
DEC aSP/1

mamaoma Progr~mming Support Tools

Part Number: AA-PS32B-TE

DEC OSF/1

Programming Support Tools

Order Number: AA-PS32B-TE

February 1994

Product Version: DEC OSF/1 Version 2.0 or higher

This manual describes commands and utilities for assisting in program
development and in building and installing software product kits.

digital equipment corporation
Maynard, Massachusetts

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to
restrictions as set forth in subparagraph (c) (1) (ii).

Digital Equipment Corporation makes no representations that the use of its products in the
manner described in this publication will not infringe on existing or future patent rights, nor
do the descriptions contained in this publication imply the granting of licenses to make, use,
or sell equipment or software in accordance with the description.

Possession, use, or copying of the software described in this publication is authorized only
pursuant to a valid written license from Digital or an authorized sub licensor.

© Digital Equipment Corporation 1993, 1994
All rights reserved.

The following are trademarks of Digital Equipment Corporation:

ALL-IN-I, Alpha AXP, AXP, Bookreader, CDA, DDIS, DEC, DEC FUSE, DECnet,
DEC station, DEC system, DECUS, DECwindows, DTIF, MASSBUS, Micro V AX, Q-bus,
ULTRIX, ULTRIX Mail Connection, ULTRIX Worksystem Software, UNIBUS, VAX,
V AXstation, VMS, XUI, and the DIGITAL logo.

NFS is a registered trademark of Sun Microsystems, Inc. Open Software Foundation, OSF,
OSF/l, OSFlMotif, and Motif are trademarks of the Open Software Foundation, Inc. UNIX is
a registered trademark licensed exclusively by X/Open Company Limited.

All other trademarks and registered trademarks are the property of their respective holders.

Contents

About This Manual

Audience xv

Organization .. xv

Related Documents xvi

Reader's Comments

Conventions

1 Finding Information with Regular Expressions and the

1.1

grep Commands

Forming Regular Expressions

1.1.1
1.1.2
1.1.3
1.1.4

Matching Multiple Occurrences of a Regular Expression
Matching Only Selected Characters
Specifying Multiple Regular Expressions
Special Collating Considerations in Regular Expressions

1.2 U sing the grep Commands

2 Matching Patterns and Processing Information with
awk

2.1

2.2

2.3

Running the awk Program

Printing in awk .. .

Using Variables in awk

xvi

xvii

1-1

1-3
1-5
1-5
1-5

1-6

2-2

2-5

2-6

2.4 Performing Actions Before or After Processing the Input 2-8

2.5 U sing Regular Expressions as Patterns 2-8

2.6 U sing Relational Expressions and Combined Expressions as Patterns . 2-9

2.7 Using Pattern Ranges ... 2-10

2.8 Actions in awk .. 2-11

2.9 Concatenating Strings 2-11

2.10 Using Variables in an Action .. 2-12

2.10.1 Simple Variables ... 2-12
2.10.2 Field Variables ... 2-13
2.10.3 Array Variables .. 2-13

2.11 Using Operators in an Action .. 2-14

2.12 Using Functions Within an Action ... 2-15

2.13 Using Control Structures in awk 2-18

2.14 Redirection and Pipes ... 2-20

3 Editing Files with the sed Editor

3.1

3.2

Running the sed Editor

Selecting Lines for Editing

3-1

3-4

3.3 Summary of sed Commands ... 3-6

3.4 String Replacement ... 3-12

4 Creating Input Language Analyzers and Parsers

4.1 How the Lexical Analyzer Works 4-1

4.2 Writing a Lexical Analyzer Program with lex 4-2

4.3 The lex Specification File ... 4-3

4.3.1 Defining Substitution Strings .. 4-4
4.3.2 Rules .. 4-4

4.3.2.1 Regular Expressions ... 4-5

ivContents

4.4

4.5

4.6

4.7

4.3.3
4.3.4
4.3.5
4.3.6

4.3.2.1.1 Including Blanks in an Expression 4-7
4.3.2.1.2 Other Special Characters 4-7

4.3.2.2 Matching Rules .. 4-8

4.3.2.2.1 Using Wildcard Characters to Match a String. 4-8
4.3.2.2.2 Finding Strings Within Strings 4-9

4.3.2.3 Actions

4.3.2.3.1 Null Action .. .
4.3.2.3.2 Using the Same Action for Multiple

Expressions
4.3.2.3.3 Printing a Matched String
4.3.2.3.4 Finding the Length of a Matched String
4.3.2.3.5 Getting More Input
4.3.2.3.6 Returning Characters to the Input

U sing or Overriding Standard Input/Output Routines
End-of-File Processing
Passing Code to the Generated Program
Start Conditions

4-10

4-10

4-10
4-10
4-11
4-11
4-12

4-12
4-14
4-14
4-15

Generating a Lexical Analyzer 4-15

4-16

4-18

4-19
4-20

U sing lex with yacc .. .

Creating a Parser with yacc

4.6.1 The main and yyerror Functions
4.6.2 The yylex Function .. .

The Grammar File

4.7.1 Declarations .. .

4.7.1.1 Defining Global Variables
4.7.1.2 Start Symbols
4.7.1.3 Token Numbers .. .

4.7.2 Grammar Rules

4-21

4-21

4-22
4-23
4-23

4-24

4.7.2.1 The Null String .. 4-24
4.7.2.2 End-of-Input Marker ... 4-24
4.7.2.3 Actions in yacc Parsers ... 4-25

4.7.3 Programs ... 4-26

Contents v

4.7.4 Guidelines for Using Grammar Files 4-26

4.7.4.1 Using Comments 4-27
4.7.4.2 Using Literal Strings 4-27
4.7.4.3 Guidelines for Formatting the Grammar File 4-27
4.7.4.4 Using Recursion in a Grammar File 4-28
4.7.4.5 Errors in the Grammar File 4-28

4.7.5 Error Handling by the Parser .. 4-28

4.7.5.1
4.7.5.2

Providing for Error Correcting
Clearing the Look-Ahead Token

4-29
4-30

4.8 Parser Operation 4-30

4.8.1 The shift Action 4-31
4.8.2 The reduce Action 4-31
4.8.3 Ambiguous Rules and Parser Conflicts 4-32

4.9 Turning on Debug Mode 4-34

4.10 Creating a Simple Calculator Program .. 4-35

4.10.1 The Parser Source Code ... 4-36
4.10.2 The Lexical Analyzer Source Code 4-39

5 Using m4 Macros in Your Programs

5.1 Using Macros ... 5-1

5.2 Defining Macros ... 5-2

5.2.1 Using the Quote Characters .. 5-3
5.2.2 Macro Arguments ... 5-5

5.3 U sing Other m4 Macros ... 5-6

5.3.1 Changing the Comment Characters 5-8
5.3.2 Changing the Quote Characters ... 5-9
5.3.3 Removing a Macro Definition 5-9
5.3.4 Checking for a Defined Macro .. 5-9
5.3.5 Using Integer Arithmetic ... 5-9
5.3.6 Manipulating Files .. 5-10
5.3.7 Redirecting Output 5-11

vi Contents

5.3.8
5.3.9
5.3.10
5.3.11
5.3.12

U sing System Programs in a Program
Using Unique File Names

U sing Conditional Expressions
Manipulating Strings .. .
Printing .. .

6 Revision Control: Managing Source Files with RCS or
SCCS

5-11
5-11
5-12
5-12
5-13

6.1 Version Control Concepts .. 6-3

6.2 Managing Multiple Versions of Files ... 6-6

6.3 Creating a Version Control Library .. 6-8

6.4 Using RCS ... 6-8

6.4.1 Placing New Files in an RCS Library 6-10
6.4.2 Recording File-Indentification Information with RCS 6-11
6.4.3 Getting Files from an RCS Library 6-12
6.4.4 Checking Edited Files Back into an RCS Library 6-13
6.4.5 Working with Multiple Versions of Files 6-13
6.4.6 Displaying Differences in RCS Files 6-15
6.4.7 Reporting Revision Histories of RCS Files 6-15
6.4.8 Configuration Control Concepts .. 6-17

6.5 Using SCCS ... 6-18

6.5.1 Placing New Files in an SCCS Library 6-20
6.5.2 Recording File-Identification Information with SCCS 6-21
6.5.3 Getting Files from an SCCS Library 6-22

6.5.3.1 Getting Files for Purposes Other Than Editing 6-23
6.5.3.2 Getting Files for Editing 6-23
6.5.3.3 Managing Multiple Files and New Releases 6-24

6.5.4 Checking Edited Files Back into an SCCS Library.............. 6-24
6.5.5 Working with Multiple Versions of Files 6-25
6.5.6 Displaying Differences in SCCS Files 6-26
6.5.7 Reporting Revision Histories of SCCS Files 6-27
6.5.8 Performing Administrative Functions 6-27
6.5.9 Using SCCS Options ... 6-30
6.5.10 Summary of Individual SCCS Commands 6-31

Contents vii

6.6 Functional Comparison of RCS and SCCS Commands 6-33

7 Building Programs with the make Utility

7.1

7.2

Operation of the make Utility

Description Files

7.2.1
7.2.2
7.2.3
7.2.4
7.2.5
7.2.6
7.2.7
7.2.8
7.2.9
7.2.10

Format of a Description File Entry
U sing Commands in a Description File
Preventing the make Utility from Echoing Commands
Preventing the make Utility from Stopping on Errors
Defining Default Conditions .. .
Preventing make from Deleting Files
Simple Description File .. .
Making the Description File Simpler
Defining Macros .. .

U sing Macros in a Description File

7.2.10.1
7.2.10.2

Macro Substitution
Conditional Macros

7.2.11
7.2.12

Calling the make Utility from a Description File
Internal Macros .. .

7.2.12.1
7.2.12.2
7.2.12.3
7.2.12.4
7.2.12.5

Internal Target File Name Macro
Internal Label Name Macro
Internal Younger Files Macro
Internal First Out-of-Date File Macro
Internal Current File Name Prefix Macro

7.2.13
7.2.14

How make Uses Environment Variables
Internal Rules .. .

7-2

7-3

7-4
7-5
7-6
7-6
7-7
7-7
7-7
7-8
7-8
7-9

7-9
7-12

7-13
7-13

7-14
7-14
7-15
7-15
7-15

7-15
7-16

7.2.14.1 Single Suffix Rules ... 7-18
7.2.14.2 Overriding Built-In make Macros 7-19

7.2.15 Including Other Files ... 7-20
7.2.16 Testing Description Files ... 7-20
7.2.17 Description File .. 7-21

viii Contents

8 Creating and Managing Software Product Kits

8.1

8.2

The setld Command and Its Functions

Files Used by the setld Utility

8-2

8-3

8.3 Descriptions of setld Functions 8-4

8.3.1 Loading Software 8-5
8.3.2 Configuring a Subset ... 8-6
8.3.3 Verifying a Subset .. 8-6
8.3.4 Removing Software ... 8-7

8.4 Using the File System Effectively.. 8-7

8.5

8.4.1 Using Standard Directories ... 8-7
8.4.2 Placing Layered Product Files .. 8-15

Creating Kits for the setld Utility 8-17

8-19
8-21

8.5.1
8.5.2

Creating a Source Hierarchy .. .
Creating the Kit Building Control Files

8.5.2.1
8.5.2.2

Creating the Master Inventory
Creating the Key File

8-21
8-24

8.5.3 Creating Subset Control Programs 8-27

8.5.3.1 Invoking a Subset Control Program 8-28
8.5.3.2 Managing Subset Dependencies 8-30

8.5.3.2.1
8.5.3.2.2
8.5.3.2.3
8.5.3.2.4
8.5.3.2.5
8.5.3.2.6
8.5.3.2.7

Dependency Expressions
U sing the STL_DepInit Routine
U sing the STL_DepEval Routine
U sing the STL_ArchAssert Routine
U sing the STL_LockInit Routine
U sing the STL_DepLock Routine
Using the STL_DepUnLock Routine

8-31
8-32
8-32
8-32
8-32
8-32
8-33

8.5.3.3 Using Control File Flag Bits 8-33
8.5.3.4 An Example Subset Control Program 8-33
8.5.3.5 Creating Symbolic Links for Layered Products 8-36

8.5.3.5.1 Creating Standard (Forward) Symbolic Links. 8-37
8.5.3.5.2 Creating Backward Links 8-39
8.5.3.5.3 Using the STL_LinkInit Routine 8-39
8.5.3.5.4 Using the STL_LinkBack Routine 8-39

Contents ix

8.5.4 Building Your Kit ... 8-40

8.5.4.1 The Compression Flag File 8-42
8.5.4.2 The Image Data File ... 8-42
8.5.4.3 The Subset Control Files 8-42
8.5.4.4 The Subset Inventory Files 8-43

8.5.5 Transferring Your Kit to Distribution Media 8-45

8.5.5.1 Building a Kit on Magnetic Tape 8-45
8.5.5.2 Building a Kit on a Disk 8-45

8.5.6 Installing and Distributing Kits on a Network

Glossary

Index

Examples

4-1 : Parser Source Code for a Calculator

4-2: Lexical Analyzer Source Code for a Calculator

8-46

4-36

4-39

7 -1: A Simple Description File ... 7-8

7-2: Default Rules File .. 7-18

7-3: The makefile for the make Utility 7-21

8-1: Master Inventory File .. 8-22

8-2: Key File

8-3: Sample Subset Control Program

8-24

8-34

8-4: Sample Link Control Program 8-37

8-5: Example of Backward link Creation 8-40

8-6: Sample Subset Inventory File ... 8-43

x Contents

Figures

2-1: Sequence of awk Processing

3-1: Sequence of sed Processing

4-1: Simple Finite State Model

2-5

3-4

4-2

4-2: Producing an Input Parser with lex and yacc 4-17

6-1: Contents of a Version Control File ... 6-4

6-2: A Typical RCS Library 6-5

6-3: A Typical SCCS Library 6-6

6-4: A Version Control File's Tree of Deltas .. 6-7

8-1: Base System Directory Hierarchy 8-8

8-2: X Directory Hierarchy... 8-12

8-3: How Layered Products Are Installed ... 8-16

8-4: The Kit Building Process ... 8-18

8-5: Directory Hierarchies for a Kit ... 8-18

8-6: Directory Hierarchy for the DCB Kit .. 8-20

Tables

1-1: Rules for Regular Expressions

1-2: Versions of the grep Command

1-3: Options for the grep Utilities

1-1

1-6

1-7

2-1: Options for the awk and gawk Commands 2-2

2-2: Built-In Variables in awk .. 2-6

2-3: Operators for awk Actions ... 2-14

2-4: Built-In awk Functions .. 2-16

2-5: Control Structures in awk .. 2-19

3-1: Options for the sed Command .. 3-2

3-2: Regular Expressions Recognized by sed 3-5

Contents xi

3-3: Text Editing and Movement Commands

3-4: Buffer Manipulation Commands .. .

3-5: Flow-of-Control Commands

4-1: Regular Expression Operators for lex

4-2: Options for the lex Command

4-3: Processing-Condition Definition Keywords in yacc

5-1: Built-In m4 Macros

6-1: Features of RCS and SCCS .. .

6-2: Summary of RCS Command Functions .. .

6-3: RCS ID Keywords

6-4: Summary of sccs Command Functions

6-5: SCCS ID Keywords

6-6: SCCS admin Command Options

6-7: Flags for the admin Command .. .

6-8: SCCS Command Options

6-9: Individual SCCS Commands

6-10: Functional Comparison: RCS and SCCS Commands

7 -1: Internal make Macros

8-1: Options for the setld Command

8-2: Contents and Purposes of Base System Directories

3-7

3-10

3-10

4-5

4-16

4-22

5-6

6-2

6-8

6-11

6-18

6-21

6-28

6-29

6-31

6-31

6-33

7-13

8-2

8-9

8-3: Contents and Purposes of X Directories ... 8-13

8-4: Fields in Master Inventory Records ... 8-22

8-5: Key File Attributes Section 8-25

8-6: Key File Subset Descriptor Fields ... 8-26

8-7: Subset Control Program Invocation and Actions 8-28

8-8: Dependency Management Routines ... 8-30

8-9: Routines Assisting with Backward Link Creation 8-39

8-10: Control Files in the instctrl Directory .. 8-41

xii Contents

8-11: Image Data File Fields

8-12: Subset Inventory Field Descriptions

8-42

8-44

Contents xiii

About This Manual

This manual describes several commands and utilities in the DEC OSFIl
system, including facilities for text manipulation, macro and program
generation, source file management, and software kit installation and creation.

Audience
The commands and utilities described in this manual are intended primarily
for programmers, but some of them, particularly those described in Chapter
1, Chapter 2, Chapter 3, and Chapter 6, can be very useful for writers and
other types of users as well. The manual assumes that you are a moderately
experienced user of UNIX systems.

Organization
This manual comprises eight chapters, a glossary, and an index. A brief
description of the contents follows:

Chapter 1 Introduces the concept of regular expressions (REs) and describes the
rules for forming them, and describes the grep family of commands
that use REs for searching text files.

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Describes the awk command and its text-processing language.

Describes the sed stream editor, a noninteractive tool for rapidly
performing complex and repetitive editing tasks.

Describes the lex and yacc programs for generating lexical
analyzers and parsers for processing input to a program.

Describes the m4 macro preprocessor and explains how to create
macros that can be used in programs or in other files such as
documentation source.

Describes how to manage libraries of source files by using the Source
Code Control System (SCCS) or the Revision Control System (RCS).

Describes how to use the make utility to build and maintain complex
programs and applications.

Describes how the setld software installation and management
utility operates and how to create software product kits for installation
with setld, and explains the contents of files used by setld.

Related Documents
This manual is an adjunct to the DEC OSFIl Programmer's Guide; neither
manual requires that you have the other in order to use its contents.

The printed version of the DEC OSFIl documentation set is color coded to
help specific audiences quickly find the books that meet their needs. (You
can order the printed documentation from Digital.) This color coding is
reinforced with the use of an icon on the spines of books. The following list
describes this convention:

Audience Icon Color Code

General Users G Teal

System Administrators S Red

Network Administrators N Yellow

Programmers P Blue

Reference Page Users R Black

Some books in the documentation set help meet the needs of several
audiences. For example, the information in some system books is also used
by programmers. Keep this in mind when searching for information on
specific topics.

The Documentation Overview provides information on all of the books in the
DEC OSFIl documentation set.

Reader's Comments
Digital welcomes your comments on this or any other DEC OSFIl manual.
You can send your comments in the following ways:

• Internet electronic mail:
readers comment@ravine.zk3.dec.com

• Fax: 603-881-0120 Attn: USG Documentation, ZK03-3/Y32

• A completed Reader's Comments form (postage paid, if mailed in the
United States). Two Reader's Comments forms are located at the back of
each printed DEC OSFIl manual.

If you have suggestions for improving particular sections or find any errors,
please indicate the title, order number, and section numbers. Digital also
welcomes general comments.

xvi About This Manual

Conventions
The following typographical conventions are used in this manual:

%
$

% cat

file

[I]
{ I }

cat(l)

Ctrl/x

A percent sign represents the C shell system prompt. A dollar
sign represents the system prompt for the Bourne and Korn shells.

A number sign represents the superuser prompt.

Boldface type in interactive examples indicates typed user input.

Italic (slanted) type indicates variable values, placeholders, and
function argument names.

In syntax definitions, brackets indicate items that are optional and
braces indicate items that are required. Vertical bars separating
items inside brackets or braces indicate that you choose one item
from among those listed.

In syntax definitions, a horizontal ellipsis indicates that the
preceding item can be repeated one or more times.

A cross-reference to a reference page includes the appropriate
section number in parentheses. For example, cat(l) indicates
that you can find information on the cat command in Section 1
of the reference pages.

In an example, a key name enclosed in a box indicates that you
press that key.

This symbol indicates that you hold down the first named key
while pressing the key or mouse button that follows the slash. In
fxamptes, this key combination is enclosed in a box (for example,
Ctri/C).

About This Manual xvii

Finding Information with Regular 1
Expressions and the grep Commands

This chapter describes regular expressions (REs) and how to use them. REs
are most commonly used in the context of pattern matching with the grep
family of pattern-matching commands, but they are also used with virtually
all text-processing or filtering utilities and commands. A more thorough
discussion of the grep commands (grep, egrep, and fgrep) follows the
exposition of REs.

1.1 Forming Regular Expressions
An RE specifies a set of strings to be matched. It contains text characters
and operator characters. Text characters match the corresponding characters
in the strings being compared. Operator characters specify repetitions,
choices, and other features.

The letters of the alphabet and digits are always text characters. For
example, the RE integer matches the string "integer", and the expression
as 7D matches the string "a57D".

Text characters and operator characters together make up the set of simple
REs. You can concatenate any number or combination of simple REs to
create a compound RE that will match any sequence of characters that
corresponds to the concatenated simple REs. Table 1-1 describes the rules
for creating REs. The following sections further explain some of the REs
listed in the table.

Table 1-1: Rules for Regular Expressions

Expression

letters, numbers,
most punctuation

*

Name

Text character

Period (dot)

Asterisk

Description

Matches itself.

Matches any single character except the
newline character.

Matches any number of occurrences of the
preceding simple RE, including none.

Table 1-1: (continued)

Expression

?

+

\{expr\}

[chars]

$

\char

expr expr

(expr)

Name Description

Question mark Matches zero or one occurrence of the
preceding simple RE. (Not available to all
utilities.)

Plus sign Matches one or more occurrences of the
preceding simple RE. (Not available to all
utilities.)

Count expression Matches a more restricted number of
instances of the preceding simple RE; for
example, ab \ {3 \}e matches only abbbe,
while ab \ { 2 , 3 \ } e matches abbe or
abbbe, but not abc or abbbbe. (Not
available to all utilities.)

Brackets Matches a single instance of anyone of the
characters within the brackets. Ranges of
characters can be abbreviated by using a
dash. For example, [0-9 a-z] matches
any single digit or lowercase letter.

Circumflex When used at the beginning of an RE,
matches the beginning of a line. When
used as the first character inside brackets,
excludes the bracketed characters from
being matched. Otherwise, has no special
properties.

Dollar sign When used at the end of an RE, matches
the end of a line. Otherwise, has no special
properties.

Backslash Escapes the next character to permit
matching on explicit instances of characters
that are normally RE operators.

Concatenation Matches any string that matches all of the
concatenated REs in sequence.

Parentheses Encloses, or frames, an RE, allowing
operators that act on the preceding simple
RE to treat the entire framed RE as a
simple RE. For example, (be) + matches
abed, abebed, abebebed, and so forth.
(Not available to all utilities.)

expr I expr ••• Vertical bar Separates multiple REs; matches any of the
bar-separated REs. (Not available to all
utilities.)

1-2 Finding Information with Regular Expressions and the grep Commands

Table 1-1: (continued)

Expression

[: class:]

\(expr\)

\n

Name Description

Class A character class name enclosed in
bracket-colon delimiters matches any of the
set of characters in the named class.
Members of each of the sets are determined
by the current setting of the LC CTYPE
environment variable. The supported
classes are alpha, upper, lower,
digit,alnurn,xdigit, space,
print, punct, graph, and cntrl. For
example, [[: lower:]] matches any
lowercase letter in the current collating
sequence.

Hold delimiters Matches expr and saves it into a
numbered holding space for reuse later in a
compound RE or in a replacement string.

Repeat expression Repeats the contents of the nth set of hold
delimiters in the RE.

The order of precedence of operators is brackets ([]), then the asterisk (*),
question mark (?), and plus sign (+), then concatenation, then the vertical
bar (I) and the new line character.

1.1.1 Matching Multiple Occurrences of a Regular Expression
An asterisk (*) acts on the simple RE immediately preceding it, causing that
RE to match any number of occurrences of a matching pattern, even none.
When an asterisk follows a period, the combination indicates a match on any
sequence of characters, even none. A period and an asterisk always match as
much text as possible; for example:
% echo "A BCD" I sed 's/A.* lEI'
ED

The sed stream editor command in this example indicates that sed is to
match the RE between the first and second slashes and replace the matching
pattern with the string between the second and third slashes. The RE will
match any string that starts at the beginning of the line, contains any
sequence of characters, and ends in a space. Nominally, the string "A "
satisfies this expression; but the longest matching pattern is "A B C ", so
sed replaces "A B C " with "E" to yield "ED" as the output. See
Chapter 3 for a discussion of the sed stream editor.

An asterisk matches any number of instances of the preceding RE. To limit
the number of instances that a particular RE will match, use a plus sign (+)

Finding Information with Regular Expressions and the grep Commands 1-3

or a question mark (?). The plus sign requires at least one instance of its
matching pattern. The question mark refuses to accept more than one
instance. The following chart illustrates the matching characteristics of the
asterisk, plus sign, and question mark:

Regular Matching Strings Expression

ab?c ae abe

ab*c ae abe abbe, abbbe, ...

ab+c abe abbe, abbbe, ...

You can also specify much more restrictive numbers of instances of the
desired RE. Placing one or two numbers between backslash-brace delimiters
(\ { and \}) has the following effects:

• \ {number\}

Matches exactly number instances of anything the RE matches. For
example, ab \ { 3 \ } e matches abbbe but does not match either abbe or
abbbbe.

• \ {number, \}

Matches at least n umber instances. For example, ab \ {3 , \} e matches
abbbe, abbbbe, and so on, but not ae, abc, or abbe.

• \{numberl,number2\}

Matches any number of instances from numberl to number2,
inclusive. For example, ab\{2, 4 \}e matches abbe, abbbe, or
abbbbe but not abc or abbbbbe.

U sing the backslash-parenthesis hold delimiters \ (and \), you can save up
to nine patterns on a line. Counting from left to right on the line, the first
pattern saved is placed in the first holding space, the second pattern is placed
in the second holding space, and so on.

The character sequence \n (where n is a digit from 1 to 9) matches the nth
saved pattern. Consider the following pattern:
\(A\)\(B\)C\2\1

This pattern matches the string ABCBA. You can nest patterns to be saved in
holding spaces. Whether the enclosed patterns are nested or in a series, n
refers to the nth occurrence, counting from the left, of the delimiters. You
can also use \nexpressions in replacement strings for editors such as ed and
sed as well as address patterns.

1-4 Finding Information with Regular Expressions and the grep Commands

1.1.2 Matching Only Selected Characters
A period in an RE matches any character except the newline character. To
restrict the characters to be matched, place the desired characters inside
brackets ([]). Each string of bracketed characters is a single-character RE
that matches anyone of the bracketed characters. Except for the circumflex
(/\), RE operators within brackets are interpreted literally, without special
meaning. The circumflex excludes the bracketed characters if it is the first
character in the brackets; otherwise, it has no special meaning.

When you specify a range of characters with a dash (for example, [a-z]),
the characters that fall within the range are determined by the current
collating sequence defined by the current setting of the LC CTYPE
environment variable. See the discussion on using internationalization
features in Command and Shell User's Guide for more information on
collating sequences. The dash has no special meaning if it is the first or last
character in a bracketed string or if it immediately follows a circumflex that
is the first character in a bracketed string. To include a right bracket in a
bracketed string, place it first or after the initial circumflex.

You can use the -i option to the grep and egrep utilities to perform a
case insensitive match. (The -y option is a synonym for -i.) To create an
RE that is not case sensitive for other utilities, or to form an RE that is only
partially case insensitive, use a bracketed RE consisting of just the uppercase
and lowercase versions of the character you want. For example:
% grep '[Jj]ones' group-list

1.1.3 Specifying Multiple Regular Expressions
Some utilities, such as egrep and awk, permit you to specify multiple REs
simultaneously by separating the REs with a vertical bar. For example:

% awk '/[Bb]lackl[ww]hite/ {print NR ":", $O}' .Xdefaults
55: sm.pointer foreground: black
56: sm.pointer=background: white

1.1.4 Special Collating Considerations in Regular Expressions
A character range can include a multi character collating element enclosed
within bracket-period delimiters ([. and.]). These collating symbols
are necessary for languages that treat some strings as individual collating
elements. For example, in Spanish, the strings ch and 11 each are collating
symbols (that is, the Spanish primary sort order is a, b, c, ch, d, ... , k, 1,
11, ro, •••). The bracket-period delimiters in the RE syntax distinguish
multi character collating elements from a list of the individual characters that
make up the element. When using Spanish collation rules, [[• ch.]] is

Finding Information with Regular Expressions and the grep Commands 1-5

treated as an RE matching the sequence ch, while [ch] is treated as an RE
matching c or h. In addition, [a- [• ch.]] matches a, b, c, and ch.

A collating sequence can define equivalence classes for characters. An
equivalence class is a set of collating elements that all sort to the same
primary location. They are enclosed within the bracket-equal delimiters [=
and =]. An equivalence class generally is designed to deal with primary­
secondary sorting; that is, for languages like French that define groups of
characters as sorting to the same primary location, and then have a tie­
breaking, secondary sort. For example, if e, e, and ~ belong to the same
equivalence class, then [[=e=] fg, [[=e=] fg], and [[=~=] fg] are each
equivalent to [ee~fg]. For more information on collating sequences and
their use, see the discussion on using internationalization features in
Command and Shell User's Guide.

1.2 Using the grep Commands
This section describes the grep family of pattern-matching commands
(grep, egrep, and f grep). The differences between these commands are
summarized in Table 1-2.

Table 1-2: Versions of the grep Command

grep Version Description

grep Patterns can contain a limited set of REs. (See the list
immediately following this table for exclusions.) The grep
command uses a compact algorithm that is fast and requires a
minimum of program space.

egrep "Extended grep" patterns make use of all the REs except the
hold delimiters \ (and \). The egrep command uses a
deterministic algorithm that requires exponential space.

fgrep "Fixed grep" patterns are fixed strings; RE operators are
interpreted literally. The fgrep command is extremely fast and
compact.

The set of REs supported by grep is limited so that grep can work more
efficiently for most uses. The egrep command supports the full range of
REs shown in Table 1-1, including the following features that are not
supported by grep:

• The plus sign (+)

• The question mark (?)

1-6 Finding Information with Regular Expressions and the grep Commands

• The vertical bar (I)
• Parentheses «()

The fgrep command does not allow REs, but it does allow you to specify
more than one string. Surround the strings with apostrophes, and separate
the strings with newline characters, as in this example using the Bourne shell:
$ strings hpcalc I fgrep 'math.h
> fatal.h'

In the C shell, you must enter a backslash before each newline character:

% strings hpcalc I fgrep 'math.h\
fatal.h'

By default, the grep commands find each line satisfying the RE or REs you
specify. Table 1-3 describes command-line options that allow you to specify
other results from your searches.

Table 1-3: Options for the grep Utilities

Option grep Versions Description

-b All Precedes each output line with its disk block
number. This option is of use primarily to
programmers who are trying to identify specific
blocks on a disk by searching for the information
contained in them.

-c All Counts matching lines and prints only the count.

-e expr All Uses expr as the pattern. Useful if expr begins
with a minus sign (-).

-f file egrep,fgrep Uses the contents of file to supply the expressions
to be matched. Specify one expression per line in
file.

-h egrep,fgrep Suppresses reporting of file names when multiple
files are processed.

-i grep,egrep Performs a case-insensitive search.

-1 All Lists only the names of files containing matching
lines. Each file name is listed only once, even if the
file contains multiple matches. If standard input is
specified among the files to be processed with this
option, grep continues processing; egrep and
f grep both exit with nonzero status.

-n All Precedes each matching line with its line number.

Finding Information with Regular Expressions and the grep Commands 1-7

Table 1-3: (continued)

Option grep Versions Description

-p expr grep Uses expr as a paragraph separator, and displays
the entire paragraph containing each matched line.
Does not display the paragraph separator lines. The
default paragraph separator is a blank line.

-q grep Operates in "quiet" mode, printing nothing except
error messages. Useful in shell scripts; exit status
reports the success or failure of the search.

-8 grep Operates in "silent" mode, printing nothing (not
even error messages). Useful in shell scripts; exit
status reports the success or failure of the search.

-v All Outputs only lines that do not match the specified
expressions.

-w expr grep Matches only if expr is found as a separate word in
the text. A word is any string of alphanumeric
characters (letters, numbers, and underscores)
delimited by nonalphanumeric characters
(punctuation or white space.) For example, wordl
is a word; A+B is not a word.

-x fgrep Outputs only lines matched in their entirety.
Provides a more efficient way to search for REs
consisting of A fixed-string$.

-y grep, egrep Exact synonym for -i.

1-8 Finding Information with Regular Expressions and the grep Commands

Matching Patterns and Processing 2
Information with awk

This chapter describes the awk command, a tool with the ability to match
text on lines in a file and a set of commands that you can use to manipulate
the matched lines. In addition to matching text with all of the regular
expression (RE) building features that egrep uses, awk treats each line, or
record, as a set of elements, or fields, that can be manipulated individually
or in combination. Thus, awk can perform more complex operations, such
as:

• Writing selected fields of a record

• Reordering or replacing the contents of a record; for example, to change
syntax in a program source file or change system calls when porting from
one system to another

• Processing input to find numeric counts, sums, or subtotals

• Verifying that a given field contains only numeric information

• Checking to see that delimiters are balanced in a programming file

• Processing data contained in fields within records

• Changing data from one program into a form that can be used by a
different program

The DEC OSFIl operating system provides several versions of the awk
utility:

• The awk command invokes a version that provides the minimum subset
of awk features. Programs written using only these features are
compatible with the versions of awk on virtually all UNIX platforms.

• The gawk command invokes an enhanced version that offers many
additional features. Some or all of these features might or might not be
present in other systems' versions of awk; thus, programs using these
features might present portability problems.

• The nawk command invokes an enhanced version that is similar to
gawk; in addition, nawk is XPG4 conformant.

This chapter describes the awk and gawk versions. Descriptions of features
that apply to both of these versions are not marked in any special way.
Features available to to gawk but not awk are so indicated. Unless

otherwise indicated, the name awk refers to both versions. For information
about unique features of nawk, see the nawk(l) reference page.

2.1 Running the awk Program
The syntax for the awk command is:

awk [-Fchar] [-f program] [filet [file2 ...]

The syntax for the gawk command is:

gawk [-W gawk-options] [-Fchar] [-vvar=va/] [-f program] [--] \
[file t [file2 ...]]

Table 2-1 describes the options for the awk and gawk commands.

Table 2-1: Options for the awk and gawk Commands

Option Description

-w gawk-options Specifies actions unique to gawk, such as the use of POSIX
(gawk only) compatibility mode. See the gawk(l) reference page for a

list of applicable gawk options.

-Fchar

-v var=val
(gawk only)

-f program

(gawk only)

Specifies a character to be used as a field separator. By
default, awk uses white space (tabs or spaces) to separate
fields in a record. To specify a tab or a shell metacharacter,
enclose the entire option in apostrophes. For example:

% awk '-FITabl, report

For awk, the -F option must precede any other command­
line argument. For gawk, the -w option can precede the -F
option.

Assigns the value val to a variable named var; such
assignments are available to the BEG IN block of a program.

Specifies the name of a file containing an awk program.
This option requires a file name as an argument. The gawk
command accepts multiple -f options, concatenating all the
program files and treating them as a single program.

Signals the end of options, allowing further arguments to
begin with minus signs (-).

Usually, you create an awk program file before running awk. The program
file is a series of statements that look like the following:

2-2 Matching Patterns and Processing Information with awk

pattern { action }

In this structure, a pattern is one or more REs that define the text to be
matched. Patterns can consist of the following:

• BEG IN or END

• Boolean combinations of REs using the operators! (NOT), I I (Logical
OR), and & & (AND), with parentheses for grouping expressions

• Boolean combinations of relational operations on strings, numbers, fields,
and variables

• Ranges of records, specified in this way:
patternl,pattern2

• In gawk only, conditional expressions (see Table 2-3 for an explanation
of the conditional operator)

An action is one or more steps to be executed, designated with awk
commands, operands, and operators. Actions can consist of the following:

• Assignment statements

• Statements to format and print data

• Tests to alter the flow of control

• Control structures, such as if-else, while, and for statements

• Redirection of output to one or more output streams besides standard
output

• Piping of output (and, in gawk, input)

The braces ({ }) are delimiters separating the action from the search pattern.
Actions can be specified on a single line, or multiple lines to give a visual
structure to the program. If you place an action consisting of several
commands on one line, separate the commands with semicolons (;). For
example, either of the two following programs will find every record
matching either "Gunther" or "gunther". For each matching record, it will
print two lines, first the number of the record on which the match was made
and then the first two fields of the matched record:

Matching Patterns and Processing Information with awk 2-3

Program 1:

/[Gg]unther/ { print "Record:", NR print $1, $2 }

Program 2:

/[Gg]unther/ {

}

print "Record:", NR
print $1, $2

Output from this program might look like the following:
Record: 382
Schuller Gunther
Record: 397
schwarz gunther

Both the pattern and the action are optional elements of a program line. If
you omit the pattern, awk performs the action on every record in the file; if
you omit the action, awk copies the record to standard output. A null
program passes its input unmodified to the output.

Once you create the program file, enter the awk command on the command
line as follows:
$ awk -f progfile infile > outfile

This command uses the program in progfile to process infile, and
writes the output to outfile. The input file is not changed.

With a short program, you can accomplish the same job by entering the
program on the command line before the name of the input file. For
example:
$ awk '/[Gg]unther/ { print $1, $2 }' infile

When you use awk in this way, enclose the program in single or double
quotation marks as required to control shell file name expansion and variable
substitution.

When you start awk, it reads the program, checking for syntax. It then reads
the first record of the input file, testing the record against each of the patterns
in the program file in order of their appearance. When awk finds a pattern
that matches the record, it performs the associated action. Then awk
continues to search for matches in the program file. When it has compared
the first input record against all patterns in the program file and performed all
the actions required for that record, awk reads the next input record and
repeats the program with that record. Processing continues in this manner
until the end of the input file is reached. Figure 2-1 is a flowchart of this

2-4 Matching Patterns and Processing Information with awk

sequence. Compare the operation of awk with the very similar operation of
the sed editor, shown in Figure 3-1.

Figure 2-1: Sequence of awk Processing

No

Apply
actions

No

ZK-0471U-R

2.2 Printing in awk
You can use either the print command or the printf command to
produce output in awk. The pr int command prints its arguments as
already described; that is, arguments separated by commas are printed
separated by the current output field separator (OFS), and arguments not
separated by commas are concatenated as they are printed.

The printf command has a syntax identical to that of the printf
statement in the C programming language:

printf(f,e1 [,e2, ...])

This command prints the arguments eland so on, formatted as defined by f.

Matching Patterns and Processing Information with awk 2-5

Refer to the gawk(l) and printf(3) reference pages for information on
constructing format specifiers.

2.3 Using Variables in awk
You can create and operate on variables in an awk program. For example,
the following assignment statement creates a variable named var whose
value is the sum of the third and fourth fields in the record:

var = $3 + $4

You can use variables as part of a pattern, and you can manipulate them in
actions. For example, the following program assigns a value to a variable
named tst and then uses tst as part of a pattern for further actions:

{ tst = $1 }
tst == $3 { print }

The awk program recognizes the set of built-in variables listed in Table 2-2.

Table 2-2: Built-In Variables in awk

Variable

$0

$n

ARGC
(gawk only)

ARGV
(gawk only)

CONVFMT
(gawk only)

ENVIRON
(gawk only)

FIELDWIDTHS
(gawk only)

Description

The contents of the current record.

The contents of field n of the input record.

A count of the arguments given to awk. This variable is
modifiable. Does not include the command name, options
preceded by minus signs, the script file name (if any), or
variable assignments.

An array containing the arguments given to awk. The
elements of this array are modifiable. Does not include the
command name, options preceded by minus signs, the script
file name (if any), or variable assignments.

The conversion format for numbers (by default, %. 6g).

A modifiable array containing the current set of environment
variables; accessible by ENVIRON [var], where var is the
name of the environmental variable. Changing an element in
this array does not affect the environment passed to
commands that gawk spawns by redirection, piping, or the
system() function.

A white-space separated list of field widths. When this
variable is set, gawk parses input records into fields of fixed
widths, ignoring the F S variable.

2-6 Matching Patterns and Processing Information with awk

Table 2-2:

Variable

FILENAME

FNR
(gawk only)

FS

IGNORECASE
(gawk only)

NF

NR

OFMT

OFS

ORS

RLENGTH
(gawk only)

RS

RSTART
(gawk only)

(continued)

Description

The name of the current input file. If no input file was
named, FILENAME contains a single minus sign.

The number of the current record within the current file.
Differs from NR if multiple files are being processed and the
current file is not the first file read.

The character or expression used for a field separator. By
default, any amount of white space.

In awk, the FS variable is modifiable to any single character.

In gawk, field separators can be multibyte REs and can be
multiply defined. For example, the following statement
defines either a comma followed by any amount of white
space or at least one white-space character as the field
separator:

F S = ", [I Tab I] * I [I Tab I] + "

Switch for case sensitivity in RE matching. If IGNORECASE
is nonzero, REs are case insensitive; for example, the RE
/ aB/ matches "ab" or "Ab" or "aB" or "AB". The
default value is 0 so that REs are case sensitive.

The number of fields in the current record.

The number of the current record, counted sequentially from
the beginning of the first file read. Differs from FNR if
multiple files are being processed and the current file is not
the first file read.

The format specification for numbers on output (by default,
% • 6g).

The output field separator; the character (or, for gawk, the
string inserted between fields when the data is written). By
default, a space character.

The character used for the output record separator (the
character between records when the data is written). By
default, a newline character.

The length of the string matched by match (); set to -1 if
no match.

The character used for a record separator.

The index (position within the string) of the first character
matched by match (); set to 0 if no match.

Matching Patterns and Processing Information with awk 2-7

Table 2-2:

Variable

SUBSEP
(gawk only)

(continued)

Description

The separator for multiple subscripts in array elements (by
default \034, the ASCII FS character). (See the gawk(l)
reference page for more information.)

2.4 Performing Actions Before or After Processing the
Input
The awk program recognizes two special pattern keywords that define the
beginning (BEGIN) and the end (END) of the input file. BEGIN matches the
beginning of the input before reading the first record. Therefore, awk
performs any actions associated with this pattern once, before processing the
input file. BEG IN must be the first pattern in the program file. For example,
to change the field separator to a colon (:) for all records in the file, include
the following line as the first line of the program file:

BEGIN { FS = ":" }

This example action works the same as using the -F: option on the
command line.

Similarly, END matches the end of the input file after processing the last
record. Therefore, awk performs any actions associated with this pattern
once, after processing the input file. END must be the last pattern in the
program file. For example, to print the total number of records in the input
file, include the following line as the last line in the program file:

END { print NR }

2.5 Using Regular Expressions as Patterns
The simplest RE is a literal string of characters. REs in awk must be
enclosed in slashes. To include a slash as part of an RE, escape the slash
with a backslash. For example, /\/usr\/share/ is an RE that matches
the string /usr / share. The following example shows a complete awk
program that will print every record containing the string' 'the":

2-8 Matching Patterns and Processing Information with awk

/the/

Because this RE does not specify blanks or other qualifiers, the program
displays records containing "the" as a separate word and records containing
the string as part of words such as "northern". REs are case sensitive. To
find either "The" or "the", use a bracketed RE as follows:
/[Tt]he/

The awk program uses the same set of REs that egrep uses. See Table 1-1
for a list of the RE elements that awk supports. In awk, the circumflex (/\)
and dollar sign ($) can apply to a specific field or variable as well as to the
entire line. The following example will match a field consisting of the word
"cat" or the word "cats" but will not match any word containing these
strings (such as "concatenate"):
{ for (i=1;i<=NF;i++) if ($i - /AcatS?$/) print}

2.6 USing Relational Expressions and Combined
Expressions as Patterns
Several examples in previous sections have illustrated the use of relational
expressions in patterns. Relational expressions allow you to restrict a match
to a specific field of a record or to make other tests, either numeric or string­
related. The awk program defines the following relational operators for use
in building patterns:

Equivalent
1 = Not equivalent
< Less than
> Greater than
<= Less than or equal
>= Greater than or equal

Matches RE
1 - Does not match RE

Use the == (equivalent) and! = (not equivalent) operators to test literal
strings and numeric values. For example:
str == "literal string"
num 1= 23
$NF == 1991

The last line in this example uses the $n syntax combined with the built-in
variable NF to test the value of the last field of a record. To test against REs,
use the - (matches RE) and! - (does not match RE) operators as follows:

Matching Patterns and Processing Information with awk 2-9

str - /[Ll]iteral/

Relational expressions can be tested against built-up expressions. For
example, the following pattern finds all records whose second field ($ 2) is at
least 100 greater than the first field ($1):

$2 > $1 + 100

The following pattern finds records that contain an even number of fields:
NF % 2 == 0

D se the operators listed in Section 2.11 to build expressions.

You can use magnitude-comparison operators to test strings. For example,
the following pattern finds records that begin with' 's" or any character that
appears after it to the end of the character set:
$0 >= "s"

You can combine two or more patterns by using the following Boolean
operators:

&& AND
I I Logical OR

NOT

For example, to prevent nonalphanumeric matches in the preceding example,
you can combine two expressions as follows:
($0 >= "s" && $0 < "{")

(The left brace is the character immediately following the letter' 'z" in the
ASCII code.)

2.7 Using Pattern Ranges
You can use a pattern range to select a group of records to operate on. A
pattern range consists of two patterns separated by a comma; the first pattern
specifies the start of the range, and the second pattern specifies the end of the
range. The awk program performs the associated action on all records in the
range, including the records that match the two patterns. For example:

NR==100,NR==200 { print }

This program prints 101 records from the input file, beginning with record
100 and ending with record 200.

D sing a pattern range does not disable other patterns from matching records
within the range. However, because the input file is processed record by
record, with each record being subject to all the actions appropriate to it
before the next record is considered, the actions taken can appear to be out of
sequence. For example:

2-10 Matching Patterns and Processing Information with awk

2,4 { print}
/share/ { print "Found share" }

Apply this program to the following input file:

This is a test file
Line two
Try to share things
Line four
Last line of file

When this file is processed by awk, the output is as follows:
Line two
Try to share things
Found share
Line four

The second action is applied to record 3 before record 4 is examined to see if
it matches the first pattern.

2.8 Actions in awk
An action can be a single command, such as print, or it can be a series of
commands. An action can include tests to select records or parts of records;
if desired, you can create a program that has no explicit patterns, relying
instead on relational comparisons within its actions. Such a program can
bear a strong resemblance to a C program; for example:

{

}

if ($1 == 0) {
print;
printf("%5.2f\n", $2+$3)

} else {
printf("%5.2f\n", $1+$2)

}

Note

The semicolon after the pr in t command, which would be
required in a C program, is not required by awk; but it does not
cause an error.

2.9 Concatenating Strings
You concatenate strings by placing their variable names together in an
expression. For example, the command print $1 $2 prints a string
consisting of the first two fields from the current record, with no space
between them. You can use variables, numeric operators, and functions
when concatenating strings. (See Section 2.10.1 and Section 2.11 for

Matching Patterns and Processing Information with awk 2-11

information on variables and numeric operators.) The function
length ($1 $ 2 $ 3) returns the length in characters of the first three
fields. (See Section 2.12 for a list of the functions in awk.) If the strings
you want to concatenate are field variables (see Section 2.10.2), you are not
required to separate the names with white space; the expression $1 $ 2 is
identical to $1 $ 2.

2.10 Using Variables in an Action
The awk program uses variables to manipulate information. Variables are of
the following three types:

• Simple variables

• Field variables

• Array variables

This section discusses these types of variables and how to use them.

2.10.1 Simple Variables
You can create any number of simple variables, assigning values to them as
required. If you refer to a variable before explicitly assigning a value to it,
awk creates the variable and assigns it a value of 0 (zero). Variables can
have numeric (floating-point) values or string values depending on their use
in the action expression. For example, in the expression x = 1, x is a
numeric variable. Similarly, in the expression x = " smi th " , x is a string
variable. However, awk converts freely between strings and numbers when
needed. Therefore, in the expression x = "3" +" 4 ", awk assigns a value
of 7 (numeric) to x, even though the arguments are literal strings. If you use
a variable containing a nonnumeric value in a numeric expression, awk
assigns it a numeric value of O. For example:
y = 0
z = "ABC"
x = y+z
print x, z

This sequence prints "0 0" because y is assigned a value of 0 and z assumes
a value of 0 when used numerically.

You can force a variable to be treated as a string by concatenating the null
string (" ") to the variable; for example, x = 2 "". (See Section 2.9 for
information on concatenating strings.) You can force a variable to be treated
numerically by adding zero to it. Forcing variables to be treated as particular
types can be useful. For example, if x is "0100" and y is "1", awk
normally treats both variables as numerics and considers that x is greater
than y. Forcing both variables to be treated as strings causes x to be less
than y because' '0" precedes" 1" in the ASCII code.

2-12 Matching Patterns and Processing Information with awk

2.10.2 Field Variables
Fields in the current record, also called field variables, share the properties
of simple variables. They can be used in arithmetic or string operations and
can be assigned numeric or string values. (You cannot modify the contents
of the current record ($ 0) explicitly, but you can alter it indirectly by
modifying all of the individual fields.) The following action replaces the first
field with the record number and then prints the resulting record:

{ $1 = NR; print }

The next example adds the second and third fields and stores the result in the
first field:

{ $1 = $2 + $3; print $0 }

(Printing $ 0 is identical to printing with no arguments.)

You can use numeric expressions for field references; the following example
prints the first, second, and sixth fields:

i = 1
n = 5
{ print $i, $(i+1), $(i+n) }

As described in Section 2.10.1, awk converts between string and numeric
values. How you use a field determines whether awk treats it as a string or
numeric value. If it cannot tell how a given field is used, awk treats it as a
string.

The awk program splits input records into fields as needed. You can split
any literal string or string variable into an array by using the split
function. For example:
x = split(s, array1)
y = split("Thu Dec 18 11:19:40 EST 1992", array2)

The first line in this example splits the variable s into elements of an array
named arrayl, creating arrayl [l] to arrayl [n] where n is the
number of fields in the string. The second line splits a literal string in the
same manner into array2. The split function can split strings by using
an alternative field separator; see Section 2.12 for more information on using
this function. See Section 2.10.3 for information on using arrays.

2.10.3 Array Variables
Like field variables, array variables share the properties of simple variables.
They can be used in arithmetic or string operations and can be assigned
numeric or string values. You do not need to declare or initialize array
elements; awk creates them and initializes them to zero upon first reference.
Subscripts are indicated by being enclosed in brackets. You can use any
value that is not null, including a string value, for a subscript. An example

Matching Patterns and Processing Information with awk 2-13

of a numeric subscript follows:

x[NR] = $0

This expression creates the NRth element of the array x and assigns the
contents of the current input record to it. The following example illustrates
using string subscripts:
/apple/ {x["apple"]++}
/orange/ { x["orange"]++ }
END { print x["apple"], x["orange"] }

For each input record containing apple, this program increments the
appleth element of array x (and similarly for orange), thereby producing
and printing a count of the records containing each of these words.

Problems can occur when you use an if or while statement to locate an
array element. If the array subscript does not exist, the statement adds the
subscript as a new B-tree node with a null value. For example:

{ if (exists[$2] == 1) }

To avoid this type of problem, use code similar to the following, in which i
is printed after an if statement within a for loop:

for (i in exists) {
if (exists[i] 1= "") print i

}

Also use this type of coding when while is used with a relational operator.

2.11 Using Operators in an Action
Use the operators shown in Table 2-3 to build expressions within the action
statement.

Table 2-3: Operators for awk Actions

Operator Description Example

+ Addition 2+3 = 5

+ (gawk only) Unary +4 =4
plus; placeholder

Subtraction 7-3 = 4

(gawk only) Unary -4 is negative 4
minus

* Multiplication 2*4 = 8

I Division 6/3 = 2

% Modulo (remaindering) 7%3 = 1

2-14 Matching Patterns and Processing Information with awk

Table 2-3: (continued)

Operator Description

++ Increment

Decrement

+= Increment by value

Decrement by value

*= Multiply by value

/= Divide by value

%= Modulo by value

? ••• : (gawk only)
Conditional

Example

See the description following this table.

See the description following this table.

x+=y is equivalent to x = x+y

x-=y is equivalent to x = x-y

x*=y is equivalent to x = x*y

x/=y is equivalent to x = x/y

x%=y is equivalent to x = x%y

See the description following this table.

The following example prints the sum of all the first fields and the sum of all
the second fields in the input file:
{ 91 += $1; 92 += $2 }
END { print 91,92 }

The position of the increment and decrement operators affects their
interpretation. The expression i ++ evaluates the current contents of i and
then increments i. The expression ++ i causes awk to increment i before
evaluation. For example:
$ echo n3 3 n I awk '{
> print n$1 =n, $1 n; $1++ _n $1++ n; new $1 =n, $1
> print n$2 =n, $2 n; ++$2 _n ++$2 n; new $2 _n $2
> }'
$1 = 3; $1++ = 3; new $1 = 4
$2 = 3; ++$2 = 4; new $2 = 4

The conditional operator is used in the following form:
expr?exprl:expr2

This structure returns the value of expr 1 if expr is nonzero; otherwise, it
returns the value of expr2. For example, x= (3-1)?4: 5 returns 4, while
x= (3-3)?4: 5 returns 5.

2.12 Using Functions Within an Action
The awk language includes the built-in functions listed in Table 2-4.
Additionally, gawk allows you to create additional functions as described
after the table.

Matching Patterns and Processing Information with awk 2-15

Table 2-4: Built-In awk Functions

Function

atan(expr)
(gawk only)

close(arg)
(gawk only)

cos (expr)
(gawk only)

delete(array[sub])
(gawk only)

exp(arg)

gsub(expr,sl,s2)
(gawk only)

index(sl,s2)

int(arg)

length

length (arg)

log(arg)

match(s,expr)
(gawk only)

rand
(gawk only)

Description

Returns the arctangent of the value specified by
expr.

Closes the file or pipe named by argo

Returns the cosine of the value specified by expr.

Deletes the element of array indicated by sub.

Returns the natural antilogarithm (base £) of argo
For example, exp (0 • 693147) returns 2. See
log(arg).

Replaces every sequence of characters in string s2
that matches the RE expr with the string specified
by s 1. If s2 is not supplied, the current input
record is used. Expression expr is reevaluated for
each match. This function returns a value
representing the number of replacements. See
sub (expr, sl, s2).

Returns the character position in string s 1 where
string s2 occurs. If s2 is not in s 1, this function
returns a zero.

Returns the integer part of argo

Returns the length in characters of the current
record.

Returns the length in characters of the string
specified by argo See length.

Returns the natural logarithm (base £) of argo For
example, log (2) returns 0.693147. See
exp(arg).

Returns the character position in string s where a
match is found for the RE expr; sets the variable
RSTART to the character position at which the
match begins and RLENGTH to a value representing
the length of the matched string. If no match is
found, this function returns a zero.

Returns a pseudorandom number (0 :s; n < 1).

2-16 Matching Patterns and Processing Information with awk

Table 2-4: (continued)

Function Description

split(s,array,sep)

sprintf(f,el,e2, ..•)

sqrt(arg)

sin(arg)
(gawk only)

srand(seed)
(gawk only)

strftime(f,time)
(gawk only)

sub(expr,sl,s2)
(gawk only)

substr(s,m,n)

system("command")
(gawk only)

systime ()

tolower(s)
(gawk only)

Splits string s into consecutive elements of
array[1] ••. [n] and returns the number of
elements. The optional sep argument specifies a
field separator other than the one currently in force
(the contents of the FS variable).

Returns (but does not print) a string containing the
arguments eland so on, formatted in the same
manner as by the pr in t f command.

Returns the square root of argo

Returns the sine of argo

Uses seed as the seed for a pseudorandom number
sequence for subsequent calls to r and. If no seed
is specified, the time of day is used. The return
value is the previous seed.

Formats time as specified by f. The time value
should be specified in the form returned by
systime (). See the strftime(3) reference
page for a list of the format conversions that are
available.

Replaces the first sequence of characters in string s2
that matches the RE expr with the string specified
by sl. If s2 is not supplied, the current input
record is used. This function returns a value
representing the number of replacements (0 or 1).
See gsub(expr, sl, s2).

Returns the substring of s that begins at character
position m and is n characters long. The first
character in s is at position 1. If n is omitted or if
the string is not long enough to supply n characters,
the rest of the string is returned.

Executes the system command specified and returns
its exit status. The entire command must be
enclosed in quotation marks to prevent gawk from
attempting to interpret it as one or more variable
names.

Returns the current time of day as the number of
seconds since midnight, January 1, 1970.

Translates all uppercase letters in string s to
lowercase. If there is no argument, the function
operates on the current record.

Matching Patterns and Processing Information with awk 2-17

Table 2-4:

Function

toupper(s)
(gawk only)

(continued)

Description

Translates all lowercase letters in string s to
uppercase. If there is no argument, the function
operates on the current record.

The gawk language also allows you to create functions by using the
following syntax:

function name{parameter-list) {
statements

}

The word func can be used in place of function. For functions that you
create, the left parenthesis both in the function's definition and in its use
must immediately follow the function name, with no intervening space. The
names in the function declaration's parameter list are the formal parameters
for use within the function. When you call a function, gawk replaces these
formal parameters with the values you supply in the calling statement.
Functions can be recursive.

You can define local variables for a given function by declaring them as extra
formal parameters; upon function entry, all local variables are initialized as
empty strings or the number O. To avoid visual confusion between real
parameters and local variables, you can separate the local variables with extra
spaces in the function declaration. For example:
function foo(in, out,

locall " foo"
10ca12 = "bar"

}

locall, 10ca12) {

2.13 Using Control Structures in awk
The awk language provides the control structures listed in Table 2-5. Except
where noted, these structures work exactly as they do in the C language. To
perform several statements in a single control structure's action, enclose the
statements in braces. If only a single statement is to be performed, the braces
are optional. Each of the first two if structures in the following example
includes a single statement to be executed; these structures are equivalent:

2-18 Matching Patterns and Processing Information with awk

{
if (x == y) print
if (x == y) {

print

}

}
if (x == y) {

print $3
printf("Sum

}
%d\n", x+z)

Table 2-5: Control Structures in awk

Structure

if-else

while

for

break

Comments

Description

The condition in parentheses in an if-else structure is
evaluated. If it is true, the statements following the if are
performed. If it is false, the statements following the
optional else keyword (if present) are performed.

The statements following the while statement are performed
until the tested condition is not true. The following example
prints all the fields in the input records, one field per line:

{
i = 1
while(i<=NF) print $i++

}

Thefor(exprl;expr2;expr3) statements
structure is equivalent to the following while construct:

{

}

exprl
while (expr2) {

statements
expr3

}

The previous while example could also be written as
follows:

{
for(i=l;i<=NF;++i) print $i

}

The break statement causes an immediate exit from an
enclosing while or for loop.

Include comments in an awk program file to explain program
logic. Comments begin with the number sign (#) and end
with the end of the line. For example:

Matching Patterns and Processing Information with awk 2-19

Table 2-5: (continued)

Structure Description

continue

getline

next

exit

{

}
print X,Y # This is a comment

The continue statement causes the next iteration of an
enclosing loop to begin.

The getline statement causes awk to discard the current
input record, read the next input record, and continue
scanning patterns from the present location in the program
file. Contrast this behavior with that of the next statement.

The next statement causes awk to discard the current input
record, read the next input record, and begin scanning
patterns from the start of the program file. Contrast this
behavior with that of the getline statement.

The exit statement causes the program to stop as if the end
of the input occurred.

2.14 Redirection and Pipes
Unless otherwise specified, print and printf statements write their
output to the standard output file. You can redirect the output of any printing
statement by using standard redirection operators. For example:
print $0, $3, amt » "reportfile"

This example appends its output to a file named reportfile instead of
writing to the standard output. (If reportfile does not exist before the
first instance of redirection, it is created.) Note that the output file name in
this example is enclosed in quotation marks. The quotation marks are
required to distinguish the file name from a variable name. You can mix
writing to named files with writing to the standard output.

You can also pipe printed output through other commands. The following
example pipes awk's output through the tr command to convert all
uppercase letters to lowercase letters:

print I "tr [A-Z] [a-z]"

As with redirection, the command to which you pipe the output must be
enclosed in quotation marks. In gawk, you can also pipe input to a
getline statement.

2-20 Matching Patterns and Processing Information with awk

Only a limited number of files can be open for output. For awk, this limit is
10 files. The gawk program uses your default open file descriptor limit. For
efficiency, however, you can use the close (arg) statement to close files
that you have opened for output and no longer need.

Matching Patterns and Processing Information with awk 2-21

Editing Files with the sed Editor 3

You do not need to know how to use the ed line editor to use the material
presented here, although the sed stream editor is a program that works much
like ed. Unlike ed, however, sed edits files by using a prepared list of
commands, called a script, instead of interacting with the user. This method
of operation makes sed particularly well suited for tasks like the following:

• Editing large files

• Performing complex editing operations many times without extensive
retyping and cursor positioning

• Performing global changes in one pass through the input

The sed stream editor receives its input from standard input or from a
named file, changes that input as directed by commands in a command file or
on the command line, and writes the resulting stream to standard output. If
you specify more than one input file, sed processes each file in sequence and
concatenates the results to standard output. If you do not provide a command
file and do not use any with the sed command options, sed copies standard
input to standard output without change. The editor keeps only a few lines
of the file being edited in memory at one time and does not use temporary
files. Therefore, the size of the file to be edited is limited only by the
available disk space.

The command script for sed can be a file that you create before running the
editor, a series of commands you enter as a command option, or both. The
editor cannot process more than 99 commands in a single invocation; for this
reason or to accomplish certain extremely complex editing tasks, you might
need to pipe the output from sed into another instance of sed.

3.1 Running the sed Editor
The syntax for the sed command is as follows:

sed [-n] [-e commands] [-f script] [source_file 1 [source-file2 ...]

Table 3-1 describes the options for the sed command.

Table 3-1: Options for the sed Command

Option

-e commands

-f script

-n

Description

Specifies editing commands on the command line. This
option requires an argument (commands) consisting of valid
sed editing commands. Enclose the argument in single or
double quotation marks as required to control shell file name
expansion and variable substitution.

Specifies a file containing a prepared script of editing
commands. This option requires a file name as an argument.

Inhibits normal writing of edited lines. When this option is
used, only lines explicitly printed with the sed editor's p
and P commands are written to standard output.

Usually, you create a command file containing the desired editing commands
before running sed. The sed editor's command set is powerful and requires
little typing. Each command in the command file can be on a separate line,
or you can place multiple commands on one line by separating them with
semicolons (;). For example, either of the following two scripts will delete
all lines beginning with. ne, • RE, or • RS:

Script 1:
/"'\.ne/d
/"'\.R[ES]/d

Script 2:

/"'\.ne/d;/"'\.R[ES]/d

Once you create the command file (cmdfile in the following example),
enter the sed command as in this example:
$ sed -f cmdfile infile > outfile

This command edits infile, using the commands contained in cmdfile
and writing the output to Qutfile. The input file is not changed.

With a short editing script, you can accomplish the same job by entering the
editing commands as an argument to the -e option on the command line:
$ sed -e ,/A\.ne/d;/A\.R[ES]/d' infile> outfile

If you use the -e and -f options together on a command line, sed applies
all the commands specified by both options, in the order in which the options
appear on the command line. For example:

3-2 Editing Files with the sed Editor

$ echo "s/line/foo/" > sedx
$ echo "Test line" I sed -f sedx -e 's/line/bar/'
Test foo
$ echo "Test line" I sed -e 's/line/bar/' -f sedx
Test bar

You can use the -e and -f options more than once with a given sed
command. For example:
$ sed -f scriptl -e 's/foo/bar/' -f script2 msgs > msgs2

When you start sed, the editor reads and compiles the command script,
checking for syntax and organizing the commands for efficiency. It then
reads the input file one line at a time into an area of memory called the
pattern space. The editor then tries to match the addresses specified by the
commands in the script, one after another, to the lines in the pattern space.
Whenever a command's address matches any line or lines in the pattern
space, sed applies that editing command to the matched text. Commands
are applied in sequence to the text, and the results of each command are used
as the input for subsequent commands. When no more commands match a
given line in the pattern space, sed writes that line to the output, reads more
input, and repeats the process. Figure 3-1 is a flowchart of this sequence.
Compare the operation of sed with the very similar operation of the awk
program, shown in Figure 2-1.

Editing Files with the sed Editor 3-3

Figure 3-1: Sequence of sed Processing

No

Apply
editing

commands

No

ZK-0453U-R

Some editing commands change the way the editing process operates by
causing the editor to bypass other script commands, by inhibiting the writing
of certain lines (by deleting them), or by ending the process prematurely.

3.2 Selecting Lines for Editing
The sed editor identifies lines to be edited by matching addresses. An
address can be either a line number or a context address:

• Line numbers

The first line in the input stream is line 1, and each successive line
increments the line counter by one. The dollar sign ($) is a shorthand
way to specify the last line of the input stream.

3-4 Editing Files with the sed Editor

If you edit more than one file in a single invocation of sed, the line
counter is cumulative across all the files edited; for example, if the first
file contains 100 lines, the first line of the second file is line 101.

• Context addresses

A context address is a regular expression (RE) enclosed in slashes; for
example, / A \ • R [ES] / matches any line beginning with either. RE or
.RS.

The sed editor recognizes the limited set of REs shown in Table 3-2.

Table 3-2: Regular Expressions Recognized by sed

Expression Name

Period (dot)

\n Embedded newline
(a backslash
followed by the
letter n)

* Asterisk

[chars] Brackets

Circumflex

$ Dollar sign

\ char Backslash

[: class:] Class

Rule

Matches any single character except the
newline character.

Matches an embedded newline character in
a line formed by joining multiple lines.

Matches any number of occurrences of the
preceding simple RE, including none.

Matches a single instance of anyone of the
characters within the brackets. Ranges of
characters can be abbreviated by using a
dash; for example, [O-9a-z] matches any
single digit or lowercase letter.

When used at the beginning of an RE,
matches the beginning of a line. When
used as the first character inside brackets,
excludes the bracketed characters from
being matched. Otherwise, has no special
properties.

When used at the end of an RE, matches
the end of a line. Otherwise, has no special
properties.

Escapes the next character to permit
matching on explicit instances of characters
that are normally RE operators.

A character class name enclosed in
bracket-colon delimiters matches any of the
set of characters in the named class.

Editing Files with the sed Editor 3-5

Table 3-2:

Expression

\(expr\)

\n

II

(continued)

Name

Substring delimiters

Repeat expression (a
backs lash followed
by a single digit n)

Empty slashes

Rule

Matches expr and saves the matching
substring into a numbered holding space for
reuse with the \n operator.

Repeats the expression delimited by the
nth set of hold delimiters in the RE.

Matches the text that matched the most
recently specified RE.

Some sed commands do not accept addresses. Commands that accept
addresses behave differently depending on the number of addresses, as
follows:

• If no address is specified, the command is applied to every line in the
input stream.

• If one address is specified, the command is applied to each line that
matches the address.

• If two addresses are specified, the command is applied to a group of lines
starting with a line that matches the first address and ending with the first
subsequent line that matches the second address. The editor then tries to
match the first address again to find another range.

Caution

If two addresses are specified but sed cannot find a line
matching the ending address, sed operates on every line from
the first address to the end of the file.

3.3 Summary of sed Commands
Each sed command consists of a single letter with optional addresses. Some
commands require arguments and accept qualifiers that alter their behavior.
Do not include any space between the addresses and the letter. If you use
two adddresses with a command, separate them with a comma. The rand w
commands and the w flag for the s command require a single space between
the letter and the argument; otherwise, do not include any space between the
letter and the argument.

Table 3-3, Table 3-4, and Table 3-5 describe the individual sed commands,
showing the syntax of each. In these tables, the following conventions apply:

3-6 Editing Files with the sed Editor

• The term "range of lines" can mean a single line, a group of lines, or all
lines, as specified by the number of addresses given to the command.

• Brackets [] enclose optional elements. Nested brackets indicate that
the nested element can be used only if the enclosing element is present.

• Italic (slanted) type indicates a general name for an object that you
specify; for example, f i 1 e represents a command argument that must be
the name of a file.

The following example illustrates a correctly formed s command with all
optional elements:
1,/A$/s/vizier//g

This example processes the header of a mail message (line 1 to the first
completely blank line), replacing the string vizier with nothing wherever
the string occurs on any line in the specified range.

Table 3-3: Text Editing and Movement Commands

Command

Append text

[addr1]a\
text[\
text . ..]

Change lines

[addr1[,addr2]]c\
text[\
text ...]

Delete lines

Description

Writes the specified texta to the output after the
line specified by addr 1. See also the i command.

Deletes the addressed range of lines and writes the
specified texta to the output in its place.

[addr 1 [, addr 2]] d Deletes the specified range of lines. b

Delete the first line of the pattern space

[addr1 [,addr2]]D Deletes all text in the pattern space up to and
including the first newline character. If only one
line is in the pattern space, this command reads
another line from the input into the pattern space.
After these operations, the command starts the
complete list of editing commands again from the
beginning.

Editing Files with the sed Editor 3-7

Table 3-3: (continued)

Command Description

I nsert lines

[addr1]i\
text[\
text . ..]

Advance in the file

[addr1[,addr2]]n

Join lines
[addr1 [,addr2]]N

Print lines

[addr1 [,addr2]]p

Writes the specified texta to the output before
the line specified by addr 1. See also the a
command.

Writes the indicated range from the pattern space (if
not deleted) to the output and then reads the next
line from the input into the pattern space.

Joins the indicated lines together as a single line
with embedded newline characters. If only one
address is given, the command joins the specified
line to the next line in the input stream.

Pattern matches for addressing or for string
replacement can extend across embedded newline
characters. Use \n to indicate an embedded newline
character for matching.

Writes the specified range of lines to the output at
the point in the editing process where the p
command appears. This command can be used to
reorder sections of a file.

Print the first line in the pattern space

[addr1[,addr2]]P

Read and append a file

[addr1] r file

3-8 Editing Files with the sed Editor

Writes all text in the pattern space, up to and
including the first newline character, to the output at
the point in the editing process where the P
command appears.

Reads the named filec and writes the file's
contents to the output after addr 1.

Table 3-3: (continued)

Command Description

Substitute text

[addrl[,addr2]]s/expr/string/[flags]

Write a named file

Searches the indicated lines for a string of characters
matching the RE defined by expr, and replaces that
set of characters with string. This command's
operation is modified by the g, p, and w file
ftags.d If either expr or string includes a
slash (/), you must escape the literal slash with a
backslash (s/path/path\/file/) or use
alternative delimiters such as the at sign (@) or
question mark (?). For example,
s@path@path/file@ replaces path with
path/file.

[addrl [, addr2]]w file Writes the specified range of lines to the named file
at the point in the editing process where the w
command appears.e

Print line number

[addrl]=

Table Notes:

Writes the line number of the indicated line to the
output.

a. If the text to be written consists of multiple lines, each line except the last
must have a backslash (\) before the terminal newline character. The
text is always written regardless of anything subsequent commands do to
the line that caused it to be written, including deletion of that line. It is
neither scanned for address matches nor affected by subsequent editing
commands, and it has no effect on the editor's line counter.

b. If no addresses are given, the d command deletes all lines in the pattern
space; unless constrained by a range controlling a group of commands in
braces, the command deletes the entire contents of the file.

c. Include exactly one space between the r command and the file name. If
file cannot be accessed, sed behaves as if it had read an empty file

Editing Files with the sed Editor 3-9

and gives no abnormal indication. A combined maximum of 10 files can
be named for reading or writing in any given editing process.

d. See Section 3.4 for descriptions of the s command's optional flags.

e. Include exactly one space between the w command and the file name. If
f i 1 e exists, it is overwritten; if not, it is created. A combined
maximum of 10 files can be named for reading or writing in any given
editing process.

Table 3-4: Buffer Manipulation Commands

Command Description

Retrieve text from hold area

[addr 1 [, addr2]] 9
and
[addrl[,addr2]]G

Move text to the hold area

[addrl[,addr2]]h
and
[addrl[,addr2]]H

Copies the contents of the hold area to the pattern
space indicated by addrl and addr2, if present.
The 9 command destroys the existing contents of the
pattern space; the G command appends the held text
to the contents of the pattern space, separating the
previous text from the appended text with a newline
character.

Copies the indicated range from the pattern space to
the hold area. The h command destroys the existing
contents of the hold area; the H command appends
the text in the pattern space to the contents of the
hold area, separating the previous text from the
appended text with a newline character.

Exchange pattern space and hold area

[addrl[,addr2]]x Exchanges the contents of the pattern space with
those of the hold area.

Table 3-5: Flow-ot-Control Commands

Command

Range negation ("Don't")

[addrl[,addr2]]!cmd

3-10 Editing Files with the sed Editor

Description

The exclamation point (!) instructs sed to apply
the command following it on the same line to the
parts of the input file that are not selected by addr 1
and addr2.

Table 3-5: (continued)

Command Description

Command grouping

[addr 1 [, addr2]] {
nested commands
}

Label

: label

Branch

blabel

Conditional branch

tlabel

Stop

[addrl]q

The left and right braces enclose a group of
commands to be applied as a set to the range
specified by addrl and addr2. The first
command in the set can be on the line following the
left brace as illustrated in this table, or it can be on
the same line with the brace. The right brace must
be on a line by itself. Groups can be nested within
other groups.

Marks a place in the stream of editing commands to
be used as a destination of a branch command. The
label is a string of up to 8 bytes. Each label in the
editing stream must be unique. For a related
discussion, see the description of the t command in
the sed(l) reference page.

Branches to the point in the editing script indicated
by label and continues processing the current
input line with the commands following the label. If
label is null, the b command bypasses the rest of
the editing script, reads a new input line, and starts
the editing script over from the beginning.

If any successful substitutions were made on the
current input line, branches to label; otherwise,
the command does not branch. In either case, the
command clears the flag that indicates a substitution
was made. This flag is also cleared at the start of
each new input line. If label is null and the
branch is taken, the t command bypasses the rest of
the editing script, reads a new input line, and starts
the editing script over from the beginning.

Stops editing in an orderly fashion by writing the
current line to the output, writing any appended or
read text to the output, and then exiting.

Editing Files with the sed Editor 3-11

3.4 String Replacement
The s command performs string replacement on the indicated lines in the
input file. If the editor finds a string of characters in the input file that
satisfies the RE expr, it replaces that string with the set of characters
specified in string. The string argument is not an RE, and it is not
scanned or otherwise interpreted except as follows:

• Any backslash characters (\) appearing in string must be escaped.
See Table 3-3 for an explanation of how to handle slash characters (/) in
string.

• The following two special symbols can be used in string:

- Ampersand (&)

This symbol in string is replaced by the exact string of characters
in the input lines that matched expr. For example, apply the
command s / [Bb] oy / & s / to the following line:
The boy watched the game.

This command tells sed to find either Boy or boy in the input line
and copy whichever pattern it finds to the output with an appended
"s". Since the command finds boy, it transfers that string to the
output with the modification, and the result is as follows:
The boys watched the game.

- Repeat expression (\n)

The number n is a single digit. This symbol in string is replaced
by the string in the input line that matches the nth substring in expr.
Substrings are delimited by backslash-parentheses sets \ (and \).
For example, apply the command s / \ (stu \) \ (dy \) / \ 1 r \ 2/ to
the following line:
The study chair.

This command tells sed to find study in the input line and copy
that pattern to the output with an "r" inserted in the middle. The
result is as follows:
The sturdy chair.

You can modify the behavior of the s command with flags, as follows:

• Normally, only the first matching string in each line of the range is
replaced. The g (global) flag causes sed to make the substitution for all
matching strings anywhere on any line in the range. Note that the
matching strings do not have to be identical; the RE expr is evaluated
again for each potential match.

3-12 Editing Files with the sed Editor

• The p (print) flag instructs sed to write the indicated lines explicitly
after making any substitutions; this writing action is in addition to sed's
normal operation.

• The w file (write) flag instructs sed to write the indicated lines to the
named file after making any substitutions. Include exactly one space
between the w flag and the file name.

Any or all of these flags can be used with a given s command; in
combinations, the w flag must be the last flag specified.

Editing Files with the sed Editor 3-13

Creating Input Language Analyzers and 4
Parsers

If a program needs to receive and process input, there must be a means of
analyzing the input before it is processed. You can analyze input with one or
more routines within the program, or with a separate program designed to
filter the input before passing it to the main program. The complexity of the
input interface depends on the complexity of the input; complicated input can
require significant code to parse it (break it into pieces that are meaningful to
the program). This chapter describes the following two tools that help
develop input interfaces:

• The lex tool uses a set of rules to generate a program, called a lexical
analyzer, that analyzes input and breaks it into categories, such as
numbers, letters, or operators.

• The yacc tool uses a set of rules to generate a program, called a parser,
that analyzes input using the categories identified by the lexical analyzer
and determines what to do with the input. The yacc tool generates left­
associative, left-recursive (LALR) parsers. For further information about
LALR grammars, refer to a compiler book such as Compilers: Principles,
Techniques, and Tools, by Alfred Aho, Ravi Sethi, and Jeffrey Ullman. 1

To avoid confusion between the lex and yacc programs and the programs
they generate, lex and yacc are referred to throughout this chapter as tools.

4.1 How the Lexical Analyzer Works
The lexical analyzer that lex generates is a deterministic finite-state
automaton. This design provides for a limited number of states that the
lexical analyzer can exist in, along with the rules that determine what state
the lexical analyzer moves to upon reading and interpreting the next input
character.

The compiled lexical analyzer performs the following functions:

• Reads an input stream of characters.

• Copies the input stream to an output stream.

1 Alfred Abo, Ravi Sethi, and Jeffrey Ullman. Compilers: Principles, Techniques, and Tools, Reading,
MA, U.S.A.: Addison-Wesley Publishing Co., 1986.

•

•

Breaks the input stream into smaller strings that match the regular
expressions (REs) in the lex specification file.

Executes an action for each RE that it recognizes. Actions are C
language program fragments in the lex specification file. An action
fragment does not have to be complete within itself; it can call
subroutines or other actions.

Figure 4-1 illustrates a simple lexical analyzer that has three states: start,
good, and bad. The program reads an input stream of characters. It begins
in the start condition. When it receives the first character, the program
compares the character with the rule. If the character is alphabetic (according
to the rule), the program changes to the good state; if it is not alphabetic, the
program changes to the bad state. The program stays in the good state
until it finds a character that does not match its conditions, and then it moves
to the bad state, which terminates the program.

Figure 4-1: Simple Finite State Model

exit

ZK-04S4U-R

The automaton allows the generated lexical analyzer to look ahead more than
one or two characters in an input stream. For example, suppose the lex
specification file defines a rule that looks for the string' 'ab" and another rule
that looks for the string' 'abcdefg". If the lexical analyzer gets an input
string of "abcdefh", it reads enough characters to attempt a match on
"abcdefg". When the "h" disqualifies a match on "abcdefg", the analyzer
returns to the rule that looks for "ab". The first two characters of the input
match "ab", so the analyzer performs any action specified in that rule and
then begins trying to find another match using the remaining input, "cdefh".

4.2 Writing a Lexical Analyzer Program with lex
The lex tool helps write a C language lexical analyzer program that can
receive character stream input and translate that input into program actions.

4-2 Creating Input Language Analyzers and Parsers

To use lex, you must write a specification file that contains the following
parts:

• Regular expressions (REs) - Character patterns that the generated lexical
analyzer will recognize

• Action statements - C language program fragments that define how the
generated lexical analyzer is to react to REs that it recognizes

The actual format and logic allowed in the specification file are discussed in
Section 4.3.

The lex tool uses the information in the specification file to generate the
lexical analyzer. The tool names the created analyzer program yy .lex. c.
The yy .lex. c program contains a set of standard functions together with
the analysis code that is generated from the specification file. The analysis
code is contained in the yylex function. Lexical analyzers created by lex
recognize simple grammar structures and REs. You can compile a simple
lex analyzer program with the following command:
% cc -11 yy.lex.c

The -11 option tells the compiler to use the lex function library. This
command yields an executable lexical analyzer. If your program uses
complex grammar rules, or if it uses no grammar rules, you should create a
parser (by combining the lex and yacc tools) to ensure proper handling of
the input. (See Section 4.6.)

The yy .lex. c output file can be moved to any other system having a C
compiler that supports the lex library functions.

4.3 The lex Specification File
The format of the lex specification file is as follows:

[{definitions}]
0/00/0
[{rules}]
[0/00/0
{user subroutines}]

Except for the first pair of percent signs (% %), which mark the beginning of
the rules, all parts of the specification file are optional, even the rules
themselves. The minimum lex specification file contains no definitions, no
rules, and no user subroutines:

Creating Input Language Analyzers and Parsers 4-3

%%

Without a specified action for a pattern match, the lexical analyzer copies the
input pattern to the output without changing it. Therefore, this minimum
specification file produces a lexical analyzer that copies all input to the output
unchanged.

4.3.1 Defining Substitution Strings
You can define string macros before the first pair of percent signs in the lex
specification file. The lex tool expands these macros when it generates the
lexical analyzer. Any line in this section that begins in column 1 and that
does not lie between % { and % delimiters defines a lex substitution string.
Substitution string definitions have the following general format:

name translation

The name and translation elements are separated by a least one blank
or tab, and name begins with a letter. When lex finds the string name
enclosed in braces ({ }) in the rules part of the specification file, it changes
name to the string defined in translation and deletes the braces.

For example, to define the names D and E, place the following definitions
before the first % % delimiter in the specification file:

D [0-9]
E [DEde][-+]{D}+

These definitions can be used in the rules section to make identification of
integers and real numbers more compact:

{D}+ printf("integer");
{D}+"."{D}*({E})?I
{D}*"."{D}+({E})?I
{D}+{E} printf("real");

You can also include the following items in the definitions section:

• Character set table (described in Section 4.3.3)

• List of start conditions (described in Section 4.3.6)

• Changes to size of arrays to accommodate larger source programs

4.3.2 Rules
The rules section of the specification file contains control decisions that
define the lexical analyzer that lex generates. The rules are in the form of a
two-column table. The left column of the table contains REs; the right
column of the table contains actions, one for each RE. Actions are C
language program fragments that can be as simple as a semicolon (the null
statement) or as complex as needed. The lexical analyzer that lex creates

4-4 Creating Input Language Analyzers and Parsers

contains both the REs and the actions; when it finds a match for one of the
REs, it executes the corresponding action.

For example, to create a lexical analyzer to look for the string' 'integer" and
print a message when the string is found, define the following rule:

integer printf ("found keyword integer");

This example uses the C language library function printf to print a
message string. The first blank or tab character in the rule indicates the end
of the RE. When you use only one statement in an action, put the statement
on the same line and to the right of the RE (integer in this example).
When you use more than one statement, or if the statement takes more than
one line, enclose the action in braces, as in a C language program. For
example:

integer {
printf ("found keyword integer");
hits++;
}

A lexical analyzer that changes some words in a file from British spellings to
the American spellings would have a specification file that contains rules
such as the following:

colour printf("color");

mechanise printf("mechanize");

petrol printf ("gas") ;

This specification file is not complete, however, because it changes the word
, 'petroleum" to "gaseum".

4.3.2.1 Regular Expressions

Methods used to specify REs in a lex specification file are similar to those
used in sed or ed. Chapter 1 contains a thorough exposition of REs. REs
consist of text characters and operators. A text character is any character that
is not an operator or a special character as described in Section 4.3.2.1.2.
Table 4-1 lists the operators that lex recognizes. Note that some of these
operators are unique to 1 ex.

Table 4-1: Regular Expression Operators for lex

Operator Name

Period (dot)

Description

Matches any single character except the
newline character.

Creating Input Language Analyzers and Parsers 4-5

Table 4-1: (continued)

Operator Name Descri ption

* Asterisk Matches any number of occurrences of the
preceding object, including none.

? Question mark Matches zero Or one occurrence of the
preceding object. For example, ab?c
matches "ac" or "abc" but not "abbc".

+ Plus sign Matches one or more occurrences of the
preceding object.

\{expr\} Braces When enclosing numbers, matches a more
restricted number of instances of the
preceding object.

When braces enclose a name, the name
represents a string defined earlier in the
specification file. For example, {digit}
looks for a defined string named digit
and inserts that string at the point in the
expression where {digit} occurs.

[chars] Brackets Matches a single instance of anyone of the
characters within the brackets. Ranges of
characters can be abbreviated by using a
dash; for example, [O-9a-z] matches any
single digit or lowercase letter. Note that if
the program is moved to a system that uses
a different set of character codes (for
example, EBCDIC instead of ASCII), the
range can be a different set of characters.
Ranges of characters are referred to as
classes.

Circumflex When used at the beginning of an RE,
matches the beginning of a line. When
used as the first character inside brackets,
excludes the bracketed characters from
being matched. Otherwise, has no special
properties.

$ Dollar sign When used at the end of an RE, matches
the end of a line. Otherwise, has no special
properties.

\char Backslash Escapes the next character to permit
matching on explicit instances of characters
that are normally RE operators. For
example, abc \ + \ + matches "abc++".

4-6 Creating Input Language Analyzers and Parsers

Table 4-1: (continued)

Operator Name Description

(expr) Parentheses Encloses, or frames, an RE, allowing
operators that act on the preceding object to
treat the entire framed RE as an object. For
example, (ab)? (cd) matches cd or
abed.

expr I expr •.• Vertical bar Separates multiple REs; matches any of the
bar-separated REs.

alb

<x>

Quotation marks Encloses literal strings to interpret as text
characters. For example, "$" prevents
lex from interpreting the dollar sign as an
operator. You can use quotation marks for
only part of a string; for example, both
"abe++" and abc" ++" match the literal
string' 'abc++".

Slash

Angle brackets

Enables a match on the first expression (a)
only if the second expression (b) follows it
immediately. For example, ab/ cd
matches "ab" if, and only if, "cd"
immediately follows the' 'ab" .

Encloses a start condition. Executes the
associated action only if the lexical analyzer
is in the indicated start condition <x>. If
the condition of being at the beginning of a
line is start condition ONE, then the
circumflex (A) operator would be the same
as the expression <ONE>.

4.3.2.1.1 Including Blanks in an Expression - Normally, white space
(blanks or tabs) delimits the end of an RE and the start of its associated
action. However, you can enclose blanks or tab characters in quotation
marks (" ") to include them in an expression. Use quotation marks around
all blanks in REs that are not already within sets of brackets ([]).

4.3.2.1.2 Other Special Characters - The lex tool recognizes several of the
normal C language special characters. These character sequences are as
follows:

\n Newline character - Do not use the actual newline character
in an expression

Creating Input Language Analyzers and Parsers 4-7

\t

\b

\\

Tab

Backspace

Backslash

When you use these special characters in an expression, you do not need to
enclose them in quotation marks. Every character, except these special
characters and the previously described operator symbols, is always a text
character.

4.3.2.2 Matching Rules

When more than one RE in the rules section of a specification file can match
the current input, the lexical analyzer chooses which rule to apply using the
following criteria:

1. The longest matching string of characters

2. Among rules that match the same number of characters, the rule that
occurs first

For example, consider the following rules:
integer
[a-z]+

printf (" found int keyword ");
printf("found identifier");

If the rules are given in this order and' 'integers" is the input word, the
analyzer calls the input an identifier because [a-z] + matches all eight
characters of the word while integer matches only seven. However, if the
input is "integer", both rules match. In this case, lex selects the keyword
rule because it occurs first. A shorter input, such as "int", does not match
the expression integer, so lex selects the identifier rule.

4.3.2.2.1 Using Wildcard Characters to Match a String - Because the
lexical analyzer chooses the longest match first, you must be careful not to
use an RE that is too powerful for your intended purpose. For example, a
period followed by an asterisk and enclosed in apostrophes (, • * ') might
seem like a good way to recognize any string enclosed in apostrophes.
However, the analyzer reads far ahead, looking for a distant apostrophe to
complete the longest possible match. Consider the following text:
'first' quoted string here, 'second' here

Given this input, the analyzer will match on the following string:

4-8 Creating Input Language Analyzers and Parsers

'first' quoted string here, 'second'

Because the period operator does not match a newline character, errors of this
type are usually not far reaching. Expressions like • * stop on the current
line. Do not try to defeat this action with expressions like the following:
[.\n]+

Given this expression, the lexical analyzer tries to read the entire input file,
and an internal buffer overflow occurs.

The following rule finds the smaller quoted strings "first" and' 'second"
from the preceding text example:

, [A , \n] * , "

This rule stops after matching "first" because it looks for an apostrophe
followed by any number of characters except another apostrophe or a newline
character, then followed by a second apostrophe. The analyzer then begins
again to search for an appropriate expression, and it will find' 'second" as it
should. Note that this expression also matches an empty quoted string (' ').

4.3.2.2.2 Finding Strings Within Strings - Normally, the lexical analyzer
program partitions the input stream. It does not search for all possible
matches of each expression. Each character is accounted for exactly once.
For example, to count occurrences of both "she" and "he" in an input text,
consider the following rules:
she s++;
he h++;
\n

The last two rules ignore everything other than the two strings of interest.
However, because "she" includes "he", the analyzer does not recognize the
instances of "he" that are included within "she".

A special action, REJECT, is provided to override this behavior. This
directive tells the analyzer to execute the rule that contains it and then, before
executing the next rule, restore the position of the input pointer to where it
was before the first rule was executed. For example, to count the instances
of "he" that are included within "she", use the following rules:
she {s++; REJECT;}
he {h++; REJECT;}
\n

After counting an occurrence of "she", the analyzer rejects the input stream
and then counts the included occurrence of "he". In this example, "she"
includes "he" but the reverse is not true, and you can omit the REJECT
action on "he". In other cases, such as when a wildcard RE is being
matched, determining which input characters are in both classes can be
difficult.

Creating Input Language Analyzers and Parsers 4-9

In general, REJECT is useful whenever the purpose is not to partition the
input stream but rather to detect all examples of some items in the input
where the instances of these items can overlap or include each other.

4.3.2.3 Actions

When the lexical analyzer matches one of the REs in the rules section of the
specification file, it executes the action that corresponds to the RE. Without
rules to match all strings in the input stream, the lexical analyzer copies the
input to standard output. Therefore, do not create a rule that only copies the
input to the output. Use this default output to find conditions not covered by
the rules.

When you use a lex-generated analyzer to process input for a parser that
yacc produces, provide rules to match all input strings. Those rules must
generate output that yacc can interpret. For information on using lex with
yacc, see Section 4.5.

4.3.2.3.1 Null Action - To ignore the input associated with an RE, use a
semicolon (;), the C language null statement, as an action. For example:
[\t\n]

This rule ignores the three spacing characters (blank, tab, and newline
character).

4.3.2.3.2 Using the Same Action for Multiple Expressions - To use the
same action for several different expressions, create a series of rules (one for
each expression except the last) whose actions consist of only a vertical bar
character (I). For the last expression, specify the action as you would
normally specify it. The vertical bar character indicates that the action for
the rule containing it is the same as the action for the next rule. For
example, to ignore blank, tab, and newline characters (shown in Section
4.3.2.3.1), you could use the following set of rules:

I
"\t" I
"\nn

The quotation marks around the special character sequences (\n and \ t) in
this example are not mandatory.

4.3.2.3.3 Printing a Matched String - To find out what text matched an RE in
the rules section of the specification file, include a C language printf
function as one of the actions for that expression. When the lexical analyzer
finds a match in the input stream, the program puts that matched string in an
external character array, called yytext. To print the matched string, use a
rule like the following:

4-10 Creating Input Language Analyzers and Parsers

[a-z]+ printf("%s", yytext);

Printing the output in this way is common. You can define an expression
like this printf statement as a macro in the definitions section of the
specification file. If this action is defined as ECHO, then the rules section
entry looks like the following:

[a-z]+ ECHO;

See Section 4.3.1 for information on defining macros.

4.3.2.3.4 Finding the Length of a Matched String - To find the number of
characters that the lexical analyzer matched for a particular RE, use the
external variable yyleng. For example, the following rule counts both the
number of words and the number of characters in words in the input:
[a-zA-Z]+ {words++; chars += yyleng;}

This action totals the number of characters in the words matched and assigns
that value to the chars variable.

The following expression finds the last character in the string matched:
yytext[yyleng-l]

4.3.2.3.5 Getting More Input - The lexical analyzer can run out of input before
it completely matches an RE in a rules file. In this case, include a call to the
lex function yymore in the action for that rule. Normally, the next string
from the input stream overwrites the current entry in yytext. The yymore
action appends the next string from the input stream to the end of the current
entry in yytext. For example, consider a language that includes the
following syntax:

• A string is any set of characters between quotation marks (.. ").

• A backslash (\) escapes the next character to make that character part of
the string. For example, the combination of a backslash and a quotation
mark (\ ") indicates that the quotation mark is part of the string instead
of being the closing delimiter for the string.

The following rule processes these lexical characteristics:
\"[A"J* {

if (yytext[yyleng-l] '\\')
yymore() ;

else
... normal user processing

}

When this lexical analyzer receives a string such as "abc\"def" (with the
quotation marks exactly as shown), it first matches the first five characters,
"abc\. The backslash causes a call to yymore to add the next part of the

Creating Input Language Analyzers and Parsers 4-11

string, "def, to the end. The part of the action code labeled "normal user
processing" must process the quotation mark that ends the string.

4.3.2.3.6 Returning Characters to the Input - In some cases the lexical
analyzer does not need all of the characters that are matched by the currently
successful RE; or it might need to return matched characters to the input
stream to be checked again for another match. To return characters to the
input stream, use the yyless (n) call, where n is the number of characters
of the current string that you want to keep. Characters beyond the nth
character in the stream are returned to the input stream. This function
provides the same type of look-ahead that the slash operator (/) uses, but
yyless allows more control over the look-ahead. Using yyless (0) is
equivalent to using REJECT.

Use the yyless function to process text more than once. For example, a C
language expression such as x=-a is ambiguous. It could mean x = -a, or
it could be an obsolete representation of x -= a, which is evaluated as
x = x-a. To treat this ambiguous expression as x = -a and print a
warning message, use a rule such as the following:

=-[a-zA-Z] {
printf("Operator (=-) ambiguous\n");
yyless(yyleng-l);

action for
}

4.3.3 Using or Overriding Standard Input/Output Routines
The lex program provides a set of built-in input/output (1/0) routines for the
lexical analyzer to use. You can include calls to the following routines in the
C code fragments in your specification file:

• input - Returns the next input character

• output (c) - Writes the character c on the output

• unput (c) - Pushes the character c back onto the input stream to be
read later by input

These routines are provided as macro definitions. You can override them by
writing your own code for routines of the same names in the user subroutines
section.

These routines define the relationship between external files and internal
characters. If you change them, change them all in the same way. They
should follow these rules:

• All routines must use the same character set.

4-12 Creating Input Language Analyzers and Parsers

• The input routine must return a value of a to indicate end-of-file.

If you write your own code, you must undefine these macros in the
definitions section of the specification file before the code for your own
definitions:

%{
#undef
#undef
#undef
}%

input
unput
output

Caution

Changing the relationship of unput to input will cause the
look-ahead functions not to work.

When you are using a lex-generated lexical analyzer as a simple
transformer/recognizer for piping from standard input to standard output, you
can avoid writing the' 'framework" by using the lex library (libl. a).
This library contains the main routine, which calls the yylex function for
you. The standard lex library allows the lexical analyzer to back up a
maximum of 100 characters.

If you need to be able to read an input file containing the null character
(0008), you must create a different version of the input routine. The
standard version of input returns a value of a when reading a null, and the
analyzer interprets this value as indicating the end of the file.

The lexical analyzers that lex generates process character I/O through the
input, output, and unput routines. Therefore, to return values in
yytext, the analyzer uses the character representation that these routines
use. Internally, however, each character is represented with a small integer.
With the standard library, this integer is the value of the bit pattern that the
computer uses to represent the character. Normally, the letter' 'a" is
represented in the same form as the character constant a. If you change this
interpretation with different I/O routines, you must include a translation table
in the definitions section of the specification file. The translation table begins
and ends with lines that contain only the %T keyword, and it contains lines of
the following form:

{integer} {character string}

The following example shows table entries that associate the letter "A" and
the digit "0' , (zero) with their standard values:

Creating Input Language Analyzers and Parsers 4-13

%T
{65} {A}
{48} {O}
%T

4.3.4 End-of-File Processing
When the lexical analyzer reaches the end of a file, it calls a library routine
named yywrap. This routine returns a value of 1 to indicate to the lexical
analyzer that it should continue with normal wrap-up (operations associated
with the end of processing). However, if the analyzer receives input from
more than one source, you must change the yywrap function. The new
function must get the new input and return a value of 0 to the lexical
analyzer. A return value of 0 indicates that the program should continue
processing. Note that multiple files specified on the command line are
treated as a single input file for the purpose of end-of-file handling.

You can also include code to print summary reports and tables in a special
version of yywrap. The yywrap function is the only way to force yylex
to recognize the end of the input.

4.3.5 Passing Code to the Generated Program
You can define variables in either the definitions section or the rules section
of the specification file. When you process a specification file, lex changes
statements in the file into a lexical analyzer. Any line in the specification file
that lex cannot interpret is passed unchanged to the lexical analyzer. The
following four types of entries can be passed to the lexical analyzer in this
manner:

• Lines beginning with a blank or tab that are not a part of a lex rule are
copied into the lexical analyzer. If this entry occurs before the first pair
of percent signs (% %) in the specification file, the entry is external to any
function in the code. If the entry occurs after the first % %, it must be a C
language program fragment that defines a variable. You must define
these statements before the first lex rule in the specification file.

• Lines beginning with a blank or tab that are program comments are
included as comments in the generated lexical analyzer. The comments
must be in the C language format for comments.

• Any lines that lie between lines containing only % { and % are copied to
the lexical analyzer. The symbols % { and %} are not copied. Use this
format to enter preprocessor statements that must begin in column 1, or to
copy lines that do not look like program statements.

• Any lines occurring after the third % % delimiter are copied to the lexical
analyzer without format restrictions.

4-14 Creating Input Language Analyzers and Parsers

4.3.6 Start Conditions
Any rule can be associated with a start condition; the lexical analyzer
recognizes that rule only when the analyzer is in that start condition. You
can change the current start condition at any time.

You define start conditions in the definitions section of the specification file
by using a line with the following format:

0/0 Start name 1 [name2 ...]

The namel and name2 symbols represent conditions. There is no limit to
the number of conditions, and they can appear in any order. You can
abbreviate Start to either S or s. Start-condition names cannot be reserved
words in C, nor can they be declared as the names of variables, fields, and so
on.

When using a start condition in the rules section of the specification file,
enclose the name of the start condition in angle brackets « » at the
beginning of the rule. The following format defines a rule with a start
condition:

<name 1 [,name2 ...] > expression

The lexical analyzer recognizes expression only when the analyzer is in
the condition corresponding to one of the names. To put lex in a particular
start condition, execute the following action statement (in the action part of a
rule):

BEGINnamei

This statement changes the start condition to name. To resume the normal
state, use the following action:
BEGIN 0;

As shown in the preceding syntax diagram, a rule can be active in several
start conditions. For example:
<startl,start2,start3> [0-9]+ printf("integer");

This rule prints "integer" only if it finds an integer while in one of the three
named start conditions. Any rule that does not begin with a start condition is
always active.

4.4 Generating a Lexical Analyzer
Generating a lex-based lexical analyzer program is a two-step process, as
follows:

1. Run lex to change the specification file into a C language program. The
resulting program is in a file named lex. yy. c.

Creating Input Language Analyzers and Parsers 4-15

2. Process lex. yy. c with the cc -11 command to compile the program
and link it with a library of lex subroutines. The resulting executable
program is named a. out.

For example, if the lex specification file is called lextest, enter the
following commands:
% lex 1extest
% cc 1ex.yy.c -11

Although the default lex I/O routines use the C language standard library,
the lexical analyzers that lex generates do not require them. You can
include different copies of the input, output, and unput routines to
avoid using those in the library. (See Section 4.3.3.)

Table 4-2 describes the options for the lex command.

Table 4-2: Options for the lex Command

Option

-n

-t

-v

Description

Suppresses the statistics summary that is produced by default when
you set your own table sizes for the finite state machine. See the
lex(1) reference page for information about specifying the state
machine.

Writes the generated lexical analyzer code to standard output instead
of to the lex. yy. c file.

Provides a one-line summary of the general finite state machine
statistics.

Note that because lex uses fixed names for intermediate and output files,
you can have only one lex-generated program in a given directory unless
you use the -t option to specify an alternative file name.

4.5 Using lex with yacc
When used alone, the lex tool creates a lexical analyzer that recognizes
simple one-word input or receives statistical input. You can also use lex
with a parser generator, such as yacc. The yacc tool generates a program,
called a parser, that analyzes the construction of multiple-word input. This
parser program operates well with lexical analyzers that lex generates; these
lexical analyzers recognize only REs and format them into character packages
called tokens.

A token is the smallest independent unit of meaning as defined by either the
parser or the lexical analyzer. A token can contain data, a language keyword,
an identifier, or other parts of a language syntax. A token can be any string

4-16 Creating Input Language Analyzers and Parsers

of characters; it can be part or all of a word or series of words. The yacc
tool produces parsers that recognize many types of grammar with no regard
to context. These parsers need a preprocessor, such as a lex-generated
lexical analyzer, to recognize input tokens.

When a lex-generated lexical analyzer is used as the preprocessor for a
yacc-generated parser, the lexical analyzer partitions the input stream. The
parser assigns structure to the resulting pieces. Figure 4-2 shows how lex
and yacc generate programs and how the programs work together. You can
also use other programs along with those generated by lex or yacc.

Figure 4-2: Producing an Input Parser with lex and yacc

Source
Files

Lexical
Rules

Grammar
Rules

Program Generated
Generators Output Files

lex.yy.c

y.tab.c

Compiler
Compiled
Program

Input --------1
1
1

a.out

I
I
I L ________ ~

Parsed Input for
Another Program

ZK-0455U-R

The parser program requires that its preprocessor (the lexical analysis
function) be named yylex. This is the name lex gives to the analysis code
in a lexical analyzer it generates. If a lexical analyzer is used by itself, the
default main program in the lex library calls the yylex routine, but if a
yacc-generated parser is loaded and its main program is used, the parser
calls yylex. In this case, each lex rule should end with the following line,
where the appropriate token value is returned:
return(token);

To find the names for tokens that yacc uses, compile the lexical analyzer
(the lex output file) as part of the parser (the yacc output file) by placing
the following line in the last section of the yacc grammar file:

Creating Input Language Analyzers and Parsers 4-17

#include lex.yy.c

Alternatively, you can include the yacc output (the y. tab. h file) into your
lex program specification file, and use the token names that y. tab. h
defines. For example, if the grammar file is named good and the
specification file is named better, the following command sequence creates
the final program:
% yacc good
% lex better
% cc y.tab.c -ly -11

The yacc library (-ly in the preceding example) should be loaded before
the lex library to get a main program that invokes the yacc parser. You
can generate lex and yacc programs in either order.

4.6 Creating a Parser with yacc
To generate a parser with yacc, you must write a grammar file that
describes the input data stream and what the parser is to do with the data.
The grammar file includes rules describing the input structure, code to be
invoked when these rules are recognized, and a routine to do the basic input.

The yacc tool uses the information in the grammar file to generate
yyparse, a program that controls the input process. This is the parser that
calls the yylex input routine (the lexical analyzer) to pick up tokens from
the input stream. The parser organizes these tokens according to the structure
rules in the grammar file. The structure rules are called grammar rules.
When the parser recognizes a grammar rule, it executes the user code (action)
supplied for that rule. Actions return values and use the values returned by
other actions.

In addition to the specifications that yacc recognizes and uses, the grammar
file can also contain the following functions:

• main - A C language function that contains, as a minimum, a call to the
yyparse function, which yacc generates. A limited form of this
function is in the yacc library.

• yyerror - A C language function to handle errors that can occur during
parser operation. A limited form of this function is in the yacc library.

• yylex - A C language function to perform lexical analysis on the input
stream and pass tokens (with values, if required) to the parser.

The function must return an integer that represents the kind of token that
was read. The integer is called the token number. In addition, if a value
is associated with the token, the lexical analyzer must assign that value to
the external variable yylval. See Section 4.7.1.3 for more information
on token numbers.

4-18 Creating Input Language Analyzers and Parsers

To build a lexical analyzer that works well with the parser that yacc
generates, use the lex tool (see Section 4.3).

The yacc tool processes a grammar file to generate a file of C language
functions and data, named y • tab. c. When compiled using the cc
command, these functions form a combined function named yyparse. This
yyparse function calls yylex, the lexical analyzer, to get input tokens.
The analyzer continues providing input until the parser detects an error or the
analyzer returns an endmarker token to indicate the end of the operation.
If an error occurs and yyparse cannot recover, yyparse returns a value of
1 to the main function. If it finds the endmarker token, yyparse returns
a value of 0 to main.

Use the C programming language to write the action code and other
subroutines. The yacc program uses many of the C language syntax
conventions for the grammar file.

4.6.1 The main and yyerror Functions
You must provide function routines named main and yyerror in the
grammar file. To ease the initial effort of using yacc, the yacc library
provides simple versions of the main and yyerror routines. You can
include these routines by using the -ly option to the loader or the cc
command. The source code for the main library function is as follows:
main()
{

yyparse();
}

The source code for the yyerror library function follows:
#include <stdio.h>

void yyerror(s)
char *Si

{

}
fprintf(stderr, " %s\n" ,s);

The argument to yyerror is a string containing an error message, usually
the string syntax error.

These are very limited programs. You should provide more sophistication in
these routines, such as keeping track of the input line number and printing it
along with the message when a syntax error is detected. You can also use the
value of the external integer variable yychar. This variable contains the
look-ahead token number at the time the error was detected.

Creating Input Language Analyzers and Parsers 4-19

4.6.2 The yylex Function
The yylex program input routine that you supply must be able to do the
following:

• Read the input stream

• Recognize basic patterns in the input stream

• Pass the patterns to yyparse along with tokens that identify them

A token is a symbol or name that tells yyparse which pattern is being sent
to it by the input routine. A symbol can be in one of the following two
classes:

• Terminal symbols - Values returned by yylex to represent the primitive
building blocks, or "atoms," of the grammar.

• Nonterminal symbols - The composite symbols, or "molecules," that are
used by the yacc grammar to describe more complex orderings or
aggregations of the terminal symbols.

For example, if the lexical analyzer recognizes any numbers, names, and
operators, these elements are taken to be terminal symbols. Nonterminal
symbols that the yacc grammar recognizes are elements like EXPR, TERM,
and FACTOR. Suppose the input routine separates an input stream into the
tokens of WORD, NUMBER, and PUNCTUATION. Consider the input sentence
"I have 9 turkeys." The analyzer could pass the following strings and
tokens to the parser:

String Token

I WORD

have WORD

9 NUMBER

turkeys WORD

PUNCTUATION

The yyparse function must contain definitions for the tokens that the input
routine passes to it. The yacc command's -d option causes the program to
generate a list of tokens in a file named y. tab. h. This list is a set of
#define statements that allow yylex to use the same tokens as the parser.

To avoid conflict with the parser, do not use names that begin with the letters
yy. You can use lex to generate the input routine, or you can write it in the
C language. See Section 4.3 for information about using lex.

4-20 Creating Input Language Analyzers and Parsers

4.7 The Grammar File
A yacc grammar file consists of the following three sections:

• Declarations

• Rules

• Programs

Two percent signs (% %) that appear together separate the sections of the
grammar file. To make the file easier to read, put the percent signs on a line
by themselves. The format of a grammar file is:

[declarations]
0/00/0
rules
[0/00/0
programs]

Except for the first pair of percent signs (% %), which mark the beginning of
the rules, and the rules themselves, all parts of the grammar file are optional.
The minimum yacc gramar file contains no definitions and no programs, as
follows:
%%
rules

Except within names or reserved symbols, the yacc program ignores blanks,
tabs, and new line characters in the grammar file. You can use these
characters to make the grammar file easier to read. Do not use blanks, tabs,
or newline characters in names or reserved symbols.

4.7.1 Declarations
The declarations section of the yacc grammar file contains the following
elements:

• Declarations for any variables or constants used in other parts of the
grammar file

• #include statements to call in other files as part of this file (used for
library header files)

• Statements that define processing conditions for the generated parser

Declarations for variables or constants conform to the syntax of the C
programming language, as follows:

type-specifier declarator;

In this syntax, type-specifier is a data type keyword and
declarator is the name of the variable or constant. Names can be any

Creating Input Language Analyzers and Parsers 4-21

length and can consist of letters, dots, underscores, and digits. A name
cannot begin with a digit. Uppercase and lowercase letters are distinct. The
names used in the body of a grammar rule can represent tokens or
nonterminal symbols.

If you do not declare a name in the declarations section, you can use that
name only as a nonterminal symbol. Define each nonterminal symbol by
using it as the left side of at least one rule in the rules section. The
inc 1 ude statements are identical to C language syntax and perform the
same function.

The yacc tool has a set of keywords, listed in Table 4-3, that define
processing conditions for the generated parser. Each of the keywords begins
with a percent sign (%) and is followed by a list of tokens.

Table 4-3: Processing-Condition Definition Keywords in yacc

Keyword

%left

%nonassoc

%right

%start

%token

Description

Identifies tokens that are left-associative with other tokens.

Identifies tokens that are not associative with other tokens.

Identifies tokens that are right-associative with other tokens.

Identifies a name for the start symbol.

Identifies the token names that yacc accepts. Declare all
token names in the declarations section.

All tokens listed on the same line have the same precedence level and
associativity; lines appear in the file in order of increasing precedence or
binding strength. For example:
%left
%left

'+' "
, *' ,/,

This example describes the precedence and associativity of the four
arithmetic operators. The addition (+) and subtraction (-) operators are
left-associative and have lower precedence than the multiplication (*) and
division (/) operators, which are also left-associative.

4.7.1.1 Defining Global Variables

You can define global variables to be used by some or all parser actions, as
well as by the lexical analyzer, by enclosing the declarations for those
variables in matched pairs of symbols consisting of a percent sign and a
brace (% { and %}). For example, to make the var variable available to all
parts of the complete program, place the following entry in the declarations
section of the grammar file:

4-22 Creating Input Language Analyzers and Parsers

%{ int var 0; %}

4.7.1.2 Start Symbols

The parser recognizes a special symbol called the start symbol. The start
symbol is the name assigned to the grammar rule that describes the most
general structure of the language to be parsed. Because it is the most general
structure, it is the structure where the parser starts in its top-down analysis of
the input stream. You declare the start symbol in the declarations section by
using the %start keyword. If you do not declare a start symbol, the parser
uses the name of the first grammar rule in the file.

For example, in parsing a C language procedure, the following is the most
general structure for the parser to recognize:
main ()
{

code_segment}

The start symbol should point to the rule that describes this structure. All
remaining rules in the file describe ways to identify lower-level structures
within the procedure.

4.7.1.3 Token Numbers

Token numbers are nonnegative integers that represent the names of tokens.
Since the lexical analyzer passes the token number to the parser instead of
the actual token name, the programs must assign the same numbers to the
tokens.

You can assign numbers to the tokens used in the yacc grammar file. If
you do not assign numbers to the tokens, yacc assigns numbers using the
following rules:

• A literal character is assigned the numeric value of the character in the
ASCII character set.

• Other names are assigned token numbers starting at 257.

Note

Do not assign a token number of 0 (zero). This number is
assigned to the endmarker token. You cannot redefine it.

To assign a number to a token (including literals) in the declarations section
of the grammar file, put a nonzero positive integer immediately after the
token name in the %token line. This integer is the token number of the
name or literal. Each number must be unique. Any lexical analyzer used
with yacc must return either 0 (zero) or a negative value for a token when
the end of the input is reached.

Creating Input Language Analyzers and Parsers 4-23

4.7.2 Grammar Rules
The rules section of the yacc grammar file contains one or more grammar
rules. Each rule describes a structure and gives it a name. A grammar rule
has the following format:

nonterminal-name : BOD Y ;

In this syntax, BODY is a sequence of zero or more names and literals. The
colon and the semicolon are required yacc punctuation.

If there are several grammar rules with the same nonterminal name, use the
vertical bar (I) to avoid rewriting the left side. In addition, use the
semicolon (;) only at the end of all rules joined by vertical bars. The two
following sets of grammar rules are equivalent:
Set 1

A B C D
A E F
A G

Set 2

A B C D
E F
G

4.7.2.1 The Null String

To indicate a nonterminal symbol that matches the null string, use a
semicolon by itself in the body of the rule, as follows:
nullstr

4.7.2.2 End-ot-Input Marker

When the lexical analyzer reaches the end of the input stream, it sends a
special token, called endmarker, to the parser. This token signals the end
of the input and has a token value of o. When the parser receives an
endmarker token, it checks to see that it has assigned all of the input to
defined grammar rules and that the processed input forms a complete unit (as
defined in the yacc grammar file). If the input is a complete unit, the parser
stops. If the input is not a complete unit, the parser signals an error and
stops.

The lexical analyzer must send the endmarker token at the correct time,
such as the end of a file, or the end of a record.

4-24 Creating Input Language Analyzers and Parsers

4.7.2.3 Actions in yacc Parsers

With each grammar rule, you can specify actions to be performed each time
the parser recognizes the rule in the input stream. Actions return values and
obtain the values returned by previous actions. The lexical analyzer can also
return values for tokens.

An action is a C language statement that does input and output, calls
subprograms, and alters external vectors and variables. You specify an action
in the grammar file with one or more statements enclosed in braces ({ }).
For example, the following are grammar rules with actions:

A '('B')'
{

hello(1, "abc") i
} i

XXX yyy zzz
{
printf("a message\n")i
flag = 25;
}

An action can receive values generated by other actions by using numbered
yacc parameter keywords ($1, $ 2, and so on). These keywords refer to the
values returned by the components of the right side of a rule, reading from
left to right. For example:

ABC D

When this code is executed, $1 has the value returned by the rule that
recognized B, $ 2 the value returned by the rule that recognized C, and $ 3 the
value returned by the rule that recognized D.

To return a value, the action sets the pseudovariable $ $ to some value. For
example, the following action returns a value of 1:

{ $$ = Ii}

By default, the value of a rule is the value of the first element in it ($1).
Therefore, you do not need to provide actions for rules that have the
following form:

A : B i

To get control of the parsing process before a rule is completed, write an
action in the middle of a rule. If this rule returns a value through the $n
parameters, actions that come after it can use that value. The action can use
values returned by actions that come before it. Therefore, the following rule
sets x to 1 and y to the value returned by C:

Creating Input Language Analyzers and Parsers 4-25

A B
{

$$ =1 ;
}

C
{

x = $2;
y $3;

}

Internally, yacc creates a new nonterminal symbol name for the action that
occurs in the middle, and it creates a new rule matching this name to the null
string. Therefore, yacc treats the preceding program as if it were written in
the following form, where $ACT is an empty action:

$ACT /* null string */
{

$$ = 1;
}

A B $ACT C
{

x = $2;
y $3;

}

4.7.3 Programs
The programs section of the yacc grammar file contains C language
functions that can be used by the actions in the rules section. In addition, if
you write a lexical analyzer (yylex, the input routine to the parser), include
it in the programs section.

4.7.4 Guidelines for Using Grammar Files
This section describes some general guidelines for using yacc grammar
files. It provides information on the following:

• U sing comments

• Using literal strings

II Formatting grammar files

• U sing recursion

• Correcting errors

4-26 Creating Input Language Analyzers and Parsers

4.7.4.1 Using Comments

Comments in the grammar file explain what the program is doing. You can
put comments anywhere in the grammar file that you can put a name.
However, to make the file easier to read, put the comments on lines by
themselves at the beginning of functional blocks of rules. Comments in a
yacc grammar file have exactly the same form as comments in a C language
program; that is, they begin with a slash and an asterisk (/ *) and end with
an asterisk and a slash (* /). For example:
/* This is a comment on a line by itself. */

4.7.4.2 Using Literal Strings

A literal string is one or more characters enclosed in apostrophes, or single
quotation marks (' '). As in the C language, the backslash (\) is an escape
character within literals, and all the C language special-character sequences
are recognized, as follows:

\n Newline character

\r Return

\ ' Apostrophe, or single quote

\\ Backslash

\t Tab

\b Backspace

\f Form feed

\nnn The value nnn in octal

Never use \ 0 or 0 (the null character) in grammar rules.

4.7.4.3 Guidelines for Formatting the Grammar File

The following guidelines will help make the yacc grammar file more
readable:

• Use uppercase letters for token names and lowercase letters for
nonterminal symbol names.

• Put grammar rules and actions on separate lines to allow for changing
either one without changing the other.

• Put all rules with the same left side together. Enter the left side once and
use vertical bars (I) to begin the rest of the rules for that left side.

• For each set of rules with the same left side, enter the semicolon (;) once
on a line by itself following the last rule for that left side. You can then
add new rules easily.

Creating Input Language Analyzers and Parsers 4-27

• Indent rule bodies by two tab stops and action bodies by three tab stops.

4.7.4.4 Using Recursion in a Grammar File

Recursion is the process of using a function to define itself. In language
definitions, these rules normally take the following form:
rule end case

rule, end case

The simplest case of rule is the end case, but rule can also be made up of
more than one occurrence of end case. The entry in the second line that
uses rule in the definition of rule is the instance of recursion. Given this
rule, the parser cycles through the input until the stream is reduced to the
final end case.

The yacc tool supports left-recursive grammar, not right-recursive. When
you use recursion in a rule, always put the call to the name of the rule as the
leftmost entry in the rule (as it is in the preceding example). If the call to the
name of the rule occurs later in the line, as in the following example, the
parser can run out of internal stack space and crash:
rule end case

end case, rule

4.7.4.5 Errors in the Grammar File

The yacc tool cannot produce a parser for all sets of grammar specifications.
If the grammar rules contradict themselves or require matching techniques
different from those that yacc has, yacc will not produce a parser. In most
cases, yacc provides messages to indicate the errors. To correct these
errors, redesign the rules in the grammar file or provide a lexical analyzer to
recognize the patterns that yacc cannot handle.

4.7.5 Error Handling by the Parser
When the parser reads an input stream, that input stream can fail to match the
rules in the grammar file. The parser detects the problem as early as
possible. If there is an error-handling routine in the grammar file, the parser
can allow for entering the data again, skipping over the bad data, or for a
cleanup and recovery action. When the parser finds an error, for example, it
might need to reclaim parse tree storage, delete or alter symbol table entries,
and set switches to avoid generating any further output.

When an error occurs, the parser stops unless you provide error-handling
routines. To continue processing the input to find more errors, restart the
parser at a point in the input stream where the parser can try to recognize
more input. One way to restart the parser when an error occurs is to discard

4-28 Creating Input Language Analyzers and Parsers

some of the tokens following the error, and try to restart the parser at that
point in the input stream.

The yacc tool has a special token name, error, to use for error handling.
Put this token in your grammar file at places where an input error might
occur so that you can provide a recovery routine. If an input error occurs in
a position protected by the error token, the parser executes the action for
the error token rather than the normal action.

To prevent a single error from producing many error messages, the parser
remains in an error state until it successfully processes three tokens following
an error. If another error occurs while the parser is in the error state, the
parser discards the input token and does not produce a message. You can
also specify a point at which the parser should resume processing by
providing an argument to the error action. For example:

stat error ';'

This rule tells the parser that, when there is an error, it should skip over the
token and all following tokens until it finds the next semicolon. All tokens
after the error and before the next semicolon are discarded. When the parser
finds the semicolon, it reduces this rule and performs any cleanup action
associated with it.

4.7.5.1 Providing for Error Correcting

You can allow the person entering the input stream in an interactive
environment to correct any input errors by reentering a line in the data
stream. For example:

input
{

}

error '\n'

printf(" Reenter last line: ");

input
{

$$ = $4;
}

However, in this example the parser stays in the error state for three input
tokens following the error. If the corrected line contains an error in the first
three tokens, the parser deletes the tokens and does not display a message.
To allow for this condition, use the yyerrok; statement. When the parser

Creating Input Language Analyzers and Parsers 4-29

encounters the yyerrok; statement, it leaves the error state and begins
normal processing. The error recovery example then becomes the following:
input error , \n'

{
yyerrok;
printf("Reenter last line: ");

}
input

{
$$ = $4

}

4.7.5.2 Clearing the Look-Ahead Token

The look-ahead token is the next token to be examined by the parser. When
an error occurs, the look-ahead token becomes the token at which the error
was detected. However, if the error recovery action includes code to find the
correct place to start processing again, that code must also change the look­
ahead token. To clear the look-ahead token, include the yyclearin;
statement in the error recovery action.

4.8 Parser Operation
The yacc program turns the grammar file into a C language program that,
when compiled and executed, parses the input according to the grammar
rules.

The parser is a finite state machine with a stack. The parser can read and
remember the next input token (the look-ahead token). The current state is
always the state that is on the top of the stack. The states of the finite state
machine are represented by small integers. Initially, the machine is in state 0
(zero), the stack contains only 0 (zero), and no look-ahead token has been
read.

The machine can perform one of the following four actions:

shift n The parser pushes the current state onto the stack, makes n the current
state, and clears the look-ahead token.

reduce r The r argument is a rule number. When the parser finds a token
sequence matching rule number r in the input stream, the parser
replaces that sequence with the rule number in the output stream.

accept The parser has looked at all input, matched it to the grammar
specification, and recognized the input as satisfying the highest level
structure (defined by the start symbol). This action appears only when
the look-ahead token is the end marker and indicates that the parser
has successfully done its job.

4-30 Creating Input Language Analyzers and Parsers

error The parser cannot continue processing the input stream and still
successfully match it with any rule defined in the grammar
specification. The input tokens it looked at, together with the look­
ahead token, cannot be followed by anything that would result in a
legal input. The parser reports an error and attempts to recover the
situation and resume parsing.

The parser performs the following actions during one process step:

1. Based on its current state, the parser decides whether it needs a look­
ahead token to decide the action to take. If it needs one and does not
have one, it calls yylex to obtain the next token.

2. Using the current state and the look-ahead token if needed, the parser
decides on its next action and carries it out. This can result in states
being pushed onto the stack or popped off the stack and in the look -ahead
token being processed or left alone.

4.8.1 The shift Action
The shift action is the most common action the parser takes. Whenever
the parser does a shift, there is always a look-ahead token. Consider the
following parser action rule:
IF shift 34

When the parser is in the state that contains this rule and the look-ahead
token is IF, the parser performs the following steps:

1. Pushes the current state down on the stack

2. Makes state 34 the current state (puts it on the top of the stack)

3. Clears the look-ahead token

4.8.2 The reduce Action
The reduce action prevents the stack from growing too large. The parser
uses reducing actions after it has matched the right side of a rule with the
input stream and is ready to replace the tokens in the input stream with the
left side of the rule. The parser might have to use the look-ahead token to
decide if the pattern is a complete match.

Reducing actions are associated with individual grammar rules. Because
grammar rules also have small integer numbers, you can easily confuse the
meanings of the numbers in the shift and reduce actions. For example,

Creating Input Language Analyzers and Parsers 4-31

the first of the two following actions refers to grammar rule 18; the second
refers to machine state 34:
reduce 18
IF shift 34

For example, consider reducing the following rule:

A x Y z ;

The parser pops off the top three states from the stack. The number of states
popped equals the number of symbols on the right side of the rule. These
states are the ones put on the stack while recognizing x, y, and z. After
popping these states, the parser uncovers the state the parser was in before
beginning to process the rule (the state that needed to recognize rule A to
satisfy its rule). Using this uncovered state and the symbol on the left side of
the rule, the parser performs a gata action, which is similar to a shift of
A. A new state is obtained and pushed onto the stack, and parsing continues.

The gata action is different from an ordinary shift of a token. The look­
ahead token is cleared by a shift but is not affected by a gata. When the
three states are popped in this example, the uncovered state contains an entry
such as the following:
A goto 20

This entry causes state 20 to be pushed onto the stack and become the current
state.

The reduce action is also important in the treatment of user-supplied
actions and values. When a rule is reduced, the parser executes the code that
you included in the rule before adjusting the stack. In addition to the stack
holding the states, another stack running in parallel with it holds the values
returned from the lexical analyzer and the actions. When a shift takes
place, the external variable yylval is copied onto the value stack. After
executing the code that you provide, the parser performs the reduction.
When the parser performs the gata action, it copies the external variable
yyl val onto the value stack. The yacc variables whose names begin with
a dollar sign ($) refer to the value stack.

4.8.3 Ambiguous Rules and Parser Conflicts
A set of grammar rules is ambiguous if any possible input string can be
structured in two or more different ways. For example:
expr : expr ,_, expr

This rule forms an arithmetic expression by putting two other expressions
together with a minus sign between them, but this grammar rule does not
specify how to structure all complex inputs. For example:

4-32 Creating Input Language Analyzers and Parsers

expr - expr - expr

Using the preceding rule, a program could structure this input as either left­
associative or right-associative:

expr - expr) - expr

or

expr - (expr - expr)

These two forms produce different results when evaulated.

When the parser tries to handle an ambiguous rule, it can become confused
over which of its four actions to perform when processing the input. The
following two types of conflicts develop:

Shift/reduce conflict A rule can be evaluated correctly using either a shift
action or a reduce action, with different results.

Reduce / reduce conflict A rule can be evaluated correctly using one of two
different reduce actions, producing two different
actions.

A shift/ shift conflict is not possible.

These conflicts result when a rule is not as complete as it could be. For
example, consider the following input and the preceding ambiguous rule:

a - b - c

After reading the first three parts of the input, the parser has the following:

a - b

This input matches the right side of the grammar rule. The parser can reduce
the input by applying this rule. After applying the rule, the input becomes
the following:
expr

This is the left side of the rule. The parser then reads the final part of the
input, as follows:

- c

The parser now has the following:

expr - c

Reducing this input produces a left-associative interpretation.

However, the parser can also look ahead in the input stream. If, after
receiving the first three parts of the input, it continues reading the input
stream until it has the next two parts, it then has the following input:

Creating Input Language Analyzers and Parsers 4-33

a - b - c

Applying the rule to the rightmost three parts reduces b - c to expr. The
parser then has the following:
a - expr

Reducing the expression once more produces a right-associative
interpretation.

Therefore, at the point where the parser has read the first three parts, it can
take one of two legal actions: a shift or a reduce. If the parser has no
rule by which to decide between the actions, a shift/reduce conflict
results.

A similar situation occurs if the parser can choose between two valid
reduce actions. That situation is called a reduce/reduce conflict.

When shift/reduce or reduce/reduce conflicts occur, yacc
produces a parser by selecting a valid step wherever it has a choice. If you
do not provide a rule to make the choice, yacc uses the following rules:

• In a shift/reduce conflict, shift.

• In a reduce/reduce conflict, reduce by the grammar rule that can be
applied at the earliest point in the input stream.

Using actions within rules can cause conflicts if the action must be done
before the parser can be sure which rule is being recognized. In these cases,
using the preceding rules leads to an incorrect parser. For this reason, yacc
reports the number of shift/reduce and reduce/reduce conflicts that
it has resolved by applying its rules.

4.9 Turning on Debug Mode
For normal operation, the external integer variable yydebug is set to O.
However, if you set it to any nonzero value, the parser generates a running
description of the input tokens that it receives and the actions that it takes for
each token. You can set the yydebug variable in one of the following two
ways:

• Use the yydebug function by including the following C language
statement in the declarations section of the yacc grammar file:

yydebug = 1;

• Use a debugger to execute the final parser, and set the yydebug variable
on or off using debugger commands. For further details about using
debuggers, such as dbx, see the reference pages for the various
debuggers.

4-34 Creating Input Language Analyzers and Parsers

4.10 Creating a Simple Calculator Program
This section describes the programs for a lex-generated lexical analyzer and
a yacc-generated parser. These programs together create a simple desk
calculator program that performs addition, subtraction, multiplication, and
division operations. The calculator program also allows you to assign values
to variables (each designated by a single lowercase letter) and then use the
variables in calculations. The files that contain the programs are as follows:

• calc. 1 - The lex specification file that defines the lexical analysis
rules

• calc. y - The yacc grammar file that defines the parsing rules, and
calls the yylex function created by lex to provide input

By convention, lex and yacc programs use the letters .1 and. y
respectively as file name suffixes. Example 4-1 and Example 4-2 contain the
program fragments exactly as they should be entered. The processing
instructions in this section assume that the files are in your current directory.

Perform the following steps, in the order shown, to create the calculator
program using lex and yacc:

1. Process the yacc grammar file by using the following command. The
-d option tells yacc to create a file that defines the tokens it uses in
addition to the C language source code.
% yacc -d calc.y

This command creates the following files:

• y. tab. c - The C language source file that yacc created for the
parser

• y. tab. h - A header file containing def ine statements for the
tokens used by the parser

2. Process the lex specification file by using the following command:
% lex calc.l

This command creates the 1 ex • yy • c file, containing the C language
source file that lex created for the lexical analyzer.

3. Compile and link the two C language source files by using the following
command:

% cc -0 calc y.tab.c lex.yy.c

4. Use the Is command to verify that the following files were created:

• y • tab. 0 - The object file for y • tab. c

• lex. yy. 0 - The object file for lex. yy. c

Creating Input Language Analyzers and Parsers 4-35

• calc - The executable program file

You can run the program by entering the calc command. You can then
enter numbers and operators in algebraic fashion. After you press Return, the
program displays the result of the operation. You can assign a value to a
variable as follows:
m=4

You can use variables in calculations as follows:
m+5
9

4.10.1 The Parser Source Code
Example 4-1 shows the contents of the calc. y file. This file has entries in
all three of the sections of a yacc grammar file: declarations, rules, and
programs. The grammar defined by this file supports the usual algebraic
hierarchy of operator precedence.

Descriptions of the various elements of the file and their functions follow the
example.

Example 4-1: Parser Source Code for a Calculator

%{
#include <stdio.h> ill

int regs[26]; ~
int base;

%}

%start list @l

%token DIGIT LETTER ~

%left 'I' ~
%left '&'
%left '+'
%left '*' 'I' '%'
%left UMINUS I*supplies precedence for unary minus *1

%% 1* beginning of rules section *1

list: I*empty *1
I list stat'\n'
I list error'\n'
{

yyerrok;
}

4-36 Creating Input Language Analyzers and Parsers

Example 4-1: (continued)
stat: expr

expr:

{
printf("%d\n",$1);

}

I
LETTER '=' expr
{

}
regs[$1] = $3;

'(' expr ')'
{

}

I

$$ = $2;

expr ,*, expr
{

}

I

$$ = $1 * $3;

expr 'I' expr
{

}

I

$$ = $1 I $3;

expr '%' expr
{

}

I

$$ = $1 % $3;

expr '+' expr
{

}

I

$$ = $1 + $3;

expr '-' expr
{

}

I

$$ = $1 - $3;

expr '&' expr
{

}

I

$$ = $1 & $3;

expr ' I' expr
{

}

I

$$ $1 I $3;

'-' expr %prec UMINUS
{

$$ = -$2;

Creating Input Language Analyzers and Parsers 4-37

Example 4-1: (continued)
}

I
LETTER
{

}

I

$$ = regs[$l];

number

number: DIGIT
{

}

I

$$ = $1;
base = ($1==0) ? 8:10;

number DIGIT

%%
main()
{

{

}
$$ = base * $1 + $2;

return(yyparse());
}

yyerror(s)
char *s;
{

}
fprintf(stderr," %s\n",s);

yywrap()
{

return(l);
}

The declarations section contains entries that perform the following
functions:

[j] Include standard I/O header file

I2J Define global variables

@] Define the rule list as the place to start processing

1.41 Define the tokens used by the parser

~ Define the operators and their precedence

The rules section defines the rules that parse the input stream.

The programs section contains the following routines. Because these routines
are included in this file, you do not need to use the yacc library when
processing this file.

4-38 Creating Input Language Analyzers and Parsers

• main () - The required main program that calls yyparse () to start
the program

• yyerror (s) - The error-handling routine, which prints a syntax error
message

• yywrap () - The wrap-up routine that returns a value of 1 when the
end of input occurs

4.10.2 The Lexical Analyzer Source Code
Example 4-2 shows the contents of the calc.l file. This file contains
#include statements for standard input and output and for the y. tab. h
file, which is generated by yacc before you run lex on calc.1. The
y . tab. h file contains definitions for the tokens that the parser program
uses. In addition, calc.l contains the rules to generate the tokens from the
input stream.

Example 4-2: Lexical Analyzer Source Code for a Calculator

%{

#include <stdio.h>
#include "y.tab.h"
int C;
extern int yylval;
%}
%%

[a-z] {

}
[0-9] {

}

c = yytext[O];
yylval = c - 'a';
return (LETTER) ;

c = yytext[O];
yylval = c - '0';
return(DIGIT);

[Aa-zO-9\b] {

}

c = yytext[O];
return(c) ;

Creating Input Language Analyzers and Parsers 4-39

Using m4 Macros in Your Programs 5

This chapter describes the m4 macro preprocessor, a front-end filter that
allows you to define macros by placing m4 macro definitions at the beginning
of your source files. The m4 preprocessor can be used with either program
source files or document source files.

5.1 Using Macros
Macros ease your programming or writing tasks by allowing you to substitute
a simple word or two for a great amount of material. Macro calls in a source
file have the following form:

name[(arg1 [,arg2 ...])]

For example, suppose you have a C program in which you want to print the
same message at several points. You could code a series of printf
statements like the following:
printf("\nThese %d files are in %s:\n\n",cnt,dir);

As your program evolves, you decide to change the wording; but you have to
edit each instance of the message. Defining a macro like the following will
save you a great deal of work:
define(filmsg,/printf("\nThese%d files are in %s:\n\n",$1,$2)')

Then, everywhere you want to output this message, you use the macro this
way:

filmsg(cnt,dir);

With this implementation, you need only edit the message in one place.

A macro definition consists of a symbolic name (called a token) and the
character string that is to replace it. A token is any string of alphanumeric
characters (letters, numbers, and underscores) beginning with a letter or an
underscore and delimited by nonalphanumeric characterss (punctuation or
white space). For example, N12 and N are both tokens but A+B is not a
token. When you process your file through m4, each occurrence of a
recognized macro is replaced by its definition. In addition to replacing
symbolic names with text, m4 can also perform the following operations:

• Arithmetic calculation

• File manipulation

• Conditional macro expansion

• String and substring functions

• System command execution

The m4 program reads each token in the file and determines if the token is a
macro name. Macro names that are embedded in other tokens are not
recognized; for example, m4 does not interpret N 12 as containing an
occurrence of the token N. If the token is a macro name, m4 replaces it with
its defining text and pushes the resulting string back onto the input to be
rescanned. Macro expansion is thus recursive; macro definitions can include
nested occurrences of other macros to any depth of nesting. You can call
macros with arguments, in which case the arguments are collected and
substituted into the right places in the defining text before the defining text is
rescanned.

The m4 preprocessor is a standard UNIX filter. It accepts input from
standard input or from a list of input files and writes its output to standard
output. The following lines illustrate correct m4 usage:
% grep -v '#include' file! file2 I m4 > outfile

% m4 file! file2 I cc

The m4 program processes each argument in order. If there are no
arguments, or if an argument is a minus sign (-), m4 reads standard input as
its input file.

5.2 Defining Macros
You create a macro definition with the define command, one of about 20
built-in macros provided by m4. For example:

define(N,lOO)

The open parenthesis must follow the word def ine with no intervening
space.

Given this macro definition, the token N will be replaced by 100 wherever it
appears in the file being processed. The defining text can be any text, except
that if the text contains parentheses, the number of open (left) parentheses
must match the number of close (right) parentheses unless you protect an
unmatched parenthesis by quoting it. See Section 5.2.1 for an explanation of
quoting.

Built-in and user-defined macros work the same way except that some of the
built-in macros change the state of the process. Refer to Section 5.3 for a list
of the built-in macros.

5-2 Using m4 Macros in Your Programs

You can define macros in terms of other macros. For example:

define(N,100)
define(M,N)

This example defines both M and N to be 100. If you later change the
definition of N and assign it a new value, M retains the value of 100, not the
new value you give N. The value of M does not track that of N because the
m4 preprocessor expands macro names into their defining text as soon as
possible. The overall result, as far as M is concerned, is the same as using the
following input in the first place:
define(M,100)

If you want the value of M to track the value of N, you can reverse the order
of the definitions, as follows:
define(M,N)
define(N,100)

Now M is defined to be the string N. When the value of M is requested later,
the M is replaced by N, which is then rescanned and replaced by whatever
value N has at that time.

Macro definitions made with the define command do not delete characters
following the close parenthesis. For example:

Now is the time for all good persons.
define(N,100)
Testing N definition.

This example produces the following result:
Now is the time for all good persons.

Testing 100 definition.

The blank line results from the presence of a newline character at the end of
the line containing the def ine macro. The built-in dnl macro deletes all
characters that follow it, up to and including the next newline character. Use
this macro to delete empty lines. For example:
Now is the time for all good persons.
define(N,100)dnl
Testing N definition.

This example produces the following result:
Now is the time for all good persons.
Testing 100 definition.

5.2.1 Using the Quote Characters
To delay the expansion of a define macro's arguments, enclose them in a
matched pair of quote characters. The default quote characters are left and
right single quotation marks C and'), but you can use the built-in

Using m4 Macros in Your Programs 5-3

changequote macro to specify different characters. (See Section 5.3.)
Any text surrounded by quote characters is not expanded immediately, but
the quote characters are removed. The value of a quoted string is the string
with the quote characters removed. Consider the following example:
define(N,lOO)
define (M, IN')

The quote characters around the N are removed as the argument is being
collected. The result of using quote characters is to define M as the string N,
not 100. This example makes the value of M track that of N, and it is thus
another way to accomplish the effect of the following definitions, shown in
Section 5.2:

define(M,N)
define(N,lOO)

The general rule is that m4 always strips off one level of quote characters
whenever it evaluates something. This is true even outside macros. For
example, to make the word "define" appear in the output, enter the word in
quote characters, as follows:
'define' = 1

Because of the way m4 handles quoted strings, you must be careful about
nesting macros. For example:
define(dog,canid)
define(cat,animal chased by 'dog')
define(mouse,animal chased by cat)

When the definition of cat is processed, dog is not replaced with canid
because it is quoted. But when mouse is processed, the definition of cat
(animal chased by dog) is used; this time, dog is not quoted, and the
definition of mouse becomes animal chased by animal chased
by canid.

When you redefine an existing macro, you must quote the first argument (the
macro name), as follows:

define(N,lOO)

define(IN' ,200)

Without the quote characters, the second define macro sees N, recognizes
it, and substitutes its value, producing the following result:

define(100,200)

The m4 program ignores this statement because it can only define names, not
numbers.

5-4 Using m4 Macros in Your Programs

5.2.2 Macro Arguments
The simplest form of macro processing is replacing one string with another
(fixed) string as illustrated in the previous sections. However, macros can
also have arguments, so that you can use a given macro in different places
with different results. To indicate where an argument is to be used within the
replacement text for a macro (the second argument of its definition), use the
symbol $n to indicate the nth argument. For example, the symbol $1 refers
to the first argument of a macro. When the macro is used, m4 replaces the
symbol with the value of the indicated argument. For example:

define(bump,$l=$l+l)

bump(x) ;

In this example, m4 will replace the bump (x) statement with x=x+ 1.

A macro can have as many arguments as needed. However, you can access
only nine arguments by using the $n symbols ($1 through $ 9). To access
arguments past the ninth argument, use the shift macro, which drops the
first argument and reassigns the remaining arguments to the $n symbols
(second argument to $1, third to $2, and so on). Using the shift macro
more than once allows access to all arguments used with the macro.

The symbol $ 0 returns the name of the macro. Arguments that are not
supplied are replaced by null strings, so that you can define a macro that
concatenates its arguments as follows:

define(cat,$1$2$3$4$5$6$7$8$9)

cat(x,y,Z)

This example replaces the cat (x, y, z) statement with xyz. Arguments
$ 4 through $ 9 in this example are null because corresponding arguments
were not provided.

When scanning a macro, the m4 program discards leading unquoted blanks,
tabs, or newline characters in arguments, but keeps all other white space. For
example:

define(a,

a(b,
c,
d)

"$1 $2$3")

Usina m4 Macros in Your Proarams 5-5

This example expands the a macro to be "b cd". In the define macro,
however, newline characters are meaningful. For example:
define(a,$l
$2$3)

a(b,e,d)

This latter example expands the a macro as follows:
b
cd

Macro arguments are separated by commas. Use parentheses to enclose
arguments containing commas, so that the commas are not misinterpreted as
ending the arguments containing them. For example, the following statement
has only two arguments:
define (a, (b, c))

The first argument is a, and the second is (b, c). To use a single
parenthesis in an argument, enclose it in quote characters:
define(a,b') 'c)

In this example, b) c is the second argument.

5.3 Using Other m4 Macros
The m4 program provides a set of macros that are already defined (built-in
macros). Table 5-1 lists all of these macros and describes them briefly. The
following sections further explain many of the macros and how to use them.

Table 5-1: Built-In m4 Macros

Macro

changecom(l,r)

changequote(l,r)

decr(n)

define(name,replacement)

defn(name)

5-6 Using m4 Macros in Your Programs

Description

Changes the left and right comment
characters to the characters represented by
1 and r. The two characters must be
different.

Changes the left and right quote characters
to the characters represented by 1 and r.
The two characters must be different.

Returns the value of n-l.

Defines a new macro, named name, with a
value of replacement.

Returns the quoted definition of name.

Table 5-1: (continued)

Macro Description

di vert (n) Changes the output stream to the temporary
file number n.

divnum Returns the number of the currently active
temporary file.

dnl Deletes text up to a newline character.

dumpdef ('name' [, 'name' ...]) Prints the names and current definitions of
the named macros.

errprint(str)

eval(expr)

ifdef('name',argl,arg2)

ifelse(strl,str2,argl,arg2)

include(file)
sinclude(file)

incr(n)

index(strl,str2)

len(str)
dlen(str)

m4exit(code)

m4wrap(name)

maketemp(strXXXXXstr)

popdef(name)

Prints s t r to the standard error file.

Evaluates expr as a 32-bit arithmetic
expression.

If macro name is defined, returns arg 1;
otherwise, returns arg2.

Compares the strings strl and str2. If
they match, ifelse returns the value of
argl; otherwise, it returns the value of
arg2.

Returns the contents of file. The
s inc 1 ude macro does not report an error
if it cannot access the file.

Returns the value of n+ 1.

Returns the character position in string
strl where str2 starts, or -1 if strl
does not contain str2.

Returns the number of characters in str.
The dlen macro operates on strings
containing 2-byte representations of
international characters.

Exits m4 with a return code of code.

Runs macro name before exiting, after
completing all other processing.

Creates a unique file name by replacing the
literal string XXXXX in the argument string
with the current process ID.

Replaces the current definition of name
with the previous definition, saved with the
pushdef macro.

Using m4 Macros in Your Programs 5-7

Table 5-1: (continued)

Macro Description

pushdef (name, replacement) Saves the current definition of name and
then defines name to be replacement in
the same way as define.

shift (param_list) Shifts the parameter list leftward one
position, destroying the original first
element of the list.

substr (string ,pos, len) Returns the substring of string that
begins at character position pos and is
1 en characters long.

syscmd (command) Executes the specified system command
with no return value.

sysval Gets the return code from the last use of the
syscmd macro.

traceoff (macro_list) Turns off trace for any macro in the list. If
macro_list is null, turns off all tracing.

traceon (name) Turns on trace for the named macro. If
name is null, turns trace on for all macros.

translit (string, setl , set2) Replaces any characters from setl that
appear in string with the corresponding
characters from set2.

undef ine (~ name ~) Removes the definition of the named
macro.

undivert(n,n[,n ...]) Appends the contents of the indicated
temporary files to the current temporary
file.

5.3.1 Changing the Comment Characters
To include comments in your m4 programs, delimit the comment lines with
the comment characters. The default left comment character is the number
sign (#); the default right comment character is the newline character. If
these characters are not convenient, use the built-in changecom macro. For
example:

5-8 Using m4 Macros in Your Programs

changecom({,})

This example makes the left and right braces the new comment characters.
To restore the original comment characters, use changecom as follows:

changecom(#,
)

Using changecom with no arguments disables commenting.

5.3.2 Changing the Quote Characters
The default quote characters are the left and right single quotation marks (I
and ,). If these characters are not convenient, change the quote characters
with the built-in changequote macro. For example:

changequote([,])

This example makes the left and right brackets the new quote characters. To
restore the original quote characters, use changequote without arguments,
as follows:

changequote

5.3.3 Removing a Macro Definition
The undefine macro removes macro definitions. For example:

undefine('N')

This example removes the definition of N. Note that you must quote the
name of the macro to be undefined. You can use undefine to remove
built-in macros, but once you remove a built-in macro, you cannot recover
that macro for later use.

5.3.4 Checking for a Defined Macro
The built-in ifdef macro determines if a macro is currently defined. The
if de f macro accepts three arguments. If the first argument is defined, the
value of ifdef is the second argument. If the first argument is not defined,
the value of if de f is the third argument. If there is no third argument, the
value of ifdef is null.

5.3.5 Using Integer Arithmetic
The m4 program provides the following built-in functions for doing
arithmetic on integers only:

iner Increments its numeric argument by 1

deer Decrements its numeric argument by 1

eval Evaluates an arithmetic expression

Using m4 Macros in Your Programs 5-9

For example, you can create a variable N 1 such that its value will always be
one greater than N, as follows:

define(N,lOO)
define(Nl,'incr(N)')

The eval function can evaluate expressions containing the following
operators (listed in decreasing order of precedence):

• unary + (plus), unary - (minus)

• * * or A (exponentiation)

• *, /, % (modulo)

• +,-

• ==, !=,<,<=,>,>=

• ! (NOT)

• & or & & (logical AND)

• I or I I (logical OR)

Use parentheses to group operations where needed. All operands of an
expression must be numeric. The numeric value of a true relation such as
1>0 is 1, and false is 0 (zero). The precision in eval is 32 bits. For
example, to define M as 2==N+ 1, use eval as follows:

define(N,3)
define(M,'eval(2==N+l)')

Use quote characters around the text that defines a macro, unless the text is
simple and contains no instances of macro names.

5.3.6 Manipulating Files
To merge a new file in the input, use the built-in include macro as
follows:

include(myfile)

This example inserts the contents of myfile in place of the include
command. As the included file is read, m4 scans it for macros as if it were
part of the primary input.

With the inc 1 ude macro, a fatal error occurs if the named file cannot be
accessed. To avoid an error, use the alternative form, sinclude (silent
include). The sinclude macro continues without error if the named file
cannot be accessed.

5-10 Using m4 Macros in Your Programs

5.3.7 Redirecting Output
You can redirect the output of rn4 to temporary files during processing, and
the collected material can be output upon command. The m4 program can
maintain up to nine temporary files, numbered 1 through 9. To redirect
output, use the divert macro as in the following example:

divert(4)

When this com and is encountered, m4 begins writing its output to the end of
temporary file 4. The rn4 program discards the output if you redirect the
output to a temporary file other than 1 through 9; you can use this feature to
make rn4 omit a portion of the input file. Use divert (0) or divert with
no argument to return the output to the standard output stream.

At the end of its processing, m4 writes all redirected output to the standard
output stream, reading from the temporary files in numeric order and then
destroying the temporary files. To retrieve the information from all
temporary files in numeric order at any time before processing is completed,
use the built-in undi vert macro with no arguments. To retrieve selected
temporary files in a specified order, use undi vert with arguments. When
using undi vert, rn4 discards the temporary files that are recovered and
does not search the recovered information for macros.

Note that the value of undi vert is not the diverted text.

The built-in di vnurn macro returns the number of the currently active
temporary file. If you do not change the output file with the divert macro,
m4 puts all output in temporary file 0 (zero).

5.3.8 Using System Programs in a Program
You can run any program in the operating system from a program by using
the built-in syscrnd macro. If the system command returns information, that
information is the value of the syscmd macro; otherwise, the macro's value
is null. For example:

syscmd(date)

5.3.9 Using Unique File Names
Use the built-in maketernp macro to make a unique file name from a
program. If the literal string XXXXX is present in the macro's argument, rn4
replaces the XXXXX with the process ID of the current process. For example:

Using m4 Macros in Your Programs 5-11

maketemp(myfileXXXXX)

If the current process ID is 23498, this example returns myfile23498.
You can use this string to name a temporary file.

5.3.10 Using Conditional Expressions
The built-in ifelse macro performs conditional testing. The simplest form
is the following:

ifelse(a,b,c,d)

This example compares the two strings a and b. If they are identical,
ifelse returns string c. If they are not identical, it returns string d. For
example, you can define a macro called compare to compare two strings
and return yes if they are the same or no if they are different, as follows:
define (compare, 'ifelse($1,$2,yes,no)')

The quote characters prevent the evaluation of ifelse from occurring too
early. If the fourth argument is missing, it is treated as empty.

The ifelse macro can have any number of arguments, and it therefore
provides a limited form of multiple path decision capability. For example:

ifelse(a,b,c,d,e,f,g)

This statement is logically the same as the following fragment:

if(a == b) x = c;
else if(d == e) x = fi
else x = g;
return(x) i

If the final argument is omitted, the result is null.

5.3.11 Manipulating Strings
The built-in len macro returns the byte length of the string that makes up its
argument. For example, len (abcdef) is 6, and len ((a, b)) is 5.

The built-in dlen macro returns the length of the displayable characters in a
string. In certain international usages, 2-byte codes are displayed as one
character. Thus, if the string contains any 2-byte international character
codes, the result of dlen will differ from the result of len.

The built-in substr macro returns the substring (beginning at the character
position specified by the second argument) from a specified string (first
argument). The third argument specifies the length in bytes of the returned
substring. For example:

5-12 Using m4 Macros in Your Programs

substr(Krazy Kat,6,5)

This example returns' 'Kat", which is the 3-character substring beginning at
character position 6 of the string "Krazy Kat". The first character in the
string is at position 0 (zero). If the third argument is omitted or if the string
is not long enough to satisfy the third argument, as in this example, the rest
of the string is returned.

The built-in index macro returns the byte position, or index, in a string
(first argument) where a substring (second argument) begins. If the substring
is not present, index returns -1. As with substr, the origin for strings is
o (zero). For example:
index(Krazy Kat,Kat)

This example returns 6.

The built-in trans Ii t macro performs one-for-one character substitution,
or transliteration. The first argument is a string to be processed. The second
and third arguments are lists of characters. Each instance of a character from
the second argument that is found in the string is replaced by the
corresponding character from the third argument. For example:
translit(the quick brown fox jumps over the lazy dog,aeiou,AEIOU)

This example returns the following:
thE qUIck brawn fax jUmps OvEr thE lAzy dOg

If the third argument is shorter than the second argument, characters from the
second argument that are not in the third argument are deleted. If the third
argument is missing, all characters present in the second argument are
deleted.

Note

The substr, index, and transli t macros do not
differentiate between 1- and 2-byte displayable characters and
can return unexpected results in some international usages.

5.3.12 Printing
The built-in errprint macro writes its arguments to the standard error file.
For example:
errprint (/error')

The built-in dumpdef macro dumps the current names and definitions of
items named as arguments. Names must be quoted. If you supply no
arguments, dumpdef prints all current names and definitions. The
dumpdef macro writes to the standard error file.

Usina m4 Macros in Your Programs 5-13

Revision Control: Managing Source 6-
Files with RCS or SCCS

This chapter describes how to keep your program or documentation source
files well organized by using a version control system. A version control
system automates the storage, retrieval, logging, identification, and merging
of document revisions. Version control is most useful for text that is revised
frequently, such as programs, documentation, graphics, papers, and so on.
The DEC OSFIl operating system provides the following two version control
systems with slightly different features:

• Revision Control System (RCS)

• Source Code Control System (SCCS)

Using RCS or SCCS allows you to keep your source files in a common
library and maintain control over them. Both systems provide easy-to-use,
command-line interfaces. Knowing the basic commands allows you to check
in the source file to be modified into a version control file that contains all
of the revisions of that source file. When you want to check out a version
control file for editing, the system retrieves the revision or revisions you
specify from the library and creates a working file for you to use.

U sing more advanced interface commands allows you to do the following:

• Identify the current status of any file, including the name of the person
editing it.

• Reconstruct earlier versions of your files. For each version, the system
stores the changes made to produce that version, the name of the person
making the changes, and the reasons for the changes.

• Prevent the problems that can occur when two people change a file at the
same time without each other's knowledge.

• Maintain multiple branch versions of your files. Branched versions can
be merged back into the original sequence if desired.

• Protect files from unauthorized modification.

• RCS also allows for release and configuration control. Revisions can be
assigned symbolic names and marked according to the' 'state" of the file
(for example, released, stable, experimental, and so on).

This chapter introduces basic version control concepts and describes how to
use the RCS and SCCS commands and utilities. After the introduction, more

advanced uses of each system are described. Examples in this chapter
describe a hypothetical kit for a product called "Orpheus Authoring Tools."
The example kit is considered to be one of several Orpheus products.
Because this particular kit is a document builder, the kit name is abbreviated
as DeB and the main project directory is deb_tools.

Depending on your development environment and unique revision control
requirements, you can elect to use either ReS or sees as your version
control system. Y oUf choice will ultimately depend on the amount of
security and versatility you require. Table 6-1 summarizes some of the more
widely used features of each system.

Table 6-1: Features of ReS and sees

Feature

Stores and retrieves multiple
revisions of text.

Maintains a complete history of
changes.

Resolves access conflicts.

Maintains tree of revisions.

Merges revised files with conflict
resolution.

Comments

Both systems provide a simple way to store and
retrieve all changes made to a file. In addition,
Res can retrieve revisions based on ranges of
revision numbers, symbolic names, dates,
authors, and states.

Both systems log changes automatically.
Besides the text of each revision, both systems
store the author, date and time of the checkin,
and a log message summarizing the changes.

Both systems prevent two people from
modifying a file without each other's
knowledge.

Both systems can maintain separate lines of
development for each file.

Both systems provide a way to merge changes
to a file from two separate lines of development.
ReS also alerts the user if there are overlapping
changes to the file versions.

Allows for release and configuration ReS can assign symbolic names to revisions so
control. (ReS only) that configurations of modules can be described

simply and directly.

Automates identification of each
revision.

Both systems use keywords to tag revisions of
files with name, revision number, time, author,
and so on.

6-2 Revision Control: Managing Source Files with RCS or SCCS

6.1 Version Control Concepts
This section describes the contents of a version control file and the
organization of a typical version control library. Key terms are introduced
and explained.

ReS and sees store files in a reserved directory, called a version control
library. The contents of each source file are stored as a single version
control file (called an ReS-file in ReS or an s-file in SeeS). A version
control file contains the original file (called a g-file in SeeS) together with
all the changes, or deltas, that have been applied to it. Each delta is
described by text telling who made the change and why. The change
information itself is stored in the form of marked lines of text. Every line
that is deleted or changed is marked as deleted but is not actually removed.
New lines can be either edited versions of old lines or completely new
material inserted at the appropriate places and marked. Your version control
system can reconstruct any version of the file by applying all the deletions
and additions for versions up to the desired version and by ignoring all later
versions.

In ReS, ReS-files are identified by the suffix, v added to their names; for
example, attr, v would be the ReS-file for the source file named attr.

In sees, s-files are identified by the prefix s. added to their names; for
example, s. attr would be the s-file for the source file named attr.
Figure 6-1 illustrates the contents of a typical version control file. ReS and
sees files contain the same kinds of information, but their organization is
different.

Revision Control: Managing Source Files with RCS or SCCS 6-3

Figure 6-1: Contents of a Version Control File

File identification
and checksum

Original version

First revision

Second revision

ZK-0456U-R

A version identification number is applied to a particular revision of the
version control file. In sees, this number is called an SID. The
identification number for sees can contain up to four elements; ReS
provides for additional elements. The first two elements are the release
number and the level number within that release, and the third and fourth
represent the same items of information (called the branch and the sequence)
for a branched version of the file. (See Section 6.2.) Release identification
numbers begin at 1. Level identification numbers begin at .1 and advance by
.1, so that the first version of a file is 1.1, the second version is 1.2, and so
on. Figure 6-4 (in Section 6.2) illustrates the numbering sequence for one
file's deltas.

A version control library is a directory in which all the version control files
for a given project are stored. When you retrieve a file from the library, both
ReS and sees provide a locking mechanism that prevents two people from
accessing the file at the same time. File locking will be discussed in more
detail in the following sections.

Usually, but not always, the library is given the name Res or sees,
depending on the system you use. Figure 6-2 and Figure 6-3 illustrate how
the DeB project's directory tree might appear with the ReS or sees library
placed below the project's main directory.

6-4 Revision Control: Managing Source Files with RCS or SCCS

Figure 6-2: A Typical ReS Library

)"IIIII __ I1!1!"""- '"

'"
"

">--_:::"" ----.. ", -.., ,,,'-- ... ,
I I , , attr

ZK-0621U-R

Figure 6-2 shows three ReS-files. When a file is checked out of the library
for editing, ReS correlates all the deltas and delivers a copy of the specified
version, as illustrated here with the attr file. ReS also edits the ReS-file
to insert the name of the person checking out the file. This information is
stored in the $Locker$ keyword. See Section 6.4.2 for more information
about using keywords in ReS.

Res differs from sees in that file locking is enforced at checkin time. A
file can be checked out by more than one person, but only the first person to
check it out (the one holding the lock) can check it back in to the library.
Even if a revision is locked, it can still be checked out for reading,
compiling, and so on. Locking ensures that only one developer at a time can
check in the next update of the file. In other words, locking prevents a
checkin by anybody but the locker (the first person to check out the file).

If your ReS-file is private and you will be the only person making revisions
to it, you can turn off the strict locking feature of ReS. When a file is
checked back in, ReS removes the user's name from the $Locker$
keyword. If strict locking is turned off, the owner of the file does not need to
have a lock for checkin, but all others do. Use the following commands to
turn strict locking off and on:

Revision Control: Managing Source Files with RCS or SCCS 6-5

% res -U filename

and

% res -L filename

For more detailed information on file locking, refer to Section 6.4.3, Section
6.4.5, and the co(1) reference page.

Figure 6-3: A Typical sees Library

ZK-0457U-R

Figure 6-3 shows three s-files and one other file, named p. attr, in the
sees library. When a file is checked out of the library for editing, sees
correlates all the deltas and delivers a copy of the specified version, as
illustrated here with the at tr file. sees also creates a lock file, called a
p-file. If another person tries to check out the same file for editing, sees
reports that the file is being edited and refuses to give access to the second
person. A p-file has the letter p added as a prefix to its name. When a file is
checked back in to the library, sees removes the p-file.

6.2 Managing Multiple Versions of Files
Normally, file versions progress in a straight line, with only one current
version. In this case, file identification numbers contain two elements and
progress by steps of .1, so that the first version number applied to a file is 1.1
and the eighth, for example, is 1.8.

Projects running in parallel to develop new versions of the same basic
program can use the same version control file. As the different versions are
put into the library, a tree develops. For example, suppose two teams begin

6-6 Revision Control: Managing Source Files with RCS or SCCS

development on separate versions of a file or module, starting from the most
recent revision.

As the two development streams continue, a complex tree of deltas can be
created, as illustrated in Figure 6-4.

Figure 6-4: A Version Control File's Tree of Deltas

1.5 1.2.1.4

I I
1.4 1.2.1.3 - 1.2.2.1

I I
1.3.1.1 r-- 1.3 1.2.1.2

I I
1.2 - 1.2.1.1

I
1.1

ZK-0458U-R

To get or edit a file from one of the branches, you must specify its branch
number. Figure 6-4 shows a tree for a version control file that consists of a
main trunk (contains revisions numbers 1.1, 1.2, 1.3, and so on) and
branches. For the delta numbers shown, the first two elements reflect the
version number from which it is branched, and the second two elements
reflect the new element's version number.

As an example, suppose the two development teams are working with
revision number 1.2 of a file. Both ReS and sees will allocate a number
of 1.3 to the first team to access the file. For the second team, the version
control system will create a delta numbered 1.2.1.1. Since this is the first
delta along this 1.2 branch, the last two elements of this version number are
shown as 1.1.

As the two versions are developed, they can themselves be branched from;
for example, a programmer might branch a new file from revision number
1.2.1.3 after revision number 1.2.1.4 has been created.

Revision Control: Managing Source Files with RCS or SCCS 6-7

For more information and specific examples on branching in ReS and sees,
see Section 6.4.5 and Section 6.5.5.

6.3 Creating a Version Control Library
Once you have selected the version control system you want to use for your
development project, you should create a directory in which you will place
the ReS or sees files. Depending on the size and complexity of your
development project, you might want to involve your system administrator,
who can help you determine ownership and protection settings for the
directory and source files.

When setting up your directory, you might want to assign ownership of the
directory to the res or sees user ID and set its permissions to prevent users
other than res or sees from writing to it. This method provides good
security in that only ReS or sees can directly manipulate the files in the
library. If you are going to use the sees command, the library's directory
should be named sees, as illustrated in Figure 6-3. If the library directory
is not named sees, you must use the -d option with the sees command to
access files in the library. (See Table 6-8.) For ReS, the directory should be
named Res; otherwise, you must specify a complete path (absolute or
relative) to the ReS-file.

6.4 Using RCS
The ReS system provides a set of UNIX commands that assist in the task of
version control for your text files. It is designed for both production and
development environments where flexibility and file access control are high
priorities. In production environments, access controls can detect update
conflicts and prevent overlapping changes. In fast-changing development
environments, where such strong controls may not be appropriate, users can
easily modify the controls to suit individual project needs.

The ReS system comprises a set of independent commands. Table 6-2 lists
the ReS commands provided with DEe OSFIl. The sections following the
table provide more information on some of these commands. Refer to the
appropriate reference page for additional information on the available
command options.

Table 6-2: Summary of RCS Command Functions

Command Option

ci

Description

Checks in revisions. Stores the contents of a
working file in the corresponding RCS-file as a new
revision.

6-8 Revision Control: Managing Source Files with RCS or SCCS

Table 6-2: (continued)

Command Option

-u or -1

-r

-k

co

-1

ident

res

-L

-u

rese1ean

resdiff

resfreeze

Description

Using one of these options prevents a working file
from being deleted at checkin time.

Assigns a revision number to the file being checked
in.

Searches the checked-in file for identification
markers, and assigns them to new revisions.

Checks out revisions. Retrieves revisions according
to revision number, date, author, and state attributes.
Always expands the identification markers
(keywords).

Locks the revision during file checkout to prevent
overlapping modifications if several people work on
the same file.

Extracts the identification markers from a file and
prints them. The identification markers (keywords)
are always expanded by co.

Changes RCS-file attributes. Changes (as an
administrative operation) access lists, modifies file
locking attributes, sets state attributes and symbolic
revision numbers, changes the description, and
deletes revisions. A revision can only be deleted if
it is not the fork of a side branch.

Sets file locking to strict. This means that the owner
of an RCS-file must lock the file at checkin. This
default is determined by the system administrator.

Sets file locking to non strict. This means that the
owner of the file does not need to lock the file at
checkin. This default is determined by the system
administrator.

Cleans your working directory. Removes working
files that were checked out but never changed.

Compares two revisions and prints out their
differences, using the diff command. One of the
revisions compared can be checked out. This
command is useful for finding out about changes.

Freezes a configuration. Assigns the same symbolic
revision number to a given revision in all RCS-files.
This command is useful for accurately recording a
configuration.

Revision Control: Managing Source Files with RCS or SCCS 6-9

Table 6-2: (continued)

Command Option

rcsmerge

-p

rcsstat

rcstime

rlog

-h

-t

Description

Merges two revisions, revl and rev2, with respect
to a common ancestor. A three-way file comparison
determines the parts of lines that are the same in all
three revisions, the same in two revisions, or
different in all three. Overlapping changes are
flagged and reported to the user.

Prints the result of the merged files to the standard
output; otherwise, the resulting merged file
overwrites the working file.

Prints ReS-file status. Prints information about
ReS-files, for example, the current version of the
file selected with the - r option.

Prints checkin time. Prints the time a particular
revision of a given ReS-file was checked in to the
system. The revision is selected by number and
name, checkin date and time, author, or state.

Reads log messages. Prints the log messages and
other information in an ReS-file, for example:
ReS-file name, working file name, head (the number
of the latest revision on the trunk), default branch,
access list, locks, symbolic names, number of
revisions and descriptive text.

Prints only the ReS-file name, working file name,
head, default branch, access list, locks, symbolic
names, and suffix.

Prints the same information as does -h, plus the
descriptive text.

6.4.1 Placing New Files in an ReS Library
You can use the c i command to place new files in a library. The following
example assumes that you are in the library's parent directory and want to
add the attr file to the library:
% ci attr
RCS/attr,v <---- attr
initial revision: 1.1
enter description, terminate with AD or '.':
» Orpheus Authoring Tools attr command
»AD
done

6-10 Revision Control: Managing Source Files with RCS or SCCS

The ci command creates the ReS-file attr, v and stores attr in it as
revision 1.1. The command prompts you for a description, which should be
a synopsis of the contents of the file. All later checkin commands will
prompt you for a log entry, which should summarize the changes you made.

You can enter a series of files in a single operation. For example:

% ci attr docbld dcb.ch-intro

6.4.2 Recording File-Indentification Information with ReS

The Res system provides a syntax for including keywords or ID markers
in source files to provide file-identification information. An ID marker
consists of a keyword enclosed within dollar signs ($). When you retrieve a
file from the Res library, Res expands the keyword by replacing it with the
appropriate information, such as the file name or revision number.

ReS allows you to use keyword markers anywhere in your file as literal
strings or comments to identify a revision. For example, if you place the
marker $Header$ into your text file, ReS (with the co command) will
replace this keyword with the following information:

$Header: filename revision_number date time author state$

Table 6-3 lists the Res keywords and their corresponding values.

Table 6-3: ReS 10 Keywords

Keyword

$Author$

$Date$

$Header$

Id

$Locker$

Log

$RCSfile$

$Revision$

Description

The login name of the user who checked in the revision.

The date and time the revision was checked in.

A standard header containing the full pathname of the ReS-file,
the reviSion number, the date, the author, the state, and the locker
(if locked).

Same as $Header$ except that the ReS-file name is without a
path.

The login name of the user who locked the revision (empty if
unlocked).

The log message supplied during checkin, preceded by a header
containing the ReS-file name, the revision number, the author,
and the date. Existing log messages are not replaced; instead, the
new log message is inserted after $Log: .•. $.

The name of the ReS-file without path.

The revision number assigned to the revision.

Revision Control: Managing Source Files with RCS or SCCS 6-11

Table 6-3: (continued)

Keyword Description

$Source$ The full pathname of the ReS-file.

$state$ The state assigned to the revision with the -s option of res or
ci.

The iden t command finds and extracts keywords from any file, even object
files and dumps. It searches the files you specify for all occurrences of the
pattern $keyword: ... $. For example, suppose the C program
myfile. c contains the following information:

char resid [] = "$Header: Header information$"

The command ident will print the following:
myfile.c : $Header: Header information$

For more detailed information on using keywords in RCS, refer to the co(l)
reference page.

6.4.3 Getting Files from an ReS Library
To retrieve a file revision from an RCS-file, check it out of the RCS library
by using the co command. The co command retrieves a revision from the
RCS-file and stores it in a corresponding working file.

Revisions of an RCS-file can be checked out locked or unlocked. Locking a
revision prevents overlapping updates. When you check out a file for reasons
other than editing (reading or processing, for example), the revision need not
be locked. (A revision checked out for editing and later checkin must
normally be locked.) For example:

% cd /usr/projects/dcb_tools
% co -u attr
RCS/attr,v ----> attr
revision 1.6 (unlocked)
done

This command creates a copy of the most recent version of the RCS-file
(with keyword information included) and places it in your current directory
(/usr/projects/dcb tools in this example). The -u option prevents
RCS from locking the file:- To get a copy of any earlier version, use the -r
option. For example, to retrieve version 1.5 of a file that is now at version
1.8, you would use a command like the following:

6-12 Revision Control: Managing Source Files with RCS or SCCS

% cd /usr/projects/dcb tools
% co -rl.S attr -
RCS/attr,v ----> attr
revision 1.5
done

You can also retrieve a series of files with a single co command. For
example:
% co attr unstamp
RCS/attr,v ----> attr
revision 1.5
done

RCS/unstamp,v ----> unstamp
revision 1.2
done

6.4.4 Checking Edited Files Back into an RCS Library
To replace one or more edited files, use the ci command. This command
places the contents of each working file in the corresponding ReS-file.
Normally, ReS checks whether the revision to be deposited in the library is
different from the preceding one, and alerts the user.

Also, because the c i command deletes your working files during checkin,
you may want to use either the -1 option or the -u option to preserve your
working files by performing an implicit checkout operation. This is desirable
if you want to save the current revisions and continue editing.

6.4.5 Working with Multiple Versions of Files
Section 6.2 provides an overview of branching concepts in a version control
system. The following discussion provides specific examples that illustrate
how ReS handles branching of multiple files.

ReS arranges file revisions in a tree of deltas. Each file in a revision tree
contains the following kinds of information: a revision number, a checkin
time and date, the author's identification, a log entry, a state, and the actual
text. All of these file attributes are determined at the time the revision is
checked in to the library. The "state" attribute indicates the status of the
revision, which is set to "experimental" during checkin, but which can be
later changed to "stable" or "released."

The c i command creates a revision tree with a root revision that is normally
numbered 1.1. Unless you specify a revision number explicitly, ci assigns
new revision numbers by incrementing the level number of the previous

Revision Control: Managing Source Files with RCS or SCCS 6-13

revision (1.2, 1.3, 1.4, and so on). To begin a new release, use the following
command:
% ci -r2.I unstamp

or
% ci -r2 unstamp

This action assigns the number 2.1 to the new revision. Checking in the file
to the library without the -r option automatically assigns the numbers 2.2,
2.3, and so on, to the later revisions of the file.

Suppose two development teams begin development on separate releases of
the unstamp command, beginning from revision number 1.2. At this point,
both teams can check out the latest revision by using the co command with
the -1 option as follows:
% co -1 unstamp

After editing the file, the first team can check in the file by using the c i
command, and will be alerted by RCS that the new revision number is 1.3.
For example:
% ci unstamp
RCS/unstamp,v <---- unstamp
new revision 1.3; previous revision 1.2
enter log message:
(terminate with a AD or single '.')
» Changed defaults check.
»AD
done

However, if the second team tries to check in the file with the same action,
RCS will issue the following message:
RCS/unstamp,v <----- unstamp
ci error: no lock set by user-name

At this point, the second team can create a branch by using the c i command
as follows:
% ci -rl.3.I unstamp

This action will result in a branch with revision number 1.3.1.1. To continue
development along this branch, the second team should use the current
branch revision number on all subsequent checkouts of the file. For example:

6-14 Revision Control: Managing Source Files with RCS or sces

% co -rl.3.l.l unstamp

Creating new branches in RCS is accomplished through the use of the c i
command; to continue development along a particular branch, use the - r
option with the co command.

The preceding discussion describes how RCS handles revisions of individual
files; the system also allows you to work with groups (or sets) of files that
you specify. See Section 6.4.8 for more information on working with file
configurations in RCS.

6.4.6 Displaying Differences in RCS Files
You can examine an RCS-file for differences between versions with the
rc sdi f f command.

The rcsdiff command runs diff(1) to compare two revisions of each
RCS-file given. For example, to find the differences between the latest
version of the attr file (1.8, being edited to become 1.9) and the
immediately preceding version (1.7), you would use the following command:

% rcsdiff -rl.7 attr

RCS file: RCS/attr,v
retrieving revision 1.7
diff -rl.7 attr
31d30
< # and is version linked to the docbld command

To check the differences between versions 1.3 and 1.4 of the attr file, you
would use the following command:

% rcsdiff -rl.3 -rl.4 attr

RCS file: RCS/attr,v
retrieving revision 1.3
retrieving revision 1.4
diff -rl.3 -rl.4
Sa6
< uts=-04

> uts=-OS

6.4.7 Reporting Revision Histories of RCS Files
Use the rlog command to examine the revision history of a file. For
example, the r log command provides you with the following detailed
information:

Revision Control: Managing Source Files with RCS or SCCS 6-15

% rlog unstamp
RCS file: RCS/unstamp,v; Working file:
head: 1.2
branch:
locks:
access list:
symbolic names:
comment leader: n#
total revisions: 2;
description:
unstamp source file

revision 1.2

strict

selected revisions: 2

unstamp

date: 92/06/09 15:51:16; author: gunther; state:Exp; lines
added/del:
Fixed copyright notice

revision 1.1
date: 92/06/09 15:49:16; author: gunther; state:Exp;
Initial revision

Note the type and amount of information that is available to you using the
rlog command. Res prints the following information for each ReS-file:

• ReS-file name

• Working file name

• Head (the number of the latest revision on the trunk)

• Default branch

• Access list

• Locks on the file

• Symbolic names (if any)

• Suffix

• Total number of revisions

• Number of revisions selected for printing

• Descriptive text

This information is followed by entries for the selected revisions in reverse
chronological order for each branch. If entered without specifying options,
rlog prints complete information for the file you select. See the rlog(1)
reference page for more information on using options to restrict the output of
the rlog command.

6-16 Revision Control: Managing Source Files with RCS or SCCS

6.4.8 Configuration Control Concepts
A configuration in ReS refers to a group or set of file revisions, in which
each revision comes from a different file revision group. File revisions can
be selected (checked out) according to certain criteria. You can check out
sets of files from an ReS library based on the following selection criteria:

• Default selection

Res lets you choose the latest revision of all files by deiault. For
example, the following command retrieves the latest revision on the
default branch of each ReS-file in the library:
% co *,v

• Release-based selection

You can also specify a release or branch number to select the latest
revision in that release or branch. For example, the following command
retrieves the latest revision with release number 2 from each ReS-file:
% co -r2 *,v

• State and author-based selection

ReS allows you to select files according to state attributes. For example,
suppose you want to retrieve the latest revision with release number 2
whose state attribute is "Released." This can be accomplished by
issuing the following command:
% co -r2 -sReleased *,v

You can also select a revision by author, by using the -w option.

• Date-based selection

Revisions can also be selected by date. Suppose a release of an entire
system was completed and current as of June 15, at 2:00 p.m. The
following command checks out all files of that release, with the -d
option specifying the cutoff date as June 15:
% co -d "June 15,2:00 pm" *,v

• Name-based selection (using symbolic names)

Res allows you to assign symbolic names to revisions and branches. In
large systems and development efforts, a single release number or date
may not be sufficient to collect all the appropriate revisions from all
groups.

For example, suppose you need to combine release 2 of one subsystem
with release 10 of another. Most likely, the creation dates of these
revisions will be different, so passing a single revision number or date to
the co command will not be appropriate in this case. U sing symbolic

Revision Control: Managing Source Files with RCS or SCCS 6-17

reVISIOn names can help solve this problem; each RCS-file can contain a
set of symbolic names that are mapped to the numeric revision numbers.

For instance, suppose you set the symbolic name IFT2 to release number
2 in the file attr, v and to revision number 10.2 in unstamp, v. In
this case, a single eo command retrieves the latest revision of release 2
from attr, v and revision 10.2 from unstamp, vas follows:

% co -rIFT2 attr,v unstamp,v

The re s free z e command can be used to assign a symbolic revision
name to a set of RCS-files that form a configuration. To assign a unique
symbolic revision name to the most recent revision of each RCS-file of
the main trunk, use the resfreeze command each time a new version
is checked in. For more information on assigning symbolic names to
RCS-files, refer to the resfreeze(l) reference page.

For large software development efforts, the ability to retrieve all revisions
with one command makes configuration management an organized and
efficient task.

6.5 Using sees
The SCCS system is composed of several independent commands, each of
which can be used independently. The sees command is a unified interface
that simplifies the usage of the most common SCCS commands and provides
several additional functions by combining the operations of multiple
commands. It does not support all of the functions of the individual
commands.

Each form of the sees command includes the keyword sees and the name
of one function, such as edit, followed by options and the names of the file
or files to be manipulated. Table 6-4 lists the sees commands. The
sections following the table provide more information on some of these
commands. In these discussions, command options are omitted except where
required. Commands that are also individual ("low level") commands are
indicated in the table. The complete list of individual commands is
summarized in Table 6-9; for detailed information on their use, along with
descriptions of their options, refer to their individual reference pages.

Table 6-4: Summary of sees Command Functions

Command
Name

admin

Low
Level

Yes

Description

Creates an s-file or changes some characteristic of an existing
s-file.

6-18 Revision Control: Managing Source Files with RCS or SCCS

Table 6-4: (continued)

Command
Name

eheek

elean

ereate

deledit

delget

delta

diffs

edit

fix

get

help

info

print

prs

prt

Low
Level

No

No

No
No

No

Yes

No

No

No

Yes

Yes

No

No

Yes

No

Description

Reports on files being edited and the names of the users
editing them. Differs from info in that eheek returns a
meaningful exit status and displays no report if no files are
being edited.

Removes from your directory all files that can be regenerated
from the named s-file.

Creates an s-file without removing the g-file.

Performs a delta operation followed by an edit operation
on the same file.

Performs a delta operation followed by a get operation on
the same file.

Checks an edited g-file back into the library, recording the
changes made and their history. Removes the p-file.

Compares a g-file that is checked out for editing with an
earlier version reconstructed from the s-file.

Checks out an s-file for editing; regenerates the g-file and
places it in your directory. Creates a p-file.

Removes the most recent delta and presents the g-file for
reediting. Same as entering rrndel followed by edit.

Regenerates a g-file, usually but not always for a purpose
other than editing. (The sees edit command, which
duplicates the function of sees get -e, is the usual way
to regenerate a g-file for editing.)

Given a command name or an SCCS message number,
displays information about that item. (The individual
command's form is seeshelp.) Each SCCS message has
an identification code; for example, the "no ID keywords"
message's code is ern7. The sees help ern7 command
displays a description of this error. The seeshelp delta
command returns a syntax diagram for the delta command.

Reports on files being edited and the names of the users
editing them.

Displays the revision histories of the named file or files, then
displays the SCCS file, with ID information added to the
beginning of each line.

Displays the revision histories of the named file or files.

Same as prs.

Revision Control: Managing Source Files with RCS or SCCS 6-19

Table 6-4: (continued)

Command
Name

rmdel

seesdiff

tell

unedit

what

Low
Level

Yes

Yes

No

No

Yes

Description

Removes the most recent delta from the specified branch of a
named s-file.

Compares two versions of the s-file. Requires explicit
specification of the s-file name.

Reports on files being edited. Differs from info in that only
file names are reported.

Aborts editing of a g-file. Deletes the p-file, releasing the s­
file so that other users can check it out. If the g-file is
present in your working directory, sees unedi t removes
it and performs a get command on the s-file; if no g-file is
present, no get command is executed. (Equivalent to the
unget command.)

Searches a file for an SCCS ID pattern and displays the text
that follows it.

6.5.1 Placing New Files in an sees Library
You can use the sees create command to place new files in a library.
The following example assumes that you are in the library's parent directory
and want to add the attr file to the library:
% sees create attr
attr:
1.1
141 lines

Do not include the prefix s. in the file name you specify; sees applies it
automatically.

You can enter a series of files in a single operation. For example:

% sees create attr doebld deb.eh-intro

After creating the s-file in the library, the sees create command adds a
comma as a prefix to the name of the original file; for example, attr
becomes, attr. This action preserves the original g-file with its keywords
(if any) unexpanded. Then sees fetches a copy of the file by using a get
command; this fetched version is ready for distribution.

You can also insert files in the library with the sees admin -i command,
using the following syntax:

sees admin -i [path/] input-file [path/] s-filename

6-20 Revision Control: Managing Source Files with RCS or SCCS

For example:

% sees admin -iunstamp unstamp

The name path/ input-file specifies the input file. Regardless of the
name of this file, the s-file will be named s. s-filename. Do not include
any white space between the -i option and path/ input-file. Do not
include the prefix s. in s-filename; sees applies it automatically.
Using the admin -i command avoids the renaming of the original g-file
and the fetching of a version with expanded keywords. See Section 6.5.8 for
more information on using the admin command.

You can use the admin -i option to enter several files with a short shell
script; the following command-line example is implemented in csh:

% foreaeh x (attr doebld deb.eh-intro)
? sees admin -i$x $x
? end

6.5.2 Recording File-Identification Information with sees
The sees system provides a syntax for including ID keywords in source
files to provide file-identification information. An ID keyword consists of a
single letter enclosed within percent signs (%). When you retrieve a file for
any purpose other than editing, sees expands each ID keyword by replacing
it with the appropriate information, such as the SID or the file name. Table
6-5 lists the sees ID keywords.

Table 6-5: sees 10 Keywords

Keyword

%B%

%C%

%D%

%E%

%F%

%G%

%H%

%I%

%L%

%M%

Description

The branch number of a retrieved g-file

The current line number in the file, intended to identify messages
output by a program

The retrieval date of a g-file retrieved by a get command, in the
formyylmmldd

The creation date of a delta, in the form yy Imml dd

The file name of the s-file

The creation date of a delta, in the form mm I dd I yy

The retrieval date of a g-file retrieved by a get command, in the
form mml ddlyy

The highest SID applied to the file retrieved

The level number of a retrieved g-file

The current module (file) name; for example, prog. c

Revision Control: Managing Source Files with RCS or SCCS 6-21

Table 6-5: (continued)

Keyword Description

%P% The full pathname of the s-file

%Q% The value of the q flag in the s-file

%R% The release number of a retrieved g-file

%S% The sequence number of a retrieved g-file

%T% The retrieval time of a g-file retrieved by a get command, in the
form hh :mm: ss

%U% The creation time of a delta, in the form hh:mm: ss

%W% A shorthand for %Z%%M% ITabl %1%

%Y% A placeholder for the value of the t flag (set by the admin
command); not meaningful to sees itself

% Z % A placeholder that expands to the string @ (#) for the what
command to find

sees handles ID keywords anywhere in a file. The purpose of the sees
what command is to find and display expanded ID keywords in a file. The
what command searches for lines containing the string @ (*), which is
generated by the % Z % keyword or the %W% shorthand keyword, and displays
those lines. For example:
% what lusr/bin/attr
lusr/bin/attr:

attr 1.8 of 4/15/92

The line displayed in this example is part of a shell script and was coded as
follows:
SCCSID: %Z%%M% %I% of %G%

If your file does not contain ID keywords, sees reports that fact when you
put the file in the library and when you retrieve it. You can set the file's i
flag to specify that this condition will be a fatal error. (See Section 6.5.8 for
a description of file flags.) The purpose of the i flag is to prevent a delta
command from merging a g-file with expanded keywords (or with no
keywords) with the s-file.

6.5.3 Getting Files from an sees Library
There are two reasons to get files from an sees library: for any use except
editing, such as distribution, or for editing.

6-22 Revision Control: Managing Source Files with RCS or SCCS

You can edit a file as part of the straight-line progress of its version history,
or you can create a branching tree. Section 6.5.5 describes how to create a
tree wherein multiple parallel versions are stored together in the same s-file.

6.5.3.1 Getting Files for Purposes Other Than Editing

For any use except editing, you get sees files with the sees get
command. For example:

% cd /usr/projeets/deb_tools
% sees get attr
1.8
126 lines

This command creates a copy of the most recent version of the s-file with
sees keywords expanded (see Table 6-5) and places it in your current
directory (/usr/projeets/deb tools in this example). To get a copy
of any earlier version, use the -rsm option. For example, to retrieve
version 1.5 of a file that is now at version 1.8, you would use a command
like the following:
% cd /usr/projeets/deb_tools
% sees get -rl.S attr
1.5
128 lines

See Section 6.5.5 for information on managing more complex trees of sees
files.

You can use the -p option to retrieve a file and write it to standard output
instead of implicitly creating a g-file with the same name as the s-file. See
the get(1) reference page for more information.

6.5.3.2 Getting Files for Editing

To edit a file, check it out of the library with the sees edit command.
For example:

% sees edit attr
1.8
new delta 1.9
126 lines

This command creates a copy of the most recent version of the s-file with
sees keywords unexpanded (see Table 6-5) and places it in your directory
for editing. The command also creates a p-file identifying the person who
checked out the file for editing.

Revision Control: Managing Source Files with RCS or SCCS 6-23

You can check on the status of files with the sees info command. For
example:

% sees info
unstamp: is being edited: 1.4 1.5 gunther 92/09/07 10:42:19

You can also use the get -e command to retrieve a file for editing.

6.5.3.3 Managing Multiple Files and New Releases

You can retrieve a series of files with a single get or edi t command. For
example:

% sees get attr unstamp
SCCS/s.attr:
1.8
126 lines

SCCS/s.unstamp:
1.2
55 lines

If you specify the name sees instead of one or more file names, sees
retrieves every s-file in the library.

To create a new release of a file, you fetch it using the -r option to specify
the new release number in the sees edit command. For example, the
following command initiates Release 2 of the doebld file:
% sees edit -r2 sees
SCCS/s.docbld:
1. 50
new delta 2.1
1042 lines

SCCS/s.dcb defaults:
1. 50
new delta 2.1
63 lines

SCCS/s.dcb diag.sed:
1.50 -
new delta 2.1
188 lines

6.5.4 Checking Edited Files Back into an SCCS Library
To replace in the library a file you have edited, use the sees delta
command. sees will prompt you for a comment. For example:

6-24 Revision Control: Managing Source Files with RCS or SCCS

% sees delta attr
Comments? (AD to end)
fhanrred defaults check.
Ctri/D
1.9
4 inserted
4 deleted
124 unchanged

Now looks only for "fle="

If you specify the name sees instead of one or more file names, sees
performs a delta on every s-file in the library. Coupled with a similar
edi t command, this function is useful for sets of files that must be kept in
version synchronization even when not all of them are edited. sees asks for
comments only once and applies the same comment to each file.

The sees delget and sees deledi t commands perform a del ta
followed by a get or an edit operation respectively.

6.5.5 Working with Multiple Versions of Files
Section 6.2 provides an overview of branching concepts in a version control
system. The following section provides specific examples that illustrate how
sees handles branching of multiple versions of files.

Suppose two development teams begin development on separate versions of
the unstamp file, beginning from SID 1.2. To enable branching, run the
sees admin -fb command as follows:

% sees admin -fb unstamp

The first team uses an edit command to create version 1.3 as follows:
% sees edit unstamp
1.2
new delta 1.3
55 lines

The second team uses an edit -b command to create a branch as follows:
% sees edit -b unstamp
1.2
new delta 1.2.1.1
55 lines

Revision Control: Managing Source Files with RCS or SCCS 6-25

Consider now a tree for the unstamp file with a main trunk and branches
numbered 1.2.1, 1.2.2, and 1.3.1. To get the latest version from branch 1.2.2
for distribution, you would use the following command:

% sees get -rl.2.2 unstamp
1.2.2.1
55 lines

As an SCCS tree becomes more complex, ensuring that you have the latest
delta for editing can become cumbersome because you must know the delta
you want to retrieve. You can use the -t option to the sees get and
sees edit commands to specify the absolute latest delta regardless of its
SID.

You can merge a branched SCCS file back into the main trunk by using the
sees edit -i command and by specifying the version or versions you
want to merge. For example, the following command creates version 1.5 of
the uns tamp command, including all the deltas in the range from 1.2.1.1 to
1.2.1.3. The deltas are correlated so that the result is the accumulation of all
specified changes.

% sees edit -il.2.1.1-1.2.1.3 unstamp
Included:
1.2.1.1
1.2.1.2
1.2.1.3
1.4
new delta 1.5
55 lines

6.5.6 Displaying Differences in sees Files
You can examine an SCCS file for differences between versions with either
the sees diffs command or the seesdiff command, depending on
what forms of the file are available.

The sees diffs command compares the g-file with the specified version
of the s-file. For example, to find the differences between the latest version
of the attr file (1.8, being edited to become 1.9) and the immediately
preceding version (1.7) you would use the following command:

% sees diffs -rl.7 attr

------- attr -------
31d30
< # and is version-linked to the docbld command

To check the differences between versions 1.3 and 1.4 of the attr file, you
would use the following command:

6-26 Revision Control: Managing Source Files with RCS or SCCS

% sees seesdiff -rl.3 -rl.4 SCCS/s.attr
< uts=-04

> uts=-05

As this example shows, you can enter a pathname for the s-file itself.
Because of this design, you can use this command from any directory instead
of having to change to the directory containing the sees library.

6.5.7 Reporting Revision Histories of sees Files
Use the sees prs command to examine the revision history of a file. For
example:
% sees prs unstamp
SCCS/s.unstamp:

D 1.2 92/09/20 11:23:36 gunther 2 1
MRs:
COMMENTS:
Fixed copyright notice

D 1.1 92/09/19 09:39:11 gunther 1 0
MRs:
COMMENTS:

00000/00006/00055 ill

00061/00000/00000

date and time created 92/09/19 09:39:11 by gunther

The D, MRs, and COMMENTS keywords indicated by call outs in this display
are part of the complete set of sees keywords. Use the sees help
command to display a list of the keywords and their meanings. The D
keyword (callout [j]) marks delta information. The two numbers after
gunther (the programmer's user name) indicate the new and old revision
levels. The slash-separated numbers indicate the numbers of lines added,
deleted, and left unchanged. The keyword MRs (callout 121) lists major
revisions; the major revision is the first element of a file's SID.

Use the sees get -m command to retrieve a copy of the file with SID
numbers added as a prefix to each line. A file retrieved in this way shows
you what delta produced every line in the retrieved version. Keep in mind
that a given delta can be overlaid by later deltas; you might need to use the
-r option to find particular changes.

6.5.8 Performing Administrative Functions
The sees admin command performs several administrative functions.
Each function is specified by an option to the admin command, as described
in Table 6-6.

Revision Control: Managing Source Files with RCS or SCCS 6-27

Note

Your system administrator can set permissions so that only the
administrator can use the admin command.

Table 6-6: SCCS admin Command Options

Option

-auser s-file

-dflag s-file

-euser s-file

-fflag s-file

-h s-file

-iinput-file s-file

-mMR-list s-file

-ns-file

-rSID s-file

-tfile s-file

Description

Adds the specified user to the list of users allowed to
make changes to the named s-file. The user name
can be a group ID; all users in that group are added.

Turns off (deletes) the named flag in the s-file.

Removes the specified user from the list of users
allowed to make changes to the named s-file. The
user name can be a group ID; all users in that group
are removed.

Turns on the named flag in the s-file.

Checks the structure of the named s-file and
compares a newly computed checksum with the
checksum that is stored in the s-file. This option
helps you detect both accidental damage and damage
caused by modifying SCCS files directly with non­
SCCS commands.

Creates SCCS/s .s-file, using input-file as
the initial contents. Differs from sees create in
that admin -i does not rename the g-file or fetch
a copy of the s-file; the g-file is left untouched in
your directory.

Specifies a list of Modification Request (MR)
numbers to be inserted into the SCCS file as the
reason for creating the initial delta.

Creates an empty s-file.

Specifies the initial SID when creating an s-file.

Adds the contents of f i 1 e to the s-file, flagging it
as added text. If file is omitted, any such added
text is deleted. Useful for including documentation
to ensure its distribution with the s-file.

6-28 Revision Control: Managing Source Files with RCS or SCCS

Table 6-6: (continued)

Option Description

-y"comment" s-file Inserts the comment text in the initial delta in a
manner identical to the workings of the del ta
command. The default comment, if the -y option is
not used, is a line giving the date and time of the
file's creation and the name of the user who created
it.

-z s-file Recomputes the s-file's checksum in case the file has
been corrupted.

Caution

U sing the val and admi n - z commands to repair damaged s­
files is risky and should be left to your system administrator or
to a designated sees librarian.

The flags for the admin -f and admin -d options are described in Table
6-7.

Table 6-7: Flags for the admin Command

Flag

b

cSID

dSID

fSID

Description

Allows branches to be made using the -b flag to the edit
command.

Specifies SID as the highest delta that a get -e command can
use.

Specifies the default SID to be used on a get or edi t
command.

Specifies SID as the lowest delta that a get -e command can
use.

i Causes the "no Id keywords" error message to be a fatal error
rather than a warning.

j Permits editing of the s-file by more than one person
concurrently.

lSID [,SID • •] Locks the specified SIDs from being retrieved for editing. You
can lock all deltas with the -f la flag, and you can unlock
specific deltas with the -d flag.

Revision Control: Managing Source Files with RCS or SCCS 6-29

Table 6-7: (continued)

Flag Descri ption

mname Substitutes name for all occurrences of the %M% keyword when
keywords are expanded by a get command. The default name is
the s-file's name without the s prefix.

n Causes the delta command to create a null delta in any releases
that are skipped when a delta is made in a new release. For
example, if you make delta 5.1 after delta 2.7, releases 3 and 4
will be null. The resulting null deltas can serve as points from
which to build branch deltas. Without this flag, skipped releases
do not appear in the s-file.

q" text" Substitutes text for all occurrences of the %Q% keyword when
keywords are expanded by a get command.

ttype Substitutes type for all occurrences of the %Y% keyword when
keywords are expanded by a get command.

v [program] Makes delta prompt for Modification Request (MR) numbers as
the reason for creating a delta. The name program specifies the
name of an MR number validity-checking program. (See the
del ta(l) reference page.)

For example, the following command uses the contents of an existing text
file to create an s-file beginning at SID 2.1 and identified with a comment.
The s-file's i flag is set. The command places the resulting s-file in the
sees library under the user's working directory.

% sees admin -iunstamp -fi -r2 -y"Initial release" unstamp

This example does not destroy the original file.

6.5.9 Using sees Options
The sees command supports the options listed in Table 6-8. Note that these
options must include the sees function command keyword as shown in the
examples in the table. Do not include any space between the options and
their arguments.

6-30 Revision Control: Managing Source Files with RCS or SCCS

Table 6-8: SCCS Command Options

Option

-ddirname

-ppath

-r

Description

Specifies a directory to use as the sees library's parent. Allows
access to secs libraries without requiring that your working
directory be the parent. For example:

% pwd
/usr/users/gunther
% sees -d/usr/sre/deb tools get attr
1.8 -
126 lines

Adds path to the final element of the pathname for the file you
specify. By default, secs adds sees so that the path specified
in the -d example resolves to
/usr/sre/deb tools/SeeS/s.attr. If your sees
library is not named sees, use the -d option to modify this
component of the path.

Runs with the real user's DID instead of changing to the sees
DID. For security purposes, sees normally sets the ownership
of files in an sees library so that they belong to the sees DID.
This option is useful if you are using sees to manage a library
for yourself only; you can create the sees directory with normal
permissions, and the -r option will cause sees to manipulate
files therein using your own DID.

6.5.10 Summary of Individual SCCS Commands
Table 6-9 provides a brief description of the individual sees commands.
Note that some of these commands are not supported by the sees command.
Refer to the appropriate command's reference page for more detailed
information.

Table 6-9: Individual SCCS Commands

Command Supported

Name

admin

edc

by sccs
Command

Yes

No

Description

Creates an s-file or changes some characteristic of an
existing s-file.

Changes the comments associated with a delta.

Revision Control: Managing Source Files with RCS or SCCS 6-31

Table 6-9: (continued)

Command Supported

Name

comb

delta

get

prs

rmdel

seesdiff

seeshelp

unget

val

what

by sees
Command

No

Yes

Yes

Yes

Yes

Yes

No

No

No

Yes

Description

Combines two or more consecutive deltas of an s-file
into a single delta. Combining deltas can reduce storage
requirements.

Checks an edited g-file back into the library, recording
the changes made and their history. Removes the p-file.

Gets a specified version of an s-file. Use this command
to get a copy of a file to edit or compile. For editing,
use the get -e command, which checks out an s-file
for editing, regenerates the g-file and places it in your
directory, and creates a p-file.

Displays the revision histories of the named s-file or s­
files.

Removes the most recent delta from the specified branch
of a named s-file.

Compares two versions of the s-file. Requires explicit
specification of the s-file name.

Provides an explanation of a diagnostic message or of an
SCCS command name.

Removes the effect of a previous use of the get -e
command by deleting the p-file and replacing the g-file
with a copy having its ID keywords expanded.
(Equivalent to the sees unedit command.)

Computes a checksum on an s-file to see if the result
matches the checksum stored in the file. Use this
command with the sees admin -z command to
detect and repair corrupted files.

Searches a file for an SCCS ID pattern and displays the
text that follows it. Use this command to find
identifying information describing the source versions
(kept under SCCS control) used to construct a program.

6-32 Revision Control: Managing Source Files with RCS or SCCS

Caution

Using the val and admin -z commands to repair damaged s­
files is risky and should be left to your system administrator or
to a designated sees librarian.

6.6 Functional Comparison of RCS and sees
Commands
Table 6-10 provides a brief comparison of the operations of ReS and sees
and the commands that are used to achieve similar functions. Refer to the
reference pages for detailed information on using the individual commands.

Table 6-10: Functional Comparison: RCS and secs Commands

Tasks

Create a new file
from your original.

Get a copy of a file
with expanded
keywords.

Get a copy of a file
with unexpanded
keywords.

Check out a file.

Check in an edited
file.

Show revision
histories
of a file.

Examine
differences
between file
revisions.

Merge file
revisions.

Find identifying
information.

RCS Command

ei file

eo -u file

eo -1 file

ei file

rlog file

resdiff -rrev
file

resrnerge -rrevs
file

ident

SCCS Commands

sees ereate file
sees adrnin -isfile gfile
adrnin -ipath!sfile gfile

sees get file
get file

sees get -k file
get -k file

sees edit file
get -e file

sees delta file
delta file

sees prs file
prs file

sees diffs -rrev file
seesdiff -rrev -rrev file

sees edit -irevs file

sees what
what

Revision Control: Managing Source Files with RCS or SCCS 6-33

Table 6-10: (continued)

Tasks

Perform
administrative
tasks.

Clean up your
directory.
(Remove
unchanged files.)

RCS Command

res

reselean

SCCS Commands

admin

sees clean

6-34 Revision Control: Managing Source Files with RCS or SCCS

Building Programs with the make 7
Utility

The make utility builds up-to-date versions of programs. It is most useful
for large programming projects in which multiple source files are combined
to form a single program or for building a set of programs that are parts of a
single product or application.

The make utility works by comparing the creation date of a program to be
built, called the target or target file, with the dates of the files that make it
up, called dependency files or dependents. If any of a given target's
dependents are newer than the target, make considers that the target is out of
date. In this case, make rebuilds the target by performing the necessary
compiling, linking, or other steps. Each dependent can also be a target; for
example, an executable program is made from object modules, which are in
turn made from source files. Dependents that are newer than the target are
called younger files.

The make command accepts options to control or modify how the building
process is performed. The make utility does not address the problem of
maintaining more than one version of the same source file.

Using the make utility to maintain programs, you can do the following:

• Combine the instructions for creating a large program in a single file

• Define macros to use within the make description file

• Use shell commands

• Create or update libraries

• Include files from other programs

The DEC OSP/l system provides several versions of the make command,
with differences in features among versions:

• make(l)

The default version of make.

• make(lu)

Offers enhanced functionality over make(l).

• make(lp)

Provided for POSIX compliance.

The make(1) and make(1 u) versions are included in the base operating
system subsets. The make(1 p) version is included in the "Software
Development Environment (Software Development)" subset.

Refer to the respective reference pages for further information. This chapter
describes only the features of the make(l) version.

7.1 Operation of the make Utility
The make utility uses the following sources of information:

• A description file that you create

• File names

• Time stamps of the files from the file system

• A set of rules that tell make how to build files

The make utility depends on files' time stamps. For make to work properly
on a distributed system, the date and time on all systems in the network must
be synchronized.

The make utility creates a target file using the following step-by-step
procedure:

1. Finds the name of the target file in the description file

2. Finds a line that describes the dependents of the target, called a
dependency line

3. Ensures that all the target's dependency files exist and are up to date

4. Determines if the target is current with respect to its dependents

5. If the target or one of the dependents is out of date, creates the target by
one of the following methods:

• Executes commands from the description file

• Uses internal rules to create the file (if they apply)

• Uses default rules from the description file

If all files described on the dependency line are up to date when make is run,
make indicates that the target is up to date and then stops. If any dependents
are newer than their targets, make re-creates only those targets that are out of
date. Any missing files are deemed to be out of date. If a given target has
no dependents, it is always out of date, and make rebuilds it every time you
run make. The make process works from the top down in determining what
targets need to be rebuilt and from the bottom up in the actual rebuilding
stage.

When the make utility runs commands to create a target, it replaces macros
with their values, echoes each command line to the standard output, and then

7~2 Building Programs with the make Utility

runs the command. (See Section 7.2.9 for information about macros.) The
make utility runs commands that it can execute directly, such as rm or cc,
without invoking a new shell. The utility invokes each command line that
includes shell functions, such as pipes or redirection, in a new shell.

You start the make utility in the directory that contains the description file.
The syntax of the make command is as follows:

make [-f makefile] [options] [targets] [macro definitions]

The make utility examines the command-line entries to determine what to
do. First, it assigns values for the macro definitions on the command line
(entries containing equal signs), if there are any, and for the macro definitions
in the description file. If there is a definition on the command line for a
macro name that is also defined in the description file, make uses the
command-line definition and ignores the definition in the description file.

Next, make looks at the options. Refer to the make(l) reference page for a
complete list of the options that make supports.

The make utility interprets the remaining command line entries as the names
of targets. It processes the targets in left-to-right order. If there are no
targets on the command line, make processes the first target named in the
description file and then stops.

7.2 Description Files
The description file tells make how to build the target by defining what
dependencies are involved and what their relationships are to the other files
in the procedure. The description file contains the following information:

• Definitions of macros in the description file

• One or more target names

• Dependency file names that make up the target files

• Commands that create the target files from the dependents

• Any of the pseudo targets • DEFAULT, • IGNORE, • PRECIOUS,
.SILENT,or • SUFFIXES

These identifiers are called pseudotargets because they are not real
targets. They are built-in names that make interprets in special ways.
For example, the • SILENT pseudotarget instructs make not to echo
command lines as it runs them. Do not use any of these names for a real
target.

The make utility determines what files to create to get an up-to-date copy of
the target by checking the dates of the dependency files. If any dependency
file was changed more recently than the target, make creates all the files that

Building Programs with the make Utility 7-3

are affected by the change, including the target. In most cases, the
description file is easy to write and does not change often.

The make utility normally looks for a description file named either
makefile or Makefile. If you name the description file makefile or
Makefile and are working in the directory containing that description file,
you enter the make command without any options or arguments to bring the
first target and its dependency files up to date, regardless of the number of
files that were changed since the last time make created the target file. You
can override the default file name by using the -f option to the make utility
to specify the name of the desired description file, as in the following
example:

% make -f my_makefile

This option allows you to keep several description files in the same directory.

7.2.1 Format of a Description File Entry
The general format of a description file entry is as follows:

target1 [target2 ...] : [:] [dependent...] [; commands] [# comment ...]

The items inside brackets are optional. Targets and dependents are file
names (strings of letters, numbers, periods, and slashes). The make
command recognizes wildcard characters, such as asterisks (*) and question
marks (?). Each line in the description file that contains a target name is
called a dependency line. The dependency line is followed by one or more
command lines that specify the process steps to create the target.

Because make uses the dollar sign ($) to designate a macro, you must not
use this character in file names of targets and dependencies. Similarly, do
not use the dollar sign in commands in the description file unless you are
referring to a defined make macro. (Macros are described in Section 7.2.9,
Section 7.2.10, and Section 7.2.12.)

To place comments in the description file, use a number sign (#) to begin the
comment text. The make utility ignores the number sign and all characters
on the same line after the number sign. The make utility also ignores blank
lines.

You can enter lines that are longer than the line width of the input device by
putting a backslash (\) at the end of the line that is to be continued. Do not
extend comment lines in this way; begin each new comment line with its
own number sign.

7-4 Building Programs with the make Utility

7.2.2 Using Commands in a Description File
A command is any string of characters, not including a number sign or a
new line character. Commands can appear after a semicolon (;) on a
dependency line or on lines immediately following a dependency line. Each
command line after the dependency line must begin with a single tab
character.

When you define command sequences for the targets in the description file,
either specify one command sequence for each target or specify separate
command sequences for special sets of dependencies.

To use one command sequence for every use of the target, use a single colon
(:) following the target name on the dependency line. For example, the
following lines define a target, test with a set of dependency files and a set
of commands to create the target:
test: dependency listl ••.

command list ..•

test: dependency list2 ..•

As shown here, a target name can appear in several places in the description
file with different dependency lists, but there can be only one command list
associated with the target name. The make utility finds all the dependency
lines for a given target and concatenates all their dependency lists into a
single list. When any of the dependents has been changed, make can run the
commands in the one command list to create the target.

To specify more than one set of commands to create a particular target file,
enter more than one dependency definition. Each dependency line must have
the target name followed by two colons (: :), a dependency list, and a
command list that make uses if any of the files in the dependency list
changes. For example, the following lines define two separate processes to
create the target file test:
test:: dependency listl ...

command listl ..•

test:: dependency list2 .•.
command list2 •..

If any of the files in dependency listl changes, make runs command
listl; if any of the files in dependency list2 changes, make runs
command list2. To avoid conflicts, a given dependency file cannot appear
in both dependency lis t 1 and dependency lis t 2.

Building Programs with the make Utility 7-5

Note

Because make runs the commands on each command line
independently of preceding or subsequent command lines, be
careful when using certain commands (for example, cd). In the
following example, the cd command has no effect on the cc
command that follows it:
test: test.o

cd /u/tom/newtest
cc main.o subs.o -0 test

To make the cd command affect the cc command, place both
commands on the same line, separated by a semicolon. For
example:

test: test.o
cd /u/tom/newtest; cc main.o subs.o -0 test

You can simulate a multiline shell script by using backslashes on
continued lines:

test: test.o
cd /u/tom/newtest; \
cc main.o subs.o -0 test

This example works exactly the same as the one immediately
before it. Note that each line continued with a backslash (the cd
line in this example) must have a semicolon before the
backslash.

7.2.3 Preventing the make Utility from Echoing Commands
To prevent make from echoing the commands that it is executing to standard
output, use anyone of the following procedures:

• Use the - s flag on the command line when you enter the make
command.

• Put the pseudotarget name. SILENT: on a line by itself in the
description file. See Section 7.2 for an explanation of pseudotargets.

• Put an at sign (@) in the first character position (after the tab) of each
command line in the description file that make should not echo.

7.2.4 Preventing the make Utility from Stopping on Errors
The make utility normally stops if any command returns a nonzero status
code to indicate an error.

To prevent make from stopping on errors, use any of the following
procedures:

7-6 Building Programs with the make Utility

• Use the -i flag on the command line when you enter the make
command.

• Put the pseudotarget name. IGNORE: on a line by itself in the
description file. See Section 7.2 for an explanation of pseudotargets.

• Put a hyphen (-) in the first character position (after the tab) of each
command line in the description file where make should not stop on
errors.

7.2.5 Defining Default Conditions
When make creates a target but cannot find either explicit command lines or
internal rules to create the file, it looks at the description file for default
conditions. To define the commands that make performs in this case, use
the. DEFAULT: pseudotarget name in the description file, entering the
desired default command sequence as for any other target.

Use the. DEFAULT: pseudotarget for an error recovery routine or for a
general procedure to create all files in the program that are not defined by an
internal rule of the make utility.

7.2.6 Preventing make from Deleting Files
To prevent completion of a build using potentially corrupted target files,
make normally removes target files if an error is returned during the build.
To prevent make from removing files when an error is detected, use the
• PRECIOUS: pseudotarget in the description file. After the pseudotarget
name, list the target names that should be saved. If you specify the -u
option on the command line, make does not remove any RCS-files it
checked out. See the make(l) reference page for more information on how
make interacts with ReS.

7.2.7 Simple Description File
In Example 7-1, a program named prog is made by compiling and loading
three C language files: x. c, y. c, and z • c. The files x. c and y. c share
some declarations in a file named defs. The z. c file does not share those
declarations.

Building Programs with the make Utility 7-7

Example 7-1: A Simple Description File

Make prog from 3 object files
prog: x.o y.o z.o
Use the cc program to make prog

cc x.o y.o z.o -0 prog

Make x.o from 2 other files
x.o: x.c defs
Use the cc program to make x.o

cc -c x.c

Make y.o from 2 other files
y.o: y.c defs
Use the cc program to make y.o

cc -c y.c

Make z.o from z.c
z.o: z.c
Use the cc program to make z.o

cc -c z.c

If this file is called makefile, you can enter the make command with no
options or arguments to make an up-to-date copy of prog after making
changes to any of the four source files x. c, y. c, z. c, or defs.

7.2.8 Making the Description File Simpler
To make the description file simpler, use the internal rules of the make
utility. Using file system naming conventions, make knows that there are
three • c files corresponding to the needed • 0 files. It also knows how to
generate an object from a source file (that is, issue a cc -c command). By
taking advantage of these internal rules, the description file becomes the
following:

Make prog from 3 object files
prog: x.o y.o z.o
Use the cc program to make prog

cc x.o y.o z.o -0 prog

Use the file defs and the appropriate .c file
when making x.o and y.o
x.o y.o: defs

Section 7.2.14 describes the internal rules used by make.

7.2.9 Defining Macros
A macro is a name to use in place of one or more other names. It is a
shorthand way of using the longer string of characters. You can define
macros in the description file or on the command line. To define a macro in
the description file, do the following:

7-8 Building Programs with the make Utility

1. Start a new line with the name of the macro.

2. Follow the name with an equal sign (=).

3. To the right of the equal sign, enter the string of characters that the macro
name represents. The string can contain blanks.

The macro definition can contain blanks before and after the equal sign
without affecting the result. The macro definition cannot contain a colon (:)
or a tab before the equal sign. The make utility ignores leading and trailing
blanks in the defining string. The following examples are macro definitions:

Macro ABC has a value of "Is -la"
ABC = Is -la

Macro LIBES has a null value
LIBES =

Macro DIRECT includes the definition of macro ROOT
The expanded value of DIRECT is "/usr/home/fred"
ROOT = /usr/home
DIRECT = $(ROOT)/fred

The DIRECT macro in this example uses another definition as part of its own
definition. See Section 7.2.10 for instructions on using macros.

To define a macro on a command line, follow the same syntax as for defining
macros in the description file, but include all of your macro definitions on the
same line. When you define a macro with blanks from the command line,
enclose the definition in quotation marks ("name = definition").
Without the quotation marks, the shell interprets the blanks as parameter
separators and not as part of the macro.

7.2.10 Using Macros in a Description File
After you define a macro in a description file, refer to the macro's value in
the description file by putting a dollar sign ($) before the name of the macro.
If the macro name is longer than one character, put parentheses or braces
around it, as illustrated by the following examples:

$(CFLAGS)
${xy}
$Z
$(Z)

The effect of the last two examples is identical.

7.2.10.1 Macro Substitution

You can substitute a different value for part or all of a macro's defined value.
The three forms of macro substitution are as follows:

Building Programs with the make Utility 7-9

• The first form replaces every occurrence of stringl in the defined
value of MACRO with string2:

$(MACRO:string1=string2)

For example:
Define macro MACl
MACl = xxx yyy zzz

Evaluate MACl
project:

@ echo $ (MAC1:yyy=abc)

When you run make with this description file, make substitutes abc for
the occurrence of yyy, and displays the following line:
xxx abc zzz

• The second form applies a substitution to each word in the defined value.
The location parameter specifies what portion of the word is to be
replaced with string:

$(MACROllocationlstring)

The location parameter is restricted to the following values:

Circumflex (") - The s t r in g value is added as a prefix to each
defined word. For example:

Define macro MACl
MACl = abc def ghi

Evaluate MACl
project:

@ echo $(MAC1/A/xyz)

When you run make with this description file, make adds xyz to the
beginning of each defined word and displays the following line:
xyzabc xyzdef xyzghi

- Asterisk (*) - The string value replaces all of each defined word.
For example:
Define macro MACl
MACl = abc def ghi

Evaluate MACl
project:

@ echo,$(MAC1/*/xyz)

7-10 Building Programs with the make Utility

When you run make with this description file, make substitutes xyz
for each defined word and displays the following line:

xyz xyz xyz

With the asterisk, you can use an ampersand (&) in the string
value. The ampersand represents the defined word that is being
substituted for, and it causes that word to be interpolated in the result.
For example:

Define macro MACl
MACl = abc def ghi

Evaluate MACl
project:

@ echo $(MAC1/*/x&z)

When you run make with this description file, make substitutes x& z
for each defined word, interpolating the defined word for the
ampersand, and displays the following line:

xabcz xdefz xghiz

- Dollar sign ($) - The string value is appended to each defined
word. For example:

Define macro MACl
MACl = abc def ghi

Evaluate MACl
project:

@ echo $(MAC1/$/xyz)

When you run make with this description file, make appends xyz to
the end of each defined word and displays the following line:

abcxyz defxyz ghixyz

• The third form makes one of two possible substitutions depending on
whether MACRO is defined:

$(MA eRO? string 1: string2)

If MACRO is defined, stringl is substituted for the entire defined value.
If MACRO is not defined, string2 is used. For example:

Building Programs with the make Utility 7-11

Define macro MACl
MACl = abc def ghi

Evaluate MACl and MAC2. MAC2 is not defined.
project:

@ echo $(MAC1?uvw:xyz)
@ echo $(MAC2?123:456)

When you run make with this description file, make substitutes uvw for
the value of MAC 1 and 456 for the undefined MAC2, and displays the
following lines:

uvw
456

The first two forms of substitution produce a null string if MACRO is
undefined.

7.2.10.2 Conditional Macros

The value of a macro can be assigned based on a preexisting condition. This
type of macro is a conditional macro. You cannot define conditional macros
on the command line; all conditional macro definitions must be in the
description file. The syntax of the conditional macro is as follows:

target: = MACRO: string

The macro is assigned the value of the string if the specified target is the
current target of the make command. Otherwise, the macro's value is null.
The following description files uses a conditional substitution for MAC 1:
Define the conditional macro MACl
target2:=MACl = xxx yyy xxxyyy

#list targets and command lines

targetl:;@echo $(MAC1)
target2:;@echo $(MAC1)

When you run make with this description file, you get the following results:

% make target!

% make target2
xxx yyy xxxyyy

7-12 Building Programs with tre make Utility

7.2.11 Calling the make Utility from a Description File
You can nest calls to the make utility within a make description file by
including the $ (MAKE) NX r "make macro=>$(MAKE) macro" macro in
one of the command lines in the file. If this macro is present, make executes
another copy of make, even if the -n option is set. See Section 7.2.16 for a
description of the -n option.

7.2.12 Internal Macros
The make utility has built-in macro definitions for use in the description file.
These macros help specify variables in the description file. The make utility
replaces the macros with the values indicated in Table 7-1.

Table 7-1: Internal make Macros

Macro

$@

$$@

$?

$<

$*

Value

The name of the current target file

The target names on the dependency line

The names of the dependency files that have changed more recently
than the target

The name of the out-of-date file that caused a target file to be created

The name of the current dependency file without the suffix

Each of these macros resolves to a single file name at the time make is
actually using it. You can modify the interpretation of any of these macros
by using a D suffix to indicate that you want only the directory portion of the
name. For example, if the current target is /u/tom/bin/fred, the
$ (@D) macro returns only the /u/tom/bin portion of the name.
Similarly, an F suffix returns only the file name portion. For example, the
$ (@F) macro returns fred if given the same target. Note the following
exception: All internal macros except the $? macro can take the D or F
suffix.

Before using any internal macros on a distributed file system, you must
ensure that the system clocks show the same date and time for all nodes that
contain files for make to process.

The make utility replaces these symbols only when it runs commands from
the description file to create the target file. The following sections explain
these macros in more detail.

Building Programs with the make Utility 7-13

7.2.12.1 Internal Target File Name Macro

The make utility substitutes the full name of the current target for every
occurrence of the $ @ macro in the command sequence for building the target.
The replacement is made before running the command. For example:

/u/tom/bin/test: test.o
cc test.o -0 $@

This example produces an executable file named /u/tom/bin/test.

7.2.12.2 Internal Label Name Macro

If the $ $ @ macro is used on the right side of the colon on a dependency line
in a description file, make replaces this symbol with the label name that is
on the left side of the colon in the dependency line. This name could be a
target name or the name of another macro. For example:

cat: $$@.c

The make utility interprets this line as follows:

cat: cat.c

Use this macro to build a group of files, each of which has only one source
file. For example, to maintain a directory of system commands, use a
description file like the following:
Define macro CMDS as a series of command names
CMDS = cat dd echo date cc cmp comm ar ld chown

Each command depends on a .c file
$ (CMDS) : $ $ @ • c

Create the new command set by compiling the out of
date files ($?) to the current target file name ($@)

cc -0 $? -0 $@

The make utility changes the $ $ (@F) macro to the file part of $ @ when it
runs. For example, you could use this symbol when maintaining the
usr / inc 1 ude directory while using a description file in another directory.
That description file would look like the following example:

Define directory name macro INCDIR
INCDIR = /usr/include

Define a group of files in the directory
with the macro name INCLUDES
INCLUDES = \

$(INCDIR)/stdio.h \
$(INCDIR)/pwd.h \
$(INCDIR)/dir.h \
$(INCDIR)/a.out.h

Each file in the list depends on a file

7-14 Building Programs with the make Utility

of the same name in the current directory
$(INCLUDES): $$(@F)

Copy the younger files from the current
directory to /usr/include

cp $? $@

Set the target files to read only status
chmod 0444 $@

This description file creates a file in the /usr / include directory when the
corresponding file in the current directory has been changed.

7.2.12.3 Internal Younger Files Macro

If the $? macro is in the command sequence in the description file, make
replaces the symbol with a list of dependency files that have been changed
since the target file was last changed.

7.2.12.4 Internal First Out-of-Date File Macro

If the $< macro is in the command sequence in the description file, make
replaces the symbol with the name of the file that started the file creation.
The file name is the name of the specific dependency file that was out of date
with the target file and therefore caused make to create the target file again.
Note the difference between this symbol and the $? symbol, which returns a
complete list of younger files.

Note that the make utility replaces this symbol only when it runs commands
from its internal rules or from the • DEFAULT: list. The symbol has no
effect in an explicitly stated command line.

7.2.12.5 Internal Current File Name Prefix Macro

If the $ * macro is in the command sequence in the description file, make
replaces the symbol with the file name part (without the suffix) of the
dependency file that make is currently using to generate the target file. For
example, if make is building the target test. c, the $ * symbol represents
the file name test.

The make utility replaces this symbol only when it runs commands from its
internal rules or from the • DEFAULT: list. The symbol has no effect in an
explicitly stated command line.

7.2.13 How make Uses Environment Variables
Each time make runs, it reads the current environment variables and adds
them to its defined macros. In addition, it creates a new macro called
MAKEFLAGS. This macro is a collection of all the options that were entered

Building Programs with the make Utility 7-15

on the command line. Command-line options and assignments in the
description file can also change the value of the MAKE FLAGS macro. When
make starts another process, it exports MAKE FLAGS to that process. See
Section 7.2.16 for a discussion of how the MAKE FLAGS macro affects
recursive make processes.

Macro definitions are assigned in the following order when make:

1. Reads the MAKEFLAGS environment variable to set options specified by
the variable. If MAKE FLAGS is not present or is null, make sets its
internal MAKEFLAGS macro to the null string. Otherwise, make assumes
that each letter in MAKE FLAGS is an input option. The make utility uses
these options (except for -f, -p, and -r) to determine its operating
conditions.

2. Reads and sets the input flags from the command line. Any options
specified explicitly on the command line are added to the settings from
the MAKE FLAGS environment variable.

3. Reads macro definitions from the command line. These definitions
override any definitions for the same names in the description file.

4. Reads the internal macro definitions.

5. Reads the environment, including the MAKE FLAGS macro. The make
utility treats all environment variables as macro definitions and passes
them to shells it invokes to execute commands.

7.2.14 Internal Rules
The make utility has a set of internal rules that it uses to determine how to
build a target. You can override these rules by invoking make with the -r
option; in this case, you must supply any rules that are required to build the
targets in your description file. The internal rules contain a list of file name
suffixes defined using the pseudotarget • SUFFIXES:, along with the rules
that tell make how to create a file with one suffix from a file with another
suffix. To see the complete list of conversions supported by make's internal
rules, run the following command:

% make -p I more

If you do not change the list, make by default understands the following
suffixes:

Suffix File Type

• 0 Object file

· c C source file

· e e f 1 source file

7-16 Building Programs with the make Utility

Suffix File Type

.r Ratfor source file

.f FORTRAN source file

.s Assembler source file

.y yaee C source grammar

.yr yaee Ratfor source grammar

.ye yaee ef1 source grammar

.1 1 ex source grammar

.out Executable file

.F FORTRAN source file

.p Pascal source file

.sh Bourne shell script

.esh C shell script

.h C header file

You can add suffixes to this list by including a • SUFFIXES: line in the
description file with one or more space-separated suffixes. For example, the
following line adds the suffixes. f7 7 and. ksh to the existing list. For
example:

. SUFFIXES: .f77 .ksh

To erase make's default list of suffixes, include a • SUFFIXES: line with
no names on it. You can replace the default list with a completely new list
by using first an empty list and then your new list:

. SUFFIXES:

. SUFFIXES: .0 .c .p .sh .ksh .csh

Because make looks at the suffixes list in left-to-right order, the order of the
entries is important. The preceding example ensures that make will look
first for an object file, then a C source file, and so on.

The make utility uses the first entry in the list that satisfies the following two
requirements:

• The entry matches input and output suffix requirements.

• The entry has a rule assigned to it.

If you add suffixes to the list that make recognizes, you must provide rules
that describe how to build a target from its dependents. A rule looks like a
dependency line and the corresponding series of commands. The make
utility creates the name of the rule from the two suffixes of the files that the

Building Programs with the make Utility 7-17

rule defines. For example, the name of the rule to transform a • r file to a
.0 file is • r. o. Example 7-2 illustrates a portion of the standard default
rules file.

Example 7-2: Default Rules File

Create a .0 file from a .c
file with the cc program
.c.o

$(CC) $ (CFLAGS) -c $<

Create a .0 file from either a
• e , a . r , or a . f
file with the efl compiler

$(EC) $ (RFLAGS) $ (EFLAGS) $ (FFLAGS) -c $<

Create a .0 file from
a .s file with the assembler
.s.o:

$(AS) -0 $@ $<

.y.o:
Use yacc to create an intermediate file

$(YACC) $ (YFLAGS) $<
Use cc compiler

$(CC) $ (CFLAGS) -c y.tab.c
Erase the intermediate file

rm y.tab.c
Move to target file

mv y.tab.o $@

.y.c:
Use yacc to create an intermediate file

$(YACC) $ (YFLAGS) $<
Move to target file

mv y.tab.c $@

7.2.14.1 Single Suffix Rules

The make utility also has a set of single suffix rules to create targets with no
suffixes, such as command files. The make utility has rules to change the
following source files with a suffix to object files without a suffix:

7-18 Building Programs with the make Utility

Suffix Source File Type

. c From a C language source file

• sh From a shell file

For example, to maintain a program like cat if all of the needed files are in
the current directory, enter the following command:

% make cat

7.2.14.2 Overriding Built-In make Macros

The make utility uses macro definitions in its internal rules. To change these
macro definitions, enter new definitions for those macros on the command
line or in the description file. For commands and language processors, the
make utility uses the following macro names:

Command or Function Command Command Options
Macro or Other Macros

Archive program (ar) AR ARFLAGS

Archive table of contents creation RANLIB

Assembler AS ASFLAGS

C Compiler CC CFLAGS

C libraries LOADLIBS

RCS checkout CO COFLAGS

The copy command (cp) CP CPFLAGS

e f 1 compiler EC EFLAGS

Linker commanq (ld) LD LDFLAGS

The lex command LEX LFLAGS

The lint command LINT LINTFLAGS

The make command MAKE

Recursive make calling flags MAKEFLAGS

The mv command MV MVFLAGS

The pc command PC PFLAGS

The f 7 7 compiler RC FFLAGS

Ratfor compiler flags RFLAGS

The rm command RM RMFLAGS

For locating files related to dependency VPATH

Building Programs with the make Utility 7-19

Command or Function

The yacc command

The yacc -e command

The yacc -r command

Command
Macro

YACC

YACCE

YACCR

Command Options
or Other Macros

YFLAGS

YFLAGS

YFLAGS

For example, the following command runs make, substituting the newcc
program in place of the previously defined C language compiler:

% make CC=newcc

Similarly, the following command tells make to optimize the final object
code produced by the C language compiler.

% make "CFLAGS=-O"

To look at the internal rules that make uses, enter the following command
from the Bourne shell:

$ make -fp -< /dev/null 2>/dev/null

The output appears on the standard output.

7.2.15 Including Other Files
You can include files in addition to the current description file by using the
word include as the first word on any line in the description file. Follow
the word with a blank or a tab and then the set of file names for make to
include in the operation. For example:

include /u/tom/temp /u/tom/sample

7.2.16 Testing Description Files
To test a description file, run make with the -n command option. This
option instructs make to echo command lines without executing them. Even
commands preceded by at signs (@) are echoed so that you can see the entire
process as make would execute it. When the -n option is in effect, the NX r
"make macro=>$(MAKE) macro" "testing description files with" $ (MAKE)
macro, unlike all other commands, is actually executed. If the description
file includes an instance of the $ (MAKE) macro, make calls the new copy of
make with the MAKEFLAGS macro's value set to the list of options,
including -n, that you entered on the command line. The new copy of make
observes that the -n option is set, and it bypasses command execution in the

7-20 Building Programs with the make Utility

same way as the copy that called it. You can test a set of description files
that use recursive calls to make by entering a single make command.

7.2.17 Description File
Example 7-3 shows the description file that maintains the make utility. The
source code for make is contained in a number of C language source files
and a yacc grammar file. For more information on yacc, see Chapter 4.

Example 7-3: The makefile for the make Utility

Description file for the Make program

Macro def: send to be printed
P = lpr

Macro def: source file names used
FILES Makefile version.c defs main.c

doname.c misc.c files.c
dosy.c gram.y lex.c gcos.c

Macro def: object file names used
OBJECTS = version.o main.o doname.o \

misc.o files.o dosys.o gram.o

Macro def: lint program and flags
LINT = lint -p

Macro def: C compiler flags
CFLAGS = -0

make depends on the files specified
in the OBJECTS macro definition
make: $(OBJECTS)
Build make with the cc program

cc $(CFLAGS) $(OBJECTS) -0 make
Show the file sizes

size make

The object files depend on a file
named defs
$(OBJECTS): defs

The file gram.o depends on lex.c
uses internal rules to build gram.o
gram.o: lex.c

Clean up the intermediate files
clean:

rm *.0 gram.c

Building Programs with the make Utility 7-21

Example 7-3: (continued)
Copy the newly created program
to /usr/bin and deletes the program
from the current directory
install:

cp make /usr/bin/make ; rm make

Empty file "print" depends on the
files included in the macro FILES
print: $(FILES}
Print the recently changed files

lpr $?
Change the date on the empty file,
print, to show the date of the last
printing

touch print

Check the date of the old
file against the date
of the newly created file
test:

make -dp I grep -v TIME >lzap
/usr/bin/make -dp I grep -v TIME >2zap
diff lzap 2zap
rm lzap 2zap

The program, lint, depends on the
files that are listed
lint: dosys.c doname.c files.c main.c misc.c \

version.c gram.c
Run lint on the files listed
LINT is an internal macro

$(LINT) dosys. doname.c files.c main.c \
misc.c version.c gram.c
rm gram.c

Archive the files that build make
arch:

ar uv /sys/source/s2/make.a $(FILES)

7-22 Building Programs with the make Utility

Creating and Managing Software 8
Product Kits

Data transfer is the process of creating at a target location an exact copy of
information that is at some other location (the source). The directories and
files that make up a software product kit can be viewed as a set of data.
Digital's setld architecture is a mechanism for data transfer, by which a
copy of a software kit (the data) is transferred from a vendor's system to a
customer's system. This chapter describes Digital's setld utility. After a
brief description of how you use setld to install, manage, and remove
software kits, the major part of the chapter describes how to create kits for
setld. All DEC OSFIl software kits supplied by Digital are setld­
compatible, and many other software vendors also supply their products in
this form. Providing your software as a setld-compatible kit has the
following benefits:

• Installation security

When you use the setld utility to install a software product, each
installable component (called a subset) of the product is verified
immediately after transfer. Each subset is recoverable if you want to
reinstall it or if it is damaged or deleted.

• Flexibility

The setld utility allows you to choose subsets at installation and to
delete subsets. These facilities simplify the process of customizing a
system for specific types of activities. For example, after installing the
mandatory system subsets, you might load optional subsets and products
for communications, document creation, database operations, or other
purposes.

• Uniformity

The setld utility is an integral part of Digital's installation architecture.
Producing products in the form of setld-compatible kits enhances your
products' compatibility with products produced by Digital and other
software vendors.

• Media support

You can use any of the following devices to install a setld-compatible
software product from the distribution media specified:

- An arbitrary, mountable file system on any supported data disk; for
example, a third-party SCSI disk cartridge.

- A TK50 cartridge tape on a TK50 or a TZ30 tape drive

- A 9-track (MT9) tape of arbitrary density

Digital provides the tools for creating setld kits as part of the standard
operating system distribution; these tools are described in Section 8.5.

Examples in this chapter describe a hypothetical kit for a product called
"Orpheus Authoring Tools." The example kit is considered to be one of
several Orpheus products. Because this particular kit is a document builder,
the kit name is abbreviated as DeB and the main project directory is
deb tools.

8.1 The setld Command and Its Functions
The setld utility is an interactive program for managing software subsets.
A subset is the smallest installable entity in a software kit; it can contain any
mixture of source, binary, and documentation files. A kit can contain any
number of subsets.

The syntax of the setld utility is as follows:

setld [-D root-path] -c subset-id message
setld [-D root-path] -d subset-id [subset-id ...]
setld [-D root-path] -i [subset-id [subset-id ...]]
setld [-D root-path] -I location [subset-id [subset-id ...]
setld [-D root-path] -v subset-id [subset-id ...]

Table 8-1 provides brief descriptions of the setld utility's options. See the
System Administration for more thorough instructions on using setld.

Table 8-1: Options for the setld Command

Option

-D

Description

In conjunction with any other option, specifies an alternative root
directory. For example:

setld -D /usr/doctools -i

Note that the -D option causes setld to bypass the C INSTALL
phase of an installation. To force the C INSTALL phase to execute,
specify the -c option together with the -D option. For example:

setld -D /usr/doctools -c OATDCBIOO INSTALL

8-2 Creating and Managing Software Product Kits

Table 8-1: (continued)

Option Description

-1 Commands set1d to install the software kits that are in the specified
location; if subsets are specified, only the named subsets are installed.
For example:

set1d -1 /dev/rmtOh OATDCBIOO

-c Commands set1d to run the named subset's subset control program
(SCP) to execute its configuration code. This option passes a message
to the SCP; currently, the only supported standard messages are
INSTALL (to run the C INSTALL code) and DELETE (to run the C
DELETE code). For example:

-i

-v

-d

set1d -c OATDCBIOO INSTALL

You can use the -c option to pass nonstandard messages to a subset,
but such messages will have an effect only if the target subset's SCP
is coded to accept them.

Displays a list of subsets and their installation status; or, if a subset is
named, displays a list of that subset's contents. For example:

set1d -i OATDCBIOO

Commands set1d to run the named subset's SCP to execute the
subset's Installation Verification Procedure (IVP). For example:

set1d -v OATDCBIOO

Commands set1d to delete the named subset or subsets. For
example:

set1d -d OATDCBIOO OATDCBDOCIOO

8.2 Files Used by the setld Util ity
In addition to the subset files themselves, setld uses several other files to
install a product kit. When a kit is built, a file named INSTCTRL is
included. This file is a tar archive of the following files:

e The image data file, product -code. image

• The compression flag file, product-id.comp

• A subset control file, subset-id.ctrl, for each subset in the kit

• A subset inventory file, subset-id. inv, for each subset in the kit

• A subset control program (SCP), subset -id. scp, for each subset in
the kit

Creating and Managing Software Product Kits 8-3

Except for the SCPs, these files are constructed by the kits command
(described in Section 8.5.4) from information in the product's master
inventory and key files, described in Section 8.5.2, and from information
compiled during the actual kit building process (such as subset sizes and
checksums). During product installation procedure, these files are placed in
the lusr I . smdb. directory, where they will be available for reference and
reuse by later invocations of setld. Refer to Section 8.5.4 for descriptions
of the various files used except for the SCPs, which are described in Section
8.5.3.

In addition to the files extracted from kits, setld also creates and modifies
lock files. Each subset in the system's inventory has a lock file. Lock files
are of the following two types:

• A lock file indicating successful installation of a subset, named
subset-id.lk

• A lock file indicating failed ("corrupt") installation of a subset, named
subset-id.dw

When a subset is installed, one of these two lock files is created. At that
time, the lock file is empty. Assuming successful installation, that subset is
then available for dependency checks and locking performed on behalf of
subsets installed later.

For example, the DCB kit requires that some version of the Orpheus
Authoring Tools base (a different product) be installed in order for the DCB
product to work properly. Suppose that the OA TBASE200 subset is present.
When setld installs the OATDCBIOO subset from the DCB kit, it inserts a
record containing the subset identifier OA TDCB 100 into the
OATBASE200 .lk file. (A given subset's lock file can contain any number
of records, each naming a single dependent subset.) When the system
administrator uses setld to remove the OATBASE200 subset, setld
checks OATBASE 200 • lk and finds a record indicating that OA TDCB 100
depends on OATBASE200; setld displays a warning message with this
information and requires confirmation that the user really intends to remove
the OA TBASE200 subset.

If the administrator removes the OATDCB 100 subset, setld removes the
corresponding record from the OATBASE2 00 .lk file; thereafter,
OATBASE200 can be removed without flagging a dependency warning.

8.3 Descriptions of setld Functions
The following sections describe the steps the setld utility performs in
response to an invocation with each of its options.

8-4 Creating and Managing Software Product Kits

Note

The set1d command's action is divided into phases. Some
phases have PRE yhase and POST yhase subphases. If a
given subset's PRE yhase subphase fails during any applicable
operation, set1d displays a message indicating that the SCP
has declined the operation and does not proceed further with that
subset. No attempt is made to run the phase or POST yhase
code.

8.3.1 Loading Software
When you load software by using the -1 option to set1d, the utility
performs the following steps:

1. Verifies access to location.

2. Copies product installation information from loea tion into a
temporary area. The information copied is contained in the INSTCTRL
file for each product kit to be installed. If the set1d command line
included specific subset identifiers, only those subsets are considered;
otherwise, all subsets in location are considered.

3. Determines which subsets to load by calling each subset's SCP with the
ACT environment variable set to M. Subsets whose SCPs determine that
their respective subsets are candidates for installation are divided into
mandatory and optional groups according to the subset control flags
contained in the subset-id. ctr1 files.

4. Displays a list of the candidate subsets, listing the mandatory subsets (if
any) and offering the optional subsets in a menu for selection by the user.
If there are no optional subsets, no menu is displayed; instead, the
mandatory subsets are listed and the user is asked for permission to
proceed.

5. Performs the following operations for each subset to be installed:

a. Creates a "subset corrupt" lock file.

b. Verifies that the subset will fit on the system.

c. Invokes the subset's SCP to perform product-specific tasks that must
be done before the subset is loaded (ACT set to PRE L). A nonzero
return status from the SCP will cause set1d to abort the load
operation.

d. Loads the subset, using the subset's control and inventory files; then
verifies the subset and upgrades the lock file to indicate that the
subset is correctly installed.

Creating and Managing Software Product Kits 8-5

6. After loading all the chosen subsets, performs the following steps for
each subset:

a. Invokes the subset's SCP to perform product-specific tasks that must
be done after the subset is loaded (ACT set to POST L). The SCP's
actions at this time usually include dependency locking.

b. Invokes the SCP to perform product-specific tasks that must be done
after the subset is installed (ACT set to C and $1 set to INSTALL).
This step is bypassed if the -D command option was invoked.

The installation control files (subset-id. ctrl, subset-id. inv,
subset-id. scp, and subset-id .lk or subset-id .dw) are stored in
the. lusr I . smdb. directory. The kit's subset archives themselves are not
stored, since their contents have been placed in the appropriate locations. If
you specified an alternative root path, this directory path is created under the
directory you specify.

8.3.2 Configuring a Subset
When you load a product, the next-to-Iast stage of the setld process is to
invoke the subset's SCP with the ACT environment variable set to C and the
command argument ($1) set to INSTALL. See Section 8.5.3 for a
description of how the SCP responds.

When you issue a command to reconfigure a subset (the -c option), setld
first verifies that the specified subset exists. If it does, setld sets the ACT
environment variable to C and calls the subset's SCP with message as a
command argument ($1). Normally, the only valid messages are INSTALL
and DELETE. These two messages are reserved in their meaning; see Table
8-7. For special needs, a particular SCP could be designed to accept other
messages. The setld utility cannot pass such other messages except in
response to its -c option.

8.3.3 Verifying a Subset
When you load a product, the final stage of the setld process is to invoke
the subset's SCP with the ACT environment variable set to V. This action
instructs the SCP to run its verification test. See Section 8.5.3 for a
description of how the SCP responds.

When you issue a command to reverify a subset (the -v option), setld first
verifies that the specified subset exists. If it does, setld runs the subset's
Installation Verification Procedure (IVP), if there is one.

8-6 Creating and Managing Software Product Kits

8.3.4 Removing Software
When you issue a setld -d comm:lIld, the setld utility performs the
following steps for each suhset to he deleted:

I. Verifies that the suhset is installed.

2. Verifies that Lhe subset's "sticky" hit, originally specified in the
product's key tile, is not set. If the "sticky" bit is set, setld declines
to remove the subset.

3. Checks dependencies. If the subset's lock file (subset-id .lk) names
any subsets that depend on the one to be removed, setld displays their
names and requests confirmation that the subset should be deleted.

4. Invokes the subset's SCP to perform product-specific tasks that must be
done before any deletions are made. (ACT set to C and $1 set to
DELETE.)

5. Invokes the subset's SCP to perform product-specific tasks that must be
done before the subset is deleted. (ACT set to PRE D.) If the SCP
returns nonzero status, setld aborts the deletion operation.

6. Deletes all files contained in the subset.

7. Invokes the subset's SCP to perform product-specific tasks that must be
done after the subset is deleted. (ACT set to POST_D.)

8. Marks the subset as being uninstalled by deleting its lock file.

8 .. 4 Using the File System Effectively
The setld utility allows the software vendor to install the components of a
kit in any directories desired. However, guidelines exist for deciding where
to place kit elements. This section describes how to design your kit's layout
to make proper and effective use of the file system.

8.4.1 Using Standard Directories

The standard DEC OSFIl system directory hierarchy is set up for efficient
organization. It separates files by function and intended use. Effective use of
the file system includes placing COffiffi~nd files in directories that are in the
normal search path as specified by users' . profile or .login files, as
appropriate. Note, however, that the physical location of layered products is
governed by a special set of guidelines described in Section 8.4.2. The
important directories in the file system are shown in Figure 8-1 and Figure
8-2. Not all of the directories in the entire hierarchy are shown; the
directories that are illustrated are the ones that you should use to ensure that
your product will be portable to other systems. Some of the illustrated
directories are actually symbolic links.

Creating and Managing Software Product Kits 8-7

Figure 8-1: Base System Directory Hierarchy

dev
etc nls

lost+~fund init.d
opt rcO.d
sbin rc2.d
tmp rc3.d

subsys
usr ------r- bin [bin ----lex

ccs -----'---lib
include mach

machine
net
netimp
netinet
netns
nfs
protocols
rpc
servers
streams
sys
tli
udp
ufs

Ibin [spell

lib uuc~me
o~ ms
sbin subsys tabset
share -----c dict term info
shlib [lib tmac

sys ~1~~1Y m~n1
[COnf man8

include c~t1
var ---.,..- adm E crash .
vmunix opt cran cat8

sendmail
syslog

SPOO'E'Pd
mail
mqueue
uucp

tmp----run

ZK-0473U-R

Table 8-2 describes the contents and purposes of the directories shown in
Figure 8-1.

8-8 Creating and Managing Software Product Kits

Table 8-2: Contents and Purposes of Base System Directories

Directory

I
Idevl

letcl

nIsi
Ilost+foundl

loptl

Isbinl

init.dl

rcO.dl

rc2.dl

rc3.dl

subsysl

Itmpl

lusrl

bini

ccsl

bini

libl

lexl
includel

machl

machinel

netl

netimpl

netinetl

netnsl

Description

The root directory of the file system

Block and character device files

System configuration files and databases; nonexecutable files

National language support databases

Files located by f sck

Optional application packages such as layered products

Commands essential to boot the system

These commands do not depend on shared libraries or the
loader and can have other versions in lusr Ibin or
lusrlsbin.

System state rc files

The rc files executed for system-state 0

The rc files executed for system-state 2

The rc files executed for system-state 3

Loadable kernel modules required in single-user mode

System-generated temporary files

The contents of I tmp are usually not preserved across a
system reboot.

Most user utilities and applications

Common utilities and applications

C compilation system; tools and libraries used to generate C
programs

Development binaries such as cc, ld, and make

Development libraries and back ends

Data for lex
Program header (include) files; not all subdirectories are
listed below

Mach-specific C include files

Machine-specific C include files

Miscellaneous network C include files

C include files for IMP protocols

C include files for Internet standard protocols

C include files for XNS standard protocols

Creating and Managing Software Product Kits 8-9

Table 8-2: (continued)

Directory Description

nf siC include files for Network File System

protocolsl

rpcl

serversl

streamsl

sysl

tlil

udpl

ufsl

lbinl

spelll

uucpl

libl

optl

sbinl

subsysl

sharel

dictl

libl

mel

msl

tabsetl

C include files for Berkeley service protocols

C include files for remote procedure calls

C include files for servers

C include files for STREAMS

System C include files (kernel data structures)

C include files for Transport Layer Interface

C include files for User Datagram Protocol

C include files for UNIX File System

Back-end executables

Spell back-end

UNIX-to-UNIX Copy (UUCP) programs

Consists entirely of links to libraries located elsewhere
(lusr I ccs I lib), (lusr I libin), (lusr I share I lib),
(lXll I lib); included for compatibility

Optional application packages such as layered products

System administration utilities and system utilities

Loadable kernel modules required in single-user mode

Architecture-independent ASCII text files

Word lists

Various libraries

Macros for use with the me macro package

Macros for use with the ms macro package

Tab description files for a variety of terminals; used in
letc/termcap

terminfol Terminal information database

tmac I Text processing macros

man I Online reference pages

manll

man21

man31

man41

manSI

man71

Source for user command reference pages

Source for system call reference pages

Source for library routine reference pages

Source for file format reference pages

Source for miscellaneous reference pages

Source for device reference pages

8-10 Creating and Managing Software Product Kits

Table 8-2: (continued)

Directory Description

man8/ Source for administrator command reference pages

catl-cat8 Formatted versions of reference pages in the manl through
man8 directories

shlib/

sys/

BINARY

conf/

include/

/var/

adm/

crash/

cron/

sendmail/

syslog/

opt/

spool/

Ipd/

mail/

mqueue/

uucp/

tmp/

run/

/vmunix

Binary loadable shared libraries; shared versions of libraries
in /usr/ccs/lib

System configuration files

Object files

Kernel configuration control files

Header files

Multipurpose log, temporary, transient, varying, and spool
files

Common administrative files and databases

For saving kernel crash dumps

Files used by cron

Configuration and database files for sendmail

Files generated by sys log

Optional application packages such as layered products

Miscellaneous printer and mail system spooling directories

Line printer spooling directories

Incoming mail messages

Undelivered mail queue

UUCP spool directory

Application-generated temporary files that are kept between
system reboots

Files created when daemons are running

Pure kernel executable (the operating system loaded into
memory at boot time)

Creating and Managing Software Product Kits 8-11

Figure 8-2: X Directory Hierarchy

/ - usr bin----X11
debugshlib
examples ---r dxpaint

L motif -- periodic

include 1 DPS
DXm
Mrm
uil
X11
Xmu

lib ----,- cda

xcd
bitmaps
extensions
Xaw
Ximp
Xmu
Xserver
cpp
doc
etc

dxbook info
emacs lisp ...

X11

- shlib ---c Xserver
_null

lock
man
oldXMenu
shortnames
src
app-defaults
C 100dpi
config 75dpi
DPS decwin ...
fonts ---t- misc
~ Speedo
help ... Type1
ja Type1Adobe ...
japan user ...
japanese
ja_JP.EUC
ja_JA.SJIS
keymaps
nls ...
twm
uid
x11 perfcomp
xdm

ZK-0915U-R

Table 8-3 describes the contents and purposes of the directories shown in
Figure 8-2.

8-12 Creating and Managing Software Product Kits

Table 8-3: Contents and Purposes of X Directories

Directory

/usr/

bini

XII/

debugshlib/

examples/

dxpaint/

motif/

periodic/

xcd/

include/

DPS/

DXm/

Mrm/

XII/

Xaw/

Ximp/

Xmu/

Xserver/

bitmaps/

extensions/

Xm/

uil/

lib/

XII

C/

DPS/

app-defaults/

config/

fonts/

IOOdpi/

7Sdpi/

Description

Most user utilities and applications

Common utilities and applications

X applications

X shareable libraries compiled with debug
information

Example programs

Sample Paint image

Motif example programs

Motif periodic widget table example

Motif CD player example program

Header files

Files for DPS

Files for libDXm

Files for libMrm

X C header files

Files for libXaw

Files for libXimp

Files for libXmu

Header files used for loadable X server libraries

X bitmaps

Header files for use with X extensions

Header files for libXm

UIL header files

Static archive X libraries

Internationalization

Display Postscript files

System-wide resource files for X client
applications

Imake config files

Font files

100 dpi fonts from X Consortium

75 dpi fonts from X Consortium

Creating and Managing Software Product Kits 8-13

Table 8-3: (continued)

Directory Description

deewin/

lOOdpi/

7Sdpi/

mise/

Speedo/

Typel/

TypelAdobe/

afm/

user

lOOdpi/

7Sdpi/

mise/

fs/

help/

ja/

ja_JP.EUC/

ja_JP.SJIS/

japan/

japanese/

keymaps/

nls/

local im tbl/

twm/

uid/

xllperfeomp/

xdm/

eda/

dxbook/

emaes/

epp/

DECwindows fonts

lOO dpi fonts

75 dpi fonts

Fonts from X Consortium

Speedo scalable fonts

Type I scalable fonts

Adobe Typel scalable fonts

Adobe font metrics

Fonts from layered products and local
installations

lOO dpi fonts

75 dpi fonts

Other fonts

Fontserver config and error log files

Help files for X client applications;
subdirectories as applicable

Internationalization

Internationalization

Internationalization

Internationalization

Internationalization

keymaps for various keyboards

Internationalization

Internationalization

Default configuration for twm window manager

User Interface Definitions for X client
applications

Scripts for analyzing xllperf output

X Display Manager configuration and resource
files, and error log

CDA style guides

Default Bookreader bookshelf

Emacs directory base

Old public cpp

8-14 Creating and Managing Software Product Kits

Table 8-3: (continued)

Directory Description

doc / PostScript documentation

etc / Miscellaneous Emacs commands and
documentation

info/

lisp/

lisp/term/

lock/

man/

oldXMenu/

shortnames/

src/

shlib/

Xserver/

null/

Textinfo files

LISP source and compiled LISP files

LISP source and compiled LISP files for term

Directory to hold file locks

Manual files

Sources

Part of source

Sources

Shareable libraries

Shareable libraries loaded by X server

Older versions of shareable libraries

8.4.2 Placing Layered Product Files
An optional, or layered, product should be designed so that the user sees it
as an integral part of the system. This means that, as with base-system
software, layered-product programs such as commands and utilities should be
placed in directories that are part of the normal search path, as described in
Section 8.4.1. Similarly, libraries should be placed in directories where users
would expect to find them. The example DeB kit places command files in a
standard system directory (/usr /bin), the product's documentation in a
directory created by another layered product (/usr / lib/br), and template
files for users employing the product in a directory unique to the DeB
product (/usr / lib/ doclib/ternplates).

None of the files for the DeB kit, however, is physically located in any of
the directories listed in the preceding paragraph. The DEC OSFIl system
provides special locations (the opt directories) for optional products. Files
are installed in directories under / opt, /usr / opt, and /var / opt so that
the files are centrally located and easy to find. Then a symbolic link is
created for each file that makes the file accessible through the traditional
directories. For example, the DCB kit's /usr /bin/ attr command is a
link to /usr/opt/OATIOO/bin/attr. See Example 8-4 for an
illustration of the correct way to create these links.

Creating and Managing Software Product Kits 8-15

Any given product consists of one or more of the following:

• Files that are nominally read-only; for example, commands, startup files
(which can be modified but not by individual users), or prototype data
files. These files are installed under /usr / opt. For example:
/usr/opt/OATIOO/bin/attr

• Files that can be read and written by users; for example, lists of employee
telephone numbers. These files are installed under /var / opt. For
example:
/var/opt/UOUIOO/etc/phonelist

• Files that are required at boot time; for example, file system drivers.
These files are placed under the / opt directory. For example:
/opt/UOUIOO/sampledriver

Figure 8-3 illustrates how a kit is installed and made available in the
traditional directories.

Figure 8-3: How Layered Products Are Installed

Read-Only Components Boot-Required Components

Read-Write Components
/usr/opt

-------+------ -----. /usr /bin/ ••• ----1---- ---- /usr / include/ .•.

Kit Components Located
Under the opt Directories

Links
Directories in the Traditional

Hierarchy

ZK-0459U-R

Digital recommends that you design your product to be installed in the opt
directories as illustrated. This architecture gives you the following
advantages:

• Standardized product design and location.

• If disk partition restructuring or product maintenance becomes necessary,
it is much easier to find all of your kit than if its components were
scattered throughout the traditional directories.

8-16 Creating and Managing Software Product Kits

• Exporting software to share across a network is simplified and more
secure; you need only export the specific directories under lopt,
lusr lopt, and Ivar I opt that contain the desired product and then
create links on the importing system.

You can set up a server with mUltiple versions of a given product, using
the links created on the clients to determine which version a given client
uses. This architecture also permits maintaining software for multiple
dissimilar hardware platforms on the same server. Section 8.5.1 explains
the directory naming conventions Digital recommends for kits
conforming to this architecture.

The example DeB kit used throughout this chapter adheres to the guidelines
described here.

8.5 Creating Kits for the setld Utility
The following sections describe how to create kits that can be installed with
the setld utility. The process of creating and packaging a setld­
compatible kit is illustrated in Figure 8-4. In this figure, dashed boxes
represent optional steps; for example, you do not have to create subset
control programs if your kit requires no special handling when it is installed.
The commands enclosed in ellipses are provided specifically for performing
the indicated parts of the kit building process.

Creating and Managing Software Product Kits 8-17

Figure 8-4: The Kit Building Process

Create a source hierarchy
of directories and files that
make up the kit

i
Create a master inventory I to specify the kit's contents

~newinvJ
T

Create a key file to specify I the kit's high-level structure
___ ~ __________ t _______________

Create subset control
programs (SCPs)

Build subsets and control
files

kits .J
T

~-- ____________ J ______________ _ .. __ k' ___________ J ______________ _
i

: Create a script for network
: installation

: Transfer the kit to magnetic
: tape or disk
~------ .. ~ ... ""'----

{ gentapes

ZK-0460U-R

Creating a kit requires the existence of three separate directory hierarchies, as
shown in Figure 8-5. Each of these hierarchies is described in detail in the
following sections.

Figure 8-5: Directory Hierarchies for a. Kit

ZK-0461U-R

8-18 Creating and Managing Software Product Kits

8.5.1 Creating a Source Hierarchy
To build a setld-compatible kit, you must create a source hierarchy. A
source hierarchy is a directory tree that exactly mirrors the hierarchy into
which your finished kit will be installed by customers. This latter hierarchy
is called the target hierarchy. You must place each file that is to become
part of your kit into the appropriate directory in the source hierarchy. You
can create the source hierarchy under any directory you choose. For
example, the DCB kit contains files that are to be installed in the following
directories:

• /usr/opt/OATIOO/bin

• /usr/opt/OATIOO/lib/br

• /usr/opt/OATIOO/lib/doelib/templates

Figure 8-6 illustrates the complete hierarchy for the DCB kit. The sre
directory and the directories under it are the source hierarchy.

In this figure, the dashed directory, deb tools, represents the existing
directory under which you would create the source hierarchy's directories as
shown. The sre directory you create represents the root directory in the
target hierarchy on the customer's system; likewise, your usr directory
represents /usr in the target hierarchy, and all the other directories in the
source hierarchy are mapped to the customer's system in the same way. File
names in the standard directory hierarchy, where users would normally
expect the files to appear, will be linked symbolically to the actual files
installed in the target hierarchy. For example, the command named
/usr/bin/attr will exist as a link to /usr/opt/OATIOO/bin/attr.

Creating and Managing Software Product Kits 8-19

Figure 8-6: Directory Hierarchy for the DeB Kit

ZK-0462U-R

As shown in Figure 8-6, the name of the top-level product -specific directory,
under the source hierarchy's opt directory, is made up of the product code
and the version number. (See Section 8.5.2.2 for information about the
product code and version number.) If the DeB kit included user-writable
files, which should be placed under /var, there would also be a
/ v ar / opt / OAT 1 0 0 • •• hierarchy to contain those files. Digital
recommends this convention for consistency among layered products.

After creating the source hierarchy, you must populate it with all the files that
are to be part of the finished kit. You can choose any appropriate method for
populating the source hierarchy; one common method is to create a makefile
for use with the make command.

8-20 Creating and Managing Software Product Kits

Note

File attributes, such as ownership and permissions, for all the
files and directories in the source hierarchy must be exactly as
they should be on the target hierarchy. Typically, this
requirement means that you must be a superuser when populating
the source hierarchy so that you can change these file attributes.
Do not attempt to circumvent this requirement by setting file
attributes in your subset control programs (SCPs); if a superuser
on the target system runs the fver i fy command on your
subsets, attributes that the SCPs have modified will be reset to
the values they have in the kit's subset inventory files. (See
Section 8.5.4.4.)

Under most circumstances, your kit should not include any files
whose target pathnames exactly match those of existing system
files. If you do, the kit's files will be installed in place of the
existing files. In special cases, you can duplicate file names; see
Section 8.5.3.

8.5.2 Creating the Kit Building Control Files
The data directory contains the following files that specify the contents of
your kit and how it is to be organized:

• The master inventory file lists each of the files in the kit and defines
which subset contains each file.

• The key file specifies the kit's attributes for the ki ts command. It
describes the naming conventions and structure for the kit and provides
high-level descriptions of the subsets.

The data directory also contains a subdirectory named scps; if your
product includes subset control programs (SCPs), these programs are stored
in the scps directory.

There is no specific requirement for the location of the data directory, but it
is good practice to place it under the same directory in which you create the
source hierarchy. Figure 8-6 illustrates the location of the DCB kit's data
and scps directories.

8.5.2.1 Creating the Master Inventory

The master inventory for a kit specifies each file that is part of the kit. After
you have populated the source hierarchy, you must create a master inventory
in the data directory. The master inventory file's name consists of the
product code and version, with the letters mi as a suffix; for example,

Creating and Managing Software Product Kits 8-21

OATl 0 0 • mi is the master inventory file for the DCB kit. See Table 8-5 for
a description of the correct form for the product code and version.

The master inventory file contains one record (line) for each file in the kit.
Example 8-1 illustrates a portion of the master inventory for the DCB kit.

Example 8-1: Master Inventory File

o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o

RESERVED
./usr/opt RESERVED
./usr/opt/OATIOO OATDCBIOO
./usr/opt/OATlOO/OATDCB.Links OATDCBIOO
./usr/opt/OATlOO/OATDCBDOC.Links OATDCBDOCIOO
./usr/opt/OATIOO/bin OATDCBIOO
./usr/opt/OATIOO/bin/attr OATDCBIOO
./usr/opt/OATIOO/bin/dcb.spr OATDCBIOO
./usr/opt/OATIOO/bin/dcb defaults OATDCBIOO
./usr/opt/OATIOO/bin/dcb-diag.sed OATDCBIOO
./usr/opt/OATIOO/bin/docbld OATDCBIOO
./usr/opt/OATIOO/bin/unstamp OATDCBIOO
./usr/opt/OATIOO/lib OATDCBIOO
./usr/opt/OATIOO/lib/br OATDCBIOO
./usr/opt/OATlOO/lib/br/README.dcb OATDCBIOO
./usr/opt/OATIOO/lib/br/attr.l OATDCBDOCIOO
./usr/opt/OATIOO/lib/br/dcb.ps OATDCBDOCIOO
./usr/opt/OATIOO/lib/br/docbld.l OATDCBDOCIOO
./usr/opt/OATIOO/lib/br/unstamp.l OATDCBDOCIOO
./usr/opt/OATIOO/lib/doclib OATDCBIOO
./usr/opt/OATIOO/lib/doclib/templates OATDCBIOO
./usr/opt/OATIOO/lib/doclib/templates/conv.braces OATDCBIOO

Each record in the master inventory consists of three fields, described in
Table 8-4.

Table 8-4: Fields in Master Inventory Records

Field

Flags

Path name

Description

A 16-bit unsigned integer

Bit 1 is the v (volatility) bit; when it is set, changes to the
existing copy of the file can occur during kit installation. It is
usually set for files such as usr I spool/mqueuel syslog.

The remaining bits are reserved; possible values for this field are
therefore 0 or 2.

The dot-relative (• I) pathname of the file

8-22 Creating and Managing Software Product Kits

Table 8-4: (continued)

Field Description

Subset identifier The name of the subset containing the file

You must not include standard system directories in your subsets.
In the DeB master inventory example, several records specify
directories that are part of the standard system hierarchy. Instead
of a subset identifier, these records specify RESERVED; this
keyword prevents setld from attempting to overwrite existing
directories.

A subset is the smallest installable entity in a kit. It is up to you, the kit
developer, to specify how many subsets your kit will have and what files
each will contain; a good practice is to group files by related function or
interdependence. For example, message libraries should be together in a
subset to allow for easy localization and translation to other languages.
Subset naming conventions are explained in Section 8.5.2.2. Example 8-1
illustrates a kit having two subsets. The OA TDCB 100 subset contains
utilities and libraries and must be installed if the product is to be used. The
OATDCBDOCI00 subset contains the product's documentation and is not
required to make the product function.

The first time you process a given kit, the master inventory file is empty.
You can create this file with the touch command as follows:

% cd data
% touch OATIOO.mi

For subsequent updates to the kit, the input file is the existing version of the
master inventory.

Once you have a master inventory file, run the newinv utility. On the
command line, specify the file name of the master inventory and the
pathname of the source hierarchy's top-level directory. For example:
% newinv OATIOO.mi •• /src

The newinv utility performs the following tasks:

• Creates a backup file, inventory-file. bkp

• Finds all the file and directory names in the source hierarchy

• Produces the following three sorted groups of records:

- Records containing pathnames only, representing files now present
that were not in the previous inventory

- Records representing files now present that were also present in the
previous inventory

Creating and Managing Software Product Kits 8-23

- Records that were in the previous inventory but for which files are not
now present

• Leads you through a process to edit the third of these groups, deleting
records for files which no longer belong in the kit

• Leads you through a process to edit the group of new records by adding
the flag and subset fields (see Table 8-4)

• Merges the three groups of records and sorts the result to produce a
finished master inventory file that matches the source hierarchy

The two editing steps in this procedure place you in either the vi editor or
the editor specified by your EDITOR environment variable, so that you can
make the required changes.

Caution

As indicated in Table 8-4, the files listed in the master inventory
are given dot-relative pathnames. The setld utility normally
works from the system's root directory, but the user can specify
an alternative' 'root directory" with the -D option. For this
reason, you should not use absolute pathnames in the master
inventory.

Use extreme care when editing the master inventory; fields in
this file must be separated by single tab characters, not by
spaces.

8.5.2.2 Creating the Key File

The key file describes the high-level structure of the kit. This file resides in
the data directory, and its name consists of the product code and version,
with the letter k as a suffix. For example, OAT 100 • k is the key file for the
DeB kit. Example 8-2 illustrates this key file. See Table 8-5 for a
description of the correct form for the product code and version.

Example 8-2: Key File

Product-level attributes

NAME='Orpheus Authoring Tools'
CODE=OAT
VERS=lOO
MI=OATIOO.mi
COMPRESS=l

Subset definitions

8-24 Creating and Managing Software Product Kits

Example 8-2: (continued)
%%
OATDCBIOO
OATDCBDOCIOO

o
2

'Document Building Tools'
'Document Tools Documentation'

As shown in this example, the key file is divided into the following two
sections separated by a line containing two percent signs (% %):

• The product attributes section describes the naming conventions for the
kit and provides kit-level instructions for the kits command.

• The subset descriptor section describes each of the subsets in the kit and
provides subset-level instructions for the kits command.

The product attributes section of the key file consists of several lines called
attribute-value pairs. Table 8-5 describes each possible attribute-value pair.
See Example 8-2 for examples of how these attributes are specified. Note
that each attribute's name is separated from its value by an equal sign (=).
Begin a comment line with a number sign (#).

Table 8-5: Key File Attributes Section

Attribute­
Value Pair

NAME

CODE

VERS

MI

Description

The product name; for example, 'Orpheus Authoring Tools'

Enclose the product name in single quotation marks (,) if it
contains any spaces.

A unique product code consisting of three numbers or uppercase
letters; the first character must be a letter. For example, OAT

The following codes are reserved by Digital:

DNP, DNU, EPI, FOR, LSP, ORT, OSF, SNA, UDT, UDW,
UDX,ULC,ULT,ULX,UWS

A 3-digit version code; for example, 100

The setld utility interprets this version code as 1.0.0. The first
digit should reflect the product's major release number, the
second the minor release number, and the third the upgrade level,
if any.

The name of the product's master inventory file

The master inventory file is created and maintained with the
newinv utility.

Creating and Managing Software Product Kits 8-25

Table 8-5:

Attribute­
Value Pair

ROOT

COMPRESS

(continued)

Description

Not illustrated in the example, this optional attribute is reserved
by Digital for the base operating system. For that use, it has a
string value that names the root image file. Do not assign the
ROOT attribute for a layered product.

An optional flag that is set to 1 if you want to create compressed
subset files

Compressed files require less space on the distribution media
(sometimes as little as 40% of the space required by
uncompressed files), but they take longer to install than
uncompressed files. If missing, this flag defaults to zero (0).

The subset descriptor section contains one line for each subset in the kit and
cannot contain comment lines. Each line of this section consists of four
fields separated with tab characters. Table 8-6 describes these fields; see
Example 8-2 for an illustration of how they are coded. In this example, the
OATDCBIOO subset is mandatory; OATDCBDOCIOO, which contains the
documentation, is optional.

Table 8-6: Key File Subset Descriptor Fields

Field Description

Subset identifier A character string up to 80 characters in length, composed of the
product code (for example, OAT), a mnemonic identifying the
subset (for example, DCB), and the 3-digit version code (for
example, 100). All letters in the subset identifier must be
uppercase.

Reserved Must be a single period (•).

Flags A 16-bit unsigned integer

The lower 8 bits are used by Digital to convey information to
setld.

Bit 0 is the "sticky" bit, indicating when set that the subset
cannot be removed.

Bit 1 indicates when set that the subset is optional.

Bits 2 to 7 are reserved. Bits 8 to 15 are undefined and can be
used by your product's SCPo

8-26 Creating and Managing Software Product Kits

Table 8-6: (continued)

Field Description

Subset description A short description of the subset, delimited by single quotation
marks (,); for example, 'Document Building Tools'

Note

The percent sign character (%) is reserved in this field
and must not be used for layered products.

Section 8.5.3.3 explains how your SCP can use the unreserved bits in the
Flags field.

8.5.3 Creating Subset Control Programs
Subset control programs (SCPs) perform special tasks beyond the basic
installation managed by setld. If your kit requires no special installation
handling, you do not need SCPs. The following are some of the reasons you
might need an SCP:

• Some of your kit's files must be customized before the product will work
properly.

• You want to offer the user the option of installing some of the files in a
nonstandard location.

• Your kit depends on the presence of other products.

• You need to establish nonstandard permissions or ownership for certain
files.

• Your kit requires changes in system files such as / etc / pas swd.

All of these tasks can be performed by an SCP. Note that layered product
kits designed according to the guidelines in Section 8.4.2 must have SCPs to
create the required links.

As a general rule, SCPs are very short programs; if written as a shell script,
an SCP should be under 100 lines in length. If your SCP is lengthy, it is
likely that you are trying to make up for a deficiency in the architecture or
configuration of the product itself.

The following sections describe how to write SCPs for your product.

Creating and Managing Software Product Kits 8-27

8.5.3.1 Invoking a Subset Control Program

Your kit does not need to do anything to invoke its SCPs. The setld
utility has built into it several points at which it automatically invokes the
SCP for the subset currently being installed. At each of these points the SCP
can take action if appropriate. If your kit has no SCPs, the kits command
creates an empty SCP file for each subset.

When invoking an SCP, setld sets the ACT environment variable to a
value that the SCP must use to determine what action it will take. In some
cases, setld also calls the SCP with a command argument ($1) that
modifies the ACT environment variable's meaning. Table 8-7 lists the
possible settings of the ACT environment variable, the command arguments
that can be used, and the conditions under which each combination of ACT
and argument are used.

Table 8-7: Subset Control Program Invocation and Actions

ACT Command Descri ption Setting Argument

M -1
-x

PRE L

POST L

Before presenting the subset menu. At this time the SCP can
decide whether it will permit its subset to be offered in the
menu. The -1 argument indicates that the operation is a
subset load; -x is reserved by Digital. A return status of 0
(zero) allows the subset to be offered.

After presenting the menu, before loading the subset. At this
time the SCP can take any action required to protect existing
files. For example, the subset might contain files with names
duplicating those of existing files. Subset dependency
checking should be performed at this time. A return status of
o (zero) allows the load operation to continue.

Note

Duplicating existing file names is usually
considered poor practice. One example of a
situation in which you might do so is for the
installation of a kit that contains binary files that
would normally be installed by other kits but
which must be different if your kit is installed.

After loading the subset. At this time the SCP can make any
modifications required to subset files that will normally be
protected from modification when the installation is
complete, such as moving them to a different location. Link
creation for layered products and subset dependency locking
should be performed at this time.

8-28 Creating and Managing Software Product Kits

Table 8-7: (continued)

ACT Command
Setting Argument Description

C INSTALL After securing the subset. At this time the SCP can make

v

C DELETE

PRE D

POST D

"cleanup" modifications required for node-specific tailoring;
for example, modifying /etc/passwd. Layered products'
symbolic links cannot be created at this time.

For subset verification. At this time the SCP can perform
tests to verify that the subset is installed correctly. (The
setld utility verifies the size and checksum information for
each file in the subset during loading.) For example, in a kit
containing multiple subsets, the last subset's SCP could
execute an Installation Verification Program (IVP) or suite of
IVPs to ensure that the product works properly. The setld
utility does not call the SCP for verification during the
installation process; to invoke this portion of an SCP, use the
-v option to setld.

Before deleting the subset. At this time the SCP can make
"cleanup" modifications to remove evidence of the subset's
existence from the system; for example, removing a line that
was added to the pas swd file by the SCP during installation.
Layered products' links cannot be removed at this time.

Before deleting a subset. At this time the SCP can reverse
modifications made during the POST L phase of installation,
such as removing dependency locks and layered products'
links, or restoring moved files to their default installation
locations so that setld can delete them properly. A return
status of 0 (zero) allows the deletion operation to continue.

After deleting the subset. At this time the SCP can reverse
modifications made during the PRE _ L phase of installation.

An SCP can be written in any programming language, but you must take care
that your SCPs can be executed on all platforms the kit can be installed on.
If your product works on more than one hardware platform, you cannot write
your SCP in a compiled language; for this reason, Digital recommends that
you write your SCPs as scripts for / sbin/ sh.

Depending on the tests it makes, your SCP could decide at some point to
abort the installation or deletion of its subset. For example, if it checks for
the existence of subsets upon which your product depends and fails to find
one or more of them, the SCP can abort the process. To abort the installation
or removal of the subset, the SCP must return a nonzero status to setld
upon exiting from the particular phase for which it was called. If a status of
zero (0) is returned, setld assumes that the SCP is satisfied that the

Creating and Managing Software Product Kits 8-29

process should continue normally. See Example 8-3 for an illustration of
how an SCP aborts installation.

8.5.3.2 Managing Subset Dependencies

Subset dependencies are conditions under which a given subset depends on
the existence of one or more other subsets. This section explains
dependencies and tells you how to manage them effectively.

Because setld is used for both installing and removing subsets, the system
administrator could attempt to remove one or more subsets on which your
product depends. Because those subsets do not in turn depend on your
product's subsets, setld will normally remove them without question,
leaving your product unable to work. You can prevent this inadvertent
destruction of your product's environment by locking your subset's
dependencies.

To make dependency management easier to implement, Digital provides a set
of functions in the form of Bourne shell script code. These functions are
contained in the file lusrishare/lib/shell/libscp and are listed in
Table 8-8. The following sections describe how to use each of the user­
callable functions.

Table 8-8: Dependency Management Routines

Routine Description

STL ArchAssert Verify that the hardware architecture of the machine matches
the product's target architecture. This function is not actually
a dependency function; it is included in libscp for
convenience.

STL Locklnit

STL_DepLock

STL_DepunLock

Initialize dependency checking conditions. This function
must be executed before any tests are made.

Evaluate a dependency expression, returning 0 (zero) if the
expression is satisfied and 1 if not.

Initialize dependency locking conditions. This function must
be executed before any locking or unlocking is done.

Add the new subset to the lock lists for all the named
subsets.

Remove the new subset from the lock lists for all the named
subsets.

You should not include a copy of these functions explicitly in your SCP
because such a design prevents your kit's benefiting from enhancements or

8-30 Creating and Managing Software Product Kits

bug fixes made in future releases. Use the shell's dot (source) command to
call the functions. The SCP illustrated in Example 8-3 uses this technique.

8.5.3.2.1 Dependency Expressions - The dependency management functions
use dependency expression to examine conditions on the system. A
dependency expression is a postfix logical expression in Backus-Naur form
(BNF) that describes conditions on which the new subset depends.
Dependency expressions have the following syntax:

depexp .. -.. - wc_subseCid
depexp not
depexp depexp and
depexp depexp or

Dependency expressions are recursive left to right; they are processed using
conventional postfix techniques. The symbol we subset id represents a
subset identifier that can contain file name expanSIon characters (asterisks,
question marks, or bracketed sets of characters) as in the following example:
OAT[RV]DOA*2??

The following operators are used:

• and

Requires two dependency expressions. Satisfied if both expressions are
satisfied.

• or
Requires two dependency expressions. Satisfied if at least one of the
expressions is satisfied.

• not

Requires one dependency expression. Satisfied if the expression is not
satisfied.

The following are valid dependency expressions:
SUBSETX??O
SUBSETY200 not
SUBSET[WX]100 SUBSETY200 and
SUBSETXIOO SUBSETY200 or
SUBSETXIOO SUBSETY200 and SUBSETZ300 or not

The last of these expressions evaluates as follows:

1. The and operator is satisfied if both SUBSETXIOO and SUBSETY200
are present.

2. The or operator is satisfied if the and operator was satisfied or if
SUBSETZ300 is present.

Creating and Managing Software Product Kits 8-31

3. The not operator is satisfied only if the or operator was not satisfied.

Hence, this expression is satisfied only if the combination of SUBSETXIOO
and SUBSETY200 is not present and SUBSETZ300 is not present.

8.5.3.2.2 Using the STL_Deplnit Routine - Use STL Deplni t in the
PRE L phase (see Table 8-7) to establish objects used by the
STL - DepEval function. Before you use STL DepEval to check your
subset's dependencies, you must execute STL Deplni t once. This
function has no arguments and returns no status.

8.5.3.2.3 Using the STL_DepEval Routine - Use STL DepEval in the
PRE L phase (see Table 8-7) after calling STL DepIni t. This function
reqUITes a dependency expression as an argument. You can use as many
invocations of STL DepEval as you need to verify that all your subset
dependencies are met.

8.5.3.2.4 Using the STL_ArchAssert Routine - Use STL ArchAssert
during the M phase (see Table 8-7); if the function is not satisfied, the subset
will not be presented for installation. This function requires a single
argument, a keyword naming the target architecture. This keyword is the
value returned by the machine(1) command; for Digital's RISC processors,
the keyword is mi p s.

8.5.3.2.5 Using the STL_Locklnit Routine - Use STL Locklni t in the
POST L and PRE D phases (see Table 8-7) to establISh objects used by the
STL DepLock and STL DepUnLock functions. Before you use
STL - DepLock or STL DepUnLock to manipulate subset locks, you must
execute STL Locklnit once. Note that because locking and unlocking are
managed by different invocations of your SCP, STL Locklni t must
appear in both the POST L and PRE D phases. You should code two
instances of STL Locklni t rather than calling it once before you make a
decision based onthe value of the ACT environment variable. This function
has no arguments and returns no status.

8.5.3.2.6 Using the STL_DepLock Routine - Use STL DepLock in the
POST L phase (see Table 8-7) to add the new sUbset'sname to the lock lists
for eaCh of the subsets named as arguments. (Y ou can use dependency
expressions as arguments.) The name of the new subset is the first argument
to STL DepLock; for example, the following line places OATDCB 1 0 0 in
the OATTOOLSIOO .lk and OATBASE2?? .lk files:

8-32 Creating and Managing Software Product Kits

STL_DepLock OATDCBIOO OATTOOLSIOO OATBASE2??

Lock lists are contained in the subset-id .lk files in the /usr / . smdb.
directory.

8.5.3.2.7 Using the STL_DepUnLock Routine - Use STL DepUnLock in
the POST D phase (see Table 8-7) to remove the new subset's name from
the lock lISts for each of the subsets named as arguments.

8.5.3.3 Using Control File Flag Bits

As indicated in Table 8-6, you can use bits 8 to 15 in the key file's Flags
attribute to specify special subset-related information. The SCP can read
these bits from the subset control file, into which this information is placed
when the kit is built. During installation, the setld utility moves the
control file to the. /usr / . smdb. directory; the SCP can read the file as
needed. The SCP should look for a line like the following example from the
OATDCBDOCIOO. ctrl file:
FLAGS=34816

The value of this attribute is expressed as a decimal integer. You can use the
Bi tTest shell function, contained in the file
/usr/share/lib/shell/BitTest, to test an individual bit. The
following sample / sbin/ sh code tests bit 11 of the FLAGS attribute for the
OATDCBDOCI00 subset:
#1 /sbin/sh

. /usr/share/lib/shell/BitTest

flags='sed -n '/FLAGS=/s///p' usr/.smdb./OATDCBDOC100.ctrl'
BitTest $flags 11 && {

}

8.5.3.4 An Example Subset Control Program

Example 8-3 shows an SCP for the DCB product that is illustrated
throughout this chapter. This SCP illustrates one correct method for
obtaining the value of the ACT environment variable and acting on that value.
It also shows how to create and remove the links for a layered product in one
of the opt directories by calling an independent script that is unique to the
subset. (The linking script is shown in Example 8-4.)

Note that the example SCP provides no code for several of the possible
conditions under which it can be invoked. The case statement that chooses
an action simply exits with zero status in these undetected cases, and setld

Creating and Managing Software Product Kits 8-33

continues normally. Do not include a wildcard in your SCP's option parsing
routine; write code only for the cases the SCP actually handles.

Caution

The example SCP uses the shell's source command to include
the dependency and subset locking functions described in Section
8.5.3.2. Although it is mechanically possible to include a copy
of these functions explicitly, you should not do so because such
a design prevents your kit's benefiting from enhancements or bug
fixes made in future releases.

Example 8-3: Sample Subset Control Program

#1 /sbin/sh

Subset Control Program for OATDCB??? subset

INCLUDE DEPENDENCY ROUTINES

. /usr/share/lib/shell/libscp m
BEGIN EXECUTION HERE

SubSet=OATDCB100
Desc="Document Building Tools"
kroot=usr/opt/OAT100
case $ACT in ~

PRE L) 131
STL_DepInit
STL DepEval OATTOOLS??? I I {

oops="$oops
Orpheus Authoring Tools (OATTOOLS)"

}
STL DepEval OATBASE2?? I I {

oops="$oops
Orpheus Authoring Base Tools, Version 2.0 or later (OATBASE)"

}
["$oops"] && {

echo "
The $Desc require the existence of the
following uninstalled subset(s):
$oops

Please install these subsets before retrying the DCB installation.
" >&2

exit 1

, ,
POST L) 141

C)

$kroot/OATDCB.Links INSTALL
STL LockInit
STL=DepLock $SubSet OATTOOLS??? OATBASES2?? and

case $1 in ~

8-34 Creating and Managing Software Product Kits

Example 8-3: (continued)
INSTALL) ~

echo "
Installation of the $Desc ($SubSet)
subset is complete.

Before using the tools in this subset, please read the README.dcb
file located in the /usr/lib/br directory, for information on the
kit's contents and for release information.

esac

PRE D) IZI
$kroot/OATDCB.Links DELETE

POST D) ~
STL LockInit
STL=DepunLock $SubSet OATTOOLS??? OATBASE2?? and

esac
exit 0 ~

End of Subset Control Program script.

The following list describes the activities performed by the annotated code
segments in this example:

111 This command reads in the dependency checking and locking routines.
Do not include a copy of these routines explicitly in your SCPo

121 This case statement processes the ACT environment variable to select
the action the SCP will take when called by setld.

There is no case for the M phase. The OATDCBIOO subset's SCP takes
no action when called to determine if it will present itself as a candidate
for installation in the setld subset menu. Actions that could be taken
by your SCP might include selecting between two functionally identical
subsets whose only difference is that they are intended for different
hardware platforms. Similarly, the case statement does not recognize
any other possible case for which the SCP has no code.

~ The PRE L code tests to ensure that subsets on which the OATDCB 100
subset depends are installed. If they are not, the SCP describes the
missing subsets and returns nonzero status to setld, which will abort
the installation of this particular subset. If mUltiple subsets are being
installed, each is treated individually.

~ The POST L code creates symbolic links for the subset by running an
external scnpt that is associated with this subset. This script reads its
command line argument to determine whether to create or remove the
links. An example of such a script is shown in Example 8-4.

After creating the links, the SCP secures the subset by locking the subsets
on which it depends in order to ensure that they are not deleted without
warning the user of potential problems.

Creating and Managing Software Product Kits 8-35

~ This case statement handles the subset installation and deletion
configuration code; it is invoked when the ACT environment variable is
set to C.

I§J For this subset, there is no special file management or other cleanup to be
performed. The INSTALL code notifies the person running setId that
the subset's installation is complete. It also refers the installer to a text
file containing important information about the kit and its contents. This
SCP takes no action for the C DELETE case.

IZI The PRE D code calls the external script to remove the links that were
created during the POST _ L phase.

~ The pas T _ D code unlocks the subsets on which OATDCB 100 depends.

[9] This statement ensures that the SCP returns success status to setId for
each successful action and for all of the possible cases that the SCP does
not handle. Do not code exit 0 statements elsewhere in your SCPo

8.5.3.5 Creating Symbolic Links for Layered Products

As indicated in Section 8.4.2, layered products' files should be installed in
the /usr/opt and /var/opt areas and accessed by means of symbolic
links in the traditional UNIX directory hierarchy. These symbolic links,
referred to as "forward" links, must be created during the POST L phase,
after the referent files are in place. Do not try to create these links during the
C INSTALL phase because the /usr file system is not guaranteed to be
writeable at that time. If your product includes links in /var, create these
links also in POST L. To maintain symmetry, you must remove links
during PRE _ D, not-during C DELETE.

When you import a kit using NFS, you do not create the forward links on the
client by running the SCPo Instead, these links must be made by running an
independent program that can also be called (on the server) by the SCP, as
illustrated in Example 8-3. Section 8.5.3.5.1 describes how to create forward
links.

As described in the previous paragraph, symbolic links for layered products
are typically created in the traditional UNIX directories to refer to files that
are actually in the layered product areas (/usr / opt and /var / opt).
These links are relatively straightforward, as shown in Example 8-4.

Under certain circumstances, however, you might need to create links within
your product's directories in the layered product areas that refer to files in the
traditional hierarchy. Such "backward" links must be created with especial
care because the layered product directories can themselves be symbolic
links. This means that you cannot rely on knowing in advance the correct
number of dot-dot levels (•• /) to include in the In commands for your
backward links.

8-36 Creating and Managing Software Product Kits

For example, Ivar is frequently a link to /usr /var.

When a kit is installed on an NFS server, all the backward links are made in
the server's kit area. Then, when that area is exported to clients, the links are
already in place for the client; clients do not need to create any backward
links.

Note

NFS clients importing products with backward links must have
directory hierarchies that exactly match those on the server;
otherwise, the backward links will fail.

See Section 8.5.3.5.2 for information on creating backward links.

8.5.3.5.1 Creating Standard (Forward) Symbolic Links - To provide for
NFS exporting of your kit, your SCP should manage its forward links by
calling a separate script that can also be executed from the command line.
This design allows the administrator of an NFS client to import the product
and then create the links by executing the linking script.

The linking script should be located in the top-level product-specific
directory so that it will be available to be run on the client. (For the DCB
kit, this directory is /usr/opt/OATlOO; see the master inventory in
Example 8-1.) The example SCP shown in Example 8-3 works in this way,
calling the linking script illustrated in Example 8-4.

Example 8-4: Sample Link Control Program

#1 /sbin/sh

Link Control Program for OATDCB??? subset

kroot=usr/opt/OAT100

case $1 in rn
INSTALL) 121

for i in 'ls $kroot/bin'; do
ln -s .. / .. /$kroot/bin/$i llsr/bin/$i 2>&- ~

done
for i in 'ls $kroot/lib/br'; do

ln -s .. / .. / .. /$kroot/lib/br/$i usr/lib/br/$i
done
[-d usr/lib/doclib/templates] I I mkdir -p usr/lib/doclib
for i in 'ls $kroot/lib/doclib/templates'; do

ln -s .• / .. / .. / .. /$kroot/lib/doclib/templates/$i \
usr/lib/doclib/templates/$i

done

DELETE) ~
for i in 'ls $kroot/bin'; do

ls -1 usr/bin/$i I grep -s -e '->' && rm -f usr/bin/$i ~
done

Creating and Managing Software Product Kits 8-37

Example 8-4: (continued)
for i in 'ls $kroot/lib/br / ; do

rm -f usr/lib/br/$i
done
for i in 'l s $kroot/lib/doclib/templates / ; do

rm -f usr/lib/doclib/templates/$i
done
rmdir usr/lib/doclib/templates 2>&­
rmdir usr/lib/doclib 2>&-

esac
exit 0

End of Link Control Program script.

The following list describes the activities performed by the annotated code
segments in this example:

[] This case statement processes the command-line argument in the same
way as the SCP handles its own command-line argument during the C
INSTALL and C DELETE phases. In this example link control program,
the argument is also given a value of INSTALL or DELETE. Do not
confuse this argument with the SCP's argument; the link control program
is called at POST L and PRE D.

121 If the argument is INSTALL, the link control program creates symbolic
links in the standard system directories in which the files are to appear
(usr /bin and usr / lib/br). Note the use of two dots (••) to
indicate a parent directory. Because the usr /bin directory, for
example, is two levels below the root directory, two levels of parent
directories must be named in the symbolic links that are placed there.

The DCB kit checks for the existence of, and if necessary creates, the
usr / lib/ doclib and usr / lib/ doclib/templates directories,
which are nominally new. It then creates links for the files in this new
area.

~ The DCB kit includes a file that duplicates the function of a file that is
part of another layered product kit, which might not be present. If the
other kit is present, the link command will produce an error when it tries
to create the link for the duplicated file. Redirecting error output prevents
the user from seeing this meaningless error message.

~ The DELETE code removes the links and directories that were created by
the INSTALL code; the files found in the kit's actual location provide the
names of all the links that should exist.

[5] This line verifies that the program files it is removing are actually links to
the DCB kit's files. This design prevents the SCP from removing the
duplicated file described in a previous step if the copy in /usr /bin
belongs to the other kit rather than to the DCB kit.

8-38 Creating and Managing Software Product Kits

8.5.3.5.2 Creating Backward Links - Backward links should be created by the
SCP, not by the link management program, so that installation on an NFS
client will not attempt to overwrite the existing backward links in the server's
kit areas. (You do not run the SCP on an NFS client.) As with forward
links, your SCP should create and remove backward links in the POST L
and PRE _D phases, respectively. -

To simplify the creation of backward links, the libscp library provides two
functions in addition to those described in Section 8.5.3.2; these additional
functions are listed in Table 8-9 and described in the sections following the
table.

Table 8-9: Routines Assisting with Backward Link Creation

Routine

STL Linklnit

STL LinkBack

Description

Initialize an internal variable for use when creating backward
links. This function must be executed before using
STL LinkBack.

Creates one backward link. As arguments, requires the name
of the file and the two directories involved.

8.5.3.5.3 Using the STL_Linklnit Routine - Use STL Linklni t in the
POST L phase (see Table 8-7) to establish an internal variable used by the
STL LinkBack function. Before you use STL LinkBack to create a
link,you must execute STL Linklni t once. This function has no
arguments and returns no status.

8.5.3.5.4 Using the STL_LinkBack Routine - Use STL LinkBack in the
POST L phase (see Table 8-7) to create a valid symbolic link from your
product area (/usr /optproduct-id or /var /optproduct-id) into
the traditional UNIX hierarchy. You can use STL LinkBack repeatedly to
create as many links as required; before you use STL LinkBack, you must
execute STL Linklni t once. This function returns no status. It has the
following three arguments, which must be in this order:

1. The name of the file to link

2. The dot-relative path of the directory where the file actually resides

3. The dot-relative path of the directory in which the link is to be placed

No special action is required to remove a link created by STL LinkBack;
you can simply use the rm command. Example 8-5 uses STL-Linklni t
and STL _ LinkBack in the POST _ L phase to create a link named

Creating and Managing Software Product Kits 8-39

/usr/opt/OATIOO/lib/dcb users that refers to the real file
/etc/dcb_users, and removesthe link in the PRE_D phase.

Example 8-5: Example of Backward link Creation

#1 !sbin!sh

case $ACT in

STL Linklnit
STL-LinkBaek deb users .!ete .!usr!opt!OATIOO!lib

; ;

rm -f .!usr!opt!OATIOO!lib!deb_users

; ;

esae

8.5.4 Building Your Kit
The kit building procedure, performed by the kits command, creates
subsets and control files that are placed into a directory that you specify. As
with the data directory, there is no specific requirement for the location of
the output directory, but it is good practice to place it under the same
directory in which you create the source hierarchy. Create your output
directory with the mkdir command. Under the output directory, create a
second directory named instctrl to hold installation control files created
by the kits command. (If you do not create the instctrl directory, the
ki ts command will create it for you.) Figure 8-6 illustrates the DCB kit's
output directory hierarchy.

After you create the output directories, change to the data directory and
create the kit files by running the kits command. This command requires
three arguments: the key file name, the pathname for the source hierarchy,

8-40 Creating and Managing Software Product Kits

and the path name for the output directory. For example, the DCB kit is built
with the following command:

% kits OATIOO.k .. /src •• /output

The ki ts command reports its progress as it creates the subsets. If you
have specified the COMPRESS attribute in the key file, kits compresses
each subset. After creating the subsets, kits creates the installation control
files (of which subset-id. ctrl is one), placing them in the instctrl
directory. Then kits creates a file named INSTCTRL, containing a tar
image of all the control files. This file is placed in the output directory. The
subset files and the INSTCTRL file are constituents of the final kit.

The control files created by kits are described in Table 8-10, and the
following sections describe the contents of the files.

Table 8-10: Control Files in the instctrl Directory

File

product-id.comp

Description

Compression flag file

This empty file is created only if you specified the
COMPRESS attribute in the key file. Its presence
signals to setld that the subset files are compressed.
The DCB kit's compression flag file is named
cATIOO • camp.

product-code. image Image data file

subset-id.ctrl

subset-id.inv

subset-id.scp

This file contains size and checksum information for the
subsets.

Subset control file

This file contains setld control information. There is a
control file for each subset.

Subset inventory file

This file contains an inventory of the files in the subset.
Each record describes one file. There is an inventory file
for each subset.

Subset control program (SCP)

If you have created SCPs for your kit, these files are
copied from the scps directory to instctrl. There is
one SCP for each subset; if you have not created an SCP
for a given subset, kits creates a blank file.

Creating and Managing Software Product Kits 8-41

8.5.4.1 The Compression Flag File

The setld utility uses the presence of the compression flag file
(product-id. comp) to determine whether the subset files are compressed.
The compression flag is an empty file whose name consists of the product
code and the version number, with the string comp as a suffix; for example,
OATIOO .comp.

8.5.4.2 The Image Data File

The setld utility uses the image data file to verify that the subset images it
loads from the installation media are uncorrupted before the actual
installation process begins. The image data file's name consists of the
product's unique 3-letter name with the string image for a suffix. The
image data file contains one record for each subset in the kit. The following
example illustrates OAT. image, the image data file for the DeB kit:

15923 70 OATDCB100
24305 400 OATDCBDOC100

Table 8-11 describes the three fields in each record.

Table 8-11: Image Data File Fields

Field Description

Checksum The modulo-65536 (l6-bit) checksum of the subset file (after
compression, if the file is compressed)

Size The size of the subset file in kilobytes (after compression, if the
file is compressed)

Subset identifier The product code, subset mnemonic, and version number

See Table 8-5, in Section 8.5.2.2, for a description of the correct form of the
product code, subset mnemonic, and version number.

8.5.4.3 The Subset Control Files

The setld utility uses the subset control files as a source of descriptive
information about subsets. A control file for each subset contains the
following information:

• Descriptive product name and subset identifier

• Descriptive subset identifier

• Disk volume identification information, consisting of two colon-separated
integers (the volume number of the disk containing the subset archive and
the number of diskettes required to contain the subset archive)

8-42 Creating and Managing Software Product Kits

• Tape volume number and the subset's location on the tape, consisting of
two colon-separated integers (the volume number of the tape containing
the subset archive and the file offset at which the subset archive begins)

On tape volumes, the first three files are reserved for a bootable operating
system image and are not used by setld. An offset of 0 (zero) indicates
the fourth file on the tape. The fourth file is a tar archive named
INSTCTRL, containing the kit's installation control files (listed in Table
8-10).

• Dependency list (reserved - see Table 8-6)

• Subset control flag bits

The following example illustrates OATDCBDOC 1 0 0 • ctrl, the control file
for the DCB kit's OATDCBDOC100 subset:
NAME='Orpheus Authoring Tools OATDCBDOC100'
DESC='Document Tools Documentation'
NVOLS=l: 2
MTLOC=l: 1
DEPS=". ,.
FLAGS=34816

8.5.4.4 The Subset Inventory Files

Each subset's inventory file describes each file in the subset, listing its size,
checksum, permissions, and other information. This information is generated
by the kits command and reflects the exact state of the files as they were in
the source hierarchy from which the kit was built. It is used by setld to
duplicate that state, thus transferring an exact copy of the source hierarchy to
the customer's system. Example 8-6 shows the inventory file,
OATDCBDOCIOO. inv, for the DCB kit's OATDCBDOC100 subset. The
backslashes (\) in this example indicate line continuation and are not present
in the actual file.

Example 8-6: Sample Subset Inventory File

0 983 01851 1065 0 100644 3/21/91 100 f\
./usr/opt/OAT100/1ib/br/attr.1 none OATDCBDOC100

0 424997 63356 1065 10 100644 4/15/91 100 f\
./usr/opt/OAT100/1ib/br/dcb.ps none OATDCBDOC100

0 7283 03448 1065 10 100644 4/15/91 100 f\
./usr/opt/OAT100/1ib/br/docbld.1 none OATDCBDOC100

0 6911 37501 1065 0 100644 3/21/91 100 f\
./usr/opt/OAT100/1ib/br/docbld.5 none OATDCBDOC100

0 985 41926 1065 0 100644 3/21/91 100 f\
./usr/opt/OAT100/1ib/br/unstamp.1 none OATDCBDOC100

Each record of the inventory is composed of 12 fields separated by tab
characters. Table 8-12 describes the contents of these fields.

Creating and Managing Software Product Kits 8-43

Table 8-12: Subset Inventory Field Descriptions

Field Name Description

Flags A 16-bit unsigned integer

Bit I is the v (volatility) bit; when it is set, changes
to the existing copy of the file can occur during kit
installation. It is usually set for files such as
usr/spool/rnqueue/syslo~

The remaining bits are reserved; possible values for
this field are therefore 0 or 2.

2 Size The actual number of bytes in the file

3 Checksum The modulo-65536 (l6-bit) checksum of the file

4 uid The user ID of the file's owner

5 gid The group ID of the file's owner

6 Mode The 6-digit octal representation of the file's mode

7 Date The file's last modification date

8 Revision The version code of the product that includes the file

9 Type A letter that describes the file:

b - Block device

c - Character device

d - Directory containing one or more files

f - Regular file. For regular files with a link count
greater than one, see file type 1.

1 - Hard link. There are other files in the same
inventory which have the same inurn. The first of
these files in ASCII collating sequence is listed in
the referent field.

p - Named pipe (FIFO)

s - Symbolic link

10 Pathname The dot-relative (• /) pathname of the file

11 Referent For file types 1 and s, the path to which the file is
linked; for types band c, an integer representing the
major and minor numbers of the device; for all other
types, none

12 Subset identifier The name of the subset containing the file

8-44 Creating and Managing Software Product Kits

8.5.5 Transferring Your Kit to Distribution Media
Before you can transfer your kit to distribution media, you must have or
create the following files:

• A file named SPACE in the output directory

This file is a 10240-byte file whose contents are reserved by Digital. At
present, it is empty. This file is a placeholder for tape records. To create
a SPACE file, change to the output directory and enter the following
command:
% tar cf SPACE /dev/null

• An /etc/kitcap file

This file contains one record for each kit your system can produce. See
the ki tcap(4) reference page for a description of the format and
contents of a ki tcap record. The order in which you list the subsets in
the / etc / ki tcap record defines their order on the distribution media.

8.5.5.1 Building a Kit on Magnetic Tape

Use the gentapes command to create a kit on magnetic tape. The syntax
of the gentapes command is as follows:

gentapes [-w I -V] [node:] product-id tape-device

Note that there must be no space between the node and product-id
names. For example:
% gentapes vizier:OATIOO /dev/nrmtOh

The -w option specifies that gentapes write the tape without verifying it;
the -v option specifies that the command verify a tape without writing it
first. If neither option is specified, gentapes writes the tape, rewinds it,
and verifies its contents.

If you specify a node, gentapes looks for the output directory on that
node. It also expects that the kit will be specified in that node's
/etc/kitcap file and will be located on that node. If you do not specify a
remote node, gentapes looks on your own system. You can use NFS file
sharing to mount the kit files remotely on a system with the required tape
drive.

8.5.5.2 Building a Kit on a Disk

Use the gendisk command to create a kit on a disk. The syntax of the
gendisk command is as follows:

gendisk [node:] product-id target-disk

Creating and Managing Software Product Kits 8-45

Note that there must be no space between the node and product-id
names. For example:

% gendisk vizier:OATIOO /dev/rzOc

When you run gendi sk, the command creates a file system on the target
disk partition specified in the / etc /ki tcap entry and then transfers the kit
to that partition.

The gendisk command supports the optional node specification as
described in Section 8.5.5.1 for gentapes.

Typically, you must add a SCSI disk device with removable media to your
system in order to create disk kits. To add a new device type, edit the
/ etc / disktab file to supply the required disk specification. (See the
disktab(4) reference page for information on the disk specification format.)
Then run the MAKEDEV command to create the device special files. If adding
the new disk drive exceeds the number of drives your system is configured
for, you must edit the configuration file and rebuild the kernel. See the
System Administration.

8.5.6 Installing and Distributing Kits on a Network
Inherent in the structure of a setld kit is the ability to copy and install kits
locally or across a network without having to place them on distribution
media, thereby saving the cost of multiple copies of the kit. If you have been
granted the right to copy kits you have purchased, you can reproduce those
kits and offer them as well. You can install kits in the following ways:

• Locally, from the output hierarchy

• Remotely, by explicit copying from the output hierarchy

• Remotely, by creating a network installation script

• Remotely, by exporting the output hierarchy

The kits that the gendisk command builds on distribution media are exact
duplicates of the output hierarchy created by the kits command. The
setld command's arguments consist of a location and, optionally, one
or more subset-id names. The location argument is not limited to
mount points such as /dev/rrz3c or front; it can specify any desired
directory. For example, after the DCB kit is built, a superuser on your

8-46 Creating and Managing Software Product Kits

system can change to the deb tools directory and install the kit with the
following command: -

set1d -1 output

To install a kit remotely, you can create a directory hierarchy on the target
system and use network copy commands to populate it. Then you can use
the setld command on the remote system to install the kit locally there.

To simplify the task of the remote system administrator, you can create an
intelligent script that remote system administrators can copy and execute on
their own systems. Such a script should do at least the following things:

1. Identify itself and describe the kit that it will install.

2. Find a file system with enough space for the kit.

3. Create a kit directory hierarchy in the file system found by the previous
step, and populate it by copying the kit files from the system where they
are stored.

4. Verify that the copied files appear to be uncorrupted.

5. Run setld to install the kit.

If you prefer not to leave a copy of the kit on the remote system, you can
install the kit remotely by using NFS file sharing to export the directory
containing the kit to a target system. Mount the kit directory on the target
system and use setld normally.

Creating and Managing Software Product Kits 8-47

Glossary

This glossary defines terms used in this manual. Each definition is keyed to
the topic to which it applies.

attribute-value pair
In a software kit's key file, a line specifying the name and value for a
single attribute of the kit. Controls how the kit is built by the kits
command and how it is installed by the setld utility.

check in
In the Revision Control System (RCS), to store a file or revision in the
RCS library.

check out
In the Revision Control System (RCS), to retrieve a file or revision
from the RCS library.

collating symbol

delta

In a regular expression (RE), a name that defines a particular subset of
the available characters, such as lowercase characters, in a collating
sequence that uses multi character strings to represent single characters.

In an RCS or SCCS file, the set of changes that constitute a specific
version of the file.

dependency expression
In a subset's subset control program (SCP), a Backus-Naur form
(postfix) logical expression consisting of subset identifiers and relational
operators to describe the current subset's relationship to the named
subsets. See dependency, subset.

dependency file
See dependent.

dependency line
In the make utility, a line in the description file that describes the
dependents on which a given target depends.

dependency, subset
The condition in which a given subset requires the presence, or lack
thereof, of other subsets in order to function properly. Evaluated by a
subset's SCP under control of the setld utility.

dependent

field

Also called a dependency file. In the make utility, an entity on which
a file to be built (the target) depends. A source file is a dependent of an
object module.

In awk, one element of an input record; fields are separated by a field
separator, which can be specified and is by default any amount of white
space. The beginning and end of the record are also field separators.
See record.

field variable
In awk, a variable that is a field of the input record; field variables can
be manipulated as any other variable.

g-file
In the Source Code Control System (SCCS), the file whose contents are
used to create the s-file or to apply a delta to it.

ID keyword
In the Source Code Control System (SCCS), a symbol composed of a
single letter enclosed by percent signs (%). In the Revision Control
System (RCS), a symbol composed of a keyword name enclosed by
dollar signs ($). In expanded form, a keyword provides identification
information about the file, such as its date, version number, or name.

layered product
In setld and product kit development, an optional software product
designed to be installed as an added feature of the DEC OSFIl system.

lexical analyzer
A program or program fragment for analyzing input and assigning
elements of it to categories to assist in parsing the input. See parser.
The lex program assists in the creation of lexical analyzers.

locking

Glossary-2

In software installation by the setld utility, the act of inserting a new
subset's name in the lock file of an existing subset so that an attempt to
remove the latter subset will flag the user with a dependency warning.
In a version control system, the creation and use of information flagging
a version control file as being checked out for editing.

locking mechanism
In a version control system, a way to prevent overlapping and
concurrent changes to a file. SCCS uses p-files to indicate which files
are currently out for editing; RCS creates locks by editing the RCS-file
to insert lock information.

macro definition
For the m4 macro processor or the make utility, a statement creating a
macro name and defining the text and argument substitutions for which
the macro stands.

operator
In regular expressions (REs), a character that is interpreted to mean
something other than its literal meaning. For example, a pair of
brackets ([]) form an operator that enables a single-character match on
anyone of the characters enclosed by the brackets.

p-file
In the Source Code Control System (SCCS), a lock file whose presence
indicates that the s-file of the same name is currently being edited.

parser
A program or program fragment for interpreting input and determining
how to act upon it. The yacc program assists in the creation of
parsers.

pattern space
In the sed editor, the range of lines currently being edited; the pattern
space is selected by an address or pair of addresses.

RCS-file
In the Revision Control System (RCS), a file stored in the RCS library,
containing the text of the original file and the list of deltas that have
been applied to it.

RCS library
In the Revision Control System (RCS), the directory in which RCS-files
are stored.

record
In awk, The information between two consecutive occurrences of the
record separator, which can be specified and is by default a newline
character. For most purposes, a record can be thought of as a line from
the input file. The beginning and end of the file are also record
separators.

Glossary-3

s-file
In the Source Code Control System (SCCS), a file stored in the SCCS
library, containing the text of the original file and the list of deltas that
have been applied to it.

SCCS library
In the Source Code Control System (SCCS), the directory in which
SCCS s-files and p-files are stored.

script

SID

In the sed editor, a list of editing commands to be applied to the input
file.

In the Source Code Control System (SCCS), the numeric identification
applied to a particular delta.

source hierarchy
For building software kits, the directory tree and files that are to be
compiled by the kits command into subsets for a kit.

subset
The smallest installable component of a software kit for the setld
utility. Contains files of any type, usually interrelated in some way.

target
Also called a target file. In the make utility, an entity to be built from
its dependents. An executable program is a target that is built from one
or more object modules.

target hierarchy
For building software kits, the directory tree into which a software kit is
placed by the kits command.

token
For the m4 macro processor, a recognizable entity that can be a macro
name. A token consists of alphanumeric characters delimited by
nonalphanumeric characters and cannot contain other tokens.

For lex-generated lexical analyzers and yacc-generated parsers, the
smallest independent unit of meaning as defined by either the parser or
the lexical analyzer. A token can contain data, a language keyword, an
identifier, or other parts of a language syntax.

version control file

Glossary-4

In a version control system, a file that consists of original text and a set
of revisions (deltas) that have been made to it. In RCS, this file is
called an RCS-file; in SCCS, an s-file.

version control library
A directory that contains files that are organized and maintained under a
version control system such as ReS or sees.

version control system
A software tool that aids in the organization and maintenance of file
revisions and configurations. In particular, it automates the storing,
logging, retrieval, and identification of revisions to source programs,
documentation, and data files.

younger file
For the make utility, a dependency file that has changed more recently
than its target.

Glossary-5

Index

Special Characters

$
See backslash

1\

See dollar sign

&
See circumflex

See ampersand { }

0
See braces

See parentheses

*
See vertical bar

See asterisk

+
A

See plus sign ACT environment variable, 8-28t, 8-28

action

See period awk, 2-11, 2-3

/ lexical analyzer, 4-10, 4-2, 4-3, 4-4

See slash multiple actions for one RE, 4-1 °
null action, 4-1 °

See colon, yacc yacc

ambiguous, 4-32

See semicolon resolving, 4-34

<> conflicts, 4-32

See angle brackets resolving, 4-34

? reduce, 4-31

See question mark shift,4-31

@ yacc parsers, 4-18, 4-25

See at sign adding devices to the system, 8-46

[] address, sed editor, 3-4

See brackets

admin command, 6-20, 6-27

ampersand

make, 7-11

sed, 3-12

angle brackets

lex,4-5t

make, 7-15

archiving source files

See ReS
See sees

arithmetic, m4, 5-9

array, in awk, 2-13, 2-14

asterisk

in REs, I-It, 1-3

make, 7-10, 7-4

in $* macro, 7-15

at sign

make, 7-6

awk

in $$@ macro, 7-14

in $@ macro, 7-14

print command, 2-5

printf command, 2-5

awk command, 2-1 to 2-21

action

before or after processing the file, 2-8,

2-11,2-3

omitting, 2-4

action operator, 2-14t

backs lash, 2-8

BEGIN statement, 2-8

beginning of a field in an RE, 2-9

command-line syntax, 2-2

comments in programs, 2-19t

concatenating strings, 2-11

control structure, 2-19t, 2-18

Index-2

awk command (cont.)

end of a field in an RE, 2-9

END statement, 2-8

field separator, 2-2t

field variable, 2-13

fields in, 2-1

function, 2-16t, 2-15

option, 2-2t

pattern, 2-3

omitting, 2-4

REs as patterns, 2-8

to specify ranges of records, 2-10

pipe, 2-20

program, 2-2

entering on the command line, 2-4e

syntax, 2-3

program structure, 2-4

ranges of records, 2-10

records in, 2-1

redirection, 2-20

relational expression, 2-9

REs as patterns, 2-8

semicolons in a program, 2-11n, 2-3

separating patterns from actions, 2-3

sequence of operations, 2-10, 2-4

slash, 2-8

split function, 2-13

string manipulation, 2-10, 2-11, 2-13

variable

array, 2-13, 2-14, 2-12, 2-6

built-in, 2-6t

creating, 2-12

field, 2-13

internal, 2-6t

RLENGTH,2-16t

RSTART,2-16t

awk command (cont.)

B

variable (cont.)

simple, 2-12

string, 2-12

treatment of, 2-12

value if uninitialized, 2-12

backslash

awk,2-8

in REs, I-It

sed, 3-12, 3-9

Backus-Naur form, 8-31

backward link

See link, backward

BEGIN statement

awk,2-8

lex, 4-15

BitT est shell function, 8-33

blank characters in macros, m4, 5-5

blank lines (spurious) in m4 output, 5-3

braces

awk,2-3

lex, 4-14, 4-4

make, 7-9

yacc, 4-22

brackets

in REs, I-It

building programs

See lex program

See make utility

See yacc program

building software kits, 8-40

built-in macro

See macro

c
caret

See circumflex

changecom macro, m4, 5-8

changequote command, m4, 5-4

changequote macro, m4, 5-9

character class

in REs, I-It, 1-5

checking machine architecture, 8-32

ci command, 6-10, 6-13

circumflex

awk,2-9

in REs, I-It

make, 7-10

collating sequence

in REs, I-It, 1-5

collating symbol

in REs, 1-5

colon, yacc, 4-24

comment characters, m4, 5-8

compression flag, 8-25t, 8-41

compression flag file, 8-41, 8-42

conditional action

m4,5-12

make, 7-12

configuring software kits, 8-6

context address

sed,3-5

control file

See kit, control file

control structure

awk, 2-19t, 2-18

sed, 3-10t

controlling revisions of source files

See ReS
See sees

Index-3

create command, 6-20

creating a kit on distribution media

from a remote node, 8-45

on disk, 8-45

on tape, 8-45

prerequisites, 8-45

creating a new release

Res, 6-13
sees, 6-24

o
data hierarchy, 8-21

declaration, yacc, 4-21

define command, m4, 5-2

defining macros

See m4 macro preprocessor

See make utility

deledit command, 6-25

delget command, 6-25

delta, 6-3

delta command, 6-24

dependency

between subsets, 8-30

checking, 8-32

file name expansion in, 8-31

for·more than one version of a subset,

8-31

initializing for, 8-32

expression, 8-32

syntax and evaluation of, 8-31

locking, 8-30, 8-32, 8-4

establishing relationships, 8-32

initializating for, 8-32

unlocking, 8-33

initializating for, 8-32

Index-4

dependency file

defined, 7-1

dependent

See dependency file

description file

make,7-21e

command, 7-13, 7-5, 7-6, 7-9

testing, 7-20

diffs command, 6-26

directory

See also hierarchy

hierarchy

designing for kit installation, 8-7

standard

existence as links, 8-7

using for kit files, 8-7

layered products, 8-15

disktab file, 8-46

distributing kits across a network, 8-46

distribution media for kits, 8-45

disk,8-45

tape, 8-45

divert macro, m4, 5-11

divnum macro, m4, 5-11

dlen macro, m4, 5-12

dnl command, m4, 5-3

dollar sign

awk,2-9

in REs, I-It

m4,5-5

make, 7-11, 7-4

sed, 3-5t, 3-4

dumpdef macro, m4, 5-13

E

edit command, 6-23

merging branches with, 6-26

-r option, 6-24

editing of files, simultaneous, management of

by ReS, 6-5

editing of files, simultaneous, prevention of by

sees, 6-6
egrep command

See grep command

embedded newline character

sed,3-5t

end of file

lex, 4-14

sed,3-4

endmarkertoken, 4-19,4-24

value of, 4-23n

environment variable, in make, 7-15

errortoken,yacc, 4-29

escape character

in REs, 1-1

lex, 4-5t, 4-7

sed,3-12

letc/disktab file, 8-46

letc/kitcap file, 8-45

evalmacro,m4,5-9

exporting kits, 8-17

F

fgrep command

See grep command

field

awk, 2-1, 2-13

file

attributes for setld kits, 8-21

file (cont.)

boot-required, in kits, 8-16

creating

Res, 6-10
sees, 6-20

editing, sees, 6-23

getting multiple, sees, 6-24

getting status of, sees, 6-24

getting, sees, 6-22

layered product

linking to, 8-15, 8-19

physical location of, 8-16f, 8-15

lock, used by setld, 8-4

name in ReS, 6-11

name in sees, 6-20

naming for a product kit, 8-21n, 8-24

read-only, in kits, 8-16

read-write, in kits, 8-16

types of in a layered product, 8-16

used by setld, 8-3

versions in ReS, 6-3

versions in ReS or sees
identifying, 6-4

versions in sees, 6-3

file name

sees, 6-21

file system

guidelines for using in kit design, 8-7

links in, 8-7

standard hierarchy, 8-8f, 8-9t, 8-7

for layered products, 8-15

X hierarchy, 8-1lf, 8-13t

finite-state automaton, 4-2f, 4-1, 4-30

stack usage, 4-30

flag

sees files, 6-22

Index-5

flag (cant.)

sees files (cont.)

list of, 6-29t

sed, 3-12

forward link

See link, forward

function, in awk, 2-15

G

g-file, 6-3

gawk command

See awk command

gendisk command, 8--45

gentapes command, 8--45

get command, 6-23

-p option, 6-23

getting files from an RCS library, 6-12

specifying version, 6-12

getting files from an SCCS library, 6-22

for editing, 6-23

specifying version, 6-23

writing to standard output, 6-23

getting multiple SCCS files, 6-24

getting status of SCCS files, 6-24

grammar file, yacc, 4-21

contents of, 4-21

declarations section, 4-21

error, 4-28

guidelines, 4-27

programs section, 4-26

rules section, 4-24

grep command, 1-6 to 1-8

differences between grep, egrep, and fgrep,

1-6t

option, 1-7t

Index-6

H
help command, 6-27

hierarchy

See also file system

data, for kit building, 8-21

output, for kit building, 8--40

required, for kit building, 8-18

source, for kit building, 8-19

populating, 8-20

target, for kit building, 8-19

ID keywords in SCCS, 6-21

See also percent sign

See also sees
ifdef macro, m4, 5-9

ifelse macro, m4, 5-12

image data file, 8--42

contents of, 8--42t

include macro, m4, 5-10

index macro, m4, 5-13

info command, 6-24

input/output routines, lex, 4-12

null character in, 4-13

overriding, 4-12

translation table for, 4-13

installing kits across a network, 8--46

installing software, 8-1 to 8--47

instctrl directory, 8--40

INSTCTRL file, 8--41

internal macro

See macro

inventory file

for kit building

See master inventory file

inventory file (cont.)

for a subset, 8-43

contents of, 8-44t

K

kernel, rebuilding for added devices, 8-46

key file, 8-24e, 8-24

contents of, 8-25t

control flag bit, 8-26t

using, 8-33

descriptor, 8-26t

keyword, processing, yacc, 4-22

associativity, 4-22

precedence, 4-22

kit

building, 8-40

adding a device for, 8-46

building process illustrated, 8-18f

configuring, 8-6

contents of, 8-3

control file, 8-3

contents of, 8-41 t

location after installation, 8-33, 8-4

data hierarchy, 8-21

designing to simplify exporting, 8-17

distributing across a network, 8-46

installing, 8-5

installing across a network, 8-46

key file, 8-24

master inventory file, 8-21

output hierarchy, 8-40

planning locations of files, 8-7

removing, 8-7

SCP,8-27

setting file attributes, 8-21

source hierarchy, 8-19

kit (cont.)

SPACE file, 8-45

standard directories, using for kit files, 8-7

layered products, 8-15

target hierarchy, 8-19

transferring to distribution media

from a remote node, 8-45

on disk, 8-45

on tape, 8-45

prerequisites, 8-45

using the file system effectively, 8-7

verifying, 8-6

kit, software, 8-1 to 8-47

kitcap file, 8-45

kits command, 8-40

L

layered product

boot-required files, 8-16

guidelines for placing files, 8-15

linking to files, 8-15, 8-19

physical location of files, 8-16f, 8-15

read-only files, 8-16

read-write files, 8-16

types of files in, 8-16

LC _TYPE environment variable

See collating sequence

len macro, m4, 5-12

lex analyzer

start condition, 4-15

setting, 4-15

lex library, 4-13, 4-3

lex program, 4-1 to 4-18

See also lexical analyzer

calculator example, 4-35

escape character, 4-5t, 4-7

Index-7

lex program (cont.)

finding substrings, 4-9

matching wildcards, 4-8

quote characters, 4-5t, 4-7

REJECT action

alternative to, 4-12, 4-9

returning input to the input stream, 4-9

using, 4-15

using with yacc, 4-16

yyless function action, 4-12

lex utility

macro, 4-4

expansion, 4-4

substitution string, 4-4

lexical analyzer, 4-1 to 4-18

See also lex program

action, 4-10, 4-2, 4-3, 4-4

multiple for one RE, 4-10

null,4-10

with yacc parsers, 4-10

action if no rule specified, 4-4

BEGIN statement, 4-15

default action, 4-4

end of file, 4-14

endmarker token, 4-19

file name, 4-16, 4-3

generating, 4-15

getting more input, 4-11

input look-ahead, 4-2

input/output routines, 4-12

null character in, 4-13

overriding, 4-12

translation table for, 4-13

length of a matched string, 4-11

lex library, 4-13, 4-3

passing code to generated program, 4-14

Index-8

lexical analyzer (cont.)

printf function, 4-10

printing a matched string, 4-10

REs in, 4-5t, 4-3,4-4,4-5,4-8

return statement, 4-17

returning input to the input stream, 4-12

extent of, 4-13

rule, 4-4

conflicts in, 4-8

matching input, 4-8

specification file

definitions section, 4-4

using y.tab.h in, 4-18

elements of, 4-3

format of, 4-3

incomplete, 4-5e

lines lex cannot interpret, 4-14

matching input, 4-8

rules section, 4-4

translation table, 4-13

yyleng variable, 4-11

yylval variable, 4-18

yymore function, 4-11

yytext variable, 4-10

yywrap function, 4-14

library, ReS
See RCS

library, sees
See SCCS

libscp function, 8-30t, 8-30

line number

sed,3-4

link

backward,8-36

creating, 8-40e, 8-39

initializating for, 8-39

link (cont.)

creating in SCPs, 8-36

forward, 8-36

literal string, yacc, 4-27

lock file, 8-4

subset dependency information in, 8-33, 8-4

locking subsets

See dependency, locking

look-ahead

lexical analyzer, 4-2

look-ahead token, yacc

clearing, 4-30

number, 4-19

M
m4 macro preprocessor, 5-1 to 5-13

arithmetic, 5-9

blank characters in macros, 5-5

changecom macro, 5-8

changequote macro, 5-9

conditional action, 5-12

defining macros, 5-2

terms of other macros, 5-3

to track other macros, 5-3

divert macro, 5-11

divnum macro, 5-11

dlen macro, 5-12

dnl macro, 5-3

dumpdef, 5-13

eval macro, 5-9

ifdef macro, 5-9

ifelse macro, 5-12

including a file, 5-10

index macro, 5-13

len macro, 5-12

macro

m4 macro preprocessor (cont.)

macro (cont.)

built-in, 5-6t

internal, 5-6t

macro argument, 5-5, 5-6

macro syntax, 5-1

maketemp macro, 5-1 1

print macro, 5-13

printing, 5-13

quote characters, 5-3

quoting in nested macros, 5-4

recursion, 5-2

redefining macros, 5-4

redirection, 5-11

spurious blank lines in output, 5-3

string manipulation, 5-12

substr macro, 5-12

temporary file, 5-11

translit macro, 5-13

undefine macro, 5-9

undi vert macro, 5-11

using system programs, 5-11

machine architecture, checking for, 8-32

machine command, 8-32

macro

See also m4 macro preprocessor

See also make utility

argument, m4, 5-5, 5-6

built-in

m4,5-6t

make, 7-13

checking for definition of, m4, 5-9

defined, m4, 5-1

defining

make, 7-8, 7-9

defining, m4, 5-2

Index-9

macro (cont.)

defining, m4 (cont.)

terms of another macro, 5-3

to track another macro, 5-3

definition, in make, 7-3

expansion, m4

delaying, 5-4

recursive nature of, 5-2

internal

m4,5-6t

make, 7-13t, 7-13

file name prefix, 7-15

out-of-date file list, 7-15

target file name, 7-14

lex, 4-4

first out-of-date file, 7-15

on dependency line, 7-14

expansion of, 4-4

nested, m4

quoting in, 5-4

precedence of definitions, in make, 7-3

redefining, m4, 5-4

removing, m4, 5-9

substitution, in make, 7-9

main function, yacc, 4-17, 4-18, 4-19

make utility, 7-1 to 7-22

command execution by, 7-3

command syntax, 7-3

conditional action, 7-12

creating files, 7-2

defining macros, 7-12, 7-8

dependency list, 7-5

description file, 7-21e, 7-3, 7-4, 7-9

example, 7-21, 7-7

environment variable, 7-15

including other files, 7-20

Index-10

make utility (cont.)

internal macro, 7-13

file name prefix, 7-15

first out-of-date file, 7-15

out-of-date file list, 7-15

target file name, 7-14

on dependency line, 7-14

macro

internal,7-13t

macro definition, 7-3

precedence, 7-3

macro substitution, 7-9

nested call, 7-13

on distributed system, 7-2

operation, 7-2

out-of-date file, 7-15, 7-2

recursion, 7-13

rule

defining, 7-17

internal, 7-16, 7-7

simplifying, 7-8

single suffix, 7-18

rules file example, 7-18e

shell invocation by, 7-3

suffixes

adding, 7-17, 7-16

replacing, 7-17

target file creation process, 7-2

target files with no dependents, 7--2

testing description files, 7-20

updating files, 7-2

using, 7-3

MAKEDEV command, 8-46

MAKEFLAGS macro, 7-15

maketemp macro, m4, 5-11

master inventory file, 8-22e, 8-21

contents of, 8-22t

creating and updating, 8-23

using pathnames in, 8-24

media supported by setld, 8-1, 8--46

merging branches of an sees file, 6-26

multiple matches in the sed editor, 3-12

N

\n

See embedded newline character

newinv utility, 8-23

NFS file sharing, 8--45

noninteractive editing

See sed editor

nonterminal symbol, 4-20, 4-22, 4-24

internal, 4-26

null character

grammar rule, 4-27

lex, 4-13

null string, yacc, 4-24

o
operator

action, in awk, 2-14t

Boolean, in awk, 2-10, 2-3

RE, defined for, 1-1

relational, in awk, 2-9

lopt directory, 8-15, 8-16

optional product

See layered product

output hierarchy, 8--40

p

p-file, 6-6

parentheses

awk,2-3

in REs, I-It

m4, 5-10, 5-6

make, 7-9

parser, 4-18 to 4-39

See also yacc program

action, 4-25

ambiguous action, 4-32

resolving, 4-34

conflicting actions, 4-32

resolving, 4-34

controlling during a rule's action, 4-25

endmarker token, 4-19, 4-24

error handling, 4-28

to allow correction, 4-29

including the yylex function, 4-26

main function, 4-17, 4-19

reduce action, 4-31

shift action, 4-31

using with a lexical analyzer, 4-17

yychar variable, 4-19

yyerror function, 4-18, 4-19

yylex function, 4-18

yylval variable, 4-18

path

product inventories, 8-24

pattern

awk, 2-3, 2--4, 2-8

ranges of records, 2-1 °
pattern space, 3-3

percent sign

lex, 4-14, 4--4

sees, 6-21

Index-11

percent sign (cont.)

yacc, 4-21, 4-22

period

in REs, I-It

pipes, in awk, 2-20

placing files in an ReS library, 6-10

placing files in an sees library, 6-20

plus sign

in REs, I-It, 1-3

postfix expression, 8-31

print command

in awk, 2-5

print macro, m4, 5-13

printf command

in awk, 2-5

processing text files

See awk command

See m4 macro preprocessor

See sed editor

product code, 8-25t

product name, 8-25t

product version, 8-25t

prs command, 6-27

Q

question mark

in REs, I-It, 1-4

make, 7-4

in $? macro, 7-15

quote characters, m4, 5-9

quoting strings

lex, 4-5t, 4-7

m4,5-3

Index-12

R

Res, 6-1 to 6-34

ci command, 6-10, 6-13

creating a new release, 6-13

file names, 6-11

file storage, 6-3

getting files from the library, 6-12

specifying version, 6-12

ID keywords, 6-11 t

library, 6-3

creating, 6-8

getting files from, 6-12

specifying version, 6-12

name of, 6-4

placing files in, 6-10

security, 6-8

placing files in the library, 6-10

preventing simultaneous editing of files, 6-5

rcsdiff command, 6-15

versions of files, 6-3

identifying, 6-4

rcs command

functions, 6-8t

ReS-file, 6-3

illustrated, 6-3f

rcsdiff command, 6-15

RE, 1-1 to 1-6

awk,2-8

character classes, 1-5

collating considerations, 1-5

collating sequences, 1-5

concatenating multiple, 1-1

equi valence classes in, 1-6

escape character in, 1-1

internationalized usage, 1-5

length of attempted match, 1-3

RE (cont.)

lex, 4-5t, 4-3, 4-4, 4-5, 4-8

list of rules, for most utilities, I-I

matching selected characters, 1-5

precedence of operators in, 1-3

restricting matches, 1-5

restricting matches in, 1-3, 1-4

rules, for most utilities, I-It

rules, for sed editor, 3-5t

saving and reusing patterns in, 1-4

specifying multiple, 1-5

record

awk,2-1

recursion

m4,5-2

make, 7-13

yacc, 4-28

redefining macros, m4, 5-4

redirection

aWk,2-20

m4, 5-11

reduce action, yacc, 4-31

regular expression

SeeRE

REJECT action, lex, 4-9

alternative to, 4-12

relational expression

awk,2-9

release, creating new

Res, 6-13
sees, 6-24

removing a macro, m4, 5-9

removing software kits, 8-7

repeating matches in the sed editor, 3-12

return statement, lex, 4-17

Revision Control System

See ReS

RLENGTH variHble, in awk, 2-16t

RSTART variable, in awk, 2-16t

rule

s

lex, 4-4

conflicts in, 4-8

matching input, 4-8

make, 7-2

internal,7-7

yacc, 4-24

s-file, 6-3

SCCS, 6-1 to 6-34

admin command, 6-20, 6-27

commands, 6-31 t

create command, 6-20

creating a new release, 6-24

deledit command, 6-25

delget command, 6-25

delta command, 6-24

diffs command, 6-26

edit command, 6-23

merging branches with, 6-26

-r option, 6-24

file names, 6-20, 6-21

file storage, 6-3

g-file, 6-3

get command, 6-23

-p option, 6-23

getting files from the library, 6-22

for editing, 6-23

specifying version, 6-23

writing to standard output, 6-23

getting multiple files, 6-24

Index-13

SCCS (cont.)

getting status of files, 6-24

help command, 6-27

ID keywords, 6-2lt, 6-21

locating, 6-22

requiring, 6-22

info command, 6-24

library, 6-3

creating, 6-8

getting files from, 6-22

for editing, 6-23

specifying version, 6-23

writing to standard output, 6-23

name of, 6-4, 6-8

placing files in, 6-20

security, 6-3lt, 6-8

specifying path to, 6-8

p-file, 6-6

placing files in the library, 6-20

preventing simultaneous editing of files, 6-6

prs command, 6-27

s-file, 6-3

sccsdiff command, 6-26

versions of files, 6-3

identifying, 6-4

sccs command, 6-18

-d option, 6-8

functions, 6-18t

options, list of, 6-31 t

sccsdiff command, 6-26

SCP

See also dependency

aborting installation, 8-29

checking machine architecture, 8-32

creating links, 8-36

dependency function, 8-30t, 8-30

Index-14

SCP (cont.)

example, 8-33

invoking, 8-28

language written in, 8-29

managing subset dependencies, 8-30

purpose, 8-27

restrictions on, 8-29

using key file control flag bits, 8-33

script

See sed editor, command script

searching for text

grep command, 1-6

security for RCS libraries, 6-8

security for SCCS libraries, 6-31 t, 6-8

sed editor, 3-1 to 3-13

address, 3-4

limitations on using, 3-6

combining options, 3-2

command

buffer manipulation, 3-10t

editing, 3-7t

flow-of-control, 3-lOt

command script, 3-1, 3-2

command syntax, 3-7 e, 3-6

multiple, 3-3

on the command line, 3-2e

command-line syntax, 3-1

context address, 3-5

control structure, 3-lOt

escape character, 3-12

hold area, 3-10t

input and output, 3-1

input file, treatment of, 3-2

limitations of, 3-1

line number, 3-4

option, 3-2t

sed editor (cont.)

order of operations, 3-3

pattern space, 3-3

printing lines

after substituting text, 3-13

repeating matches, 3-12

selecting lines for editing, 3--4

string manipulation, 3-12 to 3-13

substituting text

modifying command behavior, 3-12

using flags, 3-12

using an ampersand, 3-12

using backslashes, 3-12, 3-9

using semicolons, 3-2

using slashes, 3-5

using the hold area, 3-10t

writing a file, 3-13

semicolon

awk, 2-11n, 2-3

lex, 4--4

sed, 3-2

yacc,4-24

setld

ACT environment variable, 8-28t, 8-28

media support, 8-1, 8--46

setld command, 8-1 to 8--47

aborting installation, 8-29

configuring kits, 8-6

files used, 8-3

installing kits with, 8-5

lock files used by, 8--4

option, 8-2t

descriptions of, 8--4 to 8-7

removing kits, 8-7

specifying an alternati ve root directory,

8-24n

setld command (cont.)

syntax and usage, 8-2

verifying kits, 8-6

shift action, yacc, 4-31

shift command, m4, 5-5

SID,6--4

simultaneous editing of files, management of

by RCS, 6-5

simultaneous editing of files, prevention of by

SCCS,6-6

sincldue macro, m4, 5-10

slash

awk,2-8

sed, 3-7t, 3-5

software kit

See kit

Source Code Control System

See SCCS

source hierarchy, 8-1 9

populating, 8-20

SPACE file, 8--45

specification file, lex, 4-3

Definitions section, 4--4

using y.tab.h in, 4-18

format of, 4-3

incomplete,4-5e

lines lex cannot interpret, 4-14

matching input, 4-8

rules section, 4--4

split function, in awk, 2-13

start condition, lex, 4-15

setting, 4-15

start symbol, yacc, 4-23

sticky bit

product kit, 8-26t

Index-15

STL_ArchAssert shell function, 8-30t, 8-32

STL_DepEval shell function, 8-30t, 8-32

STL_Deplnit shell function, 8-30t, 8-32

STL_DepLock shell function, 8-30t, 8-32

STL_DepUnLock shell function, 8-30t, 8-33

STL_LinkBack shell function, 8-39t, 8-39

STL_Linklnit shell function, 8-39t, 8-39

STL_Locklnit shell function, 8-30t, 8-32

stream editor

See sed editor

string manipulation

awk, 2-10, 2-11, 2-13

lex, 4--4

m4,5-12

sed, 3-12 to 3-13

string variable, in awk, 2-12

subset

compressing, 8--41

control flags in key file, 8-26t

using, 8-33

defined, 8-2

dependencies, 8-30

dependency locking, 8-30, 8--4

description in key file, 8-26t

descriptors in key file, 8-26t, 8-26

name,8-26t

sticky bit, 8-26t

subset control file, 8--42

subset control program

See SCP

subset inventory file, 8--43

contents of, 8--44t

substr macro, m4, 5-12

substring, 4-9

symbol,yacc, 4-20, 4-22

start, 4-23

Index-16

syntax

See individual utility entries

syscmd macro, m4, 5-11

T

target file

creation process in make, 7-2

defined, 7-1

without dependents, 7-2

target hierarchy, 8-19

temporary file, m4, 5-11

terminal symbol, 4-20

testing a bit in an integer, 8-33

time stamp

used by make utility, 7-2

token

m4

defined, 5-1

interpretation of, 5-2

yacc

defined, 4-16

finding names of, 4-17

list of, 4-20

token number, yacc, 4-23

translation table, lex, 4-13

translit macro, m4, 5-13

u
undefine macro, m4, 5-9

undivert macro, m4, 5-11

unlocking subset dependencies, 8-33

using make, 7-3

using the key file control flag bits, 8-33

/usr/opt directory, 8-15, 8-16

lusr/.smdb. directory, 8-33, 8-4

v
Ivar/opt directory, 8-15, 8-16

variable

awk

array, 2-13, 2-14, 2-12, 2-6

built-in, 2-6t

creating, 2-12

field,2-13

internal, 2-6t

numeric, 2-12

simple, 2-12

treatment of, 2-12

value if uninitialized, 2-12

global, yacc, 4-22

verifying software kits, 8-6

vertical bar

in REs, I-It

lex, 4-10

yacc, 4-24

w
what command, 6-22

v
y.tab.c file, 4-19

y.tab.h file, 4-35, 4-39

using in lex specification file, 4-18

yacc program, 4-16 to 4-39

See also parser

calculator example, 4-35

debug mode, 4-34

declaration, 4-21

finding token names, 4-17

yacc program (cont.)

global variable, 4-22

grammar file, 4-2 I

declarations section, 4-2 I

error, 4-28

guidelines, 4-27

programs section, 4-26

rules section, 4-24

library routines, 4-19

look-ahead token, clearing, 4-30

null character, 4-27

null string, 4-24

parameter keywords, 4-25

default values, 4-25

processing keywords

associativity, 4-22, 4-22

precedence, 4-22

recursion, 4-28

start symbol, 4-23

token number, 4-23

using with lex, 4-16

younger file

defined, 7-1

yy.lex.c file, 4-16, 4-3

yychar variable, 4-19

yyerror function, 4-18, 4-19

yyleng variable, 4-11

yyless function, lex, 4-12

yylex function, 4-18, 4-3

called by yyparse, 4-18

including in a parser, 4-26

requirements, 4-20

yylval variable, 4-18, 4-32

yymore function, 4-11

yyparse function, 4-18, 4-19

Index-17

yytext variable, 4-10

yywrap function

lex, 4-14

Index-18

How to Order Additional Documentation

Technical Support
If you need help deciding which documentation best meets your needs, call 800-DIGITAL
(800-344-4825) before placing your electronic, telephone, or direct mail order.

Electronic Orders
To place an order at the Electronic Store, dial 800-234-1998 using a 1200- or 2400-bps
modem from anywhere in the USA, Canada, or Puerto Rico. If you need assistance using the
Electronic Store, call 800-DIGITAL (800-344-4825).

Telephone and Direct Mail Orders

Your Location

Continental USA,
Alaska, or Hawaii

Puerto Rico

Canada

International

Internala

Call

800-DIGITAL

809-754-7575

800-267-6215

Contact

Digital Equipment Corporation
P.O. Box CS2008
Nashua, New Hampshire 03061

Local Digital subsidiary

Digital Equipment of Canada
Attn: DECdirect Operations KA0212
P.O. Box 13000
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6

Local Digital subsidiary or
approved distributor

SSB Order Processing - NQO/VI9
or
U. S. Software Supply Business
Digital Equipment Corporation
10 Cotton Road
Nashua, NH 03063-1260

a For internal orders, you must submit an Internal Software Order Form (EN-0l740-07).

Reader's Comments DEC OSF/1
Programming Support Tools

AA-PS32B-TE

Please use this postage-paid form to comment on this manual. If you require a written reply
to a software problem and are eligible to receive one under Software Performance Report
(SPR) service, submit your comments on an SPR form.

Thank you for your assistance.

Please rate this manual:
Accuracy (software works as manual says)
Completeness (enough information)
Clarity (easy to understand)
Organization (structure of subject matter)
Figures (useful)
Examples (useful)
Index (ability to find topic)
Page layout (easy to find information)

What would you like to see more/less of?

What do you like best about this manual?

Excellent
o o
o o
o
o o
o

Good
o
o
o
o
o
o
o
o

Fair
o
o
o
o
o o
o
o

Poor
o
o
o
o
o
o
o o

What do you like least about this manual? __________________ _

Please list errors you have found in this manual:

Page Description

Additional comments or suggestions to improve this manual:

What version of the software described by this manual are you using?

__________________ Dept. Name/Title
Company
Mailing Address

_______________________ Date ____ _

Email Phone

- - - - Do Not Tear - Fold Here and Tape . - .

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
OPEN SOFTWARE PUBLICATIONS MANAGER
ZK03-3N32
110 SPIT BROOK ROAD
NASHUA NH 03062-9987

1IIIIIIIIIIIIIIIIIIIIIIIIIhlllllllllllhhllllllili

No Postage

Necessary

if Mailed in the

United States

- - - Do Not Tear - Fold Here --

Cut
AlonJ
Dotte
Line

Reader's Comments DEC OSF/1
Programming Support Tools

AA-PS32B-TE

Please use this postage-paid form to comment on this manual. If you require a written reply
to a software problem and are eligible to receive one under Software Performance Report
(SPR) service, submit your comments on an SPR form.

Thank you for your assistance.

Please rate this manual:
Accuracy (software works as manual says)
Completeness (enough information)
Clarity (easy to understand)
Organization (structure of subject matter)
Figures (useful)
Examples (useful)
Index (ability to find topic)
Page layout (easy to find information)

Excellent
D
D
D
D
D
D
D
D

Good
D
D
D
D
D
D
D
D

Fair
D
D
D
D
D
D
D
D

Poor
D
D
D
D
D
D
D
D

What would you like to see more/less of? ___________________ _

What do you like best about this manual? __________________________ _

What do you like least about this manual? ______________________ _

Please list errors you have found in this manual:

Page Description

Additional comments or suggestions to improve this manual:

What version of the software described by this manual are you using?

Name/Title _______________________ Dept.
Company __________________________________ _ Date ____ _
Mailing Address _____________________________________ _
________________ Email Phone _________ _

- - - - Do Not Tear - Fold Here and Tape . -

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
OPEN SOFTWARE PUBLICATIONS MANAGER
ZK03-3N32
110 SPIT BROOK ROAD
NASHUA NH 03062-9987

11111111111111111111 11111111 111111111111111111111111

- - - Do Not Tear - Fold Here

No Postage

Necessary

if Mailed in the

United States

Cut
Along
Dotte(
Line

