KKK KKK ccceeceececcec rrerenn 000000000

KKK KKK ccecececececccce Trrrerind 000000000
KKK KKK ccececececceccecc Prreernn 000000000
KKK KKK ccc (N 000 000
KKK KKK ccc Pl 000 ooc
KKK KKK ccc b 000 000
KKK KKK ccc Hil 0C 000
KKK KKK ccc I 000 000
KKK KKK ccc HHd 000 000
KKKKKKKKK ccc M 000 000
KKKKKKKKK ccc i 1e]0] 000
KKKKKKKKK ccc i 000 000
KKK KKK ccc Pl 000 000
KKK KKK ccc H 000 0oo
KKK KKK ccc NN 000 000
KKK KKK ccc N 000 000
KKK KKK ccc i 000 000
KKK KKK ccc RN 000 000
KKK KKK ccececeeecccee FEEreenn 000000000
KKK KKK cgccececeeecccec AN AN NN 000000000
KKK KKK ccceeccceccec L 000000000
MMM MMM EEEEEEEEEEEEEEE MMM MMM

MMM MMM EEEEEEEEEEEEEEE MMM MMM

MMM MMM EEEEEECEEEEEEEE MMM MMM

MMMMMM ~ MMMMMM EEE MMMMMM ~ MMMMMM

MMIMMM - MMMMMM EEE MMMMMMA ~ MMMMMM

MMFMMM MMMMMM EEE MMMMMM ~ MMMMMM

MMM MMM MMM EEE MMM MMM MMM

MMM MMM MMM EEE MMM MMM MMM

MMM MMM MMM EEE MMM MMM MMM

MMM MMM EECEEEEEEEEE MMM MMM

MMM MMM EEEEEEEEEEEE MMM MMM

MMM MMM EEEEEEEEEEEE MMM MMM

MMM MMM EEE MMM MMM

MMM MMM EEE AMM MMM

MMM MMM EEE MMM MMM

MMM MMM EEE MMM MMM

MMM MMM EEE MMM MMM

MMM MMM EEE KMM MRA

MMM MMM EEEEEEEEEEEEEEE MMM MMM

MMM MMM EEEEEEEEEEEEEEE MMM MMM

MMM MMM ESEEEEEEEEEEEEE MMM MMM

START Job ETHER Req #83 for TARL [10,5535] Date 26-Jul-83 0:52:11 Monitor: RL152A DEC10 Dev
File DSKA:KCI0.MEM[5,100], created: 7-Mar-82 21:17:00, printed: 26-Jul-83 0:52:25

Job parameters: Request created:26-Jul-83 0:52:07 Page 1imit:3033 Forms:XEROX Account:l'd r
File parameters: Copy: 1 of 1 Spacing:SINGLE File format:ASCI | Print mode:ASCI |

Copyright (C)

B R e +

!digitatl!!l I NTEROFF!I CE MEMORANDUM

et +

TO: List DATE: 07 Mar 82
FROM: R. Mclean

G. M. Uhler

DEPT: L.S.E.G
LOC: MRi1-2/E85
EXT: 231-6113

DISTRIBUTED: 07 Mar 82 FiLc: KCIO.RNO

REVISION: 6

SUBJ: KC10 Exec Mode

The information in this document is subject to change without
notice and should not be construed as a commitment by Digital
Equipment Corporat. . Digital Equipment Corporation assumes
no responsibility for any errors that may appear in this
Jocument.

Digital Equipment Corporation assumes no responsibility for the
use or reliability of its software on equipment that is not
supplied by DIGITAL.

1980, 1981, 1982 by Digital Equipment Corporation

The following are trademarks of Digital Equipment Corporation:

DIGITAL

DEC

POP

DECUS

UNIBUS
COMPUTER LABS
COMTEX

Dov

DECCOM

DECsystem-10
DECtape
DIBOL
EDUSYSTEM
FLIP CHIP
FOCAL

INDAC

LAB-8
DECSYSTEM-20

MASSBUS
OMN | BUS
0s/8

PHA

RSTS

RSX
TYPESET-8
TYPESET-10
TYPESET-11

KC10 Exec Mode Instructions Page 2
Revision History

Changes made tc revision 5 of KCID to create revision 6 on
08-Mar-82.
1. Declare XBLT to be iegal! in section O.
2. Document the differences between the KL and KC
implementation of JRST n,. Allow SFM in any section. Add

the XJRST (JRST 15,) instruction.

3. Document the occurrance of an IBOX flush on WRCTX, WREBR,
CLRPT, ana SWPIA.

L. Redesign the WRTMB and RDTMB instructions. Add the WRACT,
RDACT instructions.

5. Remove the 18 bit EA restriction from PMOVE and PMOVEM in
section 0.

6. Document the changes to the legal PXCT bits.

7. Change SETCU from 700100,,0 to 701000,,0.

8. Change RDUBR from 700040,,C to 701k00,,0.

9. Change the format of E+1 of the WRCTX, RDCTX, and RDUBR
blocks to match that of the first word of the flags/PC

double word.

10. Make UMOVE/UMOVEM generate an illegal instruction trap if
executed in user mode.

11. Add functional descriptions for WRCTX, WREBR, WRTMB, and
WRACT.

12. Change the polarity of bit 10 returned in the MAP
instruction Ac.

13. Remove function code 3 from the trap function word.

4. Remove the '"'do not load current AC block values" bit from
the interrupt vector word.

15. Move the control bits around in word E of the WRCTX (and
RDCTX and RDUBR) block to make it eacier to implement.

16. Remove the ''do not load AC block values' bit from the WRCTX
block.

17. Move the mapping for exec pages 0-337 with TOPS-10 paging
from words 600-757 in the EPT to 0-157 in the EPT.

18. Remove the "FPA present" from the hardware options field in
APRID and put it in the microcode options field.

KC10 Exec Mode instructions Page 3
Revision History

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.
31.

32,
33.

3.

35.

Remove the JEN instruction.

Redefine the algorithm used to compute a physical address
for PMOVE, PMOVEM, and the queuc instructions.

Redefine words 453-45L in the UPT (page fail block) to be
"additional data'" returned on a page fail. These words
will be different for each type of page fail code and will
be documented as such.

Modify MUUQ, page fail, |/0 page fail, and traps (MUUO
function) to "load" PAB instead of ''setting" it.

Make super section pointer types 1 (immediate) and 3
(indirect) legal.

Start the page fail block in the UPT at offset 451 instead
cf L50.

Change the page number field in an immediate pointer from
bits 20-35 to 18-35.

Document the format of the 'page address word" encountered
in pointer traces.

Add a description of the debugging instruction implemented
by the microcode.

Describe the paging information cache.

Change the format of the page fail word to include the
"levei" at which the page fail was detected.

Describe the CST update operation.

List the processor flags in the description of the Flags/PC
double word.

Define the page fail codes for TOPS-20 paging.

Describe bits 0-10 of the page fail PMA as ''reserved"
instead of 2zeros. They come back undefined from the MBOX
and it didn't seem particularly necessary to mask them
since the monitor probably won't use the word anyway.

Note that the trap 1 and trap 2 flags are never stored in
the LUUO/MUUO0 block when a trap that specifies function
code 1 (MUUO) or 2 (LUUO) is processed.

Note that an instruction that references multiple words
(e.g., BLT) will not cause an address break for every word
in the address break range if the monitor restarts the
instruction with the "inhibit address break" flag set.

KC10 Exec Mode Instructions Page 4
Revision History

36.

37.

38.

39.

40.

Add the trap enable bit to WREBR and RDEBR and explain how
it works.

Add descriptions for the debugging instructions RDTRAX and
WRTRAX.

Add a new chapter for miscellany and start it by describing
the halt status codes.

Change the format of the 1/0 page fail block to make it
more consistent with the normal page fai! block.

Document the effect of a write reference for the various
combination of written and modified bits in the translation
buffer.

Changes made to revision L of KCI0 to create revision 5 on
18-Aug-81.

1.

2.

Add the definition of the bits returned by the MAP
instruction.

Define bit O of the microcode options field in APRID as
"diagnostic microcode loaded".

Move the remaining APR flag bits in WRAPR and RDAPR to bits
30 and 31 to right justify them in the field and make them
contiiguous

Add the '"VM mode'' state bit as bit 10 in word E for WRCTX,
RDCTX, and RDUBR. Also use UPT location 431 as the VM mode
new PC MUUO dispatch.

Add a statement that pager clears caused by CLRPT and WREBR
ignore the keep me bit.

Declare the results of executing a UMOVE or UMOVEM in user
mode as undefined.

Define bit 19 in the RNGB? instructions to perform a port
init for the port specified by bits 33-35.

Put all the accounting meter stuff under an "available with
the accounting meter option only" disclaimer.

Remove the ''Port interrupt logout word'" from the 1/0 page
and add 8 "%ort interrupt Pl status words'.

KC10 Exec Mode Instructions Page 5
Revision History

10.

11.

12.

13.

4.

15.
16.

17.

18.

19.

20.

21.

22.

Remove the SWPVA instruction from the instruction set.

Change the spec to indicate that no flags are loaded on a
LUUO.

Move the address break condition bits from 0-7 to 10-17 in
the WRCTX/RDCTX argument.

Require that paging be turned on to load the address break
conditions with WRCTX or to read them with RDCTX.

Rearrange the WRCTX control bits.

Rearrange the bits in RNGB and RNGBW one more time.

Remove the cache look and load bits from WREBR and RDEBR
and the TB cacheable bit from the page table pointer and

add cache on/off controls bits to WREBR and RDEBR.

Do not cause an IBOX flush as the result of a cache sweep
instruction.

Remove time base 1 completely and remove the time base 2
words in the EPT (they're now kept strictly in EBOX
scratchpad locations).

Redesign the time base and interval timer instructions.

Add the RDURTM instruction to read the user runtime meter.

Add the page fail formats.

Remove the discussion of the UBA from the interrupt vector
definitions.

Changes made to revision 3 of KCI0O to create revision 4 on
30-Apr-81.

Reserve bits 0-10 of the link words of physical queues.

Change the console reload bit in RNGB and RNBBW from bit 19
to bit 18.

Describe the relationship between the effective address
calculation and the reference address for those
instructions that use the EA as a physical address.

KC10 Exec Mode Instructions Page 6
Revision History

L.

Reserve bits 0-10 of AC for the queue instructions and
define the action on bit O in the AC on an empty/non-empty
queue.

Document the MUUO block and the new PC dispatch vectors.
Change the spec to reflect the new dispatch algorithm
approved by the architecture committee. Move the page fail
locations from location starting at LLO to locations
starting at 450 to make room for the new MUUO dispatch.

Document the LUUO block format and the action of the
processor to an LUUC.

Clean up the trap function word definitions and change
functions 1 and 2 to agree with the decisions of the
architecture committee.

Clean up the interrupt vector description and document the
format of the 1/0 page fail block in the 1/0 page.

Clean up the queue instruction explanations. Thank you
Judy Hall.

Redo the entire chapter on virtual addressing (and rename
it "paging') to add much more information.

Describe the changes to the MAP instruction.

Changes made to revision 2 of KCI0O to c¢reate revision 3 on
19-Mar-81:

1.

2.

Add the SETCU instruction to set the ST update needed bit
in each page table entry.

Note that PMOVE, PMOVEM and the physical gusue instructicns
do not cause the CST tc be updated.

Remove the INSQUE and REMQUE instructions and the
references to virtual queues.

Add pictures for the EPT, UPT and i1/C page. Also provide
separate picture for TOPS-10 and TOPS5-20 for the first twe.

Change the format cf the trap function word that simulates
a LUUD to specify the opcode of the LUUQ to be used i the
function word,

KC10 Exec Mode !nstructions Page 7
Revision History

6.

Changes

10.

Change the definition of the quaue manipulation
instructions to skip return if the entry has been
successfully added to the queue with bit O in the AC set if
the entry was added to an empty queue. The instruction
will not skip if the secondary interlock was timed out.

made to revision 1 of KCI0 to create revision 2 on 9-Mar-81:

Add definition of ''reserved" fieids of instruction operands
and data.

Define all bits of instruction operands and data.

Add '"KL/KS <compatibility' section to each instruction
description.

Add an enable Bit to icad the CPU PIA in WRAPR.

Change the page number field for WRCTX, WREBR and WRIOP
from bits 18-35 to bits 20-35

Remove the commitment to make a PXCT of a CLRFT work.
Define what "TOPS-10" paging really means.

Change the "iInterrupt 2080 console" bit in RNGB and RNBGW
from bit 18 to bit 32.

Change the description of the operation of FMOVE and PMOVEM
tc do a normal effective address calculation and use the
result as a physical address.

Change the definition of WRIOP from an immediate mode
instruction to one which takes its data from the word
addressed by E.

KC10 Exec Mode Instructions Page 8
Table of contents

CHAPTER 1 INTROOUCT I ON

CHAPTER 2 INTERNAL 1/0 iNSTRUCTIONS

CHAPTEP 3 EXTERNAL 1/0 INSTRUCTIONS

CHAPTER & OTHER 1/0 INSTRUCTIONS

CHAPTER 5 OTHER FUNCTIONAL CHANGES

CHAPTER 6 SPECIAL DEBUGGING INSTRUCTIONS

CHAPTER

~

QUEUES AND QUEUE MANIPULATION INSTRUCTIONS

INTRODUCTION . . . & ¢ ¢ ¢ v v v e e e o o o o W
DATA STRUCTURES+ « ¢ v ¢« ¢ ¢ ¢ v v o o
The Queues ¢ ¢ ¢ ¢« v v ¢ v v e 0 oW
FOrmats . ¢ v v v v v v 4 e e e e e e e e e e .
OPERATIONS & ¢ ¢ & ¢ v 4 v e e o o o
InsSertion . . . ¢ ¢ ¢« ¢ v 4 4 e e e e e e e e .
Removal & ¢ ¢ ¢ ¢t ¢ @ ¢ e e e e e e e
INTERLOCKS . . & & & ¢ ¢ ¢ ¢ o L o« ¢ o ¢ o o « @
THE INSTRUCTIONS . . . & ¢ ¢ ¢ ¢ v o ¢ v o« o « o
ERRORS . . . & & ¢ ¢ v 4 ettt e e e e e e e e

.
N -
|

.
[Jr—

« e
N EWW W NN —
. P
[

NSNS NSNS
. e . .

. .
SNN SN NNNNNNNY
|

CHAPTER PAGING
INTRODUCTION o« e e e e s ..
PAGING HARDWARE AND HICROCODE .« e e e e e e e e
CACHING OF PAGING INFORMATION
TOPS=20 PAGING ¢ v ¢ v ¢ 4o & o + o o o o
Pager Data Structure ¢ « « « o « ¢« & o« &
Pointers * e s e e o e o s s
Super Section Ponnters e e e e e e e e e e e .
Section Pointers ¢ ¢ ¢ ¢« ¢ ¢ o o o o &
Map Pointers &+ ¢ ¢ v ¢« o o o o o« o o
Page Address Words o e . .
Conversion Of Virtual To Physical Addresses . .
Page Refill ¢ ¢ v 0 v ¢ v ¢ v o o v o
CST Updates ¢ ¢ ¢ ¢ ¢ ¢« o« o« o «
CST Entrvy Format . . . « ¢« ¢ ¢ ¢ v ¢ o o o &
CST Mask Register Format
Process Use Register Format
Translation Buffer State Bits
Write References « . . .
Page Fail Conditions And Formats e
Tops-20 Page Fail Codes And Addltconal Data 8 16

! 1
OO0OWVWWWOONOWNMETT BN — —

.
AUV I WV \INIT U NN ESWNDNNMNNN —
L] L]

.
o o

W N
]

Y W NS e

[} oooooooooocoo'ooocomoooom

.
.
.

ooooooqoooco
——

©0 00 00 Oo 00 00 00 00 0D OO CO 06 0 00 Co 0o G0 00 0O 0o oo
. . o e o .

Pl ol R O o o o P o iR R A VU N R
L]

.
—

.
.

KC10 Exec Mode Instructions Page 9
Table of contents

8.4.6.1.1 Additional Data Words For A Pointer Trace 8-20
8.5 TOPS-10 PAGING e e e e e e .. B2
8.5.1 Process Tzple Mapping Formats e e e e e e e . 8-20
8.5.2 Page Fail Conditions And Formats 6-22
8.5.2.1 Tops-10 Page Fail Codes And Addntlonal Data 6-25

CHAPTER 9 PROCESS CONTEXT VARIABLES
9.1 INTRODUCTION e EL
g.1.1 New Flag-PC Double word e
9.1.2 Context Changing ¢« ¢« ¢« ¢« ¢« « « . 9=2
CHAPTER 10 SYSTEM TIMERS
10.1 SUMMARY . & . & ¢ v vttt e e e e e e e e e e 100
10.2 TIME CLOCKS . . ¢ & & & ¢« v v v v v e « o « « « 10-1
10.2.1 Time Base ¢ ¢ ¢ ¢« ¢« ¢ v ¢« ¢« « o« « « 10-2
10.2.2 User Runtime Meter ¢ « ¢« « « « 10-2
10.3 INTERVAL TIMER « ¢« ¢ ¢ ¢ ¢ ¢ ¢« v « « « 10-2
CHAPTER 11 TRAP, UUO AND INTERRUPT HANDLING
11.1 INTROBUCTION . . . & ¢ ¢ ¢ v v e v e e o o o « « 1=
11.2 TRAP FUNCTION WORE ¢ ¢« ¢« « « « 11=2
11.3 VIRTUAL MACHINE SIMULATION MODE 11-4
il.4 MUUO HANDLING+ o« « « . . 11-5
11.5 LUUOD HANDLING ¢ ¢ . v v v ¢« v « « « « 11-8
11.6 TRAP ENABLE ¢ ¢ v ¢ v« .« 11-9
1.7 INTERRUPT VECTORS ¢ ¢« &« v ¢ ¢« « « « « . 11-10
11.8 1/0 PAGE FAILURE ¢ v ¢« v « « . . 11-10
CHAPTER 12 MISCELLANY
12.1 HALT STATUS CODES . . . ¢ ¢ ¢ ¢ ¢ v ¢ o ¢ o « « 12-1
CHAPTER 13 SPECIAL SYSTEM PAGES (EPT / UPT / I0P)
CHAPTER 14 ADDRESS BREAK

Index

CHAPTER 1

INTRODUCTION

This document describes the operation of the Exec Mode and 1/0
instructions on the KC10. It also desc-ibes the differences between
the instruction set implementation on the KL and KS processors and
that implemented by the KCI10. All /0 instructions are ordinary
instructions with the same format as normal instructions (opcode, AC
and effective address). The opcodes are in the range 700 thru 777.

Any operation code in the range 700 thru 777, AC number, field or bit
not described in this document should be considered reserved to DEC.

Instructions with opcodes between 700 and 737, inclusive, are legal in
exec mode or in user |/0 mode. Instructions with opcodes between 740
and 777, inclusive, are legal in both exec and user modes.

INTRODUCT ION Page 1-2

OPCODE Assignment Map

0 1 2 3 L 5 6 7

700 APRO APR1 APR2 - UMOVE UMOVEM PMGVE PMOVEM
710 RNGB RNGBW SNBSY - - - - -

720 INSQH! INSQTI REMQHI REMQTI
730 - - RDTRAX* WRTRAX* READTB* WRITTB* DUMPTB* -
740 - - - - - - - -
750 - - - - - - - -
760 - - - - - - - -
770 - - - - - - - -

* - Debug instructions. Not in production machine.

AC Field Assignments

AC 700 701 702

00 APRIC SETCU ROSPB
01 - RDCTX RDCSB
G2 - CLRPT RDPUR
03 - WRCTX RDCSTM
oL WRAPR WREBR RDTMB
05 RDAPR RDEBR RDINT
06 SZAPR WRIOP RDT IME
07 SNAPR RDIOP RDURTM
0 - RDUBR WRSPB
il - SWPIA WRCSB
12 - - WRPUR
13 - SWPUA WRCSTM
14 WRPI - WRTMB
15 RDP| - WRINT
16 SZ°| - WRACT

17 SNP| - RDACT

CHAPTER 2

INTERNAL 1/0 INSTRUCTIONS

These instructions control the CPU. They transfer no data between the
outside world and the CPU or memory.

kkkk%x WARN|NG ZH&xkkx

In some instances, fields of the
operands of an instruction or fields of
the values returned by an instruction
are described as ''reserved'”. This means
simply that no guarantee is made of the
correct operation of an instruction
whose ''reserved" fields are set non-zero
by the program or of the state of the
bits in the "“reserved" fields returned
by an instruction. If you wish to
experiment and find a result to vyour
liking, you are hereby warned that your
program may well not be compatiktle with
any other processor, with any otner
model of your processor, with the same
model of your processor at some other
installation, or even with your own
processor running at some other time
with a different version of the
microcode or Monitor.

INTERNAL

1/0 INSTRUCTIONS

Conventinns

When tne definition'of a bit is given in
this document, that definition applies
when the bit is set to a 1 (unless
explicitly stated otherwise). 1f the
bit is set to a zero, the logical
compiement of the definition applies.
For example, bit 1 inword E in APRID
below is described as '"FPA present'.
This means that the FPA is present in
the machine if the bit is a 1 and not
present if the bit is a 0.

Page 2-2

INTERNAL 1/0 INSTRUCTIONS Page 2-3
APR!D

APR!D
R R s e T +
! 700 ! 00 l@! YR ! Y !
+ommmme - e s e T +

This instruction stores the microcode version number, CPU serial

number, and processor options in the words addressed by E and E+1.
The format of the first word (E) is:

0-8 Reserved for microcode options.
0 Diagnostic microcode loaded
1 FPA present

9-17 Hardware opt*ions

18-35 Processor scrial number

The format of the second word (E+1) is:

0-35 Microcode version number

KL/KS compatibility

The KL and KS returned microcode options, microcode version number,
hardware options and processor serial number in one word. The KC
returns two words and defines different hardware and microcode option
bits.

INTERNAL 1/0 INSTRUCTIONS Page 2-L
WRAPR

WRAPR
i e o A st TR e -+
! 700 ! o4 !@! XR ! Y !
S e s e LT P +

This immediate mode instruction decodes its effective address to

control the processor. The effective address bits are used as
follows:

18 Load the PIA fer the CPU from bits 33-35.

19 I1/0 reset. When this bit is set, 'reset' is asserted on
the KC10 1/0 bus. This will reset all the port
micromachines (but affects no internal devices, such as
the pager and processor flags).

20 Enable conditions selected by bits 24 thru 31 to cause
interrupts.
21 Disable interrupts for conditions selected by bits 24 thru
31.
22 Clear flags indicated by bits 24 thru 31.
23 Set flags indicated by bits 24 thru 31.
WARN ING

The action of the processor is not defined when
both bits 20 and 21 or 22 and 23 are set in the
same instruction.

24-31 Selected flags

2L4-29 Reserved

30 Console attention
31 Power failure
32 Reserved

33-35 PIA for CPU

INTERNAL 1/0 INSTRUCTIONS Page 2-5
WRAPR

KL/KS compatibility

The KL and KS unconditionally set the CPU PIA. The KC only sets the
PIA if bit 18 is on. The KC also defines different flags in bits

24-31.

INTERNAL 1/0 INSTRUCTIONS Page 2-6
RDAPR

RDAPR
o e S i i LT +
! 700 ! 05 1@! XR ! Y !
o S s o T e +

This instruction stores the APR status in the word addressed by €E.
The status is as follows:

0-5 Reserved
6-13 Interrupts enabled
6-11 Reserved
12 Console attention enabled
13 Power failure enabled
14-23 Reserved
24-31 interrupts pending

24-29 Reserved

30 Console attention

31 Power failure
32 Interrupt requested (IOR of bits 24-31).
33-35 PIA for CPU

KL/KS compatibility

The KC defines different flags in bits 24-31.

INTERNAL 1/0 INSTRUCTIONS

Page 2-7
SZAPR

SZAPR
e s e e e atatatata b e T +
! 700 ! 06 '@ XR ! Y !
Fmmmmm e it +

This irstruction tests the input conditions from the APR right 18

bits. If all condition bits selected by s in E are Os, skip the next
instruction in sequence.

KL/KS compatibility

Functionally identical to CONSZ APR,E.

INTERNAL 1/0 INSTRUCTIONS Page 2-8
SNAPR

SNAPR
Hmmmmmm i ittt +
! 700 ! 07 !@! XR ! Y !
Fmmmmm——- B e e e +

This instruction tests the input conditions from the APR right 18 bit.
if any condition bit selected by 1 in E is 1, skip the next
instruction in sequence.

KL/KS compatibility

Functionally identical to CONSO APR,E.

INTERNAL 1/0 INSTRUCTIONS Page 2-9
WRP |

WRPI
e s R e +
! 700 ! 14 1@! XR ! Y !
$ommmm - s T i et T P +

This immediate mode instruction decodes its effective address to
control the priority interrupt system. The effective address bits are
used as follows:

18-21 Reserved

22 Turn off program requests on the levels selected by s in
bits 29-35.

23 Clear Pl system.

24 Initiate interrupts on the levels selected by 1s in bits
29-35. Such interrupts vector through the software

interrupt vector words in the 1/0 page. An interrupt s
not initiated on a level unless cthe Pi system and the
requested level are on.

25 Turn on the levels selected by 1s in bits 29-35.
26 Turn off the levels selectad by 1s in bits 29-35.
WARN I NG

The action of the processor is not defined when
both 25 and 26 or 22 and 24 are set in the same
instruction.

27 Turn off Pl system
28 Turn on Pl system
29-35 Select levels for bits 22, 24, 25, and 26.

KL/KS compatibility

The KL used bits 18-20 to force parity errors. The KL initiated an
interrupt on a level as the result of a 1 in bit 24 even if the
specified level was off. Although the KS is documented to act in the
same manner, it did not initiate the interrupt unless the level was
on.

INTERNAL 1/0 IRSTRUCTION Page 2-10
ROP| :

ROPI
Fommmm - e et +
! 700 ! 15 1@! XR ! Y !
et s s T S +

This instruction stores the Pl status in the word addressed by E. The
status is a follows:

0-10 Reserved

11-17 Program requests on levels.
18-20 Returned as zeroes

21-27 Interrupt in progress on levels.
28 Pl system on.

29-35 Le-els on.

KL/KS compatibility

The KL returned the state of the forced parity erro- bits in bits

18-20. Otherwise, it is functionally equivalent to CONI PI,E on the
KL and RDPI E on the KS.

INTERNAL 1/0 INSTRUCTIONS

Page 2-11
SZPI
SZPI
o R s it e +
! 700 ! 16 1@! XR ! Y !
o S i s bt S +

This instruction tests the input conditions from the P! right 18 bits.

If all condition bits selected by 1Is in E are Os, skip the next
instruction in sequence.

KL/KS compatibility

Functionally equivalent to CONSZ PI,E.

I''TERNAL /0 INSTRUCTIONS

Page 2-12
SNPI
SNP|
o st aataits et D L P +
! 700 ' 17 1@. XR ! Y !
4o R s it +

This instruction tests the input conditions from the Pi right 18 bit.
If any condition bit selected by 1 in E

is 1, skip the next
instruction in sequence.

KL/KS compatibility

Functionally equivalent to CONSO Pi,E.

INTERMAL 1/0 lNSTRUCfIONS Page 2-13
WRCTX

WRCTX
Fom—————— B e o T S e -+
! 701 ! 03 1@! XR ! Y !
- B e e S —+

This instruction loads user process context from a variable number of
words addressed by E through E+L4 depending on the flag bits in the
first word. The process context. includes previous and current AC
blocks, previous context section, user base register, virtual machine
simulation mode enable, and address break enable and conditions.

The format of the first word (E) is:

0 Load current and previous AC block numbers (CAB, PAB) from
bits 18-23 of word E+l.

i Load previous context section (PCS) from bits 24-35 of

word E+1.

2 Load the user base register (UBR) from bits 20-35 of this
word.

3 Clear all pages from the hardware page table (inciude

"kept" pages) when the pager clear is done.

b4 Do not change the state of the user runtime meter (nether
update it into the old PT or load it from the new UPT).

5 Load VM-moue enable from bit 6 of this word.

6 Enable virtual machine (VM-mode) simulation mode for this
user context.

7 Inhibit all address break conditions for the next
instruction executed. The effect of setting this bit is
to set the inhibit address break PC flag for the next
instruction.

8 Load address break conditions from the words at E+2
through E+4.

9 Load address break enable from bit 10 of this word.
10 Enable address break using the existing conditions (the

conditions may be also be changed with the same
instruction) .

INTERNAL

WRCTX

11-19

20-35

INSTRUCT IONS Page 2-14

Reserved

Physical page number of UPT.

The format of the second word (E+1) is:

Reserved

Current AC block

Previous AC block

Previous Context Section

Tre format of the third word (E+2) is:

9-9

10

1

12

13

14

15

16

17

18-35

Reserved

Enable address break for a normal fetch of an instruction
in the program under control of PC.

Enable address break for any reference that reads except
the normal fetch of an instruction.

Enable address break for any reference that writes.

Enable address break for a reference made in user virtual
address space. (0 selects executive space).

Enable address break for a reference made by the CPU to
memory.

Enable address break for a reference made by a port to
memory.

Enable address break for a physical memory reference. (o]
selects virtual memory references).

Compare only bits 18 through 35 of the reference address
with the address range when doing address compares.

Reserved

The format of the fourth word (E+3) is:

0-5

Reserved

INTERNAL
WRCTX

6-35

1/0 INSTRUCTIONS Page 2-15

The lower bound break address.

The format of the fifith word (E+4) is:

0-5

6-35

In word

Reserved

The upper bound break address.

E, bits 0-2, 5, and 7-9 control the action of this

instruction; when a bit is O, the corresponding action is ignored.
The actions are as follows:

1.

L.

If bit 0 is on, load CAB and PAB from bits 18-20 and 21-23,
respectively, from word E+1. |If bit O is off, do not change
CAB and PAB.

If bit 1 is on, load PCS from bits 24-35 of word £+1. |If bit
1 is off, do not change PCS.

If bit 2 is on, perform the following functions:

1. If bit 3 in E is 0, clear all pages except those marked
"kept" in the page table. if bit 3 is 1, clear all
entries.

2. Load bits 20-35 of E into the User Base Register
3. If bith inE is O, perform the following functions:

1. Update the user runtime meter into the previous UPT
by simulating a2 RDURTM instruction and storing the
resulting dout'eword in the previous UPT in locations

504-505.

2. Load the user runtime meter kept in the EBOX iniernal
registers from locations 504-505 of the new UPT.

If bith is a 1, do not update the user runtime meter
into the previous UPT anit do not reload it from the new
UPT.

Clear the internal cache of paging information kept by the
EBOX and re-initialize it with the first super section
pointer from the EPT and the UPT (offset 520).

INTERNAL 1/0 INSTRUCTIONSA Page 2-16
WRCTX

5. If bit 5 is on, perform the following functions:

1. If bit 6 is on, enable virtual machine =imulation mode
(VM-mode) for this wuser context. If bit 6 is off,
disable VM-mode for this user context.

If bit 5§ is off, do not change the state of VM-mode.

6. If bit 7 is on, inhibit all address break traps for the next
instruction executed after the WRCTX. |If bit 7 is off, do
not inhibit address break traps.

7. I1f bit 8 is on, load the address break conditions from the
words at E+2 through E+4. |If bit 8 is off, the address break
conditions remain unchanged.

NOTE

Paging must be enabled (with WREBR bit 4) to load the
address break conditions. |If paging is not enabled,
the result of loading the address break conditions is
undefined.

8. If bit 9 is on, perform the following functions:

1. If bit 10 is on, turn on address break using the existing
break conditions (which may be set in the same
instruction by setting bit 8 to a one). If bit 10 s
off, turn off address break but leave the break
condi tions unchanged.

If bit 9 is off, do not change the state of address break
enable.

9. Flush and restart the 1BOX.

See the chapter on Address Break for a functional description.

KL/KS compatibility

The KL set current and previous AC blocks, previous context section,
and the physical page number of the UPT with a DATAO PAG,E. Address
break conditions and address were set with a DATAO APR,E. The KS set
current and previous AC blocks, and the physical page number of the
UPT with a WRUBR E. The KC WRCTX instruction combines the functions
of these instructions.

INTERNAL 1/0 INSTRUCTIONS Page 2-17
RDCTX

RDCTX
s e B e +
! 701 ! 01 I@! XR ! Y !
it Rt e +

This instruction stores the user process context in the five words
addressed by E through E+4 in exactly the same format as used by
WRCTX. |In order to allow these words to be used directly in a WRCTX

instruction, bits 0-2, 5, 8, and 9 are set to 1 and bits 3, L4, and 7
are set to O in E.

NOTE

Paging must be enabled (with WREBR bit
k) tc read the address break conditions.
If paging is not enabled, the values
returned in words E+2 through E+4
(address break conditions, lower and
upper address bounds) are undefined.

KL/KS compatibility

The KL returned current «nd previous AC blocks, previous context
section, and the physical page number of the UPT with a DATAI PAG,E.
Address break conditions were returned with a DATAl APR,E. The KS
returned current and previous AC blocks, and the physical page number
of the UPT with a RDUBR E. The KC RDCTX instruction combines the
functions of these instructions.

INTERNAL 1/0 INSTRUCTIONS Page 2-18
RDUBR

RDUBR
Fommmm - e +
! 701 ' 10 1@! XR ! Y !
e i s e ST +

This instruction stores the user process context in the two words
addressed by E and E+] in exactly the same format as the first two
words used by WRCTX. 1iIn order to allow these words to be used
directly in a WRCTX instruction, bits 0-2, 5, and 9 are set to 1 and
bits 3,4, 7, and 8 are set to O in E.

KL/KS compztibility

The KL returned current and previous AC blocks, previous context
section, and the physical page number of the UPT with a DATA! PAG,E.
The KS returned current and previous AC blocks, and the physical page
number of the UPT with a RDUBR E.

INTERNAL 1/0 INSTRUCZTIONS Page 2-19
SETCU

SETCU
et T e R e e T P +
! 701 ! 00 !@! XR ! Y !
Fommmmmm - e e +

This instruction causes the ''{ST update needed" bit to be set in each
entry in the hardware page table so that the next virtual reference to
each page will cause the EBOX to update the CST entry for the page.
This instruction blocks further CPU activity until all bits are set in
the page table. Upon completion of the operation, the IBOX is flushed
and restarted. The indirect, index register, and Y fields of this
instruction are not used and are reserved.

KL/KS compatibility

No functional equivalent on the KL or KS.

INTERNAL 1/0 INSTRUCTIONS Page 2-20
CLRPT

CLRPT
mm— s s et ST +
! 701 ! 02 t@! XR ! Y !
Hmmmm o s s i +

This immediate mode instruction clears the hardware page table entry
for the virtual page addressed by E so that the next virtual reference
to a word in that page will cause an EBOX page fail trap to occur.
The page table ''keep me'" bit is ignored by this instruction and an

uncoditional clear is done. The actions performed by this instruction
are as follows:

1. Clear the translation buffer entry for the virtual page
addressed by E.

2. Clear the internal cache of paging information kept by the
EBOX (but do not clear the first exec and user super section
pointer) .

3. Flush and restart the IBOX.

KL/KS compatibility

Functionally equivalent to CLRPT E on the KL.

INTERNAL 1/0 INSTRUCTIONS Page 2-21
WREBR

WREBR
ettt i s et LR PR PR +
! 701 ! o4 1@t XR ! Y !
it i s et et e e R +

This instruction loads the exec mode context from the word addressed
by €E. The exec mode context includes cache enable, type of paging,

pager enable, trap enable, and the exec base register. The format of
the word is:

0 Load the cache enable bit from bit 1. This bit should
never be set by the monitor. The cache will only be
turned off as the result of a serious error and should
remain off wuntil the problem is fixed. The ability to

enable and disable the use of cache is provided strictly
for diagnostics.

1 Enable use of the cache for all references. Enabling tnc
use of the cache with this bit does not enable the use of
all four cache quadrants iif one has been turned off
because of an error. It simply causes the cache to be
used for any quadrants that are on.

2 Reserved

3 TOPS-20 paging (See the chapter on Paging)

4 Pager enable.

5-7 Reserved

8 Load trap enable from bit 9

9 Enable full processing of traps, LUUOs, MUUOs, and page
fails

10-19 Reserved

20-35 Physical page number of EPT.

The actions performed by this instruction are as follows:
1. If bit 8 is a 1, perform the following functions:
1. If bit 9 is a 1, enabie full processing of traps, LUUOs,

MUUOs, and page fails by the monitor as described in the
appropriate sections below.

INTERNAL

WREBR

1/0 INSTRUCTIONS Page 2-22
2. IIfbit9g is a 0, change the prccessing of certain
processor conditions as follows:

1. Traps. Treat trap 1, 2, and 3 conditions as iif the
trap function word had specified "ignore trap'.

2. LUUOs. Process section O LUUOs in the normal manner.
Halt the machine on LUUOs executed in non-zero
sections.

3. MUUOs. Halt the machine.

4. Page fails. Process page fails that can be resolived
by the EBOX microcode alone in the normal manner.
Halt the machine on page fails that must be processed
by the monito-.

If bit 8 is a 0, do not change the state of trap enable
If bit 0 is a 1, perform the following functions:

1. If bitl is a), enable the use of the cache as described
above. |If bit 1 is a 0, disable the use of the cache.

If bit 0 is a 0, do not change the state of the cache enable.
If bit L4 is a 1, perform the following functions:

1. Enable the use of the paging hardware for
virtual-to-physical translations for memory references
and select the type of paging to be used.

2. If bit 3 is a1, select TOPS-20 style paging. {f bit 3
is a 0, select TOPS-10 stvle paging.

NOTE

The type of paging referred to as '"TOPS-10
paging" is really that implemented by the KI10
and used by the TOPS-10 monitor prior to the 7.02
release. It is used here for historical reasons
only.

If bit b is a 0O, disable paging so that all memory references
are to physical locations unpaged. Note that disabling the
pager does not mean there can be no page failures, as these
can be caused by ccnditions that have nothing to do with
paging.

INTERNAL 1/0 INSTRUCTIONS Page 2-23
WREBR

CAUTION
Paging can be disabled only for kernel mode. A user

mode process will not run correctly unless the pager
is turned on.

L. Load bits 20-35 into the Exec Base Register.

5. Clear the internal cache of paging information kept by the
EBOX and re-initialize it with the first super section
pointer from the EPT and UPT (offset 520).

6. Invalidate all entries in the MBOX translation buffer,
ignoring the state of the '"'keep-me' bits.

7. Flush the IBOX and restart it.

KL/KS compatibility

The KL set exec mode context with the IMMEDIATE MODE instruction CONO

PAG,E. The KS set exec mode context with the IMMEDIATE MODE
instruction WREBR E.

INTERNAL 1/0
RDEBR

This instruc

INSTRUCTIONS Page 2-24
RDEBR
Fm———————- s s e e et +
! 701 ! 05 1@! XR ! Y !
HFommmmm o et e e +

tion stores the exec mode context in the word addressed by

E. The format of the word is:

0

1

10-19

20-35

KL/KS compat

The KL and K

Returned as zero

The use of cache is enabled for all references. This bit
being set does not imply that all four cache quadrants are
in use. It simply means that the cache will be used for
any quadrants that are on.

Reserved

TOPS-20 paging (See the chapter on Paging)

Pager enable.

Reserved

Returned as O

Full processing of traps, LUUOs, MUUOs, and page fails s
enabled

Reserved

Physical page number of EPT.

ibility

S returned the exec mode context with CONI PAG,E and RDEBR

E, respectively. The KC returns the same fields as the KL CON| PAG,E

but the bit
the EPT page

positions have changed because of the increased size of
number .

INTERNAL 1/0 INSTRUCTIONS Page 2-25
WRIOP

WR 0P
Fmmmm et e +
t 701 ! 06 1@! XR ! Y !
+mmmmm—— s s et +

This instruction loads the |/0 page base register from the word
addressed by E. The format of the word is:

0-19 Reserved
20-35 Physical page number of the 1/0 page

The 1/0 page base register is set to physical page 1 by the console
under the following conditions:

1. TBS

See the chapter on Special System Pagers for a description of the
laycut of this page.

KL/KS compatibility

No functional equivalent on the KL or KS.

INTERNAL 1/0 INSTRUCTIONS

Page 2-26
RO10P

RDIOP
Fommmmmm e s o T -+
! 701 ! 07 l@! XR ! Y !
e B e T e +

This instruction returns the value of the 1/0 page base register and
stores it in the word addressed by E. The format of the word is:

0-19 Reserved

20-35 Physical page number of the |/0 page

KL/KS compatibility

No functional equivalent on the KL or KS.

INTERNAL 1/0 INSTRUCTIONS Page 2-27
SWPI1A

SWPIA
T e b e T +
! 701 ! 11 t@! XR ! Y !
D e e TP +

Sweep Cache, Invalidate All Pages

Clear the valid and written state in all cache entries. This
instruction blocks further CPU activity wunti! the cache sweep is
complete. Upon completion of the operation, the IBOX is flushed and
restarted. The indirect, index register, and Y fields of this
instruction are not used and are reserved.

KL/KS compatibility

The KS had no cache sweep instructions. The KL allowed other requests
to happen in parallel with the sweep, setting sweep busy and sweep
done in the APR status to indicate the sweep-in-progress interval.

INTERNAL /0 INSTRUCTIONS Page 2-28
SWPUA

SWPUA
it e s e e +
! 701 1 13 1@! XR ! Y !
e R e e Sttt T +

Sweep Cache, Unload All Pages

Write intoc storage all cache entries that are in the written state.
Invalidate all entries (i.e. clear valid and written state). This
instruction blocks further CPU activity until the cache sweep is
complete. The indirect, index register, and Y fields of this
instruction are not used and are reserved.

KL/KS compatibility

The KS had no cache sweep instructions. The KL allowed other requests
to happen in parallel with the sweep, setting sweep busy and sweep
done in the APR status to indicate the sweep-in-progress interval.

INTERNAL 1/0 INSTRUCTIONS

WRSPB

WRSPB
o e -+
! 702 ! 10 !t@! XR ! Y
+ommmm R e +

Write SPT Base Register

Page 2-29

This instruction loads the SPT base register from the word addressed
by E. The word format is:

Reserved

Physical address of the start of the SPT.

BASE REGISTER FORMAT

The SPT base register is loaded with

a

physical word address. The address need
not be on a page boundary and may be any

location in physical memory. There

is

no range check on SPT offsets. The
monitor is assumed to always put correct

data into the SPT base register.

KL/KS compatibility

Functionally identical to the KS WRSPB E instruction.

SPT address

in AC block 6.

The K. kept the

INTERNAL 1/0 INSTRUCTIONS
RDSPB

RDSPB
e s et +
! 702 ! 00 I@! XR ! Y
it STt TP +

Read SPT Base Register

Page 2-30

This instruction stores the SPT base register in the word addressed by

E. The format of the word is:
0-10 Reserved

11-35 Physical addresss of the SPT

KL/KS compatibility

Functionally identical to the KS RDSPB E
address of the SPT in AC block 6.

instruction.

The KL kept the

INTERNAL /0 INSTRUCTIONS

WRCSB

WRCSB
e i st kT +
! 702 ! 11 1@! XR ! Y !
Fmmm e e s Tt e T R +

Write Core Status Table Base Register

This instruction loads the CST base register from the
by E. The word format is:

Reserved

Physical address of the start of the CST.
is 2zero, the microcode will make no CST ref

BASE REGISTER FORMAT

The CST base register is loaded with a
physical word address. The address need
not be on a page boundary and may be
anyplace in physical memory. There is
no range check on CST offsets. The
monitor is assumed to always put correct
data into the CST base register.

KL/KS compatibility

Functionally identical to the KS WRCSB E instruction.

CST address

in AC block 6.

Page 2-31

word addressed

If this address
erences.

The KL kept the

INTERNAL 1/0 INSTRUCTIONS
RDCSB

RDCSB
o e +
! 702 ! 01 1@! XR ! Y
R T +

Read Core Status Table Base Register

Page 2-32

This instruction stores the CST base register in the word addressed by

E. The format of the word is:
0-10 Reserved

11-35 Physical addresss of the CST

KL/KS compatibility

Functionalily identical to the KS RDCSB E
address of the CST in AC block 6.

instruction.

The KL kept the

INTERNAL 1/0 INSTRUCTIONS

Page 2-33
WRPUR

WRPUR
Hommmmm e e T RS +
! 702 ! 12 1@! XR | Y !
Fommmmm e ittt TP +

Write Process Use Register

This instruction loads the process use register from the word
addressed by E. The microcode updates a CST entry by ANDing the CST

mask word (see below) with the entry and ORing the process use
register into the entry.

See the chapter on paging for -the format of the process use register.

KL/KS compatibility

Functionally identical to the KS WRPUR E instruction. The KL kept the
process use register in AC block 6.

INTERNAL /0 INSTRUCTIONS

Page 2-34
RDPUR
RDPUR
- e e e T PR +
! 702 ! 02 !@! XR ! Y !
s e s e S +

Read Process Use Register

This instruction stores the process use register in the word addressed
by E.

KL/KS compatibility

Functionally identical to the KS RDPUR E instruction.

The KL kept the
process use register in AC block 6.

INTERNAL 1/0 INSTRUCTIONS

Page 2-35
WRCSTM
WRCSTM
o Rt e et ittt +
! 702 1 13 l@! XR ! Y !
Fomm—mm— e e R ettt +

Write CST Mask Register

This instruction loads the CST mask register from the word addressed
by E. The microcode updates a CST entry by ANDing the CST mask word
with the entry and ORing the process use register into the entry.

See the chapter on paging for the format of the CST mask register.

KL/KS compatibility

Functionally identical to the KS WRCSTM E instruction. The KL kept
the CST mask register in AC block 6.

INTERNAL 1/0 INSTRUCTIONS Page 2-36
RDCSTM :

RDCSTM
Fmmmm————- e i s e +
! 702 ! 03 !@! XR ! Y !
o m—————— e s i T TSRS +

Read CST Mask Register

This instruction stores the CST mask register in the word addressed by
E.

KL/KS compatibility

Functionally identical to the KS RDCSTM E instruction. The KL kept
the CST mask register in AC block 6.

INTERNAL 1/0 INSTRUCTIONS Page 2-37
WRTMB

WRTMB
Fommmm e s i ST T T +
! 702 P s 1@l XR ! Y !
e ——— i o T e e +

Write Time Base Controls

This immediate instruction decodes its effective address to contro!
the time base and the inverval timer. The effective address bits are
used as follows:

18 Load Pl assignment for interval timer from bits 33-35.
19 Load time base controls from bits 20 and 23.

20 Clear time base.

21-22 Reserved

23 Turn on time base.

25—32 Reserved

33-35 PIA for interval timer.

The actions of this instruction are as follows:
1. If bit 18 is a 1, load the interval timer Pl assignment from
bits 33-35. iIf bit 18 is a 0, do not change the interval
timer PIA.

2. If bit 19 is a 1, perform the following operations:

1. If bit 23 is a 1, turn on the time base. If bit 23 is a
0, turn off the time base.

2. If bit 20 is a 1, clear the time base. If bit 20 is a O,
it is ignored.

If bit 19 is a 0O, do not change the state of the time base.

INTERNAL 1/0 INSTRUCTIONS Page 2-38
WRTMB

KL/KS compatibility
The KL CONO MTR, instruction controls the time base and the interval

timer PIA in a manner very analogous to this instruction. The KS had
no equivalent instruction.

INTERNAL 1/0 INSTRUCTIONS A Page 2-39
ROTMB

RDTMB
i e T e T T +
! 702 ! o4 !@! XR ! Y !
et i S e +

Read Time Base Enables

This instruction reads the status of the time base and the interrupt

level assigned to the interval timer into the word addressed by E.
The status is as follows:

0-22 Resgrved

23 Time base on.

24-32 Reserved

33-35 PIA for interval timer.

KL/KS compatibility

The KL CONI MTR, instruction returned the time base enable and
interval timer PIA in a manner very analogous to this instruction.
The KS had no direct equivalent.

INTERNAL 1/0 INSTRUCTIONS Page 2-LO
RDTIME

RDT I ME
+ommmm e e s s e +
! 702 1 06 t@! XR ! Y !
Fommm - R s e LT T +

Read Time Base Value

This instruction updates the time base double word from the hardware
counter and returns the updated double word in the words addressed by
E and E+1. The double word is double precision integer in !
microsecond units with the following format:

High order part of count !

101 Low order part of count !

KL/KS compatibility

The KL RDTIME instruction also updated the time base double word kept

in EPT locations 510 and 511. The KS RDTIM instruction returned the
double word in the same manner as this instruction.

INTERNAL 1/0 INSTRUCTICNS Page 2-41
RDACT

RDACT
i it S S e +
! 702 1 17 1@! XR ! Y !
Fomm— e i S +

Read accounting information
This instruction reads the status of the user runtime meter into the
word addressed by E. The status is as follows:
0-18 Reserved

] The user runtime meter has been enabled to count during
exec Pl time.

20 The user runtime meter has been enabled to count during
exec non-Pl time.

21 User runtime meter on.

22-35 Reserved

KL/KS compatibility

The KL CONI MTR, instruction returned the accounting meter controls in

a manner very analcgous to this instruction. The KS had no direct
eyuivalent.

INTERNAL 1/0 INSTRUCTIONS ‘ Page 2-L42
WRACT

WRACT
- D et s T et T +
! 702 1 16 1@! XR ! Y !
i it et ST S +

Write accounting information

This immediate instruction decodes its effective address to control
the user runtime meter. The effective address bits are used as
follows:

18 Load user -untime meter controls from bits 19-21.

19 Enable user runtime meter count during exec Pl time.

20 Enable user runtime meter count during exec non-Pl time.
21 7 Turn on user runtime meter

22-35 Reserved

The actions of this instruction are as follows:
1. If bit 18 is a 1, perform the following operations:

1. If bit 19 is a 1, enable the user runtime meter to count
duriing exec Pl processing. |If bit 19 is a 0, disable the
user runtime meter from counting during exec Pl
processing.

2. If bit 20 is a 1, enable the user runtime meter to count
during exec non-Pl processing. If bit 20 is a 0, disable
the user runtime meter from counting during non-Pl
processing.

3. If bit 21 is a 1, turn on the user runtime meter. If bit
21 is a 0, turn off the user runtime meter.

If bit 18 is a 0, do not change the state of the user runtime
meter.

INTERNAL 1/0 INSTRUCTIONS Page 2-43

WRACT

KL/KS compatibility

The KL CONO MTR, instruction controls the accounting meters in a
manner very analogous to this instruction. The KS had no equivalent

instruction.

INTERNAL 1/0 INSTRUCTIONS

Page 2-Li
RDURTM

RDURTM
Fommmmm e e s Sttt T TP +
! 702 ! 07 '@! XR ! Y !
Fommmmm - e it S +

Read User Runtime Meter

This instruction updates the user runtime meter double word from the
hardware counter and returns the updated double word in the words
addressed by E and E+1. The double word is double precision

integer
in 1 micr~second units with the following format:

High order part of count in microseconds !

KL/KS compatibility

The KL and KS had no comparable instructions.

INTERNAL 1/0 INSTRUCTIONS Page 2-45
WRINT

WRINT
dommmmme e R DT T +
! 702 ! 15 1@! XR ! Y !
+ommmmm - e e e -+

Write Interval Timer

This immediate mode instruction decodes its effective address to setup
the interval timer. The effective address bits are used as follows:

18 Clear interval timer.
19-20 Reserved

21 Turn interval timer on.
22 Clear interval flags.
23 Reserved

24-35 Interval period.

A 1 in bit 18 clears the counter and can be given simul taneously with
a 1 or 0 in bit 21 to turn the counter on or off. A 1 in bit 22
clears both Iirterval Done and Interval Overflow. |If the counter is
on, Interval Done will set when the count reaches the value specified
by bits 24-35.

KL/KS compatibility

This instruction is functionally equivalent to the KL CONO TIM,
instruction.

INTERNAL 1/0 INSTRUCTIONS Page 2-46
RDINT

RDINT
Fmm—————— e i S e -+
! 702 ! 05 !@! XR ! Y !
Hommmmmam i S i ST T, -+

Read The Interval Register

Read the status of the interval timer into the word addressed by E.
The status is as follows:

0-5 Reserved

6-17 interval count (current contents of the counter).
18-20 Reserved

21 Interval timer on.

22 Interval timer done (causes interrupt).

23 Overflow (implies bit 22}.

24-35 Interval period.

Bits 22 and 23 are the counter flags; note that interval timer done
can be set alone, but a | in bit 23 implies a 1 in bit 22 as well.
Bits 24-35 are the period supplied by WRINT, and bits 6-17 are the
current contents of the counter.

KL/KS compatibility

This instruction is functionally equivalent to the KL CONI TIAM,
instruction

CHAPTER 3

EXTERNAL {/0 INSTRUCTIONS

The external (/0 instructions on the KC10O allow a program to
communicate with the |[|/0 ports and the console. In particular they
will manipulate the 1/0 Command/Response Queues and Port Doorbell
mechanism. See the "1/0 Bus Spec." in the 2080 EFS for a complete
description of the Queue and Doorbell features. The interface to the
KC10 ports is primarily data areas called "mailboxes'" and a doorbell.
It is the doorbell mechanism that the following instructions
manipulate. The Command/Response Queues will be covered by the queue
instructions in the next section. In general the BUSY and RING
signals work as follows: The CPU can assert RING on the 1/0 Bus if
BUSY is clear. Upon setting RING and a port number, the CPU must
observe BUSY setting and then clearing before it can assume that the
1/0 Port has seen its command. The following z instructions (RNGB and
RGNBW) will be skipping instructions if no bus timeouts cccur. The
Console does not use this protoco! and therefore RING and BUSY signals
are ignored if any console functions are requested by RNGB or RNGBW.

EXTERNAL 1/0 INSTRUCTIONS Page 3-2
RNGB

RNGB
oo R e e LR -+
! 710 ! 00 !@! XR ! Y !
Hommm - S S i St R +

Ring Doorbeli

This immediate mode instruction will assert a port or console number
on the KC10 |/0 bus and set RING (''doorbell'"). If no bus timeout
errors occur the next instruction is taken from PC+2 (ie. the

instruction skips). The EA of this instruction is the port number and
is interpreted as follows:

18 Cause console to reload (electronic boot finger)

19 Initialize the port specified by bits 33-35 to the
power-up state.

20 Interrupt KC10 Console

21-32 Reserved

33-35 Port number (Must be zero if bit 18 or bit 20 is set)

Setting both bits 18 and 20 in a single instruction will
produce unspecified results.

NOTE

This instruction waits for BUSY to be
clear before asserting RING on the KC10
1/0 bus. |f for any reason BUSY does
not set or claar in 77ms, the CPU takes
the next instruction from PC+1 rather
than PC+2.

EXTERNAL 1/0 INSTRUCTIONS Page 3-3
RNGBW

RNGBW
Fm——————- i s e T T T TR —+
! 711 ! 00 !@! XR ! Y !
it B s S bttt T +

Ring Doorbell and Wait (for BUSY to clear).

This immediate mode instruction will assert a port or console number
on the KCIiO 1/0 bus and set RING (''doorbell'). The instruction then
waits for BUSY to clear. If no bus timeout errors occur the next
instruction is taken from PC+2 (ie. the instruction skips). The EA
of this instruction is the port number and is interpreted as follows:

18 Cause console to reload (electronic beot finger)

19 Initialize the port specified by bits 33-35 to the
power-up state.

20 Iinterrupt KC10 Console (does not wait for BUSY- same
function as RNGB)

21-32 Reserved
33-35 Port number (Must be zero if bit 18 or bit 20 is set)

Setting both bits 18 and 20 in a single instruction will
produce unspecified results.

NOTE

This instruction waits for BUSY to be
clear before asserting RING on the KC10
1/0 bus. |f for any reason BUSY does
not set or clear in ?7?7ms, the CPU takes
the next instruction from PC+1 rather
than PC+2.

EXTERNAL |/0 INSTRUCTIONS Page 3-4
SNBSY

SNBSY
tmm———————— Rt T e -+
! 712 ! 00 !@! XR ! Y !
+ommm - i S TP +

Skip if BUSY not set

This instruction skips to PC+2 if the BUSY line of the KC10 |/0 bus is
not set. When used in combination with the RNGB instruction, one can
achieve the identical effect of RNGBW as follows:

RNGB pn ; Assert RING to port "pn"
SNBSY ; Busy set?
JRST .1 ; Yes, wait.

No - proceed

CHAPTER &

OTHER 1/0 INSTRUCTIONS

This chapter describes other instructions with opcodes in the range

700-737 that cannot be considered as either internal 1/0 or external
1/0 instructions.

Like all instructions whose opcode is in the range 700-737, inclusive,
these instructions may only be executed in user mode if user 1/0 is
set. |f these instructions are executed in wuser mode without user

1/0, they execute as an MUUO, trapping through the user undefined 1/0
opcode dispatch in location 435 of the UPT.

OTHER 1/0 INSTRUCTIONS Page L4-2
UMOVE

UMOVE
- e e +
! 704 ! AC !@! XR ! Y !
e i s e +

User Move from Memory

Load previous context memory location addressed by E into AC.

NOTE

This is just a replacement instruction
for XCT L,[MOVE AC,MEMORY].

OTHER 1/0 INSTRUCTIONS

UMOVEM
UMOVEM
Fmmm - Homm e m m e e +
! 705 ! AC 1@! XR ! Y !
B B i s S et T TP +

User Move to Memory

Stors Al into previous context memory location addressed by E.

NOTE

This is just a replacement instruction
for XCT 4,[MOVEM AC,MEMORY].

Page 4-3

OTHER 1/0 INSTRUCTIONS Page L-4
PMOVE

PMOVL
o i it +
! 706 ! AC 1@! XR ! Y !
Fommm - i e e e +

Physical Move from Memory

Perform a physical EA-calc using the word addressed by E, then load
the physical memory location addressed by the result of the EA-calc
into the AC.

See the chapter on queues and queue manipulation instructions for a
discussion of the physical EA-calc algorithm.

NOTE

Effective addresses 0-17 will reference
physical memory 0-17, not the ACs.

No CST update will be performed as the
result of this instruction

OTHER 1/0 INSTRUCTIONS Page L-5
PMOVEM

PMOVEM
ettt R e +
! 707 ! AC l@! XR ! Y !
Foem e i i i TR +

Physical Move to Memory

Perform a physical EA-calc using the word addressed by E, then store
AC into the physical memory location addressed by the result of the
EA-calc.

See the chapter on queues and queue manipulation instructions for a
discussion of the physical EA-calc algorithm.

NOTE

Effective addresses 0-17 will reference
physical memory 0-17, not the ACs.

No CST update will be performed as the
result of this instruction.

CHAPTER 5

OTHER FUNCTIONAL CHANGES

This chapter describes non-1/0 instructions and other operations whose
functionaiity has changed from previous machines.

OTHER FUNCTIONAL CHANGES Page 5-2
MAP

MAP
R et e T s Sttt T PR +
! 257 ! AC !'@! XR ! Y !
Fmmmm e s e st S Lt T +

Map an address

If the pager is on and the processor is in executive or user i/0 mode,
this instruction reads the hardware page table location corresponding
to the effective address. |If the page table contains a valid mapping
for that page, the mapping is returned in the format described below.
If the page tabie does not contain a valid mapping for the page, the
EBOX microcode does a page refill pointer chase to compute the mapping
and returns that in the format described below. The result of the
mapping is returned in the AC.

This instruction does not change the hardware page table mapping for
the page specified by the effective address calculation.

This instruction cannot be performed in a user program unless user (/0
is set. Instead of mapping the address, it executes as an MUUO,
dispatching through the user undefined |/0 opcode dispatch in location
L35 of the UPT. |If the pager is off, the results of the instruction
are undefined.

The format returned by the MAP instruction in the AC is as follows:

!

THIKI?2IVICIWIM! 2IKIUIT! Physical !

Iprit21LiutTID!t2121518B! Address !

! 1

012345678911 3

01 5

The fields are as follows:

0 This bit is 2 one if the instruction failed to generate a

valid mapping because of a hardware error. 1In this case, -
bits 1-4 contain a failure code instead o° znhe bits
described below. These codes are the same as those
returned for a page fail with bit O set in the page fail
word.

1 See the description of bit 8 below.

2 The state of this bit is undefined.

OTHER FUNCTIONAL CHANGES Page 5-3

MAP

10

11-35

If this bit is a one, the rest of the information
returned, including the physical address is valid. |If
this bit is a zero, there is no valid mapping for the
virtual address and bits 18-35 contain the reason the
microcode couldn't find a valid mapping. This information
has the same format as bits 18-35 of the page fail word
that would be returned if the specified page was
referenced.

If this bit is a one, the next virtual reference to the
page being mapped will cause the EBOX microcode to perform
a CST update operation for the page.

If this bit is a one, the page being mapped is writable.
I1f this bit is a zero, the page being mapped is write
protected.

1f this bit is a one, the page being mapped has been
modified since being brought into memory, i.e., the page
is newer than any backup copy. |If this bit is a zero, the
page has not been modified since being brought into
memory.

The state of this bit is undefined.

If bit 1 or this bit is a one, the hardware
virtual-to-physical mapping for the page being mapped will
not be invalidated on a conditional pager clear. If both
bit 1 and this bit are 2zeros, the mapping will be
invalidated on all pager clears.

If this bit is a one, the mapping for this page is in user
space. If this bit is a zero, the mapping for this page
is in executive space.

If this bit is a 2ero, the microcode found valid
information in the hardware page table for this mapping.
If this bit is a one, the microcode performed a pointer
trace to compute the mapping.

The physical address ccrresponding to the virtual address
of the effective address calculation.

KL/KS compatibility

The KL and KS returred different bits describing the mapping.

bTHER FUNCTIONAL CHANGES Page 5-4
JRST :

JRST
+mmmmme i o S S +
! 254 ' F 1@ XR ! Y !
Fmmmmm e R s ettt ST TR SR +

Jump and Restore

The KC10 implementation of JRST is very similar to the KS10 and
extended KL10 implementation with several exceptions. The exceptions
are as follows:

F Mnemonic Function

05 XJRSTF Restore the program flags (as appropriate for the mode of
the processor) and PC from the flag-PC double word in
locations E and E+1 and continue performing instructions
in normal sequence beginning at the location then
addressed by PC. I|f the instruction is executed in exec
mode, also restore CAB, PAB, and PCS from the first word
of the flag-PC double word.

06 XJEN Restore the level on which the highest priority interrupt
is currently being held and then perform an XJRSTF.

07 XPCw Save the program flags, CAB, PAB, PCS, and PC in a flag PC
double word in locations E and E+1. Then restore the
prograwm flags, CAB, and PC from the flag-PC double word in
locations E<42 ard E+3 and continue performing instructions
in norma! =:rence beginning at the location then
addressed by “!. Do not restore PAB or PCS from E+2.

10 Always execute as an MUUO through the |/0 undefined opcode
new PC words in the UPT.

12 JEN Always execute as an MUUO through the |/0 undefinred opcode
new PC words in tne UPT. Since the KC10 aiways stores
flag-PC double words in XJEN format, there is no need for
JEN.

14 SFM Save the program flags in bits 0-12 of the word addressed
by E and clear bits 13-17. |If the instruction is executed
in exec mode, store CAB, PAB, and PCS in bits 18-20,
21-23, and 24-35, respectively, of the same word. |f the
instruction is executed in ussr mode, clear bits 18-35.
This instruction is legal in any section.

15 XJRST Restore the PC from bits 6-35 of the word addressed by E
and continus performing instructions in normal sequence
beginning at the location then addressed by PC. Do not

OTHER FUNCTIONAL CHANGES Page 5-5
JRST

change the program flags, CAB, PAB, or PCS.

For each of the 16 possible JRST functions, the table given below
indicates where each form of the instruction is legal. The meanings

of the symbols used to define the legal domains of the functions are
as follows:

Yes Legal everywhere

y4 Legal only in section zero

K Legal only in kernel (executive) mode

No Legal nowhere

-H Legal where indicated by first symbol but causes a halt

If the JRST function is illegal in the mode or context in which it s

executed, the instruction traps as an MUUO through the |/0 undefined
opcode new PC words in the UPT.

Function Mnemonic Legal domain

JRST O, JRST Yes
JRST 1, PORTAL Yes
JRST 2, JRSTF z

JRST 3, No
JRST &4, HALT K-H
JRST 5, XJRSTF Yes
JRST 6, XJEN K

JRST 7, XPCw K

JRST 10, No
JRST 11, No
JRST 12, No
JRST 13, No
JRST 14, SFM Yes
JRST 15, XJRST Yes
JRST 16, No

JRST 17, No

OTHER FUNCTIONAL CHANGES Page 5-6
XBLT

XBLT
pmm—————— e s e T, -+
! 123 ! AC !@! XR ! Y !
m——————- A e T T -+
Fm——————- e i —+
E0 ! 020 f 00 1@! xR ! Y !
it e i i T —+

Extended Block Transfer

Move a block of words from one area of memory to another. The block
size and the locations of the source and destination areas are defined
by the contents of a block of three accumulators as described in the
Hardware Reference Manual. This instruction may be exectued in both
section zero and non-zero sections and may be used to transfer data
between any arbitrary sections.

KL/KS compatibility

The XL and KS exectued this instruction as an MUUO if it was exectuted
in section zero.

OTHER‘FUNCTIONAL CHANGES Page 5-7
PXCT

PXCT
Hmm——————- D e e e Ea e T -+
! 256 ' F 1@ XR ! Y !
et e e TP +

Previous Context Execute

This instruction executes another instruction with certain specified
references in the previous context. The coperations performed in the
previous context are determined by the bits in the AC field. The KCI10
changes the legal bits that may be set for PXCTed stack and MOVSLJ
instructions. The following table gives the only legal combinations
for each type:

Instructions 9 10 11 12 References

Stack 0O 1 0 O Memory data
1 0 O E, memory data

—

MOVSLJ 0O 60 0 1 Destination
0O 0 1 O Source
0

o 1 1 Source, destination

CHAPTER 6

SPECIAL DEBUGGING INSTRUCTIONS

This chapter describes several instructions that have been added to
the instruction set to aid in debugging the hardware and microcode.

They will not appear in the final production microcode and are
documented here only for completeness.

SPECI{AL DEBUGGING INSTRUCTIONS Page 6-2
RDTRAX

RDTRAX
+mmm— - B e s s S TR +
! 732 ! AC !@! XR ! Y 1
ittt B e s et R +

Read tracks buffer information

SPECIAL DEBUGGING INSTRUCTIONS Page 6-3
WRTRAX

WRTRAX
e e S Tt R +
! 733 ! AC 1@! XR ! Y 1
o ———- e S T T TR +

Write tracks buffer address/enable

This instruction sets the tracks buffer address, length, and enables
or disables the microcode tracks processing. The word addrescsed by E

controls the operation of the instructicn and has the following
format:

0 Enable the microcode tracks processing. When this feature
is enabled, the microcode stores the PC of each
instruction executed in a circular buffer in physical

memory. If this bit is off, the tracks processing is
disabled.
1-17 Two's complement length of the tracks buffer in words.

Note that if tracks processing is being enabled, this
makes the entire left half of this word be the two's
complement length of the buffer.

18-35 Physical page number of the start of the buffer. The
microcode will begin storing PCs starting at this physical
page and continuing for the length of the buffer. When
the buffer limit is reached, the microcode will reset its
pointers and start at the beginning of the buffer again.

NOTE

Enabling tracks nrocessing will
s.nificantly degrade the speed of the
machine. Besides the overhead of one
memory write for each instruction
executed, the implementation of this
feature also causes the [IBOX to be
flushed at the end of every instruction,
thereby completely defeating the
pipeline mechanism.

SPECIAL DEBUGGING INSTRUCTIONS Page 6-4
READTS

READTB
+ommmmmee— B s o b Rt LR S PP +
! 734 ! AC !@! XR ! Y !
Fmmm————- R s e L L P P e +

Read translation buffer entry

This instruction allows the monitor to directly read an MBOX
translation buffer entry. The word addressed by E contains the index
into the translation buffer and may be thought of as a virtual
address. In addition to the normal 30 bit VMA in bits 6-35 of the
word, bit 5 is used to specify whether the reference is for exec
(bit=0) or user (bit=1) translation. Bits 16-26 are the index into
the translation buffer, but bit 16 is complemented if bit 5 is on. To
simply read a specified translation buffer location, bit 5 should be
zero and bits 16-26 should give the desired index into the translation
buffer. Bits 5-15 only need be specified if the read is also to dc a
valid translation check as indicated by bit 7 returned in the AC (see
below) . This instruction does not modify the contents of the
translation buffer entry (except as the possible result of a
transliation buffer refill that occurs as the result of the instruction
or data fetch). The translation buffer entry is returned in the AC
and has the following format:

0 Hardware error. |If this bit is on, the translation buffer
access caused a hardware error.

1 TB KEEP. |If this bit is on, the translation buffer entry
has the "keep" bit set.

2 Undef ined.

3 TB VALID. If this bit is on, the transliation buffer entry

contains a valid translation.

L TB CST UPDATE. |If this bit is on, the translation buffer
“'CST update needed" bit is set.

5 TB WRITABLE. If this bit is on, the translation buffer
"'writable'" bit is on.

6 TB MODIFIED. |If this bit is on, the translation buffer
"modified" bit is on.

7 -VALID TRANSL. |If this bit is on, there was no valid
translation for the requesied address. This bit should
normally be ignored since the READTB instruction specifies
an index into the translation buffer and not a full
address.

SPECIAL DEBUGGING INSTRUCTIONS Page 6-5

READTB

10-19

20-35

Returned as zero.

TB USER. If this bit is on, the mapping in the entry is
for a wuser page. If this bit is off, the mapping is for
an exec page.

TB DIR<6:15> This field contains the translation buffer
directory entry for the mapping. This is bits 6-15 of the
VMA for the mapping (bits 16-26 are implicitly specified
by the offset in the translation buffer).

TB PPN<11:26> This field contains bits 11-26 of the
physical address for the mapping.

SPECIAL DEBUGGING INSTRUCTIONS Page 6‘6'
WRITTB

ARITTB
o ——— o mm e mm e +
I 735 ! AC !@' XR ! Y !
e BT T +

Write translation buffer entry

This instruction allows the monitor to directiy write an MBOX
translation buffer entry. The word addressed by E contains the index
into the translation buffer and may be thought of as a virtual
address. In addition to the normal 30 bit VMA in bits 6-35 of the
word, bit 5 is used to specify whether the reference is for exec
(bit=0) or wuser (bit=1) translation. Bits 16-26 are the index into
the translation buffer, but bit 16 is complemented if bit 5 is on.
The data to be written into the translation buffer entry is taken from
the AC specified by the instruction and is written into the
translation buffer entry specified by bits 5 and 16-26 of the VMA.
The format of the data is as follows:

0-2 Ignored.

3 TB VALID. |If this bit is on, the translation buffer will
contain a valid translation.

L TB CST UPDATE. |If this bit is on, the translation buffer
"CST update needed' bit will be set.

5 TB WRITABLE. |If this bit is on, the translation buffer
“writable'" bit will be set.

6 TB MODIFIED. If this bit is on, the translation buffer
"modified" bit will be set.

7 ignored.

8 TB KEEP. |If this bit is on, the translation buffer keep

bit will be set.

9 TB USER. |If this bit is on, the mapping in the entry is
for a wuser page. |If this bit is off, the mapping is for
an exec page.

10-19 TB DIR<6:15> This field contains the translation buffer
directory entry for the mapping. This is bits 6-15 of the
VMA for the mapping (bits 16-26 are implicitly specified
by the offset in the translation buffer).

SPECiAL DEBUGGING INSTRUCTIONS Page 6-7
WRITTB

20-35 TB PPN<11:26> This field contains bits 11-26 of the
physical address for the mapping.

SPECIAL DEBUGGING INSTRUCTIONS Page €-8
DUMPTB

DUMPTB
i s s e et +
! 736 ! AC 1@! XR ! Y !
Fomm e e e e e +

Dump translation buffer

This instruction allows the monitor to dump the entire MBOX
translation buffer into 2048 contiguous physicazl memory locations. AC
contains the physical memory address of the first transliation buffer
entry to be stored. The address need not be on a page boiundary but
the location must be contiguous in physical memory. Etach entry dumped
has the format described for the READTB instruction described above.

The indirect, index and Y fields of the instruction are not used and
are ignored.

CHAPTER 7

QUEUES AND QUEUE MANIPULATION INSTRUCTIONZ

7.1 INTRODUCT!ON

The KC10 provides instructions to manipulate queues. These
instructions are available in EXEC mode only, and are intended to
allow sharing of queues among any combination of the following:

1. One or more processes running in the CPU.

2. One or more ports.

7.2 DATA STRUCTURES
7.2.1 The Queues

Queues that are manipulated by these instructions must

1. Be doubly-linked.

2. Contain a forward pointer in offset O of each entry.
3. Contain a backward pointer in offset | of each entry.
L. Be pointed to by a pair of header words.

5. Be referenced by physical addresses.

QUEUES AND QUEUE MANIPULATION INSTRUCTIONS Page 7-2
DATA STRUCTURES
7.2.2 Formats
A queue header consists of a pair of words. O0Offset O points to the
first entry in the queue; offset 1 points to the last entry. If a

queue is empty, both header words point to offset O.

The format of the header words is as follows:

01 10 11 35
e T +

H: it Rsvd ! FLINK !
e e +

H+1: ! Rsavd ! BLINK !
et e T TSR +

(] 10 11 35

The format of word H is as follows:

0 The secondary queue interlock bit
1-10 Reserved
11-35 Physical address of first entry in queue (FLINK)

The format of word H+1 is as follows:
0-10 Reserved

11-35 Physical address of last entry in queue (BLINK)

Each entry contains forward and tackward pointers in the following
format:

01 10 1 35
B T T PSR +
Offset O ! Rsvd ! FLINK !
e e it AP SRS RS +
Offset 1 ! Rsvd ! BL I NK !
e T T e PSS R +
0 10 11 35

The format of the first link word in a queue entry is as follows:
9-10 Reserved

11-35 Physical address of next entry in queue (FLINK)

The format of the second link word in a queue entry is as follows:

0-1C Reserved

QUF’""S AND QUEUE MANIPULATION INSTRUCTIONS Page 7-3
DA1n STRULTURES

11-35 Physical address of previous entry in queue (BLINK)

7.3 OPERATIONS

The instructions provide four functions:
1. Insertion of an entry at the head of a queue.
2. Insertion of an entry at the tail of a queue.
3. Removal of an entry from the head of a queue.

4. Removal of an entry from the tail of a queue.

7.-3.1 Insertion

An empty queue is specified by its header at address H:

0 35
e m et rrr e, e e, e e e — e ——————————— - —— <+

H: ! H !
o mm e e ememmcmmm e m e —————— -+

H+1: ! H !
e +

If an entry at address B is inserted into an empty queue (at either
the head or tail), the queue is as shown below:

0 35

it it T T ey Sy RSy Ry M +

H: ! B !
e e e e e e o e o e o e e e -t
H+1: | B !
Frm e e e cem e me e e e ——————— -+

0 35
Fem e cm e e ————— -+

B: ! H !
i ettt T T SRR -

B+1: ! H !

QUEUES AND QUEUE MANIPULATION INSTRUCTIONS

Page 7-L

OPERATI!IONS
If an entry at address A is inserted at the head of the queue, the
queue is show below:
0 35
e et e e +
H: ! A !
e et e e et +
H+1: ! B |
et et et e T +
0 35
B ettt T e L e P +
A: ! B !
e e L L T e ettt -+
A+l: ! H !
e et e ettt L L +
0 35
B e e et +
B: ! H !
e et et e B +
B+1: ! A t
e e e L e L -+

Finally, if an entry at address C is inserted at the tail,
appears as follows:

the quete

0 35
ittt TR R +

H: ! A !
et et T +

H+1: ! o !
el et e T L S +

0 35
e e i Tttt T I PSR +

A: ! B !
et T T +

A+1: ! N 1
e c e -+

0 35
i T T +

B: | o !
o e e e e +

B+1: | A |

QUEUES AND QUEUE MANIPULATION INSTRUCTIONS Page 7-5
OPERAT I ONS

0 35
Rt et L T R, +

C: ! H !
B et e TR R +

C+l1: ! B !
B it T TP S SR +

7.3.2 Removal

In the example above with the queue containing entries A. B, and C,
the entry at address A can be removed giving:

0 35
b i T S RS +

H: ! B !
o e e e e o +

H+1: !} o !
R e e T +

0 35
oo e e e +

B: ! c !
R et T T . +

B+1: ! H !
R et e +

0 35
e +

C: ! H !
et e it T PP +

C+1: ! B !
B e T +

7.4 INTERLOCKS

Cooperating users of a queue can ensure that no conflicts occur by
using only the queue instructions when adding or deleting entries.

When executing a queue instruction, the CPU uses two interlocks.
First it uses the MBOX "read-interlock! function to read the queue
header. This function sets a hardware interlock that delays any
subsequent read-interlock request.

Bit 0 of the queue header provides a secondary interlock. |If the bit
is off, the queue is available, and the CPU uses the MBOX
"write-release" function to set the bit in the header word and release
the interlock. At this point, any pending read-interlock finds the
bit set in the header.

QUEUES AND QUEUE MANIPULATION INSTRUCTIONS Page 7-6
INTERLOCKS

Having obtained the secondary interlock, the CPU performs the queue
manipulation specified by the instruction. |t then performs another
read-interlock on the header, clears the secondary interiock, and
performs a write-release.

Alternatively, if the CPU finds the secondary interlock set, it
performs the write-release without changing the header and retries
<TBS> times in an attempt to get the secondary interlock. If all

retries are unsuccessful, control returns to the user.

The |/0 ports manipulate the queues in a similar way. This allows the
ports and CPU to cooperate in the use of |/0 queues.

I1f the queue instruction returns an interlock failure, it may be
necessary for the CPU to free the interlock. This action would
probably consist of reinitializing the port that has the interlock,
cleaning up the queue, and then clearing the secondary interlock bit
in th2 queue header so that the queue is accessible again. it is
assumed that there is a direct association between the queue that is
interlocked and a particular port.

7.5 THE INSTRUCTIONS

The queue instructions have common characteristics, as follows:

1. For insertions, the AC contains the physical address of word
2ero of an entry to be inserted. Bits 0-10 must be 0. For
removals, the physical address of word zero of the entry that
was removed is returned in the AC. |If the AC contains a
value in the range 0-17, it is interpreted as a physical
address, not an AC.

2. E addresses a physical EA-calc word that is evaluated to
produce a 25 bit physical address of the queue header. A
physical EA-calc word is very similar to 3 virtual EFIW word
and ‘ooks as follows:

! !
1oto! xR ! Y !
! !
012 56 35

Bits 2-5 of the physical EA-calc word are the index register
address and bits 6-35 are the physical memory address Y. The
physical effective address is Y alone if XR is zero. If XR
is non-zero, the contents of the index register are added to
Y to produce a 25 bit physical effective address. A physical
effective address in the range 0-17, inclusive, addresses
physical memory locations 0-17, not the ACs. Bits O and 1 of
the EA-calc word must be 2zero and the execution of the
instruction will generate a page fail if they are not.

QUEUES AND QUEUE MANIPULATION INSTRUCTIONS Page 7-7
THE INSTRUCTIONS

3. |If the secondary interlock is locked, the instruction returns
+1. Otherwise, it returns +z.

L. If the instruction skips, it may provide further information.
For insertion instructions, if the queue is empty before the
insertion, the instruction sets bit 0 of the AC provided.
For removal, if the queue is empty, the instruction sets bit
0 of the AC provided. Note that the instructions never clear
bit 0; software must clear it in order to test for an empty
queue.

5. No CST update is performed.

7.6 ERRORS

To be supplied

QUEUES AND QUEUE MANIPULATION INSTRUCTIONS Page 7-8
INSQH!

INSQH!
tommm tmmmmdmpom mmm e +
! 720 ! AC !@! XR ! Y !
B S T s T T +

Insert Entry into Queue at Head, interliocked

Perform a physical EA-calc using the word addressed by E, then insert
the entry specified by the physical address contained in AC into a
queue following the header specified by the result of the physical
EA-calc. If the entry inserted was the first one in the queue (i.e.
C(E) = C(E+1) after insertion), the instruction skips to PC +2 and
sets bit O in the AC.

{f the secondary interlock was unavailable (ie bit 0 of the queue
header = 1) the instruction returns to PC+l. The correct way to
insert an item at the head of a queue is as follows:

INSQH! AC,E
CALL INTERR sinterlock error
JUMPL AC,EMPTY(Q ;entry into empty queue

<entry intc non-empty queue>

See the section above for a discussion of the physical EA-calc
algorithm.

QUEUES AND QUEUE MANIPULATION INSTRUCTIONS Page 7-9
INSQT!I :

INSQT!
Fommmmmm - e el S +
! 721 ! AC !@! XR ! Y !
et e et SR L B P T +
Insert Entry in Queue at tail, Interlocked

Perform a physical EA-calc using the word addressed by E, then insert
the entry specified by the physical address contained in AC into a
queue preceding the header specified by the result of the physical
EA-calc. If the entry inserted was the first one in the queue (i.e.
C(E) = C(E+})) after insertion), the instruction skips to PC +2 and
sets Bit O in the AC.

If the secondary interlock was unavailable (ie bit O of the queue
header = 1) the instruction returns to PC+1. The correct way to
insert an item at the tail of a queue is as fcllows:

INSQTI AC,E
CALL INTERR s;interlock error
JUMPL AC,EMPYQ sentry into empty queue

<entry into non-empty queue>

See the section above for a discussion of the physical EA-calc
algorithm.

QUEUES AND QUEUE MANIPULATION INSTRUCTIONS Page 7-10
REMQH!

RCMQH |

o s s ST e +
! 722 ! AC 1@! XR ! Y !
Fommm - S o et S +

Remove Entry from Queue at Head, Interlocked

Perform a physical EA-calc using the wu. d addressed by E, then remove
the queue entry following the header specified by the result of the
physical EA-calc. The 25-bit physical address of the entry removed is
place in AC. |If there was no entry in the queue (i.e. C(E) = C(E+1)
before removal), the instruction skips to PC +2 and sets Bit O in the
AC. otherwise it skips to PC+2.

1f the secondary interlock was unavailable (ie bit O of the queue
header = 1) the instruction returns to PC+l. The correct way to
remove an item from the head of a queue is as follcws:

REMQH! AC,E
CALL INTERR sinterlock error
JUMPL AC,NOENTR sno entry found

<entry returned in AC>

See the section above for a discussion of the physical EA-calc
algorithm.

QUEUES AND QUEUE MANIPULATION INSTRUCTIONS Page 7-11
REMQTI

REMQT |
Fmmmm————— e i ra B +
! 723 ! AC l@! XR ! Y !
mm——————— B o ST TR +

Remove Entry from Queue at Tail, Interlocked

Perform a physical EA-calc using the word addressed by E, then remove
the queue entry preceding the header specified by the result of the
physical EA-calc. The 25-bit physica. address of the entry removed is
place in AC. |f there was no entry in the queue (i.e. C(E) = C(E+1)
before removal), the instruction skips to PC +2 and sets Bit O in the
AC. otherwise it skips to PC+2.

If the secondary interlock was unavailable (ie bit 0 of the queue
header = 1) the instruction returns to PC+1. The correct way to
remove an item from the tail of a queue is as follows:

REMQT!I AC,E
CALL INTERR sinterlock error
JUMPL AC,NOENTR sno entry found

<entry returned in AC>

See the section above for a discussion of the physical EA-calc
alqorithm.

CHAPTER 8

PAGING

8.1 INTRODUCTION

The KL10 implemented both TOPS-10 paging, which supported only one
section of virtual address space, and TOPS-20 paging, which supported
a maximum of 32 sections of virtual address space. The paging data
structures used on the KL10 imposed these limitations.

The KC10 will implement TOPS-10 paging, a TOPS-Z0 paging KL10
compatible sub-mode that will support a maximum of 32 sections, and a
new mode that supports L096 sections of virtual address space with
TOPS-20 paging. This will be done in such a manner as to allow
different processes using T0P7-20 paging to be in different paging
modes without having to implement a new 'mode" bit in the process
context variables.

8.2 PAGING HARDWARE AND MICROCODE

The KC10 translation buffer (or page table as it was known on the
KL10) is 2K words iong, 1 way associative, and has a 1 word block
size. In the KL10, tra~slation buffer refills for only TOPS-20 paging
were done by the EBOX microcode. |In the KC10, all translation buffer
refills are done by the EBOX microcode.

The KC10 transliation buffer is indexed by virtual address bits 16-26
with the state of bit 16 inverted in user space to separate user and
exec entries for the same page. Each translation buffer slot contains
virtual address bits 6-15 for the current entry, state bits (described
below), and the corresponding physical address bits 11-26 for the
current entry. The translation buffer state bits are as follows:

User Al in this bit indicates that this entry describes a user
page. A O indicates that this entry describes an exec
page.

valid Al in this bit indicates that this entry contains a valid

mapping. A O in this bit indicates that no valid mapping
exists in this transliation buffer entry and that an EBOX
translation buffer refill is required when a virtual

PAGING Page 8-2
PAGING HARDWARE AND MICROCODE

reference is made.

Modified A 1 in this bit indicates that the mapping describes a
page that has been modified since being brought into
memory, i.e., that this page is newer than any backup
copy . A O in this bit indicates that the mapping
describes a page that has not been modified since being
brought into memory. A write reference to a page whose
translation buffer '"modified" bit is O will cause an EBOX
page fail trap. The EBOX will update the CST entry for
that page to set the M bit (bit 35), set this bit in the
translation buffer entry, and restart the reference.

Writable A 1 in this bit indicates that the mapping describes a
page that is writable. A O in this bit indicates that the
mapping describes a page that is write-protected. A write
reference to a page whose translation buffer "writable"
bit is O will cause an EBOX page fail trap and a
corresponding page fail trap to the monitor.

Keep A 1 in this bit indicates that this mapping is not to be
invalidated if the translation buffer is cleared with a
WRCTX instruction that does not specify all pages (bit 3
in E of WRCTX). It has no effect on translation buffer
clears caused by WREBR or CLRPT instructions. A O in this
bit indicates that there are no restrictions in clearing
this entry on a translation buffer clear.

CST update A 1 in this bit causes an EBOX page fail trap on the next
virtual reference to the page described by this entry.
The EBOX performs a CST update operation and clears this
bit in the entry without clearing the rest of the mapping.
A SETCU instruction sets this bit in all entries in the
translation buffer and it is cleared by the EBOX for
individual entries when the CST update has been performed.

8.3 CACHING OF PAGING INFORMATION

Iin an attempt to make the virtual-to-physical translation performed by
the pager as fast as possible, the KC10 keeps a cache of several
levels of informaiion about recent translations. The most obvious
example of this :caching is the MBOX translation buffer which stores,
in hardware, up to 2K translations. |In addition to this, the EBOX
microcode caches some information about the last few translation
buffer refills that it performed in working storage inside the EBOX.
The EBOX cache is intended to make translation buffer refills as fast

as possible in the case where there is no valid translation in the
MBOX.

One aspect of this caching is that the monitor must tell the microcode
and bhardware when it changes a mapping. |n previous machines, this
simply meant that the monitor did a CLRPT instruction to clear a

PAGING Page 8-3
CACHING OF PAGING INFORMATION

translation for a single virtual page or did a CONO PAG, or DATAQ PAG,
to clear the entire translation buffer. The same concept holds for
tha KC10, although the invalidation also effects the EBOX caching.

The CLRPT, WRCTX, and WREBR instructions still clear the MBOX
translation buffer entry or entries as appropriate but they also clear
all or part of the EBOX information. This process should be

transparent to the monitor programmer; if the invalidation would work
on a KL10, it will work on a KC10 since the same algorithms apply.

There is one case, however, where the KCI10 is different. |In order to
optimi2ze the processing of KL compatible paging vs. KC paging, the
EBOX microcode caches the first super section pointers from EPT and
UPT locations 520. These two locations are read and cached anytime
the monitor does a WREBR irstruction or a WRCTX that changes the UBR,
and the information is NOT cleared on a CLRPT. The ONLY way to flush
this information is with another WREBR or WRCTX.

PAG ING ' Page 8-k
TOPS-20 PAGING

8.4 TOPS-20 PAGING
8.4.1 Pager Data Structure

The KL10's implementation of extended sections was to allow a maximum
of 32 section pointers to be placed in EPT/UPT locations 540-577. A
single page full of section pointers can only reference 512 sections.
8 pages of section pointers will be required to address 409¢é sections.
Since we are going to create some new data items and structure, let us
define som=2 terms:

1. A page ccntaining section pointers will be called a '"Section
Table" or ST. The pointer types found herein are identical
to those already found in EPT/UPT locs 540-577 on a KL1O.

2. A page containing map pointers will be calied a page map.

3. VMA<6:8> will be called the ''Super Section Number'" and will
be used to determine which of tne 8 Section Tables to look
in.

4. EPT/UPT locations 520-527 will be a "Super Section Table' or
SST, and will be indexed by VMA<6:8>.

£. The Super Section Table will contain new pointer types called
""'Super Section Poinc.ers' defined below.

8.4.2 Pointers

The microcode evaluates three kinds of pointers: super section
pointers, section pointers, and map pointers. These are used in super
section tables, section tables, and page maps, respectively. There
are 5 types of pointers distinguished by a type code in bits 0-2 of
the pointer; of these, three are access pointers that s!low access to
the given super section, section, or page and are identical in the
format of the left 8 bits. This format is as follows:

! !
1 Type! IW! 1 1Kl
| |
0 234567

Bits 3, 5, and 6 are ignored by the microcode and may be used by the
sof tware.

Every access painter of this type must have '"use' bits for the super
section, section, or page it represents. These bits, W and K,
indicate whather the super section, section, or page is writable, or
xept. Throughrut the evaluation procedure the microcode effectively
ands these bits from one pointer to the next, so the final result
requires that the given characteristics be specified at every step.

PAG ING Page 8-5
TOPS-20 PAGING

In other words, if W is 1 in the final pointer for the mapping, the
page is writable provided the super section and the section were also
specified as writable by the original super section and section
pointers, and ‘writable' has been specified by every other pointer
encountered along the way.

Note that the W bit is also ANDed with the W bit in the CST entry for
the final data paga to determine the state of the translation buffer W
state bit. Thir final operation is not done if the CST base address
is zero.

8.4.2.1 Super Section Pointers - Entries in the Super Section Tab'e
in EPT/UPT locations 520-527 are of the following five types. All
other types are reserved and will cause a page fail if the microcode
encounters them on a refill.

No access

! 0! Availabie to software !

023 35i

The super section is inaccescible.

Immediate
! !
! 11 IWl | IKIRsvd !Storage! Page number !
! N T T A {Medium ! of section table !
! !
023L5678 11 12 17 18 35

If bits 12-17 are zero, the section table is in the page specified by
bits 18-35. Otherwise, the page is not in memory.

Shared

| !
1 21 1wl | IK! Reserved ! SPT index !
! !

02345678 17 18 35

The page address of the section table is in the SPT at the offset
specified by bits 18-35

PAGING Page 8-6
TOPS-20 PAGING

Indirect
! !
! 31 IWwl 1 IK! !Super Section !SPT index containing adr of!
! P11 1111 Table Index !another super section table!
! !
023456789 17 18 35

In the SPT offset specified by bits 18-35 is the page address of a
secondary super section table. The next super section pointer to be
evaluated is in that table at the offset specified by bits 9-17.

KL compatible

1 !
' 4! Available to software !
! !
023 35

This type of pointer may ONLY appear in EPT/UPT offset 520 and
indicates that KL compatible paging is to be used. If VMA<6:12> is
zero, use VMA<13:17> as an index into the KL compatible section table
starting at EPT/UPT offset 540 and perform the pointer evaluation
exactly as a KL10 would. |f VMA<6:12> is non-zero or if this type of
pointer appears in a super section table entry other than tkat at
EPT/UPT offset 520, a page fail trap will occur. See the section on
page fail conditions for the page fail codes.

8.4.2.2 Section Pointers - Entries in a section table are of the
following four types. All other types are reserved and will cause a
page fail if the microcode encounters them on a refill.

No access

!
10! Available to software !
!

023 35

The section is inaccessible.

Immediate
1 !
! 11 IWl | 1KIRsvd [Storage! Page number !
! rrr 1Medium ! of page map !
1 !
02345678 11 12 17 18 35

If bits 12-17 are zero, the page map is in the page specified by bits

PAGING | Page 8-7
TOPS-20 PAGING

18-35. Otherwise, the page is not in memory.

Shared

' !
1 2! IW! ! IK! Reserved f SPT index !
! !

02345678 17 18 35

The page address of the page map is in the SPT at the offset specified
by bits 18-35

Indirect
! !
1 31 1w 1okt ! Section ! SPT index containing addr !
! 1111 11! Table Index ! of another section table |
! !
023456789 17 18 35

In the SPT offset specified “y bits 18-35 is the page address of a
secondary section table. 1l.e next section pointer to be evaluated is
in that table at the offset specified by bits 9-17.

8.4.2.3 Map Pointers - Entries in a page map are of these four types.
A1l other types are reserved and will cause a page fail if the
microcode encounters them on a refill.

No access

0! Available to software

023 35

The page is inaccessible.

Immediate
1 1
! 11 IW! ! IKIRsvd !Storage! Page number !
! rryrrr IMedium ! for mapping !
1 - 1
02345678 112 17 18 35

If bits 12-17 are zero, the physical page specified by bits 18-35
corresponds to the referenced virtual page. Otherwise, the page is
not in memory.

PAGING Page 8-8
TOPS-20 PAGING

Shared

! !
! 21 IWl ! Ik: Reserved ! SPT index t
! !
02345678 17 18 35

The page address for the mapping for the referenced virtual page is in
the SPT at the offset specified by bits 18-35.

Indirect

!

1 31 Wt 1 Ikt ! Page ! SPT index containing addr
! Pt 11t 1! Map Index ! of another page map

!

- e s sem

023456789 17 18 35

In the SPT offset specified by bits 18-35 is the page address of a
secondary page map. The next map pointer to be evaluated is in that
map at the offset specified by bits 9-17.

8.4.3 Page Address Words

The translation buffer refill process causes the microcode to follow
pointers in memory to finally determine the physical page number of
the data page that should be mapped by the virtual page that caused
the page fault. In order to do this, the microcode must evaluate 3
different kinds of pointer levels, super section, section, and page
pointers. At each level, the microcode must encounter a 'page address
word' that gives the page number of the page for the next level. For
the page pointer evaluatinn, the puge address word actually gives the
page number of the final data page. This page address word has the
following format:

i

!
| Storage ! Page number !
! medium ! of next page 1
! |

12 17 18 5

If bits 12-17 are zero, the storage medium is memory, i.e., bits 18-35
supply the number of a page that is in memory. If bits 12-17 are
nonzero, the page exists but is stored or some other medium and the
microcode traps to the monitor to bring the page into memory. The
page address word may be extracted from bits 12-35 of an immediate
pointer, or from bits 12-35 of the SPT for share or indirect pointers.
For indirect pointers, tue microcode will actually encounter more than
one pace address word.

PAGING Page 8-9
TOPS-20 PAGING

8.4L.4 Conversion Of Virtual To Physical Addresses
An address is converted to a physical page number as follows:

VMA<6:8> is used to index into the Super Section Table. One of the 5
pointer types (Super Section Pointers) can occur here: No Access,
immediate, shared, indirect, or KL compatible. Immediate, shared, or
indirect pointers vyield the physical page number of a Section Table
page. VMA<9:17> is used to index into the Section Table to obtain a
Section Pointer. Address translation then proceeds as on the KLIO
after the section pointer fetch. (Sez DECsystem10/20 Processor
Reference Manual, AA-H391A-TK for a complete description). The VMA
can be thought of as follows:

? 5689 17 3?

! 0 ISST! ST ! page no. ! word no. !
! !

8.L.5 Page Refill

8.4.5.1 CST Updates - The EBOX microcode performs an operation called
a "CST update' at several points during the processing of a page fault
detected by the MBOX translation buffer. The operations performed by
a CST update are as follows:

1. [f the CST base address is zero, skip the rest of the steps.

2. Read the CST entry for the physical page in question from the
word addressed by the sum of the CST base register and the
physical page number.

3. If the age in the entry (bits O0-5) is 2zero, start an
age-too-small page fail trap to the monitor and skip the rest
of the steps.

L. AND the entry with the contents of the CST mask register (set
by the WRCSTM instruction).

5. OR the masked entry with the contents of the process use
register (set by the WRPUR instruction).

6. Set the modified (M) bit in the entry, if necessary.

7. Write the entry back into the CST in memory, if necessary.
The cases under which a CST update is performed are as follows:

1. A page fault caused by a write reference to a page that is

writable but not yet modified. This case sets the modified
bit in the entry and writcs it back into the CST.

PAGING Page 8-10
TOPS-20 PAGING

2. A page fault caused by the CST-update-needed bit set in the
translation buffer entry for the referenced page. This case
writes the entry back into the CST.

3. .A pointer trace evaluates the address of a new physical page.
This case performs only steps 1-3 as described above for the
intermediate pages in the pointer trace. For the final data
page that is evaluated by the pointer trace, the full update
is performed and the updated entry is written back into the
CST.

8.4.5.2 CST Zatry Format - The CST is a table indexed by physical
page number and checked whenever a new memory page is referenced by
the microcode. |In addition, it is updated for the final data page
obtained in a page fail pointer trace and for
writable-but-not-yet-modified and CST-update-needed EBOX page fails.
The CST format is as follows:

! State code ! Available to software !
!

o

=W
ymw il x

] 89

The monitor keeps a state code in bits 0-8 of the entry; within the
code, bits 0-5 represent the page age, which must be non-zero for the
page to be usable. A zero page age results in an age-too-snall page
fail trap to the monitor. The "W" bit is the master write-enable bit
for the physical page and is ANDed with the "W" bits in the page
pointers when a data page address is written into the translation
buffer. The "M" bit indicates that the page has been modified since
being brought into memory and is set by the microcode on a
writable-but-not-yet-modified EBOX page fail trap.

8.4.5.3 CST Mask Register Format - The C5T mask register is ANDed
with the CST entry during the CST update process. It should contain a
one in every bit position that must be preserved during the update
procedure and a zero in every bit position that must be cleared during
the update. Therefore, the CST mask register should always contain
ones in bits 34 and 35 (the W and M bits) and zeros in bLits 0-5 (the
page age) .

PAGING Page 8-11
TOPS-20 PAGING

8.L4.5.4 Process Use Register Format - The Process Use Register s
ORed with the masked CST entry during the CST update process. It
should contain a zero in every bit position that must be preserved
during the wupdate procedure and a orie in every bit position that
should be set. Therefore, the Process Use Register should always
contain 2zeros in bits 34 and 35 (the W and M bits) and the new page
age in bits 0-5.

8.4L.5.5 Translation Buffer State Bits - A refill sets the translation
buffer state bits as a function of the logical and of all the pointer
use bits that it evaluated in the pointer chase. The relationship is
as follows:

State bit Set if the following condition is met

User 1 if this mapping is for user space.

Valid Always set to a 1.

Modified 1 if the physical page corresponding to this mapping has
already been modified according to the CST entry for that
page.

Writable 1 if the logical and of the W pointer wuse bits of all

pointers evaluated was a 1.

Keep 1 if the logical and of the K pointer use bits of all
pointers evaluated was a 1.

CST update Always set to a 0

8.4.5.6 Write References - When a virtuai write reference is made to
the MBOX, the result is a function of the translation buffer entry
corresponding to the virtual address specified by the EBOX. Write
references are particularly interesting because they can succeed or
fail based on the state of the writable and modified bits in the
translation buffer. The relationship between write references and the
four possible combinations of the writable and modified bits is as
follows:

Writable Modified Effect

0] o The page is not writable. A write failure page
fail trap will be given to the monitor.

PAGING Page 8-12
TOPS-20 PAGING

0] 1 The page is not writable. A write failure page
fail trap will be given to the monitor.
1 0 The page is writable but not yet modified. The

EBOX microcode will get a page fail trap, update
the CST entry for the page to set the M bit, set
the modified bit in the translation buffer, and
retry the reference. Note that the EBOX microcode

can give an illegal age page fail trap to the
monitor if the CST age for the referenced page is
illegal.

1 1 The write will succeed.

8.4.6 Page Fail Conditions And Formats

A page failure occurs when the pager is unable to make a desired
memory reference, the EBOX detects an illegal condition while
executing an instruction (e.g., incorrectly formated indirect word,
illegal one-word-global byte pointer, etc.), or the MBOX detects a
hardware failure while processing a memory request. When such a
condition occurs, the EBOX microcode stores information about the page
fail in UPT locations L51-L55, stores the current flag-PC double word
in UPT locations 456-L4L57 and loads the new flags, CAB, and PC from the
new flag-PC double word in UPT lccations L60-461. The format of each
of these words is described below.

UPT location 451 contains the page fail word that describes the
condition that caused the page fail. The format is as follows:

1

L51: THIKIUIVICIWIMIAIWIPITIRsvd !lev! Page fzil code !

IDIPISILISITIDIBIFIHIM! ! ! !

{ !

012345678911 1122 3

01 7 801 5

The definition of each field is as follows:

0 This page fail was caused by a '"hard" error. This does

not necessarily mean that a hardware failure occurred. |If
this bit is set, bits 1-4 contain a code that describes
the failure. The EBOX microcode copies the code to bits
27-35 and the valid codes are described below.

1 This bit gives the state of the transiation buffer 'keep"
state bit for a page fail that resulted from a virtual
translation failure.

PAGING Page 8-13
TOPS-20 PAGING

2 This bit is returned as a 1 if the reference was to wuser
space. If the reference was to exec space, this bit is
returned as a O.

3 This bit gives the state of the translation buffer 'valid"
state bit for a page fail that .-esulted from a virtual
translation failure.

L This bit gives the state of the translation buffer "CST
update needed' state bit for a page fail that resulted
from a virtual translation failure.

5 This bit gives the state of the translation buffer
‘'writable' state bit for a page fail that resulted from a
virtual translation failure.

6 This bit gives the state of the translation buffer
"modified" state bit for a page fail that resulted from a
virtual transliation failure.

7 If this bit is a 1, the memory reference caused an address
break match. ’

8 If this bit is a 1, the page fail was caused by a
reference that write-failed because of the state of the
translation buffer writable and modified state bits. Such
a reference may either be a write or a write test. This
bit is valid only for a page fail that resulted from a
virtual reference.

9 1f this bit is a 1, the memory request was a physical
reference. If the bit is a O, the memory request was a
virtual reference.

10 If this bit is a 1, there was no valid translation buffer
mapping for the virtual address in the request.

11-17 Reserved

18-20 This fieid gives the level at which this page fail was
detected. The level is primarily used to tell the monitor
where a translation buffer refil.: pointe: trace stopped
and is used in conjunction with the add:tional data words
described beiow. This field can contain one of four
values as follows:

0 This page fault was not the result of a pointer
trace, or the page fail condition was detected
before the first pointer was fetched.

1 This page fault was detected while processing a
super section pointer.

PAGING Page 8-14
TOPS-20 PAGING

2 This page fault was detected while processing a
section pointer.

3 This page fault was detected while processing a page
pointer.

21-35 This field gives a code that describes the cause of the
page fail. The monitor should never have tc ook at
anything other than bits 0 (hard), 2 (user), 9 (physical
reference), 18-20 (level), and this code to determine the

exact cause of the page fail. The rest of the bits in
this word are returned only as additional information to
be used to debug problems. There are two types of codes
that are returned in this field, depending on the state of
bit 0. If bit 0 is a zero, the page fail and code are the
result of one of the following conditions:

1. There was no valid translation for the reference
address.

2. A write reference failed because the page wasn't
writable.

3. An address break occurred.

L. The EBOX detected an illegal condition while executing
an instruction.

If bit O is a one, the page fail and code are the result
of a '"hard" error. Each case is described separately in
the section on page fail codes.

UPT location 452 contains the reference address (if any) for the
request that page failed. This address is the virtual memory address
for virtual requests and the physical memory address for physical
requests. It is only valid for those page fail conditions that
resulted .rom a virtual reference. The table at the end of this
section describes under which page fail conditions it is valid.

! |

452: ' 0000 ! Reference address |
! |

0 56 35

PAGING Page 8-15
TGPS-2C PAGING

UPT location 453 contains “he rhysical memory address (if any) for the
request that page failed. it is only wvaild for those page fail
conditions that have a valid PMA. The table at the end of this
section describes under which page fail conditions it is vaild.

! '

453 | Rsvd ! Page fail PMA !
! !
0 10 11 35

UPT locations 454 and 455 contain additional data that is different
for each type of page fail. The contents of these words are given for

each page fail at the end of this section. The format of these words
is as follows:

! !
Lok, 1} Additional data word 1 !
f e '

L55: 1 Additional data word 2 1
! !

UPT locations L56-457 contain the flags, CAB, PAB, PCS, and PC at the
time of the page fail in the following format:

0 12 13 18 21 24 35

456: ! Flags ! 000 |ICAB!PAB ! PCS 1
e et et -+

457: ' 0000 ! PC !
0 56 35

UPT locations 460-461 are setup by the monitor and contain the flags,
CAB, PAB, and new PC to be loaded when a page fail occurs. The words
are in the fol'owing format:

0 12 18 21 24 - 35
L460: ! New flags ! Rsvd |CAB!PAB! Rsvd !

T P -+
L61: | Rsvd ! Page fail new PC !

PAGING Page 8-16
TOPS-20 PAGING

8.4L.6.1 Tops-20 Page Fail Codes And Additional Data - This section
defines the page fail codes that may appear in bits 21-35 of the page
fail word and the additional data words returned for each code. For
each code below, 'RAD'", '"PMA", "AD1", and '"AD2'" represent the data
returned in words 452-455 of the UPT.

Caution
The page fail codes described below are
generated by the EBOX microcode and can
be easily changed. These page fail
codes are a first-pass attempt at
assigning values. They may very well
change as we add or delete codes. It is
strongly suggested that you not make

assumptions about the numeric value of
any particular code.

If bit O is off in the page fail word (indicating that this page fail
is not the result of a "hard" error), the codes that may appear in
bits 21-35 of the page fail word are as follows:

1 Write failure - A write reference was attempted to a
write-protected page (W bit off in the translation buffer).
RAD Reference address that caused the page fail.
PMA Physical address corresponding to the reference address.
AD1 Undefined.
AD2 Undef ined

2 Illegal age - An |llegal CST age was detected for a page during
the processing of one of the following page fails:

1. CST update needed.

2. Write reference to a writable but not yet modified page.

RAD Reference address that caused the page fail.
PMA Physical address corresponding to the reference address
AD1 Undefined.

AD2 Undefined.

PAGING Page 8-17
TOPS-20 PAGING
3 Address break - An address break occurred.

RAD Reference address that caused the page fail.

PMA Undefined.

AD1 Undefined.

AD2 Undefined.

L I'legal super section pointer 0 -~ A pointer with type 5, 6, or 7
was found in super section table offset 0.

RAD Reference address that caused the page fail.
PMA Undefined.

AD1 Undefined.

AD2 The illegal super section pointer.

5 Section greater than 37 - In KL compatible mode, a virtual
referance was made to a section greater than 37.

RAD Reference address that caused the page fail.
PMA Undefined.

AD1 Undefined.

AD2 Super section pointer.

6 I11egal pointer - A pointer with type 4, 5, 6, or 7 was found in
the super sectior table, sectionr table, or page table.

RAD Reference address that caused the page fail.
PMA Undefined.

AD1 Source of last word processed (see below) .
AD2 The illegal pointer.

7 No access pointer - A no-access pointer was discovered during a
pointer trace.

RAD Reference address that caused the page fail.

PMA Undefined.

AD1 Source of last word processed (see below).

PAGING Page 8-18
TOPS-20 PAGING

AD2 The no-access pointer

10 Page not ip core - A page-address word was discovered whose
storage medium field (bits 12-17) was non-zero.

RAD Reference address that caused the page fail.
PMA Undefined.

AD1 Source of last word processed (see below).
AD2 Last pointer processed.

11 I1legal age - An lllegal CST ige was detected for a page during
a pointer trace.

RAD Reference address that caused the page fail.
PMA Undefined.

AD1 Source of last word processed (see below).
AD2 Last pointer processed

12 Must-be-zero bits non-zero - The microcode discovered bits that
were declared "mus:t be zero' to be non-zero.

RAD Address of word containing the MBZ bits.
PMA Undefined.
AD1 Undefined.
AD2 Undefined.

13 lllegal indirect - An extended effective address calculation has
encountered an indirect word with 11 (binary) in bits 0 and 1.

RAD Address of word containing the illegal indirect.
PMA Undefined.

AD1 The illegal indirect word.

AD2 Undefined.

14 I11egal PXCT - A PXCTed instruction that stores into the ACs was
executed with CAB = PAB.

RAD Undefined.

PMA Undefined.

PAGING Page 8-19
TOPS-20 PAGING

AD1 Undefined.

AD2 Undefined.

15 Illegal physical effective address word - A physical effective
address word was discovered with a 1 in bit 0 or 1.
RAD Address of illegal physical effective address word.

PMA Undefined.
AD1 The illegal physical effective address word.
AD2 Undefined.

16 i{1legal one-word-global byte pointer - A one-word-global byte
pointer was discovered with a code of 77 (octal)

RAD Address of the illegal one-word-global byte pointer.
PMA Undefined.

AD1 Undefined.

AD2 The iliegal one-word-global byte pointer.

17 Il1legal interrupt vector - An illegal interrupt vector (all
zeros) was discovered (1/0 page fail only).

RAD Address of the illegal interrupt vector.
PMA Undefined.
AD1 Undefined.
AD2 Undefined.

If bit O is on in the page fail word (indicating that this page fail
is the result of a "hard" error), the codes that may appear in bits
21-35 of the page fail word are as follows:

To be supplied

8.4.6.1.1 Additional Data Words For A Pointer Trace - When the EBOX
microcode detects a page fail condition during a pointer trace, it
stores the source of the last word processed in additional data word 1
(k54) and the last pointer fetched in additional data word 2 (k455).
Additional data word 2 is simply the last pointer processed by the
microcode and may be a super section, section, or page pointer.
Additional data word 1 specifies the source of the last word processad
and may have one of the following forms:

PAGING
TOPS-~20 PAGING

0,,0

0,,offset

-1,,offset

page,,offset

Page 8-20

If the page fail code is '"illegal super section 0
pointer'", this word indicates that the pointer trace
failed immediately after initialization. I|f the page
fail code is anything else, it is really the following
case.

The last word examined was fetched from SPT+offset.
The last word examinad was fetched from UPT+offset or
EPT+offset. The wuser reference bit in the page fail

word determines which.

The last word examined was fetched from physical page
'‘page'’', offset '"offset'.

PAGING

TOPS-10 PAGING

8.5 TOPS-10 PAGING

8.5.1

The KC10 process table mapping format
KL10 and looks as follows:

Data for even virtual page

Page 8-21

Process Table Mapping Formats

is similar to that used on

Data for odd virtual page

the

U
1A!
11
!

tw!s!

! Physical page LI S S I
! address bits

14-26 L T I T

1Al IWIS! ! address bits

14-26

Physical page

.O 12345

2 22
123

oON

111
789

3
5

Each word contains page use bits and the physical page numbers for the

even

Bit

A

W

S

The

Meaning of

page use HYits are as follows:

al in the bit

Access allowed

Writable (not write-protected)

Software (not interpreted by the hardware)

A refill sets the translation buffer state bits as a function of
page use bits as follows:

State bit

User
Valid
Modified
Writable
Keep

CST update

Set if the

following condition is met

e m e a- S Eaam e e -

The mapping is for user space

Always set
Always set
The W page
Always set

Always set

to a1l

to a i

state bit is a 1

to a 0

toao

and odd numbered virtual pages corresponding to the map location
that holds the word.

the

PAGING Page 8-22
TOPS-10 PAGING

8.5.2 Page Fail Conditions And Formats

A page failure occurs when the pager is unable to make a desired
memory reference, the EBOX microcode detects an illegal condition
while executing an instruction (e.g., illegal one-word-giobal byte
pointer), or the MBOX detects a hardware failure while processing a
memory request. When such a condition occurs, the EBOX microcode
stores information about the page fail in UPT locations 451-455,
stores the current flag-PC double word in UPT locations 456-457 and
loads the new flags, CAB, and PC from the new flag-PC double word in
UPT locations 460-461. The format of each of these words is described
below.

UPT location 451 contains the page fail word that describes the
condition that caused the page fail. The format is as follows:

!

L51: THIKIUIVICIWIMIAIWIPIT!Reserved! PF code !

IDIPISILISITIDIB!IFIHINM! ! !

! !

012345678911 2 2 3

01 01 5

The definition of each field is as foilows:

0 This page fail was caused by a "hard" error. This doe:

not necessarily mean that a hardware failure occurred. |If
this bit is set, bits 1-4 contain a code that describes
the failure. The EBOX microcode copies the code to bits
27-35 and the valid codes are described below.

1 This bit gives the state of the translation buffer 'keep"
state bit for a page fail that resulted from a virtual
translation failure.

2 This bit is returned as a 1 if the reference was to user
space. If the reference was to exec space, this bit is
returned as a 0.

3 This bit gives the state of the translation buffer 'valid"
state bit for a page fail that resulted from a virtual
transliation failure. :

L This bit gives the state of the translation buffer "CST
update nec:ded'' state bit for a page fail that resulied
from a virtual translation failure.

5 This bit gives the state of the translation buffer
"writable" state bit for a page fail that resulted from a
virtual translation failure.

PAGING Page 8-23
TOPS-10 PAGING

6 This bit gives the state of the translation buffer
"modified" state bit for a page fail that resulted from a
virtual translation failure.

7 If this bit is a 1, the memory reference caused an address
break match.

8 If this bit is a 1, the page fail was caused by a
reference that write-failed because of the state of the
transliation buvfer writable and modified state bits. Such
a reference may either be a write or a write test. This
bit is valid only for a page fail that resulted from a
virtual reference.

9 If this bit is a 1, the m2mory request was a physical
reference. If the bit is a 0, the memory request was a
virtual reference.

10 If this bit is a 1, there was no valid translation buffer
mapping for the virtual address in the request.

11-20 Reserved

21-35 This field gives a code that describes the cause of the
page fail. The monitor should never have to look at
anything other than bits O (hard), 2 (user), 9 (physical
reference) and this code to determine the exact cause of
the page fail. The rest of the bits in this word are
returned only as additional information to be used to
debug problems. There are two types of codes that are
returned in this field, depending on the state of bit O.
If bit O is a zero, the page fail and code are the result
of a virtual reference that failed to generate a valid
physical mapping (this also includes write references to
write-protected pages, etc.), or a physical reference that
caused an address break. |If bit O is a one, the page fail
and code are the result of a "hard" error. Each case is
described separately in the section on page fail codes.

UPT location 452 contains the reference address (if any) for the
request that page failed. This address is the virtual memory address
for virtual requests and the physical memory address for physical
requests. it is only valid for those page fail conditions that
resulted from a virtual reference. The table at the end of this
section describes under which page fail conditions it is valid.

| |
452: 1 0000 ! Reference address !
1

!
0 56 35

PAGING Page 8-24
TOPS-10 PAGING :

UPT location 453 contains the physical memory address (if any) for the
request that page failed. it is only vaild for those page fail
conditions that have a valid PMA. The table at the end of this
section describes under which page fail conditions it is vaild.

453: Rsvd ! Page fai: PMA !
! !

0 10 11 35

UPT locations 454 and 455 contain additional data that is different
for each type of page fail. The contents of these words are given for

each page fail at the end of this section. The format of these words
is as follows:

L5h4: Additional data word 1 !

Ls5: 1! Additional data word 2 !

UPT locations 456-457 contain the flags, CAB, PAB, PCS, and PC at the
time of the page fail in the following format:

o 12 13 18 21 25 35
L56: | Flags ! 000 ICAB!PAB ! PCS !
T T ———— -+
457: | 0000 ! PC !
0 56 35

UPT locations 460-L61 are setup by the monitor and contain the flags,
CAB, PAB, and new PC to be loaded when a page fail occurs. The words
are in the following format:

0 12 18 21 24 35
460: ! New flags ! Rsvd ICAB!PAB! Rsvd !

e i -+
L61: ! Rsvd ! Page fail new PC 1

! !

PAGING Page 8-25
TOPS-10 PAGING

8.5.2.1 Tops-10 Page Fail Codes And Additional Data - This section
defines the page fail codes that may appear in bits 21-35 of the page
fail word and the additional data words returned for each code. For
each code beiow, ''RAD', "PMA", "AD1', and "AD2" represent the data
returned in words L452-455 of the UPT.

Caution

The page fail codes described below are
generated by the EBOX microcode and can
be easily changed. These page fail
codes are a first-pass attempt at
assigning values. They may very well
change as we add or delete codes. It is
strongly suggested that you do not make
assumptions about the numeric vaiue of
any particular code.

If bit 0 is off in the page fail word (indicating that this page fail
is not the result of a '"hard'" error), the codes that may appear in
bits 21-35 of the page fail word are as follows:

To be supplied
if bit 0 is on in the page fail word (indicating that this page fail

is the result of a "hard" error), the codes that may appear in bits
21-35 of the page fail word are as follows:

To be supplied

CHAPTER 9

PROCESS CONTEXT VARIABLES

9.1 INTRODUCTION
in order to take advantage of the full L4096 section virtual address
space implemented by the KCI0 processor, the flag-PC double word

format has been changed to allow for a larger section number. in
addition, the PAB and CAB fields have been added.

9.1.1 New Flag-PC Double Word

The format of the double word is as follows:

11 1122 22 3

0 23 7801 34 5
! Flags ! MBZ ICABIPAB ! PCS !
gy g 1
! Rsvd | PC 1
0 56 3
5

Where:

Flags PC flags. The action of these flags is the same as for
the KL10, wunless stated otherwise. The flags are as
follows:

0 Overflow.
1 Carry O.
2 Carry 1.

3 Floating Overflow.

PROCESS CONTEXT VARIABLES Page 9-2
INTRODUCTION :

4 First Part Done. This PC flag is wused by the
microcode as necessary to restart a multi-part
instruction. |t does not necessarily act the same
as any previous machine and the use may change at
any time without notice. The monitor should save
and restore this flag when changing contexts. The
user should never touch it.

5 User.
6 User In-out/Previous Context User.
7 Unused by the KC10 hardware and microcode. On

previous machines, this was the Public flag. The
KC10 always stores it as 2ero, and ignores any
attempt to set it.

8 Address Failure Inhibit.

9 Trap 2.

10 Trap 1.

11 Floating Underflow.

12 No Divide.

MBZ Must be zero

CAB Current AC Block Number (0-7)

PAB Previous Context AC Block Number (0-7)
PCS ‘Previous Context Section Number

PC PC of the program

1. In kernel mode (XPCW/SFM), or when stored on a page fail or
MUUO, alil of the above fields will be stored as defined. In
kernel mode, XJRSTF and XJEN will restore all fields.

2. |In user mode, PCS, PAB, and CAB will always be stored as 0.
An XJRSTF in user mcde will treat these fields as it does the
user mode and user 1/0 flag now (i.e. ignore them).

9.1.2 Context Changing

Returning to a previous context may be done with an XJRSTF or XJEN
instruction which restores the context variables stored in the
previougly saved PC double word.

PROCESS CONTEXT VARIABLES Page 9-3
INTRODUCT | ON

Entering a new context will be done as follows: All of the "previous"
context variables in the old PC flag word will be set to theijr
corresponding values in the ‘'current'" context. If the ''current"

context is not user-mode, then set the 'previous' context from the new
PC flag word. The following operations are defined as entering a new
context:

1. Monitor call (MUUO).

2. Page fail trap.

3. Priority interrupt initiation.

L. 1/0 page fail trap.
Each of these operations will store a PF double-word containing the
"eurrent" context variabies and then load a new PC double-word to set
new values for those variables not set automatically. See the chapter

on Special System Pagers for a description of the changes to the EPT
and UPT.

The following chart summarizes what variables are saved, and what new
values are set. It includes for comparison what is currently
implemented on the KL10 processor.

Keyf

Store Save in appropriate block (old)

Load Set from appropriate block (new)

Set Set '"previous'" to oid "current"

* In process context word

k% Ucode sets PCS; XPCW stores flags, PC, PCS, and loads

flags and PC

PROCESS CONTEXT VARIABLES Page 9-L
INTRODUCT I ON

it e L DL PR P L P PP PPt +
! ! Flags | PC ! CAB ! PAB | PCS/PCU |
e +
! ' | Store |} Store ! No ' No | Store !
[}] KL g g g g T +
1 1 |
| i | Load | Load ' No ! No ! No !
! XPCW lemm—dmmmemmmmmc e e e e +
1]
! ! ! Store | Store ! Store | Store | Store :
1 b KE dmmm e e e mmem e +
1 ! [}
H ' ! Load | Load i Load ' No | No !
e e e e L L P e e e e e e e —+
H H ! Store | Store ! No ' No | Store !
! I T T +
[} i i
' | %% ! Load | Load ! No ' No | Set(PCS) |
linter- Jesmedoc--csocmmcm e e ——— e +
1 !
| rupt ! ! Store | Store ! Store | Store | Store '
! I o ettt +
H H ! Load | Load ! Load ! No d No H
T et +
' ' | Store | Store | * Store | * Store | Store |
1 1 KL e e e, ————— —
! 1 |
! ! | Clear | Load i No ! No | Set (PCS) |
DMUUD e m e e e oo +
1 !
] ! | Store | Store | Store | Store | Store !
i I KC Ve e e e e e -+
i] [}
: 1 i Load | Load 1 Load | Load | Set |
B e e EE E e P e e -+
H H | Store | Store ' No ' No ! Store H
1 I KL ===t e -
]] [}
! ! | Clear | Load | WNo ! No ! Set(PCS) |
! Page R ekl e tatdete bl btk ettt g -+
i |
| Fail | | Store | Store | Store | Store | Store |
! I T e ittt -+
i ' ! lLload | Load | Load i Load | Set '
B e -+
H H ! Store | Store | No | No ! No H
! I KL leecmcrrccrrnrmccmmrccccc s rcccrcc e e e r e r e e = -
| 1 I
' H 1 No ! Load i No 1 No H No H
I LUUD }mmmmdbmmmm e o e e o e o —+
i 1
! ! | Store | Store | No i No H No '
] I KC Voemmmeccccccccmcccccccemacccccccccc e e e mccca - -+
I i !
E H ! No | Load | No i1 No H No H
--- e
)
E E : No i No i1 No ! No H No H
R et +
| 1 |
H H ! Load | Load ! No | No ! Load !
D B I R e it -+
'] 1 No 1 No | No i No 1 No !
b OXJEN 1 KC demmmmmm s m e o e o e e +
1 H | Load | Load i Load |} Load | Load |

CHAPTER 10

SYSTEM TI1MERS

10.1 SUMMARY
The KC10 processor implements several kinds of system timers using a
combination of hardware and microcode assistance. There are three
kinds of timers implemented in the basic CPU, as foliows:

1. Time base clock

2. Interval timer

3. User runtime meter
In addition, the console contains a battery backup-up time-of-year
clock that can be used to maintain the correct time through a power
failure.
Unlike the KL10, the clocks on this machine will never update

locations in memory unless requested to by the appropriate instruction
in the monitor.

10.2 TIME CLOCKS

The time base and the user runtime meter are returned as a double
precision integer with units of 1 microsecond. Both have the
following format:

! High order part of count in microseconds !

SYSTEM TIMERS Page 10-2
TIME CLOCKS

10.2.1 Time Base

The time base is lept in internal EBOX registers and implemented using
a 16 bit hardware counter that counts in | usec units. The time base
is controlled by the WRTMB and RDTMB instructions and it's current
value may be read with the RDTIME instruction. The counter will
overflow every 7.L7 E7 years.

10.2.2 User Runtime Meter

The user runtime meter is similar to tha time base described above.
It is alsr a 1 usec counter that is driven from the same source as the
time base, however it can be controllied by the monitor to count user
runtime. Like the time base, the user runtime meter is also kept in
internal EBOX registers and only written into UPT locations 504 and
505 as the result of a WRCTX that changes the UBR.

10.3 INTERVAL TIMER

The interval timer is used to supply a source of interrupts with
programmable periods. It is a 12 bit counter that counts in 10us
increments (100 kHz). 1!t can therefore count and cause interrupts of
any interval from 10us to 40.95ms. Its operation is identical to the
KL10 interval timer.

CHAPTER 11

TRAP, UUC AND INTERRUPT HANDLING

11.1 INTRODUCTION

The current implementation of trap and interrupt handling, while quite
general, has some problems relating to extended addressing. A new
method of transferring concrol to '"sections'" other than the current PC
section is given in the following section. This limits the number of
possible actions that can be taken on 7 trap or interrupt compared to
what the KIi10 ard KL10 now offer.

In addition, UU0 handling has been changed to aliow more flexibility
and power in handling LUUOs and MUUOs.

TRAP, UUO AND INTERRUPT HANDLIKG | Page 11-2
TRAP FUNCTION WORD

11.2 TRAP FUNCTION WORD -

EPT/UPT locations L21-423 contain a trap function word that determines
the action of the processor when it detects an arithmetic overflow,

stack overfiow, or trap 3 condition.

The format of each word is as follows:

R et e T e e +
TFNIRSVD ! Function specific argument !
i e it +

The format of this word is as follows: -

0-1 Function code. This field is interpreted as follows:
00 Do nothing on trap condition (ignore)
01 Execute MUUD (take new PC from function

specific argument)

10 Transfer control to exec/user depending on the
mode in which the trap occurred. This
function uses a LUUO-like block as described
in the function specific argument below.

11 Do nothing on trap condition (ignore)
2-5 Available to software
6-35 Function specific argument. This field is wused in a

manner specific to the function performed as follows:
o Ignored for this function.
1 New PC for the MUUO.

This function stores only the program flags,
CAB, PAB, PCS and the PC in UPT locations
L2L-425, The opcode, AC, and effective
address of the instruction are NOT stored in
UPT locations 426-427. The new program flags,
CAB, and PAB are loaded from UPT location 430
as in a normal MUUO.

2 Virtual address in the current context
(exec/user) of a 4 word LUUO-1like block.

This function stores only the program flags
and the PC in words 0-1 of the block. The
opcode, AC, and effective addrecs of the
instruction are NOT stored in words 0 and 2 of
the block. The new PC is then taken from the

TRAP, UUO AND INTERRUPT HANDLING
TRAP FUNCTION WORD

3

The format of the LUUO-1ike block used in function 2

fourth word of the block.

Ignored for this function.

Page 11-3

is as follows:

0 56 12 13 25
! !
o) ! Flags ! 000 !
LR it ittt D !
1 ! 000 ! PC !
b L e e e L LD D et LR L Lt !
2 ! 000 !
e e ———————— 1
3 ! Rsvd ! New PC !
! !
0 56 35
Notes

The trap 1 and trap 2 flags are
never stored in the MUUO (function
code 1) or LUUO-like (function code
2) blocks when a trap is processed.
It is the responsibility of the
program to determine which trap
condition occurred by supplying
different new PCs for each possible
condition.

On previous machines, traps were
ignored if paging was disabled. On
the KC10, traps are processed even
if paging is off. It is the
responsibility of the monitor to
insure that there is an EPT setup
with the appropriate trap function
words even if paging is disabled.

An instruction that causes a trap
and also jumps (e.g., AOJA) stores
the PC of the destination of the
Jjump, not PC+1 of the jump
instruction.

TRAP, UUO AND INTERRUPT HANDLING Page 11-L
VIRTUAL MACHINE SIMULATION MODE

11.3 VIRTUAL MACHINE SIMULATION MODE

The virtual machine simulation mode (VM mode) implemented by the KC10
allows an operating system to run a program in user mode in such a way
that the program cannot distinguish its environment from a stand-alone
exec mode machine. The primary use for this mode is to allow a
monitor to be tested and/or debugged on a timesharing machine in user
mode by concealing the fact that it is indeed running in user mode.

This mode is enabled for a user process with bit 9 of word E of WRCTX.
In order to do this, the EBOX microcode must generate an MUUO trap for
any instruction that differs between exec and user mode. It is then
up to the (real) monitor to simulate the instruction properly to
conceal the fact that the program is really running in user mode.

If VM mode is enabled for a user process, the EBOX microcode will
generate an MUUO trap through the VM mode new PC word (location 431)
in the UPT. There are four classes of instructions that trap through
the VM mode new PC word as follows:

1. Any instruction that would normally trap as an MUUO through
one of the other MUU0O new PC pairs. This includes all
unassigned opcodes, all legal MUUOs, all undefined EXTEND
opcodes, JSYS, 1/0 instructions, MAP, JRST 3, HALT, XJEN,
XPCW, JRST 10, JRST 11, JEN, JRST 13, JRST 16, and JRST 17,.
This class of instructions is included because the new PC
word for MUUOs is taken from different UPT locations based on
whether the MUUD was executed in user or exec mode.

2. XCT with non-2zero AC. This class is inc’uded because XCT
with a non-zero AC in exec mode specifies a PXCT.

3. All LUUOs. This class ir included because LUUOs use blocks
in either the EPT or UPT based on whether the LUUO was
executed in user or exec mode.

4. PUSHJ, JSR, and JSP in section 0. This class is included
because the specified instructions store the flags (with the
user-mode bit) if they are executed in section 0.

TRAP, UUO AND INTERRUPT HANDLING Page 11-5
MUUO HANDLING

11.4 MUUO HANDLING

MULD handling on the KC10 is significantly different from that of any
previous processor. Instead of the previous format of UPT locations
L2L4-427, the following format is used to store the program flz3s, CAB,
PAB, PCS, PC, Opcode, AC, and effective address of the MUUO:

0 12 13 18 21 24 35
e ettt E P +

L24: ! Flags ! 000 ICAB!PAB ! PCS !
e +

0 56 35
e it +

L25: ! 0000 ! PC !
et -+

0 17 18 26 27 31 35
e e e —+

L26 ! 0000 ! Opcode {AC ! 000 !
it et L T L -+

0 56 35
et T -+

427 ! 0000 ! E !

TRAP, UUO AND INTERRUPT HANDLING Page 11-6
MUUO HANDL ING

The new program flags, current, and previous AC blocks are loaded from
the word at UPT 1location 430. The new PC is taken from one of the
words of the dispatch vector beginning at UPT location 431, based on
the MUUO opcode and whether the MUU0O was executed in user or executive
mode. The dispatch vector consists cf pairs of words, one for user
and one for exec, (location 431 is the exception tu this rule) and
contains 5 separate MUUD cdispatches plus wordc reserved for future
expansion. The dispatches are as folliows:

Offset Use

431 instructions trapped in user mode as the result of virtual
machine simulation mode enabled. See the discussion
above.

L32-433 Opcode 0 and all unassigned opcodes less than 7CO.

L34-435 Unassigned opcodes in the range 700-777 plus any

instruction that is executed .n user mode without user |/0
enabled that requires user |/0. This includes all
internal and external 1/0 instructions, MAP, JRSTF
executed in a non-zero section, JRST 3, HALT, XJEN, XPCW,
JRST 10, JRST 11, JEN executed in a non-zero section or in
user mode, JRST 13, JRST 16, and JRST 17,.

436-437 Undefined EXTEND opcodes
LLO-4L1 JSYS (opcode 104)
L 2-443 All other MUUO opcodes

The format of these words is as follows:

0 12 16 21 24 35
e et T +
430: ! New flags ! Rsvd ICABIPABI! Rsvd !
e T +
0 £ 6 35
B e T T S -+
431: ! Rsvd ! User VM mode instruction new PC |
e e e |
0 56 35
D i T +
L32: ! Rsvd | Exec undefined opcode new PC 1
R et e L EE L L L PP E PP 1
433: ! Rsvd ! User undefined opcode new PC 1

e T r—— +

TRAP, UUO AND INTERRUPT HANDLING Page 11-7
MUUO HANDL ING

0] 56 35

e e T Ty +

L3y ! Rsvd ! Exec undefined 1/0 opcode new PC !
e e e e e e |

L35 ! Rsvd ! User undefined 1/0 opcode new PC !
P e e +

(0] 56 35

e e LT T U, +

436: ! Rsvu ! Exec undefined EXTEND opcode new PC !
) e e e e 1

437: ! Rsvd | User undefined EXTEND opcode new PC !
e T TS +

0 56 35
o e e +

Li40 ! Rsvd ! Exec JSYS new PC !
f m e e e y

Ly ! Rsvd ! User JSYS new PC !
e T TSR +

(0] 56 35
Bt T R +

442 ! Rsvd ! Exec MUUO new PC !
| e e e e e 1

LL3: ! Rsvd ! User MUUO new PC !

TRAP, UUO AND INTERRUPT HANDLING Page 11-8
LUUO HANDLING

11.5 LUUO HANDLING

If the program is running in section O, store the opcode, AC, and the
effective address in bits 0-8, 9-12, and 18-35 respectively of
location L40; clear bits 13-17. . Then execute the instruction
contained in location L41. An LUUO executed in user mode uses virtual
locations 40 and 41 in the user program. An LUUO executed in
executive mode uses locations 40 and 41 in executive virtual address
space. This action is identical to the KL10 impiementation.

1f the program is running in a nonzero section, use bits 6-35 of UPT
location 420 if the program is running in user mode, or EPT location
420 if the program is running in exec mode, as the address of a block
of four words. 1In the first three locations cf the block, store the
program flags, opcode, AC, effective address, and PC of the LUUO.
Then take the next instruction from the location specified by bits
6-35 of the fourth word of the block. In user mode, this action is
identical to the KL10 implementation. In executive mode, this action
is different from what is currently documented, but identical to what
the KL10 actually implements.

The format of the block is as follows:

0 12 13 17 18 26 27 31 35
0 ; Flags ! 000 ! Jdpcode 1AC ! 000 E
1 too 1 e !
2 t o0 + e i
3 CReva 1T New PC §

TRAP, UUO AND INTERRUPT HANDLING Page 11-9
TRAP ENABLE

11.6 TRAP ENABLE

WREBR bits 8 and 9 affect how the processor handles traps, LUUOs,

MUUOs, and page fails. if the monitor enables full processing of
these conditions (by setting WREBR argument bits 8 and 9), the
microcode will process these conditions as described above. If the
monitor disables full processing of these conditions (the default
power-up state ~f the machine), the microcode will process them

differently as described below:

1. Traps. The microcode will treat trap 1, 2, and 3 conditions
as if the trap function word had specified '"ignore trap".

2. LUUDs. LUUOs executed in section zero (or in the low 256K

with paging off) will be treated exactly as they are now,
i.e., they will store the LUUO in location 40 and execute the
instruction in location 41, Note that LINK stores a HALT

instruction in location L1 when it loads programs.
LUUOs executed in non-zero sections will halt the machine.
3. MUUOs. MUUOs will halt the machine.

L. Page fails. Page fails that must be processed by the monitor
will halt the machine. Page fails that can be resolved
entire'y by the EBOX microcode will continue to be processed
normally.

This special handling will cause the machine to halt when a condition
for which the program is unprepared occurs instead of doing something
unexpected. As a result, conditions for whick the monitor is
unprepared to handle will be detected early as the result of the
condition instead of as a by-product of the condition.

TRAP, UUO AND INTERRUPT HANDL ING Page 11-10
INTERRUPT VECTORS

11.7 INTERRUPT VECTORS

All interrupts happen through interrupt vectors located in the 1/0
page. A vector is a 30-bit Exec Virtual Address pointing to a 4-word
block that is similiar to a XPCW control block. Return from an
interrupt should be made by an XJEN instruction that addresses the
same block. The saving and ‘estoring of the 'previous" context s
described in a preceding section. The new context will be set up from
the XPCW control block. The action of an interrupt cycle will be as
if an actual XPCW was exccuted with its EA taken from the appropriate
location in the i1/0 page.

An interrupt vector has the following format:

0 56 35
e e e L L L L e —+
! Rsvd ! Virtual Address of XPCW block !
D bt et e e +
Where:
0-5 Reserved
6-35 Vector addrescs of control block.

11.8 1/0 PAGE FAILURE

An /0 page fail can occur if the EBOX microcode is unable to fetch a
word neccessary to process an interrupt request. This condition can
occur if a hardware error or address break page fault occurs while
trying to read a port interrupt vector word (1/0 page locations
210-217), a port interrupt Pl status word (1/0 page locations
220-227), or a software interrupt vector word (I/0 page locations
231-237). It can also occur if a request to access one of the four
words pointed to by an interrupt vector page fails. In this case, the
EBOX microcode generates an 1/0 page failure.

This page fail will be similar to a normal page fail trap, but the
page fail information is contained in /0 page locations 240-250
instead of in the UPT. The EBOX stores a page fail word, reference
address, Pl status at the time of the failure, and the additional data
words (identical in format to those stored by a normal page fail) in
locations 24LO-244. The old PC double word is stored in locations
245-246 and the new program flags, CAB, PAB, and PC will then be taken
from 1/0 page locations 247-250 and the processor will resume
execution at the Pl level on which the failure occurred.

TRAP, UUO AND INTERRUPT HANDLING Page 11-11
i/0 PAGE FAILURE

The format and contents of words 240-2L1 and 243-2LL are identical in
format to the words stored in UPT locations 450-451 and 453-L5EL for a
normal page fail. The format of these words is described in the
chapter on paging.

The P! status stored in word 242 is identical in format to that
returrned by a RDPI instruction.

The fermat of the |/0 page fail locations in the 1/0 page is as
follows:

o 12 13 17 18 21 24 35‘
240 g 1/0 page fail word g
241 1 o000 1 Reference address |
242 é """""""""" ROPI at 1/0 page fail |
a3 0 Additional data word 1 |
2t Additional data word 2 ;
245 1 Flags | 000 ICABIPAB I Pcs i
26 1 0000 1170 page rati eia pe |
27 1 New fiage 1 Reva tcamteas 1 Revd i
250 1 Reva 170 page fail mew P 5

0 56 12 13 17 18 21 35

CHAPTER 12

MISCELLANY

This chapter contains miscellaneous information about the KC10 that
doesn't fit anywhere else.

12.1 HALT STATUS CODES

When the EBOX microcode halts the EBOX for some reason, it stores a
halt status code that describes the reason for the halt.. This code
can be retrieved by the console and printed on the CTY when a halt
occurs. Note that such a code is not stored on an EBOX halt that

wasn't caused by the EBOX microcode. The halt status codes are as
follows:

0 The processor executed a HALT (JRST 4,) instruction.

1 A non-zero section LUUDO was executed and trap enable was
off in the WREBR argument word.

2 An MUUO was executed and trap enable was off in the WREBR
argument word.

3 A page fail that must be resolved by the monitor occurred
and trap enable was off in the WREBR argument word.

L An illegal destination address was generated from EBOX
dispatch 67. Early decode bits 4-6 are probably incorrect
for the instruction being executed.

5 A MOVSxx memory read that previously caused a page fault
did not do so when the reference was retried.

6 A MOVSxx memory write page failed.

7 A page fault generated as the result of a physical memory

reference didn't result in a monitor page fail trap. Ali
page fails that can result from a physical reference
should require monitor intervention, so the page fault or
the page fail word was illegal.

MISCELLANY

Page 12-2

HALT STATUS CODES

10

11

12

13

14

15

An interrupt was requested on Pl level 0.

The EBOX microcode was trapped to an unimplemented (777x)
microtrap vector.

The determination of the reason for an IBOX trap to EBOX
with EBOX dispatch 25 resulted in an iliegal trap reason
(no reason bits were indicated in the dispatch).

The EBOX microcode page fail handier attempted to decode
the reason for the page fail from the page fail word
supplied to it and couldn’t find a reason for the fault.
The page fail word was probably illegal.

An instruction that is currently unimplemented in the EBOX
microcode was executed.

The monitor attempted to turn on the (unimplemented)

TOPS-10 paging mode (bit 3 off, bit 4 on in the WREBR
argument) .

CHAPTER 13

SPECIAL SYSTEM PAGES (EPT / UPT / I10P)

The following EPT/UPT layouts are proposed for the KC10. In addition,
thera is a new page called the |/0 page (IOP) that is used by the KC10

ports and the console for communication with the CPU.
Upon processor reset, the base address of the EPT and UPT will be
reset to page O and the |/0 page will be reset to page 1.

NOTE

All areas that differ from the KL10 are
marked with an asterisk (%).

SPECIAL

SYSTEM PAGES (EPT / UPT / I0P)

TOPS-20 paging executive process table configuration

Page 13-2

517
420 !
421
422 !
423 !
L2k !
517 !
520 |
527 |
530 !
537 !
540

571

171

!
1
\
\
!
!
600 |
!
\
\
!
!
!

Location 420 of the EPT contains an
address of an LUUO block identical to
the one in the UPT. LUUO's in Kernel
mode from code running in non-zero
sections work identically to those in
user mode. This is different from what
is currently documented, but not

1
! %

i

Reserved \

\

!

!

... !

Address cf exec LUUO block !

___ !
Executive arithmetic overflow trap function word T

___ !
Executive stack overflow trap function word ! %

... !
Executive trap 3 trap function word LR

___ l
P %

Reserved \

!

___ !
Executive super section 0 pointer I %

\

Executive super section 7 pointer !

___ l

]

Reserved \

!

... !

Executive section 0 pointer (KL compatible paging) !

\

\

Executive section 37 pointer (KL compatible paging) !

___ !

!

!

Reserved \

\

!

!

!

NOTE

SPECIAL SYSTEM PAGES (EPT / UPT / 10P) Page 13-3

different from what is implemented on
the KL10.

SPECIAL SYSTEM PAGES (EPT / UPT / 10P) Page 13-4

TOPS-10 paging executive process table configuration

177

| !
o] ! Executive page O ! Executive page | I x

\ \

\ \
157 ! Executive page 336 ! Executive page 337 !

e kb e et e DL L PP LRt !
160 ! Reserved ! ox
177 ! !

R e it I E e e e e !
200] Executive page 400 ! Executive page 401 !

\ \

\ \
377 ! Executive page 776 I Executive page 777 !

et ettt !
400 ! !

\ Reserved \
420 ! !

kbt et D L D D e ettt !
k21 ! Executive arithmetic overflow trap function word ! %

e e e !
422 ! Executive stack overflow trap function word 1 %

e rem e e e rmmmemmmcm e e —e————m————— 1
423 ! Executive trap 3 trap function word 1 %

Rttt et ettt !
L2i ! ! %

\ \

\ Reserved \

\ \

| !

1 !

SPECIAL SYSTEM PAGES (EPT / UPT / 10P) Page 13-5

TOPS-20 paging user process table configuration

Reserved

! !
0 ! %
1 1
\ Reserved \
\ \
! '
K7 ! !
R ettt e !
420 ! Address of user LUUO block !
|~ e ——m————————— !
421 ! User arithmetic overflow trap function word ! %
R et T it !
422 ! User stack overflow trap function word ! %
e e e —————————— 1
423 ! User trap 3 trap function word ! %
R e e E L L TP P TP e !
L24 ! MUUO flags, CAB, PAB, and PCS I %
R e e DL D DLt e e E L L L PP PPt !
425 ! MUUO old PC ! %
R i D it L T e !
426 ! MUUO opcode and AC ! %
R et L L ettt !
427 ! MUUD effective address I %
R D S ann e DL L e e L L PP P et !
430 ! MUUO new flags and CAB ! %
R el D DD D et L e L !
43 | User VM mode instruction new PC ! %
R et e L e L E T L P L S !
432 ! Exec undef ined opcode new PC ! %
R il el e !
433 ! User undefined opcode new PC ! %
e et b LD L e T B e e e CE L P LSt !
L34 ! Exec undefined |/0 opcode new PC ! %
e et L e DL L L P P !
435 ! User undefined 1/0 opcode new PC 1 =
R e S L e L L L !
436 ! Exec undefined EXTEND opcode new PC ! %
R e e e E T S !
437 ! User undefined EXTEND opcode new PC ! %
R e e L L e e e L EE L L L PR !
Lo ! Exec JSYS new PC 1 %
R e e DL L e e e et T !
b ! User JSYS new PC 1 %
R e e L L L et e CE L L L Pt !
Li2 ! Exec MUUO new PC 1 %
| R e Lt D e L e L e L L e L e L DL B LS !
W3 1 User MUUO new PC 1 %
| R e e L L e L e P L D !
bbbl ! 1 %
\ \
1 !

k50

SPtCIAL SYSTEM PAGES (EPT / UPT / 10P) Page 13-6

451 ! Page fail code

! __
452 ! Page fail VMA

! ...
L53 1 Page fail PMA

! __
L4 ! Page fail additional data word 1

! ___
L55 ! Page fail additional data word 2

o= P et ettt D
456 ! Page fail old PC
L57 ! double word
. R T N S
460 ! Page fail new PC
L6 ! double word

! ___
462 !

\ Reserved
503 !

! ...
504 ! User runtime meter
505 ! (1 microsecond timer)

S
506 !

\ Reserved
517 !

gy S
520 ! User super section O pointer

\
527 ! User super section 7 pointer

e e e e c—————————— e
530 !

\ Reserved
537 !

R,
540 | User section O pointer (KL compatible paging)

\

\
577 ! User section 37 pointer (KL compatible paging)

f m e e e e meccec—c———ee
600 !

!

\ Reserved

\

!
177 !

!

*

SPECIAL SYSTEM PAGES (EPT / ULPT / IOP) Page 13-7

TOPS-10 paging user process table configuration

0 ; User page O ! User page 1 E

\ \

\ \

! i
M A e R T . 5
Loo i Executive page 340 ! Executive page 341 i
L7 ? Executive page 376 ! Executive page 377 ?
wo 1 Reserved g
i1 1| User arithmetic overflow trap function word ! *
2 1 User stack overflow trap function word ; s
b3 User trap 3 trap function werd %
e T MUUO flags, CAB, PAB, and PCS ; x
b5 § """""""""""" mio ota Pc %
e 1 MUUO opcode and AC r
k27 ; """"""""""" MUUO effective address r
o 1 MUUO new flags and CAB T
431 & User VM mode instruction new PC ! .
132 1 Exec undetined opeode new Pe ! .
as T User undefined opcode new PC ! -
130 1 Exec undetined 170 opoode mew PC ! .
s User undefined 1/0 opcode new PC T
036 1 Exec undetined EXTEND opeode new PC ! x
w1 User undefined EXTEND opcode new PC ! x
wo 1T T e vsvs e pe T T
W1t user JSYs newPc T
we 1T Exec UUO new PC r

hb3 ! User MUUO new PC] %

SPECIAL SYSTEM PAGES (EPT / UPT / 10P) P

Ll
450
L5
452
453
L5k
h55

456
457

L6o
461

462
503

504
505

506

177

Page fail old PC
double word

Page fail new PC
double word

User runtime meter
(1 microsecond timer)

- e e - — - - —— ——— - - - - - —— - - - - - -

Reserved

SPECIAL SYSTEM PAGES (EPT / UPT / 10P)

17

100
200
201
202
203
207

210

217

220

227
230
231
237
240
2l
242
243
24k

245
246

247
250

I /0 Page

Page 13-9

Port register access blocks
(8 words per port)

Interval timer interrupt vector

Port interrupt vectors
(1 word per port)

Port interrupt Pl status words
Pl levels 0-7

(Microcode use only)

Software interrupt vectors (P! levels 1-7)

1/0 page fail old PC
double word

1/0 page fail new PC
double word

SPECIAL SYSTEM PAGES (EPT / UPT / I0P) Page 13-10

251 ! 1
\ Reserved \
377 ! !
f e e e e e e !
400
Console communications

1]
! !
\ \
\ region \
! 1
717 ! !
i 1

CHAPTER 14

ADDRESS BREAK

The address break feature of the hardware implements a superset of the
KL10 address break capability. 1t may be used to determine whether a
program is reading, writing, or fetching instructions from a range of
iocations in either user or executive address space and in either
virtual or physical memory. The address break feature may also be
used to determine if a port is reading or writing a range of locations
in physical memory.

The address break enable and break conditions may be set by the WRCTX
instruction and read by the RDCTX instruction. A description of the
address break related fields in the WRCTX instruction follows:

The first word of the effective address (E) of the WRCTX instruction
controls the action of the instruction. The bits in this word that
affect address break are:

7 inhibit all address break conditions for the next
instruction executed. The effect of setting this bit is
to set the inhibit address break PC flag for the next
instruction. The intended use of this bit is to allow the
instruction sequence:

WRCTX ADRI1 ;Turn on address break
XJRSTF ADR2 sDismiss page fault
to be placed at the end of the monitor page fail routine.

If the address break conditions are such that the hardware
is breaking on all monitor instruction fetches, this bit
allows the monitor to execute the XJRSTF to dismiss the
address break page fault. It is assumed that the PC flags
that are the argument to the AJRSTF will also contain the
inhibit address break bit to allow the monitor to execute
the instruction that caused the original address break
page fault.

8 Load address break conditions from the words at E+2
through E+h. if this bit is on, the address break
qualifiers are loaded from word E+2, lower bound break
address is loaded from E+3 and the upper bound break

ADDRESS BREAK Page 14-2

10

address is loaded from E+4. 1f this bit is off, the
address break conditions remain unchanged.

NOTE

Paging must be enabled (with WREBR bit 4) to load
the address break conditions. |If paging is not
enabled, the result of loading the address break
conditions is undefined.

Load address break enablie from bit 10. {f this bit is on,
address break is turned on or off based on the state of
bit 10. |If this bit is off, the state of address break
enable remains unchanged.

Enabie/disable address break. If both bit 9 and this bit
are on, turn on address break. |If bit 9 is on and this
bit is off, turn off address break. If bit 9 is off, the
state of this bit is ignored.

The third word of the effective address (E+2) of the WRCTX instruction

defines
occur.

10

11

12

13

Th

15

the conditions that determine when an address break will
The condition bits are as follows:

If this bit is on, enable address break for a normal fetch
of an instruction in the program under control of PC.

If this bit is on, enable address break for any reference
that reads except the normal fetch of an instruction.
This includes retrieval of operands, address words in an
effective address calculation, or an instruction to be
executed by an XCT.

If this bit is on, enable address break for any reference
that writes to memory.

If this bit is on, enable address break for a reference
made in wuser virtual address space. |If this bit is off,
enable address break for a reference made in executive
space (either virtual or physical depending on the state
of bit 16).

If this bit is on, enable address break for any reference
made from the CPU, i.e., from the IBOX or EBOX.

If this bit is on, enable address break for any reference
made by a port, i.e., from the 10BOX. No address break
page fail is generated for an address break that occurs as
the result of a port reference. Instead, the MBOX
completes the request normally (i.e., the read or write

ADDRESS BREAK Page 14-3

succeeds) and notifies the port that the request caused an
address break. The port sets bit 12 in the port status
register to indicate to the monitor that an address break
occurred as the result of the transfer.

NOTE

Due to the implzmentation of this feature, the
moni tor cannct be assured that the transfer
completed without errors if an address break
occurs. Therefore, the monitor must retry the
transfer with port address break disabled.

16 If this bit is on, enable address break for a physical
memory reference. If this bit is off, enable address
break for a virtual memory reference. Note that the break
addresses must be physical if this bit is on and virtual
if this bit is off.

17 If this bit is on, compare only the low order 18 bits of
the reference address with the address range when doing
address compares. This allows the program to cause an
address break on an address in any section.

There are certain combinations of the above bits that produce
unspecified results. These combinations are as follows:

If bit 10 is on, then bit 15 must be off because ports never
fetch instructions.

If bit 10 is on, then bit 16 must be off because instruction
fetches are always done from virtual memory.

1f bit 13 is on, then bit 16 must be off because user references
are always done through virtual space.

If bit 15 is on, then bit 16 must be on because ports always make
physical references.

The fourth and fifth words of the effective address (E+3 and E+h4) of
the WRCTX instruction specify the lower ard upper bound break
addresses. When doing address break compares, the MBOX compares the
reference address with the upper and lower bound break addresses.
Normally, the full reference address is used in the compares (i.e., 30
bits of virtual address for virtual compares and 25 bits of physical
address for physical compares). However, if bit 17 is on in the third
word of the WRCTX argument block, only bits 18 through 35 of the
reference address are used in the compares. |f the reference address
is greater than or equal to the lower bound break address and less

ADDRESS BREAK Page 1L4-L

than or equal to the upper bound break address, the address compare
succeeds.

The conditions under which an address break will occur in the MBOX may
be described as follows:

Let:

:= Condition bit 10 on and an instruction fetch reference.

Condition bit 11 on and a read reference.

= Condition bit 12 on and a write reference.

= Condition bit 13 on and a user reference, or condition bit 13 off

and a executive reference.

:= Condition bit 14 on and a reference made by the CPU.

:= Condition bit 15 on and a reference made by a port.

:= Condition bit 16 on and a physical reference, or condition bit 16

off and a virtual reference.

H := Condition bit 17 is off and the reference address is within the
range described by the lower and upper break addresses or
condition bit 17 is on and bits 18 through 35 or the reference
address is within the range described by the lower and upper
break addresses.

OO W™
"

-m

Then a port address break will occur if the following expression is
true:

(AR OR B OR C) AND (F) AND (H)

and a CPU address break page fail will occur if the following
expression is true:

(A OR B OR C) AND (E) AND (D) AND (G) AND (H)

The expressions are given separately for CPU and port references
because that is the way they are implemented in the MBOX hardware.

If an address break page fault does occur, the microcode will turn off
address break before dispatching to the monitor page fault handler.
it is the monitor's responsibility to turn address break back on
before dismissing the page fault if the page fault was the result of
an address break. The microcode WiLL NOT turn off address break for
any page fault except an address break page fault. This allows the
monitor to trace executive instruction fetches by setting the address
break conditions to cause a page fail for each instruction fetched
from executive virtual space.

ADDRESS BREAK

NOTE

|f address break is enabled for a range
of memory addresses, an instruction that
references multiple words in this range
will only cause an address break
condition for the first word referenced
if the monitor restarts the instruction
with the "inhibit address break' PC flag
set. This is because the "inhibit
address break' PC flag remains set for
the completion of execution of the
instruction and blocks further address
breaks.

Page 14-5

INDEX

Address break
algorithms 1h-4
conditions Z2=14, 14=-2
discussion 141
loading 2-13
reading 2-17

APRID o+ ¢ .. 2-3

BLINK o oo 00000 T2

CAB
loading 2-13
reading <« . . . 2-17 to 2-18
Cache enable
loading 2=21
reading« 22k
Cache sweep
invalidate 2-27
unioad + 2-28
CLRPT ¢ ¢ . . ¢+ . . 2=20
CST base register
loading ¢« . . . 2-31
reading . . . ¢« . . . 4 2-32
CST format B8-10
CST mask register
loading . . « . «« 2-3%
reading 2-36
USE « + « « ¢ « « o =« « « « . . B8-10
CST update
forcing 0. 00 2-]
CSTupdates 8-9

Doorbell 3-2 to 3-3
DUMPTB b6-8

EBR
loading . . . « ¢« + ¢« & &+ . 2=21
reading ¢ . o . . . 2-2b4
EPT
TOPS=-10 . . ¢ ¢ ¢« ¢« ¢« o « o« o « 13-4
TOPS=20 . . . ¢ ¢« ¢« ¢ ¢ ¢ ¢« « « 13-2

Flags/PC double words 9-1
FLINK . . . ¢ ¢ v 4 ¢ v v v o o o T=2

Halt status codes 12-1

1/0 page
loading . . « ¢« ¢« ¢« ¢« ¢ &« « o« « 2-25

Page Index-1

reading . .
1/0 page fallure e e .
i/0 reset.
I1BOX flush .
INSQHI .
INSQTI . e
Interrupt vectors .
Interval timer
controlling
loading Pl assignment
reading Pl assignment
reading status . . .

JRST+ . ..
Lo

MAP
Map pointers
Microcode version number
Myuo

OPCODE assignment map .

PAB

loading

reading . . . o« o
Page address words .« o
Page fail word
Page refill
Pager enable

loading

reading . . . o« o .
Paging |nformat|on cache
Paging pointers
PC flags . . « « « « + &
PC trace
Pc trage
PCS

loading

reading
Physical ea-calc

definition
Physical memory
Pl system

control

status
PMOVE
PMOVEM
Pointers
Previous contuxt
Previous context execute

Process context variables

Process use register

Page

2-26

11-10

2-4

2-16, 2-19 to 2-21, 2-27
7-8

7-9

11-10

2-45
2-37
2-39
2-46

to 2-18

LI |
P -

ma\wc;poomw
WN~EENDNON

2-13
2-17 to 2-18

\D&'«PG':&'-:'NN
NN -0

Index-2

loading .

reading

use . .
Processor serial
PXCT
Queue formats
Queue headers
Queue insertion .
Queue interlocks .
Queue removal
RDACT . .
RDAPR . . .
RDCSB . . .
RDCSTM . . .
RDCTX
RDEBR
RDINT . . .
ROIOP
ROPI
ROPUR
ROSPE . .« .
ROTIME
RDOTN8
ROTRAX
RDUBR . . .
ROURTM
READTB
REMQHI
REMQT!
RNGB
RNGBW . . .

Secondary queue

Section pointers

SETCU
SNAPR
SNBSY
SNPI

o
o o
e o

interlock

SPT ba=e register

load
read

ing
ing

State bits . .
Super section pointers

SWPIA
SWPUA
SZAPR
SZPI .

Time b

o o
e o
e o

o o

controlling
reading status

reading value

3

3

.

3

.

. . . .

\I\IT\J\I
wmwonw NN

{2 T IR T I T N N IS T |
—

S0 WVWOOoOFrooOsE~NON

[D I | 1
- 00— O\N \»N—!;&‘P—lNWP\»w—'N#‘N—'W\NU\P

I I R I e |
O

NW NN O~ WWN\IONNN.’C\NNNNNNNNNNNNN

N

[|
ow

LU
[- -]

anwo'omww
~“~NNNVNT—~WN

to L-3, 5-7

Page Index-3

Page Index-4

TOPS-10 paging 8=-21

TOPS-20 page fail 8-12

TOPS-20 page fail codes B8-16

TOPS-20 paging - -« -« « « « = « . . 8-k

Tracks . . . ¢ ¢ ¢« ¢ ¢ v v v« + . 6-2 to 6-3

Translation buffer
clearing
conditional clea e e e e e e
dumping ¢ ¢+ 4 o o .
hardware
mapping ¢ ¢ . . .
reading ¢ 4 e v e oe .o
state bits
writing

Trap enabie
definition
loading « ¢ « . 2=-21
reading ¢+ . ¢ . o o« . 2-2k

Trap functionword 11-2

[|
w O

-
(o -]
'
—

c\a:axﬁ\a’a~u»~
=N —-®—N

—
-
[}
w

UBR
loading
reading .
UMOVE . . .
UMOVEM . . .
UPT
TOPS-10
TOPS-20
User runtime meter . . .
controlling
reading status 2=
reading value 2-ki

3
7 to 2-18

¢« o o o
.
.
.
.
.
.
.
D
.
s
L

VM mode
definition 11-4
invoking . « « « « . s 2-13
reading ¢« .+ .« 2-17 to 2-18

WRACT
WRAPR
WRCSB
WRCSTM
WRCTX
WREBR
WRINT

WRIOP e o s e o . . 2-25
WRITTB 6-6
WRPI00 ... 2-9
WRPUR 2-33
WRSPB 2-29
WRTMB 2-37
WRTRAX 6-3

xBLT ® e & o o o e 6 o o o e o o o 5-6

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	01-01
	01-02
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	02-23
	02-24
	02-25
	02-26
	02-27
	02-28
	02-29
	02-30
	02-31
	02-32
	02-33
	02-34
	02-35
	02-36
	02-37
	02-38
	02-39
	02-40
	02-41
	02-42
	02-43
	02-44
	02-45
	02-46
	03-01
	03-02
	03-03
	03-04
	04-01
	04-02
	04-03
	04-04
	04-05
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	08-23
	08-24
	08-25
	09-01
	09-02
	09-03
	09-04
	10-01
	10-02
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	12-01
	12-02
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	13-09
	13-10
	14-01
	14-02
	14-03
	14-04
	14-05
	Index-01
	Index-02
	Index-03
	Index-04

