
DEC aSF/1

Assembly Language Programmer's Guide

Part Number: AA-PS31B-TE

DEC OSF/1

Assembly Language Programmer's Guide

Order Number: AA-PS318-TE

February 1994

Product Version: DEC OSF/1 Version 2.0 or higher

This manual describes the assembly language supported by the DEC
OSFIl Alpha AXP compiler system, its syntax rules, and how to write
some assembly programs.

digital equipment corporation
Maynard, Massachusetts

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to
restrictions as set forth in subparagraph (c) (1) (ii).

Digital Equipment Corporation makes no representations that the use of its products in the
manner described in this publication will not infringe on existing or future patent rights, nor
do the descriptions contained in this publication imply the granting of licenses to make, use,
or sell equipment or software in accordance with the description.

Possession, use, or copying of the software described in this publication is authorized only
pursuant to a valid written license from Digital or an authorized sublicensor.

© Digital Equipment Corporation 1994. All rights reserved.

Portions of this document © MIPS Computer Systems, Inc., 1990.

The following are trademarks of Digital Equipment Corporation:

ALL-IN-I, Alpha AXP, AXP, Bookreader, CDA, DDIS, DEC, DEC FUSE, DECnet,
DECstation, DEC system, DECUS, DECwindows, DTIF, MASSBUS, MicroVAX, Q-bus,
ULTRIX, ULTRIX Mail Connection, ULTRIX Worksystem Software, UNIBUS, VAX,
VAXstation, VMS, XUI, and the DIGITAL logo.

UNIX is a registered trademark licensed exclusively by X/Open Company Limited.

All other trademarks and registered trademarks are the property of their respective holders.

Contents

About This Manual

Audience xiii

Organization xiii

Related Documents

Reader's Comments

Conventions

1 Architecture-Based Considerations

1.1

1.2

1.3

Registers

1.1.1 Integer Registers .. .
1.1.2 Floating-Point Registers

Bit and Byte Ordering

Addressing

1.3.1 Aligned Data Operations
1.3.2 Unaligned Data Operations

1.4 Exceptions

1.4.1
1.4.2

Main Processor Exceptions
Floating-Point Processor Exceptions

xiv

xv

xv

1-1

1-1
1-2

1-2

1-4

1-5
1-5

1-6

1-6
1-6

2 Lexical Conventions

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

Blank and Tab Characters

Comments

Identifiers

Constants

2.4.1
2.4.2
2.4.3

Scalar Constants
Floating-Point Constants
String Constants .. .

Multiple Lines Per Physical Line .. .

Statements

2.6.1
2.6.2
2.6.3

Label Definitions
Null Statements
Keyword Statements

Expressions

2.7.1
2.7.2
2.7.3
2.7.4

Expression Operators
Expression Operator Precedence Rules
Data Types
Type Propagation in Expressions

Address Formats

3 Main Instruction Set

3.1

3.2

3.3

3.4

3.5

Load and Store Instructions

3.1.1
3.1.2

Load Instruction Descriptions
Store Instruction Descriptions

Arithmetic Instructions

Logical and Shift Instructions

Relational Instructions

Move Instructions

ivContents

2-1

2-1

2-1

2-2

2-2
2-2
2-3

2-5

2-5

2-5
2-5
2-5

2-6

2-6
2-7
2-7
2-8

2-9

3-2

3-3
3-7

3-9

3-18

3-21

3-23

3.6

3.7

3.8

Control Instructions

Byte-Manipulation Instructions

Special-Purpose Instructions

3-25

3-28

3-33

4 Floating-Point Instruction Set

4.1 Background Information on Floating-Point Operations 4-2

4.2

4.3

4.4

4.5

4.6

4.7

4.1.1 Floating-Point Data Types ... 4-2
4.1.2 Floating-Point Control Register .. 4-3
4.1.3 Floating-Point Exceptions .. 4-5
4.1.4 Floating-Point Rounding Modes 4-5
4.1.5 Floating-Point Instruction Qualifiers 4-7

Floating-Point Load and Store Instructions

Floating-Point Arithmetic Instructions

Floating-Point Relational Instructions

Floating-Point Move Instructions

Floating-Point Control Instructions

Floating-Point Special-Purpose Instructions

4-9

4-10

4-14

4-15

4-17

4-17

5 Assembler Directives

6 Programming Considerations

6.1 Calling Conventions .. 6-1

6.2 Program Model ... 6-2

6.3 General Coding Concerns

6.3.1
6.3.2
6.3.3
6.3.4

Register Use
Using Directives to Control Sections and Location Counters .
The Stack Frame
Examples

6.4 Developing Code for Procedure Calls

6-2

6-3
6-4
6-5

6-10

6-13

Contents v

6.5

6.4.1
6.4.2

Calling a High-Level Language Procedure
Calling an Assembly-Language Procedure

Memory Allocation

7 Object Files

7.1

7.2

Object File Overview

Object File Sections

7.2.1
7.2.2
7.2.3
7.2.4
7.2.5

File Header
Optional Header .. .
Section Headers
Section Data
Section Relocation Information .. .

7.2.5.1
7.2.5.2

Relocation Table Entry .. .
Assembler and Linker Processing of Relocation
Entries .. .

6-13
6-15

6-16

7-1

7-4

7-4
7-5
7-7

7-10
7-11

7-12

7-15

7.3 Object-File Formats (OMAGIC, NMAGIC, ZMAGIC) 7-20

7.3.1 Impure Format (OMAGIC) Files 7-20
7.3.2 Shared Text (NMAGIC) Files .. 7-21
7.3.3 Demand Paged (ZMAGIC) Files 7-22
7.3.4 Ucode Objects .. 7-24

7.4 Loading Object Files 7-24

7-25

7-25

7.5

7.6

Archi ve Files

Linker Defined Symbols

8 Symbol Table

8.1 Symbol Table Overview 8-1

8.2 Format of Symbol Table Entries .. 8-8

8.2.1
8.2.2
8.2.3

vi Contents

Symbolic Header
Line Number Table
Procedure Descriptor Table

8-8
8-9

8-13

8.2.4 Local Symbol Table .. 8-14

8.2.4.1 Symbol Type (st) Constants 8-16
8.2.4.2 Storage Class (sc) Constants 8-17

8.2.5 Auxiliary Symbol Table .. 8-18
8.2.6 File Descriptor Table ... 8-21
8.2.7 External Symbol Table 8-22

9 Program Loading and Dynamic Linking

9.1 Object File Considerations 9-1

9.2

9.3

9.1.1
9.1.2
9.1.3
9.1.4

Structures
Base Addresses
Segment Access Permissions
Segment Contents .. .

Program Loading

Dynamic Linking

9.3.1
9.3.2
9.3.3
9.3.4
9.3.5
9.3.6
9.3.7
9.3.8
9.3.9
9.3,.10
9.3.11

Dynamic Loader .. .
Dynamic Section (.dynamic)
Shared Object Dependencies
Global Offset Table (.got)
Calling Position-Independent Functions
Dynamic Symbol Section (.dynsym)
Dynamic Relocation Section (.rel.dyn)
Hash Table Section (.hash) .. .
Dynamic String Section (.dynstr)

Initialization and Termination Functions
Quickstart

9.3.11.1
9.3.11.2
9.3.11.3

Shared Object List (.liblist)
Conflict Section (.conflict)
Ordering of Sections .. .

A Instruction Summaries

9-1
9-2
9-2
9-2

9-3

9-4

9-4
9-5

9-11
9-13
9-14
9-16
9-19
9-20
9-21
9-21
9-22

9-22
9-24
9-24

Contents vii

B 32-Bit Considerations

B.1 Canonical Form .. B-1

B.l.1 Canonical Form Operands ... B-1

B.2 Longword Instructions ... B-1

B.3 Quadword Instructions for Longword Operations B-2

BA

B.5

B.6

Logical Shift Instructions

Conversions to Quadword

Conversions to Longword

C Basic Machine Definition

C.1

C.2

C.3

CA

C.5

C.6

C.7

Implicit Register Use

Addresses

Immediate Values

Load and Store Instructions

Integer Arithmetic Instructions .. .

Floating-Point Load Immediate Instructions

One-to-One Instruction Mappings

D PALcode Instruction Summaries

D.1

D.2

Unprivileged PALcode Instructions

Privileged PALcode Instructions

Index

viii Contents

B-3

B-3

B-3

C-1

C-2

C-2

C-3

C-3

C-4

C-4

D-1

D-2

Examples

6-1: N onleaf Procedure

6-2: Leaf Procedure Without Stack Space for Local Variables

6-3: Leaf Procedure With Stack Space for Local Variables

Figures

1-1: Byte Ordering

4-1: Floating-Point Data Formats

4-2: Floating-Point Control Register

6-1: Section and Location Counters

6-2: Stack Organization .. .

6-3: Layout of Memory (User Program View)

7 -1: Object File Format .. .

7-2: Organization of Section Data .. .

7-3: Relocation Table Entry for Undefined External Symbols

7 -4: Relocation Table Entry for a Local Relocation Entry

7-5: Layout of OMAGIC Files in Virtual Memory

7 -6: Layout of NMAGIC Files in Virtual Memory

7 -7: Layout of ZMAGIC Files

8-1: The Symbol Table Overview .. .

8-2: Functional Overview of the Symbolic Header

8-3: Logical Relationship Between the File Descriptor Table and Local
Symbols

8-4: Physical Relationship of a File Descriptor Entry to Other Tables

8-5: Logical Relationship Between the File Descriptor Table and Other
Tables .. .

9-1: Text and Data Segments of Object Files

6-10

6-11

6-12

1-4

4-3

4-4

6-5

6-7

6-17

7-3

7-10

7-15

7-16

7-21

7-22

7-23

8-2

8-3

8-5

8-6

8-7

9-3

Contents ix

9-2: Relationship Between .dynsym and .got .. 9-19

9-3: Hash Table Section ... 9-21

Tables

2-1: Backslash Conventions

2-2: Expression Operators

2-3: Data Types .. ,

2-4: Address Formats

3-1: Load and Store Formats

3-2: Load Instruction Descriptions

3-3: Store Instruction Descriptions

3-4: Arithmetic Instruction Formats

3-5: Arithmetic Instruction Descriptions

3-6: Logical and Shift Instruction Formats

3-7: Logical and Shift Instruction Descriptions

3-8: Relational Instruction Formats

3-9: Relational Instruction Descriptions .. .

3-10: Move Instruction Formats

3-11: Move Instruction Descriptions

3-12: Control Instruction Formats

3-13: Control Instruction Descriptions

2-4

2-6

2-7

2-9

3-2

3-4

3-8

3-10

3-11

3-19

3-19

3-22

3-22

3-23

3-24

3-25

3-26

3-14: Byte-Manipulation Instruction Formats .. 3-29

3-15: Byte-Manipulation Instruction Descriptions 3-30

3-16: Special-Purpose Instruction Formats .. 3-34

3-17: Special-Purpose Instruction Descriptions 3-34

4-1: Qualifier Combinations for Floating-Point Instructions 4-9

4-2: Load and Store Instruction Formats 4-9

x Contents

4-3: Load and Store Instruction Descriptions

4-4: Arithmetic Instruction Formats

4-5: Arithmetic Instruction Descriptions .. .

4-6: Relational Instruction Formats '"

4-7: Relational Instruction Descriptions .. .

4-8: Move Instruction Formats

4-9: Move Instruction Descriptions

4-10: Control Instruction Formats .. .

4-11: Control Instruction Descriptions .. .

4-12: Special-Purpose Instruction Formats

4-13: Control Register Instruction Descriptions

5-1: Summary of Assembler Directives

6-1: Integer Registers

6-2: Floating-Point Registers

6-3: Argument Locations

7 -1: File Header Format .. .

7-2: File Header Magic Numbers

7 -3: File Header Flags .. "

7-4: Optional Header Definitions .. .

7-5: Optional Header Magic Numbers

7 -6: Section Header Format

4-10

4-11

4-12

4-14

4-14

4-15

4-16

4-17

4-17

4-18

4-18

5-1

6-3

6-4

6-9

7-4

7-4

7-5

7-6

7-6

7-7

7-7: Section Header Constants for Section Names 7-7

7-8: Format of s_flags Section Header Entry... 7-8

7 -9: Format of a Relocation Table Entry 7-12

7-10: Section Numbers for Local Relocation Entries 7-12

7-11: Relocation Types .. 7-13

7-12: Literal Usage Types .. 7-14

7-13: Linker Defined Symbols .. 7-25

Contents xi

8-1: Format of the Symbolic Header

8-2: Format of a Line Number Entry

8-8

8-9

8-3: Format of a Procedure Descriptor Table Entry................................ 8-13

8-4: Format of a Local Symbol Table Entry ... 8-14

8-5: Index and Value as a Function of Symbol Type and Storage Class 8-15

8-6: Symbol Type (st) Constants ... 8-16

8-7: Storage Class Constants 8-17

8-8: Auxiliary Symbol Table Entries ... 8-18

8-9: Format of a Type Information Record Entry 8-19

8-10: Basic Type (bt) Constants .. 8-19

8-11: Type Qualifier (tq) Constants ... 8-20

8-12: Format of File Descriptor Entry

8-13: External Symbol Table Entries

9-1: Segment Access Permissions

9-2: Dynamic Array Tags (d_tag)

9-3: Processor-Specific Dynamic Array Tags (d_tag)

8-21

8-22

9-2

9-6

9-9

A-I: Main Instruction Set Summary .. A-2

A-2: Floating-Point Instruction Set Summary....................................... A-6

A-3: Rounding and Trapping Modes .. A-9

D-l: Unprivileged PALcode Instructions

D-2: Privileged PALcode Instructions

xii Contents

D-l

D-2

About This Manual

This book describes the assembly language supported by the DEC OSFIl
compiler system, its syntax rules, and how to write some assembly programs.
For information about assembling and linking a program written in assembly
language, see the as(l) and ld(l) reference pages.

The assembler converts assembly language statements into machine code. In
most assembly languages, each instruction corresponds to a single machine
instruction; however, some assembly language instructions can generate
several machine instructions. This feature results in assembly programs that
can run without modification on future machines that might have different
machine instructions.

The assembler exists primarily to produce object modules from the assembly
instructions generated by some high-level language compilers. It therefore
lacks many functions normally present in assemblers.

Audience
This manual assumes that you are an experienced assembly language
programmer.

It is recommended that you use the assembler only when you need to perform
programming tasks such as the following:

• Maximize the efficiency of a routine, which might not be possible in C,
Fortran-77, Pascal, or another high-level language - for example, to write
low-level 110 drivers.

• Access machine functions unavailable from high-level languages or
satisfy special constraints such as restricted register usage.

• Change the operating system.

• Change the compiler system.

Organization
This manual is organized as follows:

Chapter 1 Describes the format for the general registers, the special
registers, and the floating point registers. It also describes

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

how addressing works and the exceptions you might encounter
with assembly programs.

Describes the lexical conventions that the assembler follows.

Describes the main processor's instruction set, including
notation, load and store instructions, computational
instructions, and jump and branch instructions.

Describes the floating point instruction set.

Describes the assembler directives.

Describes calling conventions for all supported high-level
languages. It also discusses memory allocation and register
use.

Chapter 7 Provides an overview of the components comprising the object
file and describes the headers and sections of the object file.

Chapter 8 Describes the purpose of the symbol table and the format of
entries in the table. This chapter also lists the symbol table
routines that are supplied.

Chapter 9 Describes the object file structures that relate to program
execution and dynamic linking, and also describes how the
process image is created from these files.

Appendix A Summarizes all assembler instructions.

Appendix B Describes issues relating to processing 32-bit data.

Appendix C Describes instructions that generate more than one machine
instruction.

Appendix D Describes the PALcode (privileged architecture library code)
instructions required to support an Alpha AXP system.

Related Documents
Programmer's Guide

Alpha Architecture Reference Manual

DEC OSFll Calling Standard for AXP Systems

The printed version of the DEC OSFIl documentation set is color coded to
help specific audiences quickly find the books that meet their needs. (You
can order the printed documentation from Digital.) This color coding is
reinforced with the use of an icon on the spines of books. The following list

xiv About This Manual

describes this convention:

Audience Icon Color Code

General Users G Teal

System Administrators S Red

Network Administrators N Yellow

Programmers P Blue

Reference Page Users R Black

Some books in the documentation set help meet the needs of several
audiences. For example, the information in some system books is also used
by programmers. Keep this in mind when searching for information on
specific topics.

The Documentation Overview provides information on all of the books in the
DEC OSFIl documentation set.

Reader's Comments
Digital welcomes your comments on this or any other DEC OSFIl manual.
You can send your comments in the following ways:

• Internet electronic mail:
readers comment@ravine.zk3.dec.com

• Fax: 603-881-0120 Attn: USG Documentation, ZK03-3/Y32

• A completed Reader's Comments form (postage paid, if mailed in the
United States). Two Reader's Comments forms are located at the back of
each printed DEC OSFIl manual.

If you have suggestions for improving particular sections or find any errors,
please indicate the title, order number, and section numbers. Digital also
welcomes general comments.

Conventions

file

[I]
{ I }

Italic (slanted) type indicates variable values and instruction
operands.

In syntax definitions, brackets indicate items that are optional and
braces indicate items that are required. Vertical bars separating
items inside brackets or braces indicate that you choose one item
from among those listed.

About This Manual xv

eat(l)

xvi About This Manual

In syntax definitions, a horizontal ellipsis indicates that the
preceding item can be repeated one or more times.

A cross-reference to a reference page includes the appropriate
section number in parentheses. For example, eat(l) indicates
that you can find information on the eat command in Section 1
of the reference pages.

Architecture-Based Considerations 1

This chapter describes programming considerations that are determined by
the Alpha AXP system architecture. It addresses the following topics:

• Registers (Section 1.1)

• Bit and byte ordering (Section 1.2)

• Addressing (Section 1.3)

• Exceptions (Section 1.4)

1.1 Registers
This section discusses the registers that are available on Alpha AXP systems
and describes how memory organization affects them. Refer to Section 6.3
for information regarding register use and linkage.

Alpha AXP systems have the following types of registers:

• Integer registers

• Floating-point registers

You must use integer registers where the assembly instructions expect integer
registers and floating-point registers where the assembly instructions expect
floating-point registers. If you confuse the two, the assembler issues an error
message.

The assembler reserves all register names (see Section 6.3.1). All register
names start with a dollar sign ($) and all alphabetic characters in register
names are lowercase.

1.1.1 Integer Registers
Alpha AXP systems have 32 integer registers, each of which is 64 bits wide.
Integer registers are sometimes referred to as general registers in other
system architectures.

The integer registers have the names $ 0 to $ 31.

By including the file regdef. h (use #include <alpha/regdef. h»
in your assembly language program, you can use the software names of all of
the integer registers, except for $ 2 8, $ 2 9, and $ 3 O. The operating system

and the assembler use the integer registers $ 28, $ 2 9, and $ 3 0 for specific
purposes.

Note

If you need to use the registers reserved for the operating system
and the assembler, you must specify their alias names in your
program, not their regular names. The alias names for $ 2 8,
$29, and $30 are $at, $gp, and $sp, respectively. To prevent
you from using these registers unknowingly and thereby
producing potentially unexpected results, the assembler issues
warning messages if you specify their regular names in your
program.

Integer register $ 2 9 is available as a general register on some
compiler systems when the -G 0 compilation option is
specified. It is not available as a general register on Alpha AXP
systems under any circumstances.

Integer register $ 31 always contains the value O. All other integer registers
can be used interchangeably, except for integer register $30, which is
assumed to be the stack pointer (certain P ALcode assumes that $ 3 0 is the
stack pointer). See Table 6-1 for a description of integer register assignments.
See Appendix D and the Alpha Architecture Handbook for information on
PALcode (Privileged Architecture Library code).

1.1.2 Floating-Point Registers
Alpha AXP systems have 32 floating-point registers, each of which is 64 bits
wide. Each register can hold one single-precision (32-bit) value or one
double-precision (64-bit) value.

The floating-point registers have the names $ f 0 to $ f 31.

Floating-point register $ f 31 always contains the value 0.0. All other
floating-point registers can be used interchangeably. See Table 6-2 for a
description of floating-point register assignments.

1.2 Bit and Byte Ordering
A system's byte-ordering scheme (or endian scheme) affects memory
organization and defines the relationship between address and byte position
of data in memory:

• Big-endian systems store the sign bit in the lowest address byte.

• Little-endian systems store the sign bit in the highest address byte.

1-2 Architecture-Based Considerations

Alpha AXP systems use the little-endian scheme. Byte-ordering is as
follows:

• The bytes of a quadword are numbered from 7 to O. Byte 7 holds the
sign and most significant bits.

• The bytes of a longword are numbered from 3 to O. Byte 3 holds the
sign and most significant bits.

The bytes of a word are numbered from 1 to O. Byte 1 holds the sign and
most significant bits.

The bits of each byte are numbered from 7 to 0, using the format shown in
Figure 1-1. (No assembler instructions depend on bit numbering; it is a
software convention.)

Architecture-Based Considerations 1-3

Figure 1-1: Byte Ordering

Quadword
Bit: 63 ... 56 55 ... 48 47 ... 40 39 ... 32 31 ... 24 23... 16 15 ... 8 7 ... 0

sign and most
significant bits

1.3 Addressing

Longword
Bit: 31 ... 24 23 ... 16 15 ... 8 7 ... 0

Bit:

sign and most
significant bits

Word
Bit: 15 ... 8 7 ... 0

sign and most
significant bits

7

most
significant bit

Byte
4 3 2 0

least
significant bit

ZK-0732U-R

This section describes the byte-addressing schemes for load and store
instructions. (Section 2.8 describes the formats in which you can specify
addresses.)

1-4 Architecture-Based Considerations

1.3.1 Aligned Data Operations
All Alpha AXP systems use the following byte-addressing scheme for
aligned data:

• Access to words requires alignment on byte boundaries that are evenly
divisible by two.

• Access to longwords requires alignment on byte boundaries that are
evenly divisible by four.

• Access to quadwords requires alignment on byte boundaries that are
evenly divisible by eight.

Any attempt to address a data item that does not have the proper alignment
causes an alignment exception.

The following instructions load or store aligned data:

• Load quadword (ldq)

• Store quadword (s tq)

• Load longword (ldl)

• Store longword (stl)

• Load word (ldw)

• Store word (stw)

• Load word unsigned (ldwu)

1.3.2 Unaligned Data Operations
The assembler's unaligned load and store instructions operate on arbitrary
byte boundaries. They all generate multiple machine-code instructions. They
do not raise alignment exceptions.

The following instructions load and store unaligned data:

• Unaligned load quadword (uldq)

• Unaligned store quadword (ustq)

• Unaligned load longword (uldl)

• Unaligned store longword (ustl)

• Unaligned load word (uldw)

• Unaligned store word (ustw)

• Unaligned load word unsigned (uldwu)

• Load byte (ldb)

• Store byte (s tb)

Architecture-Based Considerations 1-5

• Load byte unsigned (ldbu)

1 .4 Exceptions
This section describes the exceptions that you can encounter while running
assembly programs. The Alpha AXP system detects some exceptions
directly, and other exceptions are signaled as a result of specific tests that are
inserted by the assembler. This section describes only those exceptions that
occur frequently.

1.4.1 Main Processor Exceptions
The following exceptions are the most common to the main processor:

• Address error exceptions - these occur when an address is invalid for the
executing process or, in most instances, when a reference is made to a
data item that is not properly aligned.

• Overflow exceptions - these occur when arithmetic operations compute
signed values and the destination lacks the precision to store the result.

• Bus exceptions - these occur when an address is invalid for the executing
process.

• Divide-by-zero exceptions - these occur when a divisor is zero.

1.4.2 Floating-Point Processor Exceptions
The following exceptions are the most common floating-point exceptions:

• Invalid operation exceptions - these include the following:

- Magnitude subtraction of infinities, for example: (+00) - (+00).

- Multiplication of 0 by 00, with any signs.

- Division of 0 by 0 or 00 by 00, with any signs.

- Conversion of a binary floating-point number to an integer format
when an overflow or the operand value for the infinity or NaN
precludes a faithful representation in the integer format. (The cvt tq
instruction converts floating-point numbers to integer formats.)

- Comparison of predicates that have unordered operands and involve
Less Than or Less Than or Equal.

- Any operation on a signaling NaN. (See the introduction of Chapter
4 for a description of NaN symbols.)

• Divide-by-zero exceptions - these occur when a divisor is zero.

1-6 Architecture-Based Considerations

• Overflow exceptions - these occur when a rounded floating-point result
exceeds the destination format's largest finite number.

• Underflow exceptions - these occur when a. result has lost accuracy and
also when a nonzero result is between ±2Emm (plus or minus 2 to the
minimum expressible exponent).

• Inexact exceptions - these occur if the infinitely precise result differs
from the rounded result.

For additional information on floating-point exceptions, see Section 4.1.3.

Architecture-Based Considerations 1-7

Lexical Conventions 2

This chapter describes lexical conventions associated with the following
items:

• Blank and tab characters (Section 2.1)

• Comments (Section 2.2)

• Identifiers (Section 2.3)

• Constants (Section 2.4)

• Physical lines (Section 2.5)

• Statements (Section 2.6)

• Expressions (Section 2.7)

• Address formats (Section 2.8)

2.1 Blank and Tab Characters
You can use blank and tab characters anywhere between operators,
identifiers, and constants. Adjacent identifiers or constants that are not
otherwise separated must be separated by a blank or tab.

These characters can also be used within character constants; however, they
are not allowed within operators and identifiers.

2.2 Comments
The number sign character (#) introduces a comment. Comments that start
with a number sign extend through the end of the line on which they appear.
You can also use C language notation (/ * ... * /) to delimit comments.

Do not start a comment with a number sign in column one; the assembler
uses cpp (the C language preprocessor) to preprocess assembler code and
cpp interprets number signs in the first column as preprocessor directives.

2.3 Identifiers
An identifier consists of a case-sensitive sequence of alphanumeric characters
(A-Z, a-z, 0-9) and the following special characters:

• . (period)

• _ (underscore)

• $ (dollar sign)

Identifiers can be up to 31 characters long, and the first character cannot be
numeric (0-9).

If an identifier is not defined to the assembler (only referenced), the
assembler assumes that the identifier is an external symboL The assembler
treats the identifier like a name specified by a • globl directive (see Chapter
5).

If the identifier is defined to the assembler and the identifier has not been
specified as global, the assembler assumes that the identifier is a local
symboL

2.4 Constants
The assembler supports the following constants:

• Scalar constants

• Floating-point constants

• String constants

2.4.1 Scalar Constants
The assembler interprets all scalar constants as twos complement numbers.
Scalar constants can be any of the digits 0123456789abcdefABCDEF.

Scalar constants can be one of the following constants:

• Decimal constants - these consist of a sequence of decimal digits (0-9)
without a leading zero.

• Hexadecimal constants - these consist of the characters Ox (or OX)
followed by a sequence of hexadecimal digits (0-9abcdefABCDEF).

• Octal constants - these consist of a leading zero followed by a sequence
of octal digits (0-7).

2.4.2 Floating-Point Constants
Floating-point constants can appear only in floating-point directives (see
Chapter 5) and in the floating-point load immediate instructions (see

2-2 Lexical Conventions

Section 4.2). Floating-point constants have the following format:

±dl[.d2) [eIE±d3)

dl
is written as a decimal integer and denotes the integral part of the
floating-point value.

d2
is written as a decimal integer and denotes the fractional part of the
floating-point value.

d3
is written as a decimal integer and denotes a power of 10.

The "+" symbol is optional.

For example, the number .02173 can be represented as follows:
21.73E-3

The floating-point directives (such as • float and. double) may
optionally use hexadecimal floating-point constants instead of decimal
constants. A hexadecimal floating-point constant consists of the following
elements:
[+I-)Ox[lIO).<hex-digits>hOx<hex-digits>

The assembler places the first set of hexadecimal digits (excluding the 0 or 1
preceding the decimal point) in the mantissa field of the floating-point format
without attempting to normalize it. It stores the second set of hexadecimal
digits in the exponent field without biasing them. If the mantissa appears to
be denormalized, it checks to determine whether the exponent is appropriate.
Hexadecimal floating-point constants are useful for generating IEEE special
symbols and for writing hardware diagnostics.

For example, either of the following directives generates the single-precision
number 1.0:

. float 1. Oe+O

.float Oxl.OhOx7f

The assembler uses normal (nearest) rounding mode to convert floating-point
constants.

2.4.3 String Constants
All characters except the newline character are allowed in string constants.
String constants begin and end with double quotation marks (").

The assembler observes most of the backslash conventions used by the C

Lexical Conventions 2-3

language. Table 2-1 shows the assembler's backs lash conventions.

Table 2-1: 8ackslash Conventions

Convention Meaning

\a Alert (Ox07)

\b Backspace (Ox08)

\f Form feed (OxOc)

\n Newline (OxOa)

\r Carriage return (OxOd)

\t Horizontal tab (Ox09)

\v Vertical feed (OxOb)

\\ Backslash (Ox5c)

\" Quotation mark (Ox22)

\' Single quote (Ox27)

\nnn Character whose octal value is nnn (where n is 0-7)

\Xnn Character whose hexadecimal value is nn (where n
is 0-9, a-f, or A-F)

Deviations from C conventions are as follows:

• The assembler does not recognize "\?,'

• The assembler does not recognize the prefix "L" (wide character
constant).

• The assembler limits hexadecimal constants to two characters.

• The assembler allows the leading "x" character in a hexadecimal
constants to be either uppercase or lowercase; that is, both \xnn and \Xnn
are allowed.

For octal notation, the backslash conventions require three characters when
the next character could be confused with the octal number.

For hexadecimal notation, the backslash conventions require two characters
when the next character could be confused with the hexadecimal number
(that is, use a 0 for the first character of a single-character hexadecimal
number).

2-4 Lexical Conventions

2.5 Multiple Lines Per Physical Line
You can include multiple statements on the same line by separating the
statements with semicolons. Note, however, that the assembler does not
recognize semicolons as separators when they follow comment symbols # or
/*).

2.6 Statements
The assembler supports the following types of statements:

• Null statements

• Keyword statements

Each statement consists of an optional label, an operation code, and one or
more operands.

2.6.1 Label Definitions
A label definition consists of an identifier followed by a colon. Label
definitions assign the current value and type of the location counter to the
name. An error results when the name is already defined.

Label definitions always end with a colon. You can put a label definition on
a line by itself.

A generated label is a single numeric value (1-255). To reference a generated
label, put an f (forward) or a b (backward) immediately after the digit. The
reference tells the assembler to look for the nearest generated label that
corresponds to the specified number in the lexically forward or backward
direction.

2.6.2 Null Statements
A null statement is an empty statement that the assembler ignores. Null
statements can have label definitions. For example, the following line has
three null statements in it:

label: ; ;

2.6.3 Keyword Statements
A keyword statement begins with a predefined keyword. The syntax for the
rest of the statement depends on the keyword. Keywords are either
assembler instructions (mnemonics) or directives. (Assembler instructions in
the main instruction set and the floating -point instruction set are described in
Chapter 3 and Chapter 4, respectively. Assembler directives are described in
Chapter 5.)

Lexical Conventions 2-5

2.7 Expressions
An expression is a sequence of symbols that represents a value. Each
expression and its result have data types. The assembler does arithmetic in
twos complement integers with 64 bits of precision. Expressions follow
precedence rules and consist of the following elements:

• Operators

• Identifiers

• Constants

You can also use a single character string in place of an integer within an
expression. For example, the following two pairs of statements are
equivalent:
.byte "a" ; .word "a"+Ox19
.byte Ox61 ; .word Ox7a

2.7.1 Expression Operators

The assembler supports the operators shown in Table 2-2.

Table 2-2: Expression Operators

Operator Meaning

+ Addition

Subtraction

* Multiplication

/ Division

% Remainder

« Shift left

» Shift right (sign is not extended)
/\ Bitwise EXCLUSIVE OR

& Bitwise AND

Bitwise OR

Minus (unary)

+ Identity (unary)

Complement

2-6 Lexical Conventions

2.7.2 Expression Operator Precedence Rules
For the order of operator evaluation within expressions, you can rely on the
precedence rules or you can group expressions with parentheses. Unless
parentheses enforce precedence, the assembler evaluates all operators of the
same precedence strictly from left to right. Because parentheses also
designate index registers, ambiguity can arise from parentheses in
expressions. To resolve this ambiguity, put a unary + in front of parentheses
in expressions.

The assembler has three precedence levels. The following table lists the
precedence rules from lowest to highest:

Precedence Operators

Least binding, lowest precedence Binary +, -

Binary *, I, %, «, », ", &, I

Most binding, highest precedence Unary -, +, -

Note

The assembler's precedence scheme differs from that of the C
language.

2.7.3 Data Types
Each symbol you reference or define in an assembly program belongs to one
of the type categories shown in Table 2-3.

Table 2-3: Data Types

Type

undefined

absolute

text

Description

Any symbol that is referenced but not defined becomes global
undefined. (Declaring such a symbol in a • globl directive
merely makes its status clearer.)

A constant defined in an "=" expression.

Any symbol defined while the. text directive is in effect belongs
to the text section. The text section contains the program's
instructions, which are not modifiable during execution.

Lexical Conventions 2-7

Table 2-3: (continued)

Type Description

data Any symbol defined while the. data directive is in effect belongs
to the data section. The data section contains memory that the
linker can initialize to nonzero values before your program begins
to execute.

sdata This category is similar to data, except that defining a symbol
while the • sdata ("small data") directive is in effect causes the
linker to place it within the small data section. This increases the
chance that the linker will be able to optimize memory references
to the item by using gp-relative addressing.

rdata Any symbol defined while the. rdata directive is in effect
belongs to this category, which is similar to data, but may not be
modified during execution.

bss and sbss Any symbol defined in a • carnrn or • lcarnrn directive belongs to
these sections (except that a . data, . sdata, or • rdata
directive can override a • carnrn directive). The bss and sbss
sections consist of memory that the kernel loader initializes to zero
before your program begins to execute.

If a symbol's size is less than the number of bytes specified by the
-G compilation option (which defaults to eight), it belongs to sbss
(small bss), and the linker places it within the small data section.
This increases the chance that the linker will be able to optimize
memory references to the item by using gp-relative addressing.

Local symbols in bss or sbss defined by . lcarnrn directives are
allocated memory by the assembler, global symbols are allocated
memory by the linker, and symbols defined by • carnrn directives
are overlaid upon like-named symbols (in the fashion of Fortran
COMMON blocks) by the linker.

Symbols in the undefined category are always global; that is, they are visible
to the linker and can be shared with other modules of your program.
Symbols in the absolute, text, data, sdata, rdata, bss, and sbss type categories
are local unless declared in a • g lobI directive.

2.7.4 Type Propagation in Expressions
For any expression, the result's type depends on the types of the operands
and on the operator. The following type propagation rules are used in
expressions:

• If an operand is undefined, the result is undefined.

2-8 Lexical Conventions

• If both operands are absolute, the result is absolute.

• If the operator is a plus sign (+) and the first operand refers to an
undefined external symbol or a relocatable text-section, data-section, or
bss-section symbol, the result has the first operand's type and the other
operand must be absolute.

• If the operator is a minus sign (-) and the first operand refers to a
relocatable text-section, data-section, or bss-section symbol, type
propagation rules can vary:

- The second operand can be absolute (if it was previously defined) and
the result has the first operand's type.

- The second operand can have the same type as the first operand and
the result is absolute.

- If the first operand is external undefined, the second operand must be
absolute.

• The operators *, /, %, «, », -, ", &, and I apply only to absolute
symbols.

2.8 Address Formats
The assembler accepts addresses expressed in the formats described in Table
2-4:

Table 2-4: Address Formats

Format Address Description

(base-register) Specifies an indexed address, which assumes a zero
offset. The base register's contents specify the address.

expression Specifies an absolute address. The assembler generates
the most locally efficient code for referencing the value
at the specified address.

expression(base-register) Specifies a based address. To get the address, the
value of the expression is added to the contents of the
base register. The assembler generates the most locally
efficient code for referencing the value at the specified
address.

relocatable-symbol Specifies a relocatable address. The assembler
generates the necessary instructions to address the item
and generates relocation information for the linker.

Lexical Conventions 2-9

Table 2-4: (continued)

Format Address Description

relocatable-symbol ± expression
Specifies a relocatable address. To get the address, the
value of the expression, which has an absolute value, is
added or subtracted from the relocatable symbol. The
assembler generates the necessary instructions to
address the item and generates relocation information
for the linker. If the symbol name does not appear as a
label anywhere in the assembly, the assembler assumes
that the symbol is external.

relocatable-symbol(index-register)
Specifies an indexed relocatable address. To get the
address, the index register is added to the relocatable
symbol's address. The assembler generates the
necessary instructions to address the item and generates
relocation information for the linker. If the symbol
name does not appear as a label anywhere in the
assembly, the assembler assumes that the symbol is
external.

relocatable-symbol ± expression(index-register)

2-10 Lexical Conventions

Specifies an indexed relocatable address. To get the
address, the assembler adds or subtracts the relocatable
symbol, the expression, and the contents of index
register. The assembler generates the necessary
instructions to address the item and generates
relocation information for the link editor. If the
symbol name does not appear as a label anywhere in
the assembly, the assembler assumes that the symbol is
external.

Main Instruction Set 3

The assembler's instruction set consists of a main instruction set and a
floating-point instruction set. This chapter describes the main instruction set;
Chapter 4 describes the floating-point instruction set. For details on the
instruction set beyond the scope of this manual, refer to the Alpha
Architecture Reference Manual.

The assembler's main instruction set contains the following classes of
instructions:

• Load and store instructions (Section 3.1)

• Arithmetic instructions (Section 3.2)

• Logical and shift instructions (Section 3.3)

• Relational instructions (Section 3.4)

• Move instructions (Section 3.5)

• Control instructions (Section 3.6)

• Byte-manipulation instructions (Section 3.7)

• Special-purpose instructions (Section 3.8)

Tables in this chapter show the format of each instruction in the main
instruction set. The tables list the instruction names and the forms of
operands that can be used with each instruction. The specifiers used in the
tables to identify operands have the following meanings:

Operand Specifier Description

address A symbolic expression whose effective value is used as an
address.

b _reg Base register. An integer register containing a base address
to which is added an offset (or displacement) value to
produce an effective address.

d_reg Destination register. An integer register that receives a
value as a result of an operation.

d_reg/s_reg One integer register that is used as both a destination
register and a source register.

label A label that identifies a location in a program.

Operand Specifier Description

no_operands No operands are specified.

offset An immediate value that is added to the contents of a base
register to calculate an effective address.

palcode A value that determines the operation performed by a PAL
instruction.

s_reg, s_regJ, s_reg2 Source registers. Registers whose contents are to be used in
an operation.

vaCexpr An expression whose value is used as an absolute value.

vaCimmed An immediate value that is to be used in an operation.

jhint An address operand that provides a hint of where a jrnp or
j sr instruction will transfer control.

rhint An immediate operand that provides software with a hint
about how a ret or j sr _coroutine instruction is used.

3.1 Load and Store Instructions
Load and store instructions load immediate values and move data between
memory and general registers. This section describes the general-purpose
load and store instructions supported by the assembler.

Table 3-1 lists the mnemonics and operands for instructions that perform load
and store operations. The table is segmented into groups of instructions.
The operands specified within a particular segment apply to all of the
instructions contained in that segment.

Table 3-1: Load and Store Formats

Instruction

Load Address
Load Byte
Load Byte Unsigned
Load Word
Load Word Unsigned
Load Sign Extended Longword
Load Sign Extended Longword Locked
Load Quadword
Load Quadword Locked
Load Quadword Unaligned
Unaligned Load Word
Unaligned Load Word Unsigned

3-2 Main Instruction Set

Mnemonic

Ida
Idb
Idbu
Idw
Idwu
Idl
Idl I
Idq
Idq_1
Idq_u
uIdw
uIdwu

Operands

d_reg, address

Table 3-1: (continued)

Instruction Mnemonic Operands

Unaligned Load Longword uldl
Unaligned Load Quadword uldq

Load Address High Idah d_reg, offset(b_reg)
Load Global Pointer Idgp

Load Immediate Longword Idil d_reg, vaCexpr
Load Immediate Quadword Idiq

Store Byte stb s_reg, address
Store Word stw
Store Longword stl
Store Longword Conditional stl c
Store Quadword stq
Store Quadword Conditional stq_c
Store Quadword Unaligned stq_u
Unaligned Store Word ustw
Unaligned Store Longword ustl
Unaligned Store Quadword ustq

Section 3.1.1 describes the operations performed by load instructions and
Section 3.1.2 describes the operations performed by store instructions.

3.1.1 Load Instruction Descriptions
Load instructions move values (addresses, values of expressions, or contents
of memory locations) into registers. For all load instructions, the effective
address is the 64-bit twos-complement sum of the contents of the index
register and the sign-extended offset.

Instructions whose address operands contain symbolic labels imply an index
register, which the assembler determines. Some assembler load instructions
can produce multiple machine-code instructions (see Section CA).

Note

Load instructions can generate many code sequences for which
the linker must fix the address by resolving external data items.

Table 3-2 describes the operations performed by load instructions.

Main Instruction Set 3-3

Table 3-2: Load Instruction Descriptions

Instruction

Load Address (Ida)

Load Byte (I db)

Load Byte Unsigned (Idbu)

Description

Loads the destination register with the effective
address of the specified data item.

Loads the least significant byte of the destination
register with the contents of the byte specified by the
effective address. Because the loaded byte is a
signed value, its sign bit is replicated to fill the other
bytes in the destination register. (The assembler
uses temporary registers AT and t9 for this
instruction.)

Loads the least significant byte of the destination
register with the contents of the byte specified by the
effective address. Because the loaded byte is an
unsigned value, the other bytes of the destination
register are cleared to zeros. (The assembler uses
temporary registers AT and t9 for this instruction.)

Load Word (Idw) Loads the two least significant bytes of the
destination register with the contents of the word
specified by the effective address. Because the
loaded word is a signed value, its sign bit is
replicated to fill the other bytes in the destination
register.

If the effective address is not evenly divisible by
two, a data alignment exception may be signaled.
(The assembler uses temporary registers AT and t9
for this instruction.)

Load Word Unsigned (Idwu)

3-4 Main Instruction Set

Loads the two least significant bytes of the
destination register with the contents of the word
specified by the effective address. Because the
loaded word is an unsigned value, the other bytes of
the destination register are cleared to zeros.

If the effective address is not evenly divisible by
two, a data alignment exception may be signaled.
(The assembler uses temporary registers AT and t9
for this instruction.)

Table 3-2: (continued)

Instruction Description

Load Sign Extended Longword (ld1)
Loads the four least significant bytes of the
destination register with the contents of the
longword specified by the effective address.
Because the loaded longword is a signed value, its
sign bit is replicated to fill the other bytes in the
destination register.

If the effective address is not evenly divisible by
four, a data alignment exception is signaled.

Load Sign Extended Longword Locked (ld1 1)

Load Quadword (ldq)

Loads the four least significant bytes of the
destination register with the contents of the
longword specified by the effective address.
Because the loaded longword is a signed value, its
sign bit is replicated to fill the other bytes in the
destination register.

If the effective address is not evenly divisible by
four, a data alignment exception is signaled.

If a 1d1 1 instruction executes without faulting, the
processor records the target physical address in a
per-processor locked-physical-address register and
sets the per-processor lock flag.

If the per-processor lock flag is still set when a
st1 c instruction is executed, the store occurs;
otherwise, it does not occur.

Loads the destination register with the contents of
the quadword specified by the effective address. All
bytes of the register are replaced with the contents of
the loaded quadword.

If the effective address is not evenly divisible by
eight, a data alignment exception is signaled.

Load Quadword Locked (ldq 1)
Loads the destination register with the contents of
the quadword specified by the effective address. All
bytes of the register are replaced with the contents of
the loaded quadword.

If the effective address is not evenly divisible by
eight, a data alignment exception is signaled.

Main Instruction Set 3-5

Table 3-2: (continued)

Instruction Description

If an Idq 1 instruction executes without faulting,
the processor records the target physical address in a
per-processor locked-physical-address register and
sets the per-processor lock flag.

If the per-processor lock flag is still set when a
stq c instruction is executed, the store occurs;
othenvise, it does not occur.

Load Quadword Unaligned (ldq u)
Loads the destination register with the contents of
the quad word specified by the effective address
(with the three low-order bits cleared). The address
does not have to be aligned on an 8-byte boundary;
it can be any byte address.

Unaligned Load Word (uldw)
Loads the two least significant bytes of the
destination register with the word at the specified
address. The address does not have to be aligned on
a 2-byte boundary; it can be any byte address.
Because the loaded word is a signed value, its sign
bit is replicated to fill the other bytes in the
destination register. (The assembler uses temporary
registers AT, t9, and tlO for this instruction.)

Unaligned Load Word Unsigned (uldwu)
Loads the two least significant bytes of the
destination register with the word at the specified
address. The address does not have to be aligned on
a 2-byte boundary; it can be any byte address.
Because the loaded word is an unsigned value, the
other bytes of the destination register are cleared to
zeros. (The assembler uses temporary registers AT,
t 9, and t I 0 for this instruction.)

Unaligned Load Longword (uldl)

3-6 Main Instruction Set

Loads the four least significant bytes of the
destination register with the longword at the
specified address. The address does not have to be
aligned on a 4-byte boundary; it can be any byte
address in memory. (The assembler uses temporary
registers AT, t 9, and t I 0 for this instruction.)

Table 3-2: (continued)

Instruction Description

Unaligned Load Quadword (uldq)

Load Address High (ldah)

Load Global Pointer (ldgp)

Loads the destination register with the quadword at
the specified address. The address does not have to
be aligned on an 8-byte boundary; it can be any byte
address in memory. (The assembler uses temporary
registers AT, t9, and tID for this instruction.)

Loads the destination register with the effective
address of the specified data item. In computing the
effective address, the signed constant offset is
multiplied by 65536 before adding to the base
register. The signed constant must be in the range
-32768 to 32767.

Loads the destination register with the global pointer
value for the procedure. The sum of the base register
and the sign-extended offset specifies the address of
the Idgp instruction.

Load Immediate Longword (ldil)
Loads the destination register with the value of an
expression that can be computed at assembly time.
The value is converted to canonical longword form
before being stored in the destination register; bit 31
is replicated in bits 32 though 63 of the destination
register. (See Appendix B for additional information
on canonical forms.)

Load Immediate Quadword (ldiq)
Loads the destination register with the value of an
expression that can be computed at assembly time.

3.1.2 Store Instruction Descriptions
For all store instructions, the effective address is the 64-bit twos-complement
sum of the contents of the index register and the sign-extended 16-bit offset.

Instructions whose address operands contain symbolic labels imply an index
register, which the assembler determines. Some assembler store instructions
can produce multiple machine-code instructions (see Section C.4).

Table 3-3 describes the operations performed by store instructions.

Main Instruction Set 3-7

Table 3-3: Store Instruction Descriptions

Instruction

Store Byte (s tb)

Store Word (stw)

Store Longword (s t 1)

Description

Stores the least significant byte of the source register
in the memory location specified by the effective
address. (The assembler uses temporary registers AT,
t9, and tID for this instruction.)

Stores the two least significant bytes of the source
register in the memory location specified by the
effective address.

If the effective address is not evenly divisible by two,
a data alignment exception may be signaled. (The
assembler uses temporary registers AT, t9, and tID
for this instruction.)

Stores the four least significant bytes of the source
register in the memory location specified by the
effective address.

If the effective address is not evenly divisible by four,
a data alignment exception is signaled.

Store Longword Conditional (s tIc)
Stores the four least significant bytes of the source
register in the memory location specified by the
effective address, if the lock flag is set. The lock flag
is returned in the source register and is then set to
zero.

If the effective address is not evenly divisible by four,
a data alignment exception is signaled.

Store Quadword (stq) Stores the contents of the source register in the
memory location specified by the effective address.

If the effective address is not evenly divisible by eight,
a data alignment exception is signaled.

Store Quadword Conditional (s tq c)

3-8 Main Instruction Set

Stores the contents of the source register in the
memory location specified by the effective address, if
the lock flag is set. The lock flag is returned in the
source register and is then set to zero.

If the effective address is not evenly divisible by eight,
a data alignment exception is signaled.

Table 3-3: (continued)

Instruction Description

Store Quadword Unaligned (stq u)
Stores the contents of the source register in the
memory location specified by the effective address
(with the three low-order bits cleared).

Unaligned Store Word (ustw)
Stores the two least significant bytes of the source
register in the memory location specified by the
effective address. The address does not have to be
aligned on a 2-byte boundary; it can be any byte
address. (The assembler uses temporary registers AT,
t9, tl 0, tIl, and tl2 for this instruction.)

Unaligned Store Longword (ustl)
Stores the four least significant bytes of the source
register in the memory location specified by the
effective address. The address does not have to be
aligned on a 4-byte boundary; it can be any byte
address. (The assembler uses temporary registers AT,
t9, tlO, tIl, and tl2 for this instruction.)

Unaligned Store Quadword (ustq)
Stores the contents of the source register in a memory
location specified by the effective address. The
address does not have to be aligned on an 8-byte
boundary; it can be any byte address. (The assembler
uses temporary registers AT, t9, tlO, tIl, and tl2
for this instruction.)

3.2 Arithmetic Instructions
Arithmetic instructions perform arithmetic operations on values in registers.
(Floating-point arithmetic instructions are described in Section 4.3.)

Table 3-4 lists the mnemonics and operands for instructions that perform
arithmetic operations. The table is segmented into groups of instructions.
The operands specified within a particular segment apply to all of the
instructions contained in that segment.

Main Instruction Set 3-9

Table 3-4: Arithmetic Instruction Formats

Instruction

Clear

Absolute Value Longword
Absolute Value Quadword
Negate Longword (without overflow)
Negate Longword (with overflow)
Negate Quadword (without overflow)
Negate Quadword (with overflow)
Sign-Extension Longword

Add Longword (without overflow)
Add Longword (with overflow)
Add Quadword (without overflow)
Add Quadword (with overflow)
Scaled Longword Add by 4
Scaled Quadword Add by 4
Scaled Longword Add by 8
Scaled Quadword Add by 8
Multiply Longword (without overflow)
Multiply Longword (with overflow)
Multiply Quadword (without overflow)
Multiply Quadword (with overflow)
Subtract Longword (without overflow)
Subtract Longword (with overflow)
Subtract Quadword (without overflow)
Subtract Quadword (with overflow)
Scaled Longword Subtract by 4
Scaled Quadword Subtract by 4
Scaled Longword Subtract by 8
Scaled Quadword Subtract by 8
Unsigned Quadword Multiply High
Divide Longword
Divide Longword Unsigned
Divide Quadword
Divide Quadword Unsigned
Longword Remainder
Longword Remainder Unsigned
Quadword Remainder
Quadword Remainder Unsigned

Mnemonic

clr

absl
absq
negl
neglv
negq
negqv
sextl

addl
addlv
addq
addqv
s4addl
s4addq
s8addl
s8addq
mull
mullv
mulq
mulqv
subl
sublv
subq
subqv
s4subl
s4subq
s8subl
s8subq
umulh
divl
divlu
divq
divqu
reml
remlu
remq
remqu

Operands

I
s_reg, d_reg)
d_reg Is_reg

vaCimmed, d_reg

s_regJ, s_reg2, d_reg

d_regls_regJ, s_reg2

s_regJ, vaCimmed, d_reg

d_regls_regJ, vaCimmed

Table 3-5 describes the operations performed by arithmetic instructions.

3-10 Main Instruction Set

Table 3-5: Arithmetic Instruction Descriptions

Instruction

Clear (clr)

Descri ption

Sets the contents of the destination register to
zero.

Absolute Value Longword (absl)
Computes the absolute value of the contents of
the source register and puts the result in the
destination register. If the value in the source
register is -2147483648, an overflow exception is
signaled.

Absolute Value Quadword (absq)
Computes the absolute value of the contents of
the source register and puts the result in the
destination register. If the value in the source
register is -9223372036854775808, an overflow
exception is signaled.

Negate Longword (without overflow) (negl)
Negates the integer contents of the four least
significant bytes in the source register and puts
the result in the destination register. An
overflow occurs if the value in the source register
is -2147483648, but the overflow exception is
not signaled.

Negate Longword (with overflow) (negl v)
Negates the integer contents of the four least
significant bytes in the source register and puts
the result in the destination register. If the value
in the source register is -2147483648, an
overflow exception is signaled.

Negate Quadword (without overflow) (negq)
Negates the integer contents of the source
register and puts the result in the destination
register. An overflow occurs if the value in the
source register is -2147483648, but the overflow
exception is not signaled.

Negate Quadword (with overflow) (negqv)
Negates the integer contents of the source
register and puts the result in the destination
register. If the value in the source register is
-9223372036854775808, an overflow exception
is signaled.

Main Instruction Set 3-11

Table 3-5: (continued)

Instruction Description

Sign-Extension Longword (sextl)
Moves the four least significant bytes of the
source register into the four least significant
bytes of the destination register. Because the
moved longword is a signed value, its sign bit is
replicated to fill the other bytes in the destination
register.

Add Longword (without overflow) (addl)
Computes the sum of two signed 32-bit values.
This instruction adds the contents of s_reg 1 to
the contents of s_reg2 or the immediate value
and then puts the result in the destination
register. Overflow exceptions never occur.

Add Longword (with overflow) (addlv)
Computes the sum of two signed 32-bit values.
This instruction adds the contents of s reg 1 to
the contents of s reg2 or the immedIate value
and then puts theresult in the destination
register. If the result cannot be represented as a
signed 32-bit number, an overflow exception is
signaled.

Add Quadword (without overflow) (addq)
Computes the sum of two signed 64-bit values.
This instruction adds the contents of s reg 1 to
the contents of s reg2 or the immedIate value
and then puts theresult in the destination
register. Overflow exceptions never occur.

Add Quadword (with overflow) (addqv)
Computes the sum of two signed 64-bit values.
This instruction adds the contents of s reg 1 to
the contents of s reg2 or the immedIate value
and then puts theresult in the destination
register. If the result cannot be represented as a
signed 64-bit number, an overflow exception is
signaled.

Scaled Longword Add by 4 (s4addl)

3-12 Main Instruction Set

Computes the sum of two signed 32-bit values.
This instruction scales (multiplies) the contents
of s reg 1 by four and then adds the contents of
s reg2 or the immediate value. The result is
stored in the destination register. Overflow
exceptions never occur.

Table 3-5: (continued)

Instruction Description

Scaled Quadword Add by 4 (s 4 addq)
Computes the sum of two signed 64-bit values.
This instruction scales (multiplies) the contents
of s reg 1 by four and then adds the contents of
s reg2 or the immediate value. The result is
stored in the destination register. Overflow
exceptions never occur.

Scaled Longword Add by 8 (s8addl)
Computes the sum of two signed 32-bit values.
This instruction scales (multiplies) the contents
of s reg 1 by eight and then adds the contents
of s - reg2 or the immediate value. The result
is stored in the destination register. Overflow
exceptions never occur.

Scaled Quadword Add by 8 (s 8 addq)
Computes the sum of two signed 64-bit values.
This instruction scales (multiplies) the contents
of s reg 1 by eight and then adds the contents
of s - reg2 or the immediate value. The result
is stored in the destination register. Overflow
exceptions never occur.

Multiply Longword (without overflow) (mull)
Computes the product of two signed 32-bit
values. This instruction puts the 32-bit product
of s reg 1 and s reg2 or the immediate value
in the destination register. Overflows are not
reported.

Multiply Longword (with overflow) (mull v)
Computes the product of two signed 32-bit
values. This instruction puts the 32-bit product
of s regl and s reg2 or the immediate value
in the destination register. If an overflow occurs,
an overflow exception is signaled.

Multiply Quadword (without overflow) (mulq)
Computes the product of two signed 64-bit
values. This instruction puts the 64-bit product
of s reg 1 and s reg2 or the immediate value
in the destination register. Overflow is not
reported.

Main Instruction Set 3-13

Table 3-5: (continued)

Instruction Description

Multiply Quadword (with overflow) (mulqv)
Computes the product of two signed 64-bit
values. This instruction puts the 64-bit product
of s reg 1 and s reg2 or the immediate value
in the destination register. If an overflow occurs,
an overflow exception is signaled.

Subtract Longword (without overflow) (subl)
Computes the difference of two signed 32-bit
values. This instruction subtracts either the
contents of s reg2 or an immediate value from
the contents Of s reg 1 and then puts the result
in the destination register. Overflow exceptions
never happen.

Subtract Longword (with overflow) (subl v)
Computes the difference of two signed 32-bit
values. This instruction subtracts either the
contents of s reg2 or an immediate value from
the contents Of s reg 1 and then puts the result
in the destination register. If the true result's
sign differs from the destination register's sign,
an overflow exception is signaled.

Subtract Quadword (without overflow) (subq)
Computes the difference of two signed 64-bit
values. This instruction subtracts the contents of
s reg2 or an immediate value from the
contents of s reg 1 and then puts the result in
the destination register. Overflow exceptions
never occur.

Subtract Quadword (with overflow) (subqv)

3-14 Main Instruction Set

Computes the difference of two signed 64-bit
values. This instruction subtracts the contents of
s reg2 or an immediate value from the
contents of s reg 1 and then puts the result in
the destination register. If the true result's sign
differs from the destination register's sign, an
overflow exception is signaled.

Table 3-5: (continued)

Instruction Description

Scaled Longword Subtract by 4 (s4subl)
Computes the difference of two signed 32-bit
values. This instruction subtracts the contents of
s reg2 or the immediate value from the scaled
(bY 4) contents of s reg 1. The result is stored
in the destination register. Overflow exceptions
never occur.

Scaled Quadword Subtract by 4 (s4subq)
Computes the difference of two signed 64-bit
values. This instruction subtracts the contents of
s reg2 or the immediate value from the scaled
(by 4) contents of s reg 1. The result is stored
in the destination register. Overflow exceptions
never occur.

Scaled Longword Subtract by 8 (s8subl)
Computes the difference of two signed 32-bit
values. This instruction subtracts the contents of
s reg2 or the immediate value from the scaled
(bY 8) contents of s reg 1. The result is stored
in the destination register. Overflow exceptions
never occur.

Scaled Quadword Subtract by 8 (s 8subq)
Computes the difference of two signed 64-bit
values. This instruction subtracts the contents of
s reg2 or the immediate value from the scaled
(bY 8) contents of s reg 1. The result is stored
in the destination register. Overflow exceptions
never occur.

Unsigned Quadword Multiply High (umulh)
Computes the product of two unsigned 64-bit
values. This instruction multiplies the contents of
s reg 1 by the contents of s reg2 or the
immediate value and then putsthe high-order 64
bits of the 128-bit product in the destination
register.

Main Instruction Set 3-15

Table 3-5: (continued)

Instruction Description

Divide Longword (divl) Computes the quotient of two signed 32-bit
values. This instruction divides the contents of
s regl by the contents of s reg2 or the
immediate value and then puts the quotient in the
destination register.

The di vI instruction rounds toward zero. If the
divisor is zero, an error is signaled and a
call pal PAL gentrap instruction may be
issued-: Overflow is signaled when dividing
-2147483648 by -1. A call pal
PAL gentrap instruction may be issued for
either divide-by-zero or overflow.

Divide Longword Unsigned (divlu)

Divide Quadword (di vq)

3-16 Main Instruction Set

Computes the quotient of two unsigned 32-bit
values. This instruction divides the contents of
s reg 1 by the contents of s reg2 or the
immediate value and then putsthe quotient in the
destination register.

If the divisor is zero, an exception is signaled
and a call pal PAL gentrap instruction
may be issued. Overflow exceptions never occur.
(The assembler uses temporary registers AT, t9,
t 10, t 11, and t 12 for this instruction.)

Computes the quotient of two signed 64-bit
values. This instruction divides the contents of
s regl by the contents of s reg2 or the
immediate value and then putsthe quotient in the
destination register.

The di vq instruction rounds toward zero. If the
divisor is zero, an error is signaled and a
call pal PAL gentrap instruction may be
issued-: Overflow IS signaled when dividing
-9223372036854775808 by -1. A call pal
PAL gent rap instruction may be issued for
either divide-by-zero or overflow. (The
assembler uses temporary registers AT, t9, tl0,
t 11, and t 12 for this instruction.)

Table 3-5: (continued)

Instruction Description

Divide Quadword Unsigned (di vqu)

Longword Remainder (reml)

Computes the quotient of two unsigned 64-bit
values. This instruction divides the contents of
s regl by the contents of s reg2 or the
immediate value and then putsthe quotient in the
destination register.

If the divisor is zero, an exception is signaled
and a call pal PAL gentrap instruction
may be issued. Overflow exceptions never occur.
(The assembler uses temporary registers AT, t9,
tID, tIl, and t 12 for this instruction.)

Computes the remainder of the division of two
signed 32-bit values. The remainder
reml(i,j) is defined as i-(j*divl(i,j»
where j != O. This instruction divides the
contents of s reg 1 by the contents of s reg2
or by the immediate value and then puts the
remainder in the destination register.

The reml instruction rounds toward zero. For
example, divl (5, -3) =-1, and reml (5,-
3)=2.

For divide-by-zero, an error is signaled and a
call pal PAL gentrap instruction may be
issued~ (The assembler uses temporary registers
AT, t9, tID, tIl, and t12 for this instruction.)

Longword Remainder Unsigned (remlu)
Computes the remainder of the division of two
unsigned 32-bit values. The remainder
remlu (i, j) is defined as i­
(j*divlu(i,j» wherej !=O. This
instruction divides the contents of s reg 1 by
the contents of s reg2 or the immediate value
and then puts the remainder in the destination
register.

For divide-by-zero, an error is signaled and a
call pal PAL gentrap instruction may be
issued~ (The assembler uses temporary registers
AT, t9, tID, tIl, and t12 for this instruction.)

Main Instruction Set 3-17

Table 3-5: (continued)

Instruction Description

Quadword Remainder (remq) Computes the remainder of the division of two
signed 64-bit values. The remainder
remq (i, j) is defined as i- (j *di vq (i, j))
where j != O. This instruction divides the
contents of s reg 1 by the contents of s reg2
or the immediate value and then puts the -
remainder in the destination register.

The remq instruction rounds toward zero. For
example, divq(S,-3)=-I, and remq(S,-
3)=2.

For divide-by-zero, an error is signaled and a
call pal PAL gentrap instruction may be
issued~ (The assembler uses temporary registers
AT, t9, tID, tIl, and tl2 for this instruction.)

Quadword Remainder Unsigned (remqu)
Computes the remainder of the division of two
unsigned 64-bit values. The remainder
remqu (i , j) is defined as i-
(j *di vqu (i, j)) where j != O. This
instruction divides the contents of s reg 1 by
the contents of s reg2 or the immediate value
and then puts the remainder in the destination
register.

For divide-by-zero, an error is signaled and a
call pal PAL gentrap instruction may be
issued~ (The assembler uses temporary registers
AT, t9, tID, tIl, and tl2 for this instruction.)

3.3 Logical and Shift Instructions
Logical and shift instructions perform logical operations and shifts on values
in registers.

Table 3-6 lists the mnemonics and operands for instructions that perform
logical and shift operations. The table is segmented into groups of
instructions. The operands specified within a particular segment apply to all
of the instructions contained in that segment.

3-18 Main Instruction Set

Table 3-6: Logical and Shift Instruction Formats

Instruction Mnemonic Operands

Logical Complement (NOT) not 1 SJeg, dJeg)
d_reg Is_reg

va Limmed, d_reg

Logical Product (AND) and
Logical Sum (OR) bis s_reg1, s_reg2, d_reg
Logical Sum (OR) or d_regls_reg1, s_reg2
Logical Difference (XOR) xor s_reg 1, vaLimmed, d_reg
Logical Product with Comple-

ment (ANDNOT) bie d_regls_reg1, vaLimmed

Logical Product with Comple-
ment (ANDNOT) andnot

Logical Sum with Comple-
ment (ORNOT) ornot

Logical Equivalence (XORNOT) eqv
Logical Equivalence (XORNOT) xornot
Shift Left Logical sll
Shift Right Logical srI
Shift Right Arithmetic sra

Table 3-7 describes the operations performed by logical and shift
instructions.

Table 3-7: Logical and Shift Instruction Descriptions

Instruction Description

Logical Complement (NOT) (not)
Computes the Logical NOT of a value. This
instruction complements (bit-wise) the contents
of s _reg 1 and puts the result in the destination
register.

Logical Product (AND) (and) Computes the Logical AND of two values. This
instruction ANDs (bit-wise) the contents of
s regl with the contents of s reg2 or the
immediate value and then puts the result in the
destination register.

Main Instruction Set 3-19

Table 3-7: (continued)

Instruction Description

Logical Sum (OR) (bis)

Logical Sum (OR) (or)

Logical Difference (XOR) (xor)

Computes the Logical OR of two values. This
instruction ORs (bit-wise) the contents of
s reg 1 with the contents of s reg2 or the
immediate value and then puts the result in the
destination register.

Synonym for bis.

Computes the XOR of two values. This
instruction XORs (bit-wise) the contents of
s reg 1 with the contents of s reg2 or the
immediate value and then puts the result in the
destination register.

Logical Product with Complement (ANDNOT) (bie)
Computes the Logical AND of two values. This
instruction ANDs (bit-wise) the contents of
s reg 1 with the ones complement of s reg2
orthe immediate value and then puts the result
in the destination register.

Logical Product with Complement (ANDNOT) (andnot)
Synonym for bie.

Logical Sum with Complement (ORNOT) (ornot)
Computes the logical OR of two values. This
instruction ORs (bit-wise) the contents of
s reg1 with the ones complement of s reg2
oran immediate value and then puts the result in
the destination register.

Logical Equivalence (XORNOT) (eqv)
Computes the logical XOR of two values. This
instruction XORs (bit-wise) the contents of
s reg 1 with the ones complement of s reg2
orthe immediate value and then puts the result
in the destination register.

Logical Equivalence (XORNOT) (xornot)
Synonym for eqv.

3-20 Main Instruction Set

Table 3-7: (continued)

Instruction Description

Shift Left Logical (sll)

Shift Right Logical (srI)

Shift Right Arithmetic (sra)

Shifts the contents of a register left (toward the
sign bit) and inserts zeros in the vacated bit
positions. The contents of s reg 1 specifies the
value to shift, and the contents of s reg2 or the
immediate value specifies the amount to shift. If
s reg2 or the immediate value is greater than
63 or less than zero, s reg 1 shifts by the result
of the following AND operation: s reg2 AND
63. -

Shifts the contents of a register right (toward the
least significant bit) and inserts zeros in the
vacated bit positions. The contents of s reg 1
specifies the value to shift, and the contents of
s reg2 or the immediate value specifies the
amount to shift. If s reg2 or the immediate
value is greater than 63 or less than zero,
s reg 1 shifts by the result of the result of the
fOllowing AND operation: s _ reg2 AND 63.

Shifts the contents of a register right (toward the
least significant bit) and inserts the sign bit in the
vacated bit position. The contents of s reg 1
specifies the value to shift, and the contents of
s reg2 or the immediate value specifies the
amount to shift. If s reg2 or the immediate
value is greater than 63 or less than zero,
s reg 1 shifts by the result of the following
AND operation: s_reg2 AND 63.

3.4 Relational Instructions
Relational instructions compare values in registers.

Table 3-8 lists the mnemonics and operands for instructions that perform
relational operations. Each of the instructions listed in the table can take an
operand in any of the forms shown.

Main Instruction Set 3-21

Table 3-8: Relational Instruction Formats

Instruction

Compare Signed Quadword Equal
Compare Signed Quadword Less

Than
Compare Signed Quadword Less

Than or Equal
Compare Unsigned Quadword

Less Than
Compare Unsigned Quadword

Less Than or Equal

Mnemonic

cmpeq

cmplt

cmple

cmpult

cmpule

Operands

s_regJ, s_reg2, d_reg

d_reg/s_regJ, s_reg2

s_reg J, vaCimmed, d_reg

d_reg/s_regJ, vaCimmed

Table 3-9 describes the operations performed by relational instructions.

Table 3-9: Relational Instruction Descriptions

Instruction Description

Compare Signed Quadword Equal (cmpeq)
Compares two 64-bit values. If the contents of
s reg1 equals the contents of s reg2 or the
immediate value, this instruction sets the
destination register to one; otherwise, it sets the
destination register to zero.

Compare Signed Quadword Less Than (cmpl t)
Compares two signed 64-bit values. If the
contents of s reg 1 is less than the contents of
s_reg2 or the immediate value, this instruction
sets the destination register to one; otherwise, it
sets the destination register to zero.

Compare Signed Quadword Less Than or Equal (cmple)
Compares two signed 64-bit values. If the
contents of s reg 1 is less than or equal to the
contents of s - reg2 or the immediate value, this
instruction sets the destination register to one;
otherwise, it sets the destination register to zero.

Compare Unsigned Quadword Less Than (cmpul t)

3-22 Main Instruction Set

Compares two unsigned 64-bit values. If the
contents of s reg 1 is less than the contents of
s reg2 or the immediate value, this instruction
sets the destination register to one; otherwise, it
sets the destination register to zero.

Table 3-9: (continued)

Instruction Description

Compare Unsigned Quadword Less Than or Equal (cmpule)

3.5 Move Instructions

Compares two unsigned 64-bit values. If the
contents of s reg 1 is less than or equal to the
contents of s - reg2 or the immediate value, this
instruction sets the destination register to one;
otherwise, it sets the destination register to zero.

Move instructions move data between registers.

Table 3-10 lists the mnemonics and operands for instructions that perform
move operations. The table is segmented into groups of instructions. The
operands specified within a particular segment apply to all of the instructions
contained in that segment.

Table 3-10: Move Instruction Formats

Instruction

Move

Move if Equal to Zero
Move if Not Equal to Zero
Move if Less Than Zero
Move if Less Than or Equal

to Zero
Move if Greater Than Zero
Move if Greater Than or Equal

to Zero
Move if Low Bit Clear
Move if Low Bit Set

Mnemonic

mov

cmoveq
cmovne
cmovlt
cmovle
cmovgt
cmovge
cmovlbc
cmovlbs

Operands

s_regJ, s_reg2, d_reg

d_reg/s_regJ, s_reg2

s_regJ, vaLimmed, d_reg

d_reg/s_regJ, vaLimmed

Table 3-11 describes the operations performed by move instructions.

Main Instruction Set 3-23

Table 3-11: Move Instruction Descriptions

Instruction Description

Move (rnov) Moves the contents of the source register or the
immediate value to the destination register.

Move if Equal to Zero (crnoveq)
Moves the contents of s reg 2 or the immediate
value to the destination register if the contents of
s _reg 1 is equal to zero.

Move if Not Equal to Zero (crnovne)
Moves the contents of s reg2 or the immediate
value to the destination register if the contents of
s _reg 1 is not equal to zero.

Move if Less Than Zero (crnov 1 t)
Moves the contents of s reg2 or the immediate
value to the destination register if the contents of
s _reg 1 is less than zero.

Move if Less Than or Equal to Zero (crnovle)
Moves the contents of s reg2 or the immediate
value to the destination register if the contents of
s _reg 1 is less than or equal to zero.

Move if Greater Than Zero (crnovgt)
Moves the contents of s reg2 or the immediate
value to the destination register if the contents of
s _reg 1 is greater than zero.

Move if Greater Than or Equal to Zero (crnovge)
Moves the contents of s reg2 or the immediate
value to the destination register if the contents of
s _reg 1 is greater than or equal to zero.

Move if Low Bit Clear (crnovlbc)

Move if Low Bit Set (crnovlbs)

3-24 Main Instruction Set

Moves the contents of s reg2 or the immediate
value to the destination register if the low-order
bit of s _reg 1 is equal to zero.

Moves the contents of s reg2 or the immediate
value to the destination register if the low-order
bit of s _ reg 1 is not equal to zero.

3.6 Control Instructions
Control instructions enable you to change the control flow of an assembly
program. They affect the sequence in which instructions are executed by
transferring control from one location in a program to another.

Table 3-12 lists the mnemonics and operands for instructions that perform
control operations. The table is segmented into groups of instructions. The
operands specified within a particular segment apply to all of the instructions
contained in that segment.

Table 3-12: Control Instruction Formats

Instruction

Branch if Equal to Zero
Branch if Not Equal to Zero
Branch if Less Than Zero
Branch if Less Than or Equal

to Zero
Branch if Greater Than Zero
Branch if Greater Than or

Equal to Zero
Branch if Low Bit is Clear
Branch if Low Bit is Set

Branch
Branch to Subroutine

Jump
Jump to Subroutine

Mnemonic

beg
bne
bIt

ble
bgt

bge
bIbc
bIbs

br
bsr

jrnp
jsr

Operands

{
d_reg, label}
label

d_reg, (s_reg), jhint

d_reg, (s_reg)

(s_reg), jhint

(s_reg)

d_reg, address

address

Main Instruction Set 3-25

Table 3-12: (continued)

Instruction

Return from Subroutine
Jump to Subroutine Return

Mnemonic

ret
jsr_

coroutine

Operands

d_reg, (s_reg), rhint

d_reg, (s_reg)

d_reg, rhint

d_reg

(s_reg), rhint

(s_reg)

rhint

no_operands

Table 3-13 describes the operations performed by control instructions. For
all branch instructions described in the table, the branch destinations must be
defined in the source being assembled, not in an external source file.

Table 3-13: Control Instruction Descriptions

Instruction Description

Branch if Equal to Zero (beg) Branches to the specified label if the contents of
the source register is equal to zero.

Branch if Not Equal to Zero (bne)

Branch if Less Than Zero (bIt)

Branches to the specified label if the contents of
the source register is not equal to zero.

Branches to the specified label if the contents of
the source register is less than zero. The
comparison treats the source register as a signed
64-bit value.

Branch if Less Than or Equal to Zero (bIe)

3-26 Main Instruction Set

Branches to the specified label if the contents of
the source register is less than or equal to zero.
The comparison treats the source register as a
signed 64-bit value.

Table 3-13: (continued)

Instruction Description

Branch if Greater Than Zero (bgt)
Branches to the specified label if the contents of
the source register is greater than zero. The
comparison treats the source register as a signed
64-bit value.

Branch if Greater Than or Equal to Zero (bge)
Branches to the specified label if the contents of
the source register is greater than or equal to
zero. The comparison treats the source register
as a signed 64-bit value.

Branch if Low Bit is Clear (bIbc)

Branch if Low Bit is Set (bIbs)

Branch (br)

Branch to Subroutine (bsr)

Jump (jrnp)

Jump to Subroutine (j sr)

Branches to the specified label if the low-order
bit of the source register is equal to zero.

Branches to the specified label if the low-order
bit of the source register is not equal to zero.

Branches unconditionally to the specified label.
If a destination register is specified, the address
of the instruction following the br instruction is
stored in that register.

Branches unconditionally to the specified label
and stores the return address in the destination
register. If a destination register is not specified,
register $26 (ra) is used.

Unconditionally jumps to a specified location. A
symbolic address or the source register specifies
the target location. If a destination register is
specified, the address of the instruction following
the jrnp instruction is stored in the specified
register.

Unconditionally jumps to a specified location
and stores the return address in the destination
register. If a destination register is not specified,
register $26 (ra) is used. A symbolic address
or the source register specifies the target location.
The instruction j sr procname transfers to
procname and saves the return address in
register $26.

Main Instruction Set 3-27

Table 3-13: (continued)

Instruction Description

Return from Subroutine (ret)
Unconditionally returns from a subroutine. If a
destination register is specified, the address of
the instruction following the ret instruction is
stored in the specified register. The source
register contains the return address. If the source
register is not specified, register $26 (ra) is
used. If a hint is not specified, a hint value of
one is used.

Jump to Subroutine Return (j sr coroutine)
Unconditionally returns from a subroutine and
stores the return address in the destination
register. If a destination register is not specified,
register $26 (ra) is used. The source register
contains the target address. If the source register
is not specified, register $ 26 (ra) is used.

All jump instructions (jmp, jsr, ret, jsr coroutine) perform
identical operations. They differ only in hints to possible branch-prediction
logic. See the Alpha Architecture Reference Manual for information about
branch-prediction logic.

3.7 Byte-Manipulation Instructions
Byte-manipulation instructions perform byte operations on values in registers.

Table 3-14 lists the mnemonics and operands for instructions that perform
byte-manipulation operations. Each of the instructions listed in the table can
take an operand in any of the forms shown.

3-28 Main Instruction Set

Table 3-14: Byte-Manipulation Instruction Formats

Instruction Mnemonic Operands

Compare Byte cmpbge
Extract Byte Low extbl s_regJ, s_reg2, d_reg
Extract Word Low extwl d_reg/s_regJ, s_reg2
Extract Longword Low extll s_regJ, va Limmed, d_reg
Extract Quadword Low extql
Extract Word High extwh d_reg/s_regJ, vaLimmed

Extract Longword High extlh
Extract Quadword High extqh
Insert Byte Low insbl
Insert Word Low inswl
Insert Longword Low insll
Insert Quadword Low insql
Insert Word High inswh
Insert Longword High inslh
Insert Quadword High insqh
Mask Byte Low mskbl
Mask Word Low mskwl
Mask Longword Low mskll
Mask Quadword Low mskql
Mask Word High mskwh
Mask Longword High msklh
Mask Quadword High mskqh
Zero Bytes zap
Zero Bytes NOT zapnot

Table 3-15 describes the operations performed by byte-manipulation
instructions.

Main Instruction Set 3-29

Table 3-15: Byte-Manipulation Instruction Descriptions

Instruction Description

Compare Byte (cmpbge)

Extract Byte Low (extbl)

Extract Word Low (extwl)

Extract Longword Low (ext 11)

Extract Quadword Low (extql)

3-30 Main Instruction Set

Performs eight parallel unsigned byte
comparisons between corresponding bytes of
register s reg1 and s reg2 or the immediate
value. A bit is set in the destination register if a
byte in s reg 1 is greater than or equal to the
correspollding byte in s reg2 or the immediate
v~ue. -

The results of the comparisons are stored in the
eight low-order bits of the destination register;
bit 0 of the destination register corresponds to
byte 0 and so forth. (The 56 high-order bits of
the destination register are cleared.)

Shifts the register s reg 1 right by 0-7 bytes,
inserts zeros into the vacated bit positions, and
then extracts the low-order byte into the
destination register. The seven high-order bytes
of the destination register are cleared to zeros.
Bits 0-2 of register s reg2 or the immediate
value specify the shift count.

Shifts the register s reg 1 right by 0-7 bytes,
inserts zeros into the vacated bit positions, and
then extracts the two low-order bytes and stores
them in the destination register. The six high­
order bytes of the destination register are cleared
to zeros. Bits 0-2 of register s reg2 or the
immediate value specify the shIft count.

Shifts the register s reg 1 right by 0-7 bytes,
inserts zeros into the vacated bit positions, and
then extracts the four low-order bytes and stores
them in the destination register. The four high­
order bytes of the destination register are cleared
to zeros. Bits 0-2 of register s reg2 or the
immediate value specify the shIft count.

Shifts the register s reg 1 right by 0-7 bytes,
inserts zeros into the vacated bit positions, and
then extracts all eight bytes and stores them in
the destination register. Bits 0-2 of register
s _ reg2 or the immediate value specify the shift
count.

Table 3-15: (continued)

Instruction Description

Extract Word High (extwh)

Extract Longword High (extlh)

Extract Quadword High (extqh)

Insert Byte Low (insbl)

Insert Word Low (inswl)

Insert Longword Low (insll)

Shifts the register s reg 1 left by 0-7 bytes,
inserts zeros into thevacated bit positions, and
then extracts the two low-order bytes and stores
them in the destination register. The six high­
order bytes of the destination register are cleared
to zeros. Bits 0-2 of register s reg2 or the
immediate value specify the shITt count.

Shifts the register s reg 1 left by 0-7 bytes,
inserts zeros into the vacated bit positions, and
then extracts the four low-order bytes and stores
them in the destination register. The four high­
order bytes of the destination register are cleared
to zeros. Bits 0-2 of register s reg2 or the
immediate value specify the shIft count.

Shifts the register s reg 1 left by 0-7 bytes,
inserts zeros into the vacated bit positions, and
then extracts all eight bytes and stores them in
the destination register. Bits 0-2 of register
s _ reg2 or the immediate value specify the shift
count.

Shifts the register s reg 1 left by 0-7 bytes,
inserts the byte into a field of zeros, and then
puts the result in the destination register. Bits 0-2
of register s reg2 or the immediate value
specify the shift count.

Shifts the register s reg 1 left by 0-7 bytes,
inserts the word intoa field of zeros, and then
puts the result in the destination register. Bits 0-2
of register s reg2 or the immediate value
specify the shift count.

Shifts the register s reg 1 left by 0-7 bytes,
inserts the longword-into a field of zeros, and
then puts the result in the destination register.
Bits 0-2 of register s reg2 or the immediate
value specify the shift count.

Main Instruction Set 3-31

Table 3-15: (continued)

Instruction Description

Insert Quadword Low (insql)

Insert Quadword Low (insql)

Insert Word High (inswh)

Insert Longword High (inslh)

Insert Quadword High (insqh)

Mask Byte Low (rnskbl)

Mask Word Low (rnskwl)

Mask Longword Low (rnskll)

3-32 Main Instruction Set

Shifts the register s reg 1 left by 0-7 bytes,
inserts the quadwordinto a field of zeros, and
then puts the result in the destination register.
Bits 0-2 of register s reg2 or the immediate
value specify the shift count.

Shifts the register s reg 1 left by 0-7 bytes,
inserts the quad word into a field of zeros, and
then puts the result in the destination register.
Bits 0-2 of register s reg2 or the immediate
value specify the shift count.

Shifts the register s reg 1 right by 0-7 bytes,
inserts the word into a field of zeros, and then
puts the result in the destination register. Bits 0-2
of register s reg2 or the immediate value
specify the shift count.

Shifts the register s reg 1 right by 0-7 bytes,
inserts the longword-into a field of zeros, and
then puts the result in the destination register.
Bits 0-2 of register s reg2 or the immediate
value specify the shift count.

Shifts the register s reg 1 right by 0-7 bytes,
inserts the quadwordinto a field of zeros, and
then puts the result in the destination register.
Bits 0-2 of register s reg2 or the immediate
value specify the shift count.

Sets a byte in register s reg 1 to zero and stores
the result in the destinatwn register. Bits 0-2 of
register s reg2 or the immediate value specify
the offset of the byte.

Sets a word in register s reg 1 to zero and
stores the result in the destination register. Bits
0-2 of register s reg2 or the immediate value
specify the offset of the word.

Sets a longword in register s reg 1 to zero and
stores the result in the destimrtion register. Bits
0-2 of register s reg 2 or the immediate value
specify the offset of the longword.

Table 3-15: (continued)

Instruction Description

Mask Quadword Low (mskql)

Mask Word High (mskwh)

Mask Longword High (msklh)

Mask Quadword High (mskqh)

Zero Bytes (zap)

Zero Bytes NOT (zapnot)

Sets a quadword in register s reg 1 to zero and
stores the result in the destination register. Bits
0-2 of register s reg2 or the immediate value
specify the offset of the quad word.

Sets a word in register s reg 1 to zero and
stores the result in the destination register. Bits
0-2 of register s reg2 or the immediate value
specify the offset of the word.

Sets a longword in register s reg 1 to zero and
stores the result in the destination register. Bits
0-2 of register s reg2 or the immediate value
specify the offset of the longword.

Sets a quadword in register s reg 1 to zero and
stores the result in the destination register. Bits
0-2 of register s reg2 or the immediate value
specify the offset of the quadword.

Sets selected bytes of register s reg 1 to zero
and puts the result in the destination register.
Bits 0-7 of register s reg2 or an immediate
value specify the bytes to be cleared to zeros.
Each bit corresponds to one byte in register
s reg 1; for example, bit 0 corresponds to byte
0:-A bit with a value of one indicates its
corresponding byte should be cleared to zeros.

Sets selected bytes of register s reg 1 to zero
and puts the result in the destination register.
Bits 0-7 of register s reg2 or an immediate
value specify the bytes to be cleared to zeros.
Each bit corresponds to one byte in register
s reg 1; for example, bit 0 corresponds to byte
0:-A bit with a value of zero indicates its
corresponding byte should be cleared to zeros.

3.8 Special-Purpose Instructions
Special-purpose instructions perform miscellaneous tasks. This section
describes the special-purpose instructions supported by the assembler.

Main Instruction Set 3-33

Table 3-16 lists the mnemonics and operands for instructions that perform
special operations. The table is segmented into groups of instructions. The
operands specified within a particular segment apply to all of the instructions
contained in that segment.

Table 3-16: Special-Purpose Instruction Formats

Instruction Mnemonic Operands

Call Privileged Architecture Library call_pal palcode

Prefetch Data fetch address
Prefetch Data, Modify Intent fetch ro

Read Process Cycle Counter rpcc d_reg

No Operation nap no_operands
Universal No Operation unap
Trap Barrier trapb
Exception Barrier excb
Memory Barrier rob
Write Memory Barrier wrnb

Table 3-17 describes the operations performed by special-purpose
instructions.

Table 3-17: Special-Purpose Instruction Descriptions

Instruction Description

Call Privileged Architecture Library (call pal)
UnconditIonally transfers control to the
exception handler. The palcade operand is
interpreted by software conventions.

Prefetch Data (fetch) Indicates that the 512-byte block of data
specified by the effective address should be
moved to a faster-access part of the memory
hierarchy.

3-34 Main Instruction Set

Table 3-17: (continued)

Instruction Description

Prefetch Data, Modify Intent (fetch ro)
Indlcates that the 512-byte block of data
specified by the effective address should be
moved to a faster-access part of the memory
hierarchy. In addition, this instruction is a hint
that part or all of the data may be modified.

Read Process Cycle Counter (rpcc)
Returns the contents of the process cycle
counter in the destination register.

No Operation (nop) Has no effect on the machine state.

Universal No Operation (unop)

Trap Barrier (trapb)

Exception Barrier (excb)

Memory Barrier (rob)

Write Memory Barrier (wmb)

Has no effect on the machine state.

Guarantees that all previous arithmetic
instructions complete, without incurring any
arithmetic traps, before any instructions after
the trapb instruction are issued.

Guarantees that all previous instructions
complete any exception-related behavior or
rounding-mode behavior before any
instructions after the excb instruction are
issued.

Used to serialize access to memory. See the
Alpha Architecture Reference Manual for
addition information on memory barriers.

Guarantees that all previous store instructions
access memory before any store instructions
issued after the wmb instruction.

Main Instruction Set 3-35

Floating-Point Instruction Set 4

This chapter describes the assembler's floating-point instructions. See
Chapter 3 for a description of the integer instructions. For details on the
instruction set beyond the scope of this manual, refer to the Alpha
Architecture Reference Manual.

The assembler's floating-point instruction set contains the following classes
of instructions:

• Load and store instructions (Section 4.2)

• Arithmetic instructions. (Section 4.3)

• Relational instructions (Section 4.4)

• Move instructions (Section 4.5)

• Control instructions (Section 4.6)

• Special-purpose instructions (Section 4.7)

A particular floating-point instruction may be implemented in hardware,
software, or a combination of hardware and software.

Tables in this chapter show the format for each instruction in the floating­
point instruction set. The tables list the instruction names and the forms of
operands that can be used with each instruction. The specifiers used in the
tables to identify operands have the following meanings:

Operand Specifier Description

address A symbolic expression whose effective value is used as
an address.

d_reg Destination register. A floating-point register that receives
a value as a result of an operation.

d_reg/s_reg One floating-point register that is used as both a
destination register and a source register.

label A label that identifies a location in a program.

s_reg, s_regJ, s_reg2 Source registers. Floating-point registers whose contents
are to be used in an operation.

va Cexpr An expression whose value is a floating-point constant.

The following terms are used to discuss floating-point operations:

Term Meaning

Infinite A value of +00 or -00.

Infinity A symbolic entity that represents values with magnitudes greater
than the largest magnitude for a particular format.

Ordered The usual result from a comparison, namely: less than «), equal (=),
or greater than (».

NaN Symbolic entities that represent values not otherwise available in
floating-point formats. (NaN is an acronym for not-a-number.)

Unordered The condition that results from a floating-point comparison when
one or both operands are NaNs.

There are two kinds of NaNs:

• Quiet NaNs represent unknown or uninitialized values.

• Signaling NaNs represent symbolic values and values that are too big or
too precise for the format. Signaling NaNs raise an invalid operation
exception whenever an operation is attempted on them.

4.1 Background Information on Floating-Point
Operations
The following topics are addressed in this section:

• Floating-point data types (Section 4.1.1)

• The floating-point control register (Section 4.1.2)

• Floating-point exceptions (Section 4.1.3)

• Floating-point rounding modes (Section 4.1.4)

• Floating-point instruction qualifiers (Section 4.1.5)

4.1.1 Floating-Point Data Types
Floating-point instructions operate on the following data types:

• D _floating (VAX double precision, limited support)

• F _floating (VAX single precision)

• G_floating (VAX double precision)

• S_floating (IEEE single precision)

4-2 Floating-Point Instruction Set

• T _floating (IEEE double precision)

• Longword integer and quadword integer

Figure 4-1 shows the memory formats for the single and double precision
floating-point data types.

Figure 4-1: Floating-Point Data Formats

S_floating
31 30 2322 0

Fraction

T_floating
63 62 52 51 0

Exponent Fraction

F_floating
31 0

Fraction Fraction
(low) (high)

D_floating
4847 32 31 16

Fraction Fraction Fraction
(mid-low) (mid-high) (high)

G_floating
63 4847 32 31 16 15 14 4 3 0

Fraction Fraction Fraction
(mid-low) (mid-high) (high)

ZK-0734U-R

4.1.2 Floating-Point Control Register
The floating-point control register (FPCR) contains status and control
information. It controls the arithmetic rounding mode of instructions that
specify dynamic rounding (d qualifier) and gives a summary for each
exception type of the exception conditions detected by the floating-point
instructions. It also contains an overall summary bit indicating whether an
exception occurred.

Floating-Point Instruction Set 4-3

Figure 4-2 shows the format of the floating-point control register.

Figure 4-2: Floating-Point Control Register

63 62 6059 58 57 56 55 54 53 52 51 o

razlign

ZK-0735U-R

The fields of the floating-point control register have the following meaning:

Bits Name Description

63 sum Summary - records the bitwise OR of the FPCR
exception bits (bits 57 to 52).

62-60 raz / ign Read-As-Zero - ignored when written.

59-58 dyn Dynamic Rounding Mode - indicates the current
rounding mode to be used by an IEEE floating-point
instruction that specifies dynamic mode (d qualifier).
The bit assignments for this field are as follows:

57 iov

56 ine

55 unf

54 ovf

53 dze

52 inv

51-0 raz/ign

00 - Chopped rounding mode
01 - Minus infinity
10 - Normal rounding
11 - Plus infinity

Integer overflow.

Inexact result.

Underflow.

Overflow.

Division by zero.

Invalid operation.

Read-As-Zero - ignored when written.

The floating-point exceptions associated with bits 57 to 52 are described in
Section 4.1.3.

4-4 Floating-Point Instruction Set

4.1.3 Floating-Point Exceptions
Six exception conditions can result from the use of floating-point
instructions. All of the exceptions are signaled by an arithmetic exception
trap. The exceptions are as follows:

• Invalid Operation - An invalid operation exception is signaled if any
operand of a floating-point instruction, other than cmptxx, is non-finite.
(cmptxx operates normally with plus and minus infinity.) This trap is
always enabled. If this trap occurs, an unpredictable value is stored in the
destination register.

• Division by Zero - A division by zero exception is taken if the numerator
does not cause an invalid operation trap and the denominator is zero. This
trap is always enabled. If this trap occurs, an unpredictable value is stored
in the destination register.

• Overflow - An overflow exception is signaled if the rounded result
exceeds, in magnitude, the largest finite number of the destination format.
This trap is always enabled. If this trap occurs, an unpredictable value is
stored in the destination register.

• Underflow - An underflow exception occurs if the rounded result is
smaller, in magnitude, than the smallest finite number of the destination
format. This trap may be disabled. If this trap occurs, a true zero is
always stored in the destination register.

• Inexact Result - An inexact result exception occurs if the infinitely
precise result differs from the rounded result. This trap may be disabled.
If this trap occurs, the normal rounded result is still stored in the
destination register.

• Integer Overflow - An integer overflow exception occurs if the
conversion from a floating-point or integer format to an integer format
results in a value that is outside of the range of values representable by
the destination format. This trap may be disabled. If this trap occurs, the
true result is truncated to the number of bits in the destination format and
stored in the destination register.

4.1.4 Floating-Point Rounding Modes
If a true result can be exactly represented in a floating -point format, all
rounding modes map the true result to that value.

The following abbreviations are used in the descriptions of rounding modes
provided in this section:

• LSB (least significant bit) - For a positive representable number A whose
fraction is not all ones, A + 1 LSB is the next larger representable
number, and A + 1/2 LSB is exactly halfway between A and the next

Floating-Point Instruction Set 4-5

larger representable number.

• MAX - The largest non-infinite representable floating-point number.

• MIN - The smallest nonzero representable normalized floating-point
number.

For VAX floating-point operations, two rounding modes are provided and are
specified in each instruction:

• Normal rounding (biased)

- Maps the true result to the nearest of two representable results, with
true results exactly halfway between mapped to the larger in absolute
value (sometimes referred to as biased rounding away from zero)

- Maps true results ~ MAX + 112 LSB in magnitude to an overflow

- Maps true results < MIN - 112 LSB in magnitude to an underflow

• Chopped rounding

- Maps the true result to the smaller in magnitude of two surrounding
representable results

- Maps true results ~ MAX + 1 LSB in magnitude to an overflow

- Maps true results < MIN in magnitude to an underflow

For IEEE floating-point operations, four rounding modes are provided:

• Normal rounding (unbiased round to nearest)

- Maps the true result to the nearest of two representable results, with
true results exactly halfway between mapped to the one whose
fraction ends in 0 (sometimes called unbiased rounding to even)

- Maps true results ~ MAX + 112 LSB in magnitude to an overflow

- Maps true results < MIN - 112 LSB in magnitude to an underflow

• Rounding toward minus infinity

- Maps the true results to the smaller of two surrounding representable
results

- Maps true results > MAX in magnitude to an overflow

- Maps positive true results < +MIN to an underflow

- Maps negative true results ~ -MIN + 1 LSB to an underflow

• Chopped rounding (round toward zero)

- Maps the true result to the smaller in magnitude of two surrounding
representable results

- Maps true results ~ MAX + 1 LSB in magnitude to an overflow

4-6 Floating-Point Instruction Set

- Maps nonzero true results < MIN in magnitude to an underflow

• Rounding toward plus infinity

- Maps the true results to the larger of two surrounding representable
results

- Maps true results> MAX in magnitude to an overflow

- Maps positive results ~ +MIN - 1 LSB to an underflow

- Maps negative true results> -MIN to an underflow

The first three of the IEEE rounding modes can be specified in the
instruction. The last mode, rounding toward plus infinity, can be obtained by
setting the floating-point control register (FPCR) to select it and then
specifying dynamic rounding mode in the instruction.

Dynamic rounding mode uses the IEEE rounding mode selected by the FPCR
and is described in Section 4.1.2. Dynamic rounding can be used with any of
the IEEE rounding modes.

Alpha AXP IEEE arithmetic does rounding before detecting overflow or
underflow.

4.1.5 Floating-Point Instruction Qualifiers
Many of the floating-point instructions accept a qualifier that specifies
rounding and trapping modes.

The following table lists the rounding mode qualifiers. See Section 4.1.4 for
a detailed description of the rounding modes.

Rounding Mode

VAX Rounding Mode

Normal rounding
Chopped

IEEE Rounding Mode

Normal rounding
Plus infinity

Minus infinity
Chopped

Qualifier

(no modifier)
c

(no modifier)
d (ensure that the dyn field of

the FPCR is 11)
m
c

The following table lists the trapping mode qualifiers. See Section 4.1.3 for a
detailed description of the exceptions.

Floating-Paint Instruction Set 4-7

Trapping Mode

VAX Trap Mode

Imprecise, underflow disabled
Imprecise, underflow enabled
Software, underflow disabled
Software, underflow enabled

VAX Convert-to-Integer Trap Mode

Imprecise, integer overflow disabled
Imprecise, integer overflow enabled
Software, integer overflow disabled
Software, integer overflow enabled

IEEE Trap Mode

Imprecise, underflow disabled, inexact
disabled

Imprecise, underflow enabled, inexact
disabled

Software, underflow enabled, inexact
disabled

Software, underflow enabled, inexact
enabled

IEEE Convert-to-integer Trap Mode

Imprecise, integer overflow disabled,
inexact disabled

Imprecise, integer overflow enabled,
inexact disabled

Software, integer overflow enabled,
inexact disabled

Software, integer overflow enabled,
inexact enabled

Qualifier

(no modifier)
u
s
su

(no modifier)
v
s
sv

(no modifier)

u

su

sui

(no modifier)

v

sv

svi

Table 4-1 lists the qualifier combinations that are supported by one or more
of the individual instructions. The Number column of the table is referenced
in subsequent sections to identify the combination of qualifiers accepted by
the various instructions.

4-8 Floating-Paint Instruction Set

Table 4-1: Qualifier Combinations for Floating-Point Instructions

Number Qualifiers

I e,u,ue,s,se, sU,sue
2 e,m,d,u,ue,um,ud,su, sue, sum,sud,sui,suie, suim,

suid
3 s
4 su
5 sv,v
6 e,v,ve,s,se, sV,sve
7 e,v,ve,sv,sve,svi,svie,d,vd,svd,svid
8 e
9 e,m,d,sui,suie,suim, suid

4.2 Floating-Point Load and Store Instructions
Floating -point load and store instructions load values and move data between
memory and floating-point registers.

Table 4-2 lists the mnemonics and operands for instructions that perform
floating-point load and store operations. The table is segmented into groups
of functionally related instructions. The operands specified within a
particular segment apply to all of the instructions contained in that segment.

Table 4-2: Load and Store Instruction Formats

Instruction

Load F _floating
Load G_floating (Load D_floating)
Load S_floating (Load Longword)
Load T_floating (Load Quadword)

Load Immediate F _floating
Load Immediate D _floating
Load Immediate G_floating
Load Immediate S_floating (Load Longword)
Load Immediate T _floating (Load Quadword)

Store F _floating
Store G_floating (Store D_floating)
Store S_floating (Store Longword)
Store T_floating (Store Quadword)

Mnemonic Operands

idf d_reg, address
idg
ids
idt

idif d_reg, vaLexpr
idid
idig
idis
idit

stf s_reg, address
stg
sts
stt

Floating-Point Instruction Set 4-9

Table 4-3 describes the operations performed by floating-point load and store
instructions.

The load and store instructions are grouped by function. Refer to Table 4-2
for the instruction names.

Table 4-3: Load and Store Instruction Descriptions

Instruction

Load Instructions
(Idf, Idg, Ids,
Idt, Idif, Idid,
Idig, Idis, Idi t)

Store Instructions
(stf, stg, sts,
stt)

Description

Load eight bytes (G_, D_, and T_fioating formats) or four
bytes (F _ and S_fioating formats) from the specified
effective address into the destination register. The address
must be quadword aligned for 8-byte load instructions and
longword aligned for 4-byte load instructions.

Store eight bytes (G_, D_, and T_fioating formats) or four
bytes (F _ and S_fioating formats) from the source fioating­
point register into the specified effective address. The
address must be quad word aligned for 8-byte store
instructions and longword aligned for 4-byte store
instructions.

4.3 Floating-Point Arithmetic Instructions
Floating-point arithmetic instructions perform arithmetic and logical
operations on values in floating-point registers.

Table 4-4 lists the mnemonics and operands for instructions that perform
floating-point arithmetic and logical operations. The table is segmented into
groups of functionally related instructions. The operands specified within a
particular segment apply to all of the instructions contained in that segment.

The Qualifiers column in Table 4-4 refers to one or more trap or rounding
modes as specified in Table 4-1.

4-10 Floating-Point Instruction Set

Table 4-4: Arithmetic Instruction Formats

Instruction Mnemonic Qualifiers Operands

Floating Clear fclr d_reg

Floating Absolute Value fabs
{SJeg, dJeg} Floating Negate fneg

d_reg Is_reg Negate F _floating negf 3
Negate G_floating negg 3
Negate S_floating negs 4
Negate T_floating negt 4

Add F _floating addf 1
{SJegl, sJeg2, dJeg} Add G_floating addg 1

Add S_floating adds 2 d_regls_regJ, s_reg2

Add T_floating addt 2
Divide F _floating divf 1
Divide G_floating divg 1
Divide S_floating divs 2
Divide T_floating divt 2
Multiply F _floating mulf 1
Multiply G_floating mulg 1
Multiply S_floating muls 2
Multiply T_floating mult 2
Subtract F _floating subf 1
Subtract G_floating subg 1
Subtract S_floating subs 2
Subtract T_floating subt 2

Floating-Point Instruction Set 4-11

Table 4-4: (continued)

Instruction Mnemonic Qualifiers Operands

Convert Quadword
{ sJeg, dJeg} to Longword cvtql 5

d_reg Is_reg Convert Longword
to Quadword cvtlq

Convert G_floating
to Quadword cvtgq 6

Convert T_floating
to Quadword cvttq 7

Convert Quadword
to F _floating cvtqf 8

Convert Quadword
to G_floating cvtqg 8

Convert Quadword
to S_floating cvtqs 9

Convert Quadword
to T_floating cvtqt 9

Convert D _floating
to G_floating cvtdg

Convert G_floating
to D_floating cvtgd

Convert G_floating
to F _floating cvtgf

Convert T_floating
to S_floating cvtts 2

Convert S_floating
to T_floating cvtst 3

Table 4-5 describes the operations performed by floating-point load and store
instructions. The arithmetic instructions are grouped by function. Refer to
Table 4-4 for the instruction names.

Table 4-5: Arithmetic Instruction Descriptions

Instruction

Clear Instruction
(fclr)

Description

Clear the destination register.

Absolute Value Instruction
(fabs) Compute the absolute value of the contents of the source

register and put the floating-point result in the destination
register.

4-12 Floating-Point Instruction Set

Table 4-5: (continued)

Instruction Description

Negate Instructions
(fneg, negf, negg,
negs, negt)

Add Instructions
(addf, addg, adds,
addt)

Divide Instructions
(di vf, di vg, di vs,
divt)

Multiply Instructions
(mulf, mulg, muls,
mult)

Subtract Instructions
(subf, subg, subs,
subt)

Compute the negative value of the contents of s reg or
d reg and put the specified precision floating-point result
in-d_reg.

Add the contents of s reg or d reg to the contents of
s reg2 and put the result in d reg. When the sum of
two operands is exactly zero, the sum has a positive sign
for all rounding modes except round toward -00. For that
rounding mode, the sum has a negative sign.

Compute the quotient of two values. These instructions
divide the contents of s reg 1 or d reg by the contents
of s reg2 and put the result in d reg. If the divisor is a
zero:-an error is signaled if the divlde-by-zero exception is
enabled.

Multiply the contents of s reg 1 or d reg with the
contents of s _reg2 and put the resultln d _reg.

Subtract the contents of s reg2 from the contents of
s reg 1 or d reg and put the result in d reg. When
the difference of two operands is exactly zero, the
difference has a positive sign for all rounding modes except
round toward -00. For that rounding mode, the sum has a
negative sign.

Conversion Between Integer Formats Instructions
(cvtql, cvtlq) Convert the integer contents of s reg to the specified

integer format and put the result ill d reg. If an integer
overflow occurs, the truncated result IS stored in dreg
and, if enabled, an arithmetic trap occurs. -

Conversion from Floating-Point to Integer Format Instructions
(cvtgq, cvttq) Convert the floating-point contents of s reg to the

specified integer format and put the resUlt in d reg. If an
integer overflow occurs, the truncated result is stored in
d _reg and, if enabled, an arithmetic trap occurs.

Conversion from Integer to Floating-Point Format Instructions
(cvtqf, cvtqg, Convert the integer contents of s reg to the specified
cvtqs, cvtqt) floating-point format and put the result in d _reg.

Conversion Between Floating-Point Formats Instructions
(cvtdg, cvtgd, Convert the contents of s reg to the specified precision,
cvtgf, cvtts, round according to the rounding mode, and put the result in
cvtst) d reg. If an overflow occurs, an unpredictable value is

stored in d _reg and a floating-point trap occurs.

Floating-Point Instruction Set 4-13

4.4 Floating-Point Relational Instructions
Floating-point relational instructions compare two floating-point values.

Table 4-6 lists the mnemonics and operands for instructions that perform
floating-point relational operations. Each of the instructions can take an
operand in any of the forms shown.

The Qualifiers column in Table 4-6 refers to one or more trap or rounding
modes as specified in Table 4-1.

Table 4-6: Relational Instruction Formats

Instruction Mnemonic Qualifiers Operands

Compare G_floating
{SJegi, sJeg2, dJeg} Equal cmpgeq 3

d_reg/s_regJ, s_reg2 Compare G_floating
Less Than cmpglt 3

Compare G_floating
Less Than or Equal cmpgle 3

Compare T _floating
Equal cmpteq 4

Compare T_floating
Less Than cmptlt 4

Compare T_floating
Less Than or Equal cmptle 4

Compare T _floating
Unordered cmptun 4

Table 4-7 describes the relational instructions supported by the assembler.
The relational instructions are grouped by function. Refer to Table 4-6 for the
instruction names.

Table 4-7: Relational Instruction Descriptions

Instruction Description

Compare Equal Instructions
(cmpgeq, cmpteq) Compare the contents of s reg 1 with the contents of

s reg2. If s reg 1 equals s reg2, a nonzero value
is-written to the destination regiSter; otherwise, a true
zero value is written to the destination. Exceptions are
not signaled for unordered values.

4-14 Floating-Point Instruction Set

Table 4-7: (continued)

Instruction Description

Compare Less Than Instructions
(cmpgl t, cmptl t) Compare the contents of s reg 1 with the contents of

s reg2. If s reg1 is less than s reg2, a nonzero
value is writtento the destination register; otherwise, a
true zero value is written to the destination. Exceptions
are not signaled for unordered values.

Compare Less Than or Equal Instructions
(cmpgle, cmptle) Compare the contents of s reg1 with the contents of

s reg2. If s reg 1 is less than or equal to s reg2,
a nonzero value is written to the destination regISter;
otherwise, a true zero value is written to the destination.
Exceptions are not signaled for unordered values.

Compare Unordered Instruction
(cmptun) Compare the contents of s reg1 with the contents of

s reg2. If either s reg] or s reg2 is unordered, a
nonzero value is written to the destination register;
otherwise, a true zero value is written to the destination.
Exceptions are not signaled for unordered values.

4.5 Floating-Point Move Instructions
Floating-point move instructions move data between floating-point registers.

Table 4-8 lists the mnemonics and operands for instructions that perform
floating-point move operations. The table is segmented into groups of
functionally related instructions. The operands specified within a particular
segment apply to all of the instructions contained in that segment.

Table 4-8: Move Instruction Formats

Instruction Mnemonic Operands

Floating Move

Floating-Point Instruction Set 4-15

Table 4-8: (continued)

Instruction

Copy Sign
Copy Sign Negate
Copy Sign and Exponent
Move if Equal to Zero
Move if Not Equal to Zero
Move if Less Than Zero
Move if Less Than or Equal to

Zero
Move if Greater Than Zero
Move if Greater Than or Equal

to Zero

Mnemonic

cpys
cpysn
cpyse
fcmoveq
fcmovne
fcmovlt

fcmovle
fcmovgt

fcmovge

Operands

Table 4-9 describes the operations performed by move instructions. The
move instructions are grouped by function. Refer to Table 4-8 for the
instruction names.

Table 4-9: Move Instruction Descriptions

Instruction

Move Instruction
(fmov)

Copy Sign Instruction
(cpys)

Description

Move the double or single precision contents of the
s_reg to d_reg.

Fetch the sign bit of s reg 1 or d reg, combine it
with the exponent and fraction of S reg2, and copy
the result to d _ reg. -

Copy Sign Negate Instruction
(cpysn) Fetch the sign bit of s reg1 or d reg, complement

it, combine it with the exponent and fraction of
s _ reg2, and copy the result to d _reg.

Copy Sign and Exponent Instruction
(cpyse) Fetch the sign-and exponent of s reg1 or dreg,

Move If Instructions
(fcmoveq,
fcmovne, fcmovl t,
fcmovle, fcmovgt,
fcmovge)

4-16 Floating-Point Instruction Set

combine them with the fraction of s reg2, and copy
the result to d _reg. -

Compare the contents of s reg 1 or d reg against
zero. If the specified condition is true, the contents of
s reg2 is copied to d reg; otherwise, d reg is
unchanged. - -

4.6 Floating-Point Control Instructions
Floating-point control instructions test floating-point registers and
conditionally branch.

Table 4-10 lists the mnemonics and operands for instructions that perform
floating-point control operations. The specified operands apply to all of the
instructions listed in the table.

Table 4-10: Control Instruction Formats

Instruction

Branch Equal to Zero
Branch Not Equal to Zero
Branch Less Than Zero
Branch Less Than or Equal to Zero
Branch Greater Than Zero
Branch Greater Than or Equal to Zero

Mnemonic Operands

fbeq s_reg, label
fbne
fbIt
fbIe
fbgt
fbge

Table 4-11 describes the operations performed by control instructions The
control instructions are grouped by function. Refer to Table 4-10 for
instruction names.

Table 4-11: Control Instruction Descriptions

Instruction

Branch Instructions
(fbeq, fbne, fbI t,
fbIe, fbgt, fbge)

Description

The contents of the source register are compared with
zero. If the specified relationship is true, a branch is
made to the specified label.

4.7 Floating-Point Special-Purpose Instructions
Floating-point special-purpose instructions perform miscellaneous tasks.
This section describes the floating-point special-purpose instructions
supported by the assembler.

Table 4-12 lists the mnemonics and operands for instructions that perform
floating-point special-purpose operations.

Floating-Point Instruction Set 4-17

Table 4-12: Special-Purpose Instruction Formats

Instruction Mnemonic Operands

Move from FP Control Register rof _ fpcr d_reg

Move to FP Control Register rot _ fpcr s_reg

No Operation fnop

Table 4-13 describes the operations performed by floating-point special­
purpose instructions.

Table 4-13: Control Register Instruction Descriptions

Instruction

Move to FPCR Instruction
(rof_fpcr)

Description

Copy the value in the specified source register to the
floating-point control register (FPCR).

Move from FPCR Instruction
(rot fpcr) Copy the value in floating-point control register (FPCR)

- to the specified destination register.

No Operation Instruction
(fnop) This instruction has no effect on the machine state.

4-18 Floating-Point Instruction Set

Assembler Directives 5

This chapter describes assembler directives. Assembler directives are
instructions to the assembler to perform various bookkeeping tasks, storage
reservation, and other control functions. To distinquish them from other
instructions, directive names begin with a period.

Table 5-1 lists the assembler directives by category.

Table 5-1: Summary of Assembler Directives

Category

Compiler-Use-Only Directives

Data Storage Directives

Directives

.bgnb

.endb

.file

.gjsrlive

.gjsrsaved

.lab

.livereg

.loc

. option

.ugen

.vreg

.ascii

.asciiz

. byte

.comm

. double

.d_floating

.float

.f_floating

.gprel32

.g_floating

.lcornm

.long

. quad

.s floating

. <=floating

.word

Table 5-1: (continued)

Category Directives

Location Control Directives .align
.data
.rdata
.sdata
. space
.text

Symbol Declaration Directives • extern
.globl
.struct
(symbolic equate)
.weakext

Routine Entry Point Definition Directives • aent
.ent

Repeat Block Directives • endr

Assembler Option Directive

Procedure Attribute Directives

Version Control Directive

. repeat

.set

.edata

.eflag

.end

.fmask

. frame

.mask

. prologue

.save ra

.verstamp

The assembly directives are described alphabetically in the following list:

.aent name [, symno]
Sets an alternate entry point for the current procedure. Use this
information when you want to generate information for the debugger.
This directive must appear between a pair of • ent and. end directives.
(The optional symno is for compiler use only. It refers to a dense
number in a • T file (symbol table).)

.alias reg 1, reg2
Indicates that memory referenced through the two registers will overlap.
The compiler uses this form to improve instruction scheduling .

. align expression
Sets low-order bits in the location counter to zero. The value of
expression establishes the number of bits to be zeroed. The maximum

5-2 Assembler Directives

value for expression is four (octaword alignment).

If the. align directive advances the location counter, the assembler
fills the skipped bytes with zeros (in data sections) or nop instructions
(in text sections).

Normally, the .word, . long, . quad, .float, . double,
.d floating, .f floating, .g floating, .s floating,
and. t floating directives automatically align theirdata
appropnately. For example, • word does an implicit .align 1, and
· double does an implicit. align 3.

You can disable the automatic alignment feature with. align O. The
assembler reinstates automatic alignment at the next • text, . da ta,
· rdata, or • sdata directive that it encounters.

Labels immediately preceding an automatic or explicit alignment are
also realigned. For example,
faa: .align 3

.word 0

is the same as

.align 3
faa: .word 0

.ascii string [, string] •••
Assembles each string from the list into successive locations. The
· ascii directive does not null pad the string. You must put quotation
marks (") around each string. You can optionally use the backslash
escape characters. For a list of the backslash characters, see Chapter 4 .

. asciiz string [, string] •••
Assembles each string in the list into successive locations and adds a
null. You can optionally use the backs lash escape characters. For a list
of the backs lash characters, see Chapter 4 .

. bgnb symno
For use only by compilers. Sets the beginning of a language block. The
· bgnb and. endb directives delimit the scope of a variable set. The
scope can be an entire procedure, or it can be a nested scope (for
example a "{ } " block in the C language). The symbol number symno
refers to a dense number in a • T file (symbol table). For an explanation
of • T files, see Chapter 8 .

. byte expression] [, expression2] ••• [, expressionN]
Truncates the values of the expressions specified in the comma-separated
list to 8-bit values, and assembles the values in successive locations.
The values of the expressions must be absolute.

Assembler Directives 5-3

The operands in a • byte directive can optionally have the form:

expression Val [: expressionRep]

The expression Val is an 8-bit value. The optional expressionRep is a
non-negative expression that specifies how many times to replicate the
value of expression Val. The expression value (expression Val) and
repetition count (expressionRep) must be absolute .

. comm name, expression
Unless defined elsewhere, name becomes a global common symbol at
the head of a block of at least expression bytes of storage. The linker
overlays like-named common blocks, using the expression value of the
largest block as the byte size of the overlay .

. data
Directs the assembler to add all subsequent data to the • data section .

. d_floating expression1 [, expression2] ••• [, expressionN]
Initializes memory to double precision (64-bit) VAX D_floating
numbers. The values of the expressions must be absolute.

The operands can optionally have the form:

expression Val [: expressionRep]

The expression Val is a 64-bit value. The optional expressionRep is a
non-negative expression that specifies how many times to replicate the
value of expressionVal. The expression value (expression Val) and
repetition count (expressionRep) must be absolute.

This directive automatically aligns its data and any preceding labels to a
double-word boundary. You can disable this feature with the. align
o directive .

. double expression1 [, expression2] ••• [, expressionN]
Synonym for. t _floating .

. edata flag data lang-handler
Marks data related to exception handling.

If flag is zero, the assembler moves the data following the directive to
the. xdata section.

If flag is 1, the assembler creates a function table entry for the next
. ent directive. The function table entry contains the language-specific
handler and data .

. eflag flags
Encodes exception related flags to be stored in the PDSC RPD FLAGS
field of the procedure's run-time procedure descriptor. Refer tothe
DEC OSFI1 Calling Standard for AXP Systems for a description of the
individual flags.

5-4 Assembler Directives

.end [proc_name]
Sets the end of a procedure. The • ent directive sets the beginning of a
procedure. Use the. ent and. end directives when you want to
generate information for the debugger.

.endb symno
Sets the end of a language block. (See the description of the • bgnb
directive for details. The. bgnb directive sets the beginning of a
language block.)

.endr
Signals the end of a repeat block. Th\.- • repeat directive starts a
repeat block .

. ent proc_name [lex-level]

. err

Sets the beginning of the procedure proc_name. Use this directive when
you want to generate information for the debugger. The • end directive
sets the end of a procedure.

The lex-level operand indicates the number of procedures that statically
surround the current procedure. This operand is only informational; it
does not affect the assembly process (that is, the assembler ignores it) .

For use only by compilers. Signals an error. Any compiler front-end
that detects an error condition puts this directive in the input stream.
When the assembler encounters a • err directive, it quietly ceases to
assemble the source file. This prevents the assembler from continuing
to process a program that is incorrect.

.extern name [number]
Indicates that the specified symbol is global and external; that is, the
symbol is defined in another object module and cannot be defined until
link time. The name operand is a global undefined symbol and number
is the expected size of the external object.

.f_floating expression1 [, expression2] ••• [, expressionN]
Initializes memory to single precision (32-bit) V AX F _floating numbers.
The values of the expressions must be absolute.

The operands can optionally have the form:

expression Val [: expressionRep]

The expression Val is a 32-bit value. The optional expressionRep is a
non-negative expression that specifies how many times to replicate the
value of expression Val. The expression value (expression Val) and
repetition count (expressionRep) must be absolute.

This directive automatically aligns its data and preceding labels to a
longword boundary. You can disable this feature by using the • align

Assembler Directives 5-5

o directive .

. file file _numbe r file _name _string
For use only by compilers. Specifies the source file corresponding to
the assembly instructions that follow. This directive causes the
assembler to stop generating line numbers that are used by the debugger.
A subsequent .lac directive causes the assembler to resume generating
line numbers .

. float expression] [, expression2] ••• [, expressionN]
Synonym for. s_flaating .

. fmask mask offset
Sets a mask with a bit turned on for each floating-point register that the
current routine saved. The least-significant bit corresponds to register
$ f O. The offset is the distance in bytes from the virtual frame pointer
to where the floating-point registers are saved.

You must use. ent before. fmask, and you can use only one
. fmask for each. ent. Space should be allocated for those registers
specified in the • fmask .

. frame frame-register frame-size return-fJc-register [locaCoffset]
Describes a stack frame. The first register is the frame register, frame­
size is the size of the stack frame, that is, the number of bytes between
the frame register and the virtual frame pointer. The second register
specifies the register that contains the return address. The local_offset
parameter, which is for use only by compilers, specifies the number of
bytes between the virtual frame pointer and the local variables.

You must use • en t before • frame, and you can use only one
. frame for each. ent. No stack traces can be done in the debugger
without the • frame directive .

. g_floating expression] [, expression2] ••• [, expressionN]
Initializes memory to double precision (64-bit) VAX G_floating
numbers. The values of the expressions must be absolute.

The operands can optionally have the form:

expression Val [: expressionRep]

The expression Val is a 64-bit value. The optional expressionRep is a
non-negative expression that specifies how many times to replicate the
value of expression Val. The expression value (expression Val) and
repetition count (expressionRep) must be absolute.

This directive automatically aligns its data and any preceding labels to a
quadword boundary. You can disable this feature with the • align 0
directive.

5-6 Assembler Directives

.gjsrlive
For use only by compilers. Sets the default masks for live registers
before a procedure call (a bsr or j sr instruction) .

. gjsrsaved
For use only by compilers. Sets the masks defining the registers whose
value is preserved during a procedure call. See Table 6-1 and Table 6-2
for the default for integer and floating-point saved registers .

. globl name
Identifies name as an external symbol. If the name is otherwise defined
(for example, by its appearance as a label), the assembler exports the
symbol; otherwise, it imports the symbol. In general, the assembler
imports undefined symbols; that is, it gives them the UNIX storage class
"global undefined" and requires the linker to resolve them .

. gprel32 address 1 [, address2] ••• [, addressN]
Truncates the signed displacement between the global pointer value and
the addresses specified in the comma-separated list to 32-bit values, and
assembles the values in successive locations.

The operands can optionally have the form:

addressVal [: addressRep]

The address Val is the address value. The optional addressRep is a
non-negative expression that specifies how many times to replicate the
value of addressVal. The expression value (expression Val) and
repetition count (expressionRep) must be absolute.

This directive automatically aligns its data and preceding labels to a
longword boundary. You can disable this feature with the. align 0
directive .

. gretlive
For use by compilers. Sets the default masks for live registers before a
procedure's return (a ret instruction) .

.lab labeLname
For use only by compilers. Associates a named label with the current
location in the program text.

.Icomm name, expression
Gives the named symbol (name) a data type of bss. The assembler
allocates the named symbol to the bs s area, and the expression defines
the named symbol's length. If a • globl directive also specifies the
name, the assembler allocates the named symbol to external bss.

The assembler puts bs s symbols in one of two bs s areas. If the
defined size is less than or equal to the size specified by the assembler
or compiler's -G command line option, the assembler puts the symbols

Assembler Directives 5-7

in the sbss area .

. livereg incbitmask fp_bitmask
For use only by compilers. Affects the next jump instruction even if it
is not the successive instruction. By default, external br instructions
and j mp instructions are treated as external calls; that is; all registers are
assumed to be live. The .livereg directive cannot appear before an
external br instruction because it will affect the next ret, j sr, bsr,
jmp, or call pal callsys instruction instead of the br
instruction. The directive cannot be used before a call pal bpt
instruction. For call pal bpt instructions, the assembler also
assumes that all registers are live.

To avoid unsafe optimizations by the reorganizer, • li vereg notes to
the assembler those registers that are live before a jump. The directive
.livereg takes two arguments, inCbitmask andfp_bitmask, which are
32-bit bitmasks with a bit turned on for each register that is live before a
jump. The most significant bit corresponds to register $ 0 (which is
opposite to that used in other assembly directives, for example, • mask
and. fmask). The first bitmap indicates live integer registers and the
second indicates live floating-point registers.

When present, this directive causes the assembler to be more
conservative and to not destroy the indicated register contents. If
omitted, the assembler assumes the default masks. The .li vereg
directive can be coded before any of the following instructions: bsr,
j sr, ret, jmp, and call_pal callsys .

.loe file_number line_number
For use only by compilers. Specifies the source file and the line within
it that corresponds to the assembly instructions that follow. The
assembler ignores the file number when this directive appears in the
assembly source file. Then, the assembler assumes that the directive
refers to the most recent. file directive. When a .lac directive
appears in the binary assembly language • G file, the file number is a
dense number pointing at a file symbol in the symbol table • T file. For
more information about. G and. T files, see Chapter 8 .

.long expression] [, expression2] ••• [, expressionN]
Truncates the values of the expressions specified in the comma-separated
list to 32-bit values, and assembles the values in successive locations.
The values of the expression can be relocatable.

The operands can optionally have the form:

expression Val [: expressionRep]

The expression Val is a 32-bit value. The optional expressionRep is a
non-negative expression that specifies how many times to replicate the
value of expression Val. The expression value (expression Val) and

5-8 Assembler Directives

repetition count (expressionRep) must be absolute.

This directive automatically aligns its data and preceding labels to a
longword boundary. You can disable this feature with the. align 0
directive .

. mask mask, ojj~'et
Sets a mask with a bit turned on for each general-purpose register that
the current routine saved. Bit one corresponds to register $1. The offset
is the distance in bytes from the virtual frame pointer to where the
registers are saved.

You must use. ent before. mask, and you can use only o,ne • mask
for each. ent. Space should be allocated for those registers specified
in the • mask. If bit zero is set, it is assumed that space is allocated for
all 31 integer registers, regardless of whether they appear in the mask .

. noalias reg], reg2
Informs the assembler that reg] and reg2 will never point to the same
memory location when they are used as indexed registers. The
assembler uses this as a hint to make more liberal assumptions about
resource dependency in the program .

. option options
For use only by compilers. Informs the assembler that certain options
were in effect during compilation. (These options can, for example,
limit the assembler's freedom to perform branch optimizations.)

.prologue flag
Marks the end of the prologue section of a procedure.

A flag of zero indicates that the procedure does not use $ gp; the caller
does not need to set up $ pv prior to calling the procedure or restore
$ gp on return from the procedure.

A flag of one indicates that the procedure does use $ gp; the caller must
set up $ pv prior to calling the procedure and restore $ gp on return
from the procedure.

If flag is not specified, the behavior is as if a value of one was specified .

. quad expression] [, expression2] ••• [, expressionN]
Truncates the values of the expressions specified in the comma-separated
list to 64-bit values, and assembles the values in successive locations.
The values of the expressions can be relocatable.

The operands can optionally have the form:

expression Val [: expressionRep]

The expression Val is a 64-bit value. The optional expressionRep is a
non-negative expression that specifies how many times to replicate the
value of expressionVal. The expression value (expression Val) and

Assembler Directives 5-9

repetition count (expressionRep) must be absolute.

This directive automatically aligns its data and preceding labels to a
quadword boundary. You can disable this feature with the. align 0
directive .

. rdata
Instructs the assembler to add subsequent data into the. rdata section .

. repeat expression
Repeats all instructions or data between the • repeat and • endr
directives. The expression defines how many times the enclosing text
and data repeats. With the • repeat directive, you cannot use labels,
branch instructions, or values that require relocation in the block. Also
note that nesting. repeat directives is not allowed .

. save_ra saved_ra_register
Specifies that saved_ra_register is the register in which the return
address is saved during the execution of the procedure. If • save ra is
not used, the saved return address register is assumed to be the same as
the return-pc_register argument of the frame directive. The
. save _ ra directive is valid only for register frame procedures .

. sdata
Instructs the assembler to add subsequent data to the. sdata section .

. set option
Instructs the assembler to enable or disable certain options. The
assembler has the following default options: reorder, macro, move,
novolatile, and at. You can specify only one option for each
. set directive:

• The reorder option permits the assembler to reorder machine
language instructions to improve performance.

• The noreorder option prevents the assembler from reordering
machine language instructions. If a machine language instruction
violates the hardware pipeline constraints, the assembler issues a
warning message.

• The macro option permits the assembler to generate multiple
machine instructions from a single assembler instruction.

• The nomacro option causes the assembler to print a warning
whenever an assembler operation generates more than one machine
language instruction. You must select the noreorder option
before using the nomacro option; otherwise, an error results.

• The at option permits the assembler to use the $ at register for
macros, but generates warnings if the source program uses $ at.

5-10 Assembler Directives

• When you use the noat option and an assembler operation requires
the $at register, the assembler issues a warning message; however,
the noat option does permit source programs to use $at without
warnings being issued.

• The nomove options instructs the assembler to mark each
subsequent instruction so that it cannot be moved during
reorganization. The assembler can still move instructions from
below the nomove region to above the region or vice versa. The
nomove option has part of the effect of the "volatile" C
declaration; it prevents otherwise independent loads or stores from
occurring in a different order than intended.

• The move option cancels the effect of nomove.

• The volatile option instructs the assembler that subsequent load
and store instructions may not be moved in relation to each other or
removed by redundant load removal or other optimization. The
volatile option is less restrictive than noreorder; it allows the
assembler to move other instructions (that is, instructions other than
load and store instructions) without restrictions.

• The novolatile option cancels the effect of the volatile
option .

. s_floating expression1 [, expression2] ••• [, expressionN]
Initializes memory to single precision (32-bit) IEEE floating-point
numbers. The values of the expressions must be absolute.

The operands for the. s floating directive can optionally have the
form: -

expression Val [: expressionRep]

The expression Val is a 32-bit value. The optional expressionRep is a
non-negative expression that specifies how many times to replicate the
value of expressionVal. The expression value (expression Val) and
repetition count (expressionRep) must be absolute.

This directive automatically aligns its data and preceding labels to a
longword boundary. You can disable this feature with the. align 0
directive .

. space expression
Advances the location counter by the number of bytes specified by the
value of expression. The assembler fills the space with zeros .

. struct expression
Permits you to layout a structure using labels plus directives such as
. word or • byte. It ends at the next segment directive (. da ta,
. text, and so forth). It does not emit any code or data, but defines the

Assembler Directives 5-11

labels within it to have values that are the sum of expression plus their
offsets from the. struct itself.

(symbolic equate)

.text

Takes one of the following forms: name = expression or
name = register. You must define the name only once in the assembly,
and you cannot redefine the name. The expression must be computable
when you assemble the program, and the expression must involve only
operators, constants, or equated symbols. You can use the name as a
constant in any later statement.

Instructs the assembler to add subsequent code to the • text section.
(This is the default.)

.t_floating expression} [, expression2] ••• [, expressionN]
Initializes memory to double precision (64-bit) IEEE floating-point
numbers. The values of the expressions must be absolute.

The operands can optionally have the form:

expression Val [: expressionRep]

The expression Val is a 64-bit value. The optional expressionRep is a
non-negative expression that specifies how many times to replicate the
value of expression Val. The expression value (expression Val) and
repetition count (expressionRep) must be absolute.

This directive automatically aligns its data and any preceding labels to a
quadword boundary. You can disable this feature with the. align 0
directive .

. ugen
For use only by compilers. Informs the assembler that the source was
generated by the code generator .

. verstamp major minor
Specifies the major and minor version numbers (for example, version
0.15 would be • verstamp 0 15) •

. vreg register offset symno
For use only by compilers. Describes a register variable by giving the
offset from the virtual frame pointer and the symbol number symno (the
dense number) of the surrounding procedure .

. weakext name} [, name2]
Sets name} to be a weak symbol during linking. If name2 is specified,
name} is created as a weak symbol with the same value as name2.
Weak symbols can be silently redefined at link time .

. word expression} [, expression2] ••• [, expressionN]
Truncates the values of the expressions specified in the comma-separated

5-12 Assembler Directives

list to 16-bit values, and assembles the values in successive locations.
The values of the expressions must be absolute.

The operands in the. word directive can optionally have the form:

expression Val [: expressionRep]

The expression Val is a 16-bit value. The optional expressionRep is a
non-negative expression that specifies how many times to replicate the
value of expression Val. The expression value (expression Val) and
repetition count (expressionRep) must be absolute.

This directive automatically aligns its data and preceding labels on a
word boundary. You can disable this feature with the. align 0
directive.

Assembler Directives 5-13

Programming Considerations 6

This chapter gives rules and examples to follow when creating an assembly­
language program.

The chapter addresses the following topics:

• Why the calling conventions observed by the C compiler should be used
in your assembly programs. (Section 6.1)

• An overview of the composition of executable programs. (Section 6.2)

• The use of registers, section and location counters, and stack frames.
(Section 6.3)

• A technique for coding an interface between an assembly-language
procudure and a procedure written in a high-level language. (Section 6.4)

• The default memory allocation scheme used by the Alpha AXP system.
(Section 6.5)

This chapter does not address coding issues related to performance or
optimization. See Appendix A of the Alpha Architecture Reference Manual
for information on how to optimize assembly code.

6.1 Calling Conventions
When you write assembly-language procedures, you should use the same
calling conventions that the C compiler observes. The reasons for using the
same calling conventions are as follows:

• Often your code must interact with compiler-generated code, accepting
and returning arguments or accessing shared global data.

• The symbolic debugger gives better assistance in debugging programs
that use standard calling conventions.

The conventions observed by the DEC OSFIl compiler system are more
complicated than those of some other compiler systems, mostly to enhance
the speed of each procedure call. Specifically:

• The C compiler uses the full, general calling sequence only when
necessary; whenever possible, it omits unneeded portions of the sequence.
For example, the C compiler does not use a register as a frame pointer if
it is unnecessary to do so.

• The C compiler and the debugger observe certain implicit rules instead of
communicating by means of instructions or data at execution time. For
example, the debugger looks at information placed in the symbol table by
a • frame directive at compilation time. This technique enables the
debugger to tolerate the lack of a register containing a frame pointer at
execution time.

• The linker performs code optimizations based on information that is not
available at compile time. For example, the linker can, in some cases,
replace the general calling sequence to a procedure with a single
instruction.

6.2 Program Model
A program consists of an executable image and zero or more shared images.
Each image has an independent text and data area.

Each data segment contains a global offset table (GOT), which contains
address constants for procedures and data locations that the text segment
references. The GOT provides the means to access arbitrary 64-bit addresses
and allows the text segment to be position independent. The size of the GOT
is limited only by the maximum image size. However, because only 64KB
can be addressed by a single memory-format instruction, the GOT is
segmented into one or more sections of 64KB or less.

In addition to providing efficient access to the GOT, the gp register is also
used to access global data within ±2GB of the global pointer. This area of
memory is known as the global data area.

A static executable image is not a special case in the program model. It is
simply an executable image that uses no shared libraries. However, it is
possible for the linker to perform code optimizations. In particular, if a static
executable image's GOT is less than or equal to 64KB (that is, it has only
one segment), the code to load, save, and restore the gp register is not
necessary because all procedures will access the same GOT segment.

6.3 General Coding Concerns
This section describes three general areas of concern to the assembly
language programmer:

• U sable and restricted registers

• Control of section and location counters with directives

• Stack frame requirements on entering and exiting a procedure

Another general coding consideration is the use of data structures to
communicate between high-level language procedures and assembly

6-2 Programming Considerations

procedures. In most cases, this communication is handled by means of
simple variables: pointers, integers, booleans, and single- and double­
precision real numbers. Describing the details of the various high-level data
structures that can also be used (arrays, records, sets, and so on) is beyond
the scope of this manual.

6.3.1 Register Use
The main processor has 32 64-bit integer registers. The uses and restrictions
of these registers are described in Table 6-1.

The floating-point coprocessor has 32 floating-point registers. Each register
can hold either a single precision (32 bit) or a double precision (64 bit) value.
Refer to Table 6-2 for details.

Table 6-1: Integer Registers

Register Name Software Name Use
(from regdef.h)

$0 vO Used for expression evaluations and to
hold the integer function results. Not
preserved across procedure calls.

$1-8 to -t 7 Temporary registers used for expression
evaluations. Not preserved across
procedure calls.

$ 9 -14 sO - s 5 Saved registers. Preserved across
procedure calls.

$15 or $ fp s 6 or fp Contains the frame pointer (if needed);
otherwise, a saved register.

$16-21 aO-a5 Used to pass the first six integer type
actual arguments. Not preserved across
procedure calls.

$ 22 - 25 t 8 -t 11 Temporary registers used for expression
evaluations. Not preserved across
procedure calls.

$ 26 r a Contains the return address. Preserved
across procedure calls.

$27 pv or t12

$28 or Sat AT

Contains the procedure value and used
for expression evaluation. Not
preserved across procedure calls.

Reserved for the assembler. Not
preserved across procedure calls.

Programming Considerations 6-3

Table 6-1: (continued)

Register Name Software Name Use
(from regdef.h)

$ 2 9 or $ gp gp Contains the global pointer. Not
preserved across procedure calls.

$ 3 0 or $ s p s p Contains the stack pointer. Preserved
across procedure calls.

$ 31 zero Always has the value O.

Table 6-2: Floating-Point Registers

Register Use
Name

$fO-fl Used to hold floating-point type function results ($fO) and complex
type function results ($ f 0 has the real part, $ f 1 has the imaginary
part). Not preserved across procedure calls.

$ f 2 - f 9 Saved registers. Preserved across procedure calls.

$ flO - f 15 Temporary registers used for expression evaluation. Not preserved
across procedure calls.

$ f 16 - f 21 Used to pass the first six single or double precision actual
arguments. Not preserved across procedure calls.

$f22-f30 Temporary registers used for expression evaluations. Not preserved
across procedure calls.

$ f 31 Always has the value 0.0.

6.3.2 Using Directives to Control Sections and Location Counters
Assembled code and data are stored in the object file sections shown in
Figure 6-1. Each section has an implicit location counter that begins at zero
and increments by one for each byte assembled in the section. Location
control directives (. align, . data, . rdata, . sdata, . space, and
. text) can be used to control what is stored in the various sections and to
adjust location counters.

The assembler always generates the text section before other sections.
Additions to the text section are done in 4-byte units.

The bss section holds zero-initialized data. If a .lcomm directive defines a
variable, the assembler assigns that variable to either the bss (block started by

6-4 Programming Considerations

symbol) section or the sbss (small bss) section, depending on the variable's
size.

The default size for sbss variables is eight or fewer bytes. You can change
the size using the -G compilation option for the C compiler or the assembler.
Items smaller than or equal to the specified size go in sbss. Items greater
than the specified size go in the bss section.

At run time, the $ gp register points into the area of memory occupied by the
.li ta section. The .li ta section is used to hold address literals for 64-
bit addressing.

Figure 6-1: Section and Location Counters

.bss -- bss (block started by storage) section

.sbss f-- small bss section

.sdata --small data section

.lit4

data sections
.litS

.Iita

.data

.rdata

read-only data section

.text ~ text section

ZK-0733U-R

See Chapter 7 for more information on section data.

6.3.3 The Stack Frame
The C compiler classifies each procedure into one of the following
categories:

• Nonleaf procedures. These procedures call other procedures.

• Leaf procedures. These procedures do not themselves call other
procedures. Leaf procedures are of two types: those that require stack
storage for local variables and those that do not.

Programming Considerations 6-5

You must decide the procedure category before determining the calling
sequence.

To write a program with proper stack frame usage and debugging
capabilities, you should observe the conventions presented in the following
list of steps. Steps 1 through 6 describe what must be done on procedure
entry, step 7 describes how to pass parameters, and steps 8 through 12
describe what must be done on procedure exit:

1. Regardless of the type of procedure, you should include a • ent directive
and an entry label for the procedure:

.ent procedure_name
procedure_name:

The. ent directive generates information for the debugger, and the entry
label is the procedure name.

2. If you are writing a procedure that references static storage, calls other
procedures, uses constants greater than 31 bits in size, or uses floating
constants, you must load the gp register with the global pointer value for
the procedure:

Idgp $gp,O($27)

Register $ 27 contains the procedure value (the address of this procedure
as supplied by the caller).

3. If you are writing a leaf procedure that does not use the stack, skip to
step 4. For a nonleaf procedure or a leaf procedure that uses the stack,
you must adjust the stack size by allocating all of the stack space that the
procedure requires:

Ida $sp,-framesize($sp)

The framesize operand is the size of frame required, in bytes, and
must be a multiple of 16. You must allocate space on the stack for the
following items:

• Local variables.

• Saved general registers. Space should be allocated only for those
registers saved. For nonleaf procedures, you must save register $ 2 6,
which is used in the calls to other procedures from this procedure. If
you use registers $ 9 to $15, you must also save them.

• Saved floating-point registers. Space should be allocated only for
those registers saved. If you use registers $ f 2 to $ f 9, you must also
save them.

• Procedure call argument area. You must allocate the maximum
number of bytes for arguments of any procedure that you call from
this procedure; this does not include space for the first six arguments,
which are always passed in registers.

6-6 Programming Considerations

Note

Once you have modified register $sp, you should not modify
it again in the remainder of the procedure.

4. To generate information used by the debugger and exception handler, you
must include a • frame directive:

.frame framereg, framesize , returnreg

The virtual frame pointer is a frame pointer as used in other compiler
systems but has no register allocated for it. It consists of the framereg
($sp, in most cases) added to the framesize (see step 3). Figure 6-2
illustrates the stack components.

Figure 6-2: Stack Organization

(high memory)

virtual frame

pointer ($fP)-':{

frameoffset

stack -..
pointer ($sp)

(low memory)

nth argument

7th argument

local & temporaries

saved registers
(including returnreg)

argument build

example of saved registers

/ saved $10
,," r---------iru

/ saved $9
" / saved $26 (ra)

"

~--

framesize

ZK-0736U-R

The returnreg argument for the. frame directive specifies the
register that contains the return address (usually register $26). These
usual values may change if you use a varying stack pointer or are
specifying a kernel trap procedure.

5. If the procedure is a leaf procedure that does not use the stack, skip to
step 11. Otherwise, you must save the registers that you allocated space

Programming Considerations 6-7

for in step 3.

Saving the general registers requires the following operations:

• Specify which registers are to be saved using the following • mask
directive:

.mask bitmask,frameoffset

The bit setting in bi tmask indicate which registers are to be saved.
For example, if register $ 9 is to be saved, bit 9 in bi tmask must be
set to 1. The value for frameoffset is the offset (negative) from
the virtual frame pointer to the start of the register save area.

• Use the following stq instruction to save the registers specified in
the mask directive:

stq reg,framesize+frameoffset+N($sp)

The value of N is the size of the argument build area for the first
register and is incremented by 8 for each successive register. If the
procedure is a nonleaf procedure, the return address is the first register
to be saved. For example, a nonleaf procedure that saves register $ 9
and $10 would use the following s tq instructions:

stq $26,framesize+frameoffset($sp)
stq $9,framesize+frameoffset+8($sp)
stq $10, framesize+frameoffset+16 ($sp)

(Figure 6-2 illustrates the order in which the registers in the preceding
example would be saved.)

Then, save any floating-point registers that you allocated space for in
step 3:

.fmask bitmask,frameoffset
stt reg,framesize+frameoffset+N($sp)

Saving floating-point registers is identical to saving integer registers
except you use the • fmask directive instead of • mask, and the
storage operations involve floating-point single- or double-precision
data. (The previous discussion about how to save integer registers
applies here as well.)

6. The final step in creating the procedure's prologue is to mark its end as
follows:

.prologue flag

The flag is set to 1 if the prologue contains an Idgp instruction (see
step 2); otherwise, it is set to O.

7. This step describes parameter passing: how to access arguments passed
into your procedure and how to pass arguments correctly to other
procedures. For information on high-level language specific constructs
(call-by-name, call-by-value, string or structure passing), see the

6-8 Programming Considerations

programmer's guides for the high-level languages you are attempting to
interface with.

General registers $16 to $ 21 and floating-point registers $ f 16 to $ f 21
are used for passing the first six arguments. If any of the first six
arguments are nonfloating-point arguments, they are passed in general
registers. If any of the first six arguments are floating-point arguments,
they are passed in floating-point registers.

Stack space is used for passing the seventh and subsequent arguments.
The stack space allocated to each argument is an 8-byte multiple and is
aligned on an 16-byte boundary.

Table 6-3 summarizes the location of procedure arguments in the register
or stack.

Table 6-3: Argument Locations

Argument Integer Floating-Point
Number Register Register Stack

1 $16 (aO) $f16
2 $17 (a1) $f17
3 $18 (a2) $f18
4 $19 (a3) $f19
5 $20 (a4) $f20
6 $21 (as) $f21
7-n 0($sp) •• (n-7)*8($sp)

8. On procedure exit, you must restore registers that were saved in step 5.
To restore general purpose registers:

Idq reg,framesize+frameoffset+N($sp)

To restore the floating-point registers:

Idt reg,framesize+frameoffset+N($sp)

(Refer to step 5 for a discussion of the value of N.)

9. Get the return address:

Idq $26,framesize+frameoffset($sp)

10. Clean up the stack:

Ida $sp,framesize($sp)

Programming Considerations 6-9

11. Return:

ret $31,($26),1

12. End the procedure:

.end procedurename

6.3.4 Examples
The following examples show procedures written in C and equivalent
procedures written in assembly language.

Example 6-1 shows a nonleaf procedure. Notice that it creates a stackframe
and saves its return address. It saves its return address because it must put a
new return address into register $ 2 6 when it makes a procedure call.

Example 6-1: Nonleaf Procedure

int
nonleaf(i, j)

int i, *ji

int abs()i
int tempi

temp = i - *ji
return abs(temp)i
}

.globl non leaf
1 int
2 nonleaf(i, j)
3 int i, *ji
4 {

.ent nonleaf 2
nonleaf:

ldgp $gp, 0($27)
Ida $sp, -16($sp)
stq $26, O($sp)
.mask Ox04000000, -16
. frame $sp, 16, $26, 0
. prologue 1
addl $16, 0, $18

5 int abs()i
6 int tempi
7
8 temp = i - *ji

ldl $1, 0($17)
subl $18, $1, $16

9 return abs(temp)i
jsr $26, abs
Idgp $gp, 0($26)

6-10 Programming Considerations

Example 6-1: (continued)
ldq $26, O($sp)
Ida $sp, 16($sp)
ret $ 31, ($ 2 6), 1
.end nonleaf

Example 6-2 shows a leaf procedure that does not require stack space for
local variables. Notice that it does not create a stackframe and does not save
a return address.

Example 6-2: Leaf Procedure Without Stack Space for Local
Variables

int
leaf(p1, p2)

int p1, p2;
{
return (p1 > p2) ? p1 p2;
}

.globl leaf
1 leaf(p1, p2)
2 int p1, p2;
3 {

.ent leaf 2
leaf:

ldgp $gp, 0($27)
. frame $sp, 0, $26,
. prologue 1
add I $16, 0, $16
addl $17, 0, $17

4 return (p1 > p2) ?
bis $17, $17, $0
cmplt $0, $16, $1
cmovne $1, $16, $0
ret $31, ($26), 1
.end leaf

°
p1 p2;

Example 6-3 shows a leaf procedure that requires stack space for local
variables. Notice that it creates a stack frame but does not save a return
address.

Programming Considerations 6-11

Example 6-3: Leaf Procedure With Stack Space for Local
Variables

int
leaf_storage(i)

int i;

{
int a[16];
int j;
for (j = 0; j < 10; j++)

a[j] = '0' + j;
return a[i];
}

.globl leaf_storage
1 int
2 leaf_storage(i)
3 int i· ,
4 {

.ent leaf storage 2 -
leaf storage:

ldgp $gp, 0($27)
Ida $sp, -80($sp)
. frame $sp, 80, $26,
. prologue 1
addl $16, 0, $1

5 int a[16];
6 int j;
7 for (j = 0; j < 10;

ldil $2, 48
stl $2, 16($sp)
ldil $3, 49
stl $3, 20($sp)
ldil $0, 2
Ida $16, 24($sp)

$32:
8 a[j] = '0' + j;

addl $0, 48, $4
stl $4, 0($16)
addl $0, 49, $5
stl $5, 4($16)
addl $0, 50, $6
stl $6, 8($16)
addl $0, 51, $7
stl $7, 12($16)
add I $0, 4, $0
addq $16, 16, $16
subq $0, 10, $8
bne $8, $32

9 return a[i];
mull $1, 4, $22
addq $22, $sp, $0
ldl $0, 16($0)
Ida $sp, 80($sp)

6-12 Programming Considerations

°

j++)

Example 6-3: (continued)
ret $ 31 , ($ 2 6), 1
.end leaf_storage

6.4 Developing Code for Procedure Calls
The rules and parameter requirements for passing control and exchanging
data between procedures written in assembly language and procedures written
in other languages are varied and complex. The simplest approach to coding
an interface between an assembly procedure and a procedure written in a
high-level language is to do the following:

• Use the high-level language to write a skeletal version of the procedure
that you plan to code in assembly language.

• Compile the program using the -8 option, which creates an assembly­
language (. s) version of the compiled source file.

• Study the assembly-language listing and then, using the code in the
listing as a guideline, write your assembly-language code.

Section 6.4.1 and Section 6.4.2 describe techniques you can use to create
interfaces between procedures written in assembly language and procedures
written in a high-level language. The examples show what to look for in
creating your interface. Details such as register numbers will vary according
to the number, order, and data types of the arguments. In writing your
particular interface, you should write and compile realistic examples of the
code you want to write in assembly language.

6.4.1 Calling a High-Level Language Procedure
This section describes the steps you could use in writing an assembly­
language procedure that calls atof(3), a procedure written in C that converts
ASCII characters to numbers. The steps are as follows:

1. Write a C program that calls atof. Pass global variables instead of
local variables; this makes them easy to recognize in the assembly­
language version of the C program (and ensures that optimization does
not remove any of the code on the grounds that it has no effect).

The following C program is an example of a program that calls atof:

char c[] = "3.1415";
double d, atof();
float f;
caller()

{
d = atof(c);
f = (float)atof(c);
}

Programming Considerations 6-13

2. Compile the program using the following compiler options:

cc -s -0 caller.c

The -8 option causes the compiler to produce the assembly-language
listing; the -0 option, though not required, reduces the amount of code
generated, making the listing easier to read.

3. After compilation, examine the file caller. s (shown here). The
comments in the listing show how the parameters are passed, the
execution of the call, and how the returned values are retrieved:

c:

.globl c

.data

.ascii "3.1415\XOO"

.comm d 8

.comm f 4

.text

.globl caller
1 char c[] = "3.1415";
2 double d, atof()i
3 float f;
4 caller()
5 {

caller:
.ent caller 2

ldgp $gp, 0($27)
Ida $sp, -16($sp)
stq $26, O($sp)
.mask Ox04000000, -16
. frame $sp, 16, $26, 0
. prologue 1

6 d atof(c);
Ida $16, c
jsr $26, atof
ldgp $gp, 0($26)
stt $fO, d

7 f (float)atof(c);
Ida $16, c
jsr $26, atof
ldgp $gp, 0($26)
cvtts $fO, $f10
sts $f10, f

8 }
ldq $26, O($sp)
Ida $sp, 16($sp)
ret $ 31 , ($ 26), 1
.end caller

6-14 Programming Considerations

6.4.2 Calling an Assembly-Language Procedure
This section shows a technique to follow in writing an assembly-language
procedure that can be called by a procedure written in a high-level language.
The technique consists of the following steps:

1. Using a high-level language, write a facsimile of the assembly-language
procedure you want to call. In the body of the procedure, write
statements that use the same arguments you intend to use in the final
assembly-language procedure. Copy the arguments to global variables
instead of local variables to make it easy for you to read the resulting
assembly -language listing.

The following C program is a facsimile of the assembly-language
program:
typedef char str[10];
typedef int boolean;

float global r;
int global i;
str global-s;
boolean global_b;

boolean callee(float *r, int i, str s)
{
global r = *r;
global-i = i;
global-s[O] = s[O];
return-i == 3;
}

2. Compile the program using the following compiler options:

cc -8 -0 callee.c

The -s option causes the compiler to produce the assembly-language
listing; the -0 option, though not required, reduces the amount of code
generated, making the listing easier to read.

3. After compilation, examine the file callee. s (shown here). The
comments in the listing shows how the parameters are passed, the
execution of the call, and how the returned values are retrieved:

.corom global r 4

.corom globa() 4

.corom global_s 10

.corom global_b 4

.text

.globl cal lee
10 {

.ent cal lee 2
callee:

ldgp $gp, 0($27)
. frame $sp, 0, $26, 0

Proarammina Considerations 6-15

. prologue 1
addl $17, 0, $17

11 global r = *r;
Ids $£10, 0($16)
sts $£10, global r

12 global i = i; -
stl $17, global i

13 global s[O] = S[O);
ldq u $1, 0($18)
extbl $1, $18, $1
.set
Ida
ldq u
insbl
mskbl
bis
stq_u
.set

no at
$28, global s
$2, 0($28) -
$1, $28, $3
$2, $28, $2
$2, $3, $2
$2, 0($28)
at

14 return i == 3;
cmpeq $17, 3, $0
ret $ 31, ($ 26), 1
.end callee

6.5 Memory Allocation
The default memory allocation scheme used by the Alpha AXP system gives
every process two storage areas that can grow without bound. A process
exceeds virtual storage only when the sum of the two areas exceeds virtual
storage space. The linker and assembler use the scheme shown in Figure 6-3.

6-16 Programming Considerations

Figure 6-3: Layout of Memory (User Program View)

Oxffff ffff ffff ffff

Oxffff fcOO 0000 0000
Oxffff fbff ffff ffff

OxOOOO 0400 0000 0000
OxOOOO 03ff ffff ffff

OxOOOO 03ff 8000 0000
OxOOOO 03ff 7fff ffff

$gp-.

OxOOOO 0001 2000 0000
OxOOOO 0001 1fff ffff

$sp-.

OxOOOO 0000 0001 0000
OxOOOO 0000 0000 ffff

OxOOOO 0000 0000 0000

Reserved for kernel

Not accessible

Reserved for shared libraries

Reserved for dynamic loader

Mappable by program

Heap
(grows up)

.bss

.sbss

. got

.sdata

.data

.rdata

.text

Stack
(grows towards zero)

Mappable by program

Not accessible
(by convention)
(64KB)

ZK-0738U-R

ill Not allocated until a user requests it, as in System V shared memory
regions.

121 The heap is reserved for sbrk and brk system calls, and it is not always
present.

l.3J All data is stored in the following sections:

• bss (block started by symbol) - Uninitialized data with a size greater
than the value specified by the -G command line option.

Programming Considerations 6-17

• sbss (small bss) - Data less than or equal to the -G command line
option. (Eight is the default value for the -G option.)

• got (global offset table) - Address constants merged from .Ii ta
sections.

• sdata (small data) - Data initialized and specified for the. sdata
section.

• data (data) - Data initialized and specified for the. data section.

• rdata (read-only data) - Data initialized and specified for the • rdata
section.

~ Used for local data in C programs.

6-18 Programming Considerations

Object Files 7

This chapter provides details on how compiler system object files are
formatted and processed.

The chapter addresses the following topics:

• The components that make up the object file and the differences between
the object-file format used by the DEC OSFIl compiler system and the
System V common object file format (COFF). (Section 7.1)

• The headers and sections of the object file. (Detailed information is
given on the logic followed by the assembler and linker in handling
relocation entries.) (Section 7.2)

• The formats of object files (OMAGIC, NMAGIC, and ZMAGIC).
(Section 7.3)

• Information used by the system loader in loading object files at run time.
(Section 7.4)

• Archive files. (Section 7.5)

• The symbols defined by the linker. (Section 7.6)

7.1 Object File Overview
The assembler and the linker generate object files that have sections ordered
as shown in Figure 7-1. Sections in an object file that do not contain data are
omitted, except for the file header, optional header, and section header, which
are always present.

The sections of the symbol table (shown in Figure 7-1) that appear in the
final object file can vary:

• The line numbers table, optimization symbols table, and auxiliary
symbols table appear only when a debugging option is in effect (when the
user specifies one of the -gl, -g2, or -g3 compilation options).

• When you specify the -x option (strip nonglobals) for the link-edit phase,
the linker updates the procedure descriptor table and strips the following
tables from the object file: Line Number, Local Symbols, Optimization
Symbols, Auxiliary Symbols, Local Strings, and Relative File Descriptor.

• The linker strips the entire symbol table from the object file when the
user specifies the - s option (strip) for the link-edit phase.

Any new assembler or linker designed to work with the compiler system
should layout the object file sections in the order shown in Figure 7-1. The
linker can process object files that are ordered differently, but performance
may be degraded.

The standard System V COFF (common object file format) differs from the
DEC OSFIl compiler system format in the following ways:

•

•

•

The file header definition is based on the System V header file
filehdr. h with the following modifications:

- The symbol table file pointer and the number of symbol table entries
now specify the file pointer and the size of the symbolic header,
respectively.

- All tables that specify symbolic information have their file pointers
and number of entries in the symbolic header. See Chapter 8 for
information about the symbolic header.

The definition of the optional header has the same format as specified in
the System V header file aou thdr . h, except the following fields have
been added: bldrev, bss start, gprmask, fprmask, and
gp _value (see Table 7-4).-

The definition of the section header has the same format as the System V
header file scnhdr. h, except the line number fields are used for global
pointers (see Table 7-6).

The definition of the section relocation information is similar to UNIX 4.3
BSD, which has local relocation types. Section 7.2.5 provides information
on differences between local and external relocation entries.

7-2 Object Files

Figure 7-1: Object File Format

File headers

Optional headers

Section headers

Section data
comments *
ucode
large bss (0 size)
small bss (0 size)
large data
small data
literal address pool

4-byte literal pool
8-byte literal pool
read-only data
termination text
initialization text
text

Section relocation information
text
initialization text
termination text
literal address pool

read-only data
large data
small data

Symbolic header

* - Created only if the debugging option
(-g compilation option) is in effect.

- Missing if stripped of nongloba/s.

Object file
selections

Symbol table
(missing if
fully stripped)

ZK-0739U-R

Object Files 7-3

7.2 Object File Sections
The following sections describe the components of an object file. Headers
are informational and provide the means for navigating the object file.
Sections contain program instructions or data (or both).

7.2.1 File Header
The format of the file header is shown in Table 7-1. The file header and all
of the fields described in this section are defined in f ilehdr • h.

Table 7-1: File Header Format

Declaration Type Field Description

unsigned short f_rnagic Target-machine magic number (see Table 7-2)
unsigned short f nscns Number of sections
int f-tirndat Time and date stamp
long f syrnptr File pointer to symbolic header (see Chapter - 8 for a description of the symbolic header)
int f_nsyrns Size of symbolic header
unsigned short f_opthdr Size of optional header
unsigned short f flags Flags (see Table 7-3) -

The magic number in the f magic field in the file header specifies the
target machine on which an-object file can execute. Table 7-2 shows the
octal values and mnemonics for the magic numbers.

Table 7-2: File Header Magic Numbers

Symbol

ALPHAMAGIC

ALPHAUMAGIC

Value

0603

0617

Descri ption

Machine-code object file

U code object file

The f flags field in the file header describes the object file characteristics.
Table 7-3 lists the flags and gives their hexadecimal values and their
meanings. The table notes those flags that do not apply to compiler system
object files.

7-4 Object Files

Table 7-3: File Header Flags

Symbol Value Description

F RELFLG OxOOOI Relocation information stripped from file.
F EXEC OxOOO2 File is executable (that is, no unresolved

external references).
F LNNO OxOOO4 Line numbers stripped from file.
F LSYMS OxOOO8 Local symbols stripped from file.
F-MINMALa OxOOIO Minimal object file (. rn file) output of

fextract.
F UPDATEa OxOO20 Fully bound update file, output of ogen.
F-SWABDa OxOO4O File whose bytes were swabbed (in names).
F-AR16WRa OxOO80 File has the byte ordering of an AR 16WR

machine (for example, PDP-tInO).
F AR32WRa OxOlOO File has the byte ordering of an AR32WR

machine (for example, V AX).
F AR32Wa Ox0200 File has the byte ordering of an AR32W

machine (for example, 3b, maxi, MC68000).
F PATCHa Ox04OO File contains "patch" list in optional header.
F-NODFa Ox04OO (Minimal file only.) No decision functions

for replaced functions.
F MIPS NO SHARED OxlOOO Cannot be dynamically shared.
F MIPS SHARABLE Ox2000 A dynamically shared object.
F MIPS CALL SHARED Ox3000 Dynamic executable.
F MIPS NO REORG Ox4OOO Do not reorder sections.
F MIPS NO REMOVE Ox8000 Do not remove nops.

Table Note:

a. Not used by compiler system object modules.

7.2.2 Optional Header
The linker and the assembler fill in the optional header, and the system
(kernel) loader, or other program that loads the object module at run time,
uses the information it contains, as described in Section 7.4.

Table 7-4 shows the format of the optional header (defined in the header file
aouthdr • h).

Object Files 7-5

Table 7-4: Optional Header Definitions

Declaration Field Description

short magic Object-file magic numbers (See Table 7-5)
short vstamp Version stamp
short bldrev Revision of build tools
long tsize Text size in bytes, padded to 16-byte boundary
long dsize Initialized data in bytes, padded to 16-byte

boundary
long bsize Uninitialized data in bytes, padded to 16-byte

boundary
long entry Entry point
long text start Base of text used for this file
long data start Base of data used for this file
long bss start Base of bss used for this file
int gprmask General-purpose register mask
int fprmask Floating-point register mask
long gp_value The gp value used for this object

Table 7-5 shows the octal values of the magic field for the optional header;
the header file aou thdr • h contains the macro definitions.

Table 7-5: Optional Header Magic Numbers

Symbol Value Description

OMAGIC 0407 Impure Format. The text is not write-protected or
shareable; the data segment is contiguous with the text
segment.

NMAGIC 0410 Shared Text. The data segment starts at the next page
following the text segment, and the text segment is write­
protected.

ZMAGIC 0413 The object file is to be demand loaded and has a special
format; the text and data segments are separated. The
Alpha AXP system provides write-protection for the text
segment. (Other systems using COFF may not provide
write-protection.) The object can be either dynamic or
static.

See Section 7.3 for information on the format of OMAGIC, NMAGIC, and
ZMAGIC files.

7-6 Object Files

7.2.3 Section Headers
Table 7-6 shows the format of the section header (defined in the header file
scnhdr. h).

Table 7-6: Section Header Format

Declaration Field Description

char s_name[8] Section name (see Table 7-7)
long s_paddr Physical address
long s vaddr Virtual address
long s size Section size
long s_scnptr File pointer to raw data for section
long s_relptr File pointer to relocation
long s_lnnoptr For. pdata, indicates the

number of entries contained in the
section; otherwise, reserved.

unsigned short s nreloc Number of relocation entries
unsigned short s nlnno Number of global pointer tables
int s flags Flags (see Table 7-8) -

Table 7-7 shows the defined section names for the s name field of the
section header.

Table 7-7: Section Header Constants for Section Names

Declaration

TEXT
INIT
FINI
RDATA
DATA
LITA
LIT8
LIT4
SDATA
BSS
SBSS
UCODE

-GOTa
-DYNAMICa

-DYNSYMa
-REL DYNa
-DYNSTRa

Field
Contents

".text"
" .in it "
" .fini"
".rdata"
".data"
" .lita"
".lit8 "
" .lit4"
".sdata"
".bss"
".sbss"
".ucode"
".got"
".dynamic"
".dynsym"
".rel.dyn"
".dynstr"

Description

Text section
Initialization text section for shared libraries
Cleanup text section
Read only data section
Large data section
Literal address pool section
8-byte literal pool section
4-byte literal pool section
Small data section
Large bss section
Small bss section
ucode section
Global offset table
Dynamic linking information
Dynamic linking symbol table
Relocation information
Dynamic linking strings

Object Files 7-7

Table 7-7: (continued)

Declaration

HASHa

-MSYMa

-CONFLICTa

-REGINFOa

XDATA
PDATA

Table Notes:

Field
Contents

".hash"
".msym"
II .conflict"
".reginfo"
".xdata"
".pdata"

Description

Symbol hash table
Additional dynamic linking symbol table
Additional dynamic linking information
Register usage information
Exception scope table
Exception procedure table

a. These sections exist only in ZMAGIC-type files and are used during
dynamic linking.

Table 7-8 shows the defined hexadecimal values for the s flags field.
(Those flags that are not used by compiler system object files are noted in the
table.)

Table 7-8: Format of 8_flag8 Section Header Entry

Symbol

STYP_REG

STYP _DSECTa

STYP _NOLOADa

STYP _ GRoupa

STYP_PADa

STyp_COPya

STYP_TEXT
STYP_DATA
STYP_BSS
STYP_RDATA
STYP_SDATA
STYP_SBSS
STYP UCODE
STYP-GOTb
STYP =DYNAMICb

7-8 Object Files

Value

OxOO

OxOI

Ox02

Ox04

Ox08

OxlO

Ox20
Ox40
Ox80
OxlOO
Ox200
Ox400
Ox800
OxlOOO
Ox2000

Description

Regular section: allocated, relocated,
loaded
Dummy section: not allocated, relocated,
not loaded
Noload section: allocated, relocated, not
loaded
Grouped section: formed of input
sections
Padding section: not allocated, not
relocated, loaded
Copy section (for decision function used
by field update): not allocated, not
relocated, loaded; relocated, and line
number entries processed normally
Text only
Data only
bss only
Read only data only
Small data only
Contains small bss only
Section contains ucode only
Global offset table
Dynamic linking information

Table 7-8: (continued)

Symbol

STYP DYNSYMb
STYP - REL DYNb
STYP-DYNSTR b

STYP-HASHb
STYP-MSYMb
STYP - CONFLICTb
STYP=REGINFOb
STYP_FINI
STYP _COMMENT
STYP_XDATA
STYP_PDATA
STYP_LITA
STYP_LIT8
STYP_LIT4
S_NRELOC_ OVFL

Table Notes:

Value

Ox4000
Ox8000
Ox 10000
Ox20000
Ox80000
Ox 100000
Ox200000
OxO 1 000000
Ox02000000
Ox02400000
Ox02800000
Ox04000000
Ox08000000
Ox 10000000
Ox20000000

Ox80000000

Description

Dynamic linking symbol table
Dynamic relocation information
Dynamic linking symbol table
Dynamic symbol hash table
Additional dynamic linking symbol table
Additional dynamic linking information
Register usage information
.fini section text
Comment section
Exception scope table
Exception procedure table
Address literals only
8-byte literals only
4-byte literals only
s nreloc overflowed, the value is in
r - vaddr of the first entry
Section initialization text only

a. Not used by compiler system object modules.

b. These sections exist only in ZMAGIC type files and are used during
dynamic linking.

The S NRELOC OVFL flag is used when the number of relocation entries in
a sectIOn overflows the s nreloc field of the section header. In this case,
s nreloc contains the value Oxffff and the s flags field has the
S - NRELOC OVFL flag set; the value true is inthe r vaddr field of the
first relocation entry for that section. That relocation entry has a type of
R _ABS and all other fields are zero, causing it to be ignored under normal
circumstances.

Note

For performance reasons, the linker uses the s flags entry
instead of s name to determine the type of section. However,
the linker does correctly fill in the s _ name entry.

Object Files 7-9

7.2.4 Section Data
Object files contain instructions and data. The instructions and data are
segregated into sections according to their use. Figure 7-2 shows the layout
of section data in object files.

Figure 7-2: Organization of Section Data

exists only
in ZMAGIC
files

-<

.dynamic

.Iiblist

.rel.dyn

.conflict

.msym

.dynstr

.dynsym

.hash

.rdata

.text

.init

.fini

.data

.litS

.lit4

.sdata

.got

.sbss

.bss

>- text segment

>- data segment

bss segment

ZK-0740U-R

The .dynamic, .liblist, .rel.dyn, .conflict, .msym,
• dynstr, • dynsym, and. hash, sections exist only in ZMAGIC files and
are used during dynamic linking. These sections are described in more detail
in Chapter 9. The following table describes the uses of the other sections:

Section Name Use

• ucode Intermediate code
• bs s Block started by symbol
• sbs s Small block started by symbol
· sdata Small data

7-10 Object Files

Section Name

.lit4

.1itS

.data

.fini

.init

.text

.rdata

Use

4-byte literal pool
8-byte literal pool
Data
Process termination text
Initialization text
Machine instructions to be executed
Read-only data

The • text section contains the machine instructions that are to be executed;
the • rdata, • data, • Ii t8, .li t4, and • sdata contain initialized data;
and the • sbs sand • bs s sections reserve space for uninitialized data that is
created by the kernel loader for the program before execution and filled with
zeros.

As indicated in Figure 7-2, the sections are grouped into segments:

• The text segment contains the. rdata, • text, • ini t, and. fini
sections in all files except ZMAGIC files, which contain additional
sections. (The rdata section can go in either the text or data segment,
depending on the object file type.)

• The data segment contains the. rdata, • data, .li t8, .li t4,
• sdata, and. got sections. (The. got section appears as a .li ta
section in static objects.)

• The bss segment contains the • sbs sand • bs s sections.

A section is described by and referenced through the section header (see
Section 7.2.3); the optional header (see Section 7.2.2) provides the same
information for segments.

The linker references the data shown in Figure 7-2 as both sections and
segments, through the section header and optional header, respectively.
However, the system (kernel) loader, when loading the object file at run time,
references the same data only by segment, through the optional header.

7.2.5 Section Relocation Information
Program instructions and data may contain addresses that must be adjusted
when the object file is linked. Relocations locate the addresses within the
section and indicate how they are to be adjusted.

Object Files 7-11

7.2.5.1 Relocation Table Entry

Table 7-9 shows the format of an entry in the relocation table (defined in the
header file reloc . h).

Table 7-9: Format of a Relocation Table Entry

Declaration

long
unsigned

unsigned
unsigned

unsigned

unsigned
unsigned

Field

r vaddr
r_symndx

r_type:8
r extern:1

r offset:6

r reserved:11
r-size:6

Description

Address (virtual) of an item to be relocated.
For an external relocation entry,
r symndx is an index into external
symbols. For a local relocation entry,
r symndx is the number of the section
containing the symbol.
Relocation type (see Table 7-11).
Set to 1 for an external relocation entry.
Set to 0 for a local relocation entry.
For R OP STORE, r offset is the bit
offsetof afield within-a quadword.
Must be zero.
For R OP STORE, r size is the bit size
of a fIeld. - -

The setting of r extern and the contents of r symndx vary for external
and local relocation entries: -

• For external relocation entries, r extern is set to 1 and r symndx is
the index into external symbols. In this case, the value of the symbol is
used as the value for relocation (see Figure 7-3).

• For local relocation entries, r extern is set to 0, and r symndx
contains a constant that refersto a section (see Figure 7-4). In this case,
the starting address of the section to which the constant refers is used as
the value for relocation.

Table 7-10 gives the section numbers for r symndx; the reloc. h file
contains the macro definitions. -

Table 7-10: Section Numbers for Local Relocation Entries

Symbol Value

R SN TEXT 1
R SN RDATA 2
R SN DATA 3

7-12 Object Files

Description

· text section
· rdata section
· data section

Table 7-10: (continued)

Symbol Value Descri ption

R SN SDATA 4 • sdata section
R SN SBSS 5 · sbss section
R SN BSS 6 • bss section
R SN INIT 7 · ini t section
R SN LIT8 8 .li t8 section
R SN LIT4 9 • Ii t4 section
R SN XDATA 10 • xdata section
R SN PDATA 11 • pdata section
R SN FINI 12 · f ini section
R SN LITA 13 .lita section
R SN ABS 14 for R OP xxxx constants

Table 7-11 shows valid symbolic entries for the r type field (defined in the
header file reloc • h). -

Table 7-11: Relocation Types

Symbol Value Description

R ABS OxO Relocation already performed.
R REFLONG Ox1 32-bit reference to the symbol's virtual address.
R_REFQUAD Ox2 64-bit reference to the symbol's virtual address.
R GPREL32 Ox3 32-bit displacement from the global pointer to the

symbol's virtual address.
R LITERAL Ox4 Reference to a literal in the literal address pool as an

offset from the global pointer.
R LITUSE Ox5 Identifies usage of a literal address previously loaded

into a register. The r _ symndx field identifies the
specific usage of the register. Table 7-12 lists the
valid usage types.

R GPDISP Ox6 Identifies an ldal ldah instruction pair that is used
to initialize a procedure's global-pointer register.
The r vaddr field identifies one instruction of the
pair. The r symndx contains a byte offset, which
when addedto the r vaddr field, results in the
address of the other instruction of the pair.

R BRAD DR Ox7 21-bit branch reference to the symbol's virtual
address.

R HINT Ox8 14-bit jsr hint reference to the symbol's virtual
address.

R SREL16 Ox9 16-bit self-relative reference to the symbol's virtual
address.

Object Files 7-13

Table 7-11: (continued)

Symbol Value Description

R SREL32 Oxa 32-bit self-relative reference to the symbol's virtual
address.

R SREL64 Oxb 64-bit self-relative reference to the symbol's virtual
address.

R OP PUSH Oxc Push symbol's virtual address on relocation
expression stack.

R OP STORE Oxd Pop value from the relocation expression stack and
store at the symbol's virtual address. The r size
field determines the number of bits stored. The
r offset field designates the bit offset from the
symbol to the target.

R OP PSUB Oxe Pop value from the relocation expression stack and
substract the symbol's virtual address. The result is
pushed on the relocation expression stack.

R OP PRSHIFT Oxf Pop value from the relocation expression stack and
shift right by the symbol's value. The result is
pushed on the relocation expression stack.

R GPVALUE OX 1 0 Specifies a new gp value is to be used starting with
the address specified by the r vaddr field. The
gp value is the sum of the optional header's
gp value field and the r symndx field. The
r extern field must be zero.

Table 7-12 shows valid symbolic entries for the symbol index (r symndx)
field for the relocation type R _ LITUSE. -

Table 7-12: Literal Usage Types

Symbol Description

R LU BASE A literal address is contained in the base register of a
memory format instruction (except ldah).

R LU BYTOFF A literal address is contained in the byte offset register (Rb)
of a byte-manipulation instruction.

R LU JSR A literal address is contained in the target register of a j sr
instruction.

7-14 Object Files

7.2.5.2 Assembler and Linker Processing of Relocation Entries

Compiler system executable object modules with all external references
defined have the same format as relocatable modules and are executable
without relinking.

Local relocation entries must be used for symbols that are defined, and
external relocation entries are used only for undefined symbols. Figure 7-3
gives an overview of the relocation table entry for an undefined external
symbol.

Figure 7-3: Relocation Table Entry for Undefined External
Symbols

Relocation table entry External symbols

r- r_vaddr 000

r_symndx o 0 0

I --.. value=O 000 ..
o 0 0

000

r_extern=1 o 0 0

Section data

000

o 0 0

.. constant ___ Sign-extende .. d to 64 bits

000

o 0 0

ZK-0741U-R

The assembler creates this entry as follows:

1. Sets r _ vaddr to point to the item to be relocated.

2. Places a constant to be added to the value for relocation at the address for
the item to be relocated (r_vaddr).

3. Sets r symndx to the index of the external symbols entry that contains
the symbol value (which is used as the value for relocation).

4. Sets r type to the constant for the type of relocation types. Table 7-11
shows the valid constants for the relocation type.

5. Sets r extern to 1.

Object Files 7-15

Note

The assembler always sets the value of the undefined entry in
External Symbols to O. It may assign a constant value to be
added to the relocated value at the address where the location is
to be done. For relocation types other than R HINT, the linker
flags this as an error if the width of the constant is less than a
full quadword and an overflow occurs after relocation.

When the linker determines that an external symbol is defined, it changes the
relocation table entry for the symbol to a local relocation entry. Figure 7-4
gives an overview of the new entry.

Figure 7-4: Relocation Table Entry for a Local Relocation Entry

Relocation table entry Section n header

r_vaddr

I

r

r---- · ..
csymndx ...

... s_vaddr ~'--

r_type · ..
cextern=O ...

Section data Section n data
...
:"'"" ... · ..

.. . · ..
'r

4 constant sign-extended symbol location
to 64 bits

:'-... . ..
..

ZK-0742U-R

To change this entry from an external relocation entry to a local relocation
entry, the linker performs the following steps:

1. Picks up the constant from the address to be relocated (r _ v addr).

2. If the width of the constant is less than 64 bits, sign-extends the constant
to 64 bits.

7-16 Object Files

3. Adds the value for relocation (the value of the symbol) to the constant
and places it back in the address to be relocated.

4. Sets r _symndx to the section number that contains the external symbol.

5. Sets r extern to O.

The following list presents examples that show the use of external relocation
entries:

• Example 1: 64-Bit Reference - R_REFQUAD

This example shows assembly statements that set the value at location b
to the global data value y .

. globl y

.data
b: .quad y # R_REFQUAD relocation type at address b for

symbol y

In processing this statement, the assembler generates a relocation entry of
type R REFQUAD for the address b and the symbol y. After determining
the address for the symbol y, the loader adds the 64-bit address of y to
the 64-bit value at location b and places the sum in location b.

The loader handles 32-bit addresses (R REFLONG) in the same manner,
except it checks for overflow after determining the relocation value.

• Example 2: 21-Bit Branch - R_BRADDR

This example shows assembly statements that call routine x from location
c.

. text
x: #routine x

c: bsr x # R BRAD DR relocation type at address c for symbol x

In processing these statements, the assembler generates a relocation entry
of type R BRADDR for the address and the symbol x. After determining
the address for the routine, the loader subtracts the address c+4 to form
the displacement to the routine. Then, the loader adds this result to the
21 low-order bits (sign-extended and multiplied by 4) of the instruction at
address c, and after checking for overflow, places the result (divided by
4) back into the 21 low-order bits at address c.

R BRADDR relocation entries are produced for the assembler's br
(branch) and bsr (branch subroutine) instructions.

If the entry is a local relocation type, the target of the branch instruction
is assembled in the instruction at the address to be relocated. Otherwise,
the instruction's displacement field contains a signed offset from the

Object Files 7-17

external symbol.

• Example 3: 32-bit GP-Relative Reference - R_GPREL32

This example shows assembly language statements that set the value at
location a to the offset from the global pointer to the global data value z .

• globl z
.data

a: .gprel32 z # R GPREL32 relocation type at address a for
symbol z

In processing this statement, the assembler generates a relocation entry of
type R GPREL32 for the address a and the symbol z. After determining
the address for the symbol z, the loader adds the 64-bit displacement of z
from the the global pointer to the signed 32-bit value at location a, and
places the sum in location a. The loader checks for overflow when
performing the above operation.

• Example 4: Literal Address Reference - R_LITERAL

This example shows an assembly language statement that loads the
address of the symbol y into register 22.

Ida $22, y

In processing this statement, the assembler generates the following code:

.lita
x: .quad y # R REFQUAD relocation type at address x for

symbol y

.text
h: ldq $22, n($gp) # R LITERAL relocation type at address h

for symbol x

The assembler uses the difference between the address for the symbol x
and the value of the global pointer as the value of the displacement (n)
for the instruction. The linker gets the value of the global pointer used by
the assembler from gp _value in the optional header (see Table 7-4).

• Example 5: Literal Usage Reference - R_LITUSE

This example shows an assembly language statement that loads the 32-bit
value stored at address y into register 22.

ldl $22, y

7-18 Object Files

In processing this statement, the assembler generates the following code:

.lita
x: .quad y # R REFQUAD relocation type at address x for

symbol y

.text
h: ldq $at, n($gp) # R LITERAL relocation type at address h

for symbol x
i: ldl $22, O($at) # R_LITUSE relocation type at address i;

r_symndx == R_LU_BASE

The assembler uses the difference between the address for the symbol x
and the value of the global pointer as the value of the displacement (n)
for the ldq instruction. The linker gets the value of the global pointer
used by the assembler from gp value in the optional header (see Table
7-4). -

• Example 6: GP Displacement Reference - R_GPDISP

This example shows an assembly language statement that reloads the
value of the global pointer after a call to procedure x.

call to procedure x returns here with return address in ra
ldgp $gp, O(ra)

In processing this statement, the assembler generates the following code:
j: Ida $at, <gp_disp>[O:15](ra) # R GPDISP relocation type

at address j;
r symndx contains byte offset
from address j to address k

k: ldah $gp, <gp_disp>[16:31]($at)

The assembler determines the 32-bit displacement from the address of the
ldgp instruction to the global pointer and stores it into the offset fields
of the lda and ldah instructions. The linker gets the value of the global
pointer used by the assembler from gp value in the optional header
(see Table 7-4). -

• Example 7: JSR Hint - R_HINT

This example shows an assembly language statement that makes an
indirect jump through register 24 and specifies to the branch-prediction
logic that the target of the j sr is the address of the symbol x.

get address of procedure to call into register 24
m: jsr ra, ($24), x # R HINT relocation type at address m

for symbol x

In processing this statement, the assembler generates a relocation entry of
type R _ HINT for the address In and the symbol x.

Object Files 7-19

7.3 Object-File Formats (OMAGIC, NMAGIC, ZMAGIC)
This section describes the object-file formats created by the linker: Impure
(OMAGIC), Shared Text (NMAGIC), and Demand Paged (ZMAGIC)
formats. To understand this section, you should be familiar with the format
and contents of the text, data, and bss segments as described in Section 7.2.4.

The following constraints are imposed on the address at which an object can
be loaded and the boundaries of its segments; the operating system can
dictate additional constraints.

• Segments must not overlap.

• Space should be reserved for the stack, which starts just below the base
of the text segment and grows through lower addresses; that is, the value
of each subsequent address is less than that of the previous address.

• For ZMAGIC and NMAGIC files, the default text segment address is
Ox120000000, with the data segment starting at Ox140000000.

• For OMAGIC files, the default text segment address is OxlOOOOOOO, with
the data segment following the text segment.

• For OMAGIC files, the -B num option (specifying a bss segment origin)
cannot be specified; the default, which specifies that the bss segment is to
follow the data segment, must be used.

• Segments must be aligned on 8-megabyte boundaries.

7.3.1 Impure Format (OMAGIC) Files
An OMAGIC file has the format shown in Figure 7-5.

7-20 Object Files

Figure 7-5: Layout of OMAGIC Files in Virtual Memory

.bss
.. >- bss segment

.sbss
..

.sdata
..

.lit4
..

.litB
.. >- data segment

.Iita
..

.data
...

.rdata ..
.init

..
.fini >- text segment ..
.text ..

r

aligned on a 16-byte boundary
ZK-0743U-R

The OMAGIC format has the following characteristics:

• Each section follows the other in virtual address space aligned on a 16-
byte boundary.

• The sections are not blocked.

• Text, data and bss segments can be placed anywhere in the virtual address
space using the linker's -T, -D and -B options.

• The addresses specified for the segments must be rounded to 16-byte
boundaries.

7.3.2 Shared Text (NMAGIC) Files
An NMAGIC file has the format shown in Figure 7-6.

Object Files 7-21

Figure 7-6: Layout of NMAGIC Files in Virtual Memory

.bss
} bss segment ..

.sbss
..

.sdata
--"0.

.lit4
... ..

.lit8
... >- data segment ..

.Iita
... ..

.data

.rdata
--"0.

.init
...

.fini >- text segment

.text
-"'"

a ligned on a 16-byte boundary

ali ned on a g a e-size boundar p g y

ZK-0744U-R

An NMAGIC file has the following characteristics:

• The virtual address of the. data section is on a pagesize boundary.

• The sections are not blocked.

• Each section follows the other in virtual address space aligned on a 16-
byte boundary.

• Only the start of the text and data segments, using the linker's -T and -D
options, can be specified for a shared text format file; the start of the text
and data segments must be a multiple of the pagesize.

7.3.3 Demand Paged (ZMAGIC) Files
A ZMAGIC file is a demand paged file. Figure 7-7 shows the format of a
ZMAGIC file as it appears in virtual memory and on disk.

7-22 Object Files

Figure 7-7: Layout of ZMAGIC Files

Oxffff ffff ffff ffff

Oxoooo 03ff 0000 0000

OxOOOO 0001 4000 0000

OxOOOO 0001 2000 0000

Virtual Memory

reserved
I

empty I
I
I

sbrk area
.bss
.sbss

o fill area
.got

.sdata

.lit4

.litS

.data
I

empty I
I

Fill area
.fini

.init
.text

.rdata

.hash
.dynsym
.dynstr
.msym
.conflict
.rel.dyn

.liblist

.dynamic

Headers

I
I Stack Area I
I
I

empty

~ bss segment

data segment
blocked by page size >-(-<

)

>- -< text segment
blocked by page size) (

"-

bottom of stack increases
automatically as required

A ZMAGIC file has the following characteristics:

On Disk

Symbol table

o fill area
.got

.sdata
.lit4

.litS

.data

Fill area
.fini

.init

.text

.fini

.init
.text

.rdata

.hash

.dynsym

.dynstr

.msym

.conflict

.rel.dyn

.Iiblist

.dynamic

Headers

ZK-0745U-R

• The text segment and the data segment are blocked, with pagesize as
the blocking factor. Blocking reduces the complexity of paging in the
files.

Object Files 7-23

• The size of the sum of the file, optional, and sections headers (Table 7-1,
Table 7-4, and Table 7-6, respectively) rounded to 16 bytes is included in
blocking of the text segment.

• The text segment starts by default at Ox120000000.

• Only the start of the text and data segments, using the linker's -T and -D
options can be specified for a demand paged format file and must be a
multiple of the pagesize.

7.3.4 Ucode Objects
Ucode objects contain only a file header, the ucode section header, the ucode
section, and all of the symbolic information. A ucode section never appears
in a machine-code object file.

7.4 Loading Object Files
The linker produces object files with their sections in a fixed order similar to
the order that was used in UNIX system object files that existed before
COFF. Figure 7-1 shows the ordering of the sections and Section 7.2
contains information on how the sections are formatted.

The sections are grouped into segments, which are described in the optional
header. To load an object file for execution, the kernel loader needs only the
magic number in the file header and the optional header to load an object file
for execution.

The starting addresses and sizes of the segments for all types of object files
are specified similarly, and the segments are loaded in the same manner.

After reading in the file header and the optional header, the system (kernel)
loader must examine the file magic number to determine if the program can
be loaded. Then, the system (kernel) loader loads the text and data segments.

The starting offset in the file for the text segment is given by the following
macro in the header file a. out. h:

N_TXTOFF(f,a)

where f is the file header structure and a is the option header structure for
the object file to be loaded.

The t s i z e field in the optional header (Table 7-4) contains the size of the
text segment and text start contains the address at which it is to be
loaded. The starting offset of the data segment follows the text segment.
The dsize field in the section header (Table 7-6) contains the size of the
data segment; data _start contains the address at which it is to be loaded.

The system (kernel) loader must fill the. bss segment with zeros. The
bss _ start field in the optional header specifies the starting address;

7-24 Object Files

bsize specifies the number of bytes to be filled with zeros. In ZMAGIC
files, the linker adjusts bsize to account for the zero filled area it created in
the data segment that is part of of the • sbs s or • bs s sections.

If the object file itself does not load the global pointer register, it must be set
to the gp _value field in the optional header (Table 7-4).

The other fields in the optional header are gprmask and fprmask, whose
bits show the registers used in the. text, • ini t, and. fini sections.
They can be used by the operating system, if desired, to avoid save register
relocations when a context-switch operation occurs.

7.5 Arch ive Fi les

The linker can link object files in archives created by the archiver. The
archiver and the format of the archives are based on the System V portable
archive format. To improve performance, the format of the archives symbol
table was changed to a hash table, not a linear list.

The archive hash table is accessed through the ranhashini t () and
ranlookup () library routines in libmld. a, which are documented in
ranhash(3x). The archive format definition is in the header file ar. h.

7.6 Linker Defined Symbols
Certain symbols are reserved and their values are defined by the linker. A
user program can reference these symbols, but cannot define them; an error is
generated if a user program attempts to define one of these symbols. Table
7 -13 lists the names and values of these symbols; the header file s ym. h
contains their preprocessor macro definitions.

Table 7-13: Linker Defined Symbols

Symbol Value

ETEXT "_etext"

EDATA "_edata"

END "_end II

FTEXTa "_ftext"

FDATAa "_fdata"

Description

First location after text
segment.
First location after data
segment.
First location after bss
segment.
First location of text
segment.
First location of data
segment.

Object Files 7-25

Table 7-13: (continued)

Symbol Value Description

FBSSa "_fuss" First location of the bss
segment.

GP "-gp" gp value stored in optional
header.

PROCEDURE
TABLE "_procedure_table" Run-time procedure table.

PROCEDURE
TABLE SIZE "_procedure_table_size" Run-time procedure table

size.
PROCEDURE

STRING TABLE "_procedure_string_table" String table for run-time
procedure.

COBOL MAIN "_coboCmain" First COBOL main symbol.
-WEAK ETEXTb "etext" Weak symbol for first

WEAK EDATAb "edata"
location after text segment.
Weak symbol for first
location after data segment.

WEAK ENDb "end" Weak symbol for first
location after bss segment.

"_BASE_ADDRESS "C Base address of file.
"_DYNAMIC_LINK"c 1 if creating a dynamic

executable, 0 otherwise.
"_DYNAMIC"c Address of .dynamic section.
"_GOT_OFFSET"c Address of .got section for

dynamic executable.

Table Notes:

a. Compiler system only.

b. Not defined with -std.

c. No symbol entry. Not defined in sym. h.

The dynamic linker also reserves and defines certain symbols; see Chapter 9
for more information.

The first three symbols in Table 7-13 (ETEXT, EDATA, and END) come
from the standard UNIX system linker -: The remruning symbols are
compiler-system specific.

The linker symbol _COBOL_MAIN is set to the symbol value of the first
external symbol with the cobol main bit set. COBOL objects uses this
symbol to determine the main roUtine.

7-26 Object Files

The following symbols relate to the run-time procedure table:

• PROCEDURE TABLE

• PROCEDURE TABLE SIZE

• PROCEDURE STRING TABLE

The run-time procedure table is used by the exception systems in languages
that have exception-handling capabilities built into them. Its description is
found in the header file sym. h. The table is a subset of the procedure
descriptor table portion of the symbol table with one additional field,
exception_info.

When the procedure table entry is for an external procedure and an external
symbol table exists, the linker fills in exception info with the address
of the external table. Otherwise, it fills in exception_info with zeros.

The name of the external symbol table is the procedure name concatenated
with the string exception info (actually, the preprocessor macro
EXCEPTION_SUFFIX, as defined in the header file exception. h).

The run-time procedure table provides enough information to allow a
program to unwind its stack. It is typically used by the routines in
libexc. a. The comments in the header file exception. h describe the
routines in that library.

Object Files 7-27

Symbol Table 8

This chapter describes the symbol table and the routines used to create and
make entries in the table. The chapter addresses the following major topics:

• The purpose of the symbol table, a summary of its components, and their
relationship to each other. (Section 8.1)

• The structures of symbol table entries 1 and the values you assign them
through the symbol table routines. (Section 8.2)

8.1 Symbol Table Overview
The symbol table is created by the compiler front-end as a stand-alone file.
The purpose of the table is to provide information needed by the linker and
the debugger to perform their respective functions. At the option of the user,
the linker includes information from the symbol table in the final object file
for use by the debugger. (See Figure 7-1 for details about object file format.)

1 Third Eye Software, Inc. owns the copyright (dated 1984) to the format and nomenclature of the
symbol table used by the compiler system as documented in this chapter. Third Eye Software, Inc. grants
reproduction and use rights to all parties, PROVIDED that this comment is maintained in the copy. Third
Eye makes no claims about the applicability of this symbol table to a particular use.

Figure 8-1: The Symbol Table Overview

Procedure descriptor table

Local symbols

Optimization symbols *

Auxiliary symbols *

Local strings

* = Created only if the debugging option
(-g compilation option) is in effect

= 1 table per compilation.

D = 1 table per source and include file.

ZK-0746U-R

The elements that make up the symbol table are shown in Figure 8-1. The
compiler front-end creates one group of tables (the shaded areas in Figure 8-
1) that contain global information relative to the entire compilation. It also
creates a unique group of tables (the unshaded areas in the figure) for the
source file and each of its include files.

Compiler front-ends, the assembler, and the linker interact with the symbol
table as summarized in the following list:

• The front-end, using calls to routines supplied with the compiler system, • enters symbols and their descriptions in the table.

• The assembler fills in li~e numbers and optimization symbols, and
updates the local symbol table, external symbol table, and procedure
descriptor table.

8-2 Symbol Table

• The linker eliminates duplicate information in the external symbol table
and the external string table, removes tables with duplicate information,
updates the local symbol table with relocation information, and creates
the relative file descriptor table.

The major elements of the symbol table are summarized in the paragraphs
that follow. Some of these elements are described in more detail later in the
chapter.

Symbolic Header
The symbolic header (HDRR) contains the sizes and locations (as an
offset from the beginning of the file) of the subtables that make up the
symbol table. Figure 8-2 shows the relationship of the header to the
other tables. (See Section 8.2.1 for additional information on the
symbolic header.)

Figure 8-2: Functional Overview of the Symbolic Header

I Symbolic header I-
r------. Line numbers

--+ Dense numbers

--+ Procedure
descriptor table

--+ Local symbols

--+ Optimization symbols

--+ Auxiliary symbols

--+ Local strings

--+ External strings

--+ File descriptor table

ZK-0747U-R

Line Number Table
The assembler creates the line number table. It creates an entry for
every instruction. Internally, the information is stored in an encoded
form. The debugger uses the entries to map instructions to the source
lines and vice versa. (See Section 8.2.2 for additional information on
the line number table.)

Symbol Table 8-3

Dense Number Table
The dense number table is an array of pairs. An index into this table is
called a dense number. Each pair consists of a file table index (ifd)
and an index (isym) into the local symbol table. The table facilitates
symbol look-up for the assembler, optimizer, and code generator by
allowing direct table access to be used instead of hashing.

Procedure Descriptor Table
The procedure descriptor table contains register and frame information,
and offsets into other tables that provide detailed information on the
procedure. The compiler front-end creates the table and links it to the
local symbol table. The assembler enters information on registers and
frames. The debugger uses the entries in determining the line numbers
for procedures and the frame information for stack traces. (See Section
8.2.3 for additional information on the procedure discriptor table.)

Local Symbol Table
The local symbol table contains descriptions of program variables, types,
and structures, which the debugger uses to locate and interpret run-time
values. The table gives the symbol type, storage class, and offsets into
other tables that further define the symbol.

A unique local symbol table exists for every source and include file; the
compiler locates the table through an offset from the file descriptor entry
that exists for every file. The entries in the local symbol table can
reference related information in the local string table and auxiliary
symbol table. This relationship is shown in Figure 8-3. (See Section
8.2.4 for additional information on the local symbol table.)

8-4 Symbol Table

Figure 8-3: Logical Relationship Between the File Descriptor
Table and Local Symbols

File descriptor table

Entry for File 0

Entry for File 1

Entry for File n

Optimization Symbol Table
To be defined at a future date.

Auxiliary Symbol Table

Local symbols

Local strings

Local strings

Local strings

ZK-0748U-R

The auxiliary symbol tables contain data type information specific to
one language. Each entry is linked to an entry in the Local Symbol
Table. The entry in the local symbol table can have multiple,
contiguous entries. The format of an auxiliary entry depends on the
symbol type and storage class. Table entries are required only when one
of the debugging options (-g compilation options) is in effect. (See
Section 8.2.5 for additional information on the auxiliary symbol table.)

Symbol Table 8-5

Local String Table
The local string tables contain the names of local symbols.

External String Table
The external string table contains the names of external symbols.

File Descriptor Table
The file descriptor table contains one entry each for each source file and
each of its include files. The entry is composed of pointers to a group
of subtables related to the file. The structure of an entry is shown in
Table 8-12, and the physical layout of the subtables is shown in Figure
8-4. (See Section 8.2.6 for additional information on the file descriptor
table.)

Figure 8-4: Physical Relationship of a File Descriptor Entry
to Other Tables

File descriptor table

File descriptor entry

Line numbers

Procedure
descriptor table

Local symbols

Optimization symbols

Auxiliary symbols

Local strings

Relative file descriptor

ZK-0749U-R

The file descriptor entry allows the compiler to access a group of
subtables unique to one file. The logical relationship between entries in
the file descriptor table and its subtables is shown in Figure 8-5.

8-6 Symbol Table

Figure 8-5: Logical Relationship Between the File Descriptor
Table and Other Tables

I File descriptor table I
Entry for File 0 -----. Line numbers

-----. Procedure
descriptor table

Entry for File n

-----. Local symbols

-----. Optimization symbols

-----. Auxiliary symbols

-----. Local strings

-----. Relative file descriptor

~ Line numbers

~
Procedure

descriptor table

~ Local symbols

~ Optimization symbols

~ Auxiliary symbols

~ Local strings

~ Relative file descriptor

ZK-0750U-R

Relative File Descriptor Table
Each file in the symbol table contains a relative file descriptor for each
file it was compiled with (including itself and include files). The
relative file descriptor maps the index of each file at compile time to its
index after linking. All file indices inside the local symbols and
auxiliary table must be mapped through the relative file descriptor table
for the file they occur in. A missing file descriptor table implies the
identity function.

Symbol Table 8-7

External Symbol Table
The external symbol table contains global symbols entered by the
compiler front-end. The symbols are defined in one module and
referenced in one or more other modules. The assembler updates the
entries, and the linker merges the symbols and resolves their addresses.
(See Section 8.2.7 for additional information on the external symbol
table.)

8.2 Format of Symbol Table Entries
The symbol table is comprised of several subtables. The symbolic header is
the "directory" for the subtables; it locates the subtables and gives their sizes.

The following sections describe the symbolic header and the subtables.

8.2.1 Symbolic Header
The structure of the symbolic header is shown below in Table 8-1; the
s ym. h header file contains the header declaration.

Table 8-1: Format of the Symbolic Header

Declaration Name

short magic
short vstamp
int ilineMax
int idnMax
int ipdMax
int isyrnMax
int ioptMax
int iauxMax
int issMax
int issExtMax
int ifdMax
int crfd
int iextMax
long cbLine
long cbLineOffset
long cbDnOffset
long cbPdOffset
long cbSymOffset
long cbOptOffset
long cbAuxOffset
long cbSsOffset
long cbSsExtOffset
long cbFdOffset

8-8 Symbol Table

Description

To verify validity of the table
Version stamp
Number of line number entries
Maximum index into dense numbers
Number of procedures
Number of local symbols
Maximum index into optimization entries
Number of auxiliary symbols
Maximum index into local strings
Maximum index into external strings
Number of file descriptors
Number of relative file descriptors
Maximum index into external symbols
Number of bytes for line number entries
Index to start of line numbers
Index to start dense numbers
Index to procedure descriptors
Index to start of local symbols
Index to start of optimization entries
Index to the start of auxiliary symbols
Index to start of local strings
Index to the start of external strings
Index to file descriptor

Table 8-1: (continued)

Declaration Name

long cbRfdOffset
long cbExtOffset

Description

Index to relative file descriptors
Index to the start of external symbols

The lower byte of the vstamp field contains LS STAMP and the upper byte
contains MS STAMP (see the stamp. h header file). These values are
defined in the stamp. h file.

The iMax fields and the cbOffset fields must be set to zero if one of the
tables shown in Table 8-1 is not present.

The magic field must contain the constant magicSym, which is also
defined in symconst. h.

8.2.2 Line Number Table
Table 8-2 shows the format of an entry in the line number table; the sym. h
header file contains its declaration.

Table 8-2: Format of a Line Number Entry

Declaration Name

int LINER
int * pLINER

The line number section in the symbol table is rounded to the nearest 4-byte
boundary.

Line numbers map executable instructions to source lines; one line number is
stored for each instruction associated with a source line. Line numbers are
stored as integers in memory and in packed format on disk. The layout of a
line number entry on disk is as follows:

Symbol Table 8-9

Bit: 7 4 o
~--~--~--~--~----~--~--~--~

Delta Count

ZK-0751U-R

The compiler assigns a line number only to those lines of source code that
generate executable instructions.

The uses of the delta and count fields are as follows:

• Delta is a 4-bit field with a value in the range -7 to 7. It defines the
number of source lines between the current source line and the previous
line generating executable instructions. The delta value of the first line
number entry is the displacement from the InLow field in the procedure
descriptor table.

• Count is a 4-bit field with a value in the range 0 to 15 indicating the
number (1 - 16) of executable instructions associated with a source line.
If more than 16 instructions (15+ 1) are associated with a source line, new
line number entries are generated when the delta value is zero.

An extended format of the line number entry is used when the delta value is
outside the range -7 to 7. The layout of an extended line number entry on
disk is as follows:

8-10 Symbol Table

Bit: 7 4 0

I 0

J
0 0 r

J
I

(5t 5
Constant eight Count

Bit: 7 0

I
(! 5

I
Upper eight bits of delta

0

Lower eight bits of delta

ZK-0752U-R

Note

Between two source lines that produce executable code, the
compiler allows a maximum of 32,767 comment lines, blank
lines, continuation lines, and other lines not producing executable
instructions.

The following source listing can be used to show how the compiler assigns
line numbers:
1 #include <stdio.h>
2 main()
3 {
4 char c;
5
6 printf("this program just prints input\n");
7 for (;;) {
8 if ((c =fgetc(stdin)) 1= EOF) break;
9 j* this is a greater than 7-1ine comment
10 * 1
11 * 2
12 * 3
13 * 4
14 * 5
15 * 6
16 * 7
17 * j
18 printf("%c", c);
19 } j* end for *j

Symbol Table 8-11

20 } /* end main */

The compiler generates line numbers only for the lines 3, 6, 8, 18, and 20;
the other lines are either blank or contain comments.

The following table shows the LINER entries for each source line:

Source LINER
Line Contents Meaning

3 03 Delta 0, count 3
6 35 Delta 3, count 5
8 2a Delta 2, count 1O
18a 89 00 Oa Delta 10, count 9
20 23 Delta 2, count 3

Table Note:

a. Extended format (delta is greater than 7 lines).

The compiler· generates the following instructions for the example program:

[main.e: 3] OxO: 27bbOO01 ldah gp, 1 (t12)
[main.e: 3] Ox4: 23bd80dO lda gp, -32560(gp)
[main.e: 3] Ox8: 23deffeO lda sp, -32(sp)
[main.e: 3] Oxe: b75eOO08 stq ra, 8(sp)
[main.e: 6] Ox10: a61d8010 ldq aO, -32752(gp)
[main.e: 6] Ox14: 22108000 lda aO, -32768(aO)
[main.e: 6] Ox18: a77d8018 ldq t12, -32744(gp)
[main.e: 6] Ox1e: 6b5b4000 jsr ra, (t12) , printf
[main.e: 6] Ox20: 27baOO01 ldah gp, l(ra)
[main.e: 6] Ox24: 23bd80bO lda gp, -32592(gp)
[main.e: 8] Ox28: a61d8020 ldq aO, -32736(gp)
[main.e: 8] Ox2e: a77d8028 ldq t12, -32728(gp)
[main.e: 8] Ox30: 6b5b4000 jsr ra, (t12) , fgete
[main.e: 8] Ox34: 27baOO01 ldah gp, l(ra)
[main.e: 8] Ox38: 23bd80ge lda gp, -32612(gp)
[main.e: 8] Ox3e: b41eOO18 stq vO, 24(sp)
[main.e: 8] Ox40: 44000401 bis vO, vO, to
[main.e: 8] Ox44: 48203f41 extqh to, Ox1, to
[main.e: 8] Ox48: 48271781 sra to, Ox38, to
[main.e: 8] Ox4e: 40203402 addq to, Ox1, t1
[main.e: 8] Ox50: f440000a bne t1, Ox7e
[main.e: 18] Ox54: a61d8010 ldq aO, -32752(gp)
[main.e: 18] Ox58: 22108020 lda aO, -32736(aO)
[main.e: 18] Ox5e: 44000411 bis vO, vO, a1
[main.e: 18] Ox60: 4a203f51 extqh a1, Ox1, a1
[main.e: 18] Ox64: 4a271791 sra a1, Ox38, a1
[main.e: 18] Ox68: a77d8018 ldq t12, -32744(gp)
[main.e: 18] Ox6e: 6b5b4000 jsr ra, (t12) , printf
[main.e: 18] Ox70: 27baOO01 ldah gp, l(ra)
[main.e: 18] Ox74: 23bd8060 lda gp, -32672(gp)
[main.e: 18] Ox78: e3ffffeb br zero, Ox28

8-12 Symbol Table

8.2.3

[main.c: 20] Ox7c: 47ff0400 bis zero, zero, vO
[main.c: 20] Ox80: a75eOO08 ldq ra, 8(sp)
[main.c: 20] Ox84: 23de0020 lda sp, 32(sp)
[main.c: 20] Ox88: 6bfa8001 ret zero, (ra) , 1

Procedure Descriptor Table
Table 8-3 shows the format of an entry in the procedure descriptor table; the
sym. h header file contains its declaration.

Table 8-3: Format of a Procedure Descriptor Table Entry

Declaration Name Description

unsigned long adr Memory address of start of
procedure

long cbLineOffset Byte offset for this procedure
from the base of the file
descriptor entry

int isym Start of local symbols
int ilinea Procedure's line numbers
int regmask Saved register mask
int regoffsetb Saved register offset
int iopt Procedure's optimization symbol

entries
int fregmask Save floating-point register mask
int fregoffset Save floating-point register offset
int frameoffset Frame size
int InLow Lowest line in the procedure
int InHigh Highest line in the procedure
unsigned gp_prologue 8e Byte size of GP prologue
unsigned gp_used : 1 True if the procedures uses gp
unsigned reg_frame : 1 True if register frame procedure
unsigned reserved 14
unsigned Iocaloff : 8 Offset of local variables from vfp
short framereg Frame pointer register
short pcreg Index or reg of return program

counter

Table Notes:

a. If the value of iline is NULL and the cycm field in the file descriptor
table is zero, the iline field is indexed to the actual table.

b. If the value of reg frame is 1, the regoffset field contains the
register number of the register in which the return address is stored.

Symbol Table 8-13

c. If the value of gp prologue is zero and gp used is 1, a gp prologue
is present but has been scheduled into the procedure prologue.

8.2.4 Local Symbol Table
Table 8-4 shows the format of an entry in the local symbol table; the sym. h
header file contains its declaration.

Table 8-4: Format of a Local Symbol Table Entry

Declaration

long
int
unsigned
unsigned
unsigned
unsigned

Table Notes:

Name

valuea

issb

st : 6c

sc : Sd

reserved : 1
index : 20e

Description

Value of symbol.
Index into local strings of symbol name.
Symbol type.
Storage class.

Index into local or auxiliary symbols.

a. An integer representing an address, size, offset from a frame pointer. The
value is determined by the symbol type, as illustrated in Table 8-5.

b. The index into string space (iss) is an offset from the issBase field of
an entry in the file descriptor table to the name of the symbol.

c. The symbol type (st) defines the symbol. The valid st Constants are
given in Table 8-6. These constants are defined in symconst. h.

d. The storage class (sc), where applicable, explains how to access the
symbol type in memory. The valid sc constants are given in Table 8-7.
These constants are defined in symconst. h.

e. An offset into either the local symbol table or auxiliary symbol tables,
depending of the storage type (st) as shown in Table 8-5. The compiler
uses isymBase in the file descriptor entry as the base for an entry in the
local symbol table and iauxBase for an entry in the auxiliary symbol
table.

8-14 Symbol Table

Table 8-5: Index and Value as a Function of Symbol Type and
Storage Class

Symbol Type Storage Class Index Value

stFile scText isymMac Address
stLabel scText indexNil Address
stGlobal scD/Ba iaux Address
stStatic scD/Ba iaux Address
stParam scAbs iaux Frame offsetb

scRegister iaux Register number
scVar iaux Frame offsetb

scvarRegister iaux Register number
stLocal scAbs iaux Frame offsetb

scRegister iaux Register number
stProc scText iaux Address

scNil iaux Address
scUndefined iaux Address

stStaticProc scText iaux Address
stMember

enumeration scInfo indexNil Ordinal
structure scInfo iaux Bit offsetC

union scInfo iaux Bit offsetC

stBlock
enumeration scInfo isymMacd Max enumeration
structure scInfo isymMac Size
text block scText isymMac Relative addresse

common block sCCommon isymMac Size
variant scvariant isymMac isymTagf

variant arm scInfo isymMac iauxRangesg

union scInfo isymMac Size
stEnd

enumeration scInfo isymStarth 0
file scText isymStart Relative addresse

procedure scText isymStart Relative addresse

structure scInfo isymStart 0
text block scText isymStart Relative addresse

union scInfo isymStart 0
common block scCommon isymStart 0
variant scVariant isymStart 0
variant arm scInfo isymStart 0

stTypedef scInfo iaux 0

Symbol Table 8-15

Table Notes:

a. scD/B is the storage class determined by the assembler, either data,
sdata, bss, or sbss.

b. frame offset is the offset from the virtual frame pointer.

c. bit offset is computed from the beginning of the procedure.

d. isymMac is the isym of the corresponding stEnd symbol plus 1.

e. relative address is the relative displacement from the beginning of the
procedure.

f. isymTag is the isym to the symbol that is the tag for the variant.

g. iauxRanges is the iaux to the ranges for the variant arm.

h. isymStart is the isym of the corresponding begin block (for example,
stBlock, stFile, or stProc).

The linker ignores all symbols except the types that it will relocate:
stLabel, stStatic, stProc, and stStaticProc. Other symbols are
used only by the debugger and need to be entered in the table only when one
of the debugging options (- g compilation options) is in effect.

8.2.4.1 Symbol Type (st) Constants

Table 8-6 gives the allowable constants that can be specified in the st field
of entries in the local symbol table; the symconst. h header file contains
the declaration for the constants.

Table 8-6: Symbol Type (st) Constants

Constant Value Descri ption

stNil 0 Dummy entry
stGlobal 1 External symbol
stStatic 2 Static
stParam 3 Procedure argument
stLocal 4 Local variable
stLabel 5 Label
stProc 6 Procedure
stBlock 7 Start of block
stEnd 8 End block, file, or procedures
stMember 9 Member of structure, union, or enumeration
stTypedef 10 Type definition
stFile 11 File name
stStaticProc 14 Load-time-only static procs
stConstant 15 Constant
stStaParam 16 Fortran static parameters
stBase 17 C++ base class

8-16 Symbol Table

Table 8-6: (continued)

Constant

stVirtBase
stTag
stInter

Value Description

18 C++ virtual base class
19 C++ tag
20 C++ interlude

8.2.4.2 Storage Class (sc) Constants

Table 8-7 gives the allowable constants that can be specified in the sc field
of entries in the local symbol table; the symconst. h header file contains
the declaration for the constants.

Table 8-7: Storage Class Constants

Constant Value Description

scNil 0 Dummy entry
scText 1 Text symbol
scData 2 Initialized data symbol
scBss 3 Uninitialized data symbol
scRegister 4 Value of symbol is register number
scAbs 5 Symbol value is absolute; not to be relocated
scUndefined 6 U sed but undefined in the current module

7 Reserved
scBits 8 This is a bit field
scDbx 9 dbx internal use
scRegImage 10 Register value saved on stack
scInfo 11 Symbol contains debugger information
sCUserStruct 12 Address in struct user for current process
scSData 13 Small data (load time only)
scSBss 14 Small common (load time only)
scRData 15 Read only data (load time only)
sCVar 16 Fortran or Pascal: Var parameter
scCommon 17 Common variable
scSCommon 18 Small common
scVarRegister 19 Var parameter in a register
scVariant 20 Variant records
scFiIeDesc 20 COBOL: File descriptor
scSUndefined 21 Small undefined
scInit 22 ini t section symbol
scReportDesc 23 COBOL: Report descriptor
scXData 24 Exception handling data
scPData 25 Exception procedure section

Symbol Table 8-17

Table 8-7: (continued)

Constant Val ue Descri ption

scFini
scMax

26 fini section symbol
32

8.2.5 Auxiliary Symbol Table
Table 8-8 shows the format of an entry, which is a union, in the auxiliary
symbol table; the s ym • h file contains its declaration.

Table 8-8: Auxiliary Symbol Table Entries

Declaration Name Description

TIR tia Type information record
RNDXR rndxb Relative index into local symbols
int dnLow Low dimension of array
int dnHigh High dimension of array
int isymC Index into local symbols for stEnd
int iss Index into local strings (not used)
int width Width of a structured field not declared with the

default value for size.
int countd Count of ranges for variant arm

Table Notes:

a. Type Information Record. Table 8-9 shows the format of a ti entry; the
s ym. h file contains its declaration.

b. Relative File Index. The compiler front-end fills this field in describing
structures, enumerations, and other complex types. The relative file index
is a pair of indexes. One index is an offset from the start of the file
descriptor table to one of its entries. The second is an offset from the file
descriptor entry to an entry in the local symbol table or auxiliary symbol
table.

c. Index into Local Symbols. This index is always an offset to an stEnd
entry denoting the end of a procedure.

d. Range Count. Used in describing case variants. Gives the number of
elements that are separated by commas in a case variant.

8-18 Symbol Table

Table 8-9: Format of a Type Information Record Entry

Declaration Name Description

unsigned fBitfield 1 Set if bit width is specified.
unsigned continued 1 Next auxiliary entry has tq information.
unsigned bt 6 Basic type.
unsigned tq4 4 Type qualifier (tqO - tq5).
unsigned tq5 4
unsigned tqO 4
unsigned tql 4
unsigned tq2 4
unsigned tq3 4

All groups of auxiliary entries have a type information record with the
following entries:

• fbi tfield is set if the basic type (bt) is of nonstandard width.

• bt (for basic type) specifies the type of the symbol (for example, integer,
real, complex, or structure). The valid entries for this field are shown in
Table 8-10; the s ym. h file contains its declaration.

• tq (for type qualifier) defines whether the basic type (bt) has an array
of, function returning, or pointer to qualifier. The valid entries for this
field are shown in Table 8-11; the s ym. h file contains its declaration.

Table 8-10: Basic Type (bt) Constants

Default
Constant Value Sizea Description

btNil 0 0 Undefined, void
btAdr32 1 32 Address (32 bits)
btChar 2 8 Symbol character
btUChar 3 8 Unsigned character
btShort 4 16 Short (16 bits)
btUShort 5 16 Unsigned short
btlnt 6 32 Integer
btUlnt 7 32 Unsigned integer
btLong32 8 32 Long (32 bits)
btULong32 9 32 Unsigned long (32 bits)
btFloat 10 32 Floating point (real)
btDouble 11 64 Double-precision floating-point real
btStruct 12 nla Structure (record)
btunion 13 nla Union (variant)
btEnum 14 32 Enumerated

Symbol Table 8-19

Table 8-10: (continued)

Default
Constant Value Sizea Description

btTypedef 15 nla Defined by means of a typedef; rndx
points at a stTypedef symbol

btRange 16 32 Subrange of integer
btSet 17 32 Pascal: Sets
btComplex 18 64 Fortran: Complex
btDComplex 19 128 Fortran: Double complex
btlndirect 20 Indirect definition; rndx points to an

entry in the auxiliary symbol table
that contains a TIR (type information
record)

btFixedBin 21 nla COBOL: Fixed binary
btDecimal 22 nla COBOL: Packed or unpacked decimal
btVoid 26 nla Void
btPtrMem 27 64 C++: Pointer to member
btScaledBin 27 nla COBOL: Scaled binary
btVptr 28 n/a C++: Virtual function table
btArrayDesc 28 nla Fortran90: Array descriptor
btClass 29 nla C++: Class (record)
btLong64 30 64 Address (64 bits)
btLong 30 64 Synonym for btLong64
btULong64 31 64 Unsigned long (64 bits)
btULong 31 64 Synonym for btUlong64
btLongLong 32 64 Long long (64 bits)
btULongLong 33 64 Unsigned long long (64 bits)
btAdr64 34 64 Address (64 bits)
btAdr 34 64 Synonym for btAdr64
btlnt64 35 64 64-bit int
btUlnt64 36 64 64-bit unsigned int
btLDouble 37 128 Long double (real*15)
btMax 64

Table Notes:

a. Size in bits.

Table 8-11: Type Qualifier (tq) Constants

Constant Value Description

tqNil 0 Place holder. No qualifier.
tqptr 1 Pointer to
tqProc 2 Function returning

8-20 Symbol Table

Table 8-11: (continued)

Constant Value Description

tqArray 3 Array of
tqVol 5 Volatile
tqConst 6 Constant
tqRef 7 Reference
tqMax 8 Number of type qualifiers

8.2.6 File Descriptor Table
Table 8-12 shows the format of an entry in the file descriptor table; the
sym. h file contains its declaration.

Table 8-12: Format of File Descriptor Entry

Declaration Name

unsigned long adr
long cbLineOffset
long cbLine
long cbSs
int rss
int issBase
int isyrnBase
int csyrn
int ilineBase
int cline
int ioptBase
int copt
int ipdFirst
int cpd
int iauxBase
int caux
int rfdBase
int crfd
unsigned lang : 5
unsigned fMerge : 1
unsigned fReadin : 1

unsigned fBigendian
unsigned glevel : 2
unsigned reserved : 22

1

Description

Memory address of start of file
Byte offset from header or file lines
Size of lines for the file
Number of bytes in local strings
Source file name
Start of local strings
Start of local symbol entries
Count of local symbol entries
Start of line number entries
Count of line number entries
Start of optimization symbol entries
Count of optimization symbol entries
Start of procedure descriptor table
Count of procedures descriptors
Start of auxiliary symbol entries
Count of auxiliary symbol entries
Index into relative file descriptors
Relative file descriptor count
Language for this file
Whether this file can be merged
True if it was read in (not just
created)
Not used
Level this file was compiled with
Reserved for future use

Symbol Table 8-21

8.2.7 External Symbol Table
The external symbol table has the same format as the local symbol table,
except an offset (ifd) field has been added to the file descriptor table. This
field is used to locate information associated with the symbol in an auxiliary
symbol table. Table 8-13 shows the format of an entry in the external
symbol table; the sym. h file contains its declaration.

Table 8-13: External Symbol Table Entries

Declaration

SYMR
unsigned short
unsigned short
int

8-22 Symbol Table

Name

asym
weakext : 1
reserved : 15
ifd

Description

Same as local symbol table
Symbol is weak external
Reserved for future use
Pointer to entry in file descriptor table

Program Loading and Dynamic Linking 9

Executable files and shared library files are used to create a process image
when a program is started by the system. This chapter describes the object
file structures that relate to program execution and also describes how the
process image is created from executable and shared object files.

This chapter addresses the following topics:

• Factors that influence linking and loading operations. (Section 9.1)

• The loading process. (Section 9.2)

• Dynamic linking and loading. (Section 9.3)

9.1 Object File Considerations
The following sections describe several general factors that are involved in
the linking and loading process.

9.1.1 Structures
The following object file structures contain information that is used in linking
and loading operations:

• File Header - The file header identifies a file as an object file and
additionally indicates whether the object is a static executable, a shared
executable, or a shared library.

• Optional Header - The optional header immediately follows the file
header and identifies the size, location and virtual addresses of the
object's segments.

• Section Headers - Section headers describe the individual sections that
comprise the object's segments. Section headers are normally not used in
program loading; however, the section headers are used to locate the
dynamic section in shared executable files and shared libraries.

See Chapter 7 for further details on file headers, optional headers, and section
headers.

9.1.2 Base Addresses
Executable files and shared object files have a base address, which is the
lowest virtual address associated with the process image of the program. The
base address is used to relocate the process image during dynamic linking.

During program loading, the base address is calculated from the memory load
address, the maximum page size, and the lowest virtual address of the
program's loadable segment.

9.1.3 Segment Access Permissions
A program that is to be loaded by the system must have at least one loadable
segment, even though this is not required by the file format. When the
process image is created, the segments are assigned access permissions,
which are determined by the type of segment and type of program image.
Table 9-1 shows the access permissions for the various segment and image
types.

Table 9-1: Segment Access Permissions

Image Segment Access Permissions

OMAGIC text, data, bss Read, Write, Execute
NMAGIC text Read, Execute
NMAGIC data, bss Read, Write, Execute
ZMAGIC text Read, Execute
ZMAGIC data, bss Read, Write, Execute

9.1.4 Segment Contents
An object file segment can contain one or more sections. The number of
sections in a segment is not important for program loading, but specific
information must be present for linking and execution. Figure 9-1 illustrates
typical segment contents for an executable or shared object. The order of
sections within a segment may vary.

Text segments contain instructions and read-only data, and data segments
contain writable data. Text segments and data segments typically include the
sections shown in Figure 9-1.

9-2 Program Loading and Dynamic Linking

Figure 9-1: Text and Data Segments of Object Files

.text

.rdata

.hash

.dynsym

.dynstr

.conflict

.rel,dyn

.Iiblist

.dynamic

.reginfo

-.,

>-
typical text
segment

9.2 Program Loading

.bss

.sbss

.data

.sdata

.litS

.lit4

.got

-.,

>-
typical data
segment

ZK-0753U-R

As the system creates or augments a process image, it logically copies a file's
segment to a virtual memory segment. When the system physically reads the
file depends on the programs execution behavior, system load, and other
factors. A process does not require a physical page unless it references the
logical page during execution. Processes commonly leave many pages
unreferenced. Therefore, delaying physical reads frequently obviates them,
thus improving system performance. To obtain this efficiency in practice,
executable and shared object files must have segment images whose virtual
addresses are zero, modulo the file system block size.

Virtual addresses for the text and data segments must be aligned on 64 KB
(Ox 1 0000) or larger power of 2 boundaries. File offsets must be aligned on
8KB (Ox2000) or larger power of 2 boundaries.

Because the page size can be larger than the alignment restrictions of a
segment's file offset, up to four file pages can hold text or data that is not
logically part of the segment (depending on page size and file system block
size). The contents of the various file pages are as follows:

Program Loading and Dynamic Linking 9-3

• The first text page contains the COFF file header, section headers, and
other information.

• The last text page may hold a copy of the beginning of data.

• The first data page may have a copy of the end of text.

• The last data page may contain file information not relevant to the
running process.

Logically, the system enforces the memory permissions as if each segment
were complete and separate; segment's addresses are adjusted to ensure that
each logical page in the address space has a single set of permissions.

The end of the data segment requires special handling for uninitialized data,
which must be set to zero. If a file's last data page includes information not
in the logical memory page, the extraneous data must be set to zero, not the
contents of the executable file.

9.3 Dynamic Linking
An executable file is loaded at fixed addresses; the system creates its
segments using the virtual addresses from the optional header. The system
transfers control directly to the entry point of the executable file.

An executable file that uses dynamic linking requires one or more shared
objects to be loaded in addition to the executable file. Instead of loading the
executable file, the system loads the dynamic loader, which in turn loads the
executable file and its shared objects.

9.3.1 Dynamic Loader
When building an executable file that uses dynamic linking, the linker adds
the flag F MIPS CALL SHARED to the f flags field of the file header.
This flag tells thesystem -to invoke the dynamic loader to load the executable
file. Typically, the dynamic loader requested is / sbin/ loader, the
default loader. The exec function and the dynamic loader cooperate to
create the process image. Creating the process image involves the following
operations:

• Adding the file segments to the process image

• Adding shared object segments to the process image

• Performing relocations for the executable file and its shared objects

• Transferring control to the program, making it appear that the program
received control directly from exec

To assist the dynamic loader, the linker also constructs the following data
items for shared objects and executable files:

9-4 Program Loading and Dynamic Linking

• A number of dynamic sections (. dynamic, • rel. dyn, and. dynstr)
hold various data items, including a structure that holds the addresses of
other dynamic linking information.

• The. hash section contains a symbol hash table.

• The. got section contains the global offset table.

These data items are located in loadable segments and are available during
execution.

Shared objects may be located at virtual addresses that are different from the
addresses in the optional header. The dynamic loader relocates the memory
image and updates absolute addresses before control is given to the program.

If the environment variable LD BIND NOW has a non-null value, the
dynamic linker processes all relOcations before transferring control to the
program. The dynamic linker may evaluate procedure linkage table entries
lazily, avoiding symbol resolution and relocation for functions that are not
called. (See Section 9.3.5 for information about lazy binding.)

The following sections describe the various dynamic linking sections. The C
language definitions are in the header files elf _abi. h and elf _ mips. h.

9.3.2 Dynamic Section (.dynamic)
The dynamic section acts as a table of contents for information, relating to
dynamic linking, within the object. Dynamic sections are present only in
shared objects and shared executables (objects that use shared libraries).

The dynamic section is located by its section header. This section header is
identified by its name (. dynamic) or its section type (STYP DYNAMIC) in
the flags field (s_flags). -

The dynamic section is an array with entries of the following type:

typedef struct {
Elf32 Sword
union {

Elf32 Word
Elf32-Addr

} dun;
} Elf32:=Dyn;

The structure and union members in the preceding definition provide the
following information:

d tag
- Indicates how the d _ un field is to be interpreted.

d val
Represents integer values.

Program Loading and Dynamic Linking 9-5

d ptr
- Represents program virtual addresses. A file's virtual addresses may not

match the memory virtual addresses during execution. The dynamic
loader computes actual addresses based on the virtual address from the
file and the memory base address. Object files do not contain relocation
entries to correct addresses in the dynamic section.

The d tag requirements for executable and shared object files are
summarized in Table 9-2. "Mandatory" indicates that the dynamic linking
array must contain an entry of that type; "optional" indicates that an entry
for the tag may exist but is not required.

Table 9-2: Dynamic Array Tags (d_tag)

Shared
Name Value d_un Executable Object

DT_NULL 0 ignored mandatory mandatory
DT_NEEDED 1 d_val optional optional
DT_PL TRELsza 2 d_val optional optional
DT_PLTGOT 3 d_ptr optional optional
DT_HASH 4 d_ptr mandatory mandatory
DT_STRTAB 5 d_ptr mandatory mandatory
DT_SYMTAB 6 d_ptr mandatory mandatory
DT_RELAa 7 d_ptr mandatory optional
DT_RELAsza 8 d_val mandatory optional
DT_RELAENTa 9 d_val mandatory optional
DT_STRSZ 10 d_val mandatory mandatory
DT_SYMENT 11 d_val mandatory mandatory
DT_INIT 12 d_ptr optional optional
DT_FINI 13 d_ptr optional optional
DT_SONAME 14 d_val ignored optional
DT_RPATH 15 d_val optional ignored
DT_SYMBOLIC 16 ignored ignored optional
DT_REL 17 d_ptr mandatory optional
DT_RELSZ 18 d_val mandatory optional
DT_RELENT 19 d_val mandatory optional
DT_PLTRELa 20 d_val optional optional
DT_DEBUGa 21 d_ptr optional ignored
DT_ TEXTREL a 22 ignored optional optional
DT_JMPRELa 23 d_ptr optional optional
DT_LOPROC Ox70000000 unspecified unspecified unspecified
DT_HIPROC Ox7fffffff unspecified unspecified unspecified

9-6 Program Loading and Dynamic Linking

Table Notes:

a. Not used by the default system linker and loader.

The uses of the various dynamic array tags are as follows:

DT_NULL
Marks the end of the array.

DT_NEEDED
Contains the string table offset of a null terminated string that is the
name of a needed library. The offset is an index into the table indicated
in the DT STRTAB entry. The dynamic array may contain multiple
entries ofihis type. The order of these entries is significant.

DT_PLTRELSZ
Contains the total size in bytes of the relocation entries associated with
the procedure linkage table. If an entry of type DT JMPREL is present,
it must have an associated DT PLTRELSZ entry. (Not used by the
default system linker and loader.)

DT_PLTGOT
Contains an address associated with either the procedure linkage table
and/or the global offset table.

DT_HASH
Contains the address of the symbol hash table.

DT_STRTAB
Contains the address of the string table.

DT_SYMTAB
Contains the address of the symbol table with Elf 3 2 _Sym entries.

DT_RELA
Contains the address of a relocation table. Entries in the table have
explicit addends, such as Elf32 Rela. An object file may have
multiple relocation sections. When the linker builds the relocation table
for an executable or shared object, these sections are concatenated to
form a single table. While the sections are independent in the object
file, the dynamic linker sees a single table. When the dynamic linker
creates a process image or adds a shared object to a process image, it
reads the relocation table and performs the associated actions. If this
entry is present, the dynamic structure must also contain DT RELAS Z
and DT RELAENT entries. When relocation is mandatory for a file,
either DT RELA or DT REL may be present. (Not used by the default
system linker and loader.)

DT_RELASZ
Contains the size in bytes of the DT RELA relocation table. (Not used
by the default system linker and loader.)

Program Loading and Dynamic Linking 9-7

DT_RELAENT
Contains the size in bytes of a DT RELA relocation table entry. (Not
used by the default system linker and loader.)

DT_STRSZ
Contains the size in bytes of the string table.

DT_SYMENT
Contains the size in bytes of a symbol table entry.

DT_INIT
Contains the address of the initialization function.

DT_FINI
Contains the address of the termination function.

DT_SONAME
Contains the string table offset of a null-terminated string that gives the
name of the shared object. The offset is an index into the table indicated
in the DT_STRTAB entry.

DT_RPATH
Contains the string table offset of a null-terminated library search path
string. The offset is an index into the table indicated in the DT _STRTAB
entry.

DT_SYMBOLIC.
If this entry is present, the dynamic linker uses a different symbol
resolution algorithm for references within a library. The symbol search
starts from the shared object instead of the executable file. If the shared
object does not supply the referenced symbol, the executable file and
other shared objects are searched.

DT_REL
Contains the address of the relocation table. An object file can have
multiple relocation sections. When the linker builds the relocation table
for an executable or shared object, these sections are concatenated to
form a single table. While the sections are independent in the object file,
the dynamic loader sees a single table. When the dynamic loader creates
a process image or adds a shared object to a process image, it reads the
relocation table and performs the associated actions. If this entry is
present, the dynamic structure must contain the DT _ RELS Z entry.

DT_RELSZ
Contains the size in bytes of the relocation table pointed to by the
DT _ REL entry.

DT_RELENT
Contains the size in bytes of a DT _ REL entry.

9-8 Program Loading and DynamiC Linking

DT_PLTREL
Specifies the type of relocation entry referred to by the procedure
linkage table. The d val member holds DT REL or DT RELA, as
appropriate. All relocations in a procedure liiikage table must use the
same relocation. (Not used by the default system linker and loader.)

DT_DEBUG
Used for debugging. The contents of this entry are not specified. (Not
used by the default system linker and loader.)

DT_TEXTREL
If this entry is not present, no relocation entry should cause a
modification to a nonwritable segment. If this entry is present, one or
more relocations might request modifications to a nonwritable segment.
(Not used by the default system linker and loader.)

DT_JMPREL
If this entry is present, its d ptr field contains the address of relocation
entries associated only with the procedure linkage table. The dynamic
linker may ignore these entries during process initialization if lazy
binding is enabled. See Section 9.3.5 for information about lazy
binding. (Not used by the default system linker and loader.)

DT_LOPROC through DT_HIPROC
Reserved for processor-specific semantics.

Table 9-3: Processor-Specific Dynamic Array Tags (d_tag)

Shared
Name Value d_un Executable Object

DT_MIPS_RLD_ VERSION Ox70000001 d_val mandatory mandatory
DT_MIPS_ TIME_STAMP Ox70000002 d_val optional optional
DT_MIPS_ICHECKSUM Ox70000003 d_val optional optional
DT_MIPS_IVERSION Ox70000004 d_val optional optional
DT_MIPS_FLAGS Ox70000005 d_val mandatory mandatory
DT_MIPS_BASE_ADDRESS Ox70000006 d_ptr mandatory mandatory
DT_MIPS_CONFLICT Ox70000008 d_ptr optional optional
DT_MIPS_LIBLIST Ox70000009 d_ptr optional optional
DT_MIPS_LOCAL_ GOTNO Ox7000000A d_val mandatory mandatory
DT_MIPS_CONFLICTNO Ox7000000B d_val optional optional
DT_MIPS_LIB LIS TNO Ox70000010 d_val optional optional
DT_MIPS_SYMTABNO Ox70000011 d_val optional optional
DT _MIPS_ UNREFEXTNO Ox70000012 d_val optional optional
DT_MIPS_ GOTSYM Ox70000013 d_val mandatory mandatory
DT_MIPS_HIPAGENoa Ox70000014 d_val mandatory mandatory
DT_MIPS_RLD_MAP Ox70000016 d_val optional optional

Program Loading and Dynamic Linking 9-9

Table 9-3: (continued)

Table Notes:

a. Not used by the default system linker and loader.

The uses of the various processor-specific dynamic array tags are as follows:

DT_MIPS_RLD_ VERSION
Holds an index into the object file's string table, which holds the version
of the run-time linker interface. The version is 1 for executable objects
that have a single GOT and 2 for executable objects that have multiple
GOTs.

DT_MIPS_TIME_STAMP
Contains a 32-bit time stamp.

DT_MIPS_ICHECKSUM
Contains a value that is the sum of all of the COMMON sizes and the
names of defined external symbols.

DT_MIPS_IVERSION
Holds an index into the object file's string table. The version string is a
series of colon (:) separated version strings. An index value of zero
means no version string was specified.

DT_MIPS_FLAGS
Contains a set of I-bit flags. The following flags are defined for
DT MIPS FLAGS:

RHF NONE OxOOOOOOOO
RHF_QUICKSTART OxOOOOOOOI

RHF NOTPOT OxOOOOOO02
RHF NO LIBRARY

REPLACEMENT OxOOOOOO04

RHF NO MOVE OxOOOOOO08
RHF RING SEARCH Ox 10000000

RHF DEPTH FIRST Ox20000000 - -
RHF USE 31BIT

ADDRESSES Ox40000000

DT_MIPS_BASE_ADDRESS
Contains the base address.

DT_MIPS_CONFLICT

None
Object may be quick started
by loader
Hash size not a power of two

Use default system libraries
only
Do not relocate
Symbol resolution same as
DT SYMBOLIC
Depth first symbol resolution

TASO (Truncated Address
Support Option) objects

Contains the address of the. conflict section.

9-10 Program Loading and Dynamic Linking

DT_MIPS_LIBLIST
Contains the address of the .liblist section.

DT _MIPS_LOCAL_ GOTNO
Contains the number of local GOT entries. The dynamic array contains
one of these entries for each GOT.

DT_MIPS_CONFLICTNO
Contains the number of entries in the. conflict section and is
mandatory if there is a • conflict section.

DT _MIPS_LIBLISTNO
Contains the number of entries in the .liblist section.

DT_MIPS_SYMTABNO
Indicates the number of entries in the. dynsym section.

DT_MIPS_UNREFEXTNO
Holds an index into the dynamic symbol table. The index is the entry of
the first external symbol that is not referenced within the object.

DT_MIPS_GOTSYM
Holds the index of the first dynamic symbol table entry that corresponds
to an entry in the global offset table. The dynamic array contains one of
these entries for each GOT.

DT_MIPS_HIPAGENO
Holds the number of page table entries in the global offset table. A page
table entry here refers to 64KB of data space. This entry is used by the
profiling tools and is optional. (Not used by the default system linker
and loader.)

DT_MIPS_RLD_MAP
Contains the address of the quadword that contains a pointer to the
dynamic linker's object list.

Entries may appear in any order, except for the relative order of the
DT NEEDED entries and the DT NULL entry at the end of the array. All
other tag values are reserved. -

9.3.3 Shared Object Dependencies
When the linker processes an archive library, library members are extracted
and copied into the output object file. These statically linked services are
available during execution and do not involve the dynamic linker. Shared
objects also provide services that require the dynamic linker to include the
appropriate shared object files in the process image. To accomplish this,
executable files and shared object files must describe their dependencies.

Program Loading and Dynamic Linking 9-11

The dependencies, indicated by the DT NEEDED entries of the dynamic
structure, indicate which shared objectS-are required for the program. The
dynamic linker builds a process image by connecting the referenced shared
objects and their dependencies. When resolving symbolic references, the
dynamic linker looks first at the symbol table of the executable program, then
at the symbol tables of the DT NEEDED entries (in order), then at the
second-level DT NEEDED entnes, and so on. Shared object files must be
readable by the Process.

Note

Even if a shared object is referenced more than once in the
dependency list, the dynamic linker includes only one instance of
the object in the process image.

Names in the dependency list are copies of the DT _SONAME strings.

If a shared object name has one or more slash characters in its name, such as
/usr / lib/ libz, the dynamic linker uses the string as the pathname. If the
name has no slashes, such as liba, the object is searched as follows:

1. The dynamic array tag DT RPATH may give a string that holds a list of
directories separated by colons, such as
/usr/newlib: /usr/local/lib. The dynamic linker searches
these directories in order and, if a library is not located, then searches the
current directory.

2. The environment variable LD LIBRARY PATH may hold a list of colon
separated directories, optionally followedby a semicolon and another
directory list. These directories are searched after those specified by
DT RPATH.

3. If the library was not located in any of the directories specified by
DT RPATH or LD LIBRARY PATH, the dynamic linker searches
/usr/shlib, /llsr/ccs/lib, /usr/lib/cmplrs/cc,
/usr/lib, and then /usr/local/lib.

The following environment variables are defined:

RLD PATH Path to dynamic linker (rId)
RLD ARGS Argument to dynamic linker
RLD ROOT Prefix that the dynamic linker adds to all paths except those

specified by LD_LIBRARY_PATH.

9-12 Program Loading and Dynamic Linking

Note

For security, the dynamic linker ignores environmental search
specifications, such as LD LIBRARY PATH, for set-user-ID and
set-group-ID programs. - -

9.3.4 Global Offset Table (.got)
Position-independent code cannot, in general, contain absolute virtual
addresses. Global offset tables (GaTs) hold absolute addresses in private
data, thus making the addresses available without compromising the
position-independence and sharability of a program's text. A program
references its global offset table using position-independent addressing and
extracts absolute values, thus redirecting position-independent references to
absolute locations.

The global offset table is split into two logically separate subtables - local
and external:

• Local entries reside in the first part of the table; these are entries for
which there are standard local relocation entries. These entries only
require relocation if they occur in a shared object and the shared object's
memory load address differs from the virtual address of the shared
object's loadable segments. As with the defined external entries in the
global offset table, these local entries contain actual addresses.

• External entries reside in the second part of the section. Each entry in the
external part of the GOT corresponds to an entry in the. dynsym
section. The first referenced global symbol in the • dynsym section
corresponds to the first quadword of the table, the second symbol
corresponds to the second quadword, and so on. Each quadword in the
external entry part of the GOT contains the actual address for its
corresponding symbol. The external entries for defined symbols must
contain actual addresses. If an entry corresponds to an undefined symbol
and the table entry contains a zero, the entry must be resolved by the
dynamic linker, even if the dynamic linker is performing a quickstart.
(See Section 9.3.l1 for information about quickstart processing.)

After the system creates memory segments for a loadable object file, the
dynamic loader may process the relocation entries. The only relocation
entries remaining are type R REFQUAD or R REFLONG, referring to local
entries in the GOT and data Items containing addresses. The dynamic loader
determines the associated symbol (or section) values, calculates their absolute
addresses, and sets the proper values. Although the absolute addresses may
be unknown when the linker builds an object file, the dynamic loader knows
the addresses of all memory segments and can find the correct symbols and
calculate the absolute addresses.

Program Loading and Dynamic Linking 9-13

If a program requires direct access to the absolute address of a symbol, it
uses the appropriate GOT entry. Because the executable file and shared
objects have separate global offset tables, a symbol's address may appear in
several tables. The dynamic loader processes all necessary relocations before
giving control to the process image, thus ensuring the absolute addresses are
available during execution.

The zero (first) entry of the. dynsyrn section is reserved and holds a null
symbol table entry. The corresponding zero entry in the GOT is reserved to
hold the address of the entry point in the dynamic linker to call when using
lazy binding to resolve text symbols (see Section 9.3.5 for information about
resolving text symbols using lazy binding).

The system may choose different memory segment addresses for the same
shared object in different programs; it may even choose different library
addresses for different executions of the same program. Nonetheless,
memory segments do not change addresses once the process image is
established. As long as a process exists, its memory segments reside at fixed
virtual addresses.

A single GOT can hold a maximum of 8190 local and global entries. If a
program references 8K or more global symbols, it will have mUltiple GaTs.
Each GOT in a multiple-GOT object is referenced by means of a different
global pointer value. A single • got section holds all of the GaTs in a
multiple-GOT object.

The DT MIPS LOCAL GOTNO and DT PLTGOT entries of the dynamic
section describe the attrlbutes of the global offset table.

9.3.5 Calling Position-Independent Functions
The GOT is used to hold addresses of position-independent functions as well
as data addresses. It is not possible to resolve function calls from one
executable or shared object to another at static link time, so all of the
function address entries in the GOT would normally be resolved at execution
time. The dynamic linker would the resolve all of these undefined relocation
entries at run time. Through the use of specially constructed pieces of code
known as stubs, this run-time resolution can be deferred through a technique
known as lazy binding.

U sing the lazy binding technique, the linker builds a stub for each called
function and allocates GOT entries that initially point to the stubs. Because
of the normal calling sequence for position-independent code, the call

9-14 Program Loading and Dynamic Linking

invokes the stub the first time the call is made.
stub_xyz:

ldq t12, .got index(gp)
lda $at, .dynsym index low(zero)
ldah $at, .dynsym=index=high($at)
j mp t 12, (t 12)

The stub code loads register t 12 with an entry from the GOT. The entry
loaded into register t 12 is the address of the procedure in the dynamic linker
that handles lazy binding. The stub code also loads register $at with the
index into the. dynsym section of the referenced external symbol. The code
then transfers control to the dynamic linker and loads register t 12 with the
address following the stub. The dynamic linker determines the correct
address for the called function and replaces the address of the stub in the
GOT with the address of the function.

Most undefined text references can be handled by lazy text evaluation, except
when the address of a function is used in other than a j sr instruction. In the
exception case, the program uses the address of the stub instead of the actual
address of the function. Determining which case is in effect is based on the
following processing:

• The linker generates symbol-table entries for all function references with
the st _ shndx field containing SHN _ UNDEF and the st _type field
containing STT _FUNC.

• The dynamic linker examines each symbol-table entry when it starts
execution:

- If the st value field for one of these symbols is nonzero, only j sr
references were made to the function and nothing needs to be done to
the GOT entry.

- If the field is zero, some other kind of reference was made to the
function and the GOT entry must be replaced with the actual address
of the referenced function.

The LD BIND NOW environment variable can also change dynamic linking
behavio~ If itS-value is non-null, the dynamic linker evaluates all symbol­
table entries of type STT FUNC, replacing their stub addresses in the GOT
with the actual address of the referenced function.

Note

Lazy binding generally improves overall application performance
because unused symbols do not incur the dynamic linking
overhead. Two situations, however, make lazy binding
undesirable for some applications:

• The initial reference to a shared object function takes longer than
subsequent calls because the dynamic linker intercepts the call to

Program Loading and Dynamic Linking 9-15

resolve the symbol. Some applications cannot tolerate this
unpredictability.

• If an error occurs and the dynamic linker cannot resolve the
symbol, the dynamic linker terminates the program. Under lazy
binding, this might occur at arbitrary times. Once again, some
applications cannot tolerate this unpredictability.

By turning off lazy binding, the dynamic linker forces the failure to
occur during process initialization, before the application receives
control.

9.3.6 Dynamic Symbol Section (.dynsym)
The dynamic symbol section provides information on all external symbols,
either imported or exported from an object.

All externally visible symbols, both defined and undefined, must be hashed
into the hash table.

Undefined symbols of type STT FUNC that have been referenced only by
j sr instructions may contain nonzero values in their st value field
denoting the stub address used for lazy evaluation for this symbol. The run­
time linker uses this to reset the GOT entry for this external symbol to its
stub address when unlinking a shared object. All other undefined symbols
must contain zero in their st value fields.

Defined symbols in an executable file cannot be preempted. The symbol table
in the executable is always searched first to resolve any symbol references.

The dynamic symbol section contains an array of entries of the following
type:
typedef struct {

Elf32 Word
Elf32-Addr
Elf32 Word
unsigned char
unsigned char
Elf32 Half

} Elf32_Sym;

st name;
st:=value;
st size;
s()nfo;
st other;
st:=shndx;

The structure members in the preceding definition provide the following
information:

st name
Contains the offset of the symbol's name in the dynamic string section.

st value
Contains the value of the symbol for those symbols defined within the
object; otherwise, contains the value zero.

9-16 Program Loading and Dynamic Linking

st size
Identifies the size of symbols with common storage allocation;
otherwise, contains the value zero. For STB DUPLICATE symbols, the
size field holds the index of the primary symbol.

st info
Identifies both the binding and the type of the symbol. The macros
ELF32 ST BIND and ELF32 ST TYPE are used to access the
individual vaiues.

A symbol's binding determines the linkage visibility and behavior. The
binding is encoded in the st info field and can have one of the
following values: -

Value Description

STB LOCAL Indicates that the symbol is local to the object.
STB GLOBAL Indicates that the symbol is visible to other objects.
STB WEAK Indicates that the symbol is a weak global symbol.
STB DUPLICATE Indicates the symbol is a duplicate. (Used for

objects that have multiple GOTs.)

A symbol's type identifies its use. The type is encoded in the st info
field and can have one of the following values: -

Value Description

STT NOTYPE Indicates that the symbol has no type or its type is unknown.
STT OBJECT Indicates that the symbol is a data object.
STT FUNC Indicates that the symbol is a function.
STT SECTION Indicates that the symbol is associated with a program

section.
STT FILE Indicates that the symbol as the name of a source file.

st other
Currently holds a value of zero and has no defined meaning.

st shndx
Identifies the section to which this symbol is related.

Program Loading and Dynamic Linking 9-17

All symbols are defined relative to some program section. The
st shndx field identifies the section and can have one of the
foliOwing values:

Value Description

SHN UNDEF Indicates that the symbol is undefined.
SHN ABS Indicates that the symbol has an absolute value.
SHN COMMON Indicates that the symbol has common storage (unallocated).
SHN ACOMMON Indicates that the symbol has common storage (allocated).
SHN TEXT Indicates that the symbol is in a text segment.
SHN DATA Indicates that the symbol is in a data segment.

The entries of the dynamic symbol section are ordered as follows:

• A single null entry.

• Symbols local to the object.

• Unreferenced global symbols, that is, symbols that are defined within the
object but not referenced.

• Referenced global symbols. These symbols are ordered by the value of
their st value field (lowest value first). These symbols also correspond
one-to-one with the GOT entries for global symbols.

Figure 9-2 shows the layout of the • dynsym section and its relationship to
the • got section.

9-18 Program Loading and Dynamic Linking

Figure 9-2: Relationship Between .dynsym and .got

GOT#O
~ 1st

DT_MIPS_LOCAL_GOTNO

GOT# 1

2nd

DT_MIPS_LOCAL_GOTNO

GOT #2
~ 3rd

DLMIPS_LOCAL_GOTNO

.got

reserved

locals

globals

reserved

locals

globals

reserved

locals

globals

. "

.dynsym

reserved
,

locals

\ unreferenced +-
globals

referenced +-

~
globals

,,,ro\::: referenced +-globals

referenced
globals +-

one toone ...

DLMIPS_

UNREFEXTNO

ZK-0755U-R

The DT SYMENT and DT SYMTAB entries of the dynamic section describe
the attributes of the dynarllic symbol table.

9.3.7 Dynamic Relocation Section {.rel.dyn}
The dynamic relocation section describes all locations within the object that
must be adjusted if the object is loaded at an address other than its linked
base address.

Only one dynamic relocation section is used to resolve addresses in data
items and local entries in the GOT. It must be called. reI. dyn.
Executables may contain normal relocation sections in addition to a dynamic
relocation section. The normal relocation sections may contain resolutions for
any absolute values in the main program. The dynamic linker does not
resolve these or relocate the main program.

As noted previously, only R REFQUAD and R REFLONG relocation entries
are supported in the dynamic relocation sectioil.'

The dynamic relocation section is an array of entries of the following type:
typedef struct {

Elf32 Addr
Elf32-Word

} Elf32_Rel;

r offset;
r=:info;

The structure members in the preceding definition provide the following
information:

Program Loading and Dynamic Linking 9-19

r offset
Identifies the location within the object to be adjusted.

r info
Identifies the relocation type and the index of the symbol that is
referenced. The macros ELF32 R SYM and ELF32 R TYPE access
the individual attributes. The relocation type must beeither
R _ REFQUAD or R _REFLONG.

The entries of the dynamic relocation section are ordered by symbol index
value.

The DT REL and DT RELS Z entries of the dynamic section describe the
attributes of the dynamic relocation section.

9.3.8 Hash Table Section (.hash)
A hash table of Elf 3 2 Word entries supplies symbol table access. Figure
9-3 shows the contents "Of a hash table. The entries in the hash table contain
the following information:

• The nbucket entry indicates the number of entries in the bucket
array.

• The nchain entry indicates the number of entries in the chain array.

• The bucket and chain entries hold symbol table indexes; the entries
in chain parallel the symbol table. The number of symbol table entries
should be equal to nchain; symbol table indexes also select chain
entries.

9-20 Program Loading and Dynamic Linking

Figure 9-3: Hash Table Section

nbucket

nchain

bucket[O] ...
bucket[nbucket -1]

chain[O]
...

chain[nchain - 1]

ZK-07S6U-R

The hashing function accepts a symbol name and returns a value that can be
used to compute a bucket index. If the hashing function returns the value X
for a name, bucket [X % nbucket] gives an index, Y, into the symbol
table and chain array. If the symbol table entry indicated is not the correct
one, chain [Y] indicates the next symbol table entry with the same hash
value. The chain links can be followed until either the desired symbol table
entry is located or the chain entry contains the value STN_ UNDEF.

The DT HASH entry of the dynamic section contains the address of the hash
table section.

9.3.9 Dynamic String Section (.dynstr)
The dynamic string section is the repository for all strings referenced by the
dynamic linking sections. Strings are referenced by a byte offset within the
dynamic string section. The end of the string is denoted by a byte containing
the value zero.

The DT STRTAB and DT STRSZ entries of the dynamic section describe
the attributes of the dynarillc string section.

9.3.10 Initialization and Termination Functions
After the dynamic loader has created the process image and performed
relocations, each shared object gets the opportunity to execute initialization
code. The initialization functions are called in reverse-dependency order.
Each shared object's initialization functions are called only after the
initialization functions for its dependencies have been executed. All
initialization of shared objects occurs before the executable file gains control.

Program Loading and Dynamic Linking 9-21

Similarly, shared objects can have termination functions that are executed by
the atexi t mechanism when the process is terminating. Termination
functions are called in dependency order - the exact opposite of the order in
which initialization functions are called.

Shared objects designate initialization and termination functions through the
DT INIT and DT FINI entries in the dynamic structure. Typically, the
code for these functions resides in the • ini t and • f ini sections.

Note

Although atexi t termination processing normally is done, it is
not guaranteed to have executed when the process terminates. In
particular, the process does not execute the termination
processing if it calls exi t or if the process terminates because
it received a signal that it neither caught nor ignored.

9.3.11 Quickstart
The quickstart capability provided by the assembler supports several sections
that are useful for faster startup of programs that have been linked with
shared objects. Some ordering constraints are imposed on these sections.
The group of structures defined in these sections and the ordering constraints
allow the dynamic linker to operate more efficiently. These additional
sections are also used for more complete dynamic shared object version
control.

9.3.11.1 Shared Object List (.liblist)

A shared object list section is an array of Elf 3 2 Lib structures that
contains information about the various dynamic shared objects used to
statically link the object file. Each shared object used has an entry in the
array. Each entry has the following format:
typedef struct {

Elf32 Word 1 name;
Elf32 Word l-time stamp;
Elf32 Word l-checksum;
Elf32 Word l=version;
Elf32 Word l_flags;

} Elf32_LIb;

The structure members in the preceding definition provide the following
information:

9-22 Program Loading and Dynamic Linking

1 name
Specifies the name of a shared object. Its value is a string table index.
This name can be a full pathname, a name containing'/' s which is
relative to '.', or a trailing component of the pathname to be used with
RPATH or LD LIBRARY PATH.

1 time stamp
- Contains a 32-bit time stamp. The value can be combined with the

1 checksum value and the 1 version string to form a unique
identifier for this shared object.-

1 checksum
Contains the sum of all common sizes and all string names of externally
visible symbols.

1 version
Specifies the interface version. Its value is a string table index. The
interface version is a string containing no colons. It is compared to a
colon separated string of versions pointed to by a dynamic section entry
of the shared object. Shared objects with matching names may be
considered incompatible if the interface version strings are deemed
incompatible. An index value of zero means no version string is
specified and is equivalent to the string _null.

1 flags
- Specifies a set of I-bit flags.

The 1_ flags field can have one or both of the following flags set:

LL EXACT MATCH At run time, use a unique id composed of the
1 time stamp, 1 checksum,and
I-versIon fields to demand that the run-time
dynamic shared object match exactly the shared
object used at static link time.

LL IGNORE INT VER At run time, ignore any version incompatibility
between the dynamic shared object and the
object used at static link time.

Normally, if neither LL EXACT MATCH nor
LL IGNORE INT VER bits areset, the
dynamic linker reqUires that the version of the
dynamic shared library match at least one of the
colon separated version strings indexed by the
I_version string table index.

The DT MIPS LIBLIST and DT MIPS LIBLISTNO entries of the
dynamic section describe the attributes of the shared object list section.

Program Loading and Dynamic Linking 9-23

9.3.11.2 Conflict Section (.conflict)

Each. conflict section is an array of indexes into the. dynsym section.
Each index identifies a symbol whose attributes conflict with a shared object
on which it depends, either in type or size, such that this definition preempts
the shared object's definition. The dependent shared object is identified at
static link time. The. conflict section is an array of Elf32 Conflict
elements: -

typedef Elf32_Word Elf32_Conflict;

The DT MIPS CONFLICT and DT MIPS CONFLICTNO entries of the
dynamic section describe the attributes of the conflict section.

9.3.11.3 Ordering of Sections

In order to take advantage of the quickstart capability, ordering constraints
are imposed on the • dynsym and. rel. dyn sections:

• The. dynsym section must be ordered on increasing values of the
st value field. Note that this requires the. got section to be ordered
in fue same way; it must correspond to the. dynsym section.

• The. rel. dyn section must have all local entries first, followed by the
external entries. Within these subsections, the entries must be ordered by
symbol index. This groups each symbol's relocations together.

9-24 Program Loading and Dynamic Linking

Instruction Summaries A

The tables in this appendix summarize the assembly-language instruction set:

• Table A-I summarizes the main instruction set.

• Table A-2 summarizes the floating-point instruction set.

• Table A -3 summarizes the rounding and trapping modes supported by
some floating-point instructions.

Most of the assembly-language instructions translate into single instructions
in machine code.

The tables in this appendix show the format of each instruction in the main
instruction set and the floating-point instruction set. The tables list the
instruction names and the forms of operands that can be used with each
instruction. The specifiers used in the tables to identify operands have the
following meanings:

Operand Specifier Description

address A symbolic expression whose effective value is used as an
address.

b _reg Base register. A register containing a base address to which
is added an offset (or displacement) value to produce an
effective address.

d_reg Destination register. A register that receives a value as a
result of an operation.

d_reg/s_reg One register that is used as both a destination register and a
source register.

label A label that identifies a location in a program.

no_operands No operands are specified.

offset An immediate value that is added to the contents of a base
register to calculate an effective address.

palcode A value that determines the operation performed by a PAL
instruction.

s_reg, s_regJ, s_reg2 Source registers. Registers whose contents are to be used in
an operation.

va Cexpr An expression whose value is used as an absolute value.

Operand Specifier Description

vaCimmed An immediate value that is to be used in an operation.

jhint An address operand that provides a hint of where a jrnp or
j sr instruction will transfer control.

rhint An immediate operand that provides software with a hint
about how a ret or j sr _coroutine instruction is used.

The tables in this appendix are segmented into groups of instructions that
have the same operand options; the operands specified within a particular
segment of the table apply to all of the instructions contained in that
segment.

Table A-1: Main Instruction Set Summary

Instruction

Load Address
Load Byte
Load Byte Unsigned
Load Word
Load Word Unsigned
Load Sign Extended Longword
Load Sign Extended Longword

Locked
Load Quadword
Load Quadword Locked
Load Quadword Unaligned
Load Unaligned Word
Load Unaligned Word Unsigned
Load Unaligned Longword
Load Unaligned Quadword

Store Byte
Store Word
Store Longword
Store Longword Conditional
Store Quadword,
Store Quadword Conditional
Store Quadword Unaligned
Store Unaligned Word
Store Unaligned Longword
Store Unaligned Quadword

Load Address High
Load Global Pointer

A-2 Instruction Summaries

Mnemonic

Ida
Idb
Idbu
Idw
Idwu
Idl

Idl I
Idq
Idq_1
Idq_u
uIdw
uIdwu
uIdl
uIdq

stb
stw
stl
stl c
stq
stq_c
stq_u
ustw
ustl
ustq

Idah
Idgp

Operands

d_reg, address

s_reg, address

Table A-1: (continued)

Instruction Mnemonic Operands

Load Immediate Longword Idil d_reg, vaCexpr
Load Immediate Quadword Idiq

Branch if Equal to Zero beq s_reg,label
Branch if Not Equal to Zero bne
Branch if Less Than Zero bIt
Branch if Less Than or Equal to

Zero ble
Branch if Greater Than Zero bgt
Branch if Greater Than or Equal

to Zero bge
Branch if Low Bit is Clear bIbc
Branch if Low Bit is Set bIbs

Branch br d_reg,label
Branch to Subroutine bsr label

Jump jrnp d_reg, (s_reg),jhint
Jump to Subroutine jsr d_reg,(s_reg)

(s_reg),jhint
(s_reg)
d_reg,address
address

Return from Subroutine ret d_reg,(s_reg),rhint
Jump to Subroutine Return jsr_ d_reg,(s_reg)

coroutine
d_reg,rhint
d_reg
(s_reg),rhint
(s_reg)
rhint
no_operands

Clear cIr d_reg

Absolute Value Longword absl s_reg,d_reg
Absolute Value Quadword absq d_reg/s_reg
Move rnov vaCimmed,d_reg
Negate Longword (without

overflow) negl
Negate Longword (with overflow) negIv
Negate Quadword (without

overflow) negq
Negate Quadword (with overflow) negqv
Logical Complement (NOT) not

Instruction Summaries A-3

Table A-1: (continued)

Instruction

Sign-Extension Longword

Add Longword (without overflow)
Add Longword (with overflow)
Add Quadword (without overflow)
Add Quadword (with overflow)
Scaled Longword Add by 4
Scaled Quadword Add by 4
Scaled Longword Add by 8
Scaled Quadword Add by 8
Compare Signed Quadword Equal
Compare Signed Quadword Less

Than
Compare Signed Quadword Less

Than or Equal
Compare Unsigned Quadword Less

Than
Compare Unsigned Quadword Less

Than or Equal
Multiply Longword (without

overflow)
Multiply Longword (with overflow)
Multiply Quadword (without

overflow)
Multiply Quadword (with overflow)
Subtract Longword (without

overflow)
Subtract Longword (with overflow)
Subtract Quadword (without

overflow)
Subtract Quadword (with overflow)
Scaled Longword Subtract by 4
Scaled Quadword Subtract by 4
Scaled Longword Subtract by 8
Scaled Quadword Subtract by 8
Unsigned Quadword Multiply High
Divide Longword
Divide Longword Unsigned
Divide Quadword
Divide Quadword Unsigned
Longword Remainder
Longword Remainder Unsigned
Quadword Remainder
Quadword Remainder Unsigned
Logical Product (AND)
Logical Sum (OR)

A-4lnstruction Summaries

Mnemonic

sextl

addl
addlv
addq
addqv
s4addl
s4addq
s8addl
s8addq
cmpeq

cmplt

cmple

cmpult

cmpule

mull
mullv

mulq
mulqv

subl
sublv

subq
subqv
s4subl
s4subq
s8subl
s8subq
umulh
divl
divlu
divq
divqu
reml
remlu
remq
remqu
and
bis

Operands

(see previous page)

s_regJ,s_reg2,d_reg
d_reg/s_reg J ,s_reg2
s _reg J, vaLimmed,d_reg
d_reg/s_regJ, vaLimmed

Table A-1: (continued)

Instruction Mnemonic Operands

Logical Sum (OR) or (see previous page)
Logical Difference (XOR) xor
Logical Product with Complement

(ANDNOT) bie
Logical Product with Complement

(ANDNOT) and not
Logical Sum with Complement

(ORNOT) ornot
Logical Equivalence (XORNOT) eqv
Logical Equivalence (XORNOT) xornot
Move if Equal to Zero emoveq
Move if Not Equal to Zero emovne
Move if Less Than Zero emovlt
Move if Less Than or Equal to Zero emovle
Move if Greater Than Zero emovgt
Move if Greater Than or Equal to

Zero emovge
Move if Low Bit Clear emovlbe
Move if Low Bit Set emovlbs
Shift Left Logical sll
Shift Right Logical srI
Shift Right Arithmetic sra
Compare Byte empbge
Extract Byte Low extbl
Extract Word Low extwl
Extract Longword Low extll
Extract Quadword Low extql
Extract Word High extwh
Extract Longword High extlh
Extract Quadword High extqh
Insert Byte Low insbl
Insert Word Low inswl
Insert Longword Low insll
Insert Quadword Low insql
Insert Word High inswh
Insert Longword High inslh
Insert Quadword High insqh
Mask Byte Low mskbl
Mask Word Low mskwl
Mask Longword Low mskll
Mask Quadword Low mskql
Mask Word High mskwh
Mask Longword High msklh
Mask Quadword High mskqh
Zero Bytes zap
Zero Bytes NOT zapnot

Instruction Summaries A-5

Table A-1: (continued)

Instruction

Call Privileged Architecture Library

Prefetch Data
Prefetch Data, Modify Intent

Read Process Cycle Counter

No Operation
Universal No Operation
Trap Barrier
Exception Barrier
Memory Barrier
Write Memory Barrier

Mnemonic

fetch
fetch ro

rpcc

nap
unap
trapb
excb
rob
wmb

Operands

palcode

address

A number of the floating-point instructions in Table A-2 support qualifiers
that control rounding and trapping modes. Table notes identify the qualifiers
that can be used with a particular instruction. Qualifiers are appended as
suffixes to the particular instructions that support them, for example, the
instruction cvtdg with the sc qualifier would be coded cvtdgsc. The
qualifier suffixes consist of one or more characters, with each character
identifying a particular rounding or trapping mode. Table A-3 defines the
rounding or trapping modes associated with each character.

Table A-2: Floating-Point Instruction Set Summary

Instruction Mnemonic Operands

Load F _Floating Idf d_reg, address
Load G_Floating (Load D_Floating) Idg
Load S_Floating (Load Longword) Ids
Load T_Floating (Load Quadword) Idt

Store F _Floating stf s_reg, address
Store G_Floating (Store D_Floating) stg
Store S_Floating (Store Longword) sts
Store T_Floating (Store Quadword) stt

Load Immediate F _Floating Idif d_reg, vaCexpr
Load Immediate D _Floating Idid
Load Immediate G_Floating Idig
Load Immediate S_Floating Idis
Load Immediate T_Floating Idit

A-6 Instruction Summaries

Table A-2: (continued)

Instruction

Branch Equal to Zero
Branch Not Equal to Zero
Branch Less Than Zero
Branch Less Than or Equal to Zero
Branch Greater Than Zero
Branch Greater Than or Equal to Zero

Floating Clear

Floating Move
Floating Negate
Floating Absolute Value
Negate F _FloatingC

Negate G_FloatingC

Negate S_Floatingd

Negate T_Floatingd

Copy Sign
Copy Sign Negate
Copy Sign and Exponent
Move if Equal to Zero
Move if Not Equal to Zero
Move if Less Than Zero
Move if Less Than or Equal to Zero
Move if Greater Than Zero
Move if Greater Than or Equal to Zero
Add F _Floatinga

Add G_Floatinga

Add S_Floatingb

Add T _Floatingb

Compare G_Floating EqualC

Compare G_Floating Less Thanc

Compare G_Floating Less Than or EqualC

Compare T_Floating Equald

Compare T_Floating Less Thand

Compare T_Floating Less Than or Equald

Compare T_Floating Unorderedd

Divide F _Floatinga

Divide G_Floatinga

Divide S_Floatingb

Divide T_Floatingb

Multiply F _Floatinga

Multiply G_Floatinga

Multiply S_Floatingb

Multiply T_Floatingb

Mnemonic

fbeq
fbne
fblt
fble
fbgt
fbge

fclr

fmov
fneg
fabs
negf
negg
negs
negt

cpys
cpysn
cpyse
fcmoveq
fcmovne
fcmovlt
fcmovle
fcmovgt
fcmovge
addf
addg
adds
addt
cmpgeq
cmpglt
cmpgle
cmpteq
cmptlt
cmptle
cmptun
divf
divg
divs
divt
mulf
mulg
muls
mult

Operands

s_reg,label
label

s_reg,d_reg
d_reg/s_reg

s_regJ,s_reg2,d_reg
d_reg/s_reg J ,s_reg2

Instruction Summaries A-7

Table A-2: (continued)

Instruction

Subtract F _Floating a
Subtract G_Floatinga

Subtract S_Floatingb

Subtract T _Floatingb

Convert Quadword to Longworde

Convert Longword to Quadword
Convert G_Floating to Quadwordf

Convert T_Floating to Quadwordg

Convert Quadword to F _Floatingh

Convert Quadword to G_Floatingh

Convert Quadword to S_Floatingi

Convert Quadword to T_Floatingi

Convert D _Floating to G_Floatinga

Convert G_Floating to D _Floatinga

Convert G_Floating to F _Floatinga

Convert T_Floating to S_Floatingb

Convert S_Floating to T_FloatingC

Move From FP Control Register

Move To FP Control Register

Floating No Operation

Table notes:

a. C,U,UC, s, SC, su, suc

Mnemonic

subf
subg
subs
subt

cvtql
cvtlq
cvtgq
cvttq
cvtqf
cvtqg
cvtqs
cvtqt
cvtdg
cvtgd
cvtgf
cvtts
cvtst

fnop

Operands

(see previous page)

s_reg,d_reg
d_reg/s_reg

b. c,m,d,u,uc,um,ud, su, suc, sum, sud,sui, suic, suim, suid

c. s

d. su

e. sv,v

f. C,V,VC, s, sc, SV, svc

g. C,V,VC, sV,svc,svi,svic,d,vd, svd, svid

h. C

i. c,m,d, sui,suic, suim,suid

A-8 I nstruction Summaries

Table A-3: Rounding and Trapping Modes

Suffix Description

(no suffix) Normal rounding
c Chopped rounding
d Dynamic rounding
m Minus infinity rounding
s Software completion
u Underflow trap enabled
v Integer overflow trap enabled
i Inexact trap enabled

Instruction Summaries A-9

32-Bit Considerations B

The Alpha AXP architecture is a quadword (64-bit) architecture, with limited
backward compatibility for longword (32-bit) operations. The Alpha AXP
architecture's design philosophy for longword operations is to use the
quadword instructions wherever possible and to include specialized longword
instructions for high-frequency operations.

B.1 Canonical Form
Longword operations deal with longword data stored in canonical form in
quadword registers. The canonical form has the longword data in the low 32
bits (0-31) of the register, with bit 31 replicated in the high 32 bits (32-63).
Note that the canonical form is the same for both signed and unsigned
longword data.

8.1.1 Canonical Form Operands
To create a canonical form operand from longword data, use the ldl,
ldl_l, or uldl instruction.

To create a canonical form operand from a constant, use the ldil
instruction. The ldil instruction is a macro instruction that expands into a
series of instructions, including the Ida and ldah instructions.

B.2 Longword Instructions
The Alpha architecture includes the following longword instructions:

• Load Longword (ldl)

•

•

•
•
•

•

Load Longword Locked (ldl_l)

Store Longword (stl)

Store Longword Conditional (stl_ c)

Add Longword (addl, addlv)

Subtract Longword (subl, subl v)

Multiply Longword (mull, mull v)

• Scaled Longword Add (s4addl, s8addl)

• Scaled Longword Subtract (s4 subl, s8subl)

In addition, the assembler provides the following longword macro
instructions:

• Divide Longword (divl, divlu)

• Remainder Longword (reml, remlu)

• Negate Longword (negl, neglv)

• Unaligned Load Longword (uldl)

• Load Immediate Longword (ldil)

• Absolute Value Longword (absl)

• Sign-Extension Longword (sextl)

Alllongword instructions, with the exception of stl and stl c, generate
results in canonical form. -

All longword instructions that have source operands produce correct results
regardless of whether the data items in the source registers are in canonical
form.

See Chapter 3 for a detailed description of the longword instructions.

B.3 Quadword Instructions for Longword Operations
The following quadword instructions, if presented with two canonical
longword operands, produce a canonicallongword result:

• Logical AND (and)

• Logical OR (bis)

• Logical Exclusive OR (xor)

• Logical OR NOT (ornot)

• Logical Equivalence (eqv)

• Conditional Move (cmovxx)

• Compare (cmpxx)

• Conditional Branch (bxx)

• Arithmetic Shift Right (sra)

Note that these instructions, unlike the longword instructions, must have
operands in canonical form to produce correct results.

See Chapter 3 for a detailed description of the quadword instructions.

8-2 32-Bit Considerations

8.4 Logical Shift Instructions
No instructions, either machine or macro, exist for performing logical shifts
on canonical longwords.

To perform a logical shift left, the following instruction sequence can be
used:
sll $rx, xx, $ry
addl $ry, 0, $ry

noncanonical result
sign-extend bit-31

To perform a logical shift right, the following instruction sequence can be
used:

noncanonical result zap $rx, OxfO, $ry
srI $ry, xx, $ry
addl $ry, 0, $ry

if xx >= 1, bring in zeros
sign-extend bit-31

Note that the addl instruction is not needed if the shift count in the previous
sequence is guaranteed to be non-zero.

8.5 Conversions to Quadword
A signed longword value in canonical form is also a proper signed quadword
value and no conversions are needed.

An unsigned longword value in canonical form is not a proper unsigned
quad word value. To convert an unsigned longword to a quadword, the
following instruction sequence can be used:
zap $rx, oxfO, $ry # clear bits 32-63

8.6 Conversions to Longword
To convert a quadword value to either a signed or unsigned longword, the
following instruction sequence can be used:
addl $rx, 0, $ry # sign-extend bit-31

32-Bit Considerations 8-3

Basic Machine Definition C

The assembly-language instructions described in this book are a superset of
the actual machine-code instructions. Generally, the assembly-language
instructions match the machine-code instructions; however, in some cases the
assembly-language instruction are macros that generate more than one
machine-code instruction (the division instructions in assembly language are
examples). This appendix describes the assembly-language instructions that
generate more than one machine-code instruction.

You can, in most instances, consider the assembly-language instructions as
machine-code instructions; however, for routines that require tight coding for
performance reasons, you must be aware of the assembly-language
instructions that generate more than one machine-code instruction.

C.1 Implicit Register Use
Register $ 28 ($ at) is reserved as a temporary register for use by the
assembler.

Some assembly-language instructions require additional temporary registers.
For these instructions, the assembler uses one or more of the general-purpose
temporary registers (to - t12). The following table lists the instructions
that require additional temporary registers and the specific registers that they
use:

Instruction

Idb
Idbu
Idw
Idwu
stb
stw
ustw
ustl
ustq
uldw
uldwu
uldl
uldq
divl

Registers Used

AT,t9
AT,t9
AT,t9
AT,t9
AT,t9,tlO
AT,t9,tlO
AT,t9,tlO,tll,t12
AT,t9,tlO,tll,t12
AT,t9,tlO,tll,t12
AT,t9,tlO
AT,t9,tlO
AT,t9,tlO
AT,t9,tlO
AT,t9,tlO,tll,t12

Instruction

divq
divlu
divqu
reml
remq
remlu
remqu

Registers Used

AT,t9,tIO,tll,tI2
AT,t9,tIO,tll,tI2
AT,t9,tIO,tll,tI2
AT,t9,tIO,tll,tI2
AT,t9,tIO,tll,tI2
AT,t9,tIO,tll,tI2
AT,t9,tIO,tll,tI2

The registers that equate to the software names (from regdef . h) in the
preceding table are as follows:

Software Register
Name

AT $28 or $at
t9 $23
tlO $24
tIl $25
tl2 or pv $27

Note

The di v and rem instructions destroy the contents of t 12 only
if the third operand is a register other than t 12. See Section C.5
for more details.

C.2 Addresses
If you use an address as an operand and it references a data item that does
not have an absolute address in the range -32768 to 32767, the assembler
may generate a machine-code instruction to load the address of the data (from
the literal address section) into $at.

The assembler's ldgp (load global pointer) instruction generates an lda and
ldah instruction. The assembler requires the ldgp instruction because
ldgp couples relocation information with the instruction.

C.3 Immediate Values
If you use an immediate value as an operand and the immediate value falls
outside the range -32768 to 32767 for the ldil and ldiq instructions or
the range 0 - 255 for other instructions, multiple machine instructions are

C-2 Basic Machine Definition

generated to load the immediate value into the destination register or Sat.

C.4 Load and Store Instructions

There are no single machine-code instructions for loading and storing
unaligned data or data less than 32 bits. The following assembler
instructions generate multiple machine instructions:

• Load Byte (ldb)

• Load Byte Unsigned (ldbu)

• Load Word (ldw)

• Load Word Unsigned (ldwu)

Unaligned Load Word (uldw)

• Unaligned Load Word Unsigned (u 1 dwu)

• Unaligned Load Longword (uldl)

• Unaligned Load Quadword (uldq)

• Store Byte (stb)

• Store Word (stw)

• Unaligned Store Word (ustw)

• Unaligned Store Longword (ustl)

• Unaligned Store Quadword (ustq)

Signed loads may require one more instruction than an unsigned load.

c.s Integer Arithmetic Instructions
Multiply operations using constant powers of two are turned into s 11 or
scaled add instructions.

There are no machine instructions for performing integer division (di vI,
divlu, divq, and divqu) or remainder operations (reml, remlu, remq,
and remqu). The machine instructions generated for these assembler
instructions depend on the operands specified on the instructions.

Division and remainder operations involving constant values are replaced by
an instruction sequence that depends on the data type of the numerator and
the value of the constant.

Division and remainder operations involving nonconstant values are replaced
with a procedure call to a library routine to perform the operation. The library
routines are in the C run-time library (libc). The library routines use a
nonstandard parameter passing mechanism. The first operand is passed in

Basic Machine Definition C-3

register t 1 0 and the second operand is passed in t 11. The result is returned
in t 12. If the operands specified are other than those just described, the
assembler moves them to the correct registers. The library routines expect the
return address in t9; therefore, a routine that uses divide instructions does
not need to save register ra just because it uses divide instructions.

The absl and absq (absolute value) instructions generate two machine
instructions.

C.6 Floating-Point Load Immediate Instructions

C.7

There are no floating-point instructions that accept an immediate value
(except for 0.0). Whenever the assembler encounters a floating-point load
immediate instruction, the immediate value is stored in the data section and a
load instruction is generated to load the value.

One-to-One Instruction Mappings
Some assembler instructions generate single machine instructions. The
following table lists these assembler instructions and their equivalent
machine instructions:

Assembler Instruction Machine Instruction

andnot $rx,$ry,$rz bie $rx,$ry,$rz
elr $rx bis $31,$31,$rx
fabs $fx,$fy epys $f31,$fx,$fy
felr $fx epys $f31,$f31,$fx
fmov $fx,$fy epys $fx,$fx,$fy
fneg $fx,$fy epysn $fx,$fx,$fy
fnop epys $f31,$f31,$f31
mov $rx,$ry bis $rx,$rx,$ry
mov vaCimmed, $ rx bis $ 31, vaCimmed, $rx
negf $fx,$fy subf $f31,$fx,$fy
negfs $fx,$fy subfs $f31,$fx,$fy
negg $fx,$fy subg $f31,$fx,$fy
neggs $fx,$fy subgs $f31,$fx,$fy
negl $rx,$ry subl $31,$rx,$ry
neglv $rx,$ry sublv $31,$rx,$ry
negq $rx,$ry subq $31,$rx,$ry
negqv $rx,$ry subqv $31,$rx,$ry
negs $fx,$fy subs $f31,$fx,$fy
negssu $fx,$fy subssu $f31,$fx,$fy
negt $fx,$fy subt $f31,$fx,$fy
negtsu $fx,$fy subtsu $f31,$fx,$fy
nop bis $31,$31,$31
not $rx,$ry ornot $31,$rx,$ry

C-4 Basic Machine Definition

Assembler Instruction

or
sextl
unop
xornot

$rx,$ry,$rz
$rx,$ry

$rx,$ry,$rz

Machine Instruction

bis
addl
Idq_u
eqv

$rx,$ry,$rz
$rx,O,$ry
$31,O($sp)
$rx,$ry,$rz

Basic Machine Definition C-5

PALcode Instruction Summaries D

This appendix summarizes the Privileged Architecture Library (P ALcode)
instructions that are required to support an Alpha AXP system.

By including the file pal. h (use #include <alpha/pal. h» in your
assembly language program, you can use the symbolic names for the
P ALcode instructions.

0.1 Unprivileged PALcode Instructions
Table D-l describes the unprivileged P ALcode instructions.

Table 0-1: Unprivileged PALcode Instructions

Symbolic Name Number Operation and Description

PAL_bpt Ox80 Break Point Trap - switches mode to kernel
mode, builds a stack frame on the kernel stack,
and dispatches to the breakpoint code.

PAL_bugchk Ox81 Bugcheck - switches mode to kernel mode,
builds a stack frame on the kernel stack, and
dispatches to the breakpoint code.

PAL_callsys Ox83 System call - switches mode to kernel mode,
builds a callsys stack frame, and dispatches to
the system call code.

PAL_gentrap Oxaa Generate Trap - switches mode to kernel, builds
a stack frame on the kernel stack, and
dispatches to the gentrap code.

PAL imb Ox86 I-Stream Memory Barrier - makes the I-cache
coherent with main memory.

PAL_rduniq Oxge Read Unique - returns the contents of the
process unique register.

PAL_wruniq Ox9f Write Unique - writes the process unique
register.

0.2 Privileged PALcode Instructions
The privileged PALcode instructions can be called only from kernel mode.
They provide an interface to control the privileged state of the machine.

Table D-2 describes the privileged PALcode instructions.

Table 0-2: Privileged PALcode Instructions

Symbolic Name Number Operation and Description

PAL halt OxOO Halt Processor - stops normal instruction
processing. Depending on the halt action setting,
the processor can either enter console mode or
the restart sequence.

PAL_rdps Ox36 Read Process Status - return the current process
status.

PAL_rdusp Ox3a Read User Stack Pointer - reads the user stack
pointer while in kernel mode and returns it.

PAL rdval Ox32 Read System Value - reads a 64-bit per-
processor value and returns it.

PAL_rtsys Ox3d Return from System Call - pops the return
address, the user stack pointer, and the user
global pointer from the kernel stack. It then
saves the kernel stack pointer, sets mode to user
mode, enables interrupts, and jumps to the
address popped off the stack.

PAL rti Ox3f Return from Trap, Fault, or Interrupt - pops
certain registers from the kernel stack. If the
new mode is user mode, the kernel stack is
saved and the user stack is restored.

PAL_swpctx Ox30 Swap Privileged Context - saves the current
process data in the current process control block
(PCB). Then it switches to the PCB and loads
the new process context.

PAL_swpipl Ox35 Swap IPL - returns the current IPL value and
sets the IPL.

PAL tbi Ox33 TB Invalidate - removes entries from the
instruction and data translation buffers when the
mapping entries change.

0-2 PALcode Instruction Summaries

Table 0-2: (continued)

Symbolic Name Number Operation and Description

PAL whami Ox3c Who Am I - returns the process number for the
current processor. The processor number is in
the range 0 to the number of processors minus
one (O .. numproc-l) that can be configured into
the system.

PAL wrfen Ox2b

PAL_wrkgp Ox37

PAL_wrusp Ox38

PAL wrval Ox3!

PAL_wrvptptr Ox2d

Write Floating-Point Enable - writes a bit to the
floating-point enable register.

Write Kernel Global Pointer - writes the kernel
global pointer internal register.

Write User Stack Pointer - writes a value to the
user stack pointer while in kernel mode.

Write System Value - writes a 64-bit per­
processor value.

Write Virtual Page Table Pointer - writes a
pointer to the virtual page table pointer (vptptr).

PALcode Instruction Summaries 0-3

A

absl instruction, 3-10, 3-11

absq instruction, 3-10, 3-11

addf instruction, 4-11, 4-13

addg instruction, 4-11, 4-13

addl instruction, 3-10, 3-12

addlv instruction, 3-10, 3-12

addq instruction, 3-10, 3-12

addqv instruction, 3-10, 3-12

addresses, C-2

addressing

formats, 2-9

adds instruction, 4-11, 4-13

addt instruction, 4-11, 4-13

.aent directive, 5-2

.alias directive, 5-2

.align directive, 5-2

and instruction, 3-19

andnot instruction, 3-19, 3-20

archive files

object files, 7-25

arithmetic instructions

descriptions of, 3-10

formats, 3-9

.ascii directive, 5-3

.asciiz directive, 5-3

assembler directives, 5-1 to 5-13

auxiliary symbol table, 8-5

auxiliary symbols, 8-18

B

base addresses

calculation and use, 9-2

basic type (bt) constants, 8-19

beq instruction, 3-25, 3-26

bge instruction, 3-25, 3-27

.bgnb directive, 5-3

bgt instruction, 3-25, 3-27

bic instruction, 3-19, 3-20

big endian

byte ordering, 1-2

binding, lazy, 9-14

bis instruction, 3-19

blbc instruction, 3-25, 3-27

bIbs instruction, 3-25, 3-27

ble instruction, 3-25, 3-26

bIt instruction, 3-25, 3-26

bne instruction, 3-25, 3-26

br instruction, 3-25, 3-27

bsr instruction, 3-25, 3-27

bt constants, 8-19

.byte directive, 5-3

Index

byte ordering

big endian, 1-2

little endian, 1-2

byte-manipulation instructions

descriptions of, 3-29

formats, 3-28

c
C programs

calling, 6-1

-S compilation option, 6-13

call_pal instruction, 3-34

calls

to position independent functions, 9-14

to programs in other languages, 6-1

chopped rounding (IEEE), 4-6

chopped rounding (V AX), 4-6

elr instruction, 3-10, 3-11

cmoveq instruction, 3-23, 3-24

cmovge instruction, 3-23, 3-24

cmovgt instruction, 3-23, 3-24

cmovlbc instruction, 3-23, 3-24

cmovlbs instruction, 3-23, 3-24

cmovle instruction, 3-23, 3-24

cmovlt instruction, 3-23, 3-24

cmovne instruction, 3-23, 3-24

cmpbge instruction, 3-29, 3-30

cmpeq instruction, 3-22

cmpgeq instruction, 4-14

cmpgle instruction, 4-14, 4-15

cmpglt instruction, 4-14, 4-15

cmple instruction, 3-22

cmplt instruction, 3-22

cmpteq instruction, 4-14

cmptle instruction, 4-14, 4-15

Index-2

cmptlt instruction, 4-14, 4-15

cmptun instruction, 4-14, 4-15

cmpule instruction, 3-22, 3-23

cmpult instruction, 3-22

code optimization, 6-1

.comm directive, 5-4

comments, 2-1

compilation options

-S option, 6-13

.conflict section, 9-24

constants

floating-point, 2-2

scalar, 2-2

string, 2-3

control instructions

descriptions of, 3-26

formats, 3-25

counters, 6-4

cpys instruction, 4-15, 4-16

cpyse instruction, 4-15, 4-16

cpysn instruction, 4-15, 4-16

cvtdg instruction, 4-11, 4-13

cvtgd instruction, 4-11, 4-13

cvtgf instruction, 4-11, 4-13

cvtgq instruction, 4-11, 4-13

cvtlq instruction, 4-11, 4-13

cvtqf instruction, 4-11, 4-13

cvtqg instruction, 4-11, 4-13

cvtql instruction, 4-11, 4-13

cvtqs instruction, 4-11, 4-13

cvtqt instruction, 4-11, 4-13

cvtst instruction, 4-11, 4-13

cvttq instruction, 4-11, 4-13

cvtts instruction, 4-11, 4-13

D
.d_floating directive, 5-4

.data directive, 5-4

data segments

sections contained in, 9-2

data types, 2-7

dense numbers, 8-4

directives

assembler directives, 5-1 to 5-13

divf instruction, 4-11, 4-13

divg instruction, 4-11, 4-13

divl instruction, 3-10, 3-15

divlu instruction, 3-10, 3-16

divq instruction, 3-10, 3-16

divqu instruction, 3-10, 3-17

divs instruction, 4-11, 4-13

divt instruction, 4-11, 4-13

.double directive, 5-4

dynamic linking, 9-4

dynamic loader

use, 9-4

dynamic relocation section

See .rel.dyn section

dynamic rounding mode, 4-3

.dynamic section

contents, 9-5

ordering for quickstart, 9-24

dynamic string section

See .dynstr section

dynamic symbol section

See .dynsym section

.dynstr section, 9-21

.dynsym section, 9-16

relationship with .got section, 9-18

E

.edata directive, 5-4

.eflag directive, 5-4

.end directive, 5-5

.endb directive, 5-5

.endr directive, 5-5

.ent directive, 5-5

eqv instruction, 3-19, 3-20

.err directive, 5-5

excb instruction, 3-34

exceptions

floating -point, 1-6

main processor, 1-6

executable files

loading considerations, 9-3

offset alignment, 9-3

expression operators, 2-6

expressions

operator precedence rules, 2-7

type propagation rules, 2-8

extbl instruction, 3-29, 3-30

.extern directive, 5-5

external string table, 8-6

external symbol table, 8-22

external symbols, 8-8

extlh instruction, 3-29, 3-31

extll instruction, 3-29, 3-30

extqh instruction, 3-29, 3-31

extql instruction, 3-29, 3-30

extwh instruction, 3-29, 3-31

extwl instruction, 3-29, 3-30

Index-3

F

.Cfloating directive, 5-5

fabs instruction, 4-11, 4-12

fbeq instruction, 4-17

fbge instruction, 4-17

fbgt instruction, 4-17

fble instruction, 4-17

fbIt instruction, 4-17

fbne instruction, 4-17

felr instruction, 4-11, 4-12

fcmoveq instruction, 4-15, 4-16

fcmovge instruction, 4-15, 4-16

fcmovgt instruction, 4-15, 4-16

fcmovle instruction, 4-15, 4-16

fcmovlt instruction, 4-15, 4-16

fcmovne instruction, 4-15, 4-16

fetch instruction, 3-34

fetch_ill instruction, 3-34, 3-35

file descriptor table, 8-21, 8-6

.file directive, 5-6

file header

file header magic field (Cmagic), 7-6

flags (s_flags), 7-8

.float directive, 5-6

floating point

rounding mode qualifiers, 4-7

trapping mode qualifiers, 4-7

floating-point

constants, 2-2

floating-point arithmetic instructions

descriptions of, 4-12

formats, 4-10

floating-point control instructions

descriptions of, 4-17

formats, 4-17

Index-4

floating-point control register, 4-3

floating-point instruction set, 4-1

floating-point load instructions

descriptions of, 4-10

formats, 4-9

floating-point move instructions

descriptions of, 4-16

formats, 4-15

floating-point relational instructions

descriptions of, 4-14

formats, 4-14

floating-point rounding modes, 4-5

floating-point special instructions

descriptions of, 4-18

formats, 4-17

floating-point store instructions

descriptions of, 4-10

formats, 4-9

.fmask directive, 5-6

fmov instruction, 4-15, 4-16

fnt;g instruction, 4-11, 4-12

fnop instruction, 4-18

FPCR

floating-point control register, 4-3

.frame directive, 5-6

functions

calling position-independent functions, 9-14

G

.~floating directive, 5-6

.gjsrlive directive, 5-7

.gjsrsaved directive, 5-7

global offset table

See .got section

.globl directive, 5-7

.got section, 9-13

relationship with .dynsym section, 9-18

relationship with .Iita section, 7-11

.gprel32 directive, 5-7

.gretlive directive, 5-7

H
.hash section, 9-20

hash table section

See .hash section

identifiers, 2-1

immediate values, C-2

implicit register use, C-l

infinity

rounding toward plus or minus infinity, 4-6,

4-7

insbl instruction, 3-29, 3-31

inslh instruction, 3-29, 3-32

insll instruction, 3-29, 3-31

insqh instruction, 3-29, 3-32

insql instruction, 3-29, 3-32

instruction summaries, A-I

inswh instruction, 3-29, 3-32

inswl instruction, 3-29, 3-31

integer arithmetic instructions, C-3

J
jmp instruction, 3-25, 3-27

jsr instruction, 3-25, 3-27

jsr_coroutine instruction, 3-25, 3-28

K

keyword statements, 2-5

L

.lab directive, 5-7

label definitions, 2-5

language interfaces, 6-2

lazy binding, 9-14

.lcomm directive, 5-7

Ida instruction, 3-2, 3-4

ldah instruction, 3-3, 3-7

ldb instruction, 3-2, 3-4

Idbu instruction, 3-2, 3-4

ldf instruction, 4-10, 4-9

ldg instruction, 4-10, 4-9

Idgp instruction, 3-3, 3-7

Idid instruction, 4-10, 4-9

Idif instruction, 4-10, 4-9

Idig instruction, 4-10, 4-9

Idil instruction, 3-3, 3-7

Idiq instruction, 3-3, 3-6, 3-7

Idis instruction, 4-10, 4-9

Idit instruction, 4-10, 4-9

Idl instruction, 3-2, 3-5

Idel instruction, 3-2, 3-5

Idq instruction, 3-2, 3-5

Idq_1 instruction, 3-2, 3-5

ldq_u instruction, 3-2, 3-6

Ids instruction, 4-10, 4-9

Idt instruction, 4-10, 4-9

Idw instruction, 3-2, 3-4

Idwu instruction, 3-2, 3-4

.liblist section, 9-22

line number table, 8-3

Index-5

linkage conventions

examples, 6-10

general, 6-3

language interfaces, 6-13

memory allocation, 6-16

linker defined symbols, 7-25

linking, dynamic, 9-4

.lita section, 6-5

relationship with .got section, 7-11

little endian

byte ordering, 1-2

.livereg directive, 5-8

load and store instructions, 3-2, C-3

load instructions

descriptions of, 3-3

formats, 3-2

loader, default, 9-4

loader, dynamic

use, 9-4

loading considerations, 9-3

loading programs, 9-3

.loc directive, 5-8

local string table, 8-6

local symbol table, 8-4

logical instructions

descriptions of, 3-19

formats, 3-18

.long directive, 5-8

M

.mask directive, 5-9

mb instruction, 3-34, 3-35

mCfpcr instruction, 4-18

minus infinity

rounding toward (IEEE), 4-6

Index-6

mnemonic

definition, 2-5

mov instruction, 3-23, 3-24

move instructions

descriptions of, 3-23

formats, 3-23

mskbl instruction, 3-29, 3-32

msklh instruction, 3-29, 3-33

mskll instruction, 3-29, 3-32

mskqh instruction, 3-29, 3-33

mskql instruction, 3-29, 3-33

mskwh instruction, 3-29, 3-33

mskwl instruction, 3-29, 3-32

mCfpcr instruction, 4-18

mulf instruction, 4-11, 4-13

mulg instruction, 4-11, 4-13

mull instruction, 3-10, 3-13

mull v instruction, 3-10, 3-13

mulq instruction, 3-10, 3-13

mulqv instruction, 3-10, 3-14

muls instruction, 4-11, 4-13

mult instruction, 4-11, 4-13

N
negf instruction, 4-11, 4-12

negg instruction, 4-11, 4-12

negl instruction, 3-10, 3-11

neglv instruction, 3-10, 3-11

negq instruction, 3-10, 3-11

negqv instruction, 3-10, 3-11

negs instruction, 4-11, 4-12

negt instruction, 4-11,4-12

NMAGIC files, 7-6

segment access permissions, 9-2

.noalias directive, 5-9

nop instruction, 3-34, 3-35

normal rounding (IEEE)

unbiased round to nearest, 4-6

normal rounding (V AX)

biased,4-6

not instruction, 3-1 9

null statements, 2-5

o
object file format, 7-1

object file types

demand paged (ZMAGIC) files, 7-22

impure format (OMAGIC) files, 7-20

shared text (NMAGIC) files, 7-21

object files

See also executable files

See also shared object files

archived object files, 7-25

data segment contents, 9-2

loading

boundary constraints, 7-20

description, 7-24

text segment contents, 9-2

OMAGIC files, 7-20

segment access permissions, 9-2

operator evaluation order

precedence rules, 2-7

operators, expression, 2-6

optimization

optimizing assembly code, 6-1

optimization symbol table, 8-5

.option directive, 5-9

optional header, 7-5

optional header magic field (magic), 7-6

or instruction, 3-19, 3-20

ornot instruction, 3-19, 3-20

p

PALcode

instruction summaries, D-l

performance

optimizing assembly code, 6-1

plus infinity

rounding toward (IEEE), 4-7

position independent functions

calling, 9-14

precedence rules

operator evaluation order, 2-7

procedure descriptor table, 8-13, 8-4

program loading, 9-3

program model, 6-2

program optimization, 6-1

program segments

access permissions, 9-2

.prologue directive, 5-9

Q

.quad directive, 5-9

quickstart, 9-22

section ordering constraints, 9-24

R

.rdata directive, 5-10

register use, 6-3

registers

floating-point, 1-2, 6-4

format, 1-3

general, 1-1

integer, 1-1, 6-3

Index-7

.rel.dyn section, 9-19

ordering for quickstart, 9-24

relational instructions

descriptions of, 3-22

formats, 3-21

relative file descriptor table, 8-7

reml instruction, 3-10, 3-17

remlu instruction, 3-10, 3-17

remq instruction, 3-10, 3-18

remqu instruction, 3-10, 3-18

.repeat directive, 5-10

ret instruction, 3-25, 3-28

rounding mode

chopped rounding (IEEE), 4-6

chopped rounding (V AX), 4-6

dynamic rounding qualifier, 4-3

floating-point instruction qualifiers, 4-7

floating-point rounding modes, 4-5 to 4-7

FPCR control, 4-3

normal rounding (IEEE, unbiased), 4-6

normal rounding (V AX, biased), 4-6

rounding toward minus infinity (IEEE), 4-6

rounding toward plus infinity (IEEE), 4-7

rpcc instruction, 3-34, 3-35

s
-s compilation option, 6-13

.s files, 6-13

s4addl instruction, 3-10

s8addl instruction, 3-10

s4addl instruction, 3-12

s8addl instruction, 3-13

s4addq instruction, 3-10

s8addq instruction, 3-10

s4addq instruction, 3-13

Index-8

s8addq instruction, 3-13

.s_floating directive, 5-11

s4subl instruction, 3-10

s8subl instruction, 3-10

s4subl instruction, 3-15

s8subl instruction, 3-15

s4subq instruction, 3-10

s8subq instruction, 3-10

s4subq instruction, 3-15

s8subq instruction, 3-15

.save_ra directive, 5-10

sc constants, 8-17

scalar constants, 2-2

.sdata directive, 5-10

section data, 7-10, 7-7

section headers

flags (s_flags), 7-8

section name (s_name), 7-7

section relocation information

assembler and linker processing, 7-15

relocation entry, 7-12

relocation table entry, 7-15

segments

access permissions for program segments,

9-2

alignment of data segements, 9-3

alignment of text segments, 9-3

segments, text

sections contained in, 9-2

.set directive, 5-10

sextl instruction, 3-10, 3-12

shared object files

dependencies, 9-11

dynamic linking, 9-4

dynamic section, 9-5

initialization and termination functions, 9-22

shared object files (cont.)

quickstart, 9-22

shared object list section

See .liblist section

shift instructions

descriptions of, 3-19

formats, 3-18

sll instruction, 3-19, 3-20

.space directive, 5-11

special-purpose instructions

descriptions of, 3-34

formats, 3-34

sra instruction, 3-19, 3-21

sri instruction, 3-19, 3-21

st contants, 8-16

stack frame, 6-7

statements, 2-5

stb instruction, 3-3, 3-8

stf instruction, 4-10, 4-9

stg instruction, 4-10, 4-9

stl instruction, 3-8

stl_c instruction, 3-3, 3-8

storage class (sc) constants, 8-17

store instructions

descriptions of, 3-7

formats, 3-2

stq instruction, 3-3, 3-8

stq_c instruction, 3-3, 3-8

stq_u instruction, 3-3, 3-9

string constants, 2-3

.struct directive, 5-11

sts instruction, 4-10, 4-9

stt instruction, 4-10, 4-9

stw instruction, 3-3, 3-8

subf instruction, 4-11, 4-13

subg instruction, 4-11, 4-13

subl instruction, 3-10, 3-14

sublv instruction, 3-10, 3-14

subq instruction, 3-10, 3-14

subqv instruction, 3-10, 3-14

subs instruction, 4-11, 4-13

subt instruction, 4-11, 4-13

symbol table, 8-1

format of entries, 8-8

line numbers in, 8-3

symbol type (st) constants, 8-16

symbolic equate, 5-12

symbolic header, 8-3, 8-8

T

.Lfioating directive, 5-12

.text directive, 5-12

text segments

alignment, 9-3

sections contained in, 9-2

tq constants, 8-20

trapb instruction, 3-34, 3-35

trapping mode

floating-point instruction qualifiers, 4-7

type propagation rules, 2-8

type qualifier (tq) constants, 8-20

u
.ugen directive, 5-12

uldl instruction, 3-2, 3-6

uldq instruction, 3-2, 3-7

uldw instruction, 3-2, 3-6

uldwu instruction, 3-2

umulh instruction, 3-10, 3-15

Index-9

unop instruction, 3-34, 3-35

ustl instruction, 3-3, 3-9

ustq instruction, 3-3, 3-9

ustw instruction, 3-3, 3-9

v
.verstamp directive, 5-12

.vreg directive, 5-12

w
.weakext directive, 5-12

wmb instruction, 3-34, 3-35

.word directive, 5-12

x
xor instruction, 3-19, 3-20

xornot instruction, 3-19, 3-20

z
zap instruction, 3-29, 3-33

zapnot instruction, 3-29, 3-33

ZMAGIC files, 7-22

segment access permissions, 9-2

Index-10

How to Order Additional Documentation

Technical Support
If you need help deciding which documentation best meets your needs, call 800-DIGITAL
(800-344-4825) before placing your electronic, telephone, or direct mail order.

Electronic Orders
To place an order at the Electronic Store, dial 800-234-1998 using a 1200- or 2400-bps
modem from anywhere in the USA, Canada, or Puerto Rico. If you need assistance using the
Electronic Store, call 800-DIGITAL (800-344-4825).

Telephone and Direct Mail Orders

Your Location

Continental USA,
Alaska, or Hawaii

Puerto Rico

Canada

International

Internala

Call

800-DIGITAL

809-754-7575

800-267-6215

Contact

Digital Equipment Corporation
P.O. Box CS2008
Nashua, New Hampshire 03061

Local Digital subsidiary

Digital Equipment of Canada
Attn: DECdirect Operations KA0212
P.O. Box 13000
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6

Local Digital subsidiary or
approved distributor

SSB Order Processing - NQON19
or
U. S. Software Supply Business
Digital Equipment Corporation
10 Cotton Road
Nashua, NH 03063-1260

a For internal orders, you must submit an Internal Software Order Form (EN-01740-07).

Reader's Comments DEC OSF/1
Assembly Language Programmer's Guide

AA-PS318-TE

Please use this postage-paid form to comment on this manual. If you require a written reply
to a software problem and are eligible to receive one under Software Performance Report
(SPR) service, submit your comments on an SPR form.

Thank you for your assistance.

Please rate this manual:
Accuracy (software works as manual says)
Completeness (enough information)
Clarity (easy to understand)
Organization (structure of subject matter)
Figures (useful)
Examples (useful)
Index (ability to find topic)
Page layout (easy to find information)

What would you like to see more/less of?

What do you like best about this manual?

Excellent
o
o
o
D
D
D
D
D

Good
D
D
D
D
D
D
D
D

Fair
D
D
D
D
D
D
D
D

Poor
o
D
D
D
D
D
D
D

What do you like least about this manual? __________________ _

Please list errors you have found in this manual:

Page Description

Additional comments or suggestions to improve this manual:

What version of the software described by this manual are you using?

Name/Title Dept.
__________________________ Date Company

Mailing Address
Email __________ Phone ________ _

I

I

- - - - Do Not Tear - Fold Here and Tape . - .:

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
OPEN SOFTWARE PUBLICATIONS MANAGER
ZK03-3/Y32
110 SPIT BROOK ROAD
NASHUA NH 03062-9987

1IIIIIIIIhllllllih IIlhlhlllllllllllh hllllllill

- - - Do Not Tear - Fold Here

No Postage

Necessary

if Mailed in the

United States

Cut
Along
Dotted
Line

Reader's Comments DEC OSF/1
Assembly Language Programmer's Guide

AA-PS318-TE

Please use this postage-paid form" to comment on this manual. If you require a written reply
to a software problem and are eligible to receive one under Software Performance Report
(SPR) service, submit your comments on an SPR form.

Thank you for your assistance.

Please rate this manual:
Accuracy (software works as manual says)
Completeness (enough information)
Clarity (easy to understand)
Organization (structure of subject matter)
Figures (useful)
Examples (useful)
Index (ability to find topic)
Page layout (easy to find information)

Excellent
o o
o
o
o
o
o
o

Good
o
o
o
o
o o
o
o

Fair
o
o
o o
o
o
o
o

Poor
o
o
o
o
o
o o
o

What would you like to see more/less of? __________________ _

What do you like best about this manual? __________________ _

What do you like least about this manual? _________________ _

Please list errors you have found in this manual:

Page Description

Additional comments or suggestions to improve this manual:

What version of the software described by this manual are you using? ______ _

Name/Title
Company
Mailing Address

Dept.
Date

___________ Email _________ _ Phone ______ _

- - - - Do Not Tear - Fold Here and Tape . -

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
OPEN SOFTWARE PUBLICATIONS MANAGER
ZK03-3N32
110 SPIT BROOK ROAD
NASHUA NH 03062-9987

1IIIIIIIIIIIIIIIIIIIIIIh IIlIlIhllllli h hll h 11111

- - - Do Not Tear - Fold Here

No Postage

Necessary

if Mailed in the

United States

Cut
Along
Dotte(
Line

