples 3

This chapter provides examples of how to examine crash dumps using the
tools discussed in Chapter 2.

3.1 Guidelines for Examining Crash Dump Files
In examining crash dump files, there is no one way to determine the cause of
a system crash. However, the following guidelines should assist you in
identifying the events that led to the crash:

• Gather some facts about the system (for example, operating system type,
version number, revision level, hardware configuration).

• Look at the panic string, if one exists. This string is contained in the
preserved message buffer (pmsgbuf) and in the panicstr global
variable.

• Locate the thread executing at the time of the crash. Most likely, this
thread will contain the events that lead to the panic.

• Determine whether you can fix the problem. If the system crashed
because of lack of resources (for example, swap space), you can probably
eliminate the problem by adding more of that resource.

If the problem is with the software, you may need to file a Software
Performance Report (SPR).

3.2 Identifying a Software Panic with the dbx Debugger
The following example shows a method for identifying a software panic with
the dbx debugger:

dbx -k vmunix.O vmcore.O
dbx version 3.11.1
Type 'help' for help.

stopped at [boot:753 ,Oxfffffc00003c4ae4] Source not available

(dbx) p panicstr rn
Oxfffffc000044b648 = "ialloc: dup alloc"
(dbx) t ~
> 0 boot(paniced = 0, arghowto = 0) [" .. / •. / .. / •. /src/kernel/arch/alpha/machdep.\
c":753, Oxfffffc00003c4ae4]

1 panic(s = Oxfffffc000044b618 = "mode = 0%0, inurn = %d, pref = %d fs = %s\n")\

[" .. / •. / .. / •. /src/kernel/bsd/subr prf.c":1119, Oxfffffc00002bdbbO]
2 ialloc(pip = Oxffffffff8c6acc40, ipref = 57664, mode = 0, ipp = Oxffffffff8c\

f95af8) [" .. / .. / •• / .. /src/kernel/ufs/ufs alloc.c":501, Oxfffffc00002dab48]
3 maknode(vap = Oxffffffff8cf95c50, ndp = Oxffffffff8cf922f8, ipp = Oxffffffff\

8cf95b60) [" .• / .. / .. / .• /src/kernel/ufs/ufs vnops.c":2842, Oxfffffc00002ea500]
4 ufs create(ndp = Oxffffffff8cf922f8, vap = Oxfffffc00002feOaO) [" .. / .. / .• / •• \

/src/kernel/ufs/ufs vnops.c":602, Oxfffffc00002e771c]
5 vn open(ndp = Oxffffffff8cf95d18, fmode = 4618, cmode = 416) [" •. / •• / .. / .. /s\

rc/kernel/vfs/vfs vnops.c":258, Oxfffffc00002fe138]
6 copen(p = Oxffffffff8c6efbaO, args = Oxffffffff8cf95e50, retval = Oxffffffff\

8cf95e40, compat = 0) [" .. / .• / .. / •• /src/kernel/vfs/vfs syscalls.c":1379, Oxfffffc\
00002fb890] -

7 open(p = Oxffffffff8cf95e40, args = (nil), retval = Ox7f4) [" .. / .. / .. / .. /src\
/kernel/vfs/vfs syscalls.c":1340, Oxfffffc00002fb7bc]

8 syscall(ep-= Oxffffffff8cf95ef8, code = 45) [" •• / •• / .. / .• /src/kernel/arch/al\
pha/syscall trap.c":532, Oxfffffc00003cfa34]

9 _xsyscall() [" .. / •• / .. / .. /src/kernel/arch/alpha/locore.s":703, Oxfffffc00003\
c31eO]
(dbx) q

[j] Print the panic string (panicstr). The panic string shows that the
ialloc function called the panic function.

121 Perform a stack trace. This confirms that the ialloc function at line
501 in file lufs_alloc.c called the panic function.

3.3 Identifying a Hardware Trap with the dbx Debugger
The following example shows a method for identifying a hardware trap with
the dbx debugger:

dbx -k vmunix.l vmcore.l
dbx version 3.11.1
Type 'help' for help.

(dbx) sh strings vmunix.l I grep '(Rev' ill

DEC OSF/1 X2.0A-7 (Rev. 1);

(dbx) p utsname ~
struct {

sysname = "OSF1"
nodename = "decosf.dec.com"
release "2.0"
version "2.0"
machine "alpha"

(dbx) p panicstr
Oxfffffc0000489350

@]
"trap: Kernel mode prot fault\n"

(dbx) t ~
> 0 boot(paniced 0, arghowto = 0) ["/usr/sde/alpha/build/alpha.nightly/src/ker\
nel/arch/alpha/machdep.c":

1 panic(s = Oxfffffc0000489350 = "trap: Kernel mode prot fault\n") ["/usr/sde\
/alpha/build/alpha.nightly/src/kernel/bsd/subr prf.c":1099, Oxfffffc00002c0730]

2 trap() ["/usr/sde/alpha/build/alpha.nightly/src/kernel/arch/alpha/trap.c":54\
4, Oxfffffc00003eOc78]

3 _XentMM() ["/usr/sde/alpha/build/alpha.nightly/src/kernel/arch/alpha/locore.\

3-2 Crash Analysis Examples

s":702, OxfffffcOOO03d4ff4]

(dbx) kps ~
PID COMM

00000 kernel idle
00001 init
00002 device server
00003 exception hdlr
00663 ypbind
00018 cfgmgr
00020 update
01604 getty
00099 syslogd
00101 binlogd
00195 nfsd
00155 ypserv
00151 portmap
00194 nfsd
00193 nfsd
00191 mountd
00196 nfsd
00197 nfsd
00198 nfsd
00199 nfsd
00200 nfsd
00201 nfsd
00202 nfsd
00204 nfsiod
00205 nfsiod
00206 nfsiod
00207 nfsiod
00209 rpc.pcnfsd
00211 rpc.statd
00213 rpc.lockd
00219 automount
00226 automount
00230 automount
00234 automount
00241 sendmail
00260 inetd
00265 cron
00293 xdm
00265 cron
00293 xdm
02311 inetd
00278 lpd
01443 csh
01442 rlogind
01646 rlogind
01647 csh

(dbx) P $pid I§l
2311

(dbx) p *pmsgbuf III
struct {

msg_magic = 405601
msg_bufx 62
msg_bufr 3825
msg_bufc "nknown flag

Crash Analysis Examples 3-3

printstate: unknown flag
printstate: unknown flag
de: table is full
<3>vnode: table is full

<3>/: file system full
<3>/: file system full
<3>arp: local IP address Oxffffffff82b40429 in use by
hardware address 08:00:2B:20:19:CD
<3>arp: local IP address Oxffffffff82b40429 in use by
hardware address 08:00:2B:2B:F6:3B
<3>arp: local IP address Oxffffffff82b40429 in use by
hardware address 08:00:2B:20:19:CD
<3>arp: local IP address Oxffffffff82b40429 in use by
hardware address 08:00:2B:2B:F6:3B
<3>arp: local IP address Oxffffffff82b40429 in use by
hardware address 08:00:2B:20:19:CD
<3>arp: local IP address Oxffffffff82b40429 in use by
hardware address 08:00:2B:2B:F6:3B
NFS write error 70 on host flume fh 182a ge04 35 2 0 0 0 0
NFS write error 70 on host flume fh 182a ge04 35 2 0 0 0 0
NFS write error 70 on host flume fh 182a ge04 35 2 0 0 0 0
<3>arp: local IP address Oxffffffff82b40429 in use by
hardware address 08:00:2B:20:19:CD
<3>arp: local IP address Oxffffffff82b40429 in use by
hardware address 08:00:2B:2B:F6:3B
va=0000000000000028, status word=OOOOOOOOOOOOOOOO, pc=ffffk000032972c
panic: trap: Kernel mode prot fault
syncing disks ... 3 3 done
printstate: unknown flag
printstate: unknown flag
printstate: unknown flag
printstate: unknown flag
printstate: un
}
(dbx) px savedefp
Oxffffffff89b2b4eO

(dbx) p savedefp
Oxffffffff89b2b4eO

(dbx) p savedefp[28]
18446739675666356012

(dbx) px savedefp[28] i
Oxfffffc000032972c

(dbx) savedefp[28]/i ~
[nfs putpage:2344, Oxfffffc000032972c]

(dbx) savedefp[23]/i ~
[ubc_invalidate:1768, Oxfffffc0000315feO]

(dbx) func nfs putpage ~
(dbx) file - [j2J

ldl r5, 40(r1)

stl rO, 84(sp)

/usr/sde/alpha/build/alpha.nightly/src/kernel/kern/sched_prim.c

(dbx) func ubc invalidate ~
ubc invalidate: Source not available

3-4 Crash Analysis Examples

(dbx) file ~
/usr/sde/alpha/build/alpha.nightly/src/kernel/vfs/vfs_ubc.c

(dbx) q

[1]

~

131

~

[5]

[§]

IZI

IB1

19]

You can use the dbx debugger's sh command to issue commands to the
shell. In this case, issue the stings and grep commands to pull the
operating system revision number in the vmunix. 1 dump file.

Print the utsname structure to obtain some more information about the
operating system version.

Print the panic string (panicstr). The panic function was called by
a trap function.

Perform a stack trace. This confirms that the trap function called
panic. However, the stack trace does not show what caused the trap.

Look to see what processes were running when the system crashed using
the kps command.

Look to see what the process ID (PID) was pointing to at the time of the
crash. In this case, the PID was pointing to process 2311, which is the
inetd daemon, from the kps command output.

Print the preserved message buffer (pmsgbuf). Note the bolded value
for the program counter (pc).

Print register 28 of the exception frame pointer (savedefp). This
register always contains the pc value. The pc value can always be
obtained in either pmsgbuf or savedefp.

Dissassemble the pc to determine its contents. The pc at the time of the
crash contained the nfs _putpage () function at line 2344.

[Q] Disassemble the return address to determine its contents. The return value
at the time of the crash contained the ubc invalidate () function at
line 1768. -

[j] Point the dbx debugger to the n f s _pu t page () function.

[2] Display the name of the source file that contains the nfs putpage ()
function. -

ff3] Point the dbx debugger to the ubc _invalidate () function.

~ Display the name of the source file that contains the
ubc _invalidate () function.

The result from this example shows that the function ubc invalidate,
which resides in file /vf s /vf s ubc. c at line number 068, called the
function nfs putpage at line number 2344 in the file
/kern/sched_prim.c and the system stopped.

Crash Analysis Examples 3-5

3.4 Debugging Kernel Threads with the dbx Debugger
The following example shows a method for stepping through kernel threads
to identify the events that lead to the crash:

dbx -k ./vmunix.2 ./vmcore.2
dbx version 3.11.1
Type 'help' for help.

thread Ox8d431c68 stopped at [thread_block:1305 +Oxl14,Oxfffffc000033961c] \
Source not available

(dbx) p panicstr m
Oxfffffc000048aOc8 = "kernel memory fault"
(dbx) t ~
> 0 thread_block() [" .. / .. / .. / .. /src/kernel/kern/sched_prim.c":1305, OxfffffcOOO\
033961c]

1 mpsleep(chan = Oxffffffff8d4ef450 = "", pri = 282, wmesg = Oxfffffc000046f29\
o = "network", timo = 0, lockp = (nil), flags = 0) [" .. / .. / .. / •. /src/kernel/bsd/k\
ern synch.c":267, Oxfffffc00002b772c]

j sosleep(so = Oxffffffff8d4ef408, addr = Oxffffffff906cfcf4 = "Ap", pri = 282\
,tmo = 0) [" .. / •• / .. / .. /src/kernel/bsd/uipc socket2.c":612, Oxfffffc00002d3784]

3 accept1(p = Oxffffffff8f8bfde8, args =-Oxffffffff906cfe50, retval = Oxffffff\
ff906cfe40, compat 43 = 1) [" .. / .. / .. / .. /src/kernel/bsd/uipc syscalls.c":300, Oxf\
ffffc00002d4c74] - -

4 oaccept(p = Oxffffffff8d431c68, args = Oxffffffff906cfe50, retval = Oxffffff\
ff906cfe40) [" .. / .. / .. / .. /src/kernel/bsd/uipc syscalls.c":250, Oxfffffc00002d4bOc]

5 syscall(ep = Oxffffffff906cfef8, code = 99, sr = 1) [" .. / .. / .. / .• /src/kernel\
/arch/alpha/syscall trap.c":499, Oxfffffc00003ec18c]

6 _Xsyscall() ["-:./ .. / .. / .• /src/kernel/arch/alpha/locore.s":675, Oxfffffc00003\
df96c]
(dbx) tlist ~
thread Ox8d431a60 stopped at [thread_block:1305 +Oxl14,Oxfffffc000033961c] \
Source not available
thread Ox8d431858 stopped
Source not available
thread Ox8d431650 stopped
Source not available
thread Ox8d431448 stopped
Source not available
thread Ox8d431240 stopped
Source not available
thread Ox8d431038 stopped
Source not available
thread Ox8d430e30 stopped
Source not available
thread Ox8d430c28 stopped
Source not available
thread Ox8d430a20 stopped
Source not available
thread Ox8d430818 stopped
Source not available
thread Ox8d430610 stopped
Source not available
thread Ox8d430408 stopped
Source not available
More (n if no)?
thread Ox8d430200 stopped
Source not available
thread Ox8d42fgeO stopped
Source not available

3-6 Crash Analysis Examples

at

at

at

at

at

at

at

at

at

at

at

at

at

[thread_block: 1289 +Ox18,OxfffffcOOO03394b8] \

[thread_block: 1289 +Ox18,OxfffffcOOO03394b8] \

[thread_block: 1305 +Oxl14,OxfffffcOOO033961c] \

[thread_block: 1305 +Oxl14,OxfffffcOOO033961c] \

[thread_block: 1289 +Ox18,OxfffffcOOO03394b8] \

[thread_block: 1289 +Ox18,OxfffffcOOO03394b8] \

[thread_block: 1289 +Ox18,OxfffffcOOO03394b8] \

[thread_block: 1289 +Ox18,OxfffffcOOO03394b8] \

[thread_block: 1289 +Ox18,OxfffffcOOO03394b8] \

[thread_run:1486 +Ox18,OxfffffcOOO03398eO] \

[thread_block: 1289 +Ox18,OxfffffcOOO03394b8] \

[thread_block: 1289 +Ox18,OxfffffcOOO03394b8] \

[thread_block: 1289 +Ox18,OxfffffcOOO03394b8] \

thread Ox8d42f7d8 stopped at
Source not available

[thread_block:1289 +Ox18,Oxfffffc00003394b8] \

thread Ox8d42f5dO stopped at
lable

[boot:696 ,Oxfffffc00003el19c] Source not avai\

thread Ox8d42f3c8 stopped at [thread_block: 1289 +Ox18,OxfffffcOOO03394b8]
Source not available
thread Ox8d42f1cO stopped at [thread_block: 1289 +Ox18,OxfffffcOOO03394b8]
Source not available
thread Ox8d42efb8 stopped at [thread_block: 1289 +OxI8,OxfffffcOOO03394b8]
Source not available
thread Ox8d42dd70 stopped at [thread_block: 1289 +OxI8,OxfffffcOOO03394b8]
Source not available
(dbx) tset Ox8d42f5dO ~
thread Ox8d42f5dO stopped at [boot:696 ,OxfffffcOOO03eI19c] Source not avail\
able
(dbx) t ~
> 0 boot(paniced = 0, arghowto = 0) [" .. / .. / .. / .. /src/kernel/arch/alpha/machdep\
.c":694, Oxfffffc00003el198]

1 panic(s = Oxfffffc000048a098 =" sp contents at time of fault: Ox%1016x\r\
\n\n") [" .. / .. / .. / .. /src/kernel/bsd/subr prf.c":1110, Oxfffffc00002beef4]

2 trap() [" .. / .. / •. / .. /src/kernel/arch/alpha/trap.c":677, Oxfffffc00003ecc70]
3 _XentMM() [" .. / .. / .• / .. /src/kernel/arch/alpha/locore.s":828, Oxfffffc00003df\

blc]
4 pmap release page(pa = 18446744071785586688) [" .. / .. / .. / .. /src/kernel/arch/a\

lpha/pmap.c":640-; Oxfffffc00003e3ecc]
5 put_free_ptepage(page = 5033216) [" .. / •. / .. / •. /src/kernel/arch/alpha/pmap.c"\

:534, Oxfffffc00003e3caO]
6 pmap_destroy(map = Oxffffffff8d5bc428) [" .. / .. / .. / •. /src/kernel/arch/alpha/p\

map.c":1891, Oxfffffc00003e6140]
7 vrn_map_deallocate(map = Oxffffffff81930eeO) [" .. / .. / .. / .. /src/kernel/vm/vrn_m\

ap.c":482, Oxfffffc00003d03cO]
8 task_deallocate(task = Oxffffffff8d568d48) [" .. / .. / .. / .. /src/kernel/kern/tas\

k.c":237, Oxfffffc000033cldc]
9 thread_deallocate(thread = Ox4e4360) [" .. / .. / .• / •. /src/kernel/kern/thread.c"\

:689, Oxfffffc000033d83c]
10 reaper_thread() [" .. / .. / .. / .. /src/kernel/kern/thread.c":1952, Oxfffffc000033\

e920]
11 reaper_thread() [" .. / .• / .. / .. /src/kernel/kern/thread.c":1901, Oxfffffc000033\

e8ac]
(dbx) q

III Print the panic string (panicstr) to view the panic message, if any.
This message indicates that a memory fault occurred.

121 Perform a stack trace of the current thread. Because this thread does not
show a call to the panic function, you need to look at other threads.

~ Examine the system's threads. The thread most likely to contain the
panic is the boot thread. If the boot thread does not exist, you will
need to examine every thread of every process in the process list.

~ Point dbx to the boot thread at address Ox8d42f5dO.

I§J In this example, the problem is in the function pmap _release _page
at line 640 of the file pma p . c.

Crash Analysis Examples 3-7

\

\

\

\

3.5 Identifying a Software Panic with the kdbx Debugger
This section contains two examples that show how to examine software
panics with kernel debugging tools.

Example 1:

kdbx -k vmunix.3 vmcore.3
dbx version 3.11.1
Type 'help' for help.

stopped at [boot:753 ,Oxfffffc00003c4b04] Source not available
(kdbx) sum rn
Hostname : decosf.dec.com
cpu: DEC3000 - M500 avail: 1
Boot-time: Mon Dec 14 12:06:31 1992
Time: Mon Dec 14 12:17:16 1992
Kernel: OSF1 release 1.2 version 1.2 (alpha)
(kdbx) p panicstri21
Oxfffffc0000453eaO = "wdir: compact2"
(kdbx) t ~
> 0 boot(paniced = 0, arghowto = 0) [" •• / .. / .. / .• /src/kernel/arch/alpha/machdep\
.c":753, Oxfffffc00003c4b04]

1 panic(s = Oxfffffc00002e0938 = "p") [" .. / •• / .. / .. /src/kernel/bsd/subr prf.c"\
:1119, Oxfffffc00002bdbbO] -

2 direnter(ip = OxffffffffOOOOOOOO, ndp = Oxffffffff9d38db60) [" .• / •. / •• / •• /sr\
c/kernel/ufs/ufs lookup.c":986, Oxfffffc00002e2adc]

3 ufs mkdir(ndp = Oxffffffff9d38a2f8, vap = Ox100000020) [" .. / .• / •• / .. /src/ker\
nel/ufs7ufs vnops.c":2383, Oxfffffc00002e9cbc]

4 mkdir(p-= Oxffffffff9c43d7cO, args = Oxffffffff9d38de50, retval = Oxffffffff\
9d38de40) [" •. / •• / •. / •• /src/kernel/vfs/vfs syscalls.c":2579, Oxfffffc00002fd930]

5 syscall(ep = Oxffffffff9d38def8, code ~ 136) [" .. / .• / .• / •. /src/kernel/arch/a\
Ipha/syscall trap.c":532, Oxfffffc00003cfa54]

6 _xsyscall() [" .• / .• / •. / •• /src/kernel/arch/alpha/locore.s":703, Oxfffffc00003\
c3200]
(kdbx) q
dbx (pid 29939) died. Exiting •••

III Use the kdbx debugger's sum command to get a summary of the
system.

~ Print the panic string (panicstr).

~ Perform a stack trace of the current thread block. The stack trace shows
that the direnter function, at line 986 in file ufs lookup. c, called
the panic function. -

You can also pull the same information from the crashdc utility output file
crash-data. 3. This file contains a significant amount of information
from the crash dump files. The following example shows the contents of the
crash-data file from the crash dumps in the previous example:

3-8 Crash Analysis Examples

more crash-data.3

CANASTA Data Collection (Version 1.2) for DEC OSF/1 V1.2

Modified for 64 bit 21064 ALPHA RISC platforms 8/1/92

crash data collection time: Mon Dec 14 12:25:26 EST 1992

-current directory: / -
-crash kernel: /var/adm/crash/vmunix.1
=crash=core: /var/adm/crash/vmcore.1

crash arch: alpha
-crash-os: DEC OSF/1
-host version: DEC OSF/1 T1.2-2
-crash version: DEC OSF/1 T1.2-2

(Rev. 5); Fri Dec 04 10:07:50 EST 1992
(Rev. 5); Fri Dec 04 10:07:50 EST 1992

dbx version 10.0.1
Type 'help' for help.

stopped at [boot:753 ,Oxfffffc00003c4b04]
crashtime: struct {

Source not available

tv sec = 724353436
tv usec = 136442

boottime: struct {
tv sec = 724352791
tv usec = 105408

_config: struct {
sysname = "OSF1"
nodename = "decosf.dec.com"
release "1.2"
version
machine

cpu: 30

"1.2"
"alpha"

=system_string: Oxfffffc000046e920
num cpus: 1

-physmem(MByteS): 192

"DEC3000 - M500"

-panic string: Oxfffffc0000453eaO = "wdir: compact2" I1l
[2] stack trace begin:

o boot(paniced = 0, arghowto = 0)
c":753, Oxfffffc00003c4b04]

[" .. / .• / .• / •. /src/kernel/arch/alpha/machdep.\

1 panic(s = Oxfffffc00002e0938 = "") [" •. / .. / .. / .. /src/kernel/bsd/subr_prf.c"\
:1119, Oxfffffc00002bdbbO]

2 direnter(ip = OxffffffffOOOOOOOO, ndp = Oxffffffff9d38db60) [" .. / .• / .• / .• /s\
rc/kernel/ufs/ufs lookup.c":986, Oxfffffc00002e2adc]

3 ufs mkdir(ndp-= Oxffffffff9d38a2f8, vap = Ox100000020) [" .. / .. / •. / .. /src/ke\
rnel/ufs/ufs vnops.c":2383, Oxfffffc00002e9cbc]

4 mkdir(p ~ Oxffffffff9c43d7cO, args = Oxffffffff9d38de50, retval = Oxfffffff\
f9d38de40) [" •. / .. / •. / .. /src/kernel/vfs/vfs syscalls.c":2579, Oxfffffc00002fd930

5 syscall(ep = Oxffffffff9d38def8, code =-136) [" .• / •. / •. / .. /src/kernel/arch/\
alpha/syscall trap.c":532, Oxfffffc00003cfa54]

6 _xsyscall() [" .. / •• / .. / •. /src/kernel/arch/alpha/locore.s":703, OxfffffcOOOO\
3c3200]
stack trace end:

-preserved message buffer begin: struct {
- msg_magic = 405601

msg bufx 1501
msg=bufr = 1457
msg bufc = "Alpha boot: available memory from Ox7f8000 to OxcOOOOOO

DEC OSF/1 T1.2-2 (Rev. 5); Fri Dec 04 10:07:50 EST 1992

Crash Analysis Examples 3-9

physical memory = 190.00 megabytes.
available memory = 173.96 megabytes.
using 729 buffers containing 5.69 megabytes of memory
tcO at nexus
sccO at tcO slot 7
ascO at tcO slot 6
rzO at ascO bus 0 target 0 lun 0 (DEC
rz1 at ascO bus 0 target 1 lun 0 (DEC
rz2 at ascO bus 0 target 2 lun 0 (DEC
rz3 at ascO bus 0 target 3 lun 0 (DEC
rz4 at ascO bus 0 target 4 lun 0 (DEC
asc1 at tcO slot 6
rz8 at asc1 bus 1 target 0 lun 0 (DEC
rz9 at asc1 bus 1 target 1 lun 0 (DEC
rz10 at asc1 bus 1 target 2 lun 0 (DEC
rz11 at asc1 bus 1 target 3 lun 0 (DEC
tz12 at asc1 bus 1 target 4 lun 0 (DEC
fbO at tcO slot 8
1280X1024
InO: DEC LANCE Module Name: PMAD-BA
InO at tcO slot 7

RZ25 (C) DEC 0700)
RZ25 (C) DEC 0700)
RZ25 (C) DEC 0700)
RZ25 (C) DEC 0700)
RRD42 (C) DEC 4.5d)

RZ57 (C) DEC 5000)
RZ57 (C) DEC 5000)

RZ57 (C) DEC 5000)
RZ57 (C) DEC 5000)
TLZ04 1989(C)DEC 1615)

InO: DEC LANCE Ethernet Interface, hardware address: 08:00:2b:2b:f6:3b
asc2 at tcO slot 0
asc3 at tcO slot 0
fzaO at tcO slot 2
fzaO: DEC DEFZA FDDI Interface, hardware address 08:00:2b:2c:20:ff ROM rev 1.0
Firmware rev 1.2
DEC3000 - M500 system
Firmware revision: 1.1
PALcode: OSF version 1.14
IvmO: configured.
Ivm1: configured.
setconf: bootdevice parser translated 'SCSI 0 6 0 0 0 0 FLAMG-IO' to 'rzO'
panic: wdir: compact2
syncing disks .•. done

preserved message buffer end:
=kernel_process_status_begin:

PID COMM
00000 kernel idle
00001 init
00002 device server
00003 exception hdlr
00090 sh
00057 cfgmgr
00059 update
00283 sh
00306 automount
00268 nfsd
00225 ypbind
00152 binlogd
00150 syslogd
00181 named
00161 routed
00222 ypserv
00218 portmap
00265 nfsd
00267 nfsd
00242 sendmail

3-10 Crash Analysis Examples

00243 mail
00263 mountd
00269 nfsd

00277 nfsiod
00280 rpc.statd
00282 rpc.lockd
00290 automount
00299 automount
00304 automount
kernel process status end:

-current pid: 306 -
-savedefp: (nil)
-ep: Ox11ffffab8
=uptime: .17 hours

Kdbx Output (swap, sum)

dbx version 10.0.1
Type 'help' for help.

stopped at [boot:753 ,Oxfffffc00003c4b04]
kdbx sum:

Hostname : decosf.dec.com
cpu: DEC3000 - M500 avail: 1
Boot-time: Mon Dec 14 12:06:31 1992
Time: Mon Dec 14 12:17:16 1992
Kernel: OSF1 release 1.2 version 1.2 (alpha)
_kdbx_swap:

Swap device name Size

Idev/rzOg 219648k
27456p

Idev/rz1c 416256k
52032p

Total swap partitions: 2 635904k

79488p

crash data collection finished: - - -

Source not available
[6J

IZl

In Use Free
---------- ----------

6824k 212824k
853p 26603p

8k 416248k
1p 52031p

---------- ----------
6832k 629072k
854p 78634p

[.1] Contents of the panic string global variable (panicstr)

121 Stack trace of the current thread block

[3] Contents of the preserved message buffer (prns g bu f)

~ Output from the dbx debugger's kps command

15] The process identifier (PID)

I§J Output from the kdbx debugger's s urn command

11.1 Output from the kdbx debugger's swap command

Dumpdev

Crash Analysis Examples 3-11

Example 2:

kdbx -k vmunix.4 vmcore.4
dbx version 3.11.1
Type 'help' for help.

stopped at [boot:799 ,Oxfffffc0000373488] Source not available
(kdbx) p panicstr ffi
Oxfffffc0000401ce8 = "blkfree: freeing free frag"
(kdbx) t ~
> 0 boot(reason = 0, arghowto = 0) [" .. / .. / .. / •. /src/kernel/arch/alpha/machdep.c\
":799, Oxfffffc0000373488]

1 panic(s = Oxfffffc0000401ce8 = "blkfree: freeing free frag") [" .. / .• / .. / •. /s\
rc/kernel/bsd/subr prf.c":1132, Oxfffffc000026ddbc]

2 blkfree(ip = Oxffffffff8d1l79c8, bno = 4547232, size = 2048) [" .. / •. / •. / .• /s\
rc/kernel/ufs/ufs alloc.c":1331, Oxfffffc000028cc78]

3 itrunc(oip = Oxffffffff8c728620, length = 0, flags = 22) [" .. / •. / .• / •• /src/k\
ernel/ufs/ufs inode.c":1600, Oxfffffc0000291638]

4 ufs_inactlve(vp = Oxffffffff8c728570) [" .. / •• / .. / .. /src/kernel/ufs/ufs_inode\
.c":911, Oxfffffc0000290694]

5 vrele(vp = Oxfffffc00002ac504) [" .. / •. / .. / .. /src/kernel/vfs/vfs_subr.c":954,\
Oxfffffc00002a9c40]

6 iput(ip = Oxfffffc0000290504) [" •• / •. / .. / .. /src/kernel/ufs/ufs inode.c":760,\
Oxfffffc0000290500] -

7 ufs_remove(ndp = Oxffffffff8dl142f8) [" .. / .. / .. / .. /src/kernel/ufs/ufs_vnops.\
c":1717, Oxfffffc0000298e58]

8 unlink(p = Oxffffffff8c76fc70, args = Oxffffffff8dl17e50, retval = Oxfffffff\
f8dl17e40) [" •• / .• / •. / .. /src/kernel/vfs/vfs syscalls.c":1630, Oxfffffc00002acOOO]

9 syscall(ep = Oxffffffff8dl17ef8, code =-10) [" •. / .• / .. / .• /src/kernel/arch/al\
pha/syscall trap.c":576, Oxfffffc000037e838]

10 xsyscall() [" •. / .. / .. / .• /src/kernel/arch/alpha/locore.s":710, Oxfffffc00003\
71bOO]
(kdbx) q
dbx (pid 160) died. Exiting •..

ill Print the panic string (panicstr). The blkfree function called the
panic function.

12.1 Perform a stack trace of the current thread block. The stack trace shows
that the blkfree function at line 1132 in the ufs alloc. c file called
the panic function.

3.6 Identifying a Hardware Error with kdbx Debugger
The following example shows a method for identifying a hardware error
using the kdbx debugger:

kdbx -k vmunix.5 vmcore.5
dbx version 3.11.1
Type 'help' for help.

stopped at [boot:753 ,Oxfffffc00003c4b04] Source not available
(kdbx) sum ffi
Hostname : decosf.dec.com
cpu: DEC3000 - M500 avail: 1
Boot-time: Thu Jan 7 08:12:30 1993

3-12 Crash Analysis Examples

Time: Thu Jan 7 08:13:23 1993
Kernel: OSF1 release 1.2 version 1.2 (alpha)
(kdbx) p panicstr ~
Oxfffffc0000471030 = "ECC Error"
(kdbx) t ~
> 0 boot(paniced = 0, arghowto = 0) [" .. I •• I .. I •. /src/kernel/arch/alpha/machdep.\
c":753, Oxfffffc00003c4b04]

1 panic(s = Ox670) [" .. I .. I .• I .. /src/kernel/bsd/subr prf.c":1119, Oxfffffc00002\
bdbbO] -

2 kn15aa machcheck(type = 1648, cmcf = OxfffffcOOOOOf8050 = "", framep = Oxffff\
ffff94f7gef8) [" •. I .. I .. I .. /src/kernel/arch/alpha/hal/kn15aa.c":1269, OxfffffcOOO\
03da62c]

3 mach error(type = -1795711240, phys logout = Ox3, regs = Ox6) [" .. I .• I .. I •• /s\
rc/kernel/arch/alpha/hal/cpusw.c":323, Oxfffffc00003d7dcO]

4 _Xentlnt() [" .. I .. I .. I .. /src/kernel/arch/alpha/locore.s":609, Oxfffffc00003c3\
148]
(kdbx) q
dbx (pid 337) died. Exiting ..•

III Use the kdbx debugger's s urn command to get a summary of the
system.

121 Print the panic string (panicstr).

I3J Perform a stack trace. Because the kn15aa rnachcheck function
called the panic function, the system crash-was probably the result of a
hardware error.

Crash Analysis Examples 3-13

Writing Extensions to the kdbx 4
Debugger

To assist in debugging a kernel or subsystem, you can write an extension to
the kdbx debugger. Extensions interact with kdbx and enable you to
examine kernel data relevant to debugging the source program. This chapter
provides instructions on creating and compiling extensions and includes
template extension files and source programs for extensions included on the
system.

The DEC OSFIl source kit must be installed on your system before you can
create custom extensions to the kdbx debugger. If the source kit is installed,
you can create an extension in the src/usr/bin/kdbx/extensions
directory of the source kit directory structure and add the name to the
Makefile in that directory to be able to build an extension. See Section 4.4
for more information.

Note

For the remainder of this chapter, the relative pathname • I refers
to the top the source kit directory structure. For example, if you
installed the source kit in the lusr I source kit directory,
the relative pathname ./src/usr/bin/kdbx/extensions
refers to the directory
lusrlsource kit/src/usr/bin/kdbx/extensions.

4.1 Considerations and Guidelines
Before writing an extension, you need to consider the following:

• The information that is needed

You need to identify the information that is relevant to the debugging
process. Look at the source code to determine which variables and
symbols to use and examine in coding the extension.

• The means for displaying the information

The information you gather should be displayed in a manner that is easy
to read and can be understood by anyone who needs to use the extension.

• The need to provide useful error checking

As with any good program, it is important to provide informational error
messages in the extension.

• The availability of kdbx library functions

The kdbx debugger comes with a number of standard library functions
that you can use in your extension program. These functions are declared
in the file. / sre/usr /bin/kdbx/krash. h. Section 4.2 gives the
syntax and briefly describes each library routine.

• The availability of templates and examples discussed in this chapter and
the extensions in the source tree as a basis for writing extensions

This chapter includes two template files and three examples to use as
guidelines for creating your extension program. These examples are
annotated to highlight certain features of the programs.

4.2 Standard kdbx Library Functions
The kdbx debugger provides a number of library functions that are used by
the resident extensions. You can use these functions (which are declared in
the file. / sre /usr /bin/kdbx/krash. h) to develop customized
extensions for your application or subsystem. The following section provides
a list of these functions, their syntax, and a brief description.

4.2.1 Standard kdbx Library Functions
The following list describes the standard kdbx library functions:

Argument Input/Output

addr Input

The addr to proe () function returns the name of the procedure that
begins at address addr. If the address is not the beginning of a procedure,
then a string representation of addr is returned. The return value is
dynammically allocated by malloe and should be freed by the extension
when it is no longer needed.

4-2 Writing Extensions to the kdbx Debugger

Usage:
conf 1 = addcto_proc«long) bus_fields[3].data);
conf2 = addr_to_proc«(long) bus_fields[4].data);
sprintf(buf, "Config 1 - %sConfig 2 - %s", confI, conf2);
free(confI);
free(conf2);

array _element

DataStruct array_element(DataStruct sym, int i, char ** errol};

Argument Input/Output

sym Input
Input

error Output

The array element () function returns a representation of the ith
element of the array sym. Returns non-NULL if it succeeded or NULL if an
error occurred. When the value of error is non-NULL, the error argument
is set to point to the error message.

As shown in Example 4-4, the array element () function is usually used
with the read field vals () functIon. You use the
array element () function to get a representation of an array element
that is astructure or pointer to a structure. You then pass this representation
to the read_field_vals() function to get the values of fields inside the
structure.

The first argument of the array element () function usually comes from
the returned result of the read _ sym () function.

Note

The read sym (), array element (), and
read field vals () functions are often used together to
retrieve the vaiues of an array of structures pointed to by a global
pointer (see also read _ sym ()).

Writing Extensions to the kdbx Debugger 4-3

Usage:
if ((ele = array _element(sz_softc, cntrl, &error») == NULL) {

fprintf(stderr, "Couldn't get %d'th element of sz_softc:\n, cntrl");
fprintf(stderr, "%s\n", error);

Boolean array_element_val(DataStruct sym, int i, long * e/e_ret, char
** errol};

Argument Input/Output

sym Input
Input
Output
Output

i
ele_ret
error

The array element val () function returns, in ele ret, the value of
element i inarray sym~Returns TRUE if successful, FALSE otherwise.
When the value of error is non-NULL, the error argument is set to point to
the error message.

You use the array element val () function when the array element is
of a basic C type. You also use this function if the array element is of a
pointer type and the pointer value is what you actually want. This function
returns a printable value.

The first argument of the array element val () function usually comes
from the returned result of the read _ s ym () function.

Usage:
static char get_ele(array, i)
DataStruct array;
int i;
{

}

char *error, ret;
long val;

if (tarray_elemenCval(array, i, &val, &error) {
fprintf(stderr, "Couldn't read array element:\n");
fprintf(stderr, "%s\n", error);
quit(l) ;

}
ret = val;
return(ret);

4-4 Writing Extensions to the kdbx Debugger

array_size

cast

unsigned int array_size(DataStruct sym, char **error);

Argument Input/Output

sym Input
error Output

The array size () function returns the size of the array described by
sym. Whenthe value of error is non-NULL, the error argument is set to
point to the error message.

Usage:

busses = read sym("bus list");
if ((n = array_Sfze(busses, &error») == -1) {

fprintf(stderr, "Couldn't call array size:\n");
fprintf(stderr, "%s\n", error); -
quit(l);

}

Boolean cast(long addr, char * type, DataStruct * reLtype, char ** errol};

Argument

addr
type
ret_type
error

Input/Output

Input
Input
Output
Output

The cast () function returns, in ret type, a DataStruct that
represents an object whose type is type and whose address is addr. If
successful, TRUE is returned. Otherwise, error is filled in and FALSE is
returned. When the value of error is non-NULL, the error argument is set
to point to the error message.

The cast () function is usually used with the read field vals ()
function. Given the value of a pointer to a structure, first you use the
cast () function to convert the pointer from the type long to the type
DataStruct. Then you pass the result to the read field vals ()
function, as its first argument, to retrieve the values of data-fields in the
structure pointed to by the pointer.

Writing Extensions to the kdbx Debugger 4-5

Usage:

if (1 cast(addr, "struct file", &fil, &error» {
fprintf(stderr, "Couldn't cast address to a file:\n");
fprintf(stderr, "%s\n", error);
quit(l);

}

void check_args(int argc, char ** argv, char * help_string);

Argument

argc
argv
help_string

Input/Output

Input
Input
Input

The check args () function displays the contents of help string if
the -help option is specified in the command line. The check args
function should be the first action performed by an extension. -

Usage:
check_args(argc, argv, help_string);
if(lcheck fields("struct sz softc", fields, NUM_FIELDS, NULL»{

field errors(fields, NUM FIELDS);
quit(l); -

}

Boolean check_fields(char * symbol, FieldRec * fields, int nfields, char
** hints);

Argument

symbol
fields
nfields
hints

Input/Output

Input
Input
Input
Input

The check fields () function verifies that the structure described by
symbol contains the fields described in fields and that they are of the
correct type. The nfields argument is the size of the fields array. If

4-6 Writing Extensions to the kdbx Debugger

successful, TRUE is returned. Otherwise, the error parts of the affected fields
are filled in with errors, and FALSE is returned. The hints argument is
unused and should always be set to NULL.

Usage:
check args(argc, argv, help string);
if (! check_fields("struct sz_softc", fields, NUM_FIELDS, NULL) {

field errors(fields, NUM FIELDS);
quit(l); -

}

You should check the structure type using the check fields () function
before using the read field vals () function to read field values of this
structure type. The check fields () function needs to be used only once.
Even though you may use the read field vals () function repeatedly
inside a loop, the check fields () function needs to be invoked only
once before the loop. -

Therefore, a normal practice is to invoke, in the beginning of the extension,
the check fields () function to verify the structure type that the
extension isgoing to read values from using the read field vals ()
function. - -

context

void context(Boolean user);

Argument Input/Output

user Input

The context () function directs kdbx to set user context or proc
context, depending on whether user is set to TRUE or FALSE. If user is
TRUE, aliases defined in the extension affect user aliases.

Usage:

if(head) print(head);
context(True) i
for(i=O;i<len;i++){

Writing Extensions to the kdbx Debugger 4-7

dbx

void dbx(char * command, Boolean expecLoutput);

Argument

command
expeccoutput

Input/Output

Input
Input

The dbx () function directs kdbx to pass the command to dbx. If
expect output is TRUE, the procedure returns after the command is
sent, andexpects the extension to read the output from dbx. If it is FALSE,
the procedure expects no output, reads the acknowledgement from kdbx, and
returns after the command ends.

Usage:
dbx(out, True);
if((buf = read_response(&status»

print status ("main", &status);
quit(l) ;

}
else {

}

process buf(buf);
quit(O);

NULL) {

deref_poi nter

DataStruct deref_pointer(DataStruct data);

Argument Input/Output

data Input

The deref pointer () function returns a representation of the object to
which data-points. It prints an error message if data is not a pointer type.

Usage:
structure = dereCpointer(strucCpointer);

4-8 Writing Extensions to the kdbx Debugger

void field_errors(FieldRec * fields, int nfields);

Argument

fields
nfields

Input/Output

Input
Input

The field_errors () function prints out error messages in fields.

Usage:
if(!read field vals(proc, fields, NUM_FIELDS»{

field_errors(fields, NUM_FIELDS);
return(False);

}

extern char *format_addr(long addr, char * buffet);

Argument

addr
buffer

Input/Output

Input
Output

The format addr () function puts a representation of addr into
buffer. The buffer argument must be at least 12 characters long.

The format addr () function converts a 64-bit address of type long into a
32-bit addressof type string. It is used to save space on the output line. For
example, the 64-bit address Oxf f f f f f f f 12 345678 is converted into
vOx12345678.

Usage:
static Boolean prfile(DataStruct ele, long vn_addr, long socket_addr)
{

char *error, op_buf[12], *ops, buf[256], address[12], cred[12], data[12];

if(!read field vals(ele, fields, NUM FIELDS»{
field_errors(fields, NUM_FIELDS); -
return(False);

}

if«long) fields[l].data == 0) return(True);
if«long) (fields[5].data) == 0) ops =" *Null* ";
else if«long) (fields[5].data) == vn_addr) ops =" vnops "i

Writing Extensions to the kdbx Debugger 4-9

else if((long) (fields[5].data~ == socket addr) ops "socketops";
else formaCaddr«long) fields[5].data, op_buf); -
formaCaddr«long) strucCaddr(ele), address);
formaCaddr«long) fields[2].data, cred);
formaCaddr((long) fields[3].data, data);
sprintf(buf, "Is %s %4d %4d %s %s %s %6d %s%s%s%s%s%s%s%s%s",

address, get type((int) fields[O].data), fields[l].data,
fields[2].data, ops, cred, data, fields[6].data,
((long) fields[7].data) & FREAD? " read" : "",
((long) fields [7] • data) & FWRITE ? " write" :
((long) fields[7].data) & FAPPEND ? " append" : "",
((long) fields[7].data) & FNDELAY ? " ndelay" : "",
((long) fields[7].data) & FMARK ? " mark" :
((long) fields[7].data) & FDEFER ? " defer" : "",
((long) fields[7].data) & FASYNC ? " async" : "",
((long) fielda[7].data) & FSHLOCK ? " shIck"
((long) fields[7].data) & FEXLOCK ? " exlck" : "H);

print(buf);
return(True);

krash

void free_sym(DataStruct sym);

Argument Input/Output

sym Input

The free _ sym() function frees the storage associated with sym.

Usage:
free_sym(rec->data) ;

void krash(char * command, Boolean quote, Boolean expecLoutput);

Argument

command
quote
expecCoutput

Input/Output

Input
Input
Input

The krash () function causes kdbx to evaluate command. Setting quote
to TRUE causes the characters quote ("), apostrophe (,), and backslash (\)
to be appropriately quoted. If expect_output is TRUE, then the

4-10 Writing Extensions to the kdbx Debugger

procedure returns after the command is sent and expects the extension to read
the output from kdbx. If it is FALSE, the procedure expects no output,
reads the acknowledgement from kdbx, and returns after the command ends.

Usage:
if(doit}{
format (command, buf, type, addr, last, i, next};
context(True};
krash(buf, False, True);
while((line = read line(&status}} 1= NULL} {

print(line}; -
free(line};

}

Boolean list_nth_cell(long addr, char * type, int n,char * nexLfield,
Boolean do_check, long * vaLret,
char ** errol};

Argument Input/Output

addr Input
type Input
n Input
nextJield Input
do_check Input
va Lret Output
error Output

The list nth cell () function returns, in val ret, the address of cell
n in the list descnbed by the start address addr, of'ihe cell type type, and
the name of next field next field. If the routine succeeds, it returns
TRUE. If the routine fails, itreturns FALSE and an error message is returned
in error. If the argument do check is set to TRUE, the routine validates
each of the arguments to ensurethat correct information is being supplied. If
the argument is FALSE, no checking is done.

Usage:
if (!lisCnth_cell(rooCaddr, "struct mount", i, "m_next", True, &addr,

&error» {
fprintf(stderr, "Couldn't get %d'th element of mount table\n", i);
fprintf(stderr, "%s\n", error);
quit(l);

Writing Extensions to the kdbx Debugger 4-11

void new_proc(char * args, char ** outpuLret);

Argument Input/Output

args
outpuCret

Input
Output

The new proc () function directs kdbx to execute a proc command with
arguments specified in args. If output ret is non-NULL, the output
from the command is returned in *output ret. Otherwise, the output is
lost. -

Usage:

static void prmap(long addr)
{

}

char cast_addr[36], buf[2S6], *resp;

sprintf(cast addr, "«struct\ vm map_t\ *)\ OX%p)", addr);
sprintf(buf,-lIprintf

cast addr);
new _proc(buf, &resp);
print(resp);
free(resp);

Boolean next_number(char * but, char ** next, long * ret);

Argument Input/Output

buf Input
next Output
ret Output

The next number () function converts the next token in buf to an integer
and returnS-it in ret. If next is non-NULL, it is set to point in buf after
the number. Returns TRUE if successful, FALSE if there was an error.

4-12 Writing Extensions to the kdbx Debugger

Usage:

resp = read response status();
nexCnumber(resp, NULL, &size);
ret->size = size;

char *next_token(char * ptr, int * len_ret, char ** nexLret);

Argument

ptr
len_ret
nexCret

Input/Output

Input
Output
Output

The next token () function returns a pointer to the beginning of the next
token in ptr. A token is a sequence of nonspace characters. If len ret is
non-NULL, the token length is returned in it. If next ret is non-NULL, a
pointer to the first character after, but not included in the token, is returned in
it.

Usage:
static long *parse_memory(char *buf, int offset, int size)
{

long *buffer, *ret;
int index, len;
char *ptr, *token, *next;

NEW_TYPE(buffer, offset + size, long, long *, "parse_memory");
ret = buffer;
index = offset;
ptr = buf;
while(index < offset + size){

if ((token = nexCtoken(ptr, &len, &next)) NULL) {

}

ret = NULL;
break;

ptr = next;
if(token[len - 1] == ':') continue;
buffer[index] = strtoul(token, &ptr, 16);
if(ptr != &token[len]){

ret = NULL;
break;

index++;

if(ret == NULL) free(buffer);
return(ret);

Writing Extensions to the kdbx Debugger 4-13

print

void print(char * message);

Argument Input/Output

message Input

The print () function directs kdbx to print message.

Because of the 110 redirection done by kdbx, all output to stdout from a
kdbx extension goes to dbx. As a result, a kdbx extension cannot use
normal C output functions such as printf () and fprintf (stdout, ...)
to output information on the screen. Although the fprintf (stderr, ...)
is still available, the recommended method is to first use the sprintf ()
function to print the output into a character buffer and then use the kdbx
library function print () to output the contents of the buffer to the screen.

Note that the print () library function automatically prints a newline at the
end of the output and that it will fail if it detects a newline character at the
end of the buffer.

Usage:
if(do short){

if (rcheck_fields ("struct mount", short_mount_fields,
NUM SHORT MOUNT FIELDS, NULL»{

field errors(short-mount-fields, NUM SHORT MOUNT FIELDS);
quit(l); - - - - -

}
print("SLOT MAJ MIN TYPE DEVICE MOUNT POINT");

}

void print_status(char * message, Status * status);

Argument Input/Output

message Input
status Input

The print_status () function prints a representation of status with
message.

4-14 Writing Extensions to the kdbx Debugger

quit

Usage:

if(status.type != OK){
prinCstatus("read_line failed", &status);
quit(l);

}

void quit(int I);

Argument Input/Output

Input

The quit () function sends a quit command to kdbx and exits with status
i.

Usage:

if (!read sym val("vm swap head", NUMBER, &end, &error)) {
fprintf(stderr, "Couldn't read vm swap head:\n");
fprintf(stderr, "%s\n", error); - -
quit(1) ;

}

Boolean read_field_vals(DataStruct data, FieldRec * fields, int nfields);

Argument

data
fields
nfields

Input/Output

Input
Input
Input

The read field vals () function reads the values of fields of the
structure described by data. The fields are described in fields. The
argument nfields is the size of the fields array. If this is successful, then
the data parts of the fields are filled in and TRUE is returned. Otherwise, the
error parts of the affected fields are filled in with errors and FALSE is
returned.

Writing Extensions to the kdbx Debugger 4-15

Usage:
if (! read_field_ vals(pager, fields, nfields) {

field errors(fields, nfields);
return(False);

}

read line

char *read_line(Status * status);

Argument Input/Output

status Output

The read 1 ine () function returns the next line of the output from the last
kdbx command executed. NULL is returned at the end of the output or if an
error occurred. If status equals OK when it returns NULL, then the end
of the output was reached. Otherwise, an error occurred.

Usage:
while ((line = read_line(&status) ! = NULL) {

print(line);
free(line);

}

Boolean read_memory(long starLaddr, int n, char * but, char ** errOl)

Argument Input/Output

starCaddr Input
n Input
buf Output
error Output

This routine returns the contents of n bytes of memory starting at the address
start addr. It can be used to look up any type of value. The
read memory () function returns True (l) on success and False (0) on
failure~

This function is useful in retrieving the values of pointers that point to other
pointers.

4-16 Writing Extensions to the kdbx Debugger

Usage:
start addr = (long) «long *)utask fields[7].data + i-NOFILE IN U);
if(!read_memory(starCaddr, sizeof(long *), (char *)&vall, &error) II - -

! read_memory((long)utask_fields[8].data, sizeof(long *), (char *)&vaI2,
&error»{
fprintf(stderr, "Couldn't read_rnernoryO);
fprintf(stderr, "%sO, error);
quit(l);

read_response

char *read_response(Status * status);

Argument Input/Output

status Output

The read response () function returns the response from the last kdbx
command executed. If any errors occurred, NULL is returned and status,
if it is a non-NULL pointer, is filled in.

Usage:

if(!*argv) Usage();
command = argv;
if (size == O){

}

sprintf(buf, "print sizeof(*«%s) 0»", type);
dbx(buf, True);
if ((resp = read_response(&status» == NULL) {

}

print status("Couldn't read sizeof", &status);
quit (1) ;

size = strtoul(resp, &ptr, 0);
if(ptr == resp){

}

fprintf(stderr, "Couldn't parse sizeof(%s):O, type);
quit(l);

free(resp) ;

read_sym

DataStruct read_sym(char * name);

Writing Extensions to the kdbx Debugger 4-17

Argument Input/Output

name Input

The read sym() function returns a representation of the symbol name.
The symbOl name is normally a global pointer to a structure or an array of
structures inside the kernel. Often the result returned by the read sym ()
function is then used as the input argument of the array element (),
array_element_val (), or read_field_vals () function.

Usage:
busses = read_sym("bus_list");

Boolean read_sym_addr(char * name, long * feL val, char ** errol);

Argument Input/Output

name Input
recval Output
error Output

The read sym addr () function returns the address of name in
ret val:-When the value of error is non-NULL, the error argument is
set to point to the error message.

Usage:
if(argc == 0) fil = read sym("file");
if(tread sym val("nfile"~ NUMBER, &nfile, &error) II

! read_sym_addr("vnopsII , &vn_addr, &error) II

}

! read_sym_addr("socketops", &sockeCaddr, &error) {
fprintf(stderr, "Couldn't read nfile:\n");
fprintf(stderr, "%s\n", error);
quit(l);

Boolean read_sym_ val(char * name, int type, long * feL val, char ** errol);

4-18 Writing Extensions to the kdbx Debugger

Argument Input/Output

name
type
recval
error

Input
Input
Output
Output

The read sym val () function returns the value of the symbol name.
The type argument is the expected type of the value. The ret val
argument is filled in with the value. When the value of error is non-NULL,
the error argument is set to point to the error message.

Usage:
if(argc == 0) fil = read sym("file");
if (!read_sym_vaI("nfile", NUMBER, &nfile, &error) II

!read_sym_addr("vnops" , &vn_addr, &error) II

}

tread sym addr("socketops", &socket addr, &error»{
fprintf(stderr, "Couldn't read nfile:\n");
fprintf(stderr, "%s\n", error);
quit(l);

The read sym val () function is used to retrieve the value of a global
variable. The value returned by the read sym val () function has the
type long, unlike the value returned by the-read sym () function which has
the type DataStruct. -

char *struct_addr(DataStruct data);

Argument Input/Output

data Input

The struct_addr() function returns the address of data.

Usage:
if(bus fields[l].data 1= O){

sprintf(buf, "Bus #%d (Ox%p): Name - \"%s\"\tConnected to - \"%s\"",
i, strucCaddr(bus), bus fields[l].data, bus fields[2].data);

print(buf); - -
sprintf(buf, "\tConfig 1 - %s\tConfig 2 - %s",

addr to proc«long) bus fields[3].data),
addr-to-proc«long) bus-fields[4].data»;

print(buf); - - -
if(1prctlr«long) bus_fields[O].data» quit(l);

Writing Extensions to the kdbx Debugger 4-19

print("");

Boolean to_number(char * sfr, long * va~;

Argument Input/Output

str Input
val Output

The to number () function converts str to a number. Returns TRUE if
successful, FALSE if conversion was not possible.

Usage:
check args(argc, argv, help_string);
if(argc < 5) Usage();
size = 0;
type = argv[l];
if (!to_number(argv[2], &len) Usage () ;
addr = strtoul(argv[3], &ptr, 16);
if(*ptr 1= '\O'){

}

if(1read sym val(argv[3], NUMBER, &addr, &error»{
fprintf(stderr, "Couldn't read %s:\n", argv[3]);
fprintf(stderr, "%s\n", error);
Usage() ;

}

4.2.2 Standard kdbx Extension Data Types
The routines in Section 4.2.1 use the following data types: StatusType,
Status, FieldRec, and DataStruct. The uses of these data types are
as follows:

• Status Type - used to declare the status type, which can take on anyone
of the following values:

No error - (OK)

- Communication error - (Corom)

- Other type of error - (Local)

4-20 Writing Extensions to the kdbx Debugger

Usage:

typedef enum { OK, Corom, Local } StatusType;

• Status - returned by some library routines to inform the caller of the
status of the call. Library routines using this data type fill in the type
field with the call status from StatusType. Upon return, callers check
the type field, and if it is not set to OK, they can pass the Status
structure to the print_status routine to generate a detailed error
message.

Usage:
typedef struct

Status Type type;
union {

int corom;
int local;
u;

} Status;

The values in corom and local provide the error code interpreted by
print_status.

• FieldRec - used to declare a field of interest in a data structure.

Usage:

typedef struct {
char *name;
int type;
caddr_t data;
char *error;

} FieldRec;

The char * name declaration is the name of the field in question. The
int type declaration is the type of the field (for example, NUMBER,
STRUCTURE, POINTER). The declarations caddr t data and char
*error are initially set to NULL. The read field vals function
fills in these values. - -

• DataStruct - used to declare data structures with opaque data types.

Usage:

typedef long DataStruct;

4.3 Examples of kdbx Extensions
This section contains examples of the three types of extensions provided by
the kdbx debugger:

Writing Extensions to the kdbx Debugger 4-21

• Extensions that use lists. Example 4-1 provides a C language template
and Example 4-2 is the source code for the /var /kdbx/ callout
extension, which shows how to use linked lists in developing an
extension.

• Extensions that use arrays. Example 4-3 provides a C language template
and Example 4-4 is the source code for the /var/kdbx/file
extension, which shows how to develop an extension utilizing arrays.

• Extensions that use global symbols. Example 4-5 is the source code for
the /var /kdbx/ sum extensions, which shows how to pull global
symbols from the kernel. A template is not provided because the means
for pulling global symbols from a kernel can vary greatly, depending
upon the desired output.

Example 4-1: Template Extension Using Lists

static char *help string
"<Usage info goes here> \\\n\ ill
n;

FieldRec fields[] = {

} ;

{ ". <name of next field> ", NUMBER, NULL, NULL }, ~
<data fields>

#define NUM_FIELDS (sizeof(fields)/sizeof(fields[O]))

main(argc, argv)
int argc;
char **argv;
{

DataStruct head;
unsigned int next;
char buf[256], *func, *error;

check args(argc, argv, help string);
if (! check fields ("<name of liststructure>", fields, NUM _FIELDS, NULL)) { ~

field errors(fields, NUM FIELDS);
quit(l); -

}
if (! read sym val ("<name of list head>", NUMBER, (caddr _ t *) &next, &error)) { ~

fprintf(stderr, "%s\n", error);
quit(l);

}
sprintf (buf, "<table header>"); ~
print(buf);
do {

if(!cast(next, "<name of list structure>" , &head, &error)){ I§]
fprintf (stderr, "Couldn' t cast to a <struct>: \n"); IZI
fprintf(stderr, "%s:\n", error);

}
if(!read field vals(head, fields, NUM FIELDS)){

field errors(fields, NUM FIELDS); -
break; -

4-22 Writing Extensions to the kdbx Debugger

Example 4-1: (continued)
<print data in this list cell> 181
next = (int) fields[O).data;

} while(next 1= 0);
quit(O);

[j] The help string is output by the check args function if the user issues
the help extension name command at the kdbx prompt. The first
line of the help string should be a one-line description of the extension.
The rest should be a complete description of the arguments. Also, each
line should end with the string \ \ \ n \.

121 Every structure field that will be extracted needs an entry. The first field
is the name of the next extracted field; the second field is the type. The
last two fields are for output and initialize to NULL.

~ Specifies the type of the list that is being traversed.

~ Specifies the variable that holds the head of the list.

I5l Specifies the table header string.

[§] Specifies the type of the list that is being traversed.

IZI Specifies the structure type.

~ Extracts, formats, and prints the field information.

Example 4-2: Extension that uses linked lists: callout.c

#include <stdio.h>
#include "krash.h"

static char *help string =
"callout - print the callout table

Usage : callout
" . ,
FieldRec fields[) =

};

".c_time", NUMBER, NULL, NULL },
".c_arg", NUMBER, NULL, NULL },
" . c _ func", NUMBER, NULL, NULL },
".c_next", NUMBER, NULL, NULL },

#define NUM_FIELDS (sizeof(fields)/sizeof(fields[O]))

main(int argc, char **argv)
{

DataStruct callout;
long next;
char buf[256), *func, *error, arg[13];

check args(argc, argv, help string);
if(1 check fields("struct callout", fields, NUM_FIELDS, NULL)){

field_errors (fields, NUM_FIELDS);

\\\n\
\\\n\

Writing Extensions to the kdbx Debugger 4-23

Example 4-2: (continued)
quit(l);

if(!read sym val("callout", NUMBER, &next, &error»{
fprintf(stderr, "%s\n", error);
quit(l);

}
sprintf (buf, "FUNCTION ARGUMENT
print(buf);
do {

if(!cast(next, "struct callout", &callout, &error»{
fprintf(stderr, "Couldn't cast to a callout:\n");
fprintf(stderr, "%s:\n", error);

}
if(!read field vals(callout, fields, NUM_FIELDS»{

field_errors(fields, NUM_FIELDS);
break;

func = addr to proc((long) fields[2).data);
format addr((long) fields[l).data, arg);
sprintf(buf, "%-32.32s %s %lOu", func, arg,

fields [0) . data) ;
print(buf);
next = (long) fields[3).data;

} while(next != 0);
quit(0);

Example 4-3: Template Extensions Using Arrays

static char *help_string
"<Usage info>
" . ,
FieldRec fields[]

<data fields> l2l
} ;

#define NUM FIELDS (sizeof(fields)/sizeof(fields[O]))

main(argc, argyl
int argc;
char **argv;
{

int i, size;
char *error, *ptr;
DataStruct head, ele;

check args(argc, argv, help string);

TIME") ;

\\\n\ ill

if (! check fields ("<array element type>", fie Ids, NUM _FIELDS, NULL)) { @I
field errors(fields, NUM FIELDS);
quit (1); -

}
if (argc == 0) head = read sym(" <.file>") ; ~
if (! read sym val ("<symbol containing size of array>", NUMBER, ~

- (~~addr_t *). &size, &error) II

4-24 Writing Extensions to the kdbx Debugger

Example 4-3: (continued)

}

}

fprintf(stderr, "Couldn't read size:\n");
fprintf(stderr, "%s\n", error);
quit(l);

<print header> I§]
if(argc == O){

}

for(i=O;i<size;i++){

}

if((ele = array element(head, i, &error)) == NULL) {
fprintf(stderr, 7rCouldn't get array elementO);
fprintf(stderr, "%sO, error);
return(False);

}
<print fields in this element> 1ZI

I1J The help string is output by the check args function if the user issues
the help extension name command at the kdbx prompt. The first
line of the help string should be a one-line description of the extension.
The rest should be a complete description of the arguments. Also, each
line should end with the string \ \ \ n \.

121 Every structure field that will be extracted needs an entry. The first field
is the name of the next extracted field; the second field is the type. The
last two fields are for output and initialize to NULL.

13] Specifies the type of the element in the array.

~ Specifies the variable containing the beginning address of the array.

151 Specifies the variable containing the size of the array. Note that reading
variables is only one way to access this information. Other methods
include the following:

- Defining the array size with a # de fine macro call. If you use this
method, you need to include the appropriate header file and use the
macro in the extension.

- Querying dbx for the array size as follows:

dbx("printsizeof (array/ Isizeof (array [0]")

Hardcoding the array size.

I§I Specifies the table header string.

IZ1 Extracts, formats, and prints the field information.

Writing Extensions to the kdbx Debugger 4-25

Example 4-4: Extension that uses arrays: file.c .

#include <stdio.h>
#include <sys/fcntl.h>
#include "krash.h"

static char *help string
"file - print out-the file table \\\n\

" . ,

Usage: file [addresses .••] \\\n\
If no arguments are present, all file entries with non-zero reference \\\n\
counts are printed. Otherwise, the file entries named by the addresses\\\n\
are printed. \\\n\

FieldRec fields[] = {

} ;

".f_type", NUMBER, NULL, NULL },
".f count", NUMBER, NULL, NULL },
" . (~msgcount", NUMBER, NULL, NULL },
".f_cred", NUMBER, NULL, NULL},
".f data", NUMBER, NULL, NULL },
".f:=ops", NUMBER, NULL, NULL },
".f u.fu offset", NUMBER, NULL, NULL },
".f:=flag";";, NUMBER, NULL, NULL}

#define NUM_FIELDS (sizeof(fields)/sizeof(fields[O]»

static char *get_type(int type)
{

static char buf[5];

switch(type){
case 1: return("file");
case 2: return("sock");
case 3: return("npip");
case 4: return("pipe");
default:

sprintf(buf, "*%3d", type);
return(buf);

static Boolean prfile(DataStruct ele, long vn_addr, long socket_addr)

char *error, op_buf[12], *ops, buf[256], address[12], cred[12], data[12];

if(!read field vals(ele, fields, NUM FIELDS»{
field_errors(fields, NUM_FIELDS);
return(False);

}
if((long) fields[1].data == 0) return(True);
if((long) (fields[5].data) == 0) ops =" *Null* ";
else if((long) (fields[5].data) == vn addr) ops = "
else if((long) (fields[5].data) == socket_addr) ops
else format addr((long) fields[5].data, op buf);
format addr((long) struct addr(ele), address);
format-addr((long) fields[2].data, cred);
format-addr((long) fields[3].data, data);

vnops ";
" socketops ";

sprintf(buf, "Is %s %4d %4d %s %s %s %6d %s%s%s%s%s%s%s%s%s",
address, get_type((int) fields[O].data), fields[1].data,

4-26 Writing Extensions to the kdbx Debugger

Example 4-4: (continued)
fields[2].data, ops, cred, data, fields[6].data,
«long) fields[7].data) & FREAD? " read" : "",
«long) fields[7].data) & FWRITE ? " write" :
((long) fields [7] • data) & FAPPEND ? " append": ,
«long) fields[7].data) & FNDELAY?" ndelay" : '"',
«long) fields[7].data) & FMARK ? " mark": ,
«long) fields[7].data) & FDEFER ? " defer" : "",
«long) fields[7].data) & FASYNC ? " async" : "",
«long) fields[7].data) & FSHLOCK ? " shIck" ,
«long) fields[7].data) & FEXLOCK?" exlck" : "H);

print(buf);
return(True);

static Boolean prfiles(DataStruct fil, int n, long vn_addr, long socket_addr)
{

DataStruct ele;
char *error;

if«ele = array element(fil, n, &error)) == NULL) {
fprintf(stderr, "Couldn't get array element\n");
fprintf(stderr, "%s\n", error);
return(False);

}
return(prfile(ele, vn_addr, socket_addr));

static void Usage(void) {
fprintf(stderr, "Usage
quit(l);

file [addresses ..•]\n");

main(int argc, char **argv)
{

int i;
long nfile, vn_addr, socket_addr, addr;
char *error, *ptr;
DataStruct fil;

check_args(argc, argv, help_string);
argv++;
argc--;
if(!check fields("struct file", fields, NUM_FIELDS, NULL)){

field errors(fields, NUM_FIELDS);
quit(l) ;

}
if(argc == 0) fil = read sym("file");
if(!read_sym_val("nfile"~ NUMBER, &nfile, &error) I I

! read sym addr ("vnops", &vn addr, &error) II
!read-sym-addr("socketops",-&socket addr, &error)){

fprintf(stderr, "Couldn't read nfile7\n");
fprintf(stderr, "%s\n", error);
quit(l);

}
print("Addr Type

Flags");
if (argc == O){

for(i=O;i<nfile;i++){
if(!prfiles(fil, i,

Ref Msg Fileops Islot

vn_addr, socket_addr)) quit(l);

Cred Offset"

Writing Extensions to the kdbx Debugger 4-27

Example 4-4: (continued)

else {
while(*argv){

addr = strtoul(*argv, &ptr, 16);
if(*ptr != '\O'){

fprintf(stderr, "Couldn't parse %s to a number\n", *argv);
quit(1);

}

if(!cast(addr, "struct file", &fil, &error)){
fprintf(stderr, "Couldn't cast address to a file:\n");
fprintf(stderr, "%s\n", error);
quit(l);

if(!prfile(fil, vn_addr, socket_addr)) quit(l);
argv++;

}

quit(O);

Example 4-5: Extension that uses global symbols: sum.c

#include <stdio.h>
#include "krash.h"

static char *help string
"sum - print a summary of the system

Usage : sum
II. ,
static void read_var(name, type, val)
char *name;
int type;
long *val;
{

char *error;
long n;
if(!read sym val(name, type, &n, &error)){

fprintf(stderr, "Reading %s:\n", name);
fprintf(stderr, "%s\n", error);
quit(l);

*val = n;

main(argc, argv)
int argc;
char **argv;
{

DataStruct utsname, cpup, time;

\\\n\
\\\n\

char buf[256], *error, *resp, *sysname, *release, *version, *machine;
long avail, secs;

check args(argc, argv, help string);
read var("utsname.nodename"-; STRING, &resp);
sprintf(buf, "Hostname: %s", resp);
print(buf);
free (resp) ;
read_var("cpu_avail", NUMBER, &avail);

4-28 Writing Extensions to the kdbx Debugger

Example 4-5: (continued)
read var("cpup.system string", STRING, &resp);
sprintf(buf, "cpu: %s\tavail: %d", resp, avail);
print(buf);
free(resp);
read var("boottime.tv sec", NUMBER, &secs);
sprintf(buf, "Boot-time:\t%s", ctime(&secs));
buf[strlen(buf) - 1] = '\0';
print(buf);
read var("time.tv sec", NUMBER, &secs);
sprintf (buf , "Time: \ t%s", ctime (&secs)) ;
buf[strlen(buf) - 1] = '\0';
print(buf);
read_var("utsname.sysname", STRING, &sysname);
read var("utsname.release", STRING, &release);
read-var("utsname.version", STRING, &version);
read-var("utsname.machine", STRING, &machine);
sprintf(buf, "Kernel: %s release %s version %s (%s)", sysname, release,

version, machine);
print(buf);
quit(O);

4.4 Build and Compile Considerations
After you have written the extension, you need to compile it. To do this, you
need to access the krashlib. 0 and array. 0 object files and the header
files in the. Isrc/usr/bin/kdbx/extensions directory. The steps
for building and compiling the extension test are as follows:

1. Create the Makefile file. Example 4-6 shows a sample Makefile
that you can use.

Example 4-6: Sample Makefile

Sample Makefile

ROOT = /usr/source kit # the root of the source tree
SRCDIR = $(ROOT)/src
OBJDIR = $(ROOT)/obj/alpha
EXT DIR = $(OBJDIR)/usr/bin/kdbx/extensions
EXT-OBJS = $(EXT DIR)/krashlib.o $(EXT DIR)/array.o
CFLAGS = -I$(SRCDIR)/usr/bin/kdbx -I$(SRCDIR)/usr/bin/kdbx/extensions

all : file # Name of the extension

file : file. 0 $ (EXT OBJS)
$ (CC) -0 file file. 0 $ (EXT _ OBJS)

file.o : file. c

Writing Extensions to the kdbx Debugger 4-29

2. Compile and link against the krashlib. 0 library file as follows:

% make test

3. Debug the extension, using kdbx and dbx together if necessary. See
Section 4.5 for information on debugging your extension.

4. Place the custom extension in a directory that is accessible to other users.
DEC OSFIl extensions are located in the /var /kdbx directory.

kdbx -k Ivmunix
dbx version 3.12.1

Type 'help' for help.

(kdbx) test
Hostname : decosf.dec.com
cpu: DEC3000 - M500 avail: 1
Boot-time: Fri Nov 6 16:09:10 1992
Time: Mon Nov 9 10:51:48 1992
Kernel: OSF1 release 1.2 version 1.2 (alpha)
(kdbx)

4.5 Debugging Custom Extensions
The kdbx debugger and the dbx debugger include the capability to
communicate with each other using two named pipes. The task of debugging
an extension is easier if you use a workstation with a window dedicated to
each debugger, though you can debug a task from a terminal.

If you are using a workstation or have two terminals, perform the following
steps:

1. Open two sessions: one running kdbx on the running kernel and the
other running dbx on the source file for the custom extension test as
follows:

Session 1:
* kdbx -k Ivmunix
dbx version 3.12.1
Type 'help' for help.

stopped at [thread_block:1440 ,Oxfffffc00002de5bO]

Session 2:
dbx test
dbx version 3.12.1
Type 'help' for help.

(dbx)

Source not available

2. Set up kdbx and dbx to communicate with each other. In the kdbx
session, issue the procpd alias to create the files /tmp/pipein and

4-30 Writing Extensions to the kdbx Debugger

/tmp/pipeout as follows:

Session 1:
(kdbx) procpd

The file pipein takes output from the dbx session and directs it as
input to the kdbx session. The file pipeout takes output from the
kdbx session and directs it as input to the dbx session.

In the dbx session, issue the run command to execute the test
extension in the kdbx session, specifying the files /tmp/pipein and
/tmp/pipeout on the command line as follows:

Session 2:
(dbx) run [args] < /tmp/pipeout > /tmp/pipein

3. As you step through the extension in the dbx session, you will see the
results of any action in the kdbx session. At this point, you can use the
available dbx commands and options.

If you are using one terminal, do the following:

1. Issue the following command to invoke kdbx with the debugging
environment:

echo 'procpd' I kdbx -k Ivmunix &
dbx version 3.12.1
Type 'help' for help.

stopped at [thread_block:1403 ,Oxfffffc000032d860] Source not available

2. Invoke the dbx debugger as follows:
dbx test
dbx version 3.12.1
Type 'help' for help.

(dbx)

3. As you step through the extension in the dbx session, you will see the
results of any action in the kdbx session. At this point, you can use the
available dbx commands and options. For more information on the dbx
debugger, see the Programmer's Guide.

Writing Extensions to the kdbx Debugger 4-31

Using the System Exercisers 5

This chapter describes how to use system exercisers to troubleshoot your
DEC OSFIl operating system. The exerciser commands reside in the
lusr/field directory and allow you to test all or part of your system.

The system exercisers test the following areas:

• File systems - fsx (Section 5.3)

• System memory - rnernx (Section 5.4)

• Shared memory - shrnx (Section 5.5)

• Peripherals - diskx (Section 5.6) and tapex (Section 5.7)

• Communications systems - crnx (Section 5.8)

In addition to the exercisers documented in this chapter, your system may
also support the DEC Verifier and Exerciser Tool (VET), which provides a
similar set of exercisers. VET is present on the installation kit as an optional
subset. For information on VET, see the DEC Verifier and Exerciser Tool
User's Guide.

5.1 Running System Exercisers

To run a system exerciser, you must be logged in as superuser and
lusr I field must be your current directory.

The commands that invoke the system exercisers provide an option for
specifying a file where diagnostic output is saved when the exerciser
completes its task.

Most of the exerciser commands have an online help option that displays a
description of how to use that exerciser. To access online help, use the -h
option with a command. For example, to access help for the diskx
exerciser, use the following command:
diskx -h

The exercisers can be run in the foreground or the background and can be
canceled at any time by pressing Ctrl/C in the foreground. You can run more
than one exerciser at the same time; keep in mind, however, that the more
processes you have running, the slower the system performs. Thus, before
exercising the system extensively, make sure that no other users are on the

system.

There are some restrictions when you run a system exerciser over a Network
File System (NFS) link or on a diskless system. For exercisers such as f sx
that need to write to a file system, the target file system must be writable by
root. Also, the directory from which an exerciser is executed must be
writable by root because temporary files are written to the directory.

These restrictions can be difficult to adhere to because NFS file systems are
often mounted in a way that prevents root from writing to them. Some of the
restrictions may be adhered to by copying the exerciser into another directory
and then executing it.

5.2 Using Exerciser Diagnostics
When an exerciser is halted (by either Ctrl/C or timing out), diagnostics are
displayed and are stored in the exerciser's most recent log file. The
diagnostics inform you of the test results.

Each time an exerciser is invoked, a new log file is created in the
/usr/field directory. For example, when you execute the fsx command
for the first time, a log file named #LOG FSX 01 is created. The log files
contain records of each exerciser's results and consist of the starting and
stopping times, and error and statistical information. The starting and
stopping times are also logged into the default system error log file,
/var / adm/binary. errlog. This file also contains information on
errors reported by the device drivers or by the system.

The log files provide a record of the diagnostics. However, after reading a
log file, you should delete it because an exerciser can have only nine log
files. If you attempt to run an exerciser that has accumulated nine log files,
the exerciser tells you to remove some of the old log files so that it can create
a new one.

If an exerciser finds errors, you can determine which device or area of the
system has the difficulty by looking at /var / adm/binary. err log,
using the uerf command. For information on the error logger, see the
manual System Administration. For the meanings of the error numbers and
signal numbers, see the intro(2) and sigvec(2) reference pages.

5.3 Exercising a File System
Use the fsx command to exercise the local file systems. The fsx command
exercises the specified local file system by initiating multiple processes, each
of which creates, writes, closes, opens, reads, validates, and unlinks a test file
of random data. For more information, see the f sx(8) reference page.

5-2 Using the System Exercisers

Note

Do not test Network File System (NFS) file systems with the
f sx command.

The fsx command has the following syntax:

fsx [-h] [-ofile] [-tmin] [-fpath] [-pnum]

You can specify one or more of the following options:

-h
Displays the help message for the f sx command.

-ofile
Saves the output diagnostics in f i 1 e •

-pnum
Specifies the number of f sxr processes you want f sx to initiate. The
maximum number of processes is 250. The default is 20.

-fpath
Specifies the pathname of the file system directory you want to test. For
example, -f/usr or -f/mnt. The default is /usr/field.

-tmin
Specifies how many minutes you want the fsx command to exercise
the file system. If you do not specify the -t option, the f sx command
runs until you terminate it by pressing Ctrl/C in the foreground.

The following example of the fsx command tests the /usr file system with
five fsxr processes running for 60 minutes in the background:

fsx -pS -f/usr -t60 &

5.4 Exercising System Memory
Use the memx command to exercise the system memory. The memx
command exercises the system memory by initiating multiple processes. By
default, the size of each process is defined as the total system memory in
bytes divided by 20. The minimum allowable number of bytes per process is
4095. The memx command runs Is and Os, Os and Is, and random data
patterns in the allocated memory being tested. For more information, see the
memx(8) reference page

The memx command is restricted by the amount of available swap space.
The size of the swap space and the available internal memory determine how
many processes can run simultaneously on your system. For example, if
there are 16 MB of swap space and 16 MB of memory, all of the swap space

Using the System Exercisers 5-3

will be used if all 20 initiated processes (the default) run simultaneously.
This would prevent execution of other process.

Therefore, on systems with large amounts of memory and small amounts of
swap space, you must use the -p or -rn option, or both, to restrict the
number of rnernx processes or to restrict the size of the memory being tested.

The rnernx command has the following syntax:

memx -s [-h] [-ofile] [-tmin] [-msize] [-pnum]

You can specify one or more of the following options:

-h
Displays the help message for the rnernx command.

-ofile
Saves the output diagnostics in f i 1 e .

-rnsize
Specifies the amount of memory in bytes for each process you want to
test. The default is the total amount of memory divided by 20, with a
minimum size of 4095 bytes.

-pnum

-s

Specifies the number of rnernxr processes to initiate. The maximum
number is 20, which is also the default.

Disables the automatic invocation of the shared memory exerciser,
shrnx.

-tmin
Specifies how many minutes you want the rnernx command to exercise
the memory. If you do not specify the -t option, the rnernx command
runs until you terminate it by pressing Ctrl/C in the foreground.

The following example of the rnernx command initiates five rnernxr
processes that test 4095 bytes of memory and runs in the background for 60
minutes:

memx -m4095 -p5 -t60 &

5.5 Exercising Shared Memory
Use the shrnx command to exercise the shared memory segments. The
shrnx command spawns a background process called shrnxb. The shrnx
command writes and reads the shmxb data in the segments, and the shrnxb
process writes and reads the shrnx data in the segments.

5-4 Using the System Exercisers

Using shrnx, you can test the number and the size of memory segments and
shrnxb processes. The shrnx exerciser runs until the process is killed or
until the time specified by the -t option is exhausted.

You automatically invoke the shrnx exerciser when you start the rnernx
exerciser, unless you specify the rnernx command with the -s option. You
can also invoke the shrnx exerciser manually. The shrnx command has the
following syntax:

lusr/field/shmx [-h] [-ofile] [-V] [-ttime] [-msize] [-sn]

The shrnx command options are as follows:

-h
Prints the help message for the s hrnx command.

-ofile

-v

Saves diagnostic output in file.

Uses the fork system call instead of the vfork system call to spawn
the shrnxb process.

-ttime
Specifies time as the run time in minutes. The default is to run until
the process is killed.

-rnsize

-sn

Specifies size as the memory segment size, in bytes, to be tested by
the processes. The size value must be greater than zero. The default
is the value of the SHMMAX and SHMSEG system parameters, which
are set in the /sys/include/sys/param.h file.

Specifies n as the number of memory segments. The default (and
maximum) number of segments is 3.

The following example tests the default number of memory segments, each
with a default segment size:

shmx &

The following example runs three memory segments of 100,000 bytes for
180 minutes:

shmx -t180 -mlOOOOO -s3 &

Using the System Exercisers 5-5

5.6 Exercising a Disk Drive
Use the diskx command to exercise the disk drives. The main functional
areas that are tested include the following:

• Reads, writes, and seeks

• Performance

• Disktab entry verification

Some of the tests involve writing to the disk; for this reason, use the
exerciser cautiously on disks that contain useful data that the exerciser could
overwrite. Tests that write to the disk first check for the existence of file
systems on the test partitions and partitions that overlap the test partitions. If
a file system is found on these partitions, you are prompted to determine if
testing should continue.

You can use the diskx command options to specify the tests that you want
performed and to specify the parameters for the tests. For more information,
see the diskx(8) reference page.

The diskx command has the following syntax:

diskx [options] [parameters] -f devname

The -f devname option specifies the device special file on which to
perform testing. The devname variable specifies the name of the block or
character special file that represents the disk to be tested. The file name must
begin with an r (for example, rz 1). The last character of the file name can
specify the disk partition to test.

If a partition is not specified, all partitions are tested. For example, if the
devname variable is / dev / rraO, all partitions are tested. If the
devname variable is /dev/rraOa, the a partition is tested. This
parameter must be specified and can be used with all test options.

The following options specify the tests to be run on disk:

-d

-h

-p

Tests the disk's disktab file entry. The disktab entry is obtained
by using the getdiskbyname library routine. This test only works if
the specified disk is a character special file. See the disktab(4)
reference page for more information.

Displays a help message describing test options and parameters.

Specifies a performance test. Read and write transfers are timed to
measure device throughput. Data validation is not performed as part of
this test. Testing uses a range of transfer sizes if the -F option is not

5-6 Using the System Exercisers

-r

-w

specified.

The range of transfer sizes is divided by the number specified with the
perf splits parameter to obtain a transfer size increment. For
examPle, if the perf splits parameter is set to 10, tests are run
starting with the minimum transfer size and increasing the transfer size
by 1110th of the range of values for each test repetition. The last
transfer size is set to the specified maximum transfer size.

If you do not specify a number of transfers, the transfer count is set to
allow the entire partition to be read or written. In this case, the transfer
count varies, depending on the transfer size and the partition size.

The performance test runs until completed or until interrupted; the time
is not limited by the -minutes parameter. This test can take a long
time to complete, depending on the test parameters.

In order to acheive maximum throughput, specify the -8 option to cause
sequential transfers. If the -8 option is not specified, transfers are done
to random locations. This may slow down the observed throughput
because of associated head seeks on the device.

Specifies a read-only test. This test reads from the specified partitions.
Specify the -n option to run this test on the block special file.

This test is useful for generating system 110 activity. Because it is a
read-only test, you can run more than one instance of the exerciser on
the same disk.

Specifies a write test. This test verifies that data can be written to the
disk and can be read back to verify the data. Seeks are also done as part
of this test. This test provides the most comprehensive coverage of disk
transfer functions because it uses reads, writes, and seeks. This test also
combines sequential and random access patterns.

This test performs the following operations using a range of transfer
sizes; a single transfer size is utilized if the -F attribute is specified:

• Sequentially writes the entire test partition, unless the number of
transfers has been specified using the -num _ xfer parameter

• Sequentially reads the test partition

The data read from the disk is examined to verify it. Then, if random
transfer testing has not been disabled (using the -8 attribute), writes are
issued to random locations on the partition. After the random writes are
completed, reads are issued to random locations on the partition. The
data read from random locations is examined to verify it.

Using the System Exercisers 5-7

The following options modify the behavior of the test:

-F

-i

--Q

-R

-8

-T

-y

Performs fixed size transfers. If this option is not specified, transfers are
done using random sizes. This option can be used with the -p, -r, and
-w test options.

Specifies interactive mode. In this mode, you are prompted for various
test parameters. Typical parameters include the transfer size and the
number of transfers. The following scaling factors are allowed:

• k or K (for kilobyte (1024 * n))

• b or B (block (512 * n))

• m or M (megabyte (1024 * 1024 * n))

For example 10K would specify 10,240 bytes.

Suppresses performance analysis of read transfers. This option only
performs write performance testing. To perform only read testing and to
skip the write performance tests, specify the -R option. The --Q option
can be used with the -p test option.

Opens the disk in read-only mode. This option can be used with all test
options.

Performs transfers to sequential disk locations. If this option is not
specified, transfers are done to random disk locations. This option can
be used with the -p, -r, and -w test options.

Directs output to the terminal. This option is useful if output is directed
to a log file by using the -0 option. If you specify the -T option after
the -0 option, output is directed to both the terminal and the log file.
The -T option can be used with all test options.

Does not prompt you to confirm that you want to continue the test if file
systems are found when the disk is examined; testing proceeds.

In addition to the options, you can also specify test parameters. You can
specify test parameters on the di skx command line or interactively with the
-i option. If you do not specify test parameters, default values are used.

To use a parameter, specify the parameter name, a space, and the numeric

5-8 Using the System Exercisers

value. For example, you could specify the following parameter:
-perf_min 512

You can use the following scaling factors:

• k or K (for kilobyte (1024 * n»

• b or B (for block (512 * n»)

• m or M (for megabyte (1024 * 1024 * n))

For example, 10K would specify 10,240 bytes.

For example, -perf min 10K causes transfers to be done in sizes of
10,240 bytes. -

You can specify one or more of the following parameters:

-debug
Specifies the level of diagnostic output to be produced. The greater the
number specified, the more output is produced describing the exerciser
operations. This parameter can be used with all test options.

-err lines
Specifies the maximum number of error messages that are produced as a
result of an individual test. A limit on error output prevents a large
number of diagnostic messages if persistent errors occur. This
parameter can be used with all test options.

-minutes
Specifies the number of minutes to test. This parameter can be used
with the -r and -w test options.

-max xfer
Specifies the maximum transfer size to be performed. If transfers are
done using random sizes, the sizes are within the range specified by the
-max xfer and -min xfer parameters. If fixed size transfers are
specified (see the -F option), transfers are done in a size specified by
the -min _ xfer parameter.

Specify transfer sizes to the character special file in multiples of 512
bytes. If the specified transfer size is not an even multiple, the value is
rounded down to the nearest 512 bytes. This parameter can be used
with the -r and -w test options.

-min xfer
Specifies the minimum transfer size to be performed. This parameter
can be used with the -r and -w test options.

-num xfer
Specifies the number of transfers to perform before changing the
partition that is currently being tested. This parameter is only useful if

Using the System Exercisers 5-9

more than one partition is being tested. If this parameter is not
specified, the number of transfers is set to a number that completely
covers a partition. This parameter can be used with the -r and -w test
options.

-ofilename
Sends output to the specified file name. The default is to display output
on the terminal screen. This parameter can be used with all test options.

-perf max
Specifies the maximum transfer size to be performed. If transfers are
done using random sizes, the sizes are within the range specified by the
-perf min and -perf max parameters. If fixed size transfers are
specified (see the -F option), transfers are done in a size specified by
the -perf_min parameter. This parameter can be used with the-p
test option.

-perf min
Specifies the minimum transfer size to be performed. This parameter
can be used with the -p test option.

-perf splits
Specifies how the transfer size will change if you test a range of transfer
sizes. The range of transfer sizes is divided by the number specified
with the perf splits parameter to obtain a transfer size increment.
For example, if the perf splits parameter is set to 10, tests are run
starting with the minimum transfer size and increasing the transfer size
by ll10th of the range of values for each test repetition. The last
transfer size is set to the specified maximum transfer size. This
parameter can be used with the -p test option.

-perf xfers
Specifies the number of transfers to be performed in performance
analysis. If this value is not specified, the number of transfers is set
equal to the number that is required to read the entire partition. This
parameter can be used with the -p test option.

The following example performs read-only testing on the character device
special file that / dev / rr z 0 represents. Because a partition is not specified,
the test reads from all partitions. The default range of transfer sizes is used.
Output from the exerciser program is displayed on the terminal screen.
diskx -f /dev/rrzO -r

The following example runs on the a partition of / dev / rz o. Program
output will be logged to the diskx. out file. The program output level is

5-10 Using the System Exercisers

set to 10 and causes additional output to be generated.
diskx -f /dev/rzOa -0 diskx.out -d -debug 10

The following example shows that performance tests are run on the a
partition of /dev/rzO. Program output is logged to the diskx.out file.
The -s option causes sequential transfers for the best test results. Testing is
done over the default range of transfer sizes.
diskx -f /dev/rzOa -0 diskx.out -p -8

The following command runs the read test on all partitions of the specified
disks. The disk exerciser is invoked as three separate processes, which
generate extensive system I/O activity. The command shown in this example
can be used to test system stress.
diskx -f /dev/rrzO -r &; diskx -f /dev/rrz1 -r &; diskx -f
/dev/rrz2 -r &

5.7 Exercising a Tape Drive
Use the tapex command to exercise a tape drive. The tapex command
writes, reads, and validates random data on a tape device from the beginning
of the tape (BOT) to the end of the tape (EaT). The tapex command also
performs positioning tests for records and files, and tape transportability tests.
For more information, refer to the tapex(8) reference page.

Some tapex options perform specific tests (for example, an end-of-media
test). Other options modify the tests, for example, by enabling caching.

The tapex command has the following syntax:

tapex [options] [parameters]

You can specify one or more of the options described in Table 5-1. In
addition to options, you can also specify test parameters. You specify
parameters on the tapex command line or interactively with the -i option.
If you do not specify test parameters, default values are used.

To use a test parameter, specify the parameter name, a space, and the number
value. For example, you could specify the following parameter:
-min rs 512

Note that you can use the following scaling factors:

• k or K (for kilobyte (1024 * n»

• b or B (for block (512 * n»

• m or M (for megabyte (1024 * 1024 * n»

Using the System Exercisers 5-11

For example, 10K would specify 10240 bytes.

The following parameters can be used with all tests:

-err lines
Specifies the error printout limit.

-fixed bs
Specifies a fixed block device. Record sizes for most devices default to
multiples of the blocking factor of the fixed block device as specified by
the bs argument.

The following parameters can be used with the -a option, which measures
performance:

-perf num
Specifies the number of records to write and read.

-perf rs
Specifies the size of records.

Other parameters are restricted for use with specific tapex options.
Option-specific parameters are documented in Table 5-1.

Table 5-1: tapex Options and Option Parameters

tapex Option

-a

-b

-c

5-12 Using the System Exercisers

Option and Parameter Descriptions

Specifies the performance measurement test, which
calculates the tape transfer bandwidth for writes and
reads to the tape by timing data transfers.

The following parameters can be used with the -a
option:

-perf num
Specifies the number of records to write and read.

-perf rs
Specifies the size of records.

Causes the write/read tests to run continuously until the
process is killed. This option can be used with the-r
and -g options.

Enables caching on the device, if supported. This
option does not specifically test caching; it enables the
use of caching on a tape device while other tests are
running.

Table 5-1: (continued)

tapex Option Option and Parameter Descriptions

-C Disables caching on TMSCP tape devices. If the tape
device is a TMSCP unit, then caching is the default
mode of test operation. This option causes the tests to
run in noncaching mode.

-d Tests the ability to append records to the media. First,
the test writes records to the tape. Then, it repositions
itself back one record and appends additional records.
Finally, the test does a read verification. This test
simulates the behavior of the tar -r command.

-e

The following parameters can be used with the -d
option:

-no overwrite
Prevents the append-to-media test from being
performed on tape devices that do not support this
test. Usually, you use this parameter with the-E
option.

-tar nurn
Specifies the number of additional and appended
records.

-tar size
Specifies the record size for all records written in
this test.

Specifies end-of-media (EOM) test. First, this test.
writes data to fill a tape; this action can take a long time
for long tapes. It then performs some reads and writes
past the end of the media; these actions should fail.
Finally, it enables writing past the end of the media,
writes to the tape, and reads back the records for
validation purposes.

Using the System Exercisers 5-13

Table 5-1: (continued)

tapex Option Option and Parameter Descriptions

The following parameters can be used with the -e
option:

-end num
Specifies the number or records to be written past
EOM. (Note that specifying too much data to be
written past EOM can cause a reel-to-reel tape to
go off line):

-end rs
Specifies the record size.

-E Runs an extensive series of tests in sequential order.
Depending on tape type and CPU type, this series of
tests can take up to 10 hours to complete.

-f / dev / rmt #? Specifies the name of the device special file that
corresponds to the tape unit being tested. The number
sign variable (#) specifies the unit number. The
question mark variable (?) specifies the letter h for the
high density device or 1 for the low density device.
The default tape device is / dev / rmtOh.

-F Specifies the file-positioning tests. First, files are
written to the tape and verified. Next, every other file
on the tape is read. Then, the previously unread files
are read by traversing the tape backwards. Finally,
random numbers are generated, the tape is positioned to
those locations, and the data is verified. Each file uses a
different record size.

5-14 Using the System Exercisers

The following parameters can be used with the -F
option:

-num fi
Specifies the number of files.

-pas ra
Specifies the number of random repositions.

-pas rs
Specifies the record size.

-rec fi
Specifies the number of records per file.

Table 5-1: (continued)

tapex Option Option and Parameter Descriptions

-G Specifies the file-positioning tests on a tape containing
data. This option can be used with the -F option to run
the file position tests on a tape that has been written to
by a previous invocation of the -F test. To perform
this test, you must use the same test parameters (for
example, record size and number of files) that you used
when you invoked the -F test to write to the tape. No
other data should have been written to the tape since the
previous -F test.

-g Specifies random record size tests. This test writes
records of random sizes. It reads in the tape, specifying
a large read size; however, only the amount of data in
the randomly sized record should be returned. This test
only checks return values; it does not validate record
contents.

-h

-i

The following parameter is used with the -g option:

-rand num
Specifies the number of records to write and read.

Displays a help message describing the tape exerciser.

Specifies interactive mode. In this mode, you are
prompted for various test parameters. Typical
parameters include the record size and the number of
records to write. The following scaling factors are
allowed:

• k or K (for kilobyte (1024 * n))

• b or B (for block (512 * n))

• m or M (for megabyte (1024 * 1024 * n))

For example, 10K would specify 10,240 bytes.

Using the System Exercisers 5-15

Table 5-1: (continued)

tapex Option

-j

-k

-L

5-16 Using the System Exercisers

Option and Parameter Descriptions

Specifies the write phase of the tape-transportability
tests. This test writes a number of files to the tape and
then verifies the tape. After the tape has been
successfully verified, it is brought off line, moved to
another tape unit, and read in with the -k option. This
test proves that a tape can be written to on one drive
and read from on another drive.

The -j option is used with the -k option. Note that
the parameters used with -j option must be the same
parameters used with the -k option.

The following parameters can be used with the -j and
-k options:

-tran file
Specifies the number of files to write or read.

-tran rec
Specifies the number of records contained in each
file.

-tran rs
Specifies the size of each record.

Specifies the read phase of the tape-transportability
tests. This test reads a tape that was written by the -j
test and verifies that the expected data is read from the
tape. This test proves that a tape can be written to on
one drive and read from on another. As stated in the
description of the -j option, any parameters specified
with the -j option must be specified with the -k
option. (See the description of the -j option for
information on the parameters that apply to the -j and
-k options.)

Specifies the media loader test. For sequential stack
loaders, the media is loaded, written to, and verified.
Then, the media is unloaded, and the test is run on the
next piece of media. This verifies that all of the media
in the input deck can be written to. To run this test in
read-only mode, also specify the -w option.

Table 5-1:

tapex Option

-1

-m

-0 filename

-p

-q

-r

(continued)

Option and Parameter Descriptions

Specifies the end-of-file (EOF) test. This test verifies
that a 0 (zero) byte count is returned when a tape mark
is read and that an additional read fetches the first
record of the next tape file.

Displays tape contents. This is not a test. This option
reads the tape sequentially and prints out the number of
files on the tape, the number of records in each file, and
the size of the records within the file. The contents of
the tape records are not examined.

Sends output to the specified file name. The default
sends output to the terminal screen.

Runs both the record-positioning and file-positioning
tests. For more information, refer to descriptions of the
-R and -F options.

Specifies the command timeout test. This test verifies
that the driver allows enough time for completion of
long operations. This test writes files to fill the tape.
It then performs a rewind, followed by a forward skip
to the last file. This test is successful if the forward
skip operation is completed without error.

Specifies the record size test. A number of records are
written to the tape and then verified. This process is
repeated over a range of record sizes.

The following parameters can be used with the -r
option:

-inc
Specifies the record increment factor.

-max rs
Specifies the maximum record size.

-min rs
Specifies the minimum record size.

-num rec

-t

Specifies the number of records.

Specifies a time limit (in minutes). The default is
to run the test until it is complete.

Using the System Exercisers 5-17

Table 5-1: (continued)

tapex Option Option and Parameter Descriptions

-R Specifies the record-positioning test. First, records are
written to the tape and verified. Next, every other
record on the tape is read. Then, the other records are
read by traversing the tape backwards. Finally, random
numbers are generated; the tape is positioned to those
locations, and the data is verified.

-s

-s

5-18 Using the System Exercisers

The following parameters can be used with the -R
option:

-pes num
Specifies the number of records.

-pes ra
Specifies the number of random repositions.

-pes rs
Specifies the record size.

Specifies the record size behavior test. Verifies that a
record that is read returns one record (at most) or the
read size, whichever is less.

The following parameters can be used with the -s
option:

-num rec
Specifies the number of records.

-size rec
Specifies the record size.

Specifies single record size test. This test modifies the
record size test (the -r option) to use a single record
size.

The following parameters can be used with the -S
option:

-inc
Specifies the record increment factor.

-max rs
Specifies the maximum record size.

-min rs
Specifies the minimum record size.

Table 5-1: (continued)

tapex Option Option and Parameter Descriptions

-T

-v

-v

-w

-z

-num rec
Specifies the number of records.

Displays output to the terminal screen. This option is
useful if you want to log output to a file with the -0

option and also have the output displayed on your
terminal screen. This option must be specified after the
-0 option in the command line.

Specifies verbose mode. This option causes detailed
information to be output. For example, it lists the
operations the exerciser is performing (such as record
counts), and detailed error information. Information
provided by this option can be useful for debugging
purposes.

Specifies enhanced verbose mode. This option causes
more detailed information than the -v option to be
output. The additional output consists of status
information on exerciser operations. Information
provided by this option can be useful for debugging
purposes.

Opens the tape as read-only. This mode is useful only
for tests that do not write to the media. For example, it
allows the -m test to be run on a write-protected media.

Initializes the read buffer to the nonzero value 0130.
This can be useful for debugging purposes. If the -z
option is not specified, all elements of the read buffer
are initialized to zero. Many of the tests first initialize
their read buffer and then perform the read operation.
After reading a record from the tape, some tests validate
that the unused portions of the read buffer remain at the
value to which they were initialized. For debugging
purposes, you can set this initialized value to a number
other than zero. In this case, you can use the arbitrary
value 0130.

The following example runs an extensive series of tests on tape device

Using the System Exercisers 5-19

rrntlh and sends all output to the tapex.out file:

tapex -f /dev/rmt1h -E -0 tapex.out

The following example performs random record size tests and outputs
information in verbose mode. This test runs on the default tape device
/dev/rrntOh, and the output is sent to the terminal screen.

tapex -9 -v

The following example performs read and write record testing using record
sizes in the range 10K to 20K. This test runs on the default tape device
/ dev / rrnt 0 h, and the output is sent to the terminal screen.
tapex -r -min_rs 10k -max_rs 20k

The following example performs a series of tests on tape device
/ dev / rrnt 0 h, which is treated as fixed block device in which record sizes
for tests are multiples of the blocking factor 512 kilobytes. The append-to­
media test is not performed.

tapex -f /dev/rmtOh -fixed 512 -no overwrite

5.8 Exercising the Terminal Communication System
Use the crnx command to exercise the terminal communications system. The
crnx command writes, reads, and validates random data and packet lengths
on the specified communications lines.

The lines you exercise must have a loop back connector attached to the
distribution panel or the cable. Also, the line must be disabled in the
/ etc / ini t tab file and in a nonmodem line; that is, the CLOCAL flag
must be set to on. Otherwise, the crnx command repeatedly displays error
messages on the terminal screen until its time expires or until you press
Ctrl/C. For more information, refer to the crnx(8) reference page.

You cannot test pseudodevice lines or 1 ta device lines. Pseudodevices have
p, q, r, S, t, u, v, w, x, y, or z as the first character after tty, for example,
ttyp3.

The crnx command has the following syntax:

lusr/field/cmx [-h] [-0 file] [-t min] -I line

The crnx command options are as follows:

-h
Prints a help message for the crnx command.

-ofile
Saves output diagnostics in file.

5-20 Using the System Exercisers

-tmin
Specifies how many minutes you want the cmx command to exercise
the communications system. If you do not specify the -t option, the
cmx command runs until you terminate it by pressing CtrllC in the
foreground.

-1 line
Specifies the line or lines you want to test. The possible values for
line are found in the / dev directory and are the last two characters of
the tty device name. For example, if you want to test the
communications system for devices named tty02, tty03, and
tty14, specify 02, 03, and 14, separated by spaces, for the line
variable. In addition, the line variable can specify a range of lines to
test. For example, 00-08.

The following example exercises communications lines tty22 and tty34
for 45 minutes in the background:

cmx -1 22 34 -t4S &

The following example exercises lines ttyOO through tty07 until you
press Ctrl/C:

cmx -1 00-07

Using the System Exercisers 5-21

A

addr_to_proc function, 4-2

Alpha AXP hardware architecture

documentation, 1-1

array_element function, 4-3

array _elemenC val function, 4-4

array_size function, 4-5

B

bounds file

description of, 1-4

build system, 2-29

c
cast function, 4-5

changing default dump file location, 1-2

check_args function, 4-6

check_fields function, 4-6

cmx exerciser, 5-20

options for, 5-20

syntax of, 5-20

communications system

See terminal communications system

compiler formats

COFF,2-1

ROSE, 2-1

context function, 4-7

crash data collection, 2-33

crash directory, 1-2

crash dump analysis

Index

collecting data with crashdc, 2-33

examples of, 3-1

hardware error, 3-12

hardware trap, 3-2

kernel threads, 3-6

software panic, 3-1, 3-8

guidelines for, 3-1

overview, 1-1

understanding hardware and software, 1-1

crash dumps

choosing a strategy, 1-3

creating files for, 1-5

determining file system space, 1-4

forcing a hung system, 1-5

saving full, 1-3

saving partial, 1-3

selecting partition size, 1-4

version number assignment, 1-4

crash recovery process, 1-1

crashdc utility, 2-33

customizing kdbx debugger environment, 2-6

D
data types used by kdbx extensions, 4-20

dbx debugger, 2-1

character message buffer size, 2-5

displaying format of data structures with, 2-4

kernel debug option, 2-1

printing variables and data structures with,

2-3

syntax for address formats, 2-1

syntax for examining dump files, 2-1

syntax for examining running kernel, 2-1

dbx function, 4-8

debugging kernel threads with dbx, 3-6

debugging kernels

See kernel debugging

dereCpointer function, 4-8

Idev/mem

See memory

disassembling instructions

with kdbx, 2-15

disk drive

testing with diskx, 5-6

diskx exerciser, 5-6

options for, 5-6

syntax of, 5-6

dump files

changing default location of, 1-2

creating, 1-5

determining space for full, 1-3

determining space for partial, 1-3

vmcore.#, 1-1

vmunix.#, 1-1

Index-2

E

exported entries mounted remotely

printing out using kdbx, 2-15

F
field_errors function, 4-9

file system

exercising with fsx, 5-2

size needed for crash dumps, 1-4

testing with fsx, 5-2

formaCaddr function, 4-9

free_sym function, 4-10

fsx exerciser, 5-2

full crash dumps

See crash dumps

functions

addcto_proc, 4-2

array_element, 4-3

array _elemenc val, 4-4

array_size, 4-5

cast, 4-5

check_args, 4-6

check_fields, 4-6

context, 4-7

dbx, 4-8

dereCpointer, 4-8

field_errors, 4-9

formacaddr,4-9

free_sym, 4-10

krash,4-10

lisCnth3ell, 4-11

new_proc, 4-12

nexcsumber, 4-12

nexCtoken, 4-13

print, 4-14

functions (cont.)

princstatus, 4-14

quit, 4-15

read_field_ vals, 4-15

read_line, 4-16

read_memory, 4-16

read_response, 4-] 7

read_sym, 4-17

read_sym_addr, 4-18

read_sym_ val, 4-18

struccaddr, 4-19

to_number, 4-20

G
gateway system, 2-29

H
hardware trap, 1-5

example of debugging with dbx, 3-2

hung system

forcing a crash dump, 1-5

instructions

disassembling using kdbx, 2-15

K

kdbx debugger

commands

alias, 2-7, 2-7

context, 2-7

coredata, 2-8

dbx, 2-8

help, 2-8

print, 2-8

kdbx debugger (cont.)

commands (cont.)

proc, 2-8

quit, 2-8

source, 2-8

unalias, 2-9

compiling custom extension for, 4-29

customizing environment of, 2-6

debugging extensions of, 4-30

description of, 2-6

extensions

arp,2-11

array_action, 2-12, 2-11 to 2-28

buf,2-13

callout, 2-14

cast, 2-14

config, 2-14

convert, 2-15

debugging, 4-30

dis, 2-15

export, 2-15

file, 2-16

inpcb,2-16

lisCaction, 2-17

mount, 2-18

namecache, 2-19

ofile, 2-20

paddr, 2-20

pcb, 2-21

printf, 2-21

proc, 2-22

procaddr, 2-22

socket, 2-23

sum, 2-23

swap, 2-23

task,2-24

Index-3

kdbx debugger (cont.)

extensions (cont.)

thread,2-24

u, 2-25

ucred,2-26

unaliasall, 2-27

vnode, 2-27

initialization files, 2-6

library functions of, 4-2

Makefile for custom extension, 4-29

predefined aliases, 2-9

sample template for

using arrays, 4-24

using lists, 4-22

standard data types, 4-20

standard functions

addCto_proc, 4-2

array_element, 4-3

array _elemenc val, 4-4

array_size, 4-5

cast, 4-5

check_args, 4-6

check_fields, 4-6

context, 4-7

dbx, 4-8

dereCpointer, 4-8

field_errors, 4-9

formaCaddr, 4-9

free_sym, 4-10

krash,4-10

liscnth_cell, 4-11

new _proc, 4-12

nexCnumber, 4-12

nexCtoken, 4-13

print, 4-14

prinCstatus, 4-14

Index-4

kdbx debugger (cont.)

standard functions (cont.)

quit, 4-15

read_field_ vals, 4-15

read_line, 4-16

read_memory, 4-16

read_response, 4-17

read_sym, 4-17

read_sym_addr, 4-18

read_sym_ val, 4-18

struccaddr, 4-19

to_number, 4-20

standard library functions, 4-2

syntax, 2-7

writing extensions for, 4-1

using arrays template, 4-24

using lists template, 4-22

kdebug debugger

build system, 2-29

description of, 2-29

gateway system, 2-29

remote mode

invoking in, 2-30

problems with setup of, 2-31

requirements for, 2-29

setting up, 2-29

test system, 2-29

kernel

See Ivmunix

kernel debugging

debugging customized tools, 4-30

developing customized tools, 4-1

examples of, 3-1

hardware error, 3-12

hardware trap, 3-2

kernel threads, 3-6

kernel debugging (cont.)

examples of (cont.)

software panic, 3-1, 3-8

guidelines for, 3-1

guidelines for writing custom tools, 4-1

overview, 1-1

understanding hardware and software, I-I

using dbx debugger, 2-1

using kdbx debugger, 2-6

using kdebug debugger, 2-29

krash function, 4-10

L

library functions

used by kdbx, 4-2

library functions used by kdbx, 4-2

lisCnth_cell function, 4-11

M
magnetic tape drive

tapex exerciser, 5-11

testing with tapex, 5-11

Makefile

kdbx debugger extension, 4-29

memory

Idev/mem, 2-2

exercising with memx, 5-3

shared memory

testing with shmx, 5-4

system memory, 5-3

memx exerciser, 5-3

options for, 5-4

swap space restrictions of, 5-3

syntax of, 5-4

N
new _proc function, 4-12

next_number function, 4-12

nexCtoken function, 4-13

p

partial crash dumps

See crash dumps

print function, 4-14

prinCstatus function, 4-14

Q

quit function, 4-15

R

read_field_ vals function, 4-15

read_line function, 4-16

read_memory function, 4-16

read_response function, 4-17

read_sym function, 4-17

read_sym_addr function, 4-18

read_sym_ val function, 4-18

register format, 1-1

requirements for the kdebug debugger, 2-29

resource exhaustion, 1-5

s
savecore script, 1-1

changing dump files location, 1-2

using bounds file, 1-4

savecore utility, 1-1

setting up the kdebug debugger, 2-29

shared memory

testing with shmx, 5-4

Index-5

shmx exerciser, 5-4

options for, 5-5

shmxb subprocess, 5-4

syntax of, 5-5

using with memx, 5-5

software panics, 1-5

example of debugging with dbx, 3-1

example of debugging with kdbx, 3-8

strucCaddr function, 4-19

swap space

displaying with kdbx, 2-23

system

displaying information about with kdbx,

2-23

system crashes

reasons for, 1-5

system exercisers, 5-1

diagnostics, 5-2

disk drives (diskx), 5-6

file system (fsx), 5-2

getting help, 5-1

log files, 5-2

memory (memx), 5-3

requirements, 5-1

shared memory (shmx), 5-4

tape drives (tapex), 5-11

terminal communications (cmx), 5-20

using uerf command with, 5-2

system failure, 1-5

hardware trap, 1-5

hung system, 1-5

resource exhaustion, 1-5

software panics, 1-5

Index-6

T

tape drive

See magnetic tape drive

tapex exerciser, 5-11

options for, 5-11

syntax of, 5-11

terminal communications system

testing with cmx, 5-20

test system, 2-29

testing kernels, 2-29

to_number function, 4-20

u
uerf command

using with system exercisers, 5-2

v
Ivar/admlcrash

See crash directory

vmcore.# dump file, 1-2

Ivmunix, 1-1

vmunix.# dump file, 1-2

How to Order Additional Documentation

Technical Support
If you need help deciding which documentation best meets your needs, call 800-DIGITAL
(800-344-4825) before placing your electronic, telephone, or direct mail order.

Electronic Orders
To place an order at the Electronic Store, dial 800-234-1998 using a 1200- or 2400-bps
modem from anywhere in the USA, Canada, or Puerto Rico. If you need assistance using the
Electronic Store, call 800-DIGITAL (800-344-4825).

Telephone and Direct Mail Orders

Your Location

Continental USA,
Alaska, or Hawaii

Puerto Rico

Canada

International

Internala

Call

800-DIGITAL

809-754-7575

800-267-6215

Contact

Digital Equipment Corporation
P.O. Box CS2008
Nashua, New Hampshire 03061

Local Digital subsidiary

Digital Equipment of Canada
Attn: DEC direct Operations KA02/2
P.O. Box 13000
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6

Local Digital subsidiary or
approved distributor

SSB Order Processing - NQO/V19
or
U. S. Software Supply Business
Digital Equipment Corporation
10 Cotton Road
Nashua, NH 03063-1260

a For internal orders, you must submit an Internal Software Order Form (EN-01740-07).

Reader's Comments DEC OSF/1
Kernel Debugging

AA-PS2TB-TE

Please use this postage-paid form to comment on this manual. If you require a written reply
to a software problem and are eligible to receive one under Software Performance Report
(SPR) service, submit your comments on an SPR form.

Thank you for your assistance.

Please rate this manual:
Accuracy (software works as manual says)
Completeness (enough information)
Clarity (easy to understand)
Organization (structure of subject matter)
Figures (useful)
Examples (useful)
Index (ability to find topic)
Page layout (easy to find information)

What would you like to see more/less of?

What do you like best about this manual?

What do you like least about this manual?

Excellent
D
D
D
D
D
D
D
D

Please list errors you have found in this manual:

Page Description

Additional comments or suggestions to improve this manual:

Good
D
D
D
D
D
D
D
D

What version of the software described by this manual are you using?

__________________ Dept. Name/Title
Company
Mailing Address

Fair
D
D
D
D
D
D
D
D

Date

Poor
D
D
D
D
D
D
D
D

Email Phone _______ _

- - - - Do Not Tear - Fold Here and Tape . -

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
OPEN SOFTWARE PUBLICATIONS MANAGER
ZK03-3N32
110 SPIT BROOK ROAD
NASHUA NH 03062-9987

1111111111111111111111111111 II I 1111111111111111111 II

- - - Do Not Tear - Fold Here

No Postage

Necessary

if Mailed in the

United States

Cut
Along
Dotted
Line

Reader's Comments DEC OSF/1
Kernel Debugging

AA-PS2TB-TE

Please use this postage-paid form to comment on this manual. If you require a written reply
to a software problem and are eligible to receive one under Software Performance Report
(SPR) service, submit your comments on an SPR form.

Thank you for your assistance.

Please rate this manual:
Accuracy (software works as manual says)
Completeness (enough information)
Clarity (easy to understand)
Organization (structure of subject matter)
Figures (useful)
Examples (useful)
Index (ability to find topic)
Page layout (easy to find information)

What would you like to see more/less of?

What do you like best about this manual?

Excellent
D
D
D
D
D
D
D
D

Good
D
D
D
D
D
D
D
D

Fair
D
D
D
D
D
D
D
D

Poor
D
D
D
D
D
D
D
D

What do you like least about this manual? _________________ _

Please list errors you have found in this manual:

Page Description

Additional comments or suggestions to improve this manual:

What version of the software described by this manual are you using? ______ _

Name/Title _________________ Dept.

Company
________________________ Dme ____ _

Mailing Address ___________________________ _
____________ Email ___________ Phone _______ _

- - - - Do Not Tear - Fold Here and Tape . -

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
OPEN SOFTWARE PUBLICATIONS MANAGER
ZK03-3N32
110 SPIT BROOK ROAD
NASHUA NH 03062-9987

1IIIIIIIIh 111111111111 hi II 11111 h 1I11 hi 11111 I h II

- -- - Do Not Tear - Fold Here

No Postage

Necessary

if Mailed in the

United States

Cut
Along
Dottel
Line

