"Book1
| Prdgramming /
with the

PDP-10
Instruction Set

‘ PDP-10
~ System Reference Manual

Changes are indicated by a triangle (A) in the outside margin

Contents

1 INTRODUCTION ~ ' B

1.1 Number System . 14
Floating point arithmetic 1-5

1.2 Instruction Format 16
Effective address calculation 1-7

1.3 ~ Memory , 1-8
Memory allocation 1-9

1.4 Programming Conventions 1-10

2 CENTRAL PROCESSOR 2-1

2.1 Half Word Data Transmission . 2-2

22 Full Word Data Transmission _ 29

Move instructions. 2-10
Pushdown list 2-12

23 Byte Manipulation 215

24 ~ Logic . 2-17
Shift and rotate 2-24 ‘

2.5 Fixed Point Arithmetic . 226
Arithmetic shifting- 2-31-

2.6 Floating Point Arithmetic 2-32

Scaling " 2-33
Operations with rounding 2-34
Operations withouf rounding 2-37

2.7 Arithmetic Testing . 2:41 .

2.8 Logical Testing and Modification) 247

2.9 Program Control\ 2-54

2.10 Unimplemented Operations 2-64

2:11 Programming Examples 2-65
Double precision floating point 2-67

2.12 Input-Output ' 2-68

Readin mode 2-72 X
Console data transfers 2-73

!

213
2.14
2.15

2.16

3.2

4.1
4.2
4.3

AUGUST 1969

Priority Interrupt
Processor Conditions

Time Sharing
User programming 2-82
Monitor programming 2-83

Operation
Indicators 2-84
Operating keys 2-87
Operating switches 2-89

BASIC IN-OUT EQUIPMENT
Paper Tape Reader -
Readin mode 3-4
Paper Tape Punch ‘
Teletype

HARDCOPY EQUIPMENT

Line Printer
Plotter

Card Reader
Card Punch

APPENDICES

Instruction and Device Mnemonics
Numeric listing A3
Alphabetic listing A6
Device mnemonics AlQ

In-out Codes
Teletype code B2
Card codes B6

Miscellany /

Algorithms v
Fixed point algorithms D2
~ Floating point algorithms D7

INDEX

2-73
2-78
2-81

2-84

3-1

3-5
3-7
.l
4-1
49
4-14
418

Al

Bl

C1
D1

I1

N\
\

1

Introduction

The PDP-10 is Talfgeneral purpose, stored program computer that includes a
central processor, a memory, and a variety of peripheral equipment such as
paper tape reader and punch, teletype, card reader, line' printer, DECtape,
magnetic tape, disk file arid display. The central processor is the control unit
for the entire system: it governs all peripheral in-out equipment, sequences
the program, and performs all arithmetic, logical and data handling opera-
tions. The processor is connected to one or more memory units by a mem-
ory bus and to the peripheral equipment by an in-out bus. The fastest
devices, such as the disc file, although controlled by the processor over the
in-out bus, have direct access to memory over a second memory bus.

The processor handles words of thirty-six bits, which are stored in a mem-
ory with a maximum capacity of 262,144 words. Storage in memory is
usually in the form of 37-bit words, the extra bit producing odd parity for
the word. The bits of a word are numbered 0-35, left to right, as are the
bits in the registers that handle the words. The processor can also handle
half words, wherein the left half comprises bits 0—17, the right half, bits
18-35. Optional hardware is available for byte manipulation — a byte is any
contiguous set of bits within a word. Registers that hold addresses have
eighteen bits, numbered 18-35 according to the position of the address in a
word. Words are used either as computer instructions in the program, as
addresses, or as operands (data for the program).

Of the internal registers shown in the illustration on the next page, only
PC, the 18 bit program counter, is directly relevant to the programmer. The
processor performs a program by executing instructions retrieved from the
locations addressed by PC. At the beginnine of each instruction PC is incre-
mented by one so that it normally contains an address one greater than the
location of the current instruction. Sequential program flow is altered by
changing the contents of PC, either by incrementing it an extra time in a
skip instruction or by replacing its contents with the value specified by a
jump instruction. Also of importance to the programmer is the 36-bit data
switch register DS on the processor console: through this register the pro-
gram can read data supplied by the operator. The processor also contains
flags that detect various types of errors, including several types of overflow
in arithmetic and pushdown operations, and pr0v1de other information of
interest to the programmer.

The processor has other registers but the programmer is not usually con-
cerned with them except when manually stepping through a program to”
debug it. By means of the address switch register AS, the operator can
/

1-1

1-2

8

INTRODUCTION

CORE MEMORY
8192 OR 16384

CORE MEMORY

I4

CORE MEMORY

37-BIT WORDS ,
[} y
J v { -
MEMORY BUS CENTRAL
- PROCESSOR
FAST
MEMORY [*
~ 16 X 36
4 1
MA g IR !
18 ' 18
[} [ARITHMETIC
R LOGIC MI v
Y (AR, BR, MQ)
AS PC o - DS .
IN-OUT “BUS oy
3 y - [—_—— —
A y. i '
PRIORITY PAPER TAPE PAPER TAPE
INTERRUPT READER PUNCH TELETYPE

PDP-1Q SIMPLIFIED :

examine the contents of, or deposit information into, any memory location;
stop or interrupt the program whenever a particular location is referenced;
and through AS the operator can supply a starting address for the program.
Through the memory indicators MI the program can display data for the

- operator. The instruction register IR contains the left half of the current

instruction word, ie all but the address part. The memory address register
MA supplies the address for every memory access. The heart of the proc-
essor is the arithmetic logic, principally the 36-bit arithmetic register AR.

This register takes part in all arithmetic, logical and data handling operations;

all data transfers to and from memory, petipheral equipment and console are
made via AR. Associated with AR are an extremely fast full adder, a buffer
register BR that holds a second operand in many arithmetic and logical
instructions, a multiplier-quotient register MQ that $erves primarily as an
extension of AR for handling double length operands, and smaller registers
that handle floating point exponents and control shift operations and byte
manipulation. .

From the point of view of the programm'er however the arithmetic logic
can be regarded as a black box. It performs almost all of the operations
necessary for the execution of a program, but it never retains any informa-
tion from one instruction to the next. Computations performed in the black
box either affect control elements such as PC and the flags, or produce
results that are always sent to memory and must be retrieved by the proc-
essor if they are to be used as operands in other instructions.

An instruction word has only one 18-bit address field for addressing any
location throughout all of memory. But most instructions have two 4-bit
fields for addressing the first sixteen memory locations. Any instruction
that requires a second gperand has an accumulator address field, which can
address one of these sixteen locations as an accumulator; in other words as
though/ it were a result held over in the: processor from some previous
instruction (the programmer usually has a choice of whether the result of the
instruction will go to the location addressed as an accumulator or to that
addressed by the 18-bit address field, or to both). Every instruction has a
4-bit index register address field, which can address fifteen of these locations
for use as index registers in modifying the 18-bit memory address (a zero
index register address specifies no indexing). Although all computations on
both operands and addresses are performed in the single arithmetic register
AR, the computer actually has sixteen accumulators, fifteen of which can
double as index registers. The factor that determines whether one of the

- first sixteen locations in memory is an accumulator or an index register is
not the information it contains nor how its contents are used, but rather
how the location is addressed. There need be no difference physically be-
tween these locations and other memory locations, but an optional, fast flip-
flop memory contained in the processor can be substituted for the bottom
sixteen locations in core. This allows much quicker access to these locations
whether they are addressed as accumulators, index registers or ordinary
memory locations. They can even be addressed from the program counter,
gaining faster execution for a short but oft-repeated subroutine.

Besides the registers that enter into the regular execution of the program
and its instructions, the processor has a priority interrupt system and can
-contain optional equipment to facilitate time sharing. The interrupt system
facilitates processor control of the peripheral equipment by means of a num-
ber of priority-ordered channels over which external signals may interrupt
the normal program flow. The processor acknowledges an interrupt request
by executing the instruction contained in a particular location assigned to
the channel. Assignment of channels to devices is entirely under program
control. One of the devices to which the program can assign a channel is the
processor itself, allowing internal conditions such as overflow or a parity

1-4

0 .

INTRODUCTION §1.1

error to signal the program.

The time share hardware provides memory protection and relocation.
Without ‘time sharing, all instructions and all memory are available to the
program. Otherwise a number of programs share processor time, with each
program relocated and restricted to a specific area in coré; and certain in-
structions are usually illegal. An attempt by any user fo execute an illegal
instruction or address a memory location outside of his area results in a
transfer of control back to the time-sharing monitor.

S 1.1 NUMBER SYSTEM

The program can interpret.a data word as a 36-digit, unsigned binary num-
ber, or the left and right halves of a word can be taken as separate 18-bit
numbers. The PDP-10 repertoire includes instructions that effectively add
or subtract one from both halves of a word, so the right half can be used for
address modification when the word is addressed as an index register, while
the left half is used to keep a control count.

The standard arithmetic instructions in the PDP~10 use twos comple-
ment, fixed point conventions to do binary arithmetic. In a word used as a
number, bit O (the leftmost bit) represents the sign, 0 for positive, 1 for
negative. . In a positive number the remaining 35 bits are the magnitude in
ordinary binary notation. The negative of a number is obtained by taking its
twos complement. If x is.an n-digit binary number, its twos complement is
2"~x, and its ones complement is (2” — 1) — x, or equivalently (27 —x) — 1.
Subtracting a number from 2”—1 (ie, from all 1s) is equivalent to perform-
ing-the logical complement, ie changing all Os to Is and all 1s to 0s. There-
fore, to form the twos complement one takes the logical complement
(usually referred to merely as the complement) of the entire word including
the sign, and adds 1 to the result. In a negative number the sign bit is 1, and
the remaining bits are the twos complement of the mggnitude.

+153;5 = +231, = [000 000 000 000 000 000 000 000 000 010 011 001

0 35
=153, = —231g-=|111 111111 111 111 111111 111 111 101 100 111]
0 35

Zero is represented by a word containing all 0s. Complementing this num-
ber produces all s, and adding | to that produces all Os again. Hence there

is only one zero representation and its sign is positive. Since the numbers are

symmetrical in magnitude about a single zero representation, all even num-
bers both positive and negative end in 0, all odd numbers in 1 (a number all
1s represents —1). But since there are the same number of positive and nega-
tive numbers and zero is positive, there is one more negative number than
there are nonzero positive numbers. This is the most negative number and it
cannot be produced by negating any positive number (its octal representa-

1

§1.1 . . NUMBER SYSTEM

tion is 400000 000000 and its magnitude is one greater than the largest
positive number). - s,

If ones complements were used for negatives one could read a negative
number by attaching significance to the Os instead of the 1s. In twos com-
plement notation each negative number is one greater than the complement
of the positive number of the same magnitude, so one can read a negative
number by attaching significance to the rightmost 1 and attaching signifi-
cance to the Os at the left of it (the negative number of largest magnitude has
a 1 in only the sign position). In a negative integer, 1s may be discarded at
the left, just as leading Os may be dropped in a positive integer. In a negative
fraction, Os may be discarded at the right. So long as only Os are discarded,
the number remains in twos complement form because it still has a 1 that
possesses significance; but if a portion including the rightmost 1 is discarded,
the remaining part of the fraction is now a ones complement.

The computer does not keep track of a binary point — the programmer
must adopt a point convention and shift the magnitude of the result to con-
form to the convention used. Two common ‘conventions are to regard a
number as an integer (binary point at the right) or as a proper fraction
(binary point at the left); in these two cases the range of numbers repre-

- sented by a single word is —235 to 235 — 1 or —1 to 1 — 2735, Since multiplica- -

tion and division make use of double length numbers, there are special
instructions for performing these operations with integral operands.
Floating Point Arithmetic. Optional PDP-10 hardware is available for
processing floating point numbers. A floating point instruction interprets
bit O of a word as the sign, but interprets the rest of the word as an 8-bit
exponent and a 27-bit fraction. . For a positive number the sign is. 0, as
before. But the contents of bits 9-35 are now interpreted only as a binary

fraction, and the contents of bits 1-8 are interpreted as an integral exponent

in excess 128 (200g) code. Exponents from —128 to +127 are therefore
" represented by the binary equivalents of 0 to 255 (0-3774). Floating point
zero and negatives are represented in exactly the same way as in fixed point:
zero by a word containing all Os, a negative by the twos complement. A
negative number has a 1 for its sign and the twos complement of* the frac-
tion, but since every fraction must ordinarily contain a 1 unless the entire

number is zero (see below), it has the ones complement of the exponent

code in bits 1-8. Since the exponent is in excess 128 code, an actual
"exponent x is represented in a positive number by x + 128, in a negative
number by 127 —x. The programmer, howeaver, need not be concerned with
these representations as the hardware compensates automatically. Eg, for

+153,, = +231ly = +.4624%X2% =
[of10 001 000]100 110 010 000 000 000 000 000 000
01 89 35
~153;p = —231g = —.462;X2% =

[1jo1 110 111]011 001 110 000 000 000 000 000 000

01 89 3s

1-5

* Multiplication produces a

double length product, and
the programmer must remem-
ber that discarding the low
order part of a double length
negative leaves the high order
part in correct twos comple-
ment form only if the low
order part is null. .

1-6

12

INTRODUCTION ' §1.2
the instruction that scales the exponent, the hardware interprets the integral
scale factor in standard twos complement form but produces the correct
ones complement result for the exponent.

Except in special cases the floating point instructions assume that all non-
zero operands are normalized, and they normalize a nonzero result. A

“floating point number is considered normalized if the magnitude of the frac-

tion is greater than or equal to %2 and less than 1. These numbers thus have a
fractional range in magnitude of % to 1—2"?7 and an exponent range of
=128 to +127. The hardware may not give the correct result if the program
supplies an operand that is not normalized or that has a zero fraction with a
nonzero exponent. ,
The precaution about truncation given for fixed point multiplication
applies to all floating point operations as they all produce extra length
results; but here the programmer may request rounding, which automatically
restores the high order part to twos complement form if it is negative. In
division the two words of the result are quotient and remainder, but in the
other operations they form a double length number which is stored in two
accumulators if the instruction is executed in “long” mode. This number
contains a 54-bit fraction, half of which is in bits 9-35 of each word. The
sign and exponent are in bits 0 and 1-8 respectively of the word containing
the more significant half, and the standard twos complement is used to form
the negative of the entire 63-bit string. In the remaining part of the less
significant word, bit 0 is 0, and bits 1-8 contain a number 27 less than the
exponent, but this is expressed in positive form even though bits 9-35 may.
be part of a negative fraction. Eg the number 2'®+ 2718 has this two-word
representation: :

|o]t0 010 011]100 000 000 000 000 000 000 000 000]

01 89 35

|ojo1 111 000]000 000 000 100 90O 000 0600 000 000]

01 89 35

whereas its negative is

[1jo1 101 100f011 111 111 111 111 111 111 111 111]

01 . 89 35

[0jo1 111 000111 111 111 100 000 000 000 000 000]

01 89 35

1.2 INSTRUCTION FORMAT

In all but the input-output instructions, the nine high order bits (0-8) speci-
fy the operation, and bits 9-12 usually address an accumulator but are
sometimes used for special control purposes, such as addressing flags. The

B
§1.2 o ' INSTRUCTION FORMAT

test of the instruction word usually supplies information for calculating the
effective address, which is the actual address used to fetch the operand or
alter program flow. Bit 13 specifies the type of addressing, bits 14—17 spec-
ify an index register for use in. address modification, and the remaining
eighteen bits (18—35) address a memory location. The instruction codes

ADDRESS TYPE .
INDEX REGISTER

ACCUMULATOR
ADDRESS | | ADDRESS
! '
lLNSTRUCTION com:l \ [I ! I MEMORY ADDRESS J
0 89 1213 14 1718 35

BASIC INSTRUCTION FORMAT

that are not assigned as specific instructions are executed by the processor
as so-called “unimplemented operations”, as are the codes for floating point
and byte manipulation in any PDP-10 that does not have the optional hard-
ware for these instructions. When the processor encounters one of these
unimplemented codes in a program, it stores bits 0—12 of the instruction
word and the calculated effective address in a particular memory location
and then executes the instruction contained in a second location.

An input-output instruction is designated by three ls in bits 0-2. Bits
3-9 address the in-out device to be used in executing the instruction, and
bits 10-12 specify the operation. The rest of the word is the same as in
other instructions. ‘

ADDRESS TYPE

INSTRUCTION INDEX REGISTER
/ CODE '\ | ADDRESS ‘
~ T 7
L 7 l DEVICE CODE l | I I MEMORY ADDRESS J
.0 23 910 121314 1718 35

IN-OUT INSTRUCTION FORMAT

Effective Address Calculation. Bits 13-35 have the same format in every
instruction whether it addresses a memory location or not. Bit 13 is the

t x| Y

1314 1718 35

indirect bit, bits 14-17 are the index register address, and if the instruction
must reference memory, bits 18-35 are the memory address Y. The effec-
" tive address E of the instruction depends on the valuesof /, X and Y. If X is
nonzero, the contents of index register X are added to Y to produce a modi-
fied address. If I is O, addressing is direct, and the modified address is the
effective -address used in the execution of the instruction;if 7 is 1, addressing
is indirect, and the processor retrieves another address word from the loca-
tion specified by the modified address already determined. This new word is
processed in exactly the same manner: X and Y determine the effective ad-
dress if 7 is 0, otherwise they are used for yet another level of address

1-8

14

INTRODUCTION . §1.3

retrieval. This process continues until some referenced location is found
with a 0 in bit 13; the 18-bit number calculated from the X and Y parts of
this location is the effective address E.]

The calculation outlined above is carried out for every instruction even
if it need not address a memory location. If the indirect bit in the instruc-
tion word is 0 and no memory reference is necessary, then Y is not an ad-
dress. It may be a mask in some kind of test instruction, conditions to be
sent to-an in-out device, or part of it may be the number of places to shift in
a shift or rotate instruction or the scale factor in a floating scale instruction.
Even when modified by an index register, bits 18-35 do not contain an ad-
dress when 7 is 0. But when 7 is 1, the number determined from bits 14-35
is an indirect address no matter what type of information the instruction
requires, and the word retrieved in any step of the calculation contains an
indirect address so long as I remains 1. When a location is found in which 7
is 0, bits 18-35 (perhaps modified by an index register) contain the desired
effective mask, effective conditions, effective shift number, or effective scale
factor.” Many 6f the instructions that usually reference memory for an oper-
and even have an “‘immediate” mode in which the result of the effective
address calculation is itself used as a half word operand ins:ead of a word
taken from the memory locatiori it addresses.

The important thing for the programmer to remember is that the same
calculation is carried out for every instruction regardless of the type of infor-
mation that must be specified for its execution, or even if.the result is
ignored. In the discussion of any instruction, E refers to the actual quantity
derived from I, X and Y and used in the execution of the instruction, be it
the entire half word as in the case of an address, immediate operand, mask or
conditions, or only part of it as in a shift number or scale factor.

v

1.3 MEMORY

All timing in the PDP-10 is asynchronous. The internal timing for each in-
out device and each memory is entirely independent of the central processor.
Because core memory readout is destructive, every word read must be writ-
ten back in unless new information is to take its place. The basic read-write
cycle time of the standard core memory is either 1.00 or 1.65 microseconds,
but the processor need never wait the entire cycle time. To read, it waits
only until the information is available and then continues its operations
while the memory performs the write portion of the cycle; to write, it waits

-only until the data is accepted, and the memory then performs an entire

cycle to clear and write. To save time in an instruction that fetches an oper-
and and then writes new data into the same location, the memory executes a
read-pause-write cycle in which it performs only the read part initially and
then completes the cycle when the processor supplies the new data.

Access times for the accumulator-index register locations are decreased
considerably by substitution of a fast memory (contained in the processor)
for the first sixteen core locations. Readout is nondestructive, so the fast
memory has no basic cycle: the processor reads a word directly, but to write

15
MEMORY

813 ’

it must first clear the location and then load it. Access times in nanoseconds
(including 20 feet of cable delay) for the three memories are as follows.

‘Read Write
MA1OQor MA10A Core Memory (1.00 us) 580 200
MB10 Core Memory (1.65 us) 600 (700)* 200 (300)
KM 10 Fast Memory (18-bit address) 210 210

‘Note: When a fast memory location is addressed as an accumulator or index
register, the access time is usually considerably shorter than that listed here.
From the simple addressing point of view, the entire memory is a set of

contiguous locations whose addresses range from zero to a maximum -

’ dependent upon the capacity of the particular instailation. In a system with
the greatest possible capacity, the largest address is octal 777777, decimal

A

1-9

*Numbers in parentheses are
the longer times required in

* amultiprocessor system.

262,143. (Addresses are always in octal notation unless otherwise specified.) -

But the whole memory would usually be made up of a number of core mem-
ories each having a capacity of 8192 or 16,384 words. Hence a single 18-bit
address actually selects a particular memory and a specific location within it.
For an 8K memory the high order five address bits select the memory, the
remaining thirteen bits address a single location in it; selecting a 16K
memory takes four bits, leaving fourteen for the location: The times given
above assume the addressed memory is idle when access is requested. To
avoid waiting for a previously requested memory cycle to end, the program
can make consecutive requests to different memories by taking instructions
from one memory and data from another. The hardware also allows pairs
of memories to be interleaved in such a way that consecutive addresses
actually alternate between the two memories in the pair (thus increasing the
probability that consecutive references are to different memories). Appro-
priate switch settings at the memories interchange the least significant
address bits in the memory and location parts, so that in any two memories

numbered n and n + 1 where » is even, all even addresses are locations in the .

first memory, all odd addresses are locations in the second. Hence memories
0 and 1 can be interleaved as can 6 and 7, but not 3 and 4 or 5 and 7.

Memory Allocation. The use of ceftain memory locations is defined by
the hardware.

0 Holds a pointer word during a bootstrap readin
0-17 Can be addressed as accumulators

1-17 Can be addressed as index registers

40-41 Trap for unimplemented user operations (UUOs)

42-57 Priority interrupt locations)

60-61 . Trap for remaining unimplemented operations: these include
the unassigned instruction codes that are reserved for future
use, and also the byte manipulation and floating point instruc-
tions when the hardware for them is not installed .

140-161 Allocated to second processor if connected (same use as 40-61

for first processor)

All information given in this
manual about memory loca-

tions 40-61 applies instead

to locations 140-161 for pro-

gramming a second central

processor connected to ‘the

same memory.

Thée initial control word
address for the DF10 Data
Channel must be less than
1000.

AUGUST 1969

The assembler translates
every statement into a 36-bit
word, placing Os in all bits
whose values are unspecified.

16

lﬁTRODUCTlON -) §1.4
1.4 PROGRAMMING CONVENTIONS

The computer has five instruction classes: data transmission, logical, arith-
metic, program control and in-out. The instructions in the in-out class con-
trol the peripheral equipment, and also control the priority interrupt and
time sharing, control and read the processor flags, and communicate with the
console. The next chapter describes all instructions ‘mentioned above,
presents a general description of input-output, and describes the effects of
the in-out instructions on the processor, priority interrupt and time share
hardware. Effects of in-out instructions on particular peripheral devices are
discussed with the devices. '

-The Macro—10 assembly program recognizes a number of mnemonics and
other initial symbols that facilitate constructing complete instruction words
and organizing them into a program. In particular there are mnemonics for
the instruction codes (Appendix A), which are six bits in in-out instructions,
otherwise nine or thirteen bits. Eg the mnemonic

MOVNS
assembles as 213000 000000, and
' _MOVNS 2570

assembles’ as 213000 002570. This latter word, when executed as an instruc-

tion, produces the twos complement negative of the word in memory loca-
tion 2570.

Norte

Throughout this “manual all numbers representing instruction words,
reglster contents, codes and addresses are always octal and any num-
bers appearing in program examples are octal unless otherwise indi-
cated. On the other hand, the ordinary use of numbers in the text to
count steps in an operation or to specify word or byte lengths, bit
positions, exponents, etc employs standard decimal notation.

The initial symbol @ preceding a memory address places a 1 in bit 13 to
produce indirect addressing. The example given above uses direct addressing,
but

MOVNS @2570

assembles as 213020 002570, and produces indirect addressing. Placing the
number of an index register (1-17) in parentheses following the memory
address causes modification of the address by the contents of the specified
register. Hence

MOVNS @2570(12)

which assembles as 213032 002570, produces indexing using index register
12, and the processor then uses the modified address to contmue the effec-
tive address calculation. 4

An accumulator address (0—17) precedes the memory address part (if any)

17
§1.4 PROGRAMMING CONVENTIONS

and is terminated by a comma. Thus
MOVNS 4,@2570(12)

assembles as 213232 002570, which negates the word in location E and
stores the result in both E and in accumulator 4. The same procedure may
be used to place ls in bits 9-12 when these are used for something other
than addressing an accumulator, but mnemonics aré available for this pur-
- pose. ‘

The device code in an in-out instruction is given in the same manner as an
accumulator address (terminated by a comma and preceding the address
part), but the number given must correspond to the octal digits in the word
(000-774). Mnemonics are however available for all standard device codes.
To control the priority interrupt system whose code is 004, one may give

CONO 4,1302
which assembles aé 700600 001302, or equivalently
CONO PI,1302

The programming examples in this manual use the following addressing
conventions: ’
4 A colon following a symbol indicates that it is a symbolic location name.

A: ADD 6,5704

indicates that the location that contains ADD 6,5704 may be addressed sym-
bolically as A.
¢ The period represents the current address, eg

ADD S,.+2
is equivalent to
A: " ADD 5,A+2

¢ Square brackets specify the content: >f a location, leaving the address of
the location implicit but unspecified. Eg)
ADD 12,[7256004]

and

ADD 12,A

CA: 7256004

are equivalent. .
Anything written at the right of a semicolon is commentary that explains
the program but is not part of it.

AUGUST 1969

18

2;
Central Proceésor

This chapter describes all PDP-10 instructions but does not discuss the
effects of those in-out instructions that address specific peripheral devices.
In the description of each instruction, the mnemonic and name are at the

top, the format is in a box below them. The mnemonic assembles to the 7

word in the box, where bits in those parts of the word represented by letters
assemble as Os. The letters indicate portions that must be added to the mne-
monic to produce a complete instruction word. ,

For many of the non-10 instructions, a description applies not to a unique
instruction with a single code in bits 0—8, but rather to an instruction set
defined as a basic instruction that can be executed in a number of modes.
These modes define properties subsidiary to the basic operation; eg in data
transmission the mode specifies which of the locations addressed by the in-
struction is the source and which the destination of the data, in test instruc-
tions it specifies the condition that must be satisfied for a jump or skip to
take place. The mnemonic given at the top is for the basic mode: mnemonics
for the other forms of the instruction are produced by appending letters
directly to the basic mnemonic. Following the description is a table giving
the mnemonics and octal codes (bits 0—8) for the various modes.

The processor execution time for each instruction is also given at the top
unless the time differs from one mode to another. The time listed is that
required for direct addressing without indexing (ie with no effective address
calculation), assuming the instruction and location E are both in the same
1.00 microsecond core memory, and that an accumulator is addressed only
if necessary and is in fast memory. The time that can be saved (if any) by
interleaving or keeping instructions and operands in different memories is
indicated either with the description or with the discussion of the modes
preceding a group of instructions. To determine the exact time required for
an instruction under any circumstances, refer to the timing chart in
Appendix C.

In a description E refers to the effective address half word operand, mask,
conditions, shift number or scale factor calculated from the I, X and Y parts
of the instruction word. In an instruction that ordinarily references mem-
ory, a reference to E as the source of information means that the instruction
retrieves the word contained in location E; as a destination it means the in-
struction stores a word in location £. In the immediate mode of these
mstructlons, the effective half word operand is usually treated as a full word
that contains E in one half and zero in the other, and is represented either as
0, E or E,0 depending upon whether E is in the right or left half.

2-1

Letters representing modes
are suffixes, which produce
new mnemonics that are rec-
ognized as distinct symbols
by the assembler.

The times listed should be re-

garded as good approxima-

tions. For more exact times
with the conditions given here
(f¢ 1.00 microsecond core,
etc) add ‘60 nanoseconds to

the listed time, plus an addi- .

tional 30 nanoseconds for
each core memory access for
retrieval of an operand and
another 30 nanoseconds if
the instruction does not write
aresult in core.

AUGUST 1969

A

20

CENTRAL’PROCESSOR §2.1
7/

Most of the non-IO instructions can address an accumulator, and in the
box showing the format this address is represented by A4 ; in the description,
“AC” refers to the accumulator addressed by 4. “AC left” and “AC right”
refer to the two halves of AC. If an instruction uses two accumulators, these
have addresses A and A+1, where the second address is 0 if A is 17. In some
cases an instruction uses an accumulator only if 4 is nonzero: a zero address

.in bits 9-12 specifies no accumulator.

It is assumed throughout that time sharing is not in effect, and the pro-
gram is unrestricted. For completeness, however, the effects of restrictions
on particular instructions are noted; and execution times are given both for
unrestricted operation and including relocation in a user program (the latter
time is given in parentheses). §2.15 lists all restrictions on user programs
and’ explains the special effects produced by certain instructions when exe-
cuted under control of the monitor while the processor is in user mode.

Some simple examples are included with the instruction descriptions, but
more complex examples using a variety of instructions are given in §2.11..

2.1 HALF WORD DATA TRANSMISSION

" These instructions move a half word and may modify the contents of the

other half of the destination location. There are sixteen instructions deter-
mined by which half of the source’word is moved to which half of the des-
tination, and by which of four possible operations is performed on the other
half of the destination. The basic mnemonics are three letters that indicate
the transfer

HLL Left half of sourcé to left half of destination
HRL Right half of source to left half of destination
HRR Right half of source to right half of destination
HLR Left half of source to right half of destination

plus a fourth, if necessary, to indicate the operation.

\

Operation Suffix Effect on Other‘HaIf of Destination
Do nothing None

Zeros - Z Places Os in all bits of the other half
Ones (6] Places 1s in all bits of the other half
Extend E Places the sign (the leftmost bit) of

the half word moved in all bits of the
other half. This action extends a right
half word number into a full word
number but is valid arithmetically
only for positive left half word num-
bers — the right extension of a number
requires Os regardless of sign (hence
the Zeros operation should be used to
extend a left half word number).

b | 21
§2.1 : o HALF WORD DATA TRANSMISSION

An additional letter may be appended to indicate the mode, which deter-
mines the source and destination of the half word moved.

Mode Suffix Source Destination
Basic : E ‘ AC
Immediate - - I The word 0, E AC
Memory M AC E
Self _ S E E, but also AC

if A is nonzero
Note that selecting the left half of the source in immediate mode merely

clears the selected half of the dest_in_ation.

a

Half Word Léft to Left

HLL
500 [m] a4 il x] Y]
0 67 89 121314 1718 35

Move the left half of the source word specified by M to the left half of the
specified destination.* The source and the destination right half are un-
affected; the original contents of the destination are lost.

HLL Half Left to Left 500 2.35(2.57) ps
HLLI Half Left to Left Immediate 501 1.50 (1.61) us
HLLM Half Left to Left Memory 502 2.90 (3.01) us
HLLS Half Left to Left Self 503 2.76 (2.87) us
HLLZ Half Word Left to Left, Zeros

[510 [m] a4 [l x T Y |
0 67 89 1213 14 1718 © 35

Move the left half of the source word specified by M to the left half of the
specified destination, and clear the destination right half. The source is un-
affected, the original contents of the destination are lost.

HLLZ Half Left to Left, Zeros 510
2.21 (2.43) us

HLLZI Half Left to Left, Zeros, Immediate 511
1.36 (1.47) us

HLLZM Half Left to Left, Zeros, Memory 512
‘ 2.47 (2.58) us

HLLZS Half Left to Left, Zeros, Self 513

2.76 (2.87) us

2-3

Keeping instructions and op-
erands in different ‘memories
saves .20 (.09) pus in self
mode; in memory mode the
same saving results if no ac-
tion is taken on the other
half, otherwise .47 (.36) us
is saved. ‘

When E addresses a fast
memory location, a half word
transfer takes .34 us less in
basic mode, either: .46 (.35).
or .54 (.43) s less in memory
‘mode depending respectively-
on whether or not any action
is taken on the other half,
and .54 (43) us less in self
mode.

- HLLI merely clears AC left.

+ If A is zero, HLLS is a no-op,
otherwise it is equivalent to
HLL.

HLLZI merely clears AC. If 4
is zero, HLLZS merely clears
the right half of location E.

24

HLLOI sets AC to all Os in
the left half, all 1s in the

right.

\
HLLE!L is equivalent to

_HLLZI (it merely clears AC).

2

CENTRAL PRocnssbn §2.1

HLLO Half Word Left to Left, Ones
[520 |m[4] x | Y]
0 67 89 121314 - 1718 . 35

Move the left half of the source word specified by M to the left half of the
specified destination, and set the destination right half to all Is. The source
is unaffected, the original contents of the destination are lost.

HLLO Half Left to Left, Ones < 520
2.21 (2.43) ps
HLLOI Half Left to Left, Ones, Immediate 52!
: 1.36 (1.47) us
HLLOM Half Left to Left, Ones, Memory 522
2.47 (2.58) us
HLLOS Half Left to Left, Ones, Self 523

2.76 (2.87) us

" HLLE Half Word Left to Left, Extend !
530 [m] a4 [i] x | Y ‘ |
0 67 89 121314 1718 35

Move the left half of the source word specified by M to the left half of the
specified destination, and make all bits in the destination right half equal to
bit O of the source. The source is unaffected, the original contents of the
destination are lost. -

HLLE Half Left to Left, Extend 530
' 2.21(2.43) us

HLLEI Half Left to Left, Extend, Immediate 531
' 1.36 (1.47) us

HLLEM Half Left to Left, Extend, Memory : 532
: 2.47 (2.58) us

HLLES Half Left to Left, Extend, Self 533

2.76 (2.87) us

HRL Half Word Right to Left
so4 M| a |1l x | Y
0 67 89 121314 1718 35

Move the right half of the source word specified by M to the left half of the
specified destination. The source 'and the destination right half are unaf-
fected; the original contents of the destination left half are lost.

HRL Half Right to Left 504 2.70 (2.92) us
HRLI Half Right to Left Immediate 505 1.85(1.96) us

23

§2.1 ~ HALF WORD DATA TRANSMISSION
HRLM Half Right to Left Memory 506 2.90 (3.01) us
HRLS Half Right to Left Self 507 2.76 (2.87) us
HRLZ Half Word Right to Left, Zeros

s14 M| a4 1l x | Y]
0 67 89 121314 1718 A 35

Move the right half of the source word specified by M to the left half of the
specified destination, and clear the destination right half. The spurce is un-
affected, the original contents of the destination are lost.

HRLZ Half Right to Left, Zeros . 514
. 2.21(2.43) us

HRLZI Half Right to Left, Zeros, Immediate 515

1.36 (1.47) us

HRLZM Half Right to Left, Zeros, Memory 516

2.47 (2.58) us

HRLZS . Half Right to Left, Zeros, Self 517

2.76 (2.87) us

HRLO Half Word Right to Left, Ones
© 524 (M| a4] x] | Y |
1] 67 89 121314 1718 35

Move the right half of the source word specified by M to the left half of the
specified destination, and set the destination right half to all 1s. The source
is unaffected, the original contents of the destination are lost.

HRLO Half Right to Left, Ones 524
2.21(2.43) us

HRLOI Half Right to Left, Ones, Immediate 525
: 1.36 (1.47) us

HRLOM Half Right to Left, Ones, Memory 526
2.47 (2.58) s

HRLOS Half Right to Left, Ones, Self 527

2.76 (2.87) us

HRBLE Half Word Right to Left, Extend
| 534 [mM] 4 [1] x | Y
0 67 89 121314 1718 35

Move the right half of the source word specified by M to the left half of the

HRLZI loads the word E,0
into AC.

If A is zero, HRRS is a no-op;
otherwise it is equivalent to
HRR.

HRRZI loads the word 0,F
into AC. If 4 is zero, HRRZS
merely clears the left half of
location E.

24 . .
CENTRAL PROCESSOR ' : §2.1
specified destination, and make -all bits in the destination right half equal to

bit 18 of the source. The source is unaffected, the original contents of the
destination are lost.

HRLE Half Right to Left, Extend } 534
: ~ 2.21 (2.43) ps
HRLEI Half Right to Left, Extend, Immediate - 535
: 1.36 (1.47) us
HRLEM Half Right to Left, Extend, Memory : 536
' 2.47 (2.58) us
HRLES Half Right to Left, Extend, Self 537
2.76 (2.87) us

HRR Half Word Right to Right
sa0 M| a4 [x | Y |
0 67 89 121314 1718 35

Move the right half of the source word specified by M to the right half of the
specified destination. The source and the destination left half are unaffected;
the original contents of the destination right half are lost.

HRR Half Right to Right 540 2.35@2.57) us

HRRI Half Right to Right Immediate 541 1.50 (1.61) us
HRRM Halif Right to Right Memory - 542 2.90 (3.01) ps
HRRS Half Right to Right Self 543 2.76 (2.87) us
HRRZ Half Word Right to Right, Zeros

sso (M| 4 1l x | Y
4] 67 89 . 121314 1718 35

Move the right half of the source word specified bf M to the right half of the
specified destination, and clear the destination left half. The source is unaf-
fected, the original contents of the destination are lost.

HRRZ Half Right to Right, Zeros 550
. 2.21(2.43) ps

HRRZI Half Right to Right, Zeros, Immediate 551
1.36 (1.47) us

HRRZM Half Right to Right, Zeros, Memory 552
) 2.47 (2.58) us
HRRZS Half Right to Right, Zeros, Self : 553

2.76 (2.87) us

25

§2.1 HALF WORD DATA mANémssmN

HRRO Half Word Right to Right, Ones’

L 560 [m[a [i] x | _ Y]
0 67 89 121314 1718 3s

Move the right half of the source word specified by M to the right half of the
specified destination, and set the destination left half to all 1s. The source is
unaffected, the original contents of the destination are lost.

HRRO Half Right to Right, Ones 560
’ 2.21(2.43) us

HRRO! Half Right to Right, Ones, Immediate 561
1.36 (1.47) us

HRROM Half Right to Right, Ones, Memory _ 562
2.47 (2.58) us

HRROS Half Right to Right, Ones, Self . 563

2.76 (2.87) ps

HRRE Half Word Right to Right, Extend
L s70 [m] 4 [x] vy |
0 67 89 121314 1718 35

Move the right half of the source word specified by M to the right half of the
specified destination, and make all bits in the destination left half equal to
bit 18 of the source. The source is unaffected, the original contents of the
destination are lost.

HRRE Half Right to Right, Extend , 570
2.21(2.43) ps

HRREI Half Right to Right, Extend, Immediate 571
: 1.36 (1.47) us

HRREM Half Right to Right, Extend, Memory 572

2.47 (2.58) ps

HRRES Half Right to Right, Extend, Self . 573 -

2.76 (2.87) us

HLR Half Word Left to Right
L 544 [m[4 [x] Y]
0 67 89v \ 121314 1718 . 35

Move the left half of the source word specified by M to the right half of the
specified destination. The source and the destination left half are unaffected;
the original contents of the destination right half are lost.

HLR Half Left to Right 544 2.70 (2.92) us
HLRI Half Left to Right Immediate 545 1.85 (1.96) us

HLRI merely clears AC right.

HLRZI merely clears AC and
is thus equivalent to HLLZI.

HLROI sets AC to all Is in
the left half, all Os in the

right.

~

26

CENTRAL PROCESSOR ' §2.1
HLRM Half Left to Right Memory 546 2.90(3.01) us
HLRS Half Left to Right Self 547 2.76 (2.87) us
HLRZ Half Word Left to Right, Zeros
ssa [m] a4 i x | .Y
o 67 89 121314 1718 .'?5

Move the left half of the source word specified by M to the right half of the
specified destination, and clear the destination left half. The source is un-
affected, the original contents of the destination are lost.

HLRZ Half Left to Right, Zeros 554
. 2.21(2.43) us

HLRZI Half Left to Right, Zeros, Immediate 555
1.36 (1.47) us

HLRZM Half Left to Right, Zeros, Memory 556
2.47 (2.58) us

HLRZS Half Left to Right, Zeros, Self 557

2.76 (2.87) us

HLRO Half Word Left to Right, Ones
s64 M| a4 1] x | Y]
) 67 89 - 121314 1718 . 35

Move the left half of the source word specified by M to the right half of the
specified destination, and set the destination left half to all 1s. The source is
unaffected, the original contents of the destination are lost.

HLRO * Half Left to Right, Ones - 564
2.21(2.43) us

HLROI Half Left to Right, Ones, Immediate ‘ 565
1.36 (1.47) us

HLROM Half Left to Right, Ones, Memory © 566
. ‘ 2.47 (2.58) us

HLROS Half Left to Right, Ones, Self 567

2.76 (2.87) us

HLRE Half Word Left to Right, Extend
574 M| a4 1] x | Y |
0 67 89 121314 1718 35

Move the left half of the source word specified by M to the right half of the
specified destination, and make all bits in the destination left half equal to

A

- 7

§2.2 FULL WORD DATA TRANSMISSION

bit 0 of the source. The source is unaffected, the original contents of the
destination are lost.

HLRE
. 2.21 (2.43) us
HLREI Half Left to Right, Extend, Immediate 575
. 1.36 (1.47) us
HLREM Half Left to Right, Extend, Memory . 576
.) 2.47 (2.58) us
HLRES Half Left to Right, Extend, Self 577

2.76 (2.87) us

Exampies. The half word transmission instructions are very useful for
handling addresses, and they provide a convenient means of setting up an
accumulator whose right half is to be used for indexing while a control count
is kept in the left half. Eg this pair of instructions loads.the 18-bit numbers
M and N into the left and right halves respectively of an accumulator that is
addressed symbolically as XR.

HRLZI XR,M
HRRI XR,N

- Of course the source program must somewhere define the value of the
symbol XR as an octal number between 1 and 17.

Suppose that at some point we wish to use the two halves of XR inde-
pendently as operands (taken as 18-bit positive numbers) for computations.
We can begin by moving XR ‘left to the right half of another accumulator
AC and leaving the contents of XR right alone in XR. :

HLRZM XR,AC

HLLI XR, ;Clear XR left

2.2 FULL WORD DATA TRANSMISSION

These are the instructions whose basic purpose is to move one or more full
words of data from one place to another, usually from an accumulator to a
memory location or vice versa. In a few cases instructions may perform
minor arithmetic operations, such as forming the negative or the magnitude
of the word being processed.

EXCH Exchange 2.90 (3.01) us
| 250 | 4 1] x] v Y]
0 . 89 121314 1718 35

Move the contents of location £ to AC and move AC to location E.

Half Left to Right, Extend . 574

29

HLREI is equivalent tc
HLRZI (it merely clears AC).

It is not necessary to clear the
other half of XR when load-
ing the first half word. But
any instruction that modifies
the other half is faster than
the corresponding instruction
that does not, as the latter
must fetch the _destination -
word in order to save half of
it. (The difference does not
apply to self mode, for here
the source and destination are
the same.)

Keeping instructions and op-
erands in different memories
saves .20 (.09) us.

2-10

The time depends on the

* . number and type of trans-

fers. Assuming at least one
word is moved a BLT takes
.97 (1.08) us plus 2.26 (2.48)

ps per transfer from fast
" memory to core and 2.61
(2.83) ps per transfer from

core to fast memory or from

one core location to another.

) 28 .
CENTRAL PROCESSOR - §2.2

BLT Block Transfer
| 251 [a4 Jif x | Y |
(V] 89 121314 1718 35

Beginning at the location addressed by AC left, move words to another area
of memory beginning at the location addressed by AC right. Continue until
a word is moved to location E. The total number of words in the block is
thus E—ACg + 1.

CaurioN

Priority interrupts are allowed during the execution of this instruction,
following the processing of each word. If an interrupt occurs, the BLT
stores the source and destination addresses for the next word in AC, so
when.the processor restarts upon the return to the interrupted program,
it actually resumes at the correct point within the BLT. Therefore,
unless the interrupt system is inactive, 4 and X must not address the
same register as this would produce a different effective address calcula-
tion upon resumption should an interrupt occur; and the program must
not attempt to load an accumulator addressed either by A or X unless it
is the final location being loaded. Furthermore, the program cannot
assume that AC is the same after the BLT as it was before.

ExampLes. This pair of instructions loads the accumulators from memory
locations 2000-2017.

HRLZI 17,2000 ;Put 2000 000000 in AC 17
BLT 17,17 .

But to transfer the block in the opposite direction requires that one accumu-

- lator first be made available to the BLT:

MOVEM 17,2017 ;Move AC 17 to 2017 in memory
MOVEI 17,2000 ;Move the number 2000 to AC 17
BLT 17,2016 .

If at the time the accumulators were loaded the program had placed in loca-
tion 2017 the control word necessary for storing them back in the same
block (2000), the three instructions above could be replaced by

- EXCH 17,2017
BLT 17,2016

Move Instructions /

Each of these instructions moves a single word, which may be changed in the -

process (eg its two halves may be swapped). ’There are four instructions,

29

§2.2 FULL WORD DATA TRANSMISSION

each with four modes that determine the source and destination of the word
moved. A

Mode Suffix Source Destination
Basic R E AC
Immediate I The word 0, E AC

‘Memory M AC E
Self S E E, but also AC
’ if A is nonzero
MOVE Move .
2000 [m| 4] x] - Y]
0 67 89 121314 1718 35

Move one word from the source to the destination specified by M. The ,

source is unaffected, the original contents of the destination are lost.

MOVE Move 200 2.21(2.43) us
MOVE! Move Immediate 201 1.36 (1.47) us
MOVEM Move to Memory 202 2.47 (2.58) us
MOVES Move to Self) 203 2.76 (2.87) us
MOVS Move Swapped

- 204 [mM[a4 [x] Y]
(1] 67 89 121314 1718) 3s

Interchange the left and right halves of the word from the source specified
by M and move it to the specified destination. The source is unaffected, the
original contents of the destination are lost.

MOVS Move Swapped 204 2.21(2.43) us a
movsl Move Swapped Immediate 205 1.36 (L.47) ps
MOVSM Move Swapped to Memory 206 2.47 (2.58) us
MOVSS Move Swapped to Self 207 2.76 (2.87) us
MOVN Move Negative

210 M| 4 1] x] Y j
(4] 67 89 121314 1718 35

Negate the word from the source specified by M and move it to the specified
destination. If the source word is fixed point —23% (400000 000000) set the

2-11

Keeping instructions and op-
erands in different memories
saves .47 (.36) us in memory
mode, .20 (.09) us in self
mode.

When E addresses a fast
memory location, a move in-
struction takes .34 us less in
basic mode, .46 (.35) us less
in memory mode, .54 (43) us
less in self mode.

MOVEI loads the word 0,F
into AC and is thus equiva-

Jent to HRRZL If A4 is zero, -

MOVES is a no-op; otherwise
it is equivalent to MOVE.

Swapping halves in immediate
mode loads the word £,0 into
AC. MOVSI is thus equivalent
to HRLZI.

MAY 1968

2-12

MOVNI loads AC with the

A

negative of the word 0,F£and 4,

can set no flags.

The word 0,F is equivalent
to its magnitude, so MOVMI
is equivalent to MOVEI.

MAY 1968

A

30

CENTRAL PROCESSOR ‘) . 8§22

I
Overflow and Carry 1 flags. (Negating the equivalent floating point —1 X 2127
sets the flags, but this is not a normalized number.) If the source word is
zero, set Carry O and Carry 1. The source is unaffected, the original contents
of the destination are lost. :

MOVN Move Negative 210 2.39~(2.61) us
MOVN1 Move Negative Immediate 211 1.54 (1.65) us
MOVNM Move Negative to Memory ‘ 212 2.65(2.76) us
MOVNS Move Negative to Self 213 2.94 (3.05) ps
MOVM Move Magnitude

214 M| 4 i x | Y
0 67 89 _12 1314 1718 35

Take the magnitude of the word contained in the source specified by M and
move it to the specified destination. If the source word is fixed point —2%
(400000 000000) set the Overflow and Carry 1 flags. (Negating the equiva-
lent floating point —1 X 2'?7 sets the flags, but this is not a normalized num-
ber.) The source is unaffected, the original contents of the destination are
lost.

MOVM Move Magnitude 214 2.39 (2.61) us
MOVMI Move Magnitude Immediate 215 1.54 (1.65) us
MOVMM Move Magnitude to Memory 216 2.65 (2.76) us
MOVMS Move Magnitude to Self 217 2.94 (3.05) pus

\

An example at the end of the preceding section demonstrates the use of a
pair of immediate-mode half word transfers to load an address and a control
count into an accumulator. The same result can be attained by a single move
instruction. This saves time but still requires two locations. Eg if the num-
ber 200 001400 is stored in location M, the instruction !

MOVE ACM
loads 200 into AC left and 1400 into AC right. If the same word, or its nega-

" tive, or with its halves swapped, must be loaded on several occasions, then

both time and space can be saved as each transfer requires only a single move
instruction that references M.

Pushdown List

These two instructions insert and remove full words in a pushdown list. Tpe
address of the top item in the list is kept in the right half of a pointer in AC,
and the program can keep a control count in the left half. There are also

31

§2.2 .© FULL WORD DATA TRANSMISSION
I

two subroutine-calling instructions that utilize a pushdown list of jump ad-
dresses [§2.9]. ‘

PUSH Push Down . 3.85(4.07) us
261 | a4 1] x | Y]
0 . 89 121314 1718 ’ 35

Add 10000014 to AC to increment both halves by one, then move the con-
tents of location E to the location now addressed by ‘AC right. If the addi-
tion causes the count in AC left to reach zero, set the Pushdown Overflow
flag. The contents of E are unaffected, the original contents of the location
added to the list are lost.

POP Pop Up B 3.93 (4.15) us
262 | 4 1] x] Y]
[1] 89 121314 1718 35

Move the contents of the location addressed by AC right to location E, then
subtract 1 0000015 from AC to decrement both halves by one. If the sub-
traction causes the count in AC left to reach —1, set the Pushdown Overflow
flag. The original contents of F are lost.

Because of the order in which the operands are stored, the instruction
POP AC,AC would load the contents of the location addressed by AC right
into AC on top of the pushdown count, destroying it.

The incrementing and decrementing of both halves of AC simultaneously
is effected by adding and subtracting 1 0000015. Hence a count of —2 in AC
left is increased to zero if 2! — 1 is incremented in AC right, and conversely,
1in AC left is decreased to —1 if zero is decremented in AC right.

A pushdown list is simply a set of consecutive memory locations from
which words are read in the order opposite that in which they are written.
In more general terms, it is any dist in which the only item that can be re-
moved at any given time is the last item in the list. This is usually referred
to as “first in, last out” or “last in, first out”. Suppose locations g, b, c, ...
are set aside for a pushdown list. We can deposit datainq, b, ¢, d, then read
d, then write in d and e, then read e, d, ¢, etc.

Note that by using the Pushdown Overflow flag and a control count in AC
left, the programmer can set a limit to the size of the list by starting the
count negative, or he can prevent the program from extracting more words
than there are in the list by starting the count at zero, but he cannot do both
at once.

2-13

Keeping instructions and the
pushdown list in different
memories saves .47 (.36) us.

When the word added to
the list is from fast memory,
PUSH takes .34 us less than
the time given. ‘

When the word taken from
the list is placed in fast mem-
ory, POP takes 46 (.35) us
less than the time given.’

2-14

32

CENTRAL PROCESSOR §2.2

Pushdown storage is very convenient for a program that can use data
stored in this manner as the pointer is initialized only once and only one
accumulator is required for the most complex pushdown operations. To ini-
tialize a pointer P for a list to be kept in a block of memory beginning at

. BLIST and to contain at most N items, the following suffices.

- MOVSI P,~N
HRRI P,BLIST-1

Of course the programmer must define BLIST elsewhere and set aside loca-
tions BLIST to BLIST + N—1. Using Macro to full advantage one could
instead give

MOVE P,[IOWD N,BLIST]
where the pseudoinstruction
* IOWD J,K

is replaced by a word containing —J in the left half and K —1 in the right.
Elsewhere there would appear

BLIST: - BLOCK N

which defines BLIST as the current contents of the location counter and sets
aside the N locations beginning at that point.

In the PDP-10 the pushdown list is kept in a random access core mem-
ory, so the restrictions on order of entry and removal of items actually apply
only to the standard addressing by the pointer in pushdown instructions —
other addressing methods can reference any item at any time. The most
convenient way to do this is to use the right half of the pointer as an index
register. To move the last entry to accumulator AC we need simply give

MOVE AC,P)

Of course this does not shorten the list — the word moved remains the last
item in it. : ’

One usually regards an index register as supplying an additive factor for a
basic address contained in an instruction word, but the index register can
supply the basic address and the instruction the additive factor. Thus we can
retrieve the next to last item by giving

MOVE AC,—-1(P)
and so forth. Similarly
PUSH P,-3(P)
adds the third to last item to the end of the list;

POP P,—2(P)

removes the last item and inserts it in place of the next to last item in the
shortened list.

3

§2.3 ‘ BYTE MANIPULATION.
2.3 BYTE MANIPULATION

This set of five instructions allows the programmer to pack or unpack bytes
of any length anywhere within a word. Movement of a byte is always
between AC and a memory location: a deposit instruction takes a byte from
the right end of AC and inserts it at any desired position in the memory
location; a load instruction takes a byte from any position in the memory
location and places it right-justified in AC.

The byte manipulation instructions have the standard memory reference -

format, but the effective address £ is used to retrieve a pointer, which is used
in turn to locate the byte or the place. that will receive it. The pointer has
the format B

P s] x | Y l

0 56 11121314 1718 35

where S is the size of the byte as a number of bits, and P is its position as the
number of bits remaining at the right of the byte in the word (eg if P is 3 the
rightmost bit of the byte is bit 32 of the word). The rest of the pointer is
interpreted in the same way as in an instruction: 7, X and Y are used to cal-
culate the address of the location that is the source or destination of the
byte. Thus the pointer aims at a word whose format is

W S BITS 2/% P BITS

0 35-P-S+1 35-P 35-P}1 35

where the shaded area is the byte.

To facilitate processing a series of bytes, several of the byte instructions
increment the pointer, ie modify it so that it points to the next byte position
in a set of memory locations. Bytes are processed from left to right in a
word, so incrementing merely replaces the current value of P by P — S, unless
there is insufficient space in the present location for another byte of the
specified size (P —S5<0). In this case Y is increased by one to point to the
next consecutive location, and P is set to 36 —.S to point to the first byte at
the left in the new location.

CautioN

Do not allow Y to reach maximum value. The whole pointer is incre-
mented, so if Y is 28— 1 it becomes zero and X is also incremented.

« The address calculation for the pointer uses the original X, but if a pri-
ority interrupt should occur before the calculation is complete, the in-
cremented X is used when the instruction is repeated.

Among these five instructions ong simply increments the pointer, the
others load or deposit a byte with or without incrementing. Brackets
enclose the additional time required when incrementing overflows the word
boundary. ’ '

2-15

216

Keeping the pointer in fast
memory saves .34 us. Taking
bytes from a fast memory
location saves another .34 us.

Keeping the pointer in fast
memory saves .34 us. Keeping
instructions and the packing
area in different memories
saves .20 (.09) us. Packing
bytes in fast memory saves
.54 (43) us.

Keeping the pointer in fast
memory saves .54 (.43) us;
keeping it in a different mem-
ory from the instruction saves
20 (.09) ps

The A portion of this instruc-
tion is ignored.

Keeping the pointer in fast
memory saves .34 us. Taking
bytes from a fast memory
location saves another .34 us.

Keeping the pointer in fast-

memory saves .34 us. Keeping

“instructions and the packing
area in different memories
saves .20 (.09) us. Packing
bytes in fast memory saves
.54 (43) us.

DPB Deposit Byte

4

CENTRAL PROCESSOR §2.3
LDB Load Byte © 4.02(4.35) + .15(P + S) [+.26] us
EEE | 4 1] x] Y |
0 89 121314 1718 . ' 35

i

Retrieve a byte of S bits from the location and position specified by the

- pointer contained in location E, load it into the right end of AC, and clear

the remaining AC bits. The location containing the byte is unaffected, the

original contents of AC are lost.

4.87 (5.20) + .15(P + S) [+.26] ps

| 137 | a4 Ji] x | Y]

0 89 121314 1718 35

Deposit the right S bits of AC into the location and position specified by the
pointer contained in location E. The original contents of the bits that receive
the byte are lost, AC and the remaining bits of the deposit location are
unaffected.

IBP Increment Byte Pointer

2.87 (2.98) [+.26] us
L33 [4] x| Y |
0 89 1213 14 1718 35

Increment the byte pointer in location E as explained above.

ILDB Increment Pointer and Load Byte
4.24 (4.57) + .15(P+ S) [+.26] us
134 | 4 i x | , Y |
(/] 89 121314 1718 ! A 3s

Increment the byte pointer in location E as explained above. Then retrieve a
byte of S bits from the location and position specified by the newly incre-
mented pointer, load it into the right end of AC, and clear the remaining AC -
bits. The location containing the byte is unaffected, the original contents of
AC are lost.

IDPB Increment Pointer and Deposit Byte
' 529 (5.51) + .15(F + S) [+.26] us
136 | a4 il x] Y]
o 89 121314 1718 35

Increment the byte pointer in location E as explained above. Then deposit

35
§2.4 . ‘ " LOGIC

the right S bits of AC into the location and position specified by thé newly
incremented pointer. The original contents of the bits that receive the byte
are lost, AC and the remaining bits of the deposit location are unaffected.

Note that in the pair of instructions that both increment the pointer and
process a byte, it is the modified pointer that determines the byte location
and position. Hence to unpack bytes from a block of memory, the program
should set up the pointer to point to a byte just before the first desired, and
then load them with a loop containing an ILDB. If the first byte is at the
left end of a word, this is most easily done by initializing the pointer with a
P of 36 (44;). Incrementing then replaces the 36 with 36 —S to point tothe
first byte. At any time that the program might inspect the pointer during
 execution of a series of ILDBs or IDPBs, it points to the last byte processed
(this may not be true when the pointer is tested from an interrupt routine
[§2.13]). \

Special Considerations. If S is greater than P and also greater than 36,
incrementing produces a new P equal to 100 —S rather than 36 —S. For
S > 36 the byte is at most the entire word; for P> 36 no byte is processed
(loading merely clears AC). If both P and S are less than 36 buti P +S§ > 36,
a byte of size 36 — P is loaded from position P, or the right 36 — P bits of the
byte are deposited in position P,

24 LOGIC

For logical operations the PDP-10 has instructions for shifting and rotating
as well as for performing the complete set of sixteen Boolean functions of
two variables (including those in which the result depends on only one or
neither variable). The Boolean functions operate bitwise on fyll words, so
each instruction actually performs thirty-six logical operations simultane-
ously. Thus in the anp function of two words, each bit of the result is the

anD of the corresponding bits of the operands. The table on page 2-23 lists’

the bit configurations that result from the various operand configurations for
all instructions. ’

Each Boolean instruction has four modes that determine the source of the
non-AC operand, if any, and the destination of the result.

Source of non- Destination
Mode Suffix AC operand of result
Basic ‘ E : . AC
Immediate I) The word 0, F AC
Memory M E ‘ E
Both B E ACand F

1

217

Keeping instructions and op-
erands in different memories
saves .47 (.36) ps in memory
and both modes in the first
four of these instructions
(those that have no operand
or only an AC operand), .20
(.09) us in memory and both
modes in the remaining
twelve (those that have a
memory or immediate op-
erand).

2-18

A Boolean instruction in
which E addresses a fast
memory location takes .46
(:35) us less in memory or
both mode if it has no oper-
and or only an AC operand.
If it has a memory operand,
it takes .34 us less in basic
mode, .54 (43) us less in
memory or both mode.

SETZ and SETZI are equiva-
lent (both merely clear AC).
MAcCRro . also recognizes
CLEAR, CLEARI, CLEARM
dnd CLEARB as equivalent to
the set-to-zeros mnemonics.

SETO and SETOI are equiva-
Ient.

SETA and SETAI are no-ops.
SETAM and SETAB are both
equivalent to MOVEM (all
move AC to location E).

36

CENTRAL PROCESSOR 8§24

For an instruction without an operand (one that merely clears a location or
sets it to all 1s) the modes differ only in the destination of the result, so
basic and immediate modes are equivalent. The same is true also of an
instruction that uses only an AC operand. When specified by the mode, the
result goes to the accumulator addressed by A, even when there is no AC
operand.

SETZ

OL 400 6|7M| 4 1] x] Y]

89 121314 1718 35

Set to Zeros -

Change the contents of the destination specified by M to all Os.

SETZ Set to Zeros 400 1.36 (1.47) us
SETZI Set to Zeros Immediate . 401 1.36 (1.47) us
SETZM Set to Zeros Memory 402 2.33 (2.44) ps
SETZB Set to Zeros Both 403 2.33(2.44) us
SETO Set to Ones

| 474 [m] 4 1] x] %

0 67 89

121314 1718 35

Change the contents of the destination specified by M to all 1s.

SETO Set to Ones 474 1.36 (1.47) us
SETOI Set to Ones Immediate 475 1.36 (1.47) us
SETOM Set to Ones Memory 476 2.33(2.44) us
SETOB Set to Ones Both 477 2.33(2.44) us
SETA Setto AC

424 M| 4 JI] x] Y]
(1] .67 89

121314 1718 35

Make the contents of the destination specified bva equal to AC.

SETA Set to AC 424 1.50 (1.61) us
SETAI Set to AC Immediate 425 1.50 (1.61) us
SETAM Set to AC Memory 426 2.47 (2.58) us
SETAB Set to AC Both , 427 2.47 (2.58) ps

> ‘ 37
§2.4 LOGIC

SETCA Set to Complement of AC

[4so [m] a [i] x | Y

1] 67 89 121314 1718 . 35

Change the contents of the destination specified by M to the complement of
AC. .

SETCA Set to Complement of AC 450

1.50 (1.61) us

SETCAI Set to Complement of AC Immediate 451
1.50 (1.61) us

SETCAM Set to Complement of AC Memory 452
. T 247 (2.58) ps

SETCAB Set to Complement of AC Both 453

2.47 (2.58) us

SETM Set to Memory

414 M| a4 |1 x | Y
o 67 89 121314' 1718 35

Make the contents of the destination specified by M equal to the specified
operand.

SETM . Set to Memory 414 2.21(2.43) ps
SETMI Set to Memory Immediate - . 415 1.36 (1.47) us
SETMM Set to Memory Memory 416 2.76 (2.87) ps
SETMB Set to Memory Both 417 2.76 (2.87) us

SETCM Set to Complement of Memory

460 M| 4 Ji] x | Y |

o 67 89 121314 1718 3s

Change the contents of the destination speciﬁéd by M to the complement of
the specified operand.

SETCM Set to Complement of Memory 460
) 2.21(2.43) ps

SETCMI Set to Complement of Memory Immediate 461
’ 1.36 (1.47) us

SETCMM Set to Complement of Memory Memory 462
2.76 (2.87) us

SETCMB Set to Complement of Memory Both 463

2.76 (2.87) us

2-19

SETCA and SETCAI are
equivalent (both complement
AC).

SETM and SETMB are equiv-
alent to -MOVE. SETMI
moves the word 0,E to AC

“and is thus equivalent to

MOVEL SETMM is a no-op
that references memory.

SETCMI moves the comple-
ment of the word 0, E to AC.
SETCMM complements loca-
tion E.

2-20

CENTRAL PROCESSOR §2.4
AND And with AC
| 404 [mM] 4 [i] x | : Y]
0 67 89 121314 1718 Y

Change the contents of the destination specified by M to the anp function of
the specified operand and AC.

AND And 404 2.35(2.57) us
ANDI And Immediate 405 1.50 (1.61) us
ANDM And to Memory 406 2.90 (3.01) us
ANDB And to Both 407 2.90 (3.01) us

ANDCA And with Complement of AC

0L410 M 4 [x] Y |

67" 89 121314 1718 35

Change the contents of the destination specified by M to the anp function of
the specified operand and the complement of AC.

ANDCA And with Complement of AC 410
. 2.70 (2.92) us

ANDCAI And with Complement of AC Immediate , 411
1.85 (1.96) us

ANDCAM And with Complement of AC to Memory 412
v 3.52(3.63) us

ANDCAB And with Complement of AC to Both ' 413

3.52(3.63) us

ANDCM And Complement of Memory with AC

420 M| 4 il x] Y]

0 67 89 121314 1718 35

Change the contents of the destination specified by M to the anp function of
the complement of the specified operand and AC.

ANDCM And Complement of Memory - 420
- 235Q@.57) us

ANDCMI And Complement of Memory Immediate 421
‘ 1.50 (1.61) us

ANDCMM And Complement of Memory to Memory 422
) 2.90 (3.01) us

ANDCMB And Complement of Memory to Both 423

2.90 (3.01) us

39
§2.4)) : LOGIC

ANDCB And Complements of Both

TN 1) T S S

o 89. 121314 1718 . 35

Change the contents of the destination specified by M to the anp function of
the complements of both the specified operand and AC. The result is the
nor function of the operands.

ANDCB And Complements of Both 440
2.70 (2.92) us

ANDCBI And Complements of Both Immediate T 441
: 1.85 (1.96) us

‘ANDCBM And Complements of Both to Memory ' 442
‘ 3.52(3.63) pus

ANDCBB And Complements of Both to Both 443

3.52(3.63) us

I0R Inclusive Or with AC
434 [m[4 1] x | ' Y |
(1] 67 89 21314 1718 35

Change the contents of the destination specified by M to the inclusive or
function of the specified operand and AC.

I0R Inclusive Or ' 434 . 235Q.5T) us
10RI Inclusive Or Immediate 435 1.50 (1.61) us
I0RM Inclusive Or to Memory 436 2.90 (3.01) us .
I0RB Inclusive Or to Both _ 437 2.90 (3.01) us
ORCA Inclusive Or with Complement of AC

[454 [m] a4 1] x | Y]
[67 89 121314 1718 35

Change the contents of the destination specified by M to the inclusive or
function of the specified operand and the complement of AC.

ORCA Or with Complement of AC 454
- 2.70(2.92) us

ORCAI Or with Complement of AC Immediate | 455
’ 1.85(1.96) ps

ORCAM Or with Complement of AC to Memory 456
' 3.52(3.63) us

ORCAB Or with Complenient of AC to Both 457

3.52 (3.63) us

2-21

MACRO also recognizes OR,
ORI, ORM and ORB as equiv-
alent to the inclusive OR mne-
monics.

40

CENTRAL PROCESSOR §2.4

ORCM Inclusive Or Complement of Memory with AC
464 |[m[4 il x] Y]
o 67 89 121314 1718 35

Change the contents of the destination 'specified by M to the inclusive or
function of the complement of the specified operand and AC.

ORCM Or Complement of Memory 464
2.35(2.57) ps
ORCMI Or Complement of Memory Immediate , 465
1.50 (1.61) us
ORCMM Or Complement of Memory to Memory 466
2.90 (3.01) us
ORCMB - Or Complement of Memory to Both 467

2.90 (3.01) ps

ORCB Inclusive Or Complements of Both
L_470 [m] a4 [i] x] Y |
[}] 67 89 121314 1718 : 35

Change the contents ‘of the destination specified by M to the inclusive or
function of the complements of both the specified operand and AC. The
result is the NaND function of the operands.

ORCB Or Complements of Both 470
‘ : 2.70 (2.92) us
ORCBI Or Complements of Both Immediate 471
1.85 (1.96) us

ORCBM Or Complements of Both to Memory 472 |
; 3.52(3.63) us
ORCBB Or Complements of Both to Both 473

3.52(3.63) us

XOR Exclusive Or with AC '
L 430 [m[a 1] x | Y]
0 67 89 121314 1718 3s

Change the contents of the destination spec1f1ed by M to the exclusive or
function of the specified operand and AC.

XO0R ‘Exclusive Or 430 2.35(2.57) us
XORI Exclusive Or Immediate 431 1.50(1.61) us
XORM Exclusive Or to Memory 432 2.90 (3.01) us
XORB Exclusive Or to Both 433 2.90 (3.01) us

The original contents of the destination can be recovered except in XORB,
where both operands are replaced by the result. In the other three modes
the replaced operand is restored by repeating the instruction in the same
mode, ie by taking the exclusive or of the remaining operand and the result.

4
§2.4 LOGIC

EQV Equivalence with AC
[444 [m] 4 [x | Y
0 67 89 121314 1718 35

Chanée the contents of the destination specified By M to the complement of
the exclusive or function of the specified operand and AC (the result has 1s
wherever the corresponding bits of the operands are the same).

EQV Equivalence 444 235257 us
EQVI Equivalence Immediate 445 1.50 (1.61) us
EQVM Equivalence to Memory 446 2.90 (3.01) us
EQVB Equivalence to Both 447 2.90 (3.01) us

The original contents of the destination can be recovered except in EQVB,
where both operands are replaced by the result. In the other three modes
the replaced operand is restored by repeating the instruction in the same
mode, ie by taking the equivalence function of the remaining operand and
the result.

For the four possible bit configurations of the two operands, the above
sixteen instructions produce the following results. In each case the result as
listed is equal to bits 3-6 of the instruction word.

AC 0 1 0 1
Mode Speciﬁed Operand 0o 0 1 1
SETZ 0 0 0 0
AND 0 0 0 1
ANDCA 0 0 1 0O
SETM 0 0 1 1
ANDCM 6 1 0 0
SETA 0 1 0 1
XOR o 1 1 0
IOR o 1 1 1
ANDCB 1 0 0 0O
EQV 1 0 0 1
SETCA 1 0 1 0
ORCA 1 0 1 1
SETCM 1 1 0 o0
ORCM 1 1 0 1
ORCB 1 1 1 0
SETO 1 11 1

223

2-24

LSH

LSHC

ROT

ROTC

ASHC

12

CENTRAL PROCESSOR . 8§24

Shift and Rotate

The remaining logical instructions shift or rotate right or left the contents of
AC or the contents of two accumulators, A and A+1 (mod 20g), concat-
enated into a 72-bit register with A on the left. The illustration below
shows the movement of information these instructions produce in the accu-

0 A 0
0 35
0 4 : 441 0
0 35 0 35
A
0 35
A A +1
0 35 0 35
A A 0
0 1 35
A A+
0 0
A A+1 . 0

1 35 1 : 35

AC(SU MULATOR BIT FLOW IN SHIFT AND ROTATE INSTRUCTIONS

43

8§24 LOGIC

mulators. In a (logical) shift the contents of a register.ar¢ moved bit-to-bit
with Os brought in at the end being vacated; information shifted out at the
other end is lost. [For a discussion of arithmetic shifting see §2.5.] In
rotation the contents are moved cyclically such that information rotated ouit
at one end is put in at the other.

The number of places moved is specified by the result of the effective
address calculation taken as a signed number (in twos complement notation)
modulo 2% in magnitude. In other words the effective shift £ is the number
composed of bit 18 (which is the sign) and bits 28-35 of the calculation
result. Hence the programmer may specify the shift directly in the instruc-
tion (perhaps indexed) or give an indirect-address to be used in calculating
the shift. A positive £ produces motion to the left, a negative E to the right;
maximum movement is 255 places.

LSH Logical Shift Left: 1.62(1.73) + .15|E| s
Right: 1.46 (1.57) + .15|E| s

242 | 4 [1f x | Y]

0 89 121314 1718 35

Shift AC the number of places specified by E. If E is positive, shift left
bringing Os into bit 35; data shifted out of bit 0 is lost. If £ is negative, shift
right bringing Os into bit 0; data shifted out of bit 35 is lost.

LSHC Logical Shift Combined - Left: 2.00(2.11) + .15|E| us
Right: 1.84 (1.95) + .15|E] us

[246 [4 [x | Y]
) 0 89 1213 14 1718 35

Concatenate accumulators 4 and A+1 with A on the left, and shift the
72-bit combination the number of places specified by E. If E is positive,
shift left bringing Os into bit 71 (bit 35 of AC A+1); bit 36 is shifted into bit
35; data shifted out of bit 0 is lost. If E is negative, shift right bringing Os
into bit 0; bit 35 is shifted into bit 36; data shifted out of bit 71 is lost.

ROT Rotate Left: 1.62(1.73) + .15|E| us

Right: 1.46 (1.57) + .15|E| us
[241 > | 4 il x | Y B
0 . 89 121314 1718 35

Rotate AC the number of places specified by E. If E is positive, rotate left;
bit O is rotated into bit 35. If E is negative, rotate right; bit 35 is rotated
into bit 0.

2-25

2-26

Overflow is determined di-

rectly from the carries, not
" from the carry flags, as their
states may reflect events in
previous instructions.)

4

CENTRAL PROCESSOR : §2.5

ROTC Rotate Combined Left: 2.00 (2.11) + .15|E| us
Right: 1.84 (1.95) + .15|E] ps

| 245 IA‘IIX" Y]

0 ‘89 121314 1718 35

Concatenate accumulators A and A+1 with A on the left, and rotate the
72-bit combination the number of places specified by E. If E is positive,
rotate left; bit O is rotated into bit 71 (bit 35 of AC A+1) and bit 36 into bit
35. If E is negative, rotate right; bit 35 is rotated into bit 36 and bit 71 into
bit 0. :

2.5 FIXED POINT ARITHMETIC

For fixed point arithmetic the PDP-10 has instructions for arithmetic shift-
ing (which is essentially multiplication by a power of 2) as well as for per-
forming addition, subtraction, multiplication and division of numbers in
fixed point format [§1.1]. In such numbers the position of the binary point
is arbitrary (the programmer may adopt any point convention). The add and
subtract instructions involve only single length numbers, whereas multiply
supplies a double length product, and divide uses a double length dividend.
The high and low order words respectively of a double length fixed point
number are in accumulators 4 and A+1 (mod 20g), where the magnitude is
the 70-bit string in bits 1-35 of the two words and the signs of the two are
identical. There are also integer multiply and diyide instructions that involve
only single length numbers and are especially suited for handling smaller
integers, particularly those of eighteen bits or less such as addresses (of ~
course they can be used for small fractions as well provided the programmer
keeps track of the binary point). For convenience in the following, all oper-
ands are assumed to be integers (binary point at the right).

The processor has four flags, Overflow, Carry 0, Carry 1 and No Divide,.
that indicate when the magnitude of a number is or would be larger than can ~
be accommodated. Carry O and Carry 1 actually detect carries out of bits 0
and 1 in certain instructions that employ fixed point arithmetic operations:
the add and subtract instructions treated here, the move instructions that
produce the negative or magnitude of the word moved [§2.2], and the
arithmetic test instructions that increment or decrement the test word
[§2.7]. In these instructions an incorrect result is indicated — and the Over-
flow flag set — if the carries are different, ie if there is a carry into the sign
but not out of it, or vice versa. The Overflow flag is also set by No Divide
being set, which means the processor has failed to perform a division because
the magnitude of the dividend is greater than or equal to that of the divisor,
or in integer divide, simply that the divisor is zero. In other overflow cases
only Overflow itself is set: these include too large a product in multiplica-
tion, and loss of significant bits in left arithmetic shifting.

These flags can be read and controlled by certain program control instruc-
tions [§2.9], and Overflow is available as a processor condition (via in-out

- o 45

§2.5 FIXED POINT ARITHMETIC

instructions [§2.14]) that can request a priority interrupt if enabled. The
conditions detected can only set the flags and the hardware does not clear
them, so the program must clear them before an instruction if they are to
give meaningful information about the instruction afterward. However, the
program can check the flags following a series of instructions to determine
whether the entire series was free of the types of error detected.

All but the shift instructions have four modes that determine the source
of the non-AC operand and the destination of the result.

. Source of non- » Destination

Mode Suffix AC operand . of result
Basic E AC
Immediate 1 The word O, F : AC
Memory M ‘ E E
Both B E ACand E
ADD Add

270 |m|. a4 il x] Y |

0 67 89 121314 1718 . 35

Add the operand specified by M to AC and place the result in the specified
destination. If the sum is > 235 set Overflow and Carry 1; the result stored
has a minus sign but a magnitude in positive form equal to the sum less 235,
If the sum is < —23% set Overflow and Carry 0; the result stored has a plus
sign but a magnitude in negative form equal to the sum plus 23, Set both
carry flags if both summands are negative, or their signs differ and their mag-
nitudes are equal or the positive one is the greater in magnitude.

ADD Add 270 2.53(2.75) us
ADDI Add Immediate . 271 1.68 (1.79) us
ADDM Add to Memory , 272 *3.08 (3.19) ps
ADDB Add to Both 273 3.08 (3.19) us
suB Subtract

[274 Im] 4 [1i] x] Y |
0 67 89 121314 1718 35

" Subtract the operand specified by M from AC and place the result in the
specified destination. If the difference is = 2% set Overflow and Carry 1;
the result stored has a minus sign but a magnitude in positive form equal to
the difference less 23°. If the difference is < —23% set Overflow and Carry 0;
the result stored has a plus sign but a magnitude in negative form equal to
the difference plus 235. Set both carry flags if the signs of the operands are
the same and AC is the greater or the two are equal, or the signs of the
operands differ and AC is negative.

2-27

Besides indicating error types,
the carry flags facilitate per-
forming multiple precision
arithmetic.

Keeping instructions and op-
erands in different memories
saves .20 (09) us in ADDM
and ADDB.

When E addresses a fast
memory location, ADD takes
34 us less than the time
given, ADDM and ADDB take
.54 (.43) us less.

MAY 1968

2-28

Keeping instructions and op-
erands in different memories
saves .20 (.09) us in SUBM
and SUBB.

When E addresses a fast
memory location. SUB takes
34 us less than the time
given. SUBM and SUBB take
S (43 s less.

Keeping instructions and op-
erands in different memories
“saves .47 (.36) ws in MULM.
.31 (.20) us in MULB.

When E addresses a fast
memory location. MUL takes
34 us less than the time
given. MULM takes .80 (.69)
ws less, and MULB takes .64
(-53) us less.

- N 16

. CENTRAL PROCESSOR . §2.5
SuB Subtract . - 274 2.53(2.75) us
Susl Subtract Immediate 275 1.68 (1.79) us
SUBM Subtract to Memory . 276 3.08 (3.19) us
SUBB Subtract to Both 277 3.08 (3.19) us
MUL Multiply
| 224 Ju] a Jif x] Y]
0 67 89 121314 1718 ! 35

Multiply AC by the operand specified by .. and place the high order word
of the double length result in the specified destination. If A specifies AC as
a destination. place the-low order word in accumulator A+1. If both oper-
ands are —=2* set Overflow: the double length result stored is —27°.

i

MUL Multiply 224 10.60 (10.82) us
MULI Multiply Immediate 225 8.58 (8.69) us
MULM Multiply to Memory 226 11.41 (11.63) us
MULB Multiply to Both : ’ 227 11.41 (11.63) ps

Timing. The times given above are average. The algorithm modifies the
running sum of partial products at each 1-0 or 0-1 transition scanning from
one bit to the next in the multiplier, which is the operand specified by the
mode: in other words the number of operations equals the number of pairs
of adjacent bits that differ in the multiplier including the sign bit and taking
the bit at the right of the LSB as O (an LSB of 1 is regarded as a transition).
Minimum times with a zero multiplier are '

MUL 8.26 (8.48) us

MULI 7.41 (7.52) us
MULM 9.07 (9.29) us
MULB 9.07 (9.29) us

These must be mcreased by .13 us for each transition. The programmer can
minimize the time by using as the multiplier the operand with fewer transi-
tions.

IMUL Integer Multiply
[220 Tu A i x| Y]
1] 67 89 121314 1718 35

Muttiply AC by the operand specified by 3/, and place the sign and the 35
low order magnitude bits of the product in the specified destination. Set
Overflow if the product is > 235 or < —235 (je if the high order word of the
double length product is not null); the high order word is lost. N

47

§2.5 FIXED. POINT ARITHMETIC

IMUL Integer Multiply [220 9.59 (9.81) ps
IMULI Integer Multiply Immediate 221 8.09 (8.20) us
IMULM Integer Multiply to Memory 222 10.56 (10.78) us -
IMULB Integer Multiply, to Both 223 10.56 (10.78) us

Timing. The times given above are average. Refer to the description of
MUL for the timing effects of the multiplication algorithm. Minimum times
with a zero muitiplier are

IMUL 8.42(8.64) us-

IMULI 7.57(7.68) us

IMULM 9.39 (9.61) us

IMULB 9.39(9.61) us BN

These must be increased by .13 us for each transition. The programmer can
minimize the time by using as the multiplier the operand with fewer transi-
tions.

DIv Divide

234 M| 4 1] x| Y]

o 67 89 121314 1718 35

If the magnitude of the number in AC is greater than or equal to that of the
operand specified by M, set Overflow and No Divide, and go immediately to
the next instruction without affecting the original AC or memory operand in
any way. Otherwise divide the double length number contained in accumula-
tors A and A+1 by the specified operand, calculating a quotient of 35
magnitude bits including leading zeros. Place the unrounded quotient in the
specified destination. If M specifies AC as a destination, place the remainder,
with the same sign as the dividend, in accumulator 4+1.

'

DIv Divide 234 16.2 (16.4) us
DivI Divide Immediate 235 15.4 (15.5) us
DIVM Divide to Memory) 236 A 17.1 (17.3) us
DIVB Divide to Both 237 17.1 (17.3) us
101V Integer Divide

| 230 [m] a4 il x T Y |
0 67 89 121314 1718 35

. If the 'h(')perand specified by M is zero, set Overflow and No Divide, and go
immediately to the next instruction without affecting the original AC or
memory operand in any way. Otherwise divide AC by the specified operand,
calculating a quotient of 35 magnitude bits including leading zeros. Place

12-29

Keeping instructions and op-
erands in different memories
saves .47 (.36) ps in IMULM
and IMULB.

When E addresses a fast
memory location, IMUL
takes .34 us less than the time
given, IMULM and IMULB
take .80 (.69) us less.

Keeping instructions and op-
erands in different memories
saves .5 (4) us in DIVM, 3
(.2) us in DIVB. :

When E addresses a fast
memory location, DIV takes
.3 us less than the time given,
DIVM takes .8 (.7) us less,
and DIVB takes .6 (.5) us
less.

If the division is not per-
formed, only 2.5-3 us are
required.

2-30

Keeping instructions and op-
erands in different memories
saves .5 (.4) ps in IDIVM, .3
(-2) us in IDIVB.

When E addresses a fast
memory location, IDIV takes
.3 ps less than the time given,
IDIVM takes .8 (.7) us less,
and IDIVB takes .6 (.5) us
less.

If the division is not per-
formed, only 3-3.5 us are
required.

48 .
CENTRAL PROCESSOR 8§25

the unrounded quotient in the specified destination. If M specifies AC as the
destination, place the remainder, with the same sign as the dividend, in
accumulator A+1.

IDIV Integer Divide 230 16.5 (16.7) us
IDIVI Integer Divide Immediate 231 15.7 (15.8) us
IDIVM Integer Divide to Memory 232 17.4 (17.6) us
IDIVB Integer Divide to Both 233 17.4 (17.6) ps

ExampLE. The integer multiply and divide instructions are very useful for
computations on addresses or character codes, or performing any integral
operations in which the result is small enough to be accommodated in a
single register.

As an example suppose we wish to determine the parity of the 8-bit char-
acter abcdefgh, where the letters represent the bits of the character. Assgm-
ing the character is right-justified in AC, we first duplicate it twice to the left
producing '

“abc def gha bcd efg hab cde fgh

whgre the bits (in positions 12-35) are grouped corresponding to the octal
digits in the word. Anding this with

001 001 001 001 001 001 001 001

retains only the least significant bit in each 3-bit set, so we can represent the
result by

cfadgbeh

where‘each letter represents an octal digit héving the same valu,e (Oorl)as
the bit originally represented by the same letter. Multiplying this by
111111115 generates the following partial products:

c fadgbeh
c fadgbeh
c fadgbeh
c fadgbeh
c fadgbehn
c fadghbeh
c fadgbeh
c fadgbeh

Since any digit is at most 1, there can be no carry out of any column with
fewer than eight digits unless there is a carry into it. Hence the octal digit
produced by summing the center column (the one containing all the bits of
the character) is even or odd as the sum of the bits is even or odd. Thus its
least significant bit (bit 14 of the low order word in the product) is the par-
ity of the character, O if even, 1 if odd.

The above may seem a very complicated procedure to do something
trivial, but it is effected by this quite simple sequence (with the character

49
§2.5 FIXED POINT ARITHMETIC

right-justified in AC):

IMULI AC,200401
AND AC,ONES
IMUL AC,ONES

ONES: 11111111

where the parity is indicated by AC bit 14. Of course, following the IMUL
would be a test instruction to check the value of the bit.

Arithmetic Shifting

These two instructions produce an arithmetic shift right or left of the num-
ber in AC or the double length number in accumulators 4 and A+1. Shifting
is the movement of the contents of a register bit-to-bit. The operation dis-
cussed here is similar to logical shifting [see §2.4 and the illustration on
page 2-24], but in an arithmetic shift only the magnitude part is shifted —
the sign is unaffected. In a double length number the 70-bit string made up
of the magnitude parts of the two words is shifted, but the sign of the low
order word is made equal to the sign of the high order word.

Null bits are brought in at the end being vacated: a left shift brings in Os at
the right, whereas a right shift brings in the equivalent of the sign bit at the
left. In either case, information shifted out at the other end is lost. A single
shift left is equivalent to multiplying the number by 2 (provided no bit of
significance is shifted out); a shift right divides the number by 2.

The number of places shifted is specified by the result of the effective
address calculation taken as a signed number (in twos complement notation)
modulo 2® in magnitude. In other words the effective shift E is the number
composed of bit 18 (which is the sign) and bits 28-35 of the calculation
result. Hence the programmer may specify the shift directly in the instruc-
tion (perhaps indexed) or give an indirect address to be used in calculating
the shift. A positive £ produces motion to the left, a negative E to the right;
E is thus the power of 2 by which the number is multiplied. Maximum
movement is 255 places.

ASH Arithmetic Shift Left: 1.62(1.73) + .15|E| us
Right: 1.46 (1.57) + .15|E| us

240 [4 1] x] Y]

[1] 89 1213 14 1718 35

Shift AC arithmetically the number of places specified by £. Do not shift
bit 0. If E is positive, shift left bringing Os into bit 35; data shifted out of bit
1 is lost; set Overflow if any bit of significance is lost (a 1 in a positive num-
ber, a 0 in a negative one). If E is negative, shift right bringing Os into bit 1
if AC is positive, 1s if negative; data shifted out of bit 35 is lost.

2-31

2-32

A subtraction involving two
like-signed numbers whose
exponents are equal and
whose fractions differ only in
the LSB gives a result con-
" taining only one bit of signi-
ficance. .

50

CENTRAL PROCESSOR . §2.6

ASHC Arithmetic Shift Combined Left: 2.00(2.11) + . 15|E| us
Right: 1.84 (1.95) + .15|E| us

244 | 4 [x | Y |

(1] 89 121314 1718 35

Concatenate the magnitude portions of accumulators 4 and A+1 with A on
the left, and shift the 70-bit combination in bits 1-35 and 37-71 the num-
ber of places specified by E. Do not shift AC bit 0, but make bit 0 of AC
A+1 equal to it if at least one shift occurs (ie if E is nonzero). If E is posi- -
tive,' shift left bringing Os into bit 71 (bit 35 of AC A+1); bit 37 (bit 1 of AC
A+1) is shifted into bit 35; data shifted out of bit 1 is lost; set Overflow if
any bit of significance islost (a 1 in a positive number, a 0 in a negative one).
If E is negative, shift right bringing Os into bit 1 if AC is positive, 1s if nega-
tive; bit 35 is shifted into bit 37; data shifted out of bit 71 is lost.

2.6 FLOATING POINT ARITHMETIC

For floating point arithmetic the PDP-10 has instructions for scaling the
exponent (which is multiplication of the entire number by a power of 2)
and negating double length numbers as well as for performing addition, sub-
traction, multiplication and division of numbers in floating point format.
All instructions treated here interpret all operands as floating point numbers
in the format given in § 1.1, and generate results in that format. The reader
is strongly advised to reread §1.1 if he does not remember the format in
detail. k

For the four standard arithmetic operations the program can select wheth-
er or not the result shall be rounded. Rounding produces the greatest con-
sistent precision using only single length operands. Instructions without
rounding have a “long” mode, which supplies a two-word result for greater
precision; the other modes save time in one-word operations where rounding
is of no significance.

Actually ‘the result is formed in a double length register in addition, sub-
traction and multiplication, wherein any bits of significance in the low order
part supply information for normalization, and then for rounding if re-
quested. Consider addition as an example. Before adding, the processor
right shifts the fractional part of the operand with the smaller exponent until
its bits correctly match the bits of the other operand in order of magnitude.
Thus the smaller operand could disappear entirely, having no effect on the
result (“result” shall always be taken to mean the information (one word or
two) stored by the instruction, regardless of the number of significant bits it
contains or even whether it is the correct answer). Long mode is likely to
retain information that would otherwise be lost, but in any given mode the
significance of the result depends on the relative values of the operands.
Even when both operands contain twenty-seven significant bits, a long addi-
tion may store two words that together- contain only one significant bit. In
division the processor always calculates a one-word quotient that requires no

b

51

§2.6 FLOATING POINT ARITHMETIC

normalization if the original operands are normalized. An extra quotient bit
is calculated for rounding when requested; long mode retains the remainder.
 The processor has four flags, Overflow, Floating Overflow, Floating
Underflow and No Divide, that indicate when the exponent is too large or
too small to be accommodated or a division cannot be performed because of
the relative values of dividend and divisor. Any of these circumstances sets
Overflow and Floating Overflow. If only these two are set, the exponent of
the answer is too large; if Floating Underflow is also set, the exponent is too
small. No Divide being set means the processor failed to perform a division,
an event that can be produced only by a zero divisor if all nonzero operands
are normalized. These flags can be read and controlled by certain program
control instructions [§2.9], and Overflow and Floating Overflow are avail-
able as processor conditions (via in-out instructions {§2.14]) that can
request a priority interrupt if enabled. The conditions detected can only set
the flags and the hardware does not clear them, so the program must clear
them before a floating point instruction if they are to give meaningful infor-
mation about the instruction afterward. However, the program can check
the flags following a series of instructions to determine whether the entire
series was free of the types of error detected.

The floating point hardware functions at its best if given operands that
are either normalized or zero, and except in special situations the hardware
normalizes a nonzero result. An operand with a zero fraction and a nonzero
exponent can give wild answers in additive operations because of extreme
loss of significance; eg adding % X 22 and 0 X 2%° gives a zero result, as the
first operand (having a smaller exponent) looks smaller to the processor and
is shifted to oblivion. A number with a 1 in bit 0 and Os in bits 9-35 is not
simply an incorrect representation of zero, but rather an unnormalized
“fraction” with value —1. This unnormalized number can produce an incor-
rect answer in any operation. Use of other unnormalized operands simply
causes loss of significant bits, except in division where they can prevent its
execution because they can satisfy a no-divide condition that is impossible
for normalized numbers.

Scaling

One floating point instruction is in a category by itself: it changes the
exponent of a number without changing the significance of the fraction. In
other words it multiplies the number by a power of 2, and is thus analogous

to arithmetic shifting of fixed point numbers except that no information is
lost, although the exponent can overflow or underflow. The amount added '

to the exponent is specified by the result of the effective address calculation
taken as a signed number (in twos complement notation) modulo 22 in mag-
nitude. In other words the effective scale factor £ is the number composed
of bit 18 (which is the sign) and bits 28—-35 of the calculatlon result. Hence
the programmer may specify the factor directly in the instruction (perhaps
indexed) or give an indirect address to be used in calculating it. A positive E
increases the exponent, a negative £ decreases it; E is thus the power of 2 by
which the number is multiplied. The scale factor lies in the range —256 to
+255.

2-33

The processor normalizes the
result by shifting the fraction
and adjusting the exponént to
compensate for the change in ,
value. Each shift and accom-
panying exponent adjustment
thus multiply the number
both by 2 and by % simulta-
neously, leaving its value un-
changed.

2-34

N is the number of left shifts
needed to normalize the
result.

This instruction can be used
to float a fixed number with
27 or fewer significant bits.
To float an integer contained
within AC bits 9-35,

FSC AC,233

inserts the correct exponent
to move the binary point

from the right end to the left’

of bit 9 and then normalizes
(2335 = 1554 = 128 +27).

In the hardware the rounding
operation is actually some-
" what more complex than
stated here. If the result is
negative, the hardware com-
bines rounding with placing
the high order word in twos
complement form by decreas-
ing its magnitude if the low
order part is < %2LSB. More-
over an extra single-step re-
normalization occurs. if the
rounded word is no longer
normalized.

Keeping instructions and op-
erands in different memories
saves .47 (.36) us in memory
and both modes.

When E addresses a fast
memory location, a floating
point instruction with round-
ing takes .34 us less than the
time listed in basic mode, .80
(:69) us less in memory or
both mode.

52

CENTRAL PROCESSOR §2.6
FSC Floating Scale 2.75 (2.86) + .25N us
| 132 { 4 |1l x | Y |
0 89 121314 1718 35

If the fractional part of AC is zero, clear AC. Otherwise add the scale factor
given by E to the exponent part of AC (thus multiplying AC by 2¥), normal-
ize the resulting word bringing Os into bit positions vacated at the right, and
place the result back in AC.

< NoTtE

A negative E is represented in standard twos com-
plement notation, but the hardware compensates
for this when scaling the exponent.

If the exponent after normalization is > 127, set Overflow and Floating
Overflow; the result stored has an exponent 256 less than the correct one.
If < —128, set Overflow, Floating Overflow and Floating Underflow; the
result stored has an exponent 256 greater than the correct one.

Operations with Rounding

There are four instructions that use only one-word operands and store a
single-length rounded result. Rounding is away from zero: if the part of the
normalized answer being dropped (the low order part of the fraction) is
greater than or equal in magnitude to one half the LSB of the part being
retained, the magnitude of the latter part is increased by one LSB.

The rounding instructions have four modes that determine the source of
the non-AC operand and the destination of the result. These modes are like
those of logic and fixed point arithmetic, including an immediate mode that
allows the instruction to carry an operand with it.

Source of non- Destination
Mode Suffix AC operand of result
Basic E AC
Immediate I | The word E,0 AC
Memory M E - E
Both B E | ‘ ACand £

Note however that floating point immediate uses E,0 as an operand, not
0,E. In other words the half word E is interpreted as a sign, an 8-bit expo-
nent, and a 9-bit fraction. :)
The time required is a function of the number N of left shifts needed for
normalization. Brackets enclose the additional time required when rounding
actually changes the high order word. ‘)
In each of these instructions, the exponent that results from normaliza-

53
§2.6 FLOATING POINT ARITHMETIC

tion and rounding is tested for overflow or underflow. If the exponent is
> 127, set Overflow and Floating Overflow; the result stored has an expo-
nent 256 less than the correct one. If <—128, set Overflow, Floating Over-
flow and Floating Underflow; the result stored has an exponent 256 greater
than the correct one.

FADR Floating Add and Round
L 144 [mM[a4 I x] Y B
0 . 67 89 121314 1718 ’ ‘ 35

Floating add the operand specified by M to AC. If the double length fraction
in the sum is zero, clear the specified destination. Otherwise normalize the
double length sum bringing Os into bit positions vacated at the right, round
the high order part, test for exponent overflow ar underflow as described
above, and place the result in the specified destination.

FADR Floating Add and Round 144
4.46 (4.68) + .15D + .25N [+.96] us

FADRI Floating Add and Round Immediate 145
3.70(3.81) + .15D + .25N [+.96] us
FADRM Floatmg Add and Round to Memory 146
5.43 (5.65) + .15D + 25N [+.96] us
FADRB Floating Add and Round to Both 147

5.43(5.65) + .15D + .25N [+.96] us

FSBR Floating Subtract and Round
L 154 [m] 4 [x] Y]
[1] 67 89 121314 1718 35

Floating subtract the operand specified by M from AC. If the double length
fraction in the difference is zero, clear the specified destination. Otherwise
normalize the double length difference bringing Os into bit positions vacated
at the right, round the high order part, test for exponent overflow or under-
flow as described above, and place the result in the specified destination.

FSBR Floating Subtract and Round) 154
4.64 (4.86) + .15D + .15N [+.96] us
FSBRI Floating Subtract and Round Imm&diate 155
3.88(3.99) + .15D + .15N [+.96] us
FSBRM Floating Subtract and Round to Memory 156
5.61(5.83) + .15D + .15N [+.96] us
FSBRB Floating Subtract and Round to Both B 157

5.61(5.83) + .15D + .15N [+.96] us

2-35 -

D is the difference between
the operand exponents pro-
vided that difference is < 63.
Otherwise D = 0.

D is the difference between
the operand exponents pro-
vided that difference is < 63.
Otherwise D = 0.

236

Use of normalized operands
requires at most one normali-
zation step for the result. If
unnormalized operands are
used, all times must be in-
creased by .25MV.

Division fails if the divisor is
zero, but the no-divide condi-
tion can otherwise be satisfied
only if at least one operand is
unnormalized.

54

CENTRAL PROCESSOR . §2.6
FMPR Floating Multiply and Round
[164 M| a4 [x | Y |
0 67 89 121314 1718 35

Floating Multiply AC by the operand specified by M. If the double length
fraction in the product is zero, clear the specified destination. Otherwise
normalize the double length product bringing Os into bit positions vacated at
the right, round the high order part, test for exponent overflow or underflow
as described above, and place the result in the specified destination.

FMPR Floating-Multiply and Round : 164
10.29 (10.51) [+.96] us

FMPRI Floating Multiply and Round Immediate 165
8.36 (8.47) [+.96] us

FMPRM Floating Multiply and Round to Memory 166
11.26 (11.48) [+.96] us

FMPRB Floating Multiply and Round to Both 167
. 11.26 (11.48) [+.96] us

Timing. The times given above are average for normalized operands.
Refer to the description of MUL [§2.5] for the timing effects of the multi-
plication algorithm. Minimum times with a zero multiplier are

-FMPR 8.47 (8.69) [+.96] us
FMPRI 7.71 (7.82) [+.96] us
FMPRM 9.44 (9.66) [+.96] us
FMPRB 9.44 (9.66) [+.96] us

These must be increased by .13 us for each transition. The programmer can
minimize the time by using as the multiplier the operand with fewer transi-
tions. ‘ ‘

FDVR Floating Divide and Round
174 (M| a4 Il x | Y ’ B
[1] 67 89 121314 1718 - 35

If the magnitude of the fraction in AC is greater than or equal to twice that

* of the fraction in the operand specified by M, set Overflow, Floating Over-

flow and No Divide, and go immediately to the next instruction without
affecting the original AC or memory operand in any way.

If the division can be performed, floating divide AC by the operand spec-
ified by M, calculating a quotient fraction of 28 bits (this includes an extra
bit for rounding). If the fraction is zero, clear the specified destination.
Otherwise round the fraction wusing the extra bit calculated.
If the original operands were normalized, the single length
quotient will already be normalized; if it is not, normalize
it bringing Os into bit positions vacated at the right. Test for

55 E

§2.6 FLOATING POINT ARITHMETIC

exponent overflow or underflow as described above, and place the result in
the specified destination.

FDVR Floating Divide and Round . 174
14.1 (14.3) us
FDVRI Floating Divide and Round Immediate . 175
13.3 (13.4) us
FDVRM Floating Divide and Round to Memory 176
15.1 (15.3) us
FDVRB Floating Divide and Round to Both 177

15.1 (15.3) us

Operations without Rounding

Instructions that do not round are faster for processing floating point num-
bers with fractions containing fewer than 27 significant bits. On the other
. hand the long mode provides double precision or allows the programmer to
use his own method of rounding. Besides the four usual arithmetic opera-
tions with normalization, there are two nonnormalizing instructions that
facilitate double precision arithmetic [§2.11 gives examples of double preci-
sion floating point routines]. These two instructions have no modes.

DFN Double Floating Negate 3.43 (3.54) us

[131 | 4] x] Y |

0 89 . 121314 1718 ' 35

Negate the double length floating point number composed of the contents of
AC and location E with AC on the left. Do this by taking the twos comple-
ment of the number whose sign is AC bit 0, whose exponent is in AC bits
1-8, and whose fraction is the 54-bit string in bits 9-35 of AC and location
E. Place the high order word of the result in AC; place the low order part of
the fraction in bits 9-35 of location E without alterlng the original contents
of bits 0 8 of that location.

UFA Unnormalized Floating Add 4.62(4.84) + .15D us
| 130 | 4 1] x] Y]
0 89 121314 1718 35

Floating add the contents of location E to AC. If the double length fraction
in 'the sum is zero, clear accumulator A+1. Otherwise normalize the sum
only if the magnitude of its fractional part is > 1, and place the high order
part of the result in AC A+1. The original contents of AC and E are
unaffected.

2-37

If unnormalized operands are
used, all times must be in-
creased by .25N. If the divi-
sion is not performed, only
3.5-4 ys are required.

Usually the double length
number is in two adjacent
accumulators, and E equals
A+1. In this case DFN takes
only 2.89 (3.11) us.

D is the difference between
the operand exponents pro-
vided that difference is < 63.
Otherwise D = 0.

When E addresses a fast
memory location, UFA takes
.34 us less than the time
given.

2-38

The exponent of the sum is
equal to that of the larger
summand unless addition of
the fractions overflows, in
which case it is greater by 1.
Exponent overflow can occur
only in the latter case.

Keeping instructions and op-
erands in different memories
saves .47 (.36) us in memory
and both modes.

When E addresses a fast
memory location, a floating
point instruction without
rounding takes .34 us less
than the time listed in basic
or long mode, .80 (.69) us

less in memory or both mode. -

56

CENTRAL PROCESSOR §2.6

Note

The result is placed in accumulator A+/. This is
the only arithmetic instruction that stores the
result in a second accumulator, leaving the original
_ operands intact.
If the exponent of the sum following the one-step normalization is > 127,
set Overflow and Floating Oyerﬂow; the result stored has an exponent 256
less than the correct one.

The remaining floating point instructions perform the four standard arith-
metic operations with normalization but without rounding. All use AC and
the contents of location F as operands and have four modes. '

Mode Suffix Effect

Basic High order word of resuit stored in AC.

Long L In addition, subtraction and multiplica-
tion, the two-word result (in the double
length format described in §1.1)4is
stored in accumulators A and A+1. In
division the dividend is the double length
word in A and A+1; the single length
quotient is stored in AC, the remainder
in ACA+1.

Memory M High order word of result stored in E.

Both "B

High order word of result stored in AC
and E. -

In each of these instructions, the exponent that results from normaliza-
tion is tested for overflow or underflow. If the exponent is > 127, set Over-
flow and Floating Overflow; the result stored has an exponent 256 less than
the correct one. If < —128, set Overflow, Floating Overflow and Floating
Underflow; the result stored has an exponent 256 greater than the correct
one.

The time required is a function of the number N of left shifts needed for
normalization.

FAD Floating Add

140 M| a4 [1f] x | Y]

0 67 89 121314 1718 35

Floating add the contents of location E to AC. If the double length fraction
in the sum is zero, clear the destination specified by M, clearing both accu-

57

§2.6 BFLOATING POINT ARITHMETIC

mulators in long mode. Otherwise normalize the double length sum bringing
Os into bit positions vacated at the right, test for exponent overflow or
underflow as described above, and place the high order word of the result in
the specified destination.

In long mode if the exponent of the sum is > 154 (127 +27) or <—101
(—128 +27) or the low order half of the fraction is zero, clear AC A+1.
Otherwise place a low order word for a double length result in A+1 by
putting a 0 in bit 0, an exponent in positive form 27 less than the exponent
_of the sum in bits 1-8, and the low order part of the fraction in bits 9-35.

FAD . Floating Add 140
4.46 (4.68) + .15D + .25N ps

FADL Floating Add Long 141

v 5.31(5.53) + .15D + .25N ps
FADM Floating Add to Memory 142
. 5.43 (5.65) + .15D + .25N us

FADB Floating Add to Both ' 143

5.43(5.65) + .15D + .25N ps

FSB Floating Subtract
150 M| 4 Jif x] Y]
0 67 89 121314 1718 35

Floating subtract the contents of location E from AC. If the double length
fraction in the difference is zero, clear the destination specified by M, clear-
ing both accumulators in long mode. Otherwise normalize the double length
difference bringing Os into bit positions vacated at the right, test for expo-
nent overflow or underflow as described above, and place the high order
word of the result in the specified destination.

In long mode if the exponent of the difference is > 154 (127 +27) or
< —101 (=128 + 27) or the low order half of the fraction is zero, clear AC
A+1. Otherwise place a low order word for a double length result in A+1 by
putting a O in bit 0, an exponent in positive form 27 less than the exponent
of the difference in bits 1-8, and the low order part of the fraction in bits
9-35.

FSB Floating Subtract 150
4.64 (4.86) + .15D + .25N us

FSBL Floating Subtract Long 151
5.49 (5.71) + .15D + .25N us

FSBM Floating Subtract to Memory ' 152
, 5.61(5.83) + .15D + .25N us

FSBB Floating Subtract to Both 153

5.61(5.83) +.15D + .25N us

2-39

D is the difference between ’

the operand exponents pro-

‘vided that difference is < 63.

Otherwise D = 0.

D is the difference between
the operand exponents pro-
vided that difference is < 63.
Otherwise D = 0.

2-40

Use of normalized operands
requires at most one normali-
zation step for the result. If
unnormalized operands are

used, all times must be in-

creased by .25N.

Division fails if the divisor is
zero, but the no-divide condi-
tion can otherwise be satisfied
only if at least one operand is
unnormalized.

~

58 .

CENTRAL PROCESSOR) ' §2.6
FMP Floating Multiply
160 M| a4 1] x | Y]

0o 67 89 121314 1718 35

Floating multiply AC by the contents of location E. If the double length
fraction in the product is zero, clear the destination specified by M, clearing
both accumulators in long mode. Otherwise normalize the double length
product bringing Os into bit positions vacated at the right, test for exponent
overflow or underflow as described above, and place the high order word of
the result in the specified destination. .
In long mode if the exponent of the product is > 154 (127 +27) or
< —101 (=128 + 27) or the low order half of the fraction is zero, clear AC
A+1. Otherwise place a low order word for a double length result in A+1
by putting a O in bit 0, an exponent in positive form 27 less than the

. exponent of the product in bits 1-8, and the low order part of the fraction

in bits 9-35.)

FMP Floating Multiply 160 10.29 (10.51) us
FMPL Floating Multiply Long 161 11.14 (11.36) us
FMPM ~ Floating Multiply to Memory 162 11.26 (11.48) ps
FMPB Floating Multiply to Both 163 11.26 (11.48) us

Timing. The times given above are average for normalized operands.
Refer to the description of MUL [§2.5] for the timing effects of the multi-
plication algorithm. Minimum times with a zero multiplier are

FMP 8.47 (8.69) us
FMPL 9.32(9.54) us
FMPM 9.44 (9.66) us
FMPB 9.44 (9.66) us

These must be increased by .13 us for each transition. The programmer can
minimize the time by using as the multiplier the operand with fewer transi-
tions.

FDV Floating Divide

170 M| a i x | ' Y -

(1] 67 89 121314 1718 35

If the magnitude of the fraction in AC is greater than or equal to twice that
of the fraction in location E, set Overflow, Floating Overflow and No Divide,
and go immediately to the next instruction without affecting the original AC
or memory operand in any way.

If division can be performed, flodting divide the AC operand by the
contents of location E. In long mode the AC operand (the dividend) is the
double length number in accumulators 4 and A+1; in other modes it is the
single word in AC. Calculate a quotient fraction of 27 bits. If the fraction

59

§2.7 : ARITHMETIC TESTING

is zero, clear the destination specified by M, clearing both accumulators in
long mode if the double length dividend was zero. A quotient with a non-
zero fraction will already be normalized if the original operands were nor-
malized; if it is not, normalize it bringing Os into bit positions vacated at the
right. Test for exponent overflow or underflow as described above, and
place the single length quotient part of the result in the specified destination.

In long mode calculate the exponent for the fractional remainder from the
division according to the relative magnitudes of the fractions in dividend and
divisor: if the dividend was greater than or equal to the divisor, the exponent
of the remainder is 26 less than that of the dividend, otherwise it is 27 less.
* If the remainder exponent is > 127 or < —128 or the fraction is zero, clear
AC A+1. Otherwise place the floating point.remainder (exponent and frac-
tion) with the sign of the dividend in AC A+1.

FDV _Floating Divide 170 - 14.1(14.3) ps
FDVL. Floating Divide Long 171 15.6 (15.8) us
FDVM Floating Divide to Memory 172 15.1(15.3) ps
FDVB Floating Divide to Both 173 15.1(15.3) us

2.7 ARITHMETIC TESTING

These instructions may jump or skip depending on the result of an arithmetic
test and may first perform an arithmetic operation on the test word. Two of
the instructions have no modes. :

AOBJP Add One to Both Halves of AC and Jump if Positive 1.68 (1.79).us
| 252 | 4 1] x | Y |
) N 89 121314 1718 35

Add 10000014 to AC and place the result back in AC. If the result is greater
than or equal to zero (ie if bit 0 is 0, and hence a negative count in the left
half has reached zero or a positive count has not yet reached 2!7), take the
next instruction from location E and continue sequential operation from
there.

AOBJN Add One to Both Halves of AC and Jump if Negative 1.68 (1.79) us

[253 | 4] x] Y |

0 .89 121314 1718 . 35

Add 10000014 to AC and place the result back in AC. If the result is less
than zero (ie if bit O is 1, and hence a negative count in the left half has not
yet reached zero or a positive count has reached 2!7), take the next instruc-
tion from location £ and continue sequential operation from there.

241

In long mode a nonzero un-
normalized dividend whose
entire high order fraction is
zero produces a zero quo-
tient. In this case the second
AC receives rubbish.

If unnormalized operands are
used, all times must be in-
creased by .25N. If the divi-
sion is not performed, only
4-4.5 s are required.

242

60

CENTRAL PROCESSOR §2.7

The mcrementmg of both halves of AC sunultaneously is effected by adding
10000015. A count of —2 in AC left is therefore increased to zero if 218 — 1
is incremented in AC right.

Theése two instructions allow the program to keep a control count in the
left half of an index register and require only one data transfer to initialize.
Problem: Add 3 to each location in a table of N entries starting at TAB.
Only four instructions are required.

MOVSI XR,-N ;Put —N in XR left (clear XR right)
MOVEI AC,3 . ;Put 3in AC

ADDM AC,TAB(XR) ;Add 3 to entry

AOBJN XR,.—1 ;Update XR and go back unless all

;entries accounted for

The eight remaining instructions jump or skip if the operand or operands
satisfy a test condition specified by the mode.

Mode Suffix

Never '

Less L
Equal E
Less or Equat i LE
Always A
Greater or Equal GE
Not Equal N
Greater -G

Instructions with one operand compare AC or the contents of location E
with zero, those with two compare AC with E or the contents of location E.
The processor always makes the comparison even though the result is used in
only six of the modes. If the mnemonic has no suffix there is never any
program control function, and the instruction may be a no-op; an A suffix
produces an unconditional jump or skip — the action is always taken regard-
less of how the two quantities compare.

CAl Compare AC Immediate and Skip if Condition 1.68 (1.79) us
Satisfied

L 30 [m] a [x] Y]

0 56 . 89 121314 1718 35

Compare AC with E (ie with the word 0, E) and skip the next instruction in
sequence if the condition specified by M is satisfied.

61

§2.7 ;) . ARITHMETIC TESTING

CAl Compare AC Immediate but Do Not Skip 300

- CAIL Compare AC Immediate and Skip if AC Less than E 301

CAIE “Compare AC Immediate and Skip if Equal 302

CAILE Compare AC Immediate and Skip if AC Less than 303
) or Equal to £

CAIA Compare AC Immediate but Always Skip 304

CAIGE Compare AC Immediate and Skip if AC Greater than 305
or Equal to £

CAIN Compare AC Immediate and Skip if Not Equal 306

CAIG Compare AC Immediate and Skip if AC Greater than E 307

CAM Compare AC with Memory and Skip if Condition 2.53 (2.75) us

Satisfied i

[3t [m] 4 Jif x | Y l

0 56 89 121314 1718 1 35

Compare AC with the contents of location E and skip the next instruction in
sequence if the condition specified by M is satisfied. The pair of numbers
compared may be either both fixed or both normalized floating point.

CAM Compare AC with Memory but Do Not Skip 310

CAML Compare AC with Memory and Skip if AC Less 311

CAME Compare AC with Memory and Skip if Equal 312

" CAMLE Compare AC with Memory and Skip if AC Less 313
or Equal

CAMA Compare AC with Memory but Always Skip 314

CAMGE Compare AC with Memory and Skip if AC Greater 315
or Equal

CAMN Compare AC with Memory and Skip if Not Equal 316

CAMG Compare AC with Memory and Skip if AC Greater - 317

JUMP Jump if AC Condition Satisfied 1.68 (1.79) us

32 [M| a4 Jif x] Y |

0 56 89 121314 1718 . 35

Compare AC (fixed or floating) with zero, and if the condition specified by
M is satisfied, take the next instruction from location E and continue
sequential operation from there.

JUMP Do Not Jump 320

JUMPL Jump if AC Less than Zero . 321
JUMPE Jump if AC Equal to Zera 322

2-43

CAl is a no-op.

When E addresses a fast mem-
ory location, this instruction
takes .34 us less than the time
given.

CAM is a no-op that refer-
ences memory.

JUMP is a no-op (instruction
code 320 has this mnemonic
for symmetry).

244

When F addresses a fast mem-
ory location, this instruction
takes .34 us less than the time
given.

If A is zero, SKIP is a no-op;
otherwise it is equivalent to
MOVE. (Instruction code 330
has mnemonic SKIP for sym-
metry.)

SKIPA is a convenient way to
load an accumulator and skip
over an instruction upon en-
tering a loop.

62

CENTRAL PROCESSOR §2.7
JUMPLE Jump if AC Less than or Equal to Zero 323
JUMPA Jump Always 324
JUMPGE Jump if AC Greater than or Equal to Zero 325
JUMPN Jump if AC Not Equal to Zero - 326
JUMPG Jump if AC Greater than Zero \ 327
SKiP Skip if Memory Condition Satisfied 2.39 (2.61) us
| 33 [m] a 1] x] Y |
o 56 89 121314 1718 35

Compare the contents (fixed or floating) of location E with zero, and skip
the next instruction in sequence if the condition specified by M is satlsfled
If A is nonzero also place the contents of location E in AC

SKip Do Not Skip _ 330
SKIPL Skip if Memory Less than Zero 331
SKIPE Skip if Memory Equal to Zero 332
SKIPLE Skip if Memory Less than or Equal to Zero 333
SKIPA Skip Always / 334
SKIPGE Skip if Memory Greater than or Equal to Zero 335
SKIPN Skip if Memory Not Equal to Zero 336
SKIPG Skip if Memory Greater than Zero 337
AQJ Add One to AC and Jump if Condition Satisfied 1.68 (1.79) us

34 | M| 1l x | Y]
0 56 89 1213 14 1718 35

Increment AC by one and place the result back in AC. Compare the result
with zero, and if the condition specified by Mis satisfied, take the next in-
struction from location E and continue sequential operation from there. If
AC originally contained 2% — 1, set the Overflow and Carry 1 flags; if —1,
set Carry O and Carty 1.

)

AOJ Add One to AC but Do Not Jump ‘ 340

AQJL Add One to AC and Jump if Less than Zero 341

AOQJE Add One to AC and Jump if Equal to Zero 342

AGJLE Add One to AC and Jump if Less than or Equal to Zero 343

AGJA " Add One to AC and Jump Always 344

AO0JGE Add One to AC and Jump if Greater than or Equal 345
to Zero

AOJN Add One to AC and Jump if Not Equal to Zero 346

A0JG Add One to AC and Jump if Greater than Zero 347

~

63

§2.7 ARITHMETIC TESTING

A0S Add One to Memory and Skip if Condition Satisfied 2.94 (3.05) ps
[35 [m] 4 [iff x | Y |
0 56 89 121314 1718 R 35

Increment the contents of location E by one and place the result back in E.
Compare the result with zero, and skip the next instruction in sequence if
the condition specified by M is satisfied. If location E originally contained
235 —1, set the Overflow and Carry 1 flags; if —1, set Carry O and Carry 1.
If A is nonzero also place the result in AC.

A0S Add One to Memory but Do Not Skip 350

AOSL Add One to Memory and Skip if Less than Zero 351

AOSE Add One to Memory and Skip if Equal to Zero 352

AOSLE Add One to Memory and Skip if Less than or Equal 353
to Zero - s .

AOSA Add One to Memory and Skip Always ' 354

AOSGE ,Add One to Memory and Skip if Greater than or 355
Equal to Zero ~

AOSN Add One to Memory and Skip if Not Equal to Zero 356

A0SG Add One to Memory and Skip if Greater than Zero 357

s0J Subtract One from AC and Jump if Condition 1.68 (1.79) us

. Satisfied -

36 | M| 4 1] x | ' Y]
0 56 89 121314 1718 35

Decrement AC by one and place the result back in AC. Compare the result
with zero, and if the condition specified by M is satisfied, take the next in-
struction from location E and continue sequential operation from there. If
AC originally contained —235, set the Overflow and Carry O flags; if any other
nonzero number, set Carry 0 and Carry 1.

S0J . Subtract One from AC but Do Not Jump 360

SOJL Subtract One from AC and Jump if Less than Zero 361

SOJE Subtract One from AC and Jump if Equal to Zero 362

SOJLE Subtract One from AC and Jump if Less than or 363
Equal to Zero

SOJA Subtract One from AC and Jump Always 364

SOJGE - Subtract One from AC and Jump if Greater than or 365
: Equal to Zero

SOJN Subtract One from AC and Jump if Not Equal to Zero 366

S0JG Subtract One from AC and Jump if Greater than Zero . 367

245

Keeping the count in fast
memory saves .54 (43) us;
keeping it in a different mem-
ory from the instruction saves
20 (.09) ps.

2-46

Keeping the count .in fast
memory saves .54 (.43) us;
keeping it in a different mem-
ory from the instruction saves
.20 (.09) ss.

This procedure is invalid if
the programmer is making use
of the drum split feature
(which is not used by any
DEC equipment).

64

CENTRAL PROCESSOR §2.7
S0S Subtract One from Memory and Skip if Condition 2.94 (3.05) us
Satisfied :
L 37 [m] 4 i x [Y B
] 56 89 121314 17.18 35

Decrement the contents of location E by one and place the result back in E.
Compare the result with zero, and skip the next instruction in sequence if
the condition specified by M is satisfied. If location E originally-contained
—235, set the Overflow and Carry O flags; if any other nonzero number, set
Carry 0 and Carry 1. If A is nonzero also place the result in AC. '

Sos Subtract One from Memory but Do Not Skip 370

SOSL Subtract One from Memory and Skip if Less than Zero 371

SOSE Subtract One from Memory and Skip if Equal to Zero = 372

SOSLE Subtract Orie from Memory and Skip if Less than or 373
Equal to Zero

SOSA Subtract One from Memory and Skip Always 374

SOSGE Subtract One from Memory and Skip if Greater 375
than or Equal to Zero)

SOSN Subtract One from Memory and Skip if Not Equal 376
to Zero .

SOSG Subtract One from Memory and Skip if Greater 377
than Zero

Some of these instructions are useful for determining the relative values of

- fixed and floating point numbers; others are convenient for controlling

iterative processes by counting. AOSE is especially useful in an interlock
procedure in a multiprocessor system. Suppose memory contains a routine
that must be available to two processors but cannot be used by both at once.
When one processor finishes the routine it sets location LOCK to —1. Either
Processor can then test the interlock and make it busy with no possibility of
letting the other one in, as AOSE cannot be interrupted once it starts to
modify the addressed location.)

AOSE LOCK ;Skip to interlocked code only if
JRST —1 ;LOCK is zero after addition
;Interlocked code starts here

SETOM LOCK ;Unlock

Since it takes several days to count to 23, it is alright to keep testing the
lock.

)
§2.8) LOGICAL TESTING AND MODIFICATION

2.8 LOGICAL TESTING AND MODIFICATION

These eight instructions use a mask to modify and/or tést selected bits in
AC. The bits are those that correspond to 1s in the mask and they are
referred to as the “masked bits”. The programmer choc:es the mask, the
way in which the masked bits are to be modified, and the condition the
masked bits must satisfy to produce a skip. .

The basic mnemonics are three letters beginning with T. The second letter
selects the mask and the manner in which it is used.

Mask Letter Effect

Right R AC right is masked by E (AC is masked
by the word 0, F) .

Left L AC left is masked by £ (AC is masked by
the word E,0)

Direct D AC is masked by the contents of loca-

_ tion E
Swapped S AC is masked by the contents of loca-

tion E with left and right halves inter-
changed

The third letter determines the way in which those bits selected by the mask
are modified.

Modification Letter Effect on AC

No - N None

Zeros Z Places Os in all masked bit positions
Complement C Complements all masked bits

Ones (0] Places 1s in all masked bit positions

An additional letter may be appended to indicate the mode, which spec-
ifies the condition the masked bits must satisfy to produce a skip. ’

i

Mode - Suffix Effect
Never Never skip)
Equal E Skip if -1l masked bits equal 0
Always A Always skip
Not Equal ' N . Skip if not all masked bits equal O

(at least-one bit is 1)

If the mnemonic has no suffix there is never any skip, and the instruction is
a no-op if there is also no modification; an A suffix produces an uncondi-
tional skip — the skip always occurs regardless of the state of the masked
bits. Note that the skip condition must be satisfied by the state of the
masked bits prior to any modification called for by the instruction.

\

2-47

If a direct or swapped mask is
taken from a fast memory
location, a test instruction .
takes .34 us less than the
time listed.

These mode names are con-
sistent with those for arith-
metic testing and derive from
the test method, which ands
AC with the mask and tests
whether the result is equal to
zero or is not equal to zero.
The programmer may find it
convenient to think of the
modes as Every and Not
Every: every masked bit is 0
or not every masked bit is 0.

2-48

TRN is a no-op.

66

CENTRAL PROCESSOR §2.8
TRN Test Right, No Modification, and Skip if Condition 1.85 (1.96) us
Satisfied
|60 [ml] 4 Jf x [Y |
o 56 789 121314 1718 35

If the bits in AC right corresponding to Is in E satisfy the condition specified
by M, skip the next instruction in sequence. AC is unaffected.

TRN Test Right, No Modification, but Do Not Skip ‘ 600

TRNE Test Right, No Modification, and Skip if All 602
Masked Bits Equal 0

TRNA Test Right, No Modification, but Always Skip 604

TRNN Test Right, No Modification, and Sk1p if Not 606

All Masked Bits Equal 0

TRZ ' Test Right, Zeros, and Skip if Condition Satisfied 1.85 (1.96) us
62 [P 4 [x| v N
0 56 789 121314 1718 35

If the bits in AC right corresponding to 1s in E satisfy the condition specified
by M, skip the next instruction in sequence. Change the masked AC bits to
Os; the rest of AC is unaffected.

TRZ Test Right, Zeros, but Do Not Skip 620

TRZE Test Right, Zeros, and Skip if All Masked Bits 622
Equaled O

TRZA Test Right, Zeros, but Always Skip) 624

TRZN Test Right, Zeros, and Skip if Not All Masked 626

Bits Equaled O

TRC Test Right, Complement, and Skip if Condition 1.85(1.96) us .
Satisfied
64 [mlo] 4 [x] Y]

(1] 56 789 121314 1718 35

If the bits in AC right corresponding to 1s in E satisfy the condition specified
by M, skip the next instruction in sequence. Complement the masked AC
bits; the rest of AC is unaffected.

TRC Test Right, Complement, but Do Not Skip 640

TRCE Test Right, Complement, and Sk1p if All Masked 642
Bits-Equaled 0

TRCA Test Right, Complement, but Always Skip 644

TRCN Test Right, Complement, and Skip if Not All 646

Masked Bits Equaled O

67

§2.8 - LOGICAL TESTING AND MODIFICATION

TRO Test Right, Ones, and Skip if Condition Satisfied 1.85 (1.96) us
[66 [mf[4 [1f x | Y |
0 56 789 121314 1718 35

If the bits in AC right corresponding to 1s in E satisfy the condition specified
by M, skip the next instruction in sequence. Change the masked AC bits to

1s; the rest of AC is unaffected.
i

TRO Test Right, Ones, but Do Not Skip 660

- TROE Test Right, Ones, and Skip if All Masked Bits 662
Equaled O '

TROA Test Right, Ones, but Always Skip 664

TRON Test Right, Ones, and Skip if Not All Masked . 666

Bits Equaled O

TLN Test Left, No Modification, and Skip if Condition 1.85 (1.96) us
Satisfied :

60 [mfif 4 [x | Y |

1] 56 789 121314 1718 35

If the bits in AC left corresponding to 1s in E satisfy the condition specified
by M, skip the next instruction in sequence. AC is unaffected.

TLN Test Left, No Modification, but Do Not Skip . 601
TLNE Test Left, No Modification, and Skip if All 603
Masked Bits Equal O
TLNA Test Left, No Modification, but Always Skip 605
TLNN Test Left, No Modification, and Skip if Not 607
All Masked Bits Equal 0
TLZ Test Left, Zeros, and Skip if Condition Satisfied 1.85 (1.96) us
62 (M 4 1] x | Y |
0 56 789 121314 1718 35

If the bits in AC left corresponding to 1s in E satisfy the condition specified
by M, skip the next instruction in sequence. Change the masked AC bits to
Os; the rest of AC is unaffected.

TLZ Test Left, Zeros, but Do Not Skip 621

TLZE Test Left, Zeros, and Skip if All Masked Bits ’ 623
Equaled 0 ‘

TLZA Test Left, Zeros, but Always Skip 625

TLZN Test Left, Zeros, and Skip if Not All Masked 627

Bits Equaled O

TLN is a no-op.

249

2-50

TDN is a no-op that refer-
ences memory.

68

CENTRAL PROCESSOR ‘ §2.8
TLC Test Left, Complement, and Skip if Condition . 1.85 (1.96) us
Satisfied
[64 [mM[] 4 [x] Y]
0 56 789 121314 1718 35

If the bits in AC left corresponding to 1s in E satisfy the condition specified
by M, skip the next instruction in sequence. Complement the masked AC
bits; the rest of AC is unaffected.

TLC Test Left, Complement, but Do Not Skip - 641

TLCE Test Left, Complement, and Skip if All Masked 643
Bits Equaled.O

TLCA Test Left, Complement, but Always Skip 645

TLCN Test Left, Complement, and Skip if Not All ’ 647

Masked Bits Equaled O

TLO Test Left, Ones, and Skip if Condition Satisfied 1.85 (1.96) us
[6o [ml[a4 [x | Y]

0 56 789 121314 1718 35

If the bits in AC left corresponding to 1s in E satisfy the condition specified
by M, skip the next instruction in sequence. Change the masked AC bits to
Is; the rest of AC is unaffected.

TLO Test Left, Ones, but Do Not Skip 661

TLOE Test Left, Ones, and Skip if All Masked Bits 663
) Equaled O : B

TLOA Test Left, Ones, but Always Skip ' 665

TLON Test Left, Ones, and Skip if Not All Masked 667

Bits Equaled O

TDN .~ Test Direct, No Modification, and Skip if Condition 2.70 (2.92) ps
Satisfied

L 61 [ml[a4 [if x] Y |

o 56 789 121314 1718 3s

If the bits in AC corresponding to 1s in the contents of location £ satisfy the
condition specified by M, skip the next instruction in sequence. AC is un-
affected.

TDN Test Direct, No Modification, but Do Not Skip 610

TDNE Test Direct, No Modification, and Skip it All 612
"~ Masked Bits Equal 0

TDNA Test Direct, No Modification, but Always Skip 614

TONN Test Direct, No Modification, and Skip if Not 616
All Masked Bits Equal 0 :

69

§2.8 ' LOGICAL TESTING. AND MODIFICATION

02 Test Direct, Zeros, and Skip if Condition Satisfied 2.70 (2.92) us
[63 [ml] 4 [1f x | Y]
0 56 789 121314 1718 35

If the bits in AC corresponding to 1s in the contents of location E satisfy the

condition specified by M, skip the next instruction in sequence. Change the

masked AC bits to Os; the rest of AC is unaffected. .
TDZ Test Direct, Zeros, but Do Not Skip 630

-TDZE Test Direct, Zeros, and Skip if All Masked Bits 632
Equaled O

TDZA Test Direct, Zeros, but Always Skip 634

TDZN " Test Direct, Zeros, and Skip if Not All Masked 636
Bits Equaled O . .

TDC Test Direct, Complement, and Skip if Condition 2.70 (2.92) us

: Satisfied - '
65 [mjo| 4 [1] x | Y |
o 56 189 121314 1718 35

If the bits in AC corresponding to 1s in the contents of location E satisfy the
condition specified by M, skip the next instruction in sequence. Complement
the masked AC bits; the rest of AC is unaffected.

_TDC Test Direct, Complement, but Do Not Skip . - 650

TDCE Test Direct, Complement, and Skip if All Masked 652
Bits Equaled O

TDCA Test Direct, Complement, but Always Skip 654

TDCN Test Direct, Complement, and Skip if Not All 656
Mas!(ed Bits Equaled O

TDO Test Direct, Ones, and Skip if Condition Satisfied 2.70 (2.92) us

L_67 [mo] 4 | x | Y |

° 56 789 121314 1718 35

If the bits in AC corresponding to 1s in the contents of location E satisfy the
condition specified by M, skip the next instruction in sequence. Change the
_masked AC bits to 1s; the rest of AC is unaffected..

TDO Test Direct, Ones, but Do Not Skip 670

TDOE Test Direct, Ones, and Skip if All Masked Bits 672
: Equaled O

TDOA Test Direct, Ones, but Always Skip ' 674

TOON Test Direct, Ones, and Skip if Not All Masked 676

Bits Equaled O

2-51

2-52

TSN is a no-op that refer-
ences memory.

70

CENTRAL PROCESSOR §2.8
TSN Test Swapped, No Modification, and Skip if 2.70 (2.92) us
Condition Satisfied .
[er w4 [x| v]
0 56 789 121314 1718 3s

If the bits in AC corresponding to 1s in the contents of location E with its
left and right halves swapped satisfy the condition specified by M, skip the
next instruction in sequence. AC is unaffected.

TSN Test Swapped, No Modification, but Do Not Skip 611

TSNE " Test Swapped, No Modification, and Skip if All 613
Masked Bits Equal O

TSNA Test Swapped, No Modification, but Always Skip 615

TSNN Test Swapped, No Modification, and Skip if Not 617
All Masked Bits Equal 0

182 Test Swapped, Zeros, and Skip if Condition Satisfied 2.70 (2.92) us

| 63 M| 4 Jif x] Y |

o 56 789 121314 1718 35

If the bits in AC corresponding to 1s in the contents of location E with its
left and right halves swapped satisfy the condition specified by M, skip the
next instruction in sequence. Change the masked AC bits to Os; the rest of
AC is unaffected. ‘

TSZ Test Swapped, Zeros, but Do Not Skip 631

'TSZE Test Swapped, Zeros, and Skip if All Masked Bits 633
Equaled O

TSZA Test Swapped, Zeros, but Always Skip 635"

TSZN Test Swapped, Zeros, and Skip if Not All Masked 637

Bits Equaled O

TSC Test Swapped, Complement, and Skip if Condition 2.70(2.92) us
Satisfied ’
65 |mDp[a4 i x | Y |

0 56 789 121314 1718 35

If the bits in AC corresponding to 1s in the contents of location E with its
left and right halves swapped satisfy the condition specified by M, skip the
next instruction in sequence. Complement the masked AC bits; the rest of
AC is unaffected.

TSC ‘ Test Swapped, Complement, but Do Not. Skip 651

TSCE Test Swapped, Complement, and Skip if All 653
Masked Bits Equaled 0

71

§2.8 LOGICAL TESTING AND MODIFICATION

TSCA Test Swapped, Complement, but Always Skip 655

TSCN - Test Swapped, Complement, and Skip if Not 657
All Masked Bits Equaled O

TSO Test Swapped, Ones, and Skip if Condition Satisfied 2.70(2.92) us

[67 [m]] 4 [ff x | Y Il

0 .56 789 121314 1718 } 35

If the bits in AC corresponding to 1s in the contents of location E with its
left and right halves swapped satisfy the condition specified by M, skip the
next instruction in sequence. Change the masked AC bits to Is; the rest of
. AC is unaffected.)

TSO Test Swapped, Ones, but Do Not Skip 671

TSOE Test Swapped, Ones, and Skip if All Masked Bits 673
Equaled O '

TSOA Test Swapped, Ones, but Always Skip 675

TSON Test Swapped, Ones, and Skip if Not All Masked 6717
Bits Equaled O))

With these instructions any bit throughout all of memory can be used as a
program flag, although an ordinary memory location containing flags must
be moved to an accumulator for testing or modification. The usual pro-
cedure, since locations 1-17 are addressable as index registers, is to use AC 0
as a register of flags (often addressed symbolically as F).

Unless one frequently tests flags in both halves of F simultaneously, it is
generally most convenient to select bits by 1s right in the address part of the
instruction word. A given bit selected by a half word mask M is then set by
one of these:

TRO F,M TLO F,M .
and tested and cleared by one of these:
TRZE F,M TRZN F,M TLZE F,M TLZN F,M

Suppose we wish to skip if both bits 34 and 35 are 1 in location L. The
following suffices.

SETCM F,L
TRNE F,3

We can refer to a flag in a given bit position within a word as flag X, where X '

is a binary number containing a single 1 in the same bit position as the flag.
This sequence determines whether flags X and Y in the right half of accumu-
lator F are both on:

2-53

2-54

. As no-ops, code 247 takes
1.50 (1.61) us, 257 takes
1.36 (1.47) us.

Note that nothing is stored in
bits 13-17, so when the PC
word is addressed indirectly it
can produce neither indexing

nor further indirect address-

ing.

72

CENTRAL PROCESSOI} - §2.9
TRC FX+Y - ;Complement flags X and Y

TRCE F,X+Y ;Test both and restore original states
- ;Do this if not both on
;Skip to here if both on

2.9 PROGRAM CONTROL

The program control class of instructions includes the unimplemented user
operations [discussed in the next section] and the arithmetic and logical test

* instructions. Some instructions in this class are no-ops; as are a few of the

instructions for performing logical operations. The most commonly used
no-op is JFCL, which is discussed below. No-ops among the instructions
previously discussed are SETA, SETAI, SETMM, CAI, CAM, JUMP, TRN,
TLN, TDN, TSN. Of these, SETA, SETAI, CAI, JUMP, TRN and TLN do
not use the calculated effective address to reference memory. Hence in these
instructions one can store any information in bits 18-35 without fear of

* attempting to address a location outside a user block or in a memory that

does not exist. The unassigned instruction codes 247 and 257 are used for
instructions installed specially for a particular system. They execute as
no-ops when run on a computer that contains no special hardware for them,
but for program compatibility it is advised that they not be used regularly as
no-ops. ‘

The present section treats all program control instructions other than
those mentioned above and in-out instructions that test input conditions
[§2.12]. All but one of these are jumps, although the exception causes the
processor to execute an instruction at an arbitrary location and may there-
fore be regarded as a jump with an immediate and automatic return. Also,
all but two of the jumps are unconditional; one exception tests various flags,
the other tests an accumulator. -

Several of the jump instructions save the current contents of the program_
counter PC in the right half of an accumulator or memory location and save
the states of various flags in the left half. The left bit positions that receive
information are listed below; all other left bit positions are cleared. An X in
a mnemonic indicates any letter (or none) that may appear in the given
position to specify the mode, eg ADDX comprises ADD, ADDI, ADDM,
ADDB.

Bit o Meaning of a 1 in the Bit
0 ‘Overflow — any of the following has occurred:

A single instruction has set one of the carry flags (bits 1 and 2)
without setting' the other.)

An ASH or ASHC has left shifted a 1 out of bit 1 in a positive
number or a 0 out in a negative number.
An MULX has multiplied ~23 by itself (product 279).

An IMULX has multiplied two numbers with product > 235 or
< -23%

§29

73

PROGRAM CONTROL

Floating Overflow has been set (bit 3).
No Divide has been set (bit 12).

Carry 0 — if set without Carry 1 (bit 2) being set, causes Overflow to
be set and indicates that one of the following has occurred:

An ADDX has added two negative numbers with sum < -23%,

An SUBX has subtracted a positive number from a negative num-
ber with difference < —23,

An SOJX or SOSX has decremented —23.

But if set with Carry 1, indicates that one of these nonoverflow
events has occurred:

In an ADDX both summands were negative, or their signs differed
and their magnitudes were equal or the positive one was the
greater in magnitude.

In an SUBX the signs of the operands were the same and AC was
the greater or the two were equal, or the signs of the operands
differed and AC was negative.

An AOJX or AOSX has incremented —1.

An SOJX or SOSX has decremented a nonzero number other than
_235.

An MOVNX has negated zero.
Carry 1 — if set without Carry O (bit 1) being set, causes Overflow to

. be set and indicates that one of the following has occurred:

An ADDX has added two positivé numbers with sum > 235,

An SUBX has subtracted a negative number from a positive num-
ber with difference = 235 :

An AOJX or AOSX has incremented 2% — 1.
An MOVNYX or MOVMX has negated —23.

But if set with Carry 0, indicates that one of the nonoverflow events
listed under Carry 0 has occurred.

Floating Overflow — any of the following has set Overflow:

In a floating point instruction other than DFN, the exponent of
the result was > 127.

Floating Underflow (bit 11) has been set.
No Divide (bit 12) has been set in an FDVX or FDVRX.

Byte Interrupt — the processor is in a priority interrupt that inter-

rupted a byte instruction after the processing of the pointer but

before the processing of the byte. Hence if an ILDB or IDPB was
interrupted, the pointer now points not to the last byte, but rather
to the byte that should be handled upon the return to the inter-
rupted program [§2.13].

User — the processor is in user mode [§2.15].

2.55

Remember [§2.5], overflow
is determined directly from
the carries, -not from the
flags. The carry flags give
meaningful information only
if no more than one instruc-
tion that can set them occurs
between clearing and reading
them.

2-56

If normalized operands are
used, only a zero divisor can
cause floating division to fail.

74

CENTRAL PROCESSOR §2.9

A6 User In-out — even if the processor is in user mode, no instructions

are illegal (but protection and relocation still apply) [§2.15].

11 ' Floating Underflow — in a floating point instruction other than
DFN, the exponent of the result was < —128 and Overflow and
Floating Overflow have been set.

12° No Divide — any of the following has set Overflow:

In a DIVX the dividend was greater than or equal to the divisor.
In an IDIVX the divisor was zero.

In an FDVX or FDVRX the divisor was zero, or the dividend
fraction was greater than or equal to twice the divisor fraction in
magnitude; in either case Floating Overflow has been set.

FLOATING BYTE FLOATING
OVERFLOW OVERFLOW INTERRUPT UNDERFLOW
" Tearpy [carry| * user | USER 1 no o | o 0 o | o
0 1 IN-OUT DIVIDE
0 1 2 3

The total time required is

- that listed plus the time for
the instruction executed. If £
addresses a fast memory loca-
tion, the instruction executed

" takes .34 us less than the time
listed for it.

The A portion of this instruc-
tion is ignored.

N is the number of leading Os.

5 6 - 7 8 9 10 1" 12 13 14 15 16 17

FLAG FORMAT, LEFT HALF OF PC WORD

XCT Execute 1.36 (1.47) us
| 256 | a4 i x] Y

0 89 121314 1718 35

Execute the contents of location £ as an instruction. Any instruction may
be executed, including another XCT. If an XCT executes a skip instruction,
the skip is relative to the location of the XCT (the first XCT if there are
several in-a chain). If an XCT executes a jump, program flow is altered as
specified by the jump (no matter how many XCTs precede a jump instruc-
tion, when PC is saved it contains an address one greater than the location of
the first XCT in the chain).

JFFO Jump if Find First One i 2.19 (2.30) + .20 (N mod 18) us
[243 | a4 il x T~ Y]
0 89 1213 14 1718 35

If AC contains zero, clear AC A+1 and go on to the next instruction in
sequence. '

If AC is not zero, count the number of leading Os in it (Os to the left of
the leftmost 1), and place the count in AC A+1. Take the next instruction

~

75
'§2.9

PROGRAM CONTROL

from location E and continue sequential operation from there. -
In either case AC is unaffected, the original contents of AC A+1 are lost.

JFCL Jump on Flag and Clear 1.36 (1.47) us
[255 | F 1] x | Y |
0 89 121314 1718 35

If any flag specified by F is set, clear it and take the next instruction from
location E, continuing sequential operation from there. Bits 9-12 are pro-
grammed as follows. '

Bit Flag Selected by a 1
9 Overflow

10 Carry O

11 Carry 1

12 Floating Overflow

To select one or a combination of these flags (which are among those des-
cribed above) the programmer can specify the equivalent of an AC address
. that places 1s in the appropriate bits, but MAacro recognizes mnemonics for
some of the 13-bit instruction codes (bits 0 —12).

JFCL JECL O, No-op 25500
Jov JFCL 10, Jump on Overflow 25540
JCRYO JFCL 4, Jump on Carry 0 25520
JCRY1 JFCL 2, "~ Jump on Carry 1 25510
JCRY JFCL o, Jump on Carry O or | 25530
JFOV JFCL 1, Jump on Floating Overflow 25504
JSR Jump to Subroutine 2.68 (2.79) us

264 [4 1] x | Y]
o 89 121314 1718 35

Place the current contents of the flags (as described above) in the left half of
location E and the contents of PC in the right half (at this time PC contains
an address one greater than the location of the JSR instruction). Take the
next instruction from location E + 1 and continue sequential operation from
there. The flags are unaffected except Byte Interrupt, which is cleared.

While the processor is in user mode, if this instruction is executed as an in-
terrupt instruction or in unrelocated 41 or 61, bit 5 of the PC word stored is
1 and the ‘processor leaves user mode.

A

2-57

Note that when AC is nega-
tive, the second accumulator
is cleared, just as it would be

. if AC were zero.

This instruction can be used
simply to clear the selected
flags by having the jump ad-
dress point to the next con-
secutive location, as in

JECL 17,.+1]

which clears all four flags
without disrupting the nor-
mal program sequence. A
JECL that selects no flag is
the fastest no-op as it neither
fetches nor stores an gperand,
and bits 1835 of the instruc-

.tion word can be used to

store information.

Interleaving memories saves
47 (.36) us.

The A portion of this instruc-
tion is ignored.

2-58

This is identical to UUO trap-
ping [§2.10].

MA actually displays the
address of the location that
would have been executed
next had the JRST been re-
placed by a no-op. So except
for a JRST in a priority
interrupt, MA points to the
location one beyond that
containing the instruction
that caused the halt. This
instruction is ordinarily the
JRST or perhaps an XCT, but
could even be a UUO.

programmed as follows.

76

CENTRAL PROCESSOR : §2.9
JSP Jump and Save PC 1.36 (1.47) ps
265 | a4 Ji] x | Y
0 89

121314 1718 35

Place the current contents of the flags (as described above) in AC left and
the contents of PC in AC right (at this iiime PC contains an address one
greater than the location of the JSP instruction). Take the next instruction
from location £ and continue sequential operation from there. - The flags
are unaffected except Byte Interrupt, which is cleared.

While the processor is in user mode, if this instruction is executed as an in-
terrupt instruction or in unrelocated 41 or 61, bit 5 of the PC word stored is
1 and the processor leaves user mode.

JRST Jump and Restore 1.36 (1.47) us
[254 [F] x7] Y |
1] 89 121314 1718 35

Perform the functions specified by F, then take the next instruction from
location E and continue sequential operation from there. Bits 9-12 are

’

Bit Function Produced by a 1

9 Restore the channel on which the highest priority interrupt is cur-
rently being held [§2.13].

Unless the User In-out flag is set, this function cannot be executed
in a user program. Instead of restoring the channel, it stores its own
instruction code, F and effective address E in bits 0-8, 9-12 and
18-35 respectively of unrelocated location 40 (clearing bits 13-17),
and then executes the instruction contained in location 41, which is
under control of the monitor [§2.15].

10 Halt the processor. When it stops, the MA lights on the console dis-
play an address one greater than that of the location containing the
instruction that caused-the halt, and PC displays the jump address
(the location from which the next instruction will be taken if the
operator causes the processor to resume operation without changing
PC). v

Unless the User In-out flag is set, this function cannot be executed -
in a user program. Instead of halting the processor, it stores its
own instruction code, F and effective address E in Bits 0-8, 9-12
and 18-35 respectively of unrelocated location 40 (clearing bits
13-17), and then executes the instruction contained in location 41,
which is under control of the monitor [§2.15].

11, Restore the flags listed above from the left half of the word in the
last location referenced in the effective address calculation. Hence
to restore flags requires that the JRST instruction use indexing or

77

§2.9 PROGRAM CONTROL
indirect addressing.

Restoration of all but the user flags is directly according to the
contents of the corresponding bits as given above: a flagis set by a 1
in the bit, cleared by a 0. A 1 in bit 5 sets User but a 0 has no effect,
so the Monitor can restart a user program by restoring flags but the
user cannot leave user mode by this method. A 0 in bit 6 clears User
In-out, but-a 1 sets it only if the JRST is being executed by the
Monitor, ie if User is clear.

12 Enter user mode. The user program starts at relocated location E.

To produce one or a combination of these functions the programmer can
specify the equivalent of an AC address that places 1s in the appropriate bits,
but Macro recognizes mnemonics for the most important 13-bit instruction
codes (bits 0-12).

JRST . JRST O, Jump 25400

‘ JRST 10, Jump and Restore 25440
Interrupt Channel

HALT JRST 4, Halt 25420

JRSTF JRST 2, Jump and Restore Flags 25410

JRST 1, Jump to User Program 25404

JEN JRST 12, Jump and Enable 25450

In a JRSTF or JEN the flags are restored from bits 0—12 of the final word
retrieved in the effective address calculation; hence any JRST with a 1 in bit
11 must use indirect addressing .or indexing, which takes extra time. If the
PC word was stored in AC (as in a JSP), a common procedure is to use AC to
index a zero address (eg, JRSTF (AC)), so its right half becomes the effec-
tive (jump) address.” If the PC word was stored in core (as in a JSR), one
must address it indirectly (remember, bits 13—-17 of the PC word are clear,
so again its right half is the effective address). A JRSTF (AC) takes 1.64
(1.75) us, a JRSTF @PCWORD takes 2.34 (2.56) us.

CAUTION

Giving a JRSTF or JEN without indexing or
indirect addressing restores the flags from the
instruction code itself.

While the processor is in user mode, if this instruction is executed as an in-
terrupt instruction or in unrelocated 41 or 61, bit 5 of the PC word stored is
1 and the processor leaves user mode.

' .

JFCL is the only jump that can test any of the flags directly. In fact it is
the only basic program control instruction that can do so — several of the
flags can be tested as processor conditions by in-out instructions, but these
are ordinarily illegal in user programs anyway. But JFCL can test only four

-

2-59

By manipulating the contents
of the left half word used to
restore the flags, the program-
mer can set them up in any
desired way except that a
user program cannot clear
User or set User In-out. Set-
ting Byte Interrupt prevents
incrementing in the next
ILDB or IDPB provided there
is no intervening JSR, JSP or
PUSHIJ.

JEN completes an interrupt
by restoring the channel and
restoring the flags for the
interrupted program. Y

2-60

The fastest skip is CAIA.

78

CENTRAL PROCESSOR §2.9

of the flags, and it saves no information for a subsequent return from a sub-
routine. Hence it serves as a branch point for entry into either one of two
main paths, which may or may not have a later point in common. Eg, it may
test the carry flags simply to take appropriate action in a double precision
fixed point routine. |

JSR and JSP are regularly used to call subroutines. They are uncondi-
tional, but the execution of such an instruction can be the result of a
decision made by any conditional skip or jump. In the case of the flags, a
basic overflow test and subroutine call can be made as follows.

JovV 42
JRST 42 ;Faster than skipping
JSR OVRFLO ;Jump over this if Overflow clear

If we wish to go to the DIVERR routine when No Divide is set, we must first
read the flags into a test accumulator T and then use a test instruction.

JSP T,.+1 ;Store flags but continue in sequence
TLNE T,40 ;40 left selects bit 12

JSR DIVERR ;Skip this if No Divide clear

A subroutine called by a JSR must have its entry point reserved for the PC
word. Hence it is nonreentrant: the JSR modifies memory so the subroutine
cannot be shared with other programs. The JSP requires an accumulator,
but it is faster and is convenient for argument passing. To return from a
JSR-called subroutine one usually addresses the PC word indirectly, return-
ing to the location following the JSR. But there are two ways to get back
from a JSP. We can address the PC word indirectly with a JRST @AC (or
JRSTF @AC if the flags must be restored), but we can also get it by
addressing AC as an index register: JRST (AC). By using the second return
method we can place N words of data for the subroutine immediately after
the call, and return to the location. following the data by giving a
JRST N(AC). '

Suppose we wish to call a print subroutine and supply the words from
which the characters are to be taken. -Our main program would contain the
following:

JSP T,PRINT ;Put PC word in accumulator T
;Text inserted here by ASCIZ pseudo-
;instruction, which automatically
;places a zero (null) character at the
send .
;Next instruction here

The subroutine can use T as a byfc pointer which already addresses the first
word of data. For the print routine, characters are loaded into another -
accumulator CH.

~

79
§2.9 "~ PROGRAM CONTROL 261

PRINT: HRLI T,440700 ;Initialize left half of pointer
ILDB CH,T ;Increment pointer and load byte _
JUMPE CH,I(T) ;Upon reaching zero character return
;to one beyond last data word
:Print routine

JRST PRINT+1 ' ;Get next character

f

JSA Jump and Save AC 2.82(2.93) us Interleaving memories saves
. 47 (.36) us.
266 [4 i x] Y '] :
0 89 121314 1718 35

Place AC in location E, the effective address E in AC left, and the contents
of PC in AC right (at this time PC contains an address one greater than the
location of the JSA instruction). Take the next instruction from location
E+1 and continue sequential operation from there. The original contents
of E are lost. ‘
While the processor is in user mode, if this instruction is executed as an in- a

terrupt instruction or in unrelocated 41 or 61, bit 5 of the PC word stored is

1 and the processor leaves user mode.

)

JRA Jump and Restore AC 292 (3.14) us
267 | a4 [i] x] Y]
0 89 121314 1718 35

Place the contents of the location addressed by AC left into AC. Take the
next instruction from location E and continue sequential operation from
there.

A JSA combines advantages of the JSR and JSP. JSA does modify
emory, but it saves PC in an accumulator without losing its previous
_contents (at a cost of not saving the flags). It is thus convenient for multiple-
entry subroutines. In a subroutine called by a JSR, the returning JRST must
refer to the (single) entry point. Since a JRA can retrieve the original PC by
addressing AC as an index register, it is independent of any entry point
without tying up an accumulator to the extent a JSP would. .
The accumulator contents saved by a JSA are restored by a JRA paired In FORTRAN IV, a CALL
with it despite intervening JSA-JRA pairs. Hence these instructions are statement uses JSA with AC
especially useful for nesting subroutines, as shown by this example. 16.

2-62

Keeping instructions and the
pushdown list in different
memories saves .47 (.36) us.

80

CENTRAL PROCESSOR §2.9

;Main program

iJSA 17,81 ;Call to first subroutine (4)
Si: O) ;First subroutine étart; here

:JSA 17,82 ;Call to second subroutine (B)

fIRA 17,(17) . ;Return to 4 + 1 in main program
S2: 0 ;Second subroutine starts here

JSA 17,83 ;Call to third subroutine (C)

.:IRA‘ 17,(17) ;Return to B + 1 in first subroutine
S3: . 0 ;Third subroutine starts here

ilRA 17,(17) ;Return to C'+ 1 in second subroutine

To call the next deeper subroutine at any level, a JSA places E and PC in the
left and right of AC 17, saves the previous contents of AC 17 in E (the first
subroutine location), and jumps to £+ 1. To return to the next higher level,
a JRA restores the previous contents of AC 17 fromdthe location addressed
by AC 17 left (the.first subroutine location) and jumps to the location
addressed by AC 17 right (the location following the JSA in the higher sub-
routine). If N lines of data for the next subroutine follow a JSA, the return
to the location following the data is made by giving a JRA 17,N(17).

PUSHJ Push Down and Jump _) 3.00(3.1D) us
260 | a4 1] x | Y]
0 89 121314 1718 35

Add 10000014 to AC to increment both halves by one and place the result
back in AC. If the addition causes the count in AC left to reach zero, set the
Pushdown Overflow flag. Then place the current contents of the flags (as
described above) in the left half of the location now addressed by AC right
and the contents of PC in the right half of that location (at this time PC
contains an address one greater than the location of the PUSHJ instruction).
Take the next instruction from location £ and continue sequential operation
from there.

The flags are unaffected except Byte Interrupt, which is cleared. The
original contents of the location added to the list are lost.

While the processor is in user mode, if this instruction is executed as an in-
terrupt instruction or in unrelocated 41 or 61, bit 5 of the PC word stored is
1 and the processor leaves user mode.

81

§2.9 - PROGRAM CONTROL

" POPJ Pop Up and Jump 2.96 (3.18) us
[263 | 4 i x | Y]
0 89 121314 1718 35

Subtract 10000015 from AC to decrement both halves by one and place the
result back in AC. If the subtraction causes the count in AC left to reach —1,
set the Pushdcwn Overflow flag. Take the next instruction from the location
addressed by the right half of the location that was addressed by AC right
prior to the decrementing, and continue sequential operation from there.

The address of the top item in the pushdown list is kept in the right half
of the pointer in AC, and the program can keep a control count in the left
- half. The incrementing and decrementing of both halves of AC simulta-
" neously is effected by adding and subtracting 1000001, Hence a count of
—2 in AC left is increased to zero if 28— 1 is incremented in AC right, and
conversely, 1 in AC left is decreased to —1 if zero is decremented in AC
right.

Since the pushdown list is independent of the subroutine called, PUSHJ-
POPJ can be used like JSA-JRA for multiple entries. Moreover, ordeﬁné by
level is inherent in the structure of a pushdown list [§2.2], so paired
PUSHJ-POPJ instructions are excellent for nesting subroutines: there can be
any number of subroutines at any level, each with more subroutines nested
within it. Recursive subroutines are also possible.

Unlike JSA-JRA, the pushdown. instructions tie up an accumulator, but
the usual procedure is to keep both data and jump addresses in a single list so
only one AC is required for the most complex pushdown operations. The
programmer must keep track of whether a given entry in the list is data or
a PC word; in other words, every item inserted by a PUSH should be
removed by a POP, and every PUSHIJ should be matched by a POPJ. If flag
restoration is desired, the returning k

POPJ P,
can be replaced by

POP P,AC
JRSTF (AC)

which requires another accumulator. If the flags are not important, data
may be stored in the left halves of the PC words in the stack, reducing the
required pushdown depth.

By using the Pushdown Overflow flag and a control count in AC left, the
programmer can set a limit to the size of the list by starting the count
negative, or he can prevent the program from extracting more items than
there are in the list by starting the count at zero, but he cannot do both at
once. If only jump addresses are kept in the list, the first procedure limits
the depth of nesting. A technique to catch extra POPJs is to put a PC word
addressing an error routine at the bottom of the list.

2-63

The effective address E is
ignored.

2-64

An unimplemented-user oper-
ation is usually referred to as
a UUO, but this mnemonic
means nothing to the assem-
bler. UUOs are aiso some-
times called ‘“‘programmed
operators”.

The total time required is
_ that listed plus the time for
the instruction in location 41.
Interleaving memories 0 and
1 saves .47 (.36) us.

“Execute” here means in the
_sense of the instruction XCT.’

82 -

CENTRAL PROCESSOR

. §2.10
2.10 UNIMPLEMENTED OPERATIONS

Many of the codes not assigned as specific instructions are executed as
unimplemented user operations, wherein the word given as an instruction is
trapped and must be interpreted by a routine included for this purpose by
the programmer. In time sharing, however, half of the codes are set aside for
user communication with the Monitor and are interpreted by it. Instructions
that are illegal in user mode also trap in this manner.

Unimplemented User Operation 2.33(2.44) us

[4 [x| v]

89 121314 1718 35

L 000-077
(1]

Store the instruction code, A and the effective address £ in bits 0-8, 9-12
and 18-35 respectively of location 40; clear bits 13—-17. Execute the
instruction contained in location 41. The original contents of location 40
are lost. '

All of these codes are equivalent when they occur in the Monitor or when
time sharing is not in effect. But when a UUO appears in a user program, a
code in the range 001-037 uses relocated locations 40 and 41 (ie 40 and 41
in the user’s block) and is thus entirely a part of and under control of the
user program. A code in the range 040-077 on the other hand uses
unrelocated 40 and 41, and the instruction in the latter location is under
control of the Monitor; these codes are thus specifically for user communica-
tion with the Monitor, which interprets them (refer to the Monitor manual
for the meanings of the various codes). The code 000 executes in the same
way as 040-077 but is not a standard communication code: it is included so
that control returns to the Monitor should a user program wipe itself out.

For a second processor connected to the same memory, the UUO trap is
locations 140-141 instead of 40-41.

The unimplemented operations also include the reserved (unassigned)
instruction codes 100-127, which execute like the Monitor-calling UUOs
but use unrelocated 60-61 (160-161 for a second processor); thus the
Monitor steps in when a user gives an incorrect code. The codes 130-177,
which are the floating point and byte manipulation instructions, are equiva-
lent to the unassigned codes if unimplemented, ie if the optional hardware
for them is not included. -In this case all codes 100—-177 trap to unrelocated
60-61. In general it is assumed that if software is available for floating point
and byte manipulation, the Monitor is responsible for calling the appropriate
routines.

-83
§2.11 PROGRAMMING EXAMPLES
2.11 PROGRAMMING EXAMPLES

Before continuing to input-output and related subjects, let us consider som
simple programs that demonstrate the use of a variety of the instruction
described thus far.)

Suppose we wish to count the number of 1s in a word. We could of
course check every bit in the word. But there is a quicker way if we remem-
ber that in any word and its twos complement the rightmost 1 is in the same
position, both words are all Os to the right of this 1, and no corresponding
bits are the same to the left (the parts of both words at the left of the right-
most 1 are complements). Hence using the negative of a word as a mask for
the word in a test instruction selects only the rightmost 1 for modification.
The example uses three accumulators: the word being tested (which is lost)
is in T, the count is kept in CNT, and the mask created in each step is stored
in TEMP. '

MOVEI CNT,0 ;Clear CNT

MOVN TEMP, T ;Make mask to select rightmost 1
TDZE T,TEMP ;Clear rightmost 1 in T

AOJA CNT,.-2 ;Increase count and jump back

;Skip to here if no Isleftin T

CNT is increased by one every time a 1 is deleted from T. After all 1s have
been removed, the TDZE skips.

In the standard algorithm for converting a number N to its equivalent in
base b, one performs the series of divisions

N/b = q,+r/b r<b
q./b = .q,+n/b r,<b
q2/b = q3+r/b ry<b
qn-1/b = 0+ r,/b r,<b

The number in base b is then r,...ryr,r,. Eg the octal equivalent of 61
decimal is 75: :

61/8 = 7+5/8

7/18 = 0+7/8
The following decimal print routine converts a 36-bit positive integer in
accumulator T to decimal and types it out. The contents of T and T + 1 are

destroyed. The routine is called by a PUSHJ P, DECPNT where P is the
pushdown pointer.

DECPNT: IDIVI T,12° ;12 = 10,
PUSH P, T+1 ;Save remainder
SKIPE T ;All digits formed?

PUSH]J P,DECPNT ;No, compute next one

2-65

2-66

i

MACRO interprets a number
following tD as decimal.

84 ,

:CENTRAL PROCESSOR §2.11
DECPN1: POP P, T ;Yes, take out in opposite order
ADDI T,60 ;Convert to ASCII (60 is code for 0)

JRST TTYOUT ;Type out

This routine repeats the division until it produces a zero quotient. Hence it
suppresses leading zeros, but since it is executed at least once it outputs one
“0” if the number is zero. The TTYOUT routine returns with a POPJ P, to
DECPN1 until all digits are typed, then to the calling program.

Space can be saved in the pushdown stack by storing the computed digits
in the left halves of the locations that contain the jump addresses. This is
accomplished in the decimal print routine by making the following substi-
tutions. ’

PUSH P,T+1 - HRLM T+1,(P)
POP P,T - HLRZ T,(®P)

The routine can han&le a 36-bit unsigned integer if the IDIVI T,12 is
replaced by :

LSHC T,—tD35 ;Shift right 35 bits into T+1
LSH T+1,—1 ;Vacate the T+1 sign bit
DIVI T,12 ;Divide double length integer by 10

Many data processing situations involve searching for information in tables
and lists of all kinds. Suppose we wish to find a particular item in a table
beginning at location TAB and containing N items. Accumulator T contains

~ the item. The right half of A is used to index through the table, while the
+ left half keeps a control count to signal when a search is unsuccessful.

MOVSI A,-N ;Put—N,0in A
CAMN T,TAB(A) ;Skip if current item not the one
JRST FOUND ;Item found

AOBIN A,.—2 ;Try next item until left count =0
c :Item not in list)

The location of the item (if found) is indicated by the number in the right
half of A (its address is that quantity plus TAB). A slightly different pro-
cedure would be

HRLZI A,—-N
CAME T,TAB(A) ;Skip if current item is the one
AOBIN A,.—1

JUMPL A,FOUND ;Jump if left count < 0
.. ;Item not found

Locations used for a list can be scattered throughout memory if data is
kept in the left half of each location and the right half addresses the next
location in the list. The final location is indicated by a zero right half. The
following routine finds the last half word item in the list. It is entered at
FIND with the first location in the list addressed by the right half of
accumulator T. At the end the final item is in T right.

§2.11
MOVE T,(T)
FIND: - TRNE T,777777
JRST * -2
HLRZS T

. 85

PROGRAMMING EXAMPLES

;Move next item to T
;Skip if AC right =0

;Move final item to right

The following counts the length of the list in accumulator CNT.

MOVEI CNT,0
JUMPE T,0UT
HRRZ T,(T)
AOJA CNT,.-2

;Clear CNT

;Jump out if T contains O
;Get next address

;Count and go back

Double Precision Floating Point. The following are straightforward rou-
tines for handling double precision floating point arithmetic [§ 2.6 describes

the floating point instructions].

DFAD: UFA A+1,M+1
FADL AM
UFA A+1,A+2
FADL AA+2

POPJ P,

DFSB: DFN AA+1
PUSHJ P,DFAD
DFN AA+1
POPJ P,

DFMP: MOVEM A,A+2
FMPR A+2,M+1
FMPR A+1,M
UFA A+1,A+2
FMPL AM
UFA A+1,A+2
FADL A,A+2
POP] P,

;3um of low parts to A+2

;Sum of high parts to A, A+1
;Add low part of high sum to A+2
;Add low sum to high sum

;Negate double length operand
;Call double floating add
—(M—AC)=AC—-M

;Copy high AC operand in A+2

;One cross product to A+2

;Other to A+1 N

;Add cross products into A+2

;High product to A, A+1

;Add low part to cross sum in A+2
;Add low sum to high part of product

A double precision division is of the form

A

B

Using the relationship
Alb

il

where g ahd r are the quotient and remainder produced by FDVL, the

a+ cX2¥
b +dX27?%

q +rX27%/p

following routine computes a double length quotient by the algorithm

A
B

— -27
i (r —qd)X2

b

which gives a result correct to the next-to-last bit in the low order half,

267

2-68

A Times are given for 10 in-

structions when they occur
alone. When two IO instruc-
tions are given consecutively,
the second often takes longer
(refer to the timing chart in
Appendix C for details).

This is identical to UUO trap-
ping [§2.10].

E will always be regarded as
being bits 18—-35, even though
it is actually placed on both
halves of the bus and many
devices receive the informa-
tion from the left half.

86 ‘
§2.12

CENTRAL PROCESSOR

DFDV: FDVL AM ;Get high part of quotient
MOVN A+2,A ;Copy negative of quotient in A+2
FMPR A+2,M+1 ;Multiply by low part of divisor
UFA A+1,A+2 ;Add remainder |
FDVR A+2M ;Divide sum by high part of divisor
FADL A A+2 ;Add result to original quotient

- POPJ P,

2.12 INPUT-OUTPUT

The input-output instructions govern all transfers of data to and from the
peripheral equipment, and also perform many operations within the proc-
essor. An instruction in the in-out class is designated by 111 in bits 0-2, ie
its left octal digit is 7. Bits 3—9 address the device that is to respond to the
instruction. The format thus allows for 128 codes, two of which, 000 and
004 respectively, address the processor and priority interrupt, and are used
for the console and time share hardware as well. A chart ‘'n Appendix A
lists all devices for which codes have been assigned, and gives their
mnemonics and DEC option numbers. |

Bits 13-35 are the same as in all other instructions: they are the /, X, and -
Y parts, which are used to calculate an effective address, set of conditions,
or mask to be used in the execution of the instruction. The remaining bits,
10-12, select one of the following eight 10 instructions.

NoTE

All instructions described in the remainder of this manual are in-out
instructions, which cannot be executed in user programs unless the
User In-out flag is set. If an in-out instruction appears in a user pro-
gram while User In-out is clear, it does not perform the functions given
for it in the instruction description. Instead it stores its own instruc-
tion and device codes in bits 0—12 and its effective address E in bits
18-35 of unrelocated location 40 (clearing bits 13-17), and then
executes the instruction contained in location 41. The latter location
is under control of the Monitor [§2.15].

This user restriction will not be mentioned in the instruction descrip-
tions, as it applies to all instructions from this point on.

CONO Conditions Qut 3.90 (4.01) us
1o [zl x| v)
Q 23 910 121314 1718 . 35

Set up device D with the effective initial conditions £. The number of con-
dition bits in £ that are actually used depends on the device.

87

§2.12 INPUT-OUTPUT

CONI Conditions In 4.87 (4.98) us
| 7 | D |24 1] x] Y

0 23 910 121314 1718 35

Read the input conditions from device D and store them in location E. The
number of condition bits stored depends on the device; the remaining bits
in location F are cleared.

DATA0 DataOut 4 4.75 (4.97) ps
(71 o 1] x| 1
(4] 23 910 121314 1718 35

Send the contents of location E to the data buffer in device D, and perform
whatever control operations are appropriate to the device.

The amount of data actually accepted by the device depends on the size
of its buffer, its mode of operation, etc. The original contents of location E
are unaffected.

‘

4.87 (4.98) us

DATAI Data In .

¢ -

|7 [o Joafi] x] Y]
0 23 910 121314 1718 35

Move the contents of the data buffer in device D to location E, and perform
whatever control operations are appropriate to the device.

The number of data bits stored depends on the size of the device buffer,
its mode of operation, etc. Bits in location E that do not receive data are
cleared.

CONSZ
[7]
0 23

Test the input-conditions from device D against the effective mask E. If all
condition bits selected by Is in E are Os, skip the next instruction in
sequence.

If the device supplies more than 18 condition bits, only the right 18 are
tested.

Conditions In and Skip if Zero

D - [30[i] x] Y]

910 121314 1718 35

4.11 (4.22) ps

2-69

Keeping instructions and op-
erands in different memories
saves .47 (.36) us. Bringing
conditions into fast memory
saves .46 (.35 us.

Taking the output word from
fast memory saves .34 us.

Keeping instructions and op-
erands in different memories
saves .47 (.36) us. Placing the
input data in fast memory
saves .46 (.35) us. '

2-70

Keeping the pointer in fast
memory saves .43 (.34) us.

Keeping the pointer in fast
memory saves .34 us. Keeping
the instruction and the data
block in different memories
saves .47 (.36) us.

A block, [0 instruction is
effectively a whole in-out
data handling subroutine. It
keeps track of the block loca-
tion, transfers each data
word, and determines when
the block is finished.

Initially the left half of the
pointer contains the negative
of the number of words in
the block, the right half con-
tains an address one less than
that of the first word in the
block.

88

CENTRAL PROCESSOR

§2.12

CONSO Conditions In and Skip if One 4.11 (4.22) us
(7] o J34f] x | Y |
1] 23 910 121314 1718 35

Test the input conditions from device-D against the effective mask E. If any
condition bit selected by a 1 in F is 1, skip the next instruction in sequence.

If the device supplies more than 18 condition bits, only the right 18 are
tested.

BLKO Bliock Out 6.49 (6.71) us
(71 o [rol] x | Y l
o 23 910 121314 1718 35
BLKI Block in 6.49 (6.71) us
(7] o Joof] x | Y]
o 23 910 121314 1718 35

Add 10000014 to a pointer in location E to increment both halves by one,
and place the result back in E. Then perform a data IO instruction in the
same direction as the block 1O instruction, using the right half of the incre-
mented pointer as the effective address. If the given instruction is a BLKO,
perform a DATAO; if a BLKI, perform a DATAI)

The remaining actions taken by this instruction depend on whether it is
executed as a priority interrupt instruction [§2.13].
& Not as an Interrupt Instruction. If the addition has caused the count in
the left half of the pointer to reach zero, execute the next instruction in
sequence. Otherwise skip the next instruction.
& Asan Interrupt Instruction. If the addition has caused the count in the:
left half of the pointer to reach zero, execute the instruction in the second
interrupt location for the channel. Otherwise dismiss the interrupt and
return to the interrupted program.

The above eight instructions differ from one another in their total effect,
but they are not all different with respect to any given device. A BLKO acts
on a device in exactly the same way as a DATAO — the two differ only in
counting and othér operations carried out within the processor and memory.
Similarly, no device can distinguish between a BLKI and a DATAI; and a
device always supplies the same input conditions during a CONI, CONSZ or
CONSO whether the program tests them or simply stores them.

Hence the eight instructions may be categorized as of four types, repre-
sented by the first four instructions described above. Moreover, a complete
treatment of the programming of any device can be given in terms of these
four instructions, two of which are for input and two for output. The four

89

§2.12 INPUT-OUTPUT

~exhaust the types of information transfer that occur in the 1O system, at
least three of which are applicable to any given device. Thus all instruction

descriptions in the rest of this manual will be of the CONO, CONI, DATAO

and DATALI instructions combined with ‘the various device codes, The dis-
cussion of each device will present timing information pertinent to device
operation, but no instruction times will be included as they are identical to
those given above.

Every device requires initial conditions; these are sent by a CONO, which
can supply up to eighteen bits of control information to the device control
register. The program can determine the status of the device from up to
thirty-six bits of input conditions that can be read by a CONI (but only the
right eighteen can be tested by a CONSZ or CONSQO). Some input bits
simply reflect initial conditions sent by a previous CONO; others are set up
by output conditions but are subject to subsequent adjustment by the
device; and still others, such as status levels from a tape transport, have no
direct connection with output conditions.

Data is moved in and out in characters of various sizes or in full 36-bit
words. Each transfer between memory and a device data buffer requires a
single DATAI or DATAO. Every device has a CONO and CONI, but it may
have only one data instruction unless it is capable of both input and output.
Eg, the paper tape reader has only a DATAI, the tape punch has only a
DATAO, but the teletype has both. (A high speed device, such as a disc file,
can be connected to the DF10 Data Channel, which in turn is connected
directly to memory by a separate memory bus and handles data auto-
matically. This eliminates the need for the program to give a DATAO or
DATAI for each transfer.)

A Typical 10 Device. Every device has a 7-bit device selection network, a
priority interrupt assignment, and at least two flags, Busy and Done, or some
equivalent. The selection network decodes bits 3-9 of the instruction so
that only the addressed device responds to signals sent by the processor over
the in-out bus. To use the device with the priority interrupt, the program
must assign a channel to it. Then whenever an appropriate event occurs in
the device, it requests an interrupt on the assigned channel.’

The Busy and Done flags together denote the basic state of the device.
When both are clear the device is idle. To place the device in operation, a
CONO or DATAO sets Busy. If the device will be used for output, the pro-
gram must give a DATAO that sends the first unit of data — a word or char-
acter depending on how the device handles information. When the device has
processed a unit of data, it clears Busy and sets Done to indicate that it is
ready to receive new data for output, or that it has data ready for input.
In the former case the program would respond with a DATAO to send more
data; in the latter, with a DATAI to bring in the data that is ready. If an
interrupt channel has been assigned to the device, the setting of Done signals
the program by requesting an interrupt; otherwise the program must keep
testing Done to determine when the device is ready.

All devices function basically as described above even though the number
of initial conditions varies considerably. Besides Busy and Done flags, the
tape reader and punch have a Binary flag that determines the mode of
operation of the device with respect to the data it processes — alphanumeric

2-71

The word “input” used with-
out qualification always refers
to the transfer of data from
the peripheral equipment into
the processor; “output” refers
to the transfer in the opposite
direction.

A DATAI that addresses an
output-only device simply
clears location E. DATAI PI,
(code 70044) produces only
this effect as the priority in-
terrupt has no data for input.
On the other hand a DATAO
that addresses an input-only
device is a no-op.

When the device code is
undefined or the addressed
device is not in the system,
a DATAQ, CONO or CONSO
is a no-op, a CONSZ is an
absolute skip, a DATAI or
CONI clears location E.

Busy and Done both set is a
meaningless situation. '

2-72

Occasionally a device with a
second code may use a

. DATAI or DATAO to trans-

mit additional control or
maintenance information.

9%

CENTRAL PROCESSOR . §2.12

, or,binary. The teletype has no binary flag, but it has two Busy flags and two

Done flags — one pair for input, another for output. A complicated device,
such as magnetic tape, may require two device codes to handle the large
number of conditions associated with it. Initial conditions for a tape system
include a transport address and an actual command the tape‘control is to
perform; input conditions include error flags and transport status levels.

Most 10 devices involve motion of some sort, usually mechanical (in a
display only the electron beam moves). With respect to mechanical motion
there are two types of devices, those that stay in motion and those that do
not. Magnetic tape is an example of the former type. Here the device
executes a command (such as read, write, space forward) and the done flag
indicates when the entire operation is finished. A separate data flag signals
each time the device is ready for the program to give a DATAI or DATAO,
but the tape keeps moving until an entire record or file has been processed.

Paper tape, on the other hand, stops after each transfer, but the program
need not give a new CONO every time: The reader logic is set up so that a
DATALI not only reads the data, but also clears'Done and sets Busy. Hence
if the instruction is given within a critical time, the tape moves continuously
and only two CONOs are required for a whole series of transfers: one to start
the tape, and one to stop it after the final DATAI.

Other devices operate in one or the other of these two ways but differ in
various respects. The tape punch and teletype output are like the reader.
Teletype input is initiated by the operator striking a key rather than by the
program. The card reader reads an entire card on a single CONO, with a
DATAI required for each column. The DECtape dtays in motion, and the
program must give a CONO to stop it or it will go all the way to the end
zone.

Readin Mode

This mode of processor operation provides a means of placing information
in memory without relying on a program already in memory or loading one
word at a time manually. = Its principal use is to read in a short loader
program which is then used for loading other information. A loader program
should ordinarily be used rather than readin mode, as a loader can check the
validity of the information read.

Pressing the readin key on the console activates readin mode by starting
the processor in a special hardware sequence that simulates a DATAI fol-
lowed by a series of BLKI instructions, all of which address the device whose
code is selected by the readin device switches on the small panel at ‘the left
of the paper tape reader. Various devices can be used, and for each there
are special rules that must be followed. But the readin mode characteristics
of any particular device are treated in the discussion of the device. Here we
are concerned only with the general characteristics.

The information read is a block of data (such as a loader program) pre-
ceded by a pointer for the BLKI instructions. The left half of the pointer
contains the negative of the number of words in the block, the right half
contains an address one less than that of the location that is to receive the
first word.

91

§2.13 PRIORITY INTERRUPT

To read in, the operator must set up the device he is using, set its code
into the readin device switches, and press the readin key. The processor
places the device in operation, brings the first word (the pointer) into
location 0, and then reads the data block, placing the words in the locations
specified by the pointer. Data can be placed anywhere in memory (including
fast memory) except in location 0. The operation affects none of memory
except location O and the block area.

Upon completing the block, the processor halts only if the single instruc-
tion switch is on. Otherwise it leaves readin mode, and begins normal
operation by executing the last word in the block as an instruction.

Console Data Transfe;s

Neither the processor nor the priority interrupt system require all four types
of 10 instructions, so the program can make use of their device codes for
communicating with the console.

DATA! APR, Data In, Console

| 70004 1 x] Y]

o 121314 1718 35

Read the contents of the console data switches into location E.

\

DATAO P, Data Qut, Console
[70054 1l x] Y]
0 121314 1718 . 35

Unless the console MI program disable switch is on, display the contents of
location E in the console memory indicators and turn on the triangular light
beside the words PROGRAM DATA just above the indicators (turn off the
light beside MEMORY DATA).

Once the indicators have been loaded by the program, no address condi-
tion selected from the console [§2.16] can load them until the operator
turns on the MI program disable switch, executes a key function that ref-
erences memory, or presses the reset key.

2.13 PRIORITY INTERRUPT

Most in-out devices must be serviced infrequently relative to the processor
speed and only a small amount of processor time is required to service them,
but they must be serviced within a short time after they request it. Failure
to service within the specified time (which varies among devices) can often

2-73

MACRO also recognizes the
mnemonic .RSW (Read
Switches) as equivalent to
DATAI APR,.

2-714

Interrupt locations for a sec-
-ond processor are 140 + 2N
and 141 + 2N.

92
CENTRAL PROCESSOR . §2.13

result in loss of information and certainly results in operating the device
below its’ maximum speed. The priority interrupt is designed with these
considerations in mind, ie the use of interruptions in the current program
sequence facilitates concurrent operation of the main program and a number
of peripheral devices. The hardware also allows conditions internal to the
processor to signal the program by requesting an interrupt.

Interrupt requests are handled through seven channels arranged in a
priority chain, with assignment of devices to channels entirely at the discre-
tion of the programmer. To assign a device to a channel, the program sends
the number of the channel to the device control register as part of the condi-
tions given by a CONO (usually bits 33-35). Channels are numbered 1-7,
with 1 having the highest priority; a zero assignment disconnects the device
from the interrupt channels altogether. Any number of devices can be
connected to a single channel, and some can be connected to two channels
(eg a device may signal that data is ready on one channel, that an error has
occurred on another).

Interrupt Requests. When a device requires service it sends an interrupt
request signal over the in-out bus to its assigned channel in the processor. If
the channel is on, the processor accepts the request at the next memory
access unless the processor is either starting an interrupt on any channel or
holding an interrupt on the same channel. The request signal is a level, so
it remains on the bus until turned off by the program (CONO, DATAO or
DATAI). Thus if a request is not accepted because of the conditions given
above, it will be accepted when those conditions no longer hold. A single
channel will shut out all others of lower priority if every time its service
routine dismisses the interrupt, a device assigned to it is already waiting with .
another request. The program can usually trigger a request from a device but
delgy its acceptance by turning on the channel later.

tarting an Interrupt. After a request is accepted the channel must wait
for the interrupt to start. No interrupts can be started unless the priority
interrupt system is active. Furthermore, the processor cannot start an
interrupt if it is alreadys holding an interrupt on a channel with priority
higher than those on which requests have been accepted (in other words if
the current program is a higher priority interrupt routine). If there is a
higher priority channel waiting, the processor stops the current program to
start an interrupt on the waiting channel that has highest priority. The inter-
rupt starts following the retrieval of an instruction, following the retrieval of
an address word in an effective address calculation (including the second cal-
culation using the pointer in a byte instruction), or following a transfer in a
BLT. When an interrupt starts, PC points to the interrupted instruction, so
that a correct return can later be made to the interrupted program.

Two memory locations are assigned to each channel: unrelocated locations
40+ 2N and 41 + 2N, where N is the channel number. Channel 1 uses loca-
tions 42 and 43, channel 2 uses 44 and 45, and so on to channel 7 which
uses 56 and 57. The processor starts an interrupt on channei N by executing
the instruction in location 40 + 2N.

An instruction executed by the interrupt hardware in response -to an
interrupt request is referred to elsewhere in this manual as being executed
“as an interrupt instructioh™. Some instructions, when so executed, perform

93

§2.13 PRIORITY INTERRUPT \
different functions than they do when executed in other circumstances. And
the difference is not due merely to being executed in an interrupt location or
in response (by the program) to an interrupt. To be an interrupt instruction,
an instruction must be executed by the interrupt hardware, in location
40+ 2N or 41 + 2N, because of a request on channel N. §2.12 describes
the two ways a BLKO is performed. If a BLKO is contained in an interrupt
routine called by a JSR, it is not executed “as an interrupt instruction” even
if the routine is stored within the interrupt locations. There are two
categories of interrupt instructions.

¢ Non-IO Instructions. 'After executing a non-IO interrupt instruction, the
processor holds an interrupt on the channel and returns control to PC. Hence
the instruction is usually a jump to a service routine. If the processor is in
user mode and the interrupt instruction is a JSR, J SP, PUSHJ, JSA or JRST,

the processor leaves user mode (the Monitor thus handles. all interrupt rou-

tines [§2.15]).

If the interrupt instruction is not a jump, the processor continues the
interrupted program while holding an interrupt — in other words it now
treats the interrupted program as an interrupt routine. Eg the instruction
might just move a word to a particular location. Such procedures are
usually reserved for maintainence routines or very sophisticated programs.
¢ Block or Data IO Instructions. One or the other of two actions can result
from executing one of these as an interrupt instruction.

If the instruction in 40+ 2N is a BLKI or BLKO and the block is not
finished (e the count does not cause the left half of the pointer to reach
zero), the processor holds and immediately dismisses an interrupt on the

channel, and returns to the interrupted program. The same action results
if the instruction is a DATAI or DATAO. ’

If the instruction in 40 + 2N is a BLKI or BLKO and the count does reach
zero, the processor continues to start the interrupt by executing the
instruction in location 41 + 2N. This cannot be an 10 instruction and the
actions that result from its execution as an interrupt instruction are those
given above for non-IO instructions.

CautioN

The execution, as an interrupt instrliction, of a
CONO, CONI, CONSO or CONSZ in location
40+ 2N or any IO instruction in location 41 + 2N
hangs up the processor.

Dismissing an Interrupt. Automatic dismissal of an interrupt occurs only
in a DATAI or DATAGO, or in a BLKI or BLKO with an incomplete block.
Following any non-1O interrupt instruction, the processor holds an interrupt
until the program dismisses it, even if the interrupt routine is itself inter-
rupted by a higher priority channel. Thus interrupts can be held on a num-
ber of channels simultaneously, but from the time an interrupt is started
until it is dismissed, no interrupt can be started on that channel or any
channel of lower priority (requests, however, can be accepted on lower
priority channels). : '

2-75

2-76

94

CENTRAL PROCESSOR §2.13

A routine dismisses the interrupt by using a JEN (JRST 12,) to return to
the interrupted program (the interrupt system must be active when the JEN
is given). This instruction restores the channel on which the interrupt is
being held, so it can again accept requests, and interrupts can be started on
it and lower priority channels. JEN also restores the flags, whose states were
saved in the left half of the PC word if the routine was called by a JSR,

JSP, or PUSHJ [§2.9]. If flag restoration is not desired, a JRST 10, can
be used instead.

CaurioNn

An interrupt routine must dismiss the interrupt
when it returns to the interrupted program, or its
channel and all channels of lower priority.will be
disabled, and the processor will treat the new
program as a continuation of the interrupt routine.

Priority Interrupt Conditions. The program can control the priority -in-
terrupt system by means of condition IO instructions. The device code is
004, mnemonic PI.

CONO Pi, Conditions Qut, Priority Interrupt
70060] x | Y
1] 121314 1718 35

Perfofm the functions specified by E as shown (a 1 in a bit produces the
indicated function, a 0 hasno effect).

INITIATE DEACTIVATE ACTIVATE
INTERRUPT Pl Pl
ON \ /
|
CLEAR | CLEAR [01SABLE{ENABLE CLEAR |] TuRn [TuRn [\ /
POWER | PARITY PARITY ERROR 1 oN OFF SELECT CHANNELS FOR BITS 24, 25, 26

FAILURE| ERROR

SYSTEM | SELECT HANNELS
FLAG | FLAG INTE?RUPT LCIEDC lEL 1 | 2 | 3] 4 |5 | 6|7
8 19 20 a2 22 23 Taa 25 26 27 28 29 | 30 3t 32 | 33 34 35

Bits 18-21 are actually for
processor conditions {§2.14].

Notes.

20 Prevent the setting of the Parity Error flag from requesting an
interrupt on the channel assigned to the processor.

21 Enable the setting of the Parity Error flag to request an interrupt
on the channel assigned to the processor.

23 Deactivate the priority interrupt system, turn off all channels,
eliminate all interrupt requests that have already been accepted but
are still waiting, and dismiss all interrupts that are currently being
held..

24 Request interrupts on channels selected by ls in bits 29-35, and
force the processor to accept them even on channels that are off.

95

§2.13 : ’ PRIORITY INTERRUPT

A request is lost if it is made by this means to a channel on which
an interrupt is already being held.

25 Turn on the channels selected by 1Is in bits 29~35 so interrupt
* requests can be accepted on them.

26 Turn off the channels selected by 1s in bits 29-35, so interrupt

requests cannot be accepted on them unless made by a CONO PI,
with a 1 in bit 24.

27 Deactivate the priority interrﬁpt system. The processor can then still
accept requests, but it can neither start nor dismiss an interrupt.

28 Activate the priority interrupt system so the processor can accept
requests and can start, hold and dismiss interrupts.

CONI PI, Conditions In, Priority Interrupt
[70064 - 1] x | Y |
(] 121314 1718 35

Read the status of the priority interrupt (and several bits of processor condi-

tions) into the right half of location £ as shown. '

PARITY ERROR
INTERRUPT
. ENABLED

2-71

e —— INTERRUPT IN PROGRESS ON- CHANNELS Pl
FAILURE| ERROR J ACTIVE
1 | 2 | 3 | 4 | 5 | 8 |'7 1] 2

CHANNELS ON
314 | 5 | 6 | 7

18 19 20 2 22 23 1 24 25 26 1 21 28 29 [30

Notes.

18 Ac power has failed. The program should save PC, the flags and fast
memory in core, and halt the processor.
The setting of this flag requests an interrupt on the channel
assigned to the processor. If the flag remains set for 5 ms, the
processor is cleared.

19 A word with even parity has been read from core memory. If bit 20
is set, the setting of the Parity Error flag requests an interrupt on the
channel assigned to the processor.

28 The priority interrupt system is active.

-Channels that are on are indicated by 1s in bits 29-35; s in bits 21-27
indicate channels on which interrupts are currently being held.

Timing. The time a device must wait for an interrupt to start depends on
the number of channels in use, and how long the service routines are for
devices on higher priority channels. If only one device is using interrupts,

31 32 V33 34 35

Note that bits 18-20.actually
read processor status condi-
tions [§2.14].

2-78

9%’

CENTRAL PROCESSOR B §2.14

'it need never wait longer than the time required for the processor to finish

the instruction that is being performed when the request is made. The
maximum time can be considered to be about 15 us for FDVL, but a ridicu-
lously long shift could take over 35 us.

Special Considerations. On a return to an interrupted program, the proc-
essor always starts the interrupted instruction over from the beginning. This
causes special problems in a BLT and in byte manipulation.

An interrupt can start following any transfer in a BLT. When one does,
the BLT puts the pointer (which has counted off the number of transfers
already made) back in AC. Then when the instruction is restarted following
the interrupt, it actually starts with the next transfer. This means that if
interrupts are in use, the programmer cannot use the accumulator that holds
the pointer as an index register in the same BLT, he cannot have the BLT
load AC except by the final transfer, and he cannot expect AC to be the
same after the instruction as it was before.

An interrupt can also start in the second effective address calculation in a
two-part byte instruction. When this happens, Byte Interrupt is set. This
flag is saved as bit 4 of a PC word, and if it is restored by the interrupt
routine when the interrupt is dismissed, it prevents a restarted ILDB or
IDPB from incrementing the pointer a second time. This means that the
interrupt routine must check the flag before using the same pointer, as it
now points to the next byte. Giving an ILDB or IDPB would skip a byte.
And if the routine restores the flag, the interrupted ILDB or IDPB would
process the same byte the routine did.

Programming Suggestions. The Monitor handles all interrupts for user
programs. Even if th¢ User In-out flag is set, a user program generally cannot
reference the interrupt locations to set them up. Procedures for informing
the Monitor of the interrupt requirements of a user program are discussed in
the Monitor manual. .

For those who do program priority interrupt routines, there are several
rules to remember.
¢ No requests can be accepted, not even on higher priority channels, while
a break is starting. Therefore do not use lengthy effective address calcula-
tions in interrupt instructions.
¢ The interrupt instruction that calls the routine must save PC if there is to
be a return to the interrupted program. Generally a JSR is used as it saves
both PC and the flags, and it uses no accumulator.
¢ The principal function of an interrupt routine is to respond to the situa-
tion that caused the interrupt. Eg computations that can be performed
outside the routine should not be included within it.

The routine must disniiss the interrupt (with a JEN) when returning to the
interrupted program. The flags should be restored.

-

2.14 PROCESSOR CONDITIONS

There are a number of internal conditions that can signal the program by
requesting ‘an interrupt on a channel assigned to the processor. Flags for

97

§2.14 PROCESSOR CONDITIONS

power failure and parity error are handled by the condition 10 instructions
that address the priority interrupt system [§2.13]. The remaining flags are
handled By condition instructions that address the processor. Its device code
is 000, mnemonic APR or CPA.

CONO APR, Conditions Out, Arithmetic Processor

70020 1l x | Y

1} 121314 1718

|

35

Perform the functions specified by E as shown (a | in a bit produces the
indicated function, a O has no effect).

CLEAR

PUSHDOWN
OVERFLOW

CLEAR
MEMORY
PROTECTION
FLAG \

CLEAR
NONEXISTENT
MEMORY FLAG

CLEAR

FLOATING
OVERFLOW

CLEAR

OVERFLOW

1

2-79

\

CLEAR
ALL
IN-OUT
DEVICES

CLEAR \

ADDRESS
BREAK
FLAG

/

DISABLE| ENABLE

CLEAR
CLOCK
FLAG

DISABLEI ENABLE

|

DISABLEl ENABLE |,
OVERFLOW

CLOCK
INTENIRUPT INTERRUPT INTEI:RUPT
1

I

. PRIORITY
INTERRUPT
ASSIGNMENT
! 1

18 19 20 21 22 23 24 25 26 27 28 29 30 3

Notes.

Enabling a particular flag to interrupt means that henceforth the setting
_of the flag will request an interrupt on the channel assigned (by bits 33-35)
to the processor. Disabling prevents the flag from triggering a request.
A 1 in bit 19 produces the IO reset signal, which clears the control logic'in
all of the peripheral equipment (but affects neither the priority interrupt sys-
tem, nor the processor flags cleared by this instruction or CONO PL,).

CONI APR, Conditions In, Arithmetic Processor . N

Y |

35

70024 1] x |

[121314 1718

Read the status of the processor into the right half of location £ as shown
(all interrupt requests are made on the channel assigned to the processor).

32

3

3 34 35

QVERFLOW

PUSHDOWN'
OVERFLOW

MEMORY
PROTECTION

NONEXISTENT
MEMORY

CLOCK
INTERRUPT
ENABLED

FLOATING
OVERFLOW
INTERRUPT

FLOATING
OVERFLOW

“ENABLED

QVERFLOW
ENABLED

INTERRUPT

USER
IN-OUT

ADDRESS
BREAK

FLAG

[
/

/

CLOCK
FLAG

/
/

TRAP
OFFSET

/
/

PRIORITY
INTERRUPT
ASSIGNMENT
{ 1

21

22

23

24 25

26

27 28 29

30 3

32

33

34 35

'MAY 1968

2-80

A PC bears no relation to the
‘break if the access was re-
quested ‘for a console key
function.

4 This flag can also be set by
an instruction executed from
the console while tHe USER
MODE light is on, in which
case PC bears no relation to
the violation.

A PC bears no relation to the.

unanswered reference if the
attempted access originated
from a console key function.

Notes.

19

20

21

22

23

26

29

30

32

98

CENTRAL PROCESSOR §2.14

Pushdown Overflow — in a PUSH or PUSH]J the count in AC left
reached zero; or in a POP or POPJ the count reached —1. The setting
of this flag requests an interrupt.

User In-out — even if the processor is in user mode, no instructions
are 1llegal (but protection and relocation still apply) [§2.15].

Address Break — while the console address break switch was on, the
processor requested access to the memory location specified by the
address switches and the memory reference was for the purpose
selected by the address condition switches as follows: -

The instruction switch was on and access was for retrieval of an
instruction (including an instruction executed by an XCT or con-
tained in an interrupt location or a trap for an unimplemented
operation) or an address word in an effective address calculation.

The data fetch switch was on and access was for retrieval of an
operand (other than in an XCT).

The write switch was on and access was for writing a word in
memory.

The setting of this flag requests an interrupt, at which time PC points
to the instruction that was being executed or to the one following it.

Memory Protection — a user program attempted to access a memory
location outside of its area or to write in a write-protected part of its
area and the user instruction was terminated at that time. The setting
of this flag requests an interrupt, at which time PC points either to
the instruction that caused the violation or to the one following it.

Nonexistent Memory — the processor attempted to access a memory
that did not respond within 100 ps. The setting of this flag requests

. an interrupt, at which time PC points either to the instruction con-

taining the unanswered reference or to the one following it.

Clock — iius flag is set at the ac power line frequency and can thus
be used for low resolution timing (the clock has high long term
accuracy). If bit 25 is set the setting of the Clock flag requests an
interrupt.

Floatlng Overflow — this is one of the flags saved in a PC word, and
the conditions that set it are given at the beginning of §2.9. If bit 28
is set, the setting of Floating Overflow requests an interrupt, at which
time PC points to the instruction following that in which the over-
flow occurred.

Trap Offset — the processor is using locations 140-161 for unimple-
mented operation traps and interrupt locations.

Overflow — this is one of the flags saved in a PC word, and the condi-
tions that set it are given at the beginning of §2.9. If bit 31 is set,
the setting of Overflow requests an interrupt, at which time PC
points to the instruction following that in which the overflow
occurred.

9
§2.15 TIME SHARING
2.15 TIME SHARING

Without time sh'aring the system has a single user and the program has no
restrictions except those inherent in the hardware: the programmer must
stay within the memory capacity, observe the restrictions placed on the use
of certain memory locations by the hardware [§1.3], and observe the
restrictions on interrupt instructions. Optional hardware can restrict proc-
essor operation to permit time sharing by a number of programs. Each user
program is run with the processor in user mode, in which the program must
operate within an assigned area in core and certain operations may be illegal.
A program that runs unrestricted — the Monitor — is responsible for

scheduling user programs, servicing interrupts, handling input-output needs, .

and taking action when control is returned to it from a user program.

Every user is assigned a core area and the rest of core is protected from
him — he cannot gain access to the protected area for either storage or
retrieval of information. The assigned area is divided into two parts. The
low part is unique to a given user and can be used for any purpose. The
high part may be for a single user, or it may be shared by several users. The
Monitor can write-protect the high part so that the user cannot alter its
contents, ie he cannot write anything in it. The Monitor would do this when
the high part is to be a pure procedure to be used reentrantly by several
users. One high pure segment may be used with any number of low impure
segments. The user can request that the Monitor write-protect the high part
of a single program, eg in ordér to debug a reentrant program. All users write
programs beginning at address O for the low part, and beginning usually at
400000 for the high part. The programmed addresses are retained in the
object program but are relocated by the hardware to the physical area
assigned to the user as each access is made while the program is running.

The size and position of the user area are defined by specifying protection
and relocation addresses for the low and high blocks. The protection address
determines the maximum address the user can give; any address larger than
the maximum is illegal. The relocation address is the address, as seen by the
Monitor and the hardware, of the first location in the block. The Monitor
defines these addresses by loading four 8-bit registers, each of which
corresponds to the left eight bits (18-25) of an address whose right ten bits
are all 0.

To determine whether an address is legal its left eight bits are compared
with the appropriate protection register, so the maximum user address
consists of the register contents in its left eight bits, 1777 in its right ten bits
(ie it is equal to the protection address plus 1777). Since the set of all
addresses begins at zero, a block is always an integral multiple of 1024,
(20005) locations. Relocation is accomplished simply by adding the contents
of the appropriate relocation register to the user address, so the first address
in a block is a multiple of 2000. The relative user and relocated address
configurations are therefore as illustrated here, where P;, R;, P, and R, are
respectively the protection and relocation addresses for the low and high
parts as derived from the 8-bit registers loaded by the Monitor. If the low
part is larger than 128K locations, ie more than half the maximum memory
capacity (P, > 400000), the high part starts at the first location after the low

2-81

2-82

Note that the relocated low
_ partis actually in two sections
with the larger beginning at
R;+20. This is because ad-
dresses 0-17 are not relo-
cated, all users having access
to the accumulators. The
Monitor uses the first sixteen
locations in the low user
block to store the user’s accu-
mulators when his program is
not running.

Some systems have only the
low pair of protection and
relocation registers. In this
case the user program is
always nonreentrant and the
assigned area comprises only
the low part.

The user can actually write
any size program: the Monitor
will assign enough core for his
needs. Basically the user must
write a sensible program; if he
uses absolute addresses scat-
tered all over memory his
program cannot be run on a
time shared basis with others.

These instructions are illegal
_ unless User In-out is set.

100

CENTRAL PROCESSOR §2.15
0 —————————- 0
I ———— 17
ow |\ -
\\
P+ 1777 \
AR , Ry, + 400000
\ AN ;| men
\
NN , Ry + P, + 1777
ILLEGAL N
N7 \/
A A
/ N/ o\
/ /A\ \
————————— R
// N\ 'R, +20
\
400000 " N
HIGH | / R, + P+ 1777
P, + 1777
!]
i ! Ry MUST BE NEGATIVE
ILLEGAL H | UNLESS SYSTEM HAS A
| | MEMORY LARGER THAN
i1 NON- ;58K
| EXISTENT)
| MEMORY |
1 ’ |
1]
: :
777777 e -

TYPICAL PHYSICAL ADDRESS
CONFIGURATION AFTER RELOCATION

USER ADDRESSES
BEFORE RELOCATION

part (at location P; + 2000). The high part is limited to 128K. If the Monitor
defines two parts but does not write-protect the high part, the user has a
two-part nonreentrant program.

If the user attempts to access a location outside of his assigned area, or
if the high part is write-protected and he attempts to alter its contents, the
current instruction terminates immediately, the Memory Protection flag is
set (status bit 22 read by CONI APR,), and an interrupt is requested on the
channel assigned to the processor [§2.14].

User Programming. The user must observe the following rules when pro-

“gramming on a time shared basis. [Refer to the Monitor manual for further

information including use of the Monitor for input-output.]

¢ Use addresses only within the assigned blocks for all purposes — retrieval
of instructions, retrieval of addresses, storage or retrieval of operands. The
low part contains locations with addresses from 0 to the maximum; the high
part contains from the greater of 400000 or P, + 2000 to the maximum.
Either part can address the other.

¢ If the high part is write-protected, do not attempt to store anything in it.
In particular do not execute a JSR or JSA into the high part. .

¢ Use instruction codes 000 and 040-127 only in the manner prescribed in
the Monitor manual.

4 Unless User In-out is set do not give any 10 instruction, HALT (JRST 4,)
or JEN (JRST 12, (specifically JRST 10,)). The program can determine if
User In-out is set by examining bit 6 of the PC word stored by JSR, JSP or

101
§2.15 TIME SHARING

PUSHIJ.

The user can give a JRSTF (JRST 2,) but a 0 in bit 5 of the PC word does
not clear User (a program cannot leave user mode this way); and a 1 in bit 6
does not set User In-out, so the user cannot void any of the restrictions
himself. Note that a O in bit 6 will clear User In-out, so a user can discard
his own special privileges.

UUOs 001-037 execute normally and are relocated to addresses 40 and
41 in the low block [§2.10].

Monitor Programming. The Monitor must assign the core area for each
user program, set up trap and interrupt locations, specify whether the user
can give 10 instructions, transfer control to the user program, and respond
appropriately when an - interrupt occurs or an 1nstruct10n is executed in
unrelocated 41 or 61.

Core assignment is made by this instruction.

‘DATAO APR, Data Out, Arithmetic Processor

70014 [l x | Y

0 o 121314 1718 35

Load the protection and relocation registers from the contents of location
E as shown, where P;, P,, R; and R, are the protection and relocation

Plls-zs Phxs—zs P Rhs-zs Rh18-25

M N T N N Lt L1 1) | S T N O S | TR SN S N G

| T 1 T I T T T
0 7189 161718 252627 3435
addresses defined above. If write-protect bit P (bit 17) is 1, do not allow the
user to write in the high part of his area.

~Giving a JRSTF with a 1 in bit 6 of the PC word allows the user to handle
his own input-output. The Monitor can also transfer control to the user with
this instruction by programming a 1 in bit 5 of the PC word, or it may jump
to the user program with a JRST 1, which automatically sets User. The set
state of this flag implements the user restrictions.

While User is set, certain instructions are not part of the user program and
“are therefore completely unrestricted, namely those executed in the interrupt
locations (which are not relocated) and in unrelocated trap locations 41 and
61. Illegal instructions and UUO codes 000 and 040-077 are trapped in
unrelocated 40; codes 100-127 are trapped in unrelocated 60. BLKI and
BLKO can be used in the even interrupt locations, and if there is no over-
flow, the processor returns to the interrupted user program. JSR should
ordinarily be used in the remaining even interrupt locations, in odd interrupt
locations following block IO instructions, and in 41 and 61. The JSR clears
User and should jump to the Monitor. JSP, PUSHJ, JSA and JRST are
acceptable in that they clear User, but the first two require an accumulator

2-83

For a two part nonreentrant
program, set P = 0. For a one-
part nonreentrant program,
make Py, < P,. If the hardware
has only one set of protection
and relocation registers, the
user area is defined by P; and
R;, the rest of the word is
ignored.

102

2-84 CENTRAL PROCESSOR §2.16

(all accumulators should be available to the user) and the
latter two do not save the flags.

After taking appropriate action, the Monitor can return to
the user program with a JRSTF or JEN that restores the flags
including User and User In-out.

2.16 OPERATION

Most of the controls and indicators used for normal operation
of the processor and for program debugging are located on
the console operator panel shown here. The indicators are
on thé vertical part of the panel; in front of them are two
rows of two-position keys and switches (keys are momentary
contact, switches are alternate action). A key or switch is
on or represents a 1 when the front part is down.

The thirty-six switches in the front row and the eighteen
at the right in the back row are respectively the data and
address switches through which the operator can supply
words and addresses for the program and for use in conjunc-
tion with the operating keys and switches. The correspond-
ence of switches to bit positions is indicated by the numbers
at the bottom row of lights. At the left end of the back row
are ten operating switches, which supply continuous control
levels to the processor. At their right are ten operating keys,
which initiate or terminate operations in the processor. The
names of the operating keys and switches appear on the ver-
tical part of the panel below the lights.

Also of interest to the operator is the small panel shown
opposite, which is located above the main panel at the left
of the tape reader. The upper section of this panel contains
a total hours meter and the margin-check controls. The lower
section contains the power switch, speed controls for slowing
down the program, switches to select the device for readin
mode (lower part in represents a 1), and four additional
operating switches. The normal position for these last four
is with the upper part in; in this position FM ENB (fast
memory enable) is on, the others are all off.

Indicators

When any indicator is lit the associated flipflop is 1 or the
associated function is true. Some indicators display useful
information while the processor is running, but many change
too frequently and can be discussed only in terms of the
information they display when the processor is stopped. The
program can stop the processor only at the completion of the
HALT instruction; the operator can stop it at the end of

103

82.16 OPERATION
every instruction or memory reference, or for main-
tenance purposes, after every step in any operation
that uses the shift counter (shifting, multiplication,
division, byte manipulation).

Of the long rows of lights at the right on the
operator panel, the top row displays the contents of
PC, the middle row displays the instruction being
executed or just completed, and the bottom row are
the memory indicators. The right half of the middle
row displays MA, the left half displays IR [see page
1-2]1. In an 10 instruction the left three instruction
lights are on, the remaining instruction fights and the
left AC light are the device code, and the remaining
AC lights complete the instruction code. The I, index
and MA lights change with each indirect reference in
an effective address calculation; at .the end of an
instruction I is always off.

Above the memory indicators appear two pairs of
words, PROGRAM DATA and MEMORY DATA. If
the triangular light beside the former pair is on, the
indicators display a word supplied by a DATAO PI,;
if any other data is displayed the light beside MEM-
ORY DATA is on instead. While the processor is
running the physical addresses used for memory refer-
ence (the relocated address whenever relocation is in
effect) are compared with the contents of the address
switches. Whenever the two are equal the contents
of the addressed location are displayed in the memory
indicators. However, once the program loads the indicators, they can be
changed only by the program until the operator turns on the MI program
disable switch, executes a key function that references memory, or presses
the reset key (see below).

The four sets of seven lights at the left display the state of the priority
interrupt channels [see pages 2-74 and 2-75]. The PI ACTIVE lights indicate
which channels are on. The IOB PI REQUEST lights indicate which channels
are receiving request signals over the in-out bus; the PI REQUEST lights
indicate channels on which the processor has accepted requests. Except in
the case of a program-initiated interrupt, a REQUEST light can go on only
if the corresponding ACTIVE light is on. The PI IN PROGRESS lights indi-
cate channels on which interrupts are currently being held; the channel that
is actually being serviced is the lowest-numbered one whose light is on. When
a PROGRESS light goes on, the corresponding REQUEST goes off and can-
not go on again until PROGRESS goes off when the interrupt is dismissed.

At the left end of the panel are a power light and these control indicators.

RUN
The processor is in normal operation with one instruction following another.
When the light goes off, the processor stops.

HPEES CONTRD)

Above: Margin Check and
Maintenance Panel
Opposite: Console Operator
Panel

Note: If a REQUEST light
stays on indefinitely with the
associated PROGRESS light
off and PC is static, check the
PI CYC light on the indicator
panel at the top of bay 2. If
it is.on, a faulty program has
hung up the processor. Press
STOP.

2-86

If RUN and PROGRAM
STOP are both on, the proc-
essor is probably in an in-
direct address loop. Press
STOP.

104

CENTRAL PROCESSOR §2.16

PI ON
The priority interrupt system is active so interrupts can be started (this
corresponds to CONI PI, bit 28).

USER MODE
The processor is in user mode (this corresponds to bit 5 of a PC word).

PROGRAM STOP

IR now contains a HALT instruction. If RUN is off, MA displays an
address one greater than that of the location containing the instruction that
caused the halt, and PC displays the jump address (the location from which
the next instruction will be taken if the operator presses the continue key).

MEMORY STOP

The processor has stopped at a memory reference. This can be due to single
cycle operation, satisfaction of an address condition selected at the console,
reference to a nonexistent memory location, or detection of a parity error.

The remaining processor lights are on the indicator panels at the tops of
the bays [illustrated on page C8]. Bay 2 displays AR, BR and MQ, the
output of the AR adder, and the parity buffer which receives every word
transmitted over the memory bus. The RL and PR lights at the lower right
display the relocation and protection registers for the low part of the area
assigned to a user program and the left eight bits of the relocated address
for that part. The remaining lights are for maintenance.

The upper four rows on-the bay 1 panel include the indicators for reader,
punch and teletype, which are described in Chapter 3. The bottom row
displays the information on the data lines in the IO bus. The AR lights at
the upper right are the flags — FXU is Floating (exponent) Underflow, DCK
is No Divide (divide check). OV COND is the condition that the O and 1
carries are different, ie the condition that indicates overflow. The Byte
Interrupt flag is BYF6 in the MISC lights in the top row; User In-out is
IOT USER in the EX lights at the center of the panel. The CPA lights in
the top row andthe five lights under them at the left are the processor
conditions — PDL OV is Pushdown (list) Overflow. The AS= lights in the
middle row indicate when the (relocated) core memory address or the fast
memory address is the same as the address switches. The remaining lights
are for maintenance.

The panels on the two types of memories are shown on page C9. These
are almost exclusively for maintenance, and (as with most of the lights on
the processor bays) if the operator must use them he should consult the
maintenance manual and the flow charts. The ACTIVE lights indicate which
processor currently has access to the memory. '

105

§2.16 : OPERATION

Operating Keys

Each key except STOP turns on one of the key indicators at the upper right
on the bay 2 panel. These are for flipflops that allow the key functions to be
repeated automatically and also allow certain of them to.be synchronized to
the processor time- chain so they can be performed while the processor-is
running.

READ IN

Clear all 10 devices and all processor flags including User; turn on the RIM
light in the upper right on bay 1 and the KEY RDI light in the upper right
on bay 2. Execute DATAI D,0 where D is the device code specified by the
readin device switches on the small panel at the left of the reader. Then
execute a series of BLKI D,0 instructions until the left half of location O
reaches zero, at which time turn off RIM and KEY RDI. Stop only if the
single instruction switch is on; otherwise turn on RUN and execute the last
word read as an instruction. [For information on the data format refer to
page 2-72.]

START
Load the contents of the address switches into PC, turn on RUN, and begin
normal operation by executing the instruction at the location specified by
PC. .

This key function does not disturb the flags or the 10 equipment; hence
if USER MODE is lit a user program can be started.

CONT (Continue)
Turn on RUN (if it is off) and begin normal operation in the state indicated
by the lights.

STOP

Turn off RUN so the processor stops before beginning the next instruction.
Thus the processor usually stops at the end of the current instruction, which
is displayed in the lights. However, if a key function that can be performed
while RUN is on has been synchronized, the processor performs that func-
tion before stopping. In either case PC points to the next instruction.

If the processor does not reach the end of the instruction within 100 us,
inhibit further effective address calculation — it is assumed the processor is
caught in an indirect addressing loop. Pressing CONT when the processor is
stopped in an address loop causes it to start the same instruction over.

RESET
Clear all 10 devices and clear the processor including all flags. Turn on the
triangular light beside MEMORY DATA (turn off the light beside PRO-
GRAM DATA). If RUN is on duplicate the action of the STOP key before
clearing.

2-87

If RUN is on, pressing this
key has no effect.-

The rightmost device switch
is for bit 9 of the instruction
and thus selects the least sig-
nificant octal digit (which is
always O or 4) in the device
code.

CAUTION
Do not initiate any other key
function while RIM is on. If
read in must be stopped (eg
because of a crumpled tape),
press RESET (see below).

If RUN is on, pressing this
key has no effect. ’

If STOP will not stop the
processor, pressing this key
will.

2-88

Note that an instruction exe-
cuted from the console can
alter the processor state just
like any instruction in the
program: it can change PC by
jumping or skipping, alter the
flags, or even cause a non-
existent-memory stop.

~ If RUN is on, pressing this
key has no effect.

If RUN is on, pressing this
key has no effect.

* 106
CENTRAL PROCESSOR §2.16

XCT
Execute the contents of the data switches as an instruction without incre-
menting PC. If RUN is on, insert this instruction between two instructions
in the program. Inhibit priority interrupts durmg its execution to guarantee
that it will be finished.

If USER MODE is lit all user restrictions apply to an instruction executed
from the console.

Note

The remaining key functions all reference memory.
They use an absolute address and all of memory is
available to them; in other words protection and
relocation are not in effect even if USER MODE is
lit. However they can set such flags as Address
Break and Nonexistent Memory.

EXAMINE THIS

Display the contents of the address switches in the MA lights and the con-
tents of the location specified by the address switches in the memory indica-
tors. Turn on the triangular light beside MEMORY DATA (turn off the
light beside PROGRAM DATA). If RUN is on, insert this function between
two instructions in the program.

EXAMINE NEXT

Add 1 to the address displayed in the MA lights and display the contents of
the location specified by the incremented address in the memory indicators.
Turn on the triangular light beside MEMORY DATA (turn off the light
beside PROGRAM DATA). '

DEPOSIT

Deposit the contents of the data switches in the location specified by the
address switches. Display the address in the MA lights and the word
deposited in the memory indicators. Turn on the triangular light beside
MEMORY DATA (turn off the light beside PROGRAM DATA). If RUNis
on, insert this function between two instructions in the program.

DEPOSIT NEXT

Add 1 to the address displayed in the MA lights and deposit the contents of
the data switches in the location specified by the incremented address. Dis-
play the word deposited in the memory indicators. Turn on the triangular
light beside MEMORY DATA (turn off the light besidle PROGRAM DATA).

107
§2.16 OPERATION

CAUTION

Never press two keys simultaneously as the proc-
essor may attempt to perform both functions at
once.

Operating Switches

Whenever the processor references memory at the location specified by the
address switches (relocated if USER MODE is on), the contents of that loca-
tion are .displayed in the memory indicators (unless the light beside
PROGRAM DATA is on). The group of five switches at the left of the keys
allows the operator to make the processor halt or request an interrupt when
reference is made to the specified location in core memory for a particular
purpose (no action is produced by fast memory reference). The purpose is
selected by the three address condition switches. INST FETCH selects the
condition that access is for retrieval of an instruction (including an instruc-
tion executed by an XCT or contained in an interrupt location or a trap for
an unimplemented operation) or an address word in an effective address cal-
culation. DATA FETCH selects access for retrieval of an operand (other
than in an XCT). WRITE selects access for writing in memory. Whenever
reference to the specified location satisfies any selected address condition,
the processor performs the action selected by the other two switches. ADR
STOP halts the processor with MEMORY STOP on (PC points to the instruc-
tion that was being executed, or if the MC WR light on bay 2 is on, PC may
point to the one following it); ADR BREAK turns on the CPA ADR BRK
light (Address Break flag, CONI APR, bit 21) on bay 1, requesting an inter-
rupt on the processor channel.

The description of each switch relates the action it produces while it is on.

SING INST

Whenever the processor is placed in operation, clear RUN so that it stops at
the end of the first instruction. Hence the operator can step through a pro-
gram one instruction at a time, by pressing START for the first one and
CONT for subsequent ones. Each time the processor stops, the lights display
the same information as when STOP is pressed.

CLK FLAG (Clock flag) on bay 1 is held off to prevent clock interrupts
while SING INST is on. Otherwise interrupts would occur at a faster rate
than the instructions.

SING INST will not stop the processor if a hangup prevents it from getting
to the end of an instruction. Use STOP or RESET.

SING CYCLE

Whenever the processor is placed in operation, stop it with MEMORY STOP
on at the end of the first core memory reference. Hence the operator can
step through a program one memory reference at a time, by pressing START
for the first one and CONT for subsequent ones. To determine what infor-
mation is displayed in the lights, consult the flow charts.

2-89

AC and index register refer-
ences can be included by
turning off the FM ENB
switch (see below).

To stop at AC and index
register references, turn off
the FM ENB switch (see
below).

290

If IGN is on (it displays a sig-
nal from the memory), parity
errors are not detected and no
stop can occur.

The key function is repeated
once after REPT is turned
off, but this is noticeable only
with very long repeat delays.

The end of a key function is
equivalent to completion of
all processor operations asso-
ciated with the function only
for read in, examine, examine
next, deposit, and deposit
next. In other cases the proc-
essor continues in operation.
Eg the execute function is
finished once the instruction
to be executed is set up
internally, but the processor
then executes that instruc-
tion. Hence when using speed
range 6, the operator must be
careful not to allow the key
function to restart before the
processor is really finished.
i

108
§2.16

CENTRAL PROCESSOR
PAR STOP
Stop with MEMORY STOP on at the end of any memory reference in which
even parity is detected in a word read. A parity stop is indicated by the fol-
lowing: CPA PAR ERR (Parity Error flag) on bay 1 is on; and among the
PAR lights in the bottom row on bay 2, IGN (ignore parity) and ODD are
off, STOP is on, and BIT displays the parity bit for the word in the parity
buffer at the left.

NXM STOP

Stop with MEMORY STOP on if a memory reference is attempted but the
memory does not respond within 100 us. This type of stop is indicated by
CPA NXM FLAG (Nonexistent Memory flag) on bay 1 being on.

REPT
If any key (except STOP) is pressed, then every time the key function is
finished, wait a period of time determined by the setting of the speed control
and repeat the given key function. If CONT is pressed and no switch is on
that would stop the program (eg SING INST, SING CYCLE), then continue
following the repeat delay whenever a HALT instruction is executed. Con-
tinue to repeat the key function until RESET is pressed or REPT is turned
off.

The speed control includes a six-position switch that selects the delay
range and a potentiometer for fine adjustment within the range. Delay
ranges are as follows. :

Position
1 270 ms to 5.4 seconds

38 ms to 780 ms

3.9 msto 78 ms

390 us to 7.8 ms

27 us to 540 us

2.2 usto 44 us

Range

N A WN

MI PROG DIS

Turn on the triangular light beside MEMORY DATA (turn off the light
beside PROGRAM DATA) and inhibit the program from displaying any in-
formation in the memory indicators. The indicators will thus continually
display the contents of locations selected from the console.

REPT BYP
If REPT is on, trigger the repeat delay at the beginning of the key function.
Hence the function is repeated even if it does not run to completion.

109

§2.16 ‘ OPERATION

FM ENB v

This switch is left on for normal operation with a fast memory. Turning it
off (lower part in) substitutes the first sixteen core locations for the fast
memory. The switch is left off if there is no fast memory, and it can be used
to allow stopping or breaking at fast memory references.

SHIFT CNTR MAINT

Stop before each step in any shift operation. Pressing CONT resumes the
operation. Once a shift has been stopped, the processor will continue to
stop at each step throughout the rest of the given shift operation even if the
switch is turned off. .

At the right end of panel 1J behind the bay doors are two toggle switches.
FP TRP causes the floating point and byte manipulation instructions (codes
130-177) to trap to locations 60-61. MA TRP OFFSET moves the trap
and interrupt locations to 140-161 for a second processor connected to the
same memory. '

Inside each memory bay are switches for selecting the memory number
and interleaving memories. Also in the memory are a power switch, a restart
pushbutton, and a switch for single step operation (these three are located
on the indicator panel for the MB10 memory).

2-91

110

111

3

Basic In-out Equipment

The PDP-10 contains three in-out devices as standard equipment: tape
reader, tape punch, and teletype. These devices are used principally for
communication between computer and operator using a paper medium, tape
or form paper.

The punch supplies output in the form of 8-channel perforated paper tape
in eitHer of two modes. In alphanumeric mode, 8-bit characters are proc-
essed; in binary mode, 6-bit characters. The information punched in the
tape can be brought into memory by the tape reader, which handles charac-
ters in the same two modes.

The program can type out characters on the teletype and can read charac-
ters that have been typed in at the keyboard. This device has the slowest
transfer rate of any, but it provides a convenient means of man-machine
interaction.

3.1 PAPER TAPE READER

The reader processes 8-channel perforated paper tape photoelectrically at a
speed of 300 lines per second. The device can operate in alphanumeric or
binary mode, as specified by the O or 1 state respectively of the Binary flag.
In alphanumeric a single tape-moving command reads all eight channels from
the first line encountered. In binary the device reads six channels from the
first six lines in which hole 8 is punched and assembles the information into
a 36-bit word. The interface contains a 36-bit buffer from which all data is
retrieved by the processor. The reader device code is 104, mnemonic PTR.

CONO PTR, Conditions Qut, Paper Tape Reader
71060 1l x| Y |
(4] 121314 1718 35

Set up the reader control register according to bits 30-35 of the effective
conditions E as shown (a 1 in a flag bit sets the flag, a O clears it).

PRIORITY INTERRUPT
BINARY BUSY DONE ASSIGNMENT
1 1
27 28 29 30 31 32 33 34 Y o35

3-1

3-2

TAPE CHANNELS

FEED
HOLE

N
®06O0®° 000

()

TAPE MOTION

112

BASIC IN-OUT EQUIPMENT §3.1
CONI PTR, Conditions In, Paper Tape Reader
[71064] x] Y]
0 1213 14 1718 3s

Read the status of the reader into bits 27 and 30-35 of location E as shown.

‘ PRIORITY INTERRUPT
TAPE BINARY BUSY DONE ASSIGNMENT
1 1
27 28 29 30 31 32 33 34 35

Placing the tape in motion sets the Tape flag and it remains set as long as the
tape is in the read head. A 0 in bit 27 indicates that the last time an attempt .
was made to read, the reader was out of tape.

DATAI PTR, Data In, Paper Tape Reader
| 71044 1 x] Y]
0 121314 l7v18 35

Transfer the contents of the reader buffer into location E. Clear Done and
set Busy. ' ’

Setting Busy clears the reader buffer, sets the Tape flag (if it is not already
set) and places the reader in operation. If Binary is clear, all eight channels
from the first line on tape are read into bits 28—35 of the buffer with
channel 1 corresponding to bit 35 (the presence of a hole produces a 1 in the
buffer). If Binary is set, the device reads only channels 1-6, but it reads the
first six lines encountered in which channel 8 is punched (lines without a
hole in channel 8 are skipped) and assembles them into a full word in the
buffer. The first line 1s at the left in the word and channel 1 corresponds to
the rightmost bit in each 6-bit byte.

After the specified number of lines has been read, the reader clears Busy
and sets Done, requesting an interrupt on the assigned channel. A DATAI
brings the- data into memory and also causes the reader to continue in opera-
tion. The programmer must give a CONO to clear Busy if he does not want
the reades to move the tape after the final DATALI is given.

If the tape runs out or malfunctions while a read operation is in progress,
the Tape flag is cleared and the reader shuts down. .

Timing. At 300 lines per second the reader takes 3.33 ms per alpha-
numeric character, 20 ms per binary word if the binary characters are con-
tiguous. After Done is set, the program has 1.6 ms to give a DATAI and
keep the tape in continuous motion. Waiting longer causes the reader to
shut down for 40 ms. Thus start-stop operation is limited to 25 lines per
second.

13
§3.1 PAPER TAPE READER

ExampLes. This program reads ten binary words (60 lines) from paper
tape and stores them in memory beginning at location 4000. The block
pointer is kept in accumulator PNT.

MOVE PNT,[IOWD 12,4000] ;Put pointer in PNT

CONO PTR,60 ;Set up reader
NEXT: CONSO PTR,10 ;Watch Done .
" JRST —1
BLKI PTR,PNT ;Word ready, get it
JRST 42 ;Got all data

JRST NEXT ;Go gack for next word

If instead of just waiting we wish to continue our program while the data
is coming in, we can use the priority interrupt. The following uses channel 4
and signals the main program that the data is ready by setting bit 35 of
accumulator F.

MOVE 17,[BLKI PTR,[IOWD 12,4000]}
MOVEM 17,50 ;Set up 50 and 51 for channel 4
MOVE 17,[JSR DONE]

MOVEM 17,51

CONO PTR,64 ;Set up reader on channel 4
CONO PI 12210 ;Clear PI, then activate it and turn on
;channel 4

;Continue program

TRZN F,1 ;Check if data ready when needed
JRST —1 ;Wait if necessary

DONE: 0 ;Interrupt routine, block done
CONO PTR,0 ;Stop tape
TRO F,1 ;Set F bit 35
JEN @DONE ;Dismiss and restore flags

Operation. Tapes must be unoiled and opaque. The reader is located just
above the console operator panel. To load it, place the fanfold tape stack
vertically in the bin at the right, oriented so that the front end of the tape is
nearer the read head and the feed holes are away from you. Lift the gate,
take three or four folds of tape from the bin, and slip the tape into the rea-
der from the front. Carefully line up the feed holes with the sprocket teeth
to avoid damaging the tape, and close the gate. Make sure that the part of
the tape in the left bin is placed to correspond to the folds, otherwise it will
not stack properly. If the program requires that the Tape flag be set and it is
not, briefly press the white feed button located on the face of the reader.
After the program has finished reading the tape, run out the remaining
trailer by pressing the feed button.

Indicators for the reader are on the panel at the top of bay 1 (the panel is

34

This loader is written for min-
imum size and is quite com-
plex. Do not approach it asa
simple programming example.

114
BASIC IN-OUT EQUIPMENT §3.1

pictured in Appendix C). The paper tape reader lights in the second row
from the bottom display the contents of the buffer. The PI assignment and
flags are displayed in the PTR lights in the middle of the thitd row (EOT is
the Tape flag). The remaining PTR lights are for maintenance.

Readin Mode

The only requirement (beyond those given in §2.12) for readin mode with
paper tape is that the data must be in binary (hole 8 punched). To select
the reader in the readin device switches, turn on the third from the left and
the last on the right (104).

The program below is the RIM10B Loader, which is brought into the
accumulators in readin mode, and then continues to read any number of
blocks of binary data from the same tape. The tape is formatted as a series
of blocks separated by a half-dozen lines of blank tape (tape with only feed
holes punched). The first block is the loader in readin format. The rest of
the tape contains any number of data blocks and ends with a transfer block.
Each data block contains any number of words of program data, preceded
by a standard IO block pointer for the data only, and followed by a check-
sum, which is the sum of all the data words and the pointer. It is recom-
mended that the number of data words per block be limited to twenty for
ease in repositioning the tape in case of error. The transfer block is a JRST
to the starting location of the program, followed by a throw-away word to
stop the reader.

XWD -16,0 ;14,, words starting at location 1
ST: CONO PTR,60 ;Set up reader binary
STIi: HRRI A,RD+1 ;Put RD+1 in Y part of A
RD: CONSO PTR,10 . ;Watch Done

JRST —1

DATAI PTR,@TBL1-RD+1(A) ;First and last words in
;ADR, data in block
XCT TBL1-RD+1(A) ;TBL1+2 first word, +1 data,
*;4+0 checksum
XCT TBL2-RD+1(A) ;TBL2+2 JRST, +1 data, +0
i ;bad checksum
A: SOJA A, ;RD+1 first word, RD data, RD—1

' ;last word
TBL1: CAME CKSM,ADR ;Compare computed checksum with
;one read
ADD CKSM, 1(ADR) ;Add word read to checksum
SKIPL CKSM,ADR ;Put first word in CKSM, skip if
;pointer
TBL2: JRST 4,ST ;Halt if checksum bad
AOBIJN ADR,RD ;JIf data done, go to A; otherwise wait
;for next word
ADR: JRST ST1 ;Read in executes this. First and last

;word of each block also put here
CKSM=ADR+1 '

115

§3.2 PAPER TAPE PUNCH

The processor halts if a computed checksum does not agree with the tape.
To reread a block, move the tape back to the preceding blank area and press
the continue key. A halt following the transfer block is not an error — many
programs begin by halting.

3.2 PAPER TAPE PUNCH

The punch perforates 8-channel tape at speeds up to 50 lines per second. It
can operate in alphanumeric or binary mode, as specified by the O or 1 state
respectively of the Binary flag; but in either mode a single tape-moving
command punches only one line. Alphanumeric mode punches an 8-bit
character supplied by the program; binary mode always punches channel 8,
never punches channel 7, and punches a 6-bit character in the remaining
channels. The interface contains an 8-bit buffer that receives data from the
processor. The punch device code is 100, mnemonic PTP.

CONO PTP, Conditions Out, Paper Tape Punch
. 71020 1l x | Y B
0 121314 1718 . 35

Set up the punch control register according to bits 30-35 of the effective
conditions E as shown (a 1 in a flag bit sets the flag, a O clears it).

PRIORITY INTERRUPT
BINARY BUSY DONE ASSIGNMENT
1 1
27 28 29 30 31 32 33 34 35
CONI PTP, Conditions In, Paper Tape Punch
[71024 1 x] Y]
1] 121314 1718 35

Read the status of the punch into bits 29-35 of location E as shown.

NO PRIORITY INTERRUPT

TAPE BINARY BUSY DONE ASSIGNMENT
i 1
27 28 29 30 31 32 33 34 3s

A 1 in bit 29 indicates that the punch is out of tape.

3-5

3-6

116

BASIC IN-OUT EQUIPMENT §3.2

DATAO PTP, Data Qut, Paper Tape Punch

| 71014 7] x] Y |

0 121314 1718 : 35

- Load the contents of bits 28—-35 of location E into the punch buffer. Clear

Done and set Busy.

A CONO need be given only to change Binary or the PI assignment;
DATAO sets Busy while loading the buffer. Setting Busy places the punch in
operation. If Binary is clear, one line is punched in tape from bits 28—-35 of
the buffer with bit 35 corresponding to channel 1 (a 1 in the buffer produces
a hole in the tape). If Binary is set, channel 8 is punched, channel 7 is not
punched, and the remaining channels are punched from bits 30-35 of the
buffer with bit 35 corresponding to channel 1. After punching is complete,
the device clears Busy and sets Done, requesting an interrupt on the assigned
channel.

Timing. If Busy is set when the punch motor is off, punching is auto-
matically delayed 1 second while the motor gets up to speed. While the
motor is on, punching is synchronized to a pung¢h cycle of 20 ms. After
Done sets, the program has 10 ms within which to give a new DATAO to
keep punching at the maximum rate; after 10 ms punching is delayed until
the next cycle. If Busy remains clear for 5 seconds the motor turns off,

ExampLE. Suppose we wish to punch out the same information we read
from tape in the examples of the previous section. We cannot use a BLKO
as an interrupt instruction unless we first spread the 6-bit characters over
sixty memory locations. The example uses channel 5 and assumes that other
channels are already in use.

MOVE A,[JSR PUNCH]

MOVEM A,52 ;Set up channel 5
CONO PTP,55 ;Request interrupt for first word

CONO PI,2004 ;Turn on channel §
. ;Continue program

PUNCH: 0 ;Interrupt routine
ILDB A,BY®PNT ;Put byte in A
AOSL CNT ;Got all bytes?
CONO PTP,40 ;Yes, prevent interrupt after last word
DATAO PTP,A . ;Punch byte

JEN @PUNCH

BYPPNT: XWD 440600,4000 ;Generate pointer here
CNT: tD-60 ;Initialize count

Operation. The punch is located behind the reader; both are in a drawer
that pulls out from the front of the console. Fanfold tape is fed from a box
at the rear of the drawer. After it is punched, the tape moves into a storage

117

§3.3 ‘ TELETYPE

bin from which the operator may remove it through a slot on the front.
Pushing the feed button beside the slot clears the punch buffer and punches
blank tape as long as it is held in. Busy being set prevents the button from
clearing the buffer, so pressing it cannot interfere with program punching.

To load tape, first empty the chad box behind the punch. Then tear off
the top of a box of fanfold tape (the top has a single flap; the bottom of the
box has a small flap in the center as well as the flap that extends the full
length of the box). Set the box in the frame at the back and thread the tape
through the punch mechanism. The, arrows on the tape should be under-
neath and should point in the direction of tape motion. If they are on top,
turn the box around. If they point in the opposite direction, the box was
opened at the wrong end; remove the box, seal up the bottom, open the top,
and thread the tape correctly.

To facilitate loading, tear or cut the end of the tape diagonally. Thread
the tape under the out-of-tape plate, open the front guide plate (over the
sprocket wheel), push the tape beyond the sprocket wheel, and close the
front guide plate. Press the feed button long enough to punch about a foot
and a half of leader. Make sure the tape is feeding and folding properly in
the storage bin. Pushing the button labeled POWER sets No Tape, pushing
it again clears the flag. It can be used to hold the program at bay while a
tape is being loaded.

To remove a length of perforated tape from the bin, first press the feed
button long enough to provide an adequate trailer at the end of the tape
(and also leader at the beginning of the next length of tape). Remove the
tape from the bin and tear it off at a fold within the area in which only feed
holes are punched. Make sure that the tape left in the bin is stacked to
correspond to the folds; otherwise, it will not stack properly as it is being
punched. After removal, turn the tape stack over so the beginning of the
tape is on top, and label it with name, date, and other appropriate
information.

Indicators for the punch are the PTP lights in the top row of the panel
at the top of bay 1. The numbered lights display the last line punched.

3.3 TELETYPE

Two teletypewriter models are regularly available with the PDP-10 for use
at the console: the KSR 35, which is capable of speeds up to ten characters
per second, and the KSR 37, which can handle up to fifteen characters per
second. The program can type out characters and can read in the characters
produced when keys are struck at the keyboard.

The teletype separates its input and output functions and in effect acts
like two devices with a single device code: each has its own Busy and Done
flags, but the two share a common interrupt channel. Placing the code for a
character in the output buffer causes the teletype to print the character or
perform the designated control function. Striking a key places the code for
the associated character in the input buffer where it can be retrieved by the
program, but it does nothing at the teletype unless the program sends the
code back as output.

3-7

118

BASIC IN-OUT EQUIPMENT §3.3

Character codes received from the teletype have eight bits wherein the
most significant is an even parity bit. The Model 35 ignores the parity bit
in characters transmitted to it. The Model 37 ignores the parity bit in a
code for a printable character, but it performs no function when it receives
a control code with incorrect parity.

The Model 37 has the entire character set listed in the table in Appendix
B. Lower case characters are not available on the Model 35, but transmitting
a lower case code to the teletype causes it fo print the corresponding upper
case character. To go to the beginning of a new line the program must send
both a carriage return, which moves the type box to the left margin, and
a line feed, which spaces the paper. The teletype device code is 120,
mnemonic TTY.

CONO TTY, Conditions Out, Teletype
L 71220 1] x] Y]
0 121314 1718 3s

Set up the tele.type control register according to bits 24-35 of the effective
conditions E as shown (a 1 in bit 24 sets Test, a O clears it; all other flag
functions are produced by 1s, Os have no effect).

CLEAR | CLEAR | CLEAR | CLEAR | SET SET SET SET PRIORITY INTERRUPT
TEST | INPUT | INPUT |OUTPUT |OUTPUT| INPUT | INPUT |OUTPUT |OUTPUT . ASSIGNMENT
BUSY DONE BUSY DONE BUSY DONE BUSY DONE L \

24 25 26 27 28 29 30 31 32 33 34 35
Setting Test connects the output buffer directly to the input buffer, allowing
the program to check out the interface logic without the line and the device.
CONI TTY, Conditions In, Teletype
| 71224 1l x | Y]
0 121314 1718 35
Read the status of the teletype into bits 24 and 29-35 of location E as
shown.

TEST INPUT | INPUT |OUTPUT [OQUTPUT PRIORITY INTERRUPT
BUSY | DONE BUSY DONE ASSIGNMENT
i 1

24 25 26 27 28 29 30 31 32 33 34 35

DATAO TTY, Data Out, Teletype

[71214 [x] Y]

(1] 121314 17 18 35

Load the contents of bits 2835 of location E into the output buffer. Clear
Output Done, set Output Busy, and enable the transmitter.

119

§33 ‘) TELETYPE

DATAI TTY, Data In, Teletype

| 71204 1l x] Y]

0 121314 1718 35

Transfer the contents of the input buffer into bits 28—35 of location E.
Clear Input Done.

Output. A CONO need be given only to change the PI assignment;
DATAO sets Output Busy and enables the transmitter while loading the
buffer. Enabling the transmitter causes it to send the contents of the output
buffer serially to the teletype. Completion of transmission clears Output
Busy and sets Output Done, requesting an interrupt on the assigned channel.

Input. Teletype reception requires no initiating action by the program
except to supply a PI assignment. Striking a key transmits the code for the
character serially to the input buffer. The beginning of reception sets Input
Busy; completion clears Input Busy and sets Input Done, requesting an
interrupt on the assighed channel. A DATAI brings the character into
memory and clears Input Done.

Timing. The Model 35 can type up to ten characters per second. After
Output Done is set, the program has 9.09 ms to give a DATAO to keep
typing at the maximum rate. After Input Done is set, the character is
available for retrieval by a DATAI for 22.73 ms before another key strike
can destroy it. '

The 37 can handle fifteen characters per second, 66.7 ms per character.
After Output Done is set, the program has 6.67 ms to send a new character
to maintain the maximum typing rate. After Input Done is set, the character
is available for at least 10 ms.

The sequence carriage return-line feed, when given in that order, allows
sufficient time for the type box to get to the beginning of a new line. After
tabbing, the program must wait for completion of the mechanical function
by sending one or two rubouts. If the time is critical, the programmer
should measure the time required for his tabs. Tabs are normally set every
eight spaces (columns 9, 17, ...) and require one rubout.

Operation. The illustrations on the following two pages show the two
teletype models. The teletype is actually two independent devices, keyboard
and printer, which can be operated simultaneously. Power must be turned
on by the operator. On the 35 the switch is beside the keyboard, and has an
unmarked third position (opposite ON) which turns on power but with the
machine off line so it can be used like a typewriter. A similar switch is
located beneath the stand on the 37.

The keyboard resembles that of a standard typewriter. Codes for printable
characters on the upper parts of the key tops on the 35 are transmitted by
using the shift key; most control codes require use of the control key. Those
familiar with the 35 who are using the 37 for the first time should take a
close look at the keyboard. On the 37 the shift is used for real upper case
characters. The control key is used for some control characters, but many

Teletype KSR 35

120

BASIC IN-OUT EQUIPMENT §3.3

have' separate keys. Note also that both the keyboard arrangement and the
labels differ somewhat. On both, the line feed (labeled “new line” on the 37)
spaces the paper vertically at six lines to the inch, and must be combined
with a return to start a new line. The local advance (feed) and return keys
affect the printer directly and do not transmit codes. Appendix B lists the
complete teletype code, ASCII characters, key combinations, and differences
between the two models. ‘
Indicators for the teletype are the TTY lights in the second row of the

121

panel at the top of bay 1. The numbered lights display the last character
typed in from the keyboard (bit 8 is parity). The ACT lights indicate
activity in the transmitter and receiver. The remaining lights display the PI
assignment and flags (the Input and Output Done flags are labeled TTI
FLAG and TTO FLAG). :
Teletype manuals supplied with the equipment give complete, illustrated
descriptions of the procedures for loading paper, changing the ribbon, and
setting horizontal and vertical tabs. The first two procedures are fairly

Teletype KSR 37

122

BASIC IN-OUT EQUIPMENT : §3.3

obvious: observe the paper or ribbon path and duplicate it. The other tasks
are usually left for maintenance personnel. In any event, the best and easiest

way to learn to do any of these things is to have someone who knows show
you how.

123

4
Hardcopy Equipmént

This chapter discusses the line printer, XY plotter, card reader, and card
punch. Like the basic in-out equipment, these devices are primarily for
communication between computer and operator using a paper medium: form
paper, graph paper or cards.

The line printer provides text output at a relatively high rate. The pro-
gram must effectively typeset each line; upon command the printer then
prints the entire line. With the plotter, the program can produce ink draw-
ings by controlling the incremental motion of pen on paper in a cartesian
coordinate system., Curves and figures of any shape can be generated by
proper combinations of motion in x and y.

The card equipment processes standard 12-row 80-column cards. Many
programmers find cards a convenient medium for source program input and
for supplying data that varies from one program run to another. -Cards are
convenient to prepare manually, input is much faster than paper tape, and
simple changes are easy to make: individual cards can be repunched, and
cards can be added or removed from the deck. The card reader cannot be
used in readin mode, but a standard card-reading program in readin format
can be kept on paper tape or DECtape. A possible consideration in using
cards is that many installations do not include an online card punch.

These four devices are all run by the BA10 Hardcopy Control. Interface
logic for a plotter can also be mounted in the TD10A DECtape Control.

4.1 LINE PRINTER

The line printer outputs hardcopy composed of lines 132 characters long at
a nominal rate of 300,600 or 1000 lines per minute. The standard printer
has sixty-four printing characters available to the program. The characters
and codes are the figure and upper case sets, codes 040-137, in the teletype
code [Appendix B]. When a lower case code (140-176) is given, the corres-
ponding upper case code is loaded into the buffer. Besides accepting printing
characters, the printer responds to ten control characters, HT, CR, LF, VT,
FF, DLE and DC1-4. All other codes are ignored.

The printer has a'132-character buffer that holds the image of a single line;
the program must first load the buffer up to five characters at a time, and
then give a control character to print the entire line. The buffer is loaded
from left to right, and only the portion filled produces a printout. Hence

4-1

4-2

Virtually any character set
can be had on any printer by
special order. In any event
characters after the first
ninety-five are always special
order.

Spacing other than the stan-
dard can be produced by
using a different format tape.
The length of the loop should
correspond to one or more
pages of the printer form
used, with holes punched at
the lines where paper spacing
is to stop.

Programmers generally treat
the data for the line printer
and teletype identically, using
the combination CR plus LF
for printing and spacing. This
way a given character string
can be outputted on either
device. CR is used alone only
when the next print command
will overprint, ie will print
another character in a column
position already printed. With
this technique the program
can produce a character such
as “#” by overprinting a
slash on an equal sign (or vice
versa).

124
HARDCOPY EQUIPMENT 84.1

for each line the program need send out characters (including spaces) only as
far as the rightmost nonspace character. The characters are printed in the
order that they pass the print hammers, and a given character is printed
simultaneously in all positions that require it. In other words the drum has a
row of 132°Ms, a row of Ns, etc; all Ms are printed together, all Ns together,
and so forth. The first character printed depends only upon the position of
the drum when the print command is given.

Printers having more than sixty-four characters are also available. The 96-
character printer outputs 600 lines per minute and has the entire figure,
upper case and lower case sets, codes 040-176. This is actually only ninety-
five characters, but an option allows use of the delete code to select an extra
character on the drum. A single delete code is ignored, but two consecutive
177s cause the code 177 to be loaded into the buffer. When the code for a
printing character is the same as one for a nonprinting character and is loaded
by giving it immediately after a delete code, the printing character is said to
be “hidden” under the nonprinting one. '

The 128-character printer outputs 500 lines per minute and uses the entire
set of 7-bit codes for printing characters, with characters hidden under the
ten control characters and also under null and delete.

Output Format. Paper motion is controlled by a format tape loop in the
printer. The tape has eight columns and the loop corresponds to an integral
number of pages of the fanfold form paper. With the exception of CR, every
control character that prints a line from the contents of the buffer produces
a different spacing by selecting a particular tape column. The paper then
advances until a hole is encountered in the selected column.

The standard paper has 11-inch pages of sixty-six lines, and the standard
tape for these generates the formats listed below. The fourth column gives
the hole positions in terms of the numbered lines on the tape. The tape is
usually installed at random and then positioned by pressing the top-of-form
button on the printer. Then the paper is adjusted so that the desired line on
the paper corresponds to line O on the tape. Ordinarily the paper is set with
the print hammers at the fourth line, so all but one of these formats leaves
a three-line margin at the top and a margin of at least three lines at the
bottom of each page. -

Character Column Normal meaning Hole positions

FF (014) 1 Top of form Line O

CR (015) None No spacing (paper
motion inhibited)

LF (012) 8 Single space with auto- Every line from O
matic top of form after to 59
every 60 impressions ‘

-DC1 (021) 3 Double space with auto- Every even num-

matic top of form after bered line from O
every 30 impressions to 58

DC2 (022) 4 " Triple space with auto- Every third line

matic top of form after from O to 57

every 20 impressions

125

§4.1 LINE PRINTER

DC3 (023) 5 Single space Every line

DC4 (024) 6 Space one sixth of a - Lines 0, 10, 20
page 30, 40,50

VT (013) 7 Space one third of a Lines 0, 20, 40
page

DLE (020) 2 Space half a page Lines 0, 30

The actual printer action of advancing the paper to the next hole in the tape
produces the “normal” format only if the program consistently selects the
same tape column. Always using DC1 to print produces double spaced text
from line 4 to line 62 on every page. But if the last print command spaced to
an odd numbered line, DC1 moves the paper only one line.

Printing Speed. The printer is available in five models with differing
printing speeds.

Nominal printing Time per
speed in lines Drum rotation revolution
Printer per minute in rpm in ms
LP10A 300 333 180
LP10B 600 750 80
LP10C 1000 1250 48
96 Character 600 750 80
128 Character 500 550 109

Printing begins as soon as a print command is given and terminates when
the last required character is printed, ie without necessarily waiting for a
complete drum revolution. Therefore print time depends on the initial drum
position and the number of characters that must pass the print head before
the last is printed. No time is required for spaces: the printer produces
spaces in a line by not printing anything in the columns corresponding to the
buffer positions that hold space characters. As a given character is printed,
space codes replace the codes for the character in all buffer positions that
hold it, and printing ceases when the buffer is filled with spaces.

A complete print cycle consists of the print time plus the time required
for advancing the paper; paper spacing begins immediately after printing ter-
minates, and further printing is inhibited while the paper is moving. It takes
about 12 ms to advance the paper one line, about 6-8 ms for each additional
line. If the buffer is loaded only with spaces, the print cycle consists entirely
of paper spacing.

Using an ordinary distribution of characters results in printing at or
slightly above the nominal speed. Printing is faster however if paper spacing
occurs while unused characters are passing the print head. Eg text that uses
only the alphabet can be printed at the full drum rotation speed.

Instructions. The printer has the usual instructions for sending and reading
conditions, but after initial setup it can be controlled entirely by the charac-
ters sent by a string of DATAOs. The program supplies five characters at a
time to a 35-bit character buffer in the printer interface. The interface proc-
esses the characters from left to right loading valid data characters into the

/

4-4

126

HARDCOPY EQUIPMENT §4.1

line buffer, ignoring invalid characters, and sending control signals to the
printer when a control character is encountered. The printer device code is
124, mnemonic LPT.

CONO LPT, Conditions Qut, Line Printer
| 71260 1] x] Y
0 121314 1718 35

Perform the function given below if specified by a 1 in bit 25 and set up the
printer control register according to bits 30-35 of the effective conditions E
as shown (a 1 in a flag bit sets the flag, a O clears it).

CLEAR PRIORITY INTERRUPT PRIORITY INTERRUPT
PRINTER BUSY DONE ASSIGNMENT — ERROR ASSIGNMENT — DONE

! 1 L L
24 25 26 27 28 29 30 31 32 33, 34 35

Power turnon and the IO
reset signal generated by
CONO APR,200000 dupli-
cate this clear function.

If bit 25 is 1, clear Done, set Busy, clear the interface logic, and trigger a
print cycle to clear the line buffer. The cycle clears the buffer by replacing
the characters in it with spaces, and the time required is the same as would
be required to print whatever is in it. Completion of the cycle clears Busy
and sets Done, requesting an interrupt on the channel assigned by bits
33-3s.

CONI LPT, COnditions In, Line Printer
71264 1l x | Y |
0 121314 1718 35

Read the status of the printer into bits 24-35 of location E as shown.

PRIORITY INTERRUPT PRIORITY INTERRUPT

128 96 ERROR | BUSY DONE ASSIGNMENT — ERROR ASSIGNMENT — DONE
1] 1 1

24 25 26 27 28 29 30 3t 32 33 34 35

A 1 in bit 24 indicates that the printer has a 128-character drum;a 1 in bit
25 indicates that at least 95 characters are available to the program.

DATAOD LPT, Data Out, Line Printer

71254 1l x | Y

0 121314 1718 35

Load the contents of bits 0—-34 of location E into the character buffer, clear
Done, set Busy, and trigger the interface processing cycle. The format of the

127
§4.1 . LINE PRINTER

data word and the order in which the characters are processed is as shown.

I .FIRST SECOND I THIRD FOURTH FIFTH ‘ |
0 67 ~

1314 2021 2728

Following power turnon, the Error flag (CONI bit 27) is set if the printer
cable is not connected or any other condition exists that makes the printer
unavailable to the program {these other conditions are given in the discussion
of printer operation at the end of the section]. If Error is set when a CONO
gives an error PI assignment (with bits 30-32 of E), there is an immediate
interrupt request on the error channel. Barring accident or hardware mal-
function, an error interrupt is likely to occur during a printout run only
when the printer is about to run out of paper or the operator stops it (in
either case Error sets and the printer stops when the buffer is empty
following the printing of a line).

At the beginning of a print run the program should give a CONO to clear
the line buffer and assign the PI channels. After that a CONO need be given
only to change the PI assignments; each DATAO starts the character-proc-
essing operations of the interface while loading the character buffer. The
interface processes the characters from left to right, starting each character
cycle when the line buffer is ready. Printing characters are simply sent to the
buffer, with lower case codes translated to upper case for a 64-character
printer. Unused codes are ignored. The interface responds as follows when a
control character is encountered.
¢ A horizontal tab (HT) is simulated by sending a strmg of spaces to the line
buffer. Tab stops are every eight columns (9, 17, .. .). The interface always
sends at least one space, and then sends as many more as are necessary for
the next character to be at a tab stop. Thusif a DATAO gives the sequence

A HT B

where A4 is placed in column 7, B will go into column 9. But if A goes into
column 8, B will go into column 17.

¢ Upon encountering any other printer control character, the interface
signals the printer to print the contents of the line buffer, and unless the
character is CR, it also selects a format tape column to space the paper as
listed in the format discussion at the beginning of this section. When the
buffer again becomes available, subsequent characters-will be loaded starting
in column 1. If printing is caused by a CR, the next line will overprint unless
the paper is advanced before any nonspace characters are loaded into the
buffer.

If the buffer is filled with 132 characters and the next character does not
cause printing, the interface simulates a line feed to print and advance the
paper, and then loads the next character at'column 1 for the new line. If the
program tabs to the end of a line, the interface simulates a line feed and also
tabs at the beginning of the next line. In other words a printing character
following the tab will be loaded at column 9 for the new line.

When the interface finishes processing the five characters supplled by a

4-5

Characters are assembled into
words in this manner by an
IDPB loop or an ASCII or
ASCIZ pseudoinstruction.

These tabs are the same as
the ones ordinarily used on
the teletype.

128
HARDCOPY EQUIPMENT §4.1

DATAO, it clears Busy and sets Done, requesting an interrupt on the channel
assigned by bits 33-35 of the conditions out.

Timing. The time from one DATAO to the next while the program is
loading the buffer is simply the time required by the interface to process five
characters. Loading each printing character, including each space in a
horizontal tab, takes 10 us. Skipping an illegal character takes 8 us.

If the fifth character causes printing, Done is set immediately and the
program can give a DATAO to send the first set of characters for the next
line. However, the interface does not begin processing the new characters
until the buffer becomes available after the printer finishes printing the
previous line. If printing is produced by any character before the last, the
print time elapses before the interface processes the next character in the
current set.

The overall time required for a print run is the total printing and spacing
time for all lines as given above in the discussion of the printing speed. The
time required to process individual characters is a consideration in pro-
gramming the DATAOs that load the buffer, but buffer loading time is not
a factor in total printer operating time except when loading characters for
overprinting (following a CR). This is because the buffer becomes available
while the paper is moving, in plenty of time for the program to load it before
the paper stops.:

ExampLEs. In the first example, which uses the line printer without the
interrupt, we have simply filled in the missing part of the print subroutine
given at the top of page 2-61 (it prints the characters that accompany the
calling sequence given at the bottom of page 2-60).

PRINT: HRLI T,440700

ILDB CH,T

JUMPE CH,I(T)

CONSZ LPT,200 ;Skip when printer not busy
JRST —1 ;Wait for Busy to clear

LSH CH,1 ;Shift character to bits 28—34
DATAO LPT,CH ;Send character to printer

JRST PRINT+1

The same program could be used for output on the teletype by making the
substitution

CONSZ LPT,200 - CONSZ TTY,20

and deleting the LSH CH, 1..

The above is perhaps an overly simple example. It assumes the line buffer
is clear initially and the printer is available. Moreover the processor spends
most of its time waiting. Characters are processed individually in order to
detect the null, but if the processor has anything else to do, it would be
much more efficient to use the interrupt and send five characters at a time.

In the following example the main program sets up each print run by
giving a JSR SETUP. The number of words printed and the starting location
of the block containing them are determined by the contents of PNTR1.
Once a run is set up, the program can change the contents of PNTR1 for
the néxt one.

129

§4.1 ; LINE PRINTER
SETUP: 0 :
SKIPGE PNTR
JRST 1 ~ ;Wait for current IO to finish
MOVE T,[JSR ERROR]
MOVEM T,42 ;Channel 1 for error
MOVE T,[JSR DATA]
MOVEM T,44 ;Channel 2 for data
MOVE T,PNTRI
MOVEM T,PNTR ;Set up new 10 block pointer
CONO LPT,2012 ;Clear printer, assign channels
CONO PIL2340 ;Turn on PI and channels
JRST @SETUP
PNTR1: 0
PNTR: 0
ERROR: 0
CONO LPT,2 ;Drop error request by dropping error
;PI assignment
;Start typing error message
JEN @ERROR
DATA: 0 :
CONO LPT,12 ;Reassign error channel
BLKO LPT,PNTR ;Send out word
CONO LPT,0 ;Turn off printer

JEN @DATA

Operation. The 600-line-per-minute printer is illustrated on the following
page. At the left on the front of the printer are two round indicators and
two columns of square buttons and indicators, some of which are not used.
The round lights indicate whether the printer has power: green light for
power on, red for off.

The buttons at the top of the columns operate the printer. Pushing
START places the printer on line so it can respond to the program (the
button is lit while the unit is on line). Pushing STOP takes the unit off line;
the operator can then use the TOP OF FORM button to position the paper
(or the format tape). If the program has left ‘anything in the buffer, it can
be printed by pressing' MANUAL PRINT. The maintenance button TEST
can also be used while STOP is lit. START, STOP and TOP OF FORM are
duplicated at the rear of the printer.

At the bottom of the columns are four alarm lights that indicate when the
paper supply is low, the printer is out of paper or the paper is broken, the
yoke is open, or there is a circuit malfunction (ALARM STATUS). When
the operator presses STOP or there is a paper low alert, START does not go
out until the buffer is empty (in other words until the printer finishes
printing a line currently being loaded or printed). START goes out immedi-
ately if any other alarm condition occurs or power fails. When START is
out or the cable to the interface is not connected, the Error flag is set and
the printer cannot respond to the program.

End of clear function sets
Done, requesting a data
interrupt.

Line Printer LP10B

130

HARDCOPY EQUIPMENT §4.1

The lights for the interface are in the top two rows on the hardcopy
control indicator panel [illustrated on the opposite page]. The top row dis-
plays the contents of the character buffer; the 7-bit characters are shifted
left for processing. The shift and column counters at the left end of the
second row indicate the last character processed (0—4) and the last buffer
position loaded. The group of lights at the right display the status condi-

131

§4.2 PLOTTER

tions. Of the group in the center, BUFF AVAIL indicates the line buffer is
ready for the next character; the remaining lights are for maintenance.

To load paper, press STOP. If START does not go out, the program
probably left the last line in the buffer: press MANUAL. When printing is
complete the light will go out. Open the printer cover. At the front are two
toggle switches: switch both of them to OPEN. The printer yoke will slide
forward. Lift the guide plates over the two pairs of tractors, pull out the
remaining paper, and press TOP OF FORM to line up the spacing format
tape. Bring the beginning of the paper up behind the yoke, over the top and
through the rollers on the back. Move the paper until line 4 of a page is
lined up with the print hammers (at most installations the point at which the
fold should come is marked). Make sure the tractor wheels engage the holes
at the edges of the paper, close the guide plates, switch the toggles to
CLOSE, close the cover, and press START.

All of the larger and faster printers are as described above! On the slowest
printer the lights are at the right, the single PAPER ALARM indicates the
paper is either low or broken, and there are no buttons on the back. With
the cover open the yoke is controlled by two unmarked plastic switches on
either side at the top. Pressing them in at the end nearer the front opens the
yoke. This printer has only one pair of tractors, but it has a pair of bars
below the yoke. The paper must go over the stationary bar and under the
movable one.

4.2 PLOTTER

The XY 10 plotter control interfaces the PDP-10 central processor to various
plotters that use cartesian coordinates. The models most frequently used are
manufactured by Calcomp, but others can be accommodated. The following
lists the type and paper size of the most commonly supplied Calcomp
models.

Indicator Panel,
Hardcopy Control

49

4-10

Calcomp plotters in the 600
series have two step sizes and
two plotting speeds: a switch
at the back selects the step
size, delay settings in the
plotter control determine the
speed.

132

HARDCOPY EQUIPMENT §4.2
Calcomp model Type Paper size in inches
502, 602 Bed 31 X34
518,618 Bed 54 X 72
563, 663 Drum 29% X 1440
565, 665 Drum 11 X 1440

These are high accuracy, incremental digital plotters that produce fine
quality ink plots of computer-generated data. Bidirectional stepping motors
provide individual increments of motion in either coordinate or both at once.
The program draws a continuous sequence of line segments by controlling
the relative motion of pen and paper with the pen lowered, and it can raise
the pen for repositioning.

Motion in y is movement of the pen carriage along a pair of rods. Motion
in x is movement of the entire carriage-and-rod mechanism on a bed plotter,
movement of the paper underneath the carriage on the drum type. On a bed
plotter the coordinate directions are the standard ones when viewing the
device from the front: positive x to the right, positive y to the back. The
coordinate system on a drum is in the standard orientation when the viewer
is standing at the right side, unrolling the paper from the drum with his left
hand. In other words positive y is movement of the pen from right to left
across the drum, positive x is drum rotation downward at the front (drawing
a line toward the paper supply roll at the back).

The step sizes and plotting speeds available with the various Calcomp
models are the following. d

Plotting speed in

Model Step size steps per second
502 All sizes 300
.005 inch 200
.002 inch 450
>18 .1 mm 200
.05 mm 400
.010 inch 200
563 .005 inch 300
I mm 300
565 All sizes 300
602 All sizes 450/900
.005/.0025 inch 200/400
618 .002/.001 inch 450/900
.1/.05 mm 200/400
.05/.025 mm 450/900
.010/.005 inch 350/700
663 .005/.0025 inch 450/900
.0025/.00125 inch 450/900

665 All sizes 450/900

133

§4.2 PLOTTER

The program can draw any complete figure by giving a string of DATAOs,
each of which supplies the information for one step. The plotter device code
is 140, mnemonic PLT.

CONO PLT, Conditions Qut, Plotter
[71420] x] Y]
0 121314 1718 35

Set up the plotter control register according to bits 31-35 of the effective
conditions E as shown (a 1 in a flag bit sets the flag, a O clears it).

PRIORITY INTERRUPT
BUSY DONE ASSIGNMENT

1 1

27 28 29 30 31 32 33 34 35

Calcomp Drum Plotte’
Model 565

4-12

134

HARDCOPY EQUIPMENT §4.2

CONI PLT, Conditions In, Plotter
72424 il x] Y]
0 121314 1718 35

Read the status of the plotter into bits 30-35 of location E as shown.

PRIORITY INTERRUPT
PO&ER BUSY DONE ASSIGNMENT
1 1

27 28 29 30 31 32 33 34 35
Power On is not available on all plotters.
DATAD PLT, Data Out, Plotter

71414 1 x [Y

0 121314 1718 35

Clear Done, set Busy, and move the pen as specified by bits 30-35 of the
contents of location E as shown (a 1 in a bit produces the indicated motion,
a 0 has no effect).

-AX +AX +AY -AY
RAISE WER :
PEN LOrN (DRUM (DRUM (CARRIAGE | (CARRIAGE
UP) DOWN) LEFT) RIGHT)
30 31 32 33 34 3s

A CONO need be given only to change the PI assignment; DATAO places
the plotter in operation by supplying plotting data. After sufficient time has
elapsed for the device to carry out the specified action, the control clears
Busy and sets Done, requesting an interrupt on the assigned channel.

To avoid drawing line segments shorter than one step, do not raise or
lower the pen in the same DATAO that calls for xy motion. The conse-
quences of specifying contradictory movements cannot be predicted.

Timing. Lowering the pen takes 60 ms, raising it takes 10 ms. The time
required to move one step in either or both coordinates depends on the
plotting speed as follows.

Plotting speed in
steps per second Time per step in ms
200 2.5
300 1.66
350 1.45
400 1.25
450 1.10
700 .70
900 S1

135

§4.2 PLOTTER

ExampLE. The plotting commands sent out by this program are contained
six to a word in WC words beginning at location BUFFER. The interrupt
routine uses one accumulator which is shared with the main program and
other channels.

CONSZ PLT,7 ;Wait until previous run finished as
JRST - .—1 ;indicated by no PI assignment

MOVE T,[JSR DATA]

MOVEM T,50 :Set up channel 4

MOVEI T,WC*6 ;Set up count for plotting commands

MOVEM T,COUNT
MOVE T,[POINT 6,BUFFER]
MOVEM T,CHARP
CONO PLT,4

CONO PI,2210
DATAO PLT,PUP

;Initiate byte pointer

;Assign channel
;Turn on PI and channel
;Raise pen to trigger first interrupt

DATA: 0
SOSGE COUNT ;Is plot finished?
JRST DATAL ;Yes
MOVEM T,TSAVE ;Save T
ILDB T,CHARP ;Get next plotting command
DATAO PLT, T ;Plot point
MOVE T, TSAVE ;Restore T
JEN @DATA
PUP: 40
TSAVE: * 0
COUNT: O
CHARP: 0
DATAl: CONO PLT,0 ;Disconnect plotter from interrupt

DATAO PLT,PUP
JEN @DATA

;Raise pen

Operation. On a drum plotter the supply roll is behind the drum. Bring
‘the paper over the drum, down in front, and above and behind the pickup
roll underneath the drum (use a piece of masking tape to attach the paper,
or roll some onto the tube).

The controls are on the front [refer to the illustration on page 4-11]. To
put the plotter on line simply turn on the power and the chart drive. The
remaining controls are for manual operation: raising and lowering the pen,
moving the carriage and drum in either direction, rapidly or single step. The
switch that selects the step size on a 600-series plotter is on the back. The
bed plotter has similar controls.

Lights for the plotter are the group at the right end in the bottom row on
the hardcopy control indicator panel [page 4-9]. These display tlie status
conditions and the plotting data supplied by the last DATAO. If theplotter
interface is mounted in a DECtape control, there are no lights.

4-13

The asterisk is the sign for
multiplication in MACRoO.

POINT is a pseudoinstruction
that causes MACRO to gener- -
ate a byte pointer from the
three arguments that follow
it. In order these arguments
are the byte length in deci-
mal, the address of the loca-
tion containing the byte, and
the position of the rightmost
bit of the byte as the decimal
number of the bit in the
word. If the last argument is
omitted, MACRO takes it as
—1; in other words, after
being incremented the pointer
will point to the first byte. -
The left half of the pointer
generated here is 440600.

4-14

136
§4.3

HARDCOPY EQUIPMENT

4.3 CARD READER

The card reader handles standard 12-row 80-column cards at speeds up to
1000 cards per minute (833 if power is 50 Hz). Once started, an entire card
is read column by column. The reader supplies each column to the processor
as twelve bits, and the program can translate in any way it wishes; the
standard DEC character representations and the translation to ASCH made
by the Monitor are given in Appendix B. Of course the data can simply be in
binary at three columns per word (a 7 and 9 punch in the first column is the
standard indication that the rest of the card contains binary data).

The interface contains a 12-bit buffer from which each column is retrieved
by the procéssor. The reader device code is 150, mnemonic CR.

Conditions Out, Card Reader

71520 LIRS Y]

0 . 121314 1718 35

CONO CR,

Assign the interrupt channel specified by bits 33-35 of £ and perform the
functions specified by bits 23-32 as shown (in bits 27 and 29 a 1 enables
the given flag to interrupt, a O disables it; in all other bits a 1 produces the
indicated function, a O has no effect).

ENABLE.

TROUBLE

INTERRUPTS

ENABLE
READY

TO READ

Al
INT‘ERRU PTS

CLEAR
READER

OFFSET
CARD

READ
CARD

/

MISSED

/

CLEAR
END
OF
FILE

CLEAR
READY

PRIORITY
INTERRUPT
ASSIGNMENT
I 1

With the console model, off-
setting a card places it in a

separate stacker.

21

22

23

Notes.
23

24

24

25

26

21

28

29

30

32

3

34

35

Dismiss the PI assignment (assign zero); clear flags Reading Card,
Data Missed, End of File, End of Card, Data Ready, Trouble
Interrupt Enabled, Ready to Read Interrupt Enabled; clear the card
column buffer; and disable any read command given by a CONO if
the reader has not yet started the card. If any action specified by the
rest of the CONQ bits conflicts with these actions, the clear function

has precedence.

If a card is currently being processed in the reader/ (Card In Reader,
CONI bit 24, is 1), offset it when it is placed in the stacker. The card
will actually stick out about a half inch from the rest of the stacked

deck.

137

§4.3 CARD READER 4-15
CONI CR, Conditions In, Card Reader
| 71524 Ul x] Y
0 121314 1718 35
Read the status of the reader into the right half of location E as shown.
TROUBLE READY
INTERRUPT TO READ
ENABLED INTERRUPT
\ ENABLED * * * * * *
\ PHOTO | CARD carp [HOPPER Reapy | Ewp | Ewp PRIORITY
PICK EMPTY- | READING DATA DATA INTERRUPT
CELL |MOTION | STOP | "IN TROUBLE T0 OF oF
FAILURE | £oroR | ERROR reADER | STACKER | CARD MISSED | peap | FiLe | camo | READY ASSIGNMENT
1]
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
Notes.

Interrupts are requested on the assigned channel by the setting of Data
Ready, Data Missed, End of Card, End of File, and if enabled, Trouble and
Ready to Read.

20

21

22

23

24

26

27

28

The reader has received a read command but has failed to bring in
a card from the hopper.

The reader has failed to read a card properly and maintenance is
probably required. The program should be dubious of any data
taken from the card being read when the error occurred.

A card has failed to move properly through the reader (it has
probably slipped). The program should be dubious of any data taken
from the card being read when. the error occurred.

Reader power is on but the reader is or soon will be unavailable to
the program either because the operator has pressed the stop button
or there is a trouble condition (bit 27). If Stop is set while a card is
being read, the reader usually finishes it; only a power failure can
stop the reader m the middle of a card.

The reader has brought a card in from the hopper and has not yet
finished reading it. The program can give a CONO offset command
while this bit is 1.

The reader has accepted a read command and has not yet finished
reading the card.

Bit 20, 21, 22 or 25 is 1. If bit 18 is also 1, the setting of Trouble

requests an interrupt on the assigned channel. ’

Any condition that sets Trouble also sets Stop (bit 23) and the
reader will stop at the end of the current card (of course a pick
failure prevents the reader from even starting a card). Althougha 1
in bit 27 does not necessarily imply an error or malfunction, it
always requires operator intervention. If bit 25 is 1 it is very likely
that the only trouble is the hopper is empty or the stacker is full.

The program failed to retrieve a column of data before the next
column was loaded into the buffer by the reader.

*These bits cause interrupts.

4-16

The usual procedure is to put
an end-of-file card at the end
of the deck rather than use
the button. Actually the but-
ton can be used to signal the
program for any purpose pro-
vided the reader is off line
(stopped).

138

HARDCOPY EQUIPMENT §4.3

29 The reader is ready to accept a read command. If bit 19 is 1, the
setting of Ready to Read requests an interrupt on the assigned
channel.

30 The reader has stopped (probably because the hopper is empty) and
the operator has pressed the end-of-file button.

DATAI CR, Data In, Card Reader

71504 1l x | Y]

1] 121314 1718 35

Clear Data Ready, and transfer the contents of the card column buffer into
bits 24-35 of location £ where the correspondence of card rows to bit
positions is as shown.

[ROW12IROW11 I ROW 0 I ROW 1 l ROW 2 | ROW 3 I ROW 4 I ROW 5] ROW 6
T 1

ROW 7 | ROW 8 | ROW9|

24 25

If the program does not re-
trieve the final column and a
CONO that starts a new card
does not clear Data Ready,
Data Missed will be set by the
first column in the new card.

If the reader operates on 50
Hz power, all times must be
increased by 20 per cent.

26

27 28 29 30 31 32 33 34 35

The program must give a CONO with a 1 in bit 26 to start every card.
This read card command waits until the reader is ready, at which time Read-
ing Card sets and the reader card cycle begins. Movement of a card in from
the hopper sets Card in Reader. As each column is loaded into the buffer,
Data Ready sets, requesting an interrupt on the assigned channel. The
program must respond with a DATAI to transfer the column to memory and
clear Data Ready. If Data Ready is still set when the next column is loaded
into the buffer, Data Missed is set, requesting a second interrupt.

After all eighty columns have been read, Card in Reader goes off, clearing
Reading Card and setting End of Card, which requests an interrupt. The
card then moves out to the stacker, and when the device is ready to begin a
new card cycle, Ready to Read goes on, but only if no new read card
command has been given. If a read card command is already waiting when
the reader becomes ready, it simply accepts the command and Ready to
Read remains off. If no command is waiting, Ready to Read goes on,
requesting an interrupt if enabled (CONI bit 19 is 1), and it goes off auto-
matically when a new command is given.

Timing. After Reading Card sets, 18 ms elapse before Card in Reader goes
on. The first Data Ready occurs 1.8 ms later. Subsequent columns are ready
every 370 us — the program must give a DATAI within 350 us after each
setting of Data Ready. Total time from first to last Data Ready is 29.2 ms.
After the final Data Ready, 1.8 ms elapse before Card in Reader and Reading
Card clear and End of Card sets. The program then has 9.2 ms within which
to give a new CONO read card command to keep the reader going at the
maximum rate. Ready to Read goes on at the end of this period if no new
command appears.

When the last card in a deck is read, the hopper empty signal is simul-

139

§4.3 CARD READER

taneous with End of Card.

Operation. The reader has a
hopper and stacker capacity of
1000 cards. To load a deck,
first fan the cards and jog
them on the reader shelf. Turn
the deck over and put the first
hundred cards (about an inch
of the deck) into the hopper
(upper right) with the 9 edge
against the back so column 1
is read first. Place the rest of
the deck on top of the first
part. Cards can be added to
the hopper while the reader is
running, but always stop the
reader before removing cards
from the stacker.

The reader is operated
- by the buttons at the left.
The alternate-action POWER
switch lights green when
power is on. Pushing START
places the reader on line so the
program can read cards. Pushing STOP turns off the reader, taking it off line.

The lights at the right indicate an empty hopper, a full stacker, a pick
failure, a card motion error, and a photocell output that is too weak or too
strong. When one of these lights goes on the STOP light also goes on (the
reader always finishes the current card before stopping). Do not attempt to
reread a worn or damaged card that has caused a pick failure or motion
error — duplicate it first. If any trouble light remains on after the problem is
corrected press the CLEAR button; this turns off both the lights and the
corresponding status signals read by a CONI. Press START to allow the
program to continue reading the deck. If the trouble persists, enter it in the
system log and notify maintenance personnel.

Pressing the END OF FILE button (at the right) when the reader is off
line, as when the hopper is empty, sets the End of File flag. When the TEST
MODE light is on, the reader processes cards off line (the test switch is
behind the panel under the shelf).

Lights for the interface are in the bottom two rows on the hardcopy
control indicator panel [page 4-9]. The left section of the upper row dis-
plays the contents of the card column buffer; the lights are marked by card
row. The left section of the bottom row displays bits 24-35 of the status
conditions. (The second light from the left is labeled HOP EMPTY, but it
goes on when the hopper is empty or the stacker is full.) Of the five lights
in the center, the left one is the momentary offset signal. READ is on when
a read command has been given but the reader is not yet ready. The next
two lights display bits 18 and 19 of the status conditions, and the last light
is on while an interrupt is being requested whatever the cause.

Card Reader

4-17

4-18

10

HARDCOPY FQUIPMENT

§4.4

Also available is a console model reader that has a 2000-card hopper and
two 2000-card stackers. In use it differs from the compact model only in
that offsetting a card places it in the second stacker (the one on the right),
and cards can be removed from the stackers while the reader is running.

4.4 CARD PUNCH

The card punch handles standard 12-row 80-column cards at speeds up to
200 cards per minute if all eighty columns are punched, 365 cards per minute
if only the first sixteen columns are punched. The processor must supply
cach column to the punch as twelve bits, and the program can generate this
data by any procedure it wishes; the standard DEC character representations
and the translation from ASCII' made by the Monitor are given in Appendix
B. Of course the data can simply be in binary at three columns per word
(punching rows 7 and 9 in the first column is the standard procedure for in-
dicating that the rest of the card contains binary data).

A card is taken from the hopper only when the program supplies data for
the first column. In the interface is a 12-bit buffer to which the processor
sends each column, but the punch has a 48-bit buffer, and it punches four
columns at a time from each set of four 12-bit bytes sent through the inter-
face. The program can send a card to the stacker after punching any number
of columns. The punch device code is 110, mnemonic CDP.

-

CONO CDP, Conditions Out, Card Punch

71120 1] x | Y

0 1213 14 1718 3s

Assign the interrupt channel specified by bits 33-35 of the effective condi-
tions E and perform the functions specified by bits 20-32 as shown(a l ina
bit produces the indicated function, a O has no effect).

CLEAR
PUNCH

OFFSET
CARD

EJECT
CARD

DISABLE | ENABLE

TROUBLE
INYERIRUPTS

CLEAR
ERROR

DISABLE | ENaBLE

END OF CARD
1

CLEAR
END

OF
CARD

SET
PUNCH
ON

CLEAR l SET

DATA
REQ lilESY

PRIORITY
INTERRUPT
ASSIGNMENT
I 1

21

22

23

Notes.

20

24 25

26

27 28

29

30

3 32

33

34 35

‘ Clear flags Trouble Interrupt Enabled, Error, End of Card Enabled,

End of Card, Punch On, Busy, Data Request; clear the card column
buffer. If any action specified by the rest of the CONO bits conflicts
with these actions, the other bits have precedence.

§4.4

21

41

CARD PUNCH

If a card is currently being processed in the punch (Card in Punch,
CONI bit 27, is 1) or was ejected less than 3 ms ago, offset it when it
is placed in the stacker. The card will actually stick out about a half
inch from the rest of the stacked deck. '

419

With the console model, off-
setting a card places it in a
separate stacker.

23 ° If a card is currently being processed (Card in Punch, CONI bit 27,
is 1), punch whatever data is in the 4-column buffer and then eject
the card. Ejection moves a card through the punch head assembly
four times as fast as punching blank columns.
CONI CDP, Conditions In, Card Punch
| 71124 1| x | Y
) 121314 1718 35
Read the status of the punch into the right half of location E as shown.
NEED TROUBLE
OPERATOR INTERRUPT
SERVICE ENABLED
* * *
PICK CARD END END PRIORITY
TEST HOPPER / FAILURE-| BJECT | 00,0 ¢ / ERROR N OF OF PUNCH DATA INTERRUPT
Low STACK | FAILURE PuNCH [R0 | cagp | ON | BUST IReouEsT ASSIGNMENT
18 19 20 21 22 23 24 25 26 27 28 29 30 3 32 33 34 35
*These bits cause interrupts
Notes.

Interrupts are requested on the assigned channel by the setting of Data
Request, End of Card, and if enabled, Trouble.

‘18 The operator has turned on the test switch, taking the punch off line.
20 Less than a hundred cards are left in the hopper.
AN

21 The hopper is empty or the stacker or chip box is full.

22 The punch has received data for the first column but has failed to
bring in a card from the hopper; or it has received an eject command
but has failed to place the card properly in the stacker.

23 The punch has received an eject command but has failed to move the
card out of the punch head assembly.

24 Bit 18, 22 or 23 is 1, or bit 21 is 1 because the hopper is empty or the

stacker is full, or the operator has taken the punch off line. If bit 25
is also 1, the setting of Trouble requests an interrupt on the assigned
channel.

Ordinarily a trouble condition allows the punch to finish a card
but prevents it from starting another; only a power failure or the op-
erator turning on the test switch (bit 18) can take the punch off line
in the middle of a card. A full chip box does not stop the punch at
all as there is actually enough room left for the chips from a whole

4-20

142

HARDCOPY EQUIPMENT

§4.4

hoppeg full of cards. Although a 1 in bit 24 does not necessarily im-
ply a malfunction, it always requires operator intervention. If bit 21
is I it is very likely that the only trouble is the hopper is empty or the
stacker is full.

26 A column punched in a card does not agree with the data sent by the
processor.

27 A card is in the punch head assembly. The program can give a CONO
offset or eject command while this bit is 1 (the offset can also be
given within 3 ms after Card in Punch clears).

29 Bit 28 is 1 and the program has given either an eject command or data
for column 80. The setting of End of Card requests an interrupt on
the assigned channel.

DATAO CDP, Data Out, Card Punch

| 71114] x | Y

1] 12 13 14 17 18 35

Clear Data Request, set Punch On and Busy, and load the contents of bits
24-35 of location E into the interface column buffer where the correspond-
ence of bit positions to card rows is as shown.

I ROW 12|ROW lll ROW 0

ROWIIROWZVIROWS ROW4|ROW5 |ROW6 ROW7IROW8]ROW9|

249 25

If the program gives a DATAQO
to turn on the motor, the ini-
tial ready .from the punch
takes the first column from
the column buffer but does
not set Data Request. When
that flag does set, the punch is
ready for the second éolumn.

26

27 28 29 30 31 32 33 34 35

Setting Punch On turns on the punch motor, but only a DATAO can pick
a card. Since DATAO also sets Punch On, the program can initiate punch
operations while supplying data, but the usual procedure is to set Punch On
while giving other initial conditions.

When the punch is ready to take a card from the hopper it sends a ready
signal to the interface. This sets Data Request, which requests an interrupt
on the assigned channel. To pick a card the program must respond with a
DATAO, which supplies the first column, clears Data Request, and sets Punch
On and Busy. The interface then sends the column to the 4-column punch
buffer and clears Busy. While the punch is picking a card it also makes three
more data requests to each of which the program must respond with a
DATAO. When the card is properly registered in the punch head assembly,
Card in Punch sets. When this flag has set and the program has supplied the
first four columns, the device punches the four columns simultaneously (a 1
sent to the column buffer produces a hole in the card). The punch then con-
tinues in this fashion making four data requests for each set of four columns.

Punch On clears when the program gives an eject command. This causes

.the device to punch whatever is in its 4-column buffer and the card then

143

§4.4 CARD PUNCH

moves out to the stacker. If the punch has already sent a.ready signal, the
CONO that ejects should also clear Data Request. If End of Card has been
enabled by a 1 in CONO bit 28, the eject command sets it, requesting an in-
terrupt. . If no eject command has been given by the time data is supplied for
column 80, End of Card sets anyway if it is enabled (producing an interrupt
request), but the card remains in the punch head assembly until an eject com-
mand is given. The actual ejection of a card clears Card in Punch.

Timing. If Punch On is set when the punch motor is off, the first ready
signal is delayed about 120 ms while the motor gets up to speed. When the
motor is on, Card in Punch sets about 60 ms after the DATAO that sends the
first column for a card. While the card is in the head assembly, punching is
synchronized to a punch cycle of 11.1 ms. About 30 us elapse from each
DATAO to the next Data Request, but after the first request the program
has the full punch cycle time to supply all four columns and keep punching
at'the maximum rate; after that punching is delayed until the next cycle.

Giving an eject command clears Punch On and sets End of Card after S us,
but Card in Punch does not clear until the card leaves the head assembly; this
takes about 25 ms plus 2.8 ms for each set of four columns skipped over.
After Card in Punch clears, about 30 us elapse before the punch indicates
that it is ready to pick another card from the hopper, at which time the pro-
gram should give a DATAO to pick another card at the maximum rate. (Of
course the first DATAO can be given right after the eject command, and the
punch will then pick another card automatically without setting Data Re-
quest for the first column.) When the final card is punched, the hopper
empty signal is simultaneous with End of Card. If Punch On remains clear
for about 30 seconds, the motor turns off.

Operation. The punch has a
hopper and stacker capacity of
1000 cards. To load the hop-
per, first fan the cards and jog
them on the punch shelf. Turn
the deck over and put the first
hundred cards (about an inch
of the deck) into the hopper
(upper right) with the 9 edge
against the back so column 1is
punched first. Hold the right
end higher so the leading edge
of the bottom card rests against
the picker throat, and drop the
cards in place. Put the rest of
the deck on top of the first
part. Cards can be added to
the hopper while the punch is
running, but always stop the
punch before removing cards
from the stacker. To remove
cards, push down the elevator
and lift the stack out.

421

If the program does not eject
before the punch starts punch-
ing columns 77— 80, it makes
another data request. The
program can then supply two
more columns, which will be
punched in the margin of the
card.

CaurioN

Any data that is given but
not punched (eg the first col-
umn(s) when there is a pick
failure) is usually lost when
the punch goes off line. Hence
the program should always
start with the first column of
a card when the punch is re-
started.

Card Punch

144

HARDCOPY EQUIPMENT §4.4

The punch is operated by the buttons in the upper part of the panel at the
right. The alternate-action POWER switch lights green when power is on.
Pushing START places the punch on line so the program can punch cards.
The OPERATE indicator at the lower right lights green when the punch mo-
tor is up to speed. Pushing STOP takes the reader off line but does not stop
the motor; the motor is turned off only by pressing CLEAR.

The lights in the bottom row indicate an empty hopper or full stacker, a
full chip box, a pick failure, an eject failure, and a stack failure. When one of
these lights other than CHIP BOX goes on, the STOP light also goes on (the
punch always finishes the current card before stopping). If any trouble light
remains on after the problem is corrected, press the CLEAR button; this turns
off both the lights and the corresponding status signals read by a CONI. Press-
ing CLEAR also ejects a card if one is in the head assembly, and the button
glows red when clear action is required (eg when a card has gotten stuck). For
a pick failure, empty the hopper, throw out the bottom card, and reload.
Press START to allow the program to continue punching. If the trouble per-
sists enter it in the system log and notify maintenance personnel.

A full chip box does not stop the punch, but once it has been stopped by
some other condition (such as an empty hopper), pressing START will not
_place the unit on line until the box has been emptied.

At the right is a light for the Card in Punch flag. The ERROR light dis-
plays the signal that sets the Error flag; it goes off when CLEAR is pressed.
The CHECKOFF light is not used. When the TEST light is on, the device
punches cards off line in a test pattern (the test switch is behind the panel
under the shelf).

Lights for the interface are in the second row from the bottom on the hard-
copy control indicator panel [page 4-9]. The middle section of the row dis-
plays the contents of the card column buffer; the lights are marked by card
row. Among the lights in the right section, PI REQ is on while an interrupt
is being requested whatever the cause. The remaining lights display some of
the status conditions read by a CONI.

Also available is a console model punch that has a 2000-card hopper and
two 2000-card stackers. In use it differs from the compact model only in
that offsetting a card places it in the second stacker (the one on the right),
and cards can be removed from the stackers while the punch is running.

45

Appendices

146

147

APPENDIX A

INSTRUCTION AND DEVICE MNEMONICS

The illustration on the next page shows the derivation of the instruction
mnemonics. The two tables following it list all instruction mnemonics and
their octal codes both numerically and alphabetically. When two mnemonics
are given for the same octal code, the first is the preferred form, but the
assembler does recognize the second. For completeness, UUOs are listed for
user mode (an asterisk indicates a UUO mnemonic recognized by Macro for
communication with the PDP-10 Time Sharing Monitor). All UUOs
000-077 are identical when the processor is not in user mode.

In-out device codes are included only in the alphabetic listing and are
indicated by a dagger (¥). Following the tables is a chart that lists the
devices with their mnemonic and octal codes and DEC option numbers for
both PDP-10 and PDP-6. A device mnemonic ending in the numeral 2 is
the recommended form for the second of a given device, but such codes are
not recognized by Macro — they must be defined by the user.

Al

M8

A2 MNEMONICS *
E ADD
Negative SUBtract
MoV ¢ e
: e Magnitude to AC MULtiply
e Swapped Immediate to AC Integer MULtiply ~
no effect to Memory DIVide Immediate
Half word Right Right| | Ones to Self lInteger DIVide J to Memory
WOrd \ fefe | % |Left Zeros and Round { t© Both
Extend sign Floating AdD ~
BLock Transfer El]oat::ng 5;.1113 tr;:]Ct Lolr\'lig
oating MultiPly to Memory
EXCHa.nge AC and memory Floating DiVide to Both
use present pointer| ., [LoaD Byte into ac Floating SCale
Increment pointer DePosit Byte in memory Double Floating Negate
Increment Byte Pointer Unnormalized Floating Add
PUSH dow“} ~ Avithmetic SHift
POP up and Jump Logical SHift ~
Combined
Zeros ROTate
Ones (oS ;
Ac to SubRoutine
SET to Memory and Save Pc
Complement of Ac and Save Ac
Complement of Memory AC ?nd.Restc.)re Ac
~ 0] AC Immediate if Flf"ril d Flr;t Coln,: 4
AND with Complement of Ac Memory on ~ag an art
K . X — on OVerflow (JFCL 10,)
inclusive OR | | with Complement of Memory Both Jump
Complements of Both ' on CaRrY 0 (JECL 4)
p on CaRrY 1 (JECL 2,)
Inclusive OR ‘ on CaRrY (JFCL 6,)
eXclusive OR on Floating OVerflow (JFCL 1,)
EQuiValence and-ReSTore
and ReSTore Flags (JRST 2,)
never ;
SKIP if memory (Less land ENable p1 channet (JRST 12,)
JUMP if ac Equal HALT (JRST 4,)
Add One to memory and Skip] . f Less or Equal eXeCuTe
Subtract One from | | Ac and Jump i Always
Immediate - . Greater DATA }
Compare Ac {wi th Memory and skip if AcC Greater or Equal BLocK In
\ Not equal Out
. CONditions .
. | Positive . .. | all masked bits Zero
Add One to Both halves of Ac and Jump if Negative in and Skip if { some masked bit One
with Direct mask No modification never

set masked bits to Zeros
set masked bits to Ones
Complement masked bits

with Swapped mask
Right with £
Left with £

Test ac and skip

if all masked bits Equal 0
if Not all masked bits equal 0
Always

000
001

037
040
041
042
043
044
045
046
047
050
051
052
053
054
055
056
057
060
061
062
062
063
064
065
066
067
070
071
072
073
074
075
076
077
100

127

130
131

149

NUMERIC LISTING

INSTRUCTION MNEMONICS
NUMERIC LISTING

ILLEGAL 132 FSC
133 IBP
USER 134 ILDB
uuos 135 LDB
136 IDPB
*CALL 137 DPB
*INIT 140 FAD
141 FADL
RESERVED 142 FADM
SPECIAL 143 FADB
MONITORS]44 FADR
145 FADRI a
*CALLI 146 FADRM
*OPEN 147 FADRB
*TTCALL a 150 FSB
151 FSBL
AR Dae 152 FSBM
153 FSBB
*RENAME 154 FSBR
*IN 155 FSBRI &
*QUT 156 FSBRM
*SETSTS 157 FSBRB
*STATO 160 FMP
*STATUS 161 FMPL
*GETSTS 162 FMPM
*STATZ © 163 FMPB
*INBUF 164 FMPR
*QUTBUF 165 FMPRI &
*INPUT , 166 FMPRM
. *OUTPUT 167 FMPRB
*CLOSE 170 FDV
*RELEAS 171 FDVL
*MTAPE 172 FDVM
*UGETF 173 FDVB
*USETI 174 FDVR
*USETO 175 FDVRI &
*L,OOKUP 176 FDVRM
*ENTER 177 FDVRB
200 MOVE
UNASSIGNED) 201 MOVEI
CODES 202 MOVEM
203 MOVES
UFA 204 MOVS

DFN ' 205 MOVSI

206
207
210
211
212
213
214
215
216
217
220
221
222
223
224
225
226
227
230
231
232
233
234
235
236
237
240
241
242
243
244
245
246
247
250
251
252
253
254
25410
25420
25450
255
25504

A3

MOVSM
MOVSS
MOVN
MOVNI
MOVNM
MOVNS
MOVM
MOVMI
MOVMM
MOVMS
IMUL
IMULI
IMULM
IMULB
MUL
MULI
MULM
MULB
IDIV
IDIVI
IDIVM
IDIVB
DIV
DIVI
DIVM
DIVB
ASH
ROT
LSH
JFFO
ASHC
ROTC
LSHC

EXCH
BLT
AOBJP
AOBJIN
JRST
JRSTF
HALT
JEN
JFCL
JFOV

A4

25510
25520
25530
25540
256
257
260
261
262
263
264
265
266
267
270
271
272
273
274
275
276
277
300
301
302
303
304
305
306
307
310
311
312
313
314
315
316
317
320
321
322
323
324
325
326
327
330
331
332

JCRY1
JCRYO
JCRY
Jov
XCT

PUSH]J
PUSH
POP
POPJ
JSR
JSP
JSA
JRA
ADD
ADDI
ADDM
ADDB
SUB
SUBI
SUBM
SUBB
CAI
CAIL
CAIE
CAILE
CAIA
CAIGE
CAIN
CAIG
CAM
CAML
CAME
CAMLE
CAMA
CAMGE
CAMN
CAMG
JUMP
JUMPL
JUMPE
JUMPLE
JUMPA
JUMPGE
JUMPN
JUMPG
SKIP
SKIPL
SKIPE

333
334
335
336
337
340
341
342
343
344
345
346
347
350
351
352
353
354
355
356
357
360
361
362
363
364
365
366
367
370
371
372
373
374
375
376

377 -

400
400
401
401
402
402
403
403

. 404

405
406
407

150

MNEMONICS

SKIPLE
SKIPA
SKIPGE
SKIPN
SKIPG
AOJ
AOJL
AOJE
AOJLE
AOJA
AOIJGE
AOJN
AOJG
AOS
AOSL
AOSE
AOSLE
AOSA
AOSGE
AOSN
AOSG
SOJ
SOJL
SOJE
SOJLE
SOJA
SOJGE
SOJN
SOJG
SOS
SOSL
SOSE
SOSLE
SOSA

SOSGE -

SOSN
SOSG
SETZ
CLEAR
SETZI
CLEARI
SETZM
CLEARM
SETZB
CLEARB
AND
ANDI
ANDM
ANDB

410
411
412
413
414
415
416
417
420
421
422
423
424
425
426
427
430
431
432
433
434
434
435
435
436
436
437
437
440
441
442
443
444
445
446
447
450
451
452
453
454
455
456
457
460
461
462
463
464

ANDCA
ANDCAI

ANDCAM _

ANDCAB
SETM
SETMI
SETMM
‘SETMB
ANDCM
ANDCMI
ANDCMM
ANDCMB
SETA
SETAI
SETAM
SETAB
XOR
XORI
XORM
XORB
IOR

OR
IORI
ORI
IORM
ORM
IORB
ORB
ANDCB
ANDCBI
ANDCBM
ANDCBB
EQV
EQVI
EQVM
EQVB
SETCA
SETCAI
SETCAM
SETCAB
ORCA
ORCAI
ORCAM
ORCAB
SETCM
SETCMI
SETCMM
SETCMB
ORCM

465
466
467
470
471
472
473
474
475
476
477
. 500
501
502
503
504
505
506
507
510
511
512
513
514
515
516
517
520
521
522
523
524
525
526
527
530
531
532
533
534
535
536
537
540
541
542
543
544
545

ORCMI
ORCMM
ORCMB
ORCB

"ORCBI

ORCBM
CRCBB

- SETO

SETOI
SETOM
SETOB
HLL
HLLI
HLLM
HLLS
HRL
HRLI
HRLM
HRLS
HLLZ
HLLZI
HLLZM
HLLZS
HRLZ
HRLZI
HRLZM
HRLZS
HLLO
HLLOI
HLLOM
HLLOS
HRLO
HRLOI
HRLOM
HRLOS
HLLE
HLLEI
HLLEM
HLLES
HRLE
HRLEI
HRLEM
HRLES
HRR
HRRI
HRRM
HRRS
HLR
HLRI

151

NUMERIC LISTING

546
547
550
551
552
553
554
555
556
557
560
561
562
563
564
565
566
567
570
571
572
573
574
575
576
577
600
601
602

603.

604
605
606
607
610
611
612
613
614
615
616
617
620
621
622
623
624
625
626

HLRM
HLRS
'HRRZ
HRRZI
HRRZM
HRRZS
HLRZ
HLRZI
HLRZM
HLRZS
HRRO
HRROI
HRROM
HRROS
HLRO
HLROI
HLROM
HLROS
HRRE
HRREI
HRREM
HRRES
HLRE
HLREI
HLREM
HLRES
TRN
TLN
TRNE
TLNE
TRNA
TLNA
TRNN
TLNN
TDN
TSN
TDNE
TSNE
TDNA
TSNA
TDNN
TSNN
TRZ
TLZ
TRZE
TLZE
TRZA
TLZA
TRZN

627
630
631
632
633
634
635
636
637
640
641
642
643
644
645
646
647
650
651
652
653
654
655
656
657
660
661
662
663
664
665
666
667
670
671
672
673
674
675
676
677
70000
70004
70004
70010
70014
70020
70024
70030
70034

TLZN
TDZ
TSZ
TDZE
TSZE
TDZA
TSZA
TDZN
TSZN
TRC
TLC
TRCE
TLCE
TRCA
TLCA
TRCN
TLCN
TDC
TSC
TDCE
TSCE
TDCA
TSCA
TDCN
TSCN
TRO
TLO
TROE
TLOE
TROA
TLOA
TRON
TLON
TDO
TSO
TDOE
TSOE
TDOA
TSOA
TDON
TSON
BLKI
DATAI
RSW
BLKO
DATAO
CONO
CONI
CONSZ
CONSO

AS

+ADC
ADD
ADDB
ADDI
ADDM
AND
ANDB
ANDCA
ANDCAB
ANDCALI
ANDCAM
ANDCB
ANDCBB
ANDCBI
ANDCBM
ANDCM
ANDCMB
ANDCMI
ANDCMM
ANDI
ANDM
AOBIN
AOBIP
AOJ
AOJA
AOJE
AOJG
AOJGE
AOIL
AOJLE
AOIN
AOS
AOSA
AOSE
AOSG
AOSGE
AOSL
AOSLE
AOSN

+APR
ASH
ASHC
BLKI
BLKO

024
270
273
271
272
404
407
410
413
411
412
440
443
441
442
420
423
421
422
405
406
253
252
340
344
342
347
345
341
343
346
350
354
352
357
355
351
353
356
000
240
244
70000
70010

152

MNEMONICS

INSTRUCTION MNEMONICS
ALPHABETIC LISTING

BL!
CAl
GAIA
CAIE
CAIG
CAIGE
CAIT.
CAILE
CAIN
*CALL
*CALLI
CAM
CAMA
CAME
CAMG
CAMGE
CAML
CAMLE
CAMN
+CCI
+CDP
+CDR
CLEAR
CLEARB
CLEARI
CLEARM
*CLOSE
CONI
CONO
CONSO
CONSZ
+CPA
tCR
DATiI
DATAO
DC
+DCSA
+DCSB
DF
DFN
DIS
DIV
DIVB
DIVI

251
300
304
302
307
305
301
303
306
040
047
310
314
312
317
315
311
313
316
014
110
114
400
403
401
402
070
70024

70020

70034
70030
000
150
70004
70014
200
300
304
270

131
130
234
237
235

DIVM
+DLS
DPB

a tDPC
+DSK
+DTC
+DTS
*ENTER
EQV
EQVB
EQVI
EQVM
. EXCH
FAD
FADB
FADL
FADM
FADR
FADRB
FADRI
FADRM
FDV
FDVB
FDVL
FDVM
FDVR
FDVRB
FDVRI]
FDVRM
FMP
FMPB
FMPL .
FMPM
FMPR
FMPRB
FMPRI
FMPRM
FSB
'FSBB
FSBL
FSBM
FSBR
FSBRB
FSBRI

236
240
137
250
170
320
324
077
444
447
445
446
250
140
143
141
142
144
147
145
146
170
173
171
172
174
177
175
176
160
163
161
162
164
167
165
166
150
153
151
152
154
157
155

FSBRM
FSC
*GETSTS
HALT
HLL
HLLE
HLLEI
HLLEM
HLLES
HLLI
HLLM
HLLO
HLLOI
HLLOM
HLLOS
HLLS
HLLZ
HLLZI
HLLZM
HLLZS
HLR
HLRE
HLREI
HLREM
HLRES
HLRI
HLRM
HLRO
HLROI
HLROM
HLROS
HLRS
HLRZ
HLRZI
HLRZM
HLRZS
'HRL
HRLE
HRLEI
HRLEM
HRLES
HRLI
HRLM
HRLO
HRLOI
HRLOM
HRLOS
HRLS
HRLZ

156
132
062
25420
500
530
531
532
533
501
502
520
521
522
523
503
510
511
512
513
544
574
575
576
577
545
546
564
565
566
567
547
554
555
556
557
504
534
535
536
537
505
506
524
525
526
527
507
514

153

ALPHABETIC LISTING

HRLZI
HRLZM
HRLZS
HRR
HRRE
HRREI
HRREM
HRRES
HRRI
HRRM
HRRO
HRROI
HRROM
HRROS
HRRS
HRRZ
HRRZI
HRRZM
HRRZS
IBP
IDIV
IDIVB
IDIVI
IDIVM
IDPB
ILDB
IMUL
IMULB
IMULI
IMULM
*IN
*INBUF
*INIT

*INPUT

IOR
IORB
IORI
IORM
JCRY
JCRYO
JCRY1
JEN
JFCL
JFFO
JFOV
Jov
JRA
JRST
JRSTF

515
516
517
540
570
571
572
573
541
542
560
561
562
563
543
550
551
552
553
133
230
233
231
232
136
134
220
223
221
222
056
064
041
066
434
437
435
436
25530
25520
25510
25460
255
243
25504
25540
267
254
25410

JSA
JSP
JSR
JUMP
JUMPA
JUMPE
JUMPG
JUMPGE
JUMPL
JUMPLE
JUMPN
LDB
*LOOKUP
TLPT
LSH
LSHC
+MDF
MOVE
MOVEI
MOVEM

- MOVES

MOVM
MOVMI
MOVMM
MOVMS
MOVN
MOVNI
MOVNM
MOVNS
MOVS
MOVSI
MOVSM
MOVSS
*MTAPE
$MTC
FMTM
FMTS
MUL
MULB
MULI
MULM
*OPEN
OR
ORB
ORCA
ORCAB
ORCAI
ORCAM
ORCB

266
265
264
320
324
322
327
325
321
323
326
135
076
124
242
- 246
260
200
201
202
203
214
215
216
217
210
211
212
213
204
205
206
207
072
220
230
224
224
227
225
226
050
434
437
454
457
455
456
470

A7

A8

ORCBB
ORCBI
ORCBM
ORCM
ORCMB
ORCMI
ORCMM
ORI
ORM
*OUT
*OUTBUF
*OUTPUT
tPI
{tPLT
POP
POPJ
TPTP
tPTR
PUSH
PUSHJ
*RELEAS
*RENAME
ROT
ROTC
RSW
SETA
SETAB
SETAI
SETAM
SETCA
SETCAB
SETCAI
SETCAM
SETCM
SETCMB
SETCMI
SETCMM
SETM
SETMB
SETMI
SETMM
SETO
SETOB
SETOI
SETOM
*SETSTS
SETZ
SETZB
SETZI

473
471
472
464
467
465
466
435
436
057

+ 065

067.
004
140

262

263
100
104

261

260

071

055

241

245

70004

424

427

425

426

450.

453

451

452

460

463

461

462

414

417

415

416

474

4717

475

476

060

400

403

401

154

MNEMONICS

SETZM
SKIP
SKIPA
SKIPE
SKIPG
SKIPGE
SKIPL
SKIPLI
SKIPN
SOJ
SOJA
SOJE
SOJG
SOJGE
SOJL
SOJLE
SOJN
SOS
SOSA
SOSE
SOSG
SOSGE
SOSL
SOSLE
SOSN
*STATO
*STATUS
*STATZ
SUB
SUBB
SUBI
SUBM
TDC
TDCA
TDCE
TDCN
TDN
TDNA
TDNE.
TDNN
TDO
TDOA
TDOE
TDON
TDZ
TDZA
TDZE
TDZN
TLC

402
330
334
332
337
335
331
333
336
360
364
362
367
365
361
363
366
370
374
372
377
375
371
373
376
061
062
063
274
277
275
276
650
654
652
656
610
614
612
616
670
674

672
676
630
634
632
636
641

TLCA
TLCE
TLCN
TLN
TLNA
TLNE
TLNN
TLO
TLOA
TLOE
TLON
TLZ
TLZA
TLZE
TLZN

FTMC

+TMS
TRC
TRCA
TRCE
TRCN
TRN
TRNA
TRNE
TRNN
TRO
TROA
TROE
TRON
TRZ
TRZA
TRZE
TRZN
TSC
TSCA
TSCE
TSCN
TSN
TSNA
TSNE
TSNN
TSO
TSOA
TSOE
TSON
TSZ
TSZA
TSZE
TSZN

645
643
647
601
605
603
607
661
665
663
667
621
625
623

627

340
344
640
644
642
646
600
604
602
606
660
664
662
666
620
624
622
626
651
655
653
657
611
615
613
617
671
675
673
677
631
635
633

637

155

ALPHABETIC LISTING

*TTCALL 051 a \ *USETO 075 ' XOR 430 |
UFA 130 +UTC 210 XORB 433
*UGETF 073 tUTS 214 XORI 431

*USETI 074 XCT 256 XORM 432

156

MNEMONICS

Al0

. SIINOW3INW 3D1A30Q
m
- — b2l 5! 2l " oL 8] 9 S 14 £ 2 0
21 9p02 921A9p 10} o_SEoc:/ Y31N1gd 3NN | ——apo asoym ERITEN] _ T T T T | q4OM
(405582040 102}u32 40 4400 /o._.mg 3009 11910 Wi20 11910 V190 1 l I |NOILINYISNI
S1 921A2p $9J021P U} JOQUNY ON) — NOILINELISNI AN0J3S 1s¥14 1N0-NI
0l-d0d 0} QW v0Hd0 —! 0id1 o 0l-d0d uiim pasn
9-d0d 40 19qN VOLI0 ——=-9p9 9 9-d0d uum pasn 3009 30130
N
124
L
9
S
14
3dvl JI1INOVN 34Vl JIL3IN9YN 3dv1930 34v1230 NOILVIINNNNOD vivQ
¢SW1 2OWL SW1 JNL ¢S10 201d S1a a1a 8500 vSdQ | ¢
OLKL 0i{0ImL oi{0laL 01 {0101 | o1 0£9 9f
NI ASIQ | 33 WSIQ | 33 X510 | WILSAS N3LSAS [¥INNVIS | W3INNVOS 3dv1 JILINOVN 3dv1030 T08INOD TO¥INOD
SSYN SSYN WOV ¥SI0 | MOV XSIQ | 3INIT vIvO | 3INIT vIVO v1v0 viva
30 ¢4QW | JOW | 2040 3da ¢s1a $1d NLN S1N J1W sin an 2da a0 4
012 9jowvy 01|01y 01; Old¥ 01 | O1dy 01 | 0100 0i{0190 o1 91§ 9]4s5 9}9¢1 9|9s1 9
¥SIQ TIVNS | ¥SI0 1TVNS 30VIY3LNI [430V3IY O¥YD [430v38 0¥v0| ¥31107d ¥31107d A1dS10 AVIdSIO |¥3INIHd INN| 3dALITIL [43QV3Y Q8O | HONND 0NV | 830V3Y 3dV1| HONAD 34V
8'2-d0d 370SN0D ¥3dvd 43dvd
rA R ASa 2Y) M) ¢ld 1nd ¢sSIa S1a 141 All 4ad dad 4ld did ||
0ldA 01 01dA 04 |oidn o ol [\ o
0198 01| 010y ol 59l 9]0 oifoidd 01| 01AX 01| 01AX 0L{0vE 0i'9fopE 01'9{9b9 9/929 9]i9p 9/01dd 01{09L 9]19L 9
. Y3LYIANOD | MIINIANOD [3OVWIINI | 3IQWMILNI | HOSSIDON | LJNNUIINI | HOSSIDO0Nd
WLI9IG-90IWNY| WLI9I0-O0TWNY| 6'8-d0d 6'8-d0d LI ALINOI¥d TVHINID
200v | oav | 2199 | 199 4 | 419,
0l0v o1 olav o1joiva 0|0t 0if94 9 01'9 o9 [Tn0
174 0L 9 09 12 0S 124 oY be 0¢ 124 02 14! ol 0 00 syo0
VL0 QNIHL
NV ONOO3S

$301A30 193dS ¥3sn

$39IA30 QYVONVIS 30

157

APPENDIX B

INPUT-OUTPUT CODES

The table beginning on the next page lists the completg teletype code. The
lower case character set (codes 140-176) is not available on the Model 35,
but giving one of these codes causes the teletype to print the corresponding

upper case character. Other differences between the 35 and 37 are men-
" tioned. in the table. The definitions of the control codes are those given by
ASCII. Most control codes, however, have no effect on the console teletype,
and the definitions bear no necessary relation to the use of the codes in con-
junction with the PDP-10 software.

The line printer has the same codes and characters as the teletype. The
64-character printer has the figure and upper case sets, codes 040-137
(again, giving a lower case code prints the upper case character). The “96”-
character printer has these plus the lower case set, codes 040-176. The
latter printer actually has only ninety-five characters unless a special charac-
ter is “hidden” under the delete code, 177. A hidden character is printed by
sending its code prefixed by the delete code. Hence a character hidden under
DEL is printed by sending the printer two 177s in a row.

Besides printing characters, the line printer responds to ten control charac-
ters, HT, CR, LF, VT, FF, DLE and DC1-4. The 128-character printer uses
the entire set of 7-bit codes. for printable characters, with characters hidden
under the ten control characters that affect the printer and also under null
and delete. In all cases, prefixing DEL causes the hidden character to be
printed. The extra thirty-three characters that complete the set are ordered
special for each installation.

The first page of the table of card codes [pages B6-8] lists the column
punch required to represent any character in the two DEC codes. The octal
codes listed are those used by the PDP-10 software., In other words, when
reading cards, the Monitor translates the column punch into the octal code
shown; when punching cards, it produces the listed column punch when
given the corresponding code. The remaining pages of the table show the
relationship between the DEC card codes and several IBM card punches.
Each of the column punches is produced by a single key on any punch for
which a character is listed, the character being that which is printed at the
top of the card.

B1

B2

Even
Parity

S - O = = O

o

O - = O O = = o - O~ O = =0 -

—

7-Bit
Octal
Code

000
001
002
003
004
005

006
007
010

011
012

013
014
015
016
017
020
021
022

023
024

025
026
027
030
031
032
033

034
035

Character

NUL
SOH
STX
ETX
EOT
ENQ

ACK
BEL
BS

HT
LF

VT
FF
CR
SO
SI
DLE
DC1
DC2

DC3
DC4

NAK
SYN
ETB
CAN
EM
SUB
ESC

FS
GS

158

INPUT-OUTPUT CODES

TELETYPE CODE

Remarks

Null, tape feed. Repeats on Model 37. Control shift P on Model 35.

Start of heading; also SOM, start of message. Control A.

Start of text; also EOA, end of address. Control B.

End of text; also EOM, end of message. Control C.

End of transmission (END); shuts off TWX machines. Control D.

Enquiry (ENQRY); also WRU, “Who are you?” Triggers identification
(“‘Here is . . .) at remote station if so equipped. Control E.
Acknowledge; also RU, “Are you ... ?” Control F.

Rings the bell. Control G.

Backspace; also FEO, format éffector. Backspaces some machines.
Repeats on Model 37. Control H on Model 35.

Horizontal tab. Control I on Model 35.

Line feed or line space (NEW LINE); advances paper to next line. Repeats
on Model 37. Duplicated by control J on Model 35.

Vertical tab (VTAB). Control K on Model 35.

Form feed to top of next page (PAGE). Control L.

Carriage return to beginning of line. Control M on Model 35.

Shift out; changes ribbon color to red. Control N.

Shift in; changes ribbon color to black. Control O.

Data link escape. Control P (DCO0).

Device control 1, turns transmitter (reader) on. Control Q (X ON).

Device control 2, turns punch or auxiliary on. Control R (TAPE,
AUX ON).

Device control 3, turns transmitter (reader) off. Control S (X OFF).

Device control 4, turns punch or auxiliary off. Control T (FAPE,
AUX OFF).

Negative acknowledge; also ERR, error. Control U.

Synchronous idle (SYNC). Control V. _

End of transmission block; also LEM, logical end of medium. Control W.
Cancel (CANCL). Control X.

End of medium. Control Y.

Substitute. Control Z.

Escape, prefix. This code is generated by control shift K on Model 35,
but the Monitor translates it to 175.

File separator. Control shift L on Model 35.
Group separator. Control shift M on Model 35.

Even
Parity
Bit

7-Bit
Octal
Code

036
037
040
041
042
043
044
045
046
047
050
051
052
053
054
055
056
057
060
061
062
063
064
065
066
067
070
071
072
073
074
075
076
077
100
101
102

Character

RS
us

SP -

® = o~ 0~

+

O 0 O AW =S T

A

H

WV

159

TELETYPE CODE

Remarks

Record separator. Control shift N on Model 35.

Unit separator. Control shift O on Model 35.
Space.

Accent acute or apostrobhe.

Repeéts on Model 37.

Repeats on Model 37.
Repeats on Model 37.

Repeats on Model 37.

B3

B4

Even
Parity Octal

Bit Code

— OO0~ O = OO0 = =0 =00~ ~00 =0 —mmOmrm OO —~—0 m —~ O O — = O m

7-Bit

103
104
105
106
107
110
111
112
113
i14
115
116
117
120
121
122
123
124
125
126
127
130
131
132
133

134

135
136
137
140

141

142
143
144
145
146
147

Character

4T;u/~N<xs<camwowozzrwh”mOﬁmUO

m - 0o o 0 o W

160

INPUT-OUTPUT CODES

Remarks

Repeats on Model 37.

Shift K on Model 35.
Shift L on Model 35.
Shift M on Model 35.

Repeats on Model 37.
Accent grave.

Even 7-Bit
Parity Octal
Bit Code Character

1 150 h
0 151 i
0 152 i
1 153 k
0 154 1
1 155 m
1 156 n
0 157 o
1 160 p
0 161 q
0 162 r
1 163 s
0 164 t
1 165 u
1 166 v
0 167 w
0 170 X
1 171 y
1 172 z
0 173 {
1 174 i
0 175 }
0 176 ~
1 177 DEL
REPT
PAPER ADVANCE
LOCAL RETURN
LOC LF
LOC CR
INTERRUPT, BREAK
PROCEED, BRK RLS
HEREIS

-

161.

TELETYPE CODE BS

Remarks

Repeats on Model 37.

This code generated by ALT MODE on Model 35.

This code generated by ESC key (f present) on. Model 35, but: the
Monitor translates it to 175.

Delete, rub out. Repeats on Model 37.

Keys That Generate No Codes

Model 35 only: causes any other key that is struck to repeat continuously
until REPT is released.

Model 37 local line feed.

Model 37 local carriage return.

Model 35 local line feed.

Model 35 local carriage return.

Opens the line (machine sends a continuous string of null characters).
Break release (not applicable). '
Transmits predetermined 21-character message.

MAY 1968

162

B6 : INPUT-OUTPUT CODES
CARD CODES
PDP-10 PDP-10
A Character ASCII DEC 029 DEC 026 Charactet ASCII DEC 029 DEC 026
Space 040 None None @ 100 84 84
! 041 1182 1287 A 101 121 12 1
" 042 87 085 B 102 122 122
043 83 086 C 103 123 123
$ 044 1183 1183 D 104. 12 4 12 4
% 045 084 087 E 105 125 125
& 046 12 1187 F 106 126 12 6
! 047 85 86 G 107 127 12 7
(050 1285 - 084 A H 110 128 128
) 051 1185 1284 a I 111 129 129
* 052 1184 1184 J 112 111 111
+ 053 1286 12 K 113 112 112
054 083 083 - L 114 113 113
- 055 11 ' 11 M 115 11 4 114
. 056 1283 1283 N 116 115 115
/ 057 01 01 (6] 117 116 116
0 060 0 0 P 120 117 117
1 061 1 1 Q 121 118 118
2 062 2 2 R 122 119 119
3 063 3 3 S 123 02 02
4 064 4 4 - T 124 03 03
5 065 5 5 U 125 04 04
6 066 6 6 A" 126 05 05
7 067 7 7 w 127 06 06
8 070 8 8 X 130 07 07
9 071 9 9 Y 131 08 08
: 072 82 11820r110 Z 132 09 09
; 073 1186 082 [133 1282 1185
< 074 1284 1286 \ 134 1187 8 7.
= 075 86 83] 135 082 1285
> 076 086 1186 t 136 1287 85
? 077 087 12820r120 « 137 085 82
Binary 79
Mode Switch 1202468

End of File 121101

The octal codes given above are those generated by the Monitor from the column punches. The card
reader interface actually supplies a direct binary equivalent of the column punch, as listed in the following
two pages. .

MAY 1968

163

CARD CODES B7

Column Column .
Punch Character Octal Punch Character Octal
None Space 0000 129 I 4001
0 0 1000 ' , 111 J 2400
1 1 0400 112 K 2200
2 2 0200 113 L 2100
3 3 0100 11 4 M 2040
4 4 0040 115 N 2020
5 5 0020 ° 116 (0] 2010
6 6 0010 117 i 2004
7 7 0004 118 Q 2002
8 8 0002 119 R 2001
9 9 0001 01 / 1400
12 1 A 4400 02 S 1200
12 2 B 4200 03 T 1100
123 C 4100 04 U 1040
12 4 D 4040 05 v 1020
125 E 4020 06 W 1010
12 6 F 4010 07 X 1004
12 7 G 4004 08 Y 1002
12 8 H 4002 09 Z 1001
Column 026 Data 026 :
Punch Processing Fortran 029 DEC 026 DEC 029 Octal
12 & + & + & 4000
11 - - - - - 2000
120 ? 5000
11 0 : o 3000
82 : <« : 0202
. 83 # = # = # 0102
84 @ - @ @ @ . 0042
85 ! + ! 0022
86 = ! = 0012
87 ! \ " 0006
1282 ¢ ? [4202
128 3 :) :) . 4102
1284 . 0) <) < 4042
1285 (] (4022

1286 + < + 4012

B8

Column
Punch

1287
1182
1183
1184
1185.
1186
1187
08%
083
084
085
086
087
121101
1202468
79

026 Data
Processing

%

164

INPUT-OUTPUT CODES

026
Fortran 029

|
!

$ $

* *
)
~

See note

(%
-
>

DEC 026

VAR

~

"

#
%

DEC 029 -

—

~ % A

End of File End of File

Mode Switch Mode Switch

Binary

Binary

Note: There is a single key for the O 8 2 punch on the 029 but printing is suppressed.
The Monitor translates the octal code for the 12 0 punch in DEC 026 to 4202 (which corresponds to a
12 8 2 punch), and the code for 11 0to 2202 (11 8 2).

Octal

4006
2202
2102
2042
2022
2012
2006
1202
1102
1042
1022
1012
1006
7400
5252
xx05

165

APPENDIX C
A
MISCELLANY
Instruction‘ Flow Simplified2
Word Formats C3
Instruction Timing Flow Chart . — C4
In-out Device Bit Assignments Cé6
Indicator Panels C8
Powers of Two Clo

C1

166

C2 MISCELLANY

INSTRUCTION
FETCH

INTERRUPT
REQUEST
?

YES

INDIRECT ADDRESS
CALCULATION

'

POINTER DONE IN INSTRUCTION INTERRUPT
BYTE, BLKI, BLKO EXECUTION REQgEST
DATA
STORE

INSTRUCTION FLOW SIMPLIFIED

167

WORD FORMATS
BASIC INSTRUCTIONS
| Mormenongx | ar 1| Y
0 89 12 13 ¢ 17 18 35
) IN-OUT INSTRUCTIONS
l I] DEVICE CODE NS TRuCTION 1| X [Y
23 9 10 12 13 4 17 18 35
PC WORD
l FLAGS ololololo] PC]
0 \2_1.3__-______17_19 : 3
owaron] catwr [owwr [rowwel e Tosen [asee T [] [W] o
0 1 2 3 4 5 6 7 8 9 10 " 12
BLT POINTER [xWwD] -
[SOURCE ADDRESS DESTINATION ADDRESS
0 . 17 18 35
BLKI/BLKO POINTER, PUSHDOWN POINTER, DATA CHANNEL CONTROL WORD [IOWD}
| — WORD COUNT / ' ADDRESS -1
0 : 17 18 35
BYTE POINTER
POSITION P SIZE § I l[l X I 4
0 56 1"n 12 13 4 17 18 35
BYTE STORAGE
$ 8ITS - P BITS
' BYTE NEXT BYTE E
0 35-P-51 BF 35-Pn1 * 35
FIXED POINT OPERANDS
|?? BINARY NUMBER (TWOS COMPLEMENT) I
0.1 35
. FLOATING POINT OPERANDS
]%31 EXCESS 128 EXPONENT [FRACTION (TWOS COMPLEMENT) AJ
1- (ONES COMPLEMENT)
01 89 35
LOW ORDER WORD IN DOUBLE LENGTH FLOATING POINT OPERANDS
lo ‘ E*“ﬁﬁsségfﬁﬁP?éga‘z’ 1 LOW ORDER HALF ~€ FRACTION (TWOS COMPLEMENT) J
01 89 35

WORD FORMATS

C3

. 168

C4 MISCELLANY
' DATA FETCH
la A Rl
u:uom o-:uuo MEMORY OPERAND FLOATING POINT oTHeR "‘“”‘""
READ /MODIFY IMMEDIATE l‘mv Mlm
AT+ %) 26+ %(11)
['tuuxum [jmus:nnooc [2] b

YES FAST
REGISTERS

?
NO
£
MEMORY READ
ACCESS (CHART 1)
ADORESS
04 " CALCULATION

HERE

v ' ' ¥
Lm E OF ThesE] l‘s"ﬁf,:gcubs"c] l POP, POPJ] un. R _]

MEMORY READ
ACCESS (CHART 1)

INSTRUCTION TIMING |
FLOW CHART

INSTRUCTIONS THAT USE READ/MODIFY

All Boolean In Memory and Both Modes Except SETZ, SETA, SETCA, SETO
ADDM, ADDB, SUBM, SUBB
HRRM, HRLM HLRM, HLLM and All Halt Words In Self Mode
MOVES MOVNS MOVMS, MOVSS
ILDB, 1DPB (Fim Time Only) .
18P, BLKI, BLKO, DFN, EXCH .
Al inall
0S, SOS in all modes 10-0129

169

INSTRUCTION EXECUTION

A

Cs

DATA STORE
A

Boolean (except ANDCA, ANDCB, ORCA, ORCB),
Half Words (except HLR, HLRI, HRL, HRLI), MOVE,
MOVS, EXCH, JFCL, JRST, JSP, XCT, ULD

ANDCA, ANDCB, ORCA, ORCB, HLR, HLRI,

HRL, HRLL, JSR, JSA, JRA, Test cless

MOVN, MOVM, ADD, SUB, ADBJP, ADBIN,

CAM, CAI, SKIP, JUMP, ADJ, ADS, S0J, SOS

PUSH, PUSHJ, POP, POPJ, DFN

JFFO
BLT
18P
LD8, 0P8 First time
ILD8, 0P8 First time
iLDB, LDB Second time
0P8, OPB Second time
Shift group
MUL

Average except MULI
IMUL

Average except IMULI
FMP

Average except FMPRI

2
62

A5
.80
.80 +.19 times number of Isading Os mod 18

.69 (+.11if User) + memory write access + .52
It not done + .09 and go to C3

.38 +.26 it overflow word boundary
81 +.15 per size count GotoC1

+.15 per size count }
kA { +.26 it overfiow Goto C1

.45+ .15 per position count
.95 +.15 per position count
39 Leht }]
{,23 Right +.15 per shift
6.02 +.13 per transition
836 (18 transitions for 2.34)
6.34 +.13 per transition
751 (9 transitions for 1.17)
6.39 +.13 per transition
821 (14 transitions for 1.82)

Note: Immediate mode multiplication has only half the average number of transitions

DIv. 1DV

FSC

FAD, UFA
Aversge

FSB

Rounding (except divide) only when actually done

Long mode (except divide)

FOVR, FOV (sxcept FOVL)

FOVL with fast ACs

FOVL without fast ACs

CONO, CONI, CONSO, CONSZ, DATAQ, DATAL
CONO, CONI, DATAO, DATAI
CONSO, CONSZ

BLKO, BLKI

13.78

1.52 + .25 per shift to normalize

238 { +.15 per shift to unnormalize

433 +.25 per shift to normalize

Same as FAD + .18

+.96

+69
1200
13.28
1232 (+.11if User) + memory read sccess + .89

12 Then wait until 4.50 has passed since last here
+2.89
+2.90

60 Then turn into DATAD, DATAI snd go to C2

STORE
ACCUMULATOR
?

MEMORY WRITE
ACCESS

(CHART 1)

)

MEMORY TIMING

MEMORY MAIO L] el Km0
SWOLE SINGLE

emocessors | SMOLE | smoie | mun | SUELL

cveLe 1.00 168 168 —

READ ACCESS 8 P 70

WRITE ACCESS 20 20 30

MODIFY

COMPLETION 38 33 120 -

NOTES .

MEMORY ACCESS TIMES INCLUDE 20 FEET OF

CABLE DELAY.
ALL TIMES 28%

SEE MEMORY
TIMING CHART
FOR CYCLE

C
COMPLETION TIME

NO MEMORY READ/MODIFY RESULT TO
RESULT ACCESS MEMORY

EXErr

* IF IN USER MODE

MEMORY WRITE
ACCESS (CHART 1)

NO

T+ %)

170

MISCELLANY

Coé

» £ 2 I3 [24 27
mox | mom | mox | mox | mox | mox | mox Teuoa
¥ | 53 | o3, . BT | oova (Prao)
IS/ [IIBN0AL| IO aUs 2003
0 Qs NI sty INOLIOW| T TR0 Acway | e | 1m0 7 ¥
ong | sowze | 4T o) = | G onl— oI _gtg ee
X775 | omers| O75S7H]
20 ova|TTBNI| T ug | 1@ | oBed TR I avod
wT7o | ATV | 59y PEONM| TUTY 435320 UTTD|
e
Isto oeusa
AX)
~o oo por| @
FIMOS » <79
omao
IFLOCAOND HAITS I FILOOPWO _MimrOT T DILOGIAND ot
o&IHL T FTLOGIIHS __ONOITS T AILO0FoNS ASHI
oA oo ov717 om0 | o0
oo 200¥3 svog | A8 | ZoadI °e | ‘w2 — 00| B2 (@
4
s o o077
oo 20223 oo | 457E 237> avoo
OXCOGATH WODS JILOUDOND 118 8 Jeua
FOALITITL QU HILOGIUMD LIE 8
v27 AL
0677 | AsrE | o672 | aSHE o077
ore Quz | “ouz | " | "TuZ 1531 nvod
435 | 235 | 235 | I3 | 35I| oI S50 FoED o,
23 Sg7y | ane | o077 | Asng | o7y | ASnS| o074 | sene| 247X onoo)|
o4t | ouy | Jiz Ziz) ovz]| ouy Zdd 4L
AIUNIE LON Al (SE-8C) SUTE 8 ‘ABNIE S TIOM LIT OF — ITeuea
o017 °67.
oI Shog | 488 | Aaervial _ Fodeyd m§OO | per &ud
o077
(2L oo | 4sne | saenrg owmod
: 4 £ 2 s 2. | ss37n) ss37700 oeusa
w;nx— .1401;— @700 | 3700 | mI0m| 370w | 5T TN ES T
o077 Saros
oo nvoo | AE78 | Adong) 2 VoD oeF gL
el
o1 oz | asne |aevn owod
®ray)
6208 | ¥3103M00
a-v
oay
S20UYIIOVT ANONIWNV WU QU Su18 Of oeuea
577 | D15 3
ED L -7 ETIVO
&-F FAILOG TINNOMD o MO SETMOOBG NI LHTBUTIN i raret)| 02T | TRy ~20|u 30 7o
o2 'Sz PZ SuI8 Oz AL SA N1 K| WL E il Bl o] i ol
L~ F EIINNEHD UDFTIIS 2% 270 570 lod Id)u@oﬂw \Kwaoﬂy Asrarns | F9woc | ONOD
SINOLIMS bLET OF Teuea
(S2-84 #a) 2ILSIOFD NAIIIOIOTIZ
(L-BMNT) FILSIOFD NOLIOZ.ONa - ooua
———
Oy | FTRNIT| LFEAIO[OO | IMWNT 77 | ITERMNVT o7y S0x | Q07| D677 %z o
vl A0 | A0 | oL @0y 70z 22072 | »007> AN xlon X FE QLWO«S .\QW InNOD e
oAl SR kil B AR b] Elad BETAED £ AT AR AR d 43532 O
oI ot | Ao |~ roav | Aoy Aoz [* gz | ¥0073| w2073 w070l TTV | “waw | Taoy 0 | onvod
72| a5l =0l 0l 43s | 270 | 0| 435 | 70 Zo 27 78 77
nn\n_vn\,!_nh\h» 2e/or | ke/er| pe/er | 62/ii | Beser| <276 | P2/ | Seu | v/ | s2/5 | 2am | rea | mrz | et/ | size 2000 om0

SINAWNDISSY LI9 J3DIATd LOO-NI

C7

17
IN-OUT DEVICE BIT ASSIGNMENTS

(B) 7448 & g ave | (&) 3448 6 99 usT wﬂw%
si18 2 16459
7 Fooo X
(2 2148 & Jod_ae (F) 448 8 o9 N2 (&) 3148 8 o9 ST reuea >
7 7 7 1) 13 L2 (2444
[2¢7 . 77 wiPa Ty PN NOD d 150 p
o5 AL o7 oL PLZ] NS F73¢ hs
A3 | AdarG T | T | AdAE | AL TV g | 48> 2337
2] orou| oros| grosL| eras| @rnz| @rmy| SINa| Piwz| 73| F13S| oNoD
— 435 | &7 VES 2l BE? 270l uzs| 275| i3S | 1>
3
£ SN0 ONOM TOMINDD TINNUMD TILINI otuea
oza | | sdou | 2007| zce@3 A% gan0g muo‘h— 367 Qo003 | Il | T77F | youx3| oo k\én(_' owr | ownm I
- LIND HLIG7 | SAANOD| F0 0
¢ 646D | Lx3N | NemDe | Suzom| Tmerol 4IND | “sof | ‘ave | wueg | ¥l |Eemoo) 20 | 20 Yo | ©F 77| “ae07 fonvm3d| uxad x| INOO S
24NN oo ez ae| vaw |z e)
HILOSHD s MM G| TN e MO INOO| i
TN SNOQ | &5 AINO
710| Ar0 M| eue onod A
* ZUIM| x IYTI0| e H/T2D . sar sug »
—— 2TLOY2HD L S —— e] NIIDLIGHO ML ————w | - NTLOLIGHD O £ mﬁu - Ao
AT LGN aNZ | N P —— B <] SOIL
ok e | 3106560, ryrYnY 587 5116 ¢
o e [— L O HLb | XFLOGXHD TN € D -6
YILOGIIHO _ONZ [E TR Nl —— T
—_————— XTUOUIMD ML D e [ew——— ITLOUNHD ML G ———— | - ¥i0bHD ML b ————= | ypro 2
———————— 2F00HD gy £ ——a— | NFLONOHD ON S —————w— | —a————— JTLOUHHD LS | ————mm || JUGQ ,
ZFNCNDL [——— 33206a36> i ———————— | NFTLOIOHD I E — J (#rws)
DILOUXTD ONS | SILIGAOHD US T ——————————— || Ctut onL
(MOTR TEIH#0 NI B9 SISIo0SbHD 1w O K16 : NHO Z 5 G
gxom 119 o€ FoMoL
ouua
- b ove
LTINS LXIN INOD
AFY 377 VOIS L] OMS TS =
ToVT | FILS FookdS + OF 07 FLlM =S i 23
blo biT Clog oIy ALLIEIVIQ LIND | 205 ONOYM M 1] FLIOM = D) Adrts LIND INOD
Lo e s £ il) 00
@08)-€ 6% <1 | &WON3| M T =
> . ! BnisO NI o-on » OF anim3e s 1| Wna! - .
; (2] blad ot 0002 a2 p| LIND il ora-0| Tevos |28 LInnD onod
NOLIOMI~ ey
478 £ 4. b4 S5 2478 Pi-) 8115 [s0 MmOy 7t
mum”:z INIT - - I@roa
N SN N r=7<a
< 4 3=} . 4. <4478 8% o e \W‘\UQ
IEON EVal [ov 30&3
Z E/3) ovz
oy 77 PINRS
o1 oy | e | aia Inod) (oroa)
7a
eavmens| PR s3g oo &
13538 oo | eI
VS 6T Z50 B S W
AT AW | U IN| N8 IW| NE | 2ILSIOFY W.\N.Q)\\gwm IILEIOTY Teusay
40N LON LONV LoV
M7
reuva
2537 G
aTITS otusa|
— pes, sua
20537 O MO £
033 o TIEEIN| INOZ (NOURSAO| IVOQT | OFEEIW| 2033
Zorres | e wourmel 7007 | 3007w | “awa [wwami| sor | Teusa | eee | NP
Er= FIWNT | ITIVT | FTGONT | TTRONT | I TRONT | I TRV (W7
701 _xs?owc_ sina | uoa |saed |PTORN| TS | Inrson | A | osesin| owoE awoo |ozsssw|” zas || wvoo
4139 | 3000w | onwy |wes7irl “eor | sueo | irmve
FTIGENT | TIGONT | T TOONT | 5 TN | T IFENT | T TRINT
aISSIW| INOE IvOT | QFSEIN| T OoNOD
22078 ony | o3I gar YT | AL IS
oZoM UI8 % — - Teuea|
g3oM L7189 2% - oeura (@ros)
BUST RUTM L U R £ | XIFENIN ‘Nn g
I E967 Gl T e S S e 130 SWEAL Fr7530| 409735 S oo | “04s| INOO
e i d &FBININ 2 Lzzrmne (osaonzer
ole §O077 | bl euba 2IGWIN MOILONNZ PE] :UW.WW 197735 (Uerza | oo oo | <as | ovoo
ST 1 m,.Ww aILOT IS ILSIOZY ‘«\MERQ
———— (008) J3IMI0D HOLOFS ———— &40 2UDTFS ALIdES X
AT R L ; ALIDOS A
NINT ESF2008 OHOM TOAUNOD TINNEHD TILINI _ Furom | 22, 26t oura
EXY -2 r i Pt IGILINT
s s.or 223735 |5,
- (008) 201235 e —— wsia || O P
VZLLMN wpay | 2 rm T oo || e)
oro INOT | Asng |am umd| . SLUNOD 103135 | 01530 | 02T | Ny 231Xl INCO| @BLF ¥so
_ \ékw.h 2340 | 769377, HoM3S | sy
57 o 1
Gl
(008, saroums W neo
T AT [ow INS| WP | ST (375 S [95 S5 o et 7 [AT [SoTas | 055T
oro INOT | aem70| _momd | ~@3n0 | w0377 M [r0dumoo | esa | vsso lons ame | iow sl 103738 x| 242 kw‘w.%ww,w ovod
2570 | _otus | suraml 20570 | avao| Y10 wewo 70 20| 273 | 26375 | aw370 272 26370
se/er|pe/on |2 /7 | 2e/or | 1e/er] geser | s2/u | sesor| cass | vem | sen [veso [cese [2ep | sepe [222 | e | 8170 pewomns| 3000 391130

172

MISCELLANY

C8

T Aeg

3

1089001 SIRWIIY O VY ‘Toued Jojeorpuy

1 Aeg

3

J0SS300IJ dNAWYITY TV ‘[oued JOIBIIpU]

C9

INDICATOR PANELS

(s G9°1) A1oWwa\ 310D OGN ‘TouRq I103BOIpU]

d3Ls
ITONIS

g4 oz Bd %4 @ w4
S e R SRR W S SO S IR ST SO S et IS S SR SRR
HYd HRI 3L8M avad L 3ALOY AHViS3Y ONAS d0is Dy um DY oM DY My HIMOd

M08 AHOWINW

¢ e oo L

—— m———— — S E— R S R I R S SRS EISPONRS
N 354 a¥as 15%Y IRV isanoau

¢ ow o 6w B e e

5o wo o e w o o om %om € v e s
BT L e L L S ——————————
BN AUOHIN

BN =

C10

BN =

36

72
144
288
576
152
305
611
223
446
893
786
573
147
295
591
183
366

—
N AN

34

68
137
274
549
099
199
398
796
592
184
368
737
474
949
899
799
599
199
398
797
594
188
376
752
504
009
018
036
Q073
147
294
589
179
358
717
434
869

536
073
147
294
589
179
359
719
438
877
755
511
023
046
093
186
372
744
488
976
953
906
813
627
254
509
018
037
075
151
303
606
213
427
854
709
419
838
676
352
705
411
822
645

388
777
554
108
217
435
870
741
483
967
934
869
738
476
953
906
813
627
255
511
022
044
088
177
355
710
421
842
685
370
740
481
963
927
855
711
423
846
693
387
775
551
103
206
412
825
651
303
606
213

2N

—
O WA N =

128
256
512
024
048
096
192
384
768
536
072
144
288
576
162
304
608
216
432
864
728
456
912
824
648
296
592
184
368
736
472
944
888
776
552
104
208
416
832
664
328
656
312
624
248
496
992
984
968
936
872
744
488
976
952
904
808
616
232
464
928
856
712
424
848
696

2

WEBNOOOEWN~=O

1.0
0.5
0.25
0.125
0.062
0.031
0.015
0.007
0.003
0.001
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

5
25

625

812 5
906 25
953 125
976 562
488 281
244 140
122 070
061 035
030 517
015 258
007 629
003 814
001 907
000.953
000 476
000 238
000 119
000 059
000 029
000 014
000 007
000 003
000 001
000 000
000 000
000 000
000 000
000 000
000 000
000 Q00
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000%*000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000
000 000

25

625
312
156
578
789
394
697
348
674
837
418
209
604
802
901
450
725
862
931
465
232
116
058
029
014
007
003
001
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
0co
000
000
000

25

125
062
531
265
632
316
158
579
289

322
161
580
290
645
322
661
830
415
207
103
551
275
637
818
909
454
227
113
056
028
014
007
003
001
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000

POWERS OF TWO

25
625
812
406
203
101
550
775
387
193
596
298
149
574
287
643
321
660
830
915
957
978
989
494
747
373
686
843
421
210
105
552
776
888
444
222
111
055
027
013
006
003
001
000
000
000
000
000
000
000
000
000
000
000
000
000

174

MISCELLANY

25

125
562
781
390
695
847
923
461
230
615
307
653
826
913
456
228
614
807
403
701
350
675
837
418
709
854
427
713
356
178
089
044
022
511
755
877
938
469
734
867
433
216
108
054
027
013
006
003
001
000
000
000

25

625
312
656
828
914
957
478
739
863
934
467
733
366
183
091
545
772
886
443
721
860
430
715
357
678
839
419
209
604
302
151
575
787
893
446
723
361
680
840
420
210
105
552
776
388
694
847
423
211

25
125
062
031
515
257
628
814
407
703
851
425
712
856
928
464
232
616
808
404
202
601
800
400
700
850
925
462
231
615
807
903
951
475
737
868
434
217
108
054
527
263
131
065
032
516
758

25

625
812
906
453
226
613
806
903
951
475
237
118
059
029
014
007
003
001
500
250
125
062
031
515
257
628
814
907
953
976
988
994
497
248
624
312
156
578
789
894
947
473
236

25

125
562
281
640
320
660
830
915
957
478
739
869
434
717
858
929
464
232
616
308
654
827
913
456
228
614
807
403
201
100
550
275
137
o068
034
017
508
254
627
813

5
25
625
312
156
078
039
519
759
379
689
844
422
711
355
677
338
169
084
042
021
510
755
377
188
094
547
773
886
443
221
610
805
402
201
600
300
150
575

25
125
062
531
765
882
941
970
485
242
621
810
905
452
726
363
181
590
295
647
823
411
205
602
801
400
700
850
425
712
356
678
339
169
084

25

625
812
406
703
351
675
337
668
334
667
333
166
583
791
395
697
848
924
962
981
490
745
372
186
093
546
273
136
068
534
767

25

125
562
781
890
945
472
236
618
809
404
702
851
925
962
481
240
120
560
280
640
320
160
580
290
645
322
161
080

25

625
312
656
328
164
082
541
270
135
567
783
391
695
347
173
086
043
021
010
005
002
001
500
250
625

5
25
125
062
031
015
507
253
626
813
906
953
976
988
994
497
748
874
437
718
359
679
339
169

5
25
625
812
906
953
476
738
369
684
342
171
085
542
271
135
567
283
641
820
910

5
25
125
562
281
140
570
285
142
571
785
392
696
848
924
962
981
490

25

625 .

312
156
578
289
644
822
411
205
102
051
025
512

5

25

125

062 5

531 25

265 625

132 812 5

566 406 25

783 203 125
391 601 562 5
695 800 781 25
847 900 390 625

175

APPENDIX D

ALGORITHMS

All arithmetic operations on full and half words are performed in the 36-bit
parallel adder. There are two sets of summand inputs to the adder, each set
of 36 supplying one input to each adder stage. One set supplies the contents
of AR, its complement, or zero; the other set supplies the contents of BR, its
complement, or zero. Each stage also has a carry input, which is generated
by the next less significant stage. Every stage has two outputs; the carry
already mentioned, and a sum. The 36 sum outputs together form the sum
of the two input words. The least significant stage has a carry input from the
logic for performing twos complement arithmetic and incrementing by one.
The negative of a number is formed at the sum outputs simply by supplying
the complement of the number at one set of inputs and asserting the carry
into stage 35. Adder stage 17 has extra input gating so that 1 can be added
to or subtracted from both halves of AR simultaneously.

The adder produces a sum in the same way that one adds binary numbers
using pencil and paper. Each adder stage has three inputs, two summand bits
and a carry, and two outputs, sum and carry. The sum output of a given
stage is 1 if any one or all three of the inputs are 1. The carry out is 1 if two
or three of the inputs are 1. Calculations are performed as though the words
represented 36-bit unsigned numbers; ie the signs are treated just like magni-
tude bits. In the absence of a carry into the sign stage, adding two numbers
with the same sign produces a plus sign in the result. The presence of a carry
gives a positive answer when the summands have different signs. The result
has a minus sign when there is a carry into the sign bit and the summands
have the same sign, or the summands have different signs and there is no
carry.

Thus the program can interpret the numbers processed in fixed point
arithmetic as signed numbers with 35 magnitude bits or as unsigned 36-bit
numbers. A computation on signed numbers produces a result which is
correct as an unsigned 36-bit number even if overflow occurs, but the hard-
ware interprets the result as a signed number to detect overflow. Adding
two positive numbers whose sum is greater than or equal to 2°° gives a nega-
tive result, indicating overflow; but that result, which has a 1 in the sign bit,
is the correct answer interpreted as a 36-bit unsigned number in positive
form. Similarly adding two negatives gives a result which is always correct
as an unsigned number in negative form.

All operations discussed below have two operands, one of which is
supplied to the adder from BR, which acts simply as a buffer and has no
special input gating. MQ has shift gating so it can function as a low order
extension of AR for handling double length operands. All actual computa-
tions take place in the single 36-bit adder, but the sum output can be placed
in either AR or MQ, and all transfers to MQ from AR or BR are made
through the adder. In multiplication MQ holds the multiplier and thus

D1

D2

176
ALGORITHMS

controls the summation of partial products; as the multiplier is shifted out,
the low order word of the product is shifted in. In division MQ supplies the
low order part of the dividend to AR as the quotient is being constructed in
MQ.

In any extended arithmetic operation, the requisite number of steps is
counted in the 9-bit shift counter SC, which has a carry network for this
purpose.. SC alse has a 9-bit adder foruse in computations on floating point
exponents and size and position calculations in byte manipulation.

FIXED POINT ALGORITHMS

Fixed point numbers are explained in detail in §1.1. For convenience let us
take the computer representation of the positive number x as +[x] where
the brackets enclose the number in bits 1-35. Similarly the representation
of —x is —[2% - x] or —[1 —x] depending on whether we are regarding num-
bers as integers or as proper fractions. The most negative number, =235, has
the form —[0], which is equivalent to the unsigned integer 235,

Addition. There are four cases of addition of two positive 35-bit numbers
x and y.

I Cx+y

II. x)+(=y)

L x+(-y), x>y
Iv. x+(=y), x <y

The operands are held in AR and BR, but it makes no difference which one
is in which register. The result appears in AR. For convenience in the
exposition we shall regard the numbers as proper fractions; to view them as
integers, simply substitute “235” for each occurrence of “1”. Since the twos
complement format allows a representation for —1, either x or y may be 1 in
II, and y may be 1 in IV.

I. If x+y <1 the adder output placed in AR is +{x+y]. If x+y =1
the carry out of stage 1 changes the sign. Consequently if the addition of
two positive numbers gives a negative result, it is apparent that the sum
exceeds the capacity of the register. The processor detects the overflow by
checking the sign carries: there is a carry into the sign stage but none out of
it. AR then contains

—[x+y—1]

II. Ignoring the carry into the sign bit in the addition of two negatives
would give
-[1=x].
—[1-y]
+{1+1—-x-y]

If x +y <1 the carry changes the sign and the result is

177
FIXED POINT

~[1=x-yF

which is the representation of —(x +y). If x+y > 1 there is no carry into
the sign, and its absence in the presence of a carry out indicates overflow.
AR contains

I —G+y-1DI

III. Ignoring the carry into the sign in an addition where the signs are
different would give

+ [x]
=yl
= {l+x-y]

Since x 2 y, it follows that 1 +x —y > 1. Hence the carry changes the sign
and the result is

+[x -yl

When the operand signs are different, the magnitude of the result cannot
exceed the larger operand magnitude and there can be no overflow. Since
in this case the positive number is at least as large in magnitude as the
negative, there is always a carry into the sign, and this added to the operand
minus sign produces a carry out.

IV. The addition of numbers of differing signs where the negative has the
larger magnitude gives

+ [x]
—[1-y]
—[T+x-y]

Since x <y, then 1 +x —y < 1. Hence there are no carries associated with
the sign and no overflow. The above result is the twos complement represen-
tation of x — y, ie —(y — x).

Subtraction. The minuend from AC is in AR, and the subtrahend, which
is either 0,F or the word from location E, is in BR. Subtraction is done
directly by adding the twos complement of BR to AR. The logic supplies
the complement of BR to the adder and a carry into the adder LSB.

Let x be the absolute value of the number in AR, and y the absolute value
of the number in BR. There are four cases.

L x=(y)
1I. x)-y
111. x=y, x=y; =x)— (), X<y

v. x-y, x<y; =x)-(y»), x>y

These correspond respectively to the four cases of addition discussed
previously.

Multiplication. The multiplier, 0, F or the contents of location F, is in
MQ, and the multiplicand from AC is in BR. AR is clear. The 36-step
procedure is as follows.

D3

D4

178
ALGORITHMS

If MQ3S5 (the multiplier LSB) is 1, subtract BR algebraically from AR, but
put the result in AR shifted one place to the right, with the LSB of the result
going into MQO, and shift MQ right so a bit of the multiplier is dropped from
MQ35. Put the sign of the result in ARO and ARI (as though the shift
followed the subtraction and did not affect the sign but did move it to
ARI1). If MQ3S is O, simply shift AR and MQ right one, with AR35 going
into MQO.

In each subsequent step perform only the shift if the bits moved in and
out of MQ35 on the previous step were the same. If they were different, add
or subtract along with the shift: if the shift moved a 0 in and a 1 out, add
BR to AR;if a 1 in and a O out, subtract BR from AR.

Thus the low order bits of the running sum of partial products are shifted
into MQ as the multiplier is shifted out. At each step the effect of the multi-
plicand in BR on the partial sum in AR is one binary order of magnitude
greater than in the preceding step because the partial sum was shifted right.
Therefore BR can be combined directly with AR. If MQ35 is initially O,
there is no subtraction until a 1 is shifted into it. Simple shifting then
continues until the next transition (from 1 to 0), following which BR is
added.

The process continues in this way, subtracting at every 0-l transition,
adding at every 1-O transition. After 35 steps MQO—-34 contains the low
half of the product magnitude, and MQ3S5 contains the sign of the multiplier.
At the final step, add or subtract as required but put the result directly into
AR; shift only MQ to move the low magnitude into the correct position and
make MQO equal to the sign of the whole product.

If the original operands were both negative and the result is also negative,
set Overflow; this can occur only when —2% is squared. In IMUL, if the high
word is not null (e if AR is neither clear nor all 1s), set Overflow; move MQ
to AR for storage of the low word.

To see that this procedure results in a correct product, consider the posi-
tive binary integer

100111011

876543210

where the decimal digits below the binary digits are the powers of 2 corres-
ponding to the bit positions. This number is obviously equal to

100000000
+ 111000
+ 11

Now an n-bit string of 1s whose rightmost bit corresponds to 2*is equal to
27— 2k, or equivalently 2%(2" — 2°), je 2" — 2% is a string of # 1s and the 2*
shifts the string left % places. Hence

100000000 = 28%1-28 = 2928

111000 = 233-23% = 26-723

11 = 22020 = 2270
100111011 = 2°-28+426-23422-20

In this last representation, each power of 2 that is subtracted corresponds to

179

FIXED POINT

a'transition from 0 to 1 (scanning right to left), whereas each that is added

corresponds to a 1-0 transition. The largest term corresponds to the transi-
tion to the sign bit, which is O for a positive number. The multiplication
algorithm interprets the multiplier in this manner, alternately subtracting
and adding the multiplicand to the partial sum in the order-of-magnitude
positions corresponding to the transitions. If a multiplier of the same magni-
tude were negative, it would have the form

1011000101

- 876543210

in which the extra bit at the left represents the sign. The number is now
equivalent to
—29428 264232242120

wherein opposite signs correspond to opposite transitions. The algorithm
may thus use exactly the same sequence for a negative multiplier: this time
the subtraction of greatest magnitude is detected by the transition to the
sign bit, which is now 1.

Division. The divisor, 0, F or the contents of location E, is in BR. In
DIV the high and low halves of the dividend from two accumulators are in
AR and MQ respectively. In IDIV the one-word dividend from AC is in AR.
The two types of division differ mainly in setting up the dividend; in both
cases the algorithm processes a positive dividend to get a positive quotient.

In DIV'if the dividend is negative (ARO = 1), make it positive and set the
negative dividend flag. To negate the dividend, move the low word to AR
and the complement of the high word to MQ. Then move the negative of
the low word back to MQ and the complement of the high word back to AR.
Now the double length negative of the original dividend is in AR and MQ
unless MQ is clear; in this event add 1 to AR to give the twos complement
negative of the high word. Once the dividend is in positive form shift MQ

left one place to close the hole between the two halves; in other words drop

the low sign and get the 70-bit magnitude into AR1-35, MQO-34.

If the IDIV dividend in AR is negative, negate it and set the negative
dividend flag. Move the one word dividend in positive form to MQ and clear
AR. Shift MQ left, as the algorithm operates on a double length dividend in
both types of division although the high part is null in this case.

After the dividend is set up, compare the divisor with it to determine
whether the division can be performed. Subtract the absolute value of the
divisor from the high half of the dividend (if the divisor is positive, subtract
it; if negative, add it). Since the dividend is positive, the result is also
positive if the magnitude of the divisor is less than or equal to the number in
AR. For a fixed fraction, the divisor is subtracted from the actual dividend
and no overflow is allowed. For a fixed integer, AR is clear and the result is
positive only for a zero divisor; the worst possible case is the division of
2% ~1 by 1, whose integral result can be accommodated. (Placing the one
word dividend in MQ effectively multiplies it by 273° making it the frac-
tional part of a two word dividend with the binary point in the middle. The

quotient is then a proper fraction, which is multiplied by 23 simply by

interpreting it as an integer.) Thus if the result of this initial subtraction is

D5

180

ALGORITHMS

positive, set Overflow and No Divide, and terminate the procedure so the
processor goes on to the next instruction. Dividing by zero is of course
meaningless. The reason for prohibiting a fractional division where the result
would be greater than 1 is that it is impossible to determine the position of
the binary point in the quotient. So it is up to the programmer to shift the
dividend to the correct position beforehand. If the result-of the initial sub-
traction is negative, the division can be performed and the processor goes
into the division loop.

In division on paper, one subtracts out the divisor the number of times it
goes into the dividend, then shifts the dividend one place to the left (or the
divisor to the right) and again subtracts out. In binary computations the
divisor goes into the dividend either once or not at all. Each subtraction of
the divisor thus generates a single bit of the quotient. If the subtraction
leaves a positive difference, ie if the dividend is larger than the divisor, a 1 is
entered into the quotient. If the difference is negative, a O is entered. To
compensate for subtracting too much, the hardware could add the divisor
back into the dividend before going to the next subtraction step. But the
PDP-10 algorithm instead shifts first and adds the divisor back in at the new
position. It then continues to shift and add putting Os into the quotient
until the result again becomes positive. This procedure generates the same
quotient without ever going back a step.

The hardware procedure is ‘as folows. As each addition or subtraction is
formed in the adder, put the result in AR shifted one place to the left with
AR3S receiving a new bit of the dividend from MQO, and shift MQ left
bringing in a bit of the quotient at MQ35. The bit brought in is the comple-
ment of the sign from the adder: if the divisor does not go into the dividend,
the resulting minus sign (1) produces a 0 quotient bit; if the divisor does go
in, the plus sign gives a 1. Each step loads one bit of the quotient into MQ35,
and the low half of the dividend is shifted out of MQ as the quotient is
shifted in.

The first step is the test subtraction. In each subsequent step, subtract
the absolute value of the divisor if the quotient bit generated in the previous
step is 1, but add it back in if the quotient bit is 0. Since the divisor may
have either sign, subtract it algebraically if its sign differs from the quotient
bit, add it if its sign is the same.

The hardware executes 36 steps to generate 35 magnitude bits. The initial
test step must give a 0, which serves as the sign since we are producing a
positive quotient. In the final step put the result of the addition or subtrac-
tion directly in AR without shifting so the remainder is in the correct
position, but shift MQ left putting the sign from the first step in MQO and
bringing in the last quotient bit. (The bit dropped out of MQO is superfluous;
it was brought into MQ3$ when the hole was closed between the dividend
halves.) ’

To complete the division we must make sure the remainder is correct and
determine the correct signs of the results. Since the operations were per-
formed on positive operands, the remainder should also be positive. A
negative remainder indicates that too much has been subtracted. To correct
this add the absolute value of the divisor back in. If the negative dividend
flag is set, negate AR so the remainder has the sign of the original dividend.

181
FLOATING POINT

Now move the corrected remainder to MQ and move the quotient to AR.
If the negative dividend flag and the divisor sign are of opposite states,
negate AR to produce the correct quotient sign. The correct quotient and
remainder are now in AR and MQ ready for storage.

As an example of the way this algorithm operates, consider a division of
3-bit fixed fractions with a dividend of +.100100 and a divisor of +.101.
By paper computation we obtain the quotient this way.

11

1011100.100
101

106 00

101

1

Taking the processor registers to be four bits in length, AR contains 0.100,
MQ has 0.100, and BR has 0.101. Before starting we close the hole changing
MQ to 1.000. The sequence has four steps.

0.100 1.000 °
—0.101

1.111
1 « 1.111 0.000
+0.101

0.100
2 « 1.000 0.001 -
~0.101
0.011
3 « 0.110 0.011
-0.101
0.001
4 0.001 <0.111

The quotient is in MQ at the right, the remainder in AR at the left.

FLOATING POINT ALGORITHMS

§1.1 explains floating point numbers and §2.6 discusses the general charac-

teristics of floating point arithmetic. Exponent computations are done in
the SC adder using the exponents and signs from the floating point operands.
Remember, the sign is that of the whole number, not of the exponent.
Although bits 1-8 of a floating point number represent an exponent in the
range —128 to +127, the discussion is entirely in terms of the excess 128
exponents in positive form,.ie the set of numbers 0-255. Computations
generally use twos complement operations even though the exponent in a

D7

182
ALGORITHMS

negative number is a ones complement. The SC sign bit is used to detect
exponent overflow and underflow.

After exponent calculations are complete, operations on the fractions are
done by the fixed point logic in AR, BR and MQ. Bits 1-8 of AR and BR
are filled with null bits, Os in a positive number, 1s in a negative. Double
length operands are in AR and MQ with MQ8-35 forming a magnitude
extension of AR. In almost all circumstances the logic treats ARO-35 and
MQ8-35 as a single 64-bit register; in all two-word shifting AR35 is con-
nected to MQ8 and MQO-7 is ignored. Except in division the fixed point
calculation generates a double length fraction, which is shifted arithmetically
(in right shifting the sign goes into AR1; in left shifting the sign is unaffected
and Os enter MQ35). Almost all floating point instructions normalize the
result, thus making use of the low order part even though the instruction
may store only the high order word.

Addition, Subtraction. F,0 or the word from location F is in BR, and AC
is in AR. For subtraction move the negative of the subtrahend from BR to
AR and move the minuend from AR to BR. This reduces subtraction to
addition, so the rest of the algorithm is the same for both.

The initial objective is to determine the difference between the exponents
and to determine which exponent is the larger. If the signs of the operands
differ, add the exponents into SC. If the signs are the same, subtract the BR
exponent from the AR exponent by adding the twos complement. Let x
and y be the AR and BR exponents in positive form. The table below shows
the calculations as a function of the operand signs, and the sign of the result
in SC as a function both of the operand signs and the relative values of x
and y.

AR+, BR+ AR+, BR— AR—, BR+ AR—, BR—
+[x] +[x] -[255 —x1 —[255 —x]
-[256 - y] =[255-y] +[y] +[1+y]
~[256 +x —y] —[255+x —y] —[255 -x+y} —[256 —x +y]
scC+ SC- - SC+ SC- SC+ SC- SC+ SC-
xz2y x<y x>y x<y x<y x=2y x<y x>y

As can be seen from the above, if AR already contains the number with the
smaller exponent, the SC and AR signs differ. Hence if the SC and AR signs
are the same, switch BR and AR so the number with the smaller exponent
can be shifted. If the exponents are equal, the signs may or may not be the
same but it matters not whether the transfer takes place.

To control the shifting we must now get the negative of the difference
between the exponents. Let d be [x —y|. There are four cases as a function
of the SC sign and whether the AR and BR signs are equal. The second
column lists the present contents of SC, the third tells what must be done to
arrive at —[256 —d] in SC.

SC+, ARO = BRO +[d] ' Negate SC
SC+, ARO # BRO +[d-1] Complement SC

183

FLOATING POINT

SC—, ARO = BRO —[256 —d] Do nothing
SC—, ARO # BRO —[255-d] Add 1 to SC

If d < 64 (indicated by a negative SC with a 0 in either SCI or SC2) nullify
ARI1-8 and shift AR and MQ right d places so its bits correctly match the
BR bits in order of magnitude. If d > 64 clear AR for its contents are of
no significance.

Now move the larger exponent from BR to SC in positive form, nullify
BR1-8&, and add BR and AR into AR as fixed fractions. Finally enter the
normalizing sequence.

This sequence first tests for a zero result. If AR and MQ8-35 are clear,
bypass the rest of the procedure. If the fractional result has overflowed into
ARS8 (indicated by ARO # ARS8 or AR8 = | and AR9-35 = 0), shift right
and increase the exponent by one. The number is now normalized.

Complement the exponent in SC. If the instruction is not UFA and the
number is not normalized go into the normalizing loop. In each step shift
the double length fraction left and add 1 to the negative exponent
(decreasing its magnitude by 1). Terminate the loop when the fraction is
normalized, indicated by the sign and the MSB of the fraction being different
(ARO # ARO9) or the magnitude being %2 (AR9 = 1 and AR10-35 = 0).

If the instruction specifies rounding, adjust the high fraction so it is
rounded and is in twos complement form if negative. The rounding is away
from zero. For a positive result the high fraction must-be increased if the
low fraction is greater than half the value of the high fraction LSB. In a
negative result the high fraction is a ones complement, which is one greater
in magnitude than the twos complement. Hence it is already rounded and
should be decreased in magnitude if the low fraction is < %LSB. In either
case add 277 into AR if MQ8 is 1 unless MQ9-35 is clear in a negative
number. A 1 in MQ8 indicates a low fraction = ALSB in a positive number,
< J2LSB in a negative number. The condition that MQ9-35 not be zero in
a negative number is the case where the low fraction is exactly 2LSB. If the
high fraction is actually changed, renormalize it. A single normalizing shift
is all that is required and it occurs in only two cases: a right shift when
1-27%" is rounded, a left shift when —% is changed to a correct twos
complement.

Once the number has been normalized (and rounded if necessary) the
exponent is in negative form. Thus if the SC sign bit is 0, set Overflow and
Floating Overflow. If SCI is also 0, the sign bit must have been changed by
decreasing the exponent, so also set Floating Underflow (the maximum
possible exponent overflow is 128 giving an SC contents of 777, and this
can occur only in division). Insert the exponent in correct form into AR1-8.

The result is now ready to store from AR unless the instruction is in long
mode. To ready the double length result subtract 27 from the positive expo-
nent in SC. Save the high word in MQ, and move the low word to AR, but
only if the decreased exponent is still positive. If the sign is 1, the true
exponent of the low word is less than ~128, so clear AR. (Note that this
condition is also true if the low exponent is > 127, which can occur only if
the high exponent is > 154.) If the low word is nonzero, shift AR right
one place to put the fraction in bits 9-35 (remember that all shift operations

D9

D10

184

ALGORITHMS

use MQ8-35), clear ARO so the low word has a positive sign even if the
double length fraction is negative, and insert the low exponent in positive
form in bits 1-8. Finally switch AR and MQ so the high and low words are
in correct position for storage.

Scaling. The 9-bit signed scale factor from bits 18 and 28-35 of E is in
SC, and AC is in AR and BR. If the floating point number being scaled is
positive, simply add the sign and exponent from BR0O-8 to SC; if the number
is negative, add the complement of BRO-8 to SC. Let x be the exponent in
positive form and let y be the absolute value of the scale factor. There are
only two cases,

+[x] +{x]
+[y] —[256 —y]
+(x +yl] +x -yl

and in either the result is in positive form in SC.

Now enter the normalizing sequence described under floating addition.
Only left shifting can occur bringing Os in from MQ. The result can be zero,
and exponent overflow or underflow can occur; but there is no rounding,
and at the end the one-word result is in AR ready for storage.

Multiplication. E,0 or the word from location £ is in BR, and AC is in
AR. Place the AR exponent in positive form in SC, and add the positive
form of the BR exponent to it. Since both are in excess-128 code, subtract
128. Save the result in the floating exponent register FE so SC can be used
to control the multiplication of the fractions.

Nullify the exponent parts of AR and BR. Move the multiplier from BR
to MQ and the multiplicand from AR to BR. Clear AR. Now multiply the
fractions by the same procedure given for fixed point multiplication with
the following differences:
¢ There are only 28 steps instead of 36.

The shift register extension of AR for the construction of the product is
MQ8-35. As the multiplier is shifted out, bits of the product come in
at MQS8.

¢ In the final step place the adder output directly into AR but do not shift
MQ — the low fraction is in MQ8—34, the correct position for normalization.

Clear MQ35, move the exponent back to SC, and enter the normalizing
sequence described under floating addition. If the operands are normalized,
at most one left shift is needed to normalize the result.

Division. The divisor, E,0 or the contents of location E, is in BR. The
dividend from AC is in AR. In long mode the low half of the dividend from
the second aceumulator is in MQ; otherwise MQ is clear.

If the dividend is negative, make it positive and set the negative dividend
flag. Except in long mode, negate the dividengd simply by negating AR. For
long mode follow the procedure given for DIV in the second paragraph of
the fixed division algorithm. With a floating point operand the left MQ shift
puts the low fraction in MQ8-34.

Place the AR exponent in positive form in SC. Subtract the magnitude of
the BR exponent from it by adding the negative form of the exponent (ones
complement) plus 1. Since the excess-128 factors cancel in the subtraction,
add 128. Save the result in the floating exponent register FE so SC can be

185
FLOATING POINT

used to control the division of the fractions.

Nullify the exponent parts of AR and BR. Subtract the absolute value of
the divisor from the high half of the dividend. If the result is positive,
indicating the divisor is less than or equal to the dividend, shift AR and MQ
right and increase the exponent in SC by 1. Save the adjusted exponent in
FE. The shift divides by 2, so if the operands are normalized, the dividend
must now be less than the divisor.

Now divide the fractions by the same procedure given for fixed point
fractional division with the following differences:

Since the dividend has already been adjusted, the test in the first step
stops the division only if the divisor is zero, or is unnormalized and less than
the dividend. A normalized divisor cannot cause the quotient to overflow.
If the result of the initial subtraction is positive, terminate the procedure
and set Floating Overflow as well as Overflow and No Divide.

¢ Instead of 36 steps there are only 29 if the instruction spec1fles rounding,
otherwise 28.

¢ The shift register extension of AR is MQ8-35. As quotient bits are
brought in at MQ35, dividend bits are supplied to AR35 from MQ8. The
shifting clears MQO~-7.

¢ The MQ shift in the final step places a 27-bit quotlent fraction in MQ9-35
or a 28-bit fraction in MQ8-35.

¢ As in the fixed point algorithm generate the correct signed remainder, put
it in MQ, and move the quotient to AR but leave it positive.

If the instruction specifies rounding, shift. AR right placing the 27-bit
fraction in the correct position, and if the bit shifted out of AR35 is 1, add
it back into AR3S5 to round the positive quotient. If the quotient is zero
bypass the rest of the procedure. The reaminder will also be zero except in
an FDVL where the double length dividend is unnormalized and its high
fraction is zero.

Complement the exponent in SC. If the instruction uses normalized
operands the initial dividend adjustment guarantees that the quotient will be
normalized. If it is not, shift AR left (bringing Os into AR35) until a 1
appears in AR9, each time increasing the negative exponent by 1 (decreasing
its nragnitude).

Since the exponent is in negative form, if SCO is 0, set Overflow and
Floating Overflow. If SCI is also 0, the sign bit must have been changed by
decreasing the exponent, so also set Floating Underflow. Insert the exponent
in correct form into AR1-8. If the negative dividend flag and the divisor
sign (BRO) are of opposite states, negate AR to produce the correct quotient
sign.

The quotient is now ready for storage from AR and the remaining opera-
tions are performed only for long mode. Save the quotient in BR and bring
the high half of the original dividend from AC to AR. Put the dividend
exponent in SC. Decrease its magnitude by 26 if the dividend was shifted
right at the beginning to allow the division to be performed; otherwise
decrease it by 27. Move the remainder to AR and insert the exponent in it
provided the remainder is not zero and the exponent is within the proper
range, —128 to 127 (the test is that the sign resulting from the exponent
calculation is the same as the sign of the remainder). If the exponent is

D11

D12

186

ALGORITHMS

outside that range clear AR; the assumption is that the remainder is of no
significance (ie the exponent is too small). Move the remainder with its
correct exponent from AR to MQ and put the quotient back in AR. The
two words are now ready for storage.

Double Precision Division. The software routine that performs double
precision floating point division and the algorithm it utilizes are given at
the end of §2.11. FDVL performs the division

Alb = q+r27%/p

where g and r are the quotient and remainder. In a double precision
division the divisor is of the form

B = b+d27¥
Using the expansion
2 3
Lo i[l_z+y__y_+,__] 07 < x2)
x+y x x x? x3

and letting x = b and y = d27? gives

-27 -27 279 -54 34-81
A _ <q+r2)[l_dZ L2 @2 +]
B b b b? b3

Multiplying out and gathering like terms gives

SSRRN

= g+io-qp27 - Lo—qarsi+ L p—qart - ..
b b? b

where the first two terms on the right are those in the equation at the
bottom of page 2-67.
The ratio of adjacent terms is

Tnis —d27”
T, b

In an alternating convergent series, the error due to truncation is smaller
than the first term dropped. Therefore

27
|Error] < d2

T,

Since the maximum value of d is less than 1 and the minimum value of b
(normalized) is %,

\[Error] < T,27%

