®

DIGITAL EQUIPMENT COMPUTER USERS SOCIETY
DECUS MAYNARD, MASSACHUSETTS/ TWinoaks 7-8822 /TWX MAYN 816

December 2, 1963

Miss Jane Levy

Room 26-260

Massachusetts Institute of Technology
Massachusetts Avenue

Cambridge 39, Massachusetts Re: DECUS No. 31
Dear Jane:
A copy of one review is enclosed and the following is quoted:

"The program we finally worked with was the automatic multiply/divide
portion of the tape labeled "Digital=1-18a-5-MB" dated 8/21/63. Paul
McKiernan of our engineering staff did most of the bug finding. His dif-
ficulties arose both from program defects and write-up errors. He made

no attempt to correct the program tape since he was able to avoid the dif-
ficulties by slightly modifying specified procedures and adding a few rules.
These have been assembled in a revision of the write-up which | am enclos-
ing along with a copy of the working tape.

EDC also exhibits some unspecified features. An error type-out, "sce",
appears to indicate full buffer space but allows all previously loaded def-
initions fo be used without error. Also, it was found that sense switch 6
controls a punching option though it is not clear how to use this effectively.”

We are looking forward to your contribution to DECUSCOPE and the DECUS
Program Library.

Sincerely,
sti\Newman (Mrs.)

ECUS Secretary

EN:ajc
Enclosures: Copy of Program Review

\'_'/ DIGITAL EQUIPMENT COMPUTER USERS SOCIETY

DECUS MAYNARD, MASSACHUSETTS/ TWinoaks 7-8822/TWX MAYN 816

November 27, 1963 <o ke Barivels

"“P MQ&M_ :

Professor J. B. Dennis

Electrical Engineering Department
Massachusetts Institute of Technology
Room 26-258

Cambridge 39, Massachusetts

Dear Professor Dennis:

You were missed at the DECUS Meeting on November 18 and 19!
It was a good meeting but somewhat saddened by the absence of
our founding colleague, Ben Gurley. The quality of the pre-

- sentations were outstanding for such a small group. We have
initiated work on the 1963 PROCEEDINGS and will send you
copies of them.

When the 1962 PROCEEDINGS were published, 1 was very frugal
and now find | have a few extra copies. Please distribute these
among students or wherever you feel they may do some good.

With reference to the DECUS Program Library, | have two "reviews"
by users indicating possible errors in the M.1.T. Expensﬁgé‘[)ggl?"‘“‘
“Cateutarst Program. When | called M.1.T. this morning | spoke with
Mr. Ralph Butler about obtaining new tapes. He kindly offered to
run two. | am hopeful this meets with your approval and that you
may wish to have him check the faulty tape | enclose. As you know,
DECUS has been concerned with procedures for "review" of programs
prior to their certification. Any other contribution you may wish to
make to the DECUS Program Library will be appreciated. The format
of the write-up is forwarded for your convenience.

Looking forward to hearing from you again.

Sincerely,

/Elsa Newman (Mrs.)
{ DECUS Secretary

Enclosures: 1962 PROCEEDINGS (3)
DECUS No. 31 (write-up and tape)
Write-up Format

00T 1471963
DECUS

DECUS PROGRAM REVIEW

- PROGRAM

RIM

Expensive Desk Calculator LPC Digital 1-18-5-1
8§-5-2 RIM Symbol

LPC Digital 1-1
REVIEWER

M. Hill (for J. Mott-Smith, AFCRL, PLP)

’ Digitél tape 1-18-5-1 RIM must be used in conjunction with digital tape
1-18-5-2 RIM (its symbol tap'e). Before the tapes are read in, the MUS and |
DIS switches inside the cabinet must be thrown up.

In checking the arithmetic computations on page 3 of the write-up, Ex-
pression - 6 X 3/7 yields an answer of -3, To get a 3 decimal answer, the
expression must be - 6 X 3,000/7. This point is brought out in the fdllowing
paragraph on decimal digits. Likewise, the expression 100-3 x 4/9 + 6 must
contain specific decimal notation in the numerator (either 3.000 or 4,000)
to get 104.667. Otherwise it prints 105, Using no decimal significance,
4x9/7x1l, yields 55. Using 3 decimal significance, 4 x 9/7 x 11 yields i
56,573 but 4 de;:imals produce 56.5719 and 6 decimals produce 56..571142‘7:.:::‘3

In the paragraph concerning decimal digits in division, (e) states that‘u

the expression 1‘2 + . 0000 yields 1. The expression 1/2 + .0000

rounded to the 0 places of the 1/2, as does expression (a).

ields 1.0000,

The paragraph concerning significance (page 4) states that typing NS, i
~ where N is some integer less than 40, causes computations to retain results

accurate to N decimal digits. However, typing 39 S prior to typing 4 X 9/7 :
“ '

X 1l causes type out of 19 significant decimal figures followed bx 19 zeroes.

On page 6 in the section on implied rnultlpllcatlon the expression

o e

’t - 1/(n+2), n-1 (n+zz

. %
) n+t), t) A‘éhould be written (t - (l/(n +2), n- l/

) R ———
(n +2), n+t),t). » v ,

' The iteration procedure described on page 7 printed out O if no significance

level is specified. If a decimal level is chosen, it will repeat the formul until
the value of 1/n becomes O, unless sense switch 3 is on, Then the typing is
suppressed,
Usi‘ng the form of an exponent as described on page 8 - E < SIGN> < DIGITS>,
adds numbers when the sign is + and subtracts when the sign is -, 2E <+> <2, O>
_equals 4.0, 3 E <+> €2:.0> =5.0, 2B <-> <2> = 0,500 <-> <2> = 3,00,

The field size control operates as explained, If the field size is 4, typing

in . 99998 prlnts out 1. 0000, typing 1.00000 prints 1,0000, but typing 1. 01000
prlnts as 1.010. . /

In computing and printing the results of a table of values for the function
y = x2 + 3 x + 4 for values of x from 0 to 100 in steps of 1, the write-up states

that the results will be typed as a single column of alternate values of x and y

(with ss3 on):

- Using the iteration brackets, as suggested < x Eé]_o__xxx +3 x + 4 tab ((x+l),
-x = 101)> prints out vé,lues of the function y alternating with the values of x
“in steps of 1 with x equal to (x+1) times (x-101) starting with x = 0 and ending
‘\‘)vith x = 100, Hitting the tab after < x causes a print out of 0 and carriage
: _r_etu‘rn'. Again hitting tab after typing x x x + 3 x + 4 causes a print out of
4 and carriage return, Thereafter - 10 |
| 8
- 18
14
- 24

22

.

Recalculating the same function, y = xz + 3 x+ 4, for values of x from'0
to 100 in steps of 1, but using < x = UCTAB, again produces alternating values
of x and y to be printed out, However, for x it prints the correct value of x

followed by (x + 1) times (x - 10l). The form is: 0
4

1-10

2 - 18

14

A better arrangement of values of x and y typed in tabular form with e:nch

** ‘numeric value of x and the resulting value of y on the same line with proper

spacihg between the print-outs of the column, can be produced by shifting ‘rom: -
upper case to lower case and back to upper case following the equal sign typmg '
and before the UCTAB. That is,

<x=UCTAB is typed as 4}<\(Lxﬂ'={}/\}ﬁ.

This prints out

0 4
1 8
2 14

A great deal of time and many trials were completed to use the macro,
POLY, to produce the above table. The write-up is not clear in its use of the
middle dot. On page 7 of the write-up it states "in order to define an abbrevi-

ation or "MACRO", type the desired name followed by a middle dot (). EDC

will shift into red and enter the MACRO DEFINE MODE, In this mode no compué"

‘tations are done. " Further on in the same paragraph, it states, '"Middle dr)t is
the character used to leave the MACRO DEFINE MODE " However, nowhere '

in the write-up does it say to hit middle dot, shifting to Macro Deflne Mode, and :

immediately hit middle dot in the same space, leaving the Macro Define Mode to

make wrlte-up of POLY work, Typing middle dot twice in the same space & fter
= typing poly, then space bar before typing 0 is necessary to produce the prlnt

- out of the numerical values of x and y in tabular form of 2 columns,

The section describing macros as functions operates as described
~ provided sense switch 3 is up and the center dot is typed twice in the same :

: space followed by a comma.

NUMBER?
NAME ¢
AUTHOR:
DATE:
SPECS:.

NEEDED?
- ABSTRACT:

.DECUS:”

EXPENSIVE DESK CALCULATOR
Robert A, Wagner - MIT
January 2, 1963

Uses all of memory
RIM

Typewriter

EDC provides for performing arithmetic operations
on numbers typed either on or'off line, and
printing results. Decimal numbers (integers,
decimal fractions or integer-fraction combina-
tions) are acceptable; all indicated by ordinary
decimal point conventions. EDC allows the
internal storage of "variable" registers. The
names of such registers, when used in the same
contexts as typed numbers, automatically cause
their current contents to be used in the calcu-
lation, as if the contents had just been typed
in. EDC stores arbiltrary character strings for
later use as input to EDC, and for testing the
sign of partial results.

p1sDECUSH !

Page 2

EDC provides means for performing arithmetic operations on
numbers typed either on or off line, and printing results. Decimal
numbers consisting of integers, decimal fractions or integer-fraction
combinations are acceptable, all indicated by ordinary decimal point
conventions. The output of EDC is essentially the same format. In
addition, EDC allows the internal storage of often used quantities
and of partial results, in named "variable" registers. The name of
such registers, when used in the same contexts as typed in numbers,
automatically cauvse their current contents to be used in the calcu-
lation, as if the contents had just been typed in. In addition,
means for storing arbitrary character strings for later use as input
te EDC, and for testing the sign of partial results are all provided.

SIMPLE COMPUTATIONS:

1. Numbers: A number is a string of digits of any length
£39, which may or may not include a decimal point. If a decimal
point is present, it may appear anywhere within the digit string,
or at either end of it. A number which does not contaln a decimal
point is treated as an integer.

2. Operators: An operator is one of the special characters
+ | <space> | - | / | x. (Note: the symbol "[" means "or".) The
meaning of each of these operators 1is as follows:

Operator Meaning
+ or <space> add
- subtract
X multiply
/ divide

These operators can be used to cause EDC to perform arithmetic
“operations on numbers.

3. Agcumulator: EDC, like many desk calculators, contains
an internal “"working" register where results are accumulated. The
register may be gleared to zero by typing <carriage return>. Alter-
natively, its contents may be typed out before it 1s cleared. This
is accomplished by typing <tab>.

At this point sufficient concepts have been introduced to
allow the user to perform arithmetic operations on numbers he types
in and to obtain correct results.

An expression in EDC consists of several numbers separated by

»1:DECUS ¢

Page 3

cperators. Each operator uses as one of 1ts two arguments the
number typed immediately after it. (If no number is typed, a

zere is assumed). Since not all the operators listed above
asscciate, it is necessary to define the order in which operations
are performed when more than one operator appears in an expression.
Within any expression all multiplications and divisions are per-
fermed before any additions and subtractions. Except for this rule,
all operations take place from left to right.

Examples of valid expressions:?

Expressicen Meaning Equals
-1 -1 -1
2,x3-4 (2x3)-4 2
~6x3/7 ~-({6x3)/7) -2.571
100-3x4/9+6 100-{ (3x4)/9)+6 104.667
Ux9/Tx11 ((1x9)/T)x11 56.573
DECIMAL DIGITS

The number of digits to the right of the decimal point in a
number defines the number of decimal digits in the number. The
number of decimal digits in the result of any computation is always

the larger of?

{a) the number of decimal digits retained in the expression
at the time the computation is performed, and

{t) the number of decimal digits in the argument of the
cperator specifying the computation.

This is particularly important in the case of division. The division
operation rounds the quotient produced to the number of decimal
places specified in the above rule. Thus,

{a) 1/2 yields 1,
(b) 1.6/2 L .5,
{c) 1/2.000 " . .500,
{d) .0000+1/2 " .5000,
(e) 1,/2+.0000 " 1.

In example (a) both the 1 and 2 are specified to zero decimal places.
The answer, 1, is really .5 correctly rounded to zero decimal places.

KR

LIBRARY.

- @EJG%J&% 31

age

In examples (b) and (c) one of the factors was specified tc more
than zero decimal places. The answer 1s computed accurate to a
number of decimal places equal to the larger of the number of
decimal places specified in either factor. In example (4} the
.0000 specifies that the expression is hereafter to retain 4
decimal places. Hence the division i1s accurate to 4 places.,
Example (e) illustrates what appears to be an inconsistency.
However, at the time the division is performed, the numbers 1
and 2 are accurate to only 0 places. When the .0000 is typed,
the result of the division is all that remains of the original
1 and 2. Thus the quotient cannot be re-evaluated and remains
rounded to zero places when the .0000 is added in. Moral:

Type a number which specifies the number of decimal digits re-
tained in a division before attempting the division.

SIGNIFICANCEZ

In example (d) above, the number of decimal places to be
retained in future computations was specified by typing *.000C"
as the first number in the expression. An exactly equivalent
operation which allows the user to conveniently specify the number
of decimal places to be retained in all succeeding computaticns
is provided. Typing NS, where N is some integer less than ag,
causes all succeeding computations to retain results accurate to
N decimal digits.

PARENTHESES:

Any expression may be enclosed in parentheses. As 1n algebra,
the value of expressions enclosed in parentheses is computed before
operations outside the parentheses are performed. Actually, in
EDC typing (EXPRESSION) is equivalent to typing a number equal in
value to the value of EXPRESSION.

VARIABLES:

EDC provides means for storing intermediate results internally
and using the stored results in later computations. This 1s accom-
plished by means of a notation called "variables". In form, a
variable consists of a string of letters of arbitrary length.
(Actually only the last 3 letters are significant.) A guantity
may be placed in a variable (and the variable "defined") by typing:

NUMBER, NAME, where NUMBER is a number or its equivalent, and
NAME is a string of letters. This causes the value of NUMBER to be
stored in the variable NAME. The number may appear as a part of an
expression. More of the expression may follow the variable defini-
tion. In particular, another variable definition may store the same
number in still another variable. Note: The storing is not accom-
plished until some character other than a letter is typed following

 PDP

1

LlBR#RY‘

DECUS#¢
Digibad=t=t8=5—

Page 5

the first letter in the name. If the name 1s mistyped, 1t may
be deleted by typing an gyerbar () before any non-letter is typed.

Once a particular name has been used as the name in a variable
definition, 1t may be used as an equivalent to a number. The value
of this type of number equivalent is the contents of the variable at
the time it occurs in an expression. If it appears again as a name
in a variable definition, the new number replaces the old contents
of the variable,

To summarize:?

A pumber is %1) a string of digits with or withcut a single

decimal point, or (2) (expression), or (3) vapriable. Thus, the fol-
lowing are numbers:

1
10
1)

-1)
3x5+1/U-6x3/2x9)

If a is a variable, then

a
a
laly
are numbers.
IMPLTIED MQLZLZLLQAELQ&?

Since in EDC three different types of numbers exist, it is
possible to assign a meaning to the juxtaposition of two numbers
not both of type 4 or type 3. This meaning has been chosen tc be

"multiply", just as if an "x" had been present between the two

numbers. For example, if g is a variable, then

3a 3al 3(4(3)) a3a
3a+5 (3)4(3) a(4(3)) a(3)a
are all expressions, and, for example,
3a means 3xa.
Note that if you wished to multiply 3 by 4, you would have to write

"3(4)," or (3)4, rather than "34," since this, of course, is the
decimal integer thirty-four. Similarly, to compute g squared,

PDPR’

l :l;

LIBRARY"

p:sDEGUSH 3/

age

agsuming g is a variable, you must write axa, or &L&l, or ala,
rather than aa, since this last notation represents a new variable
whose name is "aa®”,

Examples of variable definitions:

(1+43),a
(3xk4) ,abe
Note2
(-1),a puts -1 in g
-1,8 puts +1 in a, since the variable definition

operates on the last pumber typed
before the comma.

Once a is defined as a variable, L@ill&”é is legal, causing
the contents of register a to be increased by 1.

The following is also 1ega1 and is a pumber:

(t-1/{n+2) ,n-1/{n+2) ;n+t) , t)
(Assuming, of course, that n and t had been previously defined.)
In order, the above expression

{1) adds the old value of & intc the number being computed
(2) increments n by 2

(3) inverts (takes the reciprocal of) this new value of n
(4) again increments p by 2

(5) subtracts the inverse of this new value of g from the
: first computed inverse

(6) adds to this difference the old value of &

(7) stores the new value in &

(8) subtracts this new value of t from the old value
saved previously.

LTERATION:

A simple means is provided for allowing EDC to repeat a
procedure several times and stop automatically. This feature is
provided through the brackets < and 2. If S is an arbitrary string
of characters (which may include bracket pairs <.0o>), ending in a

L1BRARY

»:DEGUS# !

age

number, n, then
<S>

will cause the string S to be re-interpreted each time p is
computed and found to be pegative. NOTE: Zero is pesitive
in the arithmetic scheme used by EDC.

For example,

0,t

(""ﬁ*) s
<f1{<n+2)5nm(1/(n+2)3n),k+t)yt
(=&}

.computes pi/4 by the formula
pi/l= 1-1/3+1/5-1/7. . «

The result is left in register £. The computation terminates when
the value of 1/n is computed to be zero. This will, of course, be
dependent on how many digits the significance level is set to.

MACROS:

It is often convenient to have some means of remembering some
sequences of operation. In EDC, provision is made for abbreviating
arbitrary strings of characters by completely independent names.
These names, when expanded, supply the original string of characters
automatically from memory to the rest of the processor. Thus often-
used sections of the major computation need be typed only cnce.
Whenever the particular computation is needed, it can be performed
by merely stating the abbreviation chosen to designate this particu-
lar computation.

In order to define an abbreviation or "MACROY, type the desired
name followed by a middle dot (-). EDC will shift into red and enter
the MACRO DEFINE MODE. In this mode no computations are done. In-
stead each character typed 1s entered into storage. All characters
except npiddle dot, overbar and backspace may be so entered for later
interpretation when the macro 1s expanded. The three characters
which cannot be entered into storage each have special functions in
this mode. Middle dot 1s the character used to leave the MACRO
DEFINE MODE. The other two characters are provided to facilitate
correcting long or invelved MACRO's. DBackspace is to be used to
delete characters, one by one, from the stored character string.
Each typed backspace causes the last remaining character in this
macro's storage area to be deleted. Querbar has a function analc-
gous to the "start read" key on a Flexowriter. If the particular

i
k

LIBRARY

Di%@gg,# 3

abbreviation chosen for the macro has been previously defined,
the new definition will completely replace the old. However,
while the new definiticn is in progress, an gverbar will cause
the first character in the old definition's string to be typed,
deleted from the old definition's string, and added to the end

of the new definition's string. If the end of the old definition
ig reached, an gyerbar will be typed but will not enter the new
definition's string. If sense switch 2 is on after a character
is entered in the new buffer, EDC acts as if gverbars were given
until the switeh is turned off. This allows rapid copying of the
remaining portion of an old definiticon. 7

Once a MACRO has been defined, it may be egxpanded by mentioning
its name at any time, followed by some character which is not a
letter. This character, the "break" character, will not be inter-
preted immediately. Instead, it will appear as the character fol-
lowing the last character in the MACRO expansion. Normally, when a
MACRO is being expanded, the characters in the expansion are typed
out on-line. This may be suppressed by turning on sense switch 3.
In fact, whenever EDC is in the "automatic" mode, either as the
result of iterations or macro expansions, sense-switch 3 on will sup-
press type-out of the characters being spilled.

OTHER OPTIONS?

Paper tapes prepared on the standard FIO-DEC flexowriter may
be used as input to EDC in place of the on-line typewriter. When
sense-switch 1 is ON and some character is typed (to cause EDC to
leave its typewriter listen loop), EDC will read characters from a
flexo tape in the reader until a stop-code is reached. These char-
acters will be acted on exactly as if they came from the typewriter
keyboard. When a stop-code 1s reached, EDC returns control to the
listen loop, allowing the user to turn SS1 off or to type some
character,

A number may be immediately followed by an exponent, indicating
that the number represented is the number typed, multiplied by 10
(decimal) raised to the indicated power., The form of an exponent is
E<SIGN><DIGITS>

where <SIGN> is +, SPACE, -, or is not present
and <DIGITS>» is a string of digits, representing a decimal integer.

At least one digit should appear in the string <DIGITS> if the
resultant number is to be followed with a sign.

Any number, or number equivalent may have an exponent supplied
to scale its values by integral powers of ten. However, it should

DigiE}EE%%gggg%fg/

be noted that the value of the exponent is subtracted from the
number of decimal places in the number typed immediately before
the E. The effect ¢f E is thus merely to move the decimal point.

Note: <DIGITS> must be an integer and will be taken modulo 216,

Some control is provided cver the total number of digits
‘printed befcre an E by EDC. This is accomplished by a field size
character, F, in the context <NUMBER>F. Hence, number must be an
integer <40. The new print field size bascomes «ffectlive when an
F 1s encountered and remains effective until a new F 1s typed.

The output number is correctly rounded to the digits printed,
and the position of the decimal point is correct as printed, modi-
fied “by the signed number following any output E, just as on input.
Note? This control is approximate because rounding of a number like
.G9998 to U printed digits causes an extra digit to be introduced.
Thus, the above number will print as 1.0000. In addition, any
number which prints as 1, followed by no digits other than zero,
will have an extra digit printed. For example, if the current
field size is 4, the number 1.00000 will print as 1.0000G although
the number 1.01000 prints as 1.010.

One possible use for macros is in computing and printing
several results in a specified order. For example, suppose that
a table of values for the function

y = x° + 3x + U

is to be computed for values of x ranging from 0 to 100 in steps
of 1., This particular problem can easily be solved by using the
iteration brackets. One might try:

0,x
<x tab xxx+3x+4 gab ((x+1),x-101)>

and EDC will cooperate by typing a single -column of alternate
values of x and y {(with SS3 on):

“LIBRARY:

p1gs DEGIYS#2/

Page 10

It is obvious that means for listing values in position
other than at the far left edge of the paper would be desirable,
the cperators =, UCTAB and UCCAR are provided to assist in this
formal contrecl. = is an operator similar teo TAB in its effect —-
that is, it causes a numerical typeout. However,

1) it types the "number" typed immediately before the =,
rather than the expression, as does TAB

2) no carriage return is typed following the digits

3) the "accumulator” is not cleared by the =. UCTAB and UCCAR
(tab or carriage return typed in upper case) are ignered by
the processcr, but type a tab or carriage return regardless
of the position of SS3. Using these new cperators, the
problem can be re-solved as follows?

0,x
<x=UCTAB
xxx+3x+4 tap ((x+1),x-101)>

Now, although a table of values in acceptable form has been pro-
duced, the first value of x and that of y are found intermixed with
portions of the user's typing. To help sort them ocut and to pre-
serve the completed program for further use, the entire character
string typed by the user could be defined to be a macro called,
say, POLY:

poly:0,x
<x=UCTAB CARR A
xxx+3x+4 tab ({x+1),x-101)>

Among other advantages, defining the string as a macro allows use
of the macro editing sense switches to correct typographical mistakes.

MACROS AS FUNCTIONS?

. A properly defined macro can operate in EDC as if it were a
number (of type variable for purposes of implied multiplication).
In addition, it is possible for a macro to take one argument from
the expression in which it is used. Thus, for example, it is pos-
sible to define a macro which replaces the last number typed with
that number's absolute value. The general technique is to write a
macro whose first operation is that of storing the last number in a
unigque variable, For example, the definition

name; x<+{-x),x>

allows
(a-b)name

Digitaégel@%w 31

to compute the absclute value of the number (amb)j leaving the
regsult in x. This occcurs because the string of characters repre-
sented by the abbreviation name 1is?

3X<+<“‘X) s X2
Hence, typing (a=b) name is egquivalent to typing
(a-b) ,x<+(=x) ;x>

The iteration <+(-x),x> changes the sign of the contents of
variable x repeatedly until the sign is poesitive.

Note? the plus sign follewing the < is provided to avoid the
useless computaticn of ~xxXx which would result wherever x was
originally positive, Additicn in EDC is somewhat faster than
multiplication and sheuld be the preferred operation. One diffi-
culty with this macrec is that it fails to supply the result in a
convenient form for further computations. Two operators have been
provided which simplify the operation:?

Ny, and C
Both are "deletion® cperators and may be so used even cutside
macros.

N zeros the last number typed.

=5

¢ =zeros the current expression only back to the
last unpaired cpen parenthesis. (The rest of
the current expression is untouched.)

Using these operators, the macrc "name” can be rewritten as
follows:?

name ; xN{ <+{-x) ,x>Cx)

Using this definition of "name", let us follow EDC's computation
of
(1)name

The character string seen by the processor 1s, in effect:
(1) xN(<+(-x},x>Cx)

After the N is interpreted, the value of x is 1. and the accumu-
lator contains zero, giving the effect that nc number was typed
since the operatcr which preceded the (1). In effect, then, the
number (1) has been deleted from the string seen by the processor,
although the value of this number is safely preserved in x. Now,
the computaticn inside the parentheses is performed, and when the
C is interpreted, the sum is deleted from the accumulator without

Digi &ECHS#” /

Page 12

affecting the value of any part of the expression which was
typed before the first. Since the "answer" is contained in
Xs X 18 now added into the expression, and the parenthesis

count is reduced to its value before the macro was spilled.

Using the definition of "name", either
10(a~b)name

or
({a-b)name)10

computes 10 times the absolute value of (a-b).

‘ Similarly, (a-b) name/3 computes one-third the absolute
value of (a-b).

Given the following two macro definitions, "sqr" becomes a
square root function:

aa ;xxN(<+(-xx) ,xx>C-xx) .
sqr;xN(x, y<+({ (y+x/y) .5) , 2+(y-2,y)aa>Cy) .

Now the number 9ggr has the same value (to the number of figures
specified by the last S operation) as does 3.

7

PDP

- LIBRA

