PDP-X Technical Memorandum # 28

Title:
Au'fhor(;):
Index YKeyAs:
Distri‘bufion
Key:
Obsolete:
Revision:

Date:

CONFIDENTIAL

—

PDP-X FORTRAN IV Initial Specifications

J. Cohen

- Software Specifications

FORTRAN

‘B, C

None
None

October 14, 1967

This memo is an initial attempt to define the PDP-X FORTRAN language. Mbch -
of what appears here has been taken directly from the PDP-9 FORTRAN manual. -
In general, ‘an attempt has beén made to make the PDP-X language contain at

least as much as the PDP-9 language. | would appreaciate hearing from anyone
who has any comments or suggestions for change.

1

John Cohen

INTEROFFICE MEMORANDUM

DATE:

SUBJECT: Initial Specifications for PDP-X Fortran Language

TO: Bill Segal 7 ’ Fér:)l\/l: John Cohen

1. Introduction

The purpose of this memo is to give an initial set of specifications for the fortran IV
language we shall implement on the PDP-X. The main objective here is fo indicate
the valid syntax of the source statements. In general, the target language is not con-
sidered. The memo should be thought of as being directed to the systems programmers
who will implement the compiler, rather than the compiler users. V

Much of the information that appears here has been lifted in one form or another fro m
the PDP-9 fortran manual. Also, the ASA specifications have been used to some de-
gree. An appendix at the end of this memo indicates the differences between this
specification and the ASA language.

1.1 >PDP-—X Fortran Statement Formats

First we shall consider the card format. Each card may be thought of as containing 4
fields - the statement number field (columns 1 through 5), the continuation field (column
6), the statement body field (column 7 through 72) and the identification field (column
73 through 80). Generally, statements will fit on a single card in the statement field

(7 through 72). If it is necessary to use more than one card, succeeding cards have a
character other than blank or zero in the continuation field (column 6). There may be
as many as 5 continuation cards, or a maximum of 6 cards in any single statement.

There will be no special restrictions on what must appear in the first card, as in the

PDP-9 fortran.

Statement numbers consist of from 1 to 5 digits. Leading zeros and embedded blanks are
effectively ignored. If the multi card format is used, any statement number must appear
in the statement number field of the first card. This field must be blank in succeeding
cards.

The compiler ignores columns 73 through 80 of all cards. This field conventionally is
used for a program identification and sequence numbering. In addition, if a card has a
C in column 1, the entire card will be ignored. This gives the programmer a means of
interspersing comments within the source program. ‘

The paper tape format is the same as the card format with a few exceptions. First, each
statement line must be terminated by a carriage return, line feed sequence. If this

DIGITAL EQUIPMENT CORPORATION ¢« MAYNARD, MASSACHUSETTS

Initial Specif-icaﬁons for PDP-X Fortran Language Page 2

does not occur after the eightieth character, trailing blanks will be inserted. In order

to make preparation of paper tapes easier, an initial tab, followed by an alpha character,
will put the alpha character effectively in column 7. This device is a convenient means
for skipping over the statement number field. Also, a tab, followed by a digit, will put
the digit in column 6. This is a convenient means for starting succgeding cards in the
multi card format. If the statement number ends before column 6, the tab punch, foll-
owed by an alpha character, will effectively put the alpha character in column 7.

.

1.2 Scope of Specifications

Section 2. of this memo describes the basic elements of the fortran language. These in-
clude the character set, constants, variables, and expressions.

Fortran statements specify a sequence of computations fo carry out the processes of a pro-
gram. An arithmetic statement defines a numerical calculation. A control statement
determines the sequence of operations in o program. Input output statements control the
transmission of information from the computer to external devices and vice versa. Speci-
fication statements define the properties of variables, control memory allocation and per-
form other similar functions. Sections 3 and 4 describe the arithmetic and control state-
ments, respectively. Section 5 contains the input/output statements. These include the
executable statements (READ, WRITE) and the nonexecutable FORMAT statement. The
specification statements are described in section 6.

Section 7 describes the subprograms - functions, subroutines and block data. Finally, an

appendix compares the PDP-X fortran with the ASA standards. This indicates both where

the PDP-X fortran does some things not in the ASA standard and where it does not do some
things specified in the standard.

2. Elements of the Fortran Language

Here we will discuss the character set and the data elements, constants and variables. We
shall also discuss the various arithmetic and logical expressions and the rules for their
evaluations. ’

2.1 Character Set

There are 48 chdracters used in the language. These consist of the 26 letters, the 10 digits
and the following 12 special characters: :

Blank

" Equals =
Plus ’ +
Minus -

Initial Specifications for PDP-X Fortran Language : Page 3

Asterisk - *.
Slash - /
Left Parenthesis (
Right Parenfhesns)
Comma

Decimal Point

Dollar Sign

Quote "

2.2 Data Elements

Before defining the data elements, it would be well to discuss some general concepts of
interest to the implementer, if not the user. Data elements are contiguous blocks of
storage which hold data accessed by the users program. The name of each data element
can be thought of as a "variable name"specified by the user, or as a series of actual
machine locations. The contents of the data element are the instantaneous values in
the machine locations. Elements can be categorized as to size - the number of items

in an element: type - the nature of each item in the data element (integer, real,
double precision, etc.); and as to whether the element is a constant or a variable.

2.2.1 Data Element Types

Integers are stored one per PDP-X wcord (15 bits and sign). The range is from -32767 to
+32767. Real numbers are storedin 2 PDP-X worc's. Bit zero contains the sign, bits

1 through 7 contain an exponent base 16, and bits 8 through 31 contain the é hex digit
mantissa. Thus the accuracy of single precision real numbers is 5 hexdigits, or appro-
ximately 7 decimal digits.

Double precision numbers are stored in 4 PDP-X words. Bit zero cdnfcins the sign, bits
1 through 7 the exponent base 16, and bits 8 through 63 the man’nssa in 14 hex digits.
The accuracy is 13 hex digits or about 17 decimal digits.

Logical items are contained in one weri This word contains zero to imply FALSE and
one to imply TRUE.-

My initial feeling is that we should use two characters per word for alphameric data. This
would eliminate the need for much packing and unpacking and dmong other things would
make implementation of the A format specifier convenient. [f alphameric data does no ap-
pear in a user program to any great degree, what we would save with the smaller format
interpreter would more than make up for the core we use to pack characters two per word
rather than three. However, we may still want to use modulus 50 arithmetic to pack the
data three per word and | think this should be left open for now.

Initial Specifications for PDP-X Fortran Language Page 4

2.2.2 Variable Data Elements

In a fortran program, variable data elements are referred to by variable names. These
consist of from 1 - 6 letters or digits such that the first character is a letter. Some
examples are: '

LEGAL ILLEGAL

X 123X (first character not a letter)
XMAX MAXIMUM (foo many characters)

X123

Associated with each data name is a data type. This can be determined implicitly from
the first character of the name or it can be determined explicitly by the specification
statements (section 6). A data name is implicitly an integer if the first character is

I, J, K, L, Mor N. Itis implicitly real if the first character is not |, J, K, L, M or
N. The type specification statements override the implicit categorization and allow
the user to establish data elements as integer, real, double precision real and logical.
Thus integer and real elements can be established either implicitly or explicitly, but
double precision real and logical must be established explicitly.

The fortran language has no separate data type for alphamerics. The user may put alpha-
meric data into variables of any legal type, as long as he is aware of the number of
characters he can get into items of each type. Assuming that we go 2 characters per
word, this would be 2 characters per integer, 4 characters per real number, 8 characters
per double precision real number and 2 characters per logical variable.

2,2.3 Arrays of Variable Data ltems

A data element with a single data item is called a scalar. If a data element has more

than one item, it is called an array. An array can be a simple sequence (or one dimen-

sional). As an example, suppose that A is a one dimensional array with 10 items. Then,
A(3) is the third item in the array A.

An array can be two dimensional (equivalent to a matrix). As o example, suppose that
B is a two dimensional array with 5 rows and 10 columns. Then, D(2, 3) is the name of
the item in the second row, third column of D. PDP-X fortran can have arrays of 1, 2

and 3 dimensions. ‘

Arrays are arranged in storage in ascending absolute locations. The first subscript varies
“most rapidly, the second varies next most rapidly, etc. For example, a 3-dimensional
array A, defined in a dimension statement (section 6) as a (2,2,2) will be stored sequen~
tially in this ordar: '

Initial Specifications for PDP-X Fortran Language Page 5

A(1,1,1)
A2,1,1)
A(1,2,1)
A@2,2,1)
A(1,1,2)
A(2,1,2)
A1,2,2)
A2,2,2)

To refer to a particular item in an array the fortran programmer must specify as many sub-
scripts as the array has dimensions. These subscripts are enclosed in parenthesis and
separated by commas. Each subscript may be any integer expression (integer expressions
are defined later in this section). Examples are:

A(l)
B(I, J -3)
BETA(l, NA (3*1, J))

2 ,2.4 Constant Data Elements |

Fortran constants have the following characteristics:

-- they are scalar data elements (not arrays).
-~ their value remain fixed at all times
~-- they are referred to by names which are "the same" as their contents.

What we shall discuss next is the method in which these constants are named We will use
the term "constant" where we really mean "the name of the constant", but this-should

cause no confusion.

2.2.4.1 Integer Constants

An integer constant consists of from 1 to 5 digits, optionally preceded by a plus or minus
sign. The magnitude of the constant must be equal or less than 32767. Examples are:

1
-5123
6177

2.2.4.2 Real Constants

Real numbers may be written in two forms. The first form begins with an optional plus or
minus sign and is followed by a digit string containing 6 significant digits with a decimal

Initial Specifications for PDP-X Fortran Language Page 6

point in some position. The second form begins with an optional plus or minus sign, foll-
owed by from 1 to 6 significant digits, with or without an embedded decimal point, foll-
owed by the character E, an optional plus or minus sign and a 1 or 2 digit base 10 exponent.
The magnitude of this exponent must be equal or less than 75. Examples are:

1.

-51.23
10. E-6
7932E21

2.2.4.3 Double Precision Real Constants

Double precision reals begin with an optional plus or minus sign, followed by from 1 to 6
significant digits, with or without an embedded decimal point, followed by the character D
and a 1 or 2 digit exponent. The magnitude of the exponent must be equal or less than 75.

2.2.4.4 logical Constants

The logical constants are represented as follows:

.TRUE.
.FALSE.

2.2.4.5 Alphameric Constants

Alphameric constants may be written as an unsigned integer constant N, greater than zero
and less than 100, followed by the character H, followed by exacily N alphameric charac-
ters (including blank). An alternate method is to enclose the alphameric charactars in
quotation marks.

Alphameric constants may be used only in data statements (chapter 6) or CALL statements
(chapter 7). Examples are:

10HABCDEFGHIJ
'ABCDEFGHIJ!

2.3 Expressions

An expression is a combination of elements (consiants, subscripted on nonsubscripted
variables, in functions) each of which is related to another by operators and parenthesis.
An expression represents one single value which is the result of the calculations specified
by the values and operators that make up the expression. The fortran language provides
two kinds of expressions: arithmetic and logical.

Initial Specifications for PDP-X Fortran Language : Page 7

2.3.1 Arithmetic Expressions

An arithmetic expression consists of arithmetic elements joined by the following operators:

+ addition

- v subtraction
multiplication
division
exponentiation

An expressicn may consist of a single element (meaning a constant, a variable, or a function
name). An expression enclosed in parentheses is considered a single element. Compound
expressions use arithmetic operators to combine single elements.

The type of quantities making up an expression determine its mode, i.e. a simple expression
consisting of an integer constant or an integer variable is said to be in the integer mode.
Similarly, real constants or variables produce a real mode of expression, and double pre-
cision constants or variables produce a double precision mode. '

In general, variables or constants of 1 mode cannot be combined with variables or constants
of another mode in the same expression. The following indicates the exceptions to this rule:

First Second

Operand Operator Operand Result
real + =%/ double double
double +=-*/ real double
real ‘ *% ‘integer real
real ** - double double
double *x integer double
double xR real double

The order. in wiich operations of an arithmetic expression are to be computed is based on a
priority rating. The operator with the highest priority takes precedence over other operators
in the expression. Parentheses may be used to determine the order of computation. If no
parentheses are used the order is understood to be as follows:

function reference

-- exponentiation

-- multiplication

-~ addition and sukiraction

Init al Specifications for PDP-X Fortran Language Page 8

The rules for constructiiig arithmetic expressions are as follows:

-~ any expression may be enclosed in parenthesis.

-~ expressions may be preceded by a plus or minus sign.

-~ simple expressions may be connected to other simple expressions fo form a coupound
expression, provided that no two operators appear together and no operator is
assumed to be present.

-- only valid mode combinations may be used in an expression.

-- the expression must be constructed so that the priority scheme determines the order
of operation desired.

2.3.2 logical Expressions

The first logical expression we shall consider is a relational expression. This consists of two
arithmetic expressions separated by a relational operator. The result value is either true or
false, depending upon whether the condition expressed by the relational operator is met

or not met. The arithmetic expressions may both be on the integer mode or they may be a
combination of real and/or double precision. No other combinations are legal. The re-
lational operators must be preceded and followed by a decimal point. They are:

LT, Less than ()

.LE. Less than or equal to (K}
.EQ. Equal to (=) -
.NE. Not equal to (7)

.GT. Greater than (>)

.GE. Greater than or equal to (>)

Examples are:

I LT, IMAX
A+B .NE. 712.3

A general logical expression consists of logical elements joined by logical operators. The
value is either true or false. The logical operator symbols must be preceded and followed by
a decimal point. They are:

.NOT. Logical negation. Reverses the state of the logical quantity that follows.

.AND. Logical AND generates a logical result (TRUE or FALSE) determined by
two logical elements as follows:
T .AND. T generates T
T .AND. F generates F
F .AND. T generates F
F .AND. F generates F

Initial Spécificafions for PDP-X Fortran Language - Page 9

.OR. ~ Logical OR generates a logical result determined by two logical elements
~ as follows: '
T .OR. T generates T
T .OR. F generates T
F .OR. T generates T
F .OR. F generates F

The following rules govern the construction of logical expressions:

-~ A logical expression may consist of a logical constant, a logical variable, a refer-
ence to a logical function, a relational expression, or a complex logical expression
enclosed in parenthesis. '

-- The logical operator NOT need only be followed by o logical expression, while
the logical operators AND and OR must be both preceded and followed by a logical
expression.

== Any logical expression may be enclosed in parenthesis. The logical expression following
the logical operator NOT must be enclosed in parenthesis if it contains more than 1
quantity. ;

-= No two logical operators may appear in sequence, not separated by a comma or paren-
thesis, unless the second operator is NOT. In addition, no two decimal points may
appear together, not separated by a comma or parenthesis. unless one belongs to a
constant and the other to a relational operator.

Parenthesis may be used as in normal mathematical notation fo specify the order of operations.
Within parenthesis, or where there are no parenthesis, the order in which operations are
performed is as follows: '

-- Arithmetic operations within the arithmetic expressions of relational expressions

-~ The relational operators '

-- NOT
-- AND, OR

3. Arithmetic Statements

An arithmetic statement is a mathematical equation written in the FORTRAN language which
defines a numerical or logical calculation. It directs the assignment of a calculated quantity
to a given variable. An arithmetic statement has the form '

V=E

where V is a variable (integer, real, double-precision, or logical, subscripted or nonsub-
scripted) or any array element name; = means replacement rather than equivdence, as
opposed to the conventional mathematical notation; and E is an expression.

In some cases, the mode of the variable may be different from that of the expression. In
such cases an automatic conversion takes place. The rules for the assignment of an ex-
pression E fo a variable V are as follows:

Initial Specifications for PDP-X Fortran Language - Page 10

V Mode ‘ E Mode Assignment Rule
Integer ' ‘ Integer . , ~ Assign

Integer Real ‘ Fix and assign

Integer) Double-precision Fix and assign

Real ' Integer Float and assign

Real : Real | Assign

Real Double-precision Double-precision eval-

vate and real assign

Double- Integer Double-precision float
precision : and assign

Double- . Redl ' Double-precision eval-
precision vate and assign
Double- Double-precision Assign

precision '

Logical Logical | Assign

Mode conversions involving logical quantities are illegal unless the mode of both V and E is
logical. Examples of an assignment statements are: '

CITEM = ITEM + 1

A(1) = B(1)

V = _FALSE.

X=A.GT .B.AND. C .lE. G
A=B

4. CONTROL STATEMENTS

The statements of @ FORTRAN program normally are executed in the order they are written.
However, it is frequently desirable to alter the normal order of execution. Control state-
ments give the FORTRAN user this capability. This section discusses the reasons for control
statements and the ways in which they may be used.

Initial Specifications for PDP-X Fortran Language : Page 1

4.1 Unconditional Go To Statements

The form of the unconditional GO TO statement is

GOTOn
where n is a statement number. Upon the execution of this statement, control is trans-

ferred to the statement identified by the statement number, n, which is the next statement
to be executed. Example:

GOTO 17

4.2 Assign Statement

The general form of an ASSIGN statement is
ASSIGN n TO i

where n is a statement number and i is a nonsubscripted integer var iable name which appears
in a subsequently executed assigned GO TOistatement. The statement number, n, is the
statement to which control will be transferred after the execution of the assigned GO TO
statement. Example:

ASSIGN 27 TO ITEST

4,3 Assigned Go To Statement

- Assigned GO TO statements have the form

GO TO I(nl, n2, ..., nm)

where i is an nonsubscripted integer variable reference appearing in a previously executed
ASSIGN statement, and n1, n2,, nm, are the statement numbers which the ASSIGN
stafement may legally assign to i. Examples:

ASSIGN 13 TO KAPPA
GO TO KAPPA (1, 13, 72, 100, 35)

There is no object time checking to ensure that the assignment is one of the legal statement
numbers. ' '

Initial Specifications for PDP-X Fortran Language Page 12

4.4. Computed Go To Statement

The format of a cdmpufed GO TO statement is
GO TO(n1, n2,, nm), i

LIS ‘. .
where n1, n21, nm are statement numbers and i is an integer variable reference whose
value is greater than or equal to 1 and less than or equal to the number of statement numbers
enclosed in parentheses. Example:.

GO TO (3, 17, 25, 50, 66), ITEM
If the value of ITEM is 2 at the time this GO TO statement is executed, the statement to
which control is transferred is the statement whose number is second in the series, i.e.,

statement numbar 17.

4.5 Arithmetic If Statement

" The form of the arithmetic IF statement is
IF (e) n1, n2, n3

where e is an arithmetic expression and n1, n2, n3 are statement numbers. The IF statement
evaluates the expression in parentheses and transfers control to one of the referenced state-
ments. If the value of the expression (e) is less than, equal to, or greater than zero, con-
trol is transferred to n1, n2, or n3 respectively. Example '

IF (AUB (1) - B*D) 10, 7, 23

4.6 Logica.! If Statement

The general format of a logical IF statement is
IF (e) s

where e is a logical expression and s is any executable statement other than a DO statement
or another logical IF statement. The logical expression is evaluated, and different state-
ments are executed depending on whether the expression is true or false. If the logical
expression e is true, statement s is executed and control is then transferred to the following
statement (unless the statement s is a GO TO statement or an arithmetic IF statement, in
which cases control is transferred as indicated; or the statement s is o CALL statement, in
which case control is transferred to the next statement after return from the subprogram).

Initial Specificaﬂohs for PDP-X Fortran Language Page 13
If the logical expression e is false, statement s is ignored and control is transferred to the
statement following the IF statement. Examples are:

IFL)I=1+1

IF (L .LE. k) GOTO 17 .

IF (LOG. AND. (.NOT. LOG 1)) IF (X) 3,5,5

4.7 Do Statement -

The DO statement is a command to execute repeatedly a specified series of statements. The
general format of the DO statement is :

DOni=ml, m2, m3

or

DOni=ml, m2

where n is a statement number representing the terminal statement or the end of the "range"}
i is a nonsubscripted integer variable known as the "index"; and m1, m2, and m3 are integer
expressions, which represent the "initial," "final," and increment" values of the index.

If m3 is omitted, as in the second form of the DO statement, its value is assumed to be 1.

The DO statement is a command to sxecute repeatedly a group of statements fol lowing it -
up to and including statement n. The initial value of i is m1 (m1 must be less than or equal
to m2). Each succeeding time the statements are operated, i is increased by the value of
m3. When i is greater than m2, control passes to the statement following statement number
n.

The range of a DO statement is a series of statements to be executed repeatedly. [t con-
sists of all statements immediately following the DO, up to and including statement n.
Any number of statements may appear between the DO and statement n. The terminal
statement (statement n) may not be a GO TO (of any form), an arithmeticlF, a RETURN,
a STOP, a PAUSE, or a DO statement, or a logical IF statement containing any of these
forms. ' :

The index of a DO is the integer variable i which is controlled by the DO statement in such
a way that its initial value is set to m1, and is increased each time the range of statements
is executed by m3, until a further incrementation would cause the value of m2 to be ex-
ceeded. Throughout the range of the DO, the index is available for computation either

as an ordinary integer variable or as the variable of a subscript. However, the index may
not be charged by any statement within the DO range. '

Initial Specifications for PDP-X Fortran Language Page 14

The initial value is the value of the index at the time the range is executed for the first
time. The final value is the value which the index must not exceed. When the condition

is satisfied the DO is completed and control passes to the first executable statement following
statement n. The increment is the amount by which the index is to be increased after each
execution of the range. [f the increment is omitted, a value of 1 is implied. Example:

DO721=1,10,2
DO 15K =1,
DO 231 =1,

5
K, NP(K+1)+1

Any FORTRAN statement may appear within the range of a DO statement, including an-
other DO statement. When such is the case, the range of the second DO must be contained
entirely within the range of the first; i.e., it is not permissible for the ranges of DOs to
overlap. A set of DOs satisfying this rule is called a nest of DOs. It is possible for a
terminal statement to be the terminal statement for more than one DO statement. The foll-
owing configuration, where brackets are used to represent the range of the DOs, indicates
the permissible and illegal nesting procedures.

PERMISSIBLE [o]0] ILLEGAL DO

[2]e]

DO SE——— 0]

Transfer of control from within the range of a DO statement to outside its range is permitted
at any time. However, the reverse is not frue; i.e., control cannot be transferred from out-
side the range of a DO statement to inside its range. The folloring examples show both valid
and invalid transfers.

VALID DO ’ INVALID [o]¢] ’

Initial Specifications for PDP-X Fortran Language Page 15

4.8 Continue Statement

The CONTINUE statement causes no action and generates no machine coding. It is a
dummy statement which can be used for terminating DO loops when the last statement would
otherwise be an illegal terminal statement (i.e., GO TO, grithmetic IF, RETURN, STOP,
PAUSE, or DO, or a logical IF containing any of these forms) The form consists oF the
single word:

CONTINUE

4.9 Pause Statement

A PAUSE statement is a temporary halt of the program at run time. The PAUSE statement
has one of the two forms:

PAU SE
or

PAUSE n

where n is an octal integer whose value is less than (77777)8. The integer is typed out on
the console Teletype for the pur pose of determining which of several PAUSE statements was
encountered. Program execution is resumed by operator mfervenhon, starting with the First
statement following the PAUSE statement.

4.10 Stop Statement

The STOP statement is of one of the forms:
STOP
or

STOP n

where n is an octal ‘integer whose value is less than (77777)8. The STOP statement is placed
at the logical end of a program and causes the computer to type out on the console Teletype
the integer n and then to exit back to the Monitor. ’

4.11 tnd Statement

The END statement is placed af the physical end of a program or subprogram. The form con-
sists of the single word:

END

Initial Specifications for PDP-X Fortran Language : Page 16

The END statement is used by the compiler and generates no code. It signals the compiler
that the processing of the source program is complete. '

5. Input/Output Statements

The input/output (1/0) statements direct the exchange of data between the computer and
I/O devices. The information thus transmitted by an /O statement is defined as a logical
record, which may be formatted or unformatted. A logical record, or records, may be
written on a device as one or more physical records. This is a function of the size of the
logical record(s) and the physical device used. The definition of the data which comprises
a user's optimum physical record varies for each 1/O device, as follows:

it
Uni Formatted Physical Unformatted

or ES A (Binary) Physical
Device Record Definition Record Definition
Typewriter One line of type is terminated by Undefined

a carriage return. Maximum of
72 printing characters per line

(input and output)

Line printer One line of printing. Maximum Undefined

of 120 characters per line

Cards One card. Maximum of 80 char- 50 words
(input and output) acters ’

Paper tape One line image of 72 printing 50 words
(input and output) characters

Magnetic tape One line image of 630 characters 252 words
Disc/drum/ One line image of 630 characters 252 words
DECtape

Each 1/O device is identified by an integer constant which is associated with a device assign-
ment table in the PDP-? Monitor. This table may be modified at system generation time, or just
before run time. For example, the statement

READ (u, f) list

Initial Specifications for PDP-X Fortran Language Page 17

requests one logical record from the device associated with slot u in the device assignment
table. The statement descriptions in this section use u to identify a specific 1/O unit,

f as the statement number of the FORMAT statement describing the type of data conversion,
and list as a list of arguments to be input or output. ‘

5.1 General |/O Statements

These statements cause the transfer of data between the computer and /O devices.

5.1.1 Input/Output Argument Lists

An 1/O statement which calls for the transmission of information includes a list of quantities
to be transmifted. In an output statement this list consists of the variables to which the in-
coming data is to be assigned; in an output statement the list consisis of the variables whose
values are to be transmitted to the given |/O device. The list is ordered, and the order
must be that in which the data words exist (input) or are to exist (output) in the /O device.
Any number of items in the list are transmitted. The remaining data is ignored. Conversely,
if the items in the list exceed the data to be transmitted, succeeding superfluous records are
transmitted until all items spzzified in the list have been transmitted.

A simple list has the form

C1,C2,,Cn

where each Ci is a variable, a subscripted variable, or an array identifier. Constants are
not allowed as list items. The list reads from left to right. When an array identifier appears
in the list, the entire array is to be transmitted before the next item in the list. Examples
of Simple Lists: :

Y,Y, Z
A, B(3), C, D (I+1, 4)

Indexing similar to that of the DO statement may be used to control the number of times a
group of simple lists is to be repeated. The list elements thus controlled, and the index
control itself, are enclosed in parentheses, and the contents of the parentheses are regarded
as a single item of the 1/O list. Examples are:

W, X(3), (v (1), Z(,K), =1, 10)
(A,), 1=1,M),J=1,N)

5.1.2 READ Statement

The READ statement is used to transfer data from any input device to the computer. The
general READ statement can be used to read either BCD or binary information. The form of

Initial Specifications for PDP-X Fortran Language Page 18

the statement determines what kind of input will be performed.
The formatted READ statements have the general form

READ (u,f) list
or

READ (u,f)

Execution of this statement causes input from device u to be converted as specified by format
statement f, the resulting values to be assigned to the items specified by list, if any. Format
statements are discussed loter in this section.

An unformatted READ statement has the general form
READ (u) list

or
READ (u)

Execution of this statement causes input from device u, in binary format, to be assigned to
the items specified by list. If no list is given, one record will be read, but ignored. If the
record contains more information words than the list requires, that part of the record is lost.
[f more elements are in the list than are in one racord, an error condition will result. .

Examples of READ are:

READ (3, 13) A, B, C

READ (2, 10) A, (B (1), 1=1,5)
READ (1,3)

READ (5) 1, J, K

READ (8)

5.1.3 WRITE Siatement

The WRITE statement is used to transmit information from the computer to any 1/O device.
The WRITE statement closely parallels the READ statement in both format and operation.

The formatted WRITE statement has the general form

WRITE (u, f) list

Initial Specifications for PDP-X Fortran Langudge Page 19

or
WRITE (u, f)-

Execution of this statement causes the list elements, if any, to be converted according fo
format statement f, and output into device u.

The formatted WRITE statement has the general forrh
'WRITE (u) list

Execution of this statement causes output onto device u, in binary format, of all words
specified by the list. Examples of WRITE are:

WRITE (1, 10) A, (B (1), (C (1, J), J=2, 10, 2), 1=1,5)
WRITE (2,7) A, B,C
WRITE (5) W, X (3), Y (1* 1, 4), Z

5.2 Format Statements

These statements are used in conjunction with the general 1/O statements. They specify
the type of conversion which is to be performed between the internal machine language and
the external notation. FORMAT statements are not executed. Their function is to supply
information to the object program.

5.2.1 Specifying FORMAT

The general form of the FORMAT statement is
FORMAT (S1, S2, , Sn)

where S1 Sn are data field descriptions. Breaking this format down further, the basic
data field descriptor is written in the form

nkw.d

where n is a positive unsigned integer indicating the number of successive fields for which the
data conversion will be performed according to the same specification. This is also known as
the repeat count. If n is equal to 1, it may be omitted. The control character k indicates
which type of conversion will be performed. This character may be | ,E,F,D,P,L,AH,X

or O. The nonzero integer constant w specifies the width of the field. The integer constant
d indicates the number of digits to the right of the decimal point.

Initial Specifications for PDP-X Fortran Language o Page 20

Six of the nine control characters listed above provide for data conversion between internal
machine language and external notation.

Internal Type External |
Intéger variable I R ‘Décimd_l integer
Real variable - E Floafing-poinf, scaled
Real variable - F ‘ Floating-point
Double-precision ' D Floating-point, scaled
variable '
Logical variable L Letter Tor F
Alphanumeric A : - Alphameric (BCD) characters
Octal | o | Alphameric representation of Octal
digits

The other three control types are special purpose control characters:

Type ' Purpose
P Used to sef a scale factor for use with E,F, and D

conversions.

X Provides for skipping characters in input or speci-
‘ fying blank characters in output.

H v Designates Hollerith fields

FORMAT statements are not executed and therefore may be placed anywhere in the source
program. Because they are referenced by READ or WRITE statements, each FORMAT statement
must be given a statement number.

Commas (,) and slashes (/) are used as field separators. The comma is used fo seporqfe ne!d
descriptors, with the exception that a comma need not follow a field specified by an H or X
control character. The slash is used to specify the termination of formatted records. A
series of slashes is also a field separator. Multiple slashes are the equivalent of blank re-
cords between output records, or records skipped for input records. If the series of n slashes
occurs at the beginning or fhe end of the FORMAT specifications, the number of input records

Init al Specifications for PDP-X Fortran Language v Page 21

skipped or blank lines inserted in output is n. If the series of n slashes occurs in the middle
of the FORMAT specifications, this number is n-1." An integer value cannot precede a
slash.

For all field descriptors (with the exception of H andX), the field width must be spec:—
fied. For those descriptors of the w.d type (described below), the d must be specified
even if it is zero. The field width should be large enough to provide for all characters
needed to separate it from other data values. Since the data value within a field is

right justified, if the field specified is too small, the most significant characters of the
value will be lost.

Successive items in the 1/O list are transmitted according to successive descriptors in the
FORMAT statement, until the entire |/O is satisfied. If the list contains more items than
descriptors in the FORMAT statement, a new record must be begun. Control is trans-
ferred to the preceding left parenthesis where the same specifications are used again un~
til the list is complete.

Field descriptors (except H and X) are repeated by preceding the descriptor with an unsigned
integer constant (the repeat count). A group repeat count is used to enable the repetition
of a group of field descriptors or field separators enclosed in parentheses. The group count
is placed to the left of the parenthesis. Two levels of parentheses (not including those en-
closing the FORMAT specification) are permitted.

The field descriptors in the FORMAT must be the same type as the corresponding item in the
I/O list, i.e., integer quantities require integer (I) conversion; real quantities require
real (E or F) conversion, etc. Example:

FORMAT (17, F10..3)
FORMAT (13, 17/E10.4, E10.4)
FORMAT (214, 3(15, D10.3))

5.2.2 Conversion of Numeric Data

5.2.2.1 1-Type Conversion - (Field Descriptor Iw or nlw)

The number of characters specified by w is converted as a decimal 'integer. On input, the
number in the input field by w is converted to a binary integer. A minus sign indicates a
negative number. A plus sign, indicating a positive number, is optional. The decimal
point is illegal. If there are blanks, they must precede the sign or first digit. Al em-
bedded blanks are interpreted as zero digits.

On output, the converted number is right justified. If the number is smaller than the field
w allows, the leftmost spaces are filled with blanks. [f an integer is too large, the most

Initial Specifications for PDP-X Fortran Lchguc:ge Page 22

significant digits are truncated and lost. Negative numbers have a minus sign just pre-
ceding their most significant digit if sufficienf spaces have been reserved. No sign
indicates a positive number. Examples (b indicates blank):

~ Format
Descriptor - Input Internal Output

15 bbbbb 400000 bbbb0
R T b5 5 b-5

18 bbb12345 +12345 bbb12345

5.2.2.2 E-Typs Conversion - (Field Descriptor Ew.d or nEw.d)

The number of characters specified by w is converted to a floating-point number with d
spaces reserved for the digits to the right of the decimal point. The w includes field d,
spaces for a sign, the decimal point, plus four spaces for the exponent (written E +XX)
in addition to space for optional sign and one digit preceding the decimal point.

The input format of an E-type number consists of an optional sign, followed by a string of
digits containing an optional decimal point, followed by an optional exponent. The ex-
ponent may havz the character D or E. Input data can be any number of digits in length,
although it must fall within the range of 0 to + 106£39, E output consists of a minus sign
if negative (blank if positive), the digit 0, a decimal point, a string of digits rounded to
d significant digits, followed by an exponent of the form EXX. Examples are:

Format

Descriptor Input Internal Output
E10.4 00.2134E03 213.4 0.2134E+03
E9.4 0.2134E02 21.34 .2134E+02

E10.3 bb-23.0321 $-23.0321 -0.230E+02

5.2.2.3 F-Type Conversion - (Field Descriptor Fw.d or nFw.d)

The number of characters specified by w is converted as a floating-point mixed number with
d spaces reserved for the digits o the right of the decimal point. Input for F-type conver-
sion is the same as that for E-type conversion, described above. The output consists of a
minus sign if the number is negative (blank if positive), the integer portion of the number,
a decimal point, and the fractional part of the number rounded to d significant digits.

Initial Specifications for PDP-X Fortran Language Page 23

Examples are:

Format

Descriptor Input Internal Output
F6.3 b13457 13.457 13.457
F6.3 313457 313.457 13.457
F9.2 -21367. -21367. -21367.00
F7.2 -21367. -21367. 1367.00

£ 9

5.2.2.4 D-Type Conversion - (Field Descriptor Dw.d or nDw.d)

The number of characters specified by w is converted as a double-precision floating-point
number with the number of digits specified by d to the right of the decimal point. The input
and output are the same as those for E-type conversion except that a D is used in place of
the E in the exponent on output. Examples are:

Format
Descriptor Input Internal Output
DI12.6 bbi21345E-03 21.345 0.213450D+02
D12.6 b 3456789012 3456.789012 0.345678D+04
DI12.6 12345.6D-02 - 123.456 0.123445D+03

5.2.3 P-Scale Factor (Field Descriptor nP or -nP)

This scale factor n is an integer constant. The scale factor has effect only on E-, F-, and
D-type conversions. Initially, a scale factor of zero is implied. Once a P field descriptor
has been processed, the scale factor established by n remains in effect for all subsequent E,
F, and D descriptors within the same FORMAT statement until another scale factor is en-
countered. ‘

For F, E, and D input conversions (when no exponent exists in the external field) the scale
and D output, the fractional part is multiplied by 10n and the exponent is reduced by n.

Initial Specifications for PDP-X Fortran Language Page 24

Examples:
Format Scale
Descriptor Input Factor Interna! Output
F6.3 123456 -3 +123456. 23.456
E12.4 123456 -3 +12345.6 bb0.0001E+08
D10.4 12.3456 +1 +1.23456 1.2345D+00

5.2.4 Conversion of Alphanumeric Data

5.2.4.1 A-Type Conversion (Field Descriptor Aw or nAw)

The number of alphanumeric characters specified by w is transmitted according to list specifi -
cations. If the field width specified for input is greater than or equal to the data item cha-
count (2 for integer or logical, 4 for real or 8 for double precision real), the rightmost charac-
ters are stored internally. If the field width is less than the character count, the data is
stored left-adjusted and the data item is filled with trailing blanks. For output, if the field
width is greater than the item character count, the output is right adjusted and filled with
leading blanks. If the output field widih is less than the item character count, the leftmost
characters are output.

5.2.4.2 H-Field Descriptor (Field Descriptor nH...)

The number of characters specified by n immediately following the H descriptor are trans-
mitted to or from the external device. Blanks may be included in the alphanumeric string.
The value of n must be greater than 0. On Hollerith input, n characters read from the ex-
ternal device replace the n characters following the letter H in the format statement itself.
In output mode, the n characters following the letter H, including blanks, are output.
Examples are:

3HABC
17H THIS IS AN ERROR

An alternate means of writing the H descriptor in PDP-X fortran is by means of quotes. Thus
the following cause identical effect:

" JOHABCDEFGHIJ
' ABCDEFGHIJ"

Initial Specifications for PDP-X Fortran Language Page 25

5.2.5 Llogical Fields, L Conversion (Field Descriptor Lw or nlLw)

The external format of a logical quantity is Tor F. On L input, the first nonblank charac-
ter must be a T orF. Leading blanks are ignored. For L output, if the internal value is

false, an F is output. Otherwise a T is output. The F or T is preceded by w-1 leading
blanks '

5.2.6 Blank Fields, X Conversion (Field Descriptor nX)

The value of n is an integer number greater than 0. On X input, n characters are read but
ignored. On X output, n spaces are output.

5.3 FORTRAN Statements Read in at Object Time

FORTRAN provides the facility of including the formatiing data along with the input data.
This is done by using an array name in place of the reference to a FORMAT statement label
in any of the formatted |/O statements. For an array to be referenced in such a manner, the
name of the variable FORMAT specification must appear in a DIMENSION statemeri, even
if the size of the array is 1. ‘

The statements have the general form:

READ (u, name)
READ (u, name) list

WRITE (u, name)
WRITE (u, name) list

The form of the FORMAT specification which is to be inserted in the array is the same as the
source program FORMAT statement, except that the word FORMAT is omitted. The FORM AT
specification may be inserted in the array by using a data initialization statement, or by using
a READ statement together witn an A format For example, this facility can be used to specify
at object time the format of a deck of cards to be read. The first card of the deck would con-
tain the format statement,

S 10
A7 77 F10.3)

F

Anitial Specifications for FDP-X Fortran Language Page 26

the subsequent cards would contain data in the general form,

7 17

" - A]
(‘ XX XXXX

DIMENSION AA (10)
13 FORMAT (10A5)
 READ (3, 13) (AA(1), 1 =1, 10)

READ (3, AA) JJ, BOB
With the card reader assigned to device number 3, the first READ places the format statement
from the first caid into the array AA, and the second READ statement causes data from the sub-

“seauent cards fo be read into JJ and BOB with fomat specifications 17 and F10.3 respectively.

5.4 Printing of a Formatted Record

. When formatted records are prepared for printing, the first character of the record is not
~-printed. It is used instead to determine vertical spacing as follows:

Character ’ Vertical Spacing Before Printing
- Blank One line

0 Two lines

1 : Skip to first line of next page

+o No advance |

Output of formatted records to other devices considers the first character as an ordinary
character in the record.

5.5 Auxiliary 1/O Statements

- These statements manipulate the I/O file oriented devices. The u is an unsigned integer con-
stant or integer variable specifying the device. '

Initial Specifications for PDP-X Fortran Language ‘ Page 27

5.5.1 BACKSPACE Statement

The BACKSPACE statement has the general form

BACKSPACE u

Execution of this statement causes the /O device identified by u to be positioned so that the
record which had been the preceding record becomes the next racord. If the unit u is
positioned at its initial point, execution of this statement has no effect.

5.5.2 REWIND Siatement

The REWIND statement has the general form

REWIND u

Execution of this statement causes the |/O device identified by u to be positioned at its
initial point. '

5.5.3 ENDFILE Statement

The ENDFILE statement has the general form

ENDFILE u

Execution of this statement causes an endfile record to be written on the |/O device identi-
fied by u.

5.5.4 Testing for End of File

Although this feature is not technically a part of the fortran compiler, it would seem reason-
able to mention here that end of file can be sensed by means of the library logical function

ENDFILE. Thus

IF (ENDFIL (1)) GO TO 1¢g
GO TO 209 :

would cause control to go to statement 100 if unit 1 waos at end of file and to statement

200 otherwise.

6. Specification Statements

Specification statements are nonexecutable because they do not generate instructions in the
object program. They provide the compiler with information about the nature of the constants

Initial Specifications for PDP-X Fortran Language Page 28

and variables used in the program. They also supply the information raquired to allocate
locations in storage for certain variables and/or arrays. Al SPECIFICATION statements,
with the exception of the DATA statement, must appear before any executable cade
generating statement. They must appear in this order: type statements, DIMENSION
statements, COMMON statements, and EQUIVALENCE statements. EXTERNAL state-
ments may appear anywhere after all type statements and before the executable code
generating statements. The DATA statements may appear anywhere in the source pro-
gram.

6.1 Type Statements

The type statements are of the forms

INTEGER a, b, ¢

REAL a, b, ¢

DOUBLE PRECISION qa, b, ¢
LOGICAL g, b, ¢

where a, b, and ¢ are variable names which may be dimensional or function names. A type
statement is used to inform the compiler that the identifiers listed are variables or functions
of a specified type, i.e., INTEGER, REAL, etc. It overrides any implicit typing, i.e.,
identifies which begin with the letters |, J, K, L, M, or N are implicitly of the INTEGER
mode, those beginning with any other letter are implicitly of the REAL mode. The type

- statement may be used to supply dimension information. The variable or function names in
each type statement are defined to be of that specific type throughout the program, the
type may not change. Examples:

INTEGER ABC, IJK, XYZ
REAL A (2,4), 1, J, K

DOUBLE PRECISION ITEM , GROUP
LOGICAL

6.2 Dimension Statement

The DIMENSION statement is used to declare arrays and to provide the necessary information
to allocate storage for them in the object program. The general form is:

DIMENSION V (i1), V2 (i2), ... Vn (in)

where each V is the name of an array and each i is composed of one, two, or three unsigned
integer constants separated by commas. The number of constants represents the number of
dimensions the array contains; the value of each constant represents the maximum size of

Initial Specifications for PDP-X Fortran Language Page 29

each dimension. If the dimension information for the variable is given in a type state-
ment or a COMMON statement, it must not be included in a DIMENSION statement.
Example: ‘

DIMENSION ITEM (150), ARRAY (50, 50)
When arrays are passed to subprograms, they must be redeclared in the subprogram. The
mode, number of dimensions, and size of each dimension must conform to that declared by
the calling program.

6.3 Common Statement

The COMMON statement provides a means of sharing memory storage between a program
and its subprograms. The general form of the COMMON statement is:

COMMON /x1/al/x2/a2/ . ../xn/an

where each x is a variable which is a COMMON block name, or it can be blank. If x1
is blank, the first two slashes are optional. Each a represents a list of variables and
arrays separated by commas. The list of elements pertaining to a block name ends with
a new block name, with a blank COMMON block designation (two slashes), or the end
of the statement.

The elements of a COMMON block, which are listed following the COMMON block name
(or the blank name), are located sequentially in order of their appearance in the COMMON
statement. An entire array is assigned in sequence. Block names may be used more than
once in a COMMON statement, or may be used in more than one COMMON statement
within the program. The entries so assigned are strung together in the given COMMON
block in order of their appearance. Labeled COMMON blocks with the same name
appearing in several programs or subprograms executed together must contain the same
number of total words. The elements within the blocks, however, need not agree in

name, mode, or oder. A blank COMMON may be any length. Exomples:

COMMON A, B, C/XX/X, Y, Z
COMMON /A/X(3, 3), Y(2, 5)/ /Z(5, 10, 15)

The COMMON statement is a means of transferring data between programs. If one program
contains the statements, '

COMMON / N /AA, BB, CC
AA=3

BB=4

CC=5

Initial Specifications for PDP-X Fortran Language R Page 30

and another program which is called later contains the statement,

COMMON /N/XX, YY, 77
then the latter program will find the values 3, 4, and 5 in its variables XX, YY, and Z,
respectively, since variables in the same relahve positions in COMMON statements share
the same registers in memory.

-6.4 Equivalence S’rctemen’r

The EQUIVALENCE statement is used to permit two or more entities of the same size and
type to share the same storage location. The general format of the EQUIVALENCE state-
ment is:

EQUIVALENCE (k1), (k2), ..., (kn)

where each k represents a list of two or more variables or subscripted variables separated
by commas. Each element in the list is assigned the same memory storage location. When
two variables or array elements share the same storage location because of the use of an
EQUIVALENCE statement, they may not both appecr in COMMON statements within the
same program. An example is:

EQUIVALENCE (A, B), (C(10), D(10), E(15))

6.5 External Statement

An EXTERNAL statement is used to pass a subprogram name on to another subprogram. The
general form of an EXTERNAL statement is:

EXTERNAL Yy, z, ...
where y, z, ... are subroutine or function names.

6.6 Data Statement

The DATA statement is used to set variables or array elements to init’al values ot the time
the object program is loaded. The general form of the DATA initialization statement is:

DATA k1/d1/, k2/d2/, kn/dn/

where each k is a list of variables or array elements (with constant subscripts) separated by
commas, and each d is a corresponding list of constants with optional signs. The k list may
not contain dummy arguments. There must be a one-to-one correspondence between the
name list and the data list, except where the data list consists of a sequence of identical

Initial Spécificoﬂons for PDP-X Fortran Language Page 31

constants. In such a case, the constant need be written only once, preceded b an integer
constant indicating the number of repeats and an asterisk. A Hollerlfh constant may appear
in the data list.

Variable or array elements appearing in a DATA statement may not be in blank COMMON,
They may be in a labeled COMMON block and initially defined only in a BLOCK DATA

subprogram. Some examples are:

DATA A, B, C/3*2.0/
DATA X(1), X(2), X(3), X(4)/0.0, 0.1, 0.2, 0.3

7. Subprograms

There are five categories of subprograms:

Statement Functions
Intrinsic or Library Functions
External Functions

. External Subroutines

Block Data Subprograms

O Q0 T Q

The first three categories of subprograms are referred to as functions. Functions and sub-
routines differ in the following two respects. The former are called by writing the name
of the function_and an argument list in a standard arithmetic expression; the latter by
using a CALL statement. Block data is a special purpose subprogram used for data
initialization purposes.

7.1 Statement Functions

A statement function is defined by a single statement similar in form to that of an arithmetic
assignment statement. If is defined internally to the program unit by which it is referenced.
Statement functions must follow all specification statements and precede any executable
statements of the program unit of which they are a part. The general format of a statement
function is:

f(al, a2, ..., an) =e

where f is a function name; the a's are nonsubscripted variables, known as dummy arguments,
which are to be used in evaluating the function; and e is an express*on

The value of a function is o real qucnfify unless the name of the function begins with I,
K, L, M, or N; in which case it is an integer quantity, or the function type may be de—
fined by using the appropriate specification statement. Since the arguments are dummy
variables, their names are unimportant, except to indicate mode, and may ke used else-

Initial Specifications for PDP-X Fortran Language Page 32
where in the program, including within the expression on the right side of the statement
function. - -

The expression of a statement function, in addition to confaining nonsubscripted dummy
arguments, may only contain: .~

a. Non-Hollerith constanis

b. Variable references

c. Intrinsic function references

d. References to previously defined statement functions

3. External function references

A statement function is called any time the name of the function appears in any FORTRAN
arithmetic expression. The actual arguments must agree in order, number, and type with
the corresponding dummy arguments. Execution of the statement function reference re-
sults in the computations indicated by the function definition. The resulting quantity is
used in the expression which contains the function reference. Examples are:

CA(X) = 3.2+SQRT (5.7% X**2)
SUM (A,B,C) = A+B+C
FUNC (A, B) = 3. ¥A/B**2 .+Z

7.2 lIntrinsic or Library Functions

Intrinsic or library functions are predefined subprograms that are a part of the FORTRAN

system library. The type of each intrinsic function and ifs arguments are predefined and
cannot be changed. An intrinsic function is referenced by using its function name with
arguments in an arithmetic statement. The arguments may be arithmetic

the appropriate
or other intrinsic functions.

expressions, subscripted or simple variables, constafns,
Table 1 describes the PDP-X intrinsic funciions.

Initial Specifications for PDP-X Fortran Language

Pag-e 33

TABLE 1 INTRINSIC FUNCTIONS
, _ No. of . v ’
Intrinsic Functions Definition Argu- Symb.ohc . Type of Type .Of
, : Narhe Argument Function
ments v 4 ;
Absolute value I a I 1 ABS Real Real
IABS Integer Integer
DABS Double Double
Truncation Sign of a times largest 1 AINT Real Real
infegerﬁl a I INT Real Integer
IDINT Double Integer
Remaindering* a, (mod 02) 2 AMOD Real Real
. ‘ MOD Integer Integer
Choosing largest Max (a], Qs o .) 2 AMAXO Integer Real
value " AMAXI Real Real
MAXO Integer Integer
MAXI Real Integer
DMAXI Double Double
Choosing smallest Min (a], Qs e .) 2 - AMINO Integer Real
value . AMINI Real Real
MINO Integer Integer
MINI Real Integer
DMINIT Double Double
Float Conversion from] FLOAT Integer Real
integer to real :
Fix Conversion from real 1 IFIX Real Integer
fo integer ‘
Transfer of sign Sign of a, times 2 SIGN " Redl Real
Ia] I ISIGN Integer Integer
DSIGN Double Double
Positive difference a, = Min (a, 02) 2 DIM Real Real
IDIM Integer Integer
Obtain most signif- 1 SNGL Double Real
icant part of double
precision argument ‘
Express single pre- 1 DBLE Real Double

cision argument in
double precision
form

*The function MOD or AMOD (ay, ¢5) is defined as a] = [01/ag] ap, where[x]is the integer whose

magnitude does not excead the megnitude of x and whose sign is the same as x .
g g g

Initial Specifications for PDP-X Fortran Language o Page 34

7.3 External Functions

An external function is an independently written program which is executed whenever its
name appears in another program. The general form in which an external function is
written is: ' '

LFUNCTION NAME (a1, a2, ..., an)

(FORTRAN statements)

NAME = final calculation
RETURN
END

where t is either INTEGER, REAL, DOUBLE PRECISION, LOGICAL, or is a blank, NAME
is the symbolic name of the function to be defined; and the a's are dummy arguments which
are nonsubscripted variable names, array names, or other external function names.

The first letter of the function name implicitly determines the type of function. If that
letter is |, J, K, L, M, or N, the value of the function is INTEGER. If it is any other
letter, the value is REAL. This can be overridden by preceding the word FUNCTION
with the specific type name. The symbolic name of a function is one fo six alphanumeric
characters, the first of which must be the alphabetic name and must not appear in any
nonexecutable statement of the function subprogram =sxcept in the FUNCTION statement
where it is named. The function name must also appear at least once as a variable name
within the subprogram. During every execution of the subprogram, the variable must be
defined before leaving the function subprogram. Once defined, it may be referenced
or redefined. The value of this variable at the time any RETURN statement in the sub-
program is encountered is called the value of the function. There must be at least one
argument in the FUNCTION statement . If @ dummy argument is an array name, an
appropriate DIMENSION statement is necessary . The dummy argument names mdy nof
appear in an EQUIVALENCE, COMMON, or DATA statement in the function subpro-
gram. The function subprogram may contain any FORTRAN statements with the ex-
_ception of a BLOCK DATA, SUBROUTINE, or another FUNCTION statement. li, of
course, cannot contain any statement which references itself, either directly or in-
directly.

A function subroutine must contain at least one RETURN statement. The general form is:

RETURN

Initial Specifications for PDP-X Fortran Language _ Page 35 -

This signifies the logical end of the subprogram and returns con’rrol and the computed value
to the calling program.

An END sfa'rement described ‘in section 4.11, signals the compller that the physical end
of the subprogram has been reached.

An external function is called by using its function name, followed by an actual argument
list enclosed in parenfheses, in an arithmetic or logical expression. The actual arguments
must correspond in number, order, and type to the dumm/ crgumen’rs An actual argument
may be one of the following:

A variable name

An array element name

An array name

Any other expression

The name of an external function or subroutine

o Q0 U Q

Table 2 contains the basic external functions sup'p!ied by the FORTRAN system.

TABLE 2 EXTERNAL FUNCTIONS

‘ No. of - .
Basic s C Symbolic Type of Type of
External Function Definition Argu Name Argument Function
ments

Exponential e’ S 1 CEXP Real Real
] DEXP Double Double

Natural logarithm log (a) 1 ALOG Real " Redl
o © DLOG Double Double
Common logarithm , Iog]O (a) 1 ALOGI10 Real Real
2 DLOGI10 Double Double

Trigonometric sine sin (a) 1 SIN Real Real
' 1 DSIN - Double Double

Trigonometric cosine cos (a) ‘] COS Real Real
' : ’ 1 . DCOS Double Double

Hyperbolic tangent tanh (a) ' 1 ~ TANH Real Real
Square root (0)1/24, ' 1 SQRT Real Real
1 DSQRT Double Double

Arctangent arctan (a) 1 ATAN Real Real
1 DATAN Double Double

arctan (al/a2) 2 ATAN2 Real Real
2 DATAN2 Double Double
Remaindering® a, (mod 02) 2 DMOD Double Double

*The function DMOD (aj, ap) is defined as a) = [a/a2] ag, where [x]is the integer whose magnitude
does not exceed the magnitude of x and whose sign is the same as the sign of x.

Initial Specifications for PDP-X Fortran Language Page 36

7 .4 Subroutines

A subroutine is defined externally to the program unit which references it. It is similar to
an external function in that beth contain the same sort of dummy arguments, and both re-~
quire an END statement. With a subroutine, however, all communication with the call-

ing program is via the argument list. The general form of u subroutine is: -

SUBROUTINE NAME (al, a2, ..., an)
or

SUBROUTINE NAME

where NAME is the symbolic name of the subroutine subprogram to be defined; and the a's
are dummy arguments (there need not be any) which are nonsubscripted variable names,
array names, or the dummy name of another subroutine or external function.

The name of a subroutine consists of one to six alphanumeric characters, the first of which
is alphabetic. The symbolic names of the subroutines cannot appear in ci:y staiement of the
subroutine except the SUBROUTINE statement itself. The dummy variables represent input
and output variables. Any arguments used as output variables must appear on the left side
of an arithmetic statement or an input list within the subprogram. If an argument is the
name of an array, it must appear in a DIMENSION statement with the subroutine. The
dummy argument names may not appear in an EQUIVALENCE, COMMON, or DATA

statement in the subprogram.

The subroutine subprogram may contain any FORTRAN subprograms with the exception of
FUNCTION, BLOCK DATA, or another SUBROUTINE statement. The logical termination
‘of a subroutine is a RETURN statement. The physical end of the subroutine is an END
statement.)

A subroutine is referenced by a CALL statement, which has the general form
CALL NAME (al, a2, .. . an)
or
- CALL NAME
where NAME is the symbol name of the subroutine subprogram beiﬁg referenced, and the a's
are the actual arguments that are being supplied fo the subroutine. The actual arguments

in the CALL statement must agree in number, order, and type with the corresponding
argumeris in the SUBROUTINE subprogram. The array sizes must be the same. An actual

Initial Specifications for PDP-X Fortran Language ' - Page 37

argument in the CALL statement may be one of the following:

. A Hollerith constant

A variable name

. ‘An array element name

. An array

. Any other expression

The hame of an external function or subroutine

T mo 20 T Q

7.5 Block Data Subprogram

The BLOCK DATA subprogram is a special subprogram used to enter data into a COMMON
" block during compilation. A BLOCK DATA statement takes the form '

BLOCK DATA

This special subprogram contains only DATA, COMMON, EQUIVALENCE, DIMENSION, and
TYPE statements. It cannot contain any executable statements. |t can be used fo initialize
data only in a labeled COMMON block area; not in a blank COMMON block area. All
elements of a given COMMON block must be listed in the COMMON statement, even if

they do not all appear in a DATA statement. Data may be entered in more than one
COMMON block in a single BLOCK DATA subprogram.

An END. statement signifies the termination of a BLOCK DATA subprogram. An exc;impie is:

BLOCK DATA

DIMENSION X(4), Y(4)

COMMON / NAME /A, B, C, I, J, X, Y
DATA A, B, C/3*2.0/

DATA X(1), X(2), X(3), X(4)/0.0,0.],O.2,0.3/Y(1), Y(2),
2 Y(3), Y(4)/1.0E-2, 1.0Er, 1.0E-4/
END ‘

Initial Specifications for PDP-X Fortran Language : Page 38

Appendix - Differences Between PDP-9 Fortran and ASA Fortran

1. The quotation mark character is allowed in PDP-9 fortran. It is used to enclose
alphameric data constants. [t can be used in format statements, arguments of CALL
statements and DATA statements. This feature is not in the ASA standard.

2. ASA foriran specifies nineteen continuation cards, for a total of 20 cards maximum
_in a statement. PDP-9 fortran can have only 5 continuation cards or 6 cards in fotal.

3. PDP-X Fortran has no complex data.

4. General integer expressions may be used for subscripts in PDP-X fortran. The ASA
standards impose certain restrictions. '

5. The G field descripior is not allowed in PDP-X FORMAT statements.

6. The impli.ed DO feature is not legal in a PDP-X DATA statement.

~N

The size of arrays in subprograms is not adjustable to the size specified by the following
program .

8. The 3 limits in the DO specification may be general integer expressions in PDP-X forfran.

9. An additional format descriptor, O for Octal, is allowed in PDP-X FORMAT statements.

