INSTITUTE FOR ADVANCED PROFESSIONAL STUDIES

Technology Consultation and Training Worldwide
955 MASSACHUSETTS AVENUE
CAMBRIDGE, MASSACHUSETTS 02139-3107
(617) 497-2075 « FAX: (617) 497-4829 » email @ iaps.com

OSF/1 Internals

Volume I

For the Technical Staff of
Digital Equipment Corporation

Colorado Springs

Release 1.0

Amsterdam » Boston « Dallas « London « Los Angeles « Paris « San Francisco « Tokyo « Washington, DC

Copyright Notice

The material in this binder is either Copyright 1992 by the Institute for
Advanced Professional Studies or Open Software Foundation, or reproduced for
use in this course by IAPS with permission from the copyright holder.

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying or otherwise, without the prior written permission of
the Institute for Advanced Professional Studies.

ies of these materials are available strictly through the Institute
for Advanced Professional Studies, 955 Massachusetts Avenue, Cambridge, MA
02139.

The ideas and designs set forth in the course materials are the property of the
Institute for Advanced Professional Studies. These materials are not to be
distributed to third persons without the express written permission of IAPS.

Lionch @72
f:‘n)’fz @]

Contents

Overview
1000730 T D100 o1 . () 4 L AP 0-1
P O qUISIIES . . . oottt e e et 0-1
7N a1 1« T 0-1
@001 11 511 (o -1 K- 0-2
B3 (o (11t 0-2
(S « Lo T PN 0-2
Recommended Readingsccouniitiiiiin ittt iittieetietneearenenenonanoananns 0-2

SHde ConVERtIONSttt ittt ittt iet et eteeenaenasseeaseeeaaseianaanans 0-4

Module 1 — Introduction

L0 5] 1ot PP 1-1
What is OSF /LT ... i e it e it e e e e it 1-2
Organization of the OSF/1Kemelo i i i i et e i i i e caneans 1-8
Threadsand Parallelismt i iiieeiiiee e ceee 1412
IntroductioN tO MACh oot i ittt et 1-20
The Extensible K€mel i i i it i it i e it iaaeaannans 1-36
25, (0 1N 1-46

Module 2 — The Process Abstraction

L0 1] 5T 1A AP 2-1
g (0TSt 2-6
System Calls in OSF/L i i i i i tet st tteesaaaeeraaennaenanans 2-16
Synchronization and Thread Managementc.ovuintiieneenreenenrnenneneenoannns 2-26
Signals and Exception Handling ittt ittt i, 2-64
01 (T Vo LN 2-78
Yo 1110 111 1 7 U 2-86
Thread POOLSttt ittt ettt e et et et a et 2-104
Zoned Memory ALIOCAtiONttt ittt ittt ittt ittt 2-106
Exercises P 2-108

Module 3 — Messages and Ports
L0 o] 1T 1 U e 3-1

MO AR - oot tie ettt et e e e e e e 34
2o 1 1. Z50 3-8
FIoW Of GOm0l . .o oottt t ittt et ettt ettt teetteae taaneenteenaaaaeenaneeneenennsns 3-28
X OI iSO « ot it ittt ittt e eeoeeeesenaeesseeseessesenseeeeneseoneaneoesenenenaeennns 3-32

Module 4 — Virtual Memory

10 0} T P 4-1
Lazy Evaluationouiiniiuiiiniiiiiiiiiiii ittt et iiea et eiiaiennannannns 44
VM COMPODNENLS .. ot ve e v et eeeeaeenneneastaeasansaenenasssseasesosnaesaeaesasaennnn 4-6
1LY 5 14 T o 00 o 1= 4-30
Copying and Sharingcuunitnitii ittt i i ttiet ittt aatreeeeenacennaranenns 4-58
The PmapModuleottt ittt ettt et e eaeaeaaeaaannns 4-102
25 3 (o2 4-120

Overview
]

Course Description

OSF/1 Internals is a four-day course designed to introduce the fundamentals of the OSF/1 operating system. The
course does not contain source-code level material. It offers students a deep technical introduction to the OSF/1

" kemel.

Prerequisites

The OSF/1 Intemals course is not a beginning operating systems course. It assumes familiarity with operational
principles of the following:

® virtual memory

® one or more of the following file systems:
— UFS
— NFS
— System V

¢ UNIX execution environment

Familiarity with the operational principles of the following is recommended:
® sockets
® streams

® system-level C programming

Audience

The intended course audience is made up of system programmers, system support personnel, application
engineers, system administrators, and customer support staff. The course assumes that the student is familiar with
UNIX and C programming at the system-call level. No knowledge of Mach is assumed.

Overview

Course Goals

After completing this course the student should be able to demonstrate an understanding of OSF/1 Internals by
describing:

® how OSF/1 enhances traditional UNIX
® how Mach is utilized in OSF/1
® how OSF/1 exploits parallel architectures

® the security features of OSF/1

Exercises

At the end of each module are two sets of exercises. The first set tests the student’s performance with respect to
each of the major objectives. The second set tests for a deeper understanding of the material: these exercises may
require the student to synthesize the knowledge gained from the course, and, in some cases, require that the
student delve into other materials. These questions should be considered optional. They may be used by the
student as a means for studying the material at a level deeper than is presented in this course.

The answers to the exercises are given in the appendix at the end of the book. The answers to the first set of
exercises consists merely of a reference to the pages in the book where the answer can be found. The answers to
the second set of exercises is sketched out in the appendix; they are not fully developed.

Agenda

The following schedule will vary depending on the number of questions raised or the level of interest shown by
the students.

Day 1. Module 1 through Module 3
Day 2: Module 4 through Module 5
Day 3: Module 6 though Module 8

Day4: Module 9 through Module 11
Recommended Readings

A discussion of most of the topics covered in this course can be found in Open Software Foundation, 1990a (this
and other bibliographic citations appear in the bibiography). Two recommended books on UNIX are Bach, 1986

0-2

Overview

and Leffler, 1989 (the latter covers Berkeley UNIX and is thus the most relevant). A description of the
programmer’s interface to OSF/1 can be found in Open Software Foundation 1989.

Slide Conventions

helvetica font

task

task has send rights

task has receive rights

a task with an unspecified number of additional
vm_map_entrys.

thread

disk

buffer

pmap

encloses an indirect reference to a routine

system call

04

Slide Conventions

' indicates the flow of control
m boxes with square comers contain all of the incore

pages

boxes with rounded comers contain all of the pages
assocated with the vm_object

bug

0-5

0-6

Slide Conventions

Module 1 — Introduction
. |

Module Contents

1.

What is OSF 1 . o e e 1-2
The components of the OSF/1 package

What the course covers

Where the technology originated

Why this technology was chosen

Organizationof the OSF/1 Kemel ittt eie i 1-8

Threads and Parallelism i i e e e 1-12
Concurrency vs. parallelism
Types of hardware for OSF/1

L INtrodUCHON 0 MaCh .. oo e e e 1-20

Fundamental abstractions
Basic system calls

. The Extensible Kemelo e e e e et e e e e e e e 1-36

Network shared memory

Module Objectives

In order to demonstrate an awareness of the components of OSF/1, including its Mach functionality, the student
should be able to:

list the components of OSF/1

describe the functionality fhat OSF/1 supplies that is supplied neither by traditional UNIX nor Mach
explain how Mach and UNIX coexist within the OSF/1 kemel

list the five fundamental abstractions of Mach and briefly describe each

give an example of how the OSF/1 kemel can be easily extended to provide functionality not found in the
traditional UNIX kemel

1-1

Module 1 — Background and Introduction

1-1. What is OSF/1?

What is OSF/1? —w ATAT [cerse regeived

42 oo PP
e Parallelized 4.4BSD UNIX

/Nach ,
e Mach kenf:iﬁ Lo Fhes zér //Q/’é//@/

o Mpelipent & TP - Lygics]
Yo [ohes

ya e Logical volume manager
4 e Streams (éc?y/ﬁ V.4 U(S' § 1/]
» Extensible loader

¢ Dynamic configurability

e Bl-compliant -
Spepy 50
or C2 }

11 © 1990, 1991 Open Software Foundation
LFFs

S5

ﬂWWg ’hof VW “’/ﬂ'éZ

1-2

Module 1 — Background and Introduction

Student Notes: What is OSF/1?

OSF/1’s UNIX technology is derived from the latest version of Berkeley UNIX—4.3renoBSD (the test version of
4 4BSD). This code has been modified by Encore so that it can efficiently exploit multiprocessors: all user and
kernel processing (with minor exceptions) can take place in parallel on multiple processors. OSF/1 supports all
the major UNIX file systems: the S5 file system (derived from that of AT&T), the UFS file system (derived from
4.3renoBSD), and the NFS file system (derived from a totally new implementation done at the University of
Guelph). The latter two file systems have been parallelized.

Mach is intended to be a foundation for further operating-system development. It is a simple, extensible kemnel
that can be used to construct the sort of functionality expected of normal operating systems, such as processes, file
systems, etc. Unlike many operating systems, Mach was designed from the ground up for parallel and distributed
environments.

Mach is relatively easy to port to many different architectures (there are Mach implementations on most of today’s
major architectures).

OSF/1’s logical volume manager (derived from IBM’s AIX operating system) allows file systems to span
volumes, thus eliminating a major restriction on their use, as well as providing additional reliability through disk
mirroring when desired. The streams implementation (derived from technology supplied by the Mentat
Corporation) is compatible with that of SVR3, but is transparently parallelized: existing streams code can be
made to run in parallel without modification. The extensible loader allows multiple load formats, shared libraries,
and run-time loading, as well as other useful capabilities. The loader lets the user load modules into the kernel
dynamically. Thus device drivers, streams modules, file systems, and protocols can be added to a running system.

OSF/1 can be compiled to be either C2- or B1-compliant, depending on the user’s security requirements (this
technology is derived from that supplied by SecureWare).

13

Module 1 — Background and Introduction

1-2. What is OSF/1?

UNIX

¢ Compliance /)
_ POSIX 1003.1 —— S92 S/
_ Eﬂg Issue 2 (goal)
— XPG Issue 3 Xaf.;,

o 4.4BSD framework
— processes
— file systems
— terminals

— sockets

12 © 1990, 1991 Open Software Foundation

14

Module 1 — Background and Introduction

Student Notes: UNIX

The UNIX portion of OSF/1 includes both traditional UNIX functionality and new functionality implemented
within the UNIX framework. OSF/1 is fully compliant with all of the standards given on the slide; the final
arbiter in the face of conflicting specifications is the AES. Compliances are described in detail in the Open
Software Foundation, 1989.

The base technology for UNIX is 4.4BSD. OSF changed the code in a number of places, primarily for integration
with Mach and for parallelization. A very good description of Berkeley UNIX can be found in Leffler, 1989.
Required System-5 functionality that is not in BSD has been added. In particular, OSF/1 includes an
SVR3-compatible streams package, which allows transparent parallelization of streams modules.

1-5

Module 1 — Background and Introduction

1-3. What is OSF/1?

Mach ~—onheonse

UNIX support

4 tasks and threads
7e extended UNIX processes
~ e scheduling
-« multiprocessing primitives

< virtual memory

Extensibility

e microkemel architecture

1-3.

551 ME

1-6

© 1990, 1991 Open Software Foundation

Module 1 — Background and Introduction

Student Notes: Mach

The primary function of Mach in OSF/1 is to support UNIX. UNIX processes are built from the Mach notions of
tasks and threads. Unlike traditional single-threaded UNIX processes, OSF/1 processes can be multithreaded.
Mach is responsible for scheduling the various threads. OSF/1 allows users to select from a number (currently
two) of scheduling policies and, on multiprocessors, it allows user control of processor allocation.

Traditional UNIX event-oriented synchronization has been extended and made safer in Mach; Mach supplies
varieties of interprocessor locks to support multiprocessor synchronization.

Mach’s virtual memory system completely replaces that of UNIX. It provides efficient and portable support for
all of UNIX’s VM needs as well as extensibility for future requirements.

A key point to remember is that Mach fosters continued improvements. In particular, as part of the microkernel
project, all non-Mach portions of the system will be moved from the kemel to various user-level tasks, to produce
a very simple, pure Mach kemel in which user tasks provide many of the operating-system functions.

An example of the easy extensibility obtained with Mach is the network memory server (discussed soon), which-
provides the abstraction of shared memory among threads running on different processes.

%;% \ﬁ/%/ f/ﬂﬁca
Plroats 27 conflel 1% P v

1-7

Module 1 — Background and Introduction

1-4. Organization of the OSF/1 Kernel

1-4, © 1990, 1991 Open Software Foundation

1-8

Module 1 — Background and Introduction

Student Notes: OSF/1

19

Module 1 — Background and Introduction

1-5. Organization of the OSF/1 Kernel

UNIX with Mach

e UNIXinthekemel (SR IK Dvrts cheice
» UNIX in a single task OKﬂ'/Z MK — ;/”4* %’ %éﬁin{

e UNIX as a set of tasks

© 1950, 1991 Open Sofware Foundation

1-10

Module 1 — Background and Introduction

Student Notes: UNIX with Mach

The OSF/1 implementation of UNIX coexists with Mach in the kemel, allowing the Mach-based technology to
provide both performance and functional enhancements to standard UNIX technology. Unlike earlier versions of
UNIX with Mach, the OSF/1 version is, except for a few infrequently executed subsystems, fully parallelized.

Current research at CMU, OSF, and elsewhere is directed towards providing UNIX functionality efficiently with
user-level tasks supported by a “pure’” Mach kernel. The first approach provided the UNIX functionality in a
single task. This arrangement provided a pageable, interruptible, multithreaded UNIX, but it lacked much support
for extensibility. Work at CMU and OSF is proceeding on a more extensible approach, the microkernel
architecture, in which a set of tasks provides UNIX functionality. By breaking up UNIX along functional
boundaries, various components can be replaced or UNIX components can be used to build other systems.

If this approach is successful, then not only UNIX but also other operating system interfaces can be implemented
on top of the microkemel. By breaking up UNIX along functional boundaries, certain UNIX modules can be
reused to implement other interfaces, and the UNIX interface can be improved or modified by substituting for
certain modules.

For further discussion see Golub, 1990.

1-11

Module 1 — Background and Introduction

1-6. Threads and Parallelism
-

Concurrency

processor scheduler threads

© 1990, 1991 Open Software Foundation

1-12

' |

Module 1 — Background and Introduction

Student Notes: Concurrency

—

Concurrency means that multiple threads are in progress at one time; on a single processor, their execution might

be multiplexed.

1-13

Module 1 — Background and Introduction

1-7. Threads and Parallelism

Parallelism

Pprocessors threads

2

© 1990,1991 Open Software Foundation

1-14

I | . | I N I BN N T s I T S S .

Module 1 — Background and Introduction

Student Notes: Parallelism

Parallelism means that multiple threads are executing simultaneously: parallelism requires multiple processors.
The architecture assumed in OSF/1 is a shared-memory processor, i.e., all processors have equal access to
memory.

1-15

Module 1 — Background and Introduction

1-8. Threads and Parallelism

Multithreaded Process: Server

client 1

client 2

~— | client 3

18. © 1990, 1991 Open Software Foundation

1-16

Module 1 — Background and Introduction

Student Notes: Multithreaded Process: Server

A typical example of the use of multithreaded processes in a uniprocessor environment is a server that deals with
multiple clients concurrently. Rather than having to multiplex the clients explicitly, it can make use of the kernel’s

multiplexing of multiple threads.

1-17

Module 1 — Background and Introduction

1-9. Threads and Parallelism

Multithreaded Processes: Exploiting a

Shared-Memory Multiprocessor

n p p

A B C
e m X p inner products to be computed

e ¢ processors available

1-9. © 1990, 1991 Open Software Foundation

/9%
%

1-18

Module 1 — Background and Introduction

Student Notes: Multithreaded Processes: Exploiting a Shared-Memory
Multiprocessor

An example of the use of a shared-memory multiprocessor is the computation of the product of two matrices.
With a simple algorithm, this would involve computing a number of inner products. One can utilize all processors
of shared-memory multiprocessors by creating a multithreaded process with one thread per processor. If m x p
inner products need to be computed and we have ¢ processors, then each thread would compute (m x p)/ t inner
products. —_—

U

1-19

Module 1 — Background and Introduction

1-10. Introduction to Mach

Mach

Fundamental abstractions

¢ tasks

e threads

messages
. ports«fj» cpTire Comon /M{/ , [ibe PP

¢ memory objects

© 1990, 1991 Open Sofiware Foundation

1-20

Module 1 — Background and Introduction

Student Notes: Mach

A task is a holder of capabilities, such as address space and communication channels. These capabilities are
represented as ports, and the kernel itself is viewed as a task.

A thread is the usual notion of a thread of control. The equivalent of a UNIX process is one task containing a
single thread. In Mach (and in OSF/1), however, a task may have multiple threads. Tasks may have disjoint
address spaces or they may share memory with each other.

Threads can communicate by exchanging messages. (Any two threads can communicate this way, although it is
more efficient for threads in the same task to communicate using shared memory.)

Ports have two purposes: they represent communication channels and they are object references. Unlike sockets
in BSD, which are the endpoints of a communication channel, a port is the entire channel. An object holding a
reference to the output end of a port is securely named by references to the input side.

Memory objects are “things” that can be mapped into a task’s address space. These things might be temporary
storage (e.g., UNIX’s BSS and stack), files, or objects defined by user-provided servers.

7/

T

1-21

Module 1 — Background and Introduction

1-11. Introduction to Mach

Mach Messages

System calls:
msg_s/t_a/n_g(header, options, timeout)
msg_gci(a_i_\@(header, options, timeout)

msg_rpc(header, options, send_size, rcv_size, send_timeout,
rcv_timeout)

1-11. © 1990, 1991 Open Software Foundation

1-22

Module 1 — Background and Introduction

Student Notes: Mach Messages

A message is represented by a header that names the port, gives the type of the message (e.g. integer or real, or a
port), and either contains a small amount of data or refers to a larger amount of data.

1-23

Module 1 — Background and Introduction

1-12. Introduction te Mach

Ports

Clren T

| /- task with
= | receive rights
~
tasks with

send rights

112, © 1990, 1991 Open Software Foundation

1-24

Module 1 — Background and Introduction

Student Notes: Ports

A task may have either send and receive rights to a port or just send rights. However, while only one task may
have receive rights, any number may have send rights. Thus one task can provide a service to multiple clients.

Ports in OSF/1 are most commonly used as object references: send rights on a port represent the name of the
associated object.

System calls:
e port_allocate(task, port_name): create a port, giving task both send and receive rights

e port_deallocate(task, port_name): eliminate task’s rights to the named port

1-25

Module 1 — Background and Introduction

1-13. Introduction to Mach

Tasks
B
task kernel I kernel task
port object
notify port kernel
: exception
exception port handler
|
bootstrap port |—®»——— name server =
| S — J
1-13, © 1990, 1991 Open Software Foundation

1-26

Module 1 — Background and Introduction

Student Notes: Tasks

Tasks are the basic unit of protection: threads within a task share all of the task’s capabilities (ports) and thus are
not protected from one another.

Each task has four ports associated with it: ,
O et Fueherce fonel) 2 sk
1. Task kernel port: essefitially the name of the task. In order to perform a system call that affects a task, the
calling thread must have send rights to the task kemel port of this task. Thus threads in other tasks may issue
system calls on a task’s behalf if their tasks have send rights to the target task’s task kemel port. This ability
is particularly useful for debuggers. The special call task_self returns send rights for the current task.

2. _Notify port. the kemel sends messages through this port to notify the task of various kernel events, such as
the destruction of ports. Each task is given receive rights on its own notify port.

3.—Exception port. used to implement the exception mechanism (discussed in Module 2). Each task inherits
from its parent send rights to an exception port.

4. Bootstrap port. used by the threads in a task to send requests (to a name server) to obtain other ports. A task
is given send rights to a bootstrap port. This port is available in OSF/1 but not used.

/e P T é
System calls:

e task create(parent_task, inherit_memory, child_task): the OSF/1 kernel does not currently export this
call, although a pure Mach kemnel would. Instead, one uses the UNIX fork system call, which creates both a
task and a thread within that task.

e task terminate(target_task): also not currently exported.

e task_suspend(target_task): suspends all threads within a task.

e task resume(target_task): resumes all threads within a task.

1-27

Module 1 — Background and Introduction

1-14. Introduction to Mach

/e {J/ ns

Threads
| thread 1 > kernel thread
|_kemnelpot | object
Jsed
threadl 1 - another task |74/ &/
thread 1 > exception
| exception port | handler
thread 2 I — kernel thread
__keroe] port, | object
thread2 | g 1 another task
thread 2 exception
| exception port [handler
1-14. © 1990, 1991 Open Software Foundation
1-28

Module 1 — Background and Introduction

Student Notes: Threads

Threads are the basic unit of scheduling.

Each thread associated with it:

1. Thread kernel port. represents the name of a thread. When a thread is created, its task is given send rights to
the thread’s kemel port. Threads in tasks holding send rights on this port may use these rights to issue system
calls on the target thread’s behalf. A thread can discover its own kemel port by calling thread_self.

2. Thread reply port: used for receiving initialization messages and responses from early RPC calls. When a
thread is created, its task is given receive rights to this port.

3. Thread exception port: part of the implementation of exception handling (described in Module 2). When a
thread is created, its task is given send rights to the task’s exception port.

Ports, like threads, exist within a task: all of a task’s ports are accessible by all of the task’s threads.

System calls:

e thread_create(parent_task, child_thread)
e thread_terminate(target_thread)

e thread_suspend(target_thread)

e thread_resume(target_thread)

1-29

Module 1 — Background and Introduction

1-15. Introduction to Mach

Virtual Memory in Mach

System calls: Jon:

A
vm_allocate(target_task, address, size, anywhere) — wt. " 7

vm_deallocate(target_task, address, size)

vm_read(target_task, address, data, data_count)
vm_write(target_task, address, data, data_count)
vm_protect(target_task, address, size, set_maximum, new_protection)

vm_inherit(target_task, address, size, new_inheritance)

1-15. © 1990, 1991 Open Software Foundation

1-30

Module 1 — Background and Introduction

Student Notes: Virtual Memory in Mach

Virtual memory is a property of the task.

Each task has a (possibly sparse) virtual address space.

Tasks may inherit virtual memory from their parents, either shared or copied.

Pages are backed up by memory objects, which may be either temporary (traditional paging/swapping space) or
permanent.

Lazy evaluation is the pervasive implementation technique.

1-31

Module 1 — Background and Introduction

1-16. Introduction to Mach

Messages Revisited

kernel task

1-16. © 1990, 1991 Open Software Foundation

1-32

Module 1 — Background and Introduction

Student Notes: Messages Revisited
Longer messages are first mapped (copy-on-write) into the kemel’s address space. When the message is received,

it is remapped into the receiver’s address space. Thus the receiver gains not only the data of the message, but new
valid locations in its address space. These locations may be deallocated using vm_deallocate.

1-33

Module 1 — Background and Introduction

1-17. Introduction to Mach

External Memory Object Managers s %5

/0?@/

user
address
space

kemel
memory
objects

backing store

1-17. © 1990, 1991 Open Software Foundation

1-34

Module 1 — Background and Introduction

Student Notes: External Memeory Object Managers
® The Mach kemel normally manages the backing store for virtual memory

® Users may supply external memory object managers to perform this chore

External object managers are responsible for supplying initial values for a range of virtual memory and for
backing up virtual memory when the physical memory cache becomes full. Such managers may be used, for
example, to map files into the address spaces of tasks, to provide shared memory in a distributed system, and to
implement a transaction-management system.

1-35

Module 1 — Background and Introduction

1-18. The Extensible Kernel

Network Shared Memory, part 1

site 3

2: memory_object_init 4: memory_object_init
site 1

1: vin_map 3:vm_map

1-18. © 1990, 1991 Open Software Foundstion

1-36

Module 1 — Background and Introduction

Student Notes: Network Shared Memory, part 1

This example shows how the Mach facilities of OSF/1 might provide the abstraction of shared memory to threads
running on different machines. Here, site 1 and site 2 are two different machines; the coordinator, the provider of
the *“shared memory,” might be on a third machine.

Two sites share memory by mapping it from the coordinator. A thread uses the vim_map system call to inform its
kernel that it wishes to map a particular object into its task’s address space. The kemel, in turn, forwards a
notification to the coordinator (a memory_object_init message), telling it that yet another site is using one of its
objects.

Note that at this point no pages have been transferred.

1-37

Module 1 — Background and Introduction

1-19. The Extensible Kernel

Network Shared Memory, part 2

site 3

e
3: memory_object_
data_provided (read-only) 7
2: memory_object_
data_request (read-only)

site 2

1: read fault

1-19. © 1990, 1991 Open Software Foundation

1-38

Module 1 — Background and Introduction

Student Notes: Network Shared Memory, part 2

A thread running on site 1 attempts to read from one of the pages in the object maintained by the coordinator.
Since the page is not resident at its site, a page fault occurs. The local kernel handles the fault and forwards it to
the coordinator (by sending the coordinator an memory_object_data_request message).

The coordinator sends a copy of the page back to the kemel on site 1 (via a memory_object_data_provided
message), but marks it read-only.

The kemnel then puts this page in its memory cache and allows the original thread to resume execution.

1-39

Module 1 — Background and Introduction

1-20. The Extensible Kernel

site 1

Network Shared Memory, part 3

site 3

2: memory_object_
data_request (read-only)

N
3:memory_object _
data_provided (read-only)

site 2

1: read fault

1-20.

1-40

© 1990, 1991 Open Software Foundation

Module 1 — Background and Introduction

Student Notes: Network Shared Memory, part 3
A thread running on site 2 attempts to read the same page that was just read on site 1. As before, the coordinator

gives site 2 a read-only copy of the page. Thus threads on both sites effectively share this page, though at the
moment they are only reading it.

141

Module 1 — Background and Introduction

1-21. The Extensible Kernel

Network Shared Memory, part 4

site 3

\
3: memory_object
lock_request (flush)

f
5: memory_object_
lock_request

N\

(read-write) 2: memory_object_data_ 4: memory_object_
X unlock (read-write) lock_completed .
site 1 / site 2
1: write fault ~—— S '/g” g
4
| é o fo
1-2. © 1990, 1991 Open Software Foundation

1-42

Module 1 — Background and Introduction

Student Notes: Network Shared Memory, part 4

A thread on site 1 now attempts to modify the page of which both sites have a read-only copy. The local kemel
handles the resulting protection fault by sending a request to the coordinator (a memory_object_data_unlock
message), asking to upgrade its permissions for this page from read-only to read-write.

The coordinator must arrange that all subsequent reads of this page by any site obtain the modified version of the
page. To accomplish this, it sends a request to site 2 (a memory_object_lock_request message) asking it to flush
the page from its cache. After it has done so, site 2 sends a memory_object_lock_completed message back to the
coordinator. After the coordinator receives this message, it sends a message to site 1 (a
memory_object_lock_request message) granting it read-write permission for the page. Thus threads on site 1 are
now free to modify the page.

1-43

Module 1 — Background and Introduction

1-22. The Extensible Kernel

Network Shared Memory, part 5

site 3

f |
3: memory_object_ 5: memory_object_
lock_request lock_provided (read-only)
(read-only, clean) . memory_object_lock_ 2: memory_object_
site 1 completed (read-only, clean) data_request (read-only) site 2

1: read fault

-2 © 1990, 1991 Open Softwase Foundation

144

Module 1 — Background and Introduction

Student Notes: Network Shared Memory, part 5

If a thread on site 2 attempts to access the page, a page fault occurs, since the page is no longer resident, and a
request (memory_object_data_request) is sent to the coordinator for a copy of the page.

To obtain the current contents of the page, the coordinator must send a message to site 1

(memory_object_lock_request) asking for the latest version. To make certain that this version continues to be the
latest version, this message tells site 1 to tum off write permission.

1-45

Module 1 — Background and Introduction

Exercises:

1. List the components of OSF/1.

2. Explain how Mach and UNIX coexist within the OSF/1 kemel.

3. Characterize the multiprocessor architectures supported by OSF/1.

4, a.
b.

C.

d.

€.

List the fundamental abstractions of Mach.
What is the difference between concurrency and parallelism?

Give an example of how concurrency as provided by threads simplifies the design of an application even
On a uniprocessor.

Explain how threads may be used to exploit the multiprocessor.

Explain how ports may be used for both object references and interprocess communication.

5. Can network-shared memory be implemented on other UNIX systems without kernel modifications?

Advanced Questions:

6. What functionality does Mach supply that Berkeley UNIX does not?

7. What functionality does OSF/1 supply that is supplied by neither Berkeley UNIX nor Mach?

1-46

Module 2 — The Process Abstraction
- |

Module Contents

O 3 1T 2-6
Extending traditional processes to multithreaded processes

Representing processes in OSF/1

2. System CallsinOSF/1 PN 2-16
UNIX system calls
Mach system calls

3. Synchronization and Thread Management i ittt ieeinrrnannnnnn. 2-26
Synchronization in standard UNIX
The problems introduced by multiprocessors
Synchronization primitives in OSF/1
Managing threads through state transitions

4. Signals and Exception Handling i i i i it e, 2-64
Integrating signals into multithreaded processes
The Mach exception mechanism

The system call interface
Utilizing threads with the POSIX-threads library

6. SChedUIINg i i i i ittt i e e ettt 2-86
Scheduling policies
Multiplexing of threads
Processor sets

Module Objectives

In order to demonstrate an understanding of the differences between the OSF/1 process and the traditional UNIX
process and the implementation of the process in OSF/1, the student should be able to:

® list the UNIX system calls that are difficult to adapt for use by threads within a multithreaded process and
describe the difficulty

I S TICAAS . ottt e e e e e e 2-78

Module 2 — The Process Abstraction

® explain how the proc and user structures of older UNIX implementations must be modified for use with
multithreaded processes

® explain the conceptual difference between UNIX and Mach system calls

® list and explain the need for the kernel synchronization routines

® for each of two types of signals explain how it is determined which thread receives the signal

e explain Mach implementation of exception handling and how exceptions are converted into signals
® explain the rationale for using the POSIX threads library

® describe the scheduling policies used in OSF/1

® explain the rationale of processor sets

® describe the purpose of thread pools and which subsystems use them

® explain the advantage of the zone memory allocation technique

2-2

Module 2 — The Process Abstraction

2-3

Module 2 — The Process Abstraction

The Big Picture

2-1.

The Process Abstraction

990, 1991 Open Software Foundation

©1

2-1.

24

Module 2 — The Process Abstraction

Student Notes: The Process Abstraction

The material in this module is partially covered in Open Software Foundation, 1990a, chapters 4 and 5.

2-5

Module 2 — The Process Abstraction

2-2. Processes

The UNIX Process: Beyond Tasks

Identification Family
Y 22%

e user and group e parent
Open files o children

e which are open? — alive
Signal state — terminated

e how handled? — stopped

Address space

e which are masked?

o limits to growth
e which are pending?

2 © 1990, 1991 Open Sofware Foundation

Module 2 — The Process Abstraction

Student Notes: The UNIX Process: Beyond Tasks

The UNIX process embodies much more than what is in a Mach task. Associated with a task is the address space
and a collection of port rights. Associated with the UNIX process are additional concepts such as userid and
groupids, open files, signal information, and relationships between parents and children. Since this information is
not part of the task concept, it must be represented separately.

2-7

Module 2 — The Process Abstraction

2-3. Processes

Multithreading the UNIX Process

AN

System calls:
s — e fork

s %""1 _— e exec

//&/{w PR l //t’%//
4!l b

M is’'s
e error codes /aé'é/_yrqb L e 5’,/ /lé ///,,/‘,54 A artlordy

Signals: ¢,, / hene Fhreads - fOSIX [00F |
e who gets them?_wéld f/rz@ He bt} Hrerd o Lt /'{M/

* sigpause/sigsuspend |
Standard librarics: — ¢ 7 spodes’/ /7

e return pointers to static data (e.g. gethostbyname)

e access shared data structures (e.g. stdio)

23, © 1990, 1991 Open Software Foundation

7%/ @/’04 O/V//%/ /;%a;{f //éln:) a/%’f/z//@%

2-8

Module 2 — The Process Abstraction

Student Notes: Multithreading the UNIX Process

2-9

Module 2 — The Process Abstraction

24, Processes

Threads, Tasks, and Processes

¢ The thread abstraction
—- a single thread of control

— represented by a thread structure

o The task abstraction
— holds capabilities and an address space

— represented by a task structure

¢ The process abstraction

—— combines thread and task abstractions: a UNIX concept

4 © 1990, 1991 Open Software Foundation

2-10

Module 2 — The Process Abstraction

Student Notes: Threads, Tasks, and Processes

A user thread normally executes in user mode. While it is in a system call, however, it executes in system mode
(or kernel mode or privileged mode). The operating system must maintain a separate context for each mode (user
and system modes): for example, a thread has both a user stack and a system stack (or kernel stack).

Threads and tasks are represented in Mach by their thread and task data structures. In traditional UNIX, each
process is represented by two data structures: the proc structure, which is allocated from the kemel’s address
space, and the user structure, which is allocated at a fixed location in the private address space of the process.

OSF/1 represents a UNIX process with both the Mach data structures and most of the information contained in the
traditional UNIX data structures. Ideally, the UNIX data structures should be basically unchanged from 4.4BSD
so that no significant changes to the UNIX code are necessary.

However, extending the single-threaded UNIX process into a multithreaded process requires some significant
changes. Most of the information in the proc structure is a property of the task, but the user structure contains
both task information and thread information. Thus each thread within the task requires its own copy of the
thread portion of the user structure: the user structure is divided into a u_task component and (multiple) u_thread
components.

Both types of components are allocated from the system address space, not the process address space (the original
UNIX scheme of allocating user structure at a fixed location in the process address space is not possible because
of the multiple u_thread components).

A slight problem arises here: UNIX kemel code refers to components within the user structure as, for example,
uxxx. OSF/1 copes with this simply by using the C preprocessor to convert such references into either
u_task->xxx or u_thread->xxx.

These issues are discussed in A. Tevanian, 1987.

Module 2 — The Process Abstraction

2-5. Processes

Process Data Structures

UNIX OSF/1

shared

kernel
address

space
private [s DET PIOCESS e
process
address ~— per thread

space L \

per thread

shared kernel
address space

shared kemel

address space

shared l‘fﬁnﬁ'l
address space

shared kemel
address space

2-5.

2-12

© 1990, 1991 Open SoRware Foundation

Module 2 — The Process Abstraction

Student Notes: Process Data Structures

2-13

Module 2 — The Process Abstraction

2-6. Processes

m"(% é/ﬂfﬁ ;/ZV‘//&ZZ)}"Cj
Thread and Task Structures

task thread
structure structure

|

thread
structure

2-6.

© 1990, 1991 Open Software Foundation

Module 2 — The Process Abstraction

Student Notes: Thread and Task Structures

2-15

Module 2 — The Process Abstraction

2-7. System Calls in OSF/1

System Calls

o Mach system calls __ /)pf /Qgr%gl/g/ /;ée)76

¢ UNIX system calls

© 1990, 1991 Open Software Foundation

2-16

Module 2 — The Process Abstraction

Student Notes: System Calls

System calls are the sole interface between the user and the operating system. From the user’s point of view, a
system call is a subroutine call, but the body of this subroutine call involves a switch from unprivileged user mode
to privileged system mode. Accomplishing this switch requires an architecture-specific trap construction.

Most system calls issued on an OSF/1 system are UNIX system calls, but Mach system calls are used as well. The
UNIX system-call interface is implemented differently from the Mach system-call interface.

2-17

Module 2 — The Process Abstraction

2-8.

System Calls in OSF/1

UNIX System Calls

user

L5 stack frame

locore

ocore:
e —

';:aén _ user’s registers ...
stack lrame syscall syscall();
local variables stack frame e
locore’s registers
T—— Iocal variables
\A‘N-ﬁ".‘.-hk‘s‘l}.:‘\‘)vﬁ’-\t-WA\':E:ﬁ read rem a d dress
read(...) { stack frame handler syscall(...) {
traj i stack frame .
if(error) { | main’s registers syscall's registers handler(...)
ermo= | return address local variables .
error_code H return address }
return(-1) 3 V. r/
o | 77777
return(result) H
user stack stack
. © 1990, 1991 Open Software Foundation
2-18

Module 2 — The Process Abstraction

Student Notes: UNIX System Calls
To the C programmer, system calls are calls to subroutines provided by the C library. The bodies of these library
routines first execute whatever machine construction is required to generate a trap. The trap is handled in kemel

mode (but in the context of the calling process) via a call to syscall.

Syscall copies the arguments of the system call to the process’s u_thread structure, then calls the appropriate
system call handler in the kernel.

On retumn, syscall deals with errors, and arranges for results to be returned to user mode.

Finally, the original C library routine passes either an error indication or a result back to the caller.

2-19

Module 2 — The Process Abstraction

2-9. System Calls in OSF/1

size

~—t— buffer

file descriptor

user

UNIX System Calls: Passing of Arguments

i stack stack u_thread
7777 _ s structure
sy butfer Ldnss)
user kernel
i © 1990, 1991 Open Software Foundation
2-20

Module 2 — The Process Abstraction

Student Notes: UNIX System Calls: Passing of Arguments

How arguments are passed from the user to the kemel depends upon the architecture, but what is described here is
typical. We use the write system call as an example.

As part of calling the write library routine, the arguments are pushed onto the user stack (the end of the stack is
pointed to by the user stack pointer—USP). When a trap occurs, all of the user’s registers, including the USP, are
saved on the kernel stack.

The syscall routine in the kernel determines which system call is being made and how many arguments it expects.
Then, following the saved USP, it finds the arguments on the user stack and copies them to the u_thread structure.
Copying must be done with care: the user supplies the value of the USP to the kernel. The kemel has no reason
to believe that the user has supplied a legitimate value—it might point into the kernel. Thus the kernel must first
validate locations pointed to by the USP before copying them to the u_thread structure.

2-21

Module 2 — The Process Abstraction

2-10. System Calls in OSF/1

UNIX System Calls: Returning to User Mode

© ¢ Successful completion

— return result to user

@ ¢ Unsuccessful completion

— return error indication and error code

2-10. © 1990, 1991 Open Software Foundation

2-22

Module 2 — The Process Abstraction

Student Notes: UNIX System Calls: Returning to User Mode

Again, the details here depend upon the architecture; what follows is typical. Assume a calling convention in
which functions retum their results in rw.

On return from the trap instruction, if the system call completed successfully, the system arranges for the value to
be returned to appear in the user’s register 0. This is accomplished by copying this value into the saved copy of
register O in the kernel stack before returning to user mode. The C library code leaves this value where it is and
retumns to its caller, which sees the system call returning the appropriate value.

If an error occuired in the system call, UNIX requires that the library routine (e.g. write) return —@that the
error code be found in the global variable errno. This is achieved via cooperation between the operating system
and the library routine: the carry bit of the program status word is used to indicate whether the system call
succeeded or not. This word is saved on the kernel stack as part of the trap; the operating system sets the carry bit
in it accordingly before control is returned to user mode, and the program status word is restored from the kernel
stack.

If there was an error, the carry bit is set to 1 and the error code is placed in register 0. When control retumns to the
library code, if it finds the carry bit is set it copies the value of register O to errno, puts a—1 into register O, and
then returns.

Note that this does not work well with multithreaded processes!

2-23

Module 2 — The Process Abstraction

2-11. System Calls in OSF/1

Mach System Calls

status = thread_create(parent_task, child_thread)

cz:ll }

user

kemel
thread_create routine

kemnel

2-11.

2-24

© 1990, 1991 Open Sofiware Foundation

Module 2 — The Process Abstraction

Student Notes: Mach System Calls

In the UNIX system call interface, the functional value returned by the system call is overloaded with either an
error indication or the result of a call. Mach avoids the clumsy type problems associated with this style by using

_an output parameter to return the result of the system call, so that the functional value of the call is solely an
indication of success or error (and if an error, what sort of error).

A Mach system call is essentially a remote procedure call to a procedure provided in a kemel task. These
procedural requests are actually transmitted to the kernel as messages. The result obtained by the kemel is sent
back to the user as another message. Thus a system call, from the user’s point of view, is implemented as a
msg_rpc call. The stub routines that convert the procedure calls into messages are produced by MIG (the Mach
/lnterfacggenerator). '

The implementation of the Mach system call is optimized: it is not the case that special threads exist in the kernel
for the purpose of receiving these system call messages. Instead, the user thread generating the Mach system call
traps into the kemel (i.e., switches to kemel mode) and receives its own message and processes its own system
call.

2-25

Module 2 — The Process Abstraction

2-12. Synchronization and Thread Management

UNIX Synchronization: Putting a Process to Sleep

¢ Many operations (e.g. I/O requests) result in the suspension of a process’s
execution

» To effect this suspension, a process executes a sleep call (which is a
kernel-level subroutine)

e At some later time, a wakeup call is issued to resume the execution of the
process

212, © 1990, 1991 Open Software Foundation

2-26

Module 2 — The Process Abstraction

Student Notes: UNIX Synchronization: Putting a Process to Sleep

UNIX synchronization is a very simple, event-driven mechanism. A process (in kemel mode) puts itself to sleep
by calling sleep. Its state is then set to sleeping, and control is passed to swtch, which finds another runnable
process and resumes its execution.

A call to wakeup resumes the execution of all processes waiting on a particular event. Such processes’ states are
changed to runnable, and when the scheduler chooses them they resume execution.

2-27

Module 2 — The Process Abstraction

2-13. Synchronization and Thread Management

UNIX Synchronization: Sleep and Wakeup

¢ sleep(channel, disposition)

¢ wakeup(channel)

2-13. © 1990, 1991 Open Sohtware Foundation

2-28

Module 2 — The Process Abstraction

Student Notes: UNIX Synchronization: Sleep and Wakeup

The integer channel specifies the awaited event. By convention, this channel is the address of some relevant data
structure.

A number of things are overloaded on top of

1. It represents the scheduling priority to be taken on by the process when it is awakened (low values are good
priorities, high values are poor priorities).

2. Itindicates whether or not the sleep is interruptible by a signal. If it is less than or equal to the fixed value
PZERO, then the sleeping process may not be awakened by a signal.

3. Itindicates what happens if the sleep is interrupted by a signal. The call to sleep either longjmps back to an
exception handler or returns a value indicating that there was a signal -

(N.B.: This is done differently in OSF/1, as will be seen.)

2-29

Module 2 — The Process Abstraction

2-14. Synchronization and Thread Management

Protection from Interrupts

device
IPL 5

device
IPL 6

. © 1990, 1951 Open Sofiware Foundation

2-30

Module 2 — The Process Abstraction

Student Notes: Protection from Interrupts

Interrupt protection is very architecture-dependent. The UNIX (and OSF/1)_model is based on the PDP-11

_architecture: the devices and processor connect via a bus. A device interrupts a processor by raising a line on the

bus corresponding to a particular interrupt priority (or bus request level). 1f the processor’s current interrupt
priority level (IPL) is less than the bus request level, then the request interrupts the processor’s current
computation. The processor receives the interrupter’s interrupt priority; after the processor retumns from the
interrupt, it regains its previous priority level.

A call to splnnn, where nnn identifies the interrupt priority level, disables an entire class of interrupts by raising
the processor’s IPL. This call returns the previous priority, which can be restored via a call to spix.

2-31

Module 2 — The Process Abstraction

2-15. Synchronization and Thread Management

UNIX Synchronization: Sleep/Wakeup Example

s =splbio(); /* disable a class of interrupts */

while (device_inuse)
sleep(&device_data_structure, priority);

device_inuse++;

splx(s); /* enable interrupts */

/* in some other thread (or interrupt handler) */

device_inuse = 0;
wakeup(&device_data_structure);

215. © 1990, 1991 Open Software Foundation

2-32

Module 2 — The Process Abstraction

Student Notes: UNIX Synchronization: Sleep/Wakeup Example

In this example, various threads wish to obtain mutually exclusive access to a device. They check device_inuse to
see if the device is in use. Ifit is, they then put themselves to sleep. After the thread using the device finishes
with it, the thread clears the device_inuse flag and then wakes up all threads waiting for the device.

A potential race condition must be guarded against: between testing the device_inuse flag and calling sleep, an
interrupt handler might issue a wakeup. (Since wakeups are not remembered, if no thread is sleeping when a
wakeup occurs, nothing happens.) Thus, if a thread goes to sleep and the one and only wakeup that would ever
wake it up has already been issued, the thread sleeps forever.

The solution is straightforward: interrupts must be disabled while the flag is tested and the thread is put to sleep.
The call to splbio disables (disk) interrupts and returns the previous IPL. Thus interrupts are disabled through the
call to sleep.

Inside of sleep, after the thread has been effectively put to sleep, the IPL is reduced back to zero so that interrupts
may occur. However, the IPL set by splbio is remembered as part of the thread’s context. When the thread is
woken up and retumns from sleep, this IPL is restored and the thread can then make the test (and possibly put itself
to sleep again, immune from interrupts). Once it has taken the device, it can restore the original IPL (probably 0)
by a call to splx.

2-33

Module 2 — The Process Abstraction

2-16. Synchronization and Thread Management

OSF/1 Synchronization

while (device_inuse)

sleep(...)
device_inuse++;

- thread running on processor 1

device_inuse = 0;
wakeup(...);

thread running on processor 2

© 1990, 1991 Open Software Foundation

2-34

Module 2 — The Process Abstraction

Student Notes: OSF/1 Synchronization

OSF/1 synchronization must be able to cope with the effects of multiprocessors. Masking interrupts is not
sufficient protection on a (shared-memory) multiprocessor. Any operation that might be affected by actions of
other processors must be protected.

2-35

Module 2 — The Process Abstraction

2-17. Synchronization and Thread Management

Synchronization Primitives in OSF/1

. y AR ‘; ‘v" 0
| sleep " PSR

. U@ k) ‘

A read-write locks XY 5 &

oo 5

‘v P ‘v A\ X $ v . ‘ ‘ ‘

55X 5

0 (¢ Q“ ‘ ’ O

:’ ‘A‘“‘.‘ 070,470 ‘ ’ “ ‘ “ “
/ rt_wai t/thtead //

simple locks

r=A :
Led not parallelized

(///] interruptibility is an option

@ interruptibility and timeout are options

D interruptibility is not an option

2-17.

© 1990, 1991 Open Software Foundation

2-36

Module 2 — The Process Abstraction

Student Notes: Synchronization Primitives in OSF/1

A good discussion of synchronization in OSF/1 can be found in Open Software Foundation, 1990b, chapter 8.

2-37

Module 2 — The Process Abstraction

2-18. Synchronization and Thread Management

Simple Locks spin gﬁ/é

while (test_and_set (lock) == WAS_LOCKED)

.
’

simple_lock_init(lock)
simple_lock(ock)
simple_unlock(lock)

simple_lock_try(lock)

2-18.

2-38

© 1990, 1991 Open Software Foundation

« I L L ——— | _—— |

] + | g _— T [| —— T N ——— I

Module 2 — The Process Abstraction

Student Notes: Simple Locks

Simple locks are used in many cases where mutual exclusion is required. They are implemented as spin locks;
i.e., a thread or interrupt handler sets a lock by setting a bit and waits for a lock by repeatedly testing the bit until
the holder of the lock clears it. Because of this active involvement on the part of the processor, simple locks
should be held only briefly.

Although simple locks are normally acquired in a synchronous manner, an additional request is provided in which
the lock is taken if it is not already taken and otherwise retumns failure.

2-39

Module 2 — The Process Abstraction

2-19. Synchronization and Thread Management

. simple_lock(...);
if (should_sleep) {
simple_unlock(...);
sleep(...);
}else

simple_unlock(...);

or

Combining Unlock with Sleep, part 1

o se
simple_lock...);
if (should_sleep) {
sleep(...);
simple_unlock(...);
} else
simple_unlock(...);

simple_lock(...)
wakeup...)

simple_unlock(.

.)

2-19.

2-40

© 1990, 1991 Open Software Foundation

Module 2 — The Process Abstraction

Student Notes: Combining Unlock with Sleep, part 1

To avoid a race between one thread doing a sleep and another thread doing a wakeup, it is necessary to use a lock.
However, as illustrated in the slide, it is not clear when the thread calling sleep should unlock the lock. In the
code fragment in the top left, a thread first takes a lock to guarantee that no thread does a wakeup while there is
the possibility that the first thread may go to sleep. It then discovers that it indeed should go to sleep, so it
unlocks the lock and then calls sleep. However, another thread running on another processor might call a wakeup
at the instant that the lock is unlocked (before the first thread calls sleep). Thus we still have the race condition
we are trying to eliminate.

Another approach, as illustrated in the upper right, might be to switch the calls to sleep and simple_unlock. But
now, though we eliminate the race condition, we introduce a deadlock. A thread attempting to do a wakeup won'’t
be able to do so until the lock is released, but the thread holding the lock won’t release it until after the wakeup
has been performed.

241

Module 2 — The Process Abstraction

2-20. Synchronization and Thread Management

assert_wait(..);—
simple_unlock(...);
thread_block(...);

L, w72
fo f/-wy?

Combining Unlock with Sleep, part 2

simple_unlock + sleep

2-20.

2-42

© 1990, 1991 Open Software Foundation

Module 2 — The Process Abstraction

Student Notes: Combining Unlock with Sleep, part 2

The solution is to find a way to combine sleep and simple_unlock. One approach might be to add an extra
argument to sleep indicating which lock to unlock after the calling thread is effectively asleep. The approach
taken, however, is to split sleep into two parts. The first part, assert_wait, announces that the thread is about to go
to sleep. The second part, thread_block, actually puts the thread to sleep. A call to simple_unlock may be safely
placed between the calls to assert_wait and thread_block.

243

Module 2 — The Process Abstraction

2-21. Synchronization and Thread Management

Blocking Threads

* simple_lock(&object.lock);
while (object.in_use) {
assert_wait(&object. wait);
/* indicate intent to wait */
simple_unlock(&object.lock);
thread_block();

[* give up the processor—however, the thread might retum immediately
if a wakeup has already happened */

simple_lock(&object.lock),
}
object.in_use = 1;

simple_unlock(&object.lock);

22 © 1950, 1991 Open Software Foundation

2-44

Module 2 — The Process Abstraction

Student Notes: Blocking Threads

In this example, threads desire mutually exclusive access to object. Associated with the object is a simple lock,
which a thread takes so that it can safely determine if another thread is using the object. If the object is in use,
then the thread attempting to take the object declares its intention to block by calling assert_wait, it then unlocks
the simple lock and calls thread_block to yield the processor. If this thread is woken up before it yields the
processor, the call to thread_block does not put the thread to sleep but, at worst, puts the thread on the run queue.

2-45

Module 2 — The Process Abstraction

2-22. Synchronization and Thread Management

Blocking Threads Example

t0 tl 2 t3

t4

| thread_block()| [in_u

se=1|

t5

222,

2-46

© 1990, 1991 Open Software Foundation

Module 2 — The Process Abstraction

Student Notes: Blocking Threads Example

Initially thread B is using the object (has set its in_use field) and both thread A and thread B are running (or
runnable). Thread A is attempting to use the object but finds by examining the in_use field that the object is being
used by another thread. It indicates its intention to wait for the object by calling assert_wait. This sets the wait
bit in thread A’s state vector and queues thread A on the list of those threads waiting for the object. Since thread
A has not called thread_block, it continues to run.

In the meantime, thread B finishes with the object, so it clears the in_use field and then calls wakeup to wake up
those threads waiting for the object.

The effect of thread B’s call to wakeup is to wake up thread A. However, thread A has not gone to sleep yet, so
the wait bit is cleared in its state vector. Thread A subsequently calls thread_block. Since the wait bit is no longer
set, thread A returns from thread_block immediately (if the call to wake up thread B had not taken place, then the
call by thread A to thread_block would have put thread A to sleep—the run bit of its state vector would have been
cleared, leaving only the wait bits set). Thread A now can test the in_use bit, see that it is clear, and set it itself.

2-47

Module 2 — The Process Abstraction

2-23. Synchronization and Thread Management

Suspending Threads

thread 1 running

thread 2 running
on processor A on processor B

248

© 1990, 1991 Open Software Foundation

. [] i] I | . __—)] .] [—-_— _—— — — —— — —— —

Module 2 — The Process Abstraction

Student Notes: Suspending Threads

The effect of suspending a thread is not necessarily immediate. In this picture, threads 1 and 2 are running on
different processors, and thread 1 issues a thread_suspend call on thread 2. This call marks thread 2 to be
suspended, but nothing is done to make this suspension happen immediately. Thread 2’s processor will eventually
switch to kernel mode, because of an interrupt or trap. The thread will then notice that it is marked to be
suspended and suspend it accordingly. In general, the kemel will notice that a thread is to be suspended when that
thread calls thread_block (which is done when the thread is about to return from kemel mode to user mode).

2-49

Module 2 — The Process Abstraction

2-24. Synchronization and Thread Management

1‘/4/,.1/ e by wlf
Thread States L e ol
7 Y4
RUN g fmﬂ RUN+WAIT
SR \assert_wai s
suspend) S |
,/I K R . /// reaa_oloc
2 . 7/
A 4
resume ! resume
ake
RUN+ g7 ‘————* S & < RUN+WAIT+SUSPENDED
SUSPENDED | j-ssert_watt < ~
I wakeup
thread_block! thread_block l N
=5 WAIT
I suspend
Ve
resume wakeup | f/
/ (uninterruptible) | /4
I resume
Vaw 4
SUSPENDED ¢~ - akeWD — ¢ “WAIT-+SUSPENDED
(interruptible)
. © 1990, 1991 Open Software Foundation

A wappd ot leles

2-50

Module 2 — The Process Abstraction

Student Notes: Thread States

Represented as three bits in the thread structure: RUN, WAIT, and SUSPENDED

¢ RUN

— thread is either runnable or running

® WAIT
— thread is blocked, waiting for an event (it is on a wait queue)

— Dboth interruptible and noninterruptible waits are supported (represented by another bit)

® SUSPENDED
— thread is suspended and thus not on any queue
— nested suspends are supported via a suspend count

— usually the result of a thread_suspend system call

¢ RUN+WAIT

— thread has just performed an assert_wait; either it will do a thread_block and switch to WAIT, or another
thread will wake it up (before the thread_block) and switch it to RUN

® RUN+SUSPENDED

— thread has been set to be suspended; it will switch to SUSPENDED as soon as it either calls thread_block or
returns to user mode

® WAIT+SUSPENDED

— acall to thread_resume switches thread to WAIT; if the wait is interruptible, the thread switches to
SUSPENDED when it wakes up; otherwise it switches to RUN+SUSPENDED (i.e., the effect of the
thread_suspend is delayed)

¢ RUN+WAIT+SUSPENDED

— acall to thread_block switches thread to WAIT+SUSPENDED, a thread_resume switches it to RUN+WAIT,
a wakeup switches it to RUN+SUSPENDED

2-51

Module 2 — The Process Abstraction

2-25. Synchronization and Thread Management

UNIX-Style Sleep

sleep(chan, disposition)
tsleep(chan, disposition, wmesg, timeout) T

mpsleep(chan, disposition, wmesg, timeout, lockp, flags)

2-25.

2-52

© 1990, 1991 Open Software Foundation

Module 2 — The Process Abstraction

Student Notes: UNIX-Style Sleep

UNIX-style sleeps involve waiting for “one-shot” events. Traditionally, the kernel provided only a sleep call, but
starting with 4.4BSD a rsleep (timed sleep) call was added as well. Sleeps instigated by calls to sleep are not
interruptible (i.e. by signals). Calls to zsleep can be interruptible; interruptibility is specified by setting the
PCATCH flag in the disposition argument. Unlike other UNIX implementations, the disposition argument has no
other use in OSF/1.

As discussed earlier, a lock is necessary on multiprocessors to prevent a race between a wakeup and a sleep or
tsleep, but, since there is no clear position for the unlock, these routines can only be used in unparallelized code,
i.e., only in situations where all relevant activities are guaranteed to take place on the same processor. Mpsleep is
a multiprocessor-safe version of sleep and tsleep that takes a pointer to a lock as an argument. Mpsleep contains
calls to assert_wait and thread_block, and the lock is unlocked between these calls.

The wmesg argument to tsleep and mpsleep is a character string indicating why the thread is sleeping. Its only
purpose is for display when a user types control-T to see the states of the foreground processes.

2-53

Module 2 — The Process Abstraction

2-26. Synchronization and Thread Management

Waking Up

clear_wair(thread, result, interruptible_only)
thread_wakeup one(event)
thread_wakeup_with_result(event, result)
Possible results:
THREAD_AWAKENED
THREAD_TIMED_OUT
THREAD_INTERRUPTED
THREAD_SHOULD_TERMINATE
THREAD_RESTART

2-26.

2-54

© 1990, 1991 Open Software Foundation

Module 2 — The Process Abstraction

Student Notes: Waking Up

Wakeup routines:

clear_wait. wakes up a particular thread. If the interruptible-only flag is set, then the thread is awakened only
if it is in an interruptible sleep (this flag is used, for example, to wake up a thread conditionally in response to
a signal).

thread_wakeup_one: wakes up the first thread waiting for a particular event, and sets the wait_result to
THREAD_AWAKENED.

thread_wakeup with_result: wakes up all threads waiting for a particular event, and sets their wait_results t0
the second argument.

Whenever a thread is woken up, the cause of the wakeup is put in the wait_result field of the thread’s thread
structure. The five standard results are as follows:

1

2.

. THREAD_AWAKENED: returned if the event for which the thread was waiting actually occurred.
THREAD__TIMEDLOUT: returned if the timeout period expired (e.g. as set in tsleep).
THREAD_INTERRUPTED: returned if the thread was interrupted by a signal, and this caused the wakeup.
THREAD_SHOULD_TERMINATE: returned if a signal forces the termination of the thread.
THREAD_RESTART: returned if a thread was waiting for some event that turns out to be no longer relevant,

. oy oy . . e A P T TN
e.g. a thread is waiting on a condition involving a leaf of a tree, but a structural change occurs higher up in the
tree. This result notifies the thread that it should reevaluate its circumstances.

2-55

Module 2 — The Process Abstraction

2-27. Synchronization and Thread Management

event

happened/

AL

hasn't happened buffer ///23}

2-56

© 1990, 1991 Open Software Foundation

Module 2 — The Process Abstraction

Student Notes: Events

Events provide an improvement of the common case of the UNIX sleep call. A thread can test whether an event
has been posted and, if it has not, then wait for the event to be posted. When the event is posted, it stays posted
until explicitly cleared.

Kemel subroutines:

® c¢vent clear(event). mark an event as hasn’t happened

® event posted(event). return whether the event has happened
® cvent wair(event): wait until the event has happened

® cevent_post(event): mark the event as has happened

Note that the implementation guarantees that there will not be a race between event_post and event_wait: a thread
calling event_wait returns soon (if not immediately) after event_post is called.

As an example, consider operations on a buffer. One thread starts I/O to fill the buffer, but before doing so, clears
the event that would indicate the bufferis filled. Other threads might test for this event, find that the event has not
been posted, and thus wait (inside of event_wait). When the first thread finishes filling the buffer, it then posts the
event, which both wakes up all threads waiting for the buffer and marks the buffer as filled for any subsequent
thread that needs its contents.

2-57

Module 2 — The Process Abstraction

2-28. Synchronization and Thread Management

Read-Write Locks
lock_init(lock) lock_read_to_write(lock)
lock_read(lock) lock_write_to_read(lock)
lock_write(lock) lock_try write(lock)
lock_done(lock) lock_try_read(lock)
lock_set_recursive(lock)
lock_clear_recursive(lock)
2. © 1990, 1991 Open Software Foundation

2-58

Module 2 — The Process Abstraction

Student Notes: Read-Write Locks

Read-write locks provide reader-writers-type synchronization, i.e., any number of threads may hold a lock for
reading, but if a thread holds a lock for writing, no other thread may hold it for either reading or writing. A
read-write lock may be configured to be either a blocking lock or a spin lock. In most cases, it is a blocking lock,
i.e., threads waiting for the lock will yield their processor. But, particularly when it is used in the interrupt
context, it may be a spin lock.

In some situations, it may be convenient to use a read-write lock recursively, i.e., a thread may “take” a lock even
if it already has it. This notion is useful in situations in which a thread possesses a lock but is calling a routine that
causes it to take the lock again (if the lock is not set to be recursive, this produces an immediate deadlock
situation).

On multiprocessors, threads do not immediately block while waiting for a lock. Instead, they test the lock for a
number of times equal to the value of lock_wait_time (a global variable whose value is typically set to 100) and
then yield their processor, if necessary.

2-59

Module 2 — The Process Abstraction

2-29. Synchronization and Thread Management

Synchronization in OSF/1: Summary

T R R AR
¢ 99 Seslenetniene!
| sleep [W’o‘)‘.’%‘ ' 0":’:

LAXOA ‘0‘0 o,

) t‘J.“A‘:"ﬁ‘?O‘

read-write locks X ‘:‘-‘;‘:.,. e e v’:,(t’; }‘" OEX :4
KIRSKHEK TS ICED XSRS

.‘""“‘A‘.‘. A 2020 ."A‘

2

simple locks

r—"
b d

not parallelized

@ interruptibility and timeout are options

interruptibility is an option D interruptibility is not an option

2-29.

© 1990, 1991 Open Software Foundation

Module 2 — The Process Abstraction

Student Notes: Synchronization in OSF/1: Summary

This diagram summarizes synchronization in the OSF/1 kemel and shows the layering. Note that simple locks are
not used on uniprocessors.

2-61

Module 2 — The Process Abstraction

2-30. Synchronization and Thread Management

Avoiding Deadlock

2-30.

2-62

© 1990, 1591 Open Software Foundation

Module 2 — The Process Abstraction

Student Notes: Avoiding Deadlock

In many cases it is necessary to hold two or more locks. Unless these locks are taken with care, there is a potential
for deadlock. To avoid deadlock, locks are usually taken in a prescribed order by all threads (typically
“downwards”). However, it is occasionally necessary to take locks out of order. Deadlock is avoided in this case
by using conditional requests for locks. For example, if the prescribed order is “take lock A, then take lock B,”
but one has lock B and desires lock A, then one should make a conditional request forlock A. If the request fails,
then one should release lock B (thus avoiding deadlock) and try again.

2-63

Module 2 — The Process Abstraction

2-31. Synchronization and Thread Management

Taking Locks in the Interrupt Context

2-31. © 1990, 1991 Open Software Foundation

2-64

Module 2 — The Process Abstraction

Student Notes: Taking Locks in the Interrupt Context

Locks can be taken in the interrupt context, but only with some care. The picture illustrates a situation to be
avoided. A thread is interrupted after it has taken a lock. The interrupt handler (executing in the interrupt
context) then attempts to take the same lock, and deadlock results: the interrupt handler cannot return from the
interrupt context until it takes the lock, and the thread cannot release the lock to the interrupt handler until the
interrupt handler returns and lets the thread have the processor.

The solution to this problem is straightforward. If alock can be taken in the interrupt context at an
interrupt-priority level of n, then whenever the lock is taken in any other context, the interrupt-priority level must
be at least as high as n.

2-65

Module 2 — The Process Abstraction

2-32. Signals and Exception Handling

Signals and Blocked Threads

2-66

© 1990, 1991 Open Software Foundation

Module 2 — The Process Abstraction

Student Notes: Signals and Blocked Threads

All UNIX synchronization calls (tsleep, etc.) retumn to their caller even if they have been interrupted by a signal.
The tsleep call (which is interruptible only if PCATCH is set) returns one of four possible values:

VALUE EVENT

0 normal wakeup

EINTR interrupted and the system call should return the EINTR error code
ERESTART interrupted and the system call should be restarted
EWOULDBLOCK | the sleep timed out |

2-67

Module 2 — The Process Abstraction

2-33. Signals and Exception Handling

Signals

¢ Synchronous _slg_n—z_ili
— exceptions

¢ Asynchronous signals
— interrupts

¢ Different animals—same mechanism
VR P NP e

2-33.

2-68

© 1990, 1991 Open Software Foundation

Module 2 — The Process Abstraction

Student Notes: Signals

Signals serve a dual purpose in UNIX. They are used to inform processes about exceptions (e.g. addressing
errors), and they are used to inform processes about external events (e.g. the typing of an interrupt character, a
signal sent from another process). For each signal, a process may set up a handler (catch the signal), ignore the
signal, or chose the default action (which may be to abort the process, stop the process, resume the process, or
ignore the signal).

2-69

Module 2 — The Process Abstraction

2-34. Signals and Exception Handling

Signals and Multithreaded Processes

' igned for single-threaded processes -
OSl,,/gI_I__a_E were designed for single-threa roces

« Extending the concept to multithreaded processes:
— synchronous signals: delivered to the causing thread
—— asynchronous signals: delivered to the first thread

234, © 1990, 1991 Open Software Foundation

2-70

Module 2 — The Process Abstraction

Student Notes: Signals and Multithreaded Processes

Most of the signal-handling state is kept with the process (as opposed to the thread): signal mask, signal
disposition, and vector of pending signals. Per-thread signal disposition is kept for synchronous signals. There is
no universally accepted semantics for generalizing signals for multithreaded processes.

It is clear to whom a synchronous signal (i.e. exception) should be sent. What is not so clear is to whom an
asynchronous signal (i.e. interrupt) should be sent. In OSF/1, such signals are delivered to the first thread that was
created within the process (if this thread has terminated, then to the second thread, etc.).

2-71

Module 2 — The Process Abstraction

2-35. Signals and Exception Handling

Debugging with Ptrace
parent - child
“debugger” “debuggee”

0

\ /

ptrace ptrace

/

signal

2-35.

/f@,L A .@x@(/h {0

2-72

© 1990, 1991 Opea Software Foundation

Module 2 — The Process Abstraction

Student Notes: Debugging with Ptrace

A process may “allow” its parent to debug it by the use of the ptrace system call. A child issues a ptrace with an
argument of zero, thereby turning on the trace bit in its proc structure. From that point on, whenever it receives a
signal, it stops so that its parent (the debugger) may examine and possibly modify it.

The parent debugger process may wait for a child to stop via the wait systemn call. The parent may send requests
to the child by issuing ptrace calls with positive arguments. With ptrace, it may examine and modify the child’s
memory and registers, and control the child’s response to signals. The data transfer is performed using Mach
facilities for reading and writing to another task’s address space.

2-73

Module 2 — The Process Abstraction

2-36. Signals and Exception Handling

ex:
Exception Handling in Mach 7. 4, &

raise exception 4 catch exception
clear exception

continue or vanish or
terminate victim

victim handler

2-36. © 1990, 1991 Open Software Foundation

2-74

Module 2 — The Process Abstraction

Student Notes: Exception Handling in Mach
Components of exception handling:
1. victim thread: raise the exception
2. victim thread: wait for handler to complete
3. handler: catch the exception, i.e. receive notification of the exception and perform appropriate actions

4. handler: either clear the exception, i.e. resume the waiting victim, or terminate the victim thread

2-75

Module 2 — The Process Abstraction

2-37. Signals and Exception Handling

Exceptions: Exporting the Interface

victim _ra_lse_effﬂmn T GGG T
t0 | 2% exception port 7]
receive exception
message
tl victim : e
victim 4
2 1
— L R T
victim : exception port ;22
t3 resume execution | TETETEST IS Ty
deal with signal exception reply port
clear exception
2.37.

© 1990, 1991 Open Software Foundation

2-76

Module 2 — The Process Abstraction

Student Notes: Exceptions: Exporting the Interface

Each task has send rights to an exception port that it inherits from its parent. The receive rights for the default
task’s exception port are held in the kernel by a routine that converts exceptions into UNIX signals. Associated
with a thread may be a thread exception port, 10 which the task has send rights. By default, there is no such port,
but a thread may establish one. If the thread exception port exists, it is used instead of the task’s exception port.

The slide illustrates the sequence of events during exception handling with the default task exception handler:
t0. the victim raises an exception (e.g., divides by zero); a message is sent through the exception port.

tl. an exception reply port is created if one does not already exist, and an exception message is received by the
(single) thread in the kernel exception task, which is a subtask of the kemel task.

t2. the thread in the kernel exception task translates the exception into the UNIX signal and marks this signal as
pending in the victim.

t3. the thread in the kernel exception task sends a clear exception message through the exception reply port; this

has the effect of waking up the victim, which then discovers that it has a signal and deals with it in its own
context.

277

Module 2 — The Process Abstraction

2-38. Threads

Creating a Thread o7 Wzﬁ) Lrer 5728

f f ﬁ?l, thread_create
2. thread_set_state /}’2 aJ
3. thread_resume

7

2-38, © 1990, 1991 Open Software Foundation

2-78

Module 2 — The Process Abstraction

Student Notes: Creating a Thread
Creating a thread takes a surprising number of system calls.

1. The thread_create call establishes the kernel context of a thread, but leaves the establishment of the user
context to the caller. Thus the new thread is created in the suspended state.

2. The user then establishes a user context for the thread with the thread_set_state call. This may involve
giving initial values for all of the general-purpose registers in the thread’s user context, which has the effect
of giving the thread g user stack and an initial value for its program counter. Thus the management of stack
space, and the semantics of what a new thread should do, are left to the user.

3. The final step is for the user to put the thread into a runnable state by calling thread_resume.

2-19

Module 2 — The Process Abstraction

2-39. Threads

Suspending a Thread

1. thread_suspend
2. thread_abort

3. thread_resume

2-80

© 1990, 1991 Open Software Foundation

Module 2 — The Process Abstraction

Student Notes: Suspending a Thread

Simple suspension and resumption are straightforward: the user just calls the appropriate system calls. Changing
the suspended thread’s behavior is more difficult: the thread might be suspended in the kernel (in mid-system call
or in some other sort of trap), but the user can only directly modify the thread’s user context. When the thread is
resumed, the user state might be modified as part of completing the trap, thus overriding any changes made to the
user state.

To allow the deterministic modification of a thread’s user context, the system must suspend the thread at the point
at which it is about to return to the user, i.e., after any modifications to its user context have been made within the
trap. However, if the thread is blocked, i.e. in the WAIT state, at the time at which it is suspended, then the thread
must be forced to go to the point at which it is just about to return to user mode. This forcing is accomplished by
the thread_abort system call. The effect of this call is to wake the target thread up if it is waiting interruptibly.
This thread will then do any necessary cleanup and then effectively abort the system call.

2-81

Module 2 — The Process Abstraction

2-40. Threads

Terminating a Thread

thread_terminate

o murder is easy

e suicide is tough

2-82

© 1950, 1991 Open Software Foundation

Module 2 — The Process Abstraction

Student Notes: Terminating a Thread

Terminating another thread is straightforward: the victim thread is stopped at a clean point, i.e., a point at which it
is holding no locks, and then eliminated.

Terminating oneself presents a problem. Part of termination involves freeing a thread’s kemel stack and thread
structure. However, doing so requires a call to a subroutine, and calls to subroutines in the kernel involve the use

“—of the caller’s kernel stack. On a multiprocessor, the instant that a stack is freed it may be allocated to some other
thread. The suicidal thread is still using its stack as it returns from the stack liberation routine, but now a new
thread is using the same stack, and total chaos ensues.

Thus a thread cannot terminate jtself directly. Instead, the thread is put on a queue that is examined by the
special-purpose kernel reaper thread, which cleans up the suicidal thread gfter that thread has yielded the

Processor.
—

2-83

Module 2 — The Process Abstraction

2-41. Threads

Pthreads

user

thread thread

thread

kernel

2-41.

2-84

© 1990, 1991 Open Software Foundation

Module 2 — The Process Abstraction

Student Notes: Pthreads

The intended programmer interface to multithreaded processes is provided by the POSIX threads (Pthreads)
package, which is implemented as a user-level library. Though the OSF/1 kemel interface for threads may or may
not become standard, it is used to support the Pthreads interface, which is standard.

The intent is that the programmers manage threads using Pthreads. Pthreads maintains a cache of kernel threads.
When a Pthreads thread is terminated, the underlying kernel thread is merely suspended, and can be reused to
support the next Pthreads thread.

2-85

Module 2 — The Process Abstraction

2-42. Scheduling

Scheduling

Concemns:

e processor allocation

e processor sharing

2-42.

2-86

© 1990, 1991 Open Software Foundation

Module 2 — The Process Abstraction

Student Notes: Scheduling
Processor allocation involves user-controlled partitioning of the processors to satisfy application requirements.

Processor sharing deals with two concerns: processors must be shared equitably among the running threads, but
preferential treatment must be given to “important” threads.

2-87

Module 2 — The Process Abstraction

2-43. Scheduling

/WLA

Processor.Set

Bl processors
00009 threads

2-43,

2-88

© 1990, 1991 Open Software Foundation

Module 2 — The Process Abstraction

Student Notes: Processor Sets

Processor sets are a mechanism for processor allocation supplied in the OSF/1 kernel. The intent is that a
(privileged) user-level server should supply the policy for processor allocation. The user-level server will
establish processor sets and manage their contents in response to requests from ordinary threads.

Processors are partitioned into containers called processor sets: _each container holds zero or more processors,
and each processor is in exactly one container. Threads are also assigned to these containers: threads may run
only on a processor and its container (processor set). By default, there is exactly one processor set containing all
processors and threads.

Examples of use:

® Gangs. A set of cooperating threads can be given a set of processors for their exclusive use.

® Non-homogeneous multiprocessors. Multiprocessor might have two classes of processors, one with
floating-point hardware, one without. Processor sets could be used to run those threads with extensive
floating-point requirements on the appropriate processors.

For further discussion, see Black, 1991.

2-89

Module 2 — The Process Abstraction

2-44. Scheduling

running
threads

Dispatching Threads for Execution

(

clock_tick
quanturmn maintenance}
time consumption

local run
queues

{

clock_tick
quantum maintenance
time consumption

4

recompute_priorities
global run age waiting threads
queue
\
2-44, © 1990, 1991 Open Software Foundation
2-90

Module 2 — The Process Abstraction

Student Notes: Dispatching Threads for Execution

OSF/1 maintains two types of run queues: a 8lobal run queue (one per processor set) for threads withno
processor affinity (the usual case), and local run queues for th (e.g., threads involved
in unparallelized UNIX system calls and in device handling on unsymmetric ware). Currently, the processor
known as the UNIX master has the only local run queue. This queue is used solely to support those few parts of
the kemel that have not been parallelized.

When a processor needs work, it first checks its local run queue (if any) and then its global run queue; finally, if it
finds no work to do, it runs a special kemel idle thread.

An important case is the dispatching of a runnable thread when there are idle processors. To speed this dispatch,
the system maintains a list of the idle processors. If this list is not empty when a thread is made runnable, then the

agent making the thread runnable selects the rocessor in the idle list and quickly dispatches that processor to
the newly runnable thread.

A further optimization applies to those architectures in which it is advantageous that a newly runnable thread
resume execution on the processor on which it last ran. (This technique is conditionally compiled into the kernel:

itis used only when architecturally relevant.) Associated with each thread is a reference to its last processor; this

processor is chosen, if available, when the thread runs again.

291

Module 2 — The Process Abstraction

2-45. Scheduling

Scheduling Policies

POLICY_TIMESHARE
POLICY FIXEDPRI=_ ¢/ # ime

2-45.

2-92

© 1990, 1991 Open Software Foundation

| L] | T |] - _— |] N W ——— —— —_—
P A T T A T

Module 2 — The Process Abstraction

Student Notes: Scheduling Policies

Two scheduling policies are supported: a time-shared policy and a fixed-priority policy. These are properties both
of the thread, i.e., how it is scheduled, and of the processor set, i.e., which policies are allowed. The primary goal
of the time-shared policy is the equitable sharing of the processors among the various threads. The goal of the
fixed-priority policy is to provide preferential treatment to particular threads.

Each thread has a base priority and a scheduler priority, both in the range between 0 and 31. The base priority is
fixed for each thread—it represents the thread’s “importance” (as is usual in UNIX, numerically low priorities are
“better” than numerically high priorities). The scheduler priority is equal to the base priority for fixed-priority
threads. However, for time-shared threads, the scheduler priority is computed from the base priority by adding a
(positive) value based on processor usage.

UNIX'’s nice routine (which uses the (UNIX) getpriority and setpriority system calls) affects the calling thread’s
base priority.

2-93

Module 2 — The Process Abstraction

2-46. Scheduling

Time-Shared Threads

o Priority is a measure of importance and of CPU utilization

— relative importance, represented by the base priority, depends upon
whether the thread belongs to the system or to the user

— CPU utilization is an exponential average of CPU use weighted by
system load

2-46. © 1990, 1991 Open Software Foundation

2-94

[] [] [] . [] [B I [S SN an—— — sihmmes ——— s n—

Module 2 — The Process Abstraction

Student Notes: Time-Shared Threads
The basis for computing the weighted average of a thread’s CPU usage is the following formula:
sched_average = current_usage * load + (5/8) * sched_average

where current_usage is the CPU time used in the past second and load is the current (averaged) measure of load
(based on the length of the run queue).

The effect of the weighted average is that CPU seconds are more costly the more they are in demand.

OSF/1 uses a distributed approach to compute this average efficiently: the sched_average computation is done in
the clock-interrupt context for the currently running threads. Every two seconds all threads in the global run
queues are “aged” by multiplying their sched_averages by (5/8)", where n is the number of seconds since this
computation was last performed (each thread has a private count of seconds that is compared with the system
count of seconds, maintained in the global variable). Threads joining the run queue have their priorities
recomputed so as to “catch up.”

The sched_average decays to 0 after 30 seconds of no processor use. Thus a thread’s scheduler priority reverts to
the thread’s base priority after the thread has been idle for more than 30 seconds.

No floating-point arithmetic is involved in these computations: numbers are scaled and arithmetic is performed
using shifts and adds. No floating point is ever used in the kernel; thus floating-point registers need not be saved
across system calls.

2-95

Module 2 — The Process Abstraction

2-47. Scheduling

Measuring Time

“master” Pr;gessor

© 1990, 1991 Open Software Foundation

D) T e 57 fej)’
@ L %/:%////\écgf}oy 5 7; 7/&
) Seled hy

2-96

Module 2 — The Process Abstraction

Student Notes: Measuring Time

The basic unit of time is given as hz: number of clock ticks per second. The number of clock ticks per second is
architecture-dependent, but is typically 100.

® On a uniprocessor: Az clock interrupts/second

¢ On a multiprocessor: the master processor’s clock interrupts Az times a second; the other processors’ clocks
may be set to interrupt at an integral multiple slower (but their clock interrupt rates in the Encore Multimax
reference port is identical to that of the master processor)

¢ On some architectures, hardware timers are used to measure per-thread processor time accurately

® On the others, per-thread processor time is a count of clock ticks

2-97

Module 2 — The Process Abstraction

2-48. Scheduling

Time Slicing

o A thread is assigned a processor for a particular time period (or time
quantum)

 During this period, it is not preempted unless a thread with a better
scheduler priority is made runnable

e Threads are not preempted while executing in kemnel mode

» For a multiprocessor, an adjustable quantum is used

2-48. © 1990, 1991 Open Software Foundation

2-98

Module 2 — The Process Abstraction

Student Notes: Time Slicing

The quantum for fixed-priority threads is settable for each thread. However, for time-shared threads, the time
quantum is typically %. f a second. While a thread is running, it cannot be preempted by threads that have been
on the run queue since the beginning of the quantum. However, if a thread with a better priority becomes
runnable, then it preempts the currently running thread. Currently, preemption does not take place immediately
for threads running in kemel mode: a thread is not preempted unless it is running in user mode (or “voluntarily”
gives up the processor by a call to thread_block). The effect of a quantum expiration in kemnel mode is delayed
until the running thread retumns to user mode (or blocks).

For a multiprocessor, an adjustable time quantum is used for time-shared threads. If there are more processors
than runnable threads then there is no preemption—it is not needed. If, however, there are more runnable threads
than processors, then the individual time quanta are set so that the average time between quantum ends, over all
processors, is /1o of a second. E.g., for 11 threads competing for 10 processors, the per-thread time quantum is
set to one second. Thus there is an average of 1/:0 of a second between W. The scheduler
adjusts the quanta so that quantum expirations are never in sync.

2-99

Module 2 — The Process Abstraction

2-49. Scheduling

Influencing the Scheduler

o Handoff scheduling
o Timed pause .— 2w f/lf‘» /59’4

e Priority depression — 42 Fur

2-49.

2-100

© 1990, 1991 Open Software Foundation

Module 2 — The Process Abstraction

Student Notes: Influencing the Scheduler

An application can exert some local influence over scheduling decisions through the thread_switch system call.
One application of thread_switch is when a thread is in effect making a synchronous request of some other
thread. To avoid delays, it may “give” its processor to this other thread (as long as the thread is within its
processor set). If both threads are time-shared, the new thread receives the remainder of the current time
quantum. Otherwise, the new thread gets a new quantum.

The other two options of thread_switch arise when, for example, a thread is spinning on a lock in user mode,
waiting for another thread to release that lock. To avoid this perhaps wasteful use of processor time, it might be
advisable to yield the processor by blocking. However, in user mode, this would require at least two system calls:
one call executed by the thread itself to put itself to sleep, and another executed by another thread to wake it up.
In certain situations, we can reduce this system call overhead to just one system call. If the duration of the wait is
known, a thread can issue the thread_switch system call with the wait option, requesting that it be suspended for
a fixed period of time and then automatically woken up.

Another approach to the same problem uses the priority depression option to thread_switch. This system call
“depresses” the calling thread’s priority to the worst possible value for a given period of time and then restores it.
After depressing its priority, the caller might then start spinning on a lock. If there is no competition for its
processor, then it uses otherwise idle processor cycles by spinning. Otherwise, if there is competition for the
processor, then the thread yields to the competition because of its depressed priority.

The swtch system call retums an indication of whether another runnable thread is waiting to use the caller’s
processor. The swich_pri system call is a special case of the thread_switch system call in which priority
depression is requested with a fixed time period (set to the time quantum for time shared threads—!/1¢ of a
second).

2-101

Module 2 — The Process Abstraction

2-50. Scheduling

Non-Parallelized Code

o UNIX_master
— force thread to “master processor”
* Funnely
— subject thread to CW

2-50.

2-102

© 1990, 1991 Open Software Foundation

Module 2 — The Process Abstraction

Student Notes: Non-Parallelized Code

When a thread enters an unparallelized subsystem within the kemnel, it calls UNIX_master to force itself to run on
the master processor (i.e. it joins that processor’s local run queue). When it completes its execution of the
unparallelized subsystem, it calls UNIX _release to allow itself to run on other processors. The signal subsystem is
one of the few such unparaiielized subsysiems.

The notion of funnels is intended as a generalization of the UNIX_master concept. Associated with a subsystem,
for example a device driver, might be a funnel data structure that describes the constraints of that subsystem. E.g.,
for an asymmetric I/O architecture, it might indicate to which processors a particular I/O device is accessible.
Calis to the driver for that device would then be “funneled” to a processor of that set. Currently, funnels are used
only to force processing to take place on the UNIX_master.

2-103

Module 2 — The Process Abstraction

2-51. Thread Pools

Kernel Thread Pools

interrupt
source

queue of
callouts

Lons a»‘./% in éﬁ/'\d”‘"”/‘

2-104

© 1950, 1991 Open Software Foundation

Module 2 — The Process Abstraction

Student Notes: Kernel Thread Pools
Kemel thread pools are used in a number of places to perform actions in a thread context that would otherwise be

performed in the interrupt context. These pools are particularly useful for multiprocessors but may be used for
uniprocessors as well.

In the interrupt context, the interrupt handler places a request for action on a callout queue and directs a wakeup
call to a pool of kemel threads. One of these threads pulls the request off the queue and services it.

This technique is used in the logical volume manager, in the networking subsystem, and for device drivers (for
multiprocessors).

2-105

Module 2 — The Process Abstraction

2-52. Zoned Memory Allocation

;| ‘
Kernel Memory Allocation: % y / s 7

lock

elements in use

list of free elements *

current size

maximum size

element size

allocation size

flags

Struct zone

2-52, © 1990, 1991 Open Software Foundation

2-106

Module 2 — The Process Abstraction

Student Notes: Kernel Memory Allocation: Zones

Zones provide a technique for fast allocation and liberation of storage in the kernel. A zone is a collection of
fixed-size blocks: a separate zone is created for each kemel data structure that is so managed (e.g., task and
thread structures, etc.). '

A zone is initialized with a pre-allocated free list, an allocation size, and a maximum size. Allocations are taken

from the free list until it is exhausted; then additional memory (of allocation size) is allocated from the virtual
memory system and added to the free list. (Zones may be paged or wired: currently they are always wired.)

2-107

Module 2 — The Process Abstraction

Exercises:

d.

Which UNIX system calls can be adapted simply for use by threads within a multithreaded process?
Which UNIX system calls are difficult to adapt for use by threads within a multithreaded process?

Explain how the proc and user structures of older UNIX implementations must be modified for use with
multithreaded processes.

Why is it not sufficient to represent a multithreaded process with the Mach task and thread structures?

2. Explain the conceptual difference between UNIX and Mach system calls.

3. a. Explain why two routines in OSF/1, assert_wait and thread_block, are needed in place of the typical

b.

C.

e

g »

sleep routine in older UNIX systems.

What is the difference between a simple lock and a read-write lock?

Why are conditional lock requests (e.g., simple_lock_try) necessary?

Explain what is meant when a thread is in the state RUN+WAIT+SUSPENDED.

What is the difference between a synchronous signal and an asynchronous signal?
When an asynchronous signal is sent to a process, which thread within the process receives the signal?

Which aspects of signal handling state information are kept with the thread and which are kept with the
process as a whole?

How is an exception converted into a signal?

How does a user-level program create a thread?
What is the function of the thread_abort system call?

What is the difference between a thread as supported by the POSIX library and a thread as supported by
the OSF/1 kemel?

What scheduling policies are used in OSF/1?

What is the difference between a thread’s scheduling priority and its base priority?
Explain the meaning and use of handoff scheduling and priority depression.

What might processor sets be used for?

Why might there be threads in a processor set but no processors?

What are thread pools used for?

2-108

Module 2 — The Process Abstraction

b. Which subsystems use them?

8. Why is zoned memory allocation used instead of dynamic storage allocation techniques such as the “buddy
system’?

Advanced Questions:

9. Since the original UNIX user structure is now split into two structures, u_task and u_thread, and both are now
located in the kemel address space, why is it necessary to maintain separate u_task and proc structures?

10. In what ways are OSF/1’s kemel threads cheaper than UNIX’s kemel processes?

11. a. Why can’t OSF/1 be preemptible in kernel mode?

b. Some versions of UNIX have added preemption points in the kernel at which a thread in kernel mode
may yield to more important threads. If such preemption points were added to OSF/1, what would be the
constraints on where they might be placed?

2-109

Module 2 — The Process Abstraction

2-110

Module 3 — Messages and Ports

Module Contents

1.

B (oY (e

Representation
Contents

(0 ¢ U

Representation

Port sets

Naming ports

Ports as object references
Port destruction

Backup ports

Sending a message
Receiving a message

Module Objectives

B) 103 s Y 03 11 o) A

In order to demonstrate an understanding of the use of messages and ports in OSF/1, the student should be able to:

® describe how a message header would be set up to represent a C structure and differentiate between the header

® describe how port rights are represented both within a user task and within the kernel

® describe the flow of control and data within the msg_send and msg_receive system calls.

created for a msg_send system call and the header created for a msg_rpc system call

3-1

Module 3 — Messages and Ports

The Big Picture

3-1.

Mach

. ,V/,/

k@w A xy.\ i /
S fuf N fdfsﬂ..fwx

Messages and Ports

© 1990, 1991 Open Software Foundation

3-1.

Module 3 — Messages and Ports

Student Notes: Messages and Ports

The material in this module is covered in Open Software Foundation, 1990a, chapter 3.

33

Module 3 — Messages and Ports

3-2. Messages

Messages

o Contents
— variable amount of typed data
— destination port —=>
— returnport <=
o Form
— simple messages

— complex messages

34

© 1990, 1951 Open Software Foundation

Module 3 — Messages and Ports

Student Notes: Messages

A message is a collection of data to be sent through a port to the task that has receive rights for the port. The data
is typed, allowing the kernel or intermediate tasks to interpret it as necessary. For example, the kemel must know
if a data item is a port right (send or receive) so that it can deal with it accordingly. If the data is to be transferred
from one machine to another in a heterogeneous environment, then the kernel must know the type of application
data, so that it can convert the data to the target machine’s representation. (The use of ports for inter-machine
communication is not supported in OSF/1.)

The message must contain a reference to the destination port, which is the port through which the message is
transferred, and may contain a reference to a return port through which a reply can be sent.

Simple messages contain no out-of-line data, and they are copied directly into and out of the kernel. This
technique is used if the message is small and does not contain port rights. Otherwise the message is deemed to be
complex and requires additional processing by the kemel. Port rights must be interpreted by the kemgel, as
discussed latér. The transfer of out-of-line data is optimized using copy-on-write techniques.

Module 3 — Messages and Ports

3-3. Messages

Message Data Structure

message header simple?

message descriptor

33. © 1950, 1991 Open Sofware Foundation

3-6

Module 3 — Messages and Ports

Student Notes: Message Data Structure
A message consists of a header followed by zero or more data items, each headed by a descriptor.

Message header:

® simple? no ports or out-of-line data?

® size: total bytes (except for out-of-line data)

® Jocal port: optional port through which a reply might be sent
® remote port: port for sending message

® d: application-specific id

Message descriptor:

® rype: send right, receive right, int

size: bits per item
® number: number of items
® |: inline (data follows) or out-of-line (pointer follows)

® [: longform—type, size, number follow

d: deallocate port right or memory

Module 3 — Messages and Ports

3—4. Ports
Ports
messages
task 1 port task 2

2

: YA A
HANAA A Ay

task 1 port task 2

34 © 1990, 1991 Open SoRware Foundation

3-8

Module 3 — Messages and Ports

Student Notes: Ports

A port may be used either as a protected queue of messages or as an object reference. When a port is used as an
object reference, the task with receive rights manages the object, and send rights to the port are effectively
references to the object.

Module 3 — Messages and Ports

3-5. Ports
Port Sets
[~
task 1

task 2

mmmmmmmmm

$45 285545455555

task 3

55£5556545855555
¥y
AR

R A T D LD DT
shsseie s st s aie e e e sie e ets
A A A A AR AN A A AR

$5558505 856555 0555545 55888555 655545
A A A A A A A

server task

3-5.

3-10

© 1990, 1991 Open Software Foundation

Module 3 — Messages and Ports

Student Notes: Port Sets

The server task, which has receive rights for ports A, B, and C, can consolidate them into a port set. The effect of
this is to merge the message queues of all the ports into a single queue. The server can then receive messages
from the port set, and thus receive messages from any of ports A, B, or C.

3-11

Module 3 — Messages and Ports

3-6. Ports

The Kernel Port Structure

-

R

S W N b AP S NP A N P N R W

H
H
]
H
t
s
]
H
)
ey
H
2
H
S
3
]
H
H
s
s
H
H
g

T TP TH T 4 I ——
42 blocked senders 5; (/4 '/
%% receiver (task)

g;; backup (port)

B
Y| |
N/ |

NN

3-6.

3-12

© 1990, 1991 Open Software Foundation

Module 3 — Messages and Ports

Student Notes: Kernel Port Structure

A port is represented in the kernel by a structure of type kern_port_t. The first parts of this structure, of type
port_obj and port_object, refer to a kernel object if this port represents such a reference. (The source code often
uses the types port_obj and kern_port interchangeably. This works only because the port_obj is the first
component of the kern_port structure.) The next portion of the structure, the port_messages structure, represents
the queue of messages for the port and the queue of receivers waiting for a message to arrive (of course, only one
of these queues can be non-empty at a time). Even though only one task can hold receive rights to the port, there
may be multiple blocked receivers, since this task may have mulu"p_liglrggs.

The remaining important fields of the kern_port structure include a queue of blocked senders, a reference to the
task holding receive rights to the port, and a reference to the port’s backup port.

3-13

Module 3 — Messages and Ports

3-7. Ports

Port Names ~— ,%/+s

T
P AN
HA AR

37.

3-14

© 1990, 1991 Open Software Foundation

Module 3 — Messages and Ports

Student Notes: Port Names

Internally, a port is named by the address of its kern_port structure. Externally (i.e., in user tasks), a strictly local
name is used. These local names (of type port_t) are just integers. They are analogous to file descriptors in
UNIX: one task’s port names mean nothing to another task; when these names are passed to the kemel, they must
be converted to the internal form (analogous to the address of a file-table entry). However, unlike UNIX file
descriptors, if two local port names within a task are %t, then they necessarily W.

3-15

Module 3 — Messages and Ports

3-8. Ports

Port Name Translation

3.8

3-16

© 1990, 1991 Open Software Foundation

Module 3 — Messages and Ports

Student Notes: Port Name Translation

The first two lists are doubly linked and are used just to keep track of the port rights associated with each object.
The second two lists are actually hash tables and are used for efficient translation from external to intemal names
and vice versa.

Each time a port right is added to a task’s name space, a translation entry is created. Each such entry is put on
four lists:

The task’s translation entry chain

® The port’s translation entry chain

The task/local name table (TL table)

The taski/port table (TP table)
i bl

3-17

Module 3 — Messages and Ports

3-9. Ports

Port Name Interpretation

task

translation entry
(port_hash _t)

f TP TP T TS
port_object

T T T T
oot A A
? 4545?:5 :5 ¢5¢5¢54’45 4’:.545¢

kern_port

3-9, © 1990, 1991 Open Software Foundation

3-18

Module 3 — Messages and Ports

Student Notes: Port Name Interpretation

3-19

Module 3 — Messages and Ports

3-10. Ports

Object Cache

object cache

3-10.

3-20

© 1990, 1991 Open Software Foundation

Module 3 — Messages and Ports

Student Notes: Object Cache

To speed the translation from the local name of a port to the object it identifies, each task has an object cache.
This cache is a simple array indexed by the low-order bits of the local name of the port. If the translation is in the
table, it is found immediately.

3-21

Module 3 — Messages and Ports

3-11. Ports

Port Destruction

Ay 4
252545551 pqn 5252555
A A A AR AR
PR AN A A,

port |2

i

. © 1990, 1991 Open Software Foundation

3-22

Module 3 — Messages and Ports

Student Notes: Port Destruction
If a port with no backup port has its receive rights deallocated, then the port is marked dead. All tasks with send

rights to this port receive a port_deleted message and lose their rights. All threads that were blocked and queued
on the port’s queue of blocked senders are woken up and their msg_send system calls retumn with an error status.

3-23

Module 3 — Messages and Ports

3-12. Ports

Backup Ports, part 1

[45eses2babotubetsbolebes
A A A A AN A
A A AR AR AA A

3-12 ©1990, 1991 Open Software Foundation

3-24

Module 3 — Messages and Ports

Student Notes: Backup Ports, part 1
If a task deallocates a port’s receive rights, then these rights are transmitted to some other task through the port’s

backup port. Send rights to the backup port are effectively held by the port itself. Receive rights are held by the
task that is to provide the backup function.

3-25

Module 3 — Messages and Ports

3-13. Ports

Backup Ports, part 2

3.13. © 1990, 1991 Open Software Foundation

3-26

Module 3 — Messages and Ports

Student Notes: Backup Ports, part 2

Task 1 has vanished; its receive rights to port A have been transferred to task 2 via the backup port.

3-27

Module 3 — Messages and Ports

3-14. Flow of Control

msg_send v /ﬂ/u(/ Araps A fach

¢ use object_copyin to deal with
ports in messages

e msg_copyin ® msg_queue
— transfer message to kemel — if kemel is the receiver, call
. mach_msg, which transfers to
¢ use copyin to transfer header appropriate kemnel routine
and inline data
. — handle flow control
¢ use vm_map_copyin to map
the out-of-line data into copy — if a thread is waiting for a
objects message, then transfer control
— convert to intenal form to it immediately (handoff
scheduling)

— otherwise, queue message

3-14.

3-28

© 1990, 1991 Open Software Foundation

Module 3 — Messages and Ports

Student Notes: msg_send

Sending a message involves two steps. First, the message has to be transferred into the kemel. Then it has to be
disposed of: either queued on the port’s message queue or immediately handed off to a waiting receiving thread.

_Qut-of-line.data is not directly mapped into the kernel’s address space, but instead is represented by a copy object,

which has the effect of a vm_map_entry but does not occupy kemel address space. The purpose of the copy
object is to maintain a copy of the out-of-line data that can be later mapped into a receiving task’s address space.

3-29

Module 3 — Messages and Ports

3-15. Flow of Control

msg_receive
o msg_dequeue e msg_copyout
— check queue for message, — convert ports from internal to
possibly block external representation with

object_copyout
— when a message is consumed,
wake up blocked senders — US€ vm_map_copyout to

transfer out-of-line data
+ wake up one blocked sender

for each message received — use copyout to copy header to
. . user
¢ generate notify message if
necessary
3-15. © 1990, 1991 Open Software Foundation
3-30

Module 3 — Messages and Ports

Student Notes: msg_receive

Receiving a message is also a two-step process. The first step is to remove the next message from the port’s
message queue. If there is no message, then the following thread is queued on the queue of waiting procedures.

If there is a message and there are blocked senders (i.e., the message queue was full), then the first blocked sender
is woken up. If the sender of the message requested it, a notify message is sent to inform it of the message’s
consumption.

The second step in message reception is to transfer the message from the kemel to the user task.

3-31

Module 3 — Messages and Ports

Exercises:

3. a.
b.

How does the contents of a message header created for a msg_send system call differ from that created
for a msg_rpc system call?

Describe how a message header would be set up to represent a C structure.

What is contained in the kemel port structure?
How are a task’s rights to a particular port represented within the task?

How are such external references to a port converted by the kemel into the address of the kemel port
structure?

When the task receives a port right via a message, how is it added to the task’s port space?
What happens when a task deallocates its send rights to a port?
What happens when a task deallocates its receive rights to a port?

Explain how out-of-line data is passed from one task to another.

Explain how flow control is implemented as part of the msg_send and msg_receive system calls.

Advanced Question:

4. Messages and ports are not heavily used in OSF/1, in part because the UNIX standards that dictate the
user/system interface make no mention of message- and port-like constructs. However, messages and ports
could be used to aid the implementation of a number of UNIX system calls. For example, in the write system
call, the buffer could be transferred from the user’s address space to the kemel’s address space as part of a
message, allowing copy-on-write techniques to be used to minimize the actual copying of data. What
problems would be associated with doing this? What other UNIX system calls and facilities could benefit

from the use of messages and ports?

3-32

Module 4 — Virtual Memory
L _______________________]

Module Contents
1. LazyEvaluation PR 4-4
2. VM COMPODENLS ..ottt ittt tttieeeneeeeaeaseteensaeoneneenaenaesoneeesaeannans 4-6
Data structures

Representing an address space
Separating architecture-independent from architecture-dependent aspects

1 (110 o 0 0} 1T £ P 4-30
Vnode pager :

External memory object managers

Paging and swapping

.Copying and Sharing i i it i ittt ettt ittt e i, 4-58

Virtual copy operation
Read/write sharing
Permanent memory objects
External memory objects

.ThePmapModuleo i i e e e e 4-102

Required functionality
A typical architecture
TLB shootdown

Module Objectives

In order to demonstrate an understanding of virtual memory within OSF/1, the student should be able to:

explain the concept of lazy evaluation and give four examples of how it is used in OSF/1

list the data structures in the architecture-independent portion of OSF/1 and explain their purpose
describe the interface between the memory object manager and the virtual memory kernel
describe the implementation of memory objects within the vnode pager

explain the use of shadow objects and copy objects in optimizing virtual copy operations

explain what must be done at the architecture-dependent level to implement the virtual copy operation

4-1

Module 4 — Virtual Memory

4-1. The Big Picture

Virtual Memory

41 © 1990, 1991 Open Software Foundation

Module 4 — Virtual Memory

Student Notes: Virtual Memory

A task’s address space consists of a number of either private or shared virtual memory objects. The address space
may be large and sparse. Objects such as files can be mapped into the address space.

The VM model is independent of the underlying architecture; primary storage is a cache of pages belonging to the
VM objects. The architecture’s address-translation mechanism maps references to cached pages. The
architecture-dependent code and the architecture-independent code are separate.

User code can access the interface between the kernel’s page cache and memory object managers, and thus
memory object management can be performed outside of the kemnel.

The material in this module is covered in Open Software Foundation, 1990a, chapters 7, 8, 9, and 10.

V@/} /wy%ﬁé/f

43

Module 4 — Virtual Memory

4-2. Lazy Evaluation

Lazy Evaluation — 1.7 we 7 done! rhet

Postpone everything until the last possible
moment: if you put it off long enough,
maybe you won’t have to do it.

42 © 1990, 1991 Open Software Foundation

4-4

Module 4 — Virtual Memory

Student Notes: Lazy Evaluation

The technique of lazy evaluation is pervasive; it’s used throughout the VM system. It is an effective optimization,
since many operations, such as copying, often tum out not to be really necessary.

Examples of the use of lazy evaluation:

¢ no physical address maps are created until they are needed to satisfy a reference

® no pages are allocated until they are needed

® no page is copied until two copies are necessary
—— By

® no backing store is allocated until it is needed Coud rews - 5,7,
‘ oL, cS G

,/)74//».;4« - cold ron oI

Module 4 — Virtual Memory

4-3. VM Components

VM Rough Sketch

address space

hardware
translation
facility

4.3,

4-6

© 1990, 1991 Open Software Foundation

T B T T T S S TEE S T T S e T e e T . —-_—

Module 4 — Virtual Memory

Student Notes: VM Rough Sketch

A process’s address space is managed by the kemel, which is responsible for setting up the hardware address
translation facilities as required, for responding to page faults, and for determining which pages should be kept in
primary memory. This kemnel functionality is divided into two pieces, a machine-independent piece and a
machine-dependent piece. The former is by far the larger, and it is responsible for maintaining a description of
each process’s address space. The size of the latter depends upon the architecture, but is typically much smaller
than the former.

There is a third component of the VM subsystem, which is the manager of the backing store. It is responsible for
supplying the initial values of pages and for holding on to pages that have been paged out. Two possibilities are
available to the programmer. A special subtask of the kernel known as the vnode pager is the default manager of
backing store. It uses the file system for its backing storage. An alternative is to provide a user-level backing
store manager (known as an external memory object manager or an external pager). It can be used to back
objects that the user has mapped into its address space via the vim_map system call; what it does with the pages is
entirely up to the application.

4.7

Module 4 — Virtual Memory

44. VM Components

Mapping Objects into an Address Space

address space

44 © 1990, 1991 Open Software Foundation

4-8

—-__ﬁ_—{—_—____———_—

Module 4 — Virtual Memory

Student Notes: Mapping Objects into an Address Space

Mapping an object into an address space involves a number of issues. First of all, what is the nature of the object?
It might be: '

1. temporary: it has no name and hence no permanent existence.
—ne———

2. afile: it has a name and hence a permanent existence, but should changes made to the address space be
reflected to the file?

W, a user process provides the contents of the object and manages its modifications.
Second, how might the pages obtained from the object be shared among multiple processes? For example:

1. the pages are not shared

2. the pages are shared read-only (and if they are modified, copies are made)

3. the pages are shared read-write

49

Module 4 — Virtual Memory

4-5. VM Components

VM Components

-
e e kA
ﬁ{\\lﬂ? P\'}tP -

pmap

vm_map

vm_map_entrys

task B

k/éﬁ/f”ﬁ/

1 ot

vm_objec) F)
page
lists
memory
object
45 © 1990, 1991 Open Software Foundation
4-10

Module 4 — Virtual Memory

Student Notes: VM Components

Each task has a map to represent its address space, consisting of a header, the vm_map structure, and a linked list
of structures, each a vm_map_entry representing a continuous range of addresses.

Each such range is mapped to a memory object represented internally as a vm_object. Each vm_object may refer
to other vm_objects (via the shadow chain, which will soon be discussed). In addition, it represents a set of virtual
pages, some of which may currently be in primary storage. Those pages in primary memory are represented by
vm_page structures and are linked to the vmm_object. The vm_object may refer to a memory object (via a port
reference), which represents those pages stored elsewhere (in backing store) and managed by a memory object
manager. This object manager may be supplied by either the kemnel or a user task.

The pmap data structure encapsulates of the architecture-dependent portion of the VM subsystem. It represents
the architecturally required memory mapping structures and related information.

4-11

Module 4 — Virtua

1 Memory

4-6.

VM Components

Maps

vm_map_entrys

4-6.

© 1990, 1991 Open Sokware Foundation

Module 4 — Virtual Memory

Student Notes: VM Maps

A VM map, mapping a range of virtual addresses to vm_objects, is represented as a doubly linked list of
vm_map_entry structures headed by a vm_map structure. The mapping may be sparse, i.e., many if not most
addresses in the range may not be represented. The VM map represents either the address space of a task or a
range of addresses shared by a number of tasks.

4-13

Module 4 — Virtual Memory

VM Components

vm_map_entry

vm_map_entry

4-1.

4-14

© 1990, 1991 Open Software Foundation

Module 4 — Virtual Memory

Student Notes: vmm_map_entry

® Previous entry, next entry:

— links in chain of vm_map_entrys

® Start address, end address:

— range of addresses represented in this entry

® Inheritance:
— how this range should be inherited by a child (i.e., via a fork)

— share, copy, or none (not inherited at all)

® Maximum protection, current protection:
— specifies maximum and currently permitted accesses

— some combination of read, write, and execute; not all combinations may be possible

— RWX)>RX)>()

® Object:

— reference to an object, which may be a vm_object or a vm_map

® Object type:

— share map, submap, and vm_object

® Offset:

— offset into object

® Flags:

— copy-on-write information

® Wired count:

— this is incremented by one to indicate that the range of addresses must not be paged out; thus pages in this
range may only be paged out if the wired count is 0 (which is the usual value)

4-15

Module 4 — Virtual Memory

4-8. VM Components

vIn_map

© 1990, 1991 Open Software Foundation

4-16

Module 4 — Virtual Memory

Student Notes: vm_map

® Size:

— virtual size of mapped region

® Number of entries:

— number of vm_map_entrys in list

® Main map?

— whether it is the top-level map of a task

® Pmap:

— pointer to pmap for this mapping

® Jock:
— ablocking lock protecting this data structure

® Timestamp:

— time of last change to map (used to determine if anything has changed since the object was unlocked)

® Reference count

® Hint: >

w/g/@ y
— pointer to last vim_map_entry that was encountered in a lookup (a good place to start for the next lookup)

® Free-space hint:

— pointer to the first hole in the address space

4-17

Module 4 — Virtual Memory

4-9. VM Components

vm_objec

vm_object

4-9. © 1990, 1991 Open Sofiware Foundation

4-18

Module 4 — Virtual Memory

Student Notes: vm_object

® Memory list:

— list of incore pages assigned to this object
¢ Reference count

® Pager:
— the memory object manager
¢ send rights to memory object port

¢ offset into the memory object

® Shadow object:

— link to backing object for copy-on-write

® Copy object:

— link to object that should receive copies of the modified pages (used for copy-on-write with permanent
memory objects)

® Size:

— object’s size if it’s an internal object

® Page count:

— number of incore pages

® Iock:

— a simple lock for mutual exclusion

® Flags:

— various

4-19

Module 4 — Virtual Memory

4-10. VM Components

Representing Pages in Primary Memory

gti\m, inactive,
or free-page-list
header

pageq - > &
hashq i ¢ o :
listq —>

| vm_object/offset '

flags
etc.
vm_page
K For
LY %
/ /QJ vm_page_buckets
4-10. © 1990, 1991 Open Software Foundation

4-20

Module 4 — Virtual Memory

Student Notes: Representing Pages in Primary Memory

Each page in primary storage is represented by a 56-byte vm_page data structure, which is used to represent the
page in a number of lists. Attached to each vin_object is a list of all the vin_page structures for incore pages
associated with the object. If the underlying page is pageable, then the vm_page structure is attached to one of
three lists managed by the pageout daemon (the active, the inactive, or the free-page list). In orderto find a
particular page, there is a system-wide hash table headed by the array vmm_page_buckets. This hash table is keyed
by the address of the vm_object and the page’s offset within the virtual memory represented by the object.

4-21

Module 4 — Virtual Memory

4-11. VM Components

Submaps

4-11. © 1990, 1991 Open Software Foundation

4-22

Module 4 — Virtual Memory

Student Notes: Submaps

Since the list of vm_map_entrys is typically not very long, sequential search is reasonable for user tasks.
However, the kernel task’s address space representation can become fairly complicated. To simplify searching,
special submaps are used (only in the kernel) to represent a range of addresses.

Note that this representation is used only in the kemnel.

4-23

Module 4 — Virtual Memory

4-12. VM Components

UNIX VM on OSF/1

ol
S

4-12.

4-24

© 1990, 1991 Open Software Foundation

Module 4 — Virtual Memory

Student Notes: UNIX VM on OSF/1

This picture shows how the address space is initially set up for a UNIX process. A vm_object for an executable
file is mapped into both the text and the data sections. The executable portion of the file is mapped in the text
region, and then the initialized data from the file is mapped on the data region.

Since the data region of the process may be modified but the file should not be, the file pages representing data
are mapped copy-on-write. The kernel creates a temporary memory object to back up the modified copies of data
pages. Since threads in the process cannot modify the text region, the kemel need not allocate any additional
backing store for the text.

Two vm_objects representing temporary storage are set up for the BSS (block skip section or, less cryptically,
uninitialized data) and the stack regions.

4-25

Module 4 — Virtual Memorl

4-13. VM Components

UNIX VM on OSF/1: Expansion

4-13.

4-26

© 1990, 1991 Open Software Foundation

Module 4 — Virtual Memory

Student Notes: UNIX VM on OSF/1: Expansion

This picture shows the effect of growing the UNIX address space. The UNIX process issues an sbrk system call
to increase the size of BSS by 20K bytes. Internally, this is converted into a vm_allocate request, which
determines that an existing vm_map_entry can simply be extended to include the new address space.

4-27

Module 4 — Virtual Memory

4-14. VM Components

Locating Pages

pmap

access | Page table

location
20170

4-14.

4-28

© 1990, 1991 Open Software Foundation

Module 4 — Virtual Memor_y

Student Notes: Locating Pages

A page fault occurs when a page is referenced that is not mapped by the hardware. The page-fault handler must
determine if this is a legitimate reference; if so, it must allocate primary storage for the page and put data into the
real memory. .

1. The page-fault handler first scans the list of vim_map_entrys for an entry whose range includes this page. To
speed this search, the hint field of the vm_map structure points to the last vmm_map_entry referenced by this
task; successive page faults often occur on pages within the same vm_map_entry.

a. If a containing vm_map_entry is not found, then the reference is invalid and an exception is generated.
2. If a containing vm_map_entry is found, then the page-fault handler checks to see whether the desired access is
allowed.
a. If access is not allowed (e.g., an attempt to modify a page in a read-only region), then, again, an exception
is generated.
3. If the access is allowed, then the page-fault handler follows the pointer to the vim_object. Associated with the
object is a hash table representing virtual pages belonging to the object.

a. If the desired page belongs to the object, then its contents are fetched from the associated memory object
(as described later). '

b. If the page is not present in this vm_object, then the page-fault handler checks the next vm_object (which
this one shadows). (We discuss what this means and why it occurs in the following pages.)

c. Ifnovm_object claims ownership of the page, then the page is created, filled with zeros, and given to the
topmost vm_object.

4-29

Module 4 — Virtual Memory

4-15. Memory Objects

I Ci?@ 1 h/@ﬁ

Memory Objects

C /{mf

s T8 Iy 7

memory object
control port
3

kemel task

serer o puges

memory object :

mem?;y object manager

M? bo wier Zov

4-15.

4-30

© 1990, 1991 Open Sofiware Foundation

Module 4 — Virtual Memory

Student Notes: Memory Objects

A memory object is an abstraction representing what is mapped into virtual memory. The object might be a file,
temporary storage, or something implemented by a user task (such as the network memory server).

A memory object is implemented (managed) either in the kernel or in a user task. It is represented by three ports:

® memory object port. effectively the name of the object—used to transmit requests to the manager. The
memory object manager holds the receive rights to this port.

® memory object control port. a path from the manager to the vm_object used to transmit requests from the
(extemnal) memory object manager. The kernel holds the receive rights to this port.

® memory object name port. created by the kemel and used to name an object in the kernel’s response to the
vm_regions system call (it provides a means for showing that an object exists without giving away rights to
it).

Memory object managers (also known as pagers) manage the objects that may be mapped into tasks’ address

spaces. A pager’s duties are to respond to a kemel’s requests for pages (in response to page faults) and to store

pages on some sort of backing store in response to pageout requests.

The default memory object manager, known as the vnode pager, is implemented as a separate task running in
kernel mode. (Its address space is implemented as a submap of the kernel map, as we will discuss later.) The
vnode pager supports both temporary memory objects and permanent memory objects. The former are used to
back up virtual memory that will exist only as long as tasks have it mapped into their address spaces. This is used,
for example, to back up BSS and stack, as well as to back up a process’s private modifications to permanent
objects that the process has mapped copy-on-write, such as initialized data.

Permanent memory objects have names in the file system and thus can continue to exist even if no process has
them mapped (i.e., permanent object are files). Examples are text, initialized data, and memory-mapped files.

Memory object interactions typically involve three parties:
® the memory object manager (pager)—manages one or more memory objects
® the kemel—maintains the page cache and responds to page faults

® the client—one or more user threads; maps memory objects into its address space

4-31

Module 4 — Virtual Memory

4-16. Memory Objects

Memory Object Management: Interfaces

Memory object management

. cliett—toy'lel

* kernel to pager

o pager to kemel

!

4-16. © 1990, 1991 Open Software Foundation

4-32

Module 4 — Virtual Memor_y

Student Notes: Memory Object Management: Interfaces

® (lient to pager

— obtain memory object (i.e. a port); no formal interface

® (lient to kernel

— map memory object into address space; use either mmap (for files) or vm_map (for Mach objects).

¢ Kemel to pager
— initialize memory object
— request a data page
— write back a modified data page
— upgrade permissions .
® Pager to kemnel
— provide a data page (either in response to a request or gratuitously) MoK = A aa
— indicate that a page is not available (will be zero-filled)
— rew to cached data (e.g. write-protect or read-and-write protect)

— clean or flush cached data

— set persistence and virtual copy attributes

4-33

Module 4 — Virtual Memory

4-17. Memory Objects

Pagein, part 1
list of vm _page
structures
(representing
incore pages)
4. © 1990, 1991 Open Software Foundation

4-34

Module 4 — Virtual Memory

Student Notes: Pagein, part 1

When a page fault occurs, the kemel’s page fault handler first determines that the desired page is not incore. It
consults the vm_page hash table to check if a vm_page structure for the desired page exists. If one does not, it
must fetch the page from the associated pager.

4-35

Module 4 — Virtual Memory

4-18. Memory Objects

. or %Z/d//
Pagein, part 2 ice ., z,fm A

user task

memory_object_data_request pager

memory_object_data_provided

memory_object_data_unavailable
-€

memory_object_data_error

-+

4-18. © 1990, 1991 Open Sofiware Foundation

4-36

Module 4 — Virtual Memory

Student Notes: Pagein, part 2

1. The kemel creates a vin_page structure for the desired page (page 2 in the example) and marks this page
absent (indicating that a value for the page has not been found yet) agggﬂ (indicating that an operation on
the page is in progress).

2. The faulting thread requests the desired page by sending a memory object_data_request message to the pager
through the pager’s memory object port (send rights for which are found in the vm_object).

3. The faulting thread blocks, awaiting a response.

4. The pager, using the memory object control port, either:

a. returns the desired page (via a memory_object_data_provided message) and then turns off the absent
indication in the vm_page structure.

b. indicates that it does not have the desired page (by sending a memory_object_data_unavailable message),
marks the page no longer busy, and wakes up the waiting threads.

c. indicates that an error occurred while fetching the page (by sending a memory_object_data_error
message), marks the page no longer busy, and wakes up the waiting threads.

A “short-circuit” approach is used with the default pager, i.e., the vnode pager. Since this pager exists in the
kernel, it does not need to be sent a message; it can be called directly. Thus a call is made to it in the context of
the faulting thread and the page I/O occurs in this thread’s context. Instead of sending a return message, the
thread merely returns.

4-37

Module 4 — Virtual Memory

4-19. Memory Objects

Pageout, part 1

user task

selected for
vm_page structures pageout
(representing
incore pages)

4-19.

4-38

© 1990, 1991 Open Software Foundation

Module 4 — Virtual Memory

Student Notes: Pageout, part 1

Pageouts are performed in the context of a special kemel thread called the w (as will be discussed).
It selects a page to be freed and then contacts the appropriate pager.

4-39

Module 4 — Virtual Memory

4-20. Memory Objects

Pageout, part 2
user task
aAAr
of e
new object
.
420, © 1990, 1991 Open Software Foundation
4-40

y [] T]

Module 4 — Virtual Memory

Student Notes: Pageout, part 2

The pageout daemon then:
1. locks the vmm_object to prevent any other thread from manipulating the page in question
2. creates a new object
3. assigns to this new object the vmm_page structure for the page to be paged out

4. assigns a new vm_page structure (marked “fictitious™) to the original vm_object in place of the page being
paged out

a. this structure blocks any attempt to page the page in while it is being paged out

5. unlocks the original vm_object

4-41

Module 4 — Virtual Memory

4-21. Memory Objects

Pageout, part 3

new object

“fictitious”

pager task

4-2.

4-42

© 1990, 1991 Open Software Foundation

Module 4 — Virtual Memory

Student Notes: Pageout, part 3

The new object is sent to the pager as part of a memory_object_data_write message and is mapped into the pager
task on receipt. The pager is now responsible for copying the page to some permanent storage. After it has done
so, it issues a vm_deallocate system call to deallocate the page and thereby indicate that it has dealt with it.

Once the memory_object_data_write message has been successfully queued, the fictitious page is removed. The
purpose of this page is to serialize pageins with pageouts: we must make certain that pageins are dealt with after
the pageout has been completed so that the most recent version of the page will be fetched. The fictitious page is
placed in the original vmm_object, forcing any thread that faults on this page to block until the fictitious page is
removed. At this point the faulting thread sends a memory_object_data_request message that is queued after the
memory_object_data_write message, thus serializing the messages and leaving it to the pager to maintain
serialization.

The original page is put into a new object just in case the pager does not complete the pageout quickly enough.
The pager for this new object is set to be the vnode pager and the outgoing page is retumed to the domain of the
pageout daemon. If the page is not deallocated soon enough, then the pageout daemon will give the page to the
vnode pager for a sure pageout.

The interface to the vnode pager is identical to that of other pagers. However, the pageout daemon is assured that
the vnode pager will always complete a pageout. Thus the page being paged out is not returned to the domain of
the pageout daemon, but instead is “wired,” assuring that the pageout daemon will keep its hands off of it until the
vnode pager has paged it out and deallocated it.

The vnode pager needs additional synchronization for serialization with a concurrent pagein request. Since
pagein requests are shont-circuited (are done in the context of the faulting thread as opposed to being handled by
sending a message to the pager), this serialization, based on message order as described above, doesn’t happen
here. Instead, the vnode pager maintains a hash table of pageouts in progress. When a pagein of an outgoing
page is attempted, the pagein thread must block until the pageout has been completed so that it does not page in
stale data. The vnode pager normally pages to ordinary files (via the buffer cache). Thus a pageout effectively
completes as soon as the page is copied into the buffer cache.

4-43

Module 4 — Virtual Memory

4-22. Memory Objects

vm_map_entry

————> 2

vm_object

list of incore
pages

Lazy Evaluation of Object Creation

>

vnode pager task

422,

4-44

© 1990, 1991 Open Software Foundation

. | . . I [] _—_— | | [] L . T —— — —— I — — — —

Module 4 — Virtual Memory

Student Notes: Lazy Evaluation of Object Creation

Memory objects and vm_objects are both created using lazy evaluation techniques. A vm_allocate system call
creates a vm_map_entry, not a vimm_object. The vm_object is created only when a page is actually accessed. Only
then does the system set up the vm_object and link to it a vm_page structure for the accessed page. The vnode
pager does not allocate a memory object until the pageout daemon issues a pageout request.

4-45

Module 4 — Virtual Memory

4-23. Memory Objects

Temporary Memory Objects

vstruct structure
(vnode_pager t)

v§_pmap

vs_pmap

571
/ %’j pager_file

structure

4.3, © 1990, 1991 Open Software Foundation

/g’M/ //é/).@

4-46

s g |] - |] |] | i ; .
[] A |] = [— "—— S—— Py [R—— e

Module 4 — Virtual Memory

Student Notes: Temporary Memory Objects

In atypical configuration, a fairly small number of paging files is set up for use by the vnode pager to back the
pages of temporary memory objects. Each of these files is represented by a pager_file structure, which, among
other things, gives the vnode for the file and a limit on its size. Each memory object is represented by a vstruct
structure that indicates on which paging file the object is backed.

vs_pmap structures are used to indicate where pages of the object have been stored in the paging file. If the
object’s size is no more than 512 pages, then a single vs_pmap is used to map each of the pages to the paging file.
For larger objects a two-level scheme is used: the first vs_pmap points to up to 512 vs_pmaps, each of which
contains up to 512 pointers to where pages have been backed in the paging file.

Note that lazy evaluation is used as much as possible, so that the vs_pmaps (and space in the paging files) are
allocated only when necessary to back up a page.

4-47

Module 4 — Virtual Memory

4-24. Memory Objects

Allocating Backing Storage

pages in primary
memory

Is there room?

backing store

4-24.

4-48

© 1990, 1991 Open Software Foundation

Module 4 — Virtual Memory

Student Notes: Allocating Backing Storage

OSF/1 takes a liberal approach to the allocation of the backing store: backing store is allocated only when
necessary, i.e., when a page must be written out. This approach differs from the conservative approach used in
earlier versions of UNIX, in which backing store and virtual memory are allocated at the same time.

To see the difference between the two approaches, consider an extreme example: a system has 100 Mb of primary
storage and 10 Mb of backing store. With the conservative approach, since all virtual memory must have backing
store allocated for it, at most 10 Mb of the primary store can be used. With the liberal approach, a total virtual
address space of 110 Mb can be used: 100 Mb in primary memory and 10 Mb on backing storage.

Unfortunately, with the liberal approach one may find out at a rather inopportune moment that there is no more
backing store. Recovery from running out of backing store is not currently handled gracefully.

4-49

Module 4 — Virtual Memory

4-25. Memory Objects

Vnode Pager Task: Slave Threads

slave thread
2902

VA

vnode_pager_sets

vstruct

hashtable vstruct

4-25,

4-50

© 1990, 1991 Open Software Foundation

Module 4 — Virtual Memory

Student Notes: Vnode Pager Task: Slave Threads

A number of threads (termed “slave threads™) exists within the vnode pager task. Each such thread is responsible
for a set of memory objects and deals with all requests coming on the memory objects ports for its memory
objects. Given a request from a particular port, it looks this port up in the vnode_port_hash_table to determine
the memory object’s associated vstruct structure.

When a memory object is created it must be assigned to a slave thread. This is done by randomly chosing an
index into the array vnode_pager_sets. Each entry of this array contains a port set (described in the next module)
to which the memory object’s memory object port is added. Using the port set mechanism, the slave thread
receives messages sent through any of its memory_object_ports.

4-51

Module 4 — Virtual Memory

4-26. Memory Objects

Vnode Pager Task: Address Space

kernel map

node pager submap

4-26. © 1990, 1991 Open Software Foundation

4-52

N @ wan Al And e e e SEEE feeew e Gemie saeen deeEe s

Module 4 — Virtual Memory

Student Notes: Vnode Pager Task: Address Space
The vnode pager is implemented as a very special task. It has a task structure, a u_task structure, and contains

threads, but its address space is the kemnel address space. It has access to all of the kernel address space, though
its private data structures are segregated within a special submap.

4-53

Module 4 — Virtual Memory

4-27. Memory Objects

Page Replacement

J/)’ZLD 0{/&(

active list inactive list free list

4. © 1990, 1991 Open Software Foundation

4-54

Module 4 — Virtual Memory

Student Notes: Page Replacement

Unlike the architecture-independent address space representation, page replacement is very simple. Each unwired
page is on one of three lists, each maintained in FIFO order:

® free list
® inactive list

® active list

Whenever there is a memory shortage, a single kemel thread, the pageout daemon, is woken up by whichever
thread in the kemel notices the memory shortage. It transfers enough pages from the inactive list to the free list to
increase the size of the free list to a threshold. It examines each page in turn on the inactive list: if the page’s
reference bit is set, it transfers the page to the end of the active list; otherwise it transfers it to the end of the free
list. If a page’s modified bit is set, then the pageout daemon writes the page out to its memory object before it
transfers the page to the free list.

After transferring pages to the free list, the pageout daemon checks to see if the inactive list has enough pages. If
it does not, it transfers pages from the active list to the inactive list. As it does so, it tumns off the pages’ reference
bits. The intent is that, once a page has been placed on the inactive list, it must be proved that this page is needed.
The proof comes when a thread accesses the page, thus turning on the reference bit. Thus non-referenced pages
eventually go to the free list; referenced pages go back to the end of the active list.

Pages on the free list may be reclaimed if they are referenced by a page before they are used for some other
purpose.

If the hardware does not support a reference bit, a slightly different strategy is used. The translation entries for
pages on the inactive list are marked invalid, thus forcing a page fault to occur when these pages are referenced.
The page fault thus proves that the page is needed. These faulted pages are then moved to the end of the active
list.

4-55

Module 4 — Virtual Memory

4-28. Memory Objects

Swapping

o unwire the kernel stack

| @ Ahreads

o ferch and wire the kemel stack

4-56

© 1950, 1991 Open Software Foundation

Module 4 — Virtual Memory

Student Notes: Swapping

Swapping is handled by two kernel threads: a swapout thread and a swapin thread. The pageout daemon wakes
up the swapout thread in response to memory shortages (but no more than once a minute). The swapout thread
scans the list of all threads and swaps out those nonrunnable, interruptible threads that have been idle for more

“than 10 seconds.

The OSF/1 notion of “swapping out” is somewhat unusual: the thread is marked “swapped out” and its kernel
stack is unwired. Nothing else happens to the thread immediately. Eventually, however, the pageout daemon will
claim the pages of this thread. Since its kemel stack is unwired, these pages will be freed as well.

The swapin thread is responsible for swapping in threads. The swapin thread “swaps in” threads by wiring the
thread’s kemel stack. A swapped-out thread becomes a candidate to be swapped in when it is made runnable.
Runnable swapped-out threads are placed on a swapin list; the swapin thread is woken up whenever a thread is
placed on this list.

4-57

Module 4 — Virtual Memory

4-29. Copying and Sharing

Virtual Copy

task A

task B

pages belonging pages belonging
to vm_object to vm_object
4. © 1990, 1991 Opon Software Foundation
4-58

P TN I N S S D U GEe e e

Module 4 — Virtual Memory

Student Notes: Virtual Copy

There are many situations in which it is necessary to make a logical copy of a range of pages. For example, after
a UNIX fork system call, the child process has a copy of the parent’s address space. When a task sends a message
to another task, the recipient receives a copy of the message. A very useful optimization is copy-on-write, in
which the “copying” is lazily evaluated, i.e., postponed in hope that it will not be necessary. Two tasks holding
logical copies of a page can share the same physical page until one of them modifies it, at which point the
modifier obtains a copy of the page to modify.

A thread in task A has just executed a fork system call, creating task B. We focus our attention on a range of
addresses represented by a single vm_map_entry in task A, which is “copied” into task B. As long as neither task
modifies any of the pages in this range, the pages are shared.

4-59

Module 4 — Virtual Memory

4-30. Copying and Sharing

Virtual Copy Redux

© 1990, 1991 Open Software Foundation

4-60

Module 4 — Virtual Memory

Student Notes: Virtual Copy Redux

Suppose that task B from page 4-58 executes a fork system call, creating task C. If none of tasks A, B, and C has
modified any pages within the range, then they will continue to share all the pages.

4-61

Module 4 — Virtual Memory

4-31. Copying and Sharing

Virtual Copy and Modified Pages, part 1

task A task B

hew
shadow object

431 © 1990, 1991 Open Saftware Foundation

4-62

Module 4 — Virtual Memory

Student Notes: Virtual Copy and Modified Pages, part 1

This picture shows the situation of page 4-58 after a thread in task A has modified page 1. To represent the pages
that a task has modified, and thus those pages that are now private to the task, the system creates a shadow object.

The picture shows the architecture-independent representation of the address spaces for tasks A and B: task A has

its private version of page 1, but uses the original versions of pages 2 and 3; task B uses the original versions of
pages 1,2, and 3.

4-63

Module 4 — Virtual Memory

4-32. Copying and Sharing

Virtual Copy and Modified Pages, part 2

4-32. © 1990, 1991 Open Sofiware Foundation

Module 4 — Virtual Memory

Student Notes: Virtual Copy and Modified Pages, part 2

This picture shows the situation in the previous picture after a thread in task B has modified page 2. Another
shadow object has been created, this time to represent those pages which are private to task B.

4-65

Module 4 — Virtual Memory

4-33. Copying and Sharing

Virtual Copy and Modified Pages, part 3

task A task B task C

4-3. © 1990, 1991 Open Software Foundation

4-66

Module 4 — Virtual Memory

Student Notes: Virtual Copy and Modified Pages, part 3
In this picture, task B has executed a fork system call, creating task C. As long as neither task B nor task C

modifies any pages, the situation will be as shown here: the two tasks share the version of page 2 referred to by
the shadow object and use the versions of pages 1 and 3 referred to by the original object.

4-67

Module 4 — Virtual Memory

4-34. Copying and Sharing

Virtual Copy and Modified Pages, part 4

task A task B task C

4-34. © 1990, 1991 Open Software Foundation

4-68

Module 4 — Virtual Memory

Student Notes: Virtual Copy and Modified Pages, part 4

A thread in task B has further modified page 2, necessitating the creation of still another shadow object to
represent what are now task B’s private pages.

4-69

Module 4 — Virtual Memory

4-35. Copying and Sharing

Virtual Copy and Modified Pages, part 5

task A task B task C

4-35. © 1990, 1991 Open Software Foundation

4-70

Module 4 — Virtual Memory

Student Notes: Virtual Copy and Modified Pages, part 5

A thread in task C has modified page 1, resulting in the creation of yet another shadow object.

4-71

Module 4 — Virtual Memory

4-36. Copying and Sharing

Sharing

4-36.

4-72

© 1990, 1991 Open Software Foundation

Module 4 — Virtual Memory

Student Notes: Sharing

Multiple tasks occasionally share portions of their address spaces with one another. The most straightforward
representation of this would be for the appropriate vin_map_entry of each task to point to the one vm_object
representing the shared memory. However, this representation is already taken: it is used for copy-on-write. A
separate memory map, called the share map, represents the shared memory. This map consists of a vim_map
structure heading a linked list of vim_map_entrys, each of which points to a vin_object. The vm_map_entrys of the
tasks sharing this memory point to the share map (not to vm_objects).

4-73

Module 4 — Virtual Memory

4-37. Copying and Sharing

Share Then Copy, part 1

task A task B

4-37,

4-74

© 1990, 1991 Open Software Foundation

Module 4 — Virtual Memory

Student Notes: Share Then Copy, part 1
Fairly complex memory representations can be achieved by performing numerous copy and share operations. In

the picture, the original object is shared by tasks A and B. Task B has created a child task C, but this portion of
the address space is (virtually) copied into task C.

4-75

Module 4 — Virtual Memory

4-38. Copying and Sharing

Share Then Copy, part 2
task A task B

4-38,

4-76

© 1990, 1991 Open Software Foundation

Module 4 — Virtual Memory

Student Notes: Share Then Copy, part 2
Task C has modified page 2 and either task A or task B has modified page 1.

This picture illustrates why a separate map is needed when tasks share a portion of their address space. An
alternative representation might be for the vin_map_entrys of tasks A and B to point directly to the vm_object.
However, this would complicate the creation of the shadow object needed in this model to represent the modified
copy of page 1. Without a share map, it would be necessary to track down all of the vm_map _entrys that point to
a vm_object and then change them to point to the new shadow object.

4-77

Module 4 — Virtual Memory

4-39. Copying and Sharing

Clipping: Changing Attributes

1000-4££f [*1 50007
r

2 1

8000-afff

‘é

4-78

© 1990, 1991 Open Software Foundation

Module 4 — Virtual Memory

Student Notes: Clipping: Changing Attributes

Programmers do not see the organization of the address space imposed by the vm_map_entrys. Instead, they see
the address space as a collection of pages; i.e., the only important boundary is the page boundary (a system call is
available to determine the page size).

In particular, programmers can adjust the protection on arbitrary ranges of pages by using the vm_protect system
call. The use of this call might well result in the creation of new vm_map_entrys to represent the new view of the
address space.

This picture illustrates the effect of using vm_protect to set a range of pages, previously read-write, to be

read-only. The affected pages span two vm_map_entrys, each of which must be split in two to allow a read-write
portion and a read-only portion.

4-19

Module 4 — Virtual Memor_y

4-40. Copying and Sharing

Collapsing Objects
task 2

4-40. © 1990, 1991 Open Software Foundation

4-80

Module 4 — Virtual Memory

Student Notes: Collapsing Objects

Shadow chains can become fairly lengthy after a series of virtual copy operations. A couple of simple rules are
employed to reduce their length.

The first rule is that if a vm_object is pointed to by only a single vin_object via a shadow link, then it is not
necessary to have both objects: they may be combined into a single object.

The second rule is a bit more complicated. If a shadow chain links three vimm_objects and all pages of the middle
object are shadowed by the objects above it, then the middle object is unnecessary and can be eliminated: the top
object’s shadow link is changed to point directly at the bottom object. To apply this rule, no pages in either
vm_object can be paged out (otherwise it is too cumbersome to determine if the upper object completely shadows
the lower).

Due to complications with locking, these optimizations can be performed only in the context of one task at a time.
They are done when the shadow links are being traversed anyhow, for instance while a page fault is being
handled.

4-81

Module 4 — Virtual MemorL

4-41. Copying and Sharing

The Virtual Copy Operation: Permanent Objects

vm_write

W
0

4-41. © 1990, 1991 Open Software Foundation

4-82

Module 4 — Virtual Memory

Student Notes: The Virtual Copy Operation: Permanent Objects

As mentioned previously, the virtual copy operation is extremely important. It is used as part of:
e fork
® message passing

® vm_read, vm_write

It is essential that a virtual copy be quick. However, if a permanent object is involved, the standard copy-on-write
optimization must be performed with care: all changes to the associated virtual memory must be reflected back
into the permanent object.

Suppose that a thread in task A uses vm_write to copy data from its address space into a portion of task B’s
address space, into which a permanent object (e.g., shared mappings of memory-mapped files or an external
memory object) has been mapped. If it weren’t for the fact that the object was permanent, the vm_write could be
easily optimized using copy-on-write techniques. For example, task B’s vim_map_entry could be set to point
directly to the vm_object of task A. However, the copy-on-write optimization will not work in this case because it
would effectively unmap the permanent object from task B. The system must ensure that changes to this portion
of task B’s address space get back to the permanent memory object.

4-83

Module 4 — Virtual Memory

4-42. Copying and Sharing

Optimizing the Virtual Copy Operation

o Three parties are involved:
—— the server (i.e. the memory object manager)
hihi -t
— the client (i.e. the task that maps the permanent memory object)

— the copier (i.e. the task that is the target of the virtual copy)

o From the copier’s viewpoint, the mapped object should be a snapshot of its
state taken at the time of the virtual copy

442 © 1950, 1991 Open Software Foundation

4-84

Module 4 — Virtual Memory

Student Notes: Optimizing the Virtual Copy Operation

Suppose now that we are making a virtual copy of a portion of an address space into which a permanent object has
been mapped; the virtual copy is a temporary object, not a permanent object.

Immediately after a virtual copy operation takes place, both the client and the copier should “see” the original
value of the object. However, the copier’s changes to the object should have no effect on the object itself, but
should change only the copier’s private view of the object. The client’s changes to the object, however, must
affect the object, so that all other clients that have mapped the same memory object see the changes. Furthermore,
any changes made by any of these other clients, even if they reside on other computers, will be seen by this client.
The major problem is determining whether such changes occurred before or after the virtual copy, and thus
whether or not they should affect the copier.

4-85

Module 4 — Virtual Memory

4-43. Copying and Sharing

Virtual Copy from Permanent Objects:
COPY_DELAY, part 1

client client

shadow link

copier 1

copy
object

4-86

© 1990, 1991 Open Software Foundation

Module 4 — Virtual Memory

Student Notes: Virtual Copy from Permanent Objects: COPY_DELAY, part 1

In the simplest case, the memory object manager and all of its clients are on the same machine. Thus the kemel is
immediately aware of any change made to the object. The major concemn here is to make certain that all changes
clients make to the object are reflected in the object itself. The representation of memory after a virtual copy is
necessarily asymmetric, since the copier’s changes to the object are reflected only in the copier’s view and backed
up by a temporary memory object, while the client’s changes to the object are sent to the original object.

After a virtual copy, the client’s view of the object is unchanged except that, whenever it modifies a page of the
original object, the kernel must first copy the original version of the page to a copy object in the copier’s view.
The kemel finds the copy object by following a special copy link. Thus the copier is always assured of seeing the
original version of the object.

4-87

Module 4 — Virtual Memory

4-44. Copying and Sharing

Virtual Copy from Permanent Objects:
COPY_DELAY, part 2

client client copier 1

shadow link

4.44. © 1990, 1991 Open Soltware Foundation

4-88

Module 4 — Virtual Memorz

Student Notes: Virtual Copy from Permanent Objects: COPY_DELAY, part 2

In this picture the client has modified page 2, so the original value of page 2 is first copied to the copy object and
the client now modifies the original.

4-89

Module 4 — Virtual Memory

4-45. Copying and Sharing

Virtual Copy from Permanent Objects:
COPY_DELAY, part 3

client copier 1

shadow link

490

© 1990, 1991 Open Software Foundation

S I T T] |

Module 4 — Virtual Memory

Student Notes: Virtual Copy from Permanent Objects: COPY_DELAY, part 3

The copier now modifies page 1. A new shadow object is created for the copier and a copy of page 1 is attached
to it.

4-91

Module 4 — Virtual Memory

4-46. Copying and Sharing

Virtual Copy from Permanent Objects:
COPY_DELAY, part 4

client copier 2 copier 1

shadow link

4-46. © 1990, 1991 Open Software Foundation

4-92

—— e [~ T S TR I e T | Tl] T | |] L] |] |] N

Module 4 — Virtual Memory

Student Notes: Virtual Copy from Permanent Objects: COPY _DELAY, part 4

The copier of page 4-88 has executed a fork system call, creating copier 2.

4-93

Module 4 — Virtual Memory

4-47. Copying and Sharing

Virtual Copy from Permanent Objects:
COPY_DELAY, part 5

client copier 3 copier 2 copier 1

shadow link

4-47. © 1990, 1991 Open Software Foundation

4-94

Module 4 — Virtual Memory

Student Notes: Virtual Copy from Permanent Objects: COPY_ DELAY, part 5

Starting from the previous picture, the client has fork’d once again, creating copier 3, which must start with the
same view of the object as that of the client.

495

Module 4 — Virtual Memory

4-48. Copying and Sharing

Virtual Copy from Permanent Objects:
COPY_DELAY, part 6

client copier 3 copier 2

shadow link

copier 1

copy link

4-96

© 1990, 1991 Open Software Foundation

Module 4 — Virtual Memory

Student Notes: Virtual Copy from Permanent Objects: COPY_DELAY, part 6

The client now modifies page 3. But, before this is allowed to happen, a copy of the page is propagated across the
copy link to copier 3’s copy object, assuring copier 3 of a correct view. Since the shadow link of copier 1’s and
copier 2’s copy object points to copier 3’s copy object, their view is maintained as well.

4-97

Module 4 — Virtual Memory

4-49. Copying and Sharing

Virtual Copy from Permanent Objects:
COPY NONE oty middine

==

server

of 4 174 /MJ{M

kernel B

4.49. © 1990, 1991 Open Software Foundation

4-98

Module 4 — Virtual Memory

Student Notes: Virtual Copy from Permanent Objects: COPY_NONE

The COPY_DELAY technique does not work if clients on other machines are modifying the objects. The
problem is that the local kemel does not know whether such changes took place before or after the virtual copy.
Only the server knows for sure. If the server is not prepared to deal with this uncertainty, then the virtual copy
must be implemented as a physical copy. That is, we ensure that the copier sees a snapshot of the object taken at
the time of the copy by physically copying all of its pages at that moment.

4-99

Module 4 — Virtual Memory

4-50. Copying and Sharing

irtual Copy from Permalzlent Objects: J
y 0// vk alone z e ”

OPY_CALL- 4 o/t doe byfoncl) e 100

,—Amug;«-a@e}

s€rver Je 'é oy

4-50, © 1990, 1991 Open Software Foundation

4-100

Module 4 — Virtual Memory

Student Notes: Virtual Copy from Permanent Objects: COPY_CALL

This technique augments the interface between the kernel and the server so that the server can manage the
snapshot views of the various copiers of the object. Each time a virtual copy is performed, the kemnel notifies the
server. The server then receives rights to a port that it uses to represent the snapshot. All pages of the object that
are in primary memory are marked read-only so that the server can handle each write-fault. Thus the server is
given enough information to allow it to perform the job that the kemel performs with the COPY_DELAY option.

4-101

Module 4 — Virtual Memory

4-51. The Pmap Module

Pmaps

¢ The machine-dependent part of the VM system

o Functions

— maintaining the virtual-to-physical mapping for each address space
(task) as required by the hardware

— manipulating unmapped physical memory

A, Asbles /il VAX
/Log;‘ﬂ/w Tade - P-4 /Mféf)bey Cém/a ¥

25

S 6000 — /4 U\B{//\o///c/% Hodf e

4-51.

© 1990, 1991 Open Software Foundation

4-102

Module 4 — Virtual Memory

Student Notes M Jp 2K fhe %Ma 7 Tssves

The pmap module maintains whatever hardware-mandated data structures are required to map virtual to physical
addresses. These mappings need not be complete: all that is required is that enough mapping information be
available to the hardware to satisfy the current reference.

Following the principle of lazy evaluation, physical mapping information is typically set up on demand, i.e., when
it is needed to satisfy a reference. As threads within a task reference virtual memory, physical mapping
information continues to be built up. However, this information may be deallocated when necessary, for example,
to cope with shortages of memory.

The other function of the pmap module is to manipulate physical memory directly. For example, if the kernel
must copy into an unmapped address space, it must call upon the pmap level to perform this operation.

4-103

Module 4 — Virtual Memory

4-52. The Pmap Module

Operations Involving Pmaps: Thread Switchin

e Leave the context of one thread and enter the context of another

—

— trivial if both threads are in m

— otherwise, must leave the old address space (via acall to
pmap_deactivate) and enter the new address space (via a call to

pmap_activate)

4-52. © 1990, 1991 Open Software Foundation

4-104

Module 4 — Virtual Memory

Student Notes: Operations Involving Pmaps: Thread Switching

Calls to pmap_activate and pmap_deactivate must be implemented for each particular architecture. The
pmap_deactivate call might involve saving some context and, for multiprocessors, removes this processor from
the list of processors using this pmap. The pmap_activate call might involve setting a hardware register to point
to a new page table and, for multiprocessors, puts this processor on the list of processors using the new pmap.

4-105

Module 4 — Virtual Memory

4-53. The Pmap Module

Operations on Pmaps: A Single Address Space

e pmap_enter
— insert a physical page at a particular virtual address

e pmap_remove

— remove a range of addresses
—A“—‘__

e pmap_protect
— set the protection attributes for a range of pages

4-53. © 1990, 1991 Open Software Foundation

4-106

Module 4 — Virtual Memory

Student Notes: Operations on Pmaps: A Single Address Space
This set of operations affects the address space of a single task.

® pmap _enter: called as part of the response to a page fault. A new page allocated for the task must be entered
into the address map immediately, so that a reference to this page can now be completed.

® pmap_remove: called as part of a vm_deallocate request to ensure that address faults resuit if the given range
of addresses is accessed.

® pmap protect: called as part of a vm_protect request to set the desired protection at the hardware level.

4-107

Module 4 — Virtual Memory

4-54. The Pmap Module

Operations on Pmaps: Physical Pages

* pmap_copy_on_write

— remove write permission on g:l maps to a particular page

e pmap _remove_all —— /74 w7z

— remove a page from all maps and indicate whether the page has been
modified

4-54. © 1990, 1991 Open Software Foundstion

4-108

Module 4 — Virtual Memory

Student Notes: Operations on Pmaps: Physical Pages

This set of operations affects a physical page and all of the pmaps in which it appears. A pmap_copy_on_write
message would be called as part of a virtual copy operation to implement copy-on-write semantics. It makes
certain that write permission is not allowed for this page in all of the maps in which it appears.

A pmap_remove_all message might be called as part of a pageout operation. The page is to be removed from all
pmaps but pmap_remove_all must check to see if the page has been modified via any of these pmaps. If it has,
the modification is indicated by setting a bit in a global array.

4-109

Module 4 — Virtual Memory

4-55. The Pmap Module

Forward-Mapped Segmented-Paged Architecture

segment # page # offset virtual address
10 10, e
7K '
pmap — I
segment table g
(fully allocated) % %
pages
4-55. © 1950, 1991 Open Software Foundation
£ J5E

4-110

Module 4 — Virtual Memory

Student Notes: Forward-Mapped Segmented-Paged Architecture

As an example of a pmap module, we look at a forward-mapped segmented-paged architecture. Virtual addresses
are divided into three parts: a 12-bit offset within a page (i.e., a page size of 4K), a 10-bit page number (i.e., a
page table size of 1K entries), and a 10-bit segment number (i.c., a segment table size of 1K entries). Thus the
hardware-required memory-mapping structures for an address space are headed by a segment table. Each pmap
points to a unique segment table that is fully allocated when the pmap (and hence address space) is created. Page

tables and pages are allocated as needed.

4-111

Module 4 — Virtual Memory

4-56. The Pmap Module

PV List
physical address
pv_entry S——————3p=| pv_entry
pv_entry
pv_entry pv_entry
pv headers
(v_entry[])
pmap pmap
4-56. © 1990, 1991 Open Software Foundation
4-112

Module 4 — Virtual Memory

Student Notes: PV List

Operations on physical pages need to be able to find all of the pmaps mapping each page. The pv list contains the
location of each page’s pmaps. Given a physical address, an index into the pv_headers array is computed. This
array is an array of pv_entrys. Each pv_entry points to a pmap (i.e., one mapping the associated physical page),
contains the virtual address of this physical page within the pmap-described address space, and points to the next
pv_entry (if any) referring to another pmap that maps this physical page.

4-113

Module 4 — Virtual Memory

4-57. The Pmap Module

Pmaps: Sharing Pages

v headers

pmap
segment table
(physical location
—-@-—’ 10000)
pmap

segment table page table

4.57. © 1990, 1991 Open Software Foundation

4-114

Module 4 — Virtual Memory

Student Notes: Pmaps: Sharing Pages
In our example architecture, page tables are not shared. Thus a page shared by two or more pmaps has multiple

page-table entries pointing to it. If this page is being shared using copy-on-write semantics, then each of the
page-table entries specifies read-only permission.

4-115

Module 4 — Virtual Memory

4-58. The Pmap Module

TLB Shootdown

4-58.

4-116

© 1990, 1991 Open Software Foundstion

Module 4 — Virtual Memory

Student Notes: TLB Shootdown

Most architectures employ translation-lookaside buffers (TLBs) to speed the translations from virtual address to
physical address. If the architecture also uses a primary-memory resident data structure (e.g., page table) as the
source of TLB entries, then the operating system must take care to keep the TLB and this mapping structure
consistent. In a typical architecture, one might change a memory map by modifying the primary-memory data
structure, but since the hardware accesses the TLB first, one must also arrange that the TLB be changed as well.
This is usually accomplished by invalidating all or part of the TLB, thus forcing a miss when the hardware
accesses this translation in the TLB and hence forcing a lookup in the mapping structure.

On a shared-memory multiprocessor, one must also be concemed about the consistency of the TLBs on other
processors. This is an issue when threads of the same task are running simultaneously on different processors or
when threads of tasks sharing memory are running simultaneously on different processors. The problem is that
each of these threads may be modifying the memory map, and such changes must be propagated to all TLBs.

With most such multiprocessors, this is not easy: there is usually no notion of interprocessor TLB access. Thus to
propagate changes to other TLBs one must use interprocessor interrupts to notify software to make these changes.

Two potential race conditions must be avoided when TLBs are modified across a multiprocessor:

® if one invalidates a processor’s TLB before changing the global page table, and if a thread continues to run on
that processor, the hardware might reload the TLB from the (unmodified) page table before the page table is
updated.

o if the page table is modified first, and if the unmodified affected entry is in the TLB of some other processor, a
thread accessing another page might force the writeback of the unmodified TLB entry to the page table, thus
undoing the modification to the page table.

These race conditions are avoided by “stalling” the other processors long enough to make the changes.

A detailed discussion of the TLB shootdown algorithm can be found in Black, 1989.

4-117

Module 4 — Virtual Memory

4-59. The Pmap Module

TLB Shootdown Algorithm
Initiator: Responders:
lock pmap
send interrupts to all processors using
the pmap
spin on all-processor bit vector, waiting .
for others to acknowledge clear bit in vector
wait (spin) for pmap unlock
invalidate TLB
update translation map
unlock pmap
invalidate TLB
return from interrupt
4-5. © 1990,1991 Opea Software Foundation
4-118

Module 4 — Virtual Memory

Student Notes: TLB Shootdown Algorithm

The algorithm is actually very simple: first the pmap is locked. This prevents any other thread from making
changes to the translation map and it prevents any thread using this pmap from entering the running state.
Attached to the pmap is the list of processors that are currently using the associated address space—these
processors are running a thread from the pmap’s task. Each of these processors (the “responders”) is sent an
interrupt, which it acknowledges by clearing-a bit; then they spin, waiting for the pmap to be unlocked (they don’t
lock the pmap themselves, but merely wait for it to be unlocked). Once the first processor (the initiator)
determines that all responders have responded, then it can safely invalidate its own TLB and modify the
translation map (referred to by the pmap). It then unlocks the pmap, notifying the responders that they can
invalidate their TLBs.

Note that if multiple tasks are sharing the affected page, this procedure must be repeated for each pmap.

4-119

Module 4 — Virtual Memory

Exercises:

=

o

e

o o o

™

o

Under what circumstances is “lazy evaluation” a viable technique?

Give four examples of how lazy evaluation is used in OSF/1.

List the components of the VM system.

What are the three uses of a vm_map?

Why might two vm_map_entrys point to the same vm_object?
What is the purpose of the pmap data structure?

How is an internal memory object represented?

When is it created?

In whose context are pages written to a paging file?

In whose context are pages fetched from the paging file?

Is there any difference between the interface to the vnode pager and the interface to an extemal pager?

What optimizations are employed to improve the performance of the vnode pager (as opposed to external
memory object managers)?

What is an “inactive” page?
Explain what happens when a thread is swapped out and when it is swapped in.

How is lazy evaluation used in conjunction with the fork system call?

When a copy-on-write page is modified, the copy is assigned to the topmost vmm_object. Why is it not
assigned to a lower vm_object?

Why is it necessary to have share maps, e.g., why not represent read/write sharing by having multiple
references to the same vm_object?

Which virtual copy technique is used with objects set up by the mmap system call? Why?
Under what circumstances does COPY_DELAY not work?

Explain what must be done at the pmap level in response to a virtual copy operation.
Explain what must be done at the pmap level in response to a pageout operation.

Give a detailed answer for the above two questions in terms of the architecture-dependent data structures
used for the forward-mapped segmented-paged architecture discussed in the notes.

4-120

Module 4 — Virtual Memory

d. Suppose that we have a shared-memory multiprocessor that employs TLBs and forward-mapped
segmented-paged virtual address translation. Explain what must happen in response to a vm_deallocate
system call.

Advanced Questions:
6. What is the correct response to running out of backing store?

7. What difficulties would be encountered in replacing the vnode pager with an external pager?

8. Select an architecture different from the forward-mapped segmented-paged architecture discussed in the
notes. Sketch the implementation of its pmap module.

4-121

Module 4 — Virtual Memory

4-122

