Maynard, Massachusetts " ddlialiltial

PDP-10
Maintenance Manual

KA10
CENTRAL PROCESSOR

Volume 1

DEC-10-HMAB-D

PDP-10 | |
KA10 CENTRAL PROCESSOR
MAINTENANCE MANUAL
VOLUME |

DIGITAL EQUIPMENT CORPORATION ¢ MAYNARD, MASSACHUSETTS

Ist Printing December 1968
2nd Printing (Rev) April 1970

Copyright © 1968, 1970 by Digital Equipment Corporation

The material in this manual is for informa-
tion purposes and is subject to change with-
out notice.

The following are trademarks of Digital Equipment
Corporation, Maynard, Massachusetts:

DEC PDP
FLIP CHIP FOCAL
DIGITAL COMPUTER LAB

CONTENTS

Page
CHAPTER T GENERAL INFORMATION
1.1 Description ' 1-1
1.1.1 Physical Description 1-1
1.1.2 System Configurations 1-1
1.2 Characteristics 1-1
1.3 Installation , 1-2
1.4 Related Documents) 12
CHAPTER 2 SYSTEM DESCRIPTION
2.1 Arithmetic Processor 2-2
2.2 Memory » 2-2
2.2.1 Memory Bus » 2-3
2.2.2 Memory Priority : 2-3
2.2.3 Memory Cycles : 2-3
2.2.3.1 Read Cycle | 2-3
2.2.3.2 Write Cycle ‘ | 2-4
2.2.3.3 Read-Modify-Write Cycle 2-4
2.2.4 Parity 2-4
2.2.5 Multiplexor 2-4
2.3 Inpuf/Oufpuf ' ‘ . 2-5
2.3.1 1/0 Bus and Control Device 2-5
2.3.2 1/O Transfers 2-5
2.3.3 Basic Input Transfers ' 26
2.3.4 Basic Output Transfers _ 2-6
2.3.5 Priority Interrupt in a Time-Shared System 2-6
2.3.6 Herdware Read-In 2-6
2.3.7 Drum Split Signal ‘ 2-7
2.4 Priority Interrupt System h . 2-7
2.5 Programming , : 2-8
2.5.1 Time Allotment (Simplified Description) _ . 2-8
2,5.2 Memory Protection and Relocation » 2-8
2.5.3 Input/Output » V . 2-9
2.5.4 Conditions Storage 2-9
2.6 Instructions ‘ | 2-9

2.6.1
2.6.2
2.6.3
2.6.4
2.6.4.1
2.6.4.2
2.6.4.3
2.6.4.4
2.6.4.5
2.6.5

CHAPTER 3

3.1
3.2
3.3
3.4
3.5
3.6

CHAPTER 4
.1

OO0 NN W -

R T TN N N N NN
oo = 3

—
~
I~

CONTENTS (Cont)

Instruction Word Formats)
Unimplemented User Operations - UUOs
Effective Address Calculations
Instruction Classes

Data Transmission

Arithmetic and Logical

Executive Instructions

Push-down Instructions

I/O Instructions

Instruction Execution

OPERATING PROCEDURES

Operator's Console

Margin Check and Maintenance Panel
Bay 1 and 2 Indicators

Paper Tape Reader/Punch and DECtape
Teleprinter

Read In

CENTRAL PROCESSOR ORGANIZATION

KA10 Registers and Adders

AR (Arithmetic Register, 36 bits)

BR (Buffer Register, 36 bits)

MQ (Multiplier Quotient, 36 bits)

AD, ADR (Adder, 36 bits)

MI (Memory Indicator, 36 bits)

PB (Parity Buffer, 37 bits)

MA (Memory Address, 18 bits)

PC (Program Counter, 18 bits)

IR (Instruction Register, 18 bits)

SC (Shift Counter, 9 bits)

SCAD (Shift Counter Adder, 9 bits)

FE (Floating Exponent, 9 bits)

PR, PR2 (Protection Registers, 8 bits each)
RL, RL2 (Relocation Registers, 8 bits each)

Page
2-9

2-10
2-10
2-11
2-1
2-12
2-12

-2-12

2-12
2-12

3-5
3-6
3-6
3-6
3-10

4-1
4-1
4-1
4-1
4-1
4-1

4-1
4-1
4-1
42
4-2
4-2
4-2
4-2

N N NN NN —

e e i e e i el o S N S N N I N N N O O NN

T B W N -

—

oL x WM

7.2
7.3
7.4
.7.5
7.6

.10
n
12
.13
.14
.15
.16
17

L1
.1.2

CONTENTS (Cont)

PIH, PIR, PIO

KA10 Basic Cycles
Instruction Cycle

Address Cycle

Fetch Cycle

Execute Cycle

Store Cycle

KA10 Bésic Instructions
Boolean

Add, Sub

Full Word Transfer (FWT)
Hclf—Word Transfer (HWT)
Exchange (EXCH)
Unimplemented User Operation (UUO)
Jump

Jump to Subroutine (JSR)
Jump and Save PC (JSP)
Jump and Save AC (JSA)
Jump and Restore AC (JRA)
Jump on Flags and Clear (JECL)
Jump and Restore (JRST)
Test

Add One to Both and Jump (AOBJ)
Skips

Jumps

Compare

PUSH

Push and Jump

pPOP

POPJ

Execute (XCT)

KAI0 Additional Instructions
Extended Instructions

Shift and Rotate

Shift and Count Subroutine

Page
4-2
4-2

4-3
4-3
4-4
4-4
4-5
4-5
4-5
4-5
4-5
4-6
4-6
4-6
4-6
4-6
4-7
47
4-7
4-7
4-7
4-7
4-8
4-8

4-8
4-8
4-8
4-9
4-9
4-9
4-9
4-9
4-9

CONTENTS (Cont)

Page
4.4.1.3 Fixed-Point Multiply : 4-10
4.4,1.4 Fixed-Point Divide 4-10
4.4.2 Block Transfer 4-11
4.4.3 Byte Manipulation 4-12
4.4.4 Floating Point 4-13
4.4.41 Floating Add and Subtract 4-13
4.4.4.2 Floating=Point Multiply 4-16
4.4.4.3 Floating-Point Divide " 4-17
4,4,4.4 Floating Scale 4-18
4,4.4.5 Double-Floating Negate 4-18
4.5 KA10 Console Key Logic 4-19
4.5.1 STOP Key ' 4-19
4.5.2 RESET Key 4-19
4.5.3 REPEAT Key » 4-19
4.5.4 START Key o 4-19
4.5.5 CONTINUE Key 4-20
4.5.6 EXAMINE, DEPOSIT, and EXECUTE Keys 4-20
4.5.7 READ IN Key 4-20
4.6 KA10 Memory Control 4-20
4.6.1 Memory Subroutine 4-20
4.6.2 Read Cycles 4-21
4.6.3 Write Cycles 4-Zé
4.6.4 Read/Write Cycles ' 4-22
4.6.5 Memory Indicator Register 4-23
4.6.6 Address Stop or Break . 4-23
4.6.7 Input/Output System 4-23
4.6.8 I/O Instructions 4-24
4,7 KAIO Priority Interrupt System 4-24
4.7.1 User Mode Logic A) 425
CHAPTER 5 BASIC /O DEVICES
5.1 Paper Tape Reader ' B _ 5-1
5.2 Paper Tape Punch - 521

53 Teleprinter Control 5.2

vi

CONTENTS (Cont)

CHAPTER 6 KAIO TROUBLE SHOOTING AND MAINTENANCE

.\l .0~ N AW N

.
—

R N N T U S R

Troubleshooting

Test Equipment
Processor Test Programs
Description
Recognizing an Error

Tybiccl Diagnostie Check

Troubleshooting with Test Programs A through C

Troubleshooting with Diagnostic D

~ Troubleshooting with Test Programs E through M and P

Tfoubleshoofing with Test Program N
Margin Check System
Considerations for Running Margins
Using the Margin Switches
Altered Progrcms
Troubleshooting Read In (RDI)
No Data Read In

Wrong Data Read In ‘
Delay Checks and Adjustments
SCT3 Delay

SCT2 Delay

FDTI Delay

DSTI1 Delay

MC RQ SET Delay

MR PWR CLR ENB

MC NON EX MEM Delay

IOT T2 and IOT RESTART Delays
IOT T4 and IOT RESET Delays
KEY REPT DLY |

PTP SCR DRIVER

Indicator Checks

MEMORY DATA, MEMORY ADDRESS, and MEMORY INDICATOR Lamps

PC, IR, AC, I and INDEX Indicators
AR, BR, ADDER and PB Indicators

vii

Page

6~1

6-7
6-9
6-9
6-10
6-10
6-12
6-12
6-13
6-14
6-14
6-14
6-14
6-14
6-14
6-14
6-15
6-15
6-15
6-15
6-15
6-15
5-15
6-15
6-16

CONTENTS (Cont)

6.7.4 MQ, SC, and SCAD Indicators -
6.8 Switch Checks

6.8.1 SHIFT CNTR MAINT Switch
6.8.2 FM ENB Switch

6.8.3 REPT BYP Switch

6.8.4 MI PROG DIS Switch

6.8.5 READ IN DEVICE Switches
6.8.6 Address Condition Switches

APPENDIX A FLOW DIAGRAM AND SCHEMATIC INTERPRETATIONS

.
—

> > > > » P> > >

N et

T Y R TR O

Symbofogy
Lines

Pulses

Delays
Conditions
Operations
Tabular Format

Logic Symbology

APPENDIX B INSTRUCTION CODE
APPENDIX C INSTRUCTION WORD FORMATS
APPENDIX D DEVICE MNEMONICS

1-1
1-2
2-1
2-2

TABLES

Central Processor Options

Peripherals Furnished with Central Processor

Reserved Memory Locations

Remaining Bits

Function of Console Switches

Function of Console Indicators

Function of Margin Check and Maintenance Panel Controls
List of Maintenance Supplies

Processor Diagnostic Programs

CP Flags Versus Qutput Word Bits

viii

Page
6-16
6-16
6-16
6-16
6-16
6-16
6-17
6-17

A-1
A-1
A-l
A-2
A-2
A-2
A-3
A-3

B-1
C-1
D-1

-1
1-1
29
2-10
3-1
34
3-5
6-1
6-2
6-7

6-4A
6-4B
6-4C

2-1
2-2 .
2-3
2-4
2-5
2-6
2-7
2-8
2-9

A=2
A-3
A-4
A-5
A-6

TABLES (Cont)

Margin Check Specifications
Margin Check Specifications
Margin Check Specifications for Bay 3

ILLUSTRATIONS

PDP-10 General Purpose Computer
PDP-10 System Diagram

Memory System

Memory Bus

Multiplexor Bus

Input/Qutput Bus

Priority Interrupt System, Functional Diog@m
Basic Instruction Word

1/O Instruction Word

Effective Address Calculation
KAI0 Operator's Console

Margin Check and Maintenance Panel

~ Indicator Panels, Bays Tand 2

Paper Tape Reader/Punch

DECtape

Teletype Model 35 KSR

Teletype Model 37 KSR

READ IN DEVICE Switch

Diagnostic A, Typical Page of Program Listing
Test Program N, Error Printout ’
Margin Check System, Simplified Diagram
Tabular Format

Inverter

Flip-Flop

NAND and NOR Gates

Pulse Amplifier

Delay Line and Delay Line Qutput

Pege
6-11
6-12
6-12

- 2-1

2-4
2-4
2-5
2-5
2-7
2-10
2-11
2-11
3-1
3-5
3-7
3-7
3-8
3-8
3-9
3-10
6-5
6-8
6-10
A-3
A-4

A4

A-5
A-5
A-5

This publication is one of a series covering the oper-
ation, theory, and maintenance of the Programmed
Data Processor PDP-10, manufactured by Digital
Equipment Corporation, Maynard, Massachusetts.

Because the PDP-10 System may take various forms,
depending upon the options chosen, there is no single
maintenance manual for the entire system.

This manual covers the KA10 Central Processor of the
PDP-10 System. References to other manuals in the
series are made when necessary, and duplication of
content is avoided when possible.

INTRODUCTION

Volume 1 of this manual contains the operating instruc-
tions, principles of operation, and maintenance instruc~
tions for the KA10 Central Processor. Volume II con-
tains a set of engineering drawings, flow diagrams,
logic diagrams, and other reference material, all of

which supplements the text of this volume.

This manual assumes that the reader is familiar with the
PDP-10 System as described in the PDP-10 System Ref-
erence Manual (DEC-10-HGAC-D); therefore, it does
not cover the fyndamentals of data processing systems’
or what system instructions are but, rather, how they
are implemented by the system hardware.

CHAPTER 1
GENERAL INFORMATION

The PDP-10 is a general purpose computer system
consisting, typically, of a KA 10 Central Processor
(Figure 1-1), a memory, and peripheral equipment
such as: a paper~tape reader and punch, teletype-
writer, card reader, line printer, DECtape, disk file,
and display. The KAIQ Central Processor is the pri-
mary control unit for the PDP-10 System. The pro-
cessor handles 36~bit words, which are stored in a
memory, with a maximum capacity of 262, 144 words.

1.1 DESCRIPTION

1.1.1 Physical Description

The central processor occupies three 31-in. DEC
cabinets. Bay 3 (on the right) includes the paper-
tape reader and punch and the operator's console.

Two TUS55 DECtape units may also be located in Bay 3.
At the left of the reader and punch is the margin check
and maintenance panel, which serves as the master
control for system margin checks and as the control
panel for performing maintenance checks on the cen-
tral processor.

Logic wiring is accessible behind the hinged front
doors of the cabinets. As many as 16 module panels,
designated A through T (G, I, O, Q omitted), from
top to bottom, can be mounted. Panels in the 31-in.
cabinets hold 44 DEC FLIP CHIP plug-in modules
(numbered from left to right, front view), while those
in the 19-in. cabinets hold a maximum of 32. Local
margin check switches are located beside each module
panel. Power supplies are bolted to a hinged frame
on the inside of the rear door. Fans or blowers within
the cabinets provide the necessary heat removal.

1.1.2 System Configurations

The PDP-10 has an extensive variety of available
peripherals. Standard peripherals, the paper tape
reader and punch, and the console teleprinter are
provided upon request of the user. Table 1-1 lists the
hardware options packaged in the central processor.
Table 1-2 lists the standard peripherals furnished with
the central processor.

Although there are five basic PDP-10 systems
(PDP-10/10 through PDP-10/50), the flexibility af-
forded by nardware/software interaction and the
variety of optional devices precludes identifying
standard equipment configurations.

Table 1-1
Central Processor Options
Designation Option
KE10 Extended Order Code
KT10 Memory Protection and Relocation
or
KT10A Double Memory Profection and Re-
location
KM10 Fast Registers

Table 1-2
Peripherals Furnished with Central Processor

Mode! Name

KSR35 (LT35A) Teleprinter

or {10 characters/second)

KSR37 (LT37A) Teleprinter

{15 characters/second)

Paper Tape Reader
DEC Type PCO9 (300 character/second)
{Modified)
Paper Tape Punch

(50 characters/second)

" 1.2 CHARACTERISTICS

A THe opel%cfing characteristics of the PDP-10 are as

1-1

follows:

Word length: * 36 bits '
Core Memory Capacity: Expandable to 262, 144 words
Accumulators: 16

Index Registers: 15

1/0 Capacity:

7 priority interrupt channels;
128 1/O device assignments

1.3 INSTALLATION

The PDP~10 System incorporating the KA10 Central
Processor is installed by DEC field service personnel;
therefore, installation procedures are not covered in
this manual. The PDP~10 Site Preparation Guide can
be used to plan the installation site. Installation pro-
cedures for the various system options are provided in
the respective maintenance manuals.

1.4 RELATED DOCUMENTS

The following documents either supplement the infor-
mation contained in this manual or are prerequisite to
understanding the material presented.

Document Title
DEC-10-HGAC-D PDP-10 System Reference
Manuadl
DEC-10-HIFB-D PDP-10 Interface Manual
DEC-10-HIGA-D MA10 Core Memory

Maintenance Manual

DEC-10-BIBA-D MB10 Core Memory
Maintenance Manual

Figure 1-1 PDP-10 General Purpose Computer

Document

DEC-00-HZTA-D
DEC-08-12BA~D
DEC-9/L-H2AA-D
Royal McBee Corp

Bulletin 2818
(Teletype Corp)

Bulletin 333
(Teletype Corp)

Bulletin
(Teletype Corp)

Bulletin
(Teletype Corp)

Bulletin 2738
(Teletype Corp)

Bulletin 11848
(Teletype Corp)

C1-2

Title

TU55 DECtape 55 Instruction
Manual

PCO2 Paper-Tape Reader
Instruction Manual

PCO9C High Speed Paper Tape
Instruction Manual

Model 500 Paper Tape Punch
Maintenance Manual

KSR35 Teletype Technical
Manual ’

KSR35 Teletype Parts Manual
KSR37 Teletype Technical
Manual

KSR37 Teletype Parts Manual
KSR33 Teletype Technical
Manual (Volume 1 and II)

KSR33 Teletype Parts Manual

CHAPTER 2
SYSTEM DESCRIPTION

This manual is primarily concemed with the KA10
Central Processor. However, a description of basic
system operation is provided so that the reader can
more clearly see how the KA10 operation relates to
the system.

The major components of any PDP-10 System are the
arithmetic processor, core memory, and input/output
(1/0) subsystems. A functional configuration of
system elements, representing a typical basic installa-
tion, is presented in Figure 2-1.

As the name implies, the arithmetic processor per-
forms system arithmetic and logical data manipula-
tions. It connects to the memory and 1/O subsystems
through buses. Standard 1/0O devices fumished with

the processor are the paper tape reader/punch and
the console teleprinter. Optional processor hardware
comprises the memory protection and relocation, ex~-
tended order code, and fast memory options.

The core memory is the basic memory element. It is
accessed directly by the processor, and can be ac-
cessed via a data channel by high-speed devices such
as disk files. It is made up of separate modules, but
appears to the processor as one homogeneous unit.
Memory functions include recognizing addresses,
reading and writing data, and putting appropriate
control information and data on the bus for the pro-
cessor. Once a memory module has received its com-
mands, it performs these functions independent of the

MEMORY BUS KA1O CENTRAL PROCESSOR 1/0 BUS 010 W ToB
INCLUDES . DECTAPE |— TUSS5 DECTAPE
MEMORY TELEPRINTER CONTROL TRANSPORTS
MOOULE PAPER TAPE READER
PAPER TAPE PUNCH
KESO EXTENDED ORDER
coog p‘"% uP TO 8 'r\‘.ézpcE
KMIO FAST MEMORY AP [~ OR TU30 T
(OPTIONAL) CONTROL TRANSPORTS
I KT104 gg#omsmonv pg&»
—1 T N AND RELOCA- —
MEMORY TION (OPTIONAL) A0 | camo ronsem
MODULE
UP TO 8 HIGH-SPEED 1/0 DEVICES Monran, | LINE PRINTER
— X-Y PLOTTER
OF 16 l RC10 CONTROL
SYNCHRONIZER
A
DATA CHANNEL ADAPTER DM‘?:’SNE {up 70 64 TTY
I~ } OR DATA DEVICES
| [] SCANNER
MEMORY UP TO 4 RD!O DISC
MODULE FILES OR RM10B
ORUM FILES CRT DISPLAY
/P10 346/3408,
DF 10 DISC PACK CONTROL VR30 OR VP10
DATA CHANNEL CONTROLLER
DAIO
MEMORY UP TO 8 RPOt OR
MODULE RPO2 DIBSC PACK POP-B/9 b— PDP-8,PDP-9,0R DCEBA
DRIVES INTERFACE
UP TO 16 MEM-
ORY MODULES, | MX10 TO ADDITIONAL
PROVIDING MAXI- | —1—¢ MEMORY up TO 8 DF10 1/0 DEVICES
MUM 262,144 [{OATA CHANNELS
WORDS OF CORE MULTIPLEXOR -
STORAGE
ADIO ANALOG
y TO DIGITAL
MEMORY oF10 ™I08 CONTROL CONVERTER
MODULE DATA CHANNEL TAPE CONTROL
0% 10
' REAL TIME
UP TO 8 TU20 OR cLOCK
TU30 TAPE TRANS-

PORTS

10-0838

‘ Figure 2-1 PDP-10 System Diagram

2-1

processor and of other modules. A number of different
types of core memories are available for the PDP-10
System, and the details of operation, maintenance,
and theory of each can be found in the appropriate
manual.

2.1 ARITHMETIC PROCESSOR

The arithmetic processor performs all arithmetic and
logical operations, controls all transfer of data to
and from the input/output devices, and makes service
requests to memory. It operates asynchronously using
hardware subroutines, whereby the start of each oper~-
ation is triggered by the completion of the previous
operation rather than by a trigger from a synchronous
timing chain.

Registers in the arithmetic processor differ consider-
ably in size. Generally, data registers contain 36
bits; address registers, 18 bits; floating=point expo-
nent registers, 9 bits; memory protection and reloca-
tion registers, 8 bits; and registers of the priority
interrupt system, 7 bits.

The processor has 16 general-purpose registers that
are implemented as the first 16 core memory locations
or high-speed integrated circuit registers (fast memory
option). In either configuration, the general-purpose
registers may be used as accumulators, index registers,
and/or normal memory locations. This functional
interchange ability offers a number of advantages.
For example, the contents of one register can be
transferred to another with a single instruction by ad-
dressing one register as a memory location and the
other as an accumulator.

When the general-purpose registers are to function as
memory locations, the address is carried in the stan-
dard memory address field (bits 18 through 35) of the
instruction word. When used as accumulators, they
are addressed in the accumulator portion (bits 9
through 12) of the instruction word. When several
operations are required in a computation, a number of
consecutive operations can be performed and their re-
sults stored in the different accumulators. The con-
tents of the accumulators, each representing a partial
result, can then be combined quickly for the final
answer to the computation.

When used as index registers, the general~purpose
registers are addressed by the index field (bits 14-17)
of the instruction word. The contents of the addressed
register are added to the memory address portion of
the instruction word before the operation specified in

2-2

the instruction word is carried out. Only 15 of the

16 general-purpose registers (addresses 1g through 17g)
can be used for indexing purposes. When a 0 appears
in the index field, no indexing occurs. :

In systems employing the fast memory option, 16 high-
speed integrated circuit registers replace the first 16
core memory locations and are so addressed. When
the option is included, the replaced core locations
are not program-accessible. Instruction-operating
times can be reduced by executing iterative program
loops from consecutive fast memory locations.

Time~sharing systems employ optional memory protec-
tion and relocation hardware, which includes four
8-bit registers. Basically, this equipment stores con-
stants used by the processor to prevent one program
from infringing upon areas of memory assigned to an-
other. The relocation hardware automatically re-
assigns user programs to available memory locations,
rather than allowing them to be stored in the loca-
tions for which they are written. (Essentially all user
programs are written to run from memory address
00000.) Consequently, a program written for loca-
tions 0 through 37773, for example, may be relocated
to run from locations 12000g through 15777g, or any
other block of 4000g contiguous locations starting at an
integral multiple of 2000g. The protection hardware
inhibits a user program from calling a memory location
that exceeds the total number of assigned locations.
These concepts of protection and relocation are dis-
cussed further in Paragraph 2.5, Programming.

The standard processor contains 366 wired instructions
which include the optional extended-order code
hardware for implementing byte and floating-point
instructions. The optional hardware provides 35
floating~point and 5 byte instructions. Floating-point
logic contains complete arithmetic capability, in-
cluding two instructions for double precision calcula-
tions {that is, calculations involving numbers larger
than 36 bits) and two for simplifying the conversion
from fixed to floating point. Byte instructions operate
on bytes of any size. Systems without the extended-
order code option use programmed simulators of the
byte and floating-point instructions to exactly simu-
late the unimplemented instructions.

2.2 MEMORY

Standard PDP-10 memory systems (Figure 2-2) are
fabricated from 8K (8,192 words) or 16K (16,384
words) memory modules. The modules of a memory
system connect to the associated central processor

(or other high-speed device) through a common memory
bus. As many aos sixteen 16K modules (262,144 mem-
ory locations) can be grouped into a single memory
system,

Access to all storage locations in a module is avail -
able through each of four ports. A module can con-
nect to, and constitute a part of, as many as four
separate memory systems through these ports. Each
system, of course, has a separate memory bus; how-
ever, the use of a memory bus and its associated mem-~
ory system can be apportioned between as many as
eight high-speed devices by the optional multiplexor
equipment. '

2.2.1 Memory Bus

The memory bus connects the central processor in par-
allel with each memory module on 72 lines (37 bidir-
ectional, 3 memory-to-processor, and 32 processor-
to-memory). Although a particular memory module

may not use every bus line, all lines are strapped
across the module interface and are available to sub-
sequent modules on the bus. Module interfaces have
two sets of bus connectors; one receives incoming lines,
the other accommodates outgoing lines.

Twenty-eight of the memory bus lines carry address
selection data. Eight of them carry the 1 and O states
of the four most significant address bits. These lines
enfer the modules through local switches that are con-
figured to assign a different address to each module.

A module responds only to bus inputs that include its
address. The remaining address bits specify one storage
location in the selected module.

In addition to being used to select a memory location,
the least significant address bit (both the 1 and 0
states) is applied to the memory modules through local
switches which can be used to assign all odd and all
even addresses to alternate modules in a memory net-
work. Such an arrangement allows the processor to
interleave memory cycles between alternate modules,
thus reducing processor idle time, which results from
waiting for a module to complete one cycle before
requesting another cycle. In general, interleaving is
possible over an entire memory network made up of an
even number of modules. If a network has an odd
number of modules, the last module cannot participate
in the interleave scheme.

2.2.2 Memory Priority

Because a module may constitute a portion of as many
as four discrete memory systems (Figure 2-2), every

2-3

module has a priority network that grants access
through only one of its ports at a time. Ports with the
first and second priorities are always serviced in thot
order. The third- and fourth-priority ports are serviced
in order also, except when they simultaneously request
memory access. In this case, access is granted to the
port (third and fourth) least recently serviced (as-
suming neither the first- or second-pricrity ports are’
requesting access).

When a port gains access to a memory module, the
processor or other high-speed device on the memory
bus dictates the type of cycle the module undergoes.
After one cycle, the port loses its access rights and
the priority scheme is re-examined fo determine
which memory system is granted the following memory
cycle.

2.2.3 Memory Cycles

The three basic memory cycles are: read, write, and
read-modify-write. The read cycle reads a word into
the processor, then rewrites it into the original mem-
ory location. A write cycle clears the specified
memory location, then writes data from the processor
into that location. A recd-modify-write cycle reads
a memory word into the processor, pauses while the
processor uses the word, then stores the result of the
processing in the original memory location.

The processor is connected to memory only when ne-
cessary during a memory cycle. During a read cycle,
for example, the processor is connected only long
enough to access the memory word. It is then free to
continue operations or access a location in a second
memory module, while the first module restores the
data to its original location. This facility for over-
lapping memory cycles, or overlapping a memory
cycle with computation, contributes to overall access
times shorter than the period of one memory cycle.

2.2.3.1 Read Cycle - When the processor wants to
read data from memory, it places the address on the
memory bus (Figure 2-3), and brings up the memory
cycle request (REQ CYC) and read request (RD RQ)
lines, If the addressed module is not already in use,
and if a request is not being made through a higher-
priority port, the module reads the oddress into its
input buffer and acknowledges the request with an ad-
dress acknowledge (ADR ACK) pulse. It then fetches
the requested data and stores it in its da‘fc buffer.

ADDRESSES

COMMANDS

XA-10
CENTRAL
PROCESSOR

DATA
AND PARITY

RESTART

NOTE

MEMORY MODULES CAN BE

MEMORY MA 10 ~ 8,192 WORDS, 1.00ps

MODULE MA 104 - 16,384 WORDS, 1 OO ps
. MB 108 - 16,384 WORDS, 1.65 ps
1
t
! Pron !
TO A TOTAL OF T
262,144 WORDS|

oy

MODULE
N

10-0013

Figure 2-2 Memory System

The data is also sent down the bus, and the module
sends a read restart (RD RS) pulse to the processor.
Having performed the required functions, the module
disconnects itself from the bus and restores the data in
its data buffer to the original memory location.

2.2.3.2 Write Cycle - To initiate a write cycle, the
processor places an address on the memory bus

(Figure 2-3) and brings up the REQ CYC and write re-
quest (WR RQ) lines. If the addressed module is not
busy, it responds with an ADR ACK signal and reads
the address into its buffer register. It then clears the
addressed location, during which time the processor
loads the data into the buffer register of the module.
Upon receipt of the data, the module disconnects it-
self from the bus and initiates the writing of the data
into the addressed location,

2.2.3.3 Read-Modify-Write Cycle - The processor
initiates a read-modify-write cycle (Figure 2-3) by
sending the address REQ CYC and both RD RQ and
WR RQ. If not otherwise employed, the memory mod-
ule performs a normal read cycle. Instead of discon-
necting ifself from the bus and restoring the data in
the buffer register to its original location, the module
clears its buffer register and waits. When ready, the
processor sends new data to the module and restarts
memory action with a write restart (WR RS) pulse.
After receiving WR RS, the module disconnects from
the bus and writes the new data into the location from
which it read the old data.

2-4

2.2.4 Parity

Standard PDP-10 memory modules have 37 bits per
word, with one bit providing parity storage. They do
not have parity-inserting or checking circuits; odd
parity is inserted by the processor when writing, and
is checked by the processor when reading.

REQ CYC {1

RO AQ, WR RQ (21

MADR 18- 21, 35; MODULE SELECT LINES (10)

ADR ACK ()

IGN PARITY (1)

MEMORY
MODULE

CENTRAL
PROCESSOR

RO RS (1)

WR RS {1}

MADR2%-35, ADDRESS LINES (18]

DATA AND PARITY [37)

* GROUND

* —13v TURN ON

'“5\/ TURN ON

*NOT PRAT OF MEMORY BUS

10-0007

Figure 2-3 Memory Bus

Nonstandard memory modules without provisions for
parity storage, or standard modules which, for some
regson, want to inhibit the parity check function of
the processor, must accompany their ADR ACK pulses
with the IGN PARITY (ignore parity) signal.

2.2.5 Multiplexor

Devices accessing memory through a multiplexor share
a common data bus. The multiplexor assigns use of

the data bus to one device ot a time on a priority

basis.

When a device requires memory access, it raises its
REQn signal (Figure 2-4). If the multiplexor is not
being used, and if a similar signal is not being sent
by a higher-priority device, the multiplexor returns
an ACKn signal. The acknowledged device now has
control of the multiplexor bus, and proceeds to com-
municate directly with memory through the associated
memory bus.

When the device places a request on the memory bus,
the multiplexor enters a mode in which it waits for
memory to respond. If the request addresses a non-
existent memory location, the multiplexor can wait

indefinitely for a response. To prevent such a condi-
tion, the transmitting device can relinquish control
of the multiplexor by generating an MPX CLR (multi-
plexor clear) signal if memory does not respond with-
in approximately 100 ps.

MPX CLR (1)
2
HIGH- SPEED REQ o TO/FROM MEMORY
Oevice acx, (1) MULTIPLEXER sus
DATA PARITY, DATA CONTROL (72}
JT
[— -
)
i
'
)
t
v
10 ADDITIONAL
MIGH ~ SPEED 0-0006

DEVICES

Figure 2-4 Multiplexor Bus

2.3 INPUT/OQUTPUT

Various 1/0 techniques can be employed in a PDP-10
System. Some approaches generally considered stqn-
dard, are discussed in the following sections.

2.3.1. 1/O Bus and Control Device 7

The bidirectional 1/0 bus (Figure 2-5), comprising
72 separate lines, connects in parallel the arithmetic
processor and all I/O devices. Thirty-six of the
lines carry data and status information: 14 carry ad-
dresses for selecting specific devices; the remainder
carry control-type signals. Although a particular de-
vice may not use every bus line, all lines must be
strapped across its interface and be made available to
subsequent devices on the bus. Device interfaces
have two sets of bus connectors: one for incoming
lines; the other for outgoing lines.

To provide the isolation necessitated by the parallel!
nature of the bus, each device is equipped, within a
control section, with a selection gate capable of de-
coding a unique 7-bit number. This decoder causes

an /O device to respond only to bus data that includes
the device number assigned to the device,

In addition to the selection gate, 1/O control devices
contain data registers, control registers, and status

registers. The data registers vary in size from 1 to 34
bits. Those with less than 36 bits usually connected to
the low-order data bus lines; that is, data enters and
leaves the processor in the low-order bit positions.

Control registers vary in size up to 18 bits; status reg-
isters vary in size up to 36 bits. The processor is able
to specify the function the device is to perform by
loading conditions into the control register. It can '
determine the current state of a device by requesting
that the contents of the status register be placed on
the data bus lines.

- 80 - 108 35; 36 TWO-WAY DATA LINES
101 35; 3

10S 3 -10S 914 DEVICE SELECTION LINES

CONO COMMAND SIGNALS; 2 LINES

DATAO COMMAND SIGNALS; 2 LINES

CONI COMMAND SIGNAL; | LINE

DATAI COMMAND SIGNAL ; { LINE

8 P11-P17. 7 PROGRAM INTERRUPT LINES
101

108 RDI PULSE: t READ - IN COMMAND LINE 1/
CENTRAL DEVIOCE

PROCESSOR 108 ROI DATA. ! READ -IN CONTROL LINE

PDP-10

108 DR SPLIT; 1 DRUM SPLIT LINE
0 S

108 RESET: 1 CLEAR PULSE LINE

*
GROUND

*
=15V TURN-ON

*115vac TURN-ON

»
NOT PART OF 170 BUS

0-0012

Figure 2-5 Input/Qutput Bus

2.3.2 1/0 Transfers

The processor makes only four demands of 1/0 devices:
take initial conditions from the datq lines, place status
bits on the data lines, place data on the data lines,
and take data from the data lines. For this purpose it
uses four basic /O instructions:

Transmits the control word to
the device control register to .
specify the desired operation,

a. Conditions

Out (CONO)

b. Conditions Transmits the contents of the de-

In (CONI) vice control and/or status reg-
ister to the processor.
c. Data Out Transmits processor data to the
(DATAQ) device data register.
d. Data In Transmits the contents of the de-
(DATAI) vice data register to the processor.

2.3.3 Basic Input Transfers

This discussion assumes a system that is not using the
priority interrupt system and that is not time-shared.

When the processor requires data from a device, it
places the device number on the device selection
lines (Figure 2-5), places the control word on the
data lines, and sends two CONO pulses. The first
pulse prepares the device to receive the control word;
the second pulse commands the device to read the 18-
bit control word from the data bus. Typically, the
control word starts the device and/or defines the type
of 1/O transaction to take place.

After issuing the CONO commands, the processor pro-
ceeds with other tasks until it is ready to take data
from the initialized device. At this time, the pro-
cessor sends a CONI and the device responds by
sending a status message across the data bus. If the
status message received indicates that the /O device
has data ready, the processor sends a DATAI pulse.
DATAI reads the data into the processor over the data
bus and initializes the device to send another word.
The processor reads successive words of a message by
repeating the CONI/DATAI sequence. Of course,
the device number must accompany every command
to the device.

The processor recognizes the end of a transfer as a
result of the program or receipt of an end-of-file sta-
tus from the input device. When a transfer is com-
plete, the processor deactivates the device with

CONO signals.

2.3.4 Basic Output Transfers

As with the basic input transfers, this discussion as-
sumes a system that does not use the priority interrupt
system and is not time~shared.

Output transfers in a basic system (Figure 2-5) are
similar to input transfers. They begin with CONO
pulses that perform device-initializing functions.

When the processor wants to send data, it senses the
readiness of the device witha CONI. If the status
message returnedby the device indicates that the device
is ready, the processor can transfer data with DATAQ
commands. Successive word transfers are accomplish-
ed by repeated CONI/DATAO cycles. When an

entire message has been transferred, the processor

turns off the device by issuing a CONO instruction.

2-6

2.3.5 Priority Interrupt in a Time~Shared System

The most efficient use of processor time is made by
employing the interrupt system. Using this system,
the processor initializes an 1/O device and returns to
other data manipulations until the device sends an
interrupt signal indicating its readiness.

Initially, the processor assigns an I/O device to one
of the seven priority interrupt lines by issuing a
CONO command containing the channel number in
the three low-order bits of the control word. The
control word, in addition to specifying the priority
channel assignment, typically activates the device
and defines the type of 1/O transfer.to take place.
The processor also must turn on the PI (priority inter-
rupt) system, enable the appropriate PI channel, and
be able to call the program subroutines required to
service the device. With the initializing tasks com-
plete, the processor is free to perform other pro-
grammed operations.

When the device is ready to participate in the speci-
fied transfer, it interrupts the processor by grounding
the assigned priority interrupt lines. To determine
which device is requesting the interrupt, the proces-
sor repeatedly issues CONI-type instructions to de~
vices assigned to the interrupt channel, placing a
different device number on the device selection lines
each time. As each device is queried, it responds
with a status message. The message from the signal-
ing device contains a set ready flag and flags that de-
fine the particular condition within the interrupting
device. When the processor detects the active ready
flag, it can effect the data transfer with DATAI or
DATAOQO commands. Data transfer clears the inter-
rupt condition in the device. At the end of the /O
transaction, the processor issues CONO signals to
deactivate the 1/O device. As in all 1/O proceed-
ings, the device number must accompany all control
and data outputs from the processor.

2.3.6 Hardware Read-In

The user, by means of the console switches, can initiate
data read-in from an [/O device. This is a function of
processor hardware and of special hardware in each

1/0 device intended for hardware read-in operation.

Initially, the number of the device is entered on the
read-in device switches. When the console READ IN
switch is depressed, the processor generates an 1OB

RESET pulse (Figure 2-5). This pulse halts all motion
in the I/O devices and clears all conditions that ini-

tiate interrupts. The devices remain in this null
condition until reactivated by CONO commands.

Following IOB RESET, the processor sends an 1OB RDI
pulse to the device addressed by the console switches,
and the special device logic forces the device into
the read-in mode. For example, 108 RDI causes the
DECtape to prepare to read data, starting at block 0.

When the device is ready with input data, it brings

up the IOB RDI data line. The processor responds by
reading in the first word and using it to determine the
starting address for storing the data words that follow.

-

2.3.7 Drum Split Signal

The drum split signal (IOB DR SPLIT) is used by high-
speed devices that are controlled by the orocessor and
which access memory through a separaie memory bus.
When active, this line prevents the processor from
making memory read-modify-write requests. Instruc-
tions requiring read-modify -write cycles are performed
instead with separate read and write cycles. Thus,
processor control of memory is limited to one memory
cycle at a time.

A device brings up the IOB DR SPLIT line whenever a
high-speed transfer must be executed to or from mem-
ory. In this manner, the device is prevented from

PI CHANNEL
ENABLE GATE

requesting ifs first memory cycle during a read-modify -
write cycle previously initiated by the processor.

NOTE

The DF 10 system does not use this feature.

The processor itself may also be assigned a channel.
Through this channel, the real time clock and cer- -
tain processor flags are able to interrupt system
operations.

2.4 PRIORITY INTERRUPT SYSTEM

The priority interrupt system permits 1/O devices re-
quiring aftention to interrupt processor operation.

1/0 bus interrupt requests, which correspond to
channels that the program has enabled, are sampled
and stored in flip-flops. The request to be honored is
determined by a priority chain. If requests occur at all
channels simultaneously (see Figure 2-6), PI request 1
is honored first, while PI request 7 is honored last.

When, as a result of an interrupt, the processor
enfers a device service routine, the routine cannot
be interrupted by another device on the same or on
a lower-priority interrupt channel. If an interrupt
occurs on a high-priority channel, however, the
routine in process is interrupted and the processor
enters its service routine for the higher-priority

CHANNEL 1 o] cranneL 1 -
t > GATE ™ fLiP-FLOP
CHANNEL 2 1 cranneL 2 -
™ GATE FLIP-FLOP
CHANNEL 3 CHANNEL 3
— GATE FLIP-FLOP
INTERRUPT FROM
INTERRUPT
CHANNEL 4 CHANNEL 4 | eprioRiITY HIGHEST PRIORITY
ngf:gg“ 4 - GATE FLIP —FLOP NETWORK > CHANNEL CURRENTLY
ENABLED
CHANNEL 5 CHANNEL S
— GATE FL(P-FLOP
CHANNEL 6 . CHANNEL 6
— > GATE FLIP-FLOP
CHANNEL 7 | cHanneL 7
e GATE FLIP-FLOP
CHANNEL 1-7 SYSTEM
ENABLE /DISABLE ENABLE / DISABLE
10- 0009

Figure 2-6

Priority Interrupt System, Functional Diagram

7

channel. When the latter routine is finished, the
processor returns to the place in the lower priority
routine at which the interrupt occurred. For example,
if the processor is performing a routine for a device on
channel 7 and a channel 6 interrupt occurs, the pro-
cessor stops the channe!l 7 routine und proceeds to the
routine for channel 6. If, while performing the
channel 6 routine, it is interrupted by channel 2, the
processor interrupts and proceeds to the channel 2
routine. If no other interrupts occur, the processor
completes the channel 2 routine, finishes the channel
6 routine and, finally, returns to the channel 7 rou-
tine. When all routines are complete, the processor
returns to the instruction it was performing at the time
of the channel 7 interrupt. The act of interrupting
and Backlogging successive interrupts having ascend-
ing priorities is referred to as nesting interrupts.

2.5 PROGRAMMING

One-~user systems operate in a single mode, known as
an executive mode. In such systems, the user's pro-
gram and the monitor program are both able to dictate
all machine activities and maintain continuous control .
(Generally, the user's program calls the monitor pro-
gram to perform 1/O, but this is not a requirement.)
Multi-user systems operate in executive and user
modes. Here, machine control alternates between the
monitor program and various user programs. The ex-
ecutive program dictates overall system operation,
while user programs assume control of the processor to
handle jobs for specified users.

The basic purpose of the monitor program in a multi-
user system is governing user-program access to the
machine to assure most effective machine operation.
One monitor program is capable of handling the ex-
ecutive tasks associated with the most complex PDP-10
System. Portions of this program can be deleted as re-
quired to provide a monitor that is tailored to the
needs of a specific system. Certain portions of the
monitor are rarely deleted, however, as they control
operations that are standard to most systems. A few

of the standard executive tasks are outlined in the
following sections.

2.5.1 Time Allotment (Simplified Description)

To provide all user programs with an equitable share

of machine time, the monitor establishes a time-shar-
ingsequence (referred to as "queues" in programming}.
The monitor grants control of the processor to one user
at a time for a predetermined period (typically, several

2-8

hundred milliseconds). During this time period, the
selected user program executes as many of its instruc-
tions as possible. When the allotted time expires,
the monitor transfers control to another user. The
cycle repeats when all users have been granted one
control period.

If a user program reaches a point where it cannot con-
tinue until it can access a particular 1/O device, the
monitor removes the user from the time-sharing se-
quence. The user is returned to the sequence as soon
as the I/O transfer is complete.

When an interrupt occurs, the monitor halts the user
program in progress, services the ini'e_rr:upf, and re-
turns to the interrupted program. Such a transaction
does not significantly affect the interrupted user's
allotted time in the time=sharing sequence.

Systems without enough core memory to accommodate
simultaneously all of its user programs may expand
their storage capacities with mass storage. In such

a system, the monitor brings programs stored on the
mass sforage device into memory before they are
needed in the time-sharing sequence.

Using a sophisticated algorithm, the monitor swaps
programs, not currently required to be in core, onto
the disk (or drum) and swaps programs waiting to run
into the core. Normally, this swapping takes place at
the same time that some other user's program is running.
When a program is to be run again, it is again swapped
back into core.

2.5.2 Memory Protection and Relocation

Before being loaded, each user program requests a
specific number of core memory locations. As such
requests are made, the monitor assigns blocks of loca~
tions to users, progressing from the lower to the higher
memory addresses. Since all user programs are written
to start at memory location 0, the monitor positions
these programs in various areas of memory by assigning
each one a relocation constant. Memory addresses
referenced by a user program are incremented by the
associated constant and, as a result, the program is
relocated to a specific memory area. Every time the
user program runs, the monitor must fetch the appro-
priate constant. When a program is removed from
memory, the monitor, in some cases, reassigns re-
location constants and repositions the remaining users
so that all unused memory locations exist in the high-
est memory addresses.

To prevent the memory references of one program from
being relocated into another user's area, the monitor
stores the highest location assigned to each user. If
a user program specifies an address (unrelocated) that
exceeds the highest location in its memory area, the
memory cycle is inhibited. As with relocation, the
memory protection operation is performed whenever

a user program addresses memory .

2.5.3 Input/Qutout

User progrdms are not ordinarily allowed to control
1/O devices directly. If this were possible, one user
might try to operate a device already carrying out an
order from another user.

As an clternative, all user requests for 1/O operations
are made by means of UUOs, which cause the machine
to store immediately the requesting instruction in
monitor memory address 40g. The machine then traps
to location 418 from which the monitor accesses its
library of 1/0 subroutines. This library comprises
subroutines for performing all 1/0 operations includ-
ing such tasks as: determining whether or not an 1/OQ
device is available, performing input or output oper-
ations on an available device, and controlling a user-
selected substitute for a device. When the 1/0O task
has been accomplished, the processor returns to the
step in the user program that follows the point from
which the call occurred.

1/0 functions that take place as a result of interrupts
are also handled by the monitor program. A pair of
monitor locations, within addresses 42g - 57g, is as-
signed to each of the seven interrupt lines. When
active, an interrupt line traps to its assigned pair of
locations. From these locations, the monitor accesses
the subroutines that service the active interrupt.
Upon completing the 1/O transaction, the processor
returns to the program step in process at the time of
the interrupt.

Table 2-1 details the memory locations in the central
processor hardware reserved for 1/O and other special
functions.

Table 2-1
Reserved Memory Locations

Location (Octal)* Function

00-17
0

General-purpose registers

Program read-in pointer word

Table 2-1 (Cont)

Reserved Memory Locations

2-9

Location (Octal) Function

20-37 Reserved for expansion or loader

40 Programmed operator storage

41 Programmed operator trap

42-57 Priority interrupt trap

60,61 Byte and floating point trap lo-
cations (if the extended order
code option is not included)

62-77 Reserved for expansion

*Additional locations are reserved by the monitor for
user-specified monitor data,

User mode 10T is a special user mode in which the
user program has direct access to I/O devices. Of
course, since the priority interrupt system operates as
an /O device, an IOT user program can prevent all
interrupts, including the executive time=sharing inter-
rupt. Therefore, user programs requiring the 10T
mode must be assembled and used with great care be-
cause once such a program gains control of the pro-
cessor, it effectively becomes an executive program.

2.5.4 Conditions Storage

Whenever the monitor switches control from one user
to another, or interrupts o user to perform an 1/O
operation, it stores certain machine conditions so that
they can be duplicated upon return to the current user
program. Data stored for use on return includes the
contents of the accumulators, the contents of the pro-
gram counter, certain processor flags indicating pro-
cessor operating conditions, and the protection and
relocation constants. Storage is effected in the first
few locations of the associated user program. It is
restored when the user program is recalled or re-
enfered from an inferrupt.

2.6 INSTRUCTIONS

2.6.1 Instruction Word Formats

There are two types of instruction words: the basic
instruction word that defines processor operations

not involving 1/Q, and the 1/O instruction word that
defines processor operations that involve 1/O oper-
ations. A number from O through é, contained in bits
0 through 2 identifies the word as a basic instruction
(Figure 2-7). In this case, bits O through 8 are the
operation coce and define the specific operation to

be performed. The remaining bits decode as shovmn
in Table 2-2.

Table 2-2
Remaining Bits

Bit Numbers Function

9-12 (AC) Specify 1 of 16 accumulators to be

used in executing the instruction.
13 (D) When this bit is set, the operang is
fetched, not from the location ad-
dressed, but from the address speci-
fied by the data stored at the ad-
dressed memory location.

14-17 (X) If not O, specify the index register
whose contents must be used to alter
the memory address in bits 18 through
35. If 0, indicate no indexing.
18-35 (Y) Indicate an 18-bit quantity, which
may be the operand or the memcry
address in which the operand is stored.

If bits O through 2 contain 7, the word is identified as
an 1/O instruction (Figure 2-8). In this case, bits 3
through 9 specify the address of the 1/O device, and
bits 10 through 12 define the 1/O operation to be
performed. The remaining bits (13 through 35) de-
code as in a basic instruction,

2.6.2 Unimplemented User Operations - UUOs
(formerly called Unused Operators)

Operating codes 040g through 077g cre called pro-
grammed operators or unimplemented user operators

(UUOs) and are employed by user programs to com-
municate with the time-sharing monitor. When an
instruction containing one of these codes appears in
a user program, it is stored immediately in location
40g of the monitor and the machine traps to location
41g. From this location, the monitor calls subrou-
tines to determine the nature of the user's call and
to execute the desired operations.

Some UUOs request 1/O service from the monitor;
others request monitor=stored information such as date
and time of day; still others call special monitor sub-
routines such as those that provide software implemen-
tation of floating~point arithmetic in systems without

‘optional floating-point hardware. In'general, user

programs resort to the use of UUOs to request monitor
intervention for performing tasks they are incapable
of commanding.

Instructions 001 through 037g are also considered
UUO:s and function in the same manner as codes 040g
through 077g. However, they are involved with lo-
cations 40g and 041g (relocated) in the user's own
program rather than in the monitor program. Sub-
routines called from these locations are in the user

program.

2.6.3 Effective Address Calculation

Without exception, all instructions calculate an ef-
fective address, using bits 13 through 35 (Figures 2-7
and 2-8). That is, the memory address, Y is altered
according to the indexing and indirect addressing
operations specified by the X- and I-fieids., The
method of calculation is outlined below.

a. Obtain the number in the address field, Y
(bits 18 through 35). Any of 262,144 loca-
tions can be specified.

b. If the index field, X (bits 14 through 17), is
non-zero, add the contents of the specified in-
dex register to the number obtained in step a. ~

0 8 9 12 13 14 17 18 35
OP CODE Ac e x Y
N J
~ v
INSTRUCTION INDIRECT ! MEMORY ADDRESS
AND MODE ADDRESSING |
ACCUMULATOR INGEX
ADDRESS REGISTER . 10-0010
. ADDRESS

Figure 2-7 Basic Instruction Word

2-10

3 10 12 13 14 17 18 35
s I X Y
A J
~— — A ~ _ ~
1/0 DEVICE INDIRECT MEMORY ADDRESS
INSTRUCTION ADORESS ADORESSING
I/0 INDE X
INSTRUCTION REGISTER 10-0014

c. Obtain the indirect bit I (bit 13). If it is 0,

TYPE ADDRESS

Figure 2-8 1/O Instruction Word

the calculation is done and the result of a. and

" b. is the effective address. If it is 1, go to d.
d. Use the address calculated in a. and b. to ob-

tain a new word from memory, and return to a.

word is encountered with a 0 in bit 13. At that point
the result of a. and b. is taken as the effective ad-
dress for the instruction.

Figure 2-9 shows the flow diagram for this process.

2.6.4 Insfrucﬁpn Classes

It is convenient to consider an instruction as belong-

ing to one of five classes. Four classes (data frans-

mission, arithmetic and logical, executive, and push~
down) are included in the basic instruction format.

The fifth class, 1/O, is specified in the I/0 instruc-
The effective address calculation continues until a tion format.

r

The description of the instruction contained in this
manual is intended to provide a general background

for understanding the operation of the KA10 Central

Processor. A detailed description of each of the 366

instructions from the system programmer's point of
view can be found in the PDP-10 System Reference
FNTER Manual (DEC-10-HGAC-D).

?

Ye+———0 (E} R
X &——— (£} X
le— (e} I

Figure 2-9 Effective Address Calculation

—

10-0008

Each instruction class is composed of numerous instruc-
tions. Those in the data transmission, arithmetic and
logical, and executive classes are grouped into in-
struction types. Specific operations and conditions
concerning the execution of the instruction types are
specified by various modes. The class, type, and
mode are all defined by the instruction bits.

2.6.4.1 Data Transmission ~ Four types of instructions
are in the data transmission class: full word, half
word, byte manipulation, and miscellaneous. For the
most part, they consist of simple data transfers in-
volving core memory and/or 1 or more of the 16
processor accumulators. Full-word instructions
transfer 36-bit words, half-word instructions transfer -
18-bit words, and byte manipulation instructions
transfer any number of contiguous bits in a 36-bit
word. The miscellanecus instructions are exchange
and block transfer. The former exchanges the con-
tents of the effective address with the contents of the
specified accumulator. The latter moves blocks of
words from one contiguous group of addresses to an-
other. Modes associated with this instruction class

define operating details such as the direction of data
transfer, and the form (swapped, negated, set to

magnitude) in which the data is transferred.

2.6.4.2 Arithmetic and Logical - Four types of in-
structions are in the arithmetic and logical class:
fixed-point arithmetic, floating-point arithmetic,
boolean, and shifting. Arithmetic instructions cause
the processor to add, subtract, multiply, or divide.
Fixed-point arithmetic involves whole numbers, and
floating=point arithmetic involves mantissa and ex-
ponents. Both are done in 2's complement binary;
that is, carries from the highest order bit are dropped,
and negative numbers are the 2's complement of the
positive numbers with the same magnitude. The
processor is hard-wired for single-precision arithmetic
but is easily programmed for double precision.

Boolean instructions combine the effective address or
its contents with the specified accumulator on a bit-
by-bit basis. They provide for all 16 possible boolean
functions of two variables.

Shift instructions perform various types of shifts on the
contents of an accumulator or on the combined con-
tents of two consecutively addressed accumulators.

The modes associated with this instruction class spec-
ify operating details such as where to store results and
what to do with remainders from arithmetic calcula-
tions.

2.6.4.3 Executive Instructions - Five types of in-
structions comprise the executive class: memory and
accumulator modification and testing, arlfhmehc
compare, logical compare and modify, jump, and
miscellaneous.

Within the memory and accumulator modification and
testing instructions are two groups: accumulator
jumps and memory skips. The jump instructions test
and/or modify the contents of the accumulator. If the
conditions specified by the mode are met, program
control jumps to the instruction at the effective ad-
dress. Skip instructions test and/or modify the con-
tents of the effective address. If the conditions
specified by the mode are met, the next instruction

is skipped.

Arithmetic compare instructions algebraically compare
the contents of the effective address with the contents
of the accumulator, or vice versa. If the conditions
specified by the mode are met, the next instruction is
skipped. V

Logical compare and modify instructions skip by test-
ing and possibly modifying the bit positions of the
accumulator coresponding to bit positions in the

memory word containing Is. The mode specifies the
conditions under which a skip occurs,

Jump instructions are of two basic types: uncondi-
tional and conditional. Unconditional jumps cause
the processor to take its next instruction from a speci-
fied memory location. Conditional jumps cause the
jump only if certain conditions exist.

Included in the miscellaneous instructions is the exe-
cute instruction which forces the machine fo execute
the instruction located by the effective address,
Essentially, the instruction modes in the executive
class detail the type of modifications and compari-
sons to be performed and the conditions to be tested.

2.6.4.4 Push-down Instructions - Push-down instruc-
tions provide a means of inserting or removing data
from lists that are stored in consecutive memory lo-
cations. They operate in such a manner that the last
data placed on the list is the first removed.

2.6.4.5 I/O Instructions - The eight I/O instruc~
tions are used for transferring data and control infor-
mation to I/O devices and for transferring data and
status information out of 1/O devices.

2.6.5 Instruction Execution

Processor operation is initiated by means of a special
key cycle that supplies timing for events associated
with intervention from the console and provides entry
into the main sequence. When the processor is run-
ning, timing is supplied by the main sequence, which
is repeated for each instruction.

Most instructions are executed by the five cycles that
comprise the main sequence. The five cycles are: in-
struction, address, fetch, execute, and store. Each
main sequence begins when the instruction cycle re-
quests memory access fo retrieve an instruction word.
When it receives the instruction, the processor enters.
the address cycle, wherein it calculcfes the effective
address. If an indirect address is encountered, a new
address word is retrieved from memory, and the cycle
begins again. After repeating the cycle as many times
as necessary to produce the effective address, the pro-
cessor proceeds to the fetch cycle.

In fetch, the processor fetches the operands required
for the actions specified by the instruction. After
fetching the operands, the processor enters the

execute cycle during which it executes whatever
logical, arithmetic, or control functions are necessary
to carry out the instruction. The program counter is
incremented during the execute cycle. Incrementing
the counter by one causes it to point to the next in-
struction in the sequence.

Finally, the processor enters the store cycle. For
most instructions, the store cycle places the results of
the execution cycle in an accumulator, in memory,

or in both. The processor then retums to the start of
another instruction cycle. During the instruction
cycle of the new sequence, the incremented program
counter is used to obtain the next consecutive instruc—-
tion in the program.

The main sequence uses a hierarchy of other sequences
(built-in hardware subroutines) for performing the
operations within its five cycles. These subsequences
are called directly by the main sequence or by any
subsequence of higher rank within the hierarchy.
Thus, the processor operates, using many levels of
nested sequences; each sequence stops upon calling

a lower rank sequence and restarts upon return from

it (although the restart need not be at the point of
departure).

Most processor control functions involved in the re-
trieval and setup of instructions and the retrieval and
storage of operands take a negligible amount of time
when compared to memory access time. For each
memory access the processor must first check for mem-

ory protection and relocation and then wait until the
addressed memory is free. Approximate instruction
execution fimes may be determined from the flow
charts included in Volume II of this manual.

The more complicated instructions are performed by
special sequences that are entered from the execute
cycle and usually return to the store cycle. Some-
times a special sequence handles the storage itself
and returns directly to the instruction cycle. Other
instructions must first fetch and operate on a pointer
that provides information necessary for the retrieval
of the true operand; such instructions require, in
effect, two main sequences.

A block transfer repeats the fetch and execute cycles
once for every word in the block. Whenever the exe~
cute cycle occurs more than once for a single instruc~
tion, program counter incrementation is inhibited in
all but the final repetition. In this way the counter
points to the next instruction only when the current
one can be completed before an interruption can
occur.

Because instructions are executed by nests of se~
quences, performance times vary from one instruction
to another. For example, multiplication and division
are performed by a series of edditions and subtrac-
tions. The time required for such major sequences
depends upon the number of times the various sub-
sequences must be called.

CHAPTER 3
OPERATING PROCEDURES

This chapter describes the operating controls and in-
dicators of the KAI0 Central Processor. Included in

it are: operating procedures for the arithmetic pro-
cessor, paper tape reader/punch and teleprinter, and
some operator maintenance instructions. Detailed op-
erating instructions for maintenance purposes are pro-
vided in Chapter 6 of this volume,

3.1 OPERATOR'S CONSOLE

The KA10 console (Figure 3-1) has 36 data switches,
18 memory address (MA) switches, and 20 control
switches. Of the 20 control switches, 10 are momen-
tary contact switches and 10 are latching switches.

The ten momentary contact switches are: READIN,
START, CONT (continue), STOP, RESET, XCT (exe-
cute), EXAMINE THIS, EXAMINE NEXT, DEPOSIT
THIS, and DEPOSIT NEXT.

When depressed, these switches (except STOP) gen-
erate some or all of the pulses (KTO through KT4) in

the key cycle that initialize processor operation.

Each of these switches sets the corresponding flip-flop
that is used to gate functions required for the operations
associcted with the switch. The flip-flops are cleared
af the end of the key function unless a repeat action is
dictated by the REPT (repeat) switch. Simultaneously
depressing two momentary contact switches may result
in erroneous processor operations.

The latching switches are: SING INST (single in-
struction), SING CYCLE (single cycle), PAR STOP
(parity stop), NXM STOP (nonexistent memory stop),
INST FETCH (instruction fetch), DATA FETCH,
WRITE, ADR STOP (address stop), and ADR BREAK
(address break). When a latching switch is operated,
its function remains active until the switch is dis-
engaged.

STOP, RESET, XCT, EXAMINE THIS, and DEPOSIT
THIS are effective when the processor is running (under
program control) or stopped. All other switches, ex-
cept for REPT, are effective only when the machine

is stopped. The REPT switch is effective while the
machine is running and used in conjunction with
EXAMINE THIS, DEPOSIT THIS, or XCT. When used
with any of the other switches, REPT is effective only
when the machine is stopped.

Tables 3-1 and 3-2 list and describe the function of
each of the console switches and indicators, respec-
tively.

Table 3-1
Function of Console Switches
Switch Function
READ IN Clears processor and I/O devices.

Initiates the reading-in of data from
the 1/O device specified by the READ
IN DEVICE switches {margin check
and maintenance panel). When the

/l,l'v'v’rvl",’,,l'y("y{;‘}y

i
R T GRG CEI o CRE ¢ SR § Tl

COGH 5 ORGSR vy

Figure 3~1 KAT0 Operator's Console

3-1

Table 3-1 (Cont)

Function of Console Switches

Switch Function
READ IN read in is complete, the processor
(Cont) begins operation by executing the

last word read in from the device.

NOTE

Do not depress another function
switch while a readin is in progress.
If a read-in operation must be inter-
rupted (e.g., due to a crumpled
tape), clear the read-in condition,
using the RESET switch, before pro-
ceeding to another function.

START Starts program execution at the loca-
tion specified by the MA switches.
Processor and /O states are not clear-
ed. Memory relocation and protection
may or may not occur, depending on
the current state (user or executive
mode) of the machine.

CONT Causes program execution to resume
from stops caused by any of the follow-
ing: SING INST, SING CYCLE,
NXM STOP, PAR STOP, STOP, ADR
STOP, RESET, SHIFT CNTR MAINT,
or stops initiated by the program,

STOP Halts machine operations by clearing
the RUN flip-flop and aborting any
unending indirect address calculation.
STOP cannot be repeated.

RESET Same as STOP except that it clears
processor and 1/O devices.

XCT Causes the contents of the data
switches to be executed as an instruc-
tion. Priority interrupts are inhibited
during this instruction to be sure that
it runs to completion. The XCT switch
may be used while the machine is run-
ning. However, if the machine is in
the user mode, relocation and protec-
tion is in effect, and attempted 1/0
instructions may be trapped.

EXAMINE
THIS

EXAMINE
NEXT

DEPOSIT
THIS

DEPOSIT
NEXT

SING INST

Causes the memory indicators (MI) to
display the contents of the word whose
address is in the MA switches. MEM-
ORY DATA illuminates above the
memory indicators. Protection and re-
location are inhibited so that the
absolute rather than the relocated
address is referenced, EXAMINE
THIS may be used while the machine
is running, in which case the memory
fetch is synchronized between two
instructions.

NOTE

Memory protection und relocation are
inhibited in all deposit and examine
functions.

Increments the contents of the MA

by one. Displays the contents of the
resulting address in the MI with MEM-
ORY DATA illuminated. This key is
not functional unless the machine is

stopped .

Writes the contents of the data switch-
es into the memory address specified
by the MA switches. The data is dis-
played in the MI with MEMORY DATA
illuminated. If the switch is activated
while the processor is running, the
action is synchronized between two
instructions,

Increments the contents of the MA by
one and writes the contents of the
DATA switches into the resulting
address. The data is shown in the Ml
with MEMORY DATA illuminated.
This key is not functional unless the
machine is stopped.

Halts the processor (with the RUN

. flip-flop off} after each instruction is

completed (prior to ITO for the follow=
ing instruction). This allows a pro-
gram to be stepped through one instruc-
tion at a time, using the CONT switch.
To prevent clock interrupts that would
otherwise appear between every in-
struction while stepping slowly, the
SING INST switch inhibits the setting
of the processor clock flag. Instruc-
tions that never end, specifically non- .

Table 3-1 {Cont)
Function of Console Switches

Switch Function

SING INST terminating indirect-address caleula-
(Cont) tions, are stopped by the STOP or RE-
SET switch but not by the SING INST

switch.

SING CYCLE Stops the processor at the end of each
memory control subroutine, prior to
the generation of MCRSTO or MCRST].

NOTE

The memory subroutine is used for all
memory references that reference
instructions, indirect references, or
effective address contents. The mem-
ory subroutine is not used in machines
having internal fast-memory options
when making index register or accumu-
lator references, since this would slow
down these operations. However,
single-cycle operations involving fast
memory references may be performed
by turning off the FM ENABLE switch
{margin check and maintenance panel),
causing core memory locations 0through
17 to be used as accumulators. As with
any STOP, activating the CONT
switch, after a single~cycle stop,
resumes processor operation.

PAR STOP Stops the processor at the end of a
memory subroutine in which a word
containing incorrect parity is read.
Running with this switch on slows all
memory read operations the amount
of time required to check parity.
Therefore, it is not usually advisable
to operate with PAR STOP on unless
memory errors are suspected. In
either case, the parity of memory
reads is checked and, if an error is
detected, parity error flag of the
processor is set.

NXM S5TOP Stops the processor when reference is
made to a nonexistent memory loca~
tion (i.e., one which is beyond the
memory size of the system or one

which for some reason does not re-

NXM STOP
{Cont)

REPT

ADDRESS
CONDITION:

INST FETCH

DATA FETCH

WRITE

ADR STOP

spond to memory requests). For read
references, a word containing 0s is
assumed. For write references, the
data is discarded. The CONT switch
may be used to proceed with the pro-
gram.

Causes actions specified by any of
the momentary function switches (ex-
cept STOP) to be repeated. The rate
of repetition is dictated by the SPEED
CONTROL switches on the margin
check and maintenance panel. If,
with the processor running, the REPT
and CONT switches are both active,
the processor stops and then contin-
ves through programmed stops (hard-
ware or software). The period of the
stop is determined by the SPEED
CONTROL switches.

Used in conjunction with ADR STOP
or ADR BREAK. Causes a stop (ADR
STOP) or break (ADR BREAK) in the
execution of the program when an
instruction fetch or indirect address
operation references the address in

the MA switches.

Used in conjunction with ADR STOP
or ADR BREAK. Causes a stop (ADR
STOP) or break (ADR BREAK) in the
program on all memory read references
except when an instruction fetch or
indirect address occurs and the re-
ferenced memory address is equal to
the contents of the MA switches.

Used with ADR STOP or ADR BREAK .

- Causes a stop (ADR STOP) or break

(ADR BREAK) on all memory writes
that reference the address in the MA
switches.

Stops program execution when the
condition specified by the ADDRESS
CONDITION INST FETCH, DATA
FETCH, or WRITE switch is encountered.

Table 3-1 (Cont)

Function of Consale Switches

Switch

Function

ADR BREAK

Data Switches
(0 through 35)

Causes a priority interrupt on the
KA10 PI channel when the condition
specified by the ADDRESS CONDI-
TION INST FETCH, DATA FETCH,
or WRITE switch is encountered.

NOTE

The functions of the ADDRESS
CONDITION INST FETCH, DATA
FETCH, and WRITE switches occur
with core rhemory references or fast
memory references if E = FMA. [fan
ADR STOP or BREAK is required on
other fast memory addresses (i.e., AC
or XR field of an instruction), the
FM ENABLE switch on the margin
check and maintenance panel must
be disabled. The function can then
be performed on the appropriate core
memory location,

The contents of these switches are
written into memory when DEPOSIT
THIS or DEPOSIT NEXT is active.
They are executed as an instruction
when XCT is active. The program can
sense the contents of these switches
with a DATAI instruction.

Memory Address These switches define the memory

Switches
(18 through 35)

addresses required for the functions
associated with the following control
switches: START, EXAMINE THIS,
DEPQCSIT THIS, ADR STOP, and ADR
BREAK. The contents of the switches
are continually compared with the
contents of the MA register plus the
contents of the relocation register

(if relocation is in effect) and the
fast memory address mixer. When

Memory Address comparisons yield equality, logic

Switches

(18 through 35)

terms are generated, enabling certain
processor functions. The contents of

(Cont) the MA switches may also be jammed
into the MA register.
Table 3-2
Function of Console Indicaters
Indicator Function
RUN Lights when the RUN flip-flop is set,
indicating that the program is running
or is hung up in a loop.
P1 ON Indicates that the Pl system is enabled.
POWER ON Indicates that system power is on,
: and the power=-up sequence is com-
plete.
PROGRAM Indicates that the machine has stopped
STOP as a result of a halt instruction.
MEMORY Indicates that the machine has stopped
STOP as the result of a memory reference
and a condition associated with any
of the following switches when the
switch is active: SING CYCLE,
PAR STOP, NXM STOP, ADR STOP.
USER MODE Indicates that the machine is in the
user mode.
10B PI Indicate active PI lines from the 1/O
REQUEST devices prior to their entering the
(7 indicaters) PI system.
PI ACTIVE Indicate enabled PI channels.
(7 indicators) ’
PI REQUEST Indicate active PI channels that are

(7 indicators)

PI1IN
PROGRESS
(7 indicators)

being considered by the PI priority
network .

Indicate which PI channel, of those
set, is being serviced by a subroutine..

Table 3-2

Function of Console Indicators (Cont)

Indicator Function
NOTE
The subroutine is servicing the high-
est priority PI channel.
PROGRAM Display ceontents of the program count]
COUNTER er.

(18 indicators)

INSTRUCTION/ The left half displays the contents of

AC/1/INDEX

MEMORY
ADDRESS

(36 indicators)

MEMORY/
PROGRAM
DATA

(36 indicators)

MEMORY
DATA

PROGRAM
DATA

the instruction register (operating
code, accumulator address, indirect-
address bit, and index bits). The
right half displays the contents of the
memory address register .

Operate under control of the console
switches to show the contents of mem-
ory locations, or under program con-
trol to display various types of data
via the AR.

Lights when the MEMORY /PROGRAM
DATA indicators display the contents

of a memory location as a function of
the console switches.

Lights when the MEMORY /PROGRAM
DATA indicators display data as a
function of the program.

3.2 MARGIN CHECK AND MAINTENANCE

PANEL

The margin check and maintenance panel (Figure 3-2)
is used for maintenance purposes. The controls on the
margin check section of the panel are used to control
application of either margin or standard voltage to the
system. The controls of the maintenance section are
used to control exercising of the cenfral processor.
The function of each of the controls and the indicator
on the panel is given in Table 3-3.

Figure 3-2 Margin Check and Maintenance Panel

Table 3-3
Function of Margin Check and
Maintenance Panel Controls

Name Function .
MARGIN CHECK Selects the polarity of the
-15L/+10L/OFF/+10R/ margin check power=supply
-15R Switch output. Connects the select-

ed voltage to the left or right
side of the system. (The pro-
cessor and all cabinets to the
left of it comprise the laft
side of the system; cabinets
to the right of the processor
comprise the right side.)

Table 3-3
Function of Margin Check and
Maintenance Panel Controls (Cont)

Name Function

Margin Check Vernier Varies the output from the
margin check power=supply.
Approximate limits are: 0 to
20V, unloaded; 20V, 7A,
maximum load.

FM ENB Switch Substitutes the fast memory
registers for the first 161,

core memory locations.

SHIFT CNTR MAINT
Switch

Transfers control of shift-
counter stepping from the
shift-counter timing chain to
the console CONT switch.
MI PROG DIS Switch Overrides program control
of MI register displays, re=
turning control to the MA
switches.

REPT BYP Switch Reinitiates the key cycle
selected by the console
switches when, due to a mal-

. function, the selected key
cycle hangs up. The rate of
the repeat is selected by the
SPEED CONTROL switches.
The REPT switch must be ac~
tive to utilize REPT BYP.

NOTE

When using the REPT BYP switch, make
certain that the delay selected by the
SPEED CONTROL switches is longer
than the period of the selected key
cycle. Otherwise, the selected key
cycle will be reinitiated before it

can run to completion.

SPEED CONTROL,
COARSE/FINE

Controls

Select time delays that deter
mine the rate at which the
repeat function reinitiates
the key cycles. Six basic
delays can be selected by the

COARSE SPEED CONTROL.

SPEED CONTROL,
COARSE/FINE
Controls (Cont)

The FINE SPEED CONTROL
varies the six basic delays so
that overlap occurs between
the range of delays that can
be selected by adjacent posi-
tions of the COARSE SPEED
CONTROL. The positions

and corresponding delays are:

270 ms to 5.4s

Position 1:

Position 2: 38 ms to 780 ms
Position 3: 3.9 ms to 78 ms
Position 4: 390 ps to 7.8 ms
Position 5: 27 ps to 540 us
Position 6: 2.2 ps to 44 s

Select the I/O device used

in a readin operation.

READIN DEVICE
Switches
POWER Switch Controls application of pri-
mary power to the system.
TOTAL HOURS Meter

Records power-on time from

00000.0 to 99999.9 hr.

3.3 BAY 1 and 2 INDICATORS

The indicator panels (Figure 3-3) at the top of bays 1
and 2 are provided primarily for maintenance purposes.
They display 1/O bus data, the status of all control
flip-flops, and the contents of all processor registers
including the 1/O register. Status indicators are also
included for many critical enabling levels.

3.4 PAPER TAPE READER/PUNCH AND DECTAPE

Power is available to the reader/punch (Figure 3-4)
and DECtape (Figure 3-5) when processor power is on.
A description of the switches and controls, and operat-
ing dota, such as tape-loading procedures, are provided
in: Perforated-Tape Reader PC02 Instruction Manual
(DEC-08-12BA-D), and Royal-McBee Model 500
Maintenance Manual and Instruction Manual TU55
DECtape Transport (Document No, DEC-00-HZTA-D).

3.5 TELEPRINTER

The “eleprinter provides two-way communication be-
tween operator and computer, It is actually two in-
dependent devices (keyboard and printer), which may
be operated simultaneously. Either a Teletype® Model
35 KSR (Figure 3-6) or Model 37 KSR Teleprinter
(Figure 3-7) is provided with the KAI0.
® Teletype is the registered trademark of Teletype
Corporation.

Figure 3-3 Indicator Panels, Bays 1 and 2

Figure 3-4 Paper Tape Reader/Punch

’

3-7

5 DECtape

igure 3~

F

-6 Teletype Model 35 KSR

igure 3

F

3-8

& 'y
e e X A
- BB

o =T 5

n g xm re s g -_4-..._..'_.‘.".'.'-.‘.,‘:-..__.”1
AP APAE-P-$ L4 T F

- AP 4 43 IS8
Y D i S A a0 R o) 4XIN &b
e]

I

Figure 3-7 Teletype Model 37 KSR

Both models of the teleprinter operate with 8-bit
characters plus start and stop control signals trans-
mitted serially. The 35 KSR operates at 10 characters
per second and the 37 KSR at 15 characters per second.
One of the most significant differences between the
two models is that the 37 KSR prints out lower case
letters, as well as upper case.

Power is available to the teleprinter when KA10 power
is on. When on, the LINE/OFF/LOCAL switch is set
to LINE, the unit is "on line", and it goes on and off
with system power.

The keyboard of both the 35 KSR and 37 KSR resembles
that of a standard typewriter in that it has four rows of
keys and a space bar. Striking a key transmits a char-
acter to the teleprinter control logic. The character is
printed or the function executed by the teleprinter
only if the processor sends it back to the printer,

Striking only the character keys transmits the codes
for the characters on the lower part of the keys.

Striking the character keys while holding down the
shift key transmits the codes for printable characters
on the upper part of the keys (punctuation, ampersand,
percent sign, etc.). On the 37 KSR, lower case is
normally transmitted and the shift key gives upper case.
Control codes are transmitted by holding down the
control key (CTRL) when striking the appropriate
character key. Codes for all characters listed on the
keyboard, and some that are not, can be transmitted
to the computer. However, codes for some of the
control functions have no effect on the printer when .
they are sent back.

The code used is the American Standard Code for
Information Interchange (ASCII) with adaptations for
the PDP-10. The operational differences between
the 35 KSR and the 37 KSR are cited in the remarks
column of the table.

Depressing the REPT button while striking a character
key causes repeated transmission of the corresponding

code for as long as REPT is held down. Characters that
require the SHIFT or CTRL key may also be repeated in
this manner. (On the 37 KSR, repeated transmissions
are accomplished by depressing and holding down the
key.) The red button at the left, BRK RLS, is not op~
erative. LOC LF and LOC CR are the local line feed
and carriage return buttons. They affect the printer
directly and do not transmit codes to the control logic.
The ‘white button, BREAK (on the far right), opens the
line, sending continuous space.

Details of paper installation, ribbon replacement, tab
setting procedures and maintenance procedures for the
teleprinter are in Teletype Bulletin 281B.

3.6 READIN

The read in mode of operation permits placing infor-
mation in memory without relying on a program in
memory or loading one word at a time manually.

Console initiation of read in from the paper tape
reader, DECtape, or any other device so equipped, is
accomplished in the read in mode. With the address
of the appropriate input device entered in the READ
IN DEVICE switches, depressing the READ IN switch
causes the processor to read the loader program from
the input device. If the program is self-starting, the
last instruction causes the processor to jump and ex-
ecute the loader, thereby reading in the remaining
tope data. If the program is not self-starting, the pro-
cessor can usually be induced to execute the loader
program by pressing the CONT key.

Details of loaders are in the MACRO-10 Assembler
Programmer's Reference Manual (DEC-10-AMDO-D).

- 3-10

To read tapes in either the RIM10 or RIM10B loader,
proceed as follows:

a. Load the tape onto the input device as directed
in DEC-10-AMDO-D.

b. Enter the device address in the READ IN DEVICE
switches.

¢. Press the RESET switch.
d. Press the READ IN DEVICE switch,

When using the READ IN DEVICE switches (Figure 3-8),
note that the least significant octal digit of the device
code is selected by a single switch (switch 9). This
final digit can only be a zero or a four.

READ IN DEVICE
{SWITCHES)

PUSH MERE
FOR O

PUSH HERE
FOR 1

r
\,
{
N
>

AL
A
hd Y
MOST SIGNIFICANT
OCTAL DIGIT

LEAST SIGNIFICANT
OCTAL DIGIT
{ALWAYS 4 OR O)

10-0005

Figure 3-8 READ IN DEVICE Switch

CHAPTER 4
CENTRAL PROCESSOR ORGANIZATION

This chapter is divided as follows:

KATQ Registers and Adders
KAT0 Basic Cycles

KA10 Basic Instructions
KA10 Additional Instructions
KA10 Control Key Logic
KA10 Memory Control

KA10 Priority Interrupt

4.1 KA10 REGISTERS AND ADDERS

AAA SR AA
Younwivoo

Brief descriptions of the registers and adders of the
processor and the data paths between them are pre-
sentad below.

4.1.1 AR (Arithmetic Register, 36 bits)

The AR is the most active register in the processor be-
cause it serves as an internal accumulator and as a
memory buffer. 1/O transfers also take place through
this register. It can be loaded from the adder, either
directly or with a one-bit shift to the left or right; its
halves may be swapped. Other inputs to this register
include the SC, IR, memory bus, fast memory, con-
sole data switches, and the arithmetic flags.

4.1.2 BR (Buffer Register, 36 bits)

The BR is used primarily to hold the second operand
of an instruction. It is loaded only from the AR,

4.1.3 MQ (Multiplier Quotient, 36 bits)

As the name implies, this register holds the multiplier
during multiplication, and the quotient during divi-
sion. This register can be considered as a right-hand
extension to the AR, and if can shift right or left; its
external input comes from the adder.

4.1.4 AD, ADR (Adder, 36 bits)

The adder is not a register, actually, but a network of
gates that generate various logical functions. The
primary function of the AD is to add arithmetically,
but due to a very flexible system of control gating,

4

several other functions are possible. The AD can
internally produce either the arithmetic sum, or the
logical equivalence of its two input branches. g
(Equivalence is the complement of exclusive-CR.)
One input is from the AR, the other from the BR.
Each of the two input branches may select one of
four functions:

a, all Os
b. allls
c. the register

d. the 1's complement of the register

There is also a +1 input separately selectable, and a
+1 or -1 input to the left half.

4.1.5 MI (Memory Indicator, 36 bits)

The sole function of the MI is to drive the console
indicators. This register is loaded from the AR,
4.1.6 PB (Parity Buffer, 37 bits)

The PB holds all words going to and from the memory
bus for the purpose of computing their parity. Its
input is from the memory bus,

4.1.7 MA (Memory Address, 18 bits)

This register is the primary source of address to the
memory system. This register is loaded from the AR,
PC, and the console address switches.

4.1.8 PC (Program Counter, 18 bits)

This register holds the program address. It is equipped

with a high~speed counting gate and is loaded from
the MA,

4.1.9 IR (Instruction Register, 18 bits)

This register holds the instruction during execution.
Its primary input is from the memory bus; however,

the READ IN DEVICE switches also provide an input.
The instruction register is divided into a 13-bit left
part and a 5-bit right part; these parts are handled
separately during address calculation.

4,1,10 sC (Shift Counter, 9 bits)

In addition to counting shifts, the SC is used for
exponent calculation in floating-point arithmetic,
and for position calculation in byte operations. For
these operations, the SC works in conjunction with
the SCAD. The SC has a separate high-speed count-
ing gate of the same type used in the PC. The shift
counter gets inputs from the AR, 8R, FE, SCAD, and
several "magic numbers" used to determine the number
of shifts in multiply and divide operations, or as con-
stants for floating point and byte operations.

4.1.11 SCAD (Shift Counter Adder, 9 bits)

The SCAD is a smaller version of the AD, which is
used in conjunction with the SC. One of the SCAD
inputs comes from the SC; other inputs are provided
by selected bits of the AR, BR, and more maglc
numbers” .

4.1,12 FE (Floating Exponent, 9 bits)

This register holds the exponent of floating point
numbers when all other registers are busy. The reg-~
ister is loaded from the SCAD.

4.1.13 PR, PR2 (Protection Registers, 8 bits each)
These registers hold the upper address bounds for the
memory protection feature of the KT10A options; these
registers are loaded from the /O bus.

4.1.14 RL, RLZ (Relocation Registers, 8 bits each)
These registers hold offsets that are added to the MA

to form the actual memory address, as a feature of
the KT10A options; they are loaded from the 1/O bus.

4.1.15 PIH, PIR, PIO (Priority Interrupt Hold,
Request, and Cn, 7 bits each)

These registers are part of the priority interrupt system,
and are explained in Section 4.7.

4-2

4.2 KA10 BASIC CYCLES

During the execution of each instruction, the central
processor goes through at least five basic cycles.
These basic cycles are:

I Instruction Cycle = used to retrieve the in-
struction from memory .

A Address Cycle - used to compute the effec-
tive address.

F Fetch Cycle - used to fetch the operands
from memory and ACs.

E Execution Cycle = used to perform a basic
instruction or to begin execution of a more
complicated instruction.

S Store Cycle - used to return the results to

memory or ACs.

The term "cycles” as used in the KA10 has a differ-
ent meaning than in most computers. In the KA10

the machine is said to be in a given cycle when the
active timing pulse is finding its way through the delay
lines, gates, and PAs that control that cycle. There
are no flip~flops or other multi=stable circuit elements
that determine when a fixed group of clock pulses is
currently producing a given cycle. Each of the fol=
lowing cycle descriptions is referenced to a flow
chart. The I and A cycles are shown on the IAC flow
diagram; the F cycle on FC flow diagrams, and the

E and S cycles on the ESC flow diagram. These dia-
grams are included in Volume II of this manual. For
those readers not familiar with DEC logic standards
and flow diagrams, Appendix A contains a brief
review.

4.2.1 Instruction Cycle (See Drawing KA 10-0-1AC)

The instruction cycle has only two time pulses, ITO
and IT1. The ITO pulse begins each instruction,
either as a result of the completion of the previous
instructions or from some console action, coming
from KT4, ITO, through MR CLR (called "mister
clear"), clears all registers, and loads the MA with
the address of the next instruction.

This address normally comes from the PC, but may,

in some cases, already be in the MA, or be a trap
address determined by the priority interrupt system.
The IR input gates are also enabled to allow-the left-
most 18 bits of the instruction word, which is re-
trieved from the memory system, to enter the IR. The
entire instruction word also enters the AR, as it does
during all memory read operations.

Having established the above conditions, the IFO
flip-flop is set. This flip-flop informs the memory
control logic where it should return when the instruc~-
tion word has been read from the memory system.

This is an example of the "hardware subroutine” con-
cept. Control is passed to the memory control logic
via the read request input. At the completion of the
memory operation, an MCRST1 pulse is generated.
(Because this pulse is common for all memory opera=
tions, it will be discussed later. The timing will
return to IT1 since only the IFO flip-flop is set; this
flip=flop is only one of a group of flip-flops that gate
the MCRST1 pulse.)

At IT1, the MA is cleared in case it is required later,
and the input gates to the IR are disabled. The left-
most 13 bits of the IR hold the operation and accumu~
lator parts of the instruction word and do not change
during the address calculation. The right~most five
bits are the indirect address and index bits and are
zeroed by the address calculation algorithm. The
signal flow then branches in one of three ways, de-
pending on whether a priority interrupt is requested
and whether indexing is called for. The priority
interrupt system is covered in detail in Section 4,7
of this chapter. The normal course is to enter the
address cycle.

4.2.2 Address Cycle (See Drawing KA10-0-IAC)

The first part of the address cycle computes the sum
of the address and the index register (if indexing is
called for). Because the KMIO fast registers are an
optional feature of the KA10, each time data is
fetched from a register, a decision must be made as to
whether the register is in memory or is one of the fast
registers. AT1 (Address Time 1 pulse) prepares for
this register data fetch by saving the address part of
the instruction in the BR and clearing the AR. The
control signal path then branches, depending on
whether MC FM EN is false or true (memory control,
fast memory, enable); if false, the register data fetch
is made from a memory register by a fast memory read
request; if true, the contents of the index register are
loaded into the AR by AT2, after a short delay to

allow the internal address decoders to set up.
Previously, the fast memory address decoders were set
to the XR part of the IR by the MR CLR pulse. Both
paths produce AT2 with the same result.

The delay after AT2 allows the adder to set up the
sum of the address in the BR and the index register in
the AR. (The appropriate adder enable conditions
were previously set by the MR CLR pulse.) At AT3,
the sum is loaded into the AR, if indexing was called
for, and the original contents of the AR are saved in
the BR for later use by the JRST instruction. The left
half of the AR is cleared if the address is to be used
as an immediate operand, and the fast memory de-
coders are set to examine the AC part of the IR, in
preparation for fetching data from an accumulator.

After a delay to allow the contents of the AR to
settle, the indirect bit of the IR is examined. If the
indirect bit is set, pulse AT4 occurs next. This pulse
loads the MA with the computed address and requests
a new instruction to be fetched. The only difference
between this and ITQ is that the MR CLR pulse is not
produced and the left part of the IR is not disturbed,
thereby retaining the same instruction. If the indi-
rect bit is cleared, the address cycle is terminated by
AT6, which loads the MA with the calculated effective
address. Byte instructions (134-137) set the IR gating
to allow the index and indirect bits of a pointer word,
which are fetched during the fetch cycle, into the IR.
Control of the processor is then given over to the
fetch cycle.

4.2.3 Fetch Cycle (See Drawing KA10-0-FC)

The fetch cycle retrieves operands in the following
order:

a. memory
b. accumulator

c. miscellanepus operands

After AT, a decision regarding the memory operands
is made. If the instruction requires a memory operand
that will not be returned to memory, the FCE condi-
tion (Fetch C(E)) will be true, and FTO will occur;
however, if an operand, which will be modified and
then returned to memory, is required, the condition,
FCE PSE (Fetch C(E)) Pause, will be true and FT1

will occur.

The pulse FT1 occurs after a delay to allow the
MAT18-31 = 0 gate to set up. Because the fast reg-
isters do not have the destructive readout character-
istics of core memory, no read-modify-write cycle is
provided for them. Hence, any reference to an
accumulator is made as a straight read reference.

The MC SPLIT CYCLE SYNC flip-flop forces all read-
modify-write cycles to be made as separate reads and
writes. Instructions that do not require memory
operands, and most immediate mode instructions, pro-
ceed directly to FT1A; however, floating=point
immediate instructions take the immediate mode
operand in the left half; therefore, at FT8, the
halves of the AR are swapped.

At FTIA, the memory operand, if any, is placed in
the BR (except for a JRST instruction, which preserves
the previous contents of the BR to be used in restoring
the arithmetic flags, if they are required). The next
decision that must be made is whether or not an
accumulator is needed. (By coincidence, any in-
struction that does not need an accumulator does not
need a miscellaneous operand.) If no AC is needed,
FAC INH (Fetch AC Inhibit) is true, and signal flow
proceeds directly to FT9, the end of the fetch cycle.
If an AC operand is required, it is picked up by FT2
and FT3, in a manner similar to AT1 and AT2 in the
address cycle. At FT3, if the next higher AC will also
be required, the fast memory address decoder is set to
examine the accumulator part of the IR incremented by
one. If no further operands are required, control
again is given over to FT9.

The remaining fetches are in three categories, as
follows:

a. FAC2 (Fetch AC2)
b. FCCACLT (Fetch the C(C(AC)Ieff))

c. FCCACRT (Fetch the C(C(AC) ,

rlghf))

These additional operands are placed in the MQ.
However, the only path from memory or the fast reg-
isters is into the AR; hence, as a first step, the AR
is saved in the MQ (via the adder). The operand is
then fetched, and the AR and MQ interchanged.

For the second category of fetch, the FAC2, FT4,
FT5, and FT4A accomplish the task. For FCCACRT,
the address is in the right half of the AR, which was
the AC just fetched. This address is placed in the
MA at FT7, and an ordinary read cycle is then re-
quested, returning to FT4A. For FCCACLT, FT6
interchanges the halves of the AR to get the left-hand

address into the MA at FT7. FT4A restores the fast-
register address to the first AC in anticipation of the
store cycle, and then goes to FT9.

FT9, the end of the fetch cycle, normally increments
the PC unless the instruction specifically asserts

PC+1 INH. The pulse also sets up gating for the
adder, as necessary, for the individual instructions.
The KEY SYNC RQ flip-flop is sampled at this time -
to determine whether there will be a key cycle at the
end of this instruction. Control now advances to the
execute cycle.

4.2.4 Execute Cycle (See Drawing _KA]O-O—ESC)

Flow through the execute cycle, though simple,
accomplishes the functions of most instructions. This
description concerns flow only; the other actions are
covered in the detailed description for each instruc-
tion. The first condition examined in the execute
cycle is EFO LONG; this condition determines
whether the subsequent ETO pulse is to be delayed
for a long or short time after FT9. If the adder is
being used for a full-add function (and, hence, needs
to propagate carries), EFO LONG is asserted, choos-
ing the longer delay. ETO sets the adder enables to
the state necessary during the store cycle if the next
pulse will be ST1. Two conditions determine what
takes place next: E LONG calls for ET1 and ET2 to
occur; ST INH (store time inhibit) means that the
current instruction has an additional timing chain of
its own which occurs as the result of one of the exe-
cution pulses. Unless the ST INH condition is
asserted, control progresses to produce ST1, after
either ETO or ET2, with the adder output holding the
contents of the BR.

4.2.5 Store Cycle (See Drawing KA10-0-ESC)

The store cycle is entered from the execute cycle at
ST1, or at STO from the individual instruction timing
chains. The STO pulse is provided to set up the adder
for subsequent store cycle operations. The store cycle
attempts to skirt around as many pulses as possible,
consistent with what has to be done; hence, there are
many paths from ST1 to ST?. ST stores the AR in the
fast registers, if they are present, and AC store is not

inhibited.

If no other registers are to be stored, control passes
directly to ST9; however, if the current instruction
was performed as the resuit of a priority interrupt,
pulse STIA and a delay are squeezed in to allow the

PIOV and PICYC flip-flops to clear before progressing
to ITO.

If the content of an AC is to be stored, and the fast
registers are not present, pulse ST1 requests a fast
memory write, and control eventually returns to ST2
after the memory subroutine.

Control also reaches ST2 when the content of g second
AC is to be stored, or when the result to be stored in
memory is in the BR. (The BR data is not the same as
the AR data: SAR #BR). When a second AC is stored
the fast register address is changed to that of the
second AC. When a result is to be stored in memory
from the BR, the AR is loaded from the adder, which
contains the BR.

r

ST5, ST6, and ST6A perform the storing of a memory
result. ST5 is used when the memory result is modi-
fied from a word previously used from the same loca-
tion (at FT1). Pulse ST5 may be produced as the
result of ST2, or directly from ST1. Pulse ST6 per-
forms ordinary memory writes and also may be pro-
duced as the result of either ST2 or ST1. After re~
turning from the memory subroutine, the store cycle
ends if the second AC was not required. When data
is stored in a second AC (SAC2), ST7 retrieves the
data from the MQ and, after a delay, ST8 either puts
this data into the fast registers or calls the memory
subroutine to store the data in memory.

ST2 also has a direct path to ST? in the event that
ST2 was necessary only because of the lack of fast
registers. At ST?, a decision is made whether to start
a new instruction or to enter the key logic cycle.

4.3 KAT0 BASIC INSTRUCTIONS

The basic instructions are so called because they
require no timing pulses other than those from the
basic cycles. These instructions are covered as they
appear on basic instruction flow diagrams BIF1, BIF2,
and BIF3 in Volume II of this manual.

4.3.1 Boolean

The Boolean group includes 16 instructions in 4 modes.
These instructions perform all possible functions of
two variables; they are decoded as BOOLE 0 through
BOOLE 17 (octal). The mnemonics appear below the
relevant flow chart section. The E LONG condition
is selected for those functions requiring the comple-
ment of the AC and/or the other variable. Operands

4-5

are fetched only when necessary because some cases
are degenerate. The adder is set by FT9 to give a
true or complemented BR, or the complemented AR,
or the equivalence (XOR) of the AR and BR. At ETO,
the result is either jammed, ORed, or ANDed into
the AR. For all, except the four fong instructions,
control goes directly to ST1; for the long instructions,
ET1 and ET2 form the complement of the AR.

4.3.2 Add, Sub

The distinction between these two groups of four
instructions is made ot FT?, when a subtract selects
the 2's complement of the BR by taking its complement
plus one. The result is then put info the AR at ETO,
and, if required, the overflow and carry flags are set.

4.3.3 Full Word Transfer (FWT)

The FWT group is composed of the four variations of
MOVE. If negation is possible, EFO LONG is
selected to allow enough time. AD AR NEGATE
sets the adder gating for the complement of the AR
plus one. This result may be strobed into the AR at
ETO, or may be ignored if the instruction is MOVMX
and the AR is already positive.

4.3.4 Holf-Word Transfer (HWT)

The HWT group is divided into two independent sec~
tions. The second section, requiring E LONG,
includes only the following 4 of the 64 instructions in
the group:

a, HRL
b. HLR
c. HRLI
d. HLRI

These four instructions have the property of being a

function of both the BR and AR, and that the BR (or

memory) argument must have its halves swapped. In
this group, ETO interchanges the AR and BR, and, at
ET1, the bits are shuffled in the AR as necessary.

The first HWT section contains the remaining 60
instructions, which, for the most part, require only
one operand. If all Is are needed for g half word,
the adder is first set up with both BR+ and BR- inputs

active, thus guaranteeing a 1 in every bit position.
At ETO, either the destination half of the AR is
already correct (HLLXX or HRRXX), or the other half
of the AR is loaded into it (HLRXX or HRLXX). The
other half either is available from the adder, or will
be 0. For HXXEX instructions, a special term called
HWT E TEST is used. This term looks at the correct
bit of the AR to determine the sign of the result.

4.3.5 Exchange (EXCH)

This instruction interchanges the memory and AC
operands and uses the SAR # BR signal to have the
two results handled separately . This instruction re~
quires only ETO, which interchanges the AR and BR.

4.3.6 Unimplemented User Operation (UUO)

All operation codes not assigned as specific instruc-
tions (except 247 and 257) are executed as UUQs. In
such cases, the word given as an instruction is trapped
and must be interpreted by a routine included for this
purpose by the programmer.

Operation codes 000 through 127 are always treated
as UUOs. If the KE10 extended order code is not im=-
plemented in the processor, the IR FP TRAP SW is on
and extended order codes 130 through 177 are also
treated as UUOs. 1OTs and some JRST instructions
are illegal and are also treated as UUOs in the non-
privileged user mode (i.e., when the EX ALLOW IOTS
signal is not present). For example, the JRST 4 in-
struction that halts the processor and the JRST 10 in-
struction that restores the PI system are both illegal if
the system is in the non-privileged user mode. Fur-
thermore, all 10T instructions (operation codes 7xx)
are illegal if the system is in the non=privileged user
mode or if no PI cycle is in progress.

Any of the above conditions cause the IR UUQ level
to be true. Asa result, the given instruction, with
its calculated effective address, is stored in a trap
location, and the processor executes the instruction
at the next location. The trap location used by the
UUQs varies. In user mode, a UUO with an opera-
tion code in the range 001 through 037 traps to user
location 40 (relocated 40). All other UUOs, in user
mode or otherwise, trap to absolute lower memory
locations. The absolute trap location will be 40, 40,
140, or 160, depending upon operation codes and
processor configuration.

In a single processor system, the MA TRAP OFFSET
switch is not set. UUQOs with operation codes 000

4-6

through 077 (except 001 through 037 in user mode)
trap to absolute location 40. UUOs, with operation
codes 100 through 177, trap to absolute location 40.

In a dual processor system, where it is undesirable to
have both processors trap UUOs to the same locations,
the MA TRAP OFFSET switch is set in one of the
processors. For UUOs executed by that processor, -
absolute trap locations are offset by 100. UUOs with
operation codes 000 through 077 trap to absolute loca-
tion 140, and UUOs with operation codes 100 through
177 trap to absolute location 160.

The MA register is preserved in its O state throughout
the fetch cycle, and, hence, at ETO, the trap address
bits can be ORed in, but are controlled by the con-
ditions explained above. All non-relocated UUOs
set the EX ILL OP flip-flop, which suspends relocation
to allow the instruction at the non-relocated address
to preserve the state of the user mode condition. The
EXCTF flip-flop is set to signify that the MA is not to
be loaded from the PC by the next ITO because the MA
contains the address of the next instruction to be exe-
cuted, less one. The EUUOF flip~flop causes the one
to be ORed into the MA at ITO. The UUO instruction
is stored during the normal store cycle because MA
contains the correct address. The PC+1 operation at
FT? is inhibited for the UUO; thus, in normal opera-
tion, a JSR instruction at the trap address causes one
PC increment, and stores the address of the instruction
following the UUO. If an interrupt occurs between
the UUO or JSR instruction ordinarily found at the
trap address, the UUO is restarted from the beginning
upon return from the interrupt routine.

4.3.7 Jump

4.3.7.1 Jump to Subroutine (JSR)

The JSR instruction stores the PC and flag word at the
effective address, and jumps to that address, plus one.
The incrementation is done at ET2. For reasons which
are explained later, all instructions that store the
flags clear BYF6, a flip-flop in the byte instruction
control .

4.3.7.2 Jump and Save PC (JSP)

JSP saves the PC and the flags in the AC.

4.3.7.3 Jump and Save AC (JSA)

The JSA is another subroutine=calling instruction.
This instruction stores the AC at E, and stores the PC
and E in the AC. Having E in the left half of the AC
allows the JRA instruction (refer to Paragraph 4.3.10)
to find the storage location of the AC and thus restore
the AC when returning from the subroutine. ETO saves
the AC (which was loaded into the AR during the
fetch cycle) in the BR. The right half of the AR is
replaced by the old PC, which was incremented by
FT9. The PC is loaded from the MA. At ET1, the
old PC is moved to the left half of the AR, and the
new PC (containing E) is loaded info the right half of
the AR. At ET2, the halves of the AR are swapped,
and the PC is incremented to get around the word
currently being stored.

4.3.7.4 Jump and Restore AC (JRA)

The JRA instruction is intended for use as a return
from a subroutine previously entered by JSA instruc-
tions. If the same AC is specified in the JRA and
JSA instructions, the left half of the AC points to
the location where the old contents of that AC were
stored. The FCCACLT level then causes the fetch
cycle to retrieve the word whose address is contained
in the left half of the AC, and to place it in the MQ.
The effective address is usually indexed by this same
AC, thereby getting an address relative to the loca-
tion from which the subroutine was called.

The effective address will not be in the MA, because
the MA was previously changed by the FCCACLT,
but will be found in the BR. The effective address is
sent to the PC via the MA and AR, using the three
ET time pulses. The content of the AC is retrieved
from the MQ during ET1.

4.3.7.5 Jump on Flags and Clear (JFCL)

JFCL tests for any of the four flags being on, and
clears those that have been tested. The four flags
are specified by the four AC bits of the instruction.
If a detected flag is on, the PC is loaded from the
MA during ETO. If all AC bits are off, this becomes
a "no-op" instruction and is the fastest "no~op” in-
struction in the instruction repertoire.

4.3.7.6 lJump and Restore (JRST)

JRST is the simplest unconditional jump instruction.
This instruction can do several useful things when

called for by bits in the AC field of the instruction.
IR10 specifies halt, which clears RUN. This option
causes E LONG in order to allow the console lights
to be set up to show the old PC in the MA lights.
Halting is not allowed in user mode, so IR10 changes
the JRST into a UUO when present. IR9 restores the
interrupt system, and is discussed with the priority

interrupt system. IR9 also changes the JRST into a
UUO in user mode.

The IR11 specifies that the flags be restored from the
left half of the last word referenced in the cddress
calculation. = For the IR11 option to be meaningful,
the JRST instruction should be indexed or indirected.
The BR is saved throughout the fetch-cycle so that it
is available for the index or indirect operation. The
flags are in the same stored format as the JSR, JSP,
and PUSHJ instructions.

IR12 sets the EX MODE SYNC flip-flop which puts
the machine into user mode for the next instruction.
This flip~flop can also be set by restoring the flags
(with IR11) with bit 5 on in the flag word.

4.3.8 Test

The test instructions are another 64~instruction group.
The memory operand is used as a mask to select bits
in the AC operand. The selected bits may be tested,
and then either cleared, set, complemented, or left
unchanged. The TDXX and TRXX groups are the same
except that TRXX is an immediate group. The TSXX
and TLXX are also the same except that TLXX is an
immediate group. At FT9, the adder enablers are set
up to provide the true mask for TXOX, the comple-
ment of the mask for TXZX, and the exclusive OR of
the mask and AR for TXCX.

~ Because the halves of the mask in the BR cannot be

4-7

swapped, the AR is swapped for TSXX and TLXX by
both ETO and ET2; this accomplishes the effect of
swapping the BR halves. At ET1, the AR is ANDed
into the BR, and the adder is set so that the true BR is
available from the adder at ET2. Simultaneously, at
ET1, the new result is formed in the AR: TXOX ORs
the adder into the AR, TXZX ANDs the adder to the
AR, and TXCX jams the adder into the AR. ET2 in-
crements the PC when the test condition is true, as
determined by the instruction and whether or not the
adder is zero,

4.3.9 Add One to Both and Jump (AOBJ)

There are two instructions in this group: AOBJP (add

one to both halves of the AC and jump if positive)

and AOBJN (same as AOBJP but jumps on negative
result). The addition of one to both halves is accom-
plished by a special adder enable that simulates a

one in bit 17 of the BR input of the adder. Note that,
if the right half of the AC is 777777 before this in-
struction, two is added to the left half: an explicit
one, and a carry from the right half. This phenomenon
takes place in all instances in which both halves of
the AR are incremented.

4.3.10 Skips

The Skip group includes instructions in the AOS, SOS
and SKIP classes. AOS and SOS use the FCE PSE
mode because they add and subtract one, respectively,
from memory locations. Some of the logic conditions
specified by this group are common to the JUMP group
which performs similar actions with respect to ACs.
The FT9 pulse sets the adder enablers for the true AR
(either plus one, minus one, or unchanged).

The adder result is jommed back into the AR at ETO,

and the skip condition is tested. The skip conditions
for the skips, jumps, and comparisons are all encoded
by PC conditions P, Q, and R. These conditions are
logically derived from the skip or jump conditions (as
described in the PDP-10 System Reference Manual)

and have been reduced to an OR of six 3-way AND:s.

Conditions Q and R are similar: condition R is used
for the skips and jumps, and depends only on the
adder sign bit (ADQ); condition P depends on whether
the adder output is equal to zero and also includes
the "always" skip case. The AOSX and SOSX
instruction groups set the AR flags as indicated.

4.3.11 Jumps

The Jump group includes AOJ, SOJ, and JUMP
classes. These classes are similar to the corresponding
skip classes, and operate on ACs, jumping when the
specified conditions are met. The jump logic is
largely common with the Skip group described previ-
ously .

4.3.12 Compare

The Compare group, CAMX and CAIX, have the same
modifiers as the Skip and Jump groups previously
mentioned. The CAMX compares the content of the
AC to memory and, hence, uses the FCE. CAIX is

- 4-8

immediate; the comparison is accomplished by sub-
tracting the memory operand from the AC, and
examining the result in the adder. The conditions

P, Q, and R, mentioned in the Skip group, also apply
to the Compare group. Condition Q is used in place
of condition R because a subtraction may overflow
and, therefore, AD COND, which corrects for over~
flow, is used in place of ADO. Condition P remains
the same. g

4.3.13 PUSH

This instruction is representative of the PUSH, POP,
PUSHJ, and POPJ instructions in that they all use an
AC as a pointer word. The left half-contains a count
that is tested during each of these instructions to
detect whether it has passed through zero; if it has,
the CPA PDL OV flip-flop is set, usually indicating an
error in the program.

The PUSH instruction specifically adds one to both
halves of the AC, and uses the resultant right~half
address as the location in which to store the contents
of the effective address.

4.3.14 Push and Jump

After incrementation, as in PUSH, the PUSHJ instruc-
tion stores the PC and flag word at the address speci-
fied by the AC. Here, because the path from the PC
and flags is into the AC, the result of the pointer word
incrementation is loaded temporarily into the MQ
during ETO. At ET1, the AR is moved to the BR, and
the AC is brought back to the AR from the MQ. ET2
loads the address part of the pointer into the MA.

The results are stored as with the PUSH instruction.

4.3.15 pop

POP is the opposite of PUSH; this instruction uses the
FCCACRT part of the fetch cycle to retrieve the word
pointed to by the AC. FT9 sets the adder to subtract -
a one from both halves of the AR containing the
pointer. This is accomplished by setting the BR + and
BR - inputs to get the quantity -1; also the AD - 1 LH,
which introduces a zero at bit 17. These actions add
the number 777776777777 to the content of the AR.

At ETO, this result is put in the MQ, and the word
retrieved from memory is brought into the AR from the
MQ. At ET1, the contents of the AR and BR are
exchanged, leaving the data word in the BR, the effec-
tive address in the AR, and the pointer in the MQ.

At ET2, the effective address is placed in the MA and
the pointer is brought back to the AR.

4.3.16 POPJ

POPJ is the subroutine return used to exit from a sub-
routine called by the PUSHJ instruction. Its opera-
tion is identical to that of POP (above) through ETO.
At ET1, the address part of the data word is loaded
into the MA, and the pointer is brought back to the
AR. At ET2, the PC is loaded from the MA, causing
the next instruction to be taken from the oddress
specified in the right half of the word removed from
the pushdown list.

4.3.17 Execute (XCT)

The execute instruction causes the contents of the
effective address register to be executed as an
instruction without changing the normal instruction
sequencing (unless a jump~type instruction is exe=
cuted). Hence a skip instruction skips, relative to
the execute instruction, and is independent of its
own location. The only function of the execute
cycle during an execute instruction is to set the
EXCTF flip-flop, which causes the next ITO to use
the address already in the MA when fetching the
instruction. The PC is not incremented unless the
instruction being executed increments it.

4.4 KA10 ADDITIONAL INSTRUCTIONS

4.4.1

Extended Instructions

4.4.1.1 Shift and Rotate - The Shift and Rotate
group includes ASH, ASHC, LSH, LSHC, ROT, and
ROTC. The flow of this group of instructions is shown
on the "SMF" flow chart. The XXC instructions cause
the second AC fo be fetched and stored in the MQ
during the FAC2 part of the fetch cycle. The direc-
tion of shift is determined by the sign bit of the
effective address (bit 18). A positive number causes
a left shift. Because the SC counts up from a 2's
complement negative number, the correct representa-
tion of the number is loaded into the SC from the BR
at ETO if the effective address is negative. If the BR
address is positive, ETO sets up the SCAD to negate
the SC.

Because these instructions specify ST INH, ETO is the
last main-flow time pulse until this group returns to

4-9

STO. The next pulse will either be SCTO or SRT1;
SRT1 is used to negate the SC, if necessary, and,
then, it goes to SCTO also.

SCTO provides entry to the shift and count subroutine
and is explained in detail below. The various shift
instructions differ only in determining where the bits
at the end of the registers go. The shifting pattern is
shown on the "SCAF" flow diagram. Both the AR and
MQ are shifted for all instructions in this group be=
cause shifting the MQ does no harm, even though
nothing of interest is contained in the MQ. The shift
and count subroutine returns at SCT4 and is fed direct-
ly to STO for this class.

4.4.1.2 Shift and Count Subroutine = The shift and
count subroutine includes the timing for all places
where a known number of shifts are to be executed.
Because shifting of the AR is accomplished through

the adder, the shift and count logic also performs the
inner loop of multiply and divide routines. In addition
to saving logic, this permits the shift speed to be set
in only one place; logic is shown on the "SCBT" flow
diagram.

The shift and count subroutine is made up of pulses
SCTO through SCT4. The first pulse, SCTO, is the
common entry point to the subroutine; this pulse
always sets the adder for the true AR. The BR inputs
are controlled as a function of the instruction calling
this subroutine. The SCAD SC + 1 setup is accom-
plished (mostly for historical reasons), although a new
high=speed counting circuit has been added to circum=
vent the SCAD. The SC STOP switch is tested and, if
on, the SC STOP flip~flop is set, thus allowing single
stepping through the shift iterations. A delay then
allows the adder gating and the gating which deter-
mines bit position to set up. Control passes to SCT4
immediately, if no shifts are necessary. SCT1 is
generated if the SC is still negative and the SC STOP
is zero. SCT] counts the SC using the counting gate
(B166s).

The branch after SCT1 determines whether any additions
or subtractions-are being done this time around; if so,
it squeezes in SCT2 and a delay, which lengthens the
loop time to 280 ns. SCT3 does the actual shifting as
gated by the particular instruction. SCT3 also sets
the adder for the next time around the loop if the in-
struction is a multiply or divide. The basic shift-loop
time is set to 150 ns. This loop is closed by SCT3,
and the sign of the SC is again examined to determine
whether the loop must be repeated. If the SC STOP
is on, control is resumed by pushing CONT on the
console. SCT4 is the subroutine exit, which also
clears the SC STOP, and MSF1, for a multiply.

4.4.1.3 Fixed=Point Multiply - The two kinds of
fixed-point multiplication in the PDP-10 System
differ only in how results are treated. Integer multi-
ply discards the high-order result word and sets over-
flow if the high-order word contains any significant
bits. Multiplication is accomplished directly with 2's
complement numbers. The algorithm is explained in
detail in the System Reference Manual,

Both the MULX and IMULX instructions start by en-
abling the BR + input to the adder, at FT9, which is
used at MSTO. ETO loads the SC with the number
735g (equivalent to =35 decimal), the number of times
around the shift loop. Control passes from ETO to
MSTO, which rearranges the operands. The multiplier,
or memory operand, is loaded into the MQ from the

BR via the adder. The multiplicand, or accumulator
operand, is sent to the BR. The MPF2 flip-flop re-
members whether both operands are negative. This
condition is used later to check for a possible overflow.

MST1 sets the MSF1 flip~flop, which controls adder
gating. Whenever MQ34 and MQ35 are equal, the
BR inputs to the adder are disabled. If MQ34 and
MQ35 are 01, the AD MD+ level is generated; this
causes the BR to be added to the quantity in the AR

in the adder. When MQ34 and MQ35 are 10, AD MD-
is generated; this subtracts the BR from the quantity in
the AR. These conditions affect the adder at each
SCT3 pulse in the shift and count subroutine. The
initial adder setup depends only on the state of MQ35
and is done by MST1. The AR is cleared at this time
to initialize the product.

The product is developed in the AR, and is shifted in-
to the MQ as bits are vacated by the multiplier being
shifted off the right-hand end of the MQ. This pro-
cess is carried out by the shift and count subroutine
(SCTO through 4). During fixed-point multiply, con-
trol returns from SCT4 to MPT2. Here, the last result
is loaded from the adder into the AR while the MQ is
shifted right, thus bringing the sign of the result into
the MQ sign bit. If the result is negative, and both
the operands are negative, the AROV flip-flop is set,
since two negative numbers should have a positive
product. (The only possibility of this case is 400 000
000 000 times itself.)

If IR is on, the instruction is a MULX, and control
passes directly to the store cycle via STO, If IRG is
not on, the instruction is IMULX, and the AR result
is tested for being either all Os or all 1s; either con-
dition means that there is no significance in the AR.
The adder enables are set for only the AR+ input, and
if the AR is negative, the AD CRY INS effectively

complements the output of the adder. The AD =0
condition is tested at MPT4 and, if false, AROV is
set. MPT4 also brings the result in the MQ back to
the AR. IMULX stores only one AC, while MULX also
stores the second (unless the instruction was @ MULM,
in which case no ACs are stored.)

4.4.1.4 Fixed-Point Divide - As with multiply, there
are also two kinds of divide instructions, DIVX and
IDIVX. IDIVX takes a single=word dividend and pro-
cesses it as the low-order word. Because there is no
simple direct 2's complement division algorithm, a
method is used which takes the magnitude of the divi-
dend but keeps the divisor in complement form. The
fixed-point divide instructions are shown on the
"DIVF" flow chart. The divide instructions take
separate paths until they combine during DST1, the
divide subroutine which is also used for floating point.
IDIVX sets up the proper dividend in the AR and MQ
registers during the normal execution cycle. At FT9,
the adder is set up to give the negative of the divi-
dend in the AR. At ETO, the negative dividend is
read back into the AR, if the dividend was negative
in the first place. The SC is set up for a count of -35
(decimal) and the adder gates are set for the true AR.

Then, at ET1, the dividend is moved into the MQ,
and the AR is cleared. Thus, the AC operand is in
the position of the low-order word in a regular divide
instruction. ET2 shifts the MQ one place left to re-
move the sign bit. Control then is given over to DST1
(see below).

Because DIVX may have to negate two words of the
dividend, a special timing chain, involving DIVTO
through DIVT4, is provided. The timing chain logic is
also used for floating=point division. FT9 sets the
adder for the complement of the high-order dividend

in the AR. ETO sets the SC as in IDIVX and also causes
DIVTO, which has effect only if the dividend is nega-

tive.

DIVTO swaps the MQ and the complemented AR, there-
by leaving the 1's complement high-order dividend

in the MQ and the original low-order dividend in the
AR. The adder CRY 36 input is turned on to set the
adder for the 2's complement of the AR. The DSF7
flip=flop is set to remember that a negative dividend
was originally present.

Nothing further takes place until pulse ET2, allowing
the adder to set up. Then, if the dividend was origin-
ally negative, control passes to DIVT1, which again
swaps the MQ and AR (this time the AR is negated),

4-10

leaving the correct low-order dividend in the MQ
where it belongs, and the complemented high-order
dividend in the AR. The AR answer will be correct,
unless the low-order part was all Os, in which case,
the 2's complement should propagate a carry all the
way to the high-order word. This condition is check~-
ed at DIVT1 through DIV LOW ZERO COND, and is
true whenever a carry propagates all the way through
the adder and the instruction is a fixed=-point division,
or whenever bits 8 through 35 of the adder are 0 and
the instruction is a floating-point division. Because
the AD CRY 36 was previously set, it is cleared, un-
less the DIV LOW ZERO COND is true. The other
adder enables are set for the positive AR. Hence,
DIVTS either reads the identical AR or the AR+1 into
the AR.

Control reaches DIVT4 either from DIVT3, or directly
from ET2 if the dividend was originally positive.
DIVT4 shifts the sign bit out of the MQ, and then
proceeds to DST1 for a fixed~point divide, or returns
to additional special logic for floating point.

The divide subroutine consists of DST] through DST7,
and is used for all divides in the KA10. DST1 sets the
DSF1 flip-flop, which controls the direction of shift-
ing (to the left) and the conditions governing AD MD+
and AD MD-. If the result of a division step is posi-
tive (ADO (0)), the magnitude of the divisor should

be subtracted from the dividend; if the result of a
division step is negative (ADO (1)), the magnitude of
the dividend should be subtracted from the divisor.
Because the divisor is in 2's complement form, addi-
tion and subtraction of the divisor must be exchanged
when the divisor is negative. Hence, BRO is effective-
ly exclusive ORed with ADO to determine whether an
addition or subtraction must be made. DST1 sets the
adder gates to initially subtract the magnitude of the
BR from the AR. After a suitable delay, the sign of
the initial result is checked. If the result is still
positive, the divisor is too small, relative to the djvi-
dend to hold the answer in the current word size; there-
fore, DST7 sets the appropriate overflow flip=flops
and proceeds immediately to ST9, bypassing the store
cycle, so that the initial values are still available in
the ACs or memory to provide data for determining

the cause of the overflow.

If the first result is negative, DST2 calls the SC sub-
routine, which performs the next 35 steps of the divi-
sion (27 for floating point). The bits of the quotient
are the complement of the adder sign bit and enter
MQ35 when the combined AR and MQ are shifted
left. The shift pattern is shown on the "SCAF" flow
chart. At the completion of the shift and count sub-

4-11

routine, control returns to DST3, which shifts the last
quotient bit into the MQ, and loads the last remainder
bit into the AR, this time without shifting. The adder
enables are once more set according to AD MD+ and
AD MD-. At DST4, the remainder is corrected if the
last step of the division made the remainder negative.
DST4 also sets up to give the remainder the correct
sign; that of the original dividend, stored in DSF7.
At DST5, the remainder, having the correct sign, is
loaded into the MQ, and the quotient is brought back
to the AR from the MQ. If this was a fixed-point
divide, the adder is set up to negate the quotient if it
is necessary. For a floating-point divide, the adder
is set to round the quotient. Control then returns to
either the fixed or floating=-point divide logic, which-
ever is appropriate. -

The fixed-point divide logic ends at DIVT5, at which
time the negative quotient is loaded into the AR if the
exclusive OR of the original divisor and dividend signs
were 1. Control then passes to STO and the store
cycle.

4.4.2 Block Transfer

The BLT instruction is unique in that it may make a
large number of memory cycles and, hence, needs
to be interruptable at any point. When interrupted,
the routine must be able to restart where it left off.
The flow for BLT is on the "SCBT" flow diagram.

The BLT instruction initially specifies the PC + 1 INH
condition so that the PC is not incremented until all
words in the block have been transferred. The
FCCACLT level causes the fetch cycle to pick up the
first data word, whose address is in the left half of the
specified AC. At FT?, the AR contains the pointer
word from the AC with its halves swapped (to, from),
the MQ contains the first data word, the MA contains
the first "from" address, and the BR has the final
address (the effective address of the BLT). FT9 sets
the adder enables, which are used at ET2. ETO swaps
halves of the pointer word back to the original AR
configuration (from, to). At ET1, the "to" address is’
loaded into the MA. Then, at ET2, the data word is
brought back to the AR from the MQ, and the pointer,
with both its addresses incremented, is read into the
MQ from the adder. A memory "write" cycle is re-
quested and the control goes to the memory subroutine.

The memory control returns fo BLT T1, which sets up
the test by bringing the final "to" address back to the
AR from the MQ and clearing the left half of the AR.
The adder is set to subtract the BR from the AR. Be-

cause CRY 36 was cleared by BLT T1, the first time
AD17 will be zero is when the final address equals
the current "to" address. Because no bits are present
in the left halves of the AR or BR, AD17 just shows
the carry-out of the right haif. When BLT instruction
is complete, control goes to BLT T2, which increments
the PC and goes to ST1A, allowing the PC to settle
before going to the next instruction.

If more words are to be transferred, the next pulse is
a BLT T3, which clears the AD BR-EN so that the
adder controls are the same as they are during a fetch
cycle. The full-pointer word is loaded back into the
AR, and the priority interrupt system is checked for
waiting interrupts. If no interrupt is present, control
returns to the fetch cycle at FT6, the pulse which
prepares for FCCACLT. If an interrupt is waiting,
control passes to the store cycle via STO, which
stores the pointer word back into the AC.

4.4.3 Byte Manipulation

The byte manipulation group, part of the KE10
extended-order code option, consists of five instruc-
tions: LDB, DPB, ILDB, IDPS, and IBP. Byte in-
structions are performed in two parts: updating the
byte pointer word and generating a mask, and isolating
the actual byte in the data word. The flow of all byte
instructions is shown on the "BYTF" flow diagram.

The two parts of the byte instructions are distinguished
by the state of the BYF5 flip~flop; this flip-flop is 0
for the first part and 1 for the second part. The levels
BYTE PTR INC and BYTE PTR NOT INC divide the
byte instructions into two groups during the first part
of byte instructions, depending on whether or not the
pointer is to be incremented. The byte instructions
can be interrupted during the middle of a byte opera-
tion. The BYF6 flip-flop is set at the end of the first
cycle, where pointer incrementing occurs. Should an
interrupt occur before the second part can take place,
the state of flip-flop BYF6 is stored in memory along
with the PC. When the interrupt is dismissed, BYF$
is restored and the byte instruction restarted. How-
ever, on the second time through, incrementing the
pointer again would be erroneous; therefore, flip-flop
BYF6 causes ILDB and IDPB to become part of the
BYTE PTR NOT INC group. The IBP instruction does
not involve the above problem because it is completed
in only one part.

Byte instructions begin with the BYF5 flip~flop off
(shown at the left side of the BYTF flow diagram).
During the fetch cycle, the index and indirect parts

of the instruction register are enabled to receive the
same parts of the pointer word, when this word is re-
trieved from memory . If the pointer word is to be in-
cremented it is fetched, using the FCE PSE. The PC

is not incremented on any but the IBP instruction, and
the ST INH flip-flop holds off the store cycle until all
the byte logic steps are complete. The adder will be
set to increment the AR for BYTE PTR INC instructions.
Control leaves the execution chain at ETO. i

The BYTE PTR INC instructions go to BYT1, which
loads the SC with the position part of the pointer,
from AR bits O through 5. SC-EN calls for the second
input of the SCAD to be subtracted from the SC. This
second input is selected to be AR bits 6 through 11,
the size part of the pointer. If the result is negative,
the pointer has moved off the right end of the word,
and will have to be moved on to the next word; hence,
control goes to BYT2. BYT2 loads the AR with its old
contents plus 1, and clears the SC. BYT3 loads the
SC with 44 (octal), the position corresponding to the
leftmost bit in the word; this becomes an input to the
SCAD by virtue of its being in the SC. Either this
new position, or the one computed from BYT1, is load-
ed into the AR from the SCAD output at BYT4, thus
replacing the original position. The SC is cleared,
and the pointer is written back into memory. If this
has been an IBP instruction, it has been completed,
and the memory control will return to ST1A in the
store cycle. If the instruction has been an ILDB or
IDPB, control goes to BYT7 from the memory control .

The BYTE PTR NOT INC instructions bypass BYT]1
through BYT4, and join at BYT7, after going through
BYTS to set the SCAD enables in the same configuration
as they were at BYT1. BYF4 serves the dual function
of being the return control for the memory subroutine
and for the shift-and=count subroutine when making

up the byte mask. BYT7 loads the SC with the nega-
tive of the size because the size has been available in
its negative form from the SCAD for some time.

BYT7 then calls the shift-and-count subroutine, which
shifts Is in the MQ, to the left, making a mask of as -
many bits as the byte size calls for. BYT7A loads the
SC with the position of the byte and sets the SCAD to
negate it. Flip~flops BYF5 and BYF6 are set, to in=
dicate that the second part of the instruction is to be
entered, and that incrementing has been performed (if
called for). The main adder enables are set in the
same manner as by [TO and control is returned to IT1
where the effective address of the byte pointer is com=
puted. This is possible because the index and indirect
bits of the IR are loaded during the earlier fetch cycle.

- 4~12

If, during the address calculation, an interrupt occurs
the byte operation is aborted, but the state of the
BYF6 flip-flop is preserved, as previously described.
If no interrupt occurs, the second part of the byte in=
struction takes place; this time, the instruction is
divided into BYTE LOAD (ILDB and LDB) and BYTE
DEPOSIT (IDPB and DPB). The BYTE LOAD instruc-
tions fetch the contents of E and go immediately into
the shift-and-count subroutine from ETO, which also
picks up the negative of the SC from the SCAD. SCT3
shifts the AR (which contains the byte desired) to the
right, moving the rightmost bit into bit 35. The LBT1
pulse causes the mask in the MQ to be ANDed into the
AR, preserving only those bits of the AR that are part
of the desired byte. The BYF6 flip~flop is cleared and
control is sent to the store cycle for the completion of
the instruction.

The BYTE DEPOSIT group of instructions starts out in

a fashion similar to the BYTE LOAD group of instruc-
tions. However, this group also fetches the AC. The
shift-and-count subroutine is used to shift the mask

and byte in the AR to the left, simultaneously position-
ing both byte and mask. The desired result is that the
C(E) is unchanged when the mask has 0s and contains
the bits of the AC when the mask has Is.

DBT1 changes the adder enables to the condition of
BR+ only. At DBT2, the three main registers are
permuted such that the AR contains the mask, the BR
contains the byte, and the MQ contains the result
word. The adder is then set for the complement of
the AR, or mask. At DBT3, the mask, in the AR, is
ANDed into the BR, with the result that extraneous
bits in the original AC are set to 0; consequently, the
only 1in the BR will be in the desired byte. The AR
is loaded from the adder, producing the compiement
of the mask. The adder enables are then changed
again to give the BR+. At DBT4, the MQ is ANDed
into the AR, thereby preserving only 1 bits only in
the area of the result word where the byte is no longer.
Then, at DBTS, the byte is ORed into the AR, from
the adder. Hence, the function performed is: (Byte
AMask) V (C(E) A ~Mask). This group of instruc-
tions then returns control to STO, where the result is
stored back in E. This instruction group does not use
FCE PSE because it is possible to hold up the memory
for several microseconds during the shifting operation.

4.4.4 Floating Point

The floating-point instructions are the second half of
the KE10 extended order code option. There are four
primary subgroups in the floating-point logic, and

three additional special instructions. The four primary
subgroups are FAD, FSB, FMP, and FDV, and the three
special instructions are UFA, FSC, and DEN. The
UFA instruction is covered with the FAD group. In
each of the main groups, rounding and immediate mode
are options.

4.4.4.1

Floating Add and Subtract - This group in-

cludes all variations of FAD, FSB and UFA. The
"FAF" flow diagram covers the operation of this group
of instructions. The basic scheme of operation of all
instructions in this group is as follows.

a.

0

Find the operand with the {arger (in magnitude)
exponent.

Subtract the magnitude of the smaller exponent
from the larger exponent,

Shift the fraction of the number with the smaller
exponent to the right by the number of places
found in step b.

Add or subtract the two fractions.

Unless performing a UFA instruction, renormalize
the fraction of the result by shifting the fraction
to the left until its magnitude is between 1/2
and 1, and subtract 1 from the exponent of the
result for each step of normalization.

Combine the resultant exponent (which is the
original, larger exponent, less the number of
steps taken in normalization) with the normal-
ized fraction.

The FAD and FSB instruction groups each has an
immediate mode in which the effective address is used
as the operand; however, because the significant part
of a floating-point number is in the left half, FT8 in
the fetch cycle swaps the two halves of the AR, provid-
ing an immediate operand having significance in the .
left half, and 0'in the right half. FSB uses the main
execution cycle to negate the memory operand, which
starts in the BR. The operands are interchanged be-
tween the AR and BR, but this is immaterial because
A-B = -B+A.

Instruction UFA causes the fast memory address de-
coder to advance to the second accumulator at ETO
because the UFA has the added function of storing its
result in the second AC. All three operations join at

FATT.

Because floating-point numbers are in 2's complement
form, a complication results. This complication is
that the exponents of negative floating=point numbers
are in 1's complement form. (Because a fraction must
have some bit set, the +1 inherent in 2's complementa-
tion does not propagate all the way down to the ex-
ponent part of the word; hence, the exponent, con-
sidered as a separate number, will be in 1's comple-
ment form.)

FAT1 begins computation of the difference in magni-
tude of the exponents by loading the AR exponent info
the SC. If the two operands are of the same sign, the
SCAD is set to subtract the BR exponent from the SC.
If the operands are of different sign, the SCAD is set
to add the exponent in the BR to the SC. The main
adder is set to hold the BR+. At FAT2, the result of
the previous operation is loaded into the SC. The
desired result is the 2's complement difference of the
exponent magnitude because this result is needed to
control the shift-and=count loop. At FAT2, four
classes of result are possible.

a. If the result is negative (and the signs of the AR
and BR are equal), the correct result already
exists because a 2's complement subtraction was
performed. In this case, all SCAD functions are
disabled, causing the true SC to appear at the
SCAD output when the next time pulse ocaurs.

b. If the result is positive {(and the signs agree), the
result must be 2's complemented to obtain the
correct negative difference.

c. If the result is negative (and the signs are differ-
ent), a 1's complement number is added to the
positive number and, hence, a 1 must be added
to the result to get a 2's complement result.

d. If the result is positive (and the signs are differ=
ent), the result is too small by 1; therefore, 1's
complementing this number produces a correct 2's
complement result. (Note: =(x+1) = (x+1)' +1=
x'+1' + 1 =x" where ' = I's complement.)

At FAT3, the final correct difference is loaded into
the SC, and FAT3A is produced if the sign of the SC
is the same as the sign of the AR. FAT3A causes the
AR and BR to be interchanged, bringing the number
with the smaller exponent into the AR. This is true
because the sign being examined in the SC is that
loaded by FAT2 and is the result of a straight sub-
traction of exponents. If the signs are equal, then
the number originally in the AR is larger because the
subtraction does not change its sign; hence, the
numbers in the AR and BR must be swapped.

4-14

The branch following the delay after FAT3 determines
whether it is necessary to shift the smaller number to
the right. If the exponents differ by an amount great-
er than 54, all significance in the smaller number is
shifted off the end of the MQ, so that it is not neces-
sary to take time to shift. Because the number 64 is
easier to test for, the logic tests whether the SC has

a negative number of the form 7XX or a positive
number (which can only be 0 because of the logic -
from FAT] through 3) before operation goes to FATS
and the shift routine. FAT4 occurs when this condi-
tion is not met, and clears the AR and SC to set up
the adder for the add to come. FAT5 spreads the AR~
sign over the AR exponent because the exponent would
cause problems if shifted with the rest of the AR.

With this operation done, the fraction in the AR is
effectively a 36-bit, fixed-point number. Bits leaving
the right end of the AR register during floating-point
shifts enter bit 8 of the MQ because the high-order
bits of the MQ are used for determining the exponent
in long-mode operations. The AR sign is unchanged,
thereby propagating itself into all vacated bits to the
left of the fraction. The shift path is shown on the
"SCAF" flow diagram.

When shifting has been completed, control returns
directly to FAT6 (where FAT4 also goes). FAT6 picks
up the BR exponent, the exponent of the answer. The
SC will have been cleared by FAT, or the shift-and-
count subroutine, so the SC+BR setup gives just the

BR exponent. When FAT7 occurs, the exponent is
loaded into the SC, and the exponent part of the BR is
once more smeared with the BR sign to make the BR
number appear as an effectively fixed~pointed number.
The SCAD is set to complement the SC (in case the BR
was negative and the exponent was in 1's complement
form). FATS8 finally performs the actual addition of
fractions and, if necessary, picks up the complement
of the resulting exponent so that the exponent is always
positive when going into the normalization operation.
Control then passes to the common normalization
routine used for all floating-point operations.

4.4.4.1.1 Normalization - The normalization logic,
shown on flow diagram “NRF", performs several func-
tions for the floating-point operations.

a. The normalization logic takes care of the case
where the sum of two fractions exceeded 1 in
magnitude, thereby overflowing into bit 8.

b. This logic brings the first significant bit into bit
9 from the right, if any significant bits exist in
either the AR or MQ.

c. For all but division operations, this logic handles
rounding.

d. This logic inserts the exponent into the result word.

e. This logic fixes up (modifies) the MQ for long
mode, except for division.

The normalize logic begins at NRTO (called NR for
normalize - refurn because it returns to the main
timing sequence). The SCAD is set to count up by one,
and the main adder is set fo have the AR+ enabled.
After a delay, if the AR result (shown in the adder) is
all 0s, and either MQ bits 9 through 35 are all 0, or
if this is a floating~point divide operation, the NR
ALL ZERO condition is true. In this instance, control
is sent directly to NRT99 and then to STO. If the

NR ALL ZERO condition is false, control passes to
NRT1. In addition, NR SH RT COND will also be true
if the AR sign differs from AR bit 8 (the overflow bit
for the fractional addition), or if bit 8 is set and bits
9 through 35 are all 0. This latter condition is neces=
sary to detect the case of exactly -1 as a fraction,
which must be turned into -=1/2 with an increased ex-
ponent. When NR SH RT COND is true, the AR is
shifted right one place, and the incremented exponent
is loaded into the SC from the SCAD. The MQ is also
shifted, unless in a floating~point divide instruction,
because, in that case, the MQ does not contain an
extension of the quotient, but rather contains a re-
mainder.

For all non-trivial cases, flow proceeds to NRTI,
which sets the SCAD to complement the SC. This
step is necessary for normalization operations going
to the left because the exponent needs to be decre-
mented. Exponent decrementing is accomplished by
first complementing, incrementing as necessary, and
then recomplementing. The output of the delay after
NRT1 combines with the output of the delay from
NRT2 and tests for the NR NORMAL condition. A
number is normalized when ARO is different from AR9,
or the fraction is 400 000 000 (i.e., AD? (1) A AD
10 through 35 = 0); also, the UFA instruction forces the
NR NORMAL condition to be true. :

If the number in the AR is not yet normalized, the
NRT2 delay loop is circled (each time, loading the
SC from the SCAD), shifting the AR left and shifting
the MQ left if not in FDV. The first time through
NRT2, the complement of the exponent is loaded in-
to the SC; however, because NRT2 does a SCAD SC+1
SETUP, all successive times through the loop give in-
crements. When the number is normalized, control
passes to NRT3, which performs the final increment

into the SC and sets up to recomplement the exponent .
If the exponent was normalized to begin with, the
NRT3 pulse picks up the complement, which was set
up at NRTT.

Following the delay after NRT3, the rounding condi-
tion is examined. NRF1 is set when rounding has
already occurred, or when rounding is not desired,
when it might otherwise occur; in particular, during -
FDVR, rounding is done by a different algorithm. The
NR ROUND condition is NRF1 (0) AND IR4(1) AND
MQ8(1) AND NOT (MQ9%-35 =0 AND ARO(1)). In
this situation, IR&(1) indicates that an "R" mode in=
struction is present, MQ8(1) indicates that the magni-
tude of the fraction in the MQ is at Jeast 1/2 and that,
if the AR is negative, the magnitude of the fraction in
the MQ is not exactly half. The last condition (NOT
(MQ8-35 = 0 AND ARO(1))) is necessary because nega-
tive numbers truncate in the more negative direction
in 2's complement. An additional consequence of 2's
complement arithmetic is that the fraction in the MQ
is always positive, so that a negative number in the
AR (which is inexact and therefore has additional bits
in the MQ) is an additional "one more” negative.

As an example, consider the number -1 in the AR:

777 777 777 777 . Then =1-1/4is 777 777 777 7776

in the AR and 001 400 000 000 in the MQ, using MQ8
as the most significant bit. This number, when rounded,
becomes -1 and, hence, 1 has to be added to the AR.
Note that MQ8 was a 1. By a similar argument,
~1-3/4 should become -2. In this case, the MQ
would contain 000 400 000 000, with MQ8 a 0, which
will not cause the AR to be changed. The MQ holds
001 000 000 when -1-1/2 is represented. Here, MQ8
isa 1, but the desired result is -2. This special case
is picked out by the logic to prevent incrementing of
the AR.

If NR ROUND is true, control proceeds to NRT6,
which loads the SC with the recomplemented exponent
(now in positive form), sets the adder to add one to
the AR, and sets NRF1, indicating that rounding has
occurred. NRT7 loads the AR with the incremented
fraction, and returns control to NRTO. This loop is
necessary since the fraction may no longer be normal-’
ized because the one which has been added may have
caused overflow in bit 8. The easiest way to handle
the problem is to proceed through the entire renormal-
ization process.

If NR ROUND is not true, control goes from NRT3 to
NRT4. NRT4 loads the positive exponent into the SC,
and if the AR is positive, disables cll inputs to allow
SCAD to hold the true number in the SC. The over-

flow and underflow conditions are checked on the

4-15

contents of the SC, prior to being recomplemented.

If SCO is 0, then the true exponent would have a 1 in
bit 0, and would, therefore, be invalid. This con=
dition sets the overflow flag and the floating=point
overflow flag. If both SCO and SC1 are 0, then the
exponent underflowed, meaning that the sum of two
exponents is negative. NRTS returns the exponent to
the AR, via the SCAD. If the AR is negative, then
the SCAD SC COMP enables are left on at NRT4, and
the complement of the exponent is used.

Following NRT5, floating-divide instructions return
to their own special timing chain. Long-mode
floating-point operations, other than FDVL, proceed

to NLTO. All other operations are completed. NRT99-

provides a common exit for the normalize subroutine
and then returns to STO.

The "long" mode of the floating-point operations re-
turns a second accumulator which contains additional
significance for addition, subtraction, and multiplica=~
tion, and the remainder of divisions. The division
case is handled separately. The major task of the
"NL" timing chain is to give the low=significance
word an exponent that is 271 less than the exponent
of the word in the AR.

NLTO sets the SCAD to subtract 33g (27]) from the
exponent in the SC. At NLT1, this exponent is load-
ed back into the SC, and the high-order result is
temporarily moved to the MQ. If the reduced ex~
ponent is still positive, the MQ (which contains the
low=significance bits) is brought into the AR; if the
reduced exponent underflows, the AR is cleared. The
underflow of the low-order exponent is not considered
an error. NLT2 shifts the AR to the right one place,
moving the most significant bit into bit 9. All
floating~point shift operations use bits 8 through 35
of the MQ to preserve significance and, hence, the
result must be moved right one place at the end. The
SCAD enables are cleared by NLT2, leaving the true
low-order exponent at the SCAD outputs. At NLT3,
the exponent is loaded into the AR if the fraction is
non-zero. Lastly, NLT4 interchanges the MQ and
AR, returning the result to its proper position. Con-
trol then passes to NRT99 and STO.

4.4.4.2 Floating=-Point Multiply ~ The steps that
perform floating-point multiplication are:

a. Compute the resulting exponent as the sum of the
magnitudes of the exponents of the operands, less

200 (octal).

b. Perform multiplication, using the standard multi-
plication algorithm.

c. Normalize the result, using standard NR logic
and "long" mode logic, if necessary. The ex-
ponent calculation is a common routine used for
both floating=point multiply and divide instruc=
tions.

4.4.4.2.1 Floating=Point Exponent Calculation -
Floating=-point exponent calculation is complicated by
the fact that exponents can be either true or comple=
mented, depending on the sign of the full word contain-
ing them. The problems here are similar to those en-
countered in the floating=point add exponent situation.
For floating=point multiply, the FP routine is entered
directly from ETO, but floating=point divide instruc~
tions may use additional logic before reaching FPTO.
FPTO loads the SC with the exponent of the AR oper-
and. If the AR is negative, the SCAD is set to com-
plement the SC to get the true exponent. At FPTI1,
the true exponent is loaded into the SC, and the BR
input to the SCAD is enabled. The condition FP EXP
ADD, determines whether the BR exponent is added to,
or subtracted from, the SC. The FP EXP ADD condi-
tion is true for divides if the BR is positive, and is

true for multiplies if the BR is negative. Unfortunate-
ly, this signal is misnamed because, if FP EXP ADD is
true, the exponents are subtracted, and, if false, the
exponents are added. The SCAD +1 EN is set for
divides because the desired result is the difference be-
tween the magnitudes of the exponents, and if the FP
EXP ADD condition causes the exponents to be added,
it is because the BR is negative. Therefore, the ex~
ponent in the BR is in 1's complement form and needs

a 1 added to get a 2's complement result. For the sub~
traction case, the addition of 1 is necessary in 2's
complement as usual.

FPT2 loads the result of the previous calculation into
the SC and cuts off the BR inputs to the SCAD, en-
abling the number 200g instead. The 200g is needed
because exponenfs are kept in excess 200 notation
(which makes it possible to use fixed~-point comparison
operations on floating-point numbers). If two expon-
ents are added, it is necessary to subtract out 1 of the
excess 200; if exponents are subtracted, the excess
200 must be added again. For divisions, the SC+EN
is set to add the 200, and, for multiplies, SC-EN
causes the 200 to be subtracted (in 2's complement).
At FPT3, the exponent parfs of the AR and BR are
reduced to sign bits because no further use is made of
them, and having them as sign bits simplifies the

4-16

multiplication or division that follows. The final ex-
ponent is loaded into the FE register from the SCAD,
where it stays while the SC is being used to count
iterations of the multiply or divide. For multiplica-
tion, the SC is cleared prior to being loaded with the
number of shifts. For division, the exponent is loaded
into the SC because it may have to be manipulated
once more. The SCAD is set to increment the SC,
and main adder enables, which may have been set
earlier in division, are cleared. Multiplication flow
proceeds to FMT1 and division flow to FDT1.

4.4.4.2.2 Multiplication and Normalization - After
returning from the floating=point exponent calculation
routine, FMT1 sets the SC to 745, which calls for 27
(decimal) shifts. This is the number of significant bits
in floating-point fractions. Because the shift path be-
tween the AR and MQ enters the MQ at bit 8, 27
shifts are sufficient to align the product correctly. in
the AR and MQ. The adder BR + EN is set (prior to
permuting the operands); this is necessary to get the
memory operand into the MQ and the AC operand into
the BR. At this point, floating=point multiplication
joins the fixed-point multiplication logic through
SCT4. This operation has been explained in detail

in Paragraph 4.4.3. After SCT4 (this is a floating=~
point multiply), control returns to pulse FMT3, where
the final result in the adder is loaded into the AR, and
the last multiplier bit (contained in MQ35) is cleared.
The SC is 0 on return from SCT4, so the exponent can
be ORed into the SC prior to going to the normaliza=
tion return routine (which completes the floating=point
multiplication).

4.4.4.3 Floating~Point Divide - The floating divide
instructions in the PDP~10 System are the most com-
plicated in the machine. The FDVL instruction
(floating divide long) has considerable additional
complication because it requires a double-length
operand and gives a remainder as part of the result.

The following steps are taken as part of a floating
divide.

Step ‘ Procedure
I Take the magnitude of the dividend, re-
membering its original sign.
2 Compute the exponent of the quotient.
3 Test to determine if the magnitude of the

dividend is greater thdn the magnitude of
the divisor; if it is, shift the dividend right
one place and increase the quotient ex-
ponent by one.

Step Procedure
4 Set the shift count for the divide loop,
taking one extra step when rounding is
called for.
5 Call the divide subroutine to perform the

actual division.

6 Round the quotient on the basis of an extra
bit developed in the quotient, when
called for.

7 Normalize the result, using the normalize

subroutine.

8 Recomplement the quotient, if necessary,
and return to STO, unless the instruction is
FDVL.
9 Refetch the dividend to get its exponent.
10 Subtract 27 (decimal) from this exponent

(or 26 if step 3 above, was necessary).

1 . Affix the exponent to the remainder unless
the exponent underflowed or the remainder
is zero.

12 Return the results to the usual registers

and return to STO.

The description of the floating divide routine is shown
on the "FDVF" flow chart. The FDVL instruction
fetches both ACs, and uses the early part of the fixed-
divide timing chain (DIVT1 through DIVT4) to take a
two-word magnitude. This operation can be followed
in the description of fixed-point divide in Paragraph
4.4.1.4. Al other floating=-point divide instructions
have a one-word operand whose magnitude is taken by
FT? and ETO. At this point, all floating divide in-
structions go through the floating=point exponent cal-
culation subroutine previously explained in the float-
ing multiplication description, Paragraph 4.4.4.2.1.
The floating=-point exponent calculation takes the _
difference between the magnitude of the exponent of
the dividend and that of the divisor. After returning
from FPT3, FDT1 sets up to subtract the magnitude of
the divisor from the dividend to check for overflow.
For the remainder to be correct, the number of quotient
bits which must be developed to yield a normalized
result must be precomputed. Assuming normalized
arguments (in the range 1/2 to 1), the quotient must
lie between 1/2 and 2. If the dividend is larger than
the divisor, yet still normalized, the quotient must

lie between 1 and 2. If this is so, an equivalent

answer is obtained by shifting the dividend to the right

- 4=17

one place and increasing the exponent of the quotient
by 1, yielding a fractional quotient between 1/2 and
1. Through this stratagem, the quotient of any two
normalized numbers will itself be normalized, and
hence, the remainder will be correct.

If bit ADO is O following FDT1, the result of the sub-
traction is still positive, indicating that the dividend
in the AR was larger; hence, FDT2 is generated, re-
setting the adder to hold only the AR, and clearing
the FE. FDT3 shifts the entire dividend in the AR and
MQ right one place and also reloads the FE with the
increased exponent. The SCAD was previously left
holding the increased exponent by FPT3. Flip-flop
FDF3 remembers that this step was taken, for later use
in handling the exponent of the remainder for a FDVL
instruction. The two paths merge at FDT4, which
clears the SC in preparation for FDT5. FDT5 loads the
count of the number of shifts to make during actual
division. An extra step is called for if the rounded
mode is used. This extra bit is squeezed out later
after it is used to round the result.

FDT5 calls the division subroutine (whose operation

is described in Paragraph 4.4.1.4). Following DST5,
control returns to FDTé (which achieves rounding be-
cause DSTS previously set the adder to add one to the
quotient). FDT6 shifts the quotient right one place
because one extra quotient bit is developed when
rounding is indicated. If this bit is 0, the plus 1
would have made the bit a 1; however, the 1 would
be shifted off the right end anyway. If the extra bit

isa 1, then a +1 would have incremented the quotient.

FDT6 also retrieves the exponent of the quotient from
the FE and sets NRF1 to prevent the normalizing rou-
tine from rounding. Control is then given over to the
normalizing routine, for the following reasons.

a. If the operand was un-normalized, the result will
be normalized.

b. The normalizing routine has the logic required to
insert the exponent into the quotient. For floating
divide instructions, the normalizing routine re-
turns control to FDT7 from NRT5. FDT7 sets up to
negate the quotient and, at FDT8, this negative
is taken if one and only one of the original oper-
ands is negative. The adder enables are set back
to the true AR only. After FDT8, control is sent
to STO for non-long-floating divides because the
correct quotient is now in the AR.

FDT? moves the quotient to the BR, clears the AR,
and clears the SC in preparation for again retrieving
the original dividend. This step is necessary because

the remainder must be given an exponent of as many
powers of two less than the dividend as there were

steps of division. The AC is retrieved in the usual

way by FDT10 or by the memory subroutine. At FDT11,
the exponent of the dividend is loaded into the SC.
The remainder is brought into the AR from the MQ,

and the SCAD is set to either add or subtract 32 or 33
(octal). Addition occurs if the dividend and, hence,
its exponent, is negative; subtraction occurs if the
dividend and, hence, its exponent, is positive.

The number 32 is selected if the FDF3 flip~flop is set,
indicating that the dividend was shifted right one
place of FDT3. FDTI12 reads the exponent back into
the remainder, if the exponent still has the same sign
as the remainder, and the remainder’is non-zero. If
the sign associated with the exponent changed, the
exponent underflowed, and, hence, the remainder is
set to 0. FDTI3 returns the remainder to the MQ and
prepares the adder to show the quotient in the BR,
which is returned to the AR at FDT14. Control then
returns to STO.

4.4.4.4 Floating Scale = The floating scale instruc-
tion multiplies floating=point numbers by powers of
two by adding the power of two to the exponent. The
instruction flow is found on the "FSDN" flow chart.
ETO begins the operation by loading the SC with the
effective address, taking bit 18 as the sign, and bits
28 through 35 as the rest of the significance. The
AR, containing the AC, is moved to the BR because
the input gates to the SCAD come from the BR. De-
pending on the sign of the AR, the SCAD is set to
either add or subtract the exponent (which will be the
BR to or from the SC. This is done because the ex-
ponent may be either in true or 1's complement form.
If the number is negative, and the exponent is com-
plemented, the usual +1 associated with subtraction

is disabled because the number is in 1's complement
form. At ET1, the exponent part of the AR is cleared
to sign bits (a requirement of the normalization logic).
The new exponent is loaded into the SC at ET2 and
control passes to the normalize return logic (where the
number is normalized if necessary and the exponent
part is re-inserted into the word). An additional reason
for using normalization logic is that the exponent will
not be inserted in a word with a zero fraction.

4.4.4.5 Double-Floating Negate - This instruction
was necessitated by the double-precision floating-

point format used by the PDP~10. In this format, the
low-order word is kept with positive sign and expon-
ent, independent of the sign of the high~order word.

4-18

To negate a double-precision quantity, it is necessary
to negate only the fractional part of the low-order
word and then complement the entire high-order word,
propagating a carry from the low~-order fraction when
necessary. This instruction is shown on the "FSDN"
flow chert.

In DFN, the AC contains the high-order word, and the
C(E) contains the low-order word. These arguments
are in the AR and BR, respectively. FT9 sets the add-
er for the 2's complement of the BR and sets the SCAD
for the exponent of the BR. At ETO, the low-order
exponent is loaded into the SC, the negated low~order
part is loaded into the AR (from the adder), the high-
order part is moved from the AR to the BR, and, if the
fractional part of the adder (bits 9 through 35) is not
all 0, the carry 36 input to the adder is cleared. This
last operation causes the carry to continue to propagate

into the high-order word only if the low=order fraction
is all 0.

ETO also clears all miscellaneous inputs to the SCAD

so that the contents of the SC are available at the
SCAD output. At ET1, the exponent is restored to

the low-order word, unchanged. ET2 moves the low-
order word back to the BR, and the complemented

(and possibly also incremented) high-order word is
brought back to the AR, thus completing the operation.

4.5 KAT0 CONSOLE KEY LOGIC

The logic associated with the console is known as the
KEY logic. This logic is primarily concerned with
the "action"” keys: stop, reset, start, continue, XCT,
examine, examine next, deposit, and deposit next.
Logic is included to allow these functions to be re-
peated at varying speeds (when appropriate). The
KEY operations can be followed on the "KO" flow
diagram.

4.5.1 STOP Key

The simplest action is caused by the STOP key. This
key, through an initial transient detector, generates
the KST 1 pulse providing KEY RUN CLEAR which
clears the RUN flip~flop. The machine is given a
100-ps delay to stop (which it usually does). The
machine examines the RUN flip-flop between in-
structions. After this 100-ps delay, the address time
chain is broken by IFQ being held in the 0 state for
100 s by the KEY AT INH delay. Because all in-
structions (except BLT) must go through that point in
the logic at least once every 100 ps, the machine is
likely to stop.

4.5.2 RESET Key

The RESET key is similar to the STOP key, except that
it may be repeated and, therefore, has a flip-flop
which holds the information that the key has been
pressed. Flip-flops are provided for all keys whose
functions may be repeated. Pressing the RESET key
first clears KEY REPT SYNC, stopping any key func=~
tions. KEY RESET is an input to the KEY MANUAL"
initial transient detector, which gives a single transi-
tion from potentially bouncy mechanical contacts.
KEY MANUAL triggers a 30-ms delay to allow bounc-
ing to stop, and then gives KEY FCN STROBE. This
signal reads the state of the repeatable action keys
info a set of flip-flops. It is assumed that only one
key at a time was pressed.

After T s, KTO occurs. This pulse starts the repeat
delay if the REPEAT BYPASS switch is set. REPEAT
BYPASS causes repeatable actions to be reinitiated
even if they never reach a normal conclusion. If RUN
is on during a RESET operation, control passes to KST1,
as if STOP had been pressed. Following the second
100-ps delay (KEY AT INH), KST2 gives the MR
START pulse, which clears all internal control states
and I/O device control registers.

4.5.3 REPEAT Key

If the REPEAT key is on when RESET is pressed, the
KEY REPT SYNC flip=flop is set at KEY FCN

STROBE (or KTO, too). KST2 gives the KEY DONE
pulse, which either clears the key function flip~flops
if KEY REPT SYNC (0), or triggers the KEY REPT DLY
if KEY REPT SYNC (1). If the REPEAT switch is off,
KEY REPT SYNC is cleared. The repeat loop is closed
by the off-going transition of the repeat delay, which
triggers KTO if KEY REPT SYNC is still on. If not,
KEY FCN CLR is generated, which clears the key
function flip~flops.

4.5.4 START Key

The START key operation goes through the KEY
MANUAL logic, as described above for RESET. KTO
triggers KTOA, a logically identical pulse but, elec-
trically, a B-series pulse. If the RUN flip-flop is set,
the START function is not allowed, and control goes
immediately to KEY FCN CLR. [If RUN(0), KT1 EN
causes entry into the KT1 through KT4 chain, which,
for the START operation, gives MR CLR, clears the AR,
reads the address switches into the MA, then reads the
MA into the PC, and turns on RUN, exiting through
KT4 to ITO to start a normal instruction.

4.5.5 CONTINUE Key

The operation of the CONTINUE key depends on how
the machine came to a stop, if, indeed, it has stopped.
The KEY MID INST STOP level is true when the ma-
chine has stopped in the middle of an instruction; i.e.,
MC STOP (1) or SC STOP (1). If MC STOP (1),
MCRSTO is given to restart the machine at KTOA. If
SC STOP (1), SCT1 is triggered from KTOA. RUN is
set on CONTINUE if KEY MID INST STOP is false.
Unless RUN (0), and KEY MID INST STOP was false,
the CONTINUE function is complete, and KEY DONE
occurs. In the remaining case, the instruction
sequence needs to be restarted, and, therefore, KCTO
is generated followed by a delay to allow RUN to
settle on (it was turned on at KTOA) and then KT4
returns to the main instruction sequence.

4.5.6 EXAMINE, DEPOSIT, and EXECUTE Keys

EXAMINE, DEPOSIT and EXECUTE can be considered
as a group known as KEY SYNC OPS, because their
function occurs, even while the machine is running,
by being so synchronized as to have their effect occur
between instructions. When RUN (0), these keys go
through the normal KTO=-through=KT3 timing chain.
When the RUN (1), however, they set the KEY SYNC
RQ flip=-flop at KTOA, and then wait for the following
sequence. The next FT9 sets the KEY SYNC flip-flop,
followed by an ST9 when EXCTF (0) diverts the normal
path from ST? to ITO into KT1, which then performs
the required action.

EXAMINE reads the address from the address switches
into the MA, and then proceeds to make a memory
read request. MI PROG is cleared, allowing the new
reference to show in the MI lamps. DEPOSIT clears
the AR and then reads in the DATA switches, and
picks up the address switches into the MA. It then
makes a memory write request. The KEY F1 subroutine
return flip=flop inhibits relocation on key-controlled
memory references. EXECUTE causes the DATA
switches to be read into the AR, and then transfers
the AR to the IR by doing an MC WR RS, sending the
data over the memory bus. The IR LT and RT enables
are set by KT2. Because the instruction cannot be
restarted in case of interrupt, Pls are inhibited by the
KEY PI INH flip-flop for one instruction. EXECUTE
enters the normal time chain via KT3A at IT1, where
the processor treats it as though it has just retrieved a
new instruction from memory .

EXAMINE NEXT and DEPOSIT NEXT are allowed only
when the machine is stopped because the examine or

deposit address information is kept in the MA. These
operations increment the MA, and then perform the
corresponding simpler operation. The only compli-
cation is that the MA cannot be directly incremented
and, therefore, the key-next time chain, KNTI through
KNT3, is employed to use the PC counting circuit.
Because the original PC cannot be lost, it is saved in
the AR when the MA (examine or deposit address) is
sent to the PC at KNT1. KNT2 increments the PC
(examine or deposit address) and brings the AR
(original PC) back to the MA. KNT3 sends the PC
(examine or deposit address, incremented) to the AR,
and restores the original PC from the MA. KTI re~
trieves the examine or deposit address, incremented to
the MA from the AR. '

4.5.7 READ IN Key

READ IN operation follows the "RIMF" isolated flow
diagram. The READ IN key puts the machine in a
special mode for initially loading programs into a
cleared machine. It is allowed only when RUN (0).
At KTOA, an IOB RESET pulse is sent to all 1/O devices
by MR START, and a 1.5-ps delay is set at KTO. The
IR is loaded with a DATAI to location O of the device
set in the READ IN DEVICE switches. At the end of
the KEY RDI DLY, mentioned above, the IOT RDI
PULSE is sent, selecting the device whose code was
just read into the IR, and initiating that device to per=
form its read in operation. Each time the selected de-
vice has a word of data, it pulses the IOB RDI DATA
line, causing the KT1-through=KT3A time chain to
run, exiting to IT1. On the first data word, the same
DATAI instruction is executed (for a second time, al-
though the first one has no effect), reading the count
and address into location 0. On successive 10B RDI
DATA pulses, the disappearance of the IOB RDI DATA
pulse sets the KEY RDI PART 2 flip-flop. A BLKI to
location 0 is loaded into the IR, which uses the pointer
word read in earlier to read in data from the selected
device.

4.6 KA10 MEMORY CONTROL

4.6.1 Memory Subroutine

The memary control section of the KA10 is a hardware

subroutine with multiple entries. Its function is to
communicate with the memory system over the memory
bus and to sort out request involving the optional
KMIO fast memory. A complete description of the
memory bus itself is found in the PDP-10 Interface

. 4=20

Manual (DEC-10-HIFB-D). The reader should become
familiar with the bus system before proceeding.

The memory control flow is shown on the "MCEM"
flow diagram. The calls to the memory control are
shown at the top of this drawing. They fall into four
broad groups:

a. Read Request
b. Recd/Wrif_e Request
c. Write Request
d. liecd/\Nrife Restart
The fast memory~-read request is used when it is neces=

sary to fetch a word which would always be located in
the fast registers (if they were available), but, in this

instance, they are either not implemented or disabled.

Therefore, the main memory system is used for the
first 20g locations. This group of requests is further
characterized by the fact that the addresses required
are not in the MA, but are available at the output
of the fast memory~address mixer.

The MC FM RD RQ signal sets the MAI FMA SEL

flip-flop, which forces the high-order 14 bits of the
address presented to the memory bus to be zeros, and
selects the FMA mixer as the low-order 4 bits. This

type of request then becomes an ordinary read request.

4.6.2 Read Cycles

The MC RD RQ PULSE sets the read flip~flop and
clears the write flip~flop, signifying a simple read
cycle. It also clears the AR, which receives the
data. The next pulse, MC RQ PULSE, does the
following:

Clears the MC STOP

a.

b. Clears the MC PAR STOP

. Clears the PB (parity buffer), which will be used
to compute the parity of the incoming data word

. Sends a pulse to the priority interrupt system to
synchronize requests to that system.

If the machine is not in USER mode, or if the address
in the MA is less than 20g, the MC RQ flip~flop is
set 45 ns after the MC RQ PULSE. The MC RQ flip-

flop is what actually starts the memories on the bus.

- 4-21

If the machine is in USER mode, 140 ns are allowed
for the relocated address to set up. Then the MC RQ
is set only if the address is valid (-PRA ILL ADR). If
the address is illegal, the MC ILLEG ADR pulse is
fired, setting the CPA MEM PROT FLAG, and aborting
the memory cycle. In this instance, control returns to
ST9, unless this was an instruction or address calcula-
tion fetch, in which case, control returns to IT1.

The MC RQ signal only reaches the memory bus if
two other conditions are fulfilled:

a. At least one of the read or write requests is set

b. Either the fast registers are disgb"l-ed or this is not
a request for a location below 20g.

Assuming these conditions are fulfilled, the request
(now called MC REQ CYC) is sent to the bus. The
processor now stops and waits for a response from the
memory; in particular, address acknowledge (called
MAI CMC ADR ACK in the drawings). This pulse,
regenerated as MC ADR ACK, clears the MC RQ flip-
flop and the parity flip~flop. On a read cycle, no
further action results from this pulse.

After the arrival of ADR ACK, the memory should send
the data bits, along with RD RS. If neither the MC
STOP nor the MC PAR STOP flip-flops were set (by
the MC STOP SET pulse, which occurs after a delay
from the MC RQ PULSE), MCRSTO (memory control
restart, time 0) is generated from MAI CMC RD RS.
MAI CMC RD RS is reshaped as MC RD RS, which is
then delayed 140 ns to allow the parity network to set
up. If the console PARITY STOP switch is on, the
MC PAR STOP flip~flop is set, requiring verification
of correct parity before triggering MCRSTO. If the
parity is acceptable (-PN PAR EVEN OR MC IGNORE
PARITY(1)) and MC STOP (0) and MC PAR STOP (1),
MCRSTO occurs after the delay.

If the parity is even, the MC PAR ERR pulse occurs,
setting the MC STOP flip-flop if the PARITY STOP
switch is on, causing the console MEMORY STOP
lamp to be on when the machine stops. The CPA PAR
ERR flip-flop is set on any parity error, independent
of the parity stop setting. The PARITY STOP switch,
therefore, gives two choices: proceed rapidly, but
set the “parity error flag", causing an interrupt on a
parity error; or wait until each word has its parity
checked before proceeding, and stop on an error. The
latter mode is normally used only for maintenance, or
if memory failures are suspected as the cause of an
otherwise unexplained problem.

Following MCRSTQ, a 65-ns delay allows the data to
seftle in the AR (and possibly IR) before control is
returned to the calling routine by MCRST1.

An alternate path for a read cycle occurs if the ad-
dress is not in the range of existing memory: a non-
existent memory reference. This is handled by an
integrating one~shot (R303) set for 100 ws. If this
time goes by following a memory request with the MC
RQ flip-flop still on and the MC STOP off, the MC
NON EX MEM pulse is fired. This pulse sets the
CPA NON EX MEM flag, and if the console NXM
STOP switch is on, sets the MC STOP flip~flop again
to light the MEM STOP console indicator. Control
proceeds to the MC NXM RST puise if the NXM STOP
switch is off. This pulse acts as if ADR ACK is pre-
sent. In the case of a read cycle, MC NXM RD oc-
curs, and if MC STOP has not been set for some other
reason, it simulates an RD RS, triggering MCRSTO.

In this case, the machine proceeds as if the word
addressed contains zero; however, the NON EX MEM

flag causes an interrupt, if enabled.

The remaining type of memory read cycle addresses
one of the first 20 registers, assuming the KM10 fast
memory is enabled. For this type of request, the MC
REQ CYC must remain false to avoid signaling the
core memory system that a word is required; this gating
is provided, as explained above. As was previously
mentioned, the fast registers also have their own ad=-
dressing network, independent of the MA; hence, it
is necessary to feed the MA outputs to the fast memory
address inputs. This is accomplished by a signal
called FMA MA EN, which overrides the normal FMA
(fast memory address) source. FMA MA EN is the
AND of MC RQ (1), MA 18-31 =0 and MC FM EN.
If this signal is true after a delay following the setting
of MC RQ), then the request is not going out on the
bus, but allows FMATTI to fire, loading the AR from

the fast memory, if in a read cycle.

The next problem is that the word retrieved from the
fast memory may also be required in the IR. Since
gates from the fast memory are provided only to the
AR, the memory bus data lines are used to convey the
information to the IR, if required. After a delay fol-
lowing FMAT1, FMAT2 hits MC ADR ACK, clearing
the MC RQ. Because it has been postulated that FMA
MA EN is true, the MC WR RS pulse is generated and
causes the MC MEM BUS FM AR pulse, which takes
the contents of the AR and puts it on the bus. Norm-
ally, this function is used only during a write cycle,
but here it serves to route the information to the IR.
Because no memory on the bus can be logically con=
nected to this processor at this time, pulsing various

bus fines has no effect on the memory system. MC WR
RS feeds info MCRSTO, which is in the normal return
path.

4.6.3 Write Cycles

Normal write requests enter through the MC WR RQ
PULSE. In the case where the fast registers would be
used if functioning, the MC FM WR RQ input is
available to set the MAI FMA SEL, such as is done
by the MC FM RD RQ. The MC WR RQ PULSE sets
the MC WR and clears the MC RD flip=flops, calling
for a simple write cycle. The flow-through to

MC RQ SET is the same as for a read cycle, including
the check for illegal addresses and the MC STOP SET.

In a write cycle, the only response from a memory is
the "address acknowledge", which becomes MAI CMC
ADR ACK, and then is fed to a PA to reshape it into a
standard pulse called MC ADR ACK. This pulse clears
the MC RQ and PB, as in the read cycle, and, then
because MC WR (1) and MC RD (0), goes on to MC WR
RS. This pulse generates MC MEM BUS FM AR, which
actually strobes the AR flip-flops onto the memory bus
and into the PB (parity buffer), since it has perma~
nently enabled input gates from the memory bus. After
a delay to allow the parity network to settle, the MC
BUS WR RS signals the memory to go on with its cycle,
because it now has the data from the processor.
Simultaneously, if the parity of the 36-bit word was
even, the MC PAR PULSE is sent, causing the 37th bit
to be set. In the meantime, if MC STOP has not been
set, MCRSTO is triggered by MC WR RS. MCRSTO
generates MCRST1, which restarts the calling routine.

For a write cycle which addresses fast memory, the
situation is identical to a similar read cycle, except
that FMAT1 does not load the AR from the fast memory
but, instead, hits the FMA FM FM AR(J) (fast memory

address fast memory from AR jammed) pulse.

4.6.4 Read/Write Cycles

The read/write cycle is used where the processor ex-,
pects to read a'word and send back a new word to the
same address within a microsecond or so. Since this
ties up the memory until the new word is sent back,
precautions are faken to avoid tying up the memory
for extended periods. The MC SPLIT CYC SYNC flip-
flop determines whether read/write cycles are to be
split into separate read and write cycles. This flip-
flop is cleared at the beginning of each instruction
by MR CLR, and is set at IT1 for any of the following
reasons:

4-22

a. KEY ADR STOP is true, allowing the possibility
of stopping the machine in the middle of an in-
struction

b. KEY SING CYCLE is true, for the same reason

c. IOB DR SPLIT is true, indicating that an 1/O de-
vice cannot even tolerate the extra microsecond
that may be squeezed intothe memory cycle, be-
cause it has its own memory port, which needs
rapid access

d. MC FMEN is false, indicating that core memory
has to be used for the first 20g locations. Be-
cause the KA10 fetches accumulators after it
fetches memory operands, it is possible that the
memory module containing the AC needed will
be hung up due to a previous read /write cycle.

The MC SPLIT CYC SYNC may also be set at FT1, if
MA 18-31=0 because read/write cycles are suppressed
in this instance, and this flip-flop carries the infor-
mation through to the store cycle in which a read/
write cycle was changed into separate read and write
_ cycles.

When a read/write cycle is successfully initiated by
FT1, the MC RD/WR RQ PULSE sets both the MC RD
and MC WR flip~flops, and clears the AR. The cycle
proceeds as a normal read cycle, returning through
MCRST1, which clears MC RD. During the sub-
sequent part of the instruction, the memory is pro-
ceeding fo that part of its cycle where it must have
the data to write into the cores. If that point is
reached, the memory stops and waits for write restart.

At some later time, the KA10 indicates that the data
to be written is available by causing the MC RD/WR
PULSE. If the MC SPLIT CYC SYNC is on, the read
part of the intended read/write cycle was turned into
a simple read cycle, and the write part must be done
as a simple write cycle; therefore, control goes to the
MC WR RQ PULSE. If MC SPLIT CYC SYNC is off,
the MC WR RS pulse is given, and control returns to
the main sequence through MCRST1, as usual .

4.6.5 Memory Indicator Register

The memory indicator register (MI) usually follows the
contents of the register addressed in the address

switches. This is accomplished by a comparator, which -

dynamically compares the address selected by the
memory address interface (MAI) with the AS (address
switches), and the FMA with the AS. On memory

references going through the memory control subroy=-
tine, MCRSTO samples the AS COND, which is true

if the MAI comparator is true and the FMA select is
false, or if the FMA comparator is true and the FMA
select is true. On a read reference, MITO is squeezed
in to allow a delay for the AR to set up; otherwise,
MITT occurs immediately.

The MI PROG flip~flop indicates that the MI has been
loaded by the DATAO Pl instruction, and that auto-
matic MI loading should be suspended; therefore, the
MI LOAD pulse occurs after MIT1 only if MI PROG is
a 0. The direct fast memory references are handled
similarly, using only the AS=FMA comparator.

The MI PROG DIS switch on the maintenance panel
allows the program-loading feature of the MI to be
disabled by holding the MI PROG flip-flop off and
disabling the MI PROG EN signal.

4.6.6 Address Stop or Break

The address stop feature allows the operator to cause
the machine to stop in a selected mode whenever a
given location is referenced. The address break
feature is similar, except that a PI request is made
rather than a stop. Three "address condition" switches
are on the console: instruction, data fetch, data
write. These translate to hardware terms as follows:

a. Instruction means that IFO(1) s
b. Data fetch means that IFO(0) and MC RD(1)
c. Data write means that MC RD(0) and MC WR(1).

The OR of these conditions makes MC SW COND.
AS=RLA (the archaic name for the AS=MAI compara-
tor) ANDed with KEY ADR STOP and MC SW COND
(ORed with KEY SING CYCLE) makes MC STOP EN,
which sets MC STOP after a delay following the MC
RQ PULSE.

In the case of address break, the AND of MC SW
COND, AS=RLA, KEY ADR BREAK and MC RQ (1)
generates a level transition which sets the CPA ADR
BREAK flip-flop which will eventually cause an
interrupt. :

4.6.7 Input/Output System

The input/output system operates over the I/0 bus,
which is a cable system similar to the memory bus. A

4-23

complete description of the 1/O bus is found in the
PDP-10 Interface Manual (DEC-10-HIFB-D), knowi-
edge of which is assumed below.

4.6.8 /0O Instructions

The flow of the eight 1/O instructions is found on the
"IOTF" flow diagram. BLKO and BLKI are special

in that they go through the address, fetch, and ex-
ecute cycles twice. Furthermore, the action of
BLK1/O depends on whether the instruction was ex-
ecuted in normal program sequence or as a result of

a priority interrupt (as the instruction in the PI loca~
tion). BLKI/O first picks up the pointer word during
the fetch cycle on a read/write request. At FT9, the
adder is set to increment both halves of the pointer.
At ETO, the new pointer is returned to the AR and, if
the left half did not overflow (AD CRY0(0)) and if
this instruction was not a PI instruction (P1 CYC(0)),
the PC is incremented, causing a skip. If overflow
occurred, and PIOV EN was true (indicating PI
CYC(1) or in read in mode), PI OV is set, causing the
interrupt not to be dismissed. IR12 is set at ETO,
changing this instruction into the corresponding
DATAI/O instruction; i.e., BLKI becomes DATAI and
BLKO becomes DATAO. ETO also clears EX ILL OP,
which fixes the following problem: a user program
(running in user mode) executes a non-relocated UUO
(op codes 0, 40-77); between the time the UUQ is
stored in 40 and the instruction in 41 can be executed,
a PI occurs; the PI does a BLKI/O instruction, which
does not overflow; if EX ILL OP remained set (from the
UUQ), the program would resume from the C(PC) un-
relocated, because relocation is suspended by EX ILL
OP. Lastly, ETO sets IOT F1, a subroutine flip-flop,
and calls MC RD/WR RS to return the pointer to
memory . When the memory control returns, IOT T1
clears IOT F1, and returns to the end of the address
cycle, AT3. The instruction is then treated as if it
were always a DATAL/O instruction, with the right

half of the incremented pointer as its effective address.

The remaining six 1/O instructions (other than BLKI
and BLKQ) fetch operands as needed, and set the IOT
GO flip-flop at ET0. As soon as the IOT RESET
DELAY is false, IOT TO is generated, starting the IOT
special timing chain. The reset delay allows the bus
to be reset to its quiescent state of -3V, without tying
up the processor unless two 1/O instructions come too
close together. [OT TO starts two one-shot delays:
the initial setup delay and the IOT RESTART DELAY.
The initial setup delay, lasting 1 s, fires IOT T2
when completed. This pulse clears IOT GO and
sends the first pulse associated with CONO and

DATAO, the CLR pulse. In another microsecond, the
IOT RESTART DELAY times out, generating 10T T3,
which causes the second pulse for the outward 10Ts:
CONO SET or DATAO SET. IOT T3B, a B-series
pulse, occurs simultaneously with IOT T3, reads the
/O bus into the AR, and sets the adder BR+EN (read-
ing the data switches into the AR, if the instruction
were a DATAI APR). The IOB DATAI and OB STATUS
(called IOB CONI on the 1/O bus) signals, which .
tell the 1/O devices to place their data on the bus,
are generated during the combined durations of the
IOT RESTART DLY and the IOT DATA DLY. The IOT
DATA DLY starts at IOT T2 and lasts 1.5 ps, giving a
total of 2.5 ps, during which data appears on the bus.
IOT T4 occurs at the end of the IOT DATA DLY. It
causes the AR to be ANDed into the BR on CONSO
and CONSZ instructions. Any other type of 1/O in-
struction now proceeds directly to ST0O. CONSX in-
structions take an extra time pulse, 10T T5, which
increments the PC if the skip condition is met. The
1/O bus is driven back toward -3V by the bus reset
gates for the duration of the IOT RESET DLY, less the
overlap time of the IOT DATA DLY of 0.5 s, giving
a reset time of 2 s,

4.7 KAT10 PRIORITY INTERRUPT SYSTEM

The priority interrupt (PI) system allows an 1/O device
to interrupt the normal sequence of instructions. There
is no flow chart specifically for the PI system, because
little sequential logic is involved.

Interrupt requests on the 1/O bus may appear at any
time and therefore must be synchronized in the pro-
cessor to be sure that no new request disrupts the com-
putation of which request to honor. The PI'system is
equipped with three registers: PIO (Pl ON), PIR (P!
Request) and PIH (PI Hold). There is also a master
enable called PI ACT, and two auxiliary control flip-
flops called P1 CYC and PI OV.

The incoming interrupt requests, called IOB Pl n,

are sampled by the PIR STB (PI request strobe) pulse,
which occurs at every MC RQ PULSE when not already
in a Pl cycle. -The PIRn flip-flop is set when a request
is true if the corresponding PIO flip-flop is on (indi-
cating that the programmer wishes to honor requests
from that channel) and if the corresponding PIH flip-
flop is off (indicating that an interrupt is not presently
in progress on that channel).

The processor determines whether it should take a Pl
cycle by examining the PI RQ signal, normally at IT1,
which occurs just after retrieving an instruction or an

4-24

indirect address. PI RQ is also examined during the
BLT instruction; however, if PI RQ is true, BLT will
first terminate in an orderly fashion, and the request
will be picked up by IT1. PI RQ is the OR of the
seven PI REQ n signals, ANDed with PI CYC(0) (to
insure one instruction is being completed for a given
interrupt before a higher priority channel can inter-
rupt) and KEY PI INH(0) (which suppresses interrupts
during instructions executed by pushing the console

EXECUTE key).

The determination of which of several waiting inter-
rupt requests should be serviced is handled by a prior-
ity chain known as PIOK n. PIOK n will be true if
neither the PIH nor PIR flip-flops of the channel of
immediately higher priority are set, and the PIOK for
that channel is also true. The highest-priority chan-
nel uses PI ACT(1) as its enabling condition. If PIOK
is true for a given channel, its PIR flip-flop is set,
and PIH flip-flop is clear (which is redundant because
the PIR could not possibly be set unless the PIH was
clear), the PI REQ n will be true.

The PI REQ n's feed the PI RQ gate and, also, a
unary-to=binary converter (encoder) which comes up
with a binary address from zero to seven. When the
processor gets to IT1, if PI RQ is true, PI TO comes
next. PI TO sets PI CYC and allows a delay for the
MA toclear from IT1, and PI CYC to settle. Control
returns to ITO, where the PI channel encoder address
will be ORed into the MA, along with the 40g bit,
and possibly the 100g bit, if the MA TRAP OFFSET

switch is on.

If the instruction at the interrupt address is not an [OT
(for instance, a JSR), matters are simple: PI HOLD
will be true because PI CYC(1) and ~IR 10T are true;
therefore, at FT9, PIH FM PICH RQ will occur, and
the PIH flip-flop associated with the channel whose

PI REQ was honored will be set, clearing the PIR
flip~flop. For a control~type 1/O instruction, the
machine will hang indefinitely, since neither Pl HOLD
nor PI OV ever become true. A DATAI or DATAQ
causes both PI HOLD and PI RESTORE to be true and,
therefore, the PIH FM PICH RQ pulse will occur,
clearing the PIR; then the PIOK CLRS PIH pulse will
clear the PIH at ETO, thereby dismissing the interrupt.
PI CYC is cleared by ST1.

The remaining cases involve BLKI and BLKO. If the
count of a BLK [OT overflows, PI OV will be set at
ETO. After the BLK IOT turns into a DATA [OT, ST9

will fire PI TO again, instead of going back to ITO First.

Pl TO will clear the MA, and then ITO will read the

4-25

PI channel encoder again; however, PI OV supplies a
1-bit in bit 35, thereby moving to the second inter-
rupt location associated with the particular channel.
The new instruction must not be an IOT for PI HOLD

to be true. If this condition is true, the PI OV and

PI CYC will be turned off at the end of the instruction,
and the PIH flip=flop will be on, and PIR off. If the
count of the BLKI or BLKO does not overflow, it is
treated just as if it was a DATAI or DATAO; namely,
the PI HOLD and PI RESTORE will both be true, allow=
ing the processor to proceed from the state prior fo
interruption.,

When an interrupt has been held, it may be dismissed
by a JRST with IR?(1), causing PI RESTORE, which
clears the PIH on the highest priority channel whose
PIH is on.

4.7.1 User Mode Logic

User mode logic is available as either the KT10 or
KT10A options. The KT10A option includes a dual
protection and relocation system. Each system in-
cludes a user mode flip~flop (found on the EX print
and called EX USER) which indicates when protection
of memory and instructions is in effect. Since EX
USER must be set between instructions, an EX MODE
SYNC flip=flop is provided, which is set by JRST,
either with bit 12 on, or when restoring the flags,
with flag bit 5. If EX MODE SYNC is set, the next
MR CLR will set EX USER.

When EX USER is set, the IR decoders turn 7XX (IOT)
op-codes and JRSTs, which attempt to halt the
machine or restore the PI system into UUOs, unless

EX USER IOT is set. The user IOT flip~flop allows
these otherwise illegal instructions to happen because
it may be desirable in some circumstances to have only
memory protection. This flip-flop can only be set by
flag bit 6, when not already in user mode; however,

it can be cleared by a 0 in bit 6 when restoring the
flags in any mode.

The EX ILL OP flip-flop tells that an illegal operation
has been performed (including all standard monitor call
UUOs 040-077). When EX ILL OP is on, or EX PI
SYNC is on (during a PI cycle), EX TRAP COND
suppresses relocation, thereby forcing absolute address-
ing. If the monitor program does the expected sub~
routine call, the EX USER flip~flop will be cleared at
ETO of that instruction, after its old state has been
preserved with the flags.

Relocation is controlled by the EX REL signal. This
signal is generated twice to supply enough drive to
all the gates using it, without taking the time to in-
vert the signal twice. Relocation is in effect when-
ever EX USER (1) AND EX TRAP COND is false and
the MA does not address an accumulator (since ACs
are always in fixed lower memory) and MAI FMA SEL
(0) (since, if that flip-flop is on, the address is to
come from the FMA mixer) and KEY F1(0) (since that
flip-flop indicates that the console examine or deposit
function is operating).

The relocation adder(s) is always computing the sum
of the MA and the relocation register(s).

In the simple KT10 option, the EX REL signal deter-
mines whether the MAI (memory address interface) bits
come from the output of the relocation adder, or di-

rectly from the MA. With the KT10A option, if EX
REL is true, and if the MA is less than or equal to the
PR (the lower protection register), the RLA adder
signals are selected; the RLB adder signals are selected
if the MA is greater than the PR.

In the simple KT10, an address is valid if it is less

than or equal to the PR. In the KT10A, the valid -
condition exists if the MA is either less than or equal
to PR, or greater than or equal to 400000, and less
than or equal to the PRB (upper protection register)

and either the PR COR PROT (write protection) bit is
off, or a write or read/write is not being made. Stated
symbolically, this condition is:

VALID = (MA <PRB) + [(MA> 400000) - (MA < PRB) -
(PR WR PROT (0) + MCWR RQ(0))]

4-26

CHAPTER 5
BASIC I/O DEVICES

5.1 PAPER TAPE READER

The paper tape reader is part of the Digital PC09.
The PCO9 consists of a PCO2 Perforated Tape Reader
and a PCO3 Perforated Tape Punch, with a SCR punch
motor control added. The PCO2 mechanism is de-
scribed in the PCO2 Instruction Manual
(DEC-08-12BA-D). The PCO3 is a Model 500 Royal -
McBee (Roytron) tape punch. Its mechanism is de-
scribed in the Royal-McBee maintenance manual .
Some additional interface information for the PCO2
and PCO3 (which alone make up the PCO1 Paper Tape
Reader/Punch) is found in the PDP-8/5 Paper Tape
Reader/Punch Control combined manual

(DEC-00-IP1A-D, DEC-00-IP2A-D, DEC-00~IP3A-D).

The paper tape reader portion of the PCO? is arranged
to operate in two modes: binary, in which six char-
acters of tape are buffered to form a 36~bit word; and
alpha, in which each 8-bit character is sent to the
processor.

The control for the reader is found on three drawings:
PTR1, 2 and 3. The first drawing shows the fairly
standard 1/O device control register, plus the PTR
TAPE flag logic. The PTR TAPE flip-flop indicates

to the program that tape is in the reader. If tape is
present, PTR TAPE SYNC will be pulled off at some
time shortly after each PTR MOTOR SHIFT. If

PTR TAPE SYNC is off by the next PTR MOTOR SHIFT,
PTR TAPE will be turned on. If the TAPE SYNC re-
mains on through a whole motor-shift cycle, then

PTR TAPE will be turned off. When a tape is loaded,
pushing the manual PTR FEED SWITCH will cause

PTR TAPE to be set, setting the PTR DONE flag. This
will request an interrupt, if a channel has been
assigned.

In operation, the PTR RUN signal is generated by
either the PTR FEED SWITCH or PTR BUSY (1). As-~
suming the reader has been idle for at least 40 ms,
the PTR ENABLE flip~flop will be set. This enables
the clock circuit, which has an integrator controlling
the clock speed, since the stepping motor cannot start
at full speed. The first clock pulse (PTR CLK) will
sample the PTR RUN and, assuming it is true, will not
affect PTR ENABLE. Since the normal stop position of
the reader is between characters, the PTR DATA
PHASE will be false; therefore, the PTR STROBE

5-1

PULSES will not occur. The PTR MOTOR SHIFT ad-
vances the 2-bit counter PTR A and PTR B, and turns
on PTR POWER. PTR A and B count in a sequence
00 10 11 01 00, causing the stepping motor to ad-
vance one half of a character on each pulse.

At the next PTR CLK pulse, the motor will have ad-
vanced so that the character is over the read head. .
PTR DATA PHASE will be true, enabling PTR STROBE,
if either the reader is not in binary mode or hole 8 is
seen. The PTR STROBE pulses will read the data into
the buffer and advance the PTR CNT counter. In
alpha mode, PTR LAST is always true, while in binary
mode, PTR LAST becomes true after five counts;
namely, prior to the sixth character,” At the PTR
STROBE, when PTR LAST is true, PTR DONE is set
and PTR BUSY is cleared.

When the program does a DATAI, the PTR BUSY will
be turned on again. Each time BUSY comes on, the
PTR CLR pulse clears the buffer and counter. As long
as BUSY is again set within one~half character time
(i.e., before the next PTR CLK pulse), the reader
continues at full speed. If a PTR CLK pulse comes
when PTR RUN is false (hence PTR BUSY (0)), PTR
ENABLE will be cleared, inhibiting the delayed clock
pulse from causing PTR MOTOR SHIFT. Furthermore,
the PTR SHUTDOWN delay will be triggered, inhi=-
biting PTR ENABLE from being set again for 40 ms.
At the end of the shutdown delay, if PTR RUN is still
false, PTR POWER will be cleared. I PTR RUN had
become true during the delay time, PTR ENABLE will
be set when PTR SHUTDOWN becomes false.

The PTR buffer is arranged to shift by groups of six.
The seventh and eighth bits from the right (bits 28
and 29) are also used for holding the two extra bits
when in the alpha mode.

5.2 PAPER TAPE PUNCH

The paper tape punch is part of the Digital PC09. It
is a Roytron punch, with SCR motor control. The
punch sends sync signals to the logic to time each
character. The control has both binary and alpha
modes; however, the only difference between the two
modes is that binary forces the eighth hole to 1 and
the seventh hole to 0. The control logic can be found
on drawings PTP1 and PTP2.

The PTP1 drawing shows the standard device control
register and the motor control logic. The object of
the motor control is to run the motor only when punch-
ing, but to keep it running for 5 seconds after the last

punching operation, in case more punching is to
occur. If the motor has been shut down, either push-
ing TAPE FEED or setting the PTP BUSY flip~flop turns
on both the 5s delay and the Is delay. The 5s delay
drives the PTP SCR DRIVER as long as the machine is
not power-clearing. When the 1s delay times out,
PTP SPEED will be true, indicating that the motor is
up fo speed. The 5s delay will remain on for 5s after
the TAPE FEED button is released, or when PTP BUSY

was last on.

The PTP2 drawing shows the data buffer and punch-
magnet driving logic. When TAPE FEED is pushed,
and BUSY is not on, a PTP DATAO CLR pulse clears
the buffer. Each PTP SYNC pulse arriving while
PTP SPEED is true generates a 10 ms PTP SYNC DEL,
which enables the punch magnet drivers. During
TAPE FEED, hole 8 is suppressed by PTP BUSY being
off.

Under computer control, the action is similar to that
described above; however, the data is loaded by
DATAO SET. The PTP DONE PULSE is given at the
end of the 10 ms PTP SYNC DEL, which clears BUSY
and sets DONE.

5.3 TELEPRINTER CONTROL

The teleprinter control is designed to operate any
teletypewriter using ASCII (USASCII) code conven-
tions at 110 and 150 baud. The logic is found on
drawings TTY1 and TTY2.

The TTY1 print shows the control register, which is
straightforward. The only unusual thing is that the
BUSY and DONE flags are set and cleared by different
1/0 bus bits.

The receiving logic, shown on the TTY2 print, has
two primary inputs: TTY RCV EIA and TTY RCV LINE.
Because of their different interface characteristics,
these inputs are used for Teletype® Models 37 and
33/35, respectively. A third input comes from the
transmitter logic and is gated with the TTY TEST flip-
flop for purposes of checking the logic in a closed

loop. The definitions at the right of the drawing are
useful in determining what conditions should exist on
various signal lines. TTY INPUT remains false during
the idle condition. When TTY INPUT becomes true,
a START bit has arrived, and TTI ACTIVE is set. This
gates the TTI CLK, which gives pulses at the desired
bit rate. The clock output is actually a square wave,
which switches true halfway through each bit, so that
the bit can be sampled. The on-going transition of .
TTI ACTIVE fires TTI CLR, clearing the character
assembly register. If, at the first TTI SHIFT pulse, the
TTI INPUT has become false, then TTI ACTIVE is
turned back off because the condition could only be
caused by a noise pulse.

After the start bit and eight information bits have
been read in, TTI STOP will be set, turning off TTI
ACTIVE and setting the TTI DONE flag. The bits as
read into the computer are the complement of the
actual states at the TTI buffer, because the "start™ bit
is held therein as a 1, while it corresponds to a 0.

The output section has the option of putting out one
or two units of "stop" following the eight code bits.
The 10~unit option corresponds to 1 stop unit, and is
selected by the TTY 10 UNIT SW. A character is
transmitted by loading it into the TTO buffer by a
DATAO instruction. The TTO ENB and TTO STOP
bits are always set to 1 by the DATAO SET. The
buffer is assumed to be clear from the last operation,
or an 1/O reset. TTO 1 is cleared by the DATAO
CLR because it will be left on in the 10 unit mode.
The output clock runs continuously and samples TTO
ENB. At the first pulse following the setting of TTO
ENB, TTO ACTIVE is set, turning on TTO LINE,
giving a start bit. The next nine or ten clock pulses
give TTY SHIFT pulses, sending the character out to
the Teletype. Two true periods before it is desired

to stop the shifting, TTO EMPTY becomes true and the
next pulse clears TTO ACTIVE. The TTO FLAG is
set when TTO ACTIVE goes off, although the last (or
only) stop unit is still on true. If the computer returns
with a DATAQ before that time unit is over, charac-,
ters will be sent at the maximum rate.

® Teletype is the registered trademark of Teletype Corporation.

CHAPTER 6
KA10 TROUBLE SHOOTING
AND MAINTENANCE

This chapter describes maintenance and troubleshoot-
ing procedures for the KA10 Central Processor.

6.1 TROUBLESHOOTING

The first srep toward fixing a reported fault is to
locate it. Therefore, in a hardware -software system
environment such as the PDP-10, it must be deter-
mined whether the problem lies in the hardware, soft-
ware, or both. The only practical way of doing this
is to establish cooperation between the programmer
and maintenance personnel until it is established to
the satisfaction of both where (and of what type) the
error is.

Crucial to troubleshooting almost anything are the
ability to reproduce the problem (ideally, ot will)
and the technique of systematically tracing the pro-
blem from its symptoms, step-by-step, back to its
source.. ' '

A step-by-step procedure should be used to trace the
problem back until a point is reached where all inputs
(conditions) into an element (of the hardware or soft-
ware) are proper, but the output is improper. The
element thus located must be at fault and should be
repaired. Where necessary, or desired, the element
itself may be subjected to step-by-step fault location
(from output to input) until the internal source of the
problem is found.

Depending on circumstances, it may be desirable to
use DOT, the diagnostic programs, or margining (as
described later) to aid in the location of faults.

6.2 TEST EQUIPMENT

Special tools and test equipment required for mainte-~
nance are listed in Table 6~1. Except for DEC equip-
ment, suggested commercial brands are given for pur-
poses of specification only, and do not constitute
exclusive endorsement.

Table 6-1
List of Maintenance Supplies

Name Model

Field service kit
FLIP CHIP module
extender

DEC Type 142
DEC Type W980 or G998

Oscilloscope Tektronix Type 453, or

equivalent

Punch lubricants Teletype KS7470 oil;

Mobile-grease #2

33, 35, 37 KSR Teletype K'S7471 grease

lubricants

Cleaning kit DEC Type PN A425484D

6.3 PROCESSOR TEST PROGRAMS

| 6.3.1 Description

A series of test programs provide a complete check
of the processor logic. They presume no major mal-
functions in the core memory and operator's console.
Table 6-2 lists the KAIO test programs.

Functionally, the programs fall into two categories,

diagnostic and reliability. The diagnostics, test
programs A through H, isolate genuine go/no-go
type of hardware failures that are easily recogniz~

able. The reliability programs isolate failures that

are more difficult to detect because they are margin-
al in nature and/or occur infrequently or sporadically.
The family of test programs are written so that, when
run successively, they test the processor, beginning *
with small portions of the hardware and gradually
expanding until they involve the entire machine.

To accomplish this, they are built around instructions
and portions of instructions whose demands upon pro-
cessor capabilities progress from simple transfers and

Table 6-2
Processor Diagnostic Programs

Document Number *

Description

MAINDEC-10-D0AA
MAINDEC-10-DOBA
MAINDEC-10-DOCB
MAINDEC-10-DODD
MAINDEC-10-DOEB
MAINDEC-10-DOFC
MAINDEC-10-DOGB
MAINDEC-]O—DOHC
MAINDEC-10-DO0IA
MAINDEC-10-D0JA
MAINDEC-10-DOKB
MAINDEC-10-DOLB
MAINDEC-10-DOMD
MAINDEC-10-DONE
MAINDEC-10-D0OOC
MAINDEC-10-DOPA
MAINDEC-10-DOQA
MAINDEC-10-DORA
MAINDEC-10-D0ZC
MAINDEC-10-DIEA
MAINDEC-10-DIFA
MAINDEC-10-DIGA
MAINDEC-10-D2AD

MAINDEC-10-D280

Test A Basic Instruction Diagnostic (MOVE and SKIP)

Test B Basic Instruction Diagnostic (MOVE, TEST, Half Word Instructions)
Test C Basic Instruction Diagnostic (Boole and PC Sensitive)

Test D Pl System Instruction Diagnostic**

Test E Shift Rotate Diagnostic

Test F Fixed Point Mul/Div Diagnostic

Test G Floating Instruction Diagnostic (and BYTE Instructions)
Test H FMP, FDV, DFN

Test 1 Basic Instruction Reliability Test (ROTates)

Test J Basic Instruction Reliabilit)f Test

Test K Basic Instruction Reliability Test (Add-Substract and JFF O)
Test L Basic Instruction Reliability Test (Memory and Both Modes)
Test M Basic Instruction Reliability Test (PC Sensitive Instructions)
Test N Reliability Test for Fixed, Floating, and BYTE Instructions
Test O Automatic Block Transfer Test (BLT)**

Test P KT10A Protect and Relocate Diagnostic**

Test Q KT10A Reliability Test**

Test R Random Number Instruction Set**

Test Z Processor Timing Test (SPEEDY)

Test 1E KT10 Relocation and Protection Reliability and Diagnostic Test **
Test IF User Mode BLT Test

Test 1G Fast Memory Test

Test 2A Console Teletype Test **

Test 2B Paper Tape Reader/Punch Test

*Exact program number changes as programs are revised.
**Program can run only in executive mode.

skips to the most involved data manipulations and
arithmetic computations. As portions of the system
are proved operable, they become available to suc-
ceeding tests for use in checking out unproven por-
tions of the machine.

The test programs are made up of numerous self-con-
tained routines. In those programs that are diagnostic
in nature, each routine is involved with a specific
circuit or logic function. In the simplest form, for
example, a separate routine is used to check each leg
of an AND gate. When the diagnostics (A through H)
have been run to completion, the processor has been
exercised to the extent that it is proved capable of
executing all instructions. However, such proof is
conditional because it is based on the execution of
instructions using pre-established constants as oper-
ands. Further tests are necessary to establish that the
machine properly executes instructions using operands
and various combinations of operands other than those
used in the diagnostics. The reliability test programs
(I through P) provide this additional testing. Primarily,
each routine in the reliability test programs establish
a loop whereby a specific instruction or group of in-
structions is repeated many times. Each repeat is
executed using operands whose magnitudes are estab-
lished by a pseudo-random number generator. This
procedure insures machine copabilities being checked
under a maximum number of unique conditions.

When an error is detected in diagnostics A through D,
the program halts at the end of the unsatisfied routine.
The reason for the halt may then be determined by
using the console controls and indicators, maintenance
switches, and the program listings included in the
software package.

For diagnostics E through H and the reliability pro-
grams, various indications of errors can be selected
with the 36 data switches on the console. The choice
of indications include: halt-on-error, proceed-on-
error, print-on-line printer (or on teleprinter if the
line printer is not available), and ring teleprinter bell.
The use of the data switches for selecting error indica-
tions is defined in the MAINDEC write-ups provided
with the software package.

If halt-on-error is selected, the disposition of the data
switches determines whether or not a printout and/or
ringing of the bell occur at the error, and the program
halts at the end of the unsatisfied routine. The same
things hold true for proceed-on-error except that the
program continues on to the next routine. If neither
halt nor proceed-on-error is selected, the processor
enters a loop whereby it continually repeats the

6-3

unsatisfied routine. In this case, various timing pulses
and levels are available for oscilloscope display as an
aid to troubleshooting.

In such a loop, the bell may or may not ring each time
the error is encountered, but the printout always occurs
on only the first pass through the routine. Again, con-
sole controls and indicators, maintenance switches, -
and program listing may be used to isolate the mal-"
function.

The printouts accompanying failures become longer

and less specific (in terms of isolating circuits) as the
complexities of the programs increase. - For example ,

a printout associated with a malfunction in floating=-
point arithmetic may show the proper contents of the
various registers at each event time within the floating-
point calculation. Such printouts are derived by sim-
ulating the malfunctioning instruction; this is accom-
plished by performing the functions required using
previously proved instructions.

6.3.2 Recognizing an Error

When an error is detected by diagnostics A through D,
the machine comes to a halt. The halt condition is
easily recognizable in that the RUN lamp extinguishes,
the PROGRAM STOP lamp illuminates, and the dis-
plays in the console PC, IR, and MA indicators remain
in a fixed configuration.

When an error is detected by the remaining test pro-
grams, the processor may enter an error loop. In this
case, the RUN lamp remains illuminated, the PRO-
GRAM STOP lamp remains extinguished, and the con-
tents of the PC, IR, and MA indicators still change
continually as during the normal running of the pro-
gram. If a printout or other indication of error has
not been selected from the DATA switches, the status
of the machine is not always obvious. To overcome
this ambiguity, all test programs contain a subroutine
that is called whenever the processor enters a loop
and does not leave it after either a predetermined time
or predetermined number of loops. The loop is then
referred to as an error loop. This subroutine estab-
lishes a memory location as an error counter and fills
it with all Os. Each time a pass is made through the
error loop, the counter is incremented and its contents
are displayed in the MI register. Consequently, the
display of an up-count in the MI register is an indi-
cation that the processor is hung up in an error loop.
The rate of the display is an indication of how con-
sistently the failure occurs.

With the processor in an error loop, a memory location
other than the error counter can be observed by acti-
vating the Ml PROG DIS switch. When active, this
switch removes control of the MI display from the
program and again makes it a function of the MA
switches.

Viewing the contents of the iteration counter (MI
register) affords further evidence of when the program
enters an error loop. One of the initial instructions
in each program assigns a memory location as a itera-
tion counter. The counter is set initially to all 1s,
and is decremented by 1 each time a pass is made
through the program. With each pass, the contents of
the counter are automatically displayed in the MI
register. The decreasing count is an indication that
the program is repeating continuously. If an error
occurs, the display changes from a decrementing count
to an incrementing count of the error counter.

6.3.3 Typical Diagnostic Check

Figure 6-1 is a copy of a page from the diagnostic A
program listing. The routines shown are a portion of
several routines that check the adder. Although rela-
tively simple, the adder check characterizes the type
of tests undertaken by the diagnostic programs.

The routines successively check a portion of each bit
of the AD by MOVEing the series of numbers 1, 2, 4,
8, etc. (which contain exactly one bit) to AC 0, and
then adding zero to these single-bit numbers. (The
series of numbers was "cooked up" when the program
was assembled, by starting at 1 and adding the old
number to itself to get the new number in a MACRO,
not shown.)

The SKIPN instruction in each routine checks the
result of adding the 1-bit number to 0. If, due to a
malfunction, the adder loses the 1bit in the constant,
the sum will be equal to 0 and the processor will come
to a halt. If the addition is performed properly, the
adder generates a number other than 0. In this case,
the processor skips to the JUMP .+1 instruction, which
jumps to the next routine.

6.3.4 Troubleshooting with Test Programs A through C

The portion of test program A shown in Figure 6-1 is
used here as an example of how to interpret and
troubleshoot an error detected in one of the diagnostic
programs A through C.

Assume that while running program A, the processor
came to a halt with 007254 in the PC indicators. This
indicates that the routine beginning at address 007251
has failed to run satisfactorily.

The prognosis in the program listing calls for a check
of the AD AR+ EN gates on the adder. In order to
check these gates with an oscilloscope, it is best to
place the processor in a loop whereby it continually:
repeats the failing routine. Proceed as follows: '

a. Press the STOP key.

b. Using the appropriate console switches, change

the HALT and JUMP .+1 instructions in locations
007254 and 007255 to JRST (254000) to location
007251 (the first location in the failing routine).

c. Select location 007251 with the MA switches.

d. Press the START key.

At this point, you may question the need for changing
both the HALT and JUMP .+1 instructions to JRSTs.
There is a possibility that the routine may not fail each
time it is run. If the JUMP .+1 instruction was not
altered, the machine would jump out of the mainten-
ance loop the first fime the routine ran successfully.

 Substituting the JRST instruction for JUMP .+1 insures

the processor remaining in the loop whether or not the
malfunction is intermittent.

With the processor continuously repeating the mal-
functioning loop, apply a scope to the adder circuits.
The MITO pulse at 1S37D makes an ideal synchronizing
trigger. Setting the MA switches to the address of the
initial instruction in the routine causes MITO to be
generated when the memory reference to that location
is made. Select an initial time base that produces an
oscilloscope sweep at least as long as the period of
the routine. When the time at which the malfunction
occurs has been narrowed to a specific period within
the period of the routine, use other pulses, perhaps
the MITO of another instruction, as a synchronizing
trigger. Generally, the most effective method of
using the oscilloscope is to decrease the sweep length
continually, in known time segments, until the time
base is the shortest possible upon which the error can
still be seen.

Making further use of the program listing, it can be
determined that the MOVE instruction in the failing
routine of this example fetched the constant from
location 010525. Consulting the listing for the value
of ZZ or the contents of 010525, it can be found that

0A

MACROX

007232
007233
007234

007235
007236

007237
007240
007241

007242
007243

007244
007245
007246

007247
007250

007251

007252
007253

007254
007255

007256

007257
007260

007261
007262

007263
007264
007265

007266
007267

V003

200000
270000
3346000

254200
320000

000004
200000
270000
336020

254200
320000

000010
200000
270000
336000

254200
320000

000020

200000

270000
336000

254200
320000

000040

© 200000

270000
336000

254200
320000

000100
200000
270000
336000

254200
320000

000200

11:14 3-0C1-67

010522
010466
000000

007235
007237

000000
010523
010466
000000

007242
007244

000000
010524
010466
000000

007247
007251

000000
010525
010466
000000

007254
007256

000000
010526
010466
000000

007261
007263

000000

010527
010466
000000

007266
007270

000000

MOVE
ADD
SKIPN
STOP ¢
HALT .
JUMP _+1

ZZ=ZZ +ZZ

MOVE
ADD
SKIPN
STOP ¢t
HALT
JMP+1

BE=ZZ+ZZ

MOVE
ADD
SKIPN
STOP ¢
HALT .
JUMP | +1

ZZ=22+22

MOVE
ADD
SKIPN
STOP?
HALT .
JUMP . +1

ZEZ=ZZ +ZZ

MOVE
ADD
SKIPN
STOPt
HALT .
JUMP . +1

ZZ=2Z+ZZ

MOVE
ADD
SKIPN
STOP!t
HALT .
JUMP | +]

2EZ=ZZ+2E

PAGE 10-4

(2]
(ol

[ZZ]
{ol

[zZ]
(ol

fzz]
(ol

[2Z1]
fol

(221
[ol

;CK THE AD AR+EN
;GATES ON THE ADDER

JINST FAIL, TO SCOPE REPLACE
iCHG TO JRST BACK

iCK THE AD AR+EN
iGATES ON THE ADDER

JINST FAIL, TO SCOPE REPLACE
;CHG TO JRST BACK

;CK THE AD AR+EN
;GATES ON THE ADDER

;INST FAIL, TO SCOPE REPLACE
;CHG TO JRST BACK

;CK THE AD AR+EN
;GATES ON THE ADDER

;INST FAIL, TO SCOPE REPLACE
;CHG TO JRST BACK

;CK THE AD AR+EN
;GATES ON THE ADDER

;INST FAIL, TO SCOPE REPLACE
;CHG TO JRST BACK

;CK THE AD AR+EN

" ;GATES ON THE ADDER

;INST FAIL, TO SCOPE REPLACE
;CHG TO JRST BACK

Figure 6-1 Diagnostic A, Typical Page of Program Listing

the constant contains a 1in bit 13. Since this constant
is being added to 0, the result of the addition should
also contain a 1 in bit 13. Therefore, focus the search
for the malfunction on the circuits associated with
that bit. Use the oscilloscope to determine if:

a. AD AR + EN failed to AND with AR bit 13, or
b. The adder itself failed, or
c. The AR from adder JAM failed.

As can be seen from this example, the program listings
contain a great deal of troubleshooting data that may
not be as obvious as the prognosis in the comments

column. Make certain that full advantage is taken
of all such data.

When the malfunction has been found and corrected,
change the last two instructions in the maintenance
routine back to the original HALT and JUMP .+1
instructions or reload the program. Then rerun the
entire program.

To summarize, the technique for troubleshooting an
error detected by the diagnostics might be:

a. Consult the program listing.

b. Place the processor in a loop of the failing
routine. '

. Scope pertinent circuit areas, selecting various
sweep times as necessary.

Using the built-in maintenance features, focus the
oscilloscope display on a segment of time that most
nearly coincides with the occurrence of the failure.
Particularly useful for this purpose are the various
“stop" keys: SING INST, SING CYCLE, ADR STOP,
ADDRESS CONDITION INST FETCH/DATA FETCH/
WRITE, AND SHIFT CNTR MAINT,

6.3.5 Troubleshooting with Diagnostic D

Diagnostic D is similar to diagnostics A through C in
that many of its routines force the machine to halt
when an error is detected. However, some routines
in diagnostic D check the user mode in which HALT
instructions are illegal. These routines hang up in a
JUMPA | instruction when an error is detected. The
processor continues to run, but it repeatedly jumps to

the address of the JUMPA . instruction. The RUN

lamp remains illuminated; the PROGRAM STOP lamp
remains extinguished; the PC becomes static; and the
MA contains the address of the JUMPA . instruction.

To troubleshoot the unsatisfied routine, place the
processor in a loop by changing the JUMPA . and
JUMP .+1 instruction to JRSTs back to the first ’
instruction in the routine. Then, proceed with the
error detection techniques outlined for diagnostics

A through C.

6.3.6 Troubleshooting with Test Pt'pg}ams E through
M and P

Unless halt-on-error or proceed-on-error is selected,
programs E through M cause the processor to continu-
ally repeat routines in which errors are detected.
Once in a failing loop, the processor repeats the
routine even though the failure may be intermittent.
In the case of an intermittent failure, the routine may,
upon occasion, run successfully. It can be released
from the loop only by selecting proceed-from-error at

the data switches or by restarting the program.

As with all diagnostics, E through H each checks a
unique portion of the machine. When one of these
programs detects an error and enters a failing loop,
the troubleshooting practices already outlined for

tests A through D can continue. However, should one
of the reliability programs (I through M and P) fail, it
is not always best to begin troubleshooting with the
processor hung up in the unsatisfied routine. Instead,
identify the failing instruction and return to the
diagnostic that checks that instruction under fixed
conditions. If the diagnostic does not fail immediately,
it might be induced to fail by running under margining
conditions. (Techniques for running margins are de-
tailed in a later paragraph.) This procedure of back-
tracking to a diagnostic is recommended because , gen-
erally, the diagnostic programs are easier to trouble-
shoot than the reliability programs.

If the foregoing procedure is followed and the diag-
nostic does not fail, return to the failing reliability
program. When the failing loop has been reestablished,
troubleshoot, following the same basic practices used
with the other tests. Asthe programs become more
complex, effective use of the various stop switches
becomes increasingly essential for isolating mal-
functions.

CAUTICON

If a simulation routine should fail when run-
ning reliability programs, the result of the
simulation will disagree with the result de-
rived by the instruction under test, and an
error will be indicated. As a result, a great
deal of time can be wasted troubleshooting
a perfectly good instruction when, in fact,
the problem lies with the simulation. This
situation should not arise if the test programs
are run consecutively because the instruc-
tions used for simulation in one program are
qlways proved operable in a preceding pro-
gram.

6.3.7 Troubleshooting with Test Program N

Reliability program N performs its checks according
to a number of variables, one of which is the magni~
tude of the operands provided by the random number
generator. Consequently, the program does not run
in a precise order of consecutive instructions as the
other programs do. For this reason, and because the
instructions under test are executed indirect through
AC14, it is not always obvious from the program list-
ing to determine how the program progressed to the
point of error when it hangs up in a loop. Because of
its complexities, and because it does not include a
prognosis of failures, the program listing is not par-
ticularly recommended as a troubleshooting tool. But
this situation is more than compensated for by the
prinfout.

The printouts (Figure 6-2) accompanying Test N errors
are far more definitive than those for the other pro-
grams. In particular, they list the proper contents of
the registers at various event times in the instruction.
Assuming, of course, that the simulation is correct,
the printout occurs as a result of one of two situations:

a. The right answer is obtained but the wrong flags
are set.

b. The wrong answer is obtained and flags may or
may not be set incorrectly.

In the first situation, focus troubleshooting on the logic
associated with the incorrect flags; in the second,
eliminate the cause of the wrong answer and any un-
wanted flags will probably be eliminated. In either
case, the practice of backtracking to the diagnostic
that checks the failing instruction is a good initial

6-7

step. If the diagnostic fails, troubleshoot it as
previously described; if not, return to reliability
program N.

When an instance of setting the wrong flags is involved,
the first line of the printout resembles the following:

FLAGS FROM MACH AND SIMULATE 440100 000000

The first group of numbers defines the flags that are set;
the second group, the flags that should be set. Table
6-3 matches the flags to their bit positions in the out-
put word.

Table 6-3
CP Flags Versus Qutput Word Bits
Bit Flag
0 AROV
1 AR CRYO
2 AR CRY1
3 AR FOV
4 BYF6
5 EX USER
) EX IOT USER
11 AR FXU
12 AR DCK

With the program in a failing loop, a malfunction
might be isolated as follows:

a. Study the printout.

b. Using the various stop switches, compare the con-
tents of the registers at specific times in the in-
struction cycle with the contents listed on the
printout. As an example, Figure 6-2 indicates
possible stop times and the switches that produce
the stops.

c. Using step b., determine the two stops between
which the error occurs.

d. Synchronize the oscilloscope with the decoded
IR level of the failing instruction. For example,
the printout in Figure 6-2 states that the failing
instruction is an FDVL. In this case, the oscil-
loscope on the IR FDVL level would be synchron-
ized at TMI6N.

e. Determine where the two stops, isolated in step
c., fall on the oscilloscope sweep.

THF, MACH RESULTS IN AC,AC+1.F ANNRABAAANAA TAATS2457535 TS2A2ATAT1TI

*0%a663 INIV 21 ,2999a3 AARTS24575AS 344104140005 752424747173
ARRAANAANAAN AANTS524575a5
T IMF PC mMA SC FE AR MG RR
1Ta ARA663 BBA663 ANA AAA 239n] 7596428767171
1mn 394663 AARAAN AAA AR 2300 AARA 3 ARG TS2AIATATITI
AT 204463 ARARAA AR AAQ 3 d o 230242229363
ATh AR4A663 AAAAAT AAA NAA ; k} d 23a8 40004303
FT2 AA4663 A0AAAY A0A PAA 752620767173 a0 23044240093
FTiA 204663 ANAAA3 AN ARG 752620767173 ARANARARAARA TS2A2ATATLITI
FT2 ANA6463 NARAAT 28N AAA AAAID 2200 HAGAAR 192629767173
FT2RQ 004663 AAAGA3 290 0AA ABATS24575A5 AAAAARAAANAAG TSP62ATAT173
FT3 BAA663 AAANA3 PAA AAA ARNTS2ASTSAS ABANRARAAAAR 7526207473173
Fl9 ABA664 ARAAAZ BAN AAA ABNTS245755 ARAAAAANAAAS TSPEPATATLITI
ETA ARA664 ABABA3 T3S ANA AARTS24575AS AMAAAAARAAAA TSRAPATATITI
£T1 2@45664 NAAGAT 735 QAN AANANAAAAAAN ARATSRASTSAS 752620767173
ET2 AA4Ak64 AANAA3 735 AAN ARNARAAAARAAAA AALT2S513T212 152620767173
OSTY 204664 AAAABI 735 ANA ARAGAAARABAA ABLTSS13T212 TS52A2A767173
DST2 AB4664 ANAAAT 735 AGN ABANAIABAMAA AR1TRSIITAI2 TS262ATATITI
scte 202664 ABBAA3 T35 ANN ABAARAAAAGRAN ARL1T2SIITRN2 TS2A2ATATITI
scTe 904664 AANAA3 T34 A0A ARAAAAAAAARA AA1725137212 152620767173
SCT3 AAa664 A0AAAT TI6 AR T254417563A% BN3652276424 152620767173
SCT2 BR4664 AANAA3 737 ANA T25441756366 @AI652976424 752620767173
5CT3 004664 AANANRI 73T AND TRS441TS6366 AATSRASTSASA TSPA2NT47173
scT2 BRA664 NAAARI T4an AAR 125441756366 ANTSRASTSASA 752620767173
SCT3 034564 ARAAA3 TaA AAA 125441756366 B17251372120 7152623767173
ScT2 AB4644 ANNAAT T4l ARG 725441756364 A1T251372120 152620767173
$CT3 A0aK64 AAAGA3 Tal ANA 725441756366 A36522T764240 752420767173
SCT2 0A4664 AAABA3 742 AAA 725441756366 AIE6522764240 TS2620TAT173
SCT3 A0a664 ANNAAT T42 NAN 725441756366 B7524575A500 75262A767173
scT2 AB4664 ANAAN3 T43 00A 725441756366 BT5245759500 752420767173
SCT3 AAa664 OANAB3 TA3 ANA 725441756366 172513721208 152620747173
scT2 AN4h64 BANAAT T4a AAA T25441756366 172513721200 752624767173
.5CT3 NNa6ha AAAAAT Ta4 ABD 725441756364 365227642408 152620767173
ScT2 AQa664 ANAANI Ta5 NAG 125441756366 365927442400 7526200767173
scT3 804664 OAAAAT 745 NAN 125441756366 TS52ASTSASAAN 152620767173
scT? Bn4664 ONBAA3 Tak AN 125441756366 TS52A575A5ANN 152620767173
SCT3 ABa6h4 AARANI Tak AAO T25441756F4T 125137212008 752690767173
scr2 ANa664 AAABAT 747 MAN 725441756347 725137212000 7526208767173
cT3 004664 AAAAAI 747 ANA 125441756371 652276424M00 752620767173
SCT2 QBakka BAAANI 750 ANA TR54417563T1 652276424000 752423767113

SCT3 A04a664 AOANAI TSA AAR 725441756375 S2457505AAAR 152620747173
SCT2 ANa66a ABDAA3 751 ARA 725441756375 S2457505AG0A0 1526208767173

SCT3 0P4664 BAAAAT 751 A3 125441756485 251372120000 152420767173
S$CcT2 ABas6a ANARAI 752 ABN 725441756445 251372120000 752629767173
SCT3 ANa6ha AABANI 752 ANA 725441756424 522764240004 152620767173
5¢CT2 AN4664 AAAANT 753 ANA 725441756424 522764240000 752620767173
SCT3 ANakha ABAAAT TST AAA 125441756463 245758504000 152620747173
scT2 A0a664 AAAANT 754 ANA 725441756463 245754530400 752620767173

SCT3 ABA644 ANANAT 754 ANA 725441756560 513721200900 752620747173
ScT2 A04664 AANAN3 755 AAN 7125441756564 513721200000 752420767173
SCT2 ANaé64 AAANAT 7S5 ANA 725441756753 227642 400AAA TS262RT67173
S5CT2 04664 ANANAI 156 ARD TR5441756753 227642 4ARANN 7526208767173
SCT3 NNa6h4 BANAN3 754 AAN 725441757349 AST75ASANAAAA 152620767173
SCT2 04664 BAGAA3 757 ABA 725441757340 457SASAANAAR 152620767173

S5CT3 A04664 NAANA3 157 ABA 725441760313 1372126000998 752628767173
scT2 BR4664 NANAN3 763 AAA 725441760313 137212000000 752420767173
SCTY A0A6Fa AANANT 760 AN 725441742220 276422000000 752420767173
SCT2 A0A6K4 OBAGAT THL ANA 725441762248 2764240000090 752620767173
SCTI ANA664 ARAOAT 761 AAN 7254417461172 S750SANAAARA 7524208767173
sSCcT2 ANA66A BANNAT TER AN 725441764112 575450000208 152627767173
SCT3 AN4a664 AANANT 7642 AAA 725441775637 372120800000 7524207471723
scT2 AB4664 BAAAAT 743 AAN 725441775637 372120009000 752424747173
SCT3 AR4Ahka DANANT T3 AR 125442015110 TAA2AAAANAAA T52428T67173
scT? ANAkka AAAANT Tha AAR 725442815110 764220000090 155690747173
SCT3 NAa6ba AAANAZ T64 ANA 725442053437 T7SASARNARAAA T5242AT6T1 73
scr2 A%4hk4 AANAAT 745 ANA 725442153433 75A500AARNNN TS260AT747173
sCT3 ANakba BAAAAT TAS AR 705442151191 721200000008 TSDA0ATATIT1
scT? A%akha ARAAR]Y Tak AAR 735442151141 721240000000 7S7°42A747)73
SCcTa ARah64 AAINAT TAL AAR TPS442343615 442400000 TSAROATHT] T3
SCT2 BAa6A4 UAABAT TAT AAA T25442343615 642400000000 TS24247A7173
SCT3 ANAah6a AADAAD T4T7 AAA 725442731045 SASAAAAANAAA 152420767173
scT2 ANA664 AANABAZ 773 ARA 725442731045 SASAAAAAAAAA TS262A76T173
SCT3 AB4664 A00AA3 778 AAN 1254437A3525 2120AAAAAAAN TSOAIATET1T3
scra PA4664 AAAAA3 7171 Ana 7125443703525 2120890090004 7526204767173
sCT3 ANA664 AAAAAT 771 BAB 125445630664 424PA0ARAAARA 152628767173
5CT2 Q04664 POBABI 772 AAA 725445632664 42 A000003A%A 752420767173
SCT3 ANa664 2ABNAI 172 AAA 725451583163 A542092AA0AA 752623767173
5CT? 0B4k64 AAANAI 773 ARG 725451593163 ASAAARAAANAA TS2A2AT6T173
SCT3 AA4664 0AAAAT 773 AND 725461227769 12A0AABBAAAN 752620767173
SCT2 ANA664 NABNA3 774 B2 125461227764 120072080230 7526287671713
S5CT3 ABa664 B3AAANI T74 AAO 725540521352 240000030700 752624767173
s5cT2 024664 IAAAAI 775 030 125509541352 240003AA%AAA 152424767173
SCT3 924664 0AAAA3 775 AN 125537224336 SAADARAAAANR 152624767173
scra2 ANa664 ANAIB3 776 AAA 125537224336 SAAARAARAAAD TS2A2AT6TITI
SCT3 904654 NBANAI 776 AAA 725634472307 200002a00324 752620767173
scr2 ABa664 AAAAAT TTT AA2 725634472207 20AAANNANAAA 15262AT6T177
5CT3 784664 AAGAAT TT7 ABA T26N27206230 ABAAGARAAAND 75062AT671 73
scra A04664 230023 A2 A TPENRTANARIN AAABBANANAAA TS2APATKTI T3
S5CT3 ABas64 2ANANT ABA AN 774414436473 AABAAAAADNAA 152623767173
SCTa 34664 ANAIAT ANA ANA 726414474073 AARAAAANANAN 15562 TAT173
DST3 ARA664 AAAAAT ANA AR 751573446799 AAAAAIANANAA TS2APATATIT]
D 5Ta AcR4664 AAAAAT AAK AN AABTSIASTSAS AAAANAIRANAA TS2&237AT1T3
DSTS M04664 BAAAAT AND AAA AAAAAAAAAAAN BAAATS2ASTSAS 752420747173
DIVTS 2A4k6a A0A0A3 AN W20 NAAAAARANAAA AANTS2 457585 152628747173
sSTa 304664 OANANT B30 BB ANBAAAAAAAAA AARTS24STSAS 75243AT76T173
5T ANAB64 ANAUAT AR AR ANARAAANAAAA ARATSPASTSAS 750620747173
$T2 PBakE4 ABDINT UAD AAG ANAAANAAAAAA AAATSI 4STSAS TS262ATAT173
517 ABa66a FANNAT AR ATa BANTSD45T545 PARTSIA5TSAS 752627747173
ST8 AN4664 AAAANRT AAA NAD ANNTSASTSAS AAATS24575SAS TSOA2ATAT1T

5T9 Mak6ca HAUNAT 400 a9 AAATS245T5AS AAATSPASTSAS 75"‘6?’4767173

Figure 6~2 Test Program N, Error Printout

6-8

f. Find a timing pulse, between the two stops, that
nearly coincides with the failure.

g. Using the timing pulse from step f. as a'reference,
examine the logic to determine where the bit was
lost or altered, which enabling level was not gen-
erated, which transfer gate failed to respond to a
strobe, and so forth.

6.4 MARGIN CHECK SYSTEM

The margin check system provides a means of substi-
tuting a Type 702 Variable Power Supply for the fixed
+10 and -15V system operating voltages. The 5-posi-
tion MARGIN CHECK switch on the maintenance
panel selects the polarity of the margin voltage and
makes it available to the left or right side of the sys-
tem (see Figure 6-3). The processor and those cabi-
nets to the left of it are considered the left side of
the system; cabinets to the right side of the processor
are considered the right side of the system.

Margins are run on a rack-by-rack basis as a function
of the local margin switches. Each rack usually has
two such switches; one selects the +10V margin voltage
and the other selects the -15V margin voltage. There
may be an extra switch for circuits which need to be
margined separately. The MARGIN CHECK switch
overrides the local switches in the sense that it will
apply the proper fixed voltage to a rack whose local
switches are inadvertently selecting a margin condi~
tion other than the one selected by the MARGIN
CHECK switch.

The margin check system is used in conjunction with
the MAINDEC test programs for both comective and
preventive maintenance. In performing corrective
maintenance, the MAINDEC programs are used essen-
tially as described in Paragraph 6.3, Processor Test
Programs. While the programs are being run, however,
the margin check system is used to aggravate inter-
mittent or borderline failures into consistent failures
that are easier to recognize and troubleshoot. The
margin check meter is arranged to accurately read the
voltage which is applied to the panel of logic, if
margin check switches in only one area of the machine
are on.

As part of preventive maintenance, MAINDEC test
programs N and O should be run every 1000 hours,
with the machine operating under margin conditions.
Because of the various modules involved, margin speci-
fications differ from rack to rack, as specified in

Table 6-4. The thoroughness with which MAINDEC

programs N and O exercise the machine make it un-
necessary to include the other MAINDEC programs in
the preventive maintenance schedule.

6.4.1 Considerations for Running Margins

Running margins with the MAINDEC programs is an
effective troubleshooting tool. However, certain pre-
cautions must be taken if it is to be used effectively.
When a program fails under margin, it is not always
obvious where it is failing; assuming that the point of
failure is determined, it is usually much more difficult
to determine the cause of failure than when the pro-
gram is running without margins. The reason for this
difficulty is that if margins are not baing used, and

if the test programs have been run in order, encounter-
ing an error usually indicates that the machine is not
properly executing the instruction under test. This is
not true when margins are involved. In this case, the
error may, in fact, occur because the machine cannot
execute the instruction under test. However, it is
just as likely that the error occurs because the margins
have:

a. Forced a failure in the simulation routines

b. Forced an illegal printout

c. Altered the instruction code

d. Altered the address of the operand

e. Forced a failure in the memory control logic.

An infinite number of situations can be added to the
foregoing list. Consider as many of these situations

as possible. Otherwise o great deal of time can be
wasted troubleshooting o perfectly good instruction.
Unfortunately, there is no foolproof method of avoiding
this mistake , but the chance of making it can be min-
imized, being constantly aware that it can happen.
Never forget margins are being run; when an error oc~
curs, question the validity of the printout. If it ap-
pears legitimate, there is no recourse but to proceed
with the normal methods for troubleshooting an error
loop. If the printout does not appear valid, it is
probable that an instruction, other than the instruction
under test, is failing. Try to determine which instruc-
tion is causing the error from the printout and/or cir-
cuits being margined. Then, follow the standard pro-
cedure of returning to the most basic diagnoestic test
for that instruction. Try to make the diagnostic fail at
approximately the same margins at which the original
failure occurred. If it does fail, the malfunction
probably can be easily detected. If it does not fail,

go back to the original program and try to determine
where it is failing, using the various stop switches,
program listing, flow charts, and all other means
available.

6.4.2 Using the Margin Switches

Repositioning either the MARGIN CHECK or local
margin switches while margins are being applied can
produce transients that adversely affect machine op-
eration. For example, transients can alter the con-
tents of active registers. They can cause even more
serious problems by starting a memory reference cycle,
thereby altering the stored test program. To minimize
such occurrences, proceed as follows when reposition-
ing the margin switches.

a. Press the STOP switch.

. Examine location 00. (This sets the MA to 00.

If location 00 is altered inadvertently, no serious
consequences result since that location’is
reinitiated when the program is restarted.)

Position the margin switches as desired.

. Press the RESET switch.

. Set the ADDRESS switches to 4000.

Press the START switch.

6.4.3 Altered Programs

Margining in areas of the memory control, instruction
register, or program counter logic can alter the stored
program. Error indications resulting from this situation

OFF
+10Le <+10R
O ey
+ VARIABLE OC
o 4
+ L
O
~ VARIABLE DC
L —]
<
e
rc GROUND
-E——o-—.o e
O e
[+10vOC
[
II -18vDC
——]
+ UMETER +R METER
I’_ \\\
J/ - L METER ~RMETER
- S
Lo ~MARGIN VOLTAGE Lo
10 \ / To
LEFT A +MARGIN VOLTAGE e RIGHT
GROUND
L
=15 TURN-ON =
10-0421

Figure 6=3 Margin Check Sysfem,’ Simplified Diagram

6-10

are invalid if the purpose of the test is to check out

an instruction. When an error of this type is suspected,

remove the margin voltage and restart the program at

location 4000. If the program runs successfully with

no margin voltage, the original error indication is
probably valid. Reproduce the failure and trouble-

shoot it. If the program does not run successfully with
the margin voltage removed, it probably has been
altered. In this case, ignore the error indications,
reload the program, and resume the margining proce-
dure at a point preceding the point of the original

failure.

Table 6-4A

Margin Check Specifications
(for all tests)

+10V -15v
Panels Max. Min. Max. " Min.
1A +12.0V +8.0V -17.0V -13.0vV
18 +17.5v +3.0V -18.0V -12.0v
1C +17.5V +3.0V -18.0v -12.0vV
1D +17.5V +3.0V -18.0V -12.0vV
1E +17.5V +3.5V -18.0V -12.0v
1F +17.5V +3.5V -18.0V -12.0v
1H +17.5V +3.5V -18.0V -12.0v
1J +17 .5V +3.5V -18.0V -12.0Vv
1K +17.5V +3.0V -18.0V -12.0V
1L +17.5V +3.0V -18.0V -12.0V
M +17.5V +3.5V -18.0V -12.0v
iN +17.5V +3.0V -18.0V -12.0V
1P +17.5V +5.0V -18.0vV -12.0v
1R +17.5V +3.0V -18.0V -12.0V
1S +15.0V +5.0 for Test D, L, -18.0V -12.0V
and M*
+17.5V +3.0V for all other tests
1T +17.5V +3.0V -18.0V -12.0V
2A +12.0V +8.0V -17.0vV -13.0v
28 +17.5v +3.5V -18.0V -12.0v
2C +17.5v +3.0V -18.0V -12.0v
2D +17.5V +3.0V -18.0V -12.0vV
2E +17.5V +3.0V -18.0vV -12.0vV
2F +17.5V +2 .5V -18.0V -12.0V
2H +17.5v +3.0vV -18.0V -12.0V
2J +17.5v +3.0V -18.0V ~-12.0V
2K +17.5V +2.5V -18.0V -12.0v
2L +17.5V +2.5v -18.0V -12.0v
2M +12.0V +8.0V -17.0V -13.0v
2N +17.5v +5.5V -18.0V -12.0vV
2P +17.5v +3.5V -18.0V -12.0v
2R +17.5v +3.5v -18.0V -12.0v
25 +17.5v +3.0vV -18.0V -12.0V
2T +17.5v +3.0V -18.0v -12.0v

*New Test Titles

Table 6-4B
Margin Check Specifications
(for all tests)

Programs Used for Checking Margins

Qld Name New Name Passes or Duration
D 0D 2 min (ALL DATA SWO0)
H 0l 2 min (Fast Mode)
I 0J 2 min (Fast Mode)
J 114 2 min (Fast Mode)
K oL 6 min (ALL DATA SWO0)
L oM 4 min (Fast Mode)
M ON 4 min (Fast Mode)
BLT 00 4 min (ALL DATA SWO)
Table 6-4C
Margin Check Specifications for Bay 3
(while running Tests D, TTY, and Reader Punch)
Panel +10V -15v
Max. Min. Max. Min.
3A +17.5v +2.5Vv -18.0V -12.0v
3A(Reader +11.0V +9.0V
Lamp)

38 +17.5Vv +2.5V -18.0V -12.0v
3C +17.5Vv +2.5V -18.0V -12.0v
3D +17.5v +2.5V -18.0v -12.0v
3E +17.5Vv +5.5V -18.0V -12.0v
3F +17.5V +2.5v -18.0V -12.0v

NOTE: The Random Binary Test Mode of the Reader Punch Test should be run while taking margins.

6.5 TROUBLESHOOTING READ IN (RDI)

When an attempted read in operation does not initiate
a data transfer or appears to transfer the wrong data,
the malfunction could be in the processor and/or read
in logic, orin the 1/O device. To investigate the
latter possibility, attempt a read in operation from
another 1/O device. If this attempt is successful, the
first device and/or its control logic is probably mal-
functioning. The failure can be isolated by using the
appropriate /O diagnostic program. If the read in
from the second I/Q device also fails, consider the
character of the failure. If no data is being read in,
the fault could be that the RDI logic is malfunction-

ing or that the processor has lost the ability to execute
the DATAI and/or BLKI instructions required in an

RDI operation. If the wrong data is being read in,
the problem could lie with the RDI logic.

The fol‘lowing sections detail suggested techniques for
isolating read in failures, assuming the I/O devices
are operating properly.

6.5.1 No Data Read In

If pressing the READ IN key fails to initiate an in-
put transfer, the first corrective step is to determine
whether or not the processor can execute DATAIs and

BLKIs. This can be done by trying to read data from
the paper tape reader, using the hardware read in
(HRI) simulator program below. Proceed as follows:
insert tape in the reader; deposit the HRI simulator
program into memory from the console; press the

START key.

HRI Simulator Program

Address Left Half - Right Half
60/ 710600 000040 CONO PTR, 60
61/ 710740 000010 CONSO PTR, 10
62/ 254000 =~ 000061 JRST .-1
63/ 710440 000000 DATAIPTR, O
64/ 710740 000010 CONSO PTR, 10
65/ 254000 000064 JRST .-1
66/ 710400 000000 BLKI PTR,0
67/ 256020 000000 XCT@0
70/ 254000 000064 JRST .-4

If the HRI program fails to read the tape, the malfunc-
tion probably is not in the RDI logic but, rather, in
the processor's inability to execute 1/O instructions.
This being the case, troubleshoot the program, using
the SING INST and/or SING CYCLE keys. However,
if the HRI program does read the tape, the malfunc-
tion is probably in the RDI logic. To isolate the fail-
ure, determine the point at which the RDI cycle is
hanging up, as follows:

a. Select the paper tape reader (device code 104g)
with the READ IN DEVICE switches.

b. Remove any tape from the reader.
c. Set the MA switches to all Os.

d. Deposit all Os into location 00,
e. Press the SING CYCLE key.

f. Press the READ IN key.

If the processor were operating properly, 71044 would
appear for an instant (an instant, in this case, is a
period of time far too short to obtain a reaction from
either the human eye or an incandescant filament;
therefore, this transition is not seen) in the IR indi-
cators; then, change to 71040; and the MI would con-
tain all Is. Since the processor is malfunctioning,
however, one of the following will probably appear
instead:

a. An instruction code other than 71044 or 71040
appears in the IR. This indicates that pressing the
READ IN key does not generate the proper in-
struction(s) (DATAI, BLKI). Isolate the malfunc-
tion by checking the IR RDI SETUP.

b. 71044 shows in the IR, and the MI contains all Os.
This indicates that although the first DATAI is
generated, it does not read in the pointer. Isolate

the malfunction by checking the generation of
pulses from IOB RDI DATA to IT1.

c. 71044 shows in the IR and the MI contains all 1s.
This indicates that the first DATAI is not being
changed to a BLKI ofter the po_in'fer word is read

in. Isolate the malfunction by checking for IR12
CLEAR ot ST1 time.

6.5.2 Wrong Data Read In

If executing a READ IN appears to load data incor-
rectly into memory, it is possible that DATAI instruc~
tions in part 2 of the RDI cycle are not being changed
to BLKI instructions. Again, a good initial step is to
determine whether or not the processor properly exe-
cutes BLKI instructions by running the HRI program
with the paper tape reader as directed in the preced-
ing chapter. If the HRI program reads the tape suc-
cessfully, proceed as follows:

a. Select the pcpér tape reader (device code 104g)
with the READ IN DEVICE switches.

b. Press RESET

c. Remove any tape from the reader.
d. Set the MA switches to all Os.
e. Deposit all Os into location 00.

f. Cover all but the "8" hole (outermost hole) in the
reader’s photosensing mechanism.

g. With SING CYCLE and SING INST disable , de-
press READ IN.

Normally, the console indicators show that the con-
tents of the MA and the pointer word in the Ml are
incremented continually as the tape is read. But if,
as suspected, DATAQO:s in part 2 of the RDI cycle are
not being changed to BLKIs, the contents of the MI
and MA remain static and the IR contains 71044,

Such operation causes all data words fo be loaded on
top of one another in the initial memory location.

The malfunction can probably be found by determining

why IR RDI port 2 is not being set.

6.6 DELAY CHECKS AND ADJUSTMENTS

Use the following procedures to check adjustable
delays. The delay times are screwdriver-adjustable.

6.6.1 SCT3 Delay

6.6.3 FDTI Delay
a. Deposit the following program:
MA Instruction
10 MOVSI 201400 (205000 201400)
1T FDVRI 201400 (175000 201400)
12 JRST 10 (254000 000010)
b. Sync negative on channel A at 1E0TL

c. Time output on channel B ot 1EQIN

Use diagnostic test Z, Processor Timing Test (SPEEDY), d. Start program execution at 10. The déloy between
to time the SCT3 delay. SPEEDY times this delay

when it measures shifting time. The printout should
include the following statement:

12-SHIFTING TAKES 150 NSEC

If necessary, adjust SCR3 delay as follows:

a.

6.6

Set up a ROT 100 instruction on the console data
switches (241000 000100).

- Connect the oscilloscope to measure the delay

between 1C21L and 1C2IN. ‘

- Press XCT and REPT keys and adjust 1C21DE1

with a screwdriver for a 150-nsec delay.

.2 SCT2 Delay

NOTE

Set the SCT3 delay before checking or
adjusting the SCT2 delay.

- Deposit the following program:

MA Instruction

10 IMUL 17 (220000 000017)
11 JRST 10 (254000 000010)
17 252525252525

- Connect the oscilloscope at 1C16N (sync

negative).

- Start program execution at 10. The delay be-

tween SCT2 pulses should be 280 +5 nsec.
Screwdriver-adjust 1C16DE as required.

pulses should be 280 nsec. Screwdriver-adjust
1EO1DET as required.

6.6.4 DSTI1 Delay
a. Deposit the following program:

MA Instruction

10 IDIVI 1 (231000 000001)
11 JRST 10 (254000 000010)

Start program execution at 10 and measure DST1
delay between 1FO5L (sync negative) and 1FO5N.
The delay between pulses should be 280 nsec .
Screwdriver-adjust 1FO5DE1 as required.

o

6.6.5 MC RQ SET Delay

b

a. Deposit the following program:
MA Instruction
10 JRST 10 (254000 000010)

b. Start program execution at 10 and measure
MC RQ SET delay from 1T15L to ITI5N. The
delay should be 45 nsec. Screwdriver-adjust
1ITI5DET as required.

6.6.6 MRPWRCLR ENB

Two delays are to be checked: R303 at IPO1 ,rond
R302 ot IP02.

a. Check the R303 delay by applying a momentary
ground to IPOIT. '

6-14

b.

6.6

6.6

6.6

. Press XCT and REPT keys.

. Set up a DATAO P1,

.9

The MR PWR CLR ENB delay time should be
about five sec. Screwdriver-adjust R303 as

required.

. To check the overall effect of the delay, turn

off power and turn it on again. The delay time
for the POWER ON indicator Iamp to illuminate
should be about five sec.

. Check the R302 delay by applying a momentary

ground fo IPO2E. The CPA PWR DLY measured at
IPO2M, should be about 5 ms. Screwdriver-
adjust R302 as required.

.7 MC NON EX MEM Delay

. Set up a MOVE 777777 instruction on the con-

sole data switches (200000 777777).

. Set the COARSE speed control to 6 and the FINE

to 12 o'clock.

- Connect the oscilloscope to measure the delay

between a positive pulse at 1502V and ISOZM‘-
going positive.

The delay should be
100 psec. Adjust R303 at 1502 as required.

.8 10T T2 and 10T RESTART Delays

0 instruction on the console
data switches (700540 000000)

. Connect the oscilloscope to 3F32E and sync

positive.

. Press XCT and REPT keys and measure the delay

to 3F32M. The 10T T2 delay should be 1 s.

. Measure the delay from 3F32E to 3F32V. The

IOT RESTART delay should be 2 1s. Adjust R302
at 3F32 as required.

IOT T4 and [OT RESET Delays

Maintain the same test conditions described in Para-

graph 6.6.8.

a. Sync positive and scope 3F33N to measure

IOT RESET DLY to 3F33V. The IOT RESET DLY
should be 2.5 ps.

b.

6.6.

6.6.

6.7

6.7.

Q
.

o

6.7.

o
.

. Punch some tape.

Sync positive and scope 3F33E to measure IOT T4
delay to 3F33M. The IOT T4 delay should be

1.5 ps.

. Adjust R302 at 3F33 as required.

10 KEY REPT DLY

. Set up an AOJA 0 instruction on the console data

switches (344000 000000)

. Press XCT and REPT keys and vary both COARSE

and FINE speed controls to confirm that both con-
trol the speed of counting in logation 0.

1T PTP SCR DRIVER

There should be cbout a 5-sec
delay from the time the feed button is released
until the tape punch turns off.

. Adjust R303 at 3A26 as required.

INDICATOR CHECKS

1 MEMORY DATA, MEMORY ADDRESS, and
- MEMORY INDICATOR Lamps
Turn off FM ENB.

Set COARSE speed contro! to 6 and FINE speéd
control to 3 o'clock.

. Set all memory address and data switches to 0.
. Press DEPOSIT THIS and REPT keys.

. Set each data switch and memory address swifch

to a 1 and observe that every corresponding in~
dicator lamp lights.

2 PC, IR, AC, I and INDEX Indicators

. Leave all data and memory address switches set

to 1.

Press the following keys in the order listed:
STOP, RESET, SING CYCLE (leave on), START,
STOP, RESET, DEPOSIT THIS, and XCT.

6.7

6.7

. All of the following indicator lamps should light:

I. PROGRAM COUNITER indicators
2. INSTRUCTION indicators

3. AC indicators

4. 1 indicator

5. INDEX indicators

6. MEMORY DATA indicators

.3 AR, BR, ADDER and PB Indicators
. Press STOP and RESET keys.

. Set up a MOVEI 0,0 instruction on the data

switches (201000 000000).

. Press XCT switch. The ARITHMETIC REGISTER,

BUFFER REGISTER, ADDER, and PARITY BUFFER
indicator lamps should all be off.

. Set up an EXCH 0,0 instruction on the data

switches (250000 000000)

. Press XCT key. All ARITHMETIC REGISTER,

BUFFER REGISTER, ADDER, and PARITY BUFFER
indicators should light.

.4 MQ, SC, and SCAD Indicators

. Deposit all 0s in memory location 0 and deposit

all 1s in memory location 1.

. Switch SHIFT CNTR MAINT on.

. Set up a ROTC 110 instruction on the data

switches (245000 000110)

. Press XCT key. All ARITHMETIC REGISTER in~

dicators should be off. The MULTIPLIER
QUOTIENT indicators should display 000----01.
The SC REGISTER indication should be 670 and
the SC ADDER indication should be 671.

. Press CONT key 72 times and observe the indica-

tor panel display. The least significant bit in the
MEMORY QUOTIENT (MQ) should step one
position to the left each time the CONT key is
pressed, and pass into the ARITHMETIC REGISTER

6-16

(AR) display. When the bit enters the AR, the
ADDER display should look like the AR. The bit
displayed in the AR and ADDER should continue
to step to the left.

f. Meanwhile, the SC REGISTER and SC ADDER in-
dications should be counting down. When the
SC REGISTER indicates 000, the SC ADDER
should indicate 001 and the MQ and AR should -
equal 0----01. '

6.8 SWITCH CHECKS

6.8.1 SHIFT CNTR MAINT Switch
The SHIFT CNTR MAINT function is tested in Para~
graph 6.7 .4.
6.8.2 FM ENB Switch
a. Examine memory locations 1 and 2 with the FM
ENB switch on. No MEMORY/PROGRAM DATA
indicators should change.
b. Set FM ENB switch off. The MEMORY/PROGRAM
DATA indications should change.
6.8.3 REPT BYP Switch

a. Examine a nonexistent memory location such as

400000.

b. Press STOP and RESET keys. Then press NXM
STOP and REPT keys.

c. Set COARSE speed control to 2 and FINE speed
control to 2 o'clock.

d. Turn on REPT BYP and press EXAMINE NEXT key.
The MA should count.

e. Set REPT BYP off. The MA should stop counting.

6.8.4 MI PROG DIS Switch

a. Turn MI PROG DIS switch on and press STOP and
RESET keys.

b. Set up a DATAQ P1 instruction on the data
switches (700540 000000).

c.

6.8

Q.

6.8.

a.

Press XCT key. The MEMORY DATA indicator

should remain on.

. Turn off MI PROG DIS switch and execute the

same instruction. The MEMORY DATA indicator

tamp should go out and the PROGRAM DATA
indicator should light.

.5 READ IN DEVICE Switches

Turn on all READ IN DEVICE switches.

. Press the READ IN key and observe that corres-

ponding indicators light in the IR display.

- Turn off READ IN DEVICE switches, one by one.

After each switch is turned off, press the
READ IN key and observe that the corresponding
indicator lamp goes out in the IR display.

6 Address Condition Switches

Deposit the following program:

- 6=17

MA Instruction
100 JRST 101

101 MOVE 100
102 MOVEM 100
103 JRST 100

(254000 000101)
(200000 000100)
(202000 000100)
(254000 000100)

. Start program execution at 100.
. Set memory address switches to 100.

. Turn on INST FETCH and ADR STQP switches.

The machine should stop with 100 in the
PROGRAM COUNTER (PC).

. Turn off ADR STOP and INST FETCH switches and

press the CONT key. The program should

continue.

. Turn on DATA FETCH and ADR STOP switches.

The machine should stop with 101 in the PC.

. Turn off DATA FETCH and ADR STOP switches.

Turn on WRITE, ADR STOP, and ADR BREAK
switches.

. Press CONT key. The machine should stop with

103 in the PC. The ADR BRK indicator (located
in top row of Bay 1 indicator panel, 14th from
left) should light.

APPENDIX A

FLOW DIAGRAM

AND

SCHEMATIC INTERPRETATION

The PDP-10 System, in particular the KA10 Central
Processor, can be generally described as an asynchro-
nous system. This has two meanings:

a. There is no central source of timing pulses.
(Pulses are generated by the logic as needed.)

- There is no fixed sequence of timing pulses. The
system proceeds from task to task without allowing
time for more complicated cases which are not
required for the particular instruction.

The KAI10 Central Processor incorporates pulse-
sampled level logic. Data residing in the various re-
gisters and control flip=flops of the processor are the
sources of the level logic. Generally, only a few
stages of level logic are necessary to reach a conclu-
sion. After a time adequate to cover the maximum
possible delay of the level logic stages, a pulse

is developed which samples the outputs of the level
logic. As a consequence, the registers and control
flip-flops may be changed, making up a new set of
conditions. The actual sequence of pulses which oc-
curs is also controlled by the level logic. The timing
is accomplished with a series of delay lines and pulse
amplifier-standardizers. These delay line-pulse am-
plifier combinations form a path with branches and
loops to accomplish repetitive tasks such as shifting.
The KAIO logic may itself be thought of as a program,
with branches and loops to accomplish its intended
functions. '

A.1 SYMBOLOGY

Essential to understanding the flow chart and logic
diagrams, which illustrate the operations of the KA10,
is the ability of the reader to interpret the symbology
used in the preparation of these diagrams. For this
reason, a discussion of the symbol standards follows.

It is recommended that a reader unfamiliar with DEC
symbol standards read this section before studying the
theory of operation.

A.1.1 Lines

Lines are used to indicate flow. Where directional
arrows are not provided, the flow is presumed to be

down or to the right. Examples of flow lines are
shown below:

P

Shows a path diverging.

Shows two paths recombining.

Shows two independent paths crossing;
Shows a path branching three ways.

Example A.
Example B,
Example C.
Example D.

A.1.2 Pulses

Names enclosed in ovals as shown below represent
pulse amplifiers. A line leaving the bottom of an oval
generally indicates the continuation of the flow of
control. A line leaving the right side of the oval
generally leads to the indication of the other actions
caused by this pulse.

Pulses are named in such a manner that the location of
the flow diagram on which it appears is facilitated.
Only those pulse amplifiers which are part of the con-
trol flow appear as ovals and are named as described
below.

A pulse name is generally of the form XXTn. The XX
consists of from one to three characters which identify
the pulse~generating part of the logic. It usually cor=
responds directly to a drawing name, or to part of a
drawing name. ‘The T indicates a time pulse. The
digit usually indicates which pulse, in a sequence of
pulses, it is. Due to the complexity of the logic,
however, pulses of a given group do not always occur
in numerical order. Sometimes an additional letter
appears following the digit. This usually indicates an
instance where additional drive was required, or some
other reason which required an extra pulse amplifier
to be inserted. These additional letters are, however,
logically separate from the pulse amplifier of the same
name without the suffix.

Time pulses are thought of not only as pulses which
perform some action, but also as "times" which occur
during some cycle of operation or hardware subrou-
tine. Hence, in speaking, the names are often ex~
panded; e.g., FT? to "fetch time 9", DIVI3 to
“divide time 3", IOT T2 to "iot time 2". (lot isa
short form of "input/output transfer" from earlier, and
smaller, DIGITAL machines.)

A.1.3 Delays

Horizontal lines in the flow diagram, separated by a
time specification, indicate delays. Times with un-
specified units are in microseconds. Time delays un-
der 250 ns are usually implemented by delay lines;
longer time delays by monostable multivibrators. The
time given is measured through the delay only and
does not count delays through associated gating and
pulse amplifier circuits. Hence, the time delay of a
given operation cannot be determined by simply ad-
ding the delays specified.

1

.210 5ms
I Delay is 0.210 ps I
(or 210 ns) Delay is 5 milliseconds

Horizontal lines in the flow (usually doubled) sepa-
rated by names, as shown below, indicate that the
flow has temporarily left this flow diagram to make
use of a hardware subroutine. The upper name is the
name of the subroutine, the lower name is the last
pulse in the subroutine. Hardware subroutines are
used where substantially similar events are desired
from several places in the overall logic. Examples of
these are: read and write from memory, shift a speci-
fied number of times, multiply two numbers. These
subroutines are sometimes nested (e.g., "floating mul-
tiply " calls "multiply " which in turn calls "shift").

i

WRRQ
MCRSTH

—

L

te SCTO
SCT4

"_—_:_]___

A-2

A.1.4 Conditions

Flow lines interrupted by some logical expressions, as
shown below, indicate that flow only proceeds down
paths where the given condition is true at the time the
pulse appears at that point.

L

()

—

- (E LONG or ST INH)

ADQ ADO (1) E LONG

| | | n

A.1.5 Operations

Boxes connected to ovals containing specifications of
operations are best explained by considering the ex-
ample shown below. The MQ FM AD(J) means that
the MQwill have the contents of the adder jammed
into it. The FM stands for from; this example is

read as: "MQ from Adder, jammed". Other similar
possibilities include MQ FM AD(1), meaning that only
the 1s are transferred, causing an Inclusive OR; or
MQ FM AD(0), transferring the Os, causing an AND.

CORRECT REMAINDER
QUOTIENT
AD AR+EN CLR;

AD CRY 36 SET;

AD AR-EN SET;

AD CRY 36 SET;

AD AR+EN SET

AD AR-EN CLR

MQ FM AD());
AR FM MQ(J);
IR1()):
NEGATE REMAINDER

fR1(0): ROUNDING

This backward notation is used in order to lead the
reader directly to the block schematic diagram which
has the logic in question. In this example, the gating
and pulse amplifiers which load the MQ are found on
the MQ control print. One would expect to find
DST5 as an input on that PA. The semicolon delimits
comments. The "correct remainder" is supplied as ad-
ditional explanatory information. The AR FM MQ (J)
is similar to that described above, Note that, in com-
bination with the above item, the MQ is both changed
and read out. Since these two items are in the same

box, they occur simultaneously, and the order in
which they appear in the box is irrelevant. In all
such cases, the old contents are what are read out.

The following three items, all indented past the IR1(1),
are all contingent on IR bit 1 being in the 1 state.
Hence, those actions only occur if IR1isa 1. Speci-
fications of the form XXXX SET or CLR refer to in-
dividual control flip~flops. As usual, the first few
characters of the name indicate the logic diagram
where the flip-flop can be found. A flip-flop which
has been SET will be in the 1 state upon application

of a time pulse; one which has been CLRed will be in

the O state.

-«

A.1.6 Tabular Format

structions, most of the action occurs ot a few standard
time pulses. Hence, a different form of flow chart is
used fo detail which actions take place for various
instructions, either individually or in groups, at the
standard execution time pulses. This other form is a
rather standardized tabular format. The example be-
low, shown as Figure A-1, is taken from the basic in-
struction flow.

The use of X in the instruction conditions allows for
variations of the basic instructions to be covered.
Here XXX=: FCE means that the instructions ADD and
SUB (without suffixes) cause the FCE function. The
ADDM, ADDB, SUBM, SUBB cause FCE PSE, by sim-

. ilar reasoning. At FT9, any ADD instruction (ADD,

The explanation above covers one of the two forms of
flow charts used for the KA10. This form is used
where it is most important to convey the actual

flow through the logic. However, in the basic in-

ADDI, ADDM, ADDB) causes AD BR+EN SET.
A.2 LOGIC SYMBOLOGY
The system of logic symbology used in the PDP-10

drawings has as its primary objective the clarification
of what logical function is being performed by a given

Which instructions are covered
by this column.

The settings of a number of
gating conditions used in the
fetch and execution cycles.

The initial contents of the

registers used in this instruc-
tion by FT9.

The events which take place

INSTRUCTION ADD -
SUBTRACT
INITIAL EFO LONG
SWITCHES XXX-: FCE
M
XXXB : FCE PSE
INITIAL AR; C(ACQ)
REGISTERS BR; (0,E) or (ACE)
MA: E
FT9 AD AR+EN SET
ADDX: AD BR+EN SET
SUBX: AD BR-EN SET
AD CRY 36 SET
ETO AR FM AD(J)
ARF CRY STB
ETI
ET2
FINAL
SWITCHES XXXM: SACINH

Figure A-1

- A-3

at FT? for instructions in this
group. Events at FT? cannot
be data-dependent.

ETO is the first execution time
for data-dependent operations.

ET1 is an optional pulse.
ET2 is also optional .

Settings of conditions used in
the store cycle.

Tabular Format

circuit. Hence, a system of non-polar logic has been
adopted. Non-polar implies that any given signal has

two names: a mnemonic name to indicate one polarity,

and a negation of that name at the other polarity. For
example, the instruction decoders provide outputs
that are true for the ground (or high) level; this is
symbolized by an open diamond ——> at the end of
signal line. One decoder output is named IR ILDB
———. Note that the assertion polarity symbol
must be included with the name because the same line
is also called IR ILDB ——@ (at -3V, the low
level). Thus, this line carries potentially two useful
signals: any gate that requires an input when the in-
struction register holds the instruction ILDB has the
input available at the high level, and any gate that
must know when ILDB is not present has the input
available at the low level. Because some logic func-
tions are required when either polarity is available,
many of the signals in the processor are provided with
both polarities by means of inverters. The inverters
usually appear at the source end of the signal as
named by its source. For example, an instruction de-
coder similar to the example above provides IR

ASHC —— and, by the same arguments, =IR ASHC
——@ . However, the machine requires one or both
of the signals IR ASHC ——@ or -IR ASHC —> ;
therefore, an inverter appears at the output of this de-
coder as shown in Figure A=2. For this case, all com-
binations of the signal IR ASHC are available.

I IR ASHC
DECODER <M\

<>

10-0444

Figure A-2 Inverter

A similar situation exists for flip=flops and devices
having register-like properties such as adders. Here,
as an aid in identifying which signals are from flip-
flops and which are produced by gates, the suffixes
(1) and (0) appear at all flip-flop-originated signals.
These suffixes are read aloud as: ona land ona O,
respectively. Because flip=flops have two comple-
mentary oufput terminals, a situation exists that is
analogous to the gate with an inverter. Each of the
two outputs of the flip-flop has two logical names;
for example, the signal IR 15(1) ——«@p is the same
as the signal -IR 15 (0) —— ; however, because
a suffix is used on flip=flops, it can be seen that the
signals =X(1) and X(0) are equivalent. Hence, the
signal -IR 15(1} ——> always appears as

R 15(0) —> .

Other modules are indicated by an abbreviation
enclosed in a rectangular box. These include the
following:

BD Bus driver used for driving cables

+ Adder used to perform arithmetic sum
operations

ADR Alternate designation for adder

ITD Initial transient detector used in con-
sole logic

CLK Clock

SS Schmitt trigger

In some instances, it may be necessary to refer to a
module catalog or the PDP-10 System Module Refer-

ence Manual to obtain the characteristics of a module.

A similar argument holds for the other terminal of a
flip-flop. This is symbolized on drawings by showing
four outputs from a flip-flop; these are grouped for
(0) and (1), as shown in Figure A~3. The P and N
letters outside the symbol are output pins of the flip-
flop. Pin P can be both (0) —@ and (1) —.
Pin N can be both (0) ——=> and (1) —@ .

Therefore, when a gate calls for one of the four out-

puts from the flip-flop, it becomes a simple matter to

identify the signal source.

PN PN
40 o¢
0 '
IRIS

10-0445

Figure A-3 Flip-Flop

Gates are shown as rectangular boxes with a symbol
enclosed to tell what logical function is performed by
the gate, given the polarity of the inputs shown. The
dual nature of logic symbology shows itself again be-
cause a given physical gate can be both @ NAND and
a NOR type, depending on the polarity of its inputs
as shown in Figure A-4. A NAND gate is symbolized
by ~A, and a NOR gate by ~V. The NOT part of

the gate inverts the polarity of the output; and there-
fore, the gates are used as AND and OR gates for log-
ical purposes. In the drawings, the representation of
a given gate is chosen, which makes the logical func-
tion clearest.

p
*r—o
— e I
VA [aVAY}
B133 8133
—
NAND NOR

10-0441

Figure A-4 NAND and NOR Gates

Some logical functions are performed without the
necessity for gates by paralleling the outputs of exist-
ing gates. Because almost all the gates in the KA10
are of the DTL type (diode~transistor-logic), meaning
that they have diode inputs and a single ended tran-
sistor output, they can be considered as controlled
switches, which are either open circuits or shorts to
ground. By connecting two or more such gates in
parallel, the output is grounded when either gate is
on. Hence, paralleled gates give an OR at ground.
By the argument of duality, an AND function is pro-
duced by such a gate at -3V,

Gates can handle both pulses and levels. Pulses are
indicated by the symbol —® (denoting a pulse which
is true at =3V) and —> (denoting a pulse which is

true at ground). Most » pulses are produced by
pulse amplifiers as shown in Figure A-5. Pulse ampli-
fiers (usually referred to as PAs) normally are trig-
gered from a ground-going input pulse, but because
PAs reshape the output pulse, they can operate from
any ground-going level change.

PA
R603

—
L

——-D(:’:]

10-0442

Figure A-5 Pulse Amgplifier

Delay lines are shown as elongated rectangles, with a
delay time specification enclosed. Most delay lines
in the KA10 have discrete taps in 25-ns increments
(e.g., B311), while some are continuously variable
(e.g., B312).

Delay lines are normally driven by a PA output. Their
output pulse configuration, for a given input pulse, is
shown in Figure A-6. The output of the delay line is

~ of a different shape, wider, and of less power than the

PA pulse.
L B311 N
—] 1RO9 —
115 ns
L
K H = M
Ko GND
|40ns| \ /
PA PULSE DELAY
: LINE
ouTuUT

10-0443

Figure A-6 Delay Line and Delay Line Output

APPENDIX B
INSTRUCTION CODE

00~
01—
02—
03—~

04—
05—

07—

10—
=
12—
13—~

14—
15=
16—
17—

20—
21—
22—
23—

24—
25—
26—
27~

30—
31—
32—
33—

34
35—
36—~
37—

40~
41—
42—
43—

44—
45—
4=
47—

51—
52—
53—

54
55—
56—
57—

60—
61—
62—
&3 =

[y
65—
66—
67—

- =0

(ILLEGAL)

CALL
OPEN
SETSTS
CLOSE

UJEN

UFA

FAD
FsB

FMP
FOV

MOVE
MOVN
IMUL
D1V

ASH
EXCH
PUSHJ
ADD

CAl
CAM
Jump
SKIP

AOJ
AOS
$OJ

505

SETZ
ANDCA
ANDCM
XOR

ANDCB
SETCA
SETCM
ORCB
HLL
HLLZ
HLLO
HLLE

HRR
HRRZ
HRRO
HRRE

TRN
TON
TRZ

Dz

TRC

TOC
TRO
00

-

INIT

-2

(UNIMPLEMENTED USER OPERATIONS)

-3

USER DEFINED UUOs

TTCALL RESERVED FOR DEC

STATO GETSTS

RELEAS

DFN

-L

-L
-L
-L
-l

-1
-l
-1
-l

-l
-1
-
-1
-l
-1
-
-1

-1
-1
-1
-1

TLN
TSN
TLZ
LETA

TLC
TsC
TLO
TSO

MTAPE

FsC

-M
-M
-M
-M

-M
-M
“M
=M

LSH
AQBJP
POP
-M

-£
~E
=€
-E

-E
-E
-E
-E

M

-M
~M
~-M

-M
-M
-M
-M
-M
-M
-M
-M

-M
-M
-M
-M

TRNE
TONE
TRZE

TDZE

TRCE

TOCE
TROE
TDOE

STATZ
UGETF

18P
-8

-5
=S
-B
-B

JFFO
AOBIN
POPS
-8

~LE
-LE
~LE
-LE

-LE
-LE
-LE
-LE

-3
-8
~-B
-8
-5
~S
-5
=S

-$
-5
-5
-5

TLNE
TSNE
TLZE
TSZE

TLCE
TSCE
TLOE
TSOE

INPUT - QUTPUT INSTRUCTIONS

7= —=00-BLKI
7— ~04—=DATAI
7= =10=~8LKO
7= —14=DATAO
7= =20~CONO
7= =24~CONI

" 7= =30—CONSZ
7= =34~CONSO

the device number is inserted in bits 3 to 9

INBUF
USETI

ILos

FADR
FSBR

FMPR
FOWVR

MOVS
MOVM
MUL
Div

ASHC
JRST
JSR
sus

A
-A
-A
~A

-A
~A
-A

o =A

AND
SETM
SETA
IOR

EQv
ORCA
ORCM
SETO
HRL
HRLZ
HRLO
HRLE

HLR
HLRZ
HLRO
HLRE

TRNA
TONA
TRZA

TDZA

TRCA

TDCA
TROA
TDOA

of sach 1/Q instruction.

B-1

LEFT FOR SPECIAL MONITORS

RENAME
QUTBUF
USETO

ROTC
JFCL
J5p
-1

-GE
~GE
~GE
-GE

-GE
-GE

-GE

-l
-l
-1
=1

~I
-

-
-
-l
-1
-

-1
-l
-l
-1

TLNA
TSNA
TLZA
TSZA

TLCA
TSCA
TLOA
TSOA

iN
INPUT
LOCKUP

10P8

LM

-M
-M
-M

-M
-M
-M
=M

LSHC
XCT
JSA
~M

=N
-N
-N
-N

=N
=N
=N
=N

-M
-M
-M
-M

-M
-M
-M
“M
-M
-M
-M

-M

-M
-M
-M
-M

TRNN
TONN
TRZN

IDZN

TRCN

TOCN
TRON
TDON

-7

CALL!
out
QuUTPUT
ENTER

DPB

-8
-B
-B

-5

-8
-8

JRA
-B

-G
-G
-G
-G

-G
-G
-G

-B
-B
-8
-B

-8
-3
-8
-8
)
=S
=S
-S

-S
-5
=S
-5

TLNN
TSNN
TLZN
TSZN

TLCN
TSCN
TLON
TSON

INSTRUCTION WORD FORMATS

APPENDIX C

9r$0-01

SLYWHOJ QHOM

ArLL Nt
{11NIWITAWOD 5.2) NOIIDVHS 30 3TVH H3ITYO MO 124 »ﬁﬂ”uxwm m»w_mm“wvxu

SANVYIJO IN!Od ONILYO14 HLONIT 318N0A NI OHOM Y3IQHO MO

(10y sau)
ININOAY I BZ1 SSTI% I

ANIWIIWO0D 3.2} NOILIVHS

SANYH IO INIOd ONILVYO1S

(INIWITIWOD 15.2) YIBWNN AHYNIG

SONVHIJO INIOd 03X13
. (R 1Sa5t

31A8 IXIN 3148

[B \\1ILA IOVHOLS 3148

vy [Tt ¢ v

x ’ SIS 4 NOH

HILNIOL 31A8

Mo

1 SS3yoav INNQD QHOV.

OMO! OHOM TOHINOD 1INNVHI VLVG 'HILNIOd NMOGHSNd ‘HILNIO OX19/1%78
LI

$SIY0OAV NOILYNILIS3a SSIHA0Y 1OHNOS

OMX H3ILNIOd 178

o " 6 0 f 9 G v b ¢ ' 0
MO
0110 1NO NI 1dNYBIINT] MO TIHIAO ' 0
HIONN ¥isn M0 T4HIN0
¥Isn I1AR NYOY 3 ¥
ON ONILVO 14 1v0ry AHYY AHHY)
L oe e oo e _
* wn T T T T T Twa "

N I

Sov 1y

QHOM Jd

B noona i

1oy I _
’ ! NOTEY O TSN NN TuI0

SNOILINYISNI LNO NI

R " '

>
x

Lamgese

SNOILONY 1SN DISYD

SUYWHOY HOM NOV) ML SN
XN gay

C-1

DEVICE MNEMONICS

APPENDIX D

4L¥¥0-01

DI A0 2NAMD 103y MUY _ e

50 ANAID CHTIPUL X DN}
01 d0d M 1WUUIU UBIIK) ———t

9 404 104 smms unrigy 4,

(horesa e 1P s

48
@ AR 323

t

401 4ad wm pasn
W9 409 wim pany

]

11910 w120
GNDD3IS

ZSWL oW1

3dve 311 INDYN

EALER N
Ssww
ziaw

01vy ot

o
WILSAS WILSAS
#Ivd ¥SI0 NIv4 %510
2340 240
Ot jotay ot

¥30¥34 Quv) | ¥I0V3IY Quvd

8l L&

01} 014D 01

o
019

>

WVLID10 D0 vy

o1

(%'

ST

EALER 140¢]
10
oLt
ASIO VTS wS1Q 11w NS
2wsa ¥$a
012y 0t § 010y (]
»I012 W0
INVIL 1Y 3N W vy
2o 12
oty Ot {0130 o
" ot

I

o

ey

J

STINOWINW 3MAI0
O XION 3ddv

SI2IAI0 WIS wisn

. D=1

SENARTOHYONY (S 240

Disital Eqioment Gorearar
Maynard, Mossachusette " dlilgliltlall

printed in U.S.A.

