. 82§,

- Book 5
~ Executing the Program
‘ - On-Line

(LOADER)
DDT-10

NJ

526

PROGRAM LOADING AND LIBRARY FACILITIES

LINKING LOADER (LOADER) (Version #043 and later)

The Linking Loader loads and links rel'ocofoble binary (.REL) programs generated by Macro-10 or
FORTRAN IV preparatory to execution and generates a symbol table in core for execution under the
Dynamic Debugging Technique program. It also provides automatic loading and relocation of Macro-
and FORTRAN-generated binary programs, produces an optional storage map, and performs loading and
library searching regurdless of the input medium. Storage used By the Linking Loader is recoverable

after loading.

»
Requirements
Minimum Core: 3K
Additional Core: : Automatically requests additional core from the

Monitor as required

Equipment: . User teletype for control; one or more input
devices for binary programs to be loaded; output
device for loader map (optional); one system
device containing library files (optional).

NOTE

The LOADER as described herein loads and links pro-
. grams assembled by the Macro Assembler, or compiled ,
by the FORTRAN Compilers. For those users who do
not wish to load FORTRAN programs (which require a
substantial portion of code within LOADER), a smaller
version of the LOADER, called 1IKLOAD ({although it
is actually larger than 1K), is available. 1KLOAD
may be generated from the same symbolic file as LOAD-
ER by setting the parameter K to some nonzero number
fe.g., K=1). ’

Initialization

R LOADER core

Commands

General Command Format

527

Loads the Linking Loader into core. The amount
of core allocated is'equal to 2K plus the core
required by binary programs; core is optional.

Indicates that the program is ready to receive a
command .

" list~dev:filename .ext + source~dev I:filename .ext,dev2:....source-n $

list=dev:

source-dev:

filename .ext (DSK: and DTAn:

only)

The device on which any storage maps or unde-
fined globals are to be written.

LPT: (line printer)
CTTY: (Teletype)

DTAn: (DECtape)

DSK: (disk)

MTAn: (magnetic tape)

If the Teletype is to be assumed as the output
device, omit

list-dev:filename .ext ~

The device(s) from which the binary relocatable
programs are to be loaded. :

DSK: (disk)

DTAn: (DECtape)

MTAn: (magnetic tape)
PTR: (paper tape reader)

If more than one file is to be loaded from a mag~
netic tape, card reader, or paper tape reader,

dev: is followed by a comma (or the device name
or : can be repeated) for each file after the first.

The filename .ext of each relocatable binary file
to be loaded. If .ext is omitted, it is assumed to
be .REL. If a search for filename .REL is unsuc~
cessful,, a second search for the same filename
with the null extension is performed.

The filename.ext of the output listing file. If
.ext is omitted, .MAP is used.

If the filename .ext of the output map file is
omitted, MAPMAP .MAP is used. If only the
extension is omitted, the extension MAP is
used.

The storage map device is separated from the
source device(s) by the left arrow symbol.

528
" NOTES

Each time RETURN (2) is typed, loading is performed
for all files listed on that line.

Fach time § is typed, all remaining loading, library
searches, and output operations are completed, and
an exit is made to the monitor.

The source device, once stated, continues as the
source device until a new source device or destina-
tion device is specified, or until $ is typed,

Files are loaded in the order they appear in the com-
mand string. The file requiring the largest COMMON
area mupt be specified first in any loading operation.

When loading is terminated (by $ or switches /C,
/G, or /R), the following steps are executed.

a. A FORTRAN library search is performed if
any undefined globals remain (unless prevented
by the /P switch).

b. If undefined globais still remain, they are
listed on the teletype or other specified listing
device.

c. The number of multiply defihed globals (if
any) and the number of undefined globals (if
any) are printed on both the teletype and on
the specified listing device (if given).

d. A Chain file, if requested, is written.

e. The loaded program is relocated down to.
the actual quafions into which it is to be
loaded .-

f. The message

LOADER x +yk core x = low segment core;
’ y = high segment core;
if nonre-entrant program
y = 2K; if re-entrant,
y = program high segment
or Loader high segment,
whichever is greater

is printed on the Teletype.
When an automatic library search is requested by /F,
/G, or $, the following files will be searched
in order:

a. JOBDAT

b. FORTRAN Library (LIB40 or LIB4)
c. JOBDAT .

529

Since JOBDAT is searched after the FORTRAN Library,
it is not necessary to include it as a portion of the
FORTRAN Library. It is also searched prior to the
FORTRAN Library so that users who do not require
FORTRAN Library subroutines do not spend the time
searching the Library. (The FORTRAN Library can

be named LIB40 as on the PDP-10 or LIB4 as on the
PDP=6; an attempt to find LIB40 is made first; if not
found, an attempt to find LIB4 follows.)

Save and Execute Commands

After loading is completed, to write the loaded program onto an output device so that it can be exe-

cuted at some future date without rerunning Linking Loader:

LOADER 3 ~ Loading is completed.

EXIT ‘ Automatic exit to the Monitor.

tCy

-SAVE dev:filename .ext core) Write out the user's area of core onto the specified

output device and, if the device is DTAn: or DSK:
assign it the specified filename.ext. If .ext is
omitted, .SAV is assumed.

The value for core may be given when the user
wishes to run the program in more core than it will
be saved in; this might be done to gain more space
for dynamic allocation of buffers.

JOB SAVED . Save operation completed. Core is unchanged and
tC still contains loaded program. Automatic return is |
] ~ made to the Monitor.
-START) Start execution of loaded program. Retfurn is made
to user's level.
EXIT? . User's program execution is completed. Automatic
tC) return is made to the Monitor.
Examples
=R LOADER) Run the Linking Loader.
*DSK:MARK] >MARK3,DTA3: Load and link the .REL files MARK1 and MARK3
SUBRTE » from the disk, .REL files SUBRTE and CALC from

*CALC,PTR: §) DTA3, and one .REL file from the paper tape reader.

EXIT) made to the Monitor.

LOADER 6+2K CORE } Link-loading is completed; and automatic return is
1C

530

+SAVE DSK MARKET) Write out the user's program as an executable pro~ ‘
gram on the disk and call the file MARKET.DMP.
Core assigned to the user remains unchanged.
' - NOTE

Saving a job is optional.

JOB SAVED 3 ’ Save process is completed; an automatic return is

| 7C) made to the Monitor.
-START) Begin execution of job.

(EX1T) Program execution is completed; automatic return is
tC) made to the Monitor.

Switches

Switches are used to:

a. Specify the types of symbols to be loaded or listed

b. Set the Library Search Mode, .

c. Load the Dynamic Debugging Technique (DDT) program
d. Clear and restart Linking Loader.

All switches are either preceded by a slash (/) or enclosed in parentheses.

Linking Loader Switch Options

Switch Meaning Complement Switch
A . List all global symbols in storage map regardless of program xT
length.) ‘
B (Loader feature switch DMNSW must have been set to nonzero

when Loader was assembled for this switch to be available)
Block transfer the loaded job's symbol table from its normal
position at the top of core down to the first free location.
Leave small amount of core (SYMPAT) between JOBSA and
bottom of symbol table to allow for user-defined symbols.
/B allows programs loaded with DDT to usefully run in as
much core as is available without destroying the symbol
table, and can be used with large programs which do little
I/O to run in less core than needed to load and yet retain.
DDT and all symbols.

531

Linking Loader Switch Options

Switch Meaning Complement Switch
nnnnnC , | Create Chain file; use first block data for program break;
nnnnn (if nonzero) is starting address. Terminatd Linking
Loader.
D' Load DDT; enter Load with Symbols: ‘
Mode (S); turn off Library Searc .
Mode (N). '
Terminates specification.
E Upon termination of loading, control will be transferred to
user's program starting address (starting address of last
program loaded). Equivalent to typing START following
exit from Loader.
F Perform a library search of LIB40; exit from Load With
Symbols Mode.
Terminates specification.
nnnnnG Perform an automatic search of LIB40 if any undefined
globals remain (unless the /P switch is used); list any
still-undefined globals; set the starting ‘address of the
program as nnnnn; exit to the Monitor. Use $, instead,
if starting address to be used is the one originally
specified.
H Load this two-segment program as a one~segment program.
Use before any files are loaded.
I Set the loader to ignore the starting addresses in binary J
input. ' .
Jt Set the loader to accept the starting address of this I
: binary input program.) '
L Enter the library search mode. NT
M Print the storage map and undefined globals. Terminate
specification.
Nt Turn off the Library Search Mode. L
nnnnnO Load beginning at numeric argument (octal) if nonzero.
P .Prevent an automatic library search. Qf
at Allow an automatic library search. Turn off the S switch. P

NOTE

indicates those switches set when Loader is in its
initial state. '

532

Linking Loader Switch Options

Switch » Meaning _ Complement Switch

nnnnnR Create Chain file; use first FORTRAN IV program break;
nnnnn (if nonzero) is starting address. Terminate Linking

Loader.
S Load with local symbols.: ~wt
T Loads SYS:DDT.REL; turns on S switch; upon termination

of loading transfers control to DDT for program testing.
Equivalent to typing /D in command string and, then,
after exit from Loader, typing DDT.

u List undefined global symbols on the output list device.
Terminates specification.

\Y, Load the reentrant FORTRAN run=time system. Use

before any files are loaded.
wt Load without local symbols. S
xt Suppress listing of global symbols for zero-length programs. A
Y Rewind magnetic tape before use.
Z Clear user's core areq; reset the loader to its initial state;

restore the teletype; restart loading. Terminates line.

NOTE

indicates those switches set when Loader is in its
initial state.

The effect of a switch on adjacently named files in the command string depends upon whether the switch

is a status switch or an action switch.

Status Switches ~ The sfofu$ switches A, I, J, L, N, O, P, Q, S, W, X set the Loader to a particular
status and have an effect on the file in whose specification it appears and on any subsequently name
files in the command string (unless the switch is reset). A file specification is terminated and processed

when a comma, or a colon (if the previous delimiter was.a colon), a RETURN, or $ is encountered.

*DTAS5:RESID/S,/M Local symbols are loaded for this and any following
‘ files. A storage map is printed for this file.
*DTA5:RESID, /M/S A storage map is printed for this file; however,

local symbols are not loaded for this file since the
/S switch appears outside the file specification

(which is terminated by the comma). Local symbols
are loaded for any following files'.

*DTAS5:RESID, /S Local symbols are not loaded for this file since the
/S switch appears outside the file specification
(which is terminated by the comma).

Action Switches - The action switches B, C, D, E, F, G, H, M, R, T, U, V, Y request an immediate
or file=independent action to be performed by the Loader and are not directly related to any specific

file specification(s).

Chain Feature

The Chain feature is used to segment FORTRAN programs which are too large to be loaded into core as
one unit. When switch /C or /R is specified, loading is terminated and a file acceptable to the Chain
program is written. A)

Examples: *DSK:CHNPRG < /R or :DTAI:)SEGF4 ~/C

If .ext is omitted for the output €hain filename, .CHN is used.

The Chain file contains:

a. The contents to be loaded into JOB41, JOBDDT, JOBSA, JOBFF, and JOBSYM.

b. The data, beginning from the Chain address through the top of the core area used in
loading. .

The Chain address is set from JOBCHN as loaded; switch /C specifies the right half and switch /R
specifies the left half. Location JOBCHN is loaded as follows: the right half contains the program
break of the first FORTRAN IV BLOCK DATA program; the left half contains the program break of the
first FORTRAN 1V program. If switch /C or /R contains a nonzero numeric argument, this becomes the
starting address of the loaded program. After ihe Chain f}le has been written correctly, the messages
below are output to the teletype. . i
CHAIN

EXIT?

tC2

Examples
:R LOADER 6 Run Linking Loader, and assign it 6K of core.

#DTAS:RESID,SUR1,5UB2,DTA3: Lload and link binary program files RESID .REL,
COMPLX) SUBT.REL, and SUB2.REL from DTAS5, ond the
‘ file COMPLX.REL, DTA3.

*/F)

*7U)

534 ¢

Carriage return initiates loading.

Force a premature search of LIB40 to resolve any
undefined globals up to this point.

List on the felefype (since no output device was

[?mm@m UNDEF INED GLOBALS pspecified in the first command line) all globals

? SURB4A 000153

*DTAS:SUB4)

*/U 3
*LPT:/Me 8§)

LOADER 642K CORE
EXIT)

1C 2

Use 'of /E Switch:
" R LOADER?

#DSK:PROG1,PROG2/E

LOADER® 5+2K CORE 2

which are still undefined.

Undefined global and location containing instruc~-
tion which calls it are listed.

Knowing that the undefined global is in the binary
program file SUB4, the user requests that it be
loaded also.

Check if undefined global has now been resolved.

All globals are defined; print storage map on the
line printer and exit tc the Monitor. ‘

(Typeout from Loader)

.. .program execution occurs here. ..

EXIT)

1C)

Diagnostic Messages

Linking Loader Diagnostic Messages

Message

Meaning

2CANNOT FIND filename .ext

The filename .ext specified is not in the file
directory. If no .ext is specified for a file,
the file is first searched for with the name
filename .REL, and if not found, is then
searched for under the null filename extension.

535

Linking Loader Diagnostic Messages

. Message

Meaning

CANNOT FIND LOADER HIGH SEGMENT

?CHAIN DEV ERROR
?x CHAR. ERROR IN LOADER COMMAND

?DIR. FULL

EXIT

?/H ILLEGAL AFTER FIRST FILE IS LOADED

?ILL. COMMON abcd
SUBROUTINE test file F4 test.rel

?ILL. FORMAT filename .ext
?INPUT ERROR filename .ext

LOADER RESTARTED

LOW SEGMENT PROGRAM; XYZ
PRECEDED BY HIGH SEGMENT
PROGRAM(S)

This only_ occurs if the REMAP UUO failed and the
GETSEG UUO failed to find the LOADER high
segment. i is followed by a call EXIT .LOADER’
will have to be restarted by the run command.

A device error has occurred while writing the
Chain file. Chain file is terminated.

+

An illegal character was entered in a command
string.

The file directory of the specified list device is
full and cannot contain an additional file, or a
null file name was specified.

If this message appears ot the beginning of the
run, either insufficient core has been assigned
for loading or no console is attached to the job.
EXIT normally is typed at the end of the load-
ing process (after $ or /G) before exiting to the
monitor. ' -

/H must be the first command to LOADER. This
message is followed "LOADER RESTARTED".

A file other than the first contains a program’
which has attempted to expand the already
-established COMMON area. This program
must be loaded first. ‘

The input source file is in proper checksummed
binary format, but not in proper link format.

A READ error has occurred on an input source
device. Use of that device is terminated.

This is output each time the LOADER is returned
to its virgin-state (i.e. /Z), it usually follows
another message.

Load all low segment programs first. This message is
followed by "LOADER RESTARTED".

536

Linking Loader Diagnostic Messages

Message

Meaning

MORE CORE NEEDED

?symbol ignored-value old-value
MUL .DEF.GLOBAL filename .ext

?NO CHAIN DEVICE

REMAP UUO FAILURE

?x SWITCH ERROR IN LOADER COMMAND!
?x SYNTAX ERROR IN LOADER COMMAND
?dev: UNAVAILABLE

PUNCHAINABLE AS LOADED

?nnnnnn UNDEFINED GLOBALS

?SYMBOL TABLE OVERLAP file .ext
?nnnnnn WORDS OF OVERLAP file.ext

Loader requested additional core from Monitor,
but none was available.

A global symbol definition having a value
different from that of a previous definition of
the same symbol has been encountered. The
new value is ignored and the symbol appears
in the symbol table only once.

No device has been specified for the Chain
file.

" This is followed by LOADER RESTARTED and

loading must be restarted. This can only occur
when loading reentrant programs.

An improper switch designation has been
entered in a command string.

A syntax error has been encountered in a
command string. :

Either the device does not exist or it is
assigned to another job.

The Chain address (the half of JOBCHN selected
by /C or /R) is zero.

nnnpnn undefined globals were found.

nnnnnn additional words (octal) are required to
load everything réequested in the last command
string line.

Monitor Commands

Loading of relocatable binary files can be performed by use of the LOAD, EXECUTE and DEBUG
commands. LOAD performs a straightforward load process (along with any necessary translation of
source files). EXECUTE is equivalent fo loading with the /E switch (on termination of loading,
transfer control to user's starting address). DEBUG is equivalent to loading with the /T switch (load

DDT from device SYS:, turn on /S switch, and transfer control to DDT on termination of loading).

Loader switches can be passed to the Loader by prefixing them with a % symbol .

537 .
TABLE OF_CéNTENTS
CHAPTER 1
INTRODUCTION
Loading Procedure
Learning to Use DDT

CHAPTER 2
BASIC DDT COMMANDS

Examining Storage Words
Type-=0Out Modes,
Modifying Storage.Words
Type-In Modes

Symbols

Expressions

Breakpoints

Starting the Program
Deleting Typing Errors
Error Messages

Summary

CHAPTER 3
DDT COMMANDS

Examining the Content¢ of a Word
Changing the Contents of a Word

Inserting a Change, and Examining the
Contents of the Last Typed Address

' Starting the Program

One-Time Typeouts
Symbols

Typing In

Delete

Error Messages

Upper and Lower Case (Teletype Model 37)

\Page

538

- CHAPTER 4
. MORE DDT-10 COMMANDS

.1 Changing thé’dutput Radix
.2 Type Out Modes

4.3 Breakpoints

4.4 Searches

4.5 Miscellaneous Commands

CHAPTER 5
SYMBOLS AND DDT ASSEMBLY

5.1 - Défining Symbols

5.2 Deleting Symbols

5.3 DDT Assembly

5.4 Field Separators

5.5 Expression Evaluation
5.6 Special Symbols

CHAPTER 6
PAPER TAPE

6.1 Paper Tape Control

AéPENDIX A
SUMMARY OF DDT FUNCTIONS

APPENDIX B .
EXECUTIVE MODE DEBUGGING (EDDT)

APPENDIX C
STORAGE MAP FOR DDT -

APPENDIX D
OPERATING ENVIRONMENT

ILLUSTRATIONS
6-1 RIM10B Block Format
TABLES

3-1 Spécial Character Functions

539

. CHAPTER 1
INTRODUCTION

DDT-10 (for Dynamic Debugging Technique)* is used for on-line checkout and testing of
MACRO-10 and FORTRAN programs and on-line program composition in all PDP-10 software systems.

After the user's source program has been assembled or compiled, the user's binary object
program (with its symbol table) may be loaded along with DDT. DDT occupies about 2K of core.

~ By typing commands to DDT, the user may set breakpoints where DDT will suspend execution

of his program and await further commands. This allows the user to check out his program section by
section. Either before starting-execution or during breakpoint stops, the user may examine and modify
the contents of any location. Insertions and deletions mqy‘ be done in symbolic source language or in
various numeric and text modes at the user’s option. DDT also performs searches, gives conditional
dumps, and calls user-coded debugging subroutines at breakpoints.

Symbolic on-line debugging with DDT provides a means for rapid checkout of new programs.
If a bug is detected, the programmer makes changes quickly and easily and may then immediately exe-

cute the corrected section of his program. '

1.1 LOADING PROCEDURE

The user loads the program to be debugged and DDT with the Linking Loader. (The /D
switch commands the Loader to load DDT.) To transfer control to DDT, the user types the Monitor
command, '

' DOT
After DDT responds by skipping two lines, the user may begin typing commands to DDT.

1.2 LEARNING TO USE DDT

This manual is designed to make DDT easy to use. A survey was made of several program-
mers who use DDT frequently, and it was leamed that most' debugging is done with a limited set of
commands. These basic commands are described in the next chapter. When learning DDT, it is re-
commended that the reader concentrate on learning to use the commands in Chapter 2. If more de-

tailed information is required, skip ahead to later chapters.

*Historical footnote: DDT was developed at MIT for the PDP-1 computer in 1961. At that time DDT stood for "DEC Debugging Tape." Since then, the idea
of an on-line debugging program has propagated throughout the computer industry. DDT programs are now available for all DEC computers. Since media other
than 'tape are now frequently used, the more descriptive name "Dynamic Debugging Technique" has been adopted, retaining the DDT acronym. Confusion be-
‘tween DDT-10 and another well known pesticide, dichloro-diphenyl-trichloroethane (C4HgCly5) should be minimal since each attacks a different, and ap-
parently mutually exclusive, class of bugs.

1-1

540

After reading Chapter 2, practice debugging, using the basic commands. Thisimay be all,
that will ever be needed. Read the following chapters whiu;;‘h describe the entire command set in det’/ail;
this sho:.vld be read when the basic commands are understood.

After leaming the system, the Summary of Commands, listed by function in Appendix A, will
be useful for quickly finding any DDT command. This summary, along with the chapter on Basic Com-
mands, is also available in the PDP-10 Systems User's Guide (DEC-10-NGCA-D).

sa1. -

CHAPTER 2
BASIC DDT COMMANDS

The DDT commands most frequently used by programmers are described in this chapter. Many
programs are debugged successfully using only these basic commands.
This chapter introduces the main features of DDT to the uninitiated user. Later chapters

describe in detqil these basic commands, less frequently used commands and other more complex options.

2.1 EXAMINING STORAGE WORDS

By using DDT, a programmer may examine the contents of any storage word by typing the
address of the desired word followed immediately by a slash (/). For example, to type out the con-
tents of a location whose symbolic address is CAT, the user types,

CAT/
DDT now types out the contents (preceded and followed by tabs) on the same |ine1 .
CAT/ MOVEM AC,D0G+21 '

The word labeled CAT is now considered to be opened, and DDT has set its location pointer

to point to this address.

2.2 TYPE-OUT MODES

The preceding example showed DDT typing out the contents of location CAT as a s'ymbolic
instruction with its address field also relative to a symbol. This is the type-out mode in which DDT is
initialized. It is also initialized to type all numbers in the octal radix. The user may ask DDT to re~
type the preceding quantity as a number in the current radix by typing an equal sign (=). For examplez,

CAT/ MCVEM ACH>DOG+Z21 = 202400,56736

DDT has numerous commands which reset the type-out mode permanently, temporarily, or

" for only one typeout. The modes that can be selecte& include numeric constants, floating point numbers,
ASCI! and SIXBIT text modes, and half-word format. Absolute or relative addressing and different
radices may similarly be selected. For example, to change the current type-out mode to ASCII text,

the user types the ccSmmam:l3

ST

‘ln this manua| information typed out by DDT is underlined to d|shngwsh DDT ovutput
from user-typed input.

The two commas mdlcafe that 202400 is in the left half of CAT and 6736 is in the
right half.

The Teletype keys ALTMODE (ALT), PREFIX (PREFIX), or ESCAPE (ESC) are all

_ equivalent and echo as $. .

2-1

542

or, to change the current type-out mode to half-word format, he types

$H
or, to select decimal numbers in his typeouts, he types

$10R k

Using these commands (and others described in Chapter 3), a programmer mdy examine any

location in the mode most appropriate to the information stored there. The semicolon (;) commands
DDT to retype the preceding quantity in the current mode. Combining this command with a mode
change gives results such as the following:

CAT/ MOVEM AC,DCG+21 $10Kk3 MOVEM AC,DOG+17

or CAT/ MOVEM AC,DOG+21 $H3; 202406, 5D0OG+21

or : TEXT/ ANDM 1,342212(10) $T; ABCDE
2.3 MODIFYING STORAGE WORDS

Once a word has been opened, its contents may be changed by typing the desired new con-
tents immediately following the typeout produced by DDT. A carriage retum will command DDT to . |
make the indicated modification and close the word. For example,

- CAT/ MOVEM AC,D0OG+21 MOVNM AC2,D0G+21)

/

The carriage return simply closes the previously examined register without opening c:nother1 .
The line feed () may also be used to close a word after examining (and optionally modifying) it. The
line 'Feed also commands DDT (1) to echo a carriage return, (2) close the current word (making a modi-
fication if one was fybed), (3) add one to DDT's location pointer, and (4) type out the new pointer
value and the contents of that address. Thus, if a line feed had been used in the previous example,
the result would be:

CAT/ MOVEM AC,DOG+21 MOVNM AC2,DCG+21)

CAT+1/ AOBJN XR6,LOOFPS

Location CAT+1 is now open and may be modified if desired. ,
The vertical arrow (1) is similar to the line feed .command except that the location counter

is decremented by one. Therefore, if the user continued the previous example by typing t the result
would be N
CAT+1/ AOBJN XR6, LOOPSt /

CAT/ MOVUNNM AC2,D0G+21

1

1 . - . .
The carriage return command has the additiona! property of causing temporary
" type-out modes to revert to permanent mode.

543

/

Location CAT is thus displayed and shows the result of the modification made in the previous
example. ’

The tab (|) and backslash (\) both close the current register and open the address last
typed (whether typed by DDT or the user). However, tab sets DDT's location pointer (.) to this new
address while bockslash leaves it unaltered. A more complex example may clarify the usefulness of
these commands.

CAT+1/ AOBJUN XR6,L00PS —+

LOOPS5/ CAWMGE AC2,TABL(XR6) CAMG
AC2,>TABL+1 (XR6)\SETZI 0=401000,,0{
' -

LOOPS5+1/ JUMPL AC3,FAULT JUMPL AC2,FAULT -

FAULT/ JRST 4,FAULT

2.4 TYPE-IN MODES

The examples in the preceding section showed modifications made as symbolic instructions in
.a form identical to MACRO-10 machine language. It is also possible to enter various numbers and
forms of text.

Octal values may be'fyped in as octal integers with no decimal point. Numeric strings
with numbers following the decimal point imply decimal floating-point numbers. The E-notation may

/
also be used on floating-point numbers. Some examples are:

Octal: 1234 777777777777 -6

Decimal integers: 6789 99999999. -25. .
Floating-point numbers: 78.1 0.249876E-10 —4.-00E+20 0.0
Incorrect formats: 76E+2 76.E+2 instead write 76.0E+2

To enter ASCII text (up to five characters left justified in a word), type a double quote (")
followed by any printing character to serve as a delimiter, then type the one to five ASCIHI characters
and repeat the delimiter. For example:] :

*/ABCDE/ (/ is the delimiter)
“ABCDA (A is the delimiter)

Note that the mode of a quantity typed in is determined by the user's input format and is

unaffected by any type-out mode settings.)

2.5 SYMBOLS

The user's symbol tables are loaded by the Linking Loader when it loads programs and DDT.
However, initially DDT is set to treat only global symbols (created by INTERNAL and ENTRY pseudo-
ops in MACRO-10) as being defined. This means that only global symbols will be used for relative

2-3

address typeouts and, likewise, only these globals can be referenced when typing in symbolic modifica-

tions, In order to make the local symbols within a particular program available to DDT, the user types

the program name (this comes from the MACRO-10 TITLE statement or the FORTRAN 1V SUBROUTINE

or FUNCTION statement) followed by ALTMODE and a colon ($:). For example, the command
ARCTANG ¢ ’

- will unlock the local symbols in the program named ARCTAN. This provision in DDT permits the user
‘to debug several related subroutines simultaneously and reference the local symbol table of each inde-
pendently without fear of multiply-defined local symbols. If the user's program is not titled, the com-
mand MAIN.$: will unlock the local symbol table.

The user may also insert symbols into the symbol table. To insert a symbol with a particular
value, type the value, followed by a left angle bracket (<), the symbol, and a colon (:). Some
examples are

’ TOT<CONS: 27<X: 12.1E+2<NUNMB: ADR+12<ADKX:

To assign a symbol with a value equal to DDT's location pointer, simply type the symbol
followed by a colon. For example, ‘

' XFER+4/ JRST @ TABL(3) BKNCH: v
will cause BRNCH to be defined with the value XFER+4,

2.6 EXPRESSIONS

DDT permits the user to combine symbols and numeric quantities into expressions by using
the following characters to indicate arithmetic operators.
+ The plus sign indicates 2's complement addition
- The minus sign indicates 2's complement subtraction

* The asterisk indicates integer multiplication

! The single quote or apostrophé indicates integer division (remainder

discarded) -~ slash cannot be used to indicate division since it has
another use in DDT.

As usual in arithmetic expressions, the evaluation proceeds from left to right with multipli-

cation and division performed before addition and subtraction.

2.7 BREAKPOINTS

The breakpoint facility in DDT provides a means of suspending program operation at any
desired point to examine partial resul.ts and thus debug a program section by section. The simpler
facts about breakpoints are presented next; the use and control of conditional breakpoints is deferred
to Paragraph 4.2.

545

2.7.1 Setting Breakpoints

The programmer can automatically stop his program at strategic points by setting as mar;y as
eight breakpoints. Breakpoints may be set before the debugging run is started, or during another break-
point stop. To set a breakpoint, the programmer types the symBo“c or absolute address of the word at
the location point in which he wants the program to stop, followed by $‘B. For example, to stop when
location 6004 is reached, he types, .

6P 48R
« Breakpoint numbers are normally assigned by DDT in sequence from 1 to 8. The user may
instead assign breakpoint numbers himself when he sets a breakpoint by typing,
. SNB ‘
where n is the breakpoint number (1< n< 8), for example,
CAT+3$AB DOG+1%7B 6G94%8B

When the programmer sets up a breakpoint he may request that the contents of a specified
word be typed out when the breakpoint is reached. To do this, the address of the word to be examined
is inserted, followed by two commas, before the breakpoint address. Some examples are

DCG,>CATS3EB ACI::LOGP*EﬁB Xss608458B

2.7.2 Breakpoint Restrictions

The locations where breakpoints are set may not ')
a. be modified by the program '

b. be used as data or literals

c. be used as part of an indirect addressing chain

d. contain the user mode Monitor command, INIT.

2.7.3 Breakpoint Type-Outs

When the breakpoint location is reached, DDT suspends program execution without executing
the instruction at the breakpoint location. DDT then types the breakpoint number and the Program
Counter value at the time the breakpoint is reached (this value will differ from the typed-in breakpoint
address if the breakpoint is executed by an XCT instruction elsewhere in the program). The format of
this typeout is as shown in the following examples:

S48 >> CAT+3 §78 >> DOG+1 b >> &4
- If the user requested that a specified address be examined at that breakpoint, it will be
opened; for example, '

$3B >> CAT DOG/ SOJGE 3,GOAT+6

2-5

2.7.4 Removing and Reassigning Breakpoints

The user may remove a breakpoint by typing,

B$NB
where n is the number of the breakpoint to be removed. For example,

0%2B ’
removes the second breakpoint. All assigned breakpoints are removed by typing

$B ,)
The user may reassign a breakpoint without formally removing it. Thps, if he has set breakpoint blo. 2
at location ADR (via the command ADR$2B) he may reassign No. 2 to LOC+6 by typing LOC+6$28B.

2.7.5 Proceeding From a Breakpoint

Program execution may be resumed (in sequence) following a breakpoint stop by typing the
proceed command, $P. . ' ’
‘ If the user does not wish to stop until the nth time that this breakpoint is encountered he
types,
N&P

Then this breakpoint will be passed n-1 times before a break occurs.

2.8 STARTING THE PROGRAM

The program is started by typing
$G ’,
This starts the program ;:t the previously specified starting address in location JOBSA. (Typically this
is the address from the MACRO-10 END statement.) The programmer may start at any other location
by typing that address followed by $G. For example,
400086
starts the program at the instruction stored at location 4000. BEGINS$G starts the program at the sym-
bolic location BEGIN. '
The start command may also be used to restart from a breakpoint stop when it is not desired

to continue in sequence from the point where program execution was suspended.

2.9 DELETING TYPING ERRORS

Any partially typed command may be deleted by pressing the RUB OUT key. This causes
DDT to ignore any preceding (unexecuted) partial command, and DDT types XXX. The correct .=
mand may then be retyped.

2.10 ERROR MESSAGES

If the user types ‘an undefined symbol which cannot be interpreted by DDT, U is typed back.
If an illegal DDT command is typed, or a location outside the user's assigned memory area'is referenced

? is typed back.

2.11 - _SUMMARY

As was said in the beginning, these basic commands are sufficient for debugging many

programs. Complete descriptions of all DDT commands are explained in the following chapters.

S48

CHAPTER 3
DDT COMMANDS

When DDT is initialized, it is set to type out in the symbolic instruction format with relative

addresses, and to type out numbers in octal radix.

3.1 EXAMINING THE CONTENTS OF A PROGRAM STORAGE WORD

To type out the contents of a storage word, the programmer types the address, followed imme~
diately by a slash (/). For example, to examine the contents of a word whose symbolic address is ADR,
the user types,

. ADK/

DDT types out the contents on the same line. In this manual, information typed out by DDT is under-
lined.

‘ ADR/ MOVE A,CCl ‘
The word labeled ADR is now considered to be opened, and DDT continues to point to this address.
The point, or period, character (.) represents DDT's location pointer, and may be used to type out its
contents, as in the following command.

</ MOVE A, CClI

Since we did not change the contents, they are the same, but we used the location pointer to re-
examine the currently opened word. Similarly, the programmer may use the period (.) as an arithmetic
expression component, such as '

«+5/ SOJGE 2,ADK+3

DDT's location pointer is set to a new value by the / command when preceded by an address. For

. example,
201/ O

sets the location pointer to 201. If the user types / without typing an address, the contents of the loca-

tion addressed in the last typeout are I’yped..
667/ MOVE 1,6 / jL
o/ MOVE 156

Location 667 contains the instruction MOVE 1,6. The second slash displays the contents of Accumu~

lator 6, which is zero. This does not change the location pointer, which is still pointing to location 667.

ADR/ MOVE AsCC1 7/ ADD 2,S5UM+7

It should also be noted that the spaces which occur after DDT complete the typing of the con~
tents of ADR are automatically produced by DDT, nof the user.

i)

549

The left square bracket ([)] has the same effect as the slash, (the address immediately
preceding the [will be opened).” However, [forces the typeout to be in numbers of the current radix.
ADR [11 (OCTAL)
ADR [_9. (DECIMAL)
The right bracket (1)* has the same effect as the slash except that it forces the typeout to Ee in sym~

bolic instructions.

¢

ADR+23 1. MOVE ‘ISnLIST+2

The exclamation point (!) works like the slash except that it suppresses type out of contents
of locations until either /, [, or 1 is typed by the uset. The LINE FEED (}) commands DDT to type
out the contents of ADR+1.

ADR! MOVE AC5555} 1) .
ADR+11!) 2)
ADK/ MOVE AC»555 @ . .

Thus, in step (1) of the example the contents of ADR are not_fybea out, but the address is opened to
modification and MOVE AC,555 has been typed in by the user.

Step (2) of the example shows that the location pointer has been incremented by one and the
contents of ADR+1 are not typed out. This is because the exclamation point is still in effect and will
continue to take effect until /, [, or 1 is typed in by the user. In this case, the slash terminates the
effect of the exclamation point. - ‘

Step (3) shows that the modification (MOVE AC, 555) of ADR typed in Step (1) has been
accomplished . '

3.2 CHANGING THE CONTENTS OF A WORD

After a word is opened, its contents can be changed by typing the new contents following
- the type out by DDT,' followed by a carriage return. For example,

ADR/ MOVE A,CC1 MOVE AsCC2)
The carriage return closes the open word, but does not move the location pointer. A LINE FEED (V)

command could also be used to make this modification. A LINE FEED causes a carriage return, adds

'On Teletype Models 33 and 35 the left square bracket (I) is produced by holding the SHIFT key down
and striking the K key. The right square bracket (1), is produced by holding the SHIFT key down and
striking the M key. .

550) - '
one to DDT's location counter (moves the pointer), types out the resulting address and the contents of
the néw address. Thus, if we conclude our last example with a LINE FEED
ADR/ MOVE A>CC1 MOVE A,CC2 '
ADR+1/ ADD 3,0C3 -
ADR+1 is now open, and may be modified by the user.

The vertical arrow ('f)] works similarly, except that one is subtracted from the location
pointer. The open word is closed (modified if a change is given) and the new address and contents are
typed out. ‘

ADR +1/ ADD 3,CC3t

ADK/ “OVE ALCC?2

Since the vertical arrow subtracts one from the pointer, the resulting address s ADR, and

the contents now show the change made in the previous example.

3.3 INSERTING A CHANGE, AND EXAMINING THE CONTENTS OF THE LAST TYPED
ADDRESS

The horizontal tab () causes a carriage-return line feed, then sets the location pointer to
the last address typed (the new address if a modification was made) of the instruction in the register
just closed. Then DDT types this new address, followed by a slash and the contents of that location,
as shown below.

ADRS/ JKST ADR1 JKST ADK -+
ADR/ MOVEM BsCC2 —f

cCz2s 666

~

The backslash (\)2 opens the word at the last address typed and types out the contents.
However, backslash does not change the location pointer. The backslash closes the previously opened
word and causes it fo be modified if a new quantity has been typed in.

\

"ADR/ MOVE AsCC2 JRST X \ MCOVE AC,3 '

The use of the backslash accomplishes two things. First it changes ADR by replacing its contents with
JRST X. Second, the backslash causes DDT to type out the contents of X, namely, MOVE AC,3. The

location pointer continues to point to ADR, but now location X is open and may be modified if desired.

1
t is produced by SHIFT-N on Teletype Models 33 and 35. The backspace key may be used instead of
- t on Teletype Model 37.

2\ is produced by SHIFT-L on Teletype Models 33 and 35.
) typ

. 3-3

If the line~feed control character and the vertical arrow were used in conjunction with the
backslash, the results would be as follows. ’
ADR/ MOVEM B,CC2 MOVE ASCCl \ 105776}
ADR+1/ WMOVE A,C *

ADk/ MOVE A,CC1 \ 105776

The following is a summary in table form of these special control characters and their cor-
responding functions. For example, the chart shows that the forward slash (/) will examine the con-
tents of an address, type out in the current mode, open the address, change the location pointer to the

address just opened, but it does not cause a new quantity to be inserted in that address.

Table 3-1
Special Character Functions

Change . Insert New
Command Type Out Address "9 Qty If New
Mode Location
Character . Contents Opened Poi Qty Has Been
: ointer
Typed
/ " Yes Current »
[Yes Numeric Yes Yes] No
] Yes Symbolic
! No -
\ Yes2 Current Yes No Yes
TAB () Yes2 Current Yes Yes Yes
t or backspace Yes2 Current Yes Yes (<1)) Yes
Line~feed (V) Ye52 Current Yes Yes (+1) Yes
Carriage No " None No No Yes
return ()') (closes). .

A ? typed by DDT when examining a location indicates that the address of the location is
outside the user's assigned memory area. A ? typed when depositing indicates that the location cannot
‘be written in, because it is either outside the assigned memory area or inside DDT or inside a write~

protected memory segment.

‘If a user-typed qt\mntify preceded.
1f | has not suppressed typeout.

3-4

552

3.4 STARTING THE PROGRAM

The program is started by typing

$G -
This starts the program with the instruction beginning at the user's previously specified starting address
taken from location JOBSA. The programmer may start at any other instruction by typing the cddress of
that instruction followed by.$G. For example,

4200%G OR ADR+5$G
starts the program at the instruction stored at location 4000 or, in the second part, at the symbolic
address ADR+5. The start command may also be used to restart from breakpoints when the user does not

wish fo proceed to the next instruction.

3.5 _ONE-TIME TYPEOUTS -

These commands cause a single typeout of the opened word in the mode indicated.

3.5.1 Type Out Numeric

Although DDT is initialized to type out in symbolic mode, it is often useful to change to
numeric typeout. When the programmer types the equal sign (=), the last expression typed is retyped by
DDT in the current radix (initially octal). This is useful when a symbolic typeout is meaningless. Since
this usually indicates that numeric data is stored in that word, the user can verify this by typing = and

checking the valuve.

3.5.2 Type Out Symbolic

If a typeout is numeric, and the user wants to examine it in symbolic mode, he types the left

arrow (+). The Tast typed quantity is refyped as a symbolic instruction. The address mode is determined
by $A or $R.

3.5.3 Type Out in Current Mode

To retype a typeout in the current mode, the user types a semicolon (;). This may be used,

.

for example, if the user has changed the typeout mode. For example,

TEXT/ ANDM 1,342212 (1) $T3 ABCDLE

3.6 SYMBOLS

Before DDT commands can be used to reference local symbols in the program Symbol Table,

the user must type the program name as specified in the MACRO-10 TITLE statement, or the FORTRAN IV

3-5

- 553

SUBROUTINE or FUNCTION statement, followed by a dollar sign and a colon. For example,

MAINS 3 ')
makes the local symbols in the program called MAIN available. Since the user can debug several
related subroutines simultaneously, reference to several independent symbol tables is permitted, each
of which may use the same local symbols with different values. Global symbols, such as those specified
in MACRO=-10 INTERNAL statements, may always be referenced.

‘ The user may insert (or redefine) a symbol in the symbol table by typing the symbol, followed

by a colon. The symbol will have a value equal to the address of the location pointer (.).

-X/ ADD1 3,N TAG:
causes TAG to be defined with the same value as X. All user defined symbols are global.

The user may also directly assign a value to a symbol by fyping the value, a left angle
bracket (<) and the symbol, terminated by a colon. This is the equivalent of a MACRO-10 direct
assignment statement. Some examples are, ' | "

T37<CONS 2 12.1E+2<NUMB ¢
27;X= 191 <MILs

3.7 TYPING IN

To change or modify the contents of a word, the user may type symbolic instructions, numbers,
and text characters. Type-ins are interpreted by DDT in context. That is, DDT tests the data typed in
to determine whether it is to be interpreted as an instruction, a number (octal or decimal), or text.
Typeout mode settings, such as $S, $C, and $nR, do not d)FFecf typed input.

The user may type the following:
a. Symbolic Instructions
b. Numbers
(1) Octal integers
(2) Fixed-point decimal integers
) Floaﬁng-p&nf decimal mixeu .aumbers
c. Text '
(1) Up to five PDP=10 ASCII characters, left justified in a word . ’
(2) Up to six SIXBIT characters, left justified in a w;:rd
(3) A single PDP-10 ASCII character, right justified in a word
(4) A single SIXBIT character, right justified in a word
d. Symbols
Anything that is not a number or text is interpreted by DDT as a symbol .

554

r~ -

3.7.1 Typing In Syrﬁbolic Instructions

In general, a new symbolic instruction is written for insertion by DDT, in the same way the/
instruction is written as a MACRO-10 source program statement. For example, ‘
X/ _@_ ADD ACI1,DATE
‘where a space terminates the operation field, and a comma terminates the accumulator field. For
example: (1) In DDT, the operation code determines the interpretation of the accumulator field. If
an 1/0 instruction is used,\ DDT inserts the I/O device number in the correct place, and (2) indirect
and indexed addresses are written, as in MACRO-10 statements, where @ precedes the address to set
the indirect bit, and the index register specified follows in parentheses.
X/8 ADD 4s,eNUM (17D
To type in two 18-bit halfwords, the left and right expressions are separated by two commas.
For example,]
X/ 8 As.B
This is similar to the MACRO-10 statement
XD ALB

3.7.2 Typing In Numbers

A typed~in number is interpreted by DDT as octal if it does not contain a decimal point.

The following examples are octal type-ins:

1234 -10101 ' ‘

772 7777771777777 \ i
Fixed-'poﬁinf decimal integers must contain a decimal point with no digits following.

1234. ~99. 577. :
Floating=point numbers may be written in two formats. With a decimal point and a digit following the
decimal point: \ '

i21.1 1234.5 999.0 =-2.71828
Oras in MACRQ-TO, with E indicating exponentiation:

12.0E+2 T77.0E+5 12.34E2 31.4159E-1

3.7.3 Typing In Text Characters

To type in up to five PDP-10 ASCII characters, left justified in an opened word, the user
types a quotation mark, followed by any printing delimiting character, then the text characters, and
terminated by the delimiting character. The following examples are legal:

"/TEXT/ “ABCDEFA In these cases, / and A are
the delimiting characters

555

Lower case letters are converted to upper case. Characters outside the SIXBIT set are illegal, and DDT
typesa ? '

To type in up to six SIXBIT characters, left justified in an opened word, the user types $","
followed by any delimiting character, then the text characters, and terminated by repeating the de-
limiting character. The two examples below are SIXBIT type ins.

$"/DIVIDE/ SB"EXXXXXXE

To type in a single PDP=10 ASCII character, right justified in an opened word, the user

types a quotation mark, followed by a single ASCII text character, then by an ALT MODE.
"Q$ "/% 7%)

To type in asingle SIXBIT character, right justified in an opened word, the user types an
ALT MODE, followed by a quotation mark, a single SIXBIT text character and terminated by an ALT
MODE. '

l "G $'MS $TES

3.7.4 Arithmetic Expressions

Numbers and symbols may be combined into expressions using the following chor(;cters to
indicate arithmetic operations.

+ The plus sign means 2's complement addition.

- The minus sign means 2's complement subtraction.

* The asterisk means integer multiplication. '

' The single quote means integer division with any remainder discarded. (The Slash has

another function.)
Symbols and numbers are combined by +,~,*," to form expressions. Examples:
6+2

S*'2.51+BASE
2%3 +1

3.8 DELETE

Any partially typed command 'may be deleted by pressing the RUB OUT key. This causes
DDT to ignore any preceding (unexecuted) partial command and DDT types XXX. The correct command
may then be retyped. ‘ . .

3.9. ERROR MESSAGES

If the user types an undefined symbol which cannot be interpreted by DDT, U is typed back.

If an illegal DDT command is typed, ? is typed back. Examining or depositing into a location outside -

3-8

N

556

the user’s assigned memory area causes DDT to type a ? Depositing in a write-protected high memory
segment also results in a ? typeout.

3.10 UPPER AND LOWER CASE (TELETYPE MODEL 37)

DDT will accept alphabetic input in either upper or lower case. Lower case letters are

internally converfed to upper case, except when inputting text where they are taken literally as ex-
plained in Section 3.7.3.

DDT output is in upper case, except for text which is taken literally.

557 . ,

CHAPTER 4
MORE DDT-10 COMMANDS

This chapter describes other.type-out modes, conditional breakpoints, searches and additional
features. Commands are available to reset the initial settings so that numeric data can be typed out in
a radix chosen by the user, in floating=point format, in RADIX50 format, as halfwords (two addresses)
and as bytes of any size. The contents of a storagelwérd may also be typed out as 7-bit PDP-10 ASCII
text, or SIXBIT text characters. (See MACRO-10 Manual, Appendix 5.)

Searches can be made in any part of the program for any word, not-word (inequality), or
effective address. The user specifies the instruction or da.fo to be searched for and the limits of the
search.

Breakpoints can be set conditionally, so that a program stop occurs if the condition is satis~
fied. In addition, a counter can be set up allowing the user to specify the number of times a break-

point is passed before a program stop occurs.

4.1 CHANGING THE OUTPUT RADIX

Any radix (> 2) may be set by typing $nR, where n is the radix for the next typeout only, and
n is interpreted by DDT as a decimal value. The radix is permanently changed when the double dollar
sign is used in the command $$nR. To change the type-out radix ,permonently to decimal, the user
types, , .
' $$10R

When the output radix is decimal, DDT follows all numbers with a point.

4.2 TYPE OUT MODES *

When DDT-10 is loaded, the type-out modes are initialized to produce symbolic instructions
with relative addresses. For numeric typeauts, the radix is initially set to octal, '

These modes may be changed by the user. The duration, or lasting effect of a type-out mode
change is also set by the user. Prevailing modes, which are semipermanent, are preceaed by a single
dollar sign. In addition, some mode changes effect only one typeout, such as the equal sign, which
causes DDT to retype the last typed quantity in numeric mode. ’

In general, prevailing modes are changed by replacing them with another prevailing mode or
by reinitializing the system. Temporary modes remain in effect until the user types a carriage return

(3), or re-enters DDT. One-time modes apply only to a single typeout.

4-1

4.2.1

Primary Type-out Modes

$S_(OR $3%S)

SA (OR $$A)

$R . (OR $3%R)

$C (OR $3%C)

$F (OR SF)

$T (OR $35T)

\
$6T (OR $%6T)

$5T (OR $3%5T) .

$H (OR $%H)

SNO (OR $SNO)

558

/
Type out symbolic instructions. The address part interpretation
is set by $R or $A.

. $S ADR/ ADD AC1,TABLE+3

Type out the address parts of symbolic instructions, and both
addresses when the mode is halfword, as absolute numbers in the
current radix.

$A ADR/

Type out addresses as _relafive addresses ..

Type out coﬁstanfs, i.e., as numbers in the current radix.
$5C ABLE/ 254111,,4050

If the output radix octal and the left half is not 0, the word will
be divided into halves separated by commas.
Type out the contents of stordge words as floating=point numbers.

$F X7 #@.17516230E-45

The number sign (f) indicates the number is unnormalized.

Type out as 7-bit ASCII text characters. Left-justified charac-
ters are assumed unless the leftmost character is null. If the
leftmost character is null, then right-justified characters are
assumed . ')

$T REX/ ABCDE
Type out as SIXBIT text characters.
$6T HEX/ ABCDEF

Type out symbols in radix 50 mode. (See MACRO-10 Manual,
Appendix 6.)

$S5T 137747 , 4 CREF = 4000355261550

This command causes the typeout to be in halfwords, the left
half separated from the right half by double commas. The ad-
dress mode interpretation is determined by $R or $A.

$A S$H Z/ 4503554502
$R S$H Z/ TABL+14,,TABL+13

Type out in n=bit bytes, where n is decimal. (Use the letter O,
not zero).

$60 BYTS/ 22,235 1» 735 515 46

As in all DDT typeouts, leading zeros are suppressed.

4-2

43 BREAKPOINTS .

4.3.1 Setting Breakpoints

The programmer can automatically stop his program at strategic points by setting up to eight
breakpojnfs. Breakpoints rﬁay be set before the debugging run is started, or during another breakpoint
stop. To set a breakpoint, the programmer types the symbolic or absolute address of the word at the
location which he wants the program to stop, followed by $B. For example, to stop when location
4002 is reached, he types,

’ 400238
[If all eight breakpoints are in use, DDT will type a question mark. The user may assign breakpoint
numbers when he sets a breakpoint by rybing ADR $nB, where n is the breakpoint number (1<n<8). For
example,
SYM$3B ADRS7B

If n is not entered DDT will assign 1 through 8 in sequence. In the previous example, when

ADR is reached, DDT types,

$7B >> ADR)
indicating that the break has occurred at location ADR, and breakpoint No. 7 was encountered. The
break always occurs before the instruction at the breakpoint address is executed.

If the instruction at the breakpoint location is executed by an XCT instruction, the typeout
will show the address of the XCT instruction, not the location of the breakpoint. The program stops at
each breakpoint address, and the programmer can then type other commands fo examine and debug his
pl:ogrcm.

When the programmer sets a breakpoint, he may request that the contents of a word be typed
out when a breakpoint is reached. To do this, the address of the word to be examined is inserted,
followed by two commas, before the breakpoint address. i

Xs24002%28
When address 4002 is reached, DDT types out,
- $2B>>4002 X/ ADD_ AC,Y+2

where ADD AC, Y42 is the contents of X. Location X is left open at this pomf Location 0 may not

be typed out ‘in this way because a zero argument 1mp||es no typeout.

4.3.2 Removing Breakpoints

The user may remove a breakpoint by typing,
PSNB

4-3

where n is the number of the breakpoint to be ';émoved. .Therefore,
n$2B
removes the second breakpoint. All assigned breakpoints are reméved by typing
$B ‘
The user may reassign a breakpoint. If he has set breakpoint No. 2 at location ADR (ADR$2B), he may

reassign No. 2 to ADR+1 by typing ADR+1$2B.

4.3.3 Restrictions for Breakpoints

Breakpoints may not be set on instructions that are
Modified by the program

a
b. Used as data or literals

(2}

Used as part of an indirect addressing chain

o

The user mode Monitor command, INIT

A breakpoint at any other Monitor command will operate ¢orrectly, except that if
the Monitor command is in error, the Monitor will type out an error and the Program
Counter, but the Program Counter will be internal to DDT and meaningless to the
user.

,

\

43.4 Restarting After a Breakpoint Stop

To resume the program after stoppfng at a breakpoint, the user types the proceed command,
P ’

The program is restarted by executing the instruction at the location where the break occurred. If the
user types n$P, this breakpoint will be passed n-1 times before a break can occur; the break will occur
the nth time. If n is not specified, it is assumed to be one. If the user proceeds by typing $$P (or
n$$P), the program will proceed automatically when the program breaks again. If DDT encounters an
XCT loop or the Monitor command INIT when proceeding, a question mark will be"typed.

Alternatively, the user may restart at any location by typing the start command,

' ADRS$G ‘

where ADR is dny program address, or $G, which restarts at the previously specified starting address in

location JOBSA.

4.3.5 Automatic Restarts from Breakpoints

If the user requests DDT to type out the contents of @ word and then continue program execu-

“tion without stopping, he types two ALTMODES when specifying the breakpoint address.

AC,»ADRSSB

4-4

561 : S

When ADR is encountered, the contents of AC are typed out and program execution contin=
‘ves. To get out of fheloufomofic proceed mode, remove the breakpoint or reassign it with a single $;
it may be necessary to use t C and DDT) toget back to DDT to do this. In executive mode, hit any
teletype key during the typeout.
v \

4.3.6 Checking Breakpoint Status

The user may determine the status of a breakpoint by examining locations $nB, $nB+1, and
$nB+2.

$nB contains the address of the breakpoint in the right half; the address of the location to be
examined in the left half. If both halves equal zero, the breakpoint is not in use.)

$nB+1 contains the conditional breakpoint instruction. (See Paragraph 4.3.7.)

$nB+2 contains the proceed count.

4.3.7 Conditional Breakpoints

Breakpoints may be set up conditiénally in two ways. The user may provide his own instruc-
tion or subroutine to determine whether or not to stop, or he may set a proceed counter which must be
equal to or less than zero in order for a break to occur.

When a breakpoint location is reached, DDT enters its breakpoint analysis routine consisting
of five instructions.

SKIPE SNB+1 ; Is the conditional break instruction 07

XCT SNB+1 ; No, execute conditional break instruction
S0SG SNB+2 ; Decrement and test the proceed counter
JRST_ break routine

JRST proceed routine’

If the contents of $nB+1 are zero (indicating that there is no conditional instruction), the
proceed counter at $nB+2 is decremented and tested. If it is less than or equal to zero, a break occurs;
if it is greater than zero the execution of the user's program proceeds with the instruction where the
break occurred.

If the conditional break instruction is not zero, it is executed. If the instruction (or the
closed subroutine) does not cause a program counter skip, the proceed counter is decremented and tested
as above. If a program counter skip does occur, a break occurs. If the conditional instruction is a call
to a closed subroutine which returns skipping over two instructions, execution of the user's program pro-~

ceeds.

4-5

562 °

If the user wishes a break to occur based only on the conditional instruction, he should set

the proceed counter to a large number so that the proceed counter will never reach zero.

4.3.7.1 Using the Proceéd Counter ~ If the user wishes to proceed past a breakpoint a specified
" number of times, and then stop, he fnserts the number of passes in $nB+2, which contains the proceed
count.
The proceed counter may be set in two ways. The first way is by direct insertion. For
example, |
SNB+2/ O 26 ,
sets the counter to 20. The second method is as follows. After stopping at a breakpoint, the proceed

count may be set (or reset) by typing the count before the proceed command:

20%P

- 4.3.7.2 Using the Conditional Break Instruction - The user inserts a conditional instruction, or a call

to a closed subroutine at $nB+1. For example,
$3B+1/ @ CAIGE ACC,15)
_or
$4B+1/ B JSA 16, TEST)
When the breakpoint is reached, this instruction or subroutine is executed. If the instruction does not
skip or the subroutine returns to the next sequential location, the proceed counter is decremented and
tested, as explained in Paragraph 4.2.7. If the instruction skips or the subroutine returns skipping over
one instruction, the program breaks. If the subroutine causes a double skip return, the program pro-

ceeds with the instruction at the breakpoint address.

Examples of Conditional Breakpoints

If address 6700 is reached and DDT's No. 4 breakpoint registers are as follows:

$4B/ AC1,,6700
$4B+1/ CAIE AC! -100
$4B+2/ 200

AC1 contains 100, and DDT types
$4B>6700 AC1/ 109

Since AC1 contains 100, the compare instruction skips and the program breaks. If AC1 did not contain

100, $48+2 would be decregented by one and the user's program would continue running.

4-6

'

If the conditional break instruction transfers to a subroutine which , ofter the subroutine is
executed, returns to the calling location +3, a break will never occur regardless of the proceed c/:ouni'er.
Example: If the internal DDT breakpoint registers ($2B and $2B+1) have the followiﬁg contents, a break

would not occur unless accumulator 3 contains 100.

$2B/ ADR_
$2B+1/ : <SR TEST (contains PC when JSR to subroutine
TEST/ 2 TEST is made)

TEST+1/ A0S TEST

TEST+2/ CAIE 3,100

TEST+3/ A0S TEST)

TEST+4/ JRST @ TEST

\

The subroutine TEST causes a double skip (the return is to the fhird instruction after the call) in DDT if
accumulator 3 does not equal 100. A break will never occur at address ADR (regardless of the proceed

-

counter) unless accumulator 3 contains 100.

4.3.8 Entering DDT from a Breakpoint

" When a break occurs’, the state of the user's program is saved, the JSR breakpoint instructions
are removed, and the programmer’s original insfrucfi.ons are restored to the breakpoint locations. DDT
types out the number of the breakpoint and a symbol indicating the reason for the break, > for the con-
ditional break instruction, >>for the proceed counter and the address in the user's program where the
break occurred.

Example: If address ADR is reached in the user's program and DDT's breakpoint registers contain:

$2B/ " _ADR
$2B+1/ EL
$2B+2/ o (proceed counter contains zero)

DDT stops the program and types,
$2B>>ADR

4.4 SEARCHES

1 ! \
There are three types of searches: the word search, the not-word search, and the effective

address search.

Searches can be done between limits. The format of the search command is,

w Word search
ac$ N Not-word search
E Effective address search

47

where:

o

b

[

.) . - !
Is the lower limit of the search; O is assumed if this argument and its delimiter are not
present.

Is the upper limit of the search. The lower numbered end of the symbol fable is assumed
if this argument and its delimiter are not present.

Is the quantity searched for.

The effective address search (E) will find and f);pe out all locations where the effective

address, following all indirect and index-register chains to a maximum depth of 6410 levels, equals

the address being searched for.

Examples:

4517<5000>X$E

INPUT <S50080>700%E

’Examples of DDT output, when searching for X in the dbove example, are as follows.

4517/ SETZM X

47217 MOVE 2,X

- _ (indirectly addresses X through
S@BB/ MOVE 3, @ 4721 address 4721)

The word search (W) and the not-word search (N) compare each storage word with the word

being searched for in those bit positions where the mask, located at $M, has ones. The mask word con-

tains all ones unless otherwise set by the user. If the comparison shows an equality, the word search

types out the address and the contents of the register; if the-comparison results in an equality, the word

search will type out nothing. The not-word search types nothing if an equality is reached. It types the

contents of the register when the comparison is an inequality.

Examples:
INPT<INPT+10>NUMSW
INPT<INPT+10>0%N
sM/ This command types out the contents of the mask register, which is then
open. The contents of the mask register are ordinarily all ones unless
changed by the user.
NSM Inserts n into the mask register.
4.5 “ MISCELLANEOUS COMMANDS
] 7
$Q $Q represents the value of the last quantity typed.

ADR/ 100 $Q+1)
ADR/ 101

INST$X Causes the instruction INST to be executed.

4-8

565

. Example: o .
JRST ADR$X would cause the user's program to be started at ADR.

There are a number of circumstances when the user will want to zero out certain memory
location(s). The following command provides this capability:

FIRST<LAST $$5Z This command will zero out the memory locations between the
indicated FIRST address and LAST address inclusively. If the
FIRST address is not present, the location 0 is assumed. If
the LAST address is not present, the location before the low-
numbered end of the symbol table is assumed. In no case.
will locations 20-137 nor any part of DDT or DDT's symbol
table be zeroed. " .

4~9

CHAPTER 5
SYMBOLS AND DDT ASSEMBLY

A symbol is defined in DDT as a string of up to six letters and numbers including the specialv
characters period (.), percent sign (%), and dollar sign ($). Characters after the sixth are ignored. A
symbol must contain at least one letter. If a symbol contains numerals and only one letter, that letter
must not be a B, D, or an E. These letters are reserved for binary=shifted and floating=point numi:ers.

‘ Certain symbols can be referenc;ed in one program-from another. These symbols are called
"global ." Those which can only be referenced from within the same program are called "local" or
"internal." Any symbol which has been defined as global by MACRO-10 (using the INTERNAL or
ENTRY statements) will be considered as global by DDT-10 when it is referenced. FORTRAN sub-
routine entry points and COMMON block names are globals. All symbols which the user defines via
DDT are considered to be global. o

The user may want to reference a local symbol within a particular program. In order to do
this he must first type the program name followed by $:. Thus, if a user wishes to use a symbol local

to program MIN, he types the command,
‘ MINS :

This command unlocks the symbol table associated with MIN. The program name is that specified in the
MACRO-10 TITLE statement. In FORTRAN, the program name is either MAIN, the name from the
SUBROUTINE or FUNCTION statement, or DAT. for BLOCK DATA subprograms.

5.1 DEFINING SYMBOLS

There are two ways to assign a value to a symbol .

NUMERIC VALUE < SYMBOL: This command puB SYMBOL into DDT=10's symbol
table with a value equal to the specified NUMERIC
VALUE. SYMBOL is any legal symbol defined or

undefined.
Example:
305 <XVAR:
‘ XVAR has now been defined to have the value 305.
TAG: This command puts TAG into DDT=10's symbol table
with a value equal to the address of the location
pointer.
Example:

408/ ADD 2, 12012, X:
This puts the symbolic tag X into DDT-~10's symbol

5-1

567 -

table and sets X equal to 400, the address of the
last register opened. .

5.2 DELETING SYMBOLS

There are times when the user will want to restrict or eliminate the use of a certain few
defined symbols. 'The following three ways give the user of DDT-10 these capabilities.

SYMBOL $$K . SYMBOL is killed (removed) in the user's symbol table. SYMBOL
: can no longer be used for input 'or output.

Example

X$$K
This command removes the symbol X from the symbol table.

SYMBOL $K This command prevents DDT from using this symbol for typeout; it
can still be used for typein. For example, the user may have set
the same numeric valte to several different symbols. However,
he does not wish certain symbol(s) to be typed out as addresses or
accumulators.

X/ MOVE J, SAV JSK « MOVE N, SAV N$K ~ MOVE AC,SAV -

Since the user does not wish J to be typed out as an accumulator,
he types in J$K, followed by a left arrow to type out the con-
tents of X again and MOVE N,SAV is typed out. He then re-
peats the above process until the desired result, namely AC, is
typed out. Any further symbolic typeouts with the same number
in the accumulator field of the instruction will type out as AC.

$D The last symBol typed out by DDT has $K performed on it. The
value of the last quantity output is then retyped automatically.
For example,

A/ MOVE AC»,LOC $D MOVE AC,ABC+1

5.3 DDT ASSEMBLY

When improvising a program on=line to the PDP-10 on a Teletype, the user will want to use
symbols in his instructions in making up the program. In this and in other situations, undefined symbols
may be used by following the symbol with the number sign (f). The symbol will be remembered by DDT
from then on; Until the symbol is specifically defined by the use of a colon, the value of the symbol is
taken to be zero. Successive uses of the undefined symbol cause DDT to type out #. Appending ¥ to
all subsequent uses of the symbol enables the user to readily identify undefined (not yet defined by a

colon) symbols.

Example:
- MOVE 2.VALUE# ,

VALUE is now remembered by DDT and may be used further without the user appending .the #. If subse~
quent instructions are given involving VALUE,. DDT appends a # automatically to that symbol. Thus
VALUE will always appear as VALUE followed by the # (until VALUE is defined).
Example: ‘

START! MOVE 2,VALUE#}. (user types the #)

START+1! ADDI 2, 50}

START+2! MOVEM 24 VALUE |

‘ f ‘ (DDT types #)
START+3! - JRST VALUE+#1} (DDT types ¥ after the plus sign be-
START+4! cause only at that point does DDT

realize the symbol VALUE is complete.)
Undefined symbols can be used only in operations involving addition or subtraction. The undefined

symbols may be used only in the address field.
Example: ‘ '
MOVEI 2,3 *UNDEF#
This is an illega! operation - multiplication with a symbolic tag (UNDEF) which has not pre-
viously been defined. ' ‘
The question mark (?) is @ command to DDT to list all undefined symbols that have been used

in DDT up to that point in the program.

Example:
?
VALUE
UNDEF
5.4 FIELD SEPARATORS

The storage word-is considered by DDT to consist of three fields: the 36-bit wholeword field;
the accumulator or I/O device field; and the address field. Expressions are combined into these three
fields by two operators:

Space The space adds the expression immediately preceding it (normally an op
‘ code) into the storage word being formed. . It also sets a flag so that the .
expression going into the address field is truncated to the rightmost 18
bits. : ‘

5-3

Single Comma The comma does three things: the left half of the expression is
‘ added into the storage word; the right half is shifted left 23 bits
(into the accumulator field) and added into the storage word. If
the leftmost three bits of the storage word are ones, the comma
shifts the right half expression left one more place (I/O instruc-
tions thus shift device numbers into the device field). The comma
also sets the flag to truncate addresses to 18 bits.

Double Comma Double Commas are used to separate the left and right halves of
a word whose contents are expressed in halfword mode.

The address field expression is terminated by any word termination command or character.

5.5 EXPRESSION EVALUATION

Parentheses are used to denote an index field or to interchange the left and right halves of
the expression inside the parentheses. DDT handles this by the following generalized procedure.

A left parenthesis stores the status of the storage-word assembler on the pushdown list and
reinitializes the assembler to form a new storage word. A right parenthesis terminates the storage word
and swaps its two halves to form the result inside the parentheses. This result is treated in one of two
ways: - -

a. If+,-,", or * immediately preceded the left parenthesis the expression is treated as
a term in the larger expression being assembled and therefore may be truncated to 18 bits if part of the
address field.

b. If+,-,", or * did not immediately precede the left parenthesis, this swapped quantity
is added into the storage word.

Parentheses may be nested to form subexpressions, to specify the left half of an expression, or

to swap the left half of an expression into the right half.

5.6 - SPECIAL SYMBQLS

The @ sign sets the indirect bit in the storage word being formed.
Example: -

MOVE AC.,eXx

5-4

570 ' '

CHAPTER 6

PAPER TAPE'
6.1 PAPER TAPE CONTROL
$L This command causes DDT to punch a RIM10B loader on paper tape

RIMIOB loader. (See Macro-10 manual, Chapter 6.) Thus, if
the user wishes to punch out a program on paper tape he gives a
$L command first in order to get a loader punched on the same
tape as the program. Later when the user wishes to read in the
program from the paper tape, the hardware READ~IN feature will

. load the RIM10B loader into the accumulators and then the pro-
gram will be loaded by the RIM10B loader.

FIRST<LAST 2 This command punches out checksummed blocks in RIM10B format
on paper tape from consecutive locations between FIRST and LAST
address inclusively. For example, this command will punch out a
program existing in core memory in its present state of check-out
for later use. ' '

Example:

4000 <20000

FIRST<LAST $ Similar to the preceding command, except that locations whose
contents are zero are not puhched out whenever more than two
consecutive zeroes are detected.

ADR$J This command punchés a 2-word block that causes a transfer to
address ADR after the preceding program has been loaded from
paper tape. If ADR is not present, a JRST 4, DDT is punched as
the first word.

The following succession of steps will punch a program on paper tape ready to be used as an
independent entity.
a. SL

b. 5000 <2zma

c. 60008%J (Transfer to address 6000 after program is loaded.)

’ ;The paper tape functions are not available in the time-sharing user mode version of DDT.
(TAPE) is a single control key on the Teletype, and is identical to t R.

6~1

57

\m
Typed in: ‘ . tape feed ‘ Beginning of Tape

$L | RIM10B
LOADER

~ tape feed
-WC | FA-1

DATA

FIRST ADDRESS < CHECKSUM Checksum includes pointer wor

: WC = word count :
LAST ADDRESS(TAPE tape feed

DATA
BLOCK

DATA
BLOCK

tape feed

T transfer block
SA$J. JRST SA SA = starting -address

0

tape feed

Figure 6-1 RIM10B Block Format

5§72 .

' APPERIDIX A
SUMMARY OF DDT FUNCTIONS -

Type Out Modes

To set the type-out mode to: Type this Sample Output(s)
Symbolic instructions $S ADD 45 TAG+!1
ADD 4, 4052
Numeric, in current radix $C 69.
1905
Floating point $F B.125E-3
7-bit ASCIHI text - $T ' \ PQRST
SIXBIT text ' $6T TSROPC
RADIX50 $5T 4 DDTEND
Halfwords, two addresses $H . 4002, 24005
X+lssX+4
Bytes (of n bits each) $NO : $80 COULD YIELD

. G»14,2375123,0

Address Modes

To set the address mode for typeout of
symbolic instructions and halfwords
(see examples above) to

Relative to symbolic address $R , TAG+1

Absolute numeric address $A 4005

Radix Change

To change the radix of numeric type-outs
to n (for n>2), type SNR $2R COULD YIELD
B 110101100000010300000003011100181100

Permanent vs Temporary Modﬁ_

To'set a temporary type-out or address
mode or a temporary radix as shown

in the commands above, type 5 l $C
: . $10R

To instead set a permanent type-out or
address mode or a permanent radix, in
the commands above, substitute %3 $%C
$3$10R

573

To terminate temporary modes and
* ~yevert to permanent modes, or re-

enter DDT, type a carriage return. M
Initial permanent (and temporary)
modes are 3S
$%R .
$58R

Examining Storage Words

To open and examine the contents of
any address in current type-out mode adr/ v LOC/ 254020, >DDTEND

To open a word, but inhibit the type
out, of contents adrlf - Loc!

To open and examine a word as a number »
in the current radix adr[LOC [254920,,3454

To open and examine a word as a
symbolic instruction adr] LOC [JRST @DDTEND

To retype the last quantity typed
(particularly used after changing
the current type~out mode) . ' $F 3 #5.4999646E+11 °
‘ $6T3 57420 <L

Examining A Related Storage Word

To close the current open word (making
any modification typed in) and to open
the following related words, examining
them in the current type-~out mode:

To examine ADR+1 } (line feed)

To examine ADR-1 ' t (or backspace,
on the Teletype .
Model 37)

To examine the contents of the location
specified by the address of the last
quantity typed, and to set the location
pointer to this address — (TAB)

To examine the contents of address of
last quantity typed, but not change
the location pointer \ (backslash)

To close the currently open word, without
opening a hew word, and revert to per- -
manent type~out modes. » (carriage return)

574

One-Time Only Typebuts

Typing In

To repeat the last typeout as a number nber

in the current radix

To repeat the last typeout as a
symbolic instruction (the address
part is determined by $A or $R)

To type out, in the current type-out
mode, the contents of the location
specified by the address in the open :
instruction word, and to open that
location, but not move the location
pointer.

To type out, as a number, the con-
tents of the location specified by the

open instruction word and to open that

location, but not move the location
pointer.

To type out, as a symbolic instruction,
the contents of the location specified
by the open instruction word, and to
open that word, but not move the
location pointer.

Current type-out modes do not affect
typing in, instead . ‘

To type in.a symbolic instruction

To type in half words, separate the
left and right halves by two commas.

To type in octal values

To type in a fixed~point decimal
integer

To type in a floating=point number

To type in up to five 7-bit PDP-10
ASCII characters, left justified,
delimited by any printing character.

To type in one PDP-10 ASCII character,

right justified

To type in up to six SIXBIT characters,
left justified, delimited by any
printing character

To type in one SIXBIT character,
right justified

ADD AC1,@DATECIT)

402 55403
1234

99.

101.11
77 .OE+2

""/ABCDE/

rag

$''ABCDEFGA

$'O8%

A-3

{/ is delimiter)

($ must be ALT MODE)

(A is delimiter)

-($ must be ALT MODE)

575

Symbols

To pemit reference to local symbols
within a program titled name, type =~ name$:

To insert or redefine a symbol in the
symbo! table and'give it the value
n, type n<symbol:

‘To insert or redefine a symbol in the
symbol table, and give it a value
equal to the location pointer (.),

type symbol:
To delete a symbol from the symbol
" table symbol$$K
To kill a symbol for typeouts (but still ’
permit it fo be used for typing in) symbol $K

To perform $K on the last symbol typed
out and then to retype the last
quantity $D

To declare a symbol whose value is to ’
be defined later 4 symbol#

To type out a list of all undefined
symbols (which were created by #),

type S

Special DDT Symbols

To represent the address of the location

pointer . (point)
To represent the last quantity typed $Q
To represent the indirect address bit @
To represent the address of the search
mask M
To represent the address of the saved
flags, etc., (see Appendix D) $1

To represent the pointers associated with,
the nth breakpoint $nB

Arithmetic Operators Permitted in Forming Expressions

Two's complement addition +
Two's complement subtraction -
Integer multiplication *

Integer division (remainder discarded) ' (apostrophe)

A-4

MAINeS:

14<TABL3:

Sym:

LPCT$SK

TBITS$K

JRST AJAX#

Field Delimiters In Symbolic Type-Ins

To delimit op~code name, type one
or more spaces.

To delimit accumulator field, type

To delimit two halfwords, type
left,, right

To delimit index register

Bre akpoint;ro indicate indirect addressing

To set a specific breakpoint n (1<n<8)
To set the next unused breakpoint

To set a breakpoint with automatic
proceed

To set a breakpoint which will auto-
matically open and examine a
specified address, x

To remove a specific breakpoint

To remove all breakpoints

To check the status of breakpoint n
To proceed from a breakpoint

To set the proceed count and proceed

To proceed from a breakpoint and
thereafter proceed automatically

Conditional Breakpoints

"To insert a conditional instruction
(INST), or call a conditional
routine, when breakpoint n is
reached. B

If the conditional instruction does not
cause a skip, the proceed counter is
decremented and checked. If the
proceed count <0, a break occurs.

If the conditional instruction or
subroutine causes one skip, a break
occurs.

If the conditional instruction or sub-
routine causes two skips, exécution
of the program proceeds.

576

()
@

adr $nB
adr$B

adr$$nB
adr$$B

x, ,adr$nB
x, ,adr$B
x, ,adr$$nB
x, ,adr$$B

0$nB
$8
$nB/
$P
n$p

$5P
n$$P

$nB+1/
$28+1/ _Q_

A=5

CARS$8B
303%B

CAR3EB
303%%8B

AC3,,Z+6$5B
AC4,,ABLE$B
AC3, ,Z+6$$5B
AC4,,ABLE$$B

0%88B
B

SP
258P

8P
25%%P

INST
CATIE 3,100

; " ' 577

Starting the Program

To start at the starting address
in JOBSA) $G

To start, or continue, at a specified
address adr $G

. To execute an instruction inst $X

Searching -

To set a lower limit (a), an upper
limit (b), a word to be searched
for (c), and searcl'_n for that word ac$W

To set limits and search for a not~
word ac$N

To set limits and search for an
effective address ac$E

To examine the mask used in searches’
(initially contains all ones) B 1YV4

To insert another quantity n in the

mask n$M

Instruction Execution

$U
34

’

- Zeroing Memory

To zero memory, except DDT,
locations 20-137, and the symbol

}fablé $$Z

To zero memory locations FIRST
through LAST inclusive " FIRST<LAST $$Z

Special Characters Used in DDT Typeouts

Breakpoint stops
Break caused by conditional break
instruction. >

Break because proceed counter <0 >>
Undefined symbol cannot be assembled U
Half-word type~-outs left, ,right

A-6

$G

LOCS$G

JRST 2, @JOBOPCSX

returns to program after
tC and DDT commands

200<250>0%W
351<731>08N "
4@!<47£>LOC+6$E
sM/ -1

T770090777777%M

401::{]@2'

~

Unnormalized floating=-point number

To indicate an integer is decimal.
. The decimal point is printed

Illegal command

If all eight breakpoints have been
assigned

RUBOUT echo

Paper Tape Commands (Available only in EDDT)

578

To punch a RIM10B loader

To punch checksummed data blocks
where ADRI is the first, and
ADR2 is the last location of the
data

To punch a one-word block to cause
a transfer to adr ofter the preceding
program has.been loaded from paper
tape

#1.234E+27

$10R 77=63.

?

XXX

$L

ADR1<ADR2
(

adr$J

is tR)

#1 «234E+27

> . 579 ' o

APPENDIX B
EXECUTIVE MODE DEBUGGING (EDDT)

A special version of DDT, called EDDT, is available for debugging programs in the executive
mode of the PDP-10. In general, EDDT performs the same debugging functions as user mode DDT. All
of the paper tape commands are available in EDDT (those in DDT are marked by an asterisk in Chapter 5).
The paper tape /O routines in EDDT are optional at assembly time.

 EDDT is used to debug Monitor programs, diagnostic programs, and other executive (or
privileged) programs. EDDT performs its own /O on a Teletype and controls the Priority Interrupt sys-
tem. It does not check JOBREL for boundary limits as DDT does.

In EDDT the symbol table pointer is in location 36. EDDT does not check location 37, which
contains the highest valid address, before address examination. If the NXM Stop sw’itch is ON, the
machine will hang up if nonexistent memory is referenced. If this happens, EDDT may be restarted by
pressing START, or the CONTINUE switch may be pressed.

The first address of EDDT is DDT; the last is DDTEND.

The $$Z command will not zero locations 20 through 37. (In the user mode version, $$Z does

not zero locations 20 through 137. See Section 4.5.)

B-1

APPENDIX C
. STORAGE MAP FOR DDT

0
. <—— JOBREL (points to highest location in user area)
< JOBDDT (XWD DDTEND, DDT)
- JOBSYM (XWD - WC, 1st address of symbol table)
< st address is DDT
User | DDT | <— Last address is DDTEND
Area .
= Ist address of symbol table
User's Symbol Table .
‘ < Highest location in user area
The permanent symbolvfcble, which contains all
PDP-10 instructions and Monitor UUOs, is an integral
part of DDT. ‘
If the user's symbol table is overwritten, DDT can
@ still interpret all instructions and UUOs. It will not
interpret 1/O device mnemonics, internal $ symbols
($M,$1, $1B through $88, DDT and DDTEND or the
following:
Jov
JEN
HALT

C-1

581

APPENDIX D
OPERATING ENVIRONMENT

Entering and Leaving DDT

When control is transferred to DDT, the state of the machine is saved inside DDT:

a. The accumvulators are saved.

b .] The status of the priority interrupt system (the result of a CONI PI, $1) is stored in the
right half of register $I. ‘

c. The central processor flags are saved in the left half of register $1.

d.] The PI channe|s‘ore turned off (by a CONO PI, @$I+1) if they have a bit in register
$I+1. ' ' '

o.! The Teletype PI channel is saved in the right half of register $1+2. The teletype buffer
is saved in the left half of $1+2 but can never be restored. The character in the output buffer will have
been typed on the Teletype.

f. Then using the Monitor command DDT ; , the old PC is saved in the right half of loca-
tion JOBOPC, with the flags in the left half.

When execution of a program is restarted, the following happens:

a. The accumulators are restored.

b.] Those PI channels which were on (when DDT was entered) and which have a bit equal to
1 in register $I+1 are turned on.

(C($I)R/\ C($I+])R) V2000 ~PT SYSTEM
(logical AND (A), logical OR (V))
c .] The Teletype PI channel is restored.
0 - TTI DONE = TTI BUSY - TTO BUSY
TTO done is set to 1 if either TTO busy or TTO done was on when DDT was entered. Otherwise,
0 - TTO done. '
d. The processor flags are restored from the left half of register $I.
e. To return to a program interrupted by t C, the user types:
JRST 2, © JOBOPCS$X TO RESTORE THE PC AND FLAGS.

~

1
Functions not available in the time-sharing user mode.

Drl

Loading and Saving DDT

582

How to load and save DDT.SAV (PDP-10) or DDT.DMP (PDP-6) in 2K of core:

Instructions

Load DDT in 4K of core.

Enter DDT. b

Type out, in halfword mode, the contents
of JOBSYM.

Open register 6 and put (JOBSYM)py
into the left half of 6; put (JOBSYM)RH - 4000,

into the right of 6. 8

Perform a block transfer until you reach

address 37778 .

Open up JOBSYM. Leave the left half as is,
- and change the right half to 40005 less than
it was.

Zero memory except DDT.

Open up JOBSA and check that left half =
DDTEND; if not, change left half to DDTEND.

Change back to symbol type-out mode.
Return to the Monitor.

Reduce core to 2K. |

Reenter DDT.

CHECK JOBREL.

Return to the Monitor.

Save DDT.

Example

sR LOADER 4

DTA1:DDT,/148G6 (ALTMODE

LOADER

EXIT

A%

ST

$SH JOBSYM/ -1625,57616
6! 16165:3616

BLT 6,37773%X

JORSYM! -162,,3616

$8Z

JOBSA/ ©,,DDT DDTEND,sDDT
$%S

tC

CORE 2

ST

JOBREL/ 3777
tC

_+SAVE DTA1 DDT

Explanation = The DDT saved file must be saved in 2K (minimum amount of core needed for

it). Also, astarting address must be set up for DDT as location 140. To get DDT into 2K, the DDT

symbol table must be moved down to.the upper end of the first 2K of core. Any unused locations in DDT
should be set to zero ($$Z) and JOBSYM should be set to the new location of the start of the DDT symbol

table. Before saving the resulting file, a CORE 2 requés’r should be given to the Monitor to ensure that

DDT is saved as a 2K core image.

