MAINDEC 1

INSTRUCTION TEST

Abstract: Instruction Test is a sequence of sixteen programs which tests the operation of all
PDP-1 instructions except the iot group. For deferrable instructions, indirect addressing is

checked. The augmented instructions are checked with the defer bit both 1 and 0. "

The programs are numbered octally (1-20). Program 1 clears memory locations 0000-7766 ,
but does not test any instructions. Programs 2-20 test every instruction at least once before

it is used; in generai, an instruction is not used within the program which tests it:" **

A RIM loader is read in together with Program 1 and remains in locations 7772 777'7 througl'iouf
the entire Instruction Test. This short loading routine is used to read in Progrcms 2- 20 How—
ever, if the loader fails to operate properly, read in mode may be used instead. Sense swafches

1 and 2 control the execution of Programs 3-20. With SS1 on, the program halts cf'r

in. With SS2 on, the program iterates. With both switches off, each progrcm is read ir i

and executed once.

CHAPTER 1

CONSOLE OPERATING PROCEDURE

The tables below describe the console operating procedure to be used when running the

Instruction Test program.

TABLE 1-1 TAPES REQUIRED FOR TEST

Instruction Test program tape.

TABLE 1-2 SWITCHES

Switch Setting Function
SENSE SWITCH 1 0 Program is executed after read in.
(Used in Programs 1 Program halts after completion of read in.

3 through 20)

SENSE SWITCH 2 0 Program is executed once and the next program
(Used in Programs is read in.

3 through 20)] Program iterates until this switch is turned off.
TEST WORD 777777 If the contents of the TEST WORD switches are
(Used in Program 3) not shown, the computer halts at Errhit 3 of

Program 3.

TABLE 1-3 LOAD SEQUENCE

b) Turn off all SENSE SWITCHES.

c) Begm reading the i-cpe using read-m mode, i.e. push down on the READ IN switch (refer

e A e e ent s el

to PDP-1 Maintenance Manual, parcgrc:ph 5-6a). The computer shoulfi read in Program 1,

execute it, fhen read in Program 2 and halt with MA equal to 0001.

o i - - T = AT
R SRR

d) Push CONTINUE switch down. The jmp and szs test runs until operator intervenes or until

an error halt occurs (running time equals 100 psec per iteration).

e) Push STOP switch down.

f) Turn on all SENSE SWITCHES.

g) Set ADDRESS switches to 0032.

e et 4+ BT S p—

h) Push down on START switch. The szs test runs until operator intervenes or until an error

halt occurs (running time equals 75 psec per iteration).

—r

i) Push STOP switch down.

i) Set the TEST WORD switches to 777777 (all on).

k) Set SS1 (SENSE SWITCiIﬁl) to desired pesition. If on, each program halts upon comple~

tion of read-in; if off, off Bt program is executed after read=in.

[) Set SS2 to desired position. If on, the next program which is read in iterates until $S2 is

turned off. If";‘f, each program is executed once and then the next program is read in.

m) Read in Program 3: (1) Use read=in mode, i.e. push READ IN switch down; or, alter-
natively, (1) Set ADDRESS switches to 7772 and (2) Push START switch down.

n) If SS1 and $S2 are both off, fhe remcunmg) programs are read in and executed in sequence.

b —— s

-

Upon completion of the Instruction Tesf the ‘computer halts with: PC equal 0001; MA equal

program flcgs on.

1-2

TABLE 1-4 PROGRAM 1 ERROR HALTS

Error No. Contents of MA Cause of Error Halt
Anyh.lt not relevant , Not a programmed halt.
TABLE 1-5 PROGRAM 1 POST-ERROR RESTART PROCEDURE
Error No. Procedure
e ———
Anyhit If cause of halt is not apparent, skip this program.
(The remaining programs may have to be read in by means
of the READ IN switch.)
TABLE 1-6 PROGRAM 2 ERROR HALTS
Error No. Contents Cause of Error Halt

Halt 0001 Not an error halt. This is the test for hlt instruction

Ervhlt 1 0003 The jmp instruction located in 0002 failed to execute the jump.
Errhit 2 0006 szs 10 or szs ' 10 error with SS1 off.

Errhit 3 0011 szs 20 or szs ' 20 error with SS2 off.

Errhit 4 0014 szs 30 or szs ' 30 error with S53 off.

TABLE 1-6 PROGRAM 2 ERROR HALTS

(continued)

Error No. C;.nmts o Cause of Error Halt
Errhit 5 0017 | szs 40 or szs ' 40 error with S54 off.
Errhit 6 0022 szs 50 or szs ' 50 error with SS5 off.
Errhit 7 0025 szs 60 or szs ' 60 error with 5SS off.
Errhlt 8 .0030 szs 70 or s;zs ' 70 error with all SS's off.

Errhit @ 0034 szs ' 10 or szs 10 error with SS1 on.

Errhit 10 0037 szs ' 20 or szs 20 efror with SS2 on.

Errhit 11 0042 szs ' 30 or szs 30 error with SS3 on.

Errhlf 12 0045 szs ' 40 br szs 40 error with 554 on.

Errhlt13 | 0050 | szs' 50 or szs 50 error with SS5 on.

Erthlt 14 0053 szs ' 60 or szs 60 error with 556 on.

Erchlt 15 0056 szs ' 70 or szs 70 error with all SS's on.

Errhit 16 3001 The jmp instruction located in 3000 failed to execute the jump.
Errhlt 17 5000 ' The imp instruction located in 4777 failed to execute the jump.
E;rhlf 18 6001 ~ The jmp instruction located in 6000 failed to execute the jump.
Other any If all the sense swiiches are off, this Half was probably caused by
other incorrect execution of a imp instruction , i.e., by a jump fo

the wrong address.

If all the sense switches are on, then this is not a programmed

halt.

1-4

Error No. Procedure

Halt The test for jmp is ready to start. Push CONTINUE.

Errhlt 1 Record the contents of PC. To restart program set ADDRESS
switches to 0002. Push START.

Errhit 2-8 Check to make sure that all sense switches are off. Set the
ADDRESS switches to 0002. Push START.

Errhlt 9-15 Check to make sure that all sense switches are on. Set the
ADDRESS switches to 0032. Push START.

Errhit 16-18 Set the ADDRESS switches to 0002. Turn on the SINGLE INST.
switch. Push START and trace the program. The first four in=
structions executed constitute the _|_rp_£ test.

Other If sense switches off == (same as Errhlt 16~18 above).

If sense switches on == Try restarting the program at 0032 using

START. If this doesn't work, try reloading the program.

1-5

TABLE 1-8 PROGRAM 3 ERROR HALTS

Error No. Cz?f'\e)\rzs C:?tzréfs Cause of Error Halt
e ————
SS1 0002 Not an error halt. The test for skp is ready to
start. Location 0000 contains program number.
Errhlf 1 0004 | The 650000 instruction failed to skip.
Errhit 2 0006 | The 654000 instruction failed to skip.
Errhlt 3 0011 The 640000 instruction skipped.
Errhlt 4 0014 The 644000 instruction skipped.
Erthlt 5 | 0020 000000 The sza instruction failed to skip..
not 000000 The cla instruction failed to clear AC,
Errhit 6 0024 - 000000 The sza instruction failed to skip.
not 000000 The lat instruction failed to load AC with all 1s
(are all TEST WORD switches on?); or the
cma instruction failed to complement whichever
bits are not zero,
Errhlt 7 0026 000000 | The spa instruction failed to skip.
Errhit 8 0030 000000 The sma ' instruction failed to skip.
Errhit 9 0033 777777 The sza ! instruction failed fo skip.
not 777777 The cma instruction failed to complement
properly.
Errhit 10 0035 777777 The spa ' instruction failed to skip.
Ervhit 11 0037 777777 The sma instruction failed to skip.
Other any Not a programmed halt.
other

TABLE 1-9 PROGRAM 3 POST-ERROR RESTART PROCEDURE

Error No. Procedure

SS1 Program is ready to start. Make sure all TEST WORD switches are
on. Push CONTINUE.

Errhlt 1-4 Set ADDRESS switches to 0003 and push START. Program restarts.

Errhit 5-11 Record contents of AC. Set ADDRESS switches to 0003. Push
START.

Other Location 0000 contains the number of the program that is in the

computer. Make sure that this number corresponds to the program
number of the error table that you checked. == Set the ADDRESS
switches to 0003 and push START down. If the halt persists, try

reloading the program.

TABLE 1-10 PROGRAM 4 ERROR HALTS

Error No. C:r;i"arx‘s Cause of Error Halt
M

SS1 0002 Not an error halt. The test for xor is ready to start.

Errhit 1 0006 Incorrect execution of xor. The exclusive-OR of 777777
with 777777 was attempted.

Errhlt 2 0011 Incorrect execution of xor. The exclusive-OR of 000000
with 000000 was attempted.

Errhlt 3 0015 Incorrect execution of xor. The exclusive-OR of 000000
(in the AC) with 777777 was attempted.

Errhlt 4 0022 Incorrect execution of xor. The exclusive-OR of 777777
(in the AC) with 000000 was attempted.

Errhlt 5 0024 The sas failed to skip when comparing equal numbers (000000) .

Errhlt 6 0026 The sas skipped properly but failed to replace the contents of the
AC. The AC initially contained 000000.

Erthlt 7 0030 The sad failed fo skip when comparing unequal numbers.

Erthit 8 0032 The sad skipped properly but failed to replace the contents of
the AC. The AC initially contained 000000.

Errhlt 9 0036 The sas skipped when comparing unequal numbers.

Errhtl 10 0041 The sas rightly did not skip, but then failed to replace the con-
tents of the AC. The AC initially contained 777777

Erchlt 11 0045 The sad skipped when comparing equal numbers.

Errhlt 12 0050 The sad rightly did not skip, but then failed to replace the con-
tents of the AC. The AC initially contained 777777.

Other any other Not a programmed halt.

Error No. Procedure

SS1 To start test push CONTINUE. (If SS1 is left on, the next pro-

gram stops at this same location after read-in.)

Errhlt 1-12 Record contents of the AC. Tumn on S52. Set ADDRESS switches
to 0003. Push START.

Cther Location 0000 contains the number of the program that is in the
computer. Make sure that this number corresponds to the program
number of the error table that you checked. =-- Set the ADDRESS
switches to 0003 and push START down. If the halt persists, try

reloading the program.

1-9

TABLE 1-12 PROGRAM 5 ERROR HALTS

Error No. Cz?fs‘rzs Cause of Error Halt

SS1 0002 Not an error halt. The test for _ci_a;c, dap, dip is ready to start.

Errhlt 1 0007 Incorrect execution of dap and/or dip. All Os should have been

| deposited into location 0063. Any Is in bits 0-5 imply a dip
error; any s in bits 6-17 imply a dap error.

Errhlt 2 0012 Incorrect execution dac. All Os should have been deposited
into location 0064,

Errhit 3 0017 Incorrect execution of dap and/or‘ﬂ. All 1s should have been
deposited info location 0063, Any Os in bits 0-5 imply a dip
error; any Os in bits 617 imply a dap error.

Errhit 4 0022 Incorrect execution of dac. All 1s should have been deposited
into location 0064 .

Erchit 5 0026 (Same as Errhit 3) -

Errhit 6 0031 (Same as Errhit 4)

Errhlt 7 0036 (Same as Errhlt 1)

Errhit 8 0041 (Same as Errhlt 2)

Errhlt 9 0044 Incorrect execution of lac. All Os should have been loaded into
the AC,

Errh(t 10 0047 Incorrect execution of lac. All 1s should have been loaded into
the AC.

Errhit 11 0052 (Same as Errhit 10)

Errhlt 12 0055 (Same as Errhit 9)

Other any other Not a programmed halt.

TABLE 1-13 PROGRAM 5 POST-ERROR RESTART PROCEDURE

Error No.

Procedure

SS1

To start test push CONTINUE. (If SS1 is left on, the next pro-

gram stops at this same location after read-in.)

Errhit 1, 3, 5,7

Record the contents of location 0063. Turn on 5S2. Push CON-
TINUE. If the trouble is in the jam transfer then error halts also

occur for dac and lac.

Errhlt 2, 5, 6, 8

Record the contents of location 0064. Turn on SS2. Push CON-
TINUE. If the trouble is in the jam transfer then error halts also

occeur for dip, dap and lac.

Errhlt 9-12

Record the contents of the AC. Turn on S52. Push CONTINUE.
If the trouble is in the jam transfer then error halts also occur for

dac, dop and dip.

Other

Location 0000 contains the number of the program that is in the
computer. Make sure that this number corresponds to the pro-
gram number of the error table that you checked. == Set the

ADDRESS switches to 0003 and push START down. If the halt

persists, try reloading the progrom.

TABLE 1-14 PROGRAM 6 ERROR HALTS

Error No.

Contents
of MA

Cause of Error Halt

e —————— e ————

SSt 0002 Not an error halt. The fest for dzm is ready to start.
Errhit 1 0010 The dzm instruction failed to clear location 0166 which contained
| all 1s.

Errhit 2 0014 The dzm instruction failed to clear location 0166 which contained
all Os.

Errhit 3 0021 Carry chain in the AC failed to propagate the length of the regis-
ter. AC should confain 000001 . |

Errhlt 4 | 0023 End-around carry i-n the AC failed to operate. AC should contain
000001. |

Errhit 5 0030 Contents of AC incorrect after indexing. AC should contain
000000.

Errhit 6 0035 Carry chain did not stop at bit 17. AC should contain 377777.

Erthit 7 0042 Carry chain did not stop at bit 16. AC should contain 377776.

Errhit 8 0047 Carry chain did not stop at bit 15. AC should contain 377774.

Errhit 9 0054 Carry chain did not stop at bit 14. AC should contain 377770.

Errhit 10 0061 Carry chain did not stop at bit 13, AC should contain 377740,

Errhit 11 0066 Carry chain did not stop at bit 12, AC should contain 377740.

Errhlt 12 0073 Carry chain did not stop at bit 11. AC should contain 377700.

Errhit 13 0100 Carry chain did nof stop at bit 10. AC should contain 377600.

Errhlt 14 0105 Carry chain did not stop at bit 9. AC should contain 377400.

Erthlt 15 0112 Carry chain did not stop at bit 8. AC should contain 377000.

(continued)

Error No. C:?ﬁ’f Cause of Error Halt

Errhlt 16 0117 Carry chain did not stop at bit 7. AC should contain 376000.
Errhit 17 0124 Carry chain did not stop at bit 6. AC should contain 374000,
Errhit 18 0131 Carry chain did not stop at bit 5. AC should contain 370000.
Ehit 19 | 0136 Carry chain did not stop at bit 4. AC should contain 360000.
Errhlt 20 0143 Ct:;rry chain did not stop at bit 3. AC should contain 340000.
Errhit Zi 0150 Carry chain did not stop at bit 2. AC sﬁould contain 700000 .
Errhlt 22 0155 Carry chain did not stop at bit 1. AC should contain 600000 .
Errhlt 23 0162 Carry chain did not stop at bit 0. AC should contain 400000 .
Other any other Noft a programmed halt.

TABLE 1-15 PROGRAM 6 POST-ERROR RESTART PROCEDURE

Error No. Procedure
- SS1 Check SS2 for desired setting. Push CONTINUE.
Erchit 1-2 Record the contents of location 0166. Turn.on S52. Set the

ADDRESS switches to 0003. Push START.

Errhit 3-23 Record the contents of the AC. Turn on S52. Set the ADDRESS
switches fo 0003. Push START. ‘ -

Other Location 0000 contains the number of the program that is. in the
| computer. Make sure that this number corresponds to the program
number of the error table that you checked. =~- Set the ADDRESS
switches to 0003 and push START down. If the halt persists, try

reloading the program.

Error No.

Contents
of MA

Contents of
Memory
Location

Cause of Error Halt

SS1

0002

Not an error halt. The fest for isp is ready

to start.

Errhit 1

0012

0050 = +

0050 = -

The isp failed to skip on a positive number.

The isp incorrectly indexed location 0050.
The correct number equals 1 more than the

contents of location 0046.

Errhit 2

0015

The isp incorrectly indexed location 0050.
The AC and location 0046 both contain

the correct number.

Errhit 3

0022

0047 = -

The isp incorrectly indexed location 0046.
The correct number equals 1 more than the

contents of location 0044,

The isp skipped on a negative number.

Errhit 4

0025

The isp incorrectly indexed location 0047.
The AC and location 0045 both contain

the correct number.

Errhit 5

0030

0047 = +

0047 = -

The isp failed to skip on a positive number.

The isp incorrectly indexed the number
777776 (contained in location 0047).

Errhlt 6

0032

The isp incorrectly indexed the number
777776 (contained in location 0047).

Errhit 7

0035

0050 =+

0050 = -

The isp incorrectly indexed the number
377777 (contained in location 0050).

The isp skipped on a negative number.

1-15

TABLE 1-16 PROGRAM 7 ERRCR HALTS

(continued)
Contenis Contents of :
Error No. Memory : Cause of Error Halt
of MA . : _
S Location: .. - -

Errhlt 8 0040 B The isp incorrectly indexed the number
377777 (contained in location 0050).

Other cny other | Not a programmed halt.

TABLE 1-17 PROGRAM 7 POST-ERROR RESTART PROCEDURE

Error No. ' ' Procedure
W
SS1 . To start test push CONTINUE, (If SS1 is: left on, the next pro-

gram stops at this same location after read-in.)

Errhit1, 2,7, 8 Record the contents of locations 0046 and 0050. Turn on SS2.
Set the ADDRESS switches to 0003. Push START. This restarfs

fhe program,

Errhit 3, 4, 5, 6 Recard the confents of lo¢afions 0045 and 0047. Turn on $52.
 Set the ADDRESS switches fo 0003. Push START. This restarts

the program,

Other Location 0000 contains the number of the program that is in the
computer. Make sure that this number corresponds to the pro-
gram number of the error table that you checked, ~= Set the

ADDRESS switches to 0003 and push START down. [f the halt
persists, iry reloading the program.

TABLE 1-18 PROGRAM 10 ERROR HALTS:

Error No. ngt;r‘:s Cause of Error Halt

SS1 0002 This is not an error halt. The test for and is ready to
start.

Errhlt 1 0006 Incorrect execution of 777777 ﬂ 777777 . The correct
contents of the AC equal 777777.

Errhlt 2 0012 Incorrect execution of 000000 ﬂi_ 777777. The correct
contents of the AC equal 000000.

Errhit 3 0016 Incorrect execution of 000000 ﬂ 000000. The correct
contents of the AC equal 000000.

Errhit 4 0022 Incorrect execution ;af 777777 EEIE 000000. The correct

' contents of the AC equal 000000.

Errhit 35 0026 Incorrect execution of 000000 ior 000000. The correct
contents of the AC equal 000000.

Errhit 6 0032 Incorrect execution of 000000 Jor 777777. The correct
contents of the AC equal 777777.

Errhit 7 0036 Incorrect execution of 777777 ior 777777 . The correct
contents of the AC equal 777777.

Errhit 8 0042 Incorrect execution of 777777 ior 000000. The correct
contents of the AC equal 777777.

Other any other Not a programmed halt.

TABLE 1-19 PROGRAM 10 POST-ERROR RESTART PROCEDURE

Error No. Procedure
SS1 To start push CONTINUE. (If SS1 is left on, the program stops at
this same location after read-in.)
Errhit 1-8 Record the contents of the AC. Turn on SS2. Push CONTINUE.
0
(Note that the and effects an MB— AC while the ior effects
| ane =
MB — AC.)
Other Location 0000 contains the number of the program that is in the

computer. Make sure that this number corresponds to the program
number of the error table that you checked. -- Set the ADDRESS
switches to 0003 and push START down. If the halt persists, try

reloading the program.

TABLE 1-20 PROGRAM 11 ERROR HALTS

Contents Contents of
Error No. of MA Register Cause of Error Halt

SS1 0002 Noft an error halt. The test for lio,

dio and spi is ready fo start.

Errhlt 1 0010 C(AC) = C(1O) Incorrect execution of dio. Should
have deposited the 1O in location

0034.

C(AC) # C(IO) Incorrect execution of lio. Should
have loaded 1O with the contents of
location 0033 (which is equal to the
AC).

Errhit 2 0014 The spi failed to skip on a positive 10.

Errhlt 3 0020 C(AC) = C(10) (Same as Errhit 1)

C(AC) # C(10) (Same as Errhit 1)

Errhlt 4 0025 The spi ' failed to skip on a negative
1O.

Other Not a programmed halt.

TABLE 1-21 PROGRAM 11 POST-ERROR RESTART PROCEDURE

Error No. Procedure

SS1 To start test push CONTINUE. (If SS1 is left on, the next pro-

gram stops at this same location after read=in.)

Errhlt 1, 3 Record the contents of the AC and the IO. Turn on 5S2. Set the
ADDRESS switches to 0003. Push START. (CONTINUE may be
used instead of the restart procedure described above. However,
an invalid error halt may occur for spi if the lio loaded in the

wrong sign.)

Errhlt 2, 4 Record the contents of the AC. Turn on S52. Push CONTINUE.

Other Location 0000 contains the number of the program that is in the
computer. Make sure that this number corresponds to the program
number of the error table that you checked. =-- Set the ADDRESS
switches to 0003 and push START down. If the halt persists, try

reloading the program.

1-20

Error No. Contents Overflow Cause of Error Halt
of MA
SS1 0002 Not an error halt. The test for add and szo is
| ready fo start.
Errhit 1 0006 off The szo instruction failed fo skip on no overflow.
on | The szo instruction failed to clear OVERFLOW.
Errhlt 2 0011 off The szo ' instruction skipped on no overflow.
on The szo and szo ' instructions failed to clear
OVERFLOW.
Errhit 3 0015 Incorrect execution of 000000 add 000000 .
Correct contents of AC equal 000000.
Errhit 4 0020 Incorrect execution of 000000 add 377777,
Correct contents of AC equal 377777,
Errhit 5 0023 Incorrect execution of 377777 add 000000 .
Correct contents of AC equal 377777,
Errhit 6 0027 Incorrect execution of 000000 add 400000 .
Correct contenis of AC equal 400000.
Errhit 7 0032 . Incorrect execution of 400000 add 000000.
Correct contents of AC equal 400000.
Errhit 8 0034 off OVERFLOW was incorrectly set or szo failed
' to skip with no overflow.
on OVERFLOW was incorrectly set and szo also
failed to clear it.
Erthlt 9 0037 Incorrect execution of 400000 add 377777.
Correct contents of AC equal 000000 .

1-21

TABLE 1-22

PROGRAM 12 ERROR HALTS

(continued)

Contents
of MA

0043

Overflow

Full-register carry failed. The number 252525

Cause of Error Halt

was added to ifself. The correct contents of AC
equal 525252,

E alt 11

0045

0 OVERFLOW was not set and/or szo ' failed to skip

on overflow.

The szo ' failed to skip on overflow and in addi-

tion failed to clear OVERFLOW.

E hir12

0051

was added to itself.
AC equal 252524,

Full-register carry failed. The number 125252

The correct contents of the

E hit 13

0055

Clear-AC-on-minus-zero failed. The correct
contents of the AC equal 1000000.

t hit 14

0057

OVERFLOW incorrectly set or szo failed to skip

on no overflow.

OVERFLOW incorrectly set and in addition the

szo failed to clear it.

! rhit 15

0063

Ripple carry failed to propagate properly.
Correct contents of AC equal 000001 .

rhit 16

0065

OVERFLOW incorrectly set or szo failed to skip

on no overflow.

OVERFLOW incorrectly set and in addition szo

failed to clear it.

vhit 17

0071

Ripple carry failed to initiate properly in some bit.

Correct contents of AC equal 252525.

1-22

TABLE 1-22 PROGRAM 12 ERROR HALTS

(continued)
Error No. Contents Overflow Cause.of Error Halt
of MA
Errhit 18 0075 Ripple carry failed to initiate properly in some bit.
Correct contents of AC equal 525252.
Errhit 19 0077 0 OVERFLOW incorrectly set or szo failed to skip
on no overflow.
1 OVERFLOW incorrect set and in addition szo
failed to clear it.
Errhit 20 0107 Incorrect execution of sub. Location 0‘1 27 contains
the correct result of the operation. (Minus 1
was subfracted from a number, which equalled 1 less
than the contents of location 0127.)
Other any other Not a programmed error halt.
TABLE 1-23 PROGRAM 12 POST-ERROR RESTART PROCEDURE
Error No. Procedure
SS1 To start test push CONTINUE. (If SS1 is left on, the next pro-
gram stops at this same location after read=-in.)
Errhit 1, 2, 8, On any overflow error, first make sure that the szo instruction op-
11, 14, 16. erates correctly (see a below) then start the program at the appro-
19 priate address (see b below) and step through it, with the SINGLE

INST. switch on, until the PC equals the address of the Errhit.

a Turn on S52; turn on the SINGLE INST. switch; set the
overflow flip=flop. (To turn on the overflow flip-flop: set

the ADDRESS switches to 0042, leave the SINGLE INST. switch
on, push START, push CONTINUE. At this point the OVER-
FLOW light should be on.) Set the ADDRESS switches to 0002;

1-23

TABLE 1-23 PROGRAM 12 POST-ERROR RESTART PROCEDURE (continued)

Error No.

Procedure

push START. Using CONTINUE step through the program until
the MEMORY ADDRESS reads 0012.

The correct sequence is:

START--MA = 0002, OVERFLOW is on; CONTINUE--MA = 0003,
OVERFLOW is off; CONTINUE through MA = 0004, 0005, 0007,
0010 and 0012. (MA = 0006 or 0011 denotes errors in the instruction.)

" b Set the ADDRESS switches. Push START.

Errthlt MA Remarks
1,2 Nothing but overflow check of a.
8 0012 The OVERFLOW should not tum on.
11 0035 OVERFLOW turns on when MA equals
0043.
14 0046 The OVERFLOW should not turn on.
16 0060 OVERFLOW should ot turn on.

19 0066 OVERFLOW should not turn on.

Erthlt 3, 4, 5, 6,
7,9, 10, 12, 13,
15, 17, 18

Record the contents of the AC. Turn on SS2; set ADDRESS switches
to 0003; push START.

QOther

Location 0000 contains the number of the program that is in the com-
computer. Make sure that this number corresponds to the program
number of the error table that you checked. =-- Set the ADDRESS
switches to 0003 and push START down. I[f the halt persists, try

reloading the program.

1-24

TABLE 1-24 PROGRAM 13 ERROR HALTS

Contents

Error No. of MA Cause of Error Halt

SS1 0002 This is not an error halt. The test for cli is ready to start.

Errhit 1 0006 The law instruction failed to clear the AC. With the AC
all Is, O was loaded (law) into it. The correct contents
of the AC equal 000000.

Errhit 2 0011 The law incorrectly executed the MBé]T7 AC.

The correct contents of the AC equal 007777.

Errhlt 3 0015 The law=0 instruction was incorrectly executed. The
correct contents of the AC equal 777777. If the
contents of the AC equal 000000 then law ' is not
complementing the AC, i.e. not sensing the defer
bit correctly.

Errhit 4 0020 The law =7777 instruction was incorrectly executed. The
correct contents of the AC equal 770000.

Errhit 5 0030 The cli instruction failed to clear the 1O (which was all
Is).

Errhlt 6 0035 The c_ll instruction failed to clear the 1O (which was all
Os).

Other any other This is not a programmed halt.

1-25

TABLE 1-25 PROGRAM 13 POST-ERROR RESTART PROCEDURE

Error No. Procedure

551 e To start test push CONTINUE. (If SS1is leff on, the next pro-

gram stops at this same location after read=in.)

Errhit 1 Record the contents of the AC. Turn on SS52; set the ADDRESS
switches to 0003; push START.

Errhit 2 Recotd the contents of the AC. Turn on SS2; push CONTINUE.
If the computer skips Errhlt 3 and stops at Errhlt 4, then the

trouble is definitely in the MBé_]]7 AC transfer.

Errhlt 3, 4 Recora the contents of the AC. Turn on S52; set the ADDRESS
switches to 0003; push START.

Errhit 5, 6 Record the contents of the IO and check to see that 1O equals AC

(since it is actually the AC that is checked for zero). Turn on S52;
set the ADDRESS switches to 0003; push START.

Other Location 0000 contains the number of the program that is in the
computer. Make sure that this number corresponds to the program
number of the error table that you checked. =-- Set the ADDRESS
switches to 0003 and push START down. If the halt persists, try

reloading the program.

TABLE 1-26 PROGRAM 14 ERROR HALTS

Contents
Error No. of MA Cause of Error Halt
SS1 0002 This is not an error halt. The test for the clf, szf, stf
' is ready to start.

Errhlt 1 0005 All program flags off: szf 7 failed to skip.
Any flag on: clf 7 failed to clear all flags.

Errhlt 2 0022 Bits 15-17 of location 0021 contain the number f
(f is octal).
Flag f off: stf f failed to set the flag.
Flag f on: szf ' f failed to skip.

Errhit 3 0033 (Same as Errhit 1).

Errhlt 4 0040 Any program flag off: stf 7 failed to set all flags.
Any program flag on: szf ' 7 failed to skip.

Errhlt 5 0047 Bits 15-17 of location 0046 contain the number f (f is
octal).
Flag f off: szf f failed to skip.
Flaf f on: clf f failed to clear flag.

Other any other Not a programmed halt.

1-27

TABLE 1-27 PROGRAM 14 POST-ERROR REST

RT PROCEDURE

Error No. Procec ire

SS1 To start test push CONTINUE. (If 51 is left on, the next pro-

~ gram stops at this same location aftc read=in.)

Errhlt 1-5 Record which instruction caused the arror. Turn on SS2; set the
ADDRESS switches to 0003; push ST RT. (To change the speed of
the program, alter the contents of | zation 0070. The number in
this location is indexed until positi- :.)

Other Location 0000 contains the number ° the program that is in the

computer. Make sure that this num
number of the error table that you ¢
switches to 0003 and push START dc

reloading the program.

2r corresponds to the program
ecked. -- Set the ADDRESS
. If the halt persists, try

TABLE 1-28A PROGRAM 15 ERROR HALTS

Contents

Error No. of MA Cause of Error Halt

SS1 0002 Not an error halt. Test for jsp is ready to start.

Errhlt 1 0105 The cal instruction failed to save the contents of PC.
(See Table 1-28D).

Errhit 2 0110 The cal instruction failed to save the contents of AC in
0100. (See Table 1-28D).

Errhit 3 0744 The first {da instruction failed to save the contents of PC.
(See Table 1-28C).

Errhit 4 0747 The first jda instruction failed to save the AC. (See
Table 1-28C).

Errhit 5 0763 The first jsp instruction failed to save the PC. (See
Table 1-28B).

Errhlt 6 1005 The third jda instruction failed to save the PC. (See
Table 1-28C).

Errhlt 7 1010 The third jda instruction failed to save the AC. (See
Table 1-28C).

Errhlt 8 1104 The third jsp instruction failed to save the PC. (See
Table 1-28B).

Errhit 9 6024 The second |sp instruction failed to save the PC. (See
Table 1-28B).

1-29

TABLE 1-28A PROGRAM 15 ERROR HALTS (continued)

Error No. Cz?f;lfs _ Cause of Error Halt

Errhit 10 6046 The second jda instruction failed to save the PC and/or
failed to save the contents of OVERFLOW in ACO.
(See Table 1-28C).

Errhit 11 6051 The second jda instruction failed to save the AC. (See
Table 1-28C).

Other any other Probably due to incorrect execution of cal, jsp or jda, i.e.
a jump to the wrong address.

TABLE 1-28B PROGRAM 15 - LOCATIONS RELEVANT TO jsp TRANSFERS

‘First EE Second LS_E Third Lsf.
AC PC AC PC AC PC

before jsp 777757 | o020 | 77020 | 1757 Vo 77ws77 L osi00
during jsp:

LS Ac 000000 000000 000000

pc . Ac 000020 001757 006100

L9 pc 0000 0000 0000

MB > PC 0757 6020 1100
after jsp 000020 | 0760 | 001757 | 021 | 006100 { 1101

1-30

TABLE 1-28C PROGRAM 15 - LOCATIONS RELEVANT TO jda TRANSFERS

First id_a Second ji:_
AC Location PC AC Location | PC
0737 6040
before jda 771737 | 000040 | 0040 | o0os0d0 | 771737 | 1737
during jda:
AC, MB 771737 006040
Lo Ac 000000 000000
PC 5 AC 000040 401737
L9, pc 0000 0000
MA 1> PC 0737 6040
A 0740 6041
after jda 000040 | 771737 | o741 | 401737 | 040 | 6042

1-31

TABLE T-28C PROGRAM 15 - LOCATIONS RELEVANT TO jda TRANSFERS

(continued)

Third-jda
Location
AC 1000 PC
before jda S cavez 006000 6000
during jda: ;
AC — MB ~ 771777
Lo,
AC 000000
PC 5 AC 006000
Lo, pc | | 0000
MA b pC ' | 1000
+1 i
L, pc 1001
after jda) 006000 . 771777 1002

1-32

TABLE 1-28D PROGRAM 15 - LOCATIONS RELEVANT TO cal TRANSFERS

Location
AC o PC MA

before ﬂ 777777 | —m———— 3002 | emm—--
during cal:

100 1> MA 000100
AC 4» MB 777777

9, Ac 000000

pc 1, Ac 003002

L%, pc 0000

MA L pc 0100

L pe 0101

after cal 003002 777777 0102 000100

1-33

TABLE 1-29 PROGRAM 15 POST-ERROR RESTART PROCEDURE

Error No. Procedure

SS1 The test for jsp is ready to start. Push CONTINUE.

Errhits 1, 3, 5, 6, Record the contents of AC. Turn on SS2 and push CONTINUE.
8, 9, 10 Use Tables 1-28B, 1-28C and 1-28D (Program 15 error halts)

to determine which transfers are not operating properly.

Errhlt 2 Record the contents of 0100. Turn on SS2 and push CONTINUE.
Use Table 1-28D (Program 15 error halts) to determine which

transfers are not operating properly .

Errhlt 4 Record the contents of 0737. Turn on 552 and push CONTINUE.
Use Table 1-28C (Program 15 error halts) to determine which

transfers are not operating properly.

Errhlt 7 Record the contents of 1000. Turn on SS2 and push CONTINUE.
Use Table 1-28C (Program 15 error halts) to determine which

transfers are not operating properly.

Errhit 11 Record the contents of 4040. Turn on SS2 and push CONTINUE.
' Use Table 1-28C (Program 15 error halts) to determine which

transfers are not operating properly.

Other Record the contents of PC and AC. Turn on S52; set the ADDRESS
switches to 0003 and push START. Use Tables 1-28B, 1-28C and
1-28D (Program 15 error halts) to determine which of the jump

instructions (jsp, jda, cal) failed to operate properly.

1-34

TABLE 1-30 PROGRAM 16 ERROR HALTS

Contents

Error No. | of MA Cause of Error Halt

SS1 0002 Not an error halt. The test for nop is ready to start.

Errhlt 1 0003 The nop was not executed, i.e. the computer stopped.

Errhlt 2 0005 The xct instruction was incorrectly executed.

Errhlt 3 0020 The indirect addressing was not executed correctly.
Make sure you were not in the extend mode. (The test
uses 5 levels of indirect addressing, but the extend mode
allows only 1 level .)

Other any other Not a programmed halt.

1-35

TABLE 1-31 PROGRAM 16 POST-ERROR RESTART PROCEDURE

Error No. Procedure

SS1 To start test push CONTINUE. (If SS1 is left on, the next pro-

gram stops at this same location after read=-in.)

Errhlt 1 Turn on SS2; set the ADDRESS switches to 0003; push START.

Errhlt 2 Turn on SS2; turn on the SINGLE INST. switch; set the ADDRESS
switches to Q004; push START. The program starts by executing the

xct instruction.

Errhit 3 Turn on SS2; turn on the SINGLE INST switch; set the ADDRESS
switches to 0015; push START. The first instruction clears AC. The

instruction is the lac ' (defer bit on) which caused the halt.

Other Location 0000 contains the number of the program that is in the
| computer. Make sure that this number corresponds to the program.
number of the error table that you checked. -~ Set the ADDRESS
switches to 0003 and push START down. If the halt persists, try

reloading the program.

1-36

TABLE 1-32 PROGRAM 17 ERROR HALTS

Error No. CZ?’{:AXS Cause of Error

SS1 0002 Not an error halt. Test for ral and ril is ready to start.

Errhlt. 1 0017 The ral s instruction (in location 0014) failed. The
correct contents of the AC are in location specified by
the address of the sas instruction in 0016.

Errhlt 2 0022 The ril s1 instruction (in location 0015) failed. The
correct contents of the IO are in the AC.

Errhit 3 0053 The rar s1 instruction (in location 0050) failed. The cor-
rect contents of the AC are in the location specified by
address of the sas instruction in 0052.

Errhlt 4 0056 The rir s1 instruction (in location 0051) failed. The cor-
rect contents of the IO are in the AC.

Errhit 5 0102 The ral 59 instruction failed to rotate the AC correctly.
The correct contents of the AC equal 070777.

Errhlt 6 0105 The ril s9 instruction failed to rotate the 1O nine bits.
The correct contents of the 1O equal 070777.

Errhit 7 0111 The rar instruction failed to rotate the AC nine bits.
The correct contents of the AC equal 777070.

Errhit 8 0114 The rir instruction failed fo rotate the 1O nine bits.

The correct contents of the 1O equal 777070.

1-37

TABLE 1-32 PROGRAM 17 ERROR HALTS (continued)

Contents

Error No. of MA Cause of Error Halt

Errhlt 9 0120 The rcl instruction failed to rotate the combined registers
nine bits. The contents of the AC are incorrect. The
AC should contain 777777 .

Errhlt 10 0124 The rcl instruction failed to rotate the combined registers
nine bits. The contents of the IO are incorrect. The
10 should contain 070070.

Erchit 11 0130 The rcr instruction failed to rotate the combined registers
nine bits. The cantents of the AC are incorrect. The
AC should contain 070777.

Erchit 12 0134 The rcr instruction failed to rotate the combined registers
nine bits. The contents of the 1O are incorrect. The IO
should contain 777070. '

Errhit 13 0140 The ral instruction rotated the AC although no rotation
was specified. The correct contents of the AC equal
777070.

Errhlt 14 0143 The ril instruction rotated the 10 although no rotation was
specified. The correct contents of the 1O equal 777070.

Errhlt 15 0147 The rar instruction rotated the AC although no rotation
was specified. The correct contents of the AC equal
777070.

Errhlt 16 0152 The rir instruction rotated the 10 although no rotation

was specified. The correct contents of the O equal

777070.

TABLE 1-32 PROGRAM 17 ERROR HALTS (continued)

ntents
Error No. Co Cause of Error Halt

of MA

Errhlt 17 0155 The rcl instruction changed the contents of the AC al-

though no rotation was specified. The correct contents

of the AC equal 777070.

Errhlt 18 0160 The rcl instruction changed the contents of the 1O although
no rotation was specified. The correct contents of the 1O

equal 777070.

Errhit 19 0163 The rcr instruction changed the contents of the AC al-

though no rotation was specified. The correct contents of

the AC equal 777070.

Errhit 20 0166 The rcr instruction changed the contents of the [0 al-

though no rotation was specified. The correct contents of

the |O equal 777070.

Errhit 21 0203 The rcl instruction failed during execution of a 36-bit
rotation. The contents of the AC are incorrect. The
correct contents of AC are in the location specified by

the address of the li_o instruction in 0173.

Errhlt 22 0206 The rcl instruction failed during execution of a 36-—bi1'
rotation. The contents of 1O are incorrect. The correct
contents of 1O are in the location specified by the address
of the lio instruction in 0173 (the correct contents of 1O

are also in AC unless Errhlt 21 occurred).

1-39

TABLE 1-32 PROGRAM 17 ERROR HALTS (confinued)

Error No.

Contents
of MA

Cause of Errc;r Hdlf

Errhlt 23

0222

The rcr instruction failed during execution of a 36~bit
rotation. The contents of the AC are incorrect. The
correct contents of the AC are in the location specified

by the address of the lio instruction in 0173.

Errhlt 24

0225

The rer instruction failed during execution of a 36-bit
rotation. The contents of 1O are incorrect. The correct
contents of 1O are in the location specified by the address
of the Li_g instruction in 0173 (the correct contents of 10

are also in AC unless Errhlt 23 occurred).

Errhlt 25

0245

Failure-to execute a series of eight rcr and rcl instruc-
tions, for a total of. 72 bits rotation. The contents of the
AC are incorrect. The correct contents of the AC are in
the location specified by the address of the lio instruction

in 0173.

Errhlt 26

0250

Failure to execute a series of eight rcr and rcl instruc-
tions for a total of 72 bits rotation. The contents of the
IO are incorfect. The correct contents of the 1O are in
the location specified by the address of the lio instruction

in 0173.

Other

any other

Not a programmed halt.

1-40

TABLE 1-33 PROGRAM 17 POST-ERROR RESTART PROCEDURE

Error No. Procedure

SS1 The test for ral and ril is ready to start. Push CONTINUE.

Errhits (ald) Record the contents of AC and/or 1O (whichever is appropriate).
Turn on SS2, set the ADDRESS switches to 0003 and push START.

Other Location 0000 contains the number of the program that is in the

computer. Make sure that this number corresponds to the program
number of the error table that you checked. =- Set the ADDRESS
switches to 0003 and push START down. If the halt persists, try

reloading the brogrcm .

1-41

TABLE 1-34 PROGRAM 20 ERROR HALTS -

- Error No. ngt\fzs Ccuseﬁ of Error Halt

EOT 0000 If PC equals 0001, MA equals 0000, MB equals 000020,
AC equals 000777, 1O equals 777000, and all program
flags are on, then the Instruction Test is completed. If
not, then refer to Other under the Error Halts.

SS1 0002 Not an error halt. Test for sal and sil is ready to start.

Errhlt 1 0012 The sal instruction failed to shift the AC correctly 17
bits. The initial contents of AC were 377777; the cor-
rect contents of AC are 000000.

Errhit 2 0015 The sil instruction failed to shift the 10 correctly 17
bits. The correct contents of the 1O are 000000 (the
initial contents of the 10 were 377777).

Errhlt 3 0025 The sar instruction failed to shift the AC correctly 17
bits. The correct contents of the AC equal 000000 (the
initial contents of the AC were 377777).

Errhlt 4 0030 The sir instruction failed to shift the 10 correctly 17
bits. The correct contents of the 1O equal 000000 (the
initial contents of the 1O were 377777).

Errhlt 5 0041 The sar instruction failed to shift the AC correctly 17
bifs. The correct contents of the AC equal 777777 (the
initial contents of the AC were 400000).

TABLE 1-34 PROGRAM 20 ERROR HALTS (continued)

Error No.

L

Contents
of MA

Cause of Error Halt

Errhlt 6

0045

The sir instructions failed to shift the 10 correctly 17
bits. The correct contents of the IO equal 777777 (the
initial contents of the IO were 400000).

Errhit 7

0052

The scl instruction failed to shift the registers correctly.
The contents of the AC are incorrect. The correct
contents of the AC equal 377776. The initial contents
of the AC and the 10 were 377777

Erchlt 8

0056

The scl instruction failed to shift the registers correctly.
The contents of the IO are incorrect. The correct
contents of the 1O equal 777776. The initial contents
of the AC and the 10 were 377777.

Errhlt 9

0063

The scr instruction failed to shift the registers correctly.
The contents of AC are incorrect. The correct contents
of the AC equal 177777. The initial contents of the AC
and the 1O were 377777.

Errhlt 10

0067

The scr instruction failed to shift the registers correctly.
The contents of 1O are incerrect. The correct contents
of 10 equal 577777. The initial contents of AC and {O
were 377777

Other

any other

Not a programmed halt.

1-43

TABLE 1-35 PROGRAM 20 POST-ERROR RESTART PROCEDURE

Error No. Procedure

ECT ' End of the Instruction Test

SS1 | The rést for sal cnd.il_ is ready to start. Push CONTINUE.
Errhlts (all) Record the contents of AC and/or 1O (whichever ivs appropriate) .

Turn on 552, set the ADDRESS switches to 0003 and push START.

Other Location 0000 contains the number of tHe program that is in the
computer. Make sure that this number corresponds to the program
number of the error table that you checked. -- Set the ADDRESS |
switches to 0003 and push START down. I[f the halt persists, try

reloading the program.

CHAPTER 2

SUGGESTED APPLICATION OF THE INSTRUCTION TEST PROGRAM

The four procedures described below provide useful methods for testing the PDP-1 instructions.

a FULL TEST PROCEDURE

1) Execute Programs 1 and 2.
2) Turn on SS2. Read in Program 3 and allow it to. iterate.

3) Turn on SS1 and use the following sequence for the remaining programs (Programs

4 through 20):

i) Turn off SS2 (program currently executing, completes execution; next pro=
gram is read in and the computer halts with MA equal 0002). Note that the

number of the program just read is in location 0000.
i) Tum on SS2.
iii) Push CONTINUE (the program executes and iterates until SS2 is turned off).

or

If the state of the computer has been changed after the halt at MA equal to 0002,
then set the ADDRESS switches to 0003 and push down on START,

iv) Allow the program to iterate (Program iterates until SS2 is turned off).
v) Repeat steps (i) through (v) until the Instruction Test is complete.

b DAILY TEST PROCEDURE - Before beginning normal operation of the computer, ensure
that the instructions are working correctly by executing the Instruction Test once (SS1 and

SS2 both off for Programs 3-20).

c COMPUTER MALFUNCTIONS - Attempt to perform the full checkout (E above). If
Program 1 fails to execute, skip it since it does not test any instructions. However, if
the RIM loader fails to execute correctly then read in the remaining programs by means

of the following sequence:

1) Read in Program 2 using the READ IN switch.

2-1

2) After executing Program 2, turn on SS2 and leave it on.
3) Push down STOP.

4) Push down on the READ IN switch (the next program is read in and executes

repeatedly).

5) Allow the program to iterate.

6) Repeat steps 3) through 6) until the Instruction Test is completed.
d MARGIN CHECKS - Perform margin checks using the full test procedure (a above).

Detailed methods for checking margins are presented in paragraph 11-7k of the PDP-1

Maintenance Manual.

2-2

CHAPTER 3
PROGRAM DESCRIPTION

3-1 GENERAL

Instruction Test is a sequence of programs designed to test the operation of PDP-1 instructions.

The test checks the following instructions: from the arithmetic group - add, sub, idx, isp;

all the logical instructions; all the data handling instructions; all the shift/rotate group; all

the skip group; and all the operate group (except lat, which is only partly tested).

The Instruction Test comprises a series of sixteen programs (octally numbered 1 through 20).
The first program clears memory and locates a RIM loader in the high end of core. (The RIM
loader is a short sequence which simulates the read-in mode normally controlled by computer
hardware; the loader reads a paper tape in read=in mode format.) This first program of the
instruction test does not have any error halts; the program assumes that the few instructions it
uses are working properly. However, this program is not an essential part of the Instruction

Test, and may be skipped if it doesn't run properly .

The remaining fifteen programs of the Instruction Test check the instructions listed above
(refer to table 3-1). In general, a given instruction is not used within the same program that
tests it; the few instructions used within the same program are used only after the program has
already checked them. Every instruction is checked at least once before it is assumed to be

working (refer to table 3-2).

3-1

LIST OF INSTRUCTIONS TESTED BY MAINDEC 1 - INSTRUCTION TEST

TABLE 3-1

(Each instruction is listed alphabetically with the number of the program which tests it.)

Instruction | ;’-‘:;;::y Instruction ;:;::y Instruction - ;re;;::y
add 12 jmp 2 scl 20
and 10 isp 15 scr 20
cal 15 lac 5 sil 20
cla 3 lat* 3 sir 20
clf 14 law 13 sma 3
cli 13 lio 11 spa 3
cma 3 nop 16 spi 11
dac 5 ral 17 stf 14
dap 5 rar 17 sub 12
dio 11 rel 17 sza 3
dip rer 17 szf 14
dzm) ril 17 $Zo 12
hit 2 rir 17 szs 2
idx) sad 4 xct 16
ior 10 sal 20 xor 4
isp 7 sar 20 650000 3
jda 15 sas 4 654000 3

* only partially tested

3-2

TABLE 3-2 INSTRUCTIONS TESTED OR USED WITHIN EACH
PROGRAM OF MAINDEC 1 - INSTRUCTION TEST

(Programs are listed in numerical order. Each instruction is listed in the order of test under

the program which tests it.)

Inst. Checked Instructions Used Within Program
by Prog. [RIM 2 51 &7 10] 11| 12] 13] 14 77720

hit 2 X X X | X X X X X X X X
imp | 2 X X x | x x‘ x x| x| x]x % | x
s 2 x | xIx | x | x|x|x|x x | x
cla 3 % | x « | x |«

cma 3 < | x < | x Ny
sma 3 X

spa 3 % .

sza 3 X >< x | x [x {x|x .
654000 3
650000 3 . N

lat 3*

xor 4

'sas 4 X X I'x {x | x | X x | x
sad 4 X «
dip 5

dap 5 N N}
dac 3 x{x x | x | x x
lac 5 x|{x | x x | x | x x | x

*only partially tested

TABLE 3-2 INSTRUCTIONS TESTED OR USED WITHIN EACH
- PROGRAM OF MAINDEC T - INSTRUCTION TEST

(continued)

Inst, | Checked Tnstructions Used Within Program
by Prog. RIM 5167 V101111 12713141 151161 17T 20

dzm 6 N}

idx 6 x RN - -

isp | 7 * -
and 10 - -

ior 10 -

lio 1 - -

dio. 11 x Ny .
spi 11 X

add 12 -

$zZ0 12 §

sub 12 -
v 3 X | X X

cli 13

clf 14

stf 14)
szf 14

isp 15

jda 15

cal 15

nop 16

xct 16

ral

17

TABLE 3-2 INSTRUCTIONS TESTEij OR USED WITHIN EACH
PROGRAM OF MAINDEC 1 = INSTRUCTION TEST

(continued)

Inst.

Checked
by Prog.

Instructions Used Within Program

RIM

w

415

)

7

10

11

12

13

14

i5

6

17

20

ril

17

rar

17

rir

17

rel

17

rcr

17

“sal

20

sil

20

sar

20

sir

20

sel

20

scr

20

rpb

not
tested

3-2 RIM LOADER

The RIM loader, read in with Program 1, reads a tape in read-in mode format, thereby simu-
lating computer read-in mode. The RIM loader occupies locations 7772 through 7777. The
loader remains in core throughout the entire Instruction Test. |t may be used to read in any

or all of the other programs in the test. Sense switch 2 controls this option.

A tape in read-in mode format contains a series of instructions; the even numbered instructions
make up the program to be stored in core; the odd numbered instructions are dio_instructions,
each having an address that determines the storage location for the next (even numbered)
instruction. The last even numbered instruction of the tape may be followed by a jmp com-
mand. This jmp specifies the starting address for the stored program and, after read-in is

completed, causes program execution to begin.

The RIM loader reads in an odd numbered instruction and, by sensing the sign of the 1O, checks
to determine if the instruction is a dio ora jmp. A +lQO indicates that the instruction is dio.
(since the dio op code = 32); conversely, =IO indicates jmp (op code =60). If the instruc-
tion is a dio , the loader reads in the next instruction and executes the dio. On the other
hand, if the instruction is a jmp, the computer executes the jmp thereby leaving the RIM
loader and beginning operations at the address specified by the jmp. In this way, the RIM |

loader simulates the computer read-in mode.

(trom Programs 1-20)

rpb =

[c(10) => C(temp)]

NO

YES

pb =

1

axecute C(temp) |

Figure 1 Instruction Test RIM Loader

3-3 PROGRAM 1

Program 1 clears memory locations 0000 through 7766 by means of the dzm instruction. Two

of the principal reasons for clearing memory are: (1) If memory cannot be cleared, this may

indicate extensive troubles within the computer, rather than merely one defective instruction;
(2) the test for the jmp instruction (part of Program 2) follows Program 1, and clearing memory
increases the probability that a imp, executed to the wrong address, will result in an immedi-

ate computer halt.

Program 1 occupies locations 7766 through 7771, and uses location 7776 (location 7776 is also
used by the RIM loader). Program 1 first clears location 0000, and then clears successive
locations up to and including 7766. However, location 7766 is subsequently indexed so that
its final contents equal 000001, This fact can be useful in the event that the computer should
halt before reading in Program 2 of the Instruction Test. Should the computer halt with the
contents of 7766 not equal to 000001, then memory was not properly cleared by Program 1.
However, if the contents of 7766 do equal 000001 when the computer halts, then a computer
malfunction probably prevented proper execution of the RIM loader. In the latter case, the

remaining programs of the Insiruction Test can be loaded by using the computer read-in mode.

X=Q

[clear Location X |

X+ 1=2X

Figure 2 Instruction Test Program 1

3-4 PROGRAM 2

Program 2 test the hlt insfF{chion the jmp instruction, and all the szs instructions. | It has
three routines: the Fu'sf isa smgle-msfruchon test for hlt ; the second tests mp and the szs
instructions with fhe sense switches oFF the third checks the szs instructions wnfh all sense’

switches on. Operui'or mfervenhon is requnred to start the second and third rouh nes as well

as to read in Program 3.

Program 2 is automatically read in and initiated at the completion of Program 1. The first
instruction in Program 2isahlt at location 0001. This is the only time fhe hlf instruction is
checked. After the computer execu'res thls hali' the opercn‘or should ensure rhaf cll sense swn-,‘
ches are turned off. At this nme, the operator may also wish to check for ’rhe proper execu’nonj
of Program 1. Wlfh all sense switches off, the compufer is ready fo execute the second routme |

of Progrcm 2. This routine is mnhcted by pressmg CONTINUE.

The routine begins by checkmg the jmp instruction. This instruction is tested by requiring
successive jumps to locations 3000,. 4777, 6000 and 0004. These particular four addresses
were chosen so that every bit in the PC is both cleared to 0 from a 1, ‘and set to 1 from a 0.

Upon completing the jump sequence, the computer begins the sense switch check.

The sense switch check comprises a series of szs and hlt-instructions which test each of the szs

instructions beginning with szs 10 and running through szs 70. The routine checks both the nor-

mal and deferred condition of each sense switch when it is in the OFF position. The routine
then loops back to the start of the jmp check. The second routine continues to iterate until an

error halt is encountered or until the operator intervenes by stopping the computer.

If the computer halts with the contents of the MA between 0006 and 0030, then the hlt is a
result of an szs error. The particular szs error which caused the halt can be obtained from
TABLE 1-6 (Program 2 - Error Halts). A halt at any other location is probably a jmp error.
After allowing the second routine to run, the operator stops the computer, turns on all sense
switches and sets the ADDRESS switches to 0032. The operator then pushes the START to

cause the computer to begin executing the third routine of Program 2.

The third routine checks the sense switches in the UP position. This check is identical to the
sense switch test of the second routine, however, error halts are positioned in MA locations

0034~0056. See TABLE 1-6 (Program 2 - Error Halis) to define error. A halt in any other lo-
cation is not a programmed halt. The third routine continues to iterate until the operator in-

tervenes by stopping the computer.
3-8

Bef.re read-in of Program 3, the desired settings for SS1 and SS2 must be selected. SS1 deter-
mines whether the program is executed upon completion of read=in (SS1 off) or whether the com-
puter halts after read=in (SS1 on). Whenever execution of a program is completed, SS2 deter-
mines whether the next program is read in (S52 off) or whether the same program iterates

(SS2 on). The setting of SS1 has no effect on the iteration of a program.

After setting SS1 and SS2, the operator reads in Program 3. This may be accomplished either by
pressing the READ IN switch or by setting the ADDRESS switches to 7772 and pushing down on
START.

3-9

hit

FOUR jmp INSTRUCTIONS
ARE EXECUTED

$5120 hit
8270 > it
ss320 DE. it |
ss4:0 >E2 ni
55520 D it
ss620 > nit
séﬁ‘ée NOJ e
SWITCHES {hit |

Figure 3 Instruction Test Program 2

3-10

3-5 PROGRAM 3

Program 3 tests two instructions from the operate group (cla, ecma) and five instructions from

the skip group (sma, spa, sza, 654000, 650000). The lc_i' instruction is also partially tested.

The instructions from the skip group are checked both with the defer bit equal to O and with the
defer bit equal fo 1. The instructions 654000 and 650000 are unconditional skips but when the

defer bit is O (i.e., 644000 and 640000) the instructions are equivalent to the nop instruction.

The skip instructions are tested by asserting the condition for skip and placing a hlt after each

skip instruction. The 644000 and 64000b instructions are checked to make sure they do not skip.

Since, so far, only hlt, imp and szs have been tested, some of the operate instructions are
paired with the skip instructions for testing. Therefore, to determine which of two instructions

caused the halt, the AC must be checked.

The program begins by sensing SS1. With SS1 off, the program is automatically executed after
being l:édd info core memory. However, if SS1 is on, upon completing read=in the computer
halts with the MA equal to 0002. Program execution is resumed by pushing CONTINUE. The
above conditions hold both when the program is read in using the RIM loader, and when the

READ IN switch is used. (Location 0000 contains the program number.)

The program first tests the unconditional skips. A hlit is placed after each skip instruction:

Then 644000 and 640000 are checked to see that they do not skip. Next, the AC is loaded
with 1s using the TEST WORD switches and the lat instruction; the AC is then cleared (ili)

and checked for zero (s_zg_) If the computer halts here (MA equal to 0020), the AC must be
checked to determine whether the ili instruction failed to clear it or whether the sza failed

to skip properly.

The AC is again loaded with 1s using lat , complemented (_c__m), and checked for +0 (sza).

If the computer halts here (MA equal to 0024), the AC must be checked to determine whether
the halt was caused by a failure to skip or whether lat or cma failed to operate properly. The
lat is used to ensure that all bits are complemented properly. (Clearing the AC, complement-
ing twice, and checking for all zeros would not detect any bits which failed to complement;

this procedure could not even indicate that the cma failed o operate.)

After being complemented, the AC equals +0. Next the spa and sma ' are checked by placing

hit after each. Then the AC is again complemented and sza ', spa ' and sma are checked by

placing hlt after each.

With SS2 off, the program fransfers to the RIM loader and the next program is read in. However,
if SS2 is on, the computer loops back to location 0003 and iterates the same program until SS”

is turned off. Note that switch 1 is sensed only after read=in. Thus the program iterates even
if SS1 is on.

3-12

”a'hu

[(C(Tw) == C(AC) |
[_ciear AC]

N { hit

YES
[[C(TW) == C(AC) |

[complement AC |

i

Figure 4 Instruction Test Program 3

3-13

3-6 PROGRAM 4

Program 4 tests three instructions (ﬁr_, sas, ﬂﬂ_)’ The exclusive=OR is formed four times to
include all possible combinations. The Sﬁ‘é and'sad instructions are checked to ensure that they
skip when the condition is asserted and also to ensure that they don't skip if the skip condition
is not asserted. The AC is used during the exeg:-ﬁfion of both sas and sad . Therefore, a check

is performed to see if the contents of the AC were properly replaced.

The program begins by sensing SS1. With SS1 off, the program is automatically executed after
being read into core memory. However, ifSS1 ison, upon completing read-in the computer
halts with the MA equal to 0002. Program ekgcu‘i'ion is resumed by pushing CONTINUE. The
above conditions hald both when the program is read in using the RIM loader, and when the

READ IN switch is used. (Location 0000 contains the program number.)

The xor test follows the sensing of switch 1. This part of the program occupies locations 0003

through 0022 and has four error halts. The exclusive=OR is formed as follows: AC all 1s with
a core location containing all 1s; AC all Os with a location containing all Os; AC all 0s with
all 1s; and the AC all 1s with all Os. This series of operations forms all possible combinations

of the exclusive=OR for each bit of the AC,

The AC is loaded with all Ts by beiﬁg cleared and complemented., Next, the exclusive=OR is
formed with a location (0054) containing:all 1s, The AC is checked; if it is not 40, an error
halt occurs. |If no halt occurs, and exclusive=OR is formed with a location (0055) containing all
Os, and the AC is checked for +0. Affer this check, with the AC still +0, the exclusive-OR is
again formed with the location containing all 1s. The AC contains all 1s, and is therefore
complemented before checking for +0. When this check is completed, the AC is once more
complemented (so that it contains all 1s) and the exclusive-OR is formed with the location

containing all 0s. The AC is then complemented for the last time and checked for +0. At the

end of this check, the program begins the éf and sad fest.

The sas and sad test occupies locations 0023 through 0050; it contains eight error halts. Two
test numbers (000000 and 777777) are used to check the compare instructions. The test has four

parts: (1) The sas instruction is used to compare two equal numbers (000000). If the computer

skips, the contents of the AC are checked to ensure that they were properly replaced after the
sas instruction. However, if the computer fails to skip, an error halt occurs. (2) The same

test is then made for _s_c_:_gi_, comparing unequal numbers. (3) Next, sas is used to compare unequal
numbers, and the AC is checked to ensure that its contents were properly replaced. If the
computer skips, an error halt occurs. (4) Finally, the same test is made for sad comparing equal

numbers (777777). This completes the test of the compare instructions, and switch 2 is sensed.

3-15

ss1 =0 Mo hit

@_____.YES

|_clear and compiement AC |

C(AC)=
C{zeros)

{ .
[C(AC) @ Clenes) | @ is logicat

exclusive OF

AC=+0 N hit

YES
L_CIAC) @ C(zeros) |

41::I=’>”v.hu

YES
[TC(AC) @ Clones) |

[c(aC) @ Clzeros) |

compiemant AC

NO

AC3 +0 hit

YES

C(AC) = NO
C(zeros) | it

YES

ACz+0Q LA hit

YES

C(AC) # NO
C(ones)

YES

| hit

NO

AC=+0
YES

compiement AC

hit

1

Figure 5 Instruction Test Program 4

3-16

3-7 PROGRAM 5

Program 5 tesis four instructions (dip, dap, dac, lac). Some test numbers are transferred between

two memory locations and the AC. To ensure that the transfers were properly executed, the AC

and the memory locations are compared affer each eighteen=bit transfer. The dip, dap and dac

instructions are used to deposit Os into memory locations containing Os, to deposit 1s into loca=-
tions containing Os, 1s into locations containing 1s, and Os info locations containing 1s. Simi-

larly, the lac insfruction is used to load the AC with 1s and Os.

The program begins by sensing SS1. With SS1 off, the program is automatically executed after
being read into core memory. However, if SS1 is on, upon completing read-in the computer halts
with the MA equal to 0002. Program execution is resumed by pushing CONTINUE. The above
conditions hold both when the program is read in using the RIM loader, and when the READ IN

switch is used. (Location 0000 contains the program number.)

The dip, dap and dac test follows the sénsing of switch 1. This part of the program occupies

locations 0003 through 0041 and has eight error halts. Four halts are dip and dap errors; the

remaining four are used in the dac check.

The contents of the AC are deposited into location 0063 using dip and dap. "Then the AC is
compared against 0063, If they differ, an error halt occurs. Next, the contenis of the AC are
deposited into location 0064 using'd_c_?_. The AC is compared against 0064 and, if they differ,
and error halt occurs. This procedure is repeated four times. The first and fourth times, the
initial contents of the AC are all Os; the second and third times, the initial contents are all 1s.
This sequence effects a transfer into memoryvof all Os into all Os, all 1s into all Os, all 1s into

all 1s, and all Os into all 1s. Then the program proceeds with the lac test.

The lac test occupies locations 0042 through 0055; it has four error halts. ‘This test is quite
similar fo the test for dip, dap and dac. The AC is successively loaded with all Os, all 1s, all

1s, and all Os. After loading with Os the AC is checked using the sza instruction; after loading
with 1s the AC is compared against a core location (0062) which contains all 1s. This completes

the lac fest and switch 2 is sensed.

With SS2 off, the program transfers to the RIM loader and the next program is read in. However,
if SS2 is on, the computer loops back o location 0003 and iterates the same program until SS2 is
turned off. Note that switch 1 is sensed only after read-in. Thus, the program iterates even if
SS1 is on.

3-17

[_C(ACo-s)=> Clregs o-5) |

[clacg-17) »Clregs g-17) |

t hit

| hit

| complement AC |

I repeat section |
i within 1
L dotted lings |

| repeat section |
} within {
L dotted lines 4

complement AC
[“repeat section |
| within

! ; |
L dorred lmes_
—_—— r —_——

Clzeros) = C(AC)

hit

’ YES
[Clones) =>C{AC) |

C(AC)= MO
C{ones}

YES
|__Clones) meC(AC) |

1 hit

C{AC) =

C(ones) hit

_Clzeros) =» C{AC) |

AC=+0 N0 hit

YES
NO YES [/ Jump to

SS2:0 RIM
loader

Figure 6 Instruction Test Program 5

3-18

3-8 PROGRAM 6

Program 6 tests two instructions == dzm and idx . The program is designed to facilitate the
diagnosis of troubles in the AC. For this reason, there are more error halfs than are required to

merely check the idx instruction.

The dzm instruction is tested to ensure that it clears a memory location containing all 1s as well

as a location containing all Os. The idx instruction is tested by checking for the proper execu-
tion of various AC operations. Four checks are performed: (1) Checks that the carry propagates
the full length of the AC; (2) checks that the end-around carry functions properly; (3) checks
that the contents of the AC are correct after an idx ; (4) checks that the carry terminates properly

in each bit of the AC.

The program begins by sensing SS1. With SS1 off, the program is automatically executed after
being read into core memory. However, if SS1 is on, upon completing read=-in the computer
halts with the MA equal to 0002. Program execution is resumed by pushing CONTINUE. The
above conditions hold both when the program is read in using the RIM loader, and when the

READ IN switch is used. (Location 0000 contains the program number.)

The dzm test follows the sensing of switch 1, This test occupies locations 0003 through 0014,

It has two error halts. The first results from failure to clear a memory location containing all
1s; the second resulis from failure fo clear a memory location containing all Os. The program
deposits 1s into memory location 0166. This is accomplished by clearing and complementing the
AC and depositing ifs confents info the memory location. Then location 0166 is cleared with a

dzm and the results are checked by loading the contenis into the AC and checking for +0. If

the AC is +0, the first halt is skipped and the same location is once more cleared with a dzm .

The same check is again performed, and if the second halt is skipped, the program proceeds to

the ix_ test.

The idx test occupies locations 0015 through 0165 and has 21 error halts. The first three halts
test the AC for the propagation of the carry chain, the end-around carry, and the contents after
an idx. The remaining 18 halts check for termination of the carry chain in each of the AC bits

beginning with the last, AC]?'

The idx test uses memory location 0166 as a temporary buffer. The program deposits 1s into the

buffer by clearing and complementing the AC and transferring its contents. Then the buffer is

3-19

indexed once. Since the number indexed is all 1s, the carry clears the AC and the end-around

carry makes AC,_ equal 1. The AC is checked for a 0 in the sign bit to ensure that the carry

17
propagated the length of the register. If the AC is positive (AC =1), the first halt is skipped.
The AC is then checked for nonzero fo fest the end—around carry. If the AC is not zero, the

second half is sklpped

The final contenis of fhe AC should be OOOOO] No‘fe, however, fhaf‘the first two halts would
be skipped if the AC cgnfcmed any positive number greater than zero. Therefore, the AC must
be checked to ensure that ifs contents c.rye 000001 . This is accomplished by complementing the
AC, depositing its confenfs.infovfhe buffer, indexiiné fh;a buf%e.r‘once,'cnd checking the AC for
+0. Complementing the AC produces the number 777776 which is then déposifed in the buffer;

attempting o index this number causes the computer to clear the AC., The AC is checked for +"

If this condition is asserted, the third halt is skipped and the fest for termination of the carry

chain commences.

To check i-he Icsf fifteen buts oF fhe accumulafor (AC3]7) For proper carry chain termmcflon,

a number is depos:fed info the buffer. This number consists of 1s in all bits except for a 0 in
the sign bit and a 0 in the bit which is being checked. If the carry chain does not terminate
propérly, it continues the length of the AC and causes a sign change. Note that this test was
preceded by the check which ensures that the carry can propagate the full length of the register.
The AC is checked for sign; if positive, the error halt is skipped. The check for each bit has a
separate error halt. The check for the first three bits (ACO-Z) is similar, except that the test
number aiso has fhe sign bit equai fo 1 and the AC is checked for a minus sign. This compietes

the idx test and the program senses switch 2.

With SS2 off, the program transfers to the RIM loader and the next program is read in. However,
if SS2 is on, the computer loops back to location 0003 and iterates the same program unfil SS2 is
turned off. Note that switch 1 is sensed only after read=in. Thus, the program iterates even if

SSTis on.

3-20

@W

hit

@—ﬁ/
YES

clear and comp!ement Ac |

C(AC) =’C(hmp) |

I C(tamp) = C(AC) |

' hit

(C(temp) == C{AC) |

hit

clear and complsmem AC |

[ctaec) - C(temp) |

[T Cltemp) +1=0C(AC) |

[T C{AC) = Cliemp} |

AC 3 + L

t hit

YES

AC # +0 M,

hit

YES
[complement AC |

i
[T C{AC) == C{temp) |

[C{temp) +1=>C(AC) |

[C(AC} => Cl{temp) |

AC=+0 MO

¢ hit

YES
v
[_Ci{tbl) => C{AC) |

T
[[c{aC) = Cltemp) |

[Cltemp) +‘1 =C(AC) |

This saction is
repeated 14
more timas as
c(tbl)
proceeds to:
Citbl+1)
+2
+3

©

| Cl(tb2) == C(AC) |

‘
| C(AC) == C{temp) |

|__C(temp) +1=>C{AC) |

[__C(AC) => Cltemp) |

/va

YES

hit

[_ciib2+1) =»CclAC) |

[C(AC) == C{temp} |

[Cliemp) +1=» C{AC) |

)
[_C(AC) =» Cltemp) |

~0.

YES

hit

[_C(tb2+2) = C(AC)

’
caa =1» Cltemp] |

{_Cltemp) +1 =»C(AC) |

’
[CCTAC) == Cltemp]]

Figure 7 Instruction Test Program 6

3-21

3-9 PROGRAM 7

Program 7 tests the isp_instruction. One location is indexed (1_5._p_) through all the positive
numbers. A check is made after each indexing to ensure that the skip occurred and that the
location was incremented by exactly 1. Another location is indexed (isp) through all the nega-
tive numbers. A similar check is made after each indexing to ensure that no skip occurred and

that the location was correctly incremented.

The program begins by sensing SS1. With SS1 off, the program is automatically executed after
being read into core memory. However, if SS1 is on, upon completing read-in the computer
halts with the MA equal to 0002. Program execution is resumed by pushing CONTINUE. The
above conditions hold both when the program is read in using the RIM loader, and when the
READ IN switch is used, (Location 0000 contains the program number.)

The isp test commences after the sensing of switch 1. This part of the ~pr_czgrcxm occupies locations
0003 through 0040. Locations 0045 through 0050 are used for indexing. The program has eight
error halts. First, the two locations used for indexing are initialized. Next, the program loops
as the locations are indexed until their contents equal 777776 and 377777, Fi'nc:Hy, after leav-
ing the loop, the Iocai"i_ons are indexed until a sign change occurs. The idx instruction is used
to check the results after each isp. In the first part of the test, locations 0045 and 0047 are

each initialized with 377777; locations 0046 and 0050 are each initialized with 777776.

The second part of the test, the loop, contains four indexing instructions. |t begins by indexing
(isp) location 0050 which contains 777776. Indexing this number once produces 000000. There-
fore, an error halt occurs if the computer does not skip. Then, location 0046, which also conta®
777776, is indexed (idx) and the contents of locations 0050 cﬁd 0046 are compared. |If their

contents differ, an error halt resulis.

Similarly, location 0047, which contains 377777; is indexed (isp) to 400000; then it is checked
to make sure it produces no skip. Location 0045 is indexed (idx) and compared against 0047 .
The program iterates this sequence and does not leave the loop until locations 0045 and 0047
contain 777776, and locations 0046 and 0050 contain 377777. Notice that subsequent to the
first indexing, no sign change has occurred. After leaving the loop, the program enters part

three of the test.

The last part of the fest checks that, on indexing (isp) 777776 once, the resulting number is
000000; it also checks that a skip takes place. Similarly, it checks that, on indexing (isp

3-22

377777 once, the resulting number is 400000 and alsc that no skip results. This ends the test

and switch 2 is sensed.

With SS2 off, the program tfransfers to the RIM loader and the next program is read in. However,
if SS2 is on, the computer loops back to location 0003 and iterates the same program until SS2 is
turned off. Note that switch 1 is sensed only after read=in. Thus, the program iterates even if

SS1 is on,

3-23

SS1 =0 Ao

@——'——w YES

[Cctnl) = crac) |

[TCAC) =» Clentl) |

.)
[Cclac) =sctl)]

S
[Cltn2) == ClAC)]

+
{_C(AC) m»Clent 2) |

)
[ClAC) =e C(t2) |

| Cit2)+1 == C(AC)

]

¥
[_C(AC) = C(t2) |

1 hit

YES

| _Clcnt2) + 1=»C(AC)

]

{ ClAC)==C(ent2) |

C(AC)aC(t2)

YES

CAC) % C(3nl)

YES

M,

hit

NO

[C(tl) +1 == C(AC)

]

C(AC) == C(t1)

hit

[_Clentl) +1=»C(AC)

]

)
[_C(AC) =eC(cntl) |

YES MO,

| hit

!
_c(t1) +1 =>c(ac) |

| ClAC) == C{t1) |

O hit

Q

YES

hit

¢

YES
[Ct2) +1 =» C{AC) |

]
[ClAC) == C(t2) |

[Clcnt2) +1=m>C(AC) |

[claci=clent2) |

®

Figure 8 Instruction Test Program 7

3-24

RIM
Loader

3-10 PROGRAM 10

Program 10 tests two instructions (and, _lﬂ‘) For each bit, all possible combinations of the
AND are formed. Similarly, all possible combinations of the inclusive-CR are formed. A
check is made to ensure that each operation was correctly executed. After any error halt the

program may be restarted simply by pushing CONTINUE.

The program begins by sensing SS1. With SS1 off, the program is automatically executed after
being read into core memory. However, if SS1 is on, upon completing read=in the computer
halts with the MA equal to 0002. Program execution is resumed by pushing CONTINUE. The
above conditions hold both when the program is read in using the RIM loader, and when the

READ IN switch is used. (Location 0000 contains the program number.)

The and test follows the sensing of switch 1. This part of the program occupies locations 0003

through 0022 and has four error halts. The two test numbers used (000000 and 777777) are in
locations 0046 and 0047, respectively,

The AC is loaded with all 1s, ANDed (and) with all 1s; then the contents of the AC are checked.

The procedure is repeated, ANDing 1s to Os, Os to Os, Os to 1s; each and being followed by a
check of the AC. This sequence forms all possible combinations for each bit of the and instruc-

tion. The program then executes the ior fest.

The ior fest occupies locations 0023 through 0042 and has four error halfs. This test is identical
fo the and test except that instead of ANDing two numbers, the inclusive-OR is formed. After

the jor test, switch 2 is sensed.

With SS2 off, the program transfers to the RIM loader and the next program is read in. However,
if SS2 is on, the computer loops back to location 0003 and iterates the same program until S52

is turned off. Note that switch 1 is sensed only after read=in. Thus, the program iterates even

if SS1 is on.

3-25

— =

SS1 = /——-T nit
/ S

YES

y
[ctta) = c(ac) |

[ClAC) » C(t2) => C(AC) | o is Logical 4#D

[citd T C(AC) |

[c(AC) o C(t2) == C(AC) |

”o.nu

YES
) T c(AC)]

[clac) o cltl) = c(ac) |

”ovhlt

@

YES
[cit2)y = ciac) |

[Cctac) » c(tl) == C(AC) |

¥

YES
et T clac) |

[clac) v c(l)==>Cltl) | V is togical
inclusive OF

o]

L_c(tl) =; C(AC) |

o

[_clac) v cir2)=clac) |

]
YES

_ctt2) T c(AC) |

i

[clac) v cr2y=c(Ac) |

NO hit

YES
[cl:2) == clac)]

_ctac) v c(tl)=c¢(Ac) |

Figure 9 Instruction Test Program 10

3-26

3-11 PROCGRAM 1]

Program 11 tests three instructions (lio, dio, spi). A test number is loaded into the |O and

deposited from the |O into a temporary buffer. The AC is used to check that the number was
correctly transferred. The spi instruction is then checked. The test number takes on all pos-
sible values.

The program begins by sensing SS1. With SS1 off, the program is automatically executed after
being read into core memory. However, if SS1 is on, upon completing read-in the computer
halts with the MA equal to 0002. Program execution is resumed by pushing CONTINUE. The
above conditions hold both when the program is read in using the RIM loader, and when the

READ IN switch is used. (Location 0000 contains the program number.)

The lio, dio and spi test follows the sensing of switch 1. The test has two parts. In the first
part, the test number ranges over-all positive values; in the second, the test number ranges over
all negative values. Location 0034 is used as a temporary buffer and location 0033 contains
the test number, The first portion of the test occupies locations 0003 through 0016 and has two
error halts,

At the start of the test, the location containing the test number and the AC are both cleared.
Then a loop, which comprises the test for all positive numbers, is entered. The 10 is loaded
with the test number, and its contents are deposited in the temporary buffer. The contents of
the buffer are compared against the AC; if they differ, an error halt occurs. On a halt, the
contents of the |O must be checked to determine whether the lio or dio caused the error.
Next, the spi is checked fo ensure that it skips on a positive 0. Then the program indexes
the test number and jumps fo the beginning of the loop. (Note that execution of idx leaves
the test number in the AC, in prepcrcﬂbn for the comparison after the 1O transfer.) When the

test number becomes negative, the program leaves this loop and enters the second part of the

test.

The second part occupies locations 0017 through 0027 and has two error halts. [t consists of a
loop which is similar to the first loop except that spi ' is checked to ensure that it skips on

negative |O. When the test number is indexed to +0, the -brogrcm leaves this loop and senses

switch 2.

With SS2 off, the program transfers to the RIM loader and the next program is read in. However,
if SS2 is on, the computer loops back to location 0003 and iterates the same program until $52
is turned off. Note that switch 1 is sensed only after read=in. Thus, the program iterates even
if SS1 is on.

3-27

—

Ssl =0 N, hit
YES

zero C(t1)

clear AC

[c(tl) = c(10) |

]
| _cf10) = c(t2) |

ey = ct2>Y% niy

YES

N9 AC = +

YES

10 = + No‘hl.t

YES
[Cctty +1 == c(ac) |

[ctac) =|-cm) |

&

10 = +TES,

NO
[CCiil)+1 == c{AC) |

t hit

[C{aC) == C(t1) |

[cttl) =» c(I10) |

[[ctio) == c(t2) |

C(aC) = C(t 2 >0 hit
YES
AC = +0 NO
YES

/7 Jump to\
Ng Ss2 = O YES

RIM
_ loader /

Figure 10 Instruction Test Program 11

3-28

3-12 PROGRAM 12

Program 12 tests three instructions (add, szo, sub). To facilitate trouble diagnosis, each of the

operations which make up the add instruction are checked separately. Because of this feature,

however, there are more error halts in the program than would be required merely to test this

instruction. The capability of testing the component operations of add should prove equally

useful for troubieshooting the sub instruction, since the two instructions differ only in that sub
includes a complement operation which is not used in add. The szo instruction is checked to

ensure that it skips on overflow, that it does not skip on no overflow, and that it correctly sets

and clears the overflow flip=flop.

The program begins by sensing SS1. With SS1 off, the program is automatically executed after
being read into core memory., However, if SS1 is on, upon completing read-in the computer
halts with the MA equal to 0002. Program execution is resumed by pushing CONTINUE. The
above conditions hold both when the program is read in using the RIM loader, and when the

READ [N switch is used. (Location 0000 contains the program number.)

The add and szo test follows the sensing of switch 1. This test occupies locations 0003 through
0077 and contains 19 error halts. Seven halts are used for the szo, and the remaining twelve

halts are used for g_d_d..

The add test checks for correct execution of the partial add, the end-around carry, the full-
register carry, the clear-on-minus-zero, and the ripple carry. The ripple carry is checked to
ensure that it propagates through the entire register and also to ensure that it is initiated proper-

ly at each bit of the AC. Interspersed within the add test are checks on the szo insfruction.

The test checks that szo skips on zero overflow, This is done by executing szo, szo ' and szo

followed by a halt, and szo ', and another halt. If the overflow flip=flop is set, the first szo .

clears it. Then the szo ' is executed, followed by another szo which skips the first halt,

However, if the flip-flop was zero, the first szo skips the szo ' and the next szo skips the

first halt. In either case, the overflow flip=flop is cleared and the first halt is skipped. Note

that the only other way the first halt can be skipped is if the szo fails to clear the flip~flop

and if, furthermore, the szo ' fails to skip with the flip~flop set. In this case, the szo

which follows the first halt detects the error. After completing this check, the program begins

the test for the partial add.

3-29

The partial add is tested by performing a sequence of additions which form every combination of
the partial add for each bit in the AC. First the AC is cleared and the number 000000 is ad

to it., Then 377777 is added to 000000, 000000 to 377777, 400000 to 000000, and 000000 to
400000 . After each addition, the contents of the AC are checked. Then a check is made to

see that the overflow flip=-flop was not set during this sequence.

The test for the full ~register carry follows the overflow check. The AC is loaded with the
number 252525 (alternate Os and 1s) and the same number is added to it, producing the number"
525252 and AC overflow. The contents of the AC are checked. This tests the full-register
carry for the odd bits in the AC. Then the overflow is tested and cleared. Next, the even
bits are tested for the full-register carry by adding 125252 to itself. Again the AC is checked,

followed by a short test for clear-on-AC-minus-zero.

This test is performed by loading the AC with =0 and adding +0 to it. The AC is checked for
+0, and the overflow flip=flop is sensed to ensure that it was not set. The ripple-carry test

follows this overflow check.

The ripple carry is tested to ensure that it travels the entire length of the AC; it is also tested
to ensure that it is correctly initiated in every bit. The AC is loaded with all 1s, and +1 is
added to it. The carry ripples the entire length of the register cnd-cround the end, leaving
the final contents of the AC equal fo +1. As before, the contents of AC and of the overflow

flip=flop are checked.

To test that the ripple carry initiates properiy at each bif, the AC is ioaded with the number
252525, to which the number 777777 is then added. Unlessthe carry initiates correctly in al.
even bits of the AC, the contents of AC are incorrect and, upon checking, cause a halt.

Similarly, the odd bits are tested using the number 525252 and adding 777777 . Qverflow is

checked for the last time, concluding the test for add and szo. The program then proceeds to

the test for sub.

The sub test occupies locations 0100 through 0111; it has only one error halt. If the add instruc-

tion is working correctly, it is necessary to check only the execution of sub once to ensure that
18
it, too, is operating correctly. However, Program 12 tests the sub instruction 262,144 (2)

times. This large number of tests is desirable because sometimes an instruction operates inco:

rectly only when executed repeatedly. As previously mentioned, the add and sub instructions

3-30

are almost identical in operation; consequently, it suffices to test one of the two for repeated

execution.

The repetitive sub test is effected by subtracting -1 (equivalent to adding +1) and checking the
results against a location which is being indexed. This procedure is followed, beginning with +0
and continuing through the positive numbers, the negative numbers, and back to zero. No check
is made for overflow (which should occur). At this point the test is complete and switch 2 is

sensed.

With S52 off, the program transfers to the RIM loader and the next program is read in. However,
if SS2 is on, the computer loops back to location 0003 and iterates the same program until SS2
is turned off. Note that switch 1 is sensed only after read-in. Thus, the program iterates even

if SS1 is on.

3-31

hit
YES

YES

Turn_off OVERFLOWJ

on

OVERFLOW

YES

[Turn_off OVERFLOW |

| hit

[Tc(ac)+ ¢ (pmax)=> c(AC) |

L2 hit

YES

\

C(AC) + C(zero) =» C(AC) |

[clacr+cinmax) = C(AC) |

NO
| hit

{_C(AC)+C(zero) = C(AC) |

Figure 11 Instruction Test Program 12

v
[Turn off OVERFLOW |

3-32

| hit

[Tctac)+ C(pmax) = C{AC) |

A0, hit

YES
[Clzoz)=> C(AC) |

[c{aC) +C (zoz) = C(AC) |

C(AC)= N

C{o0z0) |hit

YES

overFLOWS-M[
on

YES
__Turn off OVERFLOW |

(Cclad) T c(ac) |

[TC{AC)+ C(ab) == C{AC) |

N | hit

YES
| Clones) = C{AC) |
+

Turn off QVERF

| complement AC |

[clac)+ Clad) = C(AC)]

Turn off OVER

| hit

]
{__Turn off OVERFLOW |

|_Clozo) ==- clac) |

C(AC)+ C(ones }=> C(AC) |

*—- hit

{ czzoz)a-o c{AC) |

[Tctac)i+cC (ones) = C(AC) |

| hit

)
|_Turn off OVERFLOW |

[Cc(AC) => Cltemp) |

[compiement AC |

{ C(AC)~C (mone) => C({AC)]|

)
[C(AC) =>C{qemp) |

L Cltemp)+1=> C(AC) |

[_C(AC) => Cltemp} |

hit

C(AC)=
C(zer)

Jump to
RIM
loader

Figure 11 Instruction Test Program 12 (continued)

3-33

3-13 PROGRAM 13

Program 13 tests two instructions (law, _cﬁ_)‘ The AC is loaded (_IE_\A_/_) so that, for each bit, all com=
binations occur. The law instruction is also checked with the defer bit equal to 1 (Load Accumu-

lator With =N). To check c_hi the 1O is cleared twice; the first time the 1O contains all 1s, the

second time all Os.

The program begins by sensing SS1. With SS1 off, the program is automatically executed after
being read info core memory. However, if SS1 is on, upon completing read=in the computer halts
with the MA equal to 0002. Program execution is resumed by pushing CONTINE. The above
conditions hold both when the program is read in using the RIM loader, and when the READ IN

switch is used. (Location 0000 contains the program number.)

The law test follows the sensing of switch 1. This part of the program occupies locations 0003
through 0020 and has four error halts. The law instruction clears the AC prior to loading it with
a number. To check the correct execution of the AC clear, the accumulator is loaded with all

Is, and then loaded (_l_rﬂw_) with Os and checked for+ 0. Then the MB-é_jﬁ’ AC is checked by

successively loading 7777, -0, <7777. The contents of the AC are checked against a location in

core after each load instruction. The program then enters the cli test,

The cli test occupies locations 0021 through 0035 and has two error halts. To check the cli_

instruction the |O is loaded with 1s, cleared, checked for all 0s, cleared again, and checked
for Os again. The 1O is checked for Os by transferring ifs contents to the AC and checking the
accumulator for +Q. The transfer from O to AC, as well as the loading of the |O, is effected

using a memory location as a temporary buffer. After the cli test is executed, switch 2 is sensed.

With SS2 off, the program transfers to the RIM loader and the next program is read in. However,
if S52 is on, the computer loops back to location 0003 and iterates the same program until SS2 is

turned off, Note that switch 1 is sensed only after read-in. Thus, the program iterates even if

SS1 is on.

3-34

S81i=0

/
¥
S

hit
—

YES

clear and complement AC

[o=clac) |

Ao | hit

Q

YES
{ 7777 = C{AC} |

o
YES

[T-0=clac) |
v

[complement AC |

NO

Y

YES
| —7777 =» C{AC) i

m‘hlt

&

YES
["clear and compiement AC |

[__ClAC) =>Cltemp) __|

[C{temp)=> C{10) |

i

[T C(10})= Cliemp) |

| Cltemp)=> C(AC)

[(c10) = cCliemp)]

{ C{temp)=» C(AC) |

Figure 12 Instruction Test Program 13

3-35

3-14 PROGRAM 14

Program 14 testsall instructions pertaining to the program flags (Ef, s_f_f, s_z_f), then clears mem
before reading in the next program. (The reason for clearing memory is explained in the Program
15 description.) Program 14 clears any flags that may be on, sets each flag in sequence (starting
with flag 1 and proceeding through flag é), clears all flags simultaneously, sets all flags simul-
taneously, and then clears each flag in sequence (again proceeding 1 - 6). The program transfers
to a count loop before each clf or stf instruction. The count loop introduces a time delay so

that the program flag settings may be observed at the console. An szf instruction follows each

El_f or stf to check for the correct execution of the instructions.

The program begins by sensing SS1. With SS1 off, the program is automatically executed after
being read into core memory. However, if SS1 is on, upon completing read=in the computer h .
with the MA equal to 0002. Program execution is resumed by pushing CONTINUE. The above
conditions hold both when the program is read in using the RIM loader, and when the READ IN

switch is used. (Location 0000 contains the program number.)

The program has five parts. First, a short sequence initializes the loops which comprise parts
two and four, and clears all the flags. Since the second part sets the flags, it is necessary to

have the flags cleared in order to test the stf instruction.

Second, a loop sets all flags, one at a time, and checks to ensure that they were set. Third, a
sequence clears all flags simultaneously, checks that they were all cleared sefs all flags simultan-

ik

eously, and checks that they were all set, Fourth, a loop clears all fl

Ggs, one G

checks that each was cleared. Fifth, a count loop is used as a time delay by parts two, three

and four. The delay is generated by counting to 215 .

The count loop, part five, occupies locations 0057 through 0065. It is used as a time delay by
parts two, three and four. When the program enters the count loop, the AC contains the address
for the return. Therefore, this address is deposited in the address portion of a jump instruction.
Then the number 700000 is deposited into location 0057, That location is incremented until it

becomes positive, and the program executes the jump which was set up for the return.

The first part of the test occupies locations 0003 through 0015 and has one error halt. In prepara-
tion for part two, all the program flags are cleared and checked to ensure that they were clea
Then the address part of szf, stf and clf instructions in parts two and four is set to operate on

3-36

flag 1. After setting the instruction addresses, the program proceeds to part two.

Part two occupies locations 0016 through 0026 and has one halt. |t uses the count loop to intro-

duce a time delay, sets flag 1, checks that flag 1 was set, indexes the stf and szf ' so that the

next flag will be set and checked, and then jumps back to the start of part two. Part two is

executed six times (once for each flag 1 - 6); the program then proceeds to part three.

Part three occupies locations 0027 through 0042 and has one halt, This part infroduces a time
delay, clears all flags simultaneously, checks that all flags were cleared, introduces another

time delay, sets all flags simultaneously, and then sets up part four to execute six times.

Part four occupies locations 0043 through 0053 and has one halt. It is identical to part two,
except that the flags are cleared and checked for clear, instead of being set and checked for set.

After the program completes part four, switch 2 is sensed.

With SS2 off, the program jumps to location 7766, and clears memory locations 0000 through
7765, then transfers to the RIM loader which reads in Program 15. However, if SS2 is on, the
computer loops back to location 0003 and iterates Program 14 until ‘fhe sense switch is turned off.
Note that switch 1 is sensed only after read-in., Thus the program can iterate, regardless of the

sefting of swifch 1,

3=37

¢

YES

|

{clear all program flags

ail flags off

1 hit

@ YES

C(e) =>C(AC)

i

[C(AC)g-y7 = Cla+llg~z |

C(f) == C(AC)

i

l C(AC)g-j7 => Cla+2)g-i7]
!

| ClACg-i7) == Clc+l)g-i7

]

[ClACg-17) = Clct+2)e-17 |

+
[Clcde)=» C(AC) |

!
[C(AC) =» C(abe) |

f=1

[a+1 == GIAC) |

(iump to time delay)

from time delay

set flag f

hit

YES

(jump to time delay)

(from time deiay)

[Telear ail flags |

all flags off

| hit

[[b+5 = c(ac) |

(jump to time delay)

from time delay
set alt flags

hit

YES
[Clcde) = c(aC) |

]
[c(ac) = Clabc) |

[¢e+1 =>C(AC) |

Gump to time deldy)

from time delay
clear flag f

MAIN PROGRAM

(from . main proqram)

| ClACg-;7) =» address of jump

{ C(mxx)T clac) |

_CUAC) =e Cleouni} |

| Clcount) = C(AC) |

[C(AC) == Clcount) |

>

YES

(]ump back to main progrums)

TIME DELAY

Figure 13 Instruction Test Program 14

3-15 PROGRAM 15

Program 15 tests three instructions (jsp, jda, cal). Memory locations 0000 through 7765 are
cleared prior to reading this program into core. Clearing memory increases the probability that
a jump to an incorrect address will cause a halt. Consequently, the memory-clear facilities

error diagnosis, should such a jump sccur.

The program checks all the transfers which make up the jsp, jda and cal instructions except for the
transfer of the EXD flip~flop into AC.l

The program does not test for the EXD transfer because the extend-mode instructions are not

(which is executed concurrently with the PC—LD AQ).

checked within the Insiruction Test. The transfers are checked for all possible combinations for

each bit (refer to Tables 1-16B, 1-16C, and 1-16D under Program 15 Error Halts).

The program begins by sensing SS1. With SS1 off, the program is automatically executed after
being read into core‘memory. However, if SS1 is on, upon completing read=in the computer halts
with the MA equal to 0002. Program execution is resumed by pushing CONTINUE. The above
conditions hold both when the program is read in using the RIM loader, and when the READ IN

switch is used. (Location 0000 contains the program number.)

The jsp test occupies 0016-0017, 0757-0764, 1100-1105, 1755-1756, 6020-6025 and 6076-6077 .

This part of the program has three error halts. The jsp instruction comprises four transfers:

'—O-& AC, PC -—1-: AC, L_O. PC and MB—-]—o PC. By locating the test in various

parts of memory, all possible combinations of each transfer are checked for each bit.

Three jsp instructions are executed within the jsp test. After each jump, bit 1 of the AC is

cleared to mask out the transfer of EXD into AC} . Thenthe contenis of AC are checked to ensure
that the PC —]—o AC was correctly performed.

The jda_test occupies locations 32-37, 737-750, 1000-1011, 1731-1736, 5772-5777 and 6040-6052.

This part of the program has six error halts. The {da instruction comprises six transfers:

AC—— M8, L% ac, rc—s ac, L% pc, MA—s pCand L pc.

By locating the test in various parfs of memory, all possible combinations of these six transfers

are checked for each bit.

As in the jsp test, three instructions are executed within the jda fest and AC.l is cleared before

the confents of the AC are checked. Moreover, a check is made to ensure that the contents of

the AC were saved in the location specified by the address of the jda.

3-39

[CclaCYs C{mask) = C(AC) |

¢
lear QVERF [_clAC) = C(temp) |
[C(num)=> C(AC)] [Cjdal+l = c(AC) |

[c{pe)=c(AC) |

t hit

jump to 1

I

| hit

Cilnum+3) =» c(AC) |

[Ccagy S‘C(chekﬂ]

[clear OVERFLOW |

]
{ C(nurn+4i=’ C(AC) ;|

[C(AC) == Cichekd) |

[T Cc(PC)== C(AC] | [[c{AC)e C{mask)=+ CIAC)]

Commer= ot

[((jspl +1 == C(AC) |

' hit

C{AC)= Mo

C (temp)

[clAC) e C{mask) == C(AC) | o is logical 4NO
H YES

jump to 2A

| C(AC) s C({mask) = C(AC) |

Cclac)=s C(temp) |

[call+1=> C(AC)]|

[Cci(o100) = C(AC) | [C(Ac)jc(temp)]

| ida3+1 => C(AC) |

{_Clchek 6) == c(AC)]

Mo ' hit

jump to 7Ta

Figure 14 Instruction Test Program 15

[Cc(AC)* C{mask) = C(AC) |

¥
[C{AC)=> C(temp) |

[Cispl+¥1 == C[(AC) |

jump to 4a)

[set OVERFLOW |

|_C (num +4) = C(AC) |

[ctac) -.‘c {chek 5)]

[cinum +5) == c(AC)]

e (AC)=’;C {chek 5) |

[[c(Pc) = c(ac) |

¥
[CTOVERFLOW)=> C(ACo}]

[[c{num +1) =C(AC)]

P
[C(PC) == C(AC) |

©

ciear and compiement AC |

[(ctac)y = ¢{0100}]

[circ) == clac)]

jump to 7b

(sa)

[clear oIERFLow]

[C(num +6)=> crac}]

Lcrac) T Clcheks) |

(c{num+7)=> C(AC) |

{c(AC) =>C(chek®6) |

[C(PC] == C(ACI]

_C(AC) e C(mlask)ﬁ ciac) |

[C(AC)=> C(temp) |

[jsel+ L = C(AC) |

[[c(aC)e C({mask) = c(AC) |
_ 3

[_C{AC) => Cltemp) |

[jda2+1 = C(AC) |

hit

__C (chek 5) =»C{AC) |

jump to “8a

| C(num+%)= C(AC) |
[[ciPc) = c(AaC) |

jump to 3b

Figure 14 Instruction Test Program 15 (continued)

3-41

The transfer of the overflow flip-flop info AC, is checked during the second jda. Overflow is

0

transferred into ACO during any PC—]-’ AC. Therefore, following this second jda, ACO is

loaded with a 1 after masking out AC] but before checking the contents of the AC. Overflow 1s

cleared before executing the third jda.

The cal test occupies locations 0100-0110 and 3000-3001. This part of the program has two

error halts. The jda and cal instructions are identical except that jda inhibits the 100—1. MA,
Therefore, it suffices to check that the cal signal is properly decoded and that the jump is correct-

ly executed to location 0101. After the cal test, switch 2 is sensed.

With SS2 off, the program transfers to the RIM loader and the next program is read in. However,
if SS2 is on, the computer loops back to location 0003 and iterates the same program until SS2 is

turned off. Note that switch 1 is sensed only after read=in. Thus, the program iterates even

SS1 is on.

3-42

3-16 PROGRAM 16

rogram 16 tests two instructions (nop, xct) and also tests that indirect addressing is properly
executed. The indirect address is deferred five times. Note that if the computer is operating in

the extend mode, indirect addressing is limited to one level; this causes an error halt.

The program begins by sensing SS1. With SS1 off, the program is automatically executed after
being read into core memory. However, if SS1 is on, upon completing read-in the computer halts
with the MA equal to 0002. Program execution is resumed by pushing CONTINUE. The above
conditions hold both when the program is read in using the RIM loader, and when the READ IN

switch is used. (Location 0000 contains the program number.)

The first instruction, after the program senses switch 1, is nop. This constitutes the entire test

for the nop instruction. If the nop is executed, the program enters the test for xct,

The program tests the execute instruction by using it to jump to the beginning of the indirect-

addressing test. If xct fails to execute the jump, the program halts.

The test for indirect addressing occupies locations 0015 through 0020, and has one halt. The AC
is cleared, and then loaded with all 1s, using the_l_gs instruction and using five levels of indirect
" addressing. Then the contents of the AC are checked to ensure that indirect addressing was per-

formed six times. This completes the test for indirect addressing. Switch 2 is then sensed.

With SS2 off, the program fransfers to the RIM loader and the next program is read in. However,
if SS2 is on, the computer loops back to location 0003 and iterates the same program until S52 is

turned off. Note th.at switch 1 is sensed only after read=-in. Thus, the program iterates even if

SS1 is on.
YES

nop

exacute Clinst) |

Lcite) = c(ac) |

3-43

3-17 PROGRAM 17

Program 17 tests the rotate instructions (Lc_!, Ei_l_, rar, rir; E.l' _l:_c_r). All instructions are check

for nine=bit rotation and for no rotation. Successively using each of the nine available bits (bits
17-9 of the instruction), _I:Elll r_i[, rar and rir are checked to ensure that they rotate the registers,
one bit at a time. The combined-register rotate commands are checked for stop and go, and also
for rapid execution. The rapid execution tests both left and right rotation as well as alternation

between left and right.

The program begins by sensing SS1. With SS1 off, the program is automatically executed after
being read into core memory. However, if SS1 is on, upon completing read=in the computer halts
with the MA equal to 0002. Program execution is resumed by pushing CONTINUE. The above
conditions hold both when the program is read in using the RIM loader, and when the READ IN

switch is used. (Location 0000 contains the program number.)

The rotate test follows the sensing of switch 1. This part of the program occupies locations 0003
through 0255, and has 26 error halts. The test has three parts. |t first checks ral, Li_l_, rar and rir,
for one~bit rofation, using each of the last nine bits in the instruction. Second, the test checks
that all instructions execute nine=bit rotations properly, and checks that no rotation takes plac
bits 9-17 of the instruction are all zero. Finally, the test checks rcl and rer for repeated execu-

tion as well as for alternate (right-left) execution.

The first part of the rotate test checks ral, ril, rar and rir to ensure that a one-bit rotate is executec
properly. Each instruction is executed nine times, each time using a different bit to specify the
rotate; e.g., for ral: 661001, 661002, 661004, 661010, 661020, 661040, 661100, 661200, é¢ 9
After every pair of commands (ral-ril; rar-rir), the contents of AC and 1O are checked to ensure

that the insfruction was properly executed.

The second part of the rotafe test executes a nine=bit rotate, using each of the six instructions
once. Then all six instructions are executed, specifying no rotation (bits 9-17 all zero). The
registers are checked after each pair of instructions (ral=ril; rar-rir) and after each of the rcl, rer

insfructions.

The third and final part of the rotate test is a three~loop sequence which is iterated, using different
test numbers. The purpose of this iteration is to subject the computer to the most adverse condi** ns

of rotation. The first loop executes four rcl (9 bits) instructions in a row, checks the result, and

3-44

8‘ Rl [L . 2 re < 1) n
) tfimes. The second loop is like the first, except that the rer command

repeats this sequence 256 (2
is used instead of the rcl. The third loop alternately executes rcland rerfor a total of eight rotate
commands, checks the result, and repeats the sequence 256 times. Using different test numbers,

the three loops are executed six times. This concludes the test for rotate, and switch 2 is sensed.

With SS2 off, the program fransfers fo the RIM loader and the next program is read in. However,
if SS2 is on, the computer loops back to location 0003 and iterates the same program until SS2 is

turned off . Note that switch 1 is sensed only after read=in. Thus, the program iterates even if

SS1 is on.

3-45

YES

[Cctral 1) ==c(ac) |

[_C{AC)=>Clishft]) |

[ctritn) Ts C{AC) |

_clac)=>Clishft +1) |

[_test +1 = C(AC)]

| ClAC)g-17 =C{Lshft +2)g-17 |

e 1

[C(test) =>¢(10) |

[c(10) =>Cltemp) |

I_C(temp)‘ﬂb Clac) |

[rotate AC left 1 bit |

| rotate 10 left 1l bit |

N, hit

YES
L__C(I0) => Cltemp) |

C(AC)= MO

| h
C(temp) i

[clishtt) ==C{AC) |

|_C(AC) » C(mask}=C(AC) | sis Logicatl 4N0

[T ClAC)Y + C(ishit) == C(AC) |

[_ClAC)g-17 =Clrshft +2) |

j =11

[Cltest +11) = c(10) |

|__ClAC)=»Clishft) |

[__Cllshft +1) =C(AC) |

[C(AC) » C(mask)=>C(AC) |

[TClACY + ClLshft +1) =>C(AC)]

[C(AC) =»C(lshit+1) |

[_clio) =c(temp) |

[_Cltemp) =ec{aC) |

[__rotate AC right 1 bit |

[rotate IO right 1 bit |

ClAC)=
Cltest +j)

t hit

[c{10) =>Cltemp) |

{ hit

[__Clrshft) ==C(AC) |
1S

[_clAC) » C(mask)=C(AC) |

[CACY + Clrshft) = C(AC) |

[C(ACY =>Clrshft) |

[Clrshft +1) == C(AC) |
+

[(C{AC) sC(mask) == C(AC) |

[ClAC) + Clrshit+=>C(AC) |

[[cac) == clrshft +1)_ |
(1=l =s]]

v
_Clrar1) =c{AC) |

[_ClAC} = Clrshft) |
v

[Cclriry) => ¢(ac) |

[Clac) =C(rshft+1) |

[(test + 10 = ClAC) |

[cltest) =» c(AC) |

+
[Citestl = ciol]

[rotate AC left 9 bits |

rotate I0 left 9 bits |

C(AC) = M
Cltest +11),

YES
{__C(I0) == Cltemp) |

hit

C(AC) =
C{temp)

[rotate AC right 9 bits |

15
rotate 10 right 9 bits |

Figure 16 Instruction Test Program 17

{ hit
YES
|__C(10) = Cltemp} |
ClaC)=
Cltemp) it

[Cliest+11) == C(AC) |
)

[rotate combined AC and IO left 9 bits. |

[Cltastc+1) =» C(AC) |

[T C(I0) = Cltemp) |

MO niy

YES
{ cxrastc)f» c(AC) |

[" rotate combined AC and IO right 9 bits |

M

{ hit

YES
Citest) =» C{AC

L_C(I0) => C{temp} |

MO nit

YES
[rat (no bits specified) |

ril {no bits specified) |

YES
[c(10) = Cltemp) |

[_rar (no biis specified) |

rir (no bits specified) |

YES
[T c{Io)=>Cltemp) |

Figure 16 Instruction Test Program 17 (continued)

C(AC)=
C(temp)

rcl (no bits spaecified) |

C{AC)= NO
Cltest) 1 hit

YES
[ctio) == cttemp) |

[_rer {no bits spacified] |

MO '
hit

YES
[_C(10) => C(temp) |

[ClAClg-17 == C{fasticopsig-17 |

[Clnumber)=>C(AC) |

4
{ C{AC)=sC{count])]

[Ciiip +1) = c(i0) |

L C(IO)jC(famD) |

[C(?amg)rC(AC) |

¥ rotate combined AC and IO 36 bits lsft |

NO
hit

YES
c{1o) ==C{temp) |

[Cleount) +1=>C{AC) |

[cfaci=>Clcount) |

MO

AC=+

YES
[Clnumber)=>C(AC) |

[claC) =Clcount) |

3-47

¥

I ¢cl10) = cltemp) !

L C(temp)? c(ac) |

[

[rotate combined AC and IO 36 bits right |

i

NO |

YES
[TC{I0) = Cltemp) |

[_Clecount) +1=>C{AC)]

|_C(AC) = Ctcount) |

AC= + Mo

YES
[_Clnumber) ==C{AC) |

{__C{AC) =C(count) |

[C(10) = Citemp) |

__Cltemp) =» C(AC) |

| rotate

combined ACand I0 right 9 biis |

| rotate

combined AC and IO left 9 bits |

[rotate

combined AC and IO right 9 bits |

[rotate

!
combined AC and IO left 9 bits |

| rotate

combined AC and IO right 9 bits

[rotate

)
combined AC and [0 left 9 bits

[rotate

combined AC and IO right 9 bits

[rotate

combined AC and I0 left 9 bits

L} _— j —

Na‘hl.t

[ct10) => cltemp) |

C(AC)=
Cltemp}

[Cleount) +1 =2C(AC) |

[C(AC) => Clcount) |

Jump to

RIM
loader

ES

3-18 PROGRAM 20

Program 20 tests all the shift instructions (_sg_l ,il, sar, sir, siI_, Ef)‘ Some test numbers are shif
to check the following operations: That bit O is shifted into bit 1 on the right shifts; that Os are
shifted into bit 17 on left shifts; and that the AC and IO are treated as one register on combined
shifts,

The program begins by sensing SS1. With SS1 off, the program is automatically executed after
being read info core memory. However, if SS1 is on, upon completing read=in the computer halts
with the MA equal to 0002. Program execution is resumed by pushing CONTINUE. The above
conditions hold both when the program is read in using the RIM loader, and when the READ IN

switch is used. (Location 0000 contains the program number.)

The shift test commences after the sensing of switch 1. The test occupies locations 0003 through
0070, and has ten halts. The test has five parts. The first part checks the left shifts on both AC
and 1O to ensure that Os are introduced into bit 17. The second checks the right shifts on both

AC and 1O to ensure that the sign bit (equal to 0) is shifted into bit 1. The third checks the

right shifts of both AC and 1O to ensure that the sign bit (equal to 1) is shifted into bit 1. The
fourth checks the combined left shift to ensure that bit 0 of the 1O is shifted into bit 17 of the AC
The fifth and last part of the test checks the combined right shift to ensure that AC bit 17 is shifted

into IOO.

To check the left shift (part one of the test), the AC and 10 are both loaded with the number
377777, and each of these two registers is shifted left seventeen times. Then the AC and 1O are
checked for zero; the AC by means of an sza instruction, the 10 by depositing its contents into

a memory location and comparing the location with AC.

Part two of the test, which comprises half of the right=shift check, is identical to part one except
that the shift is right. The other half of the right=shift check (part three of the test) is identical to
part two except that the number 400000 is used instead of 377777.

For the combined shift check (parts four and five of the test), the AC and 10 are each loaded with
the number 377777; the combination is shifted left once, and the resulis are checked. The test
number is reloaded into both registers; the combination is shifted right one bit; and the results

are again checked. This completes the shift test, Switch 2 is then sensed.

If switch 2 is on, the program iterates the shift test until the switch is turned off. If switch 2 is

3-48

off, the program executes a short terminal routine, and halts. The terminal routine sets the
principal computer registers to the configuration shown in Table 3~3 below. This configuration

indicates the successful completion of the PDP=1 Instruction Test.

TABLE 3-3 COMPUTER STATE AT COMPLETION OF INSTRUCTION TEST

Register Contents
PROGRAM COUNTER 000 000 000 001
MEMORY ADDRESS 000 000 000 000
MEMORY BUFFER 000 000 000 000 010 000
ACCUMULATOR : 000 0C0 000 1171 111 1IN
IN=-QUT 111 111 111 000 000 000
PROGRAM FLAGS 111111

3-49

ss1=0-M 0 nis

YES
[T cltesty = clac) |

C{AC)=
Cltemp)

[_cfiest) ? c(10) |

[_cltest) = cfac) |
[shift AC left 17 bits | 3

[_Cltest) = c(I0t |

i +
|__shift IO left 17 bits | {_shift combined AC and IO left 1 bit |

AC=+0 no | hit

YES
[c(10) = Cltemp) |

[_cto =>lC(fernp)]

__Cltest +2) => C(AC) |

Cltemp)

[Ccltesh) = clac)] Cltemp)

[citest) T» c(10) |

|__shift AC right 17 bits | [cltest) =clac) |

[Shift 10 right 17 Bits | L_Cttest) . o) |
[shift combined AC and 10 right 1 bit |
ACz+40 MO hit
YES L2
[Cc(i0) = Citemp) |
YES
[c10) = cltemp) |

[Cliest +4) == C(AC) |

[Cltest +5) == C(AC) | C (AC)= MO
C(temp) hit
[Cltest +5) => cl(10) |
Y
[shift AC right 17 bifs | £s
A M Ss2-0
{snift 10 rignt L7 bits | N
&S
Set:
h‘M C(PC) = 0001
I C{MA) = 0000
C(MB) = 000020
! °°’“°'°;"°'“ AC | C(AC) = 000777
| C(I0)=e Cltemp) | c(I0)= 777000
All Program Flags = 1
hit

Figure 17 Instruction Test Program 20

3-50

PROGRAM LISTING
MAINDEC 1 - INSTRUCTION TEST
PROGRAM 1 (Clears Locations 0000 through 7766) and RIM LOADER

Location | Contents Mnemonic Code Remarks

7766 340000 zero dzm 000 START OF Program 1. Clears memory locations
0000 through 7766. (Note: location 7766 is
indexed once after clearing.)

7767 447766 idx zero Increments dzm instruction so that next location
is cleared.

7770 467776 isp temp Leaves routine after clearing location 7766 .

7771 607766 jmp zero Loops back to clear next location. END OF Pro-
gram 1.

7772 730002 rimr rpb ' START OF the RIM loader. Reads an instruction
from the tape.

7773 327776 dio temp Deposits the instruction in location temp.

7774 652000 spi ' Executes the instruction if it is jmp and leaves
the RIM loader.

7775 730002 rpb ’ Reads another instruction from tape.’

7776 - 770010 temp 770010 Temporary storage for dio instructions (which
stores program read) and for jmp (to leave RIM
loader). (Program 1 uses location to count up
to 7766.)

7777 607772 imp rimr Loops back to start of RIM loader. END OF the

RIM loader.

3-51

PROGRAM LISTING
MAINDEC 1 - INSTRUCTION TEST PROGRAM 2 (Tests hlt, jmp, szs)

Location | Contents | Mnemonic Code Remarks

0000 000002 000002 Program number.

0001 760400 start hlt Tests for hit.

0002 603000 jmp 3000 Start of jmp test. Checks

0003 760400 hlt MB7’ 3 _]_, PC7' g

0004 4650010 sense szs ' 10 Tests szs' with all sense switches off.
0005 640010 szs 10 Tests szs with all sense switches off.
0006 760400 hlt

0007 650020 szs ' 20

0010 640020 szs 20

0011 760400 hit

0012 650030 szs ' 30

0013 640030 szs 30

0014 760400 hlt

0015 650040 szs ' 40

0016 640040 szs 40

0017 760400 hit

0020 650050 szs ' 50

0021 640050 szs 50

0022 760400 hit

0023 650060 szs ' 60

0024 640060 szs 60

0025 760400 hit

0026 650070 szs ' 70

0027 640070 szs 70

0030 760400 hlt

0031 600002 jmp start + 1 Loops back to start of jmp test.
0032 640010 |aszs 10 Tests szs with all sense switches on.
10033 650010 szs ' 10 Tests szs ' with all sense switches on.

3-52

PROGRAM LISTING
MAINDEC 1 - INSTRUCTION TEST PROGRAM 2

(continued)

Location| Contents | Mnemonic Code Remarks

0034 | 760400 | hit
0035 | 640020 | szs 20
0036 | 650020 | szs'20
0037 | 760400 | it
0040 | 640030 | szs 30
0041 650030 | szs ' 30
0042 | 760400 | hit
0043 | 640040 | szs 40
0044 | 650040 | szs'40
0045 | 760400 | hit
0046 | 640050 | szs 50
0047 | 650050 | szs'50
0050 | 760400 | it
0051 640060 | szs 60
0052 650060 szs ' 60
0053 | 760400 | hlt
0054 | 640070 | szs 70
0055 | 650070 | szs'70
0056 | 760400 | hlt

0057 600032 imp a Iterates szs test with all switches on.
3000 604777 imp 4777 Checks -9> PC, g and
3001 760400 hit MBé l) PC6 and
1

MB9-17 - PC9—17'
4777 | 606000 | jmp 6000 Checks = PCy_, and
5000 760400 hit MB7 l) PC7.
6000 600004 jmp sense Checks .9, PC 4.7 and leaves jmp
6001 1760400 | hit test.

3-53

PROGRAM LISTING
MAINDEC 1 - INSTRUCTION TEST PROGRAM 3
(Tests cla, cma, sma, spa, sza, 654000, 650000, lat partly)

Location | Contents | Mnemonic Code Remarks

0000 000003 000003 Program number.

0001 640010 Start szs 10 With SS1 on, program halts after reading in.

0002 760400 hit

0003 650000 650000 Test the two unconditional skips.

0004 760400 hit

0005 454000 654000

0006 760400 hit

0007 640000 640000 Tests no selection on skip.

0010 600012 imp a

0011 760400 hit

0012 644000 a 644000

0013 600016 imp b

0014 760400 hit

0015 762200 lat Loads AC with all 1's in preparation for cla
test. Note: no check for proper execution
of lot.

0016 760200 b cla Jointly tests cla and sza. If halt occurs,

0017 640100 sza check AC to determine which of the two

0020 760400 hit instructions failed.

3-54

PROGRAM LISTING
MAINDEC 1 - INSTRUCTION TEST PROGRAM 3 {continued)

Location | Contents | Mnemonic Code Remarks

0021 762200 lat Tests cma, sza, and partially tests lat. If
0022 761000 cma halt occurs, check AC to determine which
0023 640100 sza instruction failed.

0024 760400 hit

0025 640200 spa Tests spa for skip.

0026 760400 hit

0027 650400 sma ' Tests sma for skip.

0030 760400 hit

0031 761000 cma Tests cma, s_zifor skip. If halt occurs,
0032 650100 sza ' check contents of AC to determine which
0033 760400 hit instruction failed.

0034 650200 spa ' Checks spa ' for skip.

0035 760400 hit

0036 640400 sma Checks sma for skip.

0037 760400 hit

0040 640020 szs 20 With SS2 on, this program iterates. With SS2
0041 400003 jmp start +2 off, jumps to the RIM loader and reads in
0042 607772 jmp 7772 the next program.

3-55

PROGRAM LISTING
MAINDEC 1 - INSTRUCTION TEST PROGRAM 4 (Tests xor, sas, sad)

Location | Contents | Mnemonic Code Remarks

0000 000004 000004 Program number.

0001 640010 start szs 10 If SS1 is on, program halts after reading in.

0002 760400 hit

0003 761200 761200 Loads accumulator with all 1's.

0004 060054 XOr ones START OF xor Test. Checks exclusive=-OR

0005 640100 sza of all 1's with all 1's.

0006 760400 hit

0007 060055 XOr zeros Checks exclusive=OR of all 0's with all 0's.

0010 640100 sza

0011 760400 hit

0012 060054 xor ones Checks exclusive=OR of all 0's with all 1's.

0013 761000 cma

0014 640100 sza

0015 760400 hit

0016 761000 cma Checks exclusive-OR of all 1's with all 0's.

0017 060055 XOr Zeros END OF xor. Test.

0020 761000 cma

0021 640100 sza

0022 760400 hit

0023 520055 sds zeros START OF sas and sad Tests. Compares 0's

0024 760400 hit with 1's and checks for skip.

0025 640100 sza Checks that sas replaces contents of AC.
760400 hit

0026

3-56

PROGRAM LISTING
MAINDEC 1 - INSTRUCTION TEST PROGRAM 4 (continued)

Location | Contents | Mnemonic Code Remarks
0027 500054 sad ones Compares 1's with 0's and checks for skip.
0030 760400 hlt
0031 640100 sza Checks that sad replaces contents of AC.
0032 760400 hit
0033 761000 cma Checks that sas does not skip. AC, all 17,
0034 520055 sas zeros compared against all 0's.

- 0035 650000 650000
0036 760400 hit
0037 761000 cma Checks that sas replaces contents of AC.
0040 640100 sza
0041 760400 hit
0042 761000 cma Checks ’rhcf_s_q_d_ does not skip. AC, all 1's,
0043 500054 sad ones compared against all 1's.
0044 650000 650000
0045 760400 hit
00446 761000 cma Checks that sad replaces contents of AC.
0047 640100 sza END OF sas and sad Test.
0050- 760400 hit
0051 640020 szs 20 With SS2 on, this program iterates. With
0052 600003 imp start +2 $S2 off, jumps to RIM loader and reads in
0053 607772 imp 7772 next program.
0054 777777 ones 777777 Contains all 1's.
0055 000000 zeros 000000 Contains all 0's.

3=57

PROGRAM LISTING
MAINDEC 1 - INSTRUCTION TEST PROGRAM 5 (Tests dip, dap, dac, lac)

Location | Contents | Mnemonic Code Remarks

0000 000005 000005 Program number.

0001 640010 start szs 10 If SS1 is on, program halts after reading in.

0002 760400 hit

0003 760200 cla START OF dip, dap, and dac Test. Clears the
AC.

0004 300063 dip regs Checks that dip and dap deposit all 0's into

0005 260063 dap regs all 0's.

0006 520063 sas regs

0007 1760400 hit

0010 240064 dac temp Checks that dac deposits all 0's into all 0's.

0011 520064 sas temp

0012 760400 hlt

0013 761000 cma Loads AC with all 1's.

0014 300063 dip regs Checks that dip and dap deposit all 1's into

0015 260063 dap regs all 0's.

0016 520063 sas regs

0017 760400 hit

0020 240064 dac temp Checks that dac deposits all 1's into all 0's.

0021 520064 sas temp

0022 760400 hit

3-58

PROGRAM LISTING
MAINDEC 1 - INSTRUCTION TEST PROGRAM 5 (continued)

Location | Contents | Mnemonic Code Remarks

0023 300063 dip regs Checks that dip and dap deposit all 1's into
0024 260063 dap regs all 1's.

0025 520063 sas regs

0026 760400 hit

0027 240064 dac temp Checks that dac deposits all 1's into all 1's.
0030 520064 sas temp

0031 760400 hit

0032 761000 cma Clears AC.

0033 300063 dip regs Checks that dip and dap deposit all 0's into
0034 260063 dap regs all 1's.

0035 520063 sas regs

0036 760400 hit

0037 240064 dac temp Checks that dac deposits all 0's into all 1's.
0040 520064 sas temp

0041 760400 hlt END OF dip, dap, dac Test.

0042 200061 lac zeros START OF lac Test. Checks that all 0's
0043 640100 sza are loaded into AC, which contains all 0's.
0044 760400 hit

0045 200062 lac ones Checks that ail 1's are loaded into AC,
0046 520062 sas ones which contains all 0's.

0047 760400 hit

3-59

PROGRAM LISTING
MAINDEC 1 = INSTRUCTION TEST PROGRAM 5 (continued)

Location | Contents|{ Mnemonic Code Remarks

0050 200062 lac ones Checks that all 1's are loaded into AC,

0051 520062 sas ones which contains all 1's.

0052 760400 hlt

0053 200061 lac zeros Checks that all 0's are loaded into AC, which
0054 640100 sza contains all 1's.

0055 760400 hit END OF lac Test.

0056 640020 szs 20 With SS2 on, this program iterates. With SS2
0057 600003 jmp start +2 off, jumps to RIM loader and reads in next
0060 607772 imp 7772 program.

0061 000000 zeros 000000 Contains all 0's.

0062 777777 ones 777777 Contains all 1's.

0063 000000 regs 000000 Test location for dip and dap.

0054 00coce temp 000000 Test location for dac.

3-60

PROGRAM LISTING
MAINDEC 1 - INSTRUCTION TEST PROGRAM 6 (Tests dzm, idx)

Location | Contents | Mnemonic Code Remarks

0000 000006 000006 Program number.

0001 640010 start szs 10 If SS1 is on, program halts after reading in.

0002 760400 hlt

0003 761200 761200 Loads AC with all 1's and deposits all 1's in

0004 240166 ~ dac temp test location for the dzm.

0005 340166 dzm temp START OF dzm Test. Zeros the test location,
which contains all 1's.

0006 200166 lac femp Checks that test location was cleared.

0007 640100 sza

0010 760400 hit

0011 340166 dzm temp Zeros test location, which contains all 0's.

0012 200166 lac temp Checks that test location was cleared. END

0013 640100 sza OF dzm Test.

0014 760400 hit

0015 761200 761200 START OF idx Test. Loads AC with all 1's

0016 240166 dac temp and deposits all 1's in test location temp.

0017 440166 idx temp Indexes test location once to 000001.

0020 640200 spa Checks that the carry propagated to ACO'

0021 760400 hlt

0022 650100 sza ' Checks that end-around carry was executed.

0023 760400 hit

3-61

PROGRAM LISTING
MAINDEC 1 - INSTRUCTION TEST PROGRAM 6 (continued)

Location | Contents | Mnemonic Code Remarks

0024 761000 cma Checks the contents due to previous idx, and
0025 240166 dac temp also checks that the attempt to index -1

0026 440166 idx temp results in +0.

0027 640100 sza

0030 | 760400 hit

0031 200167 lac th1 Checks that the carry chain terminates at bit
0032 240166 dac temp 17 of the AC. The number 377776 is deposit-
0033 440166 idx temp ed in the test location and indexed. If the carry
0034 640200 spa chain does not stop correctly, the AC changes
0035 760400 hlt sign and the program halts.

0036 200170 lac th1 + 1 Checks that the carry chain terminates at bit
0037 240166 dac temp 16 of the AC by indexing the number 377775.
0040 440166 idx temp

0041 640200 spa

0042 760400 hit

0043 200171 lac th1 + 2 Checks that the carry chain terminates at bit
0044 240166 dac temp 15 of the AC by indexing the number 377773.
0045 440166 idx temp

0046 640200 spa

0047 760400 hit

0050 200172 lac th1 +3 Checks that the carry chain terminates at bif
0051 240166 dac temp 14 of the AC by indexing the number 377767 .
0052 440166 idx temp

0053 640200 spa

0054 760400 hit

3-62

PROGRAM LISTING
MAINDEC 1 - INSTRUCTION TEST PROGRAM 6 (continued)

Location | Contents | Mnemonic Code Remarks

0055 200173 lac tb1 +4 Checks that the carry chain terminates at bit

0056 240166 dac temp 13 of the AC by indexing the number 377757 .
0057 440166 idx temp

0060 640200 spa

0061 760400 hit

0062 200174 lac tb1 +5 Checks that the carry chain feﬁninafes at bit

0063 240166 dac temp 12 of the AC by indexing the number 377737
0064 440166 idx temp

0065 640200 spa

0066 760400 hit

0067 200175 lac tb1 + 6 Checks that the carry chain terminates at bit

0070 240166 dac temp 11 of the AC by indexing the number 377677
0071 440166 idx temp

0072 640200 spa

0073 760400 hit

0074 200176 lac tb1 +7 Checks that the carry chain terminates at bit

0075 240166 dac temp 10 of the AC by indexing the number 377577 .
0076 440166 idx temp

0077 640200 spa

0100 760400 hit

0101 200177 lac tb1 + 10 Checks that the carry chain terminates at bit
0102 240166 dac temp 9 of the AC by indexing the number 377377.

0103 440166 idx temp

0104 640200 spa

0105 760400 hlt

3-63

PROGRAM LISTING
MAINDEC 1 - INSTRUCTION TEST PROGRAM 6 (continued)

Location | Contents | Mnemonic Code Remarks

0106 200200 lac th1 + 11 Checks that the carry chain terminates at bit
0107 240166 dac temp 8 of the AC by indexing the number 376777 .
0110 440166 idx temp

0111 640200 spa

0112 760400 hit

0113 200201 lac tb1 + 12 Checks that the carry chain terminates at bit
0114 240166 dac temp 7 of the AC by indexing the number 375777.
0115 440166 idx temp

0116 640200 spa

0117 760400 hlt

0120 200202 lac th1 + 13 Checks that the carry chain terminates at bit
0121 240166 dac temp 6 of the AC by indexing the number 373777.
0122 440166 idx temp

0123 640200 spa

0124 760400 hit

0125 200203 lac th1 + 14 Checks that the carry chain terminates at bit
0126 240166 dac temp 5 of the AC by indexing the number 367777.
0127 440166 idx temp

0130 640200 spa

0131 760400 hit

0132 200204 lac tb1 + 15 Checks that the carry chain terminates at bit
0133 240166 dac temp 4 of the AC by indexing the number 357777 .
0134 440166 idx temp

0135 640200 spa

0136 760400 hlt

3-44

PROGRAM LISTING
MAINDEC 1 - INSTRUCTION TEST PROGRAM 6 (continued)

Location| Contents | Mnemonic Code Remarks

0137 200205 lac th1 + 16 Checks that the carry chain terminates at bit
0140 240166 dac temp 3 of the AC by indexing the number 337777.
0141 440166 idx temp

0142 640200 spa

0143 760400 hit

0144 200206 lac tb2 Checks that the carry chain terminates at bit
0145 240166 dac temp 2 of the AC by indexing the number 677777.
0146 440166 idx temp

0147 640400 sma

0150 760400 hlt

0151 200207 - lac th2+1 Checks that the carry chain terminates at bit
0152 240166 dac temp 1 of the AC by indexing the number 577777 .
0153 440166 idx temp

0154 640400 sma

0155 760400 hit

0156 200210 lac tb2 + 2 Checks that the carry chain terminates at bit
0157 240166 dac temp 0 of the AC by indexing the number 377777.
0160 440166 idx temp

0161 640400 sma END OF idx Test.

0162 760400 hit

0163 640020 szs 20 With SS2 on, this program is iterated. With
0144 600003 jmp start +2 SS2 off, the program jumps to the RIM loader
0165 607772 imp 7772 and reads in the next program.

0166 000000 temp 000000 Temporary storage.

3-65

PROGRAM LISTING
MAINDEC 1 - INSTRUCTION TEST PROGRAM 6 (continued)

Location| Contents | Mnemonic Code Remarks

0167 377776 tb1 377776 Numbers to test carry chain termination in
0170 377775 377775 AC bits 3 through 17.

0171 377773 377773

0172 377767 377767

0173 377756 377756

0174 377737 377737

0175 377677 377677

0176 377577 377577

0177 377377 377377

0200 376777 376777

0201 375777 375777

0202 373777 373777

0203 367777 367777

0204 357777 357777

0205 337777 337777

0206 677777 tb2 677777 Numbers to test carry chain termination in
0207 577777 577777 AC bits 0 through 2.

0210 377777 377777

3-66

PROGRAM LISTING
MAINDEC 1 - INSTRUCTION TEST PROGRAM 7 (Tests isp)

Location| Contents | Mnemonic Code Remarks

0000 | 000007 000007 Program number.

0001 640010 startszs 10 If SS1 is on, computer halts after reading in.

0002 760400 hit

0003 200050 lac in1 Initializes cnt1 and t1 with the number 377777

0004 240044 dac cntl Initializes cnt2 and t2 with the number 777776

0005 2400446 dac t1

0006 200051 lac tn2

0007 240045 dac ent2

0010 240047 dac t2

0011 460047 loop isp 12 START OF isp Test. Indexes t2 to 000000 and

0012 760400 hit through to 377777 and checks that it skips
each time.

0013 440045 idx cnt2 Checks that t2 was indexed to the correct

0014 520047 sas t2 number.

0015 - 760400 hit

0016 500050 sad tnl Leaves loop when cnt2 has been indexed to

0017 600027 jmp last 377777.

0020 460046 isp t1 Indexes t1 to 400000 and through to 777776

0021 650000 650000 and checks each time that it does not skip.

0022 760400 hit

0023 440044 idx cntl Checks that t1 was inaexed to the correct

0024 520046 sas t1 number.

0025 760400 hit

3~67

PROGRAM LISTING
MAINDEC 1 = INSTRUCTION TEST PROGRAM 7 (continued)

Location | Contents | Mnemonic Code Remarks

0026 600011 imp loop Jumps to the start of the loop.

0027 460046 last isp 11 Indexes the number 777776 to 000000. Also

0030 760400 hlt checks that a skip occurs.

0031 640100 sza Checks that the result of the index was

0032 760400 hlt 000000.

0033 460047 isp 12 Indexes the number 377777 to 400000, Also

0034 650000 650000 checks that no skip results. .

0035 760400 hlt

0036 440045 idx ent2 Checks that the result of the index was

0037 520047 sas t2 400000. END OF isp Test.

0040 760400 hit

0041 640020 szs 20 With SS2 on, the program iterates. With

0042 600003 jmp start +2 SS2 off, program jumps to RIM loader and

0043 607772 imp 7772 reads in next program.

0044 000000 ent 1000000 Contains number which is compared against
t1; to check isp.

0045 000000 cnt2 000000 Contains number which is compared against
t2; to check isp.

0046 000000 t1 000000 Test location 1.

3-68 =

PROGRAM LISTING
MAINDEC 1 - INSTRUCTION TEST PROGRAM 7 (continued)

Location | Contents | Mnemonic Code Remarks
0047 000000 t2 000000 Test location 2.

0050 377777 tnl 377777 Test number 1.

0051 777776 tn2 777776 Test number 2.

3-69

PROGRAM LISTING
MAINDEC 1 - INSTRUCTION TEST PROGRAM 10 (Tests and, ior)

Location| Contents | Mnemonic Code Remarks

0000 000010 000010 Program number.

0001 640010 start szs 10 . With SS1 on, the program halis after reading
0002 760400 hit in.

0003 200047 lac t2 START OF_cz_m_i Test. ANDs all 1's with all
0004 020047 and t2 I's. Checks that the result is all 1's.

0005 520047 sas t2

0006 760400 hit

0007 200046 lac t1 AND:s all 0's with all 1's. Checks that the
0019 020047 and t2 result is all O's.

0011 640100 sza

0012 760400 hit

0013 200046 lac t1 AND:s all 0's with all 0's. Checks that the
0014 020044 and t1 result is all O's.

0015 640100 sza

0016 760400 hit

0017 200047 lac t2 ANDs all 1's with all 0's. Checks that the
0020 020046 and t1 result is all O's.

0021 640100 sza END OF gr_’né Test.

0022 760400 hir

3-70

PROGRAM LISTING
MAINDEC 1 - INSTRUCTION TEST PROGRAM 10 (continued)

Location | Contents | Mnemenic Code Remarks
0023 200046 lac t1 START OFﬁTesf. Forms the inclusive-OR
0024 .| 040046 jor t1 of all 0's with all 0's. Checks that the result
0025 640100 sza is-all O's.
0026 760400 hit
0027 200046 lac t1 Forms the inclusive=-OR of all 0's with all 1's. .
0030 040047 ior +2 Checks that the result is all 1's.

- 0031 520047 sas 12
0032 760400 hit
0033 200047 lac t2 Forms the inclusive=OR of all 1" with all 1's.
0034 040047 jor 12 Checks that the result is all 1's.
0035 520047 sas 12
0036 760400 hlt
0037 200047 lac 12 Forms the inclusive=OR of all 1's with all 0'.
0040 040046 jor t1 Checks that the results is all 1's. END OF
0041 520047 sas t2 ior Test.
0042 760400 hit
0043 640020 szs 20 With SS2 on, the program iterates. With
0044 600003 imp start+2 SS2 off, the program jumps to RIM loader
0045 607772 imp 7772 and reads in next program.
0046 000000 t1 000000 Contains all 0's.
0047 777777 t2 777777 Contains all 1's.

3-71

PROGRAM LISTING

MAINDEC 1 = INSTRUCTION TEST PROGRAM 11

(Tests lio, dio, spi)

Location Contents Mnemonic Code Remarks
0000 000011 000011 Program number .,
0001 640010 start szs 10 With SS1 on, the program halts after reading
0002 760400 hlt in.
0003 340033 dzm t1 Initializes t1 with all O's.
0004 - 760200 cla Clears AC for the test.
0005 220033 a lio t1 START OF li_g, E(_i_c?_, cmds_p;i Test. Loads
0006 320034 dio 12 1O from t1; deposits 10 in t2.
0007 520034 sas 2 Checks that contents of t2 are same as those
0010 760400 hit of t1. If error halt occurs, check 10 to

determine which of the two instructions failed.

0011 640200 spa Jumps out of loop when number in t1 reaches
0012 600017 imp b 400000.
0013 642000 spi Tests spi to ensure that it skips.
0014 760400 hit
0015 440033 idx t1 Increments by 1 the number in t1.
0016 600005 imp a Jumps to start of loop at a.

772

PROGRAM LISTING

MAINDEC 1 = INSTRUCTION TEST PROGRAM 11 (continued)

Location Contents Mnemonic Code Remarks
0017 652000 b spi ' Checks that spi ' skips on a
0020 760400 hlt negative 10.
002" 440033 idx t1 Increments by 1 the number in t1.
0022 220033 lio t1 Loads 1O from t1; deposits 10
0023 320034 dio 12 in 12.
0024 520034 sas 2 Checks that confents of t2 are same
0025 760400 hit as those of 11,
0026 640100 sza Jumps out of loop when number in t1 is 000000 .
0027 - 600017 imp b Jumps to start of loop at b, END OF lio, dio,
spi Test.
0030 640020 szs 20 With SS2 on, program iterates. With
0031 600003 jmpstart+2 | S52 off, program jumps to RIM
0032 607772 imp 7772 loader and reads in next program.,
0033 000000 t 000000 Test location 1,
0034 000000 t2 000000 Test location 2.

3-73

PROGRAM LISTING
MAINDEC 1- INSTRUCTION TEST PROGRAM 12

(Tests add, szo, sub)
Location | Contents |Mnemonic Code Remarks
0000 000012 000012 Program number.
0001 640010 | start szs 10 With SS1 on, program halts after reading in.
0002 760400 hlt
0G03 641000 520 START OF szo Test. Tums off OVERFLOW,
0004 651000 szo ' Checks that szo ' does not skip.
0005 641000 szo Checks that szo does not skip.
0006 760400 hlt
0007 651000 szo ' Checks that szo ' does not skip.
0010 650000 650000
0011 760400 hlt
0012 760200 cla START OF add Test. Checks partial-add
0013 400114 add zero of all 0's to all 0's.
0014 640100 sza
0015 760400 hit
0016 400117 add pmax Checks partial=add of 377777 to 000000,
0017 520117 sas pmax
0020 760400 hit

3-74

PROGRAM LISTING

MAINDEC 1 - INSTRUCTION TEST PROGRAM 12 (continued)

Location Contents Mnemonic Code Remarks
0021 400116 add zero Checks partial-add of 000000 to
0022 520117 sas pmax 377777 .
0023 760400 hit
0024 - 760200 cla Checks partial-add of 400000 to
0025 400120 ‘add nmax 000000.
0026 520120 sas nmax
0027 760400 hlt
0030 400116 add zero Checks partial-add of 000000 to
0031 520120 sas nmax 400000.
0032 760400 hlt
0033 641000 520 Checks that OVERFLOW is off.
0034 760400 hit
0035 400117 add pmax Checks that 400000 add to
0036 640100 sza 377777 results inall O's,
0037 760400 hlt

3-75

PROGRAM LISTING

MAINDEC 1 - INSTRUCTION TEST PROGRAM 12 (continued)

Location Contents Mnemonic Code Remarks
0040 200121 lac zoz Sets OVERFLOW and checks the
0041 400121 add zoz full-register carry for the odd
0042 520122 sas 0zo bits in the AC (A.C.‘, AC3, ACE'
0043 760400 hit etc.)
0044 651000 szo ' Tests that OVERFLOW was set,
0045 760400 hit and clears it.
0044 200123 lac ab Checks full-register carry for
0047 400123 add ab even bits of the AC (ACO’ ACZ'
0050 520124 sas ac etc.) '
0051 760400 hit
0052 200115 lac ones Checks clear-on-AC-minus-0.
0053 400116 add zero
0054 640100 sza
0055 760400 kit
0056 641000 szo Checks that OVERFLOW is off.
0057 760400 hit
0060 761000 cma Checks that ripple=carry propagates
0061 400125 add ad entire length of AC by adding 000001
0062 520125 sas ad to 777777 .
0063 760400 hit

3-76

PROGRAM LISTING

MAINDEC 1 = INSTRUCTION TEST PROGRAM 12 (continued)

Location Contents Mnemonic Code 7 Remarks
0064 641000 $Z0 Checks that OVERFLOW is off.
0065 760400 hit
0066 200122 lac ozo Checks that carry chain initiates
0067 400115 add ones in all even bits of AC (ACO, ACZ'
0070 520122 sas 0zo etc.)
0071 760400 hit
0072 200121 lac zoz Checks that carry chain initiates
0073 400115 add ones in all odd bits of AC,
0074 520121 sas zoz
0075 760400 hit
0076 641000 sz0 Checks that OVERFLOW is off.
0077 760400 hit END OF szo and add Test.
0100 760200 cla Initializes in preparation for the
0101 240127 dac temp sub fest,
0102 761000 cma
0103 420126 loop sub mone START OF s_ull Test. Adds 1 to
0104 240130 dac gemp AC (subtracts =1) and deposits
0105 440127 idx temp AC in location gemp. Checks by
0106 520130 sas gemp incrementing location temp, by 1, and
0107 760400 hlt comparing contents against gemp.

PROGRAM LISTING

MAINDEC 1 = INSTRUCTION TEST PROGRAM 12 (continued)

Location Contents | Mnemonic Code Remarks

110 520116 sas zero Jumps out of loop when contents of temp reach
O (temp is initially 0 and is incremented by 1
until it becomes 0 again).

0111 600103 imp loop Jumps fo start of loop. END OF sub Test.

0112 640020 szs 20 With SS2 on, program iterates, With SS2

0113 400003 impstart+2 | off, program jumps to RIM loader and reads

0114 607772 imp 7772 in next program.

0115 777777 ‘ones 777777 Location containing all 1's.

0116 000000 zero 000000 Location containing all 0's.

0117 377777 pmax 377777 Maximum positive number.

0120 400000 nmax 400000 Maximum negative number.

0121 252525 zoz 252525 Alternate Q's and 1's,

0122 525252 ozo 525252 Alternate 1's and Q's,

3-78

PROGRAM LISTING
MAINDEC 1 - INSTRUCTION TEST PROGRAM 12 (continued)

Loccﬁqn Contents Mnemonic Code Remarks
0123 125252 ab 125252 Number used in full register carry test.
0124 252524 ac 252524 Result of full register carry test.
0125 1000001 ’cd 000001 Plus one.
0126 777776 mone 777776 Minus one.

0127 000000 temp 000000 Test location used as temporary storage.
0130 000000 gemp 000000 Test location used as temporary storage .

3-79

PROGRAM LISTING
MAINDEC 1 - INSTRUCTION TEST PROGRAM 13

(Tests law, cli)

Location | Contents |Mnemonic Code Remarks

0000 000013 000013 Program number.

0001 640010{ start szs 10 With SS1 on, program halts after reading in.
0002 760400 hit

0003 761200 761200 START OF law Test. Loads AC with all 1's.
0004 700000 law O Checks loading of AC with +0.

0005 640100 sza

0006 760400 hit

0007 707777 law 7777 Checks loading of AC with +7777.

0010 520042 sas ck '

0011 760400 hit

0012 710000 law ' 0 Checks loading of AC with =0000.

0013 761000 cma

0014 640100 sza

0015 760400 hit

0016 717777 law ' 7777 Checks loading of AC with =7777.

0017 520043 sas dk END OF law Test.

0020 760400 hit

3-80

PROGRAM LISTING
MAINDEC 1 = INSTRUCTION TEST PROGRAM 13 (continued)

Location

Contents Mnemonic Code Remarks

0021 761200 761200 START OF cli Test. Loads AC with all 1's

- 0022 240041 dac femp and deposits 1's in location temp.
0023 220041 fio temp Loads 1O with all 1's.
0024 764000 cli Checks that 1O is cleared when it
0025 320041 dio temp contfains all 1's.
0026 200041 lac temp
0027 640100 sza
0030 760400 hit
0031 764000 cli ‘Checks that 10 is cleared when it
0032 320041 dio temp contains all 0's. END OF cli Test.
0033 - 200041 lac temp
0034 640100 sza
0035 760400 hlt
0036 640020 szs 20 With S52 on, program iterates. With S52

- 0037 600003 impstart+ 2| off, program jumps to RIM loader and reads

0040 607772 imp 7772 in next program.
0041 000000 temp 000000 Location used for transfer between 1O and AC.
0042 007777 ck 007777 Check number for law 7777,

3-81

PROGRAM LISTING
MAINDEC 1 -~ INSTRUCTION TEST PROGRAM 13 (continued)

" Location

Contents

Remarks

Mnemonic Code

0043

770000

dk 770000

Check number for Iiv_! -7777.

3-82

PROGRAM LISTING
MAINDEC 1 - INSTRUCTION TEST PROGRAM 14

(Tests clf, stf, s2f)

Location | Contents | Mnemonic Code Remarks
0000 000014 000014 Program number.
0001 640010 | start szs 10 With SS1 on, program halts afterreading in.
0002 760400 hit
© 0003 760007 clf 7 Clears any flags that may be on, and checks
0004 640007 szf 7 that all flags are off.
0005 760400 hit
0006 200066 lac e Initializes all instructions for flag 1.
- 0007 260020 dapa + 1
0010 200067 lac f
0011 260021 dap a +2
0012 260045 dapc+ 1
0013 260046 dap c + 2
0014 200072 lac cde Sets up count for loop which sets flags.
0015 240071 dac abc
0016 700020} xa lawa+1 Introduces a time delay.
0017 600060 | a jmp count + 1

3-83

PROGRAM LISTING
MAINDEC 1 = INSTRUCTION TEST PROGRAM 14 (continued)

Location Contents Mnemonic Code Remarks
0020 760011 stf 1 Sets flag (beginning with 1) and checks that it
0021 650001 szf ' 1 was set. If a halt occurs, flag must be checked
0022 760400 hit to determine which instruction caused the hals.
0023 440020 idcx a + 1 Increments so that the next flag
0024 440021 idx a + 2 is checked (2, 3, . . .,).
0025 460071 isp abe Jumps out of loop when all six flags have been

set and checked.

0026 600016 imp xa Jumps to start of loop.
0027 700031 law b Introduces a time delay.
0030 600060 imp count+ 1
0031 760007 b clf7 Clears all flags and checks that all are cle
0032 640007 szf 7 If halt occurs, flags must be checked to deter-
0033 760400 hit mine which instruction caused the halt.
0034 700036 lawb +5 Introduces a time delay.
0035 600060 jmp count+1

3-84

PROGRAM LISTING
MAINDEC T - INSTRUCTION TEST PROGRAM 14 (continued)

Location Contents Mnemonic Code Remarks
0036 760017 stf 7 - | Sefs all flags and checks that all flags were
0037 650007 Cszf'7 set.. If halt occurs, all flags must be checked
0040 760400 hit to determine which instruction caused the halt.
0041 200072 lac cde Sets up count for loop which clears
0042 240071 dac abe flags.
0043 700045 xc law ¢ + 1 Introduces a time delay.
0044 600060 c jmp count+ 1
0045 760001 clf 1 Clears flags (beginning with 1) and checks that
0046 | 640001 szf 1 each flag was cleared. If halt occurs, flag
0047 760400 hit must be checked to determine which instruc-

tion caused the halt.

0050 440045 idcc +1 indexes instructions so that next

0051 4400446 idx ¢ + 2 flag is checked.

0052 460071 isp abe Leaves loop when all six flags have been
cleared.

0053 600043 imp xc Jumps to start of loop.

3-85

PROGRAM LISTING
MAINDEC 1 - INSTRUCTION TEST PROGRAM 14 (continued)

Location Contents Mnemonic Code Remarks

0054 640020 szs 20 With SS2 on, program iterates.

0055 600006 mpstart+5 | With SS2 off, program jumps to

0056 607766 imp 7766 the sequence which clears memory.

0057 000000 count 000000 Sequence introduces time delay

0060 260065 dap count+4 | so that action of program flags is

0061 200070 lac mxx visible from console.

0062 240057 dac count

0063 460057 isp count

0064 600063 jmp count+4

0065 400000 jmp . . .

0066 000011 e 000011 Numbers used to set the flag

0067 000001 f 000001 instruction to operate on flag 1.

0070 700000 mxx 700000 Number used to count up the count iocop.

0071 000000 abe 000000 Location loaded with number in cde to count
up to 6 in flag loops.

0072 777771 cde 777771 Number loaded into abc for counting up flag

loops .

3-86

PROGRAM LISTING
MAINDEC 1 - INSTRUCTION TEST PROGRAM 14 (continued)

Location Contents Mnemonic Code Remarks
- 7765 770013 770013 Sequence clears memory locations
7766 340000 zero dzm 0000 0000 through 7754 in preparation
7767 447766 idx zero for next program. After location
7770 467765 isp 7765 7765 is cleared, program jumps
7771 607756 imp zero to RIM loader and reads in next program.

3-87

PROGRAM LISTING
MAINDEC 1 - INSTRUCTION TEST PROGRAM 15

(Tests jsp, ida, cal)

Location Contents Mnemonic Code Remarks
0000 000015 000015 Program number .,
0001 640010 start szs 10 With SS1 on, program halts after reading in.
0002 760400 hit |
0003 641000 szo Clears OVERFLOW.
0004 651000 szo '
0005 600016 jmp test] Goes to first jsp test.
0016 200120 testl lac num Initializes AC to 777757 .
. . . 0 .
0017 620757 ispl jsp chekl Checks bit 13on L= PC. Checks bits

9-12 and 14-17 on MB—— PC.

0032 200123 test4 lac num+3| Deposits 000040 into location
0033 240737 dac chek4 | equal to jda address.

0034 641000 szo Clears OVERFLOW,

0035 651000 szo '

0036 200124 lacnum+4 | Initializes AC to 771737.

3-88

PROGRAM LISTING
MAINDEC 1 - INSTRUCTION TEST PROGRAM 15 (continued)

Location Contents Mnemonic Code Remarks
. . . 0 .
0037 170737 jdal jda chek4 | Checks bit 12 on L=5 pC. Checks bits 9-
1 and 13=17 on MA l—]é PC. Checks il >

PC.
0100 000000 000000 Stores number that AC contained when cal

was executed,
0101 020117 and mask Masks out transfer of EXD flip=flop to AC] .
0102 240116 dac temp | Saves AC.
0103 703002 lawcal1+1 | Contents of PC when cal was executed.
0104 520116 sas temp Checks that PC was saved.
0105 760400 hit
0106 200100 lac 0100 Checks that AC was saved in location 100.
0107 520114 sas ones
0110 760400 hlt
0111 640020 szs 20 With SS2 on, program iterates. With SS2
0112 600003 impstart+2 | off, program jumps to RIM loader and reads
0113 607772 imp 7772 in next program.

3-89

PROGRAM LISTING
MAINDEC 1 = INSTRUCTION TEST PROGRAM 15 (continued)

Location Contents Mnemonic Code Remarks
0114 777777 ones 777777 Locations that hold test numbers or constants;
0115 400000 ovflo 400000 or that are used for temporary storage.
0116 000000 temp 000000
0117 577777 mask 577777
0120 777757 num 777757
o121 776020 776020
0122 771677 771677
0123 000040 000040
0124 771737 771737
0125 006040 006040
0126 006000 006000
0127 771777 771777
0737 000000 chek4 000000 Stores number that AC contained when the
first jda was executed.
0740 020117 and mask | Masks out transfer of EXD flip=flop to AC
0741 240116 dac temp Saves AC.
0742 700040 law jda T+1| Contents of PC when the first da was executed
. 0
0743 520116 sas temp Checks bits 0-5, 8=11 and 13-17 on = AC.
0744 760400 hit Checks bit 12 on PC —> AC.

3-90

PROGRAM LISTING

MAINDEC 1 - INSTRUCTION TEST PROGRAM 15 (continued)

Location Contents Mnemonic Code Remarks
0745 200737 lac chek4 | Checks AC—=> MB. Correct
0746 520124 sasnum+4 | contents of AC equal 771737.
0747 760400 hlt
0750 601731 jmp test5 Goes to second jda test.
0757 020117 chekl and mask Masks out transfer of EXD flip~flop to AC] .
0760 240116 dac temp Saves AC.
0761 700020 lawjsp 1+ 1| Contents of PC when first jsp was executed.
. 0,
0762 520116 sas temp Checks bits 0~12 and 14-17 on = AC.
0763 760400 hit Checks bit 13 on PC 1> AC.
0764 601755 imp test2 Goes to second jsp test.
000000 cheké 000000 Stores number that AC contained when the

1000

third jda was executed.

3-91

PROGRAM LISTING
MAINDEC 1 - INSTRUCTION TEST PROGRAM 15 (continued)

Location Contents Mnemonic Code Remarks
1001 020117 and mask Masks out transfer of EXD flip=flop to AC] .
1002 240116 dac temp Saves AC,
1003 706000 law jda3+1 | Contents of PC when third jda was executed.
1004 520116 sas temp Checks bits 0-5 and 8-17 on lﬂé AC.
1005 760400 hlt Checks bifs 6 and 7 on PC —> AC.
1006 201000 lac cheké Checks AC > MB. Correct contents of
1007 520127 sasnum+7 | AC equal 771777
1010 760400 hit
1011 603000 jmp test7 Goes fo cal test.
1100 020117 chek3 and mask Masks out transfer of EXD flip=flop to AC] .
1101 240116 dac temp Saves AC.
1102 706100 law jsp3+1 | Contents of PC when third jsp was executed.
1103 520116 sas temp | Checks bits 0-5, 8=10 and 12-17 on L2 AC.
1104 760400 hlt Checks bits 6, 7, and 11 on PC — AC.

3-92

PROGRAM LISTING
MAINDEC 1 - INSTRUCTION TEST PROGRAM 15 (continued)

Location Contents Mnemonic Code Remarks

1105 600032 mp test4 Goes to first jda test.

1731 201731 test5 lac test5 Turns on OVERFLOW.,

1732 401731 add test5

1733 200124 lacnum+4 | Deposits 771737 into location

1734 2446640 dac chek5 | equal to address of second jda.

1735 200125 lacnum+5 | Initializes AC to 006040,

1736 V 176040 jda2 jda chek5 | Checks bits 8=11 and 13-17 on '—O—> PC.
Check bits 6, 7, and 12 on MA == PC.
Checks 15 pc,

1755 200121 test2 lacnum+1 | Initializes AC to 776020.

. . ' . 0

1756 626020 isp2 jsp chek2 Checks bits 8-12 and 14-17 on L5 PC.
Checks bits 6,7, and 13 on MB —]> PC.

3000 761200 test7 761200 Initializes AC to all 1's.

3001 160000 call cal Checks that cal signal is properly decoded.

5772 641000 testé szo Clears OVERFLOW.

5773 651000 szo '

3-93

_ - PROGRAM LISTING
MAINDEC T = INSTRUCTION TEST PROGRAM 15 (continued)

Location Contents Mnemonic Code Remarks
5774 200126 lacnum+6 | Deposits 006000 into location
5775 241000 dac cheké | equal to address of third jda.
5776 200127 lac num+7 | lInitializes AC to 771777.
. c . 0)
5777 171000 ida3 jda cheké | Checks bits 6 and 7 on == pC. Checks bit
6 on MA -]@ PC. Checks li-) PC.
6020 020117 chek2 and mask Masks out transfer of EXD flip~flop to AC] .
6021 240116 dac temp Saves AC,
6022 701757 law jsp2+1 | Contents of PC when the second jsp was
executed.
. ' 0
6023 520116 sas temp Checks bits 0-7 and 13 on L5 AC. Checks
6024 760400 hit bifs 812 and 14-17 on PC —5 AC.
6025 606076 imp test3 | Goes to third jsp test.
6040 000000 chek5 000000 Stores number contained in AC when the
second jda was executed.
6041 020117 and mask Masks out transfer of EXD flip=flop to AC

1

3-%94

PROGRAM LISTING
MAINDEC 1 - INSTRUCTION TEST PROGRAM 15 = (continued)

Location Contents Mnemonic Code Remarks
6042 240116 dac temp Saves AC.,
6043 701737 law jda2 + 1| Contents of PC when second jda was executed.
6044 040115 ior ovflo To check transfer of OVERFLOW to ACO .
. N 0
6045 520116 sas temp Checks bits 6,7, and 12 on L= AC. Checks
6046 760400 it bifs 811 and 13-17 on PC —15 AC. Checks
transfer of OVERFLOW to ACO.
6047 206040 lac chek5 | Checks AC ——> MB. Corract
6050 520125 sasnum+5 | contents of AC equal 006040,
6051 760400 hlt
6052 605772 imp testé Goes to third jda test.
6076 200122 test3 lac num+2 | Initializes AC to 771677 .
6077 521100 isp3 jsp chek3 Checks bits 6, 7, and 11 on L— PC.

Checks bits 8 and 11 on MB —]-> PC.

3-95

PROGRAM LISTING
MAINDEC 1 - INSTRUCTION TEST PROGRAM 16

(Tests nop, xct, and deferred addressing)

Location | Contents | Mnemonic Code Remarks

0000 000016 000016 Program number.

0001 640010 | start szs 10 With SS1 on, program halts after reading in.

0002 760400 hit

0003 760000 nop If computer halts here, program failed to
execute nop.

0004 100014 xct inst Checks xct by jumping to next.

0005 760400 hlt Program failed to execute the xct instruction.

0006 350007 | t1 dzm 't2 Used to give address 16 to instruction located

0007 350010 { t2 dzm '1t3 in nexf.

0010 350011 | t3 dzm'i4

0011 350012 | t4 dzm't5

0012 340013 | t5 dzmté

0013 777777 | t6 777777

0014 600015 | inst jmp next Instruction which is executed by xct.

0015 760200 | nextcla Clears AC and checks that deferable addressing

0016 210006 lac * t1 was correctly executed.

0017 520013 sas t6

0020 760400 hlt

0021 640020 szs 20 With SS2 on, program iterates. With SS2 off,

0022 600003 imp start + 2 program jumps to RIM loader and reads in next

0023 607772 imp 7772 program.

3-96

MAINDEC 1 - INSTRUCTION TEST PROGRAM 17

(Tests ral, ril, rar, rir, rcl, rer)

Location Contents Mnemonic Code Remarks

0000 0000]7 000017 Program number.

0001 640010 start szs 10 With SS1 on, program halts after reading in.

0002 760400 hit

0003 200261 lac ral 1 START OF ral s and ril s1 Test. Sefs up

0004 240014 dac Tshft instructions for rotate left one bit,

0005 200262 lac ril 1

0006 240015 dac Tshft+]

0007 700303 law test+ 1

0010 260016 dap Tshft+2

0011 220302 lio test

0012 320265 loopleft dio temp Sets contents of AC equal to contents of 1O,

0013 200265 lac temp

0014 661000 Ishft ral . Rotates AC left one bit. This operation is
repeated nine times; each time a different
bit is used to specify the rotation.

0015 662000 ril .. Rotates 1O left one bit. This operation is

repeated nine times; each time a different

bit is used to specify the rotation.

3-97

PROGRAM LISTING
MAINDEC 1 - INSTRUCTION TEST PROGRAM 17 (continued)

Location Contenfs Mnemonic Code Remarks
0016 520000 Sas . . . Checks that AC was rofated.
0017 760400 hlt
0020 320265 dio temp Checks that 1O was rotated.
0021 520265 sas temp
0022 760400 hit
0023 200014 lac Tshft Moves the 1, which specifies the single rota-
0024 020276 and mask tion, left one bit in the _r_a_l instruction.
0025 400014 add 1shft
0026 500277 sad lastleft | Jumps out of rotate left loop if the registers
0027 600037 imp setupr | have been rotated nine bits left.
0030 240014 dac 1shft Sefs up the next ral instruction.
0031 200015 lac Tshft+1 | Moves the 1, which specifies the single rota-
0032 020276 and mask tion, left one bit in the ﬂ instruction.
0033 400015 add Tshft+1
0034 240015 dac Tshft+1
0035 440016 idx Ishft+2 | Sets address of the sas instruction that checks
left rotation of AC.

3-98

PROGRAM LISTING
MAINDEC 1 - INSTRUCTION TEST PROGRAM 17 (continued)

Location Contents Mnemonic Code Remarks

0036 600012 jmp loopleft | Jumps to start of rotate left loop. END OF

ral s1 and ril s] Test.

0037 200263 setupr lac rarl START OF rar s1 and rir s1 Test. Sets up loop
© 0040 240050 dac rshft for right rotation.

0041 200264 | la rirl

0042 240051 dac rshft +1

0043 700312 law test+ 10

0044 260052 dap rshft+2

0045 220313 lio test+11

0046 320265 loopright dio temp | Sefs contents of AC equal to contents of 1O.

0047 200265 lac temp

0050 - 671000 rshft rar ... Rotates AC right one bit. This operation is

repeated nine times; each fime a different

bit is used to specify the rotation.

0051 672000 Fr .. Rotates 1O right one bit. This operation is
repeated nine fimes; each time a different

bit is used fo specify the rotation.

0052 520000 SAS .« . . Checks that AC was rotated.
0053 760400 hit

3-99

PROGRAM LISTING
MAINDEC 1 - INSTRUCTION TEST PROGRAM 17 (continued)

Location Contents Mnemonic Code Remarks
0054 1320265 dio temp [Checks that 1O was rotated.
0055 520265 sas femp
0056 760400 hlt
0057 200050 lac rshft Moves the 1, which specifies the single rota-
0060 020276 and mask tion, left one bit position.
0061 400050 add rshft
0062 500300 sad lastright |Jumps out of loop if registers have been
0063 600075 imp next shifted right nine times.
0064 240050 dac rshft Finishes setting up the rar instruction.
0065 200051 lacrshft+1 [Moves the 1, which specifies the single rota=-
0066 020276 and mask tion, left one bit in the rir instruction.
0067 400051 add rshft +1
0070 240051 dac rshft +1
0071 200052 lacrshft +2 | Setfs address of the sas instruction that checks
0072 420270 sub one right rotation of AC.
0073 240052 dac rshfi+2
0074 600046 imp loopright| Jumps to start of rotate right loop. END OF

rar s1 and rir s1 Test.

3-100

PROGRAM LISTING
MAINDEC 1 - INSTRUCTION TEST PROGRAM 17 (continued) .

Location Contents Mnemonic Code Remarks
0075 200302 next lac test START OF 9 bit rotation Test. Loads
0076 220302 lio test AC and 1O with test number.
0077 661777 ral s9 Rotates both registers lett
0100 662777 ril s9 nine bits.
0101 520313 sas test+ 11 | Checks that AC was ﬁorrecfly
0102 760400 hlt rotated.
0103 320265 dio temp Checks that 1O was correctly
0104 520265 sas temp rofated.
0105 760400 hit
0106 671777 rar s9 Rotates both registers right
0107 672777 rir s9 nine bits.
0110 520302 sas fest Checks that AC was correctly
0111 760400 hit rotated.
0112 320265 dio temp Checks that 1O was correctly
0113 520265 sas temp rotated.
0114 760400 hit
0115 200313 lac test+11 | Sets up the AC for combined rotation test.

3-101

PROGRAM LISTING
MAINDEC 1 ~ INSTRUCTION TEST PROGRAM 17 (continued)

Location Contents Mnemonic Code Remarks
0116 663777 rel 59 Rotates combined registers left nine bits.
0117 520315 sas testc Checks that AC has correct contents.
0120 760400 hit
0121 200316 lac testc +1 | Checks that 1O has correct contents.
0122 320265 dio temp
0123 520265 sas temp
0124 760400 hit
0125 200315 lac testc Sets up AC for combined right rotation.
0126 673777 rer s9 Rotates combined registers right nine bits.
0127 520313 sas test+ 11 | Checks that AC has correct contents.
0130 760400 hit
0131 200302 lac test Checks that 1O has correct contents. END
0132 320265 dio temp OF 9 bit rotation Test.
0133 520265 sas temp
0134 760400 hit

3-102

PROGRAM LISTING
MAINDEC 1 - INSTRUCTION TEST PROGRAM 17 (continued)

Location Contents Mnemonic Code Remarks

0135 661000 ral | START OF 0 bit rotation Test. Executes
0136 662000 ril E:_l and i with no bits specified.
0137 520302 sas test Checks that AC did not rotate.
0140 760400 hit

- 0141 320265 dio temp Checks that |O did not rotate.
0142 520265 sas temp /
0143 760400 hit
0144 671000 rar Executes rar and rir with no bifs specified.
0145 672000 rir
0146 520302 sas test Checks that AC did not rotate.
0147 760400 hit
0150 320265 dio temp | Checks that 1O did not rotate.
0151 520265 sas femp
0152 760400 hit
0153 663000 rcl Executes _33! with no bits specified.
0154 520302 sas test Checks that contents of AC are correct.
0155 760400 hit

3-103

PROGRAM LISTING
MAINDEC 1 - INSTRUCTION TEST PROGRAM 17 (continued)

Location Contents Mnemonic Code Remarks
0156 320265 dio temp Checks that contents of 1O are correct.
0157 520265 sas temp
0160 760400 hlt
0161 673000 rer Executes rer with no bits specified.
0162 520302 sas test Checks that contents of AC are correct.
0183 760400 hlt
0164 320265 dio temp Checks that contents of 10 are correct. END
0165 520265 sas femp OF 0 bit rotation Test.
0166 760400 hlt
0167 700266 law flip Sets up loops for fast rotation.
0170 260173 dap fastloops
0171 200274 lac number | START OF rcl s9 high speed Test. Sets up
0172 240275 dac count |location which counts the number of loops.
0173 220000 fastloops lio ... Loads 1O with test number.
0174 320265 fastleft dio temp |Sets contenis of AC equal to 10.
0175 200265 lac temp

3-104

PROGRAM LISTING
MAINDEC 1 = INSTRUCTION TEST PROGRAM 17 (continued)

Location Contents Mnemonic Code Remarks
0176 663777 rcl s9 Rotates combined registers 36 bits left.
0177 663777 rel 9
0200 663777 rel s9
0201 663777 rcl s9
0202 530173 sas ' fastloops | Checks that contents of AC are correct.
0203 760400 hit
0204 320265 dio temp Checks that contents of 1O are correct.
0205 520265 sas temp
0206 760400 hit
0207 460275 isp count Leaves loop when it has been executed 2
0210 600174 jmp fastleft |times. END OF rcl s9 high speed Test.
0211 200274 lac number | START OF rer s9 high speed Test. Sers up
0212 240275 dac count |location which counts the number of loops.
0213 320265 fastright dio temp |Sets contents of AC equal to 10.
0214 200265 lac temp
0215 673777 rer s9 Rotates combined registers right 36 bits.
0216 673777 rcr s9 '
0217 673777 rer s9
0220 673777 rer 59

3-105

PROGRAM LI

STING

MAINDEC 1 - INSTRUCTION TEST PROGRAM 17 (continued)

Location Contents Mnemonic Code Remarks
0221 530173 sas ' fastloops | Checks that contents of AC are correct.
0222 760400 hit
0223 320265 dio temp Checks that conients of 10 are correct.
0224 520265 sas temp
0225 760400 hit
0226 460275 isp count Leaves loop when it has been executed 2
0227 600213 imp fastright |times. END OF rcr s9 high speed Test.
0230 200274 lac number |[START OF rel s9 = rcr s9 high speed Test.
0231 240275 dac count |Sets up location which counts the number

of loops.

0232 320265 reverse dio temp Sets contents of AC equal to contents of 1O,
0233 200265 lac temp
0234 673777 rer s9 Alternates combined nine-bit left and right
0235 663777 rel s9 rotations.
0236 673777 rer s9
0237 663777 rcl s9
0240 673777 rer s9
0241 663777 rel s9
0242 673777 rer s9
0243 663777 rcl s9

3-106

PROGRAM LISTING
MAINDEC 1 - INSTRUCTION TEST PROGRAM 17 (continued)

Location

Contents Mnemonic Code Remarks
0244 530173 sas ' fastloops| Checks that contenis of AC are correct.
0245 760400 hit
0246 320265 dio temp Checks that contents of 1O are correct.
0247 520265 sas temp
0250 760400 hit
0251 460275 isp count Leaves loop when it has been executed 28
0252 600232 jmp reverse |times. END OF rcl s9 = rer s9 Test.
0253 440173 idx fasﬂoopsju Sets up the address of lio instruction so that

the, next test number is retrieved.

0254 520301 - sas finish Skips when all test numbers have been checked
0255 600173 imp fastloops | in the loops.
0256 640020 szs 20 With SS2 on, program iterates. With S52
0257 600003 jmpstart+2 | off, progfam jumps to RIM loader and reads
0260 607772 jmp 7772 in the next program.

LY

3-107

PROGRAM.LISTING
MAINDEC 1 - INSTRUCTION TEST PROGRAM 17 (continued)

Location Contents Mnemonic Code Remarks
0261 661001 rall 661001
0262 662001 rill 662001
0263 671001 rarl 671001
0264 672001 | rirl 672001
0265 000000 temp 000000
0266 000000 flip 000000 Test numbers used in high-speed lcops for
0267 777777 777777 combined rotation.
0270 000001 one 000001
0271 777776 777776
0272 525252 525252
0273 525254 525254
0274 777000 number 777000
0275 000000 count 000000
0276 000777 mask 000777
0277 662000 lastleft 662000
0300 672000 lastright 672000
0301 220274 finish lio flip+6

3-108

PROGRAM LISTING
MAINDEC 1 - INSTRUCTION TEST PROGRAM 17 (continued)

Location Contents Mnemonic Code Remarks

0302 777070 test 777070 Test humbers used in one-bit rotation. |
0303 776161 776161

0304 774343 774343

0305 770707 - 770707

0306 761617 761617

0307 743437 743437

0310 707077 707077

0311 616177 616177

0312 434377 ' 434377

0313 070777 070777

0314 777777 777777

0315 777777 testc 777777 Test numbers used in nine-bit rotation.
0316 | 070070 070070 |

3-109

PROGRAM LISTING

MAINDEC 1 - INSTRUCTION TEST PROGRAM 20

(Tests sal, sil, sar, sir, scl, ser)

Mnemonic Code

Location | Contents Remarks

0000 000020 000020 Program number

Co01 640010 | startszs 10 With SS1on, program halis after reading in.
0002 760400 hlt

0003 200077 lac test START OF sal and sil Test. Loads AC and 1O
0004 220077 lio test with test number 377777. '
0005 665777 sal s9 Shifts AC left 17 bits.

0006 665377 sal s8

0007 666777 sil s9 Shifts 1O left 17 bits.

0010 666377 sil s8

0011 640100 sza Checks that 0's were shifted into AC through
0012 760400 hlt bit 17 and that the sign bit was not changed.
001 320106 dic temp Checks that 0's were shifted into 1O through
0014 520106 sas temp bit 17 and that the sign bit was not changed.
0015 760400 hit END OF sal and sil Test.

0016 200077 lac test START OF sar and sir Test. Loads AC and 10
0017 220077 lio test with 377777 .

3-110

PROGRAM LISTING
MAINDEC 1 = INSTRUCTION TEST PROGRAM 20 (continued)

Location Contents Mnemonic Code Remarks
0020 675777 sar s9 Shifts AC right 17 places.
0021 675377 sar s8
0022 676777 sir s9 Shifts 1O right 17 places
0023 676377 sir s8 '
0024 640100 sza Checks that sign bit shifts into bit 1 of the
0025 760400 hit AC.
0026 320106 dio temp Checks that sign bit shifts into bit 1 of the
0027 520106 - sas temp 10.
0030 760400 hit
0031 200104 lac test+5 Loads AC and 1O with 400000.
0032 220104 liotest+5
0033 675777 sar s9 Shifts AC right 17 bits
0034 675377 sar s8
0035 676777 sir s9 Shifts O right 17 bits .
0036 676377 sir s8
0037 761000 cma Checks that the sign bit was shifted 17 times
0040 640100 sza into bit 1 of AC.
0041 760400 hit

3-111

PROGRAM LISTING
MAINDEC 1 - INSTRUCTION TEST PROGRAM 20 (continued)

Location Contents Mnemonic Code Remarks
0042 761000 cma Checks that the sign bit was shifted 17 times
0043 320106 dio temp | into bit 1 of 10. END OF sar and sir Test.
0044 520106 sas temp
0045 760400 hit
0046 200077 lac test START OF s_cl Test. Loads AC and [O with
0047 220077 lio test the number 377777 .
0050 667001 scl sl Shifts the combined registers left one bit.
0051 520100 sas test+1 | Checks that IOO was shifted into AC]7'
0052 760400 hit |
0053 320106 dio femp Checks that IO] was shifted into IOO. END
0054 200101 lac test+2 | OF s_c_! Test.
0055 520106 sas temp
0056 760400 hit
0057 200077 lac test START OF scr Test. Loads AC and 1O with
0060 220077 lio test the number 377777.
0061 677001 ser sl Shifts combined registers right one bit.
0062 520102 sas test+ 3 Checks AC for correct contents.
0063 760400 hit

3-112

PROGRAM LISTING

MAINDEC 1 - INSTRUCTION TEST PROGRAM 20 (continued)

Location Contents Mnemonic Code Remarks

0064 320106 dio temp Checks that AC.[7 was shifted

0065 200103 lac test+4 '| into 10, and that IO0 was shifted

0066 520106 sas temp into !O] . END OF scr Test.

0067 760400 hit

0070 640020 szs 20 With SS2 on, program iterates. With SS2 off,

0071 600003 jmpstart+2 | program enters sequence which signifies com-
pletion of instruction test.

0072 200105 lac last Loads AC with the number 000777,

0073 761000 cma

0074 220105 lio last Loads |O with the number 777000.

0075 760017 stf 7 Sets all program flags.

0076 4600000 jmp 0000 Loads MB with program number; sets MA
equal to 0; sets PC equal to 1, and halts.
END OF the Instruction Test.

0077 377777 test 377777

0100 377776 377776

0101 777776 777776

0102 177777 177777

0103 577777 577777

0104 400000 400000

0105 777000 last 777000

0106 000000 temp 000000

3-113

	001
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	1-21
	1-22
	1-23
	1-24
	1-25
	1-26
	1-27
	1-28
	1-29
	1-30
	1-31
	1-32
	1-33
	1-34
	1-35
	1-36
	1-37
	1-38
	1-39
	1-40
	1-41
	1-42
	1-43
	1-44
	2-01
	2-02
	3-001
	3-002
	3-003
	3-004
	3-005
	3-006
	3-007
	3-008
	3-009
	3-010
	3-011
	3-012
	3-013
	3-014
	3-015
	3-016
	3-017
	3-018
	3-019
	3-020
	3-021
	3-022
	3-023
	3-024
	3-025
	3-026
	3-027
	3-028
	3-029
	3-030
	3-031
	3-032
	3-033
	3-034
	3-035
	3-036
	3-037
	3-038
	3-039
	3-040
	3-041
	3-042
	3-043
	3-044
	3-045
	3-046
	3-047
	3-048
	3-049
	3-050
	3-051
	3-052
	3-053
	3-054
	3-055
	3-056
	3-057
	3-058
	3-059
	3-060
	3-061
	3-062
	3-063
	3-064
	3-065
	3-066
	3-067
	3-068
	3-069
	3-070
	3-071
	3-072
	3-073
	3-074
	3-075
	3-076
	3-077
	3-078
	3-079
	3-080
	3-081
	3-082
	3-083
	3-084
	3-085
	3-086
	3-087
	3-088
	3-089
	3-090
	3-091
	3-092
	3-093
	3-094
	3-095
	3-096
	3-097
	3-098
	3-099
	3-100
	3-101
	3-102
	3-103
	3-104
	3-105
	3-106
	3-107
	3-108
	3-109
	3-110
	3-111
	3-112
	3-113

