
PDP-1 PROGRAM LIBRARY

NUMBER: Digital - 1 - 3 - S

NAME: DEC Debugging Tape

AUTHOR: A. Kotok - DEC (MIT-i)

DATE: Writeup revised August 131 1964

SPECS: MS, ME - SA 6000

ABSTRACT: DDT facilitates online debugging.

DDT-1 PROGRAM DESCRIPTION

DEC - 1 - 3 - S
-page 2

Users of most computers, especially large-scale ones, are familiar

with the procedure of submitting a new program for a run and re­

ceiving, along with the compilation and assembly listings-, a dump

and perhaps a storage map of the symbols used, together with a few

remarks about the failure of the program to run properly. If the

user is lucky enough to be present when his program is processed,

he may get additional information from the console lights, motion

of tapes, etc., but his correcting must be done away from the ma-

chine. Getting a program to work under these conditions takes a

long time.

DDT helps shorten this debugging time by allowing the user to work

on his program at the computer, to control its operation, and to

modify the program or its data at will. Tracking down a subtle er­

ror in a complex piece of coding is a laborious and frustrating

job by hand, but with DDT's breakpoint faCility, the user can in­

terrupt his program at any point and examine the state of the ma-

chine. In this way, he can quickly locate sources of trouble.

The programmer may insert corrections and patches and try them out

immediately; those that work can be punched out on the spot in the

form of loadable patch tapes, eliminating the necessity of crea­

ting new symbolic tapes and reassembling each time an error is

found and remedied. DDT also maintains a symbol table, allowing

a programmer to discuss matters with the computer in the language

of his own program.

DEC - 1 - 3 - s
page 3

DDT occupies registers 6000 to 7750. The starting address is 6000.

DDT carries with it a permanent table, starting at 5777 and exten­

ding toward 0, consisting of all standard defined PDP~1 mnemonics.

This may be augmented by symbol definitions from the user's program

tape or from the keyboard.

DEFINITIONS

A symbol is a string of from one to three letters or numerals. A

number is a string of up to 6 digits.

An expression is a string of symbols and numbers separated by the

following characters:

space

+

v

! t~~~ftion character meaning arithmetic

a ,.eparation character meaning arithmetic
+ \plus) _

a ~eparation character meaning arithmetic
- \ml.nus)

a separation character meaning boolean in­
clusl.ve or.

a separation character meaning boolean and

All other characters are either used for control or are illegal.

When a register is oEened, its contents are printed out and become

available for modificaction.

When a register is closed, any modifications requested are made

and further access to the register is denied until it is opened

again.

DEC - 1 - 3 - S
Page 4

Most DDT operations are specified by a single letter in upper case.

TYPing such a symbol followed by a carriage return causes DDT to

perform the operation.

In the following discussion, all numbers are octal integers. In

the examples, tlldc" , "tab", and "beg" are symbols in the user's

hypothetical program. "c(r)" means "the contents of register Rn.

All underlined expressions in the examples are those typed by DDTJ

expressions without underlining are those typed by the user. DDT

responds to errors by typing a, It? .. and ignoring the error. The

user may cancel a line at any time before the carriage return, by

typing x (multiplication sign).

USING DDT

~he user first reads DDT into the computer. All subsequent ope­

ratiur~3, including loading the program to be debugged, are per­

formed through DDT on the typewriter. All printed output appears

on the typewriter.

Loading the Program

Z All of memory through the highest register not

used by DDT (i.e., to the bottom of the symbol

table) is set to zero.

fa<laZ

DEC <3D 1 - 3 ... s
page 5

Zero memory between fa and la except that part, - -
if any occupied by DDT.

K DDT's symbol table is restored to its initial

list of permanent symbols. If any of these have

been mod1fieda the original value 1s not re­

stored.

Y A binary tape in the reader is read into

memory. No new 'symbols' will be entered into

DDT's table. The tape is read into storage bet­

ween the limits in register M+1 and M+2. If a

checksum error is encountered~ the program will

stopo It is then possible to move the tape back

one block, restart the reader, and press Continue

to continue reading.

T Read a Macro Symbol Table and merge it with the

existing table~ Definitions on tape take pre-

cadence over definitions in storage. The spe­

cial symbols is, 28, up to 95, are not entered3

The lowest register occupied by the symbol

table is typed out upon completing reading

the symbol section of the tape~ This number

may be found in register Fa Checksum errors

are handled as in YG

punching Operations

DEC-1- 3 - S
6 Page

DDT w1ll punch a standard Macro format tape with the title in read­

able format,

L Put DDT into the title punch listen mode. Charac­

ters typed in are punched out in readable format

on paper tape. Terminating characters are tab,

carriage return, or back-space, which do the f01-

lowing:

tab: sets DDT to.punch read-in-mode data blocks~

carriage punches a standard input routine and sets
return: .

back
space:

DDT to punch standard checksum data blocks.

sets DDT to punch standard checksum data

blocks but punches no input routine.

fa<lan Punches data blocks from the first address to the

last address in the format specified by Labove.

The first address and the last address are any sym­

bolic expressions where fa is less than or equal to la~

adrJ Punches the start (jmp) block to the address specified

to denote the end of the binary tapeo

• (cen- When a register is open, make the modification, if
(ter dot)

any, and punch it in the format specified by ~.

Example:

DEC - i - 3 s
page 7

Punch out registers 4-10 and 100-350, in standard

checksummed blocks. The program's name is MICRO and it

starts at 100.

L (carriage return)···

MICRO

4<10D 100<350D

program Examination

100J

These operations allow any register in memory to be examined and

modified.

/ This is the register examination character. The expres­

sion typed immediately preceding the / is the address

of the register to be opened.

Example 1 When the user types

ldc 20/ DDT will immediately move to the next

tab stop, print out the contents of the

register ldc 20, and skip to the fol­

lowing tab stop. The resulting line

might look like this:

ldc 20/

ldc 20/

add 2653

If the user wishes to change the con­

tents of the register, he types in

the new information:

add 2653 add 2663

DEC - 1 - 3 - s
page 8

Carriage This causes DDT to place the new information in the open
Return:

register and to close it. If no modifications were typed

before the CR~ the register is closed unchanged.

/ (al- The slash may be used to open a register addressed by the
ternate
use) currently opened one. If in example 1 the user wished

,
>

to examine the contents of location 2653, he would have

typed a "/" instead of the modifying instructiono The

results may be looked like this.

Example 2

Idc 20/ add 2653 / 1sp 3062

Here~ isp 3062 is the contents of register 2653, which

is now open. The previously opened register; ldc 20,

has been closed!9

The "greater than" sign works like / except any mod1f'1-

cations to the opened register will be made before the

register addressed by the new contents of the closed re­

gister is opened.

Example 3

ldc 20/ add 2653 add 2663) 7044

The contents of register 2663 is 7044."
Use of u)" does not alter the sequence of locat1ons3

Back
Space:

DEC-1-3-s
Pa.ge 9

This has the same effect as a carriage return, in that it

closes an opened register. The next register in sequence

is then openede In EXample is typing a backspace would

cause register ldc 21 to be openedJ thus:

EXample 4

ldc 20/

ldc 21L

ldc 20/

ldc 21/

add 2653

·dac 600

add 2663

Likewise in EXample 2:

add 2653 /

dac 600

isp 3062

(backspace)

(backspace)

Note that the sequence of locations established by loc 20

is not altered by the use of It/It to open a chain of suc­

cessively addressed reg1sters$

t Up arrow has the same effect as backspace except that the

preceding register in the sequence is opened.

EXample 5

ldc 21/

ldc 20/

dac 600

add 2653

t

tab This causes an opened register to be closed after modi-

fication if anyJ the register whi~h is now addressed by

1ts contents is opened$ establishing a new sequence.

·Substituting a tab for a backspace in Example 4 would

have the following result: J!!lSs

EXample 6

ldc 20/

2663/ -
ldc 20/

2663/

2664/

add 2653

Jda 235

DEC -- 1 - 3 S
Page 10

add 2663 (tab)

a backspace would now result in:

add 26653

jda 235

dzm ldc 35

add 2663 (tab)

(backspace)

The backspace may be used at any time. DDT always re­

members the last register to be opened in normal sequence

(that 1s~ by any method except the alternate use of

"I" and ">") and will open the next sequential register

any time a backspace is typed. Intervening carriage re-

turns or other operations have no effect on the sequence.

Verification of Program in Memory
. - .. _ ... ~~-'- -~ .---

To discover if a program in memory is unchanged, core may be cheeked

against the binary tape by use of:

V reads a binary tape in Macro binary block format and com­

pares it against memory between the locations specified in

M+1 and M+2 III No change is made to memory. Discrepancies

are typed out in the rorm~

location/ memory tape

Checksum errors may be handled- as -in YQ

Mode Control

DEC=i mr 3=s
Page 11

The preceding examples show that information may be entered and

absolute octal or decimal integers; register addresses may be rela-

tive or absolute. DDT can be conditioned to print information in any

or these modes. The user; however, is never restricted and may al-

ways use the representation most convenient when typing input.

The first two operations below determine the form in which DDT

types out register addressesJ the second two determine the forms for

other 1nformatione

o conditions DDT to type out locations in absolute octal -
form" e.g:

2663/

R . sets the mode to print location addresses relative to a

c

s

program symbol, thus:

ldc 21(
sets the information mode to print octal integers (~-

stants)i thus/

302653

sets the information mode to print symbolic expressions:

dzm ldc+35

H puts DDT into the hoctal mode. All numeric printouts

are in octale

U puts DDT into the unhoctal decimal mode~ All numeric

printouts are in decimals

DEC - 1 - 3- s
page 12

causes the last numeric value typed to be taken as deci-

mal on input~ The I must immediately follow the numbere

causes the last three characters typed in to be taken as

th~ir concise code value. This applies only to letters

or numbers ...

EXample 7

Ide 50/

Ide 50/

o abc" (c .. r.) "-
616263

While operating in one mode~ the user sometimes wants in­

formation in another form. He can force this representa­

tion without leaving the current mode, by using the follo­

wing operators.

= causes the last previous expression typed by DDT or the

user to be printed as an int~ger. Its use is illustrated

below.

EXample 8

Ide 20/ add 2653 = 402653

types out the last quantity as an instruction

Example 9

Ide 20/ 402652
L

add 2763

types out the last quantity as concise code characters in

the order, left, middle, rlght~ Spaces are deletedQ

Example 10

ldc+50/ 616263 abc

[

J

DEC - 1 ..." 3 .,., s
page 13

the same as /~ but forces printout as an octal constante

Example 11

ldc 20[302653

the same as / but forces printout as an instruction.

EXample 12

2664 J dzm Ide 35

Special Registers

There are several registers in DDT that hold information of interest

to the .user. These registers may be opened and modified; they are the

only ones in DDT that may be so accessed. The names for these regis­

ters ca~ be used like any other symbolsJ only remember that they are

always capitalizede

A holds the C(AC) any time DDT is running.

I holds the C(IO) any time DDT 1s running.

F contains the address of the lowest memory location occu-

pied by DDT's symbol table 0 Its contents will decrease

by 2 every time a new symbol is defined.

M contains the mask·used in word searches. The two regis-

ters innnediately following M contain the limits of the

search. When DDT is first read into m5i!lor~r.f 1:1 contains

777777 J M+1 contains 0, and.M±£. contains 7777. searching

always terminates the address specified by C(F)

whichever is smaller. Register 1i immediately follow

register .I. in DDTe

DEC - 1 - 3 ... S
Page 14

Running the pro~ram; Breakpoints and TraE"s.

The operations in this group allow the user to control the running

of his program by starting and interrupting it whenever he wishese

kG this command causes machine control to go to the location

specified by the address part of express1onk. The C(AC)

and the C(IO} are placed in the AC and IO respectively

and program flag 1 and the sequence break system sta-

tus are restored. If a breakpoint has been requested,

it will be inserted~

The most common use of G is to start the user's program:

begG

TYPing G alone is an error.

This command causes DDT to insert a breakpoint at

location ~ when control is passed to the program. At

that time, the contents of k are saved, and a jda is - -
substituted. When the user's program reaches the

break location, control returns to DDT. The C(AC),

the C(IO), and the status of program flag 1 and the

sequence break system are saved (DDT. uses only prog­

ram flag 1); the address of the break location is

printed out, followed by a right parenthesis, tab,

and the contents of the AC. The user may now ex­

amine and modify his program, and then return

control to it.

Since there is only one breakpoint, the location may be

moved simply by requesting a new one.

If ~ is typed without an argument, any existing bre

point is removed e

RESTRICTIONS:

DEC - 1 - 3 - S
Page 15

The user must not place a breakpoint at an instruction

which is modified during execution of the program, nor

at any instruction which is used as data by the program,

nor may he place a breakpoint at a subroutine call which

is followed by arguments to be picked by the subroutine,

since the call will be executed from DDT. After break­

ing at a subroutine call(on a ~ or a Jml) the user

may not place the next breakpoint within the sub­

routine being called. Note that one may successfully

break on skips as well as normal subroutine jmps.

P after a breakpoint has occurred J this command allows

the user to continue his program from the point of

the break. The C(AC) and C(IO), program flag 1 and

sequence break status are resto·red, and if a new

breakpoint has been requested, it is inserted. The

instruction at the location of the original break-

point is executed, and the program continues.

Frequently, ·the user will want to insert a breakpoint

in a loop in his program. If so, he probably will not

want a break to occur every time the program passes

through that location. He may delay the break until

the program has encountered the break location a spe­

cified number of times by typing an expression before

the P, thus:

250·p

The break will then not occur until the locatfon has

been encountered 250 times.

Example 13

Ide 30B

bega

Ide 30)

•••

• • •

p

{etc.}

27305

DEC - 1 - 3 - s
page 16

. In this example, a breakpoint is requested for register

loc 30. The user starts his program at beg, and when the

break location is reached, its address is printed out,

followed by the C(AC). (Note that Ide 30 is not opened.)

After any examination, the user asks the program to pro­

ceed by typing a P. The break at Ide 30 is still in ef­

fect.

Symbol Definition

Quite often3 it is desireable to define new symbols for program uses,

for instance, in naming the first location of a patch. DDT will ac­

cept new definitions, appending each one to the lower end of the table (

Each definition requires two registers of memory. Any existing sym­

bol may be redefined, including those in the permanent tableu

New location symbols may be defined in a way similar

to that used in MACRO •.

Example 14

2663/ jda 235 her,

(der)

DEC -. 1, 3 .., S
Page 17

The symbol her is assigned the value 2663(/ DDT types a

tab to indicate that the symbol has been acceptedj the

register remains open.

when preceded by a legal symbol, causes that symbol to

be defined as the address part of the last quantity ty­

ped by DDT or the user.

EXample 15

her/ jda 235 tenO

her/ jda tem

New symbols may be defined at other times using paran-

theses as follows:

Example 16

ldc 30(aeg)

The new symbol, ~ is assigned the value of the ex­

pression ldc 30, where ~must have been previously de­

fined.

searching

These operations disclose if a word or address is or is not present

in a given section of memory. They also allow a search for certain

parts of a word (for instance, all lsp instructions, regardless of

address). USing the mask in M and the limits in the following two

registers,. the user may search any part of memory except that OCCU-

pied by DDT itself. Only those word positions. which correspond to

those containing ones in M are considered in the searchs The lower

limit is determined by the C(M+l), the upper limit by the C(M+2111!"~>"·:~i,!III.-. '.:;',.,:
or C(F) ~ whichever is smaller. _ ,

DEC -= :1 ...,. 3 - s
page 18

DDT will search for registers whose contents have the

value of the expression ~~ masked by the C(M)e The lo­

cation and contents of every such register are printed

out. using W without an argument is an errore

kN acts as W but searches for those registers whose con­

tents are not equal to ~.

kE causes DDT to search for those registers whose contents

have an effective address equal to the expression k" For

this purpose, indirect addressing chains are followed to

a depth of 100. . The mask is in effect here also.

Example 17

Assuming that~ contains 777777; we wish to search

for all registers between 500 and 1000 which con­

tain the instruction lac 650. First we set the 11-

mits; then we request the search.

M 1/ 0 500 (backspace)

~ 11777 1000 (cr)

lac 650W

lac 650

lac 650

DEC - :1 ~ 3 ,,~~ s
page 19

to search the same section of memory for all i~ instruc-

tions would now require a chw!ge of the masks thus:

~ 777777 760ooo(cr)

ispW

~sp 1604

isp 1107

isp 1604

The mask causes only the instruction part of the words

to be examined.

Miscellaneous Operation

kX The instruction k will be executed. If it is not a jump

to some part of the user's program, control will remain

with DDT. Any instruction including skips and sub­

routine calls may be used with XO

Example 18

clax

Q This always has the value of the last previous quantity

typed. Its usefulness is best illustrated "t;y an exam-

plea

Example 19

Ide 30/ add list 25

•

DEC - 1 - 3 - S
page 20

Suppose we wished only to change the address to list~ 24e

Instead of typing the whole expression Q can be used:

Example 20

Ide 30/ add list 25 Q-1 (cr)

Used by itself, that iS I not as part of a symbol, the

period always refers to the last location opened by DDT

in the normal sequence.

A common use is illustrated:

Example 21

Ide 20/ add 2653

.-1/ lac list 30

add 2663 (er)

The contents of Idc 17 is lac list 300

The period, like the backspace may be used at any time.

HINTS AND KINKS

DEC - 1 - :;. .".. S
Page 21

E will find effective address of all instructions except Jd~~ It is

principally useful for locating incorrect instructions which are mod1-

fying the programc

to adrE.

If a jda is suspected, try Jda adrw in addition - --

Breakpoints are extremely useful tor investigat1ng misbehavior of long

programs. Do not try to break at program-modified 1nstruct1ons~ or

.,lim' s or .ida I s followed by program parameters to be picked up by sub­

routines. You may break at skip instructions whether they sldp or note

Do not break at an instruction which is in the middle of a chain of

indirect addressing. A breakpoint addressed by an xct will cause a -
break l and proceed will be from the xcte

. -
If the operator types an undefined symbol l DDT will respond with a U.

All typed input up to that point is deleted autamaticallYe

If when attempting to type out a word as concise code$ the typewriter

should hang, hitting the space bar will clear it.

symbols are stored in the following format:

word n eesconcise symbol

word n+1 e its value

DEC - 1 -- 3 s
page 22

If it is desired to completely remove the last symbol der1ned~ change

register 1:. to its old value +2. F must never contain an even number.

When trying to determine the best symbol to fit a given value, and

given two equally good symbols~ DDT will pick the one last defined

for its printout.

To return to typing in black, type a.ny1l1egal character.

There are two ways to print a block of registers. Either set the

mask to zero, set up ~~ and M+2 to enclose the area to be printed
,

and search for any value; or, if irrelevant parts of memory happen

to contain zero, merely do an N-search for zero. If you change the

mask or search limits, it is well to set them back to their usual

values when you are through.

DDT takes advantage of the status bits. Typeouts happen only if the

typewriter status bit is on, and DDT will compu~e during the typeout

time. When leaving DDT~ the typewriter status bit will always be one

The sequence break mode indicator is preserved upon entry to DDT,

via a breakpoint or "XII return. When leav1ng,tl the sequence break

system will always be cleared, and no breaks 1tlill occur as a con-

sequence of leaving DDTe

Character

0-9

a-z

" -
v

A

<
>

--+

(

)

[

]

+

•

x

/

tab

bk sp

car ret

ucJlc

- space

SUMMARY OF COMMANDS

Action

DEC - 1 - 3 - s
page 23

octal or decimal numerals and/or symbol con­
stituents

symbol constituents

take as decimal

take as concise code

print as concise code

define symbol as address typed

inclusive or

and

first argument delimiter in D and Z

modify and open register

modify and.open previous register

print as instruction

set symbol definition value

define symbol

examine register as ootal constant

examine register as instruction

minus

plus

define symbol equal to •

print as integer

current location

delete typed input

examine register

modify an open addressed register

modify and open next register

mod1fy and close register

set case

plus

Character

Mode Control

S

C

R

0

U

H

Word Searches

W

N

E

storage

Breakpoint

K

Z

B

P

G

DEC OK> 1 CEO 3 ..., s
page 24

Action

sets the mode in which DDT types
Words to symbolic.

sets the mode in which DDT types
words to octal constants.

sets the mode in which DDT t~es
cations to relative (symbolic •

sets the mode in which DDT
locations to octal.

decimal mode output.

Octal mode output.

types

out

out

out lo-

out

search for all occurrences of the expression
preceding w.
search for all words not equal to the pre­
ceding expression.

effective address search.

resets the symbol table to the initial list.
Modified initial definitions are not restored.

clears memory from 0 to C(F).

insert a breakpoint at the locations speci­
fied before the"B, or remove any breakpoint
if no address is specified.

proceed from a breakpo1ntc

go to the location specified befor"9 the Gil

Character

Loading Tapes

Punching

y

T

L

D

J

Miscellaneous

x
Q

Action

load a binary tape.

DEC - 1 - 3 "'" s
page 25

load the symbols only from a binary tape.

listen for title punch.

punch data blocks.

punch a jump block.

execute the. preceding instruct10ne

last quantity typed out by DDTe

The following symbols have as their values the addresses

of certain registers in DDT whose contents are available

to the user.

A

I

M

F

accumulator storage (for breakpoints).

IO storage.

mask used in search: l!±1 and..w. contain first
and last address of the area to be searchedo

contains the lower limit of DDT.

APPENDIX:

Extend DDT-1

Introduction

Note: The following description of the program contains only those

details which differ from DDT-i. Most of the work on this version

of DDT was done by William Mann of Bolt, Beranek and Newman, Cam­

bridge. Massachusetts.

Extend DDT (DEC Debugging Tape) is a symbolic debugging program

for the PDP-1 with Memory Extension Control (TYPe 15) and up to 16

Memory Modules (Type 12). In addition extend DDT requires a PDP-1

configuration having hardware multiply and divide routines. It oc­

cupies the upper section any Memopy Module starting at register 4600.

In addition it may use registers 7765-7777 in other modules. The

initial symbol table contains all basic PDP-1 instructions. The pro­

gram is loaded by a self-contained loader occupying registers

7751-7777 (this is the standard MIDAS absolute loader).

Operation of DDT is from the on-line type~Titer. Lower case let-

ters, numerals and period are symbol constituents; other characters,

and characters typed in upper case either are control characters or

are illegal. A symbol consists of a string of letters, numerals or

periods, at least one of which must be a letter. Only the first six

are significant. A string of digits alone is an octal number. A

string of digits followed by a period is a decimal number. A period

alone means the present location. This symbol syntax is the same as

that of MIDAS. DDT will read binary tapes and symbol punches produ-

ced by MIDAS or MACRO.

DDT-1 Appendix .
Page 2

While waiting for a type-in E~tend DDT displays the current me­

mory module it is examining in the AC lights of the console. Extend

DDT itself is located in the memory module indicated by the I/O lights.

REGISTER EXAMINATION CHARACTER

Same as /, but takes a 16 bit address and resets the cur­

rent memory module indicator (displayed in the AC while f

waiting for type-in).

FNALUATING CHARACTER

TYPes out the right 16 bits of the last quantity as

internal symbol format (sqoze code as used in the MIDAS

Assembler) •

MODE CHANGING CHARACTERS

-(overbar) Sets the word type-but mode to concise code characters.

R

nR -

Sets the location type~out mode to relative symbolic

addresses.

Sets the numeric type-out to radix n.

y

T

nT

L

PAPER TAPE COMMANDS

DDT-1 Appendix
Page 3

Reads a MIDAS or MACRO binary tape into memory between

the limits contained in M+1 and M+2. Checksum errors

cause a halt.

Read a MACRO or MIDAS symbol table merging it with the

old table; redefinitions may occur. The contents of F

(lower bound of symbol table) are typed upon completing

reading the symbol section of the tape.

Symbols are defined only for the 4K memory module with

which DDT is concerned at the time the table is read.

Symbols defined for module 408 are defined for all mo­

dules. The module can be specified using vertical bar.

For a MIDAS relocatable symbol table n is the relocation

constant.

Punches following characters in readable format on paper

tape. Terminates on:

1) .!!!?.

2) CAR.RET.

sets DDT to punch in read-in
mode.

Punches MIDAS input routine and
sets DDT to punch checksummed
data blocks.

3) BACKSPACE sets DDT to punch checksummed
blocks.

DDT-1 Appendix
Page 4

a<bD Punch out registers .! through .£ exclusive. a and bare

16 bit addresses.

z

The MIDAS checksummed loader occupies 7751-7777 and will

load either MIDAS or MACRO tapes into a single 4K memory

module. The loader will load MIDAS blocks, using 16 bit

addresses, into any memory module if the machine is in

extend mode.

OTHERS

No argumente Clear the 4K memory block DDT is currently

examining. Memory containing DDT itself is not affected.

symK The symbol ~ is removed from DDT's symbol table.

The symbols is - 9s may be typed in and will be used

for typeout.

A breakpoint may be used at a JDA or JSP call to sub­

routine which is followed by a calling sequence.

The effective address search w1l1f1nd those locations

where a JDA to the effective address exists.

A

B

C

D

E

F

G

H

I

J

K

L

M

N

o

P

Q

R

S

T

U

V

X

y

Z

SUMMARY OF CONTROL CHARACTERS

Accumulator storage

Insert a breakpoint

Set word print mode to constants

Punch data blocks

Effective address search

Lowest location in DDT

Go to

set number output mode to octal

I/O storage

Punch start (jump) block

Kill defined symbols

Listen for title punch'

Mask register

Not-word search

set location print mode to numeric

Proceed

Last quantity

DDT-1 Appendix
page 5

set location print mode to relative, or change output radix

set word print mode to symbolic

Read symbol table

set number output mode to deCimal

Verify tape against memory

Execute as instruction

Read binary tape

Zero memory

0-9

a-z

II

:)

V

A

<
>

(

)

[

]

Number and/or symbol constituents

Symbol constituents

Take as concise code

Print as sqoze code

Print as concise code

Define symbol as address typed

Inclusive or

And

Argument setup character

Modify and open addressed register

Modify and open previous register

Print as instruction

set symbol definition value

Define symbol

Examine register as constant

Examine register as instruction

-(overbar) Set word print mode to concise

+

o (center
dot)

,
=
e

x

Set module and examine register

Minus

Plus

Punch present location

Define symbol as

Print as number

Current location

Delete typed input

DDT-1 Appendix
page 6

/
tab

bksp

car ret

uc,lc

space

Examine register

Modify and open addressed register

Modify and open next register

Modify and close register

Set case

Plus

all others ignored, but respond with a ?

DDT-1 Appendix
Page 7

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	A-1
	A-2
	A-3
	A-4
	A-5
	A-6
	A-7

