
DEC aSP/1

mamaomo System·Tuning and Performance Management

Part Number: AA-QOR3A-TE

System Tuning and
Performance Management
Order Number: AA-QOR3A-TE

DEC OSF/1

February 1994

Product Version: DEC OSF/1 Version 2.0

This manual explains how you can adjust your applications and various
components of the DEC OSFIl operating system to achieve better
performance.

digital equipment corporation
Maynard, Massachusetts

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to
restrictions as set forth in subparagraph (c) (l) (ii).

Digital Equipment Corporation makes no representations that the use of its products in the
manner described in this publication will not infringe on existing or future patent rights, nor
do the descriptions contained in this publication imply the granting of licenses to make, use,
or sell equipment or software in accordance with the description.

Possession, use, or copying of the software described in this publication is authorized only
pursuant to a valid written license from Digital or an authorized sub licensor.

© Digital Equipment Corporation 1994
All rights reserved.

The following are trademarks of Digital Equipment Corporation:

ALL-IN-I, Alpha AXP, AXP, Bookreader, CDA, DDIS, DEC, DEC FUSE, DEC net,
DECstation, DECsystem, DECUS, DECwindows, DTIF, MASSBUS, Micro V AX, Q-bus,
ULTRIX, ULTRIX Mail Connection, ULTRIX Worksystem Software, UNIBUS, VAX,
V AXstation, VMS, XUI, and the DIGITAL logo.

BSD is a trademark of Uunet Technologies. NFS is a registered trademark of Sun
Microsystems, Inc. UNIX is a registered trademark licensed exclusively by XlOpen Company
Limited.

All other trademarks and registered trademarks are the property of their respective holders.

Contents

About This Manual

Audience V11

Organization vii

Related Documents

Reader's Comments

Conventions

viii

VI11

ix

1 Operating System Overview

1.1

1.2

Alpha AXP 64-bit Architecture

Process Management

1-1

1-2

1.3 Memory Management .. 1-2

1.4

1.5

1.3.1 Virtual Memory .. 1-3

1.3.1.1 Paging and Swapping ... 1-7
1.3.1.2 Swap Buffers ... 1-8
1.3.1.3 Swap Space Allocation Modes 1-9

1.3.2 Unified Buffer Cache ... 1-9

Interprocess Communications Facilities

I/O Subsystems

1.5.1
1.5.2
1.5.3

Disks
File Systems
Network Systems

1.5.3.1 Network Hardware

1-10

1-11

1-11
1-11
1-14

1-14

1.5.3.2 Network Software 1-14

2 Monitoring Your System

2.1 Monitoring Tools .. 2-1

2.2 Determining the Problem ... 2-5

2.2.1
2.2.2
2.2.3

2.2.4

2.2.5
2.2.6
2.2.7
2.2.8

Monitoring Processes - ps Command
Measuring the System Load - uptime Command
Monitoring Virtual Memory and CPU Usage - vmstat

Command
Displaying the Swap Space Configuration - swapon

Command
Monitoring Disk 110 - iostat Command
Displaying UFS File System Information - dumpfs Command.
Monitoring AdvFS
Using dbx to Monitor Subsystems

2.2.8.1 Checking Virtual Memory with dbx
2.2.8.2 Checking UFS with dbx
2.2.8.3 Checking the namei Cache with dbx
2.2.8.4 Checking the UBC with dbx
2.2.8.5 Checking the Metadata Cache with dbx

2.2.9
2.2.10

Monitoring the Network - nets tat Command
Displaying NFS Statistics - nfsstat Command

2-5
2-7

2-7

2-10
2-11
2-12
2-13
2-15

2-15
2-16
2-17
2-17
2-19

2-19
2-22

3 Tuning Subsystems and Applications

3.1

3.2

Tuning Guidelines

Optimizing Applications

3.2.1 Application-Building Guidelines

3-1

3-3

3-4

3.2.1.1 Compilation Considerations 3-4
3.2.1.2 Linking and Loading Considerations 3-5
3.2.1.3 Preprocessing and Postprocessing Considerations 3-5
3.2.1.4 Library Routine Selection 3-6

3.2.2 Application Coding Guidelines ... 3-6

3.2.2.1 Data Type Considerations 3-7

ivContents

3.3

3.4

3.5

3.6

3.2.2.2
3.2.2.3
3.2.2.4
3.2.2.5

Cache Usage and Data Alignment Considerations
C-Specific Coding Considerations
Fortran-Specific Coding Considerations
Miscellaneous Programming Considerations

Optimizing CPU Utilization

Tuning Memory

3.4.1 UBC Subsystem

3.4.2
3.4.3

3.4.1.1 Changing the Size of the UBC
3.4.1.2 Preventing Cache Thrashing
3.4.1.3 Changing the Size of the Metadata Buffer Cache

Virtual Memory Subsystem
Modifying Your Swap Space Configuration

Tuning Interprocess Communication

Tuning I/O

3-7
3-8
3-9
3-9

3-10

3-11

3-13

3-13
3-14
3-15

3-15
3-16

3-17

3-18

3.6.1 Disk Subsystem 3-20

3.6.1.1 Tuning UFS File Systems 3-21
3.6.1.2 Tuning the Advanced File System 3-24
3.6.1.3 Tuning CAM 3-26

3.6.2 Network Subsystems 3-27
3.6.3 Network File System 3-27

Index

Figures

1-1: Paging and Swapping Parameters

Tables

2-1: Primary Monitoring Tools

2-2: Secondary Monitoring Tools

2-3: Unsupported Monitoring Tools

1-5

2-2

2-3

2-5

Contents v

3-1: Tunable Memory Parameters .. 3-11

3-2: Tunable 110 Subsystem Parameters 3-18

vi Contents

About This Manual

This manual is useful for system managers who are either experiencing
system performance problems or want to get the maximum benefit from their
system. Performance problems can be caused by the applications you are
running, the virtual memory subsystem, the disk VO subsystem, file system
layout policies, or the network subsystem.

Often it is difficult to determine the cause of the problem or bottleneck. This
manual will assist you in determining where the problem resides, what the
underlying cause may be, and how to resolve it. Because the DEC OSFIl
operating system can be used in many different types of environments, the
resolutions are more suggestions than hard answers.

Audience
This manual is intended for system administrators who are responsible for
managing a DEC OSFIl operating system, and for programmers who are
writing applications for the DEC OSFIl operating system. Administrators
and programmers should have in-depth knowledge of operating system
concepts, commands, and utilities. Is is also especially important for
administrators to understand how their systems are being used. Such
understanding can be crucial to the success of an effort to tune a system for
better performance.

Organization
This manual consists of three chapters:

Chapter 1 Provides an overview of the system components that can be adjusted
to improve performance.

Chapter 2 Describes the tools used to analyze how system resources are being
used.

Chapter 3 Provides information about how to tune your system for better
performance.

Related Documents
The System Administration manual provides information on managing and
monitoring your system.

The Programmer's Guide provides information on the tools for programming
on the DEC OSFIl operating system.

The printed version of the DEC OSFIl documentation set is color coded to
help specific audiences quickly find the books that meet their needs. (You
can order the printed documentation from Digital.) This color coding is
reinforced with the use of an icon on the spines of books. The following list
describes this convention:

Audience Icon Color Code

General Users G Teal

System Administrators S Red

Network Administrators N Yellow

Programmers P Blue

Reference Page Users R Black

Some books in the documentation set help meet the needs of several
audiences. For example, the information in some system books is also used
by programmers. Keep this in mind when searching for information on
specific topics.

The Documentation Overview provides information on all of the books in the
DEC OSFIl documentation set.

Reader's Comments
Digital welcomes your comments on this or any other DEC OSFIl manual.
You can send your comments in the following ways:

• Internet electronic mail:
readers comment@ravine.zk3.dec.com

• Fax: 603-881-0120 Attn: USG Documentation, ZK03-3/Y32

• A completed Reader's Comments form (postage paid, if mailed in the
United States). Two Reader's Comments forms are located at the back of
each printed DEC OSFIl manual.

If you have suggestions for improving particular sections or find any errors,
please indicate the title, order number, and section numbers. Digital also
welcomes general comments.

viii About This Manual

Conventions
The following conventions are used in this manual:

%
$

% cat

file

[I]
{ I }

cat(l)

Ctrllx

A percent sign represents the C shell system prompt. A dollar sign
represents the system prompt for the Bourne and Korn shells.

A number sign represents the superuser prompt.

Boldface type in interactive examples indicates typed user input.

Italic (slanted) type indicates variable values, placeholders, and
function argument names.

In syntax definitions, brackets indicate items that are optional and
braces indicate items that are required. Vertical bars separating items
inside brackets or braces indicate that you choose one item from
among those listed.

A vertical ellipsis indicates that a portion of an example that would
normally be present is not shown.

A cross-reference to a reference page includes the appropriate section
number in parentheses. For example, cat(l) indicates that you can
find information on the cat command in Section 1 of the reference
pages.

This symbol indicates that you hold down the first named key while
pressing the key or mouse button that follows the slash. In examples,
this key combination is enclosed in a box (for example, ICtrI/CI).

About This Manual ix

Operating System Overview 1

Before you attempt to tune your system to improve performance, you must
fully understand your applications, users, and system environment and you
must correctly diagnose the source of your performance problem. This
chapter provides information on the major elements of the system
environment that must be considered in a performance and tuning analysis:

• System architecture (Section 1.1)

• Process management (Section 1.2)

• Memory usage (Section 1.3)

• Interprocess communication (Section 1.4)

• 1/0 subsystems (Section 1.5)

For more information on all components of the operating system, refer to the
manual Technical Overview.

1.1 Alpha AXP 64-bit Architecture
The Alpha AXP architecture contains instructions that can operate directly on
64- and 32-bit data items. It does not contain instructions that operate
directly on data items that are smaller than 32 bits. As a result, if a program
uses a data item that is smaller than 32 bits, the compiler generates a
sequence of instructions to extract the data item from a 32-bit quantity.
Thus, it consumes more system resources to access a data item that is less
than 32 bits than it does to access a 32-bit or 64-bit data item.

This increase in overhead will not cause a problem if a program uses small
data only occasionally. However, if a program uses small data regularly (for
example, in the body of a critical loop), this overhead can be significant. For
information on how to modify data declarations in your program to avoid this
problem, see Section 3.2.2.1.

The Alpha AXP architecture also affects disk space and memory usage.
While the 64-bit architecture benefits applications that would otherwise
exhaust the address space in a 32-bit implementation, the OSFIl operating
system implementation on Alpha AXP systems does result in larger memory
and disk space requirements than those associated with operating systems
based on a 32-bit architecture. For d~tails on the Alpha AXP architecture,
see the Alpha Architecture Reference Manual.

1.2 Process Management
Programs that are being executed by the DEC OSFIl operating system are
known as processes. Each process runs within a protected virtual address
space. The process abstraction is separated into two low-level abstractions,
the task and the thread:

• A task is not executable, but it does have a protected virtual address
space. This is the environment in which one or more threads can execute
(that is, a thread executes within the framework of a task).

• A thread has access to all the system resources assigned to the task. If
the task contains multiple threads, the threads share the task's resources.
(See the Guide to DECthreads and the Programmer's Guide for
information about programming using threads.)

The kernel schedules threads. A process priority can be managed by the
nice interface or by the realtime interface. The nice interface allows
adjustments of priorities within the range 20 through -20, where 20 is the
lowest priority . You can adjust realtime priorities on those systems running
the realtime kernel by using the sched _ set scheduler interface.

Under the DEC OSFIl operating system, most applications will execute as
traditional UNIX processes (a task with a single thread).

1.3 Memory Management
The DEC OSFIl operating system uses a memory management system that is
responsible for distributing the available main memory space among
competing processes and buffers. You have some level of control over the
following components of the memory management system:

• Virtual memory is used to enlarge the available address space beyond the
physical address space. Virtual memory consists of main memory and
swap space. The DEC OSFIl operating system keeps only a set of the
recently used pages of all processes in main memory and keeps the other
pages on disk in swap space. Virtual memory and the unified buffer
cache (UBC) share all physical memory. Virtual memory is discussed in
Section 1.3.1.

• Paging and swapping is used to ensure that the active task has the pages
in memory that are needed for it to terminate successfully. Paging is
controlled by the page reclamation code. Swapping is controlled by the
task swapping daemon. Paging and swapping are discussed in Section
1.3.1.1

• The I/O buffer cache is used to minimize the number of accesses to the
disk during I/O operations. The I/O buffer cache serves as a layer
between the file system on the disk and the operating system. The I/O

1-2 Operating System Overview

buffer cache is divided into the buffer cache region and the unified buffer
cache (UBC).

The 110 buffer cache contains file metadata (superblocks, inodes, indirect
blocks, directory blocks, and cylinder group summaries). The UBC holds
the actual file data for reads and writes and mapped file regions. Virtual
memory and the UBC share all physical memory. The UBC is discussed
in Section 1.3.2

• Interprocess communication (IPC) is the mechanism that facilitates the
exchange of information among processes. The IPC facilities include
shared memory, pipes, semaphores, and messages. The IPC facilities are
discussed in Section 1.4

The DEC OSFIl operating system components constantly interact with each
other. As a result, a change in one of the components can also affect the
other. The following sections discuss each component in more detail.

1.3.1 Virtual Memory
The virtual memory subsystem supplies the initial values of pages and keeps
track of the pages that have been paged out. Specifically, the virtual memory,
subsystem coordinates the allocation of resources for a task among the
following hardware components (in the order of fastest to slowest access
time):

1. Alpha AXP CPU cache - Internal instruction and data cache that resides
in the CPU chip and ranges in size from 8KB to 64KB.

2. Secondary cache - Secondary direct-mapped physical data cache that is
external to the CPU, but resides on the processor board. Block sizes for
the secondary cache vary from 32 bytes to 256 bytes (depending upon
processor type). Secondary cache ranges in size from 128KB to 8MB.

3. Tertiary cache - Same as the secondary cache (not available on all
CPUs).

4. System memory - The actual physical memory.

5. Swap space - Block special device. Avoiding the file system saves
overhead.

For more information on the CPU, secondary, and tertiary caches, see the
Alpha Architecture Reference Manual.

Much of the movement of addresses and data among the CPU cache,
secondary and tertiary cache, and physical memory is controlled by the
hardware logic and the PAL code, which is transparent to the DEC OSFIl
operating system. The virtual memory subsystem becomes involved when
the CPU's translation buffer is unable to map a requested virtual address to a
physical address and then traps to the PAL's page lookup code, which is

Operating System Overview 1-3

responsible for monitoring and loading addresses from the page table into the
CPU's translation buffer.

If the requested address is in the page table, the PAL lookup code loads the
address into the translation buffer, which in turn passes the address to the
CPU. If the address is not in the page table, the PAL code issues a virtual
memory fault, which is the virtual memory subsystem's cue to locate the
page with the desired virtual contents and to load its physical address into the
page table for use by the PAL lookup code:

• The virtual memory subsystem firsts looks in its internal data structures
(for example, hash queue list and page queue list) for a page with the
desired virtual contents. If it finds the page, it loads the physical address
into the page table. This is known as a short fault.

• If the virtual memory subsystem cannot find the page in the internal data
structures and if the requested page is new and has never been referenced,
it initializes a physical page (the contents of the page are cleared) and
loads the address into the page table. This is known as a zero-filled-on­
demand fault.

• If the requested page has been referenced before, the virtual memory
subsystem loads the address of the requested page into the translation
buffer and performs a disk I/O to copy the contents of the page from
swap space into memory. This is known as a page-in page fault.

• Finally, if the requested page is shared by a parent process and one or
more child processes (using the fork function) and if one of the
processes needs to modify the page, the virtual memory system loads a
new address into the translation buffer, copies the contents of the
requested page into the new address for modification by the process. This
is known as a copy-on-write fault.

.Page-in page faults and copy-on-write faults are handled by the virtual
memory subsystem's paging and swapping mechanism that is described in
Section 1.3.1.1.

The virtual memory subsystem attempts keep the movement of pages as fast
as possible. To do this, it tracks the utilization and the location of all pages
in the memory subsystem.

The virtual memory subsystem maintains five lists to perform its tasks. Each
existing page can be found on one of the following lists:

• Free list - Pages that are clean and available for use

• Active list - Pages that are currently in use but can be used for paging

• Inactive list - Virtual memory pages that are allocated but are most likely
to be reclaimed when memory is needed

1-4 Operating System Overview

• UBC least recently used list (LRU list) - UBC pages that are allocated
but most likely to be used for paging

• Wired list - Pages that are currently in use and cannot be reclaimed (not a
real list)

The virtual memory subsystem tries to maintain a reasonable number of
pages on the free page list so that pages will be available for use by
processes. All pages are shared by virtual memory and the UBC. Four
parameters define the size of the free page list and thus control when paging
and swapping occur:

• vm page free min - Minimum number of pages on the free page list
before paging begins

• vm page free optimal- Number of pages on the free page list at
whIch task-swappmg is invoked

• vm page free target - Number of pages on the free page list that
must exist before paging stops

• vm page free reserve - Absolute minimum number of pages on
the free page list that can exist before only privileged tasks are able to get
memory

Figure 1-1 shows the parameters that control paging and swapping:

Figure 1-1: Paging and Swapping Parameters

Free page
list

-------------·20 vm_page_free_min
------------- 10 vm_page_free_reserve

ZK-0933U-R

If the number of pages on the free page list falls below the value associated
with the vm page free min parameter, the virtual memory subsystem
activates two page-stealer routines that reclaim the least recently used pages
from the inactive or the UBC LRU list. This process continues until the

Operating System Overview 1-5

number of pages on the free page list reaches the value associated with the
vm page free target parameter. If necessary, the contents of the
reclaimed pages are moved to swap space.

When the maximum number of pages is reached, the page-stealer daemon
becomes dormant again. This procedure enables the virtual memory
subsystem to keep the most recently used pages in memory and move the
least recently used pages to swap space, where they can be easily accessed if
necessary.

The vm page free reserve parameter specifies the absolute minimum
numberof pages on the free page list. If the free page list falls below the
value of the vm page free reserve parameter, only privileged tasks
can get memory-:- thus preventing deadlocks.

The page-stealer daemon maintains a ratio of one active page to two inactive
pages. If the inactive list becomes too small, the page-stealer daemon
deactivates pages that are the oldest and least recently used pages and moves
them to the inactive list.

When the virtual memory subsystem maps an application into memory, it
tries to anticipate which pages the task will need next. Using an algorithm
that checks which pages were most recently used and the size of the free
page list (as well as other factors), it passes some number of pages to the task
in addition to the requested page. It tries to anticipate the pages that a task
will need, thus accelerating the execution of the application by lowering the
chances that a page fault will occur.

The virtual memory subsystem also attempts to optimize the utilization of the
secondary cache. To do this, it uses a technique called page coloring.
Essentially, it attempts to map the most recently referenced pages of a
running task's virtual address space into the secondary cache once and
execute the entire task, text, and data out of that cache. If the task is loaded
in the secondary cache, the task does not have to fetch from physical memory
and the task's execution time is decreased.

The virtual memory subsystem maintains system-wide counters for all the
physical pages that it manages. The following counters (viewed with the
vmstat command) track the overall use of physical memory:

• act - The total number of pages on the active list, the inactive list, and
the UBC LRU list

• free - The physical pages not currently in use

• wired - The physical pages currently in use and not pageable

To determine how much memory an application uses, you can use the ps
command. The ps command displays the virtual address size (VSZ), which
is the total amount of virtual memory allocated to the process and its resident
set size (RSS), which is the total amount of physical memory mapped to

1-6 Operating System Overview

virtual pages at some instance.

1.3.1.1 Paging and Swapping

Paging and swapping is the process of moving pages between memory and
disk to ensure that a task has the pages in memory that it needs to run. The
virtual memory subsystem controls this activity. It initiates paging and
swapping activity under the following circumstances:

• Page in - A page in occurs strictly in the context of a task when it
allocates the pages that it needs to execute. When you first execute a
task, a page in occurs. If the address of a referenced page is not in the
translation buffer or any of the internal data structures, the virtual
memory subsystem must go to disk (either to swap space if the page has
been referenced before or to the disk resident executable) to obtain the
page and bring it into memory.

To perform a page in, the virtual memory subsystem allocates a physical
page off the free page list, which is a linked list of available pages.
When it has the address, the virtual memory subsystem fills the physical
page with the contents of the page that it obtained from disk, loads the
physical address into the page table, and marks the page as active.

• Page out - A page out occurs when the average number of pages in the
free page list falls below the value associated with the
vm page free min parameter. The page reclamation code activates
the page-stealer daemon, which performs the following tasks:

1. Takes the least recently used and lowest priority pages from the
inactive and UBC LRU lists.

2. Activates the code that moves the contents of those selected pages
that are dirty to swap space (note that clean pages already have copies
in swap space).

3. Places those pages on the free page list until the average number of
pages on the free page list reaches the value associated with the
vm _page_free _target parameter.

• Swap out - A swap out occurs when the page-stealer daemon cannot keep
up with the demand for free pages. This indicates that the system does
not have enough memory to execute its processes. The swap out
procedure dramatically increases the number of pages on the free page list
and reduces the demand for physical memory by suspending swapped out
tasks.

If the average number of pages in the free page list falls below the value
of the vm page free optimal parameter for more than five
seconds, the task swapper (an extension of the page reclamation code) is
activated. The task swapper thread suspends processes that have a low

Operating System Overview 1-7

priority and a high resident set size, writes to disk the contents of all the
dirtied pages associated with the suspended processes, and places those
pages on the free page list. Suspending low-priority, memory-intensive
processes decreases the demand for pages. Processes continue to be
swapped out until the free page list reaches the value of the
vm _page_free _target parameter.

• Swap in - A swap in occurs when a swapped out task becomes runnable
and the number of pages on the free page list reaches an adequate level
(above the value of the vm page free optimal parameter for a
period of time). This enables a taSk that was swapped out (suspended) to
once again be able to execute. The task will then begin to page in its
resident set.

From a performance viewpoint, swapping is worse than paging because
swapped out processes can experience a long latency that is unsuitable for
interactive processes. In addition, swapping can reduce system throughput.
However, swapping does move long-sleeping threads out of memory and thus
"cleans up" memory.

1.3.1.2 Swap Buffers

To facilitate the movement of data between memory and disk, the virtual
memory subsystem uses two types of swap buffers: synchronous and
asynchronous.

• Synchronous swap buffers are used by the page-in code for synchronous
page ins and by the task swapper for synchronous swap outs. The
syncswapbuffers parameter specifies the number of synchronous
swap I/O requests that the individual process page ins and the task
swapper can have outstanding to the I/O subsystem at anyone time. This
value should be roughly equivalent to the number of simultaneously
running processes that the system can easily handle.

• Asynchronous swap buffers are used by the page-stealer daemon for
asynchronous page outs. The asyncswapbuffers parameter specifies
the number asynchronous swap I/O requests that the page-stealer daemon
can have outstanding at anyone time. This number should be roughly
equivalent to the number of I/O transfers the swap devices can handle.

The virtual memory subsystem uses the two swap buffers to satisfy the
immediate demands of a page-in request without having to wait for the
relatively slow process of a page out, that is, writing a page to disk.

1-8 Operating System Overview

1.3.1.3 Swap Space Allocation Modes

How swap space is allocated is determined by two modes: immediate mode
and deferred (or over-commitment) mode. The two strategies differ in the
point in time at which swap space is allocated.

• In immediate mode, swap space is allocated when modifiable virtual
address space is created.

• In deferred mode, swap space is not allocated until the system needs to
write a modified virtual page to swap space.

The DEC OSFIl operating system's default swap mode is immediate mode.
The operating system will reserve swap space for anonymous memory (for
example, stack space and memory allocated by the malloe routine) when
that memory is allocated. This results in more swap space being reserved
than is probably required.

You can set the default swap mode to deferred (or over-commitment) mode.
This causes the reservation and allocation of swap space used to back up
anonymous memory to be postponed until the physical memory actually
needs to be reclaimed.

Deferred mode requires less swap space and causes the system to run faster
than if you used immediate mode because less swap bookkeeping is required.
However, because deferred mode does not reserve swap space in advance, the
swap space may not be available when it is needed by a task and the process
may be killed asynchronously. You should ensure that you have sufficient
swap space if you want to use deferred mode.

Immediate swap mode is used if the / sbin/ swapdefaul t file exists.
This file is a symbolic link to / dev / r zxx, which is the first defined swap
device. If this file does not exist, the system uses deferred mode. If you
change from one mode to another, you must reboot the system to activate the
new mode.

Refer to the manual System Administration for more information on swap
space allocation modes.

1.3.2 Unified Buffer Cache
The DEC OSFIl operating system uses a unified buffer cache (UBC) to hold
the actual file data, which includes reads and writes from conventional file
activity and page faults from mapped file sections. The UBC and the virtual
memory subsystem share all memory and utilize the same physical pages.
This means that all of physical memory can be used for buffering both I/O
and processes address space. A traditional buffer cache area is used for file
system metadata (for example, file header information, blocks, directories,
and inodes), but the data associated with the file is stored in the UBC.

Operating System Overview 1-9

The UBC uses a buffer to facilitate the movement of data between memory
and disk. The ubcbuffers configuration file parameter specifies the
number of UBC I/O requests that can be outstanding.

The UBC is dynamic, and it can potentially utilize all physical memory; thus
the UBC can respond to changing file system demands. You can limit the
amount of memory allocated to the UBC. The ubcmaxpercent
configuration file parameter specifies the maximum percentage of memory
that the UBC can utilize. The ubcminpercent configuration file
parameter specifies the minimum percentage of memory that the UBC will be
trimmed down to when page reclamation occurs.

Changes in relative rates of demand can enlarge or shrink the size of the
UBC. Heavy virtual memory activity - for example, large increases in the
working set caused by large executable files or by large amounts of
uninitialized data (BSS) being accessed - will increase the number of pages
reserved for virtual memory and decrease the number reserved for the UBC.
Heavy file system activity will increase the number of pages reserved for the
UBC and decrease the number of pages reserved for virtual memory.

1.4 Interprocess Communications Facilities
Interprocess communication (IPC) is the exchange of information between
two or more processes. Some examples of IPC include messages, shared
memory, semaphores, pipes, signals, process tracing, and processes
communicating with other processes over a network. IPC is a functional
interrelationship of several operating system subsystems. Elements are found
in scheduling and networking.

In single-process programming, modules within a single process
communicate with each other using global variables and function calls, with
data passing between the functions and the callers. When programming
using separate processes, with images in separate address spaces, you need to
use additional communication mechanisms.

The DEC OSFIl operating system provides the following facilities that are
used in interprocess communication:

• System V IPC - System V IPC includes the following IPC facilities:
messages, shared memory, and semaphores. See the System V
Compatibility User's Guide for information about System V IPC.

• Pipes - See the Guide to Realtime Programming for information about
pipes.

• Signals - See the Guide to Realtime Programming for information about
si,gnals.

• Sockets - See the System V Compatibility User's Guide for information
about sockets.

1-10 Operating System Overview

• Streams - See the Programmer's Guide: STREAMS for information about
streams.

• X/Open Transport Interface (XTI) - See the Network Programmer's
Guide for information about XTI.

1.5 1/0 Subsystems
The VO subsystems involve the software and hardware that performs all
reading and writing operations. The software includes device drivers, file
systems, and networks. The hardware portion includes all peripheral
equipment (for example, disks, tape drives, printers, and network and
communication lines).

The following sections describe the various VO subsystems.

1.5.1 Disks
The DEC OSFIl operating system supports two hardware storage
architectures: Small Computer System Interface (SCSI) and Digital Storage
Architecture (DSA).

All Alpha AXP systems support SCSI devices. This support is provided
through the Common Access Method (CAM) architecture. The CAM
architecture defines a software model that is layered, providing hardware
independence for SCSI device drivers. In the CAM model, a single
SCSVCAM peripheral driver controls SCSI devices of the same type, for
example, direct access devices. This driver communicates with a device on
the bus through a defined interface. Using this interface makes a SCSVCAM
peripheral device driver independent of the underlying SCSI Host Bus
Adapter.

This hardware independence is achieved by using the Transport (XPT) and
SCSI Interface Module (SIM) components of CAM. Because the XPT/SIM
interface is defined and standardized, users and third parties can write
SCSVCAM peripheral device drivers for a variety of devices and use existing
operating system support for SCSI. The drivers do not contain SCSI HBA
dependencies; therefore, they can run any hardware platform that has an
XPT/SIM interface present.

The Digital Storage Architecture (DSA), supported only on DEC 7000-series
systems, conforms to the Mass Storage Control Protocol (MSCP).

1.5.2 File Systems
The DEC OSFIl operating system file system architecture is based on the
OSFIl Virtual File System (VFS), which is based on Berkeley 4.3 Reno
VFS. VFS provides an abstract layer interface into files regardless of the file

Operating System Overview 1-11

systems in which the files reside. Included in VFS is the namei cache,
which stores recently used file system pathnamelinode number pairs. It also
stores inode information for files that were referenced but not found. Having
this information in the cache substantially reduces the amount of searching to
perform pathname translations.

Layered below VFS, the DEC OSFIl operating system supports the
following file systems:

• Berkeley UNIX File System (UFS), which is the operating system's
native file system.

• Network File System (NFS), which allows users to mount remote file
systems in their own local directories.

• Memory File System (MFS), which is memory-based UFS. Data resides
entirely in memory instead of on disk. The contents of an MFS file
system are lost after a reboot, unmount operation, or power failure.

• Advanced File System (AdvFS), which is a local file system that uses
write-ahead logging to provide rapid crash recovery. AdvFS ensures that
file structures are recovered consistently and offers a flexible structure.
Also available for AdvFS users is the POL YCENTER Advanced File
System Utilities layered product. POL YCENTER provides utilities
specifically designed for performance tuning, such as file striping and
defragmenting.

File systems use the UBC to avoid disk I/O. Because of this, I/O accesses
may appear random. The UBC shares all of memory with the virtual
memory subsystem. The UBC adjusts itself dynamically to accommodate
varying I/O loads. As the I/O load increases, the UBC increases to the limit
defined by ubcmaxpercent configuration file parameter. All I/O passes
through the UBC and is flushed to disk by the update daemon.

Laying out your file system tree across multiple disks can improve
performance. The access time, which is the disk latency or seek time (the
time the disk takes to access the requested block), tends to be more important
than the transfer rate for most workstation, time-share, and server
en vironments.

You can modify file system fragment sizes to optimize either 1/0
performance or disk space usage. Large fragment sizes optimize for I/O
performance, and small fragment sizes optimize for disk space usage.

An important feature in UNIX file system performance is UFS block
clustering. Essentially, block clustering causes the file system and the UBC
to combine multiple small 1/0 operations into a larger single 1/0 operation to
disk. This results in a dramatic decrease in readlwrite requests to disk.

With block clustering, performance is based on hardware speeds (disk and
controller). Performance is achieved by taking better advantage of controller

1-12 Operating System Overview

and drive hardware. Clustering reduces the number of trips to the disk,
which reduces kernel overhead. With clustering, I/O can nearly attain raw
device bandwidth for sequential operations. For example, read/write
speed of large files is 95 percent or more of disk subsystem performance
(sequential access).

Clusters are groups of file system blocks in a contiguous sequence. For a
standard 8KBIl KB (block size/fragment size) UFS file system, the default
cluster size is 8 blocks (64KB). This is determined by multiplying the
default number of blocks (8) by the block size (8192 bytes). You can
modify the the number of blocks that are combined into a single read request
by using either the tunefs or newfs command to establish a new value for
maxcontig. You can modify the number of blocks that are combined into
a single write request by using dbx to establish a new value for the
cluster maxcontig global parameter. The default value of
cluster - maxcontig is 8, which tries to combine eight 8KB blocks (or
64KB) into a single write.

UFS tries to group contiguous writes into clusters. Individual contiguous
block writes are collected into a cluster. The cluster is written
asynchronously as a unit either when its full size is reached or a
discontiguous block is encountered. Specifically, contiguous writes are done
in 64KB units, which is the file system block size (8) multiplied by the
default value of cluster _ maxcontig (8).

UFS uses clusters to make read-ahead more efficient and effective as follows:

• Initial read brings in two blocks: one synchronous, one asynchronous
(read-ahead block).

• Subsequent contiguous reads trigger exponential read-ahead in cluster
units to a maximum number of eight clusters. (The default is 8, which is
an exponent of the cluster max read ahead global parameter,
which specifies the maximum number of dusters to stay ahead of
sequential reader. The cluster max read ahead global parameter
can be changed by using dbx.) - - -

• The first noncontiguous read causes read-ahead to reset its counters.

• The maximum amount of read-ahead is determined by the value of the
file system block size multiplied by the value of maxcontig multiplied
by the value of the cluster max read ahead parameter (for
example, 8192 * 8 * 8 = 512KB). - -

• The read-ahead policy is more aggressive than traditional UFS in that it
attempts to anticipate the needs of contiguous reads. This policy balances
sequential performance with safeguards for cache flushing.

Operating System Overview 1-13

1.5.3 Network Systems
A network provides a means to move data from one device to another. This
data may be no more complicated than electronic mail. You can copy files
containing printable data (for example, word processor files), or binary data
from a local computer to a remote computer, with the same ease as files
copied from one directory to another on the local computer. With remote
login, users can login to a remote computer on which they have an account
and access programs and data as if they were at a terminal connected to their
own host computer.

A network consists of two essential component parts: the hardware
implementation and the software that runs the network. The hardware
consists of controllers and connectors.

1.5.3.1 Network Hardware

The controller sends and receives packets of data over the network.
Controllers are specialized and are designed to work with a particular type of
computer (bus architecture). For example, controllers designed to work with a
Digital workstation will not work with a Sun or Hewlett-Packard
workstation, or an IBM-PC, and vice versa.

The cables or wires connecting different computers (or nodes) on a network
can be twisted-pair (as with telephone wires), thick or thin Ethernet cable, or
optical fiber. The type of controller determines the type of connector.

1.5.3.2 Network Software

Two relevant network software implementations exist for the DEC OSFIl
operating system: TCP/IP and DECnet. Their names refer to the protocol
used to send information from one network node to another, as well as to the
software written to implement these protocols, which are the rules and
formats that conduct communications on a network. Protocols govern the
way messages are packaged, addressed, and routed; master/slave relationships
among network nodes; polling; the exchange of control information; and the
hierarchy. The following paragraphs briefly introduce TCP/IP and DEC net:

TCP/IP (Transmission Control Protocol/Internet Protocol) was developed
by the U.S. Defense Department, Defense Advanced Research Projects
Agency (DARPA). Its name is derived from its two main standards.
Because TCP/IP is a collection of protocols, rather than a particular
software program, the software that provides its services has been
implemented for many different hardware platforms and operating
systems. The TCP/IP protocols are used as building blocks on which
other products or applications are built. As a result, it is a widely
accepted standard in the UNIX world.

1-14 Operating System Overview

• DEe net is Digital Equipment Corporation's implementation of a network
protocol common to its operating systems. The advantage of DECnet over
TCP/IP in a Digital environment is that Digital controls its development
and distribution and is able to optimize the implementation for its own
hardware and systems software. However, from the user's point of view,
DEC net and TCP/IP accomplish the same tasks. Because both can
coexist on the same physical network, both can be present and can be
used whenever their application is warranted.

Network File System (NFS) is a product that utilizes TCP/IP and was built
originally in a Berkeley UNIX environment. It is a proprietary product
developed by Sun Microsystems; however, it has now been ported and
licensed on many other UNIX implementations, including the DEC OSFIl
operating system.

NFS allows users to mount remote file systems in their own local directories,
thereby giving the appearance of an extension of their local file system. The
machine that offers file systems for other machines to access is called the
server or file server; the machines that access these file systems by remotely
mounting them are called clients.

NFS, however, is not a network extension of UNIX and does not adhere to
UNIX semantics. It does not support all UNIX file system operations, does
not guarantee atomic operations, and cannot obtain access to remote devices.
It operates independently of the machine and operating system and can be
used on non-UNIX machines as well as those running UNIX.

The User Datagram Protocol (UDP) is commonly used in the Network File
System. UDP is the internet standard protocol that allows an application
program on one host to send a datagram to an application program on another
host. UDP provides an unreliable, connectionless delivery service using IP to
transport messages among hosts.

UDP is similar to TCP and it provides a mechanism for user applications to
communicate with IP. UDP differs from TCP in that it is a simple protocol
that is entirely dependent upon IP's best effort to provide reliability. UDP
does not guarantee delivery, occasionally generates duplicate data packets,
and may send data in the incorrect order. However, layers above UDP can
create reliable services using UDP.

Both the host (client) and remote (server) machines start network daemon
processes running when they are booted. Machines that can be reached from
the network are listed in a data file with their network addresses. Each local
machine knows its own name and network address. As data is sent out over
the network, the address and routing information are filled in by the sending
network daemon. Network daemons on receiving machines decode the
address to determine for whom the message is intended. If the message is
intended for the receiving machine, it decodes the message and processes it;
otherwise, it does nothing.

Operating System Overview 1-15

Monitoring Your System 2

Before you start to monitor your system to identify a performance problem,
you should understand your user environment, the applications you are
running and how they use the various subsystems, and what is acceptable
performance.

The source of the performance problem may not be obvious. For example, if
your disk I/O subsystem is swamped with activity, the problem may be in
either the virtual memory subsystem or in the disk I/O subsystem. In
general, obtain as much information as possible about the system before you
attempt to tune it.

In addition, how you decide to tune your system depends on how your users
and applications utilize the system. For example, if you are running a lot of
CPU-intensive applications, the virtual memory subsystem may be more
important than the file system buffer cache (UBC).

This chapter contains the following information:

• A brief introduction to the tools that you can use to monitor your system
(Section 2.1)

• Examples of how to use some of the tools to perform a variety of
monitoring tasks (Section 2.2)

2.1 Monitoring Tools
Numerous system monitoring tools are available. You may have to use
various tools in combination with each other in order to get an accurate
picture of your system. In addition to obtaining information when the system
is running poorly, it is also important for you to obtain information about
your system when it is running well. By comparing the two sets of data, you
will be able to pinpoint the area that is causing the performance problem.

The primary monitoring tools are described in Table 2-1.

Table 2-1: Primary Monitoring Tools

Tool Description

iostat Reports I/O statistics for terminals, disks, and the system. See
Section 2.2.5 for more information on using the iostat
command to diagnose system performance problems.

netstat Displays network statistics. The netstat command
symbolically displays the contents of network-related data
structures. Depending on the options supplied to netstat, the
output format will vary. The more common format is to supply
the netstat command with a time interval to determine the
number of incoming and outgoing packets, as well as packet
collisions, on a given interface. See Section 2.2.8 for more
information on using the netstat command to diagnose system
performance problems.

nfsstat Displays Network File System (NFS) and Remote Procedure Call
(RPC) statistics for clients and servers. The output includes the
number of packets that had to be retransmitted (retrans) and
the number of times a reply transaction ID did not match the
request transaction ID (badxid). See Section 2.2.9 for more
information on using the nfsstat command to diagnose system
performance problems.

ps Displays the current status of the system processes. Although ps
is a fairly accurate snapshot of the system, it cannot begin and
finish a snapshot as fast as some processes change state. As a
result, the output may contain some inaccuracies. The ps
command includes information about how the processes use the
CPU and virtual memory. See Section 2.2.1 for more information
on using the ps command to diagnose system performance
problems.

uptime Shows how long a system has been running and the system load
average. The load average numbers give the number of jobs in the
run queue for the last 5 seconds, the last 30 seconds, and the last
60 seconds. See Section 2.2.2 for more information on using the
uptime command to diagnose system performance problems.

vmstat Shows information about process threads, virtual memory,
interrupts, and CPU usage for a specified time interval. See
Section 2.2.3 for more information on using the vmstat
command to diagnose system performance problems.

Other tools can also provide you with important monitoring information.
These secondary monitoring tools are described in Table 2-2.

2-2 Monitoring Your System

Table 2-2: Secondary Monitoring Tools

Tool

dbx

durnpfs

ipcs

kdbx

Description

Analyzes running kernels and dump files. The dbx command
invokes a source-level debugger. You can use dbx with code
produced by the cc and as compilers and with machine code.
After invoking the dbx debugger, you issue dbx commands that
allow you to examine source files, control program execution,
display the state of the program, and debug at the machine level.
To analyze kernels, use the -k option. See Section 2.2.7 for
more information on using the dbx command to diagnose system
performance problems.

Displays UFS file system information. This command is useful
for getting information about the file system block and fragment
size and the minimum free space percentage. See Section 2.2.6
for more information on using the durnpfs command to diagnose
system performance problems.

Reports interprocess communication (Ipe) statistics. The ipcs
command displays information about currently active messages
queues, shared memory segments, semaphores, remote queues,
and local queue headers. Of specific interest are the following
fields:

- QNUM, the number of messages currently outstanding on the
associated message queue

- CBYTES, the number of bytes in messages currently
outstanding on the associated message queue

- QBYTES, the maximum number of bytes allowed in messages
outstanding on the associated message queue

- SEGS Z, the size of the associated shared memory segment

- NSEMS, the number of semaphores in the set associated with
the semaphore entry

See ipcs(1) for details.

Analyzes running kernels and dump files. The kdbx debugger is
an interactive program that lets you examine either the running
kernel or dump files created by the savecore utility. In either
case, you will be examining an object file and a core 'file. For
running systems, these files are usually /vrnunix and
/ dev /rnern, respectively. Dump files created by savecore are
saved in the directory specified by the
/ sbin/ ini t. d/ savecore script which is, by default,
/var / adrn/ crash. All dbx commands are available with
kdbx using the dbx option.

See the manual Kernel Debugging or kdbx(8) for details.

Monitoring Your System 2-3

Table 2-2: (continued)

Tool Description

nfswatch Monitors all NFS network traffic and divides it into several
categories. The number and percentage of packets received in
each category is displayed on the screen in a continuously
updated display. Your kernel must be configured with the
packetfilter option. See nfswatch(8) and
packetf il ter(7) for details.

prof and pixie Displays statistics on where time is being spent - at the routine
level, basic block level, or instruction level - during the execution
of a program. This information will help you to determine where
to concentrate your efforts to optimize source code.

showfdmn Displays the attributes of an AdvFS file domain and detailed
information about each volume in the file domain.

showfile Displays the full storage allocation map (extent map) for files in
an Advanced File System (AdvFS). An extent is a contiguous
area of disk space that the file system allocates to a file.

showfsets Displays the filesets (or clone filesets) and their characteristics in
a specified domain.

swapon Specifies additional disk space for paging and swapping and
displays swap space utilization, including the total amount of
allocated swap space, the amount of swap space that is being
used, and the amount of free swap space. See Section 2.2.4 for
more information on using the swapon command to diagnose
system performance.

tcpdump Displays network traffic. The tcpdump command prints out the
headers of packets on a network interface that match the boolean
expression. Your kernel must be configured with the
packetfilter option. See tcpdump(8) and
packetf il ter(7) for details.

w Displays a summary of current system activity. The system
summary shows the current time, the amount of time since the
system was last started, the number of users logged in to the
system, and the load averages. The load average numbers give the
number of jobs in the run queue for the last 5 seconds, the last 30
seconds, and the last 60 seconds. See w(1) for details.

xload System load average display for X. The xload command
displays a periodically updating histogram of the system load
average. See xload(lX) for details.

In addition, a number of unsupported monitoring tools are available through
the Internet. These tools include the monitoring tools described in Table 2-3.

2-4 Monitoring Your System

Table 2-3: Unsupported Monitoring Tools

Tool Description

monitor Displays CPU, file system, memory, swap 110, and network
statistics. (Available on the Internet at
gatekeeper.dec.com)

xcpustate Displays CPU states (idle, nice, system, kernel) statistics. The
xcpustate utility displays bars showing the percentage of time
the CPU spends in different states. (Available on the Internet at
gatekeeper.dec.com)

xnfs Displays NFS statistics. The xnfs utility displays bars showing
the number of active NFS daemons, the number of mbuf write,
the number of cluster writes, and the number of hits and misses.
(Available on the Internet at gatekeeper. dec. com.)

2.2 Determining the Problem
The following sections describe how to use the monitoring tools to identify
the system component or subsystem that is causing the performance
degradation. Once you determine which subsystem or component is causing
the problem and you are sure that you understand your system environment
and the needs of your users, refer to the appropriate section in Chapter 3 for
information on tuning the particular subsystem or component.

2.2.1 Monitoring Processes - ps Command
The ps command displays the current status of the system processes. You
can use it to determine the current running processes, their state, and how
they utilize system memory. The command lists processes in order of
decreasing CPU usage, so you can easily determine the processes that are
using the most CPU time. Be aware that ps is only a snapshot of the
system; by the time the command finishes executing, the system state has
probably changed. For example, one of the first lines of the command may
refer to the ps command itself.

Monitoring Your System 2-5

An example of the ps command follows:
ps aux
USER PID %CPU %MEM vsz RSS TT S STARTED TIME COMMAND
chen 2225 5.0 0.3 1.35M 256K p9 U 13:24:58 0:00.36 cp /vmunix /tmp
root 2236 3.0 0.5 1.59M 456K p9 R + 13:33:21 0:00.08 ps aux
sorn 2226 1.0 0.6 2.75M 552K p9 S + 13:25:01 0:00.05 vi met.ps
root 347 1.0 4.0 9.58M 3.72 ?? S Nov 07 01:26:44 /usr/bin/Xll/X -a
root 1905 1.0 1.1 6.10M 1. 01 ?? R 16:55:16 0:24.79 /usr/bin/Xll/dxpa
sorn 2228 0.0 0.5 1.82M 504K p5 S + 13:25:03 0:00.02 more
sorn 2202 0.0 0.5 2.03M 456K p5 S 13:14:14 0:00.23 -csh (csh)
root 0 0.0 12.7 356M 11. 9 ?? R < Nov 07 3-17:26:13 [kernel idle]

[jJ I2l @] 14I lID I§]

The ps command includes the following information that you can use to
diagnose CPU and virtual memory problems:

[j] Percent CPU usage (%CPU).

I2l Percent real memory usage (%MEM).

@] Process virtual address size (V8Z) - This is the total amount of virtual
memory allocated to the process.

~ Real memory (resident set) size of the process (RSS) - This is the total
amount of physical memory mapped to virtual pages (the amount of
memory the application has physically used).

~ Process status or state (8) - This specifies whether a process is runnable
(R), sleeping (S), idle (I), stopped (T), halted (H), or swapped out (W). It
also indicates whether the process priority has been reduced (N) or raised
(+) with the nice or renice command.

!§] Current CPU time used (TIME).

From the output of the ps command, you can determine which processes are
consuming most of your system's CPU time and memory and whether
processes are swapped out. Concentrate on processes that are runnable or
paging. Here are some concerns to keep in mind:

• If a process is using a lot of memory (see the RSS and VSZ fields), the
process could have a problem with memory usage.

• Are duplicate processes running? Use the kill command to terminate
any unnecessary processes.

• If a process is using a lot of CPU time, it may be in an infinite loop and
require changes to its source code.

If a process using a lot of CPU time is running correctly, you may want
to lower its priority with either the nice or renice command. Note
that these commands have no effect on a process that is using a lot of
memory.

• Check the processes that are swapped out. Examine the 8 (state) field. A
w entry indicates a process that has been swapped out. If processes are

2-6 Monitoring Your System

continually being swapped out, this could indicate a virtual memory
problem.

For information about improving the performance of your applications, see
Section 3.2. For information about improving your virtual memory
performance, see Section 3.4.

2.2.2 Measuring the System Load - uptime Command
The uptime command shows how long a system has been running and the
load average. The load average counts jobs that are waiting for disk I/O and
also applications whose priorities have been changed with either the nice or
renice command. The load average numbers give the number of jobs in
the run queue for the last 5 seconds, the last 30 seconds, and the last 60
seconds.

An example of the uptime command follows:
uptime
1:48pm up 7 days, 1:07, 35 users, load average: 7.12, 10.33, 10.31

Note whether the load is increasing or decreasing. An acceptable load
average depends on your type of system and how it is being used. In
general, for a large system, a load of lOis high, and a load of 3 is low.
Workstations should have a load of 1 or 2. If the load is high, look at what
processes are running with the ps command. You may want to run
applications during off-peak hours. You can also lower the priority of
applications with the nice or renice command to conserve CPU cycles.

See Section 3.3 for additional information on how to reduce the load on your
system.

2.2.3 Monitoring Virtual Memory and CPU Usage - vmstat
Command

The vmstat command shows the virtual memory, process, and CPU
statistics for a specified time interval. The first line of the output is for all
time since a reboot, and each subsequent report is for the last interval.
Because the CPU operates faster than the rest of the system, performance
bottlenecks usually exist in the memory or 110 subsystems.

Monitoring Your System 2-7

An example of the vrnstat command is as follows:
vmstat 1

Virtual Memory Statistics: (pagesize = 8192)
procs memory pages intr cpu
r w u act free wire fault cow zero react pin pout in sy cs us sy id
2 66 25 6417 3497 1570 155K 38K 50K 0 46K 0 4 290 165 0 2 98
4 65 24 6421 3493 1570 120 9 81 0 8 0 585 865 335 37 16 48
2 66 25 6421 3493 1570 69 0 69 0 0 0 570 968 368 8 22 69
4 65 24 6421 3493 1570 69 0 69 0 0 0 554 768 370 2 14 84
4 65 24 6421 3493 1570 69 0 69 0 0 0 865 1K 404 4 20 76

m I2l I3l 141

The vrnstat command includes information that you can use to diagnose
CPU and virtual memory problems. For example, the following fields are
important:

[1] Virtual memory information, including the number of pages that are
active (act), the number of pages on the free list (free), and the
number of pages wired down (wire). See Section 1.3.1 for more
information.

121 The number of pages that have been paged out (pout).

~ Interrupt information, including the number of nonclock device interrupts
per second (in), the number of system calls called per second (sy), and
the number of task and thread context switches per second (c s).

~ CPU usage information, including the percentage of used time for normal
and priority processes (us), the percentage of system time (sy), and the
percentage of idle time (id).

While diagnosing a bottleneck situation, keep the following issues in mind:

• Is the system demand valid? That is, is there something different in your
system that is adversely affecting the environment, such as a new process
or additional users?

• Check the size of the free page list (free). Compare the number of free
pages to the values for the active pages (act) and the wired pages
(wired). The sum of the free, active, and wired pages should be close
to the amount of physical memory that you have. If the value for free
is less than 100, you may have a virtual memory problem. Swapping
may begin when the free page list is less than 128.

• Examine the pout field. If a lot of page outs are occurring, you could
have a virtual memory problem; you are using more virtual space than
you have physical space. You could also have insufficient swap space or
your swap space could be configured inefficiently. Use the swapon -s
command to display your swap device configuration and the iostat
command to determine which disk is being used the most.

2-8 Monitoring Your System

• Examine the device interrupts (in), the number of system calls called per
second (sy), and the number of task and thread context switches per
second (cs).

In general, systems become saturated when they are processing at the
following rates:

- More than 1,000 device interrupts per second

- More than 10,000 system calls per second

- More than 1,000 context switches per second

If the values displayed are hovering around these values, then something
in the application load is causing high overhead operations. The source
could be high system call frequencies, high interrupt rates, large numbers
of small I/O transfers, or large numbers of small IPC or network
transfers.

- If you have a high interrupt rate, the application may require the
system to perform certain operations, for example, heavy floating­
point emulation or major unaligned accesses. Major unaligned
accesses usually result in a message being displayed.

Note that failing or misconfigured hardware can produce high system
time and a high device interrupt rate. Use the uerf event report
formatter to ensure that the hardware is working properly.

- If you have a large system call rate, use the dbx debugger to examine
the sccount structure to determine the number of times a system
call is issued. This structure is an array that counts each time a
system call is made since the last system boot.

- If you have a high number of context switch interrupts, your
application may be performing large numbers of small 1/0 transfers or
large numbers of small IPC or network transfers. Use the dbx
debugger to examine the sccount structure to determine the number
of system calls related to IPC messages and semaphores.

In general, small 1/0 transfers (for example, I/O chunks less than 8KB
for file system and 1 KB for network) cause the system to perform a
lot of I/O overhead to move each small chunk. If you can buffer the
1/0 to 8KB multiples for disk I/O or 1 KB for IPC or network I/O,
you dramatically increase the efficiency of the I/O.

• Check the user (us), system (sy), and idle (id) time split.

You must understand how your applications use the system to determine
the appropriate values for these times. The goal is to keep the CPU as
productive as possible. Idle CPU cycles occur when no runnable
processes exist or when the CPU is waiting to complete an I/O or
memory request.

Monitoring Your System 2-9

The following list presents information on how to interpret the values for
user, idle, and system time:

- A high user time and a low idle time could indicate that your
application code is consuming most of the CPU. You can optimize
the application, or you may need a more powerful processor.

A high system time and low idle time could indicate that something
in the application load is stimulating the system with high overhead
operations. Such overhead operations could consist of high system
call frequencies, high interrupt rates, large numbers of small I/O
transfers, or large numbers of IPCs or network transfers. Use dbx's
sccount structure to check the rate of system calls.

Note that a high system time and low idle time could be caused by
failing hardware. Use the uerf command to check your hardware.

A high system time could also indicate that the system is thrashing;
that is, the amount of memory available to the virtual memory
subsystem has gotten so low that the system is spending all its time
paging and swapping in an attempt to regain memory. A system that
spends more than 50 percent of its time in system mode may be doing
a lot of 1/0, so this could indicate a virtual memory problem.

- In may cases, if the idle time is very low, your system is utilizing its
CPU efficiently.

If you have a high idle time and you are sure that your system has a
typical load, one or more of the following problems may exist: the
hardware may be saturated (bus bandwidth, arm motion, CPU cycles,
cache thrashing), one or more kernel data structures is being
exhausted, or you may have a hardware or kernel resource block such
as an application, I/O, or network bottleneck.

See Chapter 3 for information on improving CPU usage and I/O operations
and for information on tuning virtual memory, disks, and file systems.

2.2.4 Displaying the Swap Space Configuration - swapon
Command

Use the swapon command with the -s option to display your swap device
configuration. For each swap partition, the command displays the total
amount of allocated swap space, the amount of swap space that is being used,
and the amount of free swap space. This information should help you
determine how your swap space is being utilized.

2-10 Monitoring Your System

For example:

swapon -s
Total swap allocation:

Allocated space: 54912 pages (429MB)
Reserved space: 5756 pages (10%)
Available space: 49156 pages (89%)

Swap partition /dev/rz1g:
Allocated space: 27456 pages (214MB)
In-use space: 1475 pages (5%)
Free space: 25981 pages (94%)

Swap partition /dev/rz2g:
Allocated space: 27456 pages (214MB)
In-use space: 1459 pages (5%)
Free space: 25997 pages (94%)

See Section 3.4.3 for information on how to tune your swap space
configuration. Use the iostat command to determine which disks are
being used the most.

2.2.5 Monitoring Disk 1/0 - iostat Command
The iostat command reports 110 statistics for terminals, disks, and the
CPU. The first line of the output is the average since boot time, and each
subsequent report is for the last interval. An example of the iostat
command is as follows:
iostat 1

tty rz1 rz2 rz3 cpu
tin tout bps tps bps tps bps tps us ni sy id

0 3 3 1 0 0 8 1 11 10 38 40
0 58 0 0 0 0 0 0 46 4 50 0
0 58 0 0 0 0 0 0 68 0 32 0
0 58 0 0 0 0 0 0 55 2 42 0

The iostat command reports 110 statistics that you can use to diagnose
disk I/O problems. For example, the command displays information about
the following:

• For each disk, (rzn), the number of bytes (in thousands) transferred per
second (bps) and the number of transfers per second (tps). Some disks
report the milliseconds per average seek (msps).

• For the system, the percentage of time the system has spent in user state
running processes either at their default priority or higher priority (us), in
user mode running processes at a lowered priority (ni), in system mode
(sy), and idle (id). This information enables you to determine how disk
110 is affecting the CPU.

Monitoring Your System 2-11

Note the following when you use the iostat command:

• Determine which disk is being used the most and which is being used the
least. The information will help you determine how to distribute your file
systems and swap space. Use the swapon -s command to determine
which disks are used for swap space.

• If a disk is doing a lot of transfers (the tps field) but reading and writing
only small amounts of data (the bps field), examine how your
applications are doing disk 110. The application may be performing a
large number of 110 operations for a small amount of data. You may
want to rewrite the application if this behavior is not necessary.

See Section 3.6 for information on how to improve your disk I/O
performance.

2.2.6 Displaying UFS File System Information - dumpfs
Command

The dumpfs command dumps UFS file system information. The command
prints out the super block and cylinder group information. The command is
useful for getting information about the file system block and fragment sizes
and the minimum free space percentage.

The following example shows part of the output of the dumpfs command:
dumpfs Idev/rrz3g I more
magic 11954 format dynamic
nbfree 21490 ndir 9
ncg 65 ncyl 1027
bsize 8192 shift 13
fsize 1024 shift 10
frag 8 shift 3
cpg 16 bpg 798
minfree 10% optim time
rotdelay Oms headswitch Ous

time Tue Sep 14 15:46:52 1993
nifree 99541 nffree 60
size 409600 blocks '396062
mask OxffffeOOO
mask OxfffffcOO
fsbtodb 1
fpg 6384 ipg 1536
maxcontig 8 maxbpg 2048
trackseek Ous rps 60

The information contained in the first lines are relevant for tuning. Of
specific interest are the following fields:

bsize - The block size of the file system in bytes.

fsize - The fragment size of the file system in bytes.

minfree - The percentage of space held back from normal users; the
minimum free space threshold.

maxcontig - The maximum number of contiguous blocks that will be
laid out before forcing a rotational delay; that is, the number of blocks
that are combined into a single read request.

2-12 Monitoring Your System

• maxbpg - The maximum number of blocks any single file can allocate
out of a cylinder group before it is forced to begin allocating blocks from
another cylinder group.

• rotdelay - The expected time (in milliseconds) to service a transfer
completion interrupt and initiate a new transfer on the same disk. It is
used to decide how much rotational spacing to place between successive
blocks in a file.

Keep the following issues in mind:

• A large block size (bsize) benefits large I/O transfers but can waste
disk space. A small block size uses the disk efficiently but requires more
1/0 operations. Note that the UFS file system block size is fixed at SKB.

• For the optimum 1/0 performance, the fragment size (f s i z e) can be the
same as the block size.

• If rotdelay is zero, blocks are allocated contiguously.

• A large value for maxbpg can improve performance for large files.

For information about tuning file system parameters to improve your disk I/O
performance, see Section 3.6.1.1 (UFS) or Section 3.6.1.2 (AdvFS).

2.2.7 Monitoring AdvFS
There are a number of commands that you can use to display information
about AdvFS.

The showfile command displays the full storage allocation map (extent
map) for files in an Advanced File System (AdvFS). An extent is a
contiguous area of disk space that the file system allocates to a file. The
following example of the showf ile command displays the AdvFS-specific
attributes for all the files in the current working directory:

showfile *

Id Vol PgSz Pages xtntType Segs SegSz Log Perf File
22a.001 1 16 1 simple ** ** off 50% Mail

7.001 1 16 1 simple ** ** off 20% bin
1d8.001 1 16 1 simple ** ** off 33% c

1bfL001 1 16 1 simple ** ** off 82% dxMail
218.001 1 16 1 simple ** ** off 26% emacs
1ed.001 1 16 0 simple ** ** off 100% foo
1ee.001 1 16 1 simple ** ** off 77% lib
1c8.001 1 16 1 simple ** ** off 94% obj
23f.003 1 16 1 simple ** ** off 100% sb

170a.008 1 16 2 simple ** ** off 35% t
6.001 1 16 12 simple ** ** off 16% tmp

The following example of the showfile command shows the attributes and

Monitoring Your System 2-13

extent information for the mail file, which is a simple file:

showfile -x mail

Id Vol PgSz Pages XtntType Segs SegSz Log Perf File
4198.800d 2 16 27 simple ** ** off 66% tutorial

extentMap: 1
pageOff pageCnt vol volBlock blockCnt

0 5 2 781552 80
5 12 2 785776 192

17 10 2 786800 160
extentcnt: 3

See showfile(8) for information about the output of the command.

The showfdmn command displays the attributes of an AdvFS file domain
and detailed information about each volume in the file domain. The
following example of the showf dmn command displays domain information
for the lusr file domain:

% showfdmn usr

Id Date Created LogPgs Domain Name
2b5361ba.000791be Tue Jan 12 16:26:34 1993 256 usr

Vol
1L

512-Blks
820164

Free % Used Cmode Rblks Wblks Vol Name
351580 57% on 256 256 /dev/rzOd

See showfdmn(8) for information about the output of the command.

The showfsets command displays the filesets (or clone filesets) and their
characteristics in a specified domain.

The following is an example of the showfsets command:

showfsets dmn

rnnt

mnt clone

Id
Clone is
Files
Blocks (1k)
Quota Status

Id
Clone of
Revision

2c73e2f9.000f143a.1.8001
rnnt clone

79, limit =
331, limit =

user=on group=on

1000
25000

2c73e2f9.000f143a.2.8001
mnt
1

See showfsets(8) for information about the output of the command.

See Chapter 3 for information about tuning AdvFS.

2-14 Monitoring Your System

2.2.8 Using dbx to Monitor Subsystems
You can use dbx to examine source files, control program execution, display
the state of the program, and debug at the machine code level. You use the
dbx pr int command to examine the values of variables and data
structures.

To examine a running system with dbx, use the following command:

dbx -k vmunix /dev/mem

The following sections describe how to use dbx to examine various
subsystems of the DEC OSFIl operating system.

2.2.8.1 Checking Virtual Memory with dbx

If the vmstat command shows a large system call rate, use the dbx print
command to look at the sccount structure. This is an array that counts each
time a system call has been made since the last system boot.

(dbx) p sccount
struct {

[0] 0
[1] 0
[2] 112706
[3] 119265107
[4] 14257390
[5] 0
[6] 5251226
[7] 147732

(dbx)

-nosys (always yields an error)
-exit
-fork
-read
-write
-old open, unused
-close
-wait4

The left column of the display lists the number of the system call as defined
in the file lusrlsys/include/sys/syscall. h and the right column
is the number of times that system call has been issued. From this output,
you can determine the most frequently made system calls. This will help you
understand what is really going on in your system and whether it matches
your expectations.

If you are surprised by the numbers, examine the source code for the
application to determine whether you can make the application more efficient.
See Section 3.2 for information on how to tune an application.

You can also check virtual memory by using dbx and examining the
vm _perf sum structure. Note the vpf _pagefaul ts field (number of

Monitoring Your System 2-15

hardware page faults) and the vpf swapspace field (number of pages of
swap space not reserved). -

(dbx) p vm_perfsum
struct {

vpf_pagefaults 6732100

vpf_swapspace 29230
}
(dbx)

See Section 3.4 for information on how to tune the virtual memory
subsystem.

2.2.8.2 Checking UFS with dbx

To check UFS using dbx, examine the ufs clusterstats structure to
see how efficiently the system is performing cluster read and write transfers.
You can examine the cluster reads and writes separately with the
ufs clusterstats readandufs clusterstats write
structures.

The following example shows a system that is not clustering efficiently:
(dbx) p ufs_clusterstats
struct {

full cluster transfers = 3130
part-cluster-transfers = 9786
non cluster transfers 16833
sum-cluster-transfers = {

}
(dbx)

-
[0]
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]

0
24644
1128
463
202
55
117
36
123
0

This example shows 24644 single-block transfers and no 9-block transfers.

See Section 3.6.1.1 for information on how to tune the UFS file system.

2-16 Monitoring Your System

2.2.8.3 Checking the namei Cache with dbx

The namei cache stores recently used file system pathname/inode number
pairs. It also stores inode information for files that were referenced but not
found. Having this information in the cache substantially reduces the amount
of searching that is needed to perform pathname translations.

To check the UFS namei cache, use dbx and look at the nchstats data
structure. In particular, look at the ncs goodhi ts, ncs neghi ts, and
ncs misses fields to determine the hit rate. The hit rateshould be above
80 percent (ncs goodhi ts plus ncs neghi ts divided by the sum of
the ncs _goodhI ts, ncs _neghi ts, and ncs _misses.)

For example:
(dbx) p nchstats
struct {

ncs_goodhits = 9748603 -found a pair
ncs_neghits = 888729 -found a pair that didn't exist
ncs_badhits = 23470

-did not find a pair
ncs_falsehits = 69371
ncs_miss = 1055430
ncs_long = 4067
ncs_pass2 = 127950
ncs_2passes = 195763
ncs_dirscan = 47

-name was too long to fit in the cache

(dbx)

For information on how to improve the namei cache hit rate, see Section
3.6.1.

2.2.8.4 Checking the UBC with dbx

To check the UBC, use dbx to examine the vm perfsum structure. In
particular, look at the vpf piowri tes field (number of I/O operations for
page outs generated by thepage stealing daemon) and vpf ubcalloc field
(number of times the UBC had to allocate a page from the Virtual memory
free page list to satisfy memory demands). For example:

(dbx) p vm_perfsum
struct {

vpf_pagefaults = 6732100
vpf_kpagefaults = 119865
vpf cowfaults = 926159
vpf-cowsteals = 192703
vpf-zfod = 2720195
vpf-kzfod = 119865
vpf-pgiowrites = 1882
vpf-pgwrites = 4747
vpf-pgioreads = 1874108
vpf-pgreads = 1412
vpf-swapreclaims = 4
vpf-taskswapouts = 0
vpf=taskswapins = 0

Monitoring Your System 2-17

vpf vplmsteal = 1411
vpf-vplmstealwins = 1365
vpf-vpseqdrain = 0
vpf-ubchit = 3851
vpf-ubcalloc = 103378
vpf-ubcpushes = 0
vpf-ubcpagepushes = 0
vpf-ubcdirtywra = 0
vpf-ubcreclaim = 0
vpf=reactivate = 1973
vpf allocatedpages = 16177
vpf-wiredpages = 2805
vpf-ubcpages = 5494
vpf-freepages 3384
vpf=swapspace = 29230

}
(dbx)

You can also monitor the DEC by examining the ufs getapage stats
kernel data structure. You can calculate the hit rate bydi viding the value for
read hits by the value for read looks. A good hit rate is a rate above
95 percent. -

(dbx) p ufs_getapage_stats
struct {

read looks = 2059022
read-hits 2022488
read-miss = 36506

}
(dbx)

In addition, you can check the DEC by examining the vrn tune structure
and the vt ubcseqpercent and vt ubcseqstartpercent fields.
These values are used to prevent a large-file from completely filling the DEC
and using a lot of memory, thus limiting the amount of memory available to
the virtual memory subsystem.

For example:
(dbx) p vm_tune
struct {

vt cowfaults = ,AD'
vt=mapentries = 200
vt maxvas = 1073741824
vt-maxwire = 16777216
vt heappercent ,AG'
vt-anonklshift = 17
vt=anonklpages = 1
vt vpagemax = 16384
vt-segmentation = ,AA'
vt-ubcpagesteal = 24
vt-ubcdirtypercent = '\n'
vt-ubcseqstartpercent = '2'
vt=ubcseqpercent = '\n'

2-18 Monitoring Your System

}

vt csubmapsize = 1048576
vt-ubcbuffers = 256
vt-syncswapbuffers = 128
vt-clustermap = 1048576
vt-clustersize = 65536
vt-zone size = 67108864
vt-kentry zone size = 16777216
vt-syswiredpercent = 'P'
vt-asyncswapbuffers = 4
vt=inswappedmin = 1

See Section 3.4.1 for information on how to tune the UBC.

2.2.8.5 Checking the Metadata Cache with dbx

The metadata buffer cache contains file metadata (superblocks, inodes,
indirect blocks, directory blocks, and cylinder group summaries). To check
the metadata buffer cache, use dbx and examine the bio _ stats structure.

(dbx) p bio_stats
struct {

getblk hits = 4590388
getblk-misses 17569
getblk-research = 0
getblk-dupbuf = 0
getnewbuf calls = 17590
getnewbuf-buflocked ~ 0
vflushbuf-Iockskips = 0
mntflushbuf misses 0
mntinvalbuf-misses = 0
vinvalbuf mIsses = 0
allocbuf buflocked = 0
ufssync_misses = 0

}
(dbx)

If the miss rate is high, you may want to raise the value of the bufcache
configuration file parameter. The number of block misses
(getblk misses) divided by the sum of block misses and block hits
(getblk =hi ts) should not be more than 3 percent.

See Section 3.4.1.3 for information on how to tune the metadata cache.

2.2.9 Monitoring the Network - netstat Command
To check network statistics, use the netstat command (or nfsstat
command, see Section 2.2.10). Some problems to look for are as follows:

• If netstat -i shows excessive amounts of input errors (Ierrs),
output errors (Oerrs), or collisions (Coli), this could indicate a
network problem (for example, cables not connected properly or Ethernet
saturation).

Monitoring Your System 2-19

• If the netstat -rn command shows several requests for memory
delayed or denied, this means that your system had temporarily run short
of physical memory.

Most of the information provided by net s ta t is used to diagnose network
hardware or software failures, not to analyze tuning opportunities. See the
manual Network Administration and Problem Solving for additional
information on how to diagnose failures.

The following example shows the output produced by the -i option of the
netstat command:

nets tat -i
Name Mtu Network Address

none
Ipkts Ierrs Opkts Oerrs Coll

InO 1500 DLI l33194 2 23632 4 4881
InO 1500 <Link> l33194 2 23632 4 4881
InO 1500 red-net node1 l33194 2 23632 4 4881
slO* 296 <Link> 0 0 0 0 0
sll* 296 <Link> 0 0 0 0 0
100 1536 <Link> 580 0 580 0 0
100 1536 loop localhost 580 0 580 0 0

The network is reasonably busy in this example, as shown by the collision
output packet rate (4881/23632, or about 20 percent). This is a higher than
normal value, and might indicate a wiring problem in the local area network.
The four output errors are shown in the output produced by the following
netstat command; all are due to excessive collisions.

netstat -is

lnO Ethernet counters at Fri Jan 14 16:57:36 1994

4112 seconds since last zeroed
30307093 bytes received

3722308 bytes sent
133245 data blocks received

23643 data blocks sent
14956647 multicast bytes received

102675 multicast blocks received
18066 multicast bytes sent

309 multicast blocks sent
3446 blocks sent, initially deferred
1130 blocks sent, single collision
1876 blocks sent, multiple collisions

4 send failures, reasons include:
Excessive collisions

o collision detect check failure
2 receive failures, reasons include:

Block check error
Framing Error

o unrecognized frame destination
o data overruns
o system buffer unavailable

2,...20 Monitoring Your System

o user buffer unavailable

The -s option for the netstat command displays statistics for each
protocol:

nets tat -s
ip:

icmp:

igmp:

tcp:

67673 total packets received
o bad header checksums
o with size smaller than minimum
o with data size < data length
o with header length < data size
o with data length < header length
8616 fragments received
o fragments dropped (dup or out of space)
5 fragments dropped after timeout
o packets forwarded
8 packets not forwardable
o redirects sent

27 calls to icmp_error
o errors not generated 'cuz old message was icmp
output histogram:

echo reply: 8
destination unreachable: 27

o messages with bad code fields
o messages < minimum length
o bad checksums
o messages with bad length
Input histogram:

echo reply: 1
destination unreachable: 4
echo: 8

8 message responses generated

365 messages received
o messages received with too few bytes
o messages received with bad checksum
365 membership queries received
o membership queries received with invalid field(s)
o membership reports received
o membership reports received with invalid field(s)
o membership reports received for groups to which we belong
o membership reports sent

11219 packets sent
7265 data packets (139886 bytes)
4 data packets (15 bytes) retransmitted
3353 ack-only packets (2842 delayed)
o URG only packets
14 window probe packets
526 window update packets
57 control packets

12158 packets received
7206 acks (for 139930 bytes)

Monitoring Your System 2-21

udp:

32 duplicate acks
o acks for unsent data
8815 packets (1612505 bytes) received in-sequence
432 completely duplicate packets (435 bytes)
o packets with some dup. data (0 bytes duped)
14 out-of-order packets (0 bytes)
1 packet (0 bytes) of data after window
o window probes
1 window update packet
5 packets received after close
o discarded for bad checksums
o discarded for bad header offset fields
o discarded because packet too short

19 connection requests
25 connection accepts
44 connections established (including accepts)
47 connections closed (including 0 drops)
3 embryonic connections dropped
7217 segments updated rtt (of 7222 attempts)
4 retransmit timeouts

o connections dropped by rexmit timeout
o persist timeouts
o keepalive timeouts

o keepalive probes sent
o connections dropped by keepalive

12003 packets sent
48193 packets received
o incomplete headers
o bad data length fields
o bad checksums
o full sockets
12943 for no port (12916 broadcasts, 0 multicasts)

See netstat(l) for information about the output produced by the various
options supported by the netstat command.

2.2.10 Displaying NFS Statistics - nfsstat Command
To check NFS statistics, use the nfsstat command. For example:
nfsstat

Server rpc:

calls badcalls nullrecv badlen xdrcall

259

Server nfs:

calls badcalls

259

null getattr setattr root lookup readlink read

2 0% 58 22% 0 0% 0 0% 59 22% 0 0% 89 34%

wrcache write create remove rename link symlink

0 0% 36 13% 1 0% 1 0% 0 0% 0 0% 0 0%

mkdir rmdir readdir statfs

2-22 Monitoring Your System

0 0% 0 0% 6 2% 7 2%

Client rpc:

calls badcalls retrans badxid timeout wait newcred badverfs timers

180889 315 315

Client nfs:

calls badcalls nclget nclsleep

180574 180574

null getattr setattr root lookup readlink read

0 0% 82859 45% 0 0% 0 0% 47881 26% 882 0% 46821 25%

wrcache write create remove rename link symlink

0 0% 36 0% 1 0% 1 0% 0 0% 0 0% 0 0%

mkdir rmdir readdir statfs

0 0% 0 0% 2027 1% 66 0%

The ratio of timeouts to calls (which should not exceed 1 percent) is the most
important thing to look for in the NFS statistics. A timeout-to-call ratio
greater than 1 percent can have a significant negative impact on performance.
See Section 3.6.3 for information on how to tune your system to avoid
timeouts.

Monitoring Your System 2-23

Tuning Subsystems and Applications 3

After you determine where your performance problem exists, you can then
begin to remedy it.

This chapter describes various ways that you can tune your system and
applications. Tuning your system can include changing system parameters,
increasing resources such as CPU and memory, and changing the system
configuration, such as adding disks, spreading out file systems, and adding
swap space.

Note

Never attempt to tune your system until you have confirmed that
the performance problem on the system is not caused by an
application that is either broken or in need of further
optimization.

Tuning an application involves modifying the build process, modifying the
source code, or both.

As a general rule, performance tuning consists of performing several of the
following tasks:

• Reviewing tuning guidelines (Section 3.1)

• Optimizing your applications (Section 3.2)

• Optimizing the use of your CPU (Section 3.3)

• Tuning memory (Section 3.4)

• Tuning interprocess communications (Section 3.5)

• Tuning 110 (Section 3.6)

3.1 Tuning Guidelines
Prior to tuning your system, you need to understand how your system is
intended to be used. For example, is your system mostly file serving? Are
users running many small applications or are they running mostly large
applications? Without this understanding, your attempts at tuning may cause
more harm than good. If you understand the system's intended use and you
perceive a performance problem, keep the following tuning rules in mind:

• The DEC OSFIl operating system in many ways tries to tune itself
according to the work load. For example, it dynamically adjusts the
unified buffer cache (UBC) according to file system I/O.

• All of the components of the DEC OSFIl operating system interact in
some manner. A change you make in one component may have an
unexpected effect elsewhere. Try the tuning suggestions that cause the
least disruption to the user community.

• Make the easy changes first (for example, add an additional swap space
area).

• Make one change at a time. Try to avoid making too many changes at
once. By making one change at time, you can track exactly what has
helped or hurt the system and, if need be, you can ensure that you can
return to a previous state.

• Know when to quit. Tuning has diminishing returns. Squeezing that last
half percent performance improvement may not be worth the effort that
goes into it.

The following is an example of a procedure you could follow if you are sure
that your applications are not causing the performance problem:

1. Is there enough memory? Use the vrnstat command to display
information about virtual memory.

Check the number of pages on the free list. If the number is less than
128, you may have a virtual memory problem. If so, you could do the
following:

- Ensure that no new application is adversely affecting your system
environment.

- Modify the system load if possible.

- Check your swap space configuration. Spread out swap partitions
across several disks. Configure your swap space at system startup to
get the best performance benefit. Use the swapon -s command to
display your swap space configuration. Use the iostat command to
determine which disks are getting the most use. Do not swap to the
system disk if possible.

- Decrease the amount of memory available to the UBC.

- Modify the virtual memory configuration parameters.

- Add more memory.

2. Is there enough CPU? Use the vrnstat command to determine how the
applications are using the CPU:

- Check the idle time (id). A high idle time may not indicate anything
that relates to a problem or it could indicate the following:

3-2 Tuning Subsystems and Applications

• An 110 bottleneck problem

• An application bottleneck problem

- Check the user time (us). A high user time and a low idle time could
indicate a lack of CPU.

- Check the system time (sy). A high system time could indicate
nothing, or it could indicate that the system is thrashing; that is,
virtual memory is low, and the system is trying to reclaim pages.

3. Is the system paging? Use the vmstat command to check for a high
page out rate (pout). You may have a virtual memory problem if you
are paging excessively.

4. Do you have excessive disk I/O? Use the iostat command to
determine which disks are being used the most. Spread out your swap
space across several disks. Spread out file systems across disks.

5. Do you have a lot of network retransmissions or dropped packets? You
may have a problem in your network. Use the netstat command with
the -i and -s options to produce statistics that will help you to analyze
input and output problems. Use the nfsstat -c command to obtain
information about NFS retransmissions.

The following sections describe the various tuning possibilities.

3.2 Optimizing Applications
In many instances, optimizing an application can result in major
improvements in run-time performance. Two preconditions should be met,
however, before you begin measuring the run-time performance of an
application and analyzing how to improve the performance:

• Check the software on your system to ensure that you are using the latest
versions of the compiler and the operating system to build your
application. Newer versions of a compiler often perform more advanced
optimizations and newer versions of the operating system often operate
more efficiently.

• Test your application program to ensure that it runs without errors.
Whether you are porting an application from a 32-bit system to DEC
OSFIl or developing a new application, never attempt to optimize an
application until it has been thoroughly debugged and tested. (If you are
porting an application written in C, use lint with the -Q option or
compile your program with the -migrate -check option to isolate
addressing problems that you will need to resolve.)

Once you have verified that these conditions have been met, you can then
begin the tuning process.

Tunina SubsYstems and Applications 3-3

Application tuning can be divided into two separate, but complementary,
activities:

• Tuning your application's build process so that you use, for example, an
optimal set of preprocessing and compilation optimizations.

• Analyzing your application's source code to ensure that is uses efficient
algorithms and that it does not use programming language constructs that
can degrade performance.

The following sections provide details on considerations that relate to these
two aspects of the tuning process.

3.2.1 Application-Building Guidelines
Opportunities for improving an application's run-time performance exist in
all phases of the build process. The following sections identify some of the
major opportunities that exist in the areas of compiling, linking and loading,
preprocessing and postprocessing, and library selection.

3.2.1.1 Compilation Considerations

Compile your application with the highest optimization level possible, that is,
the level that produces the best performance and the correct results. In
general, applications that conform to standards should tolerate the highest
optimization levels, and applications that do not conform to standards may
have to be built at lower optimization levels. For details, see cc(l), f77(l),
the Programmer's Guide, or the DEC Fortran user manual for DEC OSFIl
systems.

If your application will tolerate it, compile all of the source files together in a
single compilation. Compiling multiple source files increases the amount of
code that the compiler can examine for possible optimizations. This can
have the following effects:

• More procedure inlining

• More complete data flow analysis

• A reduction in the number of external references to be resolved during
linking

To take advantage of these optimizations, use the -03 optimization level for
the system C compiler, the -plus list optimize option for the DEC
C compiler, or the --04 option (default) forthe DEC Fortran compiler. (Note
that some routines may not tolerate a high level of optimization and these
routines will have to be compiled separately.)

3-4 Tuning Subsystems and Applications

3.2.1.2 Linking and Loading Considerations

If your application does not use many large libraries, consider linking it
nonshared. This allows the linker to optimize calls into the library, thus
decreasing your application's start-up time. Nonshared applications,
however, can use more system resources than call-shared applications. If
your application will be used by many users simultaneously, you may
increase total system performance by linking call-shared. See the
Programmer's Guide or the ULTRIX to DEC OSFll Migration Guide for
details.

For applications that use shared libraries, ensure that those libraries can be
quickstarted. Quickstarting is a DEC OSFIl capability that can greatly
reduce an application's load time. For many applications, load time is a
significant percentage of the total time that it takes to start and run the
application. If an object cannot be quickstarted, it still runs, but startup time
is slower. See the Programmer's Guide for details.

3.2.1.3 Preprocessing and Postprocessing Considerations

Preprocessing and postprocessing (run-time) options include the following:

• Use the KAP (Kuck Associates Preprocessor) tool to gain extra
optimizations. The preprocessor uses final source code as input and
produces an optimized version of the source code as output. It is
especially useful for applications with a large number of floating-point
operations. KAP is available for DEC OSFIl systems as a separately
orderable layered product.

For DEC Fortran, KAP is invoked with the kapf command (which
invokes separate KAP processing) or kf77 (which invokes combined
KAP processing and DEC Fortran compilation). For C, KAP is invoked
with the kapc command.

For information on how to use KAP on a C program, see the KAP for C
for DEC OSFll AXP User Guide. For information on how to use KAP
on a DEC Fortran program, see the KAP for DEC Fortran for DEC
OSFll AXP User Guide.

• Use the cord utility to improve the cache behavior of C applications.
This utility uses data from an actual run of your application to improve
your application's use of the instruction cache. To use cord, you must
first create a feedback file with the pixie and prof tools. See
pixie(1), prof(1), cord(1), and runcord(1) for details. The
Programmer's Guide also describes how to use these tools.

• To improve compiler optimizations, try recompiling your C programs
with a feedback file. The C compiler can make use of data from an
actual run of the program to fine tune its optimizations. The feedback
information is most useful when compiling at optimization level -03.

Tuning Subsystems and Applications 3-5

To create a feedback file, use the pixie and prof tools. See
pixie(1), prof(1), and cc(1) for details.

3.2.1.4 Library Routine Selection

Library routine options include the following:

• Use the Digital Extended Math Library (DXML) for applications with
complex floating-point operations. By using DXML, such applications
may run significantly faster on DEC OSFIl systems, especially when
used with KAP. DXML routines can be called explicitly from your
program or, in certain cases, from KAP (that is, when KAP recognizes
opportunities to use the DXML routines). For C or DEC Fortran, you
access DXML by specifying -ldxml on the compilation command line.

• If your application does not require extended-precision accuracy, you can
use math library routines that are faster but slightly less accurate. For
DEC C, use the -FASTMATH option, and for DEC Fortran, use the
-math library fast option. This causes the compiler to use faster
floating-=point routines at the expense of three bits of floating-point
accuracy. See cc(1) or f77(1) for details.

• If you are using C, consider compiling with the -D INTRINSICS
option. This causes the compiler to inline calls to certain standard C
library routines.

3.2.2 Application Coding Guidelines
If you are willing to modify your application, use the profiler tools to
determine where your application spends most of its time. Many applications
spend most of their time in a few routines. Concentrate your efforts on
improving the speed of those heavily used routines.

Digital provides several profiling tools that work for C, Fortran, and other
languages. See pixie(1), and prof(1) for more details. The
Programmer's Guide describes how to use these tools.

After you have identified the heavily used portions of your application,
consider the algorithms used by that code. Is it possible to replace a slow
algorithm with a more efficient one? Replacing a slow algorithm with a
faster one often produces a larger performance gain than tweaking an existing
algorithm.

When you are satisfied with the efficiency of your algorithms, consider
making code changes to help the compiler optimize your application. (For
information on how to assist the compiler in making optimizations, see the
manual High Performance Computing by Kevin Dowd (O'Reilly &
Associates, Inc., ISBN 1-56592-032-5).)

3-6 Tuning Subsystems and Applications

The following sections identify performance opportunities involving data
types, cache usage and data alignment, language-specific issues, and a few
miscellaneous issues.

3.2.2.1 Data Type Considerations

Data type considerations include the following:

• The smallest unit of efficient access on Alpha AXP systems is 32 bits.
Accessing a 8- or 16-bit data type can result in a sequence of machine
instructions to access the data. A 32-bit or 64-bit data item can be
accessed with a single, efficient machine instruction.

A void using integer and logical data types that are less than 32 bits. In
C, consider replacing char and short declarations with int or long
declarations. In DEC Fortran, declare integer or logical variables using 4-
or 8-byte data types.

• Multiplication and division of integer quantities is slower than
multiplication and division of floating-point quantities. If possible,
consider replacing such integer operations with equivalent floating-point
operations.

3.2.2.2 Cache Usage and Data Alignment Considerations

Cache usage patterns can have a critical impact on performance:

• If your application has a few heavily used data structures, attempt to
allocate these data structures on cache line boundaries in secondary cache.
Doing so can improve your application's cache usage.

• Look for potential data cache collisions between heavily used data
structures. Such collisions occur when the distance between two data
structures allocated in memory is equal to the size of the data cache. If
your data structures are small, you can avoid this by allocating them
contiguously in memory.

Data alignment can also affect performance. By default, the DEC Fortran
and C compilers align each data item on its natural boundary; that is, they
position each data item so that its starting address is an even multiple of the
size of the data type used to declare it. Data not aligned on natural
boundaries is called misaligned data. Misaligned data forces necessary
adjustments by software at run time, which can slow performance.

Some statements can force misalignments to occur; for example, the
following DEC Fortran declaration statements can force data to be
misaligned: COMMON, EQUIVALENCE, STRUCTURE, and RECORD.

For C, misalignment can occur when you type cast a variable of one data
type to a smaller data type; for example, type casting a char pointer (I-byte

Tunina Subsystems and Aoolications 3-7

alignment) to an int pointer (4-byte alignment) and then dereferencing the
new pointer may cause unaligned access. Also in C, use of the

unaligned keyword or packed structures created by -Zpn or #pragma
pack can cause unaligned access.

For DEC Fortran, you can use the -align keyword option to correct
alignment problems within declarations, or you can make necessary
modifications to the declarations themselves within the source code. For
DEC C, you can use the -migrate -align option.

During compilation of DEC Fortran programs, warning messages are issued
for cases in which misaligned data can be identified. (Warning messages are
not issued during the compilation of C programs.)

During execution of any program, the kernel issues warning messages
("unaligned access") for most instances of misaligned data. The messages
include the program counter (pc) value for the address of the instruction that
caused the misalignment. You can use the machine code debugging
capabilities of the dbx debugger to determine the source code locations
associated with pc values.

Some misaligned accesses in C programs do not result in a warning message
being issued. In these cases, the compiler generates code to avoid the
message, but performance is still affected. The code generated by the
compiler includes the Alpha AXP machine code instructions ldx u and
s tx u, which are not as efficient as the codes for handling properly aligned
data~

To check for "unreported" instances of unaligned access in DEC C
applications, you can generate a listing file that contains an assembly
language representation of the machine code. Then, you can search the
listing file for occurrences of the inefficient instructions. The listing file also
provides the relative addresses of the ldx u and stx u instructions, which
you can use to locate the source code linesfrom which they were generated.

For additional information on data alignment in Fortran programs, see the
DEC Fortran user manual for DEC OSFIl systems. See cc(l) or f77(1) for
details on alignment options that you can specify on compilation command
lines.

3.2.2.3 C-Specific Coding Considerations

Coding considerations specific to C applications include the following:

• If your application uses large amounts of data for a short period of time,
consider allocating the data dynamically with malloc instead of
declaring it statically. When you have finished using the memory, free it
so it can be used for other data structures later in your program. Using
this technique to reduce the total memory usage of your application can
substantially increase the performance of applications running on systems

3-8 Tuning Subsystems and Applications

with small amounts of physical memory.

• Minimize type casting, especially type conversion from integer to floating
point and from a small data type to a larger data type.

• To avoid cache misses, make sure that multidimensional arrays are
traversed in natural storage order, that is, in row major order with the
rightmost subscript varying fastest and striding by 1. Avoid column
major order (which is done by Fortran).

3.2.2.4 Fortran-Specific Coding Considerations

Coding considerations specific to Fortran applications include the following:

• Use arrays efficiently:

- To avoid cache misses, make sure that multidimensional arrays are
traversed in natural ascending storage order, that is, in column major
order with the leftmost subscript varying fastest and striding by 1.
Avoid row major order (which is done by C).

- Perform one or few array operations that access all of the array or
major parts of an array instead of numerous operations on scattered
array elements. The fastest array access occurs when contiguous
access to the whole array occurs.

• For applications with numerous floating-point operations, consider using
the -assume noaccuracy sensi ti ve option if a small difference
in the result is acceptable. -

• Avoid mixing integer and floating-point (REAL) data in the same
computation; use all floating-point numbers. Expressing all numbers as
floating-point values eliminates the need to convert data between fixed
and floating-point formats, resulting in improved run-time performance.
For example, in the assignment statement R=A/2 * I, if R and A are both
REAL variables, change the constant (2) to a floating-point value (2.).

• A void unnecessary I/O associated with the following coding practices:

- Unnecessary formatting of data

- Unnecessary transfers of intermediate results

- Inefficient transfers of small amounts of data

See the DEC Fortran user manual for DEC OSFIl systems for details.

3.2.2.5 Miscellaneous Programming Considerations

Miscellaneous programming considerations include the following:

• Operations on unsigned integer variables can be faster than on signed
variables. If appropriate, consider using unsigned quantities in your

Tuning Subsystems and Applications 3-9

source code instead of signed quantities. Also, for C programs, consider
using the -unsigned option to treat all char declarations as
unsigned char.

• Avoid using operations that are not native to the Alpha AXP processor.
The compiler must emulate these operations in software, so they can be
slow. These operations include integer division, transcendental
operations (for example, sine and cosine), and square root.

3.3 Optimizing CPU Utilization
When applications are operating correctly but are experiencing high idle time
because of a lack of CPU cycles, your options for correcting the situation are
limited. If the overload condition is expected to continue indefinitely, the
best long-term solution is to add more memory or replace your system with a
larger one.

In general, the following adjustments can be made to improve CPU
processing on a temporary basis:

• Job scheduling - Spread out the jobs within the time available. This can
be done in a variety of ways:

- Prioritize the jobs so that important jobs get run first (nice command
for jobs not yet started; renice command for jobs that are running).

- Schedule jobs at distinct times (at and cron commands) or when
the load level permits (batch command).

• Job sizing - Extremely large programs may run more efficiently if you
increase the following program size limits: dfldsiz, rnaxdsiz,
dflssiz, and rnaxssiz. See the manual System Administration for
details on how you can adjust these limits. (Note that job scheduling can
also be very important for large programs.)

• Reducing the size of the kernel - In certain situations, it may be
necessary or helpful to reduce the size of the kernel to free up memory
resources. Kernel size reductions can serve as a temporary solution until
additional memory can be acquired. Such reductions can be made at
installation time or by reconfiguring the kernel:

- At installation time (during the kernel build phase), you can minimize
the number of kernel options in effect for your system. See the
Installation Guide for details.

- On a running system, you can remove optional software support using
the setld -d command. You can also delete support for any
unused devices or device types by editing the configuration file
(/usrlsys/conf/system_name file). See the manual System
Administration for details on these two methods.

3-10 Tuning Subsystems and Applications

If your system is heavily loaded but does not have a shortage of memory,
increasing the size of the system vnode table may improve performance. The
vnode table limits the number of active files. You can increase its size by
giving a higher value to the maxusers parameter or by modifying the
nvnode parameter in the param. c file. See the manual System
Administration for details.

3.4 Tuning Memory
The memory subsystem is one of the first places where a performance
problem can occur. Performance can be degraded when the virtual memory
subsystem cannot keep up with the demand for pages.

Memory tuning falls into the following two areas of concern:

• Tuning the UBC

You can limit the size of the UBC that is used for file system buffer
cache. This increases the amount of memory available to the virtual
memory subsystem, but decreases I/O performance.

• Tuning your virtual memory subsystem

You can tune several parameters to improve the performance the virtual
memory subsystem. Another method of improving its performance is to
configure additional swap space or spread out your disk I/O. Adding
memory is always an option.

The DEC OSFIl operating system contains several configuration file
parameters that tune memory. Table 3-1 lists some of the parameters that
can have a significant impact on virtual memory, including paging and
swapping, and the UBC. Reboot the system if you change any system
parameters.

Table 3-1: Tunable Memory Parameters

Parameter Default Description

anonklpages Pages to fetch in a cluster

bufcache 3 Percentage of memory dedicated to the
metadata buffer cache

csubmapsize 1024*1024 Size of kernel copy map

dfldsiz 134217728 Default data segment size limit

dflssiz 1048576 Default stack size limit

heappercent 7 Percent of kernel virtual address space to
allocate for use by the heap

Tuning Subsystems and Applications 3-11

Table 3-1: (continued)

Parameter Default

16777216

mapentries 200

maxusers 32

maxuprc 64

maxdsiz 1073741824

maxvas lL«30

maxwire lL«24

msgmnb 16384

msgmni 50

msgtql 40

segmentation 1 (on)

swapbuffers 128

syswiredpercent 80

ubcbuffers 256

ubcdirtypercent 10

ubcmaxpercent 100

ubcminpercent 10

ubcpagesteal 24

ubcseqpercent 10

ubcseqstartpercent 50

vpagemax 16384

3-12 Tuning Subsystems and Applications

Description

Amount of kernel virtual address space
that is available to create kernel virtual
address map entries

Maximum number of virtual memory map
entries

Number of simultaneous users the system
can support easily

Maximum number of processes one user
can run simultaneously

Maximum data segment size limit

Maximum virtual address space for user
maps

Maximum amount of memory that can be
wired

Maximum number of bytes on queue

Number of message queue identifiers

Number of system message headers

Enables shared page tables

Maximum number of swap buffers that are
available for swap 1/0.

Maximum percentage of wired memory
system-wide

Minimum number of buffers that the UBC
can contain

Percent dirty push value

Percentage of memory that the UBC can
consume before page stealing begins

Percentage of memory at which page
stealing is prohibited

Steal vnode clean list

The size of a file as a percentage of the
UBC.

The size of the UBC as a percentage of
total memory.

Maximum vpage for user map, or the
maximum number of individually
protected pages

Table 3-1: (continued)

Parameter Default

zone size 67108864

3.4.1 UBC Subsystem

Description

Amount of kernel virtual address space
that is available for many of the system's
dynamic data structures.

In some cases, an I/O intensive process may degrade the performance of
other processes by using a major portion of the buffer cache. If you need
more memory for the virtual memory subsystem, you can reduce the amount
of memory that is available to the UBC. Note that reducing the memory
available to the UBC can adversely affect file system I/O because the file
system buffer cache will not be able to hold as much data.

The buffer cache is flushed with the update command. Buffer cache
statistics can be viewed by using dbx and checking the vrn perfsums
structure. You can also monitor the UBC by using the dbx -k command
and examining the ufs_getapage_stats kernel data structure.

3.4.1.1 Changing the Size of the UBC

The size of the UBC is determined by the following configuration file
parameters:

• ubcmaxpercent- Defines the maximum amount of total memory that
can be used for the UBC. The default is 100 percent of memory.

• ubcminpercent - Defines the minimum amount of total memory
allocation for the UBC. The default is 10 percent of memory.

The default size of the UBC is 10 percent to 100 percent of all memory.
This means that the UBC will use at least 10 percent of all memory and can
use up to 100 percent of all memory. If you wanted to reduce the amount of
memory that can be allocated to the UBC, you could set ubcmaxpercent
to 50 percent of all memory. This ensures that the UBC will not adversely
affect the virtual memory subsystem. Note that if an application generates a
lot of random I/O, a large UBC will not increase its performance.

If the page out rate is high and you are not using the file system heavily, you
could decrease the value of ubcminpercent to reduce the rate of paging.
Use the vmstat command to determine if the system is paging excessively.

Periodically, using dbx, examine the vpf pgiowri tes and
vpf ubcalloc fields of the vm perf sum kernel structure. The page out
rate may shrink if page outs greatly exceed UBC allocations.

Tuning Subsystems and Applications 3-13

For I/O servers, you may want to raise ubcminpercent to ensure that the
UBC has more memory available for the file system buffer cache. If you do
this, large programs that run occasionally will not completely fill the buffer
cache. To check that you did not raise ubcminpercent too high, use the
vmstat command to examine the page out rate.

If you increase the minimum amount of memory for the UBC with the
ubcminpercent parameter, you may want to il).crease the size of the
system page tables by increasing the maxusers parameter in the system
configuration file.

If you change the ubcmaxpercent and ubcminpercent parameters, do
not make the values so close together that you cause the system to page
excessively or degrade 110 performance.

3.4.1.2 Preventing Cache Thrashing

The DEC OSFIl operating system uses some configuration file parameters to
prevent a large file from completely filling the UBC and using a lot of
memory, thus limiting the amount of memory available to the virtual
memory subsystem. The system will reuse the pages in the UBC instead of
taking pages from the free page list when both of the following conditions
are met:

• The size of the UBC is greater than the value of the
ubcseqstartpercent parameter (the default is 50 percent of total
memory).

• A referenced file is larger than the value of the ubcseqpercent
parameter (the default is 10 percent of current UBC size).

The ubcseqstartpercent and ubcseqpercent configuration file
parameters are used to ensure that a large file does not take all of the pages
on the free page list and cause the system to page excessively.

For example, using the default values, the UBC would have to be larger than
50 percent of all memory and a file would have io be larger than 10 percent
of the UBC (that is, the file size would have to be at least 5 percent of all
memory) in order for the system to reuse the pages in the UBC.

To determine the values of the ubcseqstartpercent and
ubcseqpercent parameters, examine the vm _tune structure using dbx.

If you have a lot of memory, you may want to lower the
ubcseqstartpercent value to 30 percent. Do not specify a lower value
unless you decrease the size of the UBC. You probably do not want to
change the ubcseqpercent parameter.

3-14 Tuning Subsystems and Applications

3.4.1.3 Changing the Size of the Metadata Buffer Cache

Although all memory is shared between the virtual memory subsystem and
the UBC, the file system code that deals with the UNIX file system (UFS)
metadata (including directories, indirect blocks, and inodes) still uses the
traditional BSD buffer cache.

The bufcache configuration file keyword defines the size of the kernel's
metadata buffer cache. The value for bufcache is the percentage of the
system's physical memory that is allocated for the metadata buffer cache.
The default memory allocation for the metadata buffer cache is 3 percent of
physical memory.

Use dbx to examine the bio stats structure. The miss rate (block misses
divided by the sum of the block misses and block hits) should not be more
than 3 percent.

If you have a high miss rate (low hit rate), you may want to raise the value of
bufcache. Note that any additional memory that you allocate to the
metadata buffer cache is taken away from the rest of the system. This means
that the memory is not available to the UBC and the virtual memory
subsystem, and system performance may decline.

You can decrease the value of bufcache on large memory systems if the
hit rate is high and you want to make more memory available to the virtual
memory subsystem.

3.4.2 Virtual Memory Subsystem
Excessive paging, which is sometimes called thrashing, decreases
performance. This means that the natural working set size has exceeded
available memory. Because virtual memory runs at a higher priority, it
blocks out other processes and spends all system resources on servicing page
faults for the currently running processes.

You can determine if a system has memory problems by examining the
output of the vrnstat command. The pout column lists the number of
page outs. The free column lists the amount of pages on the free page list.
Excessive page outs and less than 128 pages on the free page list may
indicate that excessive paging and swapping is occurring.

Some general solutions for reducing excessive paging and swapping are as
follows:

• Reduce memory demands on the system by running fewer applications
simultaneously. Use the at or batch command to run applications at
night.

• Reduce the application's use of memory by using dynamically allocated
memory instead of statically allocated memory. Also, use dynamically
allocated memory more effectively, if possible.

Tllninn ~llh~\I~tp.m~ ::Inri Annlir.::ltions 3-15

• Add more physical memory.

• Reduce the amount of memory available for the UBC. Note that this
may adversely affect I/O performance. See Section 3.4.1.1 for more
information.

• Optimize the use of your swap space. See Section 3.4.3 for more
information~

3.4.3 Modifying Your Swap Space Configuration
To optimize the use of your swap space, spread out your swap space across
multiple devices and use the fastest disks for swap devices. Use the swapon
-s command to display your swap space configuration. Use the iostat
command to determine which disks are being used the most.

To ensure the best performance, place each swap partition on its own disk
(instead of placing multiple swap partitions on the same disk). The page
reclamation code uses a form of disk striping (known as swap space
interleaving) so that pages can be written to the multiple disks. In addition,
configure all of your swap devices at boot time to optimize swap space. See
the manual System Administration for details on how to perform these
operations.

To increase performance, you can change your swap mode from immediate
mode (the default) to deferred mode (over-commitment mode) by removing
(or moving) the / sbin/ swapdefaul t file. Deferred mode requires less
swap space and causes the system to run faster than if you used immediate
mode because less swap bookkeeping is required. However, because deferred
mode does not reserve swap space in advance, the swap space may not be
available when it is needed by a task and the process may be killed
asynchronously.

Application messages such as the following usually indicate that not enough
swap space is configured into the system or that a process limit has been
reached:

"lack of paging space"
"process limit"
"swap space below 10 percent free"

3-16 Tuning Subsystems and Applications

3.5 Tuning Interprocess Communication

You may be able to improve performance by tuning the following message
parameters in the kernel configuration file:

• rnsgrnnb (maximum number of bytes on queue)

The process will be unable to send a message to a queue if doing so
would make the total number of bytes in that queue greater than the limit
specified by rnsgrnnb. If the limit is reached, the process sleeps, waiting
for this condition to be false.

• rnsgtql (number of system message headers)

The process will be unable to send a message if doing so would make the
total number of message headers currently in the system greater than the
limit specified by rnsgtql. If the limit is reached, the process sleeps,
waiting for a message header to be freed.

You can track the use of IPe facilities with the ipcs -a command (see
ipcs(1)). By looking at the current number of bytes and message headers in
the queues, you can then determine whether you need to increase the values
of the rnsgrnnb and rnsgtql parameters to diminish waiting.

You might also want to consider tuning a number of other IPe parameters.
How you tune the following parameters depends on what you are trying to do
in your application:

• Message parameters

- rnsgrnax (maximum message size)

- rnsgrnni (number of message queue identifiers)

• Semaphore parameters

- sernrnni (number of semaphore identifiers)

sernrnsl (number of semaphores per id)

sernoprn (maximum number of operations per sernop call)

- sernurne (maximum number of undo entries per process)

- sernvrnx (semaphore maximum value)

sernaern (adjust on exit maximum value)

• Shared memory parameters

- shrnrnax (maximum shared memory segment size)

shrnrnin (minimum shared memory segment size)

shrnrnni (number of shared memory identifiers)

Tunina Subsvstems and Aoolications 3-17

shmseg (maximum attached shared memory segments per process)

(Note: As a design consideration, consider whether you would be better
off using threads instead of shared memory.)

3.6 Tuning 1/0
110 tuning falls into the following areas of concern:

• Tuning file systems (Section 3.6.1)

You can improve disk 110 by changing file system fragment sizes and
other file system layout parameters.

• Tuning the network (Section 3.6.2)

You can improve network performance by reducing the number of
network applications, redesigning the network, or adding more memory.

• Tuning NFS (Section 3.6.3)

In addition to improving NFS performance by using the techniques you
use to improve the performance of the other file systems, you can
improve NFS performance by using Prestoserve and by modifying a
number of parameters.

The operating system includes several parameters that can affect the 110
subsystem. As specified in Table 3-2, they are set in either the par am. c
file or the system configuration file or by using dbx. Reboot the system if
you change any system parameters.

Table 3-2: Tunable 1/0 Subsystem Parameters

Parameter Default Description

Read parameters:

cluster consec incr

cluster consec in it 2

cluster lastr init -1

cluster max read ahead 8

3-18 Tuning Subsystems and Applications

The increment for determining the number of
blocks that should be combined on the next
read-ahead request after the first read-ahead
request. (Set with dbx.)

The number of blocks that should be combined
for the first read-ahead request. (Set with dbx.)

The number of contiguous reads that need to be
detected before read-ahead is requested. The
default value will start read-ahead on the very
first contiguous read request. (Set with dbx.)

The maximum number of clusters that can be
used in read-ahead operations. (Set with dbx.)

Table 3-2: (continued)

Parameter

cluster read all

Write parameters:

cluster_maxcontig

cluster write one

Default

8

Other parameters that influence 1/0:

delay_wbuffers 0

maxusers 32

open_max_hard 4096

open_max_soft 4096

Description

This variable is either on (1= 0) or off (==0). By
default (on), perform cluster read operations on
non-read-ahead blocks and read-ahead blocks. If
off, perform cluster read operations only on
read-ahead blocks. (Set with dbx.)

The number of blocks that will combined into a
single write request. The default tries to
combine eight 8KB blocks into a 64KB cluster.
This variable controls all mounted UFS file
systems. (Set with dbx.)

This variable is either on (1=0) or off (==0). By
default (on), when a cluster needs to be written
(that is, 64KB of data has been dirtied), but
non-logically contiguous blocks make up the
cluster, just the contiguous data is written,
leaving the remaining data. The remaining data
may be combined into future cluster requests. If
off, 64KB of data will be written regardless of
the number of write requests required to do so.
(Set with dbx.)

This variable applies only to UFS. It is either
on (1=0) or off (==0). By default (off), write­
behind is turned on. If on, flushing full buffers
to disk is delayed until a sync call is issued.
(Set in the paramo c file.)

The number of simultaneous users that your
system can support easily without straining
system resources. (Set in the system
configuration file.)

Hard limit for the number of file descriptors that
a process may have open. (Set in the par am. c
file.)

Soft limit for the number of file descriptors that
a process may have open. This value is the
default for all processes, and it must be less than
or equal to the value of open max hard.
(Set in the paramo c file.) - -

The parameters listed in Table 3-2 are discussed in more detail in the sections
that follow.

Tuning Subsystems and Applications 3-19

3.6.1 Disk Subsystem
Disk throughput is usually the gating performance factor. CPU, memory,
and network can perform I/O much faster than disk. Disks are only capable
of 2080 transfers per second. Therefore, disk configuration and tuning is
critical.

The size of the disk operation is also important. In doing I/O to a disk, most
of the time is taken up with the seek followed by the rotational delay. This
is called the access time. For small I/O requests, access time is more
important than the transfer rate. For large I/O requests, the transfer rate is
more critical than the access time. Access time is also important for
workstation, time-share, and server environments.

Most performance problems manifest themselves in disk saturation. Before
you try to tune UFS and Adv FS file systems and the Common Access
Method (CAM) subsystem, try to alleviate the problem with the following
measures:

• Use fast disks.

If possible, use many small disks instead of a few large ones. Small­
sized disks usually have a better seek time and less rotational delay.

• Reduce the 1/0 load on the hardware.

• Reduce or stop paging and swapping by tuning the UBC or virtual
memory.

• Run fewer applications simultaneously.

• Compress files to regain disk space.

• Use quotas to limit users' disk space.

• Layout the file systems across multiple disks to spread the 1/0 load
evenly. Group together similar files, projects, and groups. Use as few
file systems per disk as possible.

• For disk efficiency, isolate performance critical files. If you have
multiple I/O subsystems, spread out disks, giving each drive its own
controller. Use VMEbus-based 1/0 subsystems if possible.

• Spread out swap partitions across multiple disks.

• Optimize some file systems for transfer rate and some for access time.

• The memory file system (MFS) can improve read/write performance, but
it is a volatile cache. Data is lost on reboot.

• To make look-up operations faster, you can adjust the size of the namei
cache, which maps pathnames to inodes. You can monitor the hit rate by
using dbx and examining the nchstats structure. Adjust the cache
with the maxusers parameter in the configuration file or with the
nchsize parameter in the paramo c file.

3-20 Tuning Subsystems and Applications

• A number of system parameters are based on the maximum number of
users. By increasing the maxusers parameter, you increase several
other parameters, such as the maximum number of active processes
allocated for each user, the file table (which determines the maximum
number of files, sockets, and pipes that can be open simultaneously), the
number of vnodes, and the size of the namei cache. Increasing the
maxusers parameter will reduce the incidence of the following error
messages:

"file table full"
"out of vnodes"

You can also increase the sizes of the file and vnode tables by modifying
the nfile and nvnode parameters in th~ param.c file.

The following sections describe how to tune UFS and AdvFS file systems
and CAM.

3.6.1.1 Tuning UFS File Systems

This section describes how to tune your UFS file systems. Use the dumpfs
command to display file system information.

You can tune file systems as follows:

• Use disk shadowing

Disk shadowing can improve read performance, but it slows down write
performance.

• Use Prestoserve

Prestoserve can dramatically improve synchronous write performance.

• Check for disk fragmentation

You can determine whether a disk is fragmented by determining how
effectively the system is clustering. You can do this by using dbx to
examine the ufs clusterstats, ufs clusterstats read, and
ufs clusterstats write structures.- UFS block clustering is
usually reasonably efficIent. If the numbers from the UFS clustering
kernel structures show that clustering is not being particularly effective,
the disk may be heavily fragmented.

Currently, the operating system does not have an on-line disk
defragmenter for UFS. However, you can perform a defragmentation
procedure to take care of heavily fragmented disk as follows:

I. Back up the file system onto tape or another partition.

2. Create a new file system either on the same partition or a different
partition.

Tunina Subsvstems and Aoolications 3-21

3. Restore the file system.

• Adjust the file system fragment size

You can do this using the newf s command. The fragment size is 1 KB
by default. The UFS file system block size is fixed at 8KB. A block
size/fragment size of 8KBIl KB is usually sufficient.

You can use a larger fragment size if the file system is used for
executable files. Note that a large fragment size can waste disk space.

You can use small fragment size if the file system is used for small files
or code development. A small fragment size uses disk space more
efficiently than a large fragment size.

If you want to increase disk speed and most of the files are greater than 2
blocks (16KB), make the file system fragment size equal to the block size
(8KB/8KB). This means less overhead to the system, but it requires more
space on the disk.

• Reduce the density of inodes

If the file system has many large files, reduce the density of inodes by
using the newf s -i command.

• Change the rotational delay

Use the tunefs command or the newfs command and set the
rotational delay to 0 (zero) to allocate blocks contiguously. A rotational
delay of zero will allocate logically contiguous blocks, which will aid
UFS block clustering.

If your applications perform a large number of contiguous writes, you can
insert a rotational delay between contiguous block writes by setting the
rotational delay to 1.

• Increase the number of blocks that are combined for a read

Use the tunefs command or the newfs command to change the value
of maxcontig, which specifies the maximum number of contiguous
blocks that will be laid out before forcing a rotational delay; that is, the
number of blocks that can be combined into a cluster. The default is 8.
This causes the file system to attempt I/O read requests in a size that is
defined by the value of maxcontig multiplied by the block size (the
default is 64KB).

• Change the value of maxbpg

Use the tunefs or the newfs command to change the value of
maxbpg, which is the maximum number of file blocks allocated per
cylinder group. Usually, this value is set to about one quarter of the total
blocks in a cylinder group. The maxbpg parameter is used to prevent a
single file from using all the blocks in a single cylinder group, which
could degrade access times for all files subsequently allocated in that

3-22 Tuning Subsystems and Applications

cylinder group. By limiting the number of file blocks, large files must
perform long seeks more frequently than if they were allowed to allocate
all the blocks in a cylinder group before seeking elsewhere.

If your file system contains only large files, you can set the maxbpg
parameter higher than the default value. To get the performance benefit
on an existing file system, you must layout the files on the disk again.

• Delay write flushing

When a disk block is scheduled to be written, it is sent asynchronously to
disk. The default operating system behavior prevents the block from
being read while the write is in progress. An application that reads a
block immediately after it is written could improve its performance if the
write was delayed so that the block could be read.

You can use dbx to turn on the delay wbuffers kernel parameter to
delay flushing full buffers to disk until a-sync call is issued. If disabled,
full buffers are flushed asynchronously when full. If enabled, full buffers
are not flushed until the next sync. Enabling delay wbuffers is
useful when many small files are created or when files are written and
immediately reread. The benefit is caused by avoiding 1/0 and long
latencies if buffers are often locked on writes.

Note

Note that enabling delay wbuffers causes the buffer
cache to be dirtier, and data could be lost if the system is
shut down abnormally. In addition, the I/O pattern has more
spikes and could negatively affect real workloads.

You can turn on delay_wbuffers in the param.c file.

• Increase the number of read-ahead clusters

The UFS read-ahead algorithm is exponential in nature, but starts
gradually. The kernel parameter cluster max read ahead defines
the maximum number of read-ahead clustersthat the ken1el will schedule.
The default for cluster max read ahead is 8. You can make the
open algorithm faster by setting cluster read all to 1 and
cluster consec ini t to the value of -- -
cluster max read ahead. These global parameters can be
changed with dbx. -

• I ncrease the number of blocks that are combined for a write

The cluster maxcontig parameter is the number of blocks that will
be combined into a single write. This variable controls all UFS file
systems. The default value for cl uster maxcontig is 8. The value
can be changed with dbx. -

• Reduce the number of open file descriptors

The open max soft parameter specifies the soft limit maximum
number of open file descriptors. You could reduce the value to save
memory. The parameter is set in the par am. c file.

3.6.1.2 Tuning the Advanced File System

The Advance File System (AdvFS) is a file system option available on the
DEC OSFIl operating system. It provides rapid crash recovery, high
performance, and a flexible structure that enables you to manage your file
system while the system is on line. Associated with AdvFS are the optional
POLYCENTER utilities that further enhance the capabilities of AdvFS. In
particular, the defragment, stripe, and migrate utilities provide on­
line performance tuning. The POLYCENTER utilities are available as a
separately licensed layered product.

Methods for improving AdvFS performance include the following:

• Set up disks

Enhance AdvFS performance by dedicating an entire disk (usually
partition C) to one file domain. This avoids 110 scheduling contention.

• Back up and restore data

If you do not have the optional POL YCENTER utilities, you can
defragment your disks by backing up and restoring the filesets. Use the
following procedure:

1. Back up the filesets to tape or another partition using the vdump
command.

2. Recreate the domain using the mkfdmn command.

3. Recreate the filesets using the mkf sets command.

4. Restore the files using the vrestore command.

• Use fileset quotas

Fileset quotas apply to the fileset, not to individual users or groups. By
establishing quotas you can limit the amount of disk storage and number
of files consumed by a fileset. This is useful when a file domain contains
several filesets. Without fileset quotas, all filesets have access to all disk
space in a file domain, allowing one fileset to use all the disk space in a
file domain.

• Use the defragment utility

If you have the optional POL YCENTER utilities, you can defragment
your file system frequently without reducing system availability.

File fragmentation can reduce the read/write performance of the file

3-24 Tuning Subsystems and Applications

because it results in more 1/0 operations to access the file. The
defragment utility reduces the amount of file fragmentation in a file
domain by attempting to move files and parts of files together so that the
number of file extents is reduced.

You do not need to dismount the filesets in a file domain or otherwise
take the domain off-line in order to run the defragment utility. You
can perform all normal I/O operations while the defragment utility is
running.

• ~igrate files

You can use the migrate utility in conjunction with the showfile
command to improve file performance by monitoring and altering the
way large files are mapped on the disk. This method of defragmenting
files is useful for defragmenting specific files. (Use the defragment
utility to defragment all files in a domain.) Use the following procedure
as a guideline for this method of improving file performance:

1. Show the status of all files in your working directory by using the
showfile command with the * wildcard character.

2. Check the performance percentage of each file. A low percentage
(under 80 percent. indicates that the file is fragmented on the disk.

3. Show the extent map of a fragmented file by using the showfile
command with the -x option and the file name. The extent map
shows whether the entire file or a portion of the file is fragmented.

4. Based on the information provided by the extent map, migrate some
or all of the file to the same volume or another volume in the file
domain. In a single-volume file domain, the volume must have
enough free, contiguous space to migrate the file.

If several files in the file system are fragmented, you can add a new
volume to the file domain and remove the volume containing the
fragmented files. This action prompts AdvFS to automatically migrate all
the files to the new volume and defragment each file during the process.

• Use file striping

A file striping utility is provided with the optional POL YCENTER
utilities. File striping provides load balancing and a higher transfer rate.
File striping is a way to increase contiguous read/write performance by
allocating storage in segments across more than one disk or volume
without preconfiguring the disks.

Using the stripe utility, you can distribute segments of a file across
specific disks (or volumes) within a file domain. The Advanced File
System determines the number of pages per stripe segment; the segments
alternate among the disks in a sequential pattern. For instance, the file
system allocates the first segment of a three-disk striped file on the first

disk; the next segment on the second disk; and the next segment on the
third disk. This completes one sequence, or stripe. The next stripe starts
on the first disk, and so on.

3.6.1.3 Tuning CAM

The operating system uses the Common Access Method (CAM) as the
operating system interface to the hardware. CAM maintains pools of buffers
(another type of cache) that are used to perform I/O. Each buffer takes
approximately 1 KB of physical memory. These pools should be monitored
and can be tuned, if necessary.

The following parameters can be checked with the dbx debugger and
modified in the lusrlsys/data/cam_data.c file:

• cam ccb pool size - The initial size of the buffer pool free list at
boottime. -The default is 200.

• cam ccb high water - The number of buffers in the pool free list at
which buffers are released to the kernel from the free list. The default is
1000 and should not be changed.

• cam ccb low water - The number of buffers in the pool free list at
which more buffers are allocated from the kernel. CAM reserves this
number of buffers to ensure that the kernel always has some memory to
shutdown runaway processes. The default is 100.

• cam ccb increment - The number of buffers either added or
remOVed from the buffer pool free list. Buffers are allocated on an as­
needed basis to handle immediate demands, but are released in a more
measured manner to guard against spikes. The default is 50.

• xpt qhead - This data structure contains information regarding the
current size of the buffer pool free list (xpt nfree), the current number
of processes waiting for buffer (xpt wait - cnt), and the total number
of times processes had to wait for free buffers (xpt _times _ wai t).

• ccmn bp head - This data structure provides statistics on the buffer
structure pool. This pool is used for raw I/O to disk. Some spreadsheet
and database applications with their own file system use the raw device
instead of UFS. The information provided is the current size of the buffer
structure pool (num bp) and the wait count for buffers
(bp_wait_cnt). -

Any modifications to the lusrlsys/data/cam data.c file require
rebuilding the kernel. See the manual System Administration for information
on building a new kernel.

3-26 Tuning Subsystems and Applications

3.6.2 Network Subsystems
All resources used by the network subsystems are allocated and adjusted
dynamically, so tuning is not really an issue with the network itself. NFS is
the heaviest user of the network, and NFS tuning can be critically important
(see Section 3.6.3).

Network performance is affected only when the supply of resources is unable
to keep up with the demand for resources. Two types of conditions can
cause this congestion to occur:

• A problem with one or more components of the network (hardware or
software)

• A workload (network traffic) that consistently exceeds the capacity of the
available resources even though everything is operating correctly

Neither of these problems are network tuning issues. In the case of a
problem on the network, you must isolate the problem and fix it (which may
involve tuning some other components of the system). In the case of an
overloaded network (for example, when the kernel issues a "can' t get
mbuf" message on a regular basis), you must either redesign the network,
reduce the number of network applications, or increase the physical memory
(RAM). See the Network Programmer's Guide or the manual Network
Administration and Problem Solving for information on how to resolve
network problems.

3.6.3 Network File System
The Network File System (NFS) shares the unified buffer cache with the
virtual memory subsystem and local file systems. Much of what is described
in Section 3.6.1.1 also applies to NFS. For example, adding more disks on a
server and spreading the I/O across spindles can greatly enhance NFS
performance.

Most performance problems with NFS can be attributed to bottlenecks in the
file system, network, or disk subsystems. For example, NFS performance is
severely degraded by lost packets on the network. Packets can be lost as a
result of a variety of network problems. Such problems include congestion
in the server, corruption of packets during transmission (which can be caused
by bad electrical connections, noisy environments, babbling Ethernet
interfaces, and other problems), and routers that abandon forwarding attempts
too readily.

Apart from adjustments to the file system, network, and disk subsystems,
NFS performance can be directly enhanced in the following ways:

• Install Prestoserve on the server. Prestoserve greatly improves NFS write
performance. An NFS server must write a client's write data to stable
storage before responding to the client. With Prestoserve, these

Tlminn ~llh!=:\I!=:tAm!=: ~nrl Annli("~ti("\nc:: ~_?7

synchronous write operations are stored in the nonvolatile cache area
(NVRAM). Storing them is this way is much faster than writing them to
disk. See the Guide to Prestoserve for details.

• Adjust the number of nfsiod and nfsd daemons on client and server
systems. These daemons perform the following functions:

- The nf s iod daemons are used on the client to service asynchronous
110 requests. NFS servers attempt to gather writes into complete UFS
clusters before initiating 110, and the number of nfsiod daemons
(plus 1) is the number of writes that a client will have outstanding at
anyone time. For good performance, a client should have 7 or 15
nf s iod daemons. (Having exactly 7 or 15 nf s iod daemons
produces the most efficient blocking of I/O requests.)

- The nf sd daemons are used on the server to service NFS requests
from client machines. For good performance on heavily used NFS
servers, a network should be configured with either 16 or 32 nf sd
daemons. (Having exactly 16 or 32 nf sd daemons produces the
most efficient blocking of 110 requests.)

To determine whether performance is being degraded by an insufficient
number of nfsiod and nsfd daemons, issue the following command:

% ps alxww I grep nfs

This command displays the nfsiod and nfsd daemons that have been
established to service client and server requests. If only one or two
nf s iod or nf sd daemons are idle, increasing their numbers may
improve NFS performance. See the nfsiod(8) and nsfd(8) reference
pages for details.

• For read-only file systems and slow network links, performance may be
improved by changing the cache timeout limits. Note that these timeouts
affect how quickly you see updates to a file or directory that has been
modified by another host. If you are not sharing files with users on other
hosts, including the server system, increasing these values will give you
slightly better performance and will reduce the amount of network traffic
that you generate. See the mount(8) reference page (acregmin,
acregmax, acdirmin, acdirmax, actimeo parameters) for details.

• NFS does not perform well when it is used over slow network links,
congested networks, or wide area networks. In particular, network
timeouts can severely degrade NFS performance. This condition can be
identified by using the nfsstat command and determining the ratio of
timeouts to calls. If timeouts are more than 1 percent of total calls, NFS
performance will be severely degraded. See Section 2.2.10 for sample
nfsstat output containing timeout and call statistics. (You can also
use the netstat -8 command to verify the existence of this problem;
a non-zero count for "fragments dropped after timeout" in the "ip"

3-28 Tuning Subsystems and Applications

section of the netstat output is a reliable indicator that the problem
exists. See Section 2.2.9 for sample nets tat output.)

To reduce the number of timeouts, increase the amount of time between
NFS request retries. See the mount(8) reference page (timeo parameter)
for details.

Also, when evaluating NFS performance, be aware that NFS also does not
perform well if any file locking mechanisms are in use on an NFS file
because the file cannot be cached on the client.

TuninQ Subsystems and Applications 3-29

A

active list, 1-4

active pages

evaluating, 2-8

AdvFS

monitoring, 2-4

support, 1-12

tuning, 3-24 to 3-26

alignment, data

avoiding misalignment, 3-7 to 3-8

allocation, data

coding suggestions, 3-8

Alpha AXP 64-bit architecture

performance considerations, I-I

Alpha AXP instruction set

using non-native instructions, 3-10

application

tracking memory use, 1-6

applications

See also coding suggestions

building guidelines, 3-4 to 3-6

coding guidelines, 3-6 to 3-10

optimizing, 3-3 to 3-10

reducing disk I/O, 2-12

using prof and pixie to analyze, 2-4

architecture, Alpha AXP

performance considerations, 1-1

array usage

optimizing in C, 3-9

optimizing in Fortran, 3-9

asyncswapbuffers parameter

use, 1-8

B

Berkeley UNIX File System

See UFS

bio_stats

Index

determining block miss rate, 3-15

block clustering (UFS)

effect of fragmentation, 3-21

rotational delay influence, 3-22

bufcache

when to adjust, 3-15

buffer cache region

description, 1-3

c
cache

See I/O buffer cache, metadata buffer cache,

secondary cache, tertiary cache,

unified buffer cache (UBC)

cache thrashing

preventing, 3-14

cache usage

coding suggestions, 3-7 to 3-8

improving with cord, 3-5

calls

See system calls

CAM

description, I-II

tuning, 3-26

cluster_consec_incr parameter, 3-18t

cluster_consec_init parameter, 3-18t, 3-23

cluster_lastr_init parameter, 3-18t

cluster_max_read_ahead parameter, 3-18t,

3-23

cluster _maxcontig parameter, 3-19t, 3-23

how to modify, 1-13

cluster_read_all parameter, 3-18t, 3-23

cluster_ write_one parameter, 3-19t

clustering

See block clustering

coding suggestions

C-specific considerations, 3-8

cache usage patterns, 3-7 to 3-8

data alignment, 3-7 to 3-8

data types, 3-7

Fortran-specific considerations, 3-9

library routine selection, 3-6

sign considerations, 3-9

Common Access Method

See CAM

compiler optimizations

improving with feedback file, 3-5

options for, 3-4

context switches

displaying statistics for, 2-8

cord utility, 3-5

Index-2

CPU problems

diagnosing, 3-2

CPU usage

displaying time statistics, 2-8

examining with iostat, 2-11

idle, user, system time, 2-9

options for adjusting, 3-10

CPU-intensive applications

tuning considerations, 2-1

o
data alignment

coding suggestions, 3-7 to 3-8

data allocation

coding suggestions, 3-8

data types

coding suggestions, 3-7

dbx

checking metadata buffer cache, 2-19

checking namei cache, 2-17

checking UBC, 2-17, 3-13

using to diagnose performance, 2-15 to 2-19

using to set write blocking, 1-13

DECnet

description, 1-15

deferred mode

swap space allocation, 1-9

delay_wbutfers parameter, 3-19t, 3-23

Digital Storage Architecture, I-II

disk fragmentation

checking, 3-21

disk 110

use of UBC to avoid, 1-12

disk shadowing

effect on I/O, 3-21

disk space

block clustering, 3-22

effect of 64-bit addressing, I-I

fragmentation, 3-21

how to overcome saturation, 3-20 to 3-21

tuning for large files, 3-23

disk storage hardware, I-I I

disk striping

See striping

disk subsystems

tuning, 3-20 to 3-26

disk usage

examining with iostat, 2-11

DSA

Alpha AXP systems supported on, I-II

dumpfs

F

use to diagnose performance, 2-12

use to display UFS information, 2-3

feedback file

how to create, 3-5

use to improve compiler optimizations, 3-5

file descriptors

limit of number open, 3-24

file locking

effect on NFS, 3-29

file meta data

description, 1-3

file sharing

effects on performance, 3-5

file striping

striping, 3-25

file systems

See also MFS, NFS, UFS, VFS

description of types, 1-12

file table full

warning message, 3-21

files

large files, tuning for, 3-22, 3-23

small files, handling many, 3-23

fragment size

effect on 1/0 speed, 3-22

fragmentation, disk

checking, 3-21

free list, 1-4

free pages

evaluating, 2-8

G

guidelines, tuning, 3-1

110 buffer cache

description, 1-2

110 clustering

algorithms and parameters, 1-13

110 servers

UBC tuning, 3-14

use of Presto serve, 3-27

110 subsystems

component

file systems, 1-11

network systems, 1-14

components

file systems, 1-8

description, 1-11

tuning, 3-18

idle time

analyzing, 2-9

displaying statistics for, 2-8

Index-3

immediate mode

swap space allocation, 1-9

inactive list, 1--4

inode density

reducing, 3-22

instruction set, Alpha AXP

using non-native instructions, 3-10

Internet Protocol

See TCPIIP

interprocess communications

See IPC

interrupts

causes of high rates, 2-9

context switch interrupts, 2-8, 2-9

displaying statistics for, 2-8

system saturation point, 2-9

iostat

use to diagnose performance, 2-11

IPC

See also System V IPC

description, 1-10, 1-3

monitoring, 2-3

tuning, 3-17

ipcs

use to diagnose performance, 2-3

K

KAP

usage recommendation, 3-5

kdbx

use to diagnose performance, 2-3

Kuck Associates Preprocessor

See KAP

Index-4

L

large files

inode density, 3-22

least recently used list, 1-5

library selection

effect on performance, 3-6

linking options

effects of file sharing, 3-5

locking, file

effect on NFS, 3-29

LRU list, 1-5

M
Mass Storage Control Protocol

See MSCP

maxcontig parameter

how to modify, 1-13,3-22

maxusers parameter, 3-19t

adjusting system page table, 3-14

effects of, 3-21

memory file system

See MFS

memory management

See also cache, paging and swapping, UBC,

virtual memory

components

paging, 1-7

swapping, 1-7

UBC, 1-9

virtual memory, 1-3

effect of 64-bit addressing, 1-1

effect of PAL code, 1--4

overview, 1-2

parameters, 3-11

types of caches, 1-3

memory, application

tracking use, 1-6

messages, IPC

See System V IPC

metadata

See also metadata buffer cache

description of file metadata, 1-3

meta data buffer cache

changing the size, 3-15

checking with dbx, 2-19

MFS, 3-20

support, 1-12

misaligned data

See unaligned data

monitor

use to diagnose performance, 2-5

monitoring tools

dbx, 2-15 to 2-19

dumpfs, 2-12, 2-3

iostat, 2-11

ipcs, 2-3

kdbx, 2-3

monitor, 2-5

netstat, 2-19

nfsstat, 2-22

nfswatch, 2-3

overview, 2-1 to 2-5

pixie, 3-5, 3-6

prof, 3-5, 3-6

ps,2-5

showfdmn, 2-4

showfile, 2-4

showfsets, 2-4

swapon, 2-10, 2-4

tcpdump, 2-4

uptime, 2-7

monitoring tools (cont.)

vmstat, 2-7

w,2-4

xcpustate, 2-5

xload,2-4

xnfs, 2-5

MSCP

DSA conformance, I-II

N

namei cache

checking with dbx, 2-17

improving hit rate, 3-20

use, 1-12

nchsize

adjusting, 3-20

nchstats

examining, 2-17, 3-20

netstat, 3-28, 3-3

use to diagnose performance, 2-19

Network File System

See NFS

network links, slow

tuning, 3-28

network problems

diagnosing, 2-19, 3-3

network subsystems

DECnet, 1-15

description, 1-14

hardware, 1-14

MFS, 1-12

NFS, 1-15

software, 1-14

TCPIIP, 1-14

tuning, 3-27

UDP, 1-15

Index-5

newfs

use to modify cluster size, 1-13

use to tune file system, 3-22

nfile

param.c parameter, 3-21

NFS

description, 1-15

effect of file locking, 3-29

support, 1-12

tuning, 3-27 to 3-29

nfsd daemon

when to adjust, 3-28

nfsiod daemon

when to adjust, 3-28

nfsstat

use to diagnose performance, 2-22

nfswatch

use to diagnose performance, 2-3

nice utility

process management, 1-2

nvnode

param.c parameter, 3-21

o
open_max_hard parameter, 3-19t

open_max_soft parameter, 3-19t, 3-24

optimizations

compiler optimization options, 3-4

improving with feedback file, 3-5

over-commitment mode

See deferred mode

Index-6

p

page faults

descriptions, 1-4

page list, free

checking size, 2-8

page reclamation code, 1-7

page-stealer daemon, 1-7

paging and swapping, 1-2, 1-7

diagnosing problems, 3-3

excessive page outs, 2-8

methods for reducing, 3-15 to 3-16

paging rate

effect of memory use by UBC, 3-13

monitoring with vmstat, 3-13

paging space

lack of, 3-16

PAL code

influence on memory management, 1-4

param.c parameters

nfile, 3-21

nvnode, 3-21

performance measurement

See also monitoring tools

overview of monitoring tools, 2-1 to 2-5

physical memory

use of by virtual memory and UBC, 1-3

pipes, 1-10

pixie

use to create feedback file, 3-5

use to diagnose performance, 2-4, 3-6

POLYCENTER utilities, 1-12,3-24

Prestoserve

when to use, 3-27

process limit

warning message, 3-16

process management, 1-2

adjusting realtime priorities, 1-2

nice utility, 1-2

prof

use to create feedback file, 3-5

use to diagnose performance, 2-4, 3-6

profiler tools

when to use, 3-6

ps

application memory use, 1-6

use to diagnose performance, 2-5

R

read-ahead clusters

tuning, 3-23

read-only file systems

tuning, 3-28

realtime process priorities

how to adjust, 1-2

resident set size

how to determine, 1-6

rotational delay, 3-22

RSS

See resident set size

s
SCSI

support on Alpha AXP systems, I-II

secondary cache

description, 1-3

semaphores, I-10

shadowing

See disk shadowing

shared files

linking options, 3-5

shared memory

See System V IPC

showfdmn

use to diagnose AdvFS performance, 2-4

showfile

use to diagnose AdvFS performance, 2-4

showfsets

use to diagnose AdvFS performance, 2-4

signals, 1-10

signed variables

effect on performance, 3-9

SIM

CAM component, I-II

slow network links

tuning, 3-28

Small Computer System Interface

See SCSI

sockets, 1-10

streams, 1-10

stripe utility, 3-25

striping

See overview

swap space interleaving, 3-16

swap buffers

See swap space

swap space

allocation modes, 1-9

diagnosing problems, 3-2

optimizing use of, 3-16

warning message, 3-16

swapon

use to diagnose performance, 2-10, 2-4

swapping

See paging and swapping

sync swap buffers parameter

use, 1-8

Index-7

system calls

causes of high rates, 2-9

displaying statistics for, 2-8

system memory

definition, 1-3

system page table

adjusting with maxusers parameter, 3-14

system time

analyzing, 2-9

displaying statistics for, 2-8

System V IPC, 1-10

T

task context switches

displaying statistics for, 2-8

TCPfIP

descri pti on, 1-14

tcpdump

use to diagnose performance, 2-4

tertiary cache

description, 1-3

threads

displaying context switches for, 2-8

time

See idle time, user time, system time

timeo parameter

modifying to reduce network timeouts, 3-28

timeouts, network transmission

reducing, 3-28

Transmission Control Protocol

See TCP/IP

Transport (XPT), I-II

tunefs

use to modify cluster size, 1-13

use to tune file system, 3-22

Index--8

tuning

u

AdvFS, 3-24 to 3-26

CAM,3-26

disk subsystems, 3-20 to 3-26

I/O servers, 3-14

I/O subsystems, 3-18

IPC, 3-17

network subsystems, 3-27

NFS, 3-27 to 3-29

read-only file systems, 3-28

slow network links, 3-28

UBC, 3-13

UFS, 3-21 to 3-24

virtual memory subsystem, 3-11

where to start, 3-1

UBC
checking with dbx, 2-17

description, 1-3, 1-9

I/O server tuning, 3-14

LRU list, 1-5

monitoring with dbx, 3-13

parameters, 3-13

tuning, 3-13

use by file systems, 1-12

ubcmaxpercent, I-10, 3-13

ubcminpercent, I-10, 3-13

ubcseqpercent, 3-14

ubcseqstartpercent, 3-14

UDP

description, I-IS

UFS

modifying cluster size, 1-13

read-ahead clustering, 1-13

support, 1-12

UFS (cant.)

tuning, 3-21 to 3-24

write clustering, 1-13

unaligned data

avoiding, 3-7 to 3-8

unified buffer cache

See UBC

UNIX File System

See UPS

unsigned variables

effect on performance, 3-9

uptime

use to diagnose performance, 2-7

User Datagram Protocol

See UDP

user time

analyzing, 2-9

displaying statistics for, 2-8

v
variables, signed or unsigned

effect on performance, 3-9

VFS

description, I-II

virtual address size

how to determine, 1-6

Virtual File System

See VPS

virtual memory

checking with dbx, 2-15

diagnosing problems, 3-2

virtual memory subsystem

descri ption, 1-3

tuning, 3-11

vm_pagc_frcc_min, 1-5

control of page outs, 1-7

vm_page_free_optimal, 1-5

control of swap ins, 1-8

control of swap outs, 1-7

vm_page_free_reserve, 1-5

vm_page_free_target, 1-5

control of page outs, 1-7

control of swap outs, 1-8

vmstat

use to diagnose performance, 2-7

use to track memory use, 1-6

vnodes

adjusting for lack of, 3-21

VSZ

See virtual address size

w
w

use to diagnose performance, 2-4

wired list, 1-5

wired pages, 2-8

write-behind processing

how to set, 3-19

x
XfOpen Transport Interface, 1-10

xcpustate

use to diagnose performance, 2-5

xload

use to diagnose performance, 2-4

xnfs

use to diagnose performance, 2-5

XPT

CAM component, I-II

XTI,I-IO

Index-9

How to Order Additional Documentation

Technical Support
If you need help deciding which documentation best meets your needs, call 800-DIGITAL
(800-344-4825) before placing your electronic, telephone, or direct mail order.

Electronic Orders
To place an order at the Electronic Store, dial 800-234-1998 using a 1200- or 2400-bps
modem from anywhere in the USA, Canada, or Puerto Rico. If you need assistance using the
Electronic Store, call 800-DIGITAL (800-344-4825).

Telephone and Direct Mail Orders

Your Location

Continental USA,
Alaska, or Hawaii

Puerto Rico

Canada

International

Internala

Call

800-DIGITAL

809-754-7575

800-267-6215

Contact

Digital Equipment Corporation
P.O. Box CS2008
Nashua, New Hampshire 03061

Local Digital subsidiary

Digital Equipment of Canada
Attn: DECdirect Operations KA0212
P.O. Box 13000
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6

Local Digital subsidiary or
approved distributor

SSB Order Processing - NQO/VI9
or
U. S. Software Supply Business
Digital Equipment Corporation
10 Cotton Road
Nashua, NH 03063-1260

a For internal orders, you must submit an Internal Software Order Form (EN-01740-07).

Reader's Comments DEC OSF/1
System Tuning and

Performance Management
AA-QOR3A-TE

Please use this postage-paid form to comment on this manual. If you require a written reply
to a software problem and are eligible to receive one under Software Performance Report
(SPR) service, submit your comments on an SPR form.

Thank you for your assistance.

Please rate this manual:
Accuracy (software works as manual says)
Completeness (enough information)
Clarity (easy to understand)
Organization (structure of subject matter)
Figures (useful)
Examples (useful)
Index (ability to find topic)
Page layout (easy to find information)

What would you like to see more/less of?

What do you like best about this manual?

What do you like least about this manual?

Excellent
D
D
D
D
D
D
D
D

Please list errors you have found in this manual:

Page Description

Additional comments or suggestions to improve this manual:

Good
D
D
D
D
D
D
D
D

What version of the software described by this manual are you using?

Name/Title
Company
Mailing Address

Email

Dept.

Phone

Fair
D
D
D
D
D
D
D
D

Poor
D
D
D
D
D
D
D
D

Date ____ _

- - - - Do Not Tear - Fold Here and Tape . - .

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
OPEN SOFTWARE PUBLICATIONS MANAGER
ZK03-3/Y32
110 SPIT BROOK ROAD
NASHUA NH 03062-9987

11

- - - Do Not Tear - Fold Here

No Postage
Necessary

if Mailed in the
United States

Cut
Alon
Dottl
Line

Reader's Comments DEC OSF/1
System Tuning and

Performance Management
AA-QOR3A-TE

Please use this postage-paid form to comment on this manual. If you require a written reply
to a software problem and are eligible to receive one under Software Performance Report
(SPR) service, submit your comments on an SPR form.

Thank you for your assistance.

Please rate this manual:
Accuracy (software works as manual says)
Completeness (enough information)
Clarity (easy to understand)
Organization (structure of subject matter)
Figures (useful)
Examples (useful)
Index (ability to find topic)
Page layout (easy to find information)

Excellent
o o
o
o
o
o
o
o

Good
o o
o
o
o
o o
o

Fair
o
o
o
o
o
o
o
o

Poor
o
o
o
o
o
o
o o

What would you like to see more/less of? __________________ _

What do you like best about this manual?

What do you like least about this manual? _________________ _

Please list errors you have found in this manual:

Page Description

Additional comments or suggestions to improve this manual:

What version of the software described by this manual are you using?

Name/Title _________________ Dept.

Company ________________________ Date

Mailing Address __________ --' ________________ _
____________ Email Phone ______ _

---- Do Not Tear - Fold Here and Tape .--

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
OPEN SOFTWARE PUBLICATIONS MANAGER
ZK03-3/Y32
110 SPIT BROOK ROAD
NASHUA NH 03062-9987

1IIIIIIIIhllllllllllllhi hllllllllill hhllhllill

No Postage

Necessary

if Mailed in the

United States

- - - Do Not Tear - Fold Here -

Cut
Alon
Dott«
Line

