iy N T O TV Y TN O T oo n

. b

GUlimen- Py Veerein,
iced o c}apf' or s raTen o
5 for ¢

m 0! e e not B
ok &d ?t’ tmea nwW o' frin g 3
vanulackie 6F $2% £ itapma o
o e OF sae o ftemg wid

2 .] . E2
. . . — S i

CONFIDENTIAL

PDP-X Technical Memorandum #_i@_

TITLE: PDP-X Assembler Specifications
AUTHOR(S): H. G. Bramson

INDEX KEYS: Software Specifications
XA?

DISTRIBUTION KEY: B, C
OBRSOLETE: PDP-X Technical Memorandum # 35
(REVISION: None

DATE: February 1, 1968

PROGRAM SPECIFICATION

PDP-¢/PDP-X ASSEMBLER

XAP-6

H. G. Bramson
2-1-48

0.1

1.1

1.2

1.3

1.4

e D

OVERALL DESCRIPTION

XAP-6 is the symbolic assembly program for assembling PDP-X programs on
the PDP-6. XAP-6 runs under conirol of the PDP-6 Time~Sharing Monitor. XAP-6
processes input source programs in two passes and requires a minimum of 4K of core
mermory. Additional core is dynamically added if required. [t is completely device
independent, allowing the user to select standard peripheral devices for input and
output files via a command string. ' -

The normal output of the assémbler is o binary object program which can be
loaded for debugging or execution by the PDP-X Simulaior on the PDP~9 (XSIM=9).

- XAP-6 prepares the object progrom -in either relocatable binary or non-relocatable
4

binary.

An output listing showing both the programmer's source coding and the ob-
ject code produced by the assembler is printed if desired., : '

GENERAL SPECIFICATION

MACHINE OPTIONS

- MACHINE REQUIREMENTS

XAP-6 can operate on o 16K PDP-6 under contro! of the PDP-6 Time-
Sharing Monitor system. The minimum peripheral requirement for the normal
operation of the assembler is: :

paper tape reader
paper tape punch
console teletype

Ll

The assembler is device independent and therefore other devices contained
in the machine configuration may be selected via the command string. Such devices
might include: '

Disc ‘
DECtape
Magnetic Tape
Card Reader

Line Printer

 SYSTEM REQUIREMENTS

- XAP-6 requires the presence of the PDP-4 Time-Sharing Monitor System.
This monitor controls all of tha input/output activities that may be required by XAp-5.

RESIDENT PROGRAMS

NOT APPLICABLE.

0.1

1.1

1.2

1.3

1.4

OVERALL DESCRIPTION

XAP-6 is the symbolic Gssembiy program for assembling PDP-X programs on
the PDP-6. XAP-6 runs under control of the PDP-6 Time-Sharing Monitor. XAP-6
processes input source programs in two passes and requires a minimum of 4K of core
memory. Additional core is dynamically added it required. It is completely device
independent, allowing the user to select standard pcnpweral devices for input and
output files via a command string. :
The normal output of the assémbler is a binary object program which can be
loaded for debugging or execution by the PDP-X Simulaior on the PDP~9 (XSIM-9).
XAP-6 prepares the object program ‘in either relocatable bmmy or non-rel locatable
bmory :

An output listing showing both the programmer's source codmg and the ob-
ject code produced by the assembler is printed if desired.

GENERAL SPECIFICATION

 MACHINE REQUIREMENTS

XAP-6 can operate on a 16K PDP~6 under control of the PDP-6 Time~
Sharing Monitor system. The minimum peripheral requirement for the normal
operation of the assembler is: :

paper tape reader
paper tape punch
“console teletype

MACHINE OPTIONS

The assembler is device independent and therefore other devices contained
in the machine configuration may be selected via the command siring. Such devices
might include: '

Disc
DECtape
Magnetic Tape
Card Reader
Line Printer

 SYSTEM REQUIREMENTS

- XAP-6 ruqu:res the prcsenre of the PDP~6 Time-Sharing Monitor System.
This monitor controls all of the mpu t/output activities that may be required by XAP-6.

RESIDENT PROGRAMS

NOT APPLICABLE.

2. DESIGN SPECIFICATIONS

2.1 DESIGN GOALS

XAP-6 is intended to be downward compatible with the eventual PDP-X
assembler (XAP), i.e., XAP-6 will not contain features which are unavailable in
XAP, and also source programs wiil be 100% language compatible. In order to
facilitate changes and enhance maintainability, XAP-6 will be written in a highly
modular form. -

The problems of reimplimentation of XAP-6 to XAP will be minimized
because the internal structure of the two assemblers will basically be the same.

2.2 INPUT

2.2.1 INPUT FORMAT

The input format for XAP-6 is equivalent to the PDP-X Assembler Language.

The remainder of this section is presented in the form of a Language manual.

PDP-X
ASSEMBLER

(XAP)

USER'S MANUAL

0.0

1.0

1

N

v X TR 0T N RNV T B NIRRT W TN R AR AR

.IIXAPII

PDP—_)ﬁ(._A_ssemb!y Erdgram

INTRODUCTION

3

XAP is the symbolic assembly program for the PDP-X. Operating under control
of a monitor, which handles I/O fuhctions, XAP processes input source programs in

two passes, and requires less than 6K of core’'memory. It is completely device independ-

ent, allowing the user to seleci standard peripheral devices for input and output files.
. é

XAP makes machine language programming on the PDP-X much easier, faster
and more efficient. It permits the programmer to use mnemonic symbols to represent
machine operation codes, location and numeric quantities. By using symbols to identify
instructions and data in his program, -the programmer can easily refer to any point in
his program without knowing actual machine locations.

The normal ou.p_r’r of the assembler is a reloca; qole b.nal) object program which
can be loaded for debugging or execution by the Linking Loader.

XAP prepares the object program for relecation, and the Linking Loader sets up
linkages to external subroutines. Optionally, the binary program may be outpuited in
non-relocatable code. :

The programmer may direct the assembler's processing by the usage of pseudo-
operation instructions (pseudo-ops). These pseudo ops are used to set the radix for
numerical interpretation, to reserve blocks of storage location, to handle strings of
ASCII text, to conditionally assemble certain porhons of coding and other functions
which will be explained in detail .

An output listing, showing both the programmer's source coding and the obiecl

~coding produced by XAP, is printed if desired. This listing may include all the sym-

bols used by the programmer with their assigned values. If assembly errors are detected,

" erroneous lines are marked with specific letter error codes.

Operating procedures for XAP may be found in the appendices of this specifi-
cation. - '

" GENERAL SPECIFICATION

MACHINE REQUIREMENTS

XAP operates in PDP- X systems with the |/O Monitor and the following minimum
hardware configuration:

8K core memaory
- Console teletype
Paper tape reader and paper tape punch

1.2

2.0

2.1

The assembler is actually device independent. The user pr_esé lects
device assignments for source program input, output of the binary object program,
and output of the printed listing.

MACHINE OPTIONS

. »

With the addition of bulk storage to the hardware configuration, XAP operates
with the Keyboard Monitor, which.allows the user flexibility in assigning 1/0O devices
at assembly time.

DESIGN SPECIFICATIONS : 4

The assembler processes in two passes; that is, it passes over the same source
program twice, outputting the object code (and producing a printed listing, if reques-
ted), during the second pass.

The two passes are resident in memory at the same time. Pass 1 and Pass 2 are
almost identical in their operations, but object code is produced only during Pass 2.
The main function of Pass 1 is to resolve locations that are to be assigned to symbols
and to build up a symbol fable. Pass 2 uses the information computed by Pass 1 (and
left in memory) to produce the final output.

The standard object code produced by XAP is in a relocatable format which is
acceptable to the PDP-X Linking Loader. Relocatable programs that are assembled
separately and use identical global* symbols where applicable, can be combined by
the Linking Loader into an executable object program.

Some of the advantages of having programs in relocatable format are as follows:

a. Reassembly of one program, which at object time was combined with other
programs, does not necessitate a reassembly of the entire system.

b. Library routines (in relocatable object code) can be requested from the sysiem
device or user library device.

c. Only global symbol definitions must be unique in a group of programs that
operate together. 3

INPUT

XAP programs are normally prepared on a teletype as a sequence of statements.
(With the aid of an editing program the program can easily be updated.) Each statement
is written on a single line and is terminated by a carriage return - line feed sequence
(indicated by +s in this document). A line feed or form feed are actually the charocters
that terminate XAP statemenis. XAP siatements are virtually format free, i.e., elements

* Symbols which are referenced in one program and defined in another.

[1 [.

of the statement are not placed in numbered columns with rigidly controlled spacing
between elements. The character set that is used as input to XAP is 7-bit ASCII.

(See Appendix A.)

2.2 ELEMENTS OF A STATEMENT

There are four elements in a XAP statement which cre separated by specific
characters. These elements are identified by the order of their appearance in the
statement, and by the delimiting character which follows or precedes the element.

Statements are writien in the general form:
LABEL: OPERATOR OPERAND, OPERAND ;COMMENTS ¥ '

The assembler interprefs and processes the statements, generating one or more binary
instructions or data words, or performing an assembly process. A statement must con-
tain at least one of these elements, but it may contain all four.

2.2.1 LABELS

A label is the symbolic name created by the user to identify the statement.
If present, the label is written first in a statement, and isterminated by a colon (:).
No spaces are allowed between the last character of the label and the colon (i).

Examples:

ABC: '

TAG:

TAGT:TAG2: TAGS: All 3 labels point to the same location.

LABEL .. A: fillegal, no spaces are allowed within the label
TAGIT 2 Yor between the last character and the colon.

Labels are not redefinable by another label, direct assignment or EOPDEF.
They can not appear after an operator or operand has preceded it on a line.

Examples:

LABEL: LDA 4,5

EOPDEF LABEL,18 ,; ;EOPDEF can not redefine a label. (See 3.1)
LABEL= 1¢ ;Direct assignment can not redefine o label .
(See 2.3.1)
LDA 4,5 LABEL: ;A label can not be preceded by an operator

;or operand

2.2.2

OPERATORS
An operator may be:

a. Any one of the mnemonic machine instruction codes (see appendix B).
An assembler pseudo op, which directs assembler processing.
]

c. EOPDEF.

If there is no label associatéd with the statement the operator may appear
as the first element of the statement.. The operator field is terminated by any one
of the following delimiters: :

]
- © (space)
2) - (tab)
3) ; (semicolon)
4) ¢ (line feed)

Examples of Operators:

~ LDA - ;mnemonic machine insiruction.
LOC ;an assembler pseudo op.
EOP ;legal only if defined via EOPDEF.

In order for a symbol to be interpreted as an operaior it must not be part of an expression.
Mt must be used as a free standing symbol. If it is used in an expression, it will be treated
as an operand and must therefore be user defined.

Examples - ' .

EOPDEF EOP,25 ~ ;defines EOP as a user defined operator
LDA 3,LOC ;"LDA" is an operator, "LOC" is an operand
LDA+1 ;"LDA" is an operand
LOC 59 ;"LOC" is a pseudo op
LOC+50 ;"LOC" is an operand »
EOP TAG ;"EOP" is an operator, "TAG" is an operand
EOP+1 ;"EOP" treated as an operand

As an operator, a mnemonic machine instruction or a pseudo op takes preced-

‘ence over identically named user symbols.

Examplg
Sourg_e_ : : Would Assemble As:
LDA=5 o :
4 G 4059
LDA 4,1DA g,4,0,5 L see 6.0

MDA poopds

2.2.3

OPERANDS

Operands are usually the symbolic addresses of the data to be daccessed when

an instruction is executed, or the input data or arguments of a pseudo op. In each

case, the interpretation of operands in a statement depends upon the statement opera-
tor. Operands are separaied by commas (if operator requires more than one operand)
and terminated by a space (&), tab (=®!), semicolon(;), or line feed ().

RULES ABOUT COMMAS

A comma terminates the current operand/argument and implies that another operand/

argumenti follows. Spaces and tabs may precede and follow commas.

Examples:
. Operand 1 Operand 2 Operand 3
Statement " value value value
1 1
1 1 g
;o g g
1,2 1 2
1,2 1 2
1, 2 1 2
v 2 g 2
. g g g
1, 2,] 2 7]
12 1 2

flagged as
an error

' -
Symbols used as operands must have a value defined by the user. If a symbol,
usea as an operand, is the same as a mnemonic machine instruction or pseudo op, it
will not be interpreted as such, but rather as o user defined symbol. EOPDEF defined

symbols may be used as operators or operands.

2.2.4

[N TRENTIT TV I

- Examples
LOC=5
STA: 1 }
LDA 4,STA :STA is user defined :
STA 4,L0C ;LOC is user defined, STA is a machine op code
LOC 5 ;LOC is a pseudo op

Many instructions reference an accumulator and « memory location. If the
first operand is an accumulator it must be terminated with a comma (). If an accumu-
lator is not specified but the operator requires one, accumulator 4 % assumed and the
instruction will be flagged. The value of the accumulator is truncated to the 3 least
significant bits. '

If an accumulator is specified on an instruction that does not require one, it

- will be flagged as an error. Any reference to accumulator 1 will get flagged as an

error, because AC 1 is the hardware program counter and must not be referenced. (See
Appendix E for expected formats) '

%

Examples:

AC5=5
LDA TAG ;error, AC 4 assumed
LDA ,TAG ;AC ff implied
LDA" AC5,4 ;AC 5 referenced
LDA 1,TAG ;error, AC T can not be referenced .
LDA 25,TAG ;AC 5 referenced and flagged

B LOC ;correct form
B AC5,L0OC ;error, instruction does not require an AC-5 assembled
COMMENTE

The programmer may add comments to a statement. Such comments must be

~ preceded by a semicolon ;). Comments do not affect the assembly process, but are

used mainly for documentary purposes.
Examples:

;this is a comment
A: LDA 4,5 ;this also is a comment

2.3

2.3.1

SYMBOLS

The programmer creates symbols for use in statements to represent labels,
operators and operands. A symbol contains one to six characters from the following

sef: : ' v !
The letters A-Z
The digits g-9
Two special characters $ (dollar sign)
Y(percent) - s o

The first character of a symbol musi be a letter or dollar sign or percent. It must not
be a digit. ' '

The following symbols are legal:

A $%TAG $
A% TAG25 P9%
%TAG % $25

The following symbols are illegal:

8TAG First character may not be a digit
TAG?1 ? is an illegal character in a symbol

Only the first six characters of a symbol are meaningful to the assembler, but
the programmer may use more for his own information. If he writes,

SYMBOL1:
SYMBOL2:
SYMBOLS:

as the symbolic labels on three different statements in his program, the assembler will
recognize only SYMBOL and indicate error flags on the statements containing SYMBOL1,-
SYMBOL 2, and SYMBOL3, because to the assembler they are duplicates of SYMBOL.

DIRECT ASSIGNMENTS

The programmer may define a symbol directly into the symbol table by means
of a direct assignment staterent, writien in the form '

LI LR 1T Ao

SYMBOL= value

where value can be any statement, including literals and data generating pseudo ops.
The expression to the right of the = assumes the operator field. The value of the
direct assignment can not generate more than one word.

Direct assignments are redefinable. They may only redefine other direct
assignmenis. They may not redefine user symbols.

=

Examples:

A=1 \ -4

B=A+3 ;B is defined as A+3=4

A=2 '

A=A+] ;redefinition of A

GETS=LDA 4,5 <

Limr=[11 ;LITT is address of Literal

MSG =ASClI /AB/ iStored as f41191 . ‘
CHK=CMP 4,['C"] ;Flagged as an error, value more than 1 word.

The = sign must immediately follow the symbol. However, the value to the
right of the equal sign may have preceding spaces or tabs.

Examples:
Legal " | lllegal
A=5 | ' : A —pl=5
C=—pl 20 | -

Direct assignment statements do not generate instructions or data in the object
rogram. They are used to assign value so that symbols can be conveniently used in
Y
other statementis. :

In general, it is good programming proctice to define symbols before using them
in statements which generate storage words.

Example:

If

< XN
I
XNO

I

,._
>

DA 4,Y | ;gome as LDA 4,5

A symbol may be defined aofter use.

2.4

Exa m_p_!g_:

BR Y
Y=1

This is called a forward reference, and is resolved properly in Pass 2. When first en-
countered in Pass 1, the BR Y statement is incomplete because Y is not yet defined.
Later in Pass 1, Y is given the value 1. In Pass 2, the assembler finds that Y =1 in

the symbol table, and forms the cofplete word.

Since the assembler operates in two passes, only one-step forward references
. . s ,
are allowed. The following sequence would be illegal.

BR Y

Z=1

The assembler will list, during Pass 1, direct assignments whose values are incomplete.
In pass 2, statements containing references to unresolved direct assignments will be
flagged with an "E".

NUMBERS

Numbers used in source programs may be signed or unsigned integers in single
or double precision, or they may be floating point numbers. Negative numbers are
represented in twos complement. The numbers are interpreted by the assembler accord-
ing to the radix specified by the programmer, where;

L

2<radix €10 .

The programmer may use an assembler pseudo op, RADIX (see 3.12), to set
the radix for all numerical interpretation. If the RADIX pseudo op is not used, the
assembler assumes a radix of 8 (octal). :

The radix may be changed locally, to decimal, for a single number by following
the number with a period (.). If the period is followed by a digit, the number will be
interpreted as a floating point number. ‘

SOURCE GENERATED RADIX
STATEMENT VALUE (OCTAL) IN EFFECT
256 000256 | OCTAL
+135 gemas OCTAL
-75 177793 OCTAL (Twos complement)

199, oo ds DECIMAL
-40 . 177730 . DECIMAL (Twos complement)

2.4.2

2.4.3

2.4.4.

DOUBLE PRECISION INTEGERS

Double precision integers are specified by the letter D " terminating
the number which indicates that they will occupy two memory locations with
the least significant digits right justified. As with single precision integers, a
negative double precision integer will be represented in twos complement form.

L3

Examples:
- SOURCE GENERATED RADIX
STATEMENT VALUE (OCTAL) IN EFFECT
+1259 00000C 000125 GCTAL
63572643D 000316 172643 ' OCTAL
-735D 177777 177043 OCTAL (Twos complement)
. -100.D 177777 177634 DECIMAL (Twos complement)
-63572643D 177461 005135 OCTAL (Twos complement)

BINARY SHIFTING

An integer or symbo] value may be logically shifted left or right by following it
with the character pound sign () followed by a number, nn, which represents
the numbsr of places to be chifted. "nn" always represents a decimal number
from @-31. If "nn" is positive, the value will be shifted left. If "nn" is neg-
ative, the value will be shifted right. Bits leaving one end are lost and zeros enter
at the other end. Shifting may only be used with integers.

 Examples:
SOURCE GENERATED VALUE
A=25
AF5 6006124
125%12 ' B58308
-35.%-3 | 817773

72345635D% +2 031647 027164
FLOATING POINT NUMBERS ' '

If a string of digits contains a decimal point, which is followed by a
digit, it is evaluated as a floating point DECIMAL number.

Examples:
SOURCE GENERATED
U STATEMENT VALUE
£.19 040060 050754

-183.72 ‘ 141270 050754
+23.279 041027 043554

2.5

Floating point decimal numbers may also be written, as in FORTRAN, with
the number followed by a signed or unsigned exponent which represents d power
of 1g. The exponent will be treated as a decimal number.

Examples:
L]
SOURCE GENERATED
- STATEMENT ~VALUE
" 1.5E5 , 042444 117400
1.56+2 041226 000000 P
1.5E-3 037142 046722 :

The preceding form of a floating point decimal number represents single
precision, in that it causes two words to be generated.

To express a double precision floating point decimal number, the number
is followed by the letter D. In addition, an exponent can be represented by
following D with a signed or unsigned number which represents a power of 10.

Examples:
SOURCE GENERATED
STATEMENT __VALUE
-.36D-6 137623 072274 065176 174733
EXPRESSIONS *

Expressions are strings of symbols and numbers separated by orithmetic
or boolean operators.

The following are the allowable operators.

A

OPERATOR

FUNCTION
+ (plus) add
- (minus) subtract
* (asterisk) multiply
/ (slash) divide
& (ampersand) AND)
! (exclamation) inclusive OR |

\ (back slash)

{

exclusive OR |

. Boolean

2.6

2.6.1

The assembler computes the 16 bit value of the series of numbers
and/or symbols connected by the arithmetic and boolean operators, truncating
from the left, if necessory. .Operations are performed from left to right
(i.e., in the order in which they are encountered). For example:
A+B*CHD/E-F*G is equivalent to the following algebraic expression:

L]

- 1 (((A+B)*C+D)/E-F)*G |

Examples:

Assume the following 'symbol values:

é
SYMBOL VALUE (OCTAL)
A | 2 '
B 10
C 3
D . 5

The following expressions would be evaluated occording fo the above rule.

EXPRESSION . EVALUATION (OCTAL)
A/B+A*C 000006 Remainder of A/B is lost
B/A-2%A-5 - . 177777 -1
C+A&D 000005
 A+B*C&D 000004
1+A&C : ' 000003
50.-B 000052

LOCATION ASSIGNMENTS

As source program statements are processed, the Assembler assigns
consecutive memory locations to the storage words of the object program.
This is done by reference to the Location Counter, which is initially set to
zero. Machine instructions may cause the Location Counter to be incremented
by either one or two. Other statements such as those used to enter data or
text, or to reserve blocks of storage words, cause the Location Counter to be
incremented by the number of storage words generated.

SETTING AND REFERENCING THE LOCATION COUNTER |

The programmer may set the Location Counter by using the pseudo op LOC
which will be described later on. He moy referencé the Location Counter
directly by using the symbol, period (.). '

TR TFT R

S T TR TU I T (A TR IR

2.6.2

2.6.3

Consider the following example:

LOCATION COUNTER ’ STATEMENT FORM
100 ' . BR S) SHORT (1 word)
101 : - LDAL 4,5000 LONG (2 words)
103 ' STAL - 4,6000 LONG
105 ' LDA 5,20 SHORT
The first statement, BR .45, refers to 5 locations away from the current
instruction and therefore references location 105. If the BR .+5 instruction

was long form it.would have to be .+6 to provide the same resulis.

INDIRECT ADDRESSING - :

The character @ prefixing an operand causes the assembler to set
bit @, indicating indirect addressing.

If the statement contains both an operator and an operand, two words
will be genarated for the statement. If there is only an operand, only one
word will be generated for the statement. :

-Examples:

STATEMENT | GENERATED VALUES NOTES
LDA=50 -) ‘ Assignments, no
TAG=20 values generated
LDAL 4,2TAG g,4,8,208 /™
. : 100020 Two wciris
LDAL 4,2LDA G,4,08,200 generare
. 100050 '
ETAG 100020 One word generated,

also forces operand
, . and therefore LDA
. : ,) interpreted as operand
_rather than operator.

INDEXING

If the programmer wishes to index an operand of a statement he may do
so by enclosing a value or expression within parenthesis suffixed to the operand.

1 LU L

- Examples:

X2=2

X3=3

'LDA 4, TAG(X2)

~ BR @(X3) or BR (X3) v

STA - 5,TAG(2) ‘ ' ’

LDA 4,@TAG(X2) ;indexed, indirect
The left parenthesis"(" is mandatory, while the right parenthesis")" is optional.
In addition, the following statements will produce the same results without
causing an error. B

)
(5
G

(X

2.6.4 LITERALS

will all produce an index value equal to @

In" assembler statements, a symbolic data reference may be replaced by a
direct representation of the data enclosed within brackets D). (The left
bracket ([) is mandatory, while the right bracket (1)is optional). This direct
representation is called a literal. The literal may be any legal assembly
statement including data generating pseudo ops. The literal can not generate
“more than 1 word. Literals may not be nested, i.e., o literal can not

reference another literal.

Examples:

LDA 4,111

LDA 4,[2%A-1]1

LDA 4,[LDA 4,TAC]

SHET 4, [SHFTL+7] - |

LDA 4,TASCIl /ABCD/] jerror, foo many words generated

2.6.4.1 ALLOCATION OF LITERALS

Literals are either pooled or cause the immediate mode to be generated
- depending upon the form of the referencing statement.

. 2.6,4.1.1

2.6.4.1.2

LONG FORM REFERENCES

Literals referenced on long form instructions couse the immediate
mode to be generated for the re.erencmg instruction with the value of the
literal as the immediate word.

Examples:
SOURCE GENERATED VALUE
TAG=5 .
TAG1=3 .
LDAL 4,[TAG+3] 8,4,1,200
gopsig 4
CMP 5,[TAGT] 6,5,1,111
_ ﬁﬁﬂﬂNS
CMP 4,014] 6,4,1,111
» 2aesg

SHORT FORM REFERENCES

Literals referenced on short form instruction (or if no opcrator
is present on the referencing line) are pooled on the occurrence of an

LPOOL pseudo op (see 3.13) or the END pseudo op (see 3.11.2).

Duplicate literals, completely defined when encountered in the
source during pass 1, are stored only once so that many references 1o the
same literal in a given "pool area®™ result in only one (1) memory location
being allocated for the literal.

Examples:
PROGRAM GENERATED SOURCE
COUNTER CODE CODE
v A=77
200 LOC 200
200 9,4,8,207 LDA 4,[TAG]
201 g,4,8,205 LDA 4,771
202 g,4,8,206 LDA 4,204
203 g,4,8,205 LDA 4, 1Al
204 g,4,08,207 LDA 4,[TAG]
’ LPOOIL

205 0oeE77
206 #5020
207 Gpp211

1 extra location allocated in pass 1 because "TAG" not defined
211 g,4,48,216 TAG: LDA 4,[1]
212 - Pee216 (1]

PROGRAM . GENERATED SOURCE

COUNTER . ~ CODE ' _CODE _

213 - geen7 . . 771
214 g,4,0,220 . LDA 4,[TAG]
215 : G022 - [TAG]

o |] A END
216 000001
217 | 000077
220 gaga
2.7 INSTRUCTION FORMS T

The permanent symbol table of the assembler contains the
machine opcode set of the PDP-X. This is comprised of the basic opcodes,
extended opcodes and the I/O opcodes. In addition, the basic op code
mnemonics have been extended, by suffixing them with the letter "L", in
order to have them be assembled os long form instructions.

For example;

LDA 4,5 would occupy 1 memory location,
while LDAL 4,5 would occupy 2 memory locations.

" The user must make sure that long form be specified whenever an indirect
reference is made or whenever a reference to an EXTERNAL is made.

Examples:]
EXTERNAL EXTSMB (see 3.9.2)
LDAL 4,@5
BSRL EXTSMB
LDA 4,@6 ;would be flagged as an error
2.7.1 CEFFECT OF INDEX VALUES ON INSTRUCTIONS

Index values cause the assembler to generate specific forms
of addressing. The index values and their affect on short form and long
form instructions are as follows:

2.7.1.2 SHORT FORM INDEX VALUES

INDEXV ;

VALUE MEANING - : COMMENTS
NONE ' Direct or relative whichever . 1) Direct is legal only if operand is absolute
. is possible ‘ and < 377 and #2040,

| 2) Relative ;s legal only if the location and

i operand have same form (abs/cbs - rel/rel)
and difference between operand and program
counter is within +0-177.

e e e+ e i e i e | s i o i 2 5 e 4 5 s R s e e e v [V .

~ F
g . Direct Legal only if operand is absolute and € 377 and

‘ : 7200 .

1 E Relative Lega! only if the location and operand have

5 same form (abs/abs - rel/rel) and difference
between operand and program counter is
within +f-177.

2 i Indexed with 2 , Legal only if operand is dabsolute and is

5’ within £0-177.

3 " Indexed with 3

]

With respect to the nature of the form of the location ond its
operand, the following table shows the legal forms. If a form is specified
that is illegal, only 1 location will be allocated for it and it will be
flagged with an "A".

LOCATION OPERAND LEGAL SHORT FORMS
RELOCATABLE RELOCATABLE RELATIVE ONLY
RELOCATABLE ABSOLUTE DIRECT ONLY
ABSOLUTE RELOCATABLE MUST BE LONG FORM
ABSOLUTE ABSOLUTE DIRECT OR RELATIVE

Whenever the value of a literal or direct assignment contains
relative addressing, i.e., X=1, it is computed relative to the program counter
where it was encountered and flagged as a possible error.

Example:
ASSUMED GENERATED STATEMENT
LOCATION VALUE :
_COUNTER e e
| - =i
579 g,4,1,018 A=LDA 4,B ;flugged cs possible error

because the relativity
may be incorrect.

2.7.1.3 LONG FORM INDEX VALUES

Index values for long form instructions do not take on any special meaning
for long form instructions other than what they normally would mean. There are
no restrictions as to their usage.

e e e - - e N . e . 8 P PP -~ e 4,‘!
| INDEX VALUE L.EFFECTIVE ADDRESS
o NONE |
el . L 6;

1 | PC+1 (IMMEDIATE) ’

s 2 D22
! i i
= - - ; O PUESN .v’!
i 3 5 D2+X3 |

2.7.2 ADDITIONAL NOTES ON LONG FORM INSTRUCTIONS

If a long form instruction is immediately suffixed with an up arrow (1), it
indicates to the assembler to output only 1 word (16 bits) and update the program
counter by 1 rather than by 2.

Examples:
Generates
K ———
CMPt 4,(1) 6,4,1,111
CMP1t 4,5(2) 6,4,2,111

2.7.2.1 CALCULATION OF D2 FOR LONG FORM INSTRUCTIONS

JF the index value =1, D2 is a 16 bit value.
IF the index value #1, D2 is a 15 bit value and -
if indirect was specified, bit @ is set.

Examples:
A=-1 Generates
CMP 4,[A] 6,4,1,111 177777
SUB 4,A 6,4,0,112 _ﬁ77777
SUB 4, @ , 6,4,08,112 100835
3.0 - PSEUDO OFPS

Pseudo ops are statements which direct the assembler to perform certain
assembler processing operctions, such as producing text strings or reserving blocks

3.1

of memory. Some pseudo ops generate object code and some do not. In all cases
a pseudo op will only be interpreted as such only if it is an operator.

EOPDEF

The programmer can define his own extended op code operator using an
’ . . ¥ Ve
EOPDEF statement written in the following general form: '

EOPDEF NAME,D1,R

where: 1. "NAME" is the name of the user defined operator. S
2. "D1" & the value to be assigned to the DI portion of the instruction
when_the EOPDEF operator is referenced. o
3. "R"is the value to be assigned to the R portion of the instruction

Dl and R may be symbols, numbers or expressions. In addition, an opcode of 6
will be generated when the EOPDEF operator is referenced.

EOPDEF is the method for the user to define unused extended opcodes (UUO'),

When an EOPDEF is used, it must follow the same syniax rules as
extended op codes (see appendix E).

Examples:

EOPDEF A,120
EOPDEF B,12i,2

/5 generates 6,6,8,120 poges '
generates 6,4,8,1200 000005 and flagged (AC=4 assumed)
generates 6,2,8,121 000005

/5 generates. 6,4,0,121 PEEIY5 and flagged

@ w2
o O O

EOPDEF defined symbols may be redefined by other EOPDEF'S.

, If an EOPDEF defined symbol is redefined by any other means, the EOPDEF
definition remains and the line that atfempted to do the redefinition will be flagged
with an "[",

If an EOPDEF is encountered and the symbol has cl‘ready been entered into
the symbol table (but not as an EOPDEF), the EOPDEF is ignored and flagged with
an "|", :

Examples:

EOPDEF A,130

A TAG :
“A: LDA 4,5 ;Line flogged and label "A™ ignored
B: LDA 4,5

EOPDEF B,131 ;Line flagged and EOPDEF ignored

3.3.2

3.4

RESERVING STORAGE

UNDEFINED SYMBOLS

If any symbols, except EXTERNAL symbols (see 3.9.2), remain undefined
at the end of Pass 1 of assembly, they are automgtically defined as the addresses
of successive registers following the locations reserved for literals, if any, at the
end of the program. _

All lines which referenced the undefined symbo! will be flagged with an
error code. One memory location will be reserved for each undefined symbol
with the initial contents of the reserved location being unspecified.

At the end of Pass 1, the assembler will output the names of all undefined
symbols and the locations allocated to them.

RESERVING A BLOCK OF MEMORY

The user may request the assembler to reserve a block of memory by the
usage of the BLOCK pseudo op written in the following form:

BLOCK value

- BLOCK reservez a block of memory equal to "value". "Value", which may be a

number, symbol, or expression, must be predefined; otherwise, phase errors will
occur during Pass 2 of assembly. The assembler will output a message, in Pass 1,
if the value is not predefined. The initial contents of the reserved location are

-unspecified. e
Examples:
SOURCE ‘ LOCATIONS
STATEMENTS RESERVED (OCTAL)
A=100
B=200
C: BLOCK 5 5
D: BLOCK B-A 10¢
BLOCK D-C+1 : é

BYTE POINTERS

The LDC and STC instructions are avoilable for byte manipulation. These
instructions use the effective word as a character pointer to locate an 8 bit byte.
The LBYTE and RBYTE pseudo ops are used to set up the pointer word, where LBYTE
initializes to point to the left byte and RBYTE to the right byfe.

3.5

3.6

Examples:

(assume BUFF to be location 3000

g)
LDC 4, POINTI R A T
POINTI: LBYTE BUFF ;generates 6001 BU,FF__h' 1.
LDC 4,POINT2 o 4t
POINT2: RBYTE BUFF ;generates 6000 'BUFF o
LDC 4,[RBYTE BUFF] , .
VFD STATEMENT ‘ P

To conserve memory, it is useful to store data in less than full 16 bit
words. Bytes of any length, from @ to 16 bits may be entered using the VFD
statement written in the form:

VED NIXO XN Y

The first operand n, which must be enclosed in angle brackets, is the byte size

in bits. It is interpreted as a decimal number in the range of £~16. The operands
following are separated by commas and are the data to be stored from left to right.
If an operand is an expression, it is evaluated and if necessary truncated from the
lefi to the byte size specified. The daia may occupy only 1 word. (EXTERNAL
symbols or relocatable symbols should not be used in VFD statements as results at
object time may be erroneous.)

The byte size may be oltered by inserting a new byte size, in angle brackets,
immediately following any operand. *

Examples:
SOURCE GENERATED VALUE
A=500 "+
B=50 :
VFD <3>1,2<6>B ‘ . 025200
VFD <7>B, <9 A 050500
VFD <8:1,2,3<7> A 024700
VFD Br1,2,3,4,5,6 024712 error, too many bytes specified

TEXT HANDLING

Text handling enables the user to represent directly the 7-bit ASCII char-
acter set. The assembler will convert the desired character to its appropricte

numerical equivalent. (See appendix A)

3.6.1 SINGLE WORD TEXT

The assembler translates up to 2 characters enclosed within single quote
marks (') using the ASCII value of the characters and stores them with the first
character in the right byte (8-15) and the second character, if any, in the left
byte (@-7). Any legal ASCll charucters may be psed, except the single quote
mark itself ('). -

Examples:

GENERATED CODE

TABLE= @

LDA 4, A"+TABLE 0,4,0,141

LDAL 4,['AB1] C@.4,1,288 g4

LDAL 4,['ABC1 g,4,1,280 @G4101 ;error, too many chars.
'‘AB! garimn

VED g ¢ M1 s garg

3.6.2 MULTIPLE WORD TEXT

If the user desires more than 1 word of text, he may do so by using one of
the following text pseudo ops;

1) ASCH generate ASCII text.
2) ASCIP generate ASCII text with odd parity in bit 8.
3) ASCIC generate ASCII text followed with 2 words;

WORDT = numbet of bytes in text (2's complement)
WORD2 = byte pointer to the first byte of the text
4) ASCIPC generate ASCHl text with parity, byte count and pointer.

The first non-blark or non-tab following one of the text pseudo ops will
be interpreted as the text delimiter, which may be any ASCII character, except
a left angle bracket (<). The text will be terminated by repeating the initial
delimiter. The characters will be stored in the same manner as single word text,
i.e., the first character in the right byte (8-15) and the second character in the

left byte (2-7).

Examples:

ASClII /THIS IS A MESSAGE/ 44524 @51511 (444449
g20123 @201 G42515
@51523 @43501 gEmigs

ASCIP /PARITY/ 140720 (44522 154524

ASCIC ~ /COUNT + POINTER/ J47503 @47125 @25524
(assume PC ="5¢7) : G47520 @471 42524
: gag122
byte count 177763
byte pointer £1200
the user may reference the last 2 words in the following way;

HDR =.-2

LDA 4, HDR

ASCIPC /DATA/ 140704 149524
(assume PC=600) byte count 177774
byte pointer 1440
ASCIl .12/30/67 . G31061 031457 @27460
033466
ASCIL /ENDY 47105 GPs5H4

v a1 2

Expressions may be represented in text siatements by enclosing them in
angle brackets (<). The angle brackets must appear external to the text
delimiter, otherwise they will be interpreted as part of the text string. The
value enclosed in angle brackets will be truncated to 7 bits.

Exqmpl.es:
CR=15 .
LF =12

ASCII JTEXT/ (CRABD) pa2524 g50130
. G5 Boe
ASCl] ARy /< o/ @36012 B0Es76

3.7 LOCATION DEFINING AND ADDRESS MODE

The normal output of the assembler is relocatable binary addresses. The
user may also specify absolute binary addresses for the entire program or for selected
portions. In addition to being able to set the address mode the user can alter the
locations being assigned to instructions by explicitly defining the location.

The pseudo op LOC, control both the addressing mode and location defining.
3.7.1. LOC "n"

LOC sets the Location Counter (program counter) to "n", which must be a
predefined value or expression. (The assembler will output @ message, in Pass 1,

if the value is not predefined).

3.7.2

If "n" is a relocatable expression, the assembler will assign relocatable
locations for the instructions and data which follow. All labels encountered will

be relocatable.

If "n" is an absolute expression, the assembler will assign absolute locations
for the instructions and data which follow and al] labels encountered will be
absolute.

- . ’
If no LOC statement appears, the assembler assumes an origin of relocatable

Examples: ’
- LOCATION TYPE
DA 4,A —F — T
A: LDA 4,B 1 REL
B: LDA 4,C 2 REL
X=.
- LOC 209 : -

C LDA 4,D 209 ABS
D: LDA 4,A 201 ABS
LoCc X '

LDA 4,B 3 REL

WA "BY, and "X" are relocatable, while "C" and "D" are absolute.

MODULAR ORIGIN

The statement MORG "n" causes the location counter to be set to the
next highest multiple of "n" if it is not already at such a value. "n" is mainly

useful when it is o power of 2, but it may be any value. It does not affect the

_existing address mode (absolute or relocatable). The assembler will output a

message, in Pass 1, if "n" is not predefined.

Examples: .
LOCATION ASSIGNED
TO INSTRUCTION
LOC 50
BR 40 50
MORG = 2
LDA 4,5 52
LDA 4,5 53
MORG 2
LDA 4,5 54
MORG 1g9
LDA 4,5 180

 The clgorithm used by the assembler is as follows:

3.8

3.8.1

3.8.2

3.9

1. Divide current value of Location Counter by "n"

2. If no remainder, bypass siep #3
3. ("n" - remainder) + Location Counter 2»Location Counter

BINARY OUTPUT

The standard binary output of the assembler is in a format acceptable to
the Linking Loader. The user may specify to the assembler to output the binary
in "readin mode" by using the pseudo ops RIM of RIMNLD

USAGE OF RIM AND RIMNLD

1. They must occur before any other statements, except the TITLE statement,
otherwise they will be flugged and ignored. 4 :
2. Afl locations and operands in the program will be treated as absolute.

3. . They force the implicit statement LOC 209 to occur.

Note: The LOC 207 may be overridden by immediately following with a
LOC statement.

RIM AND RIMNLD

The RIM pseudo op, in addition to specifying readin mode binary, causes
the assembler to precede the binary output with a loader. If no address follows
the RIM statement, the assembler assigns the program break address as the
starting address of the loader. If an address is specified, this value will be used
as the starting addiess of the loader.

Examples: .
Assume program break is 1087

RIM -~ Loader address set to 1450
RIM 507 - Loader address set to 500

The RIMNLD pseudo op also specifies readin mode binary, but no loader
precedes the binary output.

SUBROUTINE LINKAGE

Programs usually consist of subroutines which contain references to symbols
in external programs. Since these subroutines may be assembled separately the
Linking Loader must be able to identify "global" symbols.

For a given subroutine, a global symbol is either a symbo! de Finec‘ intern-
ally and available for reference by other suwoufmes, or a symbol used internally
but defined in another subroutine. '

Global symbols defined within a subroutine and available to others are
called internal symhols. Global symbols defined by onother routine and referenced
by the current subroutine are called external symbols.

3.9.1

3.9.2

3.10

The linkages between internal and exiernal symbols are set up by declaiing
global symbols through the INTERN and EXTERN pseudo ops. ' :

INTERN S1,52,83,...5n

The INTERN statement defines the symbo) or syrbols in the siring as
internal to the currently being assembled subroutine and they may be referenced
by other subroutines. Interral symbols may be defined in the program as either a
label or direct assignment.

Examples: . 3
INTERN INTT, INT2 '
INTI: LDA 4,5
STA 4,INT2
INT2=.
EXTERN S1,52,53, ...5n

The EXTERN statement defines the symbol or symbols in the string-as exter-
nal to the current subroutine. The symbols defined as external must not be defined
in the current program.

If an external symbol is an cperand on « basic op, long form must be
specified.

Examples:

*

EXTERN SQRT, CUBE
PUL SQRT
PUL CUBE

CONDITIONAL ASSEMBLY

A P

It is often useful to have the assembler test the value of an expression and
fo assemble conditionally portions of the program based upon the results of the test.
For this purpose, two pseudo ops are provided. ‘

1) IF... - To initiate the condition
2) ENDC - To terminate the condition

The general form is as follows:

F... EXP
%

Ny

ENDC

The body of coding following the IF statement is assembled only if the
expx ession "EXP" satisfies the IF condmon If not satisfied; all coding up to
and including ENDC fis bypuqsed

The IF statements allowed are as follows:

CONDITION, ASSEMBLE IF "EXP" IS

IFLS . <g
IFN : 4]
IFGE S éé
IFE =g 4
IFDEF . - DEFINED
IFUND ’ UNDEFINED
IF1 IF PASS 1
IF2 . ~ IF PASS 2
Exomples_:
A=p
B=1
IFDEF A
LDA 4,5 ‘% these statements will
STA 4,6 be assembled
ENDC
"IFZER B
LDA 4,5 i\ these statements will not be
STA 4,6 o assembled, but treated os comments
ENDC *

Conditional statements may be nested, that is, within the limits of a condi-
tional statement there may be other conditional statements. Each nested conditional
staterent requires its own ENDC pseudo op to terminate it. '

Examples:

A=g

=] .
|FDEF A
LDA 4,5 this statement will be assembled
IFDEF B ' ,
LDA 4,5 this statement will be assembled
ENDC)
IFDEF ' C
LDA 4,5 this statement will not be assembled
ENDC

ENDC

3.11.1

3.11.2

3.13

BEGINNING AND END OF PROGRAM STATEMENTS

TITLE NAME

The name appearing after the TITLE statement {up to 6 characters) will
appear on the iop of each page of the assembly listing. It also will be used to
identify the program for DDT (debugging) and Linking Loader operations. If no
TITLE statement is present, the assembler inserts the assumed name %MAIN% .

END START

é
The END statement must be the last statement in every program. A single

operand may follow the END operator to specify the address of the first instruction
in the program to be executed.

RADIX

When a numerical value is encountered in o statement, the assembler
converts the number to a binary representation reflecting the radix indicated by
the user. The statement,

RADIX n , where n is a decimal number from 2 to 10, sets the radix to
n for all numerical values that follow, unless another RADIX statement changes the
prevailing radix or a local radix change to decimal occurs.

The implicit statement, RADIX 8, begins every program and if octal num-
bers are desired a radix statement is not necessary .

]

Examples:

SOURCE GENERATED VALUE(S) ~ RADIX IN EFFECT
125 v gog 25 8
RADIX 10
100 P09 44 ' 19
RADIX 2
1911119 | - #9936 2
RADIX 8
175 Lo 75 8
207 . prEg 18

LPOOL

LPOOL causes literals that have previously been raferenced in short form
instructions to be assembled, starting at the current value of the location counter .

If n literals have been defined, the next free storage location will be at
program counter plus n. Literals defined after the LPOOL statement are not

affecied. (See 2.6.4.1.2)

4.0

PASS2

The PASS2 pseudo op causes the assembler to switch to pass 2 processing
for the remaining coding. Coding preceding this statement will have been pro-
cessed by Pass 1.only. The PASS2 pseudo op is primarily used for debugging, such
as testing macios.

SHFTA, SHETC, SHFTR, SHFTL

The extended op code SHFT shifts the specified accumulator as indicated
by the effective word. The right half (byte) of the effective word is used as a
signed shift count (- = left, - =7ight) and bits 6 and 7 of the effective word
indicotes the type of shift to be performed.

In order to facilitate specifying the type of shift the pséudo ops SHFTA,

SHFTC, SHFTR and SHFTL are used. '

bit '0 7is _15]
SHFTA +nn generates (arithmetic) ;0 ——= 01 +nn !
0. 78 15

SHFTC +nn generates (rotate combined) 0 ——1 +nn
0 78 15
SHFTR +nn generates (rofate) 0 —2 +nn ;

0 7 8 15

SHFTL +nn generates (logical) 0 —-—«3inn o
Examples:
SHET 4, ISHFTA +4l 6,4,1,113
0a004
SHFT 4, ISHFTC -5I 6,4,1,113
p68773
SHFT 4, ISHFTR +71 6,4,1,113
iy
SHFT ' 4, ISHFTL -4l 6,5,1,113

G774

Note, that in the above exomples the SHFT instructions are not indexable.
Indexing the SHFT may be done as follows:

SHFT 4, TABLE(2)

TABLE: SHFTA 3

SHFTA -6
SHETA 45
RELOCATION

The normal output from the assembler is o relocatable binary program. The
program may be loaded into any part of memory regardiess of what locdaiions were
assighed at assembly tire. To accomplish this, the address portion of some instruc-

“tions must have a relocation constant added to it. This relocation constant,
which is added at lead time by the Linking Loader, is equal to the difference
between the memory location an instruction is actually loaded into and the

" location that was assigned to it at assembly time.

Example: »

ASSEMBLY ADDRESS LOAD ADDRESS RELOCATION CONSTANT

- 209 g, 1§95
8 . 8 8
The rules for determining if operand is absolute or relctatable are as
follows:
1. If operand is a number, it is absolute.
2. If operand is a direct assignment which was equated to a number,

the operand is absolute.

3. If operand is a label which was defined within a block of
absolute coding, it is absoluie.

4, Point references (.) get current block relocation.

5. Undefined symbols, as operands, are relocatable if a block of

) L sY ’ i
relocatable cade was encountered in the program, otherwise they
are absolute.,

) °
6. All other operands are relocatable.

[f an operand contains both ahsolute and relocatable elements, they are
handled as follows:

(A = absolute, R =relocatable)

A+A=A

A-A=A -

A+R=R "~ ' '

A-R=R flagged as possible relocation error
R+A=R '

R-A=R

R~-R=A ‘
R+R=R flagged as possible relocation error

Multiplication, division, and boolean operations are not allowad on
')
relocatable symbols.

Lo '] [N A T IV RN TR

ERROR FLAGS

The assembler will examine each source statement for possible errors.
The stutement which contained the error will be flagged with one or several
letters in the left hand margin of the source fine. The following table shows

the possible error flags and their meanings. .

FLAG :

A Error in address form.” Assembler could not generate a requested
form or indirect or external requested on a short form instruction.

B [Hlegal character encountered. It is replaced with a ?

D Statement contains a reference to a multiply defined symbol.

E Statement contains a reference to an unresolved direct assignment.
G . . Global symbol error Will appear on an EXTERN statement if defined

by user or defined as an Internal. Will appear on a direct assign-
ment if right hand side is an external symbol.

I Hegal redefinition of an EOPDEF or direct assignment. Value not
entered into symbol table.

M ‘Multiply defined symbol!.
N Error in number usage.
P Phase error. Pass T value of symbol does not equal Pass 2 value.

(Usually fatal)

Q . Questionable syntax. (Results may be erroneous.
4 Y

R Possible relocation error.

T Truncation errorliteral or direct assignment generated more than
1 word. '

u Undefined symbol in statement.

In addition to flagging erroneous statements, the assembler during Pass 1
will print out multiple definitions and all undefined symbols and the locations -
allocated to them,

6.0

6.1

ASSEMBLY OUTPUT LISTING

If the user requesis it, the assembler will produce an output listing on the
requested output device. '

The top of each page will contain the name of the program (as suppiied in
the TITLE siatement) and the page number.

The body of the listing"will be formatted as follows:

ERROR FLAGS LOCATION OBJECT CODE SOURCE STATEMENT
O XXXX XXXXX XXHUXXX XX

If the source statement is a machine op code or an EOPDEF the OBJECT
CODE will be formatted as follows:

OP,R, X, DI
All other statements will produce a 6 digit octal value.
In addition, if the object code is to be relocated by the Linking Loader
it will be indicated by a single quote following the value. External symbol

references will be indicated with an E.

Instructions which require more than "n" words of object code will be

listed as "n" lines.

SAMPLE PAGE 1

TITLE SAMPLE
Julsioldfey 0,4,1,006 A LDA 4,G
JofociR 1,4,1,007 STA 4,G2
sy 1,4,1,005 LDA 4,61
Juviuiokl 6,4,1,111 CMP 4,["OK"
B G45517
Jofusioly 4,3,1,373 B A

Juls oo00E8 G: g

20907 200008 Gl A

g g 08000 G2. g
END

SYMBOL TABLE LISTING

After the assembly listing has been outputted, the assembler will output
an alphabetically ordered symbol table which lists all user defined
symbols. The symbol table listing is usefu! in tracing or cebugging a program

for which the programmer does not have an.assembly listirg.

SAMPLE PAGE 2

A 00095

G s
Gl . gy
G2 g

CHARACTER

""N-<><§<C""V’-’“@"’OZK""K'—"IO"’”"UOW>"@

/l\
<«
NULL
HORIZONTAL
TAB
LINE FEED
VERTICAL TAB

APPENDIX A

7-BIT ASCII CHARACTER SET

ASCil

190
191 A
142
143
124
105
175
147
119
111
112
113
114
115
116
117
129
121
122
123
124
125
126
127
137
131
132
133
134
135
136
137
/4
an

812
213

CHARACTER

.
A (space)
!

#
$
%
&
(
)

+

~

VONO G D WRN —N -

\/ ” /\ e LX)

?
FORM FEED
CARRIAGE
RETURN
CODE DELETE

ASCH

g4g

g

742
@843
Z44
g45
G464
g47
258
451
B52
£53
#54
#55
@57
54
76
[,
43
764
765
B66
#57
878
@71
272
973
74
275
@76
@77
214

15
177

APPENDIX B

PERMANENT SYMBOL TABLE

SYMBOL OP R DI VALUE SYMBOL OP R DI VALUE
'ADD(L) 3 050009 MUL 6 101 140101
AND(L) 2 040000 NEG(L) 5 3 1246000
BR(L) 4 3 106000, POB 6 6 116 154116
BSR{L) 4 7 116000 POC 6 4 116 150116
" BCN(L) 4 0 100000~ POL 6 7 116 155116
BCZ(L) 4 4 110000 POP 6 5 5116 152116
BLS/L) 4 1 102000 PSC 7 7 006 176006
~OBN{L) - 4 2 104000 PSD 7 7 007 176007
BGE(L) 4 5 112000 PSI 7 7 004 176004
 BE(L) 4 6 114000 . PSR 7 7 005 176005
CLR(L) 5 7 136000 PUB 6 2 116 144116
CMF 6 111 140111 PUC 6 0 116 140116
COM(L) 5 1 122000 PUL é '3 116 146116
DIV 6 ~ 103 140103 PUSH 6 1 116 142116
HLT 7 7 001 176001 RCS 77 002 176002
INC(L) 5 2 124000 RIO 7 7 000 176000
1OC 7 5 172000 RR (L) 5 4 130000
oD 7 7 176000 SHET 6 113 140113
-~ IOR 7 0 160000 STA(L) 1 020000
[ORC 7 1 162000 - STC 6 115 140115
10S 7 4 170000 sup 6 112 140112
fel) 7 6 174000 SWP(L) 5 b 134000
1OW 7 2 164000 = *TST(L) 5 o 120000
IOWC 7 3 166000 TSTC 6 107 140107
LCMP 6 110 140111 TSTN b 104 140104
LDA{L) 0 000000 TSTO 6 106 140106
LDC 6 114 140114 TSTZ 6 105 140105
LDIV é 102 140102 WCl 7 7 €03 176003
LMH 7 77 011 176011
LML 7 7 010 176010
LMUL 6 100 140100
LR(L) 5 5 132000
LUH 7 7 013 176013
LUL 7 7 012 176012
By suffixing the indicated symbols with L, the assembler will treat them as long form

instructions.

ASCIC
ASCII
ASCIP
ASCIPC
BLOCK
END
ENDC
EOPDEF
EXTERN
IFDEF
IFF
IFGE
IFLS
IFN
IFUND

INTERN
LBYTE
LOC
LPOOL
MORG
PASS2
RADIX
RBYTE
RIM
RIMNLD

SHFTA

 APPENDIX C

SUMMARY OF PSEUDO OPS

Seven bit ASCIHl text with byte count.
Seven bit ASCII text. ’
Seven bit ASCII text with parity.

Seven bit ASCII text with parity and byte count.

Reserve block of memory . F

End of program.

End of conditional section.

Define user created operator.
Externa! symbol declaration.
Conditionally assemble if defined.
Conditionally assemble if =g .
Conditionally assemble if > .
Conditionally assemble if <}3
Conditionally assemble if £,
Conditionally assemble if undefined,
Conditionally assemble if pass 1.
Conditionally assemble if pass 2.
Intemal symbol declaration,

Left byte pointer.

Set location counter,

Qutput literals,

Modular origin.

Switch to pass2 processing.
Interpret number in declared radix.
Right byte pointer,

Output readin binary with loader, |
Ouput recdin bincry with no loader.

Create arithmetic shift words,

SHFTC
SHFTL
SHFTR

TITLE

VED

Credte rotate combinad shift word.
Create logical shift word,
Create rotate shift word.
Name of program.

Variable length byte stateient,

SUMMARY OF SPECIAL CHARACTER INTERPRETATIONS

. . ,
The characters listed below have special meaning in the context indicated. These interprefations
do not apply when the characters appear in fext strings or in comments,

CHARACTER

#
D

E.
+ (plus)
- (minus)
* (asterisk)
/ (siash)
& (ampersand)
P (exclamation)

(back slash)
(dollar sign)
(percent sign)
(parenthesis)

(up arrow)

MEANING - _EXAMPLE
Folblows number to be shifred and " 15#3

precedes binary shift count

Specifies double precision number 1.5D
72435653D

Exponent indicator. Precades A 25,43E5

decimal exponent in flocting point

numbers.

Add

Subtract —=— Arithmetic operations

Multiply

Divide /

[e——

AND \
A

Inclusive OR 77~ Boolean onerations

Exclusive OR ;

Legal character if encountered STAG%

in a label or symbol

Used to enclose index field, | LDA 4, ¢(2)
Indicates half word ganerction for CM PI';:‘4, m

long formm instructions

. CHARACTER

<2

(coloﬁ)
(sém icolon)

(point)
(comma)
(square brackeis)

(equal sign)

(at sign)

(angle brackets)

MEANING

- Immediately follows all labais

Precedes all commenis

1) Hes cunerﬁ va!ue of the location
counter

'2) Local radix charge to dec:ima[

1) General operand or c:rgumenf
delimiter

-2) Accumulator ilefc delimiter

Delimits a literal
Indicotes a direct assignment

Indicates indirect addressing

(single quote marKs) Enclose 7-bit ASCIH text symbo! one

or fwo choracters.

1) Enclose on expression within
ASCII text '

2) Enclose byte size in VFD
stafement :

EXAMPLE
LABEL: LDA 4,5

; this is a commeni

B .+5

187.

INTERN SYM1, SYM2, SYM3

LDA 4,5

4 |
LDA 4,7123]

A=

BRL - GTAG

‘ IABI

ASCII/ABC /< 15 ><12> <FF>

VFD <4>

A, 1,<352,2<2> 1

-APPENDIX E

(| Operand Formats

The instruction s=f of the PDP-X in addition to using the op code bits {§-2) for identification
sometimes uses the R bits (3-5)) and/or D1(8-15) to identify h')e instruction., Because of this condition,
the user should not use operands in a format that will alter the instruction.

The following fable shows the legal ond illegal formats for the PDP-X instruction repertoire.

BASIC INSTRUCTIONS ’
CLASS 1 - OP bitsonly
Eé& | ILLEGAL
op ,OPERAND op OPERAND (imp!ies AC=4)
op AC, OPERAND
CLASS 2 - OP & R bits
C LEGAL ILLEGAL
op OPERAND op , OPERAND
_op AC, OPERAND
EXTENDED INSTRUCTIONS
CLASS 1 - OP & DI
LEGAL ILLEGAL
OP ,OPERAND op OPERAND (implies AC=4)
OP AC, OPERAND
CLASS 2 - OP, D] & R
LEGAL | ILLEGAL
"OP OPERAND . op OPERAND

OP AC, OPERAND

C

I/O INSTRUCTIONS

CLASS 1 - OP &R

OP

DSV, OPERAND

CLASS 2 - OP, DT &R

opP

LEGAL

OPERAND

or

OopP

o)

or

(END OF MANUAL)

*

ILLEGAL

, OPERAND

OPERAND implies DEV = @

ILEGAL

DEV, OPERAND

AP

2.2.2

2.2.3

2.3

2.3.1

©2.3.2

2.3.3

2.4

2.4.1

2.4.2

CHARACTER SET ~

The input to XAP-5 is prepared in 7-bit ASCII. Refer fo Appzndices A

and D of the user's manual for a description of the acceptable ASCI characters
-~ and a summary of special character inferpretations.,

EXAMPLES » »

Examples of oll languag® features may bz found throughzut the user's
manual . '

OUTPU - | o

OUTPUT FORMAT

The listing output format of XAP~6 is described in the user's manual,
section 6.4. '

The binary formais of the object program is absolute.

HARACTER SET

The XAP-5 listing is in ASCII.

EXAMPLES

A sample XAP-46 output listing may be found in section 6.6 of the user's
manual . '

ORGANIZATION

OPERATIONAL ORGANIZATION

XAP-6.is a two pass assembler which requires that the scurce be recd in

twice.

INTERNAL ORCANIZATION

The entire assembler is resident in core at ol times.

OPERATING PROCEDURE

3.1

3.1

3.2

.1

LOADING PROCEDURE

 CONDITIONAL LOAD

XAP-$ relocatable binary is loaded in the following manner:

A, R LOADER n = requesis loader with core required.,

B. FDEViXAPS, EXEC - device which contains XAPS,

At this stage XAPS is loaded. .

SAVE - DEV:XAPS puts it on the specified device in dump mode.
, _ ,

NOT APPLICABLE,

SWITCH SETTINGS

Switches are specified in the command siring by typirg " / " followed by
single switch letter. Any number of switch settings may be indicated ot one time by
enclosing a string of switch letiers in parenthesis; for example, (WAAP) rewinds the
magnetic fope, advances two files and increases the pushdown list size by 8 locations.

/\"'] - Advance magnetic tape by one file.
. g! - - Backspace magnetic tape by one file,
C2 - Produce Hsﬁng file in a format acceptable o CREF, If no isting device

is specified, DSK: is assumed. If no filename is specified, CREF.TMP

is assigned; if no extension is specified, TMP is assumed. In addition, the
listing-device must be a refrievable device (e.g. DTA, DSK, MTAY, [f it
is not, a command error results,

D - No symbol! table in binary ouiput.
I = . Continue on source device datu error. When | is not used, this type of
error terminates the assembliy.
2 | _—
L ~ Force long form for all basic ops.
N - Suppress teletype error printouts
2 . | . -
P - Increase size of pushdown list by 8010 locations for each appearance of P.
1 o L
T - Skip to logical end of mognetic tape.
1 . .
W= Rewind magnetic tope.
1,2

Z - Zero the DECtaps directory.

- NOTES:
3.3
3.4
C
3.4.1
3.5

1. This switch must immediately follow the device to which it refers.

2. This switch must not appear on source device specifications. I it appears on a
source device specificaiion, o command error resulis. :

L3

START UP PROCEDURE

After the user hos logged info the systein he types:
R XAP6 S

When XAP6 has been loaded, it responds with * (asterisk) ond waits for the command
string to be typed. :

COMMAND LANGUAGE

The genera! command format is as follows:

. BiN:FIL‘ENAME. EXT,LST:FILENAME.EXT <—SRC:FILENAME. EXT, ...

where: BIN is the object program device.

LST is the listing device.
SRC is the source device.

NOTE: A command string must be typed on one line because a line feed or carriage
return terminates the string. - '

EXAMPLES
MTAT1:,DTA3:/C:"—CDR:), Asserble one source file from the card reader; write
: ’ the object program on MTAT; write the assembly list-
ing on DTAS3 in cross reference format and cali the
—_— file CREF .TMP. '
,TTY:fif::—'TTY;} Assemble one source file from the teletype and list
~ the program on the teletype. Do not oufput any
object code.
OPERATION

_ Throughout the assembly when a source device is encountered in the command
string which requires manual loading the operator, (e.g. PTR,CDR,TTY), XAPS will
type : :
LOAD THZ NEXT FiLE ON Dev

3.6 -

3.6.1

on the console. All other devices will be loaded avtomatically. At the end of
pass 1 the message

END OF PASS 1

will be typed on the console,

ERROR RECOVERY

INPUT ERRORS

XAP6 examines each source statement for possible errors and flags them with
one or several letter codes. (See section 5.0 of the user manual).

OPERATOR ERRORS

IF the command string to the assembler is typed improperly, XAP6 responds
with * COMMAND ERROR" and returns an "#", The user may then retype the command
string.

The following are additional messages which may occur,

Messc:gﬁ Meaning

gy -

CAN NOT ENTER FILE

| DTA or DSK directory is full; !

File name. ext file can not be entered.
Z »
_ |
CAN NOT FIND i The file can not be found on
filename .ext the specified device,
DATA ERROR ON DEVICE % Ouiput error has occurred on
dev the device. ‘
|
INPUT ERROR ON DEVICE Input erior has occurred on the
dev - device.
~ INSUFFICIENT CORE An insufficient amount of core k
4 : is available for assembly, !
‘ !
J i]

v, &

3.6.3

3.6.4

4.1

7
Message . : Meaning
dev NOT AVAILABLE ' The device is assigned to another
i user or does not exist,
NO END STATEMENT | The’END statement is missing
ON INPUT FILE - at the end of the source progrem
END STATEMENT FORCED file. An END is forced and pass 2
© begins.
3

PDP OVERFLOW, TRY /P . Pushdown list overflow. Use /P in v

o commang siring fo lengthen the pushdown

lisfa ‘ ’ a i

SOFTWARE ERRORS

There are no error halis nor are there any conditions which will cause the
assembler fo go into a loop.

- HARDWARE ERRORS

I hardware failures (which are undetected by the monitar) occur, they will
usually be detecied and indicated on the listing as phose errors. '

Peripheral errors will be indicated by an appropriate message (see 3.6.2)
and control is refurned to the command string.

INTERNAL ENVIRONMENT

TRADE~OFFS

Because XAP6 is intended to be downwared compatible with XAP (the PDP-X
assembler) some features were considered and will not be implemented because of size
problems, ‘ ‘

Some of these features are:

a) Hexadecimal numbers
b) Radix 50

c) Automatic optimization

The assembler was designed as a two pass essemblar mainly for its capability of phase
checking of lobels. Some features may be conditionalized depending on the size of
the computer.

v Ny

- 4.2

4.3

4.4

5.1

5.2

5.3

5.4

SOFTWARE INTERFACES

XAP6 performs all of its Input/Qutput functions through calls o the monitor.

(See DEC-10-MTBO-D, PDP-10/40, 10/50 Time Sharing Monitors).

All subroutines are cailed using the PUSHJ ingiruction. Arguments of
subroutines which require a calling sequence will be contained in designated accumulaiors.

~

CONVENTICONS

- XAPé6 is designed to be re~entrant; thus, in the event that yeentront progroms are
recognized by the multiprogramming system on the PDP-6, only one copy of XAP6 need
be resident in core for many users.

The accumulators are allocated according to major functions, namely:

1) Utility
2) Pointers
3) Calling sequences

LANGUAGE

XAP6 is writien in MACROX languoge. |t does not use the macro capability
of MACROX.

EXTERNAL ENVIRONMENT

EXECUTION SPEED .

USE

XAP6 is used to provide for PDP-X asseniblies on the PDP-6, because of o higher
availability of iime on the PDP-6 os compared with other in~house computers.

INTERFACE

XAP6 is intended to be used by system programmers and diognostic programmers
for developmeni of PDP-X soffware. Although it isnot part of the fina! PDP-X software
system, it will be ¢ means of developing the PDP-X sofiware system.

EXAMPLES OF USACE

FORTRAN 1V, DDT, MAINDEC

9 ¥g N

6. DOCUMENTATION

6.1 MAJOR ASPECTS

The maintenance of XAP6 will be facilitated by the following documents:
]

1) Macro flowcharts
2) Table formats i
3) Heavily documented listing

6.2 CHECKOUT | ~ -
XAP6 will be checked cut by the implementor in the following manner.

1) All subroutines will be debugged.
2) Checkout of simple as'iemb!y statement,
3) Exiensive checkout of symcx rules, :
4) Comprehensive checking of ihe complete system.
When fhe above checkout has been completed to the satisfaction of the
implementor, the program will be tiuned over to QC for further checkout.

6.3 MARKETING
Becouse of some of the fectures in XAPé, it compores favorably or even better
than cH assemblers for existing 16 bit computer

]

Some of these features are:

1) MACROS
2) CONDITIONALS
3) EOPDEFS
) Expressions
5)" Varigble length byte operaiions
) Automatic relative addressing
7) Literal pooling
8) Booleans
9) Relocatable
10) Globkal sections
) Extensive error chacking
12) Device independence
) Free form ,
14) Variable length, symbol, litera!l and macro storage
15) Taokes advantage of more core :

