
DEC OSF/l

mamaoma Writing EISA Bus Device Drivers

Part Number: AA-QOR6A-TE

DEC OSF/1

Writing EISA Bus Device Drivers

Order Number: AA-QOR6A-TE

February 1994

Product Version: DEC OSF/1 Version 2.0 or higher

This guide contains information systems engineers need to write device
drivers that operate on the EISA bus. The guide describes EISA bus­
specific topics, including EISA bus architecture and the data structures
that EISA bus drivers use.

digital equipment corporation
Maynard, Massachusetts

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to
restrictions as set forth in subparagraph (c) (1) (ii).

Digital Equipment Corporation makes no representations that the use of its products in the
manner described in this publication will not infringe on existing or future patent rights, nor
do the descriptions contained in this publication imply the granting of licenses to make, use,
or sell equipment or software in accordance with the description.

Possession, use, or copying of the software described in this publication is authorized only
pursuant to a valid written license from Digital or an authorized sublicensor.

© Digital Equipment Corporation 1994
All rights reserved.

The following are trademarks of Digital Equipment Corporation:

ALL-IN-I, Alpha AXP, AXP, Bookreader, CDA, DDIS, DEC, DEC FUSE, DECnet,
DEC station, DECsystem, DECUS, DECwindows, DTIF, MASSBUS, MicroVAX, Q-bus,
ULTRIX, ULTRIX Mail Connection, ULTRIX Worksystem Software, UNIBUS, VAX,
V AXstation, VMS, XUI, and the DIGITAL logo.

UNIX is a registered trademark licensed exclusively by X/Open Company Limited. Open
Software Foundation, OSF, OSFIl, OSFlMotif, and Motif are trademarks of the Open
Software Foundation, Inc. MIPS is a trademark of MIPS Computer Systems, Inc.

All other trademarks and registered trademarks are the property of their respective holders.

Contents

About This Book

Audience ix

Scope of the Book ix

Organization x

Related Documentation xi

Hardware Documentation xu
Bus-Specific Device Driver Documentation xii
Programming Tools Documentation .. xii
System Management Documentation .. xiii
Porting Documentation ... xi v
Reference Pages ... xiv

Reader's Comments

Conventions

xv

xv

1 Review of Device Driver Concepts

1.1

1.2

1.3

1.4

1.5

Gathering Information

Designing a Device Driver

Allocating Data Structures

Writing Portable Device Drivers

Reviewing Device Driver Configuration Models

1-1

1-1

1-2

1-3

1-3

2 EISA Bus Architectures

2.1

2.2

EISA Bus Hardware Architecture

2.1.1
2.1.2
2.1.3

Address Spaces
Data Sizes
Byte Ordering

EISA Bus Software Architecture

3 Structure of an EISA Bus Device Driver

3.1 Include Files Section

3.2 Autoconfiguration Support Section

3.2.1
3.2.2

Setting Up the Probe Interface
Setting Up the Slave Interface

4 Data Structures That EISA Bus Device Drivers Use

4.1

4.2

controller Structure Members as Specified on the EISA Bus

4.1.1
4.1.2

slot Member .. .
physaddr Member .. .

EISA Bus Structures

4.2.1
4.2.2

Members of the eisa_option Structure
Contents of the eisa_option_data.c File

5 Device Autoconfiguration on the EISA Bus

5.1

5.2

Audiences Involved in Delivering an EISA Bus Product

Configuration for Devices Connected to the EISA Bus

5.2.1
5.2.2
5.2.3
5.2.4

Creating an Expansion Board Configuration File
Creating a Device Configuration File
Running the EISA Configuration Utility
Reading the Information Generated by the ECU

ivContents

2-1

2-1
2-2
2-2

2-2

3-3

3-3

3-4
3-6

4-1

4-2
4-3

4-4

4-4
4-5

5-1

5-3

5-4
5-4
5-4
5-4

6 EISA Bus Device Driver Example

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

Overview of the Idev/envram Device Driver

envram_reg.h Header File

envram_data.c File

Include Files Section for the Idev/envram Device Driver

Declarations Section for the Idev/envram Device Driver

Autoconfiguration Support Section for the Idev/envram Device Driver.

6.6.1
6.6.2
6.6.3

Implementing the envram_probe Interface
Implementing the envram_attach Interface
Implementing the envram_ssn Interface

Status Section for the Idev/envram Device Driver

Battery Status Section for the Idev/envram Device Driver

6.8.1
6.8.2
6.8.3

Implementing the eisa_nvram_battery _status Interface
Implementing the eisa_nvram_battery _enable Interface
Implementing the eisa_nvram_battery _disable Interface

6-2

6-4

6-10

6-13

6-15

6-18

6-19
6-27
6-31

6-33

6-34

6-35
6-37
6-39

6.9 Read and Write Device Section for the Idev/envram Device Driver 6-41

6.9.1
6.9.2

Implementing the envram_read Interface
Implementing the envram_ write Interface

6.10 Zero NVRAM Section

7 EISA Bus Device Driver Configuration

7.1 Using an eisa_data File with the mkeisadata Utility

A EISA Bus-Specific Reference Information

A.l Conventions for Device Driver-Related Reference (Man) Pages

A.I.l
A.l.2

Conventions for Header Files
Conventions for Data Structures

6-42
6-44

6-50

7-1

A-I

A-I
A-2

Contents v

A.l.3 Conventions for Device Driver Interfaces

A.2 Reference (Man) Pages for the EISA Bus

A.2.1
A.2.2
A.2.3

Header File Specific to EISA Bus Device Drivers
Data Structures Specific to EISA Bus Device Drivers
Device Driver Interfaces That EISA Device Drivers Use

B EISA Bus Device Driver Source Listing

Glossary

Index

Figures

A-3

A-5

A-5
A-7

A-22

3-1: Sections of a Character Device Driver and a Block Device Driver 3-2

5-1: Audiences Associated with an EISA Bus Product 5-2

6-1: Relationship of the /dev/envram and /dev/presto Device Drivers 6-3

Tables

4-1: controller Structure 4-1

4-2: eisa_option Structure Members and Associated Data Types 4-4

6-1: Parts of the /dev/envram Device Driver 6-1

6-2: Autoconfiguration Support Section 6-18

6-3: Interfaces Implemented as Part of the Battery Status Section for the
/dev/envram Device Driver 6-34

6-4: Interfaces Implemented as Part of the Read and Write Device Section
for the /dev/envram Device Driver .. 6-41

A-I: Summary Description of Header File Specific to EISA Bus Device
Drivers A-5

A-2: Summary Description of Data Structures Specific to EISA Bus
Device Drivers ... A-7

vi Contents

A-3: Summary Description of Driver Interfaces that EISA Device Drivers
Use .. . A-22

Contents vii

About This Book

This book discusses topics associated with writing device drivers that operate
on the Extended Industry Standard Architecture (EISA) bus.

Audience
This book is intended for systems engineers who:

• Use standard library interfaces to develop programs in the C language

• Know the Bourne or some other UNIX-based shell

• Understand basic DEC OSFIl concepts such as kernel, shell, process,
configuration, and autoconfiguration

• Understand how to use the DEC OSFIl programming tools, compilers,
and debuggers

• Develop programs in an environment involving dynamic memory
allocation, linked list data structures, and multitasking

• Understand the hardware device for which the driver is being written

• Understand the basics of the CPU hardware architecture, including
interrupts, direct memory access (DMA) operations, and I/O

This book assumes you have a strong background in operating systems based
on the UNIX operating system. It also assumes you have a strong
background in systems and C programm-ing, and that you are familiar with
topics presented in Writing Device Drivers, Volume 1: Tutorial. In addition,
the book assumes that you have no source code licenses.

Scope of the Book
The book is directed towards DEC OSFIl on computer systems developed by
Digital Equipment Corporation. The book builds on the concepts and topics
presented in Writing Device Drivers, Volume 1: Tutorial, the core book for
developing device drivers on DEC OSFIl. This book introduces driver
writers to topics specific to the EISA bus and that are beyond the scope of
the core tutorial. The book presents an example driver that operates on the
EISA bus.

The book does not emphasize any specific types of device drivers. However,
mastering the concepts and examples presented in this book is useful
preparation for writing a variety of device drivers that operate on the EISA
bus.

Organization
The book contains the following chapters and appendixes:

Chapter 1 Review of Device Driver Concepts

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Appendix A

Appendix B

x About This Book

Reviews general device driver concepts that are discussed
in detail in Writing Device Drivers, Volume 1: Tutorial.

EISA Bus Architectures

Discusses aspects of the EISA bus hardware and software
architectures with which you must be familiar.

Structure of an EISA Bus Device Driver

Describes the sections that make up an EISA bus device
driver.

Data Structures That EISA Bus Device Drivers Use

Discusses the data structures developed for use with EISA
bus device drivers.

Device Autoconfiguration on the EISA Bus

Discusses the sequence of events that occurs during the
autoconfiguration of devices that operate on the EISA bus.

EISA Bus Device Driver Example

Describes the / dev / envram device driver, which
operates on the EISA bus.

EISA Bus Device Driver Configuration

Reviews the device driver configuration models presented
in Writing Device Drivers, Volume 1: Tutorial and
discusses some driver configuration topics associated with
EISA bus device drivers.

EISA Bus-Specific Reference Information

Describes, in reference (man) page style, the header file,
data structures, kernel support interfaces, and device driver
interfaces that are specific to the EISA bus.

EISA Bus Device Driver Source Listing

Contains the source code listing for the / dev / envram
example driver.

Glossary Glossary

Provides definitions of terms related to the EISA bus.

Related Documentation
The printed version of the DEC OSFIl documentation set is color coded to
help specific audiences quickly find the books that meet their needs. (You
can order the printed documentation from Digital.) This color coding is
reinforced with the use of an icon on the spines of books. The following list
describes this convention:

Audience Icon Color Code

General Users G Teal

System Administrators S Red

Network Administrators N Yellow

Pro grammers P Blue

Reference Page Users R Black

Some books in the documentation set help meet the needs of several
audiences. For example, the information in some system books is also used
by programmers. Keep this in mind when searching for information on
specific topics.

The Documentation Overview provides information on all of the books in the
DEC OSFIl documentation set.

Writing device drivers is a complex task; driver writers require knowledge in
a variety of areas. One way to acquire this knowledge is to have at least the
following categories of documentation available:

• Hardware documentation

• Bus-specific device driver documentation

• Programming tools documentation

• System management documentation

• Porting documentation

• Reference pages

The following sections list the documentation associated with each of these
categories. EISA bus device driver writers should also be familiar with the
Extended Industry Standard Architecture Revision 3.10 specification. This
specification defines a high-performance, open-architecture bus available to
personal computer (PC) manufacturers, expansion board vendors, software

About This Book xi

developers, and semiconductor suppliers.

Hardware Documentation
You should have available the hardware manual associated with the device
for which you are writing the device driver. Also, you should have access to
the manual that describes the architecture associated with the CPU that the
driver operates on, for example, the Alpha Architecture Reference Manual.

Bus-Specific Device Driver Documentation
Writing Device Drivers, Volume 1: Tutorial is the core book for developing
device drivers on DEC OSFIl. It contains information needed for developing
drivers on any bus that operates on Digital platforms. Writing Device
Drivers, Volume 2: Reference is a companion volume to the tutorial and
describes, in reference (man) page style, the header files, kernel interfaces,
data structures, and other interfaces used by device drivers. The following
books provide information about writing device drivers for a specific bus that
is beyond the scope of the core tutorial and reference:

• Writing Device Drivers for the SCSI/CAM Architecture Interfaces

This manual provides information for systems engineers who write device
drivers for the SCSI/CAM Architecture interfaces.

The manual provides an overview of the DEC OSFIl SCSI/CAM
Architecture and describes User Agent routines, data structures, common
and generic routines and macros, error handling and debugging routines.
The manual includes information on configuration and installation.
Examples show how programmers can define SCSI/CAM device drivers
and write to the SCSI/CAM special I/O interface supplied by Digital to
process special SCSI I/O commands.

The manual also describes the SCSI/CAM Utility (SCU) used for
maintenance and diagnostics of SCSI peripheral devices and the CAM
subsystem.

• Writing TURBOchannel Device Drivers

This manual provides information for systems engineers who write device
drivers for the TURBOchannel. The manual describes TURBOchannel­
specific topics, including TURBOchannel architecture and kernel
interfaces used by TURBOchannel drivers.

Programming Tools Documentation
To create your device drivers, you use a number of programming
development tools and should have on hand the manuals that describe how to
use these tools. The following manuals provide information related to

xii About This Book

programming tools used in the DEC OSFI I operating system environment:

• Kernel Debugging

This manual provides information on debugging a kernel and analyzing a
crash dump of a DEC OSFIl operating system. The manual provides an
overview of kernel debugging and crash dump analysis and describes the
tools used to perform these tasks. The manual includes examples with
commentary that show how to analyze a running kernel or crash dump.
The manual also describes how to write a kdbx utility extension and
how to use the various utilities for exercising disk, tape, memory, and
communications devices.

This manual is for system administrators responsible for managing the
operating system and for systems programmers writing applications and
device drivers for the operating system.

• Programming Support Tools

This manual describes several commands and utilities in the DEC OSFIl
system, including facilities for text manipulation, macro and program
generation, source file management, and software kit installation and
creation.

The commands and utilities described in this manual are intended
primarily for programmers, but some of them (such as grep, awk,
sed, and the Source Code Control System (SCCS)) are useful for other
users. This manual assumes that you are a moderately experienced user of
UNIX systems.

• Programmer's Guide

This manual describes the programming environment of the DEC OSFIl
operating system, with an emphasis on the C programming language.

This manual is for all programmers who use the DEC OSFIl operating
system to create or maintain programs in any supported language.

System Management Documentation
Refer to the System Administration book for information about building a
kernel and for general information on system administration. This manual
describes how to configure, use, and maintain the DEC OSFIl operating
system. It includes information on general day-to-day activities and tasks,
changing your system configuration, and locating and eliminating sources of
trouble.

This manual is for the system administrators responsible for managing the
operating system. It assumes a knowledge of operating system concepts,
commands, and configurations.

About This Book xiii

Porting Documentation
Refer to the DEC OSFll Migration Guide for a discussion of the differences
between the DEC OSFIl and ULTRIX operating systems. This manual
compares the DEC OSFIl operating system to the ULTRIX operating system
by describing the differences between the two systems.

This manual has three audiences, as follows:

• General users can read this manual to determine what differences exist
between using an ULTRIX system and using the DEC OSFIl system.

• System and network administrators can read this manual to determine
what differences exist between ULTRIX and DEC OSFIl system
administration.

• Programmers can read this manual to determine differences in the DEC
OSFIl programming environment and the UL TRIX programming
environment.

This manual assumes you are familiar with the UL TRIX operating system.

Reference Pages
The following provide reference (man) pages that are of interest to device
driver writers:

• Reference Pages Section 2

This section defines system calls (entries into the DEC OSFIl kernel) that
programmers use. The introduction to Section 2, intro(2), lists error
numbers with brief descriptions of their meanings. The introduction also
defines many of the terms used in this section. This section is for
programmers.

• Reference Pages Section 3

This section describes the routines available in DEC OSFIl programming
libraries, including the C library, Motif library, and X library. This
section is for programmers. In printed format, this section is divided into
volumes.

• Reference Pages Sections 4, 5, and 7

- Section 4 describes the format of system files and how the files are
used. The files described include assembler and link editor output,
system accounting, and file system formats. This section is for
programmers and system administrators.

- Section 5 contains miscellaneous information, including ASCII
character codes, mail-addressing formats, text-formatting macros, and
a description of the root file system. This section is for programmers
and system administrators.

xiv About This Book

Section 7 describes special files, related device driver functions,
databases, and network support. This section is for programmers and
system administrators.

• Reference Pages Section 8

This section describes commands for system operation and maintenance.
It is for system administrators.

Reader's Comments
Digital welcomes your comments on this or any other DEC OSFIl manual.
You can send your comments in the following ways:

• Internet electronic mail:
readers comment@ravine.zk3.dec.com

• Fax: 603-881-0120 Attn: USG Documentation, ZK03-3/Y32

• A completed Reader's Comments form (postage paid, if mailed in the
United States). Two Reader's Comments forms are located at the back of
each printed DEC OSFIl manual.

If you have suggestions for improving particular sections or find any errors,
please indicate the title, order number, and section numbers. Digital also
welcomes general comments.

Conventions
This book uses the following conventions:

filename

but

[]

A vertical ellipsis indicates that a portion of an example that
would normally be present is not shown.

In syntax definitions, a horizontal ellipsis indicates that the
preceding item can be repeated one or more times.

In examples, syntax descriptions, and function definitions,
this typeface indicates variable values.

In function definitions and syntax definitions used in driver
configuration, this typeface is used to indicate names that you
must type exactly as shown.

In formal parameter declarations in function definitions and
in structure declarations, brackets indicate arrays. Brackets
are also used to specify ranges for device minor numbers and
device special files in file fragments. However, for the
syntax definitions used in driver configuration, these brackets
indicate items that are optional.

About This Book xv

Vertical bars separating items that appear in the syntax
definitions used in driver configuration indicate that you
choose one item from among those listed.

This book uses the word kernel "interface" instead of kernel "routine" or
kernel "macro" because, from the driver writer's point of view, it does not
matter whether the interface is a routine or a macro.

xvi About This Book

Review of Device Driver Concepts 1

Before writing a driver for an Extended Industry Standard Architecture
(EISA) device, you must be familiar with general driver concepts as well as
specific tasks you need to perform to successfully code the driver. This book
presumes you understand the following concepts:

• The purpose of a device driver

• The types of device drivers

• Static versus loadable device drivers

• When a device driver is called

• The place of a device driver in DEC OSFIl

The following sections review the tasks associated with writing device
drivers. These tasks are discussed in detail in Writing Device Drivers,
Volume 1: Tutorial.

1.1 Gathering Information
The first task in writing a device driver is to gather pertinent information
about the host system and the device for which you are writing the driver.
For example, you need to:

• Specify information about the host system

• Identify the standards used in writing the driver

• Specify the characteristics and describe the usage of the device

• Provide a description of the device registers

• Identify support in writing the driver

1.2 Designing a Device Driver
After you gather information about the host system and the device, you are
ready to design and develop the device driver. You need to specify the
driver type and whether the driver you write links into the kernel dynamically
at run time (loadable) or requires a reboot (static). During the design of the
driver, you also identify device driver entry points and describe the driver
states.

Note

Loadable device drivers are not supported on the EISA bus. The
I dev I envram example driver discussed in Chapter 6 does not
implement the loadable device driver-specific code. If you are
interested in learning about loadable device drivers in
anticipation of future support, see Writing Device Drivers,
Volume I: Tutorial.

1.3 Allocating Data Structures
Data structures are the mechanism used to pass information between the
kernel and device driver interfaces. The following table summarizes data
structures that are described in detail in Writing Device Drivers, Volume I:
Tutorial:

buf and uio

controller

device

driver

bus

cdevsw

bdevsw

U sed in I/O operations.

Contains members that store information about
hardware resources and store data for communication
between the kernel and the device driver.

Contains information that identifies the device. There is
one device data structure for each device connected to
the controller.

Specifies information such as pointers to the probe,
slave, and attach interfaces used in the device
driver. You initialize this data structure in the device
driver.

Represents an instance of a bus entity to which other
buses or controllers are logically attached.

Defines a device driver's entry points in the character
device switch table.

Defines a device driver's entry points in the block
device switch table.

Chapter 4 describes the data structures that EISA bus device drivers use.

When designing your device driver, you must decide on the technique you
will use for allocating data structures. Generally, there are two techniques
you can use: static allocation and dynamic allocation. Dynamic allocation is
the recommended method for all new drivers; some existing drivers allocate
data structures statically. If you do not plan to implement loadable drivers
now or in the future, the static allocation method will suffice. Otherwise (or
if you know that the maximum number of devices is greater than five or that

1-2 Review of Device Driver Concepts

the driver uses numerous data structures), plan to use the dynamic allocation
method.

The / dev / envram example driver uses the dynamic allocation technique
discussed in Writing Device Drivers, Volume I: Tutorial.

1.4 Writing Portable Device Drivers
Whenever possible, design your device driver so that it can accommodate
peripheral devices that operate on more than one CPU architecture and more
than one CPU type within the same architecture. The following list notes
some of the issues you need to consider to make your drivers portable:

• Control status register (CSR) access issues

• InputlOutput (1/0) copy operation issues

• Direct memory access (DMA) operation issues

• Memory mapping issues

• 64-bit versus 32-bit issues

1.5 Reviewing Device Driver Configuration Models
When you are ready to write your driver, you may want to study the device
driver configuration models and create an appropriate device driver
development environment. If you plan to ship a device driver product to
customers, you also need to create a device driver kit development
environment. Writing Device Drivers, Volume I: Tutorial describes the
configuration models and provides example development environments. The
tutorial discusses how to write device drivers for computer systems running
the DEC OSFIl operating system.

Review of Device Driver Concepts 1-3

EISA Bus Architectures 2

The Extended Industry Standard Architecture (EISA) bus is an industry­
standard high-performance bus that is a superset of the 8- and 16-bit Industry
Standard Architecture (ISA). This chapter presents an overview of the EISA
bus hardware and software architectures. Specifically, the chapter discusses
the following:

• EISA bus hardware architecture

• EISA bus software architecture

For detailed information on EISA bus architectures, see the Extended
Industry Standard Architecture Revision 3.10.

2.1 EISA Bus Hardware Architecture
The EISA bus is a 32-bit address and 32-bit data bus with support for 8-, 16-,
24, and 32-bit bus cycles. (A bus cycle refers to the action that occurs on the
bus to transfer the data.) Support for different bus cycle sizes provides
backward compatibility with the Industry Standard Architecture (ISA) bus
options. The ISA bus is used in computer systems that adhere to the ISA.
The ISA bus supplies the signals for performing the following basic functions
of the computer system: memory, I/O, and direct memory access (DMA).
There are two types of ISA options: one type supports only 8-bit bus cycles
(PC and XT) and one type supports 8- and 16-bit bus cycles (AT).

The EISA bus also supports DMA and bus mastering. Although the EISA
bus supports a maximum of 15 slots, most computer systems support a
maximum of eight. The rest of this section describes the following EISA bus
hardware architecture topics relevant to the device driver writer:

• Address spaces

• Data sizes

• Byte ordering

2.1.1 Address Spaces
The EISA bus defines two address spaces:

• 110 address space

The EISA bus supports a 64-kilobyte (KB) I/O address space. This I/O
address space contains 16 slots, each of which is 4 KB in size. This 1/0
address space is referred to as slot-specific I/O space. The system board
and the ISA-compatible I/O address space share slot zero (0).

• Memory address space

The EISA bus supports a 4-gigabyte (GB) memory address space. This
memory address space is available to any device on the bus. Assignment
of the memory address space is done with the EISA configuration utility
(ECU).

2.1.2 Data Sizes
The EISA bus supports 8-bit (D16), 16-bit (D16), 24-bit (D24), and 32-bit
(D32) data sizes.

2.1.3 Byte Ordering
While the EISA bus does not specify any particular byte ordering, most
devices use the Intel model, which is little endian. The Digital model is also
little endian.

2.2 EISA Bus Software Architecture
The EISA bus supports a 4-gigabyte (GB) address space and a 64-kilobyte
(KB) 1/0 space.

2-2 EISA Bus Architectures

Structure of an EISA Bus Device Driver 3

The sections that make up a DEC OSFIl device driver differ, depending on
whether the driver is a block, character, or network driver. Figure 3-1 shows
the sections that a character device driver can contain and the possible
sections that a block device driver can contain. Device drivers do not have to
use all of the sections shown in the figure, and more complex drivers can use
additional sections. Both character and block device drivers can contain:

• An include files section

• A declarations section

An autoconfiguration support section

• A configure section (only for loadable drivers)

• An open and close device section

• An ioctl section

• An interrupt section

The block device driver can also contain a strategy section, a psize section,
and a dump section.

The character device driver contains the following sections not contained in a
block device driver:

• A read and write device section

• A reset section

A stop section

• A select section

Writing Device Drivers, Volume I: Tutorial discusses each of the driver
sections. The remainder of this chapter describes the differences in the
following driver sections as they relate to EISA bus device drivers: include
file and autoconfiguration support (specifically, the xxprobe and xxslave
interfaces).

Figure 3-1: Sections of a Character Device Driver and a Block
Device Driver

Character Device Driver Block Device Driver

/* I nclude Files Section * / /* Include Files Section */

/* Declarations Section */ /* Declarations Section * /

/* Autoconfiguration Support Section */ /* Autoconfiguration Support Section */

/* Configure Section */ /* Configure Section */

/* Open and Close Device Section * / /* Open and Close Device Section * /

/* ioctl Section * / /* ioctl Section */

/* Interrupt Section */ /* Interrupt Section */

/* Read and Write Device Section * /
/* Strategy Section * /

/* Reset Section * /
/* psize Section * /

/* Stop Section */
/* Dump Section */

/* Select Section */

ZK-0875U-R

3-2 Structure of an EISA Bus Device Driver

3.1 Include Files Section
Data structures and constant values are defined in header files that you
include in the include files section of the driver source code. The number
and types of header files you specify in the include files section vary,
depending on such things as what structures, constants, and kernel interfaces
your device driver references. You need to be familiar with:

• The device driver header file

• The common driver header files

• The loadable driver header files

• The device register header file

• The name data. c file

These files are described in Writing Device Drivers, Volume 1: Tutorial.
EISA bus device drivers use the following file in addition to the previously
mentioned files:

#include <io/dec/eisa/eisa.h>

The eisa. h file contains definitions specific to the EISA bus.

Another file of interest to EISA bus device driver writers is
/usr/sys/data/eisa option data.c. The
eisa option data. c file contains the array (table) of eisa option
structiifes, whichstore information about a specific EISA option. -Each
structure contains such information as the option board's product ID and the
name of the controlling device driver. Digital initilizes the array of
eisa option structures with its own EISA bus option product
information. Third-party device driver writers can directly edit the
eisa option array with their EISA bus option product information; or,
they can use the rnkeisadata utility to automatically add product entries to
a copy of the eisa option array. Chapter 7 discusses the rnkeisadata
utility. -

3.2 Autoconfiguration Support Section
When DEC OSPII boots, the kernel determines what EISA bus devices are
connected to the computer. After finding an EISA bus device, the EISA bus
configuration code initializes it based on the data supplied in the device's
configuration file. The probe interface determines if a particular EISA bus
device is present and the attach interface initializes the device. If the device
is a disk controller, the slave interface determines if the device is present.
The autoconfiguration support section of an EISA bus device driver contains
the code that implements these interfaces and the section applies to both
character and block device drivers.

Structure of an EISA Bus Device Driver 3-3

The section can contain:

• A probe interface

• A slave interface

• An attach interface

Writing Device Drivers, Volume I: Tutorial discusses each of these
interfaces.

The following sections describe the xxprobe and xxslave interfaces as
they apply to EISA bus device drivers. For convenience in referring to the
names for the driver interfaces, the chapter uses the prefix xx. For example,
xxprobe refers to a probe interface for some XX device.

3.2.1 Setting Up the Probe Interface
An EISA bus device driver's xxprobe interface performs the tasks
necessary to determine if the device exists and is functional on a given
system. At boot time, the EISA bus configuration code reads the
configuration information saved by the EISA configuration utility (ECU) and
performs checks to determine if the device is present before calling
xxprobe for statically configured drivers. The EISA bus configuration code
calls the xxprobe interface for each device that is defined according to
specific rules discussed in Chapter 5. The xxprobe interface typically
checks some device control status register (CSR) to determine whether the
physical device is present. If the device is not present, the device is not
initialized and not available for use. For static device drivers, the device
interrupt handlers are defined in the system configuration file or the
stanza. static file fragment and registered by the config program at
system configuration time.

The xxprobe interface returns a nonzero value if the probe operation was
successful. It returns the value zero (0) to indicate that the driver did not
complete the probe operation.

The arguments you pass to the probe interface differ according to the bus on
which the driver operates. The following code fragment shows you how to
set up a probe interface for a driver that operates on an EISA bus:

xxprobe(bus io handle, ctlr)
io handle t-bus io handle; ill
struct controller *ctlr; ~
{
/* Variable and structure declarations */

3-4 Structure of an EISA Bus Device Driver

/* Code to perform necessary checks */

III Specifies an 1/0 handle that you can use to reference a device register
located in the EISA bus address space. This 1/0 handle is for the base of
the device's slot-specific 1/0 address space. The EISA bus configuration
code passes this I/O handle to the driver's xxprobe interface during
device autoconfiguration. You can perform standard C mathematical
operations on the 1/0 handle. For example, you can add an offset to or
subtract an offset from the 1/0 handle.

Device drivers pass the I/O handle to the following categories of
interfaces, which are discussed in Writing Device Drivers, Volume 1:
Tutorial. These interfaces can process the 1/0 handle to access the
desired bus address space.

- CSR I/O access interfaces

The CSR I/O access interfaces are read io port and
wr i te io port. These are generic interfaces that allow device
drivers to read from and write to device registers. Using these
interfaces to read data from and write data to a device register makes
the device driver more portable across different bus architectures,
different CPU architectures, and different CPU types within the same
CPU architecture.

- I/O copy interfaces

The I/O copy interfaces are io copyin, io copyio,
io copyout, and io zero:-These are generic interfaces that
allOW device drivers to perform I/O copy operations. Using these
interfaces to perform the copy operation makes the device driver more
portable across different CPU architectures and different CPU types
within the same architecture.

Section 6.3 shows how the / dev / envrarn device driver uses the
read io port and wri te io port interfaces to construct driver­
specific interfaces to accomplish the tasks of reading from and writing to
the device registers of an EISA bus nonvolatile random access memory
(NVRAM) memory expansion board.

The / dev / envrarn device driver example described in Chapter 6 uses
the io_copyin, io_copyout, and io_zero interfaces.

[2J Specifies a pointer to the controller structure associated with this
device. The bus configuration code passes this pointer to the driver's
xxprobe interface. The device driver can reference hardware resource
and other information contained in the controller structure pointer.

Structure of an EISA Bus Device Driver 3-5

Section 6.6.1 shows the probe interface for the / dev / envram device
driver.

3.2.2 Setting Up the Slave Interface
A device driver's xxslave interface is called only for a controller that has
slave devices connected to it. This interface is called once for each slave
attached to the controller. You (or the system manager) specify the
attachments of these slave devices for static device drivers in the system
configuration file or stanza. static file fragment. The following code
fragment shows you how to set up a slave interface for a driver that operates
on an EISA bus:

xxslave(device, bus io handle)
struct device *device;l]
io handle t bus_io_handle; ~
{
j* variable and structure declarations *j

j* Code to check that the device is valid *j

ill Specifies a pointer to a device structure for this device. The bus
configuration code passes this pointer to the driver's xxslave interface.
The device driver can reference such information as the logical unit
number of the device, whether the device is functional, and the bus
number the device resides on.

121 Specifies an I/O handle that you can use to reference a device register
located in the EISA bus address space. This I/O handle is for the base of
the device's slot-specific I/O address space. The EISA bus configuration
code passes this I/O handle to the driver's xxslave interface during
device autoconfiguration. You can perform standard C mathematical
operations on the I/O handle. For example, you can add an offset to or
subtract an offset from the I/O handle.

Device drivers pass the I/O handle to the following categories of
interfaces, which are discussed in Writing Device Drivers, Volume 1:
Tutorial. These interfaces can process the I/O handle to access the
desired bus address space.

- CSR I/O access interfaces

The CSR I/O access interfaces are read io port and
wr i te io port. These are generic interfaces that allow device
drivers to read from and write to device registers. Using these

3-6 Structure of an EISA Bus Device Driver

interfaces to read data from and write data to a device register makes
the device driver more portable across different bus architectures,
different CPU architectures, and different CPU types within the same
CPU architecture.

- 1/0 copy interfaces

The va copy interfaces are io copyin, io copyio,
io copyout, and io zero~These are generic interfaces that
allow device drivers to perform va copy operations. Using these
interfaces to perform the copy operation makes the device driver more
portable across different CPU architectures and different CPU types
within the same architecture.

Structure of an EISA Bus Device Driver 3-7

Data Structures That EISA Bus Device 4
Drivers Use

Data structures are the mechanism used to pass information between the DEC
OSFIl kernel and device driver interfaces. EISA bus device driver writers
must understand the data structures described in Writing Device Drivers,
Volume I: Tutorial. To write EISA bus device drivers, driver writers must
also understand the following categories of data structures:

• controller structure members as specified on the EISA bus

• EISA bus structures

The following sections describe the structures associated with each category.
For reference (man) page-style descriptions of these data structures, see
Section A.2.2.

4.1 controller Structure Members as Specified on the
EISA Bus
The controller structure represents an instance of a controller entity, one
that connects logically to a bus. A controller can control devices that are
directly connected or can perform some other controlling operation, such as a
network interface or terminal controller operation.

Table 4-1 lists those members of the controller structure that have
specific meanings on the EISA bus along with their associated data types.
Following the table are descriptions of these members as they apply to the
EISA bus.

Table 4-1: controller Structure

Member Name

slot

physaddr

Data Type

int

caddr t

4.1.1 slot Member
The slot member specifies the bus slot or node number. As it applies to
the EISA bus, the s lot member specifies the slot number that the EISA bus
board is plugged into. The slot number ranges from 1- n, where n
represents the maximum number of slots. This value corresponds to the one
that you (the device driver writer) specified in the system configuration file or
the stanza. static file fragment. In the system configuration file, you
precede the slot number for the slot that the EISA bus board is plugged into
with the s lot keyword, as follows:

slot 1

The autoconfiguration software uses the syntax following the s lot keyword
in the system configuration file or the stanza. static file fragment to
obtain this value. The bus configuration code obtains this value from the
autoconfiguration software and uses it to initialize the s lot member of the
controller structure associated with this EISA bus device.

The following code fragment shows that the / dev / envram device driver
saves the slot number in a softc structure pointer:

struct envram softc {

u int slot; /* Slot this board is located in */

} ;

envram probe(bus io handle, ctlr)

{

io handle t bus-io-handle; /* I/O handle */
struct controller *ctlr; /* Pointer to controller structure */

register struct envram softc *sc; /* Pointer to softc structure *j

sc->slot ctlr->slot; /* Save the slot number that this */
/* board is located in */

4-2 Data Structures That EISA Bus Device Drivers Use

4.1.2 physaddr Member
The physaddr member specifies the physical address that corresponds to
the virtual address set in the addr member. As it applies to the EISA bus,
the physaddr member specifies an I/O handle that you can use to reference
a device register located in the EISA bus address space. This I/O handle is
for the base of the device's slot-specific I/O address space.

The following code fragment shows that the I dev I envrarn device driver
saves the base physical address of the device's slot-specific 110 address space
in the driver's softc structure pointer. The code fragment also shows that
I dev I envrarn uses this address in the construction of a read and write
device register interface.

/**
* The ENVRAM READ 10- and ENVRAM WRITE la-related *
* macros are-defined in envram data.c~ They use *
* the read io port and write io port interfaces and *
* OR the offset with the sc->regbase value. The *
* sc->regbase value is the peroption physical base *
* address of the EISA NVRAM I/O registers *
***/

#define ENVRAM_WRITEIO_D8(a,d) write_io_port(sc->regbase I a, 1, BUS_la, d)

struct envram softc

vm_offset_t regbase; /* Base address for device registers */

} ;

envram probe(bus io handle, ctlr)
io handle t bus-io-handle; /* I/O handle */
struct controller *c"Ur; /* Pointer to controller structure * /

register struct envram softc *sc; /* Pointer to softc structure */

Data Structures That EISA Bus Device Drivers Use 4-3

sc->regbase = (u_int)ctlr->physaddr; /* Save the controller's base */
/* address. */

4.2 EISA Bus Structures

4.2.1

In addition to the structures described in the Writing Device Drivers, Volume
1: Tutorial, device driver writers must understand the eisa option data
structure. The eisa option structure contains EISA busoption
information such as the bus option board's product ID and the name of the
controlling device driver. An array of eisa option structures is declared
in the file /usr/sys/data/eisa option data.c. You must be
familiar with: --

•

•

The members of the eisa_option structure

The contents of the eisa_option_data.c file

Members of the eisa_option Structure

Table 4-2 lists the members of the eisa option structure along with their
associated data types. -

Table 4-2: eisa_option Structure Members and Associated Data
Types

Member Name Data Type

board id char [EISA_ IDNAMELEN + 1]

function char [EISA_FUNCLEN + 1]

driver name char [EISA_NAMELEN + 1]

intr_b4_probe int

intr aft attach int

type char

adpt_config int (*adpt_config) ()

The board id member specifies the EISA bus option expansion board's
product ID name. You set board id to the character string that represents
the option board's product ID name. The ID name consists of a 3-character
manufacturer code, a 3-character product identifier, and a I-character revision
number. For example, the string ADP 0002 identifies this as a second

4-4 Data Structures That EISA Bus Device Drivers Use

revision of an Adaptec ADP] 742A SCSI option board.

The function member specifies the text that identifies the product up to a
maximum of 79 characters. This text can include part numbers. The default
is the null string (''''). You set function to the character string that
represents the product. For example, the string AHAl 740 identifies this as
the product name for a Digital ADP1742A SCSI option board.

The driver name member specifies the name of the controlling device
driver. You set driver name to the character string that represents the
name of the controlling device driver up to a maximum of 8 characters. This
same character string also specifies the name of the controlling device driver
in the system configuration file. For example, the string aha identifies this
as the controlling device driver for the device connected to an ADP1742A
SCSI option board.

The intr b4 probe member specifies whether the device needs interrupts
enabled before 'the bus configuration code calls the driver's xxprobe
interface. You can set intr b4 probe to the value zero (0) or the value
1. A zero (0) value indicates that the device does not need interrupts enabled;
this is the default value. A value of 1 indicates that the device needs
interrupts enabled.

The intr aft attach member specifies whether the device needs
interrupts enabled after the driver's xxprobe and xxcattach or
xxdattach interfaces complete execution. You can set
intr aft attach to the value zero (0) or the value 1. A zero (0) value
indicates that the device does not need interrupts enabled; this is the default
value. A value of 1 indicates that the device needs interrupts enabled.

The type member specifies the type of device. You can set type to the
string C (the device is a controller) or A (the device is a bus or an adapter).
The default value is C.

The adpt config member specifies the name of the bus (or adapter)
configuration interface to call. You set adpt config to the string that
identifies the bus configuration interface, if type was set to A (the device is
a bus or an adapter). Otherwise, do not set adpt _ config to any value.

4.2.2 Contents of the eisa_option_data.c File
Digital initilizes the array of eisa option structures with its own EISA
bus option product information. Thlrd-party device driver writers can
directly edit the eisa option array with their EISA bus option product
information; or, they can use the mkeisadata utility to automatically add
product entries to a copy of the eisa option array. Chapter 7 discusses
the mkeisadata utility. -

Data Structures That EISA Bus Device Drivers Use 4-5

The following shows the Digital-provided eisa_option _data. c file:

struct eisa_option eisa_option [] =
{

function driver intr b4 itr aft j* board
j* id name name probe attach type
j*

{"CPQ3011", ,
{ "DEC4220", "NET,ETH",
{ "ADP0002", "AHA1740",

j*

"ADP0002", "MSD,FPYCTL",

"DEC3001",
"DEC3002",
"DEC2500",
"ISA1010", "COM,l",
"ISA1010", "COM,2",
"ISA1010", "PAR",

"vga", 0,
nIn", 0,
"aha", 0,

"fdi", 0,

0, "fta",
"fta", 0,
"envram", 0,
"ace" , 0,
"ace", 0,
"ace", 0,

1,
1,
1,

1,

1,
1,
0,
1,
1,
1,

'C' ,
'C' ,
'C' ,

'C' ,

'C' ,
'C' ,
'C' ,
'C' ,
'C' ,
'C' ,

adpt *j
config *j
------ *j

O}, j* QVISION *j
O}, j* DEC LANCE *j
O}, j* ADP1742A *j

j* SCSI *j
O}, j* ADP1742A *j

j* FLPY *j
O}, j* DEC FDDI *j
O}, j* DEC FDDI *j
O}, j* EISA NVRAM *j
O}, j* COMM POR TS *j
O}, j* COMM POR TS *j
O}, j* COMM PORTS *j

* Do not delete any table entries above this line or your system
* will not configure properly.

*
* Add any new controllers or devices here.
* Remember, the module name must be blank padded to 7 bytes.
*j

j*
%%%Used by mkeisadata as placemarker for automatic installation

*j

j*
* Do not delete this null entry, which terminates the table or your
* system will not configure properly.
*j
{ j* Null terminator in the table *j
} ;

4-6 Data Structures That EISA Bus Device Drivers Use

Device Autoconfiguration on the EISA 5
Bus

Autoconfiguration is a process that determines what hardware actually exists
during the current instance of the running kernel. Writing Device Drivers,
Volume 1: Tutorial discusses the events that occur during device
autoconfiguration, using the TURBOchannel bus as an example. This
chapter describes device configuration on the EISA bus, which consists of the
following topics:

• Audiences involved in delivering an EISA bus product

• Autoconfiguration for devices connected to the EISA bus

5.1 Audiences Involved in Delivering an EISA Bus
Product

Figure 5-1 shows the audiences involved in delivering an EISA bus product.
The figure shows at least three different audiences:

• An EISA bus expansion board manufacturer

The manufacturer of the EISA bus expansion board supplies the board
and its configuration requirements in a configuration file. An EISA bus
expansion board does not provide for onboard configuration space. An
expansion board configuration file provides information on the resources
and register values required to program the EISA bus expansion board.
Some of the resources supplied in this file are the board ID, manufacturer
of the board, the interrupt line, DMA channel, and board memory. Do not
confuse the expansion board configuration file with the DEC OSFIl
system configuration file, which is an ASCII text file that defines the
hardware and software components of the system. Expansion board
configuration files, unlike system configuration files, have CFG
extensions. The figure shows that the manufacturer distributes the
expansion board configuration file on a diskette.

Figure 5-1: Audiences Associated with an EISA Bus Product

EISA bus board vendor
supplies the EISA bus board
and floppy diskette that contains
the expansion board config­
uration file.

E
I
S
A

b
u
s

f2\ System vendor supplies
\.J EISA Configuration Utility

and device configuration
file.

Customer runs
the ECU

ZK-0904U-R

• A system vendor

A system vendor builds the CPU on which the EISA bus connects. For
example, as a system vendor Digital builds the Alpha AXP CPU sand
implements the software that allows an EISA bus device to connect to the
CPU. The system vendor supplies the EISA configuration utility and
device configuration file for its system. The EISA configuration utility
(ECU) is a program that reads the expansion board and device
configuration files and, for each option in the system, generates a
conflict-free configuration. The ECU runs on top of the firmware, .not the
operating system. A device configuration file provides information on the
resources required to program the EISA bus device. Some of the
resources supplied in this file are dma channel, interrupt channel, and
memory space information. Do not confuse the device configuration file
with the DEC aSF/1 system configuration file, which is an ASCII text

5-2 Device Autoconfiguration on the EISA Bus

file that defines the hardware and software components of the system.
Device configuration files, unlike system configuration files, have CFG
extensions.

After generating a conflict-free configuration, the ECU writes it to
nonvolatile random-access memory (NVRAM) for future use by the
firmware and the DEC OSFIl operating system.

• A customer

A customer purchases the EISA expansion board from the board
manufacturer, the CPU from a system vendor like Digital, and the
associated peripheral devices from a system vendor like Digital. The
system vendor might also provide the device driver for the peripheral
device. The customer loads the diskette that contains the expansion board
configuration file, the device configuration file, and the ECU. The
customer runs the ECU.

The ECU powers up the CPU and the firmware compares the options
present on the system with the configuration information stored in
NVRAM. If the information matches, the powerup continues. If the
information does not match, the powerup is discontinued and the user is
instructed to run the ECU. As powerup continues, the firmware uses the
configuration information in NVRAM to configure and initialize each
option on the system. After initializing an option, the firmware enables
the option through the EISA bus control register.

A customer must run the ECU any time a new EISA expansion board is
added to the system.

5.2 Configuration for Devices Connected to the EISA
Bus
This section summarizes device autoconfiguration for EISA bus devices,
focusing on the interaction of the expansion board configuration file, the
device configuration file, the EISA configuration utility (ECU), and the DEC
OSFIl operating system. The following list summarizes the tasks associated
with device autoconfiguration for EISA bus devices:

• Creating an expansion board configuration file

• Creating a device configuration file

• Running the EISA configuration utility (ECU)

• Reading the information generated by the ECU

• Guidelines for specifying entries in the device configuration file

The following sections describe these tasks.

Device Autoconfiguration on the EISA Bus 5-3

5.2.1 Creating an Expansion Board Configuration File
As stated in Section 5.1, the EISA expansion board manufacturer creates an
expansion board configuration file that contains such resources as the board
ID, manufacturer identification, the interrupt line, DMA channel, and board
memory. The Extended Industry Standard Architecture Revision 3.10
specification describes the syntax for specifying the resources in the
expansion board configuration file. The board manufacturer copies the
expansion board configuration file to a diskette.

5.2.2 Creating a Device Configuration File
As stated in Section 5.1, the system vendor creates a device configuration file
that contains such device resources as the DMA channel, interrupt channel,
and memory space. The Extended Industry Standard Architecture Revision
3.10 specification describes the syntax for specifying the device resources and
indicating a selection of choices for each resource in the device configuration
file. For example, a device configuration file might specify that a device
requires an interrupt channel and that the device can use channels 9, 11, 14,
or 15. The system vendor copies the device configuration file to a diskette
(either the diskette that contains the expansion board configuration file or a
separate diskette).

The system vendor also supplies the ECU. The Extended Industry Standard
Architecture Revision 3.10 specification provides guidelines on how to write
the ECU.

5.2.3 Running the EISA Configuration Utility
The customer runs the ECU whenever the configuration changes. The ECU
reads the board configuration file and device configuration file for each
device in the system and assigns resources based on the information in the
device configuration file. The ECU resolves any confiicts. The ECU saves
the configuration information in nonvolatile random access memory
(NVRAM).

5.2.4 Reading the Information Generated by the ECU
When the customer boots the CPU, the EISA bus configuration code reads
the configuration information from NVRAM and does the following for each
device in the configuration:

• Looks for a device entry in the eisa option table. If there is no entry
in the table, goes to the next device (and does not probe the device whose
entry is missing from the table). After finding a valid entry in the table,
continues.

5-4 Device Autoconfiguration on the EISA Bus

• Looks for the device in the controller table. If found, continues. If not
found, stops and goes to the next device (and does not probe the device
whose entry is missing from the controller table).

• Configures the device based on the information saved by the ECU in
NVRAM. Typically, this activity consists of writing a set of device
registers to tell the device the resources assigned to it.

• Calls the device driver's xxprobe interface.

• If the probe operation succeeds, calls the driver's xxcattach or
xxda t tach interface.

In summary, for the EISA bus configuration code to call the driver's
xxprobe interface the following must occur:

1. The system vendor creates a configuration file for the device and copies it
to the system configuration diskette or a separate diskette that the ECU
can read. The system configuration diskette, supplied by the board
manufacturer, contains a configuration file for the expansion board. The
diskette is in FAT format.

2. The device driver writer creates an entry for the device in the
eisa_option table located in the eisa_aptian_data. c file.

3. The device driver writer creates an entry (or entries if there are multiple
instances of the device) in the system configuration file.

4. The customer runs the ECU.

Device Autoconfiguration on the EISA Bus 5-5

EISA Bus Device Driver Example 6

This chapter provides you with an opportunity to study an EISA bus device
driver called / dev / envram. You can use the / dev / envram device
driver as the basis for writing your own working EISA bus device drivers.
The / dev / envram device driver operates on an EISA bus and implements
many of the device driver interfaces shown in Chapter 3. It also implements
other sections needed by the EISA bus NVRAM memory expansion board.
The chapter begins with a section that gives you an overview of the tasks
performed by the / dev / envram device driver. Following this overview
are sections that describe each piece of the / dev / envram device driver.
Table 6-1 lists the parts of the / dev / envram device driver and the sections
of the chapter where each is described.

Table 6-1: Parts of the Idev/envram Device Driver

Part

envram_reg.h Header File

envram_data.c File

Include Files Section for the /dev/envram Device Driver

Declarations Section for the /dev/envram Device Driver

Autoconfiguration Support Section for the /dev/envram
Device Driver

Status Section for the /dev/envram Device Driver

Battery Status Section for the /dev/envram Device Driver

Read and Write Device Section for the /dev/envram Device
Driver

Zero NVRAM Section

Section

Section 6.2

Section 6.3

Section 6.4

Section 6.5

Section 6.6

Section 6.7

Section 6.8

Section 6.9

Section 6.10

The source code uses the following convention:

#define ENVRAM_MAPPED 1 ill

ill Numbers appear after some line or lines of code in the / dev / envram
device driver example. Following the example, a corresponding number
appears that contains an explanation for the associated line or lines. The
source code does not contain any inline comments. If you prefer to read
the / dev / envram driver source code in its entirety with the inline
comments, see Appendix B.

6.1 Overview of the Idev/envram Device Driver
The / dev / envram device driver is a character device driver that provides
read and write services to the / dev /presto device driver. The
/ dev /presto device driver is a disk driver that uses nonvolatile memory
as a cache. It works as a layer between other drivers and the rest of the DEC
OSFIl kernel.

The / dev /presto device driver's interfaces appear as the entry points in
the cdevsw and bdevsw switch tables, instead of the interfaces of the other
drivers (including the / dev / envram driver) it works with. Whenever
/ dev /presto needs to perform actual 110 operations (for example, when
the cache needs filling or draining), it calls the layered driver's entry points
(strategy, close, read, and write).

Figure 6-1 shows the relationship between the / dev / envram and
/ dev /presto device drivers. The figure shows the flow of data between
the different layers.

1. The file system makes a read or write request.

2. The / dev /presto device driver interprets the request as an actual 110
operation. It calls the / dev / envram device driver.

3. The / dev / envram device driver performs the actual work of reading
from and writing data to the EISA bus NVRAM memory expansion
board. In addition to providing services to the / dev /presto driver,
the / dev / envram device driver also:

- Manages the EISA bus NVRAM memory expansion board

- Hides hardware idiosyncrasies from the / dev /presto driver

- Allows the EISA bus NVRAM memory expansion board to
communicate with some SCSI device

6-2 EISA Bus Device Driver Example

Figure 6-1: Relationship of the /dev/envram and /dev/presto
Device Drivers

,...--_r---,b...

FILE SYSTEM

/dev/presto
device driver

@
read ..
write ..

/dev/envram
device driver

EISA
ru BUS ru
! ® Memory
,'; .. Board

II"'"

(Nuram)

ZK-0906U-R

EISA Bus Device Driver Example 6-3

6.2 envram_reg.h Header File
The following envram reg. h file is the device register header file for the
/ dev / envram device driver. It contains public declarations and the
definitions that map to the device registers for the EISA bus NVRAM
memory expansion board.

#define ENVRAM CSR Oxcoo [jJ
#define ENVRAM-BAT Oxc04
#define ENVRAM-HIBASE Oxc08
#define ENVRAM-CONFIG OxcOc
#define ENVRAM-ID Oxc80
#define ENVRAM-CTRL Oxc84
#define ENVRAM-DMAO Oxc88
#define ENVRAM-DMA1 Oxc8c

#define ENVRAM DIAG REGISTER Ox3f8 ~
#define BOARD FAILED Ox00000008
#define ENVRAM DIAG RESVED Ox400
#define ENVRAM-CACHE OFFSET Ox400 - -

#define SET LED Ox0100 I3l
#define BAT~FAIL Ox0800
#define WRMEM Ox2000
#define SET DREQ Ox4000
#define DMA-CHAN 7 OX80
#define DMA=CHAN=S Ox40

#define BAT DISCON BIT Ox0080 ~ - -

#define EISA_ENABLE_BOARD Ox1 ~

#define ENVRAM_ID_MASK Ox002Sa310 ~

#define ENVRAM MAPPED 1 ~
#define ENVRAM-NOTMAPPED 0
#define ENVRAM-CACHED 1
#define ENVRAM-NOTCAHCED 0

#define ENVRAM XFER SIZE 1024 ~
#define ENVRAM-ALLIGN 8192 ~

[j] This #define, and the seven that follow, map to the device registers of
the EISA bus NVRAM memory expansion board. The following list
describes each device register definition:

ENVRAM CSR

This is the control status register (CSR) for the EISA bus NVRAM
memory expansion board. Section 6.6.1, Section 6.8.2, and Section
6.8.3 show that the envram probe,
eisa nvram battery enable, and
eisa - nvram -battery -disable interfaces pass ENVRAM CSR
as an argumentto ENVRAM WRITEIO D16. This interface wrItes
data to the CSR. Section 65 shows that the / dev / envram driver

6-4 EISA Bus Device Driver Example

uses write_io_port to construct ENVRAM_WRITEIO_D16.

Section 6.9.2 shows that the envram write interface passes
ENVRAM CSR as an argument to ENVRAM READIO D16 and
ENVRAM-WRITEIO D16. The ENVRAM READIO D16 interface
reads data from the CSR. Section 6.5 shows that the / dev / envram
driver uses read_io_port to construct ENVRAM_READIO_D16.

- ENVRAM BAT

This is the battery disconnect device register for the EISA bus
NVRAM memory expansion board. Section 6.8.2 and Section 6.8.3
show that the eisa nvram battery enable and
eisa nvram battery disable interfaces pass ENVRAM BAT
as an argumentto ENVRAM- WRITEIO DS. This interface writes
data to the battery disconnect device regIster. Section 6.5 shows that
the / dev / envram driver uses wr i te _ io _port to construct
ENVRAM WRITEIO DS.

- ENVRAM HI BASE

This is the extended memory configuration device register for the
EISA bus NVRAM memory expansion board. The ECU sets up this
device register.

- ENVRAM CONFIG

This is the configuration device register for the EISA bus NVRAM
memory expansion board. The ECU sets up this device register.

- ENVRAM ID

This is the ID device register for the EISA bus NVRAM memory
expansion board. Section 6.6.1 shows that the envram probe
interface passes ENVRAM ID as an argument to -
ENVRAM READIO D32~The ENVRAM READIO D32 interfaces
checks ENVRAM IO to ensure that the module is correct for this
driver. Section 6.5 shows that the / dev / envram driver uses
read_io_port to construct ENVRAM_READIO_D32.

- ENVRAM CTRL

This is the controller device register for the EISA bus NVRAM
memory expansion board. Section 6.6.1 shows that the
envram probe interface passes ENVRAM CTRL as an argument to
ENVRAM - WRITEIO DS. This interface wntes data to the controller
device register. SectIOn 6.5 shows that the / dev / envram driver
uses write_io_port to construct ENVRAM_WRITEIO_DS.

- ENVRAM DMAO

This is the DMA address device register 0 for the EISA bus NVRAM
memory expansion board. Section 6.9.2 shows that the

EISA Bus Device Driver Example 6-5

envram write interface passes ENVRAM DMAO as an argument to
ENVRAM-WRITEIO D16. This interface writes data to DMA
address device register O. Section 6.S shows that the / dev / envram
driver uses write _ io _port to construct
ENVRAM WRITEIO D16.

- ENVRAM DMA1

This is the DMA address device register 1 for the EISA bus NVRAM
memory expansion board. Section 6.9.2 shows that the
envram write interface passes ENVRAM DMA1 as an argument to
ENVRAM-WRITEIO D16. This interface writes data to DMA
address device register 1. Section 6.S shows that the / dev / envram
driver uses write _ io _port to construct
ENVRAM WRITEIO D16.

121 This #define, and the three that follow, map to the EISA NVRAM
software diagnostic registers. The following list describes each EISA
NVRAM software diagnostic register definition:

- ENVRAM DIAG REGISTER

This is the software diagnostic register for the EISA bus NVRAM
memory expansion board. The envram probe interface uses the
console diagnostics to set this device regISter.

- BOARD FAILED

This software diagnostic register is set if the EISA bus NVRAM
memory expansion board failed software diagnostic tests. Section
6.6.1 shows that the envram probe interface uses
BOARD_FAILED to set the sOftware diagnostic status in the softc
structure.

- ENVRAM DIAG RESVED

This software diagnostic register specifies the amount of space the
software diagnostics require.

- ENVRAM CACHE OFFSET

This software diagnostic register on the EISA bus NVRAM memory
expansion board is the offset from the starting address of the
NVRAM. This address identifies where the / dev /presto driver
can use the NVRAM. Section 6.6.1 shows how the envram probe
interface uses ENVRAM CACHE OFFSET. -

[3] This #define, and the five that follow, are bit masks for the EISA bus
NVRAM memory expansion board's CSR (the ENVRAM CSR device
register offset). The following list describes each bit mask:

- SET LED

This CSR bit mask turns on the Light Emitting Diode (LED) for the

6-6 EISA Bus Device Driver Example

EISA bus NVRAM memory expansion board. Section 6.8.2 shows
that the eisa nvram battery enable interface uses this CSR
bi t mask to turn on the LED. -

- ENBL BAT INT

This CSR bit mask enables the battery fail interrupt for the EISA bus
NVRAM memory expansion board. The I dev I envram driver does
not currently use this CSR bit mask.

- ENBL PFAIL INT

This CSR bit mask enables the power failure interrupt for the EISA
bus NVRAM memory expansion board. The I dev I envram driver
does not currently use this CSR bit mask.

- BAT FAIL

Section 6.8.1 shows that the eisa nvram battery status
interface uses BAT FAIL to check-for a battery failure on the EISA
bus NVRAM memory expansion board.

- BAT DISCON

This CSR bit mask indicates the status of the disconnect circuit for
the EISA bus NVRAM memory expansion board. Section 6.8.2 and
Section 6.8.3 show that the eisa nvram battery enable and
eisa nvram battery disable interlaces use tills CSR bit
mask to provide the Idev/presto driver with the ability to enable
and disable the battery.

- WRMEM

Section 6.6.1 shows that the envram probe interface uses WRMEM
to enable writes to the EISA bus NVRAM memory expansion board.
Section 6.8.2, Section 6.8.3, and Section 6.9.2 show that the
eisa nvram battery enable,
eisa-nvram-battery-disable,andenvram write
interfaces pass the WRMEM bit mask to the ENVRAM WRITEIO D16
interface. - -

- SET_DREQ

This CSR bit mask sets the device requirements for DMA operations
on the EISA bus NVRAM memory expansion board. Section 6.9.2
shows how the envram write interface uses this bit mask.

- DMA CHAN 7

This CSR bit mask identifies channel 7 for DMA operations on the
EISA bus NVRAM memory expansion board. The map load code
from the ECU sets this device register.

EISA Bus Device Driver Example 6-7

- DMA CHAN 5

This CSR bit mask identifies channel 5 for DMA operations on the
EISA bus NVRAM memory expansion board. The map load code
from the ECU sets this device register.

~ Defines a bit mask called BAT DISCON BIT for the EISA bus NVRAM
memory expansion board's battery disconnect device register (the
ENVRAM BAT device register offset). Section 6.8.2 and Section 6.8.3
show how the eisa nvram battery enable and
eisa nvram battery dIsable interfaces use the
BAT DISCON -BIT bit mask.

[5J Defines a bit mask called E I SA ENABLE BOARD for the EISA bus
NVRAM memory expansion board's controller device register (the
ENVRAM CTRL device register offset). This bit mask makes memory on
the EISA-bus NVRAM memory expansion board available. Section 6.6.1
shows how the envram_probe interface uses this bit mask.

[§] Defines a bit mask called ENVRAM ID MASK for the EISA bus NVRAM
memory expansion board's ID devICe register (the ENVRAM ID device
register offset). Section 6.6.1 shows that the envram probe interface
uses the ENVRAM ID MASK bit mask to check the hardware ID in the
EISA bus NVRAM memory expansion board's ID device register.

IZI This #define, and the three that follow, are used to communicate with
the / dev /presto device driver. The following list describes each
definition:

- ENVRAM MAPPED

This constant indicates that the buffer was mapped. This constant is
not currently used by the / dev / envram driver.

- ENVRAM NOTMAPPED

Section 6.6.2 shows that the envram attach interface uses this
constant to indicate to the / dev /presto device driver that the
buffer was not mapped.

- ENVRAM CACHED

Section 6.6.2 shows that the envram attach interface uses this
constant to indicate to the / dev /presto device driver the use of
kernel segment (kseg) space.

- ENVRAM NOTCAHCED

This constant indicates the use of a cached space. This constant is not
currently used by the / dev / envram driver.

[8] Defines a constant called ENVRAM XFER SIZE to indicate the
maximum DMA transfer size to theNVRAM module. Section 6.6.2 and
Section 6.9.2 show how the envram attach and envram write

6-8 EISA Bus Device Driver Example

interfaces use ENVRAM XFER SIZE.

19.1 Defines a constant called ENVRAM ALLIGN to indicate the DMA
alignment requirement. Section 6.9.2 shows how the envrarn write
interface uses ENVRAM ALLIGN. -

EISA Bus Device Driver Example 6-9

6.3 envram_data.c File
The /usr/sys/data/envram data.c file is the name data.c file
for the / dev / envram device driver. It contains the softc structure, which
is used to share data between the different / dev / envram device driver
interfaces.

struct envram softc {
io handle t regbase;
io-handle-t cache phys start;
io=handle=t cache=base;
vm_offset_t cache_kseg_start;
u long saved mem sysmap;
u-int cache size;
u-int cache-offset;
io_handle_t-diag_status;
dma_handle_t sglp;
struct controller *ctlr;

}; ill

struct envram softc *envram softc; ~
struct controller *envram_info[NENVRAM]; ~

[] Defines the softc data structure for the / dev / envram device driver and
calls it envram softc. Most of the sections of the / dev / envram
device driver declare a pointer to the envram _softc structure.

The following list describes the members contained in this structure:

regbase

Stores the physical base address of the I/O device registers for the
EISA bus NVRAM memory expansion board. Section 6.5 shows that
the / dev / envram driver uses this member to construct the EISA
NVRAM I/O device register interfaces (macros). Section 6.6.1 shows
that the envram probe interface sets this member to the
controller's base address.

The regbase member and other members of the envram softc
structure are I/O handles. An I/O handle is a data entity that is of
type io handle t. Device drivers use the I/O handle to reference
bus address space (either I/O space or memory space). The bus
configuration code passes the I/O handle to the device driver's
xxprobe interface during device autoconfiguration. One purpose of
the I/O handle is to hide CPU-specific architecture idiosyncracies that
describe how to access a device's control status registers (CSRs) and
how to perform I/O copy operations.

Specifically, this member is the I/O handle base of the EISA NVRAM
I/O registers associated with a specific EISA option.

cache_phys_start

Stores the starting physical address of the NVRAM cache. Section

6-10 EISA Bus Device Driver Example

6.6.1 shows that the envram _probe interface sets this address.

- cache base

Stores the base address of the NVRAM in EISA bus address space.
Section 6.6.1 shows that the envram probe interface sets this base
address. Section 6.9.2 shows that the envram write interface uses
this member to set up the destination address passed from the
/ dev /presto driver.

- cache _ kseg_start

Stores the starting kseg address of the cache used by the
/ dev /presto driver. Section 6.6.1 shows that the
envram probe interface sets this address. Section 6.6.2 shows that
the envram attach interface passes this address to the
/ dev /presto driver's presto _ ini t interface.

- saved_mem_sysmap

Stores the sysmap portion of the 110 handle. Section 6.6.1 shows that
the envram probe interface initializes this member. Section 6.9.1
and Section 6.9.2 show that the envram read and
envram write interfaces pass this member to the 110 copy
interfacesio copyin and io copyout. Section 6.10 shows that
the envram -zero interface passes this member to the 110 copy
interface io -zero.

- cache size

Stores the size of the NVRAM cache. Section 6.6.1 shows that the
envram probe interface initializes this member. Section 6.6.2
shows that the envram attach interface passes this size to the
/ dev /presto driver's presto _ ini t interface.

- cache offset

Stores the offset to the first NVRAM location from the start of the
EISA slot address. Section 6.6.1 shows that the envram probe
interface initializes this member. -

- diag_ status

Stores the bit masks that indicate whether the EISA bus NVRAM
memory expansion board passed the software diagnostic tests.
Section 6.6.1 shows that the envram probe interface initializes this
member. Section 6.7 shows that this member is an implicit input to
the eisa nvram status interface.

- sglp

Specifies a handle to DMA resources associated with the mapping of
an in-memory I/O buffer onto a controller's I/O bus. This handle
provides the information to access bus addresslbyte count pairs. A

EISA Bus Device Driver Example 6-11

bus address/byte count pair is represented by the ba and bc members
of an sg entry structure pointer. Device drivers can view this
handle asthe tag to the allocated system resources needed to perform
a direct memory access (DMA) operation.

Section 6.6.2 and Section 6.9.2 show that the envram attach and
envram write interfaces pass this DMA handle to the
dma _map _load and dma _map _ alloc interfaces.

- ctlr

Declares a pointer to the controller structure associated with this
EISA bus NVRAM memory expansion board. Section 6.6.1 and
Section 6.6.2 show that several members of the controller
structure pointer are implicit inputs to the envram probe and
envram attach interfaces. -

121 Declares a pointer to the envram _ softc data structure.

~ Declares a pointer to an array of controller structures. The compile
time variable is used as an index into the array. If the compile time
variable NENVRAM is greater than zero (0), declares pointers to arrays of
controller structures. Thus, there is one controller structure for
each EISA bus NVRAM memory expansion board. The /dev/envram
driver does not currently support this.

6-12 EISA Bus Device Driver Example

6.4 Include Files Section for the Idev/envram Device
Driver
The following code shows the include files section for the / dev / envram
device dri ver:

#include "envram.h" ~

#include <vm/vrn kern.h>
#include <sys/presto.h> ~
#include <io/common/devdriver.h>
#include <io/dec/eisa/eisa.h> ~
#include <data/envram data.c> ~
#include <machine/rpb~h>
#include <io/dec/eisa/envram_reg.h> ~

[j] The envram. h file is generated by the config program and it contains
#define statements for the number of EISA bus devices on the system.
This file is also included in /usr/sys/io/common/conf .c, which
is where you define the entry points for the driver. However, the entry
points for the / dev / envram driver are not defined in
/usr / sys / io/ common/ conf . c because its entry points are called
by the / dev /presto device driver. It is the / dev /presto device
driver's entry points that are defined in
/usr/sys/io/common/conf.c.

Section 6.6.2 shows how the / dev / envram driver initializes a data
structure with the names of its entry points so that the / dev /presto
driver can call them.

[2J This header file contains the definitions and structure definitions for the
/dev/presto device driver. Section 6.6.2 shows how the
/ dev / envram driver initializes the presto interfaceO data
structure with its entry points. -

@I The /usr/sys/include/io/dec/eisa/eisa.h file contains data
structures referenced by EISA bus device drivers and by the bus
configuration code. For a summary description of this header file, see
Section A.2.1.

Writing Device Drivers, Volume 2: Reference provides reference (man)
page-style descriptions of the header files most commonly used by DEC
OSFIl device drivers.

I!I This is the name data. c file for the / dev / envram device driver.
The envram data. c file contains the softc structure used by the
/ dev / envram device driver. Section 6.3 describes the members of the
softc structure.

~ This is the device register header file for the / dev / envram driver. It
contains public declarations and #def ine statments used by the

EISA Bus Device Driver Example 6-13

/ dev / envram device driver. The following lists some of the categories
of information contained in this file:

- EISA bus NVRAM register definitions

- NVRAM device register offset definitions

- CSR register bit mask definitions

- Battery disconnect register bit mask definitions

- EISA bus control register bit masks

Section 6.2 describes the contents of the envram reg. h device register
header file. -

6-14 EISA Bus Device Driver Example

6.5 Declarations Section for the Idev/envram Device
Driver
The following code shows the declarations section for the / dev / envram
device dri ver:

#define ENVRAM_READIO_D8(a) \
read_io_port«io_handle_t)sc->regbase a, 1, 0)) [j]

#define ENVRAM READIO DI6(a) \
read_io_port«(io_handle_t)sc->regbase a, 2 , 0))

#define ENVRAM READIO D32(a) \
read_io_port«(io_handle_t)sc->regbase a, 4 , 0))

#define ENVRAM WRITEIO D8(a,d) \
write io port(io handle t)sc->regbase a, 1, 0, d» ~

#define ENVRAM WRITEIO DI6(a,d) \
write io port(io handle t)sc->regbase a, 2, 0, d»

#define ENVRAM WRITEIO D32(a,d) \
write_io_port«(io_handle_t)sc->regbase I a, 4, 0, d»

int envram probe(), envram attach(), eisa nvram status();
int eisa nvram battery enable(), eisa nvram battery disable();
void envram_read(), envram_write(), envram_zero(); ~

struct driver envramdriver = {
envram_probe,
0,
envram_attach,
0,
0,
0,
0,
0,
"envram" ,
envram info,
0,
0,
0,
0,
0,
0,

° } ; ~

I1J The / dev / envram device driver constructs the ENVRAM READIO D8,
ENVRAM READ 10 D 16, and ENVRAM READ 10 D32 interfaces from
the read io port interface. These are convenience interfaces that
call read- io- port, which is a generic interface that maps to a bus­
and machine-specific interface that actually performs the task of reading
the byte, word, longword, or quadword from a device register. Use of
these interfaces to read data from a device register makes the device
driver more portable across different buses, different CPU architectures,
and different CPU types within the same. architecture.

EISA Bus Device Driver Example 6-15

The read _ io _port interface takes three arguments:

- The first argument specifies an I/O handle that you can use to
reference a device register located in bus address space (either I/O
space or memory space). This I/O handle references a device register
in the bus address space where the read operation originates. You can
perform standard C mathematical operations on the I/O handle. For
example, you can add an offset to or subtract an offset from the I/O
handle.

For this first argument, the / dev / envram driver performs a bitwise
inclusive OR operation on the value stored in the regbase member
of the pointer to the envram softc structure and an address
representing one of the deviceregister offsets. For example:
ENVRAM CSR.

- The second argument specifies the width (in bytes) of the data to be
read. Valid values are 1, 2, 3, 4, and 8. Not all CPU platforms
support all of these values. For this second argument, the
/ dev / envram driver specifies 1, 2, and 4.

- The third argument specifies flags to indicate special processing
requests. Currently, no flags are used.

For this third argument, the / dev / envram driver specifies the value
zero (0).

I2J The /dev/envram device driver constructs the
ENVRAM WRITEIO D8,ENVRAM WRITEIO D16,and
ENVRAM-WRITEIO-D32 interfaces from the write io port
interface~These are convenience interfaces that call write io port,
which is a generic interface that maps to a bus- and machine~speC1fic
interface that actually performs the task of writing the byte, word,
longword, or quadword to a device register. Use of these interfaces to
write data to a device register makes the device driver more portable
across different bus architectures, different CPU architectures, and
different CPU types within the same CPU architecture.

The wr i te _ io _port interface takes four arguments:

- The first argument specifies an I/O handle that you can use to
reference a device register located in bus address space (either I/O
space or memory space). This I/O handle references a device register
in the bus address space where the write operation occurs. You can
perform standard C mathematical operations on the I/O handle. For
example, you can add an offset to or subtract an offset from the I/O
handle.

For this first argument, the / dev / envram driver performs a bitwise
inclusive OR operation on the value stored in the regbase member
of the pointer to the envram _ softc structure and an address

6-16 EISA Bus Device Driver Example

representing one of the device register offsets. For example:
ENVRAM CSR.

- The second argument specifies the width (in bytes) of the data to be
written. Valid values are 1, 2, 3, 4, and 8. Not al1 CPU platforms
support aI1 of these values. For this second argument, the
/ dev / envram driver specifies 1, 2, and 4.

- The third argument specifies flags to indicate special processing
requests. Currently, no flags are used.

For this third argument, the / dev / envram driver specifies the value
zero (0).

- The fourth argument specifies the data to be written to the specified
device register in bus address space.

For this fourth argument, the / dev / envram driver specifies a
variable to be passed by the different device driver interfaces.

~ These are the forward declarations of the entry points for the
/ dev / envram device driver.

~ The driver structure for the / dev / envram driver is cal1ed
envramdriver. The value zero (0) indicates that the /dev/envram
driver does not make use of a specific member of the driver structure.
The following list describes those members initialized to a nonzero value:

- The driver's probe interface, envram _probe.

- The driver's attach interface, envram _attach.

- The value envram, which is the name of the controller.

- The value envram info, which references the array of pointers to
the controller structures declared in the
/usr/sys/data/envram data.c file. You index this array
with the controller number as specified in the ctlr num member of
the controller structure. -

EISA Bus Device Driver Example 6-17

6.6 Autoconfiguration Support Section for the
Idev/envram Device Driver

Table 6-2 lists the three interfaces implemented as part of the
Autoconfiguration Support Section for the /dev/envram Device Driver along
with the sections in the book where each is described.

Table 6-2: Autoconfiguration Support Section

Interface

Implementing the envram_probe Interface

Implementing the envram_attach Interface

Implementing the envram_ssn Interface

6-18 EISA Bus Device Driver Example

Section

Section 6.6. 1

Section 6.6.2

Section 6.6.3

6.6.1 Implementing the envram_probe Interface
The envram probe interface is called by the EISA bus configuration code
at system boot time and performs the following tasks:

• Determines if the controller for the EISA bus NVRAM memory
expansion board exists

• Allocates and fills in the envram softe data structure associated with
this controller

• If the controller exists on the system, enables the EISA bus NVRAM
memory expansion board to handle reads and writes for the
/ dev /presto device driver

The envram _probe interface has the following implicit input:

ctlr->physaddr

This member stores the controller's base register physical address.

The following shows the code that implements envram _probe:

envram probe(bus io handle, ctlr)
io handle t bus-io-handle; ill

struct controller *ctlr; ~

register struct envram softc *sc; ~
u int hw id = 0; ~ -
struct bus mem mem; ~
struct dma-dma p; ~
u_long eisa_addr_mask = Oxffffffff; ~

if (ctlr->ctlr num > 0)
return(O)"""i" [ijJ

sc (struct envram_softc *)kalloc(sizeof(struct envram_softc)); ~

if (lsc) [10]
return(O);

bzero((char *)sc, sizeof(struct envram_softc)); ff]
envram_softc = SCi ~

sc->ctlr = ctlr; ~

sc->regbase = bus_io_handle; ~

hw_id = ENVRAM_READIO_D32(ENVRAM_ID); ~

if (hw_id 1= ENVRAM_ID_MASK) ~
{

EISA Bus Device Driver Example 6-19

else

printf("envram_probe: Failed to read ID register\n");

kfree(sc, sizeof(struct envram_softc»;
return(O);

printf("envram_probe: EISA NVRAM present\n");

sc->cache_offset = ENVRAM_CACHE_OFFSET; ~

if (getconfig(ctlr, RESMEM, '11', &mem, 0» {~
printf("envram probe-error\n");
return(O);

}
sc->cache size = mem.size; ~
sc->cache-base = (u long)mem.start addr;
sc->cache=phys_start-= (u_long) (sc->cache_base + sc->cache offset);
sc->cache kseg start = (vm offset t)

- - (PHYS TO KSEG(Sc->cache phys start&eisa addr mask»;
sc->saved_mem_sysmap = sc->cache_phys_start &--eisa_addr_mask; -

if (get config(ctlr, EISA DMA, &dma p, 0» { ~
printf("envram probe error dma channel\n");
return(O);

if (dma p.channel 1= 7 && dma p.channel 1= 5) { ~
printf("envram: invalid dffia channel %d\n",dma_p.channel);
return(O);

ENVRAM WRITEIO D8(ENVRAM CTRL, EISA_ENABLE_BOARD); ~
mb(); ~ - -

ENVRAM WRITEIO_DI6(ENVRAM_CSR,WRMEM); ~
mb(); ~

envram read(sc->cache phys start-8,
- &sc->diag=status, 4); ~

if (sc->diag status & BOARD FAILED) { ~
printf("EnVram diag reg-Ox%x\n",sc->diag status);
sC->diag_status = 0; -

else {
sc->diag_status

}

return (1); ~

l' ,

ill Specifies an 1/0 handle that you can use to reference a device register
located in the EISA bus address space. This 110 handle is for the base of
the device's slot-specific 110 address space. The EISA bus configuration
code passes this 1/0 handle to the driver's xxprobe interface during
device autoconfiguration. You can perform standard C mathematical
operations on the 110 handle. For example, you can add an offset to or

6-20 EISA Bus Device Driver Example

subtract an offset from the 110 handle.

121 This is a pointer to the controller structure associated with the
controller for this EISA bus NVRAM memory expansion board. The
EISA bus configuration code makes the values stored in several members
of the ctlr pointer available to the / dev / envram device driver.
These members include addr, physaddr, and conn_priv.

@I The envram probe interface declares a pointer to an envram softc
data structure and calls it sc. The envram softc data structure
allows the / dev / en vr am device driver's associated interfaces to share
data. This data structure is defined in the
/usr/sys/data/envram data.c file. Section 6.3 describes the
contents of this file, includingthe members of envram _ so ftc.

~ The envram probe interface initializes hw id to the value zero (0)
and later stores it in the EISA bus NVRAM memory expansion board's
ID device register. This ID device register is defined in Section 6.2 as
ENVRAM rD.

[5] The envram probe interface declares a bus mem data structure and
calls it memo The bus mem structure describes memory characteristics
for an EISA bus expanSIon board. The bus configuration code initializes
the members of the bus mem structure during device autoconfiguration.
Device drivers call the get conf ig interface to obtain information
stored in the members of the bu s mem data structure.

[§! The envram probe interface declares a dma data structure and calls it
dma p. The DMA channel information is encapsulated in the dma
structure. Each member of this structure describes information related to
the DMA channel. The envram probe interface passes the address of
this structure to the get config interface. Section A.2.2 describes the
members of the dma structure.

IZI The envram probe interface declares and initializes a variable to store
the EISA bus address mask. It performs bit operations by using this
address mask bit to determine the values stored in the
cache _ kseg_ start and saved _ mem _ sysmap members.

~ The envram probe interface determines if the controller number for
the controller associated with this EISA bus NVRAM memory expansion
board is greater than zero (0). If so, envram probe returns the value
zero (0) to the bus configuration code. This illdicates that
envram probe could not complete the probe operation because there is
support for only one EISA bus NVRAM memory expansion board.
Changes must be made to the / dev /presto device driver interface
before mUltiple units (memory boards) can be supported.

I9J The envram probe interface allocates memory for the
envram _ softc data structure by calling the kalloc interface.

EISA Bus Device Driver Example 6-21

If kalloc successfully allocates the memory for the envram softc
structure, it returns the address of the allocated memory. The sc pointer
now points to this memory. Otherwise, kalloc returns the value zero
(0).

[0] If the memory test fails, the kernel did not allocate the memory and the
probe operation exits.

lI1J The envram probe interface calls the bzero interface to zero the
number of bytes associated with the previously allocated
envram softc structure.

The bzero interface takes two arguments. The first argument specifies a
pointer to a string of at least the number of bytes to be zeroed. For this
first argument, envram probe passes the sc pointer that now points to
the previously allocated memory for the envram so ftc structure.
This is the address at which bzero starts to zero the bytes.

The second argument specifies the number of bytes to zero. For this
second argument, envram _probe passes the previously allocated
envram softc structure.

[2] The envram probe interface sets the envram so ftc structure for
this EISA busNVRAM memory expansion board-to the pointer to the
allocated memory.

[3] The envram probe interface sets the ctlr member of the sc pointer
to the ctlr pointer associated with this EISA bus NVRAM memory
expansion board. This assignment allows the / dev / envram driver to
access the members of this controller structure through the softc
structure associated with this EISA bus NVRAM memory expansion
board.

l1!I The envram probe interface stores the 110 handle passed in by the bus
configuration code in the regbase member of the sc pointer. Section
6.3 shows how the / dev / envram driver uses regbase to construct
the read and write interfaces used to read from and write data to the
device registers.

[j]] The envram probe interface calls the ENVRAM READIO D32
interface to read the ID device register for the EISA bus NVRAM
memory expansion board. In this call, envram probe passes
ENVRAM ID, which represents the offset to the ID device register. The
ENVRAM - READIO D32 interface returns the requested data, which in
this callIS a 32-bit value that identifies a valid ID device register.

Section 6.3 shows how the / dev / envram driver uses read _ io _port
to construct ENVRAM READIO D32.

II§] The envram probe interface checks the value returned by
ENVRAM READIO D32 to determine if there is a valid ID device

6-22 EISA Bus Device Driver Example

register for this EISA bus NVRAM memory expansion board. If the ID
device register is not valid, envram probe calls printf to display an
appropriate error message on the console terminal. It deallocates the
EISA bus NVRAM memory expansion board's envram softc
structure by calling kfree. -

The envram probe interface returns the value zero (0) to the bus
configuration code to indicate an error and that the probe operation failed.

If the ID device register is valid, envram probe calls pr intf to
display a message on the console terminal~

1121 The envram probe interface initializes the cache offset member
of the envram so ftc structure associated with this-EISA bus NVRAM
memory expansIon board. Section 6.2 shows that the
ENVRAM CACHE OFFSET device register is defined in the
envram == reg. h file.

[j]] The envram probe interface calls get config to obtain memory­
related configuration data associated with the EISA bus NVRAM memory
expansion board. If get conf ig cannot obtain the requested memory­
related information, it prints an appropriate error message on the console
terminal and returns the value zero (0) to the bus configuration code that
indicates the driver's probe failed. Otherwise, it initializes the
cache size,cache base,cache phys start,
cache -kseg start~and saved mem sysmap members of the
envrarn softc structure associated withthis EISA bus NVRAM
memory expansion board.

The get _ conf ig interface takes five arguments:

- The first argument specifies a pointer to the controller structure
associated with the controller that connects to this device. The
get config interface obtains the device whose assigned
configuration data you want through its controller's associated
controller structure pointer. In this call, envram probe
passes the controller structure pointer passed to it by the bus
configuration code.

- The second argument specifies the configuration data item you want
to obtain for the specified device. In this call, envram probe
requests bus memory-related information by passing the-constant
RES MEM.

- The third argument specifies a bus-specific argument. Not all buses
need to pass a value to this argument. For the EISA bus, this
argument specifies the function type string that appears in the device's
eisa option structure. In this call, envram probe passes the
null strIng. -

EISA Bus Device Driver Example 6-23

- The fourth argument specifies a pointer to a structure appropriate for
storing the requested data. In this call, envram probe passes the
address of the bus mem data structure called memo

- The fifth argument specifies a handle returned by get conf ig if
there is more configuration data of the type requested Iii the
config item (the second) argument. You must pass the value
zero (0) On the first call to get config. On subsequent calls to
get conf ig for this configuration data type, pass the value
returned in the previous call to get _ config.

In this call, envram _probe passes the value zero (0).

[j]] The envram probe interface initializes the bus memory-related
members of the sc pointer to the values returned by get config to
the bus mem structure. It also initializes several other members. The
following list describes the initialized members:

- cache size

This member stores the size of the cache that the / dev / pre s to
driver can use.

- cache base

This member now stores an 110 handle that indicates where the bus
configuration code maps the memory block. The EISA bus
configuration code sets the I/O handle during device
autoconfiguration.

- cache _phys _start

This member now stores the starting physical address of the NVRAM
cache. The envram probe interface uses the physical starting
address stored in cache base and the offset to cache to calculate
the starting physical address of the NVRAM cache.

- cache_kseg_start

This member now stores the starting kseg address of the cache used
by the / dev /presto driver. The envram probe interface
obtains the starting kseg address by calling PHYS TO KSEG. The
PHYS TO KSEG interface takes one argument: the physical address
to convert to a buffer virtual address. In this call, the physical address
to convert is stored in the cache _phys _start member.

saved_mem_sysmap

This member now stores the sysmap portion of the 110 handle.

l2QI This member now stores the amount of space the software diagnostics
require and assures 2K-bytes of alignment for DMA operations.

6-24 EISA Bus Device Driver Example

[1] The envram probe interface calls get config to obtain DMA
channel-related configuration data associated with the EISA bus NVRAM
memory expansion board. If get conf ig cannot obtain the requested
DMA channel-related information:It prints an appropriate error message
on the console terminal and returns the value zero (0) to the bus
configuration code that indicates the driver's probe failed. Otherwise, it
performs checks on the channel member of the dma structure. The
envram probe interface passes the same values to the first, third, and
fifth arguments as it passed in the previous call to get conf ig. To
request DMA channel-related information, envram probe passes the
constant RES DMA to the second argument. The envram probe
interface passes the address of the dma data structure called dma pO to
the fourth argument so that get config can store in it the DMA
channel-related information. -

~ Specifies the DMA channel number or numbers that this EISA bus device
can use. The EISA bus configuration code sets the channel number to a
number in the range of 0-7. In this case, if channel is any value
except for 5 and 7, then envram probe displays an appropriate error
message on the console terminal and returns the value zero (0) to the bus
configuration code to indicate the probe failed.

~ The envram probe interface enables the EISA bus NVRAM memory
expansion board by calling ENVRAM WRITEIO D8. The
ENVRAM WRITEIO D8 interface wrItes a byte (8 bits) to a device
register located in thebus adddress space. Section 6.5 shows how the
Idev/envram driver constructs ENVRAM WRITEIO D8 by using the
wr i te _ io _port interface. - -

The ENVRAM_WRITEIO_D8 interface takes two arguments:

- The first argument specifies an I/O handle that you can use to
reference a device register located in bus address space (either I/O
space or memory space). This I/O handle references a device register
in the bus address space where the write operation occurs. You can
perform standard C mathematical operations on the 110 handle. For
example, you can add an offset to or subtract an offset from the I/O
handle.

In this call, ENVRAM WRITE IO D8 performs a bitwise inclusive OR
operation on the value stored in the regbase member of the sc
pointer and the controller device register, ENVRAM _ CTRL.

- The second argument specifies the data to be written to the specified
device register in bus address space. In this call,
ENVRAM WRITEIO D8 passes the EISA ENABLE BOARD bit as
the data to be written~ --

12.41 The envram probe interface calls mb after the write to perform a
memory barrier.

EISA Bus Device Driver Example 6-25

~ The envram probe interface enables the EISA bus NVRAM memory
expansion board for writing by calling ENVRAM WRITEIO D16. The
ENVRAM WRITEIO D16 interface writes a word (16 bits) to a device
register located in thebus adddress space. Section 6.5 shows how the
Idev/envram driver constructs ENVRAM WRITEIO D16 by using the
wr i te _ io _port interface. - -

The ENVRAM _ WRI TE IO _ D 16 interface takes two arguments:

- The first argument specifies an I/O handle that you can use to
reference a device register located in bus address space (either I/O
space or memory space). This I/O handle references a device register
in the bus address space where the write operation occurs. You can
perform standard C mathematical operations on the I/O handle. For
example, you can add an offset to or subtract an offset from the 1/0
handle.

In this call ENVRAM WRITEIO D16 performs a bitwise inclusive
OR operation on thevalue storedin the regbase member of the sc
pointer and the control status register, ENVRAM _ CSR.

- The second argument specifies the data to be written to the specified
device register in bus address space. In this call,
ENVRAM_WRITEIO_D16 passes the WRMEM bit as the data to be
written.

\2.§] The envram probe interface calls mb after the write to perform a
memory barrier.

I2ZI To check the console diagnostic results, envram probe calls the
envram read interface. Section 6.9.1 describes envram read. - -

1281 If the BOARD FAILED bit is set, then the software diagnostic tests failed
and envram -probe prints an appropriate error message on the console
terminal. It also sets the diag status member of the sc pointer to
the value zero (0) to indicate that the EISA bus NVRAM memory
expansion board did not pass the software diagnostic tests. Otherwise,
envram probe sets the diag status member to the value 1 to
indicate that the EISA bus NVRAM memory expansion board passed the
software diagnostic tests.

~ The envram probe interface returns the value 1 to the bus
configuration code to indicate that the driver's probe operation is
successful.

6-26 EISA Bus Device Driver Example

6.6.2 Implementing the envram_attach Interface
The envram attach interface is called by the EISA bus configuration
code at system boot time and performs the following tasks:

•

•

•

•

•

Allocates resources for DMA data transfers.

Initializes the presto interfaceO data structure with the entry
points for the / dev / envram driver. These entry points allow the
/ dev /presto driver to access the NVRAM data cache and the EISA
bus NVRAM memory expansion board.

Adjusts the sizes of the data block for DMA data transfers to be accepted
by the / dev /presto driver.

Calls presto _ ini t to initialize the / dev /presto device driver.

Calls envram ssn to perform several operations on the system serial
number in the hwrbp.

The envram _at tach interface has the following implicit input:

ctlr->physaddr

This member stores the controller's base register physical address.

The following shows the code that implements envram _probe:

envram_attach(ctlr)
struct controller *ctlr; m

register struct envram_softc *sc = envram_softc; ~

if (dma_map_alloc(ENVRAM_XFER_SIZE,
sc->ctlr, &sc->sglp, 0) == 0) ~

panic("envram: dma_map_alloc error\n");

presto interfaceO.nvram status = eisa nvram status; ~
presto-interfaceO.nvram-battery status= eisa nvram battery status;
presto-interfaceO.nvram-battery-disable= eisa nvram battery disable;
presto=interfaceO.nvram=battery=enable= eisa_nvram_battery_enable;

presto interfaceO.nvram ioreg read = envram read; ~
presto-interfaceO.nvram-ioreg-write = envram write;
presto-interfaceO.nvram-block-read = envram read;
presto-interfaceO.nvram-block-write = envram write;
presto-interfaceO.nvram-ioreg-zero = envram zero;
presto=interfaceO.nvram=block=zero = envram=zero;

presto_interfaceO.nvram_min_ioreg = sizeof(int); ~

EISA Bus Device Driver Example 6-27

presto interfaceO.nvram ioreg align = sizeof(int);
presto-interfaceO.nvram-min block = PRFSIZE;
presto=interfaceO.nvram=block_align = PRFSIZE;

presto_init(sc->cache_kseg_start, sc->cache_size,
ENVRAM NOTMAPPED, ENVRAM CACHED,
envram=ssn()); ~ -

[j] This is a pointer to the controller structure associated with the
controller for this EISA bus NVRAM memory expansion board. The
EISA bus configuration code makes the values stored in several members
of the ctlr pointer available to the / dev / envram device driver.
These members include addr, physaddr, and conn_priv.

121 The envram attach interface declares a pointer to an
envram softc data structure and calls it sc. The envram softc
data structure allows the / dev / envram device driver's assocIated
interfaces to share data. This data structure is defined in the
/usr/sys/data/envram data.c file. Section 6.3 describes the
contents of this file, including the members of envram _ softc.

13] The envram attach interface attempts to allocate resources for DMA
data transfers by calling dma map alloc. The dma map alloc
interface is a generic interface that maps to a bus- and machine-specific
interface that actually performs the allocation of system resources
associated with DMA data transfers. Using this interface in DMA read
and write operations makes the device driver more portable across
different bus and CPU architectures. If dma map alloc cannot
allocate the resources, envram attach calls panic to cause a system
crash. -

The dma _map _ alloc interface takes four arguments:

- The first argument specifies the maximum size (in bytes) of the data
to be transferred during the DMA transfer operation. The kernel uses
this size to determine the resources (mapping registers, 110 channels,
and other software resources) to allocate.

In this call, envram attach passes the constant
ENVRAM XFER SIZE, which represents the maximum size of the
data to be transferred. Section 6.2 shows that this constant is defined
in the envram _reg. h file.

- The second argument specifies a pointer to the controller
structure associated with this controller. The interface uses this
pointer to obtain the bus-specific interfaces and data structures that it
needs to allocate the necessary mapping resources.

In this call, envram attach passes the ctlr pointer accessed
through the sc pointer. Section 6.6.1 shows that envram _probe

6-28 EISA Bus Device Driver Example

sets this ctlr pointer.

- The third argument specifies a pointer to a handle to DMA resources
associated with the mapping of an in-memory 110 buffer onto a
controller's 110 bus. This handle provides the information to access
bus address/byte count pairs. A bus address/byte count pair is
represented by the ba and bc members of an sg entry structure
pointer. Device drivers can view this handle as the tag to the
allocated system resources needed to perform a direct memory access
(DMA) operation.

Typically, the device driver passes an argument of type
dma handle t *. The dma map alloc interface returns to this
variable the address of the DMAhandle. The device driver uses this
address in a call to dma _ rna p _load.

In this call, envram attach simply passes the address of sglp,
the DMA handle accessed through the sc pointer. Section 6.3 shows
that this pointer is defined as part of the envram _ softc structure.

- The fourth argument specifies special conditions that the device driver
wants the system to perform. In this call, envram attach passes
the value zero (0) to indicate no flag settings. -

~ The envram attach interface initializes the members of the
presto interfaceO structure to the device driver interfaces that
allow the-/ dev /presto device access to the NVRAM data cache. As
the code shows, these interfaces are eisa nvram status,
eisa nvram battery status, - -
eis a-nvram-battery-di sable, and
eisa - nvram -battery - enable. These interfaces are discussed in
Section 6.7, Section 6.8.1, Section 6.8.2, and Section 6.8.3.

The /usr/sys/include/sys/presto.h file defines a data
structure called presto interface. It also declares an instance of
this structure called presto interfaceO. This file provides
additional information on the-members of the presto_interface
structure.

151 The envram attach interface initializes the members of the
presto interfaceO structure to the device driver interfaces that
allow the-/ dev /presto device access to the EISA bus NVRAM
memory expansion board. As the code shows, these interfaces are
envram read, envram write, and envram zero. These
interfacesare discussed in Section 6.9.1, Section ~9.2, and Section 6.10.
See the /usr/sys/include/sys/presto.h file for additional
information on these members of the presto_interface structure.

[§] In the next four lines, envram attach sets the minimum size of a
small and large I/O device register data block. It also sets the byte

EISA Bus Device Driver Example 6-29

alignment restriction for an I/O device register block. The PRFS I ZE
constant is defined in /usr/sys/include/sys/presto.h as the
largest buffer size (in bytes) handled by the / dev /presto driver. See
the /usr/sys/include/sys/presto.h file for additional
information on these members of the presto_interface structure.

III The envram attach interface calls presto ini t to perform
initialization tasks for the / dev /presto driver.

The presto _ ini t interface takes five arguments:

- The first argument specifies the NVRAM address. In this call,
envram attach passes the starting kseg address of the cache used
by the / dev /presto driver. Section 6.6.1 shows how
envram probe stores this kseg address in the
cache kseg start member of the sc pointer. This is the
envrarn softc structure associated with this EISA bus NVRAM
memory expansion board.

- The second argument specifies the size of the NVRAM cache. In this
call, envram attach passes the size stored in the cache size
member. Section 6.6.1 shows how envram probe stores this size
in the cache size member of the sc pointer. This is the
envram sofic structure associated with this EISA bus NVRAM
memory expansion board.

- The third argument specifies whether the NVRAM is mapped. This
argument takes one of the following values: 0 (the NVRAM is not
mapped) or 1 (the NVRAM is mapped).

In this call, envram attach passes the constant
ENVRAM NOTMAPPED to indicate that the NVRAM is not mapped.
Section 6-:-2 shows that this constant (and the ENVRAM MAPPED
constant) are defined in the envram _reg. h file. -

- The fourth argument specifies which kernel segment space the
/ dev /presto driver uses. This argument has no meaning on
Alpha AXP CPUs.

- The fifth argument specifies a unique machine (CPU) ID. In this call,
envram attach passes the name of an interface called
envram - ssn. The envram ssn interface returns a unique
machine ID to presto ini t. Section 6.6.3 describes the
envram ssn interface~

6-30 EISA Bus Device Driver Example

6.6.3 Implementing the envram_ssn Interface
The envram attach interface passes envram ssn as an argument to
presto inIt. The presto init interface calls envram ssn to
obtain the machine (CPU) ID. - -

The envram _ ssn interface performs the following tasks:

• Determines an unsigned 32-bit unique number from the system serial
number in the hwrpb

• Converts the serial number from ASCII to a hexadecimal number

• Converts to Oxf modulo any letter over F (or f)

The envram ssn returns the machine (CPU) ID located in the hwrpb. The
following shows the code that implements envram _ ssn:

envram_ssn()
{

extern struct rpb *rpb; ~

u int ssn = 0; ~
int i;
char *cp;

cp = rpb->rpb_ssn + 9; ~

if (*cp == '\0') { ~
cp = "NO System Serial Number"+8;
printf ("envram_ssn: %s\n" ,cp-8);

}
for (i = 0 ; i < 8 ; i++, cp--){ ~

if (*cp < '9')
ssn += (*cp - '0 '

else if (*cp < 'G')
«

ssn += (*cp - 'A' + Oxa
else if (*cp < 'a')

ssn += (*cp % Oxf) «
else if (*cp < 'g')

ssn += (*cp - 'a' + Oxa
else

(i*4);

) « (i*4);

(i*4);

) « (i*4);

ssn += (*cp % Oxf) « (i*4);
}
return (ssn); [§]

[1] The envram ssn interface declares a pointer to an rpb (restart
parameter block) data structure. This data structure is defined in
/usr/sys/include/arch/alpha/rpb.h Therpb ssn
member stores the system serial number (ssn) for this CPU. -The ssn
consists of 10 ASCII characters.

I2l The envram ssn interface declares a variable to store the system serial
number and irutializes it to the value zero (0).

~ The envram ssn interface stores the system serial number in the cp
variable. -

EISA Bus Device Driver Example 6-31

~ The envram ssn interface prints an appropriate message on the console
terminal if the system serial number stored in rpb s s n is the null
character. -

[5] The envram ssn interface uses a for loop to parse the ASCII serial
number and convert it to hexadecimal.

I§] The envram ssn interface returns the system serial number to the
presto _ inI t interface. The presto _ ini t interface was called by
envram attach.

6-32 EISA Bus Device Driver Example

6.7 Status Section for the Idev/envram Device Driver
The eisa nvram status interface provides the I dev Ipresto device
driver with-the status of diagnostics run on the NVRAM. Section 6.6.1
shows that the envram probe interface sets the diag status member
to indicate whether the EiSA bus NVRAM memory expansion board passed
software diagnostic tests. Section 6.6.2 shows that the envram attach
interface sets the nvram status member of the presto interfaceD
structure to eisa nvram status. This is the mechanism the
I dev Ipresto device driver uses to call the interface that returns the
diagnostic status of the NVRAM.

The following code shows the implementation of the
eisa nvram status interface.

int eisa_nvram_status()
{

register struct envram_softc *sc = envram_softc; rn
if (sc->diag_status) ~

return(NVRAM RDONLY);
else -

return(NVRAM_BAD);

[j] The eisa nvram status interface declares a pointer to an
envram softc data structure and calls it sc. The envram softc
data structure allows the I dev I envram device driver's assocIated
interfaces to share data. This data structure is defined in the
lusr I sys I datal envram data. c file. Section 6.3 describes the
contents of this file, includingthe members of envram _ so ftc.

I2J The eisa nvram status interface checks the diag status
member ofihe sc pointer to determine whether this EISA bus NVRAM
memory expansion board passed the software diagnostic tests. If the
board passed these tests, eisa nvram status returns the constant
NVRAM RDONLY to the I dev lpresto device driver. If the board
failed these tests, eisa nvram status returns the constant
NVRAM_BAD to the Idev/presto device driver.

EISA Bus Device Driver Example 6-33

6.8 Battery Status Section for the Idev/envram Device
Driver
Table 6-3 lists the three interfaces implemented as part of the Battery Status
Section for the Idev/envram Device Driver along with the sections in the
book where each is described.

Table 6-3: Interfaces Implemented as Part of the Battery Status
Section for the Idev/envram Device Driver

Part

Implementing the
eisa_nvram_battery _status Interface

Implementing the
eisa_nvram_battery _enable Interface

Implementing the
eisa_nvram_battery _disable Interface

6-34 EISA Bus Device Driver Example

Section

Section 6.8.1

Section 6.8.2

Section 6.8.3

6.8.1 Implementing the eisa_nvram_battery_status Interface
The eisa nvram battery status interface provides the
/ dev /presto deVIce driver WIth the status of the battery on the NVRAM.
Specifically, eisa nvram battery status performs the following
w~: - - -

•

•

•

Fills in the battery-related members of the nvram_batteriesO
structure.

Reads the control status register (CSR) for the EISA bus NVRAM
memory expansion board to determine if the BAT _FAIL bit is set

Reports the battery status to the / dev /presto device driver

Section 6.6.2 shows that the envram attach interface sets the
nvram battery status member of the presto interfaceO data
structure to eisa nvram battery status. ThiS-is the mechanism the
/ dev /presto device driver uses to call the interface that returns the status
of the battery for the NVRAM.

The following shows the code that implements
eisa_nvram_battery_status:

int eisa_nvram_battery_status()
{

register struct envram_softc *sc = envram_softc; rn
nvram batteriesO.nv nbatteries = 1; ~
nvram batteriesO.nv-minimum ok = 1;
nvram-batteriesO.nv-primary-mandatory = 1;
nvram=batteriesO.nv=test_retries = 1;

if ((ENVRAM_READIO_DI6(ENVRAM_CSR) & BAT_FAIL)) ~
{

else

nvram_batteriesO.nv_status[O] = BATT_OK;
return(O);

return(1); ~

[1] The eisa nvram battery status interface declares a pointer to
an envram sOfte data structure and calls it sc. The
envram softc data structure allows the / dev / envram device
driver's associated interfaces to share data. This data structure is defined
in the /usr/sys/data/envram data.~ file. Section 6.3 describes
the contents of this file, including the members of envram _ so ftc.

l2J The /usr/sys/include/sys/presto.h file defines a data
structure called nvram battery info. It also declares an instance of
this structure called nvram batteriesO. The

EISA Bus Device Driver Example 6-35

eisa nvram battery status interface fills in the members of the
nvram batteries 0 data structure on this and the following three
lines. The following list briefly describes these members:

- nv nbatteries

Stores the number of batteries supported by the hardware. The
eisa nvram battery status interface sets this member to the
value T, indicating that the EISA bus NVRAM memory expansion
board supports one battery.

- nv minimum ok

Stores the minimum number of batteries that are enabled and that
have enough power for use by the / dev /presto driver. The
eisa nvram battery status interface sets this member to the
value T because the EISA bus NVRAM memory expansion board
supports only one battery.

- nv_primary_mandatory

Stores the value indicating whether the primary battery is operational.
The eisa nvram battery status interface sets this member
to the value 1, indicating that the primary (and only) battery must be
operational.

- nv test retries

Stores the number of successive calls to
eisa nvram battery status for each battery check made by
the / dev /presto device-driver. The
eisa nvram battery status sets this member to the value 1,
indicating one retry. -

~ The eisa nvram battery status interface determines if the
EISA bus NVRAM-memory expansion board's battery is operational. If
the battery is operational, eisa nvram battery status sets the
nv status member to BATT -OK. The nv status member is
defuied in /usr / sys/ include/ sys/presto. h as an array of size
BATTCNT.

Note the use of the ENVRAM READIO D16 interface to read the CSR.
In this call, eisa nvram battery -status passes ENVRAM CSR,
which represents the CSR. -The ENVRAM READIO D16 interface
returns the requested data. Section 6.5 shows how the / dev / envram
driver uses read_io_port to construct ENVRAM_READIO_D16.

~ The eisa nvram battery status returns the value 1 to the
/ dev / pres to deVIce driver if the battery is not operational.

6-36 EISA Bus Device Driver Example

6.8.2 Implementing the eisa_nvram_battery _enable Interface
The eisa nvram battery enable interface is called by the
I dev Ipresto deVIce driver and performs the following tasks:

• Enables writes to NVRAM memory and turns on the light emitting diode
(LED)

• Disconnects the battery disconnect circuit

• Returns success or failure to the I dev Ipresto driver

Section 6.6.2 shows that the envram attach interface sets the
nvram battery enable member of the presto interfaceD data
structure to eisa nvram battery enable. Thisis the mechanism the
I dev Ipresto device driver uses to call the interface that enables the
battery on the EISA bus NVRAM memory expansion board.

The following shows the code that implements
eisa_nvram_battery_enable:

int eisa_nvram_battery_enable()
{

register struct envram_softc *sc = envram_softc; rn

ENVRAM WRITEIO D16(ENVRAM CSR, WRMEMlsET LED); ~
ENVRAM-WRITEIO-D8(ENVRAM BAT,!BAT DISCON-BIT); ~
mb(); ~ - - - -

return (0); ~

[j] The eisa nvram battery enable interface declares a pointer to
an envram softc data structure and calls it sc. The
envram softc data structure allows the I dev I envram device
driver's associated interfaces to share data. This data structure is defined
in the Iusr I sys/ datal envram data. c file. Section 6.3 describes
the contents of this file, including the members of envram _ so ftc.

l2J The eisa nvram battery enable interface enables writes to
NVRAM memory and turns on the light emitting diode (LED) by calling
ENVRAM WRITEIO D16. The ENVRAM WRITEIO D16 interface
writes a word (the WRMEM and SET LED CSR bit masks) to the CSR
device register (represented by the ENVRAM CSR offset) located in the
bus address space. Section 6.5 shows how the I dev I envram driver
constructs ENVRAM WRITEIO D16 by using the write io port
interface. - - - -

The ENVRAM_WRITEIO_D16 interface takes two arguments:

- The first argument specifies an I/O handle that you can use to
reference a device register located in bus address space (either I/O

EISA Bus Device Driver Example 6-37

space or memory space). This I/O handle references a device register
in the bus address space where the write operation occurs. You can
perform standard C mathematical operations on the I/O handle. For
example, you can add an offset to or subtract an offset from the I/O
handle.

In this call, ENVRAM WRITEIO D16 performs a bitwise inclusive
OR operation on the value storedln the regbase member of the sc
pointer and the CSR device register offset called ENVRAM _ CSR.

- The second argument specifies the data to be written to the specified
device register in bus address space. In this call,
ENVRAM WRITEIO D16 performs a bitwise inclusive OR operation
on the CSR device register bit masks that enables writes to NVRAM
memory and turns on the LED. This ORed value becomes the data to
be written to the CSR device register offset.

~ The eisa nvram battery enable interface disables the battery
disconnectcontrol bIt by calling ENVRAM WRITEIO DS. The
ENVRAM WRITEIO DS interface writes abyte (the BAT DISCON BIT
battery dISconnect bit mask) to the battery disconnect devICe register
(represented by the ENVRAM BAT offset) located in the bus address
space. Section 6.5 shows how the / dev / envram driver constructs
ENVRAM_WRITEIO_DS by using the write_io_port interface.

The ENVRAM_WRITEIO_DS interface takes two arguments:

- The first argument specifies an I/O handle that you can use to
reference a device register located in bus address space (either I/O
space or memory space). This I/O handle references a device register
in the bus address space where the write operation occurs. You can
perform standard C mathematical operations on the I/O handle. For
example, you can add an offset to or subtract an offset from the 110
handle.

In this call, ENVRAM WRITEIO DS performs a bitwise inclusive OR
operation on the value stored in the regbase member of the sc
pointer and the battery disconnect device register called
ENVRAM BAT.

- The second argument specifies the data to be written to the specified
device register in bus address space. In this call,
ENVRAM WRITEIO DS takes the battery disconnect device register
bit mask that indicates the status of the battery disconnect circuit.

~ The eisa nvram battery enable interface calls mb after the
writes to perform a memory barrier.

[5] The eisa nvram battery enable interface returns to the
/ dev /presto drIVer the value zero (0) to indicate that it successfully
enabled the battery for the EISA bus NVRAM memory expansion board.

6-38 EISA Bus Device Driver Example

6.8.3 Implementing the eisa_nvram_battery _disable Interface
The eisa nvram battery disable interface performs the following
tasks: - - -

• Enables writes to NVRAM memory

• Performs a sequence of write operations to send sequence 11001 to the
battery disconnect device register

• Returns success or failure to the /dev/presto driver

The eisa nvram battery disable interface is called by the
/ dev /presto deVIce driver when it needs to disable the battery on the
EISA bus NVRAM memory expansion board. Section 6.6.2 shows that the
envram attach interface sets the nvram battery disable member
of the presto interfaceD data structureto -
eisa nvram -battery disable. This is the mechanism the
/ dev Ipresto device driver uses to call the interface that enables the
battery on the EISA bus NVRAM memory expansion board.

The following shows the code that implements
eisa_nvram_battery_disable:

int eisa_nvram_batterY_disable()
{

register struct envram_softc *sc = envram_softc; ill

ENVRAM WRITEIO D16(ENVRAM CSR,WRMEM); ~
ENVRAM-WRITEIO-D8(ENVRAM BAT,BAT DISCON BIT); ~
mb(); - - - - -

ENVRAM_WRITEIO_D8(ENVRAM_BAT,BAT_DISCON_BIT);
mb() ;
ENVRAM WRITEIO D8(ENVRAM BAT,!BAT DISCON BIT);
mb(); - - - - -

ENVRAM WRITEIO D8(ENVRAM BAT,!BAT DISCON BIT);
mb(); - - - - -

ENVRAM WRITEIO D8(ENVRAM BAT,BAT DISCON BIT);
mb(); - - - - -

return (0); ~

[I The eisa nvram battery disable interface declares a pointer to
an envrarn softe data structure and calls it sc. The
envram softc data structure allows the / dev / envram device
driver's associated interfaces to share data. This data structure is defined
in the /usr/sys/data/envram data.c file. Section 6.3 describes
the contents of this file, including the members of envram _ so ftc.

121 The eisa nvram battery disable interface enables writes to
NVRAM memory bY calling ENVRAM WRITEIO D16. The
ENVRAM_WRITEIO_D16 interface wntes a word(the WRMEM CSR bit

EISA Bus Device Driver Example 6-39

mask) to the CSR device register (represented by the ENVRAM CSR
offset) located in the bus address space. Section 6.5 shows how the
Idev/envram driver constructs ENVRAM WRITEIO D16 by using the
wr i te _ io _port interface. - -

The ENVRAM_WRITEIO_D16 interface takes two arguments:

- The first argument specifies an 110 handle that you can use to
reference a device register located in bus address space (either 110
space or memory space). This 110 handle references a device register
in the bus address space where the write operation occurs. You can
perform standard C mathematical operations on the 110 handle. For
example, you can add an offset to or subtract an offset from the 110
handle.

In this call ENVRAM WRITEIO D16 performs a bitwise inclusive
OR operation on thevalue storedin the regbase member of the sc
pointer and the CSR device register offset called ENVRAM _ CSR.

- The second argument specifies the data to be written to the specified
device register in bus address space. In this call,
ENVRAM WRITEIO D16 takes the CSR device register bit mask that
enables Writes to NVRAM memory. This value becomes the data to
be written to the CSR device register offset.

~ The eisa nvram battery disable interface sends a sequence of
11001 to the battery disconnect device register by making five calls to
ENVRAM WRITEIO D8. Note that
eisa nvram battery disable also performs a memory barrier
after each writeby calling mb.
The ENVRAM WRITEIO D8 interface writes a byte (the
BAT DISCON BIT battery disconnect bit mask) to the battery
disconnect devICe register (represented by the ENVRAM BAT offset)
located in the bus 110 space. Section 6.5 shows how the I dev I envram
driver constructs ENVRAM WRITEIO D8 by using the
wr i te _ io _port interface. -

The ENVRAM_WRITEIO_D8 interface takes two arguments:

- The first argument specifies an 110 handle that you can use to
reference a device register located in bus address space (either 110
space or memory space). This 110 handle references a device register
in the bus address space where the write operation occurs. You can
perform standard C mathematical operations on the 110 handle. For
example, you can add an offset to or subtract an offset from the 110
handle.

In this call ENVRAM WRITEIO D8 performs a bitwise inclusive OR
operation on the value stored in the regbase member of the sc
pointer and the battery disconnect device register offset called

6-40 EISA Bus Device Driver Example

ENVRAM BAT.

- The second argument specifies the data to be written to the specified
device register in bus address space. In this call,
ENVRAM WRITEIO D8 takes the battery disconnect device register
bit mask that indicates the status of the battery disconnect circuit.
This value becomes the data to be written to the battery disconnect
device register offset. Note that to send the zeroes in the 11001
sequence, eisa nvram battery disable logically negates the
bit. - - -

~ The eisa nvram battery disable interface returns to the
/ dev /presto drIVer the value zero (0) to indicate that it successfully
disabled the battery for the EISA bus NVRAM memory expansion board.

6.9 Read and Write Device Section for the Idev/envram
Device Driver
Table 6-4 lists the two interfaces implemented as part of the Read and Write
Device Section for the /dev/envram Device Driver along with the sections in
the book where each is described.

Table 6-4: Interfaces Implemented as Part of the Read and Write
Device Section for the Idev/envram Device Driver

Part

Implementing the envram_read Interface

Implementing the envram_ write Interface

Section

Section 6.9.1

Section 6.9.2

EISA Bus Device Driver Example 6-41

6.9.1 Implementing the envram_read Interface
The envram read interface is called by envram probe and the
/ dev /presto device driver and performs the following tasks:

• Converts the source address passed in by envram probe and the
/ dev /presto driver from the NVRAM address Tnto a physical address

• Copies data from the NVRAM bus address space to system memory

Section 6.6.2 shows that the envram attach interface sets the
nvram ioreg read (read small pIeces of NVRAM) and
nvram -block - read (read large pieces of NVRAM) members of the
presto interfaceO data structure to envram read. These members
both point to the same interface, which means envram read handles both
small and large reads from the EISA bus NVRAM memory expansion board.

Note

An xxread interface implemented on DEC OSFIl typically has
three arguments: dev, uio, and flag. The reason that
envram read has different arguments is that it is not called
directly from the I/O system as the result of a read system call.
The read request from the I/O system is made to the
/ dev /presto driver's read entry point, which then calls
envram _read to perform the actual read operation.

The following shows the code that implements envram _read:

void envram read(source, dest, len)
caddr t source; rn
caddr-t dest; ~
u_int- len; ~

register struct envram_softc *sc = envram_softc; ~

io copyin((io handle t)
- KSEG=TO_PHYS((u_long)sourcelsc->saved_mem_sysmap),

(vm_offset_t)dest,len); ~

ill Specifies the source address of the data to be written. Because this
source address is passed in to envram read by envram probe and
the / dev /presto device driver, the address format is a kernel segment
(kseg) logical physical address.

12] Specifies the destination address of where to write the data. Because this
destination address is passed in by envram probe and the
/ dev /presto device driver, the format is a kernel segment (kseg)
logical physical address.

6-42 EISA Bus Device Driver Example

~ Specifies the length of the block of data to be written. This length is
passed in by envram_probe and the / dev /presto device driver.

~ The envram read interface declares a pointer to an envram softc
data structure and calls it sc. The envram softc data structure
allows the /dev/envram device driver's as:~ociated interfaces to share
data. This data structure is defined in the
/usr/sys/data/envram data.c file. Section 6.3 describes the
contents of this file, includingthe members of envram _ softc.

15] The envram read interface calls io copyin to copy data from bus
address spaceto system memory. The 10 copyin interface is a generic
interface that maps to a machine-specific interface that actually performs
the copy from bus address space to system memory. Using io copyin
to perform the copy operation makes the device driver more portable
across different CPU architectures and different CPU types within the
same architecture.

The io _ copyin interface takes three arguments:

- The first argument specifies an 110 handle that you can use to
reference a device register located in bus address space (either 110
space or memory space). For io copyin, the 110 handle identifies
the location in bus address space where the copy originates.

In this call, the 110 handle is actually the physical address returned by
KSEG TO PHYS. The KSEG TO PHYS interface takes one
argument that specifies the buffer vIrtual address to convert to a
physical address. In this call, the buffer virtual address is the result of
ORing the source address and the value stored in the sysmap portion
of the 110 handle. The envram probe interface and the
/dev/,presto driver pass this source address to envram_read.

- The second argument specifies the kernel virtual address where
io copyin copies the data to in system memory. In this call, the
dest dest argument contains this address in system memory, which
is passed in by envram_probe and the / dev /presto driver.

- The third argument specifies the number of bytes in the data block to
be copied. The interface assumes that the buffer associated with the
data block is physically contiguous. In this call, the 1 en argument
contains this address in system memory, which is passed in by
envram _probe and the / dev /presto driver.

EISA Bus Device Driver Example 6-43

6.9.2 Implementing the envram_write Interface
The envram write interface is called by the / dev /presto device
driver and performs the following tasks:

•

•

•

•

•

Sets up the pointer to the eisa_info structure

Converts the destination address passed in by the / dev /presto driver
from a main memory virtual address into a physical address

Performs byte alignment operations

Allocates the resources needed for DMA operations

Writes the data

Section 6.6.2 shows that the envram attach interface sets the
nvram ioreg write (write smallpieces of NVRAM) and
nvram -block - wri te (write large pieces of NVRAM) members of the
presto interfaceO data structure to envram write. These
membersboth point to the same interface. This means envram write
handles both small and large reads from the EISA bus NVRAM memory
expansion board.

Note

An xxwri te interface implemented on DEC OSFIl typically
has three arguments: dev, uio, and flag. The reason that
envram write has different arguments is that it is not called
directly from the 110 system as the result of a wr i te system
call. The read request from the 110 system is made to the
/ dev /presto driver's write entry point, which then calls
envram _ wri te to perform the actual write operation.

The envram write interface is called by the /dev/presto device
driver. -

The following shows the code that implements envr am _ wr i te:

void envram write(source, dest, len)
caddr t source; m
caddr-t dest; ~
u_int- len; ~

register struct envram softc *sc = envram_softc; ~
vm offset t destptr; ~
register int xfer; ~
int retry; IZI
char *ddest = dest; ~

if (len> 32) { ~

destptr = KSEG_TO_PHYS(dest) - sc->cache_base; ~

6-44 EISA Bus Device Driver Example

ddest = (char *)destptr; ~

if (!(xfer = ENVRAM_XFER_SIZE - «int)ddest & (ENVRAM_XFER_SIZE-1)))) ~
xfer = ENVRAM_XFER_SIZE;

if (xfer > len)
xfer len;

if «u int)source/ENVRAM ALLIGN 1=
«(u int)source+xfer)/ENVRAM ALLIGN) ~
xfer = xfer - «(u_int)source+xfer) & (ENVRAM_ALLIGN-1));

while (1) {

if (!(dma map load(xfer, source, (struct proc *)0, ~
- - sc->ctlr, &sc->sglp, 0, DMA OUT)))

panic("envram: dma_map_load failure\n"); -

ENVRAM WRITEIO D16(ENVRAM DMAO,«u int) (ddest-4) « 6)); ~
ENVRAM=WRITEIO=D16(ENVRAM=DMA1,«u=int)ddest» 5));

ENVRAM WRITEIO_D16(ENVRAM_CSR,SET_DREQ/WRMEM/SET_LED); ~
mb(); [Z]
len -= xfer; [1j
source += xfer;
ddest += xfer;

if (!(xfer = ENVRAM XFER SIZE - «(int)ddest ~
& (ENVRAM_XFER_SIZE-1)))))
xfer = ENVRAM_XFER_SIZE;

if (xfer > len)
xfer = len;

if «u int)source/ENVRAM ALLIGN != ~
«u-int)source+xfer)/ENVRAM ALLIGN)
xfer = xfer - «(u_int)source+xfer) & (ENVRAM_ALLIGN-1));

retry = 10; I21l
while (--retry)

if (!(ENVRAM_READIO D16(ENVRAM CSR) & SET_DREQ))
break;

if (! length)
break;

if (!retry) I22l
panic("envram: DMA retry expired\n");

return;

io copyout«vm offset t)source, (io handle t)
- (KSEG_TO_PHYS«u_long)dest)/sc->saved_mem_sysmap),

len); 1231

[1] Specifies the source address of the data to be written. Because this
source address is passed in to envram write by the /dev/presto
device driver, the address format is a kernel segment (kseg) logical

EISA Bus Device Driver Example 6-45

physical address.

121 Specifies the destination address of where to write the data. Because this
destination address is passed in by the I dev Ipresto device driver, the
format is a kernel segment (kseg) logical physical address.

I3l Specifies the length of the block of data to be written. This length is
passed in by the I dev I pre s to device driver.

~ The envram write interface declares a pointer to an envram softe
data structure and calls it se. The envram softe data structure
allows the Idev/envram device driver's associated interfaces to share
data. This data structure is defined in the
lusr I sys I datal envram data. e file. Section 6.3 describes the
contents of this file, includingthe members of envram _ softe.

I§] This variable stores the physical address returned by KSEG _ TO _ PHYS.

!§I This variable stores the size of each partial data transfer.

III This variable stores the retry counter.

~ This variable stores the destination pointer.

[9] The envram write interface performs a DMA operation if the length
of the data passed in by the I dev Ipresto device driver is greater than
32 bytes.

[Q] The envram write interface calls KSEG TO PHYS to convert a
kernel unmapped virtual address to a physical address. The
KSEG TO PHYS interface takes one argument that specifies the buffer
virtualaddress to convert to a physical address. In this call, the buffer
virtual address is the result of subtracting the physical starting address
where the memory block was mapped to from the location of the write.
The Idev/presto driver passes this location to envram_write.

I1Il The envram write interface stores the destination address in an
internal variable.

l11I This sequence of code aligns the destination to 1 K.

[j]] This sequence of code aligns the source to 8K.

1141 The envram write interface loads and sets the allocated system
resources for DMA data transfers by calling dma map load. If
dma map load cannot load and set the allocated system resources,
envram write calls panie to cause a system crash. Section 6.6.2
shows that these resources were previously allocated by calling
dma _map _ alloe.

The dma _ map _load interface takes seven arguments:

- The first argument specifies the maximum size (in bytes) of the data
to be transferred during the DMA transfer operation. The kernel uses

6-46 EISA Bus Device Driver Example

this size to determine the resources (mapping registers, I/O channels,
and other software resources) to allocate, load, and set.

In this call, envram write passes the size stored in the xfer
variable. -

- The second argument specifies the virtual address where the DMA
transfer occurs. The interface uses this address with the pointer to the
proc structure to obtain the physical addresses of the system
memory pages to load into DMA mapping resources.

In this call, envram write passes the address contained in
source. The / dev/presto driver passed in this address.

- The third argument specifies a pointer to the proc structure
associated with the valid context for the virtual address specified in
virt addr. The interface uses this pointer to retrieve the pmap
that isneeded to translate this virtual address to a physical address. If
proc _p is equal to zero (0), the address is a kernel address.

In this call, envram write passes the value zero (0) to indicate
that the address is a kernel address.

- The fourth argument specifies a pointer to the controller structure
associated with this controller. The dma map load interface uses
the pointer to get the bus-specific interfaces and data structures that it
needs to load and set the necessary mapping resources.

In this call, envram write passes the controller structure
pointer associated with this EISA bus NVRAM memory expansion
board. Section 6.6.1 shows that envram probe set this
controller structure pointer in the softc structure.

- The fifth argument specifies a pointer to a handle to DMA resources
associated with the mapping of an in-memory I/O buffer onto a
controller's I/O bus. This handle provides the information to access
bus address/byte count pairs. A bus address/byte count pair is
represented by the ba and bc members of an sg entry structure
pointer. Device drivers can view this handle as the tag to the
allocated system resources needed to perform a direct memory access
(DMA) operation.

In this call, envram write passes the address of the DMA handle
defined in the softc structure. Section 6.3 shows the declaration of
the s g 1 P member in the softc structure.

- The sixth argument specifies the maximum-size byte-count value that
should be stored in the bc members of the sg entry structures. In
this call, envram_write passes the value zero (0).

- The seventh argument specifies special conditions that the device
driver wants the system to perform. In this call, envram_ wr i te

EISA Bus Device Driver Example 6-47

passes the constant DMA OUT. This constant indicates that
dma _map _load should perform a DMA read operation from main
core memory.

[j]] The envram write interface calls ENVRAM WRITEIO D16 to set up
the NVRAMaddress. --

II§] The envram write interface calls ENVRAM WRITEIO D16 to start
the transfer of data to the NVRAM. - -

ffZI The envram write interface calls mb after the write to perform a
memory barrier.

I1i The envram write interface performs several mathematical operations
on the transfer size and the length, source, and destination pointer.

!IiI The envram write interface sets up for the next DMA operation by
aligning the destination to 1 K. The NVRAM handles DMA operations
only inside of a 1 K aligned address range.

~ The envram write interface aligns the source to SK. The source is
the system memory, thus there are SK for DEC OSFIl pages.

121] The envram write interface sets up a while loop that causes the
driver to spin on the SET DREQ bit. If the hardware works, this bit
should never be set. -

I22J If the retry expires, the hardware is broken and envram write calls
panic to cause a system crash. -

~ The envram write interface calls io copyout to copy data from
system memory to bus address space. The io copyou t interface is a
generic interface that maps to a bus- and machIne-specific interface that
actually performs the copy to bus address space. Using io copyout to
perform the copy operation makes the device driver more portable across
different CPU architectures and different CPU types within the same
architecture.

The io _ copyout interface takes three arguments:

- The first argument specifies the kernel virtual address where the copy
originates from in system memory.

In this call, envram write passes the address contained in
source. The / dev/presto driver passed in this address.

- The second argument specifies an 1/0 handle that you can use to
reference a device register located in bus address space (either I/O
space or memory space). For io copyout, the I/O handle
identifies the location in bus address space where the copy occurs.
You can perform standard C mathematical operations on the I/O
handle. For example, you can add an offset to or subtract an offset
from the I/O handle.

6-48 EISA Bus Device Driver Example

In this call, the I/O handle is actually the physical address returned by
KSEG TO PHYS. The KSEG TO PHYS interface takes one
argument that specifies the buffer VIrtual address to convert to a
physical address. In this call, the buffer virtual address is the result of
ORing the destination address and the value stored in the sysmap
portion of the I/O handle. The / dey /presto driver passes this
destination address to envram write.

- The third argument specifies the number of bytes in the data block to
be copied. The interface assumes that the buffer associated with the
data block is physically contiguous. In this call, the 1 en argument
contains this address in system memory, which is passed in by the
/ dey /presto driver.

EISA Bus Device Driver Example 6-49

6.10 Zero NVRAM Section
The envram zero interface is called by the / dev /presto device driver
to zero (clear)a specified length of NVRAM starting at a specified address.
Section 6.6.2 shows that the envram attach interface sets the
nvram ioreg zero (zero small pieces of NVRAM) and
nvram -block-zero (zero large pieces of NVRAM) members of the
presto interfaceO data structure to envram zero. These members
both point to the same interface. This means envram zero zeros (clears)
both small and large lengths from the EISA bus NVRAM memory expansion
board.

The following code shows the implementation of the envram zero
interface: -

void envram zero(addr, len)
caddr t addr; m
u_int - len; 121

register struct envram_softc *sc = envram_softc; ~

io zero((io handle t)
- KSEG=TO_PHYS((u_long)addrlsc->saved_mem_sysmap), len); ~

III Specifies the starting address of the NVRAM for this EISA bus NVRAM
memory expansion board to zero. Because this address is passed in by
the / dev /presto, the format is a kernel segment (kseg) logical
physical address.

121 Specifies the length of the block of data to be zeroed. This length is
passed in by the /dev/presto device driver.

~ The envram zero interface declares a pointer to an envram softc
data structureand calls it sc. The envram softc data structure
allows the / dev / en vr am device driver's associated interfaces to share
data. This data structure is defined in the
/usr/sys/data/envram data.c file. Section 6.3 describes the
contents of this file, including the members of envram _ softc.

[4] The envram zero interface calls io zero to zero a block of memory
in bus addressspace. The io zero interface is a generic interface that
maps to a machine-specific interface that actually writes zeros to some
location in bus address space. Using io zero to perform the zero
operation makes the device driver more portable across different CPU
architectures and different CPU types within the same architecture.

The io _zero interface takes two arguments:

- The first argument specifies an va handle that you can use to
reference a device register located in bus address space (either va

6-50 EISA Bus Device Driver Example

space or memory space). For io zero, this I/O handle identifies the
location in bus address space where the zero operation occurs.

In this call, the I/O handle is actually the physical address returned by
KSEG TO PHYS. The KSEG TO PHYS interface takes one
argument that specifies the buffer virtual address to convert to a
physical address. In this call, the buffer virtual address is the result of
ORing the source address and the value stored in the sysmap portion
of the I/O handle. The envram probe interface and the
Idev/presto driver pass this source address to envram_zero.

- The second argument specifies the number of bytes in the data block
to be zeroed. The interface assumes that the buffer associated with
the data block is physically contiguous. In this call, the 1 en
argument contains the number of bytes, which is passed in by the
I dev I pre s to driver.

EISA Bus Device Driver Example 6-51

EISA Bus Device Driver Configuration 7

Writing Device Drivers, Volume I: Tutorial describes the device driver
configuration models provided by the DEC OSFIl operating system. Third­
party device driver writers who want to ship loadable and static drivers to
customers whose systems run DEC OSFIl should use the third-party device
driver configuration model. In the third-party configuration model, you
supply information in the form of file fragments that are included in the
device driver product kit. These file fragments are input to automated
configuration tools, which combine the information supplied by a file
fragment with information supplied by other files of the same type. The
traditional device driver configuration model, in which you directly edit
system files to add driver information, is suitable for driver writers during the
initial stages of driver development.

This chapter assumes that you are familiar with the device driver
configuration models and the syntaxes used to populate configuration-related
files. Discussion in this chapter is limited to the following topic related to
configuring device drivers on the EISA bus: using an eisa data file with
the mkeisadata utility. -

7.1 Using an eisa_data File with the mkeisadata Utility
When drivers are statically configured, driver information must exist not only
in the system configuration file or associated config. file file fragment,
but also in the eisa option data table. This table is defined in the
eisa option data. c file. When using the third-party configuration
model~ you do not directly edit the eisa option data. c file to add the
information for your device. You providesuch information in an
eisa data file that resides in the driver product kit area. During
autoconfiguration, the mkeisadata utility copies the
eisa option data.c file from the /usr/sys/data directory and
adds entries for ail registered third-party drivers that include eisa data
files in their driver kit areas. The format of the eisa data file is as
follows:

[#Entry=]
BOARD ID=board id
[FUNCTION=function]
DRV NAME=driver name

[INTR B4=intr b4 probe]
[INTR-AFT=intr aft attach]
[TYPE~type] - -

[ADPT CNFG=adpt config]
[COMMENT=commen t]
#Entry

Specifies the start of an entry in the eisa_data file.

board id
Specifies the EISA bus option expansion board's product ID name. You
set board id to the character string that represents the option board's
product ID name. The ID name consists of a 3-character manufacturer
code, a 3-character product identifier, and a I-character revision number.
For example, the string ADP0002 identifies this as a second revision of
an Adaptec ADPI742A SCSI option board.

function
Specifies the text that identifies the product up to a maximum of 79
characters. This text can include part numbers. The default is the null
string (""). You set function to the character string that represents
the product. For example, the string AHAI 740 identifies this as the
product name for a Digital ADPI742A SCSI option board.

driver name
SpeCIfies the name of the controlling device driver. You set
dr i ver name to the character string that represents the name of the
controlling device driver up to a maximum of 8 characters. This same
character string also specifies the name of the controlling device driver
in the system configuration file. For example, the string aha identifies
this as the controlling device driver for the device connected to an
ADPI742A SCSI option board.

intr_b4yrobe
Specifies whether the device needs interrupts enabled before the bus
configuration code calls the driver's xxprobe interface. You can set
intr b4 probe to the value zero (0) or the value 1. A zero (0) value
indicates that the device does not need interrupts enabled; this is the
default value. A value of 1 indicates that the device needs interrupts
enabled.

intr aft attach
Specifies whether the device needs interrupts enabled after the driver's
xxprobe and xxcattach or xxdattach interfaces complete
execution. You can set intr aft attach to the value zero (0) or
the value 1. A zero (0) value indicates that the device does not need
interrupts enabled; this is the default value. A value of 1 indicates that
the device needs interrupts enabled.

7-2 EISA Bus Device Driver Configuration

type
Specifies the type of device. You can set type to the string C (the
device is a controller) or A (the device is a bus or an adapter). The
default value is C.

adpt config
Specifies the name of the bus (or adapter) configuration interface to call.
You set adpt config to the string that identifies the bus
configuration interface, if type was set to A (the device is a bus or an
adapter). Otherwise, do not set adpt_config to any value.

comment
Specifies a C comment to appear at the end of an entry in the
eisa option data table. Your comment can be a maximum of 24
characters, including the C comment delimiters. The following example
shows such a comment that you can pass to comment: / * ADP 1 7 4 OA

SCSI * /.
You can specify lines in the eisa data file entry in any order; however,
do not include space characters within the line. Make sure each entry in the
file begins with the line #Entry and is separated from other entries with a
blank line.

The following example shows a section of the eisa data file with an
entry for the / dev / envram driver: -

#Entry
BOARD ID=DEC2500
DRV NAME=envram
INTR B4=O
INTR AFT=O
TYPE=C
COMMENT=/* EISA ENVRAM */

Each element in the entry initializes the corresponding member of the
eisa option data structure. The config program automatically invokes
the mkeisadata utility through a callout keyword contained in the
system configuration file. The mkeisadata utility adds the information
contained in the driver's eisa data file to a copy of the eisa option
table. The config program resumes when the mkeisadata subprocess
completes.

Refer to Writing Device Drivers, Volume 1: Tutorial for more detailed
discussion of the callout keywords.

EISA Bus Device Driver Configuration 7-3

EISA Bus-Specific Reference A
Information

This appendix describes:

• Conventions for device driver-related reference (man) pages

• Reference pages for the EISA bus

A.1 Conventions for Device Driver-Related Reference
(Man) Pages
The following are the categories of device driver-related reference pages
included in this appendix:

• Header files

• Data structures

• Device driver interfaces

The following sections describe the conventions for each category.

A.1.1 Conventions for Header Files

Name

The header file reference (man) pages can include the following sections:

This section lists the name of the header file along with a summary
description of its contents.

Location
This section presents the pathname for the header file. The pathname makes
it easier for you to locate specific header files.

Description
This section briefly describes the contents of the header file.

When to Include

This section explains when to include a header file for block and character
drivers.

Of Special Interest
This section lists specific structures, macros, constant values, and so forth
that are of interest to device driver writers.

Related Information
This section lists related kernel interfaces, structures, system calls, and so
forth.

A.1.2 Conventions for Data Structures

Name

The data structure reference (man) pages can include the following sections:

This section lists the name of the structure along with a summary description
of its purpose.

Include File

This section lists the header file, including the path, where the structure is
defined.

Synopsis

This section considers the following when describing structures:

• The C structure declaration is shown

This occurs when you need to understand or need to initialize all of the
members of a structure.

• The structure members are shown in a table

This occurs when you need to understand or need to reference some of
the members of a particular structure.

• No structure declaration or structure table is shown

This occurs when the structure is opaque. This means the members of
the structure are manipulated by the DEC OSFIl operating system. You
do not manipulate or reference any of the members.

A-2 EISA Bus-Specific Reference Information

Members
This section provides a short description of each member of the structure.

Description
This section gives more details about the purpose of the structure.

Related Information
This section lists related kernel interfaces, structures, system calls, and so
forth.

A.1.3 Conventions for Device Driver Interfaces

Name

The device driver interface reference (man) pages can include the following
sections:

This section lists the name of the driver interface along with a summary
description of its purpose. In general, there is one interface described for
each reference page. However, in some cases it makes sense to describe
more than one interface on the same page if the interfaces are related. When
this occurs, this section lists the names of all the interfaces it describes.

Entry Point
This section lists the structure or file where you specify the entry for the
device driver interface.

Synopsis
This section shows the device driver interface function definition. The style
used is that of the function definition, not the function call. This book
assumes that you understand how to interpret the function definition and
write an appropriate call for a specific interface. The presentation shown in
the example is of the function definition:

int xxprobe(ctlr)
struct controller *ctlr;

The previous interface function definition gives you this information:

• Return type

Gives the data type of the return value, if the interface returns data. If the

EISA Bus-Specific Reference Information A-3

interface does not return a value, the function definition shows a void
data type.

• Interface name

Gives the driver interface name. In the example, xxprobe is the name
of the driver interface. The prefix xx indicates that this part of the name
is variable. Replace it with the character prefix that represents the name
of the device for which the driver is being written.

• Argument names

Gives the name of each driver interface argument. In the example, the
argument name is ctlr.

• Argument types

Gives the types for each of the arguments. If you must define the type of
the argument, a void * is used. In the example, this type is struct
controller *. The term driver interface is used instead of
dri ver routine to establish consistent terminology with that used
for the kernel interfaces.

Arguments
This section provides descriptions for the arguments associated with a given
driver interface. In most cases, argument descriptions begin with the word
specifies to indicate that the driver writer passes the argument (with
some specified value) to the driver interface.

Description

Notes

This section contains explanations of the tasks performed by the driver
interface.

This section contains information about the driver interface pertinent to the
device driver writer.

Return Values
This section describes the values that a given driver interface can return.

Related Information
This section lists related kernel interfaces, structures, system calls, and so
forth.

A-4 EISA Bus-Specific Reference Information

A.2 Reference (Man) Pages for the EISA Bus
The following are the EISA bus-specific reference (man) pages that appear in
this appendix:

• Header file specific to EISA bus device drivers

• Data structures specific to EISA bus device drivers

• Device driver interfaces specific to EISA device drivers

A.2.1 Header File Specific to EISA Bus Device Drivers
Table A-I lists the header file related to EISA bus device drivers, along with
a short description of its contents. Device drivers should include header files
that use the relative pathname instead of the explicit pathname. For example,
although buf . h resides in /usr / sys/ include/ sys/buf . h, device
drivers should include it as:

<sys/buf.h>

Table A-1: Summary Description of Header File Specific to EISA
Bus Device Drivers

Header File Contents

eisa.h Contains definitions specific to the EISA bus.

EISA Bus-Specific Reference Information A-5

Name
eisa. h - Contains definitions specific to the EISA bus

Location
/usr/sys/include/io/dec/eisa/eisa.h

Description
The eisa. h file contains definitions specific to the EISA bus.

When to Include
You include this file in block and character device drivers that connect to the
EISA bus.

Of Special Interest
This file defines data structures referenced by EISA bus device drivers and by
the bus configuration code.

Related Information
Section A.2.2, Data Structures Specific to EISA Bus Device Drivers:
bus_mem,dma,eisa_option,e_port,irq

A-6 EISA Bus-Specific Reference Information

A.2.2 Data Structures Specific to EISA Bus Device Drivers
Table A-2 lists the data structures specific to EISA bus device drivers, along
with short descriptions of their contents.

Table A-2: Summary Description of Data Structures Specific to
EISA Bus Device Drivers

Data Structure

bus mem

controller

dma

eisa_option

e_port

irq

Contents

Describes EISA bus memory characteristics.

Represents an instance of a controller entity.

Contains DMA channel information.

Contains EISA bus options.

Contains I/O port information.

Contains EISA bus interrupt channel characteristics.

EISA Bus-Specific Reference Information A-7

Name
bus _ mem - Describes EISA bus memory characteristics

Include File
/usr/sys/include/io/dec/eisa/eisa.h

Synopsis

Member Name

isram

decode

unit size

size

start addr

Members

isram

Data Type

int

int

int

long

io handle t

Specifies whether the memory associated with the EISA bus expansion
board is read-only memory (ROM) or random-access memory (RAM).
This member is initialized by the bus configuration code during device
autoconfiguration. The EISA bus configuration code sets this member
to one of the following values during device autoconfiguration:

Value

o

Meaning

The memory associated with the EISA bus expansion board
is ROM (that is, read only).

The memory associated with the EISA bus expansion board
is RAM (that is, read/write).

A-8 EISA Bus-Specific Reference Information

decode
Specifies the number of address lines decoded by an EISA bus
expansion board. The EISA bus configuration code sets this member to
one of the following values during device autoconfiguration:

Value

o

2

unit size

Meaning

The number of address lines decoded by an EISA bus
expansion board equals 20.

The number of address lines decoded by an EISA bus
expansion board equals 24.

The number of address lines decoded by an EISA bus
expansion board equals 32.

Specifies the number of bits in the I/O port associated with this EISA
bus expansion board. The EISA bus configuration code sets this
member to one of the following values during device autoconfiguration:

Value

o

2

size

Meaning

There is one byte (8 bits) in the I/O port associated with this
EISA bus expansion board.

There is one word (16 bits) in the I/O port associated with
this EISA bus expansion board.

There is one longword (32 bits) in the I/O port associated
with this EISA bus expansion board.

Specifies the size of the memory block for this EISA bus expansion
board. The EISA bus configuration code sets the size of the memory
block up to a maximum of 64 megabytes during device
autoconfiguration.

start addr
Specifies an I/O handle that indicates where the bus configuration code
maps the memory block. The EISA bus configuration code sets the I/O
handle during device autoconfiguration.

EISA Bus-Specific Reference Information A-9

Description
The bus mem structure describes memory characteristics for an EISA bus
expansionboard. The bus configuration code initializes the members of the
bus mem structure during device autoconfiguration. Device drivers call the
get - config interface to obtain information stored in the members of the
bus - mem data structure.

Related Information
Section A.2.1, Header File Specific to EISA Bus Device Drivers: eisa. h

A-10 EISA Bus-Specific Reference Information

Name
controller - Represents an instance of a controller entity

Include File
lusrlsys/include/io/common/devdriver.h

Synopsis

Member Name

slot

physaddr

Members

slot

Data Type

int

caddr t

Specifies the slot number that the EISA bus board is plugged into. The
slot number ranges from 1- n, where n represents the maximum number
of slots. This value corresponds to the one that you (the device driver
writer) specified in the system configuration file or the
stanza. static file fragment. In the system configuration file, you
precede the slot number for the slot that the EISA bus board is plugged
into with the s lot keyword, as follows:

slot 1

The autoconfiguration software uses the syntax following the slot
keyword in the system configuration file or the stanza. static file
fragment to obtain this value. The bus configuration code obtains this
value from the autoconfiguration software and uses it to initialize the
slot member of the controller structure associated with this EISA
bus device.

physaddr
Specifies the base physical address of the controller's 110 space.

EISA Bus-Specific Reference Information A-11

Description
The controller structure represents an instance of a controller entity, one
that connects logically to a bus. A controller can control devices that are
directly connected or can perform some other controlling operation, such as a
network interface or terminal controller operation.

A-12 EISA Bus-Specific Reference Information

Name
dma - Contains DMA channel information

Include File
/usr/sys/include/io/dec/eisa/eisa.h

Synopsis

Member Name

channel

is shared

xfer size

timing

mode

Members

channel

Data Type

uint t

uint t

uint t

uint t

uint t

Specifies the DMA channel number or numbers that this EISA bus
device can use. The EISA bus configuration code sets the channel
number to a number in the range of 0-7.

is shared
Specifies whether two devices can share the same DMA channel
number. The EISA bus configuration code sets this member to one of
the following values during device autoconfiguration:

Value

o

Meaning

The DMA channel number cannot be shared.

The DMA channel number can be shared.

EISA Bus-Specific Reference Information A-13

xfer size
Specifies the DMA device data transfer width. The EISA bus
configuration code sets this member to one of the following values
during device autoconfiguration:

Value

00

01

10

timing

Meaning

The DMA device data transfer size is 8 bits (byte).

The DMA device data transfer size is 16 bits (word).

The DMA device data transfer size is 32 bits (longword).

Specifies the bus cycle type executed by the DMA controller during the
data transfer. The EISA bus configuration code sets this member to one
of the following values during device autoconfiguration:

Value

00

01

10

11

mode

Meaning

The bus cycle type is Default. This bus cycle type is
compatible with ISA DMA devices.

The bus cycle type is Type A. This bus cycle type is used
with higher performance ISA DMA devices to achieve faster
data transfers.

The bus cycle type is Type B. Like bus cycle Type A, this
type is used with higher performance ISA DMA devices to
achieve faster data transfers.

The bus cycle type is Type C (burst). This bus cycle type is
used with DMA devices that support EISA bus cycles to
achieve the fastest data transfers.

Specifies the transfer mode.

A-14 EISA Bus-Specific Reference Information

Description
The dma structure describes information related to the DMA channel. The
bus configuration code initializes the members of the dma structure during
device autoconfiguration. Device drivers call the get conf ig interface to
obtain information stored in the members of the dma data structure.

Related Information
Section A.2.1, Header File Specific to EISA Bus Device Drivers: eisa. h

EISA Bus-Specific Reference Information A-15

Name
eisa_option - Contains EISA bus options

Include File
/usr/sys/include/io/dec/eisa/eisa.h

Synopsis

Member Name

board id

function

driver name

intr_b4_probe

intr aft attach

type

adpt_config

Members

board id

Data Type

char [EISA_ IDNAMELEN

char [EISA_FUNCLEN +

char [EISA_NAMELEN +

int

int

char

int (*adpt_config) ()

+ 1]

1]

1]

Specifies the EISA bus option expansion board's product ID name. You
set board id to the character string that represents the option board's
product ID name. The ID name consists of a 3-character manufacturer
code, a 3-character product identifier, and a I-character revision number.
For example, the string ADP0002 identifies this as a second revision of
an Adaptec ADPI742A SCSI option board.

function
Specifies the text that identifies the product up to a maximum of 79
characters. This text can include part numbers. The default is the null
string (""). You set function to the character string that represents
the product. For example, the string AHAI 740 identifies this as the
product name for a Digital ADPI742A SCSI option board.

driver name
SpeCIfies the name of the controlling device driver. You set
dr i ver name to the character string that represents the name of the
controlling device driver up to a maximum of 8 characters. This same

A-16 EISA Bus-Specific Reference Information

character string also specifies the name of the controlling device driver
in the system configuration file. For example, the string aha identifies
this as the controlling device driver for the device connected to an
ADP1742A SCSI option board.

intr b4 probe
Specifies whether the device needs interrupts enabled before the bus
configuration code calls the driver's xxprobe interface. You can set
intr b4 probe to the value zero (0) or the value 1. A zero (0) value
indicates that the device does not need interrupts enabled; this is the
default value. A value of 1 indicates that the device needs interrupts
enabled.

intr aft attach
Specifies whether the device needs interrupts enabled after the driver's
xxprobe and xxcattach or xxdattach interfaces complete
execution. You can set intr aft attach to the value zero (0) or
the value 1. A zero (0) value indicates that the device does not need
interrupts enabled; this is the default value. A value of 1 indicates that
the device needs interrupts enabled.

type
Specifies the type of device. You can set type to the string C (the
device is a controller) or A (the device is a bus or an adapter). The
default value is C.

adpt config
Specifies the name of the bus (or adapter) configuration interface to call.
You set adpt conf ig to the string that identifies the bus
configuration interface, if type was set to A (the device is a bus or an
adapter). Otherwise, do not set adpt _ conf ig to any value.

Description
The eisa option structure contains EISA bus option information such as
the bus option board's product ID and the name of the controlling device
driver. An array of eisa option structures is declared in the file
/usr/sys/data/eisa~option_data.c.

Related Information
Section A.2.l, Header File Specific to EISA Bus Device Drivers: eisa. h

EISA Bus-Specific Reference Information A-17

Name
e _port - Contains I/O port information

Include File
/usr/sys/include/io/dec/eisa/eisa.h

Synopsis

Member Name

base address

numb_of_ports

is shared

Members

base address

Data Type

vm offset t

uint t

uint t

Specifies the base address of the I/O ports.

numb of ports
Specifies the number of ports in the range identified by the I/O handle.

is shared
Specifies whether the device can share this device's I/O port. The EISA
bus configuration code sets this member to one of the following values
during device autoconfiguration:

Value

o

Meaning

The device cannot share the 1/0 port.

The device can share the 1/0 port.

A-18 EISA Bus-Specific Reference Information

Description
The e port structure describes bus 110 port information. The bus
configuration code initializes the members of the e port structure during
device autoconfiguration. Device drivers call the get conf ig interface to
obtain information stored in the members of the e _port data structure.

Related Information
Section A.2.1, Header File Specific to EISA Bus Device Drivers: eisa. h

EISA Bus-Specific Reference Information A-19

Name
irq - Contains EISA bus interrupt channel characteristics

Include File
/usr/sys/include/io/dec/eisa/eisa.h

Synopsis

Member Name

channel

trigger

is shared

Members

channel

Data Type

uint t

uint t

uint t

Specifies the interrupt channel number. The bus configuration code sets
the interrupt channel number to a number in the range zero (0) to F.

trigger
Specifies whether the read-only memory (ROM) of the EISA bus
expansion board initializes the interrupt controller to edge or level
triggered. The EISA bus configuration code sets this member to one of
the following values during device autoconfiguration:

Value

o
1

is shared

Meaning

The interrupt controller is initialized to edge triggered.

The interrupt controller is initialized to level triggered.

Specifies whether the EISA bus expansion board can share this interrupt
with other EISA bus expansion boards. The EISA bus configuration
code sets this member to one of the following values during device
autoconfiguration:

A-20 EISA Bus-Specific Reference Information

Value

o

Description

Meaning

The EISA bus expansion board cannot share this interrupt.

The EISA bus expansion board can share this interrupt.

The irq data structure specifies EISA bus interrupt channel characteristics
assigned to a device. The bus configuration code initializes the members of
the irq structure during device autoconfiguration. Device drivers call the
get config interface to obtain information stored in the members of the
irq data structure.

Related Information
Section A.2.1, Header File Specific to EISA Bus Device Drivers: eisa. h

EISA Bus-Specific Reference Information A-21

A.2.3 Device Driver Interfaces That EISA Device Drivers Use
Table A-3 lists the device driver interfaces specific to EI~A bus device
drivers, along with short descriptions of their contents.

Table A-3: Summary Description of Driver Interfaces that EISA
Device Drivers Use

Driver Interface

xxprobe

xxslave

Contents

Determines whether the device exists

Checks that the device is valid for this controller

A-22 EISA Bus-Specific Reference Information

Name
xxprobe - Determines whether the device exists

Entry Point
The dr i ver structure

Synopsis

int xxprobe(bus io handle, ctlr)
io_handle_t bus_i()_handle;
struct controller *ctlr;

Arguments

bus io handle
SpeCifies an I/O handle that you can use to reference a device register
located in the EISA bus address space. This 110 handle is for the base
of the device's slot-specific 110 address space. The EISA bus
configuration code passes this I/O handle to the driver's xxprobe
interface during device autoconfiguration. You can perform standard C
mathematical operations on the I/O handle. For example, you can add
an offset to or subtract an offset from the I/O handle.

ctlr
Specifies a pointer to the controller structure associated with this
device. The bus configuration code passes this pointer to the driver's
xxprobe interface. The device driver can reference hardware resource
and other information contained in the controller structure pointer.

Description
An EISA bus device driver's xxprobe interface performs the tasks
necessary to determine if the device exists and is functional on a given
system. At boot time, the EISA bus configuration code reads the
configuration information saved by the EISA configuration utility (ECU) and
performs checks to determine if the device is present before calling
xxprobe for statically configured drivers. The EISA bus configuration code
calls the xxprobe interface for each device that is defined according to
specific rules discussed in Chapter 5. The xxprobe interface typically
checks some device control status register (CSR) to determine whether the
physical device is present. If the device is not present, the device is not

EISA Bus-Specific Reference Information A-23

initialized and not available for use. For static device drivers, the device
interrupt handlers are defined in the system configuration file or the
stanza. static file fragment and registered by the config program at
system configuration time. The Synopsis section shows the arguments
associated with a probe interface for device drivers that operate on the EISA
bus.

Notes
Device drivers pass the lIO handle to the following categories of interfaces,
which are discussed in Writing Device Drivers, Volume 1: Tutorial. These
interfaces can process the lIO handle to access the desired bus address space.

• CSR I/O access interfaces

The CSR lIO access interfaces are read io port and
wr i te io port. These are generic interfaces that allow device
drivers to read from and write to device registers. Using these interfaces
to read data from and write data to a device register makes the device
driver more portable across different bus architectures, different CPU
architectures, and different CPU types within the same CPU architecture.

• lIO copy interfaces

The lIO copy interfaces are io copyin, io copyio, io copyout,
and io zero. These are generic interfaces that allow device drivers to
performllO copy operations. Using these interfaces to perform the copy
operation makes the device driver more portable across different CPU
architectures and different CPU types within the same architecture.

Return Values
The xxprobe interface returns a nonzero value if the probe operation was
successful. It returns the value zero (0) to indicate that the driver did not
complete the probe operation.

Related Information
Section A.2.3, Device Driver Interfaces That EISA Device Drivers Use:
xxslave

A-24 EISA Bus-Specific Reference Information

Name
xxslave - Checks that the device is valid for this controller

Entry Point
The dr i ver structure

Synopsis

int xxslave(device, bus io _handle)
struct device *device;
io handle t bus_io_handle;

Arguments

device
Specifies a pointer to a dev ice structure for this device. The bus
configuration code passes this pointer to the driver's xxslave
interface. The device driver can reference such information as the
logical unit number of the device, whether the device is functional, and
the bus number the device resides on.

bus io handle
SpeCIfies an 1/0 handle that you can use to reference a device register
located in the EISA bus address space. This I/O handle is for the base
of the device's slot-specific 1/0 address space. The EISA bus
configuration code passes this I/O handle to the driver's xxslave
interface during device autoconfiguration. You can perform standard C
mathematical operations on the I/O handle. For example, you can add
an offset to or subtract an offset from the I/O handle.

Description
A device driver's xxslave interface is called only for a controller that has
slave devices connected to it. This interface is called once for each slave
attached to the controller. You (or the system manager) specify the
attachments of these slave devices for static device drivers in the system
configuration file or stanza. static file fragment.

The arguments you pass to the slave interface differ according to the bus on
which the driver operates. The Synopsis section shows the arguments
associated with a slave interface for an EISA bus.

EISA Bus-Specific Reference Information A-25

Notes
Device drivers pass the I/O handle to the following categories of interfaces,
which are discussed in Writing Device Drivers, Volume 1: Tutorial. These
interfaces can process the 110 handle to access the desired bus address space.

• CSR 110 access interfaces

The CSR 110 access interfaces are read io port and
wr i te io port. These are generic interfaces that allow device
drivers to read from and write to device registers. Using these interfaces
to read data from and write data to a device register makes the device
driver more portable across different bus architectures, different CPU
architectures, and different CPU types within the same CPU architecture.

• 110 copy interfaces

The 110 copy interfaces are io copyin, io copyio, io copyout,
and io zero. These are generic interfaces that allow device drivers to
perform-IIO copy operations. Using these interfaces to perform the copy
operation makes the device driver more portable across different CPU
architectures and different CPU types within the same architecture.

Return Values
The xxslave interface returns a nonzero value if the device is present.

Related Information
Section A.2.3, Device Driver Interfaces That EISA Device Drivers Use:
xxprobe

A-26 EISA Bus-Specific Reference Information

EISA Bus Device Driver Source Listing

This appendix contains the source listing for the / dey / envram device
driver.
j***

*
*
*
*

Copyright (c) 1993 by
Digital Equipment Corporation, Maynard, MA

All rights reserved.

*
*
*
*

* *
* This software is furnished under the terms and *
* conditions of the TURBOchannel Technology *
* license and may be used and copied only in *
* accordance with the terms of such license and *
* with the inclusion of the above copyright *
* notice. No title to and ownership of the *
* software is hereby transferred. *
* *
* The information in this software is subject to *
* change without notice and should not be *
* construed as a commitment by Digital Equipment *
* Corporation. *
* *
* Digital assumes no responsibility for the use *
* or reliability of its software on equipment *
* which is not supplied by Digital. *
***j

j***
* envram reg.h Device Register Header File for
* envram~c 13-April-1993

*
*

***j

j***
* EISA NVRAM register definitions *
*
* Define offsets to nvram device registers

*
*

***j

#define ENVRAM CSR
#define ENVRAM BAT
#define ENVRAM HIBASE
#define ENVRAM CONFIG
#define ENVRAM ID
#define ENVRAM CTRL
#define ENVRAM DMAO
#define ENVRAM DMA1

OxcOO
Oxc04
Oxc08
OxcOc
Oxc80
Oxc84
Oxc88
Oxc8c

j* CSR *j
j* Battery Disconnect *j
j* Ext. Mem Config *j
j* EISA config reg *j
j* EISA ID reg *j
j* EISA control *j
j* DMA addr reg 0 *j
j* DMA addr reg 1 *j

j***
* psgfix: wired up and ignored for power on. *
* Diagnostic soft register tells us if *

B

* diagnostics passed and the size of the board. *
***/

#define ENVRAM DIAG REGISTER
#define BOARD FAILED

Ox3f8 /* lk - 1 */
Ox00000008 /* Bit is set if board

passed diags */
Ox400 /* The amount of space

diagnostics require
and assure 2K alignment
for DMA */

/***
* Where firmware puts offset to cache last 32 *
* bits in nvram 4mb space *
***/

#define ENVRAM_CACHE_OFFSET Ox400 /* PSGFIX - this is my cookie */
/* location */

/***
* CSR register bit mask definitions *
***/

#define SET LED Ox01OO /* Turn LED on */
#define BAT FAIL Ox0800 /* Indicated Battery failure */
#define WRMEM Ox2000 /* Enable writes to ENVRAM memory */
#define SET_DREQ Ox4000 /* Set DREQ for DMA */
#define DMA CHAN 7 OX80 /* Channel 7 for DMA */
#define DMA CHAN 5 Ox40 /* Channel 5 for DMA */

/**
* Battery disconnect register bit mask defs *
* *
~***/

#define BAT_DISCON_BIT Ox0080 /* Bit to hit with connect sequence */

/***
* EISA Control Register bit masks *
***/

#define EISA_ENABLE_BOARD Oxl /* EISA config enable - makes
memory visible */

/***
* EISA ID register bit mask *
***/

#define ENVRAM_ID_MASK Ox0025a310 /* EISA ID register bit mask */

/***
* Define constants used for communication with *
* the /dev/presto driver. *
***/

#define ENVRAM MAPPED 1
#define ENVRAM NOTMAPPED 0
#define ENVRAM CACHED 1
#define ENVRAM NOTCAHCED 0

/* Buffer is mapped */
/* Buffer is not mapped */
/* Use kseg space */
/* Use a cached space */

/**

8-2 EISA Bus Device Driver Source Listing

* Define allignment boundaries

* *
**/

#define ENVRAM XFER SIZE 1024 /* Maximum DMA transfer size
to NVRAM module */

#define ENVRAM ALLIGN 8192 /* DMA allignment required */

/***

* *
*
*

Copyright (c) 1993 by *
*

*
Digital Equipment Corporation, Maynard, MA

All rights reserved. *
* *
* This software is furnished under the terms and *
* conditions of the TURBOchannel Technology *
* license and may be used and copied only in *
* accordance with the terms of such license and *
* with the inclusion of the above copyright *
* notice. No title to and ownership of the *
* software is hereby transferred. *

* *
* The information in this software is subject to *
* change without notice and should not be *
* construed as a commitment by Digital Equipment *
* Corporation. *

* *
* Digital assumes no responsibility for the use *
* or reliability of its software on equipment *
* which is not supplied by Digital. *
***/

/**
* envram data.c

*
data.c file for envram.c 13-April-1994 *

*
**/

/***
* Digital EISA non-voltile RAM driver (DEC2500) *
***/

/***
* Define the softc structure for the EISA NVRAM *
* driver *
***/

struct envram softc {
io_handle_t regbase; /* base address for registers */
io_handle_t cache_phys_start; /* Physical start address of NVRAM cache

of NVRAM cache */

u long saved mem sysmapi
u-int cache size;
u=int cache=offset;

io handle t diag status;
dma_handle_t sglp;
struct controller *ctlri

/* base address of NVRAM in */
EISA address space */
/* KSEG start addr of
the presto cache */
/* sysmap portion of mem io_handle_t */
/* Size of NVRAM cache */
/* Offset to the first nvram location

from start of EISA slot address */
/* If the board passed diags or not */
/* Pointer to byte address/byte count pair */
/* Pointer to nvram controller */

EISA Bus Device Driver Source Listing 8-3

} ;

struct envram softc *envram softc;
struct controller *envram_info[NENVRAM];

/***
* envram.c Driver for presto device 13-Apr-1994 *

* *
* The /dev/envram device driver is an example *
* driver that performs read/write services for *
* the /dev/presto device driver. *

* *
***/

/***
* The /dev/envram device driver written by *
* Randy Arnott, Paul Grist, and Randall Brown. *
***/

/***
* Include Files Section *
***/

#include "envram.h" /* Driver header file created by config */

#include <vm/vm kern.h>
#include <sys/presto.h> /* Definitions for the /dev/presto

device driver */
#include <io/common/devdriver.h>
#include <io/dec/eisa/eisa.h> /* Header file specific to the

EISA bus */
#include <data/envram_data.c> /* data.c file specific to the

/dev/envram driver */
#include <machine/rpb.h>
#include <io/dec/eisa/envram_reg.h> /* Device register header file */

/***
* EISA NVRAM I/O register Read/Write Macros *

* *
* These macros are built using the standard I/O *
* bus interfaces read io port and write io port. *
* The base address is-referenced from - - *
* sc->regbase. Simply I I the register offset. *
***/

#define ENVRAM READIO D8(a) \
read io port((io handle t)sc->regbase a, 1, 0))

#define ENVRAM_READIO_D16(a) \
read_io_port((io_handle_t)sc->regbase a, 2 , 0))

#define ENVRAM READIO D32(a) \
read_io_port((io_handle_t)sc->regbase a, 4, 0))

#define ENVRAM WRITEIO D8(a,d) \
write io port((io handle t)sc->regbase a, 1, O~ d))

#define ENVRAM WRITEIO D16(a,d) \
write io port((io handle t)sc->regbase a, 2, 0, d))

#define ENVRAM WRITEIO D32(a,d) \
write_io_port((io_handle_t)sc->regbase I a, 4, 0, d))

/***

8-4 EISA Bus Device Driver Source Listing

* Declarations Section *
***/

/***
* Do forward declaration of driver entry points *
* and define information structures for driver *
* structure definition and initialization below. *
***/

int envram probe(), envram attach(), eisa nvram status();
int eisa nvram battery enable(), eisa nvram battery disable();
void envram_read(), envram_write(), envram_zero(); -

struct driver envramdriver = {

} ;

envram_probe,
0,
envram_attach,
0,
0,
0,
0,
0,
"envram" ,
envram info,
0,
0,
0,
0,
0,
0,
a

/* probe */
/* slave */
/* cattach */
/* dattach */
/* go */
/* addr list */
/* dey name */
/* deY-list */
/* ctlr name */
/* ctlr list */
/* xclu-*/
/* addrl size */
/* addrl atype */
/* addr2-size */
/* addr2 atype */
/* ctlr unattach */
/* dey unattach */

/***
* External references *
***/

/**
* Autoconfiguration Support Section *
**/

/**
* The autoconfiguration support section for the /dev/envram device *
* device driver contains these interfaces: *

* *
* 0 envram_probe *
* 0 envram attach *
**/

/**
* INTERFACE NAME: envram_probe *

*
* FUNCTIONAL DESCRIPTION:

*
* The envram_probe interface:

*

*
*
*
*
*

* 0 Determines if the controller for the EISA bus NVRAM memory *
* board exists *
* 0 Allocates and fills in the driver's softc data structure *
* 0 Enables the EISA bus NVRAM memory board to handle reads and *
* writes, if the controller exists on the system *

EISA Bus Device Driver Source Listing 8-5

*
* CALLED BY: Bus configuration code at boot time

*
* FORMAL PARAMETERS:

*
*
*
*
* *

*
*
*
*

o addr

o ctlr

Base physical address of the EISA bus NVRAM memory *
board registers *
Pointer to the controller structure for this device *

* IMPLICIT INPUTS:

*
* o ctlr->slot -- EISA slot number of this controller

*
*
*
*

* 0 ctlr->conn priv[O] -- Pointer to eisainfo structure *
* 0 eisainfo->irq.intr.intr num -- EISA interrupt level for this *
* - controller *
* 0 eisainfo->irq.intr.trigger -- EISA interrupt high/low flag, *
* 0 = edge (high), *
* 1 = level (low) *
* 0 ctlr->addr -- KSEG address of controller's base register *
* 0 ctlr->physaddr -- Controller's base register physical *
* address *

* *
* IMPLICIT OUTPUTS: None

*
* RETURN VALUE:

*
* Success:

* Failure:
Size of the softc structure.
NULL.

*
*
*
*
*
*

**/

envram probe(bus io handle, ctlr)
io handle t bus-io-handle; /* Base physical address of the EISA

- - - - bus NVRAM registers*/
struct controller *ctlr; /* Pointer to controller structure */

{
/* Pointer to softc structure */

register struct envram_softc *sc;
u int hw id = 0; /* Stores EISA bus ID register */
struct bus mem mem; /* bus mem structure describes EISA */

bus-memory characteristics */
struct dma dma p; /* dma structure */
u_long eisa_addr_mask = Oxffffffff; /* EISA address mask */

/***
* Determine if this is unit O. Currently, there is support for *
* only one EISA bus NVRAM memory expansion board. *
* Changes must be made to the /dev/presto device driver *
* interface before multiple units (memory boards) can be supported. *
**/

if (ctlr->ctlr_num > 0)
return(O);

/**
* Allocate memory for softc structure. *
**/

sc = (struct envram softc *)kalloc(sizeof(struct envram_softc));

if (!sc)
return(O);

8-6 EISA Bus Device Driver Source Listing

bzero((char *)sc, sizeof(struct envram_softc));
envram_softc = sCi

/**
* Save the ctrl struct pointer in the driver's softc structure. *
**/
sc->ctlr = ctlr;

/**
******** I/O Register Access Scheme **********************************
* *
* The /dev/envram device driver uses a logical addressing scheme *
* for I/O register access. This logical addressing scheme: *
* *
*
*
*
*

0

0

Uses the envram so ftc data structure to store the io handle t *
for the physical base address - - *
Passes the offset of the target register to the ENVRAM READ IO- *
and ENVRAM_WRITE_IO-related macros, which perform the i/o *

* access.
*

*
*

* The ENVRAM READIO- and ENVRAM WRITE la-related macros are defined *
* in envram data.c. They use the read io port and write io port *
* interfaces and OR the offset with the sc->regbase value. -The *
* sc->regbase value is the per-option physical base address of the *
* EISA NVRAM I/O registers. *
**/

/**
* This next sequence of code gets the controller's base address and *
* saves the slot number. For EISA bus controllers, the physical *
* address of the adapter base register can be calculated by shifting *
* the EISA slot number by 12 bits. It is also passed in the *
* controller structure. *
**/
sc->regbase = bus_io_handle;

/**
* Read the controller's ID register to ensure that it is actually *
* a DEC 2500. *
**/

if (hw_id 1= ENVRAM_ID_MASK)
{

else

printf("envram probe: Failed to read ID register\n");
/* deallocate sc resources */
kfree(sc, sizeof(struct envram_softc));
return(O);

printf("envram_probe: EISA NVRAM present\n");

/**
********* EISA Configuration ***************************************
**/

/**
* Set up the members of the softc structure for the location and *
* offset of NVRAM cache for the /dev/presto device driver. The *

EISA Bus Device Driver Source Listing 8-7

* starting io handle t of the NVRAM bus memory is available from *
* the bus support information. *
**/

sc->cache_offset = ENVRAM_CACHE_OFFSET; j* 1MB and Ox400 offset *j

j*** ***************
* Get nvram size and io handle t of starting address by calling *
* the get config interface. - *
** **************j

if (get config (ctlr, RES MEM, 1111, &mem, 0» {
printf(lIenvram probe-error\n");
return(O);

sc->cache size mem.size;
sc->cache base (u long)mem.start addr;
sc->cache_phys_start-= (u_long) (sc->cache_base + sc->cache offset);
sc->cache_kseg_start = (vrn offset t)

(PHYS TO KSEG(Sc->cache phys start&eisa addr mask»;
sc->saved_mem_sysmap = sc->cache-phys_start &--eisa_addr_mask; -

j*** ***************
* Account for the diagnostic space. *
**j
sc->cache_size = sc->cache_size - EISA_DIAG_RESVED;

j*** ***************
* Get nvram dma channel information *
**j
if (get config(ctlr, EISA DMA, ,&dma p, 0» {

printf("envram probe error dma channel\n");
return (0);

j*** ***************
* Fail the probe if invalid dma channel. *
**j
if (dma p.channel 1= 7 && dma p.channel 1= 5) {

printf(lIenvram: invalid dina channel %d\n",dma_p.channel);
return(O);

j*** ***************
* Enable the module by calling the ENVRAM WRITEIO D8 interface. *
* Call the mb interface after the write completes~ *
**j

ENVRAM_WRITEIO_D8(ENVRAM_CTRL, EISA_ENABLE_BOARD);
mb();

j*** ***************
* Initialize the CSR and enable the NVRAM memory for writes *
**j

ENVRAM_WRITEIO_D16(ENVRAM_CSR,WRMEM);
mb();

j*** ***************
* Check the console diagnostic results *

8-8 EISA Bus Device Driver Source Listing

**/

envram read(sc->cache phys start-8,
- &sc->diag=status, 4);

if (sc->diag status & BOARD FAILED) {
printf(IIEnvram diag reg-Ox%x\n",sc->diag status);
sc->diag_status = 0; -

}
else {

sc->diag_status

return(I);

1· ,

/**
* INTERFACE NAME: envram attach *

* *
* FUNCTIONAL DESCRIPTION: *

* *
* The envram attach interface defines the /dev/envram driver *
* interfaces-to the /dev/presto device driver. It also calls *
* presto_init to initialize the /dev/presto device driver. *

* *
* CALLED BY: Bus configuration code at boot time *

* *
* FORMAL PARAMETERS: *

* *
* 0 ctlr -- Pointer to the controller structure for this device *
* 0 dev -- Pointer to the device structure for this device *

* *
* IMPLICIT INPUTS: *
*
*
*
*
*
*
*
*
*
*
*
*
*

o ctlr->slot -- EISA slot number of this controller
*
*

o ctlr->conn priv[O] -- Pointer to eisainfo structure *
o eisainfo->lrq.intr.intr num -- EISA interrupt level for this *

- controller *
o eisainfo->irq.intr.trigger -- EISA interrupt high/low flag, *

o = edge (high), *
1 = level (low) *

o ctlr->addr -- KSEG address of controller's base register *
o ctlr->physaddr -- Controller's base register physical *

address *
o softc structure is available with all EISA NVRAM values *

*
* IMPLICIT OUTPUTS: None *

*
*

*
* RETURN VALUE: None
**/

envram_attach(ctlr)
struct controller *ctlr; /* Pointer to controller structure */

/* Pointer to softc structure */
register struct envram_softc *sc = envram_softc;

/**
* Allocate resources for DMA data transfers by calling the
* dma_map_alloc interface.

*
*

EISA Bus Device Driver Source Listing 8-9

**/

if (dma map alloc(ENVRAM XFER SIZE,
- - sc->ctlr, &sc->sglp, 0) 0)

panic("envram: dma_map_alloc error\n");

/**
* The following code initializes the presto interfaceO data *
* structure to the /dev/envram device driver interfaces that allow *
* the /dev/presto device driver to access the NVRAM data cache. *
**/

presto interfaceO.nvram status = eisa nvram status;
presto-interfaceO.nvram-battery status= eisa nvram battery status;
presto-interfaceO.nvram-battery-disable= eisa nvram battery disable;
presto=interfaceO.nvram=battery=enable= eisa_nvram_battery_enable;

/**
* The following code initializes the presto interfaceO data *
* structure to the /dev/envram device driver interfaces that allow *
* the /dev/presto device driver to access the EISA NVRAM. Note *
* that the ioreg and block interfaces are all expected to have *
* these formal parameters: src, dest, and count. However, the *
* envram_zero interface has these formal parameters: addr and *
* length. *
**/

presto interfaceO.nvram ioreg read = envram read;
presto-interfaceO.nvram-ioreg-write = envram write;
presto-interfaceO.nvram-block-read = envram read;
presto-interfaceO.nvram-block-write = envram write;
presto-interfaceO.nvram-ioreg-zero envram zero;
presto=interfaceO.nvram=block=zero = envram=zero;

/**
* The EISA granularity is a byte, but force the use of 32-bit *
* quantities for performance reasons. *
**/

/**
* Minimum size of a "small" ioreg data block *
**/
presto_interfaceO.nvram_min_ioreg = sizeof(int);

/**
* Byte alignment restriction for ioreg block *
**/
presto interfaceO.nvram ioreg align = sizeof(int);

/**
* Minimum size of a "large" block data transfer in bytes. *
**/
presto_interfaceO.nvram_min_block = PRFSIZE;

/**
* Byte alignment restriction for block data transfers *
**/
presto_interfaceO.nvram_block_align = PRFSIZE;

/**

8-10 EISA Bus Device Driver Source Listing

* PRFSIZE = smallest fragment size for buffer (lK) *
**/

/**
* Call the presto init interface to initialize the /dec/presto *
* device driver interfaces. *
**/

/**
* RMA - fix Need unique sysid without etherrom!! *
* Call the presto init interface to perform initialization tasks *
* the /dev/presto-device driver. *
**/

presto_init(sc->cache_kseg_start, sc->cache_size,
ENVRAM_NOTMAPPED, ENVRAM_CACHED,
envram_ssn());

/**
* INTERFACE NAME: envram ssn

*
* FUNCTIONAL DESCRIPTION:

*
* The envram ssn interface determines an unsigned 32-bit
* number from the system serial number in the hwrbp. It
* the serial number from ASCII to a hexadecimal number.
* converts to Oxf modulo any letter over 'F' (or f).

unique
converts
It also

*
*
*
*
*
*
*
*

* *
* CALLED BY: *

* *
* The envram attach interface passes envram ssn as an argument to *
* presto init. The presto init interface calls envram ssn to *
* obtain-the machine (CPU)-ID. *

* *
* FORMAL PARAMETERS: None *

* *
* IMPLICIT INPUTS: None *

* *
* IMPLICIT OUTPUTS: None *

* *
* RETURN VALUE: The machine (CPU) ID. *
**/

envram_ ssn ()
{

extern struct rpb *rpb; /* Pointer to restart parameter */
/* block (rpb) structure */

u int ssn = 0; /* Stores the system serial number */
int i;
char *cp;

/* Grab the system serial number */

cp = rpb->rpb_ssn + 9;

/**
* Display an appropriate message on the console terminal if the *
* system serial number equals the null character. *

EISA Bus Device Driver Source Listing 8-11

**/

if (*cp == '\0') {
cp = "NO System Serial Number"+8i
printf("envram_ssn: %s\n",cp-8)i

/**
* Use a for loop to parse the serial number and convert it to *
* hexadecimal *
**/
for (i = 0 i i < 8 i i++, cp--){

if (*cp < '9')
ssn += (*cp - ' 0'

else if (*cp < 'G')
ssn += (*cp - 'A'

else if (*cp < 'a')
ssn += (*cp % Oxf

else if (*cp < 'g')
ssn += (*cp - 'a'

else

« (i*4);

+ Oxa) « (i*4)i

) « (i*4)i

+ Oxa) « (i*4);

ssn += (*cp % Oxf) « (i*4)i

return(ssn)i /* Return the system serial number */

/**
* INTERFACE NAME: eisa nvram status * - -
*
* FUNCTIONAL DESCRIPTION:

*

*
*
*

* The eisa envram status interface provides the /dev/presto device *
* driver wIth the-status of diagnostics run on the NVRAM. *

*
* CALLED BY:

*
*
*
*
*

The /dev/presto device driver. The nvram status
member of the presto interfaceO structure is set to
eisa nvram status by-envram attach. The /dev/presto
driver accesses the NVRAM cache interfaces through
presto_interfaceO structure.

* FORMAL PARAMETERS: None

*
* IMPLICIT INPUTS:

*
*
*

o sc->diag_status diagnostic flag set in envram_probe

* IMPLICIT OUTPUTS: None

*
* RETURN VALUE: (sys/presto.h defined status values)

*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

* NVRAM RDWR -- Passed R/W diags *
* NVRAM RDONLY -- Passed RO diags *
* NVRAM BAD Failed diags *
**/

int eisa_nvram_status()
{

/* Pointer to softc structure */
register struct envram softc *sc

8-12 EISA Bus Device Driver Source Listing

envram_softci

if (sc->diag_status)
return(NVRAM RDONLY);

else -
return(NVRAM_BAD);

/* Passed RO diags */

/* Failed diags */

/**
* INTERFACE NAME:

*
* FUNCTIONAL DESCRIPTION:

*

*
*
*
*

* The eisa nvram battery status interface provides the /dev/presto *
* device driver with the-status of the battery on the EISA bus *
* NVRAM memory expansion board.

*
* CALLED BY:

*
* The /dev/presto device driver calls this interface through the
* nvram_battery_status member of the presto_interfaceO structure:

*

*
* The envram attach interface performs the initialization of
* nvram_battery_status.

*
* FORMAL PARAMETERS: None

*
* IMPLICIT INPUTS: None

*
* IMPLICIT OUTPUTS:

*
* The eisa nvram battery status interface fills in the battery-
* related members of the-nvram battery info data structure. Note
* that presto.h defines an external data structure called
* nvram_batteriesO, which is an instance of nvram_battery_info.

*
* RETURN VALUE: (sys/presto.h defined status values)

*

*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

* BATT NONE -- No battery *
* BATT ENABLED -- Battery enabled *
* BATT HIGH -- Battery has minimal energy stored *
* BATT=OK -- Battery ok *
* BATT_SELFTEST -- Battery exists, but charge state unknown *
* BATT CHARGING -- Battery does not have enough power *
**/

int eisa_nvram_battery_status()
{
/* Pointer to softc structure */

register struct envram softc *sc = envram_softc;

nvram_batteriesO.nv_nbatteries = I; /* always one battery */
nvram batteriesO.nv minimum ok = I; /* Battery must be good */
nvram-batteriesO.nv-primary-mandatory = I; /* Primary battery must be OK */
nvram=batteriesO.nv=test_retries = I; /* Call this interface one time */

/**
* Check the battery status by reading the CSR. If the battery is *
* okay, set the battery's nv_status and return zero (0) to the *

EISA Bus Device Driver Source Listing 8-13

* /dev/presto device driver. Otherwise, return 1 to indicate the *
* the battery is not okay. *
**/

if ((ENVRAM_READIO_D16(ENVRAM_CSR) & BAT_FAIL»
{

else

nvram_batteriesO.nv_status[O]
return(O);

return(l);

/**
* INTERFACE NAME: eisa_nvram_battery_enable *

*
* FUNCTIONAL DESCRIPTION:

*
* The eisa nvram battery enable provides the /dev/presto device
* driver with the ability to enable the battery on the EISA bus
* NVRAM memory expansion board.

*
* CALLED BY:

*
* The /dev/presto device driver calls this interface through the
* nvram_battery_enable member of the presto_interfaceO structure:

*

*
* The envram attach interface performs the initialization of
* nvram_battery_enable.

*
* FORMAL PARAMETERS: None

*
* IMPLICIT INPUTS: None

*
* IMPLICIT OUTPUTS: None

*
* RETURN VALUE:

*

*
*
*
*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*
*
*
*

* 0 -- Battery enabled successfully *
* 1 -- Battery not enabled *
**/

int eisa_nvram_battery_enable()
{

/* Pointer to softc structure */
register struct envram softc *sc = envram_softc;

/**
* The required action is to zero the BDISC control bit. This *
* disables the battery disconnect circuit, thus enabling the *
* battery. *
**/

ENVRAM_WRITEIO_D16(ENVRAM_CSR, WRMEMlsET_LED);
ENVRAM WRITEIO D8(ENVRAM BAT,!BAT DISCON BIT);
mb(); /* Perform a memory barrier-after the writes. */

8-14 EISA Bus Device Driver Source Listing

return(O); /* Battery successfully enabled */

/**
* INTERFACE NAME: eisa_nvram_battery_disable *

*
* FUNCTIONAL DESCRIPTION:

*
* The eisa nvram battery disable provides the /dev/presto device
* driver wIth the ability to disable the battery on the EISA bus
* NVRAM memory expansion board.

*
* The /dev/presto device driver calls this interface through the
* nvram_battery_disable member of the presto_interfaceO structure:

*

*
*
*
*
*
*
*
*
*
*

* presto_interfaceO.nvram_battery_disable=eisa_nvram_battery_disable;*

* *
* The envram attach interface performs the initialization of
* nvram_batterY_disable.

*
* FORMAL PARAMETERS: None

*
* IMPLICIT INPUTS: None

*
* IMPLICIT OUTPUTS: None

*
* RETURN VALUE:

*
*
*

o -- Battery disabled successfully
1 -- Battery not disabled

*
*
*
*
*
*
*
*
*
*
*
*
*

**/

int eisa_nvram_battery_disable()
{

/* Pointer to softc structure */
register struct envram_softc *sc = envram_softc;

/**
* The required action is to send sequence "11001" to the battery *
* disconnect device register. This enables the battery disconnect *
* circuit. *
**/

ENVRAM_WRITEIO_D16(ENVRAM_CSR,WRMEM);
ENVRAM WRITEIO D8(ENVRAM BAT,BAT DISCON BIT);
mb(); - - - - -

ENVRAM_WRITEIO_D8(ENVRAM_BAT,BAT_DISCON_BIT);
mb() ;
ENVRAM_WRITEIO_D8(ENVRAM_BAT,!BAT_DISCON_BIT);
mb() ;
ENVRAM WRITEIO D8(ENVRAM BAT,!BAT DISCON BIT);
mb(); - - - - -

ENVRAM_WRITEIO_D8(ENVRAM_BAT,BAT_DISCON_BIT);
mb();

return(O); /* Battery successfully disabled */

EISA Bus Device Driver Source Listing 8-15

1*** ***************
* INTERFACE NAME: envram read *

* *
* FUNCTIONAL DESCRIPTION: *

* *
*
*

The envram read interface provides the DMA slave capability to: *

*
* 0 Convert the source address passed in by envram probe and the *

Idev/presto driver from the NVRAM address into-a * *
* physical address *
* 0 Copies data from the NVRAM bus address space to *
* system memory *
* *
* Specifically, the envram read interface reads the length block *
* of data pointed to by the source address parameter to the EISA *
* NVRAM destination parameter. This assumes: *

* *
*
*
*

1. The source is *always* from the NVRAM
2. The destination is to Host (Main) memory

* CALLED BY:

*
* The Idev/presto device driver calls this interface through the
* nvram ioreg read and nvram block read members of the
* presto_interfaceO structure: -

*
* presto interfaceO.nvram ioreg read=envram read;
* presto=interfaceO.nvram=block=read=envram=read
*
* The envram attach interface performs the initialization of
* nvram_ioreg_read and nvram_block_read.

*
* The envram_probe interface also calls envram read.

*
* FORMAL PARAMETERS:

*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

* 0 srcaddr -- Specifies the source address of the data to be *
* written. Because this source address is passed *
* in to envram read by envram probe and the *
* Idev/presto device driver, the address format is *
* a kernel segment(KSEG) logical physical address. *

*
*
*
*
*
*
*
*
*
*
*
*

o destaddr -- Specifies the destination address of where to
write the data. Because this destination

*
*
*

address is passed in by the envram probe and the *
Idev/presto device device driver, the format is *
a kernel segment (KSEG) logical physical *
address. *

*
o length -- Specifies the length of the block of data to be *

written. This length is passed in by envram_probe *
and the Idev/presto device driver. *

*
* IMPLICIT INPUTS:

*
*
*
* *

*
*
*

o srcaddr (See above description)
o destaddr (See above description)
o length (See above description)

* IMPLICIT OUTPUTS: None

8-16 EISA Bus Device Driver Source Listing

*
*
*
*

*
* RETURN VALUE: None

*
*

**/

void envram read(source, dest, len)
caddr t source; /* Address of the source data */
caddr-t dest; /* Destination for the source data */
u int len; /* Length of the block */

/* Pointer to softc structure */
register struct envram_softc *sc = envram_softc;

/**
* Copy the data from bus address space to system memory by calling *
* the io copy in interface. This is a generic interface that maps *
* to a machine-specific interface that actually performs the copy *
* from bus address space to system memory. Using io copyin to *
* perform the copy operation makes the device driver-more portable *
* across different CPU architectures and different CPU types *
* within the same architecture. *
**/

io copyin((io handle t)
- KSEG=TO_PHYS((u_long)sourcelsc->saved_mem_sysmap),

(vm_offset_t)dest,len);

/**
* INTERFACE NAME: envram write *

*
* FUNCTIONAL DESCRIPTION:

*

*
*
*

* The envram write interface provides the DMA slave capability to: *

*
*
*
*
*

o Write to the NVRAM
o Perform programmed I/O
o Copy to the NVRAM

* Specifically, the envram write interface writes
* the length block of data-pointed to by the source
* address parameter to the EISA NVRAM destination
* parameter. This assumes:

*
*
*
*

1. The destination is *a"lways* the NVRAM
2. The source is from Host (Main) memory

* CALLED BY:

*
* The /dev/presto device driver calls this interface through the
* nvram ioreg write and nvram block write members of the
* presto_interfaceo structure:

*
* presto interfaceO.nvram ioreg write=envram write;
* presto=interfaceO.nvram=block=write=envram=write

*
* The envram attach interface performs the initialization of
* nvram_ioreg_write and nvram_block_write.

*
* FORMAL PARAMETERS:

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

EISA Bus Device Driver Source Listing 8-17

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

o srcaddr -- Specifies the source address of the data to be
written. Because this source address is passed
in to envram read by the /dev/presto device
driver, the address format is a kernel
segment(KSEG) logical physical address.

o destaddr -- Specifies the destination address of where to
write the data. Because this destination
address is passed in by the /dev/presto device
device driver, the format is a kernel
segment (KSEG) logical physical address.

o length -- Specifies the length of the block of data to be
written. This length is passed in by the
/dev/presto device driver.

* IMPLICIT INPUTS:

*
*
*
*
*

o srcaddr (See above description)
o destaddr (See above description)
o length (See above description)

* IMPLICIT OUTPUTS: None

*
* RETURN VALUE: None

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

**/

void envram write(source, dest, len)
caddr t source; /* Address of the source data */
caddr-t dest; /* Destination for the source data */
u_int- len; /* Length of the block */

/* Pointer to softc structure */
register struct envram softc *sc
vm offset t destptr; /* Stores the
register int xfer; /* size of each
int retry; /* retry counter */
char *ddest = dest; /* destination

envram softc;
destination address */
partial transfer */

pointer */

/**
* Presto WRITE operation: write to NVRAM from Main Memory *
**/

/**
* Use DMA if size is larger than 32 bytes *
**/

if (len> 32) {

/*
* Set up destination address passed from Presto,
* the dest is a main memory virtual address
*/

destptr = KSEG TO PHYS(dest) - sc->cache_base;
ddest (char *)destptr;

/*
* Allign destination to lK
*/

if (!(xfer = ENVRAM XFER SIZE - ((int)ddest & (ENVRAM_XFER_SIZE-l))))

8-18 EISA Bus Device Driver Source Listing

if (xfer > len)
xfer len;

/*
* Allign source to 8K
*/

if ((u int)source/ENVRAM ALLIGN !=
((u int)source+xfer)/ENVRAM ALLIGN)
xfer = xfer - (((u_int)source+xfer) & (ENVRAM_ALLIGN-l»;

while (1)

/*
* set up the 82357 dma controller
*/

if (!(dma map load(xfer, source, (struct proc *)0,
- - sc->ctlr, &sc->sglp, 0, DMA OUT»)

panic ("envram: dma_map_load failure\n"); -

/*
* Set up NVRAM source address
*/

ENVRAM WRITEIO D16(ENVRAM DMAO,((u int) (ddest-4) « 6»;
ENVRAM=WRITEIO=D16(ENVRAM=DMAl,((u=int)ddest» 5»;

/*
* Start NVRAM transfer
*/

ENVRAM_WRITEIO_D16(ENVRAM_CSR,SET_DREQ/WRMEM/SET_LED);
mb();

/*
* Bookeeping, bury behind DMA
*/

len -= xfer;
source += xfer;
ddest += xfer;

/*
* Set up for next, align destination to lK,
* NVRAM only handles DMAs inside of a lk
* alligned address range.
*/

if (!(xfer = ENVRAM_XFER_SIZE - (((int)ddest
& (ENVRAM XFER SIZE-I»»)
xfer = ENVRAM_XFER_SIZE;

if (xfer > len)
xfer len;

/*
* Align source to 8K, source will be memory
* hence 8K for DEC OSF/l pages.
*/

if ((u int)source/ENVRAM ALLIGN !=
((u=int)source+xfer)/ENVRAM_ALLIGN)
xfer = xfer - (((u_int)source+xfer) & (ENVRAM_ALLIGN-l»;

EISA Bus Device Driver Source Listing 8-19

/*

/*
* Spin on SET DREQ bit. If the hardware
* works, this-bit should never be set.
*/

retry = 10;
while (--retry)

if (1 (ENVRAM READIO D16(ENVRAM CSR) & SET_DREQ))
break; -

if (1 length)
break;

/*
* If retry expires the hardware is broken.
*/

if (lretry)
panic("envram: DMA retry expired\n");

return;

* The envram write interface copies the data from system
* memory to bus address space by calling io copyout.
* The io copyout interface is a generic interface that
* maps to a bus- and machine-specific interface that
* actually performs the copy to bus address space.
* Using io copyout to perform the copy operation
* makes the device driver more portable across different
* CPU architectures and different CPU types within
* the same architecture.
*/
io copyout((vrn offset t)source, (io handle t)

- (KSEG_TO_PHYS((u_Iong)dest)lsc->saved_mem_sysmap),
len) ;

/**
* INTERFACE NAME: envram zero *
* *
* FUNCTIONAL DESCRIPTION: *
* *
* The envram zero interface zeroes the "len" bytes of EISA NVRAM *
* memory starting at "addr". *
* *
* FORMAL PARAMETERS: *
* *
*
*
*
*
*
*
*
*
*

o addr - Specifies the starting address of the
NVRAM for this EISA bus memory expansion board to
zero. Because this address is passed in by the
/dev/presto device driver, the format is a kernel
segment (KSEG) logical physical address.

*
*
*
*
*
*

o length - Specifies the number of bytes to zero. This length *
is passed in by the /dev/presto device driver. *

*
* CALLED BY: *
* *
* The /dev/presto device driver calls this interface through the *

8-20 EISA Bus Device Driver Source Listing

* nvram ioreg zero and nvram block zero members of the
* presto_interfaceO structure: -

*
* presto interfaceO.nvram ioreg zero=envram zero;
* presto=interfaceO.nvram=block=zero=envram=zero;

*
* The envram attach interface performs the initialization of
* nvram_iore9_zero and nvram_block_zero.

*
* IMPLICIT INPUTS:

*
*
*
*

o addr (See above description)
o length (See above description)

* IMPLICIT OUTPUTS: None

*
* RETURN VALUE: None.

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

**/

void envram zero(addr, len)
caddr t addr; /* Starting address of EISA NVRAM to zero */
u_int- len; /* Number of bytes to zero */

/* Pointer to softc structure */
register struct envram_softc *sc = envram_softc;

/**
* Zero a block of memory in bus address space by calling the *
* io zero interface. This is a generic interface that maps to a *
* machine-specific interface that actually writes zeros to some *
* location in bus address space. Using io zero to perform the *
* zero operation makes the device driver more portable across *
* different CPU architectures and different CPU types within the *
* same architecture. *
**/

io zero((io handle t)
- KSEG=TO_PHYS((u_long)addrlsc->saved_mem_sysmap), len);

EISA Bus Device Driver Source Listing 8-21

Glossary

device configuration file
A device configuration file provides information on the resources
required to program the EISA bus device. Some of the resources
supplied in this file are dma channel, interrupt channel, and memory
space information. The system vendor supplies the device configuration
file on a floppy diskette. Do not confuse the device configuration file
with the DEC aSFIl system configuration file, which is an ASCII text
file that defines the hardware and software components of the system.
Device configuration files, unlike system configuration files, have CFG
extensions.

See also expansion board configuration file.

Idev/envram device driver
The / dev / envram device driver is a character device driver that
provides read and write services to the / dev /presto device driver.

Idev/presto device driver
The / dev /presto device driver is a disk driver that uses nonvolatile
memory as a cache. It works as a layer between other drivers and the
rest of the DEC aSF/} kernel.

EISA configuration utility (ECU)
The EISA configuration utility (ECU) is a program that reads the
expansion board and device configuration files and, for each option in
the system, generates a conflict-free configuration. The ECU runs on
top of the firmware, not the operating system.

EISA bus expansion board
An EISA bus expansion board is a hardware entity that plugs into EISA
bus connectors. An EISA bus expansion board must contain a readable
product ID.

expansion board configuration file
An expansion board configuration file provides information on the
resources and register values required to program the EISA bus
expansion board. Some of the resources supplied in this file are the
board ID, manufacturer of the board, the interrupt line, DMA channel,
and board memory. The manufacturer of the EISA bus expansion board
supplies the board's configuration file on a floppy diskette. Do not

confuse the expansion board configuration file with the DEC OSFIl
system configuration file, which is an ASCII text file that defines the
hardware and software components of the system. Expansion board
configuration files, unlike system configuration files, have CFG
extensions.

See also device configuration file.

Extended Industry Standard Architecture (EISA)
The Extended Industry Standard Architecture (EISA) bus is· an
industry-standard high-performance bus that is a superset of the 8- and
16-bit Industry Standard Architecture (ISA).

ISA bus
The Industry Standard Architecture (IS A) bus is used in computer
systems that adhere to the ISA. The ISA bus supplies the signals for
performing the following basic functions of the computer system:
memory, VO, and direct memory access (DMA).

nonvolatile random-access memory (NVRAM)

Glossary-2

Nonvolatile random-access memory contains the EISA bus board
information specified in the board's configuration file. It is the ECU
that writes this information to the NVRAM.

A

address space

for the EISA bus, 2-1

adpCconfig member

formal description of eisa_option structure

field,4-5

summary description of eisa_option structure

field, A-17

allocating data structures

review of techniques, 1-2

allocating DMA resources

by calling dma_map_aIloc, 6-28

autoconfiguration

for devices connected to the EISA bus, 5-3

overview of EISA bus model, 5-1

autoconfiguration support section

of device driver, 3-3

B

base_address member

summary description of e_port structure

field, A-18

BAT_DISCON

bit mask to indicate status of disconnect

circuit, 6-7

BAT_DISCON_BIT

bit mask for disabling battery disconnect

circuit, 6-8

Index

BAT_FAIL

bit mask to check for battery failure, 6-7

block device driver

sections of, 3-2f

BOARD_FAILED

software diagnostic register for EISA bus

NVRAM memory expansion board,

6-6

board_id member

formal description of eisa_option structure

field, 4-5

summary description of eisa_option structure

field, A-16

buf structure, 1-2

bus_mem structure

associated include file, A-8

list of member names and data types, A-8

byte ordering

for the EISA bus, 2-2

c
cache_base

description of envram_softc data structure

member, 6-11

cache _kseg_start

description of envram_softc data structure

member, 6-11

cache_offset

description of envram_softc data structure

member, 6-11

cache_size

description of envram_softc data structure

member, 6-11

channel member

summary description of dma structure field,

A-13

summary description of irq structure field,

A-20

character device driver

sections of, 3-2f

conf.c file

to define driver entry points, 6-13

config program

creates envram.h file, 6-13

configuration models, 1-3

EISA bus-specific issues, 7-1

controller structure, 1-2

associated include file, A-II

list of member names and data types, A-II

list of members with specific meanings to

EISA bus, 4-1 t

members with specific meanings to EISA

bus, 4-1

conventions

for data structures, A-2

for device driver-related reference pages,

A-I

for driver interfaces, A-3

for header files, A-I

ctlr

description of envram_softc data structure

member, 6-12

Index-2

ctlr structure pointer

D

declared by envram_attach, 6-28

declared by envram_probe, 6-21

data size

supported by EISA bus, 2-2

data structures, 1-2

allocation techniques for, 1-2

discussion of conventions used for reference

(man) page, A-2

list of with summary descriptions, A-7t

declarations section

description of code example for /dev/envram

device driver, 6-15 to 6-17

decode member

summary description of bus_mem structure

field, A-9

designing a device driver, I-I

/dev/envram device driver

convention used in example code, 6-2

defined, I

envram_data.c header file, 6-10

envram_reg.h file, 6-4

include files section, 6-13

introductory discussion, 6-1

overview, 6-2

parts, 6-lt

relationship to !dev/presto device driver, 6-3f

/dev/presto device driver

defined, I

relationship to /dev/envram device driver,

6-3f

device auto configuration

See autoconfiguration

device configuration file

defined, I

device driver

concepts, I-I

data structures used by, 4-4

design, I-I

EISA bus

include files section, 3-3

review of allocating techniques, 1-2

review of configuration models, 1-3

device register header file

for the /dev/envram device driver, 6-4

device structure, 1-2

diag_status

description of envram_softc data structure

member, 6-11

dma structure

associated include file, A-13

list of member names and data types, A-13

DMA_CHAN_S

bit mask for channel 5 DMA operations, 6-S

DMA_CHAN_7

bit mask for channel 7 DMA operations, 6-7

dma_map_alloc interface

called by envram_attach to allocate DMA

resources, 6-2S

driver interface

discussion of conventions used for reference

(man) page, A-3

driver interfaces

list of with summary descriptions, A-22t

driver structure, 1-2

initialized by /dev/envram driver, 6-17

driver_name member

formal description of eisa_option structure

field,4-5

driver_name member (cont.)

E

summary description of eisa_option structure

field, A-17

e_port structure

associated include file, A-IS

list of member names and data types, A-IS

ECU

defined, I

EISA

defined, 2

EISA bus

address space, 2-1

byte ordering, 2-2

creating a device configuration file, 5-4

creating an expansion board configuration

file, 5-4

data size support, 2-2

hardware architecture, 2-1

reading information generated by the ECU,

5-4

setting up a probe interface, 3-4

setting up a slave interface, 3-6

software architecture, 2-2

EISA bus expansion board

defined, 1

EISA bus NVRAM memory expansion board

definition of BAT_DISCON bit mask, 6-7

definition of BAT_DISCON_BIT bit mask,

6-S

definition of BAT_FAIL bit mask, 6-7

definition of BOARD_FAILED software

diagnostic register, 6-6

definition of DMA_CHAN_7 bit mask, 6-7

definition of DMA_CHAN_5 bit mask, 6-S

Index-3

EISA bus NVRAM memory expansion board

(cont.)

definition of EISA_ENABLE_BOARD bit

mask,6-8

definition of ENBL_BAT_INT bit mask, 6-7

definition of ENBL_PFAIL_INT bit mask,

6-7

definition of ENVRAM_ALLIGN constant,

6-9

definition of ENVRAM_BAT device register,

6-5

definition of ENVRAM_CACHE_OFFSET

software diagnostic register, 6-6

definition of ENVRAM_CACHED constant,

6-8

definition of ENVRAM_CONFIG device

register, 6-5

definition of ENVRAM_ CSR device register,

6-5

definition of ENVRAM_CTRL device

register, 6-5

definition of ENVRAM_DIAG_REGISTER

software diagnostic register, 6-6

definition of ENVRAM_DIAG_RESVED

software diagnostic register, 6-6

definition of ENVRAM_DMAO device

register, 6-6

definition of ENVRAM_DMA 1 device

register, 6-6

definition of ENVRAM_HIBASE device

register, 6-5

definition of ENVRAM_ID device register,

6-5

definition of ENVRAM_ID_MASK bit mask,

6-8

definition of ENVRAM_MAPPED constant,

6-8

Index-4

EISA bus NVRAM memory expansion board

(cont.)

definition of ENVRAM_NOTCAHCED

constant, 6-8

definition of ENVRAM_NOTMAPPED

constant, 6-8

definition of ENVRAM_XFER_SIZE

constant, 6-9

definition of SET_DREQ bit mask, 6-7

definition of SET_LED bit mask, 6-7

definition of WRMEM bit mask, 6-7

EISA configuration utility

See ECU

eisa_data file

use with mkeisadata utility, 7-1

EISA_ENABLE_BOARD

bit mask to make memory available, 6-8

eisa.h file

included in Idev/envram driver, 6-13

eisa_nvram_battery _disable interface

description of code example for Idev/envram

device driver, 6-39 to 6--41

description of tasks, 6-39

eisa_nvram_battery _enable interface

description of code example for /dev/envram

device driver, 6-37 to 6-39

description of tasks, 6-37

eisa_nvram_battery _status interface

description of code example for /dev/envram

device driver, 6-35 to 6-36

description of tasks, 6-35

eisa_nvram_status interface

description of tasks, 6-33

eisa_option structure

associated include file, A-16

list of member names and data types, 4--4t,

A-16

eisa_option_data.c file

contents of. 4-5

ENBL_BA T _INT

bit mask to enable battery fail interrupt, 6-7

ENBL_PF AIL_INT

bit mask to enable power failure interrupt,

6-7

ENVRAM_ALLIGN

constant to DMA alignment requirement, 6-9

envram_attach interface

description of code example for Idev/envram

device driver, 6-28 to 6-30

description of tasks, 6-27

initialized in envramdriver structure, 6-17

ENVRAM_BAT

device register for EISA bus NVRAM

memory expansion board, 6-5

ENVRAM_CACHE_OFFSET

software diagnostic register for EISA bus

NVRAM memory expansion board,

6-6

ENVRAM_CACHED

constant to indicate use of kseg space, 6-8

ENVRAM_CONFIG

device register for EISA bus NVRAM

memory expansion board, 6-5

ENVRAM_CSR

device register for EISA bus NVRAM

memory expansion board, 6-5

ENVRAM_CTRL

device register for EISA bus NVRAM

memory expansion board, 6-5

envram_data.c file

included in Idev/envram driver, 6-13

envram_data.c header file

description of code example for Idev/envram

device dri ver

envram_data.c header file (cant.)

description of code example for Idev/envram

device driver (cont.)

Book Title (cont.)

6-10 to 6-12 (cont.)

(cont.) ,6-10 to 6-12

name_data.c file for Idev/envram device

driver, 6-10

ENVRAM_DIAG_REGISTER

software diagnostic register for EISA bus

NVRAM memory expansion board,

6-6

ENVRAM_DIAG_RESVED

software diagnostic register for EISA bus

NVRAM memory expansion board,

6-6

ENVRAM_DMAO

device register for EISA bus NVRAM

memory expansion board, 6-6

ENVRAM_DMAI

device register for EISA bus NVRAM

memory expansion board, 6-6

envram.h file

header file created by config program, 6-13

ENVRAM_HIBASE

device register for EISA bus NVRAM

memory expansion board, 6-5

ENVRAM_ID

device register for EISA bus NVRAM

memory expansion board, 6-5

stored in hw _id variable by envram_probe,

6-21

ENVRAM_ID_MASK

bit mask for checking hardware ID, 6-8

Index-5

ENVRAM_MAPPED

constant to indicate buffer was mapped, 6-8

ENVRAM_NOTCAHCED

constant to indicate use of a cached space,

6-8

ENVRAM_NOTMAPPED

constant to indicate buffer was not mapped,

6-8

envram_probe interface

description of code example for /dev/envram

device driver, 6-20 to 6-26

description of tasks, 6-19

initialized in envramdriver structure, 6-17

envram_read interface

description of code example for /dev/envram

device driver, 6-42 to 6-43

description of tasks, 6-42

ENVRAM_READIO_DS

construction of, 6-16

ENVRAM_READIO_D16

construction of, 6-16

ENVRAM_READIO_D32

construction of, 6-16

envram_reg.h file

description of code example for /dev/envram

device driver, 6-4 to 6-9

device register header file for Idev/envram

device driver, 6-4

included in /dev/envram driver, 6-14

envram_softc data structure

defined, 6-10

envram_softc structure

declared by eisa_nvram_battery_disable,

6-39

declared by eisa_nvram_battery_enable, 6-37

declared by eisa_nvram_battery_status, 6-35

Index-6

envram_softc structure (cont.)

declared by eisa_nvram_status, 6-33

declared by envram_attach, 6-28

declared by envram_probe, 6-21

declared by envram_read, 6-43

declared by envram_ write, 6-46

declared by envram_zero, 6-50

envram_ssn interface

description of code example for /dev/envram

device driver, 6-31 to 6-32

description of tasks, 6-31

envram_ write interface

description of code example for /dev/envram

device driver, 6-45 to 6-49

description of tasks, 6-44

ENVRAM_XFER_SIZE

constant to indicate maximum DMA transfer

size, 6-9

envram_zero interface

description of code example for /dev/envram

device driver, 6-50 to 6-51

description of tasks, 6-50

envramdriver structure

driver structure for /dev/envram driver, 6-17

expansion board configuration file

defined,2

Extended Industry Standard Architecture

See EISA

F
function member

formal description of eisa_option structure

field,4-5

summary description of eisa_option structure

field, A-16

G

gathering information, I-I

H

hardware architecture

for the EISA bus, 2-1

header files

discussion of conventions used for reference

(man) page, A-I

list of with summary descriptions, A-5t

include files

description of code example for Idev/envram

device driver, 6-13 to 6-14

include files section, 3-3

for Idev/envram device driver, 6-13

Industry Standard Architecture

See ISA bus

information gathering, I-I

intcafCattach member

formal description of eisa_option structure

field,4-5

summary description of eisa_option structure

field, A-I7

intcb4_probe member

formal description of eisa_option structure

field,4-5

summary description of eisa_option structure

field, A-17

irq structure

associated include file, A-20

list of member names and data types, A-20

is_shared member

summary description of dma structure field,

A-I4

is_shared member (cont.)

summary description of e_po11 structure

field, A-19

summary description of irq structure field,

A-21

ISA bus

defined, 2

isram member

summary description of bus_mem structure

field, A-9

M

mkeisadata utility

use with eisa_data file, 7-1

mode member

summary description of dma structure field,

A-15

N

name_data.c header file

for the Idev/envram device driver, 6-10

NENVRAM

compile time variable used in conditional

compilation of Idev/envram, 6-12

nonvolatile random-access memory

See NVRAM

numb_oCports member

summary description of e_port structure

field, A-IS

NVRAM

. defined, 2

NVRAM status diagnostics

defined in presto.h, 6-33

NVRAM_BAD constant

return from eisa_nvram_status, 6-33

Index-7

nvram_battery _info structure

filled in by eisa_nvram_battery_status, 6-35

NVRAM_RDONL Y constant

return from eisa_nvram_status, 6-33

p

panic interface

called by envram_attach to cause system

crash, 6-28

physaddr member

formal description of controller structure

field, 4-3

summary description of controller structure

field, A-12

portability of device drivers, 1-3

presto.h file

defines NVRAM status diagnostics, 6-33

defines nvram_battery _info structure, 6-35

description of contents, 6-29

included in /dev/envram driver, 6-13

presto_init interface

called by envram_attach, 6-30

presto_interface structure

description, 6-29

presto_interfaceO structure

declared by presto_interface, 6-29

PRFSIZE constant

to describe buffering handled by /dev/presto

driver, 6-30

probe driver interface

See also xxprobe driver interface

setting up xxprobe in autoconfiguration

support section, 3-4

use of driver structure to define entry point,

3-3

Index-8

R

read_io_port

used to construct NVRAM read 110

interfaces, 6-16

regbase

description of envram_softc data structure

member, 6-10, 6-11

restart parameter block

See rpb structure

rpb structure

declared by envram_ssn, 6-31

running the ECU, 5-4

s
saved_mem_sysmap

description of envram_softc data structure

member, 6-11

SET_DREQ

bit mask to set device requirements for

DMA,6-7

SET_LED

bit mask to tum on LED, 6-7

sglp

description of envram_softc data structure

member, 6-12

size member

summary description of bus_mem structure

field, A-9

slave driver interface

See also xxslave driver interface

use of driver structure to define entry point,

3-3

slave interface

setting up xx slave in autoconfiguration

support section, 3-6

slot member

formal description of controller structure

field, 4-2

summary description of controller structure

field, A-II

software architecture

for the EISA bus, 2-2

starCaddr member

summary description of bus_mem structure

field, A-9

status section

description of code example for /dev/envram

device driver, 6-33

system configuration file

callout to mkeisadata utility, 7-3

T

timing member

summary description of dma structure field,

A-I4

trigger member

summary description of irq structure field,

A-20

type member

u

formal description of eisa_option structure

field, 4-5

summary description of eisa_option structure

field, A-I7

uio structure, 1-2

uniCsize member

summary description of bus_mem structure

field, A-9

w
WRITE_BUSIO_DS

construction of, 6-17

WRITE_BUSIO_D16

construction of, 6-17

WRITE_BUSIO _D32

construction of, 6-17

write_io_port

used to construct NVRAM write 110

interfaces, 6-17

WRMEM

bit mask to enable writes, 6-7

x
xfer_size member

summary description of dma structure field,

A-14

xxprobe driver interface

function definition, A-23

xxprobe interface

example code fragment, 3-4

xxslave driver interface

function definition, A-25

xxslave interface

example code fragment, 3-6

Index-9

How to Order Additional Documentation

Technical Support
If you need help deciding which documentation best meets your needs, call 800-DIGITAL
(800-344-4825) before placing your electronic, telephone, or direct mail order.

Electronic Orders
To place an order at the Electronic Store, dial 800-234-1998 using a 1200- or 2400-bps
modem from anywhere in the USA, Canada, or Puerto Rico. If you need assistance using the
Electronic Store, call 800-DIGITAL (800-344-4825).

Telephone and Direct Mail Orders

Your Location

Continental USA,
Alaska, or Hawaii

Puerto Rico

Canada

International

Internala

Call

800-DIGITAL

809-754-7575

800-267-6215

Contact

Digital Equipment Corporation
P.O. Box CS2008
Nashua, New Hampshire 03061

Local Digital subsidiary

Digital Equipment of Canada
Attn: DECdirect Operations KA0212
P.O. Box 13000
100 Herzberg Road
Kanata, Ontario, Canada K2K 2A6

Local Digital subsidiary or
approved distributor

SSB Order Processing - NQO/VI9
or
U. S. Software Supply Business
Digital Equipment Corporation
10 Cotton Road
Nashua, NH 03063-1260

a For internal orders, you must submit an Internal Software Order Form (EN-01740-07).

Reader's Comments DEC OSF/1
Writing EISA Bus Device Drivers

AA-QOR6A-TE

Please use this postage-paid form to comment on this manual. If you require a written reply
to a software problem and are eligible to receive one under Software Performance Report
(SPR) service, submit your comments on an SPR form.

Thank you for your assistance.

Please rate this manual:
Accuracy (software works as manual says)
Completeness (enough information)
Clarity (easy to understand)
Organization (structure of subject matter)
Figures (useful)
Examples (useful)
Index (ability to find topic)
Page layout (easy to find information)

What would you like to see more/less of?

What do you like best about this manual?

What do you like least about this manual?

Excellent
D
D
D
D
D
D
D
D

Please list errors you have found in this manual:

Page Description

Additional comments or suggestions to improve this manual:

Good
D o
D
D
D
D
D
D

What version of the software described by this manual are you using?

Name/Title _________________ _ Dept.
Company
Mailing Address
___________ Email Phone

Fair
D
D
D
D
D
o
D
o

Date

Poor
D
D
D
D
D
D
D
D

- - - - Do Not Tear - Fold Here and Tape . -

~lmaama1M

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
OPEN SOFTWARE PUBLICATIONS MANAGER
ZK03-3N32
110 SPIT BROOK ROAD
NASHUA NH 03062-9987

Ilh 1IIIIIIIIIIIIIIIIIIhlhlllllllllllhlili hlh II

- - - Do Not Tear - Fold Here

No Postage

Necessary

if Mailed in the

United States

Cut
Along
Dotted
Line

Reader's Comments DEC OSF/1
Writing EISA Bus Device Drivers

AA-QOR6A-TE

Please use this postage-paid form to comment on this manual. If you require a written reply
to a software problem and are eligible to receive one under Software Performance Report
(SPR) service, submit your comments on an SPR form.

Thank you for your assistance.

Please rate this manual:
Accuracy (software works as manual says)
Completeness (enough information)
Clarity (easy to understand)
Organization (structure of subject matter)
Figures (useful)
Examples (useful)
Index (ability to find topic)
Page layout (easy to find information)

What would you like to see more/less of?

What do you like best about this manual?

What do you like least about this manual?

Excellent
o o
o
o
o
o
o o

Please list errors you have found in this manual:

Page Description

Additional comments or suggestions to improve this manual:

Good
o o
o o
o
o o
o

What version of the software described by this manual are you using?

Name/Title Dept.

Fair
o o
o o
o
o o
o

___ Date Company
Mailing Address
_____________________ Email ____________________ Phone

Poor
o o
o o
o
o o
o

1
1

---- DoNot Tear- Fold Here and Tape .---1

~lmaamaTM

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

DIGITAL EQUIPMENT CORPORATION
OPEN SOFTWARE PUBLICATIONS MANAGER
ZK03-3/Y32
110 SPIT BROOK ROAD
NASHUA NH 03062-9987

1IIIIIIIIh 111111111111 II III 1111111111111111111111 II

Do Not Tear - Fold Here

No Postage

Necessary

if Mailed in the

United States

Cut
Along
Dotted
Line

