
DEC OSF/l

Writing TURBOchannel Device Drivers

Part Number: AA-PS3HB-TE

DEC OSF/1

Writing TURBOchannel Device Drivers

Order Number: AA-PS3HS-TE

February 1994

Product Version: DEC OSF/1 Version 2.0 or higher

This guide includes information about device drivers that operate on the
TURBOchannel bus. The book is a companion volume to Writing Device
Drivers, Volume 1: Tutorial, which discusses the general concepts and
tasks associated with writing a device driver, and Writing Device Drivers,
Volume 2: Reference, which contains reference (man) pages for interfaces
and files used by driver writers.

digital equipment corporation
Maynard, Massachusetts

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to
restrictions as set forth in subparagraph (c) (1) (ii).

Digital Equipment Corporation makes no representations that the use of its products in the
manner described in this publication will not infringe on existing or future patent rights, nor
do the descriptions contained in this publication imply the granting of licenses to make, use,
or sell equipment or software in accordance with the description.

Possession, use, or copying of the software described in this publication is authorized only
pursuant to a valid written license from Digital or an authorized sublicensor.

© Digital Equipment Corporation 1994
All rights reserved.

The following are trademarks of Digital Equipment Corporation:

ALL-IN-I, Alpha AXP, AXP, Bookreader, CDA, DDIS, DEC, DEC FUSE, DECnet,
DEC station, DECsystem, DECUS, DECwindows, DTIF, LinkWorks, MASSBUS, MicroVAX,
Q-bus, ULTRlX, ULTRIX Mail Connection, ULTRIX Worksystem Software, UNIBUS,
V AX, V AXstation, VMS, XUI, the AXP logo, the AXP signature, and the DIGITAL logo.

Open Software Foundation, OSF, OSF!I, OSFlMotif, and Motif are trademarks of the Open
Software Foundation, Inc. UNIX is a registered trademark licensed exclusively by XlOpen
Company Limited.

All other trademarks and registered trademarks are the property of their respective holders.

Contents

About This Manual

Audience

Organization

Related Documentation

Hardware Documentation
Device Driver Documentation

vii

vii

viii

ix
ix

Programming Tools Documentation .. x
System Management Documentation .. xi
Porting Documentation xi
Reference Pages xi

Reader's Comments

Conventions

1 Review of Device Driver Concepts

1.1

1.2

1.3

1.4

1.5

Information Gathering

Device Driver Design

Data Structures .. .

Portability

Configuration Models

xii

xii

1-1

1-1

1-2

1-3

1-3

2 TURBOchannel Architecture

2.1

2.2

2.3

2.4

Include Files

Writes to the Hardware Device Register

Direct Memory Access (DMA)-to-Host Memory Transfers

Device Interrupt Line .. .

3 Structure of a TURBOchannel Device Driver

3.1 Include Files Section

2-1

2-1

2-2

2-2

3-3

3.2 Autoconfiguration Support Section 3-3

3.2.1 Setting Up the xxprobe Interface 3-4
3.2.2 Setting Up the xxslave Interface 3-8
3.2.3 Setting Up the xxcattach and xxdattach Interfaces 3-9
3.2.4 Setting Up the Controller Unattach Interface 3-10
3.2.5 Setting Up the Device Unattach Interface 3-11

3.3 The Configure Section 3-12

4 Kernel 1/0 Support Interfaces Used by TURBOchannel
Device Drivers

4.1

4.2

4.3

4.4

4.5

4.6

Enabling or Disabling a Device's Interrupt Line

Determining the Name of an Option Module

Determining a Device's Base Address

Isolating and Handling Memory Errors

Ensuring a Write to 110 Space Completes

U sing Scatter-Gather Maps

4.6.1
4.6.2
4.6.3

Preallocating a Scatter-Gather Map
Mapping the Transfer
Freeing Map Entries

4-1

4-2

4-3

4-4

4-5

4-6

4-7
4-8
4-9

.. ivContel'lts

5 Device Autoconfiguration

5.1 Probing TURBOchannel Option Slots

5.1.1 Obtaining the 110 Module's Name

5-1

5-2

5.1.1.1 Static Configuration 5-2
5.1.1.2 Dynamic Configuration ... 5-3

5.1.2 Mapping TURBOchannel Slot Numbers 5-4

6 TURBOchannel Device Driver Configuration

6.1

6.2

Using a tc_data File with the mktcdata Utility

Creating a tc_option Table Snippet

A TURBOchannel-Specific Reference Information

A.I

A.2

A.3

AA

Header File Used Only by TURBOchannel Device Drivers

Data Structures Used Only by TURBOchannel Device Drivers

Kernel Support Interfaces Used Only by TURBOchannel Device
Drivers

Device Driver Interfaces Used Only by TURBOchannel Device
Drivers

Index

Figures

3-1: Sections of a Character Device Driver and a Block Device Driver

Tables

6-2

6-3

A-I

A-3

A-I2

A-28

3-2

A-I: Summary of Data Structures for TURBOchannel Device Drivers A-3

A-2: Summary of Kernel Support Interfaces for TURBOchannel Device
Drivers .. A-I2

Contents v

A-3: Summary of Device Driver Interfaces for TURBOchannel Device
Drivers A-28

vi Contents

About This Manual

This book discusses topics associated with writing device drivers that operate
on the TURBOchannel bus.

Audience
This book is intended for systems engineers who:

• Develop programs in the C language using standard library interfaces

• Know the Bourne or some other UNIX-based shell

• Understand basic DEC OSFIl concepts such as kernel, shell, process,
configuration, autoconfiguration, and so forth

• Understand how to use the DEC OSFIl programming tools, compilers,
and debuggers

• Develop programs in an environment involving dynamic memory
allocation, linked list data structures, and multitasking

• Understand the hardware device for which the driver is being written

• Understand the basics of the CPU hardware architecture, including
interrupts, Direct Memory Access (DMA) operations, memory mapping,
and I/O.

This book assumes you have a strong background in UNIX-based operating
systems and C programming, and that you are familiar with topics presented
in Writing Device Drivers, Volume 1: Tutorial. This book refers to Writing
Device Drivers, Volume 1: Tutorial when appropriate.

Organization

Chapter 1

Chapter 2

Review of Device Driver Concepts

Reviews general device driver concepts that are discussed in detail in
Writing Device Drivers, Volume 1: Tutorial.

TURBOchannel Architecture

Discusses aspects of the TURBOchannel software architecture with
which a device driver writer must be familiar.

Chapter 3

Chapter 4

Chapter 5

Structure of a TURBOchannel Device Driver

Describes the sections that make up a TURBOchannel device driver.

Kernel Interfaces Used by TURBOchannel Device Drivers

Discusses the kernel interfaces developed for use with TURBOchannel
device drivers.

Device Autoconfiguration

Discusses the sequence of events that occurs during the
autoconfiguration of TURBOchannel devices.

Chapter 6 TURBOchannel Device Driver Configuration

Reviews the device driver configuration models presented in Writing
Device Drivers, Volume 1: Tutorial and discusses some driver
configuration topics associated with TURBOchannel device drivers.

Appendix A TURBOchannel-Specific Reference Information

Presents, in reference (man) page style, descriptions of the header file,
data structures, kernel support interfaces, and device driver interfaces
that are specific to the TURBOchannel bus.

Related Documentation
The printed version of the DEC OSFIl documentation set is color coded to
help specific audiences quickly find the books that meet their needs. (You
can order the printed documentation from Digital.) This color coding is
reinforced with the use of an icon on the spines of books. The following list
describes this convention:

Audience Icon Color Code

General Users G Teal

System Administrators S Red

Network Administrators N Yellow

Programmers P Blue

Reference Page Users R Black

Some books in the documentation set help meet the needs of several
audiences. For example, the information in some system books is also used
by programmers. Keep this in mind when searching for information on
specific topics.

The Documentatiol1 Overview provides information on all of the books in the
DEC OSFIl documentation set.

viii About This Manual

Writing device drivers is a complex task that requires driver writers to
acquire knowledge in a variety of areas. The following categories of
documentation are available to help you acquire expertise in these areas:

• Hardware documentation

• Device driver documentation

• Programming and programming tools documentation

• System management documentation

• Porting documentation

• Reference pages

Hardware Documentation
You should have available the hardware manual associated with the device
for which you are writing the device driver. In addition, you should have
access to the manual that describes the architecture for the CPU on which the
driver operates, for example, the Alpha Architecture Reference Manual.

Device Driver Documentation
This book contains information specific to device drivers that operate on the
TURBOchannel bus. It should be used in conjunction with the following
books that provide general information about writing device drivers:

• Writing Device Drivers, Volume 1: Tutorial

This manual provides information for systems engineers who write device
drivers for hardware that runs the DEC OSFIl operating system. Systems
engineers can find information on driver concepts, device driver
interfaces, kernel interfaces used by device drivers, kernel data structures,
configuration of device drivers, and header files related to device drivers.

• Writing Device Drivers, Volume 2: Reference

This manual contains descriptions of the header files, kernel support
interfaces, ioctl commands, global variables, data structures, device
driver interfaces, and bus configuration interfaces associated with device
drivers. The descriptions are formatted similar to the DEC OSFIl
reference pages.

The following book provides information about device drivers that operate on
the SCSI CAM bus:

• Writing Device Drivers for the SCSI/CAM Architecture Interfaces

This manual provides information for systems engineers who write device
drivers for the SCSUCAM Architecture interfaces.

About This Manual ix

The manual provides an overview of the DEC OSFIl SCSI/CAM
Architecture and describes User Agent routines, data structures, common
and generic routines and macros, error handling and debugging routines.
The manual includes information on configuration and installation.
Examples show how programmers can define SCSI/CAM device drivers
and write to the SCSI/CAM special I/O interface supplied by Digital to
process special SCSI I/O commands.

The manual also describes the SCSI/CAM Utility (SCU) used for
maintenance and diagnostics of SCSI peripheral devices and the CAM
subsystem.

Programming Tools Documentation
To create your device drivers, you use a number of programming
development tools and should have on hand the manuals that describe how to
use these tools. The following manuals provide information related to
programming tools used in the DEC OSFIl operating system environment:

• Kernel Debugging

This manual provides information on debugging a kernel and analyzing a
crash dump of a DEC OSFIl operating system. The manual provides an
overview of kernel debugging and crash dump analysis and describes the
tools used to perform these tasks. The manual includes examples with
commentary that show how to analyze a running kernel or crash dump.
The manual also describes how to write a kdbx utility extension and
how to use the various utilities for exercising disk, tape, memory, and
communications devices.

This manual is for system administrators responsible for managing the
operating system and for systems programmers writing applications and
device drivers for the operating system.

• Programming Support Tools

This manual describes several commands and utilities in the DEC OSFIl
system, including facilities for text manipulation, macro and program
generation, source file management, and software kit installation and
creation.

The commands and utilities described in this manual are intended
primarily for programmers, but some of them (such as grep, awk,
sed, and the Source Code Control System (SCCS)) are useful for other
users. This manual assumes that you are a moderately experienced user of
UNIX systems.

x About This Manual

System Management Documentation
Refer to the followng book for information about building a kernel and for
general information about system administration:

• System Administration

This manual describes how to configure, use, and maintain the DEC
OSFIl operating system. It includes information on general day-to-day
activities and tasks, changing your system configuration, and locating and
eliminating sources of trouble.

This manual is for the system administrators responsible for managing the
operating system. It assumes a knowledge of operating system concepts,
commands, and configurations.

Porting Documentation
Refer to the DEC OSFll Migration Guide for a discussion of the differences
between the DEC OSFIl and UL TRIX operating systems. This manual
compares the DEC OSFIl operating system to the UL TRIX operating system
by describing the differences between the two systems.

This manual has three audiences, as follows:

• General users can read this manual to determine what differences exist
between using an ULTRIX system and using the DEC OSFIl system.

• System and network administrators can read this manual to determine
what differences exist between ULTRIX and DEC OSFIl system
administration.

• Programmers can read this manual to determine differences in the DEC
OSFIl programming environment and the UL TRIX programming
environment.

This manual assumes you are familiar with the ULTRIX operating system.

Reference Pages
Reference (man) pages that are of interest to device driver writers can be
found in the following documents:

• Reference Pages Section 2

This section defines system calls (entries into the DEC OSFIl kernel) that
programmers use. The introduction to Section 2, intro(2), lists error
numbers with brief descriptions of their meanings. The introduction also
defines many of the terms used in this section. This section is for
programmers.

About This Manual xi

• Reference Pages Section 3

This section describes the routines available in DEC OSFIl programming
libraries, including the C library, Motif library, and X library. This
section is for programmers. In printed format, this section is divided into
volumes.

• Reference Pages Sections 4, 5, and 7

- Section 4 describes the format of system files and how the files are
used. The files described include assembler and link editor output,
system accounting, and file system formats. This section is for
programmers and system administrators.

- Section 5 contains miscellaneous information, including ASCII
character codes, mail-addressing formats, text-formatting macros, and
a description of the root file system. This section is for programmers
and system administrators.

- Section 7 describes special files, related device driver functions,
databases, and network support. This section is for programmers and
system administrators.

• Reference Pages Section 8

This section describes commands for system operation and maintenance.
It is for system administrators.

Reader's Comments
Digital welcomes your comments on this or any other DEC OSFIl manual.
You can send your comments in the following ways:

• Internet electronic mail:
readers comment@ravine.zk3.dec.com

• Fax: 603-881-0120 Attn: USG Documentation, ZK03-3/Y32

• A completed Reader's Comments form (postage paid, if mailed in the
United States). Two Reader's Comments forms are located at the back of
each printed DEC OSFIl manual.

If you have suggestions for improving particular sections or find any errors,
please indicate the title, order number, and section numbers. Digital also
welcomes general comments.

Conventions
The following conventions are used in this book:

xii About This Manual

filename

buf

[]

A vertical ellipsis indicates that a portion of an example that
would normally be present is not shown.

In syntax definitions, a horizontal ellipsis indicates that the
preceding item can be repeated one or more times.

In examples, syntax descriptions, and function definitions,
this typeface indicates variable values.

In function definitions and syntax definitions used in driver
configuration, this typeface is used to indicate names that you
must type exactly as shown.

In formal parameter declarations in function definitions and
in structure declarations, brackets indicate arrays. However,
for the syntax definitions used in driver configuration, these
brackets indicate items that are optional.

Vertical bars separating items that appear in the syntax
definitions used in driver configuration indicate that you
choose one item from among those listed.

About This Manual xiii

Review of Device Driver Concepts 1

Before attempting to write a driver for a TURBOchannel device, you must be
familiar with driver concepts in general as well as specific tasks you need to
perform to successfully code the driver. An understanding of the following
concepts is presumed:

• The purpose of a device driver

• The types of device drivers

• Static versus loadable device drivers

• When a device driver is called

• The place of a device driver in DEC OSFIl

1.1 Information Gathering
The first task in writing a device driver is to gather pertinent information
about the host system and the device for which you are writing the driver.
For example, you need to:

• Specify information about the host system

• Identify the standards used in writing the driver

• Specify the characteristics and describe the usage of the device

• Provide a description of the device registers

• Identify support in writing the driver

1.2 Device Driver Design
After you gather information about the host system and the device, you are
ready to design the device driver. You need to specify the driver type and
whether the driver you write links into the kernel dynamically at run time
(loadable) or requires a reboot (static). During the design of the driver, you
also identify device driver entry points and describe the driver states.

1.3 Data Structures
Data structures are the mechanism used to pass information between the
kernel and device driver interfaces. The following table summarizes data
structures that are described in detail in Writing Device Drivers, Volume 1:
Tutorial:

buf and uio

controller

device

driver

bus

cdevsw

bdevsw

U sed in 110 operations.

Contains members that store information about
hardware resources and store data for communication
between the kernel and the device driver.

Contains information that identifies the device. There is
one device data structure for each device connected to
the controller.

Is initialized by the driver writer in the device driver.
This data structure specifies information such as the
probe, slave, and attach interfaces used in the
device driver.

Represents an instance of a bus entity to which other
buses or controllers are logically attached.

Defines a device driver's entry points in the character
device switch table.

Defines a device driver's entry points in the block
device switch table.

Appendix A describes data structures that are used only with the
TURBOchannel bus: tc info, tc intr info, tc memerr status,
and tc_option. - - - - -

Although loadable device drivers are not supported in this version of DEC
OSFIl, you may want to implement loadable device drivers that operate on
the TURBOchannel bus. If so, you also need to consider data structures
specific to loadable device drivers: ihandler t, handler key, and
device config t. The structure tc intr- info, whichis used only
for the TURBOchannel bus, is also specific to loadable drivers.

When designing your device driver, you must decide on the technique you
will use for allocating data structures. Generally, there are two techniques
you can use: static allocation and dynamic allocation. Dynamic allocation is
the recommended method for all new drivers; some existing drivers allocate
data structures statically. If you do not plan to implement loadable drivers
now or in the future, the static allocation method will suffice. Otherwise (or
if you know that the maximum number of devices is greater than five or that
the driver uses numerous data structures), plan to use the dynamic allocation

1-2 Review of Device Driver Concepts

method.

1.4 Portability
Whenever possible, design your device driver so that it can accommodate
peripheral devices that operate on more than one CPU architecture and more
than one CPU type within the same architecture. The following list notes
some of the issues you need to consider to make your drivers portable:

• Control status register (CSR) access issues

• Input/Output (VO) copy operation issues

• Direct memory access (DMA) operation issues

• 64-bit versus 32-bit issues

Note

See Writing Device Drivers, Volume 1: Tutorial for information
on the CSR 1/0 access interfaces. These interfaces allow you to
read from and write to a device's CSR addresses without directly
accessing its device registers. Each of these interfaces takes an
VO handle that the bus configuration code passes to the driver's
probe interface.

1.5 Configuration Models
When you are ready to write your driver, you probably want to study the
device driver configuration models and create an appropriate device driver
development environment. If you plan to ship a device driver product to
customers, you also need to create a device driver kit development
environment.

This is a brief summary of device driver concepts and the considerations you
must make prior to writing a driver. If you are unfamiliar with any of these,
consult Writing Device Drivers, Volume 1: Tutorial. The tutorial discusses
how to write device drivers for computer systems running the DEC OSFIl
operating system.

Review of Device Driver Concepts 1-3

TURBOchannel Architecture 2

The TURBOchannel is a synchronous, asymmetrical 110 channel that is
supported on some Alpha AXP CPUs.

The device driver writer is not required to be intimately familiar with the
details of the TURBOchannel hardware. Therefore, this chapter discusses the
following aspects of the software architecture for a TURBOchannel device
driver:

• Include files

• Writes to the hardware device register

• DMA-to-host memory transfers

• Device interrupt line to the processor

2.1 Include Files
TURBOchannel device drivers, in addition to the usual header files required
by DEC OSFIl device drivers, need this header file:

#include <io/dec/tc/tc.h>

See Writing Device Drivers, Volume 1: Tutorial for information on header
files required by all device drivers.

2.2 Writes to the Hardware Device Register
Whenever a TURBOchannel device driver writes to a hardware device
register, the write may be delayed by the system write buffer used to
synchronize the CPU on the TURBOchannel. A subsequent read of that
register is not guaranteed to wait for the write to complete. To ensure that a
write to I/O space completes prior to a subsequent read operation, the driver
calls the rob kernel support interface. To ensure that multiple writes to the
same hardware device register result in the device receiving the correct
number of write requests in the proper order, you must insert calls to mb
between each write. Otherwise, write requests may be merged in the write
buffer with the result that the device receives fewer write requests than you
intend or receives them in the wrong order.

The wbflush interface is available on MIPS systems and is aliased to mb
on Alpha AXP systems. Section 4.5 contains an example of using the rob
interface to ensure that a write to UO space completes.

2.3 Direct Memory Access (DMA)-to-Host Memory
Transfers
There are several TURBOchannel-specific interfaces associated with DMA
transfers. The tc map alloc, tc loadmap, and tc map free
interfaces let you iilocate, load, and free (return to the free pooD entries for
scatter-gather maps. The tc isolate memerr interface lets you isolate
and log errors that occur on ibMA tranSfer.

2.4 Device Interrupt Line
If a device needs to have its interrupts enabled or disabled during
configuration or during operation, a TURBOchannel device driver can call
the tc enable option and tc disable option interfaces. See
Section 4.1 and Appendix A for more informatwn about these interfaces.

2-2 TURBOchannel Architecture

Structure of a TURBOchannel Device 3
Driver

The sections that make up a DEC OSFIl device driver differ, depending on
whether the driver is a block, character, or network driver. Figure 3-1
illustrates the sections that a character device driver can contain and the
possible sections that a block device driver can contain. Device drivers do
not have to use all of the sections illustrated in the figure, and more complex
drivers can use additional sections. Both character and block device drivers
contain:

• An include files section

• A declarations section

• An autoconfiguration support section

• A configure section (only for loadable drivers)

• An open and close device section

• An ioctl section

• An interrupt section

The block device driver can also contain a strategy section, a psize section,
and a dump section.

The character device driver can contain the following sections not contained
in a block device driver:

• A read and write device section

• A reset section

• A stop section

Writing Device Drivers, Volume 1: Tutorial discusses each of the driver
sections. The remainder of this chapter describes the include file and
autoconfiguration support sections as they apply to TURBOchannel device
drivers.

Throughout this chapter there are frequent references to device driver coding
that applies only to a static or a loadable version of the driver. As shown by
an example in this chapter, you can structure your driver so that the same
source file is used to support both static and loadable versions of the driver.
Differences between static and loadable versions of a driver are determined at
driver runtime rather than driver compilation time. When your driver code

supports both versions, the customer who installs the driver can choose
which version is configured on the system.

Figure 3-1: Sections of a Character Device Driver and a Block
Device Driver

Character Device Driver Block Device Driver

1* Include Files Section */ 1* Include Files Section */

/* Declarations Section * / 1* Declarations Section */

/* Autoconfiguration Support Section */ /* Autoconfigu ration Support Section * /

/* Configure Section */ 1* Configu re Section * /

1* Open and Close Device Section */ 1* Open and Close Device Section */

1* ioctl Section * / /* ioctl Section */

/* Interrupt Section */ 1* Interrupt Section */

/* Read and Write Device Section * /
/* Strategy Section * /

/* Reset Section * /
1* psize Section * /

/* Stop Section * /
/* Dump Section */

/* Select Section * /

ZK-0875U-R

3-2 Structure of a TURBOchannel Device Driver

3.1 Include Files Section
Data structures are defined in header files that you include in the driver
source code. The number and types of header files you specify depends on
the structures, constants, and kernel interfaces your device driver references.
You need to be familiar with:

• The device driver header file

• Common driver header files

• Loadable driver header files

• The device register header file

• The name data. c file

These files are described in Writing Device Drivers, Volume 1: Tutorial.
Two files specific to TURBOchannel device drivers are tc • hand
tc option data. c. The include file tc. h specifies definitions and
declarations of interfaces that are used only in TURBOchannel device
drivers. The tc option data. c file contains the declaration of the
tc option data table. This table maps the device name in the ROM (Read
OnlY Memory) on the hardware device module to the controlling driver in the
DEC OSFIl kernel.

3.2 Autoconfiguration Support Section
As described in Writing Device Drivers, Volume 1: Tutorial, when the
operating system boots, the kernel determines which devices are connected to
the computer. After finding a device, the kernel initializes it so that the
device can be used at a later time. The probe interface determines if a
particular device is present, and the attach interface initializes the device.
To configure loadable drivers, the kernel uses a procedure that is functionally
equivalent to the one just described. A loadable driver, like the static driver,
has probe, attach, and possibly slave interfaces.

From the driver writer's point of view, the probe, attach, and slave
interfaces are the same for static and loadable versions of the driver.
However, the functions performed by these interfaces can differ, depending
on the driver version. For example, the code that supports the loadable
version of the driver in the xxprobe interface registers the driver's interrupt
handlers. This section of code does not apply to the static version of the
driver because interrupt handlers for static drivers are specified in the system
configuration file and built into the kernel.

The autoconfiguration support section of a TURBOchannel device driver
contains the code that implements these interfaces and the section applies to
both character and block device drivers. The section can contain:

Structure of a TURBOchannel Device Driver 3-3

A probe interface

A slave interface

An attach interface

For loadable drivers, the autoconfiguration support section also contains a
controller unattach or a device unattach interface, which is called when the
driver is unloaded. You define the entry point for each of these interfaces in
the dr i ver structure. Refer to Writing Device Drivers, Volume 1: Tutorial
for a description of the dr i ver structure. The following sections show you
how to set up each of these interfaces for the TURBOchannel bus.

3.2.1 Setting Up the xxprobe Interface
A device driver's xxprobe interface performs tasks necessary to determine
if the device exists and is functional on a given system. Specific tasks
performed by this interface vary, depending on whether the device driver is
statically or dynamically configured:

When drivers are configured statically, the kernel calls the xxprobe
interface at boot time to check for the existence of each device defined in
the system configuration file. Typically, the xxprobe interface
determines whether the device is present by checking some device status
register. Calling the BADADDR interface is one way to check device status
registers. If the device is not present, the device is not initialized and not
available for use. On success, the xxprobe interface returns a nonzero
value. On error, the xxprobe interface returns zero (0).

When device drivers are configured dynamically, the kernel indirectly
calls the xxprobe interface to register the device interrupt handlers.
The interface registers the device interrupt handlers with calls to the
handler add and handler enable interfaces.

The xxprobe interface is called for each stanza entry that was defined in
the stanza .loadable file for the device driver. This file includes
declarations of the driver's connectivity information as specified by the
Module Config fields. The kernel calls the
ldbl stanza resolver interface to merge the driver's connectivity
information into the system configuration of bus, controller, and
device structures. Then, a call to the ldbl ctlr configure
interface results in a call to the xxprobe interface for each instance of
the controller present on the TURBOchannel bus. On success, the
xxprobe interface returns a nonzero value. On error, the interface
returns the value zero (0).

It is important to note the differences between the tasks performed by the
static and loadable versions of the driver and to conditionalize your code
accordingly:

3-4 Structure of a TURBOchannel Device Driver

• When a driver is dynamically configured, the xxprobe interface cannot
call the BADADDR interface, which is available only in the early stages of
system booting.

• When a driver is statically configured, the xxprobe interface does not
register device interrupt handlers. Device interrupt handlers are defined
in the system configuration file or the stanza. static file fragment
and registered at system configuration time by the conf ig program.

The following code fragment shows the cbprobe interface as defined for
the / dev / cb device driver example in Writing Device Drivers, Volume 1:
Tutorial. Note that tasks specific to loadable device drivers are identified by
a conditional if statement that tests the value of the cb is dynamic
variable: - -

cbprobe(vbaddr, ctlr)
caddr t vbaddr; rn
struct controller *ctlr; ~

ihandler t handler; ~
struct tc intr info info; ~
int unit ~ ctlr->ctlr_nurn; ~

if (cb_is_dynarnic) { ~

handler.ih bus = ctlr->bus_hd; ~

info.configuration_st = (caddr_t)ctlr; ~

info.config_type = TC_CTLR; ~

info.intr = cbintr; ~

info.pararn = (caddr_t)unit; ~

handler.ih_bus_info = (char *)&info; ~

cb id t[unit] = handler add(&handler); ~
if-(ch_id_t[unit] == NULL) { ~

return(O);

if (handler_enable(cb_id_t[unit]) != 0) { ~

handler_del(cb_id_t [unit]); ~
return(O);

nurn_cb++; IIZI

return (1); ffSI

[j] Declare a vbaddr argument that specifies the System Virtual Address
(SV A) that corresponds to the base address of the slot. This line is
applicable to the loadable or static version of the / dev / cb device driver.

Structure of a TURBOchannel Device Driver 3-5

12.1 Declare a pointer to the controller structure associated with this CB
device. The controller structure represents an instance of a
controller entity, one that connects logically to a bus. A controller can
control devices that are directly connected or can perform some other
controlling operation, such as network interface or terminal controller.
This line is applicable to the loadable or static version of the / dev / cb
device driver.

[3] Declare an ihandler t data structure called handler to contain
information associated with the / dev / cb device driver interrupt
handling. The cbprobe interface initializes two members of this data
structure. This line is applicable only to the loadable version of the
/ dev / cb device driver.

~ Declare a tc intr info data structure called info (used only by the
loadable versIOn of the driver).

15] Declare a uni t variable and initialize it to the controller number. This
controller number identifies the specific CB controller being retrieved by
this call to cbprobe.

The controller number is contained in the ctlr num member of the
controller structure associated with this CB device. This member is
used as an index into a variety of tables to retrieve information about this
instance of the CB device.

[§] Register the interrupt handlers if cb is dynamic evaluates to a
nonzero value, indicating that the / dev Icb device driver was
dynamically loaded. If the driver was statically configured, the interrupt
handlers have already been registered through the config program.

The cb is dynamic variable contains a value to control any
differences in tasks performed by the static and loadable versions of the
/ dev / cb device driver. This approach means that any differences are
made at run-time and not at compile-time. The cb is dynamic
variable was previously initialized and set by the cb configure
interface, discussed in Writing Device Drivers, Volume 1: Tutorial.

The items from 7 - 17 set up the driver's interrupt handler and are
applicable only if the driver is dynamically loaded.

IZI Specify the bus that this controller is attached to. The bus hd member
of the controller structure contains a pointer to the bus structure
that this controller is connected to. After the initialization, the ih bus
member of the ihandler t structure contains the pointer to the bus
structure associated with the / dev / cb device driver. This setting of the
ih bus member is necessary because the process of registering the
interrupt handlers indirectly calls interrupt registration interfaces that are
bus-specific.

3-6 Structure of a TURBOchannel Device Driver

IDI Set the configuration st member of the info data structure to the
pointer to the controller structure associated with this CB device.
This is the controller structure for which an associated interrupt will
be written.

This line also performs a type casting operation that converts ctlr
(which is of type pointer to a controller structure) to be of type
caddr_t, the type of the configuration_st member.

~ Set the config type member of the info data structure to the
constant TC CTLR, which identifies the / dev / cb driver type as a
TURBOchannel controller.

[j]] Set the intr member of the info data structure to cbintr, the
/ dev / cb device driver's interrupt service interface (lSI).

[j] Set the param member of the info data structure to the controller
number for the controller structure associated with this CB device.
Once the driver is operational and interrupts are generated, the cbintr
interface is called with this parameter to specify the instance of the
controller with which the interrupt is associated.

This line also performs a type casting operation that converts unit
(which is of type int) to be of type caddr t, the type of the param
member. -

lI2I Set the ih bus info member of the handler data structure to the
address of the bus-specific information structure, info. This setting is
necessary because the interrupt registration process indirectly calls bus­
specific interfaces to register the interrupt handlers.

This line also performs a type casting operation that converts info
(which is of type ihandler t) to be of type char *, the type of the
ih bus info member. -

- -
IIaJ Call the handler add interface and save its return value for use later

by the handler del interface. The handler add interface takes
one argument: a pointer to an ihandler t datastructure, which in the
example is the initialized handler structure.

This interface returns an opaque ihandler id t key, which is a
unique number used to identify the interrupt serVICe interfaces to be acted
on by subsequent calls to handler_del, handler_disable, and
handler enable.

llAI If the return value from handler add equals NULL, return a failure
status to indicate that registration of the interrupt handler failed.

[1]] If the handler enable interface returns a nonzero value, return the
value zero (0) to Indicate that it could not enable a previously registered
interrupt service interface. The handler enable interface takes one
argument: a pointer to the interrupt service Interface 's entry in the

Structure of a TURBOchannel Device Driver 3-7

interrupt table. In this example, this id is contained in the cb _ id _ t
array.

[§] If the call to handler enable fails, remove the previously registered
interrupt handler by calling the handler_del interface before returning
an error status.

[II Increment the number of instances of this controller found on the system.

[DJ The cbprobe interface simply returns the value 1 to indicate success
status because the TURBOchannel initialization code already verified that
the device was present.

3.2.2 Setting Up the xxslave Interface
A device driver's xxslave interface is called only for a controller that has
slave devices connected to it. This interface is called once for each slave
attached to the controller. You specify the attachments of these slave
devices:

• For the static version of your driver, in the system configuration file or
stanza. static file fragment

• For the loadable version of your driver, in the stanza .loadable file
fragment

The following code fragment illustrates how to set up an xxslave interface:

xxslave(dev, addr)
struct device *device; ill
caddr_t addr; ~
{
/* declarations of variables and structures */

/* code to check that the device is valid */

}

[I Declare a pointer to the device structure for this device.

121 Declare an argument to specify the SVA (System Virtual Address) of the
base of the TURBOchannel slot space for the controller to which this
device is connected.

3-8 Structure of a TURBOchannel Device Driver

3.2.3 Setting Up the xxcattach and xxdattach Interfaces
The xxcattach and xxdattach interfaces perform controller- or device­
specific initialization. These interfaces usually perform the tasks necessary to
establish communication with the actual device. Such tasks may include, for
a device attach interface, initializing a tape drive or putting a disk drive
online. These interfaces initialize any global data structures that are used by
the device driver.

At boot time, the autoconfiguration software calls these interfaces under the
following conditions:

• If the device is connected to a controller, the xxdattach interface is
called if the controller's slave interface returns a nonzero value,
indicating that the device exists.

• If the device is not connected to a controller, the xxcattach interface
is called if the probe interface returns a nonzero value, indicating that
the device exists.

The following code fragment illustrates setup of the xxcattach interface:

xxcattach(ctlr)
struct controller *ctlr; ill
{

/* Attach interface goes here. */

return;
}

III Declare a a pointer to a controller structure for this controller.

The following code fragment illustrates setup of the xxdattach interface:
xxdattach(dev)
struct device *dev; ill
{
/* declarations of variables and structures */

/* code to establish communication with the device */

}

III Declare a pointer to the device structure for this device.

Structure of a TURBOchannel Device Driver 3-9

3.2.4 Setting Up the Controller Unattach Interface
Use the xxctlr unattach interface to remove a controller structure
from the list of controllers the device driver handles. This interface cleans up
any in-memory data structures and removes any interrupt handlers that may
have been established by the device driver. The xxctlr unattach
interface is applicable only to loadable drivers. The following code fragment
illustrates setup of the xxctrl_ unattach interface:

int cb ctlr unattach(bus, ctlr)
struct bus *buSi ill
struct controller *ctlri ~

register int unit = ctlr->ctlr_nurni ~

if ((unit> nurn_cb) II (unit < 0» { ~
return(l)i

}

if (cb_is_dynarnic == 0) { ~
return(l)i

}

if (handler disable(cb_id_t[unit]) 1= 0) { ~
return(l)i

}

if (handler del(cb_id_t[unit]) 1= 0) { ~
return(l)i

}
return (0) i ~

[j] Declare a pointer to a bus structure and call it bus. The bus structure
represents an instance of a bus entity. A bus is a real or imagined entity
to which other buses or controllers are logically attached. All systems
have at least one bus, the system bus, even though the bus may not
actually exist physically. In this case, bus represents the bus that this
controller is connected to. The term controller here refers both to devices
that control slave devices (for example, disk and tape controllers) and to
devices that stand alone (for example, a terminal or a network controller).

121 Declare a pointer to a controller structure and call it ctlr. This is
the controller structure you want to remove from the list of
controllers handled by the / dev / cb device driver.

@! Declare a uni t variable and initialize it to the controller number. This
controller number identifies the specific CB controller whose associated
controller structure is to be removed from the list of controllers
handled by the / dev / cb driver.

The controller number is contained in the ctlr num member of the

3-10 Structure of a TURBOchannel Device Driver

controller structure associated with this CB device.

~ If the controller number is greater than the number of controllers found
by the cbprobe interface or the number of controllers is less than zero,
return the value 1 to the bus code to indicate an error. This sequence of
code validates the controller number. The num cb variable contains the
number of instances of the CB controller found by the cbprobe
interface.

151 If cb is dynamic is equal to the value zero (0), return the value 1 to
the bUS code to indicate an error. This sequence of code validates
whether the / dev / cb driver was dynamically loaded. The
cb is dynamic variable contains a value to control any differences in
tasks performed by the static and loadable versions of the / dev / cb
device driver. This approach means that any differences are made at run­
time and not at compile-time. The cb is dynamic variable was
previously initialized and set by the cb_ configure interface.

[§] If the return value from the call to the handler disable interface is
not equal to the value zero (0), return the value 1-to the bus code to
indicate an error. Otherwise, the handler disable interface makes
the / dev / cb device driver's previously regIstered interrupt service
interfaces unavailable to the system.

IZJ If the return value from the call to the handler del interface is not
equal to the value zero (0), return the value 1 to the bus code to indicate
an error. Otherwise, the handler del interface deregisters the
/ dev / cb device driver's interrupt service interface from the bus-specific
interrupt dispatching algorithm.

The handler del interface takes the same argument as the
handler disable interface: a pointer to the interrupt service's entry
in the interrupt table.

~ Return the value zero (0) to the bus code upon successful completion of
the tasks performed by the cb_ctlr_unattach interface.

3.2.5 Setting Up the Device Unattach Interface
Use the xxdev unattach interface to remove a device structure from
the list of devices the device driver handles. This interface unloads a device
and therefore applies only to loadable drivers.

Structure of a TURBOchannel Device Driver 3-11

The following code fragment illustrates setup of the xxdev unattach
interface: -

xxdev_unattach (ctlr,dev)

struct controller *ctlri ill
struct device *devi ~

IlJ Declare a pointer to a controller structure for the controller to which
this device is connected.

121 Declare a pointer to the device structure you want to remove from the
list of devices handled by the device driver.

3.3 The Configure Section
Loadable drivers contain an xx conf igure interface that is called from
the c f gmgr interface in response to system manager commands. The
xx configure interface returns data necessary to load and unload the
deVIce driver and responds to requests for configuration information. The
following code fragment illustrates setup of the xx_configure interface:

cb configure(op,indata,indatalen,outdata,outdatalen)
-sysconfig op t 0Pi ill

device config t *indatai ~
size t-indataleni ~
device config t *outdatai ~
size_t-outdataleni ~

IlJ Declare an argument called op to contain a constant that describes the
configuration operation to be performed on the loadable driver. This
argument is used in a switch statement (not shown here) and evaluates
to one of these valid constants: SYSCONFIG CONFIGURE,
SYSCONFIG _ UNCONFIGURE, and SYSCONFIG _QUERY.

121 Declare a pointer to a device config t data structure called
indata that consists of inputsto the cb - conf igure interface. This
data structure is filled in by the device driver method of c f gmgr. The
device config t data structure is used to represent a variety of
information, includmg the / dev / cb driver's major number
requirements. Writing Device Drivers, Volume 2: Reference provides a
reference (man) page style description of the device _ config_ t
structure.

3-12 Structure of a TURBOchannel Device Driver

I3l Declare an argument called indatalen to store the size of this input
data structure, in bytes.

~ Declare a pointer to a data structure called outdata that is filled in by
the / dev / cb driver. This data structure contains a variety of
information, including the "return values" from the / dev / cb driver to
cfgmgr. This returned information contains the major number assigned
to the CB device.

151 Declare an argument called outdatalen to store the size of this output
data structure, in bytes.

Structure of a TURBOchannel Device Driver 3-13

Kernel 1/0 Support Interfaces Used by 4
TURBOchannel Device Drivers

This chapter describes when and why you would use the kernel interfaces
developed for use with TURBOchannel device drivers. The chapter provides
brief examples to illustrate how to use these interfaces in device drivers. For
complete descriptions of the definitions and arguments for these kernel
interfaces, see Appendix A.

When writing device drivers for the TURBOchannel bus, you need to be
familiar with kernel interfaces that:

• Enable or disable a device's interrupt line to the processor

• Determine the base address of a device

• Determine the name of a specific option module

• Isolate and determine the status of a memory error

• Ensure that a write to I/O space completes

• Obtain the page frame number

• Manage memory map registers

Additionally, the 1/0 subsystems for the DEC 3000 series processors allow a
TURBOchannel device driver to transfer data to and from non-contiguous
physical memory using a hardware scatter-gather map.

4.1 Enabling or Disabling a Device's Interrupt Line
The kernel automatically enables the device's interrupts after
autoconfiguration, depending on what you specified in the tc option data
table. However, some devices need interrupts alternately enabled and disabled
during autoconfiguration, and the tc enable option and
tc disable option interfaces are availabie for this purpose. Note that
calling the tc -enable option interface when the device does not require
interrupts to be alternatelY enabled and disabled during autoconfiguration can
result in generation of interrupts before the device is prepared to receive
them.

The following code fragment illustrates calls to tc _enable_option and

extern struct device *cfbinfo[];
int cfb curs vsync = 0;
struct devIce *cfbinfo[l];

case QIOWLCURSOR:
cfb curs vsync = 1;
*(cfbp->framebuffer + IREQ OFFSET) = 0;
tc enable option(cfbinfo[O]); ill
whIle (cfb curs vsync)

sleep(&cfb curs vsync, TTIPRI); ~
tc disable optIon(cfbinfo[O]); ~
break; -

[1] This code fragment uses a switch statement whose corresponding case
values represent some task performed by this driver. The code fragment
picks up with the QIOWLCURSOR case value and it illustrates calls to the
tc enable option and tc disable option interfaces. The
singie argument passed to tc enable option is the pointer to the
dev ice structure associated with device unit O. Device unit 0 is the
device whose interrupt line to the processor is enabled.

121 While the cfb _curs _ vsync value is true, the process sleeps.

131 The interrupt line to the processor for device unit 0 is disabled.

4.2 Determining the Name of an Option Module
The tc module name interface returns the name of a specific
TURBOchannel option module. You pass a pointer to a controller
structure and a character array to be filled in by tc _module_name.

The following code fragment illustrates a call to the tc module name
interface: - -

struct controller *ctlr; ill
char cp[TC_ROMNAMLEN + 1]; ~

if (tc_module_name(ctlr, cp) -1) { ~

4-2 Kernel 110 Support Interfaces Used by TURBOchannel Device Drivers

printf("Module name conversion failed\n"); ~
}
else {

printf("Module name is %s\n", cp); i
}

[j] Declare a pointer to the controller structure for this controller.

121 Declare a character array to hold the module name. This character array is
of size TC ROMNAMLEN + 1, which is large enough to accommodate
the module's name.

@] If the call returns -1, then name lookup failed.

~ Print an error message if the conversion failed.

[5] If the call does not return -1, then name lookup was successful; print the
module name.

4.3 Determining a Device's Base Address
In the tc module name interface, you pass a pointer to a controller
structure to determine the TURBOchannel option's module name. However,
the pointer to the controller structure is not valid in the driver's
xxprobe interface. Therefore, if you need to determine the base address of
a device in the xxprobe interface, use the tc addr to name interface.
The tc addr to name interface returns the-TURBOchannel option's
module name referred to by the base address of the device (the base address
of the device is the address passed to the driver's xxprobe interface).

The following code fragment illustrates a call to the tc addr to name
interface: - --

struct controller *ctlr; ill
char cp [10] ; I2l

if (tc addr to name(ctlr->addr, cp) == -1) { ~
- printf("Address to Name lookup failed\n"); ~

}
else {

printf("Module name is %s\n", cp); i
}

[j] Declare a pointer to the controller structure for this controller; the
addr member of the controller structure contains the address of the
controller.

Kernel 1/0 Support Interfaces Used by TURBOchannel Device Drivers 4-3

121 Declare a character array to hold the module name.

13.1 If the conversion fails, the interface returns -1.

~ Print an error message if the conversion fails.

151 On success, print the module name.

4.4 Isolating and Handling Memory Errors
Use the tc isolate memerr interface to obtain and log information
about errorS-that occur an a direct memory access. Support for this interface
is platform specific. The call to tc isolate memerr returns -1 if the
interface is not supported by the platform. Thetc isolate memerr
interface takes a pointer to a structure that contains "the following
information:

The physical address of the error

• The virtual address of the error

A flag to indicate whether to log the error

The size of the DMA block being transferred

• The error type

Error types are returned to indicate if a parity (transient, hard, or soft)
error occurred or if no error occurred.

The following code fragment for the / dev / none device driver illustrates a
call to the tc isolate memerr interface:

#include <io/dec/tc/tc.h> ill

struct tc memerr status none memerr; ~
none_memerr_status = &none_memerr; ~

none memerr status->pa = err addr; ~
none=memerr=status->log = TC=LOG_MEMERR; ~

tc_isolate_memerr(none_memerr_status} ~

ill Include the header file that defines the tc memerr status data
structure and associated flags.

4-4 Kernel I/O Support Interfaces Used by TURBOchannel Device Drivers

121 Declare a pointer to the tc _ memerr _status structure.

IaJ Initialize the pointer to the tc _ memerr _status structure.

~ Store the error address.

151 Request that the error be logged.

I§] Call the tc isolate memerr interface, passing to it the pointer to
the tc memerr status structure.

4.5 Ensuring a Write to 1/0 Space Completes
The mb interface ensures a write to I/O space has completed. Whenever a
device driver writes to I/O space, the write may be intermittently delayed
through the imposition of a hardware-dependent system write buffer.
Subsequent reads of that location do not wait for a delayed write to complete.
Either the original or the new value may be obtained. Subsequent writes of
that location may replace the previous value, either in I/O space or in the
system write buffer, if its writing was delayed. In this case, the previous
value would never have actually been written to I/O space.

Whether a given write to I/O space is delayed and how long this delay is
depends upon the existence of a system write buffer, its size, and its content.
In general, delayed writes are not a problem. Device drivers need not call mb
except in the following special situations:

• The write causes a state change in the device, and the change is indicated
by a subsequent device-induced change in the value of the location being
written by the device driver. This situation normally exists only during
initialization of certain devices.

• The value being written is permanently consumed by the act of writing it.
This situation exists only for certain specific devices, including some
terminal devices.

The following code fragment illustrates a call to mb:

if (reg->csr & ERROR)
{

return(O);
}
reg->csr=O;
mb (); ill

Kernel 1/0 Support Interfaces Used by TURBOchannel Device Drivers 4-5

ill This code fragment shows that if the result of the bitwise AND operation
produces a nonzero value (that is, the error bit is set), then the value zero
(0) is returned. If the result of the bitwise AND operation is a zero value
(that is, the error bit is not set), then the device's control status register is
set to zero (0) and the mb interface is called to ensure that a write to I/O
space completes. Note that mb takes no arguments.

Note that on Alpha AXP systems, the wbf 1 ush interface is aliased to mb.

4.6 Using Scatter-Gather Maps
The I/O subsystems of some CPUs allow a TURBOchannel device driver to
transfer data to and from noncontiguous physical memory using a hardware
scatter-gather map. Once the scatter-gather map is set up, transfers from
noncontiguous physical memory appear to the DMA engine as physically
contiguous memory for the duration of the transfer.

Using a scatter-gather map consists of three operations:

• Allocation (reservation) of portions of the scatter-gather map

• Filling the map with the physical address of the data to be transferred

• Deallocation of the map

The interfaces to the scatter-gather map provide a consistent means for device
drivers to reserve, use, and release scatter-gather maps and relieves the driver
of the burden of finding physical addresses for each page of the transfer. The
size or granularity of the transfer is not restricted.

Resource maps allocate and deallocate the map entries. The resource maps
also manage fragmentation and compaction of the list of free map ram entries
as they are allocated and deallocted by drivers; the drivers are not responsible
for maintaining this information.

As an aid in debugging device drivers, the resource map code provides a
warning if the scatter-gather map becomes overly fragmented and panics the
system if the allocation and deallocation interfaces are called with
inconsistent byte counts.

Before calling interfaces to a scatter-gather map, you may want to test the
cpu variable to determine if the CPU type is one with map registers, for
example:
if cpu != <type-value-list>

<perform task that does not use map registers>

else

<call tc_map_alloc or tc_Ioadmap interface>

4-6 Kernel 110 Support Interfaces Used by TURBOchannel Device Drivers

For Alpha AXP CPUs, the cpu variable and associated CPU type values are
defined in the file
/usr/sys/include/arch/alpha/hal/cpuconf .h. Check your
hardware documentation to determine which Alpha AXP CPUs have map
registers.

4.6.1 Preallocating a Scatter-Gather Map
To use a scatter-gather map, a TURBOchannel device driver must allocate
one map entry per page of noncontiguous physical memory to be transferred.
You need to decide whether your device driver allocates map entries each
time the memory map is loaded for a transfer operation or preallocates map
entries for use during multiple transfers. Preallocation of map entries is most
appropriate for drivers that handle small transfers that occur continuously.
When a device driver preallocates map entries, the corresponding CPU map
registers are not available to other device drivers.

Use the tc map alloc interface to preallocate the map entries. The
following code fragment illustrates a call to this interface:
struct buf *bp;
unsigned long addr;

if((addr = tc_map_alloc(bp->b_bcount, TC_MAP_SLEEP)) == -1) ~
{
printf("tc_map_alloc failed\n");
return;
}

ffl This line shows that the tc map alloc interface takes two arguments.
The first argument specifies the number of bytes to be transferred. In this
example, the number of bytes to be transferred is contained in the
b bcount member of the pointer to the buf structure. This member is
initialized by the kernel as the result of an 1/0 request. The example
references this member to determine the size of the 1/0 request.

The second argument specifies one or more flags. In this example, the
TC MAP SLEEP flag is specified to force the tc map alloc interface
to Sleep if the requested map entries cannot be allocated Immediately.

The code fragment sets up a condition statement to test if the call to
tc map alloc fails (returns the value -1); on failure, the actions
taken are to:

- Print an error message

- Return to the calling interface

Kernel 1/0 Support Interfaces Used by TURBOchannel Device Drivers 4-7

4.6.2 Mapping the Transfer
Prior to loading an address and starting the DMA engine, a TURBOchannel
driver calls the tc loadmap interface. If the device driver does not pass
this interface the vaiue returned by a preceding call to tc map alloc, the
tc loadmap interface first calls tc map alloc to allOcate map entries.
After map entries are allocated, tc ioadmap walks through each page of a
region of virtual memory to be transferred and fills scatter-gather map entries
with the physical addresses of those pages. The tc loadmap interface
returns a physical address that is loaded into a DMA engine. This address
appears to the DMA engine as a contiguous region of physical memory. The
starting virtual address has no alignment restrictions and the physical
addresses need not be in contiguous pages. There is no restriction on the size
of the transfer.

The process that calls tc loadmap must ensure that the data to be
transferred is locked in memory at the time of the call and for the duration of
the DMA. The calling driver must also manipulate the physical address
returned by tc loadmap so that it conforms with the DMA hardware being
used. -

The following code fragment illustrates a call to the tc _loadmap interface:
struct buf *bp;
unsigned long addr;
long base = 0;

if ((addr = tc loadmap(bp->b proc, &base, bp->b un.b addr,
bp->b_bcount, (TC_MAP=SLEEP I TC_MAP_FAILSOFT))) == -1) ill

{
printf ("tc_loadmap failed\n");
return;

ill This line shows that the tc _loadmap interface takes five arguments:

- The first argument specifies a pointer to the proc structure that
represents the process on whose behalf the data is being transferred.
In the example, the proc pointer is obtained by referencing the
b proc member of the pointer to the buf structure. The proc
pOInter is required to get the proper physical addresses into the map
registers.

- The second argument specifies either a pointer to the address of the
variable that contains the value returned in a previous call to
tc map alloc or the value zero to indicate that map entries are to
be dynanllcally allocated. In this example, the value contained in the
base variable is zero (0), indicating that map registers need to be

4-8 Kernel 110 Support Interfaces Used by TURBOchannel Device Drivers

allocated for this transfer.

- The third argument specifies the starting virtual address of the data to
be transferred. In this example, the address is obtained by referencing
the b un. b addr member of the pointer to the bu f structure. This
member is set by the kernel and is the main memory address where
the 110 operation occurs.

- The fourth argument specifies the number of bytes to be transferred.
In this example, the number of bytes to be transferred is contained in
the b _ bcount member of the pointer to the buf structure.

- The fifth argument specifies one or more flags. In this example, the
TC MAP SLEEP flag forces the tc loadmap interface to sleep
until contiguous map entries are available for the transfer and the
TC MAP FAILSOFT flag prevents a system panic if the call cannot
obtmn map entries for the transfer.

If the tc loadmap interface fails (returns the value -1), the actions
taken are to:

- Print an error message

- Return to the calling interface

4.6.3 Freeing Map Entries
When a DMA completes, a TURBOchannel device driver can return the map
entries to the pool using the tc map free interface. The following code
fragment illustrates a call to thiS-interface:
struct buf *bPi
unsigned long addri

addr = tc_loadmap(...)i

ill This line shows that the tc _map_free interface takes three arguments:

The first argument specifies the value returned by the tc loadmap
interface. This value is the physical address that was passed to the
DMA hardware.

- The second argument specifies the amount of transferred data, in
bytes, as specified in a previous call to tc loadmap. In this
example, the number of bytes is containedln the b bcount member
of the pointer to the buf structure. -

Kernel liD Support Interfaces Used by TURBOchannel Device Drivers 4-9

- The third argument specifies one or more flags. In this example, the
call specifies the TC MAP INVAL flag so that the map entries used
for the transfer are zeroed and marked as invalid before being returned
to the pool of free map entries. This action prevents memory
corruption in the event the DMA engine attempts to use one of the
map entries.

4-10 Kernel 1/0 Support Interfaces Used by TURBOchannel Device Drivers

Device Autoconfiguration 5

Each TURBOchannel device (option module) has the following
characteristics, which are defined in the tc _ s lot structure:

• The name of the I/O module as it appears in read-only memory (ROM)
on the device

• The name of the controller or device attached to the TURBOchannel bus

• The TURBOchannel 1/0 slot number

• The number of slots occupied by the 1/0 module

• A pointer to the interrupt interface

• The unit number of the device

• The base physical address of the device

• The class of the I/O module (device or controller)

• Parameters to determine when interrupts are enabled

• A pointer to the adapter configuration interface

• Additional parameters and flags

The operating system uses the information contained in the tc slot
structure to perform the following tasks during autoconfiguration:

• Probe TURBOchannel option slots

• Obtain the I/O module's name

• Map TURBOchannel slot numbers

• Register the driver's interrupt handler

• Determine when interrupts are enabled

Following the discussion of these tasks, there is a brief discussion of the
tc_option table in the file lusrlsys/data/tc_option_data.c.

5.1 Probing TURBOchannel Option Slots
During system startup, the operating system searches the TURBOchannel
address space to determine which slots actually contain an I/O module. Each
TURBOchannel I/O slot is at a fixed and known physical address. Therefore,

the operating system can search the TURBOchannel I/O slots by their known
physical addresses. If the slot contains an 110 module, the device driver's
xxprobe interface performs device-specific setup and initialization that may
include forcing the device to interrupt.

Each 110 module must have a ROM with a known format. The operating
system reads that ROM to determine the 110 module's width (that is, the
number of slots the module occupies) and to obtain the 110 module's name.

5.1.1 Obtaining the 1/0 Module's Name
The way in which the operating system obtains the 110 module name differs,
depending on whether driver configuration is static or dynamic.

5.1.1.1 Static Configuration

After probing the TURBOchannel 110 slots, the operating system looks up
the module name for the device's controller in the tc option data table.
This table maps TURBOchannel module names to names as they are
specified in the system configuration file. The tc option table contains a
structure entry for each of the TURBOchannel 110 options on the system.
The following example shows the entry for the / dev / cb device driver in
the system configuration file:

controller cbO at tcO vector cbintr

The following example shows the corresponding entry for the driver in the
tc option data table in the /usr/sys/data/tc option data.c
file: - -

struct tc_option tc_option [] =
{

};

/* module
/* name

"CB

/*

driver intr b4 itr aft adpt */
name probe attach type config */

"cb" , 0, 1, 'C I, O}, */ CB */

* Do not delete this null entry, which terminates the table or your
* system will not configure properly.
*/

{ /* Null terminator in the table */

The operating system compares the device names found in the 110 slots and
the tc option table (optional as well as fixed devices) with the names in
the system configuration file. These device names appear in the ctlr list
table (an array of controller structures). Each entry in the system-

5-2 Device Autoconfiguration

configuration file specifies the interrupt interface for the device. In the
previous example, the interrupt interface is called cbintr.

The name of the interrupt interface is placed in the ctlr list table by the
can fig program. -

It is recommended that you do not directly edit the tc option data. c
file to add entries for third-party device drivers. Instead, you can provide data
for entries in a config. file file fragment that you include in your device
driver installation kit. Refer to Writing Device Drivers, Volume 1: Tutorial
for more information about the config. file file fragment.

5.1.1.2 Dynamic Configuration

When device drivers are dynamically loaded, the operating system retrieves
TURBOchannel option data from the /etc/sysconfigtab database
rather than the system configuration file. The following example shows the
entry for the /dev/cb device driver in the /etc/sysconfigtab
database:

Module_Config2 = controller cbO at tcO

The name of the interrupt handler is not part of a device driver entry in the
/etc/sysconfigtab database; for loadable drivers, the interrupt
interface is registered through the device driver's xxprobe interface.

For your device driver to be loadable, you must supply configuration data in
the declarations and definitions section of your driver. The following
example illustrates the code in the declarations and definitions section for the
loadable implementation of the / dev / cb device driver:
struct tc_option cb_option_snippet [] =
{

};

/* module
/* name
/*
{ "CB
{

driver
name

"cb" ,

intr b4 itr aft
probe attach type

adpt */
config */

*/
0, 1, 'C', O},

} /* Null terminator in the table */

The configuration information contained in cb option snippet does
not have to be added directly in the tc option data taNe. For loadable
drivers, the operating system configureS-the device using the information in
the tc option table along with the information in
cb option snippet. The cb option snippet structure is parsed
as an argument to the ldbl stanza resol ver interface to configure the
device. --

Device Autoconfiguration 5-3

5.1.2 Mapping TURBOchannel Slot Numbers
If the operating system matches a device name in the tc option table with
a device name in the system configuration file, the system puts an entry in
the tc slot table. During the configuration of a loadable driver, the
operating system uses the device name specified in the bus-specific parameter
provided to the ldbl stanza resolver interface. For the
TURBOchannel bus, the bus-specific parameter is the tc option snippet
table (the cb option snippet structure in the examPle in Section
5.1.1.2). - -

If the operating system matches a module name in a module ROM that is not
in the tc option data table (static configuration) or the tc option
snippet table (dynamic configuration), then the system warns that the device
is unknown.

At system configuration time, the operating system does not configure any
device whose name is not in the system configuration file. That is, the
operating system does not call the driver's probe, slave, or attach
interface and disables the device's interrupt line if the device is specified only
in the tc option table. When drivers are configured dynamically, the
operating system calls the driver's probe, slave, or attach interface and
enables device interrupt lines when the driver is loaded.

For properly configured and recognized controllers and devices, the operating
system calls the probe, attach, and slave interfaces through the ibus
configuration interfaces. The ibus configuration interfaces obtain the names of
the probe, attach, and slave interfaces from the device driver's
dr i ver structure.

The operating system handles adapters in a way similiar to the way it handles
devices and controllers. Adapters have an adapter line in the system
configuration file, with no interrupt interface. The operating system
configuration code looks up the adapter module name in the tc option
data table and obtains the name of the adapter configuration interface to call.
One of the arguments passed to the adapter configuration interface is an
address where that configuration interface places the address of the interrupt
handling interface.

5-4 Device Autoconfiguration

TURBOchannel Device Driver 6
Configuration

Writing Device Drivers, Volume 1: Tutorial describes the device driver
configuration models provided by the DEC OSFIl operating system. The
third-party device driver configuration model is recommended for third-party
device driver writers who want to ship loadable and static drivers to
customers whose systems run DEC OSFIl. In the third-party configuration
model, you supply information in the form of file fragments that are included
in the device driver product kit. These file fragments are input to automated
configuration tools, which combine the information supplied by a file
fragment with information supplied by other files of the same type. The
traditional device driver configuration model, in which you directly edit
system files to add driver information, is suitable for driver writers during the
initial stages of driver development. See Writing Device Drivers, Volume 1:
Tutorial for:

• A detailed comparison of the third-party and traditional device driver
configuration models

• Descriptions of the syntaxes and mechanisms used to populate device
driver configuration-related files

This chapter assumes that you are familiar with the device driver
configuration models, the syntaxes used to populate configuration-related
files, and the steps performed to configure loadable and static device drivers
on the TURBOchannel bus. Discussion in this chapter is limited to the
following topics related to configuring device drivers on the TURBOchannel
bus:

• Using a tc _data file with the mktcdata utility

This topic applies to drivers that are statically configured in accordance
with the third-party configuration model.

.' Creating a tc _option snippet table

This topic applies to drivers that are dynamically configured in
accordance with either the traditional or the third-party configuration
model.

6.1 Using a tc_data File with the mktcdata Utility
When drivers are statically configured, driver information must exist not only
in the system configuration file or associated config. file fragment, but
also in the tc option data table. This table is defined in the
tc option data. c file. When using the third-party configuration
model, you do not directly edit the tc option data. c file to add the
information for your device. You provIde such information in a tc data
file that resides in the driver product kit area. During autoconfigunrtion, the
mktcdata utility copies the tc option data. c file from the
/usr / sys / data directory andadds entries for all registered third-party
drivers that include tc data files in their driver kit areas. The format of
the tc_data file is as follows:

#Entry
ROM ID=module name
DRV-NAME=driver name
[INTR B4=intr b4 probe]
[INTR-AFT=intr aft attach]
[TYPE~device type]­
[ADPT_CNFG=config_interface]

#Entry
Specifies the start of an entry in the tc_data file.

module name
SpeCIfies the device name in the ROM on the hardware device. This
name can be one to eight characters, and must be unique among names
of devices that are configured for the TURBOchannel bus.

driver name
SpeCIfies the name of the driver as it appears in the system configuration
file. This name must be unique among names of drivers that are
configured for the TURBOchannel bus.

in tr b4 probe
Specifies whether the device needs interrupts enabled before execution
of the driver's xxprobe interface. A zero (0) value indicates that the
device does not need interrupts enabled; this is the default value. A
value of 1 indicates that the device needs interrupts enabled.

intr aft attach
Specifies whether the device needs interrupts enabled after the driver's
xxprobe and attach interfaces complete execution. A zero (0) value
indicates that the device does not need interrupts enabled; this is the
default value. A value of 1 indicates that the device needs interrupts
enabled.

6-2 TURBOchannel Device Driver Configuration

device type
SpeCIfies the type of device, either: C (controller) or A (adapter). The
default value is c.

config interface
SpeCIfies the name of the interface to configure the adapter if
device type is A (adapter). If device type is C (controller) do
not specify a config_ interface entry m the tc _data file.

You can specify lines in the tc data file entry in any order; however, do
not include space characters within the line. Make sure each entry in the file
begins with the line #Entry and is separated from other entries with a blank
line.

The following example illustrates a section of the tc data file with an
entry for the / dev / cb driver: -

#Entry
ROM ID=CB
DRV NAME=cb
INTR B4=O
INTR AFT=l
TYPE=C
ADPT CNFG=O

#Entry

Each element in the entry initializes the corresponding member of the
tc option data structure. The mktcdata utility is automatically invoked
by the config program through a callout entry contained in the system
configuration file. The mktcdata utility adds information to the
tc option table from the driver's tc data file. The config program
resumes when the mktcda ta subprocess completes.

Refer to Writing Device Drivers, Volume 1: Tutorial for more detailed
discussion of callout entries.

6.2 Creating a te_option Table Snippet
When drivers are configured statically, data for the tc option table is
provided through the tc data file. For loadable drivers, data to be added
to the tc option tableis provided by a snippet table in the configuration
support declarations and definitions section of the device driver. Writing
Device Drivers, Volume 1: Tutorial illustrates how to create a snippet table;
however, an example is repeated here for easy comparison with the
tc data file described in Section 6.1:

TURBOchannel Device Driver Configuration 6-3

struct tc_option cb_option_snippet [] =
{

module driver intr b4
name name probe

"CB "cb" , 0,

itr aft
attach type

I, 'C' ,

/*
/*
/*
{
{ } /* Null terminator

adpt */
config */

*/
O},

in the table */ };

When the driver is loaded, the address of the tc option snippet table is
passed to the Idbl_ stanza _ resol ver interface.

6-4 TURBOchannel Device Driver Configuration

TURBOchannel-Specific Reference A
Information

This appendix provides reference information for the header file, data
structures, and kernel I/O support interfaces that are specific to the
TURBOchannel bus. Refer to Writing Device Drivers, Volume 2: Reference
for reference information on header files, data structures, and interfaces that
are not bus-specific.

A.1 Header File Used Only by TURBOchannel Device
Drivers
The /usr / sys/ include/ io/ dec/tc/tc. h file is the only header file
used exclusively by TURBOchannel device drivers.

Name
tc • h - Defines TURBOchannel 110 and option slots, data structures, and
kernel 110 support interfaces

Location
lusrlsys/include/io/dec/tc/tc.h

Description
The tc • h file contains definitions for TURBOchannel-specific data
structures and interfaces. It also contains definitions for flags and other
parameters used in those interfaces.

When to Include
All TURBOchannel device drivers contain the tc • h file in the Include Files
section of the driver.

Of Special Interest
Items of interest to device driver writers are:

• Thetc_info,tc_intr info,tc memerr_status, and
tc _option structures

• Flag definitions for enabling and disabling option modules and error
logging

• Status definitions for memory error types

• Definitions associated with TURBOchannel map registers

• Interfaces used by drivers that operate on the TURBOchannel bus

Related Information
Section A.3: tc addr to name, tc disable option,
tc enable option,tc isolate -memerr, tc module name, and
tc=option=control - - - -

A-2 TURBOchannel-Specific Reference Information

A.2 Data Structures Used Only by TURBOchannel
Device Drivers
Table A-I summarizes TURBOchannel-specific data structures.

Table A-1: Summary of Data Structures for TURBOchannel
Device Drivers

Data Structure

tc info

tc intr info

tc memerr status

tc_option

Summary Description

Contains information passed by the conf 11 and
conf 12 interfaces to the configuration interface of
any bus connected to the TURBOchannel bus.

Contains information associated with interrupt
handlers for loadable device drivers.

Contains information associated with errors that
occur on a direct memory access.

Contains the driver's module name, configuration
name, type, and interrupt handling attributes that are
used in the tc _option slot table.

TURBOchannel-Specific Reference Information A-3

Name
tc info - Contains bus information that is passed to the configuration
interface of any bus connected to the TURBOchannel bus

Include File
/usr/sys/include/io/dec/tc/tc.h

Synopsis

Member Name

addr

physaddr

slot

unit

intr

bus hd

Members

addr

Data Type

caddr t

caddr t

int

int

int (**intr)()

struct bus *

Specifies the virtual address of the slot containing the bus adapter.

physaddr
Specifies the physical address of the slot containing the bus adapter.

slot
Specifies the unit number of the bus adapter.

unit
Specifies the logical unit number of the controller as specified in the
system configuration file or the config. file file fragment (for
drivers that are statically configured) or the stanza. loadable file
fragment (for drivers that are dynamically configured).

intr
Specifies an array that contains the interrupt interfaces for the bus
adapter.

bus hd
Specifies a pointer to the bus structure for this TURBOchannel bus.

A-4 TURBOchannel-Specific Reference Information

Description
The tc info data structure contains bus information that the conf 11 and
conf12 interfaces pass to the configuration interface of any bus connected
to the TURBOchannel bus.

Related Information
Writing Device Drivers, Volume 2: Reference: bus data structure

TURBOchannel-Specific Reference Information A-5

Name
tc intr info - Contains information associated with interrupt handlers
for loadabie device drivers

Include File
/usr/sys/include/io/dec/tc/tc.h

Synopsis

Member Name

configuration_st

intr

param

config_type

Members

configuration st

Data Type

caddr t

int (*intr) ()

caddr t

unsigned int

Specifies a pointer to the bus or controller structure for which an
associated interrupt handler is written.

intr
Specifies a pointer to the interrupt handler for the specified bus or
controller.

param
Specifies a member whose content is passed to the interrupt service
interface.

config type
SpeCIfies the driver type.

You can set this member to one of these constants defined in
/usr/sys/include/io/dec/tc/tc.h: TC CTLR (controller),
TC _ ADPT (bus), TC _DEV (device). -

A-6 TURBOchannel-Specific Reference Information

Description
The tc intr info data structure contains interrupt handler information
for device controllers that are connected to the TURBOchannel bus.
Loadable drivers initialize the members of the tc intr info structure,
usually in the driver's xxprobe interface. - -

Related Information
Section A.4: xxprobe

TURBOchannel-Specific Reference Information A-7

Name
tc memerr status - Contains information associated with logging
memory errors on the TURBOchannel bus

Include File
/usr/sys/include/io/dec/tc/tc.h

Synopsis

Member Name

pa

va

log

blocksize

errtype

Members

pa

Data Type

caddr t

caddr t

int

int

u int

Specifies the physical address of the error.

va
Specifies the virtual address of the error.

log
Specifies whether to log the error, using one of the following flags:

Flag Meaning

TC NOLOG MEMERR Do not log the error.

TC LOG MEMERR Log the error.

blocksize
Specifies the size of the DMA block.

errtype
Specifies one of the following symbolic values:

A-a TURBOchannel-Specific Reference Information

Error Meaning

TC MEMERR NOERROR No error occurred.

TC MEMERR TRANS A transient memory error
occurred.

TC MEMERR SOFT A soft parity error occurred.

TC MEMERR HARD A hard parity error occurred.

Description
The tc memerr status data structure is used by the
tc isolate memerr interface to obtain error information associated with
deVIces operating on the TURBOchannel bus.

Related Information
Section A.3: tc isolate memerr

TURBOchannel-Specific Reference Information A-9

Name
tc option - Contains information used with option data files for device
drivers written for the TURBOchannel bus

Include File
/usr/sys/include/io/dec/tc/tc.h

Synopsis

Member Name

modname

confname

intr_b4_probe

intr aft attach

type

adpt_config

Members

modname

Data Type

char [TC_ROMNAMLEN + 1]

char [TC_ROMNAMLEN + 1]

int

int

char

int(*adpt_config)()

Specifies the name of the option module.

confname
Specifies the device or controller name as specified in the system
configuration file or the config. file fragment (for statically
configured drivers) or the stanza .loadable file (for dynamically
configured drivers).

intr b4 probe
Specifies whether interrupts are enabled before the xxprobe interface
is called.

intr aft attach
Specifies whether interrupts are enabled after the attach interface is
called.

A-10 TURBOchannel-Specific Reference Information

type
Specifies the module type using one of the following values:

Value

A

C

adpt config

Meaning

Adapter

Controller

Specifies the adapter configuration interface to be called.

Description
The tc option data structure contains information used with the
tc option data. c file and associated tc data file fragments that are
induded in device driver product kits. -

Related Information
Chapter 5

TURBOchannel-Specific Reference Information A-11

A.3 Kernel Support Interfaces Used Only by
TURBOchannel Device Drivers
Table A-2 summarizes the kernel interfaces for use in writing
TURBOchannel device drivers.

Table A-2: Summary of Kernel Support Interfaces for
TURBOchannel Device Drivers

Kernel Interface

tc addr to name

tC_disable_option

tc_enable_option

tc isolate memerr

tc_loadmap

tc_map_alloc

tc_map_free

tc module name

tc_option_control

Summary Description

Returns the option module name based on the
address passed to the xxprobe interface.

Disables a device's interrupt line to the processor.

Enables a device's interrupt line to the processor.

Returns information about memory errors.

Returns a physical address for scatter-gather map
entries to be loaded into a DMA engine.

Allocates TURBOchannel map registers.

Returns map entries to the pool after completion of a
DMA.

Determines the name of a specific option module.

Enables and disables various bus options.

A-12 TURBOchannel-Specific Reference Information

Name
tc addr to name - Determines the base address of a device

Synopsis

int tc addr to name(addr, cp)
vm offset t-addr;
char *cp;

Arguments

addr
Specifies the address (the base address of the device) that is passed to
the device driver's xxprobe interface.

cp
Specifies a pointer to a character array to be filled in with the option
module name. You must declare the cp array to be of the size
cp [TC ROMNAMLEN + 1] to ensure that the character array is large
enough to store the module name.

Description
The tc addr to name interface fills in the character array cp with the
ASCII string oftheTURBOchannel option's module name referred to by the
base address addr. In the tc module name interface, you pass a pointer
to a controller structure, which is not valid in the driver's xxprobe
interface. Therefore, use tc addr to name rather than
tc _module_name in a driver's xxprobe interface.

Return Value
This interface returns a value of -1 if it is unable to use the cp pointer you
passed. The interface returns zero (0) on success.

Related Information
tc module name

TURBOchannel-Specific Reference Information A-13

Name
tc _disable_option - Disables a device's interrupt line to the
processor

Synopsis

void tc_disable_option(ctlr)
struct controller *ctlr;

Arguments

ctlr
Specifies a pointer to a controller structure.

Description
The tc disable option interface disables a device's interrupt line to
the processor. A device driver uses this interface only if the device must
have its interrupts alternately enabled and disabled during device
autoconfiguration or during operation.

Return Value
None.

Related Information

A-14 TURBOchannel-Specific Reference Information

Name
tc _enable_option - Enables a device's interrupt line to the processor

Synopsis

void tc_enable_option(ctlr)
struct controller *ctlr;

Arguments

ctlr
Specifies a pointer to a controller structure.

Description
The tc enable option interface enables a device's interrupt line to the
processor. Use thIS interface only if the device must have its interrupts
alternately enabled and disabled during autoconfiguration. Otherwise,
interrupts may be generated before the device is ready to receive them.

The kernel automatically enables the device's interrupts after
autoconfiguration, depending on what you specified in the tc _option data
table.

Return Value
None.

Related Information
tC_disable_option

TURBOchannel-Specific Reference Information A-15

Name
tc isolate memerr - Logs memory errors associated with devices
operating on the TURBOchannel bus

Synopsis

int tc_isolate_memerr(memerr_status}
struct tc memerr status *memerr_status;

Arguments

memerr status
SpeCIfies a pointer to a tc memerr status data structure. This data
structure contains such information as the physical address of the error,
a flag to indicate whether to log the error, and so forth.

Description
The tc isolate memerr interface logs memory-related errors associated
with deVices that operate on the TURBOchannel bus. The mechanism for
logging these errors is the tc _ memerr _status data structure.

The tc isolate memerr interface checks the virtual address of the error
(the va-member of the tc memerr status structure). If the address
equals the value zero, the interface uses the physical address (the pa member
of the tc _ memerr _status structure) to form a virtual address.

The tc isolate memerr interface calls a system-specific interface,
which determines the exact error based on the virtual address and the
physical address. If the log member of the tc memerr status structure
is set to TC LOG MEMERR, the system-specific Interface iOgs the error in the
same manner a memory error is logged when it comes directly into the CPU.

Return Value
The tc isolate memerr interface returns the value -1 if the supplied
physical address is mvalid or if the system-specific interface does not exist.

A-16 TURBOchannel-Specific Reference Information

Related Information
Section A.4: tc memerr status

TURBOchannel-Specific Reference Information A-17

Name
tc loadmap - Fills scatter-gather map entries with the physical addresses
of pages to be transferred in a DMA operation

Synopsis

unsigned long tc_loadmap(proc, base, addr, count,
flags)
struct proc *proc;
long *base;
v.m offset t addr;
int count;
int flags;

Arguments

proc
Specifies a pointer to the proc structure that represents the process on
whose behalf the DMA is being done. The proc pointer is required to
get the proper physical addresses into the map registers.

base
Specifies either a pointer to the address of the variable containing the
value returned by a prior call to the tc map alloc interface or zero
to indicate that map entries are to be dynamically allocated. If base is
zero, then the tc loadmap interface calls tc map alloc to
allocate map entries. The tc map alloc interface fills in base with
the starting index of the allocated map ram. Set either the
TC MAP FAILSOFT or TC MAP SLEEP flag to prevent a system
paillc in the event that the call to tc _map _ alloc fails.

addr
Specifies the starting virtual address of the data to be transferred. This
address may be any user or kernel virtual address. Alignment of the
address is not important. However, any offset from the start of a page is
reflected in the value returned by the tc _loadmap interface.

count
Specifies the number of bytes to be transferred. The number you supply
does not have to be an integral multiple of anything, but the hardware
cannot map any quantity smaller than one page.

flags
Specifies one or more of the following flags:

A-18 TURBOchannel-Specific Reference Information

Flag

TC MAP SCRATCH

TC MAP SLEEP

TC MAP FAILSOFT

Description

Meaning

Allocates (on the call to
tc map alloc) an extra map
entry to appear between the entry
for the last map for the actual
transfer and the guard map entry.
The extra map entry points to an
unused (scratch) page of physical
memory and is necessary if the
DMA hardware might overrun the
actual transfer on a write
operation to a device.

Forces the tc map alloc
interface to sleep untIl sufficient
contiguous map entries are
available for the transfer. This
flag is ignored if the base
parameter is a nonzero value.

Prevents a system panic in the
event the tc loadmap interface
calls tc _map _ alloc and
tc map alloc cannot get map
entries for the transfer. This flag
is ignored if the base parameter
is a nonzero value or the
TC _ MAP _SLEEP flag is set.

The tc loadmap interface fills scatter-gather map entries with the physical
addresses of the pages to be transferred during direct memory access (DMA).
Before providing a device an address for DMA transfers, a TURBOchannel
device driver calls the tc loadmap interface, which returns a physical
address to be passed directly to DMA hardware.

Return Value
The tc loadmap interface returns -1 (failure) under the following
conditions:

• The CPU type does not have map registers to support memory mapping

• The base parameter is zero, neither the TC MAP SLEEP nor the
TC_MAP_FAILSOFT flag is set, and a caB to tc=map_alloc fails.

TURBOchannel-Specific Reference Information A-19

All other conditions return a physical address.

Related Information
tc _map _ alloc and tc _map_free

A-20 TURBOchannel-Specific Reference Information

Name
te _map _ alloe - Allocates TURBOchannel map registers

Synopsis

unsigned long tc_map_alloc(count, flags)
int count;
int flags;

Arguments

count
Specifies the number of bytes to be transferred. The number of bytes
you specify is divided by the page size to obtain the number of map
entries required for the transfer. The te map alloe interface
allocates map entries using the formula count + 2. The two
additional entries provide for a possible nonpage aligned transfer and a
guard entry. The guard entry ensures that a DMA overrun is caught and
flagged by the hardware rather than causing data corruption.

flags
Specifies one or more of the following flags:

Flag

TC MAP SCRATCH

TC MAP SLEEP

Meaning

Allocates one more map entry in
addition to the ones specified by the
basic formula (count + 2). Use
this flag if the DMA hardware might
overrun the actual transfer on a write
operation to a device. The
te map alloe interface points the
extra map entry to a scratch page of
memory.

Forces the te map alloe interface
to sleep if the requested map entries
cannot be allocated immediately. The
interface wakes and attempts the
allocation again, following a call to the
te map free interface. If you do
not specify the TC MAP SLEEP flag,
te map free immediately returns
an error (Value -1) if the requested
map entries cannot be allocated.

TURBOchannel-Specific Reference Information A-21

Description
The tc map alloc interface is called by device drivers that use a scatter­
gather map to transfer data to and from noncontiguous pages in memory. Use
the interface to allocate one scatter-gather map entry per page of
noncontiguous physical memory to be transferred. A call to the
tc map alloc interface returns a nonzero value that represents the
starting index of the allocated map ram, including the guard and scratch
entries. A later call to the tc loadmap interface uses the value from
tc _ map _ alloc to fill in scatter-gather maps.

Return Value
The tc map alloc interface returns -1 (failure) under the following
conditions: -

•

•

•

coun t is a negative value

The CPU does not support memory mapping (does not have map
registers)

The map entries cannot be allocated immediately and TC _MAP _SLEEP is
not set

Otherwise, the interface returns a nonzero value that represents the starting
index of the map ram.

Related Information

A-22 TURBOchannel-Specific Reference Information

Name
tc map free - Returns map entries to the memory pool after completion
ofaDMA

Synopsis

int tc map free(base, count, flags)
long base;-
int count;
int flags;

Arguments

base
Specifies the value returned by the tc map alloc or tc loadmap
interface. - - -

count
Specifies the number of transferred bytes of data as specified in the call
to the tc _map _ alloc or tc _loadmap interface.

flags
Specifies one or more of the following flags:

Flag

TC MAP INVAL

Meaning

Zeroes and marks each map entry
used for the transfer as invalid
before returning the map entry to
the pool of free map entries.
Thereafter, any attempt by a
DMA engine to use one of these
map entries causes a hardware
exception rather than possibly
corrupting physical memory. If
this flag is not set, map entries are
returned to the free pool without
further action.

TURBOchannel-Specific Reference Information A-23

Flag

TC MAP SCRATCH

Description

Meaning

Zeroes and marks as invalid the
map entry that was allocated in
addition to those specified by the
basic map entry allocation
formula (count + 2). Use this
flag if you specified the
TC MAP SCRATCH flag on the
call to the tc map alloc or
tc _loadmap interlace.

The tc map free interface returns allocated map entries to the free pool
after a dIrect memory access (DMA) completes. The map entries were
allocated by the tc map alloc interface, called either directly by the
driver writer or indirectly through a call to the tc _loadmap interface.

Return Value
The tc map free interface returns zero for success and -1 (failure) for
the following conditions:

• The count argument is a negative value.

• The CPU type does not have map registers.

Related Information

A-24 TURBOchannel-Specific Reference Information

Name
tc _module_name - Determines the name of a specific option module

Synopsis

int tc_module_name(ctlr, cp)
struct controller *ctlr;
char *cp;

Arguments

ctlr
Specifies a pointer to a controller structure.

cp
Specifies a pointer to a character array to be filled in by
tc _module_name. You must declare the cp array to be of the size
cp [TC _ ROMNAMLEN + 1].

Description
The tc module name interface fills in the character array cp with the
ASCII String of the TURBOchannel option's module name referred to by the
pointer to the controller structure.

Return Value
The tc module name interface returns a value of -1 if it was unable to
use the cp pointer you passed.

Related Information
tc addr to name

TURBOchannel-Specific Reference Information A-25

Name
tc _option_control - Enables and disables various bus options

Synopsis

int tc option control(ctrl, flags)
struct-controIler *ctlr;
int flags;

Arguments

ctlr
Specifies a pointer to a controller structure.

flags
Specifies the options to be enabled or requests option status. The
following table lists and describes the flags:

Flag Meaning

SLOT PARITY Enable or disable parity for the
specified option.

SLOT BLOCKMODE Enable or disable block mode
transfers for the specified option.

SLOT MAPREGS

SLOT STATUS

Description

Enable or disable use of map
registers for address translation
for the specified module.

Request current state of preceding
flags; do not change current
settings.

The tc option control interface enables or disables various slot­
specificoptions. Use the SLOT PARITY, SLOT BLOCKMODE, and
SLOT MAPREGS flags to change option settings.A call to the
tc option control interface returns the state of the option settings
after execution. To find out what the option settings are without changing
any of the settings, use the SLOT_STATUS flag.

A-26 TURBOchannel-Specific Reference Information

Return Value
The return value of this interface is the current state of flags after
completion of the operations requested by the call to
tc_option_control.

TURBOchannel-Specific Reference Information A-27

A.4 Device Driver Interfaces Used Only by
TURBOchannel Device Drivers
Table A-3 summarizes the device driver interfaces that have formal
parameters specifically defined for the TURBOchannel bus. Refer to Writing
Device Drivers, Volume 2: Reference for information on other driver
interfaces.

Table A-3: Summary of Device Driver Interfaces for
TURBOchannel Device Drivers

Interface

xxcattach or
xxdattach

xxprobe

xxslave

Summary Description

Performs controller- or device-specific initialization.

Determines whether the device is functional on a
given system.

Checks to ensure that the device is valid for the
controller.

A-28 TURBOchannel-Specific Reference Information

Name
xxcattach , xxdattach - Performs controller- or device-specific
initialization

Entry Point
The dr i ver structure

Synopsis

void xxcattach(ctlr)
struct controller *ctlr;

void xxdattach(device)
struct device *device;

Arguments

ctlr
Specifies a pointer to the controller structure for this controller.
This structure contains such information as the controller type, the
controller name, and the current status of the controller.

device
Specifies a pointer to a device structure for this device. This structure
contains such information as the logical unit number of the device,
whether the device is functional, the bus number the device resides on,
the address of the control/status registers, and so forth.

Description
The xxcattach and xxdattach interfaces usually perform the tasks
necessary in establishing communication with the actual device. These tasks
might include, for a device attach interface, initializing a tape drive, putting a
disk drive online, or some similar task. In addition, xxcattach and
xxdattach initialize any global data structures used by the device driver.

For statically configured drivers, these interfaces are called at system boot
time by the autoconfiguration software under the following conditions:

• If the device is connected to a controller, the xxdattach interface is
called if the controller's slave interface returns a nonzero value,
indicating that the device exists.

TURBOchannel-Specific Reference Information A-29

If the device is not connected to a controller, the xxcattach interface
is called if the xxprobe interface returns a nonzero value, indicating
that the device exists.

If you set the cattach or dattach member of the driver structure to
NULL, no call is made to the xxcattach or xxdattach interface. The
xxcattach interface is passed a controller structure and the
xxdattach interface is passed a device structure for this device.

For loadable drivers, the xxcattach or xxdattach interface is called
indirectly when the driver is loaded.

Return Value
None.

Related Information
Writing Device Drivers, Volume 2: Reference: controller and device
structures

A-30 TURBOchannel-Specific Reference Information

Name
xxprobe - Determines whether the device exists

Entry Point
The driver structure

Synopsis

int xxprobe(addr, ctlr)
caddr_t addr;
struct controller *ctlr;

Arguments

addr
Specifies the System Virtual Address (SVA) of the base of the
TURBOchannel slot space for this controller.

ctlr
Specifies a pointer to the controller structure for this controller.
This structure contains such information as the controller type, the
controller name, and the current status of the controller.

Description
A device driver's xxprobe interface performs tasks necessary to determine
if the device exists and is functional on a given system. At boot time, the
kernel performs checks to determine if the device is present before calling the
xxprobe interface for statically configured drivers. The kernel calls the
xxprobe interface for each device that was defined in the system
configuration file or config. file file fragment (for statically configured
drivers) or the stanza .loadable file fragment (for dynamically
configured drivers). Likewise, the kernel calls the xxprobe interface for
each stanza entry that was defined in the stanza .loadable file fragment
for loadable drivers.

For loadable drivers, the xxprobe interface is called indirectly during the
driver loading process. The driver writer specifies loadable driver
configuration information in the stanza. loadable file fragment. This
information includes the driver's name, location of the loadable object,
device connectivity information, device special file information, and so forth.

TURBOchannel-Specific Reference Information A-31

When the system manager requests that the driver be dynamically loaded, the
system accesses the information in the stanza .loadable file fragment.

The xxprobe interface calls the ldbl stanza resolver interface to
merge the driver's connectivity information into the hardware topology tree,
which consists of bus, controller, and device structures. Next, the
ldbl ctlr conf igure interface is called, which results in the system
calling xxprobe for each instance of the controller present on the
TURBOchannel bus.

Some tasks performed by the xxprobe interface vary, depending on
whether the device driver is configured as static or loadable:

• For static drivers

The xxprobe interface typically checks some device status register to
determine whether the physical device is present. Calling the BADADDR
interface is one way to check device status registers. If the device is not
present, the device is not initialized and not available for use.

For static device drivers, the device interrupt handlers are defined in the
system configuration file or the stanza. static file fragment and
registered by the conf ig program at system configuration time.

• For loadable drivers

When device drivers are dynamically loaded, the loadable subsystem
checks for the existence of the device before calling xxprobe. Note
that loadable device drivers cannot call the BADADDR interface, which is
available only in the early stages of system booting.

For loadable device drivers, the xxprobe interface registers the device
interrupt handlers by calling handler_add and handler_enable.

Return Value
The xxprobe interface returns the size of the control/status register address
space for the autoconfiguration interfaces to use. A value of zero (failure) is
returned to indicate that the driver did not complete the probe operation.

Related Information
Writing Device Drivers, Volume 2: Reference: controller structure

A-32 TURBOchannel-Specific Reference Information

Name
xxs lave - Checks that the device is valid for this controller

Entry Point
The dr i ver structure

Synopsis

int xxslave(device, addr)
struct device *device;
caddr t addr;

Arguments

device
Specifies a pointer to a device structure for this device. This structure
contains such information as the logical unit number of the device,
whether the device is functional, the bus number the device resides on,
the address of the control/status registers, and so forth.

addr
Specifies the System Virtual Address (SV A) of the base of the
TURBOchannel slot space for the controller that this device is connected
to.

Descri ption
A device driver's xxslave interface is called only for a controller that has
slave devices connected to it. This interface is called once for each slave
attached to the controller. You (or the system manager) specify the
attachments of these slave devices in the system configuration file or the
stanza. static file fragment (for statically configured drivers) or in the
stanza. loadable file fragment (for dynamically configured drivers).

Return Value
The xxslave interface returns a nonzero value if the device is present.

TURBOchannel-Specific Reference Information A-33

Related Information
Writing Device Drivers, Volume 2: Reference: device structure

A-34 TURBOchannel-Specific Reference Information

A

adapters, 5-4

attach driver interface

See also xxcattach driver interface; xxdattach

dri ver interface

use of driver structure to define entry point,

3-3

autoconfiguration, 5-1

B

enabling device interrupts during, 4-1

support section of device driver, 3-3

use of attach to establish communication

with device, 3-9

use of slave for controller devices, 3-8

use of xxprobe interface to check if device is

present, 3-4

BADADDR interface

called by xxprobe interface, 3-4

base address, device

obtaining in xxprobe interface, 4-3

block device driver

compared with character device driver, 3-1

buf structure, 1-2

bus hardware

TURBOchannel, 2-1

Index

bus structure

declared as pointer in cb_ctlcunattach

interface, 3-10

bus_hd member

c

used to initialize ih_bus member in xxprobe

interface, 3-6

cb_is_dynamic variable

used to increment the number of instances of

controller, 3-8

character and block device driver

sections of, 3-2f

character device driver

compared with block device driver, 3-1

config_type member

set to TC_CTLR constant in xxprobe

interface, 3-7

configuration models, 1-3

TURBOchannel-specific issues, 6-1

configure interface, 3-12

controller structure, 1-2

declared as pointer in cb_ctlcunattach

interface, 3-1 0

controller unattach interface, 3-10

ctlr_list table, 5-2

D
data structures, 1-2

allocation techniques for, 1-2

device

determining base address of, 4-3

device driver

See block device driver

See character device driver

device interrupt line

disabling with tc_disable_option kernel

interface, 2-2

enabling and disabling, 4-1

enabling with tc_enable_option kernel

interface, 2-2

device registers

writing to, 2-1

device structure, 1-2

device unattach interface, 3-11

device_config_t structure, 1-2

DMA transfers, 2-2

handling errors during, 4-4

use of scatter-gather maps, 4-6

driver structure, 1-2

use by ibus configuration interfaces, 5-4

E
errors

handling memory, 4-4

H
handler_enable interface

description of call in xxprobe interface, 3-8

handler_key structure, 1-2

hardware device register

write operation by TURBOchannel driver,

2-1

Index-2

header file

See include file

ibus configuration interfaces, 5-4

ihandler_t structure

declaration in xxprobe interface, 3-6

initializing ih_bus member in xxprobe

interface, 3-6

setting of ih_bus_info member in cbprobe

interface, 3-7

include file

for TURBOchannel driver, 2-1

include files section, 3-3

interrupt handlers

named in system configuration file, 5-3

registered by xxprobe interface, 5-3

use of xxprobe interface to register, 3-4

interrupts

enabling and disabling device, 2-2, 4-1

L

loadable drivers

data structures specific to, 1-2

M
nnb kernel interface

o

assuring write to I/O space completes, 2-1

using, 4-5

option nnodules

obtaining names of, 4-2, 5-2

option slots

probing during device autoconfiguration, 5-1

p

portability of device drivers, 1-3

probe driver interface

See also xx probe driver interface

use of driver structure to define entry point,

3-3

R

read operations

synchronizing with write operations, 2-1

register

See hardware device register

s
scatter-gather maps, 4-6

See also tc_map_alloc kernel interface;

tc_Ioadmap kernel interface;

tc_map_free kernel interface

slave driver interface

See also xxslave driver interface

use of driver structure to define entry point,

3-3

slot numbers, mapping, 5-4

sysconfigtab database, 5-3

See also system configuration file

system configuration file

See also config.file fragment

See also sysconfigtab database

callout to mktcdata utility, 6-3

sample driver entry in, 5-2

use during device autoconfiguration, 5-2

T

tc_addr_to_name kernel interface

function definition and formal description,

A-13

using, 4-3

TC_CTLR constant

identifies driver type as controller in xxprobe

interface, 3-7

tc_disable_option kernel interface

function definition and formal description,

A-14

to disable device interrupt line, 2-2

using, 4-1

tc_enable_option kernel interface

function definition and formal description,

A-15

to enable device interrupt line, 2-2

using, 4-1

tc.h file

formal description, A-2

use with TURBOchannel driver, 2-1

tc_info structure

formal description, A-4

tc_intcinfo structure, 1-2

declaration in xxprobe interface, 3-6

formal description, A-6

setting of intr member in xxprobe interface,

3-7

setting of param member in xxprobe

interface, 3-7

tc_isolate_memerr kernel interface

function definition and formal description,

A-16

using, 4-4

tc_loadmap kernel interface

function definition and formal description,

A-I8

Index-3

tc_loadmap kernel interface (cont.)

using, 4-8

tc_map_alloc kernel interface

function definition and formal description,

A-21

using, 4-7

tc_map_free kernel interface

function definition and formal description,

A-23

using, 4-9

tc_memerr_status structure

formal description, A-8

tc_module_name kernel interface

function definition and formal description,

A-25

using, 4-2

tc_option data table

correspondence with tc_option_data.c file,

5-2

enabling interrupts in, 4-1

tc_option snippet table, 5-3

tc_option structure

formal description, A-lO

tc_option_control kernel interface

function definition and formal description,

A-26

tc_option_data.c file, 5-2

tc_slot structure

use in device autoconfiguration, 5-1

type casting operations

to convert ctlr for device driver, 3-7

to convert unit variable in cbprobe interface,

3-7

Index-4

u
uio structure, 1-2

unit variable

initialized to controller number in xx probe

interface, 3-6

w
wbflush kernel interface

aliased to mb on Alpha AXP systems, 4-6

write operations

synchronizing with read operations, 2-1

writes to I/O space

ensuring completion of, 4-5

x
xx_configure interface

setting up, 3-12

xx_intr _info structure

initializing configuration_st member in

xxprobe interface, 3-7

xxcattach driver interface

function definition and formal description,

A-29

setting up, 3-9

xxctlr_unattach driver interface

setting up, 3-10

xxdattach driver interface

function definition and formal description,

A-29

setting up, 3-9

xxdev _unattach driver interface

setting up, 3-11

xxintr driver interface

used as value in intr member of tc_intcinfo

structure, 3-7

xxprobe driver interface

code example for /dev/cb driver, 3-5

function definition and formal description,

A-31

obtaining device base address in, 4-3

setting up, 3-4

use during device autoconfiguration, 5-1

xxslave driver interface

function definition and formal description,

A-33

setting up, 3-8

Index-5

How to Order Additional Documentation

Technical Support
If you need help deciding which documentation best meets your needs, call 800-DIGITAL
(800-344-4825) before placing your electronic, telephone, or direct mail order.

Electronic Orders
To place an order at the Electronic Store, dial 800-234-1998 using a 1200- or 2400-bps
modem from anywhere in the USA, Canada, or Puerto Rico. If you need assistance using the
Electronic Store, call 800-DIGITAL (800-344-4825).

Telephone and Direct Mail Orders

Your Location

Continental USA,
Alaska, or Hawaii

Puerto Rico

Canada

International

Internala

Call

800-DIGITAL

809-754-7575

800-267-6215

Contact

Digital Equipment Corporation
P.o. Box CS2008
Nashua, New Hampshire 03061

Local Digital subsidiary

Digital Equipment of Canada
Attn: DECdirect Operations KA0212
P.O. Box 13000
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6

Local Digital subsidiary or
approved distributor

SSB Order Processing - NQO/V19
or
U. S. Software Supply Business
Digital Equipment Corporation
10 Cotton Road
Nashua, NH 03063-1260

a For internal orders, you must submit an Internal Software Order Form (EN-01740-07).

Reader's Comments DEC OSF/1
Writing TURBOchannel Device Drivers

AA-PS3HB-TE

Please use this postage-paid form to comment on this manual. If you require a written reply
to a software problem and are eligible to receive one under Software Performance Report
(SPR) service, submit your comments on an SPR form.

Thank you for your assistance.

Please rate this manual:
Accuracy (software works as manual says)
Completeness (enough information)
Clarity (easy to understand)
Organization (structure of subject matter)
Figures (useful)
Examples (useful)
Index (ability to find topic)
Page layout (easy to find information)

Excellent
D
D
D
D
D
D
D
D

Good
D
D
D
D
D
D
D
D

Fair
D
D
D
D
D
D
D
D

Poor
D
D
D
D
D
D
D
D

What would you like to see more/less of? __________________ _

What do you like best about this manual? __________________ _

What do you like least about this manual? __________________ _

Please list errors you have found in this manual:

Page Description

Additional comments or suggestions to improve this manual:

What version of the software described by this manual are you using?

__________________ Dept. Name/Title
Company
Mailing Address

Email Phone

Date

I
I

- - - - Do Not Tear - Fold Here and Tape . - I

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
OPEN SOFTWARE PUBLICATIONS MANAGER
ZK03-31Y32
110 SPIT BROOK ROAD
NASHUA NH 03062-9987

1IIIIIIIIIIIh IIllh IlIhlhlllllllllllllhlllllllll

- - - Do Not Tear - Fold Here

No Postage

Necessary

if Mailed in the

United States

Cut
Along
Dotted
Line

