tosocceenecesose

tdigital! INTEROFFICE MEMNDRANDUM

toevavennnceaswesy

TO: Mimi Chen MR1=2/E37
Ted Hess MR1i=2/E85
Qon Lewine MR1=2/E85
Patty Hardy MR1=2/E37
Ron McClean MR1=2/E85
Dave Nixon MR1=2/E37
Dave wWright MR1=2/E37

DPATE: Oct 7, 1980

FROM: Sara Murpny

DEPT: Technical Languages
LocC: MR1=2/£37

EXT: 231=5131

FILE: INSTR1,RNO

SuBJ: CIS Instructions

The attached document is an update of the CIS specification, The only
change {s that all of the instructions are now specified to be EXTEND
instructions, This change was made to improve performance on JUPITER,

Many of the instructions in this specification could only be used by
COBOL {f 9=bit ASCI! were supported, There is currently no plan for
COBOL to support 9epit ASCII,

Some of the instructions in this specification could be used by COBOL
to improve packed decimal and EBCDIC performance, Those instructions
are:

Move

AODDP

CHOP

CMPP

CvVTP3

CVTRP

SuUBP

CVTEP

CVTPE

Movce

CMPC

ASHP :
Please note that apvendix B of the specification specifies extensions
to be made to the BIS {instruction set, These extensions can oe
utilized by COBOL regardless of whether 9ebit ASCII is supported,

X% COMPANY CONFIDENTIAL *xx DO NOT DUPLICATE

fooanecocsscceew

laigitall INTEROFFICE MEMORANDUM

LA L L L LY YT 2

TO: List

DATE: 7=0ct=80
FROM: SARA MURPHY X5181%

BILL KOHLABRENNER X1100
DEPT: Large System

Software Engineering

LoC: MR1=2/E37
FILE: INSTR,RNQ

SUBJ: NEW «10/20 COMMERCIAL INSTRUCTIONS
REVISION: 12

This document describes a set of commercial instructions for the
DECSystem=10/20, Tnis specification was approved by the 10/20
Architecture Committee on March 22, 1979,

** COMPANY CONFIDENTIAL *=x DO NOT DUPLICATE

Table of Contents

1.0 MOTIVATION AND GOALS..ggcooo-oooooo-onv-nocooo.co»oooo
2,0 OVERVIEwOOOOO!OOQ.QQQQ'.OOOQ'Q!.QOCQQl!t..ti"..l..i!.
3.0

EFFECTIVE ADDRESS CALCULATION FOR 9=BIT BYTESesoeeceose

3.1
3.2

3.3

4,0 0
5.0 G
1
3

(U S IO RO RN Y T e Y]
® & o ¢ 5 & 0 8 o ¢

2
4
5
6
7
8
9
1

Wwiw w

. @ o

[¥8]

Goals For The Address Calculation ScCheme,qecesscncae
Addressing ”Odeso.o'ocoo-coooooonoooonccuo-o-o-oo-n
2.1 Direct Mvode Te0erctceensorentrstencrsreNnes e
Deferred Mode Te0eresorenenererecenscesneesoees
Direct Subscripted Mode ®evecsescecssceronsoege
Deferred Subscripted Mode Tevreeceescesrcserrene
Immediate Mode “oevcoorsceceverecervssrssrneas
Summary Of Mode Bit ASS1QGNMENES =, ..00000c0c00qe
mplQSQQtuoooo..ooo'olo.noooooooonooocnﬁooooococo
An Example Of "Direct Mode" AdAressing =eeeeqs
An Example Of Immediate AdAressing =.cceesscee
An Example QOf "Direct Subscripted Mode"
Addressinq -‘..I..'..........'..."..'."'.'..
An Example 0f "Direct Mode" Addressing 7o
Another Section T eve0escesanerresenrssasesoane

Wi WIFHNNNONNN
WN =L IO WN

¢ o & e w 5 » o

[]
w
)
F-3

PCODE ASSIGNMENTS.o..o-oooooooo.ooon-tooatcooonooo---
ENERAL CONVENTIUNS....ooon'ooooocnooctooooon-'coooaoo

Multi=-word Instruction FOtMétoo.ooococoo-co.oooo-co
Interrupt Handling;-ocoooo:c.oooonnocuoocoooncooo.o
MUUO’S..QQO-co-ooo.o-'o'onoco-aonnulco.o-n-oonooono
Operands In AC’S.....'.O'Q.00000000!.o.Q!!cln.OO...
Section 0.000.00-0.000000.-0.ooo-oncoo-tlooonttocai
Operations Crossing Section BoundariesS,.ceseccvesnse
Overlapping Operands...............-....-.-----.-..
Results Of Comparison OPeratioNS.ececcesscessconvese
Arithmetic FaUltS....ooonoooooooo'-ooc..oonooooﬁooc

PXCT.Q..I..‘.Q'..I..".'Q.l....'."..0...l..!...'..

6.0 CHARACTER STRING MANIPULATION INSTRUCTIONS seesnceennse

6,1

6,2

Fixed Length Character 5tring Manipulation

InstructionS.........o.o.-.o..a-..................-

6.,1.1 MOVC (Move Characters) Tereescrrtossecsetncecs
6s1e2 CMPC (Compare Characters) ® e esseseeessenensenes

Variable Length Character- String Manipulation

InstructicnS.........o.o.-......'o---..............

6,2,1 MQVCV (Move Characters vVariable Length) “ences
6,202 CMPCV (Compare Characters Variable Length) e

7.0 DECIMAL ARITHMETIC INSTRUCTIDNS.o¢ooo¢'-coo.-onooao.co

7.1

7.2

NANNNNNANN

®« & & & » & e o

Numeric Display IDStrUCC1°n3.q.oonnon9.:09000090..0
lel CMPND (Compare Numeric DiSPlay) ~.ececcescsees
ADDND (Add Numeric Display) " hseenccsetetsnces
SUBND (Subtract Numeric Disrlay) “eo0cerreesane
MOVND (Move Numeric Displ&Y) ®eseeernccscesssen
ASHND (Arithmetic Shift Numeric Display) =e...
TLGLND (Test For Legal Numeric DisSPlay) “eees.
CVINDB (Convert Numeric Display To Binary) =,
CVIBND (Convert Binary To Numeric Display) =,,
Packed Decimal'InstrQCtions........-...........o...

- s s s o b
X~NOWN S wWwN

® & & & o o »

7.2.1 CMPP (Compare Packed) Teeveecsessessscentnnnge

VRONOO NN W W

20
21
22
23
24
25
25
26
26
27
28
28
30
31

Page

2

Te242 ADDP (Add Packed) ®eseeresrsstsnccrsssetsesncse 31
7¢2,3 SUBP (Subtract Packed) e, cceectcenreccncscncses 32
T7e2.4 MOVP (Move Packed) ®esteresecetecscsvnnesssece 32
Te245 ASHP (Arithmetic sSnift Packed) ®eenreerssennese 33
74246 TLGLP (Test For Legal Packed Decimal) “eseeees 33
7e2¢7 CHOP (Clear High Order PacKed) =,..cev000000es 34
7¢2.8 CVIPB (Convert Packed To BiNAary) =.cecccescces 34
7.2.9 CVTBP (Convert 3inary To Packed) =..eceeoescces 35
742,10 CVTNDOP (Convert Numeric Display To Packed) =, 36
7«2.11 CVTPND (Convert Packed To Numeric bisplay) =, 36
72,12 CVTEP (Convert EBCDIC Numeric Display To

Packed) R R IR Y R T YN TN Y S 37
7.2,13 CVTPE (Convert Packed To EBCDIC Numeric

Display) N N R N NN I W N AP ST A S PP A, 38

APPENDIX A

APPENDIX B

B,1 EXTENSIONS TD MOVSToeeoeseserencsosscccccnsvecreesane B=l
Be2 NEW EXTENDED COMPARE INSTRUCTIUNS-QQQco.ocoooco.ooo B=2
Be2.1 CMPSQO Compare sString with Offseteseccecccvnece B=3
Be2,2 CMPST Compare String with TranslatioNeccccesse Be=3
B.3 ADDITIONS TO THE EXTENDED EDIT INSTRUCTIONeseneneae B=5
Be3det ADJDP (octal Code 005)cavcactocscnsevconctcsese B=6
Be3.2 REPEAT (octal Code 006).oooooqoooocoo-oooooooo B=6
Be4 ADDITION TO THE ADJBP INSTRUCTIONooo--o-oocoo-ooo.o B=6

APPENDIX C

GOALSO'....’.Q.Q...IQQO..........Ql......'...'.!.'. C.l

Col

Ce2 HOW TO HANODLE MULTIPLE WORDsc-ooo.onc.nocquotcotont C=1
Ce3 HOW TO HANOLE NORMAL OPCODES VERSUS EXTENDSsaeeseee C=1
Ce4 HOW TO GENERATE THE SECOND THROUGH NTH AORDSeeeaeqs C=2
C.5 SPECIFYING MODE AND OFFSET.Q-ontoooo-ooooonnoao.ocv C=2
C.6 SPECIFYING IMMEDIATE CONSTANTSseesevenesssssescsces C=3

CebHel Immediate Display Constants...-.....g......... C=3
Ce6.2 1Immediate Display Decimal ConstantSeeeseecsncees C=3
Ce6,3 Immediate Packed Decimal CONStantSeeescececsess C=4
Ca7 EXAMPDESoo-0oconooo-aooooo.oo.ocvoo'oooooonnoooooo- C=4
Ce7¢1 Simple Movcc.uooooo.o.o.o-nootoo-oooo-no.o'oo- C=4
Ce7+42 Simole (but Unaligned) MOVCeeenovoscnosescnnee C=4
Cs743 MOVC wWith Deferred Source And Direct
Subscripted Destination....................... C-4
Ce744 MOVC With Direct Subscripted Source and
Deferred Destination.................---.oo... C=5
Ce7.5 'MOVC With Both Operands Direct Subscripted,... C=5
Ce746 Adding Two Packed Decimal FleldSeeevecessasess C=5
Ce7¢7 Simple Convert Packed To Numeric DiSPlaVeeseese C=6
Ce7.89 Variabple Length Character MOVegesanoseseecrnne C=6
C.8 OPE

N ISSUES.O.CQ.....Q..Q.Q.....l".".QQ‘."'Q'... C-6

APPENDIX D

¥* COMPANY CONFIDENTIAL *xx DO NOT DUPLICATE Page 3

1.0 MOTIVATION AND GOALS

The commercial instructions being proposed are designed to make COBOL
object code run fast, This goal was of primary importance in defining
the instructions, The COBOL performance required can not be achieved
by simply speeding up the =10 BIS because of the setup overhead and
generality of those instructions,

Other goals that were taken into consideration were consistency with
the rest of the KLiO=model 8 architecture and applicability to other
languages, :

Our primary interest was in the potential operformance of these
instructions on new machines, It was also important that the
instructions improve COBOL performance on KL=10 model B machines,

2,0 QVERVIEW

These new instructions are tied to a general software shift to 9ebit
bytes, with inclusion of a packed decimal (2 digits/byte) data type,

The instructions being proposed fall into two classes:

1, Character string manipulation instructions, which manipulate
strings of 9=bit opytes,

2, Decimal arithmetic instructions (both for numbers represented
in 9=bit display format and for numbers represented in packed
decimal format)

In general the instructions being propdsed take two operands and
rerform memory to memory operations,

A number of addressing modes are avallable for addressing the operands
of these instructions, These addressing modes are described in detail
below, Instructions may be 2,3, or 4 words long depending on the
addressing modes used for their operands,

The following instructions are being proposed, They are deseribed 1in
detail in sections 6 and 7 pelow, :
Character String Manipulation Instructions
MQvce Move Characters
CMPC Compare Characters

MOVCY = Move Characters Variable length
CMPCYV = Compare Characters Variable length

Numeric Dismlay (Trailing overpunch) Instructions

** COMPANY CONFIDENTIAL #*x DO NOT DUPLICATE Page 4

CMPND = Compare Numeric Display

ADDND = Add Numeric Display

SUBND = Subtract Numeric Display

MQVND = Move Numeric Display

ASHND = Arithmetic Shift Numeric Display
CVINDB =« Convert Numeric Display to Binary
CVTBND = Convert Binary to Numeric Display
TLGLND = Test for Legal Numeric Display

Packed Decimal Instructions

CMPP = Compare Packed

ADDP = Add Packed

SUBP = Subtract Packed

Mave = Move Packed

ASHP = Arithmetic Shift Packed

CHOP = Clear high order packed

cvTPA = Convert Packed to Binary

cvTaP = Convert Binary to Packed

CVINDP = Convert Numeric Display to Packed

CVTPND = Convert Packed to Numeric Display .
CVTEP = Convert EBCDIC numeric display to Packed
CVTPE = Convert Packed to EBCDIC numeric display
TLGLP = Test for legal packed decimal

The instructions listed above are referred to as CIS ("Commercial
Instruction Set") instructions,

Thnese complement some of the less timeecritical BIS instructions that
will still obe used, such as EDIT and MOVST (which does cnaracter set
conversion), A number of extensions will be made to the BIS
instructions, These extensions are described in acpendix B,

¥% COMPANY CONFIDENTIAL *x DO NOT DUPLICATE Page 5

3.0 EFFECTIVE ADDRESS CALCULATION FOR 9-BIT BYTES
3,1 Goals For The Address Calculation Scheme

The following goals were taken into consideration when deriving an
addressing scheme for addressing 9ebit byte strings:

1. It muyst be possible to address all of virtual memory

2, Simple addressing operations within a single section should
work without indexing or base registers or execution of extra
instructions to perform address calculation

3. There should be a simple representation that can be used to
describe the location of a parameter or a dynamically
allocated string anywhere in the virtual address space,

4, Singly subscripted array references to character strings
should run as fast as possiblie

5. References to elements in multi-dimensional character string
arrays should be "straightforward”

6. The scheme used should be consistent with the effective
addressing rules used by the existing instruction set, (This
is important for performance reasons, DOLPHIN has hardware
that calculates an effective address from the I,X, and Y
flelds of every instruction before the opcode is decoded,
These instructions should take advantage 0f that calculation
if possible,)

7. We should allow for future expansion,

3,2 Addressing Modes
The instructions address byte strings on their leftmost byte,
The address of a 9=bit byte is composed of the following:
1, The 30=bit virtual address of tne word that contains the byte

2. The 2=bit byte offset within the word, The 1leftmost byte
within a word {s byte 0, the next is_byte 1, ete

The values of these two components may oe specified in a number of
different ways which are descriped pelow,.

An operand that refers to a 9=bit hyte string may be either one or two
words long, The first word of each operand has the following format:

** COMPANY CONFIDENTIAL ** DU NQOT DUPLICATE Page 6

0 8 9 10 1112 13 14 17 18 35
..-----.-..---.-.--..------..----..-.--..-....-.---.--..--..----.
OXXXXX ¢ M L0 I X { Y {

Bits U=8 are never part of the operand, (The bits preceding the first
operand of an instruction contain the opcode, The bits preceding the
second operand are used as length fields. Their 1interpretation is
different for different opcodes and is described under each individual
instruction,)

A 30=pbit word address 1s always calculated from I,X and ¥ in the same
way as for all other PDP»10 instructions, We will refer to this
address as E,

There are a number of addressing modes that are specified by the
values i{n M and 0O,

3,2,1 Direct Mvorde =

This addressing mode is used for all operands whose addresses are
known at compile time, For COBUL=79, this includes all scalars except
for subroutine parameters,

The word address of the byte is the effective address calculated from
I,X, and Y, The byte offset is equal to the value in the 0O fileld,

This mode is indicated by a 0 i{n the M tield,

3.2,2 Deferred Mode =«

This addressing mode is used for operands whose addresses are not
kKnown at compile time, such as parameters or strings in dynamically
allocated storage,

The contents of the location addressed by I,X, and Y are interpreted
as a 32-bit byte address, Bits 4«33 of this word specify a 30epit
global word address, B8its 34=35 of this word specify a byte offset,
Bits 0=3 of this word must be zero, If they are not, an MUUO trap
will occur,)

This mode is indicated by a 1 in the M field and a 0 in the 0O field,

*% COMPANY CONFIDENTIAL *» DO NOT DUPLICATE Page 7

3.2.3 Direct Subscripted Mode =

This mode is used for addressing elements of 1=-dimensional arrays
wnose base addresses are known at compile time,

The value of £ and the contents of the 0 field specify the base
address of an array, As in "direct mode", the word address of the
base of the array is eaqual to £ and its byte position is specified by
O,

I'he next word in the instruction stream is also used in specifying the
operand, It has the format:

01 12 13 14 17 18 35
BN PRGSO RO TP E NN NENONEPONO TN NN PO UGN SN COT DO NN
{0! ELEM SIZE 112} X2 ! Y2 !

A AL DL A L A A L A X P X X L L2 XYY YT L Yy ey Y LYY Y L LI LY

Bits 1-12 specify the size of an array element in bytes,

Let E2 be the word address calculated from 12, X2, and Y2, The word
addressed by E2 contains a subscript, This subscript may be any
signed 36 bit binary number,

The instructions assume that the base address specified by E and 0 is
the address of element 1 O0f the array. They compute a pyte offset
into the array using the formula:

(Contents of(£2) «1) * ELEM SIZE

The byte offset calculated is added to the byte address of the base of
the array. This address <calculation can cross section boundaries,
regardless of whether the base address of the array was local or
qlobal.

Bit 0 of the second word is reserved and must be zero, If it 1is set
the Instruction 1s avorted and an MUUD trap oceurs.

The compiler can handle multiple subscripts, i{tems greater than 409S
bytes, etc by generating code tnhnat computes the byte offset and having
E2 point to that computed offset, The ELEMENT SIZE field should then
be 1., .

The instructions do not perform any range checking on subscripts, It
range checking of subscripts is desired, a compiler must insert code
to do this range checking before tne instruction that references an
array element,

The subscript address may be either local or global, It is 1legal to
refer to an AC (except AC 0) as a subscript, and that AC may be
specified as eitner a local address 1 = 17, or a global address 1 = 17
in section 1, If tne subscript address is AC 0, results are
indeterminate,

¥% COMPANY CONFIDENTIAL == DO NOT DUPLICATE Page 8

This mode is indicated by a 2 in the M fieild,

3.2,4 Deferred Subscripted Mode =

This mode is used for addressing elements of arrays when the base
address of tne array is not known at compile time (eg arrays that are
parameters or are allocated in dynamic storage),

In this case the word addressed by E contains a 32-bit byte address of
the base of the array, This byte address has the same format as is
used in "deferred mode",

As in direct subscrioted mode, the next word {n the instruction stream
1s used to specify tne element size and tne location of the subscript,

Note that the element size is a part of the instruction and therefore
myst be Kknown at compile time, This is always true for COROL
programs, In languages where this is not true, the byte offset for an
array element myst be calculated before the operand is addressed and
én element size field of {1 used,

This mode is indicated by a 1 in the M field and a 2 in the O field,

3.2,% Immediate Mode =

"Immnediate mode" has two different interpretations, depending on
whether the instruction being executed is a character string
manipulation instruction (MQVC, CMPC, MOVCV, CMPCV) or a decimal
arithmetic instruction.

1. For character string manipulation i{nstructions

In this case, immediate operands are .used to represent
strinas in which all characters are jdentical, for example a
string of sSpaces,

The operand {s a string in which all bytes are identical to
the 9=bjit byte contained in bits 27 = 35 of the effective
address E calculated from I, X, and Y,

‘2. For the decimal arithmetic instructions

In this case, immediate operands are used to represent Smali
integer constants,

There are two types of decimal arithmetic instructions:
9=pit display decimal and packed decimal (see section 7),
For both tyce of instructions, an immediate operand consists
ot the digits contained in bits 13=35 of E with zero f£ill
supplied on the left,

*%x COMPANY CONFIDENTIAL *=x DO NOT DUPLICATE Page 9

For 9=bit disnlay decimal instructions, bits 18«35 of £
contain 2 decimal digits with an overpunched sign, supporting
numbers in the range «99 to +99, For packed decimal
instructions, they contain 3 decimal digits plus a sign
nibble, supporting numoers in the range =999 to +999, See
the sections below on decimal arithmetic.

The length field associated with a decimal immediate operand
must always be 2 (this count is a byte count in the packed
decimal instructions), If it is not 2, tne results are
machine=dependent,

There are a number of places where an immediate operand is illegal
(e.q, as the destination of a move characters instruction), 1If an
immediate operand is specified in one of these places, an MUUOQO ¢trap
will oceur, The places where immediate operands are illegal are
specified under the individual instructions,

This mode is indicated by a { in the M field and a 1 in the O fleld,

3,2,6 Summary Qf Mode Bit Assignments =

The interpretation of the M and 0 fields for 9=bit operands is
summarized in the following table: '

M 0 Mode

occur,

t o ! Byte Position:! Direct mode {
! ! 0,1,2, or 3 !} {
! ! ! !
L | to ! Deferred Mode {
1 [1] 1
LS | L | { Immediate Mode !
] [} t 1
v 1 ! 2 ! Deferred Subscripted :
1 i] [)
1 ! 3 { Illegal, MUUO trap will H
! ! ! ocecur, !
! ! ! H
! 2 ! Byte Position:! Direct Subscripted Mode H
! { 0,1,2, or 3 ! {
$! . ! !
13 {1 0,1,2, or 3 { Illegal, MUUO trap will ¢
(8 []] []

**x COMPANY CONFIDENTIAL *x DO NOT DUPLICATE Page 10

3.3 Examples

The following examples all use the MOV (C ("Move Characters")
instruction which 1is described in detail in section S.i.i. In this
instruction, bits 0=8 of the second operand contain the number of
characters to be moved,

33,1 An Example Of "Direct HMode" Addressing =

The following {s an example of an instruction that moves a character
string between a source and destination wnose addresses are Known at
compile/link time,

0 8 9 10 1112 13 14 17 18 35

1 Mgve {0 ¢ttt to} 0 { 2000 !

! 7 10 13 o 0 ! 2500 !

--------.---..-.....‘.--.---.-.--.-..‘---.-..-..-..--....-.-.-.....

This instruction moves a string of 7 9=bit bytes that starts in byte {
(the second byte) of word 2000 to a destination tnat starts at byte 3
(the fourth byte) of word 2500, B8oth tnhe source and destination
addresses are in the same section as the instruction.

3,3,2 An Example Of Immediate Addressing =

The following is an example of an instruction that fills a character
string with a character specified by an immediate operand,

0 8 9 10 1112 13 14 17 18 26 27 35

------..------.-------.--.--.‘-.---..-..-.-..-..-----.-..'-....---
! Mgve !t 1 tod 0 { ! 040 !
-.---.-----..--.-....-.-..-..----....------.---..--...--‘.--‘.....
!) {10 1t 3 1o 0 { 2500 !

This instruction £1ills a 5 byte string that starts at byte 3 of
location 2500 with ASCII spaces (040).

3,3,3 An Example Of "Direct Subscripted Mode" Addressing =

The following is an example of an instructicon that moves a string
which 1is an element in a table whose base address is known at
compile/link time, The destination to which this string s being
moved is a scalar whose address is known at compile/link time,

% COMPANY CONFIDENTIAL *x DO NOT DUPLICATE Page 11

Assume that the COBOL declaration for the table referenced is:

01 TABLE
02 TABLE=ELEMENT OCCURS 20 TIMES
03 TE=1 PIC X(2)
03 TE=2 PIC X(7)
03 RE=3 PIC X(17)

The following instruction executes a
MOVE TE=2(1) TQ D

assuming that the table bpegins at byte 0 of word 2000 and the
destination D is at byte 3 of location 2500,

0 8 9 10 1112 13 14 17 18 | 35
COMOVE 12 b2 et oy e T ey
B0t a2 de e T e T ey
P

This instruction moves an element in a table in which each table
element is 32 (octal) bytes long, Location 6000 contains the subcript
for the element that is being moved, This subscript is a signed
binary number, The first occurrence of the field that is peing moved
is at the third byte (byte 2) of word 2000,

The field being moved is 7 bytes long, The destination is at byte 3
(the fourth byte) of word 2500, Both the source and destination
addresses are in the same section as the instruction,

3.3,4 An Example Of "Direct Mode" Addressing To Another Section =

The following is an example of an instruction that moves a charcter
string between a source and a destination whose addresses are kKnown at
compile/link time, where the source and destination are both in
sections other than the one containing the instruction,

0 8 9 10 1112 13 14 17 18 35

¢ MQvc to 1 11! 0 ! 1000 !
! 7 o 13 i1t 0 { 1001 !

This instruction uses indirect pointers at locations 1000 and 1001 of
the section containing the instruction., Assume that the contents of
tnose locations is:

¥% COMPANY CONFIDENTIAL *x DO NOT DUPLICATE Page 12

1000
1001

3,,2000
7,,2500

This instruction moves a string of 7 9=bit bytes that starts in byte 1
(the second byte) of word 2000 in section 3 to a destination that
starts at byte 3 (the fourth oyte) of word 2500 in section 7.

—-————-—.—.——.—-‘.—-—--—--—.—‘—--——-—-—-—-“-,—-————_

** COMPANY CONFIDENTIAL #*x DO NOT DUPLICATE : Page 13

4,0 OPCODE ASSIGNMENTS

The CIS instructions wi{ll obpe executed by means of an EXTEND
instruction, where the 2, 3, or 4 word CIS instruction is located at
tne effective address EO0 of the EXTEND,

Opcode assignments are:

Instruction Extend Opcode
Mgvep 34
CMPP 35
ADDP 36
SuUuBP 37
CHOP 40
ASHP 41
TLGLP 42
CVTP8 43
CVTBP 44
CVTEP 45
CVTPE 46
MOVC 47
cMPC 50
MOVvCYy S
CMPCV 52
MQVND 53
CMPND 54
ADDND S5
SUBND 56
ASHND 57
TLGLND 60
CVTNDB 61
CVTBND 62
CVTNDP 63
CVTPND 64

(Note that CMPSO and CMPST which are proposed in appendix B have
EXTEND opcodes 32 and 33 respectively,)

X% COMPANY CONFIDENTIAL *=x PO NOT DUPLICATE Page 14

5.0 GENERAL CONVENTIONS
541 Multi=word Instruction Format

The new instructions are 2,3, or 4 words long. All words of an
instruction must be in the same section,

It is possible to pertorm an XCT of these instructions,

5¢2 Interrupt Handling

All of the instructions use AC 0 to store state information during the
handling of interrupts, Except where noted, the initial contents of
AC 0 are ignored, and the final contents of AC 0 are O, :

S«3 MUUO’Ss

There are a number of illegal forms of the CIS instructions that
result {Iin MUUOQO’s. All of the conditions that result in MUUQ’s are
detected during instruction setup, before data has been destrovyed,

vhen an MUUO occurs while executing an CIS instruction, bits 15«17 of
the PC word will indicate how to f£ind the start of the instruction
that failed, The address of the start of the instruction will be the
value of PC minus the value in bits 15«17 minus 1,

If an MUUO occurs while executing an XCT or EXTEND of an CIS
instruction, tne PC will vpoint to the instruction after the XCT or
EXTEND and bits 15-17 of the PC w~ord will contain O,

5.4 (Operands In AC’s

In general the CIS instructions will work for operands that are in
AC’s other tnan AC 0, An operand in an AC can be specifjed by having
the "word" part of the effective address refer to local addresses i=17
or globhal addresses 1=17 in section 1,

It an operand refers to AC 0, the results are unspecified (they may
depend on whether or not the instruction was interrupted, caused a
page fail, etc).

¥x COMPANY CONFIDENTIAL #x DO NOT DUPLICATE Page 15
5.5 Section 0

The CIS instructions will work in all sections, including section 0,

Note that in the subscripted direct and subscripted deferred
addressing modes, if the base address of an array is in section 0,
tnen subscripting will wrap around in section 0 ratner than. causing a
reference to section i,

5.6 Operations Crossing Section Boundaries

In the subscripted addressing modes, subscripts will always cCross
section opoundaries, regardless of whether the base address of the
array i{s local or global, The only exception to this is when the base
address is in section 0,

Note that a large negative subscript to an array that starts in
section 1 may cause a reference to section 0,

5.7 OQverlapping Operands

All of these instructions, except ASHP and ASHND, operate on
non=overlapping operands and on operands that are identical to each
other (ie operands that have the same length and base address), The
character string manipulation instructions also operate on overlapping
operands in the case where the start of tne destination operand
precedes the start of the source operand, The instructions 4o not
test for overlap, and i{f illegal overlap exists the result stored in
the receiving £ield is unspecified,

ASHP and ASHND only operate on nonwoverlapping operands., 1If operands
for ASHP or ASHND overlap or are identical to eachother, the resuylts
stored in the receiving field are unspecified,

The instructions will not work if there {s overlap between the
destination operand and any locations that are used in address
calculations for the operands, In this case results are
indeterminate,

S8 Results 0Of Comparison Operations

Comparison instructions compare the first operand to the second
operand, The result of the comparison is stored in bits 0, 1, and 2
0t the flag word (OQverflow, Carry 0, and Carry 1 flags). These pits
of tne flag word can be tested with JFCL., The comparison results are
stored as follows:

¥* COMPANY CONFIDENTIAL ** DO NOT DUPLICATE Page 16

bits 0,1,2 meaninaga
100 operand 1 less than operand 2
010 operand | greater than operand 2
001 operand | equal to operand 2

Most of the decimal arithmetic instructions compare the result value
with 0 and store the result of tnat comparison (note that O is the
second ooerand) in tne same bits of the flag word,

5.9 Arithmetic Faults

A trap 3 will occur «#hen a numeric display or packed decimal result
does not fit 1in the destination field. When this trap occurs, high
order digits will be truncated, the truncated result will be stored,
and the PC will point to the instruction following the one tnat caused
the overflow,

Rits 15=17 of the PC flags word will be used to specify the length of
the instruction that overflowed, These bits will contain length minus
one, (Three bits are used to allow for future definition of
instructions that are more tnan ¢ words long),

If a trap occurs when an XCT or EXTEND of an CIS instruction 1is
performed, then the PC will point to the instruction after the XCT and
pits 15=17 of the PC word will contain 0,

The packed decimal and numeric display instructions (other than
compare Or test instructions) will always set flags 0 « 3, and 11 and
12.

Flags 0 = 2 (0V, CRYO, CRY1) indicate the sign of the result (See
the previous section)

If the result of a packed decimal or numeric display instruction f£its
in tne destination, tnen flag bits 3, 11, and 12 (FOV, FXU, DCK) are
set to 000, If it does not, then flag bits 3, 11, and 12 are set to
100 (ie FOV is 1, FXU and DCK are 0),

Note that the numeric display and packed decimal compare instructions
set flags 0 = 2 to indicate the result of the comparison, They d0 not
set flags 3, 11, and 12,

5.10 PXCT

PXCT of MOVC, CMPC, MQVCV, and CMPCV will work on future machines (not
on the KL, since none of the instructions can pe executed in the
monitor on the KuL).

*% COMPANY CONFIDENTIAL *=% DO NOT DUPLICATE

The AC bit assignments for PXCT of these instructions
consistent with those defined for the EXTEND instructions,
following AC field values will be available:
AC Field References in Previous Context
- W D 0 1 - W --*-...--.-.'...-...---.C...-.
0001 Destination string
1001 Destination string; and all references made in

do0ing the effective address calculation for

the destination string
0010 Source string

1010 Source string; and all references made in
doing the effective address calculation for

the source string

0011 Source string and destination string

1011

Source string and destination string; and all
references made in doing the effective address
calculations for ooth source and destination

Page 17

will be
Thus the

In the above table "all references made in doing the effective address
calculation” {includes the pointers used in deferred mode and deferred
subscripted mode addressing, tne subscripts used in direct subscripted
mode and deferred subscripted mode addressing, and all indirect words

and index registers referenced,

For MQVCV and CMPCV, the ACs that specify the

always be in tne monitor address space,

string lengths will

A PXCT of an CIS instructions other than MOVC, MOVCV, CMPC, CMPCV will

have uynspecified results,

*x COMPANY CONFIDENTIAL *x DO NOT DUPLICATE Page 18

6,0 CHARACTER STRING MANIPULATION INSTRUCTIONS

Each of these instructions has two operands, each of which is a string
0f 9=bit Dbytes, The instructions may be used to manipulate any
character set that is stored in 9=bit bytes,

A length of zZero means that the operation will be performed on the
null string, Note that side effects (such as AC 0 being set to zero)
#ill occur when operations are performed on the null string,

6.1 Fixed Length Character String Manipulation Instructions

These instructions always deal with equal length strings, Bits 0=8 of
the second operand of each of these instructions contain the number of
bytes in the strings being operated on, A maximum string length of
Si1 bytes can be handled,

6s.1,1 MOVC (Move Characters) =
This instruction moves a string of 9-bit characters,

Its first operand specifies the location of the character string to be
moved and {its second operand specifies the destination, Bits 0=3 of
the second operand specify the number of characters to be moved,

If the first operand of this instruction is an immediate operand, then
this instruction performs a "£ill" operation, That is, all characters
of the destination string are set to the character contained in bits
27=35 of the effective address computed for the first operand, (See
tne discussion of immediate operands in section 3) Note that a
variable fill character may bpe specified by using indexing or
indirection in the immediate operand,

It is 1llegal for tne second operand of this instruction to be an
immediate operand,

6,1,2 CMPC (Compare Characters) =

This instruction compares two equal length character strings, The
result of the comparison {s stored in tne flag word (see section 5.8),

The two operands of this instruction specify tne character strings to
be compared. Eitner (or both) of these operands may be an immediate
operand, representing a string in whicnh all characters are identical
to the character contained in bits 27=35 of the effective address
computed for tnat operand,

¥* COMPANY CONFIDENTIAL *x DO NOT DUPLICATE Page 19

Bits 0=8 of the second operand of this instruction specify the number
of characters to be compared, If this length field is Zero, then the
result of the comparison is "equal",

The character strings are compared according to their binary values,
with each byte treated as a 9=bit unsigned binary quantity,

The result of the comparison is stored in the flag word as described
in section 5,8,

At completion, the contents of AC 0 {s the number of initial
characters that are equal, For example, if the the first characters
of the strings differ, AC 0 contains 0; if the strings are identical
AC 0 contains the value of the LENGTH field.,

Note that this instruction can be used to scan over all initial
occurrances of a particular character, If one of the operands of this
instruction is an immediate operand, then, at completion, the contents
of AC 0 is the number of initial characters in the otner operand that
are equal to the immediate character, For example, if the the €first
character of the other ooerand s not equal to the specified
character, AC 0 contains 073 1if the other operand is entirely composed
of the specified character, AC 0 contains the value of the LENGTH
field, :

6,2 Variable Length Character sString Manipulation Instructions

These instructions are identical to the character string manipulation
instructions described above except that the lengths of the strings
are specified in AC’S rather than in the {nstructions themselves,
Also, these instructions can operate on strings of different lengths,

Rits 1-4 and bits 5=8 of the second operand of each 0f these
instructions specify AC°s wnhich contain the lengths of each of the
operands, Bits 4=~35 of each of these AC’S specify a string lengthn
petween 0 (the null string) and 2*%28 = §{ (the maximum number that
can £it in the 27 bits in AC 0 that are available for storing state
information when an interrupt occurs). A length outside of this range
is an error condition which results in an MUUQ,

Wnen operations are performed on strings of different lengths, it {is
assumed that the shorter string is left justified and padded on the
rignt, The pad character to be used is specified in the following
way?

1. If 8it 0 of the second operand of the instruction i{s 0, then
the pad character is ASCII blank (040), 8oth FORTRAN and
COBOL specify that padding with blanks should be used,

2, If bit 0 of the second operand is 1, then the pad character
is specified by bits 27=35 of AC 0, One use of this feature
will be for EBCDIC blanks in COBQL programs,

¥% COMPANY CONFIDENTIAL *x DO NOT DUPLICATE Page 20

These instructions will be useful in COBOL for bprograms containing
reference modification (ie specification of substrings by means of
subscripts), However this is a new feature in COBOL=79 and is not vet
used, These instructions are essential for other programming
lanquages, such as Fortran, APL, BASIC, and PL/1, in wnich strings are
variable lengtn, They also will be very useful for DBMS,

6.2,1 MOVCV (Move Characters Variable Length) =
This instruction moves a strinag of 9ebit characters,

Its first operand specifies the location of the character string to be
moved and its second ovperand specifies the destination,

Bits 0=8 of the second operand of this instruction are composed of the
followinag £iejds:

0 1 4 5 8

IF! Al ! A2 !

Al specifies an AC that contains the length of the character string to
be moved, A2 specifies an AC that contains the length of the
destination, Al and A2 may refer to the same AC, The values in Al
and A2 are not changed by this instruction,

If the source string {s lonqger than the destination, it will be
truncated on the right, 1lf the source string is shorter than the
destination, {t will be stored left justified and padded on the right,
‘The pad character to be used is specified {n tne following way: :

1. If the F bit in the second operand of the instruction 1{s 0,
then the pad character is ASCII blank (040),

2, If the F poit in the second operand {s i1, then the pad
character {s specified by oits 27-35 of AC 0,

The first operand of this instruction can be an immediate eperand, 1In
this case the source string is composed of identical characters and
has the length specified by Al, It {s illegal for the second operand
ot this instruction to be an immediate operand,

(Note that a destination can be filled with a single character C in
two different ways: (1) By having a source operand of length 0, with
C specified as the pad character, (2) By using an immediate operand C
as the source operand)

% COMPANY CONFIDENTIAL x*# DO NOT DUPLICATE Page 21

6.2,2 CMPCV (Compare Characters Variable Length) =

This instruction compares two character strings., The result of the
comparison is stored in the flag word (see section 5.8),

The two operands of this 1instruction specify the strings to be
compared, ’

Bits 0=8 of the second operand of this instruction are composed of the:
following fields:

o 1 4 5 8
IFl Al i A2 |}

Al specifies an AC that contains the lenqth of the first character
string and A2 specifies an AC that contains the length of tne second
Character string. Al and A2 may refer to the same AC, The values in
Al and A2 are not changed by this i{nstruction,

If the lenqths of tne strings differ, the comparison is performed as
if the shorter string were left justified and padded on the right,
The pad character to be used is specified in the following way:

i, If the F bit in the Ssecond operand of the instruction is 0,
then the pad character is ASCII blank (040),

2, If the F bit in the second operand is 4§, then the pad
Character {s specified by oits 27~35 of AC O,

If one of the operands {s the null string (ie has lenygth 0), then it
is treated as a string of all pad characters,

The character strings are compared according to their binary values,
with each byte treated as a 9=nit unsigned binary guantity,

The result of the comparison is stored in the flag word as described
in section 5,8,

At completion, the contents Of AC 0 {s the number of initial
characters that are equal, For example, {f the the first characters
of the strings differ, AC 0 contains 0; 4f the strings are identical
AC 0 contains their length; 4f the strings are identical except for
trailing pad characters in the longer string, AC 0 contains the length
of the longer string,

Either of the operands of this instruction may be an immediate
operand, In that case, that operand is composed of identical
characters and has the length specified by the corresponding AC,

¥ COMPANY CONFIDENTIAL *x DO NOT DUPLICATE Page 22
7,0 DECIMAL ARITHMETIC INSTRUCTIONS

The decimal arithmetic instructions come in two grouos. One group
operates on numeric display data, consisting of 9=bit byte strings
containing ASCII numeric bytes plus an encoded sign, The second group
of instructions operates on packed decimal data consisting of 9=~pit
byte strings containing two four bit decimal digits (nibbles) per
byte, with an algebraic sign encoded in the rightmost nioble,

Both groups of instructions have a common instruction format, and a
similar set of oocodes,

Most of the decimal arithmetic instructions have .two operands whose
addresses are represented in the form described in section 3 above,

Those decimal arithmetic instructions tnat operate on two byte string
operands include 2 length tields, each of which is 4 bits leng, Each
lengtn field contains tne length of the corresponding operand, in
bytes, A lengtn of Zero is interpreted to mean 16 bytes, Thus they
can operate on operands of different lengths, up to a maximum of 16
digits 1in the case of numeric display data, and 31 digits in the case
of packed decimal data,

B8oth groups of instructions provide for arithmetic operations and data
movement on signed numeric quantities, The instructions contain a
sign control bit, S, wnich governs whether the result is stored with
the normal algepraic sian encoding or whether the result 1s stored
without a sign, ie, ‘unsigned’, when a result 1is stored without a
sign, it s, in effect, being stored as an absolute value; on a
Subsequent fetch, the operand 1is considered positive, The sign
encodings are explained in following sections,

The sign control bit and the lengtns of the operands are contained in
bits 0~8 of the second ooerand of each instruction. The format of
these bits is:

0o 1 4 S 8
AL L A4 L L LI L XY ¥
st Ly ! L2 !

L1 and L2 specify the lengths in bytes of the respective operands.

The S bit governs tne storing of the sign encoding. (Zero in the s
bits indicates "unsigned®; one indicates "signed",)

“hen lenqths are different, operands are right justified with leading
zeroes,

All of the instructions interpret minus 0 as identical to plus 0,
CHOP is the only instruction that will ever generate =0 as a result,

Illegal numeric digits and illegal sign encodings are ignored and give
machine dependent results, The only exception to this is the TLGLP

** COMPANY CONFIDENTIAL *¥ DQ NOT DUPLICATE Page 23

and TLGLND instructions, which test for legal packed decimal and
numeric display,

Comparison instructions store the result of the comparison in the flag
word, bits 0 = 2 (OV, CRYO, CRY!1),

Tne remaining decimal instructions compare the result operand, as
stored, to 0 and store the result of that comparison in bits 0 = 2 of
the flag word, An intermediate resuylt, before it has been stored, is
subject to possible high order truncation, which can leave the
remainder equal to 0 and is also subject to having {ts sign changed
from negative to opositive by action of the S bit, Only after any
truncation and sign change is tne result compared to O,

All of the packed decimal and numeric display instructions that store
a result (i.e. all except compare or test instructions) set flags
3, 11, and 12 (FQV, FXU, DCK) to indicate whether the result fits in
the destination word, These flags are set to 000 if the result fits,
100 if it does not.

When the result of a decimal arithmetic operation does not £it in tne
destination a trap 3 will occur, (see section 5.9 aoove),

Overflow in arithmetic operations leaves a properly truncated result,
Truncation of nhigh order significant digits during store operations
stores the low order digits correctly,

7.1 Numeric Display Instructions

The numeric display instructions operate on decimal integers that are
represented as strings of 8«bit ASCII characters, where each character
ls stored rignt justified in a 9=bit byte and the leftmost bit of each
byte 1is 0, The addresses of numeric display operands are represented
in the form described in section 3,

In a numeric display number, the sign is represented by a "trailing
overpunch", This means that the last byte of the number contains both
digit and sign information, The overpuncn signs are:

ASCII QOCTAL VALUE REPRESENTED

0 = 9 060 = 0714 +0 T3 +9

A =1 101 = 111 +1 TO +9 (default plus)
J = R 112 = 122 =1 TO =9 (defaylt minus)
{ 173 +0 (default +0)

{ 133 +0

? 077 +0

} 17% =0 (default =0)

] 135 =0

: 072 =0

L} 041 =Q

The numeric display instructions accept numbers that use any of the

% COMPANY CONFIDENTIAL *x DU NOT OUPLICATE - Page 24

overpunch characters listed anove; nowever, the results generated by
those instructions will always use A to I for +1 to +9, J to R for =i}
to =9, and { and } for +0 and =0, when the S bit is set to i, when
the S bit is set to 0, ie, ‘unsigned’, the rightmost byte is stored as
an ASCII 0 to 9 pyte,

The instructions assume that each 9ebit byte (except for the last.
byte) in eacn operand contains a value in the range octal 060 to 071,
representing the digits 0 to 9, The instructions ignore the contents
of the leftmost S5 bits in each oyte (other than the last) of their
operands. They always set the leftmost 5 bits to 00011 (legal ASCIL),
If the right 4 bits are outside the range 0000 to 1001 the resylts are
unspecified,

The arithmetic operations on numeric display data set bits in the flag
word to indicate whetnher the result, as stored, is greater than, less
than, or equal to zero,

The source operands for these instructions can usually be immediate
operands (see section 3), In an immediate operand, bits 18 to 35 of
the effective address are treated as two 8=bit ASCII characters stored
in two 9=bit bytes in ’signed format’, allowing an immediate value in
tne range =99 to +99, The length field for an immediate operand must
always be 2,

Telel CMPND (Compare Numeric Display) =

This instruction compares two numbers represented in numeric display
form, The result of the comparison is stored in the flag word (see
section 5,8), It treats plus and minus zero as identical,

This instruction has two pnumeric display operands that specify tne
numbers to be compared,

Bits 0=-8 0of the second operand of this instruction contain the fields:
01 4 5 8

ol w1 ! L2 !

AL L AL DL LI LYY Y T

L1 is the number of digits in the f£irst number; L2 is the number of
digits in the second number,

Either of the operands of this instruction can be immediate operands,

*%¥ COMPANY CONFIDENTIAL ¥ DO NOT OUPLICATE Page 25

71,2 ADDND (Add Numeric Display) =

This instruction adds two numbers represented in numeric display form,
The result is left in tne location of the second operand,

This instruction comoares the result as stored with 0 and stores the
result of the comparison in the flag word,

Tnis instruction has two numeric display operands., It adds that
values of these two numbers and leaves them in the location of the
second operand, :

Bits 0-8 of the second operand of this instruction contain the fields:

01 45 8

1s! Lt ! L2 !

LA A L L L L L D L XX Y ¥ ¥ ¥ Y

L1 is the number of digits in the first operand; L2 is the number of
diaits in the second operand.

S specifies the sign encoding of the result,
The f£irst operand of tnis instruction can be an immediate operand, It

is 1illegal for the second operand of this instruction to be an
immediate operand,

Tel,3 SUBND (Subtract Numeric Display) =

This instruction subtracts one number reoresented in numeric display
form from another,

This instruction nas two numeric display operands, Its first operand
is suotracted from 1its second operand and the result is left in the
location of the second operand,

This instruction compares the result as stored with 0 and stores the
result of tne comparison in the flaq word,

Bits 0=8 of the second operand of this instruction contain the fields:
01 4 S 8

st Lt ! L2 ¢

cTencewerTaeeenenen

Ll is the numper of digits in the first number, L2 is the number of
diaits in the second number,

S specifies the sign encoding of the result,

k¥ COMPANY CONFIDENTIAL *x DO NOT DUPLICATE Page 26

The first operand of this {nstruction can pe an immediate operand, It
1s illegal for the second operand to be an immediate operand,

Tele4 MOVND (Move Numeric Display) =

Tnis instruction moves a numeric display tield, If the destination
length differs from the source length, the instruction truncates or
Zero £fills on tne left end,

This instruction has two operands whose addresses are represented in
the form described in section 3, The first operand specifies the
number to be moved and the second operand specifies its destination,

Bits 0=8 of the second operand of this instruction contain the fields:

01 4 S 8

(st Lt ! L2 ¢

Li and L2 are the lengths of the source and destination respectively,
S specifies the sign encoding of the result,

This instruction compares the result as stored with 0 and stores the
result of the comparison in the flag word,

Tnis instruction will never generate a result of minus 0, For
example, 1f =1000 is moved from a 4 digit field to a 3 digit field a
+000 result i{s generated,

It is illegal for the second operand of this instruction to be an
immediate operand, It is legal for the first operand to be immediate,

71,5 ASHND (Arithmetic Shift Numeric Display) =

This instruction moves a numeric display field, and shifts the digits
(9=bit bytes) to the right or left, truncating or supplvying zero
bytes on either end of the field, The shift amount, supplied in AC o0,
specifies a byte displacement relative to the right most (low=order)
byte of the source field.

This instruction has two operands whose addresses are respresented i{n
the form described in section 3, The first operand specifies the
numper to be moved and shifted, The second operand specifies the
destination,

8its 0=8 of the second operand o0f this instruction contain the filelds:

** COMPANY CONFIDENTIAL ** DO NOT DUPLICATE Page 27

01 4 5 8

18 L1 ! w2 !

L1 and L2 are the lengths of the source and destination respectively,
S specities tnhe sign encoding of the result,

The shift amount is given in AC 0 as a signed binary integer, A
positive value causes a left shift or multiply by a power of 10, A
negative value causes a right shift or divide by a power of 10, At
tne end of this instruction AC 0 is O,

The shift is performed as if the length of the shift register were the
longer of the lenqtns L1 and L2, The store is performed according to
the rules specified for MQVND, o ' T

This instruction compares the result as stored with 0 and stores the
result of the comparison in the flag word,

The results of this instruction are unspecified i{f operands overlap or
are identical to eachother,

It is illegal for the second operand of this i{nstruction to be an
immediate operand, It is legal for the first operand to be immediate,

7.1,6 TLGLND (Test For Legal Numeric Display) =

This instruction tests whether a character string contains a 1legal
numeric display value and stores the test result in the flag word,

Its first operand specifies a 9=bit byte string the contents of whieh
will be tested, This operand may be one or two words long and has the
form described in section 3,

Tnis operand is followed in the instruction stream by a word o0f the
form:

0y 45 89 12 13 14 17 18 35
sttt 0o! o ¢t 01} o 0 !

L1 is the number of digits in the number,

All 9=bit bytes except the low order byte must contain only numeric
ASCII bytes (060 for 0 thru 071 for 9).

When the S bit is set to 1, the low order byte is allowed to nave all
legal sign encodings, including ‘unsigned’ encodings, ie, the ASCII

** COMPANY CONFIDENTIAL *x DO NOT DUPLICATE Page 28

bytes 0 to 9, Wnen the S bit is set to 0, only the ASCII bytes 0 thru
9 are allowed in the low order bvte,

If all bytes pass the above tests, bits 0, 1, and 2 of the £lag word
are set to 001, If any of the above conditions are not met, bits Q,
1, and 2 of the flag word are set to 000,

It is leqgal for the numeric display operand to be immediate,

71,7 CVTNDB (Convert Numeric Display To Binary) =

This tinstruction converts a numeric display to a binary integer, The
result is stored ian an AC pair,

The first operand of this instruction refers to a 9=~bit byte string
that contains tne numeric disnlay number to be converted, It has the
form described in section 3 above and may be either one or two Words
long, It is followed in the instruction stream by a word of the form:

0t 45 89 12 13 14 17 18 35
ISt L1t o0t AC !t o o0 ! 0!

L1 {s the numoer of digits in the tirst operand,

AC 1s an AC pair in wnich the binary form of the number is stored as a
10720 format double integer, This AC must not be AC 0 or AC 17,

“hen S is 0, the result is "unsiagned", In this case, the absolute
value of the number is stored.

It is legal for the numeric display operand of this instruction to be
immediate,

7«1.8 CVTBND (Convert Binary To Numeric Display) =
This instruction converts a oinary integer to numeric display.
The first word of this instruction has the form:

01 45 89 12 13 14 17 18 : 35

{0PCNDE {AC ¢t o} 0! 0!

AC is the AC pair that contains the binary number to pe converted to
display, This AC must not oe AC 0 or AC 17, After this instruction
has been executed, AC and AC+l will contain o,

**% COMPANY CONFIDENTIAL *x DU NOT DUPLICATE Page 29

This word 1s followed in the instruction stream by an operand that
refers to the Y9=pit byte string in which the numeric display form of
the number should be stored, This operand may be one or two words
long and has tne form described in section 3,

Bits 0=8 of this operand contain the fields:

01 4 5 8

st ! L2 !

L2 is the number of bytes that should be stored, If the number does
not £it in the number of bytes specified, high order decimal bytes are
truncated,

S specifies tne sign encoding of the result,

This instruction compares the result as stored with 0 and stores the
result of the comparison in the flag word,

It is illegal for the numeric display operand of this instruction to
be an immediate operand,

%% COMPANY CONFIDENTIAL *# DO NNT DUPLICATE Page 30

7.2 Packed Decimal Instructions

The packed decimal instructions operate on numbers stored in packed
decimal format, These numbers are stored as 4 oit digits ("nibbles"),
wnere two nibbles are stored right justified in each 9 pbit byte, The
rightmost nibble always contains the sign. All other nibbles but the
rigntmost nibole contain a binary integer in the range 0 to 9, The
unused bit in eacn 9 bit byte must be zero. On output this bit will
always be zero,

The addresses of packed decimal operands are represehted in the €form
described in section 3, This address always refers to the leftmost
nibble in a byte. There is no way to address the second nibble in a
bytec

As with numeric display operations, those instructions that operate on
two operands include 2 length fields, each of which i{s 4 bits long,
Fach length field contains the number of bytes in the corresponding
operand, A length of 0 1is interpreted as 16 bytes, Thus the
instructions can operate on operands of different lengths, up to a
maximym of 16 bytes (31 digits)., Only numbers with an odd number of
diaits are supported,

As with numeric display operations, the S bit designates the form in
which the algebraic sign 1s encoded 1in a result field., The sign
encodings {n hex are shown below:

hex meaning

- W W . LA L L X7 F Xy T T

0 to 9 1illegal

.Y +

B -

c + preferred plus sign

n - preferred minus siqan

E +

F + preferred ‘unsign’ sign

The result of an arithmetic operation, a conversion operation, or a
data movement operation contains either the preferred plus or the
preferred minus sign when the S bit is set to i, +#hen the S bit is
set to 0 the preferred ‘unsign’ sign is stored,

The source operands for these instructions can usually be immediate
operands (see section 3), In an immediate operand, bits 18 to 35 of
the effective address are treated as two 9-bit bytes, The f£irst of
these opytes contains 2 packed decimal digits. The second byte
contains a digit in the left nipbole and a sign encoding in the right
nioble, Thus the immediate operand looks like a packed decimal number
with byte length of 2, and can be in the range +999 to =999,

** COMPANY CONFIDENTIAL *% DQ NOT DUPLICATE Page 31

Te2,1 CMPP (Compare Packed) =

This instruction compares two numpers represented in packed decimal
form, The result of the comparison is stored in the flag word (see
Se.8), It treats plus and minus zero as identical,

This instruction nas two packed decimal operands that specify the
numbers to be compared,

Bits 0-8 of the second operand of this instruction contain the fields:
01 4 5 8

0! Lt ! L2 ¢

Li i{s the number of bytes in the first number; L2 iS the number of
bytes in the second number,

Either of the operands of this instruction can be immediate oberands,

7.2,2 ADDP (Add Packed) =

This instruction adds two numbers represented in packed decimal form,
The result is left in the location of the second operand, . :

This {nstruction has two packed decimal operands.
Bits 0=8 of the second operand of this instruction contain the fields:
01 45 8

AL A A 2 P X LI T LYY I

st Lt ! L2 ¢

L1 is the number of bytes in the first number; L2 the number of bytes
in the second number,

S specifies the sign encoding of the result,

This instruction compares the result as stored with 0 and stores the
result of the comparison in the flag word,

Thé first operand of this instruction can be an immediate operand, It
is 1llegal for the second operand to be an immediate operand,

¥% COMPANY CONFIDENTIAL *x DO NOT DUPLICATE Page 32

7.2,3 §SUBP (Subtract Packed) =

This instruction subtracts one number represented in packed decimal

from another, Its first operand is subtracted from its second operand

and the result is left in the location of the second operand,

This instruction nas two packed decimal operands.

Bits 0=8 of the second operand of this instruction contain the fields:
01 4 5 8

1st LY !} L2 ¢

---...--'..--.-.--
L1 and L2 are the number of bytes in each operand.
S specifies the sign encoding o0f the result,

This instruction compares the result as stored with 0 and stores the
result of the comparison in the flag word,

Tne first operand of tnis instruction can be an immediate operand, It
i{s illegal tor the second operand to be an immediate operand,

7.2.4 MOVP (Move Packed) =

This instruction moves a packed decimal field, If the destination
length differs ¢from the source length, tne instruction truncates or
zero fillls on the left end,

This instruction has two operands whose addresses are represented in

the form described 1in section 3, The first operand specifies the

number to be moved and the second operand specifies its destination,

Bits 0=-8 of the second operand of tnis instruction contain the fields:
0.1 4 5 8

st L1 Y L2
L1 and L2 are the lengths of the source and destination respectively,
S specifies the sign encoding of the result,

This instruction compares the result as. stored with 0 and stores the
result of the comparison in the flag word,

It is illegal for the second operand of this instruction to be an
immediate operand, It s legal for the first operand to be immediate,

*x COMPANY CONFIDENTIAL #= DO NOT DUPLICATE Page 33

Te2,5 ASHP (Aritnmetic Shift Packed) =

This instruction moves a packed decimal field, and shifts the digits
(nibbles) to the rignt or left, truncating or supplying zero digits on
either end of the field, The snift amount, supplied in AC o,
specifies a digit displacement relative to the right most (loweorder)
digit of the source field, This instruction nas two operands wnose
addresses are respresented in the form described in section 3, The
tirst operand specifies the numoer to be moved and shifted, The
second operand specifies the destination,

Bits 0=8 of the second operand of this instruction contain the fields:

01 4 S 8
st Ly Y L2

L1l and L2 are the lengths of the source and destination respectively,
in bytes of course, ‘

The number of digits (not bytes!!!) to shift is given in AC 0 as a
signed binary integer, A positive value causes a left shift or
multiply by a power of 10, A negative value causes a right shift or
divide by a power of 10, At the end of this instruction AC 0 is o,

The shift is performed as if the length of the shift register were the
longer of the lengtns L1 and L2, The store is performed according to
the rules specified for MQOVP,

S specifies the sign encoding of the result,

This instruction compares the result as stored with 0 and stores the
result of the comparison in the flag word,

The results of this instruction are unspecified if operands overlap or
are identlical to eachother,

It is illeqgal for tne second operand of this instruction to be an
immediate operand, It is legal for the first operand to be immediate,

T¢2,6 TLGLP (Test For Legal Packed Decimal) =

This i{nstruction tests whether a character string contains a legal
packed decimal value and stores the test result in the flag word,

Its first operand specifies a 9=bit byte string the contents of wnhich
will pe tested, This operand may be one or two words long and nas the
form described in section 3,

This operand is followed in the instruction stream by a word of the
form:

** COMPANY CONFIDENTIAL #*¥ DO NOT DUPLICATE Page 34

61 45 89 12 13 14 17 18 35
st Lty ot o ¢t 0} ; : 0!

L1 i{s the number of bytes in the number,
All 9=bit bytes must contain:

01 45 8
100 N1 ¢ N2}

In all bytes except the last N1 and N2 must be in the range 0 « 9, In
the last byte, N1 must be in the range 0 « 9 and N2 must contain a
legal sian, when the S bit IS set to 1, this sign may be hex A = Fo
When the S bit is 0, this sign must be F,

If all bytes pass the above tests, bits 0, 1, and 2 of the flag word
are set to 00§, If any of the above conditions are not met, bits o,
1, and 2 of the flaq word are set to 000,

It is legal for the packed decimal operand to be immediate,

7.2,7 CHOP (Clear Hign Order Packed) =

This instruction clears the high order nibble (digit) of a packed
decimal numper. It is necessary because the packed decimal
instructions only handle numbers that have an odd number of digits,

Thnis instruction has a sinqgle operand wnich has the form deseribed in
section 3, This operand specifies the packed decimal number in whicn
the high order digit will be cCleared,

It is illegal for the operand of this instruction to be an immediate
operand,

The result of this instruction will be =0 when the operand originally
contained a negative value in whiech only the €irst nibble was
nonwzero, qu example, CHOP o0f «100 gives a =0 result,

7.2,8 CVTPB (Convert Packed To Binary) =
This instruction converts a packed decimal to a binary integer,

The first operand of this instruction refers to a 9=bit pyte string
tnat contains the packed decimal number to be converted, It has the
form described in section 3 above and may be eitnher one or two words
long, It is followed in the instruction stream by a word of the form:

% COMPANY CONFIDENTIAL *x DO NOT DUPLICATE Page 35

01 45 89 12 13 14 17 18 35
--.-'..-.-........-..-----.Q-.-.---...----..------..--."...
is1 L1l o0 !tAC t o Yo { 0 !

L1 {s the number of bytes in the number to be converted,

AC is an AC pair in which the binary form of the number {s stored as a
10/20 format double integer, This AC must not be AC 0 or AC 17,

“hen § is 0, the result is "unsigned®, In this case, the absolute
value of the number is stored,

It is legal for the source operand of this instruction to be
immed{ate, ,

Te2,9 CVIBP (Convert Rinmary To Packed) =
This instruction converts a binary number to packed decimal,

Thne first word of this instruction has the form:

01 45 89 12 13 14 17 18 ’ 35
{UPCODE L AC ¢ o0 ! 0! 01

AC is the AC pair that contains the binary number to be converted to
packed decimail, This AC must not be AC 0 or AC 17, After this
instruction nas been executed, AC and AC+l will contain 0,

This word is followed in the instruction stream by an operand that
refers to the 9=oit byte string in wnich the packed decimal form of
the number should be stored, This operand may be one or two words
long and has the form described in section 3,

Bits 0=8 of this operand contain the fields:
91 4 5 8

LA L LA L L EE L L LYYy T}

184 0 ! L2 ¢
L2 is the number of bytes that will be stored,
S specifies tne sign encoding of the result,

Tnis instruction compares the result as stored with 0 and stofes the
result of the comparison in the flag word, .

¥* COMPANY CONFIODENTIAL *x DO NOT DUPLICATE Page 36

It is illeqal for the destination operand of this instruction to be an
immediate operand,

7¢2,10 CVTNDP (Convert Numerie Display To Packed) =

This instruction converts a number represented in numeric display fornm
(see section 6,1 above) to packed decimal,

It has two operands which both refer to 9=bit byte strings and have
the form described in section 3,

The first operand refers to a 9=bit byte string that contains a number
in numeric disolay torm, The second operand refers to the destination
in which this i{nstruction will store that number in packed decimal
formo

Bits 0«8 of the second operand of this instruction contain the fields:

91 4 5 8
1§t Lt ! L2 ¢

Li 1is the number of digits in the numeric display fileld that i{s being
converted, L2 1is the number of bytes in the string in which it is
being stored. If Ll is not equal to L2 % 2 = 1, left <truncation or
zero £111 occurs, ‘

S specifies the sign encoding of the result,

This instruction compares the result as stored with 0 and stores the
result of the comparison in the flag word,

It is legal (if not useful) for the source operand to pe an immediate
operand, It is illegal for the destination operand to be an immediate
operand,

72,11 CVTPND (Convert Packed To Numeric Display) =

This instruction converts a number from packed decimal form to numeric
display,

It has two operands whichn both refer to 9=pit byte strings and have
the form described in section 3, '

The first operand refers to a 9epit byte string that contains a number
in packed decimal form, The second operand refers to the destination
in whicn this instruction will store that number in numeric display
form,

*¥% COMPANY CONFIDENTIAL #x DO NOT DUPLICATE _ Page 37

Bits 0=8 of the second operand of this instruction contain the fields:

01 45 8
8! Lt ¢ w2 !

Al A L L L L L LR X X ¥ Ty

Ll is the numper of bytes in the packed decimal string, L2 1is the
humper of digits in the numeric display field, If L2 does not equal
L1 * 2 = 1, left truncation or zZero fill oCCUrS,

S specifies the sign encoding of the result,

This instruction compares the result as stored with 0 and stores the
result of the comparison in the flag word,

It {s legal (if not useful) for the source operand to be an immediate
operand, It {s illegal for the destination operand to be an immediate
operand, :

7,2,12 CVTEP (Convert EBCDIC Numeric Display To Packed) =

This instruction converts a number represented in EBCDIC characters to
packed decimal.

The FEBCDIC characters are stored as 8 bits right justified in a 9e=bit
byte, EBCDIC characters are divided into a four bit Zzone and a four
~bit digit, The packing operation consists of extracting only the
digit ©bilts from each EBCDIC byte and storing them into packed decimal
ﬂlbleSO

The sign of the pracked decimal field is controlled by the S bit,

Wnen the S bit is 1, the zone bits of the low order EBCDIC byte are
examined, If the 2zone bits contain a hex 8 or hex D, a hex D is
stored in the nacked decimal sign nibble. If the zone of the Jlow
order EBCDIC pyte does not contain either a hex 8 or hex D, a hex C is
stored in the packed decimal sign nibole,

when the S bit is 0, a hex F is stored in tne packed decimal sign
nibble, regardless of the value of the zone bits in the low order byte
of the EBCDIC £ield,

This instruction has two operands whicn both refer to 9e=dit pyte
strings and have the form described in section 3,

The first operand refers to a 9=oit byte string that contains a number
in EBCDIC display form, The second operand refers to the destination
in which this instruction will store that numoer in packed ‘decimal
form,

Bits 0=8 of the second operand of this instruction contain the fields:

% COMPANY CONFIDENTIAL *x NO NOT DUPLICATE Page 38

01 4 5 8
LA LA L L L L L LA XY 2 7 F X
st LY ! L2

L1 is the number of aigits in the EBCDIC field that is being
converted, L2 1s the number of bytes in the string in which it is
oeing stored, If L1 is not equal to L2 % 2 = 1, left truncation or
zZero fill occurs.

Tnis instruction compares the result as stored with 0 and stores the
result of tne comparison in the flag word.

It is legal (if not useful) for the source operand to be an immediate
operand, It {s illegal for the destination operand to be an immediate
Oper’and. :

7.2,13 CVTPE (Convert Packed To EBCDIC Numeric Display) =

This instruction converts a number from packed decimal form to EBCDIC
form,

The packed decimal number is converted to EBCDIC as follows: Each
packed decimal nipble except the sign nibble 1s moved to the 4ebit
digit portion of an EBCDIC byte, and the 4=bit zone portion of the
EBCDIC byte s supplied with a hex F, The zone portion of the low
order EBCDIC byte is set with a sign as specified by the § oit,

Ahen the S bit is 1, the packed decimal sign nipole is examined and if
it contains a hex B or hex D, a hex D is stored in the zgne bits of
the low order EBCDIC byte, If the packed decimal sign nibble does not
contain a hex B or hex D, a hex C is stored in the zone portion of the
low order EBCDIC bvyte, ’

When the S bit is 0, the packed decimal sign nipble {is ignored, and
the zone portion 0f the low order EBCDIC byte is supplied with a hex
Fo

It has two operands which both refer to 9=bit byte strings and have
the form desqribed in section 3,

The first operand refers to a 9-bit byte string that contains a number
in packed decimal form, The second operand refers to the destination
in which this instruction will store that number in EBCDIC firm,

Bits 0=8 of the second operand of tnis instruction contain the fields:

*% COMPANY CONFIDENTIAL *% DO NOT DUPULICATE Page 39

01 4 5 8

st L1 ! L2 ¢

L1 is the number of bytes in the packed decimal string, L2 1is the
number of digits in the EBCDIC field, 1If L2 does not equal L1 * 2 =
1, left truncation or zero fill occurs,

This instruction compares the result as stored with 0 and stores the
‘result of the comparison in the flag word,

It is legal (if not useful) for the source operand to be an immediate
operand, It is illegal for the destination operand to be an immediate
operand,

APPENDIX A

PERFORMANCE

The orimary motivation for implementing the 1{instructions described
qoove {s to gain substantial improvement in the performance of C0OBOL
programs, A primary goal in specitving tne formats of thesge
instructions was their potential speed,

In almost all cases these instructions will be the fastest way to
vperform the operations that they implement, Software implementors
will assume that the only exceptions to this are operations that can
be performed by full word, halt word, or double word move
instructions,

APPENDIX B

EXTENSIONS TO BIS INSTRUCTIONS

Tne architecture committee has approved a number of extensions to the
BLIS instructions,.

Bs1 EXTENSIONS TO MOVST

The following extensions will be made to MOVST, These extensions will
allow MOVST to be used as an efficient way to read records for streanm
format files,

1. Optional short translation table

Bit 9 of €0 will be a flag bit that specifies that the
translation table has entries only for characters 0 = 37, 1f
this flag is 1, the translation for all characters greater
than or equal to 40 is specified by bits 0 = 17 of EO+1,

If this mode is specified, then function codes wnich specify
character substitution ¢ currently codes 0, 2, 3, 4, 6, 7)
will result in characters greater than 40 being copied from
Source to destination (i.e, 1f a short table is used, the
instruction never substitutes a different character for
characters >= 40)

2, Optional f£1i11

Bit 10 of EO will be a flag that specifies that no £{11
should be performed,

3. Expansion of the function code field,

The function code field in each translation table entry will
be 4 bits wide (bits 0 « 3 and bits 18 = 21)., (Previously
function codes were 3 bits wide, and there were 4 free pits
to the rignt of eacn function code.)

Documentation will descrine function codes as 2 octal digits,
in which only the left 4 bits are ysed, Thus the existing

EXTENSIQNS TO BIS INSTRUCTIONS Page B=2

function codes, which were previously described by a single
octal digit, will now be that digit followed by a zero, New
function codes will all nave 4 as their 2nd digit,

4. Function code for "terminate if S=1, ignore (delete) {f S=0"

Function code 14 will mean "terminate {f S = 1, ignore
(delete) {f s = o,

5. Function code for "ignore® (delete) character

Function code 04 w#ill mean "ignore (delete) this character"®
6. Function code to set § only

Function code 74 will mean either:

1. Substitute the specified character and set S to 1 (if a
long taole {s being uysed)

2, Copy the source character and set S to 1 (for characters
>3 40 when a short table is being used)

Note that currently S cannot be set without also setting M or

Note that the expanded function code field and the new function Codes
will apply to the EDIT and CVIDAT instructions as well as to MOvsrT,
The short translate table and obptional £i11 options will not be
implemented for EDIT and CVTDBT,

Be2 NEW EXTENDED COMPARE INSTRUCTIONS

Two new EXTEND instructions are added to the instruction set, They
are Compare Strings with Offset (CMPSO) and Comnpare Strings witn
Translation (CYPST), These instructions allow comparison of byte
strings from dissimilar code sets and dissimilar byte sizes without
moving one or both fields in their entirety to temporary locations,

. C The COBOL=79 compiler will have to provide the 6=bit and 7ebit byte
strings that are provided in COBOL=68, as well as the 9e=pit ASCII and
EBCDIC byte strings that are needed for compatibility with IBM and
vax, Hence the potential exists for 2 or 3 dissimilar byte sizes,
-with different code sets existing side by side in the sane object
program,)

Eacnh {nstruction has a single opcode value rather than a set of values
corresponding to the °‘EQ’, °‘NE’, *GT*, ‘LS’, ‘LE’, and *‘GE’ forms of
the existing CMPSxx instructions, The C4PSO instruction always takes
8 noh=skip return,

EXTENSIONS TQ BIS INSTRUCTIONS Page 8=3

The CMPST {nstruction normally takes a skip return; the non=skip
return 1is taken if an abort condition is signalled in the translation
of either operand,

The instructions return tphe result of the comparison as a condlition
code stored in three bits of tne Flag word, and also stored in one of
the ACs,

Both instructions deal with two operands, operand 1 peing described by
a length in° AC, and a byte pointer in AC+1, and AC+2, a0Operand 2 is
described by a lengtn in AC+3, and a byte pointer in AC+4 and AC+5,

Be2,1 CMPSO Compare String with Offset

Use E1, tne effective address of the CMPSO instruction, as an offset
value for eacn byte of the first operand, The second operand is not
offset, The bytes are compared from left to righnt on each string,
with the shorter string extended by the £il} byte stored at EO+! or
E0+2, The EO+1 £11l1 byte is offset by El1, At the first inequality,
the comparison stops, the byte pointers remain pointing at tne bytes
that were found unequal and the inequality condition is stored in the
Flag word and in AC, see below, If no inequality is found, the
instruction stops wnen the longer string is exhausted, and tne egual
condition is stored in the Flag word and in AC, see velow,

This instruction nas EXTEND opcode 32,

Ba2,2 CMPST Compare String W#ith Translation

This instruction provides a Compare facility with two translation
tables, one for each of the operands,

Tnis instruction has EXTEND opcode 33,

El, the effective address of the CMPST instruction, specifies the
address of a block of three words, These three words have the form:

EXTENSIONS TO BIS INSTRUCTIONS Page B=4

0 17 18 35

O T S
P I
R S P

'..'.--..-.....--.-.-.-.....'---.--.-

TAB1 and TAB2 are 1indirect words (IFI# or EFIW) that point to
translation tables for string { and string 2 respectively, FILL! and
FILL2 are the £ill characters to be used for string 1 and string 2
respectively,

1f Ei=0, no translation is specified for either operand,
The £ill character to be used for both operands
is contained in EOQ+1 ‘

If E1 NOT=0O, (E1) is the address of the translation tanle for
operand 1 '
(Ei1+1) is the address of the translation table
for operand 2
If eitner (E1)=0 or (E1+1)=0 no translation s
involved for the respective operand,

The translated bytes are compared from left to right on each string,
with the shorter string extended by the f£i11 byte specified by FILL1
or FILL2, depending on whether tng first or second operand is shorter,
At the first inequality, the comparison stops, the byte pointers
remain pointing at the bytes that were found unequal and the
ineauality condition is stored in the Flag word and in AC, see below,
If no inequality {s found, the {instruction stops when the longer
string 1is exhausted, and the equal condition is stored in the Flag
word and in AC, see below,

The translation table format is the same as that of the MQOVST
instruction, In particular, if an operand is being translated, bytes
from <that operand are fetched, translated, and discarded until
significance (5 bit in AC or AC+3) comes on, S may be preset by the
pProgrammer before the instruction execution begins, or it may bpe
turned on by the proper code pattern in the translation table, The
f111l byte {s always considered significant, regardless of the setting
of the appropriate S bit,

When an operand is not being translated, the S bit is ignored for that
operand,

The translation table may also set N and M bits in AC or AC+3, as in
MQVST,

Note that the new function codes Pproposed for MQVST in section Al
above (codes to: "terminate if § = 1, ignore if § = o", "ignore",
"set S") will all be legal function codes for CMpsT, The short
translate table option and the no f£1ll option that are proposed for

EXTENSIONS TO BIS INSTRUCTIONS Page Be=5

MOVST will not be available for CMpPST,

The condition code for CMPSO and CMPST replaces the existing setting
of bits 0, 1, and 2 of the Flag word as follows:

Bits MYeaning
0,1,2

100 operand i less than operand 2
010 operand 1 greater than operand 2
001 operand 1 egqual to operand 2

Note that these bits correspond to the Overflow, Carry 0 and Carry
bits, and they are tested by the JFCL instruction., The JFCL encodings
(with new mnemonics) are as follows:

JCCL JFCL 10, Jump on operand 1 < operand 2
JCCLE JFCL 12, Jump on operand 1 <= operand 2
JCCG JFCL 4, Jump on operand 1 > operand 2
JCCGE JFCL 6, Jump on operand 1 >= operand 2
JCCE JFCL 2, Jump on operand { = operand ?2
JCCN JFCL 14, Jump on operand 1 not = operand 2

The same encodings are also placed into bits 0, 1, and 2 of AC, Here,
they may pe tested (without reset) by the following instructions,

JUMPL Jump on operand 1 < operand 2
JUMPGE Jump on operand { >= operand 2
TLAN The choice of mask determines skip,.

Bs3 ADDITIONS TO THE EXTENDED EDIT INSTRUCTION,

Two new pattern bytes wil]l be added to the EDIT instruction, Both new
pattern oytes must be followed by a pattern byte which holds a count,
The mnemonics are ADJDP, Adjust Destination Pointer and REPEAT, Repeat
next pattern pyte,

Also, the action of the edit instruction in adjusting the pattern byte
number (PB#) is modified for all pattern bytes,

These new pattern codes will enable us to avoid codeing around some
broblems that are now handled in LIBOL, The same problems will exist
in CoBOL=79,

EXTENSIONS TO BIS INSTRUCTIONS Page Be«§
Bed,1 ADJDP (octal Code 005)

Interpret the next pattern byte as a twos complement number, sign
extend 1it, and do the equivalent 0f an ADJBP on the destination
pointer, This allows adjustment of the destination pointer in either
direction,

Be3.2 REPEAT (octal Code 006)

Store the next pattern byte in bits 9 thru 17 of AC and increment PB#,

For all pattern codes except REPEAT, the incrementing of PB#% is
changed as follows:

After the action of the pattern Code s complete, but before the
incrementing of tne pattern byte number, bits 9 to 17 of AC are
examined, If they are non®zero, they are decremented, and the
incrementation of the PBs is inhibited., If 9«17 of AC contain 0, PB#
is incremented and the instruction proceeds as currently specified,
The effect 1Is to make all pattern codes execute the number of times
stored in bits 9 to 17 of AC plus one,

In the case of STOP, ignore bits 9 thru 17 of AC, increment the PB#%,
and terminate the instruection execution, taking the skip return,

B,4 ADDITION TO THE ADJRP INSTRUCTION,

The ADJBP instruction will be extended so that it will expand a one
word byte pointer (local form) into a two word byte pointer (global
form) when the local byte pointer is fetched ¢trom across a section
boundary. This is a general problem, not peculiar to cosoL,

If an ADJBP instruction is executed In a non=0 section it will deliver
an extended byte pointer if the byte pointer i{s fetched from a section
other than the section in which the instruction resides,

The instruction compares the section number of the PC to the section
number of the effective address, and {f they are unequal, it forces
the byte pointer to extended format,

Caution: This makes the number of ACs affected by the instruction
dependent on the relative locations of the jinstruction and the data,
Furthermore, i{f the ADJBP {s éxecuted via an XC?T instruction, the
results many not pe the same as the execution of the ADJBP 1tsels,

APPENDIX C

ASSEMBLER NOTATION FOR CIS INSTRUCTIONS

This is a preliminary Proposal for the assembler notation to be used
for the CIS instructions,

C,1 GOALS

1. Relatively easy to write,
2. Relatively easy to read,

3. Relatively easy to put into the assembler,

Ce2 HQOW TO HANDLE MULTIPLE WORDS

Each opcode will generate only one word of the instruction,
Succeeding words of tne instruction will each be generated by writing
an additional opcode or pseudo=op,

It is not desirable to have a macro with a large numoer of positional
arquments since it would be very easy to get confused and most of the
arguments won’t be used in the common cases anyway,

Ce3 HOW TO AANDLE NORMAL OPCODES VERSUS EXTENDS

Each of the new {nstruction’s opcodes will be predefined in the
assembler, If an instruction is an EXTEND instruction tnen the user
#ill be required to write the instruction as a literal whicn 1is the
object of the EXTEND opcode (L.€., "EXTEND (eypol™).

ASSEMBLER NQTATION FOR CIS INSTRUCTIONS Page (C=2

Ce4 HOW TO GENERATE THE SECOND THROUGH NTHvWORDS

As mentioned before each o0f the additional words of the long
instructions begins with its own pseudo=op, The available pseudo=ops
are:

1. +CILEN(Nn) =« generates n in bits 0=8, AC and IXY are as in
other instructions, n is assumed to be in the decimal radix,
Examples:

+CILEN(C10) mode,adr

2, +CILN2(S/f,n1,n2) = used for decimal instructions, Generates
s/f in bit 0, nt 1in obpits 14, and n2 in bits 5=8, All
numbers are assumed to be in the decimal radix,

3. «CIRG2(s/f,r1,r2) = used for instructions which accept
operand lengths in registers, Generates s/f in bit 0, ri in
bits 1=4, and r2 in bits Se8, All numbers are assumed to in
the current radix (i.e,, last RADIX pseudo=op),

4. +CISIZ(n) = generates n in bits 1=12 and zero in bit o0, AC
field may not bpe Specified, IXY are specified as in other
instructions, All numbers are in the decimal radix,
Example:

«CISIZ(10) @Y(X)

CeS SPECIFYING MODE AND OFFSET

The assembler will have builtin symbols for each of the modes,
Offsets are specified by adding an expression to the mode, This
combination is then written as the AC field of the instruction, I1f
tne wuser ommiits the AC field (and the comma which follows it) then
word aligned direct mode is assumed, The available symools are:

1o «CIDIR <« Direct mode. Add the Offset: «CIDIR+0, LCIDIR+1,
+CIDIR+2, ,CIDIR+3, If offset is noet added then an offset of
2ero is assumed; this is normally done when the user wishes
to think of the operand as an aligned string, Examples:

MOVC adr
MgvC ,CIDIR,adr
MOQVC ,CIDIR+0,adr
MOVC ,CIDIR+2,adr
2, JCIDEF = Deferred mode, Example:

MQve ,CIDEF,adr

ASSEMBLER NOTATION FOR CIS INSTRUCTIONS Page Ce3
3. oCIIMM = Immediate mode, The immediate value is then written
48 the [XY field, Examples:

MOVC ,CIIMM,DC("A") ; String of "A"s,
ADDND ,CIIMM,DDC(=12) ; =12.

4, JCIDIS = Direct subscripted mode, The offset {s written as
in direct mode (,CIDIs, ,LCIDIS+0O, «CIDIS+1, LCIDIS+2,
«CIDIS+3), Examples: ,

MQve ,CIDIS,adr
MOVC ,CIDIS+3,adr
Se +CIDFS = Deferred subscripted mode, FExample:

Mgve ,CIDFS,adr

Ce6 SPECIFYING IMMEDIATE CONSTANTS
C.6,1 Immediate Display Constants
A macro, .CIDC, is provided wnhich generates an immediate display

character, It has a single argument which is an ASCII character code,
Examples:

MQvc «CIIMM, . CIDCC("A")
Mave «CIIMM,,CIDC(,CHNUL)
MQVvC «CIIMM, ,CIDC(,CHTAB)
Mgve «CIIMM, CIDC(" ")

Ce6,2 1Immediate Display Debimal Constants

A macro, ,CIDDC, is provided wnich generates an (immediate display
decimal constant, The macro has two arquments, the first is the
number (wnhich may be signed), and the second i1s nonepblank 1{f the
constant 1s to bpe treated as unsigned, The macro will take care of
"overpuncning™ the sign and will generate the "preferred" sign, All
values are in the decinal radix, Examples:

ADDND +CIIMM,,CIDDC(99,unsigned) ? Unsigned 99,
ADDND «CIIMM, ,CIDDC(10) > +10,
ADDND «CIIMM, ,CIDDC(=10) ; =10,

ADDND oCIINM,,CIDDC(29) ; +29,

ASSEMBLER NOTATION FOR CIS INSTRUCTIONS . Page (C=4

Ce6,3 Immediate Packed Decimal constants

A macro, .CIPDC, is provided whieh generates an immediate packed
decimal constnat, The macro has two arguments, the first is the
nNumber and may be signed, the second Is noneblank if the constant |is
to be unsigned, The macro will generate the "preferred"” sign, All
values are assumed to be in the decimal radix,

F.xamples:

ADDP - «CIIMM, ,CIPDC(99,unsigned) ; Unsigned 99,
ADDP «CIIMM,,.CIPDC(1000) ; +100,

ADDP «CIIMM, ,CIPDC(=10) : =10,

ADDP «CIIMM,,CIPDC(29) 1 +29,

Ce7 EXAMPLES
Ce7,1 Simple MQVC

Moves 20 (decimal) characters located At word address "adri" to word
address "adr2",

MQVC +CIDIR,adrt
+CILEN(20) ,CIDIR,adr2

Since the default mode is direct mode with offset o0f zero, this case
1s petter written as:

Mave adri
«CILEN(20) adr2

Ce7,2 Simple (but Unaligned) MQve

Moves 20 (decimal) cnharacters pbeginning at the tnird byte of adri to
adr2 beginning at its second byte, .

MQvVC «CIDIR+2,adr!
«CILEN(20) ,CIDIR+1,adr2

Ce7.3 MOVC With Deferred Source And Direct Subscripted Destination

Moves 1S (decimal) characters located at the address contained in adri
to the ith element of the 15§ character per element array based at adr2
wnere { 1is contained in adr3,

MQve .CIDEF,adrI
«CILEN(15) ,CIDIS,adr2
«CISIZ(15) adr3

ASSEMBLER NOTATION FOR CIS INSTRUCTIONS Page (=5

Ce7.4 MOVC with Direct Subscripted Source And Deferred Destination
Same as previous example, except that the operands are reversed,
MOVC «CIDIS,adr?

«CISIZ(15) adr3
«CILEN(15) DEF,adrt

Ce7,5 MOVC With Botn Jperands Direct subscripted
This case occurs when a CDBOL'user has the record descriptions:
01 A OCCURS 100 TIMES.

02 Al PIC XX,
02 A2 PIC XXX

and
01 B OCCURS 200 TIMES,
02 Bl PIC XXXXX
02 B2 PIC XXXX
02 83 PIC X
and

0t I PIC 9(9) comp,
01 J PIC 9(9) comp,

and attempts to perform the statement:
MOVE B2(I) TO A2(J),
The code would be:
MOVC «CIDIS+1,B+1 ; MOVE 82(I)
«CISIZ(10) I ; , .

«CILEN(3) ,CIDIS+2,A ; TO A2(I)
.CISIZ(S) J ; [* LN]

Ce7.6 Adding Two Packed Decimal Flelds

The first operand is located beginning in the third byte of adri and
is 2 bytes 1long, The second operand is located beginning in the
second byte of adr2 and is 3 oytes long

ADDP «CIDIR+2,adr}
+CILN2(1,2,3) ,CIDIR+1,adr2

ASSEMBLER NQOTATION FOR CIS INSTRUCTIONS Page C=§6

Ce747 Simple Convert Packed To Numeric Display

The first operand is a 2 byte packed decimal number aligned at adri,
The second operand is a § c¢naracter display decimal numper aligned at
adr2, The sign of the source field is to pe ignored,

EXTEND [CVTPND adri
«CILN2(0,2,5) adr2]

Ce7.,8 Variable Length Character Move

MOVE R1,LENGTH1
MOVE R2,LENGTH2
Mgvey SUURCE

+«CIRG2(0,R1,R2) DEST

Ce8 OPEN ISSUES

1. How to express other than immediate constants,
2., Better mnemonic names,

3, Names for the values of the s/f pit,

Revision

i1

10

APPENDIX D

JREVISION HISTORY

REVISION HISTORY:

Changes

Le

2,

3,

4,

1.

2,
3.

Changed opcode assignments for instructions that are
EXTENDS, (There was a conflict with the opcode
assignments for extended exponent FORTRAN),

ASHP and ASHND do not work for identical source and
destination (or overlapping source and destination),

CHUP can generate a =0 result,

AC 17 1s an {llegal operand for CVIBND, CVTnNDB, CVTBP,
CVTPB, since eacn of these instructions uses an AC pair
and specification of AC 17 would result in AC 0 being
used,

CHOP of an immediate operand is illegal

CVIBP and CVTBND clear tne AC’s that contained the
source goperand,

Fixed erroneous bit numbers for FXU, DCK
Fixed typos

Speclfied that new mode bits for MOVST also aoply to
CVIDBT and EDIT

JREVISION HISTORY Page D=2

1.

2,

3.

9.
10,
11,

12,

13.

14,

le

Specified opcode assignments,

Specified PXCT for character string manipulation
instructions,

Specified results of overflow 1in decimal arithmetic
operations

Specified results of MUUO’s that occur during (CIs
instructions

CIS instructions will work in section 0

Changed 4 and O bit assignments for "immediate mode®
operands

Added sign control option to CVTND8 and CVTPB

Specified MOVST extensions to improve performance when
reading stream format files

Added TLGLP instruction
Reworded description of immediate mode operands

Added extensions to the EXTEMND instructions which were
approved in Sep=77 to appendix B8

Added Jack Krupansky’s proposal for assembler notation
for these instructions as aprendix C

Specified in the arithmetic shift instructions that the
shift register nas the length of the longer operand,

Deleted the "otner suggestions” section, This section
suqggested that we add a "string search" instruection at
some time in the future, MOVST can be used as a search
instruction; and the short translate taple option of

‘MOVST makes it efficient for searching for characters <

40,

Modified the effective address calculation rules to use
S different addressing modes: direct, deferred, direct
subscripted, deferred subscripted, and immediate,

Under this addressing scheme all operands that describe
9=0it opyte strings may be either one or two words long
and hence instructions may be 2,3 or 4 words lona, The
descriotions of the individual i{nstructions were changed
to reflect this.

The LCG architecture committee and the COBOLe=79 project

sREVISION HISTORY Page D=3

2,

3.

L.

2,
3.

S.

6

7.

8.

9.

10,

11,

members considered the problem of character addressing
at great length and considered a number of difterent
addressing schemes before agreeing on tnis one,

Made "immediate" into an operand mode and removed the
“immediate" {nstructions (FILLC, CMPCI, CMPNDI, ADDNDI,
CMPI, ADOPIL),

Reorganized the first part of the document to include
the goals, overview, addressing, and conventions
sections,

Specified that when these instructions are {imterrupted,
the PC always points to the first word,

Added the interpretation of the instruction mnemonics

Speéified that none of these instructions ever generate
a =0 resule,

Specified that the numeric display instructions always
set the leftmost 5 bits in each byte of the result to
legal ASCII (00011),

Specified that the shift amount for ASHND and ASHP will
be specified in AC 0,

Specified the CHOP instruction,

Specified that the output from CVIP8 and CVTNDB is a
double integer,

Removed the FILLCV and CMPCVI {nstructions (their
operations can be accomplished by using MOVCV and Cupcy
with one of the operands equal to the null string)

Specified that the pad character to be used for MQOVCy
and CMPCV will be svecified in AC 0 {f bit 0 of the 2nd
operand contains a 1, Otherwise the pad character is
ASCII blank,

Changed tne maximum string lengath supported by M0VCV and
CMPCV to be the maximum number that can fit in 27 bits,
Tnis 1is necessary because we decided to use 9 of the
bits 1in AC 0 to specify a pad character, This leaves
only 27 pbits for state information if an interrupt
ocecurs,

-Added an appendix that makes. a general statement about

the performance of these instructions

SREVISION HISTORY Page D=4

12, Updated the open issues list,

6

1. Specified that character string manipulation
instructions will work for overlapping operands {f the
start of the destination precedes tne start of the
source, Specified that both character string and
numeric operations will work i{f the 2 operands are
identical,

2, Specified that in the character manipulation functions a
length field of zero means that the operand is the nulil
string,

3, Reworded the description of the contents of AC 0 at the
end of a character string compare operation,

4, Specified the character codes to be used in numeric
display operations,

S. Specified that =0 is always treated as identical to +0,

6. Changed the specification of immediate numeric operands
to always use bits 18«35 of the I,X,Y caleculation,
Numeric display immediate operands are always 2 digits,
Packed decimal immediate operands are always 3 digits,
The length fields corresponding to immediate operands
will always be 2 (rather than 0),

7. Changed the mnemonics used for immediate opcodes to end
in "1

8, Specified the variable length character string
manipulation instructions,

9. Modified ASHND and ASHP so that a positive shift count
means shift left; negative means shift riaght,

10, Removed the character set conversion instructions from
this document, These instructions should be extend
instructions and will be documented separately.

S 1., Specified that results are unspecified if operands

overlap,

2, Changed mnemonics to be more like VAX and IBM,

3., Specified the formats of immediate mode operands,

4. Specified value in AC 0 when CMPC and CMPIC find equal
strings,

5. Specified the result of overfliow and 1illegal data in
decimal instructions,

6. Specified a MOVSGN (move sign, numeric display)
instruction,

L] s -

sREVISION HISTORY Page D=5

7. Removed specific unsigned instructions, and generalized
all decimal arithmetic instruction formats to include an s
bit which governs the sign encoding in the result field,

3, Generalized all decimal arithmetic instructions to
include two 4=o0it length fields,

9. Specified the bits in tne flag word that are set for
various instructions, (Tested by JFCL).

10, Added a MOVP (move packed) instruction, which had been
overlooked,

11, Added a ASHND and ASHP (arithmetic shift, numeric
display and packed).

12, Added EPACK and EUPACK instructions, which convert
between EACDIC display format fields and packed decimal
fields,

13. Specified operand formats for CVT79 and CVT97

4 1. Specified that interrupts will be handled by saving the
state information in AC o,
2, wnen a character string compare is performed, AC 0 {is
set to the character position of the first character where
the strings differ,
3, At the end of the other instructions AC 0 is left set to
0 ¢

3 1. Changed tne conventions for overpunched signs to those
proposed by Peter Conklin, Jeff Rudy, and Pat White in their
memo of 3di=May=78,

Chanages were:

4. Generated signs for +0 to +9 become { and A to I rather
than being 0 to 9, This 1s done for I3M compatibility,

b. The 026 keypunch representations of ? for +0 and : for
=0 were pyt oack ine.

€s The 1401 representations of ? for +0 and ! £or =0 were
added,

2. Added unsigned operations: ADDUN, ADDUNI, SUBUN, These
operations are necessary because the output values for the
nuneric display instructions are { to I for +0 to +9,

2 The length £ields for numeric display and packed decimal
were changed back to contain the length rather than
length=1, 1Instead we will let a length of 0 mean 16 digits
for numeric display: 16 bytes for packed decimal, This
change was made pecause in cases wnere variable length items
are oeing handled in the future it will pe confusing and
potentially time consuming to always have to subtract one
from the lengtn of an item,

1 l« The order of the onerands for some of the instructions
was changed s0 that the order 1is always: source,
destination,

Instructions changed were: FILLC, ADDNDI, AéDND, SUBND,
CVIBND, ADOIP, ADDP, SuUBpP, CVTRP

2, Length fields for packed deecimal and numeric display
instructions will <contain lengthe=i. Thus we can handle a
maximum of 16 (rather than 15) digits for numeric display

(4 >

sREVISION HISTORY Page D=6

and a maximum of 3t digits for packed decimal,

3. Sign conventions for numeric display were simplified,
Use of ? and : for plus and minus zero (which were 0Ow=26
Keypunch conventions) were removed, Use of lower case
letters for signed 1=9 were removed, '

4, Explicitly stated that two wd instructions cannot lie
aCross a section ooundary, and that section boundaries can
be crossed wnen an oftset is added to a global base address,
S. The instruyctions to convert between binary and packed
decimal and between binary ana display will handle a 72 bit
binary numoer in an AC pair, The wmicroe=code will treat
numbers that fit in a single AC (ie those of 12 digits or
less) as a special case So that tneir conversion will not be
Slowed down by the use of 72 oits,

6. TIhe section called "other suggestions" was added, to
document somne suagestions that pave been made by other
members of the languages group.,.

