491

‘Book 4
'Editing
the
Source Program

DECtape Editor
(Editor)

Line Editor for Disk
| (LINED) |

Text Editor and Corrector
| | ‘(TECO) |

492

493

SOURCE PROGRAM PREPARATION

DECTAPE EDITOR (EDITOR)

Editor creates, adds to, or deletes from sequentially numbered source files recorded in lines of ASCII
characters on a DECtape. Editor edits the source file; (the input and output files are the same). Fresh
source files have editing space in each physical DECtape block. If the user has more edits for a block
than will fit in it, an extra block in the DECtape is used and appropriafelyilinked to the preceding and
following logical blocks of the file. Editor provides a sirﬁple method of creating or modifying Macro or
FORTRAN 1V source programs. ‘

Requirements

Minimum Core: 1K

Additional Core: Not used

Equipment: One DECtape unit for the reel containing the file(s) to be
modified

Initialization

-REDITOR Loads the DECtape Editor program.

X Editor is ready to receive a command.

Commands

Initialize a File For Processing

Command Function
Sn tA) Select DECtape n and zero the directory .
. Sn,filename.ext tA $ Select DECtape n, zero the directory, and

create a file called filename .ext.

Command

Sn, filename .ext)

Sn, filename .ext $

494

Function

Select DECtape n and locate filename .ext for
processing .

Select DECtape n and add a new file called
filename .ext .

NOTE

All the above commands place Editor in the Command mode;
i.e., the next typein is assumed to be one of the commands -

given below.

Innnnn M

nnnnn aaaqa....... a)

nnnxx §)

Innnnn, increment)

nnnnn aaad. . .aqd)

nnnxx bbbb. . .bbb)

nnnxx $)

%

Dnnnnn)

%

Insert the following typed line at line number
nnnnn of the currently open file; nnnnn can be
specified as a line sequence number or as a
point (.). A point refers to the last line typed.
If the line number already exists in the file,
the line is replaced.

Insert Multiple Lineq

Insert the following typed lines, beginning at
line number nnnnn of the currently open file;
nnnnn can be specified as a line sequence
number or as a point (.). Each time a line is
entered, nnnnn is increased by the specified
increment, and the result becomes the line
number for the next insertion. Type $ after
last line insertion.

Delete a Line

Delete line number nnnnn from the currently
open file; nnnnn can be specified as a line
sequence number or as a point (.).

Exa'mp les

Command

Dmmmmm, nnnnn)

Pnnnnn > .

nnannn aaa. . .OCIG)

*

Pmmmmm, nnnnn)

mmmmm aad. . .000)

nnnnn bbb. . .bbb)

k§

495

Function

[Delere a Series of Lines

Delete lines mmmmm through nnnnn from the
currently open file.

Print line number nnnnn of the currently open
file; nnnnn can be specified as a line sequence
number or as a point (.).

LPrinf a Series of Lines|

Print lines mmmmm through nnnnn of the
currently open file.

Close the Current File

E) (End of file) Closes the currently open file. Another file

%

.R EDITOR }
*S15VECTOR $

*120,20)

can be opened on the same or a different
DECtape via an Sn command, or a return
can be made to Monitor to terminate Editor.

Select DECtape 1 and create a new file on
DECtape 1 called VECTOR.

Begin inserting at line sequence number 20,
and increment this number by 20 each time
a line is inserted. Switch to Text Mode.

9

i
A

Editor responds with first line sequence number.
DEFINE VMAG (A,B)) Operator types line of coding to be inserted,
<MOVE @,A) followed by a carriage return.
FMP 0)
MOVE 1,A+1)
FMP 151}
FAD 1)
MOVE 1,A+2)
FMP 1,12
FAD 1)
JSR FSQRT)
MOVEM B)
$53)

I
2
=
N
[\

=
=
S
o
IS

=
(]
=
(o
(]

(5]
S
(N
Q
[N}

]
=
—
2
Q

>
N
—
£,
(]

[
S
—
I
[

[
=
—
o
[\

[
&
—
xR
[\

=
=
0o
S
A\~

]
(S
Mo,
n
[\

[N
]
Ao}
O
[

Typing $ terminates insertions and returns Editor
to command mode.

Change line number 00020.

1%
—
[\
[
(S} /s

(=]

2920 DEFINE VMAG (A>B,C))

‘ *ILR* indicates that the indexing increment has
resulted in the next line number being equal to
the line number of an already existing line (00040).
Note that the indexing increment remains as 20
until explicitly changed.)

*190) i Insert a line between lines 00080 and 00100.
22099 MOVE 1,C)

ILR

ILS) *ILS* indicates that the indexing increment.has
resulted in an existing line (00100) being skipped,
since the next line addressed would be 00110,

*D180 3 . Delete line 00180.
*P20,220) Print lines 00020 through 00220.

[00020 DEFINE VMAG (A5B,C))
100040 <MOVE @5A)
00060 FMP Q)
PBY8D MOVE 1,A+1)
00090 MOVE 1.C2
00100 FMP 1.s1)
2128 FAD 1)
100140 MOVE 1,A+2)
P0160 FMP 1,12
00200 JSR FSQRT)
00220 MOVEM B)

*EQ Close the currently open file.
*1C) . Return to the Monitor.

Diagnostic Messages

497

Editor Diagnostic Messages

Messoge Meaning
?DDE* Device Data Error due to a write error or WRITE LOCK
switch. Editor must be restarted.
?DEC* DECtape directory is full.
?FAU* Filename Already Used. A filename assigned to a new file
already exists on the DECtape.
2ILC* Illegal Command.
ILR Insert Line Replacement, Insert Line Skip. The line
ILS sequence increment specified for the insert function will
cause the next existing line to be either replaced (R) or
- skipped (S). This is a warning message only and does not
necessarily indicate an error.
?NCF* Not a Current File.
2NFO* No File Open. A command requiring an active file has been
given but no file is currently open.
?NLN* Nonexistent Line Number. A print (P) or delete (D) command
refers to a nonexistent line. .
PUNA* Unit Not Available. The DECtape specified in an Sn command
— is assigned to another job.

498

LINE EDITOR FOR DISK (LINED)

49

LINED is similar to DECtape Editor, but operates on disk files instead of DECtape files. LINED is

. called in by typing

.R LINED

*

Commands

LINED responds with an asterisk to indicate
it is ready to accept a command string.

LINED commands are very similar to those of Editor; consequently, only a brief summary is given here.

Command

S filename .ext)

S filename .ext $

Innnnn)

Innnnn ,increment)

Dnnnnn)

Dmmmmm,nnnnn)

Pnnnnn)

Pmmmmm,nnnnn)

£
$

Function

Select an existing file for editing.

Select (create) a new file for editing.

Insert a line at line number nnnnn.

Insert multiple lines, starting at line number

nnnnn and incrementing the line number each time.
Delete the line at line number nnnnn .

Delete lines mmmmm through nnnnn.

Print line number nnnnn on the Teletype.

Print lines mmmmm through nnnnn on the Teletype.

End (close) the current file.

If in Insertion Mode, ignore current text line
and return to LINED command level. If in
Command Mode, print the next line.

NOTE

Files are written with standard protection (055). ‘All blocks
are assumed to have integral number of lines. Use the /A
switch (line blocking) with PIP to put each file on disk.

Diagnostic Messages

The diagnostic messages for LINED are similar to those for Editor. The diagnostic message ?DEC* is

not included, and the, following message is added:

Message

Meaning

?CCL* CCL error. Error occurred whiie referencing CCL

command file.

'

Monitor Commands

To call in LINED and open a new file for creation:

Monitor Command Equivalent CUSP Commands

- CREATE filename .ext) <R LINED)
N *S filename .ext $

To call in LINED and open an existing file for editing:

Monitor Command Equivalent CUSP Command

-EDTT filename .ext) R LINED?

*S filename .ext

TEXT EDITOR AND CORRECTOR (TECO)*

TECO edits files recorded in ASCII characters on any standard device. It can perform simple editing
functions as well as highly sophisticated search, match, and substitute operations, and operate upon
arbitrary length character strings under control of commands which are themselves character strings

(and contains the mechanisms necessary to exploit this recursiveness).

Requirements

Minimum Core: 4K

Additional Core: ~ Takes advantage of any additional core available. Each 1K -
additional core augments the basic' 6,200+ - character buffer
by 5K additional characters.

Equipment One input device and one output device.

NOTE

TECO automatically requests more core to expand its
buffer under any of the following conditions:

*PDP-10 TECO is based on PDP-1 TECO, developed at MIT by Daniel Murphy, and PDP-6 TECO
developed at MIT's project MAC by Stewart Nelson and Richard Greenblatt.

r

Initialization

.RTECO);

*

Basic Commands

502 -

a. An insert by way of the "I" command or "X"
(Q Register) will overflow the present memory
boundaries .

b. The command-acceptance routine needs more
core.

c. The total number of characters in the Data
Buffer falls below 3000, and an input command
from a peripheral device (other than the user
console) is executed. Thus, TECO maintains a
Data Buffer of at least 3000 characters.

If TECO is successful at obtaining more core, the follow-
ing message will be typed:
*10000 <1JS > $$

[5K CORE]

*

nk Core, where n is
new core size of job

If TECO is unsuccessful at obtaining the core request,
the following message is typed: '

STORAGE CAPACITY EXCEEDED

L PRY

TECO is ready to accept a command.

NOTE

When typing command strings to TECO, the following
points should be noted.

One $ is used to terminate the text within
a command string, where applicable; two
successive $s terminate the entire command
string sequence and generate a RETURN,
LINE-FEED.

$
RUBOUT) The RUBOUT key can be used to erase the

preceding typed-in character(s) of a com-

mand string. Each character erased is

echoed back on the teletype (e.g., ABD
DC...). Successive RUBOUTs

can be used to erase more than one character.

Loads the Text Editor and Corrector program.

m .

N.B. To erase a carriage return (which generates

RETURN, LINE-FEED), two RUBOUT's are required,

one RUBOUT to erase the LINE-FEED and one to

erase the RETURN.

Two successive 1Gs (s) can be used to wipe

out the entire command string currently being typed.

TECO commands in the form ix (where x is any character)
can be entered by either holding down the CTRL key
while striking the x key or typing up-arrow (shift N)
followed by the x character. These alternatives are

not true where I is a character within a text string

(such as in a Search argument); in this case, the CTRL

key must be used.

A carriage return, line feed, () is ignored in a TECO
command string as long as it does not appear within a
particular command, such as Insert. Examples of this are
given on the following pqgés . '

Select The Input Device]

Command

ERdev:filename .ext [proj ,progl

$

EBdev:filename .ext $

*If dev: is not specified, DSK: is assumed.

Function

Edit Read. Selects the input device and file
(if specified). '

dev:* DTAn: (DECtape)
 PTR: (paper tape reader)
DSK: (disk)
MT An: (magnetic tape)
CDR: (card reader)

filename .ext (DSK: or DTAn: only)

- Lproj,prog] (DSK: only)

NOTE

Device TTY: cannot be used
here. See | (Inseft) command.

Specified only if file is located in
other than user's area.

Edit Backup. Selects an inpUt and file to be
edited (the input device, which will also be
the output device for the edited file, must be
the disk*). EBis intended to be used to keep
a backup of a file during a debugging session,
without the user having to invent a new name
for each version of the file.

Command Function

For example, the command string sequence
ple, g seq

EBPROGT.MAC §

editing
EF $$
results in:

a. Reading from file PROG1.MAC on disk

h. Creating a new output file, which is

initially given a temporary name of TECOnn.TMP,
where nn is the user's job number in octal; in-
corporating the job number in the filename solves
the problem of identifying temporary files belong-
ing to multiple 100,100 users

c. Performing a number of RENAMEs following
the EF command so that the input file becomes
PROG1.BAK, any previous PROG1T.BAK file is
deleted, and the new output file becomes
PROGT.MAC.

An ER command can be given following an EB
command and before the EF command, but an
intervening EW command is illegal and results

in the error message 722 (see Table 2-5). Even
though an ER command may be given, the name of
the final output file is still taken from the EB
command . '

Select The Output Device]

‘EWdev:filename .ext [proj,progl Edit Write. Selects the output device and file

$ (if specified).
EZdev .filename .ext [proj,prog] Edit Zero. Selects the output.device and file
$ (if specified), and rewinds the tape (if magnetic

tape) or zeros the directory (if DECtape).

dev:* DTAn: (DECtape)

. DSK: (disk)
v MTAn: (magnetic tape)
) PTP: (paper tape punch)
! LPT: (line printer)

*If dev: is not specified, DSK: is assumed.

i

Comm;:nd '

EF

T EX.

EG

EM

nEM

505
Function

filename.ext (DSK: or DTAn: only)
[proj,progl (DSK: only)

Specified only if file is located
in other than user's area.

Terminate Output; Close File

End File. Terminate output on the current
output file and close the file without selecting
a new output file.

Exit. The EX command finishes the current edit
operation by writing out all remaining pages of
a file, performing an EF (End of File) command,

" and then exiting to the Monjtor. Thus, EX is
equivalent to the command string

1000000PEF

Exit and Go. The EG command executes an
EX command followed by the last Monitor
command (COMPILE, LOAD, EXECUTE, or

, DEBUG) typed by the user. (See Chapter 9.)

Magnetic Tape Positioning-l

Edit Magtape . Rewind the currently selected
input magnetic tape. ,

Depending upon the value of n, perform one
of the following operations on the currently
selected input magnetic tape.

Operation

n
1 Rewind tape to load point.
3 Write end of file.

6 . Skip one record.

7 Backspace one record.

8 Skip to logical end of tape.
9 Rewind and unload tape.

1A Erase 3 in. of tape.

14 Advance tape one file.

15 Backspace tape one file.
NOTE

Throughout TECO, all numbers in -
command strings are interpreted as
decimal.

506
Input Commands

Command Function

Y ' Yank. Read from current input device into buffer
until _
a. A FORM character is read (i.e., a page has
been input), or :
b. The buffer is more than 2/3 full and one of the
following is encountered
(1) Line Feed
(2) Form Feed

c. ora point 128 characters from the end of the
buffer is reached.

NOTE

The FORM character, if read, does not enter the
_buffer. Any data previously residing in the buffer
is destroyed. The pointer is positioned immediately
before the first character in the buffer. Representa-
tive buffer size for 5K TECO:

Total buffer capacity = approx. 11,200 characters

2/3 buffer capacity =approx. 7,460 characters

- +
1 line~printer page =7,200 characters (120 char./
line)

(60 lines) 7,800+ characters (130 char./line)

‘A Append. Read from the current input device and
append the incoming data to information already
residing in the buffer. Terminate reading on the
same conditions as in Y.

NOTE

No previous data is destroyed. The
pointer is not moved.

[Oufput Commands

PW ' Punch, Wait. Output the entire buffer to the
selected output device, with a FORM character
appended as the last character. Do not alter the
contents of the buffer or move the pointer.

Command

np

m,nP

nj

nC
nR

nlL

nD

nK

507 o \ : .
Function

Equivalent to a PW command followed by a Y
command (i .e., output the current contents of the
buffer followed by a FORM character, and then
read in more data from the input device).

Perform the P command n times.

Output the m+1 through the nth character from the
buffer to'the current output file. Do not append a
FORM character at the end. Do not alter the
contents of the buffer or move the pointer.

l Editing Commands

Move The Pointer

Jump. Move pointer to the right of the nth buffer

" character and give the pointer symbol (.) the value

of n. If n is omitted, set pointer in front of the first
buffer character (same as 0J).

Continve. Set the pointer to the right of the nth
character beyond the pointer's present position
(equal to .J). If n'is omitted, 1 is assumed.

Reverse. Set the pointer to the left of the nth
character prior to the pointer's present position
(equal to .~n). If nis omitted, 1 is assumed.

Lines. +n - Move the pointer to the right, stop-
ping after it has passed over n LINE-FEED °
- characters.

-n - Move the pointer to the left, stopping after it
has passed over n +1 LINE-FEED characters, then

move to the right of the last LINE-FEED character
passed over.

v

If n is omitted, assume 1L.

Delete Text

Delete. Delete n characters.

+n - Delete n characters just to the right of the
pointer.

-n - Delete n characters just to the left of the
pointer. '

If nis omitted, 1 is assumed.

Command Function

nK Kill. 4n - Move the pointer to the right,
stopping after it has passed over n LINE-FEED
characters. Delete all characters the pointer
passes over.

-n - Move the pointer to the left, stopping
after it has passed over n+1 LINE-FEED
characters, then move it to the right of
the last LINE-FEED character passed over.
Delete all characters between this point
and the pointer's previous position.

If n is omitted, 1 is assumed.

m,nK Delete the m+1 through the nth characters
of the buffer. Set the pointer where the
deletion occurred.

Insert Text

Itext... $ Insert. Insert the text following the "I" up
' to, but not including, the $ character, begin-
ning at the current pointer position. Move
the pointer to the right of the inserted material.

nl Insert at the pointer location a character with
an ASCII code of n (n must be a decimal value).
Move the pointer to the right of the inserted
character.

n\ Insert at the current pointer location the ASCII
text representation of the decimal value of the
expression n. Move the pointer to the right of
the inserted text .

-~ text... $ Insert at the current pointer location a (=)
character and the following text up to, but not
including, the $ character. Move the pointer to
the right of the inserted text.

@I/text/ ’ Insert at the current pointer location the text
which follows. The text is delimited by a
" character, /, which can be any character not
appearing in the text.

Type Text

NOTE

T commands do not move the pointer.

509

Command 7 ‘ : Function

»

nT ‘ Type. Type out the string of characters beginning
at the current pointer position and terminating
after the nth LINE~FEED character is encountered.

+n - Typeout n lines to the right of the current
pointer position.

-n - Typeout n lines to the left of the current
pointer position.

If n is omitted, the value is assumed to be 1.

m,nT Type out the m + 1 through the nth characters of
the buffer. :

Stand-Alone Examples (Elementary)

l Open an Input File

ERDTAS:SOURCE -MAC ¢ Open the input file called SOURCE.MAC
o located on DTAS.

ERDSK:SRCE.MACL12,24) % Open the input file called SRCE.MAC .
' located in area 12,24 on the disk.

ERPTR : T " Open an input file on the paper tape reader.

Open an Output File

EWDTAZ:EDITED « MAC % Open an output file on DTA3 and call it
EDITED.MAC.
EZDTA1 :DERBUG . MAC % Zero the directory on DTA1, open an output

file on it, and call the file DEBUG .MAC.

i Read a Pagel

Y Read a page into the buffer from the current
: input file, destroying the previous contents
of the buffer. ‘

A Read a page into the buffer, appending the
data to the end of the information currently
in the buffer.

510 .

Command Function
PW ' Output the entire buffer, followed by a FORM
' character. :
6P Execute the WRITE and READ cycle six times.
12,50p " Write out the 13th through the 50th characters

of the buffer.

Pointer Positioning

Yi8J Read in a page of information and position the
pointer after the 18th character of the buffer.

5R . Then, move the pointer left to between char-
acters 13 and 14.

Delete Text

J19C3D Move the pointer ta the right of the 19th
character in the buffer and then delete the
or next three characters to the right (characters
20, 21, and 22).
19,22K Delete the 19 +1 (20th) through the 22nd

characters of the buffer.

InserLI" feg(j

J2LITAG: MOVE 1, AMT Move the pointer to a position following the
$ second line of the buffer; insert the text TAG:
MOVE 1, AMT between the second and third
lines of the buffer.

69\ Insert the digits 69 in ASCII at the current
pointer position (same as 169 or $ or 541571).

NOTE
Unless a \key is présent, \ is typed with a
SHIFT L. :
"~{ERROR IN JOB $ Insert a tab followed by the text ERROR IN

JOB at the current pointer position.

Command

@] #ERDSK: PROGL#)

sn

Function

Insert the text ERDS‘K:PRO’G $ at the current
pointer position.

NOTE

The use of delimiters is the only method
for inserting a $ in the text.

' \ Typing Text

31
25,1007

E*amples (Basic)

R TECO}

~ERDTA1:SCFILE.MACYS)

*EWDTA2: EDFILE.MACYS)

*Y6,20TL%)

|aaaa. aaaaa
#3LTH1)
bbbbb....... bbbbb

#1THIS 1S A SAMPLE INSERT 2
19)

£18PTE$)

CCCCC. ... cccce)

Type out the first three lines of the buffer.
Type out the 25 +1 (26th) through the 100th

character of the buffer.

" Open the file called SCFILE.MAC on DTAT

for input.

Open an output file on ' DTA2 and call it
EDFILE.MAC.

Read a buffer of information from the input
file and type the first 20 characters of the
buffer.

Move the pointer to the right, stopping when
three LINE-FEED characters have been en-
countered; type the text of the fourth line

in the buffer.

Insert the text THIS IS A SAMPLE INSERT
between the third and fourth lines of the ‘
buffer, and position the pointer after the
inserted material .

Write out the current buffer to the output

device; redd in and write out the next nine
pages of data; read in the 11th page of data
and position the pointer at the beginning of

. the buffer; type out the first line of the

buffer. -

Delete this line from the file; position
the pointer at the beginning of the (now)
first line in the buffer.

*EXS$)

EXIT)
C)

Advanced Commands

Summary

’

512 -
Command Function

Writes out all remaining pages of the file,
performs an EF (End of File) command, and
exits to the Monitor.

Kill the job, deassign all devices, release
core.

Search Commands

S text,$ (Search) - Searches for text in current buffer only.

N text $ (Nonstop Search) - Searches for text through successive buffers by repeatedly

writing out current buffer and reading in next buffer (similar
to P command, but a form character is not inserted after out-
putting each buffer) .

“text $ - Searches for text through successive buffers by repeatedly reading in new bufferful
: of information (Y commund)

NOTES

All searches begin at the current location of the pointer.

Each search command can be preceded by the modifier characters

(: and/or @).

: causes the search command to have a numeric value at
completion;

0 if the search has failed (the requested text was not
found) or -1 if the search was successful (fhe requested text
was found) .

@ indicates that the text to be matched is delimited by some
character (same as in the @I command).

A numeric argument can appear following the modifiers (if
any) but must precede the command. If the numeric argument
is n, TECO searches for the nth occurrence of the text. If

n is not used, the value of n is assumed to be 1.

If search is successful, the pointer is positioned to the right of
the matched text. If the search fails, the pointer is positioned
at the beginning of the buffer.

Use of special characters within text:

513

tS = Match any separator character (any
character not a letter, number, period,
dollar sign, or percent symbol).

tX - Match any (arbitrary) character. Used
when the contents of some position within
the text is unimportant.

* tNx = Match any character except x.

tQ - Takes the next character literally, even
if it is one of four special characters.
For example, StQtX $ - Find the character

tX.

See note under TECO, Basic Commands.

Search Commands Summary

Command Action at End Action at End Valuves Typeout ?
of Buffer of File Success Fail if Failure
) Failure N/A N/A N/A Yes
:S Failure N/A -1 0 No
N Performs a P command Failure N/A N/A Yes
(but a FORM character .
is not inserted) and
resumes search
:N Performs a P command Failure -1 0 No
(but a FORM character
is not inserted) and
resumes search
- Performs a Y command Failure N/A ! N/A Yes
(read only) and resumes
search
i+ Performs a Y command Failure -1 0 . No
(read only) and resumes
search.

Q-Register Commands

Q registers are provided for storing quantities, command strings, or buffer contents for later use. Thirty-

- six Q registers, labeled 0 through 9 and A through Z, are available.

Command
nUi
Y%i

m,nXi

nXi

<>

n<>

514

Function

Use. Places the numeric value n in Q-register i.
Q-register. Represents the current value in Q-register i

Adds 1 to the value in Q-register i and represents the
new value.

Xfer. Copies characters m+1 through the nth character
of the buffer into Q-register i. Does not alter buffer
contents or pointer.

Copies the buffer characters between the current pointer
position and the nth LINE-FEED character in Q-register i

Get. Inserts the text contained in Q-register i into the
buffer beginning at the current pointer location. Set
the pointer to the right of the insertion.

Pushes the contents of Q-register i onto the Q-register
pushdown list.

Pops the top entry of the Q-register pushdown list into
Q-register i. The Q-register pushdown list is cleared
each time two successive $s are typed. '

Macro, Iteration, and Conditional Commands

Macro. Perform the text in Q-register i as a series of
commands .

Iteration brackets. When > is encountered, command
interpretation is sent back to <.

Perform the commands within the iteration brackets
n times.

If not in an iteration, an error results. If most recent
search failed, send command interpretation to just
beyond the matching >on the right; otherwise, no
effect.

If not in an iteration, an error results. If the value of
n is 0 or greater, send command interpretation just past
the matching >to the right; otherwise, no effect.

Tag definition. Tag is the name of the location in
which it appears in a command string.

Go to the named tag, which must appear in the current
macro or command string .

If n is Greater than or equal to 0, perform commands
up to next '. Otherwise, skip to next '.

515

Command ’ Function

n"L Co If n is Less than or equal to 0, perform commands up
to next '. Otherwise, skip to next '.

n"N If n is Not equal to 0, perform commands up to next '.
Otherwise, skip to next '.
n"E If n is Equal to 0, perform commands up to next '.

Otherwise, skip to next '.

n"C If n is a symbol Constituent (o letter, number, period,
i dollar sign, or percent symbol), perform commands
up to next '.. Otherwise, skip to next '.

NOTE

The double quotation mark (") and the single quotation
mark (') symbols are matched in the same way as the left
parenthesis symbol, (, and right parenthesis symbol,).

Numeric Values and Arguments in Command Strings .

Many command string formats permit arguments with numeric values. The following characters may

appear in a command string to develop these values in any instance where a numeric value is permiss-

able.

0 through 9 Represent their corresponding numeric values.
B Beginning. Equivalent to 0. -
z Equivalent to the number of characters in the buffer.

Equivalent to the number of characters to the left
of the current pointer position (or in other words,
equal to the current pointer position).

«

Qi Q-register. Equivalent to most recent numeric .
value placed in Q-register i.
nA ASCII. Equivalent to ASCII value of character to

right of pointer; n is used to differentiate this
' argument from an Append command (A) and has no
other significance.

tH Equivalent to value of elapsed time in 60ths of a
second since midnight.

tF) Equivalent to the value of the console data switches.

516 -

Command : Function

tE Has the value of the form feed switch. If, during the last
' Y or A command execution, data transmission was terminated
by a form feed character, tE has a value of -1, otherwise,
the value is 0.

'+t (On Teletype Models 33 and 35, hold down both the CTRL
and SHIFT keys and type N.) Equivalent to the ASCII value
of the next character in the command string; this character
is not interpreted as a command.

T Typed Character. Stops command execution until user types
a character on the Teletype; 1T then becomes equivalent to
the ASCII vaiue of the character typed.

\ Equivalent to the value represented by the digits (or minus
sign) immediately following the current pointer position.
The value is terminated by the first nonnumeric character
encountered. The pointer is positioned immediately following

the value.
m+n Add’

5 H + .
men Subfmcf} Take one or two arguments. A space is equalto +.
m*n Multiply
m/n Divide (truncates) Take one or two arguments.

m&n Logical AND; bitwise AND of binary representations m and n.

m¥n Logical IOR; bitwise inclusive OR of binary representations
mand n.

() Operators +, -, *, /, #, and $ are normally performed left

to right. This sequence can be overruled by use of parentheses.

NOTE

TECO does not assume that multiplication and division are
always performed before addition and subtraction. Thus, to
obtain the equivalent of a + b * ¢), one must use the paren-
theses; otherwise, {a +b) * ¢ is assumed.

n= Causes the value of n to be typed out.

H Abbreviation for B, Z. (0 through the last location of the
i buffer; in other words, the whole buffer).

NOTE

If a command takes two numeric arguments, a comma is used
to separate them.

517 N

TECO Termination Commands]

]

Command Function
tC Returns control to the Monitor without waiting

for any 1/O operations to finish.

 1G (BELL) Returns control to the Monitor after completing
all current output requests.

Stand-Alone Examples (Advanced)

oo]

J3SMOVE & IM $ Within the current buffer, search for the third
. occurrence (3S) of the text MOVE, position the
pointer immediately after it, and insert an M at
that point.

Search for a Special CharacferJ

StNA % Search for any character except A within the
current buffer.

StS % Search for any separator character within the
current buffer.

Q-Registers, Macros, Iterations, and Condiﬁonaﬂ

JBUN <S}i Count the number of LINE-FEED characters in
$5%ZN>QN = the buffer as follows:

1. Position the pointer at the beginning of
the buffer (J),

2. Place 0 in Q-register N(OUN),

3. Perform a search for a LINE-FEED
character (S LINE-FEED $); if one is
found, add 1 to Q-register N (;%N).
Go back (<>) and repeat this cycle until
the end of the buffer is reached and the
test fails (;); at this point type out the
contents of Q-register N(QN =),

J<SJUMPA $3 -4DIRST *$ > Whenever JUMPA appears in the current buffer '
replace it with JRST.

Command

518

Function

1. Position the pointer at the beginning of
the buffer (J).
2. Search for JUMPA; when found, backspace

the pointer four positions and delete the four
characters passed over (;-4D).

3. Replace these four characters with the
characters RST (IRST).

4. Repeai' this routine (< >) until the test
fails (end of the buffer has been reached)
and exit (;) to >.

Placing a Command in a Q-Register for Later Execution

el# JOUN <S}
$32

3%1>QN = #HXP

To Execute the Command:

ERDTA3:FN.EX $ YMP

1. Insert the text JOUN<S) $; %N >SQN="
into the buffer (@ #)

2. Copy the contents of the buffer into

Q-register P (HXP).

1. Read in a page of a file to search.
(ERDTA3:FN.EX $ V)

2. Execute the command stored in Q-register
P (MP). :

Reading in Text t6 be Inserted in Several Places
in a File and Storing it in a Q-Register

ERPTR: & YHXP)

ERDTA4: TXTEDT $ 2

EWDSK: TXTEDU $)
YNCALC: $ GP2

NTOT: $ GP

1. Assume that the text to be inserted is on
paper tape. Open an input file on the paper
tape reader (ERPTR:); read the text into the
buffer (Y); copy the contents of the buffer
into Q-register P (HXP).

2. Open the input file to be edited and the
output file to contain the edited version.

3. Read a page from the input file and initidte
a search for the text CALC: . When found,
insert the text stored in Q-register P at that
point (GP).

4. Search for the text TOT: and, when found,
insert the text stored in Q-register P after it.

519

Examples (Advanced) N

Command

<R TECO »
*ERMTAL: SEMI4EMSS)

EZDTA1:REVFILSS).

XYNTAXRT$OLT)
1X18%)

aaaa...TAXRT aada...... aaaaa

’_“.J NTXRTE$OLT. @LT)
G1$%)

bbb ...TXRTE bbb...... bbbbb

*NTXTEND:$)

J<SA$31A-47"GlA-58"L-DIBS" >)
PWEF$$)

* 16$% 3

EXIT ?
[TC)

\

Function

Select MTA1 for input; rewind the tape
(EM) and advance the tdpe one file (14EM).

Select DTAI for output; zero the directory;
opén a file and call it REVFIL.

Read in the first page from the input file;
search for the text TAXRT; if it cannot be
found, write the buffer out, redd in the
hext page,'search again, etc.; continue
this cycle until either TAXRT is found or
end of file is reached. If TAXRT is found,
position the pointer at the beginning of the
line containjng it, type the line, and place
the line in Q-register 1.

Search the buffer for the text TXRTE; if not
found, write out the buffer, read the next
page ; search again; continue this cycle

until either TXRTE is found or end of file is
reached. If TXRTE is found, position the
pointer at the beginning of the line contain-
ing it, type the line, and insert the contents
of Q-register 1 immediately before that line.

Read pages from the input file and write

them on the output fite until end of file .
(marked by the text TXTEND;) is found.

At that point, move the pointer to the be-
ginning of the buffer (J), and search for all
As in the buffer (SA); if the character follow=
ing the A is a digit, O through 9 (ASCII codes
481 through 5710), change the A to a B
(IB;; continue searching and modifying until

_end of buffer is réached; write out the last

page and write end of file on the output
device.

Return control to the Monitor after all output
requests have been completed.

-

Didgnostic Messages

520

TECO Diagnostic Messages

Message

Meaning

n is a decimal number associated with one of the list of error
messages given in Table 2-5.

TECO ignores the remainder of the command string and returns
to the idle state. At this point, the user can type back ?,
causing TECO to type out the command string terminated by
the bad command.

Error List for ?n Messages

"10 Meaning
B 1 TECO attempted to read commands beyond the terminattng $%.
This error is probably due to an unterminated @I or @5 command,
or to an unsatisfied O command.
Same as 1. ,
An attempt was made to supply more than two arguments toa
command, either by the use of two commas or by "H,".
4 Too many right parentheses .
5 = command with no argument .
6 U command with no argument .
7 ' Q,U,X, or G command specifies an illegal Q-register e,
other than A through Z or 0 through 9).
8 In an X command, the second argument is not greater than the
i first.
9 In a G command, the Q-register does not contain text.
10 In a G command, the data in the Q-register is not in correct
form (this is an internal error).
11 In an Ec command (e.g., ER, EW, EF, etc.), c is illegal .
12 File not found on LOOKUP. -
13 Blank filename specified for directory device.
- 14 Project-programmer number specified does not have UFD.

. 521

Error List for ?n Messages

"o Meaning

15 Protection failure on disk.

16 File cannot be accessed because it is currently being written.

17 LOOKUP or ENTER returned error ty#e 6 (not defined).

18 LOOKUP or ENTER returned error type 7 (no device).

19 ‘Directory full on ENTER.

20 Requested 1/O device not available.

21 Not assigned.

22 EW command between an EB command and its EF.

23 EM command given, but no input file open.

24 nEM command, where n is not in the range 1 to 16.

25 Internal error: EF after EB, but no input file is open.

26 Illegal character in filename.

27 IHegal character in project-programmer number. ,

28 Attempt to read an input page when no file has been opened
for input .-

29 1/O error on input device.

30 Attempt to output a page when no file has been opened for output.

31 Two arguments were supplied for an L command.

32 Attempt to move pointer beyond page.

33 A 2-argument command has its second argument less than the
first argument . ’

34 Attempt to search for too long a character string .

35 Search command did not find the required string.

36 In an M command, the Q-register does not contain text.

37 In an M command, the dc';fa in the Q-register is not in correct
form (this is an internal error).

38 Unmatched right angle bracket.

522

Error List for ?n Messages ‘

"o Meaning

39 ; encountered when not in iteration.

40 " command with no numeric argument, or "x where x is not
G,L,E,N,orC.

41 This is the number typed out at the end of the ? command's dump
of the command string in error. Refer to the number of the previous
error.

42 A character has been encountered as an undefined command.

43 A tD command, when DDT has not been loaded with TECO.

44 Not enough core available from the Monitor.

45 A RENAME attempted with either a blank name or one already in

— use. Presumably due to a fault in the EB command. -

Debugging Aids - As an aid in debugging macros and iterations, TECO can be set in the trace mode by

typing ? as any character other than the first in a command string. When in Trace Mode, TECO types

out each command as it is interpreted, interspersed with requested output. Typing a second ? in the

same manner takes TECO out of Trace Mode; the ? can be typed each time it is desired to change the

current mode .

1

The user can also type comments on his teletype sheet as he executes TECO by typing:

t Atext A

This causes all text entered to be printed on the teletype (with-the exception of terminating tA

character) .

NOTE

Since the terminator A is not a command, it must be
typed by holding the CTRL key down while typing A.
It cannot be entered as "up arrow, A."

If DDT has been loaded along with TECO by the Linking Loader, control can be transferred to DDT by

using tl?‘e command tD.

Monitor Commands

523

To call in TECO and open a new file for creation:

J

Monitor Commands

<MAKE filename .ext

* (text input commands) $$ -

*EX $$

Equivdlenf CUSP Commands

-RTECO ;
*EWDSK :filename .ext $$

*(text input commands) $$
*EX $%

To call in TECO and open an already existing file for creation:

Monitor Commands

LTECO filename .ext
*(editing) $$
EX $S

' Equivalent CUSP Commands

.RTECO
*EBDSK:filename.ext $ Y $$
*(editing) $$

*EX $$

524

