
FRAP AND DECAL

DIGITAL EQUIPMENT CORPORATION • MAYNARD • MASSACHUSETTS

INTRODUCTION

The Programmed Data Processor is a high performance, low cost digital computer. A
powerfu I instruction I ist (see the PDP-l Manual), enables the programmer to take
excellent advantage of the high speed and unusually powerful arithmetic and logical
properties of the machine.

This computer and its instruction code are particularly well suited to special purpose
problem solving, with basic machine simplicity and flexible logical operations.

Writing the program in binary machine language, or even in octal for conversion to
binary, is usua Ily a tedious task. I n genera I, the programmer wants to express the
program in problem-language using alphabetic words and easily understood numbers
and symbols.

Several systems are available for PDP which enable the use of convenient symbolic
language in preparing the program. The initial program preparation is done on off­
line facilities and the described programming systems, which are loaded into PDP,
accept the initial symbolic language and prepare a final program tape which can be
read directly into PDP for performance of the program. These systems are:

FRAP An assembly program which enables program preparation with PDP
mnemonic instructions, octal numbers, symbolic addresses and other
spec ia I words.

DECAL - An assembly and a compiler program with FRAP capability plus the
capabil ity for interpreting a Igerbrai c statements and translating one
symbolic statement to several machine language instructions.

,In both cases, the result of FRAP or DECAL preparation of a symbol ic tape is a binary
m1achine language tape which is in the READ-IN MODE format for direct operation by
the computer. -

FRAP
SYMBOLIC ASSEMBLY PROGRAM

The FRAP program operates on the symbolic tape, assigning numerical values in a one­
to-one fash ion to words which will contribute to output items. These va lues are
combined into output items which are punched on paper tape during the second of two
passes required for the translation and assembly process. The machine language tape
prepared by FRAP can then be read directly into the computer.

The symbols used by the programmer to write the original program are the instruction
code of PDP-l, octal numbers, and special words which do not result in an output
item (labels and control words). The abil ity to define new symbols and to ca 1\ in
subroutines make this system powerfu I and expandable.

Symbol ic Program

Machine Language Tape

Character

Word

Statement

Delimiter

Instruction Symbols

.Numbers

Labels

BASIC FRAP TERMINOLOGY

The initial program written in alphabetic and octal
numeric symbols to be translated and assembled by
FRAP .

. The output paper tape prepared by FRAP which can be
read directly into PDP-l .

Any key on the typewriter, including upper case,
backspace, etc.

Any ordered string of characters occurring between
two del imiters 0 Various 'classes of words are instruc­
tion symbols, numbers, labels, and control words 0

A line of the typewritten symbolic program which is
compi led by FRAP into an output item (machine
instructions) •

- A character used to segregate words and statements of
the symbolic program. Word delimiters are tab, space
and comma 0 A statement del im iter is carriage return.

These are alphabetic PDP mnemonic instructions o. The
PDP instruction I ist is permanently stored in FRAP in
numerical (octal) form. I

Octal constants or addresses where assigned values are
the numbers themselves.

Register name used for symbolic addresses. The first
undefined word in a statement.

Contro I words

Output Item

FRAP defined special symbols used for controlling or
modifying the assembly process.

Three I ines of tape in binary format representing one
typewritten line of program (one data or instruction
word) .

SYMBOLIC PROGRAM FORMAT

The following example illustrates the typewritten format of the symbol i c program. The
program adds the contents of two registers which have been arbitrarily assigned sym­
bolic address names of "partial 1" and "partial 2.11 The result is stored in a register
named "tota I. II

.-----------4 Control word "org" designates the origin
or first register of the program

org 500

.--______________ ---; Delimiter--FRAP ignores words {comments}
following a comma on the line

Comment

Label--followed by tab {delimiter}

o

partial-l - 21

IOctal number I
partial-2

org 0

,begin the program

i Mnemonic symbol designating instruction'

first lac partial-l ,load the accumulator with contents of

,register "partial-I"

last

.---------1 Refers to symbolic address labelled above

dac total ,deposi t accumulator in register "total"

hIt ,last instruction of program

Signifies that a terminating character (which
r-:--~=:::'-;::::::';:::;----I starts the program in register first) is to be

placed on the binary tape

"-___ --I Control word "end" signifies the end of the
program

FLOATING POINT LANGUAGE FOR FRAP

Floating point arithmetic is handled by subroutines which are addressed by FRAP defi­
nitions. Floating point numbers are represented in the form: a x 2b. Here, a is in
the range 1/2 ~ a < 1, and b is an integer. Norma lly a wou Id be stored in -;ne
register and b in another. The subroutines are ca lied by name and may require one
operand. -

Each floating point function may be defined to make PDP-1 look exactly I ike a ma­
chine which has built-in floating point arithmetic. Registers are set aside for the
subroutines and a pseudo accumu lator (two memory registers) is used with in the rou­
tines. As an example, "floating load the contents of register X II into the pseudo
accumu lator wou Id be defined in FRAP as follows: opd fld jsp a47

The FRAP control word 1I0pd II defines fld so that each time fld is written on the sym­
bolic tape, jsp a47 is placed on the binary machine tape. The subroutine starting
address is a47. Thus the floating point subroutine fld would be called as follows:

fld ,load the floating accumulator with the contents of "all

a ,the location of register "a II must follow fld

FLOATING POINT SUBROUTINES

These routines handle floating point arithmetic and can be directly addressed by
FRAP.

Time
Symbol Function Description Reguired

fld x Load C(X)~ C(pac)2, C(X) are not changed 115 fJsec

fst x Store C(pac)~ C(X) 125 fJsec

fad x Add C(pac) + C(X)~C(pac) 660 fJsec

fsb x Subtract C(pac) - C(X)~ C (pa c) 740 fJsec

fmp x Multiply C(pac) • C(X) ~ C(pac) 700 fJsec

fdh x Divide C(pac) / C(X)~ C(pac) 750 fJsec

fsq3 Square Root tV C(pac) ~ C(pac) 4.2 fJsec

ffb n Floating to binary C(pac)
conversion (floating binary)

C(por)4 N is the
(binary) •

binary point position. Binary signed integer·
and signed faction appear in por, por + 1.
C(pac) are not changed.

Time
Symbol Function Description Required

fbf n Binary to floating C(pac), with binary point at
conversion binary position N, is converted

to a floating point number.

fsn Sine Sin. IT . [C(pac)]~ C (pa c) 5.5):i\;ec -
2

fcs Cosine Cos. IT [C(pac)]-7 C(pac) 6 ~ec -
2

fat Arctangent Tan -1 [C(pac) J --?-C(pac) 11 msec

fex Exponentia I e[C(pac)]~C(pac) 8.5 msec

fin Natural Logarithm 1n[C(pac)] ~C(pac) 2 msec

fbd Floating Binary C(pac)~[c x 10dJ~C(por) 2.5 msec
to Floating
Decimal

fdb Floating Decimal C(a c, i ET) ~ 3.0 msec
to Floating floating decimal
Binary C(pac)

floating binary

NOTES: 1. Pseudo register, actually two registers X, and X + 1

2. Pseudo accumulator, actually register pac, pac + 1

3. Requ ires no operand

4. Pseudo operand register, actua lIy registers por, par + 1

FRAP PROGRAM FOR EXPRESSiON EVALUATiON

The following program evaluates an expression and stores the resu It in- a register,
vectormagnitude. The expression is:

vectormagnitude = (a sin L\\wt)2 + (b cos 21lwt)2

I constants and program parameters

four org 0 200000 ,4 in floating point ie •• 5 (the mantissa)

3 , the exponent is 3, thus .5 x 2 cubed is 4

a ,a mantissa

,a exponent

b , b mantissa

, b exponent

templ 0

0

temp2 0

0

vectormagn itude I answer mantissa

, answer exponent

omega , omega mantissa

, omega exponent

time , time mantissa

, time exponent

I beg in program

begin fld ,omega

omega

fmp ,4 omega

four

fmp ,4 omega t

time

fst

temp 1

fcs , cos 2 pi omega t

fmp

b

fst

temp2

fmp

temp2

fst , (b cos 2 pi omega t) squared

temp2

fld

temp 1

fsn , sin 2 pi omega t

fmp

a

fst

temp 1

fmp

temp 1

fad , sum of components squared

temp2

finish

fsq

fst

vectormagnitude

hit

imp begin end

DECAL
COMPILER, ASSEMBLER AND
LINKING LOADER PROGRAM

DECAL (Digital Equipment Compiler, Assembler, and Linking loader for PDP) is an in­
tegrated programming system for PDP. It incorporates in one system all of the essential
features of advanced assemblers, compilers, and loaders.

DECAL is both an assembler and compiler. It combines the one-to-one translation fa­
cilities of an assembler, and the one-to-many translation facilities ofa formula trans­
lation compiler. Problem oriented language statements may be freely intermixed with
symbolic machine language instructions. A flexible loader is available to allow the
specification of program location at load time. The programmer may specify that
certain variables and constants are "systems II variables and constants. The symbols so
defined are universally used in a system of many routines. Thus, communications be­
tween parts of a major program are facil itated even though these parts may be com­
piled separately. Storage requirements for a large program are lessened by this
technique.

DECAL is an open-ended programming system which can be modified without a de­
tailed understanding of the internal operation. This is achieved by means of a
recursive definition facility based on a skeleton compiler with a small set of logical
capabilities. The skeleton compiler acts as a bootstrap for introducing more sophisti­
cated faci I ities.

DECAL PROGRAM FOR EXPRESSION EVALUATION

The expression eva luated above for the computation of vectormagn itude may be
written for DECAL compilation as follows:

vectormagnitude =
sqrt ((a*sin2*3. 14159*omega*t)squared+{b*cos2*3. 14159*omega*t)squared)

MISCELLANEOUS ROUTINES

One of the more important of the additional programs which are provided is the Type­
writer Interrogator Program (TIP). TIP allows the typewriter to be used most effective­
ly as an input-output link by which programs and data are examined and modified.
The features include request for printing of a series of registers, interrogation and mod­
ification of the contents of registers, and the abi I ity to request new tapes after pro­
grams have been suitably modified. Communication is done completely via the type­
writer in either octal numbers, decimal numbers, or alphanumeric codes. Register
contents are presented in similar form.

Other miscellaneous routines handle arithmetic processes, e.g. number conversions,
and communication with the input or output devices. These routines include various
format pri nt outs, paper tape and magneti c tape read in programs, and oscilloscope
character display subroutines.

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10

