O et

-uoissiuIsd UsM
81 w 8y} 20§ SISEQ Yt
AL SLUSTH IO 9]BS 10 8injoeinue 5 S :
2‘120;21‘.2!\3 ut :5' é;qu ur pasn 10 paded Jo &:a.,npo.zdaji
agjou lieys pue uopesodiod judwidindl @;p;g J0 /‘1,13. .
.dosd ay1 aie "ulldy SUORBOHI0adS puR BuiMEID SiUL

| o L : CONFIDENTIAL
PDP-X Technical Memorandum # 35 '

- TITLE: ' i‘ PDP-X Assembler Initial Specifications - V
“AUTHOR (S} " H. G. Bramson L
INDEX KEYS: Software Specifications %
 XAP SR

ISTRIBUTION KEY: B, C
OBSOLETE: ~ None
REVISION: ' None -

DATE: November 1, 1967

PROGRAM SPECIFICATION

PDP-6/PDP-X ASSEMBLER

XAP-6

H. G. Bramson
11-5-67

0.1

1.1

1.2

1.3

1.4

OVERALL DESCRIPTION

XAP-6 is the symbolic assembly program for assembling PDP-X programs
on the PDP-6. XAP-6 runs under control of the PDP-6 Time-Sharing Monitor.
XAP-6 processes input source programs in two passes and requires a minimum of 5K
of core memory. It is completely device independent, allowing the user to select
standard peripheral devnces for input and output files via a command string.

The normal output of ‘the assembler is a binary object program which can

be loaded for debugging or execution by the PDP-X Simulator on the PDP-9

(XSIM-9). XAP-6 prepares the object program in either relocatable binary or non-
relocatable binary. : :

An output listing showing both the programmer's source coding and the
object code produced by the assembler is printed if desired.

%
5

GENERAL SPECIFICATION

MACHINE REQUIREMENTS

XAP-6 can operate on a 16K PDP-6 under control of the PDP-6 Time-
Sharing Monitor system. The minimum peripheral requirement for the normal
operation of the assembler is:

paper tape reader
paper tape punch
console teletype

MACHINE OPTIONS

The assembler is device independent and therefore other devices contained
in the machine configuration may be selected via the command string. Such devices

: might include:

Disc

DECtape
Magnetic Tape
Card Reader

Line Printer

SYSTEM REQUIREMENTS

XAP-6 requires the presence of the PDP—6 Time Sharing Monitor Sysfem

This monitor controls all of the input/output activities that may be required by XAP-6.

- RESIDENT PROCRAMS

NOT APPLICABLE.

2. DESIGN SPECIFICATIONS

2.1 DESIGN GOALS

XAP-6 is intended to be downward compatible with the eventual PDP-X
assembler (XAP), i.e., XAP-6 will not contain features which are unavailable in
XAP, and also source programs will be 100% language compatible. In order to
facilitate changes and enhance maintainability, XAP-6 will be written in a
highly modular form. :

The problems of reimplimentation of XAP-6 to XAP will be minimized
because the internal structure of the two assemblers will basically be the same.

2.2 INPUT

2.2.1 INPUT FORMAT

The input format for XAP-6 is equivalent to the PDP-X Assembler Language.

The remainder of this section is presented in the form of a Language manual.

PDP-X

ASSEMBLER
(XAP)

USER'S MANUAL

0.0

1.0

1.1

IIXAPII
PDP-X Assembly Program

INTRODUCTION

XAP is the symbolic assembly program for the PDP-X. Operating under control
of a monitor, which handles 1/O functions, XAP processes input source programs in two
passes, and requires less than 6K of core memory. It is completely device independent,
allowing the user to select standdrd perlpheral devices for input and oufpuf files.

XAP makes machine language programming on the PDP-X much easier, faster
and more efficient. It permits the programmer to use mnemonic symbols to represent
machine operation codes, location and numeric quantities. By using symbols to identify
instructions and data in his program, the programmer can easily refer to any point in his
program without knowing actual machine locations. .

§

The normal output of the assembler is a relocatable binary object program

which can be loaded for debugging or execution by the Linking Loader.

XAP prepares the object program for relocation, and the Linking Loader sets
up linkages to external subroutines. Optionally, the binary program may be outputted

" in non-relocatable code.

The programmer may direct the assembler's processing by the usage of pseudo-
operation instructions (pseudo-ops). These pseudo ops are used to set the radix for
numerical interpretation, to reserve blocks of storage location, to handle strings of
ASCII text, to conditionally assemble certain porhons of coding and other functions
which will be explained in detail.

An output listing, showing both the programmer's source coding and the
object coding produced by XAP, is printed if desired. This listing may include all the

~ symbols used by the programmer with their assigned values. If assembly errors are
detected, erroneous lines are marked with specific letter error codes.

Operating procedures for XAP may be found in th-eﬂappendices of this speci-

fication.

GENERAL SPECIFICATION

MACHINE REQUIREMENTS

XAP operates in PDP-X systems with the I/O Monitor and the followmg

“minimum hardware configuration:

8K core memory
Console teletype _
Paper tape reader and paper tape. punch

The assembler is actually device independent. The 1/O Monitor preselects

1.2

2.0

2.1

device assignments for source program input, oufpuf of the binary object program, cnd
output of the printed listing. :

MACHINE OPTIONS

With the addition of bulk storage to the hardware configuration, XAP operates
with the Keyboard Monitor, which allows the user flexibility in assigning 1/O devices at
assembly time. .

DESIGN SPECIFICATIONS

The assembler processes in two passes; that is, it passes over the same source
program twice, outputting the object code (and producing a printed listing, if requested),
during the second pass.

The two passes are resident in memory at the some time. Pass 1 and Pass 2 are
almost identical in their operations, but object code is produced only during Pass2. The
main function of Pass 1 is fo resolve locations that are to be assigned to symbols and to
build up a symbol table. Pass2 uses the information computed by Pass 1 (and left in
memory) to produce the final output. :

The standard object code produced by XAP is in a relocatable format which

~is acceptable to the PDP-X Linking Loader. Relocatable programs that are assembled

separately and use identical global* symbols where apphcoble, can be combmed by the
Linking Loader into an executable object program.

Some of the advantages of having programs in relocatable format are as

follows:
a. Reassembly of one program, which at object time was combined with other
programs, does not necessitate a reassembly of the entire system.
b. Library routines: (in relocatable object code) can be requested from the system
device or user library device.
¢, Only global symbol definitions must be Umque in a group-of programs that
operate together.
- INPUT

i

XAP programs are normally prepared on a teletype as a sequence of statements.

(Wlth the aid of an editing program the program can easxly be updated.) Each.statement -

is written on a smgle line and is terminated by a carriage return-line feed sequence
(indicated by) in this document). XAP statements are virtually format free; i.e., ele-
ments of the statement are not placed in numbered columns with rigidly controlled spacing -
between elements. The character set that is used as mpu’r to XAP is 7-bit ASCIl. (See
Appendix A.)

* Symbols which are referenced in one program and defined in another.

2.2 ELEMENTS OF A STATEMENT

There are four elements in a XAP statement which are separated by specific
characters. These elements are identified by the order of their appearance in the
statement, and by the delimiting character which follows or precedes the element.

" Statements are written in the general form:

LABEL: OPERATOR OPERAND, OPERAND ;iCOMMENTS)

_ The assémbler interprets and processes the statements, generating one or more binary
instructions or data words, or performing an assembly process. A statement must contain
at least one of these elements, but it may contain all four.

2.2.1 LABELS

A label is the symbolic name created by the user to identify the statement.
If present, the label is written first in a statement, and is terminated by a colon (:).
No spaces are allowed between the last character of the Iabe! and the colon (z).

Examples:
ABC:
TAG: » .

" TAG1:TAG2:ATAG3 ' All 3 labels point to the same location.
LABELAA: flllegal, no spaces are allowed wn‘hm the label or
TAGITA: between. fhe last character and the colon.

Labels are not redefinable by another label, direct assignment, EOPDEF or
variable. They can not appear after an operator or operand has preceded it on a line.

‘Examples:
LABEL: LDA 4,5

LDA 4,LABEL# : ;Variable can not redefine a label. (See 3.3.1)
EOPDEF LABEL, 18 ;EOPDEF can not redefine a label. (See 3.1)
LABEL=1g - ;Direct assignment can not redefine a label. (See 2.3.1)
- LDA 4,5 LABEL: ;A label can not be preceded by an operator or
, joperand
2.2.2 OPERATORS | o

An operator may be:

a. Any one of the mnemonic machine instruction codes (see appendix B)-

b, An assembler. pseudo op, which directs assembler processing.

c. EOPDEF

If there is no label associated with the statement the operator may appear as .
the first element of the statement. The operator field is terminated by any one of the
following delimiters:

1) N (space)

2) —>| (tab)

3) ; (semicolon)

4)) (carriage return)

Examples of Operators:

LDA ;mnemonic machine instruction.
LOC ;an assembler pseudo op.
FADD ;legal only if defined via EOPDEF.

In order for a symbol to be interpreted as an operator it must not be part of an expression.
It must be used as a free standing symbol. If it is used in an expression, it will be treated
as an operand and must therefore be user defined.

- Examples
EOPDEF FAD,25 ;defines FAD as a user defined operator

LDA 3,LOC ;"LDA" is an operator, "LOC" is an operand
LDA+1 ;"LDA" is an operand

LOC 58 ;"LOC" is a pseudo op

LOC+ 50 ;"LOC" is an operand

FAD TAG ;"FAD" is an operator, "TAG" is an operand
FAD+1 ;illegal statement (see 3.1)

- As an operator, ‘a mnemonic machine instruction or a pseudo op takes preced-—
‘ence over identically named user symbols.

Example
Source . Would Assemble As:
LDA=5 : | ‘
"~ LDA 4,LDA 8,4,8,5

+LDA ' #8a80d5 .
2.2.3 OPERANDS

Operands are usually the symbolic addresses of the data to be accessed when
- “an instruction is executed, or the input data or arguments of a pseudo op. - In each case,
the interpretation of operands in a statement depends upon the statement operator.
Operands are separated by commas (if operator requires more than one operand) and ter-
minated by a space (&), tab (=31), semicolon (;), or carriage return ()).

2.2.4

2.3

Symbols used.as operands must have a value defined by the user. If a symbol,

- used as an operand, is the same as a mnemonic machine instruction or pseudo op, it will

not be interpreted as such, but rather as a user defined symbol. EOPDEF defined symbols
may never be used as operands. :

Examples

LOC=5

STA: 1 , .
LDA 4,STA’ © ;STA is user defined
STA 4,LOC ;LOC is used defined
LOC 5 ;LOC is a pseudo op

Many instructions reference an accumulator and a memory location. If the

- first operand is an accumulator it must be terminated with a comma (,). If an accumulator

is not specified but the operator requires one, accumulator 4 is assumed and the instruc-
tion will be flagged. (The value of the accumulator is truncated to the 3 least significant
bits. K

If an accumulator is specified on an instruction that does not require one, it
will be flagged as an error. Any reference to accumulator 1 will get flagged as an error,
because AC 1 is the hardware program counter and must not be referenced. (See Appendix
E for expected formats.)

Examples:
AC5=5 '

LDA TAG ;error, AC 4 assumed

LDA TAG ;AC f implied

LDA AC5,4 ;AC 5 referenced

LDA 1, TAG ;error, AC 1 can not be referenced

LDA 25,TAG ;ACS5 referenced

B LOC ;Correct form

B AC5,LOC j;error, instruction does not require an AC
COMMENTS

~ The programmer may add notes to a statement. Such notes must be preceded
by a semicolon (;). Such comments do not affect the assembly process, but are used mainly

for documentary purposes.

Examples:

;this is a comment

A: LDA 4,5 ;this also is a comment
SYMBOLS

The programmer creates symbols for use in statements to represent labels, ,
operators and operands. A symbol contains one to six characters from the following set:

The letters A-Z

‘The digits © O- 9
Two special characters § (dollar sngn)
% (percent)

The first character of a symbol must be a letter or dollar sign or percent. It must not be

a digit.
The following symbols are legal:
A $BTAG S
A% TAG25 P9%
%TAG % $25
The following symbols are illegal:
8TAG First character may not be a digit.
TAG?1 ? is an illegal character in a symbol.

Only the first six characters of a symbol are meaningful to the assembler, but -
the programmer mgy use more for his own information. If he writes,

SYMBOLT:
SYMBOL2:
SYMBOLS:

as the symbohc labels on three different statements in his program, the assembler will
recognize only SYMBOL and indicate error flags on the statements containing SYMBOLT,
SYMBOL2, and SYMBOLS3, because to the assembler they are duplicates of SYMBOL.

2.3.1 DIRECT ASSIGNMENTS

The programmer may define a symbol directly into the symbol table by means
of a direct assignment statement, written in the form

SYMBOL = value

where value can be a number or express:on Value can not be a machine instruction,
pseudo op or EOPDEF defined symbol. (i.e., expression to right of = assumes the operand

field).

Direct assignments are redefinable. They may only redefine orher direct
assignments, They may not redefine user symbols. = -

Examples:

A=l
B=A+3 ;B is defined as A+3=4

s, iredefinition of A

-

The = sign must immediately follow the symbol. However, the value to the
right of the equal sign may have preceding spaces or tabs. ‘ '

Examples:

2.4

2.4.1

Legal) llegal

A=5 . A—1=5
B=A18 . BA=A10
C=—3l 28 A=LDALTAG ;operand field assumed and there-

fore there are too many operands. -

Direct assignment statements do not generate instructions or data in the object
program. They are used to assugn value so that symbols can be conveniently used in
other statements.

In general, it is good programming practice to define symbols before using
them in statements which generate storage words.

Exompie:

Z=5
X=Z
Y=X
LDA 4,4 ;sameas LDA 4,5

A symbol may be defined after use.
Exclmple:

B.Y
Y=1

This is called a forward reference, and is resolved properly in Pass2. When first encount-
ered in Pass 1, the B Y statement is incomplete because Y is not yet defined. Later

in Pass 1, Y is given the value 1. In_Pass2, the assembler finds that Y=1 in the symbol
table, and forms the complete word.

Since the assembler operates in two passes, only one-step forward references
are allowed. The following sequence would be illegal.

B._Y
Y=2
Z=1

NUMBERS

Numbers used in source programs may be signed or unsigned integers in single
or double precmon or they may be floating point numbers. Negative numbers are
represented in twos complement.

SINGLE PRECISION INTEGERS

The standard radix (base) used in all number interpretation by the assembler
is octal (base 8). The radix may be changed for a single numeric term, by using the

qualifier 4 (up arrow) followed by the letter D (decimal).

Examples:

2.4.2

2.4.3

SOURCE . GENERATED RADIX
STATEMENT VALUE (OCTAL) IN EFFECT
256 23256 OCTAL
+135 233135 OCTAL
-75 177743 OCTAL (Twos complement)
1D1go gogi44 DECIMAL
D-4g 1777308 DECIMAL (Twos complement)

DOUBLE PRECISION INTEGERS *

Double precision integers are specified by the letter L terminating the number
which indicates that they will occupy two memory locations with the least significant
digits right justified. As with single precision integers, a negative double precision

integer will be represented in twos complement form. The radix change qualifier may
also be used.

Examples: | v
SOURCE GENERATED RADIX
STATEMENT VALUE (OCTAL). IN EFFECT
+125L .000000 000125 OCTAL
635726431 000316 172643 OCTAL
-735L 177777 177043 OCTAL (Twos complement) -
AD-100L - 177777 177634 DECIMAL (Twos complement)
~-63572643L 177461 005135 OCTAL (Twos complement)

BINARY SHIFTING

An integer may be logically shifted left by following it with the letter B,
followed by a number, n, which represents the bit position in which the right hand bit
of the number should be placed. "n" always represents a decimal number and may range
from 0-317g. Bits leaving the left are lost and zeros enter the right end. Binary shifting

" may only be used with integers.

2.4.4

Exam EI es:
SOURCE GENERATED
STATEMENT VALUE
125812 001250
-1587 171400
180 100000
4D6788 020600

FLOATING POINT NUMBERS

If a string of digits contains a decimal point, it is evaluated as a floating
point DECIMAL number.

Examples:

2.4.5

~ Examples:

" SOURCE - GENERATED

STATEMENT VALUE
19 B4gB6s 121727
-183.72 141278 850754
+23.279 G41027 BA3554

_ Floating point decimal numbers may also be written, as in FORTRAN, with
the number followed by a signed or unsigned exponent which represents a power of 14.
The exponent will be treated as a decimal number.

Examples:
"~ SOURCE GENERATED
STATEMENT VALUE
1.5E5 G42444 1174080
1.5E+2 $41226 B0d800
1.5E-3 #37142 B46722

The preceding form of a floating point decimal number represents single
precision, in that it causes two words fo be generated.

~ To express a double precision floating point decimal number, the number is
followed by the letter D. In addition, an exponent can be represented by following D
with a signed or unsigned number which represents a power of 14.

Examples:
SOURCE GENERATED
STATEMENT VALUE

-.36D-6 137623 £72274 P65176 174733

STRINGING OF NUMBERS

It was mentioned above that the user could locally change the standard radix
by using the 1" qualifier. The user can represent a string of numbers with the same radix
without having to qualify each one, by preceding the siring with either the pseudo op
OCT (octal string) or DEC (decimal string). The forms of numbers in the string may be
any of the above mentioned types. Floating point decimal numbers may not appear in
an OCT string unless they are qualified as decimal. '

DEC -83,37,128L,+145B13,6.3E-2

OoCT -72,7D-38,76,12L,133B5,1D1.2

OoCT 17,27,1.2 ;1.2 is illegal because floating point
: ;numbers must be decimal

10

2.5 EXPRESSIONS

Expressions are strings of symbols and numbers separated by arithmetic or
boolean operators. '

The following are the allowable operators.

OPERATOR - . FUNCTION
+ (plus) ' add
- (minus) subtract
* (asterisk) multiply
i / (slash) divide
& (ompersand) AND 0
! (exclamation) inclusive OR Boolean
\ (back slash) exclusive OR)’ ,

, The assembler computes the 16 bit value of the series of numbers and/or
symh’ols connected by the arithmetic and boolean operators, truncating from the left, if
necessary. Operations are performed from left to right (i.e., in the order in which
they are encountered). For example: A+B*C+D/E-F*G is equivalent to the following
algebraic expression:

(((A+B)*C+D)/E-F)*G .
Examples:

Assume the following symbol values:

SYMBOL “VALUE (OCTAL)
A 2
B 1%
) C 3
| D 5

The following expressions would be evaluated according to the above rule.

EXPRESSION ' EVALUATION (OCTAL)

A/B+A*C 000006 - Remainder of A/B is lost
B/A-2*A-5 177777 (=1

C+A&D 000005

A+B*C&D _ 000004

1+A&C 000003 B '

1D50-B 000052 Note that the decimal qualifi-

cation applies only to 50 and
not fo "B".

2.6 LOCATION ASSIGNMENTS

As source program statements are processed, the Assembler assigns consecutive
memory locations to the storage words of the object program. This is done by reference

2.6.1

2.6.2

2.6.3

11

" to the Location Counter, which is initially set to zero. Machine instructions may cause

the Location Counter to be incremented by either one or two. Other statements such as
those used fo enter data or text, or to reserve blocks of storage words, cause the Location”
Counter fo be incremented by the nhumber of storage words generated.

SETTING AND REFERENCING THE LOCATION COUNTER

The programmer may set the Location Counter by using the pseudo ops LOC
and RELOC, which will be described later on. He may reference the Location Counter

directly by using the symbol, period(.).

Consider the following example:

LOCATION COUNTER STATEMENT FORM
100 B 45 SHORT (1 word)
101 LDA 4,5000 LONG (2 words)
103 : STA 4,6000 LONG
105 LDA 5,20 SHORT

The first statement, B .+5, refers to 5 locations away from the current instruction and

" therefore references location 185. If the B .+5 instruction was long form it would

have to be .+6 to provide the same results.

INDIRECT ADDRESSING

The character@ prefixing an operand causes the assembler to set bit g, (either
first or second word), indicating indirect addressing.

If the statement contains both an operator and an operand, two words will be
generated for the statement. If there is only an operand, only one word will be generated
for the statement. '

-

 Examples: i

STATEMENT GENERATED VALUES NOTES

LDA=50 ' Assignments, no

TAG=20 values generated..

LDA 4,@ TAG B8,4,8,288 100020 Two words

LDA 4,@LDA 8,4,8,2088 100050 generated

@TAG 100020 . One word generated,
also forces operand
and therefore LDA
interpreted as operand
rather than operator.

INDEXING o -

If the programmer wishes to index an operand of a statement he may do so by
enclosing a value or expression within parenthesis suffixed to the operand.

2.6.4

2.7

2.7.1

12

Examples:

X2=2

X3=3

LDA 4,TAG(X2)

B 0(X3) or B (X3)

STA 5,TAG(2) "
LDA 4,@ TAG(X%) ;indexed, indirect

LITERALS

In assembler statements, a symbolic data reference may be replaced by a direct
representation of the data enclosed within brackets ([1). This direct representation is
called a literal. The reference may be a number, user defined symbol (exclusive of
EOPDEF) or an expression. All symbols usedwithin literals will always be treated as
operands rather than operators. In addition only 1T word may be generated by the literal.
The assambler will cause the immediate mode of addressing to occur with the vaIue of ’rhe
literal as the effective word.

STATEMENT GENERATED VALUE

A=50
LDA 4,[A] 8,4,1,208 Ppe0sg
LDA 4,[-51 9,4,1,208 177773
LDA 4,[A-31] 8,4,1,208 080845
LDA 4,[2*A-11 g,4,1,208 g7 -
LDA 4,501 B8,4,1,200 #8808 - error, too many words
LDA 4,[LDA Al 8,4,1,208 @08888 - error, LDA undefined

BASIC INSTRUCTION FORMS

Normally, the assembler allocates two memory locations for all instructions,
including Basic Op Codes. The programmer can explicitly instruct the assembler to allocate

_ only one memory location for basic ops on either an individual statement basis or a block

¢

basis.

Individual statements may be qualified by using an expanded set of index values. .
In addition, the index value may state the form of addressing to be used. '

A block of statements may be made short by the usage of a pseudo op, BEGS
(See 2.7.2).

INDIVIDUAL STATEMENT QUALIFICATION

It was mentioned previously that the method of indicating an index value was
to suffix the operand with a value enclosed in parenthesis. The following are the legal
index values and their meanings. (Any other values are flagged as errors and ignored.

- If the form indicated is illegal for the instruction, it will also be flagged, and the

indicated length will be generated for the instruction.)

13 -

Long, indexed with 3

VALUE MEANING COMMENTS
2 1 Long, indexed with 2 If encountered in a short
! v ‘ . (BEGS).area it will be
‘] 7 assembled short and is
3 legal only if the operand

is absolute and within

+3-177.

24

Short, direct

£ 2;25;5'.'

'-Lego| only if operand is
absolute and <377 and

Short, relative to PC

within £177.

Legal only if location an
operand have same address
form (abs/abs -rel/rel) and |
difference between operand !
.and Location Counter is

. Legal only if operand

is absolute and within
+@-177.

whichever is possible

21

— |
22 ! Short, indexed with 2
23. Short, indexed with 3
24 Short, direct or relative

Legal only if operand
complies to rules of either

‘value 20 or 21.

3g B

Long, direct

Instructions encountered

in short (BEGS) area

3} Long, lmmedicﬁ-e with any of these values
32 i Long, indexed with 2 will always be long.
33 g ' Long, indexed with 3 Mwi '

Al values may be used with all instructions,” except 20-24
which may only be used with basic ops.

ExamEIes:

ASSUMED
LOCATION

8

100
500
100
100

100
100
100

[100

100
100
100
100

100
1100
100

 SOURCE

LDA
LDA
LDA

CMP.

LDA
LDA
LDA
CMP

LDA
LDA
LDA
CMP

LDA
LDA
LDA

CMP.

LDA
LDA
CMP

LDA

CMP

LDA

LDA

CMP

LDA
LDA

14

GENERATED VALUES

4,5(24)
4,600(24)
4,500(24)
4,5(24)

4,50(20)
4,209(20)
4,499(20)
4,5@(20)

4,54(21)
4,200(21)
4,309 (21)
4,5(21)

4,50(22)
4,200(22)
4,300(22)
4,5(22)

4,20(30)
4,250 (30)
4, 3098 (30)

4,150123(31)
4,123(31)
4,1D15(31)

4,375(32)
4,290(32)

4,50(2)
4,200(2)

CMP 4,200(2)

010005
010500
010000

150111.

010050
010000
010000
150111

010750
010500
010000
150111

011350
011100
011000
151111

010200
010200
150111

010600
150511
010600

011200
151111

011200
011200
151111

000200
002500
003000

150123
000123
000017

000375

000200

000050

000200
000200

error
eiror

error
error
error

error
error

error
error

(same as LDA 4, [150123]
(same as CMP 4,[123]
(same as LDA 4,[1D15]

2.7.2

15

The following four types of operands will always cause long form to be created
and can not be overidden by index values to create short form:

)} lndirec'r references - LDA 4,@ TAG

2) Literal references , - . . LDA 4,1[1,2,317 cause

3) Text operands (See 3.6.1) - LDA 4, "AB" . | immediate form
4) External symbol references - BAL EXT ‘ -

With respect to the nature of the relocatability of an instruction and its
operand at object time the following are the legitimate forms.

LOCATION - OPERAND ONLY TYPE(S) ALLOWED FOR SHORT
RELOCATABLE - RELOCATABLE RELATIVE ONLY
RELOCATABLE ABSOLUTE DIRECT ONLY

ABSOLUTE RELOCATABLE RELATIVE ONLY

ABSOLUTE ABSOLUTE ' DIRECT OR RELATIVE;

BLOCK QUALIFICATION

If the user desired to have all basic ops in a specified area to be generated as
short form (either direct or relative, whlchever is possible), he may do so by the use of
two pseudo ops.

) BEGS - Begiﬁning of short form area.
2) ENDS - End of short form area.

If the basic op can not be made short only one word will be allocated for it
and it will be flagged as an error. In addition, the user may specify individual forms
within the area.

Example: o

BEGS T - ;BEGINNING OF SHORT AREA

w: g :

B: @

L: ¢

E: 125 :

LOOP LDA 4,B ' ;SHORT

STA 4,L ;SHORT
LDA 4, ; FORCES LONG
AND 4, ; FORCES LONG
CMP 4,W ;LONG - EOP
B P(30) ;LONG
LDA 4,L ;SHORT
CMP 4,E ;LONG - EOP
BP LOOP ;SHORT)
ENDS ;END OF SHORT AREA

P: STA 4,5 ;LONG - NOT IN RANGE OF SHORT AREA

3.0

3.1

ENDS

16

PSEUDO OPS

Pseudo ops are statements which direct the assembler to perform certain
assembler processing operations, such as producing text strings or reserving blocks of
memory. Some pseudo ops generate object code and some do not. In all cases a pseudo
op will only be interpreted as such only if it is an operator.

The following pseudo ops, of necessity, were previously described in the indicated
sechons ‘

OCT
DEC
BEGS

section 2.4.5

section 2.7.2

EOPDEF

'The programmer can define his own extended op code operator using an
EOPDEF statement written in the following general form: .

EOPDEF NAME,DI ,R

where: 1. "NAME" is the name of the user defined operator.
2. "DI" is the value to be assigned to the D, portion of the instruction when
the EOPDEF operator is referenced.
‘ 3. "R" is the value to be assigned to the R portion of the instruction

D! and R may be symbols, numbers or_expressiér;lé. In addition an opcode of 6 will be
generated when the EOPDEF operator is referenced.
EOPDEF is the method for the user to define unused extended opcodes (UUO's).

The following are the specific forms that an EOPDEF may be written:

EOPDEF NAME, DI
EOPDEF NAME, DI,
EOPDEF NAME, DI, R

 EOPDEF NAME, DI,R,

When an EOPDEF is used, it must follow the same syntax rules as extended op

 codes (See appenchx E).

Examples:

EOPDEF A,120
EOPDEF B, 121,2

' ~ OP,R,X,DI
) generates 6,6,8,120 0080005
generates 6,4,8,128 @00065 and flagged (AC=4 cssumed)

generates 6,2,8,121 @88005
.5 generates 6,2,8,121 ﬁﬂ,@'ﬁﬁ5 and flagged

OO O

17

The fo“owing rules must be followed when using EOPDEF's, otherwise
phase errors might occur at assembly time.

~ 1. They must be defined prior to usage.

2. They must not be redefined.

3.2 EXP
The EXP pseudo op allows the user to express a string of numbers
or expressions in one statement. They will be treated as operands. It is
written in the following form:
EXP n,n,...,nNn

Examples:

EXP TAG+1
“EXP TAG,TAG1,25,LOC (Causes 4 words to be generated)

3.3 RESERVING STORAGE

3.3.1 VARIABLES

The user may request the assembler to assign single storage registers.
These registers, whose contents may be altered at object time, are called
variables. A symbol which contains a number sign () as one of its characters
and which is not explicitly defined elsewhere is o variable.

The symbol may contain a # any number of times that it is used,
but the symbol need only be defined once as a variable, but not necessarily
the first time it is referenced.

Examples:

LDA 4,TAGH

LDA 4,TAGI
'LDA 4,TAGI#

LDA 4, FT# AR GH

Variables are assigned memory locations at the end of the program,
one memory location will be reserved for each varicble. The initial contents
of variable locations is unspecified.

18

3.3.2 UNDEFINED SYMBOLS

If any symbols, except EXTERNAL symbols (see 3.9.2), remain undefined at the
end of Pass 1 of assembly, they are automatically defined as the addresses of
successive registers following the block reserved for variables at the end of the
- program.

All lines which referenced the undefined symbol will be flagged with an
error code. One memory location will be reserved for each undefined symbol with
the initial contents of the reserved location being unspecified.

3.3.3 RESERVING A BLOCK OF MEMORY

The user may request the assembler to reserve a block of memory by the
usage of the BLOCK pseudo op written in the following form:

BLOCK value

BLOCK reserves a block of memory equal to "value". "Value", which may be a
number, symbol or expression, must be predefined; otherwise, phase errors will occur
during Pass 2 of assembly. The initial contents of the reserved location are
unspecified. o

Examples:
SQOURCE ‘ LOCATIONS
STATEMENTS _ RESERVED (OCTAL)
A=100
B =200
C: BLOCK 5 : 5
D: BLOCK B-A 100

BLOCK D-C+l 150

19

3.3.4 RESERVING A BLOCK FOR A PUSHDOWN LIST

The pseudo op PBLOCK is functionally equivalent to BLOCK. In addition, it
will cause a pointer and counter to be genemted as the first two words of the reserved
block. The amount of memory reserved is still "n" words and therefore the pseudo op
causes n+2 words to be reserved.

Example: ,

ASSUMED ' SOURCE GENERATED CODE
LOCATION . STATEMENT location '
—————— ———— ocation contfents ‘

100 PBLOCK 5§ 100 000102 (pointer)

101 000005 (count)
LDA 0,0 107 000000
3.4 BYTE POINTERS

The LDC and STC instructions are available for byte manipulation. These
instructions use the effective word as a character pointer to locate an 8 bit byte. The
LBYTE and RBYTE pseudo ops are used to set up the pointer word, where LBYTE initializes
fo point to the left byte and RBYTE to the right byte.

Examples:

(assume BUFF 1o be location 30008)

LDC 4,POINTI . 0 1415

POINTI: LBYTE BUFF ;generates 6001 | BUFF 1 ‘{

LDC 4,POINT2 0 1415

POINT2: RBYTE BUFF ;generates 6000 ' BUFF 0/

3.5 VFD STATEMENT ‘ /

To conserve memory, it is useful to store data in less than full 16 bit words.

Bytes of any lengfh from 1 to 16 bits may be entered using the VFD statement written in
the form: : f/

VFD (N)X,X(N)Y

The first operand n, which must be enclosed in parenthesis, is the byte size in bits. It is

interpreted as a decimal number in the range of 1-16. The operands following are separated
- by commas and are the data to be stored from left to right. If an operand is an expression,

(it is evaluated and if necessary truncated from the left to the byte size specified. The

data may occupy only 1T word. (EXTERNAL symbols or relocatable symbols should not be

used in VFD statements as results at object time may be erroneous.)

The byte size may be altered by inserting a new byte size, in parenthesis,
immediately following any operand.

Examples:

3.6

3.6.1

3.6.2

20

SOURCE GENERATED VALUE
A=500
B=50 : o v
VFD (3)1,2(6)B o 025200
VFD (7)B,(9A 050500
VFD (3)1,2,3(7)A 024700 S g
VFD (3)1,2,3,4,5,6 024713 error, too many bytes specified

TEXT HANDLING

Text handling enables the user to directly represent the 7-bit ASCII character
set. The assembler will convert the desired character to its appropriate numerical
equivalent. (See appendix A)

SINGLE WORD TEXT

If a single word of text (1 or 2 ASCH characters) is desired it can be expressed
by enclosing the desired character(s) in quote marks ("). They will be stored with the
first character in the right half of the word (bits 8-15) and the second character in the
left half of the word (bits 0-7).

If text is used as an operand of a’basic instruction it will cause long form

. immediate to be generated. Single word text may be used as operands of instructions,

expressions, or VFD statements. Only the 64 printing characters, including space may be
used for single word text. The quote sign (") itself may not be used in single word text.

Examples:
SOURCE 7
STATEMENT GENERATED CODE
LDA 4,"A" 0,4,1,200 000101
LDA 4,"AB" 0,4,1,200 041101
LDA 4, nnw 0,4,1,200 000000 error, quote may.not be used
' in single word text.
LDA 4,"ABC" 100600 041101 error, too many characters.
- "AB" 041101

| VED (1) 1 (7)"B"(1)1(7)" A" 141301

MULTIPLE WORD TEXT

If the user desires more than one word of text, he may do 50 by using the ASCII

~ pseudo op. The Ffirst non blank or tab following the ASCII pseudo op will be interpreted as

the text delimiter, which may be any printing character except angle brackets (< >).
The text will be terminated by repeating the initial delimiter or on the occurance of a
carriage return. The characters will be stored in the same manner as single word text.
The character quote () may be used in multiple word text.

Example:

21

SOURCE : GENERATED CODE

ASCH/THIS IS A MESSAGE/ ~ 044524 051511 044440
: 020123 020101 042515

. 051523 043501 000105
ASCHl .12/30/67. 031061 031457
027460 033466 E
ASCIl /END "\‘,/ 047105 020104 000042
ASCIl /AB/.CD. 041101 042103

Note, that in the last example more than one delimiter was used. In order to do so there
may not be spaces or tabs between the delimiters.

ASCIl /AB/ /CD/ would be flagged as a questionable line.

The non printing characters may be represented in an ASCII statement by enclosing
them in angle brackets, in their octal equivalence. They must appear external to the
text delimiters, otherwise they will be interpreted as part of the text string.

Examples:
SOURCE GENERATED VALUE
ASCH /TEXT/<15><12> 042524 052130 005015
ASCIl <155<12>/< >/ - 005015 037074

3.7 LOCATION DEFINING AND ADDRESS MODE

‘The normal output of the Assembler is relocatable binary addresses. The user
may also specify absolute binary addresses for the entire program or for selected portions.-
In addition to being able to set the address mode the user can alter the locations being
assigned to instructions by explicitly defining the location.

‘ Two pseudo obs RELOC and LOC, control both the addressing mode and location
defining.

3.7.1 RELOC "n"

RELOC sets the location counter to "n", which may be a number or predefined
expression, and it causes the assembler to assign relocatable locations for the instructions
and data which follow. All user defined labels encountered will be relocatable. The
operand relocatability depends upon the relocatability of the operand expression.

Since most relocatable programs start with the location counter set to @, the
implicit statement, RELOC @, is assumed at the beginning of the program and need not
be written by the user. If the user wishes to start at other than @, he must write a RELOC.
with the value desired. '

Examples:

BEGS LOCATIONS ASSIGNED OPERAND |
. RELOC 100 : .
A: LDA 4,B 100 REL REL

3.7.2

22

STA 4,50 191 REL - ABS

RELOC 208 | .

LDA -4,C 200 REL REL

B A 261 REL REL
B: 1 | 202 REL ABS
C: 2 263 REL < ABS
D: A _ 204 REL REL

ENDS -

When a relocatable operand is associated with a short form basic op code,
relocation is automatically performed by virtue of the operand being assembled relative
to the location counter. However, if the relocatable operand is associated with any
length 2 instruction; or if no operator is present, the operand assembles as a 15 bit
relocatable expression and must be relocated via the object time Linking Loader.

Examples: ‘
LOCATIONS - OPERAND
BEGS OCCUPIED RELOCATED BY:
RELOC 1400
A: LDA 4,8 1 ASSEMBLER -
STA 4,C (30) 2 LOADER
B A 1 ASSEMBLER
B: : D ‘ 1 LOADER
RELOC 2408 ~
D: LDA 4,8 (39) 2 LOADER
STA 4,C 1 ASSEMBLER
B D 1 ASSEMBLER
C: J4] , 1 NOT RELOCATABLE
ENDS '
-LOC "n"

LOC set the location counter to "n", which may be a number or predefined
expression, and it caused the assembler to assign absolute locations for the instructions
and data which follow. All user defined labels encountered in a "LOC" area will be

treated as absolute. The operand relocatability depends upon the relocatability of the

operand expression. If the entire program is to be assembled as absolute a LOC n
statement must be the first statement in the program. [f it is desired to have only part
of the program assemble as absolute, the LOC must be inserted where desired. Note
that if a basic op which is assigned an absolute locations has a relocatable operand then
long form should be stated for the statement.

Example:

LOCATION OPERAND
BEGS : . RELOCATED BY:

RELOC 4 _ :
LDA 4,A # REL ASSEMBLER

3.7.3

3.8.

3.8.1

23

A LDA 4,B | 1 REL NOT RELOCATABLE
Loc 58 ~

B: LDA 4,C (39) 58 ABS LOADER
LDA 4,B 52 ABS _ NOT RELOCATABLE
RELOC R | | o

e LDA 4,B 2 REL NOT RELOCATABLE

- LDA 4,A 3 ReL | ASSEMBLER
LDA 4,C 4 REL ASSEMBLER
ENDS

MODULAR ORIGIN

The statement MORG n causes the location counter to be set to the next
highest multiple of "n" if it is not already at such a value. "n" is mainly useful when
it is a power of 2, but it may be any value. It does not affect the existing address mode
(absolute or relocatable). '

Examples: ‘
LOCATION ASSIGNED
TO INSTRUCTION
BEGS
. RELOC 50
B 48 ' 54
MORG 2 '
LDA 4,5 52
LDA 4,5 53
MORG 2
LDA 4,5 54
MORG 149
LDA 4,5 149
ENDS

The algorithm used by the assembler is as follows:

1. Divide current value of Location Counter by "n"
2. If no remainder, bypass step #3
3. ("N" -remainder)+ Location Counter > Location Counter-

BINARY OQUTPUT

The standard binary output of the assembler is in a format acceptable to the

~Linking Loader. The user may specify to the assembler to output the binary in readin

mode by using the pseudo op RIM.

USAGE OF RIM

1. It must occur before any other statements, except the TITLE statement,
otherwise it will be flagged and ignored.

3.9

3.9.1

3.9.2

- 24

2. All locations and operands in the program will be treated as absolute.
It forces the implicit statement LOC @ to occur.

4. If any RELOC statements are encountered in the program they will be treated
as a LOC statement, i.e., they will not force any values to be relocatable.

SUBROUTINE LINKAGE

Programs usually consist of subroutines which contain references to symbols in
external programs. Since these subroutines may be assembled separately the Linking
Loader must be able to identify "global™ symbols. : ‘

For a given subroutine, a global symbol is either a symbol defined internally
and available for reference by other subroutines, or a symbol used internally but defined
in another subroutine.

Global symbols defined within a subroutine and available to others are called
internal symbols. Global symbols defined by another routine and referenced by the
current subroutine are called external symbols. ~

The linkages between internal and external symbols are set up by declaring

global symbols through the INTERN and EXTERN pseudo ops.

INTERN 51,582,583, ...5n

The INTERN statement defines the symbol or symbols in the siring as internal
to the currently being assembled subroutine and they may be referenced by other sub-
routines. Internal symbols may be defined in the program as either a label, direct
assignment, or variable.

Examplé:
INTERN INTT,INT2, INT3
INTI: LDA 4,5

STA 4, INT2#
INT3 =,

EXTERN $1,52,S3, ...5n

The EXTERN statement defines the symbol or symbols in the string as external
to the current subroutine. The symbols defined as external must not be defined in the
current program. ‘

The EXTERN statement must occur prior o usage of the external symbols in
the program.

If an external symbol is an operand on a basic op, it will cause long form to
be generated. ’ '

25

Example: |
EXTERN SQRT, CUBE
PUL | SQRT
PUL -~ CUBE

3.10 CONDITIONAL ASSEMBLY

It is often useful to-have the assembler test the value of an expression and to
conditionally assemble portions of the program based upon the results of the test. For
this purpose, two pseudo ops are provided.

1) IF... = To initiate the condition.
2) ENDC - To terminate the condition.

The general form is as follows:

iIF... EXP

i

ENDC

The body of coding following the IF statement is assembled only if the
expression "EXP" satisfies the IF condition. If not satisfied, all coding up to and
including ENDC is bypassed. ‘

The [E statements allowed are as follows:

CONDITION ASSEMBLE IF "EXP" IS
IFNEG - NEGATIVE
IFNZR . NON ZERO
{FPOS ' POSITIVE
IFZER ZERO
iF DEF DEFINED
IFUND UNDEFINED
Examples: | |
A=g
B=1
IFDEF A
LDA 4,5 < these statements will
STA 4,6 be assembled
ENDC ’
IFZER B
LDA 4,5 these statements will not be
STA 4,6 } assembled, but treated as comments

ENDC

26

Conditional statements may be nested, that is, within the limits of a conditional

stafément there may be other conditional statements. Each nested conditional statement requires
its own ENDC pseudo op to terminate it.

Example:

A=g
B=1

3.11.

3.11.1

-3.11.2

4.9

IFDEF A ,
LDA 4,5 this statement will be assembled
IF DEF B ;
LDA 4,5 this statement will be assembled
ENDC '
IFDEF C
LDA 4,5 this statement will not be assembled
- ENDC '
ENDC
IFNEG B-A
LDA 4,5 h ‘none of these
IFPOS B-A statements
LDA 4,5 will be
ENDC " assembled
ENDC

BEGINNING AND END OF PROGRAM STATEMENTS

TITLE NAME

The name appearing after the TITLE statement (up to 6 characters) will appear .
on the top of each page of the assembly listing. It also will be used to identify the
program for DDT (debugging) and Linking Loader operations. If no TITLE statement is
present, the assembler inserts the assumed name "MAIN".

END START

- The END statement must be the last statement in every program. A single
operand may follow the END operator to specify the address of the first instruction in
the program to be executed.

- RELOCATION

The normal output from the assembler is a relocatable binary program. The
program may be loaded into any part of memory regardless of what locations were assigned
at assembly time. To accomplish this, the address portion of some instructions must have
a relocation constant added to it. This relocation constant, which is added at load time
by the Linking Loader, is equal to the difference between the memory location an instruc-
tion is actually loaded into and the location that was assigned to it af assembly fime.

5.8

27

Example: ,
ASSEMBLY ADDRESS LOAD ADDRESS RELOCATION CONSTANT
208, 1208, 1508,

The rules for determining if operand is absolute or relocatable are as follows: -

1. If operand is a number, it is absolute.

2. If operand.is a direct assignment which was equated to a number, the
operand is absolute.

3. If opercmd. is a label which was defined within a block of absolute
coding, it is absolute.

4. Point references (.) get current block relocation.

5. Variables and undefined symbols, as operands, are relocatable if a block
of relocatable code was encountered in-the program, otherwise they are
absolute. . .

In addition, they are assigned after the highest relocatable
location encountered, or highest absolute location encountered if no
relocatable coding was encountered. '

6. All other operands are relocatable.
If an operand contains both absolute and relocatable elements, they are handled
as follows:

(A=absolute, R=relocatable)

A+A=A

A-A=A

A+R=R

A-R=R flagged as possible relocation error.
R+A=R

R~-A=R

R-R=A .
R+R=R flagged as possible relocation error.

Multiplication and division are not allowed on relocatable symbols; however,
boolean operations are allowable. ’

ERROR FLAGS

The assembler will examine each source statement for possible errors. The
statement which contained the error will be flagged with one or several letters in the -
left hand margin of the source line. The following table shows the possible error flags
and their meanings.

6.4

28

FLAG

A Error in direct assignment, assignment ignored. (lllegal redefinition)

D Statement contains a reference to a multiply defined symbol.

E . Statement contains a reference to an unresolved direct assignment.

F Error in address form. Assembler could not legally generate an

, explicitly requested address form.

G Will appear on EXTERN statement line if an external symbol is
defined by the user, appears in an INTERN string or appears on
right hand side of a direct assignment.

M Multiply defined symbol.

N Error in number usage.

P Phase error. Pass 1 value of symbol does not equal pass 2 value.
(Usually fatal)

Q Questionable syntax. (Results may be erroneous.)

R Possible relocation error.

U Undefined symbol in statement.

In addition to flagging erroneous statements, the assembler during pass T will
print out multiple definitions and all undefined symbols and the locations allocated to
them.

ASSEMBLY OUTPUT LISTING

If the user requests it, the assembler will produce an output listing on the
requested output device.

The top of each page will contain the name of the program (as supplied in the
TITLE statement) and the page number.

The body of the listing will be formatted as follows:

ERROR FLAGS LOCATION OBJECT CODE SOURCE STATEMENT
XXXX XXXKX XXXKXXX KX

If the location is relocatable it will be mducated by a single quote (*) following
the assigned location.

If the source statement is a machine op code or an EOPDEF the OBJECT CODE

- will be formatted thus:

OP,R, X, DI
All other statements will produce a 6 digit octal value.
In addition, if the object code is to be relocated by the Linking Loader it will

be indicated by a single quote following the value. External symbol references will be
indicated with an E.

6.1

Instructions which require more than “n"

as "n" lines.

SAMPLE

20800"
gy
Boga2’
Boees’
gpega’
28p85'
£ppss'
ppep7!
ppag

Ao

SYMBOL TABLE LISTING

29

G:
CGl:
G2:

W™

ENDS
END

words of object code will be l‘isted :

SAMPLE

4,G.
4,G2
4,G1
4,"OK"

A

After the assembly listing has been outputted, the assembler will output a-
symbol table, if requested, which

lists all user defined symbols. There will be two
symbol lists. The first will be an alphabetically ordered list of the symbols and the

cocond will be a list in numerical value order. The symbol table listing is useful in

tracing or debugging a program for which the programmer does not have an assembly

listing.
SAMPLE

A
G
Gl
G2

PAGE 2

22000
2oppe’
BIBET"

Bpgg

APPENDIX A

7-BIT ASCIl CHARACTER SET

CHARACTER ' ASCIHI CHARACTER - ASClI

@ 198 " plspace) 844
A 191 [‘ g4
B 192 u g42
C 143 # - @43
D 194 $ 44
E 195 % @45
F 196 & g4
G 197 ' g47
H 114 (B58
I 111) 251
J 112 * 7352
K 113 o+ p53
L 114 , 4 354
M 115 - 755
N 116) 856
o) 117 -/ @57
P 124 J44 g
Q 121 1 761
R 122 2 262
S 123 3 763
T 124 4 64
U 125 5 465
v 126 6 66
w 127 7 867
X 1343 8 474
Y 131 9 @71
s Z 132 : 372
[133 v ; 773
\ 134 < 874
1 135 = #475
) 136 > 876
—_ 137 ? . 477
NULL J5f1) FORM FEED 414
HORIZONTAL CARRIAGE ‘
© TAB a1 : RETURN - 15
LINE FEED - g12 CODE DELETE 177

VERTICAL TAB 213

SYMBOL

ADD
AND
B
BAL
BCN
BCZ
BM
BN
BP
BZ
CIR
CMP
COM
DIV
HLT
INC
iOC
10D
IOR
IORC
{ON
107
IOW
IOWC
LCMP
LDA
LDC

- LDIV .
LMH
LML
LMUL.

- LUH

LUL

WO MmO NONN NG N —~RON® |

NN

NN

111

103
001

110

114
102
011
010
100
013

012

~ APPENDIX B

PERMANENT SYMBOL TABLE

VALUE

060000
040000
106000
116000
100000

" 110000

102000
104000
112000
114000
136000
140111
122000
140103
176001
124000
172000
176000

160000

162000
170CC0
174000
164000
166000
140111
000000
140114
140102
176011
176010
140100
176013
176012

* Extensions to the SHFT instruction.

SYMBOL

MUL
NEG
POB

POC

- POL

POP
PSC
PSD
PSI
PSR
PUB
PUC
PUL
PUSH
RCS
RIO
RL
RR
SHFT

*SHFTA

*SHFTC

*SHFTL

*SHFTR
STA
STC
SUB
SWP
TST
TSTC
TSTN
TSTO

~TSTZ

wdcl

oP

6
5
6
6
6
6
7
7
7
7
6
6
6
6
7
7
5
5
6
6
6
6
6
1
6
6
5
5
6
6
6
6
7

APONN—~WON NNNNON &0 W

o O

101

116
116
116
116
0C6
007
004
005
116
116
116

116

002
000

113
113
113
113
113

115
112

107
104
106
105
003

VALUE

140101
126000
154116
150116
156116
152116
176006
176007
176004
176005
144116
140116
146116
142116
176002
176000
132000
130000
140113
140113
140113
140113
140113
020000
140115
140112
134000
120000
140107
140104
140106
140105

" 176003

APPENDIX C

SUMMARY OF PSEUDO OPS

ASCII Seven bit ASCII text.

BEGS Beginning of short area.

BLOCK Reserve block of memory.

DEC Decimal number string.

END End of program.

ENDC End of conditional section.

ENDS End of short area.

EOPDEF Defines user created operator.

EXP Expression string. .

EXTERN External symbol declaration.

IFDEF | Conditionally assemble if defined.

IFNEG Conditionally assemble if negative.

IFNZR Conditionally asse;mble if non zero.

IFPOS A Conditionally assemble if positive.

[FUND ‘ Conditionally assemble if undefined.

IFZER Conditionally assemble if zero.

INTERN Internal symbol declaration.

LBYTE Left byte pointer.

LOC Absolute location assignment.
MORG Module origin.

OCT | - Octal number string.

PBLOCK Reserve block of memory with pointer.

RBYTE Right byte pointer. |

RIM - Prepdre output in readin mode.

RELOC Relocatable location éssignmgni‘.

TITLE Name of program.

VFD Variable length byte statement.

APPENDIX D

SUMMARY OF SPECIAL CHARACTER INTERPRETATIONS

The characters listed below have special meaning in the context indicated. These interpretations
do not apply when the characters appear in text strings or in comments.

CHARACTER MEANING EXAMPLE
B Follows number to be shifted and 15813
precedes binary shift count
D Specifies double precision floating 1.5D
' point number ' .
E Exponent indicator. Precedes 25.43E5
decimal exponent in floating point
numbers. _
L Specifies double precision integer 2001
+ (plus) Add '
i
- (minus) Subtract |
- Arithmetic operations
* (osterisk) Multiply |
i
/ (slash) Divide i
& (ampersand) AND g
' (exclamation) Inclusive OR b Boolean operations
Y (back slash) Exclusive OR J
$ (dollar sign) Legal character if encountered $TAG%

% {percent sign) in a label or symbol

() * (parenthesis) 1. Used to enclose index field. LDA 4,8(2)
' 2. Enclose the byte size in VFD VFD (8)4,(8)3
statements.
A (up arrow) Indicates local radix range followed 1D 50
by D
(colon) Immediately follows all labels LABEL: LDA 4,5
; (semicolon) Precedes all comments SRR ; this is a comment
(point) Has current value of the location B .+5
counter '
, (comma) 1. General operand or argument OCT 1,2,3
delimiter ' EXP A,B,C
2. Accumulator field delimiter . LDA 4,5

L 1 (square brackets) Delimits a literal : L.LDA 4, [123]

CHARACTER MEANING ‘ EXAMPLE

= (equal sign) Indicates a direct assignment A=1
@ | (at sign) Indicates indiréc’r- addressing . B @AG
(number sign) Used to indicate a variable symbol , LDA 4,VARF
", (quote marks) Enclose 7-bit ASCII text, one or two "AB"
, characters. ’
< > (angle brackets) Enclose a numeric quantity within ASCII/ABC/<15><12>

ASCIl text

APPENDIX E

Operand Formats

The instruction set of the PDP-X in addition to using the op code bits (g-2) for
identification sometimes uses the R bits (3-5) and/or D, (8-15) to identify the instruction.
Because of this condition, the user should not use operands in a format that will alter the
instruction. '

The following table shows the legal and illegal formats for the PDP-X instruction
repertoire. :

BASIC INSTRUCTIONS

CLASS 1 - OP bits only
LEGAL ILLEGAL

o°P ,OPERAND o°P OPERAND (implies AC=4)
OP AC,OPERAND

CLASS 2 - OP & R bits
LEGAL . : _ ILLEGAL.

O°P OPERAND oP ;OPERAND
op AC,OPERAND

EXTENDED INSTRUCTIONS.

CLASS 1-OP & D, ,
LEGAL ' ILLEGAL

op ,OPERAND el OPERAND (implies AC=4) -
OP AC,OPERAND
CLASS 2 - OP, D, &R
LEGAL : o ILLEGAL
OP OPERAND - OP ,OPERAND

orp AC,OPERAND

1/O INSTRUCTIONS

CLASS 1-OP & R |
LEGAL - ILLEGAL

oP DEV, OPERAND OP ,OPERAND . . B
. OP OPERAND J Mmplies DEV=0

CLASS 2~ OP,D, & R | .
LEGAL ILLEGAL.

OP OPERAND OP ,OPERAND
OP DEV,OPERAND

2.2.2

2.2.3

2.3

2.3.1

2.3.2

2.3.3

2.4

2.4.1

2.4.2

CHARACTER SET

The input to XAP-6 is prepared in 7-bit ASCIl. Refer to Appendices A
and D of the user's manual for a description of the acceptable ASCII characters cmd
a summary of special character interpretations.

EXAMPLES

Examples of all langiage features may be found throughout the user's
manual,

OUTPUT

OUTPUT FORMAT

The listing output format of XAP-6 is described in the user's manual,
section 6.4.

The binary formats of the object program = NOT YET AVAILABLE,

CHARACTER SET

The XAP-6 listing is in ASCII.
EXAMPLES

A sample XAP-6 output listing may be found in section 6.6 of the user's
manual. : : '

ORGANIZATION

OPERATIONAL ORGANIZATION.

XAP-6 is a two pass assembler Which requires that the source be read in
fwnce

INTER NAL ORGANIZATION

The entire assembler is resident in core at all times.

3.1

3.1

w
N

3.3

3.4

A

OPERATING PROCEDURE

LOADING PROCEDURE-

XAP-6 relocatable binary is loaded in the following manner:

A. .R LOADER n - requests loader with core required.
B. *DEV:XAPé). - device which contains XAP6.

At this stage XAP6 is loaded. -
SAVE DEV:XAP¢) puts it on the specified device in dump mode.

CONDITIONAL LOAD

NOT APPLICABLE.

SWITCH SETTINGS

- Advance magnetic tape reel by one file.

- Backspace magnetic tape reel by one file.

- Produce listing file in a format acceptable as input to CREF.
Suppress teletype error printouts.

- Force short form for basic ops.

- Skip to logical end of magnetic tape.

- Rewind magnetic tape.

- Zero the DECtape directory.

NE-LZO®>
i

START-UP PROCEDURE

~ After the user has logged into the system he types;
R XAPs,

When XAP6 has been loaded, it responds with * (asterisk) and waits for the
command string to be typed.

COMMAND LANGUAGE

. The general command format is as follows:"

OBJPROG-DEV:FILENAME .EXT, LIST-DEV:FILENAME .EXT <—
SOURCE-DEV:FILENAME .EXT,SOURCE-n p

- where: OBJPROG-DEV is the object program device.

LIST-DEV is the listing device.
SOURCE-DEV is the source input device.

3.5

3.6

3.6.1

3.6.2

EXAMPLES

MTAT1: ,DTA3:/C < CDR:Q‘ - Assemble one source file from the card reader; write ‘
- the object program on MTA1; write the assembly listing
on DTA3 in cross reference format and call the file

CREF.TMP.
JATY: < TTY:y . Assemble one source file from the teletype and list the
" . program on the felefype Do not output any object
" coding. ‘

OPERATION

If the source file is on a medium which must be manually re-entered by the
operator (PTR: CDR: TTY), XAPé will indicate this by either of the following messages.

1! BeH end of Pass 1
or 2)¢ Beiu Load the next file
All other devices used for input will automatically proceed into Pass 2 of assembly or
bé loaded automatically.

ERROR RECOVERY

INPUT ERRORS

‘ XAP6 examines each source statement for possible errors and flags them with
one or several letter codes. (See section 5.0 of the user manual.)

OPERATOR ERRORS

If the command string to the assembler is typed improperly, XAPé responds

. with "command error" and returns an . The user may then retype the command string.

The following are additional messages which may occur.

: Messoge , , | ; | Meaning -
, ‘CAN NOT ENTER FILE | ~ DTA or DSK directory is full;
‘ _ file can not be entered.
CAN NOT-' FIND ‘, ” The file can not be found on
- filenome. ext : - the specified device.
DATA ERROR ON DEVICE » Output error has occurred on
dev: - _ | the device.
IMPROPER INPUT DATA ' The input da’ro is not in the °
. ' proper format. :
INPUT ERROR ON DEVICE Input error has occurred on the
dev . - device.

Message Meaning |
INSUFFICIENT CORE : An insufficient amount of core
_ | o is available for assembly.
dev: NOT AVAILABLE The device is assigned to another
v | user or does not exist.
NO END STATEMENT . The END statement is missing
ENCOUNTERED ON . at the end of the source program
INPUT FILE - file.

3.6.3 SOFTWARE ERRORS

There are no error halts nor are there any conditions which will cause the
assembler to go into a loop.

3.6.4 HARDWARE ERRORS

If hardware failures (which are undetected by the monitor) occur, they
will usually be detected and indicated on the listing as phase errors.

Peripheral errors will be indicated by an appropriate message (see 3.6.2)
and conirol is returned to the command string.

4. - INTERNAL ENVIRONMENT

4.1 TRADE - OFFS

Because XAP6 is intended to be downward compatible with XAP (the PDP-X
assembler) some features were considered and will not be implemented because of size
problems.

Some of these features are:

a) ‘Hexadecimal numbers

b) Radix 58 .

c) Syntax resirictions of the source statements
d) Automatic optimization \

The assembler was designed as a two pass assembler mdinly for its phasing capabilities.
Some features may be conditionalized depending on the size of the computer.

4.2 SOFTWARE INTERFACES

- XAPé performs all of its Input/Output functions through calls to the monitor.
(See DEC-10-MTBO-D, PDP-10/40, 10/50 Time Sharing Monitors.) :

All subroutines are called using the PUSHJ instruction. Arguments of
‘subroutines which require a calling sequence will be contained in designated accumulators.

N
o~

4.4

5.1

5.2

5.3

5.4

6.1

CONVENTIONS

XAP6 is designed to be re-entrant; thus, in the event that a mulflprogrammmg
system is implemented for the PDP-6, only one copy of XAP6 need be resident in core
for many users.

The accumulators will be allocated to functions, namely:

1) Utility
2) Pointers
3) Calling sequences

LANGUAGE
/ XAP6 is written in MACROX language. It does not use the macro capability
of MACROX. '

/ ,
EXTERNAL ENVIRONMENT
!

EXECUTION SPEED

’ NOT YET AVAILABLE.
USE

XAP6 is used to provide for PDP-X assemblies on the PDP-6, because of a
higher availability of time on the PDP=6 as compared with other in- house computers.

INTERFACE

XAP6 is intended to be used by system progmmmers and diagnostic programmers
for development of PDP-X software. Although it is not part of the final PDP-X software
system, it will be a means of developing the PDP-X software system. L

EXAMPLES OF USAGE

FORTRAN 1V, DDT - MAINDEC

/DOCUMENTAT!ON

MAJOR ASPECTS

The maintenance of XAPS will be facilitated by the fdllowing documents:

1) Macro flowcharts
2) Table formats
3) Heavily documented listing

6.2

6.3

CHECKOUT

XAP6 will b;z checked out by the ’im?lemenfor in the following manner.
1) All subroutines will be debugged. '

2) Checkout of simple assembly statement.
3) Extensive checkout of syntax rules.
4) Comprehensive checking of the complete system.

When the above checkout has been 6omp!eted to the satisfaction of the
implementor, the program will be turned over to QC for further checkout.

MARKETING

Because of some of the features in XAP6,it compares favorably or even betier
than existing 16 bit computers.
/
/
Some of these features are:

1) MACROS

2) CONDITIONALS
3) EOPDEF'S

4) Expressions

5) Variable length byte operahons

